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PREFACE 

The  primary  aim  of  the  present  book  is  to  supply  for  students 

beginning  the  study  of  Theoretical  Mechanics  a  course  of  such  a 
nature  as  shall  emphasize  the  fimdamental  physical  principles  of 

the  subject.  Different  students  will  of  course  approach  the  study 
of  mechanics  with  different  interests,  different  aims,  and  different 

amounts  of  mathematical  equipment,  so  that  it  may  not  be  possible 

to  produce  a  single  book  which  shall  exactly  fit  the  requirements 

of  every  class  of  student.  But  I  believe  that  all  students  of  me- 
chanics, no  matter  what  their  aims  and  intentions  may  be,  will 

be  in  the  same  position  in  one  respect,  namely  that  they  will  best 

begin  the  study  of  the  subject  by  trying  to  acquire  a  firm  grasp 

of  the  physical  principles,  leaving  aside  at  first  all  mathematical 

developments  and  all  practical  applications,  except  in  so  far  as  these 

l^fcontribute  to  the  elucidation  of  the  fundamental  physical  principles. 
I  am  aware  that  this  belief  is  not  held  by  all  teachers  of 

mechanics,  some  of  whom  regard  the  laws  of  mechanics  simply  as 

working  rules  to  be  acquired  as  rapidly  as  possible  for  their  utili- 
tarian value,  while  others  appear  to  regard  them  in  the  same  light 

as  the  rules  of  a  game,  the  game  consisting  in  the  solution  of 

mathematical  puzzles,  most  of  wliich  have  no  conceivable  refer- 
ence to  the  facts  of  nature.  I  find  it  hard  to  believe  that  there 

can  be  any  considerable  class  of  students  for  whom  either  of  these 

points  of  view  is  the  best.  As  regards  the  former,  I  feel  that  a 

student  who  cannot  get,  or  does  not  wish  to  get,  a  clear  under- 

standing of  mechanical  principles  would  be  well  advised  not  to 

enter  a  profession  in  which  his  work  wiU  consist  in  the  handling 

of  mechanical  problems ;  and  as  regards  the  latter,  that  a  student 

who  wishes  merely  to  obtain  material  for  puzzle  solving  would  do 
better  to  turn  his  attention  to  chess  or  double  acrostics. 

iii 



iv  PEEFACE 

If  I  have  taken  some  space  to  express  my  private  convictions,  it 

is  because  the  method  I  have  embodied  in  the  present  book  arises 

directly  out  of  these  convictions.  Mathematical  analysis  is,  of 
course,  not  excluded  from  the  book,  because  without  mathematics 

there  can  be  no  serious  study  of  mechanics,  but  I  have  tried  to 

reduce  the  amount  of  mathematics  to  a  minimum,  and  I  have 

regarded  it  (in  the  present  book)  as  the  servant  and  not  as  the 

master.  Again,  practical  applications  of  mechanics  have  not  been 

excluded,  —  on  the  contrary,  these  have  been  introduced  wherever 

possible  as  illustrations  of  principles  or  results,  —  but  I  have  tried 
to  place  principles  first  and  applications  second.  And  problems 

have  not  been  excluded :  I  have  inserted  a  great  number,  because 

the  solution  of  problems  seems  to  me  to  be  the  one  and  indis- 
pensable way  of  emphasizing  a  group  of  abstract  principles  and  of 

fixing  them  in  the  mind  of  the  student.  But  I  have  regarded  the 

problems  as  an  adjunct  to  the  study  of  the  principles,  and  not  the 

principles  as  a  framework  round  which  to  build  problems. 

Besides  explaining  the  method  and  objects  of  a  book,  a  preface 

may  be  expected  to  explain  where  the  book  starts  and  where  it 

ends.  The  present  book  is  intended  to  start  from  the  very  begin- 
ning of  its  subject,  assummg  no  previous  knowledge  of  mechanics 

on  the  part  of  the  student.  The  question  of  how  much  knowledge 

of  mathematics  ought  to  be  assumed  has  been  a  more  difficult  one 

to  settle.  I  finally  decided  to  rely  as  little  as  possible  on  the  stu- 

dent's knowledge  of  trigonometry,  and  to  employ  the  calculus  as 
little  as  possible  in  the  earlier  chapters,  but  felt  that  the  subjects 

of  the  later  chapters  could  not  be  advantageously  treated  without 

a  very  considerable  use  of  the  calculus.  Until  the  later  chapters 

the  use  of  the  calculus  is  confined  almost  exclusively  to  unimpor- 
tant branches  and  extensions  of  the  subject,  and  to  the  working  of 

illustrative  examples.  Thus  a  student  who  has  no  knowledge  at 

all  of  the  calculus  will,  I  hope,  be  able  to  omit  the  sections  of  the 

book  in  which  it  is  used,  while  at  the  same  time  acquiring  a  con- 
siderable and  continuous  knowledge  of  the  essentials  of  theoretical 

mechanics. 



PKEFACE  V 

The  point  at  which  the  book  ought  to  close  seemed  in  the  pres- 
ent instance  to  be  determined  by  the  method  of  the  book  itself. 

If,  as  I  believe,  a  study  of  physical  principles  ought  to  be  the  com- 

mon preHminary  to  the  study  of  every  branch  and  every  appli- 
cation of  mechanical  science,  then  the  book  might  clearly  try  to 

cover  all  this  common  ground,  and  ought  to  stop  at  the  point  at 

which  detailed  specialization  becomes  feasible  and  profitable.  It 

ought,  in  fact,  to  cover  the  range  which  will  be  covered  by  all  stu- 

dents, and  stop  short  of  subjects  which  will  be  of  interest  or  impor- 
tance only  to  a  few.  Judged  by  this  criterion  the  book  will  perhaps 

be  thought  by  some  to  be  open  to  the  criticism  of  covering  too  much 

ground ;  it  may  be  thought  that  the  final  chapter  on  generalized 
coordinates  can  hardly  be  regarded  as  essential  to  the  student 

whose  study  of  mechanics  is  a  preliminary  to  his  entering  the  pro- 
fession of,  say,  engineering.  I  am  nevertheless  convinced  that,  even 

if  the  study  of  generalized  coordinates  is  not  absolutely  indispen- 
sable to  such  students,  it  is  of  extreme  value  and  ought  not  to  be 

neglected  by  a  student,  possessed  of  the  requisite  ability,  who  can 

possibly  find  time  for  it.  The  student  who  omits  it  shuts  himself 

off  from  a  point  of  view  which  sums  up  and  illuminates  the  whole 

of  dynamical  theory;  at  the  same  time  he  denies  himself  the 

opportunity  of  studying,  or  at  least  of  fully  understanding,  the 

theory  of  electricity  and  magnetism.  And  as  regards  the  student 
who  intends  to  continue  his  studies  in  the  direction  of  theoretical 

physics,  the  theory  of  generalized  coordinates  forms  so  essential 

a  preliminary  to  the  study  of  most  branches  of  physics  that  the 

advantages  of  including  a  short  treatment  of  this  subject  in  the 

preliminary  mechanics  course  will  hardly  be  disputed. 

Princeton  J-   «'  JEANS 
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THEORETICAL   MECHAOTCS 

CHAPTEK  I 

REST  AND  MOTION 

Introduction 

1.  Uniformity  of  nature.  If  we  place  a  stone  in  water,  it  will 

sink  to  the  bottom ;  if  we  place  a  cork  in  water,  it  will  rise  to 

the  top.  These  two  statements  will  be  admitted  to  be  true  not 

only  of  stones  and  corks  which  have  been  seen  to  sink  or  rise  in 

water  but  of  all  stones  and  corks.  Given  a  piece  of  stone  which 

has  never  been  placed  in  water,  we  feel  confident  that  if  we  place 

it  in  water  it  will  sink.  What  justification  have  we  for  supposing 

that  tliis  new  and  untried  piece  of  stone  will  sink  in  water  ?  We 

know  that  millions  of  pieces  of  stone  have  at  different  times  been 

placed  in  water ;  we  know  that  not  a  single  one  of  these  has  ever 

been  known  to  do  anything  but  sink.  From  this  we  infer  that 

nature  treats  all  pieces  of  stone  alike  when  they  are  placed  in 

water,  and  so  feel  confident  that  a  new  and  untried  piece  of  stone 

will  be  treated  by  the  forces  of  nature  in  the  same  way  as  the 
innumerable  pieces  of  stone  of  which  the  behavior  has  been 

tested,  and  hence  that  it  will  sink  in  water.  This  principle  is 

known  as  that  of  the  uniformity  of  nature  ;  what  the  forces  of 

nature  have  been  found  to  do  once,  they  will,  under  similar  condi- 
tions, do  again. 

2.  Laws  of  nature.  The  principle  just  stated  amounts  to  say- 
ing that  the  action  of  the  forces  of  nature  is  governed  by  certain 

laws;  these  we  speak  of  as  laws  of  nature.  For  instance,  if  it 

has  been  found  that  every  stone  which  has  ever  been  placed  in 
1 
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water  has  sunk  to  the  bottom,  then,  as  has  already  been  said,  the 

principle  of  uniformity  of  nature  leads  us  to  suppose  that  every 

stone  which  at  any  future  time  is  placed  in  water  will  sink  to  the 

bottom ;  and  we  can  then  announce,  as  a  law  of  nature,  that  any 

stone,  placed  in  water,  will  sink  to  the  bottom. 

That  part  of  science  which  deals  with  the  laws  of  nature  is 

called  natural  science.  Natural  science  is  divided  into  two  parts, 

experimental  and  theoretical.  Experimental  science  tries  to  dis- 
cover laws  of  nature  by  observing  the  action  of  the  forces  of 

nature  time  after  time.  Theoretical  science  takes  as  its  material 

the  laws  of  nature  discovered  by  experimental  science,  and  aims  at 

reducing  them,  if  possible,  to  simpler  forms,  and  then  discovering 

how  to  predict  from  these  laws  what  the  action  of  the  forces  of 

nature  will  be  in  cases  which  have  not  actually  been  subjected  to 

the  test  of  experiment.  For  example,  experimental  science  dis- 
covers that  a  stone  sinks,  that  a  cork  floats,  and  a  number  of  sim- 

ilar laws.  From  these  theoretical  physics  arrives  at  the  simple  laws 

of  nature  which  govern  all  phen\)mena  of  sinking  or  floating,  and, 

going  further,  shows  how  these  laws  enable  us  to  predict,  before 

the  experiment  has  been  actually  tried,  whether  a  given  body  will 

sink  or  float.  For  instance,  experimental  science  cannot  discover 

whether  a  50,000-ton  ship  will  float  or  sink,  because  no  50,000- 
ton  ship  exists  with  which  to  experiment.  The  naval  architect, 

relying  on  the  uniformity  of  nature,  on  the  laws  of  nature  deter- 
mined by  experimental  science,  and  on  the  method  of  handling 

these  laws  taught  by  theoretical  science,  may  build  a  50,000-ton 

ship  with  every  confidence  that  it  will  behave  in  the  way  pre- 
dicted by  theoretical  science. 

3.  The  science  of  mechanics.  The  branch  of  science  known 

as  mechanics  deals  with  the  motion  of  bodies  in  space,  and  with 
the  forces  of  nature  which  cause  or  tend  to  cause  this  motion. 

The  laws  of  nature  which  govern  the  action  of  these  forces  and  the 

motion  of  bodies  have  long  been  known,  and  were  reduced  to  their 

simplest  form  by  Newton.  Thus  we  may  say  that  experimental 

mechanics  is  a  completed  branch  of  science. 
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The  present  book  deals  with  theoretical  mechanics.  We  start 

from  the  laws  supplied  by  experimental  mechanics,  and  have  to 

discuss  how  these  laws  can  be  used  to  predict  the  motion  of  bodies, 

—  for  instance,  the  falling  of  bodies  to  the  ground,  the  firing  of 

projectiles,  the  motion  of  the  earth  and  the  planets  round  the  sun. 

An  important  class  of  problems  which  we  shall  have  to  discuss 

wiU  be  those  in  which  no  motion  takes  place,  the  forces  of  nature 

which  tend  to  cause  motion  being  so  evenly  balanced  that  no 

motion  occurs.    Such  problems  are  known  as  statical. 

Motion  of  a  Point 

4.  State  of  rest.  Before  we  can  reason  about  the  motion  of  a 

body  we  have  to  determine  what  is  meant  by  a  body  being  at 

rest.  In  ordinary  language  we  say  that  a  train  is  at  rest  when  the 

cars  are  not  moving  over  the  rails.  We  know,  however,  that  the 

train,  in  common  with  the  rest  of  the  earth,  is  not  actually  at  rest, 

but  moving  round  the  sun  with  a  great  velocity.  Again,  a  fly 

crawling  on  the  wall  of  a  railway  car  might  in  one  sense  be  said  to 

be  at  rest,  if  it  remained  standing  on  the  same  spot  of  the  wall. 

The  fly,  however,  would  not  actually  be  at  rest ;  it  would  share  in 

the  motion  of  the  train  over  the  country,  the  country  w^ould  share 
in  the  motion  of  the  earth  round  the  sun,  and  the  sun  would 

share  in  the  motion  of  the  whole  solar  system  through  space. 

These  instances  will  show  the  necessity  of  attaching  a  clear 

and  exact  meaning  to  the  conceptions  of  rest  and  motion.  Obvi- 
ously our  statements  would  have  been  exact  enough  if  we  had 

said  that  in  the  first  case  the  train  was  at  rest  relatively  to  the 

earth,  and  that  in  the  second  case  the  fly  was  at  rest  relatively  to 
the  car. 

5.  Frame  of  reference.  Thus  we  find  it  necessary,  before  dis- 
cussing rest  and  motion,  to  introduce  the  conception  of  a  frame  of 

reference.  The  earth  supplied  a  frame  of  reference  for  the  motion 

of  the  train,  and  when  a  train  is  not  moving  over  the  rails  we 

may  say  that  it  is  at  rest,  the  earth  being  taken  as  frame  of 
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reference.  So  also  we  could  say  that  the  fly  was  at  rest,  the  car 

being  taken  as  frame  of  reference.  Obviously  any  framework,  real 

or  imaginary,  or  any  material  body,  may  be  taken  as  a  frame  of  ref- 

erence, provided  that  it  is  rigid,  i.e.  that  it  is  not  itself  changing 
its  shape  or  size. 

We  may  accordingly  say  that  a  point  is  at  rest  relatively  to  any 

frame  of  reference  when  the  distance  of  the  point  from  each  point 
of  the  frame  of  reference  remains  unaltered. 

6.  Motion  relative  to  frame  of  reference.  Having  specified  a 

frame  of  reference,  we  can  discuss  not  only  rest  but  also  motion 
relative  to  the  frame  of  reference.  When  the  train  has  moved 

a  mile  over  the  tracks  we  say  that  it  has  moved  a  mile  rela- 
tively to  its  frame  of  reference,  the  earth.  When  the  fly  has 

crawled  from  floor  to  ceiling  of  the  car  we  say  that  it  has  moved, 

say,  eight  feet  relatively  to  its  frame  of  reference,  the  car. 

In  fixing  the  distance  traveled  by  the  fly  relatively  to  the  train  in  an 
interval  between  two  instants  t^y  t^,  we  notice  that  the  actual  point  from 
which  the  fly  started  is,  say,  a  mile  behind  the  present  position  of  the 
train ;  but  the  point  from  which  we  measure  is  the  point  which  occupies 
the  same  position  in  the  car  at  time  (2  as  this  point  did  at  time  ti.  So,  in 
general,  to  fix  the  distance  moved  relatively  to  a  given  frame  of  reference 
in  the  interval  between  times  t^  and  (2,  we  first  find  the  point  A  which  stands 
in  the  same  position  relative  to  the  frame  of  reference  at  time  (2  as  did 
the  point  from  which  the  moving  point  started  at  time  t^.  The  distance 
from  this  point  A  to  the  point  B,  which  is  occupied  by  the  moving  point  at 
instant  (2,  is  the  distance  moved  relatively  to  the  moving  frame  of  reference. 

By  the  motion  of  a  particle  B  relative  to  a  particle  J,  is  meant 

the  motion  of  B  relative  to  a  frame  of  reference  moving  with  A. 

7.  Composition  of  motions.  Suppose  that  in  a  given  time  the 

moving  point  moves  a  certain  distance  relatively  to  its  frame  of 
reference,  while  tliis  frame  of  reference  itself  moves  some  other 

distance  relatively  to  a  second  frame  of  reference,  —  as  will,  for 

instance,  occur  if  a  fly  climbs  up  the  side  of  a  car  while  the  car 
moves  relatively  to  the  earth. 

Let  us  suppose  that  there  is  a  frame  of  reference  moving  in 

the  plane  of  the  paper  on  which  fig.  1  is  drawn,  and  that  the 
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Fig.  1 

paper  itself  supplies  a  second  frame  of  reference.  Suppose  that 

the  moving  point  starts  at  A,  and  that  during  the  motion  that 

point  of  the  first  frame  of  reference  which  originally  coincided 
with  the  moving  point  has  moved 

from  A  to  B,  while  the  point  itself 
has  moved  to  C.  Then  the  line  AB 

represents  the   motion  of  frame  1 

1^  relative  to  frame  2,  while  BC  repre-  --
^" 

^P  sents  the  motion  of  the  moving  point 
relative  to  frame  1.  The  whole  mo- 

tion of  the  point  relative  to  frame  2  is  represented  by  AC.  The 

motion  ̂ C  is  said  to  be  compoimded  of  the  two  motions  AB,  BC, 
or  is  said  to  be  the  resultant  of  the  two  motions.    Thus : 

If  a  point  moves  a  distance  BC  relatively  to  frame  1,  while 

frame  1  moves  a  distance  AB  relatively  to  frame  2,  the  resultant 

motion  of  the  'point  relative  to  frame  2  will  he  the  distance  AC, 
ohtained  hy  taking  the  two  distances  AB,  BC  and  placing  them  in 

position  in  such  a  way  that  the  point  B  at  which  the  one  ends  is 

also  the  point  at  which  the  other  begins. 

There  is  a  second  way  of  compounding  two  motions.  Let  x,  y 

represent  the  two  motions.  The  rule  already  obtained  directs  us  to 

construct  a  triangle  ABC,  to  have  x,  y  for  the  sides  AB,  BC,  and 

then  AC  will  be  the  motion  required.    Having  constructed  such  a 
triangle  ABC,  let  us 

complete  the  paral- 
lelogram ABCD  by 

drawing    AD,    CD 

parallel  to  the  side 
of     the     triangle. 
Then    AD,    being 

equal  to  BC,  will  also  represent  the  motion  y,  so  that  we  may  say 

that  the  two  edges  of  the  parallelogram  which  meet  in  A  represent 

the  two  motions  to  be  compounded,  while  the  diagonal  A  C  through 

A  has  already  been  seen  to  represent  the  resultant  motion.    Thus 

we  have  the  following  rule  for  compounding  two  motions  x,  y : 
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Construct  a  jparallelogram  ABCD  such  that  the  two  sides  AB,  AD 

which  meet  in  A  represent  the  two  motions  x,  y  to  he  compounded^ 

as  regards  both  magnitude  and  direction;  then  the  diagonal  AC 

which  passes  through  A  will  represent  the  resultant  obtained  by 

compounding  these  two  motions. 

Velocity 

8.  Uniform  and  variable  velocity.  Velocity  means  simply 

rate  of  motion.  It  may  be  either  uniform  or  variable.  If  a  point 

moves  in  such  a  way  that  a  feet  are  described  in  each  second  of 

its  motion,  no  matter  which  second  we  select,  we  say  that  the 

velocity  of  the  point  is  a  uniform  velocity  of  a  feet  per  second. 

If,  however,  the  point  moves  a  feet  in  one  second,  b  feet  in  another, 

c  feet  in  a  third,  and  so  on,  we  cannot  say  that  any  one  of  the 

quantities  a,  b,  or  c  measures  the  velocity.  The  velocity  is  now 

said  to  be  variable  :  it  is  different  at  different  stages  of  the  motion. 

To  define  the  velocity  at  any  instant,  we  take  an  infinitesimal  in- 
terval of  time  dt  and  measure  the  distance  ds  described  in  this 

ds 
time.    We  then  define  the  ratio  —  to  be  the  velocity  at  the  instant '^'  ds 
at  which  the  interval  dt  is  taken.    If  the  velocity  is  uniform,  — 

az 

is  the  space  described  in  unit  time,  and  so  the  present  definition 

of  velocity  becomes  the  same  as  that  already  given. 

Average  velocity.     If  a  point  moves  with  variable  velocity,  and 

describes  a  distance  of  a  feet  in  t  seconds,  we  speak  of  -  as  the 

"average  velocity"  of  the  moving  point  during  the  time  t.  This 
average  velocity  is  the  velocity  which  would  have  to  be  possessed 

by  an  imaginary  point  moving  with  uniform  velocity,  if  it  were  to 
cover  the  same  distance  in  time  t  as  the  actual  point  moving  with 

variable  velocity. 

Units.  In  measuring  a  velocity  we  need  to  speak  in  terms  of  a 

unit  of  length  and  of  a  unit  of  time ;  for  instance,  in  saying  that 

a  point  has  a  velocity  of  a  feet  per  second  we  have  selected  the  foot 
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as  unit  of  length  and  the  second  as  unit  of  time.    We  can  find  the 

amount  of  this  same  velocity  in  other  units  by  a  simple  proportion. 

Thus  suppose  it  is  required  to  express  a  velocity  of  a  feet  per  second 
in  terms  of  miles  and  hours. 

The  point  moves  a  feet  in  one  second,  and  therefore  a  x  60  x  60  feet  in 
one  hour,  and  therefore 

a  X  60  X  60      15  a 

3  X  1760  22 
miles 

I 
15  a 

in  one  hour.    Thus  the  velocity  is  one  of  — —  miles  per  hour. 

EXAMPLES 

1.  A  railway  train  travels  a  distance  of  918  miles  in  18  hours.  What  is  its 

average  velocity  in  feet  per  second  ? 

2.  Compare  the  velocities  of  a  train  and  an  automobile  which  move  uni- 
formly, the  former  covering  100  feet  a  second  and  the  latter  1500  yards  a  minute. 

.    3.  A  man  runs  100  yards  in  9|  seconds.    What  is  his  average  speed  in  miles 
per  hour  ? 

4.  The  two  hands  of  a  town  clock  are  10  and  7  feet  long.  Find  the  velocities 
of  their  extremities. 

5.  Taking  the  diameter  of  the  earth  as  7927  miles,  what  is  the  velocity  in 

foot-second  units  of  a  man  standing  at  the  equator  (in  consequence  of  the  daily 
revolution  of  the  earth  about  its  axis)  ? 

6.  Two  trains  230  and  440  feet  long  respectively  pass  each  other  on  parallel     / 

tracks,  the  former  moving  with  twice  the  speed  of  the  latter.    A  passenger  in    ' — ' 
the  shorter  train  observes  that  it  takes  the  longer  train  three  seconds  to  pass 
him.    Find  the  velocities  of  both  trains. 

9.  Composition  of  velocities.  All  motion,  as  we  have  seen,  must 

be  measured  relatively  to  a  frame  of  reference.  Thus  velocity, 

or  rate  of  motion,  must  also  be  measured  relatively  to  a  frame 

of  reference.  A  point  may  have  a  certain  velocity  relative  to  a 
frame  of  reference,  while  the  frame  of  reference  itself  has  another 

velocity  relative  to  a  second  frame.  It  may  be  necessary  to  find 

the  velocity  of  the  moving  point  with  reference  to  the  second 

frame,  in  other  words,  to  compound  the  two  velocities. 

To  do  this  we  consider  the  motions  wliich  take  place  during 

an  infinitesimal  interval  of  time  dt  Let  the  moving  point  have 

a  velocity  v^  m  a.  direction  AB  relative  to  the  first  frame,  while 
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the  frame  has  a  velocity  v^  in  a  direction  AC  relative  to  the 

second  frame.  Then  in  time  dt  the  moving  point  describes  a  dis- 

tance v^dt,  say  the  distance  AD,  along  AB  relative  to  the  first 
frame,  wliile  the  frame  itself  describes  a  distance  v^dt,  say  AE, 

along  AC  relative  to  the  second  frame.    Let  AF  be  the  diagonal 
of  the  parallelogram  of  which  AD,  AE 

are  two  edges ;  then  AF  will  be  the 

resultant  motion  of  the  point  in  time 
dt  relative  to  the  second  frame.  Since 

the  moving  point  describes  a  distance 

AF  in  time  dt,  the  resultant  velocity 

Fig.  3 will  be  — —  • dt 

Let  us  now  agree  that  velocities  are 

to  be  represented  by  straight  lines,  the  direction  of  the  line  being 

parallel  to  that  of  the  velocity  and  its  length  being  proportional 

to  the  amount  of  the  velocity,  the  lengths  being  drawn  according 

to  any  scale  we  please ;  for  example,  we  might  agree  that  every 

inch  of  length  is  to  represent  a  velocity  of  one  foot  per  second,  in 

which  case  a  velocity  of  three  feet  a  second  will  be  represented  by  a 

line  three  inches  long  drawn  parallel  to  the  direction  of  motion. 

In  fig.  3  let  Ap,  Aq  represent  the  velocities  v^,  v^  drawn  on  any 

scale  we  please.    Since  the  scale  is  the  same  for  both,  we  have 

Ap  :  Aq  =  v^\  v^ 

Now  AE  =  v^dt,  AD  =  v^dt,  so  that 

AE  :  AD  =  ̂ 2 :  "^^u 

and  hence  .  Ap  :  Aq  =  AE :  AD. 

If  we  complete  the  parallelogram  Aprq,  the  diagonal  Ar  will  pass 
through  F,  and  we  shall  have 

Ar:Ap  =  AF:AE. 

If  F  is  the  resultant  velocity,  it  has  already  been  seen  that 

AF 

dt 
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so  that 

and  hence 

AF:AE=  Vdt'.v^dt 

I 

Ar  :  Ap  =  Viv^. 

Thus  Ar  represents  the  magnitude  of  the  velocity  V  on  the 

same  scale  as  that  on  which  Ap  represents  the  velocity  v^.  Also 
since  Ar  is  in  the  direction  of  AF,  the  resultant  motion,  we  see 

that  Ar  represents  the  velocity  Fboth  in  magnitude  and  direction. 

We  have  accordingly  proved  the  following  theorem : 

Theorem.  If  two  velocities  are  represented  in  magnitude  and 

direction  hy  the  two  sides  of  a  parallelogram  which  start  from  any 

point  A,  then  their  resultant  is  represented  in  magnitude  and  direc- 
tion on  the  same  scale  hy  the  diagonal  of  the  parallelogram  which 

starts  from  A. 

This  theorem  is  known  as  the  parallelogram  of  velocities.  We 

may  illustrate  its  meaning  by  two  simple  examples. 

1.  Suppose  that  a  carriage  is  moving  on  a  level  road  with  velocity  V. 
As  a  first  frame  of  reference  let  us  take  the  body  of  the  carriage;  as 

a  second  frame  take  the  road  itself.  The  velocity  of  frame  1  relative  to 

frame  2  is  then  V.  Relatively  to  frame  1,  the  center  of  any  wheel  P  is 

fixed,  so  that  any  point 
on  the  rim  describes 

a  circle  about  P.  Rela- 

tively to  frame  1  the 

road  is  moving  backward 

with  velocity  V,  so  that 

if  there  is  to  be  no  slip- 
ping between  the  rim  and 

the  road,  the  velocity  of 

any  point  on  the  rim,  rel- 
ative to  the  first  frame 

(the  carriage),  must  be  V. 
Thus  the  velocity  of  any 

point  Q  on  the  rim  rela- 
tive to  frame  1  will  be  a  velocity  V  along  the  tangent  QT.  Representing 

this  by  the  line  QT,  the  velocity  of  the  carriage  relative  to  the  road  is 

represented  by  an  equal  line  QH  parallel  to  the  road.  Thus  the  resultant 

velocity  of  the  point  Q  is  represented  by  the  diagonal  QS  of  the  parallelo- 
gram QHST.    Clearly  its  direction  bisects  the  angle  HQT.    Let  L  be  the 

Fig.  4 
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lowest  point  of  the  wheel,  and  let  X  complete  the  parallelogram  QPLX. 

Obviously  this  parallelogram  is  similar  to  the  parallelogram.  QTSH,  corre- 
sponding lines  in  the  two  parallelograms  being  at  right  angles.    Thus 

QS:  QT=QL  :  QP. 

So  that  on  a  scale  in  which  the  velocity  of  the  carriage  is  represented  in 

magnitude  by  QP,  the  radius  of  the  wheel,  the  velocity  of  the  point  Q  will 

be  represented  by  QL.  Thus  the  velocities  of  the  different  points  on  the 

rim  are  proportional  to  their  distances  from  L,  their  directions  being  in 

each  case  perpendicular  to  the  line  joining  the  point  to  L. 

2.  A  battle  ship  is  steaming  at  18  knots,  and  its  guns  can  fire  projectiles 

with  velocities  of  2000  feet  per  second  relative  to  the  ship.    How  must 

the  guns  be  pointed  to  hit  an  object  the  direction  of 

which  from  the  ship  is  perpendicular  to  that  of  the 

ship's  motion? 

Let  AB  he  the  direction  of  the  shij)'s  motion,  and 
let  us  suppose  the  gun  pointed  in  a  direction  AC. 

Then  the  velocity  of  the  shot  relative  to  the  ship 

can  be  represented  by  a  line  Ap  along  A  C,  while  that 

of  the  ship  relative  to  the  sea  can  be  represented  by 

a  line  Aq  along  AB.  Completing  the  parallelogram 

Aprq,  we  find  that  the  diagonal  Ar  will  represent  the 

velocity  of  the  shot  relative  to  the  sea  in  magnitude  and  direction.  Hence 

Ar  must,  from  the  data  of  the  question,  be  at  right  angles  to  AB_.  If  6  is 

"the  angle  pAr  through  which  the  gun  must  be  turned  after  sighting  the 
object  to  be  hit,  we  have 

•    a  —  P^  —         velocity  of  ship 
Ap      velocity  of  firing  of  shot 

The  velocity  of  the  ship  is  18  knots,  or  18  nautical  miles  per  hour. 

Now    1    nautical   mile  =  1.1515   ordinary   miles  =  6080    feet,    so   that   a 

velocity  of  18  knots  is  equal  to  109,440  feet  per  hour,  or  30.4  feet  per 
oO  4 

second.    Thus  sin  6  =  — —  =  .0152,  whence  we  find  that  0  =  0°  52'  16'^ 2000 

Triangle  of  Velocities 

10.  We  can  also  compound  velocities  by  a  rule  known  as  the 

triangle  of  velocities.  In  fig.  3  the  two  velocities  were  represented 

by  Ap,  Aq,  and  their  resultant  by  Ar.  The  two  velocities,  how- 
ever, might  equally  well  have  been  represented  by  Ap,  pr,  and 

their  resultant  by  Ar,  from  which  we  obtain  the  following  rule : 
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If  two  velocities  are  represented  hy  the  two  sides  of  a  triangle 

taken  in  order,  their  resultant  will  he  represented  hy  the  third  side, 

taken  in  the  direction  from  the  first  side  to  the  second  side. 

For  example,  let  OP^,  OP^  be  two  lines  drawn  through  0  to 

represent,  on  any  scale,  the  velocities  of  a  mov- 
ing point  at  instants  t^,  t^.    Then  P^P^  will,  on 

the  same  scale,  represent  the  additional  velocity- 
acquired  by  the  point  in  this  interval. 

For  we  can  imagine  a  frame  moving  with 

the  uniform  velocity  OP^  of  the  particle  at 

instant  t^.  The  velocity  OP^  at  instant  t^  may 

be  supposed  compounded  of  the  velocity  OP^ 

of  the  frame  and  a  velocity  P^P^  relative 

to  the  frame.    Obviously  this  latter  is  the  increase  of  velocity. 

EXAMPLES 

1.  A  car  is  running  at  14  miles  an  hour,  and  a  man  jumps  from  it  with  a 

velocity  of  8  feet  per  second  in  a  direction  making  an  angle  of  30°  with  the 
direction  of  the  car's  motion.    What  is  his  velocity  relative  to  the  ground  ? 

2.  A  railway  train,  moving  at  the  rate  of  60  miles  an  hour,  is  struck  by  a 
bullet,  which  is  fired  horizontally  and  at  right  angles  to  the  train  with  a  velocity 
of  440  feet  a  second.  Find  the  magnitude  and  direction  of  the  velocity  with 

which  the  bullet  appears  to  meet  the  train  to  a  person  inside. 
3.  A  ship  whose  head  points  northeast  is  steaming  at  the  rate  of  12  knots  in 

a  current  which  flows  southeast  at  the  rate  of  5  knots.  How  far  will  the  ship 

have  gone  in  2|  hours  ? 
4.  A  train  is  traveling  at  the  rate  of  30  miles  an  hour,  and  rain  falls  with 

a  velocity  of  22  feet  per  second  at  an  angle  of  30°  with  the  vertical  in  the  same 
direction  as  the  motion  of  the  train.  Find  the  direction  of  the  splashes  made 

on  the  windows  by  the  raindrops. 

5.  A  steamer's  course  is  due  south,  and  its  speed  is  20  knots ;  the  wind  is 
from  the  west,  but  the  line  of  smoke  from  the  steamer  is  observed  to  point  in  a 

direction  30°  east  of  north.    What  is  the  velocity  of  the  wind  ? 
6.  A  man  rows  across  a  stream  a  mile  wide,  pointing  his  boat  upstream  at 

an  angle  of  30°  with  the  bank.  How  long  does  he  take  to  cross,  if  he  rows  with 
a  velocity  of  4  miles  an  hour  and  if  the  current  has  an  equal  velocity? 

7.  A  stream  has  a  current  velocity  a,  and  a  man  can  row  his  boat  with  a 
velocity  6.  In  what  direction  must  he  row,  if  he  is  to  land  at  a  point  exactly 

opposite  his  starting  point  ?  And  in  what  direction  must  he  row  so  as  to  cross 
in  the  shortest  time  ? 
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8.  A  ship  whose  head  is  pointing  due  south  is  steaming  across  a  current  run- 

ning due  west ;  at  the  end  of  two  hours  it  is  found  that  the  ship  has  gone  36  miles 

in  the  direction  15°  west  of  south.    Find  the  velocities  of  the  ship  and  current. 
9.  A  person  traveling  eastward  at  the  rate  of  3  miles  an  hour  finds  that  the 

wind  seems  to  blow  directly  from  the  north ;  on  doubling  his  speed  it  appears 

to  come  from  the  northeast.    Find  the  direction  of  the  wind  and  its  velocity. 

Acceleration 

11.  Acceleration  is  rate  of  increase  of  velocity.  If  we  find  that 

the  velocity  of  a  moving  point  increases  by  an  amount  /  in  a  sec- 
ond, no  matter  which  second  is  selected,  we  say  that  the  motion 

of  the  point  has  a  uniform  acceleration  /  per  second.  For  instance, 

a  stone  or  other  body  falling  under  gravity  is  found  to  increase 

its  velocity  by  a  certain  constant  velocity  /  per  second,  where  / 

denotes  a  velocity  of  about  32  feet  per  second.  Thus  we  say  that 

a  falling  stone  has  a  uniform  acceleration  of  /  per  second,  or  of 

about  32  feet  per  second  per  second. 

Generally,  however,  an  acceleration  will  not  be  uniform ;  the 

rate  of  increase  of  velocity  will  be  different  at  different  stages  of 

the  journey.  To  find  the  acceleration  at  any  instant,  we  observe 

the  change  in  velocity  during  an  infinitesimal  interval  dt  of  time. 

If  dv  is  the  increase  of  velocity,  we  say  that  —  is  the  acceleration CvZ 

at  the  instant  at  which  dt  is  taken.  An  acceleration  will  of  course 

have  sign  as  well  as  magnitude,  for  the  velocity  may  be  either 

increasing  or  decreasing.  When  the  velocity  is  decreasing,  the 

acceleration  is  reckoned  with  a  negative  sign.  A  negative  accelera- 
tion is  spoken  of  as  a  retardation.  Thus  a  retardation  /  means 

that  the  velocity  is  diminished  by  an  amount/  per  imit  of  time. 

EXAMPLES 

1.  A  workman  fell  from  the  top  of  a  building  and  struck  the  ground  in 
4  seconds.  With  what  velocity  did  he  strike  the  ground,  the  acceleration  due  to 
gravity  being  32  feet  per  second  per  second  ? 

2.  A  train  has  at  a  given  instant  a  velocity  of  30  miles  an  hour,  and  moves 

with  an  acceleration  of  1  foot  per  second  per  second.  Find  its  velocity  after 
20  seconds. 
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3.  A  train  comes  to  rest  after  the  brakes  have  been  applied  for  ten  seconds. 

If  the  retardation  was  8  feet  per  second  per  second,  what  was  the  velocity  of 
the  train  when  the  brakes  were  first  drawn  ? 

4.  How  long  does  it  take  a  body  starting  with  a  velocity  of  22  feet  per  second 

and  moving  with  an  acceleration  of  6  feet  per  second  per  second,  to  acquire  a 
velocity  of  60  miles  an  hour  ? 

5.  Two  bodies  start  at  the  same  instant  with  velocities  u  and  v  respectively; 

the  motion  of  the  first  undergoes  a  retardation  of  /  feet  per  second  per  second, 
while  that  of  the  second  is  uniform.  How  far  will  the  second  have  gone  by  the 
time  that  the  first  comes  to  rest  ? 

6.  A  body  starting  from  rest  moves  for  4  seconds  with  a  uniform  accelera- 
tion of  8  feet  per  second  per  second.  If  the  acceleration  then  ceases,  how  far 

will  the  body  move  in  the  next  5  seconds  ? 

7.  A  train  has  its  speed  reduced  from  40  miles  an  hour  to  30  miles  an  hour 

in  6  seconds.  If  the  retardation  be  uniform,  for  how  much  longer  will  it  travel 
before  coming  to  rest  ? 

8.  A  body  falling  under  gravity  has  an  acceleration  of  32.2  feet  per  second 
per  second.  Express  this  acceleration  when  the  units  are  {a)  centimeter, 

second ;  (&)  mile,  hour. 

12.  Parallelogram  of  accelerations.  Theorem.  Let  the  velocity 

of  a  point  be  compounded  of  two  velocities  v^,  v^  along  given  direc- 
tions, and  let  these  velocities  he  variable,  their  accelerations  being 

fv  fi-  Thsn  if  two  lines  be  drawn  in  the  direction  of  the  velocities, 

to  represent  f^,  f^  on  any  scale,  the  resultant  acceleration  will  be 
represented  on  the  same  scale  by  the  diagonal  of  the  parallelogram 

of  which  these 

lines  are  edges.      ̂  
To  prove  the 

theorem,  we 
consider  the 

motion  dur- 

ing any  small 
interval  dt 

at  which  the 

component  ac- 
celerations are 

/i,  /g.  In  fig.  7  let  AB,  ̂ C  represent  the  two  velocities  v^,  v^  at  the 

beginning  of  this  interval.  Let  BB',  CC  represent,  on  the  same 
scale,  the  infinitesimal  increments  in  velocity  in  the  interval  dt, 

Fig.  7 



14  EEST  AND  MOTION 

namely  f^di,  f^dt    Then  AB' ,  A  C'  will  represent  the  velocities  at 
the  end  of  the  interval  dt 

In  the  figure  the  hnes  BDF,  B'ED',  CDE,  C'FD'  are  drawn 
parallel  to  AB  and  AC.  Thus  AD  represents  the  resultant  velocity 

at  the  beginning  of  the  interval  dt,  and  AD'  that  at  the  end  of  the 

interval.  The  velocity  AD'  can  be  regarded  as  compounded  of  the 

two  velocities  AD,  DD' ,  and,  as  in  §  1 0,  DD'  represents  the  incre- 
ment in  velocity  in  time  dt.  Thus,  if  F  is  the  resultant  acceleration, 

the  line  DD'  will  represent  a  velocity  Fdt.  On  the  same  scale  DE, 

DF  represent  velocities  f^dt,  f^dt,  and  DED'F  is  a  parallelogram. 
If  OF^,  OF^  (fig.  8)  represent  the  accelerations  /^/a  on  any  scale, 

and  if  06^  is  the  diagonal  of  the  completed  parallelogram,  we 
clearly  have  OF^ :  OF^  =  f^  :f^  =  DE :  DF, 
so  that  the  parallelograms  OF^GF^  (in 

fig.  8)  and  DED'F  (in  fig.  7)  will  be  simi- 
lar and  similarly  situated.  Thus 

OG:OF^  =  DD' :  DE  =  Fdt  :f^dt  =  F:f^, 
so  that  OG  represents  the  acceleration  F 

^      „  on  the  same  scale  as  that  on  which  OF., 
Fig.  8  ^' 

OF^  represent /i, /a ;  and  OG,  being  parallel 

to  DD',  will  also  represent  the  direction  of  F,  proviag  the  theorem. 
Clearly  the  acceleration  at  any  instant  need  not  be  in  the  same 

direction  as  the  velocity.  In  fig.  7  the  directions  AD,  AD'  repre- 
sent velocities  at  the  beginniug  and  end  of  the  interval  dt  When 

in  the  Limit  we  take  dt  =  0,  these  lines  coincide,  and  the  direction 

of  the  velocity  at  the  instant  at  which  dt  is  taken  is  that  of  AD. 

The  direction  of  the  acceleration  at  this  instant  is,  however,  DD'. 

As  an  illustration  of  this,  let  us  consider  the  motion  of  a  particle  mov- 
ing uniformly  in  a  circle  ;  e.g.  a  point  on  the  rim  of  a  wheel,  turning  with 

uniform  velocity  V  about  its  center. 

Let  A ,  B  (fig.  9)  be  the  positions  of  the  point  at  two  instants,  let  the 
tangents  at  A,  B  meet  in  C,  and  let  D  complete  the  parallelogram  A CBD. 

The  velocity  at  the  first  instant  is  a  velocity  V  along  A  C.  Let  us  agree 
to  represent  this  by  the  line  A  C  itself.  At  the  second  instant  the  velocity 
is  a  velocity  V  along  CB  ;  this  may,  on  the  same  scale,  be  represented  by 
the  line  CB,  or  more  conveniently  by  AD.    Since  AC,  AD  represent  the 
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velocities  at  the  two  instants,  the  line  CD  will  represent  the  change  in 

velocity  between  these  two  instants. 

Now  let  the  two  instants  differ  only  by  an  infinitesimal  interval  dt^  so 

that  the  points  A^  B  coincide  except  for  an  infinitesimal  arc  Vdt.  In  the 

figure,  CD  passes  through 
P  wherever  A ,  B  are  on  the 

circle,  so  that  when  B  is 
made  to  coincide  with  A, 

CD  coincides  with  the  ra- 

dius through  A.  But  if  F 
is  the  acceleration  of  the 

moving  point,  the  change 

in  velocity  produced  in 

time  dt  must  be  Fdt.  Thus  CD  represents  the  change  of  velocity  Fdt  in 

direction  and  magnitude,  so  that  the  change  of  velocity,  and  hence  the 

acceleration  at  ̂  ,  is  along  the  radius  at  A . 

Here,  then,  we  have  a  case  in  .which  the  acceleration  is  at  right  angles 

to  the  velocity. 

To  find  the  magnitude  of  the  acceleration,  we  notice  that  CD  =  2  CE, 
and  that,  by  similar  triangles, 

EC:CB=BE:  BP. 

Now  EC,  or  I  CZ),  represents  the  velocity  \  Fdt,  while  CB  on  the  same 

scale  represents  the  velocity  V. 

Thus  \Fdt:  V=  BE  :BP. 

In  the  limit  when  BA  is  very  small,  BE,  or  iBA,  becomes  identical 
with  half  of  the  arc  BA  of  the  circle,  and  therefore  with  i  Vdt.  Thus,  if  a 

is  the  radius  of  the  circle, 
iFdt  :  V=  ̂ Vdt  :  a, 

giving  F  =  —  as  the  amount  of  the  acceleration. a 

EXAMPLES 

1.  A  windmill  has  sails  20  feet  in  length,  and  turns  once  in  ten  seconds. 
Find  the  acceleration  of  a  point  at  the  end  of  a  sail. 

2.  A  wheel  of  radius  3  feet  spins  at  the  rate  of  10  revolutions  a  second  and 

is  at  the  same  time  falling  freely  with  an  acceleration  of  32  feet  per  second 

per  second  due  to  gravity.  Find  the  resultant  accelerations  of  the  different 
points  on  the  rim  of  the  wheel. 

3.  Taking  the  earth  to  have  an  equatorial  diameter  of  7927  miles,  find  the 

acceleration  towards  the  earth's  center  of  (a)  a  point  at  rest,  relative  to  the 

eartli's  surface,  on  the  equator ;  (6)  a  body  falling  under  gravity  at  the  equator, 
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with  an  acceleration,  relative  to  the  earth's  surface,  of  32.09  feet  per  second 
per  second. 

4.  Supposing  that  the  moon  describes  a  circle  of  radius  240,000  miles  round 
the  earth  in  29^  days,  find  its  acceleration  towards  the  earth. 

5.  Assuming  that  the  planets  describe  circles  round  the  sun  with  different 

periodic  times,  such  that  the  squares  of  the  periodic  times  are  proportional  to 
the  cubes  of  the  radii  of  the  circles,  show  that  the  accelerations  of  the  planets 
are  inversely  proportional  to  the  squares  of  their  distances  from  the  sun. 

Vectors 

13.  We  have  found  three  kinds  of  quantities,  —  motion,  velocity, 

and  acceleration,  —  all  of  which  can  be  compounded  according  to 
the  parallelogram  law. 

Quantities  which  can  be  compounded  according  to  the  parallelo- 
gram law  are  called  vectors.  A  vector  must  have  magnitude  and 

direction,  and  hence  must  be  capable  of  representation,  on  an 

assigned  scale,  by  a  straight  line.  We  have  seen  that  motion, 

velocity,  and  acceleration  are  all  vectors. 

Composition  and  Resolution  of  Vectors  in  a  Plane 

14.  By  definition  of  a  vector,  two  vectors  can  be  compounded 

into  one,  by  application  of  the  parallelogram  law.  It  also  fol- 
lows from  the  definition  that  any  one  vector  may  be  regarded  as 

equivalent  to  two,  these  two  being  represented  by  the  edges  of  a 

parallelogram  constructed  so  as  to  have  the  original  vector  repre- 
sented by  the  diagonal ;  or,  as  we  shall  say, 

any  vector  can  be  resolved  into  two  others. 

In  particular,  if  we  construct  a  rectangu- 
lar parallelogram  so  as  to  have  a  line  which 

represents  a  vector  R  as  its  diagonal,  we  find 
that  the  vector  R  can  be  resolved  into  two 

vectors  R  cos  e  and  R  sin  e,  at  right  angles  to  one  another,  and  in 

directions  such  that  R  makes  angles  e,  —  —  e  with  them. A 

If  we  take  two  fixed  rectangular  axes  Ox^  Oy  in  a  plane,  we  see 

that  any  vector  R  can  be  resolved  into  two  components  R  cos  e, 
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E  sin  €  parallel  to  these  axes,  where  e  is  the  angle  which  B 

makes  with  Ox.  The  components  E  cos  e,  Esine  are  spoken  of 

as  the  components  of  E  along  Ox  and  Oy. 

There  are  two  ways  of  compounding  a  number  of  vectors  i2j, 

^2f  "'f  ̂ n'  I^  ̂ ^'^  fi^s^  place,  we  can  construct  a  polygon 

ABODE  -N,  such  that  the  sides  AB,  BO,  CD,  •••,  MN  repre- 

sent the  vectors  E^,  E^,  E^,  •••,  E^.  Then  AN  will  represent  the 
resultant.  For  E^,  E^  can  first  be  compounded  into  a  vector  E 

represented  by  A  0.  Combining  i?, 

with  this  vector,  we  obtain  a  vec- 
tor represented  by  AD,  and  so  on 

until  finally  AN  is  reached. 

As  a  second  way,  we  can  resolve 

each  vector,  such  as  E^,  into  its 

two  components 

^.  cose,,     ̂ ,sin€„ 

along   rectangular   axes    Ox,    Oy. 
The  n  vectors  are  now  resolved 

into  2n  vectors,  of  which  n  are  parallel  to  Oa^and  n  are  parallel 

to  Oy.    The  first  set  of  n  can  be  compounded  into  a  single  vector 

X  =  E^  cos  e^.-f-  i?2  cos  €2  -f-  •  •  • 

parallel  to   Ox,  while  the  second  set  can  be  compounded  into  a 

smgle  vector  Y  ̂   E^^uie^-\- E,^uie^+ ••  • 

parallel  to  Oy.    We  now  have  two  vectors  X,  Y  parallel  to  Ox,  Oy. 
If  their  resultant  is  a  vector  E  making  an  angle  e  with  Ox,  we 

^^^®  E  cos  e  =  X=E^  cos  e^  -\-  E^  cos  €^-\   .  (1) 
^  sin  €  =  F  =  ̂ 1  sin  Cj  -h  i?2  si^^  ̂2  +  •  •  •  •  (2) 

To  find  the  numerical  value  of  E,  we  square  and  add  (1)  and 

(2)  and  obtain 

=  (i?i  cos  €1  -h  E^  cos  62  H   f  +  (i?i  sin  e^-\-  E^sm€^-\   )^ 
=  i?5  +  ̂ 2  +   ^-  2  i^i-Kg  (cos  €1  cos  €3  -}-  sin  e^  sin  €3)  -I   

=  JSJ  +  ̂^2  +  . .  •  +  2  i^i^2  cos  (e^  -  €2)  +  •  •  •• 
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To  find  the  direction  of  the  resultant,  we  divide  the  correspond- 

ing sides  of  (1)  and  (2)  and  obtain 

_  F  _  ̂1  sin  e^  +  ̂ 2  sin  €3  +  •  •  • 
X      R^  cos  Cj  +  ̂ 2  cos  €3  4-  •  •  • 

If  we  nave  only  two  vectors  jK^,  R^,  making  an  angle  6  with 

one  another,  we  may  put  e^  —  e^  =  ̂ ,  and  obtain 

R''  =  R\  +  R\  +  2  R^R^  cos  0. 

Since  R  is  obviously  the  diagonal  of  a  parallelogram  having  two 

edges  of  lengths  R^^  R^,  meeting  at  the  angle  6,  this  result  can 

be  obtained  directly  from  the  geometry  of  the  triangle  ADC,  in 

j^  which  the  angle  at  C  is  evidently  it  —  6. 
Thus 

R''  =  R\-\-Rl-2  R^R^  cos  (tt  -  6), 
which  is  clearly  identical  with  the  above 

expression. 

We  may  take  two  examples  to  illustrate 
the  method  of  resolving  vectors  into  rectangular  components  in  a  plane. 

1.  In  Ex.  2,  p.  10,  suppose  that  the  direction  of  the  ship  (^AB  in  fig.  5) 
is  taken  for  axis  Ox,  and  that  that  in  which  the  shot  is  to  travel  is  taken 

for  axis  Oy.  Let  the  shot  be  fired  with  velocity  V,  making  an  angle  6  with 
Ox,  the  velocity  of  the  ship  being  v.  The  resultant  velocity  is  to  be  along 
Oy,  so  that  the  velocity  along  Ox,  say  X,  is  to  be  nil.    We  have,  however, 

V giving 

X  =  V  +  Fcos^, 

so  that  we  must  have  cos  6  = 

the  result  already  obtained. 
2.  To  find  the  acceleration  of  a  point 

moving  with  uniform  velocity  F  in  a  circle 
of  radius  a.  Let  A  be  the  position  of  the 
particle  at  time  t—  O,  and  take  OA  for 
axis  of  X.  After  time  t  the  particle  has 
described  a  length  Vt  of  arc,  so  that  if 
B  is  its  position  after  time  t,  the  angle 

Vt BOA in    circular    measure.     The 
Fig.  13 

direction  of  velocity  at  B,  namely  the  tangent  at  B,  will  accordingly 
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TT  Vt 
make  an  angle  -  -\   with  Ox,  so  that  the  components  of  the  velocity 

along  Ox,  Oy,  say  v^,  Vj,  will  be 

u=V  COS  (  -  -1   I  =  —  F  sm  — 
^  \2       a  I  a 

Itt      Vt\ =  Fcos 
dv^ 

The  acceleration  along  Ox  is   -y-,  which,  on  differentiating  v-^  with 
respect  to  t,  is  found  to  be F2       Vt 

  cos  — : 
a         a 

while  that  along  Oy  is  similarly  found  to  be  — ? ,  or 

dt V^   ,    Vt 
  sm  — 

a         a 

Compounding  these,  we  obviously  obtain  an  acceleration  —  along  BO, 
the  result  already  obtained  on  page  15. 

a 

z 
E 

/ /u 

^   ' 

B 

/ 
± 

/ 
Q 

D 

Composition  and  Resolution  of  Vectors  in  Space 

15.  It  may  be  that  the  vectors  to  be  compounded  are  not  all  in 

one  plane.  However,  the  method  of  determining  the  resultant  is 

essentially  the  same.  Thus  we  can  con- 

struct a  polygon  in  space  ABCD  •-•  N 

such  that  the  sides  AB,  EC,  •-•,  MN  rep- 

resent the  vectors  R^,  •  •  •,  R^.  As  in  the 
preceding  case,  it  is  readily  shown  that 
^iVis  the  resultant. 

It  is  usually  more  convenient  to  resolve 

each  vector  into  three  components  par- 
allel to  rectangular  axes  in  space^.    Given 

a  vector  AB,  we  draw  through  A,^  and  likewise  through  B,  three 
planes  parallel  to  the  coordinate  planes.  They  inclose  a  rectangular 

parallelepiped  of  which  AB  is  a  diagonal.  The  edges  AC,  AD, 

AE  represent  three  vectors  by  w^hich  AB  can  be  replaced ;  they 
are  the  components  parallel  to  the  axes  of  the  vector  AB. 

Suppose  there  are  n  vectors,  and  that  the  direction  angles  of 

the  vector  R^  are  denoted  by  a^,  ̂^,  7^.    As  above,  each  vector  R^ 

Fig.  14 
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can  be  replaced  by  three  components  parallel  to  the  axes;  these 
vectors  are  of  amount 

E^cosa^,     -^sCos^,,     ̂ 3 cos  7,. 

Of  the  3n  vectors  thus  obtained,  the  in  vectors  parallel  to  the 

X-axis  can  be  compounded  into  the  single  vector 

X  =  ̂ 1  cos  a^ -{-  E^  cos  a^ -\   h  B^  cos  a^,  (3) 

The  whole  system  of  vectors  can  thus  be  replaced  by  tliis  vector 

and  two  others  parallel  to  the  y  and  z  axes  respectively,  namely 

Y=  B^  cos  /3i  +  i?2  cos  ySg  H   \-  K  cos  jS^.  (4) 

Z  =  R^  cos  7i  +  ̂ 2  cos  72  H   h  R^  cos  7„.  (5) 

Evidently  the  resultant  of  these  three  vectors,  and  consequently  of 

the  original  n  vectors,  is  a  diagonal  of  a  rectangular  parallelepiped 

whose  edges  are  of  lengths  X,  Y,  Z.  If  the  length  of  the  resultant 

be  denoted  by  R,  and  the  direction  angles  by  a,  yS,  7,  we  have 

R^  =  X^+  Y^-\-  Z% 
X  Y  Z 

and  cos  a  =  —>     cos  8  =  ~>     cos  7  =  —  • 
R  R  "      R 

Hence  the  resultant  is  completely  determined  in  magnitude  and 
direction. 

Centroids 

16.  Let  a  system  of  vectors  be  represented  in  direction  by  OA^, 

OA^,  •  •  •,  0^„,  and  let  their  magnitudes  be  mfiA^,  •  •  •,  mjOA^,  where  m^, 

m^y  "-,771^  are  any  quantities.  Denote  by  x^,  y^,  z^  the  coordinates  of 
A^  with  respect  to  axes  through  0 ;  by  a^,  y8^,  7^  the  direction  angles 

of  OA^  with  respect  to  these  axes ;  and  by  R^  the  magnitude  of  the 

vector  m^OA^.    The  components  of  this  vector  along  these  axes  are 

^  ^  R^  cos  a^  =  m^OA^  cos  a^  =  m^.x^, 

R^  cos  /3,.  =  m^OA^  cos  /S^  =  '^^rVn 

R^  cos  7^  =  m^OA^  cos  7^  =  m^.z^. 

Hence  equations  (3),  (4),  (5)  can  be  written  thus : 
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For  the  interpretation  of  this  result,  we  make  use  of  the  idea  of 

the  centroid  of  a  system  of  points.  By  definition  the  centroid  of  a 

system  of  points  is  the  point  such  that  its  distance  from  any  one 

of  three  coordinate  planes  is  the  average  of  the  distances  of  all  the 

points  of  the  system  from  this  plane,  it  being  understood  that  each 

distance  is  measured  with  its  proper  algebraic  sign. 
From  this  definition,  it  follows  that  the  distance  of  the  centroid 

from  any  plane  whatever  is  equal  to  the  average  of  the  distances 

of  the  n  points  from  this  plane.  For  if  x^,  y^,  z^  are  the  coordinates 

of  the  rth  point,  the  coordinates  of  the  centroid,  say  x,  y,  z,  will  be 

^=lp^'  v=lp.>  '^-IX'" 
and  the  perpendicular  distance  from  the  centroid  to  any  plane 

ax  -\-  by  -\-  cz  -\-  d  =  0 

(ax  -\-  hy  -\-  cz  +  d) 

(7) 

1 

1  1 

y/a"  -f  &2  +  c^  ̂  ^{(^x^-\-  hy^  +  cz^-\-d) 

_  1  A  ax^  +  hy^  -{-  cz^+  d ̂ 

"n^       ̂ a?  +  &2  +  c^ 
which  proves  the  result. 

Let  us  imagine  that  of  the  n  points  a  number  m„  all  coincide 

at  the  point  x^,  y^^  z^,  a  number  m^  at  the  point  x^,  y^,  z^y  and  so  on. 

Then  the  centroid  has  coordinates  (by  equations  (7)), 

-S 

n  A 

mx^ 

m  x^  = n 

(8) 
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where  the  summation  is  now  taken  over  the  various  points  in  space 

at  which  the  original  points  are  accumulated.  Calling  these  points 

in  space  A,B,  C,  •  •  • ,  the  point  x,  y,  z  is  said  to  be  the  centroid  of  the 

points  A,  B,  C,  '•',  corresponding  to  the  multipliers  7ii^,  m^,  m^,  •  •  •. 
By  means  of  these  results,  equations  (6)  are  reducible  to 

JT 
=  ̂ -^m„     Y=y'^m^,     Z=z-^m^.  (9) 

Hence  the  resultant  of  the  above  set  of  vectors  is  directed  along 
n 

the  line  OC,  and  its  magnitude  is  OC- Vm^.    As  defined  by  equa- 
1 

tions  (9),  the  multipliers  m^  can  be  any  numbers  whatever,  positive 
n 

or  negative,  so  that  the  sum  Vm^  may  be  positive,  zero,  or  nega- 
1 

tive.    In  particular,  when  the  vectors  are  represented  in  magnitude 

as  well  as  direction  by  OA^,  ■-,  OA^,  the  resultant  is  directed  along 

OC^,  and  its  magnitude  is  n  •  OC^,  where  n  is  the  number  of  vectors 
and  the  point  C^  is  the  centroid,  as  defined  above.  Thus  we  have 
the  theorem : 

Theorem.  If  vectors  of  magnitude  m^OA^,  m^OA^,  •  •  •  act  along 

the   lines   OA^,  OA^,    •••,    then    their    restdtant  is    of  magnitude 

(m^  -{-m^-\   )0G,  and  acts  along  OG,  where  G  is  the  centroid  of 
the  points  A^,  A^,  ■  ■  -for  the  multipliers  m^,  m^,  •   •. 

Obviously  the  parallelogram  law  is  a  particular  case  of  this 
theorem. 

EXAMPLES 

1.  Find  the  resultant  of  two  vectors  of  magnitudes  5  P  and  12  P  which  meet 
at  right  angles. 

2.  A  vector  P  is  the  resultant  of  two  vectors  which  make  angles  of  30°  and 

46°  with  it  on  opposite  sides.    How  large  are  the  latter  vectors  ? 
3.  Show  how  to  determine  the  directions  of  two  vectors  of  given  magnitude 

so  that  their  resultant  shall  be  of  given  magnitude  and  direction.  When  is  this 
impossible  ? 

4.  Show  that  if  the  angle  at  which  two  given  vectors  are  inclined  to  each 
other  is  increased,  their  resultant  is  diminished. 

5.  Under  what  conditions  will  the  resultant  of  a  system  of  vectors  of  magni- 
tudes 7,  24,  and  25  be  equal  to  zero  ? 
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6.  Three  vectors  of  lengths  P,  P,  and  P  V2  meet  in  a  point  and  are  mutu- 

ally at  right  angles.  Determine  the  magnitude  of  the  resultant  and  the  angles 
between  its  direction  and  that  of  each  component. 

7.  Three  vectors  of  lengths  P,  2  P,  3  P  meet  in  a  point  and  are  directed 

along  the  diagonals  of  the  three  faces  of  a  cube  meeting  at  the  point.  Determine 
the  magnitude  of  their  resultant. 

8.  Show  that  the  resultant  of  three  vectors  represented  by  the  diagonals  of 
three  faces  of  a  parallelepiped  meeting  in  a  vertex  A  is  represented  by  twice 
the  diagonal  of  the  parallelepiped  drawn  from  A. 

9  D  is  a  point  in  the  plane  of  the  triangle  ABC^  and  I  is  the  center  of  its 

inscribed  circle.  Show  that  the  resultant  of  the  vectors  a  •  AD,  b  ■  BD,  c  •  CD  is 
(a  +  6  +  c)  ID,  where  a,  b,  c  are  the  lengths  of  the  sides  of  the  triangle. 

10.  ABCD,  A'B'C'D'  are  two  parallelograms  in  the  same  plane.  Find  the 
resultant  of  vectors  drawn  from  a  point  proportional  to  and  in  the  same  direc- 

tion as  AA\  B'B,  CC\  D'D. 
11.  If  O  is  the  center  of  the  circumscribed  circle  of  the  triangle  ABC  and 

P  its  orthocenter,  show  that  OP  is  the  resultant  of  the  vectors  OA,  OB,  and 

OC  ;'also  that  2  PO  is  the  resultant  of  PA,  PB,  PC. 
12.  The  chords  AOB  and  COD  of  a  circle  intersect  at  right  angles.  Show 

that  the  resultant  of  the  vectoi-s  OA,  OB,  OC,  OD  is  represented  by  twice  the 
vector  OP.  where  P  is  the  center  of  the  circle. 

GENERAL  EXAMPLES 

(In  these  examples  take  the  acceleration  produced  by  gravity  to  be  32  feet  per  second 
per  second) 

1.  A  point  possesses  simultaneously  velocities  of  2,3,8  feet  per  second, 

in  the  directions  of  a  point  describing  the  three  sides  of  an  equilateral  tri- 
angle in  order.    Find  the  magnitude  of  its  velocity. 

2.  A  point  possesses  simultaneously  velocities,  each  equal  to  v,  in  the 

directions  of  lines  drawn  from  the  center  of  a  regular  hexagon  to  five  of 

its  angular  points.  Find  the  magnitude  and  direction  of  the  resultant 
velocity. 

3.  When  a  steamer  is  in  motion  it  is  found  that  an  awTiing  8  feet  above 
the  deck  protects  from  rain  the  portion  of  the  deck  more  than  4  feet  behind 

the  vertical  projection  of  the  edge  of  the  awning ;  but  when  the  steamer 

comes  to  rest  the  line  of  separation  of  the  wet  and  dry  parts  is  6  feet  in 

front  of  this  projection.  Find  the  velocity  of  the  steamer,  if  that  of  the 

rain  be  20  feet  per  second. 

4.  A  ship  sailing  along  the  equator  from  east  to  west  finds  that  from 

noon  one  day  (local  time)  to  noon  the  next  day  (local  time)  the  distance 

covered  is  420  miles.  What  would  be  the  day's  run,  if  the  ship  were  sail- 
ing at  the  same  rate  from  west  to  east  ? 
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5.  A  railroad  runs  due  east  and  west  in  latitude  X.  At  what  rate 

must  a  train  travel  along  the  road  to  keep  the  sun  always  directly 
south  of  it? 

6.  Determine  the  true  course  and  velocity  of  a  steamer  going  due  north 

by  compass  at  10  knots  through  a  4-knot  current  setting  southeast;  and 
determine  the  alteration  of  direction  by  compass  in  order  that  the  steamer 
should  make  a  true  northerly  course. 

7.  A  bicyclist  rides  faster  than  the  velocity  of  the  wind,  and  makes  the 
error  of  judging  the  direction  of  the  wind  to  be  the  direction  in  which  it 
appears  to  meet  him  when  he  is  in  motion.  Show  that  the  wind  will 
always  appear  to  be  against  him,  in  whatever  direction  he  rides. 

8.  One  ship  sailing  east  with  a  speed  of  20  knots  passes  a  light- 
ship at  11  A.M. ;  a  second  ship  sailing  south  at  the  same  rate  passes  the 

same  point  at  1  p.m.  At  what  time  are  they  closest  together,  and  what  is 
then  the  distance  between  them  ? 

9.  Two  particles  move  with  velocities  v  and  2  v  respectively  in  oppo- 
site directions,  in  the  circumference  of  a  circle.  In  what  positions  is  their 

relative  velocity  greatest  and  least,  and  what  values  has  it  then? 

10.  Find  the  relative  motion  of  two  particles  moving  with  the  same 
velocity  v,  one  of  which  describes  a  circle  of  radius  a  while  the  other  moves 
along  a  diameter. 

11.  Two  particles  move  uniformly  in  straight  lines.  At  a  given  time 

the  distance  between  them  is  a  and  their  relative  velocity  is  F,  the  com- 
ponents of  the  latter  in  the  direction  of  a  and  perpendicular  to  it  being  u 

and  V.  Show  that,  when  they  are  nearest  together,  their  distance  is  av/  V, 

and  that  they  arrive  at  this  position  after  the  interval  au/  V'^. 
12.  Three  horses  in  a  field  are  at  a  certain  moment  at  the  vertices  of 

an  equilateral  triangle.  Their  motion  relative  to  a  person  driving  along  a 
road  is  in  a  direction  round  the  sides  of  the  triangle  (in  the  same  sense), 
and  in  magnitude  equal  to  the  velocity  of  the  carriage.  Show  that  the 
three  horses  are  moving  along  concurrent  lines. 

13.  Two  points  describe  concentric  circles,  of  radii  a  and  b,  with  speeds 

varying  inversely  as  the  radii.  Show  that  the  relative  velocity  is  paral- 
lel to  the  line  joining  the  points  when  the  angle  between  the  radii  to 

these  points  is 

,    2ab 
cos~i   a^  +  b^ 

14.  A  stone  dropped  from  a  balloon  moving  horizontally  is  observed  to 
be  4  seconds  in  the  air,  and  to  strike  the  earth  in  a  direction  making  an 

angle  of  15°  with  the  vertical.    Find  the  velocity  of  the  balloon. 
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15.  A  ball  is  thrown  from  the  top  of  a  building  with  a  velocity  of  64  feet 

per  second  at  an  angle  of  30°  with  the  horizontal  in  an  upward  direction. 
Find  the  directions  of  its  motion  at  the  end  of  the  first  and  second  seconds, 
and  also  the  velocities  at  these  instants. 

16.  A  ball  is  tossed  into  the  air  with  a  velocity  of  20  feet  a  second,  and 

at  the  end  of  a  second  is  seen  to  be  moving  in  a  line  at  right  angles  to  the 

direction  of  projection.    What  is  its  velocity  at  the  instant? 

17.  If  the  velocity  of  a  bullet  is  supposed  to  be  a  uniform  horizontal 

velocity  equal  to  n  times  that  of  sound,  show  that  the  points  at  w^hich  the 
sounds  of  the  firing  and  of  the  bullet  striking  the  target  are  heard  simul- 

taneously lie  on  a  hyperbola  of  eccentricity  n.  Examine  the  case  in  which 

n  is  very  nearly  equal  to  unity. 

18.  Assuming  that  the  earth  moves  in  a  circular  orbit  about  the  sun 

with  a  velocity  29.6  kilometers  per  second,  and  that  the  velocity  of  light 

is  300,000  kilometers  per  second,  find  the  apparent  displacement  of  the  sun 

due  to  the  earth's  motion. 

19.  Assuming  that  the  earth  in  a  year  describes  a  circle  uniformly 
about  the  sun  as  center,  that  the  distance  between  the  centers  is  220  radii 

of  the  sun,  and  that  the  radius  of  the  sun  is  108  times  that  of  the  earth, 

find  the  velocity  of  the  vertex  of  the  earth's  shadow,  taking  the  sun's 
radius  as  the  unit  of  space  and  a  year  as  the  unit  of  time. 



CHAPTER  II 

FORCE   AND   THE   LAWS   OF  MOTION 

Newton's  Laws 

17.  The  laws  of  motion,  as  we  have  said,  form  the  material  sup- 
plied by  experimental  mechanics  for  theoretical  mechanics  to  work 

with.    These  laws  have  been  stated  in  compact  form  by  Newton : 

Law  I.  Every  hody  continues  in  its  state  of  rest,  or  of  uniform 

motion  in  a  straight  line,  except  in  so  far  as  it  is  compelled  hy 

impressed  force  to  change  that  state. 

Law  IL  The  rate  of  change  of  momentum  is  proportional  to  the 

impressed  force,  and  takes  place  in  the  direction  of  the  straight  line 

in  which  the  force  acts. 

Law  III.  To  every  action  there  corresponds  an  equal  and  oppo- 
site reaction. 

18.  These  laws  introduce  several  new  terms,  —  "force,"  "mo- 

mentum," "  action,"  "  reaction,"  —  which  must  be  explained  before 
the  laws  can  be  fully  understood. 

The  first  law  involves  the  idea  of  motion,  which  has  already 

been  discussed,  and  of  force,  which  is  new. 

The  word  "  force "  is  in  common  use.  It  is  associated  m  the 
first  instance  with  muscular  effort ;  for  example,  we  exert  force  in 

pushing  against  an  obstacle.  Scientifically,  however,  the  word  has 

a  wider  use ;  we  say,  for  instance,  that  two  railway  trucks  when 

they  collide  exert  force  on  one  another,  and  that  the  earth  exerts 

force  on  all  bodies,  causing  them  to  fall  towards  it  unless  they  are 

supported  in  such  a  way  that  they  resist  this  force. 

The  first  law  of  motion,  in  fact,  explains  what  is  to  be  understood 

by  force:  it  is  that  which  tends  to  change  the  state  of  rest  of  a 

body,  or  of  uniform  motion  in  a  straight  Hue. 26 
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Consider,  for  instance,  a  railway  truck  standing  at  rest  on  a  level  line 
of  rails.  If  a  second  truck  runs  into  it  the  first  truck  will  start  into  motion, 
so  that  force  has  been  applied. 

The  first  law,  however,  tells  us  more  than  this.  It  tells  us  that 

if  a  body  is  kept  free  from  the  action  of  forces,  it  will  remain  in 

its  state  of  rest  or  of  uniform  motion  in  a  straight  line.  Thus  the 

normal  state  for  a  body  to  be  in  is  one  of  rest  or  of  uniform  motion 

in  a  straight  line,  i.e.  motion  with,  uniform  velocity;  it  is  only 

the  presence  of  force  which  can  alter  tliis  normal  state. 

Consider  again  the  case  of  the  railway  truck.  Let  us  suppose  it  has 
been  set  in  motion  by  collision,  and  that  it  starts  off  with  a  velocity  of, 
say,  10  miles  an  hour.  The  first  law  tells  us  that  unless  forces  act  on  the 
truck,  it  will  continue  its  motion  with  an  unaltered  velocity  of  10  miles 
an  hour  in  the  same  straight  line  in  which  it  started.  When  a  truck  is 
actually  started  into  motion  by  collision,  it  may  be  taken  for  granted  that 
it  will  not  continue  in  uniform  motion  in  a  straight  line,  but  will  sooner 
or  later  be  brought  to  rest.  Thus  forces  must  be  at  work.  Let  us  consider 
the  nature  of  these  forces. 

In  the  first  place  there  is  a  force  known  as  the  resistance  of  the  air. 
The  air  in  front  of  the  truck  presses  against  it  in  such  a  way  as  to  retard 
its  motion.  The  air  therefore  exerts  force  on  the  truck  just  as  a  man  might 
exert  force  on  the  truck  by  pressing  against  it  with  his  hand.  This  force 
alone  would  stop  the  truck  in  time. 

Let  us  suppose  that  the  brakes  are  applied,  and  that  the  wheels  are 
gripped  so  firmly  as  to  be  at  rest  relatively  to  the  truck,  so  that  they  slide 
on  the  rails.  There  is  then  a  large  force  applied  to  the  truck  by  the  rails, 
and  this  again  tends  to  stop  the  motion  of  the  truck.  Even  if  the  brakes 
are  not  applied,  so  that  the  wheels  are  left  free  to  turn,  there  will  still  be  a 
force  applied  by  the  rails,  although  this  force  will  be  smaller  than  before. 

Suppose  that  the  track  is  curved  instead  of  straight.  We  can  imagine 
the  motion  continuing  for  some  time,  but  it  will  be  motion  along  the 
curve,  and  not  motion  in  a  straight  line,  such  as  we  are  told  by  the  first 
law  would  take  place  if  it  were  not  for  the  action  of  force.  Force  has 
therefore  been  applied,  the  force  being  that  of  the  rails  on  the  flanges  of 
the  wheels,  tending  to  turn  the  truck  round  the  curve.  If  the  flanges  were 
not  present,  this  force  could  not  act,  so  that  the  motion  would  continue  in 
a  straight  line  —  the  truck  would  run  off  the  rails. 

As  another  illustration  of  the  meaning  of  the  first  law,  let  us  examine 
the  motion  of  a  bullet  fired  from  a  gun.  Here  the  forces  which  start  the 
motion  are  supplied  by  the  pressure  of  the  powder.  After  the  bullet  has 
left  the  gun,  the  forces  which  act  are  small  compared  with  those  which 
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have  started  the  motion,  so  that  we  get  an  approximation  to  uniform 
motion  in  a  straight  line.  The  forces  acting  to  alter  this  motion  are 
(a)  the  resistance  of  the  air  and  (6)  the  weight  of  the  bullet.  The  former, 
as  we  have  seen,  tends  to  stop  the  motion  by  pressure  on  the  ends  and  sides 
of  the  bullet ;  the  latter  tends  to  drag  the  bullet  down  to  the  earth,  and 
so  causes  it,  instead  of  describing  a  straight  line,  to  describe  a  path  which 
curves  downward  towards  the  earth. 

19.  The  conception  of  uniform  motion  in  a  straight  line,  or  of 

rest  (the  particular  case  of  uniform  motion  in  which  the  velocity 

is  nil),  as  being  the  normal  state  of  a  body  is  due  to  Galileo  (1564- 
1642).  An  interesting  account  of  the  discovery  of  this  law  will  be 

found  m  Chapter  II  of  Mach's  Science  of  Mechanics}  or  in  Chap- 
ter IX  of  Cox's  Mechanics?  Before  the  time  of  Gahleo  it  was 

commonly  supposed,  on  the  authority  of  Aristotle,  that  every  body 
had  a  natural  place,  and  that  its  normal  state  was  one  of  rest  in 

this  natural  place.  For  instance,  a  stone  was  supposed  to  sink  in 

water,  not  because  the  force  of  gravity  was  acting  on  it  and  setting 

it  into  downward  motion,  but  because  its  natural  place  was  at  the 

bottom  of  the  water;  a  cork  was  supposed  to  rise  because  its 

natural  place  was  at  the  top.  Thus  Girard,^  in  1634,  speaks  of 

"  millions  de  matieres,  qui  sont  disposees  chacunes  en  leurs  lieux," 

and  defines  gravity  as  "  la  force  qu'une  matiere  demonstre  a  son 

obstacle,  pour  retourner  en  son  lieu."  Thus  the  effect  of  force, 
before  Galileo,  was  supposed  to  be  to  keep  a  body  out  of  its 

natural  place.  Galileo  perceived  that  bodies  had  no  natural 

places  at  all,  but  natural  states,  namely  of  rest  or  of  uniform 
motion  in  a  straight  line,  and  the  effect  of  force  is  not  to  move  a 

body  from  its  natural  place  but  to  disturb  it  from  its  natural 

state,  —  i.e.  to  alter  its  speed.  This  discovery  of  Galileo  is  what  is 

expressed  by  Newton's  first  law  of  motion. 
20.  Having  settled  what  is  meant  by  the  natural  state  of  a 

body  and  also  what  is  meant  by  force,  —  namely  that  wliich  tends 

1  Ernest  Mach,  Science  of  Mechanics  (Eng.  trans,  by  McCormack), 
2  J.  Cox,  Mechanics,  Cambridge,  University  Press,  1904. 
8  In  the  Elzevir  edition  of  Stevin,  Leyden,  1634.  See  Cox,  Mechanics,  loc.  cit. 

ante. 
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to  alter  the  natural  state,  —  we  next  inquire  as  to  what  is  the  law 
which  governs  the  effect  produced  by  force.  Given  a  force,  by 
how  much  will  this  alter  the  natural  state  of  uniform  motion  in  a 

straight  line  ?    An  answer  to  this  is  provided  by  the  second  law : 

Law  IL  The  rate  of  change  of  momentum  is  proportional  to  the 

impressed  force,  and  takes  place  in  the  direction  of  the  straight  line 

m  vjhich  the  force  acts. 

The  force,  then,  produces  change  in  a  certain  quantity,  —  the 

momentum  of  the  body  on  which  the  force  acts,  —  and  the  force 
is  proportional  to  the  rate  of  change  of  this  momentum. 

By  momentum  is  meant  the  product  of  the  velocity  of  the  body 

by  a  quantity  known  as  the  mass  of  the  body.  The  mass  meas- 
ures simply  the  quantity  of  matter  of  which  a  body  is  composed, 

and  so  does  not  depend  on  the  motion  of  the  body.    Thus 

rate  of  change  of  momentum  =  mass  X  rate  of  change  of  velocity 
=  mass  X  acceleration, 

by  the  definition  of  acceleration.  .  We  therefore  see  that  the  force 

is  proportional  to  the  product  of  two  quantities,  the  mass  of  the 

body  and  its  acceleration. 

21.  Measurement  of  mass.  If  we  drop  a  body  from  our  hand, 

it  will,  in  general,  be  acted  on  by  two  forces,  the  resistance  of  the 

air  and  its  weight.  If  we  suspend  the  body  in  a  vacuum,  with  an 

arrangement  for  letting  it  drop  at  any  instant  we  please,  we  get 

rid  of  the  resistance  of  the  air,  and  the  only  force  acting  on  the 

body  will  be  its  weight.  Now  if  any  two  bodies  are  suspended 

side  by  side  in  a  vacuum,  and  are  let  fall  at  precisely  the  same 

instant,  it  will  be  found  that  they  remain  side  by  side  during  the 

whole  time  they  are  falhng  towards  the  earth.  Thus  at  any 
instant  their  accelerations  are  the  same. 

It  follows  from  the  second  law  of  motion  that  the  forces  acting 

are  proportional  to  their  masses.  These  forces,  as  we  have  seen,  are 

simply  the  weights  of  the  bodies,  so  that,  as  the  experimental 

result  is  true  whatever  the  two  bodies  may  be,  we  have  the  gen- 
eral law  :   The  masses  of  bodies  are  proportional  to  their  weights. 
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This  gives  us  a  means  of  comparing  the  masses  of  any  two 

bodies.  In  every  country  a  certain  mass  is  taken  as  standard,  and 

the  mass  of  any  other  body  is  then  compared  with  this  standard,  or 

with  a  copy  of  it,  and  in  this  way  we  get  a  knowledge  of  the  actual 

mass  of  a  body.  For  instance,  in  saying  that  the  mass  of  a  body 

is  n  pounds  we  mean  that  its  mass  (or  weight)  is  equal  to  n  times 

the  mass  (or  weight)  of  a  certain  standard  body  kept  at  London. 
22.  Measurement  of  force.  The  weight  of  a  unit  mass  is  a 

force  which  may  conveniently  be  taken  to  represent  a  unit  force, 

and  if  this  is  done  all  other  forces  may  be  compared  with  this 

force.  Thus  a  force  of  in  pounds  weight  will  mean  a  force  m  times 

as  great  as  the  weight  of  the  standard  pound. 
This  unit  of  force,  however,  is  convenient  rather  than  scientific, 

since  it  varies  when  the  mass  is  moved  about  from  place  to  place 

on  the  earth's  surface.  A  unit  pound  mass  will  weigh  more  at 
London  than  at  Washmgton  ;  for  instance,  it  will  be  found  to 

extend  or  compress  the  spring  of  a  spring  balance  more  at  London 

than  at  Washington,  so  that  if  the  pound  weight  is  taken  as  unit 
of  force,  we  must  remember  that  the  unit  of  force  is  different  at 

different  parts  of  the  earth's  surface,  and  that  a  force  of  m  pounds 
weight  at  London  will  be  different  from  a  force  of  m  pounds 

weight  at  Washington. 

For  this  reason  a  second  unit  of  force  is  generally  used  for 

scientific  purposes.    This  is  called  the  absolute  unit  of  force,  and 

is  chosen  so  as  to  be  independent  of  position  on  the  earth's  surface. 
The  second  unit  of  force  is  defined  to  be  one  which  produces  unit 

acceleration  in  unit  mass,  whereas  the  former  unit  produced  an 

acceleration  equal  to  the  value  of  gravity  at  the  point.    Thus,  if  g  is 

the  value  of  gravity,  i.e.  the  acceleration  of  a  body  falling  freely  in 

a  vacuum,  the  practical  unit  equals  g  times  the  absolute  unit. 

If  unit  force  produces  unit  acceleration  in  unit  mass,  a  force  P 
p 

will  produce  in  mass  m  an  acceleration  —  •    Hence,  denoting  the m 

acceleration  by  /,  we  have  the  fundamental  equation 

P  =  mf,  (10) 
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which  is  the  mathematical  expression  of  Newton's  second  law. 
Here  the  force  P  must  be  measured  in  absolute  units. 

'     23.  Law  III.    To  every  action  there  corresponds  an  equal  and 
opposite  reaction. 

It  is  a  matter  of  common  observation  that  a  body  A  cannot 

exert  force  on  a  second  body  B  without  B  at  the  sanie  time  exert- 
ing force  on  A.  Thus  an  athlete  trying  to  throw  the  hammer  has 

to  be  on  his  guard  that  the  hammer  does  not  throw  him ;  the  force 

he  exerts  on  the  hammer  is  accompanied  by  the  hammer  exerting 

force  on  him,  ̂ nd  he  must  steady  himself  against  the  effects  of 

this  force.  So  also  when  a  gun  fires  a  shot  by  exertmg  force  on  it, 

the  shot  exerts  force  on  the  gun,  which  is  shown  in  the  recoil  of 

the  gun.  Thus  all  forces  occur  in  pairs,  which  may  conveniently 
be  spoken  of  as  action  and  reaction.  The  third  law  of  motion  tells 

us  that  the  two  forces  which  constitute  such  a  pair  are  equal  in 

magnitude  and  opposite  in  direction. 

The  meaning  of  the  third  law  will  be  seen  on  examining  the  reaction 

corresponding  to  the  forces  which  we  have  ah-eady  used  for  illustrative 
purposes.  The  first  illustration  employed  was  that  of  a  collision  between 
two  railway  trucks.  Truck  A  runs  into  truck  B,  exerting  force  on  it  and 
setting  it  in  motion.  The  third  law  tells  us  that  at  the  instant  of  collision 
B  must  exert  force  on  A ,  this  force  being  equal  in  amount  to  that  exerted 
by  A  on  B,  and  opposite  in  direction.  The  force  of  reaction  will  result  in 
a  change  of  velocity  of  A ,  lasting  during  the  instant  of  collision  only,  and 
this  may  either  merely  check  the  motion  of  ̂  ,  so  that  after  the  collision 
A  proceeds  with  diminished  velocity,  or  it  may  reverse  the  motion  of  A , 
so  that  truck  A  is  seen  to  rebound  from  B  and  return  in  the  direction  in 
which  it  came. 

After  B  has  been  set  in  motion  we  have  imagined  it  to  be  acted  on  by 
three  forces  : 

(a)  the  resistance  of  the  air; 
(b)  the  friction  of  the  rails ; 
(c)  the  pressure  of  the  rails  on  the  flanges,  turning  the  truck  round  a 

curve. 

The  reaction  corresponding  to  the  first  force  is  a  force  exerted  by  the 
truck  on  the  air  in  front  of  it  and  near  it,  tending  to  set  the  air  in  motion 
in  the  direction  in  which  the  car  is  moving  ;  it  is,  in  fact,  this  force  which 
clears  the  air  away  from  the  space  occupied  at  any  instant  by  the  truck. 
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The  reaction  corresponding  to  the  second  force  is  a  force  tending  to 
drag  .the  rails  along  with  the  truck.  The  rails  are,  of  course,  fastened 
down,  so  that  this  force  cannot  actually  produce  motion. 

The  reaction  corresponding  to  the  third  force  is  a  force  exerted  by  the 

flanges  of  the  truck  wheels  on  the  outer  rail  of  the  curve.  The  i-ails  press  on 
the  flanges  in  a  direction  towards  the  center  of  the  curve,  so  that  the  flanges 
press  the  rails  outwards  and  away  from  the  center  of  the  curve.  If  the  rails 
are  not  securely  fixed,  this  pressure  will  cause  them  to  move  in  the  direction 

just  mentioned  ;  the  rails  will  "  spread"  and  the  truck  will  run  oif  the  track. 
In  the  illustration  of  the  bullet  we  again  had  three  forces  operating  on 

the  bullet : 

(a)  the  pressure  of  the  powder  before  the  shot  leaves  the  barrel ; 
(6)  the  resistance  of  the  air  during  the  flight  of  the  bullet ; 
(c)  the  weight  of  the  bullet,  dragging  it  downwards  to  the  earth. 

The  reaction  corresponding  to  the  first  force  is  the  pressure  of  the  shot 
driving  the  powder  back.  This  in  turn  is  transmitted  to  the  gun,  producing 

the  "  recoil  "  of  the  gun. 
The  reaction  corresponding  to  the  second  force,  just  as  with  the  truck, 

sets  the  air  in  motion,  carving  out  a  path  for  the  bullet  and  producing 
the  wind  which  accompanies  its  flight. 

The  reaction  corresponding  to  the  third  force,  the  weight  of  the  bullet, 
is  more  interesting,  because  we  can  obtain  no  direct  evidence  as  to  its 

existence.  We  merely  infer  from  the  principle  of  the  uniformity  of  nature 
that  as,  in  every  case  which  has  ever  been  tested,  an  action  is  accompanied 
by  an  equal  and  opposite  reaction,  therefore  in  this  case,  which  is  similar 

except  in  that  it  cannot  be  tested,  we  may  suppose  the  action  to  be  accom- 
panied by  its  equal  and  opposite  reaction. 

The  force  which  we  can  observe  is  the  weight  of  the  bullet,  dragging 
it  earthwards.  This,  we  believe,  represents  a  force  exerted  by  the  earth 

itself  on  the  bullet,  —  the  force  of  gravitation.  This  force  must  be  accom- 
panied by  its  reaction,  so  that  the  bullet  must  act  on  the  earth  with 

a  force  equal  to  the  weight  of  the  bullet,  this  force  dragging  the  earth 
upwards  to  meet  the  bullet.  The  force  exerted  by  the  bullet  on  the 
earth  is,  by  the  third  law,  just  as  great  as  that  exerted  by  the  earth  on  the 
bullet.  The  upward  acceleration  produced  in  the  earth  by  the  bullet  is, 
however,  very  much  less  than  the  downward  acceleration  produced  in  the 
bullet  by  the  earth  ;  for  the  force  is  jointly  proportional  to  the  mass  and 
acceleration  of  the  body  acted  on,  and  as  the  mass  of  the  earth  is  very 
great  compared  with  that  of  the  bullet,  its  acceleration  will  be  very  small 
in  comparison  with  that  of  the  bullet. 

Although  for  these  reasons  the  acceleration  produced  in  the  earth  by 
a  bullet  flying  above  it  cannot  be  observed  directly,  yet  in  a  very  similar 
case  the  acceleration  can  be  observed  directly. 
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The  moon,  in  describing  a  circle  round  the  earth,  is  believed  to  be  acted 

upon  by  the  earth's  gravitation  in  just  the  same  way  as  the  bullet.  If  no 
force  acted  on  the  moon,  it  would  describe  a  straight  line  ;  as  it  is,  it  is 
continually  dragged  down  towards  the  earth,  as  we  believe,  by  the 
same  force  of  gravitation  as  the  bullet.  Just  in  the  same  way,  then,  the 

earth  ought  to  experience  an  acceleration  towards  the  moon.  This  accelera- 
tion is  one  which  admits  of  astronomical  observation. 

24.  In  terms  of  ideas  which  have  now  been  explained,  the  three 

laws  may  be  restated  as  follows : 

I.  The  normal  state  of  a  body  is  one  of  no  acceleration.  De- 
partures from  this  normal  state  are  produced  by  the  action  of 

force. 

II.  When  a  force  acts  so  as  to  disturb  the  normal  state  of  a 

body,  the  force  is  proportional  to  the  product  of  the  mass  of  the 

body  by  the  acceleration  produced. 

III.  Forces  occur  in  pairs,  every  action  being  accompanied  by  a 

reaction,  and  each  pair  of  forces  being  equal  and  opposite. 

Frame  of  Reference 

25.  In  stating  the  laws  of  motion  we  have  spoken  of  the  motion 

of  a  body  without  specifying  the  frame  of  reference  relatively  to 

which  this  motion  is  to  be  measured.  In  practice,  motion  is  gen- 
erally measured  relatively  to  the  surface  of  the  earth,  whereas 

Newton  believed  it  to  be  possible  to  imagine  a  frame  of  reference 

actually  fixed  in  space,  and  intended  all  motion  to  be  measured 

relatively  to  this  frame.  Thus  Newton's  laws  of  motion  apply  to 
motion  referred  to  axes  fixed  in  space,  whereas  what  we  require 

to  know,  for  all  problems  except  those  of  astronomy,  are  the  laws 

of  motion  referred  to  axes  moving  with  the  earth. 

Let  us  first  consider  the  effect  of  referring  motion  to  a  set  of 

axes  moving  with  uniform  velocity  in  a  straight  line  through 

space.  A  body  under  the  action  of  no  forces  will  have  no  accel- 
eration in  space,  and,  therefore,  as  the  axes  themselves  have  no 

acceleration  in  space,  will  have  no  acceleration  relatively  to  the 

moving  axes.    Again,  an  acceleration  has  the  same  value  whether 
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referred  to  axes  fixed  in  space  or  to  the  moving  axes ;  for  the 

acceleration  referred  to  the  moving  axes  is  obtained  by  compound- 
ing the  acceleration  referred  to  axes  fixed  in  space  with  that  of  the 

moving  axes,  and  this  latter  acceleration  is  nil. 

Thus  it  appears  that  the  laws  of  motion  retain  exactly  the  same 

form  when  the  motion  is  referred  to  axes  which  move  in  space, 

provided  that  these  axes  move  with  no  acceleration. 

This  condition  of  no  acceleration  is  not  satisfied  by  a  set  of 

axes  fixed  in  the  earth's  surface.  A  point  on  the  earth's  surface 

describes,  on  account  of  the  earth's  rotation,  a  circle  about  the 

earth's  axis.  If  a  is  the  radius  of  this  circle,  and  v  the  velocity 
with  which  it  is  described,  the  point  will  have,  by  §  12,  an  accelera- 

tion  —  towards  the  earth's  axis  of  rotation.    Thus  a  set  of  axes a 

fixed  in  the  earth's  surface  will  have  an  acceleration  of  this 
amount,  and  this  has  to  be  borne  in  miad  in  applying  the  laws  of 

motion.  At  a  point  on  the  equator  v  =  46,510  centimeters  per 

second  and  a=:637xl0^  centimeters,  so  that  the  acceleration  is 

—  =3.4  centimeters  per  second  per  second.    A  body  dropped  at  the 

equator  will  appear  to  have  an  acceleration  of  978.1  centimeters  per 

second  per  second,  if  the  motion  is  referred  to  axes  fixed  in  the 

earth ;  but  will  have  a  true  acceleration  of  amount 

978.1  +  3.4  =  981.5, 

if  the  acceleration  is  referred  to  axes  fixed  in  space. 

This  explains  part  of  the  reason  why  the  force  of  gravity  appears 

to  vary  from  point  to  poiat  at  the  earth's  surface.  The  weight  of 
a  mass  of  one  kilogramme  will  produce  a  certain  extension  of  the 

spring  of  a  spring  balance  at  the  North  Pole.  If  taken  to  the 

equator,  part  of  the  weight  goes  towards  producing  the  acceleration 

of  the  mass  towards  the  earth's  center,  and  it  is  only  the  remain- 
der which  extends  the  spring  of  the  balance.  The  first  part  is  the 

weight  of  about  3^-  grammes  ;  the  remainder  is  the  weight  of  about 

996^  grammes.  Thus  we  may  say  that,  owing  to  the  acceleration 

of  the  earth's  surface  towards  its  center,  a  mass  of  a  kilogramme 
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at  the  equator  will  appear  to  act  on  a  spring  balance  with  a  force 

equal  only  to  the  earth's  attraction  on  996^^  grammes. 
A  second  set  of  errors  would  be  introduced  by  referring  motion 

to  axes  in  the  earth's  surface,  these  being  caused  by  the  change  in 
the  directions  of  the  axes.  For  instance,  if  we  use  the  laws  of 

motion  as  though  they  were  true  for  motion  referred  to  axes  fixed 

in  the  earth,  and  apply  these  laws  to  the  fall  of  a  stone,  we  shall 

find  that  the  stone  ought  to  strike  the  ground  at  a  point  vertically 

below  that  from  which  it  is  dropped.  If  we  allow  for  the  rotation 

of  the  earth,  we  shall  find  that  the  point  at  which  the  stone  actually 

strikes  must  be  somewhat  to  the  east  of  the  point  vertically  below 
that  from  wliich  it  started. 

The  errors  introduced  by  treating  motion  on  the  earth  as  though 

it  were  motion  with  reference  to  axes  fixed  in  space  are,  m  gen- 
eral, either  extremely  small  or  very  easily  corrected.  We  shall, 

therefore,  proceed  at  present  by  neglecting  such  errors  altogether, 

and  shall  apply  the  laws  of  motion  to  motion  with  reference  to 

the  earth's  surface. 

Laws  Applicable  only  to  Motion  of  a  Particle 

26.  There  is  a  further  limitation  to  the  completeness  of  New- 

ton's laws  which  ought,  to  be  noticed  here.  The  second  law  would 
lead  us  to  suppose  that  from  a  knowledge  of  the  force  acting  on  a 

body,  and  the  mass  of  the  body,  we  could  deduce  a  definite  accel- 

eration of  the  body.  But  if  the  body  is  of  finite  size,  the  accelera- 
tion will  be  different  at  different  points  of  the  body ;  for  example, 

we  have  seen  that,  as  a  consequence  of  the  earth's  rotation,  the 
acceleration  of  a  point  at  the  equator  of  the  earth  is  different  from 

that  of  a  point  at  the  North  Pole.  Which  acceleration,  then,  is  it 

that  is  determined  by  the  second  law  ? 

The  answer  to  this  difficulty  is  that  the  second  law  must  be 

supposed  to  apply  only  to  particles,  i.e.  to  pieces  of  matter  so 

small  that  they  may  be  regarded  as  points.  A  moving  particle  has 

a  single  definite  acceleration,  just  as  a  moving  point  has.    From  the 
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law  as  applied  to  particles  we  shall  be  able  to  deduce  laws  which 

shall  apply  to  bodies  of  finite  size.  This  problem  will  be  treated 

in  a  later  chapter.  Although,  however,  in  strictness,  the  laws 

ought  to  be  applied  only  to  particles,  it  is  obvious  that  there  may 

be  many  problems  in  which  we  can  treat  bodies  of  finite  size  as 

particles  without  introducing  any  appreciable  error.  Such  a  case 

occurred  when  we  discussed  the  flight  of  the  bullet  in  §  18 :  the 

size  of  the  bullet  did  not  come  into  the  question,  as  we  could 

imagine  all  the  points  of  the  bullet  to  have  the  same  acceleration. 

Many  cases  will  occur  in  which  a  body  of  finite  size  may  be  treated 

as  though  it  were  a  particle.  In  the  next  chapter  we  shall  con- 
sider the  application  of  forces  to  particles  and  to  bodies  which  we 

find  it  is  permissible  to  treat  as  particles. 



CHAPTER  III 

FORCES  ACTING  ON  A  SINGLE  PARTICLE 

Composition  and  Resolution  of  Forces 

27.  The  second  law  of  motion  enables  us  to  find  the  acceleration 

produced  when  a  particle  of  known  mass  is  acted  upon  by  a  known 

force.    In  nature,  however,  forces  do  not  generally  act  singly. 

Consider,  for  example,  the  flight  of  the  rifle  bullet,  discussed  in 

§  18.  While  the  bullet  is  in  the  air  it  is  acted  on  by  its  weight 

and  by  the  resistance  of  the  air  simultaneously.  In  addition  to 

these,  there  may  be  a  cross  wind  blowing  and  acting  on  the  bullet 

with  a  horizontal  pressure  in  a  direction  perpendicular  to  its 

motion.  The  resistance  of  the  air  retards  the  motion  of  -the  bul- 

let, i.e.  produces  an  acceleration  in  a  direction  opposite  to  that  of 

the  bullet's  motion;  the  weight  of  the  bullet  drags  it  down,  i.e. 
produces  an  acceleration  towards  the  earth ;  while  the  cross  wind 

will  blow  the  bullet  out  of  its  course,  i.e.  will  produce  an  accel- 
eration in  the  direction  in  which  the  wind  is  blowing.  Thus  we 

can  regard  the  three  forces  as  each  producmg  its  own  acceleration. 
The  three  accelerations  can  each  be  calculated  from  the  second 

law  of  motion,  and  on  compounding  these  three  accelerations  we 
shall  have  the  resultant  acceleration  of  the  bullet.  This  resultant 

acceleration  could  have  been  produced  by  the  action  of  a  certain 

single  force,  so  that  we  may  say  that  this  single  force  is  equiva- 
lent, as  regards  the  acceleration  produced,  to  the  combination  of 

.the  three  separate  forces,  or  that  the  single  force  is  the  resultant 

of  the  three  separate  forces. 

We  must  now  put  these  ideas  into  exact  mathematical  form. 

As  a  preliminary,  let  us  notice  that  a  force  has  magnitude  and 

direction,  so  that  it  can  be  represented  by  a  straight  line.  We  shall 

show  that  forces  may  be  compounded  according  to  the  parallelogram 37 
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law.  Having  proved  this,  it  wiU  follow  that  forces  are  vectors, 

and  may  be  resolved  and  compounded  according  to  the  general 

rules  already  given. 

28.  Parallelogram  of  forces.  Theorem.  If  two  forces  are 

represented  in  magriitude  and  direction  hy  the  two  sides  of  a  par- 
allelogram, their  resultant  will  he  represented  hy  the  diagonal  of 

the  parallelogram. 

Let  AB,  A  C  represent  the  two  forces,  and  let  Ah,  Ac  represent 

the  accelerations  they  would  produce  if  they  acted  on  any  particle 

separately.  Since,  by  the  second  law 

of  motion,  the  acceleration  is  propor- 
tional to  the  force,  we  must  have 

Ah:Ac  =  AB'.AC. 

Construct  the  parallelograms  Ahdc, 

ABDC.    On  account  of  the  proportion 

just  obtained,  the  two  parallelograms 

will  be  similar,  so  that  AdD  will  be  a  straight  line,  and  we  shall  have 

AD:Ad  =  AB:  Ah. 

But  Ad,  the  diagonal  of  the  parallelogram  of  edges  Ah,  Ac,  repre- 
sents the  resultant  acceleration.  Since  AB  represents  the  force 

necessary  to  produce  acceleration  Ah,  it  follows  from  the  proportion 

just  obtained  that  AD  will  represent  the  force  necessary  to  produce 

acceleration  Ad.  In  other  words,  the  acceleration  of  the  particle 

is  the  same  as  if  it  were  acted  on  by  a  single  force  represented  by 

AD.    Thus  AD  represents  the  resultant  of  the  forces  AB,  A  C. 
It  now  follows  that  force  is  a  vector,  so  that  forces  can  be 

compounded  according  to  the  laws  explained  in  §§  14-16. 

Particle  in  Equilibrium 

29.  In  statics  we  are  concerned  only  with  particles,  or  systems 

of  particles,  at  rest.  The  resultant  force  on  each  particle  must 

accordingly  be  nil.  It  is  therefore  important  to  consider  cases  in 

which  the  resultant  of  a  system  of  forces  is  nil. 
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30.  Polygon  of  forces.  Theorem.  If  forces  acting  on  a  particle 

are  represented  hy  straight  lines,  the  particle  will  he  in  equilibriuTn 

if  the  polygon  formed  by  taking  all  these  straight  lines  as  edges  is 
a  closed  polygon,  i.e.  if  after  putting  all  the  lines  end  to  end  we 
come  hack  to  the  starting  point. 

Let  AB,  BC,  CD,  •  •  •,  MN  represent  in  magnitude  and  direction 

I  any  number  of  forces  which  act  simultaneously  on  a  particle. 

^P Since  force  is  a  vector  the  forces  represented  by  AB  and  BC  are 

equivalent  to  a  single  force  repre- 
sented by  AC,  and  may  therefore 

be  replaced  by  this  force. 

Thus  the  system  of  forces  may 

now  be  supposed  to  be  forces  repre- 

sented by  the  lines  A C,  CD,  ■■-, MN. 
The  first  two  of  these  may  again 

be  replaced  by  a  single  force  repre- 
sented by  AD,  so  that  the  system 

is  reduced  to  forces  represented  by 

AD,  DE, . . .,  MN.    We  can  proceed  ^'''-  ̂^ 
in  this  way  until  we  are  left  with  only  a  single  force  represented 

by  AN.    This  therefore  represents  the  resultant  of  aU  the  forces. 

If  the  polygon  is  a  closed  polygon,  the  points  A  and  N  coincide, 
so  that  the  resultant  force  represented  by  AN  vanishes  and  the 

particle  is  in  equilibrium.  Conversely,  if  the  particle  is  in  equilib- 
rium, AN  vanishes,  so  that  the  polygon  is  a  closed  polygon.  Thus 

the  condition  for  equilibrium  expressed  by  the  theorem  just  proved 

is  necessary  and  sufficient,  —  necessary  because  the  condition  must 
be  satisfied  if  the  particle  is  to  be  in  equilibrium,  and  sufficient 

because  equilibrium  is  insured  as  soon  as  the  condition  is  satisfied. 

31.  Triangle  of  forces.  If  there  are  only  three  forces,  the  theo- 
rem reduces  to  a  simpler  theorem  known  as  the  triangle  of  forces. 

This  is  as  follows  : 

Theorem.    If  a  particle  is  acted  on  hy  three  forces  represented 

hy  straight  lines,  the  particle  will  he  in  equilibrium  if  these  three 

L      straight  lines  placed  end  to  end  form  the  sides  of  a  triangle. 
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As  this  is  a  particular  case  of  the  polygon  of  forces  no  separate 

proof  is  needed.  As  before,  the  converse  is  also  true,  so  that  the 

condition  is  a  necessary  and  sufficient  condition  for  equilibrium. 

When  there  are  only-  three  forces  acting,  the  condition  for  equi- 
librium can  be  expressed  in  a  still  simpler  form : 

32.  Lami's  Theorem.  When  a  particle  is  acted  on  hy  three 
forceSy  the  necessary  and  sufficient  condition  for  equilibrium  is  that 

the  three  forces  shall  he  in  one  plane  and  that  each  force  shall  he 

proportional  to  the  sine  of  the  angle  between  the  other  two. 

Suppose  that  a  particle  is  acted  on  by  three  forces  P,  Q,  R.   The 

necessary  and  sufficient  condition  for  equilibrium  is  that  we  can 
form  a  triangle  by  placing  end  to  end  three 

lines  which  represent  the  forces  P,  Q,  E  in 

magnitude  and  direction. 
Let  us  begin  by  taking  AB  to  represent 

P,  and  placing  against  it  at  P  a  line  BC  to 

represent  Q.  Then  CA  must  represent  P,  if 

the  conditions  for  equilibrium  are  to  be  satis- 
fied. Thus  the  three  forces  must  be  in  one 

plane,  namely,  the  plane  parallel  to  ABC 
through  the  point  of  action  of  the  forces. 

