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PREFACE.

THE object of this treatise is to supply the want which is felt

by Students of a suitable
v
text-book on geometry. Hitherto

the study of Pure Geometry has been neglected; chiefly, no

doubt, because questions bearing on the subject have very rarely

been set in examination papers. In the new regulations far

the Cambridge Tripos, however, provision is made for the intro-

duction of a paper on "Pure Geometry;—namely, Euclid; ample

properties of lines and circles; inversion; the elementary prop

of conic sections treated geometrically, not excluding the method

of projections; reciprocation; harmonic properties, curvatt;

In the present treatise I have brought together all the important

propositions—bearing on the simple properties of lines and

circles—that might fairly be considered within the limits <>f the

above regulation. At the same time I have endeavoured

treat every branch of the subject as completely as possible in

Ithe hope that a larger number of students than at present may

be induced to devote themselves to a science which deserves ss

much attention as any branch of Pure Mathematics.

Throughout the book a large number of interesting theorems

and problems have been introduced as examples to illustrate the

principles of the subject. The greater number have been taken

from examination papers set at Cambridge and Dublin; or from

the Educational Times. Some are original, while others are take,

from Townsend's Modern Geometry, and Casey's Sequel to Euclid.
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In their selection and arrangement great care has been taken.

In fact, no example has been inserted which does not admit

of a simple and direct proof depending on the propositions

immediately preceding.

To some few examples solutions have been appended, especially

to such as appeared to involve theorems of any distinctive im-

portance. This has been done chiefly with a view to indicate

the great advantage possessed by Pure Geometrical reasoning

over the more lengthy methods of Analytical Work

Although Analysis may be more powerful as an instrument of

research, it cannot be urged too forcibly that a student who wishes

to obtain an intimate acquaintance with the science of Geometry,

will make no real advance if the use of Pure Geometrical reasoning

be neglected. In fact, it might well be taken as an axiom,

based upon experience, that every geometrical theorem admits of

a simple and direct proof—by the principles of Pure Geometry.

In writing this treatise I have made use of the works of Casey,

Chasles, and Townsend ; various papers by Neuberg and Tarry,

—

published in Mathesis;—papers by Mr A. Larmor, Mr H. M.

Taylor, and Mr K Tucker—published in the Quarterly Journal,

Proceedings of the London Mathematical Society, or The Educa-

tional Times.

I am greatly indebted to my friends Mr A. Larmor, fellow of

Clare College, and Mr H. F. Baker, fellow of St John's College, for

reading the proof sheets, and for many valuable suggestions which

have been incorporated in my work. To Mr Larmor I am

especially indebted for the use which he has allowed me to make

of his published papers.

R LACHLAN.

Cambridge,

11th February, 1893.
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CHAPTER I.

INTRODUCTION.

Definition of a Geometrical Figure.

1. A plane geometrical figure may be defined as an assem-

)lage of points and straight lines in the same plane, the straight

ines being supposed to extend to infinity. Usually either the

)oint or the straight line is regarded as the element, and then

igures are treated as assemblages of points or assemblages of

traight lines respectively. To illustrate this remark let us

onsider the case of a circle. Imagine a point P to move so

hat its distance from a fixed point is constant, and at the same

dme imagine a straight line PQ to be always turning about the

)oint P so that the angle OPQ is a right angle. If we suppose

ihe point P to move continuously we know that it will describe a

:ircle ; and if we suppose the motion to take place on a plane

vhite surface and all that part of the plane which the line PQ
jasses over to become black, there will be left a white patch

>ounded by the circle which is described by the point P.

There are here three things to consider :

—

i. The actual curve which separates the white patch from the

•est of the plane surface.

ii. The assemblage of all the positions of the moving point P.

iii. The assemblage of all the positions of the moving line

P
Q.

It is usual to say that the curve is the locus of all the positions

>f the moving point, and the envelope of all the positions of the

noving line. But it is important to observe that the three things

ire distinct.

L. 1



2 NATURE OF A GEOMETRICAL FIGURE.

2. Let us consider now the case of any simple plane figure

consisting of a single curved line. Such a figure may be conceived

as traced out by the motion of a point. Hence we may regard a

simple figure as the locus of an assemblage of positions of a

moving point.

The conception of a curve as an envelope is less obvious, but it

may be derived from the conception of it as a locus. It will be

necessary however to define a tangent to a curve.

Let a point P' be taken on a curve near to a given point P,

and let PT be the limiting position which the line PP' assumes

when P' is made to approach indefinitely near to P ; then the

straight line PT is said to touch the curve at the point P, and is

called the tangent at the point.

T/

If now we suppose a point P to describe continuously a given

curve, and if for every position of P we suppose the tangent to the

curve to be drawn, we may evidently regard these straight lines as

the positions of a straight line which turns about the point P, as P
moves along the curve. Thus we obtain the conception of a curve

as the envelope of positions of a straight line.

3. It remains to consider two special cases. Firstly, let us

suppose the point P to describe a straight line : in this case the

assemblage of lines does not exist, and we may say that the

straight line is the locus of the positions of the point. Secondly,

let us suppose the point P to be fixed : in this case there is no

assemblage of points, and we may say that the point P is the

envelope of all the positions of a straight line which turns

round it.

4. It follows that any plane figure consisting of points, lines,

and curves, may be treated either as an assemblage of points

or as an assemblage of straight lines. It is however not always
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necessary to treat a figure in this way; sometimes it is more
convenient to consider one part of a figure as an assemblage of

points, and another part as an assemblage of straight lines.

Classification of Curves.

5. Curves, regarded as loci, are classified according to the

number of their points which lie on an arbitrary straight line.

The greatest number of points in which a straight line can cut a

curve is called the order of the curve. Thus a straight line is an

assemblage of points of the first order, because no straight line

can be drawn to cut a given straight line in more than one point.

The assemblage of points lying on two straight lines is of the

second order, for not more than two of the points will lie on any

arbitrary straight line. A circle is also a locus of the second order

for the same reason.

On the other hand it is easy to see that every assemblage of

points of the first order must lie on a straight line.

6. Curves, regarded as envelopes, are classified according to

the number of their tangents which pass through an arbitrary

point. The greatest number of straight lines which can be drawn

from an arbitrary point to touch a given curve is called the class

of the curve. Thus a point is an envelope of the first class,

because only one straight line can be drawn from any arbitrary

ipoint so as to pass through it. A circle is a curve of the second

class, for two tangents at most can be drawn from a point to

touch a given circle.

On the other hand, an assemblage of straight lines of the first

class must pass through the same point; but an assemblage of

straight lines of the second class do not necessarily envelope a

circle.

The Principle of Duality.

7. Geometrical propositions are of two kinds,—either they

refer to the relative positions of certain points or lines connected

with a figure, or they involve more or less directly the idea of

measurement. In the former case they are called descriptive, in

the latter metrical propositions. The propositions contained in

the first six books of Euclid are mostly metrical ; in fact, there i^

not one that can be said to be purely descriptive.

1—2



4 PRINCIPLES OF DUALITY

There is a remarkable analogy between descriptive propositions

concerning figures regarded as assemblages of points and those

concerning corresponding figures regarded as assemblages of

straight lines. Any two figures, in which the points of one

correspond to the lines of the other, are said to be reciprocal

figures. It will be found that when a proposition has been proved

for any figure, a corresponding proposition for the reciprocal figure

may be enunciated by merely interchanging the terms ' point

'

and 'line'; 'locus' and 'envelope'; 'point of intersection of two

lines' and 'line of connection of two points'; &c. Such propo-

sitions are said to be reciprocal or dual; and the truth of the

reciprocal proposition may be inferred from what is called the

principle of duality.

The principle of duality plays an important part in geometrical

investigations. It is obvious from general reasoning, but in the

present treatise we shall prove independently reciprocal proposi-

tions as they occur, and shall reserve for a later chapter a formal

proof of the truth of the principle.

The Principle of Continuity.

8. The principle of continuity, which is the vital principle of

modern geometry, was first enunciated by Kepler, and afterwards

extended by Boscovich ; but it was not till after the publication of

Poncelet's "Traite des Proprietes Projectives" in 1822 that it was

universally accepted.

This principle asserts that if from the nature of a particular

problem we should expect a certain number of solutions, and if in

any particular case we find this number of solutions, then there

will be the same number of solutions in all cases, although some of

the solutions may be imaginary. For instance, a straight line can

be drawn to cut a circle in two points ; hence, we state that every

straight line will cut a circle in two points, although these may be

imaginary, or may coincide. Similarly, we state that two tangents

can be drawn from any point to a circle, but they may be

imaginary or coincident.

In fact, the principle of continuity asserts that theorems

concerning real points or lines may be extended to imaginary

points or lines.



AND CONTINUITY.

We do not propose to discuss the truth of this principle in the

present treatise. We merely call attention to it, trusting that the

reader will notice that certain propositions, which will be moved,
might be inferred from earlier propositions by the application of

the principle.

It is important however to observe that the change from a real

to an imaginary state can only take place when some element <.t

a figure passes through either a zero-value, or an infinite value.

For instance, if a pair of points become imaginary, they must first

coincide ; that is, the distance between them must assume a zero-

value. Imagine a straight line drawn through a fixed point to

cut a given circle in two real points, and let the line turn about

the fixed point :—as the line turns, the two points in which it cuts

the circle gradually approach nearer and nearer, until the line

touches the circle, when the points coincide, and afterwards

become imaginary.

Points at infinity.

9. Let AOA' be an indefinite straight line, and let a straight

time be drawn through a fixed point P cutting the given line AA'

in the point Q. If now we suppose the line PQ to revolve

(continuously about the point P, the point Q will assume every

position of the assemblage of points on the line A A'. Let be

the position of the point Q when the line PQ is perpendicular to

the line AA\ and let us suppose that PQ revolves in the direction

indicated by the arrow-head in the figure. Then we see thai

distance OQ increases from the value zero, and becomes indefinit, 1
v

great as the angle OPQ becomes nearly a right angle. When the
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angle OPQ is a right angle, PQ assumes a position parallel to OA,

and as the line PQ continues to revolve about P the point Q
appears at the opposite extremity of the line A'A. We say then that

when the line PQ is parallel to OA, the point Q may be considered

as situated on the line OA at an infinite distance from the point

0, and may be considered as situated on either side of 0. That is

to say, on the hypothesis that the line PQ always cuts the line

OA in one real point, the line OA must be considered as having

one point situated at infinity, that is at an infinite distance from

every finite point on the line.

It follows also that any system of parallel lines, in the same

plane, must be considered as intersecting in a common point at

infinity. And conversely every system of straight lines drawn

through a point at infinity is a system of parallel straight lines.

10. Since every straight line has one point situated at

infinity, it follows that all the points at infinity in a given plane

constitute an assemblage of points of the first order. Hence, all

the points at infinity in a given plane satisfy the condition of

lying on a straight line. This straight line is called the line at

infinity in the plane.



CHAPTER II.

MEASUREMENT OF GEOMETRICAL MAGNITUDES.

Use of the signs + and - in Geometry.

11. In plane geometry, metrical propositions are concerned

with the magnitudes of lengths, angles, and areas. Each of these,

we shall see, is capable of being measured in two opposite

irections. Consequently it is convenient to use the algebraic

signs 4- and — to distinguish between the directions in which such

magnitudes as have to be compared are measured. It Is usual

to consider magnitudes measured in some specified direction as

positive, and those measured in the opposite direction as negative

;

but it is seldom necessary to specify the positive direction, since it

is always possible to use such a notation for any kind of magnitude

|ks shall indicate the direction in which it is measured.

Measurement of lengths.

12. If A and B be two points on a straight line, the length of

the segment AB may be measured either in the direction from A

towards B, or in the opposite direction from B towards A.

When the segment is measured from A towards B its length

is represented by AB, and when it is measured from B towards A

its length is represented by BA.

Consequently, the two expressions AB and BA represent the

same magnitude measured in opposite directions. Therefore we

have BA = - AB, that is AB + BA = 0.

13. The length of the perpendicular drawn from a point A to

a straight line x, is represented by Ax when it is measured from
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the point A towards the line, and by xA when it is measured from

the line x towards the point A.

Consequently, the two expressions Ax, Bx will have the same

sign when the points A and B are on the same side of the line,

and different signs when the points are on opposite sides of the

line.

14. Segments measured on the same or parallel lines may
evidently be compared in respect of both direction and mag-

nitude, but it must be noticed that segments of lines which

are not parallel can only be compared in respect of magnitude.

Measurement of angles.

15. Let AOB be any angle, and let a circle, whose radius is

equal to the unit of length, be described with centre to cut OA
,

OB in the points A and B. Then the angle AOB is measured by

the length of the arc A B. But the length of this arc may be

measured either from A towards B, or from B towards A. Conse-

quently, an angle may be considered as capable of measurement in

either of two opposite directions.

When the arc is measured from A towards B, the magnitude

of the angle is represented by AOB; and when the arc is measured

from B towards A, the magnitude of the angle is represented by

BOA.

Thus the expressions A OB, BOA represent the same magnitude

measured in opposite directions, and therefore have different signs.

Therefore A OB + BOA = 0.
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16. Angles having different vertices may be compared in

respect of sign as well as magnitude. For if through any point (/

we draw O'A' parallel to and in the same direction as CM, and

O'B' in the same direction as 0B\ the angles AOB, A'O'B are

evidently equal, and have the same sign.

17. Straight lines are often represented by single letters ; and

the expressions ab, ba are sometimes used to represent the angles

between the lines a and b. But since two straight lines form two

angles of different magnitudes at their point of intersection, this

notation is objectionable. If however we have a series of lines

meeting at a point 0, and if we represent the lines OA, OB by the

letters a, b, the use of the expression ab as meaning the same

thing as the expression AOB is free from ambiguity. In this case

we shall evidently have ab = — ba.

The Trigonometrical Ratios of an angle.

18. In propositions concerning angles it is very often con-

venient to use the names which designate in trigonometry certain

ratios, called the trigonometrical ratios of an angle.

Let AOB be any angle, let any point P be taken in OB and let

PM be drawn perpendicular to OA.

6 M A

The ratio of MP : OP is called the sine of the angle AOB ;

the ratio of OM : OP is called the cosine of the angle AOB ;

the ratio ofMP : OM is called the tangent of the angle AOB ;

the ratio of OM : MP is called the cotangent of the angle A OB,

the ratio of OP : OM is called the secant of the angle AOB ;

the ratio of OP : MP is called the cosecant of the angle AOB.

These six ratios are called the trigonometrical ratios of the

angle AOB.

Let us now consider the line Oil to be fixed, and let OB

revolve round the point 0. For different positions of OB the
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length OP is taken to be of invariable sign, but the lengths OM
and MP will vary in magnitude as well as in sign. Since OB may
be drawn so as to make the angle AOB equal to any given angle,

the trigonometrical ratios of angles are easily compared in respect

of magnitude and sign.

19. The following useful theorems are easily proved, and may

be found in any treatise on Trigonometry.

Let AOB be any angle, and let AO be produced to A'; then

sin AOB = — sin B0A = sin BOA' = — sin A'OB
cos A0B = cos BOA = — cos BOA' = — cos A'OB
tan A0B = — tan BOA = — tan BOA' = tan A'OB
cot A0B = — cot BOA = — cot BOA' = cot A'OB
sec A0B = sec BOA = — sec BOA' = — sec A'OB
cosec AOB = — cosec BOA = cosec BOA' = — cosec A'OB.

Also if 00 be drawn perpendicular to OA,

sin A0B = cos COB = cos BOC
cos A0B = - sin COB = sin BOC
tan A0B = - cot COB = cot BOC
cot A0B = — tan COB = tan BOC
sec A0B = — cosec COB = cosec BOC
cosec AOB = sec COB = sec BOC.

The measurement of areas.

20. Let ABCD be any contour, and let be a point within

it. Let P be any point on the contour, and let P be supposed

to move round the contour in the direction ABCD. The area

enclosed by the contour is said to be traced out by the radius

OP. For if we take consecutive radii such as OP, OP' the
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magnitude of the area ABCD is evidently the sum of th.-

elementary areas OPP/
.

p.

Now suppose the point to lie without the contour ABCD;
and let OB, OD be the extreme positions of the revolving line

OP. The area enclosed by the contour is now evidently the

difference of the area ODAB traced out by OP as it revolves

in one direction from the position OD to the position OB, and

the area OBGD traced out by OP as it revolves in the opposite

direction from the position OB to the position OD.

We may thus regard the magnitude of the area enclosed by

any contour such as ABCD, as capable of measurement in either

of two opposite directions. And if we represent the magnitude of

the area by the expression {ABGD) when the point P is supposed

to move round the contour in the direction ABCD, and by the

expression (ADCB) when the point P is supposed to move in t In-

direction ADCB ; we shall have

(ABCD) + (ADCB) = 0.

Areas may evidently be compared in respect to sign as well its

magnitude wherever they may be situated in the same plane.

It should be noticed that the expression for the magnitude of
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an area will have the same meaning if the letters be interchanged

in cyclical order.

21. If a closed contour be formed by a series of straight lines a, b, c,

d, ..., the magnitude of the area enclosed by them may be represented by the

expression {abed...), without giving rise to ambiguity, provided that (abed) be

understood to mean the area traced out by a point which starting from the

point da moves along the line a towards the point ab, and then along the line

b towards the point be, and so on.

22. Let ABC be any triangle, and let AD be drawn perpendicular to BC.

Through A let HAK be drawn parallel to BC, and let the rectangle BHKC be

completed.

H A K

It is proved in Euclid (Book i., prop. 41) that the area of the triangle

ABC is half the area of the rectangle HBCK.

That is (ABC)= h (HBCK).

Therefore the area (ABC) is equal in magnitude to

\HB.BC, i.e., \AD.BC.

And since DA =BA sin CAB,

the area (ABC) is equal in magnitude to

\BA.BC.amABC;

or by symmetry to £AB . A C. sin BAC.

It is often necessary to use these expressions for the area of a triangle,

but when the areas of several triangles have to be compared it is generally

necessary to be careful that the signs of the areas are preserved. Two cases

occur frequently :

(i) When several triangles are described on the same straight line, we
shall have (ABC)=\AD . BC,

where each of the lengths AD, BC is to be considered as affected by sign.

(ii) When several triangles have a common vertex A, we shall have

(ABC)=$AB. AC. sin BAC,

where the lengths AB, AC are to be considered as of invariable sign, but the

angle BA C as affected by sign.

From these two values for the area of the triangle ABC, we have the

theorem AD. BC=AB. AC. am BAC,



which is very useful for deriving theorems concerning the angle* formed
by several lines meeting in a point, from theorems concerning the segment*
)f a line.
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Thus let any line cut the lines OA, OB, OC,..., in the points A, B, C,...,

md let ON be drawn perpendicular to the line AB. Then we have,

AB . 0N= OA.OB. sin AOB,

AC. 0X= OA . OC. sin AOC,

where the segments AB, AC, &c...., of the line AB, and the angles AOB,
AOC,..., are affected by sign, but the lengths OX, OA, OB,... are of invariable

ign.

Ex. 1. If A, B, C, D be any four points in a plane, and if AM, Bit !»•

Irawn parallel to any given straight line meeting CM, DX drawn peri>en-

iicular to the given straight line, in M and X, show that

{ABCD) = \ (AM. XD+XB . MC).

Ex. 2. On the sides AB, AC of the triangle ABC are def*cril»ed any

parallelograms AFMB, AEXC. If MF, XE meet in //, and if HI), i K \*

irawn parallel and equal to HA, show that the sum of the areas Ah'Mil .

ACXE) will be equal to the area (BDKC).
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FUNDAMENTAL METRICAL PROPOSITIONS.

Relations between the segments of a line.

23. If A, B, C be any three points on the same straight line,

the lengths of the segments BC, CA, AB are connected by the

relation , BC+ CA+AB = 0.

Let the point B lie between the points A and C. Then AB,
BC, AC represent lengths measured in the same direction, and

AC=AB + BC.

But AC+CA=0,
therefore BC+CA+AB = (1).

Since this is a symmetrical relation, it is obvious that it must

be true when the points have any other relative positions. There-

fore the relation must hold in all cases.

This relation may also be stated in the forms :

BC =AC-AB (2).

BC=BA+AC (3).

24. Ex. 1. If A, B, C, ... H, K be any number of points on the same
straight line, show that

AB +BC+...+HK+KA=0.

Ex. 2. If A, B, C be any three points on the same straight line, and if

be the middle point of BC, show that

AB+AC=2A0.
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Ex. 3. If A, B, C, D be points on the same line, and if ,\', }' 1* Um
middle points of AB, CD respectively, show that

2XV=AC+ BD=AD + BC.

Ex. 4. If A, B, C be points on the same line, and if A', B, C 1*
respectively the middle points of the segments BC, CA, AB, show that

BC'= C'A = A'B.

Show also that the middle point of A'B coincides with the middle i

of CC.

25. If A, B, C, D be any four points on the same straight Hue,

the lengths of the six segments of the line are connected by the

relation BC .AD + CA . BD + AB .CD = 0.

By the formulae (2) and (3) of § 23, we have

BD = AD-AB,
CD = CA+AD.

Hence

CA . BD + A

B

. CD = CA . AD + AB . AD = AD . (CA + AB).

Therefore CA .BD + AB.CD = AD.CB\
that is BC. AD + CA.BD + AB. CD = 0.

This result may also be very easily proved by means of Euclid,

Book II., prop. 1.

26. A number of points on the same straight line are said t<»

form a range. Instead of saying that the points A, B, C ... are on

the same straight line, it is usual to speak of the range [A />''

Thus the proposition in the last article is usually stated

:

The lengths of the six segments of any range {ABCD} are

connected by the relation

BC.AD + CA.BD + AB.CD = 0.

27. Ex. 1. If {ABCD} be a range such that C is the middle j*.ii>t of A B.

show that DA.DB=DC* - A C%
.

Ex. 2. Show also that

DA'i-DB1= 4DC.CA.

Ex. 3. If {ABCD} be any range, show that

BC. AD2+ CA . BD2 + AB.CD*= -BC. CA . AB.

Ex. 4. Show that the last result is also true when D is not on the

straight line as A, B, and C.
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Ex. 5. If {AA'BBCC'P} be any range, and if L, M, N be the middle

points of the segments A A', BE, CC, show that

PA . PA' . MX+PB . PB'. NL+PC. PC. LM
has the same value whatever the position of the point P on the line.

By Ex. 1, we have PA . PA'=PL2 - AL2
. Hence this expression, by

Ex. 3, is independent of the position of P.

28. If [ABC] be any range, and if a be any straight line, then

Ax.BC + Bx.CA + Cx.AB = 0.

Let the straight line AB cut the given straight line x in the

point 0.

Then, by § 25, we have

OA.BG+OB.CA + OC.AB = 0.

But since Ax, Bx, Cx are parallel to each other, we have

Ax:Bx:Cx = OA : OB : OC.

Therefore Ax.BG + Bx. CA + Cx.AB = Q.

Ex. 1. If C be the middle point of AB, show that

2Cx=Ax+ Bx.

Ex. 2. If G be the centre of gravity of equal masses placed at the n

points A, B, ... K, show that

n Gx=Ax+ Bx + ... + Kx,

where x denotes any straight line.

Ex. 3. If any straight line x cut the sides of the triangle ABC in the

points L, M, If, show that

Bx.Cx. MAT+ Cx.Ax. NL+Ax . Bx . LM=Q.
[Trim Coll., 1892.]

Relations connecting the angles of a pencil.

29. If several straight lines be drawn in the same plane

through a point 0, they are said to form a pencil. The point is

called the vertex of the pencil, and the straight lines are called the

rays of the pencil. The pencil formed by the rays OA, OB, 00,...

is usually spoken of as the pencil {ABC ...}.
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30. The six angles of any pencil of four rays \ABCD)
connected by the relation

sin BOC . sin AOD + sin COA . sin 110 1>

+ sin AOB. sin COD -0.

O

17
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Let any straight line be drawn cutting the rays of the pencil

in the points A, B, C, D. Then, by § 25, we have

BC. AD + CA . BD +AB . CD = 0.

But if ON be the perpendicular from the vertex of the pencil

on the line AB, we have, from § 22,

N0.AB = 0A. OB. sinAOB,

and similar values for NO . AD, NO . CD, &c.

Substituting these expressions for the segments AB, AC, &c.,

In the above relation, we obtain the relation

sin BOC . sin AOD + sin COA . sin BOD + sin AOB . sin COD = 0.

This relation is of great use. It includes moreover as particular

cases several important trigonometrical formulae.

31. Ex. 1. If {ABC} be any pencil, prove that

sin A0C= sin AOB . cos B0C+ sin BOC .cos AOB.

Let OD be drawn at right angles to OB. Then we have

sin AOD=sin (?+AOB\= cos AOB, sin B0D= 1,

and sin COD= sin fe - B0C\ = cos BOC.

Making these substitutions in the general formula for the pencil 0{ABCD\

the required result is obtained.

Ex. 2. In the same way deduce that

cos AOC=coz AOB . cos BOC- sin AOB . sin BOC.

L. 2
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Ex.3. If in the pencil 0{ABCD} the ray OC bisect the angle AOB,\

prove that

sin AOD . sinBOD= sin2 COB - sin2 A OC.

Ex. 4. If {ABCD} be any pencil, prove that

sin BOC . cos AOD

+

sin COA . cos BOD

+

sin AOB . cos COD= 0,

and cos BOC. cos AOD- cos COA . cos 500+ sin AOB . sin COD= 0.

Ex. 5. If a, b, c denote any three rays of a pencil, and if P be any point,
j

show that

Pa . sin (be) +Pb . sin (ca)+Pc . sin (ab) = 0.

Elementary theorems concerning areas.

32. If ABC be any triangle, and if be any point in the

plane, the area (ABC) is equal to the sum of the areas (0BC)A

(OCA), (OAB).

That is (ABC) = (0BC) + (0CA) + (0AB) (1).

This result evidently follows at once from the definition of an

area considered as a magnitude which may be measured in a I

specified direction.

If A, B, C, D be any four points in the same plane, then

(ABC) - (BCD) + (CDA) - (DAB) = .

.'

(2).

This result is merely another form of the previous result, since

(CDA) = - (CAD) = - (DCA).

33. The second relation given in the last article may be]

obtained otherwise.

(i) Let us suppose that the points C and D lie on the same

side of the line AB. Then the expression (ABCD) clearly repre-

sents the area of the quadrilateral ABCD.



CONCERNING AREAS. l:»

But the quadrilateral ABCD, may be regarded either as made
up of the two triangles ABC, CDA ; or as made up of the two

triangles BCD, DAB.

Hence, we have (ABCD) = (ABC) + {CDA)
= (BCD) + (DAB).

Therefore (ABC) - (BCD) + (CDA) - (DAB) = 0.

(ii) If the points C and D lie on opposite sides of the line

AB, let AB cut CD in the point H. Then the expn

-

(ABCD) is clearly equal to the difference of the areas of the

triangles (AHD) and (HCB).

That is (ABCD) = (A HD) - (HCB)
= (ABD) - (DCB)

= (ABD) + (DBC).

Similarly we may show that

(ABCD) = (ABC) + (CDA).

Hence, as before,

(ABC) + (CDA) = (ABD) + (DBC)
;

that is, (ABC) - (BCD) + (CDA) - (DAB) = 0.

34. Ex. 1. If a, b, c, d be any four straight lines in the same plane, «how

that (abed) = (abc)+ (cda).

Ex. 2. Show also that

(abc)= (dbc)+ (dca) + (dab).

35. // A, B, C be any three points on a straight line, and

P, Q any other points in the same plane with them,

(APQ).BC+ (BPQ).CA+(CPQ).AB = 0.

Let x denote the straight line PQ. Then, by § 28, we have

Ax.BC + Bx.CA + Cx.AB = 0.

But, by §21, (APQ) = hAx.PQ.
2—2
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Therefore

Ax : Bx : Cx = (APQ) : (BPQ) : (CPQ).

Hence (APQ) . BG + (BPQ) . GA + (CPQ) .AB = .(1).

A B C

This relation may also be written in the forms

:

(APQ).BC = (BPQ).AG + (CPQ).BA (2),

(APQ).BC = (BPQ).AG-(CPQ).AB (3).

36. Ex. 1. If J, B, C be any three points on a straight line, x any other

straight line, and any given point ; show that

(OBC) . Ax+(OCA) . Bx+(OAB) . Cx= Q.

Ex. 2. If ABCD be a parallelogram, and if be any point in the

same plane, show that

(OAC)=-(OAB) + (OAD).

Let the diagonals meet in G. Then G is the middle point of BD. Hence,

by § 35 (2), we have
2 (OA G)= (OAB)+{OAD).

But since AC=2AG, (OAC)=2 (OAG).

Ex. 3. Prove the following construction for finding the sum of any

number of triangular areas (POA), (POB), (POC), &c. From A draw

AB equal and parallel to OB, from E draw EC equal and parallel to

OC, and so on. Then (POE) is equal to (POA)+ (POB)
;
(POC) is equal

to (POA)+ (POB)+ (POC); and so on.

Ex. 4. If A, B, C,...K be n points in a plane, and if G be the centroid of

equal masses placed at them, show that

2(P0A)=n(P0G).
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Ex. 5. If A, B,C,Dbe any four points in a plane, find a point /> on the
line CD such that the area (PAB) shall be equal to the sum of the umm
(CAB), (DAB).

Ex. 6. If three points D, E, F be taken on the sides BC, CA, AB of
a triangle, prove that the ratio of the areas (DEF), (ABC) is equal to

BD.CE . AF-CD .AE. BF
BC.CA.AB

B

By § 35 (3) we have

(DEF) . BC= (CEF) . BD - (BEF) . CD.

But (CEF) : (CAF)=CE : CA,
and (CAF) : (ABC) =AF : AB.
Therefore

(
CEF) : (ABC) = CE . AF : CA . AB.

Similarly (BEF) : (ABC)=BF. AE : BA . AC.

Hence
(DBF) _ BD . CE. AF- CD . BF. AE

1 (ABC) BC.CA.AB
It follows from this result, that when the points D, E, F aro collinear,

BD . CE. AF= CD.BF.AE;
and conversely, that if this relation hold, the points D, E

}
F must be

collinear.

Ex. 7. Points P and Q are taken on two straight lines AB, CD, such that

AP :PB=CQ:QD.
Show that the sum of the areas (PCD), (QAB) is constant.

Ex. 8. The sides BC, CA, AB of a triangle meet any straight line in the

points D, E, F. Show that a point P can be found in the line DEF such th*t

the areas (PAD), (PBE), (PCF) are equal. [St John's Coll. 1889.]

Ex. 9. If A, B, C, D be any four points on a circle and P be any given

point, show that

PA* . (BCD) -PB2
. (CDA)+PC2

. (DAB)-PDi
. (A BC) - 0.

Let AC, BD meet in 0, and apply the theorem given in § 27, Ex. 4, to each

of the ranges {AOC}, {BOD}.



22 ELEMENTARY THEOREMS

Ex. 10. If A, B, C, D be any four points, and x any straight line, prove

that {BCD). Ax-(CDA). Bx+(DAB) . Cx-(ABC) . Dx=0.

Let AD cut BC in the point 0, then, by § 28, we have

BG. Ox+CO.Bx+OB. Cx=0,

and AD.Ox + DO. Ax+OA. Dx= 0.

Hence DO. BC .Ax-CO . AD. Bx-OB.AD .Cx+OA . BC.Dx=0
;

or DO . BC . Ax+DA . CO . Bx- BO . DA . Cx-BC . AO . Dx=0.

But (BCD)=$D0 . BC. sin BOD,

(CDA)=$DA . CO . sin AOC,

(DAB)=\DA . BO . sin AOC,

(ABC) =\BC . A . sin BOD.

Also sinBOD= - sin A OC.

Hence we have the required result.

37. If A, B, C, D be any four points in a plane, the locus of a

point P, which moves so that the sum of the areas (PAB), (PCD) is

constant, is a straight line.
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Let the straight lines AB, CD meet in the point 0, an<l let SI

and N be two points on these lines respectively, such that

OM = AB, and ON=CD.
Then we have

(PAB) = (POM), and (PCD) = (PON).

Let Q be the middle point of MN. Then, by § 35 (2), we have

2 (POQ) = (POM) + (PON).

Therefore 2 (POQ) = (PAB) + (PCD)
;

that is, the area represented by (POQ) is constant.

Hence the locus of P is a straight line parallel to OQ.

38. Ex. 1. Let A, B, C, D be any four points, and let AB, CD meet in

E, and AC, BD in F. Then if P be the middle point of EF, show that

(PAB) - (PCD)= | (ABDC).

Ex. 2. Show that the line joining the middle points of AD and BC passes

through P, the middle point of EF.

Ex. 3. If A, B, C,Dbe any four points, show that the locus of a point /',

which moves so that the ratio of the areas (PAB), (PCD) is constant, is

a straight line passing through the point of intersection of AB and CD.

Ex. 4. If ABCD be a quadrilateral circumscribing a circle, show that the

line joining the middle points of the diagonals AC, BD passes through the

: centre of the circle.



CHAPTER IV.

HARMONIC RANGES AND PENCILS.

Harmonic Section of a line.

39. When the straight line joining the points A, B is divided

internally in the point P, and externally in the point Q, in the

same ratio, the segment AB is said to be divided harmonically in

the points P and Q.

Q

Thus, the segment AB is divided harmonically in the points

P and Q, when AP : PB = AQ : BQ.

The points P and Q are said to be harmonic conjugate points

with respect to the points A and B ; or, the points A and B are

said to be harmonically separated by P and Q.

40. // the segment AB is divided harmonically in the points P
and Q, the segment PQ is divided harmonically in the points A
and B.

For by definition, we have

AP:PB=AQ:BQ;
and therefore PB : BQ = AP : A Q.

Thus, A and B are harmonic conjugate points with respect to P
and Q.

41. When the segment AB is divided harmonically in the

points P and Q, the range {AB, PQ] is called a harmonic range

;

and the pairs of points A, B, P, Q; are called conjugate points of

the range.
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It will be found convenient to use the notation {AB, PQ\ for a

harmonic range, the comma being inserted to distinguish the pairs

of conjugate points.

42. Ex. 1. If ABC be any triangle, show that the bisectors of the angle

BAC divide the base BC harmonically.

Ex. 2. If tangents OP, OQ be drawn to a circle from any point 0, and if

any straight line drawn through the point cut the circle in the points 11

and S and the chord PQ in the point V, show that {0 V, RS} is a harmonic

range.
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Let C be the centre of the circle, and let OG cut PQ in the point If.

Then we have OR . 0S= 0P*= ON . OG. Therefore the points S, R, iV, G are

concyclic. But G is evidently the middle point of the arc SNR ;
therefore

NC, iVP bisect the angle SNR. Hence {0 V, RS) is a harmonic range.

43. If {ABP} be any range, to find the harmonic conjugate of

P with respect to the points A, B.
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Through A and B draw a pair of parallel lines AF, BH. And

through P draw a straight line FPG in any direction meeting AF
in F and BH in G. In BH take the point #, so that B is the

middle point of GH, and join FH.

Then jFi7 will meet AB in the point Q, which will be the

point required.

For AQ:BQ=AF:BH
= AF: GB
= AP:PB.

That is {AB, PQ} is a harmonic range.

It should be noticed that the solution is unique, that is, there

is only one point Q which corresponds to a given point P.

44. Ex. 1. If P be the middle point of AB, show that the conjugate

point Q is at infinity.

In this case it is easy to see that FH is parallel to AB.

Ex. 2. If {ABC} be any range, and if P be the harmonic conjugate of A
with respect to B and C, Q the harmonic conjugate of B with respect to G
and A, and M the harmonic conjugate of C with respect to A and B ; show

that A will be the harmonic conjugate of P with respect to Q and R.

Harmonic Section of an angle.

45. When the angle AOB is divided by the rays OP, OQ so

that sin AOP : sin POB = sin AOQ : sin BOQ,

the angle AOB is said to be divided harmonically by the rays

OP, OQ.

The rays OP, OQ are said to be harmonic conjugate rays with

respect to the rays OA, OB.

46. If the angle A OB be divided harmonically by the rays OP,

OQ, the angle POQ is divided harmonically by the rays OA, OB.

For since OP, OQ divide the angle AOB harmonically,

sinAOP : sin POB = sin A OQ : sin BOQ.

Therefore sin POB : sin BOQ = sin AOP : sin A OQ.

Thus, the rays OA, OB are harmonic conjugate rays with respect

to OP and OQ.
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47. When the rays OP, OQ of the pencil {ABPQ .in-

harmonic conjugates with respect to the rays OA, OB, the pencil

is called a harmonic pencil; and each pair of rays, namely OA,
OB ; and OP, OQ ; are called conjugate rays of the pencil.

It will be found convenient to use the notation [AB, PQ] for

a harmonic pencil, the comma being inserted to distinguish the

pairs of conjugate rays.

48. Ex. 1. If the rays OP, OQ bisect the angle AOB, show that the

pencil {AB, PQ} is harmonic.

Ex. 2. If the pencil {AB, PQ} be harmonic, and if the angle AOB be a

right angle, show that OA, OB are the bisectors of the angle POQ.

Ex. 3. If the pencil {AB, PQ} be harmonic, and the angle AOB a right

angle, and if a line be drawn perpendicular to OP meeting OA, OB in A' and

B, show that the line drawn through perpendicular to OQ will bisect A'B'

.

Ex. 4. If A, B, C, D, be five points on a circle, such that the pencil

0{AB, CD} is harmonic, and if P be any point on the same circle, show that

the pencil P {AB, CD} will be harmonic.

Ex. 5. In the same case, show that, if the tangents at A, B, C and D
intersect the tangent at the point P in the points A', B1

, C, D respectively,

the pencil H{A'B', CD'} will be harmonic—where H is the centre of the circle.

It is easy to show that the angles A'HC, APC are equal or supplementary.

Hence this theorem follows from the last.

49. Any straight line is cut harmonically by the rays of a

harmonic pencil.

Let any straight line cut the rays of the harmonic pencil

{AB, PQ] in the points A, B,P,Q; then the range {AB, PQ} is

harmonic.

Let ON be drawn perpendicular to the line AB, then we have

NO .AP = OA . OP sin AOP,

NO. AQ = A. OQ sin AOQ,

NO.PB = OP. OB sin POB,

NO. BQ = OB. OQ sin BOQ.
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But since {AB, PQ] is a harmonic pencil,

sin AOP : sin POB = sin AOQ : sin BOQ.

Therefore AP : PB = AQ : BQ.

Hence, {AB, PQ} is a harmonic range.

Conversely, we may prove that if {AB, PQ] be a harmonic range,

and if be any point not on the same line, then the pencil

{AB, PQ] will be harmonic.

50. Ex. 1. If a straight line be drawn parallel to any ray of a harmonic

pencil, show that the conjugate ray will bisect the segment intercepted by the

other two rays.

Ex. 2. Hence show that when a pair of conjugate rays of a harmonic

pencil are at right angles, they bisect the angles between the other pair of

conjugate rays.

Ex. 3. If P, Q' be respectively the harmonic conjugate points of P and

Q with respect to A and B, show that the segments PQ, Q'P' subtend equal

or supplementary angles at any point on the circle described on AB as

diameter.

Ex. 4. If P, Q, R, S be any four points on the line AB, and if P', Q
1

, R',

S' be their harmonic conjugates with respect to A and B ; show that when
the range {PQ, RS} is harmonic, so also is the range {PQ', R'tf}.

Take any point X on the circle described on AB as diameter. Then AX,
BX are the bisectors of each of the angles PXP, QXQf, &c. Hence it is

easily shown that when the pencil X {PQ, RS} is harmonic, so also is the

pencil X{PQ,R'S'}.

51. If {ABP) be any pencil, to find the ray which is conju-

gate to the ray OP with respect to the rays OA, OB.

aV"

p 1

Draw any straight line parallel to the ray OP, meeting the rays

OA, OB in A' and B'. Let Q be the middle point of A'B', then

OQ will be the my conjugate to OP.

For A'B' meets OP at infinity, and the point conjugate to the

point at infinity with respect to the points A'B' is the middle

point of the segment A'B , that is the point Q.

Therefore, by § 49, {A B, PQ] is a harmonic pencil.
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Relations between the segments of a harmonic range.

52. If {AB, PQ] be a harmonic range, we have by definition

AP:PB = AQ:BQ,

that is AP.BQ = PB.AQ,

or AP.BQ + AQ.BP = 0.

But since A, B, P, Q are four points on the same straight line, we

have, by § 25,

AB.PQ + AP.QB + AQ.BP = 0.

Hence we have

AB . PQ = 2AP . BQ = 2AQ . PB.

Conversely, when segments of the range {ABPQ} are connected

by this relation, it is obvious that the range {AB,PQ} is harmonic.

53. Again, since

AP.BQ + AQ.BP = 0,

we have AP(AQ-AB) + AQ(AP-AB) = 0.

Therefore 2AP.AQ = AB.(AQ + AP),

. . 2 11
thatls AB

=
IP + AQ-

Similarly we may obtain the relations

2_ 1 J_
BA~BP +

BQ'

2 1 1

PQ~PA + PB'

2 1 1

QP~QA +
QB-

Conversely, when the segments of the range {ABPQ} are

connected by any one of these four relations, it follows that the

range {AB, PQ] is harmonic.

54. Ex. 1. If {AB, PQ} be a harmonic range, and if C be the middle

point of AB, show that
PA.PB=PQ.PC.

Ex.2. Show that PA . PB+QA.QB=PQ*.

Ex.3. Show that CP : CQ=AP* : AQ2
.

Ex. 4 If R be the middle point of PQ, show that

PQ2+AB*=4CR?.
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Ex. 5. Show that

AP : AQ= CP : AC=AC : CQ.

Ex. 6. If {AB, PQ} be a harmonic range, and any point on the same

straight line, show that
OB_ OP OQ
AB AP + AQ'

Ex. 7. Show also that

OA . BP+OB . AQ+OP .QB+OQ . PA = Q.

55. If {AB, PQ} be a harmonic range, and if C be the middle

point of AB, then

CP.CQ = CA 2 =CR:

For since AP : PB = AQ : BQ,

therefore AP + PB : AP - PB = AQ + BQ : AQ - BQ

;

that is AB:AP + BP = AQ+BQ:AB.
But since G is the middle point of AB,

AP + BP = 2GP, AQ + BQ = 2CQ,

and AB=2AC.

Therefore A C : CP = CQ : AC

;

that is CP.CQ = AC\

Conversely, if this relation holds, it may be easily proved that

the range [AB, PQ] is harmonic.

56. Ex. 1. If {AB, PQ} be a harmonic range, and if C and R be the

middle points of AB and PQ, show that

CAZ+PIT-^CR2
.

Ex. 2. If be any point on the same line as the range, show that

OA . OB+OP. OQ=20R.OC.

Ex. 3. If {AB, PQ} be a harmonic range, and if E be the harmonic

conjugate of any point with respect to A, B, and T the harmonic conjugate

of with respect to P, Q ; show that

1 1 2

OA .OB + OP.OQ~ OB. OT
Let C, R be the middle points of AB, PQ. Then, by § 54, Ex. 1, we have

OA.OB=OE.OC, and OP.OQ=OT.OR, consequently this result may be

deduced from that in Ex. 2.

Ex. 4. If P1

, Of be the harmonic conjugates of P, Q respectively with

respect to A and B, prove that

PQ.PQ : PQ.FQ:=AFi
: AP'*.



A HARMONIC RANGE. 81

Let C be the middle point of A B, then

cp.cp=cq.cq=CA\
Hence CP : CQ= CQ : CP=PQ : QP.

Also CP:CQ'= PQ:Q'P.
Therefore

PQ.PQ' : QP.Q'P=CP : CQ.C$ = CP:CP.
Whence, by § 54, Ex. 3, the result follows.

Ex. 5. Show also that

AP. AQ : AP.Aq=PQ : qP.

Ex. 6. If {AB, PQ} be a harmonic range, then every circle which passes

through the points P, Q is cut orthogonally by the circle described on AB as

diameter.

Let the circle described with centre which passes through P and Q, cut

the circle described on AB as diameter in the point X ; and let C be the

middle point of AB.

Then we have, by § 55,

CX*=CA*= CP.CQ.

Therefore CX touches the circle PXQ ; and therefore CXO is a right

angle.

Ex. 7. If two circles cut orthogonally, show that any diameter of either is

divided harmonically by the other.

Relations between the angles of a harmonic pencil.

57. If [AB, PQ] be a harmonic pencil, we have by de-

finition sin AOP : sin POB = sin AOQ : sm BOQ ;

that is sin AOP . sin BOQ = sin POB . sin A OQ.

But, by § 30, we have

sin AOB . sin POQ + sin AOP . sin QOB + sin AOQ .
sin BOP = 0.
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Hence sin AOB . sin POQ = 2 sin AOP . sin BOQ

= 2 sin AOQ. sin POB.

Conversely, when this relation holds between the angles of the

pencil, it follows that the pencil is harmonic.

58. If OC bisect the angle AOB internally, then

tan COP . tan OOQ = tan2 COA = tan* COB.

For by definition

sin AOP : sin POB = sin A OQ : sin BOQ.

sin AOP + sin POB _ sin AOQ + sin BOQ
inereiore

sinAOp_ sinPOB ~ sin AOQ-siiiBOQ'

that is tan AOC . cot COP = tan COQ . cot AOC,

or tan COP . tan COQ = tan2 A OC.

The same relation is true if OC bisect the angle AOB exter-

nally.

Conversely, when this relation is true, it follows that the pencil

{AB, PQ] is harmonic.

59. Ex. 1. If {AB, PQ} be a harmonic pencil, prove that

2 cot AOB=cot AOP+cot AOQ.

Ex. 2. If OX be any other ray, show that

sin BOX _ sin POX sin QOX
sin AOB ~ sin AOP + sin AOQ

'

Ex. 3. If {AB, PQ} be a harmonic pencil, and if OE be the conjugate

ray to OX with respect to OA, OB, and OT the conjugate ray to OX with

respect to OP, OQ, show that

cot XOA . cot XOB

+

cot XOP . cot XOQ

=

2 cot XOE. cot XOT.

Ex. 4. If {AB, PQ} be a harmonic pencil, and if OC bisect the angle

AOB, show that

sin 2C0P : sin 2C0#=sin2 AOP : sin2 AOQ.

Ex. 5. If the rays OP', OQ/ be the conjugate rays respectively of OP, OQ
with respect to OA, OB, show that

sin POQ. sin POQ; : sin POQ . sin P'Og= sin2 .40P : sin2 40P'.

Ex. 6. Show also that

sin AOP . sin AOQ : sin AOP . sin AOQ/= sin P0£ : sin O/OP'.
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Theorems relating to Harmonic Ranges and Pencils.

60. If {AB, PQ), {AB', P'Q) be two harmonic range* on

different straight lines, then the lines BB', PP', QQ' will be con-

current and the lines BB', PQ', P'Q will be concurrent.

a p B Q

Let PP', BB' intersect in 0, and join 0A, OQ. Then since

{AB, PQ] is a harmonic pencil, the line AB' will be divided

harmonically by OP, OQ. But OP cuts AB' in P'. Hence OQ
must cut AB' in Q' the point which is conjugate to P' with

respect to A, B'.

Again, let P'Q cut BB' in 0', and join O'A, O'P. Then the

pencil 0' {AB, PQ] is harmonic. Hence it follows as above that

O'P must pass through Q'.

61. This theorem furnishes an easy construction for obtaining

the harmonic conjugate of a point with respect to a given pair of

points.

Let A, B be any given points on a straight line, and Buppose

that we require the harmonic conjugate of the point P with

respect to A and B.
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Let A and B be joined to any point 0, and let a straight line

be drawn through P cutting OA, OB in G and D respectively.

Join AD, BG, and let them intersect in 0'.

By the last article, the line joining the harmonic conjugates

of P with respect to A, B; and G, D; must pass through

and 0'.

Hence, if 00' meet AB in Q, Q must be the harmonic

conjugate of P with respect to A and B.

62. If the pencils {AB, PQ), 0' {A'B', P'Q) have one ray

common, i.e. if OA and O'A' are coincident, the three points in

which the rays OB, OP, OQ intersect the rays O'B', O'P',-

O'Q' respectively, are collinear ; and likewise the three points in

which the rays OB, OP, OQ intersect the rays O'B', O'Q', O'P'

respectively, are collinear.

Let OB, OP, OQ cut O'B', O'P', O'Q' in the points b, p, q
respectively ; and let bp cut 00' in A. Then because the pencil

{AB, PQ] is harmonic, OQ must cut the line Ab in the point

which is the conjugate of p with respect to A, b. Similarly O'Q'

must cut A b in the same point. Hence q the point of intersection

of OQ, and O'Q', must lie on Ab. That is, the points p, b, q are

collinear.

In the same way, we can show that if OP cut O'Q' in q', and

if OQ cut O'P' in p', then p', b, q' will be collinear.

63. Ex. 1. Show that if A, B, C, D be any four points in a plane, and if

the six lines joining these points meet in the points E, F, G ; then the two
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lines which meet in any one of these points are harmonically conjugate with

the two sides of the triangle EFG which meet in the same point

This follows from § 60.

Ex. 2. Deduce from § 62, the corresponding theorem when four straight

lines are given.

Ex. 3. If through a fixed point 0, two straight lines be drawn intersecting

two fixed lines in the points A, B and C, D respectively, show that the locus

of the point of intersection of AD and DC is a straight line.

Ex. 4. Show how to draw (with the aid of a ruler only) a straight line

from a given point which shall pass through the point of intersection of two

given straight lines which do not meet on the paper.

64. Given any two pairs ofpoints A, B and 0, D on a straight

line, to find a pair of points P, Q ivhich shall be harmonically

conjugate with respect to each of the given pairs of points.

Take any point X not on the straight line, and describe the

circles XAB, XGD intersecting again in the point Y.

Let the line joining X, Y, cut AB in R Then if R does not

lie within the circles, draw a tangent RZ to either, and with centre

R and radius RZ describe a circle cutting AB in P and Q.

Then P and Q will divide each of the segments AB, CD

harmonically.

For RP> = RZ* =RX.RY=RA.RB = RC.RD.
3—2
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The problem only admits of a real solution when R lies

without each of the circles, that is when the segments AB and

CD do not overlap.

65. Ex. 1. If A, B, C, D be four points taken in order on a straight line,

show that the locus of a point at which the segments AB, CD subtend equal

angles is a circle.

Let P, Q be harmonic conjugates with respect to A, D and B, C, then the

locus is the circle described on PQ as diameter.

Ex. 2. Show that if A, B, C, D be four points taken in order on a straight

line, two points can be found at each of which the segments AB, CD subtend

equal angles, and the segments AD, BC supplementary angles.

Ex. 3. If the points P, Q be harmonically conjugate with respect to the

points A, B, and also with respect to the points C, D ; and if 0, H, K be the

middle points of the segments PQ, AB, CD ; show that

XA . XB- XC . XD+2HK . XO= 0,

where X is any point on the same line.

Ex. 4. Show also that if If, X be the conjugate points of with respect

to A, B and C, D respectively,

NP PM MX_
0E+ 0K + OP



CHAPTER V.

THEORY OF INVOLUTION.

Range in Involution.

66. When several pairs of points A, A'; B, B' ; C, C ; &c.

;

lying on a straight line are such that their distances from a fixed

point are connected by the relations

OA . OA' = OB. OB' = OC. OC = &c.

;

the points are said to form a range in involution.

The point is called the centre, and any pair of corresponding

points, such as A, A', are called conjugate points or couples of the
1 involution.

The most convenient notation for a range in involution is

{AA', BF, CG',.

67. Ex. 1. If A', B', C',... be respectively the harmonic conjugates of

the points A, B, C,..., with respect to the points S, S' ; .show that the range

{AA', BB', CG',...} is in involution.

Ex. 2. If a system of circles be drawn through two fixed points A and />'.

show that any straight line drawn through a point on the line A D will be

cut by the circles in points which form a range in involution, the point

being the centre of the involution.

Ex. 3. If the range {AA', BB1

, CC'} be in involution, and if L, M, N be

the middle points of the segments AA', BB', CC ;
show that

PA . PA' . 2LV+ PB.PB! . XL +PC . PC . LM= 0,

where P is any point on the same line.
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By § 27, Ex. 5, the expression on the left-hand side must be equal to

OA . OA' . MN+ OB . OB' . NL+OC . OC . LM,

where is the centre of the involution ; and this expression

= 0A . 0A'.{MN+NL+MPs
=0.

Ex. 4. Show also that

LA* . MIV+MB2
. NL+JVC2

. LM= -MN.NL. LM.

This result follows from the previous result, by applying the theorem of

§ 27, Ex. 3.

68. Any two pairs of points on a straight line determine a

range in involution.

Q.

Let A, A'; B, B' ; be two pairs of points on a straight line.

Through A and B draw any two lines AP, BP intersecting in P
;

and through A', B' draw A'Q, B'Q parallel to BP, AP respectively,

meeting in Q. Let PQ meet AB in 0.

Then since AP is parallel to B'Q, and BP parallel to A'Q,

we have
OA : OB/ =OP:OQ = OB:OA':

and therefore

OA . OA' = OB . OB'.

Hence, is the centre of a range in involution of which A, A'

and B, B' are conjugate couples.

When the centre has been found, we can find a point C
corresponding to any given point C on the line by a similar

construction.

Thus, join CP, and draw A'R parallel to CP meeting OP in R,

and RC parallel to PA meeting AB in C.
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Then we shall have

OC . OC = OA . OA'.

69. We may also proceed otherwise. Let any two circles In-

drawn passing through the points A, A', and the points B, Bf

,

respectively; and let these circles intersect in the points X and 1".

Then if the line XY meet the given straight line in the point 0,
this point will be the centre of the range.

For evidently

OA . OA' = OX . 0Y= OB . OB'.

To obtain the conjugate point to any point C, we have merely to

draw the circle passing through the points X, Y, C. This circle

will cut AB in C, the required point.

For OC .OG' = OX .OY=OA . OA'.

70. Ex. 1. If {AA\ BB', CC'...) be a range in involution, whose centre

lies between A and A', show that there are two points at which each of the

segments A A', BB', CC, ... subtends a right angle.

Ex. 2. If {AA' BB"} be any range such that the circles described on the

segments A A', BB' as diameters meet in the point P, and if two points

be taken on the line AB such that CPC is a right angle, show that

{AA', BB', CC'} will be a range in involution.

Ex. 3. If {AA', BB'} be a harmonic range, and if Z, M be the middle

points of the segments A A', BR, show that {.LI', BB', LM\ will be a range

in involution.
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Ex. 4. If {A A', BB'} be a harmonic range, and if Q, Q be the harmonic

conjugates of any point P with respect to the point-pairs A, A' ; B, B' ; show

that {AA', BB', QQ
1

} will be a range in involution.

Ex. 5. If A, A' be any pair of conjugate points of a range in involution

and if the perpendiculars drawn to OA, OA' at A and A' meet in P, where

is any point not on the same straight line, show that P lies on a fixed straight

line.

If {A A', BB',...} be the range, the locus of P is a straight line parallel to

the line joining the centres of the circles OAA', OBB',....

The Double Points.

71. When the points constituting any conjugate couple of a

range in involution, lie on the same side of the centre, there exist

two points, one on either side of the centre, each of which

coincides with its own conjugate. These points are called the

double points of the involution.

To find the double points, let OT be a tangent from to any

circle passing through a pair of conjugate points, such as A, A'.

Then if with centre 0, and radius OT, a circle be drawn cutting

AA' in the points S and S' (see fig. § 69), we shall have

0& = 0S'*=0T> = 0A . OA'.

Therefore $ and 8' are the double points.

When the points constituting a conjugate couple lie on

opposite sides of the centre, the double points are imaginary.

72. It is evident that any pair of conjugate points of a range

in involution are harmonic conjugates with respect to the double

points of the involution.

We may also notice that there exists but one pair of points

which are at, once harmonically conjugate with respect to each

pair of conjugate points of a range in involution.

73. Ex. 1. If S, S' be the double points of a range in involution; A, A',

and B, B', conjugate couples; and if E, Fhe the middle points of A A', BB';

show that

PA . PA' . FS+1>B . PB' . SE= PS* . FE,

where P is any point on the line.

Ex. 2. Show also that

PA . PA' .SS'^PS'K SE- P& . S'E.

Ex. 3. Show also that

SA . SA' . SF= SB . SB' . SE.
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Ex. 4. Show that four given points on a straight line determine three
ranges in involution, and that the double points of any one range, are Imr-

monically conjugate with the double points of the other two ranges.

Let A, B, C, D be the four given points. Then we shall have a range in

which A, B and C, D are conjugate couples; a range in which A, C and /;. h
are conjugate couples; and a range in which A, D and B, C arc conjugate

couples. Let F, F' ; G, G' ; and H, H'; be the double points of these three

ranges ; and suppose A, B, C, D occur in order. Then by § 64, we see that

F, F' and H, H' are real points, but G, G' imaginary.

