

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

AN ELEMENTARY TREATISE

MODERN PURE GEOMETRY.

佥

AN ELEMENTARY TREATIsE

ON

MODERN PURE GEOMETRY
R. LACHLAN, MA.
late fellow of trinity college, cambridge.

3 london:
MACMILLAN AND CO.
and New york.
1893
All Rights reserved

Cambridge:

PRINTED BY C. J. CLAY, MrA., AND SONS, at the university press.

$$
\begin{aligned}
& 2 E \\
& 15 \%
\end{aligned}
$$

PREFACE.

THE object of this treatise is to supply the want which is felt by Students of a suitable text-book on geometry. Hithert, the study of Pure Geometry has been neglected; chiefly, no doubt, because questions bearing on the subject have very rarely been set in examination papers. In the new regulations for the Cambridge Tripos, however, provision is made for the introduction of a paper on "Pure Geometry;-namely, Euclid; simple properties of lines and circles; inversion; the elementary propertion of conic sections treated geometrically, not excluding the method of projections; reciprocation; harmonic propertics, curvature." In the present treatise I have brought together all the important propositions-bearing on the simple propertics of lines and circles-that might fairly be considered within the limits of the above regulation. At the same time I have cndeavoured tw treat every branch of the subject as completely as possible in the hope that a larger number of students than at present may be induced to devote themselves to a science which deserves an much attention as any branch of Pure Mathematics.

Throughout the book a large number of interesting theorems and problems have been introduced as examples to illustrate the principles of the subject. The greater number have been taken from examination papers set at Cambridge and Dublin; or from the Educational Times. Some are original, while others are taken from Townsend's Modern Geometry, and Casey's Sequel to Euclid.

In their selection and arrangement great care has been taken. In fact, no example has been inserted which does not admit of a simple and direct proof depending on the propositions immediately preceding.

To some few examples solutions have been appended, especially to such as appeared to involve theorems of any distinctive importance. This has been done chiefly with a view to indicate the great advantage possessed by Pure Geometrical reasoning over the more lengthy methods of Analytical Work.

Although Analysis may be more powerful as an instrument of research, it cannot be urged too forcibly that a student who wishes to obtain an intimate acquaintance with the science of Geometry, will make no real advance if the use of Pure Geometrical reasoning be neglected. In fact, it might well be taken as an axiom, based upon experience, that every geometrical theorem admits of a simple and direct proof-by the principles of Pure Geometry.

In writing this treatise I have made use of the works of Casey, Chasles, and Townsend; various papers by Neuberg and Tarry, published in Mathesis;-papers by Mr A. Larmor, Mr H. M. Taylor, and Mr R. Tucker—published in the Quarterly Journal, Proceedings of the London Mathematical Society, or The Educutional Times.

I am greatly indebted to my friends Mr A . Larmor, fellow of Clare College, and Mr H. F. Baker, fellow of St John's College, for reading the proof sheets, and for many valuable suggestions which have been incorporated in my work. To Mr Larmor I am especially indebted for the use which he has allowed me to make of his published papers.

R. LACHLAN.

Cambridge, 11th February, 1893.

CONTENTS.

CHAPTER I.

INTRODUCTION.

sect. s.ane:
1-4. Definition of a geometrical figure 1.
5, 6. Classification of curves 3
7. The principle of duality 3
8. The principle of continuity 4
9,10 . Points at infinity 5
CHAPTER II.
measurement of geometrical magnitudes.
11. Use of the signs + and - in geometry i
2-14. Measurement of lengths ©
15-17. Measurement of angles 8
8, 19. Trigonometrical ratios of an angle. 9
20-22. Measurement of areas 10
CHAPTER III.
FUNDAMENTAL METRICAL PROPOSITIONS.
23-28. Relations connecting the segments of it line 18 lis
32-38. Elementary theorems concerning areas
32-38. Elementary theorems concerning areas is is
CHAPTER IV.
HARMONIC RANGES AND PENCILS.
sect.39-44. Harmonic section of a line24
45-51. Harmonic section of an angle 26
52-56. Relations between the segments of a harmonic range 29
57-59. Relations between the angles of a harmonic pencil. 31
60-65. Theorems relating to harmonic ranges and pencils. 33
CHAPTER V.
THEORY OF INVOLUTION.
66-70. Range in involution 37
71-73. The double points 40
74-77. Relations between the segments of a range in involution 41
78-88. Pencil in involution 43
89-92. Relations between the angles of a pencil in involution 49
CHAPTER VI:
PROPERTIES OF THE TRIANGLE.
93. Introductory 51.
94-103. Concurrent lines drawn through the vertices of a triangle 51
104-109. Collinear points on the sides of a triangle 57
110, 111. Pole and Polar with respect to a triangle 61
112-117. Special points connected with a triangle 62
118-122. The Circumcircle 66
123-125. The nine-point circle 70
126-128. The inscribed and escribed circles 72
129, 130. The Cosine circle 75
131-133. The Lemoine circle 76
134, 135. The Brocard circle 78
CHAPTER VII.
RECTILINEAR FIGURES.
136-138. Definitions 82
139-146. Properties of a tetrastigm 85
147-155. Properties of a tetragram 90
156-159. Some special cases of polystigins and polygrams 97

CHAPTER VIII.

THE THEORY OF PERSPECTIVE.

sect. pane
60-175. Triangles in perspective 100
76-180. Relations between two triangles in perspective 108
81-186. Pascal's theorem 113
87-200. General theory 119
CHAPTER IX.
THE THEORY OF SIMILAR FIGURES.
01-212. Similar triangles 128
13-219. Properties of two figures directly similar 135
20-222. Properties of two figures inversely similar 138
23-230. Properties of three figures directly similar 140
131-236. Special cases of three figures directly similar 143
CHAPTER X.
THE CIRCLE.
37-242. Introduction 148
43-254. Poles and Polars 151
55-261. Conjugate points and lines 157
62-269. Conjugate triangles 161
70-275. Tetrastigm inscribed in a circle 164
76-280. Tetragram circumscribed to a circle 168
81-283. Pascal's and Brianchon's theorems 171
CHAPTER XI.
THE THEORY OF RECIPROCATION.
84-287. The principle of duality 174
88-290. Harmonic properties 17
91-296. Reciprocation applied to metrical propmsitions 178
97-299. The reciprocal of a circle 181
CHAPTER XII.
PROPERTIES OF TWO CIRCLES.
$00-303$. Power of a point with respect to a circle 183
04-312. Radical axis of two circles. 18.5
13-315. Power of two circles 189
16--322. Centres of similitude of two circles 1:1

CHAPTER XIII.

COAXAL CIRCLES.
sect. page
323-325. The limiting points 200
326, 327. Orthogonal coaxal systems. 202
328-333. Relations between the powers of coaxal circles 203
334-342. Poncelet's theorem 209
CHAPTER XIV.
THEORY OF INVERSION.
343-346. Inverse points 218
347,348 . Inverse of a straight line 220
$349-356$. Inverse circles 221
357-362. Corresponding properties of inverse figures 224
363-370. Power relations connecting inverse circles 228
371, 372. Inversion applied to coaxal circles 233
373-376. Miscellaneous theorems 234
CHAPTER XV.
SYSTEMS OF CIRCLES.
377-379. System of three circles 237
380,381 . Convention relating to the sign of the radius of a circle 238
382. Circles cutting three given circles at given angles 239
383-386. Circles which touch three given circles 241
387-396. System of four circles having a common tangent circle 244
$397-404$. Properties of a circular triangle 251
405-414. Circular reciprocation. 257
CHAPTER XVI.
THEORY OF CROSS RATIO.
415-425. Cross ratios of ranges and pencils 266
426, 427. Involution 272
428-432. Cross ratio properties of a circle 275
433-439. Homographic ranges and pencils 279
Notes 283
Index 284

CHAPTER I.

introduction.

Definition of a Geometrical Figure.

1. A plane geometrical figure may be defined as an assemolage of points and straight lines in the same plane, the straight ines being supposed to extend to infinity. Usually either the soint or the straight line is regarded as the element, and then igures are treated as assemblages of points or assemblages of traight lines respectively. To illustrate this remark let us onsider the case of a circle. Imagine a point P to move so hat its distance from a fixed point O is constant, and at the same ime imagine a straight line $P Q$ to be always turning about the boint P so that the angle $O P Q$ is a right angle. If we suppose the point P to move continuously we know that it will describe a ircle; and if we suppose the motion to take place on a plane vhite surface and all that part of the plane which the line $P Q$ passes over to become black, there will be left a white patch pounded by the circle which is described by the point P.

There are here three things to consider:-
i. The actual curve which separates the white patch from the est of the plane surface.
ii. The assemblage of all the positions of the moving point P.
iii. The assemblage of all the positions of the moving line PQ.

It is usual to say that the curve is the locus of all the positions: ff the moving point, and the envelope of all the positions of the noving line. But it is important to observe that the three things lre distinct.
L.
2. Let us consider now the case of any simple plane figure consisting of a single curved line. Such a figure may be conceived as traced out by the motion of a point. Hence we may regard a simple figure as the locus of an assemblage of positions of a moving point.

The conception of a curve as an envelope is less obvious, but it may be derived from the conception of it as a locus. It will be necessary however to define a tangent to a curve.

Let a point P^{\prime} be taken on a curve near to a given point P, and let $P T$ be the limiting position which the line $P P^{\prime}$ assumes when P^{\prime} is made to approach indefinitely near to P; then the straight line $P T$ is said to touch the curve at the point P, and is called the tangent at the point.

If now we suppose a point P to describe continuously a given curve, and if for every position of P we suppose the tangent to the curve to be drawn, we may evidently regard these straight lines as the positions of a straight line which turns about the point P, as P moves along the curve. Thus we obtain the conception of a curve as the envelope of positions of a straight line.
3. It remains to consider two special cases. Firstly, let us suppose the point P to describe a straight line: in this case the assemblage of lines does not exist, and we may say that the straight line is the locus of the positions of the point. Secondly, let us suppose the point P to be fixed: in this case there is no assemblage of points, and we may say that the point P is the envelope of all the positions of a straight line which turns round it.
4. It follows that any plane figure consisting of points, lines, and curves, may be treated either as an assemblage of points or as an assemblage of straight lines. It is however not always
necessary to treat a figure in this way; sometimes it is more convenient to consider one part of a figure as an assemblage of points, and another part as an assemblage of straight lines.

Classification of Curves.

5. Curves, regarded as loci, are classified according to the number of their points which lie on an arbitrary straight line. The greatest number of points in which a straight line can cut a curve is called the order of the curve. Thus a straight line is an assemblage of points of the first order, because no straight line can be drawn to cut a given straight line in more than one point. The assemblage of points lying on two straight lines is of the second order, for not more than two of the points will lie on any farbitrary straight line. A circle is also a locus of the second order for the same reason.

On the other hand it is easy to see that every assemblage of points of the first order must lie on a straight line.
6. Curves, regarded as envelopes, are classified according to the number of their tangents which pass through an arbitrary point. The greatest number of straight lines which can be drawn from an arbitrary point to touch a given curve is called the class of the curve. Thus a point is an envelope of the first class, because only one straight line can be drawn from any arbitrary point so as to pass through it. A circle is a curve of the second class, for two tangents at most can be drawn from a point to touch a given circle.

On the other hand, an assemblage of straight lines of the first class must pass through the same point; but an assemblage of straight lines of the second class do not necessarily envelope a circle.

The Principle of Duality.

7. Geometrical propositions are of two kinds,-either they refer to the relative positions of certain points or lines connected with a figure, or they involve more or less directly the idea of measurement. In the former case they are called descriptive, in the latter metrical propositions. The propositions contained in the first six books of Euclid are mostly metrical ; in fact, there is not one that can be said to be purely descriptive.

There is a remarkable analogy between descriptive propositions concerning figures regarded as assemblages of points and those concerning corresponding figures regarded as assemblages of straight lines. Any two figures, in which the points of one correspond to the lines of the other, are said to be reciprocal figures. It will be found that when a proposition has been proved for any figure, a corresponding proposition for the reciprocal figure may be enunciated by merely interchanging the terms 'point' and 'line'; 'locus' and 'envelope'; 'point of intersection of two lines' and 'line of connection of two points'; \&c. Such propositions are said to be reciprocal or dual; and the truth of the reciprocal proposition may be inferred from what is called the principle of duality.

The principle of duality plays an important part in geometrical investigations. It is obvious from general reasoning, but in the present treatise we shall prove independently reciprocal propositions as they occur, and shall reserve for a later chapter a formal proof of the truth of the principle.

The Principle of Continuity.

8. The principle of continuity, which is the vital principle of modern geometry, was first enunciated by Kepler, and afterwards extended by Boscovich; but it was not till after the publication of Poncelet's "Traité des Propriétés Projectives" in 1822 that it was universally accepted.

This principle asserts that if from the nature of a particular problem we should expect a certain number of solutions, and if in any particular case we find this number of solutions, then there will be the same number of solutions in all cases, although some of the solutions may be imaginary. For instance, a straight line can be drawn to cut a circle in two points; hence, we state that every straight line will cut a circle in two points, although these may be imaginary, or may coincide. Similarly, we state that two tangents can be drawn from any point to a circle, but they may be imaginary or coincident.

In fact, the principle of continuity asserts that theorems concerning real points or lines may be extended to imaginary points or lines.

We do not propose to discuss the truth of this principle in the present treatise. We merely call attention to it, trusting that the reader will notice that certain propositions, which will be proved, might be inferred from earlier propositions by the application of the principle.

It is important however to observe that the change from a real to an imaginary state can only take place when some element of a figure passes through either a zero-value, or an infinite value. For instance, if a pair of points become imaginary, they must first coincide ; that is, the distance between them must assume a zerovalue. Imagine a straight line drawn through a fixed point to cut a given circle in two real points, and let the line turn about the fixed point:-as the line turns, the two points in which it cuts the circle gradually approach nearer and nearer, until the line touches the circle, when the points coincide, and afterwards become imaginary.

Points at infinity.

9. Let $A O A^{\prime}$ be an indefinite straight line, and let a straight line be drawn through a fixed point P cutting the given line $A A^{\prime}$ in the point Q. If now we suppose the line $P Q$ to revolve continuously about the point P, the point Q will assume every position of the assemblage of points on the line $A A^{\prime}$. Let O be

the position of the point Q when the line $P Q$ is perpendicular to the line $A A^{\prime}$, and let us suppose that $P Q$ revolves in the direction indicated by the arrow-head in the figure. Then we see that the distance $O Q$ increases from the value zero, and becomes indefinitely: great as the angle $O P Q$ becomes nearly a right angle. When the
angle $O P Q$ is a right angle, $P Q$ assumes a position parallel to $O A$, and as the line $P Q$ continues to revolve about P the point Q appears at the opposite extremity of the line $A^{\prime} A$. We say then that when the line $P Q$ is parallel to $O A$, the point Q may be considered as situated on the line $O A$ at an infinite distance from the point O, and may be considered as situated on either side of 0 . That is to say, on the hypothesis that the line $P Q$ always cuts the line $O A$ in one real point, the line $O A$ must be considered as haring one point situated at infinity, that is at an infinite distance from every finite point on the line.

It follows also that any system of parallel lines, in the same plane, must be considered as intersecting in a common point at infinity. And conversely every system of straight lines drawn through a point at infinity is a system of parallel straight lines.
10. Since every straight line has one point situated at infinity, it follows that all the points at infinity in a given plane constitute an assemblage of points of the first order. Hence, all the points at infinity in a given plane satisfy the condition of lying on a straight line. This straight line is called the line at infinity in the plane.

CHAPTER II.

measurement of geometrical magnitudes.

Use of the signs + and - in Geometry.

11. In plane geometry, metrical propositions are concerned with the magnitudes of lengths, angles, and areas. Each of these, as we shall see, is capable of being measured in two opposite directions. Consequently it is convenient to use the algebraic signs + and - to distinguish between the directions in which such magnitudes as have to be compared are measured. It is usual to consider magnitudes measured in some specified direction as positive, and those measured in the opposite direction as negative ; but it is seldom necessary to specify the positive direction, since it is always possible to use such a notation for any kind of magnitude as shall indicate the direction in which it is measured.

Measurement of lengths.

12. If A and B be two points on a straight line, the length of the segment $A B$ may be measured either in the direction from A towards B, or in the opposite direction from B towards A.

When the segment is measured from A towards B its length is represented by $A B$, and when it is measured from B towards A its length is represented by $B A$.

Consequently, the two expressions $A B$ and $B A$ represent the same magnitude measured in opposite directions. Therefore we have $B A=-A B$, that is $A B+B A=0$.
13. The length of the perpendicular drawn from a point A to a straight line x, is represented by $A x$ when it is measured from
the point A towards the line, and by $x A$ when it is measured from the line x towards the point A.

Consequently, the two expressions $A x, B x$ will have the same sign when the points A and B are on the same side of the line, and different signs when the points are on opposite sides of the line.
14. Segments measured on the same or parallel lines may evidently be compared in respect of both direction and magnitude, but it must be noticed that segments of lines which are not parallel can only be compared in respect of magnitude.

Measurement of angles.

15. Let $A O B$ be any angle, and let a circle, whose radius is equal to the unit of length, be described with centre O to cut $O A$, $O B$ in the points A and B. Then the angle $A O B$ is measured by

the length of the arc $A B$. But the length of this arc may be measured either from A towards B, or from B towards A. Consequently, an angle may be considered as capable of measurement in either of two opposite directions.

When the arc is measured from A towards B, the magnitude of the angle is represented by $A O B$; and when the are is measured from B towards A, the magnitude of the angle is represented by $B 0 A$.

Thus the expressions $A O B, B O A$ represent the same magnitude measured in opposite directions, and therefore have different signs. Therefore

$$
A O B+B O A=0
$$

16. Angles having different vertices may be compared in respect of sign as well as magnitude. For if through any point U^{\prime} we draw $O^{\prime} A^{\prime}$ parallel to and in the same direction as $O A$, and $O^{\prime} B^{\prime}$ in the same direction as $O B$; the angles $A O B, A^{\prime} O^{\prime} B^{\prime}$ are evidently equal, and have the same sign.
17. Straight lines are often represented by single letters; and the expressions $a b, b a$ are sometimes used to represent the angless between the lines a and b. But since two straight lines form two angles of different magnitudes at their point of intersection, this notation is objectionable. If however we have a series of lines meeting at a point O, and if we represent the lines $O A, O B$ by the letters a, b, the use of the expression $a b$ as meaning the same thing as the expression $A O B$ is free from ambiguity. In this case we shall evidently have $a b=-b a$.

The Trigonometrical Ratios of an angle.

18. In propositions concerning angles it is very often convenient to use the names which designate in trigonometry certain ratios, called the trigonometrical ratios of an angle.

Let $A O B$ be any angle, let any point P be taken in $O B$ and let $P M$ be drawn perpendicular to $O A$.

The ratio of $M P: O P$ is called the sine of the angle $A O B$; the ratio of $O M: O P$ is called the cosine of the angle $A O B$; the ratio of $M P: O M$ is called the tangent of the angle $A O B$: the ratio of $O M: M P$ is called the cotangent of the angle $A O B$: the ratio of $O P: O M$ is called the secant of the angle $A O B$; the ratio of $O P: M P$ is called the cosecant of the angle $A O B$.
These six ratios are called the trigonometrical ratios of the angle $A O B$.

Let us now consider the line $O A$ to be fixed, and let $O B$ revolve round the point O. For different positions of $O B$ the
length $O P$ is taken to be of invariable sign, but the lengths $O M$ and $M P$ will vary in magnitude as well as in sign. Since $O B$ may be drawn so as to make the angle $A O B$ equal to any given angle, the trigonometrical ratios of angles are easily compared in respect of magnitude and sign.
19. The following useful theorems are easily proved, and may be found in any treatise on Trigonometry.

Let $A O B$ be any angle, and let $A O$ be produced to A^{\prime}; then $\sin A O B=-\sin B O A=\sin B O A^{\prime}=-\sin A^{\prime} O B ;$ $\cos A O B=\cos \quad B O A=-\cos B O A^{\prime}=-\cos A^{\prime} O B ;$ $\tan A O B=-\tan B O A=-\tan B O A^{\prime}=\tan A^{\prime} O B ;$ $\cot A O B=-\cot B O A=-\cot B O A^{\prime}=\cot A^{\prime} O B$; $\sec A O B=\sec B O A=-\sec B O A^{\prime}=-\sec A^{\prime} O B ;$ $\operatorname{cosec} A O B=-\operatorname{cosec} B O A=\operatorname{cosec} B O A^{\prime}=-\operatorname{cosec} A^{\prime} O B$.
Also if $O C$ be drawn perpendicular to $O A$,

$$
\begin{aligned}
& \sin A O B=\cos \quad C O B=\cos \quad B O C ; \\
& \cos A O B=-\sin \quad C O B=\sin \quad B O C ; \\
& \tan A O B=-\cot \quad C O B=\cot \quad B O C \text {; } \\
& \text { cot } A O B=-\tan \quad C O B=\tan \quad B O C \text {; } \\
& \text { sec } A O B=-\operatorname{cosec} C O B=\operatorname{cosec} B O C \text {; } \\
& \operatorname{cosec} A O B=\text { sec } C O B=\text { sec } B O C \text {. }
\end{aligned}
$$

The measurement of areas.

20. Let $A B C D$ be any contour, and let O be a point within it. Let P be any point on the contour, and let P be supposed to move round the contour in the direction $A B C D$. The area enclosed by the contour is said to be traced out by the radius $O P$. For if we take consecutive radii such as $O P, O P^{\prime}$ the
magnitude of the area $A B C D$ is evidently the sum of the elementary areas $O P P^{\prime}$.

Now suppose the point O to lie without the contour $A B C D$; and let $O B, O D$ be the extreme positions of the revolving line $O P$. The area enclosed by the contour is now evidently the difference of the area $O D A B$ traced out by $O P$ as it revolves in one direction from the position $O D$ to the position $O B$, and the area $O B C D$ traced out by $O P$ as it revolves in the opposite direction from the position $O B$ to the position $O D$.

We may thus regard the magnitude of the area enclosed by any contour such as $A B C D$, as capable of measurement in either of two opposite directions. And if we represent the magnitude of the area by the expression $(A B C D)$ when the point P is supposed to move round the contour in the direction $A B C D$, and by the expression $(A D C B)$ when the point P is supposed to move in the direction $A D C B$; we shall have

$$
(A B C D)+(A D C B)=0 .
$$

Areas may evidently be compared in respect to sign as well as magnitude wherever they may be situated in the same plane.

It should be noticed that the expression for the magnitude of
an area will have the same meaning if the letters be interchanged in cyclical order.
21. If a closed contour be formed by a series of straight lines a, b, c, d, \ldots, the magnitude of the area enclosed by them may be represented by the expression (abcd...), without giving rise to ambiguity, provided that (abcd) be understood to mean the area traced out by a point which starting from the point $d a$ moves along the line a towards the point $a b$, and then along the line b towards the point $b c$, and so on.
22. Let $A B C$ be any triangle, and let $A D$ be drawn perpendicular to $B C$. Through A let $H A K$ be drawn parallel to $B C$, and let the rectangle $B H K C$ be completed.

It is proved in Euclid (Book I., prop. 41) that the area of the triangle $A B C$ is half the area of the rectangle $H B C K$.

That is $\quad(A B C)=\frac{1}{2}(H B C K)$.
Therefore the area ($A B C$) is equal in magnitude to

$$
\frac{1}{2} H B . B C, \text { i.e., } \frac{1}{2} A D . B C .
$$

And since

$$
D A=B A \sin C A B,
$$

the area ($A B C$) is equal in magnitude to

$$
\frac{1}{2} B A \cdot B C \cdot \sin A B C ;
$$

or by symmetry to

$$
\frac{1}{2} A B \cdot A C \cdot \sin B A C .
$$

It is often necessary to use these expressions for the area of a triangle, but when the areas of several triangles have to be compared it is generally necessary to be careful that the signs of the areas are preserved. Two cases occur frequently :
(i) When several triangles are described on the same straight line, we shall have

$$
(A B C)=\frac{1}{2} A D \cdot B C,
$$

where each of the lengths $A D, B C$ is to be considered as affected by sign.
(ii) When several triangles have a common vertex A, we shall have

$$
(A B C)=\frac{1}{2} A B \cdot A C \cdot \sin B A C,
$$

where the lengths $A B, A C$ are to be considered as of invariable sign, but the angle $B A C$ as affected by sign.

From these two values for the area of the triangle $A B C$, we have the theorem

$$
A D \cdot B C=A B \cdot A C \cdot \sin B A C,
$$

which is very useful for deriving theorems concerning the angley formed by several lines meeting in a point, from theorems concerning the segmenta of a line.

Thus let any line cut the lines $O A, O B, O C, \ldots$, in the points A, B, C, \ldots, and let $O N$ be drawn perpendicular to the line $A B$. Then we have,

$$
\begin{aligned}
& A B \cdot O V=O A \cdot O B \cdot \sin A O B \\
& A C \cdot O N=O A \cdot O C \cdot \sin A O C
\end{aligned}
$$

where the segments $A B, A C, \& c \ldots$, of the line $A B$, and the angles $.1 O B$, $A O C, \ldots$, are affected by sign, but the lengths $O . V, O A, O B, \ldots$ are of invariable sign.

Ex. 1. If A, B, C, D be any four points in a plane, and if $A S, B . V$ he Irawn parallel to any given straight line mecting $C M, D . V$ drawn perpenlicular to the given straight line, in M and N, show that

$$
(A B C D)=\frac{1}{2}(A M . N D+V B . M C)
$$

Ex. 2. On the sides $A B, A C$ of the triangle $A B C$ are described any parallelograms $A F M B, A E N C$. If $M F, N E$ meet in H, and if $H D$, $C K$ be lrawn parallel and equal to $H A$, show that the sum of the areas ($I F M B$), $A C N E)$ will be equal to the area $(B D K C)$.

CHAPTER III.

FUNDAMENTAL METRICAL PROPOSITIONS.

Relations between the segments of a line.

23. If A, B, C be any three points on the same straight line, the lengths of the segments $B C, C A, A B$ are connected by the relation

$$
B C+C A+A B=0 .
$$

Let the point B lie between the points A and C. Then $A B$, $B C, A C$ represent lengths measured in the same direction, and

$$
A C=A B+B C
$$

But

$$
A C+C A=0
$$

therefore

$$
\begin{equation*}
B C+C A+A B=0 \tag{1}
\end{equation*}
$$

Since this is a symmetrical relation, it is obvious that it must be true when the points have any other relative positions. Therefore the relation must hold in all cases.

This relation may also be stated in the forms :

$$
\begin{align*}
& B C=A C-A B \tag{2}\\
& B C=B A+A C \tag{3}
\end{align*}
$$

24. Ex. l. If $A, B, C, \ldots H, K$ be any number of points on the same straight line, show that

$$
A B+B C+\ldots+H K+K A=0
$$

Ex. 2. If A, B, C be any three points on the same straight line, and if O be the middle point of $B C$, show that

$$
A B+A C=2 A O
$$

Ex. 3. If A, B, C, D be points on the same line, and if d°, r the the middle points of $A B, C D$ respectively, show that

$$
2 X Y=A C+B D=A D+B C
$$

Ex. 4. If A, B, C be points on the same line, and if $A^{\prime}, B, C^{\prime}$ le respectively the middle points of the segments $B C, C A, A B$, show that

$$
B C^{\prime}=C^{\prime} A=A^{\prime} B^{\prime}
$$

Show also that the middle point of $A^{\prime} B^{\prime}$ coincides with the middle poine of $C C^{\prime}$.
25. If A, B, C, D be any four points on the same straight line, the lengths of the six segments of the line ure connected by the relation

$$
B C \cdot A D+C A \cdot B D+A B \cdot C D=0
$$

By the formulae (2) and (3) of $\$ 23$, we have

$$
\begin{aligned}
& B D=A D-A B, \\
& C D=C A+A D .
\end{aligned}
$$

Hence
$C A \cdot B D+A B \cdot C D=C A \cdot A D+A B \cdot A D=A D \cdot(C A+A B)$.
Therefore $\quad C A . B D+A B . C D=A D . C B$;
that is $\quad B C \cdot A D+C A \cdot B D+A B \cdot C D=0$.
This result may also be very casily proved by means of Euclid, Book in., prop. 1.
26. A number of points on the same straight line are said to form a range. Instead of saying that the points $A, B, C \ldots$ are wn the same straight line, it is usual to speak of the range $\{A B C \ldots\}$. Thus the proposition in the last article is usually stated:

The lengths of the six segments of any ranye \{ABCD\} are connected by the relation

$$
B C \cdot A D+C A \cdot B D+A B \cdot C D=0 .
$$

27. Ex. 1. If $\{A B C D\}$ be a range such that C is the middle proint of A / B. show that

$$
D A \cdot D B=D C^{\prime 2}-A C^{\prime 2}
$$

Ex. 2. Show also that

$$
D A^{2}-D B^{3}=4 D C \cdot C A
$$

Ex. 3. If $\{A B C D\}$ be any range, show that

$$
B C \cdot A D^{2}+C A \cdot B D^{2}+A B \cdot C D^{2}=-B C \cdot C A \cdot A D .
$$

Ex. 4. Show that the last result is also true when l) is not on the maze straight line as A, B, and C.

Ex. 5. If $\left\{A A^{\prime} B B^{\prime} C C^{\prime} P\right\}$ be any range, and if L, M, N be the middle points of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$, show that

$$
P A \cdot P A A^{\prime} \cdot M X+P B \cdot P B^{\prime} \cdot N L+P C \cdot P C^{\prime} \cdot L M
$$ has the same value whatever the position of the point P on the line.

By Ex. 1, we have PA. $P A^{\prime}=P L^{2}-A L^{2}$. Hence this expression, by Ex. 3 , is independent of the position of P.
28. If $\{A B C\}$ be any range, and if x be any straight line, then $A x . B C+B x . C A+C x . A B=0$.

Let the straight line $A B$ cut the given straight line x in the point 0 .

Then, by § 25, we have

$$
O A \cdot B C+O B \cdot C A+O C \cdot A B=0
$$

But since $A x, B x, C x$ are parallel to each other, we have

$$
A x: B x: C x=O A: O B: O C .
$$

Therefore $\quad A x . B C+B x . C A+C x . A B=0$.
Ex. 1. If C be the middle point of $A B$, show that

$$
2 C x=A x+B x .
$$

Ex. 2. If G be the centre of gravity of equal masses placed at the n points $A, B, \ldots K$, show that

$$
n G x=A x+B x+\ldots+K x,
$$

where x denotes any straight line.
Ex. 3. If any straight line x cut the sides of the triangle $A B C$ in the points L, M, N, show that

$$
B x \cdot C x \cdot M N+C x \cdot A x \cdot N L+A x \cdot B x \cdot L M=0 .
$$

[Trin. Coll., 1892.]

Relations connecting the angles of a pencil.

29. If several straight lines be drawn in the same plane through a point O, they are said to form a pencil. The point O is called the vertex of the pencil, and the straight lines are called the rays of the pencil. The pencil formed by the rays $O A, O B, O C, \ldots$ is usually spoken of as the pencil $O\{A B C \ldots\}$.
30. The six angles of any pencil of four rays $0\{A B C D\}$ are sonnected by the relation

$$
\begin{aligned}
\sin B O C \cdot \sin A O D+\sin C O A \cdot & \sin B O D \\
& +\sin A O B \cdot \sin C O D=0
\end{aligned}
$$

Let any straight line be drawn cutting the rays of the pencil in the points A, B, C, D. Then, by $\S 25$, we have

$$
B C \cdot A D+C A \cdot B D+A B \cdot C D=0
$$

But if $O N$ be the perpendicular from the vertex of the pencil on the line $A B$, we have, from $\S 22$,

$$
N O \cdot A B=O A \cdot O B \cdot \sin A O B
$$

and similar values for $N O . A D, N O . C D, \& c$.
Substituting these expressions for the segments $A B, A C, \& c$., In the above relation, we obtain the relation
$\sin B O C \cdot \sin A O D+\sin C O A \cdot \sin B O D+\sin A O B \cdot \sin C O D=0$.
This relation is of great use. It includes moreover as particular cases several important trigonometrical formulae.
31. Ex. 1. If $O\{A B C\}$ be any pencil, prove that

$$
\sin A O C=\sin A O B \cdot \cos B O C+\sin B O C \cdot \cos A O B
$$

Let $O D$ be drawn at right angles to $O B$. Then we have
and

$$
\begin{aligned}
& \sin A O D=\sin \left(\frac{\pi}{2}+A O B\right)=\cos A O B, \sin B O D=1 \\
& \sin C O D=\sin \left(\frac{\pi}{2}-B O C\right)=\cos B O C
\end{aligned}
$$

Making these substitutions in the general formula for the pencil 0 \{. $B C D$; the required result is obtained.

Ex. 2. In the same way deduce that

$$
\cos A O C=\cos A O B \cdot \cos B O C-\sin A O B \cdot \sin B O C
$$

Ex. 3. If in the pencil $O\{A B C D\}$ the ray $O C$ bisect the angle $A O B$, prove that

$$
\sin A O D \cdot \sin B O D=\sin ^{2} C O D-\sin ^{2} A O C .
$$

Ex. 4. If $O\{A B C D\}$ be any pencil, prove that $\sin B O C \cdot \cos A O D+\sin C O A \cdot \cos B O D+\sin A O B \cdot \cos C O D=0$, and $\cos B O C \cdot \cos A O D-\cos C O A \cdot \cos B O D+\sin A O B \cdot \sin C O D=0$.
Ex. 5. If a, b, c denote any three rays of a pencil, and if P be any point, show that

$$
P a \cdot \sin (b c)+P b \cdot \sin (c \alpha)+P c \cdot \sin (a b)=0
$$

Elementary theorems concerning areas.

32. If $A B C$ be any triangle, and if O be any point in the plane, the area $(A B C)$ is equal to the sum of the areas $(O B C)$, (OCA), (OAB).

That is $\quad(A B C)=(O B C)+(O C A)+(O A B)$
This result evidently follows at once from the definition of an area considered as a magnitude which may be measured in a specified direction.

If A, B, C, D be any four points in the same plane, then

$$
(A B C)-(B C D)+(C D A)-(D A B)=0 \ldots \ldots \ldots(2)
$$

This result is merely another form of the previous result, since

$$
(C D A)=-(C A D)=-(D C A)
$$

33. The second relation given in the last article may be obtained otherwise.
(i) Let us suppose that the points C and D lie on the same side of the line $A B$. Then the expression $(A B C D)$ clearly represents the area of the quadrilateral $A B C D$.

But the quadrilateral $A B C D$, may be regarded either as made up of the two triangles $A B C, C D A$; or as made up of the two triangles $B C D, D A B$.

Hence, we have

$$
\begin{aligned}
(A B C D) & =(A B C)+(C D A) \\
& =(B C D)+(D A B) .
\end{aligned}
$$

Therefore $\quad(A B C)-(B C D)+(C D A)-(D A B)=0$.
(ii) If the points C and D lie on opposite sides of the line $A B$, let $A B$ cut $C D$ in the point H. Then the expression $(A B C D)$ is clearly equal to the difference of the areas of the triangles ($A H D$) and ($H C B$).

That is

$$
\begin{aligned}
(A B C D) & =(A H D)-(H C B) \\
& =(A B D)-(D C B) \\
& =(A B D)+(D B C) .
\end{aligned}
$$

Similarly we may show that

$$
(A B C D)=(A B C)+(C D A)
$$

Hence, as before,

$$
(A B C)+(C D A)=(A B D)+(D B C) ;
$$

that is, $\quad(A B C)-(B C D)+(C D A)-(D A B)=0$.
34. Ex. 1. If a, b, c, d be any four straight lines in the same plane, show that

$$
(a b c d)=(a b c)+(c d a) .
$$

Ex. 2. Show also that

$$
(a b c)=(d b c)+(d c a)+(d a b) .
$$

35. If A, B, C be any three points on a straight line, and P, Q any other points in the same plane with them,

$$
(A P Q) \cdot B C+(B P Q) \cdot C A+(C P Q) \cdot A B=0
$$

Let x denote the straight line $P Q$. Then, by $\S 28$, we have

$$
A x \cdot B C+B x \cdot C A+C x . A B=0 .
$$

But, by § 21,

$$
(A P Q)=\frac{1}{2} A x \cdot P Q .
$$

Therefore

$$
\begin{equation*}
A x: B x: C x=(A P Q):(B P Q):(C P Q) . \tag{1}
\end{equation*}
$$

Hence $(A P Q) \cdot B C+(B P Q) \cdot C A+(C P Q) \cdot A B=0$

This relation may also be written in the forms:

$$
\begin{align*}
& (A P Q) \cdot B C=(B P Q) \cdot A C+(C P Q) \cdot B A \ldots \ldots \ldots \cdot(2), \\
& (A P Q) \cdot B C=(B P Q) \cdot A C-(C P Q) \cdot A B \ldots \ldots \cdot(3) \tag{3}
\end{align*}
$$

36. Ex. l. If A, B, C be any three points on a straight line, x any other straight line, and O any given point; show that

$$
(O B C) \cdot A x+(O C A) \cdot B x+(O A B) \cdot C x=0 .
$$

Ex. 2. If $A B C D$ be a parallelogram, and if O be any point in the same plane, show that

$$
(O A C)=(O A B)+(O A D)
$$

Let the diagonals meet in G. Then G is the middle point of $B D$. Hence, by § 35 (2), we have

But since

$$
\begin{aligned}
& 2(O A G)=(O A B)+(O A D) \\
& A C=2 A G,(O A C)=2(O A G) .
\end{aligned}
$$

Ex. 3. Prove the following construction for finding the sum of any number of triangular areas $(P O A),(P O B),(P O C)$, \&c. From A draw $A B^{\prime}$ equal and parallel to $O B$, from B^{\prime} draw $B^{\prime} C^{\prime \prime}$ equal and parallel to $O C$, and so on. Then $\left(P O B^{\prime}\right)$ is equal to $(P O A)+(P O B)$; $\left(P O C^{\prime}\right)$ is equal to $(P O A)+(P O B)+(P O C)$; and so on.

Ex. 4. If $A, B, C, \ldots K$ be n points in a plane, and if G be the centroid of equal masses placed at them, show that

$$
\Sigma(P O A)=n(P O G)
$$

Ex. 5. If A, B, C, D be any four points in a plane, find a print P on the line $C D$ such that the area ($P A B$) shall be equal to the sum of the arean (CAB), (DAB).

Ex. 6. If three points D, E, F be taken on the sides $B C, C A, A B$ if a triangle, prove that the ratio of the areas $\left(D E F^{\prime}\right),(A B C)$ is equal to

$$
\frac{B D \cdot C E \cdot A F^{\prime}-C D \cdot A E \cdot B F^{\prime}}{B C \cdot C A \cdot A B} .
$$

By § 35 (3) we have

$$
(D E F) \cdot B C=(C E F) \cdot B D-(B E F) \cdot C D .
$$

But
and
Therefore
Similarly
Hence

$$
\begin{aligned}
& (C E F):(C A F)=C E: C A \\
& (C A F):(A B C)=A F: A B \\
& (C E F):(A B C)=C E \cdot A F: C A \cdot A B \\
& (B E F):(A B C)=B F \cdot A E: B A \cdot A C \\
& \frac{(D E F)}{(A B C)}=\frac{B D \cdot C E \cdot A F-C D \cdot B F \cdot A E}{B C \cdot C A \cdot A B}
\end{aligned}
$$

It follows from this result, that when the points D, E, F are collinear,

$$
B D . C E . A F=C D . B F . A E
$$

and conversely, that if this relation hold, the points D, E, F must the collinear.

Ex. 7. Points P and Q are taken on two straight lines $A B, C D$, such that

$$
A P: P B=C Q: Q D
$$

Show that the sum of the areas $(P C D),(Q A B)$ is constant.
Ex. 8. The sides $B C, C A, A B$ of a triangle meet any straight line in the points D, E, F. Show that a point P can be found in the line $D E F$ such that the areas $(P A D),(P B E),(P C F)$ are equal.
[St John's Coll. 1889.]
Ex. 9. If A, B, C, D be any four points on a circle and P be any given point, show that

$$
P A^{2} \cdot(B C D)-P B^{2} \cdot(C D A)+P C^{2} \cdot(D A B)-P^{2} D^{2} \cdot(A B C)=0
$$

Let $A C, B D$ meet in O, and apply the theorem given in $\S 27, \mathrm{Ex} .4$, to each of the ranges $\{A O C\},\{B O D\}$.

Ex. 10. If A, B, C, D be any four points, and x any straight line, prove that $(B C D) . A x-(C D A) . B x+(D A B) . C x-(A B C) . D x=0$.

Let $A D$ cut $B C$ in the point O, then, by $\S 28$, we have

$$
B C . O x+C O . B x+O B . C x=0
$$

and

$$
A D . O x+D O . A x+O A . D x=0
$$

Hence $\quad D O \cdot B C \cdot A x-C O \cdot A D \cdot B x-O B \cdot A D \cdot C x+O A \cdot B C \cdot D x=0$;
or $\quad D O . B C . A x+D A . C O . B x-B O . D A . C x-B C . A O . D x=0$.
But

$$
\begin{aligned}
& (B C D)=\frac{1}{2} D O \cdot B C \cdot \sin B O D \\
& (C D A)=\frac{1}{2} D A \cdot C O \cdot \sin A O C \\
& (D A B)=\frac{1}{2} D A \cdot B O \cdot \sin A O \dot{C}, \\
& (A B C)=\frac{1}{2} B C \cdot A O \cdot \sin B O D .
\end{aligned}
$$

Also

$$
\sin B O D=-\sin A O C .
$$

Hence we have the required result.
37. If A, B, C, D be any four points in a plane, the locus of a point P, which moves so that the sum of the areas $(P A B),(P C D)$ is constant, is a straight line.

Let the straight lines $A B, C D$ meet in the point O, and let M and N be two points on these lines respectively, such that $O M=A B$, and $O N=C D$.

Then we have

$$
(P A B)=(P O M), \text { and }(P C D)=(P O N)
$$

Let Q be the middle point of $M N$. Then, by $\S 35(2)$, we have

$$
2(P O Q)=(P O M)+(P O N)
$$

Therefore

$$
2(P O Q)=(P A B)+(P C D)
$$

that is, the area represented by $(P O Q)$ is constant.
Hence the locus of P is a straight line parallel to $O Q$.
38. Ex. l. Let A, B, C, D be any four points, and let $A B, C D$ meet int E, and $A C, B D$ in F. Then if P be the middle point of $E F$, show that

$$
(P A B)-(P C D)=\frac{1}{2}(A B D C) .
$$

Ex. 2. Show that the line joining the middle points. of $A D$ and $B C$ passes through P, the middle point of $E F$.

Ex. 3. If A, B, C, D be any four points, show that the locus of a point I ', which moves so that the ratio of the areas ($P A B),(P C D)$ is constant, is a straight line passing through the point of intersection of $A B$ and $C D$.

Ex. 4. If $A B C D$ be a quadrilateral circumscribing a circle, show that the line joining the middle points of the diagonals $A C, B D$ passes through the centre of the circle.

CHAPTER IV.

HARMONIC RANGES AND PENCILS.

Harmonic Section of a line.

39. When the straight line joining the points A, B is divided internally in the point P, and externally in the point Q, in the same ratio, the segment $A B$ is said to be divided harmonically in the points P and Q.

Thus, the segment $A B$ is divided harmonically in the points P and Q, when $A P: P B=A Q: B Q$.
The points P and Q are said to be harmonic conjugate points with respect to the points A and B; or, the points A and B are said to be harmonically separated by P and Q.
40. If the segment $A B$ is divided harmonically in the points P and Q, the segment $P Q$ is divided harmonically in the points A and B.

For by definition, we have
and therefore

$$
A P: P B=A Q: B Q
$$

Thus, A and B are harmonic conjugate points with respect to P and Q.
41. When the segment $A B$ is divided harmonically in the points P and Q, the range $\{A B, P Q\}$ is called a harmonic range; and the pairs of points $A, B ; P, Q$; are called conjugate points of the range.

It will be found convenient to use the notation $\{A B, P Q\}$ for a harmonic range, the comma being inserted to distinguish the pairs of conjugate points.
42. Ex. 1. If $A B C$ be any triangle, show that the bisectors of the angle $B A C$ divide the base $B C$ harmonically.

Ex. 2. If tangents $O P, O Q$ be drawn to a circle from any point O, and if any straight line drawn through the point O cut the circle in the points R and S and the chord $P Q$ in the point V, show that $\{O V, R S\}$ is a harmonic range.

Let C be the centre of the circle, and let $O C$ cut $P Q$ in the point N. Then we have $O R . O S=O P^{2}=O N . O C$. Therefore the points S, R, N, C are concyclic. But C is evidently the middle point of the arc $S V R$; therefore $N C, N P$ bisect the angle $S N R$. Hence $\{O V, R S\}$ is a harmonic range.
43. If $\{A B P\}$ be any range, to find the harmonic conjugate of P with respect to the points A, B.

Through A and B draw a pair of parallel lines $A F, B H$. And through P draw a straight line $F P G$ in any direction meeting $A F$ in F and $B H$ in G. In $B H$ take the point H, so that B is the middle point of $G H$, and join $F H$.

Then $F^{\prime} H$ will meet $A B$ in the point Q, which will be the point required.

For

$$
\begin{aligned}
A Q: B Q & =A F: B H \\
& =A F: G B \\
& =A P: P B .
\end{aligned}
$$

That is $\{A B, P Q\}$ is a harmonic range.
It should be noticed that the solution is unique, that is, there is only one point Q which corresponds to a given point P.
44. Ex. 1. If P be the middle point of $A B$, show that the conjugate point Q is at infinity.

In this case it is easy to see that $F H$ is parallel to $A B$.
Ex. 2. If $\{A B C\}$ be any range, and if P be the harmonic conjugate of A with respect to B and C, Q the harmonic conjugate of B with respect to C and A, and R the harmonic conjugate of C with respect to A and B; show that A will be the harmonic conjugate of P with respect to Q and R.

Harmonic Section of an angle.

45. When the angle $A O B$ is divided by the rays $O P, O Q$ so that

$$
\sin A O P: \sin P O B=\sin A O Q: \sin B O Q
$$

the angle $A O B$ is said to be divided harmonically by the rays $O P, O Q$.

The rays $O P, O Q$ are said to be harmonic conjugate rays with respect to the rays $O A, O B$.
46. If the angle $A O B$ be divided harmonically by the rays $O P$, $O Q$, the angle $P O Q$ is divided harmonically by the rays $O A, O B$.

For since $O P, O Q$ divide the angle $A O B$ harmonically,

$$
\sin A O P: \sin P O B=\sin A O Q: \sin B O Q .
$$

Therefore

$$
\sin P O B: \sin B O Q=\sin A O P: \sin A O Q
$$

Thus, the rays $O A, O B$ are harmonic conjugate rays with respect to $O P$ and $O Q$.
47. When the rays $O P, O Q$ of the pencil $O\{A B P Q$, are harmonic conjugates with respect to the rays $O A, O B$, the pencil is called a harmonic pencil; and each pair of rays, namely $O A$, $O B$; and $O P, O Q$; are called conjugute rays of the pencil.

It will be found convenient to use the notation $O\{A B, P Q\}$ for a harmonic pencil, the comma being inserted to distinguish the pairs of conjugate rays.
48. Ex. 1. If the rays $O P, O Q$ bisect the angle $A O B$, show that the pencil $O\{A B, P Q\}$ is harmonic.

Ex. 2. If the pencil $O\{A B, P Q\}$ be harmonic, and if the angle $A O B$ be a right angle, show that $O A, O B$ are the bisectors of the angle $P O(Q$.

Ex. 3. If the pencil $O\{A B, P Q\}$ be harmonic, and the angle $A O B$ a right angle, and if a line be drawn perpendicular to $O P$ meeting $O A, O B$ in A^{\prime} and B^{\prime}, show that the line drawn through O perpendicular to $O Q$ will bisect $A^{\prime} B^{\prime}$.

Ex. 4. If A, B, C, D, O be five points on a circle, such that the pencil $O\{A B, C D\}$ is harmonic, and if P be any point on the same circle, show that the pencil $P\{A B, C D\}$ will be harmonic.

Ex. 5. In the same case, show that, if the tangents at A, B, C and D intersect the tangent at the point P in the points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ respectively, the pencil $H\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ will be harmonic-where H is the centre of the circle.

It is easy to show that the angles $A^{\prime} H C^{\prime}, A P C$ are equal or supplementary. Hence this theorem follows from the last.
49. Any straight line is cut harmonically by the rays of a harmonic pencil.

Let any straight line cut the rays of the harmonic pencil $0\{A B, P Q\}$ in the points A, B, P, Q; then the range $\left\{A B, P^{P} Q\right\}$ is harmonic.

Let $O N$ be drawn perpendicular to the line $A B$, then we have

$$
\begin{aligned}
& N O \cdot A P=O A \cdot O P \sin A O P \\
& N O \cdot A Q=O A \cdot O Q \sin A O Q \\
& N O \cdot P B=O P \cdot O B \sin P O B \\
& N O \cdot B Q=O B \cdot O Q \sin B O Q
\end{aligned}
$$

But since $O\{A B, P Q\}$ is a harmonic pencil,

$$
\sin A O P: \sin P O B=\sin A O Q: \sin B O Q .
$$

Therefore

$$
A P: P B=A Q: B Q .
$$

Hence, $\{A B, P Q\}$ is a harmonic range.
Conversely, we may prove that if $\{A B, P Q\}$ be a harmonic range, and if O be any point not on the same line, then the pencil $O\{A B, P Q\}$ will be harmonic.
50. Ex. 1. If a straight line be drawn parallel to any ray of a harmonic pencil, show that the conjugate ray will bisect the segment intercepted by the other two rays.

Ex. 2. Hence show that when a pair of conjugate rays of a harmonic pencil are at right angles, they bisect the angles between the other pair of conjugate rays.

Ex. 3. If P^{\prime}, Q^{\prime} be respectively the harmonic conjugate points of P and Q with respect to A and B, show that the segments $P Q, Q^{\prime} P^{\prime}$ subtend equal or supplementary angles at any point on the circle described on $A B$ as diameter.

Ex. 4. If P, Q, R, S be any four points on the line $A B$, and if $P^{\prime}, Q^{\prime}, R^{\prime}$, $S^{\prime \prime}$ be their harmonic conjugates with respect to A and B; show that when the range $\{P Q, R S\}$ is harmonic, so also is the range $\left\{P^{\prime} Q^{\prime}, R^{\prime} S^{\prime}\right\}$.

Take any point X on the circle described on $A B$ as diameter. Then $A X$, $B X$ are the bisectors of each of the angles $P X P^{\prime}, Q X Q^{\prime}$, \&c. Hence it is easily shown that when the pencil $X\{P Q, R S\}$ is harmonic, so also is the pencil $X\left\{P^{\prime} Q^{\prime}, R^{\prime} S^{\prime}\right\}$.
51. If $O\{A B P\}$ be any pencil, to find the ray which is conjugate to the ray $O P$ with respect to the rays $O A, O B$.

Draw any straight line parallel to the ray $O P$, meeting the rays $O A, O B$ in A^{\prime} and B^{\prime}. Let Q be the middle point of $A^{\prime} B^{\prime}$, then $O Q$ will be the ray conjugate to $O P$.

For $A^{\prime} B^{\prime}$ meets $O P$ at infinity, and the point conjugate to the point at infinity with respect to the points $A^{\prime} B^{\prime}$ is the middle point of the segment $A^{\prime} B^{\prime}$, that is the point Q.

Therefore, by $\S 49, O\{A B, P Q\}$ is a harmonic pencil.

Relations between the segments of a harmonic range.

52. If $\{A B, P Q\}$ be a harmonic range, we have by definition

$$
A P^{P}: P B=A Q: B Q,
$$

that is

$$
A P \cdot B Q=P B \cdot A Q
$$

$$
A P \cdot B Q+A Q \cdot B P=0 .
$$

But since A, B, P, Q are four points on the same straight line, we have, by § 25 ,

$$
A \cdot B \cdot P Q+A P \cdot Q B+A Q \cdot B P=0
$$

Hence we have

$$
A B . P Q=2 A P . B Q=2 A Q . P B
$$

Conversely, when segments of the range $\{A B P Q\}$ are connected by this relation, it is obvious that the range $\{A B, P Q\}$ is harmonic.
53. Again, since

$$
A P \cdot B Q+A Q \cdot B P=0
$$

we have

$$
A P(A Q-A B)+A Q(A P-A B)=0
$$

Therefore $\quad 2 A P . A Q=A B .(A Q+A P)$,
that is

$$
\frac{2}{A B}=\frac{1}{A \bar{P}}+\frac{1}{A Q}
$$

Similarly we may obtain the relations

$$
\begin{aligned}
& \frac{2}{\tilde{B A}}=\frac{1}{B P}+\frac{1}{\overline{B Q}}, \\
& \frac{2}{\overline{P Q}}=\frac{1}{P A}+\frac{1}{P B}, \\
& \frac{2}{Q P}=\frac{1}{Q A}+\frac{1}{Q B} .
\end{aligned}
$$

Conversely, when the segments of the range $\{A B P Q\}$ are connected by any one of these four relations, it follows that the range $\{A B, P Q\}$ is harmonic.
54. Ex. 1. If $\{A B, P Q\}$ be a harmonic range, and if C be the middle point of $A B$, show that

$$
P A . P B=P Q . P C .
$$

Ex. 2. Show that $P A \cdot P B+Q A \cdot Q B=P^{2} Q^{2}$.
Ex. 3. Show that $\quad C P: C Q=A P^{2}: A Q^{2}$.
Ex. 4. If R be the middle point of $P Q$, show that

$$
P Q^{2}+A B^{2}=4 C R^{2} .
$$

Ex. 5. Show that

$$
A P: A Q=C P: A C=A C: C Q .
$$

Ex. 6. If $\{A B, P Q$; be a harmonic range, and O any point on the same straight line, show that

$$
2 \frac{O B}{A B}=\frac{O P}{A P}+\frac{O Q}{A Q}
$$

Ex. 7. Show also that

$$
O A \cdot B P+O B \cdot A Q+O P \cdot Q B+O Q \cdot P A=0 .
$$

55. If $\{A B, P Q\}$ be a harmonic range, and if C be the middle point of $A B$, then

$$
C P \cdot C Q=C A^{2}=C B^{2} .
$$

For since

$$
A P: P B=A Q: B Q
$$

therefore $A P+P B: A P-P B=A Q+B Q: A Q-B Q$;
that is

$$
A B: A P+B P=A Q+B Q: A B
$$

But since C is the middle point of $A B$,

$$
A P+B P=2 C P, A Q+B Q=2 C Q
$$

and

$$
A B=2 A C
$$

Therefore

$$
A C: C P=C Q: A C
$$

that is $C P . C Q=A C^{\prime 2}$.

Conversely, if this relation holds, it may be easily proved that the range $\{A B, P Q\}$ is harmonic.
56. Ex. 1. If $\{A B, P Q\}$ be a harmonic range, and if C and R be the middle points of $A B$ and $P Q$, show that

$$
C A^{2}+P R^{2}=C R^{2} .
$$

Ex. 2. If O be any point on the same line as the range, show that

$$
O A \cdot O B+O P \cdot O Q=2 O R . O C .
$$

Ex. 3. If $\{A B, P Q\}$ be a harmonic range, and if E be the harmonic conjugate of any point O with respect to A, B, and T the harmonic conjugate of O with respect to P, Q; show that

$$
\frac{1}{O A \cdot O B}+\frac{1}{O P \cdot O Q}=\frac{2}{O E \cdot O T} .
$$

Let C, R be the middle points of $A B, P Q$. Then, by $\S 54$, Ex. 1 , we have $O A . O B=O E . O C$, and $O P . O Q=O T . O R$, consequently this result may be deduced from that in Ex. 2.

Ex. 4. If P^{\prime}, Q^{\prime} be the harmonic conjugates of P, Q respectively with respect to A and B, prove that

$$
P Q \cdot P Q^{\prime}: P^{\prime} Q \cdot P^{\prime} Q^{\prime}=A P^{2}: A P^{\prime 2} .
$$

Let C be the middle point of $A B$, then

$$
C P \cdot C P^{\prime}=C Q \cdot C Q^{\prime}=C A^{2} .
$$

Hence

$$
C P: C Q=C Q^{\prime}: C P^{\nu}=P^{\prime} Q^{\prime}: Q P^{\nu} .
$$

Also

$$
C P: C Q^{\prime}=P Q: Q I^{\prime} .
$$

Therefore

$$
P Q \cdot P Q^{\prime}: Q P^{\prime} \cdot Q^{\prime} P^{\prime}=C P^{2}: C Q \cdot C Q^{\prime}=C P: C P^{\prime} .
$$

Whence, by § 54, Ex. 3, the result follows.
Ex. 5. Show also that

$$
A P^{P} \cdot A Q: A P^{\prime} \cdot A Q^{\prime}=P Q: Q P^{\prime}
$$

Ex. 6. If $\{A B, P Q\}$ be a harmonic range, then every circle which passes through the points P, Q is cut orthogonally by the circle described on $A B$ as diameter.

Let the circle described with centre O which passes through P and Q, cut the circle described on $A B$ as diameter in the point X; and let C be the middle point of $A B$.

Then we have, by § 55 ,

$$
C X^{2}=C A^{2}=C P . C Q .
$$

Therefore $C X$ touches the circle $P X Q$; and therefore $C X O$ is a right angle.

Ex. 7. If two circles cut orthogonally, show that any diameter of either is divided harmonically by the other.

Relations between the angles of a harmonic pencil.

57. If $O\{A B, P Q\}$ be a harmonic pencil, we have by definition $\sin A O P: \sin P O B=\sin A O Q: \sin B O Q ;$
that is $\quad \sin A O P \cdot \sin B O Q=\sin P O B \cdot \sin A O Q$.
But, by $\S 30$, we have
$\sin A O B \cdot \sin P O Q+\sin A O P \cdot \sin Q O B+\sin A O Q \cdot \sin B O P=0$.

Hence

$$
\begin{aligned}
\sin A O B \cdot \sin P O Q & =2 \sin A O P \cdot \sin B O Q \\
& =2 \sin A O Q \cdot \sin P O B .
\end{aligned}
$$

Conversely, when this relation holds between the angles of the pencil, it follows that the pencil is harmonic.
58. If $O C$ bisect the angle $A O B$ internally, then

$$
\tan C O P \cdot \tan C O Q=\tan ^{2} C O A=\tan ^{2} C O B
$$

For by definition

$$
\begin{gathered}
\sin A O P: \sin P O B=\sin A O Q: \sin B O Q \\
\frac{\sin A O P+\sin P O B}{\sin A O P-\sin P O B}=\frac{\sin A O Q+\sin B O Q}{\sin A O Q-\sin B O Q}
\end{gathered}
$$

Therefore
that is
or

$$
\tan A O C \cdot \cot C O P=\tan C O Q \cdot \cot A O C,
$$

$$
\tan C O P \cdot \tan C O Q=\tan ^{2} A O C .
$$

The same relation is true if $O C$ bisect the angle $A O B$ externally.

Conversely, when this relation is true, it follows that the pencil $O\{A B, P Q\}$ is harmonic.
59. Ex. 1. If $O\{A B, P Q\}$ be a harmonic pencil, prove that

$$
2 \cot A O B=\cot A O P+\cot A O Q .
$$

Ex. 2. If $O X$ be any other ray, show that

$$
2 \frac{\sin B O X}{\sin A O B}=\frac{\sin P O X}{\sin A O P}+\frac{\sin Q O X}{\sin A O Q} .
$$

Ex. 3. If $O\{A B, P Q\}$ be a harmonic pencil, and if $O E$ be the conjugate ray to $O X$ with respect to $O A, O B$, and $O T$ the conjugate ray to $O X$ with respect to $O P, O Q$, show that
$\cot X O A \cdot \cot X O B+\cot X O P . \cot X O Q=2 \cot X O E \cdot \cot X O T$.
Ex. 4. If $O\{A B, P Q\}$ be a harmonic pencil, and if $O C$ bisect the angle $A O B$, show that

$$
\sin 2 C O P: \sin 2 C O Q=\sin ^{2} A O P: \sin ^{2} A O Q .
$$

Ex. 5. If the rays $O P^{\prime}, O Q^{\prime}$ be the conjugate rays respectively of $O P, O Q$ with respect to $O A, O B$, show that

$$
\sin P O Q \cdot \sin P O Q^{\prime}: \sin P^{\prime} O Q \cdot \sin P^{\prime} O Q=\sin ^{2} A O P: \sin ^{2} A O P^{\prime}
$$

Ex. 6. Show also that $\sin A O P \cdot \sin A O Q: \sin A O P^{\prime} \cdot \sin A O Q^{\prime}=\sin P O Q: \sin Q^{\prime} O P^{\prime}$.

Theorems relating to Harmonic Ranges and Pencils.

60. If $\{A B, P Q\},\left\{A B^{\prime}, P^{\prime} Q^{\prime}\right\}$ be two harmonic ranges on different straight lines, then the lines $B B^{\prime}, P^{P} P^{\prime}, Q Q^{\prime}$ will be concurrent and the lines $B B^{\prime}, P Q^{\prime}, P^{\prime} Q$ will be concurvent.

Let $P P^{\prime}, B B^{\prime}$ intersect in O, and join $O A, O Q$. Then since $O\{A B, P Q\}$ is a harmonic pencil, the line $A B^{\prime}$ will be divided harmonically by $O P, O Q$. But $O P$ cuts $A B^{\prime}$ in P^{\prime}. Hence $O Q$ must cut $A B^{\prime}$ in Q^{\prime} the point which is conjugate to P^{\prime} with respect to A, B^{\prime}.

Again, let $P^{\prime} Q$ cut $B B^{\prime}$ in O^{\prime}, and join $O^{\prime} A, O^{\prime} P$. Then the pencil $O^{\prime}\{A B, P Q\}$ is harmonic. Hence it follows as above that $O^{\prime} P$ must pass through Q^{\prime}.
61. This theorem furnishes an easy construction for obtaining the harmonic conjugate of a point with respect to a given pair of points.

Let A, B be any given points on a straight line, and suppose that we require the harmonic conjugate of the point P with respect to A and B.

L.

Let A and B be joined to any point O, and let a straight line be drawn through P cutting $O A, O B$ in C and D respectively: Join $A D, B C$, and let them intersect in O^{\prime}.

Br the last article, the line joining the harmonic conjugates of P with respect to A, B; and C, D; must pass through O and O^{\prime}.

Hence, if $O 0^{\prime}$ meet $A B$ in Q, Q must be the harmonic conjugate of P with respect to A and B.
62. If the pencils $O\{A B, P Q\}, O^{\prime}\left\{A^{\prime} B^{\prime}, P^{\prime} Q^{\prime}\right\}$ have one ray common, i.e. if $O A$ and $O^{\prime} A^{\prime}$ are coincident, the three points in which the rays $O B, O P, O Q$ intersect the rays $O^{\prime} B^{\prime}, O^{\prime} P^{\prime}$, $O^{\prime} Q^{\prime}$ respectively, are collinear; and likewise the three points in which the rays $O B, O P, O Q$ intersect the rays $O^{\prime} B^{\prime}, O^{\prime} Q^{\prime}, O^{\prime} P^{\prime}$ respectively, are collinear.

Let $O B, O P, O Q$ eut $O^{\prime} B^{\prime}, O^{\prime} P^{\prime}, O^{\prime} Q^{\prime}$ in the points b, p, q respectively; and let $b p$ cut $O O^{\prime}$ in A. Then because the pencil $O^{\prime} A B, P Q_{j}^{\prime}$ is harmonic, $O Q$ must cut the line $A b$ in the point which is the conjugate of p with respect to A, b. Similarly $O^{\prime} Q^{\prime}$ must cut $A b$ in the same point. Hence q the point of intersection of $O Q$, and $O^{\prime} Q^{\prime}$, must lie on $A b$. That is, the points p, b, q are collinear.

In the same way, we can show that if $O P$ cut $O^{\prime} Q^{\prime}$ in q^{\prime}, and if $O Q$ cut $O^{\prime} P^{\prime}$ in p^{\prime}, then $p^{\prime}, b, q^{\prime}$ will be collinear.
63. Ex. 1. Show that if A, B, C, D be any four points in a plane, and if the six lines joining these prints meet in the points E, F, G; then the two
lines which meet in any one of these points are harmonically conjugate with the two sides of the triangle $E F G$ which meet in the same 1 wint.

This follows from § 60.
Ex. 2. Deduce from $\$ 62$, the corresponding theorem when four straight lines are given.

Ex. 3. If through a fixed point O, two straight lines be drawn intersecting two fixed lines in the points A, B and C, D respectively, show that the locus of the point of intersection of $A D$ and $B C$ is a straight line.

Ex. 4. Show how to draw (with the aid of a ruler only) a straight line from a given point which shall pass through the point of intersection of two given straight lines which do not meet on the paper.
64. Given any two pairs of points A, B and C, D on a straight line, to find a pair of points P, Q which shall be harmonically conjugate with respect to each of the given pairs of points.

Take any point X not on the straight line, and descrive the circles $X A B, X C D$ intersecting again in the point Y.

Let the line joining X, Y, cut $A B$ in R. Then if R does not lie within the circles, draw a tangent $R Z$ to either, and with centre R and radius $R Z$ describe a circle cutting $A B$ in P and Q.

Then P and Q will divide each of the segments $A B, C D$ harmonieally.

For

$$
R P^{2}=R Z^{2}=R X . R Y=R A . R B=R C \cdot R D
$$

The problem only admits of a real solution when R lies without each of the circles, that is when the segments $A B$ and $C D$ do not overlap.
65. Ex. 1. If A, B, C, D be four points taken in order on a straight line, show that the locus of a point at which the segments $A B, C D$ subtend equal angles is a circle.

Let P, Q be harmonic conjugates with respect to A, D and B, C, then the locus is the circle described on $P Q$ as diameter.

Ex. 2. Show that if A, B, C, D be four points taken in order on a straight line, two points can be found at each of which the segments $A B, C D$ sultend equal angles, and the segments $A D, B C$ supplementary angles.

Ex. 3. If the points P, Q be harmonically conjugate with respect to the points A, B, and also with respect to the points C, D; and if O, H, K be the middle points of the segments $P Q, A B, C D$; show that

$$
X A \cdot X B-X C . X D+2 H K . X O=0,
$$

where X is any point on the same line.
Ex. 4. Show also that if M, N be the conjugate points of O with respect to A, B and C, D respectively,

$$
\frac{N P}{O H}+\frac{P M}{O K}+\frac{M N}{O P}=0 .
$$

CHAPTER V.

THEORY OF INVOLUTION.

Range in Involution.

66. When several pairs of points $A, A^{\prime} ; B, B^{\prime} ; C^{\prime}, C^{\prime \prime} ; \mathbb{N}$. : lying on a straight line are such that their distances from a fixed point O are connected by the relations

$$
O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime}=\& c \cdot ;
$$

the points are said to form a range in involution.
The point O is called the centre, and any pair of corresponding points, such as A, A^{\prime}, are called conjugate points or couples of the involution.

The most convenient notation for a range in incolution is

$$
\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots \ldots\right\}
$$

67. Ex. 1. If $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$ be respectively the harmmic conjugates of the points A, B, C, \ldots, with respect to the points S, S^{\prime}; show that the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots\right\}$ is in involution.

Ex. 2. If a system of circles be drawn through two fixed points. 1 and B, show that any straight line drawn through a point O on the line $A B$ will be cut by the circles in points which form a range in involution, the print 0 being the centre of the involution.

Ex. 3. If the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime \prime}\right\}$ be in involution, and if L, M, N be the middle points of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}$; show that

$$
P A \cdot P A^{\prime} \cdot M V+P B \cdot P B^{\prime} \cdot N L+P C \cdot P C^{\prime} \cdot L M=0
$$

where I is any point on the same line.

By $\S 2 \overline{7}$, Ex. 5 , the expression on the left-hand side must be equal to

$$
O A \cdot O A^{\prime} \cdot M V+O B \cdot O B^{\prime} \cdot N L+O C \cdot O C^{\prime} \cdot L M,
$$

where O is the centre of the involution ; and this expression

$$
=O A \cdot O A^{\prime} \cdot\{M N+N L+L M S=0 .
$$

Ex. 4. Show also that

$$
L A^{2} \cdot M V+M D^{2} \cdot N L+N C^{2} \cdot L M=-M N \cdot N L \cdot L M .
$$

This result follows from the previous result, by applying the theorem of § 27, Ex. 3.
68. Any two pairs of points on a straight line determine a range in involution.

Let $A, A^{\prime} ; B, B^{\prime}$; be two pairs of points on a straight line. Throngh A and B draw any two lines $A P, B P$ intersecting in P; and through A^{\prime}, B^{\prime} draw $A^{\prime} Q, B^{\prime} Q$ parallel to $B P, A P$ respectively, meeting in Q. Let $P Q$ meet $A B$ in O.

Then since $A P$ is parallel to $B^{\prime} Q$, and $B P$ parallel to $A^{\prime} Q$, we have

$$
O A: O B^{\prime}=O P: O Q=O B: O A^{\prime}
$$

and therefore

$$
O A \cdot O A^{\prime}=O B \cdot O B^{\prime}
$$

Hence, O is the centre of a range in involution of which A, A^{\prime} and B, B^{\prime} are conjugate couples.

When the centre O has been found, we can find a point $C^{\prime \prime}$ corresponding to any given point C on the line by a similar construction.

Thus, join $C P$, and draw $A^{\prime} R$ parallel to $C P$ meeting $O P$ in R, and $R C^{\prime \prime}$ parallel to $P A$ meeting $A B$ in $C^{\prime \prime}$.

Then we shall have

$$
O C \cdot O C^{\prime}=O A \cdot O A^{\prime}
$$

69. We may also proceed otherwise. Let any two circles be drawn passing through the points A, A^{\prime}, and the points B, B^{\prime}, respectively; and let these circles intersect in the points X and Y. Then if the line $X Y$ meet the given straight line in the print 0 , this point will be the centre of the range.

For evidently

$$
O A \cdot O A^{\prime}=O X \cdot O Y=O B \cdot O B^{\prime} .
$$

To obtain the conjugate point to any point C^{\prime}, we have merely t" draw the circle passing through the points X, Y^{*}, C. This circle will cut $A B$ in $C^{\prime \prime}$, the required point.

$$
\text { For } \quad O C . O C^{\prime}=O X . O Y=O A \cdot O A^{\prime}
$$

70. Ex. 1. If $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime} \ldots\right\}$ be a range in involution, whose centre lies between A and A^{\prime}, show that there are two points at which each of the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots$ subtends a right angle.

Ex. 2. If $\left\{A A^{\prime} B B^{\prime}\right\}$ be any range such that the circles described on the segments $A A^{\prime}, B B^{\prime}$ as diameters meet in the point P, and if two pint. $C^{\prime} . C^{\prime \prime}$ be taken on the line $A B$ such that $C P C^{\prime}$ is a right angle, show that $\left\{A A^{\prime}, D C^{\prime}, C C^{\prime}\right\}$ will be a range in involution.

Ex. 3. If $\left\{A A^{\prime}, B B^{\}}\right\}$be a harmonic range, and if L, M he the middle points of the segments $A A^{\prime}, B B^{\prime}$, show that $\left\{. A A^{\prime}, B B^{\prime}, L . M^{\prime} ;\right.$ will be a range in involution.

Ex. 4. If $\left\{A A^{\prime}, B B^{\prime}\right\}$ be a harmonic range, and if Q, Q^{\prime} be the harmonic conjugates of any point P with respect to the point-pairs $A, A^{\prime} ; B, B^{\prime}$; show that $\left\{A A^{\prime}, B B^{\prime}, Q Q\right\}$ will be a range in involution.

Ex. 5. If A, A^{\prime} be any pair of conjugate points of a range in involution, and if the perpendiculars drawn to $O A, O A^{\prime}$ at A and A^{\prime} meet in P, where O is any point not on the same straight line, show that P lies on a fised straight linc.