Assume  that  there  is  equilibrium,  so  that 

the  three  forces  are  represented  by  the  sides  of 

the  triangle  ABC.  Let  us  denote  the  angles  of  the  triangle  as  usual 

by  A,  P,  C,  and  its  sides  by  a,  b,  c.  Then,  from  a  known  property 

of  the  triangle,  ^  ^  ^ 
sin  A      sin  B      sin  C 

By  our  construction,  however,  a,  b,  c  are  proportional  to  the 

magnitudes  of  the  forces :  we  have 

c  _  b  _  a 

P  Q  R Thus 
sin  C      sin  A      sin  P 
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If  jpq  denote  the  angle  between  the  lines  of  action  of  the  forces 

P  and  Q,  we  have  pq  =  it  —  B,  so  that  sin  B  =  sin  pq,  and  hence 

^^  =  .^  =  _4-  (11) sui  qr      sin  rp      sin  pq 

The  converse  is  true  because,  if  the  relation  (11)  is  satisfied  and 

if  the  lines  of  action  of  the  forces  are  in  one  plane,  we  can  con- 
struct a  triangle  of  which  the  sides  will  represent  the  forces  P,  Q,  B, 

so  that  there  is  equilibrium. 

33.  Analytical  conditions  for  equilibrium.  Expressed  in  an  ana- 
lytical form,  the  condition  for  equilibrium  is  that  the  resultant  of  all 

the  forces  acting  shall  be  zero.  If  the  individual  forces  are  known, 
the  resultant  force  can  be  obtained  at  once  from  the  rules  for  the 

composition  of  vectors,  wliich  have  already  been  given  in  §§  14-16. 
If  the  forces  all  act  in  a  plane,  let  their  magnitudes  be  B^,  B^,  •  •  •, 

B^,  and  let  their  lines  of  action  make  angles  e^,  e^,  •  •  •,  e„  with  the 
axis  of  X.    Then  the  resultant  has  components  X,  Y,  where  (cf.  §  14) 

X=  B^  cos  e^  +  i?2  cos  €2  +  •  •  •, 

Y  =  B^  sin  e^  -f-  B^  sin  63  +  •  •  •. 

The  magnitude  of  the  resultant  is  Vx^+F^,  and  this  vanishes 
only  if  X  and  Y  vanish  separately.  Thus  the  condition  for  equi- 

librium is  that  the  components  along  the  two  axes  shall  vanish 

separately,  i.e.  that  the  sum  of  the  components  of  the  separate 

forces  acting  shall  vanish  when  resolved  along  each  axis. 

Similarly,  if  the  forces  do  not  all  act  in  one  plane,  the  condition 

for  equilibrium  is  that  the  sums  of  the  components  along  three 

axes  in  space  shall  vanish  separately. 

EXAMPLES 

1.  Forces  of  12  and  8  pounds  weight  act  in  two  directions  which  are  at  right 
angles.    Find  the  magnitude  of  their  resultant, 

2.  Three  forces  each  equal  to  F  act  along  three  rectangular  axes.  Find  their 
resultant. 

3.  The  resultant  of  two  forces  Pi  and  P^  acting  at  right  angles  is  R  ;  if  Pi 
and  P2  be  each  increased  by  3  pounds,  R  is  increased  by  4  pounds  and  is  now 
equal  to  the  sum  of  the  original  values  of  Pi  and  P2.    Find  Pi  and  P2. 
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4.  Forces  acting  at  a  point  0  are  represented  by  OA,  OB,  OC,  •  •  • ,  ON.  Show 
that  if  they  are  in  equilibrium,  O  is  the  centroid  of  the  points  A,  B,C,-  ■   ,  N. 

5.  ABCDEF  is  a  regular  hexagon.  Find  the  resultant  of  the  forces  repre- 
sented by  AB,  AC,  AD,  AE,  AF. 

6.  ABCDEF  is  a  regular  hexagon.  Show  that  the  resultant  of  forces  repre- 

sented by  AB,  2 AC,  ZAD,  4lAE,  6AF  is  represented  by  V351  •  AB,  and  find 
its  direction. 

7.  ABC  is  a  triangle,  and  P  is  any  point  in  BC.  If  PQ  represent  the  resultant 
of  the  forces  represented  by  AP,  PB,  BC,  show  that  the  locus  of  Q  is  a  straight 

line  parallel  to  BC. 

Types  of  Forces 

Weight  of  a  Particle 

34.  The  weight  of  a  particle  acts  always  vertically  down- 
ward; for  at  a  given  place  on  the  earth  it  is  found  that  the 

weights  of  all  particles  act  in  parallel  directions,  and  this  direc- 
tion is  called  the  vertical  at  the  place  in  question.  The  weight  is 

the  gravitational  force  with  which  the  particle  is  attracted  by  the 

earth,  except  for  a  small  correction  which  has  to  be  introduced 
on  account  of  the  fact  that  axes  fixed  in  the  earth  do  not  move 

without  acceleration.  Tliis  correction  we  shall  not  discuss  here. 

When  the  weight  of  a  body  is  said  to  be  W,  it  is  meant  that  to 

keep  the  body  at  rest  relatively  to  the  earth's  surface  a  force  TV  is 
required  to  act  vertically  upward. 

Tension  of  a  String 

35.  A  string  or  rope  supplies  a  convenient  means  of  applying 

force  to  a  body,  and  this  force  is  spoken  of  as  the  tension  of  the 

J)      q      r      s  string.    Let  ABCD  •  •  •  be  the  string, 

P9 — j_  '  B  '  c  '  n  *  i:       ̂ ^^  ̂ ^^  P  be  a  particle  tied  to  the 
„  string  at  its  end.    Let  the  divisions  AB, 
Fig.  18  ^  ' 

BC,  •  •  •  of  the  string  be  so  small  that 
each  may  be  regarded  as  a  particle. 

There  will  be  three  forces  acting  on  any  particle  such  sls  BC: 

first,  its  weight;  second,  a  force  exerted  on  ̂ C  by  the  particle  CD 

of  the  string ;  and  third,  a  force  exerted  onBChj  the  particle  AB. 
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Generally  the  weight  of  a  string  is  very  slight  compared  with 

the  other  weights  in  the  problem.  It  is  therefore  convenient  to 

regard  a  string  as  having  no  weight  at  all.  In  this  case  there  are 

only  two  forces  acting  on  the  particle  AB,  so  that  for  equilibrium 

these  must  be  equal  and  opposite. 

36.  Flexibility.  A  string  is  said  to  be  perfectly  flexible  when 

the  force  exerted  by  one  particle  on  the  next  is  in  the  direction 

joining  the  two  particles.  Thus,  if  the  string  now  under  discussion 

is  perfectly  flexible  and  weightless,  the  forces  acting  on  the  parti- 
cle BC  are  along  the  directions  pq,  qr.  To  hold  ̂ C  in  equilibrium 

these  must  be  equal  in  magnitude.  Let  T  be  taken  as  the  magni- 
tude of  each.  Also  the  two  forces  must  be  in  opposite  directions, 

so  that  pqr  must  be  a  straight  line. 

Since  action  and  reaction,  by  the  third  law,  are  equal  and  oppo- 

site, the  force  exerted  by  ̂  C  on  CD  must  also  be  T  in  the  direc- 
tion qr.  This  must,  for  equilibrium,  be  equal  and  opposite  to  the 

force  exerted  by  DE  on  CD.  This  force  must  accordingly  be  of 

amount  T,  and  qrs  must  be  a  straight  line. 

We  can  continue  in  this  way,  and  find  that  all  the  particles 

must  lie  in  a  straight  line  pqrs  •  •  •,  and  that  each  acts  on  the  next 
with  the  same  force  T.  Also  the  particle  A  at  the  end  of  the  string 

acts  on  P  with  this  same  force  T  in  the  direction  of  the  string. 

The  force  T  is  called  the  tension.    Thus  we  have  the  following : 

The  tension  of  a  string  at  any  point  P  is  defined  as  the  force 

with  which  the  particle  of  the  string  on  the  one  side  of  P  acts  on 

the  particle  on  the  other  side  of  P. 

The  tension  is  the  same  in  magnitude  and  direction  at  every  point 

of  a  perfectly  flexible,  weightless  string  acted  on  by  no  external  forces. 
Hence  it  follows  that 

A  perfectly  flexible,  tveightless  string  acted  on  by  no  external 

forces  must  be  in  a  straight  line  when  in  equilibrium. 

If  the  tension  vanishes,  there  is  equilibrium  whatever  the  direc- 

tion of  the  elements  of  length  pq,  qr,  "• .  When  the  tension  van- 
ishes the  string  is  said  to  be  unstretched.  Clearly  an  un stretched 

string  can  rest  in  equilibrium  in  any  shape. 
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It  will  be  proved  later  that  when  a  perfectly  flexible,  weightless 

string  passes  over  a  smooth  peg  or  pulley,  the  tension  has  the  same 

magnitude  at  all  points  of  the  string,  and  at  points  of  contact  with  the 

peg  or  pulley  its  direction  is  along  the  tangent  to  the  peg  or  pulley. 

37.  If  the  string  is  not  absolutely  weightless,  but  is  very  light,  any 

particle  such  as  q  will  be  acted  on  by  three  forces,  —  its  weight  vertically 
down,  and  the  two  forces  from  the  adjacent  particles  acting  along  pg, 

rq.  By  Lami's  theorem,  each  force 
must  be  proportional  to  the  sine 

of  the  angle  between  the  remain- 
ing tw^o  forces.  Since  the  weight 

jPjQ  j9  is  small,  sin  pqr  must  be  small ;  i.e. 
pqr  must  be  very  nearly  a  straight 

line.  The  line  cannot  be  perfectly  straight,  however,  unless  the  string  is 
absolutely  weightless  ;  thus  in  a  real  string  there  must  always  be  a  certain 

"  sag,"  due  to  the  weight  of  the  string,  although  this  sag  may  be  so  slight 
as  to  be  impercej^tible. 

38.  Extensible  and  inextensible  strings.  The  tension,  as  will 

have  been  seen,  is  a  force  acting  at  every  point  of  the  string,  and 

tending  to  stretch  the  string  in  the  direction  of  its  length.  The 

string  either  may  or  may  not  yield  to  this  tendency  to  stretch.  A 

string  which  stretches  under  tension  is  called  extensible  ;  a  string 
which  does  not  stretch  at  all,  or  which  stretches  so  little  that  the 

amount  of  stretching  is  inappreciable,  is  called  inextensible. 

Thus  an  inextensible  string  remains  of  the  same  length  what- 
ever tension  is  applied  to  it,  while  the  length  of  an  extensible  string 

depends  on  its  tension. 
In  1660  Hooke  discovered  a  law  which  expressed  a  relation 

between  the  tension  and  the  amount  of  stretching  in  a  string :  the 

one  is  proportional  to  the  other. 

Definition.  The  length  of  a  string  when  the  tension  is  zero  is 

called  the  "  natural  length  "  of  the  string. 
Definition.  The  amount  by  which  the  length  of  a  stretched 

string  exceeds  the  natural  length  of  the  same  string  is  called  the 

"extension"  of  the  string. 

Hooke's  Law.  The  tension  of  a  string  is  proportional  to  the 
extension. 
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Although  Ilooke  discovered  this  law  in  1660,  he  did  not  publish  it  until 

1676,  and  then  only  in  the  form  of  the  anagram  ceiinosssttuv. 

In  1678  he  explained  that  the  letters  of  the  anagram  were  those  of  the 

Latin  words  ut  tensio  sic  vis,  —  "the  power  of  any*  spring  is  in  the  same 

proportion  with  the  tension  thereof."  By  tension  (tensio)  Hooke  meant 

the  quantity  which  we  have  called  the  "  extension  ";  by  the  power  (vis) 
he  meant  the  force  tending  to  stretch  the  spring,  i.e.  the  tension. 

39.  Hooke's  law  only  enables  us  to  compare  the  extensions 
produced  by  different  tensions.  To  find  the  actual  extension  pro- 

duced by  a  given  tension  we  must  know  that  produced  by  some 

other  tension  for  comparison. 

Definition.  The  force  required  to  stretch  a  string  to  double  its 

7iatural  length  is  called  the  modulus  of  elasticity  of  the  string. 

Thus  if  a  is  the  natural  length  of  a  string,  and  X  the  modulus 

of  elasticity,  we  know  that  a  tension  X  produces  an  extension  a, 

so  that  a  tension  T  produces  an  extension  Ta/\ 

When  we  say  that  a  string  is  inextensible,  we  mean  that  \  is  so 

large  that  the  extension  Ta/\  may  be  neglected. 

Hooke's  law  only  holds  within  certain  limits.  If  we  go  on 
increasing  the  tension  in  a  string  indefinitely,  we  find  that,  after  a 

certain  limit  is  passed,  Hooke's  law  ceases  to  be  true,  and  when  a 
certain  still  greater  tension  is  reached  the  string  breaks  in  two 

parts. 
'  EXAMPLES 

1.  A  weight  TT  hangs  by  a  string  and  is  pushed  aside  by  a  horizontal  force 

until  the  string  makes  an  wangle  of  45°  with  the  vertical.  Find  the  horizontal 
force  and  the  tension  of  the  string. 

2.  A  weight  suspended  by  a  string  is  pushed  sideways  by  a  horizontal  force. 
Show  that  as  it  is  pushed  farther  from  its  position  of  rest,  in  which  the  string 
is  vertical,  the  tension  continually  increases. 

3.  A  weight  of  100  pounds  is  suspended  by  two  strings  which  make  angles 

of  60°  with  the  vertical.    Find  their  tensions. 
4.  A  weight  of  30  pounds  is  tied  to  two  extensible  strings  of  natural  length 

2  feet,  modulus  of  elasticity  100  pounds,  and  the  other  ends  of  the  strings  are 
tied  to  two  points  at  a  horizontal  distance  4  feet  apart.  Find  the  position  in 

which  the  weight  can  rest  in  equilibrium. 

5.  A  weight  W  is  suspended  by  three  equal  strings  of  length  I  from  hooks 
which  are  the  vertices  of  a  horizontal  equilateral  triangle  of  side  a.  Find  the 
tensions  of  the  strings. 
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Reaction  hetween  Two  Bodies 

40.  A  second  way  in  which  force  can  be  applied  to  a  particle  is 
by  the  pressure  between  the  particle  and  the  surface  of  a  soHd 

body.    Such  a  force  is  commonly  spoken  of  as  a  reaction. 

A  body  standing  on  the  floor  of  a  room  is  acted  on  by  its 

weight  acting  downwards,  but  is  kept  at  rest  by  the  action  of  a 

second  force  acting  upwards  from  the  floor;  this  is  the  reaction 

between  the  body  and  the  floor.  Clearly,  in  order  that  the  body 

may  rest  m  equilibrium,  the  reaction  in  this  case  must  be  equal  to 

the  weight  of  the  body  and  must  act  vertically. 

Friction 

41.  Imagine  a  small  body  standing  on  a  plane  of  which  the 

slope  can  be  varied,  such  as  the  lid  of  a  desk.  If  the  plane  is  held 

horizontally,  the  body  can  stand  at  rest  as  already  described.  Let 

the  plane  be  gradually  tilted,  and  it  will  be  found  that  as  soon 

as  the  tilting  reaches  a  certain  angle  the  body  will  begin  to  slide 

down  the  plane.  The  angle  at  which  sliding  first  occurs  is  found 

to  be  different  for  different  pairs  of  substances ;  thus  for  wood 

sliding  on  wood  it  may  vary  from  10°  to  25°,  for  iron  on  wood  it_ 

varies  from  10°  to  30°,  wliile  for  iron  sliding  on  iron  it  is  only 
about  10°  or  15°. 

When  two  substances  are  such  that  this  angle  is  zero,  —  i.e.  such 
that  one  can  only  rest  on  the  other  when  the  surface  of  contact  is 

perfectly  horizontal,  —  then  the  contact  between  them  is  said  to  be 
perfectly  smooth.  The  nearest  approximation  to  a  perfectly  smooth 

contact  which  we  experience  in  actual  life  is  probably  that  of  steel 

on  ice,  as  in  skating. 

It  is  found  that  the  angle  to  which  a  plane  made  of  one  sub- 
stance has  to  be  tilted  before  a  second  substance  begins  to  slide 

on  it  is  uidependent  both  of  the  amount  of  the  second  substance 

and  of  the  area  in  contact.  Thus  the  angle  depends  only  on  the 
nature  of  the  two  substances  in  contact. 
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Further,  when  the  two  bodies  are  pressed  together  in  any 

way  it  is  found  that  the  direction  of  the  reaction  can  make  any 

angle  up  to  a  certain  limiting  angle  with  the  normal  to  the 

plane  of  separation  without  sliding  taking  place,  but  that  as  soon 

as  this  angle  is  reached  sliding  takes  place.  This  angle  is 

.^^  known  as  the  a7igle  of  friction.  It  is  clearly  the  same  as  the 
IBP  angle  through  which  the  plane  before  considered  can  be  tilted, 

for  the  angle  between  the  normal  to  the  plane  and  the  direction 

of  the  reaction  (i.e.  the  vertical)  is  simply  the  slope  of  the  plane. 
42.  In  any  case  in  which  frictional  forces  act,  let  E  denote  the 

normal  component  of  the  reaction,  and  let  F  denote  the  compo- 
nent in  the  plane  of  the  contact  which 

is  caused  by  friction.  When  slipping  is 

just  about  to  occur,  the  resultant  must 

make  an  angle  €  with  the  normal,  where 

€  is  the  angle  of  friction.  Thus,  if  S  de- 
notes the  whole  reaction,  we  must  have 

B  =  S  cos  €,     F  =  S  sin  e,    

and  hence       F  =  E  tan  e.  Fig.  20 

The  quantity  tan  €  is  called  the  coefficient  of  friction  and  is  denoted 

by  the  single  letter  /x.    Then,  when  slippmg  is  just  about  to  take 
place,  we  have  ^         „ 
^  F=  fiE. 

It  must  be  clearly  understood  that  this  equation  gives  the  true 

value  of  the  frictional  force  only  when  slipping  is  just  about  to 

take  place.  It  sets  an  upper  limit  to  the  value  of  the  frictional 

force,  but  does  not  give  the  actual  value  of  this  force  unless  we 

know  that  the  system  is  on  the  verge  of  sliding. 

43.  Consider,  for  instance,  the  experiment  already  discussed,  in 

which  a  particle  is  placed  on  a  horizontal  plane  wliich  is  gradually 

tilted  up.  AVhen  the  plane  is  horizontal  the  particle  is  at  rest, 

acted  on  only  by  gravity  and  the  reaction  with  the  plane.  Thus 

the  reaction  is  vertical,  so  that  here  i^=  0.  Consider  next  the 
state  of  things  when  the  plane  makes  an  angle  a  with  the  horizon. 



48 FOECES  ACTING   ON  A  SINGLE  PAKTICLE 

If  slipping  does  not  take  place,  the  particle  is  in  equilibrium 

under  its  weight  TV  and  the  reaction  between  it  and  the  plane. 
Thus  the  reaction  must  consist  of  a  vertical  force  W.    We  cati 

resolve  this  into  components 

Wcosa  and  Wsina  perpen- 
dicular to  and  up  the  plane. 

The  former  is  the  normal  com- 

ponent of  the  reaction,  the 

latter  is  the  frictional  com- 

ponent. Thus  in  the  notation 

already  used  we  have 
It  =  W  cos  a, 
F  =W  sin  a, 

so  that  in  this  case  we  have 

Fig.  21  F  =  R  tan  a. 

As  a  increases,  F  and  FjR  both  increase  until,  when  a  reaches 

the  value  €,  F/B  reaches  its  limiting  value  ft,  or  tan  e,  and  after 

this  slipping  takes  place. 

Wcosai^ 

\ 
\  a 

r^ )^
^^
 

^^^a   \ 
. 

EXAMPLES 

1.  A  mass  of  100  pounds  placed  on  a  rough  horizontal  plane  is  on  the  point 

of  starting  into  motion  when  acted  on  horizontally  by  a  force  equal  to  the 
weight  of  100  pounds.    Find  the  angle  of  friction. 

2.  A  body  placed  on  an  inclined  plane  which  makes  an  angle  of  30°  with  the 
horizontal  is  just  on  the  point  of  moving  down  the  plane  when  acted  on  by  a 

horizontal  force  equal  to  the  weight  of  the  body.    Find  the  coefficient  of  friction. 

3.  A  man  capable  of  exerting  a  pull  of  200  pounds  tries  to  drag  a  mass  of 

700  pounds  over  a  horizontal  road  (coefficient  of  friction  ̂ ).  To  help  him,  the 
chain  from  a  crane  is  attached  to  the  mass,  the  chain  hanging  vertically.  How 
much  tension  must  there  be  in  the  chain  before  the  man  can  move  the  block  ? 

4.  An  insect  tries  to  crawl  up  the  inside  of  a  hemispherical  bowl  of  radius  a. 

How  high  can  it  get,  if  the  coefficient  of  friction  between  its  feet  and  the  bowl  is  ̂   ? 
5.  A  man  trying  to  push  a  block  of  stone  over  ice  pushes  horizontally  and 

finds  that  just  as  soon  as  the  stone  begins  to  move  his  feet  begin  to  slip.  Show 
that  if  he  pushes  upwards  on  the  stone  he  will  get  it  along  without  difficulty,  but 

that  if  he  pushes  downwards  he  cannot  possibly  move  it. 

6.  A  smooth  pulley  is  placed  at  the  edge  of  a  horizontal  plane.  A  string 

passes  over  it,  having  at  one  end  a  weight  w  hanging  freely,  and  at  the  other 
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end  a  weight  W  resting  on  the  plane.  If  the  coefficient  of  friction  /*  is  so  large 
that  motion  does  not  take  place,  find  through  what  angle  the  plane  must  be 
tilted  before  motion  begins. 

7.  A  tourist  of  mass  M  is  roped  to  a  guide  of  mass  m  on  the  side  of  a  moun- 
tain, the  side  of  which  may  be  taken  to  be  an  inverted  hemisphere.  The  length 

of  the  rope  subtends  an  angle  a  at  the  center  of  the  mountain,  and  the  rope  is 

not  supposed  to  touch  the  mountain  at  any  point.  If  the  coefficient  of  friction 

between  either  man  and  the  mountain  is  /*,  how  far  can  the  tourist  venture 
down  the  side  of  the  mountain  before  both  he  and  the  guide  fall  to  the  bottom  ? 

ILLUSTRATIVE  EXAMPLES 

1.  A  heavy  particle  C  rests  on  a  smooth  inclined  plane,  being  supported  by 

two  strings  of  lengths  li,  l^,  which  are  attached  to  two  points  A,  B  in  the  plane, 
these  points  being  in  the  same  horizontal  line  and  at  a  distance  h  apart.  Find  the 
tensions  of  the  strings  and  the  reaction  with  the  plane. 

Let  W  be  the  weight  of  the  particle  and  let  a  be  the  inclination  of  the  plane  to 

the  horizon.    The  particle  is  in  equilibrium,  being  acted  on  by  the  following  forces : 

(a)  Its  weight  W,  which  acts  vertically  downwards. 

(6)  The  reaction  between  the  particle  and  the  plane.  Since  the  plane  is 

smooth,  this  reaction  acts  at  right  angles  to  the  plane.  Let  the  amount  of  the 
reaction  be  B. 

(c)  The  two  tensions  of  which 
the  amount  is  required.  Let 
the  amounts  of  these  be  denoted 

by  Ti,  Ta. 

Since  these  four  forces  pro- 
duce equilibrium,  the  sum  of 

their  resolved  parts  in  any  di- 
rection must  vanish.  The  two 

tensions  have  no  resolved  parts 

at  right  angles  to  the  plane  ; 

hence,  by  resolving  at  right  an- 
gles to  the  plane,  we  shall  get 

Fig.  22 

I 

an  equation  in  which  only  two  of  the  forces  are  involved. 

The  resolved  part  of  the  weight  at  right  angles  to  the  plane  is  W  cos  a.    The 
reaction  is  wholly  at  right  angles  to  the  plane  ;  hence  the  equation  for  which 
we  are  in  search  is 

B  -  IT  cos  a  =  0. 

This  gives  us  the  amount  of  the  reaction  at  once. 

Let  us  now  consider  the  resolved  parts  of  the  forces  in  the  inclined  plane. 

The  only  forces  which  have  components  in  this  plane  are  the  following  : 

(a)  The  weight,  of  which  the  component  isTTsino:,  down  the  line  of  greatest  slope. 
(6)  The  tensions  of  the  strings,  which  are  entirely  in  the  plane  and  which 

lict  along  the  strings  CA,  CB. 
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The  three  forces  TTsinor,  Ti,  and  T2  must  be  in  equilibrium;  hence,  by 

Lami's  theorem,  each  must  be  proportional  to  the  sine  of  the  angle  between the  other  two. 

In  fig.  23,  CD,  CA,  CB  are  the  lines  of  action  of  these  three  forces.  The 

line  CD,  being  the  line  of  greatest  slope  through  C,  is  at  right  angles  to  the 
line  AB,  which  we  are  told  is  horizontal.    Thus  if  DC  is  produced  to  meet  AB 

in  P,  the  angle  APC  is  a  right  angle.    Hence 

sin  ACD  =  sin  ̂ CP  =  cos  CAP, 

and  similarly 

sin  BCD  =  sin  BCP  =  cos  CBP. 

By  Lami's  theorem  we  have 
Wsina  Ti  Tg 

sin^CJB      sin  ̂ CD      sin  ̂   CD 

From  the  relations  just  obtained  we  can 

obtain  these  ratios  in  terms  of  the  angles  of 
the  triangle  ABC.    We  have 

Wsina         Ti  T^ 

Fig.  23 sin  C cos  B      cos  A 

We  can  now,  if  required,  express  cos  J.,  cos  B,  and  sin  C  in  terms  of  the  sides 

Zi,  I2,  and  h  of  the  triangle,  by  means  of  the  ordinary  formulse  of  trigonometry. 
The  student  is  advised  to  examine  for  himself  the  form  assumed  by  the  result 

in  the  two  special  cases 

(a)  -4  =  2?  =  0,  in  which  ACB  are  in  a  straight  line  ; 

(6)  C  =  0,  A  =  B  =  —,  in  which  the  strings  are  parallel. 

2.  Find  the  direction  and  magnitude  of  the  smallest  force  which  will  start  a 

body  resting  on  an  inclined  plane  into  motion  down  the  plane. 

Let  a  be  the  angle  of  the  plane,  and  /x  the  coefficient  of  friction  between  it 

and  the  body  to  be  moved.  Let  W  be  the  weight  of  the  body,  and  let  a  force  F 

be  applied  in  a  direction  making 
an  angle  6  with  the  line  of  greatest 

slope  down  the  plane,  this  force 

being  supposed  to  be  just  sufficient 
to  move  the  body. 

The  forces  acting  on  the  body 
consist  of 

(a)  its  weight  W ; 

(6)  the  applied  force  F ; 
(c)  the  reaction  with  the  plane. 

Let  the  last  force  be  resolved  into  two  components  along  and  perpendicular 

to  the  plane.  Taking  the  latter  to  be  R,  the  former  will  be  fiR  acting  up  the 
plane,  for,  by  hypothesis,  the  body  is  on  the  point  of  motion  down  the  plane. 

Fig.  24 
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The  resultant  of  all  these  forces  vanishes,  so  that  the  sum  of  their  com- 
ponents in  any  direction  vanishes.    Resolving  normal  to  the  plane,  we  obtain 

R-^  Fsind-  Wcosa  =  0^  7 

and  resolving  along  the  plane,  ^^' 

Fcosd  +  Wsin  a  -  fiR  =  0. 

Eliminating  the  unknown  reaction  E,  we  obtain 

F{iJ.  sin  6  +  cos  6)  —  W{fjt.  cos  a  —  sin  a)  =  0, 

„      W(a  cos  a  —  sin  a) 
so  that  F  =  — ^   ' . 

fismd  -\-  cos  0 

Replacing  /*  by  tan  e,  we  obtain 

^  _  ir(cos  a  tan  e  —  sin  a)  _  Wsin  {e  —  a)    ) 
cos  6  -f  tan  e  sin  0 cos  {0  —  e) 

The  value  of  F  is  a  minimum  when  cos  {0  —  e)  is  a  maximum,  and  this  occurs 

when  cos  (0  —  e)  =  1 ;  i.e.  when^=  ?.    Inthis  case  the  value  of  F  is 

F=  Trsin(e-  a). 

Thus  this  is  the  smallest  force  by  which  motion  can  be  produced,  and  it  must 
act  so  as  to  make  an  angle  0  with  the  plane  equal  to  the  angle  of  friction  e. 

Since,  by  hypothesis,  the  weight  rests  without  slipping  when  no  force  is  applied, 
the  angle  e  must  be  greater  than  a.  Thus  the  direction  of  the  force  F  must 

always  be  inclined  in  an  upward  direction.  The  function  performed  by  the 

force  F  is  twofold :  it  supports  part  of  the  weight  of  the  body  (through  its 
component  normal  to  the  plane),  and  so  lessens  the  amount  of  friction  to  be 

overcome ;  and  it  also  supplies  (through  its  component  in  the  inclined  plane) 
the  motive  power  for  overcoming  the  frictional  resistance.  When 

these  two  parts  of  the  force  are  balanced  in  the  most  advantageous 

way  the  value  of  F  is  a  minimum,  and  this,  as  we  have  proved, 
occurs  when  0  =  e. 

An  interesting"and  instructive  solution  of  this  problem  can 
also  be  obtained  geometrically.  For  equilibrium,  the  three  forces 

already  enumerated  must  satisfy  the  condition  of  forming  a  tri- 
angle of  forces. 

Let  AB  represent  the  weight  and  BC  the  reaction  between  the 

mass  and  the  plane,  then  CA  must  represent  the  applied  force  F. 
If  the  body  is  on  the  point  of  motion,  the  reaction  must  make  an 
Jtnglee  with  the  normal  to  the  plane,  so  that  the  angle  ABC  must 

be  e  —  or.  Thus  the  line  BC  is  fixed  in  direction,  and  the  problem 
is  that  of  finding  the  direction  and  magnitude  of  AC,  when  the  length  ̂ C  is  a 

minimum.  Obviously  the  minimum  occurs  when  AC  is  perpendicular  to  BC,  so 

that  AC  must  be  in  a  direction  making  an  angle  e  —  a  with  the  horizontal,  as 
already  found,  and  since  AC  =  AB  sin  ABC  =  AB  sin{e  —  a),  the  magnitude  of 
the  force  required  will  be  IT  sin  (e  —  a). 

Fig.  25 
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3.  A  particle  is  tied  to  an  elastic  string,  the  other  end  of  which  is  fixed  at  a 

point  in  a  rough  inclined  plane.  Find  the  region  of  the  plane  within  which  the 

particle  can  rest. 

The  forces  acting  on  the  particle  are 

(a)  its  weight,  say  TT,  vertically  down ; 
(6)  the  tension  of  the  string ; 

(c)  the  reaction  with  the  rough  plane. 

Let  the  natural  length  of  the  string  be  I,  the  modulus  of  elasticity  X ;  then 
when  the  actual  length  of  the 

string  is  r,  where  r  is  greater 

(r-Z)X than  I,  the  tension  is 

Let  a  be  the  inclination  of 

the  plane,   and   let   fi  be   the 
coefficient  of  friction  between 

the  plane  and  the  particle.    Let 
the  reaction  with  the  plane  be 

resolved  into  a  normal  component 

B,  and  a  component  F  along  the 
plane.    The  condition  that  the 

particle  can  remain  at  rest  is 
that  F  shall  be  less  than  /xR. 

Resolving  at  right  angles  to  the  plane,  the  only  forces  which  have  compo- 
nents in  this  direction  are  found  to  be  the  weight  of  the  particle  and  its  reaction 

with  the  plane.    Thus 
E-  TT  cos  a  =  0. 

Consider  the  equilibrium  of  the  particle  when  at  some  point  P,  distant  r{>l) 
from  0.    The  components  in  the  inclined  plane,  of  the  forces  acting  on  it,  are 

(a)  W  sin  a  down  the  line  of  greatest  slope  through  P ; 

Fig.  26 

(6)  the  tension I 
along  PO; 

(c)  the  f  rictional  component  of  the  reaction,  which  we  have  called  F. 

Let  OP  make  an  angle  6  with  the  line  of  greatest  slope  in  the  plane.    Then, 

since  the  resultant  of  the  first  two  forces  must  be  of  magnitude  P,  we  must  have 

_p2  =,  j^2  sin2  a  + 

(r 

Z)2X2      2(r 

l)\ 
Wsina  cos 

giving  the  magnitude  of  the  f rictional  force  required  to  maintain  equilibrium. 

If  the  particle  is  on  the  point  of  motion,  F  =  fiR  =  fiW cos  a,  so  that 

l)\ 

(r  —  A2\2       9(r 

Tr2(sin2  a-,x^  cos2  a)  +  ̂ — ^ —  +  -^ 
TFsin  a  cos  9  =  0. (a) 

Since  r,  0  are  polar  coordinates  of  the  point  P,  equation  (a)  is  the  polar  equa- 
tion of  the  boundary  of  the  region  within  which  the  particle  can  remain  at  rest. 
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The  equation  is  most  easily  interpreted  by  noticing  that  if  r  —  I  is  replaced 
by  r,  the  equation  becomes 

0,  (6) W^{sin^a  -  ij? co^^a)  +  —  r2  +  2  -  TTsin  or  •  r  cos  ̂  

which  is  the  polar  equation  of  a  circle.  Thus  the  original  locus  represented  by 

equation  (a)  can  be  drawn  by  first  drawing  the  circle  represented  by  equation 

(6),  and  then  producing  each  radius  vector  through  the  origin  to  a  distance  I 
beyond  the  circumference  of  this  circle. 

Fig.  27 Fig.  28 

The  same  result  can  be  obtained  by  a  geometrical  treatment  of  the  problem. 

The  particle  is  acted  on  by  only  three  forces  in  the  plane  on  which  it  rests,  so 
that  lines  parallel  and  proportional  to  these  forces  must  form  a  triangle  of  forces. 

In  fig.  29  let  OP  be  the  string,  and  let  ̂ P  be  a 

length  I  measured  off  from  P,  so  that  ̂ 0  is  the 

extension  r  —  loi  the  string.  The  tension  is  always 
proportional  to  ̂ 0  and  acts  along  AO.  Let  us 
then  agree  that  in  the  triangle  of  forces  the  tension 
shall  be  represented  by  the  actual  line  AO.  On 
the  same  scale  let  the  component  of  the  weight, 

W  sin  or,  be  represented  by  the  line  OG,  the  direc- 
tion of  this  being,  of  course,  down  the  line  of  greatest 

slope  through  O.  Then  A  OG  must  be  the  triangle 
of  forces,  so  that  GA  must  represent  the  frictional 
reaction  between  the  particle  and  the  plane.  The 
maximum  value  possible  for  this  is  /xW  cos  or,  so  that 

if  slipping  is  just  about  to  occur,  GA  will  represent 
a  force  fiW  cos  a.  Thus  corresponding  to  a  position 

of  P  in  which  slipping  is  just  about  to  occur,  the  positions  of  A  are  such  that  GA 

represents  the  constant  force  fxW  cos  <ar,  — in  other  words,  the  locus  of  A  is  a  circle 
of  center  G.    This  leads  at  once  to  the  cbnstruction  previously  obtained. 

Fig.  29 
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The  region  in  which  equilibrium  is  possible  assumes  two  different  forms 

according  as  the  angle  of  the  inclined  plane  a  is  less  or  greater  than  the  angle 

of  friction  e.  In  the  former  case  the  region  of  equilibrium  is  of  the  kind  repre- 
sented in  fig.  27.  On  passing  the  value  a  =  e  the  circle  used  in  the  construction 

passes  through  the  point  0,  and  for  values  of  a  greater  than  e  the  region  of 

equilibrium  becomes  an  area  of  the  kind  drawn  in  fig.  28.  On  passing  through 

the  value  a  =  e  a,  sudden  change  takes  place  in  the  shape  of  the  region  of 
stability.  For  values  of  a  which  are  greater,  by  however  little,  than  e,  a  circle 
of  radius  Z,  center  0,  is  entirely  outside  the  region  of  stability ;  while  for  values 

of  a  which  are  smaller,  by  however  little,  than  e,  this  circle  is  inclosed  within 

the  region  of  equilibrium.  Clearly  this  circle  maps  out  the  region  within  which 

the  weight  can  rest  with  the  string  unstretched,  and  this  will  be  one  of  equi- 
librium or  not  according  as  a;  <  or  >  c. 

Thus  this  circle  falls  inside  or  outside  the  region  of  equilibrium  in  the  way 

predicted  by  analysis.  At  the  same  time  we  could  not  have  been  sure,  without 
a  separate  investigation,  that  the  result  given  by  analysis  would  be  accurate  as 

regards  the  region  within  a  distance  I  of  0.  For  the  analysis  began  by  assuming 
the  string  to  be  stretched,  and  so  had  no  application  except  to  the  region  at  a 
distance  greater  than  I  from  0. 

4.  Two  weights  ly,  w'  rest  on  a  smooth  sphere,  being  supported  by  a  string 
which  passes  through  a  smooth  ring  at  0,  a  point  vertically  above  the  center  of  the 

sphere.    Find  the  configuration  of  equilibrium. 

Let  P,  Q,  in  fig.  30,  be  the  positions  of  the  two  weights 
in  a  configuration  of  equilibrium.  The  weight  lo  at  P  is 

acted  on  by  the  following  forces : 

(a)  its  weight  w  vertically  downwards ; 
(6)  the  tension  of  the  string  along  PO; 
(c)  the  reaction  between  the  sphere  and  the  weight. 

Since  the  sphere  is  supposed  smooth,  the  direction  of 
this  reaction  is  at  right  angles  to  the  plane  of  contact 

between  the  particle  and  the  sphere;  i.e.  along  CP. 

The  three  forces  acting  on  the  particle  P  are  accord- 
ingly parallel  to  the  three  sides  of  the  triangle  OPC. 

Thus  the  triangle  OPC  may  be  regarded  as  a  triangle  of 

forces  for  these  forces,  so  that  the  magnitudes  of  the 
forces  must  be  proportional  to  the  sides  of  this  triangle. 

Denoting  the  tension  and  reaction  by  T  and  E,  we  obtain 

IV   _    T  _   R 

'dc~  0P~  CP' 

Fig.  30 

(a) 

In  the  same  way  the  triangle  OCQ  may  be  regarded  as  a  triangle  of  forces  for 

the  particle  Q.  (This  triangle  does  not  represent  force  on  the  same  scale  as  the 
former  triangle  OCP ;  for  in  the  former  case  OC  represented  a  weight  w,  whereas 

it  now  represents  a  weight  w\)  • 
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From  this  second  triangle  of  forces  we  obtain 

oc~oq~cq' 
where  T',  E'  represent  the  tension  and  reaction  acting  on  Q. 

Since  the  ring  at  O  is  supposed  to  be  smooth,  the  tension  in  the  string  POQ 

is  the  same  at  all  points.    Thus  T  =  T.    We  now  obtain,  from  equations  (a) 
and  (6), 

w-OP  =  w'-  OQ,  (c) 

since  each  product  is  equal  to  T-  OC.    If  I  is  the  whole  length  of  the  string, 
we  have 

w         w'       w  ■}■  w' 
OQ      OP  I 

(d) 

showing  that  the  string  arranges  itself  so  that  it  is  divided  by  the  ring  at  O 

in  the  inverse  ratio  of  the  two  weights.  We  notice  also  from  equations  (a) 
and  (b)  that 

for  each  ratio  is  that  of  the  radius  of  the  sphere  to  OC.    Thus  the  reactions  are 

in  the  direct  ratio  of  the  weights. 

If  the  string  is  inextensible,  the  length  I  is  known,  so  that  equations  (d) 
determine  the  lengths  OP,  OQ  completely.  Suppose,  however,  that  the  string  is 
an  extensible  string,  say  of  natural  length  a  and  modulus  X.  Then,  instead  of  I 
being  a  known  quantity,  we  have  one  additional  equation  between  unknown 
quantities,  namely 

a 

Remembering   that  equation  (c)  gives  two  values   for   the   quantity   T-  OG, 
we  have 

T-OC=^-^^\-OC  =  w-OP  =  w'-OQ a 

OP  ̂ 0Q_       I 

w        www 

so  that  - — -\.0C  ^ a  1        1 -  +  -, 
w      w 

This  equation  determines  the  value  of  I,  and  having  found  this  we  proceed 
as  before. 

5.  A  weight  W  is  supported  by  strings  of  which  the  tensions  are  Ti,  T2,  •  ■  •  Tn. 
The  strings  do  not  hang  vertically,  but  the  angles  between  the  different  pairs  of 

strings  are  known,  being  ei2 ,  eis ,  etc.  Find  the  weight  W  in  terms  of  the  tensions 
and  of  these  angles. 
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Clearly  the  weight  is  equal  to  the  resultant  of  the  tensions  Ti,  T2,  •  •'  Tn. 
Let  us  take  any  three  rectangular  axes  in  space.  Let  the  direction  cosines 

of  the  first  string  be  ̂ i,  mi,  ?ii ;  let  those  of  the  second  string  be  Z2,  m2,  ̂ 2  ;  and  so 

on.    Then,  resolved  along  the  axes,  the  components  of  the  first  tension  will  be 

ZiTi,    miTi,    mTi. 

The  components  of  the  other  tensions  are  similar  expressions,  so  that  if 

JT,  F,  Z  denote  the  three  components  of  the  resultant,  we  have 

X=liTi  +I2T2   +---  +  z„r„, 
r  =  miTi  +  rngTa  +  .  . .  +  ??i„r„, 

Z  =  niTi  ̂ n^To  +...  +  n„r„. 

Since  the  magnitude  of  the  resultant  is  equal  to  W,  we  have 

=  (hTi  +  igTa  +  •  •  •  +  InTn)^  +  {miTi  +  m2r2  +  •  •  •  +  m„r„)2 

+  (niTi  +  712  Ta  +  •  •  •  +  n„T„)2 
=  Tf  (Z  2  +  w  2  ̂.  ̂   2)  ̂  . . .  _^  2  Ti  Ts  ihh  +  mim2  +  nm^)  +  •  •  • 

=  T^+T^  +  ---  +  2  T1T2  cosei2  +  •  •  •, 

which  gives  the  result  required. 

GENERAL   EXAMPLES 

1.  ABC  is  a  triangle,  with  a  right  angle  at  .4;  AD  is  the  perpendicular 

on  BC.    Prove  that  the  resultant  of  forces,  — —  acting  along  AB  and  — - 1  AB  A  C 

acting  along  AC,  is  -—  acting  along  AD. 

2.  At  a  point  0  there  acts  a  force  P,  whose  line  of  action  is  in  the  plane 

determined  by  two  lines  OA ,  OB,  meeting  at  0.  The  resolved  part  of  P  in 

the  direction  OA  is  represented  in  magnitude  and  direction  by  OX,  that 

in  the  direction  OB  by  OY.  Show  that  the  force  P  is  represented  in  mag- 
nitude by  the  diameter  of  the  circle  OXY,  and  find  its  direction. 

3.  Forces  P^,  Pg*  "  'y  Pn  acting  in  one  plane  at  a  point  O  are  in  equi- 

librium. Any  transversal  cuts  their  lines  of  action  in  points  Zj,  Zg,  •  •  •,  i„  ; 
and  a  length  OLi  is  considered  positive  when  the  direction  from  0  to  Li  is 

the  same  as  to  Pf.    Prove  that  '^P^/OL^  =  0. 

4.  A  body  is  sustained  on  a  smooth  inclined  plane  by  two  forces,  each 

equal  to  half  the  weight,  the  one  acting  horizontally,  and  the  other  along 

the  plane.    Find  the  inclination  of  the  plane. 

5.  The  angle  of  a  smooth  inclined  plane  is  30°,  and  a  force  P  acting 
horizontally  sustains  a  body.  In  what  other  direction  can  P  act  and  sup- 

port the  body?    Compare  the  pressure  upon  the  plane  in  the  two  cases. 
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6.  Two  smooth  planes,  whose  inclinations  are  a  and  /3,  meet  in  a  hori- 
zontal line  AB.  At  a  point  in  ̂ B  is  a  small  smooth  ring  through  which 

passes  a  string  with  a  weight  at  either  end,  resting  one  on  each  of  the 

given  planes,  and  in  the  same  vertical  plane  with  the  ring.  If  the  weights 
are  in  the  equilibrium,  find  the  tension  of  the  string  and  the  ratio  of  the 

weights. 

7.  Two  smooth  rings  of  weights  W^  and  T^g  ̂ ^^  connected  by  a  string 

and  rest  in  equilibrium  on  the  convex  side  of  a  circular  wire  in  the  vertical 

plane.  Show  that,  if  the  string  subtends  the  angle  a  at  the  center  of  the 

circle,  the  angle  of  inclination  d  of  the  string  to  the  vertical  is  given  by 

TFi  +  W^         ex 

8.  Two  weights  rest  on  a  rough  inclined  plane  and  are  connected  by  a 

string  which  passes  over  a  smooth  peg  in  the  plane  ;  if  the  angle  of  inclina- 
tion a  is  greater  than  the  angle  of  friction  e,  show  that  the  least  ratio  of 

the  less  to  the  greater  is  sin  (a:  —  e)/sin(a:  +  e). 

9.  Two  weights  support  one  another  on  a  rough  double  inclined  plane, 

by  means  of  a  fine  string  passing  over  the  vertex,  and  both  weights  are 

about  to  move.  Show  that  if  the  plane  be  tilted  until  both  weights  are 

again  on  the  point  of  motion,  the  angle  through  which  the  plane  will  be 

turned  is  twice  the  angle  of  friction. 

10.  Two  weights  P,  Q  of  similar  material,  resting  on  a  double  inclined 

plane,  are  connected  by  a  fine  string  passing  over  the  common  vertex,  and 

Q  is  on  the  point  of  motion  down  the  plane.  Prove  that  the  greatest  weight 

which  can  be  added  to  P  without  disturbing  the  equilibrium  is 

P  sin  2  e  sin  {a  +  /3) 

sin  (or  —  e)  sin  (jS  —  e) 

a,  ̂   being  the  angles  of  inclination  of  the  planes,  and  e  the  angle  of 
friction. 

11.  A  body  is  supported  on  a  rough  inclined  plane  by  a  force  acting 

along  it.  If  the  least  magnitude  of  the  force,  when  the  plane  is  inclined 

at  an  angle  a  to  the  horizon,  be  equal  to  the  greatest  magnitude,  when  the 

plane  is  inclined  at  an  angle  /3,  show  that  the  angle  of  friction  is  ̂ (a  — j8). 

12.  Two  equal  rings  of  weight  W  are  movable  along  a  curtain  pole,  the 

coefficient  of  friction  being  fi.  The  rings  are  connected  by  a  loose  string 

of  length  /,  which  supports  by  means  of  a  smooth  ring  a  weight  W^.  How 

far  apart  must  the  rings  be  so  that  they  will  not  come  together  ? 

13.  Two  weights  P,  Q  of  different  material  are  laid  on  a  rough  plane, 

whose  inclination  is  6,  and  connected  by  a  taut  string  inclined  at  45°  to  the 
intersection  of  the  plane  with  the  horizon.    Both  weights  are  on  the  point 
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of  motion.    Determine  the  coefficients  of  friction  of  P  and  Q,  it  being 
known  that  that  of  the  upper  weight  is  twice  that  of  the  lower. 

14.  A  heavy  ring  is  free  to  slide  on  a  smooth  elliptic  wire  of  eccen- 
tricity e  in  a  vertical  plane,  the  major  axis  of  the  ellipse  making  an  angle  a 

with  the  horizontal,  and  a  string  fastened  to  the  ring  passes  over  a  smooth 
peg  at  the  center  of  the  ellipse  and  supports  a  body  of  equal  weight.  Show 
that  the  angle  ̂   which  the  tangent  to  the  wire  at  the  ring  makes  with  the 
major  axis  is  given  by  the  equation 

tan  (0  +  a)  (sec^  (p  -  e^)  =  e2tan  0. 

15.  Two  small  smooth  rings  of  weights  W,  W  are  connected  by  a  string, 
and  slide  on  two  fixed  wires,  the  former  of  which  is  vertical  and  the  latter 

inclined  at  an  angle  a  to  the  horizontal.  A  weight  P  is  tied  to  the  string, 
and  the  two  portions  of  it  make  angles  6,  <p  with  the  vertical.    Prove  that 

cote  :cot<p:  cot  a  =  W  :  P  +  W:P  +  W  +  W\ 

16.  Two  particles  of  unequal  mass  are  tied  by  fine  inextensible  strings 
to  a  third  particle.  They  lie  on  a  rough  horizontal  plane,  with  the  strings 
stretched  and  making  angles  a,  §  with  the  horizontal  line  in  the  plane. 
Find  the  magnitude  and  direction  of  the  least  horizontal  force  which,  on 
being  applied  to  the  third  particle,  will  move  all  three. 

17.  A  heavy  particle  is  placed  on  a  rough  inclined  plane  of  which  the 
inclination  a  is  equal  to  the  angle  of  friction.  A  thread  is  attached  to 
the  particle,  and  passed  through  a  hole  in  the  plane  which  is  lower  than 
the  particle,  but  is  not  in  the  line  of  greatest  slope  through  it.  Show  that 
if  the  thread  be  gradually  drawn  through  the  hole,  the  particle  will  describe 
a  straight  line  and  a  semicircle  in  succession. 



CHAPTEE  IV 

STATICS   OF   SYSTEMS  OF   PARTICLES 

44.  So  far  we  have  been,  considering  the  action  of  forces  on  a 

single  particle.  A  different  class  of  problems  arises  in  considering 

the  action  of  forces  on  a  body  composed  of  a  great  number  of  par- 
ticles, to  which  forces  are  applied  in  such  a  way  as  to  act  on  the 

different  particles  of  the  body. 

Consider  what  happens  when  a  force  F  is  applied  to  one  parti- 
cle ^  of  a  body  which  is  composed  of  a  great  number  of  particles 

A,  B,  C,  D,  ■••.  If  the  particle  A 
were  in  no  way  influenced  by  the 

other  particles  B,  C,  Z>,  •••  the 
particle  A  would  start  into  motion 

under  the  action  of  the  applied 

force,  and  would  soon  become  sepa- 
rated from  the  other  particles  B, 

C,D,''.    If,  however,  the  particles 

A,  B,  C,  Z>,  •  •  •  constitute  a  single 
continuous  body,  this  does  not 

happen.  What  happens  is  that  as 

soon  as  the  particle  A  begins  to  move  relatively  to  the  other  parti- 
cles, systems  of  actions  and  reactions  come  into  play  between  the 

particle  A  and  the  adjacent  particles  B,  C,D,'-.  Speaking  loosely, 
we  may  say  that  the  forces  acting  on  A  tend  to  check  the  motion 

of  A,  while  the  corresponding  reactions  tend  to  impart  motion  to 

B,  C,D,--.  When  B,  C,  D,--  start  into  motion,  further  systems  of 

forces  begin  to  operate  on  the  particles  next  beyond  B,  C^  D,  ■■, 
and  so  on.  Thus  all  the  particles  are  set  into  motion,  and  instead 

of  the  particle  A  moving  singly  the  complete  body  moves  as  a  whole. 

We  have  now  to  discuss  whether  such  a  body,  or  system  of  bodies, 69 

Fig.  31 
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wiU  move  or  wiU  remain  at  rest,  when  systems  of  forces  act  from 

outside  on  its  different  particles.  We  shall  have  to  remember 

throughout  that  the  forces  applied  from  outside  are  not  the  only 

forces  acting,  but  that  these  are  accompanied  by  actions  and  reac- 
tions between  the  different  particles. 

45.  One  consequence  of  this  last  fact  appears  at  once.  Applying 

a  force  to  one  particle  ̂   of  a  body  is  not  the  same  tiling  as  apply- 
ing an  exactly  similar  force  to  another  particle  B.  For  the  systems 

of  internal  actions  and  reactions  will  be  different  in  the  two  cases. 

Any  simple  example  will  show  that  the  resulting  motion  will,  in 

general,  also  be  different;  e.g.  a  horizontal  force  applied  to  the 

middle  point  of  the  back  of  a  chair  will  probably  cause  the  chair 

to  overturn.  A  similar  force  applied  to  one  foot  will  drag  it  along 

the  ground  and  also  cause  it  to  turn  about  a  vertical  axis. 

The  position  occupied  by  the  particle  to  which  a  force  is  applied 

is  called  the  'point  of  application  of  the  force.  The  line  drawn 
through  this  point  in  the  direction  of  the  force  is  called  the  line 

of  action  of  the  force. 

Clearly,  in  order  to  have  fuU  data  as  to  the  action  of  a  force, 
we  must  know 

(a)  its  magnitude; 

(b)  its  point  of  application; 

(c)  its  line  of  action. 

Moments 

46.  Definition.  The  mpmmt  of  a  force  about  a  line  at  tight 

angles  to  Jk&line  of  action  of  the  force  is  defined  to  be  the  product 

of  the  forceund.  of  the  shortest  distance  between  the  two  lines. 

This  moment,  as  we  shall  soon  find,  measures  the  tendency  to  turn  around 
the  line  about  which  the  moment  is  measured  ;  e.g.  if  the  arm  of  a  balance 
is  of  length  /,  a  weight  w  at  its  end  has  a  moment  lii^  about  the  pivot  of  the 
balance,  and  we  shall  find  that  this  measures  the  tendency  of  the  arm  to  turn. 

Definition.  The  moment  of  a  force  ubout  a  line  L  which  is  not 

at  right  angles  to  the  force  is  defimed  to  be  the  same  as  the  moment 

about  L  of  the  component  of  the  force  in  a  plane  perpendicular  to  L. 
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Resolving  the  force  into  two  components,  one  parallel  to  L  and  one 
perpendicular  to  L,  it  is  clear  that  the  former  will  not  give  any  tendency 
to  turn  about  Z,  so  that  the  whole  tendency  to  turn  comes  from  the  second 
component. 

The  two  defiiiitions  which  have  now  been  given  suffice  to  deter- 
mine the  moment  of  any  force  F  about  any  line  L.  It  may  be 

noticed  that  the  moment  vanishes 

{a)  if  the  line  of  action  of  F  is  parallel  to  L ; 

(b)  if  the  line  of  action  of  F  intersects  L. 

Obviously,  in  either  of  these  cases,  the  tendency  to  turn  about  L  is  zero. 

47.  Let  the  line  L  be  at  right  angles  to  the  plane  of  the  paper, 
and  intersect  it  in  the  point  M.    Let  PA  be  the  line  of  action  of 

a  force  F  in  the  plane  of  the  paper,  acting  on  a  particle  at  A,  and 
let  MN  be  the  perpendicular  from  M  on 

to  PA.    Then,  by  definition,  the  moment 
of  the  force  F  about  L  i^  F  x  MN. 

Let  the  angle  PAS  be  drawn  equal 

to  the  angle  NMA,  say  equal  to  6,  so 

that  AS  i^  perpendicular  to  MA.  Then 
the  moment  of  the  force  F  about  L 

=  Fx  MN 

=  Fx  AM  cose  ^^^33 
=  AM  X  Fcosd 

=  AM  X  resolved  part  of  F  along  SA. 

Instead  of  F  being  the  actual  force  acting  at  A,  suppose  that  F 

is  the  resolved  part,  in  the  plane  perpendicular  to  the  line  L,  of 

some  other  force  P.  Then  the  moment  of  E  about  L  is,  by  defini- 

tion, the  same  as  the  moment  of  i^,  and  the  resolved  part  of  -R 

along  AS  =  F  cos  9.  Hence  what  has  just  been  proved  may  be 
put  in  the  form 

moment  about  L  of  any  force  P  acting  at  A 

=  AM  X  resolved  part  of  P  along  SA, 

and  SA  is  now  determined  as  the  direction  which  is  perpendicular 

to  L,  and  also  to  AM,  the  perpendicular  from  A  on  to  L. 
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Thus  we  have  a  new  definition  of  a  moment,  which  is  exactly 
equivalent  to  that  previously  given,  namely: 

The  moment  about  a  line  L  of  a  force  R  acting  at  A  is  equal 

to  AM,  the  perpendicular  from  A  on  to  L,  multiplied  hy  the  com- 
ponent of  R  in  a  direction  perpendicular  to  AM  and  to  L.     1 

48.  From  this  conception  of  a  moment  we  have  at  once  the 
theorem : 

The  sum  of  the  moments  ahout  any  line  L  of  any  number  of 

forces  acting  at  a  point  A  is  equal  to  the  moment  of  their  resultant 
about  L. 

For,  let  i?i,  R^,"  be  the  forces,  and  R  their  resultant.  Let  AM, 
as  in  §  47,  be  the  perpendicular  from  A  on  to  L,  and  let  AS  hQ  du 

direction  perpendicular  to  AM  and  to  L.  The  theorem  to  be  proved 
is  that 

AM  X  component  of  A\  along  AS 

4-  AM  X  component  of  R^  along  AS  -\-  •  •  • 

=  AMx  component  of  R  along  AS. 

On  dividing  through  by  AM  the  theorem  to  be  proved  is  seen 

to  be  simply  that  the  component  of  R  along  AS  \^  equal  to  the 

sum  of  the  components  of  R^,  R^,  ••  •  along  AS,  which  is  known 
to  be  true. 

We  can  now  see  more  clearly  how  it  is  that  the  moment  of  a 

force,  defined  as  we  have  defined  it,  gives  a  measure  of  the  tendency 

to  turn.  In  fig.  32  we  are  taking  moments  about  a  line  L  which 

is  at  right  angles  to  the  plane  of  the  paper  and  meets  this  plane 

at  M.  The  force  whose  moment  is  being  considered  is  a  force  R 

acting  at  the  point  A.  At  A  we  have  three  directions  mutually  at 

right  angles,  namely 

AS,  AM,  and  the  direction  of  a  line  through  A  parallel  to  L. 

The  moment  of  R  about  L  has  been  defined  to  be 

AM  X  component  of  R  along  AS. 
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Now  the  component  of  R  along  AM  is  a  force  of  which  the  line 

of  action  intersects  Z,  and  so  can  produce  no  tendency  to  turn  a 

body  about  L,  while  the  component  of  R  along  the  line  through  A 

parallel  to  L  can  again  produce  no  tendency  to  turn  about  L.  Thus 

R  can  be  resolved  into  three  components,  of  which  only  the  first, 

the  component  along  AS^  tends  to  set  up  rotation  about  L.  We 

have  defined  the  moment  of  the  whole  force  R  in  such  a  way  that 

it  becomes  identical  with  the  moment  of  that  one  of  its  components 

which  tends  to  set  up  rotation. 

It  will  be  noticed  that  a  moment  has  sign  as  well  as  magnitude. 

In  moving  along  the  line  of  action  of  a  force  R,  we  may  turn  in 

either  one  direction  or  the  other  about  a  line  L.  We  agree  that 

when  the  turning  is  in  one  direction  the  moment  of  R  about  L  is 

to  be  regarded  as  positive ;  when  the  turning  is  in  the  other 

direction  the  moment  is  taken  to  be  negative. 

49.  If  a  particle  is  in  equilibrium  under  the  action  of  any  num- 
ber of  forces,  the  resultant  of  all  these  forces  must  be  nil.  The 

sum  of  the  moments  of  the  separate  forces,  taken  about  any 

line  whatever,  is  equal  to  the  moment  of  the  resultant  and  is 
therefore  nil. 

Hence  we  have  the  result : 

When  a  particle  is  in  equilibrium  under  the  action  of  any  forces, 

the  sum  of  the  moments  of  these  forces  about  any  line  whatever 
must  vanish. 

System  of  Particles  in  Equilibrium 

50.  Consider  a  system  of  particles  supposed  to  be  in  equilibrium 

under  the  action  of  any  number  of  forces.  As  we  have  seen,  the 

forces  acting  on  any  single  particle  will  be  of  two  kinds : 

(a)  external  forces,  forces  applied  to  the  particle  from  outside, 

as  for  instance  the  weight  of  the  particle; 

(b)  internal  forces,  forces  of  interaction  between  the  particle  and 

the  remaining  particles  of  the  system. 
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Now  if  the  whole  system  of  particles  is  in  equilibrium,  it  follows 

that  each  particle  separately  must  be  in  equilibrium.  It  follows 

from  §  33,  that 

(a)  the  sum  of  the  components  in  any  direction,  of  all  the  forces 

acting  on  any  single  particle,  must  vanish ; 

and  from  the  theorem  just  proved  in  §  48,  that 

(h)  the  sum  of  the  moments  about  any  line,  of  all  the  forces 

acting  on  any  single  particle,  must  vanish. 

If,  however,  the  sum  of  the  components  of  the  forces  acting  on 

each  particle  vanishes,  it  follows  by  addition  that  the  sum  of  the 

components  of  all  the  forces  acting  on  all  the  particles  must  vanish. 

The  sum  of  the  components  of  the  internal  forces,  however,  van- 
ishes by  itself,  for  the  internal  forces  consist  of  pairs  of  actions 

and  reactions,  and  the  two  components  in  any  direction  of  such  a 

pair  of  forces  are  equal  and  opposite. 

Since  the  total  sum  vanishes,  and  the  sum  of  the  components 

of  internal  forces  vanishes,  it  follows  that  the  sum  of  the  com- 

ponents of  external  forces  vanishes. 

A  similar  proposition  is  true  of  the  moments  of  the  external 

forces.  The  sum  of  the  moments  about  any  line  L  of  all  the  internal 

forces  is  nil,  for  the  moments  of  an  action  and  reaction  are  equal 

and  opposite.  The  sum  of  the  moments  of  all  the  forces,  internal 
and  external,  is  zero,  for  each  sum  of  the  moments  of  the  forces 

acting  on  each  particle  is  zero  separately.  Thus  the  sum  of  the 
moments  of  the  external  forces  is  zero. 

Thus  we  have  proved  the  following  theorems : 

When  a  system  of  particles  is  in  equilibrium  under  the  action 

of  any  system  of  external  forces, 

(a)  the  sum  of  the  components  of  all  these  forces  in  any  direction 
is  zero  ; 

(h)  the  sum  of  the  iiioments  of  all  these  forces  ahout  any  line  is  zero. 

Speaking  loosely,  we  may  say  that  these  theorems  express  that 

there  is  no  tendency  to  advance  in  any  direction  or  to  turn  about 

any  line. 
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ILLUSTRATIVE  EXAMPLE 

Wheel  and  axle.  The  apparatus  known  as  the  "wheel  and  axle"  consists  of 
a  circular  axle  free  to  turn  about  its  central  axis,  to  which  a  circular  wheel 
is  rigidly  attached,  so  that  its  center  is  on  the  center  of  the  axle.  A  rope  or 

string  is  wound  round  the  axle,  and  has  a  weight  attached  to  its  end.  A  second 
rope  or  string  is  wound  round  the  circumference  of  the  circle  in  the  opposite 

direction,  and  this  again  has  a  weight  attached  to  its  end.  By  a  suitable  choice 
of  the  ratio  of  these  two  weights,  the  apparatus  may  be  balanced  so  that  there 
is  no  tendency  for  it  to  turn  about  its  axis. 

Let  us  consider  the  equilibrium  of  the  system  consisting  of  the  wheel  and 
axle  and  of  those  parts  of  the  strings  or  ropes  which  are  wound  round  them. 

To  simplify  the  problem,  let  us  disregard  altogether  the  weight  of  the  system. 
Then  the  externally  applied  forces  are 

(a)  the-  tension  of  the  rope  wound  round 
the  wheel ; 

(6)  the  tension  of  the  rope  wound  round 
the  axle ; 

(c)  the  action  of  the  supports  which  keep 
the  wheel  and  axle  from  falling. 

Let  the  weights  be  denoted  by  P  and  Q,  so 
that  these  are  also  the  tensions  of  the  strings, 
and  let  the  radii  of  the  wheel  and  axle  be  a, 
b  respectively.  Let  us  express  mathematically 
that  the  sum  of  the  moments  of  the  externally 

applied  forces  about  the  axis  is  nil. 
The  moment  of  the  tension  of  the  string 

on  the  wheel  is  Pa,  for  P  is  the  amount  of 
the  tension,  which  acts  at  right  angles  to  the 
axis,  and  a  is  the  shortest  distance  from  the 
axis  to  the  line  of  action  of  this  tension. 

Similarly  the  moment  of  force  (6)  is  —  Q&, 
the  negative  sign  being  taken  because  this  tends  to  turn  the  system  in  the 
direction  opposite  to  that  in  which  the  first  tension  tends  to  turn  it. 

If  we  imagine  the  system  to  be  supported  by  forces  acting  on  the  axis  itself, 

the  moment  of  forces  (c)  vanishes,  for  the  lines  of  action  of  these  forces  intersect 
the  line  about  which  we  are  taking  moments.    Thus  the  required  equation  is 

Pa-Qb=  0. 

This  equation  simply  expresses  that 

[tendency  of  P  to  turn  system]  —  [tendency  of  Q  to  turn  system]  =0. 

Thus  when  the  system  is  balanced  so  as  to  remain  at  rest  we  must  have 

P:Q  =  b:a, 

so  that  the  weights  must  be  inversely  as  the  radii.    Practical  examples  of  the 

principle  of  the  wheel  and  axle  are  supplied  by  the  windlass  and  capstan. 

Fig.  33 
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EXAMPLES 

1.  Eight  sailors,  each  pressing  on  the  arm  of  a  capstan  with  a  horizontal  force 
of  100  lbs.,  at  a  distance  of  8  feet  from  its  center,  can  just  raise  the  anchor. 
The  radius  of  the  axle  of  the  capstan  is  12  inches.  Find  the  pull  on  the  cable 
which  raises  the  anchor. 

2.  In  the  apparatus  of  fig.  33  the  weight  P  is  disconnected,  and  the  free  end 

of  the  string  is  tied  to  the  same  point  on  Q  as  the  other  string.  Show  that  in 
equilibrium  this  point  is  vertically  below  the  axis. 

3.  A  wheel  is  free  to  turn  about  a  horizontal  axis,  and  has  fastened  to  it 

two  strings  which  are  wound  round  its  circumference  in  opposite  directions. 
The  other  ends  are  both  tied  to  a  small  ring  from  which  a  weight  is  suspended. 

Show  that  when  the  system  is  at  rest  the  two  strings  will  make  equal  angles 
with  the  vertical. 

4.  A  man  finds  that  he  can  just  move  a  lock  gate  against  the  pressure  of  the 

water,  by  pressing  with  a  horizontal  force  of  150  lbs.  at  a  distance  of  8  feet 
from  the  pivot.  What  force  must  he  exert  if  he  presses  at  a  distance  of  9  feet 

from  the  pivot  ? 

5.  A  wheel  capable  of  turning  freely  about  a  horizontal  axis,  has  a  weight 

of  2  pounds  fixed  to  the  end  of  a  spoke  which  makes  an  angle  of  60°  with  the 
horizontal.  What  weight  must  be  attached  to  the  end  of  a  horizontal  spoke  to 

prevent  motion  taking  place  ? 

6.  A  drawbridge  is  raised  by  a  chain  attached  to  the  end  farthest  removed 

from  the  hinges.  When  the  bridge  is  at  rest  in  a  horizontal  position,  the  chain 

makes  an  angle  of  60°  with  the  bridge,  and  the  pull  on  the  chain  necessary  to 
move  the  bridge  is  equal  to  the  weight  of  three  tons.  Find  what  additional 

pull  is  required  in  the  chain  when  a  weight  of  one  ton  is  placed  at  the  middle 
point  of  the  bridge. 

Forces  ix  one  Plane 

51.  The  simplest  problems  in  statics  are  always  those  in  which 

all  the  forces  have  their  lines  of  action  in  one  plane.  In  such  a 

problem  it  is  obviously  most  convenient  to  take  moments  about 

a  line  perpendicular  to  the  plane  in  which  the  forces  act.  Let  any 

such  line  intersect  the  plane  in  a  point  P.  Each  force  is  entirely 

perpendicular  to  the  line  about  which  moments  are  taken,  so  that 

the  moment  is  equal  to  the  product  of  the  force  and  the  shortest 
distance  of  the  line  of  action  of  the  force  from  P. 

Taking  moments  about  an  axis  which  intersects  the  plane  of 

the  forces  at  right  angles  in  a  point  P  is  often  spoken  of  as  taking 
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moments  about  the  point  P,  and  the  perpendicular  from  P  to  the 

line  of  action  of  a  force  is  spoken  of  as  the  arm  of  the  moment 
of  this  force. 

52.  Theorem,  When  three  forces,  acting  in  a  plane,  keep  a  body 

or  system  of  bodies  in  equilibrium,  these  three  forces  must  meet  in 

a  point. 

For  let  P,  Q,  R  be  the  forces,  and  let  P,  Q  intersect  in  the 

pomt  A.  Then  the  sum  of  the  moments  of  P,  Q,  and  B  about  A 

must  vanish,  and  those  of  P  and  Q  are  already  known  to  vanish. 

Thus  the  moment  of  R  about  A  must  vanish,  —  that  is,  R  must 
pass  through  the  point  A,  or,  what  is  the  same  thing,  the  three 

forces  must  intersect  in  a  single  point. 

An  application  of  tliis  principle  is  often  sufficient  in  itself  for 

the  solution  of  statical  problems  in  which  the  applied  forces  can 
be  reduced  to  three. 

ILLUSTRATIVE  EXAMPLES 

1.  The  seesaw.  Two  persons  of  weights  TTi,  W^  stand  on  a  plank  which  rests 

on  a  rough  support  about  which  it  is  free  to  turn.  Neglecting  the  weight  of  the 
plank,  find  how  the  persons  must  place  themselves  in  order  that  the  plank  may 
balance. 

The  forces  may  be  supposed  all  to  act  in  one  plane,  namely  the  vertical 
plane  through  the  central  line  of  the 
plank.    The  forces  are 

(a)  the  weight  Wi  of  the  person  at 

one  end ;  i       '  ~T 
(6)  the  weight  W^  of  the  person  at         W^  /\  W2 

the  other  end  ;  /     \ 
(c)  the  reaction  between  the  plank  „ 
^^  ;  ^  Fig.  34 

^and  Its  support. 

Let  a,  b  be  the  distances  of  the  persons  from  the  support ;  then,  on  taking 

moments  about  the  point  of  support,  we  have 

Wia  -  TTa  6  =  0. 

Thus  the  two  persons  should  stand  at  distances  from  the  support  which  are 

inversely  proportional  to  their  weights. 

Notice  that  in  this  problem  the  system  is  acted  on  by  three  forces,  which  meet  in 
a  point,  the  point  being  at  infinity. 
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2.  The  nutcracker.  It  is  found  that  a  weight  of  100  pounds  placed  on  top  of  a 

nut  will  just  crack  it.  How  much  force  must  he  applied  at  the  ends  of  the  arms  of 

a  nutcracker  6  inches  long  to  crack  the  nut  when  it  is  placed  i  inch  from  the  hinge  f 

Let  a  force  F  applied  a^the  extreme  end  of  each  arm  be  supposed  just  suffi- 

cient to  crack  the  nut.  Then  when  a  force  F  is  applied  at  the  end  of  the  arm,  the 
pressure  between  the  nut  and  the  arm  must  be  the  weight  of  100  pounds.    Thus 

the  forces  acting  from  outside  on  either  arm 
of  the  nutcracker  will  consist  of 

(a)  the  force  F  applied  at  the  end  of  the  arm ; 

(6)  the  pressure  of  100  pounds  weight  exerted 
by  the  nut  on  the  arm  at  a  distance  of  i  inch 
from  the  hinge ; 

(c)  the  reaction  at  the  hinge. 

The  weight  of  the  nutcracker  is  here  supposed 
to  be  negligible. 

Taking  moments  about  the  hinfje,  we  obtain 

Fig.  35 
Q  X  F  =  ̂   X  100  pounds  weight, 

so  that  F  =^l  pounds  weight. 

Note.  When,  as  here,  an  unknown  force  neither  enters  in  the  data  nor  is  required 
in  the  answer,  we  can  always  obtain  equations  in  which  the  force  does  not  occur,  by 
taking  moments  about  a  point  in  its  line  of  action.  So  again,  if  two  such  forces  occur, 
we  can  obtain  an  equation  into  which  neither  forge  enters,  by  takiug  moments  about 
the  point  of  intersection  of  their  two  lines  of  action. 

3.  A  ladder  stands  on  a  rough  horizontal  plane.,  leaning  against  a  rough  ver- 
tical wall.,  the  contacts  at  the  two  ends  of  the 

ladder  being  equally  rough.  Find  how  far  a 

man  can  ascend  the  ladder  without  its  slipping, 

it  being  supj)osed  that  the  weight  of  the  ladder 
may  be  neglected. 

The  forces  acting  on  the  system  composed 
of  the  man  and  ladder  are  three  in  number : 

(a)  the  reaction  with  the  horizontal  plane  ; 

(6)  the  reaction  with  the  vertical  wall ; 

(c)  the  weight  of  the  man. 

These  forces  are  all  in  one  plane ;  hence, 
by  the  theorem  of  §  52,  their  lines  of  action 
must  meet  in  a  point. 

In  the  figure  let  AB  hQ  the  ladder,  C 
the  position  of  the  man,  and  P  the  point  in 

which  the  three  forces  meet,  so  that  PC  is 
vertical,  and  AP^  BP  are  the  lines  of  action 

of  the  reactions  at  A,  B.  When  slipping  is  just  about  to  begin,  each  of  these 
reactions  must  make  with  the  normal  an  angle  equal  to  the  angle  of  friction. 
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Let  e  be  this  angle  of  friction,  and  let  a  be  the  inclination  of  ladder  to  the 

horizontal.    Then,  from  the  geometry  of  the  triangle  ACP,  we  have 

AC  AP 
sine 

sni 

and  since  APB  is  a  right  angle, 

AP  =  AB  cos 

it--) Thus AC  =  AP  sin  e  sec  a  =  AB  sine  sin  (e  +  a)  sec  a. 

Thus  slipping  will  begin  as  soon  as  the  man  has  climbed  a  height  equal  to 

sin  e  sin  (e  +  a)  sec  a  times  the  whole  height. 
The  condition  that  the  man  can  reach  the  top  without  slipping  is  that 

sin  c  sin  (e  +  a)  sec  a  shall  be  greater  than  unity,  or  that 

sin  e  sin  (€+«)>  cos  [(e  +  a)  —  e] 
>  sin  e  sin  (e  +  a)  +  cos  c  cos  (e  +  a). 

Thus  for  the  condition  to  be  satisfied  cos  e  cos  (e  +  a)  must  be  negative  ;  i.e. 

e  +  a  must  be  greater  than  90°.  Thus  the  angle  between  the  ladder  and  the 
vertical  must  be  less  than  the  angle  of  friction.  This  is  also  clear  from  the 

figure,  for  when  the  man  reaches  B,  two  of  the  forces^  namely  the  reaction  at  B 
and  the  weight  of  the  man,  both  pass  through  J5,  so  that  the  third  force  must 

also  pass  through  B;  i.e.  the  reaction  at  A  must  have  AB  for  its  line  of  action, 
and  if  the  ladder  just  slips  here,  the  angle  between  AB  and  the  vertical 
must  be  e. 

4.  //,  in  the  last  problem,  the  man  has 
ascended  to  some  point  C  without  the  ladder 

slipping,  what  are  the  reactions  at  A  and  B  f 

Here  it  is  not  known  what  angles  the 
reactions  make  with  the  normals :  all  that 

is  known  is  that  these  angles  are  less  than 
the  angle  of  friction. 

Let  us  resolve  the  reaction  at  A  into  two 

components  iVi,  Fi,  and  that  at  B  into  two 
components  ^2,  Fz,  these  being  horizontal 
and  vertical  as  in  the  figure.  Then  the 

forces  acting  on  the  system  composed  of 
the  man  and  ladder  are  the  five  forces 

Ni,  Fi,  N2,  F2,  and  W. 

Resolving  vertically,  W  —  Ni  —F2 

Resolving  horizontally,  Fi  —  Ni 
Taking  moments  about  A, 

W-  AC  cos  a  —  Fz-  AB  cos  a  —  N^-  AB  sin  a:  =  0. 

(a) 

(6) 
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There  are  four  quantities  which  it  is  required  to  find.  So  far  we  have  obtained 

only  three  equations.  We  can,  of  course,  obtain  other  equations  by  resolving 
in  other  directions  and  by  taking  moments  about  other  points,  but  it  will  be 

found  that  the  equations  so  obtained  will  not  be  new  equations,  but  simply 
equations  of  which  the  truth  is  already  implied  in  the  equations  already 

obtained.  Thus  we  cannot,  by  resolving  and  taking  moments,  obtain  more  than 
three  independent  equations,  and  these  do  not  suffice  to  determine  the  four 

unknown  quantities. 

Here  we  have  illustrated  a  problem  which  cannot  be  solved  by  the  methods 

explained  in  this  chapter,  and  which  requires  for  its  solution  a  consideration 
of  the  systems  of  forces  set  up  between  the  separate  particles  of  the  bodies  acted 

upon.  It  is  important  that  the  student  should  realize  that  such  problems  exist, 
although  he  may  not  yet  be  able  to  solve  them. 

5.  Force  required  to  drag  a  car  along.  To  simplify  the  problem  as  far  as 

possible,  let  us  suppose  that  the  car  is  mounted  on  four  equal  wheels,  each  of 

radius  a  and  revolving  round  an  axle  of  radius  6,  the  coefficient  of  friction 
between  wheel  and  axle  being  the  same  for  each  wheel.  Let  us  suppose  that  a 

force  P  applied  horizontally  is  found  to  be  just  sufficient  to  start  the  car  into 
motion. 

Fig.  38 

Let  us  consider  first  the  equilibrium  of  the  whole  car.  We  are  most  con- 

veniently able  to  enumerate  the  forces  acting  on  any  system  by  taking  a  tour, 
in  imagination,  over  the  whole  surface  of  a  cover  made  just  to  fit  the  system, 
and  noting  the  forces  which  act  across  this  cover  at  its  different  points.  These, 
together  with  the  weight  of  the  whole  system,  will  give  the  whole  system  of 

forces.    The  forces  acting  on  the  car  are  in  this  way  found  to  be 

(a)  its  weight,  say  W] 

(6)  the  horizontal  applied  force  P  ; 
(c)  the  reactions  between  the  wheels  and  the  ground.  Let  us  resolve  each 

reaction  into  a  vertical  component  B  and  a  horizontal  component  F\  let  us 
denote  the  components  of  the  reaction  between  the  first  wheel  and  the  ground 

by  Pi,  Pi ;  let  the  corresponding  quantities  for  the  second  wheel  be  P2,  R2 ;  and 
so  on. 
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I 

(As  regards  the  f Fictional  force  acting  between  the  wheel  and  the  ground,  we 
notice  that  although  motion  is  about  to  take  place,  this  motion  is  not  one  of 

slipping  between  the  wheel  and  the  ground,  so  that  the  ratio  of  F  to  K  for  any 
wheel  is  not  the  coefficient  of  friction  between  the  wheel  and  the  ground.) 

The  forces  just  enumerated  hold  the  car  in  equilibrium.  Thus  the  sum  of 

their  components  in  any  direction  must  vanish  and  the  sum  of  their  moments 
about  any  line  must  vanish.    Resolving  horizontally  and  vertically,  we  obtain 

P  =  Fi  +  F2  +  i^3  +  -F4.  (a) 

W=Ri-hE2+  Rs  +  Ra.  (6) 

There  is  nothing  to  be  gained  by  taking  moments  about  any  line ;  as  we  do  not 
know  the  line  of  action  of  P,  we  cannot 
know  its  moment. 

Next  let  us  consider  the  equilibrium  of 

a  single  wheel.  The  wheel  touches  the 
ground  and  also  touches  the  axle  at  some 

point  C.  (We  may  think  of  the  axle  as  a 
circle  of  radius  very  slightly  less  than 
that  of  the  inside  of  the  hub  of  the 

wheel.)  The  forces  acting  on  the  wheel 
are  accordingly 

(a)  its  reaction  with  the  ground ; 
(b)  its  reaction  with  the  axle  ; 

(c)  its  weight,  which  we  shall  neglect 
as  being  insignificant  in  comparison  with 
that  of  the  car. 

Neglecting  the  third  force,  the  two  former  forces  must  be  equal  and  opposite. 

The  line  of  action  of  each  is  accordingly  the  line  joining  JB,  the  point  of  contact 

with  the  ground,  to  C  the  point  of  contact  with  the  axle.  Since  slipping  is  just 
about  to  take  place  at  C,  the  reaction  at  C  will  make  an  angle  e,  equal  to  the 
angle  of  friction,  with  A  C  the  normal  at  C.    Thus  the  angle  BCA  is  equal  to  e. 

In  the  triangle  ACB  we  have  AC  =  b,  AB  =  a,  and  the  angle  ACB  =  e. 

Thus 
a 

sin  e sin  ABC 

Since,  however,  a  force  along  BC  has  components  Pi  and  Pi  along  and  per- 
pendicular to  AB,  we  have 

tan  ABC  =  —  • 

Thus 

Pi 

Pi 

=  tan  ABC 

sin  ABC 

Vl  -  sin2^PC 
6  sin  € 

Va2-62sin2e 
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Now  e,  a,  and  b  are  supposed  to  be  the  same  for  each  wheel,  so  that 

6  sin  6         _Fi_F2_F3_F4 

Va2  -  62  sin2  e     -^1      ̂ 2      Rs      A 

i^l 

+  R2 +  i^3 +  i^4 
p 

w 

Wb  sin  e 
by  equations  (a)  and  (&). 

Thus  P=        "   ^=,  (c) Va2  _  6-2sin2e 

giving  the  horizontal  pull  required. 

The  value  of  6,  the  radius  of  the  axle,  will  generally  be  small  in  comparison 
with  a,  the  radius  of  the  wheel.    Thus,  without  serious  error,  we  may  neglect 

52  sin2  c  in  comparison  with  a^,  and  replace  the  denominator  in  equation  (c)  by  a. 
The  equation  now  becomes 

_  Wb  sin  e 
~        a       ' 

By  making  b/a  very  small,  we  see  that  the  car  can  be  made  to  run  very 
smoothly.  We  notice  also  that  even  if  there  is  so  much  friction  between  wheel 

and  axle  that  the  coefficient  of  friction  may  be  regarded  as  infinite,  we  have 

sine  =  1,  and  hence 

a 

so  that  the  force  required  to  drag  the  car  along  will  still  be  small  compared 

with  that  required  to  drag  the  same  weight  over  a  fairly  smooth  surface. 

This  analysis  has  assumed  that  the  wheels  may  be  supposed  to  touch  the 

ground  only  at  their  lowest  point.  It  applies  pretty  accurately  to  the  case  of 

steel  wheels  rolling  on  steel  rails,  but  does  not  apply  to  the  problem  of  an 

ordinary  road  carriage  moving  over  a  soft  road,  where  the  wheels  are  embedded 
to  a  small  extent  in  the  road.  In  fact,  if  the  analysis  just  given  took  account  of 

all  the  facts  of  the  case,  it  is  clear  that  the  force  required  to  haul  a  car  would 
be  independent  of  the  state  of  the  road. 

EXAMPLES 

1.  A  weight  of  250  pounds  is  suspended  from  a  light  rod  which  is  placed 
over  the  shoulders  of  two  men  and  carried  in  a  horizontal  position.  If  the  men 

walk  10  feet  apart  and  the  weight  is  4  feet  from  the  nearer  of  them,  find  the 
weight  borne  by  each. 

2.  A  weight  is  suspended  from  a  light  rod  which  passes  over  two  fixed  sup- 
ports 6  feet  apart.  On  moving  the  weight  6  inches  nearer  to  one  support,  the 

pressure  on  that  support  is  increased  by  10  pounds.  What  is  the  amount  of  the 
weight  ? 
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3.  A  balance  has  two  pans,  each  of  weight  8  ounces,  suspended  from  a  beam, 
each  at  distance  7  inches  from  the  pivot.  A  dishonest  tradesman  moves  one 

pan  half  an  inch  nearer  to  the  pivot,  adding  weight  to  the  farther  pan  in  order 
that  the  two  pans  may  still  balance.  Find  how  much  weight  he  must  add,  and 
by  how  much  his  profits  will  be  increased  by  his  dishonesty. 

4.  A  balance  has  a  weight  of  20  ounces  suspended  from  one  end  of  the  beam. 

A  string  is  tied  to  the  other  end  of  the  beam  and  at  equal  distance  from  the 

pivot,  and  this  string  makes  an  angle  of  45°  with  the  horizontal.  With  what  force 
must  it  be  pulled  to  maintain  the  beam  of  the  balance  in  a  horizontal  position  ? 

5.  A  crowbar  8  feet  long  is  to  be  used  to  move  a  body,  it  being  required  to 
apply  a  force  of  500  pounds  weight  vertically  upwards  to  this  body  to  move  it. 
How  near  to  the  end  of  the  crowbar  must  the  fulcrum  be  placed  in  order  that  a 

man  of  140  pounds  weight  may  be  able  to  apply  the  required  force  by  pressing 
on  the  other  end  of  the  crowbar  ? 

6.  A  table  of  negligible  weight  has  any  number  of  legs.  A  heavy  particle  is 

placed  on  the  table.  Show  that  the  table  will  tilt  over  if  the  vertical  through 
the  particle  meets  the  floor  under  the  table,  in  a  point  outside  the  polygon 
formed  by  joining  the  points  of  contact  of  the  feet  with  the  floor. 

7.  A  table  of  negligible  weight  has  three  legs,  the  feet  forming  an  equilateral 
triangle.  A  heavy  particle  is  placed  on  the  table  in  a  position  such  that  the  table 
does  not  tilt  over.    Find  the  proportion  of  weight  which  is  carried  by  each  foot. 

8.  A  card  is  suspended  in  a  horizontal  position  by  three  equal  inextensible 

strings  fastened  to  three  points  A,  B,  C  in  the  card  which  form  an  equilateral 
triangle,  and  also  to  a  point  P  above  the  card.  A  weight  is  placed  on  the  card 

at  any  point  Q  inside  the  triangle  ABC.    Find  the  tensions  of  the  strings. 

9.  A  card  is  suspended  by  four  equal  inextensible  strings  which  pass  through 

the  four  points  A,  B,  C^  D  oi  Sb  square  in  the  card  and  are  tied  to  four  points 

A%  B%  C,  D'  at  equal  heights  h  vertically  above  the  points  A,  B,  C,  D.  A 
weight  is  placed  on  the  card  at  any  point  P  inside  the  square  ABCD.  Show 

that  the  tensions  in  the  strings  cannot  be  determined  without  discussing  the 
internal  stresses  in  these  strings. 

10.  If  in  the  last  question  the  internal  stresses  in  the  strings  stretch  the 

strings  very  slightly,  so  that  Hooke's  law  is  obeyed,  show  that  the  tensions  can 
be  found,  and  find  them. 

11.  A  seesaw  rolls  on  a  rough  circular  log  of  radius  a,  fixed  horizontally. 
Two  persons  stand  at  distances  6,  c  from  the  middle  point  of  the  seesaw,  their 
weights  being  such  that  the  seesaw  is  just  balanced  horizontally  with  the 
middle  point  resting  on  the  log.  The  firet  person  moves  a  distance  d  towards 
the  center  of  the  log.  Through  what  angle  will  the  seesaw  turn  ?  How  far 

can  the  person  advance  before  the  seesaw  slips  off  the  log  altogether? 

12.  A  pair  of  wheels  of  radius  a  are  connected  by  an  axle  of  radius  6,  and  run 
on  horizontal  rails.  A  string  is  wound  round  the  axle  and  the  end  leaves  the 

axle  making  an  angle  6  with  the  horizontal.  If  this  string  is  pulled,  show  that 
the  wheels  will  run  toward  or  away  from  the  person  pulling  according  as 
cos  d  is  greater  or  less  than  b/a.    What  happens  when  cos  d  =  b/a? 
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13.  If  the  weight  of  the  wheels  and  axles  of  a  car  is  w,  and  if  this  may  not 

be  neglected  in  comparison  with  W,  the  total  weight  of  the  car,  show  that 

equation  (c)  of  example  5,  p.  72,  must  be  replaced  by 

_  {W  —  w)b sine 
Va2  —  b^  sin"-^  e 

14.  A  locomotive  of  weight  134  tons  rests  on  a  bogie,  of  which  the  wheels  and 

axles  weigh  4  tons,  and  two  pairs  of  driving  wheels,  of  which  the  wheels  and 

axles  weigh  10  tons.  The  weight  taken  on  the  axles  of  the  bogie  is  40  tons, 
that  taken  on  the  axles  of  the  driving  wheels  being  80  tons.  The  diameters  of 

the  wheels  are  2  feet  10  inches  and  7  feet  1  inch  respectively.  Each  axle,  where 

it  passes  through  the  axle  box,  is  of  radius  2^  inches,  and  the  coefiBcient  of  fric- 
tion is  1.    Find  the  horizontal  force  necessary  to  move  the  engine. 

15.  In  question  14  the  rails  are  greased  so  that  the  coefficient  of  friction 

between  them  and  the  wheels  is  less  than  yi^ ;  show  that  the  engine  cannot 
be  started  without  the  wheels  skidding  on  the  greased  rails,  and  explain  the 

dynamical  processes  by  which  the  engine  is  set  in  motion  in  this  case. 

Strings 

53.  Strings,  ropes,  and  chains  frequently  form  part  of  the  systems 

of  bodies  with  which  statical  problems  are  concerned,  so  that  it  is 

important  to  discuss  the  equilibrium  of  a  string  (or  rope  or  chain). 

The  first  problem  we  shalj.  consider  is  that  of  a  string  stretched 

over  a  surface, —  as  for  example  a  pulley  wheel, —  it  being  supposed 

that  the  weight  of  the  string  may  be  neglected,  and  that  the  con- 
tact between  the  string  and  the  surface  is  equally  rough  at  all 

points.    It  will  also  be  supposed  that  the  string  is  all  in  one  plane. 

Let  F,  Q  be  two  adjacent  points  of  the  string  so  near  together 

that  the  portion  PQ  oi  the  string  may  be  treated  as  a  particle. 

The  forces  acting  on  this  particle  will  be 

{ft)  Tp,  the  tension  at  P,  acting  along  the  tangent  to  the  string 
at  P; 

(5)  Tg,  the  tension  at  Q,  acting  along  the  tangent  to  the  string 
at  Q\ 

(c)  the  reaction  with  the  surface. 

By  Lami's  theorem,  each  force  must  be  proportional  to  the  sine 
of  the  angle  between  the  remaining  two  forces. 
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75 Let  A  be  the  point  of  the  surface  at  which  the  string  leaves  it. 
Let  the  normals  to  the  surface  be  drawn  at  A,  P,  Q,  and  let  the 

normal  at  F  make  an  angle  6  with  the  normal  at  A.  If  the  points 

A,  P,  Q  come  in  this  order,  as  in  fig.  40,  the  normal  at  Q  will  make 

with  the  normal  at  A  an  angle  slightly  greater  than  6,  —  say  6  +  dd^ 

—  so  that  dS  is  the  small  angle  between  the  normals  at  P  and  Q. 

Fig.  40 

With  this  notation  the  angle  between  the  tensions  Tp  and  T^  is 

TT  —  dd.  Let  the  angle  between  the  reaction  R  and  the  tension  Tp 

be  a,  then  the  angle  between  the  tension  Tq  and  R  i^  ir  —  a  +  dd. 
Thus  we  have 

R T 
=       Q 

sin(7r  —  dO)      sm{ir  —  a  -j-  d6)      sin  a 

Since  sin(7r  —  a;  +  dd)  =  sin(«;  —  d6),  we  have 

-^  — 
sin  a      sin  (a  —  dO) 

and  by  a  known  theorem  in  algebra,  each  fraction  is  equal  to 

sin  a  —  sin  {a  —  dd) 

Now  T^^Tp  is  the  increase  in  T  when  6  changes  from  ̂   to  ̂  +  dd, 

and  this,  in  the  notation  of  the  differential  calculus,  may  be  written 
dT 

dd 

dd. 
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Also  the  denominator  sin  a  —  sin  (a  —  d0)  is  the  increase  in 

sin  a  when  a  changes  from  a  —  dO  to  a,  and  this  in  the  same  way 
is  equal  to d  (sin  a)  ̂  

— ^    do     or     cos  a  du. 
da 

Thus  the  original  fraction  is  equal  to 
^4de 
dd  dT 

or     sec  a 
cos  a  dd  dd 

Thus  -^-^  =  seca;-— r> sm  a  du 

dT 
or  T^  =  tan6r-— .  (12) 

When  in  the  limit  the  particle  P()  is  supposed  to  become  van- 

ishingly  small,  Tp  and  T^  become  indistinguishable.  Let  us  denote 

either  by  the  single  letter  T,  so  that  T  is  now  simply  the  tension 

at  a  point  at  which  the  normal  makes  an  angle  6  with  that  at  A. 

If  the  string  is  just  on  the  point  of  slipping  in  the  direction  APQ, 

the  angle  between  the  reaction  R  and  the  normal  of  either  Q  or  F 
will  be  e,  the  angle  of  friction.    Thus  we  shall  have -fe)^ 

«=2-^. 

so  that  tan  a  =  cot  e,  and  equation  (12)  becomes 

dl 

dd 

dT 
T^cote-^.  (13) 

54.  If  the  contact  between  the  surface  and  the  string  is  per- 
dT 

fectly  smooth,  e  =  0,  so  that  -7^  =  0.    It  follows  that  T  is  a  con- 
du 

stant ;  i.e.  the  tension  is  the  same  at  all  points  of  the  string.    Thus 

the  tension  of  a  string  is  not  altered  by  its  passing  over  a  smooth 

surface,  —  the  result  already  given  in  §  36. 
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55.  In  the  more  general  use  in  which  the  contact  is  not  perfectly 

smooth,  let  /x  be  the  coefficient  of  friction,  so  that  /a  =  tan  e,  then 

equation  (13)  may  be  written 

dd     ̂   ' 
dT 

and  integrating  this,  -—  —  d  (fi6), 

d  (log  T)  =  d  {fid), 

or  log  T  =  jxd  -\-  Q,  constant. 

Let  T^  be  the  tension  at  A,  then  we  find,  by  putting  ̂   =  0,  that 
the  constant  must  be  equal  to  log  T^,  so  that 

\ogT-\ogT^  =  tid, 

or  T=  T^e^\  (14) 

If  the  string  leaves  the  surface  again  at  some  point  B  at  which 

the  normal  makes  an  angle  i/r  with  the  normal  at  ̂ ,  we  find  for 
the  tension  at  B 

T  =  T^e^^, 

so  that  the  tension  is  multiplied  by  e*^"^  on  passing  over  the  surface 
from  ̂   to  ̂ . 

If  the  string  (or  rope)  is  passed  round  and  round  a  post  or  bollard, 

the  tension  is  increased  in  the  ratio  e^'^'"  for  each  complete  turn. 
For  a  hemp  rope  on  oak  the  coefficient  of  friction,  according  to 

Morin,is/x  =  0.53.  Thus  2  ftTr  =  3.34  and  6^'^"=  28.1.  The  tension 
of  a  rope  wound  round  an  oak  post  is  accordingly  increased  about 

twenty-eight  fold  for  each  complete  turn. 

EXAMPLES 

1.  A  weight  is  suspended  by  a  rope  which,  after  being  wound  round  a  hori- 
zontal beam,  leaves  the  beam  horizontally,  its  end  being  controlled  by  a  work- 

man. If  the  rope  makes  1^  complete  revolutions  round  the  beam,  what  force 
must  be  exerted  by  the  man 

(a)  to  keep  the  weight  from  slipping  ? 
(6)  to  raise  the  weight  ? 

(Take  m  =  i-) 
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2.  A  weight  of  21  pourxds  stands  on  a  rough  table.  A  string  tied  to  the 
base  of  the  weight  hangs  over  the  edge  of  the  table  and  has  attached  to  it 

a  second  weight  which  hangs  freely.  If  the  coefficients  of  friction  between 

the  weight  and  the  table  and  the  string  and  the  table  are  i  and  i  respec- 
tively, find  how  heavy  the  hanging  weight  must  be  to  start  the  other  weight 

into  motion. 

3.  A  weight  of  2500  pounds  is  to  be  raised  from  the  hold  of  a  ship.  A  rope 

attached  to  the  weight  makes  3^  turns  round  a  steam  windlass,  its  other  end 

being  held  by  a  seaman.  With  what  force  must  he  pull  his  end  of  the  rope  so 

as  to  raise  the  weight  when  the  windlass  is  in  motion  ?    (/x  =  i.) 

4!  In  the  last  question,  find  what  pull  would  have  to  be  exerted  on  the  rope 
if  the  windlass  were  at  rest. 

5.  It  is  found  that  two  men  can  hold  a  weight  on  a  rope  by  taking  three 

turns  about  a  post,  and  that  one  of  them  can  do  it  alone  by  taking  one  half 
turn  extra.  If  each  can  pull  with  a  force  of  220  pounds  weight,  find  the  weight 
sustained. 

6.  In  a  tug  of  war  the  rope  is  observed  to  rub  against  a  post  at  the  critical 

moment,  in  such  a  way  that  the  two  parts  of  the  rope  make  an  angle  of  1°  with 
one  another.  If  the  coefficient  of  friction  between  the  rope  and  the  post  is  i, 
show  that  this  imposes  a  handicap  on  the  winning  side  equal  to  about  .0029 

times  its  aggregate  pull. 

Suspension  B7ndge 

56.  An  interesting  problem  is  afforded  by  the  kind  of  suspen- 
sion bridge  in  which  the  weight  of  the  bridge  (supposed  horizontal) 

is  taken  by  a  suspension  cable  by  means  of  vertical  chains  con- 
necting the  bridge  with  the  cable. 

Let  us,  for  simplicity,  agree  to 

neglect  the  weights  of  the  chains 

and  cable,  and  suppose  the  weight 

of  the  bridge  to  be  distributed 

evenly  along  its  length. 
Let  0  be  the  lowest  point  of 

the  cable,  and  let  P  be  any  other 

point.  Let  o,  p  be  the  points  of  the  bridge  vertically  below  0,  P, 

and  let  op  =  x.  Let  the  tension  at  F  be  T,  and  let  that  at  0  be  H. 
Let  the  direction  of  the  cable  at  P  make  an  angle  6  with  the 
horizontal. 
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The  forces  acting  on  the  piece  OP  of  the  cable  consist  of 

{a)  the  tension  at  0,  of  amount  ^acting  horizontally; 

(b)  the  tension  at  P,  of  amount  T  acting  at  an  angle  6  with 
the  horizontal; 

(c)  the  tensions  of  the  vertical  chains,  all  acting  vertically. 

Resolving  horizontally,  we  obtain 

H-  Tcosd  =  0.  (15) 

Resolving  vertically,  we  obtain 

Tsind-  S=0, 

where  S  is  the  sum  of  the  tensions  of  all  the  chains  which  leave 

the  cable  between  0  and  P.  These  tensions  support  the  portion 

op  of  the  bridge,  and  if  the  weight  of  the  bridge  is  ̂ v  per  unit 

length,  the  weight  of  op  will  be  wx.    Thus  S  =  wx,  and  therefore 

Tsin6  =  wx.  (16) 

This  and  equation  (15),  T  cos  6  =  R,  '  (17) 
will  give  us  all  the  information  we  require. 

To  find  the  shape  which  the  cable  must  have  in  order  that  the 

bridge  may  hang  horizontally,  we  require  to  obtain  a  relation 

between  0  and  x.  We  accordingly  eliminate  Tfrom  equations  (16) 

and  (17),  and  obtain 
tan  6  —  —  X. H 

If  y  is  the  height  of  the  cable  above  the  bridge,  x,  y  may  be 

regarded  as  the  Cartesian  coordinates  of  a  point  P  on  the  cable, 
and  we  have  , 

tan^  =  ̂. dx 

Thus  the  coordinates  x,  y  oi  P  are  related  by 

dy  _  w 

1  VJ 

giving  on  integration  y  =z  -  —  a?  ■\- G, 2  H 

where  C  is  a  constant  of  integration. 
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This  is  the  Cartesian  equation  of  the  cable.    It  is  easily  seen  to 
2  TT 

represent  a  parabola  of  latus  rectum Thus  the  cable  must 
w 

hang  in  the  form  of  a  parabola.  The  greater  the  horizontal  ten- 
sion, the  greater  the  latus  rectum  of  the  parabola,  and  therefore 

the  flatter  the  curve  of  the  cable.  A  perfectly  straight  cable  is  of 

course  an  impossibility  —  this  would  require  infinite  tension. 
57.  To  find  the  tension  at  any  point  of  the  cable,  we  square 

equations  (16)  and  (17),  and  add  corresponding  sides.    Thus 

giving  the  tension  at  a  point  distant  x  from  the  center.    If  the 

bridge  is  of  length  2  a,  the  tension  at  either  pier  must  be 

The  Catenary 

58.  In  the  problem  of  the  suspension  bridge,  we  neglected  the 

weight  of  the  cable.  A  second  problem  arises  when  the  cable  is 

supposed  to  be  acted  on  by  no  external  forces  except  its  own 

weight.  The  problem  here  is  simply  that  of 

a  string  of  which  the  two  ends  are  fastened 

to  fixed  points,  and  which  hangs  freely  be- 
tween these  points. 

As  before,  let  0  be  the  lowest  point,  and 

let  F  be  any  other  point.  The  forces  acting 

on  the  portion  OF  of  the  string  are 

(a)  the  tension  at  0,  of  amount  JI  acting 
horizontally ; 

(h)  the  tension  at  F,  of  amount  T  acting 
at  an  angle  6  with  the  horizontal ; 

(c)  the  weight  of  OF.    If  we  take  the  string  to  be  of  weight  w 

per  unit  length,  and  denote  the  distance  OF  by  s,  this  weight  is 
ws  acting  vertically. 
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Resolving  horizontally,  we  obtain 

If- T  cos  (9  =  0.  (18) 

Resolving  vertically,  we  obtain 

TsinO  —  ws  =  0.  (19) 

To  find  the  shape  of  curve  in  which  the  string  will  hang,  we 

must  obtain  a  relation  between  6  and  s.    Eliminating  T,  we  obtain 

R  tan  6  =  ws, 

or,  if  we  replace  II/w  by  the  single  constant  c, 

s  =  ctan^.  (20) 

This  is  one  form  of  the  equation  of  the  curve,  s  and  6  being  taken  as 

coordinates.  The  equation  in  this  form  is  known  as  the  intrinsic  equation 

of  the  curve.  We  require,  however,  to  deduce  the  equation  in  its  Carte- 
sian form. 

59.  If  the  point  o  in  fig.  42  is  taken  as  origin,  the  axes  being 

horizontal  and  vertical,  we  have  at  once  the  rela- 

dx :  dy\ds  =  cos  ̂  :  sin  ̂  :  1,  (2 1) 

for  dx  and  dy  are  the  horizontal  and  vertical  pro- 

jections of  the  small  element  ds  of  length  of  the'' 
string.    As  a  first  step,  let  us  use  relations  (21)  to 

change  the  variables  of  equation  (20)  from  s  and  ̂   to  s  and  y. 

We  have  /^  \  2 

c"  =  s'  cot^  e  =  s'  cosec^  6  -  s' =  s' 1^)  -  s\ 

so  that  s  — ■  =  Vs"^  +  cl 

dy 

Thus  dy=     '"^^ 

and  integrating  this,  we  obtain 
Vs^  +  c" 

y  =  y/s^  -I-  c^  -f  a  constant.  (22) 

We  can  determine  the  constant  of  integration  as  soon  as  we 

decide  where  the  origin  is  to  be  taken  —  so  far  we  have  not  fixed 
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the  point  o.  Since  s  denotes  the  arc  of  the  curve  measured  from 

0,  we  have  s  =  0  at  the  point  0,  and  therefore  the  y  coordinate 

of  0  (putting  s  =  0  in  equation  (22))  is 

2/  =  c  +  a  constant. 

Let  us  agree  that  Oo  is  to  be  made  equal  to  c,  so  that  y  =  c  at  0. 
Then  the  unknown  constant  of  integration  must  be  zero.  Thus 

equation  (22)  will  be         ̂ 2_^2_(_^2_  /2S) 

The  last  step  is  to  transform  the  variables  from  y  and  stoy  and  x. 

The  relation  which  enables  us  to  do  this  is  obtained  by  eliminating 

6  from  relations  (21),  and  is 

{dsf  =  {dyf+{dx)\  (24) 

The  equation  already  obtained  is 

s  =  Vy"^  —  c^' 

so  that  ds—     ̂     ̂ 

Vy2  _  c2 and  on  eliminating  ds  from  this  and  relation  (24),  we  obtain 

y     ̂  
From  this,  (dxf  =  {dyf  \^^^  -  l] 

so  that  dx  =  —^^=-  (25) 

(26) C 

X  ?  -5 
where  cosh  -  =  ̂ {f  +  e  ""). c 

The  student  who  is  not  familiar  with  the  hyperbolic  cosine  (cosh)  func- 
tion will  easily  be  able  to  verify  equation  (26)  by  differentiating  it  bacK 

into  equation  (25). 

y/f  -  c' Integrating 
this, we obtain 

c :  cosh  -  > c 
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Equation  (26)  is  the  Cartesian  equation  of  the  curve  formed  by 
the  string;  tliis  curve  is  known  as  the  catenary. 