Let the circles described on HH' and FF' as diameters meet in /'. Then

by § 48, Ex. 2, PH bisects the angles BPC, APD. Hence the angles .1 /'/;,

CPD are equal. But PF bisects the angle APB, and PF' the angle CPD
\

therefore the angle FPB is equal to the angle CPF'. Hence the angle /'/'//

is equal to the angle HPF'. Therefore PH, PH are the bisectors of the

angle FPF'; and hence {HH, FF') is a harmonic range.

Again, it is easy to see that each of the angles A PC, BPD is a right angle.

I Hence by § 70, Ex. 2, {AC, BD, FF', HH'} is a range in involution ; and

therefore {FF', GG
t
'} and {HH, GG'} are harmonic ranges.

Ex. 5. If M, N are the centres of the involutions {AC, BD) and

{AD, BC), show that {MN, AB, CD) is a range in involution.

Ex. 6. If {RP, CA, BD) and {PQ, AB, CD) be ranges in involution, show

that {QR, BC, AD) will be a range in involution.

Ex. 7. Show that any two ranges in involution on the same straight lino

have one pair of conjugate points common ; and show how to find them.

Relations between the segments of a range in involution.

74. If [A A', BB', GC'\ be any range in involution, the segments

of the range are connected by the relation

AB' . BC .CA'+A'B. B'C . CA = 0.

Let be the centre of the range. Then

0A.0A'=0B.0B\
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that is, OA:OB = OB':OA'.

Therefore OA:OB= OB' -OA:OA'-OB
= AB:BA'.

Similarly we shall have

OB:OC = BC:CB',

OC:OA = CA':AC.

Hence, compounding these ratios, we have

AB . BC . CA' = BA' .CB .AC

;

which is equivalent to

AB'.BC . CA' + A'B . BC. CA = 0.

In the same way, we may deduce the relations

:

A'B'. BC . CA + AB . B'C . CA' = 0,

AB.B'C . CA' + A'B'. BC . CA =0,

AB'. BC . CA' + A'B . B'C . CA = 0.

75. Conversely, if any one of these relations hold, then the

range [AA', BB', CC) will be in involution.

For if not, let a range in involution be formed so that A, A',

and B, B', are conjugate couples ; and let C" be the point conjugate

to the point C.

Then if we have given the relation

AB' . BC .CA' = - A'B . B'C . CA,

we shall also have the relation

AB'.BC" .CA' = - A'B. B'C. CA.
Therefore BC:CA= BC" : C"A

.

Hence C must coincide with C ; that is, the range

[AA\ BB', CC]
is in involution.

76. If {AA', BB', CC] be any range in involution, then

AB . AB' : A'B . A'B = AC.AC:A'C. A'C.

Let be the centre of involution. Then as in § 73, we have

0A:0B = AB:BA'.

Similarly we shall have

0A:0B' = AB:B'A'.

Hence OA-iOB .OB = AB . AB' : BA' . B'A'.



OF A RANGE IN INVOLUTION. 43

Therefore, since OB . OB' = OA . OA',

OA : OA' = AB.AF: A'B . A'R.

Similarly we shall have

OA:OA'=AC.AC:A'C.A'C.
Hence AB . AB' : A'B . A'B' = AC . AC : A'C . A'C.

Conversely, if this relation is true, it may be proved that tht>

range [A A', BE, CC'} is in involution, by a similar method to that

used in § 75.

77. Ex. 1. If {.LI', BB', CC) be any range in involution, and if

{AA', BC} be a harmonic range, show that {AA', B'C) will be a harnioni<-

range.

Ex. 2. If {AA', BC}, {AA', B'C'} be harmonic ranges, show that

{AA', BB', CC'} and {AA', BC, B'C} will be ranges in involution.

Show also that if F, F' and G, G' be the double points of these ranges,

then each of the ranges {AA', FF'}, {A A', GG'}, {FF, GG'} will be harmonic.

Ex. 3. If {AA', BC), {A A', B'C} be harmonic ranges, and if M, X be the

centres of the ranges in involution {AA', BB', CC) and {AA', BC, BC), show

that {AA', MN} will be a harmonic range.

Ex. 4. If [AA', BC], {BB', CA), {CC, AB) be harmonic ranges, show that

{A A', BB', CC'} will be in involution.

Pencil in involution.

78. When several pairs of rays OA, OA' ; OB, OB' ; OC, (X

"

;

&c. ; drawn through a point 0, are such that the angles which

they make with a fixed ray OX are connected by the relation

tan XOA . tan XOA' = tan XOB . tan XOB'
= tan XOG . tan XOC
= &c;

they are said to form a pencil in involution.

If OX' be the ray at right angles to OX, it is easy to see that

tan X'OA . tan X'OA' = tan X'OB . tan X'OF = &c.

The rays OX, OX' are called the principal rays of the involu-

tion, and any pair of corresponding rays, such as OA, OA' art-

called conjugate rays of the pencil.

The notation used for a pencil which is in involution is

0{AA',BB',...}.
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79. If OX does not lie within the angle AOA' formed by any

pair of conjugate rays it is evident that there will be two rays

lying on opposite sides of OX, such that each of them coincides

with its own conjugate. These rays are called the double rays of

the pencil.

Let OS, OS' be the double rays, then we have

tan2 XOS = tan2 XOS' = tan XOA . tan XOA' = &c.

Hence by § 58, we see that the double rays form with any pair

of conjugate rays a harmonic pencil; and also that the principal

rays are the bisectors of the angle between the double rays.

It should be noticed that the principal rays themselves consti-

tute a pair of conjugate rays of a pencil in involution.

80. Ex 1. Show that the rays drawn at right angles to the rays of a

pencil in involution constitute another pencil in involution having the same

principal rays.

Ex. 2. If {A A', BB',...} be any pencil in involution, and if through any

point O1

rays (/A, O'A', O'B,... be drawn perpendicular to the rays OA, OA',

OB... ; show that the pencil 0' {AA', BB,...} will be in involution.

Ex. 3. If OA', OB',... be the harmonic conjugate rays of OA, OB,... with

respect to the pair of rays OS, OS', show that {A A', BB',...} will be a pencil

in involution, the double rays of which are OS and OS'.

Ex. 4. If the pencil {AA', BB', CC'} be in involution, and if the angles

AOA', BOB have the same bisectors, show that these lines will also bisect

the angle COC.

Ex. 5. When the double rays of a pencil in involution are at right angles,

show that they bisect the angle between each pair of conjugate rays of the

pencil.

Ex. 6. Show that any two pencils in involution which have a common
vertex, have one pair of conjugate rays in common.

Ex. 7. Show that any pencil in involution has in general one and only

one pair of conjugate rays which are parallel to a pair of conjugate rays of any

other pencil in involution.

Ex. 8. Show that if rays OA', Off,... be drawn perpendicular to the rays

OA, OB,..., the pencil 0{AA', BB',...} will be in involution.

If AOA' is a right angle, then whatever the position of the line OA' we

have, tan XOA tan X0A'= - 1.

81. When the double rays of a pencil in involution are real, it

is easy to see that the rays of the pencil will cut any straight line

in points which form a range in involution.
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For, if 0{AA', BB',...} be the pencil, and if OS, OS' l» the

double rays, let any straight line be drawn cutting the rays of the

pencil in the points A, A', B, B',... and the double rays in the

points S, and 8'. Then since {A A', SS'} is a harmonic pencil, it

follows from § 49, that {AA', SS') is a harmonic range. Similarly

{BB', SS'} is a harmonic range. Hence {A A', BB',...} is a range

in involution whose double points are S and S".

The converse of this theorem is also true, and follows immedi-

ately from § 49.

82. By the principle of continuity we could infer that this

theorem is always true, whether the double rays are real or imagi-

nary. The converse theorem, in fact, is often taken as the basis of

the definition of a pencil in involution, and the properties of a pencil

in involution are then derived from the properties of a range.

83. Ex. 1. If {AA', BB', CC) be any pencil in involution, show that

sin AOB' . sin BOG' . sin COA'+ sin A'OB . sin BOG. sin C'OA = 0.

This is easily obtained from the theorem in § 74, by applying the methyl

used in § 49.

Ex. 2. If 0{AA', BB', CC) be any pencil in involution show that

sm AOB.smAOB' _ Bin AOC . sin AOC
sin A'OB . sin A'OB' ~ smA'OC. sin A'OC

'

Ex. 3. If 0{AA', BC), 0{AA', EC) be harmonic pencils, show that the

pencils 0{AA', BB', CC'} and {AA', BC', B'C} will be in involution, and that

if OF, OF' and OG, OG' be the double rays of these pencils, then each of the

pencils 0{AA', FF'}, 0{AA', GG'}, 0{FF', GG'} will be harmonic.

84. Instead of obtaining the connection between a pencil in

involution and a range in involution, and deducing the properties

of the pencil from the range, we may proceed otherwise, and obtain

the properties of a pencil in involution directly from the definition

given in § 78.

It will be convenient first to prove the following lemma : If

two chords A A', BB', of a circle meet in K, then

KA : KA' = AB . AB' : A'B . A'B'.

Since the triangles KAB, KB'A' are similar; therefore

KA:KB'=AB:B'A'.
Again, since the triangles KAB', KBA' are similar ; then

KA:KB = AB':BA'.
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Hence K

A

2 :KB . KB'' = AB . AB' : B'A' . BA'.

But KB.KB' = KA.KA'.

Therefore KA :KA ' = AB . AB' : B'A ' . BA
',

that is KA :KA' = AB. AB' : A'B . A'B'.

Again, if KS be drawn to touch the circle, we shall have

KA:KA' = A&:A'S\

For the triangles KAS, KSA' are similar, and therefore

KA:KS = AS:SA';
that is KA' : KS' = ^1£2

: 8A\
But KS2 = KA . KA',

therefore KA : KA' = AS2
: A'8\

85. If [AA', BB', CG',...} be any pencil in involution, and if

a circle be drawn through the point cutting the rays of the pencil #

in the points A, A', B, B', ..., the chords AA', BB', ...of this circle

will pass through a fixed point.

Let the circle cut the principal rays of the pencil in the points

X, X', and let XX' meet AA' in the point K.
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By § 84, we have

KX : KX' = XA . XA' : X'A . X'A'.

But if R be the radius of the circle,

00 _ XA XA'
sin XOA ~

sin X OA' ~ '

KX^ _ sinAU4 . sinXOA'
KX' sin X'OA. sin X'OA'

= tan XOA . tan XOA'.

Again, if BB' meet XX' in the point K', we shall have

J^,
= tan XOB . tan XOB'.

But by definition,

tan XOA . tan XOA' = tan XOB . tan XOB'.

Therefore KX : #X' = K'X : Z'X',

that is K and iT must coincide.

86. Given any two pairs of conjugate rays of a pencil in in-

volution, to find the principal rays, and the double rays.

Let OA, OA' and OB, OB' be the given pairs of conjugate

rays. Draw a circle passing through and cutting these rays in

the points A, A', and B, B' respectively.

Let AA' meet BB' in the point K, and let the diameter of the

circle which passes through K meet the circle in X, A". Then

OX, OX' will be the principal rays of the pencil.

By § 84, we have

KX : KX - XA . XA' : X'A . X'A'

= XB.XB':X'B.X'B'.

H sin X(L1. sin XO;T _ sin XOB . sin XOR
Ce

sin X'OA . sin XOA' "
sin X'OB . sin X'OB'

'

Therefore, since XOX' is a right angle,

tan XOA . tan XOA' = tan XOB . tan XOR.

therefore OX, OX' are the principal rays.

To find the double rays, draw the tangents KS, KS' to the

circle. By § 84, we have

KX:KX' = XS*:X'&,

= XA.XA':X'A.X'A'.
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sin2 XOS _ sin XOA. smXOA'
ere ore

sin2 X'OS ~ sin X'OA . sin X'OA' ;

that is tan2 XOS = tan XOA . tan XOA'.

B

A

Similarly we may prove that

tan2 XOS' = tan XOA . tan XOA'.

Hence, 08, OS' are the double rays of the pencil.

The double rays will be real or imaginary according as K lies

without or within the circle ; that is according as AA' intersects

BB' without or within the circle.

87. We infer from the above construction that a pencil in

involution has in general one and only one pair of conjugate rays

at right angles. The exceptional case occurs when the point K is

the centre of the circle, that is when the two given pairs of conju-

gate rays are at right angles. In this case every line through A'

will be a diameter, and hence every pair of conjugate rays will be

at right angles.

It follows that any pencil of rays 0{AA', BB',...}, in which

each of the angles AOA', BOB, ... is a right angle, is a pencil in

involution, of which any pair of conjugate rays may be considered

as the principal rays.

88. Ex. 1. Show that if two pencils in involution have the same vertex,

there exists one pair and only one pair of conjugate rays common to each

pencil.

When is this pair of rays real ?

Ex. 2. Show that any two pencils in involution have in general one and

only one pair of conjugate rays which are parallel ; and show how to construct

these rays.
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Ex. 3. Show that the straight line joining the feet of the i>eri)endicularH

drawn to a pair of conjugate rays of a pencil in involution from a fixed point,

passes through another fixed point.

89. If 0{AA', BR, CC] be any pencil in involution,

sin AOB. sin APR _ sin AOG . sin AOC
sin A'OB . sin A'OB' ~ sin A'00. sin A'00'

'

Let any circle be drawn passing through 0, cutting the rays of

the pencil in the points A, A', B, B', 0, C. Then by § 85, A A',

BR, CC will meet in the same point K.

By § 84, we have

KA : KA' = AB.AB':A'B. A'R,

= AC. AC: A'C. A'C.

Therefore AB .AB' : A'B . A'R = AC .AC : A'C . A'C.

But if R be the radius of the circle,

AB AB'
2R = j7=&C.

Hence

sin AOB sin AOB'

sin AOB. sin AOB' _ sin A00 . sin APC
sin A'OB . sin A'OR ~ sin A'OO . sin A'OC

90. The rays of any pencil in involution cut any straight line

in a series ofpoints which form a range in involution.

Let any straight line be drawn cutting the rays of the pencil

[AA\ BR, CC) in the points A, A', B, &c.

Then if the pencil be in involution, we have by § 89,

sin^QJg.sin^Q^ _ sin AOC . sin AOC
sin A'OB . sin A'OB' " sin A'OC . sin A'OC

'
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Let 02V be the perpendicular from on the line A A'. Then

we have

• Ann N0 ABsmA0B = 6A70B>
. AnTy NO.AB'SmA0B =6AJ)B-

and similar values for sin AOG, &c.

O

Hence, we obtain the relation

AB^AB' _ AG.AC
A'B.A'B'~~A'G.A'C'

Therefore, by § 76, the range \AA', BB', GG'} is in involution.

Conversely, it may be proved in a similar manner that if the

points of a range in involution be joined to any point not on the

same straight line, these lines will form a system of rays in involu-

tion.

91. Let [AA'
}
BB', CC'} be any range in involution, then by

§ 74, we have AB' . BC . GA' + A'B . B'G . G'A = 0.

If now the points of the range be joined to any point 0, it

follows by the method used in the last article that the angles of

any pencil in involution [AA', BB', GG'\ are connected by the

relation

sin AOB' . sin BOG' . sin GOA' + sin A'OB . sin B'OC . sin COA = 0.

Conversely, by § 75, if this relation holds, we infer that the

pencil {AA\ BB', CC\ will be in involution.

92. Ex. 1. If A BCD be a square, and if OX, OY be drawn through auy

point parallel to the sides of the square, show that 0{XY, AC, BD) is a

pencil in involution.

Ex. 2. If ABC be a triangle, and if through any point 0, rays OX, OY
OZ be drawn parallel to the sides BC, CA, AB, show that 0{XA, YB, ZC)
will be a pencil in involution.



CHAPTER VI.

PROPERTIES OF TRIANGLES.

93. In Euclid a triangle is defined to be a plane figure

bounded by three straight lines, that is to say, a triangle is

regarded as an area. In modern geometry, any group of three

points, which are not collinear, is called a triangle. Since three

straight lines which are not concurrent intersect in three points,

a group of three straight lines may also be called a triangle

without causing any ambiguity.

The present chapter may be divided into two parts. We shall

first discuss some theorems relating to lines drawn through the

vertices of a triangle which are concurrent, and also some theorems

relating to points taken on the sides of a triangle which are

collinear. Secondly we propose to deal with certain special

points which have important properties in connection with a

triangle, and the more important circles connected with a triangle.

In recent years the geometry of the triangle has received

considerable attention, and various circles have been discovered

which have so many interesting properties, that special nanus

have been given them. We shall however at present merely

consider their more elementary properties, reserving for a later

chapter the complete discussion of them.

Concurrent lines drawn through the vertices

of a triangle.

94. If the straight lines which connect the vertices A, B,C of

a triangle with any point meet the opposite sides of the triangle

in the points X, Y, Z, the product of the ratios

BX.XG, GY: YA, AZ: ZB

is equal to unity.

4—2
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Through A draw the straight line NAM parallel to BC, and

let it cut BO, CO in M and N.

B x

By similar triangles,

BX : XC = AM : NA,

CY : YA = BC : AM,

AZ:ZB=NA : BC
Hence we have,

BX CY AZ
~XCYAZB~ '

95. If X, Y, Z are points on the sides of a triangle such that

XC " YA " ZB~ '

the lines AX, BY, CZ will be concurrent.

For let BY, CZ meet in the point 0, and let AO meet BC in

X'. Then we have

BX' CY AZ
X'C ' YA ' ZB

Therefore BX' : X'C = BX : XC
Therefore X' must coincide with X, or what is the same thing,

AX must pass through 0.

96. Ex.1. Show that the lines joining the vertices A, B, C of a triangle

to the middle points of the sides BC, CA, AB are concurrent.

Ex. 2. Show that the perpendiculars drawn from the vertices of a triangle

to the opposite sides are concurrent.

Ex. 3. If a straight line be drawn parallel to BC, cutting the sides AC, AB
in Y and Z, and if BY, CZ intersect in 0, show that AO will bisect BC.
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Ex. 4. If points Y and Z be taken on the .sides AC, AB of a triangle

ABC, so that CY: YA = BZ:AZ, show that BY, CZ will intersect in a point

such that AO is parallel to BC.

Ex. 5. Show that the straight lines drawn through the vertices B and C
of the triangle ABC, parallel respectively to the sides CA, AB, intersect in a

point on the line which connects the point A to the middle point of BC.

Ex. 6. If the inscribed circle of a triangle touch the sides in the i>oint*

X, Y, Z, show that the lines AX, BY, CZ a.re concurrent.

Ex. 7. If the escribed circle of the triangle ABC, opposite to the angle A,

touch the sides in the points X, Y, Z, show that AX, BY, CZ arc concurrent

Ex. 8. If the pencils {A A', BC) , {BE, CA}, {CC, A B) be harmonic,

show that the pencil {AA', BB', CC'} will be in involution.

This follows from Ex. 6, 7, by the aid of § 85.

Ex. 9. If any circle be drawn touching the sides of the triangle ABC in

the points X, Y, Z, show that the lines joining the middle points of BC, CA,

AB to the middle points of AX, BY, CZ respectively, are concurrent

Ex. 10. A circle is drawn cutting the sides of a triangle ,-1 BC in the points

X, X'; Y, Y'; Z, Z' ; show that if AX, BY, CZ are concurrent, so also are

AX', BY, CZ'.

Ex. 11. If the lines connecting the vertices of any triangle ABC to any

point 0, meet the opposite sides in the points D, E, F, show that the pencil

D{AC, EF} is harmonic.

Conversely, if D, E, F be three points on the sides of the triangle ABC,

such that the pencil D {AC, EF} is harmonic, show that AD, BE, CF are

concurrent.

97. The theorem of § 94 may be proved otherwise. We have

BX : XC=(AB0)

= (A0B)

CY: YA = {B0C)

AZ:ZB=(C0A)

(AOC)

(COA),

(AOB),

(BOC).

a w BX CY AZ
,Hence, as before, ^> . y-. . ™=1.

Ex. If the lines AO, BO, CO meet the sides of the triangle ABC in the

points X, Y, Z, show that

AO BO ,
CO a H

j -I =9. - jAX^BX^CX

98. If ABC be any triangle, and any point, then

sin BAO sin CBO sin ACO
sin OAG ' sin OBA ' sin 0GB

= 1.
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From the triangle BOG, we have

sin CBO : sin OGB = OC : OB.

Similarly from the triangles COA, AOB,

sin AGO : sin OAG = OA : OC,

sin BAO : sin 054 = OB : OA
sin^^O sin GBO sin ACQ _

Hence, ^ QAQ . ^ ^^ . ^ QCB
- 1.

99. If points X, Y, Z be taken on the sides of a triangle ABC,
such that

sin£4X sin CBY smACZ _
sin XAC ' sin YBA ' sin ZCB ~

'

the lines AX, BY, CZ will be concurrent.

Let BY, CZ meet in the point 0. Then by the last article we

have
sin&AO sinC^F suiACZ =
sin OAC ' sbTYBA ' sin ZCB

"

Therefore

sin BAO : sin OAG = sin BAX : sin X^IC.

Hence it follows that the line AX must coincide with the line

AO ; that is, the lines AX, BY, CZ are concurrent.

100. Ex. 1. Show that the internal bisectors of the angles of a triangle

are concurrent.

Ex. 2. Show that the internal bisector of one angle of a triangle, and the

external bisectors of the other angles are concurrent.

Ex. 3. The tangents to the circle circumscribing the triangle ABC, at the

points B and C, meet in the point L. Show that

sin BAL : sin LAC= sin ACB : sin CBA.
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Ex. 4. If the tangents at the points H, B, C to the circle circum-

scribing the triangle, meet in the points L, M, N, show that tho linos AL,

BM, CN will be concurrent.

Ex. 5. If on the sides of a triangle ABC similar isosceles triangles LUC,

MCA, NAB be described, show that the lines AL, BM, CN will l>o con-

current.

Ex. 6. If the perpendiculars drawn from the points A, B, C to sides BC,
C'A', A'B of the triangle A'B'C are concurrent, show that the lines drawn

from A', B', C perpendicular to the sides BC, CA, AB of the triangle ABC
will also be concurrent.

Ex. 7. Show that, connected with a triangle ABC, a point can be found

such that the angles BA 0, A CO, CBO are equal.

Denoting the angle BAO by a>, and the angles BAC, ACB, CBA by A, B,

C, we have from § 98,

sin3 o)= sin (A - a>) sin (B - <o) sin (C- a) ;

whence by trigonometry,

cot a= cot A + cot B+ cot C.

Thus there is but one value for the angle a>, and consequently only one

point which satisfies the given condition.

There is obviously another point O such that the angles CAO, ABO",

BCC are each equal to the same angle «>.

Ex. 8. The vertices of a triangle ABC are joined to any point ;
and a

triangle A'B'C is constructed having its sides parallel to AG, BO, Co. It

lines be drawn through A', B, C parallel to the corresponding sides of the

triangle ABC; show that these lines will be concurrent.

101. Any two lines AX, AX', drawn so that the angle XAX'

has the same bisectors as the angle BAG are said to be isogonal

conjugates with respect to the angle BAG.

Let AX, BY, GZbe the straight lines connecting the vertices

of the triangle ABC to any point 0, and let AX', BY', GZ be
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their isogonal conjugates with respect to the angles of the

triangle.

We have then

sin BAX smCBY sin ACZ
sinXAG ' sin YBA ' sin ZGB

_ mnX'AC sin Y'BA sin Z'GB
~

sin BAX' ' sin GBY' ' sin AGZ

'

A

But since AX, BY, CZ are concurrent, the latter product is

equal to unity. Hence by § 99, it follows that AX', BY', CZ' are

also concurrent.

Thus : when three lines drawn through the vertices of a triangle

are concurrent, their isogonal conjugates with respect to the angles

at these vertices are also concurrent.

If the lines AX, BY, GZ meet in the point 0, and their

isogonal conjugates in the point O', the points 0, 0' are called

isogonal conjugate points with respect to the triangle ABC.

102. Ex. 1. Show that the orthocentre of a triangle and the circunicentre

are isogonal conjugate points.

Ex. 2. If 0, O be any isogonal conjugate points, with respect to the

triangle ABC, and if OL, OL' be drawn perpendicular to BC; OM, OM'
perpendicular to CA ; and ON, ON' perpendicular to AB; show that

OL . OL'=0M. &M'=0N. ON'.

Show also that the six points L, M, N, L, M', N' lie on a circle whose

centre is the middle point of OO, and that MN is perpendicular to AO.

Ex. 3. If D, E, F be the middle points of the sides of the triangle ABC,
show that the isogonal conjugate of AD with respect to the angle BAC, is the

line joining A to the point of intersection of the tangents at B and C to the

circle circumscribing ABC
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103. If two points X, X' be taken on the lino DC so that the segment*

XX', BC have the same middle point, the points X, X' are called Uotomi--

conjugates with respect to the segment BC.

Ex. 1. If X, F, Z be any three points on the sides of a triangle .1 BC, and

X', Y', Z the isotomic conjugate points with respect to BC, CA, AB reHpec-

tively, show that if AX, BY, CZ are concurrent so also are AX', BY, CZ'.

If AX, BY, CZ meet in the point 0, and AX', BY', CZ' in the point (/,

the points and & are called isotomic conjugate points with respect to the

triangle ABC.

Ex. 2. If the inscribed circle of the triangle ABC touch the sides in the

points X, Y, Z, show that the isotomic conjugate points with respect to the

sides of the triangle, are points of contact of the escribed circles of the

triangle.

Ex. 3. In Ex. 1, show that the areas (X YZ), (X'Y'Z') are equal, and that

(BOC) . (BO'C) = (COA) . (CaA)= (A0B) . {AOB).

Collinear points on the sides of a triangle.

104. If a straight line intersect the sides of a triangle ABG in

the points X, Y, Z, the product of the ratios

BX.CX; GY-.AY; AZ.BZ;

is equal to unity.

\X' A

C X

Through A draw AX' parallel to BG to cut the straight line

XYZ in the point X'.

Then by similar triangles,

GY:GX=AY:AX';
BX:BZ = AX':AZ.

T _ BX GY_AY.
Therefore CX'BZ'AZ'

or —- - -?-=-. -=-= = 1.
BX GY AZ
CX' AY' BZ
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This formula may also be written

BX CY AZ__,
XC ' YA ' ZB~ '

and should be compared with the formula given in § 94.

When a straight line cuts the sides of a triangle it is often called a

transversal. Thus, if X, Y, Z be collinear points on the sides BC, CA, AB,
respectively, of the triangle ABC, the line on which they lie is referred to as

the transversal XTZ.

105. If X, Y, Z are points on the sides of a triangle ABC
such that

BX CY AZ_
CX ' AY' BZ~ '

the points X, Y, Z are collinear.

Let the line joining the points Y and Z cut BC in the point

X'. By the last article, we have

BX CY AZ =
CX' AY' BZ~

Hence, we must have

BX':CX' = BX:GX.
Therefore X must coincide with X'; that is, the point X lies

on the line YZ.

106. If any straight line cut the sides of the triangle ABC in

the points X, Y, Z, then

sin^X sin CBY sin ACZ
sin(L!X * sin ABY' sin BCZ

A

= 1.

This relation is easily deduced from that given in § 104, for we

have
BX: CX = AB. sin BAX : AC. sin CAX,

CY:AY=BC. sin CBY : BA . sin ABY,

AZ:BZ = CA . sin ACZ : CB . sin BCZ.
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Hence,

BX CY AZ _ sin BAX sin CBY sin ACZ
OX ' AY " BZ sin VAX ' sin ABY ' sin W2

But by § 104, the former product is equal to unity. Therefore

the theorem is true.

107. Conversely, if points X, Y, Z be taken on the sides of a
triangle ABC, so that

sin BAX sin CBY sin ACZ
sin CAX ' sin ABY ' sWBCZ ~

'

it follows from § 105, that the points X, Y, Z must be collinear.

108. Ex. 1. Show that the external bisectors of the angles of a triangle

meet the opposite sides in collinear points.

Ex. 2. The tangents to the circumcircle of a triangle at the angular

points cut the opposite sides of the triangle in three collinear points.

Ex. 3. The lines drawn through any point perpendicular to the lines

OA, OB, OC, meet the sides of the triangle ABC in three collinear points.

Ex. 4. The tangents from the vertices of a triangle to any circle meet the

opposite sides in the points X, X' ; Y, T' ; and Z, Z' ; respectively. Prove

that if X, Y, Z are collinear, so also are X', Y', Z'.

Ex. 5. If any line cut the sides of the triangle ABC in the points X
t

V.

Z; the isogonal conjugates of AX, BY, CZ, with respect to the angles of the

triangle will meet the opposite sides in collinear points.

Ex. 6. If a straight line cut the sides of the triangle ABC in the points

I
X, Y, Z; the isotomic points with respect to the sides will be collinear.

Ex. 7. If D, E, F are the middle points of the sides of a triangle, and

X, Y, Z the feet of the perpendiculars drawn from the vertices to the opposite

sides, and if YZ, ZX, XY meet EF, FD, DE in the points P, Q, It respec-

tively, show that DP, EQ, FR are concurrent, and also that XP, Y<<>, ZIl are

concurrent.

Ex. 8. Points X, Y, Z are taken on the sides of a triangle ABC, so that

BX : XC= CY : YA =AZ: ZB.

If AX, BY, CZ intersect in the points P, Q, R, show that

AQ : AR=BR : BP=CP : CQ.

Ex. 9. The sides AB, AC of a triangle are produced to I) and h\ ami

DE is joined. If a point F be taken on BC so that

BF : FC=AB . AE : AC. AD,

show that AF will bisect DE.
[St Johns Coll. 1887.]

Ex. 10. The sides BC, CA, AB of a triangle cut a straight line in A S,

F; through D, E, F three straight lines DLOO, ElIOM, FKON having the
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common point are drawn, cutting the sides CA, AB in L, G ; AB, BC in

M, H; BC, CA in X, K. Prove that

AK.BG.CH_ AG.BE.CK _ _ GD.HE.KF _ _ HD.KE.GF
AM.BN.CL ~ AL . BM . CX ~ LB . ME. NF ~ XD . LE. MF'

[Math. Tripos, 1878.]

Ex. 11. Through the vertices of a triangle ABC, three straight lines AD,

BE, CF are drawn to cut the opposite sides in the points D, E, F. The lines

BE, CF intersect in A'; CF, AD intersect in B' : and AD, BE in C. Show

that
DB' EC FA' (CD AE BF\* (AC BAf^ CR\-
DC' ' EA' ' FB ~ \BD ' CE ' AFj 7 \AB' ' BC' ' CA')

'

[De Rocquigny. Mathesis IX.]

Ex. 12. If XYZ, X'Y'Z' be any two transversals of the triangle ABC,

show that the lines YZ', ZX', XY' will cut the sides BC, CA, AB in three

collinear points.

109. Ex. 1. If the lines joining the vertices of a triangle ABC to any

point cut the opposite sides in the points X, Y, Z, and if be any arbitrary

point, show that

sin BOX sin COY smAOZ
sin XOC ' sin YOA ' sin Z0B~

We have BX. OC : XC. 0B=sin BOX : sin XOC.

Hence the theorem follows from § 94.

Ex. 2. If any straight line cut the sides of a triangle ABC in the points

X, Y, Z, and if be any arbitrary point, show that

sin BOX sin COY sin A0Z_
sin COX " sin A Y ' sin B0Z~

Ex. 3. If X, Y, Z be the points in which any straight line cuts the sides

of the triangle ABC, and if be any point, show that the pencil

0{AX,BY,CZ]
is in involution.

Ex. 4. The sides of the triangle ABC cut any straight line in the points

P,Q,R; and X, Y, Z are three points on this straight line. If AX, BY, CZ
are concurrent, show that

QX RY PZ
XR' YP' zq '

Show also that {PX, QY, RZ} is a range in involution.

Ex. 5. If in the last example, AX, BY, CZ exit the sides BC, CA, AB in

collinear points, show that

QX RY PZ
RX' PY' QZ

Ex. 6. Prove the converse theorems of those in examples 1—5.
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Ex. 7. If XYZ, X'Y'Z' be any two transversals of the triangle Ml<\

and if YZ', Y'Z meet in P ; ZX', Z'X in Q ; and A'}", X'Y in It ; show that

AP, BQ, CR cut the sides BC, CA, AB in three collinear points.

Pole and Polar with respect to a triangle.

110. If X, Y, Z be 'points on the sides of the triangle ABC,
such that AX, BY, CZ are concurrent, the sides of tJie triangle

XYZ ivill meet the sides of the triangle ABC in collinear points.

Let YZ, ZX, XY meet BC, GA, AB respectively in the points

X, Y', Z'.

Since X', Y, Z are collinear we have by § 104,

BIT GY AZ
GX'AY'BZ

But since AX, BY, GZ are concurrent, we have by § 94,

BX GY AZ =
XG • YA'ZB

'

Therefore BX : XG = BX : GX'.

Similarly, we shall have

GY:YA = CY':AY',

and AZ:ZB = AZ'.BZ\

Consequently,

BX' GY' AZ' BX GY AZ
GX' 'AY' ' BZ'~ XG' YA ' ZB

Hence, A", Y', Z' are collinear points.

Ex. 1. If the lines AO, BO, CO cut the sides of the triangle ABC in the

points X, Y, Z, and if the points A", Y', Z be the harmonic conjugate points
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of X, Y, Z with respect to B, C ; C, A ; and A, B; respectively, prove

that :—

(i) The points X', Y', Z' are collinear.

(ii) The points X', Y, Z are collinear.

(iii) The lines AX, BY', CZ' are concurrent.

Ex. 2. If the inscribed circle of the triangle ABC touch the sides in the

points X, Y, Z, show that the lines YZ, ZX, XY cut the sides BC, CA, AB in

collinear points.

Ex 3. If XYZ be any transversal of the triangle ABC, and if the lines

AX, BY, CZ form the triangle PQR, show that the lines AP, BQ, CR are

concurrent.

111. If the lines AX, BY, CZ meet in the point 0, the line

X'Y'Z' (see figure § 110) is called the polar of the point with

respect to the triangle ABC; and the point is called the pole of

the line X'Y'Z' with respect to the triangle.

Given any point we can find its polar by joining AO, BO,

CO, and then joining the points X, Y, Z in which these lines cut

the sides of the triangle ABC. The lines YZ, ZX, XY will cut

the corresponding sides of the triangle in the points X', Y', Z',

which lie on the polar of 0.

Given any straight line X'Y'Z' to find its pole with respect to

a triangle ABC; let P, Q, R be the vertices of the triangle formed

by the lines AX', BY', CZ'. Then AP, BQ, CR will meet in a

point (§ 110, Ex. 3) which will be the pole of the line X'Y'Z'.

Ex. If x denote the polar of the point with respect to the triangle

ABC, show that

(OBC) . Ax=(0CA) . Bx=(0AB) . Cx.

Special points connected with a triangle.

112. The lines drawn through the vertices of a triangle to

bisect the opposite sides are called the medians of the triangle.

The medians of a triangle are concurrent (§ 96, Ex. 1). The
point in which they intersect is called the median point of the

triangle.

The isogonal conjugates of the medians with respect to the

angles of a triangle are called the symmedians of the triangle. The

point in which they intersect (§ 101) is called the symmedian point.
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The median point of a triangle is also called the centroid of the triangle
;

but the name median point is preferred in geometry from the important

connection of the point with its isogonal conjugate, the symmedian point

The median point of a triangle is usually denoted by G, and tho symmedian

point by K.

Triangles which have the same median lines are called co-

median triangles ; and triangles which have the same symmedimi

lines are said to be co-symmedian.

113. In connection with the symmedian point it is convenient

to define here what is meant by a line antiparallel to a side of a

triangle.

If ABG be any triangle, any line YZ which cuts AG in Y and

AB in Z, so that the angle AYZ is equal to the angle CBA, and

the angle AZY equal to the angle BGA, is said to be antiparallel

to the side BG.

It is obvious that when YZ is antiparallel to BG, the points

Y, Z, B, C are concyclic ; and that the line through A antiparallel

to BG is the tangent at A to the circumcircle of ABC.

114. Ex. 1. If G be the median point of the triangle ABC, show that

the areas (BGC), (CGA), (AGB) are equal.

Ex. 2. If K be the symmedian point of the triangle ABC, show that the

areas (BKC), (CKA), (AKB) are in the ratio of the squares on BC, CA, and

AB.

Ex. 3. If any circle be drawn through B and C cutting the sides AC, A 11

in the points M and N, show that AK will bisect MX.
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Ex. 4. If the inscribed circle touch the sides of the triangle ABC in the

points X, Y, Z, show that AX, BY, CZwill meet in the syniruedian point of

the triangle XYZ.

Ex. 5. If D, E, F be the feet of the perpendiculars from A, B, C to the

opposite sides of the triangle ABC, show that the lines drawn from A, B, C
to the middle points of EF, FD, DE are concurrent.

The point of concurrence is the symmedian point.

Ex. 6. Show that if lines be drawn through the symmedian point of a

triangle antiparallel to the sides, the segments intercepted on them are equal.

Ex. 7. The perpendiculars from K on the sides of the triangle are

proportional to the sides.

Ex. 8. If KX, KY, KZ be drawn perpendicular to the sides of the

triangle, show that K is the median point of the triangle XYZ.

Ex. 9. If AD be drawn perpendicular to the side BC of the triangle ABC,
show that the line joining the middle point of AD to the middle point of BC
passes through the symmedian point of the triangle ABC.

Ex. 10. If from the symmedian (or median) point of a triangle, perpen-

diculars be drawn to the sides, the lines joining their feet are perpendicular to

the medians (or symmedians) of the triangle.

Ex. 11. Show that if G be the median point, and K the symmedian point

of the triangle ABC,

GA . KA . BC+ GB . KB . CA + GC . KC . AB=--BC. CA . AB.

[St John's Coll., 1886.]

Ex. 12. Through a point P the lines XPY, X'PZ are drawn parallel to

the sides A B, AC of the triangle ABC, cutting the side BC in the points X,

X' and the sides AC, AB in Y and Z. If the points X, X, Y, Zaxe concyclic

show that the locus of the point P is a straight line.

Ex. 13. Any point P is taken on the line which bisects the angle BAC of

a triangle internally, and PA', PB', PC are drawn perpendicular to the sides

of the triangle. Show that A 'P intersects B'C in a point on the median line

which passes through A.

Ex. 14. The lines A A', BB', CC connecting the vertices of two triangles

ABC, A'B'C are divided in the points P, Q, R in the same ratio, m : n. Show
that the median point of the triangle PQR divides the line joining the median

points of the triangles ABC, A'B'C" in the ratio m : «.

115. The perpendiculars from the vertices of a triangle on

the opposite sides meet in a point (§ 9G, Ex. 2), which is called

the orthocentre of the triangle.

If ABC be the triangle, and the orthocentre, it is evident

from the figure that each of the four points A, B, C, is the

orthocentre of the triangle formed by the other three.
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Ex. 1. Show that if AP, BQ, CR be the perpendiculars on the sides of

the triangle ABC, QR will be antiparallel to BC.

Ex. 2. Show that the circles circumscribing the triangles BOC, COA,
AOB, ABC are equal.

Ex. 3. Show that the triangles AQR, PBR, PQC are each similar to the

triangle ABC.

Ex. 4. Show that AP bisects the angle QPR.

Ex. 5. If A, B, C, D be any four points on a circle, and if A', B\ C, D'

be the orthocentres of the triangles BCD, CDA, DAB, ABC, show that .1.1 .

BE, CC , DD' will be concurrent.

116. If ABG be any triangle, the lines AX, BY, CZ, drawn

so as to make the angles BAX, ACY, GBZ equal, are concurrent

(§ 100, Ex. 7). The point in which these lines intersect is called

a Brocard point of the triangle ABG, and is usually denote I

by a
If IT be the point such that the angles CAfl', ABO.', BCQ.'

are equal, Of is also called a Brocard point of the triangle ABC.

By § 100, Ex. 7, we see that each of the angles BACl, 9. AC is

equal to co, where
cot to = cot A + cot B + cot C.
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The angle co is called the Brocard angle of the triangle.

From § 101, it follows that the Brocard points H, fl' are

isogonal conjugate points with respect to the triangle.

117. Ex. 1. Show that the circle circumscribing the triangle BQC
touches AC at C, and that the circle circumscribing the triangle Bq!C

touches AB at B.

This theorem gives a simple construction for finding Q and Q.'.

Ex. 2. Show that the triangles AQ'B, AQ.C are similar.

Ex. 3. Show that the areas of the triangles AqB, Cq'A are equal.

Ex. 4. Show that

AQ.BQ. C'Q = AQ'. Bq! . CO.'.

The Circumcircle.

118. The circle which passes through the vertices of a tri-

angle is called the circumcircle of the triangle ; and the centre of

this circle is called the circumcentre.

If ABC be the triangle, and D, E, F the middle points of the

sides, the lines drawn through D, E, F perpendicular to the sides

meet in the circumcentre (Euclid iv.. Prop. 5).

Since the tangent at A makes the same angles with the lines

AB, AC, as the side BC makes with AC, AB respectively (Euclid

III., Prop. 32), it follows that the tangent at A is antiparallel to the

side BC.

Since SA is perpendicular to the tangent at A, we see that

SA is perpendicular to any line which is antiparallel to the

side BC.
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The angle ASB is double the angle ACB (Euclid in., Prop. 20),

therefore the angle BAS is the complement of the angle ACB.
Hence if AP be perpendicular to BG, the angle BAS is equal to

the angle PAG Thus AS and AP are isogonal conjugates with

respect to the angle BAG. Hence the circumcentre and the

orthocentre are isogonal conjugate points with respect to the

triangle.

The circumcentre of a triangle is usually denoted by S, and the orthocentre

by a

119. Ex. 1. If D be the middle point of BC, show that A0=2SD.

Ex. 2. If AO meet the circumcircle in P, show that OP is bisected

by.BC.

Ex. 3. Show that the line joining the circumcentre to the orthocentre

passes through the median point of the triangle.

Ex. 4. Show that the circle which passes through the middle points of

the sides of a triangle passes through the feet of the perpendiculars from the

opposite vertices on the sides.

This follows from the fact that £ and are isogonal conjugate points

(§ 102, Ex. 2).

Ex. 5. Show that if P, Q, R be the feet of the perpendiculars from A, B,

C on the opposite sides of the triangle, then the perpendiculars from A, B, C
to QR, RP, PQ respectively are concurrent.

Ex. 6. If from any point P on the circumcircle of the triangle ABC, PL,

PM, PjY be drawn perpendicular to PA, PB, PC respectively to meet BC,

CA, AB in L, M, N ; show that L, M, N lie on a straight line which passes

through the circumcentre of the triangle. [St John's Coll., 1889.]

Ex. 7. If P be any point on the circumcircle of the triangle ABC, show

that the isogonal conjugate point will be on the line at infinity.

Ex. 8. Perpendiculars are drawn to the symmedians of a triangle, at its

angular points, forming another triangle. Show that the circumcentre of the

former is the median point of the latter.

Ex. 9. If P be any point on the circumcircle of a triangle whose

symmedian point is K, show that PK will cut the sides of the triangle

in the points X, Y, Z so that

PK~ PX* P7+ PZ'

[d'Ocagne, E. T. Reprint, Vol. xlii., p. 26.]

120. If from any point P on the circumcircle of the triangle

ABC, PX, PY, PZ be drawn perpendicular to the sides, the points

X, Y, Z will be collinear.

5—2



PROPERTIES OF THE

Join ZX, YX. Then since the points P, X, Z, B are concyclic,

the angle PXZ is the supplement of the angle ABP. And since

P, Y, C, X are concyclic, the angle YXP is the supplement of the

angle YGP, and is equal to the angle ABP, because P, C, A, B
are concyclic.

Hence the angles PXZ, YXP are supplementary ; and there-

fore ZX, XY are in the same straight line.

The line XYZ is called the Simson line or the pedal line of the

point P with respect to the triangle ABC.

121. Ex. 1. Show that if the feet of the perpendiculars drawn from a

point P on the sides of a triangle be collinear, the locus of P is the circum-

circle of the triangle.

Ex. 2. If be the orthocentre of the triangle ABC, show that the Simson

line of any point P on the circumcircle bisects the line OP.

Ex. 3. Show that if PQ be any diameter of the circumcircle, the Simson

lines of P and Q are perpendicular. [Trinity Coll., 1889.]

Ex. 4. Show that the Simson line of any point P is perpendicular to the

isogonal conjugate line to AP with respect to the angle BAC.

Ex. 5. If PL, PM, PN be the perpendiculars drawn from a point P on a

circle to the sides BC, CA, AB of an inscribed triangle, and if straight lines

PI, Pm, Pn be drawn meeting the sides in I, m, n and making the angles

LPl, MPm, NPn equal, when measured in the same sense, then the points I,

m, n will be collinear. [Trinity Coll., 1890.]

Ex. 6. A triangle ABC is inscribed in a circle and the perpendiculars

from A, B, C to the opposite sides meet the circle in A', B', C ; B'E, CF are

drawn perpendicular to CA', A'B1

respectively, meeting AC, AB in E and F-

Show that the pedal line of the point A with respect to the triangle A'B'C
bisects EF. [St John's Coll., 1890.]
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Ex. 7. If P, Q be opposite extremities of a diameter of the circumcircle of

a triangle, the lines drawn from P and Q perpendicular to their pedal lines

respectively will intersect in a point It on the circle.

Show also that the pedal line of the point R will be parallel to PQ.

[Clare Coll., 1889.]

Ex. 8. If A, B, C, D be four points on a circle, prove that the pedal lines

of each point with respect to the triangle formed by the other three meet in

a point 0.

If a fifth point E be taken on the circle, prove that the five points

belonging to the five groups of four points formed from A, B,C, D, E lie on a

circle of half the linear dimensions. [Math. Tripos, 1886.]

Ex. 9. If A, B, C, D be any four points on a circle, show that the

projections of any point on the circle, on the Simson lines of the point

with respect to the triangles BCD, CDA, DAB, ABC, lie on a straight line.

If this line be called the Simson line of the point with respect to the

tetrastigm ABCD, and if any fifth point E be taken on the circle, show that

the projections of on the Simson lines of the tetrastigms BCDE, CDEA,
DEAD, EABC, ABCD also lie on a straight line.

Show that the theorem may be extended.

[E. M. Langley, E. T. Reprint, Vol. ll, p. 77.]

122. Ex. 1. If the lines connecting the vertices of a triangle ABC to any

point cut the circumcircle in the points A', B', C, and if OX, OY, OZ be

the perpendiculars on the sides of the triangle ; then the triangles A'BC,

XYZ are similar.

It is easy to prove that the angles B'A'C, YXZ are each equal to the

difference of the angles BOC, BAC. Hence the theorem follows at once.

Since the triangles BOC, COB are similar, we have

BC : OB'=BC\CO.
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mL . AO.BC AO.CO.BO
Therefore -^- =

£(J QB>
.

Hence, if S be the centre of the circumcircle, and R its radius, and if we

denote the angles BOC, COA, A OB by a, (3, y, we have

AO.BC _ BO.CA CO.AB = 2R . AO . BO . CO
sm(a-A)~sin(P-B)~sin(y-C)~ R?-OS2 ^ ''

Again, since J", Z, 0, A are coneyclic we have YZ—OA sin J.. Hence, if p

be the radius of the circle XYZ, we have

YZ OA . sin A
2p =

sin (a -.4) sin (a — .4)

A

M

From (1) and (2) we have

_ , OA.BC OB.CA OC.AB
Therefore ±pR= ^-. jt= -r—j-—~ = -^—. ^ (2).r

sin (a- A) sin (£-2?) sm(y-(7)

_ AO.BO.CO ...

2p=
ip-os* (3) -

Ex. 2. Show that the point for the triangle XYZ corresponds to the

isogonal conjugate point of for the triangle A'B'C.

Ex. 3. If and C be isogonal conjugate points with respect to the

triangle ABC, and if S be the circumcentre, show that

AO.BO.CO RZ-OS2

AO.BO' .CO'~ m-os*'
By § 102, Ex. 2, we know that if perpendiculars be drawn from and O

to the sides of the triangle ABC, their feet lie on the same circle. Hence this

result follows from Ex. 1, (3).

Ex. 4. Show that the Brocard points Q, Q' are equidistant from S.

See § 117, Ex. 3.

Ex. 5. If and C be a pair of isogonal conjugate points with respect to

a triangle A BC, show that

AO. AO . BC+BO. BCCA+CO. CO' . AB=BC. CA . AB.

Ex. 6. If in Ex. 1 the point be the orthocentre of the triangle ABC,
show that B'C is antiparallel to the side BC.

Ex. 7. If K be the symmedian point of the triangle ABC, and if AK,
BE, CK meet the circumcircle of the triangle in A', B', C, show that the

triangles ABC, A'B'C are co-symmedian.

Let KX, KY, KZ be drawn perpendicular to the sides of ABC. Then K
is the median point of the triangle XYZ (§ 114, Ex. 8). Therefore (Ex. 2) K
is the symmedian point of the triangle A'B'C.

It is evident that the medians of the triangle A'B'C are proportional to

KX, KY, KZ ; and therefore they are proportional to the sides of the triangle

ABC.

The Nine-Point circle.

123. If S be the circumcentre, and the orthocentre, of the

triangle ABC ; D, E, F the middle points of the sides ; P, Q, R
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the feet of the perpendiculars from the vertices on the opposite

sides; and X, Y, Z the middle points of AG, BO, CO; the nine
points D, E, F, P, Q, R, X, Y, Z lie on the same circle, which is

called the nine-point circle of the triangle.

• ^R^x
//-'' \pa

fI V\e

^\o
f/ls^ zj\/\^^\

Since S and are isogonal conjugate points with respect to

the triangle ABC, it follows that a circle can be drawn through

the points P, Q, R, D, E, F (§ 102, Ex. 2). Again, since A is the

orthocentre of the triangle BOC (§ 114), it follows that the points

P, Q, R, Y, Z, D lie on the same circle. Similarly, since B is the

orthocentre of the triangle AOC, it follows that X lies on the

circle PQR.

Since S and are isogonal conjugate points, the centre of the

nine-point circle N will be the middle point of SO (§ 102, Ex. 2).

124. The theorem of the last article may be proved in a more elementary

manner as follows. It is easy to show that XZDF and XED Y are rectangles,

having the common diagonal DX. And since XPD, YQE, ZRF are right

angles, it follows at once that the nine points X, Y, Z, D, E, F, P, Q, R lie on

a circle, whose centre is the middle point of OS.

125. Ex. 1. Show that the diameter of the nine-point circle is equal to

the radius of the circumcircle.

Ex. 2. The nine-point circle of the triangle ABC is also the nine-point

circle of each of the triangles BCO, CAO, ABO.

Ex. 3. Show that if P be any point on the circumcircle of a triangle, OP
is bisected by the nine-point circle.

Ex. 4. Show that the Simson lines of the extremities of any diameter <>f

the circumcircle of a triangle intersect at right angles on the nine-point circle

of the triangle. [Trim ColL, 1888.]

Ex. 5. If D, E, Fhe, the middle points of the sides of the triangle A B( '.

show that the nine-point circles of the triangles AEF, BED, CDE touch the

nine-point circle of the triangle DEF at the middle points of EF, FD, DE
respectively.
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The inscribed and escribed circles.

126. The internal bisectors of the angles of a triangle are

concurrent (§ 100, Ex. 1). It is evident that the point in which

they meet is equidistant from the sides of the triangle. Therefore

the circle which has this point for centre and which touches one

side will touch the other sides (Euclid iv., Prop. 4). This circle

is called the inscribed circle, or briefly the in-circle. Its centre is

often called the in-centre.

A

B LT C

If L, M, N be the points of contact of the sides, we have

AM= AN, BL = BN, CL = CM.

Hence, denoting the lengths of the sides by a, b, c, and the

perimeter by 2s, we have

AM =AN = s — a, '

BL =BN = s-b,

CL =CM = s-c.

127. The internal bisector of the angle BAC, and the external

bisectors of the angles ABC, ACB, are concurrent. Let the point

in which they meet be denoted by II . This point is the centre of

a circle which can be drawn to touch the sides of the triangle, but

it is on the side of BC remote to A. This circle is called an

escribed circle. To distinguish it from the other escribed circles it

is often called the A-escribed circle.

If Llt il/j, iVj be the points of contact of the sides with this

circle, it follows at once that

AM^AN^s,
BLl =BN1 =s-c,

CL, =CM1
= s-b.
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Similarly, if the internal bisector of the angle ABC meet the

external bisectors of the other angles in the point I2 , I2 will be

the centre of the 5-escribed circle. And, if the internal bisector

of the angle AGB meet the external bisectors of the other angles

in I3 , I3 will be the centre of the C-escribed circle.

128. Ex. 1. Show that the circumcircle of the triangle ABC is the nine-

point circle of the triangle IiI2I3 .

Ex. 2. Show that if r, r
t , r2 , r3 be the radii of the inscribed and escribed

circles, and i? the radius of the circumcircle,

r
l+ r

2+ r3 -r= 4R.

Let D be the middle point of BC, and let SD meet the circumcircle in G

and H. It follows from Ex. 1, that Q is the middle point of //„ and II the

middle point of I2I3 . Hence 2HD=r2+

r

a , 2DG= r
l
-r. Therefore

±R=2EG = rj+

r

2+ r3- r.
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Ex. 3. Show that SP=R?-2Rr.

If IM be drawn perpendicular to AC, it is easy to show that the triangles

AIM, IICG are similar. Therefore IM : AI= GC : GH. But GC= GI. Hence

AI.IG=1M.GH, that is &- SI*= 2Rr.

Ex. 4. Show that £/j2=R?+ 2Rr
t

.

Ex. 5. If i" be the in-centre of the triangle ABC, and if AI cut BC in X
and the circumcircle in G, show that

GI2=GX.GA.

Ex. 6. If Z> be the middle point of BC, P the foot of the perpendicular

from A, and L the point of contact of the inscribed circle with BC, show that

DL°-=DX.DP.

Ex. 7. Show that the nine-point circle of a triangle touches the inscribed

circle.

A

Let L, M, N be the points of contact of the inscribed circle with the sides

of the triangle. Let D be the middle point of BC, and P the foot of the

perpendicular from A. Let the line joining A to the centre of the inscribed

circle cut BC in X, and let XL' be the other tangent drawn from X to this

circle. Join DL, and let it cut the^inscribed circle in Tj Then T is a point

on the nine-point circle, and the two circles will touch at T.

The tangent to the nine-point circle at D, DH suppose, is parallel to XL',

since each of the angles HDB, L'XB is equal to the difference of the angles

CBA, ACB.

By Ex. 6, we have DX . DP=DL2=DL' . DT. Hence the points P, X, L',

T are concyclic, and therefore the angle DTP is equal to the angle L'XB, that

is to the angle HDB. Therefore T is a point on the nine-point circle.

Also a line through T, making with TD an angle HTD equal to TDH, is a

tangent to both circles, proving that the circles touch at T.

This proof was given by Mr J. Young in the Educational Times (see E. T.

Reprint, Vol. li., p. 58).

Ex 8. Show that the nine-point circle of a triangle touches each of the

escribed circles.
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The Cosine circle.

129. If through the symmedian point of a triangle lines be
drawn antiparallel to the sides, the six points in which thev
intersect the sides lie on a circle, which is called the cosine

circle of the triangle.

The centre of this circle is the symmedian point.

B xv^^____^^'X' C

Let K be the symmedian point of the triangle ABC, and let

TKZ', ZKX', XKY' be drawn antiparallel to the sides BC, CA,
AB respectively.

The angles KXX', KX'X are each equal to the angle BAC
;

therefore KX = KX'. Similarly we have KY= KY', and

KZ=KZ'.

But AK bisects all lines antiparallel to the side BC, therefore

KY= KZ. Similarly, KZ=KX\ and KX = KY'.

Hence the six points X, X', Y, Y', Z, Z' lie on a circle whose

centre is K.

It is evident that the segments XX, YY', ZZ are proportional to the

cosines of the opposite angles : hence the name cosine circle. The cosine circle

is the only circle which possesses the property of cutting the sides of the

triangle at the extremities of three diameters.

130. Ex. 1. Show that the triangles YZX, Z'X'Y' are each similar to

the triangle ABC.

Ex. 2. If YZ', ZX', XY' be any three diameters of a circle, show that the

circle is the cosine circle of the triangle formed by the lines XX', YY, ZZ'

.

Ex. 3. If the tangents at B and C to the circumcircle of the triangle ABC
intersect in K

x , show that the circle whose centre is K
x
and which passes

through B and C will cut AB, AC in two points which are extremities of a

diameter.