If $\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ be the range, the locus of P is a straight line parallel to the line joining the centres of the circles $O A A^{\prime}, O B B^{\prime}, \ldots$.

The Double Points.

71. When the points constituting any conjugate couple of a range in involution, lie on the same side of the centre, there exist two points, one on either side of the centre, each of which coincides with its own conjugate. These points are called the double points of the involution.

To find the double points, let $O T$ be a tangent from O to any circle passing through a pair of conjugate points, such as A, A^{\prime}. Then if with centre O, and radius $O T$, a circle be drawn cutting $A A^{\prime}$ in the points S and $S^{\prime \prime}$ (see fig. $\S 69$), we shall have

$$
O S^{2}=O S^{\prime 2}=O T^{2}=O A \cdot O A^{\prime}
$$

Therefore S and $S^{\prime \prime}$ are the double points.
When the points constituting a conjugate couple lie on opposite sides of the centre, the double points are imaginary.
72. It is evident that any pair of conjugate points of a range in involution are harmonic conjugates with respect to the double points of the involution.

We may also notice that there exists but one pair of points which are at once harmonically conjugate with respect to each pair of conjugate points of a range in involution.
73. Ex. 1. If S, S^{\prime} be the double points of a range in involution ; A, A^{\prime}, and B, B^{\prime}, conjugate couples; and if E, F be the middle points of $A A^{\prime}, B B^{\prime}$; show that

$$
P^{\prime} A \cdot P A^{\prime} \cdot F S+P^{\prime} B \cdot P B^{\prime} . S E=P S^{2} \cdot F E
$$

where P is any point on the line.
Ex. 2. Show also that

$$
P A \cdot P A^{\prime} \cdot S S^{\prime}=P S^{\prime 2} \cdot S E^{\prime}-P S^{2} \cdot S^{\prime} E .
$$

Ex. 3. Show also that

$$
S A \cdot S A^{\prime} \cdot S F^{\prime}=S B \cdot S B^{\prime} \cdot S E
$$

Ex. 4. Show that four given points on a straight line deternine thre ranges in involution, and that the double points of any one range, are harmonically conjugate with the double points of the other two ranges.

Let A, B, C, D be the four given points. Then we shall have a range in which A, B and C, D are conjugate couples; a range in which I, C and $B, I)$ are conjugate couples; and a range in which A, D and I, C are conjugate couples. Let $F, F^{\prime} ; G^{\prime}, G^{\prime}$; and H, I^{\prime}; be the double ${ }^{\text {mints }}$ of these threr ranges; and suppose A, B, C, D occur in order. Then $b y \S 64$, we see that F, F^{\prime} and H, H^{\prime} are real points, but G^{\prime}, G^{\prime} imaginary.

Let the circles described on $H H^{\prime}$ and $F^{\prime} F^{\prime \prime}$ as diameters meet in I. Then by $\S 48$, Ex. 2, $P H$ bisects the angles $B P C, A P D$. Hence the angles $A P D$, $C P D$ are equal. But $P F$ bisects the angle $A P D$, and $P F^{\prime \prime}$ the angle $(C P D$; therefore the angle $F P B$ is equal to the angle $C I^{\prime} F^{\prime}$. Hence the angle $F I^{\prime} H$ is equal to the angle $H P F^{\prime}$. Therefore $I^{\prime} I I, I^{\prime} I^{\prime}$ are the bisectors of the angle $F P F^{\prime \prime}$; and hence $\left\{H H^{\prime}, F F^{\prime \prime}\right\}$ is a harmonic range.

Again, it is easy to sec that each of the angles $A P C, B P D$ is a right angle. Hence by $\S 70$, Ex. 2, $\left\{A C, B D, F F^{\prime}, H H^{\prime}\right\}$ is a range in involution ; and therefore $\left\{F F^{\prime}, G G_{.}^{\prime}\right\}$ and $\left\{H H^{\prime}, G G^{\prime \prime}\right\}$ are harmonic ranges.

Ex. 5. If M, N are the centres of the involutions $\{. \mid C, D D\}$ and $\{A D, B C\}$, show that $\{M N, A B, C D\}$ is a range in involution.

Ex. 6. If $\{R P, C A, B D\}$ and $\{P Q, A B, C D\}$ be ranges in involution, show that $\{Q R, B C, A D\}$ will be a range in involution.

Ex. 7. Show that any two ranges in involution on the same straight line have one pair of conjugate points common ; and show how to find them.

Relations between the segments of a range in involution.

74. If $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any range in involution, the segment.s of the range are connected by the relation

$$
A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}+A^{\prime} B \cdot B^{\prime} C \cdot C^{\prime} A=0
$$

Let O be the centre of the range. Then

$$
O A \cdot O A^{\prime}=O B \cdot O B^{\prime}:
$$

that is,

$$
\begin{aligned}
O A & : O B=O B^{\prime}: O A^{\prime} \\
O A: O B & =O B^{\prime}-O A: O A^{\prime}-O B \\
& =A B^{\prime}: B A^{\prime}
\end{aligned}
$$

Therefore

Similarly we shall have

$$
\begin{aligned}
& O B: O C=B C^{\prime}: C B^{\prime} \\
& O C: O A=C A^{\prime}: A C^{\prime}
\end{aligned}
$$

Hence, compounding these ratios, we have

$$
A B^{\prime} . B C^{\prime} . C A^{\prime}=B A^{\prime} . C B^{\prime} \cdot A C^{\prime}
$$

which is equivalent to

$$
A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}+A^{\prime} B \cdot B C \cdot C^{\prime} A=0 .
$$

In the same way, we may deduce the relations:

$$
\begin{aligned}
A^{\prime} B^{\prime} \cdot B C^{\prime} \cdot C A+A B \cdot B^{\prime} C \cdot C^{\prime} A^{\prime} & =0 \\
A B \cdot B^{\prime} C^{\prime \prime} \cdot C A^{\prime}+A^{\prime} B^{\prime} \cdot B C \cdot C^{\prime} A & =0 \\
A B^{\prime} \cdot B C \cdot C^{\prime} A^{\prime}+A^{\prime} B \cdot B^{\prime} C^{\prime} \cdot C A & =0
\end{aligned}
$$

75. Conversely, if any one of these relations hold, then the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

For if not, let a range in involution be formed so that A, A^{\prime}, and B, B^{\prime}, are conjugate couples; and let $C^{\prime \prime}$ be the point conjugate to the point C.

Then if we have given the relation

$$
A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}=-A^{\prime} B \cdot B^{\prime} C \cdot C^{\prime} A
$$

we shall also have the relation

$$
A B^{\prime} \cdot B C^{\prime \prime} \cdot C A^{\prime}=-A^{\prime} B \cdot B^{\prime} C \cdot C^{\prime \prime} A
$$

Therefore

$$
B C^{\prime}: C^{\prime} A=B C^{\prime \prime}: C^{\prime \prime} A
$$

Hence C^{\prime} must coincide with $C^{\prime \prime}$; that is, the range

$$
\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}
$$

is in involution.
76. If $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any range in involution, then

$$
A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}=A C \cdot A C^{\prime}: A^{\prime} C \cdot A^{\prime} C^{\prime}
$$

Let O be the centre of involution. Then as in $\S 73$, we have

$$
O A: O B=A B^{\prime}: B A^{\prime}
$$

Similarly we shall have

$$
O A: O B^{\prime}=A B: B^{\prime} A^{\prime}
$$

Hence

$$
O A^{2}: O B \cdot O B^{\prime}=A B \cdot A B^{\prime}: B A^{\prime} \cdot B^{\prime} A^{\prime}
$$

Therefore, since $O B . O B^{\prime}=O A . O A^{\prime}$,

$$
O A: O A^{\prime}=A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime} .
$$

Similarly we shall have

$$
O A: O A^{\prime}=A C \cdot A C^{\prime \prime}: A^{\prime} C \cdot A^{\prime} C^{\prime \prime}
$$

Hence $\quad A B . A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}=A C \cdot A C^{\prime}: A^{\prime} C . A^{\prime} C^{\prime \prime}$.
Conversely, if this relation is true, it may be proved that the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime \prime}\right\}$ is in involution, by a similar method to that used in $\S 75$.
77. Ex. 1. If $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any range in involution, and if $\left\{A A^{\prime}, B C\right\}$ be a harmonic range, show that $\left\{A A^{\prime}, D^{\prime} C^{\prime}\right\}$ will be a harmonic range.

Ex. 2. If $\left\{A A^{\prime}, B C\right\},\left\{A A^{\prime}, B^{\prime} C^{\prime \prime}\right\}$ be harmonic ranges, show that $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ and $\left\{A A^{\prime}, B C^{\prime}, D^{\prime} C\right\}$ will be ranges in involution.

Show also that if $F, F^{\prime \prime}$ and $G^{\prime}, G^{\prime \prime}$ be the double points of these ranges, then each of the ranges $\left\{A A^{\prime}, F F^{\prime}\right\},\left\{A A^{\prime}, G G^{\prime}\right\},\left\{F^{\prime}, G^{\prime} G^{\prime}\right\}$ will be harmonic.

Ex. 3. If $\left\{A A^{\prime}, B C\right\},\left\{A A^{\prime}, B^{\prime} C^{\prime}\right\}$ be harmonie ranges, and if M, N the the centres of the ranges in involution $\left\{A A^{\prime}, B A^{\prime}, C C^{\prime}\right\}$ and $\left\{A A^{\prime}, B C^{\prime}, D^{\prime} C^{\prime}\right.$, show that $\left\{A A^{\prime}, M N\right\}$ will be a harmonie range.

Ex. 4. If $\left\{A A^{\prime}, B C\right\},\left\{B B^{\prime}, C A\right\},\left\{C C^{\prime}, A D\right\}$ be harmonic ranges, show that $\left\{A A^{\prime}, B D^{\prime}, C C^{\prime \prime}\right\}$ will be in involution.

Pencil in involution.

78. When several pairs of rays $O A, O A^{\prime} ; O B, O B^{\prime} ; O C, U C^{\prime \prime}$; \&c.; drawn through a point O, are such that the angles which they make with a fixed ray $O X$ are comnected by the relation

$$
\begin{aligned}
\tan X O A \cdot \tan X O A^{\prime} & =\tan X O B \cdot \tan X O B^{\prime} \\
& =\tan X O C \cdot \tan X O C^{\prime} \\
& =\& \mathrm{c} \cdot
\end{aligned}
$$

they are said to form a pencil in involution.
If $O X^{\prime}$ be the ray at right angles to $O X$, it is easy to see that $\tan X^{\prime} O A \cdot \tan X^{\prime} O A^{\prime}=\tan X^{\prime} O B \cdot \tan X^{\prime} O B^{\prime}=\mathcal{S} e$.
The rays $O X, O X^{\prime}$ are called the principal rays of the involution, and any pair of corresponding rays, such as $O \mathrm{~A}, \mathrm{OA}^{\prime}$ are called conjugate rays of the pencil.

The notation used for a pencil which is in involution is:

$$
O\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}
$$

79. If $O X$ does not lie within the angle $A O A^{\prime}$ formed by any pair of conjugate rays it is evident that there will be two rays lying on opposite sides of $O X$, such that each of them coincides with its own conjugate. These rays are called the double rays of the pencil.

Let $O S, O S^{\prime}$ be the double rays, then we have

$$
\tan ^{2} X O S=\tan ^{2} X O S^{\prime}=\tan X O A \cdot \tan X O A^{\prime}=\mathbb{S} c
$$

Hence by $\S 58$, we see that the double rays form with any pair of conjugate rays a harmonic pencil ; and also that the principal rays are the bisectors of the angle between the double rays.

It should be noticed that the principal rays themselves constitute a pair of conjugate rays of a pencil in involution.
80. Ex. I. Show that the rays drawn at right angles to the rays of a pencil in involution constitute another pencil in involution having the same principal rays.

Ex. 2. If $O\left\{A 1^{\prime}, B B^{\prime}, \ldots\right\}$ be any pencil in involution, and if through any point O^{\prime} rays $O^{\prime} A, O^{\prime} A^{\prime}, O^{\prime} B, \ldots$ be drawn perpendicular to the rays $O A, O A^{\prime}$, $O B . .$. ; show that the pencil $O^{\prime}\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ will be in involution.

Ex. 3. If $O A^{\prime}, O B^{\prime}, \ldots$ be the harmonic conjugate rays of $O A, O B, \ldots$ with respect to the pair of rays $O S, O S^{\prime}$, show that $O\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ will be a pencil in involution, the double rays of which are $O S$ and $O s^{\prime \prime}$.

Ex. 4. If the pencil $O\left\{A . A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be in involution, and if the angles $A O A^{\prime}, B O B^{\prime}$ have the same bisectors, show that these lines will also bisect the angle $C O C^{\prime \prime}$.

Ex. 5. When the double rays of a pencil in involution are at right angles, show that they bisect the angle between each pair of conjugate rays of the pencil.

Ex. 6. Show that any two pencils in involution which have a common vertex, have one pair of conjugate rays in common.

Ex. 7. Show that any pencil in involution has in general one and only one pair of conjugate rays which are parallel to a pair of conjugate rays of any other pencil in involution.

Ex. 8. Show that if rays $O A^{\prime}, O B^{\prime}, \ldots$ be drawn perpendicular to the rays $O A, O B, \ldots$, the pencil $O\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ will be in involution.

If $A O A^{\prime}$ is a right angle, then whaterer the position of the line $O X$ we have, $\tan \mathrm{X}^{\prime} \mathrm{OA} A \tan \mathrm{X}^{\prime} 0 \mathrm{~A}^{\prime}=-1$.
81. When the double rays of a pencil in involution are real, it is easy to see that the rays of the pencil will cut any straight line in points which form a range in involution.

For, if $O\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ be the pencil, and if $O S^{\prime}, O S^{\prime \prime}$ be the double rays, let any straight line be drawn cutting the rays of the pencil in the points $A, A^{\prime}, B, B^{\prime}, \ldots$ and the double rays in the points S, and $S^{\prime \prime}$. Then since $O\left\{A A^{\prime}, S S^{\prime \prime}\right\}$ is a harmonic pencil, it follows from $\S 49$, that $\left\{A A^{\prime}, S S^{\prime}\right\}$ is a harmonic range. Similarly $\left\{B B^{\prime}, S S^{\prime}\right\}$ is a harmonic range. Hence $\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$ is a range in involution whose double points are S and $S^{\prime \prime}$.

The converse of this theorem is also true, and follows immetiately from § 49 .
82. By the principle of continuity we could infer that this theorem is always true, whether the double rays are real or imaginary. The converse theorem, in fact, is often taken as the basis of the definition of a pencil in involution, and the properties of a pencil in involution are then derived from the properties of a range.
83. Ex. 1. If $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any pencil in involution, show that $\sin A O B^{\prime} \cdot \sin B O C^{\prime} \cdot \sin C O A^{\prime}+\sin A^{\prime} O B \cdot \sin B^{\prime} O C \cdot \sin C^{\prime} O A=0$.
This is easily obtained from the theorem in $\S 74$, by applying the methox used in § 49.

Ex. 2. If $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any pencil in involution show that

$$
\frac{\sin A O B \cdot \sin A O R^{\prime}}{\sin A^{\prime} O B \cdot \sin A^{\prime} O B^{\prime}}=\frac{\sin A O C \cdot \sin A O C^{\prime}}{\sin A^{\prime} O C \cdot \sin A^{\prime} O C^{\prime}}
$$

Ex. 3. If $O\left\{A A^{\prime}, B C\right\}, O\left\{A A^{\prime}, B^{\prime} C^{\prime}\right\}$ be harmonic pencils, show that the pencils $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ and $O\left\{A A^{\prime}, B C^{\prime}, B^{\prime} C\right\}$ will be in involution, and that if $O F, O F^{\prime}$ and $O G, O G^{\prime}$ be the double rays of these pencils, then each of the pencils $O\left\{A A^{\prime}, F F^{\prime \prime}\right\}, O\left\{A A^{\prime}, G G^{\prime}\right\}, O\left\{F^{\prime} F^{\prime}, G G^{\prime}\right\}$ will be harmonic.
84. Instead of obtaining the connection between a pencil in involution and a range in involution, and deducing the properties of the pencil from the range, we may proceed otherwise, and obtain the properties of a pencil in involution directly from the definition given in § 78 .

It will be convenient first to prove the following lemma: If two chords $A A^{\prime}, B B^{\prime}$, of a circle meet in K, then

$$
K A: K A^{\prime}=A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}
$$

Since the triangles $K A B, K B^{\prime} A^{\prime}$ are similar; therefore

$$
K A: K B^{\prime}=A B: B^{\prime} A^{\prime}
$$

Again, since the triangles $K A B^{\prime}, K B A^{\prime}$ are similar ; therefore

$$
K A: K B=A B^{\prime}: B A^{\prime}
$$

Hence

$$
K^{\prime} A^{2}: K B \cdot K B^{\prime}=A B \cdot A B^{\prime}: B^{\prime} A^{\prime} \cdot B A^{\prime} .
$$

But

$$
K B . K B^{\prime}=K A . K A^{\prime}
$$

Therefore

$$
K A: K A^{\prime}=A B \cdot A B^{\prime}: B^{\prime} A^{\prime} \cdot B A^{\prime}
$$

that is

$$
K A: K A^{\prime}=A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}
$$

Again, if $K S$ be drawn to touch the circle, we shall have

$$
K A: K A^{\prime}=A S^{n}: A^{\prime} S^{2}
$$

For the triangles $K A S, K S A^{\prime}$ are similar, and therefore

$$
K A: K S=A S: S A^{\prime}
$$

that is
But
therefore

$$
K A^{2}: K S^{2}=A S^{2}: S A^{\prime 2}
$$

$$
K S^{2}=K A \cdot K A^{\prime}
$$

$$
K A: K A^{\prime}=A S^{2}: A^{\prime} S^{2}
$$

85. If $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}, \ldots\right\}$ be any pencil in involution, and if a circle be drawn through the point O cutting the rays of the pencil in the points $A, A^{\prime}, B, B^{\prime}, \ldots$, the chords $A A^{\prime}, B B^{\prime}, \ldots$ of this circle will pass through a fixed point.

Let the circle cut the principal rays of the pencil in the points X^{\prime}, X^{\prime}, and let $X X^{\prime}$ meet $A A^{\prime}$ in the point K.

By § 84, we have

$$
K X: K X^{\prime}=X A \cdot X A^{\prime}: X^{\prime} A \cdot X^{\prime} A^{\prime} .
$$

But if R be the radius of the circle,

$$
2 R=\frac{X A}{\sin X O A}=\frac{X A^{\prime}}{\sin X O A^{\prime}}=\mathbb{N c}
$$

Hence

$$
\begin{aligned}
\frac{K X}{K X^{\prime}} & =\frac{\sin X O A \cdot \sin X O A^{\prime}}{\sin X^{\prime} O A \cdot \sin X^{\prime} O A^{\prime}} \\
& =\tan X O A \cdot \tan X O A^{\prime} .
\end{aligned}
$$

Again, if $B B^{\prime}$ meet $X X^{\prime}$ in the point K^{\prime}, we shall have

$$
\frac{K^{\prime} X}{K^{\prime} X^{\prime}}=\tan X O B \cdot \tan X O B^{\prime}
$$

But by definition,

$$
\tan X O A \cdot \tan X O A^{\prime}=\tan X O B \cdot \tan X O B^{\prime} .
$$

Therefore

$$
K X: K X^{\prime}=K^{\prime} X: K^{\prime} X^{\prime}
$$

that is K and K^{\prime} must coincide.
86. Given any two pairs of conjugate rays of a pencil in inrolution, to find the principal rays, and the double rays.

Let $O A, O A^{\prime}$ and $O B, O B^{\prime}$ be the given pairs of conjugate rays. Draw a circle passing through O and cutting these rays in the points A, A^{\prime}, and B, B^{\prime} respectively.

Let $A A^{\prime}$ meet $B B^{\prime}$ in the point K, and let the diameter of the circle which passes through K meet the circle in X, X^{\prime}. Then $O X, O X^{\prime}$ will be the principal rays of the pencil.

By § 84, we have

$$
\begin{aligned}
K X: K X^{\prime} & =X A \cdot X A^{\prime}: X^{\prime} A \cdot X^{\prime} A^{\prime} \\
& =X B \cdot X B^{\prime}: X^{\prime} B \cdot X^{\prime} B^{\prime} .
\end{aligned}
$$

Hence

$$
\frac{\sin X O A \cdot \sin X O A^{\prime}}{\sin X^{\prime} O A \cdot \sin X^{\prime} O A^{\prime}}=\frac{\sin X O B \cdot \sin X O B^{\prime}}{\sin X^{\prime} O B \cdot \sin X^{\prime} O B^{\prime}}
$$

Therefore, since $X O X^{\prime}$ is a right angle,

$$
\tan X O A \cdot \tan X O A^{\prime}=\tan X O B \cdot \tan X O B^{\prime}
$$

therefore $O X, O X^{\prime}$ are the principal rays.
To find the double rays, draw the tangents $K S^{\prime}, K S^{\prime}$ to the circle. By § 84 , we have

$$
\begin{aligned}
K X: K X^{\prime} & =X S^{\prime \prime}: X^{\prime} S^{\prime \prime} \\
& =X A \cdot X^{\prime}: X^{\prime} A \cdot X^{\prime} A^{\prime} .
\end{aligned}
$$

Therefore $\quad \frac{\sin ^{2} X O S}{\sin ^{2} X^{\prime} O S}=\frac{\sin X O A \cdot \sin X O A^{\prime}}{\sin X^{\prime} O A \cdot \sin X^{\prime} O A^{\prime}}$;
that is

$$
\tan ^{2} X O S=\tan X O A \cdot \tan X O A^{\prime}
$$

Similarly we may prove that

$$
\tan ^{2} X O S^{\prime}=\tan X O A \cdot \tan X O A^{\prime}
$$

Hence, $O S, O S^{\prime}$ are the double rays of the pencil.
The double rays will be real or imaginary according as K lies without or within the circle; that is according as $A A^{\prime}$ intersects $B B^{\prime}$ without or within the circle.
87. We infer from the above construction that a pencil in involution has in general one and only one pair of conjugate rays at right angles. The exceptional case occurs when the point K is the centre of the circle, that is when the two given pairs of conjugate rays are at right angles. In this case every line through K will be a diameter, and hence every pair of conjugate rays will be at right angles.

It follows that any pencil of rays $O\left\{A A^{\prime}, B B^{\prime}, \ldots\right\}$, in which each of the angles $A O A^{\prime}, B O B^{\prime}, \ldots$ is a right angle, is a pencil in involution, of which any pair of conjugate rays may be considered as the principal rays.
88. Ex. 1. Show that if two pencils in involution have the same vertes, there exists one pair and only one pair of conjugate rays common to each pencil.

When is this pair of rass real?
Ex. 2. Show that any two pencils in involution have in general one and only one pair of conjugate rays which are parallel ; and show how to construct these rays.

Ex. 3. Show that the straight line joining the feet of the perpendiculars drawn to a pair of conjugate rays of a pencil in involution from a fixed point, passes through another fixed point.
89. If $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any pencil in involution,

$$
\frac{\sin A O B \cdot \sin A O B^{\prime}}{\sin A^{\prime} O B \cdot \sin A^{\prime} O B^{\prime}}=\frac{\sin A O C \cdot \sin A O C^{\prime}}{\sin A^{\prime} O C \cdot \sin A^{\prime} O C^{\prime}}
$$

Let any circle be drawn passing through 0 , cutting the rays of the pencil in the points $A, A^{\prime}, B, B^{\prime}, C, C^{\prime \prime}$. Then by $\S 8^{5}, A A^{\prime}$, $B B^{\prime}, C C^{\prime}$ will meet in the same point K.

By $\S 84$, we have

$$
\begin{aligned}
K A: K A^{\prime} & =A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime} \\
& =A C \cdot A C^{\prime}: A^{\prime} C \cdot A^{\prime} C^{\prime}
\end{aligned}
$$

Therefore $A B \cdot A B^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}=A C \cdot A C^{\prime}: A^{\prime} C \cdot A^{\prime} C^{\prime}$.
But if R be the radius of the circle,

$$
2 R=\frac{A B}{\sin A O B}=\frac{A B^{\prime}}{\sin A O B^{\prime}}=\& \mathrm{c} .
$$

Hence

$$
\frac{\sin A O B \cdot \sin A O B^{\prime}}{\sin A^{\prime} O B \cdot \sin A^{\prime} O B^{\prime}}=\frac{\sin A O C \cdot \sin A O C^{\prime}}{\sin A^{\prime} O C \cdot \sin A^{\prime} O C^{\prime \prime}}
$$

90. The rays of any pencil in involution cut any straight line in a series of points which form a range in involution.

Let any straight line be drawn cutting the rays of the pencil $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ in the points $A, A^{\prime}, B, \& c$.

Then if the pencil be in involution, we have by $\S 89$,

$$
\frac{\sin A O B \cdot \sin A O B^{\prime}}{\sin A^{\prime} O B \cdot \sin A^{\prime} O B^{\prime}}=\frac{\sin A O C \cdot \sin A O C^{\prime}}{\sin A^{\prime} O C \cdot \sin A^{\prime} O C^{\prime}}
$$

Let $O N$ be the perpendicular from O on the line $A A^{\prime}$. Then we have

$$
\begin{aligned}
\sin A O B & =\frac{N O \cdot A B}{O A \cdot O B}, \\
\sin A O B^{\prime} & =\frac{N O \cdot A B^{\prime}}{O A \cdot O B^{\prime}},
\end{aligned}
$$

and similar values for $\sin A O C, \& c$.

Hence, we obtain the relation

$$
\frac{A B \cdot A B^{\prime}}{A^{\prime} B \cdot A^{\prime} B^{\prime}}=\frac{A C \cdot A C^{\prime}}{A^{\prime} C \cdot A^{\prime} C^{\prime}} .
$$

Therefore, by $\S 76$, the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ is in involution.
Conversely, it may be proved in a similar manner that if the points of a range in involution be joined to any point not on the same straight line, these lines will form a system of rays in involution.
91. Let $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be any range in involution, then by §74, we have $A B^{\prime} \cdot B C^{\prime} \cdot C A^{\prime}+A^{\prime} B \cdot B^{\prime} C \cdot C^{\prime \prime} A=0$.

If now the points of the range be joined to any point 0 , it follows by the method used in the last article that the angles of any pencil in involution $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ are connected by the relation
$\sin A O B^{\prime} \cdot \sin B O C^{\prime} \cdot \sin C O A^{\prime}+\sin A^{\prime} O B \cdot \sin B^{\prime} O C \cdot \sin C^{\prime \prime} O A=0$.
Conversely, by $\S 75$, if this relation holds, we infer that the pencil $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.
92. Ex. 1. If $A B C D$ be a square, and if $O X, O Y$ be drawn through any
 pencil in involution.

Ex. 2. If $A B C$ be a triangle, and if through any point O, rays $O X, O J^{\circ}$ $O Z$ lee drawn parallel to the sides $B C, C A, A B$, show that $O\{X A, J B, Z C\}$ will be a pencil in involution.

CHAPTER VI.

PROPERTIES OF TRIANGLES.

93. In Euclid a triangle is defined to be a plane figure bounded by three straight lines, that is to say, a triangle is regarded as an area. In modern geometry, any group of three points, which are not collinear, is called a triangle. Since three straight lines which are not concurrent intersect in three points, a group of three straight lines may also be called a triangle without causing any ambiguity.

The present chapter may be divided into two parts. We shall first discuss some theorems relating to lines drawn through the vertices of a triangle which are concurrent, and also some theorems relating to points taken on the sides of a triangle which are collinear. Secondly we propose to deal with certain special points which have important properties in connection with a triangle, and the more important circles connected with a triangle.

In recent years the geometry of the triangle has received considerable attention, and various circles have been discovered which have so many interesting properties, that special names have been given them. We shall however at present merely consider their more elementary properties, reserving for a later chapter the complete discussion of them.

Concurrent lines drawn through the vertices of a triangle.

94. If the straight lines which comnect the vertices A, B, C of a triangle with any point O meet the opposite sides of the triungle in the points X, Y, Z, the product of the ratios

$$
B X: X C, \quad C Y: I^{\prime} A, \quad A Z: Z B
$$

is equal to unity.

Through A draw the straight line $N A M$ parallel to $B C$, and let it cut $B O, C O$ in M and N.

By similar triangles,

$$
\begin{aligned}
& B X: X C=A M: N A, \\
& C Y: Y A=B C: A M, \\
& A Z: Z B=N A: B C .
\end{aligned}
$$

Hence we have,

$$
\frac{B X}{X \bar{C}} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=1 .
$$

95. If X, Y, Z are points on the sides of a triangle such that

$$
\frac{B X}{X C} \cdot \frac{C I}{Y A} \cdot \frac{A Z}{Z B}=1
$$

the lines $A X, B Y, C Z$ will be concurrent.
For let $B Y, C Z$ meet in the point O, and let $A O$ meet $B C$ in X^{\prime}. Then we have

$$
\frac{B X^{\prime}}{X^{\prime} C} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=1
$$

Therefore

$$
B X^{\prime}: X^{\prime} C=B X: X C
$$

Therefore X^{\prime} must coincide with X, or what is the same thing, $A X$ must pass through O.
96. Ex. 1. Show that the lines joining the vertices A, B, C of a triangle to the middle points of the sides $B C, C A, A B$ are concurrent.

Ex. 2. Show that the perpendiculars drawn from the vertices of a triangle to the opposite sides are concurrent.

Ex. 3. If a straight line be drawn parallel to $B C$, cutting the sides $A C, A B$ in Y^{Y} and Z, and if $B Y, C Z$ intersect in O, show that $A O$ will bisect $B C$.

Ex. 4. If points Y and Z be taken on the sides $A C, A B$ of a triangle $A B C$, so that $C Y: Y A=B Z: A Z$, show that $B Y, C Z$ will intersect in a point O such that $A O$ is parallel to $B C$.

Ex. 5. Show that the straight lines drawn through the vertices B and ϵ^{\prime} of the triangle $A B C$, parallel respectively to the sides $C A$, $1 D$, intersect in a point on the line which connects the point A to the middle point of $B C$.

Ex. 6. If the inscribed circle of a triangle touch the sides in the points X, Y, Z, show that the lines $A X, B Y, C Z$ are concurrent.

Ex. 7. If the escribed circle of the triangle $A B C$, opposite to the angle A, touch the sides in the points X, Y, Z, show that $A X, B Y, C Z$ are concurrent.

Ex. 8. If the pencils $O\left\{A 1^{\prime}, B C\right\}, O\left\{B B^{\prime}, C A\right\}, O\left\{C C^{\prime}, A B\right\}$ be harmonic, show that the pencil $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

This follows from Ex. 6,7 , by the aid of $\$ 85$.
Ex. 9. If any circle be drawn touching the sides of the triangle $A B C$ in the points X, Y, Z, show that the lines joining the middle point.s of $B C, C . I$, $A B$ to the middle points of $A X, B Y, C Z$ respectively, are concurrent.

Ex. 10. A circle is drawn cutting the sides of a triangle $A B C$ in the points. f $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$; show that if $A X, B Y, C Z$ are concurrent, so also are $A Y^{\prime}, B Y^{\prime}, C Z^{\prime}$.

Ex. 11. If the lines connecting the vertices of any triangle $A B C$ to any point O, meet the opposite sides in the points D, E, F, show that the pencil $D\{A C, E F\}$ is harmonic.

Conversely, if D, E, F be three points on the sides of the triangle $A B C$, such that the pencil $D\{A C, E F\}$ is harmonic, show that $A D, B E, C C^{\prime}$ are concurrent.
97. The theorem of $\S 94$ may be proved otherwise. We have

$$
\begin{aligned}
B . Y: X C & =(.1 B O):(.1 O C) \\
& =(A O B):(C O A) \\
C Y: Y A & =(B O C):(A O B) \\
A Z: Z B & =(C O A):(B O C)
\end{aligned}
$$

Hence, as before,

$$
\frac{B X}{X C} \cdot \frac{C Y}{Y A} \cdot A Z=1
$$

Ex. If the lines $A O, B O, C O$ meet the sides of the triangle $I B C$ in the points X, Y, Z, show that

$$
\frac{A O}{A X}+\frac{B O}{B X}+\frac{C O}{C X}=2
$$

From the triangle $B O C$, we have

$$
\sin C B O: \sin O C B=O C: O B
$$

Similarly from the triangles $C O A, A O B$,

$$
\begin{aligned}
& \sin A C O: \sin O A C=O A: O C \\
& \sin B A O: \sin O B A=O B: O A
\end{aligned}
$$

Hence, $\quad \frac{\sin B A O}{\sin O A C} \cdot \frac{\sin C B O}{\sin O B A} \cdot \frac{\sin A C O}{\sin O C B}=1$.
99. If points X, Y, Z be taken on the sides of a triangle $A B C$, such that

$$
\frac{\sin B A X}{\sin X A C} \cdot \frac{\sin C B Y}{\sin Y B A} \cdot \frac{\sin A C Z}{\sin Z C B}=1
$$

the lines $A X, B Y, C Z$ will be concurrent.
Let $B Y, C Z$ meet in the point O. Then by the last article we have

$$
\frac{\sin B A O}{\sin O A C} \cdot \frac{\sin C B Y}{\sin Y B A} \cdot \frac{\sin A C Z}{\sin Z C B}=1 .
$$

Therefore

$$
\sin B A O: \sin O A C=\sin B A X: \sin X A C .
$$

Hence it follows that the line $A X$ must coincide with the line $A O$; that is, the lines $A X, B Y, C Z$ are concurrent.
100. Ex. 1. Show that the internal bisectors of the angles of a triangle are concurrent.

Ex. 2. Show that the internal bisector of one angle of a triangle, and the external bisectors of the other angles are concurrent.

Ex. 3. The tangents to the circle circumscribing the triangle $A B C$, at the points B and C, meet in the point L. Show that

$$
\sin B A L: \sin L A C=\sin A C B: \sin C B A .
$$

Ex. 4. If the tangents at the points A, B, C to the circle circumscribing the triangle, meet in the points L, M, N, show that the lines $.1 L$, $B M, C N$ will be concurrent.

Ex. 5. If on the sides of a triangle $A B C$ similar isoseeles triangles $L B C$, $M C A, N A B$ be described, show that the lines $A L, B M, C D$ will be concurrent.

Ex. 6. If the perpendiculars drawn from the pints A, B, C^{\prime} to sides $B^{\prime} C^{\prime \prime}$, $C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ of the triangle $A^{\prime} B^{\prime} C^{\prime}$ are concurrent, show that the lines drawn from $A^{\prime}, B^{\prime}, C^{\prime}$ perpendicular to the sides $B C, C A, A B$ of the triangle $A B C^{\prime}$ will also be concurrent.

Ex. 7. Show that, connected with a triangle $A B C$, a point O can be found such that the angles $B A O, A C O, C B O$ are equal.

Denoting the angle $B .1 O$ by ω, and the angles $B .1 C, A C B, C B .1$ by A, B, C, we have from § 98 ,

$$
\sin ^{3} \omega=\sin (A-\omega) \sin (B-\omega) \sin (C-\omega) ;
$$

whence by trigonometry,

$$
\cot \omega=\cot A+\cot B+\cot C
$$

Thus there is but one value for the angle ω, and consequently only one point O which satisfies the given condition.

There is obviously another point O^{\prime} such that the angles C. $1 O^{\prime}, A B O^{\prime}$, $B C O^{\prime}$ are each equal to the same angle ω.

Ex. 8. The vertices of a triangle $A B C$ are joined to any point O; and a triangle $A^{\prime} D^{\prime} C^{\prime}$ is constructed having its sides parallel to $A O, B O, C O$. If lines be drawn through $A^{\prime}, B^{\prime}, C^{\prime}$ parallel to the corresponding sides of the triangle $A B C$; show that these lines will be concurent.
101. Any two lines $A X, A X^{\prime}$, drawn so that the angle $X A X^{\prime}$ has the same bisectors as the angle $B A C$ are said to be isogonal conjugates with respect to the angle $B A C$.

Let $A X, B Y, C Z$ be the straight lines connecting the vertices of the triangle $A B C$ to any point O, and let $A X^{\prime}, B Y^{\prime}, C Z$ be
their isogonal conjugates with respect to the angles of the triangle.

We have then

	$\frac{\sin B A X}{\sin X A C} \cdot \frac{\sin C B Y}{\sin Y B A} \cdot \frac{\sin A C Z}{\sin Z \bar{C} \bar{B}}$
$=$	$\frac{\sin X^{\prime} A C}{\sin B A X^{\prime}} \cdot \sin Y^{\prime} B A$
$\sin C \overline{B Y^{\prime}}$	$\frac{\sin Z^{\prime} C B}{\sin A C Z^{\prime}}$.

But since $A X, B Y, C Z$ are concurrent; the latter product is equal to unity. Hence by $\S 99$, it follows that $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$ are also concurrent.

Thus: when three lines drawn through the vertices of a triangle are concurrent, their isogonal conjugates with respect to the angles at these vertices are also concurrent.

If the lines $A X, B Y, C Z$ meet in the point O, and their isogonal conjugates in the point O^{\prime}, the points O, O^{\prime} are called isogonal conjugate points with respect to the triangle $A B C$.
102. Ex. 1. Show that the orthocentre of a triangle and the circumcentre are isogonal conjugate points.

Ex. 2. If O, O^{\prime} be any isogonal conjugate points, with respect to the triangle $A B C$, and if $O L, O^{\prime} L^{\prime}$ be drawn perpendicular to $B C ; O M, O M^{\prime}$ perpendicular to $C A$; and $O N, O^{\prime} X^{\prime}$ perpendicular to $A B$; show that

$$
O L \cdot O^{\prime} L^{\prime}=O M \cdot O^{\prime} M^{\prime}=O N^{\prime} \cdot O^{\prime} N^{\prime}
$$

Show also that the six points $L, M, N, L^{\prime}, M^{\prime}, N^{\prime \prime}$ lie on a circle whose centre is the middle point of $O O^{\prime}$, and that $M V^{\prime}$ is perpendicular to $A O^{\circ}$.

Ex. 3. If D, E, F be the middle points of the sides of the triangle $A B C$, show that the isogonal conjugate of $A D$ with respect to the angle $B A C$, is the line joining A to the point of intersection of the tangents at B and C to the circle circumscribing $A B C$.
103. If two points $X, X^{\prime \prime}$ be taken on the line $B C$ so that the segments $X^{\prime} X^{\prime}, B C$ have the same middle point, the points I, N^{\prime} are called isotomiconjugates with respect to the segment $B C$.

Ex. 1. If X, Y, Z be any three points on the sides of a triangle.$~ I B C$, and $I^{\prime}, Y^{\prime}, Z$ the isotomic conjugate points with respect to $B C, C, 1, A B$ respectively, show that if $A X, B Y, C Z$ are concurrent so also are $A Y^{\prime \prime}, B Y^{\prime \prime}, C Z^{\prime \prime}$.

If $A X, B Y, C Z$ meet in the point O, and $A X^{\prime}, B I^{\prime \prime}, C Z^{\prime}$ in the point σ^{\prime}, the points O and O^{\prime} are called isotomic conjugate points with respect to the triangle $A B C$.

Ex. 2. If the inscribed circle of the triangle $A B C$ touch the sides in the points X, Y, Z, show that the isotomic conjugate points with respect to the sides of the triangle, are points of contact of the escribed circles of the triangle.

Ex. 3. In Ex. 1, show that the areas $\left(X Y^{\prime} Z\right),\left(X^{\prime} Y^{\prime} Z^{\prime}\right)$ are equal, and that $\left(B O C^{\prime}\right) \cdot\left(B O^{\prime} C\right)=(C O A) \cdot\left(C O^{\prime} A\right)=(A O B) \cdot\left(A O^{\prime} B\right)$.

Collinear points on the sides of a triangle.

104. If a straight line intersect the sides of a triangle $A B C$ in the points X, Y, Z, the product of the ratios

$$
B X: C X ; C Y: A Y ; A Z: B Z
$$

is equal to unity.

Through A draw $A X^{\prime}$ parallel to $B C$ to cut the straight line $X Y Z$ in the point X^{\prime}.

Then by similar triangles,

$$
\begin{aligned}
& C Y: C X=A Y: A X^{\prime} \\
& B X: B Z=A X^{\prime}: A Z .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \overline{B X} \cdot \frac{C Y}{B Z}=\frac{A Y}{A Z} \\
& \frac{B X}{\overline{C X}} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1 .
\end{aligned}
$$

or

This formula may also be written

$$
\frac{B X}{\bar{X} \bar{C}} \cdot \frac{C Y}{Y A} \cdot \frac{A Z}{Z B}=-1
$$

and should be compared with the formula given in $\S 94$.
When a straight line cuts the sides of a triangle it is often called a transversal. Thus, if X, Y, Z be collinear points on the sides $B C, C A, A B$, respectively, of the triangle $A B C$, the line on which they lie is referred to as the transversal XYZ.
105. If X, Y, Z are points on the sides of a triangle $A B C$ such that

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1
$$

the points X, Y, Z are collinear.
Let the line joining the points Y and Z cut $B C$ in the point X^{\prime}. By the last article, we have

$$
\frac{B X^{\prime}}{C X^{\prime}} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1 .
$$

Hence, we must have

$$
B X^{\prime}: C X^{\prime}=B X: D X
$$

Therefore X must coincide with X^{\prime}; that is, the point X lies on the line $Y Z$.
106. If any straight line cut the sides of the triangle $A B C$ in the points X, Y, Z, then

$$
\frac{\sin B A X}{\sin C A X} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C Z}{\sin B C Z}=1 .
$$

This relation is easily deduced from that given in $§ 104$, for we have

$$
\begin{aligned}
& B X: C X=A B \cdot \sin B A X: A C \cdot \sin C A X \\
& C Y: A Y=B C \cdot \sin C B Y: B A \cdot \sin A B Y \\
& A Z: B Z=C A \cdot \sin A C Z: C B \cdot \sin B C Z
\end{aligned}
$$

Hence,

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=\frac{\sin B A X}{\sin C A X} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C Z}{\sin B C Z} .
$$

But by $\S 104$, the former product is equal to unity. Therefire the theorem is true.
107. Conversely, if points X, Y, Z be taken on the sides of a triangle $A B C$, so that

$$
\frac{\sin B A X}{\sin C A X} \cdot \frac{\sin C B Y}{\sin A B Y} \cdot \frac{\sin A C Z}{\sin B C Z}=1 \text {, }
$$

it follows from § 105, that the points X, Y, Z must be collinear.
108. Ex. 1. Show that the external bisectors of the angles of a triangle meet the opposite sides in collinear points.

Ex. 2. The tangents to the circumcircle of a triangle at the augular points cut the opposite sides of the triangle in three collinear points.

Ex. 3. The lines drawn through any point O perpendicular to the lines $O A, O B, O C$, meet the sides of the triangle $A B C$ in three collinear points.

Ex. 4. The tangents from the vertices of a triangle to any circle meet the opposite sides in the points $X, X^{\prime} ; Y, I^{\prime \prime} ;$ and $Z, Z^{\prime} ;$ respectively. Prove that if X, Y, Z are collinear, so also are $X^{\prime}, Y^{\prime}, Z Z^{\prime}$.

Ex. 5. If any line cut the sides of the triangle $A B C$ in the points I, Y. Z; the isogonal conjugates of $A X, B Y, C Z$, with respect to the angles of the triangle will meet the opposite sides in collinear points.

Ex. 6. If a straight line cut the sides of the triangle $A B C$ in the point. X, Y, Z; the isotomic points with respect to the sides will be collinear.

Ex. 7. If D, E, F are the middle points of the sides of a triangle, aml X, Y, Z the feet of the perpendiculars drawn from the vertices to the ompite sides, and if $Y Z, Z X, X Y$ meet $E F, F D, D E$ in the points P, Q, R respectively, show that $D P, E Q, F R$ are concurrent, and also that $N^{\prime} i^{\prime}, Y Q, Z R$ are concurrent.

Ex. 8. Points X, Y, Z are taken on the sides of a triangle $.1 B C$, so that

$$
B X: X C=C Y^{r}: Y A=A Z: Z B .
$$

If $A X, B Y, C Z$ intersect in the points P, Q, l, , show that

$$
A Q: A R=B R: B P^{\prime}=C P: C Q .
$$

Ex. 9. The sides $A B, A C$ of a triangle are produced to D and E, and $D E$ is joined. If a point F be taken on $B C$ so that

$$
B F: F C=A B . A E: A C \cdot A D,
$$

show that $A F$ will bisect $D E$.
[St John's Coll. 1-si.]
Ex. 10. The sides $B C, C . A, A B$ of a triangle cut a straight line in D, E, F; through D, E, F three straight lines $D L O G, E I I O M, F K O . V^{\circ}$ having the
common point O are drawn, cutting the sides $C A, A B$ in $L, G ; A B, B C$ in M, $H ; B C, C .4$ in N, K. Prove that

$$
\frac{A K \cdot B G \cdot C H}{A M \cdot B \cdot \cdot C L}=\frac{A G \cdot B H \cdot C K}{A L \cdot B \cdot M \cdot C V}=-\frac{G D \cdot H E \cdot K F}{L D \cdot M E \cdot N F}=-\frac{H D \cdot K E \cdot G F}{N D \cdot L E \cdot 1 / F} .
$$

[Math. Tripos, 1878.]
Ex. 11. Through the vertices of a triangle $A B C$, three straight lines $A D$, $B E, C F$ are drawn to cut the opposite sides in the points D, E, F. The lines $B E, C F$ intersect in $A^{\prime} ; C F, A D$ intersect in B^{\prime} : and $A D, B E$ in C^{\prime}. Show that

$$
\frac{D B^{\prime}}{D C^{\prime}} \cdot \frac{E C^{\prime}}{E A^{\prime}} \cdot \frac{F A^{\prime}}{F B^{\prime}}=\left(\begin{array}{l}
C D \\
B D
\end{array} \cdot \frac{A E}{C E} \cdot \frac{B F}{A F}\right)^{2}=\left(\frac{A C^{\prime}}{A B^{\prime}} \cdot \frac{B A^{\prime}}{B C^{\prime}} \cdot \frac{C B^{\prime}}{C \cdot A^{\prime}}\right)^{2} .
$$

[De Rocquigny. Mathesis IX.]
Ex. 12. If $X^{\prime} Y Z, X^{\prime} Y^{\prime} Z^{\prime}$ be any two transrersals of the triangle $A B C$, show that the lines $Y Z^{\prime}, Z X^{\prime}, X Y^{\prime}$ will cut the sides $B C, C A, A B$ in three collinear points.
109. Ex. 1. If the lines joining the vertices of a triangle $A B C$ to any point cut the opposite sides in the points X, Y, Z, and if O be any arbitrary point, show that

$$
\frac{\sin B O X}{\sin X O C} \cdot \frac{\sin C O Y}{\sin Y O A} \cdot \frac{\sin A O Z}{\sin Z O B}=1
$$

We have $\quad B X . O C: X C . O B=\sin B O X: \sin X O C$.
Hence the theorem follows from $\S 94$.
Ex. 2. If any straight line cut the sides of a triangle $A B C$ in the points X, Y, Z, and if O be any arbitrary point, show that

$$
\frac{\sin B O X}{\sin C O X} \cdot \frac{\sin C O Y}{\sin A O Y} \cdot \frac{\sin A O Z}{\sin B O Z}=1
$$

Ex. 3. If X, Y, Z be the points in which any straight line cuts the sides of the triangle $A B C$, and if O be any point, show that the pencil

$$
O\{A X, B Y, C Z\}
$$

is in involution.
Ex. 4. The sides of the triangle $A B C$ cut any straight line in the points P, Q, R; and X, Y, Z are three points on this straight line. If $A X, B Y, C Z$ are concurrent, show that

$$
\frac{Q X}{X R} \cdot \frac{R Y}{Y P} \cdot \frac{P Z}{Z Q}=1 .
$$

Show also that $\{P X, Q Y, R Z\}$ is a range in involution.
Ex. 5. If in the last example, $A X, B Y, C Z$ cut the sides $B C, C .1, A B$ in collinear points, show that

$$
\frac{Q X}{R Y} \cdot \frac{R Y}{P Y} \cdot \frac{P Z}{Q Z}=1 .
$$

Ex. 6. Prove the converse theorems of those in examples 1-5.

Ex. 7. If $X Y^{\prime} Z, X^{\prime} I^{\prime \prime} Z$ be any two transversals of the triangle $\mathrm{I} / \mathrm{C}^{\prime}$,
 $A P, B Q, C R$ cut the sides $B C, C A, A B$ in three collinear points.

Pole and Polar with respect to a triangle.

110. If X, Y, Z be points on the sides of the triangle $A B C$, such that $A X, B Y, C Z$ are concurrent, the sides of the triungle $X Y Z$ will meet the sides of the triangle $A B C$ in collinear points.

Let $Y Z, Z X, X Y$ meet $B C, C A, A B$ respectively in the points $X^{\prime}, Y^{\prime}, Z^{\prime}$.

Since X^{\prime}, Y, Z are collinear we have by $\S 104$,

$$
\frac{B X^{\prime}}{\overline{C X^{\prime}}} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1
$$

But since $A X, B Y, C Z$ are concurrent, we have by $\$ 94$,

$$
\frac{B X}{X C} \cdot Y Y \cdot \frac{A Z}{Z B}=1
$$

Therefore

$$
B X: X C=B X^{\prime}: C X^{\prime}
$$

Similarly, we shall have

$$
C Y: Y A=C Y^{\prime}: A Y^{\prime},
$$

and

$$
A Z: Z B=A Z^{\prime}: B Z^{\prime}
$$

Consequently,

$$
\begin{array}{ll}
B X^{\prime} & C Y^{\prime} \\
C X^{\prime} & A Y^{\prime \prime}
\end{array} \cdot \frac{A Z^{\prime}}{B Z^{\prime}}=\frac{B X}{X C} \cdot \frac{C Y}{\Gamma A} \cdot \frac{A Z}{Z B}=1 .
$$

Hence, $X^{\prime}, Y^{\prime}, Z^{\prime}$ are collinear points.
Ex. 1. If the lines $A O, B O, C O$ cut the sides of the triangle $A B C$ in the pints X, Y, Z; and if the points $I^{\prime}, Y^{\prime \prime}, Z^{\prime}$ be the harmonic conjugate mint.
of X, I, Z with respect to $B, C ; C, A$; and A, B; respectively, prove that :-
(i) The points $X^{\prime}, Y^{\prime}, Z^{\prime}$ are collinear.
(ii) The points X^{\prime}, Y, Z are collinear.
(iii) The lines $A X, B Y^{\prime}, C Z^{\prime}$ are concurrent.

Ex. 2. If the inscribed circle of the triangle $A B C$ touch the sides in the points I, Y, Z, show that the lines $Y Z, Z X, X Y$ cut the sides $B C, C A, A B$ in collinear points.

Ex. 3. If $X Y Z$ be any transversal of the triangle $A B C$, and if the lines $A X, B Y, C Z$ form the triangle $P Q R$, show that the lines $A P, B Q, C R$ are concurrent.
111. If the lines $A X, B Y, C Z$ meet in the point O, the line $X^{\prime} Y^{\prime} Z^{\prime}$ (see figure $\S 110$) is called the polar of the point O with respect to the triangle $A B C$; and the point O is called the pole of the line $X^{\prime} Y^{\prime} Z^{\prime}$ with respect to the triangle.

Given any point O we can find its polar by joining $A O, B O$, $C O$, and then joining the points X, Y, Z in which these lines cut the sides of the triangle $A B C$. The lines $Y Z, Z X, X Y$ will cut the corresponding sides of the triangle in the points $X^{\prime}, Y^{\prime}, Z^{\prime}$, which lie on the polar of O.

Given any straight line $X^{\prime} Y^{\prime} Z^{\prime}$ to find its pole with respect to a triangle $A B C$; let P, Q, R be the vertices of the triangle formed by the lines $A X^{\prime}, B Y^{\prime}, C Z^{\prime}$. Then $A P, B Q, C R$ will meet in a point ($\S 110$, Ex. 3) which will be the pole of the line $X^{\prime} Y^{\prime} Z^{\prime}$.

Ex. If x denote the polar of the point O with respect to the triangle $A B C$, show that

$$
(O B C) \cdot A x=(O C A) \cdot B x=(O A B) \cdot C x
$$

Special points connected with a triangle.

112. The lines drawn through the vertices of a triangle to bisect the opposite sides are called the medians of the triangle.

The medians of a triangle are concurrent (§ 96, Ex. 1). The point in which they intersect is called the median point of the triangle.

The isogonal conjugates of the medians with respect to the angles of a triangle are called the symmedians of the triangle. The point in which they intersect ($\$ 101$) is called the symmedian point.

The median point of a triangle is also called the centroid of the triangle ; but the name median point is preferred in geometry from the important connection of the point with its isogonal conjugate, the symmedian point.

The median point of a triangle is usually denoted by (i, and the symmedian point by K.

Triangles which have the same median lines are called comedian triangles; and triangles which have the same symmedian lines are said to be co-symmedian.
113. In connection with the symmedian point it is convenient to define here what is meant by a line antiparallel to a side of a triangle.

If $A B C$ be any triangle, any line $Y Z$ which cuts $A C$ in Y and $A B$ in Z, so that the angle $A Y Z$ is equal to the angle $C B A$, and the angle $A Z Y$ equal to the angle $B C A$, is said to be antiparallel to the side $B C$.

It is obvious that when $Y Z$ is antiparallel to $B C$, the points Y, Z, B, C are concyclic ; and that the line through A antiparallel to $B C$ is the tangent at A to the circumcircle of $A B C$.
114. Ex. 1. If G be the median point of the triangle $A B C$, show that the areas ($B G C$), (CGA), $(A G B)$ are equal.

Es. 2. If K be the symmedian point of the triangle $A B C$, show that the areas $(B K C),(C K A),(A K B)$ are in the ratio of the squares on $B C, C .1$, and $A B$.

Ex. 3. If any circle be drawn through B and C cutting the sides $A C, A B$ in the points M and N, show that $A K$ will bisect $M N$.

Ex. 4. If the inscribed circle touch the sides of the triangle $A B C$ in the points I, I, Z, show that $A X, B Y, C Z$ will meet in the symmedian point of the triangle $X V^{\circ} Z$.

Ex. 5. If D, E, F be the feet of the perpendiculars from A, B, C to the opposite sides of the triangle $A B C$, show that the lines drawn from A, B, C to the middle points of $E F, F D, D E$ are concurrent.

The point of concurrence is the symmedian point.
Ex. 6. Show that if lines be drawn through the symmedian point of a triangle antiparallel to the sides, the segments intercepted on them are equal.

Ex. 7. The perpendiculars from K on the sides of the triangle are proportional to the sides.

Ex. 8. If $K X, K I, K Z$ be drawn perpendicular to the sides of the triangle, show that K is the median point of the triangle $X Y^{*} Z$.

Ex. 9. If $A D$ be drawn perpendicular to the side $B C$ of the triangle $A B C$, show that the line joining the middle point of $A D$ to the middle point of $B C$ passes through the symmedian point of the triangle $A B C$.

Ex. 10. If from the symmedian (or median) point of a triangle, perpendiculars be drawn to the sides, the lines joining their feet are perpendicular to the medians (or symmedians) of the triangle.

Ex. 11. Show that if G be the median point, and K the symmedian point of the triangle $A B C^{\prime}$,

$$
G A \cdot K A \cdot B C+G B \cdot K B \cdot C A+G C \cdot K C \cdot A B=B C \cdot C A \cdot A D .
$$

[St John's Coll., 1886.]
Ex. 12. Through a point P the lines $X P I, X^{\prime} P Z$ are drawn parallel to the sides $A B, A C$ of the triangle $A B C$, cutting the side $B C$ in the points X, X^{\prime} and the sides $A C, A B$ in I and Z. If the prints X, X^{\prime}, I^{-}, Z are concreclic show that the locus of the point P is a straight line.

Ex. 13. Any point P is taken on the line which bisects the angle $B A C^{\prime}$ of a triangle internally, and $P A^{\prime}, P D^{\prime}, P C^{\prime}$ are drawn perpendicular to the sides of the triangle. Show that $A^{\prime} P$ intersects $D^{\prime} C^{\prime}$ in a point on the median line which passes through A.

Ex. 14. The lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ connecting the vertices of two triangles $A D C, A^{\prime} B^{\prime} C^{\prime}$ are divided in the points P, Q, R in the same ratio, $m: n$. Show that the median point of the triangle $P^{\prime}(Q R$ divides the line joining the median points of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime \prime}$ in the ratio $m: n$.
115. The perpendiculars from the vertices of a triangle on the opposite sides meet in a point ($\$ 96$, Ex. 2), which is called the orthocentre of the triangle.

If $A B C$ be the triangle, and O the orthocentre, it is evident from the figure that each of the four points A, B, C, O is the orthocentre of the triangle formed by the other three.

Ex. 1. Show that if $A P, B Q, C R$ be the perpendiculars on the sides of the triangle $A B C, Q R$ will be antiparallel to $B C$.

Ex. 2. Show that the circles circumseribing the triangles $B O C, C O A$, $A O B, A B C$ are equal.

Ex. 3. Show that the triangles $A Q R, P B R, P Q C$ are each similar to the triangle $A B C$.

Ex. 4. Show that $A P$ bisects the angle $Q P R$.
Ex. 5. If A, B, C, D be any four points on a cirele, and if $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$ be the orthocentres of the triangles $B C D, C D A, D A B, A B C$, show that A. I^{\prime}. $B B^{\prime}, C C^{\prime}, D D^{\prime}$ will be coneurrent.
116. If $A B C$ be any triangle, the lines $A X, B Y, C Z$, drawn so as to make the angles $B A X, A C Y, C B Z$ equal, are concurrent ($\S 100$, Ex. 7). The point in which these lines intersect is called a Brocard point of the triangle $A B C$, and is usually denoted by Ω.

If Ω^{\prime} be the point such that the angles $C A \Omega^{\prime}, A B \Omega^{\prime}, B C \Omega^{\prime}$ are equal, Ω^{\prime} is also called a Brocard point of the triangle $A B C$.

By $\S 100$, Ex. 7 , we see that each of the angles $B A \Omega, \Omega^{\prime} A C$ is equal to ω, where

$$
\cot \omega=\cot A+\cot B+\cot C .
$$

The angle ω is called the Brocard angle of the triangle.
From $\S 101$, it follows that the Brocard points Ω, Ω^{\prime} are isogonal conjugate points with respect to the triangle.
117. Ex. 1. Show that the circle circumscribing the triangle $B \Omega C$ touches $A C$ at C, and that the circle circumscribing the triaugle $B \Omega^{\prime} C$ touches $A B$ at B.

This theorem gives a simple construction for finding Ω and Ω^{\prime}.
Es. 2. Show that the triangles $A \Omega^{\prime} B, A \Omega C$ are similar.
Ex. 3. Show that the areas of the triangles $A \Omega B, C^{\prime} A$ are equal.
Ex. 4. Show that

$$
A \Omega, B \Omega, C \Omega=A \Omega^{\prime} \cdot B \Omega^{\prime} . C \Omega^{\prime} .
$$

The Circumcircle.

118. The circle which passes through the rertices of a triangle is called the circumcircle of the triangle; and the centre of this circle is called the circumcentre.

If $A B C$ be the triangle, and D, E, F the middle points of the sides, the lines drawn through D, E, F perpendicular to the sides meet in the circumcentre (Euclid Iv., Prop. 5).

Since the tangent at A makes the same angles with the lines $A B, A C$, as the side $B C$ makes with $A C, A B$ respectively (Euclid i11., Prop. 32), it follows that the tangent at A is antiparallel to the side $B C$.

Since $S A$ is perpendicular to the tangent at A, we see that $S A$ is perpendicular to any line which is antiparallel to the side $B C$.

The angle $A S B$ is double the angle $A C B$ (Euclid ini, Prop. 20), therefore the angle $B A S$ is the complement of the angle $A C B$. Hence if $A P$ be perpendicular to $B C$, the angle $B A S$ is equal to the angle $P A C$. Thus $A S$ and $A P$ are isogonal conjugates with respect to the angle $B A C$. Hence the circumcentre and the orthocentre are isogonal conjugate points with respect to the triangle.

The eircumeentre of a triangle is usually denoted by S, and the orthocentre by 0 .
119. Ex. 1. If D be the middle point of $B C$, show that $A O=2 S D$.

Ex. 2. If $A O$ meet the circumcirele in P^{ν}, show that $O P^{\nu}$ is bisectal by $B C$.

Ex. 3. Show that the line joining the circumcentre to the orthocentre passes through the median point of the triangle.

Ex. 4. Show that the circle which passes through the middle points of the sides of a triangle passes through the feet of the perpendiculars from the opposite vertices on the sides.

This follows from the fact that S and O are isogonal conjugate points. (§ 102, Ex. 2).

Ex. 5 . Show that if P, Q, R be the feet of the perpendiculars from A, B, C on the opposite sides of the triangle, then the perpendiculars from A, B, C to $Q R, R P, P Q$ respectively are concurrent.

Ex. 6. If from any point P on the circumeircle of the triangle $A B C, P L$, $P M, P N$ be drawn perpendicular to $P A, P B, P C$ respectively to meet $B C$, $C A, A B$ in L, M, N; show that L, M, N lie on a straight line which passes through the circumcentre of the triangle.
[St John's Coll., 1859.]
Ex. 7. If P be any point on the circumeircle of the triangle $A B C$, show that the isogonal conjugate point will be on the line at infinity.

Ex. 8. Perpendiculars are drawn to the symmedians of a triangle, at its angular points, forming another triangle. Show that the eircumeentre of the former is the median point of the latter.

Ex. 9. If P be any point on the circumeircle of a triangle whose symmedian point is K, show that $P K$ will eut the sides of the triangle in the points X, Y, Z so that

$$
\frac{3}{P K}=\frac{1}{P X}+\frac{1}{P Y}+\frac{1}{P Z} .
$$

[d'Ocagne, E. T. Reprint, Vol. xlit., 1. 26.]
120. If from any point P on the circumcircle of the triangle $A B C, P X, P Y, P Z$ be drawn perpendiculur to the sides, the points. X, Y, Z will be collinear.

Join $Z X, Y X$. Then since the points P, X, Z, B are concyclic, the angle $P X Z$ is the supplement of the angle $A B P$. And since P, Y, C, X are concyclic, the angle $Y X P$ is the supplement of the

angle $Y C P$, and is equal to the angle $A B P$, because P, C, A, B are concyclic.

Hence the angles $P X Z, Y X P$ are supplementary; and therefore $Z X, X Y$ are in the same straight line.

The line $X Y Z$ is called the Simson line or the pedal line of the point P with respect to the triangle $A B C$.
121. Ex. 1. Show that if the feet of the perpendiculars drawn from a point P on the sides of a triangle be collinear, the locus of P is the circumcircle of the triangle.

Ex. 2. If O be the orthocentre of the triangle $A B C$, show that the Simson line of any point P on the circumcircle bisects the line $O P$.

Ex. 3. Show that if $P Q$ be any diameter of the circumcircle, the Simson lines of P and Q are perpendicular.
[Trinity Coll., 1889.]
Ex. 4. Show that the Simson line of any point P is perpendicular to the isogonal conjugate line to $A P$ with respect to the angle $B A C$.

Ex. 5. If $P L, P M, P V$ be the perpendiculars drawn from a point P on a circle to the sides $B C, C A, A B$ of an inscribed triangle, and if straight lines $P l, P m, P n$ be drawn meeting the sides in l, m, n and making the angles $L P l, M P m, N P n$ equal, when measured in the same sense, then the points l, m, n will be collinear.
[Trinity Coll., 1890.]
Ex. 6. A triangle $A B C$ is inscribed in a circle and the perpendiculars from A, B, C to the opposite sides meet the circle in $A^{\prime}, B^{\prime}, C^{\prime \prime} ; B^{\prime} E, C^{\prime} F$ are drawn perpendicular to $C^{\prime \prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively, meeting $A C^{\prime}, A B^{\prime}$ in E and F. Show that the pedal line of the point A with respect to the triangle $A^{\prime} B^{\prime} C^{\prime}$ bisects $E F$.
[St John's Coll., 1890.]

Ex. 7. If P, Q be opposite extremities of a diameter of the circuncircle of a triangle, the lines drawn from P and Q perpendicular to their pealal lines respectively will intersect in a point R on the circle.

Show also that the pedal line of the point R will be parallel to $P(C$.
[Clare Coll., 1889.]
Ex. 8. If A, B, C, D be four points on a circle, prove that the pedal lines of each point with respect to the triangle formed by the other three meet in a point O.

If a fifth point E be taken on the circle, prove that the five points 0 belonging to the five groups of four points formed from A, B, C, D, E lie on a circle of half the linear dimensions.
[Math. Tripos, 1886.]
Ex. 9. If A, B, C, D be any four points on a circle, show that the projections of any point O on the circle, on the Simson lines of the point O with respect to the triangles $B C D, C D A, D A B, A B C$, lie on a straight line.

If this line be called the Simson line of the point O with respect to the tetrastigm $A B C D$, and if any fifth point E be taken on the circle, show that the projections of O on the Simson lines of the tetrastigms $B C D E, C D E .1$, $D E A B, E A B C, A B C D$ also lie on a straight line.

Show that the theorem may be extended.
[E. M. Langley, E. T. Reprint, Vol. Li., p. 77.]
122. Ex. 1. If the lines connecting the vertices of a triangle $A B C$ to any point O cut the circumcircle in the points $A^{\prime}, B^{\prime}, C^{\prime}$, and if $O X, O Y, O Z$ be the perpendiculars on the sides of the triangle; then the triangles $A^{\prime} B^{\prime} C^{\prime}$, $X Y Z$ are similar.

It is easy to prove that the angles $B^{\prime} A^{\prime} C^{\prime}, Y X Z$ are each equal to the difference of the angles $B O C, B A C$. Hence the theorem follows at once.

Since the triangles $B^{\prime} O C^{\prime}, C O B$ are similar, we have

$$
B^{\prime} C^{\prime}: O B^{\prime}=B C: C O
$$

Therefore

$$
\frac{A O \cdot B C}{B^{\prime} C^{\prime}}=\frac{A O \cdot C O \cdot B O}{B O \cdot O B^{\prime}}
$$

Hence, if S be the centre of the circumcircle, and R its radius, and if we denote the angles $B O C, C O A, A O B$ by a, β, γ, we have

$$
\begin{equation*}
\frac{A O \cdot B C}{\sin (a-A)}=\frac{B O \cdot C A}{\sin (\beta-B)}=\frac{C O \cdot A B}{\sin (\gamma-C)}=\frac{2 R \cdot A O \cdot B O \cdot C O}{R^{2}-O S^{2}} . \tag{1}
\end{equation*}
$$

Again, since I, Z, O, A are concyclic we have $Y Z=O A \sin A$. Hence, if ρ be the radius of the circle $I Y Z$, we have

$$
2 \rho=\frac{I Z}{\sin (a-A)}=\frac{O A \cdot \sin A}{\sin (a-A)}
$$

Therefore

$$
\begin{equation*}
4 \rho R=\frac{O A \cdot B C}{\sin (a-A)}=\frac{O B \cdot C A}{\sin (\beta-B)}=\frac{O C \cdot A B}{\sin (\gamma-C)} . \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
\begin{equation*}
2 \rho=\frac{A O \cdot B O \cdot C O}{R^{2}-O S^{2}} \tag{3}
\end{equation*}
$$

Ex. 2. Show that the point O for the triangle $X Y Z$ corresponds to the isogonal conjugate point of 0 for the triangle $d^{\prime} B^{\prime} C^{\prime}$.

Ex. 3. If O and O^{\prime} be isogonal conjugate points with respect to the triangle $A B C$, and if S be the circumcentre, show that

$$
\frac{A O \cdot B O \cdot C O}{A O^{\prime} \cdot B O^{\prime} \cdot C O}=\frac{R^{2}-O S^{2}}{R^{2}-C S^{\prime 2}}
$$

By § 102, Ex. 2, we know that if perpendiculars be drawn from O and O^{\prime} to the sides of the triangle $A B C$, their feet lie on the same circle. Hence this result follows from Ex. 1, (3).

Ex. 4. Show that the Brocard points Ω, Ω^{\prime} are equidistant from S.
See § 117, Ex. 3.
Ex. 5. If O and O^{\prime} be a pair of isogonal conjugate points with respect to a triangle $A B C$, show that

$$
A O \cdot A O^{\prime} \cdot B C+B O \cdot B O^{\prime} \cdot C A+C O \cdot C O^{\prime} \cdot A B=B C \cdot C A \cdot A B
$$

Ex. 6. If in Ex. 1 the point O be the orthocentre of the triangle $A B C$, show that $B^{\prime} C^{\prime}$ is antiparallel to the side $B C$.

Ex. 7. If K be the symmedian point of the triangle $A B C^{2}$, and if $A K^{\prime}$, $B K, C K$ mect the circumcircle of the triangle in $A^{\prime}, B^{\prime}, C^{\prime}$, show that the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are co-symmedian.

Let $K X, K I, K Z$ be drawn perpendicular to the sides of $A B C$. Then K is the median point of the triangle $X^{\prime} Y Z\left(\S 114\right.$, Ex. 8). Therefore (Ex. 2) K^{-} is the symmedian point of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

It is evident that the medians of the triangle $A^{\prime} B^{\prime} C^{\prime}$ are proportional to $K X, K Y, K Z$; and therefore they are proportional to the sides of the triangle $A B C$.

The Nine-Point circle.

123. If S be the circumcentre, and O the orthocentre, of the triangle $A B C ; D, E, F$ the middle points of the sides; P, Q, R
the feet of the perpendiculars from the vertices on the opposite sides; and X, Y, Z the middle points of $A O, B O, C O$; the nine points $D, E, F, P, Q, R, X, Y, Z$ lie on the same circle, which is called the nine-point circle of the triangle.

Since S and O are isogonal conjugate points with respect to the triangle $A B C$, it follows that a circle can be drawn through the points $P, Q, R, D, E, F(\S 102$, Ex. 2). Again, since A is the orthocentre of the triangle $B O C$ (§ 114), it follows that the points P, Q, R, Y, Z, D lie on the same circle. Similarly, since B is the orthocentre of the triangle $A O C$, it follows that X lies on the circle $P Q R$.

Since S and O are isogonal conjugate points, the centre of the nine-point circle N will be the middle point of $S O$ (§ 102, Ex. 2).
124. The theorem of the last article may be proved in a more elementary manner as follows. It is easy to show that $X Z D F$ and $X E D Y$ are rectangles, having the common diagonal $D X$. And since $X^{\prime} P D, I Q E, Z R F$ are right angles, it follows at once that the nine points $X, Y^{\prime}, Z, D, E, F^{\prime}, I^{\prime}, Q, R$ lie on a circle, whose centre is the middle point of $O S$.
125. Ex. 1. Show that the diameter of the nine-point circle is equal to the radius of the circumeirele.

Ex. 2. The nine-point circle of the triangle $A B C$ is also the nine-point circle of each of the triangles $B C O, C A O, A B O$.

Ex. 3. Show that if P be any point on the circumcircle of a triangle, $1 P$ ' is bisected by the nine-point circle.

Ex. 4. Show that the Simson lines of the extremities of any diameter of the circumeirele of a triangle intersect at right angles on the nine-pint circle of the triangle.
[Trin. Coll., 1850.]
Ex. 5. If D, E, F be the middle points of the sides of the triangle $A B C$, show that the nine-point cireles of the triangles $A E F, B F D, C D E$ touch the nine-point circle of the triangle $D E F$ at the middle points of $E F, F D, D E$ respectively.

The inscribed and escribed circles.

126. The internal bisectors of the angles of a triangle are concurrent (§ 100, Ex. 1). It is evident that the point in which they meet is equidistant from the sides of the triangle. Therefore the circle which has this point for centre and which touches one side will touch the other sides (Euclid IV., Prop. 4). This circle is called the inscribed circle, or briefly the in-circle. Its centre is often called the $i n$-centre.

If L, M, N be the points of contact of the sides, we have $A M=A N, B L=B N, C L=C M$.