From  equation  (23)  we  obtain  the  value  of  s  in  the  form 

=  c^  sinh^  -  > c 
S  3C 

SO  that  -  =  sinh-> c  c 

X  ?  -^ 
where  sinh-  =\{f  —  e  ""). 

-      --  .  X    . 

60.  Expanding  the  exponentials  e^y  e  *',  we  obtain  cosh  -  in 

the  form  ,^1^^   1  M* 

So  long  as  x  is  small,  we  may  neglect  all  the  terms  of  this  series 

beyond  the  second.  Using  the  value  obtamed  in  this  way,  we 

obtain  instead  of  equation  (26) 

showing  that  so  long  as  x  is  small  the  curve  coincides  very  approxi- 
mately with  a  parabola  of  latus  rectum  2  c  or  2  H/w. 

This  parabola,  it  will  be  noticed,  is  one  which  would  be  formed  by  the 

cable  of  a  suspension  bridge  of  horizontal  tension  //,  w  being  the  weight 

per  unit  length  of  the  bridge  itself.  Indeed,  it  is  clear  that  when  the  cable 
is  almost  horizontal,  it  is  a  matter  of  indifference  whether  the  cable 

itself  possess  weight  w  per  unit  length  of  its  arc,  or  whether  a  weight  lo 

per  unit  length  is  hung  from  it  so  as  to  lie  horizontally. 

We  can  also  obtain  a  simple  approximation  to  the  shape  of  the 

catenary  when  x  is  large,  i.e.  at  points  far  removed  from  the  lowest 
X 

point.    When  x  is  very  large,  so  that  -  is  very  large,  the  value  of 

e"  becomes  very  large,  while  that  oie  "  becomes  very  .small.    Thus 
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the  value  of  cosh  -  becomes  approximately  ̂   e%  and  the  equation c 

of  the  catenary  (equation  (26))  becomes 

C 

Thus   for    large  values   of   x   the    catenary   coincides   with   the 

exponential  curve. 

Fig.  44  shows  the  form  of  the  catenary.    The  thin  curves  are 

(a)  the  parabola,  to  which  the  catenary  approximates  for  small 
values  of  x\ 

(h)  the  exponential  curve,  to  which  the  catenary  approximates 
for  large  values  of  x. 
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61.  Sag  of  a  tightly  stretched  string.  A  string  or  wire  stretched 

so  as  to  be  nearly  liorizontal  all  along  its  length  —  as  for  instance 

a  telegraph  wire  —  may,  as  we  have  seen,  be  supposed  to  form  a 
parabola  to  within  good  approximation.  Thus  let  A,  B  be  two  poles 

at  equal  height  between 

which  a  wire  is  stretched ; 

let  C  be  the  middle  point 
of  AB,  and  let  D  be  the 

point  of  the  wire  verti- 
cally below  C.  Then,  Fig.  45 

from  symmetry,  D  will  be  the  lowest  point  of  the  wire  and  there- 
fore will  be  the  vertex  of  the  parabola.  Thus,  from  the  equation 

of  the  parabola,                            r,  jt 

CB' 

w 

since,  by  §  60,  its  latus  rectum  is  2  H/w. 

Thus  if  A  =  AB,  the  distance  between  the  poles,  the  "  dip  "  CD  is 

To  obtain  the  length  of  the  wire  we  have  to  introduce  a  higher 

order  of  small  quantities,  and  so  are  compelled  to  return  to  the 

equation  of  the  catenary. 

We  have 

The  quantity  we  require  \^  s  —  x,  namely  DB  —  CB  in  fig.  45. 
When  the  string  is  tightly  stretched  c  is  very  great,  so  that  we 

may  neglect  the  terms  in  s  beyond  those  written  down  in  the 
above  equation,  and  obtain 

1  x^ 

s  —  X  =  -—} 
 
appro

ximat
ely, 

_  1  w^x^
 

""6'^*
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Putting  X  =  ̂ h,  we  find  as  the  total  increase  in  a  span  of 
length  h,  caused  by  sagging, 

2s  ~  h  =   -• 

24  H^ EXAMPLES 

1.  The  entire  load  of  a  suspension  bridge  is  320  tons,  the  span  is  640  feet, 
and  the  height  is  50  feet.  Find  the  tension  at  the  points  of  support,  and  also 
the  tension  at  the  lowest  point. 

2.  The  weight  of  a  freely  suspended  cable  is  320  tons ;  the  distance  between 

the  two  points  of  support,  which  are  in  the  same  horizontal  line,  is  640  feet, 
and  the  height  of  these  points  above  the  lowest  point  of  the  cable  is  60  feet. 

Find  the  tension  at  the  points  of  support,  and  also  the  tension  at  the  lowest  point. 
3.  The  wire  for  a  telegraph  line  cannot  sustain  a  weight  of  more  than  a  mile 

of  its  own  length  without  breaking.  If  the  wire  is  stretched  on  poles  at  equal 
intervals  of  88  yards,  what  is  the  least  sag  permissible  ? 

4.  In  the  last  question  how  much  wire  is  required  for  a  mile  of  the  line  ? 

5.  A  telegraph  line  has  to  be  built  of  a  certain  kind  of  wire,  stretched  over 

evenly  spaced  posts.  Show  that  if  the  number  of  posts  is  very  large,  the  line 

will  be  built  most  economically  as  regards  the  cost  of  wire  and  posts,  if  the 
cost  of  the  posts  is  three  times  that  of  the  additional  length  of  wire  required  by 

"sagging." 

GENERAL  EXAMPLES 

1.  A  block  of  stone  weighing  |  ton  is  raised  by  means  of  a  rope 

which  passes  over  a  pulley  vertically  above  it  and  is  wound  upon  a  wind- 
lass one  foot  in  diameter.  The  windlass  is  worked  by  two  men  who  turn 

cranks  of  length  2  feet.  What  force  must  each  man  exert  perj)endicular 
to  the  cranks  ? 

2.  A  man  sitting  in  one  scale  of  a  balance  presses  with  a  force  of  60 

pounds  against  the  beam  in  a  vertical  direction  and  at  a  point  halfway 

between  the  fulcrum  and  the  end  of  the  beam  from  which  his  scale  is  sup- 

ported. If  the  beam  is  5  feet  long,  find  the  additional  w^eight  which  must 
be  put  in  the  other  scale  to  maintain  equilibrium. 

3.  The  scales  of  a  false  balance  hang  at  unequal  distances  a,  h  from 

the  fulcrum,  but  balance  when  empty.  A  weight  appears  to  have  weights 

P,  Q  respectively  when  w^eighed  in  the  two  scales.  Find  its  true  weight 
and  prove  that 

a      \P 
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4.*  A  weightless  string  24  inches  in  length  is  fastened  to  two  points 
which  are  in  the  same  horizontal  line,  and  at  a  distance  of  3  6  inches  apart. 

AVeights  are  fixed  to  two  points  at  distances  of  9  and  7  inches  from  the 

ends  of  the  string  and  hang  in  such  a  way  that  the  portion  of  the  string 
between  them  is  horizontal.    Determine  the  ratio  of  the  weights. 

5.  A  light  wire  has  a  weight  suspended  from  its  middle  point,  and  is 

itself  supported  by  a  string  fastened  to  its  two  ends  and  passing  over  a 

smooth  peg.  Show  that  the  wire  can  rest  only  in  a  horizontal  or  vertical 

position. 

6.  Three  smooth  pegs  A,  B,  C  stuck  in  a  wall  are  the  vertices  of  an 

equilateral  triangle,  A  being  the  highest  and  the  side  BC  horizontal ;  a 

light  string  passes  once  around  the  pegs  and  its  ends  are  fastened  to  a 

weight  W  which  hangs  in  equilibrium  below  BC.  Find  the  pressure  on 
each  peg. 

7.  Two  rings  of  weights  P  and  Q  respectively  slide  on  a  weightless 

string  whose  ends  are  fastened  to  the  extremities  of  a  straight  rod  inclined 

at  an  angle  d  to  the  horizontal.  On  this  rod  slides  a  light  ring  through 

which  the  string  passes,  so  that  the  heavy  rings  are  on  different  sides  of 

the  light  ring.  All  contacts  are  smooth  and,  in  equilibrium,  0  is  the  angle 
between  the  rod  and  those  parts  of  the  string  which  are  close  to  the  light 

ring.    Prove  that  tan  g  ̂   P  -  Q tan  0      P  +  Q 

8.  Two  small  heavy  rings  slide  on  a  smooth  wire,  in  the  shape  of  a 

parabola  with  axis  horizontal ;  they  are  connected  by  a  light  string  which 

passes  over  a  smooth  peg  at  the  focus.  Show  that  their  depths  below  the 

axis  are  proportional  to  their  weights  when  they  are  in  equilibrium. 

9.  Two  equally  heavy  rings  slide  on  a  wire  in  the  shape  of  an  ellipse 

whose  major  axis  is  vertical,  and  are  connected  by  a  string  which  passes 

over  a  smooth  peg  at  the  upper  focus.  Show  that  there  are  an  infinite 

number  of  positions  of  equilibrium. 

10.  A  BCD  is  a  quadrilateral;  forces  act  along  the  sides  AB,  BC,  CD, 

DA  measured  by  a,  jS,  7,  5  times  those  sides  respectively.  Show  that  if 

these  forces  keep  any  system  of  particles  in  equilibrium,  then 

ay  =  /35. 

11.  A  light  rod  rests  wholly  within  a  smooth  hemispherical  bowl  of 

radius  r,  and  a  weight  W  is  clamped  on  to  the  rod  at  a  point  whose  dis- 
tances from  the  ends  are  a  and  b.  Show  that  9,  the  inclination  of  the  rod 

to  the  horizon  in  the  position  of  equilibrium,  is  given  by  the  equation 

2  Vr2  -  ab  sind  =  a  -  b. 
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12.  A  weightless  rod,  to  which  are  fixed  two  rough  beads  of  masses  m 

and  m',  lies  on  an  inclined  plane  and  is  free  to  turn  about  an  axis  through 
the  rod  perpendicular  to  the  plane.  If  it  be  in  a  horizontal  position,  show 

that  it  will  not  begin  to  slip  round  unless 

ma  ̂ ^  in'h  , 
fi  <   tan  a, 

ma  +  m'b 
where  a  is  the  angle  of  the  plane,  and  a  and  h  the  distances  of  vi  and  m' 
respectively  from  the  axis. 

13.  A  bead  of  weight  W,  run  on  a  smooth  weightless  string,  rests  on  an 

inclined  plane  of  angle  a,  the  coefficient  of  friction  between  the  bead  and 

plane  being  ix.    The  ends  of  the  string  are  tied  to  two  points  ̂  ,  i^  in  the 

plane  at  the  same  height.    Show  how  to  find  the  positions  of  limiting 

equilibrium  for  the  bead,  and  show  that  in  such  a  position  P,  the  tension 
of  the  string  is  , 

^  IW&QclAPB-  (tan^  a-  ix-^y. 

14.  A  uniform  string  is  placed  on  a  rough  sphere  so  as  .to  lie  on  a  hori- 
zontal small  circle  in  altitude  a.  Prove  that,  if  the  string  be  on  the  point 

of  slipping  along  the  meridians,  the  tension  is  constant  and  equal  to  W  cot 

(or  +  e),  where  W  is  the  Meight  of  a  length  of  the  string  equal  to  the  radius 
of  the  circle,  and  e  is  the  angle  of  friction. 

15.  A  weightless  string  is  suspended  from  two  fixed  points  and  at  given 

points  on  the  string  equal  weights  are  attached.  Prove  that  the  tangents 

of  the  inclinations  to  the  horizon  of  different  portions  of  the  string  form 

an  arithmetical  progression. 

16.  A  smooth  semicircular  tube  is  just  filled  with  2  n  equal  smooth 

beads,  each  of  weight  W,  that  just  fit  the  tube,  and  stands  in  a  vertical 

plane  with  the  two  ends  at  equal  height.  If  R^  is  the  pressure  betM^een 
the  mth  and  (m  +  l)th  beads  from  the  top,  show  that 

R^  =  W  sm  —  cosec   2  n  2n 

17.  In  the  last  question,  let  the  beads  be  indefinitely  diminished  in 

size.  Prove  that  the  pressure  between  any  two  beads  is  proportional  to 

the  depth  below  the  top  of  the  tube. 

18.  A  heavy  string  hangs  over  two  smooth  pegs,  at  the  same  level  and 

distance  a  apart,  the  two  ends  of  the  strings  hanging  freely  and  the  central 

part  hanging  in  a  catenary.  Show  that  for  equilibrium  to  be  possible,  the 

total  length  of  the  string  must  not  be  less  than  ae. 
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19.  A  string  of  weight  W  is  suspended  from  two  points  at  the  same 
level,  and  a  weight  TP  is  attached  to  its  lowest  point.  If  a,  /3  are  now  the 
inclinations  to  the  vertical  of  the  tangents  at  the  highest  and  lowest  points, 

prove  that  t^na  ̂   ̂       W 

tan  (i         '^  W
' 20.  A  heavy  string  of  length  I  is  supported  from  two  points,  and  at 

these  points  the  string  makes  angles  a,  /3  with  the  vertical.  Show  that 
the  height  of  one  point  above  the  other  is 

Z  cos  I  (cr  + /3)  sec  f  (<a:  -  jS). 

21.  Prove  that  the  direction  of  the  least  force  required  to  draw  a 
carriage  is  inclined  at  an  angle  d  to  the  ground,  where  asin^  =  isine, 
a  and  b  being  the  radii  of  wheels  and  axles  respectively,  and  e  being  the 
angle  of  friction. 



CHAPTEE  y 

STATICS  OF  RIGID  BODIES 

Rigidity 

62.  If  we  press  a  lump  of  wet  clay  or  of  soft  putty  with  the 

finger,  we  find  that  a  dent  is  left  in  the  clay  or  putty ;  the  force 

applied  to  the  substance  by  the  finger  has  caused  it  to  change  its 

shape.  If  we  press  a  mass  of  jelly  with  the  finger,  we  do  not  find 

any  dent  left  in  the  jelly,  but  we  notice  that  so  long  as  the  force 

is  applied  the  shape  of  the  jelly  is  altered,  although  it  returns  to 

its  original  shape  as  soon  as  the  pressure  is  removed. 

On  the  other  hand,  if  we  press  a  lead  bullet  or  an  ivory  billiard 

ball  with  the  finger,  we  do  not  notice  any  change  of  shape  either 

while  the  pressure  is  applied  or  after.  In  ordinary  language  we 

say  that  the  lead  and  ivory  are  harder  than  the  clay  and  putty; 

in  scientific  language  we  say  that  they  are  more  rigid. 

63.  A  perfectly  rigid  body  would  be  one  which  showed  no 

change  of  shape  under  any  force,  no  matter  how  great  this  force 

might  be.  A  bullet  and  a  billiard  ball  are  not  perfectly  rigid.  A 

billiard  ball  is  pressed  out  of  shape  during  the  interval  of  collision 

with  a  second  billiard  ball,  but  regains  its  shape  immediately, 

while  a  lead  bullet  is  pressed  permanently  out  of  shape  by  striking 

a  target.  A  perfectly  rigid  body  does  not  exist  in  nature,  although 

such  bodies  as  a  billiard  ball  or  a  bullet  may  be  regarded  as  per- 
fectly rigid,  so  long  as  the  forces  wliich  act  upon  them  are  not 

too  great. 

We  can  give  a  mathematical  definition  of  a  perfectly  rigid  body 
as  follows : 

A  body  is  perfectly  rigid  when  the  distance  between  any  pair 

of  particles  in  it  remains  unaltered,  no  matter  what  forces  act  on 
the  body. .  90 
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64.  A  rigid  body  can  move  about  in  space  without  changing 

the  direction  of  any  Line  in  it  —  such  a  motion  is  caUed  a  motion 
of  translation.  It  can  also  turn  about  any  point  P  without  the 

position  of  P  altering  —  such  a  motion  is  called  a  motion  of  rota- 
tion about  P.  It  can  again  have  a  motion  compounded  of  a  motion 

of  translation  and  one  of  rotation,  and  this  we  shall  show  to  be 

the  most  general  motion  which  it  can  possibly  have. 

65.  First  we  must  notice  that  a  rigid  body  is  fixed  when  any 

three  points  in  it  are  fixed,  provided  that  these  three  points  do  not 

lie  in  a  straight  line.  For  let  A,  B,  C  he  the  three  points.  If  we 

fix  A  and  B,  any  motion  which  can  take  place  must,  since  the 

body  is  by  hypothesis  perfectly  rigid,  be  one  in  which  the  dis- 
tances of  any  other  point  P  from  A  and  B  remain  imaltered. 

Thus  P  must  describe  a  circle  with  AB  as  axis,  and  the  motion 

of  the  body  must  be  one  of  rotation  about  the  line  AB.  Thus 

if  A,  B,  C  are  not  in  a  straight  line,  C  must  describe  a  circle 

about  AB.  But  if  C  also  is  fixed,  this  cannot  happen;  in  other 

words,  no  motion  can  take  place,  so  that  the  body  is  fixed  in 

position. 

Tlius  the  position  of  a  rigid  body  is  determined  when  the  posi- 

tions of  three  non-collinear  points  in  it  are  determined. 
66.  We  can  now  prove  the  theorem: 

TJie  most  general  motion  of  a  rigid  hody  is  compounded  of  a 

motion  of  translation  and  one  of  rotation. 

In  fig.  46  let  the  figure  on  the  left  represent  the  body  in  its 

original  position,  and  let  the  heavy  curve  on  the  right  represent 

the  body  after  it  has  been  moved  in  any  way.  Let  P  be  the 

position  of  any  particle  of  the  body  in  its  original  position,  and 

let  Q  be  the  position  of  the  same  particle  after  the  motion  has 
taken  place. 

Imagine  that  the  body  is  first  moved  from  its  original  position 

in  such  a  way  that  the  point  P  moves  to  Q,  while  all  lines  in  the 

body  remain  parallel  to  their  original  positions.  This  motion  is 

one  of  pure  translation.  After  this  motion  has  taken  place,  we 

can  turn  the  body  about  the  point  Q  in  such  a  way  as  to  turn  it 
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into  its  final  position.  For  let  us  take  any  two  other  particles  R^  S 

in  the  body  (not  in  the  same  straight  line  with  Q),  and  let  B',  S'  be 
their  final  positions.    Since  the  body  is  supposed  to  be  perfectly 
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Fig.  46 

rigid,  it  follows  that  all  distances  between  particles  of  the  body 

remain  unaltered.  Hence  the  distances  QE,  BS,  SQ  are  respectively 

equal  to  QR',  B'S',  S'Q.  Thus  the  triangles  QES,  QE'S',  being 
equal  in  all  respects,  can  be  superposed,  and  the  motion  of  super- 

position of  these  triangles  is  the  motion  required  and  is  a  motion 

of  pure  rotation  about  Q,  since  Q  does  not  move. 

Since  the  position  of  a  rigid  body  is  fixed  when  any  three  points 

in  it  are  fixed,  it  follows  that  the  rigid  body  can  only  have  one 

position  in  which  the  three  points  Q,  E,  S  have  given  positions.  But 
after  the  motion  we  have  described,  the  three  points  Q,  E,  S  are 

placed  in  their  final  positions.  Hence  the  whole  body  must  be  in 

its  final  position,  and  this  proves  the  theorem. 
67.  Axis  of  rotation. 

In  a  motion  of  rotation, 

let  P  be  the  point  which 

remains  fixed.  Take  any 

plane  A  through  P,  and 

let  B  be  the  position  of 

the  plane  A  after  the 
rotation  has  occurred. 

These   two   planes    both   pass    through   P,    and   must    therefore 

Fig.  47 
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intersect  in  some  line  PQ  passing  through  F.  Tliis  line  is  called 

the  axis  of  rotation.  The  rotation  can  be  imagined  as  a  turning 

about  an  imaginary  pivot  running  along  the  axis  of  rotation. 

Conditions  of  Equilibrium  for  a  Rigid  Body 

68.  We  have  seen  that  a  rigid  body  is  fixed  when  three  non- 
coUinear  points  in  it  are  fixed.  It  follows  that,  whatever  forces 

act  on  a  rigid  body,  we  can  always  hold  it  at  rest  by  applying 

three  suitably  chosen  forces  at  three  points  which  are  not  in  a 

straight  Ime. 

We  can,  however,  select  these  forces  in  a  special  way. 

Let  us  select  any  three  points  A,  B,  C,  subject  only  to  the  con- 
dition that  they  are  not  in  a  straight  Line.  By  a  suitably  chosen 

force  acting  on  the  particle  at  A  we  shall  always  be  able  to  keep 

the  point  A  at  rest. 

When  A  is  fixed  B  may  or  may  not  tend  to  move.  If  B  tends 

to  move,  the  direction  of  motion  of  B  must  be  perpendicular  to 
BA,  since  A  cannot  move.  Hence  after  A  is  fixed  it  must  be 

possible  to  fix  B  by  applying  at  ̂   a  force  perpendicular  to  BA. 

When  A  and  B  are  both  fixed  the  only  motion  possible  for  the 

third  poiut  C  is  one  perpendicular  to  both  AC  and  BCy  i.e.  perpen- 
dicular to  the  plane  ABC.  Thus  C  can  be  held  at  rest  by  a  force 

perpendicular  to  the  plane  ABC,  and  the  whole  body  is  now  held 

at  rest.  Thus  it  has  been  proved  that  a  rigid  tody  can  he  held  at 

rest,  in  opposition  to  the  action  of  any  system  of  forces,  by  the 

appHcation  of  the  following  forces  at  three  arbitrarily  chosen 

points  A,  B,  C  not  in  a  straight  line : 

{a)  a  force  at  A,  direction  unknown ; 

(b)  a  force  at  B,  direction  perpendicular  to  the  line  AB ; 

(c)  a  force  at  C,  direction  perpendicular  to  the  plane  ABC. 

The  condition  that  the  original  system  of  forces  should  hold 

the  body  in  equilibrium  is  of  course  that  no  additional  forces  are 

required  to  fix  the  body,  and  hence  that  the  three  forces  introduced 
at  the  points  A,  B,  C  should  each  vanish. 
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Tkansmissibility  of  Foece 

69.  Consider  a  rigid  body  acted  on  by  two  forces  Tf^,  W^  at 

two  points  A,  B,  these  forces  being  equal  in  magnitude  but  actiog 

in  the  opposite  directions  AB,  BA. 
Either  the  rigid  body  will  be  in  equilibrium  under  the  action  of 

these  two  forces,  or  else  it  can  be  held  at  rest  by  three  forces  i^, 

i^,  i^  at  the  points  A,  B,  and  any  third  point  C  not  in  the  line 

AB,  these  forces  being  ia  the  directions  already  mentioned,  namely 

Fc  being  perpendicular  to  ABC,  and  i^  perpendicular  to  AB. 

Fig.  48 

Let  these  forces,  if  necessary,  be  put  in  so  that  the  body  is  in 

equilibrium  under  the  action  of  the  forces  W^,  W]^,  P^,  i^,  F^. 

The  body  being  in  equilibrium,  the  sum  of  the  moments  of  these 

forces  about  any  line,  or  of  their  components  in  any  direction,  must 

vanish,  by  §  50. 
Let  us  consider  what  is  the  sum  of  the  moments  about  the  line 

AB.  The  forces  W^,  WJ,  i^,  F^  all  meet  this  line,  so  that  the 
moment  of  each  of  these  forces  vanishes.  Thus  the  sum  of  the 

moments  about  the  line  AB  consists  of  the  moment  of  the  smgle 

force  F(.,  and  for  the  sum  of  these  moments  to  vanish,  the  moment 

of  Ffy  must  vanish.  Now  i^  is  perpendicular  to  the  line  AB,  and 

does  not  intersect  it,  so  that  the  moment  of  F^.  can  vanish  only  if 

the  force  jFJ.  is  itself  equal  to  zero.  This  means  that  no  force  is 

required  to  keep  the  body  from  turning  about  AB  as  axis  of 
rotation. 
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The  body  is  now  held  at  rest  by  the  two  forces  P^,  Pj^,  and  is 

therefore  in  equilibrium  under  the  forces  j^,  i^,  Tf^,  W^.  Tak- 
ing moments  about  a  line  through  A  perpendicular  to  AB,  we  find 

that  the  moments  of  i^,  W^,  TV^  vanish,  so  that  in  order  that  the 

sum  of  the  moments  of  the  four  forces  taken  about  this  line  may 

vanish,  we  must  have  the  moment  of  i^  equal  to  zero,  and  there- 

fore Pjj  itself  equal  to  zero.  Thus  the  only  force  required  to  keep 

the  body  at  rest  is  the  force  i^  at  A. 

A  condition  for  equilibrium  is  now  that  the  sum  of  the  com- 
ponents of  T^,  TVg,  and  Pj  shall  vanish  in  any  direction.  The 

components  of  W^  and  IFJ  are,  however,  equal  and  opposite,  so 
that  the  component  of  P^  must  vanish  in  every  direction.  That 

is  to  say,  we  must  have  P^  =  0. 
It  has  now  been  proved  that  the  rigid  body  is  in  equilibrium 

under  the  action  of  the  two  forces  W^,  Wj^. 

70.  This  establishes  at  once  a  principle  known  as  the  transmissi- 
hility  of  force. 

The  effect  of  a  force  acting  on  a  rigid  hody  depends  on  its  mag- 
nitude and  on  the  line  along  which  it  acts,  hut  not  on  the  particular 

particle  in  this  line  to  which  it  is  applied. 

For,  let  the  same  force  be  applied  at  any  ^  ^~ 
two  points  Q,  R  of  its  line  of  action.    An 

equal  and  opposite  force  at  R  can  neutralize  either  of  the  two 

forces,  which  are  therefore  equivalent. 

Composition  of  Forces  acting  in  a  Plane 

71.  Suppose  that  we  have  two  forces  P,  Q  acting  at  two  points 

^,  J5  of  a  rigid  body,  it  being  supposed  that  the  two  lines  of  action 

of  these  forces  he  in  one  plane.  Then  the  two  lines  of  action, 

produced  if  necessary  beyond  the  points  A,  B,  will  meet  in  some 
point  C. 

By  the  principle  of  the  transmissibility  of  force  it  is  imma- 
terial whether  the  force  P  acts  at  ̂   or  at  C ;  let  us  suppose  it  to 

act  at  C.    In  the  same  way  let  us  suppose  the  force  Q  to  act  at  C 
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instead  of  at  B.  Then  we  have  the  body  acted  on  by  two  forces 

P,  Q  which  act  on  the  same  particle  C.  These  may  be  compounded, 

according  to  the  rules  explained  lq  Chapter  III,  into  a  single  force 
B  acting  at  C.  Thus  we  can 

compound  forces  of  which 
the  lines  of  action  intersect, 

even  though  they  do  not  act 

on  the  same  particle. 

Having  compounded  two 
forces  into  a  single  force,  we 

may  compound  this  resultant 
with  any  third  force  which 

lies  in  the  same  plane  as  the 

two  original  forces,  and  in 

this  way  obtain  a  resultant 
Fig.  50  of  three  forces,  and  so  on. 

Thus  any  number  of  forces  which  all  lie  in  one  plane  may  be 

compounded  into  a  single  force.  This  force  is  called  the  resultant  of 

the  original  force. 

72.  An  exception  arises  when  we  attempt 

to  compound  two  parallel  forces,  for  their 
lines  of  action  do  not  meet.  This  difficulty, 

however,  is  easily  surmounted.  Let  P,  Q 

be  the  two  forces  to  be  compounded,  and 

let  AB  be  any  line  cutting  their  lines  of 

action  in  A,  B.  Let  us  add  to  the  system 

P,  Q  two  forces : 

(a)  a  force  B  acting  along  BA ; 

(h)  a  force  B  acting  along  AB. 

Fig.  51 

These  two  forces  being  equal  and  opposite 

can  be  introduced  without  producing  any 

effect.    On  compounding  the  first  with  P 

we  obtain  a  resultant  P'  acting  at  A,  and  on  compounding  the 

second  with  Q  we  obtain  a  resultant  Q'  acting  at  B.    Thus  the 
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original  forces  P,  Q  have  been  replaced  by  the  new  forces  P',  Q'. 
The  lines  of  action  of  these  forces,  however,  will  not  in  general  be 

parallel,  so  that  they  may  be  compounded  into  a  single  resultant 

force  acting  through  their  point  of  intersection. 

73.  Let  us  suppose  that  the  forces  originally  to  be  compounded 

were  i^^,  B^,--,  and  that  these  have  been  compounded  into  a 
single  resultant  B.  Let  us  take  axes  x,  y  in  the  plane  in  which 

these  forces  act,  and  let  the  components  of  R^  along  these  axes  be 

Xj,  Yj,  those  of  B^  being  Xj,  Y^,  and  so  on.  Finally  let  the  com- 
ponents of  B  be  X,  Y. 

The  system  of  forces  which  consists  of  the  original  forces  B^y 

■^2»  ■  *  'j  together  with  the  resultant  B  reversed,  constitutes  a  system 
in  equilibrium.    Eesolving  parallel  to  the  axes,  we  obtain 

X^  +  X^-\-X,-\-   x=o, 

r,+  i;+  1;  +   F=o. 

Thus  the  components  of  B  are  given  by  the  equations 

x=x,  +  x,  +  X3  +  .-., 

The  magnitude  of  B  can  be  found  from  the  equation 

B''  =  X''-\-  Y\ 

while  the  angle  6  which  the  line  of  action  of  B  makes  with  the 

axis  of  X  can  be  found  from  the  equation 

Y 

tan  (9  =  — . X 

To  obtain  the  position  of  the  line  of  action  of  B  we  use  the  fact 
that  the  sum  of  the  moments  of 

B^y  B^,  B^,  •  •  •,  and  —  B 

taken  about  any  point  in  the  plane  must  vanish.  This  gives  us 

the  moment  of  B  about  any  point,  and  hence,  since  we  know  the 

magnitude  and  direction  of  B,  we  can  find  the  position  of  its  line 
of  action. 
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ILLUSTRATIVE  EXAMPLE 

Forces  P,  Q,  B,  act  on  a  rigid  body,  all  the  forces  being  in  one  plane,_and  their 

lines  of  action  forming  a  right-angled  isosceles  triangle  of  sides  a,  a,  V^  a.  Find 
their  resultant. 

Let  ABC  be  the  triangle,  the  forces  P,  Q,  R  acting  along  BC,  CA,  AB 

respectively.  Take  C  for  origin  and  CJ5,  CA  for  axes  of  x,  y.  Let  the  resultant 

have  components  X,  Y.    Then,  resolving  along  Cx,  we  obtain 

X  =  -P  +  A, 

and  similarly  resolving  along  Cy, 
V2 

Thus  the  resultant  is  of  magnitude  R  given  by 

R2  =  X2  +  r2 

<
■
 

p  + 

V2/ =  P2  +  Q2  +  i22  _  V2  2?(P  +  Q). 

The  angle  0  which  it  makes  with  Cx  is  given  by 

Y  R-V2Q 
tan  e  =  —  = R-V2P 

To  find  the  line  of  action,  we  express  that  the  moment  of  R  about  C  must  be 

equal  to  the  sum  of  the  moments  of  P,  Q,  and  R.  If  p  is  the  perpendicular 
from  C  on  to  the  line  of  action  of  the  resultant  R,  this  gives V2 

so  that 

and  this  determines  the  line  of  action  of  R 

R    a 

EXAMPLES 

(All  forces  are  supposed  to  be  acting  on  rigid  bodies) 

1.  ABCD  is  a  square,  and  along  the  sides  AB,  BC,  CD  there  act  forces  of 

1,  2,  3  pounds  respectively.  Determine  the  magnitude  and  line  of  action  of  the 
resultant. 

2.  ABCD  is  a  square  and  forces  P,  Q,  jR,  S  act  along  the  sides  ̂ B,  BC,  CD, 

DA  respectively.  "What  is  the  condition  that  their  resultant  shall  pass  through 
the  center  of  the  square  ? 

3.  In  question  2,  what  is  the  condition 

(a)  that  the  resultant  shall  pass  through  A  ? 

(6)  that  it  shall  pass  through  B  ? 

(c)  that  the  four  forces  shall  be  in  equilibrium  ? 
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4.  Forces  P,  Q,  R  act  along  the  sides  of  a  triangle  ABC,  and  their 
resultant  passes  through  the  centers  of  the  inscribed  and  circumscribed 
circles.     Prove  that 

P         ̂   Q  ^  R 
cos  B  —  cos  C      cos  C  —  cos  A      cos  A  —  cos  B 

5.  If  four  forces  acting  along  the  sides  of  a  quadrilateral  are  in  equi- 
librium, prove  that  the  quadrilateral  must  be  plane. 

6.  ABCD  is  a  plane  quadrilateral  and  forces  represented  by  AB,  CB,  CD, 

AD  act  along  these  sides,  respectively,  of  the  quadrilateral.  Show  that  if  there 
is  equilibrium,  the  quadrilateral  must  b^  a  parallelogram. 

7.  If  a  quadrilateral  can  be  insi^bed  in  a  circle,  prove  that  forces  acting 
along  the  four  sides  and  proportional  to  the  opposite  sides  will  keep  it  in  equi- 

librium. Show  also  that  the  converse  is  true,  namely  that  for  equilibrium,  the 
forces  must  be  proportional  to  the  opposite  sides. 

8.  A  quadrilateral  is  inscribed  in  a  circle,  and  four  forces  act  along  the 

sides,  and  are  inversely  proportional  to  the  lengths  of  these  sides.  Show  that 
the  resultant  has  for  line  of  action  the  line  through  the  intersections  of  pairs 

of  opposite  sides. 

9.  Forces  act  along  the  four  sides  of  a  quadrilateral,  equal  respectively  to 

a,  6,  c,  and  d  times  the  lengths  of  those  sides.    Show  that  if  there  is  equilibrium, 
ac  =  hd, 

and  that  the  further  conditions  necessaiy  to  insure  equilibrium  are  that  the 

ratios  a  :  h  and  b  :  c  shall  be  the  ratios  in  which  the  diagonals  are  divided  at 
their  points  of  intersection. 

10.  In  the  last  question  show  that  the  perpendicular  distances  to  the  first 

side,  from  the  two  points  of  the  quadrilateral  which  are  not  on  that  side,  are  in 
the  ratio 

a{c  —  b)  :  d{b  —  a). 

Parallel  Forces 

74.  Let  us  use  the  method  just  explained,  to  determine  the 

resultant  of  two  parallel  forces  F,  Q. 

Take  any  point  0  on  the  line  of  action  of  P  as  origin,  and  take 

this  Kne  of  action  of  P  for  axis  Oy,  as  in  fig.  53.  Let  the  resultant 

he  R,  components  X,  Y.    Then  resolving  we  obtain 
X=  0, 

Y=P+Q, 

so  that  the  resultant  force  is  of  magnitude  P  -\-  Q  and  acts  parallel 
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to  Oy.    Let  us  suppose  that  its  distance  from  Oy  is  J,  that  of  Q 

being  denoted  by  a.    Then  taking  moments  about  0  we  have 

{P+Q)h  =  Qa, 

P+Qj^ 

.   b--   

'^Q 

Fig.  53 

SO  that  —  =    
Q     P+Q 

showing  that  the  hne  of  action 
divides  the  distance  between  P  and 

Q  in  the  ratio  Q  :  F. 
Thus  we  have  shown  that  the 

resultant  of  two  parallel  forces  P, 

Q  is  a  force  of  magnitude  F  +  Q^ 

parallel  to  these  forces,  of  which 

the  line  of  action  divides  the  dis- 
tance between  the  lines  of  action  of 

F  and  Q,  in  the  ratio  Q :  F, 

75.  Alternative  treatment  of  parallel  forces.    We  can  prove  directly  from 

§  68   that   parallel   forces   P,    Q   will   be    in    equilibrium    with   a   force 

—  (P  +  Q)  parallel  to  them  and  acting  along  a  line  which  divides  the  dis- 
tance between  them  in  the  ratio  Q  :  P. 

Take  two  points  ̂ ,  ̂   on  the  line  of  action  of  P,  Q,  and  a  third  point 

C  not  on  the  line  AB.    Then  the  body,  acted  on  by  the  forces  P,  Q,  and 

—  (P  +  Q),  can  be  kept  in  equilibrium  by  the  further  application  of 

(a)  a  force  T^^^at  C,  perpendicular  to  ABC  ; 

(5)  a  force  R^  at  B,  perpendicular  to  AB  ; 

(c)  a  force  R^  at  A . 

Thus  the  system  of  forces 

P,  Q,  -(P  +  Q),  Re,  Rb,  Ra 
will  be  in  equilibrium. 

Taking  moments  about  the  line  AB,  we  find 

that  Rc=^'  Taking  moments  about  A  ,  we  find 

that  Rjj=0,  or  else  that  it  acts  along  BA,  in  _(p4.Q) 
which  case  it  can  be  absorbed  into  R^.  Resolv- 

ing perpendicular  to  the  plane  of  the  forces  P,  Q, 

we  find  that  Rj^  can  have  no  component  perpen- 
dicular to  the  plane.  Thus  the  four  remaining 

forces 

P,     a     -(P  +  Q), 
are  all  in  one  plane. 

R 
Fig.  54 
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Next,  resolving  parallel  and  perpendicular  to  the  line  of  action  of  P,  we 
find  that  both  components  of  Rj^  vanish,  and  hence  that  Rj^  =  0.  Thus  the 
original  forces  were  in  equilibrium. 

76.  Clearly  these  methods  of  compounding  forces  can  be 

extended,  so  that  any  number  of  parallel  forces  can  be  compounded 

into  a  single  resultant  force.  We  see  at  once,  on  reversing  the 

resultant  and  resolving,  that  the  resultant  is  parallel  to  the  lines 

of  action  of  the  original  forces,  while  its  magnitude  is  equal  to 

their  algebraic  sum. 

This  result  is  of  importance  in  connection  with  the  weights  of 

bodies.  It  shows  that  the  effect  of  gravity  on  any  rigid  body  — 
i.e.  the  resultant  of  the  weights  of  the  individual  particles  of  which 

the  body  is  composed  —  may  be  regarded  as  a  single  force  acting 
vertically  along  a  single  line. 

In  the  next  chapter  it  will  be  shown  that,  whatever  position  the 

rigid  body  is  in,  this  line  always  passes  through  a  definite  point, 

fixed  relatively  to  the  body,  known  as  its  center  of  gravity. 

77.  Without  assuming  this,  we  can  find  the  line  of  action  in  a 

number  of  simple  cases.  Suppose,  for  instance,  we  are  dealing  with 

a  uniform  rod.  The  weights  of  two  equal  particles  equidistant  from 

the  center  may  be  compounded  into  a  single  force  acting  through 

the  middle  point  of  the  rod.  Treating  the  weights  of  all  the  parti- 
cles in  this  manner,  we  find  that  the  weight  of  a  uniform  rod  may 

be  supposed  to  act  at  its  middle  point. 

In  the  same  way  we  can  see  that  the  weight  of  a  circular  disk, 

of  a  circular  ring,  or  of  a  sphere  may  be  supposed  to  act  at  its 

center ;  the  weight  of  a  cube  or  a  parallelepiped  at  the  intersection 
of  its  diagonals,  and  so  on. 

Couples 

78.  If  we  try  to  compound  two  parallel  forces  which  are  equal 

in  magnitude  but  opposite  in  sign,  we  obtain  as  the  resultant  a 
force  of  zero  amount  of  which  the  line  of  action  is  at  infinity. 

Although  such  a  force  is  of  zero  amount,  its  effect  cannot  be 
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neglected :  its  moment  does  not  vanish,  being  equal  to  the  sum  of 

the  moments  of  the  component  forces.  If,  in  fig.  55,  AA',  BB'  are 
the  parallel  lines  of  action  of  two  opposite  forces  each  equal  to  R, 

and  if  PAB  is  a  line  at  right  angles  to 

their  direction,  then  the  sum  of  their 

moments  about  a  line  through  P,  at 

>  R  right  angles  to  the  plane  in  which  the 
forces  act, 

  '^  =RPB-R'PA 
=  Pid, 

where  d  is  the  distance  between  the 

line  of  action  of  the  forces.    A  pair  of 

forces,  equal  in  magnitude  and  opposite 

in  direction,  but  not  acting  in  the  same 

line,  is  called  a  couple.    Their  moment  about  any  point  P  in  the 

plane  containing  their  lines  of  action  is  independent  of  the  position 

of  the  point  P,  and  is  spoken  of  as  the  moment  of  the  couple. 

Condition  of  Equilibrium 

79.  Since  the  resultant  of  a  system  of  forces  in  a  plane  may  be 

either  a  single  force  or  a  couple,  the  condition  for  there  being  no 

resultant  will  be  that  the  resultant  single  force  shall  be  nil,  and 

that  there  shall  be  no  couple.  The  component  of  tjie  resultant 

force  in  any  direction  vanishes  if  the  sum  of  the  components 

vanishes.  Thus,  in  order  that  the  resultant  force  may  vanish,  it  is 

necessary  that  the  resolved  parts  in  two  different  directions  should 
vanish.  If  this  condition  is  satisfied,  there  can  be  no  resultant 

except  a  couple,  and  since  the  moment  of  a  couple  is  the  same,  no 

matter  about  what  point  the  moment  is  taken,  it  appears  that  there 

can  be  no  couple  if  the  moment  about  any  one  point  is  zero.  Thus, 

as  a  necessary  and  sufficient  condition  of  equilibrium  for  a  system 

of  forces  in  a  plane,  we  have  found  the  following : 

A  system  of  forces  in  a  plane  will  he  in  equilibrium  if  the  sum 

of  the  resolved  parts  in  two  directions  each  vanishes,  and  if  the  sum 

of  the  moments  about  any  point  also  vanishes. 
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We  can  express  the  condition  for  equilibrium  in  a  different  form : 

A  system  of  forces  in  a  plane  will  be  in  equilibrium  if  the  sums 

of  the  moments  about  any  three  non-collinear  points  are  each  zero. 

For,  if  the  moment  about  any  one  point  is  zero,  the  resultant 

cannot  be  a  couple.  It  must,  therefore,  be  a  single  force.  If  the 

moments  about  each  of  two  points  A,  B  vanish,  the  line  of  action 

of  this  force  must  in  general  be  AB,  but  if  the  moment  about 

some  third  point  C,  not  in  the  line  AB,  also  vanishes,  then  the 
force  itself  must  vanish. 

EXAMPLES 

1.  Parallel  forces  of  5,  12,  and  7  pounds  act  at  the  two  ends  and  middle 

*point,  respectively,  of  a  lin&2  feet  in  length.    Find  the  magnitude  and  line  of 
action  of  their  resultant. 

2.  Find  the  resultant  of  the  forces  in  the  last  question  when  their  magnitudes 

are  respectively  5,  —  12,  and  7  pounds. 
3.  Find  the  resultant  of  three  forces,  each  of  amount  P,  acting  along  the 

sides  of  an  equilateral  triangle,  taken  in  order. 
4.  Prove  that  a  system  of  forces  acting  along  and  represented  by  the  sides 

of  a  plane  polygon  taken  in  order,  is  equivalent  to  a  couple,  whose  moment  is 

represented  by  twice  the  area  of  the  polygon. 

5.  If  the  sums  of  the  moments  of  any  co-planar  forces  about  three  points 
which  are  not  in  a  straight  line  are  equal,  and  not  each  zero,  prove  that  the 
system  is  equivalent  to  a  couple. 

6.  A  uniform  rod  is  of  length  3  feet  and  weight  24  pounds.  Weights  of  16 

and  18  pounds  are  clamped  to  its  two  ends.  Find  at  what  point  the  rod  must  be 
supported  so  as  just  to  balance. 

7.  A  uniform  beam  weighing  20  pounds  is  suspended  at  its  two  ends, 

and  has  a  weight  of  50  pounds  suspended  from  a  point  distant  7  feet  and 
3  feet  from  the  two  ends.  Find  the  pressures  at  the  points  of  suspension  of 
the  beam. 

8.  A  uniform  rod  of  weight  50  pounds  and  length  18  feet  is  carried  on  the 

shouldei-s  of  two  men  who  walk  at  distances  of  2  feet  and  3  feet  respectively 
from  the  two  ends.  A  weight  of  50  pounds  is  suspended  from  the  middle  point 
of  the  beam.    Find  the  total  weight  carried  by  each  man. 

9.  A  dumb-bell  weighing  32  pounds  is  formed  of  two  equal  spheres,  each  of 
radius  3  inches,  connected  by  a  bar  of  iron  so  that  the  centers  of  the  spheres 
are  16  inches  apart.  One  of  the  spheres  is  now  removed,  and  the  remainder  of 

the  dumb-bell  is  found  to  weigh  20  pounds.  Find  where  this  remaining  part 
must  be  supported  in  order  that  it  may,  just  balance. 
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Couples  in  Parallel  Planes 

80.  The  result  of  §  79  shows  that  two  couples  acting  in  the 

same  plane  produce  the  same  effect  if  their  moments  are  equal. 

For,  on  reversing  one  of  them,  all  the  conditions  of  equilibrium 
are  satisfied. 

Thus  we  can  determine  the  effect  of  a  couple  in  any  plane  by 

knowing  its  moment  only.  We  shall  now  show  that  the  actual 

plane  in  which  the  couple  acts  is  immaterial,  the  direction  of  this 

plane  alone  being  of  importance.    In  other  words : 

Couples  of  equal  moments  acting  in  jparallel  planes  produce  the 
same  effect. 

To  prove  this,  we  reverse  one  couple  and  show  that  the  two 

couples  are  then  in  equilibrium.    Let  the  first  couple  consist  of, 
two  forces  each  equal  to  ̂ , 

and  let  a  common  perpen- 
dicular to  their  lines  of 

action  meet  the  latter  in 

points  A,  B.  Let  A'B^  be 
a  line  equal  and  parallel 

to  AB  in  the  plane  of  the 

second  couple,  and  let  the 

second  couple  reversed  be 

represented  by  two  forces 

R,  R  at  A'B'.  We  can  regard  this  couple  as  representing  the  second 
couple  reversed,  for  its  moment  is  equal  and  opposite  to  that  of 

the  second  couple,  while  it  is  acting  in  the  same  plane  as  the 
second  couple. 

We  have  now  to  show  that  the  four  forces  each  equal  to  R 

acting  at  A,B,  A',  B'  are  in  equilibrium.  By  construction,  ABB' A'  is 
a  parallelogram,  so  that  C,  the  point  of  intersection  of  its  diagonals, 

is  also  the  middle  point  of  each  diagonal. 

The  two  parallel  forces  R,  R  acting  at  A,  B'  may  be  compounded 

into  a  single  force  2  R  acting  at  C,  the  middle  point  of  AB',  and 
similarly  the  two  forces  R,  R  at  B,  A'  may  be  compounded  into 

R 

/      ̂ 

^ 

Iff 
^yl/y  ̂  'b 

Fig.  56 
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a  force  2  jK  at  (7,  the  middle  point  of  A'B.  These  two  forces  2  jK, 
2  E  are  equal  and  act  in  opposite  directions  at  the  same  point  C. 

There  is  therefore  equilibrium,  proving  that  two  couples  are  equiv- 
alent if  they  have  equal  moments  and  if  the  planes  in  which  they 

act  are  parallel. 

81.  The  direction  perpendicular  to  the  plane  in  which  a  couple 
acts  is  called  the  axis  of  a  couple.    Thus : 

Two  couples  having  the  same  a.xis  and  the  same  moment  are 

equivalent. 

Couples  compounded  according  to  the  Parallelogram  Law 

82.  A  couple,  as  we  have  just  seen,  is  determined  by  a  quantity 

(its  moment)  and  a  direction  (its  axis).  Thus  it  may  be  fully 
represented  by  a  straight  line,  the  direction  of  this  line  being  that 
of  the  axis,  and  the 

length  representing, 

on  any  scale  we 

please,  the  magni- 
tude of  the  moment 

of  the  couple. 
We  shall  now 

show  that  couples 

can  be  compounded 

according  to  the 

parallelogram  law. 

Theorem.  Two  couples,  represented  in  magnitude  and  direction 

hy  two  lines  AB,  AC,  will  have  as  resultant  a  couple  represented  in 

magnitude  and  direction  hy  AD,  the  diagonal  of  the  parallelogram 

of  which  AB,  A  C  are  edges. 

Let  AB,  AC  he  lines  representing  by  their  direction  and  magni- 

tude the  axes  and  moments  of  two  couples.  Let  SAS'  be  a  line 
perpendicular  to  the  plane  ABC,  A  being  its  middle  point.  Let 

us  draw  planes  through  S,  S'  parallel  to  the  plane  ABC,  and  let 

the  couple  AB  he  replaced  by  two  forces  FS,  P'S'  in  these  two 

Fig.  57 
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planes,  the  lines  FS,  F'S'  being  both  perpendicular  to  AB.  In  the 

same  way  let  the  couple  ̂ C  be  replaced  by  two  forces  ̂ *S^,  Q'S' 
in  these  same  two  planes. 

The  two  couples  have  now  been  replaced  by  the  four  forces 

PS,  QS,  F'S',  Q'S'. 

Let  us  complete  the  parallelograms  FSQE,  BACD,  F'S'Q'R'. 
Obviously  these  parallelograms  are  all  similar  to  one  another,  and 

corresponding  lines  in  the  first  and  second  parallelograms  are  at 

right  angles  to  one  another.  Thus  a  couple  represented  by  AD 

may  be  replaced  by  forces  RS,  R'  S'.  But  these  two  forces  are 

exactly  equivalent  to  the  four  forces  FS,  QS,  F'S',  Q'S'  to  which, 
as  we  have  seen,  the  couples ^^,  AC  may  be  reduced,  and  this 

proves  the  theorem. 

Forces  in  Space 

83.  When  the  forces  acting  on  a  body  are  not  all  in  one  plane, 

their  resultant  will  not  in  general  be  a  single  force. 

Theorem.  Any  system  of  forces  acting  on  a  rigid  hody  can  he  re- 
placed hy  a  force  acting  at  an  arbitrarily  chosen  poifit,  and  a  couple. 

Let  G  be  the  chosen  point,  and  let  R  be  any  force  of  which  the 

line  of  action  does  pot  pass  through  G.    At  G  let  us  introduce  two 

equal  and  opposite  forces,  each  equal  to  R 

and  parallel  to  the  line  of  action  of  R.    By 

combining   one  of   these   forces  with  the 

original  force  R,  we  get  a  couple,  so  that 

the  original  force  R  can  be  replaced  by  a 

^^^'  ̂ ^  force    parallel    and  equal  to  the  original 
force  but  acting  at  G,  and  a  couple. 

Treating  all  the  forces  of  the  system  in  this  way,  we  find  that 

the  original  system  of  forces  may  be  replaced  by 

(a)  a  number  of  forces  acting  at  the  chosen  point  G; 

(h)  a  number  of  couples. 

The  forces  acting  at  G  can  be  combined  into  a  single  force  at  G, 

and  the  couples  into  a  single  couple,  proving  the  result. 
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84.  Theorem.  Any  systeiii  of  forces  acting  on  a  rigid  hody  can 

he  replaced  hy  a  force  and  a  couple  of  which  the  axis  is  parallel  to 

the  line  of  action  of  the  force. 

By  the  theorem  just  proved,  the  system  may  first  be  replaced 

by  a  force  acting  at  any  point  0,  and  a  couple.  Let  the  force  be 

of  amount  -K,  having  OP  as  its  line  of  action,  and  let  the  couple 

be  of  moment  G,  having  OQ  for  its  axis.  If  the  angle  POQ  is 

denoted  by  6,  we  may  resolve  the  couple  into  two  couples : 

(a)  a  couple  -'of  moment  G  cos  6, 
having  OP  for  axis; 

(b)  a  couple  of  moment  G  sin  6, 
having  its  axis  perpendicular  to  OP. 

The  second  of  these  couples  may 

be  replaced  by  any  two  forces  pro- 
vided these  are  chosen  so  as  to  be 

equivalent  to  the  couple.  Let  us 
choose  the  first  force  to  be  a  force 

—  R  acting  along  OP,  i.e.  the  force 
which  will  exactly  neutralize  the 

force  R  which  we  already  have  acting  along  OP.  The  second 

force  of  the  couple  must  then  be  a  force  R  acting  along  a  Hne 

parallel  to  OP  but  at  a  distance  from  it  equal  to  G  sin  d/R. 

The  system  has  now  been  replaced  by 

(a)  forces  -\-  R,  —  R  acting  along  OP ; 
(b)  a  force  R  parallel  to  OP; 

(c)  a  couple  G  cos  6  of  which  the  axis  is  parallel  to  OP. 

The  two  forces  (a)  neutralize  and  we  are  left  with  a  force  R  and 
a  couple  G  cos  6  of  which  the  axis  is  parallel  to  the  hue  of  action 

of  the  force.    This  proves  the  theorem. 
The  line  of  action  of  the  force,  which  is  now  also  the  axis  of 

the  couple,  is  called  the  central  axis  of  the  system  of  forces. 

A  system  of  forces  is  most  simply  specified  by  a  knowledge  of  the 

magnitude  of  the  force  and  couple,  and  of  the  position  and  direction 

of  the  central  axis.    Such  a  system  is  called  a  "wrench." 

Fig.  59 
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Fig.  60 

ILLUSTRATIVE  EXAMPLES 

1.  Two  equal  uniform  planks  are  hinged  at  one  end,  and  stand  with  their  free 

ends  on  a  smooth  horizontal  plane,  being  prevented  from  slipping  hy  a  rope  which 
is  tied  to  each  plank  at  the  same  height  up.  Find  the  tension  in  this  rope  and 
the  action  at  the  hinge. 

In  the  figure  let  AB^  AC  represent  the  two  planks,  hinged  at  A.,  and  let 
PQ  be  the  rope.    The  forces  acting  on  the  plank  AB  will  consist  of 

(a)  the  action  at  the  hinge  A  ; 

(6)  the  tension  of  the  rope  acting  along  PQ ; 

(c)  the  reaction  at  the  foot  B ; 

{d)  the  weight. 

Of  these  four  forces,  (a)  and  (6)  are  the  forces  which 
it  is  required  to  find.  Force  (c)  also  is  at  present 

unknown.  Force  (d),  as  explained  in  §  77,  can  be 
regarded  as  a  single  force  W,  the  total  weight  of  the 

plank,  and  since  we  are  told  that  the  plank  is  uniform, 
this  must  be  supposed  to  act  through  its  middle  point. 

Tl^ere  is  a  simple  way  of  finding  force  (c),  the  reaction  at  B.  Since  we  are 
told  that  the  contact  at  B  is  smooth,  the  direction  of  the  reaction  must  be 

vertically"  upwards.  Let  its  amount  be  E.  From  symmetry,  there  must  be 
an  exactly  similar  reaction  at  the  foot  C  of  tire  second  plank.  Now  consider 

the  equilibrium  of  the  whole  system  which  consists  of  the  two  planks  and  the 

rope.  The  only  external  forces  which  act  on  this  system  consist  of 

(a)  the  weight ; 
(6)  the  two  reactions  at  B  and  C. 

If  we  resolve  vertically,  we  obtain,  since  this 

system  is  in  equilibrium, 

2  TT  -  2  E  =  0, 

so  that  B  =W ',  each  reaction  is  just  equal  to  the 
weight  of  one  plank,  as  we  might  have  anticipated. 

Of  the  four  forces  acting  on  the  plank  AB., 

the  last  two  are  now  known,  while  the  first  two 
remain  unknown.  If  we  take  moments  about  A, 

we  shall  get  an  equation  between  forces  (6),  (c), 

and  (d),  and  this  will  enable  us  to  find  the  un- 
known force  (6),  the  tension. 

If  we  denote  the  tension  by  T,  and  the  angle 

BA  C  by  2  ̂ ,  the  equation  obtained  on  taking 
moments  about  A  is 

R-  AB&xne  -W  -lABsine  -  T- 

so  that,  reraembering  that  i?  =  Tf ,  we  have 

^      \  AB 

Fig.  61 
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Also  on  resolving  horizontally  and  vertically,  it  is  evident  that  the  action 

at  A  must  consist  of  a  harizontal'  force  of  amount  T  and  of  direction  opposite 
to  that  of  T. 

2.  A  ring  {e.g.  a  dinner  napkin  ring)  stands  on  a  table.,  and  a  gradually 
increasing  pressure  is  applied  by  a  finger  to  one  point  on  the  ring.  Having  given 

the  coefficients  of  friction  at  the  two  contacts,  examine  how  equilibrium  will  first 
be  broken. 

Let  A  be  the  point  of  contact  of  the  ring  and  table,  and  let  B  be  the  point 

of  contact  of  the  ring  and  finger.  Let  e,  e'  be  the  angles  of  friction  at  A  and  B 
respectively.    Let  the  line  BA  make  an  angle  a  with  the  vertical. 

The  forces  applied  to  the  ring  from  outside  are 

(a)  the  reaction  at  A  ; 
(6)  the  reaction  at  U ; 

(c)  the  weight  of  the  ring. 

Regarding  the  latter  as  a  single  force  W  acting  along  the  vertical  diameter 
CA  of  the  ring,  we  see  that  so  long  as  the  ring  remains  at  rest  it  is  in  equilibrium 
under  the  action  of  three  forces. 

Hence,  by  the  theorem  of  §  52,  the  lines  of  action  of  the  three  forces  must 
meet  in  a  point. 

The  line  of  action  of  the  weight  is  already  known  to  be  the  vertical  CA, 
and  the  line  of  action  of  the  reaction  at  A  must  pass  through  A.    Hence  either 

{a)  the  point  in  which  the  three  lines  of  action  meet  must  be  ̂   ;  or 
(j3)  the  reaction  at  A  must  act  along  CA,  so  that  the  point  in  which  the 

three  lines  of  action  meet  will  be  some  point  in  CA,  other  than  A. 
The  second  alternative  may  be  dismissed  at  once.  For  if  the  reaction  at  A 

acts  along  CA,  this  and  the  weight  may  be  combined  into  a  single  force,  and 
there  must  now  be  equilibrium  under  this  force  and  the  reaction  at  B.  This 

requires  that  each  force  should  vanish,  i.e.  there  must  be  no  pressure  at  B, 
and  the  reaction  at  A  must  be  just  equal  to  the  weight  of  the  ring.     This 
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obviously  gives  a  state  of  equilibrium—  the  ring  is  standing  at  rest  on  the  table, 
acted  on  solely  by  its  weight  —  but  this  state  5f  equilibrium  is  not  the  one  with 
which  we  are  concerned  in  the  present  problem. 

Let  us  now  consider  the  meaning  of  alternative  (a).  If  the  three  lines  of 

action  meet  in  A,  the  reaction  at  B  must  act  along  BA,  and  this  must  be  true 

no  matter  how  great  the  pressure  at  B.  Hence  the  reaction  at  B  will  always 
make  an  angle  a  with  the  normal. 

If  a  is  less  than  e',  the  angle  of  friction  at  JB,  this  will  be  a  possible  line  of 
action  for  the  reaction,  and  no  slipping  can  take  place  at  B,  no  matter  how 
great  the  pressure  applied  at  B  may  be. 

On  the  other  hand,  if  a  is  greater  than  e\  equilibrium  is  impossible,  no  matter 

how  small  the  pressure  applied  at  B  may  be.  Thus,  when  there  is  equilibrium, 
the  pressure  at  B  must  vanish,  and  we  are  led  to  the  same 

state  of  equilibrium  as  was  reached  from  case  (/3).  As  soon 
as  the  pressure  at  B  becomes  appreciable,  equilibrium  is 
obviously  broken  by  slipping  taking  place  at  B,  since  for 

equilibrium  to  be  maintained  at  B,  the  reaction  would 

have  to  act  at  an  angle  greater  than  the  actual  angle  of 
friction. 

Thus  the  solution  resolves  itself  into  two  different  cases : 

Case  I.    If  a>  e\  as  soon  as  pressure  is  applied  at  Z>, 
motion  takes  place.    The  ring  slips  at  J5,  and  consequently 
rolls  at  ̂ . 

Case  II.  If  or  <  e',  we  have  seen  that  no  matter  how 
great  a  pressure  is  applied  at  5,  there  can  never  be 
slipping  at  B.  It  remains  to  examine  whether  there  can 

be  slipping  at  A. 

To  settle  this  question,  we  have  to  determine  whether  the  reaction  at  A  can 
ever  be  made  to  act  at  an  angle  with  the  vertical  which  is  as  great  as  the  angle 

of  friction  at  J.,  namely  e.  Now  the  ring  is  acted  on  by  three  forces,  the 

reactions  at  A  and  J5,  say  Ra  and  Bb-,  and  its  weight  W.  The  lines  of  action 

of  these  forces  meet  in  the  point  A^  and  from  Lami's  theorem  we  can  connect 
the  magnitudes  of  the  forces  with  the  angles  between  them.  ^ 

The  lines  of  action  of  the  three  forces  are  represented  in  fig.  63.  The  angle 

between  W  and  Rb  is,  as  we  have  seen,  always  equal  to  a.  Let  the  angle 

between  i?^  and  the  vertical  be  supposed  to  be  d.    Then,  by  Lami's  theorem. 

sin  a sin^ 
W 

sin  (a  —  6) 

The  value  of  Ra  is  not  given,  but  on  equating  the  last  two  fractions  we  have 

W      sin  (a  —  6) 

R> 

sin^ sin  a  cot  d  —  cos  a, 

so  that /               ̂ \ 
cot  6  =  I  cos  a  H   1  cosec  a 
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This  equation  enables  us  to  trace  the  changes  in  the  valuo  of  the  angle  d  as 

Er  is  gradually  increased.  We  lind  that  when  iJj?  =  0  the  value  of  ̂   is  5  =  0, 
and  that  as  Rb  increases  6  increases  continually,  but  never  exceeds  the  value 

6  =  a,  which  is  reached  when  Rb  =  oo. 
If  e  <a,  the  value  of  d  will  pass  through  the  value  e  when  Rb  reaches  a 

certain  value,  namely 

JtlB  —    » K-^  sin  (or  —  e) 

and  slipping  at  A  will  take  place  at  this  point. 
If  e  >  a,  the  value  of  d  will  never  reach  the  value  e,  so  that  slipping  at  A  can 

never  occur.  Thus  equilibrium  is  never  broken,  and  the  harder  we  press  at  B 

the  more  firmly  the  ring  is  held  between  the  finger  and  the  table. 
We  can  now  summarize  the  results  which  have  been  obtained,  as  follows : 

If  or  >  e',  the  ring  rolls  along  the  table  as  soon  as  we  begin  to  press  at  B. 

It  a<  e',  there  are  two  cases : 

(a)  or  >  e,  the  ring  will  slip  at  A  as  soon  as  sufficient  pressure  is  applied  ; 

(6)  a:  <  e,  the  ring  cannot  be  made  to  move  under  any  amount  of  pressure. 

To  make  the  ring  shoot  out  from  under  the  finger  by  slipping  at  A  (in  which 

case  it  returns  to  the  hand,  as  in  the  well-known  trick),  it  is  necessary  to  press 

at  a  point  on  the  ring  at  which  a  is  greater  than  e,  while  being  less  than  e'. 
We  notice  that  if  e  is  greater  than  e',  it  is  impossible  to  project  the  ring  in  this 
way ;  this  can  only  be  done  if  the  contact  with  the  finger  is  rougher  than  the 
contact  with  the  table. 

GENERAL  EXAMPLES 

1.  A  pair  of  steps  is  formed  by  two  uniform  ladders  each  of  length  12 

feet  and  w^eight  20  pounds,  jointed  at  the  top,  and  having  their  points  at 
distances  5  feet  from  the  ground  connected  by  a  rope.  The  steps  stand  on 

a  smooth  horizontal  plane,  and  a  man  of  weight  160  pounds  ascends  to  a 

height  of  9  feet  on  one  side.    Find  the  tension  in  the  rope. 

2.  A  heavy  uniform  rod  is  supported  by  two  strings  of  lengths  a,  b. 

The  upper  ends  of  the  strings  are  tied  to  the  same  point,  the  lower  ends 

being  tied  to  the  two  ends  of  the  rod.  Show  that  the  tensions  of  the  strings 

are  proportional  to  a  and  h  respectively. 

3.  Two  small  fixed  pegs  are  in  a  line  inclined  at  an  angle  6  to  the 

horizon,  A  rough  thin  rod  passes  under  the  lower  and  rests  on  the  higher, 

this  latter  being  lower  than  the  center  of  gravity  of  the  rod.  The  distances 

of  the  center  of  gravity  from  the  two  pegs  are  a  and  h  respectively,  and  the 
coefficient  of  friction  is  /*.     Show  that  if  the  rod  is  on  the  point  of  motion, 

b  —  a  .       - 
II  =   tan  d. h  +  a 
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4.  Two  heavy  uniform  rods  have  their  ends  connected  by  two  light 

strings,  and  the  whole  system  is  suspended  by  the  middle  point  of  one  rod. 

Prove  that  in  equilibrium  either  the  rods  or  the  strings  are  parallel. 

5.  Two  rods  AB,  CD  lying  on  a  smooth  table  are  connected  by  stretched 

strings  AC,  BD.  If  the  system  is  kept  in  equilibrium,  by  forces  acting  at 

the  middle  points  of  the  rods,  prove  that 

(a)  the  rods  must  be  parallel ; 

(p)  the  tensions  must  be  proportional  to  the  strings. 

6.  A  BCD  is  a  parallelogram  and  E  is  the  intersection  of  the  diagonals 

AC,  BD.  Show  that  parallel  forces  7,  5,  16,  4*  at  A,  B,  C,  D  respectively 
are  equivalent  to  other  parallel  forces,  8  at  the  middle  point  of  CD,  10  at 

the  middle  point  of  BC,  and  14  at  E. 

7.  A  solid  cube  is  placed  on  a  rough  inclined  plane  of  angle  a  with  two 

edges  of  its  base  along  lines  of  greatest  slope.  The  angle  of  friction  is  e. 

Prove  that  if  a  >  45°  it  will  at  once  topple  over,  while  if  e  <  a:  <  45°  it  will 

slide  down  the  plane.  If  a  is  less  than  either  e  or  45°,  find  the  friction 
brought  into  action. 

8.  A  uniform  rod  of  length  21  and  weight  W  rests  over  a  smooth  peg 

at  distance  h  (<  I)  from  a  smooth  vertical  wall  at  an  angle  0  with  the  hori- 
zontal, its  lower  end  pressing  against  the  wall,  and  its  upper  being  held  by  a 

vertical  string.    Find  the  tension  of  the  string  and  show  that  it  vanishes  if 

6  =  cos- </© 9.  Two  equal  uniform  spheres,  each  of  weight  W  and  radius  a,  rest  in 

a  smooth  hemispherical  bowl  of  j-adius  b.  Find  the  pressure  between  the 
two  spheres  and  also  the  pressure  of  each  on  the  bowl. 

10.  A  uniform  rod  rests  with  its  two  ends  on  smooth  inclined  planes, 

inclined  to  the  horizontal  at  angles  a  and  )8.  Find  the  inclination  of  the 
rod  to  the  horizontal. 

11.  In  the  last  question  a  weight  equal  to  that  of  the  rod  is  clamped  to  it. 

At  what  point  must  it  be  clamped  in  order  that  the  rod  may  rest  horizontally? 

12.  A  uniform  circular  ring  of  weight  W  has  a  bead  of  weight  w  fixed 
w 

on  it  and  hangs  on  a  rough  peg.    Show  that  if  sin  e>  _—   ,  then  the  ring 

can  rest  without  slipping,  whatever  point  of  it  rests  on  the  peg,  e  being 
the  angle  of  friction. 

13.  A  pentagon  ABCDE,  formed  of  equal  uniform  heavy  rods  connected 

by  smooth  joints  at  their  ends,  is  supported  symmetrically  in  a  vertical 

plane  with  A  uppermost,  and  AB,  AE  in  contact  with  two  smooth  pegs 

in  the  same  horizontal  line.  Prove  that  if  the  pentagon  is  regular,  the 

pegs  must  divide  AB  and  AE  each  in  the  ratio 

1  +  sin  iV  TT  :  3  sin  J^  tt. 
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14.  A  uniform  beam  of  length  /  leans  against  the  horizontal  rim  of  a 

hemispherical  bowl  of  radius  a,  with  its  lower  end  resting  upon  the  smooth 
concave  surface.    Find  its  inclination  to  the  vertical. 

15.  A  bowl  in  the  shape  of  a  paraboloid  of  revolution  is  placed  with  its 

axis  vertical.  A  uniform  rod  rests  on  a  peg  at  the  focus  and  has  its  lower 

end  resting  on  the  inner  surface.  Both  contacts  are  perfectly  smooth. 
Find  the  inclination  of  the  rod  to  the  vertical. 

16.  A  uniform  beam  of  weight  W  rests  against  a  vertical  wall  and  a 

horizontal  plane  with  which  it  makes  the  angle  a.  Both  contacts  are 

perfectly  smooth.  The  lower  end  of  the  beam  is  attached  by  a  string  to 

the  foot  of  the  wall.    Find  the  tension  of  the  string. 

17.  One  end  of  a  straight  uniform  heavy  rod  rests  on  a  rough  horizontal 

plane,  the  other  end  being  connected  with  a  fixed  point  by  a  string.  If 

e,  0,  yp  be  the  inclinations  of  the  string,  the  rod,  and  the  total  reaction  of 

the  horizontal  plane  respectively  to  the  vertical,  show  that 

cot  ̂   ±  2  cot  0  -  cot  i/' =  0. 

18.  Two  uniform  rods  AB,  BC  of  the  same  material  but  of  different 

lengths  are  jointed  freely  at  B  and  fixed  to  a  vertical  wall  at  A  and  C.  Show 

that  the  direction  of  the  reaction  at  B  bisects  the  angle  ABC. 

19.  A  uniform  regular-hexagonal  board  ABCDEF  of  given  weight  W 
is  supported  in  a  horizontal  position  on  three  pegs,  placed  at  the  comers 

A ,  B  and  the  middle  point  of  DE.    Find  the  pressures  on  the  pegs. 

20.  Two  spheres  of  radii  a,  b  and  weights  W,  W  respectively  are 

suspended  freely  by  strings  of  lengths  I,  I'  respectively  from  the  same  hook 
in  the  ceiling.  If  T  >  Z  +  2  a,  show  that  the  angle  which  the  first  string 
makes  with  the  vertical  is 

•  _i  Ty« 
^^"    (i^  +  ir)  («  +  /)' 

21.  A  uniform  rod  hangs  by  two  strings  of  lengths  Z,  V  fastened  to  its 
ends  and  to  two  hooks  in  the  same  horizontal  line  at  the  distance  a.  If 

the  strings  cross  one  another  and  make  the  respective  angles  (X,  «%  with 

the  horizontal,  show  that  when  the  rod  is  in  equilibrium 

sin  {a  +  «')  (/'  cos  a'  —  I  cos  a)  —  a  sin  (a  —  a'). 

22.  A  uniform  plank  of  length  2  h  rests  with  one  end  on  a  rough  hori- 
zontal plane,  touches  a  smooth  fixed  cylinder  of  radius  a  lying  on  the  plane, 

and  makes  an  angle  2  a  with  the  plane,  the  angle  of  friction  being  e. 

Show  that  equilibrium  is  possible  if 

«  sin  e  >  &  tan  a  cos  2  a  sin  (2  a  +  e). 

23.  Two  equal  and  similar  isosceles  wedges,  each  of  weight  W  and 

vertical  angle  2  a,  are  placed  side  by  side  with  their  bases  on  a  rough 



114  STATICS  OF  EIGID  BODIES 

horizontal  table  so  as  to  be  just  in  contact  along  an  edge.  A  smooth 

sphere  of  weight  lo  and  radius  r  is  supported  between  them,  being  in  con- 

tact with  a  face  of  each.     Prove  that  for  equilibrium  it  is  necessary  that 

w  cot  a  ^       •        . 
lJ^>7rzT-.   »     r<2asinatan 2lt  +  w 

-(-I) 

where  /x  denotes  the  coefficient  of  friction  and  2  a  is  the  length  of  either 
base. 

24.  A  seesaw  consists  of  a  plank  of  weight  w  laid  across  a  fixed  rough 

log  whose  shape  is  that  of  a  horizontal  circular  cylinder.  The  inclination 

to  the  horizontal  at  which  it  balances  is  increased  to  a  when  loads  W,  W 

are  placed  at  the  lower  and  higher  ends  respectively ;  and  the  inclination 

is  reduced  to  ̂   when  these  loads  are  interchanged.  Show  that  the  inclina- 
tion of  the  j)lane  when  unloaded  is 

w\W  -^W'+w)  (W'a  -  W0) 

w'  being  the  weight  which,  placed  at  the  higher  end,  would  balance  the 
plank  horizontally. 

25.  A  chain  is  formed  oi  2  n  exactly  similar  links,  the  contacts  between 

consecutive  links  being  perfectly  smooth.     The  two  end  links  can  slide  on. 

a  horizontal  wire,  the  contact  here  being  rough,  coefficient  of  friction  /a. 

Show  that  in  the  limiting  position  of  equilibrium,  the  inclination  of  either 

of  the  upper  links  to  the  vertical  is 

,        ,     2nfi 

tan-i   2/1-1 

26.  Two  equal  circular  disks  of  radius  r,  with  smooth  edges,  are  placed 

on  their  flat  sides  in  the  corner  between  two  smooth  vertical  planes  inclined 

at  an  angle  2  a,  and  touch  each  other  in  the  line  bisecting  the  angle. 

Prove  that  the  smallest  disk  which  can  be  pressed  between  them  without 

causing  them  to  separate  is  one  of  radius  r(sec  a  —  ly 

27.  How  is  the  result  of  the  last  question  modified  if  all  the  contacts 

are  rough,  the  angle  of  friction  at  each  being  e? 

28.  Two  uniform  ladders  are  jointed  at  one  end  and  stand  with  their 

other  ends  on  a  rough  horizontal  plane.  A  man  whose  weight  is  equal  to 
that  of  one  of  the  ladders  ascends  one  of  them.  Prove  that  the  other  will 

slip  first. 

If  it  begins  to  slip  when  he  has  ascended  a  distance  x,  prove  that  the 

coefficient  of  friction  is    tan  a,  a  being  the  length  of  each  ladder 

and  a  the  angle  each  makes  with  the  vertical. 

29.  A  weightless  ladder  rests  against  a  smooth  cube  of  weight  Wy 

standing  on  smooth  ground,  with  the  foot  of  the  ladder  tied  to  the  middle 
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point  of  one  of  the  lowest  edges  of  the  cube ;  a  man  of  weight  w  ascends 
the  ladder.  Prove  that,  if  the  ladder  projects  above  the  top  of  the  cube, 

the  cube  will  tilt  before  he  reaches  the  top  of  the  cube  unless 

W>2w  cos  a  (sin  a  —  cos  a), 

where  a  is  the  inclination  of  the  ladder  to  the  horizontal. 

30.  Four  equal  spheres  rest  in  contact  at  the  bottom  of  a  smooth 

spherical  bowl,  their  centers  being  in  a  horizontal  plane.  Show  that  if 

another  equal  sphere  be  placed  upon  them  the  lower  spheres  will  separate 

if  the  radius  of  the  bowl  be  greater  than  (2  vl3  +  1)  times  the  radius  of 

a  sphere. 

31.  Three  equal  spheres  rest  in  contact  on  a  smooth  horizontal  plane, 

so  that  their  centers  form  an  equilateral  triangle,  and  are  bound  together 

by  a  fine  string  passing  around  them  on  the  level  with  their  centers.  If 

another  equal  sphere  be  placed  symmetrically  on  them,  show  that  the 

tension  of  the  string  is  increased  by  — —  w,  where  w  is  the  weight  of  the 

upper  sphere. 

32.  A  right  circular  cone  of  vertical  angle  2  a  rests  with  its  base  on  a 

rough  horizontal  plane.  A  string  is  attached  to  the  vertex,  and  is  pulled 

in  a  horizontal  direction  with  a  gradually  increasing  force.  Find  in  what 

way  equilibrium  will  first  be  broken. 

33 .  A  heavy  particle  is  placed  on  a  rough  inclined  plane  whose  inclina- 
tion is  exactly  equal  to  the  angle  of  friction.  A  thread  is  attached  to  the 

particle  and  is  passed  through  a  hole  in  the  plane  which  is  lower  than  the 

particle,  but  is  not  in  the  line  of  greatest  slope  through  it.  Show  that  if 

the  thread  be  gradually  drawn  through  the  hole,  the  particle  will  describe 

a  straight  line  and  a  semicircle  in  succession. 

34.  A  uniform  cubical  block  of  weight  W  rests  with  one  edge  horizontal 

on  a  rough  inclined  plane,  and  against  the  block  rests  a  rough  sphere  of 

w^eight  W  of  radius  less  than  an  edge  of  the  cube.  The  inclination  of  the 
plane  is  gradually  increased.  Examine  the  different  ways  in  which  equi- 

librium may  be  broken,  and  determine  which  will  actually  occur  in  a 

given  case. 

35.  A  rough  uniform  rod  is  placed  on  a  horizontal  plane  and  is  acted 

on,  at  one  of  the  points  of  trisection  of  its  length,  by  a  horizontal  force  in 

a  direction  perpendicular  to  its  length.  Find  about  what  point  the  rod 
will  begin  to  turn. 

36.  A  heavy  bar  AB  is  suspended  by  two  equal  strings  of  length  I, 

which  are  originally  parallel.  Find  the  couple  which  must  be  applied  to 

the  bar  to  keep  it  at  rest  after  it  has  been  twisted  through  an  angle  6  in 
the  horizontal  plane. 
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37.  The  line  of  hinges  of  a  door  is  inclined  at  an  angle  a  to  the  vertical. 
Show  that  the  conple  required  to  keep  it  in  a  position  inclined  at  an  angle 
/3  to  that  of  equilibrium  is  proportional  to  sin  a  sin  p. 

38.  Show  that  any  system  of  forces  acting  on  a  rigid  body  can  be 
reduced  to  two  equal  forces  equally  inclined  to  the  central  axis. 

39.  Prove  that  the  central  axis  of  two  forces  P  and  Q  intersects  the 
shortest  distance  c  between  their  lines  of  action  and  divides  it  in  the  ratio 

Q(Q  +  Pcosd):P(P  +  Q.  cos d), 

e  being  the  angle  between  their  directions.     Also  prove  that  the  moment 
of  the  principal  couple  is 

cPQ  sine 
Vp2  +  Q2  +  2  PQ  cos  d 

40.  Prove  that  the  axis  of  the  resultant  of  two  given  wrenches  (R^,  H^) 

and  (R^,  H^),  the  axes  of  which  are  inclined  to  each  other  at  an  angle  d, 
intersects  the  shortest  distance,  2  c,  between  their  axes  at  a  point  the  dis- 

tance of  which  from  the  middle  point  is 

(7?/  -  Rj)  c  +  (H^R2  -  H^Ri)  sin  ̂  

A\2  -hRi  +  2  R^R^  cos  d 



CHAPTER  VI 

CENTER  OF  GRAVITY 

85.  As  we  have  seen,  the  action  of  gravity  on  a  system  of 

masses  may  be  represented  by  a  system  of  parallel  forces,  these 
forces  consisting  of  a  force  acting  on  each  particle  equal  to  the 

weight  of  the  particle,  its  direction  being  vertically  downwards. 

By  the  rules  explained  in  the  last  chapter,  these  forces  may  be 

compounded  into  a  single  force.  The  magnitude  of  this  force  is 
the  sum  of  all  the  component 

forces,  and  is  therefore  the  total 

weight  of  the  body,  while  -the 

direction  of  the  force,  being  par- 
allel to  the  component  forces, 

is  itself  vertically  downwards. 

The  problem  discussed  in  the 

present  chapter  is  that  of  de- 
termining the  position  of  the 

line  of  action  of  this  force.  2/- 
86.  Let  the  particles  be  of 

masses  m^,  m^,  •••.  Let  rectangular  axes  be  taken,  the  axis  of  z 
being  vertical,  and  let  the  coordinates  of  the  first  particle  be 

iCj,  y^,  z^,  the  coordinates  of  the  second  be  x^,  y^,  z^,  and  so  on. 

The  weight  of  the  first  particle  is  m^g,  and  its  line  of  action 

cuts  the  plane  Oxy  in  a  point  of  which  the  coordinates  are 

iCj,  2/j,  0.  Hence  the  moment  of  the  force  about  the  axis  Oy  is 

m^gx^.  Let  the  line  of  action  of  the  resultant  cut  the  plane  Oxy 

in  the  point  x,  y,  0.  Then  the  moment  of  the  resultant  about  the 

axis  Oy  is  (^'niAgx,  where  Vm^  is  the  sum  of  the  masses  of  all 
the  particles. 

117 

Fig.  64 
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Since  the  moment  of  the  resultant  is  equal  to  the  sum  of  the 

moments  of  the  separate  forces,  we  must  have 

so  that 

X  = 

m. 

Similarly 

y  =  ̂  — 

m. 

These  equations  determine  the  coordinates  x,  y'  of  the  point  in 
which  the  line  of  action  of  the  resultant  meets  the  plane  Oxy. 

We  have,  however,  seen  that  the  coordinates  of  the  centroid  of 

masses  m^  at  x^,  y^,  z^,  m^  at  x^ 

m.x 1*^1 

X  = 

y  = 

2/2,  ̂ 2>  etc.,  are 

X^i2^i  X^ 

m. 

so  that  the  point  in  wliich  a  vertical  through  the  centroid  will 

meet  the  plane  Oxy  must  be 

X^i^i    X^i^^ 

0, 

m. 

i.e.  the  point  must  be  the  point  ̂ ,  ̂ ,  0  in  which  the  line  of  action 

of  the  resultant  force  meets  the  plane  Oxy.    Thus 

The  line  of  action  of  the  resultant  force  of  gravity  is  the  ver- 
tical line  through  the  centroid  of  the  particles. 

For  this  reason  the  centroid  of  a  number  of  points,  weighted 

according  to  the  masses  of  the  particles  which  occupy  these  points, 

is  called  the  center  of  gravity  of  the  particles.  The  effect  of 

gravity  acting  on  a  rigid  body  is,  as  we  have  now  seen,  repre- 
sented by  a  single  force  acting  vertically  downwards  through  the 

center  of  gravity  of  the  body,  the  amount  of  the  force  being  equal 

to  the  total  weight  of  the  body.  The  action  of  gravity  is,  accord- 
ingly, the  same  as  if  the  whole  mass  of  the  body  were  concentrated 

in  a  single  particle  placed  at  the  center  of  gravity. 

I 
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87.  It  is  clear  that  if  we  suspend  a  rigid  body  or  system  of 

bodies  by  a  string,  the  center  of  gravity  must  be  vertically  below 

the  string.  For  all  the  forces  acting  on  the  system  reduce  to  two, 

—  the  tension  of  the  string  and  the  weight  acting  at  the  center 

of  gravity,  —  and  in  equilibrium  these  two  must  act  along  the 
same  line. 

In  the  same  way  it  will  be  seen  that  if  a  body  is  placed  on  a 

point  in  such  a  way  as  to  balance  in  equilibrium  on  this  point, 

then  the  center  of  gravity  must  be  vertically  above  the  point. 

88.  A  few  simple  instances  of  the  position  of  the  center  of 

gravity  have  been  mentioned  m  §  77.    These  were  as  follows : 

(a)  the  center  of  gravity  of  a  uniform  rod  is  at  its  middle  point ; 

(h)  the  center  of  gravity  of  a  uniform  circular  disk,  circular 

ring,  or  sphere  is  at  the  center; 

(c)  the  center  of  gravity  of  a  cube  or  parallelepiped  is  at  the 

center  (i.e.  the  intersection  of  the  diagonals). 

89.  It  is  easy  to  find  the  center  of  gravity  of  a  system  of  bodies 

when  the  center  of  gravity  of  each  of  the  component  parts  is  knowTi. 

For,  regarding  the  weight  of  each  of  the  bodies  as  a  siagle  force 

acting  through  its  center  of  gravity,  we  have  a  number  of  parallel 

forces  in  action,  and  on  compounding  these  according  to  the  rules 

already  explained,  the  line  of  action  of  the  resultant  determines 

the  liue  along  which  the  total  weight  will  act.  Thus  the  center 

of  gravity  of  the  whole  system  of  bodies  will  be  the  centroid  of 

the  centers  of  gravity  of  the  separate  bodies,  weighted 
according  to  the  masses  of  these  bodies. 

90.  For  instance,  let  us  suppose  we  require  to  find  the 

center  of  gravity  of  a  pendulum  which  consists  of  a  wire  g 

of  length  I  and  weight  w,  to  which  is  affixed  a  circular  bob 

of  weight  W,  the  center  of  the  circle  being  at  a  distance  a 
from  the  end  of  the  wire.  Let  AB  be  the  wire,  C  the  center 

of  the  bob,  and  D  the  middle  point  of  the  wire.  The  center 
of  gravity  of  the  wire  wiU  be  at  D  and  that  of  the  bob  at  C, 

so  that  the  center  of  gravity  of  the  whole  will  be  at  the  centroid 
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of  the  points  D  and  (7,  these  being  weighted  in  the  ratio  w :  W. 

Denoting  this  center  of  gravity  by  G,  we  have,  from  the  formula 

on  treating  the  line  ADCB  as  the  axis  of  x  and  taking  A  as  origin, 

AG  =   

_  W{1  -a)-\-\wl 

EXAMPLES 

1.  Weights  of  3  pounds  are  placed  at  each  of  three  corners  of  a  square,  and 
a  weight  of  6  pounds  at  the  fourth  corner.    Find  their  center  of  gravity. 

2.  From  one  corner  of  a  cardboard  square  of  edge  6  inches,  a  square  of  edge 
3  inches  is  cut.    Find  the  center  of  gravity  of  the  remainder. 

3.  A  thin  rod  of  weight  6  ounces  and  length  6  inches  is  nailed  on  to  a  circle 

of  cardboard  of  weight  6  ounces  and  radius  0  inches  so  that  its  two  ends  are  on 

the  circumference  of  the  circle.    Find  the  center  of  gravity  of  the  whole. 

4.  A  bicycle  wheel  of  diameter  26  inches  weighs  3  pounds.  Each  spoke  is  of 

length  11  inches,  and  starts  from  the  hub  at  a  distance  of  \  inch  from  the  cen- 
tral axis  of  the  wheel.  If  one  spoke  is  taken  out,  find  the  center  of  gravity  of 

the  wheel. 

5.  A  hammer  has  for  handle  a  wooden  cylinder,  length  8  inches,  radius 

I  inch,  weight  8  ounces,  and  for  head  an  iron  cylinder,  from  which  a  hollow  is 
cut  into  which  the  handle  exactly  fits,  the  handle  coming  through  so  as  to  be 

exactly  flush  with  the  iron.  The  head  is  of  length  3  inches,  radius  1]  inch,  and 
weight  3  pounds.    Find  the  approximate  position  of  the  center  of  gravity. 

6.  A  box,  without  lid,  is  made  of  1-inch  wood  so  as  to  have  internal  dimen- 
sions 12  X  12  X  12  inches.    Find  the  position  of  its  center  of  gravity. 

7.  A  uniform  thin  rod  28  inches  in  length  is  bent  so  that  the  two  parts,  of 

lengths  12  and  16  inches,  are  at  right  angles  to  one  another.  Find  the.  center  of 

gravity. 
8.  A  uniform  wire  is  bent  into  the  form  of  a  triangle.  Show  that  the  center 

of  gravity  of  the  wire  coincides  with  the  center  of  the  circle  inscribed  in  the 

triangle  formed  by  joining  the  middle  points  of  the  sides. 

9.!  A  T-square  is  made  of  cedar  of  uniform  density,  the  crosspiece  being  of 

dimensions  6  x  2  x  ̂   inches,  and  the  arm  being  of  dimensions  8  x  1  ̂  x  |  inches. 
The  crosspiece  is  cut  away  so  that  the  under  surface  of  the  instrument  is 

plane.    Find  the  position  of  the  center  of  gravity  of  the  whole. 
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10.  Three  beads  of  weights  Wa<,  Wh,  Wc  are  placed  on  a  circular  wire,  and 
when  the  beads  are  at  the  points  .4,  J5,  C  on  the  circle,  the  center  of  gravity 
of  the  whole  is  found  to  coincide  with  0,  the  center  of  the  circle.    Show  that 

Wa  W^  Wc 
sin  BOC      sin  CO^      sin  AOB 

Center  of  Gravity  of  a  Lamina 

91.  It  is  often  of  importance  to  be  able  to  find  the  position 

of  the  center  of  gravity  of  a  lamina,  i.e.  of  a  thin,  plane  shell  of 

uniform  thickness  and  density,  such,  for  instance,  as  is  obtained 

by  cutting  a  figure  out  of  a  sheet  of  cardboard. 

92.  Center  of  gravity  of  a  triangle.  Let  ABC  represent  a 

triangular  lamina  of  which  it  is  required  to  find  the  position  of 

the  center  of  gravity.  Let  us  imagine  the  triangle  divided  by 

lines  parallel  to  the  base  B  C  into  a  very 

great  number  of  infinitely  narrow  strips. 

Let  pq  be  any  single  strip.  Since,  by 

hypothesis,  we  may  regard  this  strip  as 

of  vanishingly  small  width  and  thick- 
ness, we  may  treat  it  as  a  thin  uniform 

rod.  The  center  of  gravity  of  a  thin 

uniform  rod  is  at  its  middle  point,  so 

that  the  weight  of  the  strip  pq  may  be  supposed  to  act  at  r,  the 

middle  point  of  pq. 

The  weights  of  the  other  strips  may  be  treated  in  the  same 

way,  so  that  the  weight  of  the  whole  triangle  may  be  replaced  by 

the  weights  of  a  system  of  particles  situated  at  the  middle  points 
of  these  strips. 

Now  if  D  is  the  middle  point  of  the  base  BC,  the  middle  points 

of  all  the  strips  lie  in  the  line  AB.  Thus  the  weight  of  the  tri- 
angle is  replaced  by  the  weights  .of  a  number  of  particles,  all  of 

which  are  situated  in  the  line  AB.  It  follows  that  the  center  of 

gravity  of  the  whole  triangle  must  lie  in  the  line  AB. 

We  might  equally  well  have  supposed  the  triangle  divided  into 
strips  parallel  to  the  side  AC.    We  should  then  have  found  thdt 
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the  center  of  gravity  must  lie  in  the  line  BE,  where  E  is  the 

middle  point  of  AC. 

These  two  results  fully  fix  the  position  of  the  center  of  gravity ; 
it  must  be  at  the  intersection  of  the  lines  AD,  BE. 

Join  DE.  Then  the  triangles  DCE,  BCA  are  two  similar 

triangles,  the  former  being  just  half  the  size  of  the  latter.  Thus 

DE  must  be  parallel  to  AB,  and  of  half  the  length  of  AB. 

It  now  follows  that  DGE,  AGB  are  similar  triangles,  of  which 
the  former  is  half  the  size  of  the  latter. 

Hence  GD  is  half  of  AG. 

Thus  G  divides  AD  in  the  ratio  2:1. 

If  we  join  C  to  F,  the  middle  point  of 

AB,  we  can  in  the  same  way  show  that 
CF  must  divide  AD  in  the  ratio  2  : 1. 

Thus  CF  must  also  pass  through  G. 
The  three  lines  AD,  BE,  CF,  which 

join  the  vertices  of  the  triangle  to  the 

middle  points  of  the  opposite  sides,  are  called  the  medians  of  the 

triangle.  We  have  shown  that  the  three  medians  meet  in  the  same 

point  Gy  and  that  this  point  is  the  center  of  gravity  of  the  triangle. 

We  have  also  shown  that  the  center  of  gravity  divides  any  median 

in  the  ratio  2:1,  i.e.  that  it  is  one  third  of  the  way  up  the  median, 

starting  from  the  base. 

93.  Center  of  gravity  of  any  polygon.  The  center  of  gravity 

of  any  rectilinear  polygon  can  be  found  by  dividing  it  up  into 

triangles  and  replacing  each  triangle  by  a  particle  at  its  center  of 

gravity. 

EXAMPLES 

1.  Show  that  the  center  of  gravity  of  a  triangle  coincides  with  that  of  three 
equal  particles  placed  at  its  angular  points. 

2.  Prove  that  if  the  center  of  gravity  of  a  triangle  coincides  with  its  ortho- 
center  the  triangle  is  equilateral. 

3.  A  cardboard  square  is  bent  along  a  diagonal  until  the  two  parts  are  at 
right  angles.     Find  the  position  of  its  center  of  gravity. 

4.  A  quarter  of  a  triangular  lamina  is  cut  off  by  a  line  parallel  to  its  base. 
Where  is  the  center  of  gravity  of  the  remainder  ? 
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5.  A  right-angled  isosceles  triangle  is  cut  out  from  a  lamina  in  the  shape  of 
an  equilateral  triangle  so  as  to  have  the  same  base  as  the  original  triangle.  Find 

the  center  of  gravity  of  the  V-shaped  piece  left  over. 
6.  The  center  of  gravity  of  a  quadrilateral  lies  on  one  of  its  diagonals.  Show 

that  this  diagonal  bisects  the  other  diagonal. 

Centers  of  Gravity  obtained  by  Integration 

94.  Center  of  gravity  of  a  rod  of  varying  density.    Let  AB  he 

a  rod  of  which  the  weight  per  unit  length  varies  from  point  to 

point,  and  let  p  denote  the  weight  per  unit  length  at  any  point. 

Let  F,  Q  be  two  adjacent  points,  the  distances  of  P,  Q  from  the 

point  A  being  x  and  x  -\-  dx  respectively.  Then  the  length  P^  is 
dx,  and  its  mass  is  pdx,  where  p  is  the  p^ 

mass  per  unit  length  at  this  point.      ^   
When  dx  is  made  vanishingly  small,  ^^'^-  ̂ ^ 
the  distance  of  the  center  of  gravity  oi  PQ  from  A  may  be  taken 

to  be  x.  Hence  if  x  denotes  the  distance  of  the  center  of  gravity 
of  the  whole  rod  from  A, 

^{mx) 
X  = 

m 

where  m  is  the  mass  of  any  element  such  as  PQ,  and  the  summa- 
tion is  taken  over  all  the  particles  of  which  the  rod  is  formed. 

Putting  in  =  p  dx,  this  becomes 

""^   ̂ {pdxy 

or,  in  the  notation  
of  the  integral  

calculus, 

/  pxdx 

[pax 

(28) 

|;where  the  integration  extends  in  each  case  over  the  whol
e  rod. 

ffhe  variable  p  will  be  a  function  of  x,  and  the  integrations  cannot 
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95.  To  take  a  definite  instance,  let  us  suppose  that  the  density 

increases  uniformly  from  one  end  to  the  other.  Let  the  density  at 

^  be  0,  and  that  at  B  be  k.    If  the  rod  is  of  length  a,  the  density 

at  a  distance  x  horn  A  will  be  kl- \    Thus  we  must  put 

in  formula  (28),  and  so  obtain 

/k\-\xd
x 

/.(-:).
. where  the  integration  is  from  rzj  =  0  to  ̂   =  a.    Dividing  numerator 

k 
and  denominator  by  ->  w^e  obtain 

I   d(?  dx 

^  =  "r^ — 
I    xdx 

Jo 

ia'       2 

showing  that  the  center  of  gravity  is  two  thirds  of  the  way  along 
the  rod. 

96.  We  can  use  this  result  to  obtain  the  center  of  gravity  of  a 

triangle.  As  in  §  92,  we  divide  the  triangle  into  parallel  strips, 

and  replace  each  strip  by  a  particle  at  its  middle  point.  The  mass 

of  each  particle  must  be  that  of  the  strip  wliich  it  replaces,  and 

this  is  jointly  proportional  to  the  width  and  the  length  of  the 

strip.  If  X  is  the  distance  of  any  particle  from  A  measured  along 

the  median  AD,  the  width  of  a  strip  is  proportional  to  dx,  the 

length  intercepted  on  the  median,  while  the  length  of  the  strip  is 

proportional  to  x,  the  distance  from  a.    Thus  p  dx  must  be  simply 
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proportional  to  x  dx,  and  as  we  have  just  found,  this  at  once  leads 
to  the  result  _ 

X  —  %  a. 

where  a  is  the  length  of  the  median. This  is  exactly  the  result 

previously  obtamed. 
97.  Center  of  gravity  of  a  circular  arc.  The  same  method  can 

be  used  to  find  the  center  of  gravity  of  a  wdre  bent  into  the  form 
of  a  circular  arc  FQ.  Let  0  be  the  center  of  the  circle,  and  A  the 

middle  point  of  the  arc,  and  let  the  whole  arc  subtend  an  angle 
2  a  at  the  center.  Consider  a  small  element  cd  of  the  liaK  PA  of 

the  wire.  Let  the  angle  dOA  be  6, 

and  cOA  be  6  -\-  dd,  so  that  the 
element  subtends  the  angle  dO  at 
the  center.  If  a  is  the  radius  of 

the  circle,  the  length  of  this  ele- 
ment is  a  dd,  so  that  if  w  is  the 

mass  of  the  wire  per  unit  length, 
the  mass  of  the  element  will  be 

wa  dd.  This  and  the  similar  ele- 

ment c'd'  in  the  half  AQ  erf- the 
wire  form  a  pair  of  equal  particles 

equidistant  from  the  central  line 

OA.    They  may  be  replaced  by  a 

single  particle  of  mass  2  wa  dd  at  their  center  of  gravity.  This 

center  of  gravity  is  in  OA,  at  the  point  at  which  the  line  joining 
the  two  elements  meets  OA,  and  hence  at  a  distance  a  cos  6  from  0, 

Denoting  this  by  x,  and  the  mass  2  wa  dO  by  m,  we  have,  for  the 
distance  x  of  the  center  of  gravity  of  the  whole  wire  from  0, 

^{mx) 

I  a  cos  6 (2wad6)
 

I 2wad0 
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where  the  integration  is  from  ̂   =  0  to  ̂   =  a;.    Simplifying,  we  find 

a  \        cos  6  d6 

X  — 

'f 
J0=O 

^     d0 

0=0 

a  sm  a 

(29) 

giving  the  position  of  the  center  of  gravity. 

When  a  is  very  small,  sia  a  and  a  become  equal,  so  that  for 

very  small  values  of  a,  formula  (29)  reduces  to  x  =  a,  as  it  ought. 
This  simply  expresses  that  as  the  curvature  of  the  arc  decreases, 

the  center  of  gravity  approximates  more  and  more  closely  to  the 

middle  poiut  of  the  arc.  Finally,  when  a  =  0,  the  arc  becomes  a 
straight  rod,  and  the  center  of  gravity  is,  of  course,  found  to  be 

exactly  at  the  middle  point. 

TT For  an  arc  bent  into  a  semicircle,  we  take  a  =  —>  and  obtaia 

.      IT 

a  sm  — A 

.      IT 

sm- 

2a =  —  =  .6366  a. 

98.  The  center  of  gravity  of  a  cir- 
cular arc  PQ  can  be  found  in  an  in- 

teresting manner,  without  the  use  of 
the  integral  calculus. 

From  symmetry  it  is  clear  that  the 
center  of  gravity  of  the  arc  AP  must 
lie  in  the  radius  which  bisects  the 

angle  A  OP.  Let  p  be  this  center  of 
gravity,  and  let  g  be  the  center  of 
gravity  of  the  arc  AQ.  Then  the 
center  of  gravity  or  the  whole  arc  PQ 
must  be  iV,  the  middle  point  of  pq. 

Now  since  the  angle  pON  =  I  (x, 
we  have 

ON  =  Op  cos  h  a . Fig.  70 
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This  relation  shows  that 

(the  distance  of  c.  g.  of  arc  2  a  from  center) 

=  cos  ̂   X  (the  distance  of  c.  g.  of  arc  a  from  center). 

Similarly 

(the  distance  of  e.g.  of  arc  a  from  center) 

=  cos  J  X  (the  distance  of  e.g.  of  arc  ̂   from  center), 

and  so  on.    Continuing  in  this  way,  and  substituting,  we  obtain 

(the  distance  of  c.  g.  of  arc  2  a  from  center) 
a          a          a                 a 

=  cos  —  •  cos  —  •  cos   cos   
2  4  8  2"  +  ̂ 

X  (the  distance  of  e.g.  of  arc  -^  from  center). 

If  we  make  n  very  great,  the  value  of  —  becomes  zero.  Thus  the  dis- 

tance of  the  e.g.  of  an  arc  ̂   from  the  center  becomes  equal  to  a,  the  radius 

of  the  circle.     Making  n  infinite,  we  have 

(the  distance  of  e.g.  of  arc  2 a  from  center) 

=  a  cos  —  cos  —  cos  —  ...  to  infinity. 
2         4         8  ^. 

-^                                        a        sin  a JN  ow  cos  —  =   > 
2 

2  sin- 
9 

cos^  =   -^  etc., 

.  1    ,                         a          a          a              a         sm  a 
so  that  cos  —  •  cos  —  •  cos   cos  —  =   

2  4  8  2" 

Making  n  infinite,  the  value  of  sin  ̂   becomes  identical  with  -^  ,  so 

a        a        a       ̂     •   ̂     -j.        sin  a 
cos  —  cos  —  cos   to  infinity  =   , 

2         4         8  ^  a 

so  that  the  distance  of  the  e.g.  of  the  arc  2  a  from  the  center  is  found  to 
,         gin  a  ,    - 
be  a   ,  as  before. 
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99.  Center  of  gravity  of  a  segment  of  a  circle.    Suppose  next 

that  we  require  to  find  the  center  of  gravity  of  a  segment  FAQN 

of  a  circle,  cut  off  by  a  chord  PNQ, 

which  subtends  an  angle  2  a;  at 
the  center  0  of  the  circle.  Let  us 

divide  the  whole  segment  into  thin 

strips  parallel  to  the  chord,  and 

let  cc'dd'  in  fig.  71  be  a  typical 

strip  bounded  by  chords  cc' ,  ddJ . 
Let  the  angle  cOA  be  Q,  and  let 

dOAhQ  e  -^  de.  Then  the  width 

of  the  strip  is  cd^md  or  a  sin ^ dd^ 

while  its  lengthis  2cn  or  2  a  sin  6. 

Thus  the  area  is  2  a  sin^  6  dd.  Its 
mass  may  be  supposed  to  be  all 
concentrated  at  n,  of  which  the 
distance  from  0  is  a  cos  6. 

Thus  if  X  is  the  distance  from  0  of  the  center  of  gravity  of  the 
whole  segment,  we  shall  have 

C{acose){2a\hY'ede) 
x  =  ̂   -^   > 

I  {2a%m'6de) 

and  the  integration  has  to  be  taken  from  0  =  0  to  0  =  a.    Simpli- 
fying, we  have 

Fig.  71 

f\m'e 
cosOde. 

j 

"^  sm'edO 

J 0 

lsin^«; 

U^ 

—  sin  a  cos  a) 

2 
—  a  — sin^  a 3     a  —  sm  a  cos  a 
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We  find,  on  putting  a 
IT 

—  >  that  the  center  of  gravity  of  a  semi- 

circle  is  at  a  distance   a  from  the  center. 
3  IT 

100.  Center  of  gravity  of  a  sector  of  a  circle.  The  center  of 

gravity  of  a  sector  of  a  circle  can  be  found  by  regarding  the  sector 

as  made  up  of  a  triangle  and  a  segment.  The  center  of  gravity  of 

the  triangle  and  of  the  seg- 
ment both  being  known,  it 

is  easy  to  find  the  center  of 

gravity  of  the  whole  figure. 

A  simpler  way  is  the 

following:  We  can  divide 

the  sector  by  a  series  of 

radii  into  a  great  number  q 

of  very  narrow  triangles. 