This circle has been called an ex-cosine circle.
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The Lemoine circle.

131. If through the symmedian point of a triangle, lines be

drawn parallel to the sides, the six points in which they intersect

the sides lie on a circle, which is called the Lemoine circle of the

triangle.

A

Let K be the symmedian point of the triangle ABC, and let

YKZ', ZKX', XKY' be drawn parallel to the sides BG, CA, AB
respectively. Let 8 be the circumcentre of the triangle, and L
the middle point of SK.

Let AK meet Y'Z in A'. Then since KY'AZ is a parallelo-

gram, A' is the middle point of AK.

Hence 8A = 2LA'.
{

Again, AK bisects ZY'; therefore ZY' is antiparallel to the

side BG, and therefore (§ 118) SA is perpendicular to ZY' . Hence

LA', which is parallel to SA, is perpendicular to ZY'.

Again, since ZK is parallel to AC, and ZY' is antiparallel to

BG, it follows that ZY' is equal to the radius of the cosine circle.

Hence we have 4L Y'- =R2 + p-,

where R is the radius of the circumcircle, and p the radius of the

cosine circle.

It follows by symmetry that X, X', Y, Y', Z, Z' lie on a circle

whose centre is L, the middle point of SK.

132. Ex. 1. In the figure, show that the chords Y'Z, Z'X, X'Y are

equal.

Ex. 2. If the Lemoine circle cut BC in X and X', show that

BX : XX' : X'C=BA* : BC2
: CA*.
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Ex. 3. Show that

XX' : YT : ZZ'= BC3
: CA 3

: AB3
.

On account of this property the circle has been called the triplicate ratio
circle by Mr Tucker.

Ex. 4. Show that the triangles ZXY, Y'Z'X' are each similar to the
triangle ABC.

Ex. 5. If SD be drawn perpendicular to YZ\ show that Z'D is equal to
KY.

133. If on the line SK joining the circumcentre of a triangle

ABC to its symmedian point any point T be taken, and if points

A', B', C be taken on the lines KA, KB, KG respectively, so that

KA':KB':KC'.KT=KA:KB:KG:KS,
then lines drawn through A', B', C antiparallel to BC, CA, AB,

A

/V!

Z/r~

/ 'T'A ' V"

^y^B" ; C"\N

\b' / ; \ c"/.

X

will meet the sides of the triangle in six points which lie on a

circle.

The system of circles obtained by taking different points T on

the line K8 is known as Tucker's system of circles.

The proof that the six points lie on a circle is very similar to

that given in § 131. It is easy to see that TA' is perpendicular

to ZY', and that TA', TB', TC are proportional to SA, SB. Si

respectively. Also, the chords Y'Z, Z'X, X'Y are evidently equal,

and are proportional to the radius of the cosine circle. Hence, the

six points lie on a circle, whose centre is T.

Tucker's circles include as particular cases :

—

(i) The circumcircle, when T coincides with S.

(ii) The cosine circle, when T coincides with K.

(iii) The Lemoine circle, when T is the middle point of SK.
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Ex. 1. Show that the lines YZ', ZX', XT' are parallel to the sides of the

triangle ABC.

Ex. 2. Show that the vertices of the triangle formed by the sides YZ',
:

(
ZX', XY' lie on the symmedian lines AK, BK, CK.

Ex. 3. Show that the vertices of the triangle formed by the lines Y'Z,

Z'X, XT lie on the symmedian lines AK, BK, CK.

Ex. 4. If through any point A' on the symmedian AK, lines be drawn

parallel to the sides AB, AC, meeting the symmedians BK, CK in the points

B', C; show that B'C will be parallel to BC, and that the sides of the

triangle A'B'C will meet the sides of the triangle ABC in six points which lie

on a Tucker circle.

Ex. 5. If through any point A" on the symmedian AK, lines be drawn

antiparallel to the sides AB, AC, meeting the symmedians BK, CK in the

points B", C" ; show that B"C" will be antiparallel to BC, and that the sides

of the triangle A"B"C" will meet the non-corresponding sides of the triangle

ABC in six points which lie on a Tucker circle.

Ex. 6. From the vertices of the triangle ABC, perpendiculars AD, BE,
CF are drawn to the opposite sides ; and EX, FX' are drawn perpendicular

to BC ; FY, BY' perpendicular to CA ; and DZ, EZ' perpendicular to AB.
Show that the six points X, X', Y, Y', Z, Z' are concyclic.

It is easy to show that Y'Z passes through the middle points of the sides

BE, BF of the triangle BEF. These points obviously lie on the symmedians

BK, CK. Hence, by Ex. 5, the points X, X', Y, Y', Z, Z' lie on a Tucker

circle.

This particular Tucker circle is usually called Taylor's circle. It was first

mentioned in a paper by Mr H. M. Taylor {Proceedings of the London Mathe- \

matical Society, Vol. xv.).

Ex. 7. Show that the centre of Taylor's circle is the in-centre of the

triangle formed by the middle points of the triangle BEF.

The Brocard circle.

134. The circle whose diameter is the line joining the circum-

centre of a triangle to the symmedian point is called the Brocard

circle of the triangle.

Let S be the circumcentre, and K the symmedian point of the

triangle ABC. Draw SX, SY, SZ perpendicular to the sides BC,
CA,AB, and let them meet the circle described on SK as diameter

in the points A', B', C.

The triangle A'B'C is called BrocaroVs first triangle.
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Let BA', GB' meet in ft. We shall find that ft is one of the

Brocard points (§116) and lies on the Brocard circle.

The perpendiculars from K on the sides of the triangle ABC
are proportional to those sides (§ 114, Ex. 7); that is

A'X: B'Y=BC: CA.

Therefore, since the angles BXA', CYB' are right angles, the

triangles BXA', CYB' are similar. Therefore the angle BAX is

equal to the angle CB'Y, that is the angle CIB'S. Therefore the

point ft lies on the circle circumscribing the triangle A'SB.

Similarly we can show that BA' meets AC on the Brocard

circle, that is in the point ft.

Thus the lines AC, BA', GB' are concurrent. And since the

triangles XBA', YGB', ZAC are similar, the angles ClAB, SIBC,

ftCJ. are equal. Hence ft is one of the Brocard points (§ 116).

Similarly we may show that A B', BC, CA' intersect on the

Brocard circle in the other Brocard point.

Hence if ft and ft' be the Brocard points, defined as in § 116,

and if ACl, 2?ft, Cft cut Bfl', Cft', AD,' respectively in the points

C, A', B', the Jive points ft, ft', A', B', C lie on a circle whose

diameter is SK.
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If AK, BK, GK meet the Brocard circle in the points A", B"
'

,

G", the triangle A"B"C" is called Brocard's second triangle.

Let the symmedian lines AK, BK, GK be produced to meet

the circumcircle of the triangle ABG in the points P, Q, R. Then
\

since SA" is perpendicular to AK, it follo.ws that A" is the middle

point of AP.

135. Ex. 1. Show that Brocard's first triangle is similar to the triangle

ABC.

Ex. 2. Show that if KA', KB', KC meet the sides of the triangle ABC in

the points Xu X2 ; Y
t , Y2 ; Zx , Z2 ; the sides of the triangle Z

l
X1
Y

l
are

parallel to AQ, BQ, Cq. ; and the sides of the triangle Y2Z2X2
are parallel to

AQ', BQ', Cq\

Ex. 3. Show that the lines AA', BB', CC are concurrent.

Since the Lemoine circle which passes through XXi X2 , Tlt Y2 , Zlf Z.,, is

concentric with the Brocard circle, it follows that A' and K are isotomic

conjugates with respect to Y
x
and Z

2
. Hence it follows that AA', BB', CC

will meet in the point which is the isotomic conjugate ofK with respect to

the triangle ABC.

Ex. 4. Show that Q and K are the Brocard points of the triangle ZXXX
Yt ;

and that Q' and K are the Brocard points of the triangle Y2
Z.

1X2 .
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Ex. 5. Show that

X
X
X2 : XjY

x
= sin (A - ») : sin a>.

Ex. 6. Show that the line QQ' is perpendicular to SK.

Ex. 7. Show that the perpendiculars from the vertices of the triangle

ABC on the corresponding sides of Brocard's first triangle are concurrent, and

that their point of concurrence lies on the circumcircle of ABC.

The point in which these perpendiculars meet is called Tarry's point.

Ex. 8. Show that the Simson-line corresponding to Tarry's point i.s

perpendicular to SK.

Ex. 9. Show that the lines drawn through the vertices of a triangle ABC
parallel to the corresponding sides of the Brocard's first triangle intersect in a

point on the circumcircle of ABC.

Ex. 10. Show that the point of concurrence in the last case is the opposite

extremity of the diameter of the circumcircle which passes through Tarry's

point.

Ex. 11. If the symmedian lines of the triangle ABC cut the circumcircle

in the points P, Q, R, show that the triangles ABC, PQR have the same

symmedian point, and the same Brocard circle.

Ex. 12. If A'B'C be the first Brocard triangle, and K the symmedian

point, of the triangle ABC, show that the areas (A'BC), (AC'C), (ABB), are

each equal to the area (KBC).

Ex 13. Show that the median point of the triangle A'BC coincides with

the median point of the triangle ABC.

If G' denote the median point of the triangle A'EC, we have (§ 36, Ex. 4),

3 (G'BC) = (A'BC)+(BBC)+ (CBC).

Therefore by the theorem of Ex. 12,

3 (G'BC)- (KBC) + (A BK)+(A KC)

= (ABC).

Therefore G' coincides with the median point of the triangle ABC.

L



CHAPTER VII.

RECTILINEAR FIGURES.

Definitions.

136. In Euclid, a plane rectilinear figure is defined to be a

figure bounded by straight lines ; that is to say, a rectilinear figure

is regarded as an area. Such a figure has as many sides as vertices.

But in modern geometry, figures are regarded as 'systems of points'

or as ' systems of straight lines.' In the present chapter we pro-

pose to consider the properties of figures consisting of finite groups

of points, or of finite groups of lines. And such figures we shall

call rectilinear figures.

The simplest rectilinear figure is that defined by three points,

or by three straight lines. It is easy to see that three points may
be connected by three lines, so that to have given a'system of three

points is equivalent to having given a system of three lines. We
may therefore use the name triangle for either figure without

ambiguity. Now let us consider the case of a figure consisting

of four points. Four points may evidently be connected by six

straight lines. And similarly, in the case of a figure consisting of

four lines, we shall have six points of intersection. It is obvious

that although four lines may be considered as a special case of a

figure consisting of six points, six points will in general be con-

nected by fifteen straight lines.

It is evident from these considerations that it will be convenient

to use names for rectilinear figures which will distinguish figures

consisting of points from figures consisting of straight lines. Thus,

a system of four points is often called a quadrangle, and a system
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of four lines a quadrilateral. The latter name however is objec-

tionable from the fact that it is commonly used to mean an area,

and to avoid confusion it is customary to speak of a complete

quadrilateral when the geometrical figure consisting of four lines

is meant. But instead of these names it is preferable to use the

terms tetrastigm and tetragram for the two kinds of figures, as

these names are more concise. For figures consisting of any
number of points we shall use the name polystigm ; and for

figures consisting of any number of straight lines, the name
polygram.

137. In the case of a polystigm, the primary points are called

vertices; and the lines joining them are called connectors. The
connectors of a polystigm will in general intersect in certain points

other than the vertices. Such points are called centres.

If a polystigm consist of n points, a set of n connectors may be

selected in several ways so that two and not more than two pass

through each of the n vertices : such a set of connectors will be

called a complete set of connectors. For instance in the case of a

tetrastigm, if A, B, C, D be the vertices, we shall have three

complete sets of connectors, viz. AB, BC, CD, DA ; AB, BD, DC,

CA; and AC, CB, BD, DA.

In the case of a tetrastigm, it is often convenient to use the

word opposite. Thus, in the tetrastigm ABCD the connector CD
is said to be opposite to the connector AB ; and AB, CD are called

a pair of opposite connectors. It is evident that the six connectors

of a tetrastigm consist of three pairs of opposite connectors.

In the case of a polystigm, consisting of more than four vertices,

the word opposite as applied to a pair of connectors can only be

used in reference to a complete set of connectors, and then only

when the number of vertices is even. If the vertices of the

polystigm be A lt A 2 , A 3 ,
... Am , the pair of connectors A x

A it A

-4n+2 may be called opposite connectors of the complete set, A X
A*,

A 2A 3,...ArA r+1} ... AnA r
. In the case of the tetrastigm ABCD, it

is obvious that AB and CD are opposite connectors in each of the

two complete sets in which they occur; but in the case of the

hexastigm ABCDEF, AB will occur as a member of twenty-four

complete sets of connectors, and in only four of these sets is AB
opposite to DE.

6—2
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Again, in the case of a polystigm of 2?i points, it is sometimes

necessary to consider a group of n connectors which are such that

one, and only one, passes through each of the vertices. Such a

group of connectors may be called a set of connectors. If two sets

of connectors together make up a complete set of connectors, the

two sets may be called complementary sets. It is obvious that any

particular set will have several complementary sets. For instance

in the case of a hexastigm ABCDEF, the set of connectors AB,

CD, EF will be complementary to eight sets.

Ex. 1. Show that a polystigm of n points has ^n(n-l) connectors, and

£-n (n - 1) (n - 2) (n- 3) centres.

Ex. 2. Show that a complete set of connectors of a polystigm of n points

may be selected in \ (n - 1) ! ways.

Ex. 3. Show that a set of connectors of a polystigm of 2?i points may be

selected in 1.3. 5...(2n. - 1) ways.

Ex 4 Show that any set of connectors of a polystigm of 2» points has

2* (n - 1) ! complementary sets.

138. In the case of a polygram, the points of intersection of

the primary lines are called vertices of the figure. The vertices

may be connected by certain lines other than those which deter-

mine the figure. These lines are called diagonals.

A group of vertices of a polygram which are such that two and

not more than two lie on each of the lines of the figure, is called a
/

complete set of vertices. And when the polygram consists of an

even number of lines, the word opposite may be applied to a pair of

vertices in the same way as in the case of a pair of connectors of a

polystigm. Thus a tetragram will have three pairs of opposite

vertices.

In the case of a polygram of 2» lines, a group of n vertices

such that one, and only one, vertex lies on each line of the figure,

is called a set of vertices. And any two sets which together make
up a complete set may be called complementary sets.

Ex. 1. A polygram of n lines has \n(ii- 1) vertices, and

\n (n - 1) (n - 2) (n - 3) diagonals.

Ex. 2. Show that a complete set of vertices of a polygram of n lines

may be selected in £ (n— 1) ! ways.

Ex. 3. Show that a set of vertices of a polygram of 2» lines may be

selected in 1.3. 5...(2» - 1) ways.
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Properties of a Tetrastigm.

139. A system of four points, no three of which are collinear,

is called a tetrastigm. If these points are joined we have six con-

nectors, or rather three pairs of opposite connectors. Each pair of

opposite connectors intersect in a centre, so that there are three

centres.

B F

Let A, B, C, D be any four points, and let the connectors AG,

BD meet in E, the connectors AB, CD in F, and the connectors

AD, BC in G. Then E, F, are the centres of the tetrastigm

ABCD.

The triangle EFG is called the central triangle of the tetra-

stigm.

140. Ex. 1. If X, X be the middle points of AC, BD ; Y, Y' the middle

points of AB, CD ; and Z, Z' the middle points of AD, BC; show that the

lines XX', YY', ZZ' are concurrent, and bisect each other.

Ex. 2. If ABCD be a tetrastigm, and if AB cut CD in F, and AD cut BC
in G, show that

FA.FC.FB. FD=GA .GC'.GB. GD.

This result follows at once by considering GCB as a transversal of the

triangle FAD, and GDA as a transversal of the triangle FBC.

Ex. 3. If J, B, C, D be any four points in a plane, show that

AC2
. BD2= AB*. CD*+AD*.BC*-2AB. BC. CD. DA cos o>,

where « is the difference of the angles BAD, BCD.

Ex. 4. If any straight line cut the connectors AB, BC, CD, DA in the

points X, Y, X', Y' respectively, show that

AX BY C2T DY'
XB ' YC ' X'D " Y'A '

Ex: 5. Show that the bisectors of the angles of a triangle are the six

connectors of a tetrastigm.
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141. Any pair of opposite connectors of a tetrastigm are

harmonically conjugate with respect to the sides of the central

triangle which meet at their point of intersection.

G

A F' B F

Let ABCD be the tetrastigm, EFG its central triangle; and

let GE meet AB in F'.

Since A C, BD, GE are concurrent, we have (§ 94)

AF' BG GD = ,

F'B'GG'DA~
*

Also since FGD is a transversal of the triangle GAB (§ 104),

AF BG GD
BF'GG'AD~

Therefore AF' : F'B = AF:BF;

that is, {FF'
t
AB] is a harmonic range.

Therefore G {EF, AB] is a harmonic pencil, and AD, BC are

harmonic conjugate rays with respect to GE, GF.

The theorem may also be stated thus : The line joining any two

vertices of a tetrastigm is divided harmonically in the centre through

which it passes, and in the point of intersection with the line joining

the other two centres.

If we suppose the line FG to be at infinity, then the four points A, B, C, D
are the vertices of a parallelogram ; and since E is the harmonic conjugate

of the point in which AC intersects FG, with respect to the points A, C,

it follows that E is the middle point of AC. Thus the theorem of this article

is a generalisation of the theorem :

—

The diagonals of a parallelogram bisect each other.
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142. Ex. 1. If .42?, CD meet in F, and if through F a line be drawn
cutting AC, BD in P and P, AD, BC in Q and (/, and EG in /", .show that

{FF\ PQ, PQ?} will be a range in involution.

Ex. 2. The centres of the tetrastigm ABCD are E, F, G ; FG meet« AC
in X and BD in 2T' ; GE meets 45 in Y and CZ) in 7' ; and EF meets 4 D
in Z and Z?C in Z'. Show that FZ' and ZY' pass through A', and YZ, V /.

through X'.

Ex. 3. In the same figure show that

AY BZ' CY' DZ
YBZ'C Y'D' ZA '

Ex. 4. If ABCD be any tetrastigm, and if from any point in AC two
straight lines be drawn, one meeting AB, BC in X and Y respectively, and
the other meeting CD, AD in X' and V respectively ; show that

AX BY CJT DY'
XB' YC X'D' Y'A

Ex. 5. If four points X, Y, X', Y' be taken on the connectors AB, BC,

CD, DA respectively of a tetrastigm, such that

AX BY CX^ DY'
XB' YC X'D' Y'A '

show that XY, X'Y' will intersect on AC, and that XY', X'Y will intersect

on BD.

Ex. 6. The connectors AB, CD of the tetrastigm ABCD meet in F, and

the connectors AD, BC meet in G. Through F a straight line is drawn

meeting AD and BC in Y and Y', and through G a line is drawn meeting AB
and CD in X and X'. Show that XY, X'Y', and BD are concurrent ; and

that XY', X'Y, and A Care concurrent.

Ex. 7. The mid-points of the perpendiculars drawn from A, B, C to the

opposite sides of the triangle ABC are P, Q, R ; and D, E, F are the mid-

points of BC, CA,AB.

If the sides of the triangle PQR intersect the corresponding sides of the

triangle DEF in the points L, M, N, show that the pencils A {BC, PL},

B{CA, QM}, C{AB, BX}, are harmonic, and that the points L, M, X are

collinear. [Sarah Marks, E. T. Reprint, Vol. xlviii., p. 121.]

143. Let ABCD be any tetrastigm, and let any straight line l>e drawn,

cutting AC, BD in JT and X', AB, CD in Y and Y', and AD, BC in Zand Z

.

Let x, of, y, ... be the harmonic conjugate points of X, X', Y, ... with

respect to the point-pairs A, C ; B, D ; A, B ; ... respectively.

Then by § 60, since {AB, Yy) and {AD, Zz) are harmonic ranges, it follows

that yz, BD, YZ are concurrent ; that is, yz passes through X'.

Similarly, we may show that y'zf passes through X', and that >/-

intersect in the point X.
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Hence, X and X' are two of the centres of the tetrastigm yy'zz' ; and

therefore by § 141, the segment yy' is divided harmonically by zd and XX',

and likewise the segment zz' is divided harmonically by yy' and XX'.

Similarly we can show that Y, Y' are two centres of the tetrastigm xafzz
1

.

Therefore, if xx1
, zz

1

intersect in 0, each of the segments xx1

, zz
1

is divided

harmonically in the point 0, and in the point where it cuts YY'.

It follows that the lines xx1

,
yy', zz

1

are concurrent, and that if be the

point in which they intersect, each segment such as xx' is divided harmonically

in the point and the point where it cuts the line XX'.

Ex. Deduce the theorem given in § 140, Ex. 1, by considering the line

XX' to be the line at infinity.

144. Any straight line is cut in involution by the three pairs of

opposite connectors of any tetrastigm.
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Let ABCD be any tetrastigm, and let any straight line cut the
connectors BD, AC in P, F; the connectors CD, AB in Q, Q'- and
the connectors BC, AD in R, R. Then the range {PF, QQ', lilt]

will be in involution.

Since the line BD cuts the sides of the triangle AQR in the

points P, D, B, we have by § 104,

AB QT RD
Q'B'R'P- AD~ '

., , • Q'P Q'B AD
thatls

TTP = TBRD'
Similarly, since DC cuts the sides of the triangle ARF in the

points Q, C, D, we have

RQ = RD AC
P'Q ADP'C

And since BC cuts the sides of the triangle AP'Q in the points

R, B, C, we have
P^RFC AB
Q'R~ AC'Q'B'

Hence
QT RQ FR
RPFQQ'R- 1

'

that is PQ'. QR.RF+ P'Q . Q'R . RP = 0.

Therefore by § 75, the range {PF, QQ', RR] is in involution.

145. Ex. 1. The straight lines drawn through any point parallel to the

pairs of opposite connectors of & tetrastigm form a pencil in involution.

This follows by considering the range formed by the intersection of the six

connectors with the line at infinity.

Ex. 2. If E, F, G be the centres of the tetrastigm ABCD, and any

point, the rays conjugate to EO, FO, GO with respect to the pairs of

connectors which intersect in E, F, G respectively, are concurrent.

Ex. 3. If 0' be the point of concurrence in the last case, show that and

C are the double points of the range in involution formed by the points of

intersection of 00' with the connectors of the tetrastigm.

Ex. 4. If a straight line be drawn through one of the centres of a

tetrastigm, show that the locus of the centre of the range in involution

determined by the connectors of the tetrastigm, will be a straight line.

Ex. 5. Given any point, find a straight line passing through it, so that

the given point shall be a double point of the range in involution in which it

is cut by the connectors of a given tetrastigm.
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Ex. 6. Any point is taken on a transversal XYZ of a given triangle

ABC. If P be the harmonic conjugate point with respect to B and C, of the

point in which OA cuts BC, show that OC will intersect PY, and that OB
will intersect PZ in points which lie on a fixed straight line passing

through A.

If points Q, R be taken on CA, AB respectively, such that the pencils

{CA, BO) , and {AB, CR) are harmonic, show that the corresponding lines

passing through B and C will intersect on the straight line which passes

through A.

146. The theorem of § 144 suggests a simple construction for determining

the corresponding point P1

of the point P in a range in involution, when two

conjugate couples A, A' ; and B, B' ; are known.

Let any straight line PQR be drawn through P, and let Q, R be any two

points on it. Let AQ meet B'R in S, and let BQ meet A'R in T ; then TS
will meet AB in P'.

For in the tetrastigm QRST, the three pairs of opposite connectors are

AQS, A'RT; BQT, B'RS; and PQR, P'ST. Therefore by § 144, the range

{A A', BE, PP1

} is in involution.

Ex. If {A A', BE, CC'} be any range in involution show how to determine

three points P, Q, R such that each of the ranges {AA\ QR}, {BE, RP), {CC,

PQ\ shall be harmonic.

Properties of a Tetragram.

147. A system of four lines, no three of which are concurrent,

is called a tetragram. These four lines intersect in six points, so

that we have three pairs of opposite vertices. The lines connecting

each pair of opposite vertices are the diagonals, so that there are

three diagonals. The triangle formed by the diagonals is called

the diagonal triangle.
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Sometimes it is convenient to denote the lines forming a
tetragram by single letters, and the vertices by double letters : and
sometimes it is more convenient to use letters to denote the
vertices. Thus if a, b, c, d be the four lines forming the tetragram,

the points ac, bd are a pair of opposite vertices, and the line joining

them, denoted by e in the figure, is a diagonal. If A, A'; B, B;
G, C; be the three pairs of opposite vertices, the lines of the

tetragram are ABC, ABC, A'BC, and A'BG.

148. Ex. 1. If A, A'; B, B ; C, C be the pairs of opposite vertices of a

tetragram, show that

AC. AC : AB. AB'= A'C. A'C : A'B.A'B.

y Ex. 2. Show that the circumcircles of the four triangles ABC, ACB,
A'BC, A'BC meet in a point.

Let the circumcircles of ABC, ABC meet in the point 0, and then by

§ 120, it follows that the feet of the perpendiculars from on the four tinea

constituting the tetragram are collinear. Hence the circumcircles of the

triangles A'BC, A'BC must also pass through the point 0.

Ex. 3. Show also that the orthocentres of the four triangles are collinear.

They lie on a line which is parallel to the line which passes through the

feet of the perpendiculars drawn from 0.
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Ex. 4. Prove that, if, for each of the four triangles formed by four lines,

a line be drawn bisecting perpendicularly the distance between the circum-

centre and the orthocentre, the four bisecting lines will be concurrent.

[Hervey, E. T. Reprint, Vol. liv.]

Ex. 5. In every tetrastigm, the three pairs of opposite connectors inter-

sect the opposite sides of the central triangle in six points which lie three by

three on four straight lines, thus determining the three pairs of opposite

vertices of a tetragram.

See § 142, Ex. 2.

Ex. 6. If abed be any tetragram, and if the line joining the points ab, cd

intersect the line joining the points ad, be in the point ; show that the lines

drawn through parallel to the lines a, b, c, d will meet the lines c, d, a, b

respectively in four collinear points. [Trin. Coll., 1890.]

149. The points in which any diagonal of a tetragram cuts the

other two diagonals are harmonic conjugate points with respect to the

pair of opposite vertices which it connects.

Let A, A'; B,B'\ C, G'\ be the three pairs of opposite vertices

of the tetragram. Then evidently A and A' are a pair of centres

of the tetrastigm BC, B'C. Hence, by § 141, it follows that BB',

and CC, cut AA' in two points which are harmonic conjugates

with respect to A and A'.

If the lines of the tetragram be denoted by a, b, c, d, and the

diagonals by e, f g, we see (fig. § 147) that each of the ranges

e {ad, gf},f {etc, ge], g {ab,fe) is harmonic.
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150. Ex. 1. Prove the theorem of § 149 directly by means of §§ 98, 1<)6.

Ex. 2. If BB', CC intersect in E, and if be any point on A A', show that

{AE, BC, B'C'} is a pencil in involution.

Ex. 3. Show that the three pairs of opposite vertices of a tetragram

connect with the opposite vertices of the diagonal triangle, by six lines which

pass three by three through four points, thus determining the three pairs of

opposite connectors of a tetrastigm.

Ex. 4. If abed be any tetragram, and if the diagonal which connects the

points ab, cd, meet the diagonal which connects the points ad, be, in the point

L ; show that the lines which join L to the points in which any transversal

cuts the lines a, b, c, d, will cut the lines c, d, a, b respectively in four collinear

points.

Ex. 5. The points A, A' ; B, B ; C, C ; are the opposite vertices of a

tetragram. From any point P in AA', the lines PB, PB1

are drawn to meet

B'C and BC in H and K respectively. Show that HC and KC intersect on

the line AA'.

151. The middle points of the diagonals of a tetragram are

collinear.

If A, A'; B, B'; C, 0'\ be the pairs of opposite vertices of a

tetragram, then the middle points of AA' , BB', CC are collinear.

(See § 38, Ex. 2.)

Let L, M, N be the vertices of the diagonal triangle ;
and

X, Y, Z the middle points of AA', BB', CC.
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Since {MN, A A'} is a harmonic range, and X the middle point

of AA', we have by § 54, Ex. 3,

MX : NX = AM': AN*.

Similarly we shall have

NY: LY=BN°- : BL\

LZ: MZ=CL* :CM*.

But since ABC is a transversal of the triangle LMN, we have by

§104,
BL CM AN_
CL'AM'BN~
MX NY LZ

Hence NXLY'MZ'
Therefore by § 105, X, Y, Z are collinear.

152. Ex. 1. The orthocentres of the four triangles formed by four straight

lines lie on a straight line which is perpendicular to the line which bisects the

diagonals of the tetragram formed by the given straight lines.

Ex. 2. If five tetragrams be formed by excluding in succession each of

five given lines, show that the five lines which bisect the diagonals of these

tetragrams respectively, are concurrent.

Ex. 3. If Q, Q' be the Brocard points of the triangle ABC, and if A'B'C

be Brocard's first triangle, show that the lines joining the middle points of

corresponding sides of the two triangles intersect in the point which bisects

QQ'.

Ex. 4. Show that the middle points of any pair of opposite sides of a

tetrastigm are collinear with the middle point of one of the sides of the

triangle formed by the centres of the tetrastigm.

153. The theorem of § 151 may be thus generalised :

—

If any straight line

cut the diagonals AA', BB', CC of a tetragram in the points X, Y, Z; and if

X', Y', Z' be the harmonic conjugate points icith respect to the corresponding

pairs of opposite vertices, the points X', Y\ Z' will be collinear.

Let L, M, X be the vertices of the diagonal triangle ; then by § 149, the

range {A A', MX} is harmonic.

Since the range {AA', XX'} is harmonic, and also the range {AA', MX},

we have by § 56, Ex. 4,

MX . MX1
: NX . A X ' = MA* : NA\

In the same way we may show that

NT. NT' : LY.LY'=XB2
: LB2

;

and LZ . LZ' : MZ. MZ=LC* : MC\
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But since ABC is a transversal of the triangle LMX, we have by § 104

MA XB LC
XA ' LB ' MC

MX . NY . LZ MX' . XV . LZ'

.= 1.

XX.LY.MZXX". LY'.MZ,= !•

yz y x

Therefore by § 105, since the points X, Y, Z are collinear, so also are

the points X\ Y\ Z'.

If we take the line at infinity instead of the line XYZ, the points X', Y,
1 Z' become respectively the middle points of AA', BB\ CC and thus we have

the theorem of § 151.

154. The lines connecting any point with the vertices of a tetra-

gramform a pencil in involution.
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Let A, A'; B, B'; G, G'; be the pairs of opposite vertices of a

tetragram, and let be any point. Then the pencil

[AA\ BB', CC'}

will be in involution.

Since A'B'C is a transversal of the triangle ABG, we have

BA' CB' AG'
'

CA''AF'BC'~

Hence as in § 109, Ex. 2,

sin504' sin GOB' sinAOC
sin GOA' ' sin A OB' ' sin BOG'

~

Therefore by § 91, the pencil [A A', BB', GG'\ is in involution.

155. Ex. 1. Show that if through any point 0, lines OA', OB', OC be

drawn parallel to the sides of a triangle ABC, the pencil 0{AA', BB', CC} will

be in involution.

This is proved by considering the tetragram formed by the three sides of

a triangle and the line at infinity.

Ex. 2. Deduce the theorem of § 153, from the theorem of the last article.

Ex. 3. If in § 153 the line XYZ meet the line X'Y'Z' in the point 0,

show that these lines will be the double lines of the pencil in involution

0{AA',BB',CC'}.

Ex. 4. Show that the circles described on the diagonals AA', BB', CC, of

a tetragram, as diameters, have two common points.

Let the circle described on BB' cut the circle described on CC in P and P.
Then BPB, CPC are right angles. Therefore since P {AA', BB', CC} is a

pencil in involution, APA' is a right angle by § 87.

Ex. 5. If A, A' ; B, B' ; C, C ; be the opposite vertices of a tetragram,

and X, Y, Zthe middle points of AA', BB', CC ; show that

YZ. AA'2+ZX. BB'z+XY. CC2= -1YZ. ZX. XY.

[Jesus Coll. 1890.]

Ex. 6. Apply the theorem in § 154 to obtain a construction for finding a

ray which shall be the conjugate of a given ray in a pencil in involution.

Ex. 7. Through a fixed point any straight line is drawn intersecting the

sides of a triangle ABC in the points X, Y, Z. If X' be the harmonic conju-

gate of the point X with respect to B, C, show that the line joining J" to the

point of intersection of OC and AX', and the line joining Z to the point of

intersection of OB and AX', will pass through the same fixed point on BC.

If Y', Z' be the harmonic conjugate points of Y and Z with respect to C, A
and A, B respectively ; if P be the point in which the line joining Y to the

point of intersection of OC and AX' cuts BC
; Q the point in which the line
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joining Z to the point of intersection of OA and BY' cuts CA ; and It the

point in which the line joining X to the point of intersection of OB and t'Z
;

show that P, Q, R are collinear.

The line PQR is the polar of the point with respect to the triangle ABC.

(§ Ul.)

Special cases of polystigms and polygrams.

156. The properties of figures consisting of more than four

points or straight lines have not been systematically investigate! 1.

Consequently we shall merely discuss the few special cases of

interest which have been discovered. The most important of

these is the case of the hexastigm in which three of the points

lie on one straight line, and the remaining three on another

straight line ; and the correlative case of the hexagram which

consists of two pencils of three rays.

157. If {ABC} {A'B'C'} be any two ranges, the straight lines

AB', BC, CA' intersect the three lines A'B, B'C, CA respectively

in three points which are collinear.

A B C

Let BC, B'C intersect in X, CA', CA in Y, and AR, A'B in

Z, and let AB', BC, CA' form the triangle PQR.

Then since XCR, CYA, BA'Z are transversals of the triangle

PQR, we have by § 104,

QX RC PJ?_
1

RX'Pd'QR '

RY PA QC_
PY'QA'RC '

PZ QB RA'_
and QZ'RB'PA'
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But since BCA, G'A'B' are also transversals of the triangle PQR,
we have by 5 104,

QB RG PA
RB'PG'QA~ '

QC RA' PB
and RC"PA"QB~
„ QX RY PZ _

Hence, we have „y • py ' QZ
=

Therefore by § 105, the points X, Y, Z are collinear.

158. In the same way we may show that the lines AC, BR,

CA' intersect the lines A'B, C'C, B A respectively in three collinear

points. In fact, Ave may interchange the order of the letters

A'B'C in every possible way. Thus we shall have six sets of

collinear points. If we use the notation
[ R .,J

to represent the

point of intersection of the lines A B', BA', we may exhibit these

six sets of collinear points in the tabular form :

(AB\ (BC'\ iCA'^

[a'BJ' \B'C)' \C'A,

(AC\ (BA'\ fCB'\
\B'b)' [C'CJ' \a'a) ;

(AA'\ (BB'\ (GC'\

\cb)' Ka'c)
1 \b,a) ;

(AC\ (BB'\ tCA'\

[a'b)' [cv)' [b'AJ'

(AA'\ rBC'\ fCB'
\rb)' [a'C)' [ca

fAB'\
(

BA'\ (CC'\

[cb)' \b'c)' [a'aj-

Each of these triads of points are collinear.

Thus we have the theorem : The nine lines which connect ttvo

triads of collinear points intersect in eighteen other points which

lie in threes on six straight lines.

It should be noticed that each of the collinear triads of points

are the points of intersection of the three pairs of opposite

connectors in a complete set of connectors of the hexastigm

ABCA'BC. Hence the theorem may be stated in the form: The
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three pairs of opposite connectors, in each of the six complete sets of
a hexastigm consisting of two triads of collinear points, intersect in

three collinear points.

159. Ex. 1. Show that the nine points in which any pencil of three ran
intersects any other pencil of three rays may be connected by eighteen lines
which pass three by three through six points.

If a, b, c denote the rays of one pencil, and a', b', d the rays of the other
pencil, we may show by a very similar method to that used in §§ 157, 158,
that the following triads of lines are concurrent

:

(ab'\ (bt'\ (ca'\

\a'b)> \b'c)> \c'a)
;

fac'\ fba'\ fcb'\

\b'b) 3

\c'c)' \a'a)'

(aa!\ (bb'\ (cc'\

\c'b) ' \a'c) ' \b'a)
'

(ad\ (bb'\ fca'\

[a'bj* \<?c)' \b'a)''

faa'\ fbc'Y fcb'\

\b'b)> Kate)' \c'a)''

(ab'\ /ba'\
f
cc'\

\c'b)' \b'c)' \a'a)'

Ex. 2. If in a hexagon two pairs of opposite sides intersect on the corre-

sponding diagonals, then the remaining pair of opposite sides will intersect on

the diagonal corresponding to this pair. [Math. Tripos, 1890.]

Ex. 3. The six points A, B, C, A', B', C are such that the lines .1.1', BB",

CC meet in the point 0. Show that they may be connected by ten other

lines which intersect in six points which are the vertices of a tetragr.un.

Ex. 4. The six lines a, b, c, a', b', c' are such that the points aa\ bb\ cc' arc

collinear. Show that they intersect in ten other points which lie on six lines

which are the connectors of a tetrastigm.

Ex. 5. If A, B, C, A', B\ C be any six points such that the line* .1 B, IU ".

CA' are concurrent, and also the lines AC',BA', CB", show that the lines .LI',

BB', CC are concurrent.

This theorem, which is contained in Ex. 1, affords a proof of § 135, Ex. 3.

Ex. 6. A pair of opposite vertices of a tetragram are given, and of the four

remaining vertices, three lie on three given straight lines. Show that the

sixth vertex lies on one or other of six straight lines.

7—2



CHAPTER VIII.

THE THEORY OF PERSPECTIVE.

Triangles in perspective.

160. Two triangles are said to be in perspective when the lines

connecting the vertices of one triangle to the corresponding vertices

of the other triangle are concurrent.

If ABC, A'B'C be two triangles in perspective, such that the

lines AA', BB', CC meet in the point 0, the vertices A and A' are

called corresponding vertices, and the sides BC, B'C are called

corresponding sides. The point is called the centre of perspective

of the two triangles.

161. When two triangles are in perspective, the corresponding

sides intersect in three collinear points.
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Let ABC, A'B'C' be two triangles in perspective, so that AA
,

BB', CG' intersect in the point 0.

Let BG and B'C intersect in X ; CA, C'A' in F; and AB,
A'F in Z. Then X, Y, Z will be collinear.

Since BG'X is a transversal of the triangle CBO, we have by

§104,
BX CCT OB' _
GX'UG" BB'~

Similarly, since A'G'Y is a transversal of the triangle CAO,

GY AA' OG' _
AY' 0A"GG'~ '

and since A'B'Z is a transversal of the triangle BAO,

AZ BB' OA' _
BZ ' OB' ' AA'

~

„ , BX GY AZ
,Hence we nave, p™ . -j-^.. -7^3 = 1.

Therefore by § 105, the points X, Y, Z are collinear.

162. The line XYZ which passes through the points of inter-

section of the corresponding sides of two triangles in perspective, is

called the axis of perspective.

Triangles in perspective are sometimes called homologous

triangles, the centre of perspective being called the centre of

homology, and the axis of perspective the axis of homology.

Triangles in perspective are also said to be copolar, the cenm-

of perspective being called the pole.

163. If corresponding sides of two triangles intersect in col-

linear points, the triangles are in perspective.

Let YCG', ZBB' be any two such triangles ; and let CC', YC,

YC meet BB' , ZB, ZR in the points 0, A, A' respectively

fig. § 161).

Then it may be proved, as in § 161, that BG, RC intersect

YZ in the same point X.

Therefore the triangles YCC', ZBB' are in perspective, the point

X being their centre of perspective.
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164. The theorem in § 161 may also be proved as follows : Let ABC,
A'B'C be any two triangles in the same plane so situated that A A', BB', CC
meet in the point 0. Let 0' be any point on the normal to the plane at 0,

and let the normals at A', B', C meet O'A, O'B, O'C in the points A", B", C"
respectively.

The two planes ABC, A"B"C" will intersect in a line (L say).

Also the lines BC, B"C" being in the same plane O'^Cwill meet in a point,

which being common to each of the planes ABC, A"B"C", must lie in the line

of intersection of these planes; that is, BC and B"C will intersect on the

line L.

But B'C is evidently the orthogonal projection of B"C", and therefore will

intersect B"C" in the point in which the latter cuts the plane ABC. Conse-

quently B'C will intersect BC in a point on the line L.

Similarly CA, AB will intersect C'A', A'B' respectively in points which lie

on L.

Hence the corresponding sides of the triangles ABC, A'B'C intersect in

collinear points.

165. Ex. 1. If the symmedian lines AK, BK, CK meet the circumcircle

of the triangle ABC in the points A', B', C, show that the tangents to the

circle at A', B', C will form a triangle in perspective with the triangle ABC.

Ex. 2. If the lines joining the vertices of two triangles, which have a

common median point, be parallel, their axis of perspective passes through

the median point.

Ex. 3. Show that if A'B'C be the first Brocard triangle of the triangle

ABC, then ABC is in perspective with the triangles A'B'C, B'CA' and CA'B'.

See § 135, Ex. 3.

Ex. 4. Show that the triangle formed by the middle points of the sides of

Brocard's first triangle is in perspective with the original triangle.

Ex. 5. If the triangle ABC be in perspective with the triangle B'CA', and

also with the triangle CA'B', show that it is in perspective with the triangle

A'B'C. See § 159, Ex. 5.

Ex. 6. Two triangles having the same median point G, are in perspective.

If the centre of perspective be on the line at infinity, the axis of perspective

passes through G.

Ex. 7. Two sides of a triangle pass through fixed points, and the three

vertices lie on three fixed straight lines, which are concurrent ; show that the

third side will always pass through a fixed point.

Ex. 8. Two vertices of a triangle move on fixed straight lines, and the

three sides pass through three fixed points, which are collinear ; find the locus

of the third vertex.

Ex. 9. Inscribe a triangle in a given triangle, so that its three sides may
pass through three given points which are collinear.



TRIANGLES IX PERSPECTIVE. 103

166. If ABC, A'BC be two triangles in perspective, and if
BC, B'G intersect in A"; CA', G'A in B"; and AH, A'B in C"

;

the triangle A"B"C" will be in perspective with each of the girm
triangles, and the three triangles will have the same axis of per-
spective.

B

Let XYZ be the axis of perspective of the given triangles

ABC, A'BC.

Since the given triangles are in perspective, AA', BE, CC are

concurrent. Hence the triangles ABC, A'BC are in perspective
;

and therefore the lines B'C, CA, AB' will intersect BC, CA' , A'B

respectively in collinear points (§ 161); that is, the points A', B',

C" are collinear.

Thus B"C" intersects BC in the point X.

Similarly we may show that C"A" intersects CA in Y, and that

A"B" intersects AB in Z.

Therefore the triangle A"B"C" is in perspective with each of

the given triangles, and the three triangles have a common axis of

perspective.

167. Ifabc, a'b'c be any two triangles in perspective, the l<

joining the jioints be, cd', ab' to the points b'c, c'a, a'b respect irely

form a triangle which is in perspective with each of the given
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triangles, and the three triangles have the same centre of per

spective.

o--»----_v.

Let be the centre of perspective of the given triangles, then

the lines joining the points be, ca, ah to the points b'c , c'a, a'b'

intersect in 0.

Let a" denote the line joining the points be, b'c ; b" the line

joining the points ca', c'a; and c" the line joining the points

ah', a'b.

Since the triangles abc, a'b'c are in perspective, the points aa',

bb', cc are collinear. Hence by § 163, the triangles ab'c, abc are

in perspective, and therefore the lines joining the points b'c, c'a, abl

to the points be, ca', a'b are concurrent. That is, the lines b", c",

and the line joining the points be, b'c', are concurrent.

Hence, the points be, b'c', b"c" are collinear, and they lie on a

line which passes through 0.

Similarly, we may show that the points ca, c'a', c"a" are

collinear, and that the points ab, a'b', a'b" are collinear.

Therefore, the triangle a"b"c" is in perspective with each of the

triangles abc, a'b'c ; and the three triangles have a common centre

of perspective.

168. When three triangles are in perspective two by two, and

have the same axis of perspective, their three centres of perspective

are collinear.

Let AiBfi^, A 2B2Cz, A 3B3C3 be three triangles in perspective

two and two, such that the sides B
X
C

X , BJC.2 , B3C3 meet in the point

X, the sides C
XA X , C»A.,, C3A 3 in the point Y, and the sides A X

BX ,

A-iB2 , A 3B3 in the point Z\ X, Y, Z being collinear points.
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Then the triangles B
t
B2B3 , GX

G£3 are in perspective, X being

the centre of perspective. Therefore the lines B.Ba , B3B t , H
x
li.

intersect the lines C2G3 , C3G1} GXG2 respectively in three points

L, M, N, which are collinear.

But these points are the centres of perspective of the given

triangles taken two at a time. Hence, the centres of perspective

of the three triangles are collinear.

169. It is evident that the triangles A
l
A.1A 3y BiB,B3 , CiC^C,

are in perspective two by two, and have the same axis of per-

spective, namely the line of collinearity of the centres of perspective

of the triangles 4,5,(7,, A,B,G.2 , A 3B3C3 .

Thus we have the theorem : When three triangles are in

perspective two by two, and have the same axis of perspective, the

triangles formed by the corresponding vertices of the triangles are

also in perspective two by two and have the same axis of perspective

;

and the axis of perspective of either set of tinangles passes through

the centres ofperspective of the other set.

170. When three triangles are in perspective two by two, and

have the same centre of perspective, their three axes of perspective

are concurrent.

Let 4,5,(7,, A 2B2C,, A 3B3G3 be the three triangles having the

common centre of perspective 0. Let a,, 6,,... denote the sides of

the triangles opposite to the vertices 4,, B1 ,....



106 TRIANGLES IN PERSPECTIVE.

Then it is evident that the triangles 626063, cxx3 are in per-

spective, having the line OA YA.2A 3 as their axis of perspective.

J>, h,/b.

Therefore the lines joining their vertices are concurrent ; that is,

the lines joining the points 6263 , 636^ 6262 respectively to the points

cx3 , c3c1} cx2 are concurrent.

But the line joining the point 6.63 to the point cx3 is the axis of

perspective of the triangles A.2B.2G2 , A 3B3G3 .

Hence, the axes of perspective of the three triangles A^B^Ci,

AJB.2G2 , A 3B3C3 are concurrent.

171. It follows from the above proof, that if the triangles

(hbxx , a.2bx2 , a3bx3 are in perspective and have a common centre of

perspective 0, their three axes of perspective will intersect in a

point 0', which is the common centre of perspective of the triangles

a xaM 3 , bib.2b3 , CiC2c3 whose three axes of perspective meet in 0.

172. These theorems may also be easily proved by the same method

that was used in § 164. Thus let A-^B^C^, A.,B
2C2 , A SB3C3

be any three

coplanar triangles having a common centre of perspective 0. Let O be any

point in the normal to the plane at 0, and let the normals to the plane at

A 2 , B
2 , C2 , A3 , B3 , C3 meet 0V1

2 , 0'B2 , &c. in the points A
2
', B./, &c,

respectively. Then the lines of intersection of the planes A^^, A.
2 B.{C2 ,

A 3'B3
'C3 obviously meet in the point of intersection of the three planes. But the

axes of perspective of the triangles A-^B^C^ A2BiCi , A 3B3C3 are the orthogonal

projections of the lines of intersection of the planes. Consequently, since

they lie in the plane A
1
B

l
C

1 , they must be concurrent.
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173. Ex. 1. If (ABC), (A'B'C) be two ranges on different straight lines,

show that the triangle formed by the lines AA', BB, CC is in perspective

with the triangle formed by the lines BC, CA', AB', and also with the triangle

formed by the lines CB\ AC, BA'.

This theorem follows from §§ 157, 158.

Ex. 2. Show that the three triangles in the last theorem have a common
centre of perspective.

This follows from § 167.

174. We are now in a position to complete the discussion of the properties

of the figure which was discussed in § 157.

We will use the same notation as in that article, namely : let (AB') repre-

sent the line joining the points A and B' ; ( „ \ the point of intersection of

the lines (AB'), (BC).

In § 158 we showed that the eighteen points (
J

, (*,,/>)> &c - uc on

six lines ; that is to say, each of the following triads are collinear :

(AB'\ (BC\ (CA'\

\A'BJ ' \B'C) ' \CAJ
''

(AC\ (BA'\ (CB"
\BB)> \C'CJ' U'A,

AA'\ (BB'\ (CC"
,C'BJ' \A'C)> \B'A,

AC\ (BB'\ (CA 1

A'B)' \Cc)' \B'A

(AA'\ (BC\ (CB
\B'BJ ' \A'CJ ' \CA

AB'\ (BA'\ (CC
CBJ' \B'C) , \A'A

Let us represent the line joining the points

(AB\ (BC\ (CA'\

U'-s/' \ffcj' \ca)

, , • /ABC\
by the expression (

A ,Ko, ) •

Then the six lines will be represented by

( ABC\ (ABC\ (ABC\
\A'B'CT \ffCAT KC'A'B-)'

(ABC\ (ABC\ (ABC\
\A'CB'J ' \B'A'CJ ' \CB'A')

'

We shall show that the first three are concurrent, and likewise the second

three.
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The first three are the axes of perspective of the triangles {AA', BB', CC),

{BC, CA', AB'), (CB', AC, BA') which have a common centre of perspective

(§ 173, Ex. 2).

Therefore by § 170, these axes of perspective are concurrent. Let be

the eentre of perspective, and 0' the point of concurrence of the axes of

perspective.

By § 171, it follows that 0' will be the common centre of perspective of the

triangles {AA', BC, CB'), {BE, CA', AC), and {CC, AB', BA') ; and the axes

of perspective of these triangles will meet in 0.

That is, the three lines

ABC\ f ABC\ ( ABC\
KA'CB'J ' \CB'A'J ' \B'A'CJ

are concurrent, their point of intersection being the point 0.

Hence we have the theorem : The nine lines which connect two triads of

collinear points intersect in eighteen points which lie in threes on six lines, three

of which pass through one point, and the remaining three through another point.

This theorem is a particular case of a more general theorem known as

Pascal's theorem.

175. Ex. Show that the nine points in which any three concurrent lines

intersect three other concurrent lines may be connected by eighteen lines

which pass three by three through six points, which lie three by three on two

other straight lines.

This theorem is a particular case of a more general theorem known as Brian-

chon's theorem. It may be proved in a similar way to the theorem in § 174.

Relations between two triangles in perspective.

176. If ABC, A'B'C be two triangles in perspective, and if
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B'C cuts AC, AB in the points X', X" respectively; if C'A' cuts BA,
BG in the points Y', Y" respectively ; and if A'B' cuts CB, <A in

the points Z', Z" respectively ; then

AX' BY' GZ' _AX'^ BY" GZ"
GX" AY"BZ'~ BX"' GY"'TZ"-

Let the axis of perspective of the two triangles cut BG, CA,AB
in the points X, Y, Z, respectively.

Then because XX'X" is a transversal of the triangle ABC
(§ 104),

AX1 BX CZ'_
1

BX" GX'AX'~ •

And since YY'Y", ZZ'Z" are also transversals of the triangle

ABC,
AY' BY" CY_
BY''CY"A\
BZ' GZ" AZ

= 1.GZ" AZ"' BZ
But XYZ is also a transversal of the triangle ABC therefore

BX CY AZ
CX'AY'BZ

AY'. AX" BY" .BZ' CX'.CZ"
ce

BY' .BX"' CY" .CZ" AX' . AZ"~ (l)

In a similar manner by considering the lines BCX, CA Y, ABZ,
and XYZ, as transversals of the triangle A'B'C', we may deduce the

relation,

B'X'.B'X" C'Y'.G'Y" A'Z'.A'Z"

C'X'.G'X'"A'Y'.A'Y"' B'Z'.B'Z"
(ll)-

177. Conversely, if either of the relations (i), (ii) hold, it may

be shown that the triangles are in perspective.

Let the sides B'C, C'A', A'B' intersect the sides BC, CA, AB
in the points X, Y, Z; and let us assume that relation (i) holds.

Then since XX'X", Y"YY', and ZZ'Z are transversals of the

triangle ABC, we have

BX GX' AX" _
CX'AX'BX" '

BY" CY AY'
GY'"AY'BY' '
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and
BZ' CZ" AZ
CZ"AZ"'BZ

'

But
AY'. AX" BY" .BZ' CX' .GZ"

-

1

AX' .AZ" BY'.BX"'CZ' CY"

Therefore
BX CY AZ _

Therefore X, Y, Z are collinear.

Hence by § 163, the triangles ABC, A'B'C are in perspective.

178. Two similar relations may be proved by using the

theorem of § 98.

Since A', B', C are any points in the plane of the triangle ABC,

we have
sin BAA' sin CBA' sin ACA'
sin~A'AC ' sin A'BA ' sin A'CB

sin BA B' sin CBB' sin ACB'
sin B'AG * sin B'BA ' sin B'CB

sin BAC sin CBC' sinACC

= 1,

= 1,

= 1.
sin CAC sin CBA ' sin CCB

But since the triangles are in perspective, AA', BB', CC are

concurrent, therefore by § 98,

sin BAA' sin CBB sin ACC ^
sin A'AC sin B'BA ' sin CCB ~

'

Hence, we have,

sin BAC. sin BAB' sin CBA'. sin CBC sin ACB' . sin ACA' _
sin CAC sin CAB' ' sin ^i^^'.sin^^C" " sin BCB'. sin BCA'

Similarly, we may prove the relation,

sin#.l /C.sin#
:

4'
JB sin CB'A . sin CBC sin A'CB. sinA'CA

sin C'A'C . sin CA 'B ' sh^A'B'A .sinA'B'C " sin B'CB. sin B'C'A ~
'

Conversely, if either of these relations hold it may be proved

that the lines A A', BB', CC are concurrent ; that is, the triangles

ABC, A'B'C are in perspective.

179. When two triangles ABC, A'B'C are in perspective, the

product of the ratios

(AV : Ac), (Be' : Ba), {Ca' : Cb'\

is equal to unity, where a, b'. c denote the sides of the triangle

A'B'C, and Ah' represents the perpendicularfrom A on b'.



TRIANGLES IN PERSPECTIVE. Ill

Let XYZ be the axis of perspective of the two triangles.
Then we have

Ba': Ca' = BX :CX,

Cb': Ab' = CY:AY,
Ac': Bc' = AZ:BZ.

y

But since X, Y, Z are collinear,

Hence,

that is,

BX CY AZ_
CX' AY' BZ
Ba' Cb' Ac'

= 1.

Caf'Ab" Be'

Ab' Be' Ca'

Ac'' Ba" Cb'

Conversely, when this relation holds, it follows that X, Y, Z
are collinear, and therefore that the triangles are in perspective.

180. Ex. 1. If any circle be drawn cutting the sides of a triangle A BC in

the points X, X' ; Y, F'; Z, Z', respectively, show that the triangle formed

by the lines YZ', ZX', XY' is in perspective with the triangle ABC.

This follows at once from § 177.

Ex. 2. If a circle cut the sides of the triangle ABC in the jx>ints X, A" :

Y, Y' ; Z, Z' ; show that the triangles formed by the lines YZ, Z'X, X'}',

and the triangle formed by the lines YZ', ZX', XI'', are in perspective with

the triangle ABC; and that the three triangles have a common centre of

perspective.

Ex. 3. If from the vertices of the triangle abc, tangents x, af
; y, t/

;

be drawn to a circle, show that the triangles formed by the points w.', :j', jy',

and the triangle formed by the points y'z, z'x, x'y, are in pers]>ective with the

triangle abc ; and that the three triangles have a common axis of perspective.
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If ABC be the given triangle, A'BC the triangle formed by the points yi',

zx', xy" ; it is easy to prove that

sin BAB'. Bin BAC _ 0<?-R-
sin CAB' . sin CAC ~ Ob* -& '

where is the centre of the circle, and R its radius.

The second part of the theorem follows from § 166.

Ex. 4. If D, E, Fhe the middle points of the sides of the triangle ABC,
and P, Q, R the feet of the perpendiculars from the vertices on the opposite

sides, show that QR, RP, and PQ will intersect EF, FD, DF in the points

X, Y, Z, such that the triangle XYZ is in perspective with each of the

triangles ABC, PQR, DEF.

Ex. 5. Through the vertices of the triangle ABC, parallels are drawn

to the opposite sides to meet the circumcircle in the points A', B', C. If BC,
C'A', A'B meet BC, CA, AB in P, Q, R respectively, show that AP, BQ, CR
are concurrent. [St John's Coll. 1890.]

Ex. 6. In the last case, show that A'P, B'Q, CR are also concurrent.