Hence, denoting the lengths of the sides by a, b, c, and the perimeter by $\imath s$, we have

$$
\begin{aligned}
& A M=A N=s-a, \\
& B L=B N=s-b, \\
& C L=C M=s-c .
\end{aligned}
$$

127. The internal bisector of the angle $B A C$, and the external bisectors of the angles $A B C, A C B$, are concurrent. Let the point in which they meet be denoted by I_{1}. This point is the centre of a circle which can be drawn to touch the sides of the triangle, but it is on the side of $B C$ remote to A. This circle is called an escribed circle. To distinguish it from the other escribed circles it is often called the A-escribed circle.

If L_{1}, M_{1}, N_{1} be the points of contact of the sides with this circle, it follows at once that

$$
\begin{aligned}
& A M_{1}=A N_{1}=s, \\
& B L_{1}=B N_{1}=s-c, \\
& C L_{1}=C M_{1}=s-b .
\end{aligned}
$$

Similarly, if the internal bisector of the angle $A B C$ meet the

external bisectors of the other angles in the point I_{2}, I_{2} will be the centre of the B-escribed circle. And, if the internal biscctor of the angle $A C B$ meet the external bisectors of the other angles in I_{3}, I_{3} will be the centre of the C-escribed circle.
128. Ex. 1. Show that the circumcircle of the triangle $A B C$ is the nincpoint circle of the triangle $I_{1} I_{2} I_{3}$.

Ex. 2. Show that if r, r_{1}, r_{2}, r_{3} be the radii of the inscribed and escribed circles, and R the radius of the circumcircle,

$$
r_{1}+r_{2}+r_{3}-r=4 R .
$$

Let D be the middle point of $B C$, and let $S D$ meet the circumcircle in G and H. It follows from Ex. 1, that G is the middle point of H_{1}, and H the middle point of $I_{2} I_{3}$. Hence $2 H D=r_{2}+r_{3}, 2 D G=r_{1}-r$. Therefore

$$
4 R=2 H G=r_{1}+r_{2}+r_{3}-r
$$

Ex. 3. Show that $\quad S I^{2}=R^{2}-2 R r$.
If $I M$ be drawn perpendicular to $A C$, it is easy to show that the triangles $A I M, H C G$ are similar. Therefore $I M: A I=G C: G H$. But $G C=G I$. Hence $A I . I G=I M . G H$, that is $R^{2}-S I^{2}=2 R r$.

Ex. 4. Show that

$$
S I_{1}^{2}=R^{2}+2 R r_{1}
$$

Ex. 5. If I be the in-centre of the triangle $A B C$, and if $A I$ cut $B C$ in X and the circumcircle in G, show that

$$
G I^{2}=G X . G A
$$

Ex. 6. If D be the middle point of $B C, P$ the foot of the perpendicular from A, and L the point of contact of the inscribed circle with $B C$, show that

$$
D L^{2}=D X . D P
$$

Ex. 7. Show that the nine-point circle of a triangle touches the inscribed circle.

Let L, M, N be the points of contact of the inscribed circle with the sides of the triangle. Let D be the middle point of $B C$, and P the foot of the perpendicular from A. Let the line joining A to the centre of the inscribed circle cut $B C$ in X, and let $X L^{\prime}$ be the other tangent drawn from X to this circle. Join $D L$, and let it cut the inscribed circle in T, Then T is a point on the nine-point circle, and the two circles will touch at T.

The tangent to the nine-point circle at $D, D H$ suppose, is parallel to $X L^{\prime}$, since each of the angles $H D B, L^{\prime} X B$ is equal to the difference of the angles $C B A, A C B$.

By Ex. 6, we have $D \mathcal{I}^{\circ} . D P=D L^{2}=D L^{\prime} . D T$. Hence the points P, X, L^{\prime}, T are concyclic, and therefore the angle $D T P$ is equal to the angle $L^{\prime} X D$, that is to the angle $H D B$. Thercfore T is a point on the nine-point circle.

Also a line through T, making with $T D$ an angle $H T D$ equal to $T D H$, is a tangent to both circles, proving that the circles touch at T.

This proof was given by Mr J. Young in the Educational Times (see E. T. Reprint, Vol. Li., p. 58).

Ex. 8. Show that the nine-point circle of a triangle touches each of the escribed circles.

The Cosine circle.

129. If through the symmedian point of a triangle lines be drawn antiparallel to the sides, the six points in which they intersect the sides lie on a circle, which is called the cosine circle of the triangle.

The centre of this circle is the symmedian point.

Let K be the symmedian point of the triangle $A B C$, and let $Y K Z^{\prime}, Z K X^{\prime}, X K Y^{\prime}$ be drawn antiparallel to the sides $B C, C A$, $A B$ respectively.

The angles $K X X^{\prime}, K X^{\prime} X$ are each equal to the angle $B A C^{\prime}$; therefore $K X=K X^{\prime}$. Similarly we have $K Y=K Y^{\prime}$, and

$$
K Z=K Z
$$

But $A K$ bisects all lines antiparallel to the side $B C$, therefore $K Y=K Z^{\prime}$. Similarly, $K Z=K X^{\prime}$, and $K X=K Y^{\prime}$.

Hence the six points $X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}$ lie on a circle whose centre is K.

It is evident that the segments $X X^{\prime}, Y^{\prime} Y^{\prime}, Z Z^{\prime}$ are proportional to the cosines of the opposite angles: hence the name cosine circle. The cosine circle is the only circle which possesses the property of cutting the sides of the triangle at the extremities of three diameters.
130. Ex. 1. Show that the triangles $Y Z X, Z^{\prime} X^{\prime} Y^{\prime}$ are each similar to the triangle $A B C$.

Ex. 2. If $Y Z^{\prime}, Z X^{\prime}, X Y^{\prime}$ be any three diameters of a eircle, show that the circle is the cosine circle of the triangle formed by the lines $X \mathrm{I}^{\prime}, Y^{\prime} Y^{\prime}, Z Z^{\prime}$.

Ex. 3. If the tangents at B and C to the circumeirele of the triangle $A B C$ intersect in K_{1}, show that the circle whose centre is K_{1} and which passes through B and C will cut $A B, A C$ in two points which are extremities of a diameter.

This circle has been called an ex-cosine circle.

The Lemoine circle.

131. If through the symmedian point of a triangle, lines be drawn parallel to the sides, the six points in which they intersect the sides lie on a circle, which is called the Lemoine circle of the triangle.

Let K be the symmedian point of the triangle $A B C$, and let IKZ', $Z K X^{\prime}, X K Y^{\prime}$ be drawn parallel to the sides $B C, C A, A B$ respectively. Let S be the circumcentre of the triangle, and L the middle point of $S K$.

Let $A K$ meet $Y^{\prime} Z$ in A^{\prime}. Then since $K Y^{\prime} A Z$ is a parallelogram, A^{\prime} is the middle point of $A K$.

Hence $\quad S A=2 L A^{\prime}$.
Again, $A K$ bisects $Z Y^{\prime}$; therefore $Z Y^{\prime}$ is antiparallel to the side $B C$, and therefore ($(118) S A$ is perpendicular to $Z Y^{\prime}$. Hence $L A^{\prime}$, which is parallel to $S A$, is perpendicular to $Z Y^{\prime}$.

Again, since $Z K$ is parallel to $A C$, and $Z Y^{\prime}$ is antiparallel to $B C$, it follows that $Z Y^{\prime}$ is equal to the radius of the cosine circle.

Hence we have $\quad 4 L Y^{\prime 2}=R^{2}+\rho^{2}$,
where R is the radius of the circumcircle, and ρ the radius of the cosine circle.

It follows by symmetry that $X, X^{\prime}, Y^{\prime}, Y^{\prime}, Z, Z^{\prime}$ lie on a circle whose centre is L, the middle point of $S K$.
132. Ex. 1. In the figure, show that the chords $Y^{\prime} Z, Z^{\prime} I^{\prime}, X^{\prime} Y$ are equal.

Ex. 2. If the Lemoine circle cut $B C$ in X^{\prime} and X^{\prime}, show that

$$
B X: X X^{\prime}: X^{\prime} C=B A^{2}: B C^{2}: C A^{2} .
$$

Ex. 3. Show that

$$
X X^{\prime}: Y Y^{\prime}: Z Z^{\prime}=B C^{3}: C A^{3}: A B^{3}
$$

On account of this property the circle has been ealled the triplicate rutio circle by Mr Tucker.

Ex. 4. Show that the triangles $Z X Y, Y^{\prime} Z^{\prime} X^{\prime \prime}$ are each similar to the triangle $A B C$.

Ex. 5. If $S D$ be drawn perpendicular to $Y^{\prime} Z^{\prime}$, show that $Z^{\prime} D$ is equal to KY.
133. If on the line $S K$ joining the circumcentre of a triangle $A B C$ to its symmedian point any point T be taken, and if points $A^{\prime}, B^{\prime}, C^{\prime}$ be taken on the lines $K A, K B, K C$ respectively, so that

$$
K A^{\prime}: K B^{\prime}: K C^{\prime}: K T=K A: K B: K C: K S
$$

then lines drawn through $A^{\prime}, B^{\prime}, C^{\prime}$ antiparallel to $B C, C A, A B$,

will meet the sides of the triangle in six points which lie on a circle.

The system of circles obtained by taking different points T ' on the line $K S$ is known as T'ucker's system of circles.

The proof that the six points lie on a circle is very similar to that given in $\S 131$. It is easy to see that $T A^{\prime}$ is perpendicular to $Z Y^{\prime}$, and that $T A^{\prime}, T B^{\prime}, T C^{\prime}$ are proportional to $S A, S B, S C$ respectively. Also, the chords $Y^{\prime} Z, Z^{\prime} X, X^{\prime} Y^{Y}$ are evidently equal, and are proportional to the radius of the cosine circle. Hence, the six points lie on a circle, whose centre is T '.

Tucker's circles include as particular cases:-
(i) The circumcircle, when T coincides with S.
(ii) The cosine circle, when T coincides with K.
(iii) The Lemoine circle, when T is the middle point of $s h$.

Ex. 1. Show that the lines $I^{\prime} Z^{\prime}, Z X^{\prime}, X Y^{\prime}$ are parallel to the sides of the triangle $A B C$.

Ex. 2. Show that the vertices of the triangle formed by the sides $Y Z^{\prime}$, $Z X^{\prime}, X Y^{\prime}$ lie on the symmedian lines $A K, B K, C K$.

Ex. 3. Show that the vertices of the triangle formed by the lines $I^{\prime} Z$, $Z^{\prime} X, X^{\prime} Y^{\prime}$ lie on the symmedian lines $A K, B K, C K$.

Ex. 4. If through any point A^{\prime} on the symmedian $A K$, lines be dramn parallel to the sides $A B, A C$, meeting the symmedians $B K, C K$ in the points B^{\prime}, C^{\prime}; show that $B^{\prime} C^{\prime}$ will be parallel to $B C$, and that the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$ will meet the sides of the triangle $A B C$ in six points which lie on a Tucker circle.

Ex. 5. If through any point $A^{\prime \prime}$ on the symmedian $A K$, lines be drawn antiparallel to the sides $A B, A C$, meeting the symmedians $B K, C K$ in the points $B^{\prime \prime}, C^{\prime \prime}$; show that $B^{\prime \prime} C^{\prime \prime}$ will be antiparallel to $B C$, and that the sides of the triangle $A^{\prime \prime} D^{\prime \prime} C^{\prime \prime}$ will meet the non-corresponding sides of the triangle $A B C$ in six points which lie on a Tucker circle.

Ex. 6. From the vertices of the triangle $A B C$, perpendiculars $A D, B E$, $C F$ are drawn to the opposite sides ; and $E X, F X^{\prime}$ are drawn perpendicular to $B C ; F Y, D Y^{\prime}$ perpendicular to $C A$; and $D Z, E Z^{\prime}$ perpendicular to $A B$. Show that the six points $X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}$ are concyclic.

It is easy to show that $Y^{\prime} Z$ passes through the middle points of the sides $D E, D F$ of the triangle $D E F$. These points obviously lie on the symmedians $B K, C K$. Hence, by Ex. 5 , the points $X^{\prime}, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}$ lie on a Tucker circle.

This particular Tucker circle is usually called Taylor's circle. It was first mentioned in a paper by Mr H. M. Taylor (Proceedings of the London Mathematical Society, Vol. xv.).

Ex. 7. Show that the centre of Taylor's circle is the in-centre of the triangle formed by the middle points of the triangle DEF.

The Brocard circle.

134. The circle whose diameter is the line joining the circumcentre of a triangle to the symmedian point is called the Brocard circle of the triangle.

Let S be the circumcentre, and K the symmedian point of the trlangle $A B C$. Draw $S X, S Y, S Z$ perpendicular to the sides $B C$, $C A, A B$, and let them meet the circle described on $S K$ as diameter in the points $A^{\prime}, B^{\prime}, C^{\prime}$.

The triangle $A^{\prime} B^{\prime} C^{\prime}$ is called Brocard's first triangle.

Let $B A^{\prime}, C B^{\prime}$ meet in Ω. We shall find that Ω is one of the Brocard points ($\$ 116$) and lies on the Brocard cirele.

The perpendiculars from K on the sides of the triangle $A B C$ are proportional to those sides (§114, Ex. 7); that is

$$
A^{\prime} X: B^{\prime} Y=B C: C A
$$

Therefore, since the angles $B X A^{\prime}, C Y B^{\prime}$ are right angles, the triangles $B X A^{\prime}, C Y B^{\prime}$ are similar. Therefore the angle $B A^{\prime} X$ is equal to the angle $C B^{\prime} Y$, that is the angle $\Omega B^{\prime} S$. Therefore the point Ω lies on the circle circumscribing the triangle $A^{\prime} S B^{\prime}$. Similarly we can show that $B A^{\prime}$ meets $A C^{\prime}$ on the Brocard circle, that is in the point Ω.

Thus the lines $A C^{\prime \prime}, B A^{\prime}, C B^{\prime}$ are concurrent. And since the triangles $X B A^{\prime}, Y C B^{\prime}, Z A C^{\prime}$ are similar, the angles $\Omega A B, \Omega B C$, $\Omega C A$ are equal. Hence Ω is one of the Brocard points ($\S 116$).

Similarly we may show that $A B^{\prime}, B C^{\prime}, C A^{\prime}$ intersect on the Brocard circle in the other Brocard point.

Hence if Ω and Ω^{\prime} be the Brocard points, defined as in $\S 116$, and if $A \Omega, B \Omega, C \Omega$ cut $B \Omega^{\prime}, C \Omega^{\prime}, A \Omega^{\prime}$ respectively in the points $C^{\prime}, A^{\prime}, B^{\prime}$, the five points $\Omega, \Omega^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}$ lie on a circle whose diameter is $S K$.

If $A K, B K, C K$ meet the Brocard circle in the points $A^{\prime \prime}, B^{\prime \prime}$, $C^{\prime \prime}$, the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is called Brocard's second triangle.

Let the symmedian lines $A K, B K, C K$ be produced to meet the circumcircle of the triangle $A B C$ in the points P, Q, R. Then since $S A^{\prime \prime}$ is perpendicular to $A K$, it follows that $A^{\prime \prime}$ is the middle point of $A P$.
135. Ex. 1. Show that Brocard's first triangle is similar to the triangle $A B C$.

Ex. 2. Show that if $K A^{\prime}, K B^{\prime}, K C^{\prime}$ meet the sides of the triangle $A B C^{\prime}$ in the points $Y_{1}, X_{2} ; Y_{1}, Y_{2} ; Z_{1}, Z_{2} ;$ the sides of the triangle $Z_{1} X_{1} Y_{1}$ are parallel to $A \Omega, B \Omega, C \Omega$; and the sides of the triangle $Y_{2} Z_{2} X_{2}$ are parallel to $A \Omega^{\prime}, B \Omega^{\prime}, C \Omega^{\prime}$.

Ex. 3. Show that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent.
Since the Lemoine circle which passes through $Y_{1}, X_{2}, Y_{1}, Y_{2}, Z_{1}, Z_{2}$, is concentric with the Brocard circle, it follows that A^{\prime} and K are isotomic conjugates with respect to Y_{1} and Z_{2}. Hence it follows that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ will meet in the point which is the isotomic conjugate of K with respect to the triangle $A B C$.

Ex. 4. Show that Ω and K are the Brocard points of the triangle $Z_{1} X_{1} Y_{1}$; and that Ω^{\prime} and K are the Brocard points of the triangle $Y_{2} Z_{2} X_{2}$.

Ex. 5. Show that

$$
X_{1} X_{2}: X_{2} Y_{1}=\sin (A-\omega): \sin \omega .
$$

Ex. 6. Show that the line $\Omega \Omega^{\prime}$ is perpendicular to $S K$.
Ex. 7. Show that the perpendiculars from the vertices of the triangle $A B C$ on the corresponding sides of Brocard's first triangle are concurrent, and that their point of concurrence lies on the circumcircle of $A B C$.

The point in which these perpendiculars mect is called Tarry's joint.
Ex. 8. Show that the Simson-line corresponding to Tarry's point is perpendicular to $S K$.

Ex. 9. Show that the lines drawn through the vertices of a triangle $A B C$ parallel to the corresponding sides of the Brocard's first triangle intersect in a point on the circumcircle of $A B C$.

Ex. 10. Show that the point of concurrence in the last case is the opposite extremity of the diameter of the circumcircle which passes through Tarry's point.

Ex. 11. If the symmedian lines of the triangle $A B C$ cut the circumcircle in the points P, Q, R, show that the triangles $A B C, P Q R$ have the same symmedian point, and the same Brocard circle.

Ex. 12. If $A^{\prime} B^{\prime} C^{\prime}$ be the first Brocard triangle, and K the symmedian point, of the triangle $A B C$, show that the areas $\left(A^{\prime} B C\right),\left(A C^{\prime} C\right),\left(A B E^{\prime}\right)$, are each equal to the area ($K B C$).

Ex. 13. Show that the median point of the triangle $A^{\prime} B^{\prime} C^{\prime}$ coincides with the median point of the triangle $A B C$.

If G^{\prime} denote the median point of the triangle $A^{\prime} B^{\prime} C^{\prime}$, we have (§ 36, Ex. 4),

$$
3\left(G^{\prime} B C\right)=\left(A^{\prime} B C\right)+\left(B^{\prime} B C\right)+\left(C^{\prime} B C\right)
$$

Therefore by the theorem of Ex. 12,

$$
\begin{aligned}
3\left(G^{\prime} B C\right) & =(K B C)+(A B K)+(A K C) \\
& =(A B C)
\end{aligned}
$$

Therefore G^{\prime} coincides with the median point of the triangle $A B C$.

CHAPTER VII.

RECTILINEAR FIGURES.

Definitions.

136. In Euclid, a plane rectilinear figure is defined to be a figure bounded by straight lines; that is to say, a rectilinear figure is regarded as an area. Such a figure has as many sides as vertices. But in modern geometry, figures are regarded as 'systems of points' or as 'systems of straight lines.' In the present chapter we propose to consider the properties of figures consisting of finite groups of points, or of finite groups of lines. And such figures we shall call rectilinear figures.

The simplest rectilinear figure is that defined by three points, or by three straight lines. It is easy to see that three points may be connected by three lines, so that to have given a system of three points is equivalent to having given a system of three lines. We may therefore use the name triangle for either figure without ambiguity. Now let us consider the case of a figure consisting of four points. Four points may evidently be connected by six straight lines. And similarly, in the case of a figure consisting of four lines, we shall have six points of intersection. It is obvious that although four lines may be considered as a special case of a figure consisting of six points, six points will in general be connected by fifteen straight lines.

It is evident from these considerations that it will be convenient to use names for rectilinear figures which will distinguish figures consisting of points from figures consisting of straight lines. Thus, a system of four points is often called a quadrangle, and a system
of four lines a quadrilateral. The latter name however is objectionable from the fact that it is commonly used to mean an area, and to avoid confusion it is customary to speak of a complete quadrilateral when the geometrical figure consisting of four lines is meant. But instead of these names it is preferable to use the terms tetrastigm and tetragram for the two kinds of figures, as these names are more concise. For figures consisting of any number of points we shall use the name polystigm; and for figures consisting of any number of straight lines, the name polygram.
137. In the case of a polystigm, the primary points are called vertices; and the lines joining them are called comectors. The connectors of a polystigm will in general intersect in certain points other than the vertices. Such points are called centres.

If a polystigm consist of n points, a set of n comnectors may be selected in several ways so that two and not more than two pass through each of the n vertices: such a set of comnectors will be called a complete set of connectors. For instance in the case of a tetrastigm, if A, B, C, D be the vertices, we shall have three complete sets of connectors, viz. $A B, B C, C D, D A ; A B, B D, D C$, $C A$; and $A C, C B, B D, D A$.

In the case of a tetrastigm, it is often convenient to use the word opposite. Thus, in the tetrastigm $A B C D$ the connector $C D$ is said to be opposite to the connector $A B$; and $A B, C D$ are called a pair of opposite connectors. It is evident that the six connectors of a tetrastigm consist of three pairs of opposite comnectors.

In the case of a polystigm, consisting of more than four vertices, the word opposite as applied to a pair of connectors can only be used in reference to a complete set of connectors, and then only when the number of vertices is even. If the vertices of the polystigm be $A_{1}, A_{2}, A_{3}, \ldots A_{2 n}$, the pair of connectors $A_{1} A_{2}, A_{n+1}$ A_{n+2} may be called opposite connectors of the complete set, $A_{1} A_{2}$, $A_{2} A_{3}, \ldots A_{r} A_{r+1}, \ldots A_{n} A_{1}$. In the case of the tetrastigm $A B C D$, it is obvious that $A B$ and $C D$ are opposite connectors in each of the two complete sets in which they occur; but in the case of the hexastigm $A B C D E F, A B$ will occur as a member of twenty-four complete sets of connectors, and in only four of these sets is $A B$ opposite to $D E$.

Again, in the case of a polystigm of $2 n$ points, it is sometimes necessary to consider a group of n connectors which are such that one, and only one, passes through each of the vertices. Such a group of connectors may be called a set of connectors. If two sets of connectors together make up a complete set of connectors, the two sets may be called complementary sets. It is obrious that any particular set will have several complementary sets. For instance in the case of a hexastigm $A B C D E F$, the set of connectors $A B$, $C D, E F$ will be complementary to eight sets.

Ex. 1. Show that a polystigm of n points has $\frac{1}{2} n(n-1)$ connectors, and $\frac{1}{8} n(n-1)(n-2)(n-3)$ centres.

Ex. 2. Show that a complete set of connectors of a polystigm of n points may be selected in $\frac{1}{2}(n-1)!$ ways.

Ex. 3. Show that a set of connectors of a polystigm of $2 n$ points may be selected in 1.3.5...(2n-1) ways.

Ex. 4. Show that any set of connectors of a polystigm of $2 n$ points has $2^{n}(n-1)!$ complementary sets.
138. In the case of a polygram, the points of intersection of the primary lines are called vertices of the figure. The vertices may be connected by certain lines other than those which determine the figure. These lines are called diagonals.

A group of vertices of a polygram which are such that two and not more than two lie on each of the lines of the figure, is called a complete set of vertices. And when the polygram consists of an even number of lines, the word opposite may be applied to a pair of vertices in the same way as in the case of a pair of connectors of a polystigm. Thus a tetragram will have three pairs of opposite vertices.

In the case of a polygram of $2 n$ lines, a group of n vertices such that one, and only one, vertex lies on each line of the figure, is called a set of vertices. And any two sets which together make up a complete set may be called complementary sets.

Ex. 1. A polygram of n lines has $\frac{1}{2} n(n-1)$ vertices, and

$$
\frac{1}{8} n(n-1)(n-2)(n-3) \text { diagonals. }
$$

Ex. 2. Show that a complete set of vertices of a polygram of n lines may be selected in $\frac{1}{2}(n-1)!$ ways.

Ex. 3. Show that a set of vertices of a polygram of $2 n$ lines may be selected in 1.3.5... $(2 n-1)$ ways.

Properties of a Tetrastigm.

139. A system of four points, no three of which are collinear, is called a tetrastigm. If these points are joined we have six connectors, or rather three pairs of opposite connectors. Each pair of opposite connectors intersect in a centre, so that there are three centres.

Let A, B, C, D be any four points, and let the connectors $A C$, $B D$ meet in E, the connectors $A B, C D$ in F, and the connectors $A D, B C$ in G. Then E, F, G are the centres of the tetrastigm $A B C D$.

The triangle $E F G$ is called the central triangle of the tetrastigm.
140. Ex. 1. If X, X^{\prime} be the middle points of $A C, B D ; Y, Y^{\prime \prime}$ the middle points of $A B, C D$; and Z, Z the middle points of $A D, B C$; show that the lines $X X^{\prime}, Y Y^{\prime}, Z Z^{\prime}$ are concurrent, and bisect each other.

Ex. 2. If $A B C D$ be a tetrastigm, and if $A B$ cut $C D$ in F, and $A D$ cut $D C^{\prime}$ in G, show that

$$
F A \cdot F C: F B \cdot F D=G A \cdot G C: G B \cdot G D .
$$

This result follows at once by considering $G C B$ as a transversal of the triangle $F A D$, and $G D A$ as a transversal of the triangle $F B C$.

Ex. 3. If A, B, C, D be any four points in a plane, show that

$$
A C^{2} \cdot B D^{2}=A B^{2} \cdot C D^{2}+A D^{2} \cdot B C^{2}-2 A B \cdot B C \cdot C D \cdot D A \cos \omega,
$$

where ω is the difference of the angles $B A D, B C D$.
Ex. 4. If any straight line cut the connectors $A B, B C, C D, D A$ in the points $X, Y, X^{\prime}, Y^{\prime}$ respectively, show that

$$
\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C X^{\prime}}{X^{\prime} \bar{D}} \cdot \frac{D Y^{\prime}}{Y^{\prime} A}=1
$$

Ex: 5. Show that the bisectors of the angles of a triangle are the six connectors of a tetrastigm.
141. Any pair of opposite connectors of a tetrastigm are harmonically conjugate with respect to the sides of the central triangle which meet at their point of intersection.

Let $A B C D$ be the tetrastigm, $E F G$ its central triangle; and let $G E$ meet $A B$ in F^{\prime}.

Since $A C, B D, G E$ are concurrent, we have (§ 94)

$$
\frac{A F^{\prime}}{F^{\prime} B} \cdot \frac{B C}{C G} \cdot \frac{G D}{D A}=1
$$

Also since $F C D$ is a transversal of the triangle $G A B(\S 104)$,

$$
\frac{A F}{B F} \cdot \frac{B C}{G C} \cdot \frac{G D}{A D}=1 .
$$

Therefore

$$
A F^{\prime}: F^{\prime} B=A F: B F
$$

that is, $\left\{F F^{\prime}, A B\right\}$ is a harmonic range.
Therefore $G\{E F, A B\}$ is a harmonic pencil, and $A D, B C$ are harmonic conjugate rays with respect to $G E, G F$.

The theorem may also be stated thus: The line joining any two vertices of a tetrastigm is divided harmonically in the centre through which it passes, and in the point of intersection with the line joining the other two centres.

If we suppose the line $F G$ to be at infinity, then the four points A, B, C, D are the vertices of a parallelogram ; and since E is the harmonic conjugate of the point in which $A C$ intersects $F G$, with respect to the points A, C, it follows that E is the middle point of $A C$. Thus the theorem of this article is a generalisation of the theorem :-

The diagonals of a parallelogram biseet each other.
142. Ex. 1. If $A B, C D$ meet in F, and if through F a line be drawn cutting $A C, B D$ in P and $P^{\prime}, A D, B C$ in Q and ℓ, and $E G$ in $F^{\prime \prime}$, show that $\left\{F F^{\prime}, P Q, P^{\prime} Q\right\}$ will be a range in involution.

Ex. 2. The centres of the tetrastigm $A B C D$ are $E, F, G ; F G$ meets $A C$ in X and $B D$ in $X^{\prime} ; G E$ meets $A B$ in Y and $C D$ in Y^{\prime}; and $E F$ meets. $A D$ in Z and $B C$ in Z^{\prime}. Show that $Y Z^{\prime}$ and $Z Y^{\prime}$ pass through X, and $Y^{\prime} Z, Y^{\prime} Z^{\prime}$ through X^{\prime}.

Ex. 3. In the same figure show that

$$
\frac{A Y}{Y B} \cdot \frac{B Z^{\prime}}{Z^{\prime} C} \cdot \frac{C Y^{\prime}}{Y^{\prime} D} \cdot \frac{D Z}{Z A}=1
$$

Ex. 4. If $A B C D$ be any tetrastigm, and if from any point in $A C$ two straight lines be drawn, one meeting $A B, B C$ in X and Y respectively, and the other meeting $C D, A D$ in X^{\prime} and Y^{\prime} respectively; show that

$$
\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C X^{\prime}}{X^{\prime} \bar{D}} \cdot \frac{D Y^{\prime}}{Y^{\prime} A}=1
$$

Ex. 5. If four points $X, Y, X^{\prime}, Y^{\prime}$ be taken on the connectors $A B, B C$, $C D, D A$ respectively of a tetrastigm, such that

$$
\frac{A X}{X B} \cdot \frac{B Y}{Y C} \cdot \frac{C X^{\prime}}{X^{\prime} D} \cdot \frac{D Y^{\prime}}{Y^{\prime} A}=1
$$

show that $X Y, X^{\prime} Y^{\prime}$ will intersect on $A C$, and that $X Y^{\prime}, X^{\prime} Y^{\prime}$ will intersect on $B D$.

Ex. 6. The connectors $A B, C D$ of the tetrastigm $A B C D$ meet in F, and the connectors $A D, B C$ meet in G. Through F a straight line is drawn meeting $A D$ and $B C$ in Y and Y^{\prime}, and through G a line is drawn meeting $A B$ and $C D$ in X and X^{\prime}. Show that $X Y, X^{\prime} Y^{\prime}$, and $B D$ are concurrent ; and that $X Y^{\prime}, X^{\prime} Y$, and $A C$ are concurrent.

Ex. 7. The mid-points of the perpendiculars drawn from A, B, C to the opposite sides of the triangle $A B C$ are P, Q, R; and D, E, F are the midpoints of $B C, C A, A B$.

If the sides of the triangle $P Q R$ intersect the corresponding sides of the triangle $D E F$ in the points L, M, N, show that the pencils $A\left\{B C, P^{\prime} L_{j}^{\prime}\right.$, $B\{C A, Q M\}, C\{A B, R N\}$, are harmonic, and that the points L, M, N are collinear.
[Sarah Marks, E. T. Reprint, Vol. xuvin., p. 121.]
143. Let $A B C D$ be any tetrastigm, and let any straight line be drawn, cutting $A C, B D$ in X and $X^{\prime}, A B, C D$ in Y and Y^{\prime}, and $A D, B C^{\prime}$ in Z and Z^{\prime}.

Let x, x^{\prime}, y, \ldots be the harmonic conjugate points of X, X^{\prime}, Y, \ldots with respect to the point-pairs $A, C ; B, D ; A, B ; \ldots$ respectively.

Then by $\S 60$, since $\left\{A B,{ }^{\prime} y\right\}$ and $\{A D, Z Z\}$ are harmonic ranges, it follows that $y z, B D, Y Z$ are coneurrent ; that is, $y z$ passes through $X^{\prime \prime}$.

Similarly, we may show that $y^{\prime} z^{\prime}$ passes through X^{\prime}, and that $y^{\prime}, y^{\prime}=$ intersect in the point X.

Hence, X and X^{\prime} are two of the centres of the tetrastigm $y y^{\prime} z z^{\prime}$; and therefore by $\S 141$, the segment $y y^{\prime}$ is divided harmonically by $z z^{\prime}$ and $X X^{\prime}$, and likewise the segment $z z^{\prime}$ is divided harmonically by $y y^{\prime}$ and $X X^{\prime}$.

Similarly we can show that Y, Y^{\prime} are two centres of the tetrastigm $x x^{\prime} z z^{\prime}$. Therefore, if $x x^{\prime}, z z^{\prime}$ intersect in O, each of the segments $x x^{\prime}, z z^{\prime}$ is divided harmonically in the point O, and in the point where it cuts $Y Y^{\prime}$.

It follows that the lines $x x^{\prime}, y y^{\prime}, z z^{\prime}$ are concurrent, and that if O be the point in which they intersect, each segment such as $x x^{\prime}$ is divided harmonically in the point O and the point where it cuts the line $X X^{\prime}$.

Ex. Deduce the theorem given in § 140, Ex. 1, by considering the line $X X^{\prime \prime}$ to be the line at infinity.

* 144. Any straight line is cut in involution by the three pairs of opposite connectors of any tetrastigm.

Let $A B C D$ be any tetrastigm, and let any straight line cut the: connectors $B D, A C$ in P, P^{\prime}; the connectors $C D, A B$ in Q, Q^{\prime}; and the connectors $B C, A D$ in R, R^{\prime}. Then the range $\left\{P P^{\prime}, Q Q^{\prime}, R R^{\prime}\right\}$ will be in involution.

Since the line $B D$ cuts the sides of the triangle $A Q^{\prime} R^{\prime}$ in the points P, D, B, we have by $\S 104$,

$$
\begin{aligned}
& \frac{A B}{Q^{\prime} B} \cdot \frac{Q^{\prime} P}{R^{\prime} P} \cdot \frac{R^{\prime} D}{A D}=1 ; \\
& \frac{Q^{\prime} P}{R^{\prime} P}=\frac{Q^{\prime} B}{A B} \cdot \frac{A D}{R^{\prime} D}
\end{aligned}
$$

that is
Similarly, since $D C$ cuts the sides of the triangle $A R^{\prime} P^{\nu}$ in the points Q, C, D, we have

$$
\frac{R^{\prime} Q}{P^{\prime} Q}=\frac{R^{\prime} D}{A D} \cdot \frac{A C}{P^{\prime} C}
$$

And since $B C$ cuts the sides of the triangle $A P^{\prime} Q^{\prime}$ in the points R, B, C, we have

Hence

$$
\begin{aligned}
& \frac{P^{\prime} R}{\overline{Q^{\prime} R}}=\frac{P^{\prime} C}{A C} \cdot \frac{A B}{Q^{\prime} B} \\
& Q^{\prime} P \\
& R^{\prime} P \cdot \frac{R^{\prime} Q}{P^{\prime} Q} \cdot \frac{P^{\prime} R}{Q^{\prime} R}=1
\end{aligned}
$$

that is

$$
P Q^{\prime} \cdot Q R^{\prime} \cdot R P^{\prime}+P^{\prime} Q \cdot Q^{\prime} R \cdot R^{\prime} P=0 .
$$

Therefore by $\S 75$, the range $\left\{P P^{\prime}, Q Q^{\prime}, R R^{\prime}\right\}$ is in involution.
145. Ex. 1. The straight lines drawn through any point parallel to the pairs of opposite conneetors of a tetrastigm form a pencil in involution.

This follows by considering the range formed by the intersection of the sis eonnectors with the line at infinity.

Ex. 2. If E, F, G be the centres of the tetrastigm $A B C D$, and O any point, the rays conjugate to $E O, F O, G O$ with respect to the pairs of connectors whieh intersect in E, F, G respectively, are concurrent.

Ex. 3. If O^{\prime} be the point of concurrence in the last ease, show that O and O^{\prime} are the double points of the range in involution formed by the points of intersection of $O O^{\prime}$ with the connectors of the tetrastigm.

Ex. 4. If a straight line be drawn through one of the centres of a tetrastigm, show that the loeus of the centre of the range in involution determined by the connectors of the tetrastigm, will be a straight line.

Ex. 5. Given any point, find a straight line passing through it, so that the given point shall be a double point of the range in involution in which it is eut by the connectors of a given tetrastigm.

Ex. 6. Any point O is taken on a transversal $X Y Z$ of a given triangle $A B C$. If P be the harmonic conjugate point with respect to B and C, of the point in which $O A$ cuts $B C$, show that $O C$ will intersect $P Y$, and that $O B$ will intersect $P Z$ in points which lie on a fixed straight line passing through A.

If points Q, R be taken on $C A, A B$ respectively, such that the pencils $O\{C A, B Q\}$, and $O\{A B, C R\}$ are harmonic, show that the corresponding lines passing through B and C will intersect on the straight line which passes through A.
146. The theorem of § 144 suggests a simple construction for determining the corresponding point P^{\prime} of the point P in a range in involution, when two conjugate couples A, A^{\prime}; and B, B^{\prime}; are known.

Let any straight line $P Q R$ be drawn through P, and let Q, R be any two points on it. Let $A Q$ meet $B^{\prime} R$ in S, and let $B Q$ meet $A^{\prime} R$ in T; then $T S$ will meet $A B$ in P^{\prime}.

For in the tetrastigm QRST, the three pairs of opposite connectors are $A Q S, A^{\prime} R T ; B Q T, B^{\prime} R S$; and $P Q R, P^{\prime} S T$. Therefore by $\S 144$, the range $\left\{A A^{\prime}, B B^{\prime}, P P^{\prime}\right\}$ is in involution.

Ex. If $\left\{A A^{\prime}, B D^{\prime}, C C^{\prime}\right\}$ be any range in involution show how to determine three points P, Q, R such that each of the ranges $\left\{A A^{\prime}, Q R_{\}}^{\}},\left\{B B^{\prime}, R P\right\},\left\{C C^{\prime}\right.\right.$, $P Q$ shall be harmonic.

Properties of a Tetragram.

147. A system of four lines, no three of which are concurrent, is called a tetragram. These four lines intersect in six points, so that we have three pairs of opposite vertices. The lines connecting each pair of opposite vertices are the diagonals, so that there are three diagonals. The triangle formed by the diagonals is called the diagonal triangle.

Sometimes it is convenient to denote the lines forming a tetragram by single letters, and the vertices by double letters; and sometimes it is more convenient to use letters to denote the vertices. Thus if a, b, c, d be the four lines forming the tetragram,

the points $a c, b d$ are a pair of opposite vertices, and the line joining them, denoted by e in the figure, is a diagonal. If $A, A^{\prime} ; B, B^{\prime} ;$ C^{\prime}, C^{\prime}; be the three pairs of opposite vertices, the lines of the tetragram are $A B C, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}$, and $A^{\prime} B^{\prime} C$.
148. Ex. 1. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be the pairs of opposite vertices of a tetragram, show that

$$
A C \cdot A C^{\prime}: A B \cdot A B^{\prime}=A^{\prime} C \cdot A^{\prime} C^{\prime}: A^{\prime} B \cdot A^{\prime} B^{\prime}
$$

\% Ex. 2. Show that the circumeircles of the four triangles $A B C^{\prime}, A C B^{\prime}$, $A^{\prime} B^{\prime} C^{\prime}, A^{\prime} B C$ meet in a point.

Let the circumcireles of $A B C^{\prime}, A B^{\prime} C$ meet in the point O, and then by $\S 120$, it follows that the feet of the perpendiculars from O on the four lines constituting the tetragram are collinear. Hence the circumcircles of the triangles $A^{\prime} B^{\prime} C^{\prime}, A^{\prime} B C$ must also pass through the point O.

Ex. 3. Show also that the orthocentres of the four triangles are collinear.
They lie on a line which is parallel to the line which passes through the feet of the perpendiculars drawn from 0 .

Ex. 4. Prove that, if, for each of the four triangles formed by four lines, a line be drawn bisecting perpendicularly the distance between the circumcentre and the orthocentre, the four bisecting lines will be concurrent.
[Hervey, E. T. Reprint, Vol. Liv.]
Ex. 5. In every tetrastigm, the three pairs of opposite connectors intersect the opposite sides of the central triangle in six points which lie three by three on four straight lines, thus determining the three pairs of opposite rertices of a tetragram.

See § 142, Ex. 2.
Ex. 6. If $a b c d$ be any tetragram, and if the line joining the points $a b, c d$ intersect the line joining the points $a d, b c$ in the point O; show that the lines drawn through O parallel to the lines a, b, c, d will meet the lines c, d, a, b respectively in four collinear points.
[Trin. Coll., 1890.]
149. The points in which any diagonal of a tetragram cuts the other two diagonals are harmonic conjugate points with respect to the pair of opposite vertices which it connects.

Let $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; be the three pairs of opposite vertices of the tetragram. Then evidently A and A^{\prime} are a pair of centres of the tetrastigm $B C, B^{\prime} C^{\prime}$. Hence, by $\S 141$, it follows that $B B^{\prime}$, and $C C^{\prime}$, cut $A A^{\prime}$ in two points which are harmonic conjugates with respect to A and A^{\prime}.

If the lines of the tetragram be denoted by a, b, c, d, and the diagonals by e, f, g, we see (fig. $\S 147$) that each of the ranges $e\{a d, g f\}, f\{a c, g e\}, g\{a b, f e\}$ is harmonic.
150. Ex. 1. Prove the theorem of $\S 149$ directly by means of $\S \S 98,10 f$.

Ex. 2. If $B B^{\prime}, C C^{\prime}$ intersect in E, and if O be any pint on $A A^{\prime}$, show that $O\left\{A E, B C, B^{\prime} C^{\prime}\right\}$ is a pencil in involution.

Ex. 3. Show that the three pairs of opposite vertices of a tetragran connect with the opposite vertices of the diagonal triangle, by six lines which pass three by three through four points, thus determining the three pairs of opposite connectors of a tetrastigm.

Ex. 4. If $a b c d$ be any tetragram, and if the diagonal which connects the points $a b, c d$, meet the diagonal which connects the points $a d, b c$, in the point L; show that the lines which join L to the points in which any transversal cuts the lines a, b, c, d, will cut the lines c, d, a, b respectively in four collinear points.

Ex. 5. The points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; are the opposite vertices of a tetragram. From any point P in $A A^{\prime}$, the lines $P B, P B^{\prime}$ are drawn to meet $B^{\prime} C$ and $B C^{\prime}$ in H and K respectively. Show that $H C^{\prime}$ and $K C$ intersect on the line $A A^{\prime}$.
151. The middle points of the diagonals of a tetragram are collinear.

If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ;$ be the pairs of opposite vertices of a tetragram, then the middle points of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are collinear. (See § 38, Ex. 2.)

Let L, M, N be the vertices of the diagonal triangle; and X, Y, Z the middle points of $A A^{\prime}, B B^{\prime}, C C^{\prime}$.

Since $\left\{M N, A A^{\prime}\right\}$ is a harmonic range, and X the middle point of $A A^{\prime}$, we have by $\S 54$, Ex. 3,

$$
M X: N X=A M^{2}: A N^{2}
$$

Similarly we shall have

$$
\begin{array}{r}
N Y: L Y=B N^{2}: B L^{2}, \\
L Z: M Z=C L^{2}: C M^{2} .
\end{array}
$$

But since $A B C$ is a transversal of the triangle $L M N$, we have by § 104,

Hence

$$
\frac{B L}{C L} \cdot \frac{C M}{A M} \cdot \frac{A N}{B N}=1
$$

MX NY LZ
$N X \cdot \widehat{L Y} \cdot \frac{L Z}{M Z}=1$.
Therefore by $\S 105, X, Y, Z$ are collinear.
152. Ex. 1. The orthocentres of the four triangles formed by four straight lines lie on a straight line which is perpendicular to the line which bisects the diagonals of the tetragram formed by the given straight lines.

Ex. 2. If fire tetragrams be formed by excluding in succession each of five given lines, show that the five lines which bisect the diagonals of these tetragrams respectivel, are concurrent.

Ex. 3. If Ω, Ω^{\prime} be the Brocard points of the triangle $A B C$, and if $A^{\prime} B^{\prime} C^{\prime}$ be Brocard's first triangle, show that the lines joining the middle points of corresponding sides of the two triangles intersect in the point which bisects $\Omega \Omega^{\prime}$.

Ex. 4. Show that the middle points of any pair of opposite sides of a tetrastigm are collinear with the middle point of one of the sides of the triangle formed by the centres of the tetrastigm.
153. The theorem of $\S 151$ may be thus generalised :-If any straight line cut the diagonals $A A^{\prime}, B B^{\prime}, C C^{\prime}$ of a tetragram in the points X, Y, Z; and if $X^{\prime}, Y^{\prime}, Z^{\prime}$ be the harmomic conjugate points with respect to the corresponding pairs of opposite certices, the points $\mathrm{X}^{\prime}, \Gamma^{\prime}, Z^{\prime}$ will be collinear.

Let L, M, N be the vertices of the diagonal triangle ; then by § 149 , the range $\left\{A^{\prime}, M N\right\}$ is harmonic.

Since the range $\left\{A A^{\prime}, N X^{\prime}\right\}$ is harmonic, and also the range $\left\{A A^{\prime}, M N\right\}$, we have by § 56, Ex. 4,

$$
M X, M X^{\prime}: N I^{\prime} . A N^{\prime}=M A^{2}: N A^{2}
$$

In the same way we may show that
and

$$
N Y . N Y^{\prime}: L Y \cdot L Y^{\prime \prime}=N B^{2}: L B^{2} ;
$$

$$
L Z . L Z^{\prime}: M Z . M Z Z^{\prime}=L C^{2}: M C^{2}
$$

But since $A B C$ is a transversal of the triangle $L M A$, we have by $\S 104$,

$$
\frac{M A}{\sqrt{2}} \cdot \frac{N B}{L B} \cdot \frac{L C}{M C}=1
$$

Hence

$$
\frac{M \mathrm{NY} \cdot L Z \cdot M Y^{\prime} \cdot N Y^{\prime} \cdot L Z^{\prime}}{V X \cdot L Y^{\prime} \cdot M Z} \cdot V^{\prime} \cdot L Y^{\prime} \cdot M Z^{\prime}=1
$$

Therefore by $\S 105$, since the points I, Y, Z are collinear, so also are the points $X^{\prime}, Y^{\prime}, Z^{\prime}$.

If we take the line at infinity instead of the line $I I^{\prime} Z$, the points $\Gamma^{\prime \prime}, I^{\prime \prime}$, Z^{\prime} become respectively the middle points of $A A^{\prime}, B B^{\prime}, C C^{\prime}$ and thus we have the theorem of $\S 151$.
154. The lines connecting any point with the vertices of a tetragram form a pencil in involution.

Let $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ;$ be the pairs of opposite vertices of a tetragram, and let O be any point. Then the pencil

$$
O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}
$$

will be in involution.
Since $A^{\prime} B^{\prime} C^{\prime}$ is a transversal of the triangle $A B C$, we have

$$
\frac{B A^{\prime}}{\overline{C A^{\prime}}} \cdot \frac{C B^{\prime}}{A B^{\prime}} \cdot \frac{A C^{\prime}}{\overline{B C^{\prime}}}=1
$$

Hence as in § 109, Ex. 2,

$$
\frac{\sin B O A^{\prime}}{\sin C O A^{\prime}} \cdot \frac{\sin C O B^{\prime}}{\sin A O B^{\prime}} \cdot \frac{\sin A O C^{\prime}}{\sin B O C^{\prime}}=1
$$

Therefore by $\S 91$, the pencil $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ is in involution.
155. Ex. 1. Show that if through any point O, lines $O A^{\prime}, O B^{\prime}, O C^{\prime \prime}$ be drawn parallel to the sides of a triangle $A B C$, the pencil $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

This is proved by considering the tetragram formed by the three sides of a triangle and the line at infinity.

Ex. 2. Deduce the theorem of $\S 153$, from the theorem of the last article.
Ex. 3. If in § 153 the line $X Y^{\prime} Z$ meet the line $X^{\prime} Y^{\prime} Z^{\prime}$ in the point O, show that these lines will be the double lines of the pencil in involution $O\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$.

Ex. 4. Show that the circles described on the diagonals $A A^{\prime}, B B^{\prime}, C C^{\prime}$, of a tetragram, as diameters, have two common points.

Let the eircle described on $B B^{\prime}$ cut the circle described on $C C^{\prime}$ in P and P^{\prime}. Then $B P B^{\prime}, C P C^{\prime}$ are right angles. Therefore since $P\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ is a pencil in involution, $A P A^{\prime}$ is a right angle by $\S 87$.

Ex. 5. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ;$ be the opposite vertices of a tetragram, and X, Y, Z the middle points of $A A^{\prime}, B B^{\prime}, C C^{\prime}$; show that

$$
Y Z . A A^{\prime 2}+Z X \cdot B B^{\prime 2}+X Y \cdot C C^{\prime 2}=-4 Y Z \cdot Z X^{\prime} \cdot X Y .
$$

[Jesus Coll. 1890.]
Ex. 6. Apply the theorem in $\S 154$ to obtain a construction for finding a ray which shall be the conjugate of a given ray in a pencil in involution.

Ex. 7. Through a fixed point O any straight line is drawn intersecting the sides of a triangle $A B C$ in the points X^{\prime}, Y, Z. If X^{\prime} be the harmonic conjugate of the point X with respect to B, C, show that the line joining Y to the point of intersection of $O C$ and $A X^{\prime}$, and the line joining Z to the point of interseetion of $O B$ and $A X^{\prime}$, will pass through the same fixed point on $B C$.

If Y^{\prime}, Z^{\prime} be the harmonic conjugate points of Y^{\prime} and Z with respect to C, A and A, B respectively; if P be the point in which the line joining Y to the point of intersection of $O C$ and $A X^{\prime}$ cuts $B C$; Q the point in which the line
joining Z to the point of intersection of $O .1$ and $B Y^{\prime \prime}$ cut.s $C .1$; and R the point in which the line joining X to the point of intersection of $O B$ and $C Z^{\prime}$; show that P, Q, R are collinear.

The line $P Q R$ is the polar of the point O with respect to the triangle $A B C$. (§ 111.)

Special cases of polystigms and polygrams.

156. The properties of figures consisting of more than four points or straight lines have not been systematically investigated. Consequently we shall merely discuss the few special cases of interest which have been discovered. The most important of these is the case of the hexastign in which three of the points lie on one straight line, and the remaining three on another straight line; and the correlative case of the hexagram which consists of two pencils of three rays.
157. If $\{A B C\}\left\{A^{\prime} B^{\prime} C^{\prime}\right\}$ be any two ranges, the straight lines $A B^{\prime}, B C^{\prime}, C A^{\prime}$ intersect the three lines $A^{\prime} B, B^{\prime} C, C^{\prime} A$ respectively in three points which are collinear.

Let $B C^{\prime}, B^{\prime} C$ intersect in $X, C A^{\prime}, C^{\prime} A$ in Y, and $A B^{\prime}, A^{\prime} B$ in Z; and let $A B^{\prime}, B C^{\prime}, C A^{\prime}$ form the triangle $P Q R$.

Then since $X C B^{\prime}, C^{\prime} Y A, B A^{\prime} Z$ are transversals of the triangle $P Q R$, we have by $\S 104$,
and

$$
\begin{aligned}
& \frac{Q X}{R X} \cdot R C \cdot P B^{\prime} \cdot P \cdot \frac{Q B^{\prime}}{}=1, \\
& R Y \cdot P A \cdot \frac{Q C^{\prime}}{R Y}=1, \\
& P Y \cdot Q A \cdot \frac{P C^{\prime}}{}=1 \\
& \frac{P Z}{Q Z} \cdot \frac{Q B}{R B} \cdot \frac{R A^{\prime}}{P \cdot A^{\prime}}=1 .
\end{aligned}
$$

But since $B C A, C^{\prime} A^{\prime} B^{\prime}$ are also transversals of the triangle $P Q R$, we have by § 104,

$$
\frac{Q B}{R B} \cdot \frac{R C}{P C} \cdot \frac{P A}{Q A}=1
$$

and

$$
Q C^{\prime} \cdot \frac{R A^{\prime}}{R C^{\prime}} \cdot \frac{P B^{\prime}}{P A^{\prime}} \cdot \frac{}{Q B^{\prime}}=1 .
$$

Hence, we have

$$
\frac{Q X}{R X} \cdot \frac{R I}{P Y} \cdot \frac{P Z}{Q Z}=1 .
$$

Therefore by $\S 105$, the points X, Y, Z are collinear.
158. In the same way we may show that the lines $A C^{\prime}, B B^{\prime}$, $C A^{\prime}$ intersect the lines $A^{\prime} B, C^{\prime} C, B^{\prime} A$ respectively in three collinear points. In fact, we may interchange the order of the letters $A^{\prime} B^{\prime} C^{\prime}$ in every possible way. Thus we shall have six sets of collinear points. If we use the notation $\binom{A B^{\prime}}{B A^{\prime}}$ to represent the point of intersection of the lines $A B^{\prime}, B A^{\prime}$, we may exhibit these six sets of collinear points in the tabular form :

$$
\begin{aligned}
& \binom{A B^{\prime}}{A^{\prime} B},\binom{B C^{\prime}}{B^{\prime} C},\binom{C^{\prime} A^{\prime}}{C^{\prime} A} ; \\
& \binom{A C^{\prime}}{B^{\prime} B},\binom{B A^{\prime}}{C^{\prime} C},\binom{C B^{\prime}}{A^{\prime} A} ; \\
& \binom{A A^{\prime}}{C^{\prime} B},\binom{B B^{\prime}}{A^{\prime} C},\binom{C C^{\prime}}{B^{\prime} A}: \\
& \binom{A C^{\prime}}{A^{\prime} B},\binom{B B^{\prime}}{C^{\prime} C},\binom{C A^{\prime}}{B^{\prime} A} ; \\
& \binom{A A^{\prime}}{B^{\prime} B},\binom{B C^{\prime}}{A^{\prime} C},\binom{C B^{\prime}}{C^{\prime} A}: \\
& \binom{A B^{\prime}}{C^{\prime} B},\binom{B A^{\prime}}{B^{\prime} C},\binom{C C^{\prime}}{A^{\prime} A} .
\end{aligned}
$$

Each of these triads of points are collinear.
Thus we have the theorem: The mine lines which comect two triads of collinear points intersect in eighteen other points which lie in threes on six straight lines.

It should be noticed that each of the collinear triads of points are the points of intersection of the three pairs of opposite connectors in a complete set of connectors of the hexastigm $A B C A^{\prime} B^{\prime} C^{\prime \prime}$. Hence the theorem may be stated in the form: The
three pairs of opposite comectors, in euch of the six complete sets of a hexastigm consisting of two triuds of collinear points, intersect in three collinear points.
159. Ex. 1. Show that the nine points in which any pencil of three rays intersects any other pencil of three rays may be comnected by eighteen lines which pass three by three through six points.

If a, b, c denote the rays of one pencil, and $a^{\prime}, b^{\prime}, c^{\prime}$ the rays of the other pencil, we may show by a very similar method to that used in $\S \S 157,158$, that the following triads of lines are concurrent:

$$
\begin{aligned}
& \binom{a b^{\prime}}{a^{\prime} b},\binom{b c^{\prime}}{b^{\prime} c},\binom{c a^{\prime}}{c^{\prime} a} ; \\
& \binom{a c^{\prime}}{b^{\prime} b},\binom{b a^{\prime}}{c^{\prime} c},\binom{c b^{\prime}}{a^{\prime} a} ; \\
& \binom{a a^{\prime}}{c^{\prime} b},\binom{b b^{\prime}}{a^{\prime} c},\binom{c c^{\prime}}{b^{\prime}, t} \text {; } \\
& \binom{a c^{\prime}}{a^{\prime} b},\binom{b b^{\prime}}{c^{\prime} c},\binom{c a^{\prime}}{b^{\prime} a} \text {; } \\
& \binom{a a^{\prime}}{b^{\prime} b},\binom{b c^{\prime}}{a^{\prime} c}, \quad\binom{c b^{\prime}}{c^{\prime} a} ; \\
& \binom{a b^{\prime}}{c^{\prime} b},\binom{b a^{\prime}}{b^{\prime} c},\binom{c c^{\prime}}{a^{\prime} a} .
\end{aligned}
$$

Ex. 2. If in a hexagon two pairs of opposite sides intersect on the corresponding diagonals, then the remaining pair of opposite sides will intersect on the diagonal corresponding to this pair.
[Math. Tripos, 1890.]
Ex. 3. The six points $A, B, C, I^{\prime}, D^{\prime}, C^{\prime}$ are such that the lines $A A^{\prime}, B E^{\prime}$, $C C^{\prime}$ meet in the point O. Show that they may be eonnected lyy ten other lines which intersect in six points which are the vertices of a tetragram.

Ex. 4. The six lines $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ are such that the points $a a^{\prime}, b b^{\prime}, c c^{\prime}$ are collinear. Show that they intersect in ten other points which lie on six lines which are the connectors of a tetrastigm.

Ex. 5. If $A, B, C, A^{\prime}, B^{\prime}, C^{\prime \prime}$ be any six points such that the lines. $A B^{\prime}, B C^{\prime}$, $C A^{\prime}$ are coneurrent, and also the lines $A C^{\prime}, B A A^{\prime}, C B^{\prime}$, show that the lines . $1 A^{\prime}$, $B B^{\prime}, C C^{\prime}$ are concurrent.

This theorem, which is contained in Ex. 1, aftords a proof of $\$ 135$, Ex. 3.
Ex. 6. A pair of opposite vertices of a tetrigram are given, and of the four remaining vertices, three lie on three given straight lines. Show that the sisth vertex lies on one or other of six straight lines.

CHAPTER VIII.

THE THEORY OF PERSPECTIVE.

Triangles in perspective.

160. Two triangles are said to be in perspective when the lines connecting the vertices of one triangle to the corresponding vertices of the other triangle are concurrent.

If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles in perspective, such that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ meet in the point O, the vertices A and A^{\prime} are called corresponding vertices, and the sides $B C, B^{\prime} C^{\prime}$ are called corresponding sides. The point O is called the centre of perspective of the two triangles.
161. When two triangles are in perspective, the corresponding sides intersect in three collinear points.

Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles in perspective, so that $A A^{\prime}$, $B B^{\prime}, C C^{\prime}$ intersect in the point 0 .

Let $B C$ and $B^{\prime} C^{\prime}$ intersect in $X ; C A, C^{\prime} A^{\prime}$ in Y; and $A B$, $A^{\prime} B^{\prime}$ in Z. Then X, Y, Z will be collinear.

Since $B^{\prime} C^{\prime} X$ is a transversal of the triangle $C B O$, we have by § 104,

$$
\overline{C X} \cdot \frac{C C^{\prime}}{\partial C^{\prime}} \cdot \frac{O B^{\prime}}{B B^{\prime}}=1 .
$$

Similarly, since $A^{\prime} C^{\prime} Y$ is a transversal of the triangle CAO,

$$
\frac{C Y}{A Y} \cdot \frac{A A^{\prime}}{O A^{\prime}} \cdot \frac{O C^{\prime}}{C C^{\prime}}=1 ;
$$

and since $A^{\prime} B^{\prime} Z$ is a transversal of the triangle $B A O$,

$$
\frac{A Z}{\bar{B} Z} \cdot \frac{B B^{\prime}}{O B^{\prime}} \cdot \frac{O A^{\prime}}{A A^{\prime}}=1 .
$$

Hence we have, $\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1$.
Therefore by $\S 105$, the points X, Y, Z are collinear.
162. The line $X Y Z$ which passes through the points of intersection of the corresponding sides of two triangles in perspective, is called the axis of perspective.

Triangles in perspective are sometimes called homologous triangles, the centre of perspective being called the centre of homology, and the axis of perspective the axis of homology.

Triangles in perspective are also said to be copolur, the centre of perspective being called the pole
163. If corresponding sides of two triangles intersect in collinear points, the triangles are in perspective.

Let $Y C C^{\prime}, Z B B^{\prime}$ be any two such triangles; and let $C C^{\prime}, Y^{\prime} C$, $Y C^{\prime}$ meet $B B^{\prime}, Z B, Z B^{\prime}$ in the points O, A, A^{\prime} respectively (see fig. § 161).

Then it may be proved, as in $\S 161$, that $B C, B^{\prime} C^{\prime}$ intersect $Y Z$ in the same point X.

Therefore the triangles $Y C C^{\prime}, Z B B^{\prime}$ are in perspective, the point. X being their centre of perspective.
164. The theorem in § 161 may also be proved as follows: Let $A B C$, $A^{\prime} B^{\prime} C^{\prime}$ be any two triangles in the same plane so situated that $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ meet in the point O. Let O^{\prime} be any point on the normal to the plane at O, and let the normals at $A^{\prime}, B^{\prime}, C^{\prime \prime}$ meet $O^{\prime} A, O^{\prime} D, O^{\prime} C$ in the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ respectively.

The two planes $A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ will intersect in a line (L say).
Also the lines $B C, B^{\prime \prime} C^{\prime \prime}$ being in the same plane $O^{\prime} B C$ will meet in a point, which being common to each of the planes $A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, must lie in the line of intersection of these planes; that is, $B C$ and $B^{\prime \prime} C^{\prime \prime}$ will intersect on the line L.

But $B^{\prime} C^{\prime}$ is evidently the orthogonal projection of $B^{\prime \prime} C^{\prime \prime}$, and therefore will intersect $B^{\prime \prime} C^{\prime \prime}$ in the point in which the latter cuts the plane $A B C$. Consequently $B^{\prime} C^{\prime}$ will intersect $B C$ in a point on the line L.

Similarly $C A, A B$ will intersect $C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively in points which lie on L.

Hence the corresponding sides of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ intersect in collinear points.
165. Ex. 1. If the symmedian lines $A K, B K, C K$ meet the circumeircle of the triangle $A B C$ in the points $A^{\prime}, B^{\prime}, C^{\prime}$, show that the tangents to the circle at $A^{\prime}, B^{\prime}, C^{\prime}$ will form a triangle in perspective with the triangle $A B C$.

Ex. 2. If the lines joining the vertices of two triangles, which have a common median point, be parallel, their axis of perspective passes through the median point.

Ex. 3. Show that if $A^{\prime} B^{\prime} C^{\prime}$ be the first Brocard triangle of the triangle $A B C$, then $A B C$ is in perspective with the triangles $A^{\prime} B^{\prime} C^{\prime}, B^{\prime} C^{\prime} A^{\prime}$ and $C^{\prime} A^{\prime} B^{\prime}$. See § 135, Ex. 3.

Ex. 4. Show that the triangle formed by the middle points of the sides of Brocard's first triangle is in perspective with the original triangle.

Ex. 5. If the triangle $A B C$ be in perspective with the triangle $B^{\prime} C^{\prime} A^{\prime}$, and also with the triangle $C^{\prime} A^{\prime} B^{\prime}$, show that it is in perspective with the triangle $A^{\prime} B^{\prime} C^{\prime}$. See § 159, Ex. 5.

Ex. 6. Two triangles having the same median point G, are in perspective. If the centre of perspective be on the line at infinity, the axis of perspective passes through G.

Ex. 7. Two sides of a triangle pass through fixed points, and the three vertices lie on three fixed straight lines, which are concurrent; show that the third side will always pass through a fixed point.

Ex. 8. Two vertices of a triangle move on fixed straight lines, and the three sides pass through three fixed points, which are collinear ; find the locus of the third vertex.

Ex. 9. Inscribe a triangle in a given triangle, so that its three sides may pass through three given points which are collinear.
166. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles in perspective, and if $B C^{\prime}, B^{\prime} C$ intersect in $A^{\prime \prime}$; $C A^{\prime}, C^{\prime} A$ in $B^{\prime \prime}$; and $A B^{\prime}, A^{\prime} B$ in $C^{\prime \prime \prime}$; the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ will be in perspective with each of the giren triangles, and the three triangles will have the same axis of perspective.

Let $X Y Z$ be the axis of perspective of the given triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$.

Since the given triangles are in perspective, $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent. Hence the triangles $A B^{\prime} C^{\prime}, A^{\prime} B C$ are in perspective; and therefore the lines $B^{\prime} C^{\prime}, C^{\prime \prime} A, A B^{\prime}$ will intersect $B C, C A^{\prime}, A^{\prime} B$ respectively in collinear points ($\$ 161$) ; that is, the points $\Lambda^{\prime}, B^{\prime \prime}$, $C^{\prime \prime}$ are collinear.

Thus $B^{\prime \prime} C^{\prime \prime}$ intersects $B C$ in the point X.
Similarly we may show that $C^{\prime \prime} A^{\prime \prime}$ intersects $C A$ in Y^{Y}, and that $A^{\prime \prime} B^{\prime \prime}$ intersects $A B$ in Z.

Therefore the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is in perspective with each of the given triangles, and the three triangles have a common axis of perspective.
167. If $a b c, a^{\prime} b^{\prime} c^{\prime}$ be any two triangles in perspective, the lines joining the points $b c^{\prime}, c a^{\prime}, a b^{\prime}$ to the points $b^{\prime} c, c^{\prime} a$, $a^{\prime} b$ respectively form a triangle which is in perspective with each of the given
triangles, and the three triangles have the same centre of perspective.

Let O be the centre of perspective of the given triangles, then the lines joining the points $b c, c a, a b$ to the points $b^{\prime} c^{\prime}, c^{\prime} a^{\prime}, a^{\prime} b^{\prime}$ intersect in 0 .

Let $a^{\prime \prime}$ denote the line joining the points $b c^{\prime}, b^{\prime} c ; b^{\prime \prime}$ the line joining the points $c a^{\prime}, c^{\prime} a$; and $c^{\prime \prime}$ the line joining the points $a b^{\prime}, a^{\prime} b$.

Since the triangles $a b c, a^{\prime} b^{\prime} c^{\prime}$ are in perspective, the points $a a^{\prime}$, $b b^{\prime}, c c^{\prime}$ are collinear. Hence by $\S 163$, the triangles $a b^{\prime} c^{\prime}, a^{\prime} b c$ are in perspective, and therefore the lines joining the points $b^{\prime} c^{\prime}, c^{\prime} a, a b^{\prime}$ to the points $b c, c a^{\prime}, a^{\prime} b$ are concurrent. That is, the lines $b^{\prime \prime}, c^{\prime \prime}$, and the line joining the points $b c, b^{\prime} c^{\prime}$, are concurrent.

Hence, the points $b c, b^{\prime} c^{\prime}, b^{\prime \prime} c^{\prime \prime}$ are collinear, and they lie on a line which passes through 0 .

Similarly, we may show that the points $c a, c^{\prime} a^{\prime}, c^{\prime \prime} a^{\prime \prime}$ are collinear, and that the points $a b, a^{\prime} b^{\prime}, a^{\prime \prime} b^{\prime \prime}$ are collinear.

Therefore, the triangle $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime}$ is in perspective with each of the triangles $a b c, a^{\prime} b^{\prime} c^{\prime}$; and the three triangles have a common centre of perspective.
168. When three triangles are in perspective two by two, and have the same axis of perspective, their three centres of perspective are collinear.

Let $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ be three triangles in perspective two and two, such that the sides $B_{1} C_{1}, B_{2} C_{2}, B_{3} C_{3}$ meet in the point X, the sides $C_{1} A_{1}, C_{2} A_{2}, C_{3} A_{3}$ in the point Y, and the sides $A_{1} B_{1}$, $A_{2} B_{2}, A_{3} B_{3}$ in the point $Z ; X, Y, Z$ being collinear points.

Then the triangles $B_{1} B_{2} B_{3}, C_{1} C_{2} C_{3}$ are in perspective, X being the centre of perspective. Therefore the lines $B_{2} B_{3}, B_{3} B_{1}, B_{1} B_{3}$

intersect the lines $C_{2} C_{3}, C_{3} C_{1}, C_{1} C_{2}$ respectively in three points L, M, N, which are collinear.

But these points are the centres of perspective of the given triangles taken two at a time. Hence, the centres of perspective of the three triangles are collinear.
169. It is evident that the triangles $A_{1} A_{2} A_{3}, B_{1} B_{2} B_{3}, C_{1} C_{2} C_{3}$ are in perspective two by two, and have the same axis of perspective, namely the line of collinearity of the centres of perspective of the triangles $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$.

Thus we have the theorem: When three triangles are in perspective two by two, and have the same axis of perspective, the triangles formed by the corresponding vertices of the triangles are also in perspective two by two and have the same axis of perspective; and the axis of perspective of either set of triangles pusses through the centres of perspective of the other set.
170. When three triangles are in perspective two by two, and have the same centre of perspective, their three axes of perspective are concurrent.

Let $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ be the three triangles having the common centre of perspective O. Let a_{1}, b_{1}, \ldots denote the sides of the triangles opposite to the vertices A_{1}, B_{1}, \ldots

Then it is evident that the triangles $b_{1} b_{2} b_{3}, c_{1} c_{2} c_{3}$ are in perspective, having the line $O A_{1} A_{2} A_{3}$ as their axis of perspective.

Therefore the lines joining their vertices are concurrent ; that is, the lines joining the points $b_{2} b_{3}, b_{3} b_{1}, b_{1} b_{2}$ respectively to the points $c_{2} c_{3}, c_{3} c_{1}, c_{1} c_{2}$ are concurrent.

But the line joining the point $b_{2} b_{3}$ to the point $c_{2} c_{3}$ is the axis of perspective of the triangles $A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$.

Hence, the axes of perspective of the three triangles $A_{1} B_{1} C_{1}$, $A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ are concurrent.
171. It follows from the above proof, that if the triangles $a_{1} b_{1} c_{1}, a_{2} b_{2} c_{2}, a_{3} b_{3} c_{3}$ are in perspective and have a common centre of perspective O, their three axes of perspective will intersect in a point O^{\prime}, which is the common centre of perspective of the triangles $a_{1} a_{2} a_{3}, b_{1} b_{2} b_{3}, c_{1} c_{2} c_{3}$ whose three axes of perspective meet in O.
172. These theorems may also be easily provel by the same method that was used in $\S 164$. Thus let $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ be any three coplanar triangles having a common centre of perspective O. Let O^{\prime} be any point in the normal to the plane at O, and let the normals to the plane at $A_{2}, B_{2}, C_{2}, A_{3}, B_{3}, C_{3}$ meet $O^{\prime} A_{2}, O^{\prime} B_{2}$, \&e. in the points $A_{2}^{\prime}, B_{2}^{\prime}$, \&e., respectively. Then the lines of intersection of the planes $A_{1} B_{1} C_{1}, A_{2}{ }^{\prime} B_{2}^{\prime} C_{2}^{\prime} C^{\prime}$, $A_{3}{ }^{\prime} B_{3}{ }^{\prime} C_{3}^{\prime}$ obviously meet in the point of intersection of the three planes. But the axes of perspective of the triangles $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, A_{3} B_{3} C_{3}$ are the orthogonal projections of the lines of intersection of the planes. Consequently, since they lie in the plane $A_{1} D_{1} C_{1}$, they must be concurrent.
173. Ex. 1. If $\left(A B C^{\prime}\right),\left(A^{\prime} B^{\prime} C^{\prime}\right)$ be two ranges on different straight lines, show that the triangle formed by the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ is in perspective with the triangle formed by the lines $B C^{\prime}, C A^{\prime}, A B^{\prime}$, and also with the triangle formed by the lines $C B^{\prime}, .1 C^{\prime}, B . \mathrm{I}^{\prime}$.

This theorem follows from is $157,158$.
Ex. 2. Show that the three triangles in the last theorem have a common centre of perspective.

This follows from $\$ 167$.
174. We are now in a position to complete the diseussion of the propertie, of the figure which was disenssed in $\$ 157$.

We will use the same notation as in that article, namely : let ($A B^{\prime}$) represent the line joining the points A and $B^{\prime} ;\binom{A B^{\prime}}{B C^{\prime}}$ the point of intersection of the lines $\left(A B^{\prime}\right),\left(B C^{\prime}\right)$.