The  weight  of  each  triangle 

may  be  replaced  by  the 

weight  of  a  particle  placed 

at  its  center  of  gravity. 
Now,  in  the  limit,  when  the 

triangles  become  of  infini- 
tesimal width,  the  center  of 

gravity  of  each  is  on  its  median  at  a  distance  from  the  ceilter  of 

the  circle  equal  to  |  a,  where  a  is  the  radius  of  the  circle.  Thus 

all  the  particles  lie  on  a  ̂ rcle  of  radius  |  a. 
The  weight  of  any  particle  must  be  equal  to  the  weight  of  the 

triangle  OFQ  which  it  replaces.  It  must,  therefore,  be  propor- 
tional to  the  base  FQ  oi  the  triangle,  and  this  again  is  proportional 

P   -^P  to  pq,  the  piece  of  the  circle  of 

radius  J  a  w^hicli  is  inclosed  by 
the  triangle.  Thus  the  weight  of 

the  particle  which  has  to  be 

placed  in  the  small  element  pq  of  this  circle  is  proportional  to  the 

length  pq.  On  passing  to  the  limit,  and  making  tlie  number  of 

triangles   infinite,  we   find   that  the   string   of  particles   may  be 

Fig.  72 

Fig.  73 
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replaced  by  a  wire  of  uniform  density.  The  center  of  gravity  of 

this  wire  has  already  been  determined.  If  2  «;  is  the  angle  of  the 

wire,  the  center  of  gravity  lies  on  the  radius  to  the  middle  point 

of  the  wire  at  a  distance  -  a   from  the  center, 3        a 

Thus  the  center  of  gravity  of  the  original  sector  of  a  circle  of 

radius  a  and  angle  2  a  is  found  to  lie  on  the  central  radius  of  the 

sector  at  a  distance  -  a  — —  from  the  center. 
3        a 

101.  Center  of  gravity  of  a  spherical  cap.    The  piece  cut  off 

from  a  spherical  shell  by  a  plane  is  called  a  spherical  cap. 
The  center  of  gravity  of  a  spherical  cap 

cut  from  a  uniform  shell  can  easily  be 

found  by  the  methods  already  explained. 

Let  P^  be  the  spherical  cap,  0  being 

the  center  of  the  sphere  from  which  it 

is  cut.  Let  OE  be  the  radius  perpen- 
dicular to  the  plane  P()  by  which  the 

cap  is  bounded,  and  let  a  denote  the 
radius  of  the  sphere. 

Any  plane  parallel  io  FQ  will  cut  the  sphere  in  a  circle  of 

which  the  center  wiU  lie  on  OE.  Hence  by  taking  a  great  num- 
ber of  planes  parallel  to  FQ,  we   can 

divide  the  spherical  cap  into  a  number 

of  narrow  circular  rings,  each  having  its 
center  on  the  line  OE.    Let  us  consider  a 

single  circular  ring  cut  off  by  the  planes 

AaA!,  BhB'.    Let  the  angles  AOE,  BOE 
be  equal  to  Q  and  6  +  dd  respectively,  so 

that  the  ring  itself  subtends  an  angle  dd 
at  the  center.    The  width  AB  of  the  ring  is 

a  dd.    Its  circumference  may,  in  the  hmit, 

be  supposed  equal  to  the  circumference 

of  the  circle  AaA'.     Since  Act  =  a  sin  6, 
this  circumference  is  2  ira  sin  0.    Thus  the  ring  under  consideration 

Fig.  74 
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may  be  regarded  as  a  narrow  strip  of  length  2  tt  a  sin  0  and  of 

width  a  dd.    Its  area  is  accordingly  2  ira^  sin  6  dd. 
When  dd  is  made  very  small,  the  arc  BA  may  be  regarded  as  a 

TT straight  line  of  length  a  dd,  making  an  angle  -^  —  d  with  OK 
Thus 

the  length  of  ha,  the  projection  of  BA  on  OE,  is  a dQ  o^o^i— —  0\ 

or  a  sin  ̂   dQ.    The  area  of  the  ring  BA  is  now  seen  to  be      ̂ "^         ' 
=  27ra^smdde 
=(2  TTo)  •  ha. 

Thus  the  mass  of  the  ring  is  the  same  as  the  mass  of  the  ele- 
ment ha  of  a  rod  OE,  if  tliis  rod  is  of  uniform  density  such  that 

its  mass  per  unit  length  is  that  of  an  area  2  Tra  of  the  shell.  The 

center  of  gravity  of  the  ring  we  have  been  considering  clearly  lies 

on  the  axis  OB,  so  that  in  finding  the  center  of  gravity  of  the 

spherical  cap  this  ring  may  obviously  be  replaced  by  the  element 
ha  of  this  rod. 

In  the  same  way  each  small  ring  may  be  replaced  by  the  cor- 
responding element  of  the  rod.  Thus  the  whole  cap  may  be 

replaced  by  the  length  7^U  of  the  rod  (fig.  74)  which  is  iater- 
cepted  between  the  boundary-plane  FQ  and  the  sphere.  Since 
the  rod  is  uniform,  the  center  of  gravity  of  the  portion  rE  of 
the  rod  is  at  its  middle  point.  This  point  is  therefore  the  center 

of  gravity  of  the  spherical  cap. 
102.  Center  of  gravity  of  a  belt  cut  from  a 

spherical  shell  by  two  parallel  planes.  In  the 

same  way  we  can  find  the  center  of  gravity  of 

the  belt  cut  off  from  a  uniform  spherical  shell 

by  two  parallel  planes.  In  fig.  76  let  FQ,  F' Q' 
be  the  two  planes.  Then  we  can  divide  the 

belt  into  narrow  rings  by  planes  parallel  to 

FQ.  Each  ring,  as  before,  may  be  replaced  by 
the  corresponding  element  of  a  uniform  rod 

along  the  axis  OE,  so  that  the  whole  belt  may 

be  replaced  by  the  portion  rr'  of  this  rod,  the 
portion  intercepted  between  the  two  planes  FQ, 

F'  Q'.    The  center  of  gravity  is  now  seen  to  be  the  middle  point  of  rr'. 

Fig.  76 
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Center  of  Gravity  of  a  Solid 

103.  Center  of  gravity  of  a  pyramid  on  a  plane  base.    Let  a 

pyramid  be  formed  having  any  plane  figure  OPQE  as  base  and 

any  point  A  as  vertex.    We  can  find  the  center  of  gravity  of  a 

homogeneous  pyramid  by  dividing  it  into  thin  layers  parallel  to 

its  base,  by  a  series  of  parallel  planes. 

Let  opqr  be  any  such  layer,  this  layer  being  regarded  as  an 

infinitely  thin  lamina.  Let  G  be  the  center  of  gravity  of  a  uni- 
form lamina  coinciding  with 

the  base  OPQR,  and  let  the 

line  AG  meet  the  lamina  opqr 

in  g.  Then,  from  the  geometry 

of  similar  figures,  it  is  clear 

that  g  occupies  a  position  in 

the  lamina  opqr  wliich  corre- 

sponds exactly  with  that  occu- 

^Q  pied  by  the  point  G  in  the 
lamina  OPQR.  Thus  g  will  be 

the  center  of  gravity  of  the 

lamina  opqr.  The  mass  of  this 
lamina    may,    accordingly,   be 

replaced  by  the  mass  of  a  single  particle  at  g. 

In  the  same  way  each  of  the  laminas  into  which  we  are  sup- 
posing the  pyramid  to  be   divided  may  be 

replaced   by  a  single   particle    at   the  point 
at  which  the  lamina  intersects  the  line  AG. 

Thus  the  whole  pyramid   may  be  supposed 

replaced  by  a  series  of  particles  lying  along 

AG.    These  form  a  rod  of  varying  density, 

and   the   center  of   gravity  of   the   pyramid 
will  coincide  with  that  of  this  rod. 

The  center  of  gravity  of  the  rod  may  be 

found  by  the   method   already  explained  in 

§  94.    Consider   the   lamina  which    lies   between   two    adjacent 

Fig.  77 

Fig.  78 
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parallel  planes  meeting  A  G  in  g,  g'  respectively.    Let  Ag  =  x  and 
Jg'  =  X  +  dx,  so  that  the  lamina  intercepts  a  length  dx  on  A  G. 

Let  6  be  the  angle  between  A  G  and  the  perpendicular  from  A 
on  to  the  base  of  the  lamina.    Then  the  thickness  of  the  lamina 

=  gg'  cos  6  =  dx  cos  6. 

If  S  is  the  area  of  the  base  of  the  pyramid,  the  area  of  the 
lamma  under  discussion  is 

for  the  areas  of  the  different  laminas  are  proportional  to  the  squares 
of  their  linear  dimensions.    Thus  the  volume  of  the  lamina  we  are 

considering  2 
=    S  dx  cos  6. 

AG' 
If  this  is  to  be  replaced  by  a  particle  occupying  the  length  dx 

of  the  rod  AG,  the  density  of  the  rod  must  be 

,  S  cos  6 
P  =  X-   —  • 

,     ̂   AG^ 

Thus  the  rod  AG  must  be  of  a  density  which  varies  as  the 

square  of  the  distance  (x)  from  the  end  {A). 
The  distance  of  the  center  of  gravity  of  this  rod  from  A  is  now, 

by  the  formula  of  §  94, 

I     pxdx 
X 

I    pdx 

I    x^dx 

i: X dx 

^\A
G' ^AG^
 

^AG. 
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Thus  the  center  of  gravity  of  the  pyramid  is  in  the  line  AG, 
three  quarters  of  the  way  down  from  A. 

104.  Center  of  gravity  of  the  sector  of  a  sphere.  We  can  now 

find  the  center  of  gravity  of  the  sector  of  a  sphere,  —  the  volume 

cut  out  of  a  sohd  sphere  by  a  right  circular  cone  having  its  ver- 
tex at  the  center  of  the  sphere.  To  do  tliis  we  divide  the  base 

FQ  oi  the  sector  into  a  number  of  small  elements  of  area,  and 

then  divide  the  volume  of  the  sector  into  a  number  of  pyra- 
mids of  small  cross  section  by  taking  these  elements  of  area  as 

bases  and  joining  them  to  the  common  vertex  0.  These  pyra- 
mids are  all  of  the  same 

height,  so  that  their  masses 

are  proportional  to  their 

bases.  The  center  of  grav- 

ity of  each  pyramid  is  three 

quarters  of  the  distance 
E  down  from  0  to  its  base, 

and  is,  therefore,  at  a  dis- 
tance from  0  equal  to  three 

quarters  of  the  radius  of 

the  sphere.  Thus,  if  we  con- 

struct a  second  sphere  hav- 
ing 0  as  its  center  and  of 

radius  equal  to  three  quar- 
ters of  the  radius  of  the  original  sphere,  the  center  of  gravity 

of  each  small  pyramid  will  lie  on  this  new  sphere.  Each  pyra- 
mid may  be  replaced  by  a  particle  at  its  center  of  gravity,  so 

that  the  whole  spherical  sector  may  be  replaced  by  a  series  of 

particles  lying  on  this  sphere  and  forming  the  spherical  cap  peq 

(fig.  79). 

The  mass  of  each  pyramid  is  proportional  to  the  base,  and  this 

again  is  proportional  to  the  part  of  the  spherical  shell  jpeq  which 

is  intercepted  by  the  pyramid.  Thus  the  spherical  shell  peq  which 

is  to  replace  the  original  volume  must  be  supposed  to  be  of  uni- 
form density. 

Fig.  79 
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The  sector  of  a  sphere  OFQ  has  now  been  replaced  by  the 

uniform  spherical  shell  jpq^,  and  the  center  of  gravity  of  this  shell 

is  known  to  be  G,  the  middle  point  of  re  in  fig.  79.  This  point  G 

is,  accordingly,  the  center  of  gravity  required. 

If  the  semivertical  angle  of  the  cone  by  which  the  sector  is 

bounded  is  a,  and  if  a  is  the  radius  of  the  sphere,  we  have 

Oe  =  |-  <2,  Or  =  I  a  cos  a, 

so  that  06^  =  |-  a  (1  4-  cos  a). 

In  particular,  if  a  —  —^  the  sector  becomes  a  hemisphere,  and A 

OG 

a. 

Thus  the  center  of  gravity  of  a  hemisphere  is  three  eighths  of 

the  way  along  the  radius  which  is  perpendicular  to  its  base. 

Center  of  Gravity  of  Areas  and  Volumes  obtained  by 

Direct  Integration 

105.  Center  of  gravity  of  a  lamina.  To  find  the  center  of 

gravity  of  a  lamina  of  any  shape  by  integration,  we  take  any  con- 
venient set  of  axes  Ox,  Oy  in  the  plane  of  the  lamina,  and  imagine 

the  lamina  divided  into  small  elements 

by  two  series  of  lines,  one  parallel  to  the 

axis  Ox,  and  the  other  parallel  to  the 
axis  Oy. 

Consider  the  small  rectangular  element 
for  which  the  values  of  x  for  the  two 

edges  parallel  to  Oy  are  x  and  x  +  dx, 

and  the  values  of  y  for  the  two  other 

edges  are  y  and  y  4-  dy.  The  area  of 
this  element  is  dxdy,  so  that  if  p  is  the  mass  of  the  lamina  per  unit 

area  at  this  point,  the  mass  of  the  element  will  be  p  dxdy.  More- 
over, when  dx,  dy  are  made  vanisliingly  small  in  the  limit,  the 

mass  may  be  treated  as  a  particle.  Thus  the  whole  mass  of  the 

lamina  may  be  regarded  as  the  masses  of  a  number  of  particles. 

Fig.  80 
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In  §  86  we  obtained  for  the  center  of  gravity  of  a  number  of 
particles  the  formulae 

•     _       Xmx      _      Xmy 

In  the  present  instance  these  become 

I  /  px  dxdy         \  \py  ̂̂ ^y 

\  \p  dxdy  lip  dxdy 

the  sign  of  summation  being  replaced  by  an  integration  which  is 
to  extend  over  the  whole  area  of  the  lamina. 

If  the  lamina  is  uniform,  the  value  of  p  is  constant,  so  that 

I  j  px  dxdy  =  pi  I X  dxdy, 

and  so  on,  and  on  dividing  throughout  by  p,  the  formulae  reduce  to 

I  I X  dxdy  I  I  y  dxdy 

I  I dxdy  I  I dxdy 

106.  Center  of  gravity  of  a  solid.  To  find  the  center  of  gravity 

of  a  solid  we  divide  it  into  small  solid  elements  by  three  systems 

of  planes  parallel  to  the  three  coordinate  planes.  The  volume  of 

any  small  element  is  then  dxdydz,  and  its  mass  is  p  dxdydz.  The 

formulae  of  §  86  now  give  the  coordinates  of  the  center  of  gravity 
in  the  form 

I  I  I P^  dxdydz  I  I  I  Py  ̂ ^^V^^ 

X  =  ̂ ^yyyi   '    y  =  M^   '  etc-        (31) 
flip  dxdydz  I  I  I P  ̂'^^y^^ 
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If  the  solid  is  homogeneous,  p  is  constant,  and  the  formulae 
become 

i  I  fx dxdydz  \  \  {v dxdyd, 

^=      ̂ ^^   '       2/  = 

z 

.  etc. 

I  I  I dxdydz  j  I  j dxdydz 

107.  Use  of  polar  coordinates.  Any  other  system  of  coordinates 

can,  of  course,  be  used  for  finding  a  center  of  gravity  by  integra- 
tion. The  only  coordinates  besides  Cartesians  which  are  of  much 

use  for  this  purpose  are  polar  coordinates. 

We  can  find  the  center  of  gravity  of  a  lamina  in  polar  coordinates 

by  supposing  the  Cartesian  coordinates  x,  y  connected  with  the 

polar  coordinates  r,  6  by  the  usual  transformation 

X  =  r  cos  6,     y  =  rsiaO. 

Formulse  (31)  then  become 

r  cos  ̂   = 

r  sm 
e  = 

I  j p(r  cos  6)  (r  drdO)  j  I pr^  cos  6 drdd 

CCp{Tdrdd)  CCprdrdO 

CCp  (r  sin  6)  (r  drdd)  ffpr^  sin  6  drdd 

ffp  (r  drdO)  CCpr  drdO 

in  which  r,  6  are  the  polar  coordinates  of  the  center  of  gravity. 

On  dividing  corresponding  sides  of  these  equations,  we  can  obtain 

an  equation  giving  the  6  coordinate  alone,  namely 

sin  ̂   drdO 

ton  6 
cos  6  drdd 
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Similarly  we  can  find  the  center  of  gravity  of  a  solid  in  three- 

dimensional  polars  by  supposing  the  polar  coordinates  r,  6,  <\>  con- 
nected with  Xy  y,  z  by  the  usual  transformation 

x=-  T  sin  0  cos  <^,     y  =  r  sin  ̂   sin  <^,     z  =  r  cos  B. 

Using  this  transformation,  the  first  of  formulae  (31)  becomes 

I  I  I p(r  sin  6  cos  </>)  (r^  sin  6  drddd^) 
r  sin  5  cos  ̂   =   

(32) 

p  (r^  sin  6  drdddcj)) 

I  I  I  pr^  sin^  6  cos  (^  drdddcj) 

CfCpr^  sin  0drd6d(t> 

while  similarly  we  have,  from  the  remaining  two  formulae, 

fffpr^  sin^  ̂   sm  <^  drdOdcf) 
r  sin  (9  sin  ̂   =       ̂ ^^   >  (33) '^r"^  sin  6  drddd(j> 

i  I  j  p^^  sin  ̂   cos  6  drdOdcj) 

r  cos  ̂   =  -^%   (34) 
pr^sinedrdOdcj) 

108.  An  exactly  similar  method  will  lead  to  formulae  giving 

the  position  of  the  center  of  gravity  in  any  system  of  coordinates. 

The  methods  which  have  already  been  employed,  or  a  combina- 
tion of  them,  will  suffice  to  determine  any  center  of  gravity.  As 

illustrations  of  the  use  and  combination  of  these  methods,  we 

shall  find  the  center  of  gravity  of  the  same  solid  figure  in  three 

different  ways. 
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ILLUSTRATIVE  EXAMPLE 

A  right  circular  cone  OPQ  is  scooped  out  of  a  solid  homogeneous  sphere,  the 
vertex  of  the  cone  0  being  on  the  surface  of  the  sphere,  and  its  axis  being  a  diameter 

of  the  sphere.    It  is  required  to  find  the  center  of  gravity  of  the  remainder. 

Method  I,  Polar  coordinates.  First  let  us  use  polar  coordinates,  taking  the 
vertex  O  of  the  cone  as  origin,  and  the  axis  of  the  cone  as  initial  line.  If  a  is 

the  semi  vertical  angle  of  the  cone,  the  equation  of  the  cone  is  6  =  a.  If  a 

is  the  radius  of  the  sphere,  the  equation  of  the  sphere  is  r  =  2  a  cos  $.  The 

center  of  gravity  must  from  symmetry  lie  on  the  axis  ̂   =  0,  so  that  ̂   =  0,  and 

equation  (34)  becomes 

r  r  fpr^  sin  ̂   cos  d  drddd<l) 
f  =   

C  C  Cpr^  sin  e  drddd(f> 

The  solid  is  supposed  to  be  homo- 
geneous, so  that  p  is  a  constant,  and 

may,  therefore,  be  taken  outside  the 
sign  of  integration  in  both  numerator 
and  denominator.  The  limits  of  inte- 

gration for  0  are  from  0  =  0  to  0  =  2  tt, 

so  that  this  integration  may  be  per- 
formed in  each  case.    Doing  this,  and  dividing  out  by  2  np,  we  are  left  with 

//'
 

r^  sin  d  cos  6  drdd 

//'
 

r2  sin  d  drdd 

We  may  next  integrate  with  respect  to  r,  the  limits  being  r. 
and  obtain 

''^  (2  a  cos  ey  sin  0  cos  d  dd 

0  to  r  =  2acos^, 

/^
 

C\{^acoseY&\Vi.ddd 

/'
 

cos^  d  sin  d  dd 

cos^dmiddd 

f'
 

The  limits  of  integration  for  6  are  obviously   from   d  =  a  (the  cone)  to 

=  —  (the  tangent  plane  to  the  sphere).    We  have 

pcos5^sin^d^  =  -i[cos6^]^=  icos^o:, 

P  cos3  ̂   sin  ̂   d^  =  -  ̂   [cos*  ef  =\  cos*  a. 
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Substituting  these  values,  we  find 

_  _  „       I  cos6  a =  acos^a. 

I  cos*  a Tlius  the  center  of  gravity  is  on  the  axis  of  the  cone  at  a  distance  a  cos'^a 
from  the  vertex. 

Method  II.   Cartesian  coordinates.   We  may  next  employ  Cartesian  coordi- 
nates, taking  0  as  origin  and  the  axis  of  the  cone  as  axis  of  x.    The  equation  of 

the  cone  is  now 

2/2  +  2;2  =  a:2tan2ar, 
while  that  of  the  sphere  is 

x^  +  y^-h  z'^-2ax  =  0. 

From  S  106,  we  have 

2/'
 j  j  jxdxdyd

z 

j  j  jdxdyd
z 

Fig.  82 

In  each  integral  we  may  inte- 
grate first  with  respect  to  y  and  z 

together.    We  have  to  evaluate 

the  same  integral  in  both  cases,  namely  |  (dydz,  the  limits  being  given  by 

y^-\-  z^  =  x^tsin2a 

and  y^  +  z^  =  '2ax-  x^. 

The  problem  is  the  same  as  that  of  finding  the  area  of  a  circular  ring  of 

inner  and  outer  radii  x  tan  a  and  V2  ax  —  x^  respectively.  (This  ring  is,  of 
course,  the  intercept  of  the  solid  on  the  plane  parallel  to  the  yz  plane.)  The 
area  of  the  ring  is 

TT  (2  ax  —  a;2)  —  tt  {x^  tan2  a)  =  7r{2ax  —  ic2  sec2  a), 

and  on  substituting  this  value  for  |  j  dydz,  the  formula  becomes 

TTX  (2  ax  —  x2  sec2  a)  dx 

/'
 

I  TT  (2  ax  —  x2  sec2  a)  dx 

•The  limits  of  integration  are  now  from  x  =0,  the  origin,  to  x  =  2  a  cos2(r, 
the  value  of  x  on  the  plane  PQ.  Evaluating  the  integrals,  and  substituting 
these  limits,  we  obtain 

_  _  2  a-rr  ̂   (2  a  cos2  g)^  -  tt  sec2  a^f{2a  cos2  a)4 

2  ttTT  i  (2  a  cos2  a:)2  —  tt  sec2  a  ̂   (2  a  cos2  a)^ 
=  a  cos2  a, 

giving  the  same  result  as  before. 
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Method  III.   Geometrical  Method.    The  center  of  gravity  can  also  be  found 

by  regarding  the  given  volume  as  the  sums 
and  differences  of  simpler  volumes  of  which 

the  center  of  gravity  is  already  known. 
The  volume  is  obtained  by  taking  the 

complete  sphere  OPsQ  and  subtracting  from 
it  the  cone  OPrQ  and  the  spherical  segment 

PrQs.  The  center  of  gravity  of  the  sphere 

and  cone  are  known,  —  that  of  the  segment 
PrQs  is  most  easily  found  by  regarding  it  as 
the  difference  between  the  sector  CPsQ  and 

the  cone  CPrQ.  Thus  we  regard  the  original 

figure  as  made  up  of  yig.  83 

(sphere  OPsQ)  -  (cone  OPrQ)  -  (sector  CPsQ)  +  (cone  CPrQ). 

The  volumes  of  these,  and  the  distances  of  their  centers  of  gravity  from  O 
measured  along  OC,  are  as  follows : 

Figure  Volume  Distance  of  C.G.  from  O 

+  sphere  |  ira^  a 

-  cone  OPrQ  -  H^  «  ̂ ^os^  <^)  (^^a-  ̂ ^^^  2ar)         -|  (2  a  cos^ a) 

—  sector  CPsQ  -  f  7ra3(l  -  cos2a)  a  +  |a(l  +  cos2ar) 

+  cone  CPrQ  i  (a  cos  2a)  (Tra^  sin2  2a)  a+facos2a 

In  this  table  the  negative  sign  denotes  that  a  figure  is  to  be  removed,  so  that 
its  volume  must  be  reckoned  as  of  negative  sign. 

Denoting  the  distance  of  any  center  of  gravity  from  O  by  x,  and  using 
the  formula 

X' 

of  §  86,  we  obtain  as  the  distance  of  the  center  of  gravity  of  the  whole  figure 
from  0 

__        A7ra4-i(2acos2a)2(7ra2sin22a)-f7ra^(l-cos2a){l  +  t(l  +  cos2a)} 

iTra^  — J(2acos2a)(7ra2sin2  2a)  —  |7ra3(l  —  cos2a)  +  i(acos2a)(7ra2sin22a) 

+  i(acos2a)(7ra2sin22a)a(l  +  f  acos2a) 

I  Tra^  —  l{2a  cos2  a)  (jra^  sin^  2  a)  —  f  Tra^{l  —  cos  2  a)  +  |(a  cos  2  a)  {ira^  sin2  2  a) 

which,  after  reduction,  gives 
X  =  a  cos2  a, 

the  same  result  as  before.  , 
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GENERAL  EXAMPLES 

1.  A  plane  quadrilateral  ABCD  is  bisected  by  the  diagonal  AC,  and 
this  diagonal  is  divided  in  the  ratio  a  :  b  hj  the  diagonal  BD.  Prove 
that  the  center  of  gravity  of  the  quadrilateral  lies  in  ̂   C  and  divides  it 
into  two  parts  in  the  ratio  2  a  +  b  :  2  b  +  a. 

2.  A  uniform  wire  is  bent  into  the  form  of  a  circular  arc  and  the  two 

bounding  radii,  and  the  center  of  gravity  of  the  whole  is  found  to  be 
at  the  center.  Show  that  the  angle  subtended  by  the  arc  at  the  center  is 

tan-i(-l). 
3.  The  three  feet  of  a  circular  table  are  vertically  below  the  rim  and 

form  an  equilateral  triangle.  Prove  that  a  weight  less  than  that  of  the 
complete  table  cannot  upset  it. 

4.  A  triangular  table  is  supported  by  three  legs  at  the  middle  points 
of  its  sides,  and  a  weight  W  is  placed  on  it  in  any  position.  It  is  found 
that  the  table  will  just  be  upset  if  a  weight  P  is  placed  at  one  angular 
corner.  The  corresponding  weights  needed  to  upset  it  at  the  other  corners 
are  Q,  R.  Prove  that  P  +  Q  +  R  is  independent  of  the  position  of  the 

weight  W. 

5.  Weights  are  nailed  to  the  three  corners  of  a  triangular  lamina,  each 

proportional  to  the  length  of  the  opposite  side  of  the  triangle,  and  of  com- 
bined weight  equal  to  the  original  weight  of  the  lamina.  Show  that  the 

center  of  gravity  of  the  triangle  is  at  the  center  of  the  nine-point  circle. 

6.  A  uniform  triangular  lamina  of  weight  W  and  sides  a,  b,  c  is  sus- 
pended from  a  fixed  point  by  strings  of  lengths  Z^,  I2,  Z3  attached  to  its 

angular  points.    Show  that  the  tensions  of  the  strings  are 

Wkl^,    Wkl^,    Wkl^, 

where  A:  =  [3  (Zf  +  /|  +  /|)  -  a^  -  b^  -  c^T^ 

7.  Explain  how  a  clock  hand  on  a  smooth  pivot  can  be  made  to  show 
the  time  by  means  of  watchwork,  carrying  a  weight  round,  concealed  in 
the  clock  hand. 

8.  A  spindle-shaped  solid  of  uniform  material  is  bounded  by  two  right 
circular  cones  of  altitudes  6  and  2  inches  with  a  common  circular  base  of 

radius  1  inch.  It  is  suspended  by  a  string  attached  to  a  point  on  the  rim 
of  the  circular  base.  Find  the  inclination  of  the  axis  of  the  spindle  to  the 
vertical  when  it  is  hanging  freely. 

9.  A  pack  of  cards  is  laid  on  a  table,  and  each  projects  beyond  the  one 
below  it  in  the  direction  of  the  length  of  the  pack  to  such  a  distance  that 
each  card  is  on  the  point  of  tumbling,  independently  of  those  below  it. 
Prove  that  the  distances  between  the  extremities  of  successive  cards  will 

form  a  harmonic  progression. 
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10.  Prove  that  the  center  of  gravity  of  any  portion  PQ  of  a  uniform 

heavy  string  hanging  freely  is  vertically  above  the  intersection  of  the 

tangents  at  P,  Q. 

11.  A  hemispherical  shell  has  inner  and  outer  radii  a,  h.  Show  that 

the  distance  of  its  center  of  gravity  from  its  geometrical  center  is 

8     a^-\-  ab  +  1)^ 

12.  An  anchor  ring  is  cut  in  two  equal  parts  by  a  plane  through 

its  center  which  passes  through  its  axis.  Find  the  center  of  gravity  of 
either  half. 

13.  Prove  that  the  pull  exerted  by  a  man  in  a  tug  of  war  is  -  of  his h 

weight,  where  a  is  the  horizontal  projection  of  a  line  joining  his  heels  to 

his  center  of  gravity,  and  h  is  the  height  of  the  rope  above  the  ground. 

14.  Prove  that  a  horse  weighing  W  pounds  can  exert  a  horizontal  pull 

of  Wa/h  pounds  at  a  height  h  above  the  ground  by  advancing  his  center 

of  gravity  a  distance  a  in  front  of  its  position  when  he  is  standing  upright 

on  his  legs. 

15.  A  rod  of  varying  density  and  material  is  supported  by  a  man's  two 
forefingers,  across  which  it  rests  in  a  horizontal  position.  The  man  moves 

his  fingers  toward  one  another,  keeping  them  in  the  same  horizontal  plane, 

and  allowing  the  rod  to  slip  over  one  or  both  of  his  fingers.  Show  that 

when  his  fingers  touch,  the  center  of  gravity  of  the  rod  will  be  between 

the  points  of  contact  of  his  fingers  with  the  rod. 

16.  A  semicircular  disk  rests  in  a  vertical  plane  with  its  curved  edge  on 

a  rough  horizontal  and  an  equally  rough  vertical  plane,  the  coefficient  of 

friction  being  /i.  Show  that  the  greatest  angle  that  the  bounding  diameter 
can  make  with  the  vertical  is 

sm-i    - . 
\  +  P?2 

17.  A  hemisphere  of  radius  a  and  weight  W  is  placed  with  its  curved 

surface  on  a  smooth  table,  and  a  string  of  leng-th  l(l<d)  is  attached  to  a 
point  on  its  rim  and  to  a  point  on  the  table.    Prove  that  the  tension  of  the 
string  is  ^  a-l 

—  W   . 
8       V2  al  -  ;2 

18.  A  triangular  lamina  of  weight  W  is  supported  by  three  vertical 

strings  attached  to  its  angular  points  so  that  the  plane  of  the  triangle  is 

horizontal ;  a  particle  of  weight  W  is  placed  at  the  orthocenter  of  the 

triangle.    Prove  that  the  tensions  of  the  strings  are  given  by 

l  +  3cot5cotC      l  +  3cotCcot^       1  + 3  cot^  cot^       2* 
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19.  Find  the  center  of  gravity  of  a  lamina  bounded  by  a  parabola  and 
a  line  perpendicular  to  its  axis. 

20.  Find  the  center  of  gravity  of  the  volume  cut  from  a  solid  parabo- 
loid by  a  plane  perpendicular  to  its  axis. 

21.  Find  the  center  of  gravity  of  the  area  inclosed  by  two  radii  of 
an  ellipse. 

22.  Find  the  center  of  gravity  of  the  volume  cut  off  from  a  solid  ellipsoid 
by  a  plane  through  the  center. 

23.  Find  the  center  of  gravity  of  half  of  an  ellipsoidal  shell,  this  being 
bounded  by  two  similar  concentric  and  coaxial  ellipsoids,  and  a  plane 
through  the  center. 

24.  A  right  circular  cone  whose  base  is  of  radius  r  is  divided  into  two 
equal  parts  by  a  plane  through  the  axis.     Prove  that  the  distance  of  the 

center  of  gravity  of  either  half  from  the  axis  is  —  • Tt 

25.  Find  the  center  of  gravity  of  a  lamina  bounded  by  the  semicubical 

parabola  x^  =  ay^,  the  axis  of  x,  and  the  ordinate  x  =  a. 

26.  Find  the  center  of  gravity  of  a  single  loop  of  the  curve 
r  =  a  sin  3^. 

27.  Find  the  center  of  gravity  of  an  octant  of  a  sphere. 

28.  A  cylindrical  hole  of  radius  a  is  drilled  through  a  hemisphere  of 
radius  h  so  that  the  radius  perpendicular  to  the  base  of  the  hemisphere  is 
also  the  central  line  of  the  hole.     Find  the  center  of  gravity  of  the  figure. 

29.  Find  the  center  of  gravity  of  the  area  inclosed  between  the  two 

^"'^^^s  a:2  +  y2  =  a2.  :r2  +  2/2  =  2a&. 
30.  Find  the  center  of  gravity  of  a  lens  made  of  homogeneous  glass, 

having  spherical  surfaces  of  radii  r,  s,  and  of  which  the  thickness  is  t  at 
the  center  and  zero  at  the  edge. 



CHAPTEK  VII 

WORK 

109.  Measurement  of  work.  There  are  various  kinds  of  work, 

but  in  meclianics  we  are  concerned  only  with  the  work  done  in 

moving  bodies  which  are  acted  on  by  forces.  Such  work  is 
described  as  mechanical  work.  We  say  that  mechanical  work  is 

done  whenever  a  body  is  moved  in  opposition  to  the  forces  acting 

on  it,  as,  for  instance,  in  raising  a  weight,  in  dragging  a  heavy 

body  over  a  rough  surface,  or  in  stretching  an  elastic  string.  In 

the  first  case  work  is  performed  against  the  force  of  gravity,  in 

the  second  case  against  the  frictional  force  exerted  on  the  moving 

body  by  the  rough  surface,  and  in  the  third  case  against  the 
tension  of  the  string. 

Obviously  in  estimating  the  amount  of  work  done,  two  factors 
have  to  be  taken  into  account,  namely  the  amount  of  the  force 

acting  on  the  body  and  the  distance  through  which  the  body  is 

moved  in  opposition  to  this  force.  Tire  amount  of  work  will  clearly 

be  directly  proportional  to  the  force,  —  in  raising  a  weight  of  200 
pounds  through  a  given  distance  we  do  twice  as  much  work  as 

in  raising  a  weight  of  100  pounds  through  the  same  distance.  It 

will  also  be  proportional  to  the  distance  moved,  —  in  raising  a 
weight  through  two  feet  we  do  twice  as  much  work  as  in  raising 

the  same  weight  through  one  foot.  Thus  the  amount  of  work  done 

varies  as  the  product  of  the  force  and  the  distance. 

The  amount  of  work  done  in  raising  a  weight  of  one  pound 

through  a  height  of  one  foot  is  called  one  foot  pound. 
From  what  has  been  said,  it  is  clear  that  the  work  done  in 

raising  a  weight  of  w  pounds  through  a  height  of  li  feet  is 

wh  foot  pounds.  Also,  the  work  done  in  moving  a  body  a  distance 

of  s  feet  in  opposition  to  a  force  of  F  pounds  weight  is  Fs  foot 
145 
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pounds.  Thus  we  may  say  that  the  work  done  in  moving  a  hody 

through  any  distance  against  a  uniform  force  is  the  product  of  the 
distance  and  the  force. 

Suppose,  for  instance,  that  it  is  found  that  the  force  required  to  drag  a 

railway  train  along  a  level  track  is  equal  to  the  weight  of  10,000  pounds, 

then  the  work  done  in  hauling  this  train  a  distance  of  100  miles 

=  100  X  5280  X  10,000  foot  pounds. 

110.  Rate  of  performing  work.  Work  frequently  has  to  be  done 

within  a  given  time,  so  that  it  is  often  necessary  to  measure  the 

rate  at  which  work  is  being  done.  The  rate  of  doing  work  in 

which  33,000  foot  pounds  are  done  per  minute  is  called  one  horse 

power  (1  H.  P.). 

This  unit  was  introduced  by  Watt,  and  was  supposed  to  measure  the 

rate  of  working  of  an  ordinary  horse.  It  is  found,  however,  that  very  few 

horses  are  capable  of  working  continuously  at  one  horse  power  for  any 

length  of  time. 

As  an  example  of  the  calculation  of  horse  power,  let  us  find  the  horse 

power  required  of  an  engine  to  haul  a  train  at  30  miles  an  hour,  the  fric- 

tional  resistance  being  equal  to  the  weight  of  10,000  pounds.  A  velocity 

of  30  miles  an  hour  =  44  feet  per  second,  so  that  the  work  done  per  second 

=  44  X  10,000  foot  pounds.  Since  one  horse  power  =  550  foot  pounds  per 
second,  we  see  that  the  horse  power  required 

44  X  10,000 

550 
=  800  horse  power. 

This  gives  the  horse  power  required  to  haul  the  train  at  a  steady  speed 

of  30  miles  per  hour.  We  shall  find  that  if  the  speed  is  not  constant  the 

horse  power  will  be  diiferent,  part  of  the  work  being  used  up  in  producing 

the  acceleration  of  the  motion.  For  the  present,  however,  we  confine  our 

attention  to  motion  with  uniform  velocity. 

Absolute  Unit  of  Work 

111.  We  have  already  seen  that  besides  the  practical  unit  of 

force,  which  is  the  weight  of  a  unit  mass,  there  is  also  a  second 

unit  of  force,  known  as  the  absolute  unit,  which  is  defined  as  being 

a  force  capable  of  producing  unit  acceleration  in  unit  mass.  As 

the  practical  unit  produces  acceleration  g  in  unit  mass,  where  g  is 
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the  acceleration  due  to  gravity,  it  follows  that  the  practical  unit 

is  g  times  the  absolute  unit. 

In  practical  British  units,  the  unit  force  is  the  pound  weight. 

In  absolute  units,  the  corresponding  unit  is  known  as  the  poundal; 

it  is  the  force  which  will  produce  unit  acceleration  in  a  mass  of 

one  pound. 

The  practical  unit  of  work,  as  we  have  said,  is  the  work  done  in 

raising  a  mass  of  one  pound  through  one  foot,  i.e.  in  moving 

through  one  foot  the  point  of  application  of  one  pound  weight. 
There  is  also  an  absolute  unit  of  work,  namely  the  work  done  in 

moving  through  one  foot  the  point  of  application  of  one  poundal. 

This  unit  is  called  i\iQ  foot  poundal.  Since  one  pound  weight  is 

equal  to  g  poundals,  we  obviously  have  the  relation 

1  foot  pound  =  g  foot  poundals. 

EXAMPLES 

1.  At  what  speed  can  a  horse  of  1  horse  power  draw  a  cart  weighing  1  ton, 
friction  being  supposed  to  cause  a  horizontal  force  equal  to  one  fortieth  of  the 

weight  of  the  cart  ? 
2.  A  body  resisted  by  a  force  of  P  poundals  is  moved  against  this  resistance 

with  a  velocity  v.    What  horse  power  is  required  ? 

3.  At  what  rate  can  a  steam  roller  of  7  horse  power  and  weight  1  ton  roll  a 

path,  the  resistance  due  to  friction  being  equal  to  the  weight  of  the  roller  ? 
4.  A  snail  weighing  \  ounce  climbs  a  wall  6  feet  in  height  in  4  hours.  At 

what  horse  power  is  he  working  ? 

5.  A  load  of  bricks  weighing  5  tons  has  to  be  raised  to  the  top  of  a  house 

50  feet  in  height  by  10  laborers,  each  of  whom  works  at  an  average  rate  of 

jV  horse  power.    How  long  ought  the  job  to  take  ? 
6.  The  piston  of  an  engine  has  an  area  of  a  square  feet  and  a  stroke  of 

I  feet,  and  the  engine  makes  p  revolutions  per  minute.  If  the  pressure  per  unit 

area  acting  on  the  piston  is  p  pounds  weight  per  square  foot,  prove  tliat  the 
horse  power  at  which  the  engine  is  workihg  is 

plan 
33.000 

7.  A  locomotive  has  a  circular  piston  of  diameter  17  inches,  and  stroke  26 

inches.  It  makes  250  revolutions  per  minute,  the  pressure  being  225  pounds 
weight  per  square  inch.    Find  its  horse  power. 
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8.  If  200  horse  power  is  required  to  drive  a  steamer  150  feet  long  at  a  speed 

of  9  knots,  prove  tliat  25,600  horse  power  will  be  required  to  drive  a  similar 

steamer,  600  feet  long,  similarly  immersed,  at  18  knots,  assuming  that  the 

resistance  is  proportional  to  the  wetted  surface  and  the  square  of  the  velocity- 
through  the  water.  Prove  also  that  the  cost  of  coal  per  ton  of  cargo  will  be 
the  same  in  the  two  steamers. 

9.  Fifty  horse  power  is  transmitted  from  one  shaft  to  another  by  means  of 

a  belt  moving  over  two  wheels  on  the  shafts  with  a  linear  velocity  of  250  feet 

per  minute.    Find  the  difference  of  tensions  on  the  two  sides  of  the  belt. 

10.  A  locomotive  consumes  1^  pounds  of  coal  per  horse-power-hour.  How 
much  coal  is  required  to  haul  a  train  of  total  weight  1000  tons  over  50  miles  of 
level  road  on  which  the  resistance  to  friction  is  12  pounds  weight  per  ton  ? 

11.  A  liner  of  22,000  horse  power  makes  a  run  of  3300  miles  in  six  days. 

Find  the  resistance  to  the  ship's  motion. 

Work  done  against  a  Variable  Force 

112.  If  a  body  is  moved  in  opposition  to  a  force  which  is  not 

of  constant  intensity  but  varies  from  point  to  point  on  the  path 

of  the  moving  body,  we  can  no  longer  use  the  formula  Fs  for  the 

amount  of  work  performed. 

To  calculate  the  amount  of  work  done,  we  divide  up  the  whole 

range  over  which  motion  takes  place  into  an  infinite  number  of 

infinitesimally  small  ranges,  each  of  these  ranges  being  so  small 

that  the  force  opposing  the  motion  may  be  regarded  as  of  constant 

magnitude  during  the  motion  through  any  one  of  them. 

If  ds  is  any  small  range  at  a  distance  s  from  the  starting  point, 

and  if  F  is  the  intensity  of  the  force  opposing  the  motion  while 

the  body  moves  through  the  small  range  ds,  then  the  work  done  in 

moving  through  this  range  is  Fds.  The  total  work  done,  the  sum 

of  the  amounts  of  work  done  in  all  the  ranges,  is,  accordingly. 

/ 
Fds. 

Work  done  in  stretching  an  Elastic  String 

113.  As  an  example  of  the  use  of  this  formula,  let  us  find  the 

work  done  in  stretching  an  elastic  string.  Let  the  natural  length 

of  the  string  be  I,  and  let  \  denote  its  modulus  of  elasticity. 
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When  the  length  of  the  string  is  a?,  its  tension   T,  by  the 

formula  of  §  39,  is  given  by 

In  stretching  the  string  through  a  further  distance  dx,  —  i.e.  from 

length  X  to  length  x  -f  dx,  —  the  work  done 
=  Tdx 

=  —  (x  —  I)  dx. 
V 

By  integration,  we  find  that  the  work  done  in  stretching  a  string 

from  length  a  to  length  h 

x=b 

=  I    —  (x —  l)dx 
x—a 

='Yl^b  +  a-2l){b-a). 

The  distance  stretched  is  h  —  a,  while  —  (b  -\-  a  —  2  I)  is  the 

tension  when  half  of  the  stretching  has  been  completed,  Le.  when 

x=l{a-hh). 

Thus  we  have  found  that 

The  work  done  in  stretching  an  elastic  string  from  any  length  a, 

greater  than  the  natural  length  of  the  string,  to  a  length  h,  is  equal 

to  the  tension  at  length  i  {a  +  b)  niultiplied  by  {b  —  a). 

Obviously,  if  the  tension  is  measured  in  pounds  weight  and  the 

extension  (b  —  a)  in  feet,  the  product  will  give  the  amount  of  work 
measured  in  foot  pounds.  If  the  tension  is  measured  in  poundals, 

and  (b  —  a)  in  feet,  the  product  will  give  the  amount  of  work  in 
foot  poundals. 
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Fig.  84 

Work  represented  by  an  Area 

114.  Let  PQ  represent  the  path  described  by  a  moving  body, 
and  let  us  draw  ordinates  at  each  point  in  P^  to  represent,  on 

any  scale  we  please,  the  force  opposing  the  motion  of  the  body  at 

that  point.  Let  s,  r  be  two  adja- 

cent points,  and  let  ss\  rr'  be 
the  ordinates  at  these  points. 

Then  the  area  of  the  small 

strip  ss'rr'  may,  in  the  limit,  be 
supposed  equal  to  sr  multiplied 

by  ss'.  On  the  scale  on  which 
we  are  representmg  forces,  this 

product  will  represent  the  dis- 
tance sr  multiplied  by  the  force  opposing  the  motion  of  the  body 

from  s  to  r.  In  other  words,  the  small  area  ss'rr'  will  represent 
the  work  done  in  moving  the  body  from  s  to  r. 

By  addition  of  such  small  areas,  we  find  that  the  complete  area 

PP'QQ'  represents  the  work  done  in  moving  from  F  to  Q. 
115.  This  method  gives  a  simple  way  of  investigating  the  vrork  done  in 

stretching  an  elastic  string,  already  calculated  in  §  113.  Let  OP  be  the 
natural  length.  For  the  sake  of  definiteness  suppose  that  the  end  0  is 
held  fast,  and  that  as  the  string  is  stretched  the  point  P  moves  along  the 
line  OP.  Let  it  be  required  to  find  the  work  done  in  stretching  the  string 
from  a  length  OA  to  a  length  OB. 

Let  Q  be  any  point  of  the  line 

OPAB,  and  let  QQ'  be  drawn  to 
represent  the  tension  when  the 
length  of  the  string  is  OQ. 

For  different  positions  of  Q,  the 

ordinate  QQ'  will  be  of  different 

heights.  Since,  by  Hooke's  law, 
the  tension  is  proportional  to  the  extension,  the  height  of  the  ordinate 

QQ'  (representing  the  tension)  will  always  be  in  the  same  ratio  to  PQ  (the 
extension).  Thus  Q'  is  always  on  a  certain  straight  line  through  P.  If  AA\ 
BB'  are  the  ordinates  which  represent  the  tensions  at  A,  B,  this  line  will, 
of  course,  pass  through  the  points  A',  B\  The  work  done  in  stretching 
the  string  through  the  range  AB  is  now,  in  accordance  with  §  114,  repre- 

sented by  the  area  AA'B'B,  the  area  which  is  shaded  in  fig.  85. 
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The  area  of  this  figure  is  clearly  equal  to  AB  multiplied  by  the  ordinate 
at  the  middle  xx)int  of  AB.  This  ordinate  represents  the  tension  of  the 

string  when  its  length  is  equal  to  l(^OA  +  OB),  so  that  we  again  obtain  the 
result  of  §  113,  namely 

(work  done)  =  (range  of  stretching,  AB) 

X  (tension  at  halfway  stage  of  stretching). 

116.  The  indicator  diagram.  The  graphical  representation  of 

work  explained. in  §  114  is  made  use  of  in  practical  engineering. 

Suppose  that  00'  is  the  distance  traveled  by  a  piston  inside  a 
cylinder.  When  the  piston  is  in  any  position  P,  let  the  pressure 

acting  on  the  piston  be  measured, 

and  let  a  line  FF'  be  drawn  at 

right  angles  to  00'  to  represent  it 
on  any  assigned  scale.  As  the 

piston  moves  along  the  range  00' 
and  then  back  along  the  range 

O'O,  the  point  F'  will  describe  a 
closed  curve  AF'BF"A,  which  is 
called  the  indicator  diagram  of  the 

motion  of  the  piston. 

The  work  done  by  the  steam  on 

the  piston  in  its  forward  motion  is, 

as  we  have  seen,  represented  by  the  area  AF'BO'FOA  inclosed  be- 

tween the  curve  AF'B  and  the  axis  00'.  Tliis  work  is  expended  in 
movmg  the  piston  forward  in  opposition  to  the  thrust  in  the  piston 

rod.  Sifnilarly  the  work  done  by  the  steam  on  the  piston  in  its  back- 

ward motion  is  represented  by  the  curve  BO'FOAF"B  inclosed  be- 

tween BF"A  and  the  axis  00',  tliis  area  being  taken  negatively,  since 
the  piston  is  now  moving  in  opposition  to  the  pressure  at  work  on  it. 

Thus  the  whole  work  done  on  the  piston  is  represented  by  the 

difference  of  these  two  areas,  and  this  is  easily  seen  to  be  the  area 

AF'BF"A  of  the  indicator  diagram  itself.  Hence,  to  find  the  rate 
at  which  an  engine  is  performing  work,  it  is  only  necessary  to 

measure  the  area  of  its  indicator  diagram  and  the  number  of 

revolutions  per  unit  time. 

Fig.  86 
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Work  done  against  Force  Oblique  to  Direction  of  Motion 

117.  So  far  we  have  only  considered  cases  in  which  the  force 

acts  in  a  direction  exactly  opposite  to  that  in  which  the  particle 

moves.  We  may,  however,  have  to  calculate  the  work  when  the 

motion  makes  any  angle  with  the  direction  of  the  force. 

When  a  body  is  moved  at  right  angles  to  the  forre  pp.t.inof  nn  if-, 
thft  work  done  will  clearly  be  nilj  e.g.  in  moving  a  weight  about 

on  a  horizontal  surface  no  work  is  done  against  gravity. 

We  can  now  find  the  amount  of  work  done  when  a  body  is  moved 

in  a  direction  making  any  angle  with  the  force  acting  on  it.    Let  a 

body  be  moved  from  P  to  ̂ ,  a  small  distance  ds  of  its  path,  while 
acted  on  by  a  force  B,  of  which  the  line  of 

action  makes  an  angle  </>  with  QF.    Eesolve 

It  into  two  components,  li  cos  (/>  along  QP 

^  \  0  and  B  sin  (/>  perpendicular  to  QF.    The  work 
done  against  the  force  E  is  the  same  as  the 

work  which  would  be  done  if  these  two  forces  E  cos  <^,  E  sin  <^  were 

acting  on  the  body  simultaneously.  The  work  done  against  the 

former  force  would  be  E  cos  (/>  ds ;  that  agamst  the  latter  would 

be  nil.    Thus  the  whole  amount  of  work  done  is  E  ds  cos  (f). 

118.  Let  E  have  components  X,  Y,  Z,  and  let  the  element  of 

path  FQ  have  direction  cosines  I,  m,  n.  The  direction  cosines  of  the 
line  of  action  of  E  are 

X      Y      Z 
— ,     — ,     — , 
E      E      E 

and  since  this  makes  an  angle  tt  —  (j)  with  FQ,  we  must  have 
X  Y         Z 

cos(7r  -  ̂)  =  ̂;^  +  ̂ ;^  +  ̂ ;^' 

Hence  E  ds  cos  (\)  =  —  ds  {IX  +  mY  +  nZ) 

=  -{Xdx  +  Ydy  + Zdz), 

where  dx,  dy,  dz  are  the  projections  of  ds  on  the  axes.  This  gives 

an  analytical  expression  for  the  work  done  in  a  small  displace- 
ment.   By  integration,  we  can  find  the  work  done  in  any  motion. 
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119.  Work  of  raising  a  system  of  bodies  against  gravity.   If  a 

particle  of  mass  m  is  moved  a  distance  ds  along  a  path  making  an 

angle  (j)  with  the  vertical  (upwards),  the  work  done  is  mg  cos</)  ds. 

Since  the  distance  through  which  the  particle  is  raised  is  ds  cos  <^, 

we  may  say  that  the  work  done  is  equal  to  the  weight  of  the 

body  (mg)  multiplied  by  the  distance  through  which  the  particle 
is  raised. 

By  taking  the  particle  along  any  path,  and  adding  together  the 

amounts  of  work  done  on  the  successive  elements  of  the  path,  we 

find  that  the  total  work  done  against  gravity  is  equal  to  the  weight 

of  the  particle  multiplied  by  the  total  vertical  distance  through 

which  the  body  has  been  raised. 

120.  Let  us  suppose  that  we  move  a  number  of  particles  of 

masses  m^,  m^,  •  ••.  Let  their  heights  above  the  ground  before  the 

motion  be  \,\,-",  and  let  their  heights  at  the  end  of  the  motion 

hQh[,h[,  •'-.  The  work  done  against  gravity  on  the  first  particle 

is  'ii^igiK—  7ii);  by  addition  of  such  quantities,  the  total  work 
done  against  gravity 

=  ffi^^^iK  -%'^Jh)-  (36) 

Now  let  M  be  the  total  mass  of  the  particles,  and  let  H,  H' 
denote  the  heights  of  the  center  of  gravity  of  all  the  particles 

above  the  groimd  before  and  after  the  motion  respectively.  Then, 

by  the  formula  of  §  86,  we  have 

X^i^i      X^i'^i 
J.X       

^m,    '        M 
so  that 

^mfi^  =  MH, and,  similarly. 

2)mX  =  MH^, Thus  the  total  work,  a£ 5  given  by  expression  (35),  becomes 

i 
g{MH'

 

-MH)  =  Mg{H'  ~H). 
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Thus  the  total  work  done  against  gravity  is  equal  to  the  total 

weight  of  the  particles  multiplied  by  the  vertical  height  through 

which  the  center  of  gravity  of  the  particles  has  been  raised. 

Work  performed  against  a  Couple 

121.  Theorem.  If  a  rigid  hody  acted  on  hy  a  system  of  forces 

he  given  any  small  rotation  through  an  angle  e  about  any  axis,  the 

work  done  is  Ge,  where  G  is  the  moment  about  this  axis  of  the 

forces  opposing  the  motion. 

Let  the  axis  of  rotation  be  supposed  to  be  a  line  perpendicular 

to  the  plane  of  the  paper,  meeting  it  in  the  point  L.    Let  a  typical 
force  be  a  force  F  acting  on  the  particle 
A  of  the  body. 

As  the  result  of  the  rotation,  let  A 

move  to  a  position  A\  so  that  the  angle 

ALA'  is  equal  to  e,  the  angle  through 
which  the  body  has  been  turned. 

Then,  during  the  rotation,  the  point 

of  application  of  the  force  F  moves 
from  A  to  A\  and,  therefore,  the  work  done 

=  F  ■  AA'  ■  cos  (f), 

where  <^  is  the  angle  between  F  and  AA', 

—  AA'  X  component  of  F  along  A  A' 

=  €  X  LA  X  component  of  F  along  AA' 
=  e  X  moment  of  F  about  the  axis  of  rotation. 

If  the  rigid  body  is  acted  on  by  a  number  of  forces  applied  to 

its  different  particles,  we  find,  on  summation,  that  the  total  work 
done 

=  €  X  sum  of  the  moments  of  all  these  forces 

about  the  axis  of  rotation 

=  Ge,  where  G  is  the  moment  about  the  axis  of 
rotation  of  all  the  forces. 
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EXAMPLES 

1.  A  man  who  weighs  140  pounds  walks  up  a  mountain  path  at  a  slope  of 

30  degrees  to  the  horizon  at  the  rate  of  1  mile  per  hour.  Find  his  rate  of  work- 
ing in  raising  his  own  weiglit  in  horse  power. 

2.  At  wliat  horse  power  is  an  engine  working  which  hauls  a  train  of  1000 

tons  up  an  incline  of  1  in  200  at  12  miles  an  hour,  the  resistance  due  to  friction 

being  ̂ ^-^  of  the  weight  of  the  train  ? 
3.  An  automobile  weighing  1  ton  can  run  up  a  hill  of  1  in  60  at  8  miles  an 

hour.  Taking  the  resistance  due  to  friction  as  ̂ ^  of  the  weight  of  the  car, 
find  at  what  rate  it  could  run  down  the  same  hill,  assuming  the  horse  power 
developed  by  the  engine  to  remain  the  same. 

4.  A  cargo  of  stone  weighing  18  tons  is  unloaded  from  a  barge  on  to  a  quay 

30  feet  above  the  barge  by  cranes  worked  by  an  engine.  If  the  unloading  takes 

three  hours,  find  the  average  horse  power  at  which  the  engine  has  been  working. 
5.  Assuming  that  a  man  in  walking  raises  his  center  of  gravity  through  a 

vertical  height  of  one  inch  at  every  step,  find  at  what  horse  power  a  man 

is  working  in  walking  at  4  miles  an  hour,  his  stride  being  33  inches,  and  his 
weiglit  168  pounds. 

6.  A  cyclist  and  his  machine  weigh  200  pounds,  and  he  rides  up  an  incline 
of  1  in  80  at  15  miles  an  hour.  His  bicycle  is  geared  to  72  inches,  and  the 
length  of  his  cranks  is  7  inches.  Find  the  average  vertical  pressure  of  his  foot 

on  the  pedal,  assuming  this  pressure  to  exist  only  during  the  downward  motion 
of  the  pedal. 

7.  A  single-screw  ship  has  engines  of  5000  horse  power,  and,  when  working 
at  full  power,  the  engines  make  75  revolutions  per  minute.  Find  the  couple 
transmitted  by  the  shaft, 

8.  When  one  body  rolls  on  another,  there  is  found  to  be  a  couple  opposing 

the  motion,  equal  to  that  produced  by  the  normal  reaction  at  the  end  of  an 
arm  of  length  Z,  where  I  is  called  the  coefficient  of  rolling  friction. 

If  a  railroad  truck  runs  on  wheel  of  radius  a,  show  that  the  resistance  to  its 

motion  produced  by  rolling  friction  is  l/a  times  its  weight. 

The  Principle  of  Virtual  Work 

122.  By  a  small  displacement  is  meant  for  the  present  a  motion 

in  which  each  particle  of  a  system  is  displaced  from  its  original 

position  through  a  distance  which  is  so  small  that  it  may  be  treated 

as  an  infinitesimal  quantity  of  which  the  square  may  be  neglected. 

If  the  system  is  under  the  action  of  forces,  work  will  be  done  in 

performing  any  small  displacement.  Since  the  displacement  is 

supposed  to  be  a  small  quantity,  the  work  performed  will  also  be 
a  small  quantity. 
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If  any  particle  is  in  equilibrium,  the  resultant  force  acting 

on  it  vanishes,  so  that  the  work  done  in  any  small  displacement 

of  the  particle  vanishes  to  a  higher  order  than  the  displacement. 

If  a  rigid  body,  or  system  of  rigid  bodies  or  particles,  is  in  equilib- 
rium, and  any  small  displacement  is  given  to  it,  the  work  done 

on  each  particle  is  nil,  so  that  the  aggregate  work  done  is  nil. 

123.  The  forces  acting  on  the  particles  of  the  system  may,  as 
in  §  50,  be  divided  into  two  classes : 

(a)  forces  applied  to  the  bodies  from  outside ; 

(b)  pairs  of  actions  and  reactions  acting  between  the  particles 
of  the  bodies,  or  between  two  bodies  in  contact. 

In  calculating  the  work  done  in  a  small  displacement,  we  must 

take  account  of  the  work  done  against  all  the  forces  of  both  classes, 

but  shall  find  that  a  great  number  of  the  terms  arising  from  the 
forces  of  the  second  class  cut  one  another  out. 

124.  Let  us  first  consider  the  pair  of  forces  which  constitute 

the  action  and  reaction  between  two  particles  P,  Q  of  a  rigid  body. 

Let  the  amount  of  each  force  be  R,  its  direction  being  QP  or  PQ 

Q^   according  as  it  acts  on  P  or  Q.    Let 
p^   yi      the  effect  of  a  small  displacement  be 

^^   ■<   >   ^-^    to  move  P,  Q  to  P',  Q'  respectively,  and 
let  P'p,  Q'q  be  perpendiculars  drawn 

^'''-  ̂ ^  from  P^  Q'  to  PQ.    The  work  done 
against  the  force  R  acting  on  P  is  ̂   X  Pp,  while  that  done  against 

the  force  R  acting  on  ̂   is  —  P  X  Qq.    Thus  the  total  work  performed 
=  R{Pp-Qg) 
=  R(PQ-]oq) 

=  R(PQ  —  projection  of  P'Q^  on  PQ). 

Since  the  body  is  rigid,  the  length  P'Q'  is  equal  to  the  length 
PQ,  and  since  the  displacement  is,  by  hypothesis,  small,  the  angle 

between  P'Q'  and  PQ  is  small.  Thus  the  projection  of  P'Q'  on  PQ 

=  P'Q',  except  for  small  quantities  of  order  higher  than  the  first, =  PQ, 

so  that  the  work  performed  vanishes. 
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125.  Again,  the  work  performed  against  the  pair  of  forces  which 
constitute  action  and  reaction  between  two  smooth  surfaces  can 

be  seen  to  vanish. 

First  consider  the  case  in  which  one  body  is  held  at  rest  while 

the  second  is  made  to  shde  over  its  surface.  In  such  a  displace- 
ment the  work  performed,  if  any,  is  performed  against  the  reaction 

wliich  acts  on  the  moving  body.  Since  the 

force  acts  along  the  normal,  while  its  point  of 

application  necessarily  moves  in  the  tangent 

plane,  —  i.e.  at  right  angles  to  the  normal, — 
we  see  that  the  work  done  is  nil. 

The  most  general  motion  possible  for  the  two 

surfaces  is  compounded  of  a  motion  of  ihe  kind 

just  described  and  a  motion  in  which  the  two 

surfaces  move  as  a  rigid  body.  The  work  done 

in  the  first  part  of  the  displacement  has  just  been  seen  to  be  zero, 

the  work  done  in  the  second  part  of  the  displacement  vanishes  by 

§  124 ;  hence  the  total  work  vanishes,  proving  the  result  required- 

126.  The  results  just  proved  are  not  true  if  the  contact  between  the 

surfaces  is  rough.  The  work  done  in  such  a  case  depends  on  the  magni- 
tude of  the  frictional  forces,  and  as  it  is  generally  as  difficult  to  determine 

the  amount  of  these  forces  as  to  solve  the  whole  problem,  the  method  of 
virtual  work  is  not  of  any  value  in  such  cases. 

127.  We  have  now  seen  that  a  large  number  of  forces  may  be 

left  out  of  account  altogether  in  calculating  the  work  done  in  a 

small  displacement,  and  the  principle  of  virtual  work,  which  states 

that  when  a  system  is  in  equilibrium  the  w^ork  done  in  any  small 
displacement  is  zero,  requires  us  only  to  calculate  the  work  per- 

formed against  external  forces,  and  not  that  performed  against  the 
internal  actions  and  reactions  of  rigid  bodies. 

128.  Systems  of  pulleys.  An  important  application  of  the  prin- 
ciple of  virtual  work  is  the  following :  Let  us  suppose  that  we  have 

any  arrangement  of  pulleys  and  inextensible  ropes,  the  ropes  hav- 

ing two  free  ends,  —  to  one  of  which  the  weight  to  be  raised  is 

attached,  and  to  the  other  of  which  the  power  is  applied.    Let  these 
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two  free  ends  of  rope  be  called  the  weight  end  and  the  power  end 

respectively,  and  let  us  suppose  that  the  arrangement  is  such  that, 

in  order  to  move  the  weight  end  through  1  inch,  the  power  end 

must  be  moved  through  n  inches.  Let  a  weight  W  be  attached  to 

the  weight  end,  and  let  us  suppose  that  it  is  found  that  a  force  P" 
must  be  apphed  to  the  power  end  to  maintain  equilibrium. 

We  now  have  forces  P  and  F  in  equilibrium.  To  find  the  rela- 

tion between  them,  let  us  give  the  system  a  small  displacement. 

Let  us  move  the  weight  W  a  distance  ds,  then,  if  the  rope  is  not  to 

be  stretched,  we  must  suppose  the  power  P  moved  through  a  dis- 
tance nds.  The  work  done  by  external  force  consists  solely  of 

the  work  performed  on  the  power  end  of  the  rope,  namely  P  n  ds, 

and  the  work  performed  in  moving  the  weight  against  gravity, 

namely  Wds.  These  are  of  opposite  signs, —  if  we  raise  the  weight, 
Wds  must  be  taken  positively  and  P  n  ds  negatively,  and  vice  versa. 

If  the  system  was  initially  in  equilibrium,  the  total  work  performed 

by  external  forces  in  this  small  displacement  must  vanish,  so  that 

  the  equation  of  equilibrium  is  seen  to  be 

so  that 

Wds  —  Pnds  =  0„ 
W 

P  = 

n 

giving  the  relation  between  power  and  weight. 

This  investigation  assumes  that  friction, 

etc.,  may  be  neglected,  and  also  neglects  the 

weight  of  the  moving  ropes  and  pulleys. 

As  an  instance  of  a  system  of  pulleys,  let  us 

consider  the  arrangement  shown  in  fig.  91. 

Pj^   gj^  There  are   two   blocks   of  pulleys,  A   and  B. 
The  former  is  fixed,  while  the  latter  is  free  to 

move,  and  has  the  weight  W  suspended  from  it.  The  rope,  starting 

from  the  power  end,  passes  first  round  a  pulley  of  block  A,  then  round 

one  of  block  B,  then  round  one  of  block  A,  and  so  on  any  number  of 

times,  until  finally  its  end  is  fastened  to  bloclv  B.  To  find  the  relation 

between  P  and  W,  we  need  only  find  the  number  n.  Let  us  suppose  that 

in  addition  to  the  free  power  end  of  the  rope  the  number  of  vertical 

ropes  is  s.    Then,  if  we  pull  the  power  end  until  the  weight  end  is  raised 
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1  inch,  we  shall  shorten  each  of  these  s  ropes  by  1  inch,  and  so  lengthen 
W 

the  power  end  by  s  inches.    Thus  n  =  s,  so  that,  in  this  case,  P  =   

For  instance,  with  two  pulleys  in  the  lower  block  and  three  in  the 

upper  block  the  value  of  n  will  be  5,  so  that  each  pound  of  power  will 

support  5  pounds  of  weight,  —  a  man  pulling  with  a  vertical  pull  of 
100  pounds  could  support  a  weight  of  500  pounds,  and  as  soon  as  his  pull 

exceeds  100  pounds,  he  will  raise  the  weight  of  500  pounds. 

ILLUSTRATIVE  EXAMPLES 

1.  As  a  first  example  of  the  principle  of  virtual  work,  let  us  suppose  that  we 

have  an  endless  elastic  string  of  natural  length  a,  modulus  X,  placed  over  a 

sphere  of  radius  6,  and  allowed  to  stretch  under  gravity.  We  might,  of  course, 
find  the  amount  of  stretching  in  the  equilibrium 

position  by  resolving  forces,  but  we  can  get  it 
more  readily  by  the  method  of  virtual  work.  Let 

us  suppose  that,  when  in  equilibrium,  the  string 
lies  on  a  small  circle  of  angular  radius  6.  Lot  a 

small  displacement  be  given,  this  consisting  of 
each  element  of  the  string  being  displaced  down 

the  surface  of  the  sphere,  so  that  the  string  forms 
a  new  circle  of  angular  radius  6  +  dd.  The  length 
of  the  string  when  forming  a  circle  of  angle  d  was 

2  Trb  sin  d ;  the  increase  in  this  when  d  is  changed 

to  d  +  dd  is  de  —  {2  Trb  sin  e)  or  2  -rrb  cos  d  dd.    The dd 

Fig.  92 work  done  in  stretching  the  string  by  this  amount 

is  T-2irb cos d dd,  where  T  is  the  tension.    Work 

is  also  done  against  (or,  in  this  particular  case,  with)  the  force  of  gravity.  The 
height  of  the  center  of  gravity  of  the  string  when  forming  a  circle  of  angle  6  is 

6  cos  5  ;  on  increasing  ̂   to  ̂   +  dd,  this  increases  by  —  6  sin  d  dd,  so  that  the  work 
done  against  gravity  is  —wbsmddd.  We  have  now  calculated  all  the  work 

performed  in  the  small  displacement;  by  the  principle  of  virtual  work,  the 
total  amount  of  this  work  must  be  nil,  so  that 

-wbBinddd  -\-T-27rb  cos ddd  =  0. 

Thus, w 
T=  —  tan  d, 

27r 

and  the  length  of  the  string  corresponding  to  tension  T  is,  as  we  have  seen, 

Hence 

an  equation  giving  6. 

a(l  -i   tan^)  =  2  7r6sin^, 
\        2  7rX  / 
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2.  Gearing  of  a  bicycle.  As  a  second  example,  let  us  apply  the  principle  of 

virtual  work  to  the  mechanism  of  a  bicycle.  Let  the  length  of  the  crank  be  a, 
and  let  the  bicycle  be  geared  to  b  inches,  so  that  each  revolution  of  the  pedals 
causes  the  machine  to  move  as  far  forward  as  it  would  in  one  revolution  of  a 

wheel  of  b  inches  diameter.  Let  us  find  what  pressure  must  be  exerted  on  the 

pedal  by  a  rider  in  order  that  the  machine  may  move  forward  against  an 
opposing  frictional  force  of  w  pounds  weight. 

Let  us  give  the  machine  a  small  displacement,  the  cranks  being  supposed  to 

turn  through  an  infinitesimal  angle  e,  and  the  wheels  and  machine  moving 
forward  accordingly.  Since  the  gearing  is  to  b  inches,  the  distance  moved  by 

the  machine  as  a  whole  will  be  |  be  inches,  while  the  distance  moved  by  the  pedal, 
taking  the  machine  itself  as  frame  of  reference,  will  be  oe.  Let  Impounds  weight 

be  the  force  exerted  on  the  pedal  when  the  machine  is  just  on  the  point  of  motion, 
so  that  the  machine  is  in  equilibrium  under  this  force  acting  on  the  pedal,  and 

the  backward  pull  of  w  pounds  due  to  friction.    The  equation  of  virtual  work  is 

W-ae-w^be  =  0, 

so  that  the  required  force  is  TT  =  —  w. 2a 

Thus  the  force  is  directly  proportional  to  the  gearing  of  the  machine,  but 

inversely  proportional  to  the  length  of  the  cranks. 

3.  Four  rods  of  equal  weight  w  and  length  a  are  freely  jointed  so  as  to  form  a 
rhombus  ABCD.  The  framework  stands  on  a  horizontal  table  so  that  CA  is  vertical, 

and  the  whole  is  prevented  from  collapsing  by  a  weightless  inextensible  string  of 

length  I  which  connects  the  points  B,  D.    It  is 

required  to  find  the  tension  in  this  string. 

To  find  the  tension  by  the  principle  of 

virtual  work,  we  must  of  course  find  a  small 

D-^—   j   ^^B  displacement  such  that  work  is  done  in  oppo- 
sition to  the  tension,  or  otherwise  the  tension 

would  not  enter  into  the  equations  at  all. 

"^  Since   the  string  is  inextensible,  it  is  not 
„  '    ̂ „  possible  in  actual  fact  to  stretch  it  and  so 

perform  work  against  its  tension.  We  can 

however  imagine  it  to  be  stretched  in  spite  of  its  actual  inextensibility,  or, 

what  comes  to  the  same  thing,  we  can  imagine  it  replaced  by  an  extensible 
string  of  the  same  length  and  having  the  same  tension.  It  is  now  easy  to 
arrange  a  displacement  of  the  kind  required. 

Let  us  imagine  that  the  framework  is  displaced  in  such  a  way  that  A  moves 

vertically  downwards  towards  C,  while  C  remains  at  rest.  Let  the  displacement 
be  such  that  the  angle  DAC  is  increased  from  6  to  d  +  dd.  The  length  I  of  the 
string  which  corresponds  to  the  angle  6  is  given  by 

I  =  2a  sin  6, 

from  which,  by  differentiation,  we  obtain 

dl  =  2a  cos e dd. 



ILLUSTRATIVE  EXAMPLES 
161 

giving  the  relation  between  the  increments  dl,  dd  in  I  and  6.  Tlie  work  done 
against  the  tension  of  the  string  (T)  in  this  displacement  is  Tdl.  The  height 
of  the  center  of  gravity  of  the  whole  figure  above  C  is  initially  ̂ AC,  or  a  cos  ̂ , 

so  that,  as  in  §  120,  the  work  done  against  gravity  is 
4wd(acos6). 

Thus  the  total  work  performed  by  external  forces  in  the  displacement  is 

4M?d(acose)  +  Tdl, 

or,  on  substituting  the  values  of  dl  and  d{a  cos^), 

—  4  twa  sin  ̂   d^  +  T  •  2  a  cos  ̂   dB. 

For  equilibrium  this  must  vanish.    We  must  therefore  have 

T  =  2  w)  tan  0, 

giving  the  required  tension. 

4.  A  rod  of  length  I  and  weight  w  is  suspended  by  its  two  ends  from  two  points 

at  the  same  height  and  distant  I  apart,  by  two  strings  each  of  length  a.  Find  the 

couple  required  to  hold  the  rod  in  a  position 

in  which  it  makes  an  angle  6  with  its  equi- 
librium position. 

In  equilibrium  the  strings  are  vertical, 

the  two  ends  ̂ ,  ̂   of  the  rod  lying  exactly 
underneath  the  two  points  of  siispension 

As  the  rod  is  turned  from  its  equilibrium 

position,  we  can  imagine  its  middle  point  to 
rise  gradually  along  the  vertical  line  through 

the  original  position  of  this  middle  point. 
When  the  rod  has  been  turned  through  any 

angle  6,  let  the  height  through  which  this 
point  has  risen  be  x. 

Then  the  projection  of  the  length  PA' 
on  a  vertical  line  will  be  a  —  x,  while  its  projection  on  a  horizontal  plane, 

being  equal  to  the  horizontal  projection  of  AA\  will  clearly  be  I  sin 

^7 Thus,  expressing  that  the  length  of  the  displaced  string  PA'  remains  equal 
to  its  original  value  a,  we  have 

a2  =z:  (a  -  a;)2  +  l^  sin2 

(a) To  find  the  couple  required  to  hold  the  rod  ai,  an  angle  6,  let  us  suppose  that 
the  rod  is  held  in  equilibrium  in  this  position  by  a  couple  (?,  and  that  a  small 
displacement  occurs  in  which  d  is  increased  to  0  +  dO.  The  work  done  against 

the  couple  is  equal,  by  §  121,  to  —  Gdd,  the  negative  sign  being  taken,  since 
the  couple  aids,  instead  of  opposing,  the  motion.  The  work  done  against  gravity 
is  equal  to  w  dx.    Thus  the  equation  of  equilibrium  is 

-  Gdd  +  wdx  =  0. 
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To  obtain  the  relation  between  dd  and  dx  we  differentiate  equation  (a), 
obtaining a  a 

—  2ia  —  x)dx-\-l'^  sin  -  cos  -dd  =  Q. 2        2 

Thus  G  =  w- 
dd 

wl^  sm  -  cos  - 2        2 

2  (a  —  x) 
wl"^  sin  d 

■.^ 

r-  sin2  - 2 

giving  the  couple  required. 

EXAMPLES 

1.  A  square  A  BCD  is  formed  by  joining  four  equal  rods  by  freely  moving 
hinges.  The  points  J.,  C  are  joined  by  an  elastic  string  of  natural  length  equal 

to  a  diagonal  of  the  square,  and  of  modulus  X.  What  forces  must  be  applied 
to  the  points  B,  D  to  stretch  the  string  to  double  its  length  ? 

2.  Three  spheres  each  of  radius  a  and  weight  w  are  tied  to  a  point  P  by 

strings  of  natural  length  I  and  modulus  X,  and  hang  freely,  touching  each  other. 
Find  the  depth  of  their  centers  below  P. 

3.  The  mechanism  by  which  a  Japanese  umbrella  is  opened  is  such  that  each 

rib  turns  through  an  angle  of  5°  for  every  inch  that  the  sliding  piece  is  moved 
up  the  stick.  If  there  are  18  ribs,  each  of  weight  i  ounce,  and  having  their 
centers  of  gravity  10  inches  from  their  pivots,  find  with  what  force  the  sliding 

piece  must  be  pushed  up  the  stick  to  open  the  umbrella,  when  the  stick  is  held 

vertically,  and  the  ribs  are  inclined  at  an  angle  of  30°  to  it. 
4.  The  hands  of  a  clock  are  balanced  with  counterpoises,  so  as  to  be  in 

equilibrium  in  any  position.  When  the  time  indicated  by  the  clock  is  5.10,  a 
bird  of  weight  w  suspends  itself  from  a  point  on  the  minute  hand  which  is  six 

feet  from  the  pivot.  How  large  a  vertical  thrust  must  be  applied  to  the  hour 

hand,  also  at  a  point  six  feet  from  the  pivot,  to  restore  equilibrium  ? 
5.  A  clock  is  wound  by  raising  a  weight  of  20  pounds  through  a  distance  of 

3  feet,  this  enabling  the  clock  to  run  for  30  hours.  The  pendulum  and  escape- 

ment are  removed,  so  that  the  hands  will  "race"  unless  held  fast.  How  large 
a  couple  must  be  applied  to  the  minute  hand  to  prevent  this  occurring  ? 

6.  The  coupling  between  two  English  railway  carriages  consists  of  a  rod  with 

a  right-handed  and  a  left-handed  screw  cut  at  its  opposite  ends  and  turning 
in  nuts  attached  to  the  carriages.  If  the  pitch  of  each  screw  is  one  inch,  and 

the  rod  is  turned  by  a  force  of  56  pounds  acting  at  best  advantage  at  the 

end  of  a  lever  15  inches  long,  find  the  force  by  which  the  carriages  are 
drawn  together. 
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129.  It  will  have  been  noticed  that  we  are  concerned  with  two 

different  kinds  of  work.  The  first  is  typified  by  the  work  done  in 

raising  a  weight  in  opposition  to  gravity,  the  second  by  the  work 

done  against  friction  in  hauling  a  train  along  a  level  road.  The 
essential  difference  between  the  two  kinds  is  that  work  of  the  first 

kind  can  be  recovered  from  the  system  of  bodies  by  making  these 

bodies  themselves  perform  mechanical  work,  whereas  work  of  the 

second  kind,  when  once  expended,  can  never  be  regained.  In  rais- 
ing a  weight  we  may  be  said  to  be  storing  up  work  rather  than 

spending  it,  for  the  weight  can  at  any  time  be  made  to  yield  back 

all  the  work  devoted  to  raising  it.  If  we  raise  a  weight  w  through 

a  distance  hy  the  work  done  on  the  weight  is  wh ;  on  letting  the 

weight  descend  to  its  original  position,  the  work  done  for  us  by 

the  weight  is  wh,  so  that  the  total  work  performed  on  the  weight 
is  nil. 

On  the  other  hand,  in  hauling  a  mass  a  distance  s  against 

a  frictional  force  F,  the  work  performed  is  Fs.  To  bring  the 

mass  back  to  its  original  position,  we  have  to  expend  an  addi- 
tional amount  of  work  Fs,  so  that  the  total  work  performed  is 

2  Fs.  Tliis  brings  out  the  essential  difference  between  the  two 

types  of  work  and  between  the  two  systems  of  forces  against 

which  the  work  is  performed. 

130.  Definition.  When  the  forces  acting  on  a  system  of  bodies 

are  of  such  a  nature  that  the  algebraic  total  work  done  in  perform- 
ing any  series  of  displacements  which  bring  the  system  back  to  its 

original  configuration  is  nil,  the  system  of  forces  is  said  to  be  a 
conservative  system. 

The  algebraic  work  being  nil,  the  work  done  on  the  system  in  taking 

it  to  any  configuration  is  equal  and  opposite  in  sign  to  the  work  done  on 

the  system  in  allowing  it  to  resume  its  former  configuration,  so  that  all 

the  work  spent  can  be  regained.  The  work  is  accordingly  stored  up,  or 
conserved. 



164  WORK 

A  small  amount  of  reflection  will  show  that  a  system  of  forces 

is  conservative  if  the  only  forces  which  come  into  play  are  some 

or  all  of  the  following : 

{a)  gravity; 
(6)  reactions  in  which  the  contact  is  perfectly  smooth ; 

(c)  tensions  of  strings,  extensible  or  inextensible. 

On  the  other  hand,  if  any  one  or  more  forces  of  the  following 

types  come  into  play  (so  that  work  is  performed  against  them), 

the  system  of  forces  is  non-conservative  : 

(a)  reactions  in  which  the  contact  is  rough ; 

(b)  resistance  of  the  air. 

131.  Theorem.  The  work  done  on  a  system  of  bodies  acted  on 

hy  conservative  forces,  in  moving  from  one  configuration  P  to  a 

second  configuration  Q,  is  independent  of  the  series  of 

configurations  through  which  the  system  moves  in 

passing  from  P  to  Q. 

To  prove  this,  let  us  denote  the  work  done  in  pass- 
ing from  P  to  ̂   through  one  series  of  configurations 

by  W^,  that  done  in  passing  through  any  second  series 

by  W^,  and  that  done  in  returning  from  ©  to  P  by  any 

third  series  of  configurations  by  W^.  If  we  pass  from 

P  to  ̂   by  the  first  series  and  back  from  ̂   to  P  by 
the  third,  the  total  work  done  is  nil,  so  that 

W^  +  W^  =  0. 

So,  also,  if  we  pass  from  P  to  ̂   by  series  2  and  back  from  Q  to 
P  by  series  3, 

W,  +  W,  =  0. 

Thus  W^  =  W^,  which  proves  the  theorem. 

132.  Definition.  Taking  any  configuration  P  as  standard,  the 

work  done  in  moving  a  system  of  bodies  from  the  configuration 

P  to  the  configuration  Q  is  spoken  of  as  the  potential  energy  of 

configuration  Q. 
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The  potential  energy,  accordingly,  measures  the  work  which 

has  been  stored  up  in  placing  the  system  in  configuration  Q. 

Theorem.  The  work  do7ie  in  moving  a  system  from  a  config- 
uration (i)  to  a  second  configuration  {2)  against  conservative  forces 

is  W^  —W^,  where  W^,  W^  are  respectively  the  potential  energies  in 
configurations  {!)  and  {2). 

For  if  P  is  the  standard  configuration,  the  work  from  P  to  (1) 

is  TFj ;  the  work  from  P  to  (1)  plus  that  from  (1)  to  (2)  is  W^,  so 

that  the  work  from  (1)  to  (2)  is  W^  -W^. 

133.  Theorem.  If  a  system  of  todies  is  in  a  configuration  of 

potential  energy  W,  and  if  x,  y,  z  are  the  coordinates  of  any 

particle,  the  resultant  force  acting  on  the  particle  has  components 

dW  cW  cW 
  ,   ,   — . 
dx  cy  cz 

To  prove  this,  let  us  imagine  that  we  give  the  system  a  small 

displacement,  which  consists  in  moving  the  single  particle  at  x,  y,  z 

a  distance  dx  parallel  to  the  axis  of  x.  If  X,  Y,  Z  are  the  compo- 

nents of  the  force  acting  on  it,  the  w^ork  we  do  in  the  displace- 
ment is,  as  in  §  118,  equal  to  —  X  dx.    This  work  is  also  equal  to 

dW 
the  increase  in  the  potential  energy,  namely  —  dx,  so  that  we  have 

dx 

—  Xdx  =  ̂ ~dx, ex 

dW 
Thus  X  =   — ->  and  similarly  we  may  prove  that vX 

r  =  -^,    ̂   =  -^. 
dy  dz 

134.  Theorem.  If  a  system  of  bodies  is  in  a  configuration  of 

potential  energy  W,  and  if  6  is  an  angle  giving  the  orientation  of 

a  rigid  hody  of  the  system  about  any  line,  the  moment  about  this  line 

of  the  forces  acting  on  the  rigid  body  {reckoned  positive  if  tending 

to  rotate  it  in  the  direction  of  6  increasing)  is 

cW 

dd' 
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For,  let  us  give  the  system  a  small  displacement,  which  consists 

in  turning  the  body  in  question  through  a  further  angle  dd  about 

the  selected  line,  so  that  6  becomes  changed  into  6  +  dd.    The 

dW 
increase  in  potential  energy  is  -^dd,  while  the  work  performed 

is,  by  the  theorem  of  §  121,  equal  to  —  G^  d6,  where  G  is  the  moment 
about  the  axis  of  all  the  forces  acting  on  the  rigid  body. 

Thus  ^de  =  ~~Gdd, cu 

so  that  6r  =   ;r7r» cd 

the  result  required. 

135.  Theorem.  In  a  position  of  equilibrium  of  a  system  of 

bodies,  the  potential  energy  W  is  either  a  maximum  or  a  minimum. 

The  potential  energy  is  a  function  of  all  the  coordinates  of  all 

the  particles  of  which  the  system  of  bodies  is  composed,  say 

If  the  position  is  one  of  equilibrium,  each  particle  is  in  equilib- 
rium, so  that  the  components  of  the  forces  actiug  on  each  particle 

vanish  separately  by  §  33.    By  §  133  the  condition  for  this  is 

dx^  dy^  dz^ 

-—  =  0,  etc. 

dx^ 

But  these  are  exactly  the  conditions  that  W  shall  be  a  maximum 
or  a  minimum. 

136.  The  converse  of  this  theorem  is  also  true. 

Theorem.  //  the  potential  energy  of  a  system  of  bodies  is  either 

a  maximum  or  a  minimum  in  any  configuration y  then  the  con- 
figuration is  one  of  equilibrium. 

For,  with  the  notation  of  the  previous  section,  if  PT  is  a  maxi- 
mum or  a  minimum,  it  follows  that 

dx^  dy^  dz^ 
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dW        dW         dW 
Since   ,   >   are  the  components  of  the  force 

dx^         dy^  dz^ 
acting  on  particle  (1),  these  equations  indicate  that  particle  (1) 

is  in  equilibrium.  Similarly,  it  follows  that  the  other  particles 

are  in  equilibrium,  giving  the  result. 

137.  An  important  special  case  of  these  theorems  arises  when 

the  only  forces  which  do  any  work  in  a  displacement  are  the 

weights  of  the  bodies  of  which  the  system  is  composed.  If  M  is 

the  mass  of  the  whole  system,  and  if  h  is  the  height  of  its  center 

of  gravity  above  any  standard  horizontal  plane,  the  potential 

energy  is,  by  §  120,  Mgh^  and  this  is  a  maximum  or  a  minimum 
when  li  is  a  maximum  or  a  minimum.    Thus  we  have  the  theorem  : 

In  a  system  of  bodies  in  which  the  only  forces  which  perfoTTW 

work  in  a  displacement  are  those  of  gravity,  the  configurations  of 

equilihrium  are  those  in  which  the  height  of  the  center  of  gravity 
is  a  maximum  or  a  minimum. 

EXAMPLES 

1.  Two  uniform  rods,  each  of  length  /,  are  freely  jointed  at  their  extremities 
and  placed  over  a  smooth  cylinder  of  radius  a  of  which  the  axis  is  horizontal. 

Find  the  angle  which  the  rods  make  with  the  horizontal  when  in  equilibrium. 

2.  An  elliptic  disk  is  weighted  so  that  its  center  of  gravity  is  halfway 
between  its  center  and  one  extremity  of  its  major  axis.     Show  that  if  its 

eccentricity  is  greater  than     there  will  be  four  positions  of  equilibrium  in 
V2 

which  the  disk  stands  vertical  on  a  horizontal  plane,  but  otherwise  only  two. 
3.  A  horizontal  rod  of  weight  W  has  its  center  pierced  by  a  fixed  vertical 

screw  on  which  it  turns,  one  revolution  raising  or  lowering  it  by  \  inch.  If 
there  is  no  friction,  find  the  couple  required  to  hold  it  at  rest. 

4.  A  plug  of  weight  W  is  made  in  the  shape  of  a  pyramid  of  square  cross 

section.  It  is  placed  with  its  axis  vertical  in  a  square  hole  of  side  c,  the  depth 

of  its  vertex  in  this  position  being  d  below  the  plane  of  contact.  Find  the  couple 
required  to  hold  it  turned  through  an  angle  6  and  still  having  its  axis  vertical. 

5.  A  smooth  parabolic  wire  is  placed  with  its  axis  vertical.  Two  beads  are 

strung  on  it,  and  are  connected  by  a  string  which  passes  through  a  smooth  ring 
at  the  focus.    Show  that  there  are  an  infinite  number  of  positions  of  equilibrium. 

6.  A  smooth  bowl  in  the  shape  of  an  ellipsoid  of  semi-axes  a,  6,  c  has  one  axis 
vertical.  Find  the  couple  required  to  hold  a  rod  of  length  Z  in  a  horizontal  posi- 

tion in  the  bowl,  making  an  angle  e  with  a  position  of  equilibrium. 
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138.  Suppose  that  a  moving  particle  is  acted  on  by  a  force 

of  which  the  direction  is  opposite  to  that  of  the  motion  of  the 

particle.  The  effect  of  the  force,  according  to  the  second  law  of 

motion,  is  to  produce  a  retardation  in  the  velocity  of  the  particle. 

The  velocity  of  the  particle  decreases  so  long  as  the  force  acts,  so 

that  if  the  force  contiaues  to  act  for  a  sufficient  time,  the  particle 

must  ultimately  be  reduced  to  rest. 

Consider,  for  example,  a  hammer  striking  a  nail.  The  reaction  between 
the  hammer  and  nail  is  a  force  in  the  direction  opposite  to  that  of  the 
motion  of  the  hammer,  and  this  ultimately  brings  the  hammer  to  rest. 
Again,  when  a  particle  is  projected  vertically  upwards,  its  weight  after  a 
time  reduces  it  to  rest,  after  which  of  course  it  falls  back  to  the  ground. 

By  the  time  that  the  moving  body  has  been  reduced  to  rest 

the  point  of  application  of  the  force,  wliich  has  moved  with  the 

moving  body,  has  moved  through  a  certain  distance.  Thus  a  cer- 
tain amount  of  work  has  been  done  by  the  moving  body.  We  are 

thus  led  to  the  conception  of  the  motion  of  a  body  possessing  a 

capacity  for  doing  work. 

For  instance,  in  the  previous  examples,  the  motion  of  the  hammer  has 
driven  the  nail  into  position,  and  the  motion  of  the  particle  projected  into 

the  air  has  raised  it  to  a  certain  height  above  the  earth's  surface. 

139.  Let  us  suppose  that  a  particle  moviag  with  velocity  v  is 

opposed  by  a  force  P  (in  absolute  units)  actiag  in  the  direction 

opposite  to  that  of  the  motion  of  the  particle.  Let  the  particle 

describe  a  distance  ds  in  opposition  to  this  force  in  time  dt,  and 

let  its  velocity  change  from  v  to  v  —  dv  in  this  time.    The  particle 
dv 

then  has  a  retardation  —  ui  the  direction  of  its  motion,  or,  what  is 
dt  ^^ 

the  same  thiag,  an  acceleration  —  in  the  direction  in  which  P 
CLv 

is  acting,  so  that  by  the  second  law  of  motion 

,    p  =  m-— • dt 
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The  work  done  by  the  particle  in  moving  the  distance  ds  in 

opposition  to  the  force  P  is 

Pds  =  m  —-ds, dt 

ds 
or,  since  —-  is  the  same  as  the  velocity  v  of  the  particle, CLv 

Pds  =  mv  dv. 

Integrating,  we  find  that  the  whole  work  done  by  the  particle 
before  beinof  reduced  to  rest  is 

^& 

/ Pds  =  lmv''.  (36) 

Since  P  has  to  be  measured  in  absolute  units  (cf.  §  22),  it 

foUows  (§  111)  that  the  work  '^mv^  will  also  be  measured  in absolute  units. 

Thus  whatever  the  magnitude  of  the  force  opposing  the  motion 

of  a  particle,  the  work  performed  by  the  particle  before  being 

reduced  to  rest  is  the  same,  namely  \  mv^  absolute  units  of  work. 

The  quantity  ̂ mv^  (measured  in  absolute  units)  is  called  the  kinetic 
energy  of  a  moving  particle.  It  is  equal  to  the  amount  of  work  which 

can  he  performed  hy  the  particle  hefore  being  reduced  to  rest. 

Suppose,  for  instance,  that  the  resistance  offered  by  a  nail  to  being 

driven  into  a  board  is  equal  to  the  weight  of  5000  pounds,  i.e.  that  it  would 

require  a  weight  of  5000  pounds  to  p7'ess  it  into  the  board.  Suppose  that 
it  is  driven  into  the  board  by  being  struck  with  a  hammer,  of  which  the 

head  weighs  10  pounds,  and  hits  the  nail  with  a  velocity  of  50  feet  per 
second.  Let  s  be  the  distance  the  nail  is  driven  in  at  each  stroke  measured 

in  feet,  theiji  the  work  done  by  the  hammer  at  each  stroke  is  that  of  moving 

a  force  of  5000  pounds  w^eight  —  or  5000  x  g  poundals — through  a  distance 
of  s  feet.  It  is  therefore  equal  to  5000  gs  foot  poundals.  The  kinetic  energy 

of  the  hammer  in  striking  the  nail  is 

i7«y2.=  i.  10-502  =  12,500 

in  absolute  foot-pound-second  units.    Thus  from  the  relation  (36)  we  have 
the  equation 

.5000  gs  =  12,500, 

in  which,  since  the  units  are  foot-pound-second  units,  we  may  take  g  =  32, 
and  so  obtain 

s  =  ̂ ^\  feet  =  if  inches. 
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140.  Theorem.  During  the  motion  of  a  particle  binder  any  sys- 
tem of  forces,  the  increase  in  kinetic  energy  is  equal  to  the  total 

work  done  on  the  particle  by  external  agencies. 

Let  us  consider  motion  of  a  particle  from  one  position  P  to  a 

second  position  Q,  and  let  the  velocities  of  the  particle  at  these 

two  points  be  Vp,  v^  respectively. 

Let  us  examine  the  motion  over  any  element  ds  of  the  path, 
and  let  the  velocities  at  the  beginning  and  end  of  this  element  be 

V  and  V  +  dv.  Let  F  be  the  force,  or  component  of  force  along  ds, 
which  acts  on  the  particle  while  it  describes  the  element  ds  of  its 

path.    If  dt  is  the  time  taken  to  describe  this  element  of  path,  the 
dv 

acceleration  is  —  j  and  since  the  force  acting  in  the  direction  of az 

motion  is  F,  we  have,  by  the  second  law  of  motion, 

dv 
F  =  m  — dt 

dv 
Hence,  as  in  §  139,     Fds  =  m—-ds ^  dt 

ds  , 
=  m  —  av 

dt 
=  mv  dv. 

Integrating  over  the  whole  path  from  F  to  Q,  we  obtain 

dv Fds  =  m  I    V 

=  '^mvQ  —  \mVp  (37) 
=  increase  in  kinetic  energy. 

The  left-hand  side  of  this  equation  represents  the  work  done  on 
the  particle,  proving  the  result  required. 

141.  The  work  performed  on  the  particle  by  external  forces  may 

be  regarded  also  as  equal  to  minus  the  work  performed  by  the  parti- 
cle on  external  agencies.  For  if  F  is  the  force  acting  on  the  particle 

along  ds,  it  follows  from  the  equality  of  action  and  reaction  that 

the  force  acting  on  the  external  agencies  from  the  particle  is  —  P, 

i 
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so  that  the  total  work  performed  by  the  particle  is  —  P  ds.    Thus 
the  theorem  can  be  stated  in  the  following  alternative  form : 

During  the  motion  of  a  particle  under  any  system  of  forces^  the 

decrease  in  kitutic  energy  is  equal  to  the  total  work  done  hy  the 

particle  against  external  agencies. 

142.  If  the  system  of  forces  acting  on  the  particle  is  a  conserv- 

ative  system,  the  value  of  —  |    Pds,  the  total  work  performed  by 

the  particle  on  external  agencies,  is  equal,  by  §  132,  to  Wq  —  Wp. 
Thus  equation  (37)  becomes 

or  again  ^  +  |^  ̂  ̂ 1  =  ̂^p  +  ̂ 'rrivly  (38) 
so  that  the  sum  of  the  potential  and  kinetic  energies  is  the  same 

at  §  as  at  P,  proving  the  theorem. 

The  sum  of  the  potential  and  kinetic  energies  is  called  the  total 

energy  of  the  particle. 

Conservation  of  Energy 

143.  The  kinetic  energy  of  a  system  of  bodies  is  obviously  equal 
to  the  sum  of  the  kinetic  energies  of  the  separate  particles.  The 

potential  energy  of  the  system,  as  has  been  seen,  is  the  sum  of 

the  potential  energies  of  its  particles. 

Thus  the  total  energy  of  a  system  is  equal  to  the  sum  of  the 

total  energies  of  the  separate  particles.  Since  the  total  energy  of 

each  particle  remains  constant,  it  follows  that  the  total  energy  of 
the  system  remains  constant. 

The  fact  that  the  total  energy  remains  constant  is  spoken  of  as 

the  Conservation  of  Energy.  An  equation  expressing  that  the  total 

energy  at  one  instant  is  equal  to  that  at  any  other  instant  is 

spoken  of  as  an  equation  of  energy. 

144.  As  an  illustration,  let  us  consider  the  firing  of  a  stone  from  a 
catapult. 

Work  is  performed  in  the  first  place  in  stretching  the  elastic  of  the 
catapult,  and  the  work  is  stored  as  potential  energy  of  the  stretched  elastic. 
As  soon  as  the  catapult  is  released,  the  stone  is  acted  on  by  the  tension  of 
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the  elastic  ;  the  stone  moves  under  the  accelerating  influence  of  this  tension, 
and  the  tension  of  the  elastic  slackens.  While  this  is  in  progress  the  stone 
is  acquiring  kinetic  energy,  while  the  stretched  elastic  is  losing  potential 
energy.  By  the  theorem  just  proved,  the  kinetic  energy  gained  by  the 
stone  must  be  just  equal  to  the  potential  energy  lost  by  the  elastic. 

When  the  stone  escapes  from  the  catapult,  most  of  the  potential  energy 
of  the  elastic  will  have  disappeared,  having  been  transformed  into  the 
kinetic  energy  of  the  stone.  After  this  a  further  transformation  of  energy 
may  take  place  while  the  stone  is  in  motion.  If  the  stone  moves  upwards, 
its  potential  energy  will  increase,  so  that  there  must  be  a  corresponding 

decrease  in  its  kinetic  energy  —  its  speed  must  slacken.  On  the  other 
hand,  if  the  stone  moves  downwards,  the  potential  energy  will  decrease, 

so  that  its  kinetic  energy  will  increase  —  it  will  gain  in  velocity. 

145.  A  very  important  deduction  from  the  principle  of  the  con- 
servation of  energy  is  the  following : 

Theorem.  If  a  'particle  slide  along  any  smooth  curves  being  acted 
on  hy  no  forces  except  gravity  and  the  reaction  with  the  curve,  and 

if  u,  V  he  the  velocities  at  two  points  P,  Q  of  its  path,  then 

„2  _ 

u^^-2gh, 

(39) 
where  h  is  the  vertical  distance  of  Q  below  P,  —  i.e.  is  the  vertical 
projection  of  the  path  PQ  described  by  the  particle. 

Let  hp,  hg  denote  the  heights  of  P  and  Q  above  any  horizontal 

plane  —  for  instance,  the  earth's  surface. 
Then  when  the  particle  is  at  P  its  kinetic 

energy  is  l  mu'^,  and  its  potential  energy 
is  mghp.    Thus  its  total  energy  is 

^mu^  +  mghp. 

Similarly  at  Q  its  total  energy  is 

^mv'^  +  mghg. 

Since  the  system  of  forces  acting  is  a 

conservative  system,  the  total  energy  remains  unaltered.    Thus 

Fig.  96 

i  m^^  +  mghp  =  J-  mv^  -f-  ̂ ^ 

"Q^ 

so  that 

proving  the  theorem. 

v^  —  w^  =  2g  {hp  —  h^)  =  2  gh, 
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146.  The  theorem  of  §  145  is  clearly  true  when  the  particle  is 

ascending,  in  which  case  h  is  negative  —  or  if  the  particle  ascends 

during  part  of  its  path  and  descends  duriiig  the  remainder.  More- 
over, the  particle  may  move  under  any  conservative  system  of 

forces,  provided  only  that  the  whole  potential  energy  arises  from 
the  weight  of  the  particle,  and  the  theorem  remains  true. 

It  is  true,  for  uistance,  of  a  particle  tied  to  an  inextensible 

string,  or  of  a  particle  moving  freely  in  a  vacuum. 

To  ilhistrate  the  use  of  the  theorem,  let  us  suppose  that  a  bicyclist, 

riding  with  a  velocity  of  15  miles  an  hour,  comes  to  the  top  of  a  hill  of 

height  60  feet,  down  which  he  coasts.  Let  us  find  his  velocity  at  the 

bottom,  on  the  supposition  that  friction,  air  resistance,  etc.,  may  be 

neglected. 

Taking  the  top  and  bottom  of  the  hill  to  be  the  points  P,  Q  respectively 
of  the  theorem  just  proved,  we  have,  from  the  data  of  the  problem, 

h  =  60  feet, 

M  =  15  miles  per  hour  =  22  feet  per  second. 

Thus,  using  foot-second  units,  we  have 

v'^  =  u^  +  2gh  =  222  _f.  2-32-60  =  4324, 

so  that  V  =  QQ  feet  per  second,  approximately, 

=  45  miles  per  hour. 

Thus  the  velocity  of  the  bicycle,  if  unchecked  by  friction  or  air  resist- 

ance, w^ould  be  one  of  about  45  miles  per  hour. 

EXAMPLES 

1.  An  automobile  running  40  miles  an  hour  comes  to  the  foot  of  a  steep  hill, 
and  at  the  same  instant  the  engine  is  shut  off.  To  what  height  up  the  hill  will 

the  automobile  go  before  coming  to  rest  (neglect  friction,  etc.)? 
2.  A  laborer  has  to  send  bricks  to  a  bricklayer  at  a  height  of  10  feet.  He 

throws  them  up  so  that  they  reach  the  bricklayer  with  a  velocity  of  10  feet  per 

second.  What  proportion  of  his  work  could  he  save  if  he  threw  them  so  as  only 
just  to  reach  the  bricklayer  ? 

3.  A  gun  carriage  of  mass  3  tons  recoils  on  a  horizontal  plane  with  a  velocity 

of  10  feet  per  second.  Find  the  steady  pressure  that  must  be  applied  to  it  to 
reduce  it  to  rest  in  a  distance  of  3  feet. 

4.  A  ship  of  2000  tons  moving  at  30  feet  a  minute  is  brought  to  rest  by  a 
hawser  in  a  distance  of  2  feet.    Find  in  tons  what  pull  the  hawser  has  to  sustain. 



174  WOEK 

5.  A  bicycle  and  rider  weigh  200  pounds,  and,  when  riding  along  a  level 

road  at  25  miles  an  hour,  the  rider  suddenly  applies  a  brake  which  presses 
on  the  tire  with  a  force  equal  to  the  weight  of  50  pounds.  If  the  coefficient  of 

friction  between  the  brake  and  the  tire  is  i,  find  how  far  the  machine  will  go 
before  coming  to  rest. 

6.  In  the  last  question,  how  far  will  the  machine  go  if,  instead  of  the  road 
being  level,  it  is  dov/n  ah  incline  of  1  in  20? 

7.  A  bullet  fired  with  a  velocity  of  1000  feet  per  second  penetrates  a  block 

of  wood  to  a  depth  of  twelve  inches.  Prove  that  if  it  were  fired  through  a  board 

of  the  same  wood,  two  inches  thick,  its  velocity  on  emergence  would  be  about 

913  feet  per  second.  (Assume  the  resistance  of  the  wood  to  the  bullet  to  be 
constant. ) 

8.  Two  equal  weights  P  and  P  are  supported  by  a  string  passing  over  two 

small  smooth  pulleys  A  and  B  in  the  same  horizontal  line,  and  a  weight 
2 

W  =  ■ —  P  is  attached  to  the  middle  point  of  the  string  between  A  and  B. Vs 

Prove  that  W  will  continue  to  descend  until  WAB  forms  an  equilateral  triangle, 

and  examine  what  will  happen  after  this.  • 
9.  A  string  of  natural  length  I  and  modulus  X  is  suspended  between  two 

points  ̂ ,  J5  in  the  same  horizontal  line  and  at  a  distance  h  apart,  and  has  a 
weight  W  attached  to  its  middle  point.  The  weight  W  is  held  at  rest  midway 
between  the  points  A,  B,  and  is  suddenly  set  free.  Find  how  far  it  will  fall 
before  being  brought  to  rest  by  the  strings. 

10.  A  heavy  particle  hangs  by  a  string  of  natural  length  Z,  which  it  stretches 

to  a  length  V,  the  other  end  of  the  string  being  fixed.  The  particle  is  pulled 

down  to  a  length  2  V  below  the  point  of  support,  and  is  then  set  free.  How  high 
will  it  rise  ? 

11.  Determine  the  horse  hower  which  could  be  obtained  from  the  kinetic 

energy  of  a  river  at  a  place  where  the  width  is  100  feet,  the  mean  depth  20  feet, 

and  the  mean  velocity  4^  miles  per  hour.  (A  cubic  foot  of  water  weighs  62.5 
pounds. ) 

12.  The  river  of  the  last  question  ends  in  a  waterfall  of  which  the  bottom 

is  50  feet  below  the  river  bed.  Find  the  horse  power  which  could  be  obtained 
from  the  water. 

13.  A  locomotive  burns  1^  pounds  of  coal  per  horse-power-hour.  How  much 
coal  must  be  burned,  beyond  that  consumed  in  overcoming  gravity,  friction,  etc., 
in  giving  to  a  train  of  300  tons  a  velocity  of  55  miles  an  hour  ? 