Ex. 7. Through K the symmedian point of the triangle ABC, are drawn

the lines YKZ', ZKX', XKY', parallel respectively to the sides BC, CA, AB,

and cutting the other sides in the points Y, Z', Z, X', X, Y'. Show that the

lines Y'Z, Z'X, X' Y will form a triangle in perspective with the triangle ABC,
and having K for centre of perspective.

See the figure of § 131.

Ex. 8. In the same figure, show that the triangle formed by the lines Y'Z,

Z'X', XY and the triangle formed by the lines YZ', ZX, X'Y', will be in

perspective with the triangle ABC; and have a common centre of perspective.

Ex. 9. If XYZ be any transversal of the triangle ABC, and if XY'Z",

X"YY', X'Y"Z be three other transversals passing through the point
;

show that the triangles formed by the lines Y"Z', Z"X', X"Y' will form a

triangle in perspective with the triangle ABC, and having the point for

centre of perspective.

Ex. 10. Two triangles A'B'C, A"B"C" are inscribed in the triangle ABC,
so that A A', BB, CC are concurrent, and likewise AA", BB", CC". If BC,
B'C" intersect in A' ; CA', C'A" in Y ; and A'B', A"B" in Z ; show that the

triangle XYZ will be in perspective with each of the triangles ABC, A'B'C,

A"B'C".

Ex. 11. If the points of intersection of corresponding sides of two given

triangles form a triangle in perspective with each of them, show that the lines

joining the corresponding vertices of the given triangles will form a triangle

which is in perspective with each of the given triangles, and also with the

triangle formed by the points of intersection of their corresponding sides.

Ex. 12. On the sides BC, CA, AB of a. triangle are taken the points

X, Y, Z; and the circumcircle of the triangle XYZ is drawn cutting the sides
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of the triangle ABC in X', Y\ Z'. The lines YZ\ ZX', XT' form a triangle

A'B'C, and the lines Y'Z, Z'X, XT form a triangle A"B"C". Show that the

triangles ABC, A'B'C, A"B"C" are copolar, and that when the triangle XYZ
is of constant shape the common pole of these triangles is a fixed |x»int.

[H. M. Taylor, L.M.S. Proc. VoL xv.]

Pascal's theorem.

181. To illustrate the use of the preceding theorems relating

to triangles in perspective, we propose to discuss briefly the chi»-f

properties of a hexastigm inscribed in a circle. The simplest

property is due to Pascal, and is called Pascal's theorem. It is

usually quoted in the form : The opposite sides of any hexagon

inscribed in a circle intersect in three collinear points. The more

precise statement of the theorem would be: The three jxiirs of

opposite connectors in every complete set of connectors of a hexastigm

inscribed in a circle intersect in three collinear points ; which is

equivalent to the following : The fifteen connectors of a hexastigm

inscribed in a circle intersect in forty-five points which lie three by

three on sixty lines.

A hexastigm evidently has fifteen connectors. To find the number of

points in which these intersect, apart from the vertices of the hexastigm, let

us group the vertices in sets of four. This may be done in 6.5.4. 3/24, i.e.

15 ways. Now each group of four points forms a tetrastigm, which has three

centres. Hence, the connectors of a hexastigm will intersect in 3. 15, i.e. 45

points or centres.

182. Let A, B,C, D, E, F be any six points on a circle. Lot

AD, BE, CF form the triangle XYZ; BF, CD, AE the triangle

X'Y'Z'; and CE, AF, BD the triangle X"Y"Z". We shall prove

L.
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that the triangles XYZ, X'Y'Z', X"Y"Z" are copolar, that is, are in

perspective two and two, and have the same centre of perspective.

Since the points A, B, C, D, E, F are coneyclic, we have by

Euclid, Bk. in., Prop. 35,

XE.XB = XC.XF,
YC. YF = YA.YD,
ZA.ZD=ZB . ZE.

XE.XB YC. YF ZA.ZD
.therefore XQ XF' YA . YD' ZB . ZE~

Therefore by § 177, the triangle XYZ is in perspective with each

of the triangles X'Y'Z' and X"Y"Z".

By § 167, we infer that these three triangles have the same

centre of perspective.

Hence, by § 170, the axes of perspective of the three triangles

are concurrent.

Let be the common centre of perspective of the triangles,

and 0' the point of intersection of their axes of perspective. Then

by § 171, we see that the triangles formed by the lines AD, BF,

CE; BE, DC, AF; CF, AE, BD are also copolar, having 0' for

their common centre of perspective, and for the point of con-

currence of their axes of perspective.

183. Let us use the notation ( R „ ]
to represent the point of

intersection of the lines AD and BF. Then, since the triangles

XYZ, X'Y'Z' are in perspective, the points

(AD\ (BE\ / CF\
[bf)' \cd)' \ae)

are collinear.

In the same way we could show that the pairs of opposite

connectors in any other complete set of connectors of the hexastigm

intersect in three collinear points.

The line of collinearity of three such points is called a Pascal

line.

Since there are sixty complete sets of connectors (§ 137, Ex. 2),

it follows that there are sixty Pascal lines.

Again, since the triangles XYZ, X'Y'Z', X"Y"Z" are copolar,

it follows that the Pascal lines

(AD\ (BE\ / CF
\BF)' \cd)' [ae,
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(AD\ (BE\ tCF\
\CE)> \AF)' \Bd)'

(BF\ /CD\ (AE\
[CEJ' [af) 3 [bDJ

are concurrent.

The point of concurrence of three such Pascal lines is called a

Steiner point ; it may conveniently be represented by the notation

/AD, BE, CF
Rf1 I

AD, BE, CF\

There is evidently one Steiner point on each Pascal line.

Again, from § 182, we see that the common pole of the three

triangles corresponding to this Steiner point, Is the Steiner point

(ABC\
\DFEJ

'

Now from six points A, B, C, D, E, F, we can select three such

as A, B, C, in twenty ways, and when we combine this group with

the complementary triad D, E, F, we have only ten different

arrangements ; but we see above that we can take one group such

as (DEF) in either of two cyclic orders. Hence we infer that

there are in all twenty Steiner points belonging to the figure.

And since there are three Pascal lines passing through every

Steiner point, we infer that there are sixty Pascal lines.

It is easy to see that a point such as ( „„J will occur on four

different Pascal lines, namely the lines

(AD\ (BE\ (CF\

\BFJ' {CD)' \AE)'

(AD\ (BC\ (EF\

\bf)' \ed)' \AC)'

[bf)' \cd)' \ae)*

(AD\ (BE\ (CF\

[bf)' \ac)' \edJ-

Hence, since three of the forty-five points of intersection of the

connectors of the hexastigm lie on each Pascal line, we infer that

there are 4 x 45/3 Pascal lines ; that is sixty Pascal lines.

8—2
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The sixty Pascal lines pass three by three through each Steiner point, and

four by four through the forty-five points of intersection of the connectors of

the hexastigm. It follows that the Pascal lines will intersect one another in

points other than these. For further information on this subject, the reader

is referred to a Note at the end of Salmon's Conies, where there is a complete

discussion of the question.

Steiner was the first (Gergonne Annates de Matke'm., Vol. xviii.) to draw

attention to the properties of the complete figure. And the subject has been

fully worked out by Kirkman and Cayley.

184. Ex. 1. Show that the sixty Pascal lines pass three by three through

sixty points besides the twenty Steiner points. [Kirkman.]

Let us consider the triangle formed by the lines AB, CD, EF and the

triangle formed by the three Pascal lines

(AB\ (CE\ (DF
\DE) , Kef)' \AC

CD\ (BF\ (AE
af)' \ce)' \BD

EF\ (BD\ (AC
BCJ ' \AEJ ' \DF,

These triangles are in perspective, for their corresponding sides intersect

on the Pascal line

(AB\ (CD\ (EF\
yDE)' KAFJ' \BC/

Therefore the lines which join their corresponding vertices are concurrent.

But these are the three Pascal lines

(AB\ (CE\ (DF\
\CDJ ' \Bf) ' \AEJ ;

'CD\ /BF\ fAE\
(
CD

\ (
BF

\ (
AE\.

yEF)' \ACJ' \BDj'

(EF\ (AC\ (BD\
\ab)> \DFj' \CEJ'

The point of concurrence of these lines is called a Kirkman point.

It is easy to prove that there are three Kirkman points on each Pascal

line ; and that there are in all sixty Kirkman points.

Ex. 2. Show that the twenty Steiner points lie four by four on fifteen

lines, and that the sixty Kirkman points lie three by three on twenty lines

other than the Pascal lines.

Ex. 3. If a hexagram be circumscribed to a circle, show that its vertices

may be connected by forty-five lines (or diagonals) which pass three by three

through sixty points.

This theorem is known as Brianchon's theorem. It is readily deduced

from § 180, Ex. 3.



PASCAL HEXASTIGM. 117

Ex. 4. Show that the sixty points mentioned in the last example lie three

by three on twenty lines, which pass four by four through fifteen points.

Ex. 5. Show that the sixty points mentioned in Ex. 3 also lie throe by

three on sixty lines, which pass three by three through twenty other points.

185. The properties which exist for a hexastigm inscribed in

a circle are also true of any hexastigni formed by the points of

intersection of non-corresponding sides of two triangles which are

in perspective. Such a hexastigm is called a Pascal hexastigm.

Let XYZ, X'Y Z' be any two triangles in perspective, and let

A, B, C, D, E, F be the points of intersection of non-corresponding

sides of these triangles.

By § 176, we have

XE.XB YC.YF ZA.ZD
XC.XF- YA.YDZB.ZE~-

Hence by § 177, the triangle formed by the lines CE, AF, BD
will also be in perspective with the triangles XYZ, X'Y'Z. Also

from § 167, it follows that these three triangles are copolar.

Again by § 177, it follows that the triangle XYZ is copolar

with the triangles formed by the lines

BF, CA, DE;

CE, DF, BA.

Also, for the same reason, the triangle XYZ will be copolar

with the triangles formed by the lines

EF, CD,AB;

CB, AF, ED
;
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and with the triangles formed by the lines

BC, FD,AE;
FE, AC, BD.

In the same way we can find three pairs of triangles copolar

with the triangles X' Y'Z ', and the triangle formed by the lines

CE, AF, BD.

We shall thus obtain ten different triads of triangles—each

triad having a common centre of perspective.

Now let us consider any one of these triads of triangles, say the

triangles XYZ, X'Y'Z', and the triangle formed by the lines CE,

AF, BD, that is the triangles whose sides are

AD, BE, CF;

BF,CD,AE;
CE, AF, BD.

The axes of perspective of these triangles will be concurrent

/A TiC\

(§ 170) ; the point of concurrence being the Steiner point ( ~ ,_,„]

.

We have evidently obtained the same arrangement by this method

as we obtained in § 183, when the six points were points on a

circle. Hence we may infer that if we make a list of the ten

triads of triangles, as indicated above, each triangle will occur in

four different triads ; so that the list would be complete.

By proceeding as in § 182, we shall find by means of § 171, ten

other triads of triangles, each triad producing three Pascal lines,

which co-intersect in a Steiner point.

Hence we have the theorem : If the three pairs of opposite

connectors in any complete set of connectors of a hexastigm intersect

in three collinear points, the three pairs of opposite connectors in

every complete set will also intersect in three collinear points.

Ex. 1. Show that any two triads of collinear points on different straight

lines determine a Pascal hexastigm.

Ex. 2. Any transversal cuts the sides of the triangle ABC in the points

X, Y, Z; and is any fixed point. Show that the lines OX, OY, OZ will cut

the sides of the triangle ABC in six points which determine a Pascal

hexastigm.

186. The hues which join non-corresponding vertices of two triangles in

perspective form a hexagram which is called a Brianchon hexagram.

Ex. 1. Show that every triad of opposite vertices of a Brianchon hexagram
lie on three concurrent lines.
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Ex. 2. Any point is joined to the vertices of a triangle ABC, and the

lines OA, OB, OC cut a given straight line in the points X, Y, Z. Show tint

the lines XB, XC, YC, YA, ZA, ZB determine a Brianchon hexagram.

Ex. 3. Show that if ABCDEF be any Pascal hexastigm, the lines A B, BC,
CA, DE, EF, FD will determine a Brianchon hexagram.

It is easy to see that a triad of diagonals of this hexagram are the lines

(AB\ (BC\ (BC\ (CA\ (CA\ (All

\DE)' \FDJ' \EFJ' \DEj' \FDJ ' \EFj
'

But these lines are three Pascal lines of the hexastigm, which meet in a

Kirkman point. (§ 184, Ex. 1.)

Hence, by applying Brianchon's theorem to this hexagram, we have at

once a proof of the theorem that the sixty Kirkman points of a Pascal

hexastigm lie three by three on twenty lines. (§ 184, Ex. 2.)

Ex. 4. Show that if ABCDEF be any Pascal hexastigm, the lines joining

the points A, D to the points f r^pji ( yp) respectively, intersect on the

Pascal line

(if)' (af)> (%) [Salmon]

Ex. 5. The opposite vertices of a tetragram are A, A'; B, B; C, C; and

points X, X' ; T, Y' ; Z, Z' are taken on the diagonals A A', BB, ('<

that the ranges {AA', XX'}, {BB', YY'}, {CC, ZZ) are harmonic. Show that

X, X', Y, Y', Z, Z' are the vertices of a Pascal hexastigm.

Ex. 6. If through each centre of a tetrastigm, a pair of lines be taken,

harmonically conjugate with the connectors of the tetrastigm which intersect

in that centre, show that these six lines will form a Brianchon hexagram.

General theory.

187. Suppose we have any figure F consisting of any number

of points A, B, C, , not necessarily in one plane; let these

points be joined to any point 0. Let any plane be drawn cutting

the lines OA, OB, OC,... in the points A', R, &,... forming the

figure F'. The figure F' is said to be the projection of the given

figure F; the point is called the vertex of projection ; and the

plane of F' is called the plane of projection.

188. Let us consider more particularly the case when the

figure F is a plane figure.

i. It is evident that to any point A of F corresponds one point

and only one point A' of F, and vice versa.
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ii. If any three points A, B, C of F are collinear, the corre-

sponding points A', B', C of F' will be collinear. For since A, B, C
are collinear, OA, OB, OC must lie in one plane, which can only

cut the plane of projection in a straight line ; that is A', B', C
must be collinear. Hence, to every straight line of F corresponds

one and only one straight line of F'.

iii. If two straight lines of the figure F intersect in the point

A, it is evident that the corresponding lines of F' will intersect in

the corresponding point A'. Hence it follows that if any system

of lines of F are concurrent, the corresponding lines of F' will be

concurrent.

iv. If {AB, CD) be any harmonic range in the figure F, then

since {AB, CD) is a harmonic pencil, it follows that the corre-

sponding points of F' will form a harmonic range ; that is to say,

{
AB', CD'} will be harmonic.

189. Ex. 1. Show that if P{AB, CD} be a harmonic pencil in the figure

F, P {A'B
1

, CD'} will be a harmonic pencil in the projected figure F'.

Ex. 2. Show that any range in involution will project into a range in

involution.

190. Let A and B be any two points in a plane figure F, and

let A', B' be the corresponding points in F' the projection of F on

any plane, the vertex of projection being any point 0. Let the

planes of F and F' be denoted by a and a. Then since AB, A'B'

are two straight lines in the same plane OAB, they must intersect.

But AB lies in the plane a, and A'B' in the plane a ; hence the

point of intersection of AB and A'B' must be a point in the line

of intersection of the two planes a and a. Similarly any straight

line x of F will intersect the corresponding line x' of F' in a point

lying on the line of intersection of the planes a, a. The line of

intersection of the two planes a, a is called the self-projected line.

It is evident that every point on it considered as belonging to the

figure F, coincides with the corresponding point of F'.

191. Now suppose we have a plane figure F, and its projection

F' on some plane, being the vertex of projection. Let us take

any other point P not lying on either of the planes containing F
and F' ; and with P as vertex let us project the whole figure on

any plane, for simplicity the plane of F.
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Let A, B, C, ... be any points of F ; A', B', C, ... the corre-

sponding points of F'. Let PA', PB, PC, ... cut the plane of F
in the points A", B", C", .... These points will form a figur.- F"
in the same plane as F, and A", B", C", ... may be called the

points of F" which correspond to A , B, C, ... of F. Let PO cut

the plane of F in 0'.

It is evident that the following relations will exist between th.-

figures F and F" :

—

i. The line joining any point of F to the corresponding point of
F" passes through a fixed point.

For 0, A, A' are collinear, therefore PO, PA, PA' lie in the

same plane, and therefore 0', A, A" are collinear.

ii. To any straight line ofF corresponds a straight line of F".

For let A, B, C be three collinear points of F, then A', B, C
are collinear points of F', and therefore by § 188, A", B', C are

collinear points of F".

iii. If any system of lines ofF are conctirrent the corresponding

lines of F" are also concurrent.

For by § 188, the corresponding lines of F' are concurrent, and

therefore the corresponding lines of F" are concurrent.

iv. If anypoints ofFform a harmonic range the corresponding

points of F" will form a harmonic range.

For by § 188, the corresponding points of F' form a harmonic

range, therefore also do the corresponding points of F".

v. Every straight line ofF intersects the corresponding straight

line of F" in a point lying on a fixed straight line.

This follows at once from § 190, the straight line in which

corresponding lines intersect being the line of intersection of the

planes of F and F', since the plane of F" is the same as that of F.

192. Any plane figure F being given, any other figure F"

obtained in the manner explained in the last article (viz.: by

first projecting F on a plane and then with a different vertex

projecting the new figure on the plane of F), is said to be in

perspective with F. The fixed point through which pass all lines

connecting corresponding points (§ 191, i.) is called the centre of
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perspective ; and the fixed line which is the locus of the points of

intersection of corresponding lines (§ 191, v.) is called the axis of

perspective.

193. It is however unnecessary to go through the process of

projection in order to construct a figure which shall be in perspective

with a given figure. It is clear that if we were proceeding as in

§ 191, we might select the centre of perspective, and the axis of

perspective. Then again, since we might have taken the plane of

F' passing through the axis of perspective, and any assumed point,

we may select any point A' as the point corresponding to a given

point A. Hence to obtain the figure in perspective with a given

figure F, let be the centre of perspective, x the axis of perspective,

and let A' be the point corresponding to the point A. Let B be

any other point of F, B' the corresponding point of F'. Then since

AB, A'B' are corresponding lines, they must intersect on the axis

x. Let AB cut the axis x in the point X. Then A'X will intersect

OB in required point B'. In the same way the point corresponding

to any other point may be constructed.

If F and F' be two figures in perspective ; any point P may be

considered as belonging to either figure. Considered as belonging

to F, let F be the corresponding point of F' ; and considered as

belonging to F\ let Q be the corresponding point of F. Then it

must be noticed that Q and F will not coincide, unless P be a

point on the axis of perspective ; in which case Q and P' coincide

with P.

The axis of perspective of the two figures may thus be regarded

as the locus of points (other than the centre of perspective), which

coincide with their corresponding points.



IN PERSPECTIVE. 128

Likewise the centre of perspective may be regarded as the

point through which pass all self-corresponding straight lines

except one—the axis of perspective.

Two figures may be in perspective in more than one way. For

instance, the triangles ABC, A'B'C may be so situated that

AB', BC, CA' are concurrent, and also AC, BA', CB'. In this

case the triangle ABC may be said to be in perspective with the

triangles B'C'A', C'A'B'. But when this is so it may be easily

shown (§ 165, Ex. 5) that A A', BB', CC must also be concurrent.

;iHence if two triangles are doubly in perspective, they are triply in

(perspective.

194. Ex. 1. If F
x , F2 , F3 be three figures in persi>ective two and two in

the same plane, show that if they have a common centre of perspective, their

fthree axes of perspective are concurrent.

Let be the common centre of perspective ; x2, 3 , #3,1, xh2 their three axes

of perspective. Let x%l , xl<2 intersect in P. Then because P lies on xxlt
<P, considered as belonging to Flt coincides with the corresponding point of

'yF3 . Similarly because P lies on xh2 it coincides with the corresponding point

of F
2 . Hence P must lie on x2t3 , or coincide with 0. In the latter case, let

iQ be the point of intersection of xh2> x2t3 ; then as before it may be proved

.that Q must lie on xh3 , or coincide with 0. Thus, in either case the three

axes of perspective x2i3 ,

x

3t 1; xh2 are concurrent.

Ex. 2. Show that all triangles formed by corresponding points of /',, Ft ,

\F3 in the last Ex. are in perspective, P being their common centre of

; perspective.

Ex. 3. If Flt F2 , F3 be three figures in perspective, having a common

axis of perspective, show that the three centres of perspective are collinear.

Ex. 4. If ABC, A'B'C be two triangles in perspective, and if X, V, Z be

three points on the axis of perspective, such that AX, BY, CZare concurrent,

show that A'X, B'Y, C'Zwill be concurrent.

195. Another method of constructing a figure F' in perspective

with a given figure F, is to suppose that the line of F' which

corresponds to a given line of F is known.

Thus let be the centre of perspective, x the axis of perspective,

and suppose that a, a' are a pair of corresponding lines. If any

line be drawn through cutting a, a' in A and A', it is evident

that A' will be the corresponding point to A. Again, if ^1 7 be
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any line of F, cutting the axis of perspective in F, and the line a

in A. Then A'Y will be the line of F' which corresponds to A Y.

196. We may take the line at infinity in either figure as one

of our given lines. Then any line in the other figure which is

parallel to the axis of perspective may be taken as the corresponding

line. The construction of F' is very similar to the previous

construction. Thus let a be the line at infinity, then a' is a line

parallel to the axis of perspective. Draw any line through

cutting a' in A', then the corresponding point A of F is at infinity.

Draw any line A Y parallel to OA', cutting the axis of perspective

in Y. Then YA' will be the corresponding line of F'. And if P
be any point on AY, OP will cut A'Y in P', so that P' is that

point of F' which corresponds to P.

197. If we suppose P and P' given in the last figure, we can

easily find the line of F' which corresponds to the line at infinity
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in F. Thus we have only to draw any line PY to meet the axis of

perspective in Y ; then P'Y will cut the line through parallel to

PY in A', which will be the point of F' corresponding to the point

at infinity on the line OA'. Therefore the line through A' parallel

to the axis of perspective will be that line of F' which corresponds

to the line at infinity in F.

198. Ex. 1. Through the point of intersection of two diagonals of a tctra-

gram lines are drawn respectively parallel to the four sides and intersecting

respectively the sides opposite to those to which they are parallel. Prove

that these four points of intersection lie on a straight line.

[Trin. Coll., 1890.]

Let A, A'; B,B'; C,C be the pairs of opposite vertices of the tetragram
;

and let BB', CC intersect in 0. Taking for centre of perspective, and -1.1'

for the axis of perspective, we may consider the figure B'C'BC as in perspective

with the figure BCB'C. If OX be drawn parallel to BC to meet B'C in -V,

and if OX' be drawn parallel to B'C to meet BC in .V, it is evident that XX'

will be that line of the figure B'C'BC which corresponds to the line at infinity

in the figure BCB'C. Hence the theorem is proved.

It may be noticed that XX' is parallel to A A'.

Ex. 2. A hexagon can be inscribed in one circle and circumscribed al»ut

another. Its three diagonals intersect in the point 0, and lines are drawn

through parallel to the sides. Show that the points in which these lines

intersect the sides opposite to those to which they are parallel, are

collinear.

Ex. 3. The lines joining the vertices of the triangle ABC to any point

intersect the opposite sides in A', B', C ; and BC, CA, AB intersect /: < .

CA', A'B' in X, Y, Z. Show that the lines drawn through parallel t«> ll<\

CA,AB, form a triangle which is in perspective with the triangle formed by

the lines AX, BY, CZ.
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199. By suitably choosing the centre of perspective, and the

axis of perspective, we can often form a figure F' which shall be in

perspective with a given figure F, so that F' shall be a simpler

figure. The advantage gained by so doing is that we are able to

discover properties of the figure F by transforming known properties

of the simpler figure F'.

Thus let a, b, c, d be the four sides of any tetragram, and let us

take for our axis of perspective a line parallel to the diagonal

joining the points ac, bd. Then if we suppose the line corre-

sponding to this diagonal in the new figure to be at infinity, it is

easy to see that the new figure will be a parallelogram. Further,

if we take for our centre of perspective, a point on the circle which

has the diagonal joining the points ac, bd for a diameter, the new

figure becomes a rectangle.

For the lines a', c' are parallel to the line joining to the point

ac, and b', d! are parallel to the line joining to the point bd.

200. Ex. 1. Show that the lines joining any point to the opposite

vertices of a tetragram form a pencil in involution.

Ex. 2. Show that the middle points of the diagonals of a tetragram are

collinear.
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Ex. 3. The diagonals of a parallelogram bisect each other. Obtain the

corresponding theorem for any tetragram.

Ex. 4. Any line cuts the opposite pairs of connectors of a tetrastigtn in a

range in involution. Prove this theorem by forming a figure in j)ers|)ective,

such that one connector of the given figure becomes the line at infinity in the

new figure.

Ex. 5. Show that a triangle can always be constructed which shall l>e in

perspective with one given triangle, and be similar to another given triangle.

Ex. 6. Generalise the theorem in Ex. 2.



CHAPTER IX.

THE THEORY OF SIMILAR FIGURES.

Similar triangles.

201. Two triangles are said to be similar when they are

equiangular. It is proved in Euclid (Bk. vi., Prop. 4) that the

sides of one triangle are proportional to the homologous, or corre-

sponding, sides of the other. It is, however, necessary to distin-

guish the case when the angles of the triangles are measured in

the same sense, from the case when they are measured in opposite

senses.

Let ABC, A'B'C be two similar triangles : then, when the

angles ABC, BCA, CAB are respectively equal to the angles

A'B'C, B'C'A', C'A'B', the triangles are said to be directly

similar ; but, when the angles ABC, BCA, CAB are respectively

equal to the angles C'B'A', A'C'B', B'A'C, the triangles are said

to be inversely similar.

As an illustration, let BAC be a right-angled triangle, and let AD be the

perpendicular from the right angle on the hypotenuse. Then the triangles

BDA, ADC are directly similar, but each is inversely similar to the triangle

BAC.
202. Ex. 1. If two triangles be inversely similar to the same triangle,

show that they are directly similar to each other.

Ex. 2. If AA', BB', CC be the perpendiculars from the vertices of the

triangle ABC on the opposite sides, show that the triangles AB'C, A'BC,
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A'B'C are directly similar to each other, but inversely similar to the triangle

ABC.

Ex. 3. If D, E, F be the middle points of the sides of the triangle .1 IK
',

show that the triangle DEF is directly similar to the triangle A DC.

Ex. 4. Two circles cut in the points A, B ; and through B two lines

PBQ, PBQ are drawn, cutting one circle in P, F and the other in Q, </.

Show that the triangles APQ, AP'Qf are directly similar.

Ex. 5. If the triangle A'B'C be inversely similar to the triangle A Bt ',

show that the lines drawn through A', B', C" parallel respectively to B(\ ''.I.

AB will be concurrent, and that their point of intersection will lie on the

circumcircle of the triangle A'B'C.

Ex. 6. If the triangles ABC, A'B'C be inversely similar, show that

(A'BC) + (B'CA )+ (CA B)= (A BC).

Ex. 7. The first Brocard triangle of any triangle is inversely similar to it.

203. When two triangles are placed so that their corre-

sponding sides are parallel, it is evident that they are directly

similar. They are also in perspective, having the line at infinity

for their axis of perspective ; consequently the lines joining corre-

sponding vertices are concurrent.

Triangles so situated are said to be homothetic, and the centre

of perspective is called their homothetic centre.

'C

o^::.

Let A'BC be any triangle having its sides parallel to the

corresponding sides of the triangle ABC; and let be the centre

of perspective. Since the corresponding sides are parallel, it follows

at once that

OA': 0B':0C' = 0A:0B:0G.
9
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204 Let ABC, A'B'C be two homothetic triangles, and let

A'B'C be turned about the homothetic centre 0, so as to come

into the position A"B"C".

It is obvious that the triangles A"B"C", ABC are directly-

similar, and that

OA" : OB" : OC" = 0A:0B: OC.

Further, it is easy to see that the angles AOA", BOB", COO",

and the angles at which the corresponding sides intersect are all

equal.

It is evident that the triangles AOB, BOC, COA are directly

similar to the triangles A"OB", B"OC", C"0A". Hence, it appears

that whatever relation the point has to the triangle ABC, it has

a similar relation to the triangle A"B"C". For instance, if were

the orthocentre of the triangle ABC, it would also be the ortho-

centre of the triangle A"B"C".

The point is called the centre of similitude of the two

triangles ABC, A"B"C".

We shall now show that any two triangles which are directly

similar, have a centre of similitude, which can be easily found. It

will be perceived that when the centre of similitude is known, then,

by turning one of the triangles about the centre it may be brought

into such a position as to be homothetic with the other triangle.

205. To find the centre of similitude of two triangles which are

directly similar.

Let ABC, A'B'C be any two triangles which are directly

similar. Let BC, EC intersect in the point X, and let the

circumcircles of the triangles BXB', CXC intersect in the

point 0.
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It is evident that the triangles BOC, ROC are directly similar.

Hence the triangles A OC, AOB are directly similar to the triangle*

A'OC, A' OB'.

Further, the angles COG', BOB' are each equal to the angle

CXC. Hence if the triangle A'B'C be turned about the point

through an angle equal to C'OC, so that the lines OC, OB shall

coincide with OC, OB, it is easy to see that the triangle A'B'C' in

its new position will be homothetic to the triangle ABC.

Thus is the centre of similitude of the two triangles A BC,

A'B'C.

206. Ex. 1. If two directly similar triangles be inscribed in the same
circle, show that the centre of the circle is their centre of similitude.

Show also that the pairs of homologous sides of the triangles intersect in

points which form a triangle directly similar to each of them.

[Trinity Coll. Sch. Exatn. 1885.]

Ex. 2. If triangles directly similar to a given triangle be described on the

perpendiculars of another triangle, show that their centres of similitude are

the feet of the perpendiculars from the orthocentre on the medians of the

triangle.

Ex. 3. If ABC be a triangle of constant shape, and if A be a fixed point,

show that if the vertex B move on a fixed straight line, the vertex C will move

along another straight line.

Show also that if the locus of B be a circle, then the locus of C will also

be a circle.
*

Ex. 4. If ABC, A'B'C be two triangles which are directly similar, and if

the triangle A'B'C be turned about any point in its plane, show that the locus

of the centre of similitude will be a circle.

207. The construction given in § 205 requires a slight modification when

X, the point of intersection of BC, BC coincides with B or C. Let us

9—2
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suppose that B'C passes through B. Then, the centre of similitude will be

the point of intersection of the circle circumscribing the triangle BCC, and

the circle which passes through B' and touches BC at B.

Again, if C coincide with the point B, the centre of similitude will be the

point of intersection of the circle which passes through B' and touches BC at

B, and the circle which passes through C and touches BC at B.

208. Ex. 1. If be the centre of similitude of the directly similar

triangles ABC, DAE, show that AO passes through the symmedian point of

the triangle ABB.

Ex. 2. In the same case, if AO meet the circumcircle of the triangle ABD
in H, show that AH is bisected in the point 0.

Ex. 3. If triangles be described on the sides of the triangle ABC, so as to

be directly similar to each other, show that the three centres of similitude of

these triangles taken two at a time, are the vertices of the second Brocard

triangle of the triangle ABC. See § 134.

Ex. 4. If points A', B', C be taken on the sides BC, CA, AB of the

triangle ABC, so that the triangle A'B'C is directly similar to the triangle

ABC, show that the centre of similitude of the triangle A'B'C in any two of

its positions is the circumcentre of the triangle ABC.

Ex. 5. In the last case show that the circumcentre of the triangle ABC
coincides with the orthocentre of the triangle A'B'C.

Ex. 6. If points A', B', C be taken on the sides AB, BC, CA of the

A



OF SIMILAR TRIANGLES. 133

triangle ABC, so that the triangle A'B'C is directly similar to the triangle

ABC, show that the centre of similitude is a fixed point.

Let Q be the centre of similitude. Then, Q will lie on the circles circum-

scribing the triangles AA'C, BEA', CCB; and the circles AA'Q, IUfQ y CC'Q
will touch A'B', B'C, C'A', respectively, at the points A\ B, and <". Hence,

the angles Q.AB, QBC, Q.CA are equal, and it follows by § 116, that Q is one

of the Brocard points of the triangle ABC.

It is easily seen that the angles QA'ff, QBC, QC'A' are each equal t->

QAB, so that Q is the same Brocard point of the triangle A'BC.

Ex. 7. If points A', B', C be taken on the sides CA, AB, BC, so that the

triangle A'B'C is directly similar to the triangle ABC, show that the centre

of similitude is the other Brocard point.

Ex. 8. If a triangle A'B'C be inscribed in a given triangle ABC, bo as t<>

be always directly similar to a given triangle, show that the centre of simili-

tude of the triangle A'B'C, in any two of its positions is a fixed point.

[Townsend.]

Ex. 9. If a triangle A'B'C of constant shape be inscribed in a given

triangle ABC, the circumcircle of the triangle A'B'C meets the sides of the

triangle ABC in three points A", B", C", which form another triangle of

constant shape. Show that the centre of similitude C of the triangle A"B'C"

in any two of its positions is a fixed point. [H. M. Taylor.]

Ex. 10. Show that the points 0, C are isogonal conjugates with respect

to the triangle ABC. [Casey.]

V<209. Let ABC be any given triangle, and let a triangle

A'B'C be constructed so as to be nomothetic to the triangle

ABC. Let be the homothetic centre, and OX any line through

0. Suppose the triangle A'B'C to be turned about the line OX
through an angle equal to two right angles, so that its plane coin-

cides with the plane of the triangle ABC. Let A"B'C" be the

new position of A'B'C

.

X
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It is obvious that the triangle A"B"G" is inversely similar to

the triangle ABC. It is also evident from the figure that the

triangles OB"C", OCA", OA"B" are inversely similar to the

triangles OBC, OCA, OAB; that the angles AOA", BOB", COC"
are bisected by the line OX ; and that

OA" : OB" : OC" = OA : OB : OC.

Further, we see that the line OX is parallel to the internal

bisector of the angles between corresponding sides of the triangles

ABC, A"B"C". Thus let P be any arbitrary point, and let PQ,

PQ" be drawn in the same directions as BC, B"C" respectively,

then OX will be parallel to the internal bisector of the angle

QPQ".

210. The point is called the centre of similitude of the

triangles ABC, A"B"C"\ and the line OX the axis of similitude

of the triangles.

Since the triangles B"0C", C"0A", A"0B" are inversely

similar to the triangles BOC, COA, A OB, the point will have

the same relative position with respect to the triangles ABC,
A"B"C". For instance, if were the orthocentre of the triangle

ABC, it would also be the orthocentre of the triangle A"B"C".

We shall now show that any two triangles which are inversely

similar, have a centre of similitude, and an axis of similitude. It

is evident that when the axis of similitude is known, one of the

triangles may be rotated about it so as to be brought into a position

in which it is homothetic to the other triangle.

\^y 211. To find the centre and axis of similitude of two triangles

which are inversely similar.

Let ABC, A'B'C be two triangles which are inversely similar.

If be the centre of similitude, it follows that the axis of simili-

tude must bisect the angles BOB, COC. Hence, if we divide the

lines BB', CC in the points K, L, so that

BK : KB = CL : LC = BC : B'C,

it is evident that KL must be the axis of similitude.

Again the triangles BOC, B'OC are inversely similar, so that

the perpendiculars from on BC, B'C must be in the same ratio

as BC : EC. Consequently if BC, B'C intersect in X, the line

XO will divide the angle BXB into parts whose sines are as
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BC : B'C. Thus a point can be found so that the triangles BOC,
B'OC are inversely similar.

It is obvious that when has been found in this way, the

triangles OA'B', OA'G' are inversely similar to the triangles OAB,
OAG; and that KL bisects the angle AOA'. Hence is the

centre, and KL the axis of similitude of the triangles.

212. Ex. 1. Find the centre and axis of similitude of the triangles ABC,
A'B'C when B'C passes through B.

Ex. 2. Find the centre and axis of similitude of the triangles ABC, A'B'C
when B and C coincide.

Ex. 3. Show that the axis of similitude divides the lines joining corre-

sponding points in the same ratio.

Ex. 4. If two triangles be inscribed in the same circle so as to be inversely

similar, show that the triangles are in perspective.

[Trinity Coll. Sch. Exam. 1885.]

Ex. 5. In the last example, show that the axis of perspective of the

triangles passes through the centre of the circle.

Ex. 6. If ABC he any triangle inscribed in a circle, and if A A', BB, CC
be drawn parallel to any given straight line meeting the circle in the points

A', B', C, show that the triangles ABC, A'B'C will be inversely similar, and

that their axis of perspective will pass through the centre of the circle.

Properties of two figures directly similar.

213. Let F denote any figure consisting of the system of

points A, B, 0,.... On the lines OA, OB, OC,... connecting these

points to any point in the same plane, let points A', B', C',... be

taken so that

OA': OA = OB': OB = OC : OC = &c.
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Then the figure F', consisting of the points A', B, C',...,is

said to be homothetic to the figure F, and the point is called the

homothetic centre.

It is evident that if A, B, C be any three collinear points of F,

the corresponding points A', B', C of F' are also collinear ; and,

that the straight lines ABC, A'B'C are parallel. Hence, to every

straight line of the figure F corresponds a parallel straight line of

the figure F'. This also follows by considering that the two figures

F and F' are in perspective, so that the theorems of § 191 hold for

homothetic figures.

It is also evident that any three points A, B, C of the figure F
form a triangle which is homothetic to the triangle formed by the

corresponding points A', B', C of F'.

214. If two figures be homothetic, and if one of them be

turned through any angle about the homothetic centre, the two

figures are said to be directly similar.

Let F and F' be two homothetic figures, the homothetic

centre, and let F' be turned about the point 0, through an angle a.

Let A, B, C, ... be any points of F, and let A', B', C, ... be the

corresponding points of F'. Then we have

OA' : OA = OB' : OB = OC : 00= &c.

Also it is evident that each of the angles AOA'', BOB', ... is

equal to a, and that each line of F, such as AB, makes with the

corresponding line A'B' of F' an angle equal to a.

Again, the triangles OAB, OBC, ... are directly similar to the

triangles OA'B', OB'C, ... ; so that the position of with respect

to one figure is exactly similar to its position with respect to the

other figure.

This point is called the cenfre of similitude of the two

figures.

215. It follows, from the definition given in the last article,

that two figures F and F' in the same plane will be directly

similar when a correspondence can be established between the

points of the two figures, such that : (i) To each point of F
corresponds one point and only one point of F'. (ii) The distance

between every pair of corresponding points subtends the same

angle at a fixed point 0. (iii) The distance of each point of F
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from bears a constant ratio to the distance of the corresponding

point of F' from 0.

Again two figures F and F' will be directly similar, when (i)

each line of F makes a constant angle with the corresponding

line of F', and (ii) the triangle formed by every three points of

F is directly similar to the triangle formed by the corresponding

points of F'. For in this case we can find the centre of similitude

by proceeding as in § 205.

In applying this criterion to any two figures it is necessary to be careful as

to which angle is taken as the angle between two corresponding lines. Thus,

let A, B be any two points of F, A', B' the corresponding points of /".

Through any arbitrary point draw OX parallel to and in the same direction

as AB, and OX' in the same direction as A'B'. Then the angle between the

corresponding lines AB, A'B' is to be taken as equal to XOX'.

216. Directly similar figures might also have been defined to

be diagrams of the same figure drawn to different scales in the

same plane.

It follows at once that if two maps of the same country be

placed on a table, there is one point, and only one point, which

will indicate the same place on the two maps.

217. Ex. 1. The points 0, A, B, C, ... of a figure F correspond to the

points 0?, A', B', C, ... of another figure /", so that the lines OA, OB, ... are

equally inclined to the lines OA', O'B", .... Show that if

aA''

: 0A = 0'B' : OB= &c,

the figures F and F' will be directly similar.

Ex. 2. Hence show that any two circles are directly similar figures.

Ex. 3. Two maps of the same country, on different scales, are placed on a

table, and a pin is put through both maps at a given point. If one of the

maps be moved about show that the locus of the centre of similitude will be a

circle.

Ex. 4. If a pair of corresponding points of two coplanar similar figures be

fixed and the figures moved about in their plane, show that the locus of the

centre of similitude will be a circle.

Ex. 5. Show that through any given point one and only one pair of

corresponding lines of two similar figures can be drawn.

Ex. 6. If P, F be a pair of corresponding points of two similar figures

whose centre of similitude is ; show that if the locus of P be a circle

passing through 0, the line PP' will pass through a fixed point.
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Ex. 7. If A, B, C, D be any four points on a circle, and if P, Q, R, S be

the orthocentres of the triangles BCD, CDA, DAB, ABC, show that the figure

P(jRS is directly similar to the figure ABCD.

218. Given any two triangles wThich are directly similar, it is

easy to see that similar points of the two triangles wT
ill correspond.

That is to say, if ABC, A'B'C be the two triangles, P and P' any

similar points, (e.g. the orthocentres of the triangles), then ABCP
and A 'B'C'P' are directly similar figures. When the two triangles

are nomothetic, it follows that the line joining two similar points

such as P and P' must pass through the centre of similitude of the

two figures.

219. Ex.1. Show that the orthocentre, the circumcentre, and the median

point of any triangle are collinear.

If ABC be the triangle, D, E, F the middle points of the sides, the triangle

DEF is homothetic to the triangle ABC, and the circumcentre of the latter is

the orthocentre of the former.

Ex. 2. Show that if ABC be any triangle, and D, E, F be the middle

points of the sides, the symmedian points of the triangles ABC, DEF are

collinear with the median point of the triangle ABC.

Ex. 3. The tangents to the circumcircle of a triangle ABC form the

triangle LMN, and AA', BB', CC are the perpendiculars on the sides of the

triangle ABC. Show that the lines LA', MB', NC meet in a point which is

collinear with the circumcentre and orthocentre of the triangle ABC.

Ex. 4. Show that the lines which connect the middle points of the corre-

sponding sides of a triangle and its first Brocard triangle are concurrent.

Ex. 5. Show that, if Q, Q.' denote the Brocard points of a given triangle,

and if A"' denote the isotomic conjugate point of the symmedian point of the

triangle, the median point of the triangle A'QQ' coincides with the median
point of the given triangle.

Properties of two figures inversely similar.

220. Let F and F' be any two homothetic figures in the same
plane, and the homothetic centre. Let F' be turned about any
line OX, in its plane, through an angle equal to two right angles,

s<> that its plane coincides with the plane of F. Then, the figure

F' in its new position is said to be inversely similar to the
figun- F.

What is meant by inverse similarity is easily understood by
considering F and F' to be drawings of the same map on different
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scales. Let us suppose F' to be drawn on transparent paper, and

laid with its face downwards on the face of F, then the reverse

side of F' is inversely similar to the figure F.

The point which was originally the homothetic centre is

called the centre of similitude of the inversely similar figures, and

the line OX is called the axis of similitude.

221. Let A,B,C,... be any points of a figure F, and A', R,G' ...

the corresponding points of an inversely similar figure F'. Then

if be the centre of similitude and OX the axis of similitude, we

clearly have as in § 209,

0A' : OA = OB' : OB = 00' : 00= &c.

Also the axis OX will bisect each of the angles A OA' BOB',

COG' ... ; and will be parallel to the internal bisectors of the angles

between the corresponding lines of the two figures.

Further, it is evident that the triangles A'0B',A'0C, B'OG',...

will be inversely similar to the triangles A OB, AOC, BOG,... .

Hence it follows that the centre of similitude will have similar

relations to the two figures.

222. Ex. 1. If A and A' be corresponding points of two figures which

are inversely similar, and a, a corresponding lines, show that the line drawn

through A' parallel to a will correspond to the line through A parallel to a.

Ex. 2. If ABC, A'B'C be two triangles which are inversely similar, the

lines through the vertices of each parallel to the sides of the other are

concurrent.

If P, P be the points of concurrence, show that P and P are corre-

sponding points.

Ex. 3. If A'B'C be the first Brocard triangle of the triangle ABC, and if

the perpendiculars from A, B, C on the sides of the triangle A'B'C intersect

in T, show that the circumceutre of ABC is that point of A'B'C which

corresponds to the point T.

The point T is called Tarry's point (§ 135, Ex. 7) of the triangle ABC.

Ex. 4. Find the axis of similitude and centre of similitude of any triangle

and its first Brocard triangle.

The centre of similitude is the median point of the triangles (§ 135,

Ex. 13).

Ex. 5. If K be the symmedian point of the first Brocard triangle of the

triangle ABC, and if S be the circumcentre, L the Lemoine centre, and T
Tarry's point of the triangle ABC, show that LK' is parallel to TS.
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Properties of three figures directly similar.

223. Let F1} F2 , F3 be any three figures which are directly

similar ; let S
1
be the centre of similitude of F3 and Fs ; S2 that of

F3 and Fx ; and S3 that of Fx
and F,.

The triangle formed by the three centres of similitude S1} S2) S3 ,

is called the triangle of similitude of the figures Flt F2 , F3 ; and the

circumcircle of this triangle is called the circle of similitude.

It will be convenient to explain here the notation which will be used in

the following articles. The scales on which the figures are drawn will be

denoted by l\, k
2 , k

3 ; the constant angles at which corresponding lines of

the figures intersect will be denoted by a
x , a2 , o3 ; corresponding points will be

denoted by Plt P2 , P3 ; and corresponding lines by x1% x
2 , x3

. The perpen-

dicular distance of any point P from a line x will be denoted by Px.

224. In every system of three directly similar figures, the

triangle formed by three corresponding lines is in perspective with

the triangle of similitude, and the locus of the centre ofperspective is

the circle of similitude.

Let xly x2 , xs be any three corresponding lines, forming the

triangle Xlt X2 , X3 . Then we have,

0«h£\j Oj^/j ^— A/q . A/j
j

Therefore
S^l

. |^3
. ®p = 1.

Oj&y Oowj 03^2

Hence by § 179, the triangle formed by the lines x1} x2 , x3 , is in

perspective with the triangle of similitude Sfi2S3.

If A" be the centre of perspective of the triangles SxSj$s , X1X 2X3 ,

it is evident that

Kx
x : Kx2 : Kxz

= kx : k2 : k3 .

Now since xlt x2 , x3 are corresponding lines, they intersect each

other at angles equal to a,, a,, a3 . Hence the angles of the triangle

AVYjA'j are known, and therefore the angles X2KX3 , X3KX1)

A,A\Y, are constant. That is, the angles S2KS3> S3KSU S^S, are

constant; and therefore the point K must lie on the circle SSS*-

225. Since three corresponding lines form a triangle in per-

spective with the triangle of similitude, so that the centre of
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perspective is a point on the circle of similitude, it follows that if

three corresponding lines are concurrent their point of intersection

is a point on the circle of similitude.

Let #!, x2 , x3 be any three corresponding lines which are

concurrent, and let K be the point of intersection. Then we
have

Hence S^K divides the angle between x2 and x3 into parts

whose sines are in a constant ratio.

Let xlf x2 , x3 cut the circle of similitude in the points Iu I9t I3 .

Since x2 , x3 are corresponding lines, it follows that the angle I2KIS

is equal to it — a1#

Hence it follows that the angles I2KS>X , I3KSL are constant.

And similarly we can show that the angles I3KS2) IxKS-2, IiKS3 ,

and I^Si are constant.

Therefore Ilt I2 , I3 are fixed points on the circle of similitude.

Thus we have the theorem : Every triad of corresponding lines

which are concurrent pass through three fixed points on the circle of

similitude.

These fixed points on the circle of similitude are called the

invariable points, and the triangle formed by them is called the

invariable triangle.

226. Ex. 1. Show that the invariable points of a system of three similar

figures are corresponding points.
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Ex. 2. Show that the triangle formed by any three corresponding lines is

inversely similar to the invariable triangle.

Ex. 3. If K be any point on the circle of similitude, show that KIly KI2 ,

KI3 are corresponding lines of the figures Flt F2 ,
F

3
.

Ex. 4. Show that the invariable triangle is in perspective with the

triangle of similitude. If be the centre of perspective, show that the

distances of from the sides of the invariable triangle are inversely

proportional to k
{ , l:

2 , £3 .

Ex. 5. If K be the centre of perspective of the triangle formed by three

corresponding lines x
x , x2 , x

3
and the triangle of similitude, show that

KIlt
KI

2 , KI3
are parallel to &\, x

2 , x3
respectively.

Ex. 6. If x
t , x2 , x3

and x
t
', x

2 , x3
be two triads of corresponding lines,

and if A", K' be the centres of perspective of the triangles x^x^, x{x2 x3
and

the triangle of similitude, show that K and K' are corresponding points of the

directly similar triangles x
x
x
2
x3 , x±x2

x3 .

Ex. 7. Show that the centre of similitude of the triangles formed by two

triads of corresponding lines, is a point on the circle of similitude.

227. The triangle formed by any three corresponding points of

three directly similar figures, is in perspective with the invariable

triangle, and the centre of perspective is a point on the circle of

similitude.

Let Pj, P2 , P3 be any three corresponding points. Then if

I\, I-i, h be the invariable points, the lines /jPu IJPi} I3P3 are

corresponding lines. But these lines intersect on the circle of

similitude, since they pass through the invariable points. Hence

the triangles P^PJP^, IJJ3 are in perspective.

228. Ex. 1. If £,' be that point of F
l
which corresponds to S

l
considered

aa a point of F% or F
3 , show that Slf St

' and I
x
are collinear.

Ex. 2. If S
2\ S3

be similar points corresponding to S2
and &,, show that

the triangles S
l
S2S3 , S^SoS^, and IxI2I3 are copolar.

Ex. 3. If two triangles, formed by two triads of corresponding points,

Ikj in i>crHpcctive, the locus of their centre of perspective is the circle of

similitude. [Tarry.]

229. If three corresponding points be collinear, their line of
(•<>// iiiearity will pass through the centre ofperspective of the triangle

if similitude and the invariable triangle.

Let P,, P„ Ps be three corresponding points which are collinear,

and let /,, /„, I3 be the invariable points. Since Ily Px
are points
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of P, and /,, P2 the corresponding points of P2 , it follows that the

triangles S3IX
I2 , S3PiP2 are directly similar. Therefore, the angle

S3PiP2 is equal to the angle S3IXI2 , and therefore to the angle

S3SJ). Similarly, we can show that the angle #2PiP3 is equal to

the angle SJ330. Hence the angle S2PiS3 is equal to the angle

S.2OS3 . Therefore Px must lie on the circumcircle of S^OS^

Hence, the angle S^O is equal to the angle S3S.20, and there-

fore to the angle S^P*. Therefore the line PXP2P3 must pass

through the point 0.

230. It is evident from the last article that when three

corresponding points Plt P2 , P3 are collinear, each of them lies on

a fixed circle. That is, Px lies on the circumcircle of the triangle

S20S3 , P2 on the circumcircle of the triangle S30Sx , and P3 on

the circle SfiSz.

If P2 and P3 coincide with Su Px will coincide with the point

Si of the figure Fx which corresponds to the point #x considered as

a point of P2 or F3. It is evident then that &/ must lie on the

circumcircle of the triangle S20S3 .

Special cases of three directly similar figures.

231. If three figures be described on the sides of the triangle

ABC so as to be directly similar to each other, the triangle of

similitude of the figures will be the second Brocard triangle of the

triangle ABC (§ 208, Ex. 3) ; and the circle of similitude will be

the Brocard circle of the triangle.

The sides of the triangle ABC will be corresponding lines, and
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the centre of perspective of this triangle and the triangle of

similitude will be the symmedian point of ABC.

Let K be the symmedian point of the triangle ABC, and let

A', B, C be the first Brocard triangle. Then KA', KB', KC are

parallel to BC, CA, AB respectively. Hence A', B', C are the

invariable points of the system (§ 226, Ex. 5).

P

.A

If PQR be the triangle formed by any three corresponding

lines, and if K' be the centre of perspective of the triangles PQR,
and A"B"C", the triangle of similitude, it follows from § 226, Ex. 6,

that the triangle PQR will be directly similar to ABC, and that K'

will be the symmedian point of the triangle PQR.

Thus: If three directly similar figures be described on the sides

of a triangle, any three corresponding lines form a triangle whose

symmedian point lies on the Brocard circle of the given triangle.

232. If A'B'C be the first Brocard triangle, and A"B"C" the

second Brocard triangle of the triangle ABC, the lines A'A",BB",

CC" are concurrent. For A", B", C" are the centres of similitude,

and A', B, C the invariable points of three directly similar figures

described on the sides of the triangle ABC. Hence by § 226, Ex. 4,

the triangles A'B'C, A"B"C" are in perspective.

Let A'A", B'B", CC" intersect in G, then by § 226, Ex. 4, it

follows that the distances of G from the sides of the triangle ABC
are inversely proportional to K

l ,K«, if3 , and therefore are inversely

proportional to BC, CA, AB. But the triangles A'B'C, ABC &re

inversely similar, so that

B'C : CA' : A'B' = BC : CA : AB.
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Hence G is the median point of A'B'C. This point is also the

median point of ABC (§ 222, Ex. 4).

233. Ex. 1. Show that if A'B'C be the first Brocard triangle of the

triangle ABC, the lines BA', CB', AC are concurrent, and intersect on the

Brocard circle.

The points B, C, A are corresponding points of three directly similar

figures described on the sides of ABC, hence BA', CB', AC are corresponding

lines, and the theorem follows from § 225.

Ex. 2. Triangles are described on the sides of a triangle ABC, so as to be

directly similar to each other ; show that their vertices form a triangle in

perspective with the first Brocard triangle of the triangle ABC.

Ex. 3. If in the last case the vertices be collinear, show that their line of

collinearity passes through the median point of the triangle ABC
Show also that each vertex lies on a circle.

If G be the median point ; A", B", C" the vertices of the second Brocard

circle ; the vertices lie on the circumcircles of B"CG, C"A"G, A"B"G. These

three circles are called McCay's circles.

Ex. 4. If P, Q, R be corresponding points of three directly similar figures

described on the sides of the triangle ABC, and if two of the lines AP, BQ, CR
be parallel, show that the three are parallel.

Ex. 5. Similar isosceles triangles BPC, CQA, ARB are described on the

sides of a triangle ABC. If the triangle ABC, the triangle whose sides are

AB', BC, CA', and the triangle whose sides are A'B, B'C, CA, be denoted by

F1} F2 , Fz
respectively, show that the triangle of similitude of F

1 , F2 , Fz is

the tria.igle SQ.Q! formed by the circumcentre and the Brocard points of the

triangle ABC.

Show also that the symmedian points of the triangles are the invariable

points of the system. [Neuberg.]

234. Let ABC be any triangle, and let AA', BR, CC be

drawn perpendicular to the sides. Then the triangles A B'C, A'BC
',

A'B'C are inversely similar to the triangle ABC and therefore

directly similar to each other. The centres of similitude of these

triangles are evidently the points A', B', C.

Let D, E, F be the middle points of the sides of the triangle

ABC; and A", B", C" the middle points of AO, BO, CO, where

is the orthocentre.

Then the perpendiculars at the middle points of AB',A'B, A'B'

are corresponding lines. But these lines meet in the point F.

Similarly, the perpendiculars at the middle points of AC, A'C,

L. 10
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A'C which meet in E are corresponding lines; and the perpen-

diculars at the middle points of B'C, BC, B'G which meet in D
are corresponding lines.

A

Hence, by § 225, D, E, F are points on the circle of similitude
;

that is, the circle A'B'C.

Again, the perpendiculars at the middle points of B'C, AC, A B'

meet in A". Therefore A" is one of the invariable points of the

system. Similarly B", C" are the other invariable points. Hence

A", B", C" lie on the circle of similitude.

Hence the nine points A', B', C, A", B", C", D, E, F, lie on a

circle. t

235. Ex. 1. Show that three corresponding lines of the triangles A B'C,

A'BC", A'B'C form a triangle in perspective with the triangle A'B'C.

Ex. 2. Show that the circumcentre of the triangle formed by three corre-

sponding lines lies on the nine-point circle.

Ex. 3. The three lines joining A", B", C" to corresponding points of

the three triangles coiutersect on the nine-point circle of ABC.

Ex. 4. Every line which passes through the orthocentre of the triangle

ABC meets the circumcircles of the triangles A B'C, A'BC, A'B'C in points

which are corresponding points for the three triangles.

Ex. 5. If P, 1\, P2 , P3 be corresponding points of the triangles ABC,
ABC\ A'BC, A'B'C, show that A"Plt B"P2 , C"P3 meet the nine-point circle

of ABC in the point which is the isogonal conjugate, with respect to the

triangle A"B"C, of the point at infinity on the line joining P to the cir-

cumcentre of ABC.