In $\S 158$ we showed that the eighteen points $\binom{A B^{\prime}}{A^{\prime} B},\binom{A C^{\prime}}{A^{\prime} C}$, \&c. lie on six lines; that is to say, each of the following triads are collinear :

$$
\begin{array}{lll}
\binom{A B^{\prime}}{A^{\prime} B}, & \binom{B C^{\prime}}{B^{\prime} C}, & \binom{C A^{\prime}}{C^{\prime} A} \\
\binom{A C^{\prime}}{B^{\prime} B}, & \binom{B A^{\prime}}{C^{\prime} C}, & \binom{C B^{\prime}}{A^{\prime} A} \\
\binom{A A^{\prime}}{C^{\prime} B}, & \binom{B B^{\prime}}{A^{\prime} C}, & \binom{C C^{\prime}}{B^{\prime} A} \\
\binom{A C^{\prime}}{A^{\prime} B}, & \binom{B B^{\prime}}{C^{\prime} C}, & \binom{C A^{\prime}}{B^{\prime} A} \\
\binom{A A^{\prime}}{B^{\prime} B}, & \binom{D C^{\prime}}{A^{\prime} C}, & \binom{C B^{\prime}}{C^{\prime} A} \\
\binom{A B^{\prime}}{C^{\prime} B}, & \binom{B A^{\prime}}{B^{\prime} C}, & \binom{C C^{\prime}}{A^{\prime} A}
\end{array}
$$

Let us represent the line joining the points

$$
\binom{A B^{\prime}}{A^{\prime} B}, \quad\binom{B C^{\prime}}{B^{\prime} C}, \quad\binom{C . A^{\prime}}{C^{\prime} A}
$$

by the expression

$$
\binom{A B C}{A^{\prime} B^{\prime} C^{\prime}}
$$

Then the six lines will be represented by

$$
\begin{array}{lll}
\binom{A B C}{A^{\prime} B^{\prime} C^{\prime}}, & \binom{A B C}{B^{\prime} C^{\prime} A^{\prime}}, & \binom{A B C}{C^{\prime} A^{\prime} B^{\prime}} \\
\binom{A B C}{A^{\prime} C^{\prime} B^{\prime}}, & \binom{A D C}{B^{\prime} A^{\prime} C^{\prime}}, & \binom{A B C}{C^{\prime} B^{\prime} A^{\prime}}
\end{array}
$$

We shall show that the first three are conemrent, and likewise the second three.

The first three are the axes of perspective of the triangles ($A A^{\prime}, B B^{\prime}, C C^{\prime}$), ($\left.B C^{\prime}, C A^{\prime}, A B^{\prime}\right),\left(C D^{\prime}, A C^{\prime}, B A^{\prime}\right)$ which have a common centre of perspective (§ 173, Ex. 2).

Therefore by $\S 170$, these axes of perspective are concurrent. Let O be the centre of perspective, and O^{\prime} the point of concurrence of the axes of perspective.
$\mathrm{By} \S 171$, it follows that O^{\prime} will be the common centre of perspective of the triaugles ($\left.A A^{\prime}, B C^{\prime}, C B^{\prime}\right),\left(B D^{\prime}, C A^{\prime}, A C^{\prime}\right)$, and ($\left.C C^{\prime}, A B^{\prime}, B . A^{\prime}\right)$; and the axes of perspective of these triangles will meet in 0 .

That is, the three lines

$$
\binom{A B C}{A^{\prime} C^{\prime} B^{\prime}}, \quad\binom{A B C}{C^{\prime} B^{\prime} A^{\prime}}, \quad\binom{A B C}{B^{\prime} A^{\prime} C^{\prime}}
$$

are concurrent, their point of intersection being the point 0 .
Hence we have the theorem: The nine lines which connect two triads of collinear points intersect in eighteen points twich lie in threes on six lines, three of which pass through one point, and the remaining three through another point.

This theorem is a particular case of a more general theorem known as Pascal's theorem.
175. Ex. Show that the nine points in which any three concurrent lines intersect three other concurrent lines may be connected by eighteen lines which pass three by three through six points, which lie three by three on two other straight lines.

This theorem is a particular case of a more general theorem known as Brianchon's theorem. It may be proved in a similar way to the theorem in $\S 1 / 4$.

Relations between two triangles in perspective.

176. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles in perspective, and if

$B^{\prime} C^{\prime}$ cuts $A C, A B$ in the points $X^{\prime}, X^{\prime \prime}$ respectively; if $C^{\prime} A^{\prime}$ cuts $B A$, $B C$ in the points $Y^{\prime}, Y^{\prime \prime}$ respectively; and if $A^{\prime} B^{\prime}$ cuts. $C B$, CA in the points $Z^{\prime}, Z^{\prime \prime}$ respectively; then

$$
\begin{aligned}
& A X^{\prime} B Y^{\prime} C Z^{\prime} \\
& \overline{C X^{\prime}} \cdot \frac{A X^{\prime \prime}}{A Y^{\prime}} \cdot \frac{B Y^{\prime \prime}}{B Z^{\prime \prime}}=\frac{C Z^{\prime \prime}}{B Y^{\prime \prime}} \cdot \frac{Z^{\prime \prime}}{A Z^{\prime \prime}}
\end{aligned}
$$

Let the axis of perspective of the two triangles cut $B C, C A, A B$ in the points X, Y, Z, respectively.

Then because $X X^{\prime} X^{\prime \prime}$ is a transversal of the triangle $A B C$ (§ 104),

$$
\frac{A X^{\prime \prime}}{B X^{\prime \prime}} \cdot \frac{B X}{C X} \cdot \frac{C X^{\prime}}{A X^{\prime}}=1
$$

And since $Y Y^{\prime} Y^{\prime \prime}, Z Z^{\prime} Z^{\prime \prime}$ are also transversals of the triangle $A B C$,

$$
\begin{aligned}
& \frac{A Y^{\prime}}{B Y^{\prime}} \cdot \frac{B Y^{\prime \prime}}{C Y^{\prime \prime \prime}} \cdot \frac{C Y^{\prime}}{A Y}=1 \\
& B Z^{\prime} \\
& C Z^{\prime} \cdot \frac{C Z^{\prime \prime}}{A Z^{\prime \prime}} \cdot \frac{A Z}{B Z}=1
\end{aligned}
$$

But $X Y Z$ is also a transversal of the triangle $A B C$ therefore

$$
\frac{B X}{\overline{C X}} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1 .
$$

Hence $\quad \frac{A Y^{\prime} \cdot A X^{\prime \prime}}{\bar{B} Y^{\prime} \cdot B X^{\prime \prime}} \cdot \frac{B Y^{\prime \prime} \cdot B Z^{\prime}}{C Y^{\prime \prime} \cdot C Z^{\prime}} \cdot C X^{\prime} \cdot C Z^{\prime \prime} \cdot A X^{\prime \prime} \cdot A Z^{\prime \prime}=1$
In a similar manner by considering the lines $B C X, C A Y^{\gamma}, A B Z$, and $X Y Z$, as transversals of the triangle $A^{\prime} B^{\prime} C^{\prime}$, we may deduce the relation,

$$
\begin{equation*}
\frac{B^{\prime} X^{\prime} \cdot B^{\prime} X^{\prime \prime}}{C^{\prime} X^{\prime} \cdot C^{\prime} X^{\prime \prime}} \cdot \frac{C^{\prime} Y^{\prime} \cdot C^{\prime} Y^{\prime \prime}}{A^{\prime} Y^{\prime} \cdot A^{\prime} Y^{\prime \prime}} \cdot \frac{A^{\prime} Z^{\prime} \cdot A^{\prime} Z^{\prime \prime}}{B^{\prime} Z^{\prime} \cdot B^{\prime} Z^{\prime \prime}}=1 . \tag{ii}
\end{equation*}
$$

177. Conversely, if either of the relations (i), (ii) hold, it may be shown that the triangles are in perspective.

Let the sides $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ intersect the sides $B C, C A, A B$ in the points X, Y, Z; and let us assume that relation (i) holds.

Then since $X X^{\prime} X^{\prime \prime}, Y^{\prime \prime} Y Y^{\prime}$, and $Z^{\prime} Z^{\prime \prime} Z$ are transversals of the triangle $A B C$, we have

$$
\begin{aligned}
& B X \quad C X^{\prime} \cdot \frac{A X^{\prime \prime}}{C X^{\prime}} A{I^{\prime}}_{B}^{B} X^{\prime \prime}=1, \\
& B Y^{\prime \prime \prime} C Y^{\prime} A Y^{\prime} \\
& \bar{C} Y^{\prime \prime \prime} \cdot A Y^{\prime} \cdot \frac{B Y^{\prime}}{}=1,
\end{aligned}
$$

$$
\frac{B Z^{\prime}}{C Z^{\prime}} \cdot \frac{C Z^{\prime \prime}}{A Z^{\prime \prime}} \cdot \frac{A Z}{B Z}=1 .
$$

But

$$
\frac{A Y^{\prime} \cdot A X^{\prime \prime}}{A X^{\prime} \cdot A Z^{\prime \prime}} \cdot \frac{B Y^{\prime \prime} \cdot B Z^{\prime}}{B Y^{\prime} \cdot B X^{\prime \prime \prime}} \cdot \frac{C X^{\prime} \cdot C Z^{\prime \prime}}{C Z^{\prime} \cdot C Y^{\prime \prime \prime}}=1 .
$$

Therefore

$$
\frac{B X}{C X} \cdot \frac{C Y}{A} \cdot \frac{A Z}{B Z}=1 .
$$

Therefore X, Y, Z are collinear.
Hence by $\S 163$, the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective.
178. Two similar relations may be proved by using the theorem of $\S 98$.

Since $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are any points in the plane of the triangle $A B C$, we have

$$
\begin{aligned}
& \sin B A A^{\prime} \cdot \sin C B A^{\prime} \\
& \sin A^{\prime} A C^{\prime} \cdot \sin A^{\prime} B A \cdot \frac{\sin A C A^{\prime}}{\sin A^{\prime} C B}=1, \\
& \frac{\sin B A B^{\prime}}{\sin B^{\prime} A C} \cdot \frac{\sin C B B^{\prime}}{\sin B^{\prime} B A} \cdot \frac{\sin A C B^{\prime}}{\sin B^{\prime} C B}=1, \\
& \frac{\sin B A C^{\prime}}{\sin C^{\prime} A C^{\prime}} \cdot \frac{\sin C B C^{\prime}}{\sin C^{\prime} B A} \cdot \frac{\sin A C C^{\prime}}{\sin C^{\prime} C B}=1 .
\end{aligned}
$$

But since the triangles are in perspective, $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, therefore by $\$ 98$,

$$
\frac{\sin B A A^{\prime}}{\sin A^{\prime} A C} \cdot \frac{\sin C B B^{\prime}}{\sin B^{\prime} \overline{B A}} \cdot \frac{\sin A C C^{\prime}}{\sin \overline{C^{\prime} C B}}=1 .
$$

Hence, we have,

Similarly, we may prove the relation, $\sin B^{\prime} A^{\prime} C^{\prime} \cdot \sin B^{\prime} A^{\prime} B \sin C^{\prime} B^{\prime} A \cdot \sin C^{\prime} B^{\prime} C$
$\sin C^{\prime} A^{\prime} C^{\prime} \cdot \sin C^{\prime} A^{\prime} B \cdot \frac{\sin A^{\prime} C^{\prime} B \cdot \sin A^{\prime} C^{\prime} A}{\sin A^{\prime} B^{\prime} A \cdot \sin A^{\prime} B^{\prime} C^{\prime}} \cdot \frac{\sin B^{\prime} C^{\prime} B \cdot \sin B^{\prime} C^{\prime} A}{\sin }=1$.

Conversely, if either of these relations hold it may be proved that the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent; that is, the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective.
179. When two triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective, the product of the ratios

$$
\left(A b^{\prime}: A c^{\prime}\right),\left(B c^{\prime}: B a^{\prime}\right),\left(C a^{\prime}: C b^{\prime}\right)
$$

is equal to unity, where $a^{\prime}, b^{\prime}, c^{\prime}$ denote the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$, and $A b^{\prime}$ represents the perpendicular from A on b^{\prime}.

Let $X Y Z$ be the axis of perspective of the two triangles. Then we have

$$
\begin{aligned}
& B a^{\prime}: C a^{\prime}=B X: C X, \\
& C b^{\prime}: A b^{\prime}=C Y: A Y, \\
& A c^{\prime}: B c^{\prime}=A Z: B Z .
\end{aligned}
$$

But since X, Y, Z are collinear,

$$
\frac{B X}{C X} \cdot \frac{C Y}{A} \cdot \frac{A Z}{B Z}=1 .
$$

Hence,

$$
\frac{B a^{\prime}}{C a^{\prime}} \cdot \frac{C b^{\prime}}{A b^{\prime}} \cdot \frac{A c^{\prime}}{B c^{\prime}}=1 ;
$$

that is,

$$
\frac{A b^{\prime}}{A c^{\prime}} \cdot \frac{B c^{\prime}}{B a^{\prime}} \cdot \frac{C a^{\prime}}{C b^{\prime}}=1 .
$$

Conversely, when this relation holds, it follows that X, Y, Z are collinear, and therefore that the triangles are in perspective.
180. Ex. l. If any cirele be drawn cutting the sides of a triangle $A B C$ in the points $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$, respectively, slow that the triangle formed by the lines $Y^{\prime} Z^{\prime}, Z X^{\prime}, X Y^{\prime}$ is in perspective with the triangle $.1 B C^{\prime}$.

This follows at once from $\S 17 \overline{ }$.
Ex. 2. If a circle eut the sides of the triangle $1 B C$ in the peints. $\mathrm{A}^{\prime}, \mathrm{I}^{\prime \prime}$: $Y, Y^{\prime} ; Z, Z^{\prime}$; show that the triangles formed by the lines $Y^{\prime \prime} \%, Z^{\prime} I^{\prime}, N^{\prime} I^{\prime}$, and the triangle formed by the lines $I^{\prime \prime}, Z I^{\prime}, ~ I Y^{\prime \prime}$, are in perspective with the triangle $A B C$; and that the three triangles have a common centre of perspective.

Ex. 3. If from the vertices of the triangle clbe, tangents $. x, x^{\prime} ; y, y^{\prime} ; z, \varepsilon^{\prime} ;$ be drawn to a circle, show that the triangles formed by the points $y z^{\prime}, \ldots x^{\prime}, x y^{\prime}$, and the triangle formed by the points $y^{\prime} z, z^{\prime} x, x^{\prime} y$, are in perspective with the triangle $a b c$; and that the three triangles have a common axis of perspective.

If $A B C$ be the given triangle, $A^{\prime} B^{\prime} C^{\prime}$ the triangle formed by the points $y z^{\prime}$, $z x^{\prime}, x y^{\prime}$; it is easy to prove that

$$
\frac{\sin B A B^{\prime} \cdot \sin B A C^{\prime}}{\sin C A B^{\prime} \cdot \sin C A C^{\prime}}=\frac{O c^{2}-R^{2}}{O b^{2}-R^{2}}
$$

where O is the centre of the circle, and R its radius.
The second part of the theorem follows from § 166.
Ex. 4. If D, E, F be the middle points of the sides of the triangle $A B C$, and P, Q, R the feet of the perpendiculars from the vertices on the opposite sides, show that $Q R, R P$, and $P Q$ will intersect $E F, F D, D F$ in the points I, I, Z, such that the triangle $X Y Z$ is in perspective with each of the triangles $A B C, P Q R, D E F$.

Ex. 5. Through the rertices of the triangle $A B C$, parallels are drawn to the opposite sides to meet the circumcircle in the points $A^{\prime}, B^{\prime}, C^{\prime}$. If $B^{\prime} C^{\prime}$, $C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ meet $B C, C A, A B$ in P, Q, R respectively, show that $A P, B Q, C R$ are concmrent.
[St John's Coll. 1890.]
Ex. 6. In the last case, show that $A^{\prime} P, B^{\prime} Q, C^{\prime} R$ are also concurrent.
Ex. 7. Throngh K the symmedian point of the triangle $A B C$, are drawn the lines $Y K Z^{\prime}, Z K I^{\prime \prime}, X K Y^{\prime}$, parallel respectively to the sides $B C, C A, A B$, and cutting the other sides in the points $I, Z^{\prime}, Z, X^{\prime}, X, Y^{\prime}$. Show that the lines $I^{\prime} Z, Z^{\prime} X, I^{\prime} Y^{\prime}$ will form a triangle in perspective with the triangle $A B C$, and having K for centre of perspective.

See the figure of $\S 131$.
Ex. 8. In the same figure, show that the triangle formed by the lines $I^{\prime} Z$, $Z^{\prime} \mathrm{I}^{\prime}, I^{\prime}$ and the triangle formed by the lines $I^{\prime} Z^{\prime}, Z X, X^{\prime} Y^{\prime}$, will be in perspective with the triangle $A B C$; and have a common centre of perspective.

Ex. 9. If $X Y Z$ be any transversal of the triangle $A B C$, and if $X Y^{\prime} Z^{\prime \prime}$, $I^{\prime \prime} I^{\prime} Y^{\prime \prime}, X^{\prime} Y^{\prime \prime} Z$ be three other transversals passing through the point O; show that the triangles formed by the lines $I^{\prime \prime \prime} Z^{\prime}, Z^{\prime \prime} I^{\prime \prime}, X^{\prime \prime \prime} Y^{\prime \prime}$ will form a triangle in perspective with the triangle $A B C$, and having the point O for centre of perspective.

Ex. 10. Two triangles $A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are inscribed in the triangle $A B C$, so that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, and likewise $A A^{\prime \prime}, B B^{\prime \prime}, C C^{\prime \prime}$. If $B^{\prime} C^{\prime}$, $B^{\prime \prime} C^{\prime \prime}$ intersect in $I^{\prime} ; C^{\prime} A^{\prime}, C^{\prime \prime} A^{\prime \prime}$ in Γ; and $A^{\prime} B^{\prime}, A^{\prime \prime} B^{\prime \prime}$ in Z; show that the triangle $X^{\prime} Z$ will be in perspective with each of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$, $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Ex. 11. If the points of intersection of corresponding sides of two given triangles form a triangle in perspective with each of them, show that the lines joining the corresponding vertices of the given triangles will form a triangle which is in perspective with each of the given triangles, and also with the triangle formed by the points of intersection of their corresponding sides.

Ex. 12. On the sides $B C, C A, A B$ of a triangle are taken the points X, Y, Z; and the circumcircle of the triangle $X Y Z$ is drawn cutting the sides
of the triangle $A B C$ in $X^{\prime}, Y^{\prime}, Z^{\prime}$. The lines $Y^{\prime} Z^{\prime}, Z X^{\prime}, X Y^{\prime \prime}$ form a triangle $A^{\prime} B^{\prime} C^{\prime}$, and the lines $Y^{\prime} Z, Z^{\prime} X^{\prime}, X^{\prime} Y^{\prime}$ form a triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime \prime}$. Show that the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are copolar, and that when the triangle $I^{\prime} Y \%$ is of constant shape the common pole of these triangles is a fixed $p^{\text {mint. }}$
[H. M. Taylor, L.M.S.S. Iroc. Vol. xv.]

Pascal's theorem.

181. To illustrate the use of the preceding theorems relating to triangles in perspective, we propose to discuss briefly the chiof properties of a hexastigm inscribed in a circle. The simplest property is due to Pascal, and is called Pascal's theorem. It is usually quoted in the form: The opposite sides of any hexayon inscribed in a circle intersect in three collinear points. The more precise statement of the theorem would be: The three pairs of opposite connectors in every complete set of comectors of a hexastigm inscribed in a circle intersect in three collinear points; which is equivalent to the following: The fifteen connectors of a hexastigm inscribed in a circle intersect in forty-five points which lie three by three on sixty lines.

A hexastigm evidently has fifteen connectors. To find the number of points in which these intersect, apart from the vertices of the hexastigm, let us group the vertices in sets of four. This may be done in $6.5 .4 .3,24$, i.e. 15 ways. Now each group of four points forms a tetrastigm, which has three centres. Hence, the connectors of a hexastigm will intersect in 3.15 , i.e. 45 points or centres.
182. Let A, B, C, D, E, F be any six points on a circle. Let $A D, B E, C F$ form the triangle $X Y Z ; B F, C D, A E$ the triangle $X^{\prime} Y^{\prime} Z^{\prime}$; and $C E, A F, B D$ the triangle $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$. We shall prove

that the triangles $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}, X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ are copolar, that is, are in perspective two and two, and have the same centre of perspective.

Since the points A, B, C, D, E, F are concyclic, we have by Euclid, Bk. 1II., Prop. 35,

$$
\begin{aligned}
X E \cdot X B & =X C \cdot X F, \\
Y C \cdot Y F & =Y A \cdot Y D, \\
Z A \cdot Z D & =Z B \cdot Z E .
\end{aligned}
$$

Therefore by § 177, the triangle $X Y Z$ is in perspective with each of the triangles $X^{\prime} Y^{\prime} Z^{\prime}$ and $X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$.

By § 167, we infer that these three triangles have the same centre of perspective.

Hence, by $\S 170$, the axes of perspective of the three triangles are concurrent.

Let O be the common centre of perspective of the triangles, and 0^{\prime} the point of intersection of their axes of perspective. Then by $\S 171$, we see that the triangles formed by the lines $A D, B F$, $C E ; B E, D C, A F ; C F, A E, B D$ are also copolar, having O^{\prime} for their common centre of perspective, and O for the point of concurrence of their axes of perspective.
183. Let us use the notation $\binom{A D}{B F}$ to represent the point of intersection of the lines $A D$ and $B F$. Then, since the triangles $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}$ are in perspective, the points

$$
\binom{A D}{B F},\binom{B E}{C D},\binom{C F}{A E}
$$

are collinear.
In the same way we conld show that the pairs of opposite connectors in any other complete set of connectors of the hexastigm intersect in three collinear points.

The line of collinearity of three such points is called a Pascal line.

Since there are sixty complete sets of comectors (§ 137, Ex. 2), it follows that there are sixty Pascal lines.

Again, since the triangles $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}, X^{\prime \prime} Y^{\prime \prime} Z^{\prime \prime}$ are copolar, it follows that the Pascal lines

$$
\binom{A D}{B F},\binom{B E}{C D},\binom{C F}{A E} ;
$$

$$
\begin{aligned}
& \binom{A D}{C E},\binom{B E}{A F},\binom{C F}{B D} ; \\
& \binom{B F}{C E},\binom{C D}{A F},\binom{A E}{B D}
\end{aligned}
$$

are concurrent.
The point of concurrence of three such Pascal lines is called a Steiner point; it may conveniently be represented by the notation

$$
\binom{A B C}{D E F} \text { or }\left(\begin{array}{ccc}
A D, & B E, & C F \\
B F, & C D, & A E \\
C E, & A F, & B D
\end{array}\right)
$$

There is evidently one Steiner point on each Pascal line.
Again, from $\S 182$, we see that the common pole of the three triangles corresponding to this Steiner point, is the Steiner point

$$
\binom{A B C}{D F E} .
$$

Now from six points A, B, C, D, E, F, we can select three such as A, B, C, in twenty ways, and when we combine this group with the complementary triad D, E, F, we have only ten different arrangements; but we see above that we can take one group such as ($D E F$) in either of two cyelic orders. Hence we infer that there are in all twenty Steiner points belonging to the figure. And since there are three Pascal lines passing through every Steiner point, we infer that there are sixty Pascal lines.

It is easy to see that a point such as $\binom{A D}{B F}$ will occur on four different Pascal lines, namely the lines

$$
\begin{aligned}
& \binom{A D}{B F},\binom{B E}{C D},\binom{C F}{A E} ; \\
& \binom{A D}{B F},\binom{B C}{E D},\binom{E F}{A C} ; \\
& \binom{A D}{B F},\binom{F E}{C D},\binom{C B}{A E} ; \\
& \binom{A D}{B F},\binom{B E}{A C},\binom{C F}{E D},
\end{aligned}
$$

Hence, since three of the forty-five points of intersection of the connectors of the hexastigm lie on each Pascal line, we infer that there are $4 \times 45 / 3$ Pascal lines; that is sixty Pascal lines.

The sixty Pascal lines pass three by three through each Steiner point, and four by four through the forty-five points of intersection of the connectors of the hexastigm. It follows that the Pascal lines will intersect one another in points other than these. For further information on this subject, the reader is referred to a Note at the end of Salmon's Conics, where there is a complete discussion of the question.

Steiner was the first (Gergome Annales de Mathém., Vol. xvin.) to draw attention to the properties of the complete figure. And the subject has been fully worked out by Kirkman and Cayley.
184. Ex. 1. Show that the sixty Pascal lines pass three by three through sixty points besides the twenty Steiner points.
[Kirkman.]
Let us consider the triangle formed by the lines $A B, C D, E F$ and the triangle formed by the three Pascal lines

$$
\begin{aligned}
& \binom{A B}{D E}, \quad\binom{C E}{B F}, \quad\binom{D F}{A C} ; \\
& \binom{C D}{A F}, \quad\binom{D F}{C E}, \quad\binom{A E}{B D} \text {; } \\
& \binom{E F}{B C}, \quad\binom{B D}{A E},\binom{A C}{D F} .
\end{aligned}
$$

These triangles are in perspective, for their corresponding sides intersect. on the Pascal line

$$
\binom{A B}{D E},\binom{C D}{A F},\binom{E F}{B C}
$$

Therefore the lines which join their corresponding vertices are concurrent. But these are the three Pascal lines

$$
\begin{aligned}
& \binom{A B}{C D},\binom{C E}{B F},\binom{D F}{A E} ; \\
& \binom{C D}{E F}, \quad\binom{B F}{A C}, \quad\binom{A E}{B D} \text {; } \\
& \binom{E F}{A B}, \quad\binom{A C}{D F}, \quad\binom{D D}{C E} .
\end{aligned}
$$

The point of concurrence of these lines is called a Kirkman point.
It is easy to prove that there are three Kirkman points on each Pascal line ; and that there are in all sixty Kirkman points.

Ex. 2. Show that the twenty Steiner points lie four by four on fifteen lines, and that the sisty Kirkman points lie three by three on twenty lines other than the Pascal lines.

Ex. 3. If a hexagram be circumseribed to a circle, show that its vertices may he comrected by forty-five lines (or diagonals) which pass three by three through sixty points.

This theorem is known as Brianchon's theorem. It is realily deduced from § 180, Ex. 3.

Ex. 4. Show that the sixty points mentioned in the last example lie three by three on twenty lines, which pass four by four through fiftecu prints.

Ex. 5. Show that the sinty points mentioned in Ex. 3 also lie three by three on sixty lines, which pass three by three through twenty other print.4.
185. The properties which exist for a hexastigm inseribed in a circle are also true of any hexastigm formed by the points of intersection of non-corresponding sides of two triangles which are in perspective. Such a hexastigm is called a Puscul hexustigm.

Let $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}$ be any two triangles in perspective, and let A, B, C, D, E, F be the points of intersection of non-corresponding sides of these triangles.

By $\S 176$, we have

$$
\frac{X E \cdot X B}{X C \cdot X F} \cdot Y C \cdot Y F \cdot Z A \cdot Z D=1
$$

Hence by $\S 177$, the triangle formed by the lines $C E, A F, B D$ will also be in perspective with the triangles $X^{\prime} Z, X^{\prime} Y^{\prime \prime} Z^{\prime}$. Also from $\S 167$, it follows that these three triangles are copolar.

Again by § 177 , it follows that the triangle $X Y Z$ is copolar with the triangles formed by the lines

$$
\begin{aligned}
& B F, C A, D E \\
& C E, D F, B A
\end{aligned}
$$

Also, for the same reason, the triangle $X Y Z$ will be copolar with the triangles formed by the lines

$$
\begin{aligned}
& E F, C D, A B \\
& C B, A F, E D
\end{aligned}
$$

and with the triangles formed by the lines

$$
\begin{aligned}
& B C, F D, A E \\
& F E, A C, B D
\end{aligned}
$$

In the same way we can find three pairs of triangles copolar with the triangles $X^{\prime} Y^{\prime} Z^{\prime}$, and the triangle formed by the lines $C E, A F, B D$.
We shall thus obtain ten different triads of triangles-each triad having a common centre of perspective.

Now let us consider any one of these triads of triangles, say the triangles $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}$, and the triangle formed by the lines $C E$, $A F, B D$, that is the triangles whose sides are

$$
\begin{aligned}
& A D, B E, C F \\
& B F, C D, A E \\
& C E, A F, B D
\end{aligned}
$$

The axes of perspective of these triangles will be concurrent (§ $\mathbf{1 7 0}$) ; the point of concurrence being the Steiner point $\binom{A B C}{D E F}$. We have evidently obtained the same arrangement by this method as we obtained in $§ 183$, when the six points were points on a circle. Hence we may infer that if we make a list of the ten triads of triangles, as indicated above, each triangle will occur in four different triads; so that the list would be complete.

By proceeding as in § 182, we shall find by means of $\S 171$, ten other triads of triangles, each triad producing three Pascal lines, which co-intersect in a Steiner point.

Hence we have the theorem: If the three pairs of opposite connectors in any complete set of connectors of a hexastigm intersect in three collinear points, the three pairs of opposite connectors in every complete set will also intersect in three collinear points.

Ex. 1. Show that any two triads of collinear points on different straight lines determine a Pascal hexastigm.

Ex. 2. Any transversal cuts the sides of the triangle $A B C$ in the points X, Y, Z; and O is any fixed point. Show that the lines $O X, O Y, O Z$ will cut the sides of the triangle $A B C$ in six points which determine a Pascal hesastigm.
186. The lines which join non-corresponding vertices of two triangles in perspective form a hexagram which is called a Brianchon hexagram.

Ex. 1. Show that every triad of opposite vertices of a Brianchon hesagram lie on three concurrent lines.

Ex. 2. Any point O is joined to the vertices of a triangle $A B C$, and the lines $O A, O B, O C$ cut a given straight line in the points $.1,5, \%$. Show that the lines $X B, I C, I C, Y A, Z A, Z D$ determine a Brianchon hexagram.

Ex. 3. Show that if $A B C D E F$ be any Pascal hexastigm, the lines $A B, B C$, $C A, D E, E F, F D$ will determine a Brianchon hexagram.

It is easy to see that a triad of diagonals of this hexagram are the lines

$$
\binom{A B}{D E}, \quad\binom{B C}{F D} ; \quad\binom{B C}{E F}, \quad\binom{C A}{D E} ; \quad\binom{C .1}{F D},\binom{A B}{E F} .
$$

But these lines are three Pascal lines of the hexastigm, which meet in a Kirkman point. (§ 184, Ex. l.)

Hence, by applying Brianchon's theorem to this hexagram, we have at once a proof of the theorem that the sixty Kirkman points of a Pascal hexastigm lie three by three on twenty lines. (§ 184, Ex. 2.)

Ex. 4. Show that if $A B C D E F$ be any Pascal hexastigm, the lines joining the points A, D to the points $\binom{B C}{D F},\binom{A C}{E F}$ respectively, intersect on the Pascal line

$$
\begin{equation*}
\binom{A B}{D E}, \quad\binom{C D}{A F}, \quad\binom{E F}{B C} . \tag{Salmon.}
\end{equation*}
$$

Ex. 5. The opposite vertices of a tetragram are $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; and points $X, X^{\prime} ; I, Y^{\prime} ; Z, Z^{\prime}$ are taken on the diagonals $A . I^{\prime}, B B^{\prime}, C C^{\prime}$, , that the ranges $\left\{A A^{\prime}, X X^{\prime \prime},\left\{B B^{\prime}, I Y^{\prime \prime}\right\},\left\{C C^{\prime}, Z Z^{\prime}\right\}\right.$ are harmonic. Show that $X, X^{\prime}, I, Y^{\prime}, Z, Z^{\prime}$ are the vertices of a Pascal hexastigm.

Er. 6. If through each centre of a tetrastigm, a pair of lines le taken, harmonically conjugate with the connectors of the tetrastigm which intersect in that centre, show that these six lines will form a Brianchon hexagram.

General theory.

187. Suppose we have any figure F consisting of any number of points $A, B, C, \ldots \ldots$, not necessarily in one plane; let these points be joined to any point O. Let any plane be drawn cutting the lines $O A, O B, O C, \ldots$ in the points $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$ foyming the figure F^{\prime}. The figure F^{\prime} is said to be the projection of the given figure F; the point O is called the vertex of projection; and the plane of F^{\prime} is called the plane of projection.
188. Let us consider more particularly the case when the figure F is a plane figure.
i. It is evident that to any point A of F corresponds one print and only one point A^{\prime} of F^{\prime}, and vice versa.
ii. If any three points A, B, C of F are collinear, the corresponding points $A^{\prime}, B^{\prime}, C^{\prime}$ of F^{\prime} will be collinear. For since A, B, C are collinear, $O A, O B, O C$ must lie in one plane, which can only cut the plane of projection in a straight line; that is $A^{\prime}, B^{\prime}, C^{\prime}$ must be collinear. Hence, to every straight line of F corresponds one and only one straight line of $F^{\prime \prime}$.
iii. If two straight lines of the figure F intersect in the point A, it is evident that the corresponding lines of F^{\prime} will intersect in the corresponding point A^{\prime}. Hence it follows that if any system of lines of F are concurrent, the corresponding lines of F^{\prime} will be concurrent.
iv. If $\{A B, C D\}$ be any harmonic range in the figure F, then since $O\{A B, C D\}$ is a harmonic pencil, it follows that the corresponding points of F^{\prime} will form a harmonic range; that is to say, $\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ will be harmonic.
189. Ex. 1. Show that if $P\{A B, C D\}$ be a harmonic pencil in the figure $F, P^{\prime}\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ will be a harmonic pencil in the projected figure F^{\prime}.

Ex. 2. Show that any range in iuvolution will project into a range in involution.
190. Let A and B be any two points in a plane figure F, and let A^{\prime}, B^{\prime} be the corresponding points in F^{\prime} the projection of F on any plane, the vertex of projection being any point 0 . Let the planes of F and F^{\prime} be denoted by α and α^{\prime}. Then since $A B, A^{\prime} B^{\prime}$ are two straight lines in the same plane $O A B$, they must intersect. But $A B$ lies in the plane α, and $A^{\prime} B^{\prime}$ in the plane α^{\prime}; hence the point of intersection of $A B$ and $A^{\prime} B^{\prime}$ must be a point in the line of intersection of the two planes α and α^{\prime}. Similarly any straight line x of F will intersect the corresponding line x^{\prime} of F^{\prime} in a point lying on the line of intersection of the planes α, α^{\prime}. The line of intersection of the two planes α, α^{\prime} is called the self-projected line. It is evident that every point on it considered as belonging to the figure F, coincides with the corresponding point of F^{\prime}.
191. Now suppose we have a plane figure F, and its projection F^{\prime} on some plane, O being the vertex of projection. Let us take any other point P not lying on either of the planes containing F and F^{\prime}; and with P as vertex let us project the whole figure on any plane, for simplicity the plane of F.

Let A, B, C, \ldots be any points of $F ; A^{\prime}, B^{\prime}, C^{\prime \prime}, \ldots$ the corresponding points of F^{\prime}. Let $P A^{\prime}, P B^{\prime}, P C^{\prime}, \ldots$ cut the plane of F^{\prime} in the points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \ldots$. These points will form a figure $F^{\prime \prime}$ in the same plane as F, and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, \ldots$ may be called the points of $F^{\prime \prime}$ which correspond to A, B, C, \ldots of F. Let $P O$ cut the plane of F in O^{\prime}.

It is evident that the following relations will exist between the figures F and $F^{\prime \prime}$:-
i. The line joining any point of F to the corresponding point of $F^{\prime \prime}$ passes through a fixed point.

For O, A, A^{\prime} are collinear, therefore $P O, P A, P A^{\prime}$ lie in the same plane, and therefore $O^{\prime}, A, A^{\prime \prime}$ are collinear.
ii. To any straight line of F corresponds a straight line of $F^{\prime \prime}$.

For let A, B, C^{\prime} be three collinear points of F, then $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are collinear points of $F^{\prime \prime}$, and therefore by $\S 188, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are collinear points of $F^{\prime \prime}$.
iii. If any system of lines of F are concurrent the corresponding lines of $F^{\prime \prime}$ are also concurrent.

For by $\S 188$, the corresponding lines of F^{\prime} are concurrent, and therefore the corresponding lines of $F^{\prime \prime}$ are concurrent.
iv. If any points of F form a harmonic range the corresponding points of $F^{\prime \prime}$ will form a harmonic range.

For by § 188, the corresponding points of F^{\prime} form a harmonic range, therefore also do the corresponding points of $F^{\prime \prime}$.
v. Every straight line of F intersects the corresponding straight line of $F^{\prime \prime}$ in a point lying on a fixed straight line.

This follows at once from $\S 190$, the straight line in which corresponding lines intersect being the line of intersection of the planes of F and F^{\prime}, since the plane of $F^{\prime \prime}$ is the same as that of F.
192. Any plane figure F being given, any other figure $F^{\prime \prime}$ obtained in the manner explained in the last article (viz.: by first projecting F on a plane and then with a different vertex projecting the new figure on the plane of F), is said to be in perspective with F. The fixed point through which pass all liness connecting corresponding points ($\$ 191, \mathrm{i}$.) is called the centre of
perspective; and the fixed line which is the locus of the points of intersection of corresponding lines ($\S 191, \mathrm{r}$.$) is called the axis of$ perspective.
193. It is however unnecessary to go through the process of projection in order to construct a figure which shall be in perspective with a given figure. It is clear that if we were proceeding as in § 191, we might select the centre of perspective, and the axis of perspective. Then again, since we might have taken the plane of F^{\prime} passing through the axis of perspective, and any assumed point, we may select any point A^{\prime} as the point corresponding to a given point A. Hence to obtain the figure in perspective with a given figure F, let O be the centre of perspective, x the axis of perspective,

and let A^{\prime} be the point corresponding to the point A. Let B be any other point of F, B^{\prime} the corresponding point of F^{\prime}. Then since $A B, A^{\prime} B^{\prime}$ are corresponding lines, they must intersect on the axis x. Let $A B$ cut the axis x in the point X. Then $A^{\prime} X$ will intersect $O B$ in required point B^{\prime}. In the same way the point corresponding to any other point may be constructed.

If F and F^{\prime} be two figures in perspective; any point P may be considered as belonging to either figure. Considered as belonging to F, let P^{\prime} be the corresponding point of F^{\prime}; and considered as belonging to F^{\prime}, let Q be the corresponding point of F. Then it must be noticed that Q and P^{\prime} will not coincide, unless P be a point on the axis of perspective ; in which case Q and P^{\prime} coincide with P.

The axis of perspective of the two figures may thus be regarded as the locus of points (other than the centre of perspective), which coincide with their corresponding points.

Likewise the centre of perspective may be regarded as the point through which pass all self-corresponding straight lines except one-the axis of perspective.

Two figures may be in perspective in more than one way. For instance, the triangles $A B C, A^{\prime} B^{\prime} C^{\prime \prime}$ may be so sitnated that $A B^{\prime}, B C^{\prime}, C A^{\prime}$ are concurrent, and also $A C^{\prime}, B A^{\prime}, C B^{\prime}$. In this case the triangle $A B C$ may be said to be in perspective with the triangles $B^{\prime} C^{\prime} A^{\prime}, C^{\prime} A^{\prime} B^{\prime}$. But when this is so it may be easily shown ($\$ 165$, Ex. 5) that $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ must also be concurrent. Hence if two triangles are doubly in perspective, they are triply in perspective.
194. Ex. 1. If F_{1}, F_{2}, F_{3} be three figures in perspective two and two in the same plane, show that if they have a common centre of perspective, their three axes of perspective are concurrent.

Let O be the common centre of perspective ; $x_{2,3}, x_{3,1}, x_{1,2}$ their threc axes of perspective. Let $x_{3,1}, x_{1,2}$ intersect in P. Then because P lies, on x_{31}, P, considered as belonging to F_{1}, coincides with the corresponding pinint of F_{3}. Similarly because P lies on,$x_{1,2}$ it coincides with the corresponding point of F_{2}. Hence P must lie on $x_{2,3}$, or coincide with O. In the latter case, let Q be the point of intersection of $x_{1,2}, x_{2,3}$; then as before it may be proved that Q must lie on $x_{1,3}$, or coincide with O. Thus, in either case the three axes of perspective $x_{2,3}, x_{3,1}, x_{1,2}$ are concurrent.

Ex. 2. Show that all triangles formed by corresponding points of F_{1}, F_{2}, F_{3} in the last Ex. are in perspective, P being their common centre of perspective.

Ex. 3. If F_{1}, F_{2}, F_{3} be three figures in perspective, having a common axis of perspective, show that the three centres of perspective are collinear.

Ex. 4. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles in perspective, and if $I ; I ; Z$ in three points on the axis of perspective, such that $A X, B Y, C Z$ are coneurent. show that $A^{\prime} I, B^{\prime} Y, C^{\prime} Z$ will be concurrent.
195. Another method of constructing a figure F^{\prime} in perspective with a given figure F, is to suppose that the line of F^{\prime} which corresponds to a given line of F is known.

Thus let O be the centre of perspective, x the axis of perspective: and suppose that a, a^{\prime} are a pair of corresponding lines. If any line be drawn through O cutting a, a^{\prime} in A and A^{\prime}, it is evident that A^{\prime} will be the corresponding point to A. Again, if $A I^{\prime}$ be
any line of F, cutting the axis of perspective in Y, and the line a in A. Then $A^{\prime} Y$ will be the line of F^{\prime} which corresponds to $A Y$.

196. We may take the line at infinity in either figure as one of our given lines. Then any line in the other figure which is parallel to the axis of perspective may be taken as the corresponding

line. The construction of F^{\prime} is very similar to the previous construction. Thus let a be the line at infinity, then a^{\prime} is a line parallel to the axis of perspective. Draw any line through O cutting a^{\prime} in A^{\prime}, then the corresponding point A of F is at infinity. Draw any line $A Y$ parallel to $O A^{\prime}$, cutting the axis of perspective in Y. Then $Y A^{\prime}$ will be the corresponding line of F^{\prime}. And if P be any point on $A Y, O P$ will cut $A^{\prime} Y$ in P^{\prime}, so that P^{\prime} is that point of F^{\prime} which corresponds to P.
197. If we suppose P and P^{\prime} given in the last figure, we can easily find the line of F^{\prime} which corresponds to the line at infinity
in F. Thus we have only to draw any line $P Y$ to meet the axis of perspective in Y; then $P^{\prime} \Gamma^{\prime}$ will cut the line through O parallel to $P Y$ in A^{\prime}, which will be the point of F^{\prime} corresponding to the point at infinity on the line $O A^{\prime}$. Therefore the line through A^{\prime} parallel to the axis of perspective will be that line of $F^{\prime \prime}$ which corresponds to the line at infinity in F.
198. Ex. 1. Through the point of intersection of two diagonals of a tetragram lines are drawn respectively parallel to the four sides and intersecting respectively the sides opposite to those to which they are parallel. Prove that these four points of intersection lie on a straight line.
[Trin. Coll., 1890.]
Let $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be the pairs of opposite vertices of the tetragram; and let $B E^{\prime}, C C^{\prime}$ intersect in O. Taking O for centre of perspective, and $A A^{\prime}$ for the axis of perspective, we may consider the figure $D^{\prime} C^{\prime} B C$ as in perspective

with the figure $B C B^{\prime} C^{\prime}$. If $O X$ be drawn parallel to $B C$ to meet $D^{\prime} C^{\prime \prime}$ in X^{\prime}, and if $O X^{\prime}$ be dramn parallel to $B^{\prime} C^{\prime \prime}$ to meet $B C$ in X^{\prime}, it is evident that $X X^{\prime}$ will be that line of the figure $E^{\prime} C^{\prime \prime} B C$ which corresponds to the line at infinity in the figure $B C B^{\prime} C^{\prime}$. Hence the theorem is proved.

It may be noticed that $I X^{\prime}$ is parallel to $A A^{\prime}$.
Ex. 2. A hesagon can be inscribed in one circle and circumscribed ahout another. Its three diagonals intersect in the point O, and lines are drawn through O parallel to the sides. Show that the prints in which these lines intersect the sides opposite to those to which they are parallel, are collinear.

Ex. 3. The lines joining the sertices of the triangle $A B C$ to any point " intersect the opposite sides in $A^{\prime}, B^{\prime}, C^{\prime}$; and $B C, C, A B$ intersect $B^{\prime} C^{\prime \prime}$, $C^{\prime} A^{\prime}, A A^{\prime} B^{\prime}$ in X, Y, Z. Show that the lines drawn through O parallel to $B C$. $C A, A B$, form a triangle which is in perspective with the triangle formed by. the lines $A X, B Y, C Z$.
199. By suitably choosing the centre of perspective, and the axis of perspective, we can often form a figure F^{\prime} which shall be in perspective with a given figure F, so that F^{\prime} shall be a simpler figure. The advantage gained by so doing is that we are able to discover properties of the figure F by transforming known properties of the simpler figure F^{\prime}.

Thus let a, b, c, d be the four sides of any tetragram, and let us take for our axis of perspective a line parallel to the diagonal joining the points $a c, b d$. Then if we suppose the line corresponding to this diagonal in the new figure to be at infinity, it is easy to see that the new figure will be a parallelogram. Further, if we take for our centre of perspective, a point on the circle which has the diagonal joining the points $a c, b d$ for a diameter, the new figure becomes a rectangle.

For the lines a^{\prime}, c^{\prime} are parallel to the line joining O to the point $a c$, and b^{\prime}, d^{\prime} are parallel to the line joining O to the point $b d$.
200. Ex. 1. Show that the lines joining any point to the opposite vertices of a tetragram form a pencil in involution.

Ex. 2. Show that the middle points of the diagonals of a tetragram are collinear.

Ex. 3. The diagonals of a parallelogram bisect each other. Ohtain the corresponding theorem for any tetragram.

Ex. 4. Any line cuts the opposite pairs of comectors of a tetrastigm in a range in involution. Prove this theorem by forming a figure in perspective, such that one connector of the given figure beeomes the line at infmity in the new figure.

Ex. 5. Show that a triangle can ahway be constructed which shall the in perspective with one given triangle, and he similar to another given triangle.

Ex. 6. Generalise the theorem in Ex. 2.

CHAPTER IX.

THE THEORY OF SLMILAR FIGURES.

Similar triangles.

201. Two triangles are said to be similar when they are equiangular. It is proved in Euclid (Bk. vi., Prop. 4) that the sides of one triangle are proportional to the homologous, or corresponding, sides of the other. It is, however, necessary to distinguish the case when the angles of the triangles are measured in the same sense, from the case when they are measured in opposite senses.

Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two similar triangles: then, when the angles $A B C, B C A, C A B$ are respectively equal to the angles $A^{\prime} B^{\prime} C^{\prime}, B^{\prime} C^{\prime} A^{\prime}, C^{\prime} A^{\prime} B^{\prime}$, the triangles are said to be directly similar; but, when the angles $A B C, B C A, C A B$ are respectively equal to the angles $C^{\prime} B^{\prime} A^{\prime}, A^{\prime} C^{\prime} B^{\prime}, B^{\prime} A^{\prime} C^{\prime}$, the triangles are said to be inversely similar.

As an illustration, let $B A C$ be a right-angled triangle, and let $A D$ be the perpendicular from the right angle on the hypotenuse. Then the triangles

$B D A, A D C$ are directly similar, but each is inversely similar to the triangle b. $1 C$.
202. Ex. 1. If two triangles be inversely similar to the same triangle, show that they are directly similar to each other.

Ex. 2. If $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be the perpendiculars from the vertices of the triangle $A B C^{\prime}$ on the opposite sides, show that the triangles $A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}$,
$A^{\prime} B^{\prime} C$ are directly similar to each other, but inversely similar to the trimgle $A B C$.

Ex. 3. If D, E, F be the middle points of the sides of the triangle $1 / B r^{\prime}$, show that the triangle $D E F$ is directly similar to the triangle $A B C$.

Ex. 4. Two circles cut in the points A, B; and through D two lines $P B Q, P^{\prime} B Q^{\prime}$ are drawn, cutting one circle in P ', P^{\prime} and the other in ' $/, \ell^{\prime}$. Show that the triangles $A P Q, A I^{\prime} Q^{\prime}$ are directly similar.

Ex. 5. If the triangle $A^{\prime} B^{\prime} C^{\prime}$ be inversely similar to the triangle $A B C^{\prime}$, show that the lines drawn through $A^{\prime}, B^{\prime}, C^{\prime \prime}$ parallel respectively to $B^{\prime} C^{\prime}, C^{\prime} .1$, $A B$ will be concurrent, and that their point of intersection will lie on the circumcircle of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Ex. 6. If the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ be inversely similar, show that

$$
\left(A^{\prime} B C^{\prime}\right)+\left(B^{\prime} C A\right)+\left(C^{\prime} A B\right)=\left(A B C^{\prime}\right)
$$

Ex. 7. The first Brocard triangle of any triangle is inversely similar to it.
203. When two triangles are placed so that their corresponding sides are parallel, it is evident that they are directly similar. They are also in perspective, having the line at infinity for their axis of perspective ; consequently the lines joining corresponding vertices are concurrent.

Triangles so situated are said to be homothetic, and the centre of perspective is called their homothetic centre.

Let $A^{\prime} B^{\prime} C^{\prime}$ be any triangle having its sides parallel to the corresponding sides of the triangle $A B C$; and let O be the centre of perspective. Since the corresponding sides are parallel, it follows at once that

$$
O A^{\prime}: O B^{\prime}: O C^{\prime}=O A: O B: O C
$$

204. Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two homothetic triangles, and let $A^{\prime} B^{\prime} C^{\prime}$ be turned about the homothetic centre O, so as to come into the position $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

It is obvious that the triangles $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}, A B C$ are directly similar, and that

$$
O A^{\prime \prime}: O B^{\prime \prime}: O C^{\prime \prime}=O A: O B: O C
$$

Further, it is easy to see that the angles $A O A^{\prime \prime}, B O B^{\prime \prime}, C O C^{\prime \prime}$, and the angles at which the corresponding sides intersect are all equal.

It is evident that the triangles $A O B, B O C, C O A$ are directly similar to the triangles $A^{\prime \prime} O B^{\prime \prime}, B^{\prime \prime} O C^{\prime \prime}, C^{\prime \prime} O A^{\prime \prime}$. Hence, it appears that whatever relation the point O has to the triangle $A B C$, it has a similar relation to the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. For instance, if O were the orthocentre of the triangle $A B C$, it would also be the orthocentre of the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

The point O is called the centre of similitude of the two triangles $A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

We shall now show that any two triangles which are directly similar, have a centre of similitude, which can be easily found. It will be perceived that when the centre of similitude is known, then, by turning one of the triangles about the centre i.t may be brought into such a position as to be homothetic with the other triangle.
205. To find the centre of similitude of two triangles which are directly similar.

Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be any two triangles which are directly similar. Let $B C, B^{\prime} C^{\prime}$ intersect in the point X, and let the circumcircles of the triangles $B X B^{\prime}, C X C^{\prime}$ intersect in the point O.

It is evident that the triangles $B O C, B^{\prime} O C^{\prime}$ are directly similar. Hence the triangles $A O C, A O B$ are directly similar to the triangles $A^{\prime} O C^{\prime}, A^{\prime} O B^{\prime}$.

Further, the angles $C O C^{\prime}, B O B^{\prime}$ are each equal to the angle $C X C^{\prime}$. Hence if the triangle $A^{\prime} B^{\prime} C^{\prime}$ be turned about the point 0 through an angle equal to $C^{\prime} O C$, so that the lines $O C^{\prime}, O B^{\prime}$ shall coincide with $O C, O B$, it is easy to see that the triangle $A^{\prime} B^{\prime} C^{\prime \prime}$ in its new position will be homothetic to the triangle $A B C$.

Thus O is the centre of similitude of the two triangles $A B C$, $A^{\prime} B^{\prime} C^{\prime}$.
206. Ex. 1. If two directly similar triangles be inscribed in the same circle, show that the centre of the circle is their centre of similitude.

Show also that the pairs of homologous sides of the triangles intersect in points which form a triangle directly similar to each of them.
[Trinity Coll. Sch. Exaln. 1885.]
Ex. 2. If triangles directly similar to a given triangle be deseribed on the perpendiculars of another triangle, show that their centres of similitude are the feet of the perpendiculars from the orthocentre on the medians of the triangle.

Ex. 3. If $A B C$ be a triangle of constant shape, and if A be a fixel point, show that if the vertex B move on a fixed straight line, the vertex C will move along another straight line.

Show also that if the locus of B be a circle, then the locus of C will also be a circle. -

Ex. 4. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles which are directly similar, and if the triangle $A^{\prime} B^{\prime} C^{\prime}$ be turned about any point in its plane, show that the locks, of the centre of similitude will be a circle.
207. The construction given in $\S 205$ requires a slight modification when X, the point of intersection of $B C, B^{\prime} C^{\prime}$ coincides with B or C. Let us

suppose that $B^{\prime} C^{\prime}$ passes through B. Then, the centre of similitude O will be the point of intersection of the circle circumscribing the triangle $B C C^{\prime}$, and the circle which passes through B^{\prime} and touches $B C$ at B.

Again, if $C^{\prime \prime}$ coincide with the point B, the centre of similitude will be the point of intersection of the circle which passes through B^{\prime} and touches $B C$ at B, and the circle which passes through C and touches $B C^{\prime}$ at B.

208. Ex. 1. If O be the centre of similitude of the directly similar triangles $A B C, D A E$, show that $A O$ passes through the symmedian point of the triangle $A B D$.

Ex. 2. In the same case, if $A O$ meet the circumcircle of the triangle $A B D$ in H, show that $A H$ is bisected in the point O.

Ex. 3. If triangles be described on the sides of the triangle $A B C$, so as to be directly similar to each other, show that the three centres of similitude of these triangles taken two at a time, are the vertices of the second Brocard triangle of the triangle $A B C$. See § 134 .

Ex. 4. If points $A^{\prime}, B^{\prime}, C^{\prime}$ be taken on the sides $B C, C A, A B$ of the triangle $A B C$, so that the triangle $A^{\prime} B^{\prime} C^{\prime}$ is directly similar to the triangle $A B C$, show that the centre of similitude of the triangle $A^{\prime} B^{\prime} C^{\prime}$ in any two of its positions is the circumcentre of the triangle $A B C$.

Ex. 5. In the last case show that the circumcentre of the triangle $A B C$ coincides with the orthocentre of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Ex. 6. If points $A^{\prime}, B^{\prime}, C^{\prime}$ be taken on the sides $A B, B C, C A$ of the

triangle $A B C$, so that the triangle $A^{\prime} B^{\prime} C^{\prime}$ is directly similar to the triangle $A B C$, show that the centre of similitude is a fixed point.

Let Ω be the centre of similitude. Then, Ω will lie on the cireles circumscribing the triangles $A A^{\prime} C^{\prime}, B B^{\prime} A^{\prime}, C C^{\prime} B^{\prime}$; and the circles $A . I^{\prime} \Omega, B A^{\prime} \Omega, \prime^{\prime \prime} \Omega$ will touch $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}, C^{\prime} A^{\prime}$, respectively, at the points A^{\prime}, B^{\prime}, and $C^{\prime \prime}$. Hence, the angles $\Omega A B, \Omega B C, \Omega C A$ are equal, and it follows by $\S 116$, that Ω is one of the Brocard points of the triangle $A B C$.

It is easily seen that the angles $\Omega I^{\prime} B^{\prime}, \Omega J^{\prime} C^{\prime}, \Omega C^{\prime} . I^{\prime}$ are each equal t, $\Omega A B$, so that Ω is the same Brocard point of the triangle $A^{\prime} D^{\prime} C^{\prime \prime}$.

Ex. 7. If points $A^{\prime}, B^{\prime}, C^{\prime}$ be taken on the sides $C . A, A B, B C$, so that the triangle $A^{\prime} B^{\prime} C^{\prime}$ is directly similar to the triangle $A B C$, show that the centre of similitude is the other Brocard point.

Ex. 8. If a triangle $A^{\prime} B^{\prime} C^{\prime}$ be inscribed in a given triangle $A B C$, so ats to be always directly similar to a given triangle, show that the centre of similitude O of the triangle $A^{\prime} B^{\prime} C^{\prime}$, in any two of its positions is a fixed point.
[Townsend.]
Ex. 9. If a triangle $A^{\prime} B^{\prime} C^{\prime}$ of constant shape be inscribed in a given triangle $A B C$, the circumcircle of the triangle $A^{\prime} D^{\prime} C^{\prime}$ meets the sides of the triangle $A B C$ in three points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$, which form another triangle of constant shape. Show that the centre of similitude O^{\prime} of the triangle.$^{\prime \prime} I^{\prime \prime} C^{\prime \prime}$ in any two of its positions is a fixed point.
[H. M. Taylor.]
Ex. 10. Show that the points O, O^{\prime} are isogonal conjugates with respect to the triangle $A B C$.
[Casey.]
209. Let $A B C$ be any given triangle, and let a triangle $A^{\prime} B^{\prime} C^{\prime}$ be constructed so as to be homothetic to the triangle $A B C$. Let O be the homothetic centre, and $O X$ any line through O. Suppose the triangle $A^{\prime} B^{\prime} C^{\prime}$ to be turned about the line $O . X^{\prime}$ through an angle equal to two right angles, so that its plane coincides with the plane of the triangle $A B C$. Let $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ be the new position of $A^{\prime} B^{\prime} C^{\prime}$.

It is obvious that the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is inversely similar to the triangle $A B C$. It is also evident from the figure that the triangles $O B^{\prime \prime} C^{\prime \prime}, O C^{\prime \prime} A^{\prime \prime}, O A^{\prime \prime} B^{\prime \prime}$ are inversely similar to the triangles $O B C, O C A, O A B$; that the angles $A O A^{\prime \prime}, B O B^{\prime \prime}, C O C^{\prime \prime}$ are bisected by the line $O X$; and that

$$
O A^{\prime \prime}: O B^{\prime \prime}: O C^{\prime \prime}=O A: O B: O C
$$

Further, we see that the line $O X$ is parallel to the internal bisector of the angles between corresponding sides of the triangles $A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Thus let P be any arbitrary point, and let $P Q$, $P Q^{\prime \prime}$ be drawn in the same directions as $B C, B^{\prime \prime} C^{\prime \prime}$ respectively, then $O X$ will be parallel to the internal bisector of the angle $Q P Q^{\prime \prime}$.
210. The point O is called the centre of similitude of the triangles $A B C, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$; and the line $O X$ the axis of similitude of the triangles.

Since the triangles $B^{\prime \prime} O C^{\prime \prime}, C^{\prime \prime} O A^{\prime \prime}, A^{\prime \prime} O B^{\prime \prime}$ are inversely similar to the triangles $B O C, C O A, A O B$, the point O will have the same relative position with respect to the triangles $A B C$, $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. For instance, if O were the orthocentre of the triangle $A B C$, it would also be the orthocentre of the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

We shall now show that any two triangles which are inversely similar, have a centre of similitude, and an axis of similitude. It is evident that when the axis of similitude is known, one of the triangles may be rotated about it so as to be brought into a position in which it is homothetic to the other triangle.
211. To find the centre and axis of similitude of two triangles which are inversely similar.

Let $A B C, A^{\prime} B^{\prime} C^{\prime}$ be two triangles which are inversely similar. If O be the centre of similitude, it follows that the axis of similitude must bisect the angles $B O B^{\prime}, C O C^{\prime}$. Hence, if we divide the lines $B B^{\prime}, C C^{\prime}$ in the points K, L, so that

$$
B K: K B^{\prime}=C L: L C^{\prime}=B C: B^{\prime} C^{\prime},
$$

it is evident that $K L$ must be the axis of similitude.
Again the triangles $B U C, B^{\prime} O C^{\prime}$ are inversely similar, so that the perpendiculars from O on $B C, B^{\prime} C^{\prime}$ must be in the same ratio as $B C: B^{\prime} C^{\prime}$. Consequently if $B C, B^{\prime} C^{\prime}$ intersect in X, the line $X O$ will divide the angle $B X B^{\prime}$ into parts whose sines are as
$B C: B^{\prime} C^{\prime}$. Thus a point O can be found so that the triangles $B O C^{\prime}$, $B^{\prime} O C^{\prime}$ are inversely similar.

It is obvious that when O has been found in this way, the triangles $O A^{\prime} B^{\prime}, O A^{\prime} C^{\prime}$ are inversely similar to the triangles $O A B$, $O A C$; and that $K L$ bisects the angle $A O A^{\prime}$. Hence O is the centre, and $K L$ the axis of similitude of the triangles.
212. Ex. 1. Find the centre and axis of similitude of the triangles $A B C$, $A^{\prime} B^{\prime} C^{\prime \prime}$ when $B^{\prime} C^{\prime}$ passes through B.

Ex. 2. Find the centre and axis of similitude of the triangles $A B C, A^{\prime} B C^{\prime}$ when B and C^{\prime} coincide.

Ex. 3. Show that the axis of similitude divides the lines joining corresponding points in the same ratio.

Ex. 4. If two triangles be inscribed in the same circle so as to be inversely similar, show that the triangles are in perspective.
[Trinity Coll. Sch. Exam. 1885.]
Ex. 5. In the last example, show that the axis of perspective of the triangles passes through the centre of the circle.

Ex. 6. If $A B C$ be any triangle inscribed in a circle, and if $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be drawn parallel to any given straight line meeting the circle in the points $A^{\prime}, B^{\prime}, C^{\prime}$, show that the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ will be inversely similar, and that their axis of perspective will pass through the centre of the circle.

Properties of two figures directly similar.

213. Let F denote any figure consisting of the system of points A, B, C, \ldots On the lines $O A, O B, O C, \ldots$ connecting these points to any point O in the same plane, let points $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$ be taken so that

$$
O A^{\prime}: O A=O B^{\prime}: O B=O C^{\prime}: O C=\& c .
$$

Then the figure F^{\prime}, consisting of the points $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$, is said to be homothetic to the figure F, and the point O is called the homothetic centre.

It is evident that if A, B, C be any three collinear points of F, the corresponding points $A^{\prime}, B^{\prime}, C^{\prime}$ of F^{\prime} are also collinear ; and, that the straight lines $A B C, A^{\prime} B^{\prime} C^{\prime}$ are parallel. Hence, to every straight line of the figure F corresponds a parallel straight line of the figure F^{\prime}. This also follows by considering that the two figures F^{\prime} and F^{\prime} are in perspective, so that the theorems of $\S 191$ hold for homothetic figures.

It is also evident that any three points A, B, C of the figure F form a triangle which is homothetic to the triangle formed by the corresponding points $A^{\prime}, B^{\prime}, C^{\prime}$ of $F^{\prime \prime}$.
214. If two figures be homothetic, and if one of them be turned through any angle about the homothetic centre, the two figures are said to be directly similar.

Let F and F^{\prime} be two homothetic figures, 0 the homothetic centre, and let F^{\prime} be turned about the point 0 , through an angle α. Let A, B, C, \ldots be any points of F, and let $A^{\prime}, B^{\prime}, C^{\prime \prime}, \ldots$ be the corresponding points of F^{\prime}. Then we have

$$
O A^{\prime}: O A=O B^{\prime}: O B=O C^{\prime}: O C=\& \mathrm{c} .
$$

Also it is evident that each of the angles $A O A^{\prime}, B O B^{\prime}, \ldots$ is equal to α, and that each line of F, such as $A B$, makes with the corresponding line $A^{\prime} B^{\prime}$ of F^{\prime} an angle equal to α.

Again, the triangles $O A B, O B C, \ldots$ are directly similar to the triangles $O A^{\prime} B^{\prime}, O B^{\prime} C^{\prime}, \ldots$; so that the position of O with respect to one figure is exactly similar to its position with respect to the other figure.

This point 0 is called the centre of similitude of the two figures.
215. It follows, from the definition given in the last article, that two figures F and F^{\prime} in the same plane will be directly similar when a correspondence can be established between the points of the two figures, such that: (i) To each point of F corresponds one point and only one point of F^{\prime}. (ii) The distance between every pair of corresponding points subtends the same angle at a fixed point O. (iii) The distance of each point of F
from O bears a constant ratio to the distance of the corresponding point of F^{\prime} from 0 .

Again two figures F and F^{\prime} will be directly similar, when (i) each line of F makes a constant angle with the corresponding line of F^{\prime}, and (ii) the triangle formed by every three points of F is directly similar to the triangle formed by the corresponding points of F^{\prime}. For in this case we can find the centre of similitude by proceeding as in $\S 205$.

In applying this criterion to any two figures it is necessary to be careful as to which angle is taken as the angle between two corresponding lines. Thus, let A, B be any two points of $F^{\prime}, A^{\prime}, B^{\prime}$ the corresponding points of $F^{\prime \prime}$. Through any arbitrary point O draw $O X$ parallel to and in the same direction as $A B$, and $O X^{\prime}$ in the same direction as $A^{\prime} B^{\prime}$. Then the angle between the corresponding lines $A B, A^{\prime} B^{\prime}$ is to be taken as equal to $\mathrm{I}^{\circ} 0 \mathrm{~A}^{\prime \prime}$.
216. Directly similar figures might also have been defined to be diagrams of the same figure drawn to different scales in the same plane.

It follows at once that if two maps of the same country be placed on a table, there is one point, and only one point, which will indicate the same place on the two maps.
217. Ex. 1. The points O, A, B, C, \ldots of a figure F correspond to the points $O^{\prime}, A^{\prime}, B^{\prime}, C^{\prime \prime}, \ldots$ of another figure $F^{\prime \prime}$, so that the lines $O .1, O B, \ldots$ are equally inclined to the lines $O^{\prime} A^{\prime}, O^{\prime} B^{\prime}, \ldots$. Show that if

$$
O^{\prime} A^{\prime}: O A=O^{\prime} B^{\prime}: O B=\& \mathrm{c} .
$$

the figures F and $F^{\prime \prime}$ will be directly similar.
Ex. 2. Hence show that any two circles are directly similar figures.
Ex. 3. Two maps of the same country, on different seales, are placed on a table, and a pin is put through both maps at a given point. If one of the maps be moved about show that the locus of the centre of similitude will be a circle.

Ex. 4. If a pair of corresponding points of two coplanar similar figures be fixed and the figures moved about in their plane, show that the locus of the centre of similitude will be a circle.

Ex. 5. Show that through any given point one and only one pair of corresponding lines of two similar figures can be drawn.

Ex. 6. If P, P^{\prime} be a pair of corresponding points of two similar figures whose centre of similitude is O; show that if the locus of P^{\prime} be a circle passing through O, the line $P P^{\prime}$ will pass through a fixed point.

Ex. 7. If A, B, C, D be any four points on a circle, and if P, Q, R, S be the orthocentres of the triangles $B C D, C D A, D A B, A B C$, show that the figure $P(R S$ is directly similar to the figure $A B C D$.
218. Given any two triangles which are directly similar, it is easy to see that similar points of the two triangles will correspond. That is to say, if $A B C, A^{\prime} B^{\prime} C^{\prime}$ be the two triangles, P and P^{\prime} any similar points, (e.g. the orthocentres of the triangles), then $A B C P$ and $A^{\prime} B^{\prime} C^{\prime} P^{\prime}$ are directly similar figures. When the two triangles are homothetic, it follows that the line joining two similar points such as P and P^{\prime} must pass through the centre of similitude of the two figures.
219. Ex. 1. Show that the orthocentre, the circumcentre, and the median point of any triangle are collinear.

If $A B C$ be the triangle, D, E, F the middle points of the sides, the triangle $D E F$ is homothetic to the triangle $A B C$, and the circumcentre of the latter is the orthocentre of the former.

Ex. 2. Show that if $A B C$ be any triangle, and D, E, F be the middle points of the sides, the symmedian points of the triangles $A B C, D E F$ are collinear with the median point of the triangle $A B C$.

Ex. 3. The tangents to the circumcircle of a triangle $A B C$ form the triangle $L M A N^{\prime}$, and $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are the perpendiculars on the sides of the triangle $A B C$. Show that the lines $L A^{\prime}, M B^{\prime}, M^{\prime \prime}$ meet in a point which is collinear with the circumcentre and orthocentre of the triangle $A B C$.

Ex. 4. Show that the lines which connect the middle points of the corresponding sides of a triangle and its first Brocard triangle are concurrent.

Ex. 5. Show that, if Ω, Ω^{\prime} denote the Brocard points of a given triangle, and if $K^{\prime \prime}$ denote the isotomic conjugate point of the symmedian point of the triangle, the median point of the triangle $h^{\prime} \Omega \Omega^{\prime}$ coincides with the median point of the given triangle.

Properties of two figures inversely similar.

220. Let F and F^{\prime} be any two homothetic figures in the same plane, and O the homothetic centre. Let F^{\prime} be turned about any line $U X$, in its plane, through an angle equal to two right angles, so that its plane coincides with the plane of F. Then, the figure F^{\prime} in its new position is said to be inversely similar to the figure F.

What is meant by inverse similarity is easily understood by comsidering F and F^{\prime} to be drawings of the same map on different
scales. Let us suppose F^{\prime} to be drawn on transparent paper, and laid with its face downwards on the face of F, then the reverse side of F^{\prime} is inversely similar to the figure F.

The point O which was originally the homothetic centre is called the centre of similitude of the inversely similar figures, and the line $O X$ is called the axis of similitude.
221. Let A, B, C, \ldots be any points of a figure F, and $A^{\prime}, B^{\prime}, C^{\prime} \ldots$ the corresponding points of an inversely similar figure F^{\prime}. Then if O be the centre of similitude and $O X$ the axis of similitude, we clearly have as in §209,

$$
O A^{\prime}: O A=O B^{\prime}: O B=O C^{\prime}: O C=\& c
$$

Also the axis $O X$ will bisect each of the angles $A O A^{\prime} B O B^{\prime}$, $C O C^{\prime} \ldots$; and will be parallel to the internal bisectors of the angles between the corresponding lines of the two figures.

Further, it is evident that the triangles $A^{\prime} O B^{\prime}, A^{\prime} O C^{\prime}, B^{\prime} O C^{\prime}, \ldots$ will be inversely similar to the triangles $A O B, A O C, B O C, \ldots$. Hence it follows that the centre of similitude will have similar relations to the two figures.
222. Ex. 1. If A and A^{\prime} be corresponding points of two figures which are inversely similar, and a, a^{\prime} corresponding lines, show that the line drawn through A^{\prime} parallel to a will correspond to the line through A parallel to a^{\prime}.

Ex. 2. If $A B C, A^{\prime} B^{\prime} C^{\prime \prime}$ be two triangles which are inversely similar, the lines through the vertices of each parallel to the sides of the other are concurrent.

If P, P^{\prime} be the points of concurrence, show that P and P^{y} are corresponding points.

Ex. 3. If $A^{\prime} B^{\prime} C^{\prime \prime}$ be the first Brocard triangle of the triangle $A B C$, and if the perpendiculars from A, B, C on the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$ intersect in T, show that the circumcentre of $A B C$ is that point of $A^{\prime} B^{\prime} C^{\prime \prime}$ which corresponds to the point T.

The point T is called Tarry's point (§ 135, Ex. 7) of the triangle $A B C$.
Ex. 4. Find the axis of similitude and centre of similitude of any triangle and its first Brocard triangle.

The centre of similitude is the median point of the triangles (§ 135 , Ex. 13).

Ex. 5. If K^{\prime} be the symmedian point of the first Brocard triangle of the triangle $A B C$, and if S be the circumcentre, L the Lemoine centre, and T Tarry's point of the triangle $A B C$, show that $L K^{\prime}$ is parallel to $T S$.

Properties of three figures directly similar.

223. Let F_{1}, F_{2}, F_{3} be any three figures which are directly similar; let S_{1} be the centre of similitude of F_{2} and $F_{3} ; S_{2}$ that of F_{3} and F_{1}; and S_{3} that of F_{1} and F_{2}.

The triangle formed by the three centres of similitude S_{1}, S_{2}, S_{3}, is called the triangle of similitude of the figures F_{1}, F_{2}, F_{3}; and the circumcircle of this triangle is called the circle of similitude.

It will be convenient to explain here the notation which will be used in the following articles. The scales on which the figures are drawn will be denoted by k_{1}, k_{2}, k_{3}; the constant angles at which corresponding lines of the figures intersect will be denoted by a_{1}, a_{2}, a_{3}; corresponding points will be denoted by P_{1}, P_{2}, P_{3}; and corresponding lines by x_{1}, x_{2}, x_{3}. The perpendicular distance of any point P from a line x will be denoted by $P x$.
224. In every system of three directly similar figures, the triangle formed by three corresponding lines is in perspective with the triangle of similitude, and the locus of the centre of perspective is the circle of similitude.