Stable  and  Unstable  Equilibrium 

147.  Let  us  consider  a  system  at  rest  in  a  position  of  equilibrium, 

and  capable  of  moving  from  this  position  by  only  one  path,  over 

which  it  may,  of  course,  move  in  either  direction.  As  an  illustra- 
tion of  a  system  of  this  kind  we  may  take  a  locomotive  standmg 
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on  a  pair  of  rails,  a  door  turning  about  a  hinge,  or  a  bead  sliding 
on  a  wire.  The  system  is  supposed  to  be  acted  on  by  any  number 

of  conservative  forces,  but  to  be  in  a  position  of  equilibrium  under 
these  forces. 

Let  P  denote  the  position  of  equilibrium,  and  let  Wp  be  the 

potential  energy  when  the  system  is  in  configuration  F.  Let  x 
denote  any  coordinate  which  measures  how  far  the  configuration 

of  the  system  has  moved  from  P  —  for  instance,  returning  to  our 
former  illustrations,  x  might  denote  the  distance  the  locomotive  had 

moved  along  the  track,  the  angle  through  which  the  door  had 

turned  about  its  liinges,  or  the  distance  the  bead  had  moved  along 

the  wire.  The  value  of  x  will  of  course  be  considered  positive  if  the 

system  moves  in  one  direction,  and  negative  if  it  moves  in  the  other. 

As  the  system  moves  away  from  its  equilibrium  configuration 

P,  the  value  of  x  will  change.  The  value  of  W,  the  potential 

energy,  will  also  change,  and  as  it  depends  only  on  the  value  of  x  if 

the  forces  are  conservative,  we  may  say  that  JV  is  a  function  of  x. 

By  a  well-known  theorem,  we  can  expand  JV  in  powers  of  ic  in 

in  which  the  subscript  P  denotes  (as  it  has  already  been  supposed 

to  denote  in  the  case  of  W^  that  the  quantity  is  to  be  evaluated 

in  the  configuration  P.  Since  the  configuration  P  is  supposed  to 

be  one  of  equilibrium,  we  have  by  the  theorem  of  §  135, 

\cx]p 

so  that  equation  (40)  becomes 

For   configurations   near   to   P,  x  is   small,  so  that   the  term 

in  equation  (41),  although   itself   small,  is  yet  very ^<-S), 
large  compared  with  the  terms  in  x^,  x^,  etc.,  which  follow  it. 
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Thus,  for  configurations  near  to  P,  we  may  neglect  these  latter 

terms  altogether,  and  write  the  equation  in  the  form 

^-^^;  =  i-^(S^);  (42) 

The  value  of  (  — -^  I  may  be  either  positive  or  negative. 

If  it  is  positive,  then  W  —Wp  is  positive  whatever  the  value  of 
X,  so  that  the  potential  energy  W  in  every  configuration  near  to 

P  is  greater  than  that  in  configuration  P.  In  other  words,  W  is  a 
minimum  at  P. 

So  also  if  j  ---J  \  is  negative,  W—-Wpi^  negative  for  aU.  small 

values  of  x,  and  we  find  that  W  is  a  maximum  at  P. 

148.  Suppose  now  that  the  system  is  placed  at  rest  in  some  con- 
figuration near  to  P.  This  configuration  is  not  one  of  equilibrium, 

so  that  the  system  cannot  remain  at  rest.  To  determiue  the  direc- 
tion in  which  it  begins  to  move,  we  need  only  notice  that  as  the 

system  moves  it  acquires  kinetic  energy,  and  as  this  must,  by 

§  143,  be  acquired  at  the  expense  of  its  potential  energy,  we  see 

that  the  system  will  begin  to  move  in  such  a  direction  that  its 

potential  energy  will  be  diminished. 

A  glance  at  equation  (42)  will  show  whether  this  direction  is 

towards  or  away  from  P.    We  see  that  if  /  -— -  j  is  positive,  the 

value  of  x^  must  decrease,  so  that  the  motion  will  be  towards  P, 

whatever  the  value  of  x.    Similarly,  if  [  -^^y  j  is  negative,  the 

value  of  x"^  must  increase,  so  that  the  motion  will  be  always  away from  P. 

We  have  now  seen  that  if  the  system  is  placed  in  a  con- 
figuration adjacent  to  P,  the  question  of  whether  the  motion 

which  ensues  is  towards  or  away  from  P  does  not  depend  on  the 

configuration  in  which  the  system  is  placed,  but  depends  on  the 
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We  have  seen  that  if  P  is  a  configuration  of  equilibrium,  and 

if  the  system  is  slightly  displaced  from  P  to  a  neighboring  con- 
figuration, then 

(a)  if  ( — -  I  is  positive,  the  system,  when  set  free,  will  return 

to  its  original  position  of  equilibrium ; 

(b)  if  (  -TT^  I  is  negative,  the  system  when  set  free  will  move 

farther  away  from  its  original  position  of  equilibrium. 

Equilibrium  of  the  first  kind  is  called  stable  equilibrium ;  equi- 
librium of  the  second  kind  is  called  unstable  equilibrium. 

We  can  summarize  the  results  as  follows : 

--"/m Potential  Energy  W 
Equilibrium 

+ minimum 

maximum 

stable 

unstable 

149.  Theorem.  Positions  of  stable  and  unstable  equilibrium 

occur  alternately. 

We  can  assume  that  we  are  dealing  only  with  finite  forces,  so 

that  the  function  W  will  always  be  finite :  it  can  never  pass 

through  the  values  TF  =  ±  oo .  It  must  be  continuous,  for,  by 

hypothesis,  the  work  done  in  placing  the  system  in  any  configura- 
tion must  have  a  definite  value,  so  that  the  potential  energy  can 

have  only  one  value  for  a  given  configuration.  Also  the  differential 

coefficients  of  the  potential  energy  must  be  finite,  for  these  measure 

the  forces  (§  133)  which  can  have  only  finite  values  in  any  given 
configuration. 

Thus  if  the  graph  of  the  function  W  is  drawn,  we  see  that  it 

must  consist  of  portions  in  which  W  is  alternately  increasing  and 

decreasing.  On  passing  from  a  portion  in  which  W  increases  to 

one  in  which  it  decreases,  we  pass  through  a  point  at  which  W  is 

a  maximum,  wliile  in  passing  from  a  region  in  which  W  decreases 
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to  one  in  which  it  increases,  we  pass  through  a  minimum.  Thus 

maximum  and  minimum  values  of  W  must  occur  alternately,  or, 
what  is  the  same  thing,  configurations  of  stable  and  unstable 

equihbrium  must  occur  alternately. 

150.  Examples  of  these  two  kinds  of  equilibrium  can  be  found 

in  the  illustrations  already  employed. 

1.  Locomotive  moving  on  a  pair  of  rails.  Let  h  be  the  height  of  the  center 

of  gravity  in  any  position,  let  x  denote  distances  measured  horizontally 

along  the  track,  and  let  M  be  the  mass  of  the  locomotive.    The  potential 

energy  is  then  Mgh.  The  con- 
dition for  equilibrium  in  the 

configuration  a;  =  0  is 

-(M,/0  =  0, 
dh 

dx 

0, 

that   the 

h  maximum 
Equil.unstable h  minimum 

Equil.  stable 

7i=0 
Fig.  97 

expressing 

value  of  h  must  be  either  a  maxi- 
mum or  a  minimum.  The  table 

on  page  177  shows  that  if  h  is  a 
minimum,  —  i.e.  if  the  center  of 

gravity  is  at  its  lowest  point,  — 
the  equilibrium  will  be  stable. 

Thus,  if  the  locomotive  is  moved  slightly  from  this  position,  it  will  roll 

back  to  it  again.  If  h  is  a  maximum,  —  i.e.  if  the  center  of  gravity  is  Jit 

its  highest  point,  —  the  equilibrium  will  be  unstable.  The  locomotive  is 
now  at  the  summit  of  a  hill,  and  if  displaced  to  either  side  of  the  summit, 

will  continue  rolling  down  the  hill. 

Note.  If  the  moving  parts  of  the  engine  are  not  "  balanced  "  properly,  the  center 
of  gravity  may  not  always  be  at  the  same  height  above  the  rails,  so  that  the  maxima 
and  minima  of  h  do  not  necessarily  occur  at  points  where  the  height  of  the  track  is  a 
maximum  or  a  minimum.  For  instance,  a  position  of  equilibrium  might  occur  where 
the  track  was  not  level,  or  again  a  position  of  stable  equilibrium  might  occur  at  a 
point  at  which  the  track  was  at  its  highest  point,  the  height  of  the  center  of  gravity 

above  the  rails  being  of  course  a  minimum  at  this  point.  Thus  if  the  engine  were  dis- 
placed to  a  point  slightly  lower  on  the  track,  and  set  free,  it  would  return  of  itself  to 

the  highest  point.  The  principle  here  is  the  same  as  that  of  mechanical  toys  which, 
on  being  placed  at  rest  at  the  foot  of  an  inclined  plane,  start  to  roll  up  the  plane  as 
soon  as  set  free. 

We  notice  that  positions  of  stable  and  unstable  equilibrium  must  occur 

alternately,  as  already  proved  in  §  149. 

2.  Door  turning  on  hinges.  Here  again  the  potential  energy  is  Mgh,  where 

h  is  the  height  of  the  center  of  gravity  of  the  door  above  any  standard 
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level.  As  the  door  turns  on  its  hinges,  its  center  of  gravity  describes  a 

circle  about  the  line  of  hinges.  If  this  line  is  perfectly  vertical,  the  circle 

described  by  the  center  of  gravity 

lies  entirely  in  a  horizontal  plane,  so 

that  every  position  is  one  of  equilib- 
rium, and  the  question  of  stability  or 

instability  does  not  arise.  If,  how- 

ever, the  line  of  hinges  is  not  per- 
fectly vertical,  the  circle  will  lie  in 

an  inclined  plane.  The  points  at 

which  the  height  above  the  standard 

horizontal  plane  is  a  maximum  or 
minimum  are  two  in  number  : 

P,  the  highest  point  of  the  circle,  Fig.  98 

at  which  equilibrium  is  unstable  ; 

Q,  the  lowest  point  of  the  circle,  at  which  equilibrium  is  stable. 

3.  Bead  sliding  on  wire.  To  obtain  a  definite  problem,  let  us  suppose 

that  the  bead  P  slides  on  an  elliptic  wire  placed  so  that  its  major  axis  A  A' 
is  vertical,  and  let  it  be  acted  on  by  its  weight,  and 

also  by  the  tension  of  a  stretched  elastic  string  of 
which  the  other  end  is  tied  to  the  center  of  the 

ellipse.  Let  a,  6  be  the  semi -axes  of  the  ellipse,  and 
let  Z,  X  be  the  natural  length  and  modulus  of  the 

string,  I  being  greater  than  a,  so  that  the  string  is 

always  stretched.  Let  w  be  the  weight  of  the  bead. 

The  first  step  is  to  calculate  the  potential  energy 

in  any  configuration.  Let  the  configuration  be 

specified  by  the  eccentric  angle  0  of  the  point  on 

the  ellipse  occupied  by  the  bead.  The  height  of 
the  bead  above  the  center  of  the  ellipse  is  then 

acos0,  so  that  that  part  of  the  potential  energy 

which  arises  from  gravitational  forces  is  wa  cos  <t>. 
The  length  of  the  string  r  is  given  by 

r2  =  a2  cos2  0  -f-  &2  sin2  ̂ ^  (a) 

and  the  work  done  in  stretching  the  string  from  length  I  to  length  r  is  (§  113) 
X 

2~Z 

(r  -  0^. 
This  may  be  taken  to  be  the  part  of  the  potential  energy  which  arises 

from  the  stretching  of  the  string.     Thus  the  total  potential  energy  will  be 

W  =  tea  cos  0  +  ̂,  {r  -  If.       '  (&) 
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dW 
The  positions  of  equilibrium  are  now  given  by   =  0,  or 

d4> 
'    ̂       X  ,         J.  dr 

wa  sm  0   (r  —  i)  —  =  0, 

or,  substituting  for  r  from  equation  (a), 

wa  sin0  -^  -(ifi  —  b~)  sin 
0  COS0   ^  7  -r  V-  _  Q^ 

V  ̂ 2  cos2  0  +  b'^  sin^0 

Rationalizing,  we  find  that  roots  are  given  by  sin  0  =  0,  and  also  by 

Iwa  +  -(a2  -  62)  cos^l  \a2  cos2  0  +  &"  sin^  0)  -  X2  (^2  _  52)-  ̂ 032  0  =  0, 

which  reduces  to 

[wa  +  y  (rt2  -  b^)  COS  0I  ̂  l(a^  -  b^)  cos2 0  +  621  _  x2  ̂ ^2  _  52^2  cos2 0  =  0,    (c) 

an  equation  of  the  fourth  degree  in  cos  0. 

The  roots  of  sin  0  =  0  are  0  =  0,  tt,  so   that   there   are   always   two 

positions  of  equilibrium  at  A,  A',  the  ends  of  the  major  axis.    Equation 
(c),  being  of  the  fourth  degree,  may  have 

0,  2,  or  4  real  roots  in  cos  0.  The  equa- 
tion as  it  stands  has  been  obtained  by 

squaring  both  sides  of  the  equation  to 

be  satisfied,  and  in  doing  this  we  have 
doubled  the  number  of  roots  of  the  true 

equation.  Thus  the  true  equation  will 

only  be  satisfied  by  0,  1,  or  2  real  roots 
in  cos  0.  In  other  words,  between  A  and 

A%  on  either  side  of  the  wire,  there  can 

be  at  most  tivo  positions  of  equilibrium. 

It  would  be  a  tedious  piece  of  work  to  find  the  actual  vakies  of  the  roots 
d^V 

for  cos  0,  and  then  determine  the  signs  of  the  values  of   correspond- 

r/02 

ing  to  these  roots.    The  question  is,  however,  very  much  simplified  by 

using  the  general  theory  of  stable  and  unstable  configurations. 

If  we  put  X  =  0  in  expression  (&),  we  obtain  as  the  potential  energy  in 
the  case  in  which  X  is  vanishingly  small  in  comparison  with  w, 

W  =  wa  COS0, 

of  which  the  graph  is  shown  in  fig.  100.  Here  there  are  only  two  positions 

of  equilibrium,  namely  0  =  0  and  0  =  tt,  the  former  being  unstable  (f/) 
and  the  latter  stable  (S). 
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Again,  if  we  put  w  =  0  in  expression  (b),  we  obtain  as  the  potential 
energy  in  the  case  in  which  \  is  infinitely  great  in  comparison  with  w, 

w=^x. 

'f' 

and  the  graph  of  W  in  this  case  is  shown  in  fig.  101.    There  are  four  posi- 
tions of  equilibrium,  r^      tt  3  tt 
^  0  =  0,       -,       TT,       — , 

which  are  respectively  unstable,  stable,  unstable,  and  stable. 

The  general  case  in  which  X  stands  in  a  finite  ratio  to  w  is  intermediate 

between  the  two  extreme  cases  which  have  been  considered.  The  graph 

for  W  in  the  general  case  can  be  obtained  by  compounding  the  two  graphs 

already  drawn.  To  obtain  the  ordinate  corresponding  to  any  value  of  <p, 

we  multiply  the  corresponding  ordinates 

in  the  graphs  already  obtained  by  the 

appropriate  constants,  and  add.  The  two 

ordinates  give  the  two  terms  of  expres- 
sion (&)  separately  :  their  sum  gives  the 

total  value  of  W  as  required. 

From  this  geometrical  construction  it 

is  clear  that  0=0  remains  a  configura- 
tion of  unstable  equilibrium.  The  con- 

figuration 0  =  TT  is  also  a  configuration  of 
equilibrium,  but  may  be  either  stable  or  unstable.  Between  these  two 

configurations  there  may  be  one  other  configuration  of  equilibrium,  as  in 

fig.  101  ;  or  there  may  be  none,  as  in  fig.  100.  Since,  by  §  149,  stable  and 

unstable  configurations  occur  alternately,  it  is  clear  that  if  the  configuration 

0  =  TT  is  stable,  there  can  be  no  other  configuration  of  equilibrium  between 

this  and  0  =  0,  while  if  0  =  tt  is  unstable,  there  must  be  one  configuration 
of  equilibrium  between  0  =  tt  and  <p  =  0,  and  this  must  be  stable. 

The  stability  or  instability  of  the  configuration  (f>  =  tt  accordingly  deter- 
mines the  nature  of  the  solution  for  a  given  value  of  X.    This  stability  or 

instability  is  in  turn  determined  by  the  sign  of  — -  at  0  =  tt.     To  deter- 

00^ 

0=0 
Fig.  101 

mine  this,  let  us  writ»  tt  —  ((>  =  0  near  to  0 

than  6^.    We  have,  to  this  approximation. 

TT,  and  neglect  terms  smaller 

r2  =  a2cos2  0  +  &2sin2  0 

=  ̂ 2  _  (^2  _  J2>)  sin2^ 

a/ 

—  «2 

so  that  by  equation  (h) , 

W  =  rca  cos  0  + 

a2-(a2_52>), 

21 (r  -  If 

(1-H^)  + m-i^^")-^ 
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Thus  — -  =  wa   ^^   ^   ^ 
d&^  al 

It  follows  that  equilibrium  at  0  =  tt  is  stable  or  unstable  according  as 

waH 
X  <  or  >   

(a2  -  b'^){a  -  I) 

To  sum  up,  there  are  two  cases  : 

wci^l  * 
I.  X  <  — - — — —   .    The  only  positions  of  equilibrium  are  0  =  0 

(rt-^  —  o^)(^a  —  I) 

and  <f>  =  TT,  which  are  respectively  unstable  and  stable. 
wcfil 

II.  X  >  —   There  are  positions  of  equilibrium  0  =  0  and 

(a2  _  b^^(a  -I)  ^  ^ 
0  =z  TT,  both  unstable,  and  also  an  intermediate  position  which  is  stable. 

This  last  position  is  determined  by  equation  (c). 

Critical  and  Neutral  Equilibrium 

151.  If  the  value  of  -— ^  at  a  position  of  equilibrium  is  zero, 

the  equilibrium  is  called  critical.  So  far,  we  have  not  discovered 

what  happens  when  a  system  is  slightly  displaced  from  a  posi- 
tion of  critical  equilibrium. 

In  general,  the  value  of  W  in  the  neighborhood  of  any  position 

of  equilibrium  can  be  expanded  in  the  form  (cf.  equation  (41)) 

If  — ^  vanishes  at  P,  the  most  important  term  in  the  value  of 

W—W],  is  that  in  x^,  so  that  we  have  approximately 

Here  W—Wp  changes  sign  on  passing  through  x  =  Q,  the  con- 
figuration of  equilibrium,  so  that  the  graph  of  W  is  as  shown  in 

J 



STABILITY  AND  INSTABILITY  183 

fig.  102,  having  a  horizontal  tangent  and  point  of  inflection  at  P. 

On  one  side  the  potential  energy  is  less  than  at  P,  on  the  other 

side  it  is  greater. 

Let  Q,  Q'  be  two  adjacent  configurations  on  these  two  sides 
of  F.    If  the  system  is  placed  at  Q,  it  must  move  so  that  its  poten- 

tial energy  decreases,  and  therefore  moves  away  from  P.    If  it  is 

placed  at  Q' y  for  the  same  reason  it  must  move 
at  first  towards  P,  but  it  will  move  beyond  P 

and  will  then  continue  to  move  away  from  P, 

—  for  it  cannot  come  to  rest  until  its  potential 

energy  is  again  equal  to  that  at  Q' ,  and  this 

cannot  happen  in  the  neighborhood  of  P.    Thus  ^^'  ̂  ̂ 
if  the  system  starts  from  any  configuration  in  the  neighborhood 

of  P,  it  will  ultimately  be  moving  away  from  P.  In  other  words, 

the  equilibrium  is  unstable. d-W 

Thus  if  —J  =  0  at  P,  the  equilibrium  
is,  in  general,  unstable. 

An  exception  has  to  be  made  when  — -  =  0 ;  for  then  we  have dx 

This  case  may  be  treated  as  in  §  148,  and  we  find  that  the 

equilibrium  is  stable  or  unstable  according  as  (  — — )  is  positive 
or  negative.  ^        /^ 

152.  Higher  degrees  of  singularity  may  be  treated  in  the  same 

way,  and  we  easily  obtain  the  following  general  rules : 

If  the  first  differential  coefficient  which  does  not  vanish  is  of  odd 
order,  the  equilibrium  is  unstable. 

If  the  first  differential  coefficient  which  does  not  vanish  is  of  even 

order,  the  equilibrium  is  stable  or  unstable  according  as  this  differ- 
ential coefficient  is  positive  or  negative. 

It  is  possible  for  all  the  differential  coefficients  to  vanish,  in 

which  case  the  problem  is  best  treated  by  other  methods. 
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Eor  instan'ce,  if  the  potential  energy  is  of  the  form 

it  will  be  found  that  all  the  differential  coefficients  vanish  in  the 

configuration  given  by  x  =  0.  On  drawing  a  graph  of  the  function 
W  it  appears  that  the  equilibrium  is  stable. 

It  may  be  that  all  the  differential  coefficients  of  W  vanish 

because  W  is  a  constant  throughout  the  whole  of  a  range  sur- 
rounding the  configuration  under  consideration.  If  tliis  is  so, 

the  system  may  be  displaced,  and  there  will  be  no  force  tending 

to  move  it  from  its  new  configuration  —  every  configuration  is 
one  of  equilibrium.  Equilibrium  of  this  kind  is  called  neutral 

eqiiilihrmm. 

A  case  of  neutral  equilibrium  has  already  occurred  in  Ex.  2,  p.  179,  —  a 
door  free  to  swing  about  a  vertical  line  of  hinges.  A  second  case  is  that 
of  a  sphere  rolling  on  a  horizontal  plane. 

Systems  possessing  Several  Degrees  of  Freedom 

153.  So  far  we  have  considered  only  systems  which  are  limited 

to  moving  through  a  smgle  series  of  configurations  —  systems 
with  only  a  single  degree  of  freedom.  The  determination  of  the 

stability  or  instabihty  of  a  system  having  more  than  one  degree 
of  freedom  is  a  more  complex  problem. 

If  the  potential  energy  is  absolutely  a  minimum  in  a  position 

of  equilibrium,  so  that  every  possible  motion  involves  an  increase 

of  potential  energy,  then  the  equilibrium  is  stable.  This  obviously 

can  be  proved  by  the  same  argument  as  has  served  when  there  is 

only  one  degree  of  freedom. 

If  the  potential  energy  is  not  an  absolute  minimum,  —  that  is 
to  say,  if  displacements  are  possible  in  which  the  potential  energy 

decreases  while  moving  away  from  the  position  of  equilibrium,  — 
then  the  configuration  is  one  of  unstable  equilibrium.  This  will  be 

proved  later.  It  cannot  be  proved  by  the  methods  used  in  this  chap- 
ter, and  so  we  defer  the  question  until  later  (Chapter  XII). 
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GENERAL  EXAMPLES 

1.  Prove  that  the  horse  power  of  an  engine  which  overcomes  a  resist- 
ance of  R  pounds  at  a  speed  of  S  miles  an  hour  is 

RS  -^  375. 

2.  A  train  weighing,  with  the  locomotive,  500  tons  is  kept  moving  at 
the  uniform  rate  of  30  miles  an  hour  on  the  level,  the  resistance  of  air, 

friction,  etc. ,  being  40  pounds  per  ton.    Find  the  horse  power  of  the  engine. 

By  how  much  must  this  horse  power  be  increased  if  the  rate  Is  to  be 

maintained  while  water  is  taken  up  from  a  trough  between  the  rails  to  the 

amount  of  20  pounds  per  foot  passed  over,  the  height  to  which  the  water  is 

raised  above  the  trough  being  10  feet,  and  the  kinetic  energy  imparted  to 

the  water  in  the  trough,  as  well  as  that  of  the  motion  of  the  water  taken  up, 

relatively  to  the  tank,  being  neglected  ? 

3.  The  sides  of  a  conical  hill  are  of  such  a  shape  that  a  given  mass  will 

just  rest  on  them  without  slipping.  A  man  washes  to  move  this  mass  from 

a  point  at  the  base  of  the  hill  to  a  second  point  diametrically  opposite  to 

the  first.  Show  that  the  work  of  dragging  it  over  the  hill  is  less  than  the 

work  of  dragging  it  round  the  base  of  the  hill,  in  the  ratio  2 :  tt. 

4.  Show  that  the  work  a  man  does  in  dragging  a  weight  up  a  hill  from 

a  given  point  A  to  the  summit  B  depends  only  on  the  positions  of  A  and 

B,  and  is  independent  of  the  shape  of  the  hill,  provided  he  keeps  always 

in  the  vertical  plane  through  A  and  B. 

5.  A  catapult  is  made  by  tying  the  two  ends  of  a  piece  of  elastic,  natural 

length  a,  modulus  of  elasticity  X,  to  the  two  prongs  of  a  forked  piece  of 

w^ood,  distant  I  apart,  I  being  greater  than  a.  A  stone  of  mass  m  is  placed 
at  the  middle  point  of  the  catapult,  and  is  drawn  back  until  the  string  is 

stretched  to  double  its  natm-al  length.  If  it  is  then  set  free,  find  the 
velocity  with  which  it  will  leave  the  catapult. 

6.  If,  in  the  last  question,  the  stone  is  projected  vertically  upwards  from 

the  catapult,  find  the  height  to  w^hich  it  will  rise  before  coming  to  rest. 
7.  A  necklace  of  mass  m  is  made  of  beads  threaded  on  a  light  string  of 

modulus  X.  It  is  held  in  a  horizontal  plane,  with  the  string  unstretched, 

resting  on  the  surface  of  a  smooth  right  circular  cone  of  semivertical  angle 

cr,  of  which  the  axis  is  vertical.  If  the  necklace  is  let  go,  how  far  wiU  it 

slip  down  the  cone  before  coming  to  rest  ? 

8.  A  fly  wheel  is  of  radius  2  feet  6  inches,  and  the  weight  of  the  spokes, 

etc.,  may  be  neglected  in  comparison  with  that  of  the  rim.  It  is  rotating 

at  the  rate  of  250  revolutions  per  minute  about  a  fixed  axle,  which  is 
3  inches  in  diameter,  the  coefficient  of  friction  between  the  wheel  and  axle 

being  ̂ l.  if  jt  is  left  to  itself,  find  how  many  revolutions  it  will  make 
before  stopping. 
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9.  A  spider  hangs  from  the  ceiling  by  a  thread  of  modulus  of  elasticity 
equal  to  its  weight.  Show  that  it  can  climb  to  the  ceiling  with  an  expend- 

iture of  work  equal  to  only  three  quarters  of  what  would  be  required  if 
the  thread  were  inelastic. 

10.  A  fine  thread  having  two  masses  each  equal  to  P  suspended  at  its 
ends  is  hung  over  two  smooth  pegs  in  the  same  horizontal  line,  distant 
2  a  apart.  A  mass  Q  is  then  attached  to  the  middle  point  of  the  portion  of 
the  string  between  the  pegs  and  allowed  to  descend  under  gravity.  Show 
that  its  velocity  after  falling  a  depth  x  will  be 

2g(x^  +  a^)(Qa:  +  2  Pa  -  2  PVx^  +  a^)^ 
Q(x^  +  a^)-h2Px^  j 

11.  Assuming  that  the  attraction  of  the  earth  on  a  body  outside  the 
earth  falls  off  inversely  as  the  square  of  the  distance  of  the  body  from  the 

earth's  center,  find  with  what  velocity  a  shot  would  have  to  be  fired  ver- 
tically upwards  from  the  earth's  surface  so  as  never  to  return  to  the  earth 

at  all. 

12.  A  steam  hammer  of  weight  30  tons  is  pressed  down  partly  by  its 
weight  and  partly  by  the  pressure  of  steam  in  a  vertical  cylinder  acting  on 
a  piston  which  moves  with  the  hammer.  The  area  of  the  piston  is  4  square 
feet,  and  the  steam  pressure  is  225  pounds  to  the  inch.  If  the  hammer  is 
raised  a  height  of  2  feet  above  its  block,  and  set  free,  find  the  velocity  with 
which  it  will  strike  the  block. 

13.  The  ends  of  a  uniform  rod  of  length  I  are  connected  by  a  string  of 
length  a  which  is  placed  over  a  smooth  peg.  Show  that  the  rod  can  only 
hang  in  a  horizontal  or  vertical  position,  and  examine  the  stability  or 
instability  of  these  positions. 

14.  Two  equal  uniform  rods  are  rigidly  jointed  in  the  shape  of  the  let- 
ter L,  and  placed  astride  a  smooth  circular  cylinder  of  radius  a.  Find 

the  smallest  length  of  the  rods  consistent  with  stability  of  equilibrium,  the 
rods  being  constrained  to  remain  in  a  vertical  plane  perpendicular  to  the 
axis  of  the  cylinder. 

15.  A  cube  of  stone  of  edge  a  rests  symmetrically  and  with  its  base 

horizontal  on  a  rough  circular  log  of  diameter  b.  Show  that  the  equilib- 
rium is  stable  or  unstable  according  as  &  >  or  <  «. 

16.  A  rocking  stone  rests  on  a  fixed  stone,  thecontact  being  rough,  and 
the  common  normal  at  the  point  of  contact  being  vertical.  If  p,  /  be 
the  radii  of  curvature  of  the  surfaces  of  the  two  stones  at  the  point  of 
contact,  and  if  h  be  the  height  of  the  center  of  gravity  of  the  movable  stone, 
show  that  the  equilibrium  of  the  rocking  stone  will  be  stable  or  unstable 
according  as  111 

-  >or  <-  +  -. h  P      p 
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17.  A  ladder  of  lengtli  h  and  weight  w  stands  in  a  vertical  position  on 

a  rough  floor,  an  elastic  string  being  tied  to  its  topmost  point  and  to  a 

point  in  the  ceiling  at  a  height  b  above  the  floor,  its  tension  being  T.  Show 

that  the  equilibrium  is  stable  or  unstable  according  as 

r>or<"'(''-^'>.      . 2  h 

18.  If  the  tension  in  question  17  is  equal  to  iv (h  —  h)/2h,  determine 
whether  the  equilibrimn  is  stable  or  unstable. 

19.  If  in  question  14  the  rods  are  of  the  critical  length  which  separates 

stability  from  instability,  show  that  the  equilibrium  is  neutral,  so  that  the 

rods  can,  within  certain  limits,  rest  in  any  position  in  the  plane  perpen- 
dicular to  the  axis  of  the  cylinder. 

20.  Show  that  the  rods  in  the  last  question  are  in  stable  equilibrium 

as  regards  displacements  in  which  the  plane  of  the  rods  rotates  about  a 

vertical  axis,  and  find  the  couple  required  to  hold  the  rods  in  a  position  in 

which  the  plane  makes  any  given  angle  d  with  the  axis  of  the  cylinder. 

21.  Find  the  smallest  length  of  the  rods  in  the  last  question,  in  order 

that  the  equilibrimn  may  be  stable  for  all  possible  displacements. 

22.  The  radii  of  curvature  at  the  blunt  and  pointed  ends  of  a  hard-boiled 

egg  are  a  and  h  respectively,  and  the  Qgg  can  just  be  made  to  balance  on 

its  blunt  end  when  stood  on  a  rough  horizontal  surface.     Show  that  it  can 

be  made  to  balance  on  its  pointed  end  if  stood  inside  a  hemispherical  basin 
of  radius  less  than  .        ,  >, a(c  —  o) 

a  +  b  —  c 

where  c  is  the  longest  axis  of  the  egg.     If  the  radius  of  the  basin  is  just 

equal  to  a(c  —  h)/{a  +  &  —  c),  would  the  equilibrium  be  stable  or  unstable  ? 
23.  A,  B,  C  are  three  equidistant  smooth  pegs  in  the  same  horizontal 

line,  and  a  heavy  uniform  string  has^its  ends  tied  to  ̂ ,  C,  and  is  looped 
over  B.  Show  that  there  may  or  may  not  be  a  position  of  equilibrium  in 

which  the  two  catenaries  AB,  BC  are  unequal,  and  that  if  there  is  such  a 

position  it  will  be  stable. 

Show  also  that  the  position  of  equilibrium  in  which  the  middle  point  of 

the  string  is  at  B  is  unstable  or  stable  according  as  an  unsymmetrical 
position  of  equilibrium  does  or  does  not  exist. 
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MOTION  OF  A  PARTICLE   UNDER  CONSTANT  FORCES 

154.  The  simplest  case  of  motion  of  a  single  particle  occurs 

when  the  particle  is  acted  upon  only  by  constant  forces  and  moves 

in  a  straight  line. 

If  P  is  the  component  force  in  the  direction  of  the  motion  of 

the   particle,  there  will,  by  the    second    law  of  motion,  be  an 

acceleration  /  given  by P  =  mf, 

where  m  is  the  mass  of  the  particle.    Since  the  forces  are,  by 

hypothesis,  constant,  the  acceleration  /  is  also  constant. 

Let  the  particle  start  with  a  velocity  u,  and  move  with  a  con- 
stant acceleration  /.  In  time  t  the  increase  in  velocity  is  ft,  so 

that,  after  any  time  t,  the  whole  velocity  is  u  -\-  ft.  Denoting  this 
velocity  by  v,  we  have 

'Z;  =  76+/i(.  (44) 
ds 

By  definition,  v  is  equal  to  —  >  where  s  is  the  space  described 

from  the  beginning  of  the  motion.    We  accordingly  have 

an  equation  giving  the  rate  of  increase  of  s  at  any  instant.    Integrat- 

s  =  nt-\-  \ft\  (45) 
ing,  we  obtain 

no  constant  of    integration  being  needed,  because    the    distance 

described  at  time  ̂   =  0  has  to  be  0,  from  the  definition  of  s. 

By  equation  (44),  u  =  v  —ft,^o  that  equation  (45)  can  be  written 

s=^vt-  \ft\  (46) 
188 
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This  gives  the  distance  described  in  time  t,  when  we  know  the 

velocity  v  with  which  the  particle  arrives  at  the  end  of  its 

journey. 

Combinmg  equations  (45)  and  (46),  we  have 

s  =  ̂ (^to  +  v)t,  (47) 

showing  that  the  space  described  is  the  arithmetic  mean  of  ut  and 

vt :  the  former  is  the  space  that  would  be  described  if  the  particle 

maintained  its  origiaal  velocity  u  through  the  whole  time  t ;  the 

latter  is  that  which  would  be  described  if  the  particle  had  its  final 

velocity  throughout  the  whole  time. 

Combining  equation  (47)  with  equation  (44),  which  can  be 
written  in  the  form 

ft  =  {v  —  u), 

we  obtaiu,  on  eliminatiug  t, 

2fs  =  v^-u^,  (48) 

an  equation  connecting  the  space  described  with  the  initial  and 
final  velocities. 

This  last  equation  may  also  be  deduced  from  the  equation  of 

energy.  Since  the  work  done  on  the  particle  is  equal  to  the  change, 

in  its  kinetic  energy,  we  have 

Fs  =  ̂   mv^  —  ̂   mu^y 

and  since  P  =  mf,  equation  (48)  follows  at  once. 

Body  falling  under  Gravity 

155.  The  simplest  application  of  these  equations  is  to  the 

motion  of  a  body  which  is  allowed  to  fall  freely  under  the  influ- 
ence of  gravity,  so  that  the  acceleration  is  g. 

If  the  body  starts  from  rest,  we  put  ̂t  =  0,  and  measure  s 

vertically  downwards.  We  find  from  equation  (45)  that  after 

time  t  the  body  has  fallen  a  distance  ̂ gf^,  while  its  velocity 
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is  ft.    After  falling  a  distance  li  its  velocity  is,  by  equation  (48), 

equal  to  ̂ 2gh.    This  is  frequently  spoken  of  as  the  "velocity 

due  to  a  height  h." We  notice  that  the  distance 

fallen  varies  as  the  square  of  the 

time  duriQg  which  the  body  has 

been  falling.  In  fig.  103  the 

time  is  measured  horizontally, 
while  the  distance  fallen  is 

measured  vertically.  The  thick 

curve  gives  a  graphical  repre- 
sentation of  the  distance  fallen. 

Denoting  the  horizontal  dis- 
tance by  X  and  the  vertical  by 

y,  we  have  x  =  t,i/  =  ̂   gf,  so  that 
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156.  This  is  the  equation  of  a  parabola,  so  that  the  curve  is  a 

parabola.  The  graph  can  be  obtained  experimentally  by  a  method 

known  as  Morin's  method.  A  w^eight 
P  is  free  to  fall  vertically  in  a  slot 

formed  in  a  rod  AB,  and  is  arranged 

so  that,  as  it  falls,  a  pencil  attached  to 
it  makes  a  mark  on  a  drum  CD  which 

is  covered  with  paper.  The  drum  is 

made  to  rotate  uniformly.  On  unroll- 
ing the  paper  from  the  drum  we  obtain 

the  graph  of  fig.  103,  —  for  the  hori- 
zontal distance  is  proportional  to  the 

time,  while  the  vertical  is  the  distance 

fallen  through.  The  fact  that  the  curve 

obtained  in  this  way  is  accurately  a 

parabola  gives  experimental  confirma- 

tion of  the  fact  that  motion  under  gravity  is  motion  with  uni- 
form acceleration. 

Fig.  104 
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157.  If  the  body  is  projected  vertically  upwards  with  velocity 

u,  we  may  measure  the  distance  s  vertically  upwards,  and  the 

acceleration  in  this  direction  will  be  —  g.    Thus  we  have 

s  =  lU  ~  ̂ gf^y 
V  =  i(c  —  gt, 

2gs  =  tt^  —  v^y 

where  s  is  the  distance  upwards  described  after  time  t,  and  v  is 

the  upward  velocity.    From  the  first  equation  we  see  that  s  =  0 
2  tc 

not  only  when  ̂   =  0,  but  also  when  t  =   Thus  the  particle 

returns  to  its  original  position  after  time  2  u/g.  When  s  =  0  the 

tliird  equation  shows  that  u^  =  v^.  Thus  when  the  particle  returns, 
its  velocity  is  the  same  as  when  it  started.  Clearly  this  must  be 

so,  for  the  potential  energy  is  the  same,  and  therefore  the  kinetic 

energy  also  is  the  same. 

EXAMPLES 

1.  If  an  express  train  is  doubled,  tlie  first  half  being  given  5  minutes'  start, 
and  attaining  its  maximum  booked  speed  of  48  miles  an  hour  after  moving  with 

constant  acceleration  for  a  mile,  prove  that  the  two  halves  will  run  about  4 

miles  apart,  but  the  first  half  will  have  gone  3  miles  before  the  start  of  the 
second  half. 

2.  A  train  passes  another  on  a  parallel  track,  the  former  having  a  velocity 

of  45  miles  an  hour  and  an  acceleration  of  1  foot  per  second  per  second,  the 
latter  a  velocity  of  30  miles  an  hour  and  an  acceleration  of  2  feet  per  second 

per  second.  How  soon  will  the  second  be  abreast  of  the  first  again,  and  how 
far  will  the  trains  have  moved  in  the  meantime  ? 

3.  A  body  is  dropped  from  a  balloon  at  a  height  of  70  feet  from  the  ground. 

Find  its  velocity  on  reaching  the  ground,  if  the  balloon  is  (a)  rising,  (6)  falling, 
with  a  velocity  of  30  feet  a  second. 

4.  A  stone  is  dropped  into  a  well,  and  the  sound  of  the  splash  reaches  the 

.top  after  9  seconds.    Eind  the  depth  of  the  well,  the  velocity  of  sound  being 
1100  feet  per  second. 

5.  An  elevator  descends  with  an  acceleration  of  5  feet  per  second  per  second 

until  its  velocity  is  20  feet  per  second,  after  which  its  velocity  remains  uniform. 

After  it  has  been  in  motion  for  6  seconds,  a  stone  is  dropped  on  to  it  from  the 
point  at  which  the  elevator  started.    How  soon  will  it  strike  the  elevator  ? 

6.  A  juggler  keeps  three  balls  going  with  one  hand,  so  that  at  any  instant 
two  are  in  the  air  and  one  in  his  hand.  If  each  ball  rises  to  a  height  of  4  feet, 

show  that  the  time  during  which  a  ball  stays  in  his  hand  is  |  second. 
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7.  A  body  was  observed  to  take  t  seconds  in  falling  past  a  liatcliway  to  the 
bottom  of  a  hold  h  feet  deep.    Prove  that  it  fell 

and  struck  with  velocity 

1    ih       1  \2 -g{ — \--t\   feet, 

-  +  -gt  feet  per  second. 
t       2i 

8.  A  chain  12  feet  long  hangs  from  its  upper  end.  If  this  be  released,  find 
the  time  the  chain  will  take  in  passing  a  point  60  feet  below  the  initial  position 

of  the  highest  point. 

9.  A  body  whose  mass  is  5  pounds,  moving  with  a  speed  of  160  feet  per 

second,  suddenly  encounters  a  constant  resistance  equal  to  the  weight  of 

\  pound,  which  lasts  until  the  speed  is  reduced  to  96  feet  per  second.  For 
what  time  and  through  what  distance  has  the  resistance  acted  ? 

10.  Two  wagons,  coupled  together,  are  pulled  along  a  horizontal  track  by 
a  steady  force,  and  move  over  100  feet  in  the  first  ten  seconds  from  rest.  The 

rear  wagon  is  then  uncoupled,  and  it  is  found  that  at  the  end  of  the  next  ten 

seconds  the  interval  between  the  two  wagons  is  160  feet.  Compare  the  masses 

of  the  two  wagons,  all  resistance  being  neglected. 

11.  A  balloon  of  weight  W  is  rising  with  acceleration  /.  If  a  weight  w  of 
sand  be  emptied  out  of  the  car,  find  the  increase  in  the  acceleration  of  the 

balloon,  neglecting  the  resistance  of  the  air  and  the  buoyancy  of  the  sand. 

Motion  on  an  Inclined  Plane 

158.  Suppose  we    allow  a  particle  to  slide  down  an  inclined 

plane,    the  contact  between   the  two    being    supposed   perfectly 

smooth.  If  m  is  the  mass  of  the  par- 
ticle, the  forces  acting  on  it  are  its 

weight  mg,  and  the  reaction  11  normal 

to  the  plane.  The  component  down  the 

plane  is  mg  sin  a,  so  that  the  particle 
moves  with  uniform  acceleration  g  sin  a. 

We  can  obtain  the  distance  described 
Fig.  lOo 

in  the  time  i  from  the  usual  formulae. 

If  the  particle  starts  from  rest,  the  distance  described  in  time  t 

is  ̂   ̂  sin  a  •  f. 
159,  Suppose  that  through  a  point  0  we  have  a  great  number  of 

smooth  wires  op  which  smooth  beads  are  free  to  slide.    Let  these 
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Fig.  106 

wires  make  all  possible  angles  with  the  vertical,  one  of  them,  00\ 

being  vertical.    Let  us  imagine  that  the  beads  are  all  collected  at 

0  and   are   set  free   simultaneously. 
After  time  t,  let  the  bead  which  is 

falling  vertically  be  at  P,  and  let  the 
bead  which  is  falling  along   a  wire 

inclined  at  an  angle  y8  to  the  vertical 
be  at  Q.    This  latter  bead  moves  with 

acceleration  g  cos  /3.    Thus  OP  =  i-  gf, 

while    OQ  =  \g  cos  p  •  f.      Hence 
OQ  =  OP  cos  ̂,  and  therefore  OQP 
is  a  right  angle.    It  follows  that  Q 

is  on  the  sphere  constructed  on  OP 

as  diameter,  and  obviously  the  same 

will   be   true    of   every   other   bead. 

Thus  at  any   instant  all  the  beads 

will  be  on  a  sphere  of  which  0  is  the  highest  point,  and  of  which 

the  lowest  point  is  at  a  distance  ̂   gt^  below  0.    Hence  as  the 
motion  proceeds  the  beads  will  appear  to  form  a  sphere  which 

continually  swells  out  in   size,   the   highest  point  appearing  to 

remain  fixed  at  0,  while  the  lowest  point  appears  to  fall  freely 
under  gravity. 

160.  This  imaginary  experiment 

indicates  a  way  of  solving  a  prac- 
tical problem.  Suppose  we  wish 

to  place  a  smooth  plane  or  wire  in 

such  a  position  that  a  particle  will 

pass  down  it  from  a  fixed  point  O 

to  a  given  fixed  surface  in  the  least 

time  possible.  Let  us  suppose  that 

we  fix  the  apparatus  of  wires  and 
beads  at  0,  that  we  set  the  beads 

free  simultaneously,  and  watch'  the 
increase  in  size  of  the  sphere  which 

Fig.  107  they  form.    As  soon  as  the  sphere 
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reaches  such  a  size  that  it  touches  the  fixed  surface  at  some  point 
F,  one  of  the  beads  has  arrived  at  this  surface  and,  moreover,  has 

arrived  in  shorter  time  than  any  of  the  others.  Thus  it  has  found 

the  quickest  path  from  0  to  the  surface.  This  path  is  OP,  and 

we  can  now  fix  the  path  without  performing  the  experiment,  from 

the  knowledge  that  a  sphere  drawn  so  as  to  have  0  as  its  highest 

point,  and  to  pass  through  P,  must  touch  the  surface  at  P. 
In  the  same  way,  if  we  wish  to 

find  the  quickest  time  from  a  surface 

to  a  fixed  point  0  below  it,  we  have 

to  find  a  sphere  which  touches  the 

surface  at  some  point  P  and  has  0  for 

its  lowest  point.  Then  PO  will  be  the 

path  required.  For  it  is  seen  at  once 
that  the  time  down  all  the  chords  of 

this  sphere  which  pass  through  0  is 
the  same,  so  that  the  time  down  PO 

is  equal  to  the  time  down  any  other 

chord  QO,  and  therefore  less  than  the  time  down  the  complete 

path  Q'O  from  the  surface  to  0,  of  which  the  chord  §0  is  a  part. 

ILLUSTRATIVE  EXAMPLE 

A  ship  stands  some  distance  from  its  pier^ 
and  it  is  required  to  place  a  chute  at  some  point 

of  the  shlp''s  side,  so  that  the  time  of  sliding 
down  the  chute  on  to  the  pier  may  he  as  short 

as  possible. 

Clearly  the  lower  end  of  the  chute  must  just 

rest  on  the  nearest  point  0  of  the  pier,  and  the 

problem  reduces  to  that  of  drawing  a  sphere  to 

have  0  as  its  lowest  point  and  to  touch  the  ship's 

side.  Assuming  the  ship's  side  to  be  vertical, 
the  tangents  to  this  circle  at  the  ends  of  the 
chute  must  be  horizontal  and  vertical ;  whence  it 

is  easily  seen  that  the  chute  must  be  placed  so 

that  it  makes  an  ansrle  of  45°  with  the  vertical. Fig.  109 

i 
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EXAMPLES 

1.  A  body  is  projected  with  a  velocity  of  20  feet  per  second  up  an  inclined 

plane  of  angle  45°.  Find  how  high  up  the  plane  it  will  go,  and  how  long  it  will 
take  in  going  up. 

2.  Two  particles  slide  down  the  two  faces  of  a  double  inclined  plane,  the 

angles  being  a  and  /3.  Compare  the  times  they  take  to  reach  the  bottom,  and 
the  velocities  they  acquire. 

3.  A  body  is  projected  down  an  inclined  plane  of  length  I  and  height  h,  from 

the  summit,  at  the  same  instant  as  another  is  let  fall  vertically  from  the  same 

point.  Prove  that  if  they  strike  the  base  at  the  same  time,  the  velocity  of 

projection  of  the  first  must  be    
l^-h'^     j_g_ 

I      \2h 

4.  Give  a  construction  for  finding  the  line  of  quickest  descent  from  a  fixed 

point  to  a  circle  in  the  same  vertical  plane. 
5.  Particles  are  sliding  down  a  number  of  wires  which  meet  in  a  point,  all 

having  started  from  rest  simultaneously  at  this  point.  Prove  that  at  any  instant 
their  velocities  are  in  the  same  ratio  as  the  distances  they  have  described. 

6.  A  railway  carriage  is  observed  to  run  with  a  uniform  velocity  of  10  miles 
an  hour  down  an  incline  of  1  in  250,  and  on  reaching  the  foot  of  the  incline 

runs  on  the  level.  Find  how  many  yards  it  will  run  before  coming  to  rest,  assum- 
ing the  resistance  to  be  constant  and  the  same  in  each  stage  of  the  motion. 
7.  Prove  that  if  a  motor  car  going  at  100  kilometers  an  hour  can  be  stopped 

in  200  meters,  the  brakes  can  hold  the  car  on  an  incline  of  about  1  in  5  ;  and 
determine  the  time  required  to  stop  the  car. 

8.  A  carriage  weighing  12  tons  becomes  uncoupled  from  a  train  which  is 

running  down  an  incline  of  1  in  250  at  a  rate  of  40  miles  per  hour.  The  fric- 
tional  resistance  is  14  pounds  weight  per  ton.  Find  how  far  the  carriage  will 

go  before  coming  to  rest. 
9.  The  pull  of  the  locomotive  exceeds  the  ordinary  resistances  to  the  motion 

of  a  train  by  -^^  of  its  whole  weight ;  and  when  the  brakes  are  full  on  there  is  a 
total  resistance  of  ̂ V  of  its  whole  weight.  Find  the  least  time  in  which  the 
train  could  travel  between  two  stopping  stations  on  the  level  3  miles  apart. 

10.  In  the  last  question,  find  the  time  if  the  track  is  down  a  gradient  of 
1  in  100. 

Atwood's  Machine 

161.  It  is  difficult  to  measure  the  acceleration  produced  by 

gravity  from  direct  observations  on  a  body  falling  freely,  because 

either  the  distance  fallen  must  be  very  great  or  else  the  time 

of  falling  very  small.  These  difficulties  are  to  some  extent  obviated 

in  a  machine  designed  by  Atwood. 
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If  a  string  having  two  equal  weights  attached  to  its  ends  is  placed 

over  a  smooth  vertical  pulley,  so  that  the  weights  hang  freely,  it  is 

obvious  that  there  will  be  equLLibrium.    If  the  weights  are  unequal, 

equilibrium  cannot  exist.     In  Atwood's  machine  the  difference 
between  the  weights  is  made  small,  so  that  the 

motion  is  slow  and  is  therefore  easily  measured. 

Let  m^,  m^  be  the  masses  of  the  weights, 

of  which  the  former  will  be  supposed  to  be  the 

greater.    When  set  free,  let  us  suppose  that 

,.     the  former  descends  with  an  acceleration  /. 

\  77        Eegardiug  the  striug  as  inextensible,  the  second 
f  -L  mass  must  ascend  with  an  acceleration  /. 

The  striQCT  will  be  treated  as  weightless,  so 
Fig.  110  ^  t)  > 

that  the  mass  of  any 'element  of  it  may  be  dis- 
regarded. The  second  law  of  motion  accordingly  shows  that  the 

resultant  force  actuig  on  any  element  must  vanish.  Thus  the  forces 

acting  on  the  string  must  be  in  equilibrium  (even  although  the 

striQg  is  not  at  rest),  and  it  follows,  as  in  §  54,  that  the  tension 

must  be  the  same  at  all  points,  say  T. 

The  forces  acting  on  either  mass  consist  of  its  weight  acting 

downwards  and  the  tension  of  the  string  actuig  upwards.  Thus 

the  resultant  downward  forces  on  the  two  masses  are  respectively 

m^g  —  T  and  m^g  —  T.  The  equations  of  motion  for  the  two  masses 

are  accordingly  ^^^  -T=  mj, 

m^g  —  T=—mJ. 

If  we  eliminate  T,  we  obtain 

giving  the  acceleration.    On  eliminating/,  we  obtain  as  the  value 
of  the  tension  9  „,  .^ 

T=^^^g.  (50) 

Clearly,  if  m^  is  nearly  equal  to  /Wg,  the  acceleration  will  be  small.    For 
instance,  if  the  weights  are  100  and  101  grammes,  we  find  that 

/=  i.\i:9  =-016  feet  per  second  per  second. 
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An  Acceleration  of  this  smallness  could  easily  be  measured ;  for  instance, 

the  heavier  mass  would  only  descend  eight  feet  in  ten  seconds.  In  prac- 
tice, the  difficulty  arises  that  if  the  difference  of  the  weights  is  made  too 

small,  the  forces  acting  on  the  pulley  are  so  evenly  balanced  that  their 
difference  is  not  sufficient  to  overcome  the  friction  of  the  bearings,  etc. 

Motion  referred  to  a  Moving  Frame  of  Reference 

162.  It  has  already  been  seen  (§  25)  that  the  second  law  of 
motion  remains  true  when  the  motion  is  measured  relative  to  a 

frame  of  reference  which  is  not  at  rest  but  is  moving  with  a  uni- 
form velocity.  It  is  easy  to  find  how  the  statement  of  this  law 

must  be  modified  when  the  frame  of  reference  moves  with  a  known 

acceleration. 

Let  a  be  the  acceleration  of  the  frame  of  reference,  let  /  be  the 

component  of  the  acceleration  of  a  moving  particle  in  the  direction 

of  the  acceleration  a,  and  let  P  be  the  component  in  this  direction 

of  the  force  acting  on  the  particle.    By  the  second  law  of  motion 

F  =  mf\  (51) 

where  f  is  the  component  acceleration  referred  to  a  frame  of  refer- 

ence at  rest.  The  acceleration/'  may,  however,  be  regarded  as  com- 
pounded of  the  acceleration  /  of  the  particle  relative  to  the  moving 

frame  of  reference,  together  with  the  acceleration  a  of  this  frame 
relative  to  one  at  rest.  Since  these  accelerations  are  all  in  the 

same  direction,  we  have  /'=/+«;,  so  that  equation  (5 1)  becomes 
P  =  m(/+a;). 

We  can  also  write  this  in  the  form 

P  —  ma  =  mf,  (52) 

showing  that  the  motion  is  the  same  as  if  the  frame  were  at  rest, 

'provided  we  imagine  the  force  P  diminished  hy  an  amount  ma. 
This  result  can  easily  be  interpreted  physically.  Of  the  force  P, 

a  part  equal  to  ma  is  used  up  in  causing  the  particle  to  keep  pace 

with  the  moving  frame  of  reference.  It  is  only  the  remaining  part, 

P  —  ma,  which  is  available  for  producing  accelerations  relative  to 
the  moving  frame. 
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163.  Frame  moving  with  vertical  acceleration.  If  the  frame 

of  reference  moves  with  an  acceleration  a  vertically  downwards, 

we  see  that  before  measuring  accelerations  relative  to  this  frame, 

we  must  suppose  the  vertical  component  of  force  on  each  particle 

of  mass  m  to  be  diminished  by  ma.  ̂ Tiatever  forces  are  acting, 

there  wiU  be  amongst  them  the  weights  of  the  particles  mg,  etc. 

We  can  conveniently  suppose  the  diminution  ma  to  be  taken 

from  these,  so  that  the  weight  of  a  particle,  instead  of  being 

taken  to  be  mg,  will  be  taken  to  he  m(g  —  a). 
Thus  the  acceleration  of  the  frame  of  reference  may  be  allowed 

for  by  supposing  the  acceleration  due  to  gravity  to  be  diminished 

from  g  to  g  —  a. 

For  example,  if  an  Atwood's  machine  is  placed  in  an  elevator,  then  at 
the  instant  at  which  the  elevator  has  an  upward  acceleration  a,  the  accel- 

eration of  the  masses  relative  to  the  machine  will  be  (cf .  equation  (49)) 

f- 

(5'+«)> 

while  the  tension  of  the  string  will  be  (cf .  equation  (50)) 

T  = 
?«!  +  7/^2 

{9  +  «)• 
164 

seen  ( 

a  cos\ 

Effect  of  earth's  rotation  on  the  value  of  g.   As  we  have 
25),  a  frame  of  reference  which  is  fixed  relatively  to  the 

earth's  surface  possesses  an  acceleration 
in   consequence  of  the  rotation  of  the 
earth  about  its  axis. 

Let  00'  be  the  earth's  axis,  and  let 

P  be  any  point  on  the  earth's  surface, 
in  latitude  X.  Eegarding  the  earth  as  a 

sphere  of  radius  a,  the  point  F  will  de- 
scribe a  circle  of  radius  a  cos  X  having 

its  center  N  on  the  earth's  axis.  If  v  is 
the  velocity  with  which  P  describes  the 
circle,  the  acceleration  of  P  is,  by  §  12, 

towards  the  center  of  the  circle,  —  i.e.  along  PN. 
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Let  CO  be  the  angular  velocity  of  the  earth, — i.e.  let  it  turn  through 

(o  radians  per  unit  time.  Then  the  time  of  P  describing  a  com- 
plete circle  is  the  same  as  the  time  required  for  the  earth  to  perform 

a  complete  revolution,  namely 
Hence  we  have 

2 
This  time  is  also 

2  TT  a  cos  X 

V 

V aoa  cos  \. 

The  acceleration  of  the  frame  of  reference  is  now  seen  to  be 

=  (o^a  cos  \ 
a  cos  X 

along  PN.  The  motion  of  any  particle  referred  to  a  frame  moving 

with  P  may  accordingly  be  calculated  as  though  with  reference  to 

a  fixed  frame,  provided  the  component  of  force  in  the  direction 

PN  is  diminished  by  may^a  cos  \. 
Thus  the  total  force  acting  may  be  supposed  to  consist  of  the 

forces  wliich  actually  do  act,  combined  with  a  force  mcD^acosX 

along  iVP.  Compounding  this  last  force  with  the  earth's  attrac- 
tion, we  obtain  a  force  which  may  be  called  the  apparent  force  of 

gravity  at  P.  Thus  the  motion  of  the  frame  of  reference  may  be 

allowed  for  by  using  the  apparent  force  of  gravity  in  place  of  the 

true  attraction  of  the  earth.  It  is  this  apparent  gravity  which  is 

determined  experimentally,  and  which  is  always  meant  in  speaking 

of  the  weight  of  a  particle  at  any  point. 

To  find  the  apparent  weight  of  a 

body  at  the  point  P,  we  have  to  com- 
pound its  true  weight,  say  mG  acting 

along  PC,  with  a  force  mco'^a  cos  \  along 
NP.  Let  the  latter  force  be  resolved 

into  its  components  Fig.  112 

—  mciy^a  cos^  X,     may^a  cos  X  sin  X 

along  PC,  PT  respectively,  PT  being  the  tangent  at  P. 

Compounding  with  the  force  mG  along  PC,  we  find  for  the  com- 
ponents X,  Y  of  the  apparent  weight  along  PC,  PT  respectively, 

X==m{G-'(o^a  cos' X),  (53) 

Y  =  mco^  a  cos  X  sin  X.  (54) 
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Squaring  and  adding,  and  denoting  the  apparent  weight,  as  usual, 

by  mg,  we  obtain 

my  =  X'  +  r^  =  m' ((?'  -2(D^aG  cos'  X  +  (o'a''  cos2  X).     (55) 
Taking  the  diameter  of  the  earth  to  be  7927  miles,  and  the 

value  of  G  (the  acceleration  due  to  gravity  at  the  North  Pole) 

to  be  32.25,  we  easily  find  that 

—  =  290'  ̂ pp^o^^^^teiy- 
The  square  of  this  is  so  small  that  to  a  first  approximation  it 

may  be  neglected,  and  equation  (55)  may  be  written  in  the  form 

g  —  G  —  (o^a  cos'  X. 
Thus  the  apparent  weight  in  latitude  X  is  less  than  the  true 

weight  by  mcty^a  cos'X,  or  about  290^  cos'  X  of  the  whole  weight. 
The  apparent  weight  does  not  act  along  the  radius  CP.  If  we 

suppose  it  to  act  at  an  angle  6  with  this  radius,  we  obtain,  from 

equations  (53)  and  (54), 

^       Y      ap-a  cos  X  sin  X tan  Q  —  ~  =   -— 
X      G  —  (o^a  cos^  X 

=  ̂ ^  cos  X  sin  X,  approximately, 

givuig  the  deviation  of  the  plumb  Ime  from  the  earth's  radius  at 
any  point. 

Frigtional  Eeactions  between  Moving  Bodies 

165.  It  is  found  experimentally  that  the  relation 

(in  which  F,  R  are  the  tangential  and  normal  components  of  the 

reaction  between  two  bodies)  remains  very  approximately  true 

when  the  bodies  are  sliding  past  one  another.  The  value  of  /u., 
the  coefficient  of  friction,  is  not  quite  the  same  as  when  the 

bodies  are  at  rest,  the  latter  being  always  somewhat  larger. 

Friction  between  two  bodies  which  are  sliding  past  one  another 

is  called  dynamical  friction,  that  between  two  bodies  at  rest  being 
called  statical  friction. 
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ILLUSTRATIVE  EXAMPLES 

1.  Two  particles  of  masses  mi,  m^  are  placed  on  two  inclined  planes  of  angles 

a,  jS,  placed  hack  to  hack,  and  are  connected  hy  a  string  which  passes  over  a  smooth 

pulley  at  the  top  of  the  planes.  If  the  coefficients  of  friction  hetween  the  particles 

and  the  planes  are  m,  1x2,  find  the  resulting  motion. 

If  motion  occurs  at  all,  one  particle,  say  mi,  must  move  down  its  plane,  while 

the  other,  m2,  will  move  up.  Since  the  string  is  inextensible,  the  acceleration 

of  each  will  be  the  same,  say /in  the  direction  in  which  motion  is  taking  place. 
The  forces  acting  on  the 

first  particle  are 

(a)  its  weight  mig  ver- 
tically down  ; 

(6)  the  tension  of  the 
string,  say  T,  up  the  plane ; 

(c)  the  reaction  with 

the  plane.  Let  this  be  re- 
solved into  components  R, 

(jlR  normal  to  and  up  the 

plane. 

Since  the  particle  mi  has  no  acceleration  normal  to  the  plane,  the  component 
of  the  resultant  force  in  this  direction  must  be  zero.    Resolving  in  this  direction 
we  obtain 

R  —  mig  cos  a  =  0. 

Resolving  down  the  plane, 

mig  sina  —  /xR  —  T  =  mi/, 

and  if  we  eliminate  the  unknown  reaction  R,  we  obtain 

migr  (sin  a  —  ix  cos  a)  —  T  =  mi/. 

Fig.  113 

(a) 
A  similar  equation  can  be  obtained  for  the  motion  of  the  second  particle, 

namely 

m^g  (sin/3  +  /a  cosjS)  —  2'  =  —  mif  (&) 

Solving  equations  (a)  and  (6)  for  /,  we  obtain 

/  = 

mi  (sin  or  —  ix  cos  a)  —  m^  (sin^S  +  ix  cos/3) 

(c) 
mi  +  ??i2 

giving  the  acceleration. 

If  this  value  of  /  comes  out  negative,  we  see  that  the  acceleration  cannot  be 

[in  the  direction  in  which  motion  has  been  assumed  to  take  place. 

If  the  system  starts  from  rest,  motion  in  the  direction  assumed  is  found  to 

be  impossible,  and  we  must  proceed  to  examine  whether  motion  in  the  opposite 

direction  is  possible.  If  this  also  is  found  to  be  impossible,  the  system  will 
remain  at  rest. 
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If,  however,  the  system  is  known  to  have  been  started  in  motion  in  the  direc- 
tion assumed,  then  the  acceleration  given  by  equation  (c)  will  be  in  operation, 

increasing  the  velocity  if  positive,  and  decreasing  it  if  negative.  In  the  latter 

case  the  system  will  in  time  be  reduced  to  rest,  and  we  must  then  examine 
whether  or  not  it  will  start  into  motion  in  the  reverse  direction. 

2.  To  one  end  of  the  string  of  an  Atwood^s  machine  a  weight  of  mass  mi  is 
attached.  To  the  other  end  a  smooth  pulley  of  mass  m^  is  attached,  over  which 

passes  a  string  with  masses  m^,  m^  hanging  at  its  ends.    Find  the  motion. 

Let  the  mass  mi  be  supposed  to  have  an  acceleration  /,  measured  downwards. 

Then  m^  must  have  an  acceleration  /  upwards.    The  masses  ms,  m^  will  them- 

selves form  an  Atwood's  machine,  the  whole  of  which 
moves  upwards  with  an  acceleration/.    Thus  the  ten- 

sion in  the  string  of  this  machine,  say  Ti,  is  (cf.  §  163) 

Ti 

2  msm^ 

ms  +  m^ (g-^f)' (a) 

If  we  denote  the  tension  in  the  string  connecting  mi 

and  m2  by  Ta,  we  have  as  the  equation  of  motion  of  7n2, 

T2  -  msgr  -  2  Ti  =  Wg/, 

while  the  equation  of  motion  of  mi  is 

^ig  -  T2=  mif. 

(&) 

{c) 

Eliminating  Ti  and   T^  from  equations  (a),  (6),  and  (c),  we  obtain  as  the 
value  of  the  acceleration/, 

mi  —  m2 

4  7nsm4 

f  = 

ms  +  m^ 

mi  +  m2  + 

4  7713  w  4 

ms  -I-  mi 

The  accelerations  of  the  masses  ms,  W4  relative  to  m^  are  known,  by  §  163, 
to  be 

m3-  m4 

3.  At  equal  intervals  on  a  horizontal  circle  n  small  smooth  rings  are  fixed, 

and  an  endless  string  passes  through  them  in  order.  If  the  loops  of  the  string 

between  each  consecutive  pair  of  rings  support  n  pulleys  of  masses  P,  Q,  i?,  •  •  • 
respectively,  the  portions  of  string  not  in  contact  with  the  pulleys  being  vertical, 
show  that  the  pulley  P  will  descend  with  acceleration 

i^+i+i  +  ... 
P        Q      B   

-^^i* 
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The  tension  of  the  string  must  be  the  same  throughout,  say  T.  If  the  accel- 

erations of  the. pulleys  are/p,  /q,  •  •  •,  all  measured  down,  we  have  equations 
of  motion  of  the  type 

Pg-2T=Pfp, 
(a) 

r^ 
P        Q 

Fig.  115 

one  equation  for  each  pulley.  The  unknown 

quantity  T  enters  these  equations,  as  well  as 

the  n  unknown  quantities  /p,  /q,  . . . .  Thus 
there  are  w  +  1  unknown  quantities,  and  so 

far  only  n  equations  connecting  them.  An- 
other equation  is  therefore  required,  and  this 

is  obtained  by  noticing  that  the  accelerations 

fpi  /q-,  •  • '  cannot  be  independent,  for  the 
length  of  the  string  must  remain  unaltered. 

Let  us  denote  the  depths  of  P,  Q,  •  •  •  below  the  horizontal  ring  by  sp,  Sq. 

Then  Sp  +  Sq-\-  •  ■- 

must  be  constant  throughout  the  motion.    It  follows  that 

fp+fQ+  ■-■  =  (). 
Substituting  the  values  of /p,  /q,  •  •  •  from  equation  (a),  we  obtain 

ng 

so  that 

P 

2T  = 1       1 

and  on  substituting  this  value  for  2  T  in  equation  (a),  we  obtain  the  required 
value  of  fp. 

EXAMPLES 

1.  Show  that  the  tension  of  the  string  in  an  Atwood's  machine  is  intermediate 
between  the  weights  of  the  two  masses.  Show  also  that  it  is  nearer  to  the 
smaller  than  to  the  larger  of  these  weights. 

2.  Two  weights  16  and  14  ounces  respectively  are  connected  by  a  light  inex- 
tensible  string  which  passes  over  a  smooth  pulley.  The  weights  hang  with  the 
strings  vertical  and  the  string  is  clamped  so  that  no  motion  can  take  place.  If 

the  string  is  suddenly  undamped  find  the  change  in  the  pressure  exerted  on  the 

pulley. 

3.  A  string  passing  across  a  smooth  table  at  right  angles  to  two  opposite 
edges  has  attached  to  it  at  the  ends  two  masses  P,  Q  which  hang  vertically. 
Prove  that,  if  a  mass  M  be  attached  to  the  portion  of  the  string  which  is  on  the 
table,  the  acceleration  of  the  system  when  left  to  itself  will  be P-Q 

P+Q  +  M 

9' 
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4.  Two  masses  m,  wf  are  tied  to  the  two  ends  of  a  string  which  is  slung  over 

a  peg,  as  in  an  Atwood's  macliine.  The  peg  is  not  smooth,  the  angle  of  friction 
between  it  and  the  string  being  e.    Find  the  motion. 

5.  In  question  3,  let  the  coefficient  of  friction  between  the  table  and  the 

weight  M  be  yu,  that  between  the  table  and  string  being  it.'.    Find  the  motion. 
6.  A  rope  hangs  over  a  smooth  pulley.  Find  the  uniform  acceleration 

with  which  a  man  weighing  10  stone  must  pull  himself  up  one  end  of  the 

rope,  for  the  rope  to  be  kept  at  rest  by  a  weight  of  12  stone  hanging  from 
the  other  end. 

7.  A  monkey  is  tied  to  one  end  of  the  string  of  an  Atwood's  machine,  the 
other  end  having  attached  to  it  a  weight  exactly  equal  to  that  of  the  monkey, 
and  at  just  the  same  depth  below  the  pulley.  The  monkey  suddenly  starts  to 

climb  up  his  string.  Which  will  rise  the  faster,  the  monkey  or  the  weight  on 
the  other  string  ? 

8.  Weights  of  10  pounds  and  2  pounds,  hanging  by  vertical  strings,  balance 

on  a  wheel  and  axle.  If  a  mass  of  i  pound  be  added  to  the  smaller  weight,  find 
the  acceleration  with  which  it  will  begin  to  descend,  and  the  tension  of  each 

rope.    (The  inertia  of  the  wheel  and  axle  is  to  be  neglected.) 

9.  A  mass  of  5  pounds  resting  on  a  smooth  plane  inclined  at  30  degrees  to 
the  horizon  is  connected  by  a  fine  thread,  which  passes  over  a  pulley  at  the 

summit  of  the  plane,  with  a  mass  of  3  pounds  hanging  vertically.  Compare  the 

pull  in  the  thread  when  the  mass  on  the  plane  is  held  fixed  and  when  it  is  let 

go.  If  the  thread  is  severed  or  burnt  8  seconds  after  this  mass  has  been  let  go, 
find  how  far  it  will  rise  on.  the  plane  before  falling  back. 

10.  A  light  thread  passes  over  two  fixed  pulleys  A  and  B^  and  carries 

between  them  a  movable  pulley  block  C,  under  which  it  passes..  A  mass  Jf  is 
attached  to  each  end  of  the  thread,  and  a  mass  m  to  the  movable  block.  The 

masses  of  the  pulleys  are  negligible,  and  the  pulleys  are  so  arranged  that  all 
the  segments  of  the  thread  are  vertical.  Show  that,  when  the  system  is  let  go, 

the  tension  in  the  thread  is  mM/{M  +  i  m)  pounds,  and  find  the  acceleration 
with  which  the  mass  m  falls. 

11.  An  elastic  band  of  mass  m,  natural  length  a,  and  modulus  \  is  placed 

round  a  rough  horizontal  wheel  of  circumference  b  {>  a).  How  fast  must  the 
wheel  be  made  to  rotate  for  the  band  to  leave  the  wheel  ? 

12.  The  elastic  band  of  question  11  is  placed  on  a  smooth  sphere  of  circum- 
ference b  rotating  with  angular  velocity  w.    Find  the  position  of  rest. 

13.  If  the  earth  rotates  faster  and  faster  until  ultimately  bodies  fly  off  from 

its  equator,  show  that  by  the  time  this  stage  is  reached  the  plumb  line  at  any 

point  will  be  parallel  to  the  earth's  axis. 
14.  A  body  is  placed  on  a  spring  balance  when  in  a  ship  which  is  sailing 

along  the  equator  with  velocity  v.  Show  that  if  the  balance  weighs  accurately 

when  the  ship  is  at  rest,  its  reading  when  the  ship  is  in  motion  will  show  an 

error  of     times  the  weight  of  the  body  (approximately),  where  w  is  the 9 
angular  velocity  of  the  earth. 
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Flight  of  Projectiles 

166.  By  a  projectile  here  is  meant  any  body  which  is  small 

enough  to  be  regarded  as  a  particle,  and  which  is  projected  in  such 

a  way  that  it  describes  a  path  under  the  influence  of  gravity. 

A  projectile  will,  in  general,  be  influenced  by  the  resistance  of 

the  air  as  well  as  by  gravity,  but  we  shall  suppose  the  resistance 

of  the  air  to  be  negligible,  so  that  gravity  will  be  the  only  force 
wluch  need  be  taken  into  account. 

To  take  the  simplest  case  first,  let  us  imagine  that  the  projectile 

is  projected  horizontally  from  the  point  0  (fig.  116),  with  velocity  u. 

The  only  force  acting  is  gravity,  which  q 
has  no  horizontal  component,  so  that 

the  horizontal  velocity  remains  equal  to 

u  throughout  the  motion.  The  initial 

vertical  component  of  velocity  is  nil, 

but  there  is  a  downward  acceleration  g. 

Thus  after  time  t,  the  horizontal  dis- 
tance described  is  ut,  while  the  vertical 

distance  fallen  is    \gf.    Denoting  the 
horizontal  distance  described  by  x,  and  the  vertical  distance  fallen 

by  y,  we  have  ^  ̂   ̂ ^^     y=\gt\ 

The  equation  of  the  path  described  is  obtained  by  ehminating  t 

from  these  equations,  and  it  is  found  to  be 

9       „2 

y  = 

This  is  a  parabola,  of  which  the  latus  rectum  is 

2u^ 
9 

Clearly  the  problem  of  determining  the  curve  is  essentially  the  same  as 

in  §  156.  There  we  have  a  body  falling  freely,  and  tracing  its  path  on  a 

paper  which  moves  past  it  with  a  uniform  horizontal  velocity.  Here  we  have 

a  body  falling  freely,  and  can  imagine  it  to  trace  its  path  on  a  paper  past 

which  it  moves  with  a  uniform  horizontal  velocity.  The  relative  motion  is 

the  same  in  the  two  cases,  so  that  the  curves  are  necessarily  the  same. 
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167.  At  O  the  velocity  of  the  particle  is  u,  which  is  the  velocity 

due  to  a  height  - —    This  is  equal  to  a  quarter  of  the  latus  rectum, 

and  is  therefore  equal  to  the  depth  of  0,  the  vertex  of  the  parabola, 

below  the  directrix  XM.     Thus  the  total  energy  of  the  projectile 

when  at  0  is  equal  to  that  of  the  same 

projectile  at  rest  at  AT,  or,  of  course,  at 

any  other  point  of  the  directrix,  smce 
this  is  horizontal. 

Since  tlie  total  energy  remains  con- 
stant, we  see  that  when  the  particle  is 

at  any  point  P  of  its  path,  its  kinetic 

energy  is  that  due  to  a  fall  through  PM, 
the  distance  from  P  to  the  directrix. Fig.  117 

This  is  expressed  by  saying  that 

The  velocity  of  a  projectile  at  any  point  is  that  due  to  a  fall 

from  the  directrix. 

168.  Instead  of  supposing  that  the  particle  is  projected  horizon- 
tally at  0,  the  vertex  of  the  parabola,  we  can  suppose  that  it  has 

arrived  at  0  in  its  flight  through  the  air,  having  been  previously 

projected  from  some  point  A.  The  same  reasoning  which  shows 

that  the  part  of  the  path  described  ^  x 

after  passing  0  is  parabolic,  will 

show  that  the  path  described  be- 
fore reaching  0  is  parabohc  also. 

Thus  the  path  of  a  particle  pro- 
jected from  any  point  in  any 

manner  is  a  parabola. 

Suppose  that  a  particle  is  pro- 
jected from  A  with  velocity  v,  in 

a  direction  which  makes  an  angle 

a  with  the  horizontal.  Let  O  be  the  vertex  of  its  path,  and  let  us 

suppose  that  when  the  projectile  passes  through  0,  its  velocity  is 

u,  this  velocity  being  of  course  horizontal. 
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There  is  no  horizontal  force  acting  on  the  particle,  so  that  its 

horizontal  velocity  remains  unaltered  throughout  its  flight.    Thus 

u  =  v  cos  a. 

The  latus  rectum  of  the  parabola  is  accordingly 

2u^      2  v^  cos^  a 

9    "         9        ' 
The  velocity  v  is  that  due  to  a  fall  from  the  directrix  to  A,  so 

that  if  NX  is  the  directrix  in  fig.  118, 

The  time  of  flight  from  ̂   to  0  is  the  time  required  for  gravity 

to  destroy  a  vertical  velocity  v^ma-,  it  is  therefore   In 
this  time  the  horizontal  distance  AM  is  described  with  a  uniform 

horizontal  velocity  u,  so  that 

V  sin  a; 
AM  =   u  = 
9  9 

The  vertical  distance  described,  OM,  is  by  equation  (47)  equal 

to  half  of  the  time  multiphed  by  the  initial  vertical  velocity. 

0M=-   
2        g 

The  total  range  on  a  horizontal  plane,  AA',  is  twice  AM,  so  that 

2  v^  sin  a  cos  a      v^  sin  2  a AA 
I  _ 

9  9 

169.  If  the  value  of  v  is  fixed  (as,  for  instance,  it  would  be  if 

we  were  firing  a  shot  with  a  given  charge  of  powder),  while  the 

angle  a  can  be  varied,  then  the  range  A  A'  can  never  exceed  —  ?  for 9 

the  factor  sin  2  a  can  never  exceed  unity.    Thus  the  greatest  range 

attainable  on  a  horizontal  plane  with  a  given  velocity  of  projection 
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V  will  be  —  >  and  to  obtain  this  range  we  make  sin  2  a;  =  1,  or 
9 

a  =  4:6  degrees.    Thus,  to  send  a  projectile  as  far  as  possible  on 

a  horizontal  plane  we  project  it  at  an  angle  of  45  degrees. 

170.  These  results  can  also  be  obtained  analytically.    Let  us 

take  the  point  of  projection  for  origin,  and  the  plane  in  which 

the  flight  takes  place  as  plane  of  xy,  the  axes  of 

X  and  y  being  respectively  horizontal  and  vertical. 

The  a?-coordiQate  of  the  point  reached  by  the 
particle  after  time  t  is  equal  to  the  horizontal 
distance  described  in.  time  t  with  uniform  hori- 

zontal velocity  v  cos  a.    Thus 
Fig.  119 

X  =  V  cosa  •  t.  (56) 

Similarly  the  ̂ /-coordinate  of  this  point  is  the  distance  described 

in  time  t,  starting  with  initial  velocity  v  sin  a,  and  with  retarda- 
tion a.      Thus  •  ^  1       ̂ 2  /Crrv 
^  y  =  V  sma  -t  —  ̂  gt.  (57) 

If  we  eliminate  t  between  equations  (56)  and  (57),  we  obtain 

the  equation  of  the  path.    It  is  found  to  be 

y  =  xtana  —  -—^ — — -.  (58) 

This  can  be  expressed  in  the  form 

1  v^  sin^  a  ^        /^      '^'^  ̂̂ ^  ̂  ̂^^  ̂  

^~2       ~g       "~2^2cosV    " 

which  is  clearly  the  equation  of  a  parabola,  of  which  the  vertex  is 

at  the  point  12-2 
-z;^  sm  a;  cos  a:               \v^^\YCa  .^^. 

x  =   ,     y  =  -   >  (59) 
9  ^9 

and  of  which  the  latus  rectum  is  of  length 

2  v^  cos^  a 
9 
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To  obtain  the  range  on  a  horizontal  plane,  we  have  to  find  the 

point  in  which  the  parabola  intersects  the  line  y  =  0.  Putting 

y  =  0  in  equation  (58),  we  obtain  at  once 

2  v^  cos^a 
9 tana; 

v^  sin  2  a 

agreeiDg  with  the  value  obtained  in  §  168. 

Range  on  an  Inclined  Plane 

171.  Suppose,  next,  that  the  projectile  is  fired  so  as  to  strike 

an  inclined  plane  through  0,  the  point  of  projection.  Let  ̂   be 

the  inclination  of  this  plane  to  the 

horizon,  and  let  r  be  the  range  of  the 

projectile  on  this  plane.  Then  the  co- 
ordinate of  the  point  at  which  the 

projectile  meets  the  plane  must  be 

T  sin  /8. x  =  r  cos y 

Tliis  point  is  a  point  on  the  parab- 
ola, so  that  its  coordinates  must  sat-    ̂  

isfy  equation  (58).    Substituting  these 
coordinates,  we  obtain 

Q  T    COS    Q 

r  sin  13  =  r  tan  a  cos  /8  —  - —   -^  > 
2  v'^  cos'^  a 

giving  as  the  value  of  the  range  r, 

Fig.  120 

r  = 

2  v^  cos  a  sin  (a  —  y8) 

Since         2  cos  a  sin  (a  —  /3) 

cos^/S 

sm(2  a  —  P)—  sin/3. 

(60) 

(61) 
it  is  clear  that  if  a  alone  is  allowed  to  vary,  the  range  r  will  be  a 

maximum  when  sin  (2  a  —  y8)  is  a  maximum,  i.e.  when  it  is  equal 
to  imity.    To  obtain  this  value,  we  make 

a  —  — h  — • 4       2 
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Thus,  to  get  the  maximum  range,  we  project  in  the  direction  which 

bisects  the  angle  between  the  inclined  plane  and  the  vertical. 

When  projection  takes  place  in  this  direction,  the  maximum 

range  R  is  given  by  putting  sin  {2  a  —  ̂ )=1  in  the  value  for  r 
given  by  equation  (60).    Thus  we  have 

_  -z;^  2  cos  a;  sin  (a:  —  /3) 

g  cos^  /3 
_  ij^  sin  (2  a  —  /8)  —  sin  ̂  

g  cos^/3 
_  -i;^  1  —  sin  y8 

g      cos^  P 

""^(l  +  sinyS)*  ^^^^ 
172.  This  equation  enables  us  to  find  the  greatest  distance 

which  can  be  reached  in  any  direction  by  a  projectile  fired  with 

velocity  v.    Let  us  replace  /8  by  —  —  ̂ ,  so  that  6  is  the  angle 

which  the  direction  makes  with  the  vertical, 

between  R  and  Q  is  'j;^ 

i?  = 

Then  the  relation 

(63) 

^(1  +  cos^) 
Regarded  as  an  equation  in  polar  coordinates  R^  6,  this  is  clearly 

the  equation  of  a  curve  such  that  we  can  hit  any  .point  inside  it 

with  a  projectile  fired  with 

velocity  v,  but  cannot  reach 

any  point  outside  it.  The 
polar  equation  of  a  parabola 
of  latus  rectum  Z,  referred 

to  its  focus  and  axis,  is 
known  to  be 

R 
cos 6 

Fig.  121 

Comparing  this  with  equation  (63),  we  see  that  this  equation 

represents  a  parabola,  of  which  the  point  of  projection  is  the 

focus,  the  axis  is  vertical,  and  the  semi-latus  rectum  is  v^/g. 
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Envelope  of  Paths 

173.  If  we  imagine  all  the  parabolas  drawn,  which  can  be 

described  by  projectiles  fired  from  the  point  0  with  a  given 

velocity  v,  we  shall  obtain  a  figure  similar  to  fig.  122.  The  out- 
side curve  obviously  separates  the  points  which  can  be  reached 

Fig.  122 

from  those  which  cannot  be  reached.  Thus  this  is  the  parabola  of 

which  the  equation  is  given  in  equation  (63).  A  study  of  fig.  122 

will  now  show  that  this  curve  is  the  envelope  of  the  system  of 

parabolas  which  correspond  to  the  different  directions  of  firing. 

174.  The  envelope  of  the  system  of  parabolas  can  be  found  more 

directly  by  analytical  methods.  If  we  write  m  for  tan  a  in  equa- 
tion (58),  we  obtain  the  equation  of  a  parabola  of  the  system  in 

the  form 

2/  =  m^  -  |-^  (1  -h  m"), 

and  the  whole  system  is  obtained  by  giving  different  values  to  m. 

The  condition  for  this  equation  to  have  equal  roots  in  m  is  that 

or,  in  reduced  form, if.-'} 
2^/ 

(64) 

^H         If  X,  y  satisfy  this  relation,  two  parabolas  which  only  differ 

^H      infinitesimally  pass  through  x,  y,  and  therefore  a?,  3/  is  a  point  on 

HI 
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the  envelope.  Thus  equation  (64)  is  the  equation  of  the  envelope, 

and  is  easily  seen  to  give  the  same  parabolic  envelope  as  has  already 
been  obtained. 

175.  There  is  also  a  very  simple  geometrical  way  of  deter- 
mining the  envelope  of  the  system  of  parabolas.  We  notice  first 

that  as  the  projectiles  are  all  fired  from  the  same  point  A  with 

the  same  velocity  v,  their  paths  must  all  have  the  same  directrix 

JSTM  (fig.  123). 

Let  any  two  parabolas  of  the  system  intersect  in  F,  and  let 

S,  S'  be  the  foci  of  these  parabolas.    Let  Aj\^,  PM  be  the  perpen- 

^  ^j  diculars  from  A  and  P  to 
the  directrix. 

Then  AS^AS',  smce 
each  is  equal  to  AN,  and 

PS  =  PS\  for  each  is 

equal  to  PM.  Thus  S,  S^ 
are  the  two  points  of  in- 

tersection of  two  circles  of 

which  the  centers  are  A,  P. 

If  the  two  parabolas  are 

supposed  to  be  adjacent, 

their  foci  S,  S'  are  adjacent  points,  and  therefore  the  two  circles 
touch,  and  ASP  is,  in  the  limit,  a  straight  line.    We  now  have 

AP  =  AS-hSP 
^  AN+  PM 

=  the  perpendicular  from  P  on  to  a  fixed  horizontal 
line  at  a  distance  AJV  above  3IM 

The  point  P,  then,  satisfies  the  condition  that  its  distance  from 

this  fixed  line  is  equal  to  its  distance  from  the  fixed  point  A.  It 

therefore  is  always  on  a  certain  parabola  of  focus  A.  But  also  it  is 

always  a  point  on  the  envelope,  this  being  the  locus  of  the  points 

of  intersection  of  adjacent  pairs  of  the  parabolas  of  the  system. 

Thus  the  envelope  is  the  parabola  just  obtained,  of  which  the  focus 

is  A,  and  this  is  the  same  parabola  as  was  obtained  before. 

Fig.  123 
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ILLUSTRATIVE  EXAMPLES 

1.  A  carriage  runs  along  a  level  road  with  velocity  F,  throwing  off  particles 
of  mud  from  the  rims  of  its  wheels.  Find  the  greatest  height  to  which  any  of  them 
will  rise. 

Let  a  be  the  radius  of  the  wheel,  then  we 

have  seen  (p.  9)  that  any  point,  such  as  Q, 

moves  with  a  velocity  V  •  QL/a  in  the  direc- 
tion QM  at  right  angles  to  QL.  This  will  be 

the  velocity  of  mud  projected  from  Q. 
If  the  angle  QLP  is  ̂ ,  the  height  above  the 

ground  at  which  the  mud  starts  is 

LN=LP  -\-PN=  a{l+  cos2^), 

while  the  vertical  component  of  its  velocity  is 

V  •  {QL/a)  sin  ̂   =  2  F  sin  ̂   cos  ̂   =  F  sin  2  d. 

The  mud  projected  with  this  vertical  velocity  will  attain  a  further  vertical 
height 

(F  sin  2^)2 

^9 

so  that  the  total  height  attained  is 

F2 

a  +  a  cos  2  ̂  H   sin^  2  0. 

^9 

This  may  be  written  as  a  quadratic  function  of  cos  2  ̂  in  the  form 

F2\      F2 
a  H   )   cos2  2  ̂  +  a  cos  2  ̂  

2g)      2g 

I     ,  F2\       a2(7       F2r       ̂ ^      ag-^ =  ( a  +  —  I  +  —   cos  2  ̂   ^    . 
\        Ig]      2F2      2srL  F2j 

The  maximum  value  of  this  expression,  as  Q  varies,  occurs  when  cos  2  Q 

if  it  is  possible  for  cos  2  5  to  have  this  value  —  i.e.  if  F2  >  ag.    In  this  case  the 
maximum  height  attained  is 

a  +  I-Vi^ 
2(7      2F2 {ag  +  F2)2 

2grF2 

measured  from  the  ground. 

If,  however,  F2  <  ag,  we  cannot  make  cos  2  ̂  -  —  vanish.  We  accord- 

ingly make  it  as  small  as  possible,  so  that  we  take  cos  2  ̂  =  1.  Thus  the  mud 
which  carries  to  the  highest  point  is  that  which  starts  at  the  top  point  M  of  the 

wheel,  and  obviously  this  never  gets  higher  than  its  starting  point. 
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2.  Find  what  area  of  a  vertical  wall  can  be  covered  by  afire-hose  projecting 
water  with  velocity  v  at  a  distance  h  from  the  wall. 

Let  S  be  the  nozzle  of  the  fire-hose,  and  let 
us  regard  it  as  capable  of  projecting  particles 
of  water  in  any  direction  we  please  with  a 

velocity  v.  The  points  which  can  be  reached 

will,  by  §  172,  be  all  the  points  which  lie  inside 

a  paraboloid  of  revolution  having  its  axis  ver- 

2w2 

tical,  S  for  focus,  and  latus  rectum If  we 

Fig.  125 

take  S  as  origin,  and  the  vertical  through  8 

for  axis  of  z,  the  equation  of  this  paraboloid 
will  be 

2  7)2 

9 

(f,-'} 
The  curve  in  which  this  cuts  the  vertical  wall,  of  which  the  equation  may 

be  taken  to  be  y  =  h,  will  be 

2v2 

x2  +  ;i2 

X2 

W^  /v^  _h^g  _   \ 
9    \'^9 2  t)2  /  u2 

2^2 

This  is  a  parabola,  of  latus  rectum  — ,  having  its  axis  vertical,  and  its 

vertex  at  a  height  ^ 

^_h^ 2g      21)2 
above  S.  All  the  points  inside  this  parabola  will  be  within  range  of  the  jet  of 
water.  The  points  on  the  wall  which  are  outside  this  parabola  will  be 
inaccessible. 

EXAMPLES 

1.  A  revolver  is  fired  horizontally  from  the  top  of  a  tower  100  feet  high,  the 

bullet  leaving  the  muzzle  with  a  velocity  of  600  feet  per  second.  Where  will  the 
bullet  strike  the  ground  ? 

2.  A  rifle  bullet,  fired  horizontally  at  a  height  of  10  feet  above  the  surface  of 

a  lake,  strikes  the  water  at  a  distance  of  500  yards.  Find  its  velocity  in  feet 

per  second,  the  resistance  of  the  air  being  supposed  negligible. 
3.  Prove  that  the  claim  for  a  rifle,  that  the  bullet  does  not  rise  more  than 

one  inch  in  a  range  of  100  yards,  implies  that  the  velocity  must  be  greater  than 
2078  feet  per  second. 

4.  Find  the  greatest  range  on  a  horizontal  plane  of  a  cricket  ball  thrown 
with  a  velocity  of  100  feet  per  second. 
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5.  A  shot  fired  from  a  gun  whose  muzzle  is  close  to  the  ground  just  clears  a 

man  6  feet  high  standing  10  yards  away,  and  embeds  itself  in  the  ground  a 

quarter  of  a  mile  off.  Show  that  the  shot  rises  to  a  height  above  the  ground 
which  is  certainly  greater  than  22  yards. 

6.  A  projectile  has  a  maximum  horizontal  range  of  256  feet ;  what  is  its 

velocity  of  projection  ? 
If  it  be  projected  with  this  velocity  from  a  point  on  the  floor  of  a  long 

corridor  24  feet  high,  what  will  be  its  greatest  range,  if  it  is  not  to  strike  the 
ceiling  ? 

7.  Prove  that  the  velocity  required  for  a  range  of  20  miles  will  be  at  least 

1840  feet  per  second,  with  a  time  of  flight  of  81.3  seconds. 
8.  Determine  the  charge  of  powder  required  for  the  range  of  20  miles  in  the 

last  question,  supposing  the  shot  to  weigh  a  ton,  and  the  strength  of  the  powder 

capable  of  realizing  100  foot-tons  per  pound  of  powder. 
9.  Show  that  the  range  JK  of  a  projectile  fired  from  a  height  h  above  a  level 

plane  with  velocity  v  at  an  angle  a  is  given  by 

2  V-  (/i  +  E  tan  a)  =  gR^  sec2  a. 

10.  Show  that  the  area  of  a  level  plane  swept  by  a  gun  at  a  height  h  above 

the  plane  increases  proportionally  with  A,  being  equal  to 

A+  2/i  V^, 

where  A  is  the  area  commanded  when  the  gun  is  at  the  level  of  the  plane, 

11.  A  projectile  can  be  fired  with  a  velocity  of  1720  feet  per  second  from  a 
fort  at  a  height  of  300  feet  above  a  horizontal  plane.  Find  what  area  of  the 

plane  is  covered  by  the  gun. 

12.  A  particle  is  projected  so  as  just  to  graze  the  four  upper  corners  of  a 

regular  hexagon  of  side  a,  placed  vertical  with  one  edge  resting  on  a  horizontal 
table  Find  the  highest  point  in  the  flight  of  the  particle,  and  show  that  the  range 
on  the  table  is  a  V7. 

13.  A  machine-gun  is  placed  on  an  armored  train  which  runs  along  a  hori- 
zontal line  of  rails  with  velocity  v.  The  muzzle  velocity  of  shots  fired  from  the 

gun  is  V.    Find  the  greatest  range 

(a)  in  front  of  the  train  ; 

(6)  behind  the  train. 

GENERAL  EXAMPLES 

1.  A  train  is  going  at  60  miles  an  hour,  when  it  comes  to  a  curve  hav- 
ing a  radius  of  f  of  a  mile.  There  is  a  perfectly  smooth  horizontal  shelf 

in  the  train,  its  edge  being  parallel  to  the  rails  and  on  the  side  of  the  shelf 

away  from  the  center  of  the  curve.  A  small  object  stands  on  the  shelf  at 

a  distance  of  8  inches  from  the  edge.  Show  that  the  object  will  fall  off 

the  shelf  after  the  car  containing  the  object  has  described  about  24  yards 

of  the  curve,  and  find  what  its  horizontal  velocity  will  be  when  it  leaves 
the  shelf. 
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2.  A  balloon  is  moving  upwards  with  a  speed  which  is  increasing  at  the 

rate  of  4  feet  per  second  in  each  second.  Find  how  much  the  weight  of  a 

body  of  10  pounds,  as  tested  by  a  spring  balance  on  it,  would  differ  from 

its  weight  under  ordinary  circumstances. 

3.  An  Atwood's  machine  is  placed,  with  the  string  clamped,  on  one 
scale  of  a  weighing  machine.  Show  that  as  soon  as  the  string  is  undamped 

the  apparent  weight  of  the  machine  is  diminished  by 

(m  —  m'Y 

  7-9i 

m  +  m 

where  m,  m'  are  the  suspended  weights. 

4.  A  uniform  chain  of  length  I  and  weight  W  passes  over  a  smooth 

peg,  hanging  vertically  on  each  side.  If  the  chain  be  running  freely,  prove 

that  when  the  length  on  one  side  is  a:,  the  pressure  on  the  peg  is 

5.  A  jet  of  water  falls  vertically  from  a  hose  to  the  ground,  starting  with 

a  velocity  which  is  negligible.  Show  that  the  center  of  gravity  of  the 

water  which  is  in  the  air  at  any  instant  is  two  thirds  of  the  way  up  from 

the  ground  to  the  hose. 

6.  A  heavy  uniform  chain  of  weight  w  is  tied  to  a  string  which  is  pulled 

up  with  tension  T.    Find  the  tension  in  the  chain  at  any  point. 

7-  Prove  that  the  shortest  time  from  rest  to,  rest,  in  which  a  chain, 

which  can  bear  a  steady  load  of  P  tons,  can  lift  or  lower  a  weight  of  W 

tons  through  a  vertical  distance  of  li  feet  is 

8.  In  a  system  of  pulleys  with  one  fixed  and  one  movable  block,  in 

which  the  cord  is  attached  to  the  axis  of  the  movable  block,  then  passes 

over  the  fixed  one,  then  under  the  movable  one,  and  then  over  the  fixed 

one,  find  the  weight  P  which,  when  attached  to  the  cord,  will  support  a 

given  weight  W  hung  from  the  movable  block.  (The  blocks  are  so  small 

that  all  the  straight  portions  of  the  cord  may  be  considered  parallel.) 

Show  that,  if  the  weights  do  not  balance,  the  downward  acceleration  of 

W,  when  let  go,  will  be  irr  _  q  p 

W  ̂   9P^' 
the  weight  of  the  cord  being  neglected,  and  that  of  the  movable  block 

being  included  in  W. 

9.  A  pulley  carrying  a  total  load  W  is  hung  in  a  loop  of  a  cord  which 

passes  over  two  fixed  pulleys,  and  has  weights  P  and  Q  freely  suspended 

from  its  ends,  each  segment  of  the  cord  being  vertical ;  show  that,  when 

k 
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the  system  is  let  go,  W  will  remain  at  rest  or  move  with  uniform  velocity, 
114 

provided  — I —  =  —  and  there  is  no  friction  anywhere. 

If  this  relation  does  not  hold,  find  the  acceleration  of  W. 

10.  A  particle,  falling  under  gravity,  describes  100  feet  in  a  certain 

second.  How  long  will  it  take  to  describe  the  next  100  feet,  the  resistance 

of  the  air  being  neglected  ? 

If,  owing  to  resistance,  it  takes  .9  second,  find  the  ratio  of  the  resist- 
ance (assumed  to  be  constant)  to  the  weight  of  the  particle. 

11.  Prove  that  the  line  of  quickest  descent  from  any  curve  to  any  other 

curve  in  the  same  vertical  plane  makes  equal  angles  with  the  normals  to 

the  two  curves  at  the  points  at  which  it  meets  them. 

12.  Find  the  position  of  a  point  on  the  circumference  of  a  vertical 
circle,  in  order  that  the  time  of  rectilinear  descent  from  it  to  the  center 

may  be  the  same  as  that  to  the  lowest  point. 

13.  Find  the  line  of  quickest  descent  from  the  focus  to  a  parabola  of 

which  the  axis  is  vertical  and  vertex  upwards,  and  show  that  its  length  is 

equal  to  the  latus  rectum. 

14.  An  ellipse  is  suspended  with  its  major  axis  vertical.  Find  the  diam- 
eter down  which  a  particle  can  fall  in  the  least  time.  What  is  the  least  value 

of  the  eccentricity  in  order  that  this  diameter  may  not  be  the  major  axis  ? 

15.  A  bullet  is  to  be  fired  at  a  vertical  target  so  as  to  hit  it  exactly  at 

right  angles.  If  v  is  the  velocity  of  the  bullet  and  n  the  distance  of  the 

target  from  the  point  of  firing,  show  that  the  angle  of  elevation  of  the 

shot  must  be  I  sin-i( -^- ),   and  show  that  the  point  of  the  target  which  is 

hit  will  be  at  half  the  height  of  the  point  aimed  at. 

16.  A  bullet  is  fired  at  a  vertical  target.  Show  that  the  projection  of 

the  bullet  on  the  target,  as  seen  by  the  firer  of  the  shot,  appears  to  move 

with  uniform  velocity. 

17.  A  gun  fires  two  shots,  one  with  velocity  v  at  elevation  a,  and  the 

second  with  velocity  v'  at  a  smaller  elevation  a%  in  the  same  vertical  plane. 
Show  that  the  shots  will  collide  if  the  interval  between  firing  is 

2   vv^  sin  (a  —  a') 

g  V  cosa  +  v'cosa^ 
18.  A,  B,  C  are  three  points  in  order  in  a  horizontal  line,  AB  being 

640  feet ;  a  particle  is  projected  from  A  with  a  velocity  of  390  feet  per 

second  in  a  direction  making  an  angle  tan~  ̂ fV  with  AC ;  at  the  same  instant 
another  particle  is  projected  from  B  with  a  velocity  of  250  feet  per  sec- 

ond in  a  direction  making  an  angle  tan-^f  with  BC ;  show  that  these  par- 
ticles will  collide,  and  find  when  and  where. 
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19.  A  howitzer  gun  has  a  muzzle  velocity  of  400  feet  per  second.  What 
distance  immediately  behind  the  top  of  a  hill  200  feet  high  on  a  level  plane 

is  safe,  if  the  gun  is  distant  1000  yards  from  the  point  in  the  plane  verti- 
cally below  the  top  of  the  hill  ? 

20.  The  sights  of  a  gun  are  inaccurately  marked,  the  gun  carrying 
always  3  per  cent  farther  than  the  distance  indicated  on  the  sights.  A 
marksman,  not  aware  of  the  error,  aims  at  a  target  distant  1000  yards.  If 
the  velocity  of  the  shot  is  1200  feet  per  second,  show  that  he  will  hit  the 
target  about  one  yard  too  high. 

21.  The  sighting  of  a  rifle  is  accurate,  and  to  aim  at  a  point  on  a  ver- 
tical target  distant  a  feet  the  rifle  ought  to  be  elevated  to  an  angle  a. 

Owing  to  the  unsteadiness  of  the  marksman's  hand,  the  rifle  is  pointed  in 
directions  which  lie  anywhere  within  a  small  angle  6  of  the  true  direction. 
Show  that  if  a  succession  of  shots  is  fired,  the  points  at  which  they  hit 

the  target  will  all  lie  within  a  small  ellipse  of  semi-axes  a^cosa  and 

ad{\  —  tan^of)  respectively. 

When  or  =  — ,  the  minor  axis  of  this  ellipse  vanishes,  so  that  the  shots 

ought  all  to  lie  in  a  straight  line.    Interpret  this  result. 

22.  A  particle  slides  down  the  outer  surface  of  a  smooth  sphere,  start- 
ing from  rest  at  the  highest  point.  It  leaves  the  sphere  at  a  point  P  and 

describes  a  parabola  in  space.  Prove  that  the  circle  of  curvature  of  the 
parabola  at  P  will  touch  the  directrix. 

23.  A  particle  is  projected  horizontally  from  the  lowest  point  of  the 
interior  of  the  surface  of  a  smooth  sphere.  It  leaves  the  surface  of  the 

sphere  at  P,  and  after  describing  a  parabola  strikes  the  sphere  again  at  Q. 
Show  that  PQ  and  the  tangent  at  P  make  equal  angles  with  the  vertical. 

24.  Show  that  the  whole  area  commanded  by  a  gun  planted  on  a  hill- 
side, supposed  plane,  is  an  ellipse,  whose  focus  is  at  the  gun,  eccentricity 

the  sine  of  the  inclination  of  the  hill,  and  semi-latus  rectum  equal  to  twice 
the  height  to  which  the  muzzle  velocity  of  the  shot  is  due. 

25.  Show  that  the  area  of  a  plane  hillside  of  inclination  a:,  which  is 
commanded  by  a  gun  placed  on  a  fort  of  height  H  above  the  hill,  is 

^TTh{h  +  H  cos2  a)  sec^  or, 

where  ̂ '2  gh  is  the  muzzle  velocity  of  the  shot. 

26.  A  spherical  shell  of  iiiass  m  explodes  when  moving  with  negligible 
velocity  at  a  height  of  h  feet  above  the  ground.  The  shell  is  divided  into 
very  small  particles,  each  of  which  moves,  after  the  explosion,  away  from 
the  center  of  the  shell  with  velocity  v,  and  ultimately  falls  to  the  ground. 
Find  the  total  mass  of  the  fragments  which  will  be  found  per  unit  area  at 
any  specified  distance  from  the  point  vertically  underneath  the  shell. 
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27.  A  shell  bursts  while  in  the  air,  all  the  fragments  receiving  equal 

velocities  from  the  explosion.  Show  that  the  fragments  at  any  instant  lie 

on  a  sphere,  that  the  foci  of  the  paths  they  describe  also  lie  on  a  sphere, 

and  that  the  vertices  lie  on  a  spheroid. 

28.  A  particle  slides  down  a  rough  inclined  plane  AB,  starting  at  rest 

from  A  and  describing  a  parabola  freely  after  leaving  the  plane  at  B.    If 

F  is  the  focus  of  the  parabola  described,  show  that  the  angle  AFB  =  -  +  e, 
where  e  is  the  angle  of  friction. 

29.  From  a  fort  a  buoy  M' as  observed  at  a  depression  i  below  the  horizon  ; 
a  gun  was  fired  at  it  at  an  elevation  a,  but  the  shot  was  observed  to  strike 

the  water  at  a  point  whose  depression  was  i\  Show  that,  in  order  to  strike 

the  buoy,  the  ̂ n  must  be  fired  at  an  elevation  d,  where 

cos  0  sin  (6  +  i)  _  cos^  i  sin  i' 

cos  a  sin  (a  +  T)       cos'-^  i'  sin  i 
30.  Show  that  the  least  energy  which  will  project  a  particle  over  a  wall 

which  is  at  distance  a  from  the  point  of  projection  is 

1  +  tan  i  ex 

\mga tan  i  a 

where  a  is  the  elevation  of  the  top  of  the  wall  at  the  point  of  projection. 