Ex. 6. Show that the lines joining A", B", C" to the in-centres of the

triangles A B'C, BC'A', CA'E respectively cointersect in the point of contact

of the nine-point circle of the triangle ABC with its inscribed circle.
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236. Ex. 1. If directly similar figures be described on the perpendiculars

of a triangle A BC, show that the circle of similitude will be the circle whose

diameter is the line joining the median point of the triangle to the orthocentre.

Ex. 2. If L, J/, N be the invariable points of these figures, show that the

triangle LMS is inversely similar to the triangle ABC, and that the centre of

similitude of these triangles is the symmedian point of each.

Ex. 3. Show that any three corresponding lines form a triangle whose

median point lies on the circle of similitude.

Ex. 4. If directly similar triangles be described on the perpendiculars of a

given triangle, so that their three vertices are collinear, show that the line of

collinearity will pass through the symmedian point of the given triangle.

Ex. 5. If G be the median point, and the orthocentre of the triangle

ABC, show that the line joining the feet of the perpendiculars from and G
on AG, AO respectively, passes through the symmedian point of the triangle.

10—2



CHAPTER X.

THE CIRCLE.

Introduction.

237. A circle is defined to be the locus of a point which

moves in one plane so as to be always at a constant distance from

a fixed point.

A circle is a curve of the second order ; for, every straight line

which cuts a circle meets it in two points, and no straight line can

be drawn to cut a circle in more than two points. When a straight

line does not cut a circle in real points, it is said to cut it in two

imaginary points.

A straight line may meet a circle in apparently only one point.

In this case, the line is said to cut the circle in two coincident

points, and is called a tangent to the circle.

238. This definition of a tangent may be extended to include

the case of any curve :

The chord joining two consecutive (i.e. indefinitely near) points

on a curve is said to touch the curve.

,' T
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Let P be any point on a curve, and let Q be a near point, at a

finite distance from P. Join PQ. Now let the point Q move

along the curve towards the point P. Then the line PQ turns

about the point P, until Q coincides with P, when PQ will have

the position PT. Thus PT is the limiting position of the chord

PQ, that is PT is the tangent to the given curve at the point P.

In the case of a circle, or any curve of the second order, the

tangent at any point cannot cut the curve again ; but in the

case of curves of order greater than the second, the tangent at any

point will in general cut the curve again.

It is left to the reader to show that the definition of a tangent

to a circle, as given in Euclid, is equivalent to the definition given

above.

239. If we consider the assemblage of lines formed by drawing

the tangents at every point of a circle, it is easy to see that two of

these lines will pass through any given point. Hence a circle is a

curve of the second class.

From a point within a circle, no real tangents can be drawn to

the circle ; that is, the tangent lines which pass through such a

point are imaginary. If the given point be on the circle, only one

tangent can be drawn through it ; that is to say, the two tangents

are coincident.

It follows that when a circle is treated as a curve of the second

class, any point on it is to be regarded as the point of intersection

of two consecutive tangents. More generally, we see that, in the

case of a curve of any class, the point of contact of any tangent line

is the limiting position of the point in which it intersects a near

tangent, when the latter is turned about so as to coincide with the

given line.

240. The simplest definition of a circle regarded as a curve of

the second class is the following

:

The envelope of a straight line which moves in one plane so as to

be always at a constant distancefrom a fixed point is a circle.

Ex. 1. A triangle given in species and magnitude is turned about in a

plane, so that two of its sides pass through two fixed points. Show that the

envelope of the third side is a circle.

Ex. 2. Two sides of a given triangle touch two fixed circles. Show that

the envelope of the third side is a circle.
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Ex. 3. Two circles intersect iu the points A and B, and from a point P
on one of them PA, PB are drawn cutting the other circle in the points Q
and R. Show that the envelope of QR is a circle.

Ex. 4. If two sides of a triangle and its inscribed circle be given in

position, the envelope of its circumcircle is a circle.

Ex. 5. If two sides of a triangle be given in position, and if its perimeter

be given in magnitude, find the envelope of its circumcircle.

241. It is very often instructive to consider how the enunciation of a

particular theorem requires modification when two or more points, or lines, of

a figure coincide. On the other hand a theorem may sometimes be easily

recognised as a special case of a general theorem by taking a slightly more

complicated figure.

Ex. The inscribed circle of the triangle ABC touches the side BC in the

point P, show that the line joining the middle points of BC and AP passes

through the centre of the circle.

Consider any circle touching the sides AB, AC of the triangle; and let

the other tangents which can be drawn from B and C meet in P. Then we
know that the line joining the middle point of BC to the middle point of AP
passes through the centre of this circle (§ 38, Ex. 4). If now we suppose the

circle to be drawn smaller and smaller until it touches BC, P will become the

point of contact of the circle with BC. Hence the theorem is proved.

242. Ex. 1. A circle touches the sides of the triangle ABC in the points

P, Q, R; show that the lines AP, BQ, CR are concurrent.

This may be deduced from Pascal's theorem (§ 181).

Ex. 2. Any point D is taken on the side BC of the triangle ABC, and
circles are drawn passing through D and touching AB, AC respectively at B
and C. Show that these circles meet in a point P, which lies on the circum-

circle of the triangle ABC ; and that the Simson line of P with respect to the

triangle ABC is perpendicular to the line which joins the middle points of

BC, and AD.

See § 148, Ex. 2.
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Ex. 3. If .,1, B, C, D be four points on a circle, such that the pencil

P {AB, CD) is harmonic, where P is any other point on the circle; show that

the tangents at A and B intersect on CD.

Let the tangent at A meet CD in T, and let AB cut CD in V. By § 48,

Ex. 4, the pencil A {AB, CD], that is the pencil A {TB, CD}, is harmonic.

Therefore the range {7T, CD} is harmonic. If the tangent at B meet CD in

7", we can prove in the same way that {T V, CD} is a harmonic range. Hence

T and T' coincide.

Ex. 4. If the pairs of tangents drawn to a circle from two points, A and

B, cut any fifth tangent harmonically, show that the chord of contact of the

tangents from A will pass through B.

See § 48, Ex. 5.

Poles and Polars.

243. If a straight line be drawn through a fixed point 0, and

if the point II be taken on it, which is the harmonic conjugate of 0,

with respect to the two points in which the line cuts a given circle,

the locus of the point R will be a straight line.

Let P, Q be the points in which the straight line cuts the

circle, and let E be the middle point of PQ. Then we have (§ 54,

Ex. 1)

OP.OQ = OE.OR
Also if A OB be the diameter of the circle which passes through

0, and N the harmonic conjugate of with respect to A and B,

we shall also have
OA.OB = OC.ON,

where G is the centre.

But OA.OB = OP.OQ;

therefore OE .OR = OC. ON.

Therefore the points C, E, R, N are concyclic. Hence it follows

that the angle ONR is a right angle.
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Consequently, the locus of the point R is the straight line

which passes through N and is at right angles to CO.

This straight line is called the polar of the point with respect

to the circle ; and the point is said to be the pole of the line.

It should be noticed that if the point is without the circle,

the straight line OR may not intersect the circle in real points.

But in this case the foot of the perpendicular from C may still be

regarded as the middle point of PQ, and the proof given above

applies.

244 The theorem of the last article may also be proved other-

wise thus

:

Let PQ be any chord of a given circle which passes through
the given point 0, and let R be the harmonic conjugate of with
respect to the points P, Q.

Let C be the centre of the circle, and let a circle be drawn
through the points C, P, Q, cutting CO in the point iV.

Then since 0C.0N= OP. 0Q = 0A. OB,
it follows that N is a fixed point.

Now C is the middle point of the arc PCQ, therefore CN bisects
the angle PNQ.

But N {OR, PQ] is a harmonic pencil, by hypothesis. There-
fore XR must be the other bisector of the angle PNQ; that is,

RNC must be a right angle.

Therefore the point R always lies on the straight line which
cuts OC at right angles in the point N.
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245. It is evident that the polar of a point within a circle cuts

the circle in imaginary points ; and that the polar of an external

point cuts the circle in real points. Further, if be an external

point, it is easy to see that its polar will pass through the points

of contact of the two tangents which can be drawn from to the

circle. Let any chord be drawn through the point cutting the

circle in Q and Q', and the polar of in the point R. Then if this

line be turned about the point 0, so as to make the points Q and

Q' approach one another, the point R, which lies between them,

will ultimately coincide with them. Hence, if P be the point of

contact of one of the tangents from 0, when Q and Q' coincide with

the point P, so also will the point R. That is to say, P is a point

on the polar of 0.

246. To construct the polar of a point with respect to a given

circle.

Let be the given point, and let any two chords POQ, P'OQ'
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be drawn. Let PP' intersect QQ' in S ;
and let PQ', P'Q intersect,

in S'. Then SS' is the polar of 0.

For 0, S, S' are the centres of the tetrastigm PP'QQ' ;
and

therefore POQ meets SS' in a point R, which is the harmonic

conjugate of with respect to P and Q.

Thus R is a point on the polar of 0.

Similarly, if P'Q' meet 55' in R', it follows that R is a point

on the polar of 0.

Hence SS' is the polar of 0.

247. If the polar of a point P with respect to a circle pass

through the point Q, the polar of Q will pass through P.

Let PQ cut the circle in M and i\
r

. Then because PMN cuts

the polar of P in Q, {PQ, MX] is a harmonic range. Therefore P
must lie on the polar of Q.

248. We infer that the polars of every point on any straight

line, with respect to a circle, pass through the same point, namely

the pole of the straight line.

Suppose now that the polars of two points P and Q, intersect

in the point R. Then since R is on the polar of P, P is on the

polar of R. Similarly Q is on the polar of R. Hence, PQ is the

polar of R.

Thus, the line joining any two points is the polar of the point

of intersection of the polars of the points ; or, what is the same

thing, the point of intersection of any two lines is the pole of the

line joining the poles of the two lines.
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249. This theorem furnishes us with a simple method for

constructing the pole of a given straight line.

For take any two points on the line, and draw their polars

;

the point in which they intersect will be the pole of the given line.

250. It follows from § 247 that the polar of any point on a

circle is the tangent to the circle, and that the pole of any tangent

to the circle is its point of contact.

Let R be any point on the circle, and let P and Q be any two

points on the tangent at R. The polars of P and Q each pass

through R ; hence R is the pole of PQ. That is, R is the pole

with respect to the circle of the tangent at R to the circle.

251. Ex. 1. If a chord of a circle pass through a fixed point, the locus of

the point of intersection of the tangents at its extremities is the polar of the

point with respect to the circle.

Ex. 2. If P be any point on the polar of 0, show that the line PO will

be the harmonic conjugate of the polar of with respect to the tangents from

P to the circle.

Ex. 3. If any three points be collinear, show that their polars with

respect to a circle will be concurrent.

Ex. 4. Show that the poles with respect to a circle of three concurrent

lines are collinear.

Ex. 5. If from any two points on a given straight line, pairs of tangents

be drawn to a circle, show that the diagonals of the tetragram formed by

them will intersect in the pole of the given line.

Ex. 6. The tangents at the points B and Con a circle intersect in the

point A ; and the tangent at any point P cuts the sides of the triangle ABC
in the points A', T, Z. Show that {PX, YZ) is a harmonic range.

Ex. 7. Any two points P and Q are taken on a chord AB of a circle, and

the polars of P and Q cut AB in the points P', Qf respectively. Show that

the range {Jd?, PP', QQ
1

} is in involution.

Ex. 8. If P3f, QX be drawn perpendicular to the polars of Q and P, with

respect to a circle whose centre is ; show that

PM : QX=0P : 0Q. [Salmon.]

Ex. 9. The tangents at three points A, B, C on a circle form the triangle

A'B'C. Show that the centre of perspective of the triangles ABC, A'BC, is

the pole with respect to the circle of the axis of perspective of the triangles.

Ex. 10. Show that the poles of the symmedian lines of a triangle, with

respect to the circumcircle, lie on the corresponding sides of the triangle.
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Hence show that if the symmedian lines of the triangle ABC cut the \

circumcircle in the points A', B', C, the two triangles ABC, A'B'C are co-

symmedian.

Ex. 11. Show that the lines drawn from the circumcentre of a triangle

perpendicular to the symmedian lines intersect the corresponding sides of the

triangle in three points which are collinear.

Ex. 12. Through the middle point of a chord AOB of a circle, are

drawn any other chords POQ, and ROS. If PR, QS cut AB in H and K,

show that will be the middle point of UK.

Ex. 13. Given the base and the sum or difference of the sides of a

triangle, show that the polar of the vertex with respect to a circle, whose

centre is one extremity of the base, will always touch a fixed circle.

252. Since every diameter of a circle is bisected at the centre,

it follows that the harmonic conjugate of the centre of any circle

with respect to the extremities of any diameter is the point at

infinity on that diameter. Hence, we infer that the centre of any

circle is the pole of the line at infinity.

253. It also follows that the pole of any diameter is the point

at infinity on the diameter which is perpendicular to the given

diameter.

Let be the centre of a circle, and let P, P' be the points

in which two diameters at right angles cut the line at infinity.

Then P is the pole of 0P'
}
and therefore the points P, P' are

harmonic conjugates with respect to the two imaginary points in

which the circle cuts the line at infinity ; or, what is the same

thing, the two imaginary points in which the circle cuts the line

at infinity are harmonic conjugates with respect to P and P'.

Again, if another pair of diameters at right angles be drawn

cutting the line at infinity in the points Q and Q', it follows in

the same way that the imaginary points in which the circle cuts

the line at infinity are also harmonic conjugates with respect to Q
and Q'.

Hence, if we draw a series of pairs of diameters at right angles,

the points in which they meet the line at infinity will form a range

/'/'> QQ',---} in involution, having for double points the points in

which the circle cuts the line at infinity.

If these points be joined to any point A, we clearly have a

pencil A{PP', QQ',...}, such that the conjugate rays intersect at

right angles, and the lines joining A to the points in which the
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circle cuts the line at infinity are the double rays of this

pencil.

Hence, we infer that every circle passes through the same two

imaginary points on the line at infinity.

These two imaginary points have many important properties.

They are called the circular points.

254. Since the centre of a circle is the pole of the line at

infinity, it follows that the lines joining the centre of a circle

to the circular points touch the circle at these points. Hence,

concentric circles have the same tangents at the circular points,

and therefore may be said to touch each other at the circular

points.

Conjugate points and lines.

255. An}- two points are said to be conjugate points with

respect to a circle, when the polar of either passes through the

other.

Any two straight lines are said to be conjugate lines with

respect to a circle, when the pole of either lies on the other.

It is evident that the polars of a pair of conjugate points are

conjugate lines ; and that the poles of a pair of conjugate lines are

conjugate points.

256. It is easy to see that there is in general only one point

on a given straight line which is conjugate to a given point

:

namely, the point in which the given straight line cuts the polar of

the given point. Similarly, through a given point we can draw

but one line which shall be conjugate to a given straight line,

unless the given point be the pole of the given line.

257. Ex. 1. Show that perpendicular diameters of a circle are conjugate

lines with respect to the circle.

Hence, perpendicular diameters are called conjugate diameters.

Ex. 2. Show that the line joining any pair of conjugate points is cut

harmonically by the circle.

Ex. 3. Show that the tangents drawn to a circle from the point of inter-

section of two conjugate lines with respect to the circle, form with these lines

a harmonic pencil.

Ex. 4 If A, A' ; B, B' ; C, C ; be pairs of conjugate points with respect

to a circle, on the same straight line, show that {^4', BB', CC'} is a range in

involution.
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Ex. 5. Through a point two conjugate lines are drawn, and any tangent

meets them in the points P and Q. Show that the other tangents from P
and Q to the circle intersect on the polar of 0.

258. Any two conjugate lines luith respect to a circle, cut the

circle in the points A, B and C, D respectively; if P be any other

point on the circle, the pencil P {AB, CD] is harmonic.

Let be the pole of AB, and let AB intersect CD in H,

Then, {OH, CD) is a harmonic range ; and therefore the pencil

A {OB, CD] is harmonic.

_,, . sin OAC sin OAD
1 neretore =

—

tttd — -—wr n •

sm CAB smBAD
But the angle OAC is equal to the angle APC, and the angle

CAB to the angle CPB.

^ c sin 04C sin APC
Therefore nA1>= -—

ttdd-sm CAB sm CPB
Similarly we can show that

sin OAD sinAPD

Hence,

sin BAD sin BPD
sin APC sin APD
sin CPB sin BPD

'

Therefore the pencil P {AB, CD} is harmonic.

259. Ex. 1. If AB be any chord of a circle, and if the conjugate line to

A li cut the circle in C and D, show that

AC: CB=AD : BD.

Ex. 2. If P, A, B, C, D be five points on a circle, such that the pencil

P ',.{/], CD} is harmonic, show that the lines AB, CD are conjugate with

respect to the circle.

Ex. 3. If A and B be a pair of conjugate points with respect to a circle,

show that the tangents drawn from them to the circle will cut any fifth

tangent in a harmonic range.
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Ex. 4. Deduce from § 258, that if A A', BE, CC be concurrent chords of

a circle, and if P be any other point on the circle, the pencil P {AA', BB', CC)
will be in involution.

Ex. 5. If P be any point on the polar of the point A with respect to the

inscribed (or an escribed) circle of the triangle ABC, show that PB and PC
will be conjugate lines with respect to the circle.

Ex. 6. Any straight line is drawn through the pole of the line BC, with

respect to the circumcircle of the triangle ABC, cutting AC, AB in the points

Q and R. Show that Q and R are conjugate points with respect to the circle.

Ex. 7. The centre of a circle ABC lies on another circle ABP, any

chord of which OP cuts AB in Q. Show that P and Q are conjugate points

with respect to the circle ABC.

Ex. 8. If I be the centre of the inscribed circle of a triangle, and if BP,

CQ be drawn perpendicular to CI, BI respectively; show that P and Q lie

on the polar of A with respect to the circle.

Ex. 9. Through a fixed point of a circle chords are drawn equally inclined

to a fixed direction ; show that the line joining their extremities passes

through a fixed point.

Ex. 10. The tangents to a circle at the points A, B, C, form the triangle

A'B'C" ; and A A' cuts the circle in P. If from any point Q on the tangent at

/', the other tangent QR be drawn, show that the pencil Q{RA', B'C) is

harmonic.

Ex. 11. Three fixed tangents to a circle form a triangle ABC, and on the

tangent at any point P is taken a point Q such that the pencil Q {PA, BC}
is harmonic. Show that the locus of the point Q is a straight line which

touches the circle.

Ex. 12. Two conjugate lines with respect to a circle cut the circle in the

points A, B; and C, D; respectively. Through any point P on AB are

drawn the lines CP, DP cutting the circle in C and D' : show that CD
passes through a fixed point on AB.

Ex. 13. Through a point on a circle are drawn any two chords 0A,

OB. If a chord PQ be drawn conjugate to OA and cutting OB in R, show

that the pencil A {BR, PQ] is harmonic.

Ex. 14. A fixed straight line meets a circle in A and B, and through a

fixed point C on the line A B is drawn a straight line meeting the tangents at

A and B in P and Q ; show that the other tangents to the circle from P and

Q intersect in a point whose locus is a straight line.

Ex. 15. The tangent at the point A to the circumcircle of the triangle

ABC meets the tangents at B and C in' C" and B'. If the lines OB', OC
connecting B and C to any point 0, meet BC in P and Q, show that AB, AC
intersect B'Q, C'P, respectively, in points which lie on the polar of the

point 0.
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260. The circle described on the line joining a pair of conjugate

points with respect to a given circle, as diameter, will cut the given

circle orthogonally.

P

Let P, Q be a pair of conjugate points with respect to the

circle SAB, and let the circle whose diameter is PQ cut the circle

SAB in the points A and B.

Let be the centre of the circle SAB ; and let OP cut this

circle in M and N, and the circle PAQ in R.

Then, since PRQ is a right angle, it follows that QR must be

the polar of P with respect to the circle SAB.

Therefore {PR, MN} is a harmonic range, and therefore

0R.0P=0M* = 0A\

Hence, OA touches the circle PAQ at the point A: and the circle

PAQ cuts the given circle orthogonally.

261. Ex. 1. If two circles cut orthogonally, show that the extremities of

any diameter of either are conjugate points with respect to the other.

Ex. 2. If a system of circles be drawn to cut a given circle orthogonally,

show that the polars with respect to them, of a point on the given circle, are

concurrent.

Ex. 3. Show that any straight line which cuts one circle in a pair of

points conjugate with respect to another circle, cuts the latter in points which

are conjugate with respect to the former.

Ex. 4. Show how to draw a straight line which shall cut two of three

given circles in pairs of conjugate points with respect to the third.

Kx. 5. Show that the circles described on the diagonals of a tetragram as

diameters, cut the circumcircle of the triangle formed by the diagonals

orthogonally.
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Ex. 6. Any pair of conjugate points with respect to a given circle are

taken as centres of two circles which cut the given circle orthogonally. Show
that these circles will cut each other orthogonally.

Conjugate triangles.

262. The triangle formed by the polars of the vertices of a

given triangle with respect to a circle, is called the conjugate

triangle of the given triangle.

If ABC be the given triangle, and A'B'C the conjugate

triangle, so that B'G', C'A\ A'B' are the polars of A, B, C,

respectively, it follows by § 247, that A', B', C will be the

polars of BO, GA, AB, respectively. Thus the triangle ABC is

the conjugate triangle of A'B'C.

263. In the particular case when a triangle coincides with

its conjugate, that is when each vertex is the pole of the opposite

side, the triangle is said to be self-conjugate.

Given any point A, we can always construct a triangle having

one vertex at A, which shall be self-conjugate with respect to a

given circle. Let any point B be taken on the polar of A, and let

the polar ofB cut the polar of A in the point G. Then the triangle

ABC is self-conjugate with respect to the circle.

For, since B lies on the polar of A, the polar of B passes

through A. Therefore AC is the polar of B. Also by § 248, C
must be the polar of AB.

264. If ABC be any self-conjugate triangle with respect to a

11
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circle whose centre is 0, it is easy to see that must be the ortho-

centre of the triangle. For, since A is the pole of BG, OA is

perpendicular to BG. Similarly, OB, OG are perpendicular to CA
and AB respectively.

Let OA meet BG in X, and let r denote the radius of the circle,

then we shall have
r> = OA. OX.

Hence it follows that, given the triangle ABC, only one circle can

be drawn such that the triangle is self-conjugate with respect to it.

The centre of the circle will be the orthocentre of the triangle, and

its radius will be determined by the above formula.

265. This circle is called the 'polar circle of the triangle. It

is evident that it is real, only when the orthocentre lies outside the

triangle ; that is, when one angle of the triangle is greater than a

right angle. If one angle of a triangle be a right angle, the radius

of its polar circle is evanescent.

266. Ex. 1. Show that the polar circle of a triangle cuts orthogonally

the circles described on the sides of the triangle as diameters.

Ex. 2. If ABC be any triangle and its orthocentre, show that the polar

circles of the four triangles ABC, BOC, COA, AOB are mutually orthotomic.

One of these circles is imaginary.

Ex. 3. The polar circles of the four triangles formed by four straight

lines, taken three at a time, cut orthogonally the circles described on the

diagonals of the tetragram formed by the lines, as diameters.

Ex. 4. If ABC be any self-conjugate triangle with respect to a circle, and

if B and C be joined to any point P on the circle, show that BP, CP will cut

the circle in two points Q and R, such that QR will pass through A.

Ex. 5. If ABC be any self-conjugate triangle with respect to a circle, and

if QAR be any chord of this circle ; show that BQ, CR will intersect on the

circle.

Also if BQ intersect CR in P, and if BR intersect CQ in P', show that

PI" will pass through A.

Ex. 6. Show that each side of a triangle cuts the polar circle in two

l>oint.s which are conjugate with respect to the circumcircle.

Ex. 7. Two triangles are self-conjugate with respect to a circle; show
that their six vertices form a Pascal hexastigm, and that their six sides form

a Brianchon hexagram.

267. Any triangle and its conjugate triangle with respect to a

given circle are in perspective.

Let ABC be any triangle, A'B'C the conjugate triangle with

I
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respect to a circle whose centre is 0. Let AX, AX' be drawn
perpendicular to C'A' and A'B'; BY, BY' perpendicular to A'B'

and B'C; and GZ, GZ' perpendicular to B'C and G'A'.

Then since A'B' is the polar of G, and A'C the polar of B, by

§ 251, Ex. 8,

BY.CZ' = 0B:0C;

similarly we shall have,

GZ:AX' = 0C:0A;
and AX: BY' = 0A:0B.

T . ,
BY GZ AX

Therefore _._._ = !.

Hence, by § 179, the triangle ABG, A'B'G are in perspective.

268. Let the sides of the triangle ABC cut the corresponding

sides of the triangle A'B'G' in the points P, Q, R. Then, since A is

the pole of B'C' and A' the pole of BG, it follows that P is the pole

of AA'. Similarly, Q and R are the poles of BB', and CG
respectively.

But, AA', BB', CC meet in the centre of perspective of the two

triangles ; and P, Q, R lie on the axis of perspective.

Hence, the axis of perspective of any triangle and its conjugate

is the polar of the centre ofperspective of the triangles.

269. Ex. 1. Show that any triangle inscribed in a circle is in perspective

with the triangle formed by the tangents at its vertices.

Ex. 2. If ABC and A'B'C be a pair of conjugate triangles with respect

to a circle whose centre is the circumcentre of the triangle ABC; show that

will be the in-centre of the triangle A'B'C.

11—2
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Tetrastigm inscribed in a circle.

270. The centres of any tetrastigm inscribed in a circle form

a self-conjugate triangle.

Let ABCD be any tetrastigm inscribed in a circle, and let

E, F, G be its centres.

Then, if AB, CD cut GE in P and P', it follows by § 141, that

the ranges

{AB, PF) and {CD, P'F]

are harmonic.

Therefore GE is the polar of the point F.

Similarly, EF, FG are the polars of G and E respectively.

Therefore EFG is a self-conjugate triangle with respect to the

circle.

271. Ex. 1. Show that the orthocentre of the triangle formed by the

centres of a tetrastigm inscribed in a circle coincides with the centre of the

circle.

Ex. 2. Show that the circles described on the sides of the triangle formed

by the centres of any tetrastigm inscribed in a given circle, as diameters, cut

the given circle orthogonally.

Ex. 3. If A and B be two fixed points on a circle and PQ any diameter,

show that the locus of the point of intersection of AP and BQ is a circle

which cuts the given circle orthogonally in the points A and B.

Ex. 4. Two circles intersect orthogonally in the points A and B, and
from any point P on one of them PA, PB are drawn cutting the other in the

points </ and R. Show that AR and QB intersect in a point which lies on

the circle PAB.
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Ex. 5. Through the vertex A of the triangle ABC, which is self-conjugate

to a given circle, are drawn two straight lines cutting the circle in the points

P, P' and Q, Qf respectively : show that if the pencil A {PQ, BG) be harmonic,

then B and C will be the other centres of the tetrastigm PP'Qty.

Ex. 6. Show how to inscribe a triangle in a given circle, so that its sides

shall pass respectively through three given points.

Let A, B, C be the given points; and let A'B'C be the conjugate triangle

to the triangle ABC, with respect to the given circle. Let A A', BB', CC cut

B'C, CA', and A'B', in the points B, E, F respectively; and let EF, FD,

BE cut the circle in the points X, X ; Y, Y; Z, Z'; respectively. Then
these points determine two triangles XYZ, X'YZ which satisfy the given

conditions.

For, since A'B, B'E, CF are concurrent (§ 267), it follows (§ 96, Ex. 11)

that B {C'A, EF) is harmonic. Therefore A is one of the centres of the

tetrastigm YZY'Z, by the theorem in Ex. 5.

272. Let ABCD be any tetrastigm inscribed in a circle, and

let E, F, G be its centres. Then since AC and BD pass through

E, which is the pole of FG, it follows that the poles of AC and BD
must lie on FG.

Similarly the poles of AB and DC will lie on EG, and the poles

of BC and AD on FE.

Hence, the tangents to the circle at the vertices of the tetra-

stigm ABCD form a tetragram, whose vertices lie in pairs on the
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lines EF, FG, GE; that is, the diagonals of the tetragram are the

lines joining the centres of the tetrastigm.

EA~-

fb \

273. If a tetrastigm be inscribed in a circle, any straight line

will be cut in involution by the circle and the three pairs of opposite

connectors of the tetrastigm.

Let ABCD be a tetrastigm inscribed in a circle, and let any

straight line be drawn cutting the connectors A G, BD in P and P';

the connectors CD, AB in Q and Q'; the connectors AD, BG in R
and R'\ and the circle in S and S'.

Then the range {PF, QQ', RR, SS'} will be in involution.

Let AC and BD intersect in E. Then since the angles PAR,
R'BP' are equal,

^ sin RPA =^ sin BP'R.

Therefore
AR P'R PE _
RP'BR 'EP'~
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Similarly, since the angles RDP', PCR' are equal,

RD PR' EF_
RF'R'C EP~

Hence, AR.RD: BR'.R'G = RP.RF : PR'.P'R'.

But since ARD, SRS' are chords of a circle,

AR.RD = SR.RS'.

And similarly BR' .R'C= SR'.R'S'.

— §

Therefore SR.RS' : SR'.R'S' = RP.RP' : PR'.P'R'.

Hence, by § 76, the range [SS', PP', RR'} is in involution.

Similarly it may be proved that the range {SS', QQ', RR'} is in

involution.

Consequently the range {SS', PP', QQ', RR] is in involution.

274. Ex. 1. If E, F, G be the centres of any tetrastigm inscribed in a

circle, and P any given point, show that the conjugate rays of EP, FP, GP
with respect to the connectors of the tetrastigm which intersect in E, F, G,

respectively, will intersect in a point which lies on the polar of P with

respect to the circle.

If the point P be on the circle, the lines will intersect on the tangent at P.

Ex. 2. If in the last example, P" be the point of intersection of the rays

conjugate to EP, FP, and GP, show that P and P' are the double points of

the range in involution in which PP is cut by the circle and the connectors

of the tetrastigm.

Ex. 3. If E, F, G be the centres of a tetrastigm inscribed in a circle

whose centres is 0, the conjugate rays of EO, FO, GO with respect to the

connectors of the tetrastigm which pass through E, F, and G will be parallel.

Ex 4. If through any point P, straight lines be drawn parallel to the

connectors of a tetrastigm inscribed in a circle, they will form a pencil in

involution, the double rays of which are perpendicular.

Hence, the bisectors of the angles formed by the pairs of opposite con-

nectors of a tetrastigm inscribed in a circle are parallel.
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275. Since every circle passes through the same pair of imaginary points

on the line at infinity, it follows that a system of circles which have two

finite points common may be considered as circumscribing the same tetrastigm.

Consequently we have the theorem:

A system of circles having two common points, cuts any straight line in a

range in involution.

Ex. 1. Two circles intersect in A and B, and a common tangent touches

them in P and Q. Show that if a system of circles be drawn through the

points A and B, they will cut the line PQ in a range in involution, the double

points of which are P and Q.

Ex. 2. Show that the polar of a given point with respect to any circle

which passes through two fixed points, passes through a fixed point.

Tetragram circumscribed to a circle.

276. The diagonals of any tetragram, circumscribed to a circle

form a self-conjugate triangle with respect to the circle.

Let A, A'; B, B'; C, C be the three pairs of opposite vertices

of a tetragram circumscribed to a circle.

Let AA' cut CC in H, then the pencil B{AA', HB') is

harmonic.

Therefore H is the pole of BB'.

That is, the point of intersection of the diagonals AA', CC, is

the pole of the diagonal BR.

Similarly it may be proved that BB', CC intersect in the pole

of AA'; and that AA', BB' intersect in the pole of CC.

Hence, the lines AA', BB', CC form a self-conjugate triangle.
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277. Since H is the pole of BB', it follows that the polars of

B and B' must pass through H. That is, the lines joining the

points of contact of BA, BA' and the line joining the points of

contact of B'A, B'A' meet in the point of intersection of A A', GC.

Hence, the centres of the tetrastigm formed by the points of

contact of the tetragram are the points of intersection of the

diagonals of the tetragram.

It should be noticed that these theorems might have been inferred from

§272.

278. Ex. 1. If a tetrastigm be inscribed in a circle, show that the

diagonals of the tetragram formed by the tangents at its vertices, intersect

the three pairs of opposite connectors of the tetrastigm in six points which

are the vertices of a tetragram.

Ex. 2. Show also that the three centres of the tetrastigm connect with

the vertices of the tetragram' by six lines which constitute the connectors of

a tetrastigm.

Ex. 3. If P be any point on the side BC of a triangle ABC, self-conjugate

with respect to a given circle, and if Q be the harmonic conjugate of P with

respect to B and C; show that the tangents drawn from P and Q to the

circle will form a tetragram whose diagonals are the sides of the triangle A BC.

Ex. 4. Construct a triangle whose sides shall touch a fixed circle, and

I
whose vertices shall lie on three given straight lines.

Ex. 5. The tangents drawn from the vertices of a triangle ABC, to touch

a given circle, meet the opposite sides in the points X, X' ; Y, Y ; Z, Z';

respectively. If P be the point of intersection of the other tangents which

can be drawn from X and X ; Q the point of intersection of the tangents

from Y and Y' ; and R the point of intersection of the tangents from Z and

Z ; show that the triangles PQR, ABC are in perspective.

Ex. 6. If ABCD be any tetrastigm inscribed in a circle, so that the

connectors AB, BC, CD, DA touch another circle in the points P, Q, R, S
respectively, show that :

—

(i) The lines AC, BD, PR, QS are concurrent.

(ii) PR, QS bisect the angles between AC and BD.

(iii) The polars of the point of intersection of AC and BD with respect

to the two circles are coincident.

279. The tangents drawn from any point to a circle, and the

pairs of straight lines connecting the point to the three 'pairs of
opposite vertices of a tetragram circumscribed to the circle, form a

pencil in involution.
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If OP, OP' be the tangents from to the circle, and if A, A';

B, B'\ C, C be the pairs of opposite vertices of a circumscribing

tetragram, then the pencil [PF, AA', BB', CC'} will be in

involution.

Let G be the centre of the circle ; then, since GO bisects the

angle POP', we have

sin AOP . sin AOF = sin2AOG - sin2 PO G.

---r-r>->°

If r denote the radius of the circle, and a the perpendicular

from G on AO, this result may be written,

G0\ sin AOP . sin AOF = a? - r2
.

Let a' denote the perpendicular from G on OA', and p the

perpendicular on AA', then we shall have :

sin AOP . sin A OP' : sin A'OP .sin A'OP' = a?-i* : d*-r>,

sin A'AF . sinA'AB : sin OAB' . sin OAB =pn--ri
: a2 - r2

,

sin OA'B'. sin OA'B : sin^'.B' . sin AA'B = a'2 - r2
:f - r2.

Therefore,

sin A OP. sin AOP' sin OAB'. sin OAB . sin AA'F. sin 4,4 '£

sin^l'OP. sin A'OP' "sin OA'B'. sinOA'B. sin A'AF. sinA'AB'

But since the lines B'A, B'O, B'A' are concurrent (§ 98),

sin B'A'A. sin F40. sin #04
sin B'A'O. sin #44'. sinFOA

and since the lines BA, BO, BA' are concurrent,

sin BA'A . sin BAO. sin £04'

= -1

Hence

sin £4'0. sin £44'. sin £04
sin 4OP. sin 4OP7

sin 4 Off, sin AOB
sin 4 'OP. sin 4'OP7 ~ sin A'OF. sin 4'0£
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Therefore the pencil {PP\ A A', BB'\ is in involution (§ 89).

In the same way it may be shown that the pencil \PP', AA', CC'\

is in involution.

Hence, the pencil [PP\ A A', BB', CO) is in involution.

280. Ex. 1. If any line be drawn to intersect the diagonals A A', BB,
CC of a tetragram circumscribed to a circle, in the points X, F, Z, show that

the harmonic conjugates of these points with respect to the pairs of opposite

vertices of the tetragram lie on a straight line which is conjugate to the given

line with respect to the circle.

Ex. 2. Show that the line which bisects the diagonals of a tetragram

circumscribed to a circle passes through the centre.

Ex. 3. If any tetragram be circumscribed to a given circle, show that the

circles described on the diagonals of the tetragram will intersect on a fixed

circle concentric with the given circle.

Ex. 4. Given any straight line, find the point on it, such that the pencil

in involution determined by a given circle and a circumscribed tetragram will

have the given line as a double line.

Pascal's and Brianchon's theorems.

281. Pascal's theorem, which relates to a hexastigm inscribed

in a circle, has already been proved in Chapter VIII. (§ 181), where

some further properties of such a hexastigm were investigated.

Pascal's theorem asserts that the opposite connectors of a hexastigm

inscribed in a circle intersect in three collinear points ; that is to

say, if A, B, C, D, E, F be any six points on a circle, then A B, BC,

CD will intersect DE, EF, FA, respectively, in three collinear

points.

The theorem may be readily deduced as a consequence of the
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theorem proved in § 273, viz., that any circle and the pairs of

opposite connectors of any inscribed tetrastigm determine a range

in involution on any straight line.

Let A, B, C, D, E, F be any six points on a circle ; let EF cut

AB, CD, BG, AD in P, P', Y, Y' respectively; let AF cut CD in

Z, and let AB cut DE in X
Since ABCD is a tetrastigm inscribed in the circle, therefore

by § 273, {EF, YT, PP'} is a range in involution.

But the connectors of the tetrastigm AXDZ will cut the line

EF in a range in involution (§ 144). Therefore if XZ cut EF in

W, the range {EF, Y' W, PP"} will be in involution.

It follows that W must coincide with Y. Hence the points

X, Y, Z must be collinear, which is Pascal's theorem.

282. Brianchon's theorem asserts that if a hexagram be

circumscribed to a circle, the three diagonals which connect the

pairs of opposite vertices will be concurrent. That is to say, if

a, b, c, d, e,fbe any six tangents to a circle, then lines joining the

points ab, be, cd respectively to the points de, ef, fa, will be con-

current. The theorem follows at once from § 180, Ex. 3, and it

may'also be deduced from the theorem of § 279.

283. Let us now consider the hexagram formed by drawing

the tangents to a circle at the six points A, B, C, D, E, F; and let

us denote these tangents by a, b, c, d, e,f

It follows from § 272, that the line connecting the points ab, de

is the polar of the point of intersection of the lines AB, DE. And
similarly, every diagonal of the hexagram will be the polar of the

corresponding centre of the inscribed hexastigm.

Hence we may deduce properties of a hexagram circumscribed

to a circle from the properties of a hexastigm inscribed in a circle.

Thus from the theorem : The fifteen connectors of a hexastigm

inscribed in a circle intersect in forty-five points which lie three by

three on sixty lines, which pass three by three through twenty points;

we have the theorem : The fifteen vertices of any hexagram circum-

scribed to a circle, connect by forty-five lines which pass three by

three through sixty points, which lie three by three on twenty lines.
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When the points of contact of the hexagram are the vertices of

the hexastigm, it is easy to see that the sixty Brianchon points of

the former are respectively the poles of the sixty Pascal lines of the

latter.

Ex. Show that if the Lemoine circle of the triangle ABC, cut the Hides

in the points X, X'; T, Y' ; Z, Z', respectively, the axis of perspective of

the triangle ABC, and the triangle formed hy the lines Y'Z, Z'X, X'Y, is the

polar of the symmedian point of the triangle ABC with respect to the Lemoine

circle.



CHAPTER XL

THE THEORY OF RECIPROCATION.

The Principle of Duality.

284. Let us suppose that we have given any geometrical

figure consisting of an assemblage of points. The polars of each

point of the figure with respect to a fixed circle constitute another

figure consisting of an assemblage of lines. These figures are said

to be reciprocal figures with respect to the fixed circle.

Let F and F' be two such reciprocal figures ; we propose to

show that to every descriptive proposition concerning the figure F
corresponds a proposition concerning the figure F'. That is to say,

that when a proposition concerning any figure, regarded as an

assemblage of points, has been proved, a corresponding proposition

may be inferred for the reciprocal figure, regarded as an assemblage

of lines ; and vice versa. In fact it will be seen that the proofs of

two such propositions will correspond step for step.

A proposition relating to any geometrical figure and the corre-

sponding proposition relating to the reciprocal figure are called

reciprocal propositions. The method by which the truth of a

theorem is inferred from the reciprocal theorem, is known as the

" principle of duality."

285. Firstly, let us consider the composition of two reciprocal

figures. Let us suppose that F consists of certain points, lines,

and curves. It is obvious that to each point of F will correspond

a line of F'; and to each point on any line ofF will correspond a line

of F' passing through the pole of the line (§ 247). Consequently,

to each line of F regarded as an assemblage of points will corre-
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spond an assemblage of lines of F' passing through a point. Or,

we may say that to every line of F corresponds a point of F' (§ 4).

Now let us consider a curve of the nth order as belonging to F.

An arbitrary line will cut this curve in n points ; and the lines of

F' corresponding to these points will be concurrent. Hence, corre-

sponding to an assemblage of points of the nth order belonging to

F, there will be an assemblage of lines of the nth class belonging

to F' ; that is, corresponding to a curve of the nth order belonging

to F there will be a curve of the nth class belonging to F'.

In the same manner we may show that if there be a curve of

the nth class belonging to the figure F, there will correspond a

curve of the nth degree belonging to the figure F'.

It is evident that if the same process by which F' was obtained

from F, be applied to the figure F' we shall obtain the original

figure F. Hence the name " reciprocal figures."

286. Secondly, let us consider what relations will subsist

between the several parts of a figure F' corresponding to given

relations between the corresponding parts of a given figure F, of

which F' is the reciprocal figure.

i. If certain points of F lie on a straight line, it follows from

§ 247, that the corresponding lines of F' will pass through a point-

Hence, corresponding to the line joining any two points of F,

we shall have the point of intersection of the corresponding lines

of F'.

ii. If two lines ofF intersect in the point P, the corresponding

points of F' will lie on the line which corresponds to P.

Hence, if several lines of F be concurrent, the corresponding

points of F' will be collinear.

iii. If certain points of F lie on a curve of the nth order, the

corresponding lines of F' will be tangents to a curve of the id\\

class.

Hence, corresponding to the tangent at a point P on a curve

belonging to ^,.we shall have the point of contact with the corre-

sponding curve of the line of F' which corresponds to the point P.

For a tangent to a curve, considered as an assemblage of points, is

the line joining two consecutive points of the system, and a point
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on a curve, considered as an assemblage of lines, is the point of

intersection of two consecutive lines of the system.

iv. If two tangents to a curve belonging to F intersect in a

point P, the corresponding points on the curve belonging to F' will

lie on the line which corresponds to the point P.

v. Corresponding to a point of intersection of two curves of F,

we shall have a common tangent to the corresponding curves

ofP'.

Hence, if two curves of F touch, the corresponding curves of F'

will touch each other.

Thus, it appears that to every descriptive proposition concerning

any geometrical figure, a corresponding proposition may be inferred

for the reciprocal figure.

287. We propose now to give in parallel columns some examples of

descriptive theorems with their reciprocals. The reader however is recom-

mended to attempt to form the reciprocal theorem for himself, before looking

at the reciprocal theorem as given.

Ex. 1. If the lines connecting

the corresponding vertices of two

triangles be concurrent, the corre-

sponding sides of the triangles will

intersect in collinear points. (§ 161.)

Ex. 2. When three triangles are

in perspective, and have a common
centre of perspective, their three axes

of perspective will be concurrent.

(§ no.)

Ex. 3. The nine lines which con-

nect two triads of collinear points

intersect in eighteen points which lie

three by three on six lines, which pass

three by three through two points.

(§ 174)

Ex. 4. In every tetrastigm the

three pairs of opposite connectors

intersect the opposite sides of the

triangle formed by the centres of the

tetrastigm, in six points which are

the pairs of opposite vertices of a

tetragram. (§148, Ex. 4.)

If the points of intersection of the

corresponding sides of two triangles

be collinear, the corresponding ver-

tices of the triangles will lie on con-

current lines. (§ 163.)

When three triangles are in per-

spective, and have a common axis of

perspective, their three centres of

perspective will be collinear. (§ 168.)

The nine points of intersection of

two triads of concurrent lines may
be connected by eighteen lines which

pass three by three through six

points, which lie three by three on

two other lines. (§ 175.)

In every tetragram the three pairs

of opposite vertices connect with the

opposite vertices of the triangle form-

ed by the diagonals of the tetragram,

by six lines which are the pairs of

opposite connectors of a tetrastigm.

(§ 150, Ex. 2.)
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Harmonic Properties.

288. Let us now consider what properties will subsist for a

figure, reciprocal to a given figure, corresponding to harmonic
properties of the given figure.

Let A, B, C, D be four collinear points of a figure F, and lei

a, b, c, d be the corresponding lines of the reciprocal figure F
Let be the centre of the circle of reciprocation : then a, b, c, d
are the polars with respect to this circle of the points A , li, C, D
respectively. Therefore a, b, c, d are respectively perpendicular to

OA, OB, OC, OD.

Suppose now that {AB, CD) is a harmonic range. Then

{AB, CD] is a harmonic pencil, and consequently [ab, crfj w a

harmonic pencil. If, however, the line ABCD passes through 0,

the lines a, b, c, d cut this line in points which are conjugate to

A, B, 0, D respectively; and therefore (§ 257, Ex. 2) the pencil

[ab, cd\ is harmonic.

Hence, if four points of a figure form a harmonic range, the

corresponding lines of the reciprocal figureform a harmonic ]>encil.

289. In the same way we can show that if any system of

points of one figure form a range in involution, the corresponding

system of lines of the reciprocal figure will form a pencil in

involution.

290. The following are reciprocal theorems.

Ex.1. The lines joining any The points in which any diagonal

centre of a given tetrastigm to the of a given tetragraru cuts the other

other centres are harmonic conjugate diagonals are harmonic conjugate

lines with respect to the connectors points with respect to the vertices

of the tetrastigm which pass through of the tetragrani which lie on that

that centre. (§ 141.) diagonal. (§ 149.)

Ex.2. Any straight line is cut The lines connecting any point t-.

in involution by the pairs of opposite the pairs of opposite vertices of a

connectors of any tetrastigm. (§144) tetragram form a pencil in involu-

tion. (§ 154.)

Ex.3. On each diagonal of a Through each centre of s tl

tetragram are taken a pair of points stigm are drawn a i>air of lines

harmonically conjugate to the vertices harmonically conjugate to the e-.i»-

of the tetragram which lie on that nectors of the tetrastigm which iuter-

diagonal. If three of these points sect in that centre. If three of these

be collinear, so also will be the other lines be concurrent, so also

three points. (§153.) the other three lines.

L.
12
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Reciprocation applied to metrical propositions.

291. Let A, B be any two points of a figure F, and let a, b be

the corresponding lines of the reciprocal figure F'. Let be the

centre of the circle of reciprocation, and let p denote the perpen-

dicular distance from on the line A B.

Then p.AB=OA.OB.smAOB.
But since a, b are the polars of A and B,

Oa.OA = Ob.OB = r*:

and sin AOB = sin ab.

Therefore if a and b intersect in P,

r2 .OPAB = ——T^r sin ab ;

and

Oa.Ob'

sin ab = r. A r , n . AB.
OA.OB

292. Let A be any point, and x any line of a figure ; and let

a be the corresponding line, and X the corresponding point of the

reciprocal figure.

Then, being the centre of the circle of reciprocation, we have

(§ 251, Ex. 8)
Ax : Xa = OA : OX.

Therefore Ax =
0XV0a

Xa-

293. By means of these formulae we are able to transform any

metrical theorem so as to obtain the reciprocal theorem. In a

great many instances it will be found that although the formulae
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are apparently complicated, the reciprocal theorem u as simple as

the original theorem.

Ex. 1. If {A BCD} be any range,

AB. CD+BC. AD+ CA . BD = Q.

Ex. 2. If the straight lines which

connect the vertices A, B, C of a

triangle to a point 0, cut the opposite

sides in X, Y, Z,

BX.CV.AZ
XC.VA.ZB~

(§ 94.)

Ex. 3. If a straight line move

so as to be divided in a constant

ratio by the sides of a triangle, the

locus of a point which divides one of

the segments in a given ratio will be

a straight line.

If {abcd\ he any pencil,

sin ab . sin crf+ain /*•. sin ad

+*\nca.mnbdmQ,

If any straight line cut the -

of a triangle ABC in the pointa

X, Y, Z,

sinBAX Bin CBY nnACZ
sin CAX' sin ABT' sin BCZ~

(§ 106.)

If a i>oint move so that the sine*

of the angles Bubtended at it \>y the

sides of a triangle are in constant

ratio, the straight line which divides

one of these angles into parts whose
sines have a given ratio, will |wm
through a fixed point.

294. To find the curve which is reciprocal to a circle. A circle

being a curve of the second order and second class, the reciprocal

curve will be of the second class and second order. It will n«>t in

general be a circle. For if A be the centre of the given circle, /'

any point on it, we have
0A.0X .—

. sin ax,AP =
Ox

where x, and a, are the lines corresponding to the points P and A ;

and X denotes the point ax. Hence, denoting the line OX l»y t,

we see that the ratio sin ax : sin zx will be constant.

It follows that the figure reciprocal to a circle may be defin.il

as the envelope of a line x which divides the angle between a

fixed line a and a variable line z passing through a fixed point ".

into parts whose sines are in a constant ratio.

If we wish to obtain a definition for such a curve as a locus we

must proceed otherwise.

Let TQ be any tangent to the given circle, and let A U- its

centre. Let XiV be the polar of A, and P the pole of QT with

respect to the circle of reciprocation. Let OX, PA be |» rj

diculars on NX, and let 0T, AQ be perpendiculars on J\>

\'2-'2
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Then we have (§ 251, Ex. 8),

AQ:PN=0A : OP.

That is OP :PN=0A:AQ.
Thus the reciprocal curve to the given circle is the locus of a

point which moves so that its distance from a fixed point varies as

its distance from a fixed straight line.

295. If however the circle of reciprocation be concentric with

the given circle, let QT be a tangent to the given circle, and let P
be its pole with respect to the circle of reciprocation ; then we have

OQ . OP constant, and therefore the locus of P will be a concentric

circle.

When we wish to reciprocate theorems concerning a circle, it

is usual to take the circle itself as the circle of reciprocation ; for

this circle evidently reciprocates into itself.

296. The following are examples of reciprocal theorems.

Ex.1. If a tetrastigm be inscribed If a tetragram be circumscribed

in a circle, its three centres form a to a circle, its three diagonals form a

self-conjugate triangle with respect self-conjugate triangle with respect

to the circle. (§ 270.)

Ex. 2. If a hexastigm be in-

scribed in a circle, its opposite con-

nectors intersect in three collinear

points. (Pascal's theorem.)

Ex. 3. If any system of chords

of a circle be drawn through a fixed

to the circle. (§ 276.)

If a hexagram be circumscribed

to a circle, the lines which connect

the three pairs of opposite vertices

will be concurrent. (Brianchon's

theorem.)

If pairs of tangents be drawn to

a given circle from points on a fixed

I
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point, the lines which join their ex-

tremities to any point on the circle

will form a pencil in involution.

(§ 259, Ex. 4.)

Ex. 4. If any straight line be

drawn through the pole of BC, with

respect to the circumcircle of the

triangle ABC, cutting AB and AC in

Q and R, Q and R will be conjugate

points with respect to the circle.

(§ 259, Ex. 6.)

line, they will cut any other tai

to the circle in a range in involution.

If any point P \*i taken on the

polar of the point A with n->i>ect u>

the inscribed (or escrilwd) circle of

the triangle ABC, the Linea /'/;. PC
will l* conjugate lines with respect

to the circle. (§ 259, Ex. 5.)

The Reciprocal of a circle.

297. It was proved in § 294 that the reciprocal curve of a

given circle is the locus of a point which moves so that its distance

from the centre of reciprocation varies as its distance from thr lin»-

which is the reciprocal of the centre of the given circle. Thus the

reciprocal of a given circle is a conic section, whose focus is the

centre of reciprocation and directrix the line which corresponds t<>

the centre of reciprocation. Referring to § 264, we Bee that this

conic will be an ellipse, hyperbola, or parabola, according as the

centre of reciprocation lies within, without, or on the given circle.

298. We propose to derive

sections from the corresponding

Ex. 1. A circle is a curve of the

second order and second class.

Ex. 2. Any tangent to a circle

is perpendicular to the line joining

its point of contact to the centre.

Ex. 3. The line joining the points

of contact of two parallel tangents to

a circle passes through the centre of

the circle.

Ex. 4. Every chord of a circle

which subtends a right angle at a

fixed point on the circle passes

through the centre.

Ex. 5. The difference of the per-

pendiculars let fall from a fixed point

on any pair of parallel tangents to a

circle is constant.

a few of the properties of conic

properties of the circle.

A conic is a curve of the second

class and second order. (§ 285.)

Any point on a conic, ami tin-

point where its tangent meeta the

directrix subtend a right angle at the

focus.

The point of intersection of the

tangents at the extremities of any

focal chord of a conic intersect on

the directrix.

The locus of the point of inter-

section of tangents t<> a j>and>oU

which cut at right angles i.s the

directrix.

The difference of the reciprocal*

of the segments of any focal chord of

a conic is constant.
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Ex. 6. The rectangle contained The rectangle contained by the

by the segments of any chord of a perpendiculars drawn from the focus

circle which passes through a fixed of a conic to a pair of parallel tan-

point is constant. gents is constant.

299. If any point P be taken on a given straight line x, and

a pair of tangents be drawn to a given circle, we know that the

straight line which is the harmonic conjugate of the line x with

respect to the pair of tangents will pass through a fixed point, the

pole of the line x with respect to the circle. Reciprocating with

respect to any point we have the theorem : If a chord of a conic

be drawn through a fixed point, the locus of the harmonic conjugate

of the fixed point tuith respect to the extremities of the chord is a

straight line.

This straight line is called the polar of the fixed point with

respect to the conic. Thus the definition of the polar of a point

with respect to a conic is exactly similar to the definition (§ 243)

for a circle.

If we use the words 'pole,' 'conjugate,' and 'self-conjugate' in

the same sense for a conic as in the case of a circle, we see that in

enunciating the reciprocal of a given theorem concerning a circle,

we shall have to interchange the words ' pole ' and ' polar
;

' but the

words ' conjugate ' and ' self-conjugate ' will be unchanged.

Ex. 1. The line joining any point The line joining the point of inter-

to the centre of a circle is perpen- section of any line with the directrix

dicular to the polar of the point. of a conic to the pole of the line

subtends a right angle at the focus.

Ex. 2. Any triangle and its con- Any triangle and its conjugate

jugate with respect to a circle are in with respect to a conic are in per-

perspective. (§ 267.) spective.

Ex. 3. If a chord of a circle sub- If two tangents to a conic inter-

tend a right angle at a fixed point, sect at right angles, the polar of the

the locus of its pole is another circle, point of intersection envelopes a conic

confocal with the given conic.

Ex. 4. The centres of any tetra- The diagonals of any tetragram

stigm inscribed in a circle form a circumscribed to a conic form a tri-

triangle which is self conjugate with angle which is self-conjugate with

respect to the circle. (§ 270.) respect to the conic.

Ex. 5. The diagonals of a tetra- The centres of any tetrastigm

gram circumscribed to a circle form inscribed in a conic form a triangle

a triangle which is self-conjugate with which is self-conjugate with respect

respect to the circle. (§ 276.) to the conic.
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PROPERTIES OF TWO CIRCLES.

Power of a point with respect to a circle.

300. If through a fixed point 0, any straight line be drawn

cutting a given circle in the points P and Q, the rectangle OP.OQ
has the same value for all positions of the line OP (Euclid, Bk. in.,

Props. 35, 36). The value of this rectangle is called the power of

the point with respect to the circle.

If C be the centre of the circle, and R its radius, the power of

the point is equal to OC 2 — B?, which is equal to the square of

the tangent drawn from to the circle.

For convenience we propose to call the square on the distance

between two points, the power of one point with respect to the

other ; and the perpendicular from a point on a straight line, the

power of the point with respect to the line.

301. Ex. 1. If two circles intersect in the points A and B, the powers of

any point on the line AB with respect to the circles are equal.

Ex. 2. The locus of a point whose power with respect to a given circle is

constant is a concentric circle.

Ex. 3. If the sum of the powers of a point with respect to two given

circles (or a point and a circle) be constant, the locus of the point is <i circle.

Ex. 4. Find a point on the line joining the centres of two circles, such

that its powers with respect to the two circles shall be equal.

Let A and B be the centres of the circles ; a and b their radii. Then

OA*-a?=OB?--bz. But if E be the middle point of AB, (LV-OB*-

20E.AB. Therefore 20E .AB^cfi-b*. This determines the position ->f

the point uniquely, so that there is only one such point on the line AB.