Let x_{1}, x_{2}, x_{3} be any three corresponding lines, forming the triangle X_{1}, X_{2}, X_{3}. Then we have,

$$
\begin{aligned}
& S_{1} x_{2}: S_{1} x_{3}=k_{2}: k_{3}, \\
& S_{2} x_{3}: S_{2} x_{2}=k_{3}: k_{1}, \\
& S_{3} x_{1}: S_{3} x_{2}=k_{1}: k_{2} .
\end{aligned}
$$

Therefore

$$
\frac{S_{1} x_{2}}{S_{1} x_{3}} \cdot \frac{S_{2} x_{3}}{S_{2} x_{1}} \cdot \frac{S_{3} x_{1}}{S_{3} x_{2}}=1 .
$$

Hence by $\S 179$, the triangle formed by the lines x_{1}, x_{2}, x_{3}, is in perspective with the triangle of similitude $S_{1} S_{2} S_{3}$.

If K^{\prime} be the centre of perspective of the triangles $S_{1} S_{2} S_{3}, X_{1} X_{2} X_{3}$, it is evident that

$$
K x_{1}: K x_{2}: K x_{3}=k_{1}: k_{2}: k_{3} .
$$

Now since x_{1}, x_{2}, x_{3} are corresponding lines, they intersect each (ther at angles equal to $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Hence the angles of the triangle $X_{1} X_{2} X_{3}$ are known, and therefore the angles $X_{2} K X_{3}, X_{3} K X_{1}$, $X_{1} K X_{2}$ are constant. That is, the angles $S_{3} K S_{3}, S_{3} K S_{1}, S_{1} K S_{2}$ are constant; and therefore the point K must lie on the circle $S_{1} S_{2} S_{3}$.
225. Since three corresponding lines form a triangle in perspective with the triangle of similitude, so that the centre of
perspective is a point on the circle of similitude, it follows that if three corresponding lines are concurrent their point of intersection is a point on the circle of similitude.

Let x_{1}, x_{2}, x_{3} be any three corresponding lines which are concurrent, and let K be the point of intersection. Then we have

$$
S_{1} x_{2}: S_{1} x_{3}=k_{2}: k_{3} .
$$

Hence $S_{1} K$ divides the angle between x_{2} and x_{3} into parts whose sines are in a constant ratio.

Let x_{1}, x_{2}, x_{3} cut the circle of similitude in the points I_{1}, I_{2}, I_{3}. Since x_{2}, x_{3} are corresponding lines, it follows that the angle $I_{2} K I_{3}$ is equal to $\pi-\alpha_{1}$.

Hence it follows that the angles $I_{2} K S_{1}, I_{3} K S_{1}$ are constant. And similarly we can show that the angles $I_{3} K S_{2}, I_{1} K S_{2}, I_{1} K S_{3}$, and $I_{1} K S_{1}$ are constant.

Therefore I_{1}, I_{2}, I_{3} are fixed points on the circle of similitude.
Thus we have the theorem: Every triad of corresponding lines which are concurrent pass through three fixed points on the circle of similitude.

These fixed points on the circle of similitude are called the invariable points, and the triangle formed by them is called the invariable triangle.
226. Ex. 1. Show that the invariable points of a system of three similar figures are corresponding points.

Ex. 2. Show that the triangle formed by any three corresponding lines is inversely similar to the invariable triangle.

Ex. 3. If K be any point on the circle of similitude, show that $K I_{1}, K I_{2}$, $K I_{3}$ are corresponding lines of the figures F_{1}, F_{2}, F_{3}.

Ex. 4. Show that the invariable triangle is in perspective with the triangle of similitudc. If O be the centre of perspective, show that the distances of O from the sides of the invariable triangle are inversely proportional to k_{1}, k_{2}, k_{3}.

Ex. 5. If K be the centre of perspective of the triangle formed by three corresponding lines x_{1}, x_{2}, x_{3} and the triangle of similitude, show that $K I_{1}, K I_{2}, K I_{3}$ are parallel to x_{1}, x_{2}, x_{3} respectively.

Ex. 6. If x_{1}, x_{2}, x_{3} and $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, x_{3}{ }^{\prime}$ be two triads of corresponding lines, and if K^{\prime}, K^{\prime} be the centres of perspective of the triangles $x_{1} x_{2} x_{3}, x_{1}{ }^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$ and the triangle of similitude, show that K and K^{\prime} are corresponding points of the directly similar triangles $x_{1} x_{2} x_{3}, x_{1}{ }^{\prime} x_{2}{ }^{\prime} x_{3}{ }^{\prime}$.

Ex. 7. Show that the centre of similitude of the triangles formed by two triads of corresponding lines, is a point on the circle of similitude.
227. The triangle formed by any three corresponding points of three directly similar figures, is in perspective with the invariable triangle, and the centre of perspective is a point on the circle of similitude.

Let P_{1}, P_{2}, P_{3} be any three corresponding points. Then if I_{1}, I_{2}, I_{3} be the invariable points, the lines $I_{1} P_{1}, I_{2} P_{2}, I_{3} P_{3}$ are corresponding lines. But these lines intersect on the circle of similitude, since they pass through the invariable points. Hence the triangles $P_{1} P_{2} P_{3}, I_{1} I_{2} I_{3}$ are in perspective.
228. Ex. 1. If S_{1}^{\prime} be that point of F_{1} which corresponds to S_{1} considered as a point of F_{2}^{\prime} or F_{3}^{\prime}, show that S_{1}, S_{1}^{\prime} and I_{1} are collinear.

Ex. 2. If $S_{2}{ }_{2}, S_{3}^{\prime}$ be similar points corresponding to S_{2} and S_{3}, show that the triangles $S_{1} S_{2} S_{3}, S_{1}{ }^{\prime} S_{2}{ }^{\prime} S_{3}{ }^{\prime}$, and $I_{1} I_{2} I_{3}$ are copolar.

Ex. 3. If two triangles, formed by two triads of corresponding points, he in perspective, the locus of their centre of perspective is the circle of similitude.
229. If three corresponding points be collinear, their line of collinearity will pass through the centre of perspective of the triangle of similitude und the invariable triangle.

Let I_{1}, P_{2}, P_{3} be three corresponding points which are collinear, and let I_{1}, I_{2}, I_{3} be the invariable points. Since I_{1}, P_{1} are points
of F_{1} and I_{2}, P_{2} the corresponding points of F_{2}, it follows that the triangles $S_{3} I_{1} I_{2}, S_{3} P_{1} P_{2}$ are directly similar. Therefore, the angle $S_{3} P_{1} P_{2}$ is equal to the angle $S_{3} I_{1} I_{2}$, and therefore to the angle $S_{3} S_{2} O$. Similarly, we can show that the angle $S_{2} P_{1} P_{3}$ is equal to the angle $S_{2} S_{3} O$. Hence the angle $S_{2} P_{1} S_{3}$ is equal to the angle $S_{2} O S_{3}$. Therefore P_{1} must lie on the circumcircle of $S_{2} O S_{3}$.

Hence, the angle $S_{3} P_{1} O$ is equal to the angle $S_{3} S_{2} O$, and therefore to the angle $S_{3} P_{1} P_{2}$. Therefore the line $P_{1} P_{2} P_{3}$ must pass through the point O.
230. It is evident from the last article that when three corresponding points P_{1}, P_{2}, P_{3} are collinear, each of them lies on a fixed circle. That is, P_{1} lies on the circumcircle of the triangle $S_{2} O S_{3}, P_{2}$ on the circumcircle of the triangle $S_{3} O S_{1}$, and P_{3} on the circle $S_{1} O S_{2}$.

If P_{2} and P_{3} coincide with S_{1}, P_{1} will coincide with the point S_{1}^{\prime} of the figure F_{1} which corresponds to the point S_{1} considered as a point of F_{2} or F_{3}. It is evident then that S_{1}^{\prime} must lie on the circumcircle of the triangle $S_{2} O S_{3}$.

Special cases of three directly similar figures.

231. If three figures be described on the sides of the triangle $A B C$ so as to be directly similar to each other, the triangle of similitude of the figures will be the second Brocard triangle of the triangle $A B C$ (§ 208, Ex. 3) ; and the circle of similitude will be the Brocard circle of the triangle.

The sides of the triangle $A B C$ will be corresponding lines, and
the centre of perspective of this triangle and the triangle of similitude will be the symmedian point of $A B C$.

Let K be the symmedian point of the triangle $A B C$, and let $A^{\prime}, B^{\prime}, C^{\prime \prime}$ be the first Brocard triangle. Then $K A^{\prime}, K B^{\prime}, K C^{\prime}$ are parallel to $B C, C A, A B$ respectively. Hence $A^{\prime}, B^{\prime}, C^{\prime \prime}$ are the invariable points of the system ($\S \underset{2}{2} 6$, Ex. 5).

If $P Q R$ be the triangle formed by any three corresponding lines, and if $h^{\prime \prime}$ be the centre of perspective of the triangles $P Q R$, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the triangle of similitude, it follows from $\S 226$, Ex. 6 , that the triangle $P Q R$ will be directly similar to $A B C$, and that K^{\prime} will be the symmedian point of the triangle $P Q R$.

Thus: If three directly similar figures be described on the sides of a triangle, any three corresponding lines form a triangle whose symmedian point lies on the Brocard circle of the given triangle.
232. If $A^{\prime} B^{\prime} C^{\prime}$ be the first Brocard triangle, and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ the second Brocard triangle of the triangle $A B C$, the lines $A^{\prime} A^{\prime \prime}, B^{\prime} B^{\prime \prime}$, $C^{\prime \prime} C^{\prime \prime}$ are concurrent. For $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are the centres of similitude, and $A^{\prime}, B^{\prime}, C^{\prime}$ the invariable points of three directly similar figures described on the sides of the triangle $A B C$. Hence by § 226, Ex. 4, the triangles $A^{\prime} B^{\prime} C^{\prime}, A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are in perspective.

Let $A^{\prime} A^{\prime \prime}, B^{\prime} B^{\prime \prime}, C^{\prime \prime} C^{\prime \prime}$ intersect in G, then by $\S 226$, Ex. 4, it follows that the distances of G from the sides of the triangle $A B C$ are inversely propertional to K_{1}, K_{2}, K_{3}, and therefore are inversely proportional to $B C, C A, A B$. But the triangles $A^{\prime} B^{\prime} C^{\prime}, A B C$ are inversely similar, so that

$$
B^{\prime} C^{\prime \prime}: C^{\prime \prime} A^{\prime}: A^{\prime} B^{\prime}=B C: C A: A B
$$

Hence G is the median point of $A^{\prime} B^{\prime} C^{\prime}$. This point is also the median point of $A B C$ (§ 222, Ex. 4).
233. Ex. 1. Show that if $A^{\prime} B^{\prime} C^{\prime}$ be the first Brocard triangle of the triangle $A B C$, the lines $B A^{\prime}, C B^{\prime}, A C^{\prime \prime}$ are concurrent, and intersect on the Brocard circle.

The points B, C, A are corresponding points of three directly similar figures describel on the sides of $A B C$, hence $B A^{\prime}, C B^{\prime}, A C^{\prime}$ are corresponding lines, and the theorem follows from $\$ 225$.

Ex. 2. Triangles are described on the sides of a triangle $A B C$, so as to be directly similar to each other ; show that their vertices form a triangle in perspective with the first Brocard triangle of the triangle $A B C$.

Ex. 3. If in the last case the vertices be collinear, show that their line of collinearity passes through the median point of the triangle $A B C$.

Show also that each vertex lies on a circle.
If G be the median point ; $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ the vertices of the second Brocard circle ; the vertices lie on the circumcircles of $B^{\prime \prime} C^{\prime \prime} G, C^{\prime \prime} A " G, A^{\prime \prime} B^{\prime \prime} G$. These three circles are called McCay's circles.

Ex. 4. If P, Q, R be corresponding points of three directly similar figures described on the sides of the triangle $A B C$, and if two of the lines $A P, B Q, C R$ be parallel, show that the three are parallel.

Ex. 5. Similar isosceles triangles $B P C, C Q A, A R B$ are described on the sides of a triangle $A B C$. If the triangle $A B C$, the triangle whose sides are $A B^{\prime}, B C^{\prime \prime}, C A^{\prime}$, and the triangle whose sides are $A^{\prime} B, B^{\prime} C, C^{\prime \prime} A$, be denoted by F_{1}, F_{2}, F_{3} respectively, show that the triangle of similitude of F_{1}, F_{2}, F_{3} is the triaigle $S \Omega \Omega^{\prime}$ formed by the circumcentre and the Brocard points of the triangle $A B C$.

Show also that the symmedian points of the triangles are the invariable points of the system.
[Neuberg.]
234. Let $A B C$ be any triangle, and let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ be drawn perpendicular to the sides. Then the triangles $A B^{\prime} C^{\prime \prime}, A^{\prime} B C^{\prime}$, $A^{\prime} B^{\prime} C$ are inversely similar to the triangle $A B C$ and therefore directly similar to each other. The centres of similitude of these triangles are evidently the points $A^{\prime}, B^{\prime}, C^{\prime}$.

Let D, E, F be the middle points of the sides of the triangle $A B C$; and $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime \prime}$ the middle points of $A O, B O, C O$, where O is the orthocentre.

Then the perpendiculars at the middle points of $A B^{\prime}, A^{\prime} B, A^{\prime} B^{\prime}$ are corresponding lines. But these lines meet in the point F.

Similarly, the perpendiculars at the middle points of $A C^{\prime}, A^{\prime} C^{\prime}$, L.
$A^{\prime} C$ which meet in E are corresponding lines; and the perpendiculars at the middle points of $B^{\prime} C^{\prime}, B C^{\prime}, B^{\prime} C$ which meet in D are corresponding lines.

Hence, by $\S \mathbf{2 2 5}, D, E, F$ are points on the circle of similitude; that is, the circle $A^{\prime} B^{\prime} C^{\prime}$.

Again, the perpendiculars at the middle points of $B^{\prime} C^{\prime}, A C^{\prime}, A B^{\prime}$ meet in $A^{\prime \prime}$. Therefore $A^{\prime \prime}$ is one of the invariable points of the system. Similarly $B^{\prime \prime}, C^{\prime \prime}$ are the other invariable points. Hence $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ lie on the circle of similitude.

Hence the nine points $A^{\prime}, B^{\prime}, C^{\prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime \prime}, D, E, F$, lie on a circle.
235. Ex. 1. Show that three corresponding lines of the triangles $A B^{\prime} C^{\prime}$, $A^{\prime} B C^{\prime \prime}, A^{\prime} B^{\prime} C$ form a triangle in perspective with the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Ex. 2. Show that the circumcentre of the triangle formed by three correponding lines lies on the nine-point circle.

Ex. 3. The three lines joining $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ to corresponding points of the three triangles cointersect on the nine-point circle of $A B C$.

Ex. 4. Every line which passes through the orthocentre of the triangle $A B C$ meets the circumeireles of the triangles $A B^{\prime} C^{\prime \prime}, A^{\prime} B C^{\prime}, A^{\prime} B^{\prime} C$ in points which are correspouding points for the three triangles.

Ex. 5. If $P^{\prime}, P_{1}^{\prime}, P_{2}, P_{3}$ be corresponding points of the triangles $A B C$, $A B^{\prime \prime} C^{\prime \prime}, A^{\prime} B C^{\prime \prime}, A^{\prime} B^{\prime} C$, show that $A^{\prime \prime} P_{1}, B^{\prime \prime} P_{2}, C^{\prime \prime} P_{3}$ meet the nine-point circle of $A B C$ in the point which is the isogonal conjugate, with respect to the triaugle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, of the point at infinity on the line joining P to the circuncentre of $A B C$.

Ex. 6. Show that the lines joining $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ to the in-centres of the triangles $A B^{\prime} C^{\prime \prime}, B C^{\prime} A^{\prime}, C A^{\prime} B^{\prime}$ respectively cointersect in the point of contact of the nine- - wint circle of the triangle $A B C$ with its inseribed circle.
236. Ex. l. If directly similar figures be deseribed on the perpendiculars of a triangle $A B C$, show that the circle of similitude will be the circle whose diameter is the line joining the median point of the triangle to the orthocentre.

Ex. 2. If L, M, N be the invariable points of these figures, show that the triangle $L M A$ is inversely similar to the triangle $A B C$, and that the centre of similitude of these triangles is the symmedian point of each.

Ex. 3. Show that any three corresponding lines form a triangle whose median point lies on the circle of similitude.

Ex. 4. If directly similar triangles be described on the perpendiculars of a given triangle, so that their three vertices are collinear, show that the line of collinearity will pass through the symmedian point of the given triangle.

Ex. 5. If G be the median point, and O the orthocentre of the triangle $A B C$, show that the line joining the feet of the perpendiculars from O and G on $A G, A O$ respectively, passes through the symmedian point of the triangle.

CHAPTER X.

THE CIRCIE.

Introduction.

237. A circle is defined to be the locus of a point which moves in one plane so as to be always at a constant distance from a fixed point.

A circle is a curve of the second order: for, every straight line which cuts a circle meets it in two points, and no straight line can be drawn to cut a circle in more than two points. When a straight line does not cut a circle in real points, it is said to cut it in two imaginary points.

A straight line may meet a circle in apparently only one point. In this case, the line is said to cut the circle in two coincident points, and is called a tengent to the circle.
238. This definition of a tangent may be extended to include the case of any curve :

The chord joining two consecutive (i.e. indefinitely near) points on u curce is suid to touch the curre.

Let P be any point on a curve, and let Q be a near point, at a finite distance from P. Join $P Q$. Now let the point Q move along the curve towards the point P. Then the line $P Q$ turns about the point P, until Q coincides with P, when $P Q$ will have the position $P T$. Thus $P T$ is the limiting position of the chord $P Q$, that is $P T$ is the tangent to the given curve at the point P.

In the case of a circle, or any curve of the second order, the tangent at any point cannot cut the curve again; but in the case of curves of order greater than the second, the tangent at any point will in general cut the curve again.

It is left to the reader to show that the definition of a tangent to a circle, as given in Euclid, is equivalent to the definition given above.
239. If we consider the assemblage of lines formed by drawing the tangents at every point of a circle, it is easy to see that two of these lines will pass through any given point. Hence a circle is a curve of the second class.

From a point within a circle, no real tangents can be drawn to the circle; that is, the tangent lines which pass through such a point are imaginary. If the given point be on the circle, only one tangent can be drawn through it ; that is to say, the two tangents are coincident.

It follows that when a circle is treated as a curve of the second class, any point on it is to be regarded as the point of intersection of two consecutive tangents. More generally, we see that, in the case of a curve of any class, the point of contact of any tangent line is the limiting position of the point in which it intersects a near tangent, when the latter is turned about so as to coincide with the given line.
240. The simplest definition of a circle regarded as a curve of the second class is the following:

The envelope of a straight line which moves in one plane so as to be always at a constant distance from a fixed point is a circle.

Ex. 1. A triangle given in species and magnitude is turned about in a plane, so that two of its sides pass through two fixed points. Show that the envelope of the third side is a circle.

Ex. 2. Two sides of a given triangle touch two fixed circles. Show that the envelope of the third side is a circle.

Ex. 3. Two circles intersect in the points A and B, and from a point P on one of them $P A, P B$ are drawn cutting the other circle in the points Q and l. Show that the envelope of $Q R$ is a circle.

Ex. 4. If two sides of a triangle and its inscribed circle be given in position, the envelope of its circumcircle is a circle.

Ex. 5. If two sides of a triangle be given in position, and if its perimeter be given in magnitude, find the envelope of its circumcircle.
241. It is very often instructive to consider how the enunciation of a particular theorem requires modification when two or more points, or lines, of a figure coincide. On the other hand a theorem may sometimes be easily recognised as a special case of a general theorem by taking a slightly more complicated figure.

Ex. The inscribed circle of the triangle $A B C$ touches the side $B C$ in the point P, show that the line joining the middle points of $B C$ and $A P$ passes through the centre of the circle.

Consider any circle touching the sides $A B, A C$ of the triangle; and let the other tangents which can be drawn from B and C meet in P. Then we know that the line joining the middle point of $B C$ to the middle point of $A P$ passes through the centre of this circle ($\$ 38$, Ex. 4). If now we suppose the circle to be drawn smaller and smaller until it touches $B C, P$ will become the point of contact of the circle with $B C$. Hence the theorem is proved.
242. Ex. 1. A circle touches the sides of the triangle $A B C$ in the points P, Q, R; show that the lines $I P, B Q, C R$ are concurrent.

This may be deduced from Pascal's theorem ($\$ 181$).
Ex. 2. Any point D is taken on the side $B C$ of the triangle $A B C$, and circles are drawn passing through D and touching $A B, A C$ respectively at B and C. Show that these circles meet in a point P, which lies on the circnmcircle of the triangle $A B C$; and that the Simson line of P with respect to the triangle $A B C$ is perpendicular to the line which joins the middle points of $B C$, , and $1 D$).

See § 148 , Ex. 2.

Ex. 3. If A, B, C, D be four points on a circle, such that the pencil $P\{A B, C D\}$ is harmonic, where P is any other point on the circle; show that the tangents at A and B intersect on $C D$.

Let the tangent at A meet $C D$ in T, and let $A B$ cut $C D$ in V. By $\S 48$, Ex. 4, the pencil $A\{A B, C D\}$, that is the pencil $A\{T B, C D\}$, is harmonic. Therefore the range $\left\{T V^{\gamma}, C D\right\}$ is harmonic. If the tangent at B meet $C D$ in T^{\prime}, we can prove in the same way that $\left\{T^{\prime} V^{\gamma}, C D\right\}$ is a harmonic range. Hence T and $T^{\prime \prime}$ coincide.

Ex. 4. If the pairs of tangents drawn to a circle from two points, A and B, cut any fifth tangent harmonically, show that the chord of contact of the tangents from A will pass through B.

Sce § 48, Ex. 5.

Poles and Polars.

243. If a straight line be drawn through a fixed point O, and if the point R be taken on it, which is the harmonic conjugate of 0 , with respect to the two points in which the line cuts a given circle, the locus of the point R will be a straight line.

Let P, Q be the points in which the straight line cuts the circle, and let E be the middle point of $P Q$. Then we have ($\S 54$, Ex. 1)

$$
O P . O Q=O E . O R
$$

Also if $A O B$ be the diameter of the circle which passes through O, and N the harmonic conjugate of O with respect to A and B, we shall also have

$$
O A . O B=O C . O N
$$

where C is the centre.
But
$O A . O B=O P . O Q$;
therefore
$O E . O R=O C . O N$.
Therefore the points C, E, R, N are concyclic. Hence it follows that the angle $O N R$ is a right angle.

Consequently, the locus of the point R is the straight line which passes through N and is at right angles to $C O$.

This straight line is called the polar of the point O with respect to the circle; and the point O is said to be the pole of the line.

It should be noticed that if the point O is without the circle, the straight line $O R$ may not intersect the circle in real points. But in this case the foot of the perpendicular from C may still be regarded as the middle point of $P Q$, and the proof given above applies.
244. The theorem of the last article may also be proved otherwise thus:

Let $P Q$ be any chord of a given circle which passes through the given point O, and let R be the harmonic conjugate of O with respect to the points P, Q.

Let C be the centre of the circle, and let a circle be drawn through the points C, P, Q, cutting $C O$ in the point N.

Then since $O C . O N=O P . O Q=O A . O B$, it follows that N is a fixed point.

Now C ' is the middle point of the arc $P C Q$, therefore $C N$ bisects the angle PAQ.

But $N\{O R, P Q\}$ is a harmonic pencil, by hypothesis. Therefore $N R$ must be the other bisector of the angle $P V Q$; that is, $R N C$ must be a right angle.

Therefore the point R always lies on the straight line which cuts $O C$ at right angles in the point N.
245. It is evident that the polar of a point within a circle cuts the circle in imaginary points; and that the polar of an external point cuts the circle in real points. Further, if 0 be an external point, it is easy to see that its polar will pass through the points of contact of the two tangents which can be drawn from O to the circle. Let any chord be drawn through the point O cutting the

circle in Q and Q^{\prime}, and the polar of O in the point R. Then if this line be turned about the point O, so as to make the points Q and Q^{\prime} approach one another, the point R, which lies between them, will ultimately coincide with them. Hence, if P be the point of contact of one of the tangents from O, when Q and Q^{\prime} coincide with the point P, so also will the point R. That is to say, P is a point on the polar of O.
246. To construct the polar of a point with respect to a given circle.

Let O be the given point, and let any two chords $P O Q, P^{\prime} O Q^{\prime}$

be drawn. Let $P P^{\prime}$ intersect $Q Q^{\prime}$ in S; and let $P Q^{\prime}, P^{\prime} Q$ intersect in S^{\prime}. Then $S S^{\prime}$ is the polar of O.

For O, S, S^{\prime} are the centres of the tetrastigm $P P^{\prime} Q Q^{\prime}$; and therefore $P O Q$ meets $S S^{\prime}$ in a point R, which is the harmonic conjugate of O with respect to P and Q.

Thus R is a point on the polar of O.
Similarly, if $P^{\prime} Q^{\prime}$ meet $S S^{\prime}$ in R^{\prime}, it follows that R^{\prime} is a point on the polar of O.

Hence $S S^{\prime}$ is the polar of 0 .
247. If the polar of a point P with respect to a circle pass through the point Q, the polar of Q will pass through P.

Let $P Q$ cut the circle in M and N. Then because $P M N$ cuts the polar of P in $Q,\{P Q, M N\}$ is a harmonic range. Therefore P must lie on the polar of Q.
248. We infer that the polars of every point on any straight line, with respect to a circle, pass through the same point, namely the pole of the straight line.

Suppose now that the polars of two points P and Q, intersect in the point R. Then since R is on the polar of P, P is on the polar of R. Similarly Q is on the polar of R. Hence, $P Q$ is the polar of R.

Thus, the line joining any two points is the polar of the point of intersection of the polars of the points; or, what is the same thing, the point of intersection of any two lines is the pole of the line joining the poles of the two lines.
249. This theorem furnishes us with a simple method for constructing the pole of a given straight line.

For take any two points on the line, and draw their polars; the point in which they intersect will be the pole of the given line.
250. It follows from $\S 247$ that the polar of any point on a circle is the tangent to the circle, and that the pole of any tangent to the circle is its point of contact.

Let R be any point on the circle, and let P and Q be any two points on the tangent at R. The polars of P and Q each pass through R; hence R is the pole of $P Q$. That is, R is the pole with respect to the circle of the tangent at R to the circle.
251. Ex. 1. If a chord of a circle pass through a fixed point, the locus of the point of intersection of the tangents at its estremities is the polar of the point with respect to the circle.

Ex. 2. If P be any point on the polar of O, show that the line $P O$ will be the harmonic conjugate of the polar of O with respect to the tangents from P to the circle.

Ex. 3. If any three points be collinear, show that their polars with respect to a circle will be concurrent.

Ex. 4. Show that the poles with respect to a circle of three concurrent lines are collinear.

Ex. 5 . If from any two points on a given straight line, pairs of tangents be drawn to a circle, show that the diagonals of the tetragram formed by them will intersect in the pole of the given line.

Ex. 6. The tangents at the points B and C on a circle intersect in the point A; and the tangent at any point P cuts the sides of the triangle $A B C$ in the points X, Y, Z. Show that $\left\{P_{X} X, Y Z\right\}$ is a harmonic range.

Ex. 7. Any two points P and Q are taken on a chord $A B$ of a circle, and the polars of P and Q cut $A B$ in the points P^{\prime}, Q^{\prime} respectively. Show that the range $\left\{A B, P P^{\prime}, Q Q^{\prime}\right\}$ is in involution.

Ex. 8. If $P M, Q N$ be drawn perpendicular to the polars of Q and P, with respect to a circle whose centre is O; show that

$$
\begin{equation*}
P M: Q N=O P: O Q . \tag{Salmon.}
\end{equation*}
$$

Ex. 9. The tangents at three points A, B, C on a circle form the triangle $A^{\prime} B^{\prime} C^{\prime}$. Show that the centre of perspective of the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$, is the pole with respect to the circle of the axis of perspective of the triangles.

Ex. 10. Show that the poles of the symmedian lines of a triangle, with respect to the circumcircle, lie on the corresponding sides of the triangle.

Hence show that if the symmedian lines of the triangle $A B C$ cut the circumeircle in the points $A^{\prime}, B^{\prime}, C^{\prime}$, the two triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are cosymmedian.

Ex. 11. Show that the lines drawn from the circumcentre of a triangle perpendicular to the symmedian lines intersect the corresponding sides of the triangle in three points which are collinear.

Ex. 12. Through the middle point O of a chord $A O B$ of a circle, are drawn any other chords $P O Q$, and ROS. If $P R, Q S$ cut $A B$ in H and K, show that O will be the middle point of $H K$.

Ex. 13. Given the base and the sum or difference of the sides of a triangle, show that the polar of the vertex with respect to a circle, whose centre is one extremity of the base, will always touch a fixed cirele.
252. Since every diameter of a circle is bisected at the centre, it follows that the harmonic conjugate of the centre of any circle with respect to the extremities of any diameter is the point at infinity on that diameter. Hence, we infer that the centre of any circle is the pole of the line at infinity.
253. It also follows that the pole of any diameter is the point at infinity on the diameter which is perpendicular to the given diameter.

Let O be the centre of a circle, and let P, P^{\prime} be the points in which two diameters at right angles cut the line at infinity. Then P is the pole of $O P^{\prime}$, and therefore the points P, P^{\prime} are harmonic conjugates with respect to the two imaginary points in which the circle cuts the line at infinity; or, what is the same thing, the two imaginary points in which the circle cuts the line at infinity are harmonic conjugates with respect to P and P^{\prime}. Again, if another pair of diameters at right angles be drawn cutting the line at infinity in the points Q and Q^{\prime}, it follows in the same way that the imaginary points in which the circle cuts the line at infinity are also harmonic conjugates with respect to Q and Q^{\prime}.

Hence, if we draw a series of pairs of diameters at right angles, the points in which they meet the line at infinity will form a range $\left\{P P^{\prime}, Q Q^{\prime}, \ldots\right\}$ in involution, having for double points the points in which the circle cuts the line at infinity.

If these points be joined to any point A, we clearly have a pencil $A\left\{P P^{\prime}, Q Q^{\prime}, \ldots\right\}$, such that the conjugate rays intersect at right angles, and the lines joining A to the points in which the
circle cuts the line at infinity are the double rays of this pencil.

Hence, we infer that every circle passes through the same two imaginary points on the line at infinity.

These two imaginary points have many important properties. They are called the circular points.
254. Since the centre of a circle is the pole of the line at infinity, it follows that the lines joining the centre of a circle to the circular points touch the circle at these points. Hence, concentric circles have the same tangents at the circular points, and therefore may be said to touch each other at the circular points.

Conjugate points and lines.

255. Any two points are said to be conjugate points with respect to a circle, when the polar of either passes through the other.

Any two straight lines are said to be conjugate lines with respect to a circle, when the pole of either lies on the other.

It is evident that the polars of a pair of conjugate points are conjugate lines; and that the poles of a pair of conjugate lines are conjugate points.
256. It is easy to see that there is in general only one point on a given straight line which is conjugate to a given point: namely, the point in which the given straight line cuts the polar of the given point. Similarly, through a given point we can draw but one line which shall be conjugate to a given straight line, unless the given point be the pole of the given line.
257. Ex. 1. Show that perpendicular diameters of a circle are conjugate lines with respect to the circle.

Hence, perpendicular diameters are called conjugate diameters.
Ex. 2. Show that the line joining any pair of conjugate points is cut harmonically by the circle.

Ex. 3. Show that the tangents drawn to a circle from the point of intersection of two conjugate lines with respect to the circle, form with these lines a harmonic pencil.

Ex. 4. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ;$ be pairs of conjugate points with respect to a circle, on the same straight line, show that $\left\{A A^{\prime}, B D^{\prime}, C C^{\prime \prime}\right\}$ is a range in involution.

Ex. 5. Through a point O two conjugate lines are drawn, and any tangent mects them in the points P and Q. Show that the other tangents from P and Q to the circle intersect on the polar of O.
258. Any two comjugate lines with respect to a circle, cut the circle in the points A, B and C, D respectively; if P be any other. point on the circle, the pencil $P\{A B, C D\}$ is harmonic.

Let O be the pole of $A B$, and let $A B$ intersect $C D$ in H.
Then, $\{O H, C D\}$ is a harmonic range ; and therefore the pencil $A\{O B, C D\}$ is harmonic.

Therefore $\quad \frac{\sin O A C}{\sin C A B}=\frac{\sin O A D}{\sin B A D}$.
But the angle $O A C$ is equal to the angle $A P C$, and the angle $C A B$ to the angle $C P B$.

Therefore

$$
\frac{\sin O A C}{\sin C A B}=\frac{\sin A P C}{\sin C P B} .
$$

Similarly we can show that

$$
\begin{aligned}
& \frac{\sin O A D}{\sin B A D}=\frac{\sin A P D}{\sin B P D} \\
& \frac{\sin A P C}{\sin C P B}=\frac{\sin A P D}{\sin B P D} .
\end{aligned}
$$

Therefore the pencil $P\{A B, C D\}$ is harmonic.
259. Ex. 1. If $A B$ be any chord of a circle, and if the conjugate line to $A D$ cut the circle in C and D, show that

$$
A C: C B=A D: B D .
$$

Ex. 2. If P, A, B, C, D be five pints on a circle, such that the pencil $l^{\prime}\{A D, C D)^{\prime}$ is harmonic, show that the lines $A B, C D$ are conjugate with respect to the circle.

Ex. 3. If A and B be a pair of conjngate points mith respect to a circle, show that the tangents drawn from them to the circle will cut any fifth timgent in a harmonic range.

Ex. 4. Deduce from $\S 258$, that if $A A^{\prime}, E D^{\prime}, C C^{\prime}$ be concurrent chords of a circle, and if P be any other point on the circle, the pencil $P\left\{A A^{\prime}, B B^{\prime}, C C^{\prime \prime}\right\}$ will be in involution.

Ex. 5. If P be any point on the polar of the point A with respect to the inscribed (or an escribed) circle of the triangle $A B C$, show that $P B$ and $P C$ will be conjugate lines with respect to the circle.

Ex. 6. Any straight line is drawn through the pole of the line $B C$, with respect to the circumcircle of the triangle $A B C$, cutting $A C, A B$ in the points Q and R. Show that Q and R are conjugate points with respect to the circle.

Ex. 7. The centre O of a circle $A B C$ lies on another circle $A B P$, any chord of which $O P$ cuts $A B$ in Q. Show that P and Q are conjugate points with respect to the circle $A B C$.

Ex. 8. If I be the centre of the inscribed circle of a triangle, and if $B P$, $C Q$ be drawn perpendicular to $C I, B I$ respectively; show that P and Q lie on the polar of A with respect to the circle.

Ex. 9. Through a fixed point of a circle chords are drawn equally inclined to a fixed direction; show that the line joining their extremities passes through a fised point.

Ex. 10. The tangents to a circle at the points A, B, C, form the triangle $A^{\prime} B^{\prime} C^{\prime \prime}$; and $A A^{\prime}$ cuts the circle in P. If from any point Q on the tangent at P^{\prime}, the other tangent $Q R$ be drawn, show that the pencil $Q\left\{R d^{\prime}, B^{\prime} C^{\prime}\right\}$ is harmonic.

Ex. 11. Three fixed tangents to a circle form a triangle $A B C$, and on the tangent at any point P is taken a point Q such that the pencil $Q\{P A, B C\}$ is harmonic. Show that the locus of the point Q is a straight line which touches the circle.

Ex. 12. Two conjugate lines with respect to a circle cut the circle in the points A, B; and C, D; respectively. Through any point P on $A B$ are drawn the lines $C P, D P$ cutting the circle in C^{\prime} and D^{\prime} : show that $C^{\prime} D^{\prime}$ passes through a fixed point on $A B$.

Ex. 13. Through a point O on a circle are drawn any two chords $O A$, $O B$. If a chord $P Q$ be drawn conjugate to $O A$ and cutting $O B$ in R, show that the pencil $A\{B R, P Q\}$ is harmonic.

Ex. 14. A fixed straight line meets a circle in A and B, and through a fixed point C on the line $A B$ is drawn a straight line meeting the tangents at A and B in P and Q; show that the other tangents to the circle from P and Q intersect in a point whose locus is a straight line.

Es. 15. The tangent at the point A to the circumcircle of the triangle $A B C$ meets the tangents at B and C in C^{\prime} and B^{\prime}. If the lines $O B^{\prime}, O C^{\prime}$ connecting B and C to any point O, meet $B C$ in P and Q, show that $A B, A C$ intersect $B^{\prime} Q, C^{\prime} P$, respectively, in points which lie on the polar of the point 0 .
260. The circle described on the line joining a pair of conjugate points with respect to a given circle, as diameter, will cut the given circle orthogonally.

Let P, Q be a pair of conjugate points with respect to the circle $S A B$, and let the circle whose diameter is $P Q$ cut the circle $S A B$ in the points A and B.

Let O be the centre of the circle $S A B$: and let $O P$ cut this circle in M and N, and the circle $P A Q$ in R.

Then, since $P R Q$ is a right angle, it follows that $Q R$ must be the polar of P with respect to the circle $S A B$.

Therefore $\{P R, M N\}$ is a harmonic range, and therefore

$$
O R \cdot O P=O M^{2}=O A^{2}
$$

Hence, $O A$ touches the circle $P A Q$ at the point A; and the circle $P A Q$ cuts the given circle orthogonally.
261. Ex. 1. If two circles cut orthogonally, show that the extremities of any diameter of either are conjugate points with respect to the other.

Ex. 2. If a system of circles be drawn to cut a given circle orthogonally, show that the polars with respect to them, of a point on the given circle, are concurrent.

Ex. 3. Show that any straight line which cuts one circle in a pair of print. conjugate with respect to another circle, cuts the latter in points which are conjugate with respect to the former.

Ex. 4. Show how to draw a straight line which shall cut two of three given circles in pairs of conjugate points with respect to the third.

Ex. 5. Show that the cireles described on the diagonals of a tetragram as diancters, cut the circumeircle of the triangle formed by the diagonals urthogomally.

Ex. 6. Any pair of conjugate points with respect to a given circle are taken as centres of two circles which cut the given circle orthogonally. Show that these circles will cut each other orthogonally.

Conjugate triangles.

262. The triangle formed by the polars of the vertices of a given triangle with respect to a circle, is called the conjugate triangle of the given triangle.

If $A B C$ be the given triangle, and $A^{\prime} B^{\prime} C^{\prime}$ the conjugate triangle, so that $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ are the polars of A, B, C, respectively, it follows by $\S 247$, that $A^{\prime}, B^{\prime}, C^{\prime}$ will be the polars of $B C, C A, A B$, respectively. Thus the triangle $A B C$ is the conjugate triangle of $A^{\prime} B^{\prime} C^{\prime}$.
263. In the particular case when a triangle coincides with its conjugate, that is when each vertex is the pole of the opposite side, the triangle is said to be self-conjugate.

Given any point A, we can always construct a triangle having one vertex at A, which shall be self-conjugate with respect to a given circle. Let any point B be taken on the polar of A, and let the polar of B cut the polar of A in the point C. Then the triangle $A B C$ is self-conjugate with respect to the circle.

For, since B lies on the polar of A, the polar of B passes through A. Therefore $A C$ is the polar of B. Also by $\S 248, C$ must be the polar of $A B$.
264. If $A B C$ be any self-conjugate triangle with respect to a

circle whose centre is O, it is easy to see that O must be the orthocentre of the triangle. For, since A is the pole of $B C, O A$ is perpendicular to $B C$. Similarly, $O B, O C$ are perpendicular to $C A$ and $A B$ respectively.

Let $O A$ meet $B C$ in X, and let r denote the radius of the circle, then we shall have

$$
r^{2}=O A . O X
$$

Hence it follows that, given the triangle $A B C$, only one circle can be drawn such that the triangle is self-conjugate with respect to it. The centre of the circle will be the orthocentre of the triangle, and its radius will be determined by the above formula.
265. This circle is called the polar circle of the triangle. It is evident that it is real, only when the orthocentre lies outside the triangle; that is, when one angle of the triangle is greater than a right angle. If one angle of a triangle be a right angle, the radius of its polar circle is evanescent.
266. Ex. 1. Show that the polar circle of a triangle cuts orthogonally the circles described on the sides of the triangle as diameters.

Ex. 2. If $A B C$ be any triangle and O its orthocentre, show that the polar circles of the four triangles $A B C, B O C, C O A, A O B$ are mutually orthotomic.

One of these circles is imaginary.
Ex. 3. The poiar circles of the four triangles formed by four straight lines, taken three at a time, cut orthogonally the circles described on the diagonals of the tetragram formed by the lines, as diameters.

Ex. 4. If $A B C$ be any self-conjugate triangle with respect to a circle, and if B and C be joined to any point P on the circle, show that $B P, C P$ will cut the circle in two points Q and R, such that $Q R$ will pass through A.

Ex. 5. If $A B C$ be any self-conjugate triangle with respect to a circle, and if $Q A R$ be any chord of this circle; show that $B Q, C R$ will intersect on the circle.

Also if $B Q$ intersect $C R$ in P, and if $B R$ intersect $C Q$ in P^{\prime}, show that I' $l^{\prime \prime}$ will pass through A.

Ex. 6. Show that oach side of a triangle cuts the polar circle in two points which are conjugate with respect to the circumcircle.

Ex. 7. Two triangles are self-conjugate with respect to a circle; show that their six vertices form a Pascal hexastigm, and that their six sides form a Brianchon hexagrarn.
267. Any triungle and its conjugate triangle with respect to a given circle are in perspective.

Let $A B C^{\prime}$ be any triangle, $A^{\prime} B^{\prime} C^{\prime}$ the conjugate triangle with
respect to a circle whose centre is 0 . Let $A X, A X^{\prime}$ be drawn perpendicular to $C^{\prime} A^{\prime}$ and $A^{\prime} B^{\prime} ; B Y, B Y^{\prime}$ perpendicular to $A^{\prime} B^{\prime}$ and $B^{\prime} C^{\prime}$; and $C Z, C Z^{\prime}$ perpendicular to $B^{\prime} C^{\prime}$ and $C^{\prime} A^{\prime}$.

Then since $A^{\prime} B^{\prime}$ is the polar of C, and $A^{\prime} C^{\prime}$ the polar of B, by § 251, Ex. 8,

$$
B Y: C Z^{\prime}=O B: O C
$$

similarly we shall have,

$$
C Z: A X^{\prime}=O C: O A
$$

and

$$
A X: B Y^{\prime}=O A: O B
$$

Therefore

$$
\frac{B Y}{C Z^{\prime}} \cdot \frac{C Z}{A X^{\prime}} \cdot \frac{A X}{B Y^{\prime}}=1
$$

Hence, by $\S 179$, the triangle $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective.
268. Let the sides of the triangle $A B C$ cut the corresponding sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$ in the points P, Q, R. Then, since A is the pole of $B^{\prime} C^{\prime}$ and A^{\prime} the pole of $B C$, it follows that P is the pole of $A A^{\prime}$. Similarly, Q and R are the poles of $B B^{\prime}$, and $C C$ respectively.

But, $A A^{\prime}, B B^{\prime}, C C^{\prime}$ meet in the centre of perspective of the two triangles; and P, Q, R lie on the axis of perspective.

Hence, the axis of perspective of any triangle and its conjugate is the polar of the centre of perspective of the triangles.
269. Ex. 1. Show that any triangle inscribed in a circle is in perspective with the triangle formed by the tangents at its vertices.

Ex. 2. If $A B C$ and $A^{\prime} B^{\prime} C^{\prime \prime}$ be a pair of conjugate triangles with respect to a circle whose centre O is the circumcentre of the triangle $A B C$; show that 0 will be the in-centre of the triangle $A^{\prime} B^{\prime} C^{\prime}$.

Tetrastigm inscribed in a circle.

270. The centres of any tetrastigm inscribed in a circle form a self-conjugate triangle.

Let $A B C D$ be any tetrastigm inscribed in a circle, and let E, F, G be its centres.

Then, if $A B, C D$ cut $G E$ in P and P^{\prime}, it follows by $\S 141$, that the ranges

$$
\{A B, P F\} \text { and }\left\{C D, P^{\prime} F\right\}
$$

are harmonic.
Therefore $G E$ is the polar of the point F.
Similarly, $E F, F G$ are the polars of G and E respectively.
Therefore $E F G$ is a self-conjugate triangle with respect to the circle.
271. Ex. 1. Show that the orthocentre of the triangle formed by the centres of a tetrastigm inscribed in a circle coincides with the centre of the circle.

Ex. 2. Show that the circles described on the sides of the triangle formed by the centres of any tetrastigm inscribed in a given circle, as diameters, cut the given circle orthogonally.

Ex. 3. If A and B be two fixed points on a circle and $P Q$ any diameter, show that the locus of the point of intersection of $A P$ and $B Q$ is a circle which cuts the given circle orthogonally in the points A and B.

Ex. 4. Two circles intersect orthogonally in the points A and B, and from any point P on one of them $P A, P B$ are drawn cutting the other in the point., ℓ and R. Show that $A R$ and $Q B$ intersect in a point which lies on the circle $P A B$.

Ex. 5. Through the vertex A of the triangle $A B C$, which is self-conjugate to a given circle, are drawn two straight lines cutting the circle in the points P, P^{\prime} and Q, Q^{\prime} respectively: show that if the pencil $A\{P Q, B C\}$ be harmonic, then B and C will be the other centres of the tetrastigm $P P^{\prime} Q Q^{\prime}$.

Ex. 6. Show how to inscribe a triangle in a given circle, so that its sides shall pass respectively through threc given points.

Let A, B, C be the given points; and let $A^{\prime} B^{\prime} C^{\prime}$ be the conjugate triangle to the triangle $A B C$, with respect to the given circle. Let $A A^{\prime}, B B^{\prime}, C C^{\prime}$ cut $B^{\prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime}$, and $A^{\prime} B^{\prime}$, in the points D, E, F respectively ; and let $E F, F D$,

$D E$ cut the circle in the points $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z$; respectively. Then these points determine two triangles $X Y Z, X^{\prime} Y^{\prime} Z^{\prime}$ which satisfy the given conditions.

For, since $A^{\prime} D, B^{\prime} E, C^{\prime} F$ are concurrent (§ 267), it follows (§ 96, Ex. 11) that $D\left\{C^{\prime} A, E F\right\}$ is harmonic. Therefore A is one of the centres of the tetrastigm $Y Z Y^{\prime} Z^{\prime}$, by the theorem in Ex. 5.
272. Let $A B C D$ be any tetrastigm inscribed in a circle, and let E, F, G be its centres. Then since $A C$ and $B D$ pass through E, which is the pole of $F G$, it follows that the poles of $A C$ and $B D$ must lie on $F G$.

Similarly the poles of $A B$ and $D C$ will lie on $E G$, and the poles of $B C$ and $A D$ on $F E$.

Hence, the tangents to the circle at the vertices of the tetrastigm $A B C D$ form a tetragram, whose vertices lie in pairs on the
lines $E F, F G, G E$; that is, the diagonals of the tetragram are the lines joining the centres of the tetrastigm.

273. If a tetrastigm be inscribed in a circle, any straight line will be cut in involution by the circle and the three pairs of opposite connectors of the tetrastigm.

Let $A B C D$ be a tetrastigm inscribed in a circle, and let any straight line be drawn cutting the connectors $A C, B D$ in P and P^{\prime}; the connectors $C D, A B$ in Q and Q^{\prime}; the connectors $A D, B C$ in R and R^{\prime}; and the circle in S and S^{\prime}.

Then the range $\left\{P P^{\prime}, Q Q^{\prime}, R R^{\prime}, S S^{\prime \prime}\right\}$ will be in involution.
Let $A C$ and $B D$ intersect in E. Then since the angles $P A R$, $R^{\prime} B P^{\prime}$ are equal,

Therefore

$$
\begin{gathered}
\frac{R P}{A R} \sin R P A=\frac{P^{\prime} R^{\prime}}{B R^{\prime}} \sin B P^{\prime} R^{\prime} \\
\frac{A R}{R P} \cdot \frac{P^{\prime} R^{\prime}}{B R^{\prime}} \cdot \frac{P E}{E P^{\prime}}=1
\end{gathered}
$$

Similarly, since the angles $R D P^{\prime}, P C R^{\prime}$ are equal,

$$
\frac{R D}{R P^{\prime}} \cdot \frac{P R^{\prime}}{R^{\prime} C} \cdot \frac{E P^{\prime}}{E P}=1
$$

Hence, $A R \cdot R D: B R^{\prime} . R^{\prime} C=R P \cdot R P^{\prime}: P R^{\prime} . P^{\prime} R^{\prime}$.
But since $A R D, S R S^{\prime}$ are chords of a circle, $A R . R D=S R . R S^{\prime}$.
And similarly $B R^{\prime} . R^{\prime} C=S R^{\prime} . R^{\prime} S^{\prime}$.

Therefore $S R . R S^{\prime}: S R^{\prime} . R^{\prime} S^{\prime}=R P \cdot R P^{\prime}: P R^{\prime} . P^{\prime} R^{\prime}$.
Hence, by $\S 76$, the range $\left\{S S^{\prime}, P P^{\prime}, R R^{\prime}\right\}$ is in involution.
Similarly it may be proved that the range $\left\{S S^{\prime}, Q Q^{\prime}, R R^{\prime}\right\}$ is in involution.

Consequently the range $\left\{S S^{\prime}, P P^{\prime}, Q Q^{\prime}, R R^{\prime}\right\}$ is in involution.
274. Ex. 1. If E, F, G be the centres of any tetrastigm inscribed in a circle, and P any given point, show that the conjugate rays of $E P, F P, G P$ with respect to the connectors of the tetrastigm which intersect in E, F, G, respectively, will intersect in a point which lies on the polar of P with respect to the circle.

If the point P be on the circle, the lines will intersect on the tangent at P.
Ex. 2. If in the last example, P^{\prime} be the point of intersection of the rays conjugate to $E P, F P$, and $G P$, show that P and P^{\prime} are the double points of the range in involution in which $P P^{\prime}$ is cut by the circle and the connectors of the tetrastigm.

Ex. 3. If E, F, G be the centres of a tetrastigm inscribed in a circle whose centres is O, the conjugate rays of $E O, F O, G O$ with respect to the connectors of the tetrastigm which pass through E, F, and G will be parallel.

Ex. 4. If through any point P, straight lines be drawn parallel to the connectors of a tetrastigm inscribed in a circle, they will form a pencil in involution, the double rays of which are perpendicular.

Hence, the bisectors of the angles formed by the pairs of opposite connectors of a tetrastigm inscribed in a circle are parallel.
275. Since every circle passes through the same pair of imaginary points on the line at infinity, it follows that a system of circles which have two finite points common may be considered as circumscribing the same tetrastigm. Consequently we have the theorem:

A system of circles having two common points, cuts any straight line in a range in involution.

Ex. 1. Two circles intersect in A and B, and a common tangent touches them in P and Q. Show that if a system of circles be drawn through the points A and B, they will cut the line $P Q$ in a range in involution, the double points of which are P and Q.

Ex. 2. Show that the polar of a given point with respect to any circle which passes through two fixed points, passes through a fixed point.

Tetragram circumscribed to a circle.

276. The diagonals of any tetragram circumscribed to a circle form a self-conjugate triangle with respect to the circle.

Let $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be the three pairs of opposite vertices of a tetragram circumscribed to a circle.

Let $A A^{\prime}$ cut $C C^{\prime}$ in H, then the pencil $B\left\{A A^{\prime}, H B^{\prime}\right\}$ is harmonic.

Therefore H is the pole of $B B^{\prime}$.
That is, the point of intersection of the diagonals $A A^{\prime}, C C^{\prime}$, is the pole of the diagonal $B B^{\prime}$.

Similarly it may be proved that $B B^{\prime}, C C^{\prime}$ intersect in the pole of $A A^{\prime}$; and that $A A^{\prime}, B B^{\prime}$ intersect in the pole of $C C^{\prime}$.

Hence, the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$ form a self-conjugate triangle.
277. Since H is the pole of $B B^{\prime}$, it follows that the polars of B and B^{\prime} must pass through H. That is, the lines joining the points of contact of $B A, B A^{\prime}$ and the line joining the points of contact of $B^{\prime} A, B^{\prime} A^{\prime}$ meet in the point of intersection of $A A^{\prime}, C C^{\prime}$.

Hence, the centres of the tetrastigm formed by the points of contact of the tetragram are the points of intersection of the diagonals of the tetragram.

It should be noticed that these theorems might have been inferred from § 272.
278. Ex. 1. If a tetrastigm be inscribed in a circle, show that the diagonals of the tetragram formed by the tangents at its vertices, intersect the three pairs of opposite connectors of the tetrastigm in six points which are the vertices of a tetragram.

Ex. 2. Show also that the three centres of the tetrastigm connect with the vertices of the tetragram' by six lines which constitute the connectors of a tetrastigm.

Ex. 3. If P be any point on the side $B C$ of a triangle $A B C$, self-conjugate with respect to a given circle, and if Q be the harmonic conjugate of P with respect to B and C; show that the tangents drawn from P and Q to the circle will form a tetragram whose diagonals are the sides of the triangle $A B C$.

Ex. 4. Construct a triangle whose sides shall touch a fixed circle, and whose vertices shall lie on three given straight lines.

Ex. 5. The tangents drawn from the vertices of a triangle $A B C$, to touch a given circle, meet the opposite sides in the points $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$; respectively. If P be the point of intersection of the other tangents which can be drawn from X and $X^{\prime} ; Q$ the point of intersection of the tangents from Y and Y^{\prime}; and R the point of intersection of the tangents from Z and Z^{\prime}; show that the triangles $P Q R, A B C$ are in perspective.

Ex. 6. If $A B C D$ be any tetrastigm inscribed in a circle, so that the connectors $A B, B C, C D, D A$ touch another circle in the points P, Q, R, S respectively, show that:-
(i) The lines $A C, B D, P R, Q S$ are concurrent.
(ii) $P R, Q S$ bisect the angles between $A C$ and $B D$.
(iii) The polars of the point of intersection of $A C$ and $B D$ with respect to the two circles are coincident.
279. The tangents drawn from any point to a circle, and the pairs of straight lines connecting the point to the three pairs of opposite vertices of a tetragram circumscribed to the circle, form a pencil in involution.

If $O P, O P^{\prime}$ be the tangents from O to the circle, and if A, A^{\prime}; $B, B^{\prime} ; C, C^{\prime}$ be the pairs of opposite vertices of a circumscribing tetragram, then the pencil $O\left\{P P^{\prime}, A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

Let G be the centre of the circle; then, since $G O$ bisects the angle $P O P^{\prime}$, we have $\sin A O P \cdot \sin A O P^{\prime}=\sin ^{2} A O G-\sin ^{2} P O G$.

If r denote the radius of the circle, and a the perpendicular from G on $A O$, this result may be written,

$$
G O^{2} \cdot \sin A O P \cdot \sin A O P^{\prime}=a^{2}-r^{2} .
$$

Let a^{\prime} denote the perpendicular from G on $O A^{\prime}$, and p the perpendicular on $A A^{\prime}$, then we shall have:
$\sin A O P \cdot \sin A O P^{\prime}: \sin A^{\prime} O P \cdot \sin A^{\prime} O P^{\prime}=a^{2}-r^{2}: a^{\prime 2}-r^{2}$,
$\sin A^{\prime} A B^{\prime} \cdot \sin A^{\prime} A B: \sin O A B^{\prime} . \sin O A B=p^{2}-r^{2}: a^{2}-r^{2}$,
$\sin O A^{\prime} B^{\prime} \cdot \sin O A^{\prime} B: \sin A A^{\prime} B^{\prime} \cdot \sin A A^{\prime} B=a^{\prime 2}-r^{2}: p^{2}-r^{2}$.
Therefore,
$\frac{\sin A O P \cdot \sin A O P^{\prime}}{\sin A^{\prime} O P \cdot \sin A^{\prime} O P^{\prime}}=\frac{\sin O A B^{\prime} \cdot \sin O A B \cdot \sin A A^{\prime} B^{\prime} \cdot \sin A A^{\prime} B}{\sin O A^{\prime} B^{\prime} \cdot \sin O A^{\prime} B \cdot \sin A^{\prime} A B^{\prime} \cdot \sin A^{\prime} A B}$.
But since the lines $B^{\prime} A, B^{\prime} O, B^{\prime} A^{\prime}$ are concurrent (§98),

$$
\frac{\sin B^{\prime} A^{\prime} A \cdot \sin B^{\prime} A O \cdot \sin B^{\prime} O A}{\sin B^{\prime} A^{\prime} O \cdot \sin B^{\prime} A A^{\prime} \cdot \sin B^{\prime} O A}=-1 ;
$$

and since the lines $B A, B O, B A^{\prime}$ are concurrent,

$$
\frac{\sin B A^{\prime} A \cdot \sin B A O \cdot \sin B O A^{\prime}}{\sin B A^{\prime} O \cdot \sin B A A^{\prime} \cdot \sin B O A}=-1
$$

Hence

$$
\frac{\sin A O P \cdot \sin A O P^{\prime}}{\sin A^{\prime} O P \cdot \sin A^{\prime} O P^{\prime}}=\frac{\sin A O B^{\prime} \cdot \sin A O B}{\sin A^{\prime} O B^{\prime} \cdot \sin A^{\prime} O B} .
$$

Therefore the pencil $O\left\{P P^{\prime}, A A^{\prime}, B B^{\prime}\right\}$ is in involution (§ 89). In the same way it may be shown that the pencil $O\left\{P P^{\prime}, A A^{\prime}, C C^{\prime}\right\}$ is in involution.

Hence, the pencil $O\left\{P P^{\prime}, A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ is in involution.
280. Ex. 1. If any line be drawn to intersect the diagonals $A A^{\prime}, B B^{\prime}$, $C C^{\prime \prime}$ of a tetragram circumscribed to a circle, in the points X, Y, Z, show that the harmonic conjugates of these points with respect to the pairs of opposite vertices of the tetragram lie on a straight line which is conjugate to the given line with respect to the circle.

Ex. 2. Show that the line which bisects the diagonals of a tetragram circumscribed to a circle passes through the centre.

Ex. 3. If any tetragram be circumscribed to a given circle, show that the circles described on the diagonals of the tetragram will intersect on a fixed circle concentric with the given circle.

Ex. 4. Given any straight line, find the point on it, such that the pencil in involution determined by a given circle and a circumscribed tetragram will have the given line as a double line.

Pascal's and Brianchon's theorems.

281. Pascal's theorem, which relates to a hexastigm inscribed in a circle, has already been proved in Chapter viII. (§ 181), where some further properties of such a hexastigm were investigated. Pascal's theorem asserts that the opposite connectors of a hexastigm inscribed in a circle intersect in three collinear points; that is to say, if A, B, C, D, E, F be any six points on a circle, then $A B, B C$, $C D$ will intersect $D E, E F, F A$, respectively, in three collinear points.

The theorem may be readily deduced as a consequence of the

theorem proved in §273, viz., that any circle and the pairs of opposite connectors of any inscribed tetrastigm determine a range in involution on any straight line.

Let A, B, C, D, E, F be any six points on a circle; let $E F$ cut $A B, C D, B C, A D$ in $P, P^{\prime}, Y, Y^{\prime}$ respectively; let $A F$ cut $C D$ in Z; and let $A B$ cut $D E$ in X.

Since $A B C D$ is a tetrastigm inscribed in the circle, therefore by $\S 273,\left\{E F, Y Y^{\prime}, P P^{\prime}\right\}$ is a range in involution.

But the connectors of the tetrastigm $A X D Z$ will cut the line $E F$ in a range in involution (§ 144). Therefore if $X Z$ cut $E F$ in W, the range $\left\{E F, Y^{\prime} W, P P^{\prime}\right\}$ will be in involution.

It follows that W must coincide with Y. Hence the points X, Y, Z must be collinear, which is Pascal's theorem.
282. Brianchon's theorem asserts that if a hexagram be circumscribed to a circle, the three diagonals which connect the pairs of opposite vertices will be concurrent. That is to say, if a, b, c, d, e, f be any six tangents to a circle, then lines joining the points $a b, b c, c d$ respectively to the points $d e, e f, f a$, will be concurrent. The theorem follows at once from § 180, Ex. 3, and it may'also be deduced from the theorem of $\S 279$.
283. Let us now consider the hexagram formed by drawing the tangents to a circle at the six points A, B, C, D, E, F; and let us denote these tangents by a, b, c, d, e, f.

It follows from $\S 272$, that the line connecting the points $a b, d e$ is the polar of the point of intersection of the lines $A B, D E$. And similarly, every diagonal of the hexagram will be the polar of the corresponding centre of the inscribed hexastigm.

Hence we may deduce properties of a hexagram circumscribed to a circle from the properties of a hexastigm inscribed in a circle.

Thus from the theorem: The fifteen connectors of a hexastigm inscribed in a circle intersect in forty-five points which lie three by three on sixty lines, which pass three by three through twenty points; we have the theorem: The fifteen vertices of any hexagram circumscribed to a circle, connect by forty-five lines which pass three by three through sixty points, which lie three by three on twenty lines.

When the points of contact of the hexagram are the vertices of the hexastigm, it is easy to see that the sixty Brianchon points of the former are respectively the poles of the sixty Pascal lines of the latter.

Ex. Show that if the Lemoine circle of the triangle $A B C$, eut the sides in the points $X, X^{\prime} ; Y^{\prime}, Y^{\prime} ; Z, Z^{\prime}$, respectively, the axis of perspective of the triangle $A B C$, and the triangle formed by the lines $Y^{\prime} Z, Z^{\prime} I^{\prime}, A^{\prime \prime} Y$, is the polar of the symmedian point of the triangle $A B C$ with respect to the Lemoine circle.

CHAPTER XI.

THE THEORY OF RECIPROCATION.

The Principle of Duality.

284. Let us suppose that we have given any geometrical figure consisting of an assemblage of points. The polars of each point of the figure with respect to a fixed circle constitute another figure consisting of an assemblage of lines. These figures are said to be reciprocal figures with respect to the fixed circle.

Let F and F^{\prime} be two such reciprocal figures; we propose to show that to every descriptive proposition concerning the figure F corresponds a proposition concerning the figure $F^{\prime \prime}$. That is to say, that when a proposition concerning any figure, regarded as an assemblage of points, has been proved, a corresponding proposition may be inferred for the reciprocal figure, regarded as an assemblage of lines; and vice versa. In fact it will be seen that the proofs of two such propositions will correspond step for step.

A proposition relating to any geometrical figure and the corresponding proposition relating to the reciprocal figure are called reciprocal propositions. The method by which the truth of a theorem is inferred from the reciprocal theorem, is known as the " principle of duality."
285. Firstly, let us consider the composition of two reciprocal figures. Let us suppose that F consists of certain points, lines, and curves. It is obvious that to each point of F will correspond a line of F^{\prime}; and to each point on any line of F will correspond a line of F^{\prime} passing through the pole of the line ($(247$). Consequently, to each line of F regarded as an assemblage of points will corre-
spond an assemblage of lines of F^{\prime} passing through a point. Or, we may say that to every line of F corresponds a point of $F^{\prime \prime}(\S 4)$.

Now let us consider a curve of the nth order as belonging to F. An arbitrary line will cut this curve in n points; and the lines of $F^{\prime \prime}$ corresponding to these points will be concurrent. Hence, corresponding to an assemblage of points of the nth order belonging to F, there will be an assemblage of lines of the nth class belonging to $F^{\prime \prime}$; that is, corresponding to a curve of the nth order belonging to F there will be a curve of the nth class belonging to $F^{\prime \prime}$.

In the same manner we may show that if there be a curve of the nth class belonging to the figure F, there will correspond a curve of the nth degree belonging to the figure $F^{\prime \prime}$.

It is evident that if the same process by which F^{\prime} was obtained from F, be applied to the figure $F^{\prime \prime}$ we shall obtain the original figure F. Hence the name "reciprocal figures."
286. Secondly, let us consider what relations will subsist between the several parts of a figure F^{\prime} corresponding to given relations between the corresponding parts of a given figure F, of which F^{\prime} is the reciprocal figure.
i. If certain points of F lie on a straight line, it follows from $\S 247$, that the corresponding lines of F^{\prime} will pass through a point.

Hence, corresponding to the line joining any two points of F, we shall have the point of intersection of the corresponding lines of F^{\prime}.
ii. If two lines of F intersect in the point P, the corresponding points of F^{\prime} will lie on the line which corresponds to P.

Hence, if several lines of F be concurrent, the corresponding points of F^{\prime} will be collinear.
iii. If certain points of F lie on a curve of the nth order, the corresponding lines of F^{\prime} will be tangents to a curve of the nth class.

Hence, corresponding to the tangent at a point P on a curve belonging to F, we shall have the point of contact with the corresponding curve of the line of $F^{\prime \prime}$ which corresponds to the point P. For a tangent to a curve, considered as an assemblage of points, is the line joining two consecutive points of the system, and a point
on a curve, considered as an assemblage of lines, is the point of intersection of two consecutive lines of the system.
iv. If two tangents to a curve belonging to F intersect in a point P, the corresponding points on the curve belonging to F^{\prime} will lie on the line which corresponds to the point P.
v. Corresponding to a point of intersection of two curves of F, we shall have a common tangent to the corresponding curres of F^{\prime}.

Hence, if two curves of F touch, the corresponding curves of F^{\prime} will touch each other.

Thus, it appears that to every descriptive proposition concerning any geometrical figure, a corresponding proposition may be inferred for the reciprocal figure.
287. We propose now to give in parallel columns some examples of descriptive theorems with their reciprocals. The reader however is recommended to attempt to form the reciprocal theorem for himself, before looking at the reciprocal theorem as given.

Ex. 1. If the lines connecting the corresponding vertices of two triangles be concurrent, the corresponding sides of the triangles will intersect in collinear points. (§ 161.)

Ex. 2. When three triangles are in perspective, and have a common centre of perspective, their three aves of perspective will be concurrent. (§ 170.)

Ex. 3. The nine lines which connect two triads of collinear points intersect in eighteen points which lie three by three on six lines, which pass three by three through two points. (§ 174.)

Ex. 4. In every tetrastigm the three pairs of opposite connectors intersect the opposite sides of the triangle formed by the centres of the tetrastigm, in six points which are the pairs of opposite vertices of a tetragram. (§ 148, Ex. 4.)

If the points of intersection of the corresponding sides of two triangles be collinear, the corresponding rertices of the triangles will lie on concurrent lines. (§ 163.)

When three triangles are in perspective, and have a common axis of perspective, their three centres of perspective will be collinear. (§ 168.)

The nine points of intersection of two triads of concurrent lines may be connected by eighteen lines which pass three by three through sis points, which lie three by three on two other lines. (§ 175.)

In every tetragram the three pairs of opposite vertices connect with the opposite vertices of the triangle formed by the diagonals of the tetragram, by six lines which are the pairs of opposite connectors of a tetrastigm. (§ 150, Ex. 2.)

Harmonic Properties.

288. Let us now consider what properties will subsist for a figure, reciprocal to a given figure, corresponding to harmonic properties of the given figure.

Let A, B, C, D be four collinear points of a fignre F, and let a, b, c, d be the corresponding lines of the reciprocal figure $F^{\prime \prime}$. Let O be the centre of the circle of reciprocation: then a, b, c, d are the polars with respect to this cirele of the points A, B, C, D respectively. Therefore a, b, c, d are respectively perpendicular to $O A, O B, O C, O D$.

Suppose now that $\{A B, C D\}$ is a harmonic range. Then $O\{A B, C D\}$ is a harmonic pencil, and consequently $\{u b, c d\}$ is a harmonic pencil. If, however, the line $A B C D$ passes through O, the lines a, b, c, d cut this line in points which are conjugate to A, B, C, D respectively ; and therefore ($\$ 257$, Ex. 2) the pencil $\{a b, c d\}$ is harmonic.

Hence, if four points of a figure form a harmonic range, the corresponding lines of the reciprocal figure form a harmomic pencil.
289. In the same way we can show that if any system of points of one figure form a range in involution, the corresponding system of lines of the reciprocal figure will form a peneil in involution.
290. The following are reciprocal theorems.

Ex. 1. The lines joining any centre of a given tetrastigm to the other centres are harmonic conjugate lines with respect to the connectors of the tetrastigm which pass through that centre. (§ 141.)

Ex. 2. Any straight line is cut in involution by the pairs of opposite connectors of any tetrastigm. ($\$ 144$.)

Ex. 3. On each diagonal of a tetragram are taken a pair of points harmonically conjugate to the vertices of the tetragram which lie on that diagonal. If three of these points be collinear, so also will be the other three points. (§ 153.)

The points in which any diagonal of a given tetragram cuts the other diagomals are harmonic conjugate points with respect to the vertices of the tetragran which lie on that diagonal. (\$149)

The lines connecting any point to the jairs of opposite vertices of a tetragram form a pencil in involution. ($\$ 154$.)

Through eavh centre of a tetrastigm are drawn a pair of linem harmonically conjugate to the connectors of the tetrastigm which intersect in that centre. If three of these lines be concurrent, so also will the the other three lines.

Reciprocation applied to metrical propositions.

291. Let A, B be any two points of a figure F, and let a, b be the corresponding lines of the reciprocal figure F^{\prime}. Let O be the centre of the circle of reciprocation, and let p denote the perpendicular distance from O on the line $A B$.

Then

$$
p \cdot A B=O A \cdot O B \cdot \sin A O B .
$$

But since a, b are the polars of A and B,

$$
\begin{gathered}
O a \cdot O A=O b \cdot O B=r^{2} ; \\
\sin A O B=\sin a b .
\end{gathered}
$$

and
Therefore if a and b intersect in P,
and

$$
\begin{aligned}
A B & =\frac{r^{2} . O P}{O a . O b} \sin a b \\
\sin a b & =\frac{p}{O A . O B} \cdot A B
\end{aligned}
$$

292. Let A be any point, and x any line of a figure ; and let a be the corresponding line, and X the corresponding point of the reciprocal figure.

Then, O being the centre of the circle of reciprocation, we have (§ 251, Ex. 8)

Therefore

$$
A x: X a=O A: O X
$$

$$
A x=\frac{r^{2}}{O X \cdot O a} \cdot X a
$$

293. By means of these formulae we are able to transform any metrical theorem so as to obtain the reciprocal theorem. In a great many instances it will be found that although the formulae
are apparently complicated, the reciprocal theorem is as simple as the original theorem.

> Ex. 1. If $\{A B C D\}$ be any range, $A B \cdot C D+B C \cdot A D+C A \cdot B D=0$.

Ex. 2. If the straight lines which connect the vertices A, B, C of a triangle to a point O, cut the opposite sides in X, Y, Z,

$$
\begin{equation*}
\frac{B \cdot Y \cdot C Y \cdot A Z}{X C \cdot Y A \cdot Z B}=1 \tag{§94.}
\end{equation*}
$$

Ex. 3. If a straight line move so as to be divided in a constant ratio by the sides of a triangle, the locus of a point which divides one of the segments in a given ratio will be a straight line.
If \{abcul\} te any pencil,
\sin chb. sin $c l+\sin h x^{\prime}$. sin cul

+ sinc ch. sin hal=0.

If any straight line cut the sides of a tringle $A B C$ in the promes X, I, Z,

$$
\frac{\sin B A X}{\sin C A A^{-} \sin A B A^{\circ} \cdot \sin A C \%}=1
$$

If a point move so that the sines of the angles subtended at it by the sides of a triangle are in constant ratio, the straight line which divides one of these angles into parts whose sines have a given ratio, will pasa through a fixed point.
294. To find the curve which is reciprocal to a circle. A circlo being a curve of the second order and second class, the reciprocal curve will be of the second class and second order. It will not in general be a circle. For if A be the centre of the given circle, l^{\prime} any point on it, we have

$$
A P=\frac{O A \cdot O X}{O x} \cdot \sin a x
$$

where x, and a, are the lines corresponding to the points P and A : and X denotes the point $a x$. Hence, denoting the line $O X$ by \approx we see that the ratio $\sin \mu x: \sin z x$ will be constant.

It follows that the figure reciprocal to a circle may be defined as the envelope of a line x which divides the angle between a fixed line a and a variable line z passing through a fixed point θ^{\prime}. into parts whose sines are in a constant ratio.