31.  A  mill  wheel  of  radius  a  revolves  so  that  its  rim  has  a  velocity  F, 

and  drops  of  water  are  thrown  oif  from  the  rim  of  the  wheel.  Show  that 

the  envelope  of  their  paths  is  a  parabola  whose  axis  is  vertical  and  whose 
(I  CI 

focus  is  at  a  distance  — ^  vertically  above  the  center  of  the  wheel. 



CHAPTEE  IX 

MOTION  OF  SYSTEMS  OF  PARTICLES 

Equations  of  Motion 

176.  The  present  chapter  will  deal  with  the  motion  of  systems 

of  particles,  taking  account  of  the  actions  and  reactions  which  may 

be  set  up  between  the  different  pairs  of  particles.  As  a  prelimi- 
nary to  this,  it  will  be  convenient  to  recapitulate  the  results  which 

have  been  obtained  for  a  single  particle,  stating  these  results  in  a 

more  analytical  form  than  before. 

The  whole  system  of  forces  which  act  on  a  particle  must, 

since  they  act  at  a  point,  have  a  single  force  as  resultant.  Let 

us  call  this  resultant  P,  and  denote  its  components  along  three 

rectangular  axes  by  X,  Y,  Z. 

Also  the  particle,  being  regarded  as  a  point,  must  have  a  definite 

acceleration  /,  and,  since  /  is  a  vector,  this  acceleration  may  be 

supposed  to  be  compounded  of  three  components /^,/y,/^  along  the 
three  coordinate  axes. 

The  second  law  of  motion  supplies  the  relation 

P  =  mf.  (65) 

We  are,  however,  told  more  than  this  by  the  second  law  of 
motion  :  we  are  told  that  the  directions  of  P  and  of  /  are  the  same. 

Let  X,  IX,  V  be  the  direction  cosines  of  this  single  direction,  then 

we  have  X=\P,      Y  =  fiP,     Z=vP, 

and  also  /.  =  V>      /,  =  m/>      /.  =  ̂ Z 

From  these  relations,  combined  with  relation  (65),  we  clearly 

have  X=mf^ 
Y=mfi  (66) 

220 
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These  are  the  equations  of  motion  of  a  particle  in  analytical 

form.  They  simply  express  the  second  law  of  motion  in  mathe- 
matical language. 

177.  Let  Xy  y,  z  be  the  coordinates  of  the  particle  at  any  instant, 

and  let  u,  v,  w  be  the  three  components  of  its  velocity.  The  com- 
ponent u  is  the  velocity,  along  the  axis  of  x,  of  the  projection  of 

the  moving  point  on  the  axis  of  x^  and  the  distance  of  this  point 

from  the  origin  at  any  instant  is  simply  x.  Thus,  by  the  defini- 
tion of  velocity,  we  have 

dx 

and  similarly,  of  course, 

dy 

dt 

dz 

w  =  —-' 
dt 

dxt 

The  rate  at  which  the  ;:c-component  of  velocity  increases  is  — > 
Civ 

but  it  has  also  been  supposed  to  be/^,  for  this  is  the  ̂ -component 
of  the  acceleration.    Thus  we  have 

and  similarly 

f.- 

du 

=  dt' 

f.- 

dv "di* 

/,= 

dw 

dt 

ad  for  10, 

L d^x 
df 

f. 

d^y 

dt"- 

L d'z 
df 

Using  the  values  just  found  for  ii,  v,  w,  these  equations  become 
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Substituting  these  expressions  for  the  components  of  accelera- 
tion into  the  equations  of  motion  (66),  we  obtain  these  equations  in 

the  new  form  ^2^ 

Y  =  m-^ df 

d?z 
(68) 

178.  Suppose  we  have  a  system  of  particles,  —  m^  at  ̂ 1, 3/1,  i^j; 

mg  at  x^,y^,z^\  etc.,  —  and  let  the  components  of  force  acting  on 
them  be  X^,  Y^,  Z^ ;  X^,  Y^,  Z^ ;  etc. 

Then,  from  the  equation  just  obtained, 

Xo  =  tn„—-fy  etc., 
'         ""  df 

72 

so  that,'  by  addition,  Vx  =  Vm  — ^  5  (69) 

where  2)  denotes  summation  over  all  the  particles  of  the  system. 

The  left-hand  member  ̂ .X  is  the  sum  of  the  components  along 

Ox  of  all  the  forces  acting  on  all  the  particles  of  the  system.    As 

in  §  50,  these  forces  may  be  divided  into  two  classes : 

{a)  external  forces  —  forces  applied  to  the  particles  from  outside 
the  system ; 

(b)  internal  forces  —  forces  of  interaction  between  pairs  of  par- 
ticles of  the  system. 

As  in  §  50,  we  find  that  the  contribution  to  ̂ X  from  the 
second  class  of  forces  is  nil.  For  all  these  forces  fall  into  pairs, 

each  pair  consisting  of  an  action  and  reaction,  of  which  the  com- 
ponents are  equal  and  opposite. 

Thus  in  calculating  Vx  we  need  only  take  account  of  exter- 
nal forces. 
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(Px 

The  right-hand  term  of  equation  (69),  namely  Vw^  -r^y  can  also  be 
doc  (J  r 

modified.    Since,  by  equation  (67),  we  have  u  =  —i  the  value  of  -— 
•    ̂̂ ^        .1,  . 
IS  -—>  so  that  72^  ^„       ̂  

By  the  momentum  of  a  particle,  as  we  have  already  seen  (§  20), 

is  meant  the  product  of  its  mass  and  velocity.  The  momentum  of 

a  particle  is  therefore  a  vector  of  components  mii,  mv,  mw,  and  mu 

may  be  spoken  of  as  the  a;-component  of  the  momentum.  Each 
particle  of  the  system  will  have  momentum,  and  the  sum  of  the 

ic-components  will  be  (^mu\  the  quantity  which  appears  on  the 
right  hand  of  equation  (70). 

We  may  now  replace  equation  (69)  by 

Xx=i&^u),  (71) 
where  2^X  denotes  the  sum  of  the  ic-components  of  the  external 
forces,  and  V^/iw  is  the  sum  of  the  a?-components  of  momentum. 

Conservation  of  Linear  Momentum 

179.  When  there  are  no  external  forces  acting,  ̂ X  =  0,  so  that 

|(S-«)  =  0-  (72) 

Similarly  we  have        ;i~(2"^^0  ~  ̂ '  C^^) 

1(5;™.)= 0.  (74) 

These  equations  express  that  the  quantities 

^niu,     ̂ niv,     ̂ mw 

do  not  vary  with  the  time.    That  is  to  say,  the  components  of  the 
total    momentum    are    constant,    so    that   the   total    momentum, 
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regarded  as  a  vector,  is  constant.    This  is  known  as  the  principle 
of  the  conservation  of  momentum.    Stated  in  words  it  is  as  follows : 

When  any  system  of  particles  moves  tvithout  being  acted  on  hy 
external  forces^  the  total  momentum  of  the  system  remains  constant 

in  magnitude  and  direction. 

Motion  of  Center  of  Gravity  of  System 

180.  Let  us  now  return  to  the  consideration  of  the  general 

equations  (71), 

Let  X,  y,  z  denote  the  coordinates  of  the  center  of  gravity  of  the 

particles  of  the  system  at  any  instant,  and  let  the  components  of 

the  velocity  of  this  point  be  denoted  by  u,  v,  w.    Then  we  have 

.  =  |etc.  (76) 

The  value  of  x  is,  by  equation  (8), 

X  = 
X m 

^  ^      dx       d  iX^^^ Thus  -2^  =  — -  =      '  ̂  dt       dt  \  Vm 

k     dx 

so  that  if  M  is  the  total  mass,  X'^^>  °^  ̂   ̂ ^^  particles,  we  have 

Vmw  =  Mu. 
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Equation  (75)  now  becomes 

IT  =   M 
dt 2:x  =  ̂ S.  (77) 

and  similarly  we  have  the  equations 

dt 

du 

It 
Remembering  that 

du     dv     dw 

dt      dt      dt 

are  the  components  of  acceleration  of  the  center  of  gravity,  we  see 

that  the  motion  of  the  center  of  gravity  is  the  same  as  it  would 

be  if  it  were  replaced  by  a  particle  of  mass  M,  acted  upon  by  a 

force  of  components  ̂ X,  ̂ Y,  ̂ Z.  This  force  again  is  simply 
the  force  which  would  be  the  resultant  of  all  the  external  forces, 

if  they  were  all  applied  to  the  imaginary  particle  which  we  are 

supposing  to  move  with  the  center  of  gravity. 

181.  In  the  particular  case  in  which  there  are  no  external  forces, 

the  center  of  gravity  moves  as  if  it  were  a  particle  acted  on  by  no 

forces,  so  that  its  motion  will  be  a  motion  of  uniform  velocity  in  a 

straight  line. 

182.  The  motion  of  the' center  of  gravity  in  this  particular  case, 
and  in  the  more  general  case  in  which  external  forces  act,  may 

accordingly  be  supposed  to  be  governed  by  the  two  following  laws  : 

Law  I.  The  center  of  gravity  of  ̂very  system  of  particles  con- 
tinues  in  a  state  of  rest,  or  of  uniform  motion  in  a  straight  line, 

except  in  so  far  as  the  action  of  external  forces  on  the  system  com- 
pels it  to  change  that  state. 

Law  II.  When  external  forces  act  on  the  system,  the  motion  of 

the  center  of  gravity  is  the  same  as  it  would  he  if  all  the  masses  of 

the  particles  were  concentrated  in  a  single  particle  which  moved 

with  the  center  of  gravity,  and  all  the  external  forces  were  applied 
to  this  particle. 
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These  laws  may  be  regarded  as  the  extensions  of  Newton's  Laws 
I  and  II  to  the  motion  of  a  system  of  particles.  We  can  see  now 

why  it  is  often  legitimate  to  apply  Newton's  second  law  to  the 
motion  of  bodies  of  finite  size,  as  though  they  were  particles 

(cf.  §  26). 
The  principle  of  conservation  of  momentum  is  often  sufficient 

in  itself  to  supply  the  solution  of  a  dynamical  problem  in  which 

only  two  bodies  are  in  motion. 

ILLUSTRATIVE  EXAMPLE 

A  shot  of  mass  m  is  fired  from  a  gun  of  mass  M,  which  is  free  to  run  back  on 

a  pair  of  horizontal  rails.  Find  the  velocity  of  recoil  of  the  gun,  and  examine  the 
influence  of  the  recoil  on  the  motion  of  the  shot. 

Let  us  suppose  that,  before  firing,  the  gun  stands  pointing  at  an  angle  a  to  the 

horizon,  and  let  the  muzzle  velocity  of  the  shot  —  i.e.  the  velocity  relative  to 
the  gun  with  which  the  shot  emerges — be  V. 

Let  us  suppose  that  the  velocity  of  the  shot  relative  to  the  earth  has  compo- 
nents w,  V  horizontal  and  vertical,  and  let  the  velocity  of  recoil  of  the  gun  be  U, 

measured  in  the  horizontal  direction  opposite  to  that  in  which  the  gun  is  pointing. 

The  system  consisting  of  the  gun,  powder,  and  shot  is  not  free  from  the 
action  of  external  forces,  but  these  forces,  namely  the  weight  of  the  system  and 

its  reaction  with  the  earth,  have  no  horizontal  component.  Thus  the  horizontal 

momentum  of  the  system  must  remain  unaltered  by  the  explosion.  This  hori- 
zontal momentum  was  zero  initially  :  it  is  therefore  zero  when  the  shot  leaves 

the  gun.    Thus  we  have,  neglecting  the  weight  of  the  powder, 

MU  -  mu  =  0.  (a). 

The  velocity  of  the  shot  relative  to  the  gun  has  components 

u  +  U,     V. 

This  velocity  must,  however,  be  a  velocity  V  making  an  angle  a  with  the 
horizontal.    We  therefore  have 

u  -\-TJ  —  V  cos  a,  (b) 
V  =  F  sin  a.  (c) 

From  equations  (a)  and  (6)  we  find 

w  _  Z7  _  F  cos  a 
M     m      M  -{■  m 

Thus  the  velocity  of  recoil  is 

U  :=   F  cos  a. 
M  +  m 
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The  components  of  actual  velocity  of  the  shot  are 

M 

M  +  m 

v  =  V  sin  a. 

V  cos  a, 

Thus  the  actual  velocity  of  the  shot  is 

while  the  angle  of  elevation,  6,  is  given  by 

V      M  +  7n  ̂  
tan  e  =  -  =   tan  a. 

u  M 

EXAMPLES 

1.  An  empty  railway  truck  weighing  8  tons,  originally  at  rest,  is  run  into  by 
a  similar  truck  carrying  a  load  of  24.  tons  and  moving  at  the  rate  of  a  mile  an 
hour,  and  the  two  trucks  then  move  on  together.    Find  their  common  velocity. 

2.  A  gun  of  mass  M  fires  a  shot  of  mass  m  horizontally.    Show  that  of  the 

work  done  by  the  powder,  a  fraction   is  wasted  in  producing  the  recoil 
of  the  gun. 

3.  A  particle  of  mass  m  slides  down  a  smooth  inclined  plane  of  angle  a,  the 

plane  itself  (mass  M)  being  free  to  slide  on  a  smooth  table.  Find  the  acceleration 
of  the  particle  and  the  plane. 

4.  A  shell  is  observed  to  explode  when  at  the  highest  point  of  its  path.  It 

is  divided  into  two  equal  parts  of  which  one  is  seen  to  fall  vertically.  Prove 
that  the  other  will  describe  a  parabola  of  which  the  latus  rectum  will  be  four 

times  the  latus  rectum  of  the  original  parabola. 

5.  A  shot  of  h  ounce  weight  strikes  a  bird  of  weight  5  pounds  while  in  the 
air.  At  the  moment  of  striking,  the  shot  has  a  horizontal  velocity  of  1000  feet 

a  second  and  the  bird  is  flying  horizontally  in  the  same  direction  at  a  height  of 

64  feet  above  the  ground,  with  a  velocity  of  20  feet  a  second.  Show  that  the 
bird  will  fall  at  a  distance  of  about  52.2  feet  beyond  the  place  where  it  was 

struck  by  the  shot. 

6.  A  ship  of  5000  tons  steaming  at  20  knots  suddenly  runs  into  a  whale 

whose  weight  is  12  tons,  asleep  on  the  surface  of  the  water.  By  how  much  is 

the  ship's  speed  reduced  ?    (Neglect  motion  of  water.) 
7.  A  mail  package  weighing  2  hundredweight  is  thrown  out  irom  a  train 

going  at  60  miles  an  hour,  with  a  horizontal  velocity  relative  to  the  train  of  11 
feet  per  second  at  right  angles  to  the  track.  It  falls  into  a  handcart  of  weight 

3  hundredweight,  which  is  free  to  move  on  a  level  platform,  its  wheels  being 
set  so  that  its  motion  will  make  an  angle  of  30  degrees  with  the  track  of  the 

train.    With  what  velocity  will  the  cart  start  into  motion  ? 
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8.  A  mass  of  8  pounds  moving  north  at  a  speed  of  10  feet  per  second  is  struck 

by  a  mass  of  6  pounds  moving  east  at  14  feet  per  second,  and  its  direction  of 
motion  is  thereby  deflected  through  30  degrees,  while  its  speed  is  increased  by 

1  foot  per  second  ;  show  that  tlie  velocity  of  the  other  is  diminished  by  7.3  feet 

per  second,  approximately,  and  find  its  new  direction  of  motion. 

9.  Two  ice  yachts,  each  of  mass  M,  stand  at  rest  on  perfectly  smooth  ice, 
with  their  keels  in  the  same  direction.  A  man  of  mass  m  jumps  from  the  first 

to  the  second,  and  then  immediately  back  again  on  to  the  first.  Show  that  the 

final  velocities  of  the  yachts  are  in  the  ratio  of  M  -\-  m:M, 

Kinetic  Energy 

183.  We  may  best  begin  the  study  of  the  kinetic  energy  of  a 

system  of  particles  by  drawing  attention  to  a  difficulty  wliich  has 

not  so  far  been  encountered  in  the  present  book.  This  difficulty 

will  be  best  illustrated  by  a  particular  example. 

Suppose  that  a  ship  is  moving  through  the  water  with  a  velocity 

of  20  feet  per  second,  and  that  a  person  on  deck  throws  a  ball  of 

mass  m  forward  with  a  velocity  of  30  feet  per  second  relative  to 

the  ship.  If  the  person  were  fixed  in  space,  we  might  say  that  the 

work  he  did  was  equal  to  the  final  kinetic  energy  of  the  ball,  and 

was  therefore  l-m(30)^  or  460  m. 

On  board  ship,*  however,  the  ball  originally  had  a  velocity  of  20 
and  the  thrower  increases  this  velocity  to  50.  The  change  in  the 

kinetic  energy  of  the  ball  is  accordingly 

lm(50)^-im(20)^ 

or  1050  m.  If  this  represents  the  work  done  by  the  thrower,  then 

we  are  driven  to  suppose  that  it  would  be  more  than  twice  as 

hard  to  throw  the  ball  on  board  ship  as  on  land.  This  would 

clearly  be  erroneous. 

184.  The  error  lies  in  this,  that  the  thrower  not  only  imparts  a 

velocity  to  the  ball  but  also  to  the  ship.  If  he  throws  the  ball 

forward  he  must,  from  the  principle  of  conservation  of  momentum, 

impart  a  backward  velocity  to  the  ship,  of  momentum  equal  and 

opposite  to  the  forward  momentum  of  the  ball.  The  total  work  per- 
formed is  equal  to  the  change  produced  in  the  total  kinetic  energy 

of  the  ship  and  the  ball. 
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Since,  by  the  third  law  of  motion,  no  force  can  act  singly,  it  fol- 
lows that,  in  every  case  of  calculation  of  work  from  kinetic  energy, 

it  will  be  necessary  to  consider  the  kinetic  energy  of  more  than  one 

body.  For  instance,  a  man  throwing  a  ball  on  land  will  not  only 

jerk  the  ball  forward,  but  will  also  jerk  the  whole  earth  backward, 
and  the  energy  of  both  must  be  taken  into  account,  or  we  shall  get 
erroneous  results. 

185.  A  second  difficulty,  closely  connected  with  the  first,  suggests 

itself  at  once.  Suppose  we  have  a  baU  thrown  with  a  velocity  v 

along  the  deck  of  a  ship  moving  with  velocity  V.  We  have  seen 

that  we  must  not  suppose  the  kinetic  energy  of  the  ball  to  be 

^  mv'^,  but  is  it  any  more  legitimate  to  suppose  it  to  be  ̂   m  (-y  +  F)*^  ? 
For  the  sea  in  which  the  ship  sails  will  have  a  further  velocity  F' 

in  consequence  of  the  earth's  rotation,  so  that  the  energy  might 
equally  well  be  taken  to  be 

and  so  we  might  go  on  indefinitely.  Knowing  of  no  frame  of 

reference  which  is  absolutely  at  rest,  it  would  seem  to  be  impos- 
sible to  find  the  true  value  of  the  kinetic  energy.  Moreover, 

it  ought  to  be  noticed  that  the  expressions  for  the  kinetic  energy 

referred  to  different  frames  of  reference  differ  by  more  than  mere 

constants.  For  instance,  the  difference  between  the  two  expres- 
sions we  have  found  for  kinetic  energy  relative  to  the  sea  and 

kmetic  energy  relative  to  the  earth's  center  is 

=  \mV'^  +  mV\v-\-V). 

This  difference  not  only  depends  on  m  and  V'  but  also  on  v  and  V. 
It  is  not  a  constant  difference,  and  so  does  not  disappear  when  we 
calculate  the  increase  in  kinetic  energy  resulting  from  the  action 
of  forces. 

The  theorems  which  follow  serve  the  purpose  of  showing  a  way 
through  these  and  similar  difficulties. 
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186.  Theorem.  The  kinetic  energy  of  any  syster/i  of  moving  par- 
ticles is  equal  to  the  kinetic  energy  of  motion  relative  to  the  center 

of  gravity  of  the  particles^  plus  the  kinetic  energy  of  a  single  par- 
ticle of  mass  equal  to  the  aggregate  mass  of  the  system,  moving 

with  the  center  of  gravity. 

Let  the  particles  be  m^  at  x^,  y^,  z^,  etc.,  and  let  the  coordinates 

be  measured  with  the  center  of  gravity  taken  as  origin.  Let  the 

velocities  be  denoted  by  u^,  v^,  w^,  etc.,  and  let  these  also  be  meas- 
ured relative  to  a  frame  moving  with  the  center  of  gravity,  so  that 

u.  =  — -^,  etc. 
'       dt 

Let  the  velocity  of  the  center  of  gravity  referred  to  any  frame 

of  reference,  moving  or  fixed  (provided  only  that  the  directions  of 

the  axes  do  not  turn),  have  components  u,  v,  w.  Then  the  velocity 

of  the  particle  m^  is  compounded  of  the  velocity  of  the  particle,  rel- 
ative to  the  center  of  gravity  of  the  system,  of  components  u^,  v^, 

w^,  together  with  the  velocity  of  the  center  of  gravity,  of  com- 
ponents u,  V,  w.    Thus  the  whole  velocity  of  the  particle  m^  has 

components  _  _  _ 
U  +  '^^1,  V  -{-  v^,  w  +  w^. 

The  kinetic  energy  of  the  first  particle  is  accordingly 

1  m,  [{u  +  u^f  +  (^  +  v^Y  ■\-{w  +  ̂ i)'], 

so  that  the  kinetic  energy  of  the  system  is 

\^m [{u  -h  uf  +  {v  +  vf  -\-{w-\-  wfl 

or,  on  expanding  squares, 

i(2^^)(^'  +  ̂'  +  ̂') 
-\-  u^mu  +  ?2]^'^'^  +  w^mw 

+  i  2^^(^'  +  ̂-^  +  ̂ ')-  (80) 

Since,  when  the  center  of  gravity  is  taken  as  origin,  the  coor- 
dinates of  the  particles  are  x^,y^,z^,  etc.,  we  have,  by  equations  (8), ^ 
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0  =  ̂  — >  etc., 

dx 

~dt 

Similarly  Vm^  =  0  and  ̂ 7nw  =  0.    The  whole  of  the  second 
line  of  expression  (80)  is  now  seen  to  disappear,  so  that  we  find 

for  the  kinetic  energy  the  expression 

i(^^my{u'  +  v'-\-  w')  +  i2^m(2^^  -hv'  +  w%  (81) 

which  proves  the  theorem. 

187.  Next,  suppose  that  the  coordinates  of  the  center  of  gravity 

at  any  instant,  referred  to  an  imaginary  set  of  fixed  axes,  are 

Ic,  y,  z,  the  velocity  of  the  center  of  gravity  having,  as  before,  com- 
ponents U,  V,  w. 

We  have  supposed  that,  relative  to  the  center  of  gravity,  the 

particle  m^  has  coordinates  x^,  y^,  z^,  and  components  of  velocity 

u^,  v^,  Wy  Thus,  referred  to  the  imaginary  fixed  axes,  the  coordi- 
nates of  the  particle  m^  will  be 

^  +  ̂1,    y  +  y-i,    ̂   +  ̂ly 

while  its  components  of  velocity,  as  before,  are 

Let  the  force  applied  to  the  particle  m^have  components  X^,Y^,  Z[. 

As  in  §  141,  the  work  done  on  this  particle  by  the  external  forces 

is  equal  to  minus  the  work  performed  by  the  particle  against  these 

forces.  Thus  the  work  done  on  the  particle  while  it  moves  over 

any  small  element  of  its  path  is,  by  §  118,  equal  to 

X^d(:x  +  x^  +  Y^di^y  +  y^  +  Z^dl^z  +  z^. 

The  total  work  done  on  all  the  particles  in  any  small  displace- 
ment is  therefore 

^{X^dCx  +  x^  +  Y^di^  +  y^  -f-  Z^d(^z  +  z^\ 

and  this  can  be  separated  into  two  parts  as  follows: 
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The  first  part  may  be  taken  to  be 

^X^dx+^Y^dy  +^Z^dz,  (82) 

while  the  second  is 

^X^dx^  ■\-'X^idyi  +2^^i^^i.  (83) 

By  equation  (77),  we  have 

where  M  is  the  total  mass  of  the  system,  expressing  that  the 

center  of  gravity  moves  as  though  it  were  a  particle  of  mass  M 

acted  on  by  a  force  of  components  ̂ y^u  X^i'  S^^i*  ̂ ^  ̂^  ̂^  ̂ ^^^ 
clear  that  expression  (82)  represents  the  work  done  in  the  motion 

of  this  imaginary  particle,  and  this  we  know  must  be  equal  to  the 

increase  in  its  kinetic  energy. 

The  total  work  done  is  the  sum  of  expressions  (82)  and  (83). 

This  total  work  is  equal  to  the  increase  in  the  total  kinetic  energy 

of  the  system  (by  §  140),  and  this  again  (by  §  186)  is  equal  to  the 
increase  in  the  kiaetic  energy  of  motion  relative  to  the  center  of 

gravity  of  the  particles,  plus  the  increase  in  the  kinetic  energy  of 

the  imaginary  particle  of  mass  M  moving  with  the  center  of  gravity. 

Tliis  latter  increase,  as  we  have  just  seen,  is  represented  by 

expression  (82),  so  that  the  former  must  be  represented  by 

expression  (83). 
Thus  the  increase  in  kinetic  energy  relative  to  the  center  of 

gravity  is 

"^{X^dx^  +  Y^dy^  +  Z^dz^), 

and  is  therefore  equal  to  the  work  done  by  the  forces,  calculated 

as  tliougli  the  center  of  gravity  were  at  rest. 

188.  Thus  we  see  that,  in  the  theorem  that  the  increase  in 

kinetic  energy  is  equal  to  the  work  done,  it  is  legitimate  to  calcu- 
late both  the  kinetic  energy  and  the  work  done  by  considering 

motion  relative  to  the  center  of  gravity  only ;  i.e.  the  system  may 

be  treated  as  though  its  center  of  gravity  remained  at  rest. 
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As  an  illustration,  consider  the  problem  of  firing  a  shot  on  board  a 

moving  ship.  The  mass  of  the  shot  being  small  compared  with  that  of  the 

ship,  we  may  suppose  the  center  of  gravity  of  shot  and  ship  to  have 

exactly  the  motion  of  the  ship.  The  velocity  of  the  shot  relative  to  this 

center  of  gravity  may  accordingly  be  taken  simply  to  be  that  relative  to 

the  deck  of  the  ship.  The  work  done  by  the  powder  in  ejecting  the  shot 

from  the  barrel  is  the  same  as  though  the  ship  were  at  rest,  so  that  the 

velocity  of  the  shot  relative  to  the  ship  will  be  the  same  as  though  the 

ship  were  at  rest. 

EXAMPLES 

1.  A  cart  is  moving  with  velocity  V  and  a  man  on  the  cart  throws  out  sand 

horizontally  from  the  back  of  the  cart  at  the  rate  of  m  pounds  per  minute,  the 
sand  having  a  velocity  v  relative  to  the  road.    At  what  rate  is  the  man  working  ? 

2.  A  gun  capable  of  firing  a  shot  vertically  upwards  to  a  height  h  is  placed 

on  an  armored  train  running  with  velocity  V.  What  is  the  greatest  range  to 

which  a  shot  can  reach  (a)  behind  the  train,  (6)  in  front  of  the  train  ? 
3.  In  the  last  question  find  the  nearest  point  to  the  track,  which  is  out  of 

range  of  the  gun. 

4.  A  shell  of  mass  M  is  moving  with  velocity  V.  An  internal  explosion  gen- 
erates an  amount  E  of  energy,  and  thereby  breaks  the  shell  into  masses  of  which 

one  is  k  times  as  great  as  the  other.  Show  that  if  the  fragments  continue  to 

move  in  the  original  line  of  motion  of  the  shell,  their  velocities  will  be 

V  +  V2  kE/M,         V  -  V2  E/kM. 

5.  Two  men,  each  of  mass  M,  stand  on  two  inelastic  platforms  each  of  mass 
m,  hanging  over  a  smooth  pulley.  One  of  the  men,  leaping  from  the  ground, 
could  raise  his  center  of  gravity  through  a  height  h.  Show  that  if  he  leaps  with 
the  same  energy  from  the  platform,  his  center  of  gravity  will  rise  a  height 

V        2(Jf+m)/ 

Impulsive  Forces 

189.  There  are  many  instances  in  dynamical  problems  in  which 

the  action  of  a  force  begins  and  terminates  within  so  short  an 

interval  of  time  that  the  action  may  be  regarded  as  instantaneous. 

Such  forces  are  called  impulsive  forces.  As  instances  of  impulsive 

forces  we  may  take  the  forces  brought  into  play  by  the  jerking  of 

an  inextensible  string,  or  by  the  collision  between  two  hard  bodies. 

The  change  of  momentum  produced  by  the  action  of  an  impul- 
sive force  is,  in  general,  of  finite  amount.    As  the  force  only  acts  for, 
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an  infinitesimal  time,  the  rate  of  change  of  momentum  must  be  in- 

finite. By  the  second  law  of  motion,  the  rate  of  change  of  momen- 
tum is  equal  to  the  force,  so  that  the  force  itself,  while  it  lasts, 

must  be  infinite.  Thus  an  impulsive  force  may  be  regarded  as  an 

infinite  force  acting  for  an  infinitesimal  time. 

190.  At  the  outset  of  our  study  of  impulsive  forces,  it  will  be 

well  to  notice  one  physical  peculiarity  of  these  forces.  A  perfectly 

rigid  body  was  defined  as  one  which  kept  its  shape  under  the 

action  of  any  forces,  no  matter  how  great.  At  the  same  time  it 

was  mentioned  that  no  perfectly  rigid  bodies  exist  in  nature. 

Under  the  action  of  infinite,  or  very  great,  forces  such  as  occur  in 

impulses,  no  body  may  be  treated  as  perfectly  rigid. 

The  consequence  of  this  is  that  when  any  impulsive  forces  are 

brought  into  action,  relative  motion  is  set  up  between  the  different 

small  particles  of  which  continuous  bodies  are  composed.  Tliis 

relative  motion  possesses  energy  of  a  kind  which  cannot  be  regained 

from  the  system  by  mechanical  processes;  in  fact,  the  relative 

motion  of  these  particles  simply  represents  the  heat  of  the  body. 

Inasmuch  as  this  energy  cannot  be  recovered  from  the  system  as 

mechanical  work,  we  see  that  the  impulsive  forces  which  do  work 

in  producing  tliis  energy  cannot  be  treated  as  conservative  forces. 
Thus  we  see  that 

The  sum  of  the  potential  and  kinetic  energies  of  a  system  does 

not  remain  constant  through  the  action  of  impulsive  forces. 

For  clearly  part  of  the  total  energy  is  left,  after  the  impulses,  in  the 
form  of  heat. 

Consider,  for  instance,  a  lead  bullet  striking  a  steel  target.  Suppose 
that,  before  striking  the  target,  the  bullet  is  moving  horizontally  with 

velocity  i;  at  a  height  1i.  Its  kinetic  energy  is  I  mv"^,  its  potential  energy 
being  mgh.  After  striking,  we  may  suppose  the  bullet  to  have  no  horizontal 
velocity,  but  to  fall  to  the  bottom  of  the  target.  At  the  instant  at  which 
this  fall  begins,  the  kinetic  energy  is  nil,  while  the  potential  energy  is  mgJi^ 

as  it  was  before  the  impact.  Thus  an  amount  of  energy  \  mv^  has  disap- 
peared from  the  total  energy.  This  has  been  used  up  in  producing  motions 

of  the  particles  of  the  bullet  and  target  relative  to  one  another  ;  these  show 
themselves  in  the  form  of  heat,  and  also,  perhaps,  partly  in  permanent 

changes  of  shape,  —  a  dent  in  the  target,  or  a  flattening  of  the  bullet. 
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Measure  of  an  Impulse 

191.  The  change  of  momentum  produced  by  an  impulsive  force 

is  called  the  impulse  of  the  force.  Thus  if  an  impulse  /  acts  on 

a  mass  m,  changing  its  velocity  (or  component  of  velocity  in  the 
direction  of  the  impulse)  from  u  to  v,  we  have 

I=m{v  —  u).  (84) 

The  force  acting  at  any  instant  is,  by  the  second  law,  equal 

to  the  rate  of  change  of  momentum  of  the  particle  (or  body)  on 
which  it  acts.  If  the  force  is  of  constant  amount,  the  whole 

change  of  momentum  is  equal  to  the  product  of  the  force  by  the 
time  over  which  it  acts.  If  the  force  is  of  variable  amount,  the 

change  of  momentum  will  be  equal  to  the  integral  of  the  force 

with  respect  to  the  time  over  which  it  acts.  Thus  if  P  is  the 

value  of  the  force  acting  at  any  instant  of  the  whole  time  t,  we 

see  that  the  impulse 

=  Pt,  if  the  force  is  of  constant  amount. 

f =  I   Pdt,  if  the  force  is  of  variable  amoimt. 

Work  done  hy  an  Impulse 

192.  The  work  done  by  an  impulse  /  in  changing  the  velocity 
of  a  mass  m  from  il  to  v  will  be 

'^mv^  —  \mu^, 

the  increase  in  the  kinetic  energy  of  the  mass.    Since  I=m{v  —  tc), 
we  may  write  the  expression  for  the  work  done  in  the  form 

^m(v  —  u)  (v  -\-  u) 

Thus  the  work  done  by  an  impulse  is  equal  to  the  impulse  multi- 
plied hy  the  mean  of  the  initial  and  final  velocities  of  the  mass 

acted  upon. 
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If  the  mass  is  not  moving  in  the  same  direction  as  the  Line  of 

action  of  the  impulse,  the  foregoing  result  will  obviously  be  true 

if  u,  V  are  taken  to  be  the  components  of  the  velocities  along  the 
line  of  action. 

ILLUSTRATIVE  EXAMPLES 

1.  A  shot  of  14  pounds  is  fired  into  a  target  of  mass  200  pounds  which  is 
suspended  by  chains  so  that  it  is  free  to  start  into  motion  horizontally.  If  the 

shot,  before  impact,  was  moving  with  a  horizontal  velocity  of  1000  feet  a  second, 
and  afterwards  remains  embedded  in  the  target,  find  the  loss  of  energy  caused 

by  the  impact. 

Let  V  denote  the  horizontal  velocity,  measured  in  feet  per  second,  with 

which  the  target  and  bullet  together  start  into  motion  after  the  impact.  Then, 

by  the  conservation  of  momentum,  equating  the  momentum  before  the  impact 
to  that  after, 

1000  X  14  =  "T  X  214, 

so  that  F=i|0-fa. 

The  kinetic  energy  before  impact  was  ̂   •  14  •  (1000)2  ;  that  afterwards  is 

I  •  214  .  V^.    Thus  the  loss  of  energy  is 

1(14,000,000  -  214  V^)  =  6,540,000  foot  poundals,  approximately. 

2.  A  heavy  chain,  of  length  I  and  mass  m  per  unit  length,  is  held  with  a  length 

h  hanging  over  the  edge  of  a  table,  and  the  remainder  coiled  up  at  the  extreme  edge 

of  the  table.    If  the  chain  is  set  free,  find  the  velocity  at  any  stage  of  the  motion. 

Suppose  that  at  any  stage  of  the  motion  a  length  x  is  hanging  vertically,  so 

that  a  length  I  —  x  is  coiled  up  on  the  table.  After  an  infinitesimal  time  dt  let 
X  be  supposed  to  have  increased  from  x  to  cc  +  dx.  Then  if  v  is  the  downward 

velocity  of  the  chain,  we  clearly  have 
dx 

V  =  — dt 

At  the  beginning  of  the  interval  dt,  the  downward  momentum  of  the  chain 
was  that  of  a  mass  mx  moving  with  a  velocity  v.  It  was  accordingly  mvx.  At 

the  end  of  the  interval,  the  momentum  is  that  of  a  mass  m{x  +  dx)  moving  with 

a  velocity  which  may  be  denoted  by  {v  +  dv).    Thus  the  gain  in  momentum  is 

m{x  +  dx)  {v  +  dv)  —  mxv, 

or,  neglecting  the  small  quantity  of  the  second  order  dvdx,  the  gain  is 

m{xdv  +  vdx). 
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The  gain  of  momentum  per  unit  time  is,  however,  by  equation  (71),  equal 
to  the  total  force  acting,  and  this  is  mgx  at  the  beginning  of  the  interval  dt  and 

mg{x  +  dx)  at  the  end.  Neglecting  the  small  quantity  of  the  second  order  dx(ii, 
we  find  that  the  total  gain  of  momentum  in  the  interval  dt  must  be  mgxdt. 

Thus  we  have 

m{xdv  -\-  V  dx)  =  mg  x  dt 
dx 

=  mgx  —  , 

or,  simplifying,  vx   \-  v^  =  gx. 
dx 

To  integrate  this  equation,  we  multiply  by  2  x,  and  then  we  obtain 

^2x2  =  2  gri-s  ̂   a  constant. 

To  determine  the  constant,  we  note  that  v  =  0  when  x  =  h,  so  that  the  value 

of  the  constant  must  be  —  fgh^.    Thus  we  have 

x^ 

giving  the  velocity  when  a  length  x  is  off  the  table.    When  the  last  particle  of 

the  chain  is  pulled  off,  the  value  of  x  is  Z,'  so  that  at  this  instant 

We  notice  that  this  value  of  v^  is  not  the  value  which  would  be  obtained  from 

the  equation  of  energy.  Clearly  this  equation  must  not  be  employed,  since 
impulses  are  in  action  all  the  time,  jerking  new  particles  of  the  chain  into 
motion. 

EXAMPLES 

1.  An  empty  car  of  10  tons  weight  runs  into  a  similar  car  loaded  with  50 

tons  of  coal,  and  the  two  run  on  together  with  a  velocity  of  5  feet  per  second. 

What  was  the  velocity  of  the  first  car  originally,  and  what  was  the  amount  of 
the  impulse  between  the  cars  ? 

2.  A  stone  of  weight  ̂   ounce  is  dropped  on  to  soft  ground  from  a  height  of 
5  feet.    Find  the  impulse  exerted  before  the  stone  is  brought  to  rest. 

3.  A  mass  of  1  ton  falls  from  a  height  of  16  feet  on  the  end  of  a  vertical 

pile,  and  drives  it  half  an  inch  deeper  into  the  ground.  Assuming  the  driving 

force  of  the  mass  on  the  pile  to  be  constant  while  it  lasts,  find  its  amount  and 
the  duration  of  its  action. 

4.  A  body  of  mass  10  grammes  is  moving  with  a  speed  of  8  centimeters 

a  second.  Suddenly  it  receives  a  blow  which  causes  it  to  double  its  speed,  and 
to  change  its  direction  through  half  a  right  angle.  Determine  the  direction  of 

the  blow,  and  the  velocity  with  which  the  body  would  have  moved  off,  had  it 
been  at  rest. 
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5.  The  string  of  an  Atwood's  machine  has  masses  mi,  rrii  attached  to  its 
ends,  mi  being  the  heavier.  After  it  has  been  in  motion  for  1  second  mi  strikes 

the  floor.  Find  (a)  for  how  long  m^  will  continue  to  ascend,  {h)  with  what 
velocity  mi  will  start  into  motion  again  when  the  string  becomes  tight. 

6.  On  a  certain  day  one  inch  of  rain  fell  in  10  hours,  the  drops  falling  with 
a  velocity  of  20  feet  per  second.  Find  the  average  pressure  per  square  foot  on 

the  canvas  roof  of  a  tent,  supposed  horizontal,  produced  by  the  impact  of  the 

raindrops.    (One  cubic  foot  of  water  weighs  62 1  pounds.) 
7.  The  earth,  moving  in  its  orbit  with  velocity  F,  runs  into  a  swarm  of  small 

meteorites,  of  density  one  kilogramme  to  the  cubic  mile,  moving  with  a  velocity 
u  in  a  direction  exactly  opposite  to  that  of  the  earth.  Find  the  rate  of  decrease 

of  the  earth's  speed  in  consequence  of  its  bombardment  by  the  meteorites^ 
and  find  also  the  increase  in  the  height  of  the  barometer  at  different  points  on 

the  earth's  surface, it  being  assumed  that  all  the  meteorites  are  dissipated  into 

dust  before  they  reach  the  ground.  (The  earth's  mass  is  6  x  lO'^^  grammes,  its 
diameter  is  7927  miles.) 

8.  A  uniform  chain  is  coiled  in  a  heap  on  a  horizontal  plane,  and  a  man 
takes  hold  of  one  end  and  raises  it  uniformly  with  a  velocity  u.  Show  that 

when  his  hand  is  at  a  height  x  from  the  plane,  the  pi'essure  on  his  hand  is  equal 

to  the  weight  of  a  length  x  -\   of  the  chain. 

Elasticity 

193.  It  is  a  matter  of  common  experience  that  if  we  drop  a 

ball  of  steel  on  to  a  hard  floor  it  rebounds  to  a  considerable  height, 

while  a  ball  of  wood  will  rebound  to  a  much  smaller  height,  and  a 

ball  of  wool,  paper,  or  putty  will  hardly  rebound  at  all. 
When  the  contact  between  the  surfaces  of  two  bodies  is  of  such 

a  nature  that  they  do  not  rebound  at  all  after  impact,  it  is  said  to 

be  perfectly  inelastic,  wMle  if  the  bodies  rebound,  the  contact  is 

said  to  be  elastic.    Obviously  there  are  varying  degrees  of  elasticity. 

Moment  of  Greatest   Compression 

194.  Probably  the  collision  of  two  billiard  balls  supplies  the 

most  familiar  instance  of  an  impact  with  a  high  degree  of  elasticity. 

We  shall  discuss  this  impact  best  by  referring  the  motion  of  the 
second  ball  to  a  frame  of  reference  moving  with  the  first.  Before 

impact  the  center  of  the  second  ball  is  approaching  that  of  the  first. 
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after  impact  it  is  receding.  Hence  at  some  instant  during  the 

impact,  its  motion  must  have  changed  from  one  of  approaching  to 

one  of  receding;  at  this  instant  the  distance  between  the  two 
centers  was  a  minimum. 

Suppose  that,  before  the  experiment,  we  had  chalked  the  two 

faces  of  the  balls  on  which  the  collision  takes  place.  On  examin- 

ing the  balls  after  impact  it  will  be  found  that  the  chalk  has  been 

disturbed,  not  only  at  a  single  point,  but  all  over  a  circle  of  con- 

siderable size,  —  perhaps  of  diameter  half  an  inch  for  billiard  balls 
moving  with  a  fair  velocity.  This  sliows  that  at  the  moment  at 
wliich  the  centers  of  the  balls  were  closest  to  one  another,  their 

distance  was  less  than  if  they  had  been  placed  in  contact  and  at 

rest,  —  the  balls  were  compressed. 
The  instant  at  which  the  two  centers  were  nearest  is  called  the 

moment  of  greatest  compression. 

In  general,  for  any  two  surfaces  in  collision,  the  mstant  at  which 

the  relative  velocity  along  the  common  normal  vanishes  is  called 

the  moment  of  greatest  compression.  Obviously  this  is  the  instant 

at  which  the  motion  of  the  two  surfaces  changes  from  one  of 

approach  to  one  of  recession. 

195.  By  the  time  the  moment  of  greatest  compression  is  reached, 

the  velocities  of  both  bodies  will,  in  general,  have  been  changed, 

so  that  forces  must  have  been  at  work  to  produce  this  change.  The 
whole  time  of  action  of  these  forces,  the  time  from  the  instant  at 

which  the  bodies  first  touch  to  the  instant  of  greatest  compression, 

is  so  small  that  these  forces  may  be  treated  as  impulsive.  The 

impulses  acting  on  the  two  bodies,  being  action  and  reaction,  must 

be  equal  and  opposite.  If  the  surfaces  are  smooth,  the  direction  of 

these  impulses  will  be  along  the  common  normal.  If  the  surfaces 

are  rough,  w^e  cannot  specify  the  direction  until  we  know  the  direc- 
tion of  sliding,  if  any,  of  the  surfaces  over  one  another.  In  either 

case,  let  us  denote  the  component  of  the  impulse  along  the  com- 

mon normal  by  I.  The  quantity  /  is  called  the  impulse  of  com- 
pression. Clearly  it  is  the  forces  of  which  this  impulse  is  composed 

which  reduce  the  relative  normal  velocity  to  zero. 
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After  the  moment  of  greatest  compression,  a  second  system  of 
forces  must  come  into  play  to  set  up  the  velocities  with  which  the 

bodies  separate  from  one  another.  In  fact,  at  the  instant  of  great- 

est compression,  the  compressed  parts  of  the  bodies  act  like  a  com- 
pressed spring,  and  we  can  suppose  the  velocities  of  separation 

produced  by  the  action  of  this  imaginary  spring.  The  forces  which 

separate  the  bodies  may  again  be  treated  as  impulsive,  and  the 

component  of  this  impulse  along  the  common  normal  will  be 

denoted  by  /'.    The  impulse  /'  is  called  the  impidse  of  restitution. 
196.  When  the  motion  of  the  bodies  before  impact  is  known,  we 

can  calculate  the  velocities  at  the  instant  of  greatest  compression 

by  an  application  of  the  prmciple  of  conservation  of  momentum. 

It  is  therefore  possible  to  calculate  the  impulse  J,  the  impulse 

of  compression. 

The  amount  of  the  impulse  /',  on  the  other  hand,  depends  on 
the  nature  of  the  contact  between  the  two  bodies;  for  instance, 

if  the  bodies  are  perfectly  inelastic,  there  is  no  separation  at  all 

after  impact,  so  that  P  =  0.  In  general,  it  is  found  as  a  matter 

of  experiment  that  the  impulse  /'  is  connected  with  the  impulse 
I  by  the  simple  law f  —. 

eh 

where  e  is  a  quantity  which  depends  only  on  the  nature  of  the 
contact  between  the  two  surfaces,  and  not  on  the  amount  of  the 

impulse  I.  The  quantity  e  is  called  the  coefficient  of  elasticity  for 
the  two  bodies. 

It  is  important  to  understand  that  this  coefficient  of  elasticity  is  a  quan- 
tity entirely  different  from  the  coefficients  or  elastic  constants  which  occur 

in  the  theory  of  elastic  solids.  Indeed,  the  term  coefficient  of  elasticity  is 

somewhat  unfortunate  as  a  description  of  the  quantity  e  ;  what  is  measured 

is  resilience  rather  than  elasticity,  and  doubtless  coefficient  of  resilience  would 

be  a  better  description  than  coefficient  of  elasticity.  The  term  coefficient  of 

elasticity  has,  however,  been  generally  adopted. 

197.  The  value  of  e,  as  we  have  seen,  is  zero  for  perfectly  in- 
elastic bodies.  For  iron  impinging  on  lead,  the  value  of  e  is  about 

.14,  for  iron  on  iron  about  .66,  and  for  lead  on  lead  about  .20.    We 
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notice  that  resilience  depends  on  the  nature  of  the  contact  between 

two  bodies,  being  in  this  respect  similar  to  the  coefficient  of  fric- 
tion. The  resilience  does  not  arise  partly  from  one  body  and  partly 

from  the  other,  for  if  it  did  the  value  of  e  for  iron  impinging  on 
lead  would  be  intermediate  between  the  values  for  iron  on  iron 

and  for  lead  on  lead. 

As  examples  of  bodies  for  wliich  the  coefficient  of  elasticity  is 

large,  it  is  found  that  the  value  of  e  for  the  impact  of  two  ivory 
billiard  balls  is  about  .81,  while  for  glass  impinging  on  glass  it  is 

,94.  The  most  perfect  elasticity  conceivable  is  that  of  two  bodies 

for  which  e  =  1,  m  which  case  the  impulse  of  restitution  is  equal 

to  the  impulse  of  compression.  The  bodies  in  this  case  are  spoken 

of  as  perfectly  elastic.  The  peculiarity  of  perfectly  elastic  bodies  is 

that  no  energy  is  lost  on  impact.  It  is  clear  that  the  value  of  e  can- 
not exceed  unity,  for  if  the  value  of  e  were  greater  than  unity,  the 

kinetic  energy  set  up  by  the  impulse  of  restitution  would  be  greater 

than  that  absorbed  by  the  impulse  of  compression,  so  that  the  total 

energy  would  be  increased. 
We  shall  now  apply  these  principles  to  some  important  cases 

of  impact. 

Particle  impinging  on  a  Fixed  Surface 

Direct  Impact 

198.  Suppose  first  that  the  impact  is  direct  —  i.e.  that,  at  the 
instant  of  collision,  the  particle  is  moving  along  the  normal  to  the 

surface  at  the  point  at  which  it  strikes.  Let  m  be  its  mass,  and  v 

its  velocity  before  impact.  At  the  moment  of  greatest  compression, 

the  particle  will  be  at  rest  relatively  to  the  plane,  so  that  its 

momentum  is  reduced  by  the  impulse  of  compression  from  mv 
to  0.    Thus  we  must  have 

7=  mv. 

If  e  is  the  coefficient  of  elasticity, 

I'  =  el  =^  emv. 
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Thus  there  is  a  normal  impulse  of  amount  emv,  and  this  gener- 
ates a  velocity  ev  in  the  particle.  There  is  no  tangential  impulse, 

for  there  is  no  sliding  of  the  surfaces  past  one  another.  Thus  the 

velocity  of  rebound  is  a  velocity  ev  normal  to  the  surface. 

Ohlique  Impact :  Smooth  Contact 

199.  If  the  impact  is  oblique,  let  us  suppose  that  the  components 

of  velocity  along  the  tangent  plane  and  along  the  normal  before 

impact  are  'u^  v.    As  before,  we  find 

/=  mv,         /'=  emv^ 

so  that  the  normal  velocity  after  impact,  say  v\  is v' =  ev. 

If  the  contact  is  supposed  smooth,  there  can  be  no  force  in  the 

tangent  plane,  so  that  the  momentum  in  the  tangent  plane  remains 

unaltered.  Thus  the  velocity  in  the  tangent  plane  remains  equal 

to  u,  and  the  velocity  after  impact  will  be  one  of  components  u,  ev. 

•  Let  6  be  the  angle  which  the  velocity  before 

impact  makes  with  the  normal,  and  let  *<^  be  the 
corresponding  angle  after  impact.    Then 

tan  (9 

Fig.  126 

tan  9  =  —  y 
ev 

so  that  tan  6  =  e  tan  (f). 

If  the  bodies  are  perfectly  elastic,  e  =  1,  so  that 

6  =  (f)]  i.e.  the  particle  rebounds  at  an  angle  equal 

to  the  angle  of  incidence.  Its  reflexion  obeys  the  same  law  as 

that  of  a  ray  of  light. 

If  the  bodies  are  imperfectly  elastic,  6  is  less  than  </>,  so  that 

the  path  is  bent  away  from  the  normal. 

If  the  bodies  are  perfectly  inelastic,  e  =  0,  so  that  <^  =  —  5   the 

particle  simply  slides  along  the  plane,  as  of  course  it  obviously 

must  since  /'=  0. 
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The  kinetic  energy  before  impact  is 

that  after  impact  is  ^  m  {tc^  +  "v'^)- 

Thus  there  is  a  loss  of  kinetic  energy  of  amount 

or  ^mv'^(l  —  e^). 

This  vanishes  if  e  =  1,  i.e.  if  the  bodies  are  perfectly  elastic. 
In  all  other  cases  there  is  a  loss  of  energy.  We  again  see  that  e 

cannot  be  greater  than  unity,  or  it  would  be  possible  to  gain 

energy  by  causing  bodies  to  impinge  on  one  another. 

Ohlique  Impact :  Rough  Contact 

200.  As  in  the  case  of  a  smooth  contact,  we  obtain  the  relation 

v'  =  ev  connecting  the  components  of  velocity  along  the  normal. 
The  reaction,  however,  no  longer  acts  entirely  along  the  normal,  so 

that  it  is  not  now  true  that  the  tangential  component  of  velocity 
remains  unaltered. 

Let  us  consider  the  case  in  which  the  surface  of  the  particle 

slides  in  the  same  direction  over  the  fixed  surface  during  the 

whole  time  that  the  two  surfaces  are  in  contact.  Then  at  every 

instant  of  the  impact  there  will  be  a  tangential  force  equal  to 

/i  times  the  normal  force,  so  that  the  total  tangential  impulse 

must  be  /x  times  the  total  normal  impulse,  and  therefore  equal 

to  /x  (/+/'). 

Thus  if  u'  is  the  tangential  velocity  after  the  impact,  we  have 

m{u  —  u')  =  /i  (/  -f  I') 

=  />t(l+  e)mv^ 

so  that  u'  =  u  —  {l-\-  e)  fiv. 
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If,  as  before,  we  suppose  that  6,  (j)  are  the  angles  which  the  path 

makes  with  the  normal  before  and  after  the  impact  (see  fig.  126), 
we  have 

tan  6  =  —y V 

,         u'         U—  (1+  e)LLV 
tan  </)  =  —  =   ^   ^^— » v'  ev 

so  that  e  tan  (j)  =  tan  6  —  (1+  e)/iJL. 

The  value  of  (1  +  e)  //,  is  always  positive,  so  that  <^  is  less  than  it 
would  be  if  the  plane  were  smooth ;  in  other  words,  the  roughness 

of  the  plane  causes  the  particle  to  rebound  nearer  to  the  normal. 

This  equation,  however,  is  only  true  within  certain  limits,  for 

we  have  assumed  that  there  is  sliding  during  the  whole  time  of 

impact.  It  may  be  that  at  a  certain  stage  of  the  motion  sliding 

will  give  place  to  roUmg,  and  if  so  the  equation  we  have  obtained 

is  no  longer  valid. 

Impact  of  Two  Moving  Bodies 

201.  Suppose  now  that  two  bodies  A,  B  of  masses  m,  in'  im- 
pinge at  the  point  C,  the  common  normal  to  C  being  the  line  CP. 

Let  it  be  supposed  that  the  centers  of 

gravity  of  the  two  bodies  both  lie  in  the 
line  CP  at  the  moment  of  impact,  and  let 

the  components  along  CP  of  the  velocities 

of  the  centers  of  gravity  of  the  masses 

A,  B  respectively  be 

u,  u'  before  impact, 
V,  V  at  the  instant  of  greatest 

compression, 

Fig.  127  -?;,  v'  after  impact. 

Then  if  we  denote  the  impulse  of  compression  by  I,  and  the 

impulse  of  restitution  by  /',  we  have 

I=m{u-V)^-m'{u^-V),  (85) 

/'=  m  (V-  v)  =  -  m'{V-  v').  (86) 
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From  the  first  Hne  u  =zV-\   > m 

u'=V~—,, 

m' 

so  that  u—  u'  —  1 1   -]y 

\m      7ii'J 
an  equation  connecting  /  with  the  relative  velocity  before  collision. 

Similarly,  from  equations  (86), 

V  —  V'  =  —  I'l   : 

\7u      m' The  experimental  relation  1'  =  el  is  now  seen  to  be  exactly 
equivalent  to  the  relation 

•  q^  —  v'=  —  e{u  —  u'),  (87) 

or,  in  words:  The  normal  component  of  relative  velocity  of  the 

centers  of  gravity  after  collision  is  equal  to  e  times  the  relative 

velocity  before  collision,  and  is  in  the  opposite  direction. 

Tliis  law  is  known  as  Newton's  experimental  law ;  it  expresses 
the  same  property  of  matter  as  the  relation  I'  =  el, 

A  second  relation,   connecting  velocities    before   impact   with 

velocities  after,  is  given  by  the  conservation  of  momentum;  we 
have  ,      f  f  y      1  I mv  +  mv  =  mu  +  mu . 

Combining   this    with    equation  (87),  we    can    determine    the 

before  collision. 

Solving,  we  find  that 

mu + 

m'u^ 

— 
em'{u  - 

-u') 

m 

~+ 

m' 

f      mu 
+ 

m'ti' 

+ 
em  (u  - 

-«'), 

(88) 

(89) m  +  m'  - 
giving  the  normal  velocities. 

If  the  bodies  are  rough,  we  find  the  tangential  velocities  in 

the  same  way  as  in  §  200 ;  while  if  the  bodies  are  smooth,  the 
velocities  in  directions  perpendicular  to  CF  remain  unaltered. 
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If  the  center  of  gravity  of  the  two  bodies  is  at  rest,  —  or,  what 

comes  to  the  same  thing,  if  we  measure  all  velocities  relatively  to 

the  center  of  gravity,  —  we  have 

mu  +  m^u'  =  0, 
.,    ,  m'lu  —  u') 

so  that  V  =  —  e  — ^^   j-^> 

m  -\-  m' ,        mlu  —  u') v'=e — ^   —/-' 

m  +  m' Using  the  relation  mu  =  —  m'to\  these  become 
V  =  —  eu, 
v'  =  —  e\i\ 

so  that  the  bodies  rebound  from  one  another  as  though  they  had 

impinged  on  a  fixed  plane  of  elasticity  e. 

The  kinetic  energy,  either  before  or  after  the  collision,  is  equal 

to  the  kinetic  energy  of  a  single  particle  moving  with  the  center  of 

gravity,  together  with  that  of  the  system  relative  to  the  center  of 

gravity.  The  former  remains  unchanged  by  collision,  so  that  the 

loss  in  the  total  kinetic  energy  produced  by  collision  is  equal  to 

the  loss  in  the  kinetic  energy  relative  to  the  center  of  gravity. 

If  the  bodies  are  smooth,  this  loss  of  kiaetic  energy 

=  \  {mu^  +  m'u^'^  —  mv^  —  m'v'^) 

Thus  the  loss  of  kinetic  energy  is  (1—  e^)  times  the  original  kinetic 
energy  relative  to  the  center  of  gravity.  If  the  bodies  are  perfectly 

elastic,  e  =  1,  so  that  there  is  no  loss  of  energy ;  while  if  e  =  0,  the 

origLual  energy  relative  to  the  center  of  gravity  is  all  lost. 

Impact  of  Two  Smooth  Spheres 

202.  Let  us  apply  the  principles  just  explained  to  determining 

the  motion,  after  impact,  of  two  smooth  spheres. 

At  the  moment  of  impact  let  A,  B  be  the  centers  of  the  two 

spheres,  so  that  the  line  AB  is  the  common  normal  to  the  surfaces 

at  the  point  of  impact  C. 
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As  before,  let  the  velocities  along  AB  before  impact  be  u,  u\ 

these  both  being  measured  in  the  direction  AB^  and  let  the 

velocities  in  the  same  direction  after  impact  be  v,  v'.  Then  we 
have,  by  the  conservation  of  momentum  along  AB, 

mu  +  m'u'  =  mv  +  m'v\ 

and,  by  Newton's  law,       v  —  v'  =  —  e{u  —  u'). 

From  these  equations  (88)  and  (89)  follow  as  before. 

FiQ.  128 

If  the  velocities  of  A  before  impact  make  angles  a,  a'  with  AB 
as  marked  in  the  figure,  the  tangential  velocities  of  A  before  and 

after  impact  are  ^^^^^^         -vtana', 

SO   that,   since   the    tangential   velocities    remain   unaltered,   we 
must  have  ,        /  , 

V  tan  a'  =  —  u  tan  a ; 

while  similarly,  from  the  motion  of  B, 

v'  tan  fi^=  —  u'  tan  /3. 

Thus  equations  (88)  and  (89)  become 

^    ,  mu  +  m'u'—  em'lu  —  u') cot  a'  =   7—^   '-  cot  a, 

{m  H-  m')u 
.  ̂ ,  mu  +  m'u'  -{-  em(u  —  u')      ̂   ̂ 

cot  ̂ '=   — - — -^   '-  cot  A 

(m  +  m)u' 
giving  a',  /3'  in  terms  of  the  initial  motion. 

L 
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If,  as  in  the  game  of  billiards,  the  spheres  are  of  equal  mass  and 

the  second  sphere  is  originally  at  rest,  we  take  m  =  m',  u'  =  0,  and 

^^^^^^  cot  a^  =  -  1  (1  -  e)  cot  a,         fi'=  0. 
Thus  B  starts  into  motion  along  the  line  of  centers,  as  it  obviously 

must  since  the  forces  which  set  it  in  motion  act  along  this  line. 

Since  e  is  always  less  than  unity  and  a  is  necessarily  acute,  cot  a^ 

must  be  negative,  so  that  a'  will  be  obtuse.  If  e  =  1,  then  a'  =  90°. 
Thus  if  the  spheres  were  perfectly  smooth  and  perfectly  elastic,  A 

would  move  at  right  angles  to  the  line  of  centers  after  impact ;  its 

motion  would  be  the  same  as  if  it  had  impinged  on  a  perfectly 
smooth  and  inelastic  plane. 

ILLUSTRATIVE  EXAMPLE 

A  row  of  similar  coins  is  placed  on  a  rough  table,  the  coins  being  at  equal  dis- 
tances apart  and  in  a  straight  line.  The  first  coin  is  projected  along  this  line  so  as 

to  impinge  directly  on  the  second.    Find  the  resulting  motion. 

Let  e  be  the  coefficient  of  elasticity  for  an  impact  between  the  two  coins,  and 
fjL  the  coefficient  of  friction  between  the  coins  and  the  table.  Let  m  be  the  mass 

of  each  coin,  and  d  the  distance  between  the  nearest  points  of  two  adjacent  coins. 
The  normal  reaction  between  a  coin  and  the  table  is  mg,  so  that  the  f  rictional 

force  opposing  the  coin's  motion  is  fimg,  and  the  retardation  produced  is  fxg. 
Thus  if  a  coin  is  started  from  its  original  position  with  a  velocity  V,  its  velocity 

on  reaching  the  next  coin  is  reduced  to  w,  where 

V^-u^  =  2  ixgd.  (a) 

We  now  have  two  coins  of  equal  mass  impinging  with  velocities  w,  0.  Their 

velocities  after  impact,  say  v,  u',  are  given  by  the  equations 

V  —  t'=  —  eu  (Newton's  law), 

V  +  v'=u  (conservation  of  momentum). 

Thus  v=\u{\-e), v'=iw(l  +  e). 

After  impact  the  coin  originally  in  motion  has  a  velocity  u,  and  is  retarded 

by  a  f  rictional  retardation  tig.  It  accordingly  comes  to  rest,  if  it  does  not  collide 
again  in  the  meantime,  after  a  distance  s  given  by 

1)2=  2  ixgs, 

2g  8g 

while  the  coin  which  has  been  started  into  motion  sets  off  with  a  velocity 

v'=lu{l  +  e).  (c) 



ILLUSTRATIVE  EXAMPLE  249 

The  coin  before  this  started  into  motion  with  a  velocity  V  given  by  equa- 

tion (a).  Eliminating  u  from  equations  (tt)  and  (c),  we  find  as  the  relation 
between  successive  velocities  of  starting 

a  difference  equation  with  constant  coefficients. 

If  e  =  1,  we  notice  from  equation  (6)  that  s  =  0,  so  that  each  coin  remains 

absolutely  at  rest  after  striking  the  coin  next  in  front  of  it  —  it  transmits  the 
whole  of  its  momentum  to  this  coin.    Also  from  equation  (a), 

V^-v^  =  2  ixgd. 

After  the  momentum  has  been  transmitted  over  the  space  between  n  coins, 

the  value  of  the  square  of  the  velocity  is  reduced  by  2  rtfigd.  Thus  at  any  point 

the  velocity  of  a  moving  coin  is  that  which  would  be  possessed  by  a  coin  which 

had  been  started  with  velocity  F,  and  made  to  move  over  a  distance  equal  to  all 
the  intervals  between  the  coins  over  which  the  motion  has  been  iransmitted. 

If  d  =  0,  so  that  the  coins  were  originally  in  contact,  we  have 

1  +  e 

Thus,  if  there  are  n  coins,  the  nth  coin  will  start  in  motion  with  a  velocity 

,n-l 

-mv 
EXAMPLES 

1.  Hailstones  are  observed  to  strike  the  surface  of  a  frozen  lake  in  a  direction 

making  an  angle  of  30  degrees  with  the  vertical,  and  to  rebound  at  an  angle  of 

60  degrees.    Assuming  the  contact  to  be  smooth,  find  the  coefficient  of  elasticity. 
2.  If  the  hailstones  of  the  last  question  rise  after  impact  to  a  height  of  2  feet, 

find  the  velocity  with  which  they  originally  struck  the  ground. 
3.  In  the  last  question  find  the  height  to  which  the  hailstones  will  rise  in 

their  second  rebound  from  the  ice. 

4.  A  ball  is  dropped  on  to  a  horizontal  floor  and,  after  rebounding  twice, 
reaches  a  height  equal  to  half  that  from  which  it  was  dropped.  Find  the 
coefficient  of  elasticity. 

5.  A  bullet  strikes  a  rough  target  at  46  degrees,  and  rebounds  at  the  same 
angle.    Show  that  \  —  e 

6.  A  shot  fired  from  a  distance  a  strikes  a  target  at  right  angles,  and 

rebounds.  Show  that  it  will  fall  at  a  distance  ae  from  the  target  (neglecting 
the  resistance  of  the  air). 

7.  A  sphere  of  mass  m  collides  with  a  second  sphere  of  mass  m',  the  contact 
between  them  being  smooth,  and  their  paths  after  collision  are  observed  to  be 
at  right  angles.    Prove  that  m  =  em\ 
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8.  Two  billiard  balls  stand  at  rest,  and  a  third  ball  is  made  to  strike 

them  simultaneously,  and  is  observed  to  remain  at  rest  after  the  impact. 

Show  that  e  =  |. 
9.  A  particle  is  projected  from  a  point  on  a  smooth  horizontal  plane,  with 

velocity  V  at  an  elevation  a,  and  after  striking  the  plane  rebounds  time  after 

time.    Show  that  its  total  time  of  flight  is    ,  and  that  its  total  range 

.    F2sin2cr  ffi^-^) 
IS    '■   

9{l-e) 
10.  A  player  stands  at  a  horizontal  distance  d  from  a  wall,  and  throws  a 

ball  towards  the  wall  at  an  inclination  a  to  the  horizontal.    Show  that  if  it  is 

to  return  to  him  after  bouncing,  he  must  throw  it  with  a  velocity  V  given  by 

y2  a-\-e)9d 2  e  cos  a  (sin  a  —  /j.  cos  a) 

where  e,  fx  are  coefficients  of  elasticity  and  friction. 

11.  In   the   last   question   consider  the  cases  of  (a)  c  =  0,   (6)  /i  =  tancr, 

(c)  fi  >  tan  a. 

GENERAL  EXAMPLES 

1.  A  particle  is  placed  on  the  face  of  a  smooth  wedge  which  can  slide 
on  a  horizontal  table  ;  find  how  the  wedge  must  be  moved  in  order  that 

the  particle  may  neither  ascend  nor  descend.  Also  find  the  pressure  between 

the  particle  and  the  wedge. 

2.  It  is  required  to  run  trains  of  100  tons  on  a  level  electric  railway, 

with  stations  half  a  mile  apai-t,  at  an  average  speed  of  12  miles  an  hour, 

including  half  a  minute  stop  at  each  station.  Prove  that  the  electric  loco- 
motives must  weigh  at  least  an  additional  8  tons,  taking  a  coefficient  of 

friction  of  I,  and  supposing  the  trains  fitted  with  continuous  brakes. 

(Neglect  passive  resistances.) 
Prove  that  the  railway  can  be  worked  by  gravity,  if  the  line  is  curved 

downward  between  the  stations  to  a  radius  of  about  46,000  feet ;  and 

that  the  dip  between  the  stations  will  be  about  20  feet,  the  inclines 
at  the  stations  about  1  in  33,  and  the  maximum  velocity  about  23|  miles 
an  hour. 

3.  A  cylinder  of  height  h  and  diameter  d  stands  on  the  floor  of  a  rail- 
way car,  which  suddenly  begins  to  move  with  acceleration  /.  Show  that 

the  cylinder  will  only  remain  at  rest  relative  to  the  car  if /is  less  than 
both  fxg  and  dg/h. 

4.  If  a  circular  hoop  is  projected,  spinning  steadily  without  wobbling, 

prove  that  the  center  describes  a  parabola,  and  that  the  tension  of  the  rim 

is  the  weight  of  a  length  v^/g  of  the  rim,  where  v  denotes  the  rim  velocity 
relative  to  the  center  of  the  hoop. 
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5.  A  uniform  chain  6  feet  long,  having  a  mass  of  2  pounds  per  foot,  is 

laid  in  a  straight  line  along  a  rough  horizontal  table,  for  which  the  coeffi- 
cient of  friction  is  ̂ ,  a  portion  hanging  over  the  edge  of  the  table  so  that 

slipping  is  just  about  to  occur.  If  a  slight  disturbance  sets  the  chain  slip- 
ping, find  the  tension  at  the  edge  of  the  table  when  x  feet  have  slipped  off. 

6.  Two  equal  balls  A^  JB,  each  of  mass  m,  are  at  a  distance  a  apart. 

An  impulse  /  acts  on  A  in  the  direction  AB^  and  a  constant  force  F  acts 
on  B  in  the  same  direction.    Show  that  A  will  not  overtake  B  if 

/2  <  2  aFm. 

7.  A  bullet  weighing  one  ounce  is  fired  with  a  velocity  of  1200  feet  per 

second  at  an  elevation  of  1  degree  so  as  to  hit  a  bird  weighing  2|  pounds 

when  the  bullet  is  at  the  highest  point  of  its  path.  Supposing  the  bird  to 
have  been  at  rest  when  hit  and  afterwards  to  fall  with  the  bullet  embedded 

in  it,  find  how  far  from  the  point  of  firing  the  bird  will  fall. 

8.  If  a  bullet  weighing  w  pounds  is  fired  with  velocity  v  at  a  body 

weighing  W  pounds,  advancing  with  velocity  F,  prove  that  the  body  will 
retain  the  velocity 

WV 
o^   ̂ -Ti7("-")' W  ̂ w  W 

according  as  the  bullet  is  embedded,  or  perforates  and  retains  a  velocity  u. 

Calculate  the  energy  liberated,  and  thence  infer  the  average  resistance  of 

the  body  from  the  length  perforated  by  the  bullet. 

9.  A  pile  is  being  driven  in  by  repeated  impacts  of  a  falling  weight. 

How  does  the  extent  to  which  the  pile  is  driven  in  by  each  blow  depend 

(a)  on  the  magnitude  of  the  weight,  and  (h)  on  the  height  to  which  it  is 
raised  before  being  released  ? 

If  the  weight  be  1  ton,  and  the  height  from  which  it  falls  be  10  feet, 

and  the  pile  be  driven  in  a  tenth  of  an  inch,  find  the  resistance  in  tons. 

10.  An  inelastic  pile,  of  mass  m  pounds,  is  driven  vertically  into  the 

ground  a  distance  of  a  feet  at  each  blow  of  a  hammer  of  mass  M  pounds, 

which  falls  vertically  through  li  feet.    Show  that  the  weight  which  would 

have  to  be  placed  on  the  top  of  the  pile  to  drive  it  slowly  into  the  ground 

would  be  ^^^^ M  +  — —   pounds. 
(J/  +  m)  a 

11.  A  hammer  head  of  W  pounds,  moving  with  a  velocity  of  v  feet  a 

second,  strikes  an  inelastic  nail  of  w  pounds  fixed  in  a  block  of  M  pounds 
which  is  free  to  move.  Prove  that  if  the  mean  resistance  of  the  block  to 

penetration  by  the  nail  is  a  force  of  R  pounds,  then  the  nail  will  penetrate 
each  blow  a  distance,  in  feet, 

  MW^   v^ 
(M  +  TF+ w)(IF+m;)  IgR 
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12.  In  the  system  of  pulleys  described  in  §  128,  show  that  if  P  is  a  weight 
which  is  not  equal  to  W/n,  the  acceleration  produced  in  the  weight  PF  will  be 

nP-W 

n-zP-^W^' 13.  Two  masses  m,  m'  connected  by  an  elastic  string  are  placed  on  a 
smooth  horizontal  table,  the  masses  being  at  rest  and  the  string  unstretched. 
A  blow  of  impulse  P  is  given  to  the  first  mass,  in  the  direction  away  from 
the  second.  Show  that  when  the  string  is  again  unstretched,  the  velocity 

of  the  second  mass  is  „  p 
m-{-  mf 

14.  Three  equal  particles  are  tied  at  the  ends  and  middle  point  of  an 
inextensible  string,  which  is  placed,  fully  extended,  on  a  smooth  table. 
The  middle  particle  is  jerked  into  motion  in  the  direction  towards  and 
perpendicular  to  the  line  joining  the  other  two.  Find  the  loss  of  energy 
when  the  other  particles  are  jerked  into  motion. 

15.  A  coal  train  consists  of  a  number  of  similar  trucks  hauled  by  an 
engine  whose  weight  is  just  equal  to  that  of  three  trucks.  The  train  is  at 
rest  on  a  level  track,  the  couplings,  which  are  of  equal  length,  being  all 
equally  slack.  The  engine  then  begins  to  move  with  a  constant  tractive 
force,  and  each  truck  is  jerked  into  motion  as  its  coupling  tightens.  Show 

that  the  speed  of  the  engine  will'  be  greatest  just  before  the  tenth  jerk 
occurs. 

16.  Snow  is  evenly  spread  over  a  roof.  If  a  mass  commences  to  slide, 

clearing  away  a  path  of  uniform  breadth  as  it  goes,  prove  that  its  acceler- 
ation is  constant,  and  equal  to  a  third  of  that  of  a  mass  sliding  freely 

down  the  roof. 

17.  A  heavy,  perfectly  flexible  uniform  string  hanging  vertically  with 

its  lowest  point  at  a  height  h  above  an  inelastic  horizontal  plane  is  sud- 
denly allowed  to  fall  on  to  the  plane.  Show  that  the  pressure  on  the  table 

when  a  length  x  of  the  string  has  fallen  on  to  the  table  is 

(3  a:  +  2  h)  mg. 

18.  Show  that    if   two    equal   balls  impinge  directly  with  velocities 
1+  e 
   V  and  —  V,  the  former  will  be  reduced  to  rest. 1—  e 

19.  Show  that  the  mass  m  of  a  sphere  which  must  be  interposed  between 

a  sphere  of  mass  M  at  rest  and  one  of  mass  M'  moving  directly  on  to  it 
with  velocity  F,  in  order  that  the  former  may  acquire  the  greatest  possible 

velocity  from  the  impact,  will  be  ̂  MM' ^  and  that  the  velocity  acquired 

Jlf  +  il/'  +  2  m  " 
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20.  Prove  that  an  elastic  ball,  let  fall  vertically  from  a  height  of  h  feet 

on  a  hard  pavement,  and  rebounding  each  time  vertically  with  e  times  the 

striking  velocity,  will  have  described 

1  +  e2  ̂   .    ̂     .     1  +  e     /2I  ,   h  feet,  m   -\/ —  seconds 

before  the  rebounds  cease. 

Work  this  out  for  A  =  1 ,  e  =  |. 

21.  A  ball  is  dropped  from  the  top  of  a  tower,  height  h,  and  at  the  same 

time  another  ball  of  equal  weight  is  projected  upwards  with  the  velocity 

V2  gh  from  the  base  of  the  tower  and  collides  directly  with  the  falling  ball. 
If  the  coefficient  of  restitution  be  e,  prove  that  the  falling  ball  will,  in 

the  rebound,  rise  to  a  height  short  of  the  top  of  the  tower  by  -  (1  —  e^). 

22.  A  boy  standing  on  a  railway  bridge  lets  a  ball  fall  on  the  horizontal 

roof  of  a  car  passing  under  the  bridge  at  15  miles  an  hour.  If  /*  =  |^,  e  =  ̂  

between  the  roof  and  the  ball,  find  the  least  height  of  the  boy's  hand  above 
the  roof  in  order  that  the  second  rebound  of  the  ball  may  be  from  the 

same  point  of  the  roof  as  the  first. 

If  the  boy's  hand  is  at  a  gTeater  height  than  this,  what  will  happen? 
23.  A  perfectly  elastic  particle  is  projected  so  as  to  strike  the  inside  of 

a  surface  of  revolution  of  which  the  axis  is  a  given  vertical  line.  Show 

that  the  vertices  of  all  the  parabolas  described  after  successive  rebounds 

lie  on  a  surface  of  which  the  shape  is  independent  of  that  of  the  surface 
of  revolution. 

24.  Prove  that  in  order  to  produce  the  greatest  possible  deviation  in  the 

direction  of  motion  of  a  smooth  billiard  ball  of  diameter  a  by  impact  on 

another  equal  ball  at  rest,  the  former  must  be  projected  in  a  direction 

making  an  angle ■evg) 

with  the  line,  of  length  c,  joining  the  two  centers. 

25.  A  pendulum  hangs  with  its  bob  just  in  contact  with  a  smooth  verti- 
cal plane.  The  bob  is  drawn  aside  until  it  is  5  inches  higher  than  it  was, 

and  is  then  released  so  as  to  strike  the  plane  normally  ;  and  on  the  first 

rebound  it  rises  vertically  through  4  inches.  What  would  have  been  the 

vertical  rise  on  rebound  if  the  pendulum  had  been  drawn  aside  through 

the  same  angle,  but  so  that  the  bob  strikes  at  an  angle  of  60  degrees  with 
the  normal? 



CHAPTEE  X 

MOTION  OF  A  PARTICLE  UNDER  A  VARIABLE  FORCE 

203.  In  almost  all  the  cases  of  motion  of  a  particle  which 

have  so  far  been  considered,  the  forces  acting  on  the  particle 

have  remained  constant  throughout  the  whole  of  the  path,  so 

that  the  acceleration  of  the  particle  has  been  constant.  We  pro- 
ceed now  to  consider  the  motion  of  a  particle  wliich  is  acted 

upon  by  forces  wliich  vary  from  point  to  point  of  the  path  of 

the  particle. 

These  problems  fall  into  two  classes,  according  to  whether  the 

path  described  by  the  particle  is  or  is  not  given  as  one  of  the  data 

of  the  problem.  The  former  class  is  the  simplest  and  is  considered 

first.  It  includes  such  cases  as  the  motion  of  a  pendulum,  in  which 

the  "  bob  "  of  the  pendulum  is  constrained  to  describe  a  circle  by 
the  mechanism  o£  suspension  of  the  pendulum,  as  also  that  of  the 

motion  of  a  bead  on  a  wire,  in  which  the  bead  is  compelled  to 

describe  the  path  marked  out  for  it  by  the  wire. 

Equations  of  Motion 

204.  Let  s  denote  the  distance  described  by  the  particle  along 

its  path  at  any.  instant  t,  this  distance  being  measured  from  any 

„    fixed  point  0  on  the  path.*  The  velocity  along ds 

the  path  is  then  —  •    Calling  this  v,  the  accelera- 

.     dv        dh 
tion  is  -—  or  -— ;• 

Fig    129  ^^
  ̂^ 

We  can  also  obtain  a  value  for  the  accelera- 

tion from  a  knowledge  of  the  forces  acting.  To  find  the  acceler- 
ation, we  must  resolve  all  the  forces  which  act  on  the  particle  in 

the  direction  of  the  path.     If  S  is  the  component  of  force  m  this 
254 
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direction,  the  equation  of  motion  of  the  particle,  by  the  second 
law  of  motion,  will  be 

^  =  ̂ J,  (90) 

or  s  =  m~        '  (91) 

We  shall*  suppose  the  field  of  force  to  be  permanent,  so  that  the 

quantity  S  may  be  supposed  to  depend  only  on  the  position  occu- 
pied by  the  particle  on  its  path,  and  not  on  the  instant  at  which 

it  arrives  there.  In  other  words,  ̂   is  a  function  of  s  but  not  of  t 

Equation  (91)  is  a  differential  equation  connecting  s  and  ̂ ;  if  we 

can  solve  this  equation,  we  shall  have  a  full  knowledge  of  the 

motion  of  the  particle  provided  its  path  is  known. 

The  equation  is  a  differential  equation  of  the  second  order,  Taut 

can  easily  be  transformed  into  one  of  the  first  order.    For 

(Ps  _  dv      dv  ds  _     dv 
df      dt       ds  dt         ds 

so  that  the  equation  can  be  written 

dv 

IS  =  mv  —- ' ds 

Since  aS  is  a  function  of  s,  tliis  equation  can  be  integrated  with 

respect  to  s,  so  that  we  obtain 

C-h  fsds  =  lmv\  (92) 

where  C  is  a  constant  of  integration. ds 

Since  v  is  equal  to  —  >  this  equation  can  be  written  in  the  form 

which  is  an  equation  of  the  first  degree.    If  this  can  be  solved,  the 

solution  of  the  problem  is  complete. 
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We  notice  that  the  right  hand  of  equation  (92)  is  the  kinetic 

energy  of  the  particle.    Also,  since  the  force  opposing  the  motion 

of  the  particle  along  its  path  is  —  S,  its  potential  energy  is  —  I  S  ds. 

Thus  equation  (92)  expresses  that  the  sum  of  the  kinetic  and 

potential  energies  remains  constant  —  it  is  the  equation  of  energy 
for  the  motion  of  the  particle.  From  a  knowledge  of  the  total 

energy  at  any  instant  of  the  particle's  motion,  we  can  determine 
the  constant  C,  and  can  then  proceed  to  integrate  equation  (93), 
if  possible. 

ILLUSTRATIVE  EXAMPLE 

Assuming  that  the  value  of  gravity  falls  off  inversely  as  the  square  of  the  dis- 

tance from  the  earth'' s  center,  determine  the  motion  of  a  projectile  fired  vertically 
into  the  air,  the  diminution  of  gravity  being  taken  into  account. 

Let  a  be  the  radius  of  the  earth,  and  g  the  value  of  gravity  at  the  surface. 

Then,  at  a  distance  r  from  the  earth's  center,  the  value  of  gravity  will  be  - — 

r2 

Since  the  particle  moves  along  a  radius  drawn  through  the  center  of  the 

earth,  we  may  measure  all  distances  from  the  earth's  center,  and  the  distance 

r  from  the  earth's  center  may  replace- the  coordinate  s  of  §204.    The  value  of 

moa^ 

the  force  S  resolved  along  the  path  is   — ,  so  that  the  equation  of  motion  is 

r2 

mga^         d^r   —  =  m   

r2  dt^ 

The  equation  of  energy,  as  in  equation  (92),  is 

J     r^ 

or  C  +  ̂^  =  imv2.  (a) r 

Let  us  suppose  that  the  particle  was  projected  from  the  earth's  surface  with 
velocity  V.    Putting  r  =  a  in  equation  (a),  the  value  of  v  must  be  F,  so  that 
we  must  have 

;  C  +  mga  =  i  mV'^,  (b) 

and  this  equation  determines  the  value  of  C.    Eliminating  C  from  equations  {a.) 

and  (6),  we  obtain 

ga(^l-^'j  =  UV^-v'^), 
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giving  the  velocity  at  any  point  in  the  form 

^_2ga(l-^y  (c) 
dr 

Since  v  =  — ,  this  equation  becomes dt 

=  V^^-2^1-") 
id) 

  
dr 

so  that  ^  =   i  —  ■ .  (e) 

2  sra2 On  performing  the  integration,  we  can  find  the  time  required  to  describe  any 
portion  of  the  path.    Let  us  first  consider  the  different  types  of  solution. 

We  see  from  equation  (c)  that  v  vanishes  when 

2ga^ 2ga-V^ 
so  that  if  F2  <;  2  ga,  there  is  a  positive  value  of  r,  intermediate  between  +  a 

and  +  CO  ,  for  which  the  velocity  vanishes.    Thus  if  F^  <  2  ga,  the  projectile 

goes  to  the  point  at  distance   ,  and  then  falls  back  on  to  the  earth.    K 

2  gra  —  V'^ V^  >2  ga,  we  find  that  there  is  no  positive  value  of  r  for  which  v  vanishes,  so 
that  the  particle  goes  to  infinity  :  it  escapes  from  the  earth  altogether. 

When  F2  —  2  ga,  the  velocity  vanishes  at  infinity ;  thus  the  particle  just 

escapes  from  the  earth's  attraction,  but  is  left  with  zero  velocity.  Its  kinetic . 
energy  of  projection  is  just  used  up  in  overcoming  the  earth's  attraction. 

Let  us  consider  first  the  special  case  in  which  F^  =  2  ga.  We  find  that  equa- 
tion (e)  reduces  to 

dr 

~2 

"/>/¥ 

2      r^ 

2ga'^ 

where  C  is  a  new  constant  of  integration. 

If  we  measure  time  from  the  instant  of  projection,  we  must  have  i  =  0  when 
r  =  a,  so  that 

and  on  eliminating  C, 

3  a  V  2  fir 
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In  the  case  in  which  V^  >  2ga,  we  obtain  after  integration  of  equation  (e). 

V^-2ga 
J F 2  _  2 ̂ a  +  ?i^'  _  VF2-2^a 

log  ̂ 

^/^^^^^        ̂ F-2,a  +  ̂   +  VFi3^a 

+  ̂V^^-^^«^¥ 

where  C  is  a  new  constant  of  integration.  If  the  time  is  to  be  measured  from 

the  instant  at  whicli  tlie  particle  is  projected,  we  must  liave  t  =  0  wlien  r  =  a^ 
so  that    

V-^-2ga  l^Y2_2ga        v  +  ̂V^-2ga         «    J 
and  on  eliminating  C,  we  can  again  obtain  the  time  required  to  describe  any 

portion  of  the  path.  The  case  in  which  V^  <2ga  can  be  treated  in  a  similar 
manner.    This  is  left  as  an  example  for  the  student. 

EXAMPLES 

1.  In  the  foregoing  illustrative  example,  suppose  that  V'^  <2  ga,  and  find 
(a)  the  greatest  height  reached  ; 

(6)  the  time  of  flight  of  the  particle. 

2.  A  meteorite  falls  on  to  the  earth.  Assuming  it  to  start  from  infinity  with 

zero  velocity,  and  to  fall  directly  on  to  the  earth,  find  the  velocity  with  which 

it  reaches  the  earth's  surface,  and  the  time  taken  to  fall  to  the  earth's  surface 

from  a  point  distant  r  from  the  earth's  center. 
3.  A  particle  falls  from  distance  a  into  a  center  of  force  which  attracts 

according  to  the  law  fx/r^.  Show  that  the  average  velocity  on  the  first  half  of 
the  path  is  to  the  average  velocity  on  the  second  half  in  the  ratio 

TT-  2  :7r  +  2. 

4.  Find  the  time  of  falling  to-  a  center  of  force  which  attracts  according 

to  the  law  ixr~  ̂. 
5.  A  particle  moves  in  a  straight  line  from  a  distance  a  to  a  center  of  attrac- 

tion towards  which  the  force  is  —  •  Show  that  the  time  required  to  reach  the 

center  is  **  o 

^'
 

6.  A  particle  begins  to  move  from  a  distance  a  towards ^fixed  center  which 
repels  according  to  the  law  fxr.  If  its  initial  velocity  is  Vyua,  show  that  it  will 

continually  approach  the  fixed  center,  but  will  never  reach  it. 
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The  Simple  Pendulum 

205.  One  of  the  most  important  cases  of  a  variable  force  arises 

in  the  motion  of  a  simple  pendulum.  To  obtain  a  first  approxima- 
tion, we  can  suppose  that  the  whole  weight  of  the  pendulum  is 

concentrated  in  the  bob,  which  may  be 

treated  as  a  particle,  and  that  this  is  sus- 

pended from  a  fixed  point  by  a  weight- 
less string  or  rod  so  that  it  is  constrained 

to  move  in  a  vertical  circle. 

Let  s  denote  the  distance  along  this 

circle  described  by  the  particle,  this  dis- 
tance being  measured  from  the  lowest 

point  0.  Let  the  angle  FCO  between 

the  string  and  the  vertical  be  denoted 

by  0,  so  that  s  =  ad.  The  forces  acting 
on  the  particle  consist  of  its  weight  and  the  tension  of  the 

string.  The  latter  has  no  component  in  the  direction  in  which 

the  particle  moves.  The  former  has  a  component  —  mg  sin  6. 
Thus  the  equation  of  motion  is (9, 

(94) 

-—  =  —  a  sm 

where  6  =  s/a. 

206.  This  equation  cannot  be  solved  by  elementary  mathe- 
matics, except  in  the  simple  case  in  which  the  angle  6  is  small, 

—  i.e.  the  case  in  which  the  pendulum  never  swings  through 
more  than  a  small  angle  from  the  vertical.  Confining  our  atten- 

tion to  this  case,  we  may  replace  sin  6  by  6,  and  6  by  s/a,  and 
write  the  equation  of  motion  in  the  form 

r -''-"■ Thus  the  acceleration  of  the  bob  of  the  pendulum  is  proportional 
to  its  distance  from  0,  and  is  towards  0. 
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Writing  the  equation  in  the  form 
dv  Ig 
ds  \aj 

and  iategrating  with  respect  to  s,  we  obtam 

(95) 

Clearly  the  constant  C  must  be  positive,  and  the  velocity  will 
vanish  as  soon  as  s  reaches  a  value  such  that 

C 

a' 

Let  us  denote  the  two  values  of  s  which  satisfy  this  equation  by 

±  Sq  ,  then  the  motion  of  the  bob  is  clearly  confined  within  two 

points  at  distances  s^  from  the  point  0  on  opposite  sides.  Thus 

we  may  call  s^  the  amplitude  of  the  swing. 

Replacing  C  by  (-)so^  equation  (95)  becomes 

a 
(96) 

ds 

di so  that  .  -t:  =  -X  -  (Sq 

and  the  integral  of  tliis  equation  is 

t 

s'h 

+  e, 

where  e  is  a  constant  of  integration. 

This  equation  gives 

l9 

cos' 
so  that s  =  Srt  cos 

(t-e) 
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This  equation  contains  the  complete  solution  of  the  problem. 
We  notice  that  the  values  of  s  continually  repeat  at  intervals  of 

time  ̂ 0  for  which 

^! 

a 

Thus  the  motion  of  the  pendulum  repeats  itself  indefinitely. 

The  interval  between  two  instants  at  which  the  pendulum  is  in 

the  same  position,  namely  tQ,  given  by 

to  = 
is  called  the  period. 

207.  Seconds  pendulum.  To  construct  a  pendulum  which  is  to 

beat  seconds,  we  choose  a  so  that  t^  shall  be  equal  to  two  seconds, 

for  a  seconds  pendulum  is  one  which  takes  one  second  to  move 

from  left  to  right,  and  then  one  second  more  to  move  from  right 
to  left.    Thus  we  must  have 

7r^F  =  l. 4 
In  foot-second  units  we  may  take  ̂ =32.19  for  London,  and 

so  obtain 
a  =  39.14  inches, 

as  the  length  of  the  seconds  pendulum  at  London. 

We  notice  that  the  period  of  a  pendulum  varies  as  the  square 

root  of  its  length.  Thus,  for  a  pendulum  to  beat  half-seconds,  its 

length  w*ould  have  to  be  only  a  quarter  of  that  of  the  seconds 
pendulum,  and  therefore  9.78  inches  at  London. 

Since  g  varies  from  point  to  point  on  the  earth's  surface,  the 
length  of  the  seconds  pendulum  will  also  vary.  If  we  observe 

the  length  of  a  pendulum  and  also  measure  its  period  with  a 

chronometer,  we  shall  be  able  to  calculate  the  value  of  g  at 

the  place  at  which  the  experiment  is  performed ;  in  fact,  this 

method  affords  the  easiest  and  most  accurate  way  of  obtaining 

the  value  of  g  at  any  point  of  the  earth's  surface. 



262  MOTION   UNDEB  A  VARIABLE  FORCE 

ILLUSTRATIVE  EXAMPLE 

A  pendulum  which  beats  seconds  accurately  at  New  York  is  found  to  gain  2 

seconds  a  day  when  taken  to  Philadelphia.  Compare  the  values  of  g  at  Philadel- 
phia and  New  York. 

At  Philadelphia  the  pendulum  makes  24  x  (60)2  +  2  beats  in  24  x  (60)2 
seconds.    Thus  the  time  of  a  beat  is 

24  X  (60)2 seconds. 

to,r^, 

24  X  (60)2  +  2 

and  this  is  equal  to  t-^-,  where  a  is  the  length  of  the  pendulum  and  g  is  the 

value  of  gravity  at  Philadelphia.  If  go  denote  the  value  of  gravity  at  New  York, 
we  have 

go  =  TT^a, 

,r24x(60)2+_2n2 
L    24  X  (60)2     J 

=  TT'^a  1 1  H   1  approximately, 

\        24  x  (60)2/     ̂ ^  
•^' 

so  that  g  =  go  -i-  [1  -{   ) 
^      ̂'      V       24  X  (60)2/ 

=  go{l-  oyio^)  approximately. 

Thus  gravity  is  less  at  Philadelphia  than  at  New  York  by  about  one  part  in 

21,600. 

EXAMPLES 

1.  Calculate  the  length  of  a  pendulum  to  beat  time  to  a  march  of  100  paces 
a  minute. 

2.  A  pendulum  which  beats  seconds  in  London  requires  to  be  shortened  by 

one  thousandth  of  its  length  if  it  is  to  keep  time  in  New  York.  Compare  the 

values  of  gravity  at  London  and  New  York. 

3.  The  value  of  g  at  a  point  on  the  earth's  surface  in  latitude  X  is 

g  =  go{l  -.0.02  57  cos  2  X), 

where  go  =  32.17  is  the  value  of  g  in  latitude  45  degrees.  Show  that  the  lati- 
tude in  which  a  short  journey  of  given  length  will  produce  the  greatest  error 

in  the  rate  of  a  pendulum  clock  is  latitude  45  degrees,  and  find  the  error  per 
mile  in  this  latitude.    (One  minute  of  latitude  =  6075  feet.) 

4.  In  a  building,  at  height  h  feet  above  the  ground,  the  value  of  gravity  is 

go  -  .0001  A, 

where  go  is  the  value  of  gravity  at  the  foot  of  the  building.  In  New  York, 

go  =  32.14.  Find  the  error  in  the  rate  of  a  pendulum  clock,  produced  by  taking 
it  from  the  ground  to  the  top  of  a  building  300  feet  high. 
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5.  The  length  of  a  pendulum  which  makes  2  w  beats  per  day  is  changed 

from  Ito  I  ■}-  L.  Show  that  the  pendulum  will  lose  —  beats  per  day  approxi- 
mately. 

6.  A  balloon  ascends  with  constant  acceleration,  and  reaches  a  height  of 

3000  feet  in  two  minutes.  Show  that  during  the  ascent  a  pendulum  clock  will 
have  lost  about  one  second. 

7.  A  pendulum  of  length  I  is  adjusted  by  moving  a  small  part  only  of  the 
bob  of  the  pendulum,  this  being  of  mass  equal  to  one  nth  of  the  complete  bob. 
How  far  must  this  be  moved  to  correct  an  error  of  p  seconds  a  day  ? 

Simple  Harmonic  Motion 

208.  We  have  seen  that  throughout  the  motion  of  a  pendulum 
which  moves  so  that  its  maximum  inclination  to  the  vertical 

is  small,  the  acceleration  is  proportional  to  the  distance  from 

the  middle  point  of  its  path,  and  is  directed  towards  that  point. 

A  point  which  moves  in  this  way  is  said  to  move  with  simple 

harmonic  motion.  Thus  if  s  is  the  distance  from  a  fixed  point, 

of  a  point  which  moves  with  simple  harmonic  motion,  we  have 

an  equation  of  the  form 

where  k  is  a  constant. 

Integrating,  we  obtain,  as  before  in  the  case  of  the  pendulum 

(cf.  equation  (96)), 

and  from  this  again 
s=  Sq  cos k(t  ~  e).  (97) 

The  constant  k  is  known  as  the  frequency  of  the  motion.  Thus 

the  frequency  of  a  simple  pendulum  is  a^ — 

209.  A  simple  geometrical  interpretation  can  be  given  of  simple 

harmonic  motion,  and  this  enables  us  to  obtain  a  complete  knowl- 
edge of  the  motion  without  any  use  of  the  integral  calculus  or  of 

the  theory  of  differential  equations.  In  fig.  131  let  the  arm  OF 

rotate  about  0  with  uniform  angular  velocity  k,  so  that  P  describes 

a  circle  of  radius  a  with  imiform  velocity  ka.    Let  a  perpendicular 
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PN  be  drawn  from  P  to  a  fixed  diameter  AA^.    Then  we  shall  find 

that  the  point  iV  moves  backwards  and  forwards  on  the  line  AA^ 
with  simple  harmonic  motion. 

P  The  acceleration  of  P  is,  by  §  12, 

an  acceleration  k'^a  along  PO.    This 
can  be  regarded  as  compounded  of 

\A'   the  acceleration  of  P  relative  to  iV, 
which  must  be  along  NP,  and  the 

acceleration    of   N  relative    to    0, 

which   must    be    along  ON.    Thus 

the  acceleration  of  N  is  that  com- 

^^^-  ̂ ^1  ponent   of    the    acceleration   of  P 

which  is  in  the  direction  AA'.    This,  however,  is  known  to  be 

k'^a  sin  6,  or  k"^  •  ON,  along  NO.    Putting   ON  =  s,  we  have  an 
acceleration  —  k^s  in  the  direction  in  which  s  is  measured,  namely 
ON    Thus  the  point  N  moves  with  simple  harmonic  motion. 

This    geometrical  interpretation    of    simple    harmonic    motion 

enables  us  to  obtain  expressions  for  v  and  s  directly.    The  value  of 

s  is  ON,  or  a  cos  6.    Let  ̂   =  e  be  an  instant  at  which  the  point  P 

was  passing  through  the  point  A'  in  its  motion  round  the  circle, 

then,  at  any  subsequent  instant  t,  the  time  since  P  was  at  A'  will 

be  ̂   —  6,  so  that  the  angle  described  by  OP  will  be  6  =  k(t  —  e). 
Thus  we  have 

s  =  ON  =  a  cos  k  (t  —  e).  (98) 

This  is  the  same  result  as  is  contained  in  equation  (97).  We 
notice  that  the  amplitude  s^  of  the  motion  is  the  same  as  the 

radius  a  of  the  circle,  and  that  the  frequency  k  is  identical  with 

the  angular  velocity.  On  differentiating  equation  (98),  we  obtain 
at  once  for  the  velocity 

V  =  —-  =  —  ka  sink (t  —  e) 

dt    _^         ̂ 
=  k  ̂a'  -  s\ 

This  result  can  also  be  obtained  by  resolving  the  velocity  ka  of 

the  moving  point  P  into  two  components,  along  and  perpendicular 



THE  CYCLOIDAL  PENDULUM  265 

to  AA^.    The  former  is  obviously  the  velocity  of  N  along  AA\  and 
it  is  at  once  seen  to  be  of  amount  —  ka  sin  6,  or 

V  =  —  ka  sin  k  {t  —  e) 
=  k  Va^  _  52^  as  before. 

In  this  motion,  as  in  the  motion  of  the  simple  pendulum,  the 

quantity  a  is  called  the  amplitude^  while  the  time   after  which 
the  motion  repeats  itself  is  called  the  period. 

EXAMPLES 

1.  A  point  moves  with  simple  harmonic  motion  of  period  12  seconds,  and  has 
an  amplitude  of  6  feet.  Find  its  maximum  velocity,  and  find  its  position  and 
velocity  one  second  after  an  instant  at  which  its  velocity  is  a  maximum. 

2.  A  particle  moving  with  simple  harmonic  motion  of  period  t  is  observed 

to  have  a  velocity  v  when  at  a  distance  a  from  its  mean  position.  Find  its 
amplitude. 

3.  A  particle  is  free  to  move  along  a  line  AB  and  is  acted  on  by  an  attract- 

ive force  directly  proportional  to  its  distance  from  a  point  P  m  AB^  and  con- 
sequently moves  with  simple  harmonic  motion.  Prove  that  its  average  kinetic 

energy  is  equal  to  its  average  potential  energy. 
4.  A  point  moving  with  simple  harmonic  motion  is  observed  to  have 

velocities  of  3  and  4  feet  per  second  when  at  distances  of  4  and  3  feet  respec- 
tively from  its  mean  position.    Find  its  amplitude  and  period. 

5.  A  point  moves  with  simple  harmonic  motion  relative  to  one  frame,  and 

the  frame  itself  moves  with  simple  harmonic  motion  relative  to  a  second  frame, 
the  directions  of  the  two  motions  being  parallel,  and  their  periods  the  same. 
Show  that  the  motion  of  the  moving  point  relative  to  the  second  frame  is  simple 
harmonic  motion,  of  the  same  direction  and  period  as  that  of  the  frame. 

6.  A  weight  w  is  tied  to  an  elastic  string  of  natural  length  a  and  modulus  X, 
and  is  allowed  to  hang  vertically  in  equilibrium.  The  weight  is  now  pulled 
down  vertically  through  a  further  distance  h.  Show  that  on  being  set  free  it 

will  describe  simple  harmonic  motion  of  amplitude  a,  provided  this  does  not 
involve  the  string  ever  becoming  unstretched.    Find  the  period  of  the  motion. 

The  Cycloidal  Pendulum 

210.  AVe  have  seen  that  the  motion  of  a  simple  pendulum  is 

simple  harmonic  motion  only  so  long  as  the  amplitude  of  the 

motion  is  small.  It  is,  however,  possible  to  constrain  a  particle  to 

move  under  gravity  in  such  a  way  that  its  motion  shall  be  simple 
harmonic  motion  no  matter  how  great  the  amplitude. 
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To  find  the  curve  in  which  the  particle  must  be  constrained  to 

move,  let  us  go  back  to  equation  (94),  namely 

dt -^  =  -  ̂   sm  a', 

which  is  the  equation  of  motion  of  a  particle  constrained  to  move 

in  any  curve,  provided  Q  is  the  angle  which  the  tangent  to  the 

curve  at  a  distance  s  along  it  makes  with  the  horizontal.    For  this 

equation  to  represent  simple  harmonic  motion,  the  acceleration 

d^8 
—^  must  be  equal  to  —  J dt 

.    Thus  we  must  have 

^  sin  ̂   =  k'^s, 
(99) 

SO  that  sin  6  must  be  proportional  to  s. 

211.  This  relation  expresses  a  property  of  the  cycloid,  —  i.e.  of 
the  curve  described  in  space  by  a  point  on  the  rim  of  a  circle  which 

rolls  along  a  straight  line.  For,  ui  fig.  132,  let  P  be  a  point  on 

a  cycloid  which  is  formed  by  a  circle  rolling  along  the  line  UF. 

When  the  poiat  on  the  rim  of  the  moving  circle  is  at  F,  let  A  be 

the  point  of  the  circle  which  is  in  contact  with  the  line  FF,  and 
let  AB  be  the  diameter  of  the  circle  which  passes  through  A. 

At  the  instant  considered,  we  know  that  the  motion  of  the  point 

F  on  the  rim  of  the  circle  is  perpendicular  to  the  line  AF  (see 

example  1  on  p.  9).  Thus  since  AFB  is  a  right  angle,  the  motion 

must  be  along  BF.    Thus  BF  is  the  tangent  to  the  cycloid. 

If  FF  is  supposed  horizontal,  the  angle  6  between  the  tan- 
gent at  F  and  the  horizontal  is  equal  to  the  angle  FAB,  so  that 
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the  radius  of  the  circle  through  P  will  make  an  angle  2  6  with 
the  vertical. 

Suppose  that  the  circle  rolls  along  EF  until  the  tangent  to  the 

cycloid  at  P  makes  an  angle  6  +  dd  with  the  horizontal.  The 

radius  at  P  must  now  make  an  angle  2{d  -\-  dd)  with  the  vertical, 
so  that  the  circle  must  have  rotated  through  an  angle  2  dd.  Since 

the  motion  of  P  may  be  regarded  as  one  of  rotation  about  A,  the 

small  element  of  path  ds  described  by  P  will  be  given  by 

ds  =  AP-2  dd. 

Now  AP  =  AB  cos  0  =  D  cos  6,  where  D  is  the  diameter  of  the 
rolling  circle.    Thus 

ds  =  2D  cos  6 dd, 

giving,  on  integration,       s  =  2  i>  sin  ̂ . 

No  constant  of  integration  is  required  if  we  agree  to  measure  s 

from  the  poiat  at  which  ̂   =  0,  i.e.  the  lowest  point  of  the  cycloid. 
The  property  of  the  cycloid  is  now  proved,  and  we  see  that 

equation  (99)  is  true  throughout  the  motion  of  a  point  which 

describes  a  cycloid,  this  being  generated  by  the  roUiug  of  a  circle 

of  diameter  D  given  by 
2^  =  1- 

212.  If  the  cycloid  is  given,  the  frequency  k  of  the  simple  har- 
\  g                        .          2  TT 

monic  motion  will  be  k  =  \^o~/)'  ̂ ^^l  the  period  is   >  or 

27r 

Thus  the  motion  is  of  the  same  period  as  that  of  a  simple 

pendulum  of  length  2  P. 