It should be noticed however, that the point at infinity on the line AB

may also be considered as a point whose powers with respect to the two

circles are equal
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302. The locus of a point ivhose -powers with respect to two

given circles are equal, is a straight line.

Let A and B be the centres of the circles ; and let a, b be their

radii.

Let any circle be drawn cutting each of the circles in real

points; and let the common chords of this circle and the given

circles cut in the point P. Then evidently P is a point whose

powers with respect to the given circles are equal.

Draw PO perpendicular to AB.

Then since PA 2 -a2 = PR- - b2
,

therefore OP2 + OA 2 - a2 = OP2 + OB2 - b\

or OA 2 - a2 = OB2 - b2
.

Thus is a point on AB whose powers with respect to the two

circles are equal. But there is only one such point (§ 301, Ex. 4).

Hence, the locus of P is the straight line through the point

which is at right angles to AB.

This straight line is called the radical axis of the two circles.

303. Ex. 1. Show that the locus of point, whose power with respect to

a circle is equal to its power with respect to a point, is a straight line.

Ex. 2. If the power of a point with respect to a circle be proportional to

its power with respect to a straight line, show that the locus of the point will

be a circle.
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Ex. 3. If the powers of a point with respect to two given circl.-

points) be in a constant ratio, show that the locus of the point will

circle.

Ex. 4. Show that the power of any point on the line at infinity with
respect to any circle is constant.

The Radical axis of two Circles.

304. The radical axis of two circles is the straight line which

is the locus of a point whose powers with respect to two given

circles are equal.

When the circles intersect in real points, the radical axis

passes through these points (§ 301, Ex. 1). Hence the jx.lars

with respect to the circles of any point on their radical ;i\i-

will intersect on the radical axis.

But whether the circles intersect in real points or not, the

tangents to the circles from any point on the radical axis are equal.

Therefore any circle which has its centre on the radical axis of two

given circles, and which cuts one of them orthogonally will also cut

the other orthogonally. Let such a circle cut the radical axis of

the given circles in the points P and F. Then P and P' will In*

conjugate points with respect to each of the given circles ($ 261,

Ex. 1). Therefore the polars of any point on the radical axis

intersect on the radical axis.

Now let P, Q, R,... be any points on the radical axis of two

circles ; and let the polars of these points with respect to the circles

intersect in F, Q\ R',..., respectively. Then {PF, QQ', RH
is a range in involution. And the double points of thi^ I

must be the points in which the radical axis cuts either circle It

follows that the radical axis of two circles passes through their

points of intersection, whether these points be real or imaginary.

305. The radical axes of any three circles taken two at a time

are concurrent.

Let two of the radical axes meet in the point P. Then

evidently the powers of the point P with respect to the cirri- -

equal. Therefore P is a point on the third radical axis.

The point of concurrence of the radical axes of three circl-

called the radical centre of the circles.
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306. Hence, we can construct the radical axis of two circles

which do not intersect in real points.

Draw any circle cutting the given circles in real points, and let

the radical axes, that is the common chords, of these circles inter-

sect in the point P. Then P is a point on the radical axis of the

given circles.

Similarly, by drawing another circle we can find another point

Q on the radical axis.

The line PQ will then be the radical axis of the circles.

307. Ex. 1. Show that the six radical axes of the inscribed and escribed

circles of any triangle are the six connectors of a tetrastigm, each vertex of

which is the orthocentre of the triangle formed by the other three.

Ex. 2. If AD, BE, CF be the perpendiculars on the sides of the triangle

ABC, show that the axis of perspective of the triangles ABC, DEF, is the

radical axis of the circumcircles of the triangles.

Ex. 3. Show that the radical axis of the circumcircle of a triangle and

the Lemoine circle of the triangle, is the polar of the symmedian point with

respect to the Lemoine circle.

Ex. 4. Show that the circumcircle of a triangle, its polar circle, and its

nine-point circle have a common radical axis.

Ex. 5. Three circles are described with their centres on the sides BC,

CA, AB of the triangle ABC, and cutting the circumcircle at right angles in

A, B, C, respectively. Prove that these circles have a common radical axis.

[St John's ColL, 1886.]

Ex. 6. Any four points A, B, C, D are taken in a circle; AC, BD
intersect in E ; AB, CD in F; and AD, BC in G. Show that the circles

circumscribing the triangles EAB, ECD intersect the lines AD, BC, in four
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points lying on a fourth circle ; and that if these four circles he taken throe

at a time, the radical centres of the systems so formed will be the vertices of

a parallelogram whose diagonals are the line EF and a line i>arallel to FO.

[Math. Tripos, 1887.]

Ex. 7. The locus of a point the difference of whose powers with respect

to two given circles is constant, is a straight line parallel to the radical axes

of the circles.

308. The radical axis of two circles might have been defined

as the locus of the centre of a circle which cuts each of them

orthogonally.

For if P be the centre of a circle which cuts two given circles

orthogonally, the radius of the circle is equal to the tangent drawn

from P to either of the given circles. Hence P must be a point

on the radical axis of the circles.

Hence we infer that only one circle can be drawn to cut three

given circles orthogonally. The centre of this circle is clearly the

radical centre of the given circles.

309. Every circle which cuts two given circles orthogonally,

passes through two fixed points on the line joining the centres of the

. given circles.

Let A and B be the centres of the given circles; and let OP

be their radical axis, cutting AB in the point 0. Let any circle

which cuts the circles orthogonally meet AB in L and L '; and let

P be the centre of this circle.

Then PL* = PQ> = PA>-AQ>.

Therefore 0L* = 0A* - AQ\

Hence the circle whose centre is 0, and radius OL, will cut the

given circles orthogonally.
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It follows that every circle which cuts the given circles ortho-

gonally will pass through the points L, L'.

It is easy to see that these points are real or imaginary accord-

ing as the given circles intersect in imaginary or real points.

310. Ex. 1. If two circles cut two other circles orthogonally, show that

the radical axis of either pair is the line joining the centres of the other pair.

Ex. 2. If four circles be mutually orthotomic, show that the centre of

any one of them is the orthocentre of the triangle formed by the centres of

the other three.

Ex. 3. Show that the points L and L' (§ 309) are conjugate points with

respect to each of the given circles.

Ex. 4. If A, A'; B, B ; C, C be the pairs of opposite vertices of a

tetragram, show that the circles described on A A', BB, CC have a common
radical axis, which passes through the centre of the circumcircle of the

triangle formed by the lines A A', BB\ CC.

Ex. 5. If four circles cut a fifth circle orthogonally, show that their six

radical axes form a pencil in involution.

311. The difference of the powers of any point with respect to

two given circles is proportional to the power of the point with

respect to the radical axis of the circles.

Let A and B be the centres of the circles ; OM their radical

axis ; and let G be the middle point of A B.

Let P be any point ; and let PM, PN be the perpendiculars

from P on OM and AB.

Then the difference of the powers of P with respect to the

circles is equal to

PR" - PQ\

that is, PB2 - PA 2 + AD°- - BE\

.
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or, KB2 - NA + A D- - BE*.

But NB3 - NA* = 2NG . A B,

and (§ 301, Ex. 4), AD> - BE* = 20G . BA.

Therefore PR- -PQ? = 2GN.BA + 20G . BA
= 20N.BA = 2PM.Ali.

Thus the difference of the powers of the point P with respect

to the given circles is equal to 2PM .AB.

312. Ex. 1. Show that the power, with respect to a circle, of a point on

another circle, is proportional to the power of the point with rewi>ect to the

radical axis of the circles.

Ex. 2. Given any three circles having a common radical axis, show that

the powers with respect to two of them of any point on the third circle are

in a constant ratio.

Ex. 3. If the powers of any point with respect to two given circles !»• in

a constant ratio, show that the locus of the point is a circle which has a

common radical axis with the given circles.

Ex. 4. The radius of a circle which touches two given circles bears a

constant ratio to the distance of its centre from the radical axis of the given

circles.

Power of two circles.

313. The square on the distance between the centres of two

circles less the squares on their radii is called the power of the

two circles, or the power of one circle with respect to the other.

It will be convenient to consider the angle of intersection of

two circles to be the angle subtended at either point of intersection

by the line which joins the centres of the circles; so that in the

case of two equal circles, the angle of intersection is tin- angle

through which one of them must be turned about its point of

intersection with the other, so that the two may coincide.

If d denote the distance between the centres of two circles ;
r, r their

radii; and 6 their angle of intersection; the power of the circles is equ.il t<>

cP — r2—Z2
, or — 2rr'cos0.

The power of two circles is always a real magnitude, two when

the circles are imaginary, provided their centres arc real points;

but it may be either positive or negative. When the circh-s cut

orthogonally the power vanishes; when they touch the power is

equal to ± 2rr' according as the contact is external or internal.
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The power of two coincident circles, that is the power of a circle

with respect to itself, is equal to — 2r2
.

If any two circles be denoted by X, Y, the power of the circles

is usually denoted by (X, Y).

314. It is often convenient to consider a point as a circle

whose radius is indefinitely small, and a straight line as a circle

whose radius is infinitely great. When a point is treated as a

circle, it is usually referred to as a point-circle.

If in the definition of the power of two circles, either of the

circles be a point-circle, its power with respect to the other is

clearly equal to the square on the tangent which can be drawn

from the point to the circle. So that the definition given in § 300

is included in that given in § 313. Similarly, the power of two

point-circles will be the square of the distance between the points.

In the case of a circle and a straight line, considered as a circle

whose radius is infinite, the power is clearly proportional to r cos 6,

where r is the radius of the circle, and 6 the angle at which the

circle cuts the line. Hence we may take as the power of a straight

line and a circle the perpendicular distance from the centre of the

circle on the straight line. Similarly we may take as the power of

two straight lines the cosine of their angle of intersection.

Considering the case of the line at infinity, it is easy to see

that the powers of any two circles with respect to the line at

infinity will be in a ratio of equality, but the power of a straight

line with respect to it will be zero.

315. The definitions given in the last article are seldom

required, bat it will generally be found that if any theorem

relating to points, lines, and circles, can be expressed as a power-

theorem (that is a metrical theorem in which the only metrical

magnitudes involved are powers), a corresponding theorem may be

enunciated for a more general figure in which the points and lines

are replaced by circles.

Ex. 1. If the power of a variable circle with respect to a given circle be

constant, the variable circle will cut orthogonally a fixed circle concentric with

the given circle. (Cf. § 301, Ex. 2.)

Let X denote the fixed circle, and Z the variable circle; let A, C denote

their centres ; and let a, c denote their radii. Then we have AC2 -a?-c2=
constant=k2

. Hence, if a circle X' be described with A for centre, and
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radius a', given by a' 2= a2+ F, it is clear that the power of the circle* Z end
X' will be zero; that is, the circle J? will cut A" orthogonally.

Ex. 2. If the sum of the powers of a variable circle and two given drcln
be constant, the variable circle will cut orthogonally a fixed circle, (Cf. § 301,

Ex. 3.)

Ex. 3. The difference of the powers of a circle with respect to two given

circles is proportional to the power of that circle with respect to the radical

axis of the given circles. (Cf. § 311.)

Ex. 4. If a circle be drawn cutting orthogonally one of two given circlet,

its power with respect to the other given circle is proportional to its power

with respect to the radical axis of the given circles. (Cf. § 312, Ex. 1.)

Ex. 5. If the powers of a variable circle with respect to two given circles

be in a constant ratio, the variable circle will cut orthogonally a fixed circle

which has a common radical axis with the given circles. (Cf. § 312, Ex. 3.)

Ex. 6. If a circle touch two given circles it must cut orthogonally one or

other of two fixed circles.

Ex. 7. The locus of the centre of a circle which bisects two given circles,

that is cuts them in points which are opposite ends of diameters, is a straight

line parallel to the radical axis of the circles.

Ex. 8. Show that one circle can be drawn which shall bisect three given

circles, and construct it.

Ex. 9. Show that one circle can be drawn which shall be bisected by

three given circles.

This circle is concentric with, and cuts orthogonally the circle which cuts

the given circles orthogonally. Hence, the former is a real circle only when

the latter is imaginary.

Centres of similitude of two circles.

316. Any two circles may evidently be regarded as diagrams

of the same figure drawn to different scales. Hence two circles

may be considered as directly similar figures (§ 216).

Let P be any point on one circle : then we may obviously take

any point P' on the other circle as the point which corresponds t->

P. The correspondence will then be determined. For, if the

points Q, Q' be any other pair of corresponding points, the ares

PQ, P'Q must subtend at the centres of the circles equal an

measured in the same sense. It follows that then: will hi' an

infinite number of positions for the centre of similitude.

Let us suppose that we have given a pair of corresponding

points on the two circles.
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To find the centre of similitude we must proceed as in § 205.

Thus let P and P' be the given points which correspond, and let

C and C" be the centres of the circles. Then if CP meet G'P' in

T, the circles which circumscribe the triangles TPP', TCC will

intersect in the centre of similitude.

Let S be the centre of similitude, then it follows from § 214,

that

SC : SC' = SP : SP' = GP : CP'.

Hence the locus of the centre of similitude of two circles is a

circle which has a common radical axis with the point-circles C and

C (§ 319, Ex. 3).

This circle is called the circle of similitude of the given circles.

317. Ex. 1. Show that the circle of similitude of two given circles has

with them a common radical axis.

Let S be any point on the circle of similitude. Then SC : SC'= r : r \

therefore the powers of the point S with respect to the given circles are in the

ratio of the squares on their radii. Hence, the theorem follows from § 312,

Ex.3.

Ex. 2. Show that if from any point on the circle of similitude of two

given circles, pairs of tangents be drawn to both circles, the angle between

one pair will be equal to the angle between the other pair.

Ex. 3. Show that the three circles of similitude of three circles taken in

pairs have a common radical axis.

Ex. 4. Show that the three circles of similitude of three given circles cut

orthogonally the circumcircle of the triangle formed by the centres of the

given circles.

Ex. 5. Prove that there are two points, each of which has the property

that its distances from the angular points of a triangle are proportional to the
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opposite sides ; and that the line joining them passes through the centre of

the circumcircle. [Math. Tripos, 1888.]

This theorem is also true when the distances from the angular points are

in any given ratio.

Ex. 6. If A, B, C, D be any four points on a circle; and if AB, CD
intersect in E: AC, BD in F; and AD, CB in G ; show that the circle

described on FG as diameter is the circle of similitude of the circles described

on AB and CD.

Ex. 7. If be the orthocentre, and G the median point of the triangle

ABC, show that the circle described on OG as diameter is the circle of

similitude of the circumcircle and nine-point circle of the triangle.

318. Given a centre of similitude of two given circles to find the

corresponding points on the circles.

Let C, C be the centres of the given circles; S the given

centre of similitude, on the circle of similitude.

If P be any point on the circle whose centre is C, the corre-

sponding point P on the other circle will be such that the angles

CSP, C'SP' are equal and measured in the same sense (§ 214).

Also the angle PSP' will be equal to the angle CSC. Hence

if S coincide with either of the points in which the circle of simi-

litude cuts the line CC, the points P and F will be collinear with

S. That is, the circles will have these points for nomothetic centivs

<§ 213).

319. Let the circle of similitude cut the line joining the

centres G, C in the points H and H'. Then when it is necessary

to distinguish these points, we shall call that point which does not

lie between the centres the homothetic centre of the circles, and

the point which lies between the centres the anti-homothetic centre

of the circles.

13
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These points are often called the external and internal centres

of similitude, but these names are clearly inappropriate, since any

point on the circle of similitude may be considered as a centre of

similitude.

320. Ex. 1. Show that two of the common tangents of two circles pass

through each homothetic centre.

Ex. 2. If H and H' be the homothetic centres of two circles whose

centres are C and C, show that {HH', CC'} is a harmonic range.

Ex 3. If A' and K' be the poles of the radical axis of two circles, and

// and W their homothetic centres, show that {KK 1

, HH'} is a harmonic-

range.

Ex. 4. If through either homothetic centre of two circles, a line be

drawn to cut the circles in the points P, Q ; P', Q' ; respectively, so that P
and P' are corresponding points ; show that

HP.HQ'=HQ.HP';

and that these rectangles have a constant value for all positions of the

line HP.

Ex. 5. If the line joining the homothetic centres of two circles, cut them

in A, B and A', B' respectively, show that {HH', AB, A'B'} is a range in

involution.

Ex. 6. Through either homothetic centre of two given circles are drawn
two lines HP, Hp cutting the circles respectively in the points P, Q,p,q;
/'') Q

1

, P\ ?' » show that any pair of non-corresponding chords such as Pp,

</</ will intersect on the radical axis of the given circles.

Since ///'. If(/ = Hp.H</ (Ex. 4), the points P, Q\ p, q' are concyclic.

Therefore if I'p meet </q' in T, TP. Tp= TQ' . Tq'. Hence T is a point on the

radical axin of the circles.
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Ex. 7. If from any point T, on the radical axis of two circles, tangents be

drawn to the circles ; show that the homothetic centres of the circles will be

two of the centres of the tetrastigm formed by the points of contact.

Ex. 8. The line joining the centres of two circles meets one of the circles

in the point A, and the other in the point B; and P is any point on the

radical axis of the circles. If PA, PB cut the circles in Q and R, show that

the tangents at Q and R meet on the radical axis.

Ex. 9. If any circle be drawn to touch two given circles, show that the

line joining the points of contact will pass through one of the homothetic

centres.

Let a circle be drawn touching two given circles in the points P and Q'.

Then, if be its centre, and A and B the centres of the given circles, it

is evident that A P, BQ are equally inclined to PQ1

. Therefore, if PQ1

cut

the given circles in Q and P', AQ and BQ' are parallel. Therefore PQ must

pass through H, one of the homothetic centres of the given circles.

If the variable circle touch the given circles both internally, or both

externally, the line joining the points of contact will pass through the

homothetic centre of the given circles ; but if the circle touch one of the

given circles internally and one externally, the line joining the points of

contact will pass through the anti-homothetic centre.

Ex. 10. Show that if a variable circle touch two given circles it will cut

orthogonally one or other of two fixed circles, whose centres are the homo-

thetic centres of the given circles, and which have a common radical axis with

the given circles.

Ex. 11. If two circles be drawn to touch two given circles, show that the

radical axis of either pair will pass through a homothetic centre of the other

pair, provided that : if one of the circles touches the given circles both

externally or both internally, so also does the other ; or, if one of the circles

touch one of the given circles internally and the other externally, so also does

the other.

13—2
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Ex. 12. Two circles are drawn through a fixed point to touch two fixed

straight lines AB, AC in the points D, E and F, G respectively. Show that

the circles circumscribing the triangles ODE, OFG touch one another in the

point 0. [St John's Coll. 1887.]

Ex. 13. Two circles APB, AQB touch a third in the points P and Q.

Show that

AP: AQ=BP:BQ.

Ex. 14. If the inscribed circle of the triangle ABC touch the side BG in

the point P, and if D, R be the middle points of BC and AP, show that DR
passes through the centre of the inscribed circle.

Let the escribed circle which is on the opposite side of BC touch BC in Q,

and let A Q cut the inscribed circle in P'. Then, since A is the homothetic

centre of the two circles, if 0, O be the centres of the circles, OF and CQ are

parallel. Hence P, 0, F are collinear. But D is the middle point of PQ.
Therefore D, 0, R are collinear.

The theorem is also true of any one of the circles which touch the sides of

the triangle.

For another proof of this theorem see § 241.

Ex. 15. If 0, O be the centres of any two circles which touch two given

circles in the same sense, at the points P, Q and P', Q' respectively,

show that

PQ2
: PQ*= AO. BO : AO? . BC,

where A and B are the centres of the given circles.

Ex. 16. A circle whose centre is touches two given circles, whose
centres are A and B, at P and Q, and FG is the common tangent of the
given circles which passes through the point of intersection of AB and PQ.
Show that

PQ2 :FG*=OP2
: AO.BO.

321. The six homothetic centres of three circles taken in pairs,

are the six vertices of a tetragram.
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Let A, B, G be the centres of the given circles ; and let their

radii be denoted by a, b, c. Let X, Y, Z be the homothetic centres

and X', Y', Z' the anti-homothetic centres of the three pairs of

circles.

Then since BX : CX = b: c,

CY:AY= c:a,

AZ.BZ = a:b;

. , BX GY AZ .

therefore CX'AY'BZ* 1'

Therefore (§ 105) the points X, Y, Z are collinear.

Again, since GY' : Y'A = c:a,

AZ':Z'B = a:b;

., f
BX GY' A#_-

tnereiore ^iv • ~yTa • wit ~ >

BX GY' AZ'
that is, _._.__i.
Therefore the points X, Y', Z' are collinear.

In the same way we may show that the points X', Y, Z' are

collinear ; and that the points X', Y', Z are collinear.

Hence X, X'; Y, Y'; Z, Z' are the opposite pairs of vertices of

a tetragram.

These four lines are called the axes of similitude or the homo-

thetic axes of the given circles.

322. Ex. 1. Show that the lines AX, AX'; BY, BY'; CZ, CZ' are the

three pairs of opposite connectors of a tetrastigm.

Ex. 2. If a variable circle touch two fixed circles, the hue joining the

points of contact passes through one of the homothetic centres of the given

circles.

Let A, B denote the given circles, and let X denote a circle touching A
and B in the points P and Q. Then P and Q are homothetic centres of the

pairs of circles A, X ; and B, X ; respectively.

Ex. 3. If the nine-point circle of the triangle ABC touch the inscribed

circle at the point P, and the escribed circles at the points P
t , P2 , P3 ; show

that PP
X
and P%PZ cut BC in the same points as the internal and external

bisectors of the angle BAC.

Ex. 4. Describe a circle which shall touch two given circles and pass

through a given point.
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Let E be the given point. Let it be required to draw a circle passing

through E, which shall touch each of the given circles externally. Then the

line joining the points of contact P and (? must pass through 27, and

HP.HQ=HA'.HB.

Draw the circle A'BE, and let it cut HE in F, and one of the given circles

in R. Let BR cut EF in T, and from T draw a line touching the circle BRA
in P. Then the circle circumscribing the triangle EFP will touch the given

circles.

Since two tangents may be drawn from the point T to the circle ABR, it

follows that two circles can be drawn to touch the given circles, so that the

line joining the points of contact shall pass through the homothetic centre 27.

Similarly, it is evident that two circles can be drawn to pass through E
ind touch the given circles, so that the line joining the point of contact shall

pass through the anti-homothetic centre H'.

Thus, four circles can be drawn satisfying the given conditions.

Ex. 5. Show how to describe a circle which shall touch three given

circles.
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There will generally be eight circles which can be drawn to touch three

given circles ; that is, two circles touching the given circles each in the same

sense, and three pairs of circles which touch one of the given circles in the

opposite sense to that in which it touches the other two.

Let us suppose that is the centre of the circle which touches each of the

three given circles externally. Let A, B, C be the centres of the given

circles; and let a, b, c denote their radii, and let us suppose that a is not

greater than b or c. Then, if r denote the radius of the circle which touches

them, it is evident that a circle described with for centre, and with radius

equal to r+a, will pass through the point A and touch externally two circles

whose centres are B and C, and radii b - a, c-a, respectively.

Now this circle may be easily constructed as in Ex. 4 ; and thus we shall

be able to find the point 0.

In the same manner the centres of the other seven circles can be found.

Ex. 6. If two circles X, X' be drawn to touch three given circles A, B, C,

so that each touches all of the given circles externally, or all internally, show

that the radical axis of X and X' passes through the three homothetic

centres of A, B, and C; and that the radical centre of A, B, and C is the

anti-homothetic centre of X and X'.

Ex. 7. Describe a circle which shall touch two given circles and cut

a given circle orthogonally.

Show that four circles can be drawn satisfying these conditions.



CHAPTER XIII.

COAXAL CIRCLES.

The Limiting Points.

323. If any system of circles have a common radical axis, the

circles are said to be coaxal.

It was proved in § 308, that if with any point P, on the radical

axis of two circles, as centre, a circle be described cutting either

circle orthogonally, it will also cut the other circle orthogonally.

Hence, if the centre of a circle which cuts one circle of a coaxal

system orthogonally, lie on the radical axis, the circle will cut all

the circles of the system orthogonally. From § 309, it follows that

any such circle will cut the line of centres of the circles of the

system in two fixed points.

Let these fixed points be L and L'. Then it is evident that
the power of the point P with respect to the point-circle L is

equal to the power of P with respect to any circle of the system.
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Hence the point L, and similarly the point L', may be considered

as a point-circle belonging to the coaxal system.

Hence, in every coaxal system there are two circles whose radii

are indefinitely small.

These point-circles are called the limiting points of the

system. They are evidently real only when the circles do not

intersect in real points.

324. Ex. 1. If the circles of a coaxal system touch at the point 0, show

that the limiting points coincide in the point 0.

Ex. 2. If any circle of a coaxal system pass through a limiting point of

the system, show that the two limiting points must coincide, and that the

circles of the system will touch each other at this point.

Ex. 3. Show that the polars of a fixed point with respect to the circles of

a coaxal system are concurrent.

Let Q be the given point, and let the limiting points of the system be Z,

and U. Let Q' be the opposite extremity of the diameter of the circle QLL'

which passes through Q. Then since this circle cuts each circle of the given

coaxal system orthogonally, it follows from § 261, Ex. 1, that Q and Q
1

will

be conjugate points with respect to every circle of the system. Therefore the

polars of the point Q will intersect concurrently in the point Qf.

If, however, Q be a point on the line LL\ this proof fails. But in this case

it is evident that the polars of the point Q will be perpendicular to the line

LL', and will therefore meet in a point at infinity.

Ex. 4. If that circle of the system which passes through the point Q, in

the last example, be drawn, show that it will touch QQ'.

Ex. 5. Show that the polar of a limiting point with respect to any circle

of the system is the line which passes through the other limiting point and is

parallel to the radical axis.

Ex. 6. If Q, <7 be a pair of points which are conjugate with respect to

every circle of a coaxal system, show that QQf subtends a right angle at each

limiting point.

Ex. 7. Show that the radical axes of the circles of a coaxal system and any

given circle are concurrent.

Ex. 8. If two systems of coaxal circles have one circle (or a limiting point)

common, they have a common orthogonal circle.

Ex. 9. Three circles have their centres collinear and cut orthogonally a

given circle, show that they are coaxal.

Ex. 10. Show that any line is cut in involution by the circles of a coaxal

system.
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Ex. 11. If a straight line cut any two circles of a coaxal system in the

points P, Q ; /*,</: respectively, and the radical axis in the point 0, show

that PF and W will subtend equal or supplementary angles at any point of

the circle, whose centre is 0, which cuts the given circles orthogonally.

Ex. 12. On two straight lines are taken the points P, Q, R, S,... ; and

/", </, R1

, <$",... ; respectively, so that

PQ:Fq = PR: P'R'= PS : PS'= kc...

If the straight lines intersect in the point 0, show that the circles OPP,

OQQ, ORR', &c., are coaxal.

325. Ex. 1. Construct a circle which shall be coaxal with a given system

of coaxal circles, and cut a given circle orthogonally.

Let Z denote the given circle, and let Y, Y' be any circles which cut each

circle of the given system orthogonally. Then the circle which cuts Z, F, Y
orthogonally will clearly satisfy the conditions of the question.

There is only one solution to the problem.

Ex. 2. Construct a circle which shall be coaxal with a given system, and

touch a given circle.

Let Z denote the given circle, and let X, X' denote any circles of the coaxal

system. Let the circle, Y say, which cuts Z, X, X' orthogonally, cut Z in. the

points P and Q. Then if the tangents to Y at P and Q cut the line joining

the centres of X and X' and C and C, it is easy to see that the circles whose

centres are C and C and radii CP, C'Q respectively, will touch the circle Z
and be coaxal with X and X'.

Ex. 3. Show that two circles of a coaxal system can be drawn which shall

touch a given straight line.

Ex. 4. If the two circles of a coaxal system which touch a given straight

liue, touch it in P and Q, show that PQ subtends a right angle at each of the

limiting points of the system.

Orthogonal coaxal systems.

326. Every circle which cuts two circles of a coaxal system

orthogonally, cuts every circle of the system orthogonally, and

every such circle passes through the limiting points of the system

(§ 323). Hence, given any system of coaxal circles, another

system <»t' coaxal circles may be constructed such that every circle

of either system cuts orthogonally every circle of the other system.

Two such systems are called orthogonal systems of coaxal

circles.

It is evident from § 309, that if the limiting points of a given

m be real, the limiting points of the orthogonal system will

1m- imaginary. The limiting points of either system are sometimes
called the antipoints of the limiting points of the other system.
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327. Ex. 1. Show that the polar circles of the four triangles formed by

four straight lines, taken three at a time, and the circles described on the

diagonals of the tetragram formed by the lines as diameters, are orthogonal

systems of coaxal circles.

Hence, the orthocentres of the four triangles formed by four lines lie on a

straight line which is perpendicular to the line which bisects the diagonals of

the tetragram formed by the lines.

Ex. 2. If X, Y, Z be collinear homothetic centres of three circles, show
that the circles described with these points for centres and coaxal with the

three pairs of circles, will be coaxal.

Ex. 3. Show that the antipoints of four concyclic points lie four by four

on three circles orthotomic with each other and the original circle.

Relations between the powers of coaxal circles.

328. The difference of the powers of a variable circle with

respect to two given circles is equal to twice the rectangle contained

by the power of the variable circle with respect to the radical axis

of the given circles, and the distance between their centres.

Let X, Y denote the given circles, and let Z denote the

variable circle. Then if A, B, Che the centres of these circles, we
have by § 311,

(ZX) - (ZY) = (CX) - (CY)

= 2AB.NC,

where GN is the perpendicular from G on the radical axis of the

system.

329. Let Xly X2 , X3 ,..., denote any circles of a given coaxal

system, and let X be that circle of the system which cuts

orthogonally a given circle Z. Then if A, A l} A 2 , A 3} ... be the

centres of the circles X, Xu X2 , X3 ,..., we have since (ZX) = 0,

(ZX,) : (ZX9) : (ZX3) = AA X : AA, : AA 3 .

Thus : If a variable circle be drawn cutting a fixed circle of a

coaxal system orthogonally, its powers with respect to any fixed

circles of the system are in a constant ratio.

The converse of this theorem is also true. For, let Z denote

any circle whose powers with respect to two circles Jh X2) of a

coaxal system are in a constant ratio. And let X denote that
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circle of the system which cuts Z orthogonally. Then if A, A x ,

A„ be the centres of the circles X, Xx , X2 , we have

(ZX1
):(ZX2

)=AA 1
:AA 2 .

Therefore AA 1
: AA 2 is a constant ratio; and therefore the point

A is fixed, that is to say, the circle Z will always cut the same

circle, X, orthogonally. Thus we have the theorem: If the

powers of a variable circle with respect to two given circles be in a

constant ratio, the variable circle cuts orthogonally a fixed circle

coaxal with the given circles.

330. Let us consider the case of a variable circle which cuts

two given circles at constant angles.

Let Z be a variable circle which cuts the given circles Xx , X>,

at angles alf a* Then if p, ru r2 denote the radii of these circles,

we have

{ZXX) = - 1pr
x
cos alt (ZX«) = — 1pr2 cos o^.

Therefore

(ZXi) : (ZX2) = rx cos a 1 :r2 cos a2.

Hence by § 329, Z cuts orthogonally a fixed circle coaxal with the

circles Xlt X2 .

Again, let X3 denote any other circle coaxal with Xx
and X.,,

and let X3 cut Z at the angle a3 . Then by the last article, the

ratio (ZX
X ) : (ZX3) is constant ; that is, the ratio rx cos ax : r3 cos a3

is constant.

Therefore a3 is a constant angle.

Hence we have the theorem : A variable circle ivhich cuts two

fired circles of a coaxal system at constant angles, cuts every circle

of the same system at a constant angle.

Now two circles of a coaxal system can always be drawn to

touch a given circle. We infer from the last theorem that if X, X'

be the two circles coaxal with Xlt X2 , which touch the variable

circle Z in any position, then X, and X' will touch Z in all its

positions. Thus: A variable circle which cuts two fixed circles of
a coaxal system at constant angles, will always touch two fixed

circles <f the same system.

331. Kx. 1 . Show that if the powers of a variable circle with respect to

three given circles be in constant ratio, the variable circle will be coaxal with
the circle which cuts the given circles orthogonally.
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Ex. 2. If X, Y, Z be any three given circles, and if circles X', Y', Z' be

drawn cutting a fourth given circle orthogonally, and coaxal respectively with

the pairs of circles Y, Z; Z, X ; X, Y; show that the circles X', Y', Z' are

coaxal.

Ex. 3. Show that all circles which cut three given circles at the same
angle form a coaxal system.

Ex. 4. Show that all circles which cut three given circles at the same or

supplementary angles form four coaxal systems, whose radical axes are the

axes of similitude of the given circles.

Ex. 5. If the product of the tangents, from a variable point P to two

given circles, has a given ratio to the square of the tangent from P to a third

given circle coaxal with the former, the locus of P is a circle of the same
system.

Ex. 6. If the product of the powers of a variable circle with respect to two

given circles, has a constant ratio to the square of the power of the circle with

respect to a third circle coaxal with the former, the variable circle will cut

orthogonally a circle of the same system.

Ex. 7. A straight line cuts two given circles in the points P, P'
; Q, Q'

;

respectively. Show that the tangents at P and P' will intersect the tangents

at Q and Q' in four points which lie on a circle coaxal with the given circles.

Ex. 8. If ABC be a triangle inscribed in a circle of a coaxal system ; and

if P, P' be the points of contact of .5(7 with the two circles of the system which

it touches; Q, Q' the similar points on CA ; and R, R' the similar points on

AB ; show that :

—

i. The point-pairs P, P'
; Q, Q'

; R, R' are the pairs of opposite

vertices of a tetragram.

ii. The line-pairs AP, AP' ; BQ, BQ' j CR, CR' are the pairs of

opposite connectors of a tetrastigm.

Ex. 9. The sides of the triangle ABC touch three circles of a coaxal system

in the points X, Y, Z. If AX, BY, CZbe concurrent, or if X, Y, Z be col-

linear, show that the centres of the circles will form with the centres of those

circles of the system which pass through the points A, B, C, a range in invo-

lution.

Ex. 10. If A, B, C be the centres of any three coaxal circles, and if a, b, c

denote their radii, show that

BC.a*+ CA . b2+AB. c2= -BC. CA . AB.

Ex. 11. If A, B, C be the centres of any three coaxal circles, and ifp, q, r

denote their powers with respect to any other circle, show that

BC.p+CA.q+AB.r= 0.

332. In the theorems given in §§ 328, 329, any circle of the

coaxal system may be replaced by one of the limiting points of

the system. Hence we have the following theorems

:
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(i) If P be any point on a fixed circle of a coaxal system, the

square on the distance from P to a limiting point of the system is

proportional to tlie perpendicularfrom P on the radical axis.

(ii) If P be any point on a fixed circle of a coaxal system, the

tangent drawn from P to any other circle of the system is propor-

tional to the distance of Pfrom either limiting point of the system.

(iii) // the tangent drawn from a point to a circle be propor-

tional to its distance from a fixed point, the locus of the point will

be a circle coaxal with the fixed point and the given circle.

333. Ex. 1. If through either limiting point of a system of coaxal circles,

a straight line be drawn intersecting a circle of the system, show that the

rectangle contained by the perpendiculars from the points of intersection on

the radical axis is constant.

Ex. 2. Two circles are drawn, one lying within the other. From L, the

limiting point which lies outside them, are drawn tangents to the circles,

touching the outer circle in A and the inner in B. If LB cut the outer circle

in C, and D, prove that

LA* =LBT-+CB. BD. [St John's Coll. 1886.]

Ex. 3. Two circles touch each other internally at the point 0, and a

straight line is drawn cutting the circles in the points A, B ; and C, D ; re-

spectively. The tangent at A intersects the tangents at B and C in E and Fi

and the tangent at B intersects the tangents at B and C in G and H. Prove

that E, F, G, and H lie on a circle which touches each of the given circles

at 0.

Ex. 4. If a variable circle touch two circles of a coaxal system, the tan-

gents drawn to it from the limiting points have a constant ratio.

Ex. 5. If a variable circle touch two circles of a coaxal system, its radius

varies as the square of the tangent drawn to it from either limiting point.

Ex. 6. If a variable circle cut two circles of a coaxal system at given

angles, the tangents drawn to it from the limiting points have a constant

ratio.

Ex. 7. From the vertices of the triangle ABC, AP, BQ, CR are drawn to

touch a given circle. Show that if the sum of two of the rectangles

BC.AP, CA.BQ, AB.CR,
be equal to the third, then the circle will touch the circumcircle of the triangle

ABC. [Purser.]

Suppose we have given BC . AP= CA . BQ+AB.CR.
On the arc BC find a point D such that

BD:CD = BQ:CR.
n'«" BC.AD= CA.BD+AB.CD.
"""< AP.BQ:CR=AD:BD:CD.

It follows from § 322 (iii), that D must be one of the limiting points of the
circles A BC, I'QIt.
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Hence the circles ABC, PQR must touch each other*.

Ex. 8. Show that the nine-point circle of a triangle touches the inscribed

and escribed circles of the triangle.

Let D, E, F be the middle points of the sides of the triangle ; P, Q, R, the

points of contact of the sides with the inscribed circle. Then, if a, b, c denote

the sides of the triangle, it is easy to see that

DP= %{b~c), EQ= \{c~a), FR=h{a~b),

and therefore EF . DP±FD . EQ±DE. FR= 0.

Hence by the last theorem the nine-point circle touches the inscribed circle

of the triangle.

Ex. 9. A chord of a circle subtends a right angle at a fixed point 0. Show
that the locus of the middle point of the chord is a circle coaxal with the

given circle and the point-circle 0.

Ex. 10. Show that the locus of the foot of the perpendicular from a fixed

point on any chord of a given circle which subtends a right angle at 0, is a

circle coaxal with the given circle and the point-circle 0.

Ex. 11. If a chord of a circle subtend a right angle at a fixed point 0,

show that the locus of the pole of the chord will be a circle coaxal with the

given circle and the point-circle 0.

Ex. 12. If P and Q be points on two circles of a coaxal system such that

PQ subtends a right angle at a limiting point of the system, show that the

tangents at P and Q will intersect in a point, the locus of which is a circle

of the same system.

Let L be the limiting point ; and let 0, 0' be the centres of the circles.

Let PQ cut the circles again in P' and Q'. Then if the tangents at P and Q
intersect in R, we have

RP : RQ =sin RQP : sin RPQ=coa &QQ1
: cos OPP'.

* This proof is due to Mr A. Larmor.
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Therefore

But

RP:RQ=QQ'.OP:PP'.0'Q.
PLQ-:PQ.PQ'=LO:0'0.

Let LX be drawn perpendicular to PQ ; then

PL*=PN.PQ.
Therefore PN : PQ'=L0 : O'O

;

and therefore PN : Q'N=L0 : LO'.

Similarly QN : P'X=LO ' : LO.

Hence PP' : QQ'=L0 :L0'.

Therefore RP : RQ= L0' .OP.LO. O'Q.

Hence the locus of R is a circle coaxal with the given circles.

Ex. 13. Show that the locus of the point N (see figure Ex. 12) is a circle

coaxal with the given circles.

Ex. 14. One circle lies within the other, and the tangents at any two
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points of the former cut the latter in the points P, Q; P, Q ; respectively.

If L be a limiting point of the system, show that

PP' : QQ'=PL+P'L : QL + Q'L.

By § 332, (ii), we have, if R, R' be the points of contact of PQ, P'Q,

PR : PL= P'R' : P'L= QR : QL=Q'R' : Q'L.

Let PQ cut P'Q' in T, then it is evident that

PR+P'R'= PT+P'T,
QR+Q'R'=QT+Q'T.

But, since the triangles TPP', TQ'Q are equiangular,

PP' : QQ'=PT+P'T : TQ'+TQ.

Hence PP' : QQ'=PL+ P'L : QL+ Q'L.

Poncelet's theorem.

334. If a tetrastigm be inscribed in a circle of a given coaxal

system so that one pair of opposite connectors touches another circle

of the system, then each pair of opposite connectors will touch a circle

of the system, and the six points of contact will be collinear.

Let A, B, C, D be any four points on a circle, and let AG, BD
touch another circle at the points P, P'. Let PP' cut AB, CD in

Q and Q'
; and AD, BG in R and R.

The triangles AQP, DQ'P' are obviously similar ; therefore

AQ:AP = DQ':DP'.

Again, AP.AQ = sin AQP : sin APQ,

and BP' : BQ = sin BQP' : sin BP'Q.

But the angles APQ, QP'B are equal.

l. 14
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Therefore AP : AQ = BP' :BQ.

Hence AP : AQ = BP' : BQ = DP' : DQ' = CP : CQ'.

Let Z
x , Zit Z3 , Z± denote the circles whose centres are A, B, C,

D, and whose radii are AQ, BQ, CQ', DQ', respectively. Now only

one circle can be drawn coaxal with the given circles, which will

cut Z
x
orthogonally (§ 325, ex. 1). Let this circle be denoted

by A'.

By § 329 we have

(AX) : (BX) : (CX) : (DX) = AP : BP' : CP : DP'.

Therefore

(AX) : (BX) : (GX) : (BX) = AQ : BQ : CQ' : DQ'.

But (AX) = AQ;

therefore (BX) = BQ, (CX)=CQ', (DX)=DQ\

Since (#X) = BQ, it follows that X must cut Z.2 orthogonally.

Therefore X must pass through the limiting points of the circles

Zu 2L But these circles touch at the point Q. Hence the circle

A' must touch AB at the point Q.

Similarly, the circle X will cut orthogonally the circles Z3 , Z4 .

Therefore, since these circles touch at the point Q', the circle X
must touch CD at Q.

Thus the pair of connectors AB, CD touch the same circle of

the coaxal system at the points Q and Q'.

In a similar manner it may be proved that the pair of con-

noctors AD, BC will touch a circle coaxal with the given circles at

the points R and R.

It should be noticed that when the points, in which the line

PP' cuts a pair of opposite connectors of the tetrastigm ABCD,
are internal to the circle ABCD, the circle which touches this

pair of connectors will have its centre on the same side of the

radical axis as the centre of the circle ABCD. But when the
points are external to the circle ABCD, the centre of the corre-

sponding circle will be on the side of the radical axis opposite to

the centre of the circle ABCD. Thus of the three circles which
touch the pairs of connectors, two of the centres will lie on the
name side of the radical axis as the centre of the circle ABCD.

335. Let us consider the case when the connectors AC, BD of
the inscribed tetrastigm intersect in a limiting point.
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Let L be the point of intersection of AC and BD ; and let the

bisectors of the angles between these lines be drawn, cutting the

pair of connectors AB, CD in Q, Q' and q, q' respectively, and the

connectors AD, BC in R, R' and r, r' respectively.

Then it is easy to show that

AR:AL = DR:DL = BR:BL = CR : CL,

and AQ:AL = DQ':DL = BQ:BL = CQ' : CL.

Hence it follows, as in § 334, that AD and BC will touch a

circle of the system in the point R and R' ; and that AB, CD will

touch another circle of the system in Q and Q'.

In the same way it may be shown that AB, CD will touch

a circle of the system in the points q, q'
; and that AD, BC will

touch another circle of the system in r and r'.

Hence we have the theorem : If any four points be taken on a

circle of a given coaxal system, so that one pair of opposite connectors

of the tetrastigmformed by them intersect in a limiting point of the

system, the other pairs of opposite connectors will each touch two

circles of the system.

It should be noticed that although each pair of connectors

touches two circles, they do not constitute a pair of common
tangents of the two circles.

336. Ex. 1. If a tetrastigm be inscribed in a circle, and if one pair of

opposite connectors touch two circles coaxal with the former, show that one

of the centres of the tetrastigm coincides with a limiting point of the system.

14—2
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Let ABCD be the given tetrastigm, and let AD, BC touch one circle in R
and B', and another circle in r and r'. Then it is easy to see that BR' will

cut /•/ at right angles.

Let L be the point of intersection, then since the circles whose diameters

are Br and BY intersect in the limiting points of the given circles, it follows

that L must be one of these limiting points. Again, the range {Br, AD] is

harmonic, therefore LB and Lr must bisect the angles ALD. Let AL, DL
meet the circle ABCD in C and B' respectively. Then from § 335, we see

that BC" must touch the same circles as AD at the points in which it is cut

bv rr" and BR'. Therefore B'C must coincide with BC, that is, B' coincides

with either B or C. Hence L must be one of the centres of the tetrastigm

A BCD.

Ex. 2. If a tetrastigm be inscribed in a circle of a coaxal system, so that

two pairs of its opposite connectors touch another circle of the system, show

that the remaining pair of connectors will intersect in a limiting point of the

system.

Let A BCD be the given tetrastigm, and let AB, BC, CD, DA touch a

circle of the system at the points Q, R, Q', R', respectively. It follows

from § 334, that AB, CD will touch another circle of the system at the points

in which these lines cut the line BR'. Hence this theorem follows from that

in Ex. 1.

Ex. 3. If ABCD be a tetrastigm inscribed in a circle, and if AB, CD touch

respectively at Q and Q', a coaxal circle, show that if QQ
1

pass through a

limiting point of the system, this point will be a centre of the tetrastigm.

Ex. 4. If ABCD be a tetrastigm inscribed in a circle of a coaxal system,

and if AB, CD touch one circle of the system at the points Q, Q', and AD, BC
another circle of the system at R, R', show that the connectors AC, BD will

intersect in a limiting point of the system, provided that Q, Q', R and R' are

not collinear.

Ex. 4. The sides of the triangle ABC touch the inscribed circle in the

points PmQ, B. If the lines QR, RP, PQ cut the lines BC, CA, AB in the

points X, Y, Z, and the tangents to the circumcircle of the triangle ABC at

it.-, vertices, in the points X', Y', Z' ; show that the three circles which touch
res^-ctively BC, AX' at X and X' ; CA, BY' at Y and Y' ; and AB, CZ' at

Z and Z' ; will be coaxal with the circumcircle and the inscribed circle of the

triangle ABC.

337. // the vertices of a triangle move continuously, and in

the same direction, on the circumference of a circle of a given coaxal

system, so that two of its sides touch two fixed circles of the system,

the third side tvill touch another fixed circle of the system.

Let A, B,C be any positions of the vertices of the triangle on
the circle X; and let Xu X., denote the circles which are the
envelopes respectively of AB, AC, as the points A, B, C describe
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continuously the circle X. Let q, r be the points of contact of

AC, AB with the circles X2 , Xx ; and let q', r be the new positions

of q and r when the points A, B, C have moved to the positions

A', F, C".

Since the points A, B, G move in the same direction, it is

obvious that the centres of the circles X
1 , X2 must lie on the same

side of the radical axis as the centre of the circle X. Also it is

evident that qq' and rr' will intersect AA' between A and A'.

Similarly if qq', rr' intersect CC, BB' in R and Q, R will lie

between C and C, and Q between B and B'.

Now since the four points A, A', C, C lie on a circle X, and

the lines AC, A'C touch a circle X2 in the points q, q', it follows

from § 334, that AA' and CC will touch a circle, coaxal with X
and X,, at the points in which qq cuts them. Similarly it may
be proved that AA' and BB' will touch a circle, coaxal with X and

X1} at the points in which rr' cuts them. But since AA' can only

touch one circle of the given coaxal system at a point between A
and A', it follows that qq' and rr must intersect AA' in the same

point, and that AA', BB', CC must touch the same circle of the

system.

Let us denote the circle which touches A A', BB', CC by X'.

Then since BB', CC is a tetrastigm inscribed in a circle X, and a

pair of connectors BB', CC touch another circle X' at the points

Q and R, it follows from § 334 that BC and EC must touch a
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circle, X3 say, coaxal with X and X ', at the points in which QR
cuts these lines.

Let QR meet the lines BG, B'C' in p and p'. Then it is obvious

that p must lie between B and C, and p between B' and C. Hence

the circle X3 which is touched by BG and B'C' will have its centre

on the same side of the radical axis as the circle X.

Thus as A, B, C describe the circle X, the side BG will envelope

a fixed circle X3 coaxal with X, X1} and X2 .

The proof given above requires but slight modification when

the restriction that A, B, G should move in the same direction is

removed. Thus if A move in the opposite direction to B and C,

it is easy to see that the circles Xlt X« must have their centres on

the side of the radical axis opposite to the circle X, and in this

case it may be proved that X, which is the envelope of BG has its

centre on the same side as the circle X. Again, if A and B move

in one direction and C in the other, then X
3
must have its centre

on the same side of the radical axis as X, and X2 must have its

centre on the opposite side of the radical axis, and then it may be

proved that X3 the envelope of BG will have its centre on the same
side of the radical axis as X2.

Hence we may state the theorem in the form : If a triangle be

inscribed in a circle so that tivo sides touch two given circles coaxal

with the former, the third side will touch a fixed circle of the same
coaxal system.

338. Let us suppose that AB, BG touch respectively the
circles X, and X% , and let X3 denote the circle which is always
touched by CA, as the vertices of the triangle move in the same

direction round the circle ABC. Let us take the point D between
A and C, so that AD touches the circle Z2 . Then by § 334, since
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AD and BC touch the same circle X>, therefore BD will touch the

same circle as AC, that is the circle X3 .

Thus BAB is a triangle, the vertices of which occur in the

opposite order to those of the triangle ABC, and the sides of which

touch the same circles as the corresponding sides of the triangle

ABC.

But if we consider the triangle ABD with its vertices occurring

in the same order as the vertices of ABC, we see that the sides

AB, BD, DA touch the circles Xlt X3 , X2 .

Hence, we infer that if we take the vertices ABC always in the

same order, it is immaterial in which order the sides touch the

circles X1} X2 , X3 .

339. If ABC be a triangle inscribed in a circle X, such that

when two sides touch two circles X1,X2 coaxal with X, the en-

velope of the third side is the circle X3 , the circles Xlt X.2 , X3 are

said to form a poristic system with respect to the circle X.

Suppose that we have given any three circles X1} X2 , X3

coaxal with a given circle X, it is evident that the problem " to

inscribe a triangle in the circle X so that its sides shall touch

respectively the three circles Xlt X2 , X3
," is indeterminate when

the circles Xlt X2 , X3 form a poristic system with respect to the

circle X. But when this is not the case, let Y1 be the circle of the

coaxal system (X, Xly X2 , X3) which forms with X, and Xs a

poristic system with respect to X, then since the circles Y1} Xx

will have four common tangents, we shall find four solutions to the

problem. Similarly if Y2 , Y3 be the circles which form with

X3 , X1 ; and X1} X2 ; respectively, poristic systems, we may obtain

eight other solutions by drawing the common tangents of the pairs

of circles Y2 , X2 ; Y3,X3 . Thus, when Xly X2 , X 3 do not constitute

a poristic system of circles, twelve triangles may in general be

inscribed in X so that their sides touch respectively the circles

Xi, X2 , X3 . But of these twelve solutions some or all may be

imaginarjr.

340. Let A, B, C,Dbe any four points on a circle of a given

coaxal system, and let AB, BC, CD touch respectively three fixed

circles of the system. Then if A', B', C, D' be four other points on

the circle ABC (taken in the same order as the points A, B, C, D),

so that A'B', B'C, and CD' touch respectively the same circles as
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AB, BC and CD, it may be proved in the same manner as in § 337,

that A A', BB, CC and DD' will touch a circle of the system, and

that A'D', A'C and B'D' will touch respectively the same circles

of the system as AD, AG and BD.

The second part of this theorem may be deduced from the

theorem in § 337. For since AB and BC always touch fixed

circles of the system, therefore AC must always touch a fixed circle

of the system. And since AC and CD always touch fixed circles

of the system, therefore AD must touch a fixed circle of the

system. Similarly, it may be proved that BD must always touch

a fixed circle of the system.

Now let us suppose that AB, BC and CD touch respectively

the circles Xu X.2 and Xs . Then AD must touch a circle, X4 say.

Let CE be drawn to touch the circle X4 , then it may be proved

that EA must touch the circle Xs .

For CA will always touch a fixed circle, X5 say. Therefore by

§ 338, since CA, CD and DA touch the circles X5 , X3 , XA respect-

ively, if CE touch Xt , EA must touch Xt .

Hence, we infer that : If A, B, C, D be four points taken in

the same order, on a fixed circle belonging to a given coaxal system,

so that AB, BC, CD touch, respectively, the fixed circles Xx , X2 , Xs

of the system, then DA must touch a fixed circle, Xi} of the system;

in,*!, further, if AB, BC, CD touch respectively any three of thefour
circles Xu X.,, X3 , Xit then DA must touch the remaining circle.

341. In exactly the same wa}r
, we may prove Poncelet's cele-

brated theorem: If A lt A,,...A n be any number of points taken

in order on a circle of a given coaxal system, so that A^*,
A*A

;
,.

.

.A n_ x
A n touch respectively (n - 1) fixed circles Xx , X,,.

.

.Xn_t

of the system, then A nA x must touch a fixed circle, Xn , of the

system; and, further, if A,A 2 , AtAt,...A 1̂ JLn touch respectively

any n-\ of the circles A',, X2t...Xn , then A nA x must touch the

remaining circle.

The theorem may also be stated in the form: If a polystigm
ran be inscribed in a circle of a given coaxal system, so that each

one of a complete set of connectors (§ 137) touches respectively a
fixed circle of the system, then an infinite number of such polystigms
can be inscribed.
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342. Ex.1. If A lt A 2,...A n ben points on a circle A' of a coaxal system, so

that A
X
A 2 , A}Aii ...An-iAni A nA 1

touch respectively the circles of the system

Xv A'2 ,...A*„, which form with respect to the circle X a poristic system ; and

if ill', A 2',...An
' be n other points taken in the same order on the circle X, so

that A
X
A 2 , A 2 A 3 , &c, touch respectively the same circles as A

X
A 2 , A 2A 3t

&c. ; show that A
X
A

X , A 2A 2',...A nAn
' will touch a circle of the coaxal system.

Ex. 2. If A lt A 2 , A 3 , Ait A& be five points on a circle, such that the

connectors il^, A 2A 3 , -4 3il 4 , -44-45, ilsi^ touch another circle, show that the

connectors A
X
A3 , -4

3
il 5 , AhA 2 , A 2A ti AtA x

will touch another circle coaxal

with the given circles.

Ex. 3. If A lt A 2 , A3 , A t , A s , A 6 be six points on a circle, and if the

connectors A
X
A 2 , A 2A 3 , -43-4 4 , A iA b , ARA 6 , A GA l

touch another circle, show

that the connectors A
X
A

4 , A 2
A 5 , A 3A Q will intersect in a limiting point of the

given circles, and that the connectors -4i-43 , A 2Aiy -4
3
4

5 , A AA 6 , A&A lt A 6A 2

will touch a circle belonging to the same coaxal system.

Ex. 4. Show that if 2n points A
x , A 2 ,...A in be taken on a circle such that

a complete set of connectors touch another circle, there exists a set of n con-

nectors which intersect in a limiting point of the circles, and that there are

(n — 2) other complete sets of connectors which touch respectively (n — 2) circles

coaxal with the given circles.

The 2n (n—1) connectors which do not intersect in the limiting point may
be arranged in n (n- 1) pairs, each pair being common tangents of two of the

circles of the system.



CHAPTER XIV.

THE THEORY OF INVERSION.

Inverse points.

343. If on the line joining a point P to the centre of a

given circle, a point Q be taken so that the rectangle OP . OQ is

equal to the square on the radius of the circle ; the point Q is said

to be the inverse point with respect to the circle of the point P.

If Q be the inverse point of P, it is evident that P is the

inverse of Q. Hence P and Q are called a pair of inverse points

with respect to the circle.

The inverse of any point with respect to a circle might also

be defined as the conjugate point with respect to the circle

which lies on the diameter which passes through the given point.

Thus, if P, Q be a pair of iuverse points with respect to a circle,

P, Q are a pair of conjugate points, and therefore every circle

which passes through P and Q will cut the given circle ortho-

gonally.

344. If we have any geometrical figure consisting of an

assemblage of points, the inverse points with respect to a fixed

circle will form another figure, which is called the inverse figure

with respect to the circle of the given figure.

It will be shown that when certain relations exist between the

parts of any figure, other relations may be inferred concerning the

corresponding parts of the inverse figure. And as the inverse

figure may be of a more complicated character we are thus able

to obtain properties of such figures from known properties of

ampler figures.
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The fixed circle is called the circle of inversion, and the process

by which properties of inverse figures are derived is known as

' inversion.' It will be seen that as a rule, the nature of the in-

verse figure is independent of the magnitude of the circle of

inversion, but depends on the position of the centre of this circle.

Consequently it is usual to designate the process briefly by the

phrase ' inverting with respect to a point
;

' but it must be remem-

bered that when this phrase is used, the inversion is really taken

with respect to a circle whose centre is the point.