If we wish to obtain a definition for such a curve as a locus we must proceed otherwise.

Let $T Q$ be any tangent to the given circle, and let A bee its. centre. Let $X N$ be the polar of A, and P the pole of $Q T$ ' with respect to the circle of reciprocation. Let $O N^{\prime}, I^{\prime} N^{\prime}$ be perpendiculars on $N X$, and let $O T, A Q$ be perpendiculars on $T Q$.

Then we have (§ 251, Ex. S),

$$
A Q: P N=O A: O P .
$$

That is

$$
O P: P N=O A: A Q .
$$

Thus the reciprocal curve to the given circle is the locus of a point which moves so that its distance from a fixed point varies as its distance from a fixed straight line.
295. If however the circle of reciprocation be concentric with the given circle, let $Q T$ be a tangent to the given circle, and let P be its pole with respect to the circle of reciprocation; then we have OQ.OP constant, and therefore the locus of P will be a concentric circle.

When we wish to reciprocate theorems concerning a circle, it is usual to take the circle itself as the circle of reciprocation; for this circle evidently reciprocates into itself.
296. The following are examples of reciprocal theorems.

Ex. 1. If a tetrastigm be inscribed in a circle, its three centres form a self-conjugate triangle with respect to the circle. ($\$ 270$.)

Ex. 2. If a hexastigm be inscribed in a circle, its opposite connectors intersect in three collinear points. (Pascal's theorem.)

Ex. 3. If any system of chords of a circle be drawn through a fixed

If a tetragram be circumscribed to a circle, its three diagonals form a self-conjugate triangle with respect to the circle. (§ 276 .)

If a hexagram be circumseribed to a circle, the lines which connect the three pairs of opposite vertices will be concurrent. (Brianchon's theorem.)

If pairs of tangents be drawn to a given circle from points on a fixed
point, the lines which join their extremities to any point on the cirele will form a peneil in involution. (§ 259, Ex. 4.)

Ex. 4. If any straight line be drawn through the pole of $B C$, with respect to the circumeircle of the triangle $A B C$, cutting $A B$ and $A C$ in Q and R, Q and R will be conjugate points with respect to the circle. (§ 259, Ex. 6.)
line, they will cut any other tandent to the circle in a range in involution.

If any print P be taken on the polar of the print I with respect to the inscribet (or escribed) circle of the triangle $A B C^{\prime}$, the lines $P^{\prime} A^{\prime}, I^{\prime} C^{\prime}$ will be conjugate lines with respect to the cirele. (§ 259, Ex. 5.)

The Reciprocal of a circle.

297. It was proved in $\S 294$ that the reciprocal curre of a given circle is the locus of a point which moves so that its distance from the centre of reciprocation varies as its distance from the line which is the reciprocal of the centre of the given circle. Thus the reciprocal of a given circle is a conic section, whose focus is the centre of reciprocation and directrix the line which corresponds to the centre of reciprocation. Referring to § 264, we see that this conic will be an ellipse, hyperbola, or parabola, according as the centre of reciprocation lies within, without, or on the given circle.
298. We propose to derive a few of the properties of conic sections from the corresponding properties of the circle.

Ex. 1. A circle is a curve of the second order and second elass.

Ex. 2. Any tangent to a circle is perpendicular to the line joiuing its point of contact to the centre.

Ex. 3. The line joining the points of contact of two parallel tangents to a circle passes through the centre of the circle.

Ex. 4. Every chord of a cirele which subtends a right angle at a fised point on the circle passes through the centre.

Ex. $\mathbf{0}$. The difference of the perpendiculars let fall from a fixed point on any pair of parallel tangents to a cirele is constant.

A conic is a curve of the second class and second order. (\$205.)

Any point on a comic, and the point where its tangent meets the directrix subtend a right angle at the focus.

The pint of intersection of the tangents at the extremities of any focal chord of a conie intersect on the directrix.

The locus of the point of intersection of tangents to a paralula which cut at right angles is the directrix.

The difference of the reciprosals of the segnents of any focal chord of a conic is constant.

Ex. 6. The rectangle contained by the segments of any chord of a circle which passes through a fixed point is constant.

The rectangle contained by the perpendiculars drawn from the focus of a conic to a pair of parallel tangents is constant.
299. If any point P be taken on a given straight line x, and a pair of tangents be drawn to a given circle, we know that the straight line which is the harmonic conjugate of the line x with respect to the pair of tangents will pass through a fixed point, the pole of the line x with respect to the circle. Reciprocating with respect to any point we have the theorem: If a chord of a conic be drawn through a fixed point, the locus of the harmonic conjugute of the fixed point with respect to the extremities of the chord is a straight line.

This straight line is called the polar of the fixed point with respect to the conic. Thus the definition of the polar of a point with respect to a conic is exactly similar to the definition ($§ 243$) for a circle.

If we use the words 'pole,' 'conjugate,' and 'self-conjugate' in the same sense for a conic as in the case of a circle, we see that in enunciating the reciprocal of a given theorem concerning a circle, we shall have to interchange the words 'pole ' and 'polar ;' but the words 'conjugate' and 'self-conjugate' will be unchanged.

Ex. 1. The line joining any point to the centre of a circle is perpendicular to the polar of the point.

Ex. 2. Any triangle and its conjugate with respect to a circle are in perspective. (§267.)

Ex. 3. If a chord of a circle subtend a right angle at a fixed point, the locus of its pole is another circle.

Ex. 4. The centres of any tetrastigm inscribed in a circle form a triangle which is self-conjugate with respect to the circle. ($\S 270$.)

Ex. 5. The diagonals of a tetragram circumscribed to a circle form a triangle which is self-conjugate with respect to the circle. (§ 276.)

The line joining the point of intersection of any line with the directrix of a conic to the pole of the line subtends a right angle at the focus.

Auy triangle and its conjugate with respect to a conic are in perspective.

If two tangents to a conic intersect at right angles, the polar of the point of intersection envelopes a conic confocal with the given conic.

The diagonals of any tetragram circumscribed to a conic form a triangle which is self-conjugate with respect to the conic.

The centres of any tetrastigm inscribed in a conic form a triangle which is self-conjugate with respect to the conic.

CHAPTER XII.

PROPERTIES OF TWO CIRCIES.

Power of a point with respect to a circle.

300. If through a fixed point O, any straight line be drawn cutting a given circle in the points P and Q, the rectangle $O P . O Q$ has the same value for all positions of the line OP (Euclid, Bk. InI, Props. 35, 36). The value of this rectangle is called the pouer of the point O with respect to the circle.

If C be the centre of the circle, and R its radius, the power of the point O is equal to $O C^{2}-R^{2}$, which is equal to the square of the tangent drawn from O to the circle.

For convenience we propose to call the square on the distance between two points, the power of one point with respect to the other; and the perpendicular from a point on a straight line, the power of the point with respect to the line.
301. Ex. 1. If two circles intersect in the points A and B, the powers of any point on the line $A B$ with respect to the circles are equal.

Ex. 2. The locus of a point whose power with respect to a given circle is constant is a concentric circle.

Ex. 3. If the sum of the powers of a point with respect to two given circles (or a point and a circle) be constant, the lous of the print is a circle.

Ex. 4. Find a point O on the line joining the centres of two circles, such that its powers with respect to the two circles shall be equal.

Let A and B be the centres of the cireles; a and b their radii. Then $O A^{2}-a^{2}=O B^{2}-b^{2}$. But if E be the midlle point of $A B, ~\left(1.1^{4}-O B^{2}=\right.$ 2OE. $A B$. Therefore $20 E \cdot A B=a^{2}-b^{2}$. This determines the pesition of the point O uniquely, so that there is only one such point on the line $1 P$.

It should be noticed however, that the point at infinity on the line $A B$ may also be considered as a point whose powers with respect to the two circles are equal.
302. The locus of a point whose powers with respect to two given circles are equal, is a straight line.

Let A and B be the centres of the circles; and let a, b be their radii.

Let any circle be drawn cutting each of the circles in real points; and let the common chords of this circle and the given circles cut in the point P. Then evidently P is a point whose powers with respect to the given circles are equal.

Draw $P O$ perpendicular to $A B$.
Then since

$$
P A^{2}-a^{2}=P B^{2}-b^{2}
$$

therefore
or

$$
\begin{aligned}
O P^{2}+O A^{2}-a^{2} & =O P^{2}+O B^{2}-b^{2} \\
O A^{2}-a^{2} & =O B^{2}-b^{2} .
\end{aligned}
$$

Thus O is a point on $A B$ whose powers with respect to the two circles are cqual. But there is only one such point (§ 301, Ex. 4).

Hence, the locus of P is the straight line through the point O which is at right angles to $A B$.

This straight line is called the radical axis of the two circles.
303. Ex. 1. Show that the locus of point, whose power with respect to a circle is equal to its power with respect to a point, is a straight line.

Ex. 2. If the power of a point with respect to a circle be proportional to its power with respect to a straight line, show that the locus of the point will be a circle.

Ex. 3. If the powers of a point with respect to two given circles for points) be in a constant ratio, show that the locus of the print will be a circle.

Ex. 4. Show that the power of any point on the line at infinity with respect to any circle is constant.

The Radical axis of two Circles.

304. The radical axis of two circles is the straight line which is the locus of a point whose powers with respect to two given circles are equal.

When the circles intersect in real points, the radical axis passes through these points ($\$ 301$, Ex. 1). Hence the polars with respect to the circles of any point on their radical axis will intersect on the radical axis.

But whether the circles intersect in real points or not, the tangents to the circles from any point on the radical axis are equal. Therefore any circle which has its centre on the radical axis of two given circles, and which cuts one of them orthogonally will also cut the other orthogonally. Let such a circle cut the radical axis of the given circles in the points P and P^{\prime}. Then P and P^{\prime} will be conjugate points with respect to each of the given circles ($\$ 261$, Ex. 1). Therefore the polars of any point on the radical axis intersect on the radical axis.

Now let P, Q, R, \ldots be any points on the radical axis of two circles; and let the polars of these points with respect to the circles intersect in $P^{\prime}, Q^{\prime}, R^{\prime}, \ldots$, respectively: Then $\left\{P P^{\prime}, Q Q^{\prime}, R R^{\prime}, \ldots\right\}$ is a range in involution. And the double points of this range must be the points in which the radical axis cuts either circle. It follows that the radical axis of two circles passes through their points of intersection, whether these points be real or imaginary.
305. The radical axes of any three circles taken two at a time are concurrent.

Let two of the radical axes meet in the point P. Then evidently the powers of the point P with respect to the circles are equal. Therefore P is a point on the third radical axis.

The point of concurrence of the radical axes of three circles is called the radical centre of the circles.
306. Hence, we can construct the radical axis of two circles which do not intersect in real points.

Draw any circle cutting the given circles in real points, and let the radical axes, that is the common chords, of these circles intersect in the point P. Then P is a point on the radical axis of the given circles.

Similarly, by drawing another circle we can find another point Q on the radical axis.

The line $P Q$ will then be the radical axis of the circles.
307. Ex. 1. Show that the six radical axes of the inscribed and escribed circles of any triangle are the six comectors of a tetrastigm, each vertex of which is the orthocentre of the triangle formed by the other three.

Ex. 2. If $A D, B E, C F$ be the perpendiculars on the sides of the triangle $A B C$, show that the axis of perspective of the triangles $A B C, D E F$, is the radical axis of the circumcircles of the triangles.

Ex. 3. Show that the radical axis of the circumcircle of a triangle and the Lemoine circle of the triangle, is the polar of the symmedian point with respect to the Lemoine circle.

Ex. 4. Show that the circumcircle of a triangle, its polar circle, and its nine-point circle have a common radical axis.

Ex. 5. Three circles are described with their centres on the sides $B C$, $C A, A B$ of the triangle $A B C$, and cutting the circumcircle at right angles in A, B, C, respectively. Prove that these circles have a common radical axis.
[St John's Coll., 1886.]
Ex. 6. Any four points A, B, C, D are taken in a circle; $A C, B D$ intersect in $E ; A B, C D$ in F; and $A D, B C$ in G. Show that the circles circumscribing the triangles $E A B, E C D$ intersect the lines $A D, B C$, in four
points lying on a fourth circle; and that if these four circles be taken three at a time, the radical centres of the systems so formed will be the vertices of a parallelogram whose diagonals are the line $E F$ and a line parallel to $F O$.
[Math. Tripos, 1ヶs ${ }^{\text {. }}$]
Ex. 7. The locus of a point the difference of whose powers with respect to two given circles is constant, is a straight line parallel to the radical axes of the circles.
308. The radical axis of two circles might have been defined as the locus of the centre of a circle which cuts each of them orthogonally.

For if P be the centre of a circle which cuts two given circles orthogonally, the radius of the circle is equal to the tangent drawn from P to either of the given circles. Hence P must be a point on the radical axis of the circles.

Hence we infer that only one circle can be drawn to cut three given circles orthogonally. The centre of this circle is clearly the radical centre of the given circles.
309. Every circle which cuts two given circles orthogonally, passes through two fixed points on the line joining the centres of the given circles.

Let A and B be the centres of the given circles; and let $O P$ be their radical axis, cutting $A B$ in the point O. Let any circle which cuts the circles orthogonally meet $A B$ in L and $L^{\prime} ;$ and let P be the centre of this circle.

Then

$$
P L^{2}=P Q^{2}=P A^{2}-A Q^{2} .
$$

Therefore

$$
O L^{2}=O A^{2}-A Q^{2}
$$

Hence the circle whose centre is O, and radius $O L$, will cut the given circles orthogonally.

It follows that every circle which cuts the given circles orthogonally will pass through the points L, L^{\prime}.

It is easy to see that these points are real or imaginary according as the given circles intersect in imaginary or real points.
310. Ex. 1. If two circles cut two other circles orthogonally, show that the radical axis of either pair is the line joining the centres of the other pair.

Ex. 2. If four circles be mutually orthotomic, show that the centre of any one of them is the orthocentre of the triangle formed by the centres of the other three.

Ex. 3. Show that the points L and $L^{\prime}(\S 309)$ are conjugate points with respect to each of the given circles.

Ex. 4. If $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be the pairs of opposite vertices of a tetragram, show that the circles described on $A A^{\prime}, B B^{\prime}, C C^{\prime}$ have a common radical axis, which passes through the centre of the circumcircle of the triangle formed by the lines $A A^{\prime}, B B^{\prime}, C C^{\prime}$.

Ex. 5. If four circles cut a fifth circle orthogonally, show that their six radical axes form a pencil in involution.
311. The difference of the powers of any point with respect to two given circles is proportional to the power of the point with respect to the radical axis of the circles.

Let A and B be the centres of the circles; $O M$ their radical axis; and let G be the middle point of $A B$.

Let P be any point; and let $P M, P N$ be the perpendiculars from P on $O M$ and $A B$.

Then the difference of the powers of P with respect to the circles is equal to

$$
P R^{2}-P Q^{2},
$$

that is,

$$
P B^{2}-P A^{2}+A D^{2}-B E^{2},
$$

or,

$$
N B^{2}-N A^{2}+A D^{2}-B E^{2} .
$$

But

$$
N B^{2}-N A^{2}=2 N G . A B,
$$

and (§ 301, Ex. 4),

$$
A D^{2}-B E^{2}=2 O G . B A
$$

Therefore

$$
\begin{aligned}
P R^{2}-P^{P} Q^{2} & =2 G N \cdot B A+2 O G \cdot B A \\
& =2 O N \cdot B A=2 P M \cdot A B .
\end{aligned}
$$

Thus the difference of the powers of the point P with renpect to the given circles is equal to $2 P M . A B$.
312. Ex. l. Show that the power, with respect to a circle, of a print on another circle, is proportional to the power of the point with respect to the radical axis of the circles.

Ex. 2. Given any three circles having a common radical axis, show that the powers with respect to two of them of any point on the third circle are in a constant ratio.

Ex. 3. If the powers of any point with respect to two given circles lee in a constant ratio, show that the locus of the point is a circle which has a common radical axis with the given circles.

Ex. 4. The radius of a circle which touches two given circles bears a constant ratio to the distance of its centre from the radical axis of the given circles.

Power of two circles.

313. The square on the distance between the centres of $t w o$ circles less the squares on their radii is called the power of the two circles, or the power of one circle with respect to the other.

It will be convenient to consider the angle of intersection of two circles to be the angle subtended at either point of intersection by the line which joins the centres of the circles; so that in the case of two equal circles, the angle of intersection is the angle through which one of them must be turned about its point of intersection with the other, so that the two may coincide.

If d denote the distance between the centres of two circles; r, r^{\prime} their radii; and θ their angle of intersection; the prwer of the circles is equal :" $d^{2}-r^{2}-r^{\prime 2}$, or $-2 r r^{\prime} \cos \theta$.

The power of two circles is always a real magnitude, even when the circles are imaginary, provided their centres are real points; but it may be either positive or negative. When the circles cut orthogonally the power vanishes; when they touch the power is equal to $\pm 2 r^{\prime}$ according as the contact is external or internal.

The power of two coincident circles, that is the power of a circle with respect to itself, is equal to $-2 r^{2}$.

If any two circles be denoted by X, Y, the power of the circles is usually denoted by (X, Y).
314. It is often convenient to consider a point as a circle whose radius is indefinitely small, and a straight line as a circle whose radius is infinitely great. When a point is treated as a circle, it is usually referred to as a point-circle.

If in the definition of the power of two circles, either of the circles be a point-circle, its power with respect to the other is clearly equal to the square on the tangent which can be drawn from the point to the circle. So that the defiuition given in $\S 300$ is included in that given in §313. Similarly, the power of two point-circles will be the square of the distance between the points.

In the case of a circle and a straight line, considered as a circle whose radius is infinite, the power is clearly proportional to $r \cos \theta$, where r is the radius of the circle, and θ the angle at which the circle cuts the line. Hence we may take as the power of a straight line and a circle the perpendicular distance from the centre of the circle on the straight line. Similarly we may take as the power of two straight lines the cosine of their angle of intersection.

Considering the case of the line at infinity, it is easy to see that the powers of any two circles with respect to the line at infinity will be in a ratio of equality, but the power of a straight line with respect to it will be zero.
315. The definitions given in the last article are seldom required, but it will generally be found that if any theorem relating to points, lines, and circles, can be expressed as a powertheorem (that is a metrical theorem in which the only metrical magnitudes involved are powers), a corresponding theorem may be enunciated for a more general figure in which the points and lines are replaced by circles.

Ex. 1. If the power of a variable circle with respect to a given circle be constant, the variable circle will cut orthogonally a fixed circle concentric with the given circle. (Cf. § 301, Ex. 2.)

Let X denote the fixed circle, and Z the variable circle; let A, C denote their centres ; and let a, c denote their radii. Then we have $A C^{2}-a^{2}-c^{2}=$ constant $=k^{2}$. Heuce, if a circle X^{\prime} be described with A for centre, and
radius a^{\prime}, given by $a^{\prime 2}=a^{2}+k^{\prime 2}$, it is clear that the power of the circles $\%$ and X^{\prime} will be zero; that is, the circle Z will cut X^{\prime} orthognally.

Ex. 2. If the sum of the powers of a variable circle and two given circles be constant, the variable circle will cut orthogonally a fixed circle. (C'f. § 301 , Ex. 3.)

Ex. 3. The difference of the powers of a circle with respect to two given eircles is proportional to the power of that circle with respect to the rulical axis of the given circles. (Cf. § 311.)

Ex. 4. If a circle be drawn cutting orthogonally one of two given circles, its power with respect to the other given circle is proportional to its pmer with respect to the radical axis of the given circles. (Cf. § 312, Ex. 1.)

Ex. 5. If the powers of a variable circle with respect to two given circles be in a constant ratio, the variable circle will cut orthogonally a fixed circle which has a common radical axis with the given circles. (Cf. $\$ 312$, Ex. 3.)

Ex. 6. If a circle touch two given circles it must cut orthogonally one or other of two fixed circles.

Ex. 7. The locus of the centre of a circle which bisects two given circles, that is cuts them in points which are opposite ends of diameters, is a straight line parallel to the radical axis of the circles.

Ex. 8. Show that one circle can be drawn which shall bisect three given circles, and construct it.

Ex. 9. Show that one circle can be drawn which shall be bisectel by three given circles.

This circle is coneentric with, and cuts orthogonally the circle which cuts the given circles orthogonally. Hence, the former is a real circle only when the latter is imaginary.

Centres of similitude of two circles.

316. Any two circles may evidently be regarded as diagrams of the same figure drawn to different scales. Hence two circles may be considered as directly similar figures ($\S 216$).

Let P be any point on one circle: then we may obviously take any point P^{\prime} on the other circle as the point which corresponds to P. The correspondence will then be determined. For, if the points Q, Q^{\prime} be any other pair of corresponding points, the arres $P Q, P^{\prime} Q^{\prime}$ must subtend at the centres of the circles equal angles measured in the same sense. It follows that there will be an infinite number of positions for the centre of similitude.

Let us suppose that we have given a pair of corresponding points on the two circles.

To find the centre of similitude we must proceed as in $\S 205$. Thus let P and P^{\prime} be the given points which correspond, and let C and C^{\prime} be the centres of the circles. Then if $C P$ meet $C^{\prime} P^{\prime}$ in T, the circles which circumscribe the triangles $T P P^{\prime}, T C C^{\prime}$ will intersect in the centre of similitude.

Let S be the centre of similitude, then it follows from $\S 214$, that

$$
S C: S C^{\prime}=S P: S P^{\prime}=C P: C^{\prime} P^{\prime}
$$

Hence the locus of the centre of similitude of two circles is a circle which has a common radical axis with the point-circles C and C^{\prime} (§ 319, Ex. 3).

This circle is called the circle of similitude of the given circles.
317. Ex. 1. Show that the circle of similitude of two given circles has with them a common radical axis.

Let S be any point on the circle of similitude. Then $S C: S C^{\prime}=r: r^{\prime}$; therefore the powers of the point S with respect to the given circles are in the ratio of the squares on their radii. Hence, the theorem follows from § 312, Ex. 3.

Ex. 2. Show that if from any point on the circle of similitude of two given circles, pairs of tangents be drawn to both circles, the angle between one pair will be equal to the angle between the other pair.

Ex. 3. Show that the three circles of similitude of three circles taken in pairs have a common radical axis.

Ex. 4. Show that the three circles of similitude of three given circles cut orthogonally the circumcircle of the triangle formed by the centres of the given circles.

Ex. 5. Prove that there are two points, each of which has the property that it. distances from the angular points of a triangle are proportional to the
opposite sides; and that the line joining them passes through the centre of the circumcircle.
[Math. Tripos, 1888.]
This theorem is also true when the distances from the angular points are in any given ratio.

Ex. 6. If A, B, C, D be any four points on a circle; and if $A B, C D$ intersect in $E: A C, B D$ in F; and $A D, C B$ in G; show that the circle described on $F G$ as diameter is the circle of similitude of the circles described on $A B$ and $C D$.

Ex. 7. If O be the orthocentre, and G the median point of the triangle $A B C$, show that the circle described on $O G$ as diameter is the circle of similitude of the circumcircle and nine-point circle of the triangle.
318. Given a centre of similitude of two given circles to find the corresponding points on the circles.

Let C, C^{\prime} be the centres of the given circles; S the given centre of similitude, on the circle of similitude.

If P be any point on the circle whose centre is C, the corresponding point P^{\prime} on the other circle will be such that the angles $C S P, C^{\prime} S P^{\prime}$ are equal and measured in the same sense ($\$ 214$).

Also the angle $P S P^{\prime}$ will be equal to the angle $C S C^{\prime}$. Hence if S coincide with either of the points in which the circle of similitude cuts the line $C C^{\prime}$, the points P and P^{\prime} will be collinear with S. That is, the circles will have these points for homothetic centres (§ 213).
319. Let the circle of similitude cut the line joining the centres C, C^{\prime} in the points H and H^{\prime}. Then when it is necessary to distinguish these points, we shall call that point which does not lie between the centres the homothetic centre of the circles, and the point which lies between the centres the anti-homothetic centre of the circles.

These points are often called the external and internal centres of similitude, but these names are clearly inappropriate, since any point on the circle of similitude may be considered as a centre of similitude.
320. Ex. 1. Show that two of the common tangents of two circles pass through each homothetic centre.

Ex. 2. If $I I$ and I^{\prime} be the homothetic centres of two circles whose centres are C and C^{\prime}, show that $\left\{H H^{\prime}, C C^{\prime}\right\}$ is a harmonic range.

Ex. 3. If K^{\prime} and K^{\prime} be the poles of the radical axis of two circles, and I and I^{\prime} their homothetic centres, show that $\left\{K K^{\prime}, H H^{\prime}\right\}$ is a harmonic range.

Ex. 4. If through either homothetic centre of two circles, a line be drawn to cut the circles in the points $P, Q ; P^{\prime}, Q^{\prime}$; respectively, so that P^{\prime} and P^{\prime} are corresponding points; show that

$$
H P \cdot H Q^{\prime}=H Q \cdot H P^{\prime}
$$

and that these rectangles have a constant value for all positions of the line $I I P$.

Ex. 5. If the line joining the homothetic centres of two circles, cut them in A, B and A^{\prime}, B^{\prime} respectively, show that $\left\{H H^{\prime}, A B, A^{\prime} B^{\prime}\right\}$ is a range in involution.

Ex. 6. Through either homothetic centre of two given circles are drawn two lines $H P, H_{p}$ cutting the circles respectively in the points P, Q, p, q; $l^{\prime}, \mathscr{C}^{\prime}, p^{\prime}, q^{\prime}$; show that any pair of non-corresponding chords such as $l^{\prime} p$, ' ' q ' will intersect on the radical axis of the given circles.

Since $H P^{\prime} . H\left(\gamma=I_{p}\right.$. $H_{q^{\prime}}$ (Ex. 4), the points $P, Q^{\prime}, p, q^{\prime}$ are concyclic. Therefore if $l^{\prime} p$, meet $\ell^{\prime} q^{\prime}$ in $T, T P . T p=T \ell^{\prime} . T q^{\prime}$. Hence T is a point on the radical axis of the circles.

Ex. 7. If from any point T, on the radical axis of two circles, tangents be drawn to the circles; show that the homothetic centres of the circles will be two of the centres of the tetrastigm formed by the points of contact.

Ex. 8. The line joining the centres of two circles meets one of the circles in the point A, and the other in the point B; and P is any point on the radical axis of the circles. If $P A, P B$ cut the circles in Q and R, show that the tangents at Q and R meet on the radical axis.

Ex. 9. If any circle be drawn to touch two given circles, show that the line joining the points of contact will pass through one of the homothetic centres.

Let a circle be drawn touching two given circles in the points P and Q^{\prime}. Then, if O be its centre, and A and B the centres of the given circles, it is evident that $A P, B Q^{\prime}$ are equally inclined to $P Q^{\prime}$. Therefore, if $P Q^{\prime}$ cut the given circles in Q and $P^{\prime}, A Q$ and $B Q^{\prime}$ are parallel. Therefore $P Q$ must pass through H, one of the homothetic centres of the given circles.

If the variable circle touch the given circles both internally, or both externally, the line joining the points of contact will pass through the homothetic centre of the given circles; but if the circle touch one of the given circles internally and one externally, the line joining the points of contact will pass through the anti-homothetic centre.

Ex. 10. Show that if a variable circle touch two given circles it will cut orthogonally one or other of two fixed circles, whose centres are the homothetic centres of the given circles, and which have a common radical axis with the given circles.

Ex. 11. If two circles be drawn to touch two given circles, show that the radical axis of either pair will pass through a homothetic centre of the other pair, provided that: if one of the circles touches the given circles both externally or both internally, so also does the other; or, if one of the circles touch one of the given circles internally and the other externally, so also does the other.

Ex. 12. Two circles are drawn through a fixed point O to touch two fixed straight lines $A B, A C$ in the points D, E and F, G respectively. Show that the circles circumscribing the triangles $O D E, O F G$ touch one another in the point O.
[St John's Coll. 1887.]
Ex. 13. Two circles $A P B, A Q B$ touch a third in the points P and Q. Show that

$$
A P: A Q=B P: B Q
$$

Ex. 14. If the inscribed circle of the triangle $A B C$ touch the side $B C$ in the point P, and if D, R be the middle points of $B C$ and $A P$, show that $D R$ passes through the centre of the inscribed circle.

Let the escribed circle which is on the opposite side of $B C$ touch $B C$ in Q, and let $A Q$ cut the inscribed circle in P^{\prime}. Then, since A is the homothetic centre of the two circles, if O, O^{\prime} be the centres of the circles, $O P^{\prime}$ and $O^{\prime} Q$ are parallel. Hence P, O, P^{\prime} are collinear. But D is the middle point of $P Q$: Thercfore D, O, R are collinear.

The theorem is also true of any one of the circles which touch the sides of the triangle.

For another proof of this theorem see § 241.
Ex. 15. If O, O^{\prime} be the centres of any two circles which touch two given circles in the same sense, at the points P, Q and P^{\prime}, Q^{\prime} respectively, show that

$$
P Q^{2}: P Q^{\prime 2}=A O . B O: A O^{\prime} \cdot B O^{\prime}
$$

where A and B are the centres of the given circles.
Ex. 16. A circle whose centre is O touches two given circles, whose centres are A and B, at P and Q, and $F G$ is the common tangent of the given circles which passes through the point of intersection of $A B$ and $P Q$. Show that

$$
P Q^{2}: F G^{2}=O P^{2}: A O . B O .
$$

321. The six homothetic centres of three circles taken in pairs, are the six rertices of a tetragram.

Let A, B, C be the centres of the given circles; and let their radii be denoted by a, b, c. Let X, Y, Z be the homothetic centres and $X^{\prime}, Y^{\prime}, Z^{\prime}$ the anti-homothetic centres of the three pairs of circles.

Then since

$$
\begin{aligned}
& B X: C X=b: c \\
& C Y: A Y=c: a \\
& A Z: B Z=a: b
\end{aligned}
$$

therefore

$$
\frac{B X}{C X} \cdot \frac{C Y}{A Y} \cdot \frac{A Z}{B Z}=1 .
$$

Therefore (§ 105) the points X, Y, Z are collinear.
Again, since

$$
\begin{aligned}
& C Y^{\prime}: Y^{\prime} A=c: a \\
& A Z^{\prime}: Z^{\prime} B=a: b ;
\end{aligned}
$$

therefore

$$
\frac{B X}{C X} \cdot \frac{C Y^{\prime}}{Y^{\prime} A} \cdot \frac{A Z^{\prime}}{Z^{\prime} B}=1 ;
$$

that is,

$$
\frac{B X}{C X} \cdot \frac{C Y^{\prime}}{A Y^{\prime}} \cdot \frac{A Z^{\prime}}{B Z^{\prime}}=1
$$

Therefore the points $X, Y^{\prime}, Z^{\prime}$ are collinear.
In the same way we may show that the points $X^{\prime}, Y, Z^{\prime}$ are collinear ; and that the points $X^{\prime}, Y^{\prime}, Z$ are collinear.

Hence $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$ are the opposite pairs of vertices of a tetragram.

These four lines are called the axes of similitude or the homothetic axes of the given circles.
322. Ex. 1. Show that the lines $A X, A X^{\prime} ; B Y, B Y^{\prime} ; C Z, C Z^{\prime}$ are the three pairs of opposite connectors of a tetrastigm.

Ex. 2. If a variable circle touch two fixed circles, the line joining the points of contact passes through one of the homothetic centres of the given circles.

Let A, B denote the given circles, and let X denote a circle touching A and B in the points P and Q. Then P and Q are homothetic centres of the pairs of circles A, X; and B, X; respectively.

Ex. 3. If the nine-point circle of the triangle $A B C$ touch the inscribed circle at the point P, and the escribed circles at the points P_{1}, P_{2}, P_{3}; show that $P P_{1}$ and $P_{2} P_{3}$ cat $B C$ in the same points as the internal and external bisectors of the angle $B A C$.

Ex. 4. Describe a circle which shall touch two given circles and pass through a given point.

Let E be the given point. Let it be required to draw a circle passing through E, which shall touch each of the given circles externally. Then the line joining the points of contact P and Q^{\prime} must pass through H, and $H P \cdot M Q=M A A^{\prime} . M B$.

Draw the circle $A^{\prime} B E$, and let it cut $H E$ in F, and one of the giveu circles in R. Let $B R$ cut $E F$ in T, and from T draw a line touching the circle $B R A$ in I. Then the circle circumscribing the triangle $E F P$ will touch the given circles.

Since two tangents may be drawn from the point T to the circle $A B R$, it follows that two circles can be drawn to touch the given circles, so that the line joining the points of contact shall pass through the homothetic centre H.

Similarly, it is evident that two circles can be drawn to pass through E and touch the given circles, so that the line joining the point of contact shall pass through the anti-homothetic centre H^{\prime}.

Thus, four circles can be drawn satisfying the given conditions.
Ex. 5. Show how to describe a circle which shall touch three given circles.

There will generally be cight circles which can be drawn to touch three given circles; that is, two circles touching the given circles each in the same sense, and three pairs of circles which touch one of the given circles in the opposite sense to that in which it touches the other two.

Let us suppose that O is the centre of the circle which touches each of the three given circles externally. Let A, B, C be the centres of the given circles; and let a, b, c denote their radii, and let us suppose that a is not greater than b or c. Then, if r denote the radius of the circle which touches them, it is evident that a circle described with O for centre, and with radius equal to $r+a$, will pass through the point A and touch externally two circles whose centres are B and C, and radii $b-a, c-a$, respectively.

Now this circle may be easily constructed as in Ex. 4; and thus we shall be able to find the point 0 .

In the same manner the centres of the other seven circles can be found.
Ex. 6. If two circles X, X^{\prime} be drawn to touch three given circles A, B, C, so that each touches all of the given circles externally, or all internally, show that the radical axis of X and X^{\prime} passes through the three homothetic centres of A, B, and C; and that the radical centre of A, B, and C is the anti-homothetic centre of X and X^{\prime}.

Ex. 7. Describe a circle which shall touch two given circles and cut a given circle orthogonally.

Show that four circles can be drawn satisfying these conditions.

CHAPTER XIII.

COAXAL CIRCLES.

The Limiting Points.

323. If any system of circles have a common radical axis, the circles are said to be coaxal.

It was proved in $\S 308$, that if with any point P, on the radical axis of two circles, as centre, a circle be described cutting either circle orthogonally, it will also cut the other circle orthogonally. Hence, if the centre of a circle which cuts one circle of a coaxal system orthogonally, lie on the radical axis, the circle will cut all the circles of the system orthogonally. From §309, it follows that any such circle will cut the line of centres of the circles of the system in two fixed points.

Let these fixed points be L and L^{\prime}. Then it is evident that the power of the point P with respect to the point-circle L is crpual to the power of P with respect to any circle of the system.

Hence the point L, and similarly the point L^{\prime}, may be considered as a point-circle belonging to the coaxal system.

Hence, in every coaxal system there are two circles whose radii are indefinitely small.

These point-circles are called the limiting points of the system. They are evidently real only when the circles do not intersect in real points.
324. Ex. I. If the circles of a coasal system touch at the point 0 , show that the limiting points coincide in the point 0 .

Ex. 2. If any circle of a coaxal system pass through a limiting point of the system, show that the two limiting points must coincide, and that the circles of the system will touch each other at this point.

Ex. 3. Show that the polars of a fixed point with respect to the circles of a coaxal system are concurrent.

Let Q be the given point, and let the limiting points of the system be L, and L^{\prime}. Let Q^{\prime} be the opposite extremity of the diameter of the circle $Q L L^{\prime}$ which passes through Q. Then since this circle cuts each circle of the given coaxal system orthogonally, it follows from $\S 261$, Ex. 1 , that Q and Q^{\prime} will be conjugate points with respect to every circle of the system. Therefore the polars of the point Q will intersect concurrently in the point Q.

If, however, Q be a point on the line $L L^{\prime}$, this proof fails. But in this case it is evident that the polars of the point Q will be perpendicular to the line $L L^{\prime}$, and will therefore meet in a point at infinity.

Ex. 4. If that circle of the system which passes through the point Q, in the last example, be drawn, show that it will touch $Q Q^{\prime}$.

Ex. 5. Show that the polar of a limiting point with respect to any circle of the system is the line which passes through the other limiting point and is parallel to the radical axis.

Ex. 6. If Q, Q^{\prime} be a pair of points which are conjugate with respect to every circle of a coasal system, show that $Q Q^{\prime}$ subtends a right angle at each limiting point.

Ex. 7. Show that the radical axes of the circles of a coaxal system and any given circle are concurrent.

Ex. 8. If two systems of coaxal circles have one circle (or a limiting point) common, they have a common orthogonal circle.

Ex. 9. Three circles have their centres collinear and cut orthogonally a given circle, show that they are coaxal.

Ex. 10. Show that any line is cut in involution by the circles of a coaxal system.

Ex. 11. If a straight line cut any two circles of a coaxal system in the points $P, \ell ; P^{2}$, ℓ^{\prime} : respectively, and the radical axis in the point O, show that $P^{\prime} P^{\prime}$ and $Q Q$ ' will subtend equal or supplementary angles at any point of the circle, whose centre is O, which cuts the given circles orthogonally.

Ex. 12. On two straight lines are taken the points P, Q, R, S, \ldots; and $I^{\prime}, U^{\prime}, R^{\prime}, s^{\prime \prime}, \ldots$; respectively, so that

$$
P Q: P^{\prime} Q^{\prime}=P R: P^{\prime} R^{\prime}=P S: P^{\prime} S^{\prime}=\& c \ldots
$$

If the straight lines intersect in the point O, show that the circles $O P P^{\prime}$, OQC', ORR', \&c., are coasal.
325. Ex. 1. Construct a circle which shall be coaxal with a given system of coaxal circles, and cut a given circle orthogonally.

Let Z denote the given circle, and let Y^{\prime}, I^{\prime} be any circles which cut each circle of the given system orthogonally. Then the circle which cuts $Z, I, I^{\prime \prime}$ orthogonally will clearly satisfy the conditions of the question.

There is only one solution to the problem.
Ex. 2. Construct a circle which shall be coaxal with a giren system, and touch a given circle.

Let Z denote the given circle, and let X^{\prime}, X^{\prime} denote any circles of the coaxal system. Let the circle, Y say, which cuts Z, X, X^{\prime} orthogonally, cut Z in the points P and Q. Then if the tangents to Y at P and Q cut the line joining the centres of X^{\prime} and X^{\prime} and C and C^{\prime}, it is easy to see that the circles whose centres are C^{\prime} and C^{\prime} and radii $C^{\prime} P, C^{\prime} Q$ respectively, will touch the circle Z and he coaxal with ${ }^{\prime}$ and N^{\prime}.

Ex. 3. Show that two circles of a coaxal system can be drawn which shall touch a given straight line.

Ex. 4. If the two circles of a coaxal system which touch a given straight line, wheh it in P and ?, show that $P Q$ subtends a right angle at each of the limiting points of the system.

Orthogonal coaxal systems.

326. Every circle which cuts two circles of a coaxal system orthogonally, cuts every circle of the system orthogonally, and wery such circle passes through the limiting points of the system (S :32:3). Hence, given any system of coaxal circles, another system of cowal cireles may be constructed such that every circle of either system cuts orthogonally every circle of the other system.

Two such systems are called orthogonal systems of coaxal circles.

It is wident from $\$ 309$, that if the limiting points of a given sytum be real, the limiting points of the orthogonal system will t_{n} inaginary. The limiting points of either system are sometimes calley the antipoints of the limiting points of the other system.
327. Ex. 1. Show that the polar circles of the four triangles formed by four straight lines, taken three at a time, and the circles described on the diagonals of the tetragram formed by the lines as diameters, are orthogonal systems of coaxal circles.

Hence, the orthocentres of the four triangles formed by four lines lie on a straight line which is perpendicular to the line which bisects the diagonals of the tetragram formed by the lines.

Ex. 2. If X, Y, Z be collinear homothetic centres of three circles, show that the circles described with these points for centres and coaxal with the three pairs of circles, will be coaxal.

Ex. 3. Show that the antipoints of four concyclic points lie four by four on three circles orthotomic with each other and the original circle.

Relations between the powers of coaxal circles.

328. The difference of the powers of a variable circle with respect to two given circles is equal to twice the rectangle contained by the power of the variable circle with respect to the radical axis of the given circles, and the distance between their centres.

Let X, Y denote the given circles, and let Z denote the variable circle. Then if A, B, C be the centres of these circles, we have by § 311,

$$
\begin{aligned}
(Z X)-(Z Y) & =(C X)-(C Y) \\
& =2 A B \cdot N C
\end{aligned}
$$

where $C N$ is the perpendicular from C on the radical axis of the system.
329. Let $X_{1}, X_{2}, X_{3}, \ldots$, denote any circles of a given coaxal system, and let X be that circle of the system which cuts orthogonally a given circle Z. Then if $A, A_{1}, A_{2}, A_{3}, \ldots$ be the centres of the circles $X, X_{1}, X_{2}, X_{3}, \ldots$, we have since $(Z X)=0$,

$$
\left(Z X_{1}\right):\left(Z X_{2}\right):\left(Z X_{3}\right)=A A_{1}: A A_{2}: A A_{3}
$$

Thus: If a variable circle be drawn cutting a fixed circle of a coaxal system orthogonally, its powers with respect to any fixed circles of the system are in a constant ratio.

The converse of this theorem is also true. For, let Z denote any circle whose powers with respect to two circles X_{1}, X_{2}, of a coaxal system are in a constant ratio. And let X denote that
circle of the system which cuts Z orthogonally. Then if A, A_{1}, A_{2}, be the centres of the circles X, X_{1}, X_{2}, we have

$$
\left(Z X_{1}\right):\left(Z X_{2}\right)=A A_{1}: A A_{2} .
$$

Therefore $A A_{1}: A A_{2}$ is a constant ratio; and therefore the point A is fixed, that is to say, the circle Z will always cut the same circle, X, orthogonally. Thus we have the theorem: If the powers of a variable circle with respect to two given circles be in a constant ratio, the variable circle cuts orthogonally a fixed circle couxal with the given circles.
330. Let us consider the case of a variable circle which cuts two given circles at constant angles.

Let Z be a variable circle which cuts the given circles X_{1}, X_{2}, at angles α_{1}, α_{2}. Then if ρ, r_{1}, r_{2} denote the radii of these circles, we have

$$
\left(Z X_{1}\right)=-2 \rho r_{1} \cos \alpha_{1},\left(Z X_{2}\right)=-2 \rho r_{2} \cos \alpha_{2} .
$$

Therefore

$$
\left(Z X_{1}\right):\left(Z X_{2}\right)=r_{1} \cos \alpha_{1}: r_{2} \cos \alpha_{2} .
$$

Hence by $\S 329, Z$ cuts orthogonally a fixed circle coaxal with the circles X_{1}, X_{2}.

Again, let X_{3} denote any other circle coaxal with X_{1} and X_{2}, and let X_{3} cut Z at the angle α_{3}. Then by the last article, the ratio $\left(Z X_{1}^{\prime}\right):\left(Z X_{3}\right)$ is constant ; that is, the ratio $r_{1} \cos \alpha_{1}: r_{3} \cos \alpha_{3}$ is constant.

Therefore α_{3} is a constaut angle.
Hence we have the theorem: A variable circle which cuts two fi.ved circles of a coaxal system at constant angles, cuts every circle of the same system at a constant angle.

Now two circles of a coaxal system can always be drawn to twuch a given circle. We infer from the last theorem that if X, X^{\prime} be the two circles coaxal with X_{1}, X_{2}, which touch the variable circle $\%$ in any position, then X, and X^{\prime} will touch Z in all its pwitions. Thus: A variable circle which cuts two fixed circles of ${ }^{2}$ courral system at constant angles, will always touch two fived circles "j the same system.
331. Ex. 1. Show that if the powers of a variable eircle with respect to thrwe given circles tee in constant ratio, the cariable circle will be coasal with the circte which cuts the given circles orthogonally.

Ex. 2. If X, Y, Z be any three given circles, and if circles $X^{\prime}, Y^{\prime}, Z^{\prime}$ be drawn cutting a fourth given circle orthogonally, and coaxal respectively with the pairs of circles $Y, Z ; Z, X ; X, Y$; show that the circles $X^{\prime}, Y^{\prime}, Z^{\prime}$ are coaxal.

Ex. 3. Show that all circles which cut three given circles at the same angle form a coaxal system.

Ex. 4. Show that all circles which cut three given circles at the same or supplementary angles form four coaxal systems, whose radical axes are the axes of similitude of the given circles.

Ex. 5. If the product of the tangents, from a variable point P to two given circles, has a given ratio to the square of the tangent from P to a third given circle coaxal with the former, the locus of P is a circle of the same system.

Ex. 6. If the product of the powers of a variable circle with respect to two given circles, has a constant ratio to the square of the power of the circle with respect to a third circle coaxal with the former, the variable circle will cut orthogonally a circle of the same system.

Ex. 7. A straight line cuts two given circles in the points $P, P^{\prime} ; Q, Q^{\prime} ;$ respectively. Show that the tangents at P and P^{\prime} will intersect the tangents at Q and Q^{\prime} in four points which lie on a circle coaxal with the given circles.

Ex. 8. If $A B C$ be a triangle inscribed in a circle of a coaxal system; and if P, P^{\prime} be the points of contact of $B C$ with the two circles of the system which it touches; Q, Q^{\prime} the similar points on $C A$; and R, R^{\prime} the similar points on $A B$; show that:-
i. The point-pairs $P, P^{\prime} ; Q, Q^{\prime} ; R, R^{\prime}$ are the pairs of opposite vertices of a tetragram.
ii. The line-pairs $A P, A P^{\prime} ; B Q, B Q^{\prime} ; C R, C R^{\prime}$ are the pairs of opposite connectors of a tetrastigm.

Ex. 9. The sides of the triangle $A B C$ touch three circles of a coaxal system in the points X, Y, Z. If $A X, B Y, C Z$ be concurrent, or if X, Y, Z be collinear, show that the centres of the circles will form with the centres of those circles of the system which pass through the points A, B, C, a range in involution.

Ex. 10. If A, B, C be the centres of any three coaxal circles, and if a, b, c denote their radii, show that

$$
B C \cdot a^{2}+C A \cdot b^{2}+A B \cdot c^{2}=-B C \cdot C A \cdot A B .
$$

Ex. 11. If A, B, C be the centres of any three coaxal circles, and if p, q, r denote their powers with respect to any other circle, show that

$$
B C \cdot p+C A \cdot q+A B \cdot r=0
$$

332. In the theorems given in $\S \S 328,329$, any circle of the coaxal system may be replaced by one of the limiting points of the system. Hence we have the following theorems:
(i) If P be any point on a fixed circle of a coaxal system, the square on the distunce from P to a limiting point of the system is proportional to the perpendicular from P on the radical axis.
(ii) If P be any point on a fixed circle of a coaxal system, the tengent drawn from P to any other circle of the system is proportional to the distance of P from either limiting point of the system.
(iii) If the tangent drawn from a point to a circle be proportional to its distance from a fixed point, the locus of the point will be a circle coaxal with the fixed point and the given circle.
333. Ex. 1. If through either limiting point of a system of coasal circles, a straight line be drawn intersecting a circle of the system, show that the rectangle contained by the perpendiculars from the points of intersection on the radical axis is constant.

Ex. 2. Two circles are drawn, one lying within the other. From L, the limiting point which lies outside them, are drawn tangents to the circles, touching the outer circle in A and the inner in B. If $L B$ cut the outer circle in C, and D, prove that

$$
L A^{2}=L B^{2}+C B . B D .
$$

[St John's Coll. 1886.]
Er. 3. Two circles touch each other internally at the point O, and a straight line is drawn cutting the circles in the points A, B; and C, D; respectively. The tangent at A intersects the tangents at B and C in E and F, and the tangent at B intersects the tangents at B and C in G and H. Prore that E, F, G, and H lie on a circle which touches each of the given circles at O.

Ex. 4. If a variable circle touch two circles of a coaxal system, the tangents drawn to it from the limiting points have a constant ratio.

Ex. 5. If a variable circle touch two circles of a coaxal system, its radius varies as the square of the tangent drawn to it from either limiting point.

Ex. 6. If a variable circle cut two circles of a coaxal system at given angles, the tangents drawn to it from the limiting points have a constant ratio.

Ex. 7. From the vertices of the triangle $A B C, A P, B Q, C R$ are drawn to tonch a given circle. Show that if the sum of two of the rectangles

$$
B C . A I^{\prime}, C A \cdot B Q, A B \cdot C R,
$$

be equal to the third, then the circle will touch the circumcircle of the triangle ABC:
[Purser.]
Suplose we have given $B C . A P=C A \cdot B Q+A B . C R$.
On the are $B C$ find a point D such that

$$
\begin{gathered}
B D: C D=B Q: C R . \\
B C \cdot A D=C A \cdot B D+A B \cdot C D . \\
A P^{\prime}: B Q: C R=A D: B D: C D .
\end{gathered}
$$

Then
Hence
It follows from § 322 (iii), that D must be one of the limiting points of the circles Abe', $P^{\prime}(2 R$.

Hence the circles $A B C, P Q R$ must touch each other*.
Ex. 8. Show that the nine-point circle of a triangle touches the inscribed and escribed circles of the triangle.

Let D, E, F be the middle points of the sides of the triangle ; P, Q, R, the points of contact of the sides with the inscribed circle. Then, if a, b, c denote the sides of the triangle, it is easy to see that

$$
D P=\frac{1}{2}(b \sim c), \quad E Q=\frac{1}{2}(c \sim a), \quad F R=\frac{1}{2}(a \sim b),
$$

and therefore

$$
E F \cdot D P \pm F D \cdot E Q \pm D E \cdot F R=0 .
$$

Hence by the last theorem the nine-point circle touches the inscribed circle of the triangle.

Ex. 9. A chord of a circle subtends a right angle at a fixed point 0 . Show that the locus of the middle point of the chord is a circle coaxal with the given circle and the point-circle 0 .

Ex. 10. Show that the locus of the foot of the perpendicular from a fixed point O on any chord of a given circle which subtends a right angle at O, is a circle coaxal with the given circle and the point-circle 0 .

Ex. 11. If a chord of a circle subtend a right angle at a fixed point O, show that the locus of the pole of the chord will be a circle coasal with the given circle and the point-circle O.

Ex. 12. If P and Q be points on two circles of a coaxal system such that $P Q$ subtends a right angle at a limiting point of the system, show that the tangents at P and Q will intersect in a point, the locus of which is a circle of the same system.

Let L be the limiting point; and let O, O^{\prime} be the centres of the circles. Let $P Q$ cut the circles again in P^{\prime} and Q^{\prime}. Then if the tangents at P and Q intersect in R, we have

$$
R P: R Q=\sin R Q P: \sin R P Q=\cos O^{\prime} Q Q^{\prime}: \cos O P P^{\prime} .
$$

* This proof is due to Mr A. Larmor.

Therefore

$$
\begin{gathered}
R P: R Q=Q Q^{\prime} . O P: P P^{\prime} . O^{\prime} Q \\
P L^{2}: P Q \cdot P Q^{\prime}=L O: O^{\prime} O
\end{gathered}
$$

Let $L . I$ be drawn perpendicular to $P Q$; then

$$
P L^{2}=P N . P Q .
$$

Therefore
and therefore
Similarly
Hence
Therefore

$$
P S^{\prime}: P Q^{\prime}=L O: O^{\prime} O ;
$$

$$
P V^{\prime}: Q^{\prime} N=L O: L O^{\prime}
$$

$$
Q V^{\prime}: P^{\prime} J=L O^{\prime}: L O
$$

$$
P P^{\prime}: Q Q^{\prime}=L O: L O^{\prime}
$$

$$
R P: R Q=L O^{\prime}, O P: L O \cdot O^{\prime} Q
$$

Hence the locus of R is a circle coasal with the given circles.
Ex. 13. Show that the locus of the point N^{+}(see figure Ex. 12) is a circle coasal with the given circles.

Ex. 14. One circle lies within the other, and the tangents at any two

points of the former cut the latter in the points $P, Q ; P^{\prime}, Q^{\prime}$; respectively. If L be a limiting point of the system, show that

$$
P P^{\prime}: Q Q^{\prime}=P L+P^{\prime} L: Q L+Q^{\prime} L .
$$

By §332, (ii), we have, if R, R^{\prime} be the points of contact of $P Q, P^{\prime} Q^{\prime}$,

$$
P R: P L=P^{\prime} R^{\prime}: P^{\prime} L=Q R: Q L=Q^{\prime} R^{\prime}: Q^{\prime} L .
$$

Let $P Q$ cut $P^{\prime} Q^{\prime}$ in T, then it is evident that

$$
\begin{aligned}
& P R+P^{\prime} R^{\prime}=P T+P^{\prime} T, \\
& Q R+Q^{\prime} R^{\prime}=Q T+Q^{\prime} T .
\end{aligned}
$$

But, since the triangles $T P P^{\prime}, T Q^{\prime} Q$ are equiangular,

$$
P P^{\prime}: Q Q^{\prime}=P T+P^{\prime} T: T Q^{\prime}+T Q .
$$

Hence

$$
P P^{\prime}: Q Q^{\prime}=P L+P^{\prime} L: Q L+Q^{\prime} L .
$$

Poncelet's theorem.

334. If a tetrastigm be inscribed in a circle of a given coaxal system so that one pair of opposite connectors touches another circle of the system, then each pair of opposite connectors will touch a circle of the system, and the six points of contact will be collinear.

Let A, B, C, D be any four points on a circle, and let $A C, B D$ touch another circle at the points P, P^{\prime}. Let $P P^{\prime}$ cut $A B, C D$ in Q and Q^{\prime}; and $A D, B C$ in R and R^{\prime}.

The triangles $A Q P, D Q^{\prime} P^{\prime}$ are obviously similar ; therefore

$$
A Q: A P=D Q^{\prime}: D P^{\prime}
$$

Again,
and

$$
A P: A Q=\sin A Q P: \sin A P Q,
$$

But the angles $A P Q, Q P^{\prime} B$ are equal.

Therefore

$$
A P: A Q=B P^{\prime}: B Q
$$

Hence $\quad A P: A Q=B P^{\prime}: B Q=D P^{\prime}: D Q^{\prime}=C P: C Q^{\prime}$.
Let $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ denote the circles whose centres are A, B, C, D, and whose radii are $A Q, B Q, C Q^{\prime}, D Q^{\prime}$, respectively. Now only one circle can be drawn coaxal with the given circles, which will cut Z_{1} orthogonally ($§ 325$, ex. 1). Let this circle be denoted by λ.

By §329 we have

$$
(A X):(B X):(C X):(D X)=A P: B P^{\prime}: C P: D P^{\prime}
$$

Therefore

$$
(A X):(B X):(C X):(D X)=A Q: B Q: C Q^{\prime}: D Q^{\prime}
$$

But

$$
(A X)=A Q
$$

therefore $\quad(B X)=B Q,(C X)=C Q^{\prime},(D X)=D Q^{\prime}$.
Since $(B X)=B Q$, it follows that X must cut Z_{2} orthogonally: Therefore X must pass through the limiting points of the circles Z_{1}, Z_{2}. But these circles touch at the point Q. Hence the circle λ^{\prime} must touch $A B$ at the point Q.

Similarly, the circle X will cut orthogonally the circles Z_{3}, Z_{4}. Therefore, since these circles touch at the point Q^{\prime}, the circle X must touch $C D$ at Q^{\prime}.

Thus the pair of connectors $A B, C D$ touch the same circle of the coaxal system at the points Q and Q^{\prime}.

In a similar manner it may be proved that the pair of connoctors $A D, B C$ will touch a circle coaxal with the given circles at the points R and R^{\prime}.

It should be noticed that when the points, in which the line $P P^{\prime}$ chts a pair of opposite comnectors of the tetrastigm $A B C D$, are internal to the circle $A B C D$, the circle which touches this pair of comnectors will have its centre on the same side of the radical axis as the centre of the circle $A B C D$. But when the $p^{m i n t s}$ are external to the circle $A B C D$, the centre of the corre--ponding circle will be on the side of the radical axis opposite to the contre of the circle $A B C D$. Thus of the three circles which tonch the pairs of comnectors, two of the centres will lie on the rame side of the radical axis as the centre of the circle $A B C D$.
335. Let us consider the case when the connectors $A C, B D$ of the inseribed tetrastigm intersect in a limiting point.

Let L be the point of intersection of $A C$ and $B D$; and let the bisectors of the angles between these lines be drawn, cutting the

pair of connectors $A B, C D$ in Q, Q^{\prime} and q, q^{\prime} respectively, and the connectors $A D, B C$ in R, R^{\prime} and r, r^{\prime} respectively.

Then it is easy to show that

$$
A R: A L=D R: D L=B R^{\prime}: B L=C R^{\prime}: C L
$$

and

$$
A Q: A L=D Q^{\prime}: D L=B Q: B L=C Q^{\prime}: C L
$$

Hence it follows, as in $\S 334$, that $A D$ and $B C$ will touch a circle of the system in the point R and R^{\prime}; and that $A B, C D$ will touch another circle of the system in Q and Q^{\prime}.

In the same way it may be shown that $A B, C D$ will touch a circle of the system in the points q, q^{\prime}; and that $A D, B C$ will touch another circle of the system in r and r^{\prime}.

Hence we have the theorem: If any four points be taken on a circle of a given coaxal system, so that one pair of opposite connectors of the tetrastigm formed by them intersect in a limiting point of the system, the other pairs of opposite connectors will each touch two circles of the system.

It should be noticed that although each pair of connectors touches two circles, they do not constitute a pair of common tangents of the two circles.
336. Ex. l. If a tetrastigm be inscribed in a circle, and if one pair of opposite connectors touch two circles coaxal with the former, show that one of the centres of the tetrastigm coincides with a limiting point of the system.

Let $A B C D$ be the given tetrastigm, and let $A D, B C$ touch one circle in R and K^{\prime}, and another circle in r and r^{\prime}. Then it is easy to see that $R R^{\prime}$ will cut r^{\prime} at right angles.

Let L be the point of intersection, then since the circles whose diameters are Hr and $R^{\prime} r^{\prime}$ intersect in the limiting points of the given circles, it follows that L must be one of these limiting points. Again, the range $\{R r, A D\}$ is harmonic, therefore $L R$ and $L r$ must bisect the angles $A L D$. Let $A L, D L$ meet the circle $A B C D$ in C^{\prime} and B^{\prime} respectively. Then from $\S 335$, we see that $B^{\prime} C^{\prime \prime}$ must touch the same circles as $A D$ at the points in which it is cut by $r r^{\prime}$ and $R R^{\prime}$. Therefore $D^{\prime} C^{\prime}$ must coincide with $B C^{\prime}$, that is, B^{\prime} coincides with either B or C. Hence L must be one of the centres of the tetrastigm $A B C D$.

Ex. 2. If a tetrastigm be inscribed in a circle of a coaxal system, so that two pairs of its opposite connectors touch another circle of the system, show that the remaining pair of comectors will intersect in a limiting point of the system.

Let $A B C D$ be the given tetrastigm, and let $A B, B C, C D, D A$ touch a circle of the system at the points $Q, R, Q^{\prime}, R^{\prime}$, respectively. It follows from $\$ 334$, that $A B, C D$ will touch another circle of the system at the points in which these lines cut the line $R R^{\prime}$: Hence this theorem follows from that ${ }_{i n}$ Ex. 1.

Ex. 3. If $A B C D$ be a tetrastigm inscribed in a circle, and if $A B, C D$ touch respectively at Q and Q^{\prime}, a coaxal circle, show that if $Q Q^{\prime}$ pass through a limiting point of the system, this point will be a centre of the tetrastigm.

Ex. 4. If $\left.A B C^{\prime}\right)$ be a tetrastigm inscribed in a circle of a coaxal system, and if $A B, C D$ touch one circle of the system at the points Q, Q^{\prime}, and $A D, B C$ another circle of the system at R, R, show that the connectors $A C, B D$ will intersect in a limiting point of the system, provided that Q, Q^{\prime}, R and R^{\prime} are not collinear.

Ex. 4. The sides of the triangle $A B C$ touch the inscribed circle in the points $I^{\prime}{ }_{2}\left(\ell, R\right.$. If the lines $Q R, R P, P^{\prime} Q$ cut the lines $B C, C A, A B$ in the points. I, I, Z, and the tangents to the circuncircle of the triangle $A B C$ at it.s vertices, in the points $X^{\prime}, Y^{\prime}, Z^{\prime}$; show that the three circles which touch reseretively $B C^{\prime}, A X^{\prime}$ at X^{\prime} and $X^{\prime \prime} ; C A, B Y^{\prime}$ at Y and $Y^{\prime \prime}$; and $A B, C Z^{\prime}$ at $\%$ and Z^{\prime}; will be coaxal with the circumcircle and the inscribed circle of the triangle $A B^{\prime}$.
337. If the vertices of a triangle move continuously, and in the same direction, on the circumference of a circle of a given coaxal system, so that two of its sides touch two fixed circles of the system, the third side will touch another fixed circle of the system.

Let A, B, C be any positions of the vertices of the triangle on the circle X; and let X_{1}, X_{2} denote the circles which are the envelopes respectively of $A B, A C$, as the points A, B, C describe
continuously the circle X. Let q, r be the points of contact of $A C, A B$ with the circles X_{2}, X_{1}; and let q^{\prime}, r^{\prime} be the new positions

of q and r when the points A, B, C have moved to the positions $A^{\prime}, B^{\prime}, C^{\prime}$.

Since the points A, B, C move in the same direction, it is obvious that the centres of the circles X_{1}, X_{2} must lie on the same side of the radical axis as the centre of the circle X. Also it is evident that $q q^{\prime}$ and $r r^{\prime}$ will intersect $A A^{\prime}$ between A and A^{\prime}. Similarly if $q q^{\prime}, r r^{\prime}$ intersect $C C^{\prime}, B B^{\prime}$ in R and Q, R will lie between C and C^{\prime}, and Q between B and B^{\prime}.

Now since the four points $A, A^{\prime}, C, C^{\prime}$ lie on a circle X, and the lines $A C, A^{\prime} C^{\prime}$ touch a circle X_{2} in the points q, q^{\prime}, it follows from $\S 334$, that $A A^{\prime}$ and $C C^{\prime}$ will touch a circle, coaxal with X and X_{2}, at the points in which $q q^{\prime}$ cuts them. Similarly it may be proved that $A A^{\prime}$ and $B B^{\prime}$ will touch a circle, coaxal with X and X_{1}, at the points in which $r r^{\prime}$ cuts them. But since $A A^{\prime}$ can only touch one circle of the given coaxal system at a point between A and A^{\prime}, it follows that $q q^{\prime}$ and $r r^{\prime}$ must intersect $A A^{\prime}$ in the same point, and that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ must touch the same circle of the system.

Let us denote the circle which touches $A A^{\prime}, B B^{\prime}, C C^{\prime}$ by X^{\prime}. Then since $B B^{\prime}, C C^{\prime}$ is a tetrastigm inscribed in a circle X, and a pair of connectors $B B^{\prime}, C C^{\prime}$ touch another circle X^{\prime} at the points Q and R, it follows from $\S 334$ that $B C$ and $B^{\prime} C^{\prime}$ must touch a
circle, X_{3} say, coaxal with X and X^{\prime}, at the points in which $Q R$ cuts these lines.

Let $Q R$ meet the lines $B C, B^{\prime} C^{\prime}$ in p and p^{\prime}. Then it is obvious that p must lie between B and C, and p^{\prime} between B^{\prime} and C^{\prime}. Hence the circle X_{3} which is touched by $B C$ and $B^{\prime} C^{\prime}$ will have its centre on the same side of the radical axis as the circle X.

Thus as A, B, C describe the circle X, the side $B C$ will envelope a fixed circle X_{3} coaxal with X, X_{1}, and X_{2}.

The proof given above requires but slight modification when the restriction that A, B, C should move in the same direction is removed. Thus if A move in the opposite direction to B and C, it is easy to see that the circles X_{1}, X_{2} must have their centres on the side of the radical axis opposite to the circle X, and in this case it may be proved that X_{3} which is the envelope of $B C$ has its centre on the same side as the circle X. Again, if A and B move in one direction and C in the other, then X_{1} must have its centre on the same side of the radical axis as X, and X_{2} must have its centre on the opposite side of the radical axis, and then it may be proved that X_{3} the envelope of $B C$ will have its centre on the same side of the radical axis as X_{2}.

Hence we may state the theorem in the form: If a triangle be inscribed in a circle so that two sides touch two given circles coaxal with the former, the third side will touch a fixed circle of the same coacal system.
338. Let us suppose that $A B, B C$ touch respectively the circles X_{1} and X_{2}, and let X_{3} denote the circle which is always touched by $C A$, as the vertices of the triangle move in the same

direction round the circle $A B C$. Let us take the point D between A and C ', so that $A D$ touches the circle X_{2}. Then by $\S 334$, since
$A D$ and $B C$ touch the same circle X_{2}, therefore $B D$ will touch the same circle as $A C$, that is the circle X_{3}.

Thus $B A D$ is a triangle, the vertices of which occur in the opposite order to those of the triangle $A B C$, and the sides of which touch the same circles as the corresponding sides of the triangle $A B C$.

But if we consider the triangle $A B D$ with its vertices occurring in the same order as the vertices of $A B C$, we see that the sides $A B, B D, D A$ touch the circles X_{1}, X_{3}, X_{2}.

Hence, we infer that if we take the vertices $A B C$ always in the same order, it is immaterial in which order the sides touch the circles X_{1}, X_{2}, X_{3}.
339. If $A B C$ be a triangle inscribed in a circle X, such that when two sides touch two circles X_{1}, X_{2} coaxal with X, the envelope of the third side is the circle X_{3}, the circles X_{1}, X_{2}, X_{3} are said to form a poristic system with respect to the circle X.

Suppose that we have given any three circles X_{1}, X_{2}, X_{3} coaxal with a given circle X, it is evident that the problem "to inscribe a triangle in the circle X so that its sides shall touch respectively the three circles X_{1}, X_{2}, X_{3}," is indeterminate when the circles X_{1}, X_{2}, X_{3} form a poristic system with respect to the circle X. But when this is not the case, let Y_{1} be the circle of the coaxal system (X, X_{1}, X_{2}, X_{3}) which forms with X_{2} and X_{3} a poristic system with respect to X, then since the circles Y_{1}, X_{1} will have four common tangents, we shall find four solutions to the problem. Similarly if Y_{2}, Y_{3} be the circles which form with X_{3}, X_{1}; and X_{1}, X_{2}; respectively, poristic systems, we may obtain eight other solutions by drawing the common tangents of the pairs of circles $Y_{2}, X_{2} ; Y_{3}, X_{3}$. Thus, when X_{1}, X_{2}, X_{3} do not constitute a poristic system of circles, twelve triangles may in general be inscribed in X so that their sides touch respectively the circles X_{1}, X_{2}, X_{3}. But of these twelve solutions some or all may be imaginary.
340. Let A, B, C, D be any four points on a circle of a given coaxal system, and let $A B, B C, C D$ touch respectively three fixed circles of the system. Then if $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be four other points on the circle $A B C$ (taken in the same order as the points A, B, C, D), so that $A^{\prime} B^{\prime}, B^{\prime} C^{\prime}$, and $C^{\prime} D^{\prime}$ touch respectively the same circles as
$A B, B C$ and $C D$, it may be proved in the same manner as in $\S 33 \overline{7}$, that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ and $D D^{\prime}$ will touch a circle of the system, and that $A^{\prime} D^{\prime}, A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ will touch respectively the same circles of the system as $A D, A C$ and $B D$.

The second part of this theorem may be deduced from the theorem in $\S 3337$. For since $A B$ and $B C$ always touch fixed circles of the system, therefore $A C$ must always touch a fixed circle of the system. And since $A C$ and $C D$ always touch fixed circles of the system, therefore $A D$ must touch a fixed circle of the system. Similarly, it may be proved that $B D$ must always touch a fixed circle of the system.

Now let us suppose that $A B, B C$ and $C D$ touch respectively the circles X_{1}, X_{2} and X_{3}. Then $A D$ must touch a circle, X_{4} say. Let $C E$ be drawn to touch the circle X_{4}, then it may be proved that $E A$ must touch the circle X_{3}.

For $C A$ will always touch a fixed circle, X_{5} say. Therefore by $\S 338$, since $C A, C D$ and $D A$ touch the circles X_{5}, X_{3}, X_{4} respectively, if $C E$ touch $X_{4}, E A$ must touch X_{3}.

Hence, we infer that: If A, B, C, D be four points taken in the same order, on a fixed circle belonging to a given coaxal system, so that $A B, B C, C D$ touch, respectively, the fixed circles X_{1}, X_{2}, X_{3} of the system, then DA must touch a fixed circle, X_{4}, of the system; und, firther, if $A B, B C, C D$ touch respectively any three of the four. circles $X_{1}, X_{2}, X_{3}, X_{4}$, then DA must touch the remaining circle.
341. In exactly the same way, we may prove Poncelet's celebrated theorenn: If $A_{1}, A_{2}, \ldots A_{n}$ be any number of points taken ii" order on a circle of a giren coaxal system, so that $A_{1} A_{2}$, $A_{y} A_{3}, \ldots A_{n-1} A_{n}$ touch respectively $(n-1)$ fixed circles $X_{1}, X_{2}, \ldots X_{n-1}$ of the system, then $A_{n} A_{1}$ must touch a fixed circle, X_{n}, of the system; und, further, if $A_{1} A_{2}, A_{2} A_{3}, \ldots \dot{A}_{n-1} A_{n}$ touch respectively (tuy ". 1 of the circles $X_{1}, X_{2}, \ldots X_{n}$, then $A_{n} A_{1}$ must touch the remaining circle.

The theorem may also be stated in the form: If a polystigm can be inscribed in a circle of a given coaxal system, so that each one of " complete set of connectors ($(137$) touches respectively a fired circle of the system, then an infinite number of such polystigms ctul be inscribed.
342. Ex. 1. If $A_{1}, A_{2}, \ldots A_{n}$ be n points on a circle Y of a coaxal system, so that $A_{1} A_{2}, A_{2} A_{3}, \ldots A_{n-1} A_{n}, A_{n} A_{1}$ touch respectively the circles of the system $X_{1}, X_{2}, \ldots X_{n}$, which form with respect to the circle X a poristic system; and if $A_{1}{ }^{\prime}, A_{2}{ }^{\prime}, \ldots A_{n}{ }^{\prime}$ be n other points taken in the same order on the circle X, so that $A_{1}{ }^{\prime} A_{2}{ }^{\prime}, A_{2}{ }^{\prime} A_{3}{ }^{\prime}$, \&c., touch respectively the same circles as $A_{1} A_{2}, A_{2} A_{3}$, \&c. ; show that $A_{1} A_{1}{ }^{\prime}, A_{2} A_{2}{ }^{\prime}, \ldots A_{n} A_{n}{ }^{\prime}$ will touch a circle of the coaxal system.

Ex. 2. If $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$ be five points on a circle, such that the connectors $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, A_{4} A_{5}, A_{5} A_{1}$ touch another circle, show that the connectors $A_{1} A_{3}, A_{3} A_{5}, A_{5} A_{2}, A_{2} A_{4}, A_{4} A_{1}$ will touch another circle coaxal with the given circles.

Ex. 3. If $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ be six points on a circle, and if the connectors $A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{4}, A_{4} A_{5}, A_{5} A_{6}, A_{6} A_{1}$ touch another circle, show that the connectors $A_{1} A_{4}, A_{2} A_{5}, A_{3} A_{6}$ will intersect in a limiting point of the given circles, and that the connectors $A_{1} A_{3}, A_{2} A_{4}, A_{3} A_{5}, A_{4} A_{6}, A_{5} A_{1}, A_{6} A_{2}$ will touch a circle belonging to the same coaxal system.

Ex. 4. Show that if $2 n$ points $A_{1}, A_{2}, \ldots A_{2 n}$ be taken on a circle such that a complete set of connectors touch another circle, there exists a set of n connectors which intersect in a limiting point of the circles, and that there are $(n-2)$ other complete sets of connectors which touch respectively $(n-2)$ circles coaxal with the given circles.

The $2 n(n-1)$ connectors which do not intersect in the limiting point may be arranged in $n(n-1)$ pairs, each pair being common tangents of two of the circles of the system.

CHAPTER XIV.

THE THEORY OF INVERSION.

Inverse points.

343. If on the line joining a point P to the centre O of a given circle, a point Q be taken so that the rectangle $O P . O Q$ is equal to the square on the radius of the circle; the point Q is said to be the inverse point with respect to the circle of the point P.

If Q be the inverse point of P, it is evident that P is the inverse of Q. Hence P and Q are called a pair of inverse points with respect to the circle.

The inverse of any point with respect to a circle might also be defined as the conjugate point with respect to the circle which lies on the diameter which passes through the given point. Thus, if P, Q be a pair of inverse points with respect to a circle, P, Q are a pair of conjugate points, and therefore every circle which passes through P and Q will cut the given circle orthogonally.
344. If we have any geometrical figure consisting of an assemblage of points, the inverse points with respect to a fixed circle will form another figure, which is called the inverse figure with respect to the circle of the given figure.

It will be shown that when certain relations exist between the parts of any figure, other relations may be inferred concerning the corresponding parts of the inverse figure. And as the inverse figure may be of a more complicated character we are thus able to obtain properties of such figures from known properties of simpler figures.

The fixed circle is called the circle of inversion, and the process by which properties of inverse figures are derived is known as 'inversion.' It will be seen that as a rule, the nature of the inverse figure is independent of the magnitude of the circle of inversion, but depends on the position of the centre of this circle. Consequently it is usual to designate the process briefly by the phrase 'inverting with respect to a point;' but it must be remembered that when this phrase is used, the inversion is really taken with respect to a circle whose centre is the point.

It is often convenient to invert a figure with respect to an imaginary circle, having a real centre. In this case, if O be the centre of inversion, and P, Q a pair of inverse points, P and Q will lie on opposite sides of O, and the rectangle $P O . O Q$ will be constant.
345. Ex. 1. Show that the limiting points of a system of coaxal circles are inverse points with respect to every circle of the system.

Ex. 2. If a pair of points be inverse points with respect to two circles, they must be the limiting points of the circles.

Ex. 3. Show that the extremities of any chord of a circle, the centre, and the inverse of any point on the chord, are concyclic.
346. We may mention here a method by which the inverse of any given figure may be drawn with the aid of a simple mechanical instrument. Let $A B C D$ be a rhombus formed by four rigid bars of equal lengths hinged together; and let the joints B, D be connected with a fixed point O, by means of two equal rigid bars hinged at O. Then the points A and C will be inverse points with respect to a circle whose centre is 0 .

It is evident that the points O, A, C will be collinear. Let E be the point of intersection of $B D$ and $A C$. Then we have

$$
O A . O C=O E^{2}-A E^{2}=O D^{2}-D A^{2}
$$

Hence A and C are inverse points with respect to a circle whose centre is O. Consequently if the point A be made to describe any curve the point C will describe the inverse curve.

This arrangement of bars is called Peaucellier's cell.

The inverse of a straight line.

347. The inverse of a straight line with respect to any circle is a circle which passes through the centre of the circle of inversion.

Let P be any point on the straight line $A B$, and let P^{\prime} be the inverse point with respect to a circle whose centre is O.

Let $O A$ be the perpendicular from O on the straight line, and let A^{\prime} be the inverse point of A.

Then we have

$$
O P \cdot O P^{\prime}=O A \cdot O A^{\prime} .
$$

Therefore the points $A, P, A^{\prime}, P^{\prime}$ are concyclic; and therefore the angle $O P^{\prime} A^{\prime}$ is equal to the angle $O A P$, which is a right angle.

Hence P^{\prime} is a point on the circle whose diameter is $O A^{\prime}$.
Thus, the inverse of a straight line is a circle which passes through the centre of iuversion.

Conversely, it is evident that the inverse of a circle which paraces through the centre of inversion is a straight line. In other
words: The inverse of a circle with respect to any point on it is a straight line.
348. Ex. 1. Show that the inverse of the line at infinity is a point-circle coincident with the centre of inversion.

Ex. 2. If C be the centre of a circle which passes through the centre of inversion, and if C^{\prime} be the inverse of the point C, show that the straight line which is the inverse of the given circle bisects $C C^{\prime}$.

Ex. 3. Show that the inverse circles of a system of parallel straight lines touch each other at the centre of inversion.

Ex. 4. If a system of lines be concurrent, show that the circles which are inverse to them are coaxal.

Ex. 5. The inverse circles of two straight lines intersect at the same angle as the lines.

The radii of the circles drawn to the centre of inversion are perpendicular respectively to the lines.

Inverse circles.

349. The inverse of a circle with respect to any circle is a circle.

Let A be the centre of the given circle, and O the centre of the circle of inversion. Let P be any point on the given circle, and let P^{\prime} be the inverse point.

Let $O P$ cut the given circle in Q, and let $P^{\prime} B$ be drawn parallel to $Q A$, and meeting $O A$ in B.

Then since the rectangles $O P . O P^{\prime}, O P . O Q$ are constant, the ratio $O P^{\prime}: O Q$ is constant.

But since $A Q, B P^{\prime}$ are parallel,

$$
B P^{\prime}: A Q=O B: O A=O P^{\prime}: O Q
$$

Therefore B is a fixed point, and $B P^{\prime}$ a constant length. Hence the locus of the point P^{\prime} is a circle whose centre is B.
350. If X denote any circle, and X^{\prime} its inverse with respect to any circle of inversion, it is easy to see that X will be the inverse of X^{\prime}, so that X and X^{\prime} may be called a pair of inverse circles with respect to the circle of inversion.

If the circle X cut the circle of inversion orthogonally, the point P^{\prime} will coincide with the point Q, and the circle X^{\prime} will coincide with X. Thus, the inverse of a given circle with respect to any circle which cuts it orthogonally coincides with the given circle.
351. Ex. 1. Show that the circle of inversion may be so chosen that the inverse circles of three given circles shall be coincident with themselves.

Ex. 2. If three circles intersect two and two in the points $A, A^{\prime} ; B, D^{\prime} ;$ C, C^{\prime}; and if through any point O the circles $O A A^{\prime}, O B B^{\prime}, O C C^{\prime}$ be described, prove that these three circles will be coasal.

Ex. 3. Show that the nine-point circle of a triangle is the inverse of the circumcircle with respect to the polar circle of the triangle.

Ex. 4. If two circles X^{r} and Y be so related that a triangle can be inscribed in X, so that its sides touch Y, show that the nine-point circle of the triangle formed by the points of contact with I is the inverse of I with respect to I.

Ex. 5. Show that the nine-point circle of a triangle $A B C$ is the inverse of the fourth common tangent of the two escribed circles, which are opposite to D and C, with respect to the circle whose centre is the middle point of $B C$, and which cuts these escribed circles orthogonally.

Ex. 6. Show that McCay's circles (§ 233 , Ex. 3) are the inverses of the siles of the first Brocard triangle of a given triangle, with respect to the circle whose centre is the median point of the triangle, and which cuts the Brocard circle orthogonally.
352. It is evident that the centre of inversion is a homothetic centre of the given circle and its inverse. When the circle of insersion is real, its centre is the homothetic centre; and when the circle of inversion is imaginary, its centre is the antihomothetic centre of the pair of inverse circles.

Let X, X^{\prime} denote a pair of inverse circles with respect to any circle of inversion, S. Then these circles are coaxal.

For, referring to the figure in $\S 349$, we have,

$$
\begin{aligned}
\left(P^{\prime} S^{\prime}\right):\left(P^{\prime} X\right) & =P^{\prime} O^{\prime}-O P \cdot O P^{\prime}: P^{\prime} Q \cdot P P^{\prime} \\
& =O P^{\prime}: Q P^{\prime} \\
& =O B: A B
\end{aligned}
$$

Thus the powers with respect to the circles S, X of any point P^{\prime} on the circle X^{\prime}, are in a constant ratio. Therefore, by $\S 330$, the circle X^{\prime} is coaxal with the circles S and X.

Hence we may infer that, given a pair of circles X and X^{\prime}, two circles ean be found, which will be such that X and X^{\prime} are a pair of inverse circles with respect to either. For these two circles of inversion will be the circles whose centres are the homothetic centres of X and X^{\prime}, and which are coaxal with X and X^{\prime}.
353. Ex. l. If X and $X^{\prime \prime}$ be inverse circles with respect to each of the circles S and S^{\prime}, show that S and S^{\prime} cut each other orthogonally.

Ex. 2. Show that the circumcircle of a triangle, the nine-point circle, and the polar circle are coaxal.
354. To find the radius of the inverse of a circle.

Let R denote the radius of the circle of inversion, and let r, r^{\prime} denote the radii of the given circle and its inverse. Then from the figure in § 349, we have

$$
r: r^{\prime}=O Q: O P^{\prime}=O P \cdot O Q: O P \cdot O P^{\prime} .
$$

Therefore

$$
r: r^{\prime}=(O X): R^{2}
$$

where $(O X)$ denotes the power of the point O with respect to the given circle.

Thus

$$
r^{\prime}=\frac{r R^{2}}{(O \bar{X})^{2}} .
$$

355. Ex. 1. Show that if the centre of inversion lie on a certain circle, the inverse circles of two given circles will be equal.

Let X_{1}, X_{2} denote the given circles, and let r_{1}, r_{2} denote their radii. Then we must have $\left(0 X_{1}\right):\left(0 X_{2}\right)=r_{1}: r_{2}$. Hence O must lie on a fixed circle coaxal with the circles X_{1}, X_{2}.

Ex. 2. Show that there are two points with respect to which three given circles may be inverted into three equal circles.
356. Let A be the centre of a given circle, and let A^{\prime} be the inverse point of A with respect to a given circle of inversion whose centre is 0 .

Let $O T^{\prime \prime}$ be the common tangent to the given circle and its inverse. Then we shall have (see fig. in § 349),

$$
O A \cdot O A^{\prime}=O P \cdot O P^{\prime}=O T \cdot O T^{\prime}
$$

Therefore the points $A, A^{\prime}, T, T^{\prime}$ are concyclic, and therefore the angle $O A^{\prime} T^{\prime}$ will be equal to the angle $O T A$, which is a right angle.

Hence $A^{\prime} T^{\prime}$ is the polar of O with respect to the circle $P^{\prime} T^{\prime} Q^{\prime}$; that is, A^{\prime} is the inverse point of O with respect to the circle $P^{\prime} T^{\prime} Q^{\prime}$.

Thus, the inverse of the centre of a given circle is the inverse with respect to the inverse circle of the centre of inversion.

Hence it follows that the inverse circles of a system of concentric circles will be a coaxal system of circles having the centre of inversion for a limiting point. For the polars with respect to the inverse circles of the centre of inversion will evidently be coincident and the result follows from § 345, Ex. 2.

Corresponding properties of inverse figures.

357. If two circles touch each other, the inverse circles will also touch each other.

If two circles touch they intersect in two coincident points. It follows that the inverse circles will intersect in two coincident points, and therefore will touch each other.

It should be noticed however that the nature of the contact will not necessarily be the same.

A similar theorem is eridently true for any two curves.
358. If two circles intersect, their angle of intersection is equal or supplementary to the angle at which the inverse circles intersect.

Let l^{\prime}, Q be two near points on any circle, and let P^{\prime}, Q^{\prime} be the inverse points on the inverse circle.

Then since

$$
O P . O P^{\prime}=O Q . O Q^{\prime}
$$

the points $P, P^{\prime}, Q, Q^{\prime}$ are concyclic. Therefore the angle $O P Q$ is equal to the angle $O Q^{\prime} P^{\prime}$. It may happen however that the point O falls within the circle which can be drawn through the points $P, P^{\prime}, Q, Q^{\prime}$; in which case the angles $O P Q, O Q^{\prime} P^{\prime}$, will be supplementary.

Now let the point Q approach indefinitely near to the point P, so that the line $P Q$ becomes the tangent at P. Then at the same time $Q^{\prime} P^{\prime}$ will become the tangent at P^{\prime}.

Hence if $P T, P^{\prime} T^{\prime}$ be the tangents at P and P^{\prime}, the angles $P^{\prime} P T, T^{\prime} P^{\prime} P$ will be equal or supplementary.

It follows that if any two circles intersect in the point P, the angle between the tangents to the circles at this point will be equal or supplementary to the angle between the tangents to the inverse circles at the point P^{\prime}.

If the two circles cut orthogonally the inverse circles will also cut orthogonally.
359. Ex. 1. If X and Y denote any two circles, and if X^{\prime}, Y^{\prime} denote the inverse circles with respect to any point O; show that X^{\prime} and Y^{\prime} will intersect at the same angle as X and Y, when the point O is either external to both the circles X and Y, or is internal to both; but when the point is internal to one circle and external to the other, the angle of intersection of X and Y will be supplementary to the angle of intersection of X^{\prime} and Y^{\prime}.

Ex. 2. Show that the nine-point circle of a triangle touches the inscribed and escribed circles.

This may be deduced from the theorem in § 351, Ex. 5.
Ex. 3. Show that four circles can be drawn which shall touch two given circles and their inverse circles with respect to any circle of inversion.

Discuss the case when one of the given circles cuts the circle of inversion orthogonally.
360. If P and Q be a pair of inverse points with respect to any circle S, and if P^{\prime}, Q^{\prime} be the inverse points of P and Q, and S^{\prime} the inverse of S, with respect to any circle, then P^{\prime} and Q^{\prime} will be inverse points with respect to the circle S^{\prime}.

Since P and Q are inverse points with respect to S, therefore any circle which passes through P and Q will cut S orthogonally. Consequently P^{\prime} and Q^{\prime} will be two points such that any circle which passes through them will cut S^{\prime} orthogonally.

It follows at once from this theorem, that if two figures F_{1}, F_{2} be inverse figures with respect to a circle S, and if $F_{1}^{\prime}, F_{2}^{\prime}, S^{\prime}$ be the inverse figures of F_{1}, F_{2}, S with respect to any circle of inversion, then $F_{1}^{\prime}, F_{2}^{\prime}$ will be inverse figures with respect to the circle S^{\prime}.
361. Given the distance between any two points to find the distance between the inverse points with respect to any circle of inversion.

Let A, B be any two points, and let A^{\prime}, B^{\prime} be the inverse points with respect to any circle of inversion whose centre is 0 .

Then since $O A . O A^{\prime}=O B . O B^{\prime}$, the points $A, A^{\prime}, B, B^{\prime}$ are concyclic. Therefore the triangles $O A B, O B^{\prime} A^{\prime}$ are similar; and therefore

$$
A B: A^{\prime} B^{\prime}=O A: O B^{\prime}=O B: O A^{\prime}
$$

Therefore

$$
A^{\prime} B^{\prime}: A B=O A . O A^{\prime}: O A . O B
$$

Also $\quad A^{\prime} B^{\prime 2}: A B^{2}=O A^{\prime} . O B^{\prime}: O A \cdot O B$.
Again if p, p^{\prime} denote the perpendiculars from O on the lines $A B, A^{\prime} B^{\prime}$, we shall have

$$
A^{\prime} B^{\prime}: A B=p^{\prime}: p
$$

In the case when the points A, B are collinear with the point (1) we shall have

$$
O A: O B^{\prime}=U B: O A^{\prime}=A B: B^{\prime} A^{\prime}
$$

whence $\quad B^{\prime} A^{\prime}: A B=O A . O A^{\prime}: O A . O B$;
and $A^{\prime} B^{\prime 2}: A B^{2}=O A^{\prime} . O B^{\prime}: O A . O B$.
362. E.x. 1. If . $1, b, C, D$ be any four prints on a straight line, show that

$$
A B \cdot C D+A C \cdot D B+A D \cdot B C=0 .
$$

If $L^{\prime \prime},\left(C^{\prime \prime}, J^{\prime}\right.$ be the inverse points, with respect to the point A of the points lf, (', I), we shall have

$$
B^{\prime} C^{\prime \prime}+C^{\prime} D^{\prime}+D^{\prime} B^{\prime}=0 .
$$

Honce the above relation may be cleduced by § 361 .

Ex. 2. If A, B, C, D be any four points taken in order on a circle, show that :
i. $A C \cdot B D=A B \cdot C D+A D \cdot B C$.
ii. $B D \cdot C D . B C+A D \cdot B D . A B=B C \cdot A C \cdot A B+C D . A D . A C$.

Ex. 3. If A, B, C, D be four points on a circle such that the pencil $O\{A C, B D\}$ is harmonic, where O is any variable point on the circle, show that

$$
A B \cdot C D=A D \cdot B C
$$

Ex. 4. If three straight lines be drawn through a point O, making equal angles with each other, and if any other straight line cut them in the points L, M, N, show that

$$
O M . O N+O N . O L+O L . O M=0
$$

Ex. 5. Show that if four points A, B, C, D on a circle be such that $A B$ and $C D$ are conjugate lines with respect to the circle, the inverse points $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ with respect to any circle will be such that $A^{\prime} B^{\prime}, C^{\prime} D^{\prime}$ are conjugate lines with respect to the inverse circle.

Ex. 6. If the line joining the centres of any two circles cut them in the

points A, B and C, D, respectively ; and if the line joining the centres of the inverse circles cut them in the points A^{\prime}, B^{\prime}; and $C^{\prime} D^{\prime}$; show that

$$
A C \cdot B D: A B \cdot C D=A^{\prime} C^{\prime} \cdot B^{\prime} D^{\prime}: A^{\prime} B^{\prime} \cdot C^{\prime} D^{\prime}
$$

where the points. $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ are supposed to occur in the same order as the pints A, B, C, D respectivelr.

Let X, Y^{\prime} denote the given circles, and let X^{\prime}, Y^{\prime} denote the inverse circles with respect to a circle of inversion whose centre is O. Then if P, Q, R, S be the inverse points of the points A, B, C, D respectively, these points will lie on a circle which will pass through O and cut the circles X^{\prime}, Y^{\prime} orthogonally. Also we shall have from $\S 361$,

$$
A C \cdot B D: A B \cdot C D=P R \cdot Q S: P Q \cdot R S
$$

Now the radical axis of the circles X^{\prime}, Y^{\prime} will cut the circle $P Q R S$ in two points. Let O^{\prime} be one of these points. Then if we take for circle of inversion the circle whose centre is O^{\prime} and which cuts X^{\prime} and Y^{\prime} orthogonally, the common diameter $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ of the circles X^{\prime} and Y^{\prime} will clearly be the inverse of the circle $P Q R S$. It follows that the lines $A^{\prime} P, B^{\prime} Q, C^{\prime} R, D^{\prime} S$ will intersect in one of the points in which the radical axis of X^{\prime}, Y^{\prime} cuts the circle $P Q R S$. Hence, if we tike this point as θ^{\prime}, we shall have by $\S 361$,

$$
A^{\prime} C^{\prime} \cdot B^{\prime} D^{\prime}: A^{\prime} B^{\prime} \cdot C^{\prime} D^{\prime}=P R \cdot Q S: P Q \cdot R S
$$

Therefore we shall have

$$
A C \cdot B D: A B \cdot C D=A^{\prime} C^{\prime} \cdot B^{\prime} D^{\prime}: A^{\prime} B^{\prime} \cdot C^{\prime} D^{\prime}
$$

In the same way it may be proved that

$$
A D \cdot B C: A B \cdot C D=A^{\prime} D^{\prime} \cdot B^{\prime} C^{\prime}: A^{\prime} B^{\prime} \cdot C^{\prime} D^{\prime}
$$

Now it is easy to prove that the rectangles $A C . B D$, and $A D . B C$ are equal to the squares on the common tangents of the circles X and Y. Hence, if T, t denote the common tangents, and r_{1}, r_{2} the radii of the circles X, Y, and if $T^{\prime \prime}, t^{\prime}$ denote the common tangents and $r_{1}^{\prime}, r_{2}^{\prime}$ the radii of the inverse circles $X^{\prime}, I^{\prime \prime}$, we shall have

$$
T^{2}: T^{\prime \prime 2}=t^{2}: t^{\prime 2}=r_{1} r_{2}: r_{1}^{\prime} r_{2}^{\prime}
$$

Ex. 7. If $A^{\prime}, B^{\prime}, C^{\prime}$ be the inverse points of three given points A, B, C, with respect to any centre of inversion O, show that the triangle $A^{\prime} B^{\prime} C^{\prime}$ will be similar to the triangle $P Q R$, where P, Q, R are the points in which the lines $A O, B O, C O$ cut the circumcircle of the triangle $A B C$.

Ex. 8. If the inverse points of three given points A, B, C form a triangle which is similar to a given triangle, show that the centre of inversion must coincide with one or other of two fixed points which are inverse points with respect to the circurncircle of the triangle $A B C$.

Power relations connecting inverse circles.

363. Let X and X^{\prime} denote a pair of inverse circles with respect to any circle. Let S denote the circle of inversion, and let $S^{\prime \prime}$ denote the circle which cuts S orthogonally and is coaxal with X and X^{\prime}. Then X and X^{\prime} are also a pair of inverse circles with repret to the circle $S^{\prime \prime}$.

Let A, A^{\prime} denote the centres of the circles X, X^{\prime}; and let
O, O^{\prime} denote the centres of the circles S and S^{\prime}. Then since O, O^{\prime} are the homothetic centres of X and $X^{\prime}(\S 352)$, the range $\left\{O O^{\prime}, A A^{\prime}\right\}$ is harmonic, and therefore

$$
\frac{O A}{O A^{\prime}}+\frac{O^{\prime} A}{O^{\prime} A^{\prime}}=0
$$

But since the circles $X, X^{\prime}, S, S^{\prime}$ are coaxal, and the circles S, S^{\prime} cut orthogonally, we have by $\S 329$,

$$
\left(S^{\prime} X\right):\left(S^{\prime} X^{\prime}\right)=O A: O A^{\prime}
$$

and

$$
(S X):\left(S X^{\prime}\right)=O^{\prime} A: O^{\prime} A^{\prime}
$$

Hence we have

$$
\frac{\left(S^{\prime} X\right)}{(S X)}+\frac{\left(S^{\prime} X^{\prime}\right)}{\left(S X^{\prime}\right)}=0
$$

364. Let T denote the circle which is concentric with S, and which cuts S orthogonally. The circle T will be real when S is imaginary. Then since the circles T and S^{\prime} cut one circle, S, of the coaxal system $\left\{S, X, X^{\prime}\right\}$, orthogonally, therefore by $\S 329$,

$$
(T X):\left(T X^{\prime}\right)=\left(S^{\prime} X\right):\left(S^{\prime} X^{\prime}\right)
$$

Hence the formula of the last article may be written,

$$
\frac{(T X)}{(S X)}+\frac{\left(T X^{\prime}\right)}{\left(S X^{\prime}\right)}=0 .
$$

Consequently the ratios $(T X):(S X)$, and $\left(T X^{\prime}\right):\left(S X^{\prime}\right)$ have opposite signs.
365. We also have from § 329,

$$
(T X):\left(T S^{\prime}\right)=\left(S^{\prime} X\right):\left(S^{\prime} S^{\prime}\right)
$$

Therefore if R, R^{\prime} denote the radii of the circles S, S^{\prime}, we shall have

$$
\begin{aligned}
& \left(T S^{\prime}\right)=\left(S S^{\prime}\right)-(S S)=2 R^{2}, \\
& \left(T X^{\prime}\right):\left(S^{\prime} X\right)=R^{2}:-R^{\prime 2} .
\end{aligned}
$$

and therefore
Hence if either of the circles S and S^{\prime} be inaginary, the powers ($T X$), ($S^{\prime} X^{\prime}$) will have the same sign.

It is easy to see that the ratio $(S X):\left(S^{\prime} X\right)$ is negative or positive according as the centre of X does, or does not, lie between O and O^{\prime}.

Hence, if we call that circle of the pair of inverse circles X^{\prime}, X^{\prime}, the positive circle for which the ratio $\left(T^{\prime} X\right):\left(S X^{N}\right)$ is positive, and the other the negative circle of the pair, we can easily discriminate between the circles.
366. Again it is easy to see that

$$
(\Gamma X)=(S X)-(S S)
$$

Hence from the relation of $\S 364$, we may deduce the relation

$$
\frac{1}{(S X)}+\frac{1}{\left(S X^{\prime}\right)}=\frac{2}{(S S)}
$$

From this we may deduce the more general formula

$$
\frac{(Z X)}{(S \bar{X})}+\frac{\left(Z X^{\prime}\right)}{\left(S X^{\prime}\right)}=2{ }_{(S S)}^{(Z S)},
$$

where Z denotes any circle.
To prove this, let Y denote the circle which is coaxal with X and X^{\prime}, and which cuts Z orthogonally. Then if B denote the centre of Y, we have by $\S 329$,

$$
(Z X):\left(Z X^{\prime}\right):(Z S)=B A: B A^{\prime}: B O
$$

But we have,

$$
\frac{B O}{\left(\mathrm{SX}^{\prime}\right)}+\frac{B O}{\left(\mathrm{SX}^{\prime}\right)}=2 \frac{B O}{(S S)}
$$

and (§ 363)

$$
\frac{O A}{(S X)}+\frac{O A^{\prime}}{\left(S X^{\prime}\right)}=0 .
$$

Therefore

$$
\begin{aligned}
& B A \\
& (S X)+\frac{B A^{\prime}}{\left(S X^{\prime}\right)}=2 \frac{B O}{(S S)} \\
& \frac{(Z X)}{(S X)}+\frac{\left(Z X^{\prime}\right)}{\left(S X^{\prime}\right)}=2 \frac{(Z S)}{(S S)}
\end{aligned}
$$

Hence
367. In $\S 361$ it was proved that if A and B be any two points, and A^{\prime}, B^{\prime} the inverse points with respect to any circle of inversion, S, whose centre is O, then

$$
A^{\prime} B^{\prime 2}: A B^{2}=O A^{\prime} . O B^{\prime}: O A \cdot O B
$$

If $(A B)$ dencte as usual the power of the points A and B, this formula may be written in the form

$$
\left(A^{\prime} B^{\prime}\right):(A B)=\left(A^{\prime} S\right) \cdot\left(B^{\prime} S\right):(A S) \cdot(B S)
$$

for, as proved in $\S 363$, we have

$$
\begin{aligned}
& \left(A^{\prime} S\right):(A S)=A^{\prime} O: O A \\
& \left(B^{\prime} S\right):(B S)=B^{\prime} O: O B
\end{aligned}
$$

368. We shall now show that a similar formula connects the powers of inverse circles: If X^{\prime}, Y^{\prime} be the inverse circles of X and Y with respect to any circle of inversion, S, then

$$
\left(X^{\prime} Y^{\prime}\right):(X Y)=\left(X^{\prime} S\right) \cdot\left(Y^{\prime} S\right):(X S) \cdot(Y S)
$$

Let a circle U be described coaxal with the circles S and X, and cutting Y orthogonally. Let P be any point on U, and let a circle V be described coaxal with S and the point-circle P, and cutting X orthogonally. Then if Q be any point on the circle V, we have by § 329,

$$
(X Y):(Y S)=(P X):(P S)
$$

and

$$
(X P):(X S)=(Q P):(Q S)
$$

Therefore

$$
(X Y):(X S) \cdot(Y S)=(P Q):(P S) \cdot(Q S)
$$

Let U^{\prime}, V^{\prime} be the inverse circles of U and V. Then it is evident that U^{\prime} will be coaxal with S and X^{\prime}, and will cut Y^{\prime} orthogonally. Also if P^{\prime} be the inverse of P with respect to S, it is evident that P^{\prime} will be a point on U^{\prime}. Also V^{\prime} will cut X^{\prime} orthogonally and will be coaxal with P^{\prime} and S.

Hence we shall have

$$
\left(X^{\prime} Y^{\prime}\right):\left(X^{\prime} S\right) \cdot\left(Y^{\prime} S\right)=\left(P^{\prime} Q^{\prime}\right):\left(P^{\prime} S\right) \cdot\left(Q^{\prime} S\right)
$$

But by $\S 367$,

$$
\left(P^{\prime} Q^{\prime}\right):(P Q)=\left(P^{\prime} S\right) \cdot\left(Q^{\prime} S\right):(P S) \cdot(Q S)
$$

Therefore

$$
\left(X^{\prime} Y^{\prime}\right):(X Y)=\left(X^{\prime} S\right) \cdot\left(Y^{\prime} S\right):(X S) \cdot(Y S)
$$

369. The proof given above requires modification when either of the given circles X, Y cuts the circle of inversion orthogonally. Let us suppose that Y cuts S orthogonally, then Y^{\prime} will coincide with Y.

Now since Y is a circle which cuts orthogonally the circle S, which is coaxal with the circles X and X^{\prime}, therefore by $\S 329$,

$$
(X Y):\left(Y X^{\prime}\right)=O A: O A^{\prime}
$$

where A, A^{\prime} are the centres of the circles X, X^{\prime}.

But in § 363, it was shown that

$$
O A: O A^{\prime}=\left(S^{\prime} X\right):\left(S^{\prime} X^{\prime}\right)=-(S X):\left(S X^{\prime}\right)
$$

where S^{\prime} is the circle, coaxal with X and X^{\prime}, which cuts S orthogonally:

$$
\text { Hence } \quad(X Y):\left(X^{\prime} Y^{\prime}\right)=(X S):-\left(X^{\prime} S\right)
$$

This relation is easily seen to be in agreement with the relation of the last article ; for if we suppose Y and Y^{\prime} to be nearly coincident, $(Y S)$ and ($Y^{\prime} S$) are small quantities which are ultimately equal but have opposite signs.
370. Ex. 1. Prove that if $X^{\prime}, I^{\prime \prime}$ be the inverse circles of X and I^{\prime}, with respect to any circle whose centre is 0 ,

$$
(X Y):\left(X^{\prime} Y^{\prime}\right)=(O X):\left(O Y^{\prime}\right)=(O Y):\left(O X^{\prime}\right) .
$$

Ex. 2. Show that if $a, b, a^{\prime}, b^{\prime}$ denote the radii of the circles $X, Y, X^{\prime}, I^{\prime}$;

$$
\text { i. }(X Y):\left(X^{\prime} Y^{\prime}\right)=a b: a^{\prime} b^{\prime},
$$

when O is external to both X and Y, or is internal to both circles ;

$$
\text { ii. }\left(X Y^{\prime}\right):\left(X^{\prime} Y^{\prime}\right)=a b:-a^{\prime} b^{\prime},
$$

when O is external to one of the circles X, Y, and internal to the other.
Ex. 3. If T, t denote the common tangents of the circles X, Y, and T^{\prime}, t^{\prime} the common tangents of $X^{\prime}, Y^{\prime \prime}$, show that

$$
T^{2}: T^{\prime 2}=t^{2}: t^{\prime 2}=a b: a^{\prime} b^{\prime},
$$

provided O be internal to both the circles X, Y, or external to both.
We have

$$
T^{2}=\left(X^{Y} Y\right)+2 a b, t^{2}=(X Y)-2 a b .
$$

Hence the result follows from Ex. 2, i.
If O be internal to the circle X, and external to Y, we shall have from Ex. 2, ii.,

$$
T^{2}: t^{\prime 2}=t^{2}: T^{\prime 2}=a b:-a^{\prime} b^{\prime} .
$$

Ex. 4. Deduce the theorem of § 359, Ex. 1, from Ex. 2, of this section.
Ex. 5. A series of circles $X_{1}, X_{2}, \ldots X_{m}, \ldots$ are described, so that each circle of the system touches two given circles (one of which lies within the other), and its two neighbours in the series. If X_{m+1} coincide with X_{1}, so that there is a ring of circles traversing the space between the given circles n times, show that the radii of the given circles are connected with the distance between their centres by the formula,

$$
\left(r-r^{\prime}\right)^{2}-4 r r^{\prime} \tan ^{2} \frac{2 \pi}{m}=\delta^{2} .
$$

[Steiner.]
Ex. 6. Show that if the circles $X_{1}, X_{2}, X_{3}, X_{4}$ touch another circle each in the same sense, the direct common tangents $T_{1,2}, T_{1,3}$, \&c., are connected big a relation of the form

$$
\begin{equation*}
T_{1,2} \cdot T_{3,4} \pm T_{1,3} \cdot T_{2,4} \pm T_{1,4} \cdot T_{2,3}=0 . \tag{Casey.}
\end{equation*}
$$

If we invert the figure with respect to any point on the common tangent circle, we shall have a group of four circles touching a straight line and lying
on the same side of the line. If A, B, C, D be the four points of contact, it is evident that

$$
A B \cdot C D+A C \cdot D B+A D \cdot B C=0 .
$$

Hence by the theorem of Ex. 3, the above result follows.
A similar relation holds when the given circles do not touch the circle in the same sense, provided that in the cases of two circles which touch it in opposite senses the direct common tangent is replaced by the corresponding transverse common tangent.

It should be carefully noticed that the converse of this important theorem cannot be inferred from the nature of the proof here given. In the next chapter, however, we shall give another proof of the theorem, and shall show that the converse theorem is also true.

Inversion applied to coaxal circles.

371. To illustrate the advantage of using the method of inversion to prove propositions relating to geometrical figures we shall show how the principal properties of a system of coaxal circles may be derived. When a system of coaxal circles intersect in real points, we may take either point as the centre of inversion, and thus obtain for the inverse figure a system of concurrent lines (§ 348, Ex. 4); and when the coaxal systems have real limiting points, by taking either as the centre of inversion we obtain a system of concentric circles ($\$ 356$). Consequently the properties of a system of coaxal circles may be derived from the properties of the simpler figures consisting either of concurrent lines, or concentric circles. In either case, it will be observed that the centre of inversion will not have any particular relation to the simple figure.
372. Ex. 1. Every circle which touches two given straight lines cuts orthogonally one or other of two straight lines concurrent with the given lines.

Every circle which touches two given concentric circles cuts orthogonally one or other of two circles concentric with the given circles.

Ex. 2. If a variable circle touch two giveu concentric circles, the locus of its centre is one or other of two circles concentric with the given circles.

Every circle which touches two given circles cuts orthogonally one or other of two circles coaxal with the given circles.

If a variable circle touch two given circles, the locus of the inverse point with respect to it of either of the limiting points of the given circles, is one or other of two circles coaxal with the given circles.

Ex. 3. If a variable circle cut two given concentric circles at constant angles:
i. It will cut orthogonally a tixed circle concentric with the given circles.
ii. It will cut every concentric aircle at a constant angle.
iii. It will touch two circles concentric with the given circles.

Ex. 4. If the powers of a variable circle with respect to two concentric circles are in a constant ratio, the circle will cut crthogonally a fixed circle concentric with the given circles.

Ex. 5. The powers of a variable point on a fixed circle with respect to two concentric circles are in a constant ratio.

If a variable circle cut two given circles at constant angles :
i. It will cut orthogonally a fixed circle coaxal with the given circles.
ii. It will cut every coaxal circle at a constant angle.
iii. It will touch two eircles coaxal with the given circles.

If the powers of a variable circle with respect to two given circles are in a constant ratio, the circle will cut orthogonally a fixed circle with the given circle.

The powers of a variable point on a given circle with respect to two coaxal circles are in a constant ratio.

Miscellaneous Theorems.

373. Hitherto we have supposed the circle of inversion to be of tinite dimensions. It remains to consider the case when the circle of inversion is a point-circle, and the case when the radius of the circle is infinitely great.

When the circle of inversion is a point-circle, O, let us enquire what will be the form of the inverse of a given figure F. If no part of the given figure pass through the point O, we may imagine a circle drawn having O for centre, and its radius small but finite, which will not cut F in real points. The inverse figure of F with respect to this circle will evidently lie entirely within the circle, and will therefore be evanescent when the radius of the circle is indefinitely diminished. Hence, when the circle of inversion is a point-circle, the inverse of any figure which does not pass through the point is evanescent.

But if any part of the figure F be a straight line or a circle which passes through the centre of inversion, such line or circle may be considered as cutting the point-circle of inversion orthogonally, and will therefore coincide with the corresponding part of the inverse figure. Hence, when the circle of inversion is a point-
circle, every straight line or circle which passes through the point coincides with its inverse with respect to the point.
374. When the radius of the circle of inversion is infinitely great, the circle may be considered as consisting of a finite straight line and the line at infinity.

Let $A B$ be any straight line, and let us find the inverse point with respect to the line $A B$ of any given point P. Let $P A$ be drawn perpendicular to $A B$, then the point A and the point at infinity on the line $P A$ may be considered as opposite extremities of a diameter of the line-circle $A B$, (that is the infinite circle whose finite part is the straight line $A B$). If P^{\prime} be the inverse point of P, P and P^{\prime} must be harmonically conjugate with the point A and the point at infinity on the line $A P$. Hence $P P^{\prime}$ is bisected in the point A.
375. If four circles be mutually orthogonal, and if any figure be inverted with respect to each of the four circles in succession, the fourth inversion will coincide with the original figure.

Let O be a point of intersection of two of the circles, then if the figure be inverted with respect to the point O, we shall have a real circle centre O, two rectangular diameters: and an imaginary concentric circle.

Let P be any point, and let P_{1}, P_{3} be the inverse points with respect to the two circles. Then since they cut orthogonally, we shall have

$$
\begin{gathered}
O P \cdot O P_{1}+O P \cdot O P_{3}=0 . \\
O P_{1}=P_{3} O
\end{gathered}
$$

Therefore
Let P_{2} be the inverse of P with respect to the diameter $O A$, then $P_{1} P_{2}$ is bisected by $O A$. It follows that $P_{2} P_{3}$ will be bisected by $O B$; that is, P_{3} will be the inverse of P_{2} with respect to $O B$.

Hence, if the point P be inverted with respect to the two circles, and the two diameters successively, the fourth inversion will coincide with P.

It follows from $\S 360$, that if any point be inverted successively with respect to four mutually orthotomic circles, the fourth position will concide with the original position of the point.

Hence also if any figure be inverted successively with respect to four mutually orthotomic circles, the ultimate figure will coincide with the original figure.
376. Ex. 1. A straight line is drawn through a fixed point O cutting a given circle whose centre is C, in the points P and Q. Show that if the direction of the line $P Q$ vary, two of the four circles which can be drawn to touch the circles $O P C, O Q C, C P Q$ belong respectively to two coaxal system: and the other two cut orthogonally the circle whose diameter is $O C$.

Ex. 2. If G be the median point of the triangle $A B C$, and if $A G, B G, C G$ cut the circumeircle of the triangle in the points $A^{\prime}, B^{\prime}, C^{\prime}$; show that the symmedian point of the triangle $A^{\prime} B^{\prime} C^{\prime}$ lies on the diameter which passes through the Tarry point of the triangle $A B C$ (§ 135, Ex. 7).
[E. Vigarié. E. T. Reprint, Vol. LII. p. 73.]
Ex. 3. Three circles are drawn through any point O. Show that four circles may be drawn to touch them, and that these four circles are touched by another circle.

If the first set of circles intersect in the points A, B, C show that the circle which touches the second set will cut the circles $B O C, C O A, A O B$ in three points P, Q, R, such that:
i. The lines $A P, B Q, C R$ are concurrent.
ii. The groups of points $B, C, Q, R ; C, A, R, P ; A, B, P, Q$; are concyclic.
iii. The circle $P^{\prime} Q R$ is the inverse of the circle $A B C$ with respect to the circle which cuts orthogonally the three circles $B C Q R, C A R P, A B P Q$.

CHAPTER XV.

SYSTEMS OF CIRCLES.

System of three circles.

377. The radical axes of three given circles taken in pairs are concurrent ($\$ 305$), the point of intersection being called the radical centre of the circles. If, with this point for centre, a circle be described cutting any one of the circles orthogonally, it will cut each of the circles orthogonally ((304). It follows also from the properties of the radical axis of two circles $(\S 308)$, that this circle is the only circle which cuts each of the three given circles orthogonally.

This circle is called the orthogonal circle, or the radical circle of the given system. It has an important relation to all the groups of circles which are connected with three given circles, owing to the fact that all such groups occur in pairs, each pair being inverse circles with respect to the orthogonal circle of the system.

When the radical centre is internal to each of the three given circles, the orthogonal circle is evidently imaginary. In this case a concentric circle can be drawn so as to be bisected by each of the given circles ($\$ 315$, Ex. 9).
378. If P and Q are opposite extremities of a diameter of the radical circle of three given circles, it follows from $\S 261$, Ex. 1, that the points P and Q are conjugate points with respect to each of the given circles. Hence, the radical circle is the locus of a point whose polars with respect to three given circles are concurrent.
379. It was proved in §321, that the homothetic centres of three circles taken in pairs are the six vertices of a tetragram. The four lines of this tetragram are called the homothetic axes, or axes of similitude of the given circles. It will be found that these
axes have important relations in connection with the geometry of three circles.

Convention relating to the sign of the radius of a circle.

380. In $\S 358$ it was proved that the angle of intersection of two circles is equal or supplementary to the angle of intersection of the inverse circles with respect to any circle of inversion. If X and Y denote two given circles, and if X^{\prime}, Y^{\prime} denote the inverse circles with respect to a circle whose centre is 0 , it is easy to see that the angle of intersection of the circles X^{\prime}, Y^{\prime} is equal to the angle of intersection of X, Y, provided that the point O is either internal to both the circles X, Y, or external to both circles; but that when the point O is external to one circle and internal to the other, the angle of intersection of X^{\prime} and Y^{\prime} is supplementary to the angle of intersection of X and $Y(\$ 339, ~ E x .1)$.

Now the radius of a circle may be conceived either as a positive or as a negative magnitude. But, if r, r^{\prime}, d denote the radii and the distance between the centres of two circles, their power (§ 313)

$$
=d^{2}-r^{2}-r^{\prime 2}=-2 r r^{\prime} \cos \omega .
$$

Hence, if ω be regarded as the angle of intersection of the circles when r, r^{\prime} are considered as of like sign, their angle of intersection must be regarded as $\pi-\omega$ when r, r^{\prime} are considered as of unlike sign. It will be found that considerable advantage will accrue from the use of this idea in the case of pairs of inverse circles.

Let us consider the radii of the inverse pair of circles X, X^{\prime} as having the same sign when their centres are situated on the same side of the centre of inversion, and as having different signs when their centres are situated on opposite sides of the centre of inversion. It is casy to see that, if we regard the radius of the circle X^{\prime} as positive, the radius of X^{\prime} will be positive or negative according as the centre of inversion is external or internal to the circle X, when the circle of inversion is real ; and that the radius of X^{\prime} will be positive or negative according as the centre of inversion is internal or external to the circle X, when the circle of inversion is imaginary.

Hence, if we adopt the above rule of sign as a convention, we may say that the inverse circles of two given circles intersect at the stme angle as the given circles.

When it is convenient to specify which circle of a pair of inverse circles is to be considered as having its radius positive, we may say that the radius of that circle is positive whose centre lies on the opposite side of the centre of inversion to the radical axis of the circles. Now when the circle of inversion is imaginary, and the centres of two inverse circles are situated on opposite sides of the centre of inversion, they are also situated on opposite sides of the radical axis. Therefore, when the circle of inversion is imaginary, we may say that the radius of that circle of the pair is positive, whose centre lies on the same side of the radical axis as the centre of inversion.
381. Let us suppose that we have three given circles X, Y, Z; and let S be the radical circle of the system. Then each of the given circles coincides with its inverse with respect to the circle S. Now let us imagine a circle U to be drawn cutting the given circles at given angles. Then if U^{\prime} denote the inverse circle of U with respect to S, it follows from $\S 380$ that U^{\prime} will cut the given circles at the same angles as U.

Hence, if the problem: To draw a circle cutting three given circles at given angles, admits of one solution, it will admit of two solutions.

It must be noticed, however, that the two circles which can be drawn cutting the given circles at angles θ, ϕ, ψ will be coincident with the two circles which can be drawn cutting the given circles at the angles $\pi-\theta, \pi-\phi, \pi-\psi$.

Assuming then, for the present, that a circle can always be drawn cutting three given circles at given angles θ, ϕ, ψ, we infer that:-a pair of circles can be drawn cutting the given circles at angles θ, ϕ, ψ; a pair cutting them at angles $\pi-\theta, \phi, \psi$; a pair cutting them at angles $\theta, \pi-\phi, \psi$; and a pair cutting them at angles $\theta, \phi, \pi-\psi$.

Thus, every pair of circles which cut three given circles at given angles may be considered as one of four associated pairs of circles.

Four such pairs of circles are called a group of circles.

Circles cutting three given circles at given angles.

382. To describe a circle which shall cut three given circles at given angles.

Let X, Y, Z be the three given circles, and let Σ denote a circle which cuts them at the angles θ, ϕ, ψ respectively. It follows from $§ 330$, that Σ must cut orthogonally three circles U, V, W, which are coaxal with the pairs $Y, Z ; Z, X ; X, Y$; respectively. Now these circles U, V, W are coaxal circles; for if A, B, C, be the centres of X, Y, Z, and D, E, F the centres of U, V, W, we have as in $\S 329$,

$$
\begin{gathered}
B D: C D=(\Sigma Y):(\Sigma Z) ; \\
C E: A E=(\Sigma Z):(\Sigma X) ; \\
A F: B F=(\Sigma X):(\Sigma Y) . \\
\frac{B D}{C D} \cdot \frac{C E}{A E} \cdot \frac{A F}{B F}=1 ;
\end{gathered}
$$

Therefore
and therefore the points D, E, F are collinear. Consequently the circles U, V, W are coaxal.

Also since

$$
\left(\Sigma Y^{Y}\right):(\Sigma Z)=r_{2} \cos \phi: r_{3} \cos \psi
$$

where r_{2}, r_{3} are the radii of the circles Y, Z, the point D is easily found, and likewise the points E and F. Therefore the line $D E F$ may be constructed.

Again the circles U, V, W evidently cut orthogonally the radical circle of the system X, Y, Z. Denoting this circle by S, we see that the circles Σ, S belong to the orthogonal coaxal system of the system U, V, W.

Hence the centre of the circle Σ must lie on the straight line which passes through the radical centre of the circles X, Y, Z, and is perpendicular to the line $D E F$.

Again, the circle Σ must touch two circles coaxal with Y and $Z(\S 330)$. Let these circles be U_{1} and U_{2}. Then U_{1} and U_{2} are a pair of inverse circles with respect to the circle U. Hence, if a circle be drawn through the limiting points of the system (U, V, W) to touch U_{1}, it will also touch U_{2}. Now two circles may be drawn passing through two given points and touching a given circle. Hence we infer that two circles can be drawn cutting the circles U, V, W orthogonally, and touching U_{1} and U_{2}. These circles will evidently cut the circles X, Y, Z at the given angles.

To show that the construction is practicable, we have only to show that the circles U_{1}, U_{2} can be drawn. Now the locus of the centre of a circle which cuts a given circle at a given angle is a
circle concentric with the given one. Therefore two circles can be drawn having a given radius and touching the two given circles Y, Z. If then we draw ($\$ 325$, Ex. 2) the two circles coaxal with Y and Z which touch either of the two circles of given radius which cut Y and Z at the given angles, these circles will evidently be the circles $U_{1}, U_{2}(\S 330)$.

If the limiting points of the system (U, V, W) are imaginary, we can still draw two circles cutting these circles orthogonally and touching the circles U_{1}, U_{2}, as in $\S 325$, Ex. 2.

Thus, we can in general always describe two circles which shall cut three given circles at given angles.

Circles which touch three given circles.

383. The eight circles which touch three given circles consist of four pairs of circles ($\S 381$); namely, a pair which touch the given circles each in the same sense, and three pairs which touch one of the given circles in one sense and the other two circles in

the opposite sense. The construction of any pair may be deduced from the general case given in the last article, or it may be done as indicated in $\S 322$, Ex. o. But the simplest method is to proceed as explained below.

Let us suppose the given circles to be external to each other, so that the radical circle of the system is real; and let us suppose that the two circles which touch each of the given circles in the same sense have been drawn. Let P, Q, R be the points of contact of one of the circles, and $P^{\prime}, Q^{\prime}, R^{\prime}$ the points of contact of the other.

Let us denote the given circles by X, Y, Z; the radical circle of the system by S; and the tangent circles by T, T^{\prime}. Then, since the circles Y and Z touch the circles T and $T^{\prime \prime}$ in the same sense, the radical axis of $T, T^{\prime \prime}$ must pass through the homothetic centre of Y, Z (§ 320, Ex. 9). Similarly the radical axis of T, T^{\prime} must pass through the homothetic centres of the pairs of circles Z, X; and X, Y. Hence the radical axis of the circles $T, T^{\prime \prime}$ is a homothetic axis of the circles X, Y, Z.

Again, let the tangents to the circle X at the points P, P^{\prime} meet in L. Then, since $L P=L P^{\prime}$, it follows that L is a point on the radical axis of T and T^{\prime}; therefore L is a point on the homothetic axis of X, Y, Z. But since the circles T, T^{\prime} are coaxal with the radical circle of the system X, Y, Z, therefore the point L is the radical centre of the radical circle, and the circles X, T. Consequently, if the radical circle cut the circle X in the points D and D^{\prime} the chord $D D^{\prime}$ must pass through the point L.

Hence we have the following simple construction for drawing the circles T and $T^{\prime \prime}$; Draw the radical axes of the pairs of circles $S, X ; S, Y ; S, Z ;$ and from the points of intersection of these axes with that homothetic axis of the given circles, which passes through these homothetic centres, draw tangents to the given circles; then the points of contact are points on the circles which touch the given circles.

Similarly, the other pairs of tangent circles may be constructed by finding the points in which the radical axes of the pairs of circles $S, X ; S, Y$; and S, Z; cut the other three homothetic axes of the given circles. Corresponding to each homothetic axis there will be one pair of tangent circles.
384. Let O be the radical centre of the given circles. Then since the circles T and T^{\prime} are inverse circles with respect to the radical circle, it follows that the lines $P P^{\prime}, Q Q^{\prime}, R R^{\prime}$ must intersect in the point 0 .

Again, since the tangents at P and P^{\prime} intersect on a homothetic axis of X, Y, Z, therefore $P P^{\prime}$ must pass through the pole of this line with respect to the circle X.

Hence, we have the following construction: Draw any homothetic axis of the given circles, and find the poles of this line with respect to each of the circles; then the lines joining these poles to the radical centre of the given circles, will cut them in the six points of contact of a pair of tangent circles.

This method is not of such easy application as the preceding one, but it is always practicable, whereas the former is impracticable when the radical circle is imaginary.
385. Let any circle U be drawn coaxal with the circles $T, T^{\prime \prime}$, which (see fig. $\S 383$) touch each of three given circles X, Y, Z in the same sense. It follows from $\S 329$, that the powers $(U X),(U Y)$, ($U Z$) will be in the same ratio as the powers of the circles X, Y, Z with respect to the radical axis of S and S^{\prime}, that is the homothetic axis of the circles X, Y, Z. Therefore the powers $(U X),(U Y)$, $(U Z)$ are in the ratio of the radii of the circles X, Y, Z. Hence every circle which is coaxal with the circles S and S^{\prime} will cut the circles X, Y, Z at equal angles.

Hence, to construct a circle which shall cut three given circles at the same angle, θ say, we infer that it is sufficient to draw a circle coaxal with the circles S and S^{\prime}, and cutting one of the given circles X at the angle θ.

Hence it appears that a circle can always be drawn which shall cut four given circles at the same angle. Let $X_{1}, X_{2}, X_{3}, X_{4}$ denote the four circles, and let $O_{1}, O_{2}, O_{3}, O_{4}$ be the radical centres of the four triads of circles. Let the perpendiculars from O_{1}, O_{2} on the homothetic axes of the triads of circles X_{2}, X_{3}, X_{4}; X_{1}, X_{3}, X_{4}; intersect in O. Then it follows from the above argument that a circle whose centre is 0 will cut each of the given circles at the same angle.
386. Ex. 1. Show that eight circles can be drawn each of which will cut four given circles at the same, or supplementary, angles.

Ex. 2. From the radical centre of each triad of four given circles, lines are drawn perpendicular to the four homothetic axes of the triad. Show that the sixteen lines, so obtained, pass four by four through eight other points.

System of four circles having a common tangent circle*.

387. It has been already proved (§370, Ex. 6) that, when four circles have a common tangent circle, the common tangents of the four circles are connected by a certain relation. It was pointed out, however, in that article, that the converse of the theorem does not follow from the proof there given. We propose now to give a different proof of this important theorem, and at the same time to show that the converse is true under all circumstances.

Let $X_{1}, X_{2}, X_{3}, X_{4}$ denote any four circles which touch a circle X, in the points A, B, C, D. Let $O, O_{1}, O_{2}, O_{3}, O_{4}$ be the centres of the circles $X, X_{1}, X_{2}, X_{3}, X_{4} ;$ and let $r, r_{1}, r_{2}, r_{3}, r_{4}$ denote their radii. Also let us denote the direct common tangents of the pairs of circles $X_{1}, X_{2} ; X_{1}, X_{3} ; \& c$. , by the symbols 12,13 , \&c.: and the transverse common tangents of the same pairs by (12); (13) ; \&c.

Firstly let us suppose that the circle X touches each of the circles $X_{1}, X_{2}, X_{3}, X_{4}$ in the same sense

By § 320, Ex. 16, we have

$$
\begin{aligned}
& 12^{2}: A B^{2}=O O_{1} \cdot O O_{2}: O A \cdot O B \\
& 13^{2}: A C^{2}=O O_{1} \cdot O O_{3}: O A \cdot O C
\end{aligned}
$$

[^0]But since the points A, B, C, D are concyclic,

$$
\begin{equation*}
A B \cdot C D+A D \cdot B C=A C \cdot B D \tag{i}
\end{equation*}
$$

Hence $12.34+14.23-13.24=0$.
Secondly, let us suppose that the circle X touches X_{1} in the opposite sense to that in which it touches the circles X_{3}, X_{3}, X_{4}.

Then, by §320, Ex. 16, we have

$$
\begin{equation*}
(12)^{2}: A B^{2}=0 O_{1} \cdot O O_{2}: O A . O B \tag{ii}
\end{equation*}
$$

Hence (12).34+(14).23-(13).24=0.
And thirdly, if the circle X touches the circles X_{1}, X_{2} in the opposite sense to that in which it touches the circles X_{3}, X_{4}, we shall have

$$
12.34+(14) \cdot(23)-(13) \cdot(24)=0 \ldots \ldots \ldots . .(i i i) .
$$

Thus, when four circles have a common tangent circle, their common tangents must be connected by a relation of the type (i), (ii) or (iii).

It is to be noticed that the product which is affected with the negative sign corresponds to the pairs of circles for which the chords of contact intersect in a point which is internal to the circle X.
388. Let us suppose that the circle X_{4} is a point-circle. Then we see that, if O_{4} be a point on either of the circles which touch X_{1}, X_{2}, X_{3} all internally or all externally,

$$
\begin{array}{r}
12.34-14.23+13.24=0 \\
12.34+14.23-13.24=0 \\
-12.34+14.23+13.24=0
\end{array}
$$

according as the point O_{4} lies on the arc 23,31 , or 12 , respectively.

If O_{4} be a point on either circle which has contacts of similar nature with X_{2}, X_{3}, and of the opposite nature with X_{1}, then

$$
\begin{array}{r}
(12) \cdot 34-(14) \cdot 23+(13) \cdot 24=0 \\
(12) \cdot 34+(14) \cdot 23-(13) \cdot 24=0 \\
-(12) \cdot 34+(14) \cdot 23+(13) \cdot 24=0
\end{array}
$$

or
If O_{4} be a point on either circle which has contacts of similar nature with X_{3}, X_{1}, and of the opposite nature with X_{2}, then

$$
\begin{array}{r}
(12) \cdot 34-14 \cdot(23)+13 \cdot(24)=0 \\
(12) \cdot 34+14 .(23)-13 \cdot(24)=0 \\
-(12) \cdot 34+14 \cdot(23)+13 \cdot(24)=0
\end{array}
$$

If O_{4} be a point on either circle which has contacts of similar nature with X_{1}, X_{2}, and of the opposite nature with X_{3}, then

$$
\begin{array}{r}
12 \cdot 34-(14) \cdot(23)+(13) \cdot(24)=0 \\
12 \cdot 34+(14) \cdot(23)-(13) \cdot(24)=0 \\
-12 \cdot 34+(14) \cdot(23)+(13) \cdot(24)=0
\end{array}
$$

or
In each case these alternatives hold according as the point O_{4} lies on the arc 23,31 , or 12 , respectively, X_{4} being regarded as a point-circle lying on the same side of the tangent circle as the circle X_{3}.
389. Conversely, if any one of the relations which occur in the. last article subsist between the common tangents of the circles X_{1}, X_{2}, X_{3}, and the point-circle X_{4}, that point must lie on one or other of the pair of tangent circles of X_{1}, X_{2}, X_{3}, for which that particular relation has here been proved to subsist.

The proof depends on the following lemma: Given three circles X_{1}, X_{2}, X_{3} and a point P ihere is only one other point Q for which

$$
1 Q: 2 Q: 3 Q=1 P: 2 P: 3 P .
$$

This theorem follows at once from $\S 312$, Ex. 3. The point Q is in fact the other point of concourse of the three circles which can be drawn through P coaxal with the pairs of circles X_{2}, X_{3}; $X_{3}, X_{1} ; X_{1}, X_{2} ;$ respectively. Also from $\S 345$, Ex. 1, we see that P, Q are inverse points with respect to the radical circle of the system X_{1}, X_{2}, X_{3}.
390. Let us suppose now that the common tangents of the circles X_{1}, X_{2}, X_{3}, and the point-circle X_{4} are connected by the relation

$$
12.34-14.23+12.34=0
$$

This relation holds for any point on either of the arcs of the pair of circles ($Y, Y^{\prime \prime}$, say) which touch each of the circles X_{1}, X_{2}, X_{3} in the same sense.

Through the point O_{4} describe a circle coaxal with X_{2} and X_{3}, and let it cut either of these ares in Q.

Then, by §388,

$$
12.3 Q-23.1 Q+13.2 Q=0 ;
$$

and, by hypothesis,

$$
12.34-23.14+13.24=0 .
$$

But, since O_{4}, Q lie on a circle coaxal with X_{2} and X_{3}, by $\S 329$,

$$
24: 34=2 Q: 3 Q .
$$

Hence

$$
14: 24: 34=1 Q: 2 Q: 3 Q,
$$

and, by the above Lemma, since Q is on one of the circles Y, Y^{\prime}, which are inverse circles with respect to the radical circle of the system X_{1}, X_{2}, X_{3}, it follows that O_{4} must be a point on the other circle.
391. Suppose now that the common tangents of four given circles $X_{1}, X_{2}, X_{3}, X_{4}$ are connected by a relation of the form
or

$$
\begin{gathered}
12 \cdot 34 \pm 14 \cdot 23 \pm 13 \cdot 24=0 \\
(12) \cdot 34 \pm(14) \cdot 23 \pm(13) \cdot 24=0 \\
(12) \cdot(34) \pm(14) \cdot(23) \pm 13 \cdot 24=0
\end{gathered}
$$

Then the four circles have a common tangent circle.
For, take that circle, X_{4} say, whose radius is not greater than that of the three remaining circles. With the centre of each of the remaining circles as centre describe a circle, whose radius is equal to the sum or difference of its radius and that of the circle X_{4}, according as the common tangent of it and X_{4} is transverse or direct.

These three new circles $X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$, together with O_{4} (the centre of X_{4}-a point-circle) form a group of four circles having the same common tangents as the four given circles, so that the given relation is satisfied for this system; and it follows by $\S 390$ that the point O_{4} must lie on one or other of a pair of common tangent circles of the system $X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$; and hence, that X_{4} touches one or other of a pair of common tangent circles of the system X_{1}, X_{2}, X_{3}.

If the given circles $X_{1}, X_{2}, X_{3}, X_{4}$ have a common orthogonal circle, then it is easy to see that X_{4} will touch both circles of the pair.
392. Ex. 1. Show that the circle which passes through the middle points of the sides of a triangle, touches the inscribed and escribed circles of the triangle.

This theorem follows at once by treating the middle points of the sides as point-circles.

Ex. 2. Show that a circle can be drawn to touch the escribed circles of a triangle in one sense, and the inscribed circle in the opposite sense.

Ex. 3. If the circles I_{1}, I_{2} are the inverse circles of X_{3}, X_{4}, respectively, with respect to any circle, show that the common tangents of the circles are comected by the relations:

$$
\begin{aligned}
23.14 & =12 \cdot 34+13 \cdot 24 ; \\
(23) \cdot(14) & =(12) \cdot(34)+13.24 .
\end{aligned}
$$

393. When four circles which touch the same circle intersect in real points, we may obtain relations connecting their angles of intersection which are equivalent to the relations given in $\S 387$.

If two circles whose centres are O_{1}, O_{2}, touch another circle whose centre is O, at the points P and Q, it is easy to prove that, if the circles cut at the angle ω :

$$
P Q^{2}: 4 O_{1} P \cdot O_{2} Q \sin ^{2} \frac{1}{2} \omega=O P . O Q: O O_{1} \cdot O O_{2}
$$

when the contacts are of the same nature; and that

$$
P Q^{2}: 4 O_{1} P . O_{2} Q \cos ^{2} \frac{1}{2} \omega=O P . O Q: O O_{1} \cdot O O_{2},
$$

when the contacts are of the opposite nature.
Hence, if $X_{1}, X_{2}, X_{3}, X_{4}$ be four circles which touch a fifth circle X, we shall have:
$\sin \frac{1}{2} \omega_{1,2} \cdot \sin \frac{1}{2} \omega_{3,4}+\sin \frac{1}{2} \omega_{1,4} \cdot \sin \frac{1}{2} \omega_{2,3}-\sin \frac{1}{2} \omega_{1,3} \cdot \sin \frac{1}{2} \omega_{2,4}=0 \ldots$ (i), when X touches all the circles in the same sense;
$\sin \frac{1}{2} \omega_{1,2} \cdot \cos \frac{1}{2} \omega_{3,4}+\sin \frac{1}{2} \omega_{2,3} \cdot \cos \frac{1}{2} \omega_{1,4}-\sin \frac{1}{2} \omega_{1,3} \cdot \cos \frac{1}{2} \omega_{2,4}=0 \ldots$ (ii), when X touches X_{4} in one sense, and X_{1}, X_{2}, X_{3} in the opposite sense;
$\sin \frac{1}{2} \omega_{1,2} \cdot \sin \frac{1}{2} \omega_{3,4}+\cos \frac{1}{2} \omega_{2,3} \cdot \cos \frac{1}{2} \omega_{1,4}-\cos \frac{1}{2} \omega_{1,3} \cdot \cos \frac{1}{2} \omega_{2,4}=0 \ldots$ (iii), when X touches X_{1} and X_{2} in the same sense, and X_{3}, X_{4} in the ${ }^{\prime}$ pposite sense.

Conversely, if the angles of intersection of the circles X_{1}, X_{2}, X_{3}, X_{4} be connected by any one of the above relations, it may be proved, as in $\S 391$, that the circles will have a common tangent circle.
394. We propose now to give an alternative method* by which the truth of the theorem of $\S 391$ may be inferred.

If the circles $X_{1}, X_{2} . X_{3}$ touch the same straight line, it is evident that their common tangents must be comnected by the relation,

$$
23 \pm 31 \pm 12=0,
$$

or by a relation of the type

$$
23 \pm(31) \pm(12)=0,
$$

[^1]according as the circle X_{1} is on the same side, or the opposite side, of the line as the circles X_{2}, X_{3}.

The converse of this theorem is not so obvious, but it is easily seen from a figure that it is true when any one of the circles is a point-circle.

When the radius of each circles is finite, let X_{1} be that circle whose radius is not greater than the radii of the other two, and let circles $X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$ be drawn concentric with X_{2} and X_{3} with radii equal to the sum or difference of the radii of these circles, respectively, and the circle X_{1}, according as their common tangents with X_{1} are transverse or direct.

Then the circles $X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$, and the point-circle O_{1} (the centre of X_{1}) have the same common tangents as the circles X_{1}, X_{2}, X_{3}, so that the given relation is satisfied for this system, and therefore the point O_{1} must lie on one of the common tangents of the circles $X_{2}{ }^{\prime}, X_{3}^{\prime}$. Consequently the circle X_{1} must touch one of the common tangents of the circles X_{2}, X_{3}; that is, the circles X_{1}, X_{2}, X_{3} touch the same line.
395. Let us suppose now that the common tangents of the circles X_{1}, X_{2}, X_{3} and a point-circle O_{4}, are connected by a relation of the form

$$
23.14 \pm 31.24 \pm 12.34=0
$$

Let $X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$ denote the inverse circles of X_{1}, X_{2}, X_{3}, respectively, with respect to any circle whose centre is O_{4}, and whose radius is R; and let $r_{1}, r_{1}^{\prime}, \& c$. denote the radii of the circles $X_{1}, X_{1}^{\prime}, \& c$. Then we have by $\S 370$, Ex. 3 ,

$$
12^{2}: 1^{\prime} 2^{\prime 2}=r_{1} r_{2}: r_{1}^{\prime} r_{2}^{\prime},
$$

provided O_{4} be external to both the circles X_{1}, X_{2}, or internal to both ; and

$$
12^{2}:\left(1^{\prime} 2^{\prime}\right)^{2}=(12)^{2}: 1^{\prime} 2^{\prime 2}=r_{1} r_{2}: r_{1}^{\prime} r_{2}^{\prime}
$$

when O_{4} is external to one and internal to the other circle.
Also by §354, we have,

$$
14^{2}: R^{2}=r_{1}: r_{1}^{\prime}
$$

Hence it follows that the common tangents of the circles $X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$ will be connected by a relation of the type

$$
\begin{gathered}
2^{\prime} 3^{\prime} \pm 3^{\prime} 1^{\prime} \pm 1^{\prime} 2^{\prime}=0 \\
\left(2^{\prime} 3^{\prime}\right) \pm 3^{\prime} 1^{\prime} \pm 1^{\prime} 2^{\prime}=0
\end{gathered}
$$

Therefore, by $\S 394$, the circles $X_{1}{ }^{\prime}, X_{2}{ }^{\prime}, X_{3}{ }^{\prime}$ will have a common tangent line.

Hence it follows that the circles X_{1}, X_{2}, X_{3} must touch a circle passing through the point O_{i}.

We may proceed in the same manner when the common tangents of the circles X_{1}, X_{2}, X_{3} and the point-circle O_{4} are connected by either of the relations (ii) or (iii) of $\S 387$.

Finally, the general case may be deduced as in § 391.
396. Ex. 1. Show that, if the circle X_{4} cut the circles X_{1}, X_{2}, X_{3} at equal angles, and if

$$
\sin \frac{1}{2} \omega_{1,2}+\sin \frac{1}{2} \omega_{2,3}-\sin \frac{1}{2} \omega_{1,3}=0,
$$

the circle X_{4} and the two circles Y, Y^{\prime} which touch the circles X_{1}, X_{2}, X_{3}, each in the same sense, will touch each other at the same point. [A. Larmor.]

Ex. 2. If three circles X_{1}, X_{2}, X_{3} intersect at angles a, β, γ, and if X be the circle which intersects them at angles $\beta \sim \gamma, \gamma \sim a, a \sim \beta$ respectively, show that:
i. A circle can be drawn to touch the circles X, X_{1}, X_{2}, X_{3} in the same sense.
ii. Three circles can be drawn to touch two of the circles X_{1}, X_{2}, X_{3} in one sense, and the third circle and the circle X in the opposite sense.

It is easily verified that the following relations subsist connecting the angles of intersection of the four circles:

$$
\begin{aligned}
& \sin \frac{1}{2} a \sin \frac{1}{2}(\beta-\gamma)+\sin \frac{1}{2} \beta \sin \frac{1}{2}(\gamma-a)+\sin \frac{1}{2} \gamma \sin \frac{1}{2}(a-\beta)=0 ; \\
& \sin \frac{1}{2} a \sin \frac{1}{2}(\beta-\gamma)+\cos \frac{1}{2} \beta \cos \frac{1}{2}(\gamma-a)-\cos \frac{1}{2} \gamma \cos \frac{1}{2}(a-\beta)=0 ; \\
& \cos \frac{1}{2} a \cos \frac{1}{2}(\beta-\gamma)-\sin \frac{1}{2} \beta \sin \frac{1}{2}(\gamma-a)-\cos \frac{1}{2} \gamma \cos \frac{1}{2}(a-\beta)=0 ; \\
& \cos \frac{1}{2} a \cos \frac{1}{2}(\beta-\gamma)-\cos \frac{1}{2} \beta \cos \frac{1}{2}(\gamma-a)+\sin \frac{1}{2} \gamma \sin \frac{1}{2}(a-\beta)=0 .
\end{aligned}
$$

Ex. 3. Three given circles intersect two by two in the points A, A^{\prime}; $B, b^{\prime} ; C, C^{\prime}$. Show that the circles $A B C, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}, A^{\prime} B^{\prime} C$ are touched by four other circles.
[A. Larmor.]

If the given circles intersect at angles a, β, γ, it is easy to see that the angles of intersection of the circles $A B C, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}, A^{\prime} B^{\prime} C$, are given by the scheme :

	$A B C$	$A B^{\prime} C^{\prime \prime}$	$A^{\prime} B C^{\prime}$	$A^{\prime} B^{\prime} C$
$A B C$		$\beta \sim \gamma$	$\gamma \sim a$	$a \sim \beta$
$A B^{\prime} C^{\prime \prime}$	$\beta \sim \gamma$		$\pi-a-\beta$	$\pi-a-\gamma$
$A^{\prime} B C^{\prime}$	$\gamma \sim a$	$\pi-a-\beta$		$\pi-\beta-\gamma$
$A^{\prime} B^{\prime} C$	$a \sim \beta$	$\pi-a-\gamma$	$\pi-\beta-\gamma$	

Hence, the theorem follows from the theorem in Ex. 2.
Ex. 4. Show that the circles $A B C, A^{\prime} B^{\prime} C^{\prime}, A B^{\prime} C^{\prime}, A^{\prime} B C$ have four common tangent circles.
[A. Larmor.]
Ex. 5. Show the circumcircles of the eight circular triangles which are formed by three given circles are touched by thirty-two circles, each of which touches four of the eight circles.
[A. Larmor.]

Properties of a circular triangle.

397. Let $A B C$ be any triangle formed by three given circular ares, and let the complete circles be drawn, intersecting again in the points $A^{\prime}, B^{\prime}, C^{\prime}$. We thus obtain three triangles $A^{\prime} B C, A B^{\prime} C$, $A B C^{\prime}$, which may be called the associated triangles of the given triangle $A B C$; and four triangles $A^{\prime} B^{\prime} C^{\prime}, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}, A^{\prime} B^{\prime} C$, which are the inverse triangles, with respect to the circle which cuts the given circles orthogonally, of the given triangle and its associated triangles respectively.

Each of the above triangles has a circumcircle, and each has an inscribed circle, the eight inscribed circles being the eight circles which can be drawn to touch the three circles which form the triangles. Each of these systems of circles have some remarkable properties, in the discussion of which we shall meet with other circles which will be found to correspond to some of the circles connected with a linear triangle.

We shall find it convenient to consider the angles of a triangle as measured in the same way as the angles of a linear triangle. The angles of a triangle will not necessarily be the same as the angles of intersection of the circles which form it. Thus, if in the figure we take α, β, γ as the angles of the triangle $A B C$, the
angles of intersection of the circles will be the supplements of these angles.

The angles of the several triangles formed by the circles $B C$, ($A, A B$ are easily seen to be given by the scheme:

$A B C$	a	β	γ
$A^{\prime} B C$	a	$\pi-\beta$	$\pi-\gamma$
$A B^{\prime} C$	$\pi-a$	β	$\pi-\gamma$
$A B C^{\prime}$	$\pi-a$	$\pi-\beta$	γ
$A B^{\prime} C^{\prime}$	a	$\pi-\beta$	$\pi-\gamma$
$A^{\prime} B C^{\prime}$	$\pi-a$	β	$\pi-\gamma$
$A^{\prime} B^{\prime} C$	$\pi-a$	$\pi-\beta$	γ
$A^{\prime} B^{\prime} C^{\prime \prime}$	$2 \pi-a$	$2 \pi-\beta$	$2 \pi-\gamma$

398. The inscribed circle of any triangle and the inscribed circles of the three associated triangles are touched by another circle which touches the former in one sense and the latter in the opposite sense.