213.  The  importance  of  cycloidal  motion  is  as  follows.  It  has 

been  seen  that  the  motion  of  a  simple  pendulum  is  only  strictly 

simple  harmonic  when  the  amplitude  is  so  small  that  it  may  be 

treated  as  iafinitesimal.    For  finite  amplitudes  the  motion  is  not 
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simple  harmonic,  and  consequently  the  period  is  different  from  that 

of  the  simple  harmonic  motion  described  when  the  amplitude  is 

very  small.  Thus  the  period  depends  on  the  amplitude,  so  that  a 

clock  which  beats  true  seconds  when  the  pendulum  swings  through 
one  angle  will  gain  or  lose  as  soon  as  the  pendulum  is  made  to 

swing  through  any  different  angle.  Variations  of  amplitude  must 

always  occur  during  the  motion  of  any  pendulum,  and  these  cause 

irregularities  in  the  timekeeping  of  the  clock. 

We  have,  however,  seen  that  if  a  particle  describes  a  cycloid, 

the  period  is  independent  of  the  ampHtude,  so  that  variations  of 

amplitude  cannot  affect  the 

timekeeping  powers  of  a  par- 
ticle moving  in  a  cycloid. 

The  simplest  way  of  caus- 
ing a  particle  to  move  in  a 

cycloid  is,  in  practice,  to  sus- 
pend it  from  a  fixed  point  by 

""""■---     ^'^'"  a  string,  in  such  a  way  that 
Pj^  ̂ 33  during  its  motion  the  string 

wraps  and  unwraps  itself 

about  two  vertical  cheeks.  If  the  curve  of  these  cheeks  is  rightly 

chosen,  the  particle  can  be  made  to  describe  a  cycloid,  and  it  can 

easily  be  shown  that  the  curves  of  the  cheeks  must  be  portions  of 

two  cycloids  each  equal  to  the  cycloid  which  is  to  be  described  by 

the  particle. 

EXAMPLES 

1.  In  cycloidal  motion  prove  that  the  vertical  component  of  the  velocity  of 
the  particle  is  greatest  when  it  has  described  half  of  its  vertical  descent. 

2.  A  particle  oscillates  in  a  cycloid  under  gravity,  the  amplitude  of  the 

motion  being  b  and  the  period  being  t.    Show  that  its  velocity  at  a  time  t  meas- 

ured  from  a  position  of  rest  is   sin   T  r 

3.  A  particle  of  mass  m  slides  on  a  smooth  cycloid,  starting  from  the  cusp. 

Show  that  the  pressure  at  any  point  is  2  mg  cos  x//,  where  \//  is  the  inclination  to 

the  horizontal  of  the  direction  of  the  particle's  motion. 



MOTION  ABOUT  A  CENTER  OF  FORCE  269 

Motion  of  a  Particle  about  a  Center  of  Force 

Force  Proportional  to  the  Distance 

214.  Let  us  suppose  that  a  particle  moves  under  no  forces  ex- 
cept an  attraction  to  a  fixed  point  0,  the  force  of  attraction  being 

directly  proportional  to  its  distance  from  0. 

Taking  0  as  origin,  let  the  coordinates  of  the  point  P,  the  posi- 
tion of  the  particle  at  any  instant,  be  denoted  by  Xy  y,  z.  Let  the 

force  acting  on  the  particle  be  fi  •  OP  directed  along  PO,  where  im 
is  a  constant.  The  components  of  this  force  along  the  three 

coordinate  axes  are       _._       _,.,,      _.... 
flJb^  fty,  fXZ. 

The  components  of  acceleration  are,  as  in  §  177, 

<Px  (Py        .  (Pz 
df  de  df 

Thus  the  equations  of  motion  of  the  particle are 
d'^x 

(100) 

(101) 

d^z 
(102) 

These  three  equations  are  all  of  the  same  type,  namely  the  type 
of  equation  which  denotes  simple  harmonic  motion.  Thus  the  foot 

of  the  perpendicular  from  the  moving  point  on  to  each  of  the 

coordinate  axes  moves  with  simple  harmonic  motion. 

The  solution  of  equation  (100)  has  already  been  seen  to  be 

ic  =^cos^(^  —  e), 

where  ̂ ^  =  /i/m.    This  can  be  written 

x—A  cos  'pe  cos  pt  -\-  A  sin  pe  sin  pt^ 

or  again  x^C cos pt-\- D sm pt. 
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if  we  introduce  new  constants  C,  D  to  replace  the  constants 

^  cos^e  and  ̂ sin^e.  The  other  two  equations  have  similar 

solutions,  so  that  we  can  take  the  complete  solution  to  be 

x  =  C  cospt+D^mpt,  (103) 

y  =  C  cos  pt -h  D' sin  pt,  (104) 

z  =  C"  cos  pt  +  D"  sin  pt  (105) 

We  can  always  solve  the  equations 

r(7  +  rC'+sC^^=0,  (106) 

\D-{-rD'-{-sD'^=0,  (107) 
and  so  obtain  values  of  r  and  s  for  which  these  relations  are  true. 

Let  us  multiply  equations  (104)  and  (105)  by  these  values  of  r  and 

s,  and  add  corresponding  sides  to  the  corresponding  sides  of  equa- 
tion (103).    We  obtain 

(x  +  ry+  sz)  =  {C+  tC'+  sC")  cos  pt  +  (Z)  +  rD'  +  sD")  sinpt 
=  0,  (108) 

since  equations  (106)  and  (107)  are  satisfied.  The  meaning  of 

equation  (108)  is  that  for  all  values  of  t  we  have  the  relation 

X  -\-  ry  -{-  sz  =  0,  and,  therefore,  that  throughout  its  motion  the 
particle  remains  in  the  plane  of  which  this  is  the  equation. 

The  axes  of  coordinates  have  been  supposed  to  be  chosen  arbi- 
trarily. We  can  always  choose  the  axes  so  that  the  plane  in  which 

the  whole  motion  takes  place  is  that  of  xy.  The  motion  is  then 

given  by  two  equations  of.  the  form 

X  =  Ccos  pt+D  sin  pt, 

y  =  C'  cos  pt  +  D'  sin  pt. 

Solving  for  sin^^  and  cos^^  we  obtain 

.      ̂         C'x-Cy Sm  pt  =  — ;   ^"t 
^        CD  -  CD' D'x—Dy 

cos  pt  =  —  — ;   ^» ^  CD  -  CD' 

so  that  on  squaring  and  adding,  we  obtain 

{C'x  -  Cyy+{D'x  -Dyf  =  {CD-  CD'f. 
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This  is  the  equation  of  an  ellipse. 

Thus  the  most  general  motion  possible  for  the  particle  consists 

in  describing  the  same  ellipse  over  and  over  again.  The  period  is 

2  7r/2?,  this  bemg  the  time  required  for  cos  pt  and  sin  pt  both  to 

repeat  their  values. 

215.  The  axes  of  x,  y  are  still  undetermined ;  let  us  imagine 

them  to  be  the  principal  axes  of  the  ellipse. 

Then  if  we  suppose  the  time  measured  from  one  of  the  instants 

at  which  the  particle  is  at  one  of  the  extremities  of  the  major 

axis,  we  shall  have  equations  of  the  form 

X  —  A  cos  pt^ 

y  =  B  sin  pt. 

Thus  pt  is  the  eccentric  angle  of  the  ellipse  described  by  the 

particle,  so  that  the  eccentric  angle  increases  with  uniform  angular 

velocity  p  or  -vj —    The  motion  repeats  itself  as  soon  as^  increases 

by  2  TT.  Thus  the  frequency  w>pov  \\—y  while  the  period  is  2  tt  -J  — 

216.  This  motion  is  realized  experimentally  in  the  motion  of 

a  pendulum  which  is  not  constrained  to  move  in  one  vertical 

plane,  but  of  which  the  deviations   from  the  vertical 
remain  small. 

Let  the  pendulum  be  of  length  a,  and  let  its  bob  be 

displaced  from  its  equilibrium  position  0  to  some  near 

point  P,  such  that  the  angle  PCO  may  be  treated  as 

small.  Calling  this  angle  6,  the  weight  of  the  bob  may 

be  resolved  into  mg  cos  0  along  CP,  which  is  exactly  neu- 
tralized by  the  tension  of  the  string,  and  a  force  mg  sin  6  v 

along  PO.    ltd  is  small,  sin  ̂ .may  be  put  equal  to  6,  and     Fig.  134 
OP 

this  in  turn  to   Thus  the  bob  may  be  supposed  to  experience 

a  force  — ^  OP  along   OP.    The  motion  is  therefore  of   the  kind a 

which  has  been  described,  the  value  of  /x  being  —>  and  the  value 

of  p  therefore  being  ̂   -•    Thus  we  see  that  a  hanging  weight 



272  MOTION   UNDER  A  VARIABLE  FORCE 

drawn  from  its  position  of  equilibrium  and  projected  in  any  way 

will  always  describe  an  ellipse  in  the  horizontal  plane  in  which  it 

is  free  to  move,  having  the  point  immediately  below  its  point  of 

suspension  as  center. 

An  arrangement  may  sometimes  be  seen  at  village  fairs  in  England,  in 

which  the  showman  ingeniously  takes  advantage  of  this  result.  A  weight 

is  suspended  by  a  string,  and  a  skittle  is  placed  on  the  floor  exactly  under 

the  iwint  of  suspension  of  the  weight.  Passers-by  are  invited  to  pay  an 
entrance  fee  and  compete  for  a  prize  which  is  awarded  to  any  one  who  can 

project  the  weight  so  that  on  its  return  it  knocks  the  skittle  over.  The 

problem  is,  of  course,  as  impossible  as  that  of  describing  an  ellipse  which 

shall  pass  through  its  own  center. 

217.  Another  way  in  which  motion  under  a  force  proportional 

to  the  direct  distance  may  be  realized,  is  as  follows :  An  elastic 

string  of  natural  length  I  has  one  end  fastened  to  a  small  particle 

which  is  free  to  move  on  a  smooth  horizontal  table  ;  the  other  end, 

after  passing  through  a  small  hole  in  the  table,  is  fastened  to  a 

fixed  point  at  a  distance  I  from  the  hole.  If  the  particle  is  pulled 

away  from  the  hole  to  a  point  distant  r  from  it,  the  total  length 
T 

of  the  string  is  l  +  r,  so  that  its  tension  is  -  X,  where  \  is  its 
V 

modulus  of  elasticity.  The  force  acting  on  the  particle,  namely 

the  tension  of  the  string,  is  therefore  proportional  to  the  distance 

of  the  particle  from  a  fixed  point  —  namely  the  hole  in  the  table 

—  and  its  direction  is  toward  the  hole.  Thus  the  particle  will 
move  in  elliptic  motion  on  the  table. 

EXAMPLES 

1.  The  point  P  is  describing  an  ellipse  under  an  attractive  force  to  the  center, 

and  x>  is  the  corresponding  point  on  the  auxiliary  circle.  Show  that  p  moves 
round  the  auxiliary  circle  with  uniform  velocity. 

2.  A  particle  describes  an  ellipse  about  a  center  of  force,  the  attraction 

being  that  of  the  direct  distance.  Show  that  the  radius  vector  from  the  center 
of  the  ellipse  to  the  particle  sweeps  out  equal  areas  in  equal  times. 

3.  A  particle  is  describing  an  ellipse  under  a  force  proportional  to  the  dis- 
tance, when  it  receives  a  blow  in  a  direction  parallel  to  the  major  axis  of  the 

ellipse.  Show  that  the  minor  axis  of  the  new  orbit  is  the  same  as  that  of  the 
old,  and  show  how  to  find  the  change  produced  in  the  major  axis. 
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4.  A  particle  is  acted  on  by  attractions  to  a  number  of  centers  of  force,  each 

being  proportional  to  the  distance.    Show  that  it  describes  an  ellipse. 
How  could  a  mechanical  model  be  constructed  to  illustrate  this  motion  ? 

5.  A  particle  is  acted  on  by  a  repulsion  proportional  to  its  distance  from  a 
center  of  force.    Show  that  it  describes  a  hyperbola. 

6.  Show  that  in  the  last  question  the  radius  vector  joining  the  particle  to 
the  center  of  force  sweeps  out  equal  areas  in  equal  times. 

General  Theory  of  Motion  about  a  Center  of  Force 

218.  Suppose  that  we  have  a  particle  acted  on  only  by  a  force 

directed  towards  a  fixed  center  of  force,  the  magnitude  of  this  force 

being  any  function  of  the  distance  from  the  center. 

Let  O  be  the  center  of  force,  P  the  position  of  the  particle  at 

any  instant,  and  PP'  the  direction  of  the  velocity  of  the  particle 
at  this  instant.  Then 

the  plane  OPP'  con- 
tains the  velocity  of  the 

particle,  which  is  along    (  O* 
PP'y  and  also  the  accel- 

eration, which  is  along 

PO.  Hence,  after  any 
short  interval  the  veloc- 

ity of  the  particle  will  still  be  in  the  plane  OPP\  The  particle  is 

still  in  this  plane,  say  at  P\  so  that  the  acceleration  which  is 

along  P^  0  is  also  in  this  plane. 
Hence  we  can  show  that,  after  a  further  small  interval,  the  posi- 

tion, velocity,  and  acceleration  of  the  particle  are  all  in  the  plane 

OPP\  and  so  we  can  proceed  indefinitely. 

It  follows  that  the  particle  will  never  leave  the  plane  OPP'. 
AVe  accordingly  have  the  theorem : 

The  orbit  described  by  a  particle  about  a  fixed  center  of  force  lies 
entirely  in  one  plane. 

Tills  theorem  has  already  been  exemplified  in  §  214  by  the 

case  of  the  orbit  described  under  an  attraction  proportional  to  the 

distance  from  the  center  of  force. " 
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Moraent  of  a  Velocity 

219.  The  velocity  of  a  point  is  a  vector,  and  the  line  of  action 

of  this  vector  may  be  supposed  to  be  the  line  through  the  moving 
point  in  the  direction  of  its  velocity.  We  can  define  the  moment 

of  a  velocity  in  just  the  same  way  as  the  moment  of  a  force  has 

been  defined.  Moreover,  all  the  properties  of  the  moments  of  a 

force  followed  from  the  fact  that  forces  could   be   compounded 

according  to  the  parallelogram  law,  so 

that  the  same  properties  will  be  true  of 

the  moments  of  velocities,  because  veloci- 

ties  also  can  be  compounded  according  to 

the  parallelogram  law. 

Let  P  be  a  particle  describmg  an  orbit 

about  0,  and  let  0()  be  a  perpendicular 

from  0  on  to  the  line  through  F  in  the 

direction  of  the  particle's  velocity.  Then  the  moment  of  the  par- 

ticle's velocity  about  0  is  0^  X  (velocity  of  particle). 
After  a  short  interval  dt,  let  the  particle  be  at  P'.  Its  velocity 

at  P'  is  compounded  of  its  velocity  at  P  together  with  dt  times  its 
acceleration  at  P.    Hence 

(moment  about  0  of  velocity  at  P') 
=  (moment  about  0  of  velocity  at  P) 

+  (moment  about  0  of  \dt  x  acceleration  at  P] ). 

The  acceleration  at  P  being  along  PO,  the  last  term  of  this 

equation  is  zero,  so  that  we  see  that  the  moments  about  0  of  the 

velocities  at  P  and  at  P'  are  equal. 
We  can  extend  this  step  by  step  as  in  the  former  theorem,  and 

obtain  finally  that 

The  moment  about  0  of  the  velocity  of  a  particle  describing  an 
orbit  about  0  is  constant. 

220.  We  have  supposed  that  the  particle  moves  from  P  to  P^ 
in  time  dt,  so  that  if  v  is  its  velocity  at  P,  then  PP'  =  v  dt.  As 
the  particle  describes  its  orbit,  the  line  OP  may  be  regarded  as 
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sweeping  out  an  area  in  the  plane  of  the  orbit.    The  area  described 

in  time  dt  is  the  small  triangle  OFF'.    We  now  have 
area  described  in  time  dt 

=  area  OFF' 

=^\OQ'FF' 
=  \OQ-vdt 

—  '^dtx  moment  of  velocity  about  0. 
Thus  the  area  described  per  unit  time  is  half  the  moment  of  the 

velocity  about  0,  and  this  by  the  theorem  of  the  last  section  is  a 
constant.    Thus  we  have  the  theorem : 

Equal  areas  are  described  in  equal  times. 

Differential  Equation  of  Orbit 

221.  The  theorem  just  proved,  in  combination  with  the  theo- 
rem of  the  conservation  of  energy,  enables  us  to  determine  the 

equation  of  the  orbit  in  which  a  parti- 
cle will  move.  This  equation  is  most 

conveniently  expressed  in  polar  coordi- 
nates, the  center  of  force  being  taken 

as  origm. 

If  r,  6  are  the  polar  coordinates  of  the 

particle,  the  velocity  may  be  regarded  ^^^-  ̂ ^^ 

as  compounded  of  a  velocity  —  along  OP,  and  a  velocity  r  — 
at  right  angles  to  OF. 

The  velocity  is  therefore  given  by 

'V    Jdd^^ +  r 

••=© 

dt^ 

The  moment  of  the  velocity  about  0  is  equal  to  the  moment,  of 

the  second  component,  for  the  moment  of  the  first   component 
dO 

vanishes.    Thus  the  moment  of  the  velocity  about  0  is  r  x  r  — -  ? 
and  since  this  has  a  constant  value,  say  A,  we  have 

.,de    _ r^^^Ti.  (109^ 
dt  ^ 
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If  m  is  the  mass  of  the  particle,  and  iif{r)  is  the  attraction  per 

unit  mass  when  at  a  distance  r  from  0,  we  find  that  the  potential 

energy  of  the  particle  is  ^r 
m  I  f{r)dr. t/oo 

,The  kinetic  energy  is  I  mv^,  or 

'+  r'  (jj+  2ff(r)dr=E,  '        (110) 

Expressing  that  the  total  energy  is  constant,  we  have 

where  J^  is  a  constant. 

Equations  (109)  and  (110)  lead  to  the  differential  equation  of 
the  orbit.    We  have,  since  r  and  0  are  both  functions  of  ty 

dr  _  dr  dO 

di~~d6dt' 
so  that  equation  (110)  may  be  expressed  in  the  form 

=  U, 

[(S);-](f)'-X><"*= 
and  on  eliminating  —  from  this  and  equation  (109),  we  have 

the  differential  equation  of  the  orbit. 

Law  of  Inverse  Square 

222.   Let  us  now  suppose  that  the  attraction  follows  the  law  of 

the  inverse  square  of  the  distance,  so  that /('•)=5 
where  /x  is  a  constant.    Then 

f(r)dr  =  -^>  (112) 
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and  equation  (111)  becomes 

whence  we  obtain       dd 

r  VEt''  +2fir  —  h^ 

.     ̂      r      h 
giving,  on  integration,    6  =  sur^  — p=  +  e, 

where  e  is  a  constant  of  integration. 

Simplifying,  this  becomes 

and  if  we  compare  with  the  equation 

-—1=6  cos  0, 

we  see  that  equation  (113)  represents  a  conic,  having  the  origin 

as  focus,  and  being  of  semi-latus  rectum  I  =  —  and  eccentricity 

I         'eJi^  ^ 
-vj  1  H   — '    In  order  that  the  line  ̂   =  0  may  coincide  with 

the  major  axis  of  the  conic,  the  value  of  €  must  be  — 
TT 

2 
223.  We  notice  that  if 

E  is  positive,  then  e  >  1,  and  the  orbit  is  a  hyperbola ; 

E  is  zero,         then  e  =  1,  and  the  orbit  is  a  parabola ; 

E  is  negative,  then  e  <1,  and  the  orbit  is  an  ellipse. 

•  Thus  the  class  of  conic  described  depends  solely  on  the  value 
of  E,  and  not  on  that  of  h.  And  it  should  be  noticed  that,  if  we 

are  given  the  point  of  projection  of  a  particle,  and  also  its  velocity 

of  projection,  the  value  of  E  is  determined,  for  by  equation  (110) 

r 
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Thus  the  class  of  conic  described  depends  only  on  the  velocity 

of  projection,  and  not  on  the  direction :  the  conic  is  a  hyperbola, 

parabola,  or  ellipse,  according  as 

v^>  =  or  <  —^^ r 

The  actual  eccentricity  depends  on  both  E  and  h,  for  if  e  is  the 

eccentricity,  we  have  ,2 

224.  In  order  that  the  particle  may  describe  a  circle  we  must 

have  e^=  0,  and  therefore  ^,0 

1+^  =  0. 

Putting  E  =  v^    and  h  =  pv  (so  that  p  is  the  perpendicular 

from  the  center  of  force  on  to  the  direction  of  projection),  this 
reduces  to  20 

P r 

("-fj--(?-^)-»- 
Since  p  is  necessarily  less  than  r,  neither  term  in  this  equation 

can  be  negative.  Thus,  in  order  that  the  equation  may  be  satisfied, 
both  terms  must  vanish,  and  we  must  have 

;?  =  r  and  v^——- r 

The  first  equation  expresses  that  the  projection  must  be  at  right 

angles  to  the  line  joining  the  particle  to  the  center  of  force.  The 

second  equation,  which  can  be  written 

«,2 
shows  that  the  attractive  force  must  just  produce  the  acceleration 

appropriate  to  motion  in  a  circle  of  radius  r. 
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225.  For  an  elliptic  orbit,  the  periodic  time  is  that  required  to 

sweep  out  an  area  irah,  where  a,  h  are  the  semi-axes  of  the  ellipse. 
Since  the  area  is  swept  out  at  a  rate  \  h  per  unit  time,  the  periodic 
time  T  will  be  , 

The  semi  latus-rectum  I  is  equal  to  -  >  and  has  also  been  seen 

to  be  equal  to  —  j  so  that 
/*  r 

h  =  Val=  h  \\-> 

whence  T  =  — :; —  =  — ;=-  •  (114) h  y/fl 

Since  this  does  not  depend  on  the  eccentricity,  it  is  clear  that 

the  periodic  time  of  any  orbit  is  the  same  as  that  in  a  circle  of 

radius  equal  to  the  semi  major-axis. 
226.  The  law  of  force  of  the  inverse  square  is  that  of  gravitation  : 

the  law  which  we  have  been  investigating  is  therefore  that  which 

governs  the  motions  of  the  planets  in  their  orbits  round  the  sun, 
as  well  as  the  motions  of  comets  and  meteorites.  For  reasons 

which  cannot  be  explained  here,  the  conies  described  by  the  planets 

are  all  of  them  ellipses  of  small  eccentricity.  A  wider  range  is 

found  in  the  orbits  of  comets.  These  bodies  generally  come  from 

far  outside  the  solar  system.  To  a  close  approximation  many  of 

them  may  be  treated  as  coming  from  infinity,  and  as  starting  with 

relatively  small  velocity.  In  tliis  case  the  orbit  is  approximately 

parabolic. 

Kepler's  Laws 

227.  Long  before  the  theory  of  the  planetary  orbits  had  been 

worked  out  mathematically  by  Newton,  three  of  the  principal 

laws  governing  the  motion  of  the  planets  had  been  discovered 

empirically  by  Kepler.    Kepler's  three  laws  are  as  follows: 
Law  I.  Every  planet  describes  an  ellipse  having  the  sun  in  one 

of  its  foci. 

k 
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Law  IL  The  areas  described  hy  the  radii  drawn  from  the  planet 

to  the  sun  are,  in  the  same  orbit,  proportional  to  the  times  of 
describing  them. 

Law  II L  The  squares  of  the  periodic  times  of  the  various  orbits 

are  proportional  to  the  cubes  of  their  major  axes. 

From  the  first  of  these  laws  Newton  proved  that  the  law  of 

force  between  the  planets  and  the  sun  must  be  the  law  of  the 

inverse  square.  The  third  law  is  seen  to  express  the  same  fact  as 

equation  (114). 

Motion  of  Two  Particles  about  One  Another 

228.  A  pair  of  objects  known  as  a  double  star  is  of  common 

occurrence  in  the  sky.  This  consists  of  two  stars  describing  orbits 

about  one  another,  neither  star  beuig  fixed. 

By  the  theorems  proved  in  Chapter  IX,  the  center  of  gravity  of 
the  two  stars  must  either  remain  at  rest,  or  else  must  move  with 

uniform  velocity  in  a  straight  line,  in  which  case  it  may,  as  we 

have  seen,  be  treated  as  fixed,  provided  all  motion  is  measured 

relative  to  a  frame  of  reference  moving  with  it. 

Let  A,  B  be  the  positions  of  the  two  stars  at  any  instant,  and  let 

G  be  their  center  of  gravity.  Let  the  masses  of  the  stars  be  m,  m', 
and  let  a,  b  denote  their  distances  from  G.    Then 

m      m]      m  -\-  mJ  .-,  ̂   ̂. —  =  —  =   --•  (llc>) 
b        a  a+b  ^       ' 

The  complete  law  of  gravitation  is  expressed  by  the  law 

where  m,  mJ  are  the  two  masses,  r  the  distance  between  them,  7  a 

constant  whose  value  can  be  found  by  experiment,  and  F  is  the 
force  of  attraction  between  the  two  masses.  Thus  the  force  acting 

on  the  star  ̂   is  ^^^, 

{a  +  &)' 
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acting  along  BA.  This  force  can  always  be  regarded  as  acting  from 

the  fixed  point  G,  for  its  line  of  action  is  always  BG.  Moreover, 

its  magnitude  per  unit  mass  of  star  B  is 

{a  +  hy 

or,  from  relations  (115),   — rvT^' 

This  is  a  force  ̂   acting  towards  G  if  we  take 

_       ym^
 (m  H-  77i'y 

Thus  the  two  stars  each  describe  a  conic  about  the  center  of 

gravity  of  the  two.  It  is  possible  astronomically  to  observe  the 

values  of  the  periodic  time  T  and  the  major  axes  of  the  orbits  of 

these  conies.  From  these  quantities  we  can  determine  the  values 

of  /JL,  so  that  we  know  the  values  of 

(m  +  m'y '  (m  +  m')^ ' 

and  these  at  once  lead  to  the  values  of  m,  m'.    In  this  way  it  has 
been  found  possible  to  determine  the  masses  of  some  of  the  stars. 

EXAMPLES 

(Take  the  gravitation  constant  to  be  7=  G6.6  x  10~*  in  centimeter-gramme-second  units.) 

1.  Given  that  the  earth  attracts  as  though  its  mass  were  concentrated  at  its 

center,  and  that  the  value  of  g  at  the  equator,  distant  6.378  x  10^  centimeters  from 

the  earth's  center,  is  978. 1  centimeters  per  second  per  second,  find  the  mass  of  the 
earth. 

2.  Taking  the  masses  of  the  eartli  and  moon  as  6.14  x  lO^^  and  7.94  x  lO^s 

grammes  respectively,  and  assuming  their  distance  apart  to  be  always  3.84x  lO^*^ 
centimeters,  find  the  periodic  time  of  the  moon. 

3.  Taking  the  sun's  mass  to  be  2  x  10^3  grammes,  and  the  year  to  be  365.24 

days,  find  the  semi  major-axis  of  the  earth's  orbit,  regarding  the  sun  as  a  fixed 
center  of  force. 

4.  If  the  sun's  mass  is  324,000  times  that  of  the  earth,  by  how  much  must 
the  result  of  question  3  be  altered  when  the  sun's  motion  is  taken  into  account? 
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greatest  distance  from  the  sun  to  be  498i  million  miles,  show  that,  on  account  of 

Jupiter's  attraction,  the  sun  will  describe  an  ellipse  of  semi  major-axis  equal  to 
about  461,000  miles,  and  find  the  length  of  Jupiter's  year. 

6.  The  maximum  velocity  attained  by  the  earth  in  its  orbit  is  3,000,000 
centimeters  per  second,  and  the  minimum  velocity  is  2,920,000  centimeters  per 

second.    Find  the  eccentricity  of  the  earth's  orbit. 

GENERAL  EXAMPLES 

1.  A  particle,  attached  by  a  string  to  a  point,  has  just  sufficient  energy 
to  make  complete  revolutions  in  a  vertical  circle.  Show  that  the  tension 

of  the  string  is  zero  and  six  times  the  weight  of  the  particle  respectively, 

when  the  particle  is  at  the  highest  and  lowest  points  of  its  path. 

2.  A  particle  moves  under  gravity  in  a  vertical  circle,  sliding  down  the 

convex  side  of  a  smooth  circular  arc.  If  its  velocity  is  that  due  to  a  height 

h  above  the  center,  show  that  it  will  fly  off  the  circle  when  at  a  height  f  h 
above  the  center. 

3.  If  the  angle  a  through  which  a  simple  pendulum  swings  on  each 
side  of  the  vertical  is  small,  but  not  infinitesimal,  show  that  to  a  first 

approximation  the  time  of  oscillation  is 

Deduce  that  a  pendulum,  which  beats  seconds  accurately  when  performing 

infinitesimal  oscillations,  would  lose  about  40  seconds  a  day  when  attached 

to  a  clock  which  caused  it  to  oscillate  to  5  degrees  on  each  side  of  the 
vertical. 

4.  A  train  is  moving  uniformly  round  a  curve  at  60  miles  an  hour,  and 

in  one  of  the  carriages  a  seconds  pendulum  is  found  to  beat  121  times 
in  two  minutes.  Show  that  the  radius  of  the  curve  is  about  a  quarter 
of  a  mile. 

5.  One  end  of  an  elastic  string,  natural  length  a,  modulus  X,  is  tied  to 

a  fixed  point  on  a  smooth  horizontal  table,  and  the  other  end  is  tied  to  a 

particle  of  mass  m  which  rests  on  the  table.  If  the  mass  is  pulled  to  a 

distance  2  a  from  the  other  end  of  the  string,  and  is  then  let  go,  show  that 

it  will  return  to  its  original  position  at  regular  intervals  2(7r  +  2)  a/  — • 

6.  Two  balls  weighing  W^  and  W^  pounds  are  connected  by  a  thread  a 

feet  long  ;  and  W^  is  held  in  the  hand  while  W^  is  whirled  round.  Deter- 
mine the  motion  which  ensues  if   W^   is  released  from  rest  when    W^ 
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is  moving  with  velocity  V  at  inclination  a  ;    and  prove  that  in  the  air 
the  tension  of  the  thread  is 

— — * — f-   pounds. 

7.  Two  masses,  m^  and  TWg,  are  connected  by  a  weightless  spring  of  such 

strength  that  when  Wj  is  held  fixed,  m^  performs  n  vibrations  a  second. 

Show  that  if  m^  be  held  fixed,  rn^  will  perform  n  '^mjm^  vibrations  a  sec- 

VYifi
     

 -X-   jy\ 

~   ^  vibra- 

tions  per  second,  the  vibrations  in  every  case  being  in  the  line  of  the 

spring. 

8.  A  particle  of  mass  ?«,  moving  in  a  smooth  curved  tube  of  any  shape, 

is  in  equilibrium  under  the  tensions  of  two  elastic  strings  in  the  tube,  of 

natural  lengths  Z,  V  and  moduli  of  elasticity  X,  X%  of  which  the  other  ends 

are  attached  to  fixed  points  of  the  tube.  If  the  particle  makes  oscillations, 

large  or  small,  in  the  tube,  show  that  the  time  of  oscillation  is 

9.  A  string  passes  through  a  small  hole  in  a  smooth  horizontal  table, 

and  has  equal  particles  attached  to  its  ends,  one  hanging  vertically  and  the 

other  lying  on  the  table  at  a  distance  a  from  the  hole.  The  latter  is  pro- 

jected with  a  velocity  -y/ga  perpendicular  to  the  string.  Show  that  the 
hanging  particle  will  remain  at  rest,  and  that  if  it  be  slightly  disturbed, 

the  time  of  a  small  oscillation  will  be  2  tt-,, 

10.  A  particle  moves  in  a  circular  groove,  under  an  attraction  —  to  a 

point  P  which  is  in  the  plane  of  the  circle  and  distant  h  from  its  center. 

The  particle  is  projected  with  velocity  V  from  the  point  of  the  circle  nearest 

to  P.    Show  that  for  the  particle  to  perform  complete  revolutions,  the  value 

of  F2  must  not  be  less  than 
a2-&2 

11.  A  smooth  ellipse,  semi-axes  a  and  &,  is  placed  with  its  major  axis 
vertical,  and  a  particle  is  projected  along  the  concave  side  of  the  arc,  with 

velocity  due  to  a  height  It  above  the  center.  Find  the  point  at  which  the 

particle  will  leave  the  arc,  and  show  that  it  will  pass  through  the  center  of 
the  ellipse  if 

^         8  rt2  +  J2 h-   — -. 
6aV3 
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12.  A  particle  is  constrained  to  move  in  a  circle  of  radius  a,  under  an 
attraction  /xr  per  unit  mass  to  a  point  inside  the  circle  distant  c  from  its 
center.  If  the  particle  be  placed  at  its  greatest  distance  from  this  point, 
and  started  with  an  infinitesimal  velocity,  prove  that  it  will  pass  over  the 
second  quadrant  of  the  circle  in  a  time 

^log(V2  +  l). 
13.  A  particle  describes  an  ellipse  about  a  center  of  force  in  one  focus. 

Show  that  the  velocity  at  the  end  of  the  minor  axis  is  a  mean  proportional 
between  the  velocities  at  the  ends  of  any  diameter. 

14.  A  comet  describes  a  parabola.  Show  that  its  velocity  perpendicular 
to  the  axis  of  its  orbit  varies  inversely  as  the  radius  vector  from  the  sun. 

15.  A  comet  of  mass  m,  describing  a  parabola  about  the  sun,  collides 
with  an  equal  mass  m  at  rest,  and  the  masses  move  on  together.  Show  that 
their  center  of  gravity  will  describe  a  circle  about  the  sun  as  center. 

16.  Assuming  that  a  projectile,  after  allowing  for  variations  in  gravity, 

describes  an  ellipse  about  the  earth's  center  as  focus,  show  that  the  maxi- 
mum range  on  a  horizontal  plane  through  the  point  of  projection,  for  a 

given  velocity  v,  is  4,7^,2/32 

4  gV{-^  -  y*  ' where  R  is  the  distance  from  the  earth's  center  to  the  point  of  projection. 

17.  When  the  earth  is  at  the  end  of  the  major  axis  of  its  orbit,  a  small 
meteor,  of  mass  one  mth  of  that  of  the  sun,  suddenly  falls  into  the  sun. 

2 
,  Show  that  the  length  of  the  year  will  be  diminished  by  —  of  itself. 

18.  A  planet  P  moving  about  the  sun  S  picks  up  a  small  meteor,  and 
consequently  has  its  velocity  reduced  by  one  nth  of  its  former  amount, 

although  unaltered  in  direction.  Treating  n  as  small,  show  that  the  eccen- 

tricity of  the  planet's  orbit  will  be  reduced  by  2  n  (e  +  cos  6),  where  6  is  the 
angle  between  SP  and  the  major  axis  of  the  orbit. 

Show  also  that  the  new  major  axis  will  make  an  angle    with 
the  old  axes. 

19.  A  particle  describes  an  ellipse  about  the  focus.  Show  that  the 
greatest  and  least  angular  velocities  occur  at  the  ends  of  the  major  axis,  and 
also  that  if  a,  /3  be  these  angular  velocities,  the  mean  angular  velocity  is 

2(a^)^_ 
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20.  A  comet  describes  a  parabola  about  the  sun,  its  nearest  distance 

from  the  sun  being  one  third  of  the  radius  of  the  earth's  orbit,  supposed 

circular.  For  how  many  days  will  the  comet  remain  within  the  earth's 
orbit  ? 

21.  If  the  attraction  on  a  particle  varies  as  the  inverse  square  of  the 
distance  from  a  center  of  force  0,  show  that  there  are  two  directions  in 

which  a  particle  can  be  projected  from  a  given  point  P  so  that  its  orbit 

may  have  a  given  major  axis.  If  OP  =  c,  and  if  a^,  a^  are  the  angles 
which  the  two  directions  of  projection  make  with  OP,  show  that 

cot  a,  cot ««  =   1, a 

where  a  is  the  semi  major-axis. 

22.  A  particle  is  projected  from  a  point  P  under  a  force  to  a  fixed  point 

*S  at  a  distance  R  from  P,  so  as  to  describe  a  circle  passing  through  S.  The 

initial  velocity  is  F,  and  the  moment  of  the  velocity  about  S  is  h.  Show 
that  the  particle  will  describe  a  semicircle  in  time 

4  A^ 
23.  A  block  of  mass  M,  whose  upper  and  lower  faces  are  smooth  horizon- 

tal planes,  is  free  to  move  along  a  groove  in  a  parallel  plane,  and  a  particle 

of  mass  m  is  attached  to  a  fixed  point  in  the  upper  face  by  an  elastic  string 
whose  natural  length  is  a  and  modulus  X.  If  the  system  starts  from  rest 

with  the  particle  on  the  upper  face,  and  the  string  stretched  parallel  to 

the  groove  to  1  +  w  times  its  natural  length,  prove  that  the  block  will  per- 
form oscillations .  of  amplitude 

(n  -I-  l)am 
M  +  m 

and  period 

hU aMm 
\{M+m) 

\ 



CHAPTEE  XI 

MOTION  OF  RIGID  BODIES 

229.  The  present  chapter  is  devoted  to  a  discussion  of  the 

motion  of  rigid  bodies,  when  the  motion  is  such  that  the  bodies 

may  not  be  treated  as  particles. 

It  has  already  been  proved  in  §  66  that  the  most  general  motion 

possible  for  a  rigid  body  is  one  compounded  of  a  motion  of  trans- 
lation and  a  motion  of  rotation.  As  a  preliminary  to  discussing 

the  general  motion  of  a  rigid  body  under  the  action  of  forces  of 

any  description,  we  shall  examine  in  greater  detail  than  has  so  far 

been  done  the  properties  of  a  motion  of  rotation. 

Angular  Velocity 

230.  We  have  seen  (§67)  that  for  every  motion  of  a  rigid  body 

in  which  a  point  P  remains  fixed,  there  is  an  axis  of  rotation^ 

which  is  a  line  passing  through  P,  of  which  every  point  remains 

fixed.  If  a  rigid  body  is  moving  continuously  we  may  analyze  its 

motion  in  the  following  way.  We  select  a  definite  particle  P  of 

the  rigid  body,  and  we  refer  the  motion  to  a  frame  of  reference 

having  P  as  origin,  and  moving  so  as  always  to  remain  parallel 

to  its  original  position.  Eelative  to  this  frame,  the  motion  of  the 

body  between  any  two  instants  is  a  motion  of  rotation  about  P. 

Now  let  the  two  instants  be  taken  very  close  to  one  another, 

the  interval  between  them  being  dt  Let  us  find  the  axis  of  rota- 
tion of  the  motion  which  takes  place  in  the  interval  dt,  and  call  it 

PQ.  Then  PQi^  called  the  axis  of  rotation  at  the  instant  at  which 
the  interval  dt  is  taken. 

Let  us  suppose  that  during  the  interval  dt  the  rotation  of  the 

body  about  its  axis   of  rotation  P^  is  found  to  be  a  rotation 
286 
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through  an  angle  dO.    Then  the  limit,  when  dt  is  made  to  vanish, 

of  the  rate  —  is  called  the  angular  velocity  of  the  body,  —  it ctt 

measures  the  angle  turned  through  per  unit  time. 

Thus  to  have  a  full  knowledge  of  the  motion  of  a  rigid  body  at 

any  instant  we  must  know 

{a)  the  direction  and  magnitude  of  the  velocity  of  the  point  P 
which  has  been  selected  to  give  a  frame  of  reference ; 

(b)  the  direction  of  the  axis  of  rotation  through  P ; 

(c)  the  magnitude  of  the  angular  velocity  about  the  axis  of 
rotation. 

231.  The  angular  velocity  has  associated  with  it  a  direction  — 

the  axis  of  rotation  —  and  a  magnitude.  Thus  it  may  be  repre- 
sented by  a  line.  We  shall  now  prove  that  it  is  a  vector,  i.e. 

that  angular  velocities  may  be  compounded  according  to  the 

parallelogram  law. 

Let  a  rigid  body  have  a  ro- 
tation about  P  compounded 

of  {a)  a  rotation  of  angular 

velocity  o)  about  an  axis  PQ, 

and  (b)  a  rotation  of  angular 

velocity  tw'  about  a  second  ̂  
axis  PQ'.  Let  the  lengths 

PQ,  PQ'  be  taken  proportional  to  (o,  m' ,  so  that  the  lines  PQ,PQ' 
will  represent  the  directions  and  magnitudes  of  the  angular 
velocities  on  the  same  scale. 

Let  the  parallelogram  PQRQ'  be  completed,  and  let  L  be  any 

point  on  the  diagonal  PR.  Let  LN,  LN'  be  drawn  perpendicular 
to  PQ,  PQ'  respectively. 

Tn  time  dt  there  is,  from  the  first  angular  velocity,  a  rotation  of 

the  rigid  body  through  an  angle  (o  dt  about  PQ.  The  effect  of  tliis 

rotation  is  to  move  the  particle  of  the  body  wliich  originally  coin- 

cided with  L  through  a  distance  LN  ■  (odt  at  right  angles  to  the 

plane  PLN.  Similarly  the  effect  of  the  rotation  about  PQ'  is  to 

move  the  same  particle  through   a  distance  LN'  •  ay'dt  at  right 

^ 
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angles  to  the  plane  but  in  the  direction  opposite  to  that  of  the 

former  motion.    Thus  the  total  displacement  of  the  particle  is 

LN(odt-LN'(o'dt  (116) 

Since  L  is  on  the  diagonal  of  the  parallelogram,  we  see  that  the 

area  of  the  triangle  PLQ  is  equal  to  that  of  the  triangle  PLQ',  so 

^^^^  LNFQ  =  LN' .  PQ'. 

Again,  since  PQ,  PQ'  are  in  the  ratio  of  &> :  co',  this  equation  may 
be  written  in  the  form 

and  on  comparing  with  expression  (116)  we  see  that  the  displace- 
ment of  the  particle  L  vanishes. 

Thus  the  resultant  of  the  two  angular  velocities  is  a  motion  such 

that  the  points  P  and  L  both  remain  at  rest.  It  is  therefore  an 

angular  velocity  having  PB,  the  diagonal  of  the  parallelogram,  as 
axis  of  rotation. 

We  must  next  find  the  magnitude  of  this  angular  velocity. 

Let  us  denote  it  by  H.  From  Q  draw  perpendiculars  QX,  QY  to 

Q   ^^  PQ'  and  PP.  The  displace- 
ment of  the  particle  Q  in 

time  dt  will  be  QY-ndt 

at  right  angles  to  the  plane. 

This  displacement,  however, 

can  also  be  obtained  by  com- 
pounding the  displacements 

produced  by  the  two  angular 

velocities  o),  co'.  That  produced  by  the  former  is  nil,  since  Q  is  on 
the  axis  of  rotation ;  that  produced  by  the  latter  is  QXco'  dt.    Thus 

QY'ndt  =  QX-co'dt.  (117) 

We  have  QYPE  =  QX'  PQ', 

each  being  equal  to  the  area  of  the  parallelogram,  and  on  combin- 
ing this  relation  with  (117),  we  find 

n  _  co' 

PR  ~  PQ' ' 
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Thus  if  co'  is  represented  by  FQ',  then  Q>  will,  on  the  same  scale, 
be  represented  by  FR. 

We  have  now  proved  the  following : 

The  resultant  of  tico  angular  velocities  represented  hy  the  edges 

FQ,  FQ'  of  a  parallelogram  is  an  angular  velocity  represented  hy 
the  diagonal  FB  of  the  parallelogram. 

Thus  angular  velocity  is  a  vector,  and  possesses  the  properties 

which  have  been  proved  to  be  true  of  all  vectors. 

232.  It  follows  that  an  angular  velocity  H  about  an  axis  of 

rotation  of  which  the  direction  cosines  are  Z,  m,  n  may  be  replaced 

by  three  angular  velocities  (o^,co^,  co^  about  the  axes  of  coordinates, 

©1  =  ZIl,  ft)2  =  mil,  0)3  =  Till.  (IIS) 

Squarmg  and  adding,  we  find  that 

n' =  co^"  ■{- co;- +  co^.  (119) 

We  now  see  that  the  motion  of  a  rigid  body  is  given  when  we  know 

(a)  w,  V,  w,  the  components  of  velocity  of  the  point  F; 

(h)  ft) J,  ft)2,  ftjg,  the  components  of  angular  velocity. 

Kinetic  Energy  of  Rotation 

233.  Suppose  that  at  any  instant  a  rigid  body  is  rotating  about 
an  axis  of  rotation  FQ  with 

angular  velocity  12. 

Let  L  be  any  particle  of 

the  body,  its  mass  being  m, 

and  let  Zi\^,  the  perpendicu- 
lar distance  from  L  to  FQ, 

be  denoted  by  p.  Then  the 

velocity  of  the  particle  L  is 
pfl,  and  its   kinetic   energy  P^^  ̂ ^q 

is  \mp'^D!^. 
On  summation,  the  kinetic  energy  of  the  whole  body  is  seen  to  be 

\{^mp-)Sl\ 
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The  quantity  ̂ mp^  is  called  the  moment  of  inertia  about  the 
axis  PQ. 

If  we  introduce  a  quantity  k,  defined  by 

h''  = 

2)m 

so  that  k"^  is  the  mean  value  of  p^  averaged  over  all  the  particles  of 
the  body,  then  k  is  called  the  radius  of  gyration  about  the  axis  PQ, 

The  kinetic  energy  can  now  be  written  in  the  form 

so  that  the  energy  is  the  same  as  if  the  whole  mass  were  concen- 
trated in  a  single  particle  at  a  distance  k  from  the  axis  of  rotation. 

Kinetic  Energy  of  a  Rigid  Body 

234.  The  point  P  is  at  our  disposal :  let  us  suppose  it  to  be  the 

center  of  gravity  of  the  body.  Then  the  most  general  motion  may 

be  compounded  of  a  motion  of  translation,  this  being  identical  with 

that  of  the  center  of  gravity,  and  a  motion  of  rotation  about  an 

axis  through  the  center  of  gravity. 

Let  V  be  the  velocity  of  the  center  •  of  gravity,  let  XI  be  the 
angular  velocity,  and  let  k  be  the  radius  of  gyration  about  the 

axis  of  rotation  through  the  center  of  gravity.  Let  M  be  the  total 

mass,  Vm,  of  the  body. 

By  the  theorem  of  §  186,  the  total  kinetic  energy  of  the  body  is 

the  sum  of  two  parts : 

(a)  the  kinetic  energy  of  a  single  particle  of  mass  M  moving 

with  the  center  of  gravity  of  the  body ; 

(b)  the  kinetic  energy  of  motion  relative  to  the  center  of  gravity. 

The  value  of  part  {a)  is  \  MV^ ;  that  of  part  (h)  is  ̂ JfJ^Q^_ 
Hence  we  have  for  the  total  kinetic  energy 

^M{V^-i-km^).  (120) 
This  expression  is  of  extreme  importance  in  itself,  but  is  also  of 

interest  because  it  enables  us  to  prove  the  following  theorem. 
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235.  Theorem.  Let  k  he  the  radms  of  gyration  about  any  axis 

through  the  center  of  gravity ̂   and  let  k'  he  the  radius  of  gyration 
ahout  a  parallel  axis  distant  a  from  the  former,  then 

k'^=^]^+a\ 

Let  P^  be  any  axis  through  the  center  of  gravity  G,  and  let 

P^Q'  be  any  parallel  axis  distant  a  from  the  former.  Suppose  that 
the  rigid  body  has  a  motion  of  rotation 

about  P'Q\  the  angular  velocity  being  H. 
Then  the  velocity  of  G  is  all,  and  the 

motion  may  be  regarded  as  compounded 
of  a  motion  of  translation  of  velocity  a£l 

together  with  a  rotation  H  about  the 

axis  PQ.  By  formula  (120),  the  kinetic 

energy  is 

\M{a^Q.''+km% 

It  is  also  I  JfA:'^0^,  where  k'  is  the  radius  of  gyration  about  P'Q'. 
Hence  we  have 

\  Mk'^a^  =  1  Mia'D.^  +  k^Q.% 

and  the  result  follows  on  dividing  through  by  \  MD,^. 

236.  Alternative  proof.   This  theorem  may  also  be  proved  geometrically. 

Let  L  be  any  particle  of  the  body,  and  let  the  plane  of  fig.  142  be 

supposed  to  be  the  plane  through  L  at  right  angles  to  the  two  axes  of 
rotation,  these  axes  cutting  the  plane  in 

the  ];)oints  A,  A'  respectively.  Let  LA  =/>, 

LA'  =  p%  and  let  LN  be  drawn  perpendicu- 

lar to  AA\    Then  il/P  =  "^mp^,  and  also 

Mk'-2  =  tmp'^ 

=  :£w  (p^  +  AA"^-2p'  AA'  cos  9) 

=  il/F  +  M '  AA"2  -  2  A  A'  {^m  •  AN). 
Fig.  142 

Now  ̂ iV  is  the  projection  of  the  line  from  L  to  the  center  of  gravity, 

upon  the  line  AA\    Hence  ̂ m  ■  AN  =  0,'and  we  have 

Mk'^  =  Mlc'^  +  M-AA'^, 

giving  the  result  to  be  proved,  after  division  by  M. 
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237.  From  the  theorem  just  proved,  it  follows  that  the  radius 

of  gyration  about  any  axis  can  be  found  as  soon  as  we  know  that 

about  a  parallel  axis  through  the  center  of  gravity,  and  vice  versa. 

We  now  give  some  examples  of  the  calculation  of  radii  of  gyration. 

Calculation  of  PtADii  of  Gyration 

238.  Uniform  thin  rod.    Let  the  rod  AB  be  of  length  2  a,  and 

let  k  be  its  radius  of  gyration  about  an  axis  through  A  perpendic- 
_    ular  to  its  lenajth.    Let  t  be  its  mass  per  unit 

A     X     P   B  ^  .     ,  .  ̂ I  '  '     lenffth,  and  let  xhQ  2l  coordinate  which  meas- Fic    143 
ures  distances  from  A.  The  element  which 

extends  from  x  to  x  +  dx  \q  of  mass  r  dx,  and  its  perpendicular 
distance  from  the  axis  of  rotation  is  x.    Hence 

X
2
a
 

(T
dx
)x
 

■2a 

T  dx 
0 

3    '"-     _  4^2 

2  a 
so  that  the  radius  of  gyration  is  — -=  • 

About  the  center  of  gravity,  which  is  distant  a  from  A,  the 

radius  of  gyration  is  given  by 

k^=±a^-a 
a 

3 

so  that  the  radius  of  gyration  about  the  center  of  gravity  is  — =  • 

v3 

239.  Rectangular  lamina.  Let  us  suppose  the  lamina  to  be  of 

edges  2  a,  2  b,  and  let  us  hnd  its  radius  of  gyration  about  an  axis 

through  its  center  at  right  angles  to  its  plane.  Let  us  take  axes  as 

in  fig.  144,  and  let  a  denote  the  mass  per  unit  area.    Then 

Vm  4.ah'<T 
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y 

The  integration  is  over  the  lamina,  and  therefore  between  the  limits 

X  =  a  to  X  =—  a   and   y  =  h  to 

y  =—  h.    On  integrating,  we  find 

F  = 

On  taking  h  =  0,  the  lamina 

becomes  a  thin  rod,  and  the  re-  ^^^-  ̂ ** 
suit  agrees  with  that  obtained  in  the  last  section. 

240.  Homogeneous  solid  ellipsoid.  Let  the  semi-axes  of  the 
ellipsoid  be  a,  h,  c,  and  let  us  find  the  radius  of  gyration  about  the 

major  axis.  Taking  the  principal  axes  of  the  ellipsoid  as  axes  of 

coordinates,  and  denoting  the  density  of  the  ellipsoid  by  p,  we  have 

X^^'   Jjj  ̂̂  ^^^'^^^^  ̂y"  "^  ̂̂  m 

I  I  j  p  dxdydz 
where  the  integration  is  over  the  whole  volume  of  the  ellipsoid. 

On  performing  the  integrations,  we  obtain 

EXAMPLES 

1.  Find  the  radius  of  gyration  of  a  rod  12  inches  long  about  a  point  distant 
4  inches  from  one  end. 

2.  Find  the  radius  of  gyration  of  a  circular  disk, 

(a)  about  an  axis  through  its  center  perpendicular  to  its  plane  ; 
(6)  about  a  diameter. 

3.  Show  that  the  radius  of  gyration  of  a  sphere,  radius  a,  about  any  diameter 

is  f  a'-^,  and  about  any  tangent  line  is  |  a^. 
4.  What  is  the  radius  of  gyration  of  a  cube  about  an  edge  ? 

5.  What  is  the  radius  of  gyration  of  a  square  lamina  about  a  diagonal  ? 

6.  Find  the  radius  of  gyration  of  a  solid  circular  cylinder, 

(a)  about  an  axis; 

(6)  about  a  generator ; 
(c)  about  a  diameter  of  one  of  its  ends. 

7.  Prove  that  the  radius  of  gyration  of  a  solid  conical  spindle  about  its  axis 

is  vX  ct,  where  a  is  the  radius  of  its  base. 
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Eouth's  Rule 

241.  The  following  convenient  rule,  given  by  Dr.  Eouth,  {Rigid 

Dynamics,  §  8),  provides  an  easy  way  of  remembering  the  values 

of  several  radii  of  gyration.  The  rule  applies  to  linear,  plane,  and 
solid  bodies  which  are 

{a)  rectangular  (rod,  lamina,  or  parallelepiped) ; 

(h)  elliptical  or  circular  (disk  or  lamina) ; 

(c)  ellipsoidal,  spheroidal,  or  spherical  (solid) ; 

and  states  that  the  radius  of  gyration  about  an  axis  of  symmetry 

through  the  center  of  gravity  is  given  by 

7,2  _  s^^  of  squares  of  perpendicular  semi-axes 

3,  4,  or  5  
' where  the  denominator  is  3,  4,  or  5  according  as  the  body  comes 

under  headings  {a),  (b),  or  (c)  of  the  above  classification. 

ILLUSTRATIVE  EXAMPLE 

A  coin  rolls  down  an  inclined  plane.  Find  its  velocity  after  any  distance  and 
also  its  acceleration. 

Let  the  coin  be  treated  as  a  uniform  circular  disk,  and  let  a  be  its  radius. 

When  its  velocity  down  the  plane  is  F,  its  angular  velocity  will  be  V/a.    The 
axis  of  rotation  is  perpendicular  to  the  plane  of 

the  coin.  Its  semi-axes  of  symmetry,  regarding  it 

as  a  lamina,  will  be  a,  a.  The  radius  of  gyration 
about  the  axis  of  rotation  through  its  center  is, 

by  Routh's  rule, 

so  that  the  kinetic  energy  is 

no.  145  iM[v-  +  ia-^[lJ]  =  iMVK 
After  rolling  a  distance  s  down  the  plane,  the  center  of  gravity  of  the  coin 

has  fallen  a  distance  s  sin  a,  so  that  from  the  conservation  of  energy 

Mgssina^lMV^, 
and  therefore  the  velocity  is  given  by 

V^  =  ̂ sg  sin  a. 

Comparing  with  the  formula  (48),  V^  =  2/s,  for  motion  under  uniform  accel- 

eration, we  see  that  the  disk  rolls  down  the  plane  with  a  uniform  acceleration 
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EXAMPLES 

1.  Show  that  the  acceleration  of  a  hoop  rolling  down  a  hill  of  inclination  a 

is  h  g  sin  a. 

2.  Find  the  acceleration  of  a  pair  of  locomotive  wheels  running  down  a  gra- 
dient of  1  in  60,  each  wheel  consisting  of  a  rim  and  of  spokes  of  uniform  thick- 

ness, the  weight  of  the  rim  being  twice  that  of  the  spokes  and  the  weight  of  the 

axle  being  half  of  that  of  a  wheel.    (Neglect  the  thickness  of  the  axle.) 

3.  Two  bicyclists,  riding  exactly  similar  machines,  coast  down  a  hill,  start- 
ing with  equal  velocities  at  the  top.  Neglecting  the  forces  of  friction  and  the 

resistance  of  the  air,  show  that  the  heavier  rider  will  reach  the  bottom  first. 

4.  The  pulley  of  an  Atwood's  machine  is  a  uniform  disk  of  mass  M.    When 
masses  ?7ii,  m^  are  attached  to  the  ends  of  the  string,  show  that  the  acceleration 
of  mi  is 
^  m\  —  m^ 

mi  ■{-  rri'i  +  \ M' 
5.  Two  spheres,  one  a  hollow  shell  and  the  other  a  homogeneous  solid,  roll 

down  hill  together,  starting  simultaneously  from  rest  at  the  top.  Show  that 

their  times  over  any  part  of  the  path  are  in  the  ratio  5  :  V2T. 
6.  If  the  masses  of  the  wheels  of  a  carriage  are  supposed  to  be  all  collected 

at  the  rim,  show  that  the  energy  of  the  carriage  when  moving  with  velocity  V 

is  i  MV^^  where  M  is  the  weight  of  the  complete  carriage  plus  the  weights  of 
the  wheels. 

7.  A  straight  piece  of  uniform  wire  is  stood  vertically  on  end  and  allowed  to 
fall  over.    With  what  velocity  does  it  strike  the  ground  ? 

8.  A  homogeneous  solid  cigar-shaped  spheroid,  semi-axes  a  and  6,  is  stood 
on  its  point  on  a  horizontal  plane  and  is  allowed  to  roll  over.  Find  its  angular 

velocity  when  the  end  of  its  minor  axis  is  in  contact  with  the  plane,  and  find 
the  pressure  on  the  plane  at  this  instant. 

Moment  of  Momentum 

242.  Let  X,  y,  z  be  the  coordinates  of  any  particle  of  mass  m. 

Let  the  components  of  the  total  resultant  force  acting  on  the  par- 
ticle be  X,  F,  Z.    Then  the  equations  of  motion  are 

d'x       _ 

dh    _ 
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The  moment  about  the  axis  of  x  of  the  force  actmg  on  the 

particle  is  yZ—  zY,  and  from  the  foregoing  equations  we  have 

,z-.r  =  ™(,g-.g).  (121) 
dx    dv    dz 

The  velocity  of  the  particle  has  components  — ,  —>  —  >  so  that 

the  moment  of  this  velocity  about  the  axis  of  z,  as  defined  in 

§219.-  dz        dy ^  dt         dt 

The  momentum  of  the  particle  is  m  times  its  velocity,  so  that 
the  moment  of  momentum  about  the  axis  of  2;  is  m  times  the 

moment  of  the  velocity,  and  therefore 
dz         dy 

m  [y   z^ ^^  dt         dt 

On  differentiating,  we  have 

d 
dt 

(^dz         d^_/dzdy         M 

dt  dt      ̂   dty      \dt  dt         df 
d^z 

=^yZ-zY,  (122) 

by  equation  (121).    Thus  we  have  proved  that 

The  rate  of  change  of  the  moment  of  momentum  of  a  particle 

about  any  axis  is  equal  to  the  moment,  about  the  same  axis,  of  the 

forces  acting  on  the  particle. 

243.  Equation  (122)  is  true  for  each  particle  of  any  system  of 

bodies.    Let  us  sum  the  equation  over  all  particles,  then  we  obtain 

l[S'»('i-4l)]=S(='---)-       <■=») 

The  right-hand  side  of  this  equation  is  the  sum  of  the  moments 
of  the  external  forces  actiag  on  the  body  or  system  of  bodies, 
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for  the  internal  forces  occur  in  equal  and  opposite  pairs  which 

contribute  nothing. 

The  term  Vwif?/-   2;-^|>  which  is  the  sum  of  the  moments 
A     y  dt         dt) 

of  momentum  of  the  separate  particles,  is  called  the  moment  of 

momentum  of  the  system. 

Thus  equation  (123)  expresses  that 

The  rate  of  change  of  the  moment  of  momentum  of  any  system,' 
about  any  axis  is  equal  to  the  sunt  of  the  moments  of  the  external 

forces  about  this  axis. 

244.  Several  important  consequences  of  this  theorem  follow 
at  once. 

I.  If  a  system  of  bodies  is  acted  on  by  no  external  forces,  the 

moment  of  momentum  about  every  axis  remains  constant. 

This  expresses  the  principle  known  as  the  conservation  of  angu- 
lar momentum. 

The  sun  affords  an  instance  of  a  body  which  may  practically  be  sup- 
posed to  be  acted  on  by  no  external  forces.  It  is  generally  supposed  that 

the  sun  is  gradually  shrinking  in  size;  if  this  is  so,  we  see  that  its  velocity 
of  rotation  about  its  axis  must  continually  increase,  in  order  that  its 
moment  of  momentum  may  remain  constant. 

II.  If  all  the  forces  acting  on  a  system  are  either  parallel  to  a 

given  line,  or  else  intersect  this  line,  then  the  moment  of  momentum 

of  the  system  about  this  line  must  remain  constant. 

A  peg  top  is  acted  on  only  by  the  reaction  at  the  peg  and  gravity.  The 
moment  of  the  latter  about  a  vertical  line  through  the  peg  vanishes,  and 

the  moment  of  the  former  may  be  supposed  to  vanish  to  a  close  approxi- 
mation. Hence  the  moment  of  momentum  about  a  vertical  through  the 

peg  will  remain  constant,  to  a  close  approximation. 

III.  If  a  rigid  body  is  free  to  rotate  about  a  fixed  axis,  and  if 

(o  is  its  angular  velocity  at  any  instant,  then 

dt 

where  Mk^  is  the  moment  of  inertia  about  the  fixed  axis,  and  L  is 
the  sUm  of  the  moments  about  this  axis,  of  all  the  external  forces. 
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To  see  the  truth  of  this,  it  is  only  necessary  to  notice  that  a  par- 
ticle of  mass  m  at  distance  ̂   from  the  axis  has  momentum  mpwy 

so  that  the  moment  of  momentum  of  the  whole  system  will  be 

and  since  M  and  k^  do  not  vary  with  the  time,  the  rate  of  change 

of  angular  momentum  will  be  Mk^  —  • Cut 

Oscillation  of  a  Pendulum 

245.  An  important  application  of  the  last  theorem  enables  us 

to  find  the  time  of  oscillation  of  a  pendulum  of  any  description. 

Let  0  be  the  pivot  about  which  the  pendulum  turns,  let  G  be 

its  center  of  gravity,  let  06^  =  li,  and  let  the  line  OG 
make  an  angle  6  with  the  vertical  at  any  instant,  so 

that  o)  =  —  is  the  angular  velocity  of  the  pendulum CLv 

about  its  axis. 

Let  M  be  the  mass,  and  h  the  radius  of  gyration 

about  its  axis,  of  the  whole  pendulum.  Then  the 

equation  of  motion  is 

d(o Mie 
dt 

X, 

Fig.  146       i^    w\\\Qh   CO 
de 
dt The  value  of  L  is  equal  to  the 

moment  of  the  weight  about  the  axis  through  0,  and  is  therefore 

Mgh  sin  6. 
Thus  the  equation  becomes 

Mk^  ̂   =  Mgh  sin  (9, 

or, 

Fd'd 

h  dt' 

-—  =  a  sm. 

e. 
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The  equation  of  motion  for  a  simple  pendulum  of  length  I  is 

so  that  we  see  on  comparison  that  the  motion  is  the  same  as  that 

of  a  simple  pendulum  of  length  I  =  k'^/h. 
For  instance,  the  complete  period  of  small  oscillations  is 

'-ir'-'^K 

gh 

ILLUSTRATIVE  EXAMPLE 

A  ring  (e.g.  a  dinner  napkin  ring)  stands  vertically  on  a  table,  and  a  gradually 
increasing  pressure  is  applied  by  a  finger  to  one  point  of  the  ring  in  such  a  way 

that  equilibrium  is  broken  by  the  point  of  contact  with  the  table  slipping  along  the 
table.    Find  the  subsequent  motion  of  the  ring. 

We  have  seen  in  example  2,  p.  109,  that  it  is 
possible  to  apply  pressure  in  the  manner  described. 

Let  us  suppose  that  when  the  ring  leaves  the 

finger  it  is  observed  to  be  moving  with  a  velocity 

V  forward  and  a  rotation  Q  in  the  direction  oppo- 
site to  that  in  which  it  would  rotate  if  it  were 

rolling  without  sliding.  Let  u,  w  be  the  values  of 

the  velocity  and  rotation  at  any  instant,  measured  -p       .  .„ 
in  the  same  directions  as  V  and  Q. 

Let  a  be  the  radius  of  the  ring  and  m  its  mass.    The  forces  acting  on  it  are 

(a)  its  weight  mg  ; 
{b)  the  vertical  component  of  the  reaction  with  the  table,  which  is  equal  to 

mg  since  the  center  of  gravity  of  the  ring  has  no  vertical  acceleration ; 

(c)  the  frictional  reaction  at  the  lowest  point  of  the  ring,  which  is  equal  to 

mg  fi  so  long  as  sliding  takes  place. 

By  the  theorem  of  §  180  we  have 

dv  .  . 
m  —  =  -mgix.  (a) at 

We  can  obtain  a  second  equation  from  the  theorem  of  §  243.  Let  us  take  as 
axis  the  axis  of  the  ring  at  instant  t.  The  moment  of  inertia  at  this  instant  is 

ma^.  To  obtain  the  moment  of  momentum  we  regard  the  whole  motion  as  com- 
pounded of  a  motion  of  translation  of  the  center  of  gravity  (velocity  w),  and  a 
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motion  of  rotation  about  an  axis  through  the  center  of  gravity  (velocity  w). 
The  former  contributes  nothing  to  the  moment  of  momentum,  so  that  the  wliole 
moment  of  momentum  is 

At  the  end  of  a  small  interval  dt  the  ring  will  have  moved  forward  a  distance 

V  dt,  so  that  we  are  now  considering  the  moment  of  inertia  about  an  axis  which 
is  distant  v  dt  from  the  center  of  gravity  of  the  ring.  The  moment  of  inertia 

after  an  interval  dt  is,  accordingly,  by  §  235, 

m(a^  +  {vdtf). 

We  may,  however,  neglect  the  small  quantity  of  the  second  order  (dt)^  and 
treat  the  moment  of  inertia  as  though  it  remained  constant  and  equal  to  ma^. 

du} The  rate  of  increase  of  the  moment  of  momentum  is,  accordingly,  ma^   

The  moment  of  the  external  forces,  measured  about  the  same  axis  and  in  the 

same  direction,  is -  mg  /xa, 

so  that  we  have  the  equation    ma^  —  =.—  mg /xa,  (6) dt 

or,  simplified,  a  —  =  —  MS',  (c) 

while  equation  (a)  reduces  to  —  =  —  fig.  (d) dt 

These  relations  give  the  rates  of  decrease  of  v  and  w  so  long  as  sliding  is 

taking  place.    Sliding  clearly  ceases  as  soon  as  we  have  u  +  wa  =  0,  for  u  +  wa 
is  the  forward  velocity  of  the  lowest  point  of  the  ring.    From  equations  (c)  and 

(d)  we  have 

—  (D  +  wa)  =  -  2  fig, dt 

and  initially  the  value  of  v  +  ua  is  F+  fla.  The  time  required  to  reduce  v  +  wa 
to  zero  is,  accordingly, 2fig 

After  this  interval  sliding  ceases.  The  velocity  of  the  ring  at  this  instant  is 
given  by 

v=V-fig    .     _, 
lJ-9 

=  l{V-na), 

\    2,ig   ) 

so  that  the  motion  may  be  either  forwards  or  backwards  according  as  we  had 

initially  F  >  or  <  fta.  After  sliding  has  once  ceased  there  is  no  force  tending 

to  start  it  afresh,  so  that  the  ring  simply  rolls  on  with  uniform  velocity  v.  If 

V>ila,  it  rolls  farther  from  its  point  of  projection ;  while  if  V<^a,  it  will 
return  to  the  point  of  projection. 
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EXAMPLES 

1.  The  line  of  hinges  of  a  door  makes  an  angle  a  with  the  vertical,  and  the 

door  swings  about  its  position  of  equilibrium.  Show  that  its  motion  is  the  same 
as  that  of  a  certain  simple  pendulum,  and  find  the  length  of  this  pendulum. 

2.  A  target  consists  of  a  square  plate  of  metal  of  edge  a  and  of  mass  3f, 

hinged  about  its  highest  edge,  which  is  horizontal.  When  at  rest  it  is  struck  by 

an  inelastic  bullet  of  small  mass  m  moving  with  velocity  r,  at  a  point  at  depth  h 

below  the  line  of  hinges.    Find  the  subsequent  motion  of  the  target. 

3.  A  homogeneous  sphere  is  projected  without  rotation  up  a  rough  inclined 
plane  of  inclination  a  and  coefiicient  of  friction  /*.  Show  that  the  time  during 

which  the  sphere  ascends  the  plane  is  the  same  as  if  the  plane  were  smooth,  and 
that  the  time  during  which  the  sphere  slides  stands  to  the  time  during  which  it 
rolls  in  the  ratio  7  /*  :  2  tan  a. 

4.  A  sphere  of  radius  a  is  held  at  rest  at  a  point  on  the  concave  surface  of 
a  spherical  bowl  of  radius  6.  It  is  suddenly  set  free  and  allowed  to  roll  down 

the  surface.  Show  that  the  line  joining  the  centers  of  the  two  spheres  swings 

in  the  same  way  as  a  simple  pendulum  of  length  l{b  —  a). 
5.  A  sphere  of  radius  a  is  held  at  rest  at  the  highest  point  of  the  rough  con- 
vex surface  of  a  sphere  of  radius  6.  It  is  then  set  free  and  allowed  to  roll  down 

this  sphere.  Show  that  the  spheres  will  separate  when  the  line  joining  their 

centers  makes  an  angle  cos-ii^  with  the  vertical.    Examine  the  case  of  6  =  0. 
6.  A  circular  hoop,  which  is  free  to  move  on  a  smooth  horizontal  plane,  has 

sliding  on  it  a  small  ring  of  1/nth  its  mass,  the  coefiBcient  of  friction  between 
the  two  being  fi.  Initially  the  hoop  is  at  rest,  and  the  ring  has  an  angular 
velocity  w  round  the  hoop.    Show  that  the  ring  comes  to  rest  relative  to  the 

hoop  after  a  time   

IX(J} General  Theory  of  Moments  of  Inertia 

Coefficients  of  Inertia 

246.  Suppose  that  a  rigid  body  is  rotating  about  an  axis  of 

rotation  of  which  the  direction  cosines,  referred  to  any  three  fixed 
coordinate  axes,  are  /,  m,  n.  Let  us 

take  any  pomt  0  on  the  axis  of  rota- 

tion for  origin,  and  let  L  be  any  par- 

ticle of  mass  m^,  distant  p  from  the 
axis  of  rotation.  Let  the  coordinates 

of  L  be  X,  y,  z,  and  let  LN{=jp)  be 
the  perpendicular  from  L  on  to  the 

axis  of  rotation.  ^  yig.  148 
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We  have      OL^'^^-^if^-  z\ 
0]Sr'={lx-\-my  +  nzf, 

so  that  f^OL'^-ON'- 
=  o(?^f-[.z^  —  (lx  +  my-{-nzf 

=  a?  (m^  +  n")  +  y'  (n'  +  P)  +  z'  (P  +  m') 
—  2  mn  ■  yz  —  2nl '  zx  —  2lm  •  xy 

=  Z2'(/  +  z")  +m\z'+  x")  +  n"  {x^  +  /) 
—  2  mn  •  yz—2nl  •  zx  —  2hn  '  xy. 

Hence  the  moment  of  inertia,  say  I,  is  given  by 

--  2  77171  ̂ m^yz  —2nl  ̂ m^zx  —  2lm  ̂ m-^xy 

=  PA  +  TTi'B  -\-7i/C-2  mnB  -2nlE-2  ImF,  (124) 

where  A  =  V77ij  [if  +  ̂ ^),  etc., 

Z>  =  '^m-^yz,  etc. 

The  quantities  A,  B,  C  are  seen  to  be  the  moments  of  inertia 

about  the  axes  of  x,  y,  z  respectively.  The  quantities  D,  E^  F  are 

called  products  of  inertia. 

By  giving  different  values  to  /,  7?^,  7^  in  equation  (124),  we  can 

find  the  moment  of  inertia  about  any  line  through  0,  as  soon  as 

we  know  the  values  of  the  six  coefficients  J,  B,  C,  D,  E^  F. 

Ellipsoid  of  Inertia 

247.  The  equation 

Ax^+By''+  C^-2  Dyz-2  Ezx-2Fxy  =  K, 

where  K  is  any  constant,  being  of  the  second  degree,  represents  a 
conicoid.   If  r  is  the  radius  vector  of  direction  cosines  I,  m,  n,  we  have 

""^      r^(AP  -^Bm"  +Cn^-2  Dmn  -2Enl-2  Elm)  =  K, 

or,  from  equation  (124),  7.2__.  (125) 
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Since  /  is  positive  for  all  values  of  I,  m,  n,  it  follows  that  ir^  is" 
positive  for  all  directions  of  the  radius  vector.  Thus  the  conicoid 

is  seen  to  be  an  ellipsoid. 

Tliis  ellipsoid  is  called  the  ellipsoid  of  inertia  of  the  point  0. 

Equation  (125)  may  be  written 

and  now  expresses  that  the  moment  of  inertia  about  any  axis 

through  0  is  inversely  proportional  to  the  square  of  the  parallel 
radius  vector  of  the  ellipsoid  of  inertia. 

Principal  Axes  of  Inertia 

248.  This  physical  property  of  the  ellipsoid  shows  that  the 

ellipsoid  itself  remains  the  same,  no  matter  what  axes  of  coor- 
dmates  are  chosen.  The  ellipsoid  has  three  principal  axes,  which 

are  mutually  at  right  angles.  The  directions  of  these  axes  are  called 

the  principal  axes  of  inertia,  at  the  point  0. 

If  the  principal  axes  of  inertia  at  the  point  0  are  taken  as  axes 

of  coordinates,  then  the  coefficients  of  yz,  zx,  xy  in  the  equation  of 

the  ellipsoid  must  disappear.    Thus  we  must  have 

D  =  E  =  F  =  0. 

Taking  the  principal  axes  of  inertia  at  0  as  axes  of  coordiuates, 

equation  (124)  assumes  the  form 

I=l^A  +  m''B  +  n^C. 

The  kinetic  energy  of  a  rotation  of  angular  velocity  H  is 

1  /0=^  =  1  (PA  +  m'  ̂   +  n^  C)  Q} 

=  l{Aco^+B(o^-h  Ca>|),  (126) 

where  co^,  co^,  co^  are  the  components  of  11  (see  §  232). 
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General  Equations  of  Motion  of  a  Eigid  Body 

249.  Let  0  be  any  point  of  a  rigid  body,  and  let  Ox,  Oy,  Oz  be 

a  set  of  axes  moving  so  that  the  point  0  maintains  its  position  in 

the  rigid  body,  while  the  axes  remain  parallel  to  their  original 

position. 
Let  the  velocity  of  0  have  compo- 

nents u,  V,  w  along  these  axes.    The 

motion  of  the  rigid  body  relative  to 
these  axes  will  be  a  motion  of  rotation 

about  some    axis   OP  which   passes 

through   0.    Let    us    regard   this  as 

compounded  of  rotations  co^,  ©y,  (d^ 
about  the  three  axes. 

Let  X,  y,  z  be  the  coordinates  of  any  point  of  the  rigid  body  rela- 
tive to  these  axes.    The  velocity  of  this  point  relative  to  the  frame 

supplied  by  the  axes  moving  with  0  has  components 

dx  dy  dz 
dt  dt  dt 

while  the  velocity  of  this  frame  in  space  has  components 

u,  V,  w. 

Thus  the  whole  velocity  of  the  point  x,  y,  z  has  components 

dx  dy  dz 
dt  dt  dt 

At  any  instant  let  X,  M,  N  denote  the  sums  of  the  moments  of 

the  external  forces  about  the  axes  of  x,  y,  z  respectively,  so  that,  as 

in  §  243, 

L  =  ̂ {yZ-zY),Qt(,. 

The  moment  of  momentum  of  a  particle  of  mass  m,  at  x,  y,  z, 
about  the  axis  of  a?  is 

m 

W*fj -{'-%)} 
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lX''['i''*s)-i'*fiY'-     <'^'> 

Hence,  by  the  theorem  of  §  243, 

dt 

and  there  are  similar  equations  for  the  other  axes. 

250.  Eelative  to  the  moving  axes  of  coordinates  the  particle  m 

has  coordinates  x,  y,  z,  so  that  a  rotation  (o^  about  Ox  gives  the 

particle  a  velocity  of  components 

Similarly  the  rotations  uiy,  (o^  give  velocities  respectively  of 

components  ^^^^  0^         _  ̂ ^^^ 
and  —  G)^,  co^x^  0. 

Compounding  these  velocities,  we  obtain  as  the  components  of 

the  resultant  velocity,  relative  to  the  axes, 

dx 

dy 

dz 

and  on  differentiation  of  this  equation  with  respect  to  t,  we  obtain 

as  the  value  of  part  of  the  left-hand  member  of  equation  (12T) 

d  ,^r-\[     I    dz 
It       ̂       ̂  

dco,^     ̂ r-\  d(o,,     ,r-\  do)^ 
— -^  —  >  m  xy  — -^  —  ymxz  —-^ 
dt       ̂        -^   dt       ̂   dt 

—^m  yz{(Dl  —  ft)/)  +^m(?/2  —  z')(Oy(o^ 

—^in  zx  (OyCO^  +^m  xy  w^co^ 

dt  dt  dt 

-  D{co^  -  wl)  ~{B-C)  ftj^ft),  -  ̂ ft)^ft),  +  i^ft>^ft). 

t[' ['%-'%)] 
=2)m  {f  +  ̂ )-7f  ~^rn  xy  —f  -^m  xz 



306  MOTION  OF  EIGID  BODIES 

251.  Let  X,  y,  z  be  the  coordinates  of  the  center  of  gravity  of 
the  rigid  body,  and  let  M  be  its  total  mass.    Then 

Vmo?  =Mx^  etc. 

As  the  value  of  the  remaining  part  of  the  left-hand  member  of 
equation  (J.  2  7)  we  now  have 

—  V  m  [yw  ~  ̂ '^]  =  -r  {^yw  —  Mzv) at  ctt 

^  =  M—(yw  —  zv). 
0 

Thus  equation  (127)  now  assumes  the  form 

-{B-C)  (Oy(o^  -  EcOyCo^  +  F(o^(D^  =  L.         (128) 

If  2^X,  ̂ Y,  Z^Z  denote  the  total  components  along  the  axes, 
we  have,  by  §  180,  the  further  equations 

Equations  (128)  and  (129)  and  the  two  other  pairs  of  equations 

corresponding  to  the  two  other  axes  are  the  equations  of  motion 

for  a  rigid  body  moving  under  any  forces. 

Euler's  Equations 

252.  Let  us  now  suppose  that  we  have  a  second  set  of  axes, 

which  we  shall  denote  by  1,  2,  3.  Let  these  axes  move  so  as 

always  to  retain  the  same  position  in  the  rigid  body,  the  point  0 

(which  we  have  already  supposed  always  to  retain  the  same  posi- 

tion in  the  rigid  body)  being  the  origin.  Let  the  axes  1,  2,  3  coin- 
cide with  the  axes  x,  y,  z  at  the  instant  under  consideration.  Then 

the  values  of  the  coefficients  of  inertia  referred  to  axes  1,  2,  3  are 

the  same  as  those  referred  to  axes  x,  y,  z,  namely  A,  B,  C,  D,  E,  F. 
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Moreover,  all  velocities  referred  to  axes  1,  2,  3  have  the  same  val- 
ues as  they  would  have  if  referred  to  axes  x,  y,  z.  Let  us  denote 

the  rotations  about  the  axes  1,  2,  3  by  oj^,  cOg,  (Wg*  ̂ ^^^  ̂ ^  ̂ he 
instant  under  consideration  we  shall  have 

«i=«x^  <»2=n^  ««3=«c- 

This  is  not  necessarily  true  at  any  instant  except  the  instant  at 

which  the  axes  coincide,  so  that  it  is  not  permissible  to  differen- 
tiate these  equations  with  respect  to  the  time  and  deduce  that 

— -=  — 2=,  etc. 
dt        dt 

Nevertheless,  it  can  be  shown  that  this  last  result  is  true  at  the 

instant  under  consideration.  Let  OQ  denote  any  line  through  0, 

let  cos  a,  cos  /3,  cos  7  be  its  direction  cosines  relative  to  axes  1,  2,  3, 

and  let  fl^  be  the  component  of  angular  velocity  about  OQ.  If  the 
resultant  angular  velocity  is  one  of  amount  XI  about  an  axis  OP 
of  which  the  direction  cosines  referred  to  axes  1,  2,  3  are  /,  m,  ?i, 
then  we  have 

n^=ncosPO^ 

=  il(l  cos  a  -\-  m  cos^-h  n  cos'Ja) 
=  G)j  cos  a  -}-  co^  cos  y8  +  ®3  cos  7. 

Whatever  line  OQ  may  be,  this  equation  is  always  true ;  hence  we 

may  legitimately  differentiate  it  with  respect  to  the  time,  and  so 
obtain 

dn„      d(o.  ,   d(o„        ̂   ,   dco^ 
—-2  =  — -^  cos  a  +  —~  cos  p  -h  — -^  cos  7 
dt         dt  dt  dt  ' 

da  -     ryd^  .       dy        ,.or\\ 

_,^sma--a,,sin^--a,,sm7^.       (130) 

Now  let  the  line  0^  be  supposed  to  coincide  with  Ox,  so  that 

n^  =  (o^.  At  the  instant  under  consideration,  /3=j  =  —>a  =  0. 

Moreover,  — -  is  the  rate  at  which  the  angle  between  Ox  and  axis 
7  7 

1  increases,  and  clearly  this  is  co^.    Similarly,  —  =—  co„  and  —  =  0. aL  at 
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Making  all  these  substitutions,  we  find  that  at  the  moment  under 

consideration,  at  which  the  two  sets  of  axes  coincide,  equation  (130) 
assumes  the  form 

dt        dt 

_  ̂^1 

0)2-  0)3+ 0)3.  ©2 

dt 

Thus  at  the  instant  at  which  the  two  sets  of  axes  coincide,  we 
have  the  relations 

^x  —  ̂ v  ®tc., 

1     1  dcD^       day. 
and  also  — ~  =  — ^  • dt         dt 

Let  us  introduce  the  further  simplification  of  supposing  that  the 

origin  is  either  a  fixed  point  or  the  center  of  gravity  of  the  body. 
In  the  former  case  we  have 

u  =  v  =  w  =  0,  always ; 
in  the  latter  case 

x  =  y  =  z=  0,  always. 

Let  us  further  suppose  that  the  axes  are  chosen  to  be  the  prin- 
cipal axes  of  inertia  through  the  origin,  so  that 

Introducing  all  these  simplifications  into  equation  (128)  and  the 
two  similar  equations,  we  find  that  these  assume  the  form 

a'^-(B-C)co,co,=L,  (131) 

b'^-{C-A)w,o>^=M,  (132) ctz 

C^-(A-B)a>,(o^=]V.  (133) 

These  equations  are  known  as  Euler's  equations. 
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Rotation  of  a  Planet 

253.  As  a  first  example  of  the  use  of  these  equations,  let  us 

examine  the  motion  of  a  rigid  body,  symmetrical  about  an  axis, 

acted  on  by  forces  all  of  which  pass  through  the  center  of  gravity. 

These  conditions  approximately  represent  those  which  obtain  when 

a  planet  moves  in  its  orbit,  or  a  star  in  space. 

Let  us  take  the  center  of  gravity  as  origin  and  the  axis  of  sym- 
metry as  axis  1.  Let  the  moments  of  inertia  be  A,  B,  B.  Then  the 

equations  of  motion  are 

^|.  =  0.  (134) 

b'^  =  {B-A)w,<o„  (135) 

B^  =  -{B-A)w^a,^.  (136) 

The  first  equation  gives  at  once  that  (o^  is  constant,  say  equal 
to  H.    If  we  write  „ 

B 

equations  (135)  and  (136)  become 

ft  -"■'''  (137) 

^^  =  -.0...  (138) 

Thus  -— ^  =  k  — ^  =  —  ̂ ^a}2, de  dt 

of  which  the  solution  is     (^^=E  cos  Qit  +  e) ; 

and  equation  (137)  now  leads  at  once  to 

©3  =  —  j^^sin  (kt  +  e). 

Thus  the  components  of  angular  velocity  at  the  instant  t  are 

n,         ̂   cos  Qzt  +  €),      -  E  sin  (kt  +  e), 
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and  we  see  that  the  axis  of  rotation  describes  a  cone  in  the  solid, 

.    T   27r         2'Tr     B 
with  period  ——  or  — —  —    • 

A;  12    B—A 

If  B  is  very  nearly  equal  to  A,  the  period  may  be  very  great, 

and  the  motion  consequently  very  slow.  This  happens  m  the  case 

of  the  earth :  the  motioji  of  the  axis  of  rotation  gives  rise  to  the 

phenomenon:  known  as  the  variation  of  latitude,  of  which   the 

period  is  about  428  days.    Since  a  period  — —  represents  roughly 
B—A 

one  day,  we  conclude  that  for  the  earth   is  of  the  order  of  ̂ |g. 

The  true  value  of  this  quantity  is  .00328,  the  discrepancy  resulting  from 
the  imperfect  rigidity  of  the  earth. 

Motion  of  a  Top 

254.  As  a  second  example  of  the  methods  of  this  chapter,  let  us 

consider  the  motion  of  a  spinnmg  top.  This  we  shall  suppose  to 

be  a  solid  of  revolution  spinning  on  a  peg  of  which  the  end  will  be 

treated  as  a  point,  the  contact  between 

the  peg  and  the  surface  on  which  it 

rests  being  assumed  rough  enough  to 

prevent  slipping.  The  point  of  contact 
is  now  a  fixed  point  0.  Let  us  take 

axes  Ox,  Oy,  Oz  fixed  in  space,  the  axis 

of  z  being  vertical,  and  also  axes  1,  2,  3 

fixed  in  the  body,  and  coinciding  with 
the  principal  axes  of  inertia  through  0. 

Fig.  150  -r  •      -.    ,         i  •        p  ^ 
Let  axis  1  be  the  axis  of  symmetry  of 

the  top,  and  let  the  moments  of  inertia  about  axes  1,  2, 3  be  ̂ ,  By  B. 

The  first  of  Euler's  equations  becomes 

at 

since  B  =  C  and  i  =  0.    Thus  co^  is  a  constant,  say  H. 
Let  the  axis  of  the  top  cut  a  unit  sphere  about  0  at  a  point  whose 

polar  coordinates  are  1,  0,  (f>,  the  axis  of  Oz  being  taken  for  pole,  so 

that  6  is  the  angle  between  the  vertical  and  the  axis  of  the  top. 
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The  kinetic  energy  of  the  top  is,  by  §  248, 

while  the  potential  energy  is  Mgh  cos  6,  where  h  is  the  distance 

of  the  center  of  gravity  of  the  top  from  0.    Thus  the  equation  of 

energy  is 

An^ -\-B{col  +  a)l)  +  2 Mgh  cos d  =  E,  (139) 

where  ̂   is  a  constant.  Tliis  may  be  put  iato  a  different  form. 

For  (ol  4-  0)3  is  the  square  of  the  angular  velocity  of  the  axis  of 
the  top :  it  is  therefore  the  square  of  the  actual  velocity  of  the 

point  1,  ̂,  (/)  on  the  unit  sphere,  and  hence  we  have 

ft)2  +  o)^  =  (  —  )  4-  sm^  ̂   I  -r-    • '        '      \dt)  \dt) 

The  equation  of  energy  now  assumes  the  form 

An^  +  B  r(^ )V  sin^ e  /^y  1  +  2  Mgh  cos e=E.     (140) 

We  can  obtain  a  third  equation  from  the  fact  that  the  angular 

momentum  about  Oz,  the  vertical,  is  constant.  The  angular  momen- 
tum may  be  regarded  as  compounded  of 

(a)  the  momentum  due  to  the  rotation  12  about  axis  3 ; 

(h)  the  momentum  due  to  tlie  motion  of  the  axis  of  the  top. 

The  rotation  li  about  axis  3  may  be  further  decomposed  into 

rotations  11  cos  6,  H  sin  6  about  the  horizontal  and  vertical,  giving 
moments  of  momenta  A£L  cos  ̂ ,  A^  sin  d  about  the  horizontal  and 

vertical.  Tlius  the  moment  of  momentum  contributed  by  part  (a) 
is  AQ,  cos  6. 

The  motion  of  the  axis  of  the  top  may  be  resolved  into  a  rota- 

tion of  angular  velocity  sin  6  — ^  about  an  axis  making  an  angle 

7/J 

—  —  ̂   with  the  vertical,  and  one  of  angular  velocity  —-  about  a 
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horizontal  axis.    The  former  may  be  replaced  by  sin^O-^  about 

the  vertical,  and  sin  0  cos6  -^  about  a  horizontal  axis.    Thus  the at 

moment  of  momentum  about  the  vertical  contributed  by  part  (h) 
of  the  motion  is  7 , 

dt  ' 

and 
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Jft  cos  (9  + J5  sm^  e^  =  G.  (141) (Xt 

If  we  eliminate  -j-  from  tliis  equation  and  equation  (140),  we 
obtain 

B  ̂ m'e\A£l''-\-B(^^+2Mgh  cos  e-E\ 
+  (G^-^n  cos  19)2  =  0,  (142) 

a  differential  equation  giving  the  variations  in  the  value  of  6,  and 

therefore  allowing  us  to  trace  the  changes  in  the  inclination  of  the 

axis  of  the  top  to  the  vertical. 

The  maxima  and  minima  of  6  are  given  by  putting  —  =  0,  and 
are  therefore  the  roots  of 

^  (1  -  cos'  6)  [AD:^  +  2  Mgh  cos  d-E] 
-^{G-AQ.  cos  (9)2  =  0.     (143) 

Let  us  call  the  left  hand  of  this  equation /(cos  6).  Since/  is  a 

function  of  degree  three,  there  wiU  be  three  roots  for  cos  6.  Let 

us  suppose  that  the  top  is  started  at  an  angle  6  =  6^,  and  with  the 

value  of  -—  equal  to  ( -7-  )•    Then,  from  equation  (142), 

B  sm'  6,  Ln^  +  ̂   /^  Y  +  2  3Igh  cos  6,  -  ̂ "'l 
4-(G^-^ncosl9/  =  0, 

so  that       /  (cos  (9,)  =  B  sin'  6,  [Aa^+2  Mgh  cos  6,  -  E] 
-{- (G  -  An  cos  e^y 

—  —B^  sm'  ̂ 0 1  -^     » 
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when  cos  ̂   =  +  oo, 

when  cos  6=1, 

when  cos  0=  cos  6^, 

when  cos  6=  —  1. 

so  that /(cos  d^)  is  negative.    We  easily  find,  from  equation  (143), 
that 

so  that /(I)  is  positive. 

Again,  f{-l)  =  {G+Anf, 

so  that/(—  1)  is  positive,  and 

/(+x)  =  -2.%A2?(+cc)^ 

wliich  is  negative.    Thus  we  have  seen  that 

/(cos  6/)  is-; 
/(cos  ̂ )  is  +  ; 

/(cos  6>)  is  -  ; 

/(cos  ̂ )  is  +. 

Thus  the  three  roots  of  the  cubic /(cos  ̂ )  =  0  he  as  follows : 

a  root  6=6^  between  cos  0=1  and  cos  6  =  cos  6^ ; 

a  root  0=^2  between  cos  9  =  cos  6^  and  cos  6=  —  1; 

a  root  for  wliich  cos  0  is  numerically  greater  than  unity,  giving 
no  real  value  for  0. 

We  see,  therefore,  that 

the  only  pomts  at  which 

-—  can  vanish  are  0=6,, 

and  0  =  6^.    Moreover,  at 

these  points  —  vanishes, 

and  as  there  are  not  co- 
incident   roots    at    either 

point  —  changes  sign  on 

reaching  these  points,  so  that  6  can  range  only  between  the  values 

0^  and  0^. 

Thus  the  axis  of  the  top  oscillates  between  the  two  cones  0=0^ 

and  (9  =6^2. 
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255.  Let  us  find  what  is  the  least  angular  momentum  which  the 

top  must  have  so  as  to  spin  without  falling  over.  To  do  this,  we 

may  assume  that  falling  will  occur  if  ever  6  exceeds  a  certain  limit 

^3,  either  through  the  peg  slipping  or  through  its  side  touching 
the  ground.  The  condition  that  the  top  shall  not  fall  over  is  that 

^2  must  be  less  than  6^,  and  hence  that  /(cos  ̂ 3)  must  be  positive. 
Thus  the  values  of  E,  G,  and  H  must  be  such  that 

B  sin^  6>3  (^II^  +  2  Mgli  cos  0.^- E) -^  {G -A^  cos  B^'' 

is  positive. 

Suppose  that  the  top  is  started  at  an  iaclination  0^  to  the  ver- 
tical, having  no  motion  except  one  of  rotation  11  about  its  axis. 

We  then  have,  from  equations  (140)  and  (141), 

E  =  Aa^  +  2  Mgh  cos  0^, 

G=Aa  cos  e^. 
Thus 

/(cos  6^3)  =  B  sin'^  ̂ 3  U^""  +  2  Mgh  go^O^- E)  +  {G- AQ.  cos  d^f 

=  ̂   sin'  (93 .  2  Mgh  (cos  6^  -  cos  6^)  +  A^^  (cos  0^  -  cos  0^y 

=  (cos  6^3  -  cos  0^)  [2  MghB  sin=^  0^  +  A^n^  (cos  0,  -  cos  0^)]. 
(144) 

SiQce  the  top  is  necessarily  started  in  a  position  iu  which  it  can 

spin,  the  value  of  cos  0^  —  cos  ̂ ^  is  necessarily  negative.  Thus  in 
order  that  /(cos  ̂ 3)  may  be  positive,  we  must  have 

A^n^  (cos  0^  -  cos  0,)  -  2  MghB  sm'  0^  (145) 

„„  2  MghB  sin'  ̂ „  '  ...  ̂ , 
positive,  or  a^>_,_L_^.  (146) 

We  notice  that  if  A  is  very  small,  the  value  of  12  required  to 

keep  the  top  from  falling  is  very  large.  It  is  therefore  very  hard 

to  spiQ  a  top  of  small  cross  section,  such  as  a  lead  pencil  or  a 

pointed  wire. 

If  we  can  choose  the  angle  at  which  we  start  the  top,  cos  0q  is 

at  our  disposal    We  see  that  the  necessary  value  for  £1  is  least 
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when  cos  Oq  is  a  maximum,  i.e.  when  the  top  is  started  vertical. 

In  this  case  the  top  will  spin  if 

2  iMghB  sin' d, 

A' {1- cose,)' 

or  if  ^,^2MghBil+coses)^ 

A  ̂ 

256.  In  general,  for  a  top  started  vertically  and  with  no  velocity 

except  one  of  pure  rotation  about  its  axis,  we  find,  on  putting 

cos  ̂ 0  =  1  in  equation  (144), 

/  (cos  0)  =  {1-  cos  ef  [^2Q2  _  2  MghB (1  +  cos  6)]. 

The  roots  of  the  equation /(cos  6)  =  0  are 

Let  us  write         ̂ l  — 

then  when  O^  =  Hq,  the  roots  are 

cos  ̂   =  +  1,  +1,  +  1. 

When  n^  >  nj  the  third  root  is  greater  than  unity,  and  when 

H^  <  XIq  the  third  root  is  less  than  unity,  say  cos  0  =  cos  @, 
where  0  is  a  real  angle,  given  by 

Thus,  as  long  as  Q.'  >  D^l  the  oscillations  are  confined  within 
the  coincident  limits  ̂   =  0  and  ̂   =  0,  so  that  the  top  remains 

vertical,  but  as  soon  as  we  have  H^  <  H^  the  oscillations  are 
between  the  limits  ̂   =  0  and  6  =  S. 

Suppose  we  start  a  top  with  angular  velocity  11  greater  than  Qq, 

so  that  at  first  its  axis  is  vertical  and  the  only  motion  of  the  top 
is  one  of  rotation  about  its  axis.  Then  the  real  roots  for  6  are 

0,  0 ;  there  is  therefore  no  range  of  oscillations,  and  the  axis  of 
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the  top  remains  strictly  vertical,  —  in  common  language,  the  top 

is  "  asleep." 
If  the  conditions  were  the  ideal  conditions  supposed,  this  motion 

would  continue  forever,  but  in  nature  such  ideal  conditions  can- 

not exist.  The  region  of  contact  between  the  peg  and  the  surface 

on  which  it  spins  is  not  strictly  a  point,  but  a  small  circle  or 

ellipse,  on  account  of  the  small  compression  which  takes  place  at 

the  point  of  contact.  By  making  the  peg  of  hard  steel  and  spin- 
ning on  a  hard  surface,  this  region  is  very  small,  but  is  still  of 

finite  dimensions.  The  consequence  is  that  the  reactions  on  the 

peg  do  not  all  meet  the  axis.  There  is  a  small  frictional  couple 

resisting  the  rotation  of  the  top,  and  H  gradually  decreases. 

When  fl  has  so  far  decreased  as  to  be  less  than  O^,  the  ranges 

of  oscillation  are  ̂   =  0  and  ̂   =  (8).  The  top  is  no  longer  asleep, 
but  is  now  wobbling  through  an  angle  0.  As  fl  continues  to 

decrease,  S  continually  increases,  as  is  clear  from  equation  (147), 

and  finally  0  reaches  so  large  a  value  that  the  top  rolls  against 

the  ground  and  so  falls  over. 

257.  The  interest  of  these  results  will  perhaps  be  enhanced  by  exam- 
ining the  form  they  assume  when  the  top  is  of  a  very  simple  kind. 

Let  us  suppose  that  a  top  is  formed  by  running 

a  pin  through  the  center  of  a  uniform  disk  of 

mass-  M,  radius  a.  Let  the  length  of  the  pin 
which   protrudes   through  the  disk  on  its  lower 

side    he-  h,    and    let    the    mass    of    the    pin    be 
Fig  15*^ neglected  in  comparison  with  that  of  the  disk. 

The  h  is  the  same  as  the  h  of  our  previous  analysis.  The  values  of 

^  and  5  are  A^^AIcfi,         B  =  \Ma\ 

so  that  ft  I  -    ^^  ■ 

A-'
 

When  spinning  at  the  critical  velocity  Oo  ̂t  which  wobbling  sets  in,  the 

velocity  of  a  point  on  the  rim  is  Oo^  o^  2  "^/^.  Thus  wobbling  begins  when 
the  velocity  of  a  point  on  the  rim  is  reduced  to  2  V^,  a  velocity  which 

depends  only  on  the  height  of  the  disk  and  not  on  its  radius.  We  see  that 

the  lower  the  disk  is,  the  slower  it  can  spin  without  wobbling.  If  we  take 

A  =  2  inches,  M^e  find  that  wobbling  begins  when  the  rim  velocity  is  about 
4.7  feet  a  second. 
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The  rim  will  touch  the  ground  when  the  range  of  wobbling  is  given  by 

tan®  =  -,  and  after  this  the  top  will  roll  on  the  ground-    If  we  take a 

a  =  6  inches  and  h  =  2  inches,  as  before,  this  gives  tan©  =  J,  so  that 
3  n^  — O^  19 

cos©  =  — =-  and  —^   =  .106, approximately.    Thus  12=— -Oq,  roughly. 
VlO  ^l  20 

Thus  such  a  top  will  <'  sleep  "  until  its  rim  velocity  is  reduced  to  4.7  feet 
a  second.  After  this  it  will  wobble,  and  as  soon  as  its  rim  velocity  is 

reduced  to  about  4.5  feet  a  second  the  top  will  begin  to  roll  on  the  ground. 

For  an  ordinary  small,  pear-shaped  peg  top  we  may  take  roughly  h  =  \\ 
inches  j  and  the  radii  of  gyration  about  axes  through  the  point  of  contact 

as  f  inch  and  2  inches.    Thus  in  inches 

,      4  Mfjh  B      2048 

Taking  g  =  386  inches  per  second  per  second,  this  gives  Qq  =  170  revolu- 
tions per  second.  If  thrown  from  a  string  of  which  the  end  is  coiled  round 

the  top  in  circles  of  radius  1  inch,  the  string  must  be  withdrawn  with  a 

velocity  of  about  60  miles  an  hour  relative  to  the  top  to  set  up  the  required 

angular  velocity. 

GENERAL  EXAMPLES 

1.  A  fly  wheel  whose  moment  of  inertia  is  /  has  a  string  wound  round 

its  axle  of  radius  h.  A  tension  equal  to  a  weight  iv  is  applied  to  the  string 
for  1  second.  What  is  the  angular  velocity  of  the  fly  wheel  at  the  end  of 
1  second? 

2.  A  fleet  of  total  displacement  200,000  tons  steams  from  east  to  west 

along  the  equator,  covering  20  minutes  of  longitude  per  hour.  Regarding 

the  earth  as  a  homogeneous  sphere  of  mass  6  x  lO^i  tons,  find  the  change 

in  the  earth's  angular  velocity  produced  by  the  motion  of  the  fleet.  Show 
that  the  day  is  lengthened  by,  roughly,  16  x  10"^^  seconds. 

3.  The  earth's  mass  is  6  x  lO^i  tons,  and  icebergs  and  melted  snow 
weighing  10^^  tons  move  from  the  north  pole  to  latitude  45  degrees.  Find 
the  change  in  the  length  of  the  day. 

4.  A  train  of  mass  m  runs  due  north  at  60  miles  an  hour.  Show  that 

there  must  be  a  pressure  between  the  eastern  rail  and  the  flanges  of  the 

wheel  in  consequence  of  the  earth's  rotation,  and  find  the  amount  of 
the  pressure. 

5.  A  thin  layer  of  dust,  thickness  li  feet,  is  formed  on  the  earth  by 
the  fall  of  meteors,  reaching  the  earth  from  all  directions.    Show  that  the 
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change  in  the  length  of  a  day  is  about  — —  of  a  day,  where  a  is  the  radius 

of  the  earth  in  feet  and  D,  p  are  the  density  of  the  earth  and  the  meteoric 
dust  respectively. 

6.  Two  masses  M  and  m  suspended  from  a  wheel  and  axle  of  radii 
a,  h  do  not  balance.    Show  that  the  acceleration  of  M  is 

Ma  —  mh 

Ma'  +  mh^  +  /  ̂̂ ' where  /  is  the  moment  of  inertia  of  the  machine  about  its  axis. 

7.  A  uniform  cylinder  has  coiled  round  its  central  section  a  light,  per- 
fectly flexible,  inextensible  string.  One  end  of  the  string  is  attached  to  a 

fixed  point,  and  the  cylinder  is  allowed  to  fall.  Show  that  it  will  fall  with 
acceleration  |  g. 

8.  Two  equal  uniform  rods  of  length  2  a,  loosely  joined  at  one  extremity, 

a  V2 are  placed  symmetrically  upon  a  fixed  sphere  of  radius    and  raised 

into  a  horizontal  position  so  that  the  hinge  is  touching  the  sphere.  They 
are  then  allowed  to  descend.  Show  that  when  they  are  first  at  rest  they 

are  inclined  at  an  angle  cos~^^  to  the  horizontal,  that  the  pressure  on  the 
sphere  at  each  point  of  contact  is  one  quarter  of  the  weight  of  a  rod,  and 
that  there  is  no  strain  at  the  joint. 

9.  A  rod  rests  with  one  extremity  on  a  smooth  horizontal  plane  and  the 
other  on  a  smooth  vertical  wall,  the  rod  being  inclined  at  an  angle  a  to 
the  horizon.  If  it  is  allowed  to  slip  down,  show  that  it  will  separate  from 

the  wall  when  its  inclination  to  the  horizontal  is  sin-^  (|  sinct). 

10.  If  the  sun  gradually  contracts  in  such  a  way  as  always  to  remain 
similar  to  itself  in  constitution  and  form,  show  that  when  every  radius  has 
contracted  an  nth  part  of  its  length,  where  n  is  large,  the  angular  velocity 

will  have  increased  to  ( 1  +  -I  times  its  former  value.    Examine  the  change 

in  the  kinetic  energy  of  rotation. 