It is often convenient to invert a figure with respect to an

imaginary circle, having a real centre. In this case, if be the

centre of inversion, and P, Q a pair of inverse points, P and Q will

lie on opposite sides of 0, and the rectangle PO . OQ mil be con-

stant.

345. Ex. 1. Show that the limiting points of a system of coaxal circles

are inverse points with respect to every circle of the system.

Ex. 2. If a pair of points be inverse points with respect to two circles,

they must be the limiting points of the circles.

Ex. 3. Show that the extremities of any chord of a circle, the centre, and

the inverse of any point on the chord, are concyclic.

346. We may mention here a method by which the inverse of

any given figure may be drawn with the aid of a simple mechanical

instrument. Let ABCD be a rhombus formed by four rigid bars

of equal lengths hinged together; and let the joints B, D be

connected with a fixed point 0, by means of two equal rigid bars

hinged at 0. Then the points A and C will be inverse points with

respect to a circle whose centre is 0.
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It is evident that the points 0, A, C will be collinear. Let E
be the point of intersection of BD and AC. Then we have

0A.0C= 0E- - AE* = 0Dn
- - DA 2

.

Hence A and C are inverse points with respect to a circle whose

centre is 0. Consequently if the point A be made to describe any

curve the point C will describe the inverse curve.

This arrangement of bars is called Peaucelliers cell.

The inverse of a straight line.

347. The inverse of a straight line with respect to any circle is

a circle which passes through the centre of the circle of inversion.

Let P be any point on the straight line A B, and let P' be the

inverse point with respect to a circle whose centre is 0.

Let 0A be the perpendicular from on the straight line, and
let A' be the inverse point of A.

Then we have

0P.0P'=0A.0A'.
Therefore the points A, P, A', P' are concyclic; and therefore

the angle OPA' is equal to the angle GAP, which is a right

angle.

Hence P is a point on the circle whose diameter is 0A'.

Thus, the inverse of a straight line is a circle which passes
through the centre of inversion.

Tun v.rs.ly, it is evident that the inverse of a circle which
passes through the centre of inversion is a straight line. In other
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words : The inverse of a circle with respect to any point on it is a

straight line.

348. Ex. 1. Show that the inverse of the line at infinity is a point-circle

coincident with the centre of inversion.

Ex. 2. If C be the centre of a circle which passes through the centre of

inversion, and if C be the inverse of the point C, show that the straight line

which is the inverse of the given circle bisects CC.

Ex. 3. Show that the inverse circles of a system of parallel straight lines

touch each other at the centre of inversion.

Ex. 4. If a system of lines be concurrent, show that the circles which are

inverse to them are coaxal.

Ex. 5. The inverse circles of two straight lines intersect at the same angle

as the lines.

The radii of the circles drawn to the centre of inversion are perpendicular

respectively to the lines.

Inverse circles.

349. The inverse of a circle with respect to any circle is a

circle.

Let A be. the centre of the given circle, and the centre of the

circle of inversion. Let P be any point on the given circle, and

let P' be the inverse point.

Let OP cut the given circle in Q, and let P'B be drawn parallel

to QA, and meeting OA in B.

Then since the rectangles OP . OP', OP . OQ are constant, the

ratio OP' : OQ is constant.

But since AQ, BP' are parallel,

BP':AQ=OB: OA = OP' : OQ.
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Therefore B is a fixed point, and BP' a constant length. Hence

the locus of the point F is a circle whose centre is B.

350. If X denote any circle, and X' its inverse with respect

to any circle of inversion, it is easy to see that X will be the

inverse of X', so that X and X' may be called a pair of inverse

circles with respect to the circle of inversion.

If the circle X cut the circle of inversion orthogonally, the

point P' will coincide with the point Q, and the circle X' will

coincide with X Thus, the inverse of a given circle with respect to

any circle which cuts it orthogonally coincides with the given circle.

351. Ex. 1. Show that the circle of inversion may be so chosen that the

inverse circles of three given circles shall be coincident with themselves.

Ex. 2. If three circles intersect two and two in the points A, A' ; B, B

;

C, C ; and if through any point the circles OAA', OBB', OCC be described,

prove that these three circles will be coaxal.

Ex. 3. Show that the nine-point circle of a triangle is the inverse of the

circumcircle with respect to the polar circle of the triangle.

Ex. 4. If two circles X and Y be so related that a triangle can be inscribed

in X, so that its sides touch Y, show that the nine-point circle of the triangle

formed by the points of contact with Y is the inverse ofX with respect to Y.

Ex. 5. Show that the nine-point circle of a triangle ABC is the inverse of

the fourth common tangent of the two escribed circles, which are opposite to

B and C, with respect to the circle whose centre is the middle point of BC, and

which cuts these escribed circles orthogonally.

Ex. 6. Show that McCay's circles (§ 233, Ex. 3) are the inverses of the

sides of the first Brocard triangle of a given triangle, with respect to the circle

whose centre is the median point of the triangle, and which cuts the Brocard

circle orthogonally.

352. It is evident that the centre of inversion is a nomo-
thetic centre of the given circle and its inverse. When the circle

of inversion is real, its centre is the nomothetic centre ; and when
the circle of inversion is imaginary, its centre is the antihomothetic

centre of the pair of inverse circles.

Let X, X' denote a pair of inverse circles with respect to any
circle of inversion, S. Then these circles are coaxal.

For, referring to the figure in § 349, we have,

(P'S) : (FX) = P'O* - OP . OP' : FQ . PF
= OP' : QP'

= OB : AB.
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Thus the powers with respect to the circles S, X of any point

P" on the circle X', are in a constant ratio. Therefore, by § 330,

the circle X' is coaxal with the circles S and X.

Hence we may infer that, given a pair of circles X and X'} two

circles can be found, which will be such that X and X' are a pair

of inverse circles with respect to either. For these two circles of

inversion will be the circles whose centres are the homothetic

centres ofX and X', and which are coaxal with X and X'.

353. Ex. 1. If X and X' be inverse circles with respect to each of the

circles *S' and *S", show that S and *S" cut each other orthogonally.

Ex. 2. Show that the circumcircle of a triangle, the nine-point circle, and

the polar circle are coaxal.

354. To find the radius of the inverse of a circle.

Let R denote the radius of the circle of inversion, and let' r, r

denote the radii of the given circle and its inverse. Then from the

figure in § 349, we have

r:r'=0Q:0P' = 0P.0Q: OP. OP'.

Therefore r : r
1= (OX) : R2

,

where {OX) denotes the power of the point with respect to the

given circle.

rR2

Thus r' =inus r ~(0Xy

355. Ex. 1. Show that if the centre of inversion lie on a certain circle,

the inverse circles of two given circles will be equal.

Let Xlt X2
denote the given circles, and let rly r2 denote their radii. Then

we must have {0X
t )

: (0X2
)=r

l
: r

2
. Hence must lie on a fixed circle

coaxal with the circles Xlt X2 .

Ex. 2. Show that there are two points with respect to which three given

circles may be inverted into three equal circles.

356. Let A be the centre of a given circle, and let A' be the

inverse point of A with respect to a given circle of inversion whose

centre is 0.

Let OTT' be the common tangent to the given circle and its

inverse. Then we shall have (see fig. in § 349),

OA . OA' = OP . OP' = OT . or.

Therefore the points A, A', T, T' are concyclic, and therefore

the angle OA'T will be equal to the angle OTA, which is a right

angle.
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Hence A'T' is the polar of with respect to the circle P'T'Q'
;

that is, A' is the inverse point of with respect to the circle

P'T'Q'.

Thus, the inverse of the centre of a given circle is the inverse

with respect to the inverse circle of the centre of inversion.

Hence it follows that the inverse circles of a system of con-

centric circles will be a coaxal system of circles having the centre

of inversion for a limiting point. For the polars with respect to

the inverse circles of the centre of inversion will evidently be

coincident and the result follows from § 345, Ex. 2.

Corresponding properties of inverse figures.

357. If two circles touch each other, the inverse circles will also

touch each other.

If two circles touch they intersect in two coincident points. It

follows that the inverse circles will intersect in two coincident

points, and therefore will touch each other.

It should be noticed however that the nature of the contact

will not necessarily be the same.

A similar theorem is evidently true for any two curves.

358. If two circles intersect, their angle of intersection is equal

or supplementary to the angle at ivhich the inverse circles intersect.

Let P, Q be two near points on any circle, and let F, Q' be the
inverse points on the inverse circle.
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Then since OP . OP' - OQ . OQ',

the points P, P', Q, Q' are concyclic. Therefore the angle OPQ is

equal to the angle OQ'P\ It may happen however that the point

falls within the circle which can be drawn through the points

P, P', Q, Q'; in which case the angles OPQ, OQ'P', will be

supplementary.

Now let the point Q approach indefinitely near to the point P,

so that the line PQ becomes the tangent at P. Then at the same

time Q'P' will become the tangent at P'.

Hence if PT, FT' be the tangents at P and F, the angles

FPT, T'FP will be equal or supplementary.

It follows that if any two circles intersect in the point P, the

angle between the tangents to the circles at this point will be

equal or supplementary to the angle between the tangents to the

inverse circles at the point P'.

If the two circles cut orthogonally the inverse circles will also

cut orthogonally.

359. Ex. 1 . If X and Y denote any two circles, and if X', Y' denote the

inverse circles with respect to any point ; show that X' and Y' will intersect

at the same angle as X and Y, when the point is either external to both the

circles X and Y, or is internal to both ; but when the point is internal to one

circle and external to the other, the angle of intersection of X and Y will be

supplementary to the angle of intersection of X' and Y'.

Ex. 2. Show that the nine-point circle of a triangle touches the inscribed

and escribed circles.

This may be deduced from the theorem in § 351, Ex. 5.

Ex. 3. Show that four circles can be drawn which shall touch two given

circles and their inverse circles with respect to any circle of inversion.

Discuss the case when one of the given circles cuts the circle of inversion

orthogonally.

360. IfP and Qbe a pair of inverse points with respect to any

circle S, and if P', Q' be the inverse points ofP and Q, and S' the

inverse of S, with respect to any circle, then P' and Q' will be inverse

points with respect to the circle S'.

Since P and Q are inverse points with respect to S, therefore

any circle which passes through P and Q will cut S orthogonally.

Consequently P' and Q' will be two points such that any circle

which passes through them will cut S' orthogonally.

L. 15
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It follows at once from this theorem, that if two figures Fu Fz

be inverse figures with respect to a circle S, and if F/, F/, S' be

the inverse figures of Fu F2 , S with respect to any circle of

inversion, then F/, F2
' will be inverse figures with respect to the

circle S'.

361. Given the distance between any two points to find the

distance between the inverse points with respect to any circle of

inversion.

BL--

Let A, B be any two points, and let A', B' be the inverse

points with respect to any circle of inversion whose centre is 0.

Then since OA .OA' =0B .OB, the points A, A', B, B' are

concyclic. Therefore the triangles OAB, OB'A' are similar; and

therefore

AB : A'B' = OA : OB' = OB : OA'.

Therefore

A'B' :AB=0A. OA' : OA . OB.

Also A'B'*- : AB = OA' . OB' : OA . OB.

Again if p, p' denote the perpendiculars from on the lines

AB, A'B', we shall have

A'B :AB=p' :p.

In the case when the points A, B are collinear with the point

0, we shall have

0A.0B'=0B: OA' = AB : B'A',

whence FA' : AB = OA . OA' .OA.OB;
and A'B* : AB' = OA' . OB' : OA . OB.

362. Ex. 1. If J, B,C,Dbe any four points on a straight line, show that

AB. CD-VAC. DB+AD.BC = 0.

If 11', <", /)' l>c the inverse points, with respect to the point A of the points

/;. (
',

I), we shall have
RC' + C'D' +DB^O.

Hence the above relation may be deduced by § 361.
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Ex. 2. If A, B, C, D be any four points taken in order on a circle, show

that

:

i. AC.BD=AB.CD+AD.BC.
ii. BD. CD.BC+AD. BD.AB=BC. AC. AB+CD.AD.AC.

Ex. 3. If A, B, C, D be four points on a circle such that the pencil

{AC, BD) is harmonic, where is any variable point on the circle, show

that

AB.CD=AD.BC.

Ex. 4. If three straight lines be drawn through a point 0, making equal

angles with each other, and if any other straight line cut them in the points

L, 3f, N, show that

M . 0.V+ ON. OL+OL.OM= 0.

Ex. 5. Show that if four points A, B, C, D on a circle be such that

AB and CD are conjugate lines with respect to the circle, the inverse points

A', B', C'
y
D' with respect to any circle will be such that A'B', CD" are con-

jugate lines with respect to the inverse circle.

Ex. 6. If the line joining the centres of any two circles cut them in the

^ \\ i// '

O O'

points A, B and C, D, respectively ; and if the line joining the centres of the

inverse circles cut them in the points A', B' ; and CD' ; show that

AC.BD : AB. CD=A'C .B'D' : A'B'. CD1

,

15—2
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where the points A', B', C, D are supposed to occur in the same order as the

joints A,B,C,D respectively.

Let X, Y denote the given circles, and let X\ Y' denote the inverse circles

with respect to a circle of inversion whose centre is 0. Then if P, Q, R, S be

the inverse points of the points A, B, C, D respectively, these points will lie

on a circle which will pass through and cut the circles X', Y' orthogonally.

Also we shall have from § 361,

AC.BD : AB.CD = PR.QS:PQ.RS.

Now the radical axis of the circles A'', Y' will cut the circle PQRS in

two points. Let O1 be one of these points. Then if we take for circle of

inversion the circle whose centre is 0' and which cuts X' and Y' orthogonally,

the common diameter A'B'C'D' of the circles A'' and Y' will clearly be the

inverse of the circle PQRS. It follows that the lines A'P, B'Q, C'R, DS will

intersect in one of the points in which the radical axis of X', Y' cuts the

circle PQRS. Hence, if we take this point as 0', we shall have by § 361,

A'C . B'D : A'B' .C'D'= PR.QS :PQ. RS.

Therefore we shall have

AC. BD : AB.CD = A'C . B'D' : A'B' . CD.

In the same way it may be proved that

AD.BC : AB.CD =A'D . B'C : A'B' . CD.

Now it is easy to prove that the rectangles AC . BD, 'and AD . BC are equal

to the squares on the common tangents of the circles A' and Y. Hence, if

T, t denote the common tangents, and rXi r
2
the radii of the circles X, Y, and

if T', t' denote the common tangents and rt\ r
2

' the radii of the inverse circles

A'', Y', we shall have

T2
: T'*=f- : t'

2=r
x
r2 : r{r{.

Ex. 7. If A', B', C be the inverse points of three given points A, B, C,

with respect to any centre of inversion 0, show that the triangle A'B'C will

be similar to the triangle PQR, where P, Q, R are the points in which the

lines AO, BO, CO cut the circumcircle of the triangle ABC.

Ex. 8. If the inverse points of three given points A, B, C form a triangle

which is similar to a given triangle, show that the centre of inversion must

coincide with one or other of two fixed points which are inverse points with

respect to the circumcircle of the triangle ABC.

Power relations connecting inverse circles.

363. Let X and X' denote a pair of inverse circles with

respect to any circle. Let $ denote the circle of inversion, and let

8' denote the circle which cuts & orthogonally and is coaxal with

-V and A". Then X and X' are also a pair of inverse circles with

respect to the circle S\

Let A, A' denote the centres of the circles X, X'\ and let
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0, 0' denote the centres of the circles 8 and S'. Then since 0, 0'

are the homothetic centres of X and X' (§ 352), the range

{00', AA'} is harmonic, and therefore

OA O'A _
OA'

+
0'A'-

U -

But since the circles X, X', 8, S' are coaxal, and the circles S, 8'

cut orthogonally, we have by § 329,

(S'X):(S'X') = OA :0A';

and (SX) : (SX') = O'A : O'A'.

Hence we have
(S'X) (S'X')

(SX)
+

(SX')~

364. Let T denote the circle which is concentric with 8, and

which cuts 8 orthogonally. The circle T will be real when S is

imaginary. Then since the circles T and 8' cut one circle, 8, of

the coaxal system [8, X, X'}, orthogonally, therefore by § 329,

(TX) : {TX') = {S'X) : (S'X').

Hence the formula of the last article may be written,

(TX) (TXt

)_
(SX)^(SX')

Consequently the ratios (TX) : (SX), and (TX') : (SX') have

opposite signs.

365. We also have from § 329,

(TX) :(TS') = (S'X) :(S'S').

Therefore if R, R' denote the radii of the circles S, S', we shall have

(TS') = (SS')-(SS) = 2R'i
,

and therefore
(
TX) : (S'X) = R* : - R'\

Hence if either of the circles S and >S" be imaginary, the powers {TX),

(S'X) will have the same sign.

It is easy to see that the ratio (SX) : (S'X) is negative or positive accord-

ing as the centre of X does, or does not, lie between and 0'.

Hence, if we call that circle of the pair of inverse circles X, X', the positive

circle for which the ratio (TX) : (SX) is positive, and the other the negative

circle of the pair, we can easily discriminate between the circles.

366. Again it is easy to see that

(TX) = (SX)-(SS).

Hence from the relation of § 364, we may deduce the relation

(SX)
+
(sxo (ssy
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From this we may deduce the more general formula

(ZX)(ZJr)_(ZS)
(SX)

+ (SX')-\SS)>

where Z denotes any circle.

To prove this, let Y denote the circle which is coaxal with X
and X', and which cuts Z orthogonally. Then if B denote the

centre of Y, we have by § 329,

(ZX) : (ZX') : (ZS) = BA : BA' : BO.

BO BO _ „ BO
But we have,

(

-^
}

+^ - -^

,

and (§363) | )̂

+|^ = 0.

Therefore
(SX)

+
(SX')-

2WY
(ZX) (ZX')_ (ZS)

ilence
(SX)

+
(SX') ~ (SS)'

367. In § 361 it was proved that if A and B be any two points,

and A', E the inverse points with respect to any circle of inversion,

(Si, whose centre is 0, then

A'B'°- : A&- = OA' . OB' : 0A . OB.

If (AB) denote as usual the power of the points A and B, this

formula may be written in the form

(A'B') : (AB) = (A'S) . (B'S) : (AS) . (BS),

for, as proved in § 363, we have

(A'S):(AS) = A'0: OA,

(B'S) : (BS) = B'O : OB.

368. We shall now show that a similar formula connects the

powers of inverse circles: If X', Y' be the inverse circles ofX and

Y vnth respect to any circle of inversion, S, then

(XT') : (XY) = (X'S).(Y'S) : (XS).(YS).

Let a circle U be described coaxal with the circles S and A",

and cutting Y orthogonally. Let P be any point on U, and let a

circle V be described coaxal with S and the point-circle P, and

cutting X orthogonally. Then if Q be any point on the circle V,

we have by § 320,

(XY):(YS) = (PX):(PS);
a,ld (XP):(XS) = (QP) :(QS).
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(XF) : (XS).(YS) = (PQ) : (PS).(QS).
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Let U', V be the inverse circles of U and V. Then it is

evident that U' will be coaxal with S and X', and will cut Y'

orthogonally. Also ifF be the inverse of P with respect to S, it

is evident that F will be a point on V. Also V will cut X'

orthogonally and will be coaxal with P' and S.

Hence we shall have

(XT) : (X'S) . (Y'S) = (FQ') : (FS) . (Q'S).

But by § 367,

(FQ') : (PQ) = (TO) . (Q'S) : (PS) . (QS).

Therefore

(X' F') : (XY) = (X'£) . ( Y'S) : (XS) . ( YS).

369. The proof given above requires modification when either

of the given circles X, Y cuts the circle of inversion orthogonally.

Let us suppose that Y cuts S orthogonally, then Y' will coincide

with F.

Now since F is a circle which cuts orthogonally the circle S,

which is coaxal with the circles X and X', therefore by § 329,

(XF):(FX') = (M :0A',

where A, A' are the centres of the circles X, X'.
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But in § 363, it was shown that

OA : OA' = (S'X) : (S'X') = - (SX) : (SX'),

where £' is the circle, coaxal with X and X', which cuts S ortho-

gonally.

Hence (XF) : (XT') = (Zflf) : - (X'S).

This relation is easily seen to be in agreement with the relation

of the last article ; for if we suppose F and F' to be nearly coin-

cident, (YS) and (Y'S) are small quantities which are ultimately

equal but have opposite signs.

370. Ex. 1. Prove that if X', Y' be the inverse circles of X and Y, with

respect to any circle whose centre is 0,

(XY) : (X'Y') = (0X) : (OY')= (OY) : (OX').

Ex. 2. Show that if a, b, a', b' denote the radii of the circles X, Y, X', Y'-,

i. (AT) : (X'Y')= ab : a'b',

when is external to both X and Y, or is internal to both circles
;

ii. (XY):(X'Y') = ab:-a'b',

when is external to one of the circles X, Y, and internal to the other.

Ex. 3. If T, t denote the common tangents of the circles X, Y, and T', t'

the common tangents of X', Y', show that

T2
: T2= t*:t'*= ab:a'b',

provided be internal to both the circles X, Y, or external to both.

We have T*= (XY) + 2ab, t*= (XY) - 2ab.

Hence the result follows from Ex. 2, i.

If be internal to the circle X, and external to Y, we shall have from
Ex. 2, ii.,

T 2
: *

,!W2
: T'2= ab :-a'b'.

Ex. 4. Deduce the theorem of § 359, Ex. 1, from Ex. 2, of this section.

Ex. 5. A series of circles X
x , X2

,...Xm ,... are described, so that each
circle of the system touches two given circles (one of which lies within the

other), and its two neighbours in the series. If Xm + 1
coincide with Xu so

that there is a ring of circles traversing the space between the given circles n
times, show that the radii of the given circles are connected with the distance
between their centres by the formula,

(r-r^-^r'tan2 — = S2
. [Steiner.l

Ex. 6. Show that if the circles X
x , X2 , A"3 , XA

touch another circle each
in the same sense, the direct common tangents TU2 , Thst &c, are connected
by a relation of the form

T
i.2 • 2V.4±^i.3. ^2,4 ± TUi . T,t3

=0. [Casey.]

If we invert the figure with respect to any point on the common tangent
circle, we shall have a group of four circles touching a straight line and lying
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on the same side of the line. If A, B, C, D be the four points of contact, it is

evident that

AB.CD+AC.DB+AD.BC=0.
Hence by the theorem of Ex. 3, the above result follows.

A similar relation holds when the given circles do not touch the circle in

the same sense, provided that in the cases of two circles which touch it in

opposite senses the direct common tangent is replaced by the corresponding

transverse common tangent.

It should be carefully noticed that the converse of this important theorem

cannot be inferred from the nature of the proof here given. In the next

chapter, however, we shall give another proof of the theorem, and shall show

that the converse theorem is also true.

Inversion applied to coaxal circles.

371. To illustrate the advantage of using the method of

inversion to prove propositions relating to geometrical figures we

shall show how the principal properties of a system of coaxal

circles may be derived. When a system of coaxal circles intersect

in real points, we may take either point as the centre of inversion,

and thus obtain for the inverse figure a system of concurrent lines

(§ 348, Ex. 4) ; and when the coaxal systems have real limiting

points, by taking either as the centre of inversion we obtain a

system of concentric circles (§ 356). Consequently the properties

of a system of coaxal circles may be derived from the properties of

the simpler figures consisting either of concurrent lines, or con-

centric circles. In either case, it will be observed that the centre

of inversion will not have any particular relation to the simple

figure.

372. Ex. 1. Every circle which

touches two given straight lines cuts

orthogonally one or other of two _. . , ... ,

. 7, ,. ... ., Every circle which touches two
straight lines concurrent with the . , ., „

.. given circles cuts orthogonally one

or other of two circles coaxal with the
Every circle which touches two ^ven cjrcies

given concentric circles cuts ortho-

gonally one or other of two circles

concentric with the given circles.

Ex. 2. If a variable circle touch If a variable circle touch two given

two given concentric circles, the locus circles, the locus of the inverse point

of its centre is one or other of two with respect to it of either of the

circles concentric with the given limiting points of the given circles, is

circles. one or other of two circles coaxal with

the given circles.
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Ex. 3. If a variable circle cut two If a variable circle cut two given

given concentric circles at constant circles at constant angles

:

ingles :

i It will cut orthogonally a i- It will cut orthogonally a

fixed circle concentric with the given fixed circle coaxal with the given

circles.
circles -

ii. It will cut every concentric ii. It will cut every coaxal circle

circle at a constant angle. at a constant angle.

iii. It will touch two circles con- iii. It will touch two circles co-

centric with the given circles. axal with the given circles.

Ex. 4. If the powers of a variable If the powers of a variable circle

circle with respect to two concentric with respect to two given circles are

circles are in a constant ratio, the in a constant ratio, the circle will cut

circle will cut orthogonally a fixed orthogonally a fixed circle with the

circle concentric with the given given circle,

circles.

Ex. 5. The powers of a variable The powers of a variable point on a

point on a fixed circle with respect to given circle with respect to two coaxal

two concentric circles are in a con- circles are in a constant ratio,

stant ratio.

Miscellaneous Theorems.

373. Hitherto we have supposed the circle of inversion to be

of finite dimensions. It remains to consider the case when the

circle of inversion is a point-circle, and the case when the radius of

the circle is infinitely great.

When the circle of inversion is a point-circle, 0, let us enquire

what will be the form of the inverse of a given figure F. If no

part of the given figure pass through the point 0, we may imagine

a circle drawn having for centre, and its radius small but finite,

which will not cut F in real points. The inverse figure of F with

respect to this circle will evidently lie entirely within the circle,

and will therefore be evanescent when the radius of the circle is

indefinitely diminished. Hence, when the circle of inversion is a

point-circle, the inverse of any figure which does not pass through

the point is evanescent.

But if any part of the figure F be a straight line or a circle

which passes through the centre of inversion, such line or circle

may be considered as cutting the point-circle of inversion ortho-

gonally, and will therefore coincide with the corresponding part of

the inverse figure. Hence, when the circle of inversion is a point-
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circle, every straight line or circle which passes through the point

coincides with its inverse with respect to the point.

374. When the radius of the circle of inversion is infinitely

great, the circle may be considered as consisting of a finite straight

line and the line at infinity.

IB

V

Let AB be any straight line, and let us find the inverse point

with respect to the line AB of any given point P. Let PA be

drawn perpendicular to AB, then the point A and the point at

infinity on the line PA may be considered as opposite extremities

of a diameter of the line-circle AB, (that is the infinite circle whose

finite part is the straight line AB). If P' be the inverse point of

P, P and P' must be harmonically conjugate with the point A and

the point at infinity on the line AP. Hence PP' is bisected in

the point A.

375. If four circles be mutually orthogonal, and if any figure be inverted

with respect to each of the four circles in succession, the fourth inversion will

coincide with the original figure.
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Let be a point of intersection of two of the circles, then if the figure be

inverted with respect to the point 0, we shall have a real circle centre 0, two

rectangular diameters, and an imaginary concentric circle.

Let P be any point, and let P
t , P3 be the inverse points with respect to

the two circles. Then since they cut orthogonally, we shall have

OP.OP^+OP.OP^O.

Therefore OP
1
=P30.

Let P., be the inverse of P with respect to the diameter OA, then P^P^ is

bisected by OA. It follows that P2P3
will be bisected by OB ; that is, P3

will

be the inverse of P2
with respect to OB.

Hence, if the point P be inverted with respect to the two circles, and the

two diameters successively, the fourth inversion will coincide with P.

It follows from § 360, that if any point be inverted successively

with respect to four mutually orthotomic circles, the fourth position

will concide with the original position of the point.

Hence also if any figure be inverted successively with respect

to four mutually orthotomic circles, the ultimate figure will coincide

with the original figure.

376. Ex. 1. A straight line is drawn through a fixed point cutting a

given circle whose centre is C, in the points P and Q. Show that if the

direction of the line PQ vary, two of the four circles which can be drawn to

touch the circles OPC, OQC, CPQ belong respectively to two coaxal systems

and the other two cut orthogonally the circle whose diameter is OC.

Ex. 2. If G be the median point of the triangle ABC, and if AG, BG, CG
cut the circumcircle of the triangle in the points A', B, C ; show that the

symmedian point of the triangle A'B'C lies on the diameter which passes

through the Tarry point of the triangle ABC (§ 135, Ex. 7).

[E. Vigarie. E. T. Eeprint, Vol. m. p. 73.]

Ex. 3. Three circles are drawn through any point 0. Show that four

circles may be drawn to touch them, and that these four circles are touched

by another circle.

If the first set of circles intersect in the points A, B,C show that the circle

which touches the second set will cut the circles BOC, COA, AOB in three

points /', Q, R, such that :

i. The lines AP, BQ, Cli are concurrent.

ii. The groups of points B, C,Q,R; C, A, R, P ; A, B, P, Q ; are

concyclic.

iii. The circle PQR is the inverse of the circle ABC with respect to the
circle which cuts orthogonally the three circles BCQR, CARP, ABPQ.



CHAPTER XV.

SYSTEMS OF CIRCLES.

System of three circles.

377. The radical axes of three given circles taken in parrs are

concurrent (§ 305), the point of intersection being called the radical

centre of the circles. If, with this point for centre, a circle be

described cutting any one of the circles orthogonally, it will cut

each of the circles orthogonally (§ 304). It follows also from the

properties of the radical axis of two circles (§ 308), that this circle

is the only circle which cuts each of the three given circles ortho-

gonally.

This circle is called the orthogonal circle, or the radical circle

of the given system. It has an important relation to all the groups

of circles which are connected with three given circles, owing to

the fact that all such groups occur in pairs, each pair being inverse

circles with respect to the orthogonal circle of the system.

When the radical centre is internal to each of the three given

circles, the orthogonal circle is evidently imaginary. In this case

a concentric circle can be drawn so as to be bisected by each of

the given circles (§ 315, Ex. 9).

378. If P and Q are opposite extremities of a diameter of the

radical circle of three given circles, it follows from § 261, Ex. 1,

that the points P and Q are conjugate points with respect to each

of the given circles. Hence, the radical circle is the locus of a point

whose polars ivith respect to three given circles are concurrent.

379. It was proved in § 321, that the homothetic centres of

three circles taken in pairs are the six vertices of a tetragram.

The four lines of this tetragram are called the homothetic axes, or

axes of similitude of the given circles. It will be found that these
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axes have important relations in connection with the geometry of

three circles.

Convention relating to the sign of the radius of a circle.

380. In § 358 it was proved that the angle of intersection of

two circles is equal or supplementary to the angle of intersection

of the inverse circles with respect to any circle of inversion. If X
and 7 denote two given circles, and if X', Y' denote the inverse

circles with respect to a circle whose centre is 0, it is easy to see

that the angle of intersection of the circles X', Y' is equal to the

angle of intersection of X, Y, provided that the point is either

internal to both the circles X, Y, or external to both circles ; but

that when the point is external to one circle and internal to the

other, the angle of intersection of X' and Y' is supplementary to

the angle of intersection of X and Y (§ 339, Ex. 1).

Now the radius of a circle may be conceived either as a positive

or as a negative magnitude. But, if r, ?•', d denote the radii and

the distance between the centres of two circles, their power (§ 313)

= d- — i-
2 — r'- = — 2rr' cos &>.

Hence, if at be regarded as the angle of intersection of the circles

when r, r' are considered as of like sign, their angle of intersection

must be regarded as ir — w when r, r are considered as of unlike

sign. It will be found that considerable advantage will accrue

from the use of this idea in the case of pairs of inverse circles.

Let us consider the radii of the inverse pair of circles X, X' as

having the same sign when their centres are situated on the same

side of the centre of inversion, and as having different signs when

their centres are situated on opposite sides of the centre of in-

version. It is easy to see that, if we regard the radius of the circle

X as positive, the radius of X' will be positive or negative accord-

ing as the centre of inversion is external or internal to the circle

X, when the circle of inversion is real ; and that the radius of X'
will be positive or negative according as the centre of inversion is

internal or external to the circle X, when the circle of inversion is

imaginary.

Hence, if we adopt the above rule of sign as a convention, we
may say that the inverse circles of two given circles intersect at

the same angle as the given circles.
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When it is convenient to specify which circle of a pair of

inverse circles is to be considered as having its radius positive, we
may say that the radius of that circle is positive whose centre lies

on the opposite side of the centre of inversion to the radical axis

of the circles. Now when the circle of inversion is imaginary, and

the centres of two inverse circles are situated on opposite sides of

the centre of inversion, they are also situated on opposite sides of

the radical axis. Therefore, when the circle of inversion is ima-

ginary, we may say that the radius of that circle of the pair is

positive, whose centre lies on the same side of the radical axis as

the centre of inversion.

381. Let us suppose that we have three given circles X, Y, Z
;

and let S be the radical circle of the system. Then each of the

given circles coincides with its inverse with respect to the circle S.

Now let us imagine a circle U to be drawn cutting the given

circles at given angles. Then if V denote the inverse circle of U
with respect to S, it follows from § 380 that V will cut the given

circles at the same angles as U.

Hence, if the problem : To draw a circle cutting three given

circles at given angles, admits of one solution, it will admit of two

solutions.

It must be noticed, however, that the two circles which can be

drawn cutting the given circles at angles 0, </>, yfr will be coincident

with the two circles which can be drawn cutting the given circles

at the angles tt — 0, it —
<f>,

it - i|r.

Assuming then, for the present, that a circle can always be

drawn cutting three given circles at given angles 0, </>, yfr, we infer

that :—a pair of circles can be drawn cutting the given circles at

angles 0, <j>, yjr ; a pair cutting them at angles v — 0,
<f>, ty; a pair

cutting them at angles 0, it —
<f>, yfr ; and a pair cutting them at

angles 0, 4>, it — yjr.

Thus, every pair of circles which cut three given circles at

given angles may be considered as one of four associated pairs of

circles.

Four such pairs of circles are called a group of circles.

Circles cutting three given circles at given angles.

382. To describe a circle which shall cut three given circles at

given angles.
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Let X, Y, Z be the three given circles, and let 2 denote a circle

which cuts them at the angles d, <j>, yfr respectively. It follows from

§ 330, that 2 must cut orthogonally three circles U, V, W, which

are coaxal with the pairs F, Z\ Z, X ; X, F; respectively. Now

these circles U, V, W are coaxal circles; for if A, B, C, be the

centres of X, F. Z, and D, E, F the centres of U, V, W, we have

as in S 329,
BD:CD = (tY):(2Z);

CE:AE = aZ):(2X);
AF:BF = (1X):(ZY).

, p BD CE AF _

Therefore CD' AE ' BF
= l

>

and therefore the points D, E, F are collinear. Consequently the

circles U, V, W are coaxal.

Also since

(2F) : (2.Z) = r2 cos </> :
?*
3 cos yfr,

where r.2 , r3 are the radii of the circles Y, Z, the point D is easily

found, and likewise the points E and F. Therefore the line

DEF may be constructed.

Again the circles U, V, W evidently cut orthogonally the

radical circle of the system X, Y, Z. Denoting this circle by S, we

see that the circles 2, S belong to the orthogonal coaxal system of

the system U, V, W.

Hence the centre of the circle 2 must lie on the straight line

which passes through the radical centre of the circles X, Y, Z, and

is perpendicular to the line DEF.

Again, the circle 2 must touch two circles coaxal with F and

Z (§ 330). Let these circles be (Tj and U2 . Then JJ^ and Z72 are

a pair of inverse circles with respect to the circle U. Hence, if

a circle be drawn through the limiting points of the system

(U, V, W) to touch Ult it will also touch Z72 . Now two circles

may be drawn passing through two given points and touching a

given circle. Hence we infer that two circles can be drawn cutting

the circles U, V, W orthogonally, and touching C7\ and U.>. These

circles will evidently cut the circles X, Y, Z at the given angles.

To show that the construction is practicable, we have only to

show that the circles Ult U» can be drawn. Now the locus of the

centre of a circle which cuts a given circle at a given angle is a
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circle concentric with the given one. Therefore two circles can be

drawn having a given radius and touching the two given circles

Yy Z. If then we draw (§ 325, Ex. 2) the two circles coaxal with

Y and Z which touch either of the two circles of given radius

which cut Y and Z at the given angles, these circles will evidently

be the circles Ult Ut (§ 330).

If the limiting points of the system (U, V, W) are imaginary,

we can still draw two circles cutting these circles orthogonally and

touching the circles U1} U2 , as in § 325, Ex. 2.

Thus, we can in general always describe two circles which shall

cut three given circles at given angles.

Circles which touch three given circles.

383. The eight circles which touch three given circles consist

of four pairs of circles (§ 381) ; namely, a pair which touch the

given circles each in the same sense, and three pairs which touch

one of the given circles in one sense and the other two circles in

16
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the opposite sense. The construction of any pair may be deduced

from the general case given in the last article, or it may be done as

indicated in § 322, Ex. 5. But the simplest method is to proceed

as explained below.

Let us suppose the given circles to be external to each other,

so that the radical circle of the system is real ; and let us suppose

that the two circles which touch each of the given circles in the

same sense have been drawn. Let P, Q, R be the points of con-

tact of one of the circles, and P', Q', R! the points of contact of the

other.

Let us denote the given circles by X, Y, Z; the radical circle

of the system by S; and the tangent circles by T, T'. Then,

since the circles F and Z touch the circles T and T' in the same

sense, the radical axis of T, T' must pass through the homothetic

centre of Y, Z (§ 320, Ex. 9). Similarly the radical axis of T, T
must pass through the homothetic centres of the pairs of circles

Z, X ; and X, Y. Hence the radical axis of the circles T, T' is a

homothetic axis of the circles X, Y, Z.

Again, let the tangents to the circle X at the points P, P'

meet in L. Then, since LP = LP', it follows that L is a point on

the radical axis of T and T' ; therefore L is a point on the homo-

thetic axis of X, Y, Z. But since the circles T, T' are coaxal with

the radical circle of the system X, Y, Z, therefore the point L is

the radical centre of the radical circle, and the circles X, T.

Consequently, if the radical circle cut the circle X in the points D
and D' the chord DD' must pass through the point L.

Hence we have the following simple construction for drawing

the circles Tand T'; Draw the radical axes of the pairs of circles

S, X ; S, Y ; S,Z ; andfrom the points of intersection of these axes

with that homothetic axis of the given circles, which passes through

these homothetic centres, draw tangents to the given circles ; then the

points of contact are points an the circles which touch the given

circles.

Similarly, the other pairs of tangent circles may be constructed

by finding the points in which the radical axes of the pairs of

circles S, X ; S, Y; and S, Z; cut the other three homothetic axes

of the given circles. Corresponding to each homothetic axis there

will be one pair of tangent circles.
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384. Let be the radical centre of the given circles. Then

since the circles T and T' are inverse circles with respect to the

radical circle, it follows that the lines PP', QQ', RR must intersect

in the point 0.

Again, since the tangents at P and P' intersect on a nomo-

thetic axis of X, Y, Z, therefore PP' must pass through the pole

of this line with respect to the circle X.

Hence, we have the following construction : Draw any homo-

thetic axis of the given circles, and find the poles of this line with

respect to each of the circles ; then the lines joining these poles to the

radical centre of the given circles, will cut them in the six points of

contact of a pair of tangent circles.

This method is not of such easy application as the preceding

one, but it is always practicable, Avhereas the former is impracticable

when the radical circle is imaginary.

385. Let any circle U be drawn coaxal with the circles T, T',

which (see fig. § 383) touch each of three given circles X, Y, Z in

the same sense. It follows from § 329, that the powers ( TJX), ( UY),

{ UZ) will be in the same ratio as the powers of the circles X, Y, Z
with respect to the radical axis of S and S', that is the homothetic

axis of the circles X, Y, Z. Therefore the powers ( UX), ( UY),

( UZ) are in the ratio of the radii of the circles X, Y, Z. Hence

every circle which is coaxal with the circles S and S' will cut the

circles X, Y, Z at equal angles.

Hence, to construct a circle which shall cut three given circles

at the same angle, 6 say, we infer that it is sufficient to draw a

circle coaxal with the circles S and S', and cutting one of the given

circles X at the angle 6.

Hence it appears that a circle can always be drawn which shall

cut four given circles at the same angle. Let X1} X2 , X3 , Xt

denote the four circles, and let 1} 2 , 3 , 4 be the radical centres

of the four triads of circles. Let the perpendiculars from 1} 2

on the homothetic axes of the triads of circles X2 , X3 , X4 ;

Xlt X3 , Xt ; intersect in 0. Then it follows from the above

argument that a circle whose centre is will cut each of the given

circles at the same angle.

386. Ex. 1. Show that eight circles can be drawn each of which will cut

four given circles at the same, or supplementary, angles.

16—2
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Ex. 2. From the radical centre of each triad of four given circles, lines are

drawn perpendicular to the four homothetic axes of the triad. Show that the

sixteen lines, so obtained, pass four by four through eight other points.

System of four circles having a common tangent circle*.

387. It has been already proved (§ 370, Ex. 6) that, when four

circles have a common tangent circle, the common tangents of the

four circles are connected by a certain relation. It was pointed

out, however, in that article, that the converse of the theorem

does not follow from the proof there given. We propose now to

give a different proof of this important theorem, and at the same

time to show that the converse is true under all circumstances.

Let Xlt X,, X3) Xt denote any four circles which touch a circle

X, in the points A, B, C, D. Let 0, lt 2 , 3 , 4 be the centres

of the circles X, Xlf X2 , X3 , X4 ; and let r, rx , r„ r3 , rt denote

their radii. Also let us denote the direct common tangents of the

pairs of circles Xlt X>; X1} X3 ; &c, by the symbols 12, 13, &c.

;

and the transverse common tangents of the same pairs by (12)

;

(13); &c.

Firstly let us suppose that the circle X touches each of the

circles Xu Xs , X3 , X4 in the same sense

By § 320, Ex. 16, we have

IV:AR- = 001 .00,:0A.0B;
1&:AC"- = 001 .003 :0A.0C;

The greater part of this section is taken from a paper by Mr A. Larmor ;—
Proc. L. M. S. vol. xxrn, p. 135. (1891.)
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But since the points A, B, G, D are concyclic,

AB . CD + AD . BG = AG . BD.

Hence 12.34 + 14.23-13.24 = (i).

Secondly, let us suppose that the circle X touches Xl in the

opposite sense to that in which it touches the circles X2 , Xz , Xt .

Then, by § 320, Ex. 16, we have

(12)
2

: A& = 00, . 00, : OA . OB.

Hence (12). 34 + (14). 23 -(13). 24 = (ii).

And thirdly, if the circle X touches the circles X1} X2 in the

opposite sense to that in which it touches the circles X3 , X4 , we
shall have

12. 34 + (14). (23) -(13). (24) = (iii).

Thus, when four circles have a common tangent circle, their

common tangents must be connected by a relation of the type (i),

(ii) or (iii).

It is to be noticed that the product which is affected with the

negative sign corresponds to the pairs of circles for which the

chords of contact intersect in a point which is internal to the

circle X.

388. Let us suppose that the circle Xt is a point-circle.

Then we see that, if 4 be a point on either of the circles which

touch X1} X2 , X3 all internally or all externally,

12.34-14.23 + 13.24 = 0,

12.34 + 14.23-13.24 = 0,

or -12.34+14.23 + 13.24 = 0,

according as the point 4 lies on the arc 23, 31, or 12, respec-

tively.

If 4 be a point on either circle which has contacts of similar

nature with X2 , X3) and of the opposite nature with Xlf then

(12) . 34 - (14) . 23 + (13) . 24 = 0,

(12) . 34 + (14) . 23 - (13) . 24 = 0,

or -(12). 34 + (14). 23 + (13). 24 = 0.

If 4 be a point on either circle which has contacts of similar

nature with X3 , X1} and of the opposite nature with X2 , then

(12) . 34 - 14 . (23) + 13 . (24) = 0,

(12) . 34 + 14 . (23) - 13 . (24) = 0,

or - (12). 34 + 14. (23) + 13. (24) = 0.
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If 4 be a point on either circle which has contacts of similar

nature with X1} X2 , and of the opposite nature with X3 , then

12 . 34 - (14) . (23) + (13) . (24) = 0,

12 . 34 + (14) . (23) - (13) . (24) = 0,

or - 12 . 34 + (14) . (23) + (13) . (24) = 0.

In each case these alternatives hold according as the point 4

lies on the arc 23, 31, or 12, respectively, Xt being regarded as a

point-circle lying on the same side of the tangent circle as the

circle X3.

389. Conversely, if any one of the relations which occur in the

last article subsist between the common tangents of the circles

Xj, X,, X3} and the point-circle X4 , that point must lie on one or

other of the pair of tangent circles of Xlt X2 , X3 , for which that

particular relation has here been proved to subsist.

The proof depends on the following lemma : Given three circles

Xlt X.2 , X3 and a point P there is only one other point Qfor which

1Q:2Q:3Q = 1P:2P:3P.

This theorem follows at once from § 312, Ex. 3. The point Q
is in fact the other point of concourse of the three circles which

can be drawn through P coaxal with the pail's of circles X2 , X3 ;

X3 , Xa ; Xit X2 ; respectively. Also from § 345, Ex. 1, we see that

P, Q are inverse points with respect to the radical circle of the

system Xlt X2 , X3 .

390. Let us suppose now that the common tangents of the

circles Xlt X2 , X 3 , and the point-circle Xt are connected by the

relation

12 . 34 - 14 . 23 + 12 . 34 = 0.

This relation holds for any point on either of the arcs of the pair

of circles (F, F, say) which touch each of the circles Xx , X2 , X,
in the same sense.

Through the point 4 describe a circle coaxal with X 2 and X:i>

and let it cut either of these arcs in Q.

Then, by § 388,

12.3Q-23.1Q + 13.2Q = 0;

and, by hypothesis,

12.34-23.14 + 13.24 = 0.
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But, since 4 , Q lie on a circle coaxal with X2 and X3 , by § 329,

24:34 = 2Q:3Q.

Hence 14 : 24 : 34 = 1Q : 2Q: 3Q,

and, by the above Lemma, since Q is on one of the circles Y, Y

,

which are inverse circles with respect to the radical circle of the

system X1} X2 , X3 , it follows that 4 must be a point on the other

circle.

391. Suppose now that the common tangents of four given

circles Xlt X2) X3 , X4 are connected by a relation of the form

12.34 + 14.23 + 13.24 = 0,

(12) . 34 + (14) . 23 ± (13) . 24 = 0,

or (12). (34) + (14). (23) + 13. 24 = 0.

Then the four circles have a common tangent circle.

For, take that circle, X4 say, whose radius is not greater than

that of the three remaining circles. With the centre of each of

the remaining circles as centre describe a circle, whose radius is

equal to the sum or difference of its radius and that of the circle

X4 , according as the common tangent of it and X4 is transverse or

direct.

These three new circles X/, X2
', X3 , together with 4 (the

centre of X4—a point-circle) form a group of four circles having

the same common tangents as the four given circles, so that the

given relation is satisfied for this system ; and it follows by § 390

that the point 4 must lie on one or other of a pair of common
tangent circles of the system X/, X2

', X3 ; and hence, that X4

touches one or other of a pair of common tangent circles of the

system X1} X2 , X3.

If the given circles Xlt X2 , X3 , X4 have a common orthogonal

circle, then it is easy to see that X4 will touch both circles of the

pair.

392. Ex. 1. Show that the circle which passes through the middle points

of the sides of a triangle, touches the inscribed and escribed circles of the

triangle.

This theorem follows at once by treating the middle points of the sides as

point-circles.

Ex. 2. Show that a circle can be drawn to touch the escribed circles of

a triangle in one sense, and the inscribed circle in the opposite sense.



248 ALTERNATIVE PROOF OF THE

Ex. 3. If the circles Xlt A'2 are the inverse circles ofX3 , Xt , respectively,

with respect to any circle, show that the common tangents of the circles are

connected by the relations :

23.14= 12.34+ 13.24;

(23).(14)= (12).(34) + 13.24.

393. When four circles which touch the same circle intersect

in real points, we may obtain relations connecting their angles of

intersection which are equivalent to the relations given in § 387.

If two circles whose centres are n 2 , touch another circle

whose centre is 0, at the points P and Q, it is easy to prove that,

if the circles cut at the angle &>

:

PQ2
: W,P . 2Q sin2 \<o = OP.OQ: 00, . 002 ,

when the contacts are of the same nature ; and that

PQ°- : 40 XP . 2Q cos2 \a> = OP.OQ: 00, . 002 ,

when the contacts are of the opposite nature.

Hence, if Xl} X2 , X3 , X4 be four circles which touch a fifth

circle X, we shall have

:

sin ia>1)2 .sin^a)3i4 + sin |G>1)4 .sm£&>2i3
— sm I^m- sm i0,2,4 = 0... (i),

when X touches all the circles in the same sense

;

sin £&>i >2 . cos £&>3 4 + sin \w23 . cos ^&>i, 4
— sin h(oh3 . cos ^&>2i4

= 0. . .(ii),

when X touches X4 in one sense, and X1} X2 , X3 in the opposite

sense

;

sin £a>] !2 . sin £a>3>4 + cos|&>2>3 . cos£a>lj4 — cos^a>li3 . cos £g)2
,
4
= 0. . .(iii),

when Ar
touches X, and X2 in the same sense, and X3 , X4 in the

opposite sense.

Conversely, if the angles of intersection of the circles X1} X2 ,

A'3) X4 be connected by any one of the above relations, it may be

proved, as in § 391, that the circles will have a common tangent

circle.

394. We propose now to give an alternative method* by

which the truth of the theorem of § 391 may be inferred.

If the circles Xlt X,. X3 touch the same straight line, it is

evident that their common tangents must be connected by the

relation,

23 ±31 ±12 = 0,

or by a relation of the type

23±(31)±(12) = 0,

* This method was suggested by Mr Baker.
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according as the circle X\ is on the same side, or the opposite

side, of the line as the circles X2 , X% .

The converse of this theorem is not so obvious, but it is easily

seen from a figure that it is true when any one of the circles is a

point-circle.

When the radius of each circles is finite, let Xx be that circle

whose radius is not greater than the radii of the other two, and

let circles X2 , X3 be drawn concentric with X2 and X3 with radii

equal to the sum or difference of the radii of these circles,

respectively, and the circle Xlt according as their common tangents

with Xx are transverse or direct.

Then the circles X2 , X3
', and the point-circle X (the centre of

Xj) have the same common tangents as the circles X1} X2 , X3 , so

that the given relation is satisfied for this system, and therefore

the point Oj must lie on one of the common tangents of the

circles X2 , X3 . Consequently the circle Xy
must touch one of

the common tangents of the circles X2 , X3 ; that is, the circles

Xu X2 , X3 touch the same line.

395. Let us suppose now that the common tangents of the

circles Xlt X2 , X3 and a point-circle 4 , are connected by a

relation of the form

23.14 + 31.24 + 12.34 = 0.

Let Xi, X2 , X3 denote the inverse circles of Xl} X2 , X3 ,

respectively, with respect to any circle whose centre is 4 , and

whose radius is R ; and let rlf r/, &c. denote the radii of the circles

X1} Xi, &c. Then we have by § 370, Ex. 3,

122 :l
/2'2 = r1r2 :r1V/,

provided 4 be external to both the circles X1} X2 , or internal to

both ; and
122

: (1'2')2 = (12)
2

:
1'2'2 = r,r2 : r^,

when 4 is external to one and internal to the other circle.

Also by § 354, we have,

142 :B? = r
x

: r,'.

Hence it follows that the common tangents of the circles

Xi, X2 , X3 will be connected by a relation of the type

2'3/ + 3T + l
,2' = 0,

or (2'3') ± 3T ± 1'2' = 0.

Therefore, by § 394, the circles X/, X2 , X3 will have a common
tangent line.
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Hence it follows that the circles Xl} X2 , X3 must touch a circle

passing through the point 4.

We may proceed in the same manner when the common

tangents of the circles Xu X2 , X3 and the point-circle t are

connected by either of the relations (ii) or (iii) of § 387.

Finally, the general case may be deduced as in § 391.

396. Ex. 1. Show that, if the circle X4 cut the circles Xu X2 , X3 at

equal angles, and if

sin ^o>
lf 2
+ sin £a>

2( 3
— sin £<o

lt 3
= 0,

the circle Xt
and the two circles Y, Y' which touch the circles Xt , X2 , X3 ,

each in the same sense, will touch each other at the same point. [A. Larmor.j

Ex. 2. If three circles Xlt X2 , X3 intersect at angles a, /S, y, and if X be

the circle which intersects them at angles 3~y, y~a, a~0 respectively, show

that:

i. A circle can be drawn to touch the circles X, Xlt X2 , X3 in the

same sense.

ii. Three circles can be drawn to touch two of the circles Xlt X,, X3 in

one sense, and the third circle and the circle X in the opposite sense.

It is easily verified that the following relations subsist connecting the

angles of intersection of the four circles :

sin £a sin i (j3- y) + sin |£ sin £ (y - a) + sin |y sin J (a - 3)= :

sin £a sin h (3 - y) +cos £3 cos |(y - a) - cos £y cos £ (a - 3)=
cos £a cos |(3 - y) - sin f3 sin \{y - a) - cos |y cos \ (a - fi)= :

cos £a cos £(3 - y) - cos |3 cos h (y - a) +sin £y sin £ (a - )9)=0.

Ex. 3. Three given circles intersect two- by two in the points A, A' ;

B, B C, C. Show that the circles ABC, AB'C, A'BC, A'EC are touched

by four other circles. [A. Larmor.]
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If the given circles intersect at angles a,$, y, it is easy to see that the

angles of intersection of the circles ABC, AB'C, A'BC, A'EC, are given by

the scheme :

ABC AB'C A'BC A'B'C

ADC £~y y~a a~/3

AEC £~y n — a — /3 it — a — y

A'BC y~a it — a — /3 ir-£-y

A'B'C a~d 7T — a —

y

7r-3-y

Hence, the theorem follows from the theorem in Ex. 2.

Ex. 4. Show that the circles ABC, A'B'C, AEC, A'BC have four common
tangent circles. [A. Larmor.]

Ex. 5. Show the circumcircles of the eight circular triangles which are

formed by three given circles are touched by thirty-two circles, each of which

touches four of the eight circles. [A. Larmor.]

Properties of a circular triangle.

397. Let ABC be any triangle formed by three given circular

arcs, and let the complete circles be drawn, intersecting again in

the points A', B', C. We thus obtain three triangles A'BC, AB'C,

ABC, which may be called the associated triangles of the given

triangle ABC; and four triangles A'B'C, AB'C, A'BC, A'B'C,

which are the inverse triangles, with respect to the circle which

cuts the given circles orthogonally, of the given triangle and its

associated triangles respectively.

Each of the above triangles has a circumcircle, and each has an

inscribed circle, the eight inscribed circles being the eight circles

which can be drawn to touch the three circles which form the

triangles. Each of these systems of circles have some remarkable

properties, in the discussion of which we shall meet with other

circles which will be found to correspond to some of the circles

connected with a linear triangle.

We shall find it convenient to consider the angles of a triangle

as measured in the same way as the angles of a linear triangle.

The angles of a triangle will not necessarily be the same as the

angles of intersection of the circles which form it. Thus, if in the

figure we take a, /8, 7 as the angles of the triangle ABC, the
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angles of intersection of the circles will be the supplements of

these angles.

The angles of the several triangles formed by the circles BG,

CA, AB are easily seen to be given by the scheme :

ABC a 8 y

A'BC a 7T-8 TT — y

AB'C n — a B TT — y

ABC ir — a 7T — 8 v

AB'C a TT-8 TT — y

A'BC n — a 3 TT-y

A'B"C it
— a n-8 y

A'EC 2-ir-a 2n-8
1

•2-K-y

398. The inscribed circle of any triangle and the inscribed

circles of the three associated triangles are touched by another circle

which touches the former in one sense and the latter in the opposite

sense.
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Let T, Tlt To, T3 denote the inscribed circles of the triangles

ABC, A'BG, AB'C, ABC; and let 01, (01); 12, (12); &c, denote

the common tangents of the pairs of circles T, 2\; Tlf T2 ; &c.

Then, since the circle BC touches Tx externally, and T, T2 , T3

internally, we have by § 387, (ii),

(13). 02 = (01). 23 + (12). 03.

Similarly, since the circle CA touches T2 externally, and T, Tl} T3

internally,

(12).03 = (02).13 + (23).01;

and, since the circle AB touches T3 externally, and T, T1} T2 in-

ternally,

(13).02 = (23).01+(03).12.

Hence, we have,

(03). 12 = (01). 23 + (02). 13.

Therefore (§ 391) a circle can be drawn touching the circle-T in-

ternally and the circles Tx , T2 , T3 externally.

This theorem is evidently analogous to Feuerbach's theorem

concerning the inscribed and escribed circles of a linear triangle.