Let T, T_{1}, T_{2}, T_{3} denote the inscribed circles of the triangles $A B C, A^{\prime} B C, A B^{\prime} C, A B C^{\prime}$; and let $01,(01) ; 12,(12) ; \& c$. denote the common tangents of the pairs of circles $T, T_{1} ; T_{1}, T_{2} ; \& c$.

Then, since the circle $B C$ touches T_{1} externally, and T, T_{2}, T_{3} internally, we have by $\S 387$, (ii),

$$
(13) .02=(01) .23+(12) .03 .
$$

Similarly, since the circle $C A$ touches T_{2} externally, and T, T_{1}, T_{3} internally,

$$
(12) .03=(02) .13+(23) .01 ;
$$

and, since the circle $A B$ touches T_{3} externally, and T, T_{1}, T_{2} internally,
$(13) .02=(23) .01+(03) .12$.
Hence, we have,

$$
(03) .12=(01) .23+(02) .13 .
$$

Therefore (§391) a circle can be drawn touching the circle- T internally and the circles T_{1}, T_{2}, T_{3} externally.

This theorem is evidently analogous to Feuerbach's theorem concerning the inscribed and escribed circles of a linear triangle. The extension of the theorem is due to Dr Hart, and the proof given above is a modification of Dr Casey's proof.
399. The circle which touches the inscribed circles of a circular triangle and its associated triangles is called the Hart circle of the triangle. It has several properties which are analogous to the properties of the nine-point circle of a linear triangle.

We have already seen $\S 396$, Ex. 2, that the cirele which cuts the sides of the triangle $A B C$ at angles equal to $\beta \sim \gamma, \gamma \sim \alpha, \alpha \sim \beta$, respectively, touches the circles T, T_{1}, T_{2}, T_{3}. Hence, we infer that the Hart circle of the triangle $A B C$ cuts the sides at angles equal to the differences of the angles of the triangle.

If we denote the circles $B C, C A, A B$ by X, Y, Z, and the Hart circle of the triangle $A B C$ by H, we see that the circles form a system touched by four other circles T, T_{1}, T_{2}, T_{3}, such that:-
T touches X, Y, Z, H in the same sense;
T_{1} touches X, H in one sense, and Y, Z in the other sense ;
T_{2} touches Y, H in one sense, and Z, X in the other sense;
T_{3} touches Z, H in one sense, and X, Y in the other sense.
Hence, we infer that the circles X, Y, Z, H form a system such that each is the Hart circle of one of the triangles formed by the other three circles.
400. There being a Hart circle connected with each of the eight triangles formed by three circles, we have in all a system of eight Hart circles. And since the Hart circle of any triangle touches the inscribed circles of its own triangle and the three associated triangles, we see that: The Hart circle of any triangle and the Hart circles of the three associated triangles have a common tangent circle which touches the former in the opposite sense to that in which it touches the latter.
401. In $\S 396$, Ex. 3, it was proved that the circumcircles of the triangles $A B C, A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}, A^{\prime} B^{\prime} C$ form a system such that one of them, $A B C$, for instance, cuts the others at angles equal to the differences of the angles at which they intersect.

Hence, we have the theorem: The circumcircle of any circular triangle is the Hart circle of the triangle formed by the circumcircles of the inverse associated triangles*.
402. Several properties of the Hart cirele of a triangle may be derived by considering that the circle $A B C$ is the Hart circle of

[^2]the triangle $A^{\prime} B^{\prime} C^{\prime}$, formed by the circular ares $A B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}$, $A^{\prime} B^{\prime} C$.

Thus let us consider three circles $B C Q R, C A R P, A B P Q$, intersecting in the three pairs of points $A, P ; B, Q ; C, R$; each pair being inverse points with respect to the circle which cuts the three circles orthogonally. It follows that the circle $P Q R$ is the Hart circle of the triangle $A B C$ formed by the circular arcs $B P C, C Q A$, $A R B$.

Hence we infer that the Hart circle of a circular triangle $A B C$ cuts the arcs $B C, C A, A B$ in three points P, Q, R, respectively, such that the straight lines $A P, B Q, C R$ are concurrent.

If O be the point of concurrence of the lines $A P, B Q, C R$, we have the theorems:
i. Each group of points : $B, C, Q, R ; C, A, R, P ; A, B$, P, Q : are concyclic.
ii. The point O is the radical centre of the circles $B C Q R$, $C A R P, A B P Q$.
iii. The Hart circle $P Q R$ is the inverse of the circumcircle $A B C$ with respect to the circle which cuts the circles $B C Q R$, $C A R P, A B P Q$, orthogonally.
iv. The circumcircles of the triangles $A Q R, B R P, C P Q$ are the inverses of the circles $B P C, C Q A, A R B$, with respect to the circle which cuts the circles $B C Q R, C A R P, A B P Q$, orthogonally.

The points P, Q, R are evidently analagous in the case of a linear triangle to the feet of the perpendiculars from the vertices on the opposite sides. The circle which cuts the circles $B C Q R$. $C A R P, A B P Q$ orthogonally, or the circle of similitude of the circumcircle and the Hart circle, is analogous to the polar circle of a linear triangle.
403. Ex. 1. If the angles of a circular triangle $A B C$ be a, β, γ, and if circles be drawn through the pairs of points $B, C ; C, A ; A, B ;$ eutting the $\operatorname{arcs} B C, C A, A B$, at angles equal to $\frac{1}{4}(\pi+a+\beta+\gamma)$; show that these circles will cut the arcs of the triangle in three points P, Q, R respectively, sueh that the circumcircle of the triangle $P Q R$ is the Hart eircle of the triangle $A B C$.

Ex. 2. If the Hart circle of the triangle $A B C$ cut the ares $B C, C A, A B$ in the points $P^{\prime}, P^{\prime} ; Q, Q^{\prime} ; R, R^{\prime}$; respectively, the points Q, R being concyelie with $B, C ; R, P$ with C, A; and P, Q with A, B; show that the circumeireles of the triangles $A Q^{\prime} R^{\prime}, B R^{\prime} P^{\prime}, C P^{\prime} Q^{\prime}$, toueh the circumcirele of the triangle $A B C$ at the points A, B, C, respectively.
404. When the given circles do not cut in real points, the Hart circles of the system are in general real circles. Their existence may be inferred in a similar manner to that adopted in $\S 398$, by using the relations of $\S 387$.

If we denote the pairs of tangent circles by $T, T^{\prime} ; T_{1}, T_{1}^{\prime} ;$ $T_{2}, T_{2}^{\prime \prime}: T_{3}^{\prime}, T_{3}^{\prime} ;$ and the pairs of Hart circles by $H, H^{\prime} ; H_{1}, H_{1}{ }^{\prime}$; $H_{2}, H_{2}^{\prime} ; H_{3}, H_{3}^{\prime} ;$ and if we consider the radii of the circles T, T_{1}, $T_{2}, T_{3}, H, H_{1}, H_{2}, H_{3}$, as positive, we see that, for the figure of $\$ 398$, the radii of ' T^{\prime} and H^{\prime} will be positive, and the radii of the circles $T_{1}^{\prime}, T_{2}^{\prime}, T_{3}^{\prime}, H_{1}^{\prime}, H_{2}^{\prime}, H_{3}^{\prime}$ negative, in accordance with the convention of $\S 380$. Hence the nature of the contacts of the averal circles will be those given in the scheme:-

	T	$T^{\prime \prime}$	T_{1}	$T_{1}{ }^{\prime}$	T_{2}	$T_{2}{ }^{\prime}$	T_{3}	$T_{3}{ }^{\prime}$
H	in		ex		ex		ex	
H^{\prime}		in		ex		ex		ex
H_{1}	ex		in			in		in
$H_{1}{ }^{\prime}$		ex		in	in		in	
H_{2}	ex			in	in			in
$\mathrm{H}_{2}{ }^{\prime}$		ex	in			in	in	
H_{3}	ex			in		in	in	
H_{3}^{\prime}		ex	in		in			in

It will be found that for any other figure the nature of the contacts will be the same as in this scheme, provided we choose the signs of the radii of any four of the circles T, T_{1}, T_{2}, T_{3}, so that the contacts of them with the circle H are as here indicated. For instance, let us consider the case of three given circles external to each other. Let T be the circle which touches each internally, and let T_{1}, T_{2}, T_{3} be the circles which touch one of the given circles internally and the other two externally,-here the words internally and external have their ordinary meanings. Then it is easy to see that the circle H will touch each of the circles T, T_{1}, T_{2}, T_{3}, internally. But if we consider the radii of T and H as positive, and the radii of T_{1}, T_{2}, T_{3} as negative, the contacts, in the generalised sense, will be the same as given by the scheme; and the nature of the contacts of any other group of circles may be inferred.

Circular reciprocation.

405. We propose now to explain a method analogous to the method of polar reciprocation (Ch. XI.), by which we may derive from known properties of figures consisting of circles, other properties. It will be seen, however, that the reciprocal figure will in general be a more complicated figure than the original; sonsequently the method is not so powerful as polar reciprocation, wheu used as an instrument of research.

Let S denote a fixed circle, and let P, P^{\prime} be a pair of inverse points with respect to S. Then there can be found ($\$ 325$, Ex. 1) one circle, which cuts S orthogonally and is coaxal with the system $\left\{S, P, P^{\prime}\right\}$. This circle we shall call the reciprocal with regard to S of the point-pair P, P^{\prime}; or simply the reciprocal of the point P. The circle S will be called the circle of reciprocation.

The reciprocal circle of a point will evidently be a real circle only when the circle of reciprocation is imaginary. Consequently we shall assume, unless the contrary is stated, that the circle of reciprocation is an imaginary circle haring a real centre.

We shall presently prove that when the locus of a point P is a circle, the reciprocal of the point will envelope two circles, constituting a pair of inverse circles with respect to the circle of reciprocation. These circles will be called the reciprocal of the circle which is the locus of P.

Further, if x, x^{\prime} denote the pair of circles reciprocal to a circle X, and y, y^{\prime} the pair of circles reciprocal to Y^{\prime}, we shall show that when the circles X and Y^{-}touch, the circles x, x^{\prime} will each touch one of the circles y, y^{\prime}.
406. To be able to apply the last theorem, it is necessary to distinguish between two circles which are inverse circles with respect to a given circle of inversion. Let X, X^{\prime} be a pair of circles inverse with respect to S, and let T be the circle concentric with S and cutting it orthogonally; then we have shown in $§ 364$, that the ratios $(X T):(X S),\left(X^{\prime} T\right):\left(X^{\prime} S\right)$ have opposite signs. We shall call that circle of the pair for which this ratio is positive, the positive circle of the pair, and the other circle the negative circle of the pair. In $\S 365$ it was shown that when the circle of inversion is imaginary, the centre of the negative circle of the pair X, X^{\prime} must lie between the centres of the circles S, S^{\prime}, where S^{\prime} is that circle coaxal with X and X^{\prime} which cuts S orthogonally.

It will be necessary to use the convention as to the sign of the radius of a circle, which was given in $\S 380$; and we shall suppose the radius of either of a pair of inverse circles to be positive, when its centre is situated on the same side of the radical axis as the centre of inversion. It is to be noticed that the positive circle of a given pair of inverse circles may have a negative radius, and that the radii of both circles of a pair may have the same sign.

Assuming the convention as here stated to be always under-
stood, and using the definitions given above, we shall find that the theorem stated in the last article may be stated in the form: When two circles X, Y touch internally, the positive and negative circles of the reciprocal pairs $x, x^{\prime} ; y, y^{\prime}$ touch respectively; and when X, Y touch externally, the positive and negative circles of the pair x, x^{\prime} touch respectively the negative and positive circles of the pair y, y^{\prime}.
407. To construct the reciprocal of a point.

Let P be any given point, and let P^{\prime} be the inverse point with respect to an imaginary circle S whose centre is O. Let T denote the circle whose centre is O which cuts S orthogonally. Then if p denote the reciprocal of the point P with respect to S, p will have its centre on the line $O P$, and will bisect the circle T.

Let C be the centre of p; and let p cut $O P$ in Q and Q^{\prime}, and the circle T in the points R, R^{\prime}. Let q denote the circle whose diameter is $P P^{\prime}$. Then, since P, P^{\prime} are by definition the limiting points of the circles S and p, the circle q must cut these circles orthogonally. Therefore the circle q will pass through the points R, R^{\prime}; and the pencil $R\left\{P P^{\prime}, Q Q^{\prime}\right\}$ will be harmonic. Hence $R P$ will bisect the angle $Q R Q^{\prime}$. But the angles $Q R Q^{\prime}, O R C$ evidently have the same bisectors: therefore $R P, R P^{\prime}$ bisect the angle $O R C$, and therefore the range $\left\{O C, P P^{\prime}\right\}$ is harmonic.

Hence we have the following construction for the circle p : Find the harmonic conjugate of the point 0 with respect to the points P, P^{\prime}, and with this point for centre draw a circle cutting the circle T in the same points as the diameter perpendicular to the line $O P$.
408. When the point P coincides with the point O, P^{\prime} is at infinity, and therefore the point C must coincide with 0 . We infer then that the circle T is the reciprocal of the point O, and also of the line at infinity.

Again if P and P^{\prime} be points on the circle T, it is obvious that U the centre of p will be the point at infinity on the line $O P$. That is to say the reciprocal of any point P on the circle T is the diameter of this circle which is perpendicular to $O P$.

409. To find the reciprocal of a given circle.

Let P be any point on a given circle X, and let P^{\prime} be the inverse point with respect to S, the circle of reciprocation, on the inverse circle X^{\prime}. Then the circle p which is the reciprocal of P with respect to S will touch two circles coaxal with X and X^{\prime}; we shall prove that these circles are fixed for all positions of P.

Since the circle X passes through the point P (so that the power ($X P$) is zero) which is a limiting point of the system (p, S, P, P^{\prime}), it follows by $\S 329$, that

$$
(X p):(X S)=P C: P O
$$

But $(\S 407) \quad C P: P O=\rho: k$, where ρ, k denote the radii of the circles p, T.

Hence, if r denote the radins of X, and θ the angle of intersection of the circles X, p, we shall have

$$
\cos \theta=\frac{(X S)}{2 r k}
$$

Similarly, if r^{\prime} denote the radius of X^{\prime}, and θ^{\prime} the angle of intersection of X^{\prime}, p, we shall have

$$
\cos \theta^{\prime}=-\frac{\left(X^{\prime} S\right)}{2 r^{\prime} k}
$$

Hence the circle p belongs to a system of circles which cut the circles X, X^{\prime} at constant angles. Therefore ($\S 330$) the circle p will touch two fixed circles coaxal with X and X^{\prime}.

The circles enveloped by p are called the reciprocal pair of circles corresponding to the pair X, X^{\prime}.

It is evident that these circles are a pair of inverse circles with respect to the circle of reciprocation.
410. Let x, x^{\prime} denote the reciprocal circles of the circles X, X^{\prime}. Then it is evident that if either of the latter is a straight line, each of the circles x, x^{\prime} will touch the circle T. Also if the circles X, X^{\prime} are point-circles, the circles x, x^{\prime} will evidently coincide with the circle which is the reciprocal of the points.
411. To construct the reciprocal pair of circles of a given pair. of circles which are inverse with respect to the circle of reciprocation.

Let X be any given circle, X^{\prime} the inverse circle with respect to S; let L, L^{\prime} be the limiting points of X and X^{\prime}; and let P, P^{\prime} be a pair of inverse points on them. The points $P, P^{\prime}, L, L^{\prime}$ are concyclic: let Z denote the circle which passes through them. The circle Z evidently cuts orthogonally the circles S, X, and p, the reciprocal of the point P. Hence, if Q, Q^{\prime} be the points in which Z cuts p, Q and Q^{\prime} will be the points in which p touches the circles x, x^{\prime}, which are the reciprocal pair of X and X^{\prime}.

Let M be the centre of the circle p. Then, since $\left\{M O, P P^{\prime}\right\}$ is harmonic ($\S 407$), it follows that O and M are conjugate points with respect to Z. Also, since p cuts Z orthogonally, M is the pole of $Q Q^{\prime}$ with respect to Z.

It follows that, if N be the pole of $P P^{\prime}$ with respect to $Z, Q Q^{\prime}$ must pass through N; and that N will be the centre of the circle q which is the reciprocal of the point-pair Q, Q^{\prime}.

Hence we have the following construction for drawing the circles x, x^{\prime}, the reciprocal pair of X, X^{\prime} :

Take any point P on X, and draw the circle Z cutzing X orthogonally in P and X^{\prime} orthogonally in P^{\prime}. Let $P P^{\prime}$ met the polar of O with respect to Z in the point M, and let $M Q, M Q$ be the tangents

from M to Z. Then, if the diameter of X which passes through O cut $M Q, M Q$ ' in the points a, a^{\prime}, the circles whose centres are a, a^{\prime}, and whose radii are $a Q, a^{\prime} Q^{\prime}$ will be the circles reciprocal to X and X^{\prime}.
412. Let us suppose that Z is a given circle, and let X be any variable circle cutting Z orthogonally in the point P. Let A be the centre of X, and let O^{\prime} be the centre of the circle S^{\prime}, which cuts s orthogonally and is coaxal with S and X. The circle S^{\prime} will also cut Z orthogonally, and therefore O^{\prime} must lie on the radical axis of S and Z, that is to say the locus of O^{\prime}, for different positions of X, is the polar of O with respect to Z.

Now X will be the positive circle of the pair X, X^{\prime}, when its rentre A does not lie between O and $O^{\prime}(\S 406)$. Hence, if a line $F^{\prime} F^{\prime \prime}$ (see fig. $\S 411$) be drawn through the point O parallel to $M N$, the polar of O, cutting the lines $N P, N P^{\prime}$ in F and F^{\prime}, we
see that the circle X will be the positive circle of the pair X, X^{\prime}, provided its ceatre does not lie between N and F.

Let x denote the positive, and x^{\prime} the negative circle of the pair x, x^{\prime}. Then x and x^{\prime} cut Z orthogonally in the points Q, Q^{\prime}. If Q denote the positive point of the pair Q, Q^{\prime}, we see from the figure $(\$ 411)$ that:
i. When A lies between P and F, x will cut Z in Q^{\prime};
ii. When A lies between F and N, x will cut Z in Q;
iii. When A has any other position on $P N, x$ will cut Z in Q.

Again, let us enquire which of the circles $X, X^{\prime}, x, x^{\prime}$ have negative radii, when A has different positions on the line $P N$. The radical axis of the system $\left(X, X^{\prime}, x, x^{\prime}\right)$ evidently cuts the line $O A$ in a point which lies on the circle whose diameter is $O C$, where C is the centre of the circle Z. The tangent to this circle at O is the line $O F$. Therefore, when A lies on the same side of F as the point P, the radius of X is negative.

Also we see that the radius of X^{\prime} will be negative when A^{\prime} lies on the opposite side of F^{\prime} to P^{\prime}; and that the radius of x or x^{\prime} will be negative when a or a^{\prime} lies on the same side of G as Q, or on the opposite side of G^{\prime} to Q^{\prime}.
413. Let X, Y be any two circles touching at the point P (fig. $§ 411$); let x and x^{\prime} be the positive and negative circles of the pair reciprocal to X, and let y and y^{\prime} be the positive and negative circles of the pair reciprocal to Y. Let A, B be the centres of X, Y. Then we see that the positive circles x, y will touch (i) at the point Q^{\prime} when A and B both lic between P and F; (ii) at the point Q provided that neither A nor B lies between P and F. In either case the circles X and Y must touch internally at the point P, where the word internally has a generalised meaning in accordance with the convention stated in $\S 406$.

Again if A lie between P and F, and if B do not lie between P and F, that is to say if the circles X, Y touch externally, it follows that the positive circle x will touch the negative circle y^{\prime} at the point Q^{\prime}, and that y will touch x^{\prime} at the point Q.

Hence we have the theorem: When two circles touch internally, the positive reciprocal circles touch each other, and likewise the negative reciprocal circles touch; but when the circles touch
erternally, the positive reciprocal circle of either touch es the negative reciprocal circle of the other.

We can evidently determine the nature of the contacts of the reciprocal circles by considering whether the given circles are positive or negative circles. Thus, when the given circles X, Y are both positive, or both negative circles, the reciprocal circles must touch internally; and when one of the circles X, l^{r} is a positive circle and the other a negative circle the reciprocal circles must touch externally.
414. To illustrate the use of the method of circular reciprocation, let us consider the case of three given circles intersecting in the three pairs of points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ;$ and having an imaginary radical circle. Then, if we take the radical circle of the srstem as the circle of reciprocation, the reciprocals of the pointpairs $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; will be three circles having the circle of reciprocation for their radical circle, and intersecting in the point-pairs $P, P^{\prime} ; Q, Q^{\prime} ; R, R^{\prime}$; which will evidently be the reciprocals of the given circles. Again the reciprocals of the group of tangent circles of the given circles will obviously be the group of circumcircles of the reciprocal system. Hence, the properties of the group of tangent circles of a given system of three circles must correspond reciprocally to the properties of the group of circumdircles of such a system.

Let $T, T^{\prime} ; T_{1}, T_{1}^{\prime} ; T_{2}, T_{2}^{\prime} ; T_{3}, T_{3}^{\prime}$ denote the pairs of tangent circles of the given system; and let $H, H^{\prime} ; H_{1}, H_{1}^{\prime} ; H_{2}, H_{2}^{\prime}$; H_{3}, H_{3}^{\prime} denote the pairs of Hart circles of the system. Then, if P, Q, R be the positive points of the pairs of points in which the reciprocal circles intersect, it is easy to see that the circumcircles $P Q R, P^{\prime} Q R, P Q^{\prime} R, P Q R^{\prime}$ will be the positive reciprocal circles of the pairs $T, T^{\prime} ; T_{1}, T_{1}^{\prime} ; T_{2}, T_{2}^{\prime} ; T_{3}, T_{3}^{\prime} ;$ respectively. Let K, K_{1}, K_{2}, K_{3} denote respectively the positive reciprocal circles, and K^{\prime}, $K_{1}{ }^{\prime}, K_{2}{ }_{2}, K_{3}{ }^{\prime}$ the negative reciprocal circles of the pairs of Hart circles of the given system. Then, since H touches T internally, and T_{1}, T_{2}, T_{3} externally ($(404$), it follows by the last article that K must touch the circumcircles $P Q R, P Q^{\prime} R^{\prime}, P^{\prime} Q R^{\prime}, P^{\prime} Q^{\prime} R$. Also, since H_{1} touches T externally and $T_{1}, T_{2}^{\prime}, T_{3}^{\prime}$ internally, it follows that K_{1}^{\prime} must touch the circles $P Q R, P Q^{\prime} R^{\prime}, P^{\prime} Q R^{\prime}$, and $P^{\prime} Q^{\prime} R$. Similarly it follows that the circles $K_{2}{ }^{\prime}, K_{3}^{\prime}$ must touch the same four circles.

Hence the four circumcircles $P Q R, P Q^{\prime} R^{\prime}, P^{\prime} Q R^{\prime}, P^{\prime} Q^{\prime} R$, have four common tangent circles; that is to say any one may be considered as a Hart circle of the system formed by the other three.

Similarly we may show that the circles $P^{\prime} Q^{\prime} R^{\prime}, P^{\prime} Q R, P Q^{\prime} R$, $P Q R^{\prime}$ have four common tangent circles (cf. § 401).

Mr A. Larmor was the first, I believe, to state the theorem in § 401, and to point out the reciprocal relation which exists between the circumcircles and the tangent circles of a system of three circles, in a paper communicated to the British Association in 1887. The theorem stated above in § 413, although arrived at independently, is merely the equivalent in plane geometry of Lemmas (a) and (β) given in his paper on 'Contacts of systems of circles,' London Math. Soc. Proc. Vol. xxin., pp. 136-157. In this paper the subject is treated at greater length than in this treatise.

CHAPTER XVI.

THEORY OF CROSS RATIO.

Cross Ratios of ranges and pencils.

415. If P be any point on the line $A B$, the ratio $A P: B P$ is called the ratio of the point P with respect to the points A and B.

The ratio of the ratios of two points P and Q with respect to the points A and B is called the cross ratio of the points P, Q with respect to A and B; or briefly the cross ratio of the range $\{A B, P Q\}$.

It will be convenient to use the notation $\{A B, P Q\}$ to mean the cross ratio of the range $\{A B, P Q\}$, so that we have

$$
\{A B, P Q\}=A P \cdot B Q: A Q \cdot B P .
$$

In this definition it is necessary to observe the order in which the points are taken.

Now four points may be taken in twenty-four different orders; that is to say, four collinear points determine twenty-four ranges. Thus the points A, B, C, D determine the ranges:

$$
\begin{array}{llll}
\{A B, C D\}, & \{B A, D C\}, & \{C D, A B\}, & \{D C, B A\}, \\
A B, D C\}, & \{B A, C D\}, & \{D C, A B\}, & \{C D, B A\}, \\
\{A C, B D\}, & \{C A, D B\}, & \{B D, A C\}, & \{D B, C A\}, \\
\{A C, D B\}, & \{C A, B D\}, & \{D B, A C\}, & \{B D, C A\}, \\
\{A D, B C\}, & \{D A, C B\}, & \{B C, A D\}, & \{C B, D A\}, \\
\{A D, C B, & \{D A, B C\}, & \{C B, A D\}, & \{B C, D A\} .
\end{array}
$$

From the definition it is evident that the four ranges in each row of this scheme have the same cross ratio. That is to say: If uny two points of a range be interchanged, the cross ratio of the
ange is unaltered, provided that the other two points are also interchanged.

Again, we have from the definition,

$$
\begin{aligned}
& \{A B, C D\} \cdot\{A B, D C\}=1 \\
& \{A C, B D\} \cdot\{A C, D B\}=1 \\
& \{A D, B C\} \cdot\{A D, C B\}=1
\end{aligned}
$$

And, since A, B, C, D are four collinear points, so that

$$
\begin{gathered}
A B . C D+A C . D B+A D . B C=0 \\
\{A B, C D\}+\{A C, B D\}=1 \\
\{A B, D C\}+\{A D, B C\}=1 \\
\{A C, D B\}+\{A D, C B\}=1
\end{gathered}
$$

Hence, if $\{A B, C D\}=\kappa$, we have

$$
\begin{array}{ll}
\{A B, C D\}=\kappa, & \{A B, D C\}=\frac{1}{\kappa} \\
\{A C, B D\}=1-\kappa, & \{A C, D B\}=\frac{1}{1-\kappa}, \\
\{A D, B C\}=\frac{\kappa-1}{\kappa}, & \{A D, C B\}=\frac{\kappa}{\kappa-1}
\end{array}
$$

416. If the two points A and B coincide, it is obvious that

$$
\begin{gathered}
A C . B D=B C \cdot A D \\
\{A B, C D\}=1
\end{gathered}
$$

In this case we have
and

$$
\begin{aligned}
& \{A C, B D\}=\{A D, B C\}=0 \\
& \{A C, D B\}=\{A D, C B\}=\infty
\end{aligned}
$$

Conversely, if $\kappa=0$, we have

$$
\{A C, B D\}=\{A D, B C\}=0 ;
$$

and therefore $\quad A B . C D=A B . D C=0$.
Therefore either A and B coincide, or else C and D coincide.
Hence, if the cross ratio of the range $\{A B, C D\}$ have the value 1,0 , or ∞, two of the points must coincide.
417. If $\{A B, C D\}=-1$, the range $\{A B, C D\}$ is harmonic. In this case we have,
and

$$
\begin{aligned}
& \{A C, B D\}=\{A D, B C\}=2 ; \\
& \{A C, D B\}=\{A D, C B\}=\frac{1}{2} .
\end{aligned}
$$

Conversely, if the cross ratio of the range $\{A B, C D\}$ have
the value $-1, \mathcal{2}$, or $\frac{1}{2}$; the points A, B, C, D, taken in some order, form a harmonic range.

In fact we have the following theorems:
(i) When $\{A B, C D\}=\{B A, C D\}$, the range $\{A B, C D\}$ is harmonic.
(ii) When $\{A B, C D\}=\{A C, B D\}$, the range $\{A D, B C\}$ is harmonic.
(iii) When $\{A B, C D\}_{j}=\{A D, C B\}$, the range $\{A C, B D\}$ is harmonic.
418. There is another special case of some importance. If the cross ratio of $\left\{A B, C D D_{j}^{\prime}\right.$, that is κ, satisfy the equation $\kappa^{2}-\kappa+1=0$, we have

$$
\begin{aligned}
& \{A B, C D\}=\{A C, D B\}=\{A D, B C\}=\kappa, \\
& \{A C, B D\}=\{A D, B C\}=\{A B, D C\}=-\kappa^{2} .
\end{aligned}
$$

In this case the points may be said to form a bivalent range.
419. If $O A, O B, O C, O D$ be any four rays of a pencil, the ratio of $\sin A O C \cdot \sin B O D: \sin B O C \cdot \sin A O D$ is called the cross ratio of the pencil $O\{A B, C D\}$.

If A, B, C, D be any four points on the same straight line, the pencil $O\{A B, C D\}$, formed by joining these points to any point O, will have the same cross ratio as the range $\{A B, C D\}$.

For, if $O N$ be perpendicular to the line $A B$, we have,

$$
O N . A B=O A . O B \sin A O B
$$

Therefine
$A\left(C^{\prime} \cdot B D: B C \cdot A D=\sin A O C \cdot \sin B O D: \sin B O C \cdot \sin A O D\right.$.
420. Ex. 1. If $\{A B C D\}$ be any range, and if the circles described on $A B$, $C D$, as diameters intersect at the angles 2θ, shew that

$$
\begin{align*}
& \{A B, C D\}=-\cot ^{2} \theta,\{A B, D C\}=-\tan ^{2} \theta, \\
& \{A C, B D\}=\operatorname{cosec}^{2} \theta,\{A C, D B\}=\sin ^{2} \theta, \\
& \{A D, B C\}=\cos ^{2} \theta, \quad\{A D, C B\}=\sec ^{2} \theta . \tag{Casey.}
\end{align*}
$$

Ex. 2. If $\{A B X Y Z\}$ be any range, show that

$$
\{Y Z, A B\} \cdot\{Z X, A B\} \cdot\{I Y, A B\}=1
$$

Ex. 3. If A, B, C, I, J be any five coplanar points, show that the product f the cross ratios of the pencils $A\{B C, I J\}, B\{C A, I J\}, C\{A B, I J\}$, is qual to unity.
421. Given any three collinear points A, B, C : to find a point D on the same line, such that the range $\{A B, C D\}$ may have a given ross ratio.

Draw any straight line through the point C, and take on it two points A^{\prime}, B^{\prime}, so that the ratio of $C A^{\prime}: C B^{\prime}$ is equal to the given ross ratio. Let the lines $A A^{\prime}, B B^{\prime}$ meet in P, and let $P D$ je drawn parallel to $A^{\prime} C$ meeting $A B$ in D. Then D is a point such that the range $\{A B, C D\}$ has the given cross ratio.

For,

$$
A C: A D=C A^{\prime}: D P
$$

$$
B C: B D=C B^{\prime}: D P .
$$

$$
A C \cdot B D: B C . A D=C A^{\prime}: C B^{\prime}
$$

It is evident that there is only one solution to the problem. Hence it follows that, if

$$
\{A B, C D\}=\left\{A B, C D^{\prime}\right\}
$$

the points D and D^{\prime} must coincide.
Also from § 419 we infer that, if $O\{A B, C D\}=O\left\{A B, C D^{\prime}{ }_{j}\right.$, the rays $O D, O D^{\prime}$ must be coincident.
422. Ranges and pencils which have equal cross ratios are said to be equicross.

It is often convenient to express the fact that two ranges or pencils are equicross by an equation such as

$$
\{A B, C D\}=\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}=O\{P Q, R S\}
$$

But when this notation is used, it is necessary to observe the order of the points, or rays.
423. In § 419 we proved that, when the points of a range $\{A B, C D\}$ are joined to any point O, the range $\{A B, C D\}$ and the pencil $O\{A B, C D\}$ are equicross.

Hence, if the rays of a pencil be cut by two transversals in the points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime} ; D, D^{\prime} ;$ the ranges $\{A B, C D\},\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ are equicross.

It is also evident that, if $\{A B C D\}$ be any range, and if P and Q be any two points, the pencils $P\left\{A B, C D_{j}^{\}}, P^{\prime}\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}\right.$ are equicross.
424. Let $\{A B, C D\},\left\{A^{\prime} B^{\prime}, C^{\prime \prime} D^{\prime}\right\}$ by any two equicross ranges, and let O, O^{\prime} be any two points on the line $A A^{\prime}$, then the lines $O B, O C, O D$ will intersect the lines $O^{\prime} B^{\prime}, O^{\prime} C^{\prime}, O^{\prime} D^{\prime}$, respectively, in collinear points.

Let $O B, O C$ meet $O^{\prime} B^{\prime}, O^{\prime} C^{\prime \prime}$, in $B^{\prime \prime}, C^{\prime \prime}$; and let $B^{\prime \prime} C^{\prime \prime}$ meet $A A^{\prime}$ in $A^{\prime \prime}$. Let $O D, O^{\prime} D^{\prime}$ meet $B^{\prime \prime} C^{\prime \prime}$ in $D^{\prime \prime}, D^{\prime \prime \prime}$, respectively.

Then we have
$\left\{A^{\prime \prime} B^{\prime \prime}, C^{\prime \prime} D^{\prime \prime}\right\}=\{A B, C D\}$,
and
$\left\{A^{\prime \prime} B^{\prime \prime}, C^{\prime \prime} D^{\prime \prime \prime}\right\}=\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$.
But, by hypothesis, $\{A B, C D\}=\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$.
Therefore
$\left\{A^{\prime \prime} B^{\prime \prime}, C^{\prime \prime} D^{\prime \prime}\right\}=\left\{A^{\prime \prime} B^{\prime \prime}, C^{\prime \prime} D^{\prime \prime \prime}\right\}$.
Hence, by $\S 421$, the points $D^{\prime \prime}, D^{\prime \prime \prime}$ must coincide ; that is to say, the lines $O D, O D^{\prime}$ intersect in a point on the line $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

The theorem of this article may also be stated in the form : If two equicross pencils have a common ray, they will also have a common transversal.
425. Ex. 1. If $A B C, A^{\prime} B^{\prime} C^{\prime \prime}$ be two triangles such that $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, the corresponding sides of the triangles will intersect in collinear points (§ 161).

Let $A A^{\prime}, B B^{\prime}, C C^{\prime \prime}$ meet in O; and let $B C, B^{\prime} C^{\prime \prime}$ intersect in the point X. Then we have

$$
A\{B C, O X\}=0\{B C, A X\}=0\left\{B^{\prime} C^{\prime \prime}, A^{\prime} X\right\}=A^{\prime}\left\{B^{\prime} C^{\prime}, O X\right\}
$$

Hence by $\S 424, A B, A C$ will intersect $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}$, in points which are collinear with X.

Ex. 2. If $A B C D$ be any tetrastigm, and if E, F, G be respectively the

points of intersection of $A B, C D ; A C, B D ; A D, B C$; show that the pencil $G\{E F, A B\}$ is harmonic ($\S 141$).

Let $G F$ eut $A B$ in H, and $C D$ in K. Then we have,

$$
G\{E F, A B\}=F\{E H, A B\}=F\{E K, C D\}=G\{E F, B A\} .
$$

Therefore, by $\S 417$, the peneil $G\{E F, A B\}$ is harmonic.
Ex. 3. If $\{A B C\},\left\{A^{\prime} B^{\prime} C^{\prime}\right\}$ be two ranges on different lines, show that the points of intersection of the pairs of lines $B C^{\prime \prime}, B^{\prime} C ; C A^{\prime}, C^{\prime \prime} A ; A B^{\prime}, A^{\prime} B$; will be collinear. (§ 157.)

Let $B C^{\prime}, B^{\prime} C$ intersect in $X ; C A^{\prime}, C^{\prime \prime} A$ in Y^{\prime}; and $A B^{\prime}, A^{\prime} B$ in Z. Join $Y X, Y Z, Y B$.

Then it is easy to see that,

$$
Y\left\{A A^{\prime}, B Z\right\}=A\left\{C^{\prime} A^{\prime}, B B^{\prime}\right\},
$$

sinee these peneils have the common transversal $A^{\prime} B$.

$$
\text { Similarly, } \quad Y^{\prime}\left\{C^{\prime} C, B X\right\}=C\left\{C^{\prime} A^{\prime}, B B^{\prime}\right\}
$$

But it is evident that

$$
A\left\{C^{\prime} A^{\prime}, B B^{\prime}\right\}=C\left\{C^{\prime} A^{\prime}, B B^{\prime}\right\}
$$

Hence,

$$
Y\left\{A A^{\prime}, B Z\right\}=Y\left\{C^{\prime} C, B X\right\} .
$$

Therefore the points X, Y, Z must be collinear.
Ex. 4. If $\{a b c\},\left\{a^{\prime} b^{\prime} c^{\prime}\right\}$ be any two pencils, show that the lines joining the pairs of points $b c^{\prime}, b^{\prime} c ; c a^{\prime}, c^{\prime} a$; $a b^{\prime}, a^{\prime} b$; will be coneurrent.

Ex. 5. The sides of a triangle $P Q R$ pass respectively through the fixed points A, B, C; and two of the vertices, Q and R, move on fixed straight lines which intersect in the point O. If the points O, B, C be collinear, show that the locus of the point l^{\prime} will be a straight line.

Involution.

426. If $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ be a range in involution the ranges $\left\{A A^{\prime}, B C\right\},\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}$ are equicross and conversely.

Let O be the centre of the involution, then by definition ($\$ 66$) we have

$$
O A \cdot O A^{\prime}=O B \cdot O B^{\prime}=O C \cdot O C^{\prime}
$$

(i) Let us suppose that each point lies on the same side of he centre as its conjugate. Then the double points of the range we real.

Let E be one of the double points, and let P be any point on he circle whose centre is O and radius $O E$. The circle which cuts his circle orthogonally and passes through A will pass through A^{\prime}, ince $O A . O A^{\prime}=O E^{2}=O P^{2}$. It is evident therefore that the ircles $P A A^{\prime}, P B B^{\prime}, P C C^{\prime \prime}$ will touch each other at P.

Hence the angles $O P A, O P B, O P C$, \&c., are equal to the ngles $P A^{\prime} O, P B^{\prime} 0, P C^{\prime} 0, \& c$. ; and therefore the angles $A P A^{\prime}$, $3 P B^{\prime}, \& c$. have a common bisector, the tangent to the circles it P.

Hence the pencils $P\left\{A A^{\prime}, B C^{\}}, P\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}\right.$ are equicross.
(ii) Let us suppose that each point of the range lies on the pposite side of the centre to its conjugate. Then the double oints are imaginary.

Let the circles described on $A A^{\prime}, B B^{\prime}$ as diameters intersect in ?. Then the angle $C P C^{\prime \prime}$ will also be a right angle ($\S 80$, Ex. 8).

It is evident that any segment such as $A B$ subtends an angle at P equal or supplementary to that subtended by the conjugate segment $A^{\prime} B^{\prime}$.

Hence the pencils $P\left\{A A^{\prime}, B C\right\}, P\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}$ are equicross.
Conversely, if the ranges $\left\{A A^{\prime}, B C\right\},\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}$ be equicross, the range $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

For if not, let us find the point $C^{\prime \prime}$, the conjugate point of C, in the involution determined by the point pairs $A, A^{\prime} ; B, B^{\prime}(\S 68)$. Thus we have, because $\left\{A A^{\prime}, B B^{\prime}, C C^{\prime \prime}\right\}$ is a range in involution,

$$
\left\{A A^{\prime}, B C\right\}=\left\{A^{\prime} A, B^{\prime} C^{\prime \prime}\right\}
$$

Therefore
$\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}=\left\{A^{\prime} A, B^{\prime} C^{\prime \prime}\right\}$.
Hence the points $C^{\prime \prime}, C^{\prime \prime}$ must coincide.
427. Ex. 1. If $\left\{A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}\right\}$ be a range in involution, show that the ranges $\left\{A B, C D_{j}\right\},\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ will be equicross.

Show that the converse of this theorem is not true.
Ex. 2. Show that any straight line is cut by the pairs of opposite connectors of a tetrastigm in a system of points which form a range in involution.

We have, and

$$
A\left\{\mathrm{IX}^{\prime}, I Z\right\}=\left\{E X^{\prime}, C D_{\}}^{\prime} ;\right.
$$

$$
B\left\{\mathrm{X}^{\prime} X, \mathrm{I}^{\prime} Z^{\prime}\right\}=\left\{\mathrm{X}^{\prime} E, D C\right\}=\left\{E \mathrm{X}^{\prime}, C D\right\}
$$

Therefore and therefore

$$
\left\{\mathrm{IX}^{\prime}, I^{\prime} Z\right\}=\left\{\mathrm{X}^{\prime} \mathrm{X}^{\prime}, Y^{\prime} Z^{\prime}\right\}
$$

$\left\{\mathrm{NX}, Y^{\prime} Y^{\prime}, Z Z^{\prime}\right.$ \} is a range in involution.
Ex. 3. Show that if $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; be the pairs of opposite vertices of a tetragram, and if O be any other point, the pencil $O\left\{A A^{\prime}, B B^{\prime}\right.$, $C C^{\prime \prime}$; will be in involution.

Ex. 4. The middle points of the diagonals of a tetragram lie on a line called the diameter of the tetragram. Show that the diameters of the five tetragrams formed by five straight lines are concurrent.

Cross ratio properties of a circle.

428. Four fixed points on a circle subtend a pencil, whose cross ratio is constant, at all points on the circle.

If A, B, C, D be four fixed points on a circle, the pencil $P\{A B, C D\}$ has a constant cross ratio for all positions of the point P on the circle since the angles $A P B, A P C, \& c$. are of constant magnitude.
429. If the tangents at four fixed points A, B, C, D on a circle, intersect the tangent at a variable point P, in the points $A^{\prime}, B^{\prime}, C^{\prime \prime}, D^{\prime}$, the range $\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ and the pencil $P\{A B, C D\}$ are equicross.

Let O be the centre of the circle. Then, since the angles $P A^{\prime} O, P B^{\prime} O$ are respectively complementary to half the angles $A O P, B O P$, the angle $A^{\prime} O B^{\prime}$ is equal to half the angle $A O B$, and s therefore equal to the angle $A P B$.
Hence we have, $P\{A B, C D\}=O\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$.
Hence, since the cross ratio of the pencil $P\{A B, C D\}$ is constant or all positions of P, it follows that: Four fixed tangents to a circle letermine on a variable tangent a range whose cross ratio is constant. 430. Ex. 1. If A, B, C, D, E, F be any six points on a circle, show that

the points of intersection of the pairs of lines $A B, D E ; B C, E F ; C D, F A$; are collinear. (Pascal's theorem. Cf. § 181.)

Let $A B, D E$ intersect in $X ; B C, E F$ in Y; and $C D, F A$ in Z.
Then the pencils $Z\{F Y, C E\}, C\{F B, D E\}$ are equicross because they have the common transversal $E F$; and the pencils $Z\{A X, D E\}$, $A\{F B, D E\}$ are equicross because they have the common transversal $E D$. But the pencils $A\{F B, D E\}, C\{F B, D E\}$ are equicross by $\S 428$. Therefore $Z\{F Y, C E\}=Z\{A X, D E\}$. Hence the points X, Y, Z are collinear.

Ex. 2. If a, b, c, d, e, f be six tangents to a circle, prove that the lines joining the pairs of points $a b, d e ; b c, e f ; c d, f a$; are concurrent. (Brianchon's theorem.)

Ex. 3. Any straight line is cut in involution by a circle, and the opposite connectors of an inscribed tetrastigm ($\S 273$).

Let $A B C D$ be a tetrastigm inscribed in a circle, and let a straight line be drawn, cutting the circle in P, P^{\prime}, and the pairs of connectors of the tetrastigm in the points $X, X^{\prime} ; Y, Y^{\prime} ; Z, Z^{\prime}$. Join $A P, A P^{\prime}, C P, C P^{\prime}$.

Then we have $\quad A\left\{P P^{\prime}, X Z\right\}=A\left\{P P^{\prime}, B D\right\}$;
and

$$
C\left\{P^{\prime} P, X^{\prime} Z^{\prime}\right\}=C\left\{P^{\prime} P, D B\right\}=C\left\{P P^{\prime}, B D\right\} .
$$

But by §428,

$$
A\left\{P P^{\prime}, B D\right\}=C\left\{P P^{\prime}, B D\right\} .
$$

Therefore

$$
A\left\{P P^{v}, X Z\right\}=C\left\{P^{\prime} P, X^{\prime} Z\right\} .
$$

Hence the range $\left\{P I^{\nu}, X X^{\prime}, Z Z^{\prime}\right.$ \} is in involution.
Ex. 4. Show that if $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$ be the pairs of opposite vertices of a tetragram circumscribed to a circle, and if the tangents at the points P, P^{\prime} intersect in the point O, the pencil $O\left\{P P^{\prime}, A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ is in involution (§ 279).

Ex. 5. If through any point O three straight lines be drawn cutting a circle in the points $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$; and if P be any other point on the circle, show that the pencil $P^{\prime}\left\{A A^{\prime}, B B^{\prime}, C C^{\prime}\right\}$ will be in involution.

Let $B C^{\prime}$ cut $A A^{\prime}$ in the point R. Then we have,

$$
\begin{aligned}
& P\left\{A A^{\prime}, B C\right\}=C^{\prime \prime}\left\{A A^{\prime}, B C^{\prime}\right\}=\left\{A A^{\prime}, R O_{\}}^{\prime} ;\right. \\
& P\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\}=B\left\{A^{\prime} A, B^{\prime} C^{\prime \prime}\right\}=\left\{A^{\prime} A, O R\right\} .
\end{aligned}
$$

But,「herefore

$$
\begin{gathered}
\left\{A A^{\prime}, R O\right\}=\left\{A^{\prime} A, O R\right\} . \\
P\left\{A A^{\prime}, B C\right\}=P\left\{A^{\prime} A, B^{\prime} C^{\prime}\right\},
\end{gathered}
$$

and therefore the pencil $P\left\{A A^{\prime}, B B^{\prime}, C C^{\prime \prime}\right\}$ is in involution.
Ex. 6. If any straight line drawn through a fixed point O on a circle, cut :he sides of an inscribed triangle $A B C$ in the points $A^{\prime}, B^{\prime}, C^{\prime}$, and the circle n the point P, show that the range $\left\{P A^{\prime}, B^{\prime} C^{\prime}\right\}$ will have a constant cross atio.

Ex. 7. Two points P, Q are taken on the circumcircle of the triangle $A B C$, so that the cross ratios of the pencils $Q\{P A, B C\}, P\{Q A, C B\}$ are qual. Show that the lines $B C, P Q$ intersect in a point on the tangent at the roint A.

Ex. 8. A chord $P Q$ of the circumcircle of the triangle $A B C$ cuts the sides of the triangle in the points X, Y, Z. Show that if the range $\{Q X, Y Z\}$ have constant cross ratio, the point P will be a fixed point.

Ex. 9. Four fixed tangents to a circle form a tetragram whose pairs of 'pposite vertices are $A, A^{\prime} ; B, B^{\prime} ; C, C^{\prime}$. If the tangent at any point P neet $A A^{\prime}$ in p, and if $P B, P B^{\prime}, P C, P C^{\prime}$ meet $A A^{\prime}$ in the points $b, b^{\prime}, c, c^{\prime}$, espectively, show that

$$
A p^{2}: A^{\prime} p^{2}=A b . A b^{\prime}: A^{\prime} b . A^{\prime} b^{\prime}=A c . A c^{\prime}: A^{\prime} c . A^{\prime} c^{\prime} .
$$

431. If four points be collinear the range formed by them is puicross with the pencil formed by the polars of the points with -espect to a circle.

Let A, B, C, D be any four collinear points, and let $P A^{\prime}, P B^{\prime}$, $P C^{\prime}, P D^{\prime}$ be the polars of A, B, C, D, with respect to a circle whose sentre is O. Then, since the lines $P A^{\prime}, P B^{\prime}, \& c$., are perpendicular
to the lines $O A, O B, \& \mathrm{c}$. , it follows that the pencils $O\{A B, C D\}$, $P\left\{A^{\prime} B^{\prime}, C^{\prime} D^{\prime}\right\}$ are equicross.
432. Ex. 1. Any triangle and its conjugate with respect to a circle are in perspective (§ 267).

Let $A^{\prime} B^{\prime} C^{\prime}$ be the conjugate triangle of $A B C$; and let the corresponding sides intersect in the points X, Y, Z. Then, if $B^{\prime} C^{\prime}$ cut $A B$ in the point D, the point D will be the pole of $A C^{\prime}$. Also X is the pole of $A A^{\prime}$. Therefore by $\S 431$, the range $\left\{D^{\prime} X, D C^{\prime}\right\}$ is equicross with the pencil $A\left\{Y A^{\prime}, C^{\prime} D\right\}$. But, $\left\{B^{\prime} X, D C^{\prime}\right\}=Z\left\{A^{\prime} X, A C^{\prime}\right\}$; and $A\left\{Y A^{\prime}, C^{\prime} B\right\}=Z\left\{Y A^{\prime}, C^{\prime} A\right\}$. Therefore $Z\left\{A^{\prime} X, A C^{\prime}\right\}=Z\left\{Y A^{\prime}, C^{\prime} A\right\}=Z\left\{A^{\prime} Y, A C^{\prime}\right\}$. Hence the points X, Y, Z are collinear, and therefore the triangles $A B C, A^{\prime} B^{\prime} C^{\prime}$ are in perspective.

Ex. 2. The tangents to a circle at the points A, B, C, form the triangle $A^{\prime} B^{\prime} C^{\prime}$, and the tangent at any point P meets the sides of the triangle $A B C$ in the points a, b, c, and the sides of the triangle $A^{\prime} B^{\prime} C^{\prime}$ in the points $a^{\prime}, b^{\prime}, c^{\prime}$: show that $\{P a, b c\}=\left\{P a^{\prime}, b^{\prime} c^{\prime}\right\}$.

Ex. 3. The tangent at any point P on a circle which touches the sides of the triangle $A B C$, meets a fixed tangent in T. Show that the pencil $T\{P A, B C\}$ has a constant cross ratio.

Ex. 4. On the tangent at any point P on the inscribed circle of the triangle $A B C$, a point Q is taken such that the pencil $Q\{P A, B C\}$ has a constant cross ratio. Show that the locus of Q is a straight line which touches the circle.

Ex. 5. If $A B C, A^{\prime} B^{\prime} C^{\prime}$ be any two triangles self conjugate with respect to a circle, show that the pencils $A\left\{B C, B^{\prime} C^{\prime}\right\}, A^{\prime}\left\{B C, B^{\prime} C^{\prime}\right\}$ will be equicross.

Homographic ranges and pencils.

433. Any two ranges $\{A B C \ldots\},\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$, situated on the same, or on different lines, are said to be homographic, when the cross ratio of any four points of one range is equal to the cross ratio of the corresponding points of the other range.

Similarly, two pencils are said to be homographic when the cross ratio of any four rays of one pencil is equal to that of the corresponding rays of the other pencil ; and a pencil is said to be homographic with a range under similar circumstances.
434. Any two ranges which have a one to one correspondence (that is, when to each point of one range corresponds one, and only one, point of the other), are homographic.

For, if A and B be two fixed points of one of the ranges, and A^{\prime}, B^{\prime} the corresponding points of the other range, any two corresponding points P, P^{\prime} of the ranges must be such that the ratios $A P: B P, A^{\prime} P^{\prime}: B^{\prime} P^{\prime}$, have a constant ratio.

Hence, if P, Q be any two points of the range $\{A B \ldots\}$, and P^{\prime}, Q^{\prime} the corresponding points of the range $\left\{A^{\prime} B^{\prime} \ldots\right\}$, we shall have

$$
\{A B, P Q\}=\left\{A^{\prime} B^{\prime}, P^{\prime} Q^{\prime}\right\} .
$$

That is to say, the ranges will be homographic.
Similarly, if two pencils, or if a pencil and a range, have a one to one correspondence, they will be homographic.
435. Ex. 1. Show that a variable tangent to a circle determines two homographic ranges on any two fixed tangents.

Ex. 2. Show that a range of points on any straight line and their polars with respect to a circle form two homographic systems.

Ex. 3. Show that the polars with respect to a fixed triangle of a range of points on any straight line cut any other straight line in a range which is homographic with the former.

Ex. 4. Show that if two homographic pencils have a common ray they will also have a common transversal.
436. Let $\{A B C \ldots\},\left\{A^{\prime} B^{\prime} C^{\prime \prime} \ldots\right\}$ be any two homographic ranges • on different lines; and let O, O^{\prime} be the points of each range which correspond respectively to the point at infinity on the other. Then we shall have

$$
\{A B, O \infty\}=\left\{A^{\prime} B^{\prime}, \infty^{\prime} O^{\prime}\right\}
$$

where ∞, ∞ denote the points at infinity on the lines $A B, A^{\prime} B^{\prime}$.

That is,

$$
\frac{A O \cdot B \infty}{B O \cdot A \infty}=\frac{A^{\prime} \infty^{\prime} \cdot B^{\prime} O^{\prime}}{B \infty^{\prime} \cdot A^{\prime} O^{\prime}} .
$$

Therefore

$$
\frac{A O}{B O}=\frac{B^{\prime} O^{\prime}}{A^{\prime} O^{\prime}}
$$

that is

$$
A O \cdot A^{\prime} O^{\prime}=B O \cdot B^{\prime} O^{\prime} .
$$

Hence, if P, P^{\prime} be any pair of corresponding points we shall have,

$$
O P \cdot O^{\prime} P^{\prime}=\text { constant } .
$$

The points O, O^{\prime} are called the centres of the ranges.
It is evident that if the lines be superposed, so that the points O and O^{\prime} coincide, the pairs of corresponding points will be conjugate couples of a range in involution.
437. When two homographic ranges $\{A B C \ldots\},\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$ are situated on the same straight line, there will be two points of one range which coincide with the corresponding points of the other range. For, if O, O^{\prime} be the centres of the ranges, and S a point of the range $\{A B C \ldots\}$ which coincides with the corresponding point of the range $\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$, we shall have by the last article,

$$
O S . O^{\prime} S=O A \cdot O^{\prime} A^{\prime}=O B \cdot O^{\prime} B^{\prime}=\& c
$$

Thus S will be a point whose power, with respect to the circle described on $O O^{\prime}$ as diameter, is constant. But the locus of such a point is a circle whose centre is the middle point of $O 0^{\prime}$. Hence there are two points S, S^{\prime} which are coincident corresponding points.

These points are called the double points of the ranges.
By joining the points of the ranges to any point not on the line it follows that any two homographic pencils having a common vertex will have two donble rays, that is to say rays which, considered as belonging to one pencil, coincide with the corresponding rays of the other pencil.
438. To find the double rays of a pair of homographic pencils which have a common vertex.

Let $P\{A B C \ldots\}, P\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$, be any two homographic pencils. Let a circle be described passing through P and cutting the rays of the pencils in the points $A, B, C \ldots$; and $A^{\prime}, B^{\prime}, C^{\prime}, \ldots$; respectively.

Then, if X, Y, Z be the points of intersection of the pairs of
ines $B C^{\prime \prime}, B^{\prime} C ; C A^{\prime}, C^{\prime} A ; A B^{\prime}, A^{\prime} B$; we know that the points X, Y, Z will be collinear. (Pascal's theorem.)

Let $X Y Z$ cut the circle in S and $S^{\prime \prime}$. Then we shall have

$$
\begin{aligned}
& P\left\{A^{\prime} B^{\prime}, C^{\prime} S\right\}=A\left\{A^{\prime} B^{\prime}, C^{\prime} S\right\}=A\left\{A^{\prime} Z, Y S\right\} \\
& =A^{\prime}\{A Z, Y S\}=A^{\prime}\{A B, C S\}=P\{A B, C S\}
\end{aligned}
$$

Therefore $P S$ will be one double ray of the pencils $P\{A B C \ldots\}$, ${ }^{\circ}\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$; and similarly $P S^{\prime \prime}$ will be the other double ray.
439. Ex. 1. Show that, if S, S^{\prime} be the double points of the homographic anges $\{A B C \ldots\},\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$, the circle whose diameter is $S S^{\prime}$ will be coaxal rith the circles whose diameters are $A B^{\prime}$ and $A^{\prime} B$.
Ex. 2. If $P S, P S^{\prime}$ be the double rays of two homographic pencils ${ }^{\prime}\{A B C \ldots\}, P\left\{A^{\prime} B^{\prime} C^{\prime} \ldots\right\}$, show that the pencil $P\left\{S S^{\prime}, A B^{\prime}, A^{\prime} B\right\}$ will be in ovolution.

Ex. 3. Show how to find a point on each of two given straight lines such hat the line joining them shall subtend given angles at two given points.
Ex. 4. Show how to inscribe a triangle in a given triangle, such that the ides of the triangle shall pass through three given points.
Let $A B C$ be the given triangle ; $A^{\prime}, B^{\prime}, C^{\prime}$ the given points. Through A^{\prime}

draw any line cutting $C A$ in Q and $A B$ in R; and let $Q C^{\prime}, R B^{\prime}$ meet $B C$ in P^{\prime} and P. Then, as the line $Q R$ turns about the point A^{\prime}, the points P, P^{\prime} will form two homographic ranges. If the double points of these ranges be S and S^{\prime}, it is evident that the lines $S B^{\prime}, S C^{\prime}$ will cut $A B, A C$ in points collinear with A^{\prime}. Thus the problem admits of two solutions.

Ex. 5. Inscribe in a circle a triangle whose sides shall pass through three given points.

Ex. 6. Inscribe in a circle a triangle whose sides shall touch three given circles.

Ex. 7. Show how to find two corresponding pairs of points $P, Q ; P^{\prime}, Q^{\prime}$; on the homographic ranges $\{A B C P Q \ldots\},\left\{A^{\prime} B^{\prime} C^{\prime} P^{\prime} Q^{\prime} \ldots\right\}$, such that $P P^{\prime}, Q Q^{\prime}$ shall pass through a given point O.

Ex. 8. Describe a circle which shall touch three given circles*.
Let A, B, C be the centres of the given circles; and suppose that a circle can be drawn touching them at the points P, Q, R, respectively. Then the triangles $P Q R, A B C$ are in perspective and have one of the homothetic ases of the given circles for their axis of perspective. Let X, Y, Z be the homothetic

centres of the given circles on this axis of perspective. Through X draw any straight line cutting the circles whose centres are B and C in the points Q_{1} and R_{1}, and let $Z Q_{1}, Y^{\gamma} R_{1}$ cut the circle whose centre is A in P_{1} and P_{1}^{\prime}. 'Then, if a pencil of lines be drawn through X, it is clear that the pencils $A\left\{I_{1}\right\}, A\left\{P_{1}^{\prime}\right\}$ will be homographic. Hence if $A P$ and $A P^{\prime}$ be the double rays of these pencils, P and P^{\prime} will be the points of contact with the circle, whose centre is A, of a pair of circles which touch the given circles.

[^3]
NOTES.

Page $78, \S 134$. In connection with the Brocardian geometry of the riangle, McClelland's treatise "On the geometry of the circle" (1891) may e consulted. He deduces several theorems from the theorem that, if P, Q, R e any points on the sides $B C, C A, A B$ of a triangle, the circles $A Q R, B R P$, $P Q$ will have a common point.

Page 113, § 180, ex. 12. In conection with this subject a paper by Ir Jenkins "On some geometrical proofs of theorems connected with the iscription of a triangle of constant form in a given triangle," Quarterly ournal, Vol. xxi., p. 84, (1886) may be consulted.

Page 140, § 223. The theory of similar figures is chiefly due to Neuberg nd Tarry, whose papers will be found in Mathesis, Vol. II.

Page 145, § 232, ex. 3. See a paper by McCay in the Trans. Royal Irish cademy, Vol. xxviit.

Page 189, § 313. The definition of the power of a point with respect to a rcle was first given by Steiner, Crelle, Vol. I., p. 164 (1826). Darboux gave ae definition of the power of tico circles in a paper published in Annales de École Vormale superieure, Vol. I. (1872). Clifford also used the same defiition in a paper said to have been written in 1866, but published for the rst time in his Collected Mathematical Papers (1882).

Page 206, §333, ex. 7. The theorem in this example which is afterwards sed to prove Feuerbach's theorem was taken from Nixon, Euclid Revised, ad edit. p. $350(1<88)$. The theorem together with the proof are said to be ue to Prof. Purser, but the proof given by Nixon is invalid. I am informed lat another proof has been inserted in a new edition of this treatise which to appear shortly. It may be mentioned that an elegant proof by McCay Feuerbach's theorem is to be found in McClelland's Geometry of the circle, 183 (1891). McCay's proof depends on the theorem that the Simson lines two diametrically opposite points on the circumcircle of a triangle intersect a point on the nine-point circle.

Page 235, § 375. This theorem is taken from Casey, Sequel to Euclid, 112. It was first stated by Casey (Phil. Trans., Vol. clxviin.), and the proof ven is attributed by him to McCay.

INDEX.

Angle, trigonometrical ratios of, 9.
harmonic section of, 26.
Brocard, 66.
of intersection of two circles, 189, 238.
equal or supplementary to that of inverse circles, 224.
Angles, measurement of, 8 .
Anharmonic-see 'Cross ratio.'
Antiparallel, defined, 63.
Antipoints, 203.
Area, measurement of, 10.
of a triangle, 12.
Areas, fundamental theorems relating to, 20, 22.
addition of, 20.
Axes, homothetic, of three circles, 197, 242.

Axis, of perspective, 101, 122.
of homology, 101.
of similitude of inversely similar figures, 134.
of perspective of conjugate triangles, 163.
radical, 185.
Baker, 248.
Brianchon's theorem, for hexagram circumscribing a circle, 116, 172, 276.
for hexagram consisting of two triads of concurrent lines, 108.
Brianchon hexagram, defined, 118.
Brocard, angle of triangle, 66 .
points, 65, 133.
circle, 78, 143, 144.
triangles, 79, 132, 139, 143, 144.
Brocard's first triangle has same median point as original triaugle, $81,144$.

Casey, 133, 232, 253, 269, 282.
Cayley, 116.
Centre, of range in involution, 37.
of tetrastigm, 83.
of perspective, 101, 122.
homothetic, 129.
of similitude of two figures directly similar, 130, 136.
of similitude of two figures inversely similar, 134, 139.
of circle, pole of line at infinity, 156.
radical, 185.
Centres, homothetic, of two circles, 193, 196, 222.
Circles connected with a triangle :-
circumcircle, 66, 222.
inscribed, 72.
Nine-point, 70, 222.
Cosine, 75.
Lemoine, 76.
Tucker's system, 77.
Taylor's, 78.
Brocard, 78.
Polar, 162.
Circumcircle, nine-point, and polar circles coaxal, 223.
Circle of coaxal system, cutting given circle orthogonally, 202.
touching a given circle, 202.
Circle cutting two given circles at constant angles cuts all coaxal circles at constant angles, 204.
Circles, passing through a point and touching two circles, 197.
touching three given circles, 198, 241, 282.

Circles, cutting three circles at given angles, 239.
cutting four circles at equal angles, 243.
passing through three of the six points of intersection of three given circles, 250.
inverse pair of, discrimination between, 258.
Circular points at infinity, 157
Circular reciprocation, 257.
Circular triangle, associated triangles, 251.

Hart circles of, 254.
Class of an envelope, 3.
of reciprocal of a curve, 175.
Collinear points, 57.
Common tangents, of two circles, how related to common tangents of inverse circles, 228, 232.
of four circles touching a fifth circle, how connected, 244.
of three circles touching a line, 248.

Concurrent lines, 51.
Jondition that, three pairs of points should be in involution, 43, 274.
three pairs of rays should be in involution, 50.
three lines should be concurrent, 52.
three points should be collinear, 58 .
two triangles should be in perspective, 108.
two circles should cut orthogonally, 189.
four circles should have a common tangent circle, 245.
Onjugate diameters, 157.
lines with respect to a circle, 157.
points of harmonic range, 24.
points with respect to each of two point-pairs, 35.
points of range in involution, 37.
points with respect to a circle, 157.
rays of harmonic pencil, 27.
triangles, defined, 161.
triangles in perspective, 163, 278. ;ontact of inscribed and nine-point circles, 74, 207.

Contacts, scheme of, for system of tangent circles, and Hart circles of a circular triangle, 257.
Continuity, principle of, 4, 45,
Cross ratio, of a range, defined, 266.
of a pencil, defined, 268.
fnndamental theorem, for circle, 275.

De Rocquigny, 60.
d'Ocagne, 67.
Duality, principle of, 4, 174.
Educational Times, Reprint, 67, 69, 74, 87, 92, 236.
Envelope, defined, 1.
of circle which cuts two circles at constant angles, 204.
of third side of triangle inscribed in a circle, such that two sides touch coaxal circles, 212.

Harmonic pencil, defined, 27.
conjugate rays of, 27.
when one pair of conjugate rays are perpendicular, 28.
straight line cut harmonically by rays of, 27.
construction of conjugate rays, 28.
relation between angles of, 31 .
Harmonic pencils having a common ray, property of, 34.
Harmonic properties, unaltered by projection, 121.
how affected by reciprocation, 177.
Harmonic range, defined, 24.
construction of conjugate points, 25, 33.
when one point at infinity, 26.
relations between segments of, 29,30 .
cross ratio properties of, 268.
Harmonic ranges having a common point, property of, 33.
Harmonic section, of a line, 24.
of an angle, 26.
of a chord of a circle, 25.
Hart circles of system of three circles, 254.

Hart, Dr, extension of Feuerbach's theorem, 253, 264.

Herrey, 92.
Hexagram, Brianchon, defined, 118.
circumscribing a circle, (Brianchon's theorem), 116, 172.
consisting of two triads of concurrent lines, 98, 108.
Hexastigm, consisting of two triads of collinear points, 97, 107, 272.
inscribed in a circle, (Pascal's theorem), 113, 275.
Pascal, defined, 117.
Homographic ranges and pencils, 279.
Homographic ranges, collinear, centres and double points of, 280.
Homologous triangles, 101.
Homothetic, figures, 129.
axes of three circles, 197, 242.
centres of two circles, 193, 196, 222.

Infinity, line at, 6.
circular points at, 157.
Invariable points of three similar figures, 141.
triangle of three similar figures, 141.
Inverse.circles, 221.
discrimination between, 258.
Inrolution, pencil in, defined, 43.
principal rays, 43.
double rays, 44.
fundamental property, 46.
construction of double rays, and principal rays, 47.
when two pairs of rays are perpendicular, 48.
condition that three pairs of rays should form, 50 .
Involution, range in, defined, 37.
conjugate points, 37.
double points, 40.
centre, 37.
construction of conjugate points, $38,39,90$.
metrical relations between segments, 42.
condition that three pairs of points should form, 42, 273.
fundamental connection with pencil in involution, 49.
Involution, ranges in, determined by four points, 41.

Involution, theorems on, 88, 90, 95, 167, 274, 276, 277.
Isogonal points, 56, 63, 66.
Isotomic points, 57, 80.
Kirkman, 116, 119.

Langley, E. M., 69.
Larmor, A., 207, 244, 250, 254, 265.
Lemoine circle of a triangle, 76, 173.
Length, measurement of, 7.
Limiting points of coaxal circles, 188, 201, 206, 211, 219.
Locus, defined, 1.
Locus of, centre of circle cutting two circles orthogonally, 185.
a point P, when sum of the areas $(P A B),(P C D)$ is constant, 22.
a point whose powers with respect to two circles are equal, 184.
centre of similitude of two circles, 192.
a point whose polars with respect to three circles are concurrent, 237.

Mcay's circles, 145, 222.
Marks, S., 87.
Mathesis, 60.
Neuberg, 145.
Order, of a locus, 3. of reciprocal of a curve, 175.
Orthocentre of a triangle, 64.
Orthocentres of the four triangles of a tetragram collinear, 91.
Orthogonal circles, property of, 160.
Orthogonal coaxal systems of circles, 202.

Pascal lines, defined, 114.
intersect in twenty Steiner points, 115.

Pascal hexastigm, defined, 117.
Pascal's theorem, for hexastigm consisting of two triads of collinear points, 108, 272.
for hexastigm inscribed in a circle, 113, 150, 171, 275, 281.
?eancellier's cell, 220.
?cncil of, rays defined, 16.
four rays, fundamental relation between angles, 17.
?encils, two equicross, having a common ray have a common transversal, 271.

Perspective, construction of figures in, 123, etc.
construction of rectangle and tetragram, 126.
general theory, 121, etc.
Polar of a point with respect to a circle, construction of, 153.
Polars of a point with respect to coaxal systems of circles concurrent, 201.

Pole and Polar, with respect to a circle, 151.
with respect to a triangle, 61.
Polygram, defined, 83.
diagonals of, 84.
Polystigm, defined, 83.
centres of, 83.
Poncelet, 4.
Poncelet's theorem, 216.
Power of, a point with respect to a circle, 183.
two circles, 189.
Powers of, coaxal circles, fundamental theorem, 203.
inverse circles, 229.
Poristic system of circles, 215.
Projection, 119.
Purser, 206.
Quadrilateral (see also tetrastigm and tetragram).
middle points of diagonals collinear, 23.

Radical axis of two circles, 185
centre of three circles, 185.
circle of three circles, 237.
Radins of a circle, convention as to sign, 238.
Rañge, bivalent, 268.
Range of, points, defined, 15.
four points, fundamental relation between segments, 15.

Reciprocal figures, 174.
Reciprocation, circular, 257.
Salmon, 119, 155.
Self-conjugate triangle with respect to a circle, 161.
Similar, figures directly, 128.
figures inversely, 128.
figures described on the sides of a given triangle, 144.
Similitude, axis of, for inversely similar figures, 134, 139.
Similitude, centre of, for directly similar figures, 130.
for inversely similar figures, 134.
in case of a triangle inscribed in a similar triangle, 131.
Similitude, circle of, for two circles, 192.
for three similar figures, 140.
Simson line, 68, 81.
Steiner, 116, 232.
Steiner points of hexastigm inscribed in a circle, 115.
Symmedian point, defined, 62.
properties of, $64,75,144,14$.
Tangent to a curve, 2.
Tarry, 142.
Tarry's point, 81, 139.
Taylor, H. M., 78, 113, 133.
Taylor's circle, 78.
Tetragram, vertices, 84.
diagonals, 84.
circumcircles of its four triangles concurrent, 91.
orthocentres of its four triangles collinear, 91.
harmonic property, 92.
middle points of diagonals, collinear, 93.
involution property, 95.
circles described on diagonals coaxal, 96, 203.
Tetragram circumscribed to a circle, 168. diagonals form a self-conjugate triangle, 168.
involution property, 169.
Tetrastigm, connectors of, 83.
centres, 83.
harmonic property, 86, 271.

Tetrastigm, involution property, $88,274$. Tetrastigm inscribed in a circle, centres form a self-conjugate triangle, 164. involution property, 167, 276.
when one pair of connectors touch another circle, 209.
when a complete set of connectors touch another circle, 212.
Townsend, 133.
Triangle, inscribed, in a circle, so that its sides pass throughgiven points, 165.

Triangle in a circle, so that its sides touch coaxal circles, 214.
in a similar triangle, 133.
in a triangle, so that its sides pass through given points, 281.
Trigonometrical formulae for sum of two angles, 17.
Tucker's system of circles, 77.
Vigarié, 236.
Young, J., 74.

BINDING SECT. AUG20 158 ?

QA	Lachlan, Robert
An elementary treatise on	
453	modern pure geometry

Phissical ${ }^{2}$
Applied Sci.

PLEASE DO NOT REMOVE
 CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * The greater part of this section is taken from a paper by Mr A. Larmor ;Proc. L. M. S. vol. xxini, p. 135. (1891.)

[^1]: * This method was suggested by Mr Baker.

[^2]: * This theorem was first stated by Mr A. Larmor.

[^3]: * This method is due to Casey.