.11.  An  elastic  band  of  natural  length  2  7ra,  mass  m,  modulus  X,  rests 
against  a  rough  wheel  of  radius  a  in  a  horizontal  plane.  The  string  is  held 

against  the  circumference  of  the  wheel,  which  is  made  to  rotate  with  angu- 
lar velocity  O.    If  the  string  is  left  to  itself,  show  that  it  will  expand,  and 

that  when  its  radius  is  r  its  angular  velocity  will  be   ,  and  that  its  radial 
velocity  will  be 

L  r2    ̂   -^  ma         A 
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12.  A  uniform  triangular  disk  ABC  is  so  supported  that  it  can  oscillate 

in  its  own  plane,  which  is  vertical,  about  A.  Show  that  the  length  of  the 

simple  equivalent  pendulum  is 

1     8  (h^  +  f  2)  -  a2 

4  V2(62  4-c2)-a2 

13.  A  spherical  hollow  of  radius  a  is  made  in  a  cube  of  glass  of  mass  M, 

and  a  particle  of  mass  m  is  placed  inside.  The  cube  is  then  projected  with 

velocity  F  on  a  smooth  horizontal  plane.  If  the  particle  just  gets  round 

the  sphere,  remaining  in  contact  with  it  all  the  way,  show  that 

P  2  ̂  o  cry/  +  4  «(7  —  . 

14.  Three  equal  particles  are  attached  to  the  ends  and  middle  point  of  a 

rod  of  negligible  mass,  and  one  of  the  end  particles  is  struck  by  a  blow  at 

right  angles  to  the  rod.  Show  that  the  velocities  of  the  particles  at  starting 

are  in  the  ratio  ^    ̂ ^  ̂  

15.  A  rough  horizontal  cylinder  of  mass  M  and  radius  a  is  free  to  turn 

about  its  axis.  Round  it  is  coiled  a  string,  to  the  free  extremity  of  which 

is  attached  a  chain  of  mass  m  and  length  I.  The  chain  is  gathered  close 

up  and  then  let  go.  Show  that  if  6  is  the  angle  through  which  the  cylinder 

has  turned  after  a  time  t  before  the  chain  is  fully  stretched,  then 

Mad  =  j(^fjf'-adJ 

16.  A  uniform  flat  circular  disk  is  projected  on  a  rough  horizontal  table, 

the  friction  on  any  element  moving  with  velocity  V  being  cV^  x  (mass  of 
element),  in  a  direction  opposite  to  that  of  V.  Find  the  path  of  the  center 
of  the  disk. 



CHAPTER  XII 

GENERALIZED  COORDINATES 

258.  So  far  we  have  dealt  with  the  mechanics  (dynamics  and 

statics)  of  material  bodies  on  the  supposition  that  these  bodies 

consist  of  innumerable  small  particles  wliich,  in  the  case  of  a  rigid 

body,  are  held  firmly  in  position  and  serve  the  purpose  of  trans- 
mitting force  from  one  part  of  the  body  to  another. 

259.  Even  when  dealing  with  rigid  bodies  this  conception  of  the 

structure  of  matter  has  not  led  to  entirely  consistent  results.  For 

instance,  we  have  found  that  after  an  .impact  between  two  im- 
perfectly elastic  bodies,  or  after  sliding  between  two  imperfectly 

smooth  bodies,  a  certain  amount  of  energy  disappears  from  view, 

and  we  have  had  to  suppose  that  this  energ}^  is  used  m  starting 
small  motions,  relative  to  one  another,  of  the  ultimate  particles  of 

which  the  bodies  are  composed.  In  other  words,  after  an  impact 

or  shding  has  taken  place,  a  rigid  body  can  no  longer  be  supposed 

to  satisfy  the  conditions  postulated  for  a  rigid  body. 

When  dealing  with  bodies  which  are  obviously  not  rigid  the  case 

is  worse.  Here  the  conceptions  which  we  have  introduced  into  the 

study  of  rigid  bodies  do  not  help  at  all,  and  very  little  progress  is 

possible  without  introducing  some  other  conceptions  to  replace  these. 

260.  There  are  two  ways  of  proceedmg  at  this  stage.  We  may 

introduce  new  conceptions  which  seem  plausible,  and  in  this  way 

try  to  form  a  picture  of  the  structure  of  the  matter  with  which  we 

are  dealing.  We  cannot  be  certain  that  the  results  obtained  in.  this 

way  will  be  true,  for  we  can  never  be  sure  that  our  conceptions  of 
tlie  nature  of  the  ultimate  structure  of  matter  are  accurate.  But 

it  may  be  worth  trying  what  results  are  obtained  by.introducing  a 

set  of  provisional  conceptions  as  to  the  structure  of  matter.  If 

these  results  are  in  agreement  with  the  phenomena  observed  in 
320 
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nature,  the  probability  that  our  provisional  conceptions  are  near  to 

the  truth  is  strengthened.  If,  on  the  contrary,  the  results  obtained 

are  not  found  to  agree  with  what  is  observed  in  nature,  the  pro- 
visional conceptions  from  which  these  results  have  been  deduced 

must  be  either  modified  or  withdrawn. 

Different  sets  of  conceptions  as  to  the  structure  of  the  matter 

dealt  with  will  lead  to  different  branches  of  mathematical  physics. 

As  instances  of  such  branches  of  mathematical  physics  may  be 

mentioned  the  theory  of  elastic  solids  which  is  based  upon  certain 

provisional  conceptions  as  to  the  behavior  of  the  particles  of 

which  solid  bodies  are  composed,  and  the  kinetic  theory  of  gases 

which  is  based  upon  certain  provisional  conceptions  as  to  the 

behavior  of  the  particles  of  a  gas.  The  tracmg  out  of  the  conse- 

quences of  different  sets  of  provisional  conceptions  as  to  the  struc- 
ture of  matter  cannot,  however,  be  regarded  as  coming  within  the 

scope  of  a  book  such  as  the  present  one. 

261.  There  is,  however,  an  alternative  way  of  proceedmg.  We 

have  taken  Newton's  laws  of  motion  as  the  material  supplied  by 
experimental  science  for  theoretical  science  to  work  upon.  The 

truth  of  these  laws  as  applied  to  the  ultimate  particles  of  the 

material  universe  is  by  no  means  certain,  because  we  cannot  obtain 

the  ultimate  particles  to  experiment  upon.  Suppose,  however,  that 

we  examine  whether  any  further  progress  can  be  made  in  the 

study  of  mechanics  without  introducing  any  hypothesis  beyond 

the  single  one  (admittedly  uncertain)  that  Newton's  laws  apply  to 
the  ultimate  particles.  If  we  can  make  progress  in  this  direction, 

the  results  obtained  will  of  course  apply  to  all  further  extensions 

of  mechanics,  whether  or  not  additional  hypotheses  are  introduced 

as  to  the  nature  and  arrangement  of  the  ultimate  particles. 

262.  The  standpoint  from  which  we  are  regarding  the  matter 

can,  perhaps,  be  explained  by  an  analogy,  first  suggested  by  Pro- 

fessor Clerk  Maxwell.  Suppose  that  we  have  a  complicated  ma- 

chine in  a  closed  room,  and  that  the  only  connection  between 

this  machine  and  the  outer  world  is  by  means  of  a  number  of 

ropes  which  hang  through  holes  in  the  floor  into  the  room  beneath. 
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A  man  introduced  into  the  room  beneath  will  have  no  opportunity 

of  inspecting  the  machinery  above,  but  he  can  manipulate  it  to  a 

certain  extent  by  pulling  the  different  ropes.  If  on  puUmg  one 

rope  he  finds  that  the  others  are  set  into  motion,  he  will  under- 
stand that  the  different  ropes  must  be  connected  above  by  some 

kind  of  mechanism,  but  will  not  be  able  to  discover  the  exact 
nature  of  the  mechanism. 

This  concealed  mechanism  may  be  supposed  to  represent  those 

parts  of  the  mechanism  of  the  universe  which  are  hidden  from  our 

view,  while  the  ropes  represent  those  parts  which  we  can  manipu- 

late. In  nature,  there  are  certain  acts  which  we  can  perform,  cor- 
responding to  the  pulling  of  the  ropes  in  our  analogy,  and  we  see 

that  these  are  followed  by  certain  consequences,  analogous  to  the 

motion  of  the  other  ropes ;  but  the  ultimate  mechanism  by  which 

the  cause  produces  the  effect  remams  entirely  unknown  to  us. 

For  instance,  if  we  press  the  key  of  an  electric  circuit,  we  may 

find  that  the  needle  of  a  distant  galvanometer  is  moved,  but  the 

mechanical  processes  which  transmit  the  action  through  the  wires 

of  the  circuit  and  through  the  ether  surrounding  the  galvanometer 
needle  remain  unknown. 

263.  Now  suppose  that  the  imaginary  man  is  at  liberty  to  handle 

the  ropes  and  that  he  wishes  to  study  the  connection  between  them. 

He  may  begin  by  conjecturing  that  the  connecting  mechanism  in 

the  room  above  consists  of  arrangements  of,  say,  levers,  pulleys,  and 

cogwheels,  and  he  may  work  out  for  himself  the  manner  in  which 

the  ropes  ought  to  move  if  his  conjectures  are  correct.  This  proced- 
ure would  be  analogous  to  that  we  have  described  in  §  260;  it  is 

not  the  procedure  we  are  going  to  follow  here. 

On  the  other  hand,  without  any  conjecture  at  all  as  to  the 
nature  of  the  mechanism  above,  the  man  will  know  that  certain 

laws  will  govern  any  manipulation  of  the  ropes,  if  the  ropes  are 

connected  by  mechanism  of  any  kind  whatever,  such  that  each 

particle  obeys  Newton's  laws  of  motion. 
To  explain  this,  let  us  take  the  simplest  case,  and  suppose  that 

there  are  two  ropes  only  and  that  when  A  is  pulled  down  half  an 
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inch,  then  B  invariably  rises  through  two  inches.  The  mechanism 

may  be  a  lever,  an  arrangement  of  pulleys,  or  clockwork.  But 
whether  it  is  any  one  of  these,  or  something  entirely  different  from 

any  of  them,  it  will  be  known  that  the  motion  of  rope  A  down- 
wards can  be  restrained  by  exertiug  on  rope  B  a  force  equal  to  half 

of  that  applied  to  A.  This  fact  follows  from  the  priuciple  of  virtual 

work,  quite  apart  from  any  conjecture  as  to  the  nature  of  the 

hidden  mechanism.  Now  the  question  before  us  is  as  follows: 

Can  we,  without  any  knowledge  of  the  hidden  mechanism,  discover 

what  motion  of  the  ropes  will  ensue,  if  they  are  started  in  any 

given  way.  And  the  answer  is  that  we  can,  provided  we  know 

the  amount  of  energy  involved  in  a  motion  of  any  kind,  —  i.e.  pro- 
vided we  know  the  kinetic  energy  of  every  motion,  and  also  the 

potential  energy  of  every  configuration. 

So  also,  to  pass  from  analogies  to  realities,  we  can,  without  any 
knowledge  of  the  ultimate  mechanism  of  the  universe,  discover 

what  motion  will  ensue  from  any  initial  conditions,  provided  tliat 

we  know  the  kinetic  and  potential  energies  of  all  configurations 

of  the  portion  of  the  universe  with  which  we  are  dealing. 

Hamilton's  Principle 

264.  Let  us  suppose  that  any  single  particle  of  a  material  sys- 
tem has  at  any  instant  coorduiates  x^,  y^,z^,  its  mass  being  mi,and 

that  it  is  acted  upon  by  forces  of  which  the  resultant  has  compo- 
nents Xj,  Y^,  Z^.  Let  the  velocity  of  this  particle  have  components 

Wj,  v^,  u\,  so  that  7 
u,  —  —^  >  etc. 

'      dt 

Then,  if  the  motion  of  this  particle  is  governed  by  Newton's  laws, 
we  shall  have  , 

m,-|!=X„  (148) 

»»,^=F.,  (149) 

^f-^^Z,.  (150) 
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Let  us  compare  this  motion  with  a  slightly  different  motion  in 

which  Newton's  laws  are  not  obeyed.  In  this  second  motion  let  the 
coordinates  of  m^^,  at  the  instant  at  which  they  are  x^,  y^,  z^^  in  the 

actual  motion,  be  supposed  to  be  x[,  y[,  z[,  and  let  the  components 

of  velocity  at  this  instant  be  tc[,  v[,  w[,  so  that 

u[=  —r",  etc. 

Let  us  agree  that  the  modified  motion  is  to  differ  so  slightly 

from  the  actual,  that  any  quantity  such  as  x[—  x^,  u[—  u^,  which 

measures  part  of  this  difference,  may  be  treated  as  a  small  quan- 

tity. Let  us  denote  x[  —  x^  by  hx^,  and  use  a  similar  notation  for 
the  other  differences. 

Multiply  equations  (148),  (149),  (150),  which  are  true  at  every 
instant,  by  hx^,  ̂ y^,  hz^,  and  add.    We  obtain 

=  X^hx^-\-l\hj^+Z^hz^.  (151) 

Now  — -^  hx,  =  —  (ii.hx,)  —  u,  —  (hx,) 
dt       '      dt^  '     '^         ̂ dt^     '^ 

=  -  {u^h^,)  -  %i,  -  {x[  -  x^) 

dt^   ̂     ̂'         '     ' 
Hence 

du,  5.      ,        ̂ ^15.,        dw.  ̂  

=  X,^x,  +  Yfiy,  +  Z,hz,,  (152) 

by  equation  (151). 
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An  equation  of  this  kind  is  true  for  each  particle  of  the  system 

and  at  every  instant  of  the  motion.  It  is  moreover  true  whatever 

the  displaced  motion  may  be.  On  summing  this  equation  for  aU 

particles  we  obtain 

Vwj   —  (u^Sxj^  +  ̂ i%i  +  w^Sz^)  —  (2i^8it^  +  i\Sv^  +  iv^Sw^) 

=  ̂ {XM  +  Y,8y,  +  Z,Bz,).  (153) 

Now  let  T  denote  the  kinetic  energy  of  the  motion,  so  that 

Then  BT  =  ̂   ̂7n,  {u[ ' -  <  +  v', ' - f?  +  ̂ { ' - ^). 

Now        ic[^  —  u\  =  ((ii^-{-hu^'^  —  u\  =  2it^hit^^ 

if  we  neglect  the  small  quantity  of  the  second  order  {^u-^^,  so  that 
we  have 

265.  Assuming  for  the  moment  that  the  system  of  forces  is 

conservative,  let  W  denote  the  potential  energy  of  the  system  at  the 

instant  under  consideration,  and  W'  that  of  the  imaginary  system 
in  the  slightly  displaced  configuration.    Then,  by  §  118,  we  have 

hw=w'-w 
=  (work  done  in  moving  system  from  actual 

to  displaced  configuration) 

=  -^{Xfix,+Y,hy,+Z,hz,).  (164) 

Substituting  into  equation  (153)  for  the  expressions  which  have 
been  found  to  be  equal  to  hT  and  hW,  we  find  that  this  equation 

reduces  to  the  simpler  form 

^m,  ̂  {u,hx,  +  v,hj,  +  w,hz,)  -8T  =  -8W, 
or  again, 

I  X^i  i:^M  +  vM  +  ̂^i^^i)  =  ̂  {T-w). 
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This  equation  is  true  at  every  instant  of  the  motion.  Let  us 

integrate  it  between  any  two  instants  of  the  motion,  say  from 

t  =  t^io  t  =  t^.    We  obtain 

[ Vmi  {u^hx^  +  v^hj^  +  ̂ i^^i)] ''  =  r  '^  (r  -  W)  dt.        (155) 

The  displaced  motion  has  so  far  been  subject  to  no  restrictions 

except  that  the  difi'erence  between  it  and  the  actual  motion  must 
always  remain  small.  Let  us  now  introduce  the  further  restriction 

that  at  times  t^  and  t^  the  configurations  in  the  displaced  motion 

are  to  be  identical  with  those  in  the  actual  motion.  The  displaced 

motion  is  now  one  in  which  the  imaginary  system  starts  in  the 

same  configuration  as  the  actual  system  at  time  t  =  t^,  swerves 
from  the  course  of  the  actual  system  from  time  t^  to  time  t^ 

(because  the  actual  system  obeys  Newton's  laws,  while  the  imagi- 
nary system  does  not),  and  ultimately  ends  in  the  same  position 

as  the  actual  system  at  time  t^. 

In  consequence  of  tliis  restriction  on  the  motion  of  the  imagi- 
nary system,  we  have  at  times  t^  and  t^, 

hx^  =  8i/^  =  Szj^  =  0, 

and  similar  relations  for  the  other  particles.    Thus 

and  equation  (155)  reduces  to 

Ju 

B{T-W)dt  =  0.  (156) 

Here  we  have  an  equation  which  depends  only  on  the  amounts 

of  the  kinetic  and  potential  energies  of  the  system,  and  not  on  the 

mechanism  of  the  system.  We  shall  find  that  from  this  single  equa- 
tion we  can  determine  the  motion  of  all  the  known  parts  of  the 

system  as  soon  as  T  and  W  are  known,  without  any  knowledge  of 
the  mechanism  of  the  unknown  parts. 
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266.  Before  proving  this,  however,  we  may  attempt  to  interpret 

equation  (156).    Let  us  denote  T  —  Whj  L.    Then 

C\{T-JV)dt=  C'hLdt Jtx  Jh 

■
I
 

{p  -  L)  dt 

\    L'dt-  j    Ldt 
tx  Jtx 

jyat). 

'<2 

If  we  denote  /    Ldt £ 
by  S,  the  equation  becomes  hS  —  ̂ ,  oy 

S'  =  S. 

Thus  the  value  of  the  function  S  for  the  actual  motion  is  the 

same,  except  for  small  quantities  of  the  second  and  higher  orders, 

as  the  corresponding  function  S'  for  any  slightly  different  motion, 
which  begins  and  ends  with  the  same  configuration  at  the  same 
instants.  In  other  words,  the  function  S  is  either  a  maximum  or  a 

minimum  when  the  series  of  configurations  is  that  which  actually 
occurs  in  nature. 

Principle  of  Least  Action 

267.  The  total  energy  will,  by  the  theorem  of  §  143,  remain 

constant  during  the  actual  motion,  say  equal  to  E,  so  that  at  every 
instant  we  shall  have 

T-}-W=E,       T-W=L. 

In  the  slightly  varied  series  of  configurations  it  is  not  true  that 

the  total  energy  remains  constant  throughout  the  motion,  but  out 

of  the  infinite  number  of  slightly  varied  series  of  configurations 
there  will  still  be  an  infinite  number  for  which  the  conditions 

already  postulated  are  satisfied,  together  with  the  condition  that 

the  total  energy  at  every  instant  shall  have  the  value  E.    For  such 
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a  series  we  have 

T'  +  W'  =  E,      T'  -  W  =  L'. 

Thus  we  have    L^2T-E,      L'  =  2T^-E, 
h 

SO  that  S  =  \    Ldt 

=  C\2T-E)dt 

=jyTdt-{t,-t,)E. 
Thus  if  /S  is  a  maximum  or  a  minimum,  it  foUows  that 

X ITdt 
is  a  maximum  or  a  minimum.  This  integral  is  called  the  action 

of  the  motion.  We  now  see  that  of  all  possible  series  of  configura- 
tions which  bring  the  system  from  one  configuration  to  another  in 

a  given  time,  and  in  such  a  way  that  the  total  energy  has  always 

a  specified  constant  value,  that  one  which  can  be  described  by  a 

natural  system  is  the  one  on  which  the  action  is  a  maximum  or 

a  minimum.  Since  the  action  is  in  general  a  minimum,  this  prin- 

ciple is  known  as  the  principle  of  least  action. 

The  statement  of  this  principle  was  first  given  by  Maupertius 

(1690-1759),  who  did  not  deduce  it  by  mathematical  reasoning,  but 
believed  it  could  be  proved  by  theological  arguments  that  all  changes  in 

the  universe  must  take  place  so  as  to  make  the  action  a  minimum  (^Essai 

de  Cosmologie ,  1751). 

NON-CONSERVATIVE    FORCES 

268.  If  the  forces  are  non-conservative,  we  may  no  longer,  as  in 

equation  (154),  replace 

by  —  hW,  and  consequently,  instead  of  equation  (156),  we  shall  have 

f  [^^'  +%{Xhx  -f  Yhy  -h  Zhz)\  dt  =  0.  (157) 
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Lagrange's  Equations 

269.  If  the  coordinates  x^,  y^,  z^,  etc.,  of  every  particle  of 

the  system  are  known,  we  know  not  only  the  configuration  of 

the  system  but  also  the  mechanism  by  which  the  different  parts 

ot  the  system  are  connected.  It  may,  however,  be  that  w^e  can 
determine  the  configuration  of  the  system  by  knowing  a  smaller 

number  of  quantities  which  do  not  give  us  a  knowledge  of  the 
mechanism. 

For  instance,  in  our  former  illustration  we  imagined  two  ropes  to  hang 

from  an  unknown  machine,  the  ropes  being  connected  in  such  a  way  that 

a  motion  of  one  inch  in  the  one  invariably  produced  a  motion  of  two  inches 

in  the  other.  In  this  case  the  configuration  is  fully  determined  when  we 

know  the  single  coordinate  which  measures  the  position  of  the  end  of  the 

first  rope,  but  a  knowledge  of  this  coordinate  does  not  imply  a  knowledge 

of  the  mechanism  connecting  the  ropes. 

Again,  the  position  of  a  rigid  body  is,  as  we  have  seen  (§  65),  determined 

by  the  values  of  sufiicient  quantities  (six)  to  fix  the  positions  in  space  of 

three  non-collinear  particles  of  the  body,  but  a  knowledge  of  these  quanti- 
ties does  not  give  us  information  as  to  the  arrangement  of  the  particles  of 

which  the  body  is  formed. 

Let  dy,  6^,  ' ' ' ,  O^hQ  di  set  of  quantities  such  that  when  their 
value  is  known,  the  configuration  of  a  system  of  bodies  is  fuUy 

determined.  Then  the  quantities  0^,  6^,  ■  ■  -,  6^^  are  called  general- 
ized coordinates  of  the  system. 

270.  Let  X,  y,  z  be  the  coordinates  of  any  particle  of  the  system. 

Then  x  is  fully  determined  by  the  values  oi  6^,  6^,  •  ■  • ,  6^,  ii,o  that 
it  is  a  function  of  these  quantities,  say 

^=/(^u  ̂ ..  ••■>  ̂ „)-  (158) 

If  the  system  is  in  motion,  all  the  quantities  which  enter  in 

equation  (158)  are  functions  of  the  time.  We  have,  on  differ- 
entiation with  respect  to  the  time, 

dx^d^dA,       c^de^  ^dd^ 

dt  ~  de^  dt  ̂  dd^  dt  ̂  "  "^  dd^  dt  ' 
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dx    d6 
To  abbreviate,  let  us  denote  — -  >  — ^  >  •  •  •  by  i^,  ̂,,  •  •  •.    Then  the di     at 

eq[uation  just  obtained  may  be  written 

so  that  ̂   is  a  linear  function  of  6^,  ̂2> '  * '  >  ̂m  ̂^®  coefficients  being 

functions  of  6^,  0^,  -  •  ■,  6^. 
The  kinetic  energy, 

T=\^m{x'  +  y'V^), 

is  now  seen  to  be  a  quadratic  function  oi  6^,  6^,  -  -  -,  6^^,  the  coeffi- 

cients bemg  functions  of  6^,  6^,  •  •  • ,  6^. 
The  potential  energy  W  depends  only  on  the  configuration  of 

the  system,  so  that  TT  is  a  function  oi  6^,  6^,  -  -  • ,  6^  only. 
Thus  the  function  X,  or  T—  W,  is  a  function  of 

say  L  =  cl>{6„  6,,  •••,  6^,  6,,  ̂ „  •  • .,  d^).  (160) 

The  corresponding  function  L'  in  the  displaced  motion  is  the 
same  function  of 

e^+he^,  e,+he„  ...,  etc, 
so  that 

By  Taylor's  theorem,  we  may  expand  L'  in  the  form 

or,  from  equation  (160), 
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Equation  (156),  namely 

Jti 

may  be  written  in  the  form 

L)dt  =  0, 

and  this,  we  now  see,  may  be  replaced  by 

Now  we  have 

X> 

so 
that  r^jL^Adt^r^^  (86,)  dt. 

and,  integrated  by  parts,  this  becomes 

'%(?L)Be,dt.  (163) 

Since  the  disturbed  configuration,  by  hypothesis,  coincides  with 

the  actual  configuration,  we  have  B6,  =  0  at  times  ̂ ^  and  t^.  Thus 
the  first  term  in  expression  (163)  vanishes,  and  leaves 

Equation  (162)  now  assumes  the  form 

r{Mi.-m}"-°-   ""> 
The  limits  t,  and  t^  are  entirely  at  our  disposal ;  the  equation  is 

true  whatever  values  we  assign  to  them.  In  other  words,  the  sum 

of  a  number  of  small  differentials  vanishes,  no  matter  how  many 
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of  them  are  included  in  the  sum.    It  foUows  that  each  term  of  the 
sum  must  vanish.    Thus  we  must  have 

0  (165) 

at  every  instant. 

271.  At  this  point  we  have  to  consider  two  alternatives.  It  may 

be  that  whatever  values  are  assigned  to  W^,  86^,  •  •  • ,  86^,  the  new 
configuration,  specified  by  coordinates 

0,+so„  e,+s0„  ...,  0„+se„, 

will  be  a  possible  configuration ;  that  is  to  say,  will  be  one  which 

the  system  can  assume  without  violating  the  constraints  imposed 

by  the  mechanism  of  the  system.  In  this  case  the  system  is  said 

to  have  n  degrees  of  freedom. 

If  the  system  has  n  degrees  of  freedom,  equation  (165)  is  true 

for  all  values  of  86^,  86^,  •  •  • ,  86^^.    For  instance,  it  is  true  if  we  take 

8^,  =  e,  8e,  =  8e,  =  .-.  =  8e^  =  {), 

where  e  is  any  small  quantity.    In  this  case  we  must  have 

and  therefore  — dt 

\dej    dd. 
A  similar  equation  will,  of  course,  hold  for  each  of  the  coordinates 

6^,  6 2,  •  •  • ,  6^.  These  equations  are  known  as  Lagrange's  equa- 
tions. There  are  n  equations  between  the  n  unknown  quantities 

^i>  ̂2'  *  •  ■ '  ̂n  ̂^d  their  differential  coefficients  with  respect  to  the 

time.  Thus  they  enable  us  to  find  the  way  in  which  6^,  6^,  -  -  -,  6^^ 

change  with  the  time.  To  use  the  equations  we  require  a  knowl- 
edge only  of  the  function  L,  and  therefore  only  of  the  kinetic  and 

potential  energies  of  the  system ;  we  do  not  need  a  knowledge  of 

the  internal  mechanism  of  the  system.  Thus  the  problem  proposed 

in  §  263  is  solved,  if  we  can  solve  Lagrange's  equations. 
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ILLUSTRATIVE  EXAMPLE 

Common  pendulum.  As  a  simple  example  of  the  use  of  Lagrange's  equations, 
let  us  consider  the  problem  of  the  motion  of  the  common  pendulum.  A  rigid 

body  is  constrained  to  move  so  that  one  point  O  remains  fixed,  while  the  line 
OG  joining  0  to  the  center  of  gravity  moves  in  a  vertical  plane.  Let  6  be  the 
inclination  of  OG  to  the  vertical ;  then  the  position  of  the  system  is  entirely 

fixed  as  soon  as  the  value  of  ̂   is  know^n.  The  kinetic  and  potential  energies  are, 
in  the  notation  of  §  245, 

W=Mgh{l-cose), 

Mk^d^ -Mgh{l- cos  ey so  that 

dL 
Thus  —  =  Mk^d,  and  Lagrange's  equation, 

de 

d^  /dL\  _  dL 

dt\del~  de' becomes 
dW 

Mk^  —  =  -  Mgh  sin  d, 

dt^ 

Fig.  153 the  same  equation  as  was  obtained  in  §  245,  and  from  this  the 
motion  can  be  deduced. 

We  notice,  however,  that  Lagrange's  method  shows  that  the  motion  is  inde- 
pendent of  the  method  of  suspension  of  the  pendulum,  provided  only  that  it  is 

constrained  to  move  in  the  way  described.  For  instance,  the  result  is  time  if 

there  is  no  pivot  at  all  at  O,  the  constraints  being  imposed  by  a  suspension  of 
strings. 

272.  Let  us  now  consider  the  second  alternative  to  that  exam- 

ined in  §  271.  It  may  be  that  if  we  assign  arbitrary  values  to 

hd^,  hO^,  '  ■  ',  hd^,  the  new  configuration  obtained  is  not  in  every 
case  a  possible  one.  It  may  be  that  there  are  certain  relations 

which  must  be  satisfied,  in  order  that  the  constraints  imposed  by 
the  mechanism  may  not  be  violated. 

For  instance,  in  the  illustration  already  employed,  let  there  be  two 

ropes  hanging  from  a  ceiling  of  a  room,  such  that  on  pulling  one  down  one 

inch  the  mechanism  compels  the  second  to  rise  two  inches.  Let  6^,  6^ 
denote  the  lengths,  of  ropes  below  the  ceiling.  Then  a  displacement  in 

which  56^  =  J^  inch,  bd^  =  j\  inch,  is  not  a  possible  displacement ;  such 
a  displacement  is  not  permitted  by  the  mechanism  above.  We  must  always 

have  5^j,  Sd^  connected  by  the  relation 

5^1  +  i  5^2  =  0. 
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In  general  let  ua  suppose  that  we  have  certain  relations  imposed 
by  the  mechanism,  these  being  of  the  form 

a^W^  +  a^he^  +  . .  .  +  a^W^  =  0,  (166) 

\he,  +  h,hd,  +  . . .  +  h,,hd^  =  0,  • .  •.         (167) . . . 

Then  equation  (165),  namely 

?[l(S)-S]»-=»' .      <«" 
is  true  only  if  hO^,  86^,  •  •  -,  8(9„  satisfy  relations  (166),  (167),  •  •  -. 

For  a  possible  displacement,  however,  86^,  S6^,  •  •  •,  86^  will  be 

such  that  equations  (166),  (167)  •  •  •,  and  (168)  are  all  true.  Let 

us  multiply  by  X,  />t,  •  •  •  and  unity,  and  add,  X,  /i,  •  •  •  being  quan- 

tities as  yet  undetermined  —  undetermined  multipliers,  we  may  call 
them.    Then  we  have  the  equation 

[d  /dL\       dL     ̂   ,  1.^ 

\dt\dej      dd,  '     "^^  \      ' 

+  --^[5(f)-^""-+*+-]"'--»'«" 
The  quantities  86^,80^, -•  - ,  86^  are  not  at  our  disposal.  If,  how- 

ever, the  relations  of  the  type  (166)  are  m  in  number,  we  may  say 

that  of  the  quantities  86^,  86^,  •  •  •,  86^^  all  except  m  are  at  our  dis- 

posal, and  after  arbitrary  values  have  been  assigned  to  n  —  rn  of 
these  quantities,  the  remaining  m  quantities  must  be  obtained  by 

solving  equations  (166),  (167)  •  •  • .  The  configuration  obtained  in 
this  way  must  necessarily  be  a  possible  one. 

Let  us  assign  arbitrary  values  to 
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and  then  find  the  values  of  86^,  B6^,  •  •  -,  Sd^  from  equations  (166), 

(167)  •  •  •.  Let  us,  moreover,  choose  the  m  undetermined  multi- 
pliers \,  fjL,  '  • '  so  that  they  satisfy  the  m  equations 

suffixes  ranging  from  1  to  m.    Then' equation  (169)  reduces  to 

Inasmuch  as  Sd^_^^,  B6^^^,  •  •  • ,  W^  are  all  arbitrary,  we  may  take 

and  obtain 

and  similarly  we  may  obtain  the  same  equation  for  all  suffixes  from 

m  +  1  to  71.    The  equation  has,  however,  already  been  supposed 

true  for  suffixes  1  to  m  [cf.  equations  (170)  •  •  •,  (171)]. 
Thus  we  have  the  complete  system  of  equations 

d  /dL\      oL   ̂ ^       ̂      .    ̂   . 

dt  \ddj      cd^ 

dt  \^ej 
?T  

' 

in  which  the  suffixes  range  from  1  to  n.  On  eliminating  the 

m  multiphers  X,  /-t,  •  •  •  from  these  n  equations,  we  are  left  with 

n  —  m  equations,  which  enable  us  to  determine  the  changes  in 
the  coordinates. 
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ILLUSTRATIVE  EXAMPLES 

1.  A  homogeneous  sphere  of  radius  a  rolls  down  the  outer  surface  of  a  fixed 
sphere  of  radius  b  without  sliding.    Find  the  motion. 

At  any  instant  let  the  line  of  centers  make  an  angle  <p  with  the  vertical, 
and  let  the  angular  velocity  of  the  rolling  sphere  be  6.  The  velocity  of  the 
center  of  the  rolling  sphere  is  (a  +  b)  0,  so  that 

The  potential  energy  is 

W  =mg{a-\-  b)  cos  <p, 

so  that  L=  T-W 

=  1 771  (a  +  6)202  +  1  ma^02 
—  mg  {a  +  b)  cos  0.     (a) 

The  variations  in  0  and  0  are  not 

capable  of  having  any  values  we 

please,  for  the  velocity  of  the  center 
of  the  moving  sphere  is  (a  +  b)  <p, 

and  also  must  be  ad,  since  the  sphere 
is  rolling  with  angular  velocity  0 
without  sliding.    Thus 

ad  =  {a  +  b)  0.  (6) 

This  is  true  at  every  instant  of  every  possible  motion,  so  that  we  must  have, 

on  integrating  with  respect  to  the  time, 

a^  =  (a  +  6)0  +  a  constant, 

and  hence  we  must  suppose  changes  in  the  coordinates  0,  0  to  be  connected  by 

the  relation  a  80  =  {a  +  b)  84>. 

Thus  Lagrange's  equations  are 

d/dL\_dL 

dt\d0/  d0 

d  /dL\  _  dL 

dt\d^/      d(t> 

Eliminating  X,  we  obtain 

Fig.  154 

+  Xa  =  0, 

-  X  (a  +  6)  =  0. 

Substituting  from  equation  (a),  this  becomes 

d 

(a  +  6)    — (-  77ia2  0\     +  a   —  (m(a  +  6)2  0)  -  mg  (a  +  6)  sin  0    =  0. 
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After  replacing  ad  by  (a  +  6)  ̂  from  equation  (6),  we  have 

-  ma  (a  +  6)2  — -  =  mga  {a  +  b)  sin  0, 

^,c?20      5      . or  (a  +  6)  — =  -gfSin«^, 

sliowing  that  the  center  of  the  moving  sphere  moves  with  five  sevenths  of  the 

acceleration  of  a  smooth  particle  sliding  down  a  sphere  of  radius  a  +  6. 
The  same  result  could  have  been  obtained  by  eliminating  d  from  equations 

(a)  and  (6),  and  then  regarding  0  as  a  single  Lagrangian  coordinate. 

2.  A  flywheel  is  connected  by  a  crank  and  rod  to  a  piston  moving  in  a  hori- 
zontal cylinder.  When  there  is  no  steam  in  the  engine  the  flywheel  rests  in  its 

position  of  equilibrium.    Find  its  motion  if  displaced. 

Let  a,  b  denote  the  length  of  the  crank  and  rod,  and  let  6,  <t>  be  the  angles 

they  make  with  the  horizontal  in  any  position  of  the  flywheel.  Then  the  posi- 
tion of  the  engine  is  known  fully  when  6  and  0  are  known.    Not  only  do  the 

Fig.  155 

values  of  6  and  0  suffice  to  determine  the  position  of  the  engine,  but  if  we 
assign  arbitrary  values  to  d  and  0,  we  do  not  necessarily  obtain  a  possible 
position  for  the  engine. 

The  velocity  of  rotation  of  flywheel,  axle,  and  crank  is  ̂,  so  that  the  kinetic 

enei-gy  of  this  motion  is  i  I^,  where  I  is  the  moment  of  inertia  of  this  part  of 
the  engine  about  the  axis  of  the  flywheel.  The  coordinates  of  the  center  of 

gravity  of  the  rod,  which  we  shall  assume  to  be  its  middle  point,  measured 
from  the  axis  of  the  flywheel,  are  : 

horizontal :    a  cos  6  ■\-  \b  cos 0, 
vertical : b  sin  0. 

Thus  the  velocity  of  its  center  of  gravity  has  components 

—  (a  sin  ̂   •  ̂'  +  ̂   6  sin  0  •  0) 
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horizontally,  and  i  b  cos  0  •  0  vertically.    The  whole  velocity  v  of  the  center  of 
gravity  of  the  rod  is  therefore  given  by 

v^  =  (a  sin  d  •  S  +  ̂ b  sin  (p  ■  0)2  +  (i 5  cos 0  •  0)2 

=  a2  sin2  d-  6'^  -\-  ab  sin  ̂   sin  0  •  <i>d  +  ̂   b^(p^. 

The  angular  velocity  of  the  rod  is  0,  and  its  radius  of  gyration  k  is  given  by 

-1/-V-  — 
~  3  \2/  ~  12 

*-.(-)  =-5^. 

Thus,  if  m  is  the  mass  of  the  rod,  the  kinetic  energy  of  the  rod  is 

im(u2  4-  fe202) 

Lastly,  the  horizontal  distance  of  the  end  of  the  piston  rod  from  the  center 
of  the  flywheel  is  a  cos  6  +  b  cos  0,  so  that  the  velocity  of  the  piston  and  piston 
rod  is  .  . 

—  a  sin  ̂   •  ̂  —  6  sin  0  •  0. 

If  M  is  the  mass  of  the  piston  and  piston  rod,  the  kinetic  energy  of  this  part 

of  the  engine  is  -,,,/•.,; 
''  ijf(as]n^.^  + 6sm0.0)2. 

We  now  have,  for  the  whole  kinetic  energy  T, 

2T=  le^  +  m  (a2  sin2  6  -  6'^  +  ab  sin  ̂   sin  0  •  ̂S  +  i  62  02) 

-}- Jlf(asin0-^  +  6sin0.  0)2,  (a) 

The  potential  energy  W,  measured  from  a  standard  configuration  in  which 

^  =  0  =  0,  IS  W  =- ^^gh sin (d  +  e)- I mgb sin <f>.  (6) 

Here  JlfT  is  the  total  mass  of  flywheel  and  crank,  and  h,  e  are  the  polar  coor- 
dinates of  its  center  of  gravity  when  6  =  0. 

The  changes  in  6  and  0  are  not  independent.    A  glance  at  the  figure  shows 
that  we  must  always  have 

a  sin  0  =  bsin  0,  (c) 

and  on  differentiating  this,  we  can  see  that  if  6  and  0  are  taken  as  generalized 

coordinates,  we  must  suppose  them  connected  by 

a  cose 86  —  b  cos 0  50  =  0. 

Thus  Lagrange's  equations  will  be 

d  /cL dt\d6 
)  -  —  +  Xa  cos  ̂   =  0,  (d) 
/       d6 

d  (dL\      dL     ̂ ^  ^  ,  . 
— (—   X6cos0  =  O.  (e) 
dt\dct>        50 
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The  elimination  of  X  from  these  equations  gives 

rd/dL\      dLl               Jd/dL\      dLl      ̂  
6cos0   —  (-t)   \-\-  acosd\—{—r)   =0, 

and  on  substituting  for  L  from  equations  (a)  and  (6),  this  equation  becomes  an 
equation  between  6,  0,  and  their  differential  coefficients  with  respect  to  the  time. 

From  this  and  the  geometrical  relation  (c), 

a  sin  ̂   =  6  sin  0,  (/) 

we  can  proceed  to  determine  d  and  0  in  terms  of  the  time. 

Using  equation  (/),  we  can  transform  equation  (6)  into 

W  =  —  ̂ gh  sin  {6  +  e)  —  ̂   mga  sin  d. 

It  will  be  possible  to  arrange  counterpoises  on  the  flywheel  in  such  a  way  as 

*°°^^^®  6  =  0,     Mh  +  lma  =  (), 
and  if  this  is  done,  the  center  of  gravity  will  always  be  at  the  same  height. 
This  is  called  balancing  the  engine. 

If  we  suppose  the  engine  balanced  in  this  way,  we  have  TF"  =  0  and  there- 
fore L  =  T.  We  can,  however,  determine  the  motion  much  more  simply  than 

by  using  Lagrange's  equations,  for  we  know  that  T  must  remain  constant 
throughout  the  motion ;  and  by  differentiation  of  equation  (/)  we  have 

a  cos  6  6  =  b  cos0  0, 

so  that  we  can  replace  equation  (a)  by 

2  T  =  I^  +  ?7i(a2  sin20  6^  +  a2  gin  6  cos  ̂   tan  0  ̂2  ̂   i  ̂ ^  eos^6sec^<f>  e») 

+  M{as\Ti6-  6  +  acos^tan0.  6^ 

=  6'^[I  -\-  ma'^  sin  6  sin {6  +  0)  sec  0  +  i  ma^  cos2 6 sec2 0 
+  Ma^  sin2  {6  +  0)  sec2  0]. 

This  is  constant  throughout  the  motion,  but  we  see  that  it  does  not  follow 
that  6  is  constant.  Thus,  although  the  engine  is  balanced  so  as  to  remain  at  rest 

in  any  position,  it  will  not  necessarily  run  evenly  if  started  into  motion. 

Lagrange's  Equations  for  Non-Conservative  Systems 

273.  For  non-conservative  systems  it  has  been  shown  (§  268) 
that  equation  (In  6),  namely 

P BLdt  =  0,  (172) 

must  be  replaced  by 

f  \^T+^{XBx+YB7/-{-Z8z)]dt  =  0.  (173) 
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Now  since,  as  in  equation  (158), 

we  must  have 

./<»,+s»„»,+s»„. ..)-/(»„  «„...) 

neglecting  smaU  quantities  of  the  second  order. 

Thus 

^{xhx  +  Yhy  +  zhz)  =  Oi  he^+  0^  g(92+  . . .  +  <&je^, 

where  0^,  @2j  '  *  •  ̂   ®«  depend  on  the  configuration  of  the  system, 

and  therefore  are  functions  of  6^^  ̂2>  '  '  '>  ̂n  o^ty- 
Equation  (173)  now  becomes 

rsTdt  +  r\^,8e^  +  e^si?,  +  . . .  +  ejejdt  =  o.  (i74) 

Just  as  in  §  270  we  found  that 

hLdt 

could  be  transformed  into 

he Xt? 

dt. 

so  the  first  term  of  equation  (174)  can  now  be  transformed  into 

Substituting  this,  the  equation  becomes 

X"{?«,K-l©-.]}-»- 
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Since  this  is  true  for  all  possible  ranges  of  time,  we  must  have 

at  every  instant. 

If  the  ̂ 's  can  vary  independently,  each  coefficient  must  vanish, 
and  the  system  of  equations  will  be 

©-?-«.-• 
d^  [dT\      dT dt 

etc.,  while  if  hd^,  SO^,  •  •  •  are  connected  by  the  constraints  implied 

in  equations  (166),  (167),  •  •  •,  we  find,  as  in  §  272,  that  the  sys- 
tem of  equations  must  be  replaced  by 

21  A.  These  systems  of  equations  reduce  to  those  previously 

obtained  in  the  special  case  in  which  the  forces  are  conservative. 

For  in  this  case  consider  the  work  done  in  a  slight  displacement  in 

which  6^  alone  varies,  6^  being  increased  by  h6^.    It  is  ®^h6^,  and 
cTV  dJV 

is  also  —  —r-  B6, ,  so  that  0,  =  —  — —  • 

rp,  ^T  ̂    ̂       dT      cJV      cL 
Thus  __  +  e^  =  ____=__,    ^ 

and  gT^^(Z+^)^az^ 
dd^  du^  00^ 

since  W  does  not  contain  6^.    Thus  equation  (175)  reduces  to 

d  /dL\      cL 

as  before,  and  in  the  same  way,  equations  (177),  •  •  •  can  be  trans- 
formed into  the  equations  obtained  in  §  272. 
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Lagrange's  Equations  hy  Direct  Transformation 

275.  Instead  of  deducing  Lagrange's  equations  from  equation 
(156),  they  may  be  obtained  directly  by  transformation  of  the 

equations  of  motion. 
We  have,  as  before, 

SO  that,  on  differentiation, 

dx_df_d6^df_de^ 

dt  ~  dd^  dt       de^  dt  ̂"'' 

Thus  ij  is  a  linear  function  of  6^,  6^,  •  •  • ,  and 

dx  _  ox 

We  have  T  =  i  ̂ m  {x^  -\- f -\-  ̂), 

dt 

+ 

(179) 

so  that  T,  as  before,  is  a  quadratic  function  of  6^,  6^,  • .  •,  which 

also  involves  6^,  0^,  ■  -  -.    By  differentiation, 

cT      .^      / .  dx        .  dy        .  d'z .   =  Vm (x-^-{-  y^  -{-  z—r 
dd^      ̂     \    dd^         36^         dd, 

or,  by  equation  (179), 

cT      ̂      /.   dx        .   dy       .    dz\ 

Thus 

d  /dT\  ̂   ̂     /d^  dx,      d^dy_       dh  dz\ 

\dej  ~  ̂^  \dt^  ̂<^i  "^  df  00,  "^  df  ddj 
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Since  — r-  is  a  function  of  0^^,  0^,  •  •  •,  we  have 

^^\_d'xdd       d-x  de 
d  /dx 

dt\dd 

while,  by  differentiation  of  equation  (178), 

dx  _  d^x  A  d^x 
VX  V  X    A  V  X        A 

^  =  ̂ 2  ̂1  +  ̂ ^T^  <^2  +  •  •  ••  (182) 

The  right-hand  members  of  equations  (181)  and  (182)  are  seen 
to  be  identical,  so  that 

d  /dx\  _  dx 

and  the  last  line  of  equation  (180)  transforms  into 

^^-y     I .  dx    ,    .    oil    ̂     .   cz\ 

of  which  the  value  is 

d_ 

de^ 

dT 

a^ 

Equation  (180)  now  becomes 

d_/dT dt 

doj      ̂^1  ~^^  \dt^  ̂^1       df  dd^  "^  df  dOj 
From  the  equations  of  motion, 

X=  m  — —  J  etc., 
df 

so  that  this  aj^ain  becomes 
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If  we  give  the  system  a  small  displacement,  in  which  6^  is 

increased  to  6^-}-86^,  6^  to  6^-\-h6^,  etc.,  we  have,  on  equating 
two  different  expressions  for  the  work  done : 

@,8l9,  +  @^hd^  +  . . . 

=  V{Xhx-\-Yhy  +  Zhz). 

On  substituting  the  value  of  hx  obtained  on  page  340,  this 

-"■[i(S)-s;]--[-]-
-  ■ and  the  equation  reduces  to 

S...[|(|)-:-^-e.]  =  o. 
This  is  the  same  equation  as  equation  (175),  and  the  different 

forms  of  Lagrange's  equations  can  be  deduced  as  before. 

Lagrange's  Equations  for  Impulsive  Forces 

276.  Let  a  system  of  impulses  act  during  the  short  interval 

from  t  =  t^  to  ̂   =  t^.  Let  6^,  ̂2>  '  '  *  ?  ̂n  ̂^^  ̂ ^  supposed  to  be 

independent  coordinates,  so  that  Lagrange's  equations  are 
d  /dT\      dT      ̂       ̂  
-ri  —  I  — T^  =  @i,  etc. 
dt  \dej    ̂ e. 

If  we  multiply  by  dt,  and  integrate  from  t  =  t^  to  t  =  t^,  we  have 

The  value  of  the  first  term  is 

dT\     _  /m 
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and  when  the  interval  from  t^  to  t^  is  made  vanishingly  small,  this 
dT 

measures  simply  the  change  in  —7-  produced  by  the  impulse. 

I      -^^  dty  the  integrand  —^  is  finite,  so  that 

when  the  interval  of  time  is  supposed  to  vanish,  this  term  will 

vanish  with  it.    Thus  the  equation  becomes 

H^    27 

dT      r'2 change  in  ̂ -  =  |    e^  dt.  (183) dd^       Jti 

277.   If  F  is  an  ordinary  force  acting  impulsively  through  the 

'    Fdt  the  impulse.    By  analogy  we  call h 

S^dt X 

'tl 

the  generalized  impulse,  corresponding  to  the  generalized  coordi- 
nate 6^.    Thus  we  have  equation  (183)  in  the  form 

dT 
change  in  — -  =  generalized  impulse. 

From  analogy  with  the  relation, 

change  in  momentum  of  a  particle  =  impulse  on  particle, 
d  T 

we  call  — -  the  generalized  momentum  corresponding  to  the  coor- 

dinate   6^,     Thus    with   these    meanings  attached  to  the  terms 

"impulse"  and  "momentum,"  the  relation 

change  of  momentum  =  impulse 

is  true  in  generalized  coordinates. 

When  our  coordinates  are  a:,  y,  z,  the  coordinates  in  space  of  a  moving 
particle,  the  generalized  momenta  will  of  course  become  identical  with  the 
ordinary  components  of  momentum.    We  have 

so  that  —  =  mxy  etc. 
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Euler's  Equations  for  a  Eigid  Body 

278.  Euler's  equations  (§  252)  can  be  derived  from  those  of 
Lagrange. 

Let  the  moments  of  a  rigid  body  about  its  principal  axes  of 

inertia  at  a  point  0,  which  is  fixed  in  the  body  and  is  also 

either  fixed  in  space  or  is  the  center  of  gravity  of  the  body,  be 

A,  B,  C.  Then  if  coj,  co^,  co^  are  the  components  of  rotation  about 

these  axes,  we  have,  as  in  §  248, 

T=-l~{Acol-\-Bcol  +  Ccoiy (184) 

As  Lagrangian  coordinates,  let  us  take  0,  </>  the  spherical  polar 

coordinates  of  the  third  axis  OC  of  the  body,  and  yjr  a  third  coor- 
dinate wliich  measures  the  angle  between  the  first  axis  OA  of  the 

rigid  body  and  the  plane 

through  OC  and  the  axis 

^  =  0,  say  the  plane  COz. 
We  have  first  to  find 

&)p  0)3  and  0)3  in  terms  of 

6,  (j)  and  '\jr,  so  as  to  ex- 
press 2T  as  a  function  of 

these  coordinates.  The 

motion  of  the  body  is  com- 
pounded of  the  motion 

relative  to  the  plane  COz, 

together  with  the  motion 
of  the  plane  COz  relative 
to  fixed  axes.  The  former 

motion  consists  of  a  rotation  i/r  about  OC,  and  this,  resolved  along 

the  axes  OA,  OB,  OC,  has  components 

0,  0,  i/r. 

The  motion  of  the  plane  COz  is  compounded  of 

(a)  a  rotation  0  about  an  axis  at  right  angles  to  its  plane ; 

(b)  a  rotation  ̂   about  the  axis  ̂   =  0. 

Fig.  156 
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Resolved  along  the  axes  OA,  OB,  OC,  the  first  part  has  compo- 
nents 

6  siayfr,  6  cos  i/r,  0, 

while  the  second  has  components 

--  <^  sm  6  cos  i/r,         <^  sin  6  sin  i/r,         <^  cos  6. 

Compoimding  these  motions,  we  obtain 

co^  =  6  sin  sir  —  <f)  sin  6  cos  yjr 

(o^  =  6  cos  yjr  +  (j)  sin  6  sin  i/r 

co^  =  yjr  -h  (^  cos  ̂  

Let  the  work  done  in  a  smaU  displacement  be 

then  Lagrange's  equation  for  the  coordinate  ^  is 

d  /dT\  _  dT 

(185) 

We  have,  by  differentiation  of  equation  (184), 

— :-  =  A(0^  —^  +  Bco^  —^  +  Ca)3  — :i 
dyjr  d'^  d'yjr  d'>^ =  Ceo,, 

on  substituting  
from  equations  

(185).    Also 

^—j     ̂ 4.7?     ̂ _i_r    ̂  

^"^  ^A^  ^-1^  ^T^r 

=  Aco^  {6  cos  -v/r  -f-  (^  sin  ̂   sin  -^/r) 

-h  ̂ <»2  (—  ̂  sin  i/r  4-  <^  sin  6  cos  i/r) 

=  (A  —  B)  (0^0)^. 

Finally  "^Byjr  is  the  work  done  by  external  forces  in  a  small 

rotation  S^fr,  and  therefore,  by  §  121,  "^  is  equal  to  N,  the  sum  of 
the  moments  of  these  forces  about  the  axis  OC. 
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Making  aU  these  substitutions,  equation  (186)  becomes 

which  is  Euler's  third  equation,  and  the    other   two    equations 
follow  from  symmetry. 

Small  Oscillations 

279.  Let  6^,  O^,---,  ̂ „  be  generalized  coordinates  of  any  system, 
and  let  it  be  supposed  that  these  coordinates  are  all  independent, 

so  that  any  set  of  values  oi  6^,  6^,  -  •  ,6^  gives  a  possible  configura- 
tion of  the  system. 

Suppose  that  the  configuration 

0,  =  0„       0,  =  e„       ..-,      e„  =  e,,  (i87) 

is  known  to  be  a  configuration  of  equilibrium.    Then,  if 

the  quantities  <^i,  </>2,  •  •  • ,  </>„  may  be  taken  to  be  generalized  coordi- 
nates of  the  system,  and  will  possess  the  property  of  all  vanishing 

in  the  position  of  equilibrium. 

Let  Wq  denote  the  value  of  the  potential  energy  in  the  configu- 

ration of  equilibrium.  The  potential  energy  in  any  other  configu- 

ration may,  by  Taylor's  theorem,  be  expanded  in  the  form 

where  all  the  differential  coefficients  are  evaluated  in  the  position 

of  equilibrium.  In  this  position  of  equilibrium,  however,  we  have, 

by  the  theorem  of  §  135, 
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so  that  we  can  write  the  value  of  W  in  the  form 

IV  =  TV,  +  a,,ct>l  +  2  a,,<t>,<t>,  +  •  •  •  +  «„>f.,  (188) 

in  which  powers  of  <^i,  4>2,  •  •  '  higher  than  the  second  are  left  out 
of  account,  because  we  are  going  to  confine  our  attention  to  motions 

in  which  <i>i,  <i>2i  '  • '  are  aU  small  quantities. 
The  kinetic  energy,  as  before  (§  270),  is  a  quadratic  function  of 

4>i>  4>  •  •  • »  <^n-    Let  us  say 

T=hJ\  +  2hJ,<i.,  +  ̂ --  +  hJl.  (189) 

The  coefficients  h^^,  \^,  -  -  •,Kn  ̂ ^^>  strictly  speaking,  functions  of 

^i>  ̂2'  ' '  '>  ̂n»  but  we  may  regard  their  values  as  being  equal  to 
the  values  in  the  configuration  of  equilibrium,  and  so  may  treat 
them  as  constants. 

280.  Now  consider  two  quadratic  functions  of  n  variables  aj^, 

x^,  •  •  -,  x^,  defined  by 

F{x^,  x^,  '■',  x^)  =  b^X  +  2  b,^x^x^  +  •  •  •  +  KA. 

Since  the  function  T  defined  by  equation  (189)  is  necessarily 

positive,  it  follows  that  F(x^,  x^,  •  •  •,  xj  is  positive  for  all  values 

of  a?j,  a?2)  '  '  '>  ̂ n-  Hence,  by  a  known  theorem  in  algebra,  we  can 
find  a  transformation  of  the  type 

^i  =  f'u  ?i  +  ̂12  ?2  +  •  •  •  +  /c,,,  I,  \ 

^2  ~  ̂^21  b  1  "T  ̂^22  b  2    •"   ■   "   '  ""     '^2n  b  n  J 

in  which  the  coefficients  k^^,  etc.,  are  real,  which  is  such  that/  and 

F  transform  into  expressions  of  the  type 

f{x^,  x^,  .  .  .,  x^)  =  a^P^-\-a^^l  +  •  •  •  +  crj^, 

F{X,,    X,,    .  .  .,    X^)=P,e,+  ̂ .^\+  ■  •  •  +^nln, 

and  all  the  coefficients  yS^,  /Sg,  •  •  • ,  /5„  will  be  positive. 
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Algebraic  proofs  of  this  theorem  will  be  found  in  treatises  on  analysis, 

or  in  Salmon's  Higher  Algebra,  Lesson  VI.  The  theorem  will  be  readily 
understood  on  considering  a  geometrical  interpretation  in  the  case  in  which 
the  number  of  variables  is  three.  Calling  the  variables  x,  y,  and  z,  the 

equations 
f(x,y,z)  =  l,     F(x,y,z)  =  l  (191) 

will  be  the  equations  of  concentric  quadrics  ;  and  since  F  is  positive  for  all 
values  of  x,  y,  z,  the  second  quadric  will  be  an  ellipsoid.  It  is  known  that 
two  concentric  quadrics,  of  which  one  is  an  ellipsoid,  always  have  one  real 
set  of  mutually  conjugate  diameters  in  common.  A  transformation  of  the 
type  expressed  by  equation  (194)  enables  us  to  transform  to  these  axes  as 
axes  of  coordinates,  and  the  equations  of  the  quadrics  are  then  of  the 
required  forms 

^1^1  +  ̂ .42+  ̂ ^3^1  =  1,       ̂ 1^?  +  ̂ 2^2  +  -83^3  =  L  (192) 

[Simple  reasoning  will  show  the  truth  of  the  geometrical  theorem  that 
an  ellipsoid  and  a  second  quadric  always  have  one  common  set  of  real 
mutually  conjugate  diameters.  For  a  real  linear  transformation  will  trans- 

form the  ellipsoid  into  a  sphere,  and  the  second  quadric  into  a  new,  but 
still  real,  quadric.  The  principal  axes  of  this  real  quadric  are  now  real 
mutually  conjugate  diameters  for  the  sphere  and  the  quadric,  and  on  trans- 

forming back,  real  mutually  conjugate  diameters  remain  real  mutually 
conjugate  diameters.] 

The  algebraic  proof  that  equations  (191)  could  be  transformed  into 
equations  (192)  would,  however,  clearly  not  be  limited  to  the  case  of  three 
variables,  so  that  the  theorem  must  be  true  for  any  number  of  variables. 

281.  This  theorem  proves  that  we  can  find  new  coordinates 

"^i'  '^2>  ' '  'f  '^n  connected  with  ̂ ^,  <^2>  '  '  ' »  ̂n  ̂ J  relations  of  the 
type 

<^i  =  «ii'^i  +  '^i2'^2+-"  +  '^i«'^n>  ^         (193) 

4>i  =  '^ii'f  1  +  '^12'f  2  H   +  '^m'f «.  (194) 

such  that,  expressed  in  terms  of  these  coordinates,  the  potential 

and  kiQetic  energies  assume  the  forms 

W=  W,^a,fl+a,fl  -f  .  .  .  +  a^fl  (195) 

The  coordinates  -^jr^,  yjr^,  •  •  •,'^,,  are  called  the  principal  coordi- 
nates of  the  system,  or,  by  some  writers,  the  normal  coordinates. 
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Lagrange's  equations,  in  terms  of  these  coordinates,  are etc., 

^  /^\      ̂ ^  _      ̂ W 
dt  \dyjrj       ̂ i^i  ̂ i^i 

wliich  become  /S^  —^  =  —  a^yjr^,  etc.  (197) 

Stable  Uquilihrium 

cc 
282.  If  oTj  is  positive,  let  us  put  — ^  =  ̂ ^,  so  that  Jc^^  will  be 

real.    The  equation  is  now  ^ 

^'^1  _  7.2,. 

of  which  the  solution  is 

^,  =  J,cos(Z:,^-6,),  (198) 

as  in  §  208.  Thus  the  motion  is  a  simple  harmonic  motion  of 

frequency  ̂ \.  If  all  the  coefficients  a^,  a^,  ■  ■  ■,  a^  are  positive,  the 
complete  solution  of  the  equations  will  be  of  the  form 

-yfr^  =  A^  cos  {k,t  —  €2),  etc., 

and  the  coordinate  x  of  any  particle,  of  wliich  the  value  in  the 

equilibrium  position  is  x^,  will  be 

,     dx        ,    dx 

=  x^-i-  B^  cos (Ji\t  —  e^)  +  B^  cos (JcJ  —  e^)  +  -  -  -, 

where  B^,  B^,  •  •  •  are  new  constants. 

Thus  the  motion  of  any  single  particle  will  be  a  motion  com- 
pounded of  a  number  of  simple  harmonic  motions. 
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283.  The  potential  energy  corresponding  to  any  principal  coor- 

dinate i/r^  is  a^^-^l,  or,  if  we  suppose  i/tj  given  by  equation  (198),  is 

Similarly,  the  kinetic  energy  corresponding  to   this  priucipal 
vibration  is  ff-z^l,  or 

l3,AlJ4siii'{k,t-€,). 

Averaged  over  a  very  long  time,  the  average  values  of  cos^  (k^t  —  e^) 

and  of  sin^  (k^t  —  e^)  are  each  ̂ ,  so  that  the  average  potential  and 
kinetic  energies  are  respectively 

and  these  are  equal  since  kl  =  -^-  Thus  in  any  vibration  the  aver- 

age kinetic  and  potential  energies  are  equal. 

Unstable  Equilibrium 

284.  Suppose  now  that  any  one  of  the  coefficients  in  equation 

(195)  is  negative,  say  a^.    Let  us  put  — ^  =—  A^f,  so  that  k^  wiU  be 

Pi 

real.    Equation  (197)  now  assumes  the  form 

df   -^^^^
 and  this  has  as  solution 

i/tj  =  A^e''''  +  B^e-^'\ 

showing  that  i/r^  increases  indefinitely  with  the  time,  and  does  not 

oscillate  about  the  value  -x/r^  =  0.  Thus  the  motion  is  unstable,  and 
we  now  see  that  the  motion  can  only  be  stable  provided  all  the 

coefficients  a^,  a^,  ••  •,  a^^  are  positive.    In  other  words, 

For  stable  equilibrium  the  potential  energy  in  the  configuration 

of  equilibriu^n  must  be  an  absolute  minimum. 

This  is  the  result  which  has  already  been  stated  without  proof 

in  §  153. 



FOECED  OSCILLATIONS  353 

Forced  Oscillations 

285.  The  oscillations  which  have  so  far  been  considered  are  of 

the  type  known  as  free  vibrations,  —  that  is  to  say,  the  forces  act- 
ing arise  entirely  from  the  potential  energy  of  the  system  itself. 

A  second  type  of  oscillation  occurs  when  the  system  is  acted  on 

by  forces  from  outside,  in  addition  to  those  arising  from  its  own 

potential  energy.    These  oscillations  are  known  2i^  forced  oscillations. 

Let  us  suppose  that  the  potential  and  kinetic  energies  of  the 

system  are  given  by  equations  (195)  and  (196),  and  that  the  sys- 
tem of  external  forces  acting  at  any  instant  is  such  that  the  work 

done  in  a  smaU  displacement  is 

Then  Lagrange's  equations  for  this  system  are 

d_/dT\       dT  dW 

dt\dyjrj       ̂ ^i  oyjr^  ̂' 

which  becomes  2  ̂^  — Y  =  —  2  a^yjr^  +  "^j,  (199) at 

in  which  "^j,  it  must  be  remembered,  is  now  a  function  of  the 
time.  This  equation  can  be  solved  according  to  the  rules  given 

in  any  treatise  on  differential  equations.    If,  as  before,  we  take 

kl  =  —->  the  general  solution  is  found  to  be Pi t'  =  t 

ir,  =  A,  COS  {k,t  -  €,)  +  —4=       f  {^,),^  ,sin  k,  {t  -  t') dt\ V  2  aSx     J 

the  lower  hmit  of  integration  being  either  t'  =  —  co,  or  the  instant 
of  which  the  external  forces  first  came  into  operation. 

286.  A  case  of  extreme  importance  occurs  when  ̂ ^  is  simply 
periodic  with  respect  to  the  time,  say 

^,  =  i:cos(p,t-y^). 
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The  solution  is  then  found  to  be 

^1  =  A  cos  {Kt  -  e,)  +   :——  cos  {p,t  -  7,), 

or,  since  a^  =  fij^'l, 

a/tj  =  A^  cos(k,t  -  €,)  +   —  COS  {p,t  -  7 J. 

Thus  the  variation  in  -yjr^  is  now  compounded  of  a  simple 
harmonic  motion  of  frequency  ̂ \,  and  also  one  of  frequency  p^, 
the  frequency  of  the  impressed  force. 

We  notice  that  if  jo^  is  very  nearly  equal  to  k^,  then  the  second 

vibration  is  of  very  large  amplitude.  In  the  limiting  case  in  which 

p^  =  Jc^j  the  amplitude  of  the  second  vibration  becomes  infinite, 

but  now  the  two  vibrations  are  of  the  same  period,  so  that  they 

may  be  compounded,  and  we  caimiot  say  that  the  resultant  vibration 

is  one  of  infinite  amplitude,  because  we  do  not  know  the  values  of  A^ 

and  €p  and  these  may  just  be  such  as  to  destroy  the  infinite  ampli- 
tude of  the  second  term.  The  result  we  have  obtained  may  be 

enunciated  in  the  following  form : 

When  a  system  is  acted  on  hy  a  periodic  force,  of  frequency 

very  nearly  equal  to  that  of  one  of  the  principal  vibrations  of  the 

system,  then  the  forced  oscillations  will  he  of  very  great  amplitude. 

This  is  known  as  the  pinnciple  of  resonance. 

The  principle  is  one  of  which  many  applications  appear  in  nature.  For 
instance,  a  bridge,  not  being  absolutely  rigid,  maybe  regarded  as  a  system 
having  a  number  of  free  vibrations.  A  body  of  men  marching  over  the 
bridge  in  regular  step  will  apply  a  periodic  force,  and  if  the  period  of  their 
step  happens  to  nearly  coincide  with  one  of  the  free  periods  of  the  bridge, 
the  amplitude  of  the  vibrations  forced  in  the  bridge  may  be  so  large  as  to 

endanger  the  bridge.  For  this  reason  troops  are  ordered  to  "  break  step  " 
when  crossing  a  bridge. 

Again,  a  ship  is  not  perfectly  rigid,  and  so  will  possess  a  number  of  free 
vibrations.  The  motion  of  its  engines  will  apply  a  periodic  force  of  period 
equal  to  that  of  its  revolution,  and  if  this  coincides  with  that  of  one  of  the 

vibrations  of  the  ship,  large  pulsations  will  be  set  up.  This  can  be  reme- 
died by  altering  the  speed  of  the  engine  until  it  no  longer  is  in  resonance 

with  the  free  vibrations  of  the  ship. 
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As  a  last  example,  it  may  be  noticed  that  a  ship  will  have  a  free  period 
of  rolling  about  its  vertical  position.  If  it  is  in  a  rolling  sea,  the  waves 

which  meet  it  will  apply  external  forces  which  may  be  regarded  as  approxi- 
mately periodic.  If  the  period  of  the  waves  happens  to  coincide  with  that 

of  the  ship,  the  ship  will  roll  heavily  even  though  the  waves  may  be  com- 
paratively small.  This  danger  can  be  remedied  by  altering  the  course  of 

the  ship  and  so  causing  it  to  meet  the  waves  at  a  diiferent  interval.  Another 
way  is  to  give  the  ship  a  list  by  spreading  canvas,  and  so  causing  it  to 
oscillate  about. a  different  position  of  equilibrium,  about  which  the  j)eriods 
of  free  vibrations  are  different. 

The  Canonical  Equations 

287.  If  0^,  6^,  •  '  '  are  Lagrangian  coordinates  of  any  system,  the 
kinetic  energy  T  is  a  quadratic  function  of  6^^,  6^,  6^,  ....  Let  the 

corresponding  momenta  be  it^,  ic^,  •  •  -,  ii^,  these  being  given  by 

iti  =  ̂ ^,etc.  (200) 

Now  let  us  introduce  a  function  T',  defined  by 

r  =  u,d,  +  uj,  +   T, 

so  that  T'  is  a  function  of  u^,  ii^,  •  ■  -,  0^,  0^,    ■  •,  6^,  O^^  -  -  - ;  and 
iCj^,  u^,  •  .  •  are  of  course  functions  of  6^,  6^,  •  •  •,  6^,  6^,  •  •  •. 

On  differentiation  of  T'  we  have 

dT'  =  u^dd^  +  u^dO^  -!-••• 

+  d^du^  -h  d^dit^  -I-  . . . 
dT   ,.       cT    ,. 

and  this,  by  equation  (200),  reduces  to 

3T              Pit 

dT<=  d,du,  +  e,du,  +  ....-  — dd,-^^dd,   .      (201) 
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Since  the  differentials  dd^^,  dd^,  •  •  •  do  not  occur,  it  appears  that  T' 
can  be  expressed  as  a  function  of  tc^,  u^,  -  -  -,  0^,  6^,  •  •  •  only.  We 
can  easily  find  its  value;  we  have 

=  2  T,  since  T  is  a  homogeneous  quadratic  func- 

tion of  (9„  ̂„  ..-+ i^,,. 

Thus  T'  ̂ 2T-T  =  T, 

showing  that  T'  is  equal  to  T,  but  is  expressed  as  a  function  of 
^i»  ̂ 2>  •  *  •>  ̂i>  ̂2>  •  •  ••    Thus 

To  illustrate,  let 

T=ad\-\-2hexe2  +  hdl, 

so  that  Ml  =  2  {ah  +  Mi),     u^  =  2 (A^i  +  bdz) . 

Then,  by  definition, 

T  =  uidi  +  u^Sz  +   T 

=  2  d^(ad^  +  he^)  +  2  ̂2(^^i  +  5^2)  -  ̂  
=  T  =  I  Mi(?i  4-  i  W2^2- 

From  equation  (201),  we  have 

dT'  dT 

(202) 

dd^          36, ' dT'     . 

3ur'- 
.n  Lagrange's  equations 

*  d  /dL\      dL 

dt\3dj    ̂e,      ' ,                               dL       d{T-W)       dT 
have                       -^  =  -^   :    =  -^  = 

a6'i          a(9,          dd^ 

u^ 
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Thus  Lagrange's  equations  may  be  written  as 

^_^Ji  _d{T-W)_      d(T'+W) 

dO       dT' while,  by  equation  (202),  — -^  =   dt       cu^ 

If  we  write  If  =  T'  +  W,  these  equations  assume  the  symmet- 
rical form 

dt       du^     , 

du.  dH 

288.  This  is  known  as  the  canonical  form  of  the  dynamical 

equations.  The  function  If  is  caUed  the  Hamiltonian  function,  and 

since  If  =  T^-\-  W,  we  notice  that  If  is  the  total  energy  expressed 
as  a  function  of  the  coordinates  ̂ i,  ̂2>  *  *  *>  ̂n  ̂^^  ̂ ^  ̂^^^  momenta 

The  canonical  form  is  the  simplest  and  most  perfect  form  in 

which  the  generalized  dynamical  equations  can  be  expressed.  For 

this  reason  the  canonical  system  of  equations  forms  the  starting 

point  of  a  great  many  investigations  in  higher  dynamics,  mathe- 
matical physics,  and  mathematical  astronomy. 

289.  We  may  appropriately  terminate  the  present  book  by  giv- 
ing illustrations  of  the  use  of  generalized  coordinates  from  two 

branches  of  mathematical  physics. 

Illustration  from  hydrodynamics.  Let  a  solid  of  any  shape  be  in  a  stream  of 
water  flowing  with  uniform  velocity  V.  If  the  solid  is  at  a  suflicient  depth  from 
the  surface,  its  presence  will  not  disturb  the  flow  at  the  surface,  and  the  only 

disturbance  in  the  flow  of  the  water  will  be  in  the  neighborhood  of  the  solid. 

It  can  be  proved,  from  elementary  hydrodynamical  principles,  that  there  is 
only  one  way  in  which  the  water  can  flow  past  the  solid.  Hence  it  follows 

that  the  kinetic  energy  of  the  flow  of  the  water  is  given  by 

T=  ro+aF2, 
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where  To  is  the  value  which  the  kinetic  energy  would  have  if  the  solid  were 

removed.  Suppose  that  the  solid  is  acted  on  by  external  forces,  besides  the  pres- 
sure of  the  water.  Let  the  sum  of  the  moments  of  these  forces  about  any  axis 

be  0,  and  let  ̂   be  a  coordinate  which  measures  the  angle  turned  through  about 

this  axis.    Then  Lagrange's  equation  corresponding  to  the  coordinate  d  is 

dT 

dt\ce/     dd 

If  the  external  forces  just  suffice  to  hold  the  body  at  rest  in  the  liquid,  we 

have  —  ( — A  =0,  so  that 

dd         cd 

Hence  the  sum  of  the  moments  of  the  liquid  pressure  must  be  —  0,  or 

cd      ■
' 

We  can  calculate  a  from  the  shape  of  the  solid,  and  so  can  obtain  a  knowledge 
of  the  couples  acting  on  the  solid. 

Illustration  from  electromagnetism.  The  energy  required  to  establish  the  flow 

of  two  steady  currents  of  electricity  of  strengths  i,  i'  in  two  given  closed  circuits 
is  known  to  be  of  the  form 

E=  I  Li^  +  Mli' +  i,  NV2, 

where  L  and  N  depend  on  the  shape  of  the  first  and  second  circuits  respectively, 

while  M  depends  on  the  shape  of  both  circuits,  and  also  on  their  positions 
relative  to  one  another. 

Suppose  that  the  second  circuit  is  free  to  move  along  any  line  towards  the 

first  circuit.  Let  x  be  a  coordinate  measured  along  this  line,  and  let  the  force 

required  to  hold  the  second  circuit  at  rest  be  X  in  the  direction  in  which  x  is 
measured. 

Let  L  denote  the  usual  function  T  —  W,  and  let  the  second  circuit  be  acted 

on  by  an  externally  applied  force  X.  Then  Lagrange's  equation  for  the  coor- 
dinate X  is 

dt\dx/      dx 

so  that,  since  there  is  no  acceleration, 

dx 

As  a  matter  of  experiment,  it  is  found  that 

^  ..,dM         BE X  =  —  ii' —  =   dx  dx 
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If  the  energy  of  the  two  currents  were  potential  energy,  we  should  have 

cL  _      dW      _dE  __cW 
dx  ex  ex  dx 

so  that  the  fotce  X  would  be  exactly  opposite  to  that  observed. 

On  the  other  hand,  if  the  energy  is  kinetic  energy,  we  have 

dx  dx  ex 

so  that  the  value  of  X  agrees  with  that  observed. 

Hence  we  conclude  that  the  energy  of  an  electric  current  is  wholly  kinetic. 

GENERAL  EXAMPLES 

1.  The  friction  of  an  engine  is  such  that  one  horse  power  can  run  it  at 

250  revolutions  per  second  when  it  is  doing  no  external  work.  The  inertia 

of  its  moving  parts  is  such  that  when  running  at  125  revolutions  per  sec- 
ond, and  acted  on  by  one  horse  power,  its  speed  is  accelerated  at  the  rate 

of  10  revolutions  per  second.  If  the  engine  is  left  to  itself  when  running 

at  its  full  speed  of  250  revolutions  per  second,  find  how  many  revolutions 

it  will  make  before  coming  to  rest. 

2.  A  square  is  moving  freely  about  a  diagonal  with  angular  velocity  w, 

when  suddenly  one  of  the  angular  points  not  in  that  diagonal  becomes  fixed. 

Determine  the  impulsive  pressure  on  the  fixed  point,  and  show  that  the 

new  angular  velocity  will  be  |  w. 

3.  Four  equal  rods,  each  of  length  2  a  and  mass  m,  are  freely  jointed  so 

as  to  form  a  rhombus.  The  system  falls  from  rest  with  one  diagonal  ver- 
tical, and  strikes  a  fixed  horizontal  inelastic  plane.  Find  the  impulse  and 

the  subsequent  motion. 

4.  Two  particles  connected  by  a  rigid  rod  move  on  a  smooth  vertical 
circle.    Find  the  time  of  a  small  oscillation. 

5.  A  uniform  rod  of  length  I  has  the  two  points  at  distance  c  from 

its  middle  point  connected  by  equal  strings  of  length  L  to  two  fixed  jioints 
at  distances  2  c  apart  in  the  same  horizontal  line. 

Find  the  jirincipal  coordinates  and  the  corresponding  periods  of 
vibration. 

6.  If  the  rod  of  the  last  question  receives  a  horizontal  blow  of  impulse 

/  at  one  extremity  and  at  right  angles  to  its  length,  find  the  subsequent 
motion. 

7.  A  rough  uniform  cylinder  of  radius  a  has  an  inextensible  string  coiled 

round  its  central  section.  One  end  of  the  string  is  fastened  to  a  fixed  i:)oint 

P,  and  the  cylinder  is  rolled  up  the  string  until  it  is  touching  P,  with  the 

tangent  to  the  cylinder  at  P  vertical.  The  cylinder  is  then  let  go.  Find  the 
motion. 
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8.  In  the  last  question,  find  the  motion  if  the  tangent  at  P  is  perpen- 
dicular to  the  axis  of  the  cylinder,  but  is  not  quite  vertical. 

9.  In  spherical  polar  coordinates  prove  that  the  kinetic  energy  of  a 
moving  particle  of  unit  mass  is  given  by 

T=\  (r2  +  7-2^2  +   ̂.2  sin2^  ̂ 2). 

Hence,  prove  that  the  acceleration  of  the  particle  has  components  in  the 
direction  oi  r,  6,  <l>  increasing,  of  amounts 

dt\cr)       dr  '       rldt\cd/       ̂ ^  J  '        r  sind  dt  \^j,/' 
Show  that  the  actual  values  of  these  accelerations  are 

  r^2  _  ̂ ,  sin2^02      -  —  (r^^)  -  r  sin  ̂   cos  ̂   02         — (r2sin2^0). 
dfi  r  dr      ̂   rsmedr  ^^ 

10.  The  velocity  of  a  particle  in  its  orbit  is  found  to  vary  in  the  inverse 
square  of  its  distance  from  a  fixed  point.  Apply  the  principle  of  least 
action  fo  find  the  orbit,  and  thence  the  law  of  attraction. 

Deduce  the  same  results  from  the  law  of  conservation  of  energy. 

11.  Suppose  that  all  forces  are  annihilated  in  the,  universe,  and  that 

there  is  a  concealed  mechanism  capable  of  possessing  kinetic  energy.  Sup- 
pose that  the  amount  of  this  kinetic  energy  depends  only  on  the  positions 

of  the  material  bodies  in  the  universe,  being  equal  in  magnitude  except  for 
a  constant,  and  opposite  in  sign,  to  the  potential  energy  which  the  system 
would  have  if  the  forces  had  not  been  annihilated. 

Show  that  the  dynamical  phenomena  of  a  universe  of  this  kind  will  be 
identical  with  those  of  a  universe  in  which  both  forces  and  kinetic  energy 

exist,  the  changes  in  the  latter  being  determined  by  Newton's  laws  of 
motion. 

12.  A  number  of  spheres  without  mass,  of  radii  a,  b,  c,  . . .,  move  in  a 
straight  line  through  an  infinite  ocean  of  density  p^ ,  the  distances  apart  of 
their  centers  being  r^^,  r^^,  etc.,  and  their  velocities  Va,  v^,  v^,  ....    When 
a,  ̂,  c,  . . .  are  small  compared  to  r^j,  etc.,  the  kinetic  energy  of  the  motion 
of  the  ocean  is  given  by 

nW 
2T=%itpa^vl  +  .  . .  +  Ott/)-^  ?;„y,  +  •  •  -. 

'  ab 

Show  that  to  an  observer  who  is  unconscious  of  the  presence  of  the  ocean, 

the  spheres  will  appear  to  move  as  though  having  masses  ^irpa^,  f  T/aft^, 
etc.,  and  as  though  forces  of  attraction  acted  between  every  pair  of  spheres, 

proportional  to  the  product  of  the  masses,  to  the  product  of  their  veloci- 
ties, and  to  the  inverse  fourth  power  of  the  distance  between  them. 
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Absolute  units,  of  force,  30  ;  of  work, 
146. 

Acceleration,  12  ;  parallelogram  of,  13  ; 
in  circular  motion,  14,  18. 

Action,  328 ;  principle  of  least,  328. 

Amplitude,  of  a  pendulum,  261;  of  sim- 
ple harmonic  motion,  265. 

Angle  of  friction,  47. 
Angular  momentum,  297 ;  conservation 

of,  297. 

Angular  velocity,  286 ;  composition  of, 
287. 

Arc,  center  of  gravity  of  circular,  125. 

Atwood's  machine,  195. 
Average  velocity,  6. 
Axes  of  inertia,  303. 

Axis  of  rotation,  92. 

Balancing,  of  an  engine,  337. 
Belt,  center  of  gravity  of  spherical,  130. 

Canonical  equations,  355. 

Catenary,  80. 

Center  of  force,  motion  of  point  about, 
269. 

Center  of  gravity,  117;  of  a  lamina, 

121,  135 ;  of  a  solid,  132;  135 ;  of  a 

triangle,  121 ;  of  a  pyramid,  132  ;  of 

a  circular  arc,  126 ;  of  a  segment  and 
sector  of  a  circle,  128,  129;  of  a 
spherical  belt  and  cap,  130 ;  of  a  sec- 

tor of  a  sphere,  130 ;  motion  of,  of  a 
system,  224. 

Central  axis,  of  a  system  of  forces,  107. 
Centroid,  20. 

Circular  arc,  center  of  gravity  of,  125. 

Coefficient,  of  friction,  47 ;  of  elas- 
ticity, 240. 

Coefficients  of  inertia,  301. 

Composition,  of  motions,  4 ;  of  veloci- 
ties, 7 ;  of  accelerations,  13  ;  of  forces 

acting  on  a  particle,  37 ;  of  forces 

acting  in  a  plane,  95;  of  parallel 

forces,  99 ;  of  couples,  105 ;  of  rota- 
tions, 286, 

Compression,  moment  of  greatest,  238. 
Conical  pendulum,  271. 

Conservation,  of  energy,  171 ;  of  linear 

momentum,  223 ;  of  angular  momen- 
tum, 297. 

Conservative  system,  of  forces,  163. 

Coordinates,  generalized,  320, 329 ;  nor- 
mal or  principal,  350. 

Couples,  101 ;  in  parallel  planes,  104 ; 

composition  of,  105 ;  w^ork  performed 
against,  154. 

Cycloidal  pendulum,  265. 

Degrees  of  freedom,  number  of,  184, 
332. 

Descent,  line  of  quickest,  193. 

Diagram,  indicator,  151. 
Differential  equations,  of  orbits,  275. 
Double  stars,  280. 

Earth's  rotation,  198,  310. 
Elasticity,  of  a  string,  45 ;   modulus 

of,  45 ;   of  a  solid,  238 ;   coefficient 

of,  240. 
Ellipsoid  of  inertia,  302. 
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Energy,  potential,  163 ;  kinetic,  168, 
228;  total,  171;  conservation  of ,  171; 
of  motion  of  a  system,  230 ;  of  a  rigid 

body,  290.  ^     ' 
Envelope  of  paths,  of  projectiles,  211. 

Equation,  of  energy,  171,  256;  of  mo- 
tion of  a  particle,  264 ;  of  orbit  of 

a  particle,  275 ;  of  a  rigid  body,  304. 

Equations,  Euler's,  306,  346;  La- 
grange's, 329,  342 ;  canonical  (Ham- 

ilton's), 355. 
Equilibrium,  of  a  particle,  38,  41 ;  of 

a  system  of  particles,  63  ;  of  a  rigid 

body,  93;  stability  and  instability 

of,  174,  351. 

Euler's  equations,  306,  346. 
Extensibility,  of  strings,  44. 

Flexibility,  of  stringy  43. 

Force,  26 ;  measurement  of,  30 ;  trans- 
missibility  of,  94. 

Forced  oscillations,  353. 

Forces,  composition  and  resolution  of, 

37-39  ;  in  one  plane,  66^  95  ;  parallel, 
96,  99 ;  in  space,  106 ;  impulsive, 
233. 

Frame  of  reference,  3,  33 ;  motion  re- 
ferred to  moving,  197;  kinetic  energy 

referred  to  moving,  228. 

Frequency,  of  a  vibration,  263. 

Friction,  46  ;  coefficient  of,  47.  Reac- 

tion betw^een  moving  rough  bodies, 
200. 

Generalized  coordinates,  320,  329 ;  im- 
pulse, 345;  momentum,  345. 

Gravitation,  law  of,  279. 

Gravity,  work  performed  against,  153 ; 
motion  of  body  falling  under,  189 ; 
variation  with  latitude,  200. 

Gyration,  radii  of,  290. 

Hamilton's  Principle,  323. 
Harmonic  motion,  simple,  261. 

Hooke's  law,  44. 
Horse  power,  146. 

Impact,  238 ;  of  particle  on  fixed  sur- 
face, 241 ;  of  any  two  moving  bodies, 

244 ;  of  two  smooth  spheres,  246. 

Impulse,  233 ;  of  compression,  239 ;  of 
restitution,  240 ;  generalized,  345. 

Impulsive  forces,  233,  345. 

Inclined  plane,  motion  of  particle  on, 
192. 

Indicator  diagram,  151. 

Inertia,  moment  of,  290;  coefficients 
and  products  of,  301,  302  ;  ellipsoid 

of,  302 ;  principal  axes  of,  303. 
Inverse  square,  law  of,  276. 

Kepler's  laws,  279. 
Kinetic  energy,  168 ;  of  system  of  par- 

ticles, 228;  of  rotation,  289;  of  a 
rigid  body,  290. 

Lagrange's  equations,  329 ;  for  impul- 
sive forces,  344;  for  non-conserva- 
tive systems,  339. 

Lamina,  center  of  gravity  of,  121,  135. 
Latitude,  variation  of  gravity  with, 

200 ;  variation  of  terrestrial,  310. 

Laws,  of  nature,  1 ;  of  motion,  26. 

Least  action,  327. 
Line  of  action,  of  a  force,  60. 

Mass,  and  measurement  of  mass,  29. 

Measurement,  of  velocity,  6  ;  of  accel- 
eration, 12  ;  of  mass,  29 ;  of  force,  30 ; 

of  work,  145 ;  of  acceleration  due  to 

gravity,  195 ;  of  an  impulse,  235. 
Modulus  of  elasticity,  of  a  string,  45. 
Moment,  of  a  force,  60;  of  a  velocity, 

274;  of  inertia,  290;  of  momentum, 
295. 

Moment  of  greatest  compression,  238. 

Moments,  principal,  of  inertia,  301. 
Momentum,  29;  conservation  of  linear, 

223 ;  moment  of,  295 ;  conservation 

of  angular,  297 ;  generalized,  345. 
Motion,  referred  to  frame  of  reference, 

3 ;  of  a  rigid  body,  91,  286  ;  referred 
to  moving  frame  of  reference,  197 ; 
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of  system  of  particles,  220;  of  cen- 
ter of  gravity  of  any  system,  224; 

simple  harmonic,  261 ;  of  particle 

about  a  center  of  force,  269 ;  of  par- 
ticle under  law  of  inverse  square, 

276. 

Neutral  equilibrium,  182. 

Newton's  law,  of  elasticity,  245. 
Newton's  laws,  of  motion,  26. 
Normal  coordinates,  350. 

Orbit,  general  theoiy,  273 ;  differential 
equation  of,  275. 

Orbit  of  a  particle,  law  of  direct  dis- 
tance, 269 ;  law  of  inverse  square  of 

distance,  276. 

Oscillations,  of  a  pendulum,  298; 

small,  of  a  general  dynamical  sys- 
tem, 348 ;  forced,  353. 

Parallel  forces,  96,  99. 

Parallelogram  law,  velocities,  9;  ac- 
celerations, 13  ;  forces,  38  ;  couples, 

105 ;  angular  velocity,  286. 

Pendulum,  simple,  259  ;  seconds,  261 ; 

cycloidal,  265 ;  general  motion  of, 
298. 

Period,  of  vibration,  261;  of  simple 
harmonic  motion,  265. 

Plane,  composition  of  forces  in  one,  95 ; 
orbit  about  a  center  of  force  confined 

to  one,  273. 

Planet,  rotation  of  a,  309. 

Point  of  application,  of  a  force,  60, 
05. 

Potential  energy,  163. 

Principal  axes  of  inertia,  303. 

Principal  coordinates,  350. ' 
Principle,  of  least  action,  327 ;  Ham- 

ilton's, 323. 
Products  of  inertia,  302. 

Projectiles,  205  ;  range  on  a  horizontal 

plane,  209  ;  range  on  an  inclined 

plane,  209 ;  envelope  of  paths  with 
given  initial  velocity,  211. 

Pulleys,  systems  of,  157. 
Pyramid,  center  of  gravity  of,  132. 

Quickest  descent,  line  of,  193. 

Radius  of  gyration,  290. 

Range,  of  a  projectile,  209. 
Reaction,  31 ;  frictional,  between 

bodies  at  rest,  46;  frictional,  be- 
tween bodies  in  motion,  200. 

Reference,  frame  of,  3,  33 ;  motion  of 
frame  of,  197. 

Relative  motion,  4. 

Resonance,  principle  of,  354. 
Rest,  3. 

Restitution,  impulse  of,  240. 
Retardation,  12. 

Rigidity,  90. 
Rotation,  axis  of,  92 ;  of  earth,  198 ; 

of  a  rigid  body,  kinetic  energy  of, 

289  ;  of  a  planet,  309. 

Sag,  of  a  string,  85. 
Sector,  of  a  circle,  center  of  gravity  of, 

129 ;  of  a  sphere,  center  of  gravity 

of,  134. 
Segment,  of  a  circle,  center  of  gravity 

of,  128. 
Simple  harmonic  motion,  261. 
Spherical  cap,  center  of  gravity  of,  130. 

Spinning  top,  motion  of,  310. 
Stability  and  instability  of  equilib- 

rium, 174,  351. 

Stars,  double,  orbits  of,  280. 
Strings,  tension  of,  42  ;  flexibility  of, 

43 ;  extensibility  of,  44 ;  on  surface, 

74 ;  sag  of  a  stretched,  85 ;  work  of 
stretching,  150. 

Suspension  bridge,  78. 

System,  of  pulleys,  157  ;  conservative, 
of  forces,  1()3. 

System  of  particles,  statics  of,  59 ;  mo- 
tion of,  220  ;  kinetic  energy  of,  230. 

Tension,  of  a  string,  42,  74. 

Top,  motion  of,  310. 
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Transmissibility  of  force,  94. 

Triangle,  of  velocities,  10. 

Triangular  lamina,  center  of  gravity 

of,  121. 

Uniformity,  of  nature,  1. 
Unit,  of  velocity,  6 ;  of  force,  30 ;  of 

work,  146. 

Variation,  of  value  of  g,  200 ;  of  ter- 
restrial latitude,  310. 

Vectors,  16 ;  in  one  plane,  16 ;  in  space, 
19. 

Velocity,  uniform  and  variable,  6; 

average,  6 ;  composition  of ,  7 ;  mo- 
ment of,  274 ;  angular,  286. 

Vibrations,  348,  353. 

Virtual  work,  principle  of,  155. 

Weight,  of  a  particle,  42  ;  of  a  system 
of  particles,  118. 

Wheel  and  axle,  65. 

Work,  measurement  of,  145 ;  against  a 

variable  force,  148 ;  of  stretching  a 

string,  148 ;  represented  by  an  area, 
150 ;  against  an  oblique  force,  152 ; 

performed  against  gravity,  153 ;  per- 
formed by  a  couple,  154 ;  principle 

of  virtual,  155;  performed  by  an 

impulse,  235. 

Wrench,  107. 
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ELEMENTS  OF  THE 

DIFFERENTIAL  AND  INTEGRAL 
CALCULUS 

With   Examples  and  Applications 

REVISED  EDITION,  ENLARGED  AND  ENTIRELY  REWRITTEN 

By  JAMES  M.  TAYLOR 
Professor  of  Mathematics  in  Colgate  University 

8vo.      Cloth.      269  pages.      List  price,  ̂ 2.00  ;   mailing  price,  ;^2. 15 

THIS  text-book  aims  to  present  clearly,  scientifically,  and  in  their 
true  relations  the  three  common  methods  in  the  Calculus. 

The  concept  of  rates  gives  a  clear  idea  and  statement  of  the 
problems  of  the  Calculus ;  the  principles  of  limits  afford  general  solutions 
of  these  problems ;  and  the  lavjrs  of  infinitesimals  greatly  abridge  these 
solutions. 

The  method  of  rates  is  so  generalized  and  simplified  that  it  does  not 

involve  "the  foreign  element  of  time,"  and  affords  the  simplest  and 
briefest  proofs  of  first  principles. 

By  proving  It  (Ay/ Ax)  =  dy/dx,  the  problem  of  rates  is  reduced  to 
one  of  limits  or  infinitesimals. 

The  theory  of  infinitesimals  is  viewed  simply  as  that  part  of  the  theory 
of  limits  which  deals  with  variables  having  zero  as  their  common  limit. 

The  important  distinction  between  infinitesimals  and  zero  and  that 
between  infinites  and  a/o  are  emphasized, 

Taylor's  theorem  is  accurately  stated  and  proved. 
The  method  of  finding  asymptotes  illustrates  the  meaning  of  impos- 

sible and  defective  systems  of  equations. 
The  applications  of  double  and  triple  integration  clearly  set  forth  the 

meanings  of  these  operations. 
A  chapter  on  differential  equations  is  added  to  meet  an  increasing 

demand  for  a  short  course  in  this  subject. 
A  table  of  integrals,  for  convenience  of  reference,  is  appended. 
Throughout  the  work  the  numerous  problems  so  set  forth  and  illustrate 

the  highly  practical  nature  of  the  Calculus  as  to  awaken  in  the  reader  a 
lively  interest. 

Those  who  prefer  to  study  the  Calculus  by  the  method  of  limits  alone 
can  omit  the  few  demonstrations  which  involve  rates  and  take  in  their 
stead  those  by  limits  or  infinitesimals. 
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ELECTRICAL  PROBLEMS 
By  WILLIAM  L.  HOOPER,  Professor  of  Electrical  Engineering,  Tufts  College, 

Mass.,  and  ROY  T.  WELLS,  Senior  Fellow  in  Physics, 

Clark  University,  Worcester,  Mass. 

8vo.      Cloth.      170  pages.      With  diagrams.      List  price,   $i.z^i 
mailing  price,   ̂ 1.35. 

THE  work  contains  sets  of  problems  typical  of  those 
met  with    in   electrical    laboratory   and    engineering 

practice,  with  very  brief  treatment  of  the  methods 

of  solution.     It  is  intended  to  meet  the  need  for  a  collec- 

tion of  numerical  problems  in  the  classes  of  colleges  and 

technical  schools.     It  is  made  up  as  follows  : 

1.  Twelve  sets  of  problems  and  calculations  on  combinations  of 

electro-motive  forces  and  resistances  in  series  and  multiple  grouping  ; 

distribution  and  fall  of  potential  in  railway  and  lighting  circuits,  induc- 

tance of  coils,  capacity  of  condensers,  thermo-electricity,  electro-chem- 
istry ;  and  output  and  efficiency  of  batteries,  generators,  motors,  etc. 

2.  Four  sets  of  problems  on  combinations  of  alternating  electro- 
motive forces  and  currents  and  the  impedance  of  circuits  with  constant 

and  with  varying  values  of  resistance,  inductance,  capacity,  and  frequency. 
3.  Five  sets  of  problems  on  calculating  and  making  winding  tables 

and  drawings  for  direct  and  alternating  current  armatures,  armature 
reactions,  field  windings,  etc. 

4.  Problems  on  winding  and  operation  of  transformers,  rotary  con- 
verters, and  induction  motors,  and  on  testing  of  dynamos  and  trans- 
mission of  power. 

Answers  are  given  to  all  problems,  many  in  the  form  of 

curves  showing  the  effect  of  varying  the  various  constants 

involved,  such  as  temperature,  frequency,  capacity,  resist- 

ance, and  inductance.  The  text  contains  about  forty  ex- 

planatory diagrams. 
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Text-Books  on  Higher  Mathematics 
By  ARTHUR  SHERBURNE  HARDY, 

Recently  Professor  of  Mathematics  in  Dartmouth  College. 

Hardy's  Analytic  Geometry.    8vo.    Cloth.    239  pages.    For  intro- 
duction, $1.50. 

This  work  is  designed  for  the  student,  not  for  the  teacher. 

Particular  attention  has  been  given  to  those  fundamental  concep- 

tions and  processes  which,  in  the  author's  experience,  have  been 
found  to  be  sources  of  difficulty  to  the  student  in  acquiring  a 

grasp  of  the  subject  as  a  method  of  research.  The  limits  of  the 

work  are  fixed  by  the  time  usually  devoted  to  Analytic  Geometry 

in  our  college  courses  by  those  who  are  not  to  make  a  special 

study  in  mathematics. 

Hardy's  Elements  of  Quaternions.  Crown  8vo.  Cloth.   234  pages. 
For  introduction,  $2.00. 

The  chief  aim  in  this  book  has  been  to  meet  the  wants  of 

beginners  in  the  class-room,  and  it  is  believed  that  this  work  will 
be  found  superior  in  fitness  for  beginners  in  practical  compass, 

in  explanations  and  applications,  and  in  adaptation  to  the  methods 

of  instruction  common  in  this  country. 

Hardy's  Elements  of  the  Calculus.    8vo.   Cloth.    239  pages.   Fcr 
introduction,  $1.50. 

Part  I.,  Differential  Calculus,  occupies  i66  pages. 

Part  II.,  Integral  Calculus,  73  pages.  ' 

This  text-book  is  based  upon  the  method  of  rates.  The  object 
of  the  Differential  Calculus  is  the  measurement  and  comparison 

of  rates  of  change  when  the  change  is  not  uniform.  Whether  a 

quantity  is  or  is  not  changing  uniformly,  however,  its  rate  at  any 

instant  is  determined  essentially  in  the  same  manner,  viz.:  by 
letting  it  change  at  the  rate  it  had  at  the  instant  in  question  and 

observing  what  this  change  is.  It  is  this  change  which  the  Cal- 
culus enables  us  to  determine,  however  complicated  the  law  of 

variation  may  be.  From  the  author's  experience  in  presenting  the 
Calculus  to  beginners,  the  method  of  rates  gives  the  student  a 
more  intelligent,  that  is,  a  less  mechanical,  grasp  of  the  problems 
within  its  scope  than  any  other. 
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BYERLY  — ELEMENTARY  TREATISE  ON  FOURIER'S  SERIES  AND 
SPHERICAL,  CYLINDRICAL,  AND  ELLIPSOIDAL  HARMONICS, 
WITH  APPLICATIONS  TO    PROBLEMS   IN  MATHEMATICAL 

PHYSICS.      List  price,  $3,005   mailing  price,  ̂ 3.15. 

An  introduction  to  the  treatment  of  some  of  the  important  linear  partial  dif- 
ferential equations  which  lie  at  the  foundation  of  modern  theories  in  physics. 

HEDRICK  — GOURSAT'S  COURSE  IN  MATHEMATICAL  ANALY- 
SIS, VOLUME  I.  List  price,  $4.00;  mailing  price,  #4.20. 

The  French  edition  of  this  work  at  once  attracted  widespread  attention  on 
account  of  the  clearness  of  its  style  and  the  thoroughness  and  rigor  with  which 
the  subject-matter  was  presented.  The  second  volume  of  the  work  will  be  pre- 

pared in  translation  as  soon  as  it  appears  in  French. 

PEIRCE,  B.  O.  — ELEMENTS  OF  THE  THEORY  OF  THE  NEW- 
TONIAN POTENTIAL  FUNCTION.  (Third,  Revised,  and  Enlarged 

Edition.)      List  price,  ̂ 2.505   mailing  price,  $2.6^. 

Intended  for  general  students  who  wish  to  acquire  a  sound  knowledge  of  the 
properties  of  the  Newtonian  Potential  Function.  Nearly  four  hundred  mis- 

cellaneous problems  have  been  added  in  this  new  edition. 

PEIRCE,  J.  M.  —ELEMENTS  OF  LOGARITHMS.  List  price,  50  cents ; 
mailing  price,  55  cents. 

Designed  to  give  the  student  a  complete  and  accurate  knowledge  of  the 
nature  and  use  of  logarithms. 

TAYLOR,  J.  M.— ELEMENTS  OF  THE  DIFFERENTIAL  AND 
INTEGRAL  CALCULUS.  (Revised  Edition,  Enlarged  and  Entirely 
Rewritten.)  With  Examples  and  Applications.  List  price,  ̂ 2.00  j  mailing 

price,  $2.15. 
Presents  clearly,  scientifically,  and  in  their  true  relations  the  three  common 

methods  in  the  calculus. 

MATHEMATICAL  TEXTS.  Edited  by  Percey  F.  Smith,  of  the  Sheffield  Scien- 
tific School  of  Yale  University. 

Granville's  Elements  of  Differential  and  Integral  Calculus.     List  price, 
$2.50;  mailing  price,  $2.70. 

Hawkes's  Advanced  Algebra.     List  price,  $1.40  ;  mailing  price,  ̂ 1-50. 

Smith  and  Gale's  Elements  of  Analytic  Geometry.     List  price,  |!2.cx3  ;  mail- 
ing price,  #2.15. 

Smith  and  Gale's  Introduction  to  Analytic  Geometry.     List  price,  $1.25; 
mailing  price,  $1.35. 

Smith  and  Lester's  Theoretical  Mechanics.     List  price,  ;  mailing  price. 
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WENTWORTH'S^^J°"S 
TRIGONOMETRIES  editions 

^  1  IHE  aim  has  been  to  furnish  in  these  books  just  so  much  of 
X     trigonometry  as  is  actually  taught  in  our  best  schools  and 

colleges.     The  principles  have  been  unfolded  with  the  utmost 

brevity  consistent  with  simplicity  and  clearness,  and  interesting 

problems  have  been  selected  with  a  view  to  awakening  a  real 

iove  for  the  study.     The  subjects  of  Surveying  and  Navigation 

are  presented  in  accordance  with  the  best  methods  in  actual  use 

and  in  so  small  a  compass  that  the  general  student  may  find  time 

to  acquire  a  competent  knowledge  of  them. 

Plane  and  Solid  Geometry  and  Plane  Trigonometry.      i2mo. 

Plane  Trigonometry.     i2mo.     Cloth.     162  pages   6c 
Plane  Trigonometry,  and  Tables.    8vo.    Cloth.    258  pages     .    .       .9c 
Plane  and  Spherical  Trigonometry.    i2mo.    Half  morocco.    232 

Plane  and  Spherical  Trigonometry,  and  Tables.     8vo.     Half 
morocco.     328  pages   i  2c 

Plane  Trigonometry,    Surveying,   and   Tables.       8vo.      Half 

Surveying  and  Tables.     8vo.    Cloth,     194  pages   8c 
Plane  and  Spherical  Trigonometry,   Surveying,  and  Tables. 

8vo.     Half  morocco.     427  pages   i.3t 
Plane  and  Spherical  Trigonometry,  Surveying,  and  Navigation. 

i2mo.     Half  morocco.     412  pages                  i  2c 
Logarithms,  Metric  Measures,  and  Special  Subjects  in  Advanced 

Algebra.     12  mo.     Paper.     141  pages   2t 

New  Five-Place  Logarithmic  and  Trigonometric  Tables.     By 
G.  A.  Wentworth  and  G.  A.  Hill   

Seven  Tables    (for    Trigonometry  and   Surveying).     Cloth. 
70  oaees           .     .                      cr 

Complete   (for   Trigonometry,  Surveying,  and  Navigation). 

Note.  — The  old  editions  of  Wentworth's  Trigonometries  may  still  be  obtained 
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FINE'S   COLLEGE  ALGEBRA 
By  HENRY  B.   FINE 

Professor  of  Mathematics  in  Princeton  University 

l2mo.      Cloth.      595  pages.      List  price,  ̂ 1.50  ;   mailing  price,  |5 1.6 5 

THE  author  aims  to  develop  connectedly  the  theory 

of  the  algebraic  processes  in  as  elementary  and 

informal  a  manner  as  possible,  and  to  present  the 

processes  themselves  in  the  form  best  adapted  to  the 

purposes  of  practical  reckoning.  The  volume  is  intended 

for  use  chiefly  in  the  last  year  of  school  and  in  the  first 

year  of  college. 

The  first  part  of  the  book  is  concerned  with  a  discus- 

sion of  number  —  a  fundamental  study  from  which  the 
student  will  learn  the  ordinal  character  of  the  real  num- 

bers and  the  relations  of  equality  and  inequality  among 
them,  besides  much  that  will  be  of  service  in  future 

mathematical  study.  The  second  part  of  the  book 

differs  in  essential  features  from  the  text-books  in  gen- 

eral use,  not  from  any  wish  on  the  part  of  the  author 

to  introduce  novel  methods,  but  solely  in  the  interests 

of  simplicity  and  logical  consistency. 

The  theorems  are  demonstrated  rigorously  and  at  the 

same  time  are  made  to  show  their  significance  and  value 

by  suitable  applications.  Constant  use  is  made  of  the 

graphical  method  of  illustration. 
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