The extension of the theorem is due to Dr Hart, and the proof

given above is a modification of Dr Casey's proof.
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399. The circle which touches the inscribed circles of a circular

triangle and its associated triangles is called the Hart circle of the

triangle. It has several properties which are analogous to the

properties of the nine-point circle of a linear triangle.

We have already seen § 396, Ex. 2, that the circle which cuts

the sides of the triangle ABC at angles equal to £ ~ y, y - a, a - fi,

respectively, touches the circles T, T1} T2 , T3 . Hence, we infer

that the Hart circle of the triangle ABC cuts the sides at angles

equal to the differences of the angles of the triangle.

If we denote the circles BC, CA, AB by X, Y, Z, and the Hart

circle of the triangle ABC by H, we see that the circles form a

system touched by four other circles T, T1} T2 , Ts , such that :

—

T touches X, Y, Z, H in the same sense

;

Tx
touches X, H in one sense, and Y, Z in the other sense

;

T2 touches Y, H in one sense, and Z, X in the other sense

;

Ts touches Z, H in one sense, and X, Y in the other sense.

Hence, we infer that the circles X, Y, Z, H form a system such

that each is the Hart circle of one of the triangles formed by the

other three circles.

400. There being a Hart circle connected with each of the

eight triangles formed by three circles, we have in all a system of

eight Hart circles. And since the Hart circle of any triangle

touches the inscribed circles of its own triangle and the three

associated triangles, we see that : The Hart circle of any triangle

and the Hart circles of the three associated triangles have a common
tangent circle which touches the former in the opposite sense to that

in which it touches the latter.

401. In § 396, Ex. 3, it was proved that the circumcircles of

the triangles ABC, AB'C, A'BC, A'B'C form a system such that

one of them, ABC, for instance, cuts the others at angles equal to

the differences of the angles at which they intersect.

Hence, we have the theorem : The circumcircle of any circular

triangle is the Hart circle of the triangleformed by the circumcircles

of the inverse associated triangles*.

402. Several properties of the Hart circle of a triangle may be

derived by considering that the circle ABC is the Hart circle ol

* This theorem was first stated by Mr A. Larmor.
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the triangle A'B'C, formed by the circular arcs AB'C, A'BC,
A'B'C.

Thus let us consider three circles BCQR, CARP, ABPQ, inter-

secting in the three pairs of points A, P; B, Q; C, R\ each pair

being inverse points with respect to the circle which cuts the three

circles orthogonally. It follows that the circle PQR is the Hart

circle of the triangle ABC formed by the circular arcs BPC, CQA,
ARB.

Hence we infer that the Hart circle of a circular triangle ABC
cuts the arcs BC, CA, AB in three points P, Q, R, respectively,

such that the straight lines AP, BQ, CR are concurrent.

If be the point of concurrence of the lines AP, BQ, CR, we
have the theorems

:
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i. Each group of points : B, C, Q, R; C, A, R, P ; A, B,

P, Q ; are concyclic.

ii. The point is the radical centre of the circles BCQR,

CARP, ABPQ.

iii. The Hart circle PQR is the inverse of the circumcircle

ABC with respect to the circle which cuts the circles BCQR,

CARP, ABPQ, orthogonally.

iv. The circumcircles of the triangles AQR, BRP, CPQ are

the inverses of the circles BPC, CQA, ARB, with respect to the

circle which cuts the circles BCQR, CARP, ABPQ, orthogonally.

The points P, Q, R are evidently analagous in the case of a

linear triangle to the feet of the perpendiculars from the vertices

on the opposite sides. The circle which cuts the circles BCQR.

CARP, ABPQ orthogonally, or the circle of similitude of the

circumcircle and the Hart circle, is analogous to the polar circle of

a linear triangle.

403. Ex. 1. If the angles of a circular triangle ABC be a, ft, y, and if

circles be drawn through the pairs of points B, C ; C, A ; A, B ; cutting the

arcs BC, CA, AB, at angles equal to J (n+ a+ fi+y) ; show that these circles

will cut the arcs of the triangle in three points P, Q, B respectively, such that

the circumcircle of the triangle PQR is the Hart circle of the triangle ABC.

Ex. 2. If the Hart circle of the triangle ABC cut the arcs BC, CA, AB in

the points P, P'
; Q, Q' ; R, R' ; respectively, the points Q, R being concyclic

with B, C ; R, P with C, A ; and P, Q with A, B ; show that the circumcircles

of the triangles AtyR', BR'P', CP'Q', touch the circumcircle of the triangle

ABC at the points A, B, C, respectively.

404. When the given circles do not cut in real points, the

Hart circles of the system are in general real circles. Their exis-

tence may be inferred in a similar manner to that adopted in

§ 398, by using the relations of § 387.

If we denote the pairs of tangent circles by T, T ; Tlt Tx

'

;

T2 , T! : T3 , T9
'\ and the pairs of Hart circles by H, H' ; Hlt fT/;

i/2 , //./; H3 , H3
'; and if we consider the radii of the circles T, T1}

^si Tj, H, Hu H2 , H3 , as positive, we see that, for the figure of

§ 308, the radii of T and H' will be positive, and the radii of the

circles T
7

,', TJ, T3 ,
//",', H2

', H3 negative, in accordance with the

convention of § 380. Hence the nature of the contacts of the

several circles will be those given in the scheme:

—
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T T Tx T{ T* 7" Ts 7"
•'3

H in ex ex ex

H' in ex ex ex

B
x

ex in in in

h; ex in in in

inh% ex in in

H4 ex in in in

s3 ex in in in

#3' ex in in in

It will be found that for any other figure the nature of the

contacts will be the same as in this scheme, provided we choose

the signs of the radii of any four of the circles T, Tx ,T2,TZy so that

the contacts of them with the circle H are as here indicated. For

instance, let us consider the case of three given circles external to

each other. Let T be the circle which touches each internally,

and let Tlt T2 , T3 be the circles which touch one of the given

circles internally and the other two externally,—here the words

internally and external have their ordinary meanings. Then it is

easy to see that the circle H will touch each of the circles T, Tlt

T2 , T3 , internally. But if we consider the radii of T and H as

positive, and the radii of Tl} T2 , T3 as negative, the contacts, in the

generalised sense, will be the same as given by the scheme ; and the

nature of the contacts of any other group of circles may be inferred.

Circular reciprocation.

405. We propose now to explain a method analogous to the

method of polar reciprocation (Ch. XI.), by which we may derive

from known properties of figures consisting of circles, other

properties. It will be seen, however, that the reciprocal figure

kvill in general be a more complicated figure than the original

;

consequently the method is not so powerful as polar reciprocation

when used as an instrument of research.

L. 17
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Let S denote a fixed circle, and let P, P' be a pair of inverse

points with respect to S. Then there can be found (§ 325, Ex. 1)

one circle, which cuts S orthogonally and is coaxal with the system

\8,P,P'}. This circle we shall call the reciprocal with regard to

S of the point-pair P, P' ; or simply the reciprocal of the point

P. The circle S will be called the circle of reciprocation.

The reciprocal circle of a point will evidently be a real circle

only when the circle of reciprocation is imaginary. Consequently

we shall assume, unless the contrary is stated, that the circle of

reciprocation is an imaginary circle having a real centre.

We shall presently prove that when the locus of a point P is a

circle, the reciprocal of the point will envelope two circles, consti-

tuting a pair of inverse circles with respect to the circle of

reciprocation. These circles will be called the reciprocal of the

circle which is the locus of P.

Further, if x, x denote the pair of circles reciprocal to a circle

X, and y, y the pair of circles reciprocal to Y, we shall show that

when the circles X and Y touch, the circles x, x will each touch

one of the circles y, y.

406. To be able to apply the last theorem, it is necessary to

distinguish between two circles which are inverse circles with

respect to a given circle of inversion. Let X, X' be a pair of

circles inverse with respect to S, and let T be the circle concentric

with S and cutting it orthogonally ; then we have shown in § 364,

that the ratios (XT) : (XS), (X'T) : (X'S) have opposite signs.

We shall call that circle of the pair for which this ratio is positive,

the positive circle of the pair, and the other circle the negative

circle of the pair. In § 365 it was shown that when the circle of

inversion is imaginary, the centre of the negative circle of the pair

X, X' must lie between the centres of the circles S, S', where S' is

that circle coaxal with X and X' which cuts S orthogonally.

It will be necessary to use the convention as to the sign of the

radius of a circle, which was given in § 380 ; and we shall suppose

the radius of either of a pair of inverse circles to be positive,

when its centre is situated on the same side of the radical axis as

the centre of inversion. It is to be noticed that the positive circle

of a given pair of inverse circles may have a negative radius, and

that the radii of both circles of a pair may have the same sign.

Assuming the convention as here stated to be always under-
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stood, and using the definitions given above, we shall find that the

theorem stated in the last article may be stated in the form

:

When two circles X, Y touch internally, the positive and negative

circles of the reciprocal pairs x, x'
; y, y' touch respectively ; and

when X, Y touch externally, the positive and negative circles of the

pair x, x touch respectively the negative and positive circles of the

pair y, y'.

407. To construct the reciprocal of a point.

Let P be any given point, and let P' be the inverse point with

respect to an imaginary circle S whose centre is 0. Let T denote

the circle whose centre is which cuts S orthogonally. Then ifp
denote the reciprocal of the point P with respect to S, p will have

its centre on the line OP, and will bisect the circle T.

Let G be the centre of p ; and let p cut OP in Q and Q', and

the circle T in the points R, R'. Let q denote the circle whose

diameter is PP'. Then, since P, P' are by definition the limiting

points of the circles S and p, the circle q must cut these circles

orthogonally. Therefore the circle q will pass through the points

R, R''

; and the pencil R {PP', QQ) will be harmonic. Hence RP
will bisect the angle QRQ'. But the angles QRQ', ORG evidently

have the same bisectors : therefore RP, RP' bisect the angle ORG,
and therefore the range [OG, PP') is harmonic.

Hence we have the following construction for the circle p :

Find the harmonic conjugate of the point with respect to the

points P, P', and ivith this point for centre draw a circle cutting

the circle T in the same points as the diameter perpendicular to the

line OP.

17—2
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408. When the point P coincides with the point 0, P' is at

infinity, and therefore the point C must coincide with 0. We infer

then that the circle T is the reciprocal of the point 0, and also of

the line at infinity.

Again if P and P' be points on the circle T, it is obvious that

C the centre of p will be the point at infinity on the line OP.

That is to say the reciprocal of any point P on the circle T is the

diameter of this circle which is perpendicular to OP.

409. To find the reciprocal of a given circle.

Let P be any point on a given circle X, and let P' be the

inverse point with respect to S, the circle of reciprocation, on the

inverse circle X'. Then the circle p which is the reciprocal of P
with respect to S will touch two circles coaxal with X and X' ; we
shall prove that these circles are fixed for all positions of P.

Since the circle X passes through the point P (so that the

power (XP) is zero) which is a limiting point of the system

(p, S, P, P'\ it follows by § 329, that

{Xp):(XS) = PC:P0.

But (§407) CP:PO = p:k,

where p, k denote the radii of the circles p, T.

Hence, if r denote the radius of X, and 6 the angle of inter-

section of the circles X, p, we shall have

C0Sff
irk
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Similarly, if r denote the radius of X', and 8' the angle of

intersection )f X', p, we shall have

cos ^=- m
Hence the circle p belongs to a system of circles which cut the

circles X, X' at constant angles. Therefore (§ 330) the circle p
will touch two fixed circles coaxal with X and X'.

The circles enveloped by p are called the reciprocal pair of

circles corresponding to the pair X, X'.

It is evident that these circles are a pair of inverse circles with

respect to the circle of reciprocation.

410. Let x, x denote the reciprocal circles of the circles X, X'.

Then it is evident that if either of the latter is a straight line,

each of the circles x, x will touch the circle T. Also if the circles

X, X' are point-circles, the circles x, x will evidently coincide with

the circle which is the reciprocal of the points.

411. To construct the reciprocal pair of circles of a given pair

of circles luhich are inverse with respect to the circle of reciprocation.

Let X be any given circle, X' the inverse circle with respect

to S\ let L, L' be the limiting points of Xand X' ; and let P, P'

be a pair of inverse points on them. The points P, P', L, L' are

concyclic : let Z denote the circle which passes through them.

The circle Z evidently cuts orthogonally the circles S, X, and p, the

reciprocal of the point P. Hence, if Q, Q' be the points in which

Z cuts p, Q and Q' will be the points in which p touches the circles

x, x, which are the reciprocal pah' ofX and X'.

Let M be the centre of the circle p. Then, since {MO, PP') is

harmonic (§ 407), it follows that and M are conjugate points

with respect to Z. Also, since p cuts Z orthogonally, M is the pole

of QQ' with respect to Z.

It follows that, ifN be the pole of PP' with respect to Z, QQ'

must pass through N ; and that K will be the centre of the circle

q which is the reciprocal of the point-pair Q, Q'.

Hence we have the following construction for drawing the

circles x, x'
y
the reciprocal pair of X, X'

:
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Take any point P on X, and draiv the circle Z cutiing X ortho-

gonally in P and X' orthogonally in F. Let PP' merf the polar of

with respect to Z in the point M, and let MQ, MQ' be the tangents

front, M to Z. Then, if the diameter ofX which passes through

rut MQ, MQ' in the points a, a', the circles whose centres are a, a\

and whose radii are aQ, a'Q' will be the circles reciprocal to X
and A".

412. Let us suppose that Z is a given circle, and letX be any

variable circle cutting Z orthogonally in the point P. Let A be

the centre of X, and let 0' be the centre of the circle S', which

cuts S orthogonally and is coaxal with S and X. The circle S'

will also cut Z orthogonally, and therefore 0' must lie on the

radical axis of S and Z, that is to say the locus of 0', for different

positions of X, is the polar of with respect to Z.

Now X will be the positive circle of the pair X, X\ when its

centre A does not lie between and 0'
(§ 406). Hence, if a line

FF' (see fig. § 411) be drawn through the point parallel to

MX, the polar of 0, cutting the lines NP, NP' in F and F', we
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see that the circle X will be the positive circle of the pair X, X',

provided its ceitre does not lie between N and F.

Let x denol e the positive, and x' the negative circle of the pair

x, x. Then x and x' cut Z orthogonally in the points Q, Q'. If Q
denote the positive point of the pair Q, Q', we see from the figure

(§411) that:

i. When A lies between P and F, x will cut Z in Q'
;

ii. When A lies between F and N, x will cut Z in Q ;

iii. When A has any other position on PN, x will cut Z in Q.

Again, let us enquire which of the circles X, X', x, x' have

negative radii, when A has different positions on the line FN.
The radical axis of the system (X, X', x, x) evidently cuts the line

OA in a point which lies on the circle whose diameter is OG, where

C is the centre of the circle Z. The tangent to this circle at is

the line OF. Therefore, when A lies on the same side of F as the

point P, the radius of X is negative.

Also we see that the radius of X' will be negative when A' lies

on the opposite side of F' to P' ; and that the radius of x or x

will be negative when a or a lies on the same side of G as Q, or

on the opposite side of G' to Q'.

413. Let X, Y be any two circles touching at the point P
(fig. § 411); let x and x be the positive and negative circles of

the pair reciprocal to X, and let y and y be the positive and

negative circles of the pair reciprocal to Y. Let A, B be the

centres of X, Y. Then we see that the positive circles x, y will

touch (i) at the point Q' when A and B both lie between P and F
;

(ii) at the point Q provided that neither A nor B lies between P
and F. In either case the circles X and Y must touch internally

at the point P, where the word internally has a generalised meaning

in accordance with the convention stated in § 406.

Again if A lie between P and F, and if B do not lie between

P and F, that is to say if the circles X, Y touch externally, it

follows that the positive circle x will touch the negative circle y'

at the point Q', and that y will touch x at the point Q.

Hence we have the theorem : When two circles touch internally,

the positive reciprocal circles touch each other, and likewise the

negative reciprocal circles touch; but when the circles touch



264 APPLICATION OF THEORY TO

externally, the positive reciprocal circle of either toucl.es the negative

reciprocal circle of the other.

We can evidently determine the nature of the contacts of the

reciprocal circles by considering whether the given circles are

positive or negative circles. Thus, when the given circles X, Y
are both positive, or both negative circles, the reciprocal circles

must touch internally; and when one of the circles X, Y is a

positive circle and the other a negative circle the reciprocal circles

must touch externally.

414. To illustrate the use of the method of circular recipro-

cation, let us consider the case of three given circles intersecting in

the three pairs of points A, A'; B, B' ; C, C ; and having an

imaginary radical circle. Then, if we take the radical circle of the

system as the circle of reciprocation, the reciprocals of the point-

pairs A, A' ; B, B' ; C, C ; will be three circles having the circle

of reciprocation for their radical circle, and intersecting in the

point- pairs P, P'
; Q, Q'

; R, R ; which will evidently be the re-

ciprocals of the given circles. Again the reciprocals of the group

<>f tangent circles of the given circles will obviously be the group

of circumcircles of the reciprocal system. Hence, the properties of

the group of tangent circles of a given system of three circles must
correspond reciprocally to the properties of the group of circum-
fircles of such a system.
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Let T, T'\ Tlt 2Y; T,, T/ ; T3 , T,' denote the pairs of tangent

circles of the given system; and let H, H''; Hx , Hi] H2 , H2 ;

H3 , H3 denote the pairs of Hart circles of the system. Then, if

P, Q, R be the positive points of the pairs of points in which the

reciprocal circles intersect, it is easy to see that the circumcircles

PQR, P'QR, PQ'R, PQR' will be the positive reciprocal circles of

the pairs T, T ; Tlt 2\'; Tit T./ ; T3 , T3
'

; respectively. LetK,^,
K.2 , K3 denote respectively the positive reciprocal circles, and K',

K
x , K2 , K3 the negative reciprocal circles of the pairs of Hart

circles of the given system. Then, since H touches T internally,

and Tu T.,, T3 externally (§ 404), it follows by the last article that

K must touch the circumcircles PQR, PQ'R', P'QR', PQ'R.
Also, since Hl touches T externally and T

x , T2
', T3 internally, it

follows that Ki must touch the circles PQR, PQ'R', P'QR', and

PQ'R. Similarly it follows that the circles K2
', K3 must touch

the same four circles.

Hence the four circumcircles PQR, PQ'R', P'QR', P'Q'R, have

four common tangent circles ; that is to say any one may be consi-

dered as a Hart circle of the system formed by the other three.

Similarly we may show that the circles P'Q'R, P'QR, PQ'R,

PQR' have four common tangent circles (cf. § 401).

Mr A. Larnior was the first, I believe, to state the theorem in § 401, and

to point out the reciprocal relation which exists between the circumcircles and

the tangent circles of a system of three circles, in a paper communicated to

the British Association in 1887. The theorem stated above in § 413, although

arrived at independently, is merely the equivalent in plane geometry of

Lemmas (a) and (/3) given in his paper on 'Contacts of systems of circles,'

London Math. Soc. Proc. Vol. xxin., pp. 136—157. In this paper the subject

is treated at greater length than in this treatise.



CHAPTER XVI.

THEORY OF CROSS RATIO.

Cross Ratios of ranges and pencils.

415. If P be any point on the line AB, the ratio AP : BP is

called the ratio of the point P with respect to the points A and B.

The ratio of the ratios of two points P and Q with respect to

the points A and B is called the cross ratio of the points P, Q
with respect to A and B ; or briefly the cross ratio of the range

\AB, PQ).

It will be convenient to use the notation {AB, PQ] to mean
the cross ratio of the range

{
AB, PQ}, so that we have

{AB, PQ} = AP.BQ:AQ.BP.
In this definition it is necessary to observe the order in which

the points are taken.

Now four points may be taken in twenty-four different orders;

that is to say, four collinear points determine twenty-four ranges.

Thus the points A, B, C, D determine the ranges:

[AB, CD), {BA,DC}, {CD, AB}, {DC, BA),

{AB,DC}, {BA,GD}, {DG,AB}, {CD, BA],

{AC,BD}, {CA,DB}, {BD, AC], {DB, CA],

I
AC, DB], {CA, BD], {DB, AC], {BD, CA},

{AD,BC}, {DA,CB}, {BC, AD}, {CB, DA},

[AD,CB\, {DA,BC}, {CB, AD}, {BC, DA}.

From the definition it is evident that the four ranges in each
row of this scheme have the same cross ratio. That is to say :

Ij any two points of a range be interchanged, the cross ratio of the
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'ange is unaltered, provided that the other two points are also

Interchanged.

Again, we have from the definition,

{AB, CD) . \AB, DC\ - 1

;

{AC,BD} . {AC,DB\ = \;

[AD, BC] . {AD, GB\ = 1.

And, since A, B, C, D are four collinear points, so that

AB.CD + AC.DB + AD.BC = 0,

we have {AB, CD} + {AC, BD) = 1

;

{AB, DC] + {AD, BC} = 1;

{AC,DB} + {AD,CB} = 1.

Hence, if {AB, CD] = k, we have

{AB, CD] = k, {AB, DC}**-,

{AC, BD} = 1- k, {AC, DB) - ~-

,

{AD,BC} = ^^, {AD,CB) = -1

416. If the two points A and B coincide, it is obvious that

AC.BD = BC.AD;
md therefore that {AB, CD} = 1.

In this case we have

{AC,BD} = {AD,BC} = 0,

and {AC, DB} = {AD, CB} = x .

Conversely, if k = 0, we have

{AC,BD} = {AD,BC} = 0;

and therefore AB.CD= AB.DC =0.

Therefore either A and B coincide, or else C and D coincide.

Hence, if the cross ratio of the range {AB, CD} have the

value 1, 0, or oo , two of the points must coincide.

417. If {AB, CD} = - 1, the range {AB, CD} is harmonic. In

this case we have,

{AC, BD} = {AD, BC}=2;
and {AC, DB} = {AD, CB} = J.

Conversely, if the cross ratio of the range {AB, CD} have
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the value — 1, 2, or £ ; the points A, B,G, D, taken in some order,

form a harmonic range.

In fact we have the following theorems

:

(i) When {AB,CD} = {BA,CD}, the range {AB, CD} is

harmonic.

(ii) When {AB,CD} = {AC,BD}, the range [AD, BG\ is

harmonic.

(iii) When {AB,CD] = {AD, CB], the range {AC, BD) is

harmonic.

418. There is another special case of some importance. If the cross

ratio of {AB, CD), that is k, satisfy the equation k2 — <+ l=0, we have

{AB, CD} = {AC, DB}= {AD, BC} = k,

{AC, BD) = {AD, BC) = {AB, DC}= -«*.

In this case the points may be said to form a bivalent range.

419. If OA, OB, OC, OD be any four rays of a pencil, the

ratio of sin AOC . sin BOD : sin BOC . sin AOD is called the

cross ratio of the pencil {AB, CD}.

If A, B, C, D be any four points on the same straight line, the

pencil {AB, CD], formed by joining these points to any point 0,

will have the same cross ratio as the range {AB, CD}.

For, if OX be perpendicular to the line AB, we have, .

ON .AB = 0A.0B sin A OB.
I heivfore

AC. BD : BC.AD = sin AOC . sin BOD : sin BOC . sin AOD.



CONSTRUCTION OF A GIVEN RANGE. 269

420. Ex. 1. If {ADCD} be any range, and if the circles described on AB,
?D, as diameters intersect at the angles 2d, shew that

{AB, CD} = - cot2 0, {AB, DC} = - tan2
0,

{AC, BD}=cosec*6, {AC, DB} =sin2
0,

{AD, BC} = cos2 0, {A D, CB} = sec2 6. [Casey.]

Ex. 2. If {ABXYZ} be any range, show that

{YZ, AB} . {ZX, AB} . {XY, AB} = 1.

Ex. 3. If A, B, C, I, J be any five coplanar points, show that the product

)f the cross ratios of the pencils A {BC, IJ}, B{CA, IJ}, C {AB, IJ}, is

squal to unity.

421. Given any three collinear points A, B, G: to find a point

D on the same line, such that the range {AB, CD] may have a given

woss ratio.

B'

A C D B

Draw any straight line through the point C, and take on it two

points A', B', so that the ratio of GA' : CB' is equal to the given

)ross ratio. Let the lines A A', BR meet in P, and let PD
oe drawn parallel to A'G meeting AB in D. Then D is a point

such that the range [AB, CD] has the given cross ratio.

For, AG:AD = GA':DP;

md BG:BD = GB'.DP.

rherefore AG .BD-.BG .AD=GA' : CB'.

It is evident that there is only one solution to the problem.

Hence it follows that, if

{AB, CD] = {AB, CD'},

the points D and D' must coincide.

Also from § 419 we infer that, if {AB, CD}=0 {AB, CD'),

the rays OD, OD' must be coincident.

422. Ranges and pencils which have equal cross ratios are

said to be equicross.
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It is often convenient to express the fact that two ranges or

pencils are equicross by an equation such as

{AB, CD} = {A'B', CD'} = {PQ, RS}.

But when this notation is used, it is necessary to observe the order

of the points, or rays.

423. In § 419 we proved that, when the points of a range

{AB, CD} are joined to any point 0, the range {AB, CD} and the

pencil {AB, CD} are equicross.

Hence, if the rays of a pencil be cut by two transversals in the

points A, A'; B, B'; C, C'\ D, D'; the ranges {AB, CD}, {A'B', CD'}

are equicross.

It is also evident that, if
{
ABCD} be any range, and if P and Q

be any two points, the pencils P\AB, CD], P' {A'B', CD'} are equi-

cross.

424. Let {AB, CD}, {A'B', CD'} by any two equicross ranges,

and let 0,0' be any two points on the line AA', then the lines

OB, OC, OD will intersect the lines O'R, O'C, O'D', respectively,

in collinear points.

Let OB, OC meet O'B', O'C, in B", C"; and let B"C meet AA'
in A". Let OD, O'D' meet B"C" in D", D'", respectively.



HOMOGRAPHIC RANGES. 271

Then we have \A"B", CD"} = {AB, CD},

and {A"B", CD"'} - {A'B\ CU}.

But, by hypothesis, {AB, CD} = {A'R, CD'}.

Therefore {A"B", CD"} = {A"F'} CD'"}.

Hence, by § 421, the points D", D"' must coincide ; that is to say,

the lines OD, OD' intersect in a point on the line A"B"G".

The theorem of this article may also be stated in the form : If
two equicross pencils have a common ray, they will also have a

common transversal.

425. Ex. 1. If ABC, A'B'C be two triangles such that AA', BE, CC
are concurrent, the corresponding sides of the triangles will intersect in

collinear points (§ 161).

y

OB B

Let AA', BE, CC meet in ; and let BC, EC intersect in the point X.

Then we have

A {BC, 0X}=0 {BC, AX}=0 {EC, A'X}=A' {EC, OX}.

Hence by § 424, AB, AC will intersect A'E, A'C, in points which are

collinear with X.

Ex. 2. If ABCD be any tetrastigm, and if E, F, G be respectively the

G
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points of intersection of AB, CD; AC, BD ; AD, BC ; show that the pencil

{EF, AB} is harmonic (§ 141).

Let GF cut AB in H, and CD in K. Then we have,

&{EF, AB}=F{EH, AB} =F{EK, CD}= G{EF, BA}.

Therefore, by § 417, the pencil G {EF, AB} is harmonic.

Ex. 3. If {ABC}, {A'B'C} be two ranges on different lines, show that the

points of intersection of the pairs of lines BC, B'C ; CA', C'A ; AB', A'B
;

will be collinear. (§ 157.)

Let BC, B'C intersect in X ; CA', C'A in Y; and AB', A'B in Z. Join

YX, YZ, TB.

Then it is easy to see that,

Y{AA', BZ} =A {CA', BB'},

since these pencils have the common transversal A'B.

Similarly, V {CC, BX}= C {CA', BB'}

.

But it is evident that

A {C'A', BB'} = C{CA', BB'}.

Hence, Y {AA', BZ} = Y{CC, BX}.

Therefore the points X, Y, Z must be collinear.

Ex. 4. If {abc}, {a'b'c'} be any two pencils, show that the lines joining the

pairs of points be', b'c ; ca', c'a ; ab', a'b ; will be concurrent.

Ex. 5. The sides of a triangle PQR pass respectively through the fixed

points A, B, C ; and two of the vertices, Q and R, move on fixed straight

lines which intersect in the point 0. If the points 0, B, C be collinear, show

that the locus of the point P will be a straight line.

Involution.

426. If [A A', BB', CO'} be a range in involution the ranges

{AA', BG\, [A'A, B'C) are equicross and conversely.

Let be the centre of the involution, then by definition (§ 66)

we have

OA . OA' = OB . OB' - 00. OCT.
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(i) Let us suppose that each point lies on the same side of

he centre as its conjugate. Then the double points of the range

ire real.

Let E be one of the double points, and let P be any point on

he circle whose centre is and radius OE. The circle which cuts

his circle orthogonally and passes through A will pass through A',

ince OA.OA' = OE2=OP2
. It is evident therefore that the

:ircles PAA', PBB, PCC will touch each other at P.

Hence the angles OPA, OPB, OPC, &c, are equal to the

ingles PA'O, PB'O, PC'O, &c. ; and therefore the angles APA',
3PB', &c. have a common bisector, the tangent to the circles

it P.

Hence the pencils P {A A', B(T
i}
P {A'A, B'G) are equicross.

(ii) Let us suppose that each point of the range lies on the

•pposite side of the centre to its conjugate. Then the double

)oints are imaginary.

Let the circles described on AA', BB' as diameters intersect in

Then the angle CPC will also be a right angle (§ 80 , Ex. 8).

L. 18
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It is evident that any segment such as AB subtends an angle

at P equal or supplementary to that subtended by the conjugate

segment A E.

Hence the pencils P {AA', BC}, P [A'A, EG} are equicross.

Conversely, if the ranges {AA', BC], {A'A, B'C) be equicross,

the range {AA', BB ', CC} will be in involution.

For if not, let us find the point C", the conjugate point of G, in

the involution determined by the point pairs A, A' ; B, B' (§ 68).

Thus we have, because {AA', BB', CG"\ is a range in involution,

{AA', BC] = {A'A, B'G"}.

Therefore {A'A, B'C'} = {A'A, EG"}.

Hence the points C, C must coincide.

427. Ex. 1. If {AA', BB', CC, DDf) be a range in involution, show that

the ranges {AB, CD}, {A'B, CD") will be equicross.

Show that the converse of this theorem is not true.

Ex. 2. Show that any straight line is cut by the pairs of opposite con-

nectors of a tetrastigru in a system of points which form a range in involution.

X -

We have, A {XX', YZ)={EX, CD]
;

aud B {X'X, YZ) = {X'E, DC)= {EX, CD).

Therefore {XX, YZ) = {X'X, Y'Z),

and therefore {XX, YY', ZZ) is a range in involution.

Ex. 3. Show that if A, A' ; B, B ; C, C ; be the pairs of opposite

vertices of a tetragram, and if be any other point, the pencil {AA', BB",

CC) will be in involution.

Ex. 4. The middle points of the diagonals of a tetragram lie on a line

called the diameter of the tetragram. Show that the diameters of the five

tctragrams formed by five straight lines are concurrent.
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Cross ratio properties of a circle.

428. Four fixed points on a circle subtend a pencil, whose

:ross ratio is constant, at all points on the circle.

If A, B, C, D be four fixed points on a circle, the pencil

P
{
AB, CD) has a constant cross ratio for all positions of the point

P on the circle since the angles APB, APG, &c. are of constant

magnitude.

429. If the tangents at fourfixed points A,B,G, D on a circle,

Intersect the tangent at a variable point P, in the points A',B', C,D

,

Ihe range [A'B', CD') and the pencil P {AB, CD) are equicross.

P A' B* <r D'

Let be the centre of the circle. Then, since the angles

PA'O, PB'O are respectively complementary to half the angles

A.OP, BOP, the angle A'OB is equal to half the angle AOB, and

s therefore equal to the angle APB.
Eence we have, P [AB, CD) = [A'B, CD').

Hence, since the cross ratio of the pencil P {AB, CD) is constant

'or all positions of P, it follows that: Four fixed tangents to a circle

ietermine on a variable tangent a range whose cross ratio is constant.

430. Ex. 1. If A, B, C, D, E, F be any six points on a circle, show that

18—2
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the points of intersection of the pairs of lines AB, DE ; BC, EF; CD, FA
;

are collinear. (Pascal's theorem. Cf. § 181.)

Let AB, DE intersect in X ; BC, EF in F; and CD, FA in Z.

Then the pencils Z {FY, CE), C {FB, DE} are equicross because

they have the common transversal EF; and the pencils Z {AX, DE},

A {FB, DE} are equicross because they have the common transversal ED.

But the pencils A {FB, DE}, C {FB, DE} are equicross by § 428. Therefore

Z{FT, CE} =Z{AX, DE}. Hence the points X, Y, Z are collinear.

Ex. 2. If a, b, c, d, e, f be six tangents to a circle, prove that the lines

joining the pairs of points ab, de ; be, ef; cd, fa; are concurrent. (Brian-

chon's theorem.)

Ex. 3. Any straight line is cut in involution by a circle, and the opposite

connectors of an inscribed tetrastigm (§ 273).

Let ABCD be a tetrastigm inscribed in a circle, and let a straight line be
drawn, cutting the circle in P, P, and the pairs of connectors of the tetra-

stigm in the points X, X' ; Y, Y' ; Z, Z'. Join AP, AF, CP, CP.

Then we have A {PP, XZ} =A {PF, BD}
;

and C {PP, X'Z' } = C {PP, DB}= C {PP, BD}.

But by § 428, A {PP1

, BD} = C {PF, BD}.

Therefore A {PF, XZ}= C {FP, X'Z'}.

Hence the range {PP, XX', ZZ'} is in involution.

Ex. 4. Show that if A, A' ; B, B' ; C, C be the pairs of opposite vertices

of a tetragram circumscribed to a circle, and if the tangents at the points P,
F intersect in the point 0, the pencil 0{PF, AA', BF, CC'} is in involution

(§ 279).

Ex. 5. If through any point three straight lines be drawn cutting a
circle in the points A, A' ; B, B ; C, C ; and if P be any other point on the
circle, show that the pencil P {AA', BE, CC'} will be in involution.
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Let BC cut AA' in the point R. Then we have,

P {A A', BC} =C {AA\ BC} = {A A', RO}

;

and P {A'A, EC}=B{A'A, EC} = {A'A, OR}.

But, {AA', RO} ={A'A, OR}.

rherefore P {AA', BC}-P {A'A, BC'},

ind therefore the pencil P{AA', BE, CC'} is in involution.

Ex. 6. If any straight line drawn through a fixed point on a circle, cut

;he sides of an inscribed triangle ABC in the points A', B', C , and the circle

n the point P, show that the range {PA', B'C'} will have a constant cross

•atio.

Ex. 7. Two points P, Q are taken on the circumcircle of the triangle

£BC, so that the cross ratios of the pencils Q {PA, BC}, P {QA, CB} are

squal. Show that the lines BC, PQ intersect in a point on the tangent at the

x>int A.

Ex. 8. A chord PQ of the circumcircle of the triangle ABC cuts the sides

)f the triangle in the points X, Y, Z. Show that if the range {QX, YZ} have

t constant cross ratio, the point P will be a fixed point.

Ex. 9. Four fixed -tangents to a circle form a tetragram whose pairs of

>pposite vertices are A, A' ; B, E ; C, C. If the tangent at any point P
neet AA' in p, and if PB, PE, PC, PC meet A A' in the points b, b', c, d,

espectively, show that

Ap2
: A'p2=Ab.Ab' : A'b. A'b''

= Ac . Ad : A'c.A'c'.

431. If four points be collinear the range formed by them is

iquicross with the pencil formed by the polars of the points with

"espect to a circle.

Let A, B, C, D be any four collinear points, and let PA', PB'

,

PC, PD' be the polars of A, B, C, D, with respect to a circle whose

;entre is 0. Then, since the lines PA', PB', &c, are perpendicular
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to the lines OA, OB, &c., it follows that the pencils {AB, CD],

P {A'B', CD') are equicross.

432. Ex. 1. Any triangle and its conjugate with respect to a circle are

in perspective (§ 267).

Let A'B'C be the conjugate triangle of ABC ; and let the corresponding

sides intersect in the points X, Y, Z. Then, if B'C cut AB in the point D,

the point D will be the pole of AC. Also X is the pole of AA'. Therefore

by § 431, the range {B'X, DC'} is equicross with the pencil A{TA', C'B}.

But, {EX, BC}=Z{A'X, AC'} ; and A {FA', C'B}=Z {YA\ C'A). Therefore

Z{A'X, AC'}=Z{YA', CA}=Z{A'Y, AC'}. Hence the points X, Y, Z are

collinear, and therefore the triangles ABC, A'B'C are in perspective.

Ex. 2. The tangents to a circle at the points A, B, C, form the triangle

A'B'C, and the tangent at any point P meets the sides of the triangle

ABC m the points a, b, c, and the sides of the triangle A'B'C in the points

a', V, c' : show that {Pa, be} = {Pa', b'c'}.

Ex. 3. The tangent at any point P on a circle which touches the sides of

the triangle ABC, meets a fixed tangent in T. Show that the pencil

T{PA, BC} has a constant cross ratio.

Ex. 4. On the tangent at any point P on the inscribed circle of the

triangle ABC, a point Q is taken such that the pencil Q {PA, BC] has a

constant cross ratio. Show that the locus of Q is a straight line which

touches the circle.

Ex. 5. If ABC, A'B'C be any two triangles self conjugate with respect to

a circle, show that the pencils A {BC, B'C}, A' {BC, B'C} will be equicross.
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Homographic ranges and pencils.

433. Any two ranges {ABO...}, {A'B'O...}, situated on the

same, or on different lines, are said to be homographic, when the

cross ratio of any four points of one range is equal to the cross

ratio of the corresponding points of the other range.

Similarly, two pencils are said to be homographic when the

cross ratio of any four rays of one pencil is equal to that of the

corresponding rays of the other pencil ; and a pencil is said to be

homographic with a range under similar circumstances.

434. Any two ranges which have a one to one correspondence

(that is, when to each point of one range corresponds one, and only

one, point of the other), are homographic.

For, if A and B be two fixed points of one of the ranges, and

A', B' the corresponding points of the other range, any two

corresponding points P, P1

of the ranges must be such that the

ratios AP : BP, A'P' : B'P', have a constant ratio.

Hence, if P, Q be any two points of the range {AB...}, and

P', Q' the corresponding points of the range {A'B...}, we shall

have

[AB, PQ] = {A'B, P'Q'}.

That is to say, the ranges will be homographic.

Similarly, if two pencils, or if a pencil and a range, have a one

to one correspondence, they will be homographic.

435. Ex. 1. Show that a variable tangent to a circle determines two

homographic ranges on any two fixed tangents.

Ex. 2. Show that a range of points on any straight line and their polars

with respect to a circle form two homographic systems.

Ex. 3. Show that the polars with respect to a fixed triangle of a range of

points on any straight line cut any other straight line in a range which is

homographic with the former.

Ex. 4. Show that if two homographic pencils have a common ray they

will also have a common transversal.

436. Let {ABC. ..}, {A'BC. ..} be any two homographic ranges

on different lines ; and let 0, 0' be the points of each range which

correspond respectively to the point at infinity on the other.

Then we shall have
{AB, Ox }

= {A'B', x '0'},

where x , x ' denote the points at infinity on the lines AB, A'B!.
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That is
A0^BxL _ A'*'.B'Q'

mat is,
BO. Ace ~ Bcc'.A'O'

'

m, , AO B'O'
Therefore -^ = -jtq, ',

that is AO.A'0' = BO.B'0'.

Hence, if P, P' be any pair of corresponding points we shall

have,

OP . O'P' = constant.

The points 0, 0' are called the centres of the ranges.

It is evident that if the lines be superposed, so that the points

and 0' coincide, the pairs of corresponding points will be conju-

gate couples of a range in involution.

437. When two nomographic ranges {ABC...}, {A'B'C...} are

situated on the same straight line, there will be two points of one

range which coincide with the corresponding points of the other

range. For, if 0, 0' be the centres of the ranges, and $ a point of

the range {ABC...} which coincides with the corresponding point

of the range {A'B'C'...), we shall have by the last article,

OS . O'S = OA . O'A' = OB . O'R = &c.

Thus S will be a point whose power, with respect to the circle

described on 00' as diameter, is constant. But the locus of such

a point is a circle.whose centre is the middle point of 00'. Hence

there are two points S, S' which are coincident corresponding

points.

These points are called the double points of the ranges.

By joining the points of the ranges to any point not on the

line it follows that any two homographic pencils having a common
vertex will have two double rays, that is to say rays which,

considered as belonging to one pencil, coincide with the corre-

sponding rays of the other pencil.

438. To find the double rays of a pair of homographic pencils

wluch have a common vertex.

Let P {ABC...}, P {A'B'C... },he any two homographic pencils.

Let a circle be described passing through P and cutting the rays

of the pencils in the points A, B, C...\ and A', R, C',...\ respec-

tively.

Then, if X, Y, Z be the points of intersection of the pairs of



DOUBLE RAYS OF HOMOGRAPHIC PENCILS. 281

ines BC, B'C; CA', CA; AB, A'B; we know that the points

K, Y, Z will be collinear. (Pascal's theorem.)

p

s;

Let XYZ cut the circle in S and S'. Then we shall have

P {A'B', C'S] = A {A'B', C'S] = A {A'Z, YS]

= A' [AZ, YS) = A' {AB, CS] = P \AB, CS}.

Therefore PS will be one double ray of the pencils P [ABC...},

° {A'B'C...} ; and similarly PS' will be the other double ray.

439. Ex. 1. Show that, if S, S' be the double points of the homographic

anges {ABC...}, {A 'B'C"...}, the circle whose diameter is SS' will be coaxal

rith the circles whose diameters are AB' and A'B.

Ex. 2. If PS, PS' be the double rays of two homographic pencils

°{ABC...}, P{A'B'C'...}, show that the pencil P{SS', AB', A'B} will be in

ovolution.

Ex. 3. Show how to find a point on each of two given straight lines such

hat the line joining them shall subtend given angles at two given points.

Ex. 4. Show how to inscribe a triangle in a given triangle, such that the

ides of the triangle shall pass through three given points.

Let ABC be the given triangle ; A', B', C the given points. Through A'

A
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draw any line cutting CA in Q and AB in R; and let QC, RB' meet BC in

P' and P. Then, as the line QR turns about the point A', the points P, P'

will form two homographic ranges. If the double points of these ranges be S
and S', it is evident that the lines SB', SC will cut AB, AC in points col-

linear with A'. Thus the problem admits of two solutions.

Ex. 5. Inscribe in a circle a triangle whose sides shall pass through three

given points.

Ex. 6. Inscribe in a circle a triangle whose sides shall touch three given

circles.

Ex. 7. Show how to find two corresponding pairs of points P, Q ; P', Q';

on the homographic ranges {ABGPQ...}, {A'B'C'P' $...}, such that PP, QQf
shall pass through a given point 0.

Ex. 8. Describe a circle which shall touch three given circles*.

Let A, B, C be the centres of the given circles ; and suppose that a circle

can be drawn touching them at the points P, Q, R, respectively. Then the

triangles PQR, ABC are in perspective and have one of the homothetic axes of

the given circles for their axis of perspective. Let X, Y, Z be the homothetic

centres of the given circles on this axis of perspective. Through X draw
any straight line cutting the circles whose centres are B and C in the

points <?j and Ru and let ZQ
X , YRl

cut the circle whose centre is A in P1

and P'v Then, if a pencil of lines be drawn through X, it is clear that the

pencils A {PJ, A {P\} will be homographic. Hence if AP and AP' be the

double rays of these pencils, P and F will be the points of contact with the

circle, whose centre is A, of a pair of circles which touch the given circles.

* This method is due to Casey.



NOTES.

Page 78, § 134 In connection with the Brocardian geometry of the

riangle, McClelland's treatise "On the geometry of the circle" (1891) may
e consulted. He deduces several theorems from the theorem that, if P, Q, R
e any points on the sides BC, CA, AB of a triangle, the circles AQR, BRP,
*PQ will have a common point.

Page 113, § 180, ex. 12. In conection with this subject a paper by

Ir Jenkins "On some geometrical proofs of theorems connected with the

iscription of a triangle of constant form in a given triangle," Quarterly
r

ournal, Vol. xxl, p. 84, (1886) may be consulted.

Page 140, § 223. The theory of similar figures is chiefly due to Neuberg

nd Tarry, whose papers will be found in Mathesis, Vol. II.

Page 145, § 232, ex. 3. See a paper by McCay in the Trans. Royal Irish

cademy, Vol. xxvin.

Page 189, § 313. The definition of the power of a point with respect to a

ircle was first given by Steiner, Crelle, Vol. L, p. 164 (1826). Darboux gave

le definition of the power of two circles in a paper published in Annales de

Ecole Normale superieure, Vol. L (1872). Clifford also used the same defi-

ition in a paper said to have been written in 1866, but published for the

rst time in his Collected Mathematical Papers (1882).

Page 206, § 333, ex. 7. The theorem in this example which is afterwards

sed to prove Feuerbach's theorem was taken from Nixon, Euclid Revised,

od edit. p. 350 (l>-88). The theorem together with the proof are said to be

ue to Prof. Purser, but the proof given by Nixon is invalid. I am informed

lat another proof has been inserted in a new edition of this treatise which

to appear shortly. It may be mentioned that an elegaut proof by McCay
f Feuerbach's theorem is to be found in McClelland's Geometry of the circle,

183 (1891). McCay's proof depends on the theorem that the Simson lines

' two diametrically opposite points on the circumcircle of a triangle iutersect

i a point on the nine-point circle.

Page 235, § 375. This theorem is taken from Casey, Sequel to Euclid,

112. It was first stated by Casey (Phil. Trans., Vol. clxvii.), and the proof

ven is attributed by him to McCay.
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Angle, trigonometrical ratios of, 9.

harmonic section of, 26.

Brocard, 66.

ofintersection oftwo circles, 189, 238.

equal or supplementary to that of

inverse circles, 224.

Angles, measurement of, 8.

Anharmonic—see ' Cross ratio.

'

Antiparallel, denned, 63.

Antipoints, 203.

Area, measurement of, 10.

of a triangle, 12.

Areas, fundamental theorems relating

to, 20, 22.

addition of, 20.

Axes, homothetic, of three circles, 197,

242.

Axis, of perspective, 101, 122.

of homology, 101.

of similitude of inversely similar

figures, 134.

of perspective of conjugate triangles,

163.

radical, 185.

Baker, 248.

Brianchon's theorem, for hexagram cir-

cumscribing acircle, 116, 172, 276.

for hexagram consisting of two
triads of concurrent lines, 108.

Brianchon hexagram, defined, 118.

Brocard, angle of triangle, 66.

points, 65, 133.

circle, 78, 143, 144.

triangles, 79, 132, 139, 143, 144.

Brocard's first triangle has same median
point as original triangle, 81, 144.

Casey, 133, 232, 253, 269, 282.

Cayley, 116.

Centre, of range in involution, 37.

of tetrastigm, 83.

of perspective, 101, 122.

homothetic, 129.

of similitude of two figures directly

similar, 130, 136.

of similitude of two figures inversely

similar, 134, 139.

of circle, pole of line at infinity,

156.

radical, 185.

Centres, homothetic, of two circles, 193,

196, 222.

Circles connected with a triangle :

—

circumcircle, 66, 222.

inscribed, 72.

Nine-point, 70, 222.

Cosine, 75.

Lemoine, 76.

Tucker's system, 77.

Taylor's, 78.

Brocard, 78.

Polar, 162.

Circumcircle, nine-point, and polar

circles coaxal, 223.

Circle of coaxal system, cutting given

circle orthogonally, 202.

touching a given circle, 202.

Circle cutting two given circles at con-

stant angles cuts all coaxal circles

at constant angles, 204.

Circles, passing through a point and

touching two circles, 197.

touching three given circles, 198,

241, 282.
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Circles, cutting three circles at given

angles, 239.

cutting four circles at equal angles,

243.

passing through three of the six

points of intersection of three

given circles, 250.

inverse pair of, discrimination be-

tween, 258.

Circular points at infinity, 157

Circular reciprocation, 257.

Circular triangle, associated triangles,

251.

Hart circles of, 254.

Class of an envelope, 3.

of reciprocal of a curve, 175.

Collinear points, 57.

Common tangents, of two circles, how
related to common tangents of

inverse circles, 228, 232.

of four circles touching a fifth circle,

how connected, 244.

of three circles touching a line,

248.

Concurrent lines, 51.

Rendition that, three pairs of points

should be in involution, 43, 274.

three pairs of rays should be in

involution, 50.

three lines should be concurrent,

52.

three points should be collinear, 58.

two triangles should be in perspec-

tive, 108.

two circles should cut orthogonally,

189.

four circles should have a common
tangent circle, 245.

Conjugate diameters, 157.

lines with respect to a circle, 157.

points of harmonic range, 24.

points with respect to each of two

point-pairs, 35.

points of range in involution, 37.

points with respect to a circle, 157.

rays of harmonic pencil, 27.

triangles, defined, 161.

triangles in perspective, 163, 278.

Contact of inscribed and nine-point

circles, 74, 207.

Contacts, scheme of, for system of tan-

gent circles, and Hart circles of a

circular triangle, 257.

Continuity, principle of, 4, 45,

Cross ratio, of a range, defined, 266.

of a pencil, defined, 268.

fundamental theorem, for circle,

275.

De Eocquigny, 60.

d'Ocagne, 67.

Duality, principle of, 4, 174.

Educational Times, Reprint, 67, 69, 74,

87, 92, 236.

Envelope, defined, 1.

of circle which cuts two circles at

constant angles, 204.

of third side of triangle inscribed in

a circle, such that two sides touch

coaxal circles, 212.

Harmonic pencil, defined, 27.

conjugate rays of, 27.

when one pair of conjugate rays are

perpendicular, 28.

straight line cut harmonically by
rays of, 27.

construction of conjugate rays, 28.

relation between angles of, 31.

Harmonic pencils having a common ray,

property of, 34.

Harmonic properties, unaltered by pro-

jection, 121.

how affected by reciprocation, 177.

Harmonic range, defined, 24.

construction of conjugate points,

25, 33.

when one point at infinity, 26.

relations between segments of, 29, 30.

cross ratio properties of, 268.

Harmonic ranges having a common
point, property of, 33.

Harmonic section, of a line, 24.

of an angle, 26.

of a chord of a circle, 25.

Hart circles of system of three circles,

254.

Hart, Dr, extension of Feuerbach's

theorem, 253, 264.
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Hervey, 92.

Hexagram, Brianchon, defined, 118.

circumscribing a circle, (Brianchon's

theorem), 116, 172.

consisting of two triads of concur-

rent lines, 98, 108.

Hexastigm, consisting of two triads
°*

collinear points, 97, 107, 272.

inscribed in a circle, (Pascal's

theorem), 113, 275.

Pascal, denned, 117.

Homographic ranges and pencils, 279.

Homographic ranges, collinear, centres

and double points of, 280.

Homologous triangles, 101.

Homothetic, figures, 129.

axes of three circles, 197, 242.

centres of two circles, 193, 196, 222.

Infinity, line at, 6.

circular points at, 157.

Invariable points of three similar figures,

141.

triangle of three similar figures, 141.

Inverseicircles, 221.

discrimination between, 258.

Involution, pencil in, defined, 43.

principal rays, 43.

double rays, 44.

fundamental property, 46.

construction of double rays, and

principal rays, 47.

when two pairs of rays are perpen-

dicular, 48.

condition that three pairs of rays

should form, 50.

Involution, range in, denned, 37.

conjugate points, 37.

double points, 40.

centre, 37.

construction of conjugate points,

38, 39, 90.

metrical relations between segments,

42.

condition that three pairs of points

should form, 42, 273.

fundamental connection with pencil

in involution, 49.

Involution, ranges in, determined by
four points, 41.

Involution, theorems on, 88, 90, 95, 167,

274, 276, 277.

Isogonal points, 56, 63, 66.

Isotomic points, 57, 80.

Kirkman, 116, 119.

Langley, E. M., 69.

Larmor, A., 207, 244, 250, 254, 265.

Lemoine circle of a triangle, 76, 173.

Length, measurement of, 7.

Limiting points of coaxal circles, 188,

201, 206, 211, 219.

Locus, defined, 1.

Locus of, centre of circle cutting two

circles orthogonally, 185.

a point P, when sum of the areas

(PAB), (PCD) is constant, 22.

a point whose powers with respect

to two circles are equal, 184.

centre of similitude of two circles,

192.

a point whose polars with respect

to three circles are concurrent,

237.

McCay's circles, 145, 222.

Marks, S., 87.

Mathesis, 60.

Neuberg, 145.

Order, of a locus, 3.

of reciprocal of a curve, 175.

Orthocentre of a triangle, 64.

Orthocentres of the four triangles of a

tetragram collinear, 91.

Orthogonal circles, property of, 160.

Orthogonal coaxal systems of circles,

202.

Pascal lines, defined, 114.

intersect in twenty Steiner points,

115.

Pascal hexastigm, defined, 117.

Pascal's theorem, for hexastigm con-

sisting of two triads of collinear

points, 108, 272.

for hexastigm inscribed in a circle,

113, 150, 171, 275, 281.
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'eaucellier's cell, 220.

3encil of, rays defined, 16.

four rays, fundamental relation be-

tween angles, 17.

Pencils, two equicross, having a common

ray have a common transversal,

271.

Perspective, construction of figures in,

123, etc.

construction of rectangle and tetra-

gram, 126.

general theory, 121, etc.

Polar of a point with respect to a circle,

construction of, 153.

Polars of a point with respect to coaxal

systems of circles concurrent,

201.

Pole and Polar, with respect to a circle,

151.

with respect to a triangle, 61.

Polygram, defined, 83.

diagonals of, 84.

Polystigm, defined, 83.

centres of, 83.

Toncelet, 4.

Poncelet's theorem, 216.

Power of, a point with respect to a

circle, 183.

two circles, 189.

Powers of, coaxal circles, fundamental

theorem, 203.

inverse circles, 229.

Poristic system of circles, 215.

Projection, 119.

Purser, 206.

Quadrilateral (see also tetrastigm and

tetragram).

middle points of diagonals collinear,

23.

Eadical axis of two circles, 185

centre of three circles, 185.

circle of three circles, 237.

Eadius of a circle, convention as to

sign, 238.

Range, bivalent, 268.

Range of, points, defined, 15.

four points, fundamental relation

between segments, 15.

Reciprocal figures, 174.

Reciprocation, circular, 257.

Salmon, 119, 155.

Self-conjugate triangle with respect to a

circle, 161.

Similar, figures directly, 128.

figures inversely, 128.

figures described on the sides of a

given triangle, 144.

Similitude, axis of, for inversely similar

figures, 134, 139.

Similitude, centre of, for directly similar

figures, 130.

for inversely similar figures, 134.

in case of a triangle inscribed in a

similar triangle, 131.

Similitude, circle of, for two circles, 192.

for three similar figures, 140.

Simson line, 68, 81.

Steiner, 116, 232.

Steiner points of hexastigm inscribed in

a circle, 115.

Symmedian point, defined, 62.

properties of, 64, 75, 144, 14f

.

Tangent to a curve, 2.

Tarry, 142.

Tarry's point, 81, 139.

Taylor, H. M., 78, 113, 133.

Taylor's circle, 78.

Tetragram, vertices, 84.

diagonals, 84.

circumcircles of its four triangles

concurrent, 91.

orthocentres of its four triangles

collinear, 91.

harmonic property, 92.

middle points of diagonals, col-

linear, 93.

involution property, 95.

circles described on diagonals co-

axal, 96, 203.

Tetragram circumscribed to a circle, 168.

diagonals form a self-conjugate tri-

angle, 168.

involution property, 169.

Tetrastigm, connectors of, 83.

centres, 83.

harmonic property, 86, 271.
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Tetrastigm, involution property, 88, 274.

Tetrastigm inscribed in a circle, centres

form a self-conjugate triangle, 164.

involution property, 167, 276.

when one pair of connectors touch

another circle, 209.

when a complete set of connectors

touch another circle, 212.

Townsend, 133.

Triangle, inscribed, in a circle, so that

its sides pass throughgiven points,

165.

Triangle in a circle, so that its sides

touch coaxal circles, 214.

in a similar triangle, 133.

in a triangle, so that its sides pass

through given points, 281.

Trigonometrical formulae for sum of

two angles, 17.

Tucker's system of circles, 77.

Vigarie", 236.

Young, J., 74.

?4

CAMBRIDGE : PRINTED BY C. J. CLAY, M.A. AND 80N8, AT THE UNIVERSITY PRESS.











eiNDING SECT. AUG 23 **tf

QA Lachlan, Robert

4,53 An elementary treatise on

L3 modern pure geometry

Applied So.

PLEASE DO NOT REMOVE

CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY




