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PREFACE.

Analytical science, after having been long neg-

lected in these countries as an elementary depart-

ment of education, has, within a few years, been

cultivated by the young aspirants for mathematical

celebrity with an ardour, and prosecuted with a ra-

pidity and success, which its warmest admirers could

scarcely have hoped for. This change would pro-

bably have taken place at an earlier period, but

for the obstacle opposed to it by the want of

treatises on the subject, in our language, of a suf-

ficiently elementary nature. The restless activity of

the human mind in the pursuit of knowledge was

not long to be checked by so trifling an impediment,

and our students soon found in foreign works that

which our own professors had failed to supply ; and

through the medium of these treatises, analytical

science began, and has continued, to be cultivated at

the universities with singular success. In the mean

time, several original works have appeared, which
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are gradually superseding the works of foreign pro-

fessors. For these, the public are indebted to some

of the distinguished members of the University of

Cambridge ; Woodhouse, Whewell, Herschell, Bab-

bage, Peacock, &c., &c.

Desirous of contributing to the great work of

improvement which was thus in progress, I some

time since published the first part of a treatise on

Analytic Geometry ; a subject which had not then,

nor has been yet treated of by any other English

author. The favourable manner in which that work

has been received has encouraged me in the pro-

secution of my labours, the result of which I now

venture to offer to the public.

The present Treatise is divided into four parts,

the subjects of which are severally, 1. the Differential

Calculus; 2. The Integral Calculus; 3. The Cal-

culus of Variations ; 4. The Calculus of Differences.

The arrangement which I have adopted throughout

the work has been to present to the student theory

and ilhistration in alternate sections. I have found

by repeated experience, that as on the one hand, the

total omission of examples, so common in foreign

treatises, renders the theory obscure and even unin-

telligible ; so, on the other hand, their too frequent
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recurrence in the progress of the development of the

abstract principles of a science is apt to break the

continuity and oneness of the reasoning, and to

render it difficult for the student to take a general

view of the subject as a whole.

By the method adopted in this work, I have

attempted to remove both these defects. The stu-

dent will find in general, that the complete theory

of each department of the subject is fully explained

before the current of his ideas is stopped by an

example. At the same time the subdivisions of

the subject are so numerous, and the sections of

illustration so frequent, that none of the confusion

which is apt to arise from a long exposition of ab*

stract principles without examples of their appli-

cation can ensue.

Another advantage of this method is, that it is

suited to students of different capacities. The sec-

tions of illustration will receive only that degree of

attention which is necessary to fix clearly in the

mind the general principles which have been esta-

blished in the preceding sections.

There is one part of the work, the calculus of dif-

ferences, which I am sensible of having written under

considerable disadvantage. The treatise on this sub-
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ject by Mr. Herschell, which forms the appendix to

the translation of the Calculus of Lacroix, together

with the collection of examples by the same author,

which accompanies Mr. Peacock's examples on the

differential and integral calculus, form a treatise on

the calculus of differences so excellent, that it would

be useless as well as presumptuous in me to attempt

to improve it. Under these circumstances, I have

confined myself in the fourth part to a few of the

most elementary and generally useful principles of dif-

ferences, particularly those connectedwith the method

of interpolation and the summation of series.

I have attempted in this treatise to include a

more extensive range of analytical science, more

fully developed, accompanied by a greater quantity

of practical illustration, under a considerably less

bulk than will be found in most of the foreign trea-

tises on the same subject, particularly those which

have hitherto formed the class books at the univer-

sities. Whether I have succeeded in this design,

I leave the public to decide.
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PART I.

THE DIFFERENTIAL CALCULUS.

{*) SECTION I.

Preliminary principles.

(1.) Quantities, constant and variable.

(2.) Examples of constant and variable quantities.

(3.) Jfmiction, what?
(4.) Manner of denoting functions in general. Object of the

differential calculus.
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(6.) D'Alembert's method of limits.
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may be developed in a series of positive and integral powers of A,

provided that x be an indeterminate quantity.

(13.) The coefficient of the first power of h in this series is the
differential coefficient.

(14.) Abbreviated manner of expressing the series.

(15.) The differential is the first term of the expanded differ-

ence.

(16.) If M ^ F (y) and 7/ =f(xj to determine the differen-

tial coefficient of u, considered as an implicit function of x.

(I7.) To differentiate a quantity composed of several functions
of the same variable united by addition or subtraction.

(18.) Constant quantities, combined with a function by ad-
dition or subtraction, disappear in jts differential ; but constants,
combined as factors, are similarly combined with the differential
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(19.) Exponentialfunctio?is, what.''
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(21.) To differentiate a logarithm,

(22.) To differentiate a product of several functions of the

same variable.
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variable.
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(25.) Lemma. The limit of the ratios of the chord of a cir-

cular arc, and the arc itself to the tangent, is a ratio of equality.
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(30.) 'i'o differentiate the secant and cosecant.
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du
are indeterminate, though their ratio -t' is determinate.
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(37.) Third, fourth, &c. Differential coefficients, or derived

functions. Notation.

(38.) If u = F (?/), y =.f {x)y given the second differential

coefficient of w as a function of y, and of 3/ as a function of Xy to

find the second differential coefficient of m as a function of x.

(39.) To determine the successive differential coefficients of a

power.

(40.) To determine the successive differential coefficients of

the product of two functions.

(41.) To determine the successive differential coefficients of

an exponential function.
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(61.) Laplace's theorem.
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.

(62.) The binomial theorem.

(63.) Expansion of a^ in a series of powers of x.

(64.) The value of the hyperbolic base. Fundamental pro-

perties of logarithms,

(^^.) Expansion of e^.

{^^^ Series for the exponential formulae e'^'^~^ + e~~^^~^

and e^^A/^ - ^—^a/^.

(67.) Expansion of a"*^.

(68—72.) Various series for logarithms.

(73.) Series for the sine and cosine in a series of powers of the

arc.
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2 COS. X = e^'^- '
-f-
e—V-i.

2 v/-l sin ,1- — e?AV—
I _ aV—

1
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(t) SECTION VII.
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may be assigned to h, so small, that any proposed term may be
made to exceed the sum of all that follow it.
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Mdx
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"^ ^
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~"
1.2. 3 m
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ELEMENTS
OF THE

DIFFERENTIAL AND INTEGRAL

CALCULUS.

• PART I.

THE DIFFERENTIAL CALCULUS.

SECTION I.

Preliminary Principles.

(1 ) Quantities engaged in this science are considered

as constant or variable.

A quantity, which is supposed to retain the same value

tlirouohout the whole of any investigation, is said to be

constant. On the contrary, a quantity to which in any in-

vestigation different values may successively be ascribed, is

said to be variable.

Constant quantities are usually expressed by the first

letters of the alphabet, and variable quantities by the last.

Constant and variable quantities are not, however, analogous

to Jcnown and unlaiozai quantities in common algebra, since

a constant quantity may be unknown.

(2.) The following may 'serve as examples of constant

and variable quantities. A point being given within a

circle given in magnitude and position, a line drawn from

the given point to the circumference of the circle is in general

a variable quantity, as its length will change with the point

B
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in the circumference to which it is drawn. But if the given

point within the circle be the centre, the same line becomes

a constant quantity, being the same length to whatever

point in the circle it is supposed to be drawn. Again, if the

base and vertical angle of a triangle be given, the radius of

the inscribed circle, and the distance of its centre from the

vertex, are variable quantities ; but the radius of the circum-

scribed circle, and the distance of its centre from the vertex,

are constant quantities.

(3.) When two variable quantities enter the same in-

vestigation, they are frequently so related that the variation

of either may be determined by that of the other. In other

words, a relation may subsist between them, such, that any

particular value being assigned to either, the corresponding

value of the other will be determined. In this case, either

of the variables is said to be afunction of the other. Thus,

for example, in the equation u = 4^ sin. ^, any variation

in r produces a corresponding variation in u, and vice versa.

Also, any particular value, as 30°, being assigned to x^ the

corresponding value (2.) of u is determined. In this case,

therefore, u is said to be a function of a:, or a: a function of

u indifferently. The same may be observed of the equations

u = 10j7% u = log. a:, u = «% &c.

(4.) As it is necessary to express functions without regard

to any particular form, a peculiar notation has been invented

for this purpose. The character f or^' signifies a function,

and f{x) ory(jr) signifies a function of .r, jr being considered

the variable. Thus, u = F(«r) signifies that m is a function

of.r*.

If the variable ,r be supposed successively to assume all

values from zero to infinity, the function f(^) or u assumes

* The characters (p{a:) and ^{x), and others, are also used to

express functions.
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a succession of corresponding values. The rate of the varia-

tion of u compared with that of x in general will change

with the value of x. There is but one case in which their

rates of variation will have an invariable ratio, which is

when u = ax, a being a constant quantity. In this case it

is obvious that u varies as x. The immediate object of the

Differential Calculus is to determine the rate of variation of

a function relatively to that of its variable.

(5.) It was nearly under this point of view that Newton
presented the first principles of the Fluxional Calculus.

He considers quantities to be generated by motion, as lines

are produced by the motion of a point, surfaces by that of a

line, &c. The quantity \\\vx^Jloiving or varying he called a

Jluent, and the rate or velocity of its increase or decrease he

called ItsJluxion. The Fluxional Calculus was therefore a

method of determining the velocity with which a function

varies at any point of time compared with the velocity with

with its variable changes.

(6.) The conceptions of motion and time, which are in-

volved in this method, were considered inconsistent with the

rigour of mathematical reasoning, and wholly foreign to that

science. As an improvement upon the principle, D'Alembert

proposed the method of limits. Considering w as a function

of JT, let the variable x be supposed to receive any finite in-

crement h, so that it becomes or + A, and let the corre-

sponding value of u be u, so that we shall have the

equations

u = r(x),

u = f(x -\- h).

Let the value of -^— be found. This will be in general a

quantity whose value will depend on those of a; and h, and

it will express the ratio of the finite increment {u' — y) of

the function, to {Ji) that of the variable. If in this quantity

b2
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h be supposed to be = 0, it will express the limit of the

ratio * of the corresponding variations of the function and

variable, these variations being reduced to infinite minute-

ness. It is not difficult to perceive that this method attains

the same end as the former ; but in rejecting the mechanical

ideas of time and motion introduces those quantities or in-

crements infinitely minute.

(7.) The last improvement in the principles on which the

calculus is founded is that ofLagrange. He equally rejects

the limits of the ratios of D'Alembert and the motions and

velocities of Newton, and has proposed fundamental prin-

ciples for the calculus at once rigorously demonstrable and

purely analytical. Let u = f(.i) and u' = F(a; + h). By
developing u' — u in a series of ascending integral and

positive powers of h (which may be proved when ^ is

variable to be always possible), let the series

u' ^u = A'/i + aW' f A"7i' ....
be obtained.

In this series the coefficients a', a", a'", &c. are functions

of X. The function a' is called by Lagrange the Jirsf

derived function. This may be shown to be the same

quantity which D'Alembert calls the limit of the ratio of

the corresponding increments of the function and variable.

Let both members of the preceding equation be divided

by h,

ni' ni

= a' + a"/* + A'7^«
h

If 7t = this becomes a', which is therefore the hmit of

the ratio.

(8.) Thus these three methods of presenting the first

* A limit is a state to which a quantity continually approaches,

and nearer to which it comes than any assignable difference, but

to which it cannot actually attain.
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principles of the calculus to the student arrive at the same
end, though by different means.

Newton proposed to determine the ratio of the velocities

With which the function and variable increase or decrease,

and called these velocities iheirJluxions, The notation by
which he expressed the fluxions was, u, x, the function u
and its variable x being called fluents. The quantity

u . .
,— is the fluxional coefficient. It may be observed here

X

that the fluxions are not quantities absolutely determinate,

but may have any values, provided that their ratio is that of

the velocities with which the function and variable change.

The fluxional coefficient, however, is given for any par-

ticular value of jr, and, in general, only varies with x,

D'Alembert proposed to determine the value of the frac-

tion having for its numerator and denominator the simul-

taneous increments of the function and variable, when both

these increments are = 0. The value thus determined is called

the differential coefficient, and two indeterminate quantities,

du and dx being assumed, so that the fraction — shall
dx

have this value, are called the differential (du) of the func-

tion, and the differential {dx) of the variable. Tlie no-

tation du, dx, is not meant to express d x u, d x x, but
simply "the differential of w'^ and '< the differential of
07." It is evident that the " differentials" of the function

and variable, according to this system, are the same quan-
tities as the " fluxions'' in the Newtonian method, differing

only in notation and name.

Lagrange attempted to set aside both the notation and
nomenclature of the differential and fluxional calculus. He
showed that the true principles of this science consisted in

the methods of developing functions in series, and v^exe alto-

gether independent of the ideas of velocities or of infinitesimal
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or evanescent quantities, or even of the limits of ratios. He
proved that if in any function w of a variable jr, the variable

be supposed to be changed to x -{- h, the function ¥(x + h)

or u' could be always expanded in a series of ascending in-

tegral and positive powers of //, provided that the variable

j; is not supposed to have any particular value. If this de-

velopment be

W' = A -h a'A + A'7i« -h aW -h &c. . . .

he called the coefficient a' of the second term, the first de-

rived function of the function u. From what has been

already observed, it appears that this is the same as the

" fluxional coefficient"" of Newton, and the " limit of the

ratio" or differential coefficient of D'Alembert. It is also

evident, that the second term of the series is the differential

of the function w, h being assumed as dx *.

(9.) We shall in the following treatise adopt the notation

of the differential calculus in preference to that of the

fluxional, as well because it is generally received by the

scientific world at present, as because of its superior sim-

plicity and power. We shall, however, use the principles

of all the three methods as they may seem best suited to

the subject of investigation (•.

(10.) Functions are explicit or implicit.

* In this enumeration of the methods of the different founders

of the calculus, I have omitted Leibnitz's infinitesimal method,

because, although I believe it was the first promulged and pub-

lished, yet it is inferior in rigour to the others. Its validity con-

sists in a kind of compensation of errors.

t Wherever it can be used without too great complexity for so

elementary a treatise as the present, I have preferred the method

of Lagrange, as being most rigorous, and free from metaphysical

objections.
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An explicit function is one whose form is known. Thus,

0'"', log. X, sin. jr, a^, are exphcit functions of x.

An imphcit function is one whose form is unknown, or at

least not expressed. Thus, if u^ -f u^ax -{- ux -\- 1 = 0, u

is an implicit function of x, being a root of this equation.

Also, if u = sin. 7/, and t^x^ + bx^ -\- ex -^ d = 0, u is an

implicit function of jr; h, r, and fZ being supposed to be

constant quantities. The roots of an equation are implicit

functions of its coefficients.

Functions also are of one or several variables. If wssj"*,

w is a function of one variable, m being supposed constant.

If M = x^, u is a function of two variables x and i/.

Again, if m = a: - , w is a function of three variables, and

so on. In these cases the variables are supposed to be in-

dependent^ that is, the variation of either or any one of them

is independent of the others, which, at the same time, may

or may not be varied. If, however, any two of the variables

be connected by any equation or condition, they cease to be

independent variables, as any change in either produces a

corresponding change in the other. Thus, if m = x^^ and

at the same time x = 2y, x and y are not independent

variables, and the function in this case, though apparently a

function of two variables, is implicitly a function of one

variable, and becomes an explicit function of one variable by

eliminating 2/, whereby u~x .

(11.) Functions are also divided with respect to their form

into algebraic and transcendental. Those in which the

variable is united with the constants by common algebraical

operations, are called algebraicfunctions. Such are ax, —

»

X

x'\ l/x, &c. But those in which the variable is connected

otherwise with the constants, are called transcendentaljunc^

tions. Such are x% a log. .r, a sin. x, &c.
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The process by which the differential ofa function is found,

is called '* differentiation," and the function is said to be

" differentiated."

We shall commence by explaining the methods of dif-

ferentiating functions, whether explicil or implicit of a single

variable.

SECTION II.

The differentiation offunctions of one variable.

PROP. I.

(12.) Ifu = r(jr) and x he changed into x + h, so that

u' = f(x -\- h) id may be developed in a series (fpositive and

integral powers of /z, provided that x be an indeterminate

quantity.

Let

u! = A7i« + v,h^ + oh' ....
the quantities a^b^c . , . must be positive and integral, for

1^. Ifany of these exponents were negative, the supposition

7i = would render u (which then becomes equal to u) in-

finite. Hence x must have that determinate value which

renders —r— = 0, which is contrary to hypothesis.

Also, since when h — 0, li! ~ w, it follows that one of the

terms of the series must be independent of A, and that the

value of that term must be f(^). Hence the series must be

of the form

%i — F(.r) 4- aA" -f B/i'' -f cA'". ....
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2^ If any of the exponents were fractional, there would

be as many values of the term which involved that power as

there were units in the denominator of the fractional ex-

ponent. Now it is plain, that the radicals affecting h can

only arise from radicals included in the primitive function

F(a7), and that the substitution o^ x -\- h for x can neither

increase nor diminish the number of these radicals, nor

change their nature, so long as x and h remain indeterminate.

On the other hand, it appears from the theory of equations,

that every radical has as many different values as there are

units in its exponent, and that every irrational function has

consequently as many different values as there are different

combinations of the values of the radicals which it includes.

Therefore, if the development of v{x -f- //) could contain a

term of the form gh~'^ , the function f(^) must necessarily be

irrational, and must have consequently a certain number of

different values, and therefore r(.r -l h) must have the same

number ; but the development of this last in a series being

f(j7 + Ji) =z y(x) + Ah" + Bh .... ^7i «... .

each value of ¥{x) is successively combined with the n values

of gjy/t", so that the function f(x -f- h) has a greater number

of values when developed, than it has when not developed,

which is absurd *. Hence no power of h can occur in the

development, except such as have positive integers as ex-

ponents. The series must therefore have the form,

T(X -f h) = t{x) + a'Ji f A"r- + aV. . . .

(13.) Cor, Hence

u' -u== A'h + a!^¥ -f A"7i3

By dividing both sides by A, and supposing h — 0, it ap-

pears that the coefficient a' of h is the limit of the ratio of

* Theorie des Fonctions Analytique. I^agrange^ p. 7.
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the increment u' ^ u o^ the function to the corresponding

increment h of the variable. This is therefore the dif-

du
ferential coefficient, and -7- — a'.

dx

(14.) Cor. 2. As 7t* is a common factor of the terms of

the series after the first, the series may be expressed thus,

yj -^ u — A'h -\- s/i®,

where s =r a" + a"7i + A^'h^

(15.) Cor. S. The first term A'h of the expanded dif-

ference u' — u of the function may alv/ays be considered as

its differential.

PROP. II.

(16) If u — f(^) and y =y(x) to defe?'7mnc the dif-

ferential coefficient of u considered as an iinjdicitfunction

ofx.

Lety=/(.r + A), and

if —y — A!h -f- s/i^.

Ify _ ?/ =: A', and '.• y^ = y -\- Jc,v! ^ T(y + k),

u' — u =: b7v + S7x2,

substituting for k in this its value given by the former,

the result arranged by the dimensions of h will be of the

form

id - u — A'n'h -1- s''h\

By th.cse three series we find

-^ - A'
dx

-'"'

du ,

^^ = A'.,
dx

From which it follows, that

du du dy

dx " dy d

I
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Therefore, if there be three quantities u, y, x, each a

function of the other, the differential coefficient of any one

u considered as a function of another x is equal to the pro-

duct of the differential coefficients of that one u considered

as a function of j/, and cf 1/ considered as a function of the

remaining one x.

It is obvious that by continuing the process, the same

principle may be shown to be applicable to any number of

differential coefficients.

PROP. III.

(17.) To differentiate a quantity which is composed of

sexwralfunctions of the same variable united by addition or

subtraction, the differentials of the component functions

being given.

Let u = V \- y — z, v, y, and z being functions of the

same variable x\ Let

i/ - r = aA + sA^,

y - ^ = A'A + s%s
«' - z = a"A H- s'^h\

Adding the first two and subtracting the third, observing

the conditions,

u =v -^ry - Zy

yj = V^ -\-y^ — jSf',

the result will be

w' — w = aA + A!h — a!% + (s + s' - s")/^«.

Hence

du = dv -\- dy — dz.

Hence it is clear that the result is in general the dif-

ferentials of the several functions united together in the

same manner, and with the same signs as the functions

themselves.
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PROP. IV.

(18.) Constant quantities combined with a function by

addition or subtraction disappear in its differential, and all

constaiit quantities which are comtnned with it asfactors are

similarly combined with its differential.

P. Let u -- F[a:) ± a, '.' it ~ f{.v -j- h) ± a, •.•

u' -71 _F{x^-h)— T{a:)

In which a dc^es not appear, and therefore it does not appear

in the differential of w, which is deduced from this.

Hence it follows that u has the same differential, whatever

the constant a may be.

2". Let u — '^'F(.r), •.• u' — aF(x -\- h\ '.'

u' — u = a[F(x + h) - F(.r)],

u'~ti F{x-\-h)— F{x)

•-T-='' h '

from which the differential coefficient being derived, it is

evident that a is a factor of it.

The same observation obviously applies to constant di-

visors, since a may be -r-.

(19.) Def. Functions of the form u — a'^ are called ex-

ponentialfunctions.

PROP. V.

(20.) To differentiate an exponentialfunction.

Let u = a\ '.' u' = a"+^'^ = a' - a\ Let a = 1 -'r b,

\- fl* = (1 -f- by. This being expanded by the binomial

theorem, gives

h , h.h--l^^ h'h^l .7^-2 „
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which arranged by the dimensions of h, is of the form

a* = 1 -f M -h s7i«,

where

_^ h'' b^ h^
^- I'^T+li" ~T

multiplying both by a% and substituting u for a% and m' for

a'"«^, the result after transposing u is

u' ~u — kuh -f sw/i®.

Hence da = A;wc?.r — ha'dx, and •.* -r— :=: Tcu ~ ka",
dx

The value of tlie series h will be determined in finite

terms hereafter (64.).

PROP. VI.

(21.) T'o differentiate a logarithm.

Assuming the logarithms of the equation u = a"" relatively

to the base a, we find lu — a-, '.' d • lu = dx. Ehminating

dx by this, and the equation du = kudx found in the last

proposition, we fiwd

1 du
d ' lu = ~r • —

.

/c u

It is obvious that the value of k depends upon that of

the base a. The base which renders 7c = I is called the

Neperian base, and sometimes the hyperbolic base ; and the

corresponding logarithms are called Neperian or hyperbolic

logarithms*. The value of the Neperian base will be de-

termined hereafter (6i.).

The quantity -v is called the modulus ofthe system, whose

base is a.

Hence the modulus of hyperbolic logarithms is unity.

* For the origin of the term hyperbolic logarithm, see my
Algebraic Geometry, Art. (385.).
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Logarithms of the hyperbohc system are sometimes de-

noted thus, /' ; and those related to any other base a, thus,

/or L *.

Hence d - I'u = —, and, in general, if m be the modulus
u

a ' lu — m ' —

.

u

PROP. VII.

(22.) To differentiate afunction which is the product of

severalfunctions of the same variable.

Let u = i/y^y^^ .... y^'"'\ n being the number of factors,

and the factors being all functions of x. Assuming the

hyperbolic logarithms,

Tu = /y + ly 4- v • • • •
^!y^"^-

Differentiating this (21.),

dM_d£ d^f d^^ d^
w - y + y"

"^ /' • • • •
«/(")

*

Multiplying this by the original equation, the result is

du = i/'y 2/(") . d7/' + y'f y^"^dy +
t/'fi/'" .... j/<"-'> di/^^'K

Therefore " the differential of the product of several func-

tions is equal to the sum of the products formed by mul-

tiplying the differential of each function by the product of

the remaining functions." Thus, if

u = i/y,

du -ydf +fdi/^\

that is, " the differential of the product of two functions is

equal to the sum of the products of the functions into their

alternate differentials."

ifr.=j/yy',

du = yiydy'" -f-j/yjy 4- yfdf,

* We shall generally use the Neperian logarithms without any

distinguishing mark. Whenever any other logarithm is used it

will be expressly mentioned.
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PROP. VIII.

(23.) To differentiate a fraction whose numerator and

denominator are each products of several Junctions of the

saine variable,

i<i At Ai » % , » iL

are functions of x. Assuming the logarithms,

lu = /j/' + /y + hj''^ - l^ - Iz' - - l'z^"'\

du _dfl^(If _ ^' _ ^?!'
''"^ " y

"^ F "^
*

*

" ^
-

^ ^"

'

By multiplying this by the original equation, the value of

du can be found, *.•

idi/' du' dz dz" I

The differential of a fraction is therefore equal to the pro-

duct found by multiplying the fraction itself into the sum of

all the differentials of the functions in the numerator, divided

by the functions respectively diminished by the sum of the

differentials of all the functions in the denominator divided

by the functions respectively.

y
Thus, if zi = -7-5

z

-=.(f-f)^
%dy —'ijdTi

72 •

PROP. IX.

(24.) To differentiate a -power.
^

Let u = .r"*. Assuming the logarithms lu = mix. Hence

du dx— — m—,
u X

'.' du = mx'''~^dx.
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It may be observed, that this is perfectly general. The

exponent m may be positive or negative, integral or

fractional.

LEMMA I.

(25.) The limit of the ratios of the chord of a circular

arCf and the arc itsefto the tangeiit, the arc being diminished

without limit, is a ratio qfequality.

Let the arc be x related to the radius unity, by trigo-

nometry.

chord. X 2 sin. \x __% sin. \x • cos. x
tan. X tan. x sin. x

but sin. X = 9. sin. ^x cos. |.r,

chord. X COS. x

tan. X cos. ^x

In the limit, when x — and *.* \x— 0^ cos. ^=cos i_<2?=l,

whence the limit of the ratio of the chord to th.e tangent is a

ratio of equality.

Since the arc is included between the chord and tangent,

it is evident that the limit of the ratio of it to either is a

ratio of equality.

LEMMA II.

(26.) The limit of the ratio of the sine qf an a7'c fo the

arc itself, both being infinitely diminished, is a ratio of
equality.

Let the arc be x related to the radius unity.

sin. X
COS. X = .

tan. X

\^ X — 0, •.* COS. J7 = 1, •.* the limit of the ratio sin. .r,

to tan. ^, is a ratio of equahty. But since the limit of the ratio

of the arc to the tangent is a ratio off»equality (25), it fol-
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lows that the limit of the ratio of the sine to the arc is a ratio

of equality.

PRor. X.

(27.) To differentiate the sine of an arc, considered as a

^function ofthe arc itself.

Let u = sin. x, and u' = sin. {x + A), •.•

?/ — w = sin. {x + h) — sin. x — 2 sin. ^h cos. {x + \h)y

u'— u sm.lh

sin —h
If A = 0, by (26), ^'j^ = 1, and cos. {x + ifi) = cos.^,

hence

du
-J- = cos. 07,
dx

'.' du = cos.xdx.

PROP. XI.

(28.) To differentiate the cosine of an arc, considered as

aJunction ofthe arc itself.

It

Let u = cos.r, *.• u = sin. (— — x\ '.' by (27.),

Tf If

du = cos. (— - ^)d (-- - :r).

If ,

But -^ being constant, has no differential, and

cos. (~ x) = sin ,r, therefore

dii — — sin.xdx.

PROP. XII.

(29.) To differentiate the tangent and cotangent, con-

sidered asfunctions of the arc.

sm X
1°. Let u - tan..r = -^^-, *.• by (23.),

COS. vi7
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cos.xd sin.a? — sin.^^ cos.a;

du = ^J^T^ 5

but d sm.a? = cos.xdx, and d cos.a? = - sm.xdx. Making

these substitutions, and observing the condition,

sin.2 X + C0S.2 X = 1,

the result is

Jm =
COS.- x

r. Since cot. x = tan. (^ - x), it follows from this that

dx
d cot.a:

sin.* X

PROP. XIII.

(30.) To differentiate the secant and cosecant asfunctiom

ofthe arc.

1
10. Lett*=sec.^ = ^^^,-.-

^m.x.dx ^ ,_
jj^ _ := tan.o; sec.ic.a^*

cos.® X

2^ Let u = cosec.r = sec. (— - x), .

Jm = - tan. {-^ - oc)' sec. (-^ - x)dx

or du = — cot.a:. cosec.a:. dx.

PROP. XIV.

(31.) To differentiate an arcy considered as afunction of

its sine or cosine.

V. Let u = sin.-i x *, •.* sin. u = x, '.' cos. udu = dx.

But COS. it = V\ — J^% hence

* Sin.""' .p signifies the arc whose sine is x
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dx
du

V\-x'
It

9P. Let u = cos.~^ x» Since sin ~^ x + cos.~^ x = -^t

d sin.~^ X -^- d cos.~^ x = 0,

d cos.~^ X =. — d sin,"^ x,

dx
'.' d cos.~^ X

^l-x^

PROP. XV.

(32.) To differentiate an arc as aJunction ofits tangent

or cotangent.

P. Let u = tan."^ jt, •.* tan. w = .r, •.• r— = dx. But
cos.^ u

since

1 1
COS.-' u

du =

sec.® u 1 + jr*'

2°. Let u = cot.~^ cT. Since tan.~^ x + cot.~^ jr* = , ,

cZ cot.""' 07 = — cZ tan.~^ x,

dx
'.' du = 1+^2-

PROP. XVL

(33.) To differentiate the arc as aJunction ofits secant or

cosecant.

1°. Let « - sec.~Va7, •/ hecu^x, \' tan.u. sec.u.du= dx.

But

sec.M = X,

'.' tan.w = ^a?* — 1,

c2
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dx
-.' du = —

:,

jr V^ —

1

2^ Let u = cosec -^ x. Since sec.-^ x + cosec. ^ ^ = —

,

•/ d cosec.-^ X = - d sec."' x,

dx

SECTION III.

Praxis on the differentiation offunctions ofone variaUe.

Ex. 1. If w = (a + hxY. Let ^ = « + hx,

dz du
••• (18.) J = ^. But since u = z'^hy (24.) ^ = ^z,

-, ,^^ s du du dz ^^ du ^, , , .

a„d(16.)-^-^-^. Hence^=2S(a+M.

Ex. %lfu = (a+bx + cx'^y. Letz = a -{- bx -^ cx^,

dz
'.' (18.) -r- = 6 + ^cx, and since w = z%

du
'.' (24.) -T- = 32«, hence

^ ^ az

(16.) . -^ = 3(/; + Sex) (« + &r + c.r2)2.

Ex. 3. If w = (a + ^o:)'". As before, let ;2 = a + bx,

dz , ^ . ,^, ^ du
•/ -7— = 6>, and since u — z"^^ *.• (24.) -7- = mz"'-^,

dx '
' ^ ' dz

diL
\- (16.) --,— = mb{a + bx)"^^.

Ex. 4. If 2^ = (a + i^)* (a' + Vxf, Lety == « + ^>.r,

and y = ft' + ^^'-^^j
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But di/ = bdx, dj/' = b'da?, •/

du_ / U W \

dx'~\a^bx'^ {a!-\-Vx)}

or — = 9.b{a + bx) (a! + b'xY + 36'(« + bxY {a! + VxY,

du
or --=(« + 6^) (a' + b'xf [2b{a! + 6'a;) + U\a + M}-

Ex. 5. If M = (a + bxY (a' + VxY {a!' + ¥xY\
Let

J/
= (a + ^>^)'", y = (a' + ^>'^r)'™', y = (a'' + 5"^:)'"".

Hence rfz, = ^^ +^ + ^^J^j/^/,

Jz^ —. mb[a + bxY~^dx^

dj/ = m!bXa^ + VxY'-'dx,

df = m"b"{a" + 6"a;)'«"-^f?ar,

•.• — = (« + 6a:)'" (a' + 6'^)'"' (a' + b"xY' X

i mb idU wl^W \

I a^bx '^ a!+Ux ^ a"+ Z>"^ i*-\-bx a' + b'x

Ex. 6. If w = (ajr*"-" -f- ^)''. Let ^ = ax""-^ + ^>,

du .

Also u — z'Jy \'
-J
= q^fl-^,

du

Ex. 7. If M = —— , ••• M = ax-^\ *.• -7— = — max-
x"" dx

by (24.).

- "H du m ^-t
Ex. 8. If M = a^'V^^i *.* 2^ = cf^", *.• -7^= — ao;'*

dx n

by (24.).

Ex. 9. If w = Va"*—a:^ Let z = a"^ — >r,

dz m—

1

•.• -5- = — mx
ax
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Also u = z', ••• -^ = - ^" "• H^^^^ ^y (^^•)'

du m rn-\ , ™ m\r~*

Ex. 10. If w = —=. Let ^ = « - a:S

ax

^L du 1 -L-i - ^

.

Ah0U=: Z n, ',' j^=^-—'Z n
, •/ (16.),

du__2_

dx n
x(a — x^y

Ex. 11. Ifw = y{a- A 4-Vic^ -^~)} . Let

—- = «/ ; l/c^ — x^ z= z.

a/X

Hence we find

M = (a - ?/ + 2)4-,

... du = iia--i/ + z)^-\-- dy + dz),

-'6dy+Sdz
or cZw

But aliO,

4t/«—3/+ ^

6 ^tZ^

1 _| _ O 2'<fr

Hence
3(c^-^^-)-

3^^a7 2.rdr

du =

^
^/ X

Ex.12. Ifw = /'

V^a"4-^^
Let z = v'tt" -{- A^-,
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xdx
',' dz =

But w = /'— = Vx — I'z, ',' du — . Hence
Z X z

dx xdx a^dx
du =

X d'-\-x' x{a'+x-)'

du __ o?-

dx ~ xi^a"^ -\-
x"-)'

Ex. 13. If 7/ = l{(a + xY (a! + xY\a}^ + xj^"].

Hence u = mV(a + ai) + rnHid -\- x) + m"l'(a" + x),

dx a-{-x a'l^x a"+x*

du

dx
(m + m' + m")x'^ + [m{a' + a")+m\a + a") + m"(a+a')]x+ma'a" + m'aa" + m"aa'

{a-\-x) (a' + X) {a" + x)

This diiFerential coefficient is evidently of the form

Ajr*+ Ba:4-c

— «, —d, —a!'f being the roots of the equation

x^ 4- a'x^ + b'x + c' = 0.

This circumstance is attended with some important con-

sequences in the integral calculus.

Ex. 14. If « = /'
v/H-^+4izg. Let 3, = v^TT^,

;2 = ^1 — X,

dy^-dz dy—dz
••• du = —;

5

',• du = 2 '
—

:r.

But dy ~ , dz = — —z=z=L Makinc: these sub-
^ 2^[[-x iWl-x
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stitutions, and observing that y"- -^z" - ^x, the result is

dx
du = —

X ^/1 — x

Ex. 15. u = V ^f!±| — . Let z = ^fx^ + 1,

,
xdx

dz = —

u = l'(z ~ 1) - l%z + 1),

_ dz dz
•.• az^ =

•/ du =

2-1 2+r
2dx

X ^/^* + 1

a,'\/— 1 — a;\/—

1

a;V— 1 xV—

1

1

'ExA6Atu=e -\-e , de =e dx-V-l,
—xV—

1

—xV—

i

—

-

and de = — e dx ^/ -I.

/ x\/—l —xV—l\ —

-

Hence du = \e — e ) ^/— l - ax,

e is supposed here to be the hyperbolic base (21.).

Ex. 17. If w = cos.ma7, •.* du = ~~ s\n.mx.d(mx) (28.)

;

du
hence -r = — w sin. mx.

dx

Ex.18. If M = sin. (x"'), •.• du = cos. (x"") • ^(^"*) (27.);

but c?(j;"') = mx'^-^dx. Hence

-— 1= mx'^~^ cos. (jr"*).
dx ^ ^

Ex. 19.' Ifw = sin. {a + a;), c/w = cos. (« -f a:).cZ(a +a:);

but </(a + ^) = ^07, •.* — = cos. {a 4- x).

Ex. 20. If w = cos. or + A/ — 1 sin. jr, *.•

du .
-

-J- = — sin.r4- \/ — 1- cos. x,

or ,- = ^/ - 1 ' [cos. 07 + >/ — 1 sin. a.-}.
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= C0S.2 X — sm.^ X — COS. So;.

HInce in this case du z^ */ — i - udx. It appears from

this and Ex. 16, that the differentials of the function

e 5 and the above are the same. It will appear by the

integral calculus, that these functions are actually equal.

Ex. 21. Ifw = sin..r cos.jr, *.- du = Q,o?>.x,d^\x\, x -j-

^\xi,x.d cos. J7, which, by substituting for d sin. x and J cos. x^

their values (27.), (28.), gives

du

dx

Ex. 22. If w = sin. a; cos. a + sin.a cos. 07, •.•

du = cos.a.dl sin. a: + sin.fl.^ cos. jr,

or y- = cos.a cos.jr T sin.a sm.jr.
dx

The differential and integral calculus is of very extensive

use in the deduction of the formulae one from another in

Trigonometry. There are many parts, such as the ex-

pansions of series, &c. in which its application is indispensa-

bly necessary ; but many even of those parts which are usually

proved independently of its principles, may be much more

concisely and elegantly deduced by their aid. We shall

give here a few obvious examples. In the last,

u — sin. {x + fl), '.' du = cos. {x ± a)dx, • .•

du
-r ~ cos. (x -f a).
dx \ — J

Hence cos. {x ±: a) = cos.^ cos.a + sin. a: sin.«.

Ex. 23. If M = sin.2:r, •.• du — 2 cos.2^ • dx,

•.• -^- = 2 cos. 2^.
dx

By this and Ex. 21, it follows, that if sin. 2^ =:2 sin-jrcos-a:*,

cos.2.r = cos.2 X — sin.2 J7.

Ex. 24. Let u = cos..r -\- cos.2a? -f cos.3^ . . . cos.w^.

Since by Ex. 17,

d cos.?/.r = — sm.nx.d{nx) = — n sm.nxdx.
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i.ave #

.= —
j sin.<r + 2 sin.2x + 3 sm.Sx . . . . w sm.nx'

}

Hence the summation of the first series necessarily determines

that of the second.

Ex. 25. Let

u = sin. X 4 sin. 2x + sin. 3.r . . . . + sin. wjr,

\* -r- = cos.o? + 2 cos.S.r + 3 cos.3a7 .... H- 7^ cos.ti^.
air

The same remark applies as in the last example.

Ex. 26. By differentiating

'tfTt'il'f,— Q
2cos,mx= (2cos.xy'~m(2cos.icy'-^ +—t-^—(2 cos. ^)'"-*

m.m — 4<.m — 5 , ^ „

1.2.3 ^^ ^°'- '^
'

^"^^

the result, after dividing both by 2m and changing the signs, is

sin.m^r = sin.o;
[
(2 cos .r)'""! — {m — 2) {2 cos.^)"'~^

. m— 3-772— 4

\'2
{2 COS. xy

In general, when the summation of any trigonometrical

series, or the expansion of any trigonometrical formula, is

known, other series may be derived by differentiation.

dz 1

Ex. ^7. If w = {fxY, Let z = I'x, •.• — = —

.

du ^ du nQJxY-^
Also u = z'\ ••• -, = w;i"-V • ^ ^

c?;^ dx X

Ex. 82. Let u ^ /'^;r. (This notation signifies the loga-

rithm of Ux. ' In like manner the logarithm of l'~x is l''^x,

dz 1
and so on). Let z = I'Xj •.• -r- =— . Also u = I'z, *.•

dx

-— = — . IJence (16),
dz z

du _ 1 _ 1

dv ""
zx xl'x'
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Ex. 29. If u = V^'x, Lety = I'x,y = I' I/' = Px,

y = I'l^" = /'3^^ and so on. Hence

dx X '

^'_ JL- JL
iy ~ y ~ /'^

'

%" ~ 3/"
~ ^'•^'

27

%<")

Hence by the genera] principle in (16.),

du __ 1

d.v
""

xl'xl-x .... h-^x'

Ex. 30. If w = z^. Assume the logarithms, /'?/ — yH^
dz

\' du — u{y 1- Vzdy).

If in this case y and z both = x, the result is

dit

^ = .-(!+&).

Ex. 31. If w = v"^. Let
J/'
= z\ and •.* w = v^'. By

the last example,

du = u \ y' }- Z'i;(ij/' ^
•

dz
But iZy = yXy \- I'zdy). Hence

z

^ dv ^, ^ dz „ , V 7
du =^ u ^ z!' h ^'lv{y— + ^'-4y) 5.

If in this case v^ z, and y = x, then u = of , and
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SECTION IV.

Of successive differentiation.

(34.) In the several functions which have been differen-

tiated, it may be observed, that the differential coefficient is

a function of the variable in general different from the pri-

mitive function. This function therefore itself may be dif-

ferentiated, and another differential coefficient will be thus

determined, which is called the second differential coefficient

of the primitive function. As Lagrange calls the first dif-

ferential coefficient the first derivedJunction^ so he calls the

second differential coefficient the second def'ived Junction.

From what has been said, it is plain that the second dif-

ferential coefficient of the primitive function is the differen-

tial coefficient of the first differential coefficient considered as

a function of the original variable. Let

du

du

Considering dx as constant, this gives

d{du) dp

dx^ ~ dx

This result is usually expressed thus,

d'u dp

dx'^
~

dx'

d^u
Thus,

-j-x
is ^^^ notation for the second differential co-

efficient of the primitive function u.

It should be remembered here, that dHi does not signify

d X d X Uy nor does dx- signify the differential of .r*. The
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former signifies the differential of the differential of u^ and the

latter the square of dx.

(35.) It has been already observed, that although the

differential coefficient, being a function of Xy is determinate

for any proposed value of .r, yet, that for any such proposed

value, the differentials of u and x are indeterminate. All

that is determinate in this case is the ratio du : dx, or the

diL
quote -7-. This remark is of importance in successive dif-

ferentiation.

(36.) Considering -^ as a function of jr, it must be sup-

posed to vary with x. This variation may be effected by

a variation in du or dr, or in both. It contributes, how-

ever, much to the simplicity of the notation, and does not

affect the generality of the results, to ascribe to du the entire

dii
variation of the function --t- produced by the variation of

the variable .r, and, consequently, to suppose dx constant

We are evidently authorised to adopt this supposition, as

appears by the preceding observations : it is for this reason

that in the investigation of the second differential coefficient

we assume

J
du _ dhi

dx
~~

dx^

the factor -j- being constant (18.). The variable, whose dif-

ferential is considered constant, is called the independent

variable.

(37.) The second differential coefficient, like the first,

being in general a function of the oi'iginal variable, is sus-

ceptible of differentiation, from whence results a third dif-

ferential coefficient, or according to Lagrange, a third de-

rived/unction. Since dx has been considered constant in

t
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determining the second differential coefficient, it must con-

tinue to be so considered in deriving the third differential

coefficient from the second, '.*

, d'^u _ d(d^u)

^dx^~ dx^ '

d^u
The notation for d(dhi) is d^u. Let d • -j—o — ^dx^ hence

d'u _
dx^ ~ ^'

which is therefore the third differential coefficient.

In Hke manner the fourth, fifth, &c. differential coefficients

may be determined, the general notation for the nth dif-

ferential coefficient being -^.

PROP. XVII.

(38.) Three quantities being so related that thefirst u is

afunction of the second y, and the second y is afunction of

the third x, given the second differential coefficients of the

first as a function of the second^ and of the second as a

function ofthe third, to determine the second differential co-

efficient of thefirst as afunction of the third,

^ ,. d^u d'^y
. d^u ^,

In this case -y-r, and -—r are given, to find t^. The co-
dj^" dx^ ^ dx^

d'U ^ d'y . . . . .

efhcients -v- and y- in their present state imply a contra-

diction, for the first depends on the supposition that dy is

constant, and the second owes its existence to the variation

of dij. To reconcile this, it will be necessary to substitute for

d-u
-7—- what it would have been if du had not been considered
dy^ ^

constant. For this purpose it should be remembered that

d?'U
-=—2 was derived from the operations indicated by



SECT. IV, THE DIFFERENTIAL CALCULUS. 31

du

dy

dy '

having been performed, supposing djj constant. Now let

dyho, supposed variable, and the formula becomes

dyd^u—dud^y

which is therefore the second differential coefficient when y
is not supposed to be the independent variable. Sub-

stituting in this for dy and d^y their values derived from

considering y a function of x^ the result will be the second

differential coefficient of w as a function of x.

It appears, therefore, that where several variables are

each a function of the other, only one of them ought to be

considered as an independent variable in differentiation.

This, however, need not be attended to unless the diffe^-'^^tial

coefficients of two or more of the functions related to Hij-

Jerent independent variables enter the same formula. In

that case, all the independent variables but one must be re-

moved by the method given above, which may easily be

extended to differential coefficients of superior orders.

PROP. XVIII.

(89.) To determine the successive differential coefficients

ofa power.

Let u = x"^. By (^4),

du

dx

d'-u
',' -y-r- = m • m — I ' x"'~^,

dx^ '

dhi

dx
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And, in general, the nth differential coefficient is

-— =m-w-l-m-2....m- {n — I) • a;"*-".

The differential coefficient of the wth order when m is a

positive integer, is

This being a constant quantity, all succeeding differential

coefficients are = 0. But if m be either negative or frac-

tional, the factor m — (n — 1) can never = 0, and therefore

the differential coefficients never == 0.

PllOP. XIX.

(40.) To determine the successive differentials of the

'product oftwoJunctions.

Let u = yy\ \' du = i/dt/ + 2/'dj/, *.•

d"u = j/cZy + ^di/di/' -f it/'dy,

d'u = ydhj + %dydHj -f %dy'd^y + y^d^'y,

d^u = 2/J*«/' + Mydy + Qd\ydy + 4id^ydy^ + yd^y.

The law of the exponents and coefficients is obviously that

of the binomial series ; therefore, in general,

d^u = ydy + ndyd'^-'y' + ^'^~
d'-yd'-^y^

+ —1:2:3— *-^*'-'V +—n^Tsi^
— ^^"'"-"y ^'-^^

As an example of the application of this theorem, let it

be required to find the fourth differential of z"^ — ir\ Let

y =: z -{- X, and y' = z ^ x, -.' d"y = d"z + d'^x, and

dy' = d^z - d^'x, •/



SECT. IV. THE DIFFERENTIAL CALCULUS.

-teid^z^d'-a:) (d^z—d'x)+ 4>{dPz-\-d':i;) {dz-dx)

\-(z-'x) {d!^Z'\-d^x) = 2

[

zd^z -}- A^dzd^z + QdHd^z-xd^x

-Mxd^^-M^xd^x].

PROP. XX.

(41.) To determine the successive differential coefficients

ofan exponentialfunction.

Let u = a'. By (20.) -^ — ku\ -r being the modulus

to the base a. Hence

d^u-—
- = Icdu.

dx

And by substituting for du its value kudx^ and dividing

by dx^

d^u ^^

S^ = ^ ^-

In like manner
d^u

and in general,

d'^u

If a be the hyperbolic base /t = 1 ; and in this case the

differential coefficients are all equal to the primitive func-

tion w.

PROP. XXI.

(42.) To determine the successive differential coefficients

of a logarithm.

X ,, du \ , TT
JLet u = I'x. \' -T- = — = x-\ Hence

dx X

d^u _ _l_
__

dx'^
-" x'"''^ '
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d'u _ ^ _3

The differential coefficients are therefore alternately po-

sitive and negative, and that of the nth order is,

1.23.... n - 1

.

x-%

which is + if 71 be odd, and — if w be even.

In this case the logarithm is assumed to be hyperbolic.

If it be not, the successive differential coefficients should be

affected by the modulus as a factor.

PROP. XXII.

(43.) To determine the successive differential coefficients

of the sine and cosine asfuncticms of the arc.

Let vb — sin.^
>

'•*

du

Tx = ^"^-^^

•
d^u

- sin.^>

d^u

dx^
~ — cos./r.

And in general, if n be an odd number,
d^u

d^^ ±cos.ar;

+ being taken when —^ is even, and -, when —^ is

odd. And when n is even,



b

SECT. IV. THE DIFFERENTIAL CALCULUS. 35

+ being taken when — is even, and — , when -^ is

odd.

It It .

Since cos. x = sin. (-^ — x), and —dx — d(-^— x) it fol-

lows that by changing the sine into the cosine, and + into

— and vice versa, the preceding observations may be applied

to the successive differential coefficients of the cosine. Hence

if u = cos. X,

^ = ± s.n.^;

when n is odd, + being used when —r— is odd, and— when

—pr— IS even. And

d"u _
-—- = + cos.a:.

n
When n is even, + being used when -^ is even, and •—

,

when -^ is odd.

PROP. XXIII.

(44.) To determine the successive differential coefficients of

the tangent and cotangent asfunctions ofthe arc.

Let u = tan.J, *.• :r"= T" = sec.^a?; hence
dx cos.*a7

d^u
-T^ = 2 sec.xd secx = 2 sec.^j: tan.xdx,

d^u
•.• — = 2 tan.j: (1 + tan.^ar),

D 2
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Hence the third differential is

But dtt = (1 + u-)dx, :•

^ = ^(1 + «») (1 + 3«n-

By continuing this process, the succeeding coefficients may

in hke manner be found.

The differential coefficients of the cot. x may be deduced

rff

from those of the tangent by changing iv into (— — x)j and

changing the sign of dx\

PROP. XXIV.

(45.) Tojind the successive differentials ofthe secant and

cosecant asfunctions ofthe arc.

Let w = secar, '.' du :=. tan.a^ sec.jrc^jr, •.•

du —
^ = » v«« - 1.

d^u , ti^du
*.• ^j— = a/w« — 1 • <iw f

Substituting for c^m its value already found, we have

Differentiating again, we find

—— = %^'U^du — du.
dx^

^3^
or y-3=2-3-wVw^-l-WA/w--l=wv'w'— l-(2.3w2-l),

ax

and in a similar way the process may be continued.
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To find the coefficients of u = cosec. x, it is only neces-

sary to change x into {— x), and change the sign of djc

in the former results.

PROP. XXV.

(46.) To determine the successive differential coefficients

ofike arc as afunction ofits sine and cosine.

Let u = sin.-i x, •.• j- =(l-^*)~*. By differentiating

this successively, we find

d^n , __3

dx"

dx'
f^=3Xl -^0""*+2.5-9Al - •^')"^+ 3.5. 7^*(1 -a^»)"^.

And so the process may be continued.

If M = cos.~^jr, the successive differential coefficients have

the same form but different signs.

PROP. XXVI.

(47.) To determine the successive differential coefficients of

tin arc as afunction of its tangent or cotangent.

du
Let u = tan.~^j7, '.* -r- = (1 + x^)~K Hence

dx

dy
dx
— = - 2^(1 + x^)-\

'
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^^ = - 2(1 + x^)-^ + 2.4. .T^l + a;^)-^

^ = 2^.3.^(1 + ^')-=* - 2^3.^3(1 ^ ^^)-4^

^ = 23.3(1 +.r2)-2- 25.32^^(1 + .r2)-*4-27.aa'4(l +r^)-^,

And in this manner the process may be continued.

The coefficients for u = cot ~^a: may be found by sub-

It

stituting (-^ — x) for x, and — dx for + dx.

PROP. XXVII.

(48.) To determine the successive differential coefficients

ofan arc considered as aJunction of its secant or cosecant.

Let u = sec.~^a7, •.• du =

du ,, ^ -.—i

3^(^« - 1)~^.

and so on. The coefficients of w = cosec^^o: may be found

from these as in the former cases.
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SECTION V.

Ofdevelopment. The theorems of Taylor, Maclaurin,

Lagrange, and Laplace.

(49.) One of the most important uses of the calculus is in

furnishing theorems by which a function may be reduced to a

series of monomes, of which the powers of any proposed

quantity which enters the function shall be factors, the

other factors of each monome being independent of this

quantity. All the different theorems named at the head of

this section have this object. We shall therefore proceed to

investigate them in the order in which they have been stated

above.

PROP, xxvin.

(50.) If the variable of aJunction be supposed to consist

oftwo parts, y and h, the differential coefficient will be the

same to xvhichever part the variation be ascribed.

Let u — F(a?), and let jr = ^ + h, *.* u = r(j/ + h). Let

— = f'(x), •.• — = f'(^ + h). Now if the variation of iP

be ascribed entirely to h, and y be considered constant,

dx = d{y + ^) = dh, \' -jj = F'(y + h). If, on the other

hand, y be considered variable and h constant,

du ,, ,. du du
dx = d{y + 70 = dy, : ^ = Ay + h), : ^ = ^:

and the same reasoning may be applied to the successive

differential coefficients.
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prop. xxix.

Taylor's theorem.

(51.) The variable of afunction being supposed to con-

sist of two parts x and h, to develop thefunction in a series

ofpowers ofone ofthe parts h.

Let the function be f(^ + h\ and let its successive dif-

ferential coefficients determined by considering x as variable

and h constant be ^\x + 7i), y\x + h\ y\x + h) . , . ,

Let the proposed development be

f(^ + A) = a¥ -f- Bh^ -h ch' -\- ....

the exponents being arranged in ascending order.

Let this be differentiated considering h as variable, and

by the notation explained in (37),

*^u „,.+,,,.

Hence

T(x+h)= Ah'' + iih^-{-ch'-^d¥ [I],

¥\x-^h)=aA7if-^-\'bBh^' -\-cc7i'-' -hdD^-' .....
[2],

¥^(xi-h)=a.a^l.A¥-^-i-b,b-l.B^^-\-c.c-l.ch'--^^,..[S],

T%x+h)=ia.a-l.a-%Ah"-^-\-b.b-l,b-2.B¥-^-^

c.c-l.c-2.c/i^-3 [4]^

When h = 0, the functions on the left of these equations

become f(x) and its successive differential coefficients, t\x%

T\X), T\X) ....
In order to determine the coefficients and exponents of

the series [1], it will be necessary to consider,



SECT. V. THE DIFFERENTIAL CALCULUS. 41

1^. The case where the value assigned to x in y{x + h)

is not a root of any of the equations

F(a:) = 0, Fi(^) = 0, fV) = [5],

J\a:) = 0,f\x) = 0,f\x) = [6].

Where/(.r),/'(j), /»(a:) .... denote the reciprocals of

F(a:), -F^x), v\x) .... In other words, we shall in this

case suppose some value assigned to <^^, which does not

render the function f(^) or any of its differential coefficients

either nothing or infinite.

2°. The case where the value assigned to a; is a root of

one or more of the equations

F(x) = 0, f\x) = 0, F%X) = . . . .

3^. The case where the value assigned to ^ is a root of

one or more of the equations

f(x) = 0,/'(x) = 0,f'M =
4P. The case where the value assigned to .t is a root of

several of each of these systems of equations.

(52.) P. In this case a ^ 0, For if a > 0, a^' -^

when h = 0, and since the exponents a, b, c, . . , . are

ascending if the first be > 0, they must all be > 0, *.* ^ =
renders every term of the series = •.• f^x) = 0. Such a

value of X being excluded, a cannot in this case be > 0.

If a < 0, Ah"" would be infinite when h = 0, '.' f(x)

would be infinite. But such a value being excluded from

this case, a cannot be < 0. Since therefore a cannot be

> nor < 0, '.' a ~ 0.

All the succeeding exponents being > 0, ?i = renders

all the succeeding terms =: *.• a = f(^). Thus the first

coefficient and exponent is determined.

The series [2] becomes therefore

F^^ + h) = bBh^^ + cch'-^ + do^-^ ....
If ^ = 0, f\x + h) becomes f\x), and since by sup-

position no value is assigned to x which renders f\x) = 0,

b — 1 cannot be > ; and since no value is assigned to x
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which renders F^a?) infinite, 6—1 cannot be < 0. These

follow in the same manner as for the first exponent a.

Hence 6 — 1 = 0*.-^ = 1. Since the exponents ascend

c — 1, d — 1, . ... are > 0, •.* A = gives B = t\x).

Thus the second coefficient and exponent are determined.

The series [3] therefore becomes

f''(^ 4- A) = c . c - 1 . ch'-^ + <i . d — 1 . D7i^-2 ....

If ^ = 0, -F^{x + h) becomes F*(a;), and since no value is

assigned to a; which renders this either infinite or nothing

;

it follows as before, that c — 2 is neither > nor < 0,

•,• c -- 2 = *.• c = 2. Since d •— ^, e — 2 . . , . axe

> 0, ••• ^ = Ogives 2c = f^cc) •.• c = f*(^) . -^. Thus

the third coefficient and exponent are determined.

The series [4] becomes

F%x-{-h)=d.d-l . d-2 . D7i'^-»+ 6 . e-1 . ^-2 . Eh'-^

If A = 0, F^(a7 4- It) becomes f"(^), and it follows in a

similar way that d ^ S can neither be > nor < 0, *••

cZ = 3. And also d = f\x) .

fg-^-
Thus the fourth ex-

ponent and coefficient are determined.

In the same way the others may be found, and the several

values being substituted in [1] for the coefficients and ex-

ponents, the series becomes

F(x-\-h)= F(^) + fH^).Y + F'(^).j^ + ^X^)-JJ^+

^'^^h-iki t^J-

Or if z^ = f(.2?) and u! = ¥{x + h) the series may be ex-

pressed

^_ du 7i ^ h^ d'u h^ d^u h^
'' = ^'^^* T^d^^'\79>'^d^'\j:s^d?' YMA""

[8].

(53.) If A?f=:w'~M, andi^= Ax^ and the arbitrary quan-
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tity dx be supposed to equal A a?, the quantities du, d^u,

d^u, &c. consequently, having such values as will render

du d^U d^U ^ , ^ . v/r. • 1—, ;:, —r, &c. equal to the successive amerential

coefficients, we have

du d^u dhi d^u ^
^" = T+T:2+i:2j+i:2r4 + ^'=----

which expresses the difference of the function in a series

of its corresponding successive differentials. The character

A before a variable signifies its finite difference.

The series which is the result of this investigation was

first published by Dr. Brook Taylor in his Methodus In-

crementorum in 1715. Taylor was a profound mathe-

matician of the old school ; he does not, however, seem at all

aware of the immense importance of his own discovery.

Lagrange has made it the basis of his theory of analytic

functions. On it depend almost the entire application of

the calculus to geometry, the principles ofcontact, osculation,

singular points, &c. &c. Some very elegant applications of

it have been made by another able modern mathematician

in finding fluxions per saltum, in approximating to the roots

of equations, &c. *

(54.) II. If the value of <2? be a root of the equation

F(<r) = 0, the development [7] wants its first term, but

otherwise remains unchanged. If .z'be a root of F^(«r) = 0,

the development wants the second term, and in general if a;

be a root of F"(.r) = 0, the series wants the {n + l)th term.

If .2? be a common root of several of the equations [5], the

series will want the corresponding terms. It appears there-

fore that these particular values of .r do not form exceptions

to the development [7].

(55.) III. If the value of .2? be a root of the equation

* See Dr. Brinkley's Essay/fran. Royal Irish Academy, vol. 7.
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y\^) = 0, the development [7] becomes inapplicable, be-

cause all its coefficients become infinite, and f(jc -f h) is

expressed by a series of infinite monomes. It is easy to

perceive that any value of a- which is a root ofy*(<r) =
must also be a common rootofy^(«r) = 0,y^(c2?) = . . . .

For if ^' render f(^) infinite, the exponent a in [1] must be

negative, •.* the exponent a — 1 in [2], a — 2 in [3],

a — 3 in [4], &c. must be also negative. Hence ^ =
must render all these infinite ; but these become in this case

Fi(.r), F«(<r), f3(^), he. '.' &c.

The values of the coefficients and exponents of the series

must be in this case d^ermined by the common algebraical

methods. They may also be determined in the following

manner. The exponent a being negative, the series is

F(.r -f h) = khr^ -^ nh^ + ch' . . . .

the succeeding exponents b, c, . . . . being either positive

quantities or negative quantities < a.

To determine the value of a, let such a power of h

be found, which being multiplied into the given function

¥{jp -{-h) will give a product which becomes neither = 0,

nor infinite when 7* = 0, the exponent of this power will be

a. For if not^ let it be A;,
•.•

f(^ '\- h).h^ = Ah^-" + Bh^+^ + 0/*^+'^. . . .

It is evident that the exponents of this series ascend, and

if A; — a is positive, they are all positive, ••• all the terms

vanish when h = 0, *.

F(.*. -I- ;i)F =0;
when h — 0, which is contrary to hypothesis.

If k were less than a^h — a would be negative, and there-

fore f(.2? + 1i)ht!^ would be infinite when Ji — 0, which is also

contrary to hypothesis. Hence k — a. The exponent a

being thus found, the coefficient a is what F(.r + /*) . Iv^

becomes when /fc = 0.

Having thus determined a and a, the first term of the
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development becomes known. Let it be brought over,

so that

F(.r + h) — Ah-" = Bh^ + c/i*^ + D^*^ . . . .

The quantity on the left of this equation being known ; if

b be negative, it may be found by the same process as that

used to determine a. It may be known whether it be

negative by determining if Zt = render f(a' + h) — a7i~^

infinite. If 7i = render this = 0, then b > 0, and we

shall presently explain the method of determining it. If

h = do not render ¥{a' -{ h) — Ah~^ either = or in-

finite, then 6 = 0, and the value of F(,r + A) — Ah~^ when

h — is the value of b. The other exponents, when ne-

gative, and coefficients may be determined in a similar way.

If 0? be a root ofy^(^) = 0, but not ofj'(^) = 0, then the

series [1] and [2] become

f(.«' {- h) — ¥{.v) + Bh^ -f ch^ + !)¥....
F^{a^ + ^) = ^B^''-' + cc^*^-* + dok^-' ....

Since f\<v -f- 7i) is infinite when 7i ~ 0, b — \ must be < 0.

But since .^' is not a root ofy(.r), b must be > 0, *.• b must

be a proper fraction and positive. To determine its value,

let f(<2?) be brought over in the first, •••

y(^ -}- h) - f{x) = Bh^ + ch'' 4- D/i" . . . .

let that power of h be found, by which f(x + h) ~ f(t)

being divided, the quote will neither vanish nor become in-

finite when h = 0. The exponent of that power will be

= b. For let it be k,

F(x-\-h)--F(2) ,, ^ , ^-^^ ^'"-^ = ^^ + ^^ -f- . . . .

If ^ < 6, ^ = renders this = 0, which is contrary to

hypothesis, and '\£ k > b, 7t, = renders it infinite, which is

also contrary to hypothesis, *.• k — b.

If a? be a root off^(x) = 0, but not of/(:r) = 0, nor

f^{x) - 0, then the series [1], [2], [3], become
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f(^ + h) = ¥(x) -h F^(^) Y + ch' + d¥ . . . .

f\x + h) = f\x) + cch'-^ + dD^-^ ....

f2(^ + 7i) =: C . C - 1 . C^^-=^ + d . C^ - 1 . D'^-*

Since f\x + ^) becomes infinite when ^= 0, •.* c—2<0,
••• c <2.
But since the exponents ascend, c > 1. Hence the value

of c is between 1 and 2. It may be thus determined in the

same manner as b.

The left side of this equation is known. Let that frac-

tional power of h be found, by which this being divided,

gives a quote which neither vanishes nor becomes infinite

when ^ = 0. The exponent of this power is c — 1. Hence

c becomes known, and also c.

It follows therefore in general, that if a value be assigned

to X which is a root ofy " {x) — 0, or which renders the wth

differential coefficient infinite, but none of the preceding

ones, the series [7] gives the true development as far as the

Tith term inclusive ; but the exponent of ^ in the (w 4- l)th

term is a fraction, whose value is between the integers w

and w -f- 1, and which may be determined by the method

already explained*.

• The method of determining the exponents o£^ given above

is taken from the Theorie des Fonctions Analytiques of La-

grange. This method applied to negative exponents may be

somewhat improved by the application of the Integral Calculus.

Let a be negative, and the series is

v{x + ^) = hh-^ + B^^ + cA*^ -f- ....

Multiply both by dh, and integrate

fwix -\-h)dh^- .Kh'-"-\- --—.bA' -''+-; cA'+«^
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(56.) There are some peculiar circumstances attendant

upon the state of the function when x receives any value

which is to be found among the roots of the equations

fix) = 0,/'(a:) = 0,f-ix) = . . . .

which merit examination.

If the denominator of any fractional exponents which

occur in the development of F(ar + h) be an even integer,

the numerator (the fraction being supposed in its least terms)

must be odd. The power of h therefore being the even

root of an odd power is imaginary if 7t be negative, and

has two real values with different signs if h be affirmative.

Hence the particular state of the function r(.r 4- h) is one

at which it passes from a real to an impossible value or

vice versa by the variation of .r. In this transition it is

plain that two values become equal and then impossible,

which must happen by a radical disappearing in the value of

the function corresponding to the particular value of x,

which renders the differential coefficient infinite. This cir-

cumstance is similar to that which will be shown to happen

(114), when some differential coefficient assumes the form

-TT, But there is a very important distinction to be ob-

served between the cases. In the one case the radical

Let fF{x + h)dh — f^(x + h). Multiply again by dh, and

integrating

Let this process be continued until an integral be found, which

will neither vanish or be finite when h = 0. If one be found

which vanishes when ^ = 0, a is a fraction whose value is be-

tween the number of integrations and the integer next below it.

If it be finite, then a is equal to the number of integrations.

This is evident.
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passes through zero without becoming impossible on either

side of it, therefore it must vanish in the primitive function,

not by its suffix vanishing, for that would infer a change of

sign in the suffix, and therefore a transition from a real to

imaginary value, but by a coefficient of the radical vanishing

which produces a change of sign in the term in which the

radical was engaged without rendering the radical imaginary.

In the present case, however, the function passes from a real

to an imaginary state, and therefore the particular value of

X must make the suffix of the radical vanish, and not a co-

efficient of it, and the suffix changing its sign in passing

through zero, there is a transition of the function from a

real to an imaginary state, or vice versa.

If the denominator of the lowest fractional power which

occurs in the development be an odd number, the nume-

rator may be either even or odd. First suppose it even.

The sign of the fractional power of li in this case is the

same whether h be positive or negative, and therefore this

term of the development of F(>r -f h) and ^{x — h) is the

same ; and in each case there is but one real value for the

power of h. If the numerator be an odd number, the sign

of the power of k changes with the sign of h, and therefore

for ¥(x + h), and f{x — h), the fractional power of h has

different values, but in each case has but one real value.

PROP. XXX.

maclaurin's theorem.

(57.) To expand a function hi a series ofascending in-

tegral and positive powers ofthe variable.

Let u = ¥{x) and id = F(.r + h). If jr = in the

equation [8], it becomes
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h h^ h^ h^
u — Aq -f A/ .

~ + ^2.— + A3 j-^ + A4
^23A V

"

where Aq, A/, Aj, A3, &c. are what w, j-, y-^, -7—3, &c. be-

come when jr = 0. When a' =.- 0, w = F(/i), and therefore

the differential coefficients of this function must be the same

functions of h as those of i^{pc) are of x. Hence it follows

that the latter when jr — become identical with the former

when h = 0. The quantities Aq, Ay, a,, &c. are what the

function f(//) and its differential coefficients become when

^ = 0. Hence the above series, considering u = f(A), solves

the problem. In general, therefore,

FCr) = A,, + Ay . y- 4- A, •

j;^
H- ^3 . j^g-g +

where Aq, Ay, y^* A3, ... . are what the function F(.r) and its

differential coefficients become when x = 0.

This theorem, like that of Taylor, is liable to exceptions;

but the exceptions arise here from the form of the function,

and not, as in the former case, from the particular value

assigned to the Variable, ^laylor's series, if x be inde-

terminate, holds good zcithout exception ; but that of Mac-

laurin, even though x be considered indeterminate, is liable

to exceptions, because the coefficients are not functions of ^,

but are what certain functions of x become when ^r == 0, in

which case they may happen to be infinite or impossible.

Thus, if the function to be expanded be — , the first term
X

Aq being — is infinite, and the function cannot be expanded

in the required form. This, however, ought not to be

called a y»?//^ ox failure in the theorem, because in these

cases the function does not admit of an expansion in positive

integral powers of the variable.

The cases which form exceptions to Maclaurin's series

E
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may sometimes be solved by a transformation. The sub-

stitution of x'^z for w, k being arbitrary, frequently effects

this. Such a value should be assigned to k that none of the

quantities u -j-, -7-^ .... should be innnite when x = i).

An example of this is given in (83).

Maclaurin's theorem may likewise be applied to develop

a function by descending powers of the variable. Let

u = f(x) be the function, and let zx 3= 1, or x = — . Sub-

stitute this for .r, and •.•m=f(— ), or =J'(z), Let this be

developed by Maclaurin's theorem according to the ascending

powers of », and then substitute— for z, the result will be a

series of descending powers of x. For an example of this

see (85).

prop. xxxi.

Lagrange's theorem.

(58.) Given u = F(y) and y = z + xf(y) to expand u in

a series of ascending integral and positive porters of il^z

not being afunction qf^.

Considering w as a function of x by Maclaurin's theorem,

X x'^ x"^ a:*

M = Aq + A^ . -r- + ^I'J-l. + A3 . T-^-^ + A4
'

• 1 ' ''1.2 ' '• 1.2.3 ^ "' L2.3.4 • • *
•

du dhi d^u
Where Aq, a^, Aj, A3, Sec. are what u,—

, j-^, ji, Sec become

when X = 0, The problem will therefore be solved if the

values of these be determined.

If in the equation 1/ = z -{- ^(«/)> S/ ^^ considered as a

function of x, we have
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dx -'^^^^ ^ ^ dx dy '

dx'^ '^dx dy "^ dx"-' dy "^ dx^' df~

And by the equation u = ^(y),

du _ dF{y) dy

dx~~ dy ' dx^

dH^^c^y dF(y) ^ d^f(y)

dx" dofi' dy dx'^
' dy^

'

If .r = 0, the function y and its differential coefficients

become

^' •^^^^' dz ' dz^
'•

And by these substitutions, we find

A„ = F(2),

And in general,

A, =

A« =

A„ =

4/w-'-?}
rZ^

-U'^m
dz'

.-{/W".*^']
^2^

dF(z)
Therefore if —-— = q and /"(z) = p, we obtain the

series,

e2
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or

which is the solution of the proposed problem.

(59.) Cor. 1. If/Cj/) = 1, and '//{z) = 1, and x = h,

this series becomes

. = F(.4-70 = F(.) + -^.-^+-^.j-^....
which is Taylor's series. Taylor's theorem is therefore a

particular case of Lagrange's, which, therefore, also includes

Maclaurin's.

(60.) Cor. 2. If a: = 1,

d(p^q) 1 , d%p^q) ' 1 ,

It was in this form that Lagrange delivered the series.

prop. xxxii.

Laplace's theorem.

(61.) Given u = F(y) and y = f'[z + xf(y)], to expand

theJunction m in a series ofascending positive and integral

powers ofx.

Let F

{

f'[z + xf{y)] ] = f"[z +xf(t/)]. Hence u = f"{i/')

and y = ;s + xf(y). Hence by Taylor's theorem,

„ = p»(^) +__. __ +__ .___ + ....

Also/( 2/) =/! f'[z + ^(t/)] } =f\z + .r/(3/)]. Hence

by Taylor's series,
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f(y) -/'W + ^n^) ^f{y) .

^!/''(^) ^'fW
dz 1 "^ dz 1.2

Let q, q,, q,, represent f"(^), —^, —^
and let v —f{ij)^ and let jt?, ^^, 'p^^ representy'(jz) and its

successive differential coefficients. Hence the preceding

series become

XV x'^v'^ x^v^

XV 2,,2X'-V

Also

, .
^(jo«) XV d\f-) x^v"-

P ^ dp ' \^ dp^ ' \.^^

.3 „ ^3 . difl XV d\f) x^

Hence

+ \c^W' + ^va?^)

x^ d(v^)

This series must be equivalent to that of Maclaurin, which

gives

M = Ao + Aj-r- + A2 r-^ + A3.-
x-"

1 ' "M.2 • "^'1.2.3 '

and therefore the corresponding coefficients must become

equal on the condition .r = 0. In this case v, t;®, ^5 • • • •
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become p^ p^y p^ Hence we obtain the following

equations

:

, ^ d(p^) dz ^ ^ ^ dz

dz^

Making these substitutions, the result is

^
dz"-

' 1.2.3^ dz^ ' 1.2.3.4*

The Tith term of this series being

d"-Y\^y~^'
dF"(z)

dz Xn—\

dz^^ ' 1.2.5.... (w-1)

Lagrange'*s theorem is evidently a particular case of this.

For in this theorem f"[;3; + ^(^)] is considered as a func-

tion of another function of z, z scil. f{f'[;s: -f ^(j/)]}> and

Lagrange's is the particular case where



SECT. VI. THE DIFFERENTIAL CALCULUS. 55*

Laplace has extended this theorem to functions of several

variables.

This generalization, however, is not suited to so elementary

a treatise as the present.

The preceding proofs of the series of Lagrange and

Laplace are taken from the notes of the Cambridge trans-

lation of Lacroix, in which the student will find many useful

applications of them.

SECTION VI.

Praxis in the development ofJunctions,

PROP. XXXIII.

(62,) To expand (x + h)"^ in a series according to the

powers qfh.

Let u = X"' and u' = (x + h)'". By differentiation we

obtain (39.),

du , d^u
^ „. 2

Hence by Taylor's theorem,

m.m— 1 , m.m— l.m— 2 ,,

u^=x-+mx"^-Kh±-j^x"^-\h^ + j^ 0^-3^3

the n\h term being

jn.m—l,m-9, m-(w— 2)
.
a;'"-<"-i)

.
^"~^

1.2.3.... (/J-1)

As the value of m is not restricted, this example contains

the binomial theorem in its most general state.
^
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PROP. XXXIV.

(63.) To expand a'' in a series ofpowers qf\.

Letw = a^-.- (41.),

du dhi _

and, in general, -^ = ^"m. When x = 0,u = 1. Hence

the successive coefficients of Maclaurin's series are 1, k^ k'^,

.... A:", from which it follows that

«^ := 1 +
kx

1.2
+ 1.2.3"^

k^'x^

1.2.3.4
"^

(64.) C(yr, 1 . if^
1

^-
A;'

.- lex =: 1, hence

this being a converging series, we can approximate inde-

finitely to its value. Its value continued to seven places of

decimals, is 2*7182818. By (21.) if appears that this is the

hyperbolic base. Let it be e',' a^ =e, '.'a = e^. Assuming

the logarithms la = kle, •.• k = -1—, hence, since a and e are

known, k is known.

Ifa be the base ofa system of logarithms le = ~j-. Hence
At

it appears that the modulus of a given system is the loga-

rithm of the hyperbolic base in the given system.

Also k = I'a because Ue — I. Hence the modulus of any

system is the reciprocal of the hyperbolic logarithm of the

base of the system.

The logarithms of the same number (y) in different

systeqMLare as their moduli. For c^'^ = a^^ a being the base'W
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of the system. Taking the logarithms relatively to the base

a, le . Vy = ly\ since the number^ is given, ty is constant,

therefore ly x le\ that is, the logarithm of a given number is

proportional to the modulus of the system.

Hence being given the logarithms of any one system, we

can find the corresponding logarithms in any other system

whose modulus is given.

{Q5.) Cor. % If a = ^ *.• ^ = 1, and the series becomes

X x^ x^ x^
^' = 1 + -^+1-7; +

1 ' 1.2 ' 1.2.3 ' 1.2.3.4 • • •
•

{jaQ.) Cor. 3. If in this series x become successively

-\- X y/ — \ and — X V — I, and the results be added and

subtracted, we find

xV—l —xx/—l r ^ X- X
e -{ e =2? 1-TT.+

r , X'

2 ' 1.2.3.4 1.2.3.4.5.6 5

xV—\ —*V^I f X x'

= ^^-^- It- 1:2:3

x^ x'^ i

"*"
1.2.3.4.5

~
1.2.3.4.5.6.7 S

(67.) Cor. 4. If in the series for a% x become rnx,

Tcmx Ji'^m^x^ k^m^x^
^ ^ 1 ^ 1.2 ^ 1.2.3

Hence it follows that

{i + y+X2+r2r3----l =^+-r+-i:3- +

k^rri^x^

PROP. XXXV.

(68.) To expand the Junction l(x -p h) in a series of

powers qfh.

Let u = Ix and u' = l(x + h). Substituting for the co-

efficients in Taylor's series their values determined in (42.),

the result is #
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, r h h"- h^ h* 7

(69.) Cor. 1. Hence.wefind

When ^ is small compared with x, this series converges

rapidly, and therefore serves, when the logarithm of one

number is known, to compute the logarithms of a series which

varies by a very small difference.

(70.) Cor. 2. If in this series x = 1 , it becomes

Z(l+/0 = /.{p-^ + ^-^....}
which, when 7t is negative, becomes

Hence by subtraction,

(71.) Co.. 3. Ifi±-J=l+-^.v^=^.
Hence the last series becomes

this gives the logarithm of n + z when that of n is known.

Let 71 = 1, and 2 = 1, and le = 1, hence

f 1 1 1 1 7

this rapidly converges, and therefore gives the hyperbolic

logarithm of 2 to any required degree of accuracy. For

higher numbers it is still more rapidly convergent.

The modulus may be obtained by calculating the loga-

rithm of the same number in the Neperian or hyperbolic

system, and in the system which we wish to adopt.

The function Ix cannot be expanded in a series of positive
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powers of the variable x. For the first term of Maclaurin's

series, being what Ix becomes when a? = 0, is infinite. See

(57.).

(72.) Cor. 4. If in the series

h be changed into h~^, it becomes

l}-^=l{\+h)-lh= leV^-

Subtracting the latter from the former, the result is

Ir^ Ir^ Ir^

~2"^~S 4"

^i~/i-i
lh=:lei

7. + 7i T- \

PROP. XXXVI.

(73.) To express the sine and cosine ofan arc in a series

ofpowers ofthe arc itself.

Let u = sin .a; and u' = sin.(^ + h). By substituting in

Taylor''s series the values of the differential coefficients given

in (43.), we find

h . ^« h^
sin.(jr + h) — sin.a: + cos..r-Tj sm-^-y-^ — cos.jc-j-^ +

^*
sin.;r + COS.^-;

7^5

1.2.3.4 '

^^""^
1.1^.3.4.5

Arranging this by the factors sin. a-, cos.d7, we obtain

h^ A* h^
sm, {X + 70 = sm.^| 1 - - +j^^^^_^-^^g^j^...

I
+

( 7* ^^ 7j' j

But by trigonometry,

sin.(ar 4- A) = sin.o; cos./i \- sin.^ cos.^*

Since the value of h is independent of x\ the equations

must hold for all values of x ; hence
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. , h ?l' h'
Sin./l = -z

-, r, n +
1 1.23 ' l.'2JdAM

C0S.7i = 1 - r--+
1.2 ' 1.2.3.4 1.2.a45.6

These series might be also deduced by Maclaurin's

theorem, and thence might be obtained by the preceding in-

vestigation the trigonometrical formula

sin. (07 ± h) = sm.x cos.^ =b sin./fc cos.^.

(74.) Cor. 1. Since by {QQ.)y we have

e -\re =2>1='{ 1.2 • 1.2.3.4 5

.T\Airi -^a/-i —r r a; ^^ ^^
^ -e =2./-l^y-y-^ + j^^^^.
And by the series found in this proposition,

cos.^= 1 -
ijj

+
i";^;^;^

sin..r =
X

1.2.3

x^
"*"

1.2.3.4.5

It follows thaf

2 cos.a? = e
"' + e-^~.

2^^--l.sin.a7= eV-
—

1

e-^-\
and hence

CQ%,x + V — 1 sm.T = e

(75.) Cor. 2. Hence also,

'

. ±mx,J—

I

cos.7?i.r + v^ — 1 sm.wor = e ,

•.• cos.r/io: ±\/ — 1 sin. wzo; = (cos.^+ V — 1 sin.a:)"*.

Also, if ^ = ;2;, it follows that when

2 cos.a? = z H ,
'.* 2 cos.m.r = ;^"» + -— and

2 a/ - 1 . sin.TTio; — s'" -.
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(76.) Cor. 2. By division of the results of Cor. 1, we

find

,—= ^ e — e e - 1
//— 1 tan..r =—= =_= = .

e^^~' + ^-^^-'
e^''^-' + 1

(77.) Cor. 4. If in the series found in (72.) /
'~

be sub-

stituted for hy and the equation divided by 2 V —1, {le being

supposed = 1), the result is

X e — e e — e

5^ 2^/-l
'

S^/-l

3xJ—i —3x^'^
e — e

Making here the substitutions suggested by Cor. 1, we

find

X sm.x sin.2^ sin.3^ sin.4x
+

2 1 2 ' 3 4

PROP. XXXVII.

(78.) To express a circular arc in a series of powers of'

its sine.

Let u = sin.~^ x. Substituting for the coefficients in

Maclaurin's series what the differential coefficients found in

(46.) become when x = 0, the result is

sin.w P.sin.% l-.3\sin.^?^ . V.S^.B^.sm.'' u
" "" T" "^

1.2.3 "^ 'L^IaX ^ 1.2.^.4.5.6,7'
^^'

(79.) Cor. 1. If w = 20% .• sin.w - -i, •.•

_ C
^ _^ ,

3^- 7
'^ - ^r-^ + ^ •

1.2.3
"^ "^'^

•

1 2.3.4.5
"^

3

See Geometry (375.).
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PROP. XXXVIII.

(80.) To expand the tangent ofan arc in a series ofpowers

of the arcitself.

Let u = tan.jr. Substituting in Maclaurin's series for

the coefficients the values of the differential coefficients of

this function found in (44.), the result is

tan.a7 = -— + =-—r +
1 ' l.M ' 1.2.3.4.5

PROP. XXXIX,

(81.) To expand a circular arc in a series ofpowers ofits

tangent.

Let It = tan.~^ x. Substituting in Maclaurin's series the

values which the differential coefficients found in (47.) as-

sume when a: = 0, the result is

tan.w tan. ^2^ \.an.^ii tan.'^w

(82.) Cor. 1. l^u= ^ ••• XxmM = 1, •.•

^

^ = 4[l-i- + i-^ 1

This series is not sufficiently convergent for the purpose

of computing the circumference. One may, however, be

deduced, which will be sufficiently convergent. See Geo-

metry, vol. i. Art. (375.).

PROP. XL.

(83.) To express the cotangent ofa circular arc in a series

ofpowers of the arc itself.

Let u = cot.^. In this case the first term of Maclaurin's

series becomes infinite. Let u — c^i ~ cota?, •.* ^=a:"~*cot.r.
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If Ti be assumed > 0, a; = renders z infinite. Therefore

sin.^

Substituting for cos.,r and sin.jr their developments ob-

tained in (73.),

1-
1

:f^
1

x^^
l.<2.3.4.5

XT ^^Hence z, -7-,
dx

dH
• become 1, 0, — T9 • •

X=zO. Therefore

z = \.

-
3'^.5

• •

whence we find

z
cot.jr = x-^ -

X x" 2^ x-i

X 3\5 3^5.7 325«.7

This process fails in giving the law of the series.

when

PKOP. XLI.

(84.) To express the value ofu in mu.^ — ux = m in a

series ofpowers qfx.

By differentiating we obtain the values of -=-, -^-^ ....

1 2
which, when x = 0, become 5—, 0, — and it is

3m' ' 27^3

evident that when x = 0, u = 1, \'hy Maclaurin's series

X X''

^* "" ^ "^ 3w 3*^3 "^
S^m*
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PROP. XLII.

(85.) To express the value of u in the equation m\x^ —

x"u — mx^ =^ in a series ofdescending powers ofx.

Let zx^ = 1, '.' ar^ = — ,
'.• mu^z ~ u — m = 0. The

' z

'

successive differential coefficients of u with respect to z being

found, and their values when z = substituted for the co-

efficients in Maclaurin's series, give

u=^m — m*z — SmJz^- - ISttz^V + 55m^^z^ ....

PROP. XLIII.

(86.) Given f(x + h) + f(x — h) = F(x)F(h), to find

theform of thefunction.

Let u — F(jr), and id = y{x -t h), and u, = f(x - h).

By Taylor's theorem,

^

du h d^u _A^ (Pu J^ d^u M

du h d^u h^ dhi h^ d^u A*
^'"^^^""5^' I'^di^' \:^'^d^''lJ^'^db^''\J^^''''

adding and dividing by 2iy

"V --^[^ "^
dx'^'l.^' u'^dx^'lXSA' u S

But u' -{ Ui= F{x)F{h) = uF(h), hence

X ^f. d^u h"- \ d'u ¥ 1 >

But f(^) being independent of x, it follows that

d'^u 1 d*w J^ c^z^ 1^ * 17' ^ *

2i' 'd^' li'

are constant quantities. Let
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d^ J_
. .^ _ ,U

dx'^ u ' dx

By successive differentiation,

d^' ~^"dx^~^'''''"d?' M ~
'

^^ -h — ~h^ • •

^^'^*
i- - 73

5^^ "~
* 5^* ~ ^^' ' dx^' 'u

^

Hencc we find

F(7i) =2^ X ^ ^ . ^^^ , 2g^5^
or substituting for b the constant — a^,

F(/0 _: 2 ^ 1 - _ + 2.3.4"" 2.3.4.5.6

Hence by (73.), this gives

F(/i) = 2 COS.tt/t.

It is upon this theorem that Poisson founds his proof of

tlic composition of force. (Mecanique, torn. I. p. 15).

PROP. XLIV.

(87.) To determine the mth power ofa root ofthe equation

xy" + a — y = 0, X and a being considered as known.

Let u = y", and by the given equation i/ = a -\- xip.

Comparing this with Lagrange's theorem,

u = f(3/) = ^^ 2 = a, f{y) = z/».

dF(z)
Hence f(;s) =: a"',/(2) = a", -^ = ma'^-^ &c.

which is the development required.
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SECTION VII.

Of the limits ofseries.

PROP. XLV.

(88.) In any series composed of ascending and positive

powers of\ a value may he assigned to h, so small, that any

proposed term may he made to exceed the sum of all that

follow it.

Let m' = F(a; + A), and this being expanded, let

ii=iiiJ^ aA« + B/i^ + c/fc^' • • • •

a^h^c ' ' ' • being in an increasing order.

Let

s = M + n/a"-^ + oh"-"" ....
s7i"' = M/i"' + n7*" + oh' ' • ' '

Therefore

«/ = 11 + aA« + bA^ . . . . Lh^ + s7r,

w' = w + A^« + b7i* .... ^^(l 4- sA'^-O.

, Since m > I, h may be obviously assumed so small that

^Ji^m-i ^^y i)g indefinitely diminished, and may therefore be

rendered less than l. In this case then L7i' > s7r, that is,

the term L7i^ is greater than the sum of those which susr

ceed it.

(89.) Cor, Hence by assuming h sufficiently small, li — u

will take the sign of a^", and if a have an even numerator,

7^ - u will take the sign of a, and will be consequently the

same whether ^ be + or —

.
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PEOP. XLVI.

(90.) To determine the effect which the increase of the

variable x = a^ox = a4-h produces upon theJunction.

Let v! = f{x -|- h)j

dii h ,u — u = -J- ' T + s/i®.
dx 1

du
h may be assumed so small, that -^ > s^*, consequently

du
u! — u will have the sign of -j-. Hence, if the first dif-

ferential coefficient be positive, the function increases, and if

it be negative, the function diminishes. Thus the state of

the function for all values of the variable may be determined

du
by finding the roots of the equation -7- = 0. If therefore

a and a + ^ be between two roots of this equation, -7- does

not change its sign between those values of x, and the

function increases or decreases according as -j- is positive or

negative.

PROP. XLVII.

(91.) To determine the limits of the error arisingfrom
assuming thefirst term, the first two terms, or any number

of successive terms of the development of {{yi-^-h), by Taylor''

s

theorem,for the "whole value qff(x + h).

du
Let ~— = f'(^)- In this function let x be supposed gra-

dually to increase from x to j: -{- h, h being taken of any

f2
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finite value. While x varies between these limits, the

function J'\x) suffers a corresponding variation ; let x' and

a:" be the values of .r, which, between the proposed limits,

rendery'(ir) greatest and least. The quantities

f(x + h) -/V), /'(^') -/V + h)

are both positive. These are the differential coefficients of

f(^ + h) -f{x) -f{al')-h, fix) +f{x').h -/(T + h),

h being taken as variable. Hence it follows by (90.), that

these quantities must increase from x to x -^ h. Now,

since they are both = when A = 0, it follows that they

must be both positive between the proposed limits, and

therefore

/(r + h) >J\x) +/'(^") • h, and </(.i) +/V) • //.

If h be negative, the contrary happens. Hence

y*(ar -f h) —J'(x) is a number included between the values

ofy (.r') • h andy (^'') • h. If therefore the first term of the

development o^J'{x + h) be taken for the whole value, the

error will be greater thsLU^f'ix") • h, and less thany(jr') • h.

In order to determine the error produced by assuming

du h d'^u h^

^ "' "^ T "^^ L2

for w' =J'(x -f ^),let -z-^ — f\x), and, as before, let the

greatest and least values ofy*"(jr) from xto x \- h bey (jr')

andy''(a:"). The quantities

/"(^ 4- h) -f"{x% f"(x') -fHx + h),

are positive, and therefore the quantities

f(^-^h)-f'ix)-f"{a^') -A /'(.r)4-/V) • h-f'{x + h),

of which they are the differential coefficients, h being the

variable, must continually increase between the proposed

limits, and must therefore be positive, since they vanish

when // = 0. Hence the quantities ^
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f(x + A) -fix) -f{x)\ -f'i^')^,

fix) +/'(x) ^ - f"(c^) ^ _/C.r + h),

of which the former are the differential coefficients, must be

both positive. Hence

f(x + h)>u+^'{ +f%r^')^.

Hence if w + -i q- be taken as the value of f{x + h)j
ax 1

the error is comprised between the limits y"(J?'') ^^ ^^^l

In general, therefore, if n terms of the series be taken for

the whole value of 7/ orjf(x + ^), the error is comprised

between the limits of the greatest and least values of
''

d"'U h""

dx""
* 1.2.. -w'

d"u
X being supposed to vary in the function -7- from .r to ^ + h.

It is, however, to be understood, that there are no values of

X comprised between x and x •\' h, which render the function

u or any of its differential coefficients infinite; in other

words, it is necessary that there should be no values of

X between these limits which furnish exceptions to Taylor's

series.

Ex. 1. Let u — a^, •.* -t-„ = Va% and if w' = a'"'*"*,

dx^

d"u'
The greatest and least value of ^-;7 between x and xi h arc
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the values corresponding tox + h and x themselves. There-

fore /^"Ka^O = k"a''+^ and /^")(^') = ^"a^. Hence the

limits of error are included between the quantities

" 1.2.3.. ..7l'

""
1.2.3 .

. • 71

Ex.2. Let u = /(.r + h). The limits of error in this

case are
i»

h'' 1

1

7t (x-^-hy

PROP. XLVIII.

(92.) Two series ascending hy the powers of the same

quantity (h), being given, to determine the limit of their

ratio, h being indefinitely diminished.

Let the two series be

S = A^« + bA" -^ ch'

S' = a'¥' + B7i*' + c'A'^. . . .

When h is diminished without limit, the limit of

s . Ah"

s'
'^

A7^«'•
For

s k'iA-hBM-^+ch'-" )

S'
- h"'{A'+ B"''-'''+c7a^'-«' )•

When h = 0, the factors within the parenthesis become a

and a', and therefore in the limit

S AC"

s' """l^^*

/^

If a = a', the limit is —r- If a > aK the limit is ; and
a'

' '

if a < a', the limit is infinity.
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(93.) Car. Hence i£ a = a\ a value may be assigned to

h so small as to render s > or < s' according as A is > or

< a', and s will continue > or < s' for all values between

that assigned value of h and 0.

If a > a!J a value may be assigned to h so small as to

render s < s', and s will continue less than s' for all lesser

values of k.

If « < «', a value may be assigned to h so small as to

render s > s', and s will continue greater for all lesser values

of^.

If any number of successive terms of the two series com-

mencing from the first be respectively equal, that is, if

A = a', a = a', B = b', b = V, &c. then the relative values

of s and s', h being supposed to be indefinitely diminished,

may be determined by the first pair of corresponding terms

of the series which are not equal, in the same manner as

above. Thus, if the terms of the series be respectively equal

as far as hh} and ilN', inclusive, let the common values of

the series thus far be s. Then

s— s _ uhr'-\-^h'' • ' '

s'—s ~ m'^^"'+ n'A"'
*

If m = wz', •.* s — 5 is > or < s' — s, or s is > or < s',

according as m is > or < m', h being assumed sufficiently

small. And all that has been observed before applies here

mutatis mutandis.

SECTION VIII.

Ofthe differentiation offunctions ofseveral variables.

(94.) The functions which have been subjected to in-

vestigation in the preceding sections have been supposed to
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be composed of one variable quantity, connected by some

given or supposed relation with constant quantities, or if

more than one variable has been introduced, they have been

always understood to be connected by some condition, which

being expressed by an equation, an elimination might be

effected, by which we might finally arrive at a function of a

single variable. We shall, however, now proceed to con-

sider a more extensive class of functions, namely, those

"whose variation depends on the variation of several quan-

tities, which are independent of one another.

As the variation of functions of several variables is pro-

duced by the several variations of each of the variables,

there are as many differential coefficients of the first order

as there are variables independent of each other. In ge-

neral, when w is a function of several variables x, .r', .r" • •
•

the differential coefficient determined by considering w as a

function of the variable x alone, all the other variables being

supposed to be constant, is called the partial differential

coefficient of the first order of u differentiated with respect

dij/

to ;r, and this coefficient is expressed -j- , as if the function

u were a function of jt alone. This differentiation being

continued, a series of successive partial differential co-

efficients will be found which are expressed, -7-^, -y-^ ....

YT9 ^s ^^ ^ ^^^^ ^ function of x alone. In the use of these

symbols, therefore, their true meaning should be carefully

attended to, and the student should be cautious not to use

them as if they referred to the entire variation of the func-

tion u, but only to that part of it which depends upon the

^ ,., du d-u d"u
variation or x. In like manner -7--: -r—- • • • —1—,- are tlie

dx^ dx'^ dx'"

partial differential coefficients depending on the variation of
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x^ alone ; and in a similar way the partial differential co-

efficients depending on the variation of any other variable

may be expressed.

There are therefore as many partial differential coefficients

of this kind of any proposed order as there are variables.

Besides the species of differential coefficients above men-

tioned, there are also others obtained in a different manner.

The partial differential coefficients of the first order are

themselves functions of the original variables. The dif-

(iu
ferentiation of the function -7- has been continued as a func-

dx

tion of X. But as it is a function of the other variables

x\ x" ' ' ' - as well as of .v, it is susceptible of differentiation

(111

with respect to any one them. If y be considered as a

function of x', all the other variables being considered con-

stant, it may be differentiated. The differential coefficient

resulting from this process would, according to the system of

notation used in functions of a single variable, be— ,
,

•

To avoid the complexity of these symbols, it is, however,

expressed thus, , ,, which signifies, therefore, the dif-

ferential coefficient obtained by differentiating the function

zi with respect to x, and again differentiating the result of

that operation with respect to x'.

If the function u had been first differentiated with respect

to x', and next with respect to x, the differential coefficient

would be expressed thus, , .

,

.
^ dx'dx

The differential coefficient obtained by two successive

d^u
differentiations with respect to .r being j--; if this be consi-



74 THE DIFFERENTIAL CALCULUS. SECT. VIII.

dered as a function of ^r', and as such be differentiated, the

coefficient resulting from this operation is expressed thus,

-z
— -,, If, on the other hand, the function u be first dif-

ferentiated with respect to x', and the result -rj be twice

differentiated with respect to x^ the differential coefficient

d^u
resulting from this operation is expressed thus, ,

,
, ^.

In general, if the function u be differentiated successively

m times with respect to the variable x, and the result 7i

limes with respect to the variable x', the differential co-

efficient which results from these operations is expressed

thus,

dx"'d:c"'

'

But if the function be first differentiated n times with

respect to x^, and then m times with respect to ;r, the result-

ing coefficient is expressed thus,

da^'^dx'"
'

(95.) To explain this notation generally, let m be a func-

tion of the variables of, x", a/" • • • • x^^\ and let it be dif-

ferentiated m' times successively with respect to x', and the

result of that operation 7/i" times successively with respect to

x" and so on.

The differential coefficient which results from this system

of operations is expressed thus.

dx-^'-dx^'""" • . .
.^<")'"

If in the function ?/, the several variables x', x'', • • • • a:^")

be supposed to receive the increments h', h", • • • • ?i^'^\ and

the function to become u', let it be supposed to be expanded
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in a series according to the positive and integral powers of

the increments ^', A", • • • • ^(">. The first term, which is

independent of the increments, must be the original function

?/; for it is what the series which is equal to u' becomes

when the several increments = 0. Let the series be

u^ = u-\- A%' 4- M" 4- • • • • A^").^^"),

+ dh'h" + c"h"h'<' + • • • • c(^W"-'W^\

+ nW + jy^^m + . .
. . D<")^<">^

•

;
•. • f^i-

The sum of the terms of this series which involve the first

powers of the increments is called the total differential of the

function m, and each of these terms are called pp,rtial dif-

ferentials. Thus,

du = A'h' + A"h" a(")^(">,

or, as it is more usually expressed,

du = A'dz' 4- A"dx" A<«)d^(").

If in the series [1] h", k'" • • • • /i'"^ be supposed severally

= 0, the series becomes

u' = ?^ + A'h' + B'h"- + d'^'3 . • • •

This is equivalent to supposing a^ alone variable, and x'', ^",

uu
• • • • o:^"^ constant. Hence it follows that -j-j = a'.

In like manner -7-r, = a", and so on. Hence
dx"

- du
^ ,

du
^ ,,

du ^
, ^

du = -T-7^^' + ~T7idx • ' ' ' j-T-dx^^'K
dr dz" dx"^

In the use of this notation, it should be observed that

-j-jda^, does not signify a division and subsequent mul-

du
tiplication of du by dxK In this case y-7 is not the repre-

sentative of a quote, but represents a function of the several
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variables Jt', .r", • • • • cr*"^ derived from the primitive func-

du
tion u in the manner already explained ; and -j-^-rfj7' signifies

this function multiplied by dx\ This product, as has been

already observed, is called a partial differential of u.

PROP. XLIX.

(96.) It is required to express afunction u' = f(x' -|- h',

x" + h" • • • • x*"> + h<"^) in a series of positive and integral

powers ofthe quantities h', h", • • • • h<''>, the quantities x', x",

.... x<") being independent variables.

We shall first consider the case in which there are but

two independent variables a/, ^''. In this case

w' = f(^' + h\ ^" + /z").

As the exponents of the quantities h\ li\ in the required

series, are positive integers, the series arranged by the powers

of h^ must have the form

M' = A

+ a'A"

+ a"F2

+ a"72"3

+ B . /?/ ^- C

^ + BW3 ( 4- c'W3

i:-

d'"F3

4-d'^"

I

J

If w' be considered a function of x^ only, a?" being treated

as a constant quantity, it may be expanded in a series of

powers of /i' by Taylor's theorem, and if m" = r(^, a;" + /*"),

this expansion will be

_f . . . .

dx^

This series must be indentical with the former, inde-

pendently of/?', and therefore
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w" = A + a!W + a'7/'2 + a'W^ + • . [2],

1 rf/z"

Y .^ = B + B'/i" + bW2 + b'"A"3 + [3],

1 //«//"

If ic = F{x'a/'), and this be considered as a function of

cc", a^ being considered constant, w" may be expanded by

Taylor's theorem, the result is

du W d^u m d'u h""^

If u and its partial differential coefficients -7-^, -fij^i &c.

be considered as functions of iv\ this series, differentiated

successively, gives

du" _ du^ dru h" d'u h'"" d}u _^

dx^'-~ dx'"-^ dx'doc'"- ' T'^dx"'da;^
'

1.2'^ dx"'dx'^
' 1^3

[8],

d'u!' d'u d'u h" d'u M' dhi ¥^

J

[9].

dx^~da^^^da^^dx^^>' 1 ^ dx'^'^dsd^' 1.9.'^ dx'Hx'^ 1.2.3

These series [6], [7], [8], [9], &c. must be identical re-

spectively with [2], [3], [4], [5], &c. independently of /t".

Hence

'^~''' ^ ~ 1^'' "^ "= 5^«* 2 '
"^ "^ d^' ' f2.3 "

"
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B = dll
,'—

dru ,

d-u

dhi

d*u

dh 1 d'u
,b'"=

da^^-dx^ 1.2'" ~dx''dx' 1.2.3

d'u 1 d'
c"= i-7ijC

J^"2£?^'2 1.2'" -^/.xy'^c/^^^ 1.2.3

__^ ,__dSi_ ^,_ (Z^^ _1_ ,„__d^u_ I

^ ""5^' ^ "dw'da;''' ^ " dx"^da;'^'T^'^' ~ dj^'W' 1.2.3'

Hence the expansion of w', arranged according to the

powers of 7i' and ^", is

u'=u
du h' ^ ^

d^ m
"^^Tf ^^' L2

dx'' tS

+
c?3 7i'3

(Za7"(Z2^ 1

'^d^'^ ' 1.2

c?^'3 1.2.3

!^ "^c/^"W 1.2

d^u WW^

+ ....[10]

J-^+ A'
A'2

J^"3 1.2.3

As the variables in the function u = f(A") are not

distinguished by any particular condition, this series will still

represent w', if x' and 7i' be changed into x" and A", and vice

versa. This change gives

duh"^ d\t A"^ 1 dHi_ _hP_ ^ +....[11]

dx''^' 1.2.3

d'u hH"

du h" >v dhi. h'"' ^

^-^+rf^Tl+5^'lT2 +
du^M^t d^u WU

I

d^u

dx^^ 1.2

dxHx}^ 1.2
^

da^dx'^'^ 1.2

(Z<r'3 1.2.3

As these series both represent w', independently of the

values of A' and W^ the corresponding coefficients must be

equal. Hence

d?'u _ d^u

dM^' "^ dMx"
dhi _ dhi

dx"dx^^ " ^^^W''
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dod^'dx' doddx^'^
'

and, in general,

da/'"da/'''
""

d^^da:'"''

It follows, therefore, that if any function of two variables

be differentiated m times for one of the variables, and n

times for the other, the resulting differential coefficient will

be the same in whatever order the differentiations may have

been performed.

The analogy of each successive column of the develop-

ments [10] and [11] to the terms of an expanded binomial

is quite obvious. If the quantities dau' dx" be transfer-

red from the denominators of the coefficients to the de-

nominators of the powers of k' and h", the successive vertical

columns may be represented thus,

1 idx^'^ da^'S'

Y^Xd^^'^'d^'S

S— —Vdhi_

1.2.3

d^'u r h! h" -^
"

IXS-'-nld^'^d^'j
•

h! h"
And, therefore, if s = -r^-r + -nfi the series will become

' dx* dx"

sdu s^d^u sH^u .,^,
«' = " +— + Ti-+i:2j- • -Li^l

the ^th term being

s^rf'^w

It should be however remembered, that when s" is sup-
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posed to be developed, and the resulting terms ~-f-Tn9

Tjn-i 1 II
^c. found, these symbols are not meant to repre-

sent the operations of involution by which in this way they

are produced, but express the results of the successive

differentiations as explained in (95).

If u' be considered as a function of three or more variables,

we shall, by continuing the same process, find a similar re-

sult; and if

the series [1^] still represents z/'.

It also follows, on exactly the same principles as in the

case of only two variables, that the value of each differential

coefficient is not affected by the order in which the successive

differentiations are performed. For example,

dicyda^"'''"da;'""'"\.,.
~

d:c'^'"'"'dx'"''dx"'""....
*

If the several arbitrary quantities c?.r', dx", • • • • 6/^<") be

assumed equal to the increments N, h!\ • • • • U^\ •.* s = 1,

and the series [12] becomes

,
du d'U d^u

"=" + T + i:2+]:2:3----

which has been apphed to functions of one variable in (53).

PROP. L.

(97.) To differentiate a quantity composed of several

Junctions ofseveral independent variables united by addition

or suhtraction, the differentials of the component functions

being given.

Let u = .i' -f ji" • • • .r<"'. By the principles already

established,
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du _ du

Hence

da^
-^'^==^'^^-

du ~ dx^ -^dx" - • ' ' + dx^''\

which extends the result of (17.) to functions of several in-

dependent variables.

PROP. LI.

(98.) To differentiate the product of several independent

variables.

Let u = x'a/' • • • • a?<">. By the rules already laid down,

if the partial differentials be found, and added, tjie equation

du ^ , du ^ „ du ^ , ^

du = -T-rd^ + -Tli'doo" 3-^/^^"^
dr' dx^^ dx^""^

becomes in this case,

du= x"x'" • • • x^»>dx'-{-x'x"' • . x^'^^dx" • • • x'x'' • • • a?<"Wic<">,

which is the same as the result of (22.), where a^, ^', • • • •

are not independent variables, but all functions of a common

variable.

In a similar way the result of (23.) may be extended to

fractions, of which the numerator and denominator are pro-

ducts of independent variables.

(99.) The following examples will illustrate the principles

on which functions of two variables are differentiated.

Ex. 1. Let u = x'^f, '.'

du

dx
— mx^^^-y^y

dy ^
.

Hence

du= mx'^-^y " -dx \ nx"\y^~^ •dy = x'^~^ 'y^~\mydx -f-nxdy).
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X DC

Ex. 2. Let w = /'tan. — . \i z — — and «' = tan.^;, then
y y

u = l':^, and by (16)

du __ du d^

dz
""

6?2' dz
'

^ du I ^dz' 1

But -T7 = --r, and -r- == -. Hence
dz' z dz cos.®z

du QO\,.Z 1

dz cos.^z sm.2cos.;2

But since %——.'.'
y

ydx — xdy

^ ~ If
*

Hence

, yds-ivdy

2/2 sm.— cos,

—

^ y y
X X

Ex. 3. Let u = tan.~^ sin.""^— . As before, let ^ = —
y ' y

and z' = sin.-^s;, •/ u — tan.~V. Hence (16.),

du du d^

dz ~
dz' dz'

_ du 1 . dz' 1

But -77 = 7-7—To and 3— = . Hence
dz' l-f-2'* rf2 ^l-;22

du^__ 1

dz ~(l+;^2)^/Trii*

But since 2; = —,
•.•

y
ydx—xdz

dz = ^
.

y
Hence

- _ ydx — xdy

ydx—xdy



SCET. IX. THE DIFFERENTIAL CALCULUS. 88

SECTION IX.

The differentiation ofequations ofseveral variables.

(100.) When an equation ¥{xy) — 0, involving two

variables, is given, either variable^ may be considered as a

function of the other x. The resolution of the equation

for y would change it to the form

y =./(^).

In this state the function // might be dift'erentiated by the

rules already given for the differentiation of functions of one

variable, and thence the value of the successive differential

_ . dy d~u d"y ^ .

coefficients --,—...._. found.

This method, however, would in general be of no prac-

tical use, as it would require the general resolution of equa-

tions. It will be therefore necessary to find a method of

determining the successive differential coefficients of y with

respect to T, without resolving the proposed equation for 3/.

(101.) For this purpose let x and j/ be first supposed to

be independent variables, and let u ~ ^[xy)^ the values of

y and x not being necessarily limited by the condition u— 0.

If j/ and X become y -\- Ic and x -^ h, the function becomes

?/.' = F[(.r -{- h)f {y -{ ^)], and by the equation [11] (96.)

ri o
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If in the equation y =f(x)^ x become oc ]- h and y be-

come y, we have by Taylor's series

dy h d'y A* d^y h^

^~^ ^~ dv 1 ^ dx^ 1.9,^ dx^ 1.2.3

Making this substitution for A: in the series already found,

and arranging the result by the dimensions of A, it assumes

the form,

,/ = « + v.A + v.^ + A". ^^ + ....[.].

Where

du du dy fdu du

dx dy . dv~~\^x dy ^Jdv''

d^u 1 d^u dy d^u dy^ 1

57« ' ¥ "^
dx'dy "dx^ dy'^'d^"^'

fdhi ^ d^u ^ ^ dHi
^ \ 1

H
^dx^'

d^^-^' -^ ''•d^y^'^''^^'''d^^^^^^'
+

dy'^ J
'

l.^.S.dx^'

And in general the series of coefficients of the powers of dx

and dy in each term is evident from their analogy to the co-

efficients of an expanded binomial.

Let the variables x and y be now restricted so as always

to satisfy the equation w = 0, so that whatever be the value

of A, the condition u' = must be fulfilled. In this case the

series [1] must = independently of h; hence its several

coefficients must separately = 0, which gives the equations

u = 0,

-j-dx 4- -T-du = 0,
dx dy '^

d^u d^u , , d^u , ,
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d^u (Pu d^u d^u

The first of these equations is only a repetition of

F(.rj/) = 0. The second, however, determines the value of

the differential coefficient -7~» if the functions -r- and 3- be
ax ax ay

known. Let these be a and b, •.•

kdy -f- Bdx — 0,

' dx A
*

Hence it follows, that " to find the first differential co-

efficient of an implicit function y, given by an equation of

two variables x and j/, the equation must be differentiated

as a function of two independent variables, and the total dif-

ferential being equated with zero, will determine the sought

differential coefficient."

(102.) In a similar way it may be shown that an equation

of any number of variables may be treated as a function of

the variables, and differentiated. Let u = F(d7', x^-'-x^'"'^) =0,

by differentiation we obtain
,

du , ,
da ^ ,,

du ^ ^
.

dx' dx"
'

(ir<")

This is called the total differential of the proposed equation.

The partial differential equations may be obtained by

considering the given equation successively as a function of

each combination of two variables. This process will give

as many partial differential equations as there are different

combinations of two variables in the primitive equation, and

each of these equations will determine a partial differential

coefficient of one of the variables as a function of another.

As however the differentials of the variables severally enter
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as multipliers of all the terms of these equations, any one

of them may be deduced from the others.

(103.) To return to the equations of two variables, the

differential coefficient -,— being expressed by ^, the dif-

ferential equation becomes

Ap -f B = [1].

In this case a and b being functions of the variables x and

y, this may be treated as an equation of three variables, ^,

7/, and jp, and being expressed by u\ its differential is

dii^ , du! , dii ,

d'^y . . .

Since dp = -~, it is evident that this equation, combined

with the first differential equation, will determine the dif-

dhj
ferential coefficient ,- - as a function of the variables x, y.

Hence " to obtain the second diff'erential coefficient, the

first differential equation must be differentiated, considering

dy
;r, ^, and -y- as variables.'*''

Again the equation [2] being differentiated, considering

dy d^y
X, y,

-J-
and -^ as variable, will give a third equation,

which, combined with the other two, will determine the

d^ij
third differential coefficient -^.

ax^

Thus, in general, " the equations which determine the

successive differential coefficients -r^, -7^ • • • •-r^, of an
dx' dx"- dx'''

implicit function given by an equation of two variables, are

deduced by successive differentiations, each differential co-

efficient being considered as an additional variable."
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SECTION X.

Of the effect of 'particular values of the variable upon a

function^ and its differential coefficients.

(104.) A function is in general rendered either positive

or negative by the real values which may be assigned to the

variable. There are, however, four states of the function

which are attended with peculiar circumstances, and which

require some examination. Certain particular values of x

may render the function, or its differential coefficients,

10 = 0, 2° — ~, 3" imaginary, 4° infinite. We shall con-

sider these four cases first in explicit, and next in implicit

functions.

PROP. LII.

(105.) To determine the values ofthe successive differential

coefficients of a function (u) which correspond to any par-

ticular value (a) of the variable (x), which renders thefunc-

tion or any ofits differential coefficients ~ 0.

P. Let X ~ a render the function itself — 0. By the

principles of Algebra, it follows that x — a, or some positive

power of it must be a factor of u ; so that ii must be of the

form u — v{x — a)'", m being a positive integer or fraction,

and p being a function of x not divisible by {x — a), or any

power of it.

From the process of differentiation it appears that

{x — «)"*-% (x — a)*"-^, &c. are factors of the successive

differential coefficients of w. Let these coefficients be u', /<",

• • • • u^"\ they must be of the forms
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where p', p" • • • • are quantities not divisible by any power of

{x — a).

If 7n be an integer, these successive differential coefficients

will = when x = a a.?, far as the {m — l)th inclusive ; but

the wth differential coefficient will be of the form

which not being divisible by any power of {x — a), will not

vanish when x — a. The same may be observed of the dif-

ferential coefficients which succeed the mih.

It is plain that if m — 1,- the function vanishes, but none

of its differential coefficients do.

If w be a fraction, let n be the next integer below it, and

'.' n -\-\ the next above it. In this case the differential co-

efficients as far as the wth inclusive vanish with the function,

and those that succeed it all become infinite. This is evi-

dent from considering that m—n is positive, and m-'{n^\)

negative.

If m be a proper fraction, then n — 0'^ and in this case

all the differential coefficients are infinite.

2". Let X — a render any proposed differential coefficient

— 0. If the first differential coefficient which it renders

= be of the nth order, it follows that

^(n) ^ p(n) ^^ _ ^)m^

p^"^ not being divisible by a power of ^ — a.

In this case it may be proved by the process already used,

that when m is an integer, the differential coefficients from the

wth to the {n \ m — l)th inclusive vanish when.r = «, and

those which succeed them do not. If m be a fraction be-

tween / and Z 4- 1, then the differential coefficients from the
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nth to the (n -f /)th vanish, and the succeeding coefficients

become infinite.

If w be a proper fraction, then all the coefficients after

the nth become infinite.

PROP. LIII.

(106.) Given a function which vanishes when x = a, to

determine the highest power of {x — a), which divides the

function.

Let u = F(ir), which vanishes when x =^ a. It is mea-

sured by [x — aY to determine z. Let the function be

differentiated until a differential coefficient w^"^ be found

which does not vanish when z = a. This coefficient will be

either finite or infinite. If it be finite, the value oi z is an

integer, and = w. If it be infinite, the value of z is a

fraction, whose value is between the integers n and n — \.

To determine it, let «^<'*-^) be divided by such a fractional

2^(w—1)

power A; of « — ,r, that the quote r^ may be finite
\(l— X)

when X — a. Then the exponent of the sought power will

be w + k. This is manifest from the last proposition.

PROP. LIV.

(107.) To determine the true value ofafunction which a

particular value qfx renders ^, or irifinite.

That the first may take place, it is necessary that the nu-

merator and denominator be both functions of x^ which

vanish when j: = «, and which therefore have factors of the

form {x — ay.

Let the function then be
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f{x)

and let the highest power of (2^ — a) which divides one be

z, and the othier z'. The function may therefore be ex-

pressed thus,

p(ir—aV

The values of z and z^ are to be determined as in the last

.proposition.

if z > z', u — 0. IF ;s < 2', II is infinite. 1£ z — ^,

P
u = —.

Hence it appears that the method of proceeding to de-

termine the value of the function is, to diiferentiate both the

numerator and denominator until a dijBPerential coefficient of

each be found, which does not vanish when x = a. Let

this coefficient be of the n\h order for the numerator, and of

the Twth for the denominator.

Then

1^. If 71 > m, the function is — 0.

9P. If 7i < m, the function is infinite, as well as all its

differential coefficients.

3^. l^n — m, the 71th differential coefficient in each term

of the fraction maybe either finite or infinite. This pre-

sents four cases, First, If it be infinite in the numerator, and

finite in the denominator ; in this case 2; is a fraction less

than n and z' = n; hence the function is infinite.

Secondly/. If it be infinite in the denominator, and finite

in the numerator^ then z — n and 2;' is a fraction less than w,

therefore the value of the function is 0.

Thirdly. If both be finite ; in this case the value of the

function is a fraction whose numerator and denominator are

the differential coefficients themselves. For let x -^ k be
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substituted for oc in both numerator and denominator, and

the results developed, we find

h .. A«
f(^)+a'.-~+a".j-^- +

u = -

where a', a", &c. b', b", &c. are the successive differential

coefficients.

Substituting a for w, the functions and their successive

coefficients vanish as far as the ?fcth differential coefficient,

which is by hypothesis finite in both numerator and de-

nominator. Hence the function becomes

^n ln+

1

A<«^.,-7^ +A<"+^).

_ l,^""n 1.2.. ..w+1

b(«). -^ ,_j_b(«+i).

l.%"'n
'

1.2.. ..71+1

Dividing both terms by h^, and supposing A = 0, we

find

which is a fraction whose numerator and denominator are

the first differential coefficients which remain finite when

£c = a.

Fourthly. If the first differential coefficients which do not

vanish be of the same {n\h ) order, and both become infinite

when X = a. In that case z and 2' are both fractions be-

tween the integers n — \ and n. The values of the frac-

tions may be determined as in (I06.) ; and if they be equal,

both terms of the fraction being divided by the common
power of a: — fl, the result will be its true value. If z > z\

u = 0, and if 2 < je/, u is infinite. Or the value may be

determined thus. In both numerator and denominator let

oc H- h be substituted for ^, and the results expanded ac-

cording to increasing powers of h by the ordinary rules of
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Algebra, or by the method explained in (55.) ; for in this

case the series of Taylor does not apply (55.) ; and let the

result be

_ aA«+a'^«' + a"A«"...-

^ ~ pA^ + b'A^Tb^-...*

The exponents a, al, a" • • - - b, b', b" - - - - being arranged

in an increasing order. I£ a > b, the fraction becomes

It is evident that all the exponents in this case are positive,

and therefore by substituting a for cc, and making ?i = 0,

we find u —- 0.

If, however, a < b, the fraction becomes

_ A + a'A«'-«+ A'7i«"-«- .
.

•

Making oo = a, and A = 0, this becomes infinite.

If a = ^, by dividing both numerator and denominator

by A%

_ a4-a'A«'-« + a"A""-°-.-.

^ ""
b+b'A^'-«+bW'-«.--.'

Substituting « for ^, and supposing h = 0,

A
u = —

.

B

If in the product of two functions of x one factor become

infinite when a; = a, and the other 0, it can be reduced to

the form |, and therefore its value may be found by the

preceding rules.

Let u = r(d7) X f'(^), and let F'ix) be infinite and

f(x) = when a: = a.

If we supposey(^) = "77~~\' ^^^^" ^^ x = a, fijx) = 0.

^"t '^ — ~Fnro which becomes ° when ^r = «.
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If M = ——
-, and X — a. render both numerator and de-

nominator infinite, the value of u may be found by the same

rules : for let fix) — ——:, f{oc) — -rrTi^ ^
f(^)''^ ^ ^ f'(^)

f'(x)
'.' u =*^7r—tj which becomes ^ when x = a.

Also, if M = ¥{x) — f'(^), and these functions be-

come infinite when x = a, let f(x) = -pr—:, and f'(x)= -t;:^—

f(xy ' f{oc)

fix)-f(x)

f{x)f'(x)
'

which becomes -° when x = a. Hence all combinations of

functions of x coming under the preceding forms are regu-

lated by the rules already dehvered.

(108.) We shall now proceed to give some examples of

the application of these rules.

^n 1
Ex. 1. Let u — q-, to find the value of this when

x—1

X = 1. By differentiating once, we find the first diff^erential

coefficients of the numerator and denominator,

Hence u = n.

_ ^ ^ ¥{x) ax^-{-ac'^^2acx ^ , , ,

Ex. 2. Let u = -7-^ = -^—z;—-z-r r—-, to find the value
f'{x) bx^~-2bcx-\-bc^

of u when x = c. By diff^erentiating

dF{x)

dx

d'F\x)

= ^a{x — c),

= ^b(x - c).
dx

These both = when x = c. Differentiating therefore

again,
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d-'F'ia;)

which not being affected by the value of x, give

a

Ex. S. u = , to find u when x -- 0.

dpix)-^ = aH^a - bH'b,

dp'jx) _
dx ~

Hence u — Va — Vh = I(i>
1— sin.<«'+ cos.a7

, ^ , , *
liiX. 4. u —

; -, to find u wnen.r = —r-
sin.jr+cos..r—

1

2

d¥(x)
— — cos.^ - sin.a:,

dx

dF\x
]

dx
= cos..r — sm.a:.

7t

Hence when x = 77-, w = 1.

3

(x^ ~ a^\^
Ex. 5. Let 11 = ^^

, to find u when x = a.

(x-a)^

The value may easily be found in this case by raising

both to the power y,
•••

u = —

^

= X -\- a,
x— a

Hence w^ - 2(7, ••• w = (2a)^.

Ex. 6. Let M = —
, to determine u
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when X — a. In this case, let (« -j- K) be substituted for

or, and the result is

w = .

Developing (a + h)^ by the binomial theorem, and sub-

stituting for it its development

u' =

Dividing both terms of this fraction by Vh, we find

Making h = 0, we find

_ J_

Ex. 7. Let II =: (1 — .r) tan.i(irj:), to find u when r= l.

In this case u assumes the form x x . But

1 1

—

X , . 1 1

tan.i-te) = r, •.• u = —
-, which becomes ~

^^ ^ cot.i(7rzi;)' cot.i(7r:r)

when X = I. Applying to this the common rule

' dF{x)
__

dv'(x) _ iff

dx- ~~ sin.®i(ffar)*

2
When X = lf sin.*4(ffjr) — 1, *.• m = —

.

X
tan. Iff— •

Ex. 8. Let u = -;

—

77—^ ?r~T, to determine the value
x^a~^{x^—a^)~^

X
of u when x = a. In this case the fraction becomes —

.

00
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X 1

But since tan.^^Tr • — =
, and

a a:

cot.ir—
^ a

u = y- ,

COt.i^TT- -
"" a

which becomes ° when x — a. Differentiating, we find

dY[x\—~^ = 2ax-' - 2a(x'- - a'')x-^,

dF'(x) _ _
-i-y

dx . x'
a sm.«iir- —

Hence when x =: a, u ~ .

Ex, 9. Let u ^ X tan..r — iir seer, to find u when

IT

In this case u ~ oo — cc , But since

'.* u

1 1— , sec.jT = —
it-a? cos

X IT xsm.x —~<it

tan.r — , sec.jT = ,
cot-a? cos.x

cot.2^ 2cos.j7 cos.ar

which, when x = -^, becomes °
. Differentiating, we find

dT{x)

dx

dF'jx)

dx

.rcos.jr -f sm.ar.

= — sin.07.

Hence, when x — ~, w = — 1
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PROP. LV.

(109) To determine the conditions under which any dif-

ferential coefficient of an i7nplicit function becomes — 0,

= ^-, or = |.

Let the equation by which y is an implicit function of x

be F(<ry) = 0, which we shall suppose cleared of irrational

quantities; and let the first differential equation be

Ady + Jidx = 0,

A and b being each functions of x and y. In order that the

value of— deduced from this equation may be = 0, it is

necessary that b = 0; but this is not sufficient. It is

to be considered that the variables x and y must satisfy the

primitive equation ^{xy) =. 0. Hence it is also necessary

that the equation obtained by eliminating one of the variables

by means of the equations

F(xy) = 0,

B = 0,

should have at least one real root which is not infinite.

Such a root will determine a corresponding value of the

other variable, and this system of values may render

-^ = 0. We say, may render it so, because there is still a

possibiUty of the contrary. If the system of values thus

determined satisfy the equation A — 0, then the differential

coefficient becomes ^, and its value must be sought by a

method which will be explained hereafter. If, however,

the system of values of .ry so determined do not satisfy

the equation A = 0, then the corresponding value of the

first differential coefficient must be 0.

By continuing the process of diflerentiation any number
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of times, and eliminating each differential coefficient, except

the last found by the preceding differential equations, an

equation will be obtained of the form

AC?"j/ 4- Bc?ar" = 0.

The preceding observations will apply here also. If the

values of x, y, determined by the equations

F(a;j/) = 0,

B = 0,

be real and not infinite, and do not satisfy the condition

A = 0, then -7^, = 0.
ax'

It does not foUov/ that if one differential coefficient = 0,

all or any of those which succeed it will also = 0. For

if 7/ be supposed to be eliminated from b = by f(x7/) = 0,

then B will be a function of j? alone ; and if a value of ^,

which satisfies the condition b = 0, be a, then the equation

may be expressed under the form

c(.r - a)"" = 0.

The differential coefficients of this will = 0, for a: = a as

far as the differential coefficient, whose order is marked by

the integer next below m, but no further (105).

(110.) In order that any differential coefficient should

become infinite, it is necessary that the system of values of

a: and j/ determined by the equations

f(^^) = 0,

A =
should be real and not infinite. If this system of values do

not satisfy the equation b = 0, the corresponding value of

-y^ will be infinite.
ax

Any system of values of the variables xi/, which renders

any differential coefficient infinite, also renders all those which

succeed it infinite. For let

Ad"i/ + Bdjv" =
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be differentiated, the result will be of the form

hdr-'^'^y -I- c^jc'^+^ = 0.

The same conditions, therefore, which render -7^ infinite,

also render ^

—

4\ infinite,

(111.) If the value of the first differential coefficient de-^

rived from the equation

Kdy -h BcZo? = 0,

assume the form |^, the conditions,

A = 0, B = 0,

must be fulfilled, as well as F(.rj/) == 0. In order, therefore,

to determine the possibility of this, let the variables be

eliminated by these equations, and the resulting equation

will only include constants, and ought to be identically zero,

or of the form
c - c = 0.

Having determined whether there be any such systems of

values of the variables, it is necessary next to determine the

Q/lj

corresponding value of the differential coefficient -7-. Let

*, - ^^ .

.

A_p + B = 0.

This being differentiated, gives

AC?p + 'pdA. + ^B = 0.

Since a and b are functions of x and «/, it follows that

Ja and Jb must be of the form

Q,dy -Y ndx,

ddy + jy^dx.

Making these substitutions, dividing by dx, and putting

dij

p for ~f the result will be of the form

A-~ \- a'»2 + b'p + c' = 0.
dx ^ ^

H 2
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Now by the original conditions a = 0, •/ the value ofp
is to be determined by the equation

a'p« 4- b'p + c' = 0.

The roots of this equation are subject to all the varieties in-

cident on the roots of equations of the second degree. They

may be real or impossible, equal or unequal, nothing or in-

finite, under the usual conditions.

If, however, this equation, like the first, be fulfilled by its

coefficients; that is, if the system of values of xi/ determined

by the first three equations satisfy the equations,

a' = 0, b' = 0, c' = 0,

then this equation cannot determine the value of /?. In

this case it will be necessary to differentiate it, considering

X, 7/, and p as variables. The result of this will have the

form

{2a'p + b') . ^- + aY -f- bY + d'p + d" = 0.

But the conditions a' = 0, b' = 0, render this

aY + ^Y + c'p + d" - 0,

which determines the values of p. The same observations

may be made here, as before, as to the nature of the roots.

Also, if this be fulfilled by its coefficients, it is necessary to

differentiate again, which will give an equation of the fourth

degree for p.

These conclusions will equally apply to any differential

coefficient of an higher order by supposing j9 = -j—.

(112.) It appears, therefore, that when any system of

values of the variables renders a differential coefficient ^,

that coefficient ma^ have several real values corresponding

to the same system of values of the variables.

(113.) The converse of this also follows. If for any

system of values of the variables, any differential co-

efficient have more values, than one, then that coefficient
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derived from the differential equation of the corresponding

order must assume the form ^. Since the original equation

F(<ry) = is supposed to be rational with respect to the

variables, and since the process of differentiation never in-

troduces radicals, the differential equations must be all ra-

tional. Let two values of the differential coefficient of the

fith order be p, p\ These being substituted in the dif-

ferential equation, give

A/> + B = 0,

Ajt/ + B = 0.

Since a and b are rational functions of the variables, they

cannot have more values than one for a given system of

values of the variables. Therefore, the values of a and b

in these two equations must be necessarily the same. Sub-

tracting, we find

A(/7-.y) = o,

••• A = 0,

•.• B = 0,

(114.) As the state of the function corresponding to such

a system of values of the variables as that we have just been

considering is attended with circumstances of some import-

ance in Geometry, we shall examine it somewhat more

particularly.

Lety be what y becomes when x becomes x -\- h. By

Taylor's series, we find

h ¥ h'

y = «/ + A^ •

-J-
+ A,- j-g 4- 'Vj-^ • • •

•

where a^, A2 • • • • are the differential coefficients.

Now, if for the same values of?/ and ^, a^ have two unequal

values, there will necessarily be two corresponding unequal

values ofy, whether h be affirmative or negative ; but when

h = 0, the value of y becomes single, and equal to ^*

Hence it appears that this circumstance must arise from the

particular values of the variables which render a^ = o,
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making a radical vanish in the value of ?/ derivable from the

original equation, and yet not making the same radical

vanish in Ay. This follows from the principle, that the roots

of an equation can only become equal by a radical disap-

pearing. The possibility of a radical disappearing in a

function, and yet reappearing in its differential coefficients,

may easily be shown.

Let

u = (x — a) s/¥ + a:« + c.

When 07 = «, M = c, and the radical disappears. But

du x{x — (i)

When X = a,

du

+ vb" + x^.

in which the radical appears. See Geometry Art. (368.),

note.

It appears, therefore, that if the first differential co-

efficient becomes ~, and its values be determined by an

equation of the second degree, whose roots are real and

Unequal, Taylor's series divides itself into two at the second

term; thus,

h h^
i Ay. Y + A2-j-^ + •

(b,y + b,.^^ + ....

In like manner, if the value of the differential coefficient

were determined by an equation of the third degree, it would

divide itself into three, and so on.

If the differential coefficient of the n\\\ order assume the

form §, the series divides itself at the {n + l)th term; thus,

y = 2/ + Ay • Y + vj-gH- • • • • + \ -^n
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And in general the series divides itself into as many dif-

ferent series as there are unequal finite and real values of

the differential coefficient.

SECTION XL

Ofmaxima and minima.

(115.) Let u be a function of the variable ^', and let three

values of a corresponding to x = a ^ h, a: =i: a, and

.r = a -f //, be

71 = F(a — h),

W" = F(«),

n'" = F{a + ?i).

Def. If a be such a value of x, that for any finite value

of /i however small, the quantities u"—u' and u" — u"' have the

same sign, and continue to have that sign for all values of h

between that finite value and 0, then the value ii" is called a

maximum or minimum value of the function according as

the common sign of the quantities ?/" — w' and w" — zi'" is +
or —

.

(116.) From this, which is a rigorous definition of maxima

and minima, it will be perceived that these terms do not

necessarily signify the greatest or least value of the func-

tion. It is true, that if the function is incapable of un-

limited increase or decrease, and therefore has a greatest

or least value, this value must be a maximum or minimum,

and this case vvill be found to come within the preceding

definition. But on the other hand, the function may have

maxima and minima values which are not its greatest or

least values, and may even have several maxima and several

minima of different values. This will be easily conceived,

if, while the variable x is supposed continually to increase
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from to infinity, the function be supposed to vary, and in

its variation, alternately to increase and decrease, the value

of the function, which stands exactly between its increase

and decrease, or at which it changes from its increasing

state to its decreasing state, is a maooimum ; and that value

at which it changes from a decreasing state to an increasing

state is a minimum. Upon examining the definition al-

ready given, it will be found that these principles are in-

volved in it. An example will probably put the matter in a

clearer point of view.

Let ti = b — (x — ay. If .?> = 0, u = b — a"^; if Z> be

supposed > a^, this value of u is positive. As ^ increases

from X = to X = a, the quantity (a; — a)- diminishes

from a'^ to 0, and therefore tc increases from u =: b — a^ to

u — b. When x becomes > a, the quantity {x — g)'^ again

increases, and therefore u diminishes, and therefore the

value u = b stands between the increase and decrease of the

function, and is therefore a maximum.

Again, let w — 6 + (^ ~ ay. In this case, when ^ = 0,

w = 6 -f ft", the quantity (x — aY decreases from <^' = to

X = fl, for which u = b. When a: becomes greater than a,

ti begins to increase j hence in this case z« = 6 is a minimum
value of the function.

(117.) From the definition of maxima and minima, it

follov/s that the essential characteristic of a maximum is,

that it exceeds those values of the function which imme-

diately precede and follow it, while a minimum is less than

both these values.

(118.) The general method of determining maxima and

minima of functions of a single variable is derived from

Taylor's series, except when the values of x come under its

exceptions. We shall first consider the cases which do not

fall within the exceptions. Let ?/'- F(.r), and ^^'=F(.r-/^),

ti'" = y{x + //) ; hence



SECT. XI. THE DIFFERENTIAL CALCULUS. 105

" ^ - -P
1 P 12 P 1.2.3-

•••

y,/y', /?'". . . . expressing the successive difFcrential coefficients

of tlic function.

Let tliese series be expressed thus,

iSucb a value may be assigned to h as will render the sum

of all the terms of these series which succeed the first less

than the first, and therefore the signs of the entire series will

be those of their first terms. If the quantity /?' be not = 0,

the value of i^" cannot be either a maximum or mirtimum

;

for by assigning a sufficiently small value to 7/, the sign of

u" — u' will be that of + />', and u" — u'" will be that of

— ^y, these signs being different, the value u'' does not come

under the definition. In order that u" should be a maximimi

or minimum, it is therefore necessary that /?' = 0, and as p^

is a function of a', it follows that no value of a; but such as

are roots of the equation p' = 0, can render the function

either a maximum or minimum.

Let it therefore be supposed that a value of x, which is a

root of this equation, be substituted for z' in the functions

?fc", p\ p", &LC. We shall first suppose that this value of a;

is not a root of the equation p" — 0. The series by this

substitution become

In this case, as })cfbrc, such a value nuiv be asbigned to h
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as will render the first term greater than the remainder of

each series. Hence the quantities n" — u^ and w" — w"' will

both have the sign of — p'', and will have the same sign for

every value of h between that and 0. The corresponding

value of the function will therefore be a maximum if />" < 0,

and a minimum if;?" > 0.

If, however, the root of the equation p' = 0, which is

substituted for x, be also a root of the equation /?" = 0, biit

not a root ofp'" = 0, the series become

In this case, as in the first, a value may be assigned to h

such, that w'' — m' shall have the sign of + p'^', and w" — ?/'"

the sign of — p'", and therefore the corresponding value of

the function is not either a maximum or minimum.

If, however, the value of x be also a root ofy ' = 0, and

not ofy" = 0, the function is a maximum or minimum, ac-

cording as p"" < 0, or > 0, and so on.

Hence we conclude, that in order to determine the maxima

and minima values of a function, it is necessary first to find the

first differential coefficient {^), This being, in general, a

function of 07, determines those values of x which render it

= 0, or the roots of the equation /?' = 0. No values of the

variable x, which are not exceptions to Taylor's series, can

render the function u a maximum or minimum, but such as

are found amongst the real roots of this equation. Substitute

these roots successively for x in the second differential co-

efficient //'. Such of them as render p" < 0, being substituted

for x in the function w, give maximum values ; such as render

y > 0, give minimum values. If, however, any of them render

p" = 0, they must be substituted iny ; and if they render

it > or < 0, they will not render the function w cither
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maximum or minimum ; but if they also render p'" = 0,

they must be substituted in^'", and so on; and if the first

differential coefficient, which they render > or < 0, be

of an odd order, they do not give either maxima or minima

values of the function ; but if it be of an even order, they

determine maxima or minima according as they render that

differential coefficient negative or positive.

(119.) We shall now consider the maxima and minima

values of the function u, which are found among those

values which form exceptions to Taylor'*s series.

Let the values of jr which are roots of the equation

— = be determined. In this case the developments

become

u" - u^ — a(- hy + b(- hf -f c( - hy ....

m" - Zi'" = A^« + B/i^ -{- Qh'

If any of the exponents have an even denominator, the

consideration of maxima and minima becomes inapplicable

;

for, the fraction being in its least terms, the numerator must

be odd, therefore one series will be real, and the other ima-

ginary, since the corresponding term is the even root of an

odd power ; and therefore the value of the function does not

come under the definition (115.).

If all the denominators be odd, the numerator of the ex-

ponent a may either be odd or even. If it be odd, (+ h)'

and (— hy will have different signs, and *.* w" will be neither

a maximum nor minimum.

But if the numerator of a be even, (-f hy and (— ItY

will be both positive, being the odd root of an even power

;

and *.' in this case w" will be a maximum when a is positive,

and a minimum when a is negative.

If a value of x which renders /?' = 0, render ^" infinite,

the developments assume the same forms as in the last case,
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and the same observations exactly will apply ; and will in

general apply if a value of x, which renders the differential

coefficients from the first to the nth inclusive = 0, render

the {n + l)th infinite.

(120.) Before the more general investigation of the

maxima and minima of functions of several variables, it

may be useful to give some examples of the determination

of those of functions of a single variable.

Ex. 1. Let u = ax^ — bx" + a; -f 9. Hence

3- = '2>ax^- - 9hx + 1.
ax

The values of Xy which render this = 0, are

bA-Vb^--Sa

3a 9

b--^b^--iSa

3a

If b"^ < Say these values are both impossible, and therefore

the function in this case is not capable of a maximum or

minimum. But if 6- be not < Sa, let the function be dif-

ferentiated again, and the result is

Substituting in this the values of x already found,

dhi
". renders

< 0. Hence in this case, if

If b" > Sa, one value of x renders -j-^ > 0, and the other

b- Vb^-Sa
2a
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be substituted for x in the function u, tlie corresponding

value will be a maximum ; and if

6+ yo'^-^a

be substituted, the corresponding value is a minimum.

If, however, b"- = 3a, and •.* b'^ - 3a = 0; in this case

the value of .^' determined by -^ = is ^ = —, which being

substituted for x in

renders j-^— 0. It will therefore be necessary to differentiate

again, which gives

This not depending on x, and not being = 0, the function

admits of no maximum or minimum in this case.

Ex. % To divide a number a into two farts suchj that

the product ofthe mth power of one, and the nth power of

the other, shall be a maximum or minimum.

If jT be one of the parts, and -.' a — x the other, the pro-

duct is

u = ^'"(« — xy\

du
'.' -^ = (a ^ ^')"~^

•
^'""^

. [ma — {m -\- n)^],

-=^= (a - xy-'^.x'"-^.
\

(nia^ [m -f ?i)xy'-m{a—xf - nx"
]

.

ax

The values of x, which render t- = 0, are determined by

the equations
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which give

a — 0,

0.

ma — {m', +n,y

x = a,

<v = 0,

ma

0,

m-{-n

The value a: = a renders the second differential coefficient

= 0; and it is evident that since every differential coefficient

of an order inferior to the nth will have a' — a, or some

power of it as a factor, the same value of .2? will render all

these = 0. The nth differential coefficient will not have

the factor x — a, and therefore, in it changing x into a, the

result will not be found = 0. If n be odd, therefore, this

value of ^ does not correspond to either a maximum or

minimum ; and if n be even, it will be found that the value

X = a renders the nth differential coefficient > 0, and that

therefore the function is a minimum.

Similar observations apply to the value ^ = 0, by con-

sidering X — as a factor of the differential coefficients.

The value x = beine substituted for x in -r^.ren-

ders it negative, and therefore renders the function a

maximum.

Ex. 3. Let u = :j—;—r. In this case let mw' = 1 ; when m'

is a maximum, m is a minimum, and vice versa. But

1

X

dx '^^ X''

dhi^ 2

d~^ " x''
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Ihe condition — = 0, gives x = ± I, *-*y:^ = + %.

Hence if x = 1, ••• u' = 2, a minimum, and w = ±, a

maximum. If ^ = — 1, *.* w = — 2, a maximum, and

u = — 4» ^ minimum.

The principle used here frequently abridges the process,

scil. by investigating the maximum or minimum of the re-

ciprocal of the function in place of the function itself.

(121.) The maxima and minima values of functions of

several variables are determined upon principles similar to

those which have been already applied to functions of

a single variable. If u= f{x', x^\ x"' , . . .) and i^—Y{a^±,h\

x" ± ?i", jc'" ± 7i"' ....); let such a system of values be

supposed to be assigned to the variables x', a:", x'" ... . as

renders the sign of w — u' independent of the signs of the

quantities hi, h", W .... these quantities having any system

of finite values, however small, and such, that the quantity

u — v! will preserve the same sign for all systems of values

of 7i', /i", ^"' .... between the assumed system and h! = 0,

h" = 0, h'" = , . . . the value of w, which corresponds to

the system of values of the variables thus assumed, is a

maximum if the sign o£ u — u' be positive, and a minimum

if its sign be negative.

(122.) We shall first consider the case where w is a func-

tion of two variables. In this case

c _ du h! _ du 7i" ^ c d^u h'^

'^ - ^'=
i
+ ^' • T + 5^ • T 1 - 1^ • T2 ±

dhl h%" dhl l^l ,
rt-,

+
dx'dx'' 1 ^ dx^"- '1.23

In order that the sign of w — ti' may be independent of

h' and /i", it is necessary that such values be assigned to the

variables as will render
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These equations will in general give determinate values

of y and y. In order, however, to find whether this system

of values of the variables gives a maximum or minimum

value of the function, it will be necessary to substitute them

in the differential coefficients of the second order, and to de-

termine whether the sign of the quantity

d^ ^ d'u Ml" dhi hJ^

is independent of the signs of h' and h". For this purpose,

let — =z Icj and the preceding formula becomes

K'^ c dHv d^u dhi ^^

2 > djt^ ~'^d?d7''^'^"d^^'^ y
If the sign of this be independent of k^ the values of ky

which render it — 0, must be imaginary. This gives the

condition

d~U d-U / d% Y r. FA-I

That this condition may be fulfilled, it is necessary that

-r-g- and
-f-jii

should have the same sign.

d^u //,'*

If/t'' = 0, the quantity [3] becomes ,
,2 t q ^ ^"^ ^^^^

sign of this quantity must therefore be the sign of [8],

since it always retains the same sign. Hence it follows,

that

P. If any system of values of ^' and x", determined by

. dn d^U
, ^ n ' ^

[2], give -j^y -j-rj^ different signs, the function has no cor-

responding maximum or minimum.

2^. If any such system of values of ^ and ^ give -t-jz,

',-;77the same sign, and yet render
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l^'d^" \d?d?') < " or = 0,

the function has no corresponding maximum or minimum.

3°. If such a system of values of y, a^', give -j-j^ and

7
1,2 ? a negative sign, and also fulfil the condition [4], the

corresponding value of the function is a maximum.

4P. If such a system render -y-^, j-^ , both positive, and

also fulfil the condition [4], the corresponding value of the

function is a minimum.

(123.) It may happen that the system of values of .r', a-",

determined by [2], also fulfil the conditions

'd^ ~ "' "3^ ~ ^' ^W' ~

In this case it will be necessary to substitute them in the

partial differential coefficients of the third order.

If they do not render these = 0, the function admits of

no corresponding maximum or minimum ; but if they do, it ^

is necessary to examine the effect of the same substitution on

the differential coefficients of the fourth order. The terms

of the development involving N, h", in four dimensions, being

treated as those involving two, and the conditions of ima-

ginary roots determined, similar conclusions follow, and so

the investigation may be continued as in functions of a single

variable.

(124.) Similar reasoning may easily be applied to functions

of any number of variables. The conditions which determine

the system of values of the variables which may give a

maximum or minimum, are

du du ^ du ^ rir-i

But to determine if any and what system of values of the

I
'
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variables derived from these equations must give a maximum
or minimum, it will be necessary to examine their effects upon
the successive partial differential coefficients.

It frequently happens that some one or more of the

equations [5] can be inferred from the others. In this case

the number of independent equations being less than the

number of quantities to be determined, it follows that there

are an infinite number of systems of values which may all

determine maxima or minima.

In this case, if the question be geometrical, the solution is

a locus,

(125.) We shall now give some examples of the in-

vestigation of maxima and minima of functions of several

variables.

Ex. 1. To divide a quantity a into three parts, x, y, and
a-- X --yj such that the product u = ^"».y".(a — x ^ yY
is a maximum or minimum.

The differential coefficients of the first order are
du

di
= 00^-'

. z/" . (a - ^ - y)P-i
. i^rrna - mx - my -^ p^X^

du

The factors within the latter parenthesis of each being
put = 0, and solved, give

In order to discover whether these correspond to a maxi-
mum or a minimum, we must substitute them in the general
expressions for

dHL d'^u dHi

^" ^' d^y
And if W2 + w + ^ be called q, we find
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P—

1

Ihe quantities -5-^, —, are both negative, and fulfil the

condition [4], and therefore the corresponding value of the

function is a maximum.

We shall not pursue here the investigation of the con-

sequences of the other factors of the above equations being

= 0, as the student can readily do it himself.

Ex. % Tofind the greatest triangle which can he included

within a given perimeter.

Let the perimeter be 2flf, the sides x, 1/, and ^a — a? — 2/,

and the area u. By a well known principle,

u = ^/a(a -- iv)(a — «/)(^ -\- ^ — a).

Assuming the logarithms,

2lu = la + l{a — x) -{- l(a — 3/) + ^(a; + j/ — a).

Differentiating for x and ^, we find

du dx dx

u a —x~x+ «/— a

du 9^a— 2x—v
• = Xu —
dx * (a—x){x-\-y—aY

du ^ 9^—^y— x

The conditions under which these = are
^

9a -.2a:-2/ = 0,

ence

2a'-, % - or = 0.

x^\a,

2a - X —

I2
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Hence the triangle is equilateral. It is evident from the

nature of the question, that this result determines a maxi-

mum. However, this may be proved by examining the

partial differential coefficients of the second order by the

criterion which has been already established.

Ex. 3. Let

w* = (l + Y^ — Kyf + (m + xz - zxf + (n + zy-YzY.

This being differentiated for x, y, and z, and the partial

differential coefficients being made = 0, the results, after

reduction, and putting r* for x* 4- y'' + z^, are

X(xa7 + Yj/ + ZZ) + MZ — LY — R"^ = 0,

Y(xa7 + Yy + Zz) + LX — NZ — R'j/ = 0,

z(yLX + Yy + zz) + NY — MX— R^2 = 0.

If these equations were independent, they would give a

determinate system of values of ocyz. But they are not in-

dependent ; for if the first be multiplied by x, the second by

Y, and the third by z, an equation will result independent of

ocyz, whose terms will destroy one another. If the quantity

within the parenthesis be eliminated, the equations will

become

z(lz-|-my+ nx)
Yd? - XJ/ + L = -^ ,

x(LZ+MY-fNx)
Zy - yz + N = — -,

y(lz-|-my+nx)
XZ — ZJ + M x= —^^ • .

This question comes under the observation in (124.), and

it follows, that there are an infinite number of systems of

values which determine the maximum or minimum value of

the function. If in this case xyz be the co-ordinates of a

point in space, the locus of that point is a straight line re-

presented by the above equations, and the value of ic for all

values of xyz is
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LZ + MY+NX

117

(X^+Y^+ Z^)^

This question is connected with the theory of statical

moments, and the right line thus determined is the locus of

the points of minimum principal moment. (See Poisson,

Traite de Mecanigue, livre i. chap. 3).

SECTION XII.

Application of the Differential Calculus to the Geometry

ofPlane Curves. Arcs and Areas. Principles of Contact.

OF ARCS AND AREAS.

PROP. LVI.

(126.) To determine the differential ofthe arc ofa curve

considered as aJunction of the co-ordinates of its extremities.

By the equation of the curve,

^ is a function of ^.

Let AM = x, PM = y, mm'= h,

p'm' = 2/' = F(a? + h). By Tay-

lor's series.
A

p'm'
_dy h d^y %"•

M?
X

The co-ordinates being rectangular, pp' = VA* -|- (p'/?)*?

*.' the value of pp' must have the form

bA*
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The limit of the ratio of the arc pp' = s, and its chord

being a ratio of equality, it is evident that when ^ = 0,

pp'__ ds

h ~ dx'

But

pp[ _ /

h "V
When /i = 0, this becomes

dy''

dx
-4/1 4-^

PROP. LVII.

(127.) To express the differential of tJie area included

by a curve, and the ordinates ofany two 'points upon it, as a

Junction of the co-ordinates.

Since the arc and chord pp' co-

incide when ^ or mm' is indefinitely

diminished, the limit of the ratio

of the area included by the or-

dinates and the arc pp', to that

included by the ordinates and the

chord pp', is a ratio of equahty.

It is evident that

M M-

Let da be the differential of the area

when It, = 0,

pp'm'm da

lut

h '^
dx'

pp'm'm = mm' X K^M + i''m') = 4

^'
dy h d^y

1 '^dx^' 1.2''

My + y) =y^t \,%^dx^

h^

1.22'

\h{y + y%
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pp'm'm_ dy h d^y

When /i = therefore we obtain

da

dx
= y, ••• da =z ydx.

IL.
'

1.22

1.2^*
*

OF CONTACT.

(128.) Let the equations of

threeplane curves passing through

the same point p be

f(^j/) = 0, F'(;r7/)= 0, F"(a:j/)=0,

and let these equations be related

to the same axes of co-ordinates

AY, AX. Let the co-ordinates of

the common point p be yx, and let y, y, y, be what j/

becomes in each of the equations when x becomes x + h.

Let mm' = /i, and p'm' =y, p"m' = y\ p'"m' = y. These

values being severally expressed by Taylor's series, are

y 3^ + A,

y = 2/ + c,

+ Aa
1.2

+ A,
1.2.3

y
h h^

Where a,, Ag, • • • • b,, B2,

+ C2-J-g + C3

• Cy, C2J • •

1.2.3

• • express the suc-

cessive differential coefficients.

Since the first terms of the three series are the same, mm'

may be assumed so small, that the order of the magnitudes

of the three ordinates ?/', ?/", 3^'", will be that of the three co-

efficients Aj, Bp c^, if these three be supposed unequal (92.).
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Thus the figure is represented as if A; were the least, and c^

the greatest.

If the same negative value mm" be assigned to h, then the

order of the magnitudes of y, z/", y, must be the opposite

of that of Ay, By, Cj, therefore, of the three points p', p", p'",

where the curves meet the parallel to the axes of^ through

m", p^" is the lowest, and p' the highest. This being op-

posite to their order on the other side of the point p, it is

plain that the curves cross each other at the point p.

(129.) It therefore follows, that the position of the curves

in the immediate vicinity of their common point P is to be

determined by the relation between the magnitudes of the

first differential coefficients.

If two (Ay and By) of the three coefficients be rendered

equal by the co-ordinates of the point p, then the relative

magnitudes of the ordinates y and y are to be determined

by A2 and B2, and by assuming li or mm' sufficiently small,

y will be greater or less than y, according as A^ is > or

< B2. In this case, also, 3/'" is at the same time greater or

less than both 1/ and y, according as Cy is greater or less

than the common value of Ay and By. These conclusions are

evident from (92.).

Hence, it follows that if Cy have not the common value of

Ay and By, the curve pp'" cannot pass between the curves pp'

and pp", but must pass either above both or below both, ac-

cording as Cy is > or < the common value of Ay and By.

The curves pp' and pp" in the vicinity of the point p

therefore approach each other more closely than the curve

pp'" can to either of them. These curves are said in this

case to have contact of thefirst degree.

(130.) Let us now suppose that the point p is such that

its co-ordinates render the three coefficients Ay, By, and Cy,

equal. Then by diminishing mm' or h sufficiently, the order

of the magnitudes of y\ «/", y, will be determined by that
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of the coefficients A25 B2, C2, and the three curves will have

contact of the first degree. In this case the change in the

sign of 7i not affecting its square, produces no effect upon

the order of the magnitudes of ?/', y, 3/'"; therefore the

points p', p'', p'", are in the same order on both sides of the

point p, and therefore the curves do not cross each other at

that point.

If the co-ordinates of p render A2 = Bj, the order of the

magnitudes of e/, y, must be determined by that of A3, B3.

In this casey must be greater or less than both y and y,
according as C2 is greater or less than the common value of

A2 and B2. Hence as before, it follows that no curve for

which C2 is not equal to the common value of Aj and B2 can

pass between the curves pp' and pp" in the immediate

vicinity of the point p. The two curves pp' and pp" are in

this case said to have contact ofthe second degree.

If the co-ordinates of the point p render the three quan-

tities A2, B2, C2, equal, then the three curves have contact of

the second degree. In this case, as the sign of the third

term of the series changes with that of 7t, since it involves h^^

the order of the magnitudes of «/', y, «/'", for + h and — h

are opposite, and therefore the points p'p"p'" on different

sides of the point are in opposite orders. Hence the three

curves cross each other at the point p. Thus contact of the

second degree is both contact and intersection,

(131.) By pursuing this reasoning, we may conclude in

general, that if the co-ordinates of the point p render the suc-

cessive differential coefficients from the first to the n\h in-

clusive, equal, each to each, no curve which agrees with these

in a less number of differential coefficients can pass between

them. The two curves are said in this case to have contact

of the wth degree. If the contact be of an even degree, the

first terms of the two series, which do not agree, involve an

odd power of /*, the sign of which changes with that of ^;
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and, therefore, contact of an even degree is both contact

and intersection ; but if the contact be of an odd degree, the

first unequal terms involve an even power of h, of which the

sign does not change with that of h, and, therefore, contact

of an odd degree is contact without intersection.

(132.) If the equations '^{pcy) = and v^\xy) = be

those of right lines, being equations of the first degree with

respect to the variables, all the differential coefficients after

the first are = ; therefore the series end at the second

terms. It follows from what has been already proved,

that if Ay = By, and c^ be not equal to Ay, that the second

right line cannot pass between the curve and the first, and

if Cy becomes equal to the common value of Ay and By,

the two right lines become identical, since the two series

end at these terms. Substituting or' — x for 7i, it appears

that the right line represented by the equation (Geom.

(26.)),

meets the curve at p' in such a manner, that no other ris:ht

line passing through the point p can pass between it and the

curve. This right line is therefore a tangent to the curve

at the point.

If the co-ordinates be rectangular, -~ is the tangent of the

angle under the tangent Hne and the axis of x. Geom.

(15.)

If -^ = ; the tangent will be parallel to the axis of x ;

and if -~ be infinite, the tangent is parallel to the axis ofy.dx

For the values of the subtangent, and subnormal, and the

equaUott of the normal, see Geom, (323.)) Gt seq.
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(133.) For a curve, whose equation is of the form,

1/ = a -\- bx + cx\

The series fory'' terminates at the third term, and

By = ^ + 2ca7,

If in such a curve the coefficients By and Bg be equal to

those of the curve f(^z/) = 0, it will touch this curve with

contact of the second degree, while no curve of the same

kind, that is, whose equation is of the same form, can touch

the curve f(x7/) with so intimate a contact. The curve is in

this case said to osculate. The nature and principles of

osculation are so fully explained in my Geometry (353.),

that it would be needless repetition to enter upon the sub-

ject here.

(134.) The curve represented by the above equation is a

parabola (Geom. Sect. VII.). By analogy to this, a class

of curves represented by equations of the form

7/ = a + bsc + cx'^ .... g^"*,

are called parabolic curves, and the series fory for each of

them terminates at the {m + l)th term, all the differential

coefficients after the mth being = 0. When such cur^jes

have a common point p with any proposed curve, and all

the terms of the expansions ofj/" agree with the correspond-

ing terms in the expansion of y for the proposed curve,

they are called osculating parabolas. In this sense the

osculating parabola of the first order is the rectilinear tan-

gent. The osculating parabola of the second order is the

common parabola. The osculating parabola of the third

order is the cubical parabola, and so on. It follows, also,

from what has been said (131.), that osculating parabolas of

even orders both touch and intersect, while those of odd

orders touch without intersecting.
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(135.) The osculating parabolas furnish means of repre-

senting geometrically the successive terms of Taylor's series,

or the differential coefficients.

Let 2/;, 1/.^, j/a, &;c. be the ordinates of the several oscu-

lating parabolas corresponding to ^ + h, so that

dy h

3^3 =3/

+

dx

yz
dy

1
'^

dx"-

Al
1.2'

h?- dhj

\.%
"^

dx' 1.2.3'

••«//

dy

y^-di
d^y

d^y

h

f
Al
1.2'

' 1.2.3*

d^y K
. . n

Let mm' = Jij and p// being the

tangent, let pp", pp'", pp"", &c. be

the successive osculating para-

bolas, then m'?w, vijil^ p^p^\ p^'jJ",

p^iip'iii^ &c. are the successive terms

of Taylor's series ; and if d:c be

assumed = hj then

u'm = y, mp' = dy,

1.2{p'f) = d% 1.2.S(py') = d%
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(136.) The order of osculation of a curve of any proposed

degree depends on the number of constants which enter its

equation (Geometry, 353). The curve of the second degree,

which osculates any proposed curve, touches it therefore

with contact of the fourth order, and the coefficients of the

equation of this osculating curve are functions of the con-

stants in the equation of the proposed curve and the co-

ordinates of the point of contact. Let the equation of the

osculating curve be

Ay + lixy \- cx^ + ny + E^ + F = ;

the species of this curve is to be determined by the quantity

b2 — 4ac, which being a function of the co-ordinates of the

point of contact, varies from point to point of the proposed

curve. Suppose ?/ eliminated by means of the equation of

the curve, then b^ -- 4ac becomes a function of x alone.

Let the roots of the equation

b2 — 4ac =
be x', .r", x^" • • • • At the points of the curve, which cor-

respond to the real roots of this equation, the osculating

curve is a parabola. And since b^ — 4ac changes its sign

in passing through 0, it follows that the osculating curve on

one side of such a point is an ellipse, and on the other side

an hyperbola ; the species changing as often as there are

real values of 3^ corresponding to the real root of the above

equation.

If the roots of the equation be all imaginary, the quantity

b2 _ 4^^-, always retains the same sign, and therefore the

osculating curve always remains of the same species.

If the condition b^ — 4AC = be fulfilled independently

of xi/ by the constants of the given equation, then the oscu-

lating curve for all points is a parabola.

Similar observations may be applied to osculating curves

of any proposed degree.

Although the degree of contact of an osculating curve of



126 THE DIFFERENTIAL CALCULUS. SECT. XIII.

any species depends on the number of constants which enter

its equation, yet it may happen at particular points of the

given curve, that the contact is of a higher degree than that

which marks in general the order of its osculation. This

circumstance arises from an additional differential coefficient

of the given curve being rendered equal to the corresponding

differential coefficient of the curve which osculates it, by the

peculiar values of the co-ordinates of the point of contact.

We shall soon meet an example of this.

SECTION XIII.

Ofosculating circles and evolutes.

(137.) The most remarkable osculating curve is the

circle.

The equation of the circle, involving three constant quan-

tities, the order of its osculation is the second.

Let

{y — i/Y + (^ —*^y = R*

be the equation of a circle, whose radius is R, and the co-

ordinates of whose centre are ocy\ The first and second

differential coefficients are

"•
" (.y-1/r

yx being the co-ordinates of the point of contact, it is neces-

sary that the quantities x\ t/, and r, should receive such

values (130.), that

Ai = B« A, = Bo.
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To determine the values ofy, ^, and R, which fulfil these

conditions, let the values of b^ and Bj, already found, be sub-

stituted for them, and the equations

^{y - y) + ('^ - ^0 = 0,

A2(5^-3/r + r2 = 0,

give

y=^ + l±V . [1],

^ = a;-ii-^A, [2],

"=-(%) »
or substituting for A/ and A2 their values

y = «/ +

df^-dx'^ dy

d^y dx

""
d^y.dx

(138.) The equahty A^ = b^, which gives

shows that the centre of a circle having a common rectilinear

tangent with the curve, must be upon the normal (Geom.

325).

The radius of the osculating circle is generally called the

radius of curvature. (Geom. 335).

(139.) Since «/, a^, and Aj, are functions of x by the

equation of the given curve and its differentials, it is

evident that y and x^ are implicit functions of x. If, there-

fore, X varies by assuming the values corresponding to the

different points of the curve, the quantities y^ suffer con-

sequent variations, and the centre of the osculating circle
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assumes different positions accordingly. The locus of this

centre is called the evolute of the curve, and its equation

may be found by eliminating x by the equations which give

s^y^ as functions of a:. (Geom. 337, 338, and notes).

(140.) Since ds"- = d7f 4- dx"- (126), ds being the dif-

ferential of the arc of the curve, *.•

_ ds^
~~

d~ydx'

The expressions already found for the radius of curvature

are determined on the supposition that x is the independent

variable. To obtain its value, independently of this hypo-

thesis, it is only necessary to substitute for y^ (38),

dxd~y— dyd^x

dx"^
'

which will give

(dy^' + dx'-y

dxd-y — dyd^x

df_
~ dxd'^y — dyd^x

If s be considered as the independent variable d{ds'^) = 0,

•.• dyd^y 4- dxd^x = 0.

Squaring this, and adding it to the denominator of the

above value squared, we find

^_ ds^

"" '~[{d^yy + (d^^y]{dy'' + dx^y

or since ds'^ = dy" + dx'^^ '.'

ds'

^= --.
., . n..

R =
V(d^y)^-{-(d^x)^

This expression is used by Laplace. See Mecanique

Celeste^ liv. i. chap. 2.

Another expression, frequently used by physical authors

for the radius of curvature, is
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_ ds
^~V

d(p being the angle under the normals through the ex-

tremities of ds. As ds may be considered coincident with

the arc of the osculating circle, it is evident that since d(p is

the angle under the two radii through the extremities of dsy

we have rcZ^ = ds.

PROP. LVIII.

(141.) To determine the 'position of the tangent to the

eoolute at any point y'x' corresponding to xy upon the given

curve.

Let the values y^, already found, be differentiated as

functions of x, and the results are

di/ = dy -^ d ^

,

Aj

1 + A*
ds^ =^ dx — {^. -^ kf)dx - A^d ^.

Aa

Multiplying the first by a^, and adding

K^y^ + dx' = A.fy — Kfdx ;

but dy = A^d;r, •.*

A^£?y Jt da} —%
jy \ ^ dx

' dod ~ Ay ~ dy

Hence the equation of the tangent at the point ijod is

(y "" y)% -V {x — a^^dx = 0.

Hence the normal to the curve is tangent to the evolute.

(Geom. 341).
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PROP. LIX.

(142.) To determi7ie the change in the arc of the

evolute corresponding' to any proposed charige in the radius

ofcurvature.

In the equation

^' = (2/- yj + (^' - ^')%

^, y, and y, being functions of x already determined, R may

be differentiated as a function of a?, *.*

Rc^R = (j/
- y)(c?z/ —^y) + (^ - x^)(dx — rf^),

Substituting for ^ ,
, its value — ~, the result is

cZr= -tZy + ;^.da:';

dy dx?
but

-J-
=—

-f-j'
Making this substitution, and squaring,

we find

(di/^+dx'^f

V^iy-1/Yr'''- dy^ '

or dn^ = Jy'* + dx^";

'.- Jr = ((^y* + da^^)^,

observing that

'^
(y-y'T'

'^
dx^

-^^
dy^^'

Hence it follows, that the increment of the arc of the

evolute is equal to the simultaneous increment of the radius

of curvature, and the property from whence the evolute

has derived its name may be thence deduced. (Geometry,

342).
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PROP. LX.

(143.) To determine the point upon any curve at which

the radius ofcurvature is a maximum or minimum.

By (137.),

ds'
R = —

d^ydx'

Differentiating and equating the result with zero, we

find

(y - y)d'y - Sdyd^y = 0.

Substituting in this equation fory, z/, and the differentials,

their values as functions of ic, the roots will determine the

sought points.

PROP. LXI.

(1 44.) To determine the points of a curve at which the

contact ofthe osculating circle is ofthe third degree.

The third differential coefficient derived from the equation

of the osculating circle is

_ ^dyd\y
^' " ~ {y~y')dx^'

d^u *

Equating this with -^ derived from the curve, the re-

sult is

This equation being identical with that found in the last

proposition, it follows that the contact is of the third order

at the points of greatest and least curvature.

K%
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SECTION XIV.

Ofasymptotes,

(145.) Let the equations of two plane curves which have

infinite branches be

F(a72/) = 0, F'(^y) = o,

y andy being the values ofj/ in the two curves correspond-

ing to the same value of x. The distance between the

curves measured in a direction parallel to the axis of y is

y — y\ If, as x increases without limit, either positively

or negatively, the distance y — «/' diminishes without limit,

but vanishes only when x becomes infinite, the infinite branch

of the one curve is said to be an asymptote to the other.

(Geom. 345).

In order that this should occur, it is necessary that the

quantity y — «/', developed according to the powers of x,

should contain only negative powers of x. For if it con-

tained a positive power, y — y' would be rendered infinite

by X becoming infinite, and if it contained a term inde-

pendent of X, it would be finite when x is infinite.

Hence the development of j/ — ?/' must have the form

y — y' z= Ax-° + JiX~^ -f.
. . . .

the exponents being supposed to descend.

It follows, therefore, that if the development o£y by the

descending powers of x contain any positive powers or a

term independent of x, all these must also occur in the de-

velopment of y, in order that they may disappear by sub-

traction. Hence, if the development ofj/ be

y = a'x"'' -f B^x^' . . . . M + Ao;--" + bx"^ • • • •

the development ofy must be
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y = a!x^' + b'^^' M + • • • •

the terms which succeed m, or those which involve negative

powers of .r, being unrestricted.

(146.) Since the terms of the development which succeed

M are arbitrary, it follows that there may be an infinite

number of asymptotes to the same curve, and that each of

these will be asymptotes to each other. The most simple

asymptote which the curve admits, at least that whose de-

velopment is simplest, is the curve represented by the

equation

3/' = a!x^' + ^^x^' + • • • • M.

The curve represented by

3/'' = a'o:"' 4- n'x^' + ••••>! + A;r-«

is also an asymptote, and approaches closer to the curve

than the former, since, by increasing x^ it is manifest thaty
approaches nearer to equality with y than y does.

In like manner, the curve represented by

y" = a'x«' + B':r^' + . . . . M + hx-" + bo;-''

has asymptotism of a still higher order with the given

curve.

(147.) Thus it appears that there are orders of asym-

ptotism in some degree analogous to the orders of contact.

Curves which admit asymptotes are sometimes divided into

hyperbolic and parabolic. Hyperbolic are those which admit

a rectilinear asymptote ; parabolic those which do not.

All hyperbolic curves must therefore be involved in the

class

!/ = a'x -\- b' 4- Aar-« + Bor^ • . . .

The equation of the rectilinear asymptote being

y = a'x 4- b'.

If « = 1 and B, &c. = 0, this curve is the common hyper-

bola.

If a' = 0, the asymptote is parallel to the axis of x, and

if a' = 0, b' = 0, the asymptote is the axis of w itself.
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(148.) We shall now give some examples illustrative of

the preceding theory,

h I
Ex. 1. Let J/

= ± —{x'^ — a^y. Expanding by the bi-
CL

nomial theorem

2/ = ± ~x + ^hax-^

Hence the curve has two rectilinear asymptotes repre-

sented by the equations

y' = ±: —07.
•^ a

See Geometry (232.).

Ex.2. luQiyx = c«, •.•

J/
= c^x"'^^

Hence the asymptotes are the axes of co-ordinates them-

selves.

Ex. 3. y\x'^ — aP-) = h^. By developing, we find

3r = ± yx-"^ +

j: = ± a ± k—y"" +

Hence the axis of x is an asymptote, and there are two

other rectilinear asymptotes parallel to the axis of^ repre-

sented by the equations

07 = + a.

There are also two hyperbolae, yx = hr^ and yx = — i%

which are asymptotes.

Ex. 4. Let y^ — Qaxy + x^ = 0, •.•

?/ = — ^ — « — a2j?-i — . . . .

There is a rectilinear asymptote represented by

y = — tf — ^.

Ex. 5. 3/*^; — px* — ^3 _ Q^ Hence

y^ :=! px + fl^a:"^.

Therefore the asymptote to this curve is a common parabola.
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(149.) There is, however, another method of determining

whether a curve admits a rectiUnear asymptote, which is

frequently more easily applied than the general method

already given. Let the equation of the tangent through

any point ijx^ on the curve be

(3'-y)--^(^-^)=o.

Let X be the intercept of the axis of x between the origin

and the point where the tangent meets the axis of x ; and

let Y be the corresponding intercept on the axis ofy. It is

evident that these are obtained by supposing y and x suc-

cessively = in the equation of the tangent.

Hence we find

'^ ~ dy '

In these quantities let a^ be supposed to be increased

without limit. If the limits of x and Y be finite, they will

determine a rectilinear asymptote.

If X have a limit, but y none, then the asymptote is

parallel to the axis oiy at the distance x.

If Y have a limit, but x none, then the asymptote is

parallel to the axis of x at the distance Y.

If neither have a limit, or if their values arc rendered

impossible by increasing a:, then the curve has no rectilinear

asymptote.

If in the limit x = and y = the asymptote passes

through the origin, and its direction is found by determining

the value of ~ when x is indefinitely increased. (See

Geom. 346).

These conclusions are founded upon the principle, that
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the tangent becomes an asymptote when the point of contact

is indefinitely removed.

(150.) Ex. 1. Let yx ^- hy \- ex ^ 0. By difieren-

tiating

dx^ / ^ ^ ^
' ^a? x-\-h

Hence

X — X -T r— = — ,y+c y+c

.: _ y^ _ y^
~ y+ c' "~ x^-^b'

By solving the equation for y, we find

ex e

y = h+x LjL.\
X

Hence, when x is infinite, y =. — c. Also,

Y =

+f
which, when x becomes infinite, gives

Y = — c.

In a similar way, we find

X = - 5.

Hence there are two asymptotes parallel to the axes of co-

ordinates. Geom. (123.).
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SECTION XV.

Ofthe direction of curvature—Of the singular points at

which a differential coefficient assumes theform •§.

(151.) The development of the value of^ corresponding

to X -\- hhy Taylor's series, conducts us to a method of

determining the direction of the curvature of a curve. Let

^" be the value of y in the equation of the tangent cor-

responding io X -\-h. Hence

dy h dhj h^ d^y h^

-^ "^^ dx l^ dx^ \,^^ dx' 1.2.3

dy h

*.^ -^ dx^ \3^ dx' 1.2.3

d^y
Hence y — y has the same sign with t^.

d^y
Therefore, ify andy be > 0,y >y' when -~ >0, and

d^ii d^y
< y" when j^ < 0, •.' if -v^ > 0, the curve is convex

towards the axis of x, and if -j^ < 0, it is concave towards
dx^

the axis of x. In like manner, ify andy be negative, it is

convex or concave towards the axis of x, according as

^,<0,or>0.

d^y
In general, therefore, if y and -~ have the same sign, the

curve is convex toward the axis of x ; and if they have dif-

ferent signs, it is concave in that direction.
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(152.) We shall now consider th6 effect produced upon

the curve by the differential coefficients becoming = 0,

or = °.

If the first differential coefficient be = 0, it has been

already shown that the tangent is parallel to the axis of x.

Such points are therefore thus determined. Let the dif-

ferential of the proposed equation be

Ap + B = 0,

p being the first differential coefficient. Let the values of x

and y which satisfy the equations

B = 0, ¥{xy) = 0,

be determined, and let such systems of values be selected as

do not also satisfy a = 0. Such systems of values, if real,

determine the points of the curve where the tangent is

parallel to the axis of ;r.

(153.) If the second differential coefficient = 0. Since

in the equation of the tangent the second differential co-

efficient also = 0, the tangent must have contact of the

second degree with the curve. Now, since contact of the

second degree is accompanied by intersection (131.), it fol-

lows that, at the point thus determined, the curve passes

from one side of its tangent to the other, as in the annexed

figure.

Such a point of a curve is

called a point of inflexion^ and

sometimes a point of contrary

flexure.

At such a point it is evident

that the radius of curvature be-

comes infinite, since the second

differential coefficient is a factor of its denominator (137.).

(154.) If the third differential coefficient be = 0, the

curve at the corresponding point has contact of the third

order with the osculating parabola (134.) of the second order.
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And in like manner, if the nth. differential coefficient = 0,

the curve at the corresponding point has contact of the Tith

degree with the (n — l)th osculating parabola.

(155.) If several successive differential coefficients from

the nth to the {71 + p)th inclusive = 0, the curve has

contact of the (n + ^)th order with its osculating parabola

of the (n — l)th order.

The effect, therefore, of any combinations whatever of the

differential coefficients becoming = will be easily per-

ceived.

(156.) Let us next examine the curve at those points

where a differential coefficient assumes the form §.

If the first differential equation be

Ap + B = 0,

let systems of values of the variables xi/ be selected, which

at the same time fulfil the equations

A = 0, B = 0,

f(xi/) = 0.

Such values render the first differential coefficient = ^.

In this case, in order to determine the true value of/?,

it will be necessary to proceed to the second diff*erential

equation (111.), which will give an equation of the form

a'p^ -[- b'/} + c' =
to determine p.

If this equation be not fulfilled by its coefficients, its roots

must either be real and unequal, real and equal, imaginary

or infinite.

First If they be real and unequal, there being two un-

equal values of the first differential coefficient corresponding

to the same values of x and y, there will be consequently

two tangents to the curve at the corresponding point ; there-

fore two branches must intersect at that point. Such a

point is called a double point.

Secmidh/. If the roots be real and equal, there is but one
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value of the differential coefficient, and this presents no par-

ticular circumstance in the course of the curve.

Thirdly, If the roots be imaginary, the development re-

presentingy becomes imaginary for both + h and — h, and

therefore the point whose co-ordinates produce this effect

stands alone, insulated, and not continuously connected with

any part of the curve. Such is called a conjugate point.

The case where a root is infinite will be investigated in the

next section.

If, however, the equation of the second degree for p be

fulfilled by its coefficients, it will be necessary (111.) to pro-

ceed one step further in the differentiation, which will give

for the determination ofp an equation of the form

^Y + »V^ + c'!p + d" = 0.

If the roots of this equation be real and unequal, there

will be three tangents at the corresponding point, and there-

fore three branches of the curve will intersect at it. Such

is called a triple point.

If two of the roots be real and equal, there will be but

two values of p, which will give a double point. If two be

imaginary, or all be equal, there will be but one real value

oip ; in which case the course of the curve will be marked

by no peculiarity.

If, however, this equation also be fulfilled by its co-

efficients proceeding to a fourth differentiation, we shall find

an equation of the fourth degree to determine p. Its roots,

if real and unequal, determine a quadruple point; if all

imaginary, a conjugate point; and, in general, as many as

are real and unequal, determine so many tangents to branches

of the curve which intersect at the corresponding point.

It will be necessary, therefore, to continue the differen-

tiation until some equation is found, which, not being satis-

fied by its coefficients, will give determinate values of/?. If

it have n real and unequal roots, it will determine a muU
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tiple point, at which n branches of the curve intersect. If

it have but one real root, no peculiarity marks the curve at

the corresponding point. If all its roots be imaginary, the

point is a conjugate point.

(157.) Let us next suppose that the co-ordinates of the

point render the second differential coefficient = °. In

this case its value or values may be determined like those of

the first (156.).

First. If it have several unequal real values, there will be

as many values for the third term of the development of «/',

and therefore as many different values ofy, and therefore as

many different . branches of the curve passing through the

corresponding point. Since, however, the several values of

y agree as to the second term of the developments, they

will all have a common tangent. Such a point comes under

the class of multiple points, and is characterised by the

number of branches which, thus meeting, touch with con-

tact of the first degree. This particular species of multiple

point may be called a point ofosculation *.

Secondly. If the coefficient is found to have but one real

value, the corresponding point has no particular character.

Thirdly, If all its values be imaginary, it is a conjugate

point.

Similar conclusions may be applied to the succeeding

differential coefficients, observing that the contact of the

branches, which form the point of osculation, is of the

(n — l)th order, if it be the n\h differential coefficient

which has the several real values.

(158.) In general, therefore, we find, that in order to

determine whether a curve admits a multiple point at

which its branches intersect, it will be necessary, P. To

Some French authors call it un embrassement.
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find the values of xy^ which satisfy the equations a = 0,

B = 0, ^{jxnj) = 0. 2^. To determine the corresponding

values of/?. There will be as many intersecting branches

as^ has real values. If j? have no real values, the point is

a conjugate point.

In order to determine whether there be a point of oscula-

tion, it will be necessary to apply a similar investigation to

the superior differential coefficients.

It is obvious from what has been already proved (131.),

that at a point of osculation produced by multiple values of

a differential coefficient of an odd order, the branches inter-

sect as well as touch ; but at one produced by a differential

coefficient of an even order, they touch without inter-

section.

It may happen that the value of p in any of these cases

may be infinite.

We shall consider the consequences of this in the next

section.

(159.) Ex. 1. To determine whether the curve repre-

sented by the equation ay^ — o(^y ^ bx^ = has a multiple

point.

By differentiating

(8fl2/2 - x^)p - Sx%y + b) = 0.

Hence a = Say^-a^, b = — 3x%y-\-b). The only values

of xy which render a = 0, b = 0, and also satisfy the

equation of the curve are ^r = 0, 3/ = 0. To determine the

value of p, let the differentiation be continued, and we

find

ayp^ — X'p — x(y -\- b) = 0,

ap^ - Sxp - {y -{. b) = 0.

The values x = 0, y = 0, fulfil the former by its co-

efficients, and render the latter

yb
7'
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which giving but one real value of p, the point is not a

multiple point.

Ex. 2. Let the equation of the curve be

y - ^ + ^* + 357^3^* = 0.

By differentiating, we find

A = %/(%* + 3;r*), B = w(4iW^ - Bcc^ + 6/).

The only values of x and y which satisfy the equations

A = 0, B = 0, as well as that of the curve, are ^ = 0,

To determine p, let the successive differentiations be

effected, and it will be found that the second and third dif-

ferential equations will be satisfied by their coefficients, and

that the fourth becomes

jD* + 3p' + 1 = 0,

the roots of which being impossible, indicates a conjugate

point.

Ex. 3. Let the equation of the curve be

cT* - 2ai/^ - 3a*«/^ - ^a^x"- + a* = 0.

By differentiating, we find

A = Sai/(a +y), b = 2a:(a^ — ^*).

The only values of on/ which fulfil the conditions A = 0,

B = 0, as well as the equation of the curve, are

X = + ay d7 = — a } w = 0.

To determine the corresponding values of p, we proceed

to the second differential equation, which gives

Sa{a 4- 2^)p^ + ^a' - 6x^ = 0.

2
For the first and second points, therefore, p = ± —=,and

/v/3

for the third p = ± Vr- The three corresponding points

are therefore double points.

The condition b = 0, and the equation of the curve are

also fulfilled hy a; = 0, y = |a, which values do not fulfil

A = ; therefore they determine a point at which the tangent
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is parallel to the axis of x. The same conditions are also

fulfilled by jr = + fl', y = •— \a, which also determine

tangents parallel to the axis of oc.

The condition a = 0, and the equation of the curve are

fulfilled by ^ = —a and ^ = + a a/2, which do not fulfil

B = 0, •.• they indicate two points at which the tangents are

parallel to the axis of y. To construct this curve, let ax
and AY be the axes of co-ordinates.

Assume af = ^a, ab = — a,

AE = + «, and ae' = — a,

AC = — -la, CD= -\- a, ce/= —a,

AG = -f a a/2, ag' = — a a/2,

GH = — a and g'h' =— a. The

curve is placed as represented in

the diagram. The tangents at

e', are determined by p = ± \/|-

^^
Y

L.
Hh^J H

B* CD

Ae double points b, e.

and « = + —-.

It is not necessary to multiply examples, as the student

may easily supply himself with sufficient to illustrate the

general theory. The following curves have triple points

:

^* — a.r2/* + tT* =0,

y + 07* - 3az/3 + ^Jbx'y = 0.

SECTION XVI.

Of the singular points at which y or any ofits differential

coefficients become infinite.

(160.) We shall now proceed to investigate the figure

of a curve at a point whose co-ordinates render the first or

any subsequent differential coefficients infinite.
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If the value assigned to x render y infinite, the first ex-

ponent o£ h in the development ofy must be negative (BB.),

In this case, as h is continually diminished, y is continually

increased ; and when h = 0, y^ becomes infinite. Thus it

appears that a parallel to the axis of j/ corresponding to this

value of X must be an asymptote.

If the origin of co-ordinates be removed to the point in

question, then h becomes x, and the result immediately fol-

lows from Section XIV.

(161.) If the value of .r render any of the differential co-

efficients infinite, rules have been already given for deter-

mining the successive exponents of h in the development of

y {55.). We shall not here, therefore, enter into any re-

petition of these methods, but assume the development of

the form

y = 2^ + A/i« 4- B^* -f c^'' • . • •

If none of the exponents a, ^, c, • • • • be a fraction with

an even denominator, the value of y is real, whether h be

+ or — . Hence the curve extends on both sides of the

ordinate y.

There are then two cases to examine, 1^. Where the

numerator of the first exponent is odd, and 9P, Where it is

even.

P. If the numerator of a be odd, the sign of A/t" changes

with that of h, and consequently at difi^erent sides of the

point yx, the curve lies at diff^erent sides of a parallel to the

axis of a; passing through the point.

If inthiscasea>l ^=0,-.-(13^.)

the tangent is parallel to the axis

of X, Hence there is an inflexion

which is represented as in the

annexed figures, the first when

A > 0, and the second when a < 0.

W V-



146 THE DIFFERENTIAL CALCULUS. SECT. XVI.

i f \ %

1 V.

If a < 1, ••• ~ is infinite, and

the tangent is parallel to the axis

oiy (132.). Since the curve ex-

tends on both sides of y^ and

crosses the parallel to the axis of

.r, the point must be an inflexion,

as represented in the first figure when a > 0, and in the

second when a < 0.

2^. Let the numerator of the first exponent be even. In

this case the sign of A^" does not change with that of ^, and

since the denominator is supposed to be odd, there is but

one real value ; and since by diminishing ^, the term aA"

predominates over those which follow it (88.), 2/ — y has the

same sign for a; + A and x — h. Therefore, if a parallel

to the axis of x be drawn through the point .ry, the curve

lies either above or below this parallel at both sides of the

point according as A is > or < 0.

In this case, if a > 1, •/ -r =0,
dx

'.• the parallel to the axis of x is

a tangent, and the curve is as

represented in the first or se-

cond figure, according as A is

> or < 0.

V^
T^-^N

^ If a < 0, ..^k ;

dx
is infinite,

the tangent is parallel to the axis

of y. Hence the figure of the

curve at the point in question is

as represented in the first figure

if A > 0, and in the second if

A < 0.

If the first exponent a = 1, and the second exponent have



SECT. XVI. THE DIFFERENTIAL CALCULUS. ^ 147

an odd numerator, then the position of the tangent pt is de-

termined by the vakie of a; and since the sign of the

second term of the development

changes with the sign of h, it fol-

lows that at different sides of the

point p the curve lies at different

sides of the tangent, as represented

in this figure. Hence, in this case

the point p is a point of inflexion.

The second differential coefficient in this case = 0, if the

exponent b > 2, and is infinite if 6 < 2. Thus at a point

of inflexion the second differential coefficient may be either

nothing or infinite.

1£ a = If and the numerator of h be even, the succeeding

exponents not having any even denominator, the point is

marked by no peculiarity.

(162 ) If amongst the exponents a, &, c, • • • • is found

a fraction with an even denominator, then a change in the

sign of k changes y from real to imaginary, or vice versa

If -\- h render all the terms of the development which are

affected by such exponents real, and — /* imaginary, the curve

extends only on the positive side of 3/, and is excluded from

the negative side ; and if — h render them real, and + h

imaginary, it is excluded from the positive, and only extends

upon the negative side.

If -f ^ render some terms which are affected by such ex-

ponents imaginary, and — h others, then the curve is ex-

cluded from both sides, and the point is a conjugate point.

If + Tfc or — 7i render all the terms whose exponents

have even denominators real, each of such terms will have

two real values for every value of h, and therefore the

number of branches of the curve emerging from the point

in question will be double the number of combinations of

such powers. The tangent to these branches will be de-

l2
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terminecHSy the value of the lowest exponent of h. If it be

> 1, the tangent is parallel to the axis of x, if < 1, it is

parallel to the axis of y, and if = 1, its position is deter-

mined by the coefficient (132.).

(163.) Some particular cases will make this general prin-

ciple more apparent.

1°. Let the lowest exponent of ^ be a fraction with an

even denominator and *.* with an odd numerator, and sup-

pose this the only even denominator which occurs in the

series. Then
m

qj - y zzz aIi^ -f B^i' J^ qJi' ' ' • '

where n is by hyp. even.

In this case + h renders ^" real, and — h imaginary.

First If A be real, for every positive value of h, there are

m

two real values of aA" with different signs; and for every

m

negative value of 7i, hh"^ is imaginary.

Also, if — > 1, ^- = 0, *.* the tangent is parallel to the

axis of T, and if— < 1, -^ is infinite, and •.* the tangent

is parallel to the axis of 2/.

The first figure represents the

curve at the point in question

'< Y.
IfYt

when— > 1, and the second when
n

V m— < 1.
n

If A be such an imaginary quantity, that the term
m

aA" is real for - hy it will be imaginary for + h. Hence,
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in this case the first figure is

the case where— > 1, and
n

the second where — < 1.
n

If A be any other species of

m

imaginary quantity, aA** is ima-

ginary for both + h and —A, •.* the point is conjugate.

(164.) If the first exponent be an integer or a fraction

whose denominator is odd, and the second exponent be a

fraction —, whose denominator n is even, and that no other
n

even denominator occurs in the series but w, then

The position of the tangent is to be determined by the value

of a as before.

If B be real, + ^ renders A"

real, and — h imaginary.

Let PT be the tangent as deter-

mined by the term pJf. Since

there are two real values of b^**

with different signs, the figure of

the curve at the point p is this.

If B be such an imaginary
m

quantity, that bA" is real for - h^

and •/ imaginary for + ^, the'

figure is this.

Such points where two branches

lie at opposite sides of the com-

mon tangent are called cus]ps of thefirst Tcind.

If B be an imaginary quantity of any other species, the

point is conjugate.
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y -y

(165.) If the only even denominator first occurs in the

third term, the series is

m

<tj - yz=z Ah" + B/i^ + cJi^ + jyh'^ • • • •

The position of the tangent being as before determined

by fJi'^j let the curve represented by

kh"- + bA^

be p^. The branches of

the curve evidently lie at

different sides of this curve

and at the same side of

the tangent.

Hence if c be real, the

~ curve is represented as in

the first figure; and if c

be an imaginary quantity which renders ch"- real for — h,

as in the second.

These are called cusps ofthe second 'kind.

It is evident that the branches in this case touch with

contact of the second order.

If c be an imaginary quantity of any other species the

point is conjugate.

In general, if the first term of the series which has an even

denominator be the rth,
m,

1/ — 7/
— Ah" -{ Bh^ ' ' ' ' qA« 4- R^».

Let Tt be the curve whose equation is

?/' — «/ = aA" -f bA^ • • . . ah'i.

It is evident, that if &

be not an imaginary quan-

tity which renders rA" ima-

ginary, that the curve will

have two branches emerging

from p, which will lie at the

same side of the tangent, and at different sides of the curve Tt,

i
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Hence the point P will be a cusp of the second kind, and the

figure will be as represented in either of the annexed

diagrams.

In this case the two branches will have contact of the rth

order.

If R be an imaginary quantity, which renders r( ± A)"

imaginary, the point will be conjugate.

It is unnecessary to pursue the examination of the pai-

ticular cases further. The student will easily perceive the

consequences of a combination of different even denominators

in the exponents of the series in multiplying the branches of

the curve passing through the given point, as well as the

orders of their contact under different circumstances.

(166.) We shall conclude this investigation of singular

points, which the importance and difficulty of the subject, as

well as the obscurity of most elementary writers upon it,

have induced us to render somewhat protracted, by giving

the student some general directions for the discussion of a

curve and the discovery of its figure and peculiarities. Let

its equation be ¥{xy) — 0.

I. Solve, if possible, the equation ^{ocy) = for either or

both of the variables, and determine the limits of the real

and imaginary values of each. This will frequently de-

termine the extent of the curve or its limits in the directions

of the axes of co-ordinates.

II. By differentiating the equation, having previously

rendered it rational, if necessary, find the first differential

equation

Ap + B = 0,

in which the quantities a and B will be rational functions of

the variables.

III. Find the values of iry which satisfy the equations

Y{xy) = 0, B = 0,

but which do not satisfy a = 0. These will determine
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points at which the tangent is parallel to the axis of ar, pro-

vided that the substitution of a: + ^, for x does not render

y imaginary when h is assumed indefinitely small, x having

the particular value determined by these equations. If this

be the case, however, the point is conjugate.

IV. Find the values of xy which satisfy the equations

T{xy) = 0, A = 0,

but which do not satisfy b = 0. These will determine the

points at which the tangent is parallel to the axis of y,

subject however to an exception similar to that in the

former case, in which also the point is conjugate.

V. Find the values of xy, which satisfy the three equa-

tions

¥{a:y) = 0, a = 0, b = 0,

and let the value or values oi p be determined as in (111.),

and the species of the point will depend upon the number

and nature of these values.

VI. Apply a similar investigation to the second and suc-

ceeding differential coefficients, and in these cases examine

the exponents of h in the development of y, and singular

points will be found by the principles established in this

section.

VII. Examine the sign of the second differential co-

efficient, which will show the direction of curvature.

VIII. Find the points where the curve meets the axes of

co-ordinates by determining the values of each variable

when the other — 0.

IX. Let each variable be developed in a series of de-

scending powers of the other. This will determine the

species of the infinite branches, if the curve have any, and

will show the asymptotes, curvilinear as well as rectilinear.

X. The evolute may be found, which frequently indicates

remarkable properties in the curve itself.

(167.) Ex. 1. To determine the point of the curve whose

equation is
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where the tangent is parallel to the axis of^.

"By differentiating

5( j/ - dfdy = 3(07 — hfdx,

' dx~ ^ '

{y —aY
Ifj/ = a, this becomes infinite. The corresponding value

of X is evidently x =}). Substituting h •\-h for Xy we

find

(y - of = h\

•.•y = a + AT

As both numerator and denomi-

nator are odd, and -l < 1, the

point whose co-ordinates are y = a

and ^ = ^ is a point of inflexion

represented thus.

r
J

Ex. 2. The curve represented

by

(6 - yf ={00- ay,

may in like manner be shown to

have a point of inflexion when

y = b and x = a, represented

thus.

Ex. 3. To determine the point of the curve represented

by the equation

(y - bY = (^ - a)%

at which the tangent is parallel to the axis of ^.

By differentiating,

dy 2 x — a _.—f
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y = b renders this infinite, and the corresponding value

of J7 IS X = a. Let a? -j- ^ be substituted for oc^ and the

result is

7/ = b +h^.

~^^

A

Since the numerator of the ex-

ponent is even, and the denomi-

nator odd, and ^ < 1, the corre-

sponding point is a cusp of the

first kind represented thus.

Ex, 4. In like manner it may

be shown that the curve repre-

sented by the equation

has a cusp where ^= ^ and x= a,

thus represented.

Ex, 5. To determine the point of the curve

at which the tangent is parallel to the axis of j/.

By differentiating

X = h renders this infinite. Substituting 6 + A for a; in

the original equation, we find

i/ = (a + 6) f A^ 4- h.

Now since the numerator of the

first exponent is odd, and the de-

nominator even, and |: < 1, the

point is as in this figure.
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Ex. 6. Let the equation be

(2/
- a?) = (<r — ay,

da:^

5

T' T{x - a)~K

,« dy ^ ^ d-y . . _ .

It iT = «, j^ = 1, and -~ IS infinite.

Since -^
cix

In this case let

a + A be substituted for x in the equation, and we find

5

y — a -{ h -{ hJ

.

1, the tangent is

inclined to the axis of x at an

angle of 45°; and since the nu-

merator and denominator of the

second exponent are both odd, the

point is a point of inflexion. '

Ex. 7. Let the equation be

2/ - a = (a: — 6)^ + (jr - ly.

In this case x — h renders all the differential coefficients

infinite, and renders y — a. Let h -\-li be substituted

for Xy *.•

Since 4- < ^5 the tangent is pa-

rallel to the axis of y ; and since

the denominator of the second ex-

ponent is even, the point is a cusp

of the second kind.

Ex. 8. Let the equation be

(% 4- /r + 1)^ = 2(1 - xY.

In this case x —\ renders the third differential coefficient

infinite. Substituting 1 -|- /^ for x^ we find

y = - 1 - ^^ 4- (- hy.
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In this case it is necessary to

take h negative, in order that 7/

may be real; and since the ex-

ponent of the first power of h is

unity, the tangent is incHned to

the axis of oc at an angle whose

tangent is —^. Also, since the ex-

ponent ^ has an even denominator, the cusp is of the first

kind.

Ex. 9. Let the equation be

y — a = X -\- bx'^ -\- cx'^ ;

the third differential coefficient becomes infinite when a: =
and y = a.

Substituting + ^ for x, we

find

i/ = a -\- h + bh^ + cli^ ;

by the principles established, this

is a cusp of the second kind.

SECTION XVII.

On the application of the differential calculiis to the geo-

metry ofcurved surfaces.

(168.) A complete investigation of those properties of

surfaces, which are discoverable by the aid of the differential

calculus, would lead us into details inconsistent with the

objects of the present treatise. We shall therefore in this

section confine ourselves to a few of the most striking and
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useful applications of the calculus to geometry of three di-

mensions. Students who are desirous of prosecuting the

subject further will find it in its fullest details in the second

volume of my Geometry.

(169.) An equation between three variables represents in

general a surface. Any one of the variables (2), being con-

sidered as a function of the other two, and a point being as-

sumed upon the plane xy^ the corresponding point of the

surface will be determined by the equation Y{xyz) = 0.

If any value x^ be given to x^ the equation F{x^yz) = 0,

represents the section of the surface by a plane parallel

to the plane (j/s), at the distance {a^). In like manner

¥(x7/'z) = and F{.ryz') = represent sections parallel to

the planes xz and yx respectively.

IfF(xyz) = w= 0, the partial differential equations of the

first order,

du , du ^

du , du
^—dy + -^dz = 0,

du du
-T-dz + -T-dx = 0,
dz dx

are those of the sections parallel to the co-ordinate planes at

the distances ^, x, and y respectively. This is plain from

the meaning of the notation (95), and from the preceding

observations. From these equations the equations of tan-

gents to those sections may be easily determined.

(170.) If z be considered as a function of .r and^, and ^

be what z becomes when x and y become x -\- h and y -\-k,

let 2' be developed by Taylor's theorem in powers of h and

Ar, the result will be

h k ^*
.,

^* ^'
2' = ^ + A/y + B/y + A^^ + Cfrk + B^j-^ + AgJ^

+ ^2T-^ + D2l-Zi 4- B
1.2 ^ n.2 ' '\.%S
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Let the equation of another surface having a common

point xyz with the proposed one be ^{xyz) = 0, and let 2"

be the value of z corresponding to jr -f A and y -{!<:, •.•

,
// ^ Jc If- Kk ^ k^ h'

1.2 ' "n.2 ' n.%^

The coefficients of these series respectively being the suc-

cessive differential coefficients (96)

.

By the reasoning used in (129), it follows that if

Ay = «y, By = iy,

no surface of which the first differential coefficients have

values different from these can pass between them.

Hence, if the surface 'e{xyz) = be supposed given, and

the constants of the equation Y'{xyz) = be so assumed as

to fulfil the above condition, no other surface F"(a;j/;2) = 0,

of which the constants do not fulfil this condition, can pass

between them. The surfaces are said in this case to touch

with contact of the first order.

Again, if the constants of Y^(xyz) = be so assumed that

Ay = fly, By = Oy,

A3 := ^2) Cy = Cy, B2 = 0%'

The two surfaces touch with contact of the second order,

and so on.

(171.) It is obvious that in order that the surface ¥\xyz)

having a common point with the given surface, may at that

point have contact of the first order^ it is necessary that

there should be at least two independent constants in its

equation ; in order to have contact of the second order, there

must be five independent constants ; and in order to have

contact of the wth order, there must be — disposable

constants.
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(172.) The equation of a plane through a given point

being of the form

(2; - 2') -p{x - x) — q(y — y) = 0.

It is plain that for it

a, =:p, bi = q.

Hence the equation of the tangent plane to a surface at the

point ^j/V is

where -j-jy -^—, are the values of the partial differential co-

efficient corresponding to the point of contact.

(173.) The equations of a right line perpendicular to this

through the point xy'z^ are

(3'-.?/') + ^(^-^')=0,

which are, therefore, the equations of the normal.

Let nx, ny^ nz, be the angles under the normal and the

axes of co-ordinates, and let k x= \/ 1 + \~t~i] "I"( Jl J

andp
d^

- dr
'

cos. nx = p ,nyz= ^ , cos

These are sometimes expressed otherwise.

l^u = F(a^y2) = 0,

du du dz

dx dz
'" dx'

Hence

du ^ du dz

dy ' dz
~~

dy'

by these substitutions, we find
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dy! dv! dy!

dx^ dif dz^
cos.nx = —p, COS. ni/ = - ,-, cos. w^ = —p,

(174.) Every line drawn in the tangent plane through

the point of contact is a tangent to the curve ; it is some-

times useful to know which of these lines is most incHned to

the plane xi/. This is evidently that which is drawn per-

pendicularly to the intersection of the tangent plane with

the plane xj/. The equation of this line may be found

thus. Let z = in the equation of the tangent plane, and

the result

s^ -1- p{x — x') 4-9(3/*- y) =
is the equation of the intersection of the tangent plane with

the plane xj/. The equation of a line through jr'y perpen-

dicular to this is

This is the projection of the sought line upon the plane X2/,

and, therefore, with the equation of the tangent plane repre-

sents that line.

PROP. LXII.

(175.) Tojind the equation of a curve described upon a

given surface^ suchy that the tangent to every point of it

shall he the tangent ofgreatest inclination to the plane xy.

By differentiating the equation of the projection of the

tangent of greatest inclination upon the plane xy, we find

pdy — qdx = 0.

The quantities p and q are functions of xyz. The variable

z being eliminated by means of the equation ^{xyz) = of

the surface, the quantities p and q will become functions of
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a; and ?/ alone. This, therefore, will be the differential

equation of the sought curve. To find the primitive equa-

tion will require the aid of the integral calculus.

PROP. LXIII.

(176.) To determine the sphere which touches a surface

most intimately at any given point.

Let the equation of the sphere be

[^ - ^y + {y- y"y + (^ - ^'r = R%

xyz being the point of contact, x'y'^z^ being the centre of the

sphere, and therefore r its radius.

Since this equation involves but four disposable constants,

the co-ordinates of the centre and the radius, it follows

(171.), that the sphere does not allow of contact of the

second degree.

The differential coefficients of z considered successively

as a function of x and z/, are

x—a/' y—y^^

in order that it may have contact of the first order, it is ne-

cessary that these should be equal to the differential co-

efficients p and q derived from the surface, *.•

{X - x") f p{z - <s") = 0,

These conditions are fulfilled by assuming the centre of the

sphere upon the normal (173.), which is therefore the locus

of the centres of all spheres which touch the surface at the

proposed point.

The radius of the sphere is still undetermined, and there-

fore may be so assumed, that the sphere shall touch the

surface in any proposed direction round the point with con-

tact of the second degree. That is to say, if a section of the
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surface be made by a plane passing through the normal in

any given direction, a sphere may be found which will

touch this section with contact of the second degree.

Let the projection of this section upon the plane xj^ be

found, and let its differential equation be

dj/ = vidcc,

m is therefore the tangent of the angle which the tangent to

the projection of the curve on the plane .27/ makes with the

axis of X.

As our inquiry is now limited to the points upon the

plane jn/, which are determined by the above equation, x

and 7/ cease to be independent variables, and their incre-

ments are connected by the relation

k = mh.

Substituting this value of k in the development of s', it

becomes

ft h^
^' = 2 + (ai + ?WB,) Y + (^2 + ^wci + %%)—+ • • •

•

Let the value of z, corresponding to x •\- h in the equa-

tion of the sphere, be

z = ^ + («i + rnb,)^ + {a^ 4- 2mc, + m^^^^)-^ +

That these may have contact of the second order, it is

necessary that

Ai = tti, Bi = 61,

A2 + 2ciW -H n.^m'^ = ^2 4- ^c^m -f b.^^i'*- [1],

Of these equations, the first two have been already shown to

be those of the normal to the surface of the point. The quan-

tities fl2» ^15 ^2> are the three differential coefficients of the

second order derived from the equation of the sphere.

Hence

_ 1 x—x^^dz
""^ "^ "" J^' "^ (7^5^ •

"d^'
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^1

x-x^^ dz

dy
~

1^-z><f

dz

" {z-z^r
'

' dx'

where

h

^y^' is the centre of the

y dz

2!^Y' dif

sphere. And smce

x-x"
z-z"

dz
~ dx

= V ,

z^z^'

dz
- dy

= q.

163

^^=^-"^-.'"

We find

-z>

pq

Substituting these values in [1], the result is

(a2 + Scim + 52^2)(z—2;") + (1 +P'') + ^Mwz+ (1 + g-)m2=0.

This equation determines the co-ordinate z" of the centre of

the sphere, which being known, the equations

a; — or" = — p{z — 2/')>

3/-y' = _^(2 — 2;"),

determine .r'J^".

The equation of the sphere being

r2 =:{x - X^Y + {y - y)^ + (2 - /)*,

by substituting for {x — ^"), (3/ — y), their values, we

find

R = (2 - 2") • Vl + /?* + 9'^.

The sphere thus determined has contact of the second

order with any curve traced upon the given surface through

the given point, provided that the projection of that curve

upon the plane a?y has its tangent through the projection of

the given point inclined to the axis of x at an angle whose

tangent is m.

m2
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PROP. LXIV.

(177.) At a given point upon a curved surface, to de-

termine upon the normal the limits between which the

centres ofall osculating spheres lie.

#
This problem may be solved by finding the values of m,

which render r a maximum and minimum.

To simplify the investigation, let the given point be as-

sumed as origin, and the axes of x and j/ in the. tangent

plane, the normal being axis of z. In this position of the

co-ordinate axes,

^ = 0, ^ = 0, 2 = 0, R = — z", J9
= 0, gr = 0.

Hence

1 + /?^'

which being differentiated, and its differential = 0, gives

Ao—• Bo
m^ + -^ ^m -1=0.

The roots of which determine the values of m, which give

the greatest and least values of r.

Since the product of these roots = 1, the directions of

greatest and least curvature are always at right angles.

Geometry, vol. i. (34.).

The formulae will be still further simplified by taking

right lines in the directions of greatest and least curvature as

axes of
J/ and «r. In this case, one value of m in the above

equation becomes infinite, and the other = 0. Hence

Cj = 0, which reduces the formula for the radius of cur-

vature corresponding to other values of m to

1 +m2
B. ^^ ^** II

Aj+ BaTW^*

i
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Let r', r^', be the radii of the greatest and least oscu-

lating spheres. Their values are found by supposingm and

successively = 0, *.•

m
1 1

R' =

Hence it appears that the radii of the greatest and least

osculating spheres are the reciprocals of the partial dif-

ferential coefficients of the second order.

PROP. LXV.

(178.) To express the radius of aiiy osculating sphere as

afunction ofthe radii of the greatest and least osculating

spheres^ and ofthe angles under the directions in which they

osculate.

By the last proposition,

1 fw*
R = —

AaH-BjTW*

Let (p\ <}5", be the angles under the directions in which the

sphere whose radius is R, osculates, and the directions of

the osculation of those whose radii are r', r". Hence

cos.2^' _ 1 ^1
COS.2(p"' r' r"

Making these substitutions in the value of r, it becomes,

after reduction,

R^R'^

"
r' cos.^^'+r" COS.29"'

Hence, if the radii of the greatest and least osculating spheres

and the directions of their osculations be given, the radius

of a sphere which osculates in any given direction may be

found.
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PROP. LXVI.

(179.) To express the differential of the arc of a curve

related to three rectangular axes.

By reasoning exactly similar to that used in (126), we

find

ds = ^ dy'' -^ dx'^ -\- d%

PROP. LXVIL

(180.) To determine the equations of a tangent to a

curve related to three rectangular co-ordinates.

It is evident that the projections of the tangent upon the

co-ordinate planes are the tangents to the projections of the

curve upon these planes. Hence the equations of the

tangent to a curve passing through the point jr'yz', are

dd d^
By substituting for the functions -y-j, -7-^, their values de-

rived from the equations of the curve, the equations of a

tangent through any given point may be found.

(181.) Cor. 1. Let tx^ ty, tz, be the angles under the

tangent and the axes of co-ordinates. It is evident that

dx dy dz
cos.^^=-^, cos.^^=^, ^°^-^^=

d7'

where ds = Vdy^ -|- dx^ -f dz^.

(182.) Cor. % Hence the equation of the normal plane
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through j^JyV, or a plane perpendicular to the tangent, is

-jf(s>
- y) + ^(- - ^') + ^(« - -') = 0,

or d^'(^ — y) + dx'{x — .r^) + ^^'(^ — 2') = 0.

(183.) If the curve be not a plane curve, the successive

tangents will not all lie in the same plane. The plane of

three points of the curve, assumed indefinitely close to one

another, is called the osculating plane.

Def. A curve, which is not all in the same plane, is called

n curve ofdouble curvature.

PROP. LXVIII.

(184.) To determine the equation of the osculating -plane

at a given point upon a curve of'double curvature.

Let two points of the curve, indefinitely near to each

other, be xt/z and x't/'z'. The equation of a plane through

these is

a(3/ - y) + b(^' - ^) + c{z - z') = 0,

the point ooi/z being considered as variable, and x[y'z' given.

In order that this may be the osculating plane, it should

pass through two points contiguous to x'y'^ ; it is necessary,

also, that its first and second differentials should equal

those of the curve. Let the equation be twice differentiated

without assuming any independent variable, the results

will be

Adt/ + Bdjc + cdz = 0,

Ad\i/ + B£Z2.r + cd^z = 0.

Hence eliminating — and —, we find

{dzUPx' - dx'd^z!) {y - -if) + {dy'd^z^ - dz'd'^i/) (x — x') +
{dz'd'^y

-'
dy'd'-x') (z — z') = 0,

which is the equation of the sought plane.
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(185.) Cor. Since the condition under which two planes

intersect perpendicularly is, that the sum of the products of

their coricsponding coefficients = 0, the osculating and

normal planes are at right angles; for (182.),

dif[dU\v' - dafd^z') + d^^di/'d^z! - dz'd^i/) +
dzWdy - di/^d^x') = 0.

PROP. LXIX.

(186.) To determine the radius of curvature to a given

point in a curve related to three rectangular co-ordinates.

This problem is most easily solved by considering the

osculating circle as one passing through three consecutive

points of the curve. Under this point of view, its plane

must be the osculating plane ; and as its radius passing

through the given point must be normal to the curve, its

centre must be in the intersection of the osculating and

normal planes. If, therefore, ^'z/V be the co-ordinates of its

centre, they must satisfy the equations

dyiy - y) + d^{x ~ a^) -\- dz(z — z!) =z 0,

y(«/ - y) + x(x -a:') + z{z - z') = 0,

where

Y= dzd^x— dxd'^z^ X = dydH— dzd^y, z= dxd^y— dyd^x

,

, All circles passing through the given point, and having

their centres upon this right line, touch the curve. In order

to determine that of most intimate contact, let the inter-

section of two consecutive normal planes be founds and the

point where this intersection meets the right hne thus de-

termined will be the centre of the osculating circle. To
effect this, let the equation of the normal plane be dif-

ferentiated. Considering x'y^z^ as constant, which gives
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d^yiy — y) + droc[a' - .r') + dH{z — ^') - ds^ = 0,

where ds^ = dy^ + d.r'^ + dz^.

From this and the former equations, we find

, _^ (Ydz—zdi/)ds^
Ob —~ 00 — '

*

D

,
{zdx— xdz)ds'^

y-y' = —

z - z' =

D

(xdi/ -'Ydx)ds'^

D

where

B=iYdz — zdy)d^x + [zdx — xdz)d'^y + (xdy -^ Ydx)d^z,

Substituting these values in

R« = (a; - ody -h (.7/
- iJY -f (2 - z'Yy

we obtain

^ _ [{xdy—YdxY^{zdx-xdzY-\-(\dz—zdyY'\ds^

But by the conditions

xdx + Ydy + zdz = 0,

. x2 4- Y^ + Z2 = DS

this gives

ds^

-v/x«H-y2 + z«

which is the value of the radius of curvature for a curve of

double curvature.

If ds be taken as the independent variable, by differen-

tiating the equation

ds^ = dy'^ + dx' + dz',

we find

dyd^y + dxd^x + dzd^z = 0.

This being squared and added to the value of d, gives

D = ds^[{d''yy + (d^xY + (d^'zyi

Hence we find
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See Mecanique Celeste, liv. i, chap. 2.

From the preceding formulae, those of plane curves may

easily be deduced.



PART 11.

THE INTEGRAL CALCULUS.





PART II

THE INTEGRAL CALCULUS.

SECTION I.

Fundamental Principles.

(187.) The object of the Integral Calculus is the deter-

mination of the primitive function or equation from which a

given differential, or differential equation, may have been

derived.

The primitive function is in this case called the integral

of the proposed differential, and the process by which it is

determined is called integration.

These terms " integrar and " integration" are taken from

the infinitesimal calculus, and have their origin in notions of

this science not consistent with the rigour and purity of

mathematical reasoning. As, in the infancy of the science,

differentials were considered as infinitely small quantities;

so the original functions from which these differentials were

obtained, were taken as the sums of the infinitely minute

elements ; and the process by which these primitive quan-

tities were found from their differentials, was looked upon

as the summation or integration of the small component

parts, and the operation was expressed by the charactery



174 THE INTEGRAL CALCULUS. SECT. I.

prefixed to the differential, thus, Jafdr, as the initial of

the word '' sum" or " summation." Modern mathematicians

^ have reduced the science to more rigorous principles, but

they have retained its former phraseology and symbols.

Lagrange alone had the boldness to attempt a revolution,

not only in the principles, but in the language and algorithm,

or notation of the science ; but he can scarcely be considered

to have succeeded, at least in the latter, since all mathe-

maticians, almost without an exception, adhere to the old

symbols, though some of them use the principles and rea-

soning of Lagrange.

(188.) According to the language of Lagrange, the ob-

ject of the integral calculus is to determine the primitive

from the derived function ; or, if applied to equations, to

determine the primitive equation to a given derived equa-

tion.

According to the more commonly received phraseology,

this branch of the science consists in the determination of

the function, of which a given function is the differential

coefficient, or the equation, which differentiated, would pro-

duce a given equation. As this process is exactly the re-

verse of that which forms the subject of the differential

calculus, so the rules and methods to be used in it must

be discovered by retracing our steps in that part of the

science.

(189.) We shall, in the first instance, confine our atten-

tion to those differential coefficients which are functions of

a single variable; and, as in the Differential Calculus, we

shall successively consider the cases where they are algebraic

and transcendental functions, algebraic functions being di-

vided into, 1^. rational and integral, ^^, rational andfrac-

tional, and 3^. irrational; and transcendental into, 1". ex-

ponential, 9P. logarithmic, and 3^. circular.

Before we enter upon the methods of integrating these
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functions, it will be necessary to lay down a few principles

immediately derivable from the differential calculus, and

which may be considered among the fundamental principles

of the integral calculus.

(190.) I. As an independent constant connected with

any function disappears by differentiation, so it should re-

appear by integration. Thus, if f'(x) be the differential

coefficient of f{x), it is also the differential coefficient of

f{x) + c, c being a quantity independent of a:. It is

necessary, therefore, to add to every integral a constant,

which is generally called the arbitrary constant, because its

value cannot be derived from, and does not depend on, the

differential coefficient, but must, if discoverable at all, be

determined by other means.

(191.) II. If the value of the integral corresponding to

any particular value of the variable happen to be known,

the value of the arbitrary constant may be found. For, let

the integral with the arbitrary constant be f(^) + c, and

suppose that it is known that the value of the integral is a

when the variable .r is = a, '.' a = f(^) + c. Hence

c = A — F(a), •.* the integral is f{x) — F(a) -{- a.

If the value (a) of the variable which renders the integral

= be known, the integral is f(x) — F(a).

(192.) III. As a constant factor of a function is not af-

fected by differentiation (18.), so neither is it affected by

integration. Thus, if F'(a?) be the differential coefficient of

F(d;), af'(j7) will be the differential coefficient of AF(a;), or,

according to the symbols of the integral calculus,

jA'F\x)dx = AfF'\x)doCj

A being a quantity independent of x.

(193.) IV. As the differential of a function, which is the

algebraical sum of several functions of the same variable, is

the sum of the differentials of these functions (17.), so the

integral of the sum of several differentials of functions of the

same variable is the sum of the integrals of these differentials.
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Thus,

/ [
F'(a,^)dx -f F\x)dx- F"(x)dx

\ =fFXx)dx \-fF\x)dx-
fF'\x)dx.

(194.) V. As the differential of the product of two func-

tions of the same variable is the sum of the alternate pro-

ducts of each function into the differential of the other, so

the product of two functions is equal to the sum of the in-

tegrals of each function into the differential of the other.

From this principle an important method of integration

is deduced. Let xx' be two functions of x. Hence

xx' =:Jxd}d +/x'dx,

\'jkdx' = xx' —Jx'dx,

By this equation the determination of one integral fxdx! is

made to depend on another, viz. J'x'dx. Numerous in-

stances of the efficacy of this method will appear hereafter.

It is called integration hy parts,

(195.) VI. A similar method may be deduced from the

form for the differential of a fraction (23.).

X dx xdx'

x'""V~ ~^'

'
x' "^ x' x'^

'

xdx- __ dx X
'

x'* ~ }d^
"~

~x''*

This, as in the former case, makes the integration of one

differential depend on that of another ; but it is not so ge-

nerally useful a formula.

(196.) VII. As the differential coefficient of a power is

found by diminishing the exponent by unity, and multiply-

ing by the first exponent, so a differential, whose coefficient

is a power, is integrated by increasing the exponent by

unity, and dividing by the increased exponent. Thus,

yAx'"dx = r 4- c, being tlie arbitrary constant.
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This rule extends to the integration of all differentials

which can be reduced to the form xx'^^dx.

Such is Ajr"-^(B + cx'^Y'dvi for since x^-^x = —c?(jr"),
n ^

if J?" = Zy '.' x'^-^dv = dz, '.' aoj^'-'Cb + cx'^Y'dx —
n ^ ^

- (B + czfdz.
n ^ '

Again, let b + cz = «/,
*.* Qdz — dy. Hence we find

•.•/Aa:«-»(B + QX^'Ydx = ~ •
^—-r + d,

D being an arbitrary constant.

(197.) VIII. The preceding rule is subject to the ex-

dx
ce^iionfx^^dx, oxf-— ; the value of this being Vx + c,

X

C being, as usual, an arbitrary constant (190.). Under this

case also come all those differentials which can be reduced

dx dx
by any transformations to the form — . Such as

x-\-a

J ''\f—T- = K^ + «) + c.
x-\-a "^x-j-a

Again,

5^_ ^ 12^__ ^ diSx^+ ^)_

Here it may be remarked in general, that when an in-

tegral is a logarithm, the arbitrary constant may always be

introduced as a factor of the quantity under the logarithm.

For in

fF>{a:)dx = l[f{x)] + c,

let the constant c = Za, •.*

fY\x)dx = lf(x) + /a = Z[a/(^)].

(198.) IX. From the differentials of an arc, considered

N
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successively as a function of its sine, cosine, tangent, co-

tangent, secant, cosecant, versed sine, and coversed sine, we

deduce the following results.

f = sin.~ij: 4- c,

doc
— f = cos.~^a7 + c,

dx

dx

dx
/—====. = sec.-i^ + c,
x^/X"—!

dx—f— = cosec.~^a: + c,

^ dx .

/—=1 = ver. sin.~i4r + c,

dx
— / i - = cover. sin.~^a7 -J- c.

•^ V'^x--x'
^

(199.) Some of the preceding integrals may be made

more general by introducing a constant coefficient, and sup-

plying a radius different from unity. The student will

easily perceive that these modifications will give results of

the following forms

:

A . ex= —sm.-i— + D,
A/B^—c'^a?* c B '

hdx A ex
— f- -_ = —COS.~^ 1- D,

A/B^-C^.r'' c B

Kdx A _ cj:

_ kdx A
^ ex

•""y-T";—r~5= —cot.~i h d,^ B^ + C^^'' BC B
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Adx A B.r ,

/ = —sec.-i h D,
.r-v/B'^;c2_c2 c c

/Adx A ^X— = —cosec."^ (- D.
^^/B«^2_c2 C C

In all of which d is the arbitrary constant.

SECTION II.

Of the integration of differentials, whose coefficients are

rationalJunctions of the variable.

(200.) All rational functions of x^ and all which can be

reduced to rational functions, are reducible to one or other

of the following forms

:

U = AXf -f B^^ + CJT'^ • • • . [1],

Aof + Bx^ + cr*-" • . • •

" "^
a'^'+ b'^^'+ dx^ '

*
t^]*

All the exponents in these series may be considered as in-

tegers; for if any fractional powers were found amongst

them, they might be thus reduced to integral powers. Let

the common denominator of all the fractional exponents be

found, and let it be ^ ; and let «/ = a:? , \' yi = x, and
m

y^ zizx^'^ making these substitutions for x and its powers,

the quantity becomes a rational function of «/, and since

dx = qif~^dyi it will continue rational when multiplied by

the value of dx. This transformation, however, is not

always necessary previously to integrating the formula.

(201.) We shall first consider the integration of udx

when u has the form [1]. By (193.) and (196.),

^ ,
Aa7"+^ B^''+* Ca?"+^

N a

L
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K being an arbitrary constant. If, however, any of the ex-

ponents happen to be — 1, the integral will be of the form

Mix (197.). This integration includes all cases of the form

[1], and is applicable whatever be the nature of the ex-

ponents. They may be positive, negative, integral, or frac-

tional, no previous transformation being necessary.

(202.) To this class may be referred all differentials,

whose coefficients can be reduced to a finite series of the

form [1], either by expansion, multiplication, or any other

process. If the series [1] were supposed unlimited as to the

number of its terms, all differentials, whose coefficients are

capable of being developed in a series of powers of the

variable, would be included. But, as this would not give

the inteo-ral in a finite form, we shall not consider it here.

It will become the subject of consideration hereafter.

(Sect. VI.).

All differentials, whose coefficients have the forms,

X A A. AAA. Q

where m, m\ m", • • • • are positive integers, and x, x', x",

.... functions of the form [1], the exponents a, b, c, - - -
-

being any numbers w^hatever, may be integrated by the

above process. For they may be reduced to the form [1]

by development and multiplication.

(203.) The integration of differentials, whose coefficients

come under the form [2], presents greater difficulties. If

any of the exponents be negative, they may be removed by

multiplying both terms of the fraction by a power of a: with

the same positive exponent, and if any exponent be frac-

tional, it may be made to disappear by the transformation

explained in (200.).

Let the terms of the numerator and denominator be then

arranged, so that the exponents shall descend. If the first

exponent of the numerator be greater than, or equal to, that
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of the denominator, the fraction may, by actual division, be

resolved into two parts, one of the form [1], and the other

of the form [2], the exponent a being less than a', and the

exponents being arranged in descending order. The dif-

ferential being thus resolved into two, the first is integrable

by the method already explained. The second may be

resolved into as many fractions, whose numerators are of

the form Ax^dx as there are terms in the numerator, and

thus the problem is reduced to the integration of a differen-

tial, whose coefficient is of the form

AX"

AV + B'a-^' + c'^'-"'----'

the exponents being integral and positive, and aJ > a.

(204.) Such a fraction may always (see note, page 183)

be reduced to a series of fractions, each of which must come

under some one of the following forms

:

udx udx (Mx-\-^)dx (Mx-\-j:i)dx

Hence the problem will be solved in general when methods

of integrating these four forms shall have been explained.

(205.) I. To integrate the first form, it is only necessary

to observe, that dx — d{x + a) ; and, since m is constant,

by (19^) and (197),

mdx , .

^^T^ = ''^'^(*+"^'

c being an arbitrary constant.

(206.) II. In like manner the second formula is integrated

by considering dx = d(x + a) and
^„
= (jr + fl)~".

Hende by (196.),

Mdx _ M
^(x-^ay ~ ""

(/2-l)(a7-ha)«-*'

(207.) III. In the third formula the integral may be re-

solved into two ; thus,
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M^+ N _ Mxdx T<idx

Since *ilxdx = J(a7^) = <^(jr^ + «^), it is obvious that,

neglecting the constant,

And by (199.),

^ ^dx N ,
X

•^^^+^^=-^^"- T-
Hence by combining these results, and supplying the con-

stant,

f-T7-^^^ = i^K^' + «) + -tan.-i— + c.

(208.) IV. The fourth formula may be resolved into two,

Mjr+N , _ ^ Mxdx nJjt

^{x'+ay "''^(^'-+«^)« '^•^(^^+a^)"*

The first is easily integrated by considering that %xdx =
r;(a7^) = d[x^ + «^). Hence

^ Mxdx i-M

To integrate the second part, it will be necessary to have

recourse to the method of indeterminate coefficients. Let

^dx _ Y.X
f,

dx

'^(x'--\-a'Y~ {x-'+a'-y-^
"^ ^^2_j_^2)n-i>

K and L being indeterminate quantities, whose values may
be determined thus. Let this equation be differentiated

and the result cleared of fractions, the factor dx being sup-

pressed. Hence we find

N = K(x' + a") - 2k(w - 1)^* -I- L(a;* 4- a").

Since these quantities must be equal, independently of x,

we have

N = (k -f- L)a", 3k + L - 2K^^ = 0.

Hence determining k and l, and substituting their values,

we find
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yidx _ ax

(gw-3)N dx

2(71-IK •n^M^^)""'*

By repeating this process with the latter integral, we obtain

an expression for it, depending on the integration of

And thus the process may be pursued until the exponent of

x'^ -{- a* shall be reduced to unity, in which case the in-

tegral is reduced to Case III.

The preceding principles contain all that is necessary for

the integration of differentials, whose coefficients are rational.

It will be perceived that their integration, whenJ^ractio7ial,

depends on our power of resolving the denominator into

simple or quadratic factors.

Note on Art. (204.).

(209.) The resolution of a rational fraction of the form

u A+ Bjr+ ca;^* • • • Mx"^^

V a'+b'^^-tc'^^ • • • • m'jt"*

into a series of fractions of the forms given in (204.), being

necessary for the integration of rational fractional functions,

we shall here explain a method of effecting this resolution.

First, It is necessary to show that the denominator is

always capable of being resolved into real factors of the

forms,

I. (X + a), II. (x + ay,

III. {x' + a% IV. {x^ + ay, ,

I. If the roots of the equation

v = a' + b'x + dx^ ' • • -m'^*" =
be all real and unequal, it may be resolved into simple and

real factors of the form {x + a).
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II. If there be any number n of real and equal roots, there

will be a factor of the form {x { a)".

III. If there be a pair of imaginary roots, there will be a

factor of the form (2® -{ pz -\-
q), p^ — 4<q being a negative

quantity. By substituting x— ~ ^ov z, the form becomes

ji'* — ^ + q; now smce /?* — 4$' <0, •.• - "^ + q > 0,

let it be expressed by a^ ; the form becomes a?* -f a^, which

is the required form.

IV. If there be n pairs of equal imaginary roots, there

will be a factor of the form (<s* + p:^ -\- qY, /?* — ^ being

negative. This, as before, may be reduced to the form

(210.) Let us first suppose, that by the resolution of the

equation in (I.) its several roots are obtained. If they be

real and unequal, let any one of them be — a, then x -{ a

is a real simple factor of the denominator. Let

V——- = Q,
x-\-o>

it is evident that q is an integral and rational quantity, the

highest exponent of x in it being less than the highest ex-

ponent in V. Hence let

u _ A p

V
"" x-^a q'

A and P being undetermined ; but a being independent of x,

and p a rational function of r.

Since y = (x -\- a)% •.*

u = AQ + v(x 4- a).

In this equation let a? = — «, and let the corresponding

values of the functions u and q be w and q. Hence

u

9.

and
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U—Ad
P =

which, since a has been determined, is known by actual

division.

This method cannot fail, if, as has been supposed, the

equation v == admits no other root = — a, for in that

case, a: = — a cannot render q = 0, and, therefore, renders

A finite and determinate, except when — a happens to be a

root of the equation u = 0, in which case a = 0.

Since the exponent of the highest power of a; in o, and u

is at least one less than in v, it is evident that the exponent

of the highest power in P is at least two less than in v.

Hence, another factor x -{- a! being assumed, we can find

p a' R

a
"" x+a! s

'

provided that x + a' is not one of several equal factors. By
proceeding thus, the partial fractions corresponding to all

the simple, real, and unequal factors of v may be deter-

mined, so that we shall have

u _ A a'
_i_

^'

"v
" xTa "^ J+a'

+••••+ "^j

q! being a rational function of x, in which the highest ex-

ponent cannot exceed m ^ n, n being the number of simple,

real, and unequal factors, and p' being likewise a rational

function of w, in which the highest exponent of x cannot

exceed m — n — 1. As all the real and unequal factors of

V have been disposed of, o! can only admit factors of the

forms II., III., and IV.

(211.) We shall therefore now explain a method of find-

ing the partial fractions which correspond to real factors of

V of the form (x + a)\ Let

u^ A ^^
1

^^ A„_i P

B}' reducing these to the same denominator, we find
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P _
i^x + a)"

Since p must be an integral function of .r, the numerator of

this expression must be divisible by (jt + a)'*, and *.• it

becomes = when x = — a. But it is obviously reduced

in this case to u — qa. Let u and q be what u and o, be-

come when jr = — a ; hence u — Aq = 0,

u
'.• A = .

9
u

Hence the quantity u — qa becomes u a. Now smce

this is divisible by jt + a, let the quote be u', so that

' u
u — ci— = v'(x + a),

^ ""
(x-tay-'

By applying"^ a similar process to this fraction, a^ may be

determined, and similarly all the other numerators, so that

the partial fractions corresponding to the case of equal

factors become all known.

(212.) Methods nearly the same may be applied to the

case where the equation v = has imaginary roots. By

the transformation indicated in (209.) III. and IV., the

denominator will be divisible by a factor of the form a?* -fa*,

or (x' + a^y.

If it be divisible by a factor of the first kind, let

u Air-f-B p

V ~a:2+ a2+"^'
•.• u = a(Ax + b) + i*(^* + ^*)

Since p must be a rational function of ^, u — a(Ajr + b)

must be divisible by x^ + a^, and therefore ought to become

= when x = a x/ — 1.

When fl >v/
— 1 is substituted for j? in u and q, they must
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assume the forms u •}- u' V -- 1, q + qW —1. And there-

fore we have

w + wV -^-{q + q'V'- l)(Aa ^/ - 1 + b) = 0,

••• u — Bq -{ Aa^ + V — 1(m' — Aaq — B^f') = 0.

And since the real and imaginary parts must severally

= 0,

u — Bq + Aaq^ = 0,

u' — B^' — Aaq — 0,

which equations are sufficient to determine a and b.

(213.) Finally, we shall examine the case where v has

several equal pairs of imaginary roots, and therefore, after

transformation, admits a factor of the form (x^ -f a^JK

Let

U Aa:+B Ay^+ By P

p =
u -- a[( A.a7+ B )+(a^^+ By)(a;^+ flg) . . .

. (a^_^x+ B>^_^(J^^+ «')""']

{x'^ + a'-f

Since p is a rational and integral function of x, (a;* + a*)"

must divide the numerator, and therefore it becomes =
when a? = a a/ — 1.

By this substitution, let u become w + -v/ — 1 • w', and

Q, q±V — \'^y '.'

u + a/— 1 • w' — {q + V- 1 -q^} ' {Aa\/'^nr + B} = 0,

which are sufficient to determine a and b as before.

Having thus found the values of A and b, upon sub-

stituting them in the numerator of p, the term u

—

ci(aj7+b)

becomes divisible by x^ + a^ Let the quotient be u', •.•

_ u^—a[AiX-\-Bi-\-{A2X'{-B2)(x^-{-a') • • • •
]

The values of Ay, By, may hence be deduced by a process

similar to that by which a and b were obtained.
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SECTION III.

Praxis on the integration ofdifferentials, whose coefficients

are rationalfunctions of the variable.

A ft y* fi y*

(214.) Ex.1. Let w^ = -r--z» '-'fudx = A/-r—i-

Let

1 M N

/r*— a« x—a x + a*

'.' 1 = (m + N)a; + (m — N)a,

1 1 1
... M + N = 0, M - N = -, -.-M =^, N =- ^,

* x^— a® 2^1^— a x+ay

Ex. 2. Let udx = ^ ^. Since ^^ — 5^7 + 6

(^ - 2)(x - 3), •.•

1 M N
+

x'^-5x-]-6 x-^ x-S'

\' 1 = (m + N)a? — 3m - 2n,

•.• M + N = 0, 3m + 2n = - 1,

•.. M = — 1, N = 1,

* It is to be understood that the arbitrary constant is omitted

in the examples. It must of course be supplied in particular

cases where it can be determined.



SECT. III. THE INTEGRAL CALCULUS. 189

Kdx ,x—S_ Ad^ ,a?

Ex. 3. Let W6?<27 = -7^ —r-. Hence

-2/.(.T« -07-2).

Ex. 4. Let w^ = /*-;—=-. The factors of the denoml-
^ji^— l

nator are x — I and :i^ + Jr + 1. By resolving the frac-

tion into two by the method of indeterminate coefficients,

we find

xdx dx ^
ix— V)dx

^x^-\ "^ ^-^^^ ~ ^-^ x"' + x-\-V

.../^ = ^ (. - 1) ^ ^/r-'^'^x^--\ ^ ''
' ^-^U+D^ +f

Let 07 + -L = 2, I,
= a\

',' dx = dz, X — 1 = z

(x— l)dx _ zdz ^ ^ dz

restoring the values of z and g, we find

A^x-'Vjdx , . -- ,2^ + 1

St rfrT = ^^'^' + ^+l - v^3tan.-i—4-,

^Xdx C 07— 1 - 2o7+ l 7

^ X'--\ I
v'072-f 07 + 1 ^3 3
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Ex. 5. Let udx — -^ ^, zr. The denominator m

this case may be resolved into the factors .r -f- 1 and x'^ -|- 1,

and thence

\'fudx = |Z(a: + 1) ~ ^l{x'' + 1) - 4tan.-^^,

y«^^ = /
J-
— i-tan.-^o?.

Ex. 6. Let Mdr = ^'"^^^'iffl'"^V by (213.),

And since

— ^xdx 1 ^a:t?.r 1

A^Hl)'^ 2(^2+1)'* -^(^^+1)2 "^ "" ^^'
Also,

^(x^-{-\Y 4(.«?2+ l)~
"^

^'^(a:2+l)2'

f~m = tan.-i^.

Hence by combining these results, we find

xdx
Ex. 7. Let wc?^ = 7- . By division, we find

_ d^ a dx
ud.r = -;

b b ai-b^^

'fudx = -^ - -^Ka + bx).
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Ex. 8. Let udx —
,

——t-Tv Let z = a -\- bx,
{a-f-bxy

'.' dz = hdx.

Multiplying both numerator and denominator by 5%

1 {z'-a)dz I c 1 a ^

'.'juax - -
2^2

•

i^a^bxf

x'^dx
Ex. 9. Let udx — r-— ; if a + 6.r = x,

{^a-\-hxy
'

The following integrations may be easily effected

:

•^ x2 - 6x'

xdx a 1

•^l?" = ^x + :r^^^-^'

x'dx ( x" 2a"\ 1 2a .

Ex, 10. Let udx =

a + bx = Xj

d^ 1

x3^ -3 -
2^x^»

a7(?.r ^ / 37 « \ 1

r^dx /2ax Sa'\ 1 1 .
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dx
Ex. 11. Let udx =

a -i- bx = X,

dx / 1 9b 36V\ 1 3^ j^

-^ x^x^~\ 2ax'''^a'-x'^'a^'^~i^Jx' ~ «* ^^' x

Ex. 12. Let udx =
x'"{a-\-bxy'

a -{- bx — Xy

_^_/n 5br b'a^"\ 1 1 X

^ dx / 1 226^^106^^ 46V\ 1 46^ x_

^dx^_( 1_ ^ 55^' 256^jr 106V\ 1

106" , x
log. -

«6 ^* X

dvC
Ex. 13. LetwJr = .

—-^-——
-,

a •\- bx \- cx^ = X, 4«c — />- = k,

r— - r—J X "-^ X '

^dx _ ^cx + 6 2c dx

^j^ / 1 tjc lOc^._ ^^ 20^3 cfor

-^ ~^-\^''^mx''^^k^x-'^ kH )
^^''''^^) + A;^x

'^ X
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When X retains its signification in tliese examples, we

have in general

^dx 2 ,
2cx-\-b

- v(//—4«c) ^^'9.cx-^b^ ^[b^'-^ac)'

The first form is real when 4ac — b^ is positive ; the second

is so when 4«c — 6* is negative. Hence there arises

I. If 4ac — b^ he positive (4flc — 6* = A*).

_ _2_ _^ 2a/cx
" Vic

^''^- "VT'
2 2a/cx 2 , -v/A:

cosec."^ ;: r= —rr cos.~*
VA? ' 2c.r+ 6 \^/c Sv/cx

2 . , 26.r+6= —7 sm. " -r ,

Vli ' 2 Vex '

1 . (2cx+b)Vk 1 Y ^ iN
= 7^ ^'"•"

2cx ^7"^ ^"^"A^-7
1 (2c^4-^)*= —-r ver. sni.~^

—

^ .

^x
And wheny— vanishes by putting ^ = 0,

^dx 2 ^ xx/k 2 2a-{-bx

^ir^Vic '""^' 2^Wx^Vk '^'- -J^TT
2

. 2-v/ax
sec

Vk 2a-\-bx

—

1

2^/«x 2 . , a:\/A,'

cosec. * 77-=—; sm.
Vk ' ^Vk Vk 2vax

2 2a-\-bx— —77 COS.""^ -rr— ,

Vk 2vayi '

1 . , {2ax^-bx'-^Vk 1 . ^kx"-
- —77 sm.-^ ^ = -—r ver. sm.-^^^—

.

Vk 2ax *^k 2ax

II, If 4ac - ft* be negative (b'^ — 4ae = ^').
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^~~ ^/ A:'
^^'

9.CX + ^,+ v ^^~ x/^'
^^* ^ Vc^

'

and when the integral vanishes by putting x = 0,

In both kinds of integrals, ^/k and s/k^ may be taken

either positive or negative.

Ex. 14. Let udx —
a+bx+cx"^

a + bx -\- cx^ = X,

^dx __ dx

^icJjC 1 , b dx

^57*^ a; ^ , /h" a\ „dx

Ex. 15. Letwf/x =

dx

x

a 4- 6a; + CA'* = X, 4ac — 6^ = A;,

xdx __ 1 b dx

x^dx __/ x" a\\ ab dx

xHx_/ x^ hx"- ax\\ a^ dx

'^lc3~= \ "c 2c^~cVx^'*"?"'^T3*

' dx
Ex. 16. Let udx =

x'^'ia-^-bx^cx'-y^

a -{ bx •\- cx"^ = x,
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dx 1 11 1 x^ h dx

b dx b dx b dx

dx _ 1 4^ d<r 7c d^

»r3

35^c dr

•^ x'^x*~\_ Sax^'^ a^x^\ a^ "a''J x J
/20b^ ^Obc\ ^^__/^5^__^\ ^ dx

dx _ 1 7^> dx 5c <^^

dlr
Ex.17. Let?^f/a7 =

x^a \-bx -\- cx'^f^

a -{• bx ^ cx"^ = x,

r——L- -i- 1 1 1 ^ b dx

^^~8ax*"'"6a2x3^4a3x^"^ga*x"^2«^ ^^' x "9x1'^'^

^Z^ 1 5b dx ^c dx
-^ x'^x^~ axx"^ a'^ xx^ a^ x^'

^_/_ 2_ j36w /w_5c\ _^ mc dx

•^^~ L " Sax^
"*

Ga'x'-
""
\ ^^ "^aV -^ J x*

/35^^ 30bc\ dx /63b^c S3c^\ dx^

\ a^
""

a-' y xx^^y^ l^y x'
'

/*i?f._
1 2^ dx Sc dx

^^5^5 4aa^x* « "^ ir*x^ a"' a:^x'

o2
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x'"dx
Ex.18. LetwJ^ =

a + bx* = J

dx __ X 3 dx
•^ ^~4«x ia'^ "x'

xdx _^ x"^ 1 xdx

x'dx_ x^ 1 x'^dx

,xHx 1

•^ x« ~ 4ix'

x*dx_ X 1 dx

x^dx x" 1 xdx

x^dx X' 3 x'^dx

Ex. 19. IjQi udx =—5-, fl! + ^>.r* = x,

'^l^'"Vl6«^"^16^yx2 "^8^«>^T''

x^/5bx^ ^)x^\ 1 5 ^^^
^ x^ ~\3S«2"^32^yl^"^32^^ir'

x^<i^ 1

X Sbx^'

x*dx_/x^ 3^\ 1 3 dr

•^l^~\32^'"32^yl2 +32^/—

>

a^dx f x^ x^'\\ 1 zrc^

•^ 1?"~ \i6^ ~ Teziy^ "'"s^-^T"'
a^dx/^ _x^ \\_ _3_ ^«^ar
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dx
Ex. 20. Let udx =

af"(a-^bxy*

dx _log. X log. x_ 1 ^*
__ 1 X

'' xyi~'~a 4a^~4a ^^'"""""ia ^^'
a?*'

<ir __ 1 6 a7«(Zj:

•^ 473x"~"~aa7~" a*^ X '

^dx _ 1 6 jrflr

•^^ ~ ~2aJ2
~

'^•Z IT'

^ S*x — ""^a5^~" «^*^ "x
'

„dx ^ 1 6 dr

^ ^x 4aa:* a *^ xiC

,dx_ 1__ b_ b^ x^dx

^dx _ 1 b b^ xdx

Ex.21. LetMf/j: = ---7—-r-rrr, a + Z>a7* = x,

f.dx ^\ 1 (^

•^ 07x2~4ax a •^ J7X*

/•_^_/^_Jl 5&^'^\1 _^b x'^dx

^_/ J 3^>^-\ 1 36 ^
^A^^^V ^a^2 4aVx Sa""' x'

_^^^ / I lbx\l lb dx_

f^x^x^\ '6ax^ 12«2yx ^a^'Z x '

r——-(- - i-\}.^^^r—
^ x'x:'

~ \ 4a.r* 2aV x a*^ a7x
'

'^^6x*~\ SflJT^ 5fl2^
"*"

4!a' Jx 4!a^^ x
'

_dr / _1_ 5b 56^\J_ 5b^ ^^f
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SECTION IV.

Of the integration ofdifferentiaUj of'which the coefficients

are irrational,

(215.) The integration of differentials, of which the co-

efficients are irrational functions of the variable, is, in ge-

neral, effected by a transformation, by which the function is

rationalised. Such transformations must be suggested by

the expertness and address of the analyst rather than by

any general rules. Our knowledge in this part of the in-

tegral calculus is considerably limited, and there are nu-

merous classes of differentials, the integrals of which have

never yet been assigned under a finite form. In the pre-

sent section we shall attempt to reduce to a few compre-

hensive classes the principal irrational differentials which

liavc been integrated in finite terms.

I. The first class includes the elementary differentials

dx dx dx

of which the integrals have been assigned in (198.).

II. All differentials, whose coefficients are of the form

F(ar, .r", x''^ x^^f • • ' )

the functional sign f denoting a rational function ; but

«, b, c, ' ' ' ' being mnyfractions.

III. All differentials, whose coefficients are of the form

f(a', x«, x^ x% ).

Where F denotes as before a rational funcCton, and x is a

function of x of the form a -f- bx, and the exponents are

any fractions.
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IV. All differentials, whose coefficients come under the

preceding form, x denoting a function of x of the form

A +82-

a'+bV
V. All differentials, whose coefficients come under the

form

F[r, (A 4- b:c + cx'^Y\

VI. Differentials, whose coefficients have the form

k being a fraction. These are called binomial differentials,

VII. Differentials, whose coefficients are of the form

f(^"'", x% x^ x% • • • •) X x"-'.

Where x = a + B,r", and «, 6, c, • • • • are any fractions.

VIII. Differentials, whose coefficients are of the pre-

ceding form, X denoting a function of the form

A+ B^"

Z+bV**

IX. Differentials, whose coefficients are of the form

a?"* X F[a?», (a + B^" + cx^"Y\

In all these classes the functional sign f denotes a rational

function of the quantities within the parenthesis which fol-

lows it. We shall now proceed to explain the methods

of integration used in these cases successively.

(216.) I. The first class needs no further observation, as

the form of the integrals are immediately determined by the

differential calculus. (See 198.).

(217.) II. The differentials of this class are of the form

F(.r, x^, x^, x% • • • )dx.

They may be rationalised by reducing the fractions

a, b, Cy • • • • to a common denominator. Let this be d,

and let

x^ = z, '.' X = 2^, ••• dx = Bz^-^dz,



OQO THE INTEGRAL CALCULUS. SECT. IV.

It is evident also, that x% x\ x% • • • • are integral

powers of 2. These transformations reduce the differential

to the form

where d, a!, b', d,^ - - - are integers. This being rational,

may be integrated by the rules in Section II.

(218.) III. The differentials of this class are of the

form

f(x, x«, x'', X'', • • • ')da:.

This class may be reduced to the preceding, thus,

X—

A

X — A + BX, '.' X = ,

_ ^^
~ B

Hence the differentia oecomes

1 yx A

B 'I
' S^x,

. or—F < x, X", x% • • • i ax,

which is included in class II.

(219.) IV. This class may also be reduced to II. For

A+ B'^ A — a'x

a' -\-^x b — b'x

ba'— b'a
,

dx = 7 j-^dyi.
(b—b'x)*

By these substitutions, the differential assumes the form

f(x, x% X*, . . . .)(/x,

which comes under class II.

(220.) V. This class of differentials is not rationalised

with the same facility as the former. It will be necessary to

consider two cases, where c > or < 0. If c := 0, the

diflbrential comes under class III.

1". If V > 0, let

A + Bu: -f c.r^ = c{x -f- J/)'-,
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A— Cj/« , 2c(A--BV-Hc;y'^)
•,• jc = , d.V = ; -;—rr— a?/,

- A-I5?/+Cy
••• ^/A + Ba: + cx^ = v/c

2c?/-B
'

By which substitutions, the differential becomes rational.

2^ If c < 0, let x\ Ji", be the roots of the equation

A + B^ ~ ca?^ = 0.

Hence

Let

A + B^ - CJT^ = — C{X -- X)(X — Ot")

^Q,(x - x)(^'' - ^) = Or - ^')C7,

cjry + ^r" , 2(a:'--j;")cy
,

C7/2+1 (c/+ l)'^ •^'

(a:''— »r')c?/

^ ' c^^ + 1

It is obvious, since c < 0, that the roots x\ x\ are real.

Under this class are comprehended differentials of the

forms

F(a:, v/A + cx'^dx^

y(x^ v/b^ + cx'-^dx.

The former is the case where b = 0, and the latter where

A = 0.

(221.) VI. This class of differentials cannot be always

rationalised by any known methods. In some cases, how-

ever, this can be effected. It will not render the results less

general to consider the exponents m and ?/ integers, and

7J > 0. For if they were fractional, let d be their common

denominator. After the transformation, effected by sub-

stituting 2;" for jr, the exponents would become integral

;

and in like manner, if n were negative, by substituting

— for X, the exponent of z under the radical would become

> 0.
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If then 711 and n be considered as integers, and « > 0,

the formula may be rationalised whenever either — or

— + ^ is an integer, whether positive or negative. Since

k is a fraction, let it = —
, jy and (j being integers.

1^ If— be an integer, let a + bx™ = y\ -.'

p

x"'-Ulx = :t^—
.
K^

)
n dy.

By these substitutions, the differential becomes

^ . yP+ 'i-n

?lJi -^

m .

n
which is rational, since— is an integer.

7)1 p^. If f-
-^ be an integer, let a + ax" — x\f' \'

n q ° ^

a
a?" =

A + B.r" - ^

(a -I- B^")^ = -

P p,<iyP

m

A"
w

(y/-B)«
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x'^-'dx = —; dj/.

M(y^— b)"

By these substitutions, the proposed differential becomes

, . , . . , . m, p .

which IS rational, since 1- -— is an integer.
n q

°

(222.) These are the only cases in which methods of

rationalising binomial differentials have yet been assigned,

and are therefore the only cases where their integrals can be

obtained by the methods given in Sect. II. Integration by

parts, however, furnishes means of reducing the integration

of given binomial differentials to that of other binomial dif-

ferentials with lower exponents ; in which case the final in-

tegration may frequently be completed by analytical artifice.

In general, then, the integration of the formula

may be made to depend on the integration of a similar

formula in which the exponent of either a; or x is less than

m — 1 or Tc. It will be necessary to consider separately the

cases where the 711 and k are positive and negative. We
shall therefore establish the following equations

:

I. Ifm > 0.

^m-n^K+l (m-tl)A ,.

•^ {kn-\-m)B {Jm-\-m)vr

in which m — 1, /w — 2, m — 3, • • • • being successively

substituted for m, the exponent of x will be continually re-

duced.

II. inc > 0.

, , ,
.r"'x^' knx ,. . , 7

rx"'-'x^'d.v - Jr 7 /x^'-^x^-UL^y^ kn\m ^ kn\-mr
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in which k — 1, /t — 2, &c. being successively substituted

for k, the exponent of x is continually reduced.

III. If 7« < 0.

•^ VIA JRA "^

where the negative exponent of <r is diminished.

IV. If A; < 0.

' {k— l)?iA {k— ^)nA^

We shall consider these formulae successively.

(223.) 1^ Let

/V"'-'x^^iLr =fx'dx" = x'x" -fxHx!,

where x = a + bx'.

The formula J'x'"~^x!'dx^ may be put under tlie form

jx-ni-nyrk^n-i^j,^ SO that wc may suppose

x' = jr"-", rZx" = x^x'^-^dx,

•.• dx' = (w — n)a7'«-"-ic?.r, x" = -r—rr—

,

since dx = ?iB.r"-'J2. Hence we find

fx^'-^xhlx = '77—-Tn 77-—TT—/^'"-"-'x^+'d^\

But
X^+l __ x'^x = X^(a + BX"),

•.• x^+' = AX^^-f Ba:''x*.

Hence
y^m-n-ix^^+ijj _ A/r'"-"-'x*rf^ -f B/r'»-^xMr.

Making this substitution, and collecting the integrals

a:'"-"x*+^ - a(w—?i\/a:'"-"-ix^^af.r_____
^

^*H-;.j.'V+l (//i— vOa
^ (/m-f?/i)B (/Lvi rw)R'^ • J
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Thus the integration of the given differential is made to

depend on that of the differential

It is obvious that by a similar process the integration of

this last may be made to depend on that of

and by continuing the process, the exponent m — I will be

successively reduced each step by n. If m be a multiple of

n, the integration will !)y this process be completely effected,

for the coefficient of the integral after each step is m di-

minished by a multiple of 7i, which must therefore ultimately

vanish, and the integration will be completed. This is the

case already mentioned, where — is an integer.

This formula of reduction expressed in general is

y,m—rn vfc+\
frf,m—[r—\)n-l^kflj,
^ [kn^m" {r—l)n]B

where r is the number of reductions which have been made.

(224.) 2°. We may also, without difficulty, obtain the

formula for the reduction of this integral, by which the ex-

ponent of X is continually diminished. This may be thus

effected

:

X* = X^'~^X = AX^~* + BX^'^X",

•.'foo^-'x^<dx = a/^'"-'x*-'J^ 4- B/5r'"^"-ix*-'rfa:.

But by [1], we find

J}^+n-l^k-lf]^ _ X'«X*

mA

Substituting this in the preceding equation, we find

^
k7i-{-m kn +m^ "- ^

By the successive application of this principle, the ex-
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ponent of x may be diminished at each step of the process

by unity.

(225.) 3°. Ifm or Jc be negative, the formulae [1] or [2]

will not effect the required reduction, for the exponents will

in that case continually increase. They will, however, by a

slight change, give formulae fitted for the purpose.

By [1], we find

'^
(7/1 —Tz)A {m — n)Ar

Substituting for m in this n — m, we find

fx-'^-'x^dx = ^ --fx-^'+'^-'x^dx' ••

m-
By the successive application of this formula, the exponent

— 7» — 1 is continually diminished.

(22G.) 4°. Also from [2], we find

x^'x^ kn-\-m^.
, , ,

fx'^-^x^-'dx = ; 1- -7 fx'^-^x^dx,^ kuA kUA "^

Substituting 1 — ^' for /c, we find

fx'"-'x-^dx= rr =^j r^-— fx'^-'x-^+'dx [41,-^ {k—l)nA (A;— 1)WA'^ ^ ^

by which the exponent k is continually diminished.

(227.) V. The integration of

f(x'"", x«, x'', • • • •)x''-^d.r,

where x = a + bx"^ is effected by the transformation

X = 2^
D being the common denominator of all the fractional ex-

ponents a, b, c, ' ' ' • For then

;2^-A
, ,

Dz^-'dz
x^'-^dx =.

B nji

by which the proposed formula becomes

K^'"—

aV«
, ,, -I]

7IB
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where «', h\ - - - - are integers. This is rational witli re-

spect to z.

(2^8.) VI. The same formula when

A + B:r"
X = -r-,—;

—

a'+b'^"

may be rationalised and integrated by the transformation,

the result of which will be analogous to the former.

(229.) VII. The differential

x"'f(x"', ^/A + B,r'* 4- cx^")d:c

may be rationalised by putting a?" = z, by which it becomes

—z n . pfe a/a + bz + c;s®)fZ2,
n ^ ^ '

which comes under the form of (V), and may be treated as

in (220.).

SECTION V.

Praxis on the integration of differentials, whose co-

efficients are irrational.

L ' *
_ \'{-X'^—X^

Ex. 1. Let tidx — ^

—

dx. The common deno-

l+x-^

minator of the exponents is 6, *.* let x = z^,

1 + 2^

which, by effecting the division, gives

ndx= - 6 i z^dz- z^dzs^dz+ z'^dz— z^Jz -j-dz— t-j-^ r

,

which being integrated, gives
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fvdx --

z-^ z''
.

2* 2-^

- tan,..|

Ex. % udx =
dx

fudx =

Let z'^= a-\-bx, '.'

jdz.

dx=
9.zdz

IT'
''

y a/« -f bx.

Fv 3. ?/(Z^ =
^o:

1. Let ft2 _|_ ^.r :
— -a

a'Va^-j-^j

^zdz == bdx, and
z'^-a!'

-. Hence
' - b

udx =
2t/2;

which has been iiitegrated in Section III. Ex . 1.

Ex,. 4. wJ^ =
dx

1^ Let c > 0. By the transformation in (220.), this

becomes

udx = 2 vc ^
B—2cy

which being integrated, gives

fudx = - —-l{^cy - b) = —- I

-v/c ^/c ^cy~2

After substituting for y its value, and concinnating, we

find

fudx = -^ I \ 2c.r > B + 2v^cVa + b^t + c^^ f

.

a/c
^

20. Let c < 0. The transformation (220.), gives

9dy
fudx = -/

c^fl'

•.'fudx = —= cot.""^ ^/c.^^,

Vc
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2
,
Va^^-oc

\'judx = —=cot.~^

—

.

v/c \/x-x^

The integrals just found may be presented under dif-

ferent forms. The following are among the varieties they

may assume

:

1°. When c > 0,

fudx= ± —^ I < 2c.r+B+2v/c^A + Ba7+ c<r« j [1].

When J? = rendersy^J^ = 0, then

fmix = ±~l ^^^ + B±2v/Cv/A + B^ + ca.^ .... [21
Vc b+2a/ac

-"

the upper signs being taken together, and also the lower.

^. When c < 0,

>^ = "7= sin.-^-^^ .... [3],
\/c 'v/b-' + 4ac

1 ^^a/Ca/aH-bj^-co?'
~ C0S.~^ : [4],

1
,

2c.r—

B

_^,= —^ tan.-' r-—=r . . [5],
>V/C 2v/C.v/A+ Ba?— CO?*

1 ^S^CVT+B^^^^C^

1 ^b2+4ac
sec."

Vc 2a/Cv/ a+b^— ca;*
[^],

1 _^V^M-4ac= —:: COSeC. *—
7;

• • • • [81,

= —= ver. sm.-^ \ . ^ • • [9].

2v/C B- + 4AC J

The constant should be introduced when these are applied to

particular cases.
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dx
Ex. 5. udx = — . In the preceding example let

^^2-+. ^2 v s i-

c = 1, B = 0, and a = ± a-^ •/

fudx = I2(x + -/jr2 + ««) :zz /(^ + Va?~ ± a^) + /2.

dx
Ex. 6. 2/c/^ = — ^ . In Ex.4, let c = - 1, b = 0,

and A = fl^, •.*

^(7a: = sin.—'—

,

this is one of the elementary integrals in (199.).

Ex. 7. udx = -v/a* + x^ -. dx. Let Va^ + a?* =3/ - r,

•.* w^a; = ydx — ^J,r, '.'Judx znjydx — ^jf^.

Substituting for Jjc its value, and integrating, we find

Jydx = i/ + Wiy.

'.'fudx — Ix ^/a^ + X- 4 ia^ + l(iH{x 4- -v/a* -fa:'').

Ex. 8. udx = . This is one of the elementary

integrals (198.), and

Judx = cos.~~^r = (p.

But it may be also put under the form

, dx

.^^x^-l

'.' by Ex. 4, putting a = - 1, b = 0, and c = 1,

\- ± (p^ ^l = l[a; ± ^/x" - 1].

Since X = cos. 9, ^x^ - 1 = ^/ — 1 sin. <p, and since

X = 1 gives 4> = 0, the constant = 0. Therefore

± (p ^/ ~.\ ~ /[cos.^ ± ^/ — 1 • sin.9],

'•• ^ = cos. <p + v^ — 1 sm. 0.

For the important consequences resulting from this formula,

see Trigonometry, Also Diff. Calc, Sect. III. Exs. 16

and 90,
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Ex. 9. Let udx = : , m being a positive integer.

By the formula [1] (223.), observing that /: = - i,

A = 1, B = — 1, X = 1 — ^% and 7i = 2.

^l_^2 m-1 m-l*^ Vl—x^
Substituting ?w for w -• 1, we find

•^ V'TIT^
""

w m -^ ^/l-_^2'

By successively ascribing to m the values 1, 3, 5

we find

xda;

^ iT^cilr :; ^ xdx

J —==, = - |a^^/l - ^^ + 1-/-
Vl-o^- '"^/l-or^

From whence we deduce

xdx -—
/ = - a/1 -

jfdx /I g 1.6 , 1.4.6 , 1^.4.6\

pa
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If the values ascribed to m be the numbers of the series

0, 2, 4, 6, • • • • we find, in hke manner,

dx .

'

X'dv 1

^ ^Wr 1 3 1.3 ^ 1.3 . ,

^ xHx 1
,

,1.5 , 1.3.5 , ^ 1.3.5 . ,

x~^dx
Ex. 10. 2^£^ = — . This example comes under

the general formula [3] (225.). In this case x*=(l —x"^) ,

•.• A = 1, B = — 1, 7* — 2, and k = — -^. Hence

x-"^^'dx _ X-'" ^/l-x^ m-l x-"'+^dx

Substituting -- w for — w — 1, we find

P^__^ Vl -^^ m—

2

iZ^

x""' ^1 - x'^ (m - l)x'"-' m-r ^'«-2^ 1- j;2*

This formula is subject to an exception when w = 1, for

then the second member of this equation would be infinite.

The integration of this case must therefore be effected upon

independent principles. Let 1 — .r^ — z-, *.•

zdz
X = */l — z^. dx = ,

dx dz

X^/l-^X^ 1-2'^'

* If m = 0, the formula fails ; for the second member becomes

infinite ; in this case, therefore, we must have recourse to one

of the elementary integrals.
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which being integrated (Sect. III. Ex. 1.), gives

^ dx _ 1 1 + ^

_ _1 l-f-\/l— .37^

2 i-./^rF^'

which, by multiplying its terms by the numerator, gives,

after reduction,

Hence by successively substituting for ??*, in the proposed

differential, the numbers of the series 1, 3, 5, we

find

dx
_^14- n/1 -^'

dx _ \/2E^ 1 l+ v^l- <y'

dx v^l-.r^ 3 ^1-^-^ 1.3 1+ Vl-->y'
«/ 5/1 ^ /I. ^4 /I. C)^i ~ O /I.^yi-_^» 4.1* 4 'Zx' 2.4 ^

And by the successive substitution of the numbers of the

series 2, 4, • • • • we find

dx \/\—x^

x\/l-x' X

dx _ y/l-X^ 2a/1— JC*

dx _ ^n -2^ 4 y'l- ^^ 2^ ^yl-x"^

x^ ./l^^ ~ ~
5a;^ ""^ 3^^ ~ 3.5 '

a;

The following examples are added for the exercise of the

student in the integration of irrational functions.
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Ex. 11. Let udx =

a + bx = X,

xdx ... 2

x^dx 2

x^
vx

x^dx 2

Ex. 12. udx =
1'

x'^{a-\-bxY

a -\- bx = X,

•^
I a^x^ a^ x^x"

XX

%zxl^~\ ao^'flVv/x 2«^'^^^/x'

X X

f,dx_/ 1_ 76 .^_?^^_1
•^

4 l-^V Sax^'^l2a'-x^'' Ma^x 8a*J\/x
iT X*

35/r _Jjc_

16a*^^v/x*
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Ex. 13. udx
x'^dx

[a+ baiy

a + 6a: = X,

dx
J 5

"'""^
2

Av /v'

ai5

X^

X^

/^= (ix^ ~ 3ax^- 3a^x + i^Ogi^T^'
x^

Ex. 14. udx — -jj

(a + bx)^

a + bx = X,

dx^ _ 2

X*

Xdx ,
. , 2N

^

x^dx

/f!^=(x' + 3ax'-a'x +^»)^^.
X^

Ex. 15. udx = x'''dxs/{a + 6a;),

flj 4- fea? = X,

2x^x
fdx*/x = -g^,

2xVx
fxdx^/x = (ix - T^)—;^'

2x /x
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fx^dx^^ = (^x3-fax" + 4a*x — |a^)—^.

Ex. 16. ud^ = ^VX«±if)

a 4- 6a; = X,

Axt^y. ^
,

^dx

X •^.Tv^x'

^dx^x^ */ji h dx
^ x" ""IT'^Y'^ x^k'

dx^x^ %^x b\/x b^ dx
•^ x^ 2ax'-'^ 4^ax ""Sa-^ ^Vx'

-c, ,^ , dx{a^bxY
Ex. 17. «d^ = i^ '

a + ^iT = X,

3

y— = (ix+a)Wx+«y—

.

1. 3.

dxx^^ x'-s/x 3b dxx^
•^"^ 'ax' ^Ww^ X '

^rxj_/ 1 6_\
^

3^ fc*

(Irx^ / 1 5 Z>" \
^ ^ firx^

Ex. 18. wdo?

(a-\-boL

a + 6a;^ = X,

X*

6.

-•^v'x'

A-
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X

In general,

dx 1

or/ —; -7—?:= r sin. '^Ta/——

j

The first expression is real when h is positive ; the second

when h is negative. Both a and h cannot be negative at the

same time. Hence, we have

dx 1

Tr ^ c?.r 1 • _i ^ 1 a — hx^
11./—- -7—7r=—7 sm. ^ x»J— =—71 cos.~^V >

1 a -26^7^ 1 ^v'^= 77-77 cos.*^ = -77 tanff."^—: r-T,

__1_ , v/(^-6^«)_ 1
cot. ~ * -,— = —77 sec,

~
' V-

y/b ' ^x/b s/b • ^ a-bx^'

1 « 1 . 2/^^2
= —7 cosec.-^ v'in-5~77 vers.sm.-^ .

All these circular arcs vanish when x = 0.

Particular cases are

dx

dx

— tang.-^-77 -r= cot.-* = sec.-J-777
^ ^{a— x^} X v^(I—J78)

= cosec.~* — = |vers. sin.~*2«r'^
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The integral /* ———T"t-7>. can only vanish on the sup-

position that X = 0, when the upper sign is taken, and in

this case

dx 1 ^ / b a-i-bx^

Ex. 19. ifdx =

dx __ dx

xdx >v/x

^ijlrib'

xHx^xVx a dx

xHx_/x- ^\

xHx_fx^ ^ax\ 3a'^ dx

J^~V^-\^'Sb'^r'''^Sb^'^ ,/x*

xHx_ / x^ 4tt^ Sa^ N

•>^~7^- V5^""156'
"^1

5/>V
^'''*

Ex. 20. wrf^ =
x"*V{(i-\- bx^y

a + 6a;® = x,

' x^y.~^ x>^x'

dx _ \/x

•^jr«>/x aa:'

r ^ -. ^^, ^ ^
<^^
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In general,

__^r 1_ V(g-f5:t^)-^^a
-^ x^{a-{-bx'')^2s/a ^^'^ {a -\-hx^) + ^ a'

y, dx 1 / 6\

the first of which is real when a is positive ; the second

when a is negative : a and h cannot both be negative at the

same time.

J ^
dx ^J[_ ^{a-^bx'')-^a

1 , s/{a^lx'^)'-s/ci

where <v/a may be positive or negative. This integral can-

not vanish when ^ = 0.

TT ,. dx 1 h
11./

—

— J-—=—- sec.~*j7 \/ - =

1 6.r2 — a—- tane.~' »/ •

1 a 1 Aa/^
=—- cot.-^ ^^—; = -7" cosec.^' .. _ -,

»Ja ^ hx"—a v/a s/{bx^~-a)

1 . -v/a 1 2a-bx"
=— COS."' 7=;r-7- COS."' —j—^^—

,

•

1 . , V{bx^-a) 1 . 2(6:r«—a)=-—- sm.-i -r— =pr-r vers, sm.*"' , „
—

Va X x/b 9>x/a bx^

All these integrals vanish, when x = \^-j-', when 07= they

cannot vanish.

Particular cases are

dx v/(l+^^)-l

^ ^ , V(l-a:^)-l , 1 - Vg -^')

•^^7(1^^)==^''^*—:^— = ^^^*—^ '
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= cosec.-'—m—i^ = COS. ^ — = fcos. ' —j—

,

= sin.- = iver. sin. ^
^ .

SECTION VI.

Integration by series.

(230.) A series representing the integral of any dif-

ferential may always be found by developing the differential

coefficient in a series of powers of the variable, and inte-

grating each term of the series after multiplying by dx.

Thus, if X represent any function of x, and

X = ±\X'' -f TiX^' -\- CX"" ....

^ ,
AX""-^' T&X^-^^ CZt^"+»

• •/^'''^ = irTr + iTr+7TT- •

•

Although such a series is always an analytical representation

of the integral, yet it is of no use in obtaining a value, or

approximate value of it, except when it converges. If the

value assigned to the variable be very small, this will be the

case if the exponents continually increase, or if the series

ascends. But if the value assigned to the variable be very

great, it will only be the case when the series descends, and

involves negative powers of the variable.

Various analytical contrivances have therefore been used

for developing functions in series of these kinds.

This method of integration is also useful even where the
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integral can be assigned by other methods under a finite

form.

If the two integrals thus found be equated, a develop-

ment of the finite integral will be obtained, and, in general,

this process is attended with much greater facility than the

direct development of the integral itself. We shall there-

fore give examples of this method of development and in-

tegration.

PROP. LXXX.

(231.) To develop an arc (p in a series ofpowers ofits

sine.

Let sin.(3 — X. \- d(d = . Let (1 ~ jr^) * be^ ' ^
v^l-^2

developed by the binomial theorem,

.1 .
-^

1 1 1-3 .
l-^-5

« .

L3.5.7 ,(1-.^-) =i+_.,.+ _,.4.._^,a + __,s....

Multiplying by dx, and integrating both sides,

1 ^ 2 3 ' 2.4 5 ' 2.4.6 7

which is the development required. No constant is added,

since x = renders ^ = 0.

PROP. LXXXI.

(232.) To develop an arc in a series ofpowers of its

tangent.

Let (p = tan.-i.r, •.• dp = j---^. Developing j^^ by

common division, we find
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1 -. o . «

J-p-^^
= 1 - ^~ + ^' - -^-^—

Multiplying by dx and integrating^ we find

x x^ x^ x'^

"^ ^ T'""3"^"5 7"

No constant is added, since when ^ =:: 0, .r = 0.

PROP. LXXXII.

(233.) To develop an arc in a series of' pozvers of its

cosine or cotangent.

dx
If C5 = cos."^^:, ••• do = . And if 0' = cot.-^j-,

dx
',' dp' r=— - . Hence the developments in these cases

X ~j~X

differ only in sign from the two former. But since in these

cases <p and x do not vanish together, it is necessary that a

constant should be introduced. Let this be c, '.• in the

first case

(p = c — sin.-^.r,

'.' cos.~^a: 4- sm.~^a: ~ c, '.• c= -r-.

In the second case, also

cot.-i^ = c — tan.-^f,

TT

The sought developments are therefore

<P = -^ -
2 1 1.2.3 2.4 5

,

TT X X^ X^ X"^

"P -T-T +^-T + T'"
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PROP. LXXXIII.

(234.) To develop the versed sine ofan arc in a series of

powers of the arc itself

. dx dx
Let <p= \e\\ sin.~^ir, -.' a<p =

Developing (1 — i^) by the binomial theorem, we

find

Multiplying both sides by —r=., and integrating, we find

^^x

'^~
^/si"''^

^'^ "^2.4 5:2"^2X6~*7.4 r
No constant is added, because when a- == 0, = 0.

PllOP. LXXXIV.

(235.) To develop the logarithm ofa given number in a

series,

dr
Let the given number be x, we have dl{\ -{x)= . By

X. ~\-X

division

~ \ — X •\- X^ -^ X^ -{ X"^ ' ' ' '

\-\-x

1 _2_ J_ 1 1

07 + 1 X X^ X^ '^'^

Multiplying each of these by dx^ and integrating, we

find
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,3 «4- «SX X' X' X^ X^

X -1

l{x ^ l) = /^+-^j ^+73""

Hence by subtraction

^^— ^-1 x'— x~- x--'— x-
Ix -

1 2 ' 3 4

(236.) We shall now give some examples of integration

by converging series.

dx
Ex. 1. To integrate — , x being a high number.

aJX — 1

Developing by the binomial theorem, and integrating, we

find

^ dx , 1 1.3 1 1.3.5 1

^ V^2_i 1.2.^2 2.4 4.r* 2.4.6 6^6

This series converges rapidly.

Ex. 2. To integrate the same formula when x is nearly

equal to unity. Let a; = 1 -f w, •.*

dx ^ du 1 ^ _i / uW
developing ( 1 + "o" ) > and multiplying each term of the

development by u du, and integrating, we find

._du__ - li^u^ h3_2^ 1.3.5 u'

•^
v'2iH:^^ ^ ^^ 2.3*2

"*
2.4.5* 4 "2.4.6.7 8 '

Since ?4 = .r — 1, this series converges very rapidly.

Ex. 3. To integrate — dr bv a series, e being

very small. By the binomial theorem

sZ-^-eV = 1 - 4.V- l-^e*"^-~^^
the series to be integrated is therefore
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dx c- 1 „ . 1.1 . . 1.1.3^ dJC C , 1 , , 1.1 . . 1.1.3 « « 7

VI -^*^ ^ ^•4' 2.^.6 3

Each term of this development comes under the form

which has been integrated in Sect. V. Ex. 9. Substituting

therefore for

dx x^dx x*dx

their values thus determined, we find

dx^\-e^x" . 1 ^1 1
.

•^
—
TfT^"^

sm.-^0?+ -e^ [^^a/1 - x^ --sm -^^

1.1 _ 1 , 1.3
, q -„ 1.3 . ^ ,

1.1.3 ,r,l . 1.5 , 1.3.5 1.3.5 . , ,

+ 2A6^ ^(5"^ + O^^ + 2A6^) ^^ - "' - 2A6^^"-"^^J

+ •

Ex. 4. To integrate the formula

dx

V(^cx-x^){b-x)

Developing, we find

(6-.)-* = r*(i-|)-^

_a"^5i i_-^ 1:?^ 1.3.5 x^ X
~ 1

^"*" '2"b'^2A b^
"^ 2.4.6' 6^ " * " i

The question will then be resolved by the integration of a

series of differentials of the form

x'"dx

^^cx— x^

which is done by the second case of (220.).

(237.) The following is a very general method of ap-

proximating to the values of integrals by series.
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Let z =fudx + c, c being the arbitrary constant; and

let 2' be what z becomes when x becomes <v -f- h. Now,

since

dz d'^z du

dx ~'
* ' d.T^

~~
doo*

d^z dl^
—

^iL

and, in general, -^ = -y-ljzj. Hence by Taylor's series

h du h^ dhi h^
2' = z + ?/.-:r + -T--iro- +

1 ' dO! 1.2 ' d'if^ 1.2.3

h du hP- d'^ii h^
Z' - Z = U ' -z- ^ -J

—^-TT + -,-

1 ' dx 1.2 ' dr^ 1.2.3

The arbitrary constant disappears in this series, because

it is united to both z' and z by the same sign.

This series only expresses the difference between the

values of the sought integral, corresponding to the values

^ + A and x of the variable. Therefore, the integral itself

is so far indeterminate. But it may be observed, that, by

whatever process the integral may be found, it is in this re-

spect equally indeterminate ; for the arbitrary constant being

necessary to complete its value, all that is in any case ob-

tained is the difference between the whole integral and its

value when it becomes equal to the arbiti-ary constant. In

the present instance, the integral is said to be obtained

between the limits x and x + h. For when ^ = the series

vanishes, and it gradually increases M'ith h until x becomes

X -jr h, h assuming some proposed value.

,

(238.) The value of the variable x, which makes the in-

tegral vanish, is said to be the origin of the integral. When
the limits of an integral are not assigned or known, it is

called an indefinite integral. Thus all integrals in which

the value of the constant is not known, are indefinite in-

tegrals. But when the limits are assigned, they are then

called complete or deji?iite integrals,

(239.) In the preceding case, if the limits of the integral
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be supposed to be ^ = a and x — b, the value expressed in

a series will be

(6-a) (6-^ (ft~a)3
""•

1 ^^' 1.2 '*"'' 1.2.3

1 , //
, du d^u

where a, a' a" • • • -are what m, -j-, r-^ • • • •

dx dx^

become when or = «.

(240.) The series

^

h du h" dHi h^

is only convergent when Ji is very small, and therefore

would only determine the approximate value of the integral

between very narrow limits. This inconvenience, however,

is remedied by the successive application of it. Let z, a,

du d^ii

a', a", • • • • be the values of z, u, ^, -r-:^, corresponding

to jr; 3i, Ai, a/, a/', • . . . those corresponding to x -{- h;

%, A2, A2', a/, . . • • those corresponding to ^ + 2A ; and,

in general, Zn, a,j, a„', a„", • • • • those corresponding to

X + nh.

Hence we obtain the following series

:

h , h^ „ h'

z,-z,-A,^
1
+^^ 1.2

^""^
1.2.3

^3 ^2 — A2 •

^ + A2 •

^
g + A2 •

J g g

Zn Z)i—i — A„_i • - + A „_i* - Q qT''^ m—l*n q a • * *
*

Let s(a) signify a + Ai + A2 • • • • A„ ; and let a similar

symbol express the sums of the other coefficients. By ad-

dition we find
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r, ~ 2 = s(A) y 4- s(a')j^ + Ka'O-J;;^ • • •
•

This series converges the more rapidly the smaller h is

assumed. By these means we are enabled to integrate by

series between any proposed limits. As before, let the

limits be x — a and x = b. Divide b — ahy n, and let

= h. The value of the intei^ral will be
n

^"~^~
1 ' n '^ is' n"' '^ 1.2.3* 7i-^

which may be made to converge with sufficient rapidity by

assuming n sufficiently great.

It is obvious that this method becomes inapplicable if any

exception of Taylor's series lie between the limits x — a and

X =z b; which is indicated by some of the coefficients be-

coming infinite.

SECTION VII.

Of the integration of differentials whose coefficients are

exponential or logarithmicfunctions ofthe variable.

(241.) The integration of transcendental functions is

effiscted by the aid of the several formula? already esta-

blished for algebraic functions, united with some primitive

formulae peculiar to themselves, and derived immediately by

inverting the rules for differentiation. These functions may

assume such an infinite variety of forms, that no general

methods of integration can be given ; and, indeed, eren

were a classification possible, there are many formulae whose

integrals have not hitherto been assigned under a finite

form. All, therefore, which an elementary work, such as the
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present can effect, is to lay down the elementary integrals

peculiar to each kind of transcendental functions, and ex-

plain the methods of integrating some of the most general

formulae by the union of these principles with those of al-

gebraic functions. Every thing after this must depend

upon the sagacity and expertness of the student in discover-

ing transformations and artifices calculated to facilitate the

integration of such formulae as may occur, either by re-

ducing them to others of a more simple form or more easily

integrated, as we have done in Sect. IV., or by bringing

them at once to an algebraic form. An approximation

may always be had by the method of series explained in

Sect. VI.

(242.) \^u = a% •.' du — a'laclx. Hence

this is the elementary integral of exponential functions.

(243.) A differential of the form za^dx, where z is an

algebraic function of a', may be integrated by making

du
a" = Mj •.• the differential becomes zudx, but udj^ — -r-,

'.•Jza'dx = -Y-jF(u)du, which may be integrated by the

rules already given.

(244.) By differentiating ze% we find • -

d{ze') i= ze^dx -{- e^dz ;

and if —7— = z', we have
dx

d(ze') = e'iz + z')dx.

So that every differential of the form e'¥(a;)dx, and in

which f{x) consists of two parts, of which one (z') is the

differential coefficient of the other (z), is easily integrated

;

for in that case, Je^F{x)dx = e'z. An example will make

this evident. Let the differential be
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^(3^2 + ^5 - l)dir.

ISow, since —-j = o^% •.*

/e^(3^2 4. ^3 _ 1)^^ -- (^.3 _ lyr^

(245.) In most cases, however, it will be necessary to in-

tegrate by parts, and to establish formulae of reduction by

which the exponents of the functions which are involved in

the differentials may be continually reduced.

(246. ) To integrate the formula

udx = a^'x^dx.

Integrating by parts, we find

Judiv — — -x~fa'af'~'^dx.

By successively substituting w — 1, 7j — 2, • • • • for w, the

exponent of x will be reduced to 0, and the final integral

will hejlfdx = -j—. This process gives

•^
la I la (lay

W«7i— 1-w—2 »

{lay " I
(247.) If the exponent n be negative, this series will not

attain the desired end. In this case, however, by integration

by parts, we find

a^dx ^ a*
I

^^ ^a^'dx

which produces a continual diminution in the exponent of x.

The final integral in this case will bey" . This integral
X

has never been assigned under a finite form. It may, how-

ever, be developed in a series thus. By Maclaurin's theo-

rem (63.),

a'' 1 la
^
(lay {laf

x" 1 ^ 1.2
*" ^ 1.2.3

x"- + •
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Multiplying by dx^ and integrating, we find

a'dx
__

la X {laf x'' {Idf ^y__ _ /^ 4_ _ . „ 4_ __ . _ +
^^ ^ . ^ 4- ....

If w be a fraction, it will be also necessary to complete the

integration by a series.

All the preceding observations, mutatis mutandis, ^PP^Y

to the formula xa^'dx, x being any algebraic function of x.

(l/v dx
(248.) If w = l.v, :• du = -, •//— = Ix. This is the

X X

elementary integral of logarithmic functions.

(249.) Let uda: = x{lx)"dx. By integration by parts,

we find

fudx = {Ixffxdx - nf^—^ :fxdx.
X

Since x is supposed to be an algebraic function of or, the in-

tegralyk^o? may be considered as known.

Thus, when n is a positive integer, the above formula

will, by continual substitution for n, reduce the exponent of

the logarithm.

But if n be negative, it will be necessary to integrate by

parts in another way. Since

r^-^a^Y - (Mil!.

if the quantity x{Ixy'dx be supposed to consist of the fac-

(IxV^
tors XX and dx, we find

X

•^ (Ix)" l— rr 1—rr^ ^ ^ '

By the successive application of this formula, the in-

tegration will be reduced to that of the formula lxd{xx)y

which is of the form x'lxdx, x' being an algebraic function

of X, The integration of this will altogether depend upon

the form of jthe function x'.
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If .7j be an improper fraction, it may be reduced to a

proper one ; but the final integration must be effected by

series.

SECTION VIII.

• Praxis on the integration ofexponential and logarithmic

differentials.

_ ^ _ - a'^dx _
,

dz
Ex. 1. Let udx = • Let a* = z, '.' dx = -^s

and a^^ = z'\ Hence the integration is reduced to

2fudx = -j-J

which is integrated by series.

e'^xdx
Ex. 2. Let wcZa; = 7^—

—

-^. Let 1 + ^ = », •.'

udx = —I
],

e \z z- J

Since d-=- --, V by (244.),
Z lii"

fudx = —== .
•^

ze \-\-x

Ex, 3. Let^t^i: = x\lvydx. SinceJx^'dx — -,

we find by (249.),

m+l(IxY n
fudx = V -^ fx'^ilxT-'-dx.

Substituting for n successively n — \,n —%y &c. we find
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This series is finite when /* is a positive integer.

Thus, \in = 1, := 2, = ^, we find

rX^{lxYdx = ] (fxY rlx -f ,
' ,,, I',

r^^+i C 3 2 3

This is subject to an exception when m = — I.

Uxy^
Ex. 4. Let udx = ——dx, n being a positive integer.

Since — = dlx. *.•

x

udx — (lxyd{lx).

This is subject to an exception when n = — 1. See

Ex.6.

Ex. 5. Let waa.' = —:—
. Let 2:=a7'"+^, •.• x'"dx= ,.

Ix m + 1

Also Iz = (m -\- l)lx. Hence

udx = -,-.
Iz

Let /z — y^\' z = ^ and rfz; = ^^c^. Hence

udx = —^.
y

This is integrated by a series (247.).



234 THE INTEGRAL CALCULUS. SECT. VIII.

x"'dx
Ex. 6. Let itdx = -TT-yTj ^* being a positive integer. By

(249.), vve find

By successively substituting 7i — 1, 71 — 2, &c. for ?/, vve

find

1 (^+1)"-^ . ^^d7

(7z-l)(?i-2)..-.K Ix
'

when w* = •— 1, the formula of reduction becomes

dv \_

This is liable to an exception, since it becomes infinite when

?i = 1. The integral in this case is, however, easily ob-

tained ; for let

dx
udx — , ,

xlx

and let z = Ix^

' .'fadx — l{lx) = Vx.

The final integral on which /' , dx depends appears, by
[Lx)

x^^dx
the series just found, to be in generaiy—^— . Ex. 5.

Ex. 7. Let udx = Ixdx. Integrating by parts

fudx = xlx — X = x{lx — 1) -^ xli —
j.

dx dx
Ex. 8. Let udx = -y-^. Let z = Ix, •.• — = dzy •.'

Xl/X X
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ndx = —^,

SECTION IX.

The integration of differentials whose coefficients are

circularfunctions ofthe variable.

(250.) The elementary integrals on which the integration

of circular functions depends, besides those of algebraic

functions, are derived from the following differentials

:

7 • 7 J ^ sm.np
a ' sm.no = n cos.ma(p, a . sec.n(3 = ;;

—

m,^
' ^ ' cos.-np ^

7 7
'"'^^

a • cos.Tiis =~ 71 sin.n(5'd(3* a • cot.w<p = :
—-—

,

^ ^ ^' sm.«7i<}>'

nd(p _ n cos.nip .

d • tan.w^ = —r-
, d cosec.w<p ~ :

—

-—d<p.

From which are derived the following formulae

:

sin.W(5 sm.n<pd<p sec.n<p
/cos.n0do — , / =

,

cos.W(? d(p cot.ws
/ sm.w0a(p = -^, / -:—-— =

,

rf<f> tan.?i(p cos.nod<p cosec.w^

'^ cos.%<f> n ' "^ sin.^7i(p w

(251.) When the arc or angle enters the differential co-

efficient, it is generally disengaged from it by integration by

parts, either immediately or by the continual reduction of its

exponent. The following formula will illustrate this:

fK<pdx = (pfyidx — fd(pfy^dx.

Where x represents any algebraic function of jr, and x re-
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presents any trigonometrical function of the arc <p. Since

d(p must be an algebraic function of x, if (p be considered as

a function of x, it follows that the mlegrsXJU<^Jxdx comes

under algebraic functions, and may accordingly be obtained

by the rules already established. For examples of integra-

tions thus effected, see the next section.

(252.) When the differential coefficient is a function of

trigonometrical lines only, the integration may be effected

by various analytical contrivances derived either from alge-

braic transformations or from trigonometrical formulae. The

following are the principal methods.

(253.) I. All functions whatever of trigonometrical lines

may be reduced to functions of the sine and cosine. By

these means the proposed formula may be transformed from

a circular function to a differential of another kind. Let

the proposed differential, when its coefficient has been re-

duced to a function of the sine or cosine, be .xt/*^, x being a

function ofthe sine or cosine. If ^= sin.cb, *.• dd)— ?

dx
and if x — cos.o, '/ d(p— =. ; in either case the dif-

ferential will, by the substitution thus suggested, be reduced

to the form xJir, x being a function of x^ and may be inte-

grated by the rules already established.

(254.) II. When powers of the sine or cosine of an arc

occur in the differential coefficient, they may be developed

in a series of the simple dimensions of the sines or cosines of

multiples of that arc by the following well known trigono-

metrical series

:

sm. X
1 C . n .= =F ^j;-i\'&\ViMx — y sm.(w - 2)^' H-

n.ii— \ . )-j-^sm.(M _ 4)a; . . . .

y ;
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this applies to the case where n is odd, and the upper or

lower sign is to be used according as —^ is odd or even.

The series when n is even is

_ 1 f n
sin.".r =

-f- ^_^ i cos.w^ r-cos.(w — 9)x +

and — or + is used as -^ is odd or even.

In general,

n
2"-^

. cos.^T = cos.wzr + -:j-cos.(?? — 9)x +

n-n— l
^ „

^^
cos.(n — 4).r ....*.

(^55.) III. When the sines and cosines are connected by

multiplication in the diiferential coefficient, they may be dis-

engaged by the formulae,

2 sin.^ cos.y = sin. (a: -f t/) f sin.(x — «/),

2 sin.z/ cos.^ = sin. (a? + t/) — sin. (a: ~ ?/),

2 cos.jc cos.^ — cos.(^ + y) + cos.(a: — ?/).,

2 sin.;r sin.^ = cos.(.r — y) — cos.(^ + z/).

{^56.) IV. Functions of the sine or cosine may always be

converted into exponential functions by the formulae,

xJU'l —x^—l
% cos.iT = e -\- e

,

o ^ r- . iV^i -^V^
I^^/ — 1 sni.,37 = e — e ,

which may be established thus; by (33), Ex. 20, if

ti — cps.-r + V — 1 • sin. a?,

* This series terminates with the term in which the coefficient

of :r either vanishes or becomes = 1. In the former case, this

term should be divided by two. See Trigonometry.
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du =. + ^ — i . udx^

du
*.' — = H- v/ — 1 • dx.

',' u — e -}- const.

But the constant must = 0, since, when ^ = 0, w = 1, •.'

cos.a; ± V — \ sm.x ^ e

These two formulae being added and subtracted, give the

above mentioned results; and therefore their integration

may be reduced to that of exponential functions.

(257.) V. When the differential is of the form

sin.'"9 COS."(pdp,

it may be immediately reduced to a binomial differential,

and integrated as in (221.) et seq. by putting

sin.9 = X,

cos.(pd(p — dx,

•.' sin.'"(?5 cos.''(pd(p = ^"*(1 — jc*) =* dx.

Or by immediate integration by parts the three following

pairs of formulae may be readily obtained. In the first pair,

, one of the exponents is continually increased, while the other

is diminished. In the second, one of the exponents is di-

minished, while the other is stationary ; and in the third,

one is increased, while the other is stationary.

„ , sin'"'^'0cos''~^0 w— 1 ^.
fsiiV"(p cos\d(p — -= \-

—-r/sm'«+=^<3COS"-2(3rf0^ w+ 1 m +y ^

Jsm'"(pcos^(pd(p=— —-^ + -j^Jhm'"-'^<pcos''+^(pd<p

sin'"-^(pcos""*"Y 7n—l ^ .

/sm*"'pcosV«<P

=

1 —7~'fsin"'~^<p cosyd<p J^ ^ m-\-n m-\-9r r r m

„ , sin'""^'!pcos*'~V w— 1 ^. i
fsm"'0 cos <pd(p= ; 1- /sin"*^ cos"-"*<z5^<p 1
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sin'"'*'Vcos"+^<p m-\-7i+ 2 ^.
Jsm"'(p cosyd(p= +———-ysin'«+2 <pcos"9(^^

-. „ , sin'«+i(pcos'*+V m + n+2^. ^ ,
Jsmycos''(pd(p= q- ^

-i :7—ysm'"^cos"+2^6?^

These formulas are applicable, whatever be the values of

the exponents m and n.

(258.) These methods united with integration by parts,

will, in most cases, effect the integration of trigonometrical

differentials. Much of the facility of the process must, how-

ever, depend on the expertness and ingenuity of the analyst,

which is only to be acquired by practice, since no general

methods can be assigned for obtaining the integrals of these

functions. The processes for integrating several general and

very useful formulae are given in the following section.

SECTION X.

Fraxis on the integration ofcircularfunctions.

Ex. 1. Let uda; = -;
. Let cos.w^ = z.

^iii.nx

1 dz
',' dx — .,

and sin.wo; = Vl — ^"' Hence

d.v _ \ dz ^ \ dz

^ dx 1 \/l — cos.nx 1
,

•.* / -. =— / — —-=—Ztan.iw^.
sm.7?^^ n ^ l-{.cos.nx n

Ex. 2. Let iidx = . In a similar way we find
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dx 1 , / ff \/ =—/tan.-i( —-{- nx]= liaii.(A&^+ \nx).
^ cos.nx n \2 J

^ ^ ^

cos.xdz^
Ex. o. udx = —: = cot.a:dx. Since

sin.^

dsm.x = cosxdx, *.*

,
dsm.x , .

fcot.xdx — f— — Hm.x,
sin.o:

Ex. 4. udx = taxi.xdx. Since sin.xdx = — d cos..r,

,
^srn.xdx dcos.x

'.' fVdW.xdx = / = —/
,•^ '^ cos.^ '^ cos^

'

.'
f iccn.xdx = — Zcos.-r = Z seer.

Kx. 5. itdv = . Since2sin.<r cos.^= sin.2a?, •.'

sin.a:-cos.a;

f-. = f-^-ir- = Ztan..r (Ex. 1.).
•^ sm..r'Cos.jr ^ sm.xx

^ ^ ,
^v[\~^X'dx

,
. ,

Ex. 6. udx =
. Integratuig by parts,

^%\ii.~^xdx . ^ - Ixdx
J

= sin.~^.r- Ix —J

Let <p = sin.~^^, *.*

^ Ix ' dx ,., . ,

this may be integrated by a series.

Ex. 7. udx = a;" sin.~V<ij;. Integrating by parts,

.Y^+i sin.-^r 1 ^ a?"+iJd;

This integration fails wlien w = — 1. See Ex. 5.

Substituting successively 0, 1, 2, 3, • • • • for n, and re-

placing sin.~^Ji: and x by <p and sin.<p, we find

f(3d sin.^ =y^ cos.,(pd(p = <^ sin.<p -i-
i^ cos.<p,

/^ sin.^ cos^.fd(p = 4*? sin*""? + {- sin.<3 cos.<p — 4<P>
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^ 1 . 1 .
1.^

fy sm.*<}> cos,(pd(p = -^<psm.''<p -\- — sin.^tp cos.<p +=-Q-^cos.<p,

1 1 1.3

1.3

2.4.4^*

Ex. 8. wc?^^ = sin.(m(p f %) cos.(j9^ -h q)d(p. By (255.),

2 sin.(m^ + n) cos.(p(p -\- q) — sin.[(w -f ^)<p -f (w -f qy\

+ sin.[(m — p)(^ -f- (w —9')].

Multiplying by d<Py and integrating by the formulae (250.),

_ CQS.[(ry2 +jo)<p + {n +g)] cos.[(77i—p)(g

+

(w—9)]

Ex. 9. Let udx — ^m,^^xdoc. Developing sin."^ in a

series, we find, when n is odd,

- 1 V - ^ • . ^x
sin."a?^ +9;ji:7> sm.;/^— y sln.(7^-2)ir+

-yg-sin.(7i-4)a; .... ^.

Multiplying by dx, and integrating, we obtain

1 C cos.//.r n cos.(w— 2),r

W'W— 1 cos.(w--4)^

i1.2 w-4

In like manner, if n be even,

, . „ _ _ 1 C sin.??.r n sin.(7i-2)a?
/ sm.^ra.r=: +7r-—r^ — -r- — +

7i.?i~l sin.(w— 4).r 7

1.2 ^T~ r
By substituting successively for n the integers 1, 2, 3,"<

we find
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J^^m,xda: = — cos..r,

jsvn^xda; = i •
— %cos.Xj

Ex. 10. Let «dc = cos.'*;r • da;. Multiplying the series

71 W'W—

1

2^~^ COS."x= COS.nX + -:rCOS.(n — ^)iV-\ r-^— COS.(7l—4)07+

by da:, and integrating, the result is

_ , „ , sin.nx
,
n sm.(n—^)x

2"-ycos."xd.=-^p+y . -^Y^ +

n-n — l sin.(w— 4)a'

Hence, by substituting successively 1, 2, 3, • • • • for w, we

find

J^cos.xdx = sin. a:,

y*cos.*.r • c^ = i- sin.Sa: + ^ar,

J'cos.^xda; = -^^ sin.So? -|- 1. sin.a:,

y*cos.*j? ' dx = ^ sinAce + ^ sin.2j + |. • ^.

Ex. 11. Let udx — mi.x cos.'^xdx. Since rfcos.^? — —
su\,xdx,

r J r> « 7 cos.'^+^j;
Juax = — / cos.".a? d cos..r = r— .

Ex. 12. Let z/dj:- = cos.a: sin.'^o: • dr. This, in like man-

ner, gives

_ , sin."+^zr
Juax =

71+ 1
•

Ex. 13. Let. udx = sin.«.r cos.^'xdx. Let cos..r = z.
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dz = — sm.^A<r, sin.j: = VI — ;s% *.*

fad. = -y^;=p,
which has already been integrated, Sect. V. Ex. 9.

SECTION XI.

Ofsuccessive integration.

(259.) When a differential coefficient is of an order

superior to the first, as many successive integrations are

necessary to arrive at the integral, or the primitive function

from which it was derived, as there are units in the exponent

of its order, and the same number of arbitrary constants will

be introduced.

Let u be the integral, and let x be the differential co-

efficient of the nth order ; so that

d^'u _
dx^~^'

Let d"~^ . u = pdaf-\ Hence

dp

'.' dp = xdx.

Let the integral of this, found by the methods already

established, be

p - x' + A,

A being an arbitrary constant. Hence

d^'-hi

^^ = '^ + ^-

Again, let (Z"-^ . u = p'dx''-^, •.*

r2
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Integrating this as before, we find

y = x" + Ao: + B,

V ^j;^=x" + A.r + B,

where x" —^psldx and b is an arbitrary constant.

By applying to this a similar process, we find

d!^'Hi „, A B

^^3 = ^" + 1:2^= + T^ + '^^

And so on successively, we find

fZ'»-*// A , B „ c

^.r* ' L2.3 1.^ 1

/ .
A B

1.2....n ' l.^.-Ji-l

M ^ N
,

It follows, therefore, that the integrals of all differentials

of the same order agree in a number of terms expressed by

the exponent of their order, and that the coefficients of these

terms are arbitrary constants.

SECTION XII.

Ofrectification^ quadrature^ and cubature.

I. Rectification.

(260.) If s express the arc of a plane curve related to

rectangular co-ordinates, the differential of the arc is (126.),

ds = K/dy* + dx\
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By inverting this formula, we find an expression for the arc

itself,

By the equation of the curve, the value of -— may be ob-

tained in terms oix^ and the formula to be integrated in

order to obtain the arc will assume the form x^o;, x being a

function of x ; this being integrated between any proposed

limits, will determine the corresponding arc of the curve.

The determination of the length of the arc of a curve is

called Rectification. Geometry (329.).

(261.) If the curve be expressed by an equation related

to polar co-ordinates, the radius vector being represented

by r, and the variable angle by w, we have, Geometry

(329.),

V dr'^

dr
The coefficient -^, and r being expressed as functions of

w, this formula may be integrated by the established rules

;

At
or if -r- be^expressed as a function of r, and dj^ as a func-

tion of r and dr^ the formula assumes the form Rd^r, r being

a function of /-; and, accordingly, we can integrate by the

rules already known.

(262.) If a curve have double curvature, it must be ex-

pressed by two equations between three variables related to

three axes of co-ordinates. In this case, the expression for

the differential of the arc is

ds — Vdx'^ + dy^ + cfe*,

/dx'' df-

'Vd?^d?ds = dz\/ -T-.^-4z^ 1.
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Since by means of the two equations, x and 1/ may be ex-^

pressed as functions or z, the coemcients -7-, y-? may also

be obtained as functions of z, and therefore the formula to

be integrated is reduced to the form zdz, z being a functiou

of «.

II. Quadrature.

(263.) If an area a be bounded by a plane curve related

to rectangular co-ordinates, its differential is expressed thus,

(127.).

da = ydxy

•.• a —fydx.

The equation will determine y in terms of x, and the in-

tegral which determines the area assumes the formykc^r,

which may be obtained within any proposed limits by the

methods already established.

If the curve be related to polar co-ordinates, the area

usually obtained is that included between two radii vectores.

Its differential is expressed thus; Geometry (330.),

da — ^r^du)^

•/ a — hfr^duj.

By the equation of the curve, r« may be obtained in

terms of w, and the integration may be effected by the

established methods.

The determination of the area of any surface is called

Quadrature.

(264.) If the surface of which the quadrature is sought

be not plane, its equation must be expressed between three

variables related to three axes of co-ordinates. In this case

Ihe differential of the area is
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da = s^dsL^dif + dyHz"- f dx'-dz'

da = dxdj^Jl + ^+-,
^^ . dz'

dz dz
The partial differential coefficients -7- and -j- may be ob-

tained from the equation of the surface as functions of a' and

7/; and thus the value of a is obtained by a double integra-

tion, first, with respect to x, and, secondly, with respect to

1/. For

a ^fdy/dlcjl + %+%,df

/ dz" dz^
The integral Jdx \/ 1 -f- -^ + -fl,

^"^^y ^^ found by

considering x only as variable, and this being determined,

the remaining integral is found by considering y alone

variable.

This process may be illustrated by imagining the pro-

posed surface divided into indefinitely minute rectangular

spaces, any of which may be conceived to coincide with the

tangent plane to the surface. Any one of these spaces may

be taken as the differential of the area ; and since it is equal

to the square root of the sum of the squares of its pro-

jections on the three co-ordinate planes, the first of the pre-

ceding formula? for da is immediately obtained. The first

integration for x, considering y constant, gives the area of a

zone of the surface intercepted by two planes perpendicular

to the axis of «/, and the perpendicular distance between

which is dy. The final integration gives the sura of these

zones, or the area of the surface intercepted between two

planes perpendicular to the axis of 3/, and intersecting it at

any two points whose distances from the origin are the limits

of the integral. ^

(265.) A surface generated by the revolution of a plane

curve round any line in its own plane as an axis, is called a
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surface ofrevolution. The quadrature of such surfaces is

t'ffected with greater facility than other curved surfaces,

since they require but one integration, and are expressed by

the equations of their generatrices.

Let y = ¥(,v) be the equation of the generatrix of a sur-

face of revolution, the axis of revolution being assumed as

axis of .r, and the co-ordinates being rectangular. By the

manner in which the surface is produced, it is evident that

a section of it, by a plane perpendicular to the axis of .r, and

at any distance x from the origin, is a circle, the radius of

which is 2/. The circumference of this circle is therefore

^Tfy. If two such sections be imagined intercepting the arc

ds of the generatrix, the area of the circular zone or ba7id of

the surface between them will obviously be ^ityds. This is

therefore the differential of the surface ; and if a be the area

intercepted between two sections limited by any two values

of J?, •.• a =z %tfyds^

the integral being taken between the proposed limits. By
the equation of the generatrix ds may be obtained as a

function of3/ and dy^ or y and ds may be obtained as func-

tions of X and dx. In either case the integration may be

effected by the established methods.

III. Cuhatme.

{^Qia.) The process by which the volume included by

any given surface or surfaces is determined is called

Cuhature.

The equation v{xyz) = of a surface being given, we

shall imagine it divided into laminae by planes perpendicular

to the axis of z. By assigning to z any given value z',

and consfnering x and y to continue variable, the equation

^{ocyz^) = will represent the plane curve produced by the

section of the proposed surface by a plane through z' per-
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pendicular to the axis' of z. The quadrature of this section

may be effected by the formula yi/dx, the value of e/ being

obtained in terms ofx and z' and the integration being made

as if z' were constant. The integral in this case may be

taken between any proposed limits. If this area be con-

sidered as the base of a lamina intercepted between two

planes, the distance between which is dz, the volume of this

lamina is dz/jjdx. This may be considered as the differential

of the proposed volume, and the volume itself « will be

u —Jdzfijdx =jyydxdz.

(267.) If the solid be one of revolution round the axis of

2f, the area of the section perpendicular to the axis of z will

be 71*^*, \'Jydx = ttt/*. Hence the expression for the volume

becomes in this case

u — Ttfy'^dz,

The equation of the generatrix between 2/ and ^ being

given, j/« may be found in terms of z, and the integration

effected between any proposed limits by the established

methods.

SECTION XIII.

Examples of'rectijicationy
quadrature^ and cubature.

PROP. LXXXV.

(268.) To determine the arc ofa parabolic curve repre-

sented by the equation y — px".

By differentiating, we find

dy = npx'^~^dx,

••• dy"- + Jjc" = (1 + n^p^x'^''-'^)dx\

'.' s =./(! + «^/7V<«-*>)^ • dx\
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This can be integrated in a finite form only when 2(n — 1)

is a submultiple of unity or of n (221). In other cases the

integral may be expressed by a converging series.

If 71 = I,
'.• 27i — 2 = 1. In this case

s =/(l + Ip^xYdx,

The origin of this integral is a- = — q— . This curve is the

semicubical parabola, and is the evolute of the common

parabola. (See Geometry, vol. i. (396.) and note.)

To determine the general class of parabolas which are

rectifiable in finite terms, let m be an integer, and let

1 1 + 2W2 1+2OT

m = -^ ',- n — —^— . Hence y — pjs ^"» represents

the required class in this case. If 2(7i — 1) be a submul-

2
tiple of Uy let m — — — , m being an integer. Hence

2w J^
^ ,n = -, •.• y = px2»»-i. In general, therefore, the

number w is a fraction, whose numerator exceeds its de-

nominator by unity. If the denominator exceeds the nu-

merator by unity, the integration may be effected by changing

a: into y, and vice versa.

(269.) If the curve be the common parabola n = 2, •.•

ds = (I + 4/7*ar*)Vx.

Hence by the formula [2] (224.), we have

^l+4fpV

but by Sect. V. Ex. 4 [2],
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i 1

^p

the origin of the integral being a? = 0.

PROP. LXXXVI.

(270.) To determine the arc of an hyperbolic curve re-

presented by y = px~".

The equation being differentiated, gives

dy =— npx~"~^ dx,

'.' Vdj^ + djr« = (1 + ?iy^-2"-*)^rfjr,

•.• ds = ^-^^-^(.r2"+2 + n^p'^ydx,

'.' s =zfx-''-\n''p'^ + ^"+2)1: . ^^
This does not come under the criterions of integration

established in (221.), and can therefore only be obtained by

approximation.

PROP. LXXXVII.

(271.) To determine the arc ofan ellipse.

Let the equation a^y^ + h^x^ = a^b^ (see Geometry) be

differentiated,

du — r~c/a7,^ a'^y

a'y^+b^x^j .-df^dx- = -^^—dxK

But 0^*2/2 + 6*a« = a^6«(tt^ — e^x% and a^ = a«3«(a2 — x%
where ^ represents the eccentricity. Hence

s = /— dx.
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The series which gives the approximate value of this integral

is given in {236.), Ex. 3.

If j: = a = 1, and e be supposed very small, the series for

the quadrant of the ellipse becomes

TT/ 1.1 1.1.1.3^ 1.1.1.3.3.5, \

2\ 2.2 2.2.4.4 2.2.4.4.6.6 ' ' ' ' /
which gives the ratio of the circumference of the ellipse to

that of a circle quam proooime.

PROP. LXXXVIII.

(272.) To determine the area ofa parabolic or hyperbolic

curve represented qy y = px

Multiplying by dx, we find

da = px dx,

±71+ 1

j; yx

If this integral be assumed between the limits yx and

""" n+1
•

This integration holds good in every case, except when

w = ~ 1, in which it becomes

«=p^(^)
The integral taken between the limits x and x' being ex-

pressed thus,

rpti+l _^fn+i

shows that the area included between the entire curve and

the axis of x can only be finite when n + 1 < 0, •.* 7i < — 1.
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Thus the common hyperbola is the limit which divides the

class of hyperbolas which intercept with their asymptotes

finite areas from those which do not, and no parabola can

include with its axis a finite area.

PROP. LXXXIX.

(273.) Tofind the area included by two radii vectoresjrom

the centre ofan equilateral hyperbola.

The polar equation of this curve, related to the centre, is

r^ cos.^w = fl2

Hence

a^du)
,r'dm =

by Sect. X. Ex. 2,

* ""^ gcos.So;

a*
'.'J\r'^dw --:: — . Ztan (45°

i w),

the origin of the integral being a; = 0. If it be taken

between the limits w and o)',

a^ taiL(45M-a;)

PROP. XC.

(274.) To determine the surface and volume ofa cylinder.

A cylinder is produced by the revolution of a rectangle

round one of its sides.

Hence, in the formula

a = 9nfJydZy

y is constant, •.* a — 2TfySf y being the radius of the base of

the cyUnder, and s its altitude. Hence the surface of a
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cylinder is found by multiplying its altitude into the circum-

ference of its base.

For the volume

. u — itjy^dxy ••• ?^ = vy'^x.

The volume is therefore found by multiplying the altitude

by the area of the base.

PEOP. xci.

(275.) To determine the surface and volume ofa right

cone,

A right cone is a surface produced by the revolution of a

rectilinear angle round one of its sides.

The vertex of the angle being assumed as origin, and the

axis of rotation as axis of .r, the equation of the generatrix

is 2/ = px, p being the tangent of the semiangle of the

cone.

Hence, if a be its surface,

da = ^Ttfyds'^

but ds = Vl -\- p' ' d^, •.•

a = 2*^/1 ^p^fpxdx - Ti a/1 4- f-
• px'^,

the origin of the integral being x = 0.

Or if s represent the side of the cone,

a = Ttys,

Since ity is the semicircumference of the base, it appears

that the surface of a right cone is equal to a triangle, whose

altitude is equal to the side of the cone, and whose base

equals the circumference of the base of the cone.

If the cone be truncated, the integral must be taken

between the limits <v and jr' corresponding to the distances

of its bases from the vertex. Hence

n = -TTVl -f p« . p{x^ - a?'2)

;
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but (x — a:') ^/l -{-p^ = s, the side of the truncated cone.

Hence

Hence the surface of a truncated cone is equal to a

trapezium, whose aUitude is equal to the side, and whose

parallel bases are equal to the circumferences of its bases

;

or it is equal to the sum of the surfaces of two cones, whose

sides are equal to that of the truncated cone, and whose

bases are equal to the two bases.

To find the volume (u),

u = Tf/y^dx = ir/p'^x^dx,

the origin of the integral being a: = 0.

Hence it appears that the volume of a right cone is found

by multiplying its altitude x by one-third of its base 't^j/^,

and that it is therefore one-third of a cylinder in the same

base and altitude. (Euclid, lib. xii. prop. 10.) Hence also

may easily be deduced, Euchd, lib, xii. props. 11, 12, 13,

14, 15.

If the cone be truncated,

Since x - <r is the altitude of the truncated cone, let it

be A, •.*

u = i7rA(7/* + j/y + ys).

The terms Jttaj/^, J'^Ay^ are evidently the volumes of

cones on the bases of the given truncated cone, and in the

same altitude. And the term gT^Az/y is the volume of a

cone in the same altitude, and having a base which is a

mean proportional between the bases of the truncated cone.

The given truncated cone is therefore equal to the sum of

the volumes of these three cones.
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PROP. XCIL

(276.) Ofthe surface ofa sphere,

A circle being supposed to revolve on one of its dia-

meters, generates a sphere. Let the equation of the gene-

ratrix be

e/2 -j- J.2
-_ ^2,

Differentiating, we find

,
xdr

•.• dy^ 4- d.r^ ^ -——di'^ -^ ——

,

'r a — '^Ttfrdx = ^T,r{x — x'),

the origin of the integral being x^.

If ;r = r, the formula expresses the volume of a spherical

segment, whose base is a lesser circle of the sphere at the

distance x^ from the centre. Let that part of the axis of the

segment (the diameter of the sphere passing through the

centre of its base) intercepted within it be called v,

a = 9^Tery.

It is evident that 2rv is equal to the square of the chord c

of the arc, whose revolution generates the segment. Hence

a = TTC®.

The surface of the segment is therefore equal to the area of

the circle described with this chord as radius. Hence the

surface of an hemisphere is equal to the area of a circle .de-

scribed with a radius equal to the side of the square in-

scribed in a great circle, and the entire surface of the sphere

is equal to the area of four great circles, or to the area

of a circle described with a diameter of the sphere as radius.



SECT. XTtl. THE INTEGRAL CAtCULUS* 257

The formula

a = 2Ttr{x — x')

expresses the surface of a cylinder, of which the altitude is

(j7 -- x')f and the radius r (274.). Hence it appears, that if

a cylinder be circumscribed round a sphere, so that it will

touch the sphere both with its sides and bases, the part of

the cylindrical surface, intercepted between any two planes

perpendicular to its axis, is equal to the part of the sphe-

rical surface intercepted b}?^ the same planes, and the whole

surface of the sphere is equal to the cylindrical surface, ex-

clusive of the bases of the cylinder. The spherical surface

bears to the entire cylindrical surface, including the bases, the

ratio 2 : S.

If round the circle, whose revolution generates the sphere,

an equilateral triangle be circumscribed, one of its vertices

being on the axis of revolution, it will generate a cone,

called an equilateral cone, from the circumstance of the dia-

meter of its base being equal to its side. It appears from

plane geometry, that the altitude of this cone will be 3r, the

radius of its base >v^ . r, and therefore its side 2 ^3 . r.

The conical surface of this cone is, therefore, 6TTr^, or equal

to six times a great circle ; and since its base is STTr^, its

whole surface is nine times a great circle. Since the cir-

cumscribed cylinder, including its bases, is six times a great

circle, the three surfaces of the sphere, cylinder, and cone,

are in geometrical progression, and in the ratio 2:3.

PROP. XCIII.

(277.) Ofthe volume of a sphere.

The formula

u = Ttfifdx

becomes by substituting for j/^ its value r^ - ^',
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the origin of the integral being jr = ; or

u = 7r[r^(x - x') — i(a^3 _ j.f3)j^

u-'ir(x — x%r^ ^^{x- + xxf + x"")],

the origin being x = a:'.

To determine the volume of a spherical segment, let

X = r, *.-

u = J7i'(r - a/)[2r* — rx^ - x'^].

To extend the integral to the entire sphere, let ^'=— r,
•••

which is the volume of a sphere, whose radius is r *.

Let a be the surface of the sphere. By the last pro-

position a = 47rr®. Hence

u = Jar,

which is the volume of a cone whose altitude is r, and whose

'base is a. Hence the volume of a sphere is equal to that of

a cone, having its base equal to the surface, and its altitude

equal to the radius.

The volume of the circumscribed cylinder (274.) is ^irr^ ;

since 2r is its altitude and irr'^ its base. Also the volume of

the circumscribed cone is Sirr^, since its altitude is 3r, and

the radius of its base ^/3.r, Hence it appears that the

volumes of the sphere, cylinder, and cone, as well as their

surfaces, are in geometrical progression, and in the ratio

2:3.

This beautiful property was the discovery of Archimedes,

who was so charmed with it, that he is said to have ordered

it to be engraved upon his tomb.

* This formula evidently contains Euclid, lib. xii. prop. 18.
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%

PROP. XCIV.

(278.) To determine the volume of an ellipsoid.

Let the equation of the elHpsoid be

The equation of a section perpendicular to the axis of z,

and at a given distance z from the origin, is

The semiaxes of this section are

a^/c^--z*

c
?

B =i
b^/c^"-s'-'

c

The area of the section is therefore {Geometry, 378.),

This being multiphed by dz, and the result integrated,

giv«s

2 = being the origin of the integral.

If the integral be taken between the limits z and z',

u '-= ~(z - ;2')[c- ~ h(^' + 22/ + z'^)].

To determine the volume of a segment cut off by a plane

at the distance z\ let ;s = c, *.•

" ==
i^^«

- «')[2^'' - '" - <'''']

To extend the integral to the whole ellipsoid, let

z' — — c, '.'

u = ^Tfabc,

s 2
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Hence the volume of the elhpOTid is equal to that of a

sphere, the cube of whose radius is equal to the product of

the semiaxes.

If the ellipsoid be generated by revolution round the axis

a, b = Cf and the volume is

21 = ^irab^.

l£ a = b = c, the formula gives the volume of a sphere,

-the same as was before obtained (277.).

SECTION XIV.

Ofthe integration of differentials offanctiwis ofseveral

independent variables.

(279.) The differentials of functions of several variables

are of two kinds, 'partial and total (94, 95.). The methods

of integration are different for these. We shall first con-

sider the integration of partial differentials.

i\s a partial differential is found by differentiating the

primitive function, considering all the variables but one con-

stant, so the integration must proceed upon the same hy-

pothesis. To render the investigation more simple, we shall

first consider functions of two variables only. The prin-

ciples, when established, may be easily generalised. Let u

be a function of x and ?/, and let the partial differential

taken with respect to x be

doc

In this, N is a function of x and z/; but as it is derived

from the function u by considering y constant, so in the in-

tegration, N is to be taken as a function of x only. Let the

integral of N£^, under this point of view, be u, *.•
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U'= \] -{- C,

c being an arbitrary constant. This, however, is only con-

stant with respect to the variation of jr, and is therefore to

be considered as a function of «/, let it be Y, '.•

21 = \j -\- Y.

Hence it appears, that one partial differential is insufficient

to determine the primitive function, but will determine that

part of it which depends on the variable to which the partial

differential is related.

In a similar way a partial differential of a superior order

taken with respect to the same variable may be integrated

by a series of successive integrations.

(280.) But when the partial differential of a superior

order has been taken with respect to different variables, the

process is different. Let M be a partial differential co-

efficient of the second order taken successively with respect

to 9/ and X. Then if 21 be the primitive function

cT^u _
dxd?/

du d^u du

dx ~ ^
' dxdy ~ dy*

du = udi/.

Integrating this, y alone being considered variable, and

the arbitrary constant, which is a function of x, being x',

we find

u =jMdi/ + x',

V^=/M^^/+X'.

Since the integralJudj/ is known, let it be u', •.*

—-dx — u^dx + x'dx.
ax

Let this be integrated, x only being considered variable,

and we find

u =ijli'dx -\-Jk'dx -\- Y,

y being the arbitrary constant and a function ofj/.
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If/xj'da; = u smdjk'dx = x, •.•

Zi =: U + X + Y,

As the value of , , is the same, whatever be the order
axd^

in which the differentiations may have been performed, so

the integral will be the same in whatever order the in-

tegrations may be performed. This is expressed analytically

thus :

fdxJMy --^fdi/jMdx.

Such an integral is therefore usually expressed

Jfudxdy.

In u similar way, if u be a function of three variables, the

integral of the differential

d^u
j-^—jdxdj/dz -- mdxdydz

may be obtained ; but in this case there will be three arbi-

trary functions, and the integral will assume the form

J'udxdydz — u+x+Y + z.

And similar observations may be applied to differentials of

superior orders.

(281.) As a total differential of a function of several

variables is the sum of its partial differentials, so the in-

tegral of a total differential is the sum of the integrals of the

partial diiferentials. If, therefore, the partial differentials

be all given, the total differential may be found by the rules

which have been established. In order, however, that the

integration of a given total differential be possible, it will be

necessary to ascertain whether the parts which compose it,

involving the differentials of the variables respectively, are

the several partial differentials of any one function of the

variables; for this may not be the case, and if not, the

formula is not the total differential of any function, and

therefore cannot be integrated.
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PROP, XCV.

(282.) Given twofunctions of'two variables, to determine

whether they he partial differential coefficients of the same

function, and fso, tofind the primitivefunction.

Let M and n be the two given functions of the variables

X and
J/,

and let the primitive function sought be u, so that

we have

du du
-T- ~ M, -y- = N.
dr dy

Each of these being integrated, give

u=zfiidy + xJlAJ'

Y and X being arbitrary functions ofy and x respectively.

If the two differential coefficients m and n be derivable

from the same primitive function, it is necessary that these

two values of u should be identical independently of the

variables. Now since y is independent of x, and x inde-

pendent of 3/, it follows that y must be identical with that

part of the functionyN^i/, which is independent of .r, and x

must be identical with that part of the funciionfudx, which

is independent of 3/. These substitutions being made for x

and Y, if the two values of u become perfectly identical, the

two differential coefficients m and n must be derivable from

the same primitive function, and that function is the common

value of u thus found, an arbitrary constant being annexed.

On this condition, therefore, and not otherwise, the dif-

ferential

Mdx + tidy

is capable of integration ; and if this condition be not satis-

fied, the proposed differential is not the exact differential (a

phrase implying an integrable differential) of any function.
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(283.) The process for determining the functions x and y

may also be explained thus. Let the first of the equations

[1] be differentiated for e/, we find

du d\ dr

dy~ dy dy'

where v =Judx. Hence

Hence the complete integral will be

or otherwise by the second equation

u =Jiidy +ffM - -^jdi

where v' —J'-sdy,

(284.) The condition of integrability, already determined,

may be otherwise expressed. It follows from what has been

established, that if the two given partial differential co-

efficients be derivable from the same function, the formula

__
dw_

dy

must be a function of y, and independent oi x. Therefore,

if it be differentiated for x, its differential coefficient must

= 0, •.•

rfN d^\

dx dydx "~
'

d ^^
rfx d^\ dx

dx ~^
dydx "~

dy
"

= M, :••

du du
"

dx " dy'
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a condition which must be fulfilled, in order that thg

formula

M(Lc -|- Tsdi/

should be a complete differential.

On the other hand, it is evident from the differential cal-

culus, that if this be the complete differential of a function

u, the above criterion must be fulfilled, for by (96.),

dru __ (T-u

dxdy dydx*

du du

doc dy

dy '" dx ^

dM. _ rfw

' ' dy dx'

This is usually called the criterion ofintegrability,

(285.) The theorem expressed by the formula

df2v _ dM_

dxdy
~~

dy '

may be expressed also thus,

d.—
dx du—

5

• dx = -rr-dx.
dy dy

By integrating, we find

dv ^ ^M ,

dy ^ dy '

d-fudx ^du ^

dy -^ dy '

which indicates a method of obtaining one partial differential

coefficient of a function of two variables from the other, the

arbitrary function being understood to be annexed.

(286.) The rules for the integration of differentials of

several variables may be easily found by generalising those

already given. Let m, n, l, be three functions, each being

a function of x, y, and z; it is required to determine whe-
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|riier they be partial difterential coefficients of tlie same

function, and to determine that function; in other words,

it is required to assign the conditions of integrability and the

integral of

du = udx + Nfl?y + i.dz,

\' u =f(isidx 4- ^dij -\r i.dz).

Since m and n must be the partial differential coefficients

of u, considered as a function of d^ and «/, the conditions

dM _ dN

dj/
~~ dx^

must be fulfilled. In like mannei

conditions

Jm dh

dz" dx'

dN Jl

dz ~
df/

'

must be also fulfilled. If the given differential coefficients

fulfil these conditions, they must be derivable from the same

function of x, y, z; for by the first, m and n are derivable

from the same function of ^, 3/ ; by the second, m and l are

derivable from the same function of x, z; and by the last,

N and L are derivable from the same function of 3/, z. Hence

the three have the same integral.

It also follows, that

mdx + Ndf^,

Ndfj/ + Ldz,

i.dz + udx^

are respectively exact differentials, and the integral of the

proposed differential may be obtained by integrating any

one of these, annexing an arbitrary function of the re-

maining variable. Thus the sought integral would be ob-

tained under the forms

w = u 4- Zj

u = u' -f X,

71 = u" + Y,
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z, x, and y being arbitrary functions of z, x, and y re-,

spectively. The function z may be determined at once by

substituting for it that part of the functions u' or u'' which

is independent of ^ or j/ ; for since the values of u must be

identical independently of the variables, those parts of them

which are independent of oc and y must be identical. In a

similar manner, the arbitrary functions x and y may be

found.

These functions may also be determined thus. Let the

first equation be differentiated for z. The result is

dz

•-=/'(''• -i)-^'-
And, in like manner,

The process for integrating differentials of any number of

variables will now be evident. The number of equations

which give the criterion of integrability is, in general, the

number of different combinations of two variables, and is

therefore — ^ , n expressing the number of variables.

SECTION XV.

Praxis on the integration qfdifferentials ofseveral variables,

Ex. 1. Let du =-^-4—^. In this case,
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y ^

'.*J\iidx = tan.~*— + Y,

X
f^dy — tan.~^— + x.

X
Hence y = and x = 0, \' u — tan.~*—

.

y
Ex. % Let

du — (3a?^ + %ixy)dx + (a^* + '^y'')dy^

*.• M — 8.r* + %ixy^ N = «^^ + 3^\

'.'fudx = a^ -\- ax^y + y,

f^dy = aT> + z/3 + X.

Hence y — y^ and x = a?^ ; and by these substitutions, the

two integrals become identical. The differential is therefore

integrable, and its integral is

u = x^ + ax^y 4- y^.

Ex. 3. Let

du = (2Ay + B;r + D)dy + (2c.r + bj/ + E)dx,

',' M = Sco; 4- Bj/ + E,

N = 2a^ + B^ -f D,

\'Jkdx = CJ7' 4- Bj^j; + Eo; + Y,

ykJz/ = Aj^* + Bj/cT + DJ/ + X.

Hence y = Ay^ + By and x = cj;* + Ear, by which al-

ternate substitution, the formula becoming identical, proves

that the differential is integrable, and that its integral is

u = Ay"- -{ Bxy + cx^ + i>y + ex,

Ex. 4. Let

y X ' x'^ y"^'

Hence

_ 1 y \ X
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u. y
Hence x = and y = 0, by which the equations becoming

identical, the proposed differential is integrable, and its in-

tegral is

y X

X y
Ex. 5. Let

du — xdy 4- ydx r,
"^.5^ y^

1 1

^ yx^ xy^

-rfudx = yx -^ —^ H- Y,

f^dy = //^ + — + X.
yjc

Hence x = 0, y = 0, and

1

Ex.6.J.^?^t^^. Hence
y^x'--y'-

_ 2 _ Six

2 ,,»

'.'fudx = 9>l[x 4- ^x"- - y'l + y,

f^dy = 2Z[.r -{- v^" --2/'] - % 4- X.

Hence x = and y = — 2/j/,
•.•

u = 2I[x + ^x^ - y^] - 2/y = 21
x-\- Vx'^—y'-

y
Ex. 7. Let

Jd? yrfjr ydy {ydx— xdy) 's/ x"- ^y"- dy

Hence

K/x'-\-y^( x/^*+y' +J/)M = ; ,



870 THE INTECRAL CAT.CUr.lIS. SECT. XVI.

_ 1 Vx^+y^+y

fi[ence y -- \ly and x — llx, and the other parts of these

integrals being identical, the proposed differential is in-

tegrable, and its integral is

Ex. 8. Let

„ = M-^(./.r-,-^^-^)]-|--^-^g-^-

y'^ — xu
, x'^—ocy ,

s/x^'^-'if'

Hence x = and y — 0,
'.*

x-\-y
u ~

Vx'*-^y-

SECTION XVI.

The general theory of differential equations and arbitrary

C07istants.

(287.) Having in the preceding sections explained the

methods of obtaining the integrals of differentials of one and

of several variables, under all the varieties of form in which
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they present themselves, we now come to the consideration

of the methods of integrating differential equations *. A?,

however, this part of the science is of considerable import-

ance and difficulty, before we enter upon the details of the

methods, we shall offer some general observations on the

nature of differential equations, on the connexion of dif-

ferential equations of different orders with each other, and

with the primitive equation or integral from whence they

are derived, and on the constant quantities upon which that

connexion depends.

(288.) If an equation between two variables x and y be

differentiated, a differential equation will be obtained in-

volving the quantities .r, «/, and -j— , the last occurring only

in the first degree.

If this again be differentiated, an equation will be found

involving a*, ?/, -t~, and -r^* the last, as before, entering it

only in the first degree. In like manner the process may

be continued and a series of differential equations obtained,

each of which come under the form

where a and b are, in general, functions of the variables,

and the differential coefficients of orders inferior to the

7ith.

(289.) The order of a differential equation is determined

by the highest differential coefficient which it contains, as

the degree of an algebraic equation is determined by the

* The differential equations considered in this section are

those between but two variables. Differential equations of

several variables will be investigated in a subsequent section.
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highest power of the unknown quantity. Thus, a dif-

ferential equation, which contains no differential coefficient

higher than the first, is said to be a differential equation of

the first order. If it contain the second differential co-

efficient and none higher, it is called a differential equation

of the second order, and so on.

(290.) Differential equations, like common algebraic equa-

tions, are also distinguished by degrees. These are marked

by the highest power of the differential coefficient that

marks their order, which enters them. Thus, a differential

equation which involves no differential coefficient but the

first, and that only in the first power, is called a differential

equation of the first order and first degree. But if the

differential coefficient enter in the second or third power, it

is called a differential equation of the^r^^ order and second

degree or third degree, and so on.

It appears from the process of differentiation, that no dif-

ferential equation which is directly obtained from the pri-

mitive equation by differentiation alone can be of any degree

but the first. Whenever, therefore, we meet a differential

equation of a superior degree, it may at once be assumed

not to be the immediate differential of any primitive equa-

tion. The origin of differential equations of superior degrees

we shall find presently.

(291.) As an equation and its differential are deduced

the one from the other, the same values of the variables

which satisfy the former must also satisfy the latter. Hence

it follows that other equations may be deduced by their

combination. This circumstance indicates the existence of

several differential equations of the same order depending

upon the same primitive equation. Let v = be the pri-

mitive equation between the variables w and «/. By dif-

ferentiating this, we obtain v' = 0, v' being a function of .r,

t^j and Tj— . In general, v' involves the same constant quan-
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titles as v, except that constant of v which is independent of

the variables x and y^ for this disappears by differentiation.

If V should not contain such a constant, its form is not

general enough, and it is only a particular case of the in-

tegral of v' — 0. We shall, however, consider the integral

V = in its most general form, and shall therefore consider

v' = as containing all the constants of v = 0, except one.

Thus, v' = is the immediate differential equation of the

first order derived from v = 0. Now if any one of the

constants of v' = be eliminated between the two equations,

we shall obtain another differential equation of the first

order between x. ?/: and ~-.
^ dx

In this equation the constant which disappeared by dif-

ferentiation will reappear, and another will disappear by

elimination.

This latter differential equation will be perfectly distinct

from the former, since a constant is involved in it which is

excluded from the former, and since it excludes one which

is involved in the former. The differential equation ob-

tained by elimination may also differ in degree from that ob-

tained by differentiation alone. If the constant which is

eliminated enter the primitive equation in any dimensions

higher than the first, this will necessarily be the case, as will

presently appear. Hence the origin of differential equations

of superior degrees.

A similar elimination taay be practised upon each of the

constants common to the two equations v = and v' = 0,

and as many different differential equations of the first order

may be thus obtained as there are independent constants in

the primitive equation.

(292.) If the differential coefficient be eliminated by any

two of the differential equations of the first order, the result

will be the primitive equation in which the two constants,

T
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one of which is excluded from each of the differential equa-

tions, will appear.

Also, if either of the variables be eliminated by any two

of these equations, the value of the differential coefficient

will be obtained in terras of the other. In this case, also, if

the variable eliminated exceed the first degree, the resulting

differential equation will be of a superior degree also.

(293. ) The several differential equations of the first order,

all of which but one have been obtained by elimination, may

also be obtained by differentiation alone, by slightly modify-

ing the primitive equation. It has been shown that each of

the differential equations of the first order excludes a constant

of the primitive equation. In order to obtain the differen-

tial equation immediately by differentiation, let the primitive

equation be supposed to be solved for the constant as if it

were an unknown quantity, so that if a be the constant, the

equation will assume the form F(a7;z/) — a = 0. Under

this form, the equation being differentiated, a will disappear,

and an equation between the variables, the first differential

coefficient, and all the other constants of the primitive equa-

tion will be found.

The equation thus obtained must be necessarily identical

with, or reducible to, that obtained by elimination, since

they involve the same variables and constants. Irt the same

way all the differential equations of the first order which

were before found by elimination, or their equivalents, may

be immediately obtained by differentiation alone.

If the constant which is thus made to disappear by dif-

ferentiation rise to the second or an higher degree in the

primitive equation, then when the equation is solved it will

have more values than one, and radicals will appear in the

primitive equation which did not enter it before. These

radicals will, therefore, also appear in the differential equa-

tion obtained from it, and therefore the differential coefficient
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which must occur in the simple dimension will have several

values. Now as this equation must be equivalent to that

obtained by elimination, which does not include the above-

mentioned radicals, it follows that they must be produced

by solving it for the first differential coefficient, so as to

reduce it to the same form as that obtained from mere dif-

ferentiation. Hence it follows, that in this case the dif-

ferential equation obtained by elimination must rise to the

same degree as that of the constant in the primitive equation

by whose elimination it was produced.

(294.) By differentiating the first differential equation

v' = 0, the second differential equation v" = may be

found. This will be the immediate differential equation of

the second order of the proposed equation, but it will not

be the only one. By what has been already observed of

the first differential equation, it follows that the second dif-

ferential equation v" = contains all the constants of the

first v' = 0, except one, and therefore all the constants of

the primitive equation v = 0, except two. The two which

disappear by differentiation alone are those which are in-

dependent of the variables in the two equations v = and

V = 0. A differential equation may, however, be obtained

independent of any two constants a and b of the primitive

equation, and may be obtained from two, and only two, of

the differential equations of the first order.

1°. By differentiating the equation of the first order which

excludes the constant a, and by it and its differential eli-

minating B, a differential equation, independent of a and b,

will result; or the same may be obtained by solving the

equation for the constant b, and then differentiating it (293.).

2°. By differentiating the equation of the first order which

is independent of the constant b, and then eliminating a, or,

as before, first solving the equation for a, and then dif-

ferentiating the result, the same equation as before will be

T J^
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obtained. Thus, this equation may be considered as a

common differential of the two Equations of the first order,

the one independent of a, and the other of B.

(295.) In this way any two constants of v = may be

eUminated ; and, therefore, there are as many different

equations of the second order derived from the same pri-

mitive equation as there are different combinations of two

constants in the original equation v = 0. If w be the

number of constants, therefore, \ „ will be the number

of different differential equations of the second order, each

of which may be considered as a common differential of the

two equations of the first order, which are independent

severally of the two constants which are excluded from it.

It is evident that these equations are all perfectly distinct,

since they differ in their constants.

T VI 1 1
n.n- 1.71-2 -.„ . ,

In like manner there may be ^ dirrerential

equations of the third order derived from the primitive

equation v = 0, each of them excluding three constants of

the primitive equation. Each of these may indifferently be

derived from three of the differential equations of the second

order, scil. those three which exclude severally the three

pairs of constants which may be combined from the three

constants excluded from the differential equation of the

third order.

These several differential equations of the third order

may be obtained, either by obtaining one by differentiation,

and the others by eliminating successively the constants

between that and the equation of the second order ; or they

may be obtained without elimination by solving the dif-

ferential equations of the second order for the constants

successively, and then differentiating.

(296.) By continuing this reasoning, it follows,
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1°. That in a differential equation of the mih order there

are a number of constants equal to n —' m, n being, as before,

the number in the original equation.

2°. That a differential equation of the with order may
always be obtained either by elimination united with dif-

ferentiation, by which any combination of m constants shall

be excluded, or by successively solving the equations for

the constants and differentiating.

3^. That therefore there will be

n.n—l.n — ^ n—(m—l)

dijBPerential equations of the mth order derived from the

same primitive equation, perfectly distinct from one another,

since they differ in their constants.

4P. That each of these differential equations may be

derived indifferently by differentiating m of the differential

equations of the (m — l)th order, scil. those which exclude

the m combinations of (m — 1) of the constants excluded

from the differential equation of the w/th order.

5°. That the differential equations of any order obtained

by differentiation alone are always of the Jirst degree with

respect to the differential coefficient which marks their order,

while tliose which are obtained by elimination are of the

same degree as the constant by whose elimination they were

obtained. The two equations will become identical by

solving the latter for the differential coefficient.

6^. That if by two different differential equations of the

wzth order the mih differential coefficient be eliminated, a dif-

ferential equation of the (?w — 1 )th order will be obtained,

including one constant more than either of those from which

it was deduced, and therefore only excluding {m ^ 1) con-

stants of the primitive equation, and this equation must

therefore be identical with that differential equation deduced

by differentiation and elimination, which includes the same
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constants. It is evident that this elimination may be con-

tinued upwards until we arrive at the primitive equation.

7*^. A differential equation of the nth order will include

no constant, since, in that case, the number of constants

eliminated is 7i. There will also be but one differential

equation of this order, since, in this case, the formula ex-

pressing the number of differential equations becomes

n.n—l.n—^, ?z— (?i — 1)

(297.) The conclusions at which we have just arrived

resulted from the consideration of the process by which the

several orders of differential equations are derived from a

primitive equation between two variables. Let us now con-

sider what these results suggest in returning upon our steps

and ascending through the differential equations of the

several orders to their original or primitive equation.

(298.) As by differentiating an equation, a constant dis-

appears, so it should reappear upon integrating ; and as only

one constant can be removed by one differentiation, so one

only should be introduced by one integration. The value

of the constant introduced in any integration cannot be

determined by the differential equation alone, since a dif-

ferential equation is the same, whatever be the value of the

constant which has been eliminated. Hence, as far as the

differential equation is concerned, this constant is arbitrary,

and any value whatever may be ascribed to it. In ascend-

ing, therefore, from a differential equation of the first order

to its primitive or integral, one arbitrary constant, and but

one, ought to be introduced, otherwise, the integral which

will be obtained will not have all the generality which it

ought to have.

(299.) If two different differential equations of the first

order derived from the same primitive equation be given,

the integration may be effected by eliminating the first dif-
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ferential coefficient between them ; the resulting equation

between the two variables, and independent of differentials,

will be the sought integral.

(300.) As a differential equation of the second order is

immediately obtained from one of the first order, and is

related to it in the same way as that of the first order is

related to the primitive equation, it follows from what has

been said, that the first integral of a differential equation

of the second order is a differential equation of the first

order, and that one, and only one arbitrary constant must

be introduced in the integral. The primitive absolute

equation, or final integral, is to be obtained by the in-

tegration of the differential equation of the first order thus

obtained, in which integration a second arbitrary constant

must appear. There is, however, another method of ascend-

ing to the final integral.

Since each differential equation of the second order

may be indifferently derived from two of the first order, it

follows that a differential equation of this kind has twofirst

integrals. If both of these can be obtained, each including

an arbitrary constant, the primitive absolute equation, or

final integral, may be obtained by eliminating the first dif-

ferential coefficient between them.

(301.) This principle of differential equations of the se-

cond order admitting two integrals, also furnishes a method

of integrating differential equations of the first order. If an

equation of the first order be differentiated, and thence one

of the second order obtained, this admitting of another in-

tegral different from that from which it was derived by dif-

ferentiation, this other integral may be found by integrating

and introducing an arbitrary constant. Thus two differen-

tial equations of the first order will be obtained involving

one arbitrary constant ; by these the differential coefficient

being eliminated, the final integral, including an arbitrary
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constant, will be found. This is frequently the easiest method

of integrating an equation of the first order and any degree

superior to the first.

(302.) In like manner the first integral of a differential

equation of the third order is a differential equation of the

second order, including one arbitrary constant, and each

differential equation of the third order has three different

integrals of the second order. And, in general, the first

integral of a differential equation of the mth order is a dif-

ferential equation of the (m — l)th order; and each dif-

ferential equation of the mth. order admits m different first

integrals, which are all differential equations of the (m—l)th

order, and include w different arbitrary constants. If these

m first integrals be obtained, the final integral may be

found by mere elimination without further integration.

For the m differential equations of the (m — l)th order

include in general (w — 1) differential coefficients, scil. all

the differential coefficients from the first to the (m — l)th

order inclusive. These {m — 1) quantities may be eli-

minated by the m equations, and the result will be an

equation independent of differentials including m arbitrary

constants. This is the final integral in its most general

state.

(30,'^.) The integration of a differential equation of the

first order may be effected by deducing from it by suc-

cessive differentiation a differential equation of the mth.

order. If a first integral of this can be obtained different

from the differential equation of the (m — l)th order from

which it was derived, and including an arbitrary constant,

the final integral can thence be obtained by elimination

alone ; for there are the differential equations from the first

to the (m — l)th order inclusive obtained by differentiation,

and also another of the {m -- l)th order obtained by in-

tegration, making in all 7n equations to eliminate (m — 1)
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differential coefficients. The result being an equation free

from differentials, and including one arbitrary constant, will

be the integral of the proposed equation.

(304.) In the preceding observations we have assumed

two propositions, P. That the final integral or primitive

absolute equation, of a differential equation of the mth

order, should include m arbitrary constants, in order to

have all the generality which is due to it; and 2^ That a

differential equation of the mth order admits of m different

first integrals. Although these propositions seem sufficiently

evident by retracing the process of differentiation, yet, as it

is desirable to give to the theory established in the present

section all the perfection and rigour possible, we shall

subjoin direct demonstrations of these two principles.

PROP. xcvi.

(305.) Every differential equation between two variables

has an integral^ and the integral of a differential equation

of the mth order must, ifin its most general state, include

m arbitrary constants, and no more.

The differential equation of the mih order determines the

m\h differential coefficient a,„ as a function of the variables

and the differential coefficients

Ai) A2, • • • • A„j_2,

of the inferior orders.

By successive differentiation the differential equations of

the superior orders may be found, and these will therefore

be also determined as functions of the variables and of the

differential coefficients of orders inferior to the 7»th ; for the

differential coefficients of the intermediate orders may be

successively eliminated.
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By Taylor's series we have

Let b be any value of x which does not render any of the

differential coefficients derivable from the primitive equation

infinite {55), and let A — a: — b.

Let b be supposed to be substituted for .v in the func-

tions

^> Aj, A25 • • • •

so that they will become constant quantities,

CLq, tti, flaj • • • •

,

and let the value ofy corresponding to j: be 2/.
'

Thus the series becomes

x-b (x-bY (a:-by
y = a^ + a^.-^-ffl^.

^^
+«3- ^^3 +

the coefficients of which are all constant. The coefficients

of this series from the {m + l)th term forward are given

functions of the coefficients of the first m terms, since they

are what

-^»?5 -A-OT+ij A„,.)-2j • • • •

become when x rsb\ but these are determinate functions of

y, Aj, A2, A3, • • • •

and, therefore,

^»j? ^»j+l> ^»i+2J ^»»f3J • • •

are determinate functions of

Aq, Qxi fl^2» Ojzi ' ' ' '

The series expressing the value of ^ is therefore the in-

tegral of the proposed equation, and contains m arbitrary

constants, scil.

^05 ^15 ^2J • • • ^ni—15

and no more.

This series is the development of the value of y in the

final integral of the proposed equation, and may therefore

represent that integral.
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PROP. XCVII.

(306.) Every differential equation of the mth order has

m different first integrals, which are differential equations

ofthe (m — A)th order.

The final integral gives y as an implicit function of x.

Let it be expressed as an explicit function of oc, so that

y = f(x). By Taylor's series,

h 7i^ h^
F(^ + A) = y + Ai y + A2J-^ + A3j-^

If A be supposed to become — — Xj \' x -{ h =^ 0, and

therefore y[x + h) becomes what the value of y is when

:c = 0. Let this value be z/% •.*

f = y - A,-^- + A,£l - A^j|g + [1].

In the same manner, by successively considering Ai, Ag,

A3, • • • • functions of ^, we obtain

X x~
Ai = Ai — Aa-J- -h ^3=-^ — [2],

.r JT

A3 ~ A-i — Agy -f A4j-g — [3],

X Tc"

Al = A3 — A^Y + A5
J^

- [4].

If a diiferential equation of the first order be given, it

will determine the first and all the succeeding differential

coefficients as functions of the variables. In this case the

equation [1] will represent the primitive equation involving

but one arbitrary constant y^.

If a differential equation of the second order be given, it

will determine the second differential coefficient and all the
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coefficients of superior orders as functions of the variables

and the first differential coefficient. In this case [1] and

[2] represent two integrals of this equation, each including

an arbitrary constant if and a" ; all the other terms being

functions of the variables and the first differential co-

efficient.

In like manner, if a differential equation of the third

order be given, the three equations [1], [2], [3], represent

its first integrals, each involving an arbitrary constant y^^

a", Aa, and being differential equations of the second order,

and so on.

SECTION XVII.

Ofthe integration of differential equations of thefirst order

andfirst degree^ in which the variables are separable.

(307) As the rules for differentiating functions of two

variables equally apply to equations of two variables, so also

the rules for integrating differentials of two variables apply

to the integration of equations of two variables ; and as there

are many differentials of two variables which are not exact

differentials, so also there are many differential equations

which are not the immediate differentials of any primitive

equation, and which are not therefore immediately in-

tegrable.

When a differential equation has been reduced to the

form

udx -f ^dy = 0,

its immediate integrability may be ascertained by the cri-

terion (284.), and its integral found by the rules already

established for differentials of two variables.
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(308.) But although an equation may not come under

the criterion of integrabihty o Ĵunctions of two variables, we

are not therefore to conclude that it is not iiitegrable. We
may, indeed, pronounce it at once not to be the immediate

differential of any equation between the variables, because,

if it were, it must come under the criterion. But it may

be one of those differential equations which are not obtained

by mere differentiation, but by eliminating some constant

between the primitive equation and its immediate differential

;

or it may have happened, that some function of the variables

having been a factor of the immediate differential, it was ex-

punged after differentiation. Thus, for example, if the

differential equation of a given equation between x and y
were

{y" + x^)F{xy)dy + (^ + s')A^y)dj: = 0;

we should immediately expunge the common factor j/^-f- .^2
^

and although the above equation would come under the

criterion of integrability, yet, after division by (y^ + ^-),

it might no longer come under it. Thus, though the cri-

terion apphes to differentials, yet it does not to differential

equations ; at least, it does not apply as a criterion, properly

so called. Because, although every equation which comes

under the criterion can be immediately integrated, yet we

cannot infer the converse, as has been shown.

(309.) Various analytical contrivances have been there-

fore invented for rendering integrable differential equations

which do not fulfil the criterion of integrability. One of the

most simple, when it can be effected, is the separation ofthe

variables, or the reduction of tlie equation to the form

xdr -f \dy — 0.

In which state it is immediately integrable by the rules for

integrating differentials of a single variable, the integral

being
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fxdx -VfYdy = *.

(310.) In differential equations of this kind, the variables

are said to be separated^ and therefore all equations in

which such a separation can be effected may be considered

as integrable by the above method. The most remarkable

classes of equations, in which this can be effected, are the

following

:

1^. All differential equations coming under the form

xc?2/ + Ydx = 0.

2^. All differential equations of the form

XYc(y -H x.'Y'dx = 0.

8^ All homogeneous equations; that is, all algebraic

equations in which the sum of the dimensions of r and 7/ in

every term is the same, and which, therefore, come under

the form

f(^"^, ^'"-'3/, a7'»-y .
. ")di/ + F'(.r"S a7'»-^3/, a;'"-y • "•)dx= 0.

4P. Linear equations; that is, equations which involve

2/ and di^ only in the simple dimension, and which, therefore,

come under the form

dj/ -1- (x7/ + .x.')da: = 0.

5^. The equation of Riccati (an Italian mathematician),

dy + (aj/* + Bx"')dx = 0,

in which, in certain cases, the variables may be separated.

There are other equations in which the variables may be

* This would be, according to the usual custom, expressed

J%.dx -\-fs.dy = c, c being an arbitrary constant. This, how-

ever, I conceive superfluous, if not positively wrong, since the

introduction of the constant is a part of the operation indicated

by the signy, I have, therefore, generally neglected the con-

stant, except where the integration has been actually effected
j

then it is proper and necessary to introduce it, because the sym-

bol which implies its introduction has disappeared.
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separated, but these will sufficiently illustrate the principle.

It is evident that all equations which, by any transformation,

may be reduced to any of the preceding forms, may be in-

tegrated in the same manner.

(311.) 1". The equation

Jidy -f- Ydx =
being divided by xy, is reduced to

du dx
-^ 4- — r= 0,
Y X

the integral of which is immediately obtained,

, dy djr

(312.) 2^. The equation

y^Ydy + y^Y^dx —

being divided by xy', becomes

Y X'
—rdy H dx = 0,
y' "^ X

which is immediately integrable,

(313.) 3^ Each term of an homogeneous equation being

of the form ky^ai"''~'^^ the constant sum of the exponents

being m ; if every term of the equation be divided by x"^,

the form of each term will become a( — ) . If ' - =^, the
\ ^ / X '

equation will assume the form

's{z)dy -}- Y\z)dx = 0.

But since y — xz, *.• dy = xdz + zdx. Which being

substituted for j/, gives

x^{z)dz + \y\z) + zv{z)\dx — 0,

viz) , dx

f'(z)+2F(z) ^ X '
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dz +— ~ 0,
F(2) X

t(z)

which is of the form

zdz -f- xdx = 0,

in which the variables are separated.

Equations are frequently rendered homogeneous by sub-

stituting for ^ and z/, a:' -f a and j/' + b, and disposing of

the arbitrary quantities a and b, so as to take out the terms

which destroy the homogeneity, changing dx and dj/ into dx'

and dj/'. The analyst, however, must be determined in the

choice of a fit transformation by the nature of the equation

in each particular case.

(314.) 4". In the linear equation

di/ + (xy + XV^ = 0.

Let x";2 = z/,
'.' dj/ — x"dz -\-zd}i'\ by which substitutions

the proposed equation becomes

x"dz -h zd-a!' + xx"zdx -f- x'dx — 0,

in which x'"' is an arbitrary function of x. Let x" be such

as to fullil the condition

zdx" + x'dx = 0,

•.* dz + xzdjc = 0,

•.* —- = ~ xdr, ••• z -- e'~-'''^'^\

Hence we find

^x" _ _ ^/xrf^x'c?^',

(315.)

ifm = 0,

•.• X" :::= - fe-^^'^X^dx,

-,-
7/ = - e-^^'^fe^^'^'x!dx.

5". In the equation of Riccati,

dy + (a/ + BC(r)dx = ;

it becomes

dj: + f =0,
A2/2 + B

in which the variables are sepaiated.
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But if m be not = 0, let

^ a:*
"*"

A^ '

xdz— 2;2£7ir rf^

By which substitutions the given equation becomes

x^dz + Az^dx + B^+^^-c = 0.

If in this w = — 2, it is homogeneous ; and if m = — 4,

the variables may be immediately separated by dividing the

whole equation by x^kz"' + b).

If, however, m be not = — 2, nor = — 4, a further

transformation must be effected. Let

1

and let

t

m4-4 , —

B

w+ 3 w+3'

)

A_
^ ~ W2+ 3*

We find by these substitutions, that the equation becomes

dt + (a'^2^b'?^")J?/ = 0;

this being similar to the first equation, can be integrated

when w = — 2, or n = — 4.

If n be not = — 2, nor = — 4, by continually repeating

the same transformation, the equation may successively be

reduced to a series of equations of the same form as the given

one, and in which the exponent of the variable becomes

successively equal to

m+4 71 + 4 p4-4

77Z + 4 Sm^S 5m + 12 __ ImA-l^
^^'

~m+3' ""
2m + 5'

"" 3w + 7' 4m +9
The equation can only be integrated by the methods above
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given, when some one of these is either = 0, = — 2, or

= — 4, that is, when m is a number coming under the formula

— 4w

n being any positive integer, or = 0.

1
If the transformation y =— , a:'^+* = z had been made

in the given equation, the same process would show that

the integration could be effected when m = -^ =-• ^^^

criterion of the integrability of the given equation by this

method is then m = ^ n bemg a positive integer

= 0.

SECTION XVIII.

On the multipliers which render differential equations

integrable,

(316.) In order that a differential equation of any order

should be immediately integrable, it is necessary that it

should be of the first degree with respect to the differential

coefficient, which marks its order (290.). Otherwise, it has

been the result, not of differentiation, but of elimination.

But if it be of the first degree, it may always be considered

as proceeding from the immediate differentiation of the dif-

ferential equation of the next degree inferior to it, solved

for the constant which has been eliminated.

(317.) Let a differential equation of the with order be

then supposed to be reduced to the form

2+"-» PI.
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where u is in general a function of the variables and the

differential coefficients of the inferior orders.

Let the differential equation, from which this is conceived

to have been derived, be

u' = « [2],

a being supposed to be the constant which has disappeared

by differentiation, and u' being a function of the variables

and the differential coefficients of orders inferior to the mth.

This being differentiated, gives an equation of the form

dry

dcd"'

u and u^ being likewise functions of the variables and the

differential coefficients of orders inferior to the mth. Since

this equation must be equivalent to the first, we have

u'
u = — •.• vu = u\

u

Hence the latter equation becomes

"•^ + "" = "'

which is an immediate differential, and therefore integrable.

But this is the given equation [1] multipUed by the func-

tion u.

(318.) This multiplier is not the only one which will

render the equation integrable. Let the equation [2] be

multiplied by any function of a. This function being con-

stant, the equation [3] becomes

or F{a)u-~ -T F{a)uu = ;

but by [2] tl^is becomes

u 2



292 THE INTEGRAL CALCULUS. SECT. XVIII,

which is the exact differential of the equation

u'r(u') = aF(u').

But it is the equation [1] multiphed by f(v')u. Since the

function f(u') is arbitrary, there are an infinite variety of

multipliers which will render the proposed equation in-

tegrable, scil. all those of which, u being one factor, the

other is any function of u'.

(319.) Since by (306.) a differential equation of the mth

order has m different first integrals, we may obtain a class of

multipliers from each of them, which will render integrable

the proposed equation of the mth order.

(320.) Having explained the general principle, we shall

now apply it to differential equations of the first order and

first degree. Let

udo! -f N% =
be the proposed equation, of which the primitive or integral

is u' = a. By comparing this with the general formula

M
already established (31 T.)? we find u = — . The equation

is rendered integrable by multiplying it by wf(u'). First,

suppose f'(u) = 1, the equation becomes

liudcc + u^di/ — 0.

Subjecting this to the criterion of integrability (284.), we

find

dfuu) _ d(Nu)

dy ~ dr *

/dM. d^\ du du

\dy dxj dx dy'

Since m and n are supposed to be given functions of .r and

y, this equation, when integrated and solved for w, would

determine its value. It being, however, an equation of

partial differentials, its solution can very seldom be effected ;

and even when it can, it presents generally greater dif-

ficulties than the proposed equation.
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(321.) Although we cannot therefore in general determine

a factor which will render an equation integrable ; yet there

are some properties of these factors which merit attention.

1°. If the integral of the differential

umcIj: + u^dy

were known, the factor u could be found ; for the above

formula is identical with

du . du
^

therefore we should be able to deduce the value of u by

comparing them.

2^. If the factor u were known, an infinite number of

other factors which would render the equation integrable

could be found, as has been already shown.

3°. The factor u may, in some cases, be a function of one

of the variables only. It may be easily discovered whe-

ther this be the case, and if it be found so, the factor u

may be determined. Let u be supposed to be a function of

the variable x. If so, -^ = 0, -.'

dm d^
J _ du

d\j dx y dx^

^
da __ dx/du d^\

u ~ ii\di/ dx)'

If the second member of this equation be independent oiy,

then ?^ is a function of x alone, and not otherwise. Since m

and N are given functions, this can always be determined,

if it be so, the value of m is determined by the equation

'{

^'^=^K^''^'^""£^)"-^''^'^'

(322.) Homogeneous functions have a remarkable pro-

perty, which enables us to assign the factor which renders an

homogeneous equation integrable. To explain this pro-
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perty, let u represent an homogeneous function of j: and j/.

In u, let X be changed into x(\ + Ti)^ and y into yQ. + h),

and let the function become w', so that

w = Y(xy), u' = F(jr + hx^y-}- hy).

Since w is an homogeneous function, u' = (1 -f /i)"*?^, ??i

being the number of dimensions of the variables in each

term of u, let these two values of u' be developed, the

one in powers of ^^ and hy by (96.), the other in powers of

h by the binomial theorem. Hence

du ^ du , d^u AV d^u ¥xy d^u AV

v! = u(l +mh+ -^j- h^ + 1X3""" ^' '^'

Hence, by equating the corresponding coefficients, we find

du du

m.m — 1 d^u x"^ d^u xy d^u y^

1.2 '""^S^ 'Ul'^'dbcdy T"*"^ L2

It is evident that this property belongs to homogeneous

functions of any number of variables.

(323.) Let the equation to be integrated be

mdx + i^dy — 0,

where m and n represent homogeneous functions of the

variables. Let u be the sought factor and also an homo-

geneous function, and let it be supposed that

wudx + N2^^ =
is an exact differential. Hence

J(mw) d{^u)

dy ~' dx
'

Let the dimensions of m be jp, and those of u^ 71,
'.'

diuu) d(Mu)
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d(Mu) (Z(nm)
•• ^p + ")^" = -IT'' + -ir^'

*.• (p + n)MU = -^ MW,

This equation is fulfilled by the conditions

p = - (71 + 1),

1
U = ;

—-.

Hence the equation

udx+ NJ^ =
MX + N^

is integrable.

SECTION XIX.

Praxis on the integration ofdifferential eqiiaiionsof'tlie

first order andfirst degree.

I.

Differential equations which a/nswer the criterion qf'in-

tegrahUity,

Ex. 1. (^axy - 'if)dx + {ax" - ^xy'')dy = 0,

M = 9<axy — 2/^ N = ax^ — 3^«/%

fuLdx — ax^y — z/^^ + y,

yN(i^ = tta:"^?/ — xy^ 4- X.

Hence y =-. x = 0, and the sought integral is

ax'^y — y'^x = c.
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Ex. 2. =r^— + adx + Uydy = 0,

•.• M = + «r., N = %,

/Mdr = ax ^- l(x -f v/1 + ^*) + Y,

f^dy = 6y+ X.

Hence

X = a.r + /(^ + ^/l + x%
Y = 63/\

Therefore the sought equation is

^/ + «^ + /(^ + vTT^) + c = 0,

c being the arbitrary constant.

^^ ^^
ai,dx+ydy) yj^c^

_^ ^ ^^

Vy'-^-oc' y'-^x

ax y

','jMdx = a Vy^ + x^ - tan.-^^ + y,

ftidy = flj s/t~^r^ - tan.-i^ + ^g/^ 4. x,

,• X = 0, Y = hy^^ and therefore the integral is

1^a^3/^ + 57* - tan.-'-^ + hip' — c.

Laplace uses this integration in his proof of the principle

of the composition of force. See Mec. Cel. liv. i. ch. i,

Ex. 4. (sin.y + y Q.o^,x)dx + (sin..r 4- x cos.y)dy = 0,

Judx = .rsin.^ +3/sin.jr + y,

/Nfi?e/ = y sin.;r + a: sin.y + x,

•.• X = and y = 0, and the integral is

ysin.x + o^sin.^ = c.
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Ex. 5. (2a?/ + b^ + Yi)dy + {^cx + bj/ + ^)dx = 0,

Aj/- 4- B;n/ + cx^ + d^ + eo? + f = 0.

II.

Equations in which the variables are separable.

Ex. 1. Vl+J/^ • dx—xdy^O. Dividing by ^Vl+J/",

dx du ^-^— = 0,

which is immediately integrable *.

Ex. 2. (a^ + B2/)di/ + {a'x + b'?/)c?^ = 0.

yLet— = z, and divide by A.r + bj/, •.•

^2/ A -dx = 0;

but cfo/ = zdx 4- ^^2. Hence the equation is reduced to

the form

xdx + zdz.

y
Ex. 3. ay'"cfo/ + (a:*" 4- lnf)dx - 0. If -- =

X
z.

1+bz^.
du ^- -~—dx = 0,

dx az^'dz

y
Ex. 4. xdi/ — ydx = <s/

x'^ \- y"^
' dx. Let — = 2, •.

dy — 2C?jr = (io^Vl + 2^

jp ./1 4-22v'H-^^

* In general, in examples we shall proceed no further than the

reduction of the equation to one which is integrable by a former

ule.
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77'

Ex. 5. Find the curve whose area = -^^-.

X
Hence

fy^ = ^•

Differentiating and multiplying by x^^

x^ydx = Sjtt/^cIt/ — i/^dx,

{x'y + f)dx - oxifdy = 0,

which being homogeneous, let y = ccz, \*

dx Szdz

•.• ^*(i - ^zy = c,

•.• (x^ - 2yy = cx\

which is the equation of the sought curve.

Ex. 6. {Sx + 2y)d:i: — (2x + y)dy = 0. Let j/ = zx, •.• '

c^ (2 + z)dz _

1

*'
C ~" I

*

(^/3a;-l/)^/3

III.

Linear equations oftheform (314.).

Ex. 1. dy + {y — ax^)dx = 0. In this case, by (314.),

X = 1, x' = - ax^, -.'

fsidx = Xy \'fe^^^^y^dx = — afe'x^dx.

But

afexHx = ae'ix^ ~ Sx^ + 6x - 6).

Hence the sought integral is

y = ce-^ + a{x^ — 3a;* -f 6^ — 6).

Ex. 2. (1 + x'^)dy — (yx + d)dx = 0. Hence

dy^^dx=0.
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Here we have

X = — , . . , x' =
l+x^' l+x

Hence/xJ^ = - |/(1 + a:«) = - Z^/l + .v'\ Also,

JL adx „ adx

J ; = — . + c.

Hence the sought integral is

y ^=. ax -\- Cy' 1 + .r'^.

Ex. 3. dy —{ -, y -^ b \dx — 0. In this case

X = - z y;! - — b,
\—x

\'fxdx = al{\ — x), ',' e^^^ = (1 - ^)%

p—fxdc —

Hence the sought integral is

c bjl^x)

y — (l-o:)" 1+a
'

IV.

Cases o/'RiccATi's equation (315.).

Ex. 1. Let dy + {"f - a^)dx = 0,

dy
r dx =

a^-y^--

Ex. 2. dy f (j/^ — a''x~')dx - 0. Let
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^ ^
A

^
2/ = r, and X = —

,

.' e- > -f-
-!— ( = c.

I x^y—x — a S

Ex. 3. dy + (j/2 __ a'^x ^)(lx = 0. In this case the ex-

ponent — o- comes under the character
^^ ^

, since they

agree when n =z 1 (315.). Let

X = t-'\ y = — Sa^z-^,

'.' dz + (22 _ 9aH'')dt = 0,

—6ax% c y(l + Sax^) + Sa^x~^ ->

^y(l-Sax^)-{-Sa^x ^ ^

Equations rendered Integrahle hy a multiplier.

Ex. 1. (1 + «v/l + x')dx -\- 9.hyVl + ^^ = 0.

This equation will be found not to come within the criterion

(284.), since

du dn __ Myx
dy "dx ~

-v/1+^2*

But since n = 2%v/l + ^%

1 / dm ^N \ _ jr

N \% ""
"dx/

~~ ~ 1+^2'4/

which being a function of J7 alone (321.), Case S^, the equa-

tion will become integrable if multiplied by a function of ^r.

To determine this function, let it be u. By (321 .), Case S%

1

>/lH-a7«
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Multiplying by this, we find

(

—

+ a\dx + 9.bydy — 0,

which is integrable.

Ex. % xHy + (4jc2j/ — (1 _ ^2) '^)dx = 0. In this case

dm d^ __ <2

dj/ dx ~ ^

\ c dm dN -^ _ 1

N I dy
"^ dx S~ ^'dy

This being a function of x alone, a factor may be deter-

mined, which will render the equation integrable. By (321.),

Case 3°, this factor is

dl Ir

Hence the equation being multiplied by x^ gives

x'^dy + l^x'^ij — x{\ - ^")'~^]dr = 0,

which comes within the criterion, since

— 5— = 4^7^ — 4<r^ = 0.
dy dx

SECTION XX.

Singular solutions,

(324.) Two methods of deducing differential equations

from their primitives or integrals have been explained in

Section XVI., one by direct differentiation, and the other

by eliminating a constant between the primitive equation

and its immediate differential. Let Y(xyc) = be the pri-

mitive equation, c being the constant designed for elimina-

dif
tion, and let F'{xj/cp) = (where ^ = -^ ) be its immediate

differential, obtained by differentiating the former for x andy.
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Eliminating c by these two equations, let the result be

J*'{xyp) = 0. This equation being independent of c, will

evidently be the same, whatever value be ascribed to c in

the primitive equation. When c in the equation ¥(an/c)=
is taken as an indeterminate or arbitrary constant, this

equation is called the complete integral of the differential

equation f\xyp^ = ; but when a particular value is

ascribed to c, it is called a. particular integral^ a.s being only

a case of the equation in its general state.

(325.) It does not, however, necessarily follow that the

complete integral, including an arbitrary constant, con-

tains all the primitive equations from which the diffe-

rential equation f(xi/p) = may be derived. It certainly

includes all the particular integrals, that is, all those which

involve an arbitrary constant; but there may be certain

other primitive equations, which, containing no arbitrary

constant, are not included under the formula Y{xyc) = 0,

and yet from which the equation f\Typ) = may be

deduced. Such equations are therefore entitled to be con-

sidered as integrals equally with the equation Y{xyc) = 0.

Such integrals* are called particular or singular solu-

* There is a species of solutions which may satisfy a differential

equation besides those which are considered in this section. Let

udx -J- "sdy = be a differential equation, and let any function

of the variables, asy(.ry), be supposed to be a common factor of

M and N. It is obvious that /(•rz/) = and ndcV + Nf/y =
will be fulfilled at the same time. In this point of viewy(.2?y) =0
may be considered as a solution of udx + N(fy = 0. Such

solutions, however, are not comprised in the present investiga-

tion. They may always be found by determining the common

divisors of m and n. These solutions ought not to be termed in-

tegrals of the proposed equation, because it does not follow, that
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tio7is, as opposed to the integral v{xyc) — 0, including the

arbitrary constant, which is called the general solution.

(3^6.) This species of solutions occasioned considerable

embarrassment to the earlier analysts, and were held as a

kind of analytical paradoxes. Euler considered them as

forming exceptions to the general rules of the calculus, and

gave methods of distinguishing them from ordinary in-

tegrals. Clairaut also determined a class of differential

equations which admit of singular solutions *. The com-

plete exposition of the theory of singular solutions, of their

connexion with the complete or general solution, and of the

circumstances from which they derive their origin, was the

work of Lagrange.

(327.)^ Let Y{ocyu) = be an equation between the va-

riables X, y, u being a function of x and j/, and let u be

supposed to enter this equation in the same manner as the

constant c enters the equation F(jn/c) = 0. So that taking

xy as given quantities, the one is the same function of u as

the other is of c.

Also, let u be such a function of the variables x and y,

that the equation being differentiated for x and ?/, the func-

tion u shall enter the differential equation F'(xj/up) = in

the same manner as the constant c enters the differential

equation YXxycp) = ; that is, so that if x, ?/, and p were

taken as constant, the one would be the same function of m

as the other is of c. The method of determining what

function of x and y will satisfy this condition shall be ex-

plained presently.

being differentiated, their differentials would be equivalent to

the proposed, which is the specific character of a primitive or

integral.

* See Sect. XXII. (350.)
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(328.) Since then the two systems of equations

v{ocyc) = 0, Y\xycp) = 0,

F{xyu) = 0, ^\xyup) = 0,

are such that they become identical by changing c into u,

or vice versa ; it follows that if c be eliminated by the first

system, and u by the second, the same equation between

x, 7/j and p will be the result.

Let this equation be

f'(x7/p) = 0.

Now it is plain that this is a differential equation of the first

order derived equally from the first equations of the two

systems, which have therefore equal claims to be considered

as its integrals. By the definitions already given, the

equation

F(jr2/c) =
is its complete integral^ or general solution ; and such cases

of the equation

T{xyu) =
as are not comprised under the former (for it will presently

appear that some are), are particular or singular solutions.

(329.) The condition which limits the function u is the

identity of the equations

¥\xycp) = 0, F\a;yup) = 0.

The one may be expressed as the sum of the two partial

differentials of Y{xyc) taken with respect to the variables x

and y successively ; the other as the sum of the three partial

differentials of F{xyu) taken with respect to x, y^ and u suc-

cessively (95.). Since c and u enter F{xyc) and f{xj/u) in

exactly the same manner, they must necessarily also enter

their partial differential coefficients taken successively with

respect to x and y in exactly the same manner. Hence the

sum of the partial differentials of F(xyc) taken successively

with respect to x and y must be the same function of c as

the sum of the partial differentials of F(xyu) with respect to
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X and 3/ is of w. In order, therefore, that the two equations

should be identical, it is necessary that the partial dif-

ferential of F(xyu\ taken with respect to u, should = 0.

Let the partial differential coefficient of F(xyu) taken with

respect to ?^ be u; the partial differential is \5du. Now,

since u is by hypothesis not a constant, du is not = 0;

therefore the condition u = must be fulfilled. An ex-

ample will make these principles easily apprehended. Let

¥(xyc) = ^^2 4- 2/2 _« 2cj/ — c^ = 0,

\- T\xycp) = (j, — c)p 4- a: = 0.

Eliminating c, we obtain

f\3cyp) = (a:* — 2y)p* — 4ia:i/p — x^ = 0.

Now let c be changed into w, and we have

f(j^m) •=. x'^ -\- y^ — ^yu — w^ == q^

vXxyup) = xdx + (^ — u)pdx — (^ + w)cZm=0,

observing that dy = pdx.

The functions v\xycp) and T^xyup) will be rendered

identical by the condition m = — «/, in which case, the eli-

mination of u by the latter equations, and that of c by the

former, will both lead to the same differential equation,

f'{xyp) = {x^ - 9>y^)p'^ — 4ixyp — a;^ = 0.

The condition u = — y changes F(xyu) into

which is therefore a singular solution of the differential

equation.

From the preceding observations, we may therefore infer

generally, that if the general solution, cleared of radicals,

F(xyc) = 0,

of any proposed differential equation,

be differentiated, considering the arbitrary constant c alone

variable, and that the partial differential

cdc =
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be thus determined ; the values of c, which satisfy this con-

dition, being substituted for c in the general solution

f(j7j/c) = 0,

will give equations, amongst which all singular solutions

will be found.

(330.) It does not, however, necessarily follow that all the

equations resulting from such substitutions are singular

solutions. Such equations may be cases of the general

solution in which the arbitrary constant receives a particular

value, in which case they are particular integrals, and not

singular solutions.

The partial differential coefficient c is in general composed

of c, the variables .r, ?/, and the constants of the proposed

differential equation. It may, however, happen in particular

cases, that c does not contain the variables ^, y. In such

cases the values of c derived from c = are functions of

constant quantities, and are therefore themselves constant.

The substitution of such values for c in the general solution

would, therefore, only give particular integrals, and not

singular solutions.

Again, if c contained the variables, or either of them, and

the elimination of one of them between the equation c =
and the general solution F(<rj/c) = 0, were to give a result

independent of the other variable, this would determine a

particular constant value for c, which, substituted in the

general solution, would give a particular integral.

Further, the partial differential coefficient c may be in-

dependent of Cf which will always happen when c enters the

general solution ^(xyc) = in the first degree. In this

case the general solution must have the form

a -f- cc = 0,

a
*.* c = .

c

If c be not a factor of q, the condition c = renders c in-
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finite, and therefore gives the particular case of the general

solution, in which the arbitrary constant is infinite. The

result is, in this case, a particular integral.

But if c be a factor of q, then the condition c = is

itself a solution of the proposed difterential equation, which

being

cdo, — adc = 0,

is obviously satisfied by c = 0. To determine in this case

whether c = be a particular integral or a singular solution,

let one of the variables be eliminated by the equation c =
and the general solution, and the value of c be determined

by the resulting equation. The equation c = is a singular

solution if this be variable, and otherwise not.

(331.) The principles thus established furnish us with

the solution of the problem, " Given the general solution

\j{£ci/c) = 0] of a differential equation [f'(^i/p) = 0] to

find its singular solutions, if any such exist." Clear ^the

general solution of radicals, and take its partial differential

with respect to the arbitrary constant considered as a varia-

ble; eliminate the arbitrary constant from the general so-

lution by the variable values of it, which satisfy the general

solution, and the partial differential equation before men-

tioned; the equations resulting from such elimination are

singular solutions.

(332.) It is obvious that the condition c = is that by

which the general solution f(xi/c) = solved for c as an

unknown quantity will have equal roots. (Geometry, Art.

580.). If, therefore, by means of the singular solution and

the general one, either of the variables be eliminated, the

result will have equal factors. Thus, in the example given

in (329.), if 00 be eliminated, the result will be

?/^ + % + c^ = (t/ -h cy = 0.

Also, since the equality of the roots is produced by the dis-
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appearance of radicals, it follows, that if the general solution

be solved for the arbitrary constant, and the radicals which

enter the values be assumed = 0, the resulting equations

will be singular solutions, provided they satisfy the pro-

posed equation, and are not cases of the general solution.

It may here be observed generally, that tests for deter-

mining any equation to be a singular solution are twofold

:

1°. That it satisfy the proposed differential. That is,

that its differential shall be identical with the proposed.

This is necessary, in order that it may be a solution at all.

9P, That it be not a case of the general solution, in which

case it would be a particular integral, and not a singular

solution.

(333.) If the partial differentials of the primitive equation

F(iPj/c) = be taken with respect to the variables suc-

cessively, c being considered as a variable function of x and

J/,
we obtain two equations of the forms

dv dv dc

doo "dc dx ^ '

dv dvdc
__

dy dcdy
'~ '

where v represents the function vi^xyc). If t(x2Jc) = be

a singular solution, it has been already proved (330.), that

Hence we find

dc dv dy

dx ^ dx ' dc " ' •

dc ^ dv ^ dv

dy dy ' dc
~~

This furnishes another character for the determination of

singular solutions. Let the general solution be differentiated,

and the partial differential coefficients obtained by consider-

ing the arbitrary constant successively as a function of eacli
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variable. The conditions which render these coefficients

infinite will give two equations

dc dc^ = *' ^ = *;

from which, by eliminating c, equations may be obtained,

which will, in general, be singular solutions. They must,

however, be submitted to the tests in (332.).

This presents again the property by which singular solu-

tions arise from the disappearance of radicals in the values

of c ; for when radicals enter the value of c, they will always

appear in the denominators of the values of -r- and -j—

.

(334.) Singular solutions have the peculiar property of

rendering infinite those multipliers which render the dif-

ferential equation integrable. This property might lead us

to conclude that the investigation of the factors which render

an equation integrable would also involve the determination

of singular solutions. But this would require the converse

of the principle scil. that equations which render the mul-

tipliers infinite are singular solutions, which is not generally

true *.

Let the differential equation

mdx -f ^d^ —
be one which admits a singular solution, and let its general

solution be T^{xy) — c, and its singular solution f(^«/) = u.

Let z be the factor which renders the equation inte-

grable, •.•

zm.dx + zNc^y

is the exact differential of F(jn/). If a value of 3/ be de-

rive ^ from F(.rj/) = 7/, and substituted in the general so-

lution'/^ will not continue constant, for if it did, the equation

* Laplace, Mcms. do I'Acad, des Sciences, 1772.
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r(^j/) = u would be included in f(^2/) = c, and therefore

would not be a singular solution, which is contrary to

hypothesis. Since, therefore, c is not constant, dc is not

= 0, *.• z{yLdx + -^dy) is not = 0; but by hypothesis

indx + "sdy = 0, *.• z is infinite, and, therefore, all factors

which render the equation integrable are infinite.

(S35.) PoissoN has demonstrated * in the Journal of the

Polytechnic ScJiool, that by certain transformations, every

differential equation of the first order may be rendered

divisible by its singular solution ; and vice versa, that any

given singular solution may always be introduced. This

subject, however, has not been reduced to a sufficiently

simple state to admit of being properly introduced into a

treatise so elementary as the present. It is besides of little

use in the applications of this science.

(336.) Whenever the genera< olution of a differential

equation has been obtained, or is given, the singular so-

lutions may be always derived by the principles which have

been just established. It is, however, frequently necessary

to be able to pronounce whether a proposed solution be a

singular solution, or particular integral, when the general

solution is not known, and when therefore the question

cannot be decided by an immediate reference to it.

Let F(3/.r) = be a solution of the equationy'(^j/p) = 0,

it is required to determine whether it is a particular in-

tegral or a singular solution, the general solution being

unknown.

Let the value of y derived from the proposed soluti'^n be

X, and let the value derived from the general solution be v,

the former being a known function of or, and the latter yn-

* See also an art. by Legend re, Memoires de VAca^. des

Sciences, 1790.
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known. The value v includes an arbitrary constant c-

Now, if the proposed solution be singular, no value what-

ever of c can render v and x identical ; but if it be a par-

ticular integral, there is a certain value c' of c, which will

give V = X ; so that v — x and c — d will vanish together.

Hence it follows that

v ~ X = a(c -- dy^

where a is a quantity which becomes neither infinite nor

= 0, when c — d = and m > 0. Let (c — c')"' = ^, •••

V - X = v'^ + v"A'^ H .

••• V = X 4- v'A + w%^ + . . . .

This may be considered as the development of y in the

general solution.

Let the proposed differential equation resolved for dy be

dy = pdx. This equation ought to be satisfied by the

general solution independently of li. Let the value of y
found from this solution be x + 1c ^ and p being expressed in

powers of h, we have

p = p 4- p'A;'" -f-
p"^'* +

where the exponents are ascending and positive. Forjp is

not infinite when A; = 0, since the equation «/ = x (which

does not render p = x ) renders the equation dy = pdx

identical, and *.• dfx = vdx.

When ?/ = X + ^, '.*

fZx + d^ = (p + p'A;'^ + P"A;" + )dx,

dx = pJx,

•.• dJc = (p'A;- + iV -I-
. . . ')dx.

Substituting for k its value,

V - X = v'^ + v"A'^ H

we obtain

MV' + A^Jv"+....=
j +p.;,«(^,^ ^7/^-1 ^ )n^^^
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This equation must be satisfied independently of h when

2/ = X is a particular integral. If this be not possible, it is

a singular solution.

Equating the terms with the lowest exponents, we

obtain

which is only independent of Ji when m — \ = 0, '.' m — 1.

In this case

v' = e^'*^.

If ;» — 1 > 0, the terms cannot be identified ; but 7id\'

may disappear by supposing dv' = 0, *.• v' constant. Then,

if |x = 7/1, •.• dw" = v^dxj '.' v" =Jp'dxy and, in a similar

way, the other terms may be found.

Thus it appears, that ifw — 1 be not < 0, the two series

may be identified, and therefore the proposed solution is a

particular integral. But this cannot take place if m— 1 <0,

that is, if m be a proper fraction ; since, in that case, the

term v'Y''"h"'dx cannot be identified with hdv\ or any of the

following terms. In this case, therefore, the proposed so-

lution is singular.

(337.) This investigation furnishes a new criterion for the

detection of singular solutions, and one which is altogether

independent of the knowledge of the general solution. It

appears from what has been proved, that, if upon changing

y into 1/ + Jc in the proposed differential equationjr'(^p)=
solved for p, and developing the corresponding value of^
in powers of k, the first exponent of k be less than unity,

the equation between the variables which fulfils this con-

dition will be a singular solution, provided it satisfy the

proposed equation. By (55.), it follows, that the condition

on which the first exponent in the development is less than

unity is
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-^ = 00
dy

And by similar reasoning applied to the other variable, it

follows, that singular solutions may be determined by the

condition

dx

Thus, \^ ~- 0T~ = — , every singular solution must render

N = 0, and must therefore be a divisor of it. Also, every

factor of N, which is not also a factor of m, and which satisfies

the proposed equation, is a singular solution.

The solution of the proposed differential equation forp

may be avoided by differentiating it for .r, y^ and p,

Letfixyp) = u = 0, •/

du , dv

dx dy
dy + ^pdp = 0,

Ju

' dy

'dy

dp

dp

dx
"

dv

dx
" dv'

dp

If the cquationy(^j/p) = have been previously cleared

of radicals, the condition under which these coefficients will

become infinite

But otherwise,

is

the cond

dp

ilion may also be satisfied by the

equations

1
: 0, ^ =

' dv
[«].

dx df,
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The elimination ofp by the proposed differential equation

f(pcyjp) = 0, and any one of the three preceding equations,

will determine a singular solution, provided that the result

satisfy the proposed equation.

(338.) The former of the equations [a] should be used

when the proposed differential equation does not contain y,

and the latter when it does not contain x. The one de-

termines singular solutions of the form ^ = c, and the other

of the form y — c.

(339.) From what has been already observed on the

method of deducing singular solutions from general ones

(333.), it is obvious that the conditions

dp dp

will always be satisfied by making the radicals which enter

the values ofp derived from the proposed equation = 0.

In applying these conditions, the equation should be pre-

viously solved for p, otherwise it will be necessary to

eliminate p between either of these and the proposed

equation.

If the equation

Ju , Ju _ d\5 .

be solved for dp, we obtain

d\5
^

du
^

Ib'^' + lTv'^
dp —

du

dp

du

da:
cfe +

dv,
dy'^ydp d-y

dx~dx^ du .

-j-dx
dp

The conditions already established for the determination of

singular solutions,
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du dv . du _

du

render both numerator and denominator of the former ex-

pressioa = 0. Hence, singular solutions must always render

the second differential coefficient -^.

If the differential coefficient p enter the proposed equation

(having been previously cleared of radicals) only in the

first power, it is impossible that the equation can admit

a singular solution. For p will not, in that case, enter

-T— = 0, which will not, therefore, be sufficient to eliminate

p from the proposed equation, on which elimination the

determination of a singular solution depends. The same

remark extends to equations which are linear with respect

to p, but which involve radicals; and it may in general be

concluded, that no linear equation, properly so called of any

order, allows of singular solutions.

(340.) The connexion of the singular solution with the

general one has been determined by considering the arbi-

trary constant in the general solution as a variable. Taking

the general solution as the equation of a curve, the character,

magnitude, and position of which will depend upon the

values of the constants, and among others, of the arbitrary

constant, if a succession of values be ascribed to it, the

general solution will represent a succession of curves cor-

responding to these values ; and the equation may be con-

sidered as applying to the consecutive intersections of these

curves. If, then, the condition of continuity be introduced,

and the arbitrary constant be considered as variable, the

equation will represent a curve which will include or ex-

clude all the others, and touch them. The general solution.
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when any particular value is ascribed to the constant, repre-

sents one of the former curves, and determines a relation

between the variables, which is expressed by the co-ordinates

of any point upon it. But in the other case, the constant is

replaced by a variable function of the co-ordinates of the

point of contact. The tangent at the point of contact is the

same for both curves, being determined by the value of the

differential coefficient /?, which preserves the same value,

whether the arbitrary constant be considered as variable or

not in the primitive equation; whence it follows, that by

eliminating the constant between the primitive equation and

its differential with respect to the constant, the resulting

equation between the variables, which is the singular so-

lution, represents the line of contact of the curves comprised

in the general solution.

(341.) In general, then, from the results of this section it

follows

:

1*^. That two conditions are indispensable, in order that

any equation between the variables may be a singular so-

lution of a given differential equation ; 1st, That it be a

solution, that is, that it satisfy the proposed differential

equation, for otherwise, it is not a solution at all ; and 2dly,

That it be not contahied in the general solution, for if it be,

it is a particular integral^ and not a general solution (832.).

9P, That if the general solution be differentiated with

respect to the arbitrary constant and its differential co-

efficient equated with o, and by this equation and the ge-

neral solution the arbitrary constant be eliminated, singular

solutions may be found among the factors of the resulting

equation (331.).

3**.. If the general solution be solved for the arbitrary

constant, so that this constant may be expressed as a func-

tion of the two variables, and that its two partial differential

coefficients taken with respect to each vajiable be found.



SECT. XX. THE INTEGRAL CALCULUS. 317

singular solutions may be found from the equations which

render either or both of these infinite (333.).

4fP. The condition under which the factor, which renders

the equation integrable, becomes infinite, may contain sin-

gular solutions (334.).

5". If a differential equation be differentiated with respect

to the differential coefficient, and this coefficient eliminated

by the equation thus obtained, and the differential equation

itself, the resulting equation between the variables may

contain singular solutions (337.).

6". If a differential equation be differentiated with respect

to either of the variables, and by the equation which ren-

ders the partial differential coefficient thus found infinite,

and the proposed differential equation, the differential co-

efficient be eliminated, the resulting equation between the

variables may contain singular solutions (337.).

7°. If a differential equation be algebraic, and include ir-

rational functions, singular solutions may be found amongst

the equations which make these radicals disappear. This

may be effected by the suffixes or coefficients of the radicals

vanishing (339.).

8^. The conditions which render the second differential

coefficient -x- may contain singular solutions (339.).

(In the last seven observations we have expressed ourselves

in a contmg'ent sense, since the results must severally fulfil

the two conditions of 1% in order to be singular solutions,

which in some cases they do not.)

9^. It is of as much importance to determine the singular

solutions as the general solution^ since, in many cases, the

true solution of the proposed problem is to be found

amongst them, and not in the general solution (340.). See

Section XXII, Ex. 11. to Ex. 15.
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10^. Geometrical problems, the object of which is the

determination of curves touching any number of curves of

the same kind, but differing from each other by the para-

meter, or some other constant part, are solved by singular

solutions (340.).

SECTION XXI.

Ofthe integration ofdifferential equations ofthefirst order^

and which exceed thefirst degree.

(342.) It appears by the ordinary process of differen-

tiation, that no differential equation, obtained directly by

differentiating the primitive equation, can exceed the

first degree. But when between the primitive equation and

its immediate differential a constant is eliminated, which

enters these equations in any degree superior to the first,

the result will be a differential equation of the same order as

before, but of a superior degree.

(343.) Every differential equation of the first order,

whatever its degree may be, must be comprised in the

formula

+ N = 0.(i)"-<ir-(ir--"i
Let the roots of this equation be j9, /?', p" • • • • Hence it

may be expressed

(l-XJ-^XJ--) = 0.

This equation is resolved into the several equations
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dy — pdx = 0,

di/ - p'dx = 0,

n
di/ — p"dj: = 0,

Let each of these be separately integrated, and the in-

tegrals be u = 0, u' = 0, u" = • • • • Any one of these

integrals, or any number of them combined by multiplication,

will satisfy the proposed differential equation. For

d\J — dy — pdx = ; 6Z(uu') = utZu' -f u'Ju = 0,

'.• c?(uu') = xi{dy — p'dx) + u'(% — pdx) = 0.

It is obvious that these conditions are satisfied, and that

the same will apply to the product of any number of them.

(344.) But a difficulty presents itself from the considera-

tion that an arbitrary constant is introduced in each in-

tegration, and that therefore n arbitrary constants are in-

troduced in the integration of a differential equation of the

first order, which seems contrary to the principles in the

general theory of differential equations. This, however, is

accounted for thus: The constant, by the elimination of

which the differential equation of the nih order was ob-

tained, must have entered the primitive equation in the Tith

degree, and therefore it had n different values derivable

from that equation ; the n arbitrary constants, therefore, thus

introduced, are only these n different values of the constant

eliminated.

(345.) The n differential equations of the first degree,

into which the proposed equation has been resolved, may

also be accounted for by mere differentiation. Let the pri-

mitive equation be imagined to be solved for the constant,

of which, therefore, n values will be obtained. Upon dif-

ferentiating the equation, each of these values will give a

distinct equation of the first order and first degree. These
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equations are no other than the simple factors of the dif-

ferential equation of the nth degree,

(346.) By what has been just explained, it appears that

the integration of differential equations of the first order and

superior degrees depends on the resolution of algebraic

equations. But as our powers in that department of analysis

are extremely limited, several artifices have been suggested

to elude the necessity of the resolution of the differential

equation ; we shall therefore explain the principal of these.

(347.) If the differential equation only contain one of the

variables x, and the differential coefficient /?, and can be re-

solved for iVy it will give ^
X = F{p).

Now, since dz/ = pdj:, integrating by parts, we find

y =. jpx —Jxdp ^ px —J\{p)dp. Thus, the integration

of the equation is reduced to that of the formula F{p)dp,

which can be eflected by the rules already established.

(348.) If the proposed differential equation contain both

variables, one y, entering it only in the first degree, then

solving the equation for^, we find

^ = r(^^) = V,

, ^v <^v
•••'^^^^^ + -^^^^

But dj/ = pd.r, •.•

/dv \, Jv
,

Kd^-Pr^ d^^P = ^'

If this equation can be integrated, an equation of the form

f{^p) =
will be obtained.

By this and the proposed equation, p being eliminated,

an equation between x and y will be the result, which is the

sought integral.
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SECTION XXII.

Praxis on singular solutionSy and the integration of diffe-

rential equations qfthejirst order and superior degrees.

(349.) Ex. 1. Let the proposed equation be

p'^y -f 9<px — ^ = 0,

where /> = ~. Hence

which being integrable, gives

+ Vx"^ ^y^ = X -t-c,

•.• 2/« - 2c.r - c* = (1)
* •

is the general solution.

To determine the singular solutions, let the last equation

be differentiated for c (331.). This gives

c + .r = 0,

which, by eliminating c by the general solution, becomes

1/2 ^ _3.2 _ 0.

The value of c being variable, and this last solution not

being a case of the general one, it is a singular solution.

The same result might be obtained by (332.) solving the

equation (1 ) for c, and making the radical = ; thus,

c = ~ a Vx^ -\- y^,

'.' X^ + 2/2 = 0.

If we examine the general solution (1) by the tests

established in (333.), we find

y
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dc _ C

dx ~ c^x" ^

dc y

ay c-\-x

which give the singular sohition already determined.

The singular solution may be obtained immediately from

the proposed equation without the general solution by the

method explained in (337.). By differentiating for p and

X, and p and y, we find

-^ = ^ X
doc py-\-x '

dp _1 —p''

dy py-^x

these conditions are both fulfilled by

py -{. X =^^ 0.

Eliminating p by this and the proposed differential equa-

tion, we obtain

the singular solution.

The same result may be still more readily found (337.)

by differentiating the proposed equation for p only, which

gives

py ^- X =0,

from which we obtain the singular solution as before.

Ex. 2. Let the general solution of a differential equa-

tion be

jf-
-\- x^ = ^cx,

it is required to assign the singular solution.

Differentiating for c, we find ^ = 0. Since this is in-

dependent of c, it only gives the particular integral cor-

responding to an infinite value of c (330.).

Ex. 3. Let the general solution be



SECT. XXII. THE INTEGRAL CALCULUS. 32S

Differentiating for c, we find

"" - l^b '

•••y(i/' +^^ - b) = 0.

This being only the case of the general solution in which

c = 0, it is a particular integral.

Ex. 4. (1 -{-p^)x = 1. Hence ,

Hence by the formula (347.),

1/ =pr ~fF(p)dp,
'.'

7/ = px — tan ~i p + c.

Eliminatingp by this and the given equation

y — ^\v — x^ — tan.~^ ==— + c.

Ex. 5. Given a general solution

3/ = ^ 4- (c - 1)V^5
to determine the singular solution. Let it be diffe^pntiated

for c. Hence

•.•c = l.

Hence j/ = x. But since this is contained in the general

solution, it is only a particular integral, and not a singular

solution.

Ex. 6. To determine the singular solution of

of which the general solution is

^2 _ 2c^ _ ^ _ c^ = 0.

Differentiating for c, we obtain c = — j/. Hence

Since this satisfies the proposed differential equation, and is

not included in the general solution, it is a singular so-

lution.

y2
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The same might be also immediately obtained from the

proposed equation by solving it for p, and making the

quantity under the radical = (339-).

Ex. 7. Let the proposed equation be

ydx — xdy — oc^/dx'^ + dy'^.

This equation is homogeneous with respect to x and 3/. Let

y = nx, '.'

dx

X

u = p \ V\ -^ p\
du , ^ dp= , •.• /^ = - l(p - u) +/—^,

Ix = - /^ 1 + p- - l{p 4- a/1 + p") + Ic,

m * y ,

*'
f f^ / 1 1 *^2\

CJ)
vj/_ ,,^-Sp- vi +p^).

VI +p'

EHminating p, we find

x = 0, <r« -f ?/« + ^cx = 0.

The fofmer is contained in the latter being what it becomes

when c = X . There is in this case no singular solution.

Ex. 8. Let the general solution be

c« - (jr + y)c — c+x+yz=0.
Differentiating for c, we find

2c - a? - ?/ - 1 = 0, •.* c = i(a; + 3/ + 1).

Hence we find, by eliminating x + y,

c = l,

•.• x-\-y= 0,

which is only a particular integral.

Ex. 9. Let the general solution be

y = X -\- (c - iy(c — xy.

Differentiating for c, we find

(c - l){c - x){^c - X - 1) z=0.

This is satisfied in three ways,

c = 1, c — X, c = i{x -f 1).
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The first evidently gives a particular integral. The second,

although c is variable, gives ?/ = x also a particular case of

the general solution. The last, however, gives a singular

solution.

Ex. 10. Let the proposed equation be

y^dx^ — yxdxdy^ — %jxdydx^ + x'^dy^ + xHy^dx^ = 0.

This being homogeneous, let y = ux; which being sub-

stituted for y, and the result divided by x^, gives

m2 ...- u(p^ 4- 2p) + p\l + p'') = 0,

which being solved for w, gives

71 = Pj or u = p{l + /?*).

From the latter, we find

j_ 1

ce^p* (1 +«*)c^*p*

The former gives y =z x, which is a singular solution.

(350.) The equation y = px -i- p, p being a function of

the differential coefficient was first proposed and integrated

by Clairaut. Let this equation be differentiated, and we

find

dy = pdv H- xdp + dp.

But dy = pdx, '.'

xdp + dip = 0,

(. + ''£)dp = o.
dp.

Hence we have dp = 0, \- p = constant, or

dp

By eliminating p hy p = c, and the given equation, we

find

y = ex -^ c,

c being the same function of c as p is of p. This is

the general solution. Eliminating 7? by the equation
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J7 -f -r- =0, and the given equation, we find the singular

solution. We subjoin some applications of this formula.

PROP. xcix.

Ex. 11. Tofind the curve, suchy that perpendicularsJrorn

two given points to the tangent shall contain a rectangle of

a given magnitude.

Let the equation of the tangent be

y - y) - p(^' - ^) = 0,

2^x being the point of contact. Let the points from which

the perpendiculars are drawn be taken upon the axis of x at

equal distances + c, and — c on different sides of the origin.

Hence the two perpendiculars are

y-pjc-^rx)

Let the product of these be 6^, •.*

This solved for.^, gives

where a^ — ¥ + c^. Hence, if k be an arbitrary constant,

the general solution is

y-kx± ^WlTaFB,
which is the equation of the tangents to the sought curves.

The particular solution is

which is the equation of an ellipse.

If the two perpendiculars be supposed to be drawn to
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opposite sides of the axis of x, their product is negative,

•/ 6" < 0. In this case the particular solution becomes

aY — b^x'' = - a"h\

which is the equation of the hj'perbola. This is a well

known property of those curves. Geometry (215.).

PROP. c.

Ex, 12. To find the curve suchj that a perpendicular

from a given point upon its tangent shall have a constant

length.

The equation of the tangent being represented as before,

^
let the given point be the origin, and let the constant length

of the tangent be r, *.•

y-^px

V\+p'
= r.

'.'
1/ = px + r\/l + /}«.

Hence the singular solution is

i/ + 0:2 = y.2.

The circle is therefore wiique in this property.

PROP. ci.

Ex. 13. Tofind the curve such, that perpendiculars to a

given right linefrom two givenpoints upon that line drawn

to meet the tangent shall inclpde a given rectangle.

The equation of the tangent being represented as before,

let the given line be taken as the axis of x, the origin being

at the middle point of the intercept between the given

points. Let^the distances of the given points from the

origin be + a and — a. Hence the two perpendiculars
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y -p{a + ^).

Let the constant value of the rectangle under these be b^.

Hence

\' y = px ± s/Jf + a^jpr.

Hence the general solution is

y =:'kx ± v/6« + /r«a'^,

^ being an arbitrary constant. And the particular so-

lution is

a^y^ + ^>2^2 _ ^2j«^

which is an ellipse or hyperbola according as If^ is > or

< 0, that is, according as the perpendiculars are at the same

or different sides of the axis of x. Geometry (19^-)-

PROP. CII.

Ex. 1 4. Tojind the curve such, that the locus ofthe jjoiiit

where a perpendicularJrom a given point meets its tangent

is a circle.

Let the line through the centre of the supposed circle

and the given point be the axis of jr, and let the origin be

taken at the centre of the circle, the distance of the given

point from the centre being c, and the radius of the circle a.

Let the angle under the perpendicular, and the axis of x be

^, and the perpendicular z, -.'

a^ ~ z^ + (^ + 9.ZC COS. <p.

1 p
But tan. <p — , •/ cos.(5 = — , and

Jtlencc we find
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where a" — c"^ = b^. Hence

3/ — p(c — x) = - pc ± ^ a^p^ + b"^,

•.•
1/ = px ± ^/a^p^ + 6%

the singular sohition is therefore

aY + b^^" = «'^S

which is an ellipse or hyperbola, according as 6® > or

< 0, that is as a > c or a < c. Geom. (223.).

PROP. cm.

Ex. 15. To find a cwve such, that the locus ofthe inter-

section ofa perpendicularfrom a given point with its tan-

gent shall be a right line.

Let a perpendicular through the given point be drawn to

the right line which is the supposed locus, and let these be

assumed as axes of co-ordinates, the distance of the point

from the sup[>osed locus being a. The equation of the per-

pendicular to the tangent through the given point is

y + —(^ — a) — 0,

p
The value of y corresponding to .r — is therefore

a—
. Hence the intercept of the

]

given point and supposed locus is

—
. Hence the intercept of the perpendicular between the

V ^ a^ v/l+;?«

p V
Hence

y \-p{a—x) _ yl+p'
— a ,

v/l+f/ P
y and x being the co-ordinates of the point of contact. The
singular solution of which is

the equation of a parabola.
*
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SECTION XXIII.

Ofthe integration of differential equations of the second and

higher orders.

(351.) One of the circumstances which give facihty to the

integration of differential equations of the first order, is, that

it is immaterial which of the variables is considered as a

function of the other, or which is the independent variable.

This is not the case when we ascend to the higher orders of

differentials (38.), where a transformation is necessary to

change the independent variable. As the orders of dif-

ferential equations rise, the difficulty of their integration

increases. It has been proved that every differential equa-

tion of tv/o variables has an integral ; but the discovery of

that integral in finite terms when the order of the differential

equation exceeds the first, is, in almost every case, attended

with considerable difficulty, and, in by far the greater num-

ber of cases, has totally baffled the skill of the greatest

analysts. It would be impossible in the present state of the

science, tlierefore, to reduce the subject of the present section

to a systematical exposition of the integration of differential

equations of the higher orders. All that could be done,

even in a treatise less elementary than the present, would

be, to explain the methods of integrating particular classes

of equations which have been discovered by JEuler, La-

grange, D'Alembert, and others. To enter at large into the

details of these methods would, however, be quite unsuitable

to the objects of this work. We shall therefore confine

ourselves to the investigation of the methods of integrating

a few of the most important forms of equations, and par-
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^icularly those of the second order. The subject of the

present section may be divided under the following heads

:

I. The integration of differential equations of tlie second

order in the following cases :

1. Where they contain only the second differential co-

efficient and the independent variable.

2. Where they contain only the second differential co-

efficient and the dependant variable.

3. Where they contain the two differential coefficients

and neither of the variables.

4. Where they contain the two differential coefficients

and the independent variable.

5. Where they contain the two differential coefficients

and the dependant variable.

6. Some of the more simple cases where they include

both variables.

II. Some cases of the integration of equations of the nth

order, which only contain differential coefficients and con-

stants.

III. Certain cases of differential equations which include

only one of the variables.

IV. Homogeneous equations of the first degree with re-

spect to the dependant variable and its differentials.

V. Equations in general of the first degree with respect

to y and its differentials.

I.

The integration of differential equations of the second order.

(352.) Let X be taken as the independent variable, and

let the first and second differential coefficients be y, y.
The most general form for a differential equation of the

second order is
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¥(ooyyy) = 0.

We propose first to consider the five following cases of

this,

1. F(y'a;) = 0,

% F(yhj) = 0,

3. r(yy) = 0,

4. Y(yyx) = 0,

5. F(y'yi/) = 0.

dy'
(353.) 1. By substituting -p for y", the first equation

becomes

F(dy', dXi x) = 0,

which solved for di/, gives a result of the form

dy' = xt/jr,

where x is a function of x. This being an equation of the

first order, may be integrated by the methods already ex-

plained, and its integral will be of the form

y = x' + A,

or di/ = x'dr + Adx,

A being an arbitrary constant. This being again integrated,

gives an equation of the form

y = x" -f A.r + B,

B being another arbitrary constant.

Thus, let d^y = ax'dx% •.• dy' = ax"dx,

dy
Substituting -~- for y, we find

, ax'^'^^dx
dy = -; j- Adx, •••

(354.) 2. Let the form fC/z/) = be supposed to be

solved for y'', and therefore reduced to the form

ax'
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d'y _.
dx''

~ ^'

where y is a function of 2/. Let both be multiplied by ^di/

and integrated, and we find

A being an arbitrary constant. The integral yVc^j/ may be

determined by the established rules, and therefore the

equation, after extracting the square root of both sides,

assumes the form

^^ -Y, . ax- ^ \ '

du
which, when the integration of -^— has been effected, be-

comes the integral of the sought equation.

Thus, hta'^d'i/ ^ ydx" = 0, •.•

d\y y
dJF'^'"aF'

dx V^""^"^'
which is an equation of the first order.

(355.) 3. When the differential equation does not include

either of the variables, it may immediately be reduced to an

dy^
equation of the first order by substituting -~~ for 3/", by

which it becomes f{ -1—, ^/' j = 0. This being solved for

dx, assumes the form

dx = F{y')dy';
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and since tjdx — dy^ by multiplying both by y\ we find
.

dy r= y^i{i/)dy\

Hence by integration,

^ =f^iy')dy\

eliminating y by these equations, the result, including two

arbitrary constants, will be the integral sought.

Thus, let d'^y = doc^dy'' + dx'^, \-

•/ dy = ^/l -\- y'^^
' dx^

v/i+y*'

which may be integrated by the established rules. The

value of y being thence obtained as a function of ^, the

sought integral will be

y =/y'^'^-

(356.) 4. A differential equation of the second order of the

form F(yya) == is reduced to one of the first order by

dy^
substituting -p for ^". The equation, therefore, assumes

the form Ff-^—jy?-^) = ^> which is an equation of the

first order between y^ and x. This being integrated by the

established rules, gives an equation of the form ^{y^xc) — 0,

c being an arbitrary constant. Again, substituting --^ for

y, this becomes a differential equation of the first order

between y and x. This being integrated as before, gives an

equation of the form

F{xycc) = 0,

c, c' being the two arbitrary constants.

1
(dar-^dy^)^ a^ ^_
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y' 2.r*

Foi-y substitute -—-, and we obtain

di/ _ ^xdx
3 yy2 '

(1+yT

••• y =

v.5/=/
(07- + ac)dx

The integral of which is obtained by the rules already

established. This is the equation of the elastic ciirve.

(357.) In general, the equation f(j/'^c) — may be

integrated by three different methods, which may be chosen

according as they may severally be found best suited \o the

circumstances of the proposed equation.

1. If the equation admit of being solved for y, it may be

reduced to the form

dx
"^^

•.• ^/ —fyidx.

% If it admit of being solved for x^ it may be reduced to

the form

X = F(y).

Butyc?a7 = dy^ '.' y —Jy^dx — y^x —JxdyK Hence

y = y^ -/F(y)%'-

The latter integral being determined, y may be eliminated

by means of this equation and x — F(y), and the result will

give the sought integral.

3. If the equation do not admit of solution for either x or
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y, it will be necessary by a transforma;tion to express t and

y as functions of a third variable z ; let these functions be

z, z', so that

jr = z, y = z',

which is the sought integral.

(358.) 4. If the equation have the form ^{li^ijy) — 0,

it may be reduced to one of the first order, thus,

> dy^ — y^'dx^ y^dx = dy^

Let the proposed form be expressed thus,

y --^fiy'y),

• y'dt/ =-f{.y'.y)dj/.

This being a differential equation of the first order between

y and y, may be integrated by the usual methods, and its

integral will have the form Y{i/yc) = 0, c being the

arbitrary constant. The integration of this presents two

cases

:

(359.) First, Where the variables may be separated, and

therefore the equation may be reduced to either of the

forms,

y = Y,

y = y',

Y and y' being functions of 3/ and y respectively.

In the first case, the integration is effected by reducing it

to the form

Y '

In the second case, since dy = y^dx^

'.' y^dv = dy',
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If

Eliminatingy by this and the equation 3/ = y', the resulting

equation will be the integral sought.

(360.) Secondly, If the variables y and 7/ cannot be

separated, a transformation may be effected by expressing

y and y as functions, z', z, of another variable z. Since

7/da: = di/, '.• z'da^ = dz, and the integration may be effected

as in the last case of (357.).

(361.) 6. There are some remarkable cases in which dif-

ferential equations of the second order, where they include

both the variables, may be integrated without much dif-

ficulty. We shall consider the three following cases

:

(where x, x', x", are any functions of jr.)

[3] • • • • Where the equation is homogeneous with respect

to the variables and their differentials.

(362.) 1. Let^ = e-^"^"-, '.' -^ = ueJ''"^% and

dx^ \ ^ dx)

Making these substitutions, we find

du— + (w^ + ^ti + x') = 0,

since the common factor e^"^' disappears. This, being a

differential equation of the first order, is integrated by the

methods established in Section XVII.

(363.) 2. This equation may be reduced to the preceding by
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any transformation which will remove the term x''. For

this purpose, let j/ = tz. Hence

dy dz dt

dx ""da: dx^

d'^y _ d^z dzdt dH

d^^ ~ *d^ ^ (hd^ "^ ^^*

Making these substitutions, we find

d'^z dzdt: dH A dz dt\

dx^ dxdx ^dx' \ dx dxj

4- x^tz + x" = 0.

Let the variable z be limited by the condition

d^z dz

Hence the transformed equation, after dividing by z, be-

comes

dH dt / ^dz \
^

x" ^ r^^

The first [1] of these equations may be integrated by the

preceding article, and thence an equation found of the form

dz
f(zx) = 0. By this process -j- will become known as a

function of x, and thus the equation [2] will become in-

tegrable. The process in general may be conducted thus.

Let

, dv
*.• xax" = .

V

By this substitution, [2] becomes

But since

dH dt/dv Mz\ xJ^dx ^

ax ax\ V z J ^

= dlypz'^) = -,
V z ^ ' vz"

the equation may be reduced to the form
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dH dt

d^^^^
+ -T-divz^) + x"vzdjt; = 0.

Integrating it under this form, we find

dt
j-vz'^ +fx"vzdx = 0,

But since ^ = =^, •.•

z

/dx \

In this, V is a given function of x by the equation v = e^^^^

and ^ is a function of x by [1]. Hence this last equation

is the integral sought. It will obviously include two arbi-

trary constants.

(864.) 3. If the equation be homogeneous with respect to

Vi ^i ^j/j d'^yt and dx, let

dy
, J'?y js

^ = "^' -^=^' rfi^= x'

w, y', and z, being considered as new variables. By this

substitution, every term of the equation will have the same

power of jr as a factor, which being removed by division, the

equation assumes the form

F{7jzu) = 0,

or z =^f{yhi).

By differentiating ?/ = ux, we find

dy = udx -\- xdu,

'.' ydx = udx + xdu^

dx du

Also, since

X y-^i

cPl_z_
dx'" x'

z%
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..• .rp = zd.,
dx '

••• xdt/ = zdx,

_ dx dy^

X z

dnf du

^y .fluffy-)
-^'

This being an equation of the first order betweeny and u,

may be integrated by the rules for integrating such equa-

tions. The integration will givez/' = f(?/). Hence

dx du

\' Ix =/
du

f(u)—u

Eliminating u by this and y = ux, we obtain the integral

of the proposed equation. It is obvious that this integral

will include two arbitrary constants introduced by the two

integrations effected prior to the elimination.

Thus, let xd^y = dydr, •/ z = y'j and hence

dy^ du

y'
~ y-w'

••• y^ =Audy' + y'du) =i/u+ Jc.

dx di/
But, also — = —j-, '.' X = ay', EHminating y by these

X y
equations, the result is x^ — 2axu = c. Eliminating e^

we obtain the integral

x^ — 2aj/ = c.
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II.

Integration of differential equations which do not contain

either ofthe variables.

(365.) There are two cases in which differential equations,

which do not include either variable, may be reduced to a

form which is integrable by the rules for the integration of

Junctions of a single variable. These two cases may be

expressed thus

:

/^ dJ-^\ _
'^-

A^^'«' dx^-O" '

which denote any differential equations which include only

two differential coefficients, the order of the one being in

the first case lower by one, and in the second lower by two

than the order of the other, and which exclude the va-

riables.

{SQQ») 1. In the first case, let

dr-'y _
d^-^ - ""'

^
^d^t/ _ du

dx""
~~

dx'

By which substitution, the form is changed to

<-|''') = 0'

which being an equation of the first order may be integrated.

This being effected, we shall obtain from the resulting

equation

u — X,

dry _

X being a function of iv. The integration may be completed

by Section XI.
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(367.) 2. An equation of the form

may be integrated by making the substitutions

d^u __ d'y
**'

'dx'^~"dx'''

Hence the proposed equation becomes

/^'^^
«)=pO,

\dx'''

which being integrated by (354.), may be reduced to the

form

u = X.

Whence

d"-2j/ _
d^^ ~^'

this may be integrated by Section XI.

III.

Integratiofi of deferential equations which include but

one ofthe variables.

(368.) Differential equations, which include only one of

the variables, may be divided into two classes, those which

include only the independent variable, and those which in-

clude only the dependant variable.

P. The class of differential equations, which include only

the independent variable, comes under the form

/ dj_ ^ ,,,^\-o
V' dx' dx^' e/W

The exponent of the order of an equation of this kind may
be always reduced by an easy and obvious transformation.

Let

#
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y =

and, in general.

dy diif d-y

~dx' ' ~dx~'dx^'

d'''\y^ d'y .

d.v" da;'''

Hence the formula becomes

"^V'^'dx' dx^' dx-'J ""^

which is an equation of the {n — l)th order, including both

variables i/ and x.

9P, If the equation include the dependant variable only

by the transformation (38.) for changing the independent

variable, it may generally be reduced to the preceding

. case.

By this rule, an equation of the second order, when it

includes only one of the variables, may be reduced to the

first, one of the third to the second, and so on.

(369.) If an equation have the form

'd'y d''-\y d"

it may by a similar process be reduced to an equation of the

second order, including but one of the variables. For, let

_ d"-^y

_du d''-\y d^u _ d'[y

''' dx~dx^^' dx'^~dP''

by which the equation becomes

(d^u du \

which, by a similar process may be reduced to an equation

of the first order, including two variables.

In general, therefore, a differential of the wth order, in-

cluding no variable, may be reduced to one of the (w— l)th

order, including one variable, or to one of the (n — 2)th

order, including two variables.
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IV.

The integration of' homogeneous equations of the first

degree with 7'espect to the dependant variable and its dif-

ferentials.

(370.) Equations of this class come under the general

formula

where a, b, are functions of .r, the independent

variable.

Let J/
= ^% and •.*

dy = e'^du, d^y = e''(d^u + du%
d^y = e^d'u + Qd^udu + du^).

By tliese substitutions, the proposed equation becomes di-

visible by e''y and the resulting equation will be independent

oi'y, and of the form

d"u d'^-^u du ^^ r_-

which may be further reduced to an equation of the (ti— l)th

order, including both variables by (369.).

(371.) As it seldom happens that the equation [1] is in-

tcgrable when its coefficients are variable, we shall at pre-

sent consider the case only in which a, B, • • • • are all con-

stant quantities.

Thus, if the equation be

d^u d^j du

^ + ^^^+^-^ + ^ = «-

By the transformation already suggested, this becomes

* The coefficients of this equation are not supposed to retain

the same values as in [I], but are general representatives of

functions of j.
-
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d^u + Sdud'^u + du" + A(d'u 4- du:^)da: 1 _ q
+ Bdudx^ + cdx^ j

This equation may be reduced to one of the second order

(jijj

by substituting t for -7—, by which it becomes

dH + (3jf + A)dtdx + {f + A^* + B^ 4- c)dx^ = 0.

Since a, b, c, are supposed constant, this equation may be

satisfied by a constant value of t. For if t be supposed

constant, dt — and dH = 0, by which the equation is re-

duced to

t^ + aP + bj^ + c = 0.

In general there are three values of t, which are functions

of A, B, c, and therefore constant, which will fulfil this

equation. Let the three roots be

t = rrii, t = 7/225 t = Wg,

And since •

du = tdx, \' u = tx + c, \' y = e*^"^"" ;

we obtain thus three values of^,

Whence we have

yi = c^er, i/2
= c.,er, yz = Ca^,

the three arbitrary constants being

/>C pC pC
*^l9 t'SJ *^3»

Since each of the equations between^ and adjust determined

include but one arbitrary constant, they are only particular

integrals. We shall, however, obtain the complete or ge-

neral solution by equating the sum of the three particular

values of^ already found with y,

y = ci^r + c^^r + €3^^.

There is no difficulty in proving that this equation satisfies

the proposed differential equation, for if it be differentiated,

and its third differential obtained; the three constants

being eliminated, the result will be identical with the pro-

posed equation.
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A principle much more extensive, however, may be esta-

blished. Whatever be the nature of the coefficients a, b, c,

it may be proved, that if j/i, ^29 Vzj be the three values of

y^ which separately satisfy the proposed equation, their

sum 7/1 + y% + yz being equated with ?/, will form an

equation,

y = Ci3^i + C2?/2 + C3J/3,

which will satisfy the proposed, and which, including three

arbitrary constants, will be its general solution. If any of

the particular values j/i, 7/2, or 7/3, contain an arbitrary con-

stant, the corresponding multiplier may be omitted.

To prove this, let the last equation be thrice successively

differentiated, substituting in the proposed equation the

values of3/, dy^ d^y^ d-y^ and collecting together the mul-

tipliers of the same constant.

The result will be •

Ci{d^yi + hd^yydx -f Bdy^daf^ -j- cdx^)

+ 03(^3^2 -\- A.d'^y^doo \- -Bdy^dx^ + cdx^

-\-c^{d'yQ + Kd^y^dx + ^dy^dx'^ -f- c<iF^

Since we have supposed that 3^1, 3^^, 3/3, severally satisfy

the proposed equation, it is obvious that the preceding

equation is fulfilled independently of c,, Cg, C3.

There will be no difficulty in extending this reasoning

generally to the class of equations included in the general

form [1], so that, if there be n particular values ofj/,

«/lJ «/2, 3/3 • • • • ynr>

which separately satisfy [1], its general solution is

y = C,7/i + CaT/a + C^T/s • • • • + C„7/„.

When the coefficients a, b, c, are constant, the particular

values of y are of the form y = e'"^, m being constant.

Hence

dy = me'^dx, d^y = m^e"'''dx • • . • ^"3/ = rrC'e^dx,

The proposed equation thus becomes divisible by e'"% by

which it is reduced to

:')U0.
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m" -{- A7w«-i + Bm"-2 4. cm"-=* • . . • Mm + n = • • . [3].

Let the n roots of this equation be

m^, 777-2, in^' ' ' ' rrini

and we find the particular values oiy corresponding to these

severally,
mx

and therefore the general solution is

mx

y = Ci^T* + C2^r + • • • • c„e~ [4].

(372.) If any pair of values of m deduced from [3] be

imaginary, they must have the forms a + h^/ — 1 and

a — hV— 1, *.• two o£ the particular integrals, deduced as

above, assume the forms

(a—&V^)^
3/ = Cii^ ,

and, therefore, their sum becomes

y = e^\c,e ^ + c^e ^ /
But (^56,), _

hx^—l , . ,

e = COS.OX -|- y/ — 1 sm.oj:,

—bx^/^l .

e = cos.c>a; —^ — 1 sm.6ar,

••• CiC + Ca^ = (Ci+ C2)C0S.^^+ (Cj - Cj)

\/--l sin.^a?.

Let the constants Ci, Cg, be so assumed, that c, -f Cg and

(Ci — C2)v/ — 1 shall be both real, which we are alWed to

do since the differential equation is fulfilled independently

of them ; and let

Ci + Ca = p sin.g',

(Ci - Ci)*/—! =:pcos,q,

p and q being arbitrary. Hence the corresponding terma^

of [4] become

y =z e"'^ . p sin..(ba; f q) ;
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and in the same manner, terms of the same form may be

found for every pair of imaginary roots.

(373.) When the equation [3] has equal roots, the result

is only a particular integral, for the corresponding terms of

[4] become

c^e"^ + C2^"*^ = (ci + Caje"^ = c^.

There will be, therefore, one arbitrary constant less than

the number necessary to give the integral its full generality.

In this case, therefore, the integral must be otherwise

obtained.

(374.) The following process for obtaining the integral

in this case was first proposed by D^Alembert.

Let the two equal roots be nii and m^, and first let them

be supposed to be unequal, and to differ by A, so that

fjii = nil -\- h.

Hence the two corresponding terms of [4] would be

Ci^r + c^eT = ^r[ci + c^e^].

But by (65.),

^"^ = 1 + -T- 4-
1 ' 1.2 ' 1.2.3 '

Let C| + C2 = e', and cji = e". Hence

l./V

where e' and e" are arbitrary constants. As this will

satisfy the proposed equation, whatever be the values of

the arbitrary constants e', e", and independent of h, we may

suppose A = 0, which is equivalent to m^ = m^^ This re-

duces the expression to

which being substituted in [4], will render it a general

solution, since it introduces the complete number of arbi-

trary constants.

It will be easy to extend the same process to the case-
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where three or more of the roots of [4] arc equal. First,

let nil = m^, *.'

y = er[E' + e''-^^] + Ca^T' • • • • + c„e"

.

Let ??i3 = Wi + h, \'

CIe' + e"^] + Q.^ef = ^r[E' + E".r + Ca^^.

Developing e^'' as before, and substituting its value, we find

the quantity within the parenthesis become

e' + C3 + (e" + Cjl)x + Cay^ + ^^.2^ ' * *
'

c h^
Let e' + Cs = f', e" + c-ih - f'', y^ = f"', and it be-

comes

f' + f"jc + f"^2 _^ j-rff .....

In this, let ^ = 0, and •.* in^ = tWj, *.*

C'(e' + e"j) + Ca^*^^ = e7^[F' 4- F"a: + F'"a;2],

which being substituted in [4], renders the solution general

as before. The same process may obviously be continued

and applied to any number of equal roots.

Linear equations of thefirst degree with respect to y and

its differentials,

(375.) This class of equations are included under the

formula

d"y d'^-^y dy

Let the several coefficients a, b, • • • • n be constant, and

X any function of the independent variable x.

The integration of equations of this form is reduced to

the resolution of algebraic equations, as in the last case, by
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either of the following methods. The first is given by

Euler in his Integral Calculus, and the other by Lagrange.

(376.) Let us first consider an equation of the second

order,

Let e~'"'d.v be the factor which renders this equation inte-

grable, and lety*— xe-^'^da; = x' + c. Hence the quantity

must have an integral of the form

To determine the arbitrary quantities 7i, a, Z>, let this be

differentiated, and the result equated term for term with the

former; *.*

— ha — B, — hb -\- a = A, b = 1,

',' h^ + Ah + B = 0, a = - -^, b = 1.

The first equation gives h, and the last two a and b.

The immediate integral of the proposed equation is,

therefore,

^-^ + ««/ = e'X^' + c).

If in this equation the two values of h determined by the

equation h^ -f- aA + b = be successively substituted, and

diJ
by the two equations thus found, -j^ be eliminated, the re-

sult will give the complete integral.

(377.) If the proposed equation be of the wth order, we

may infer in the same manner, that the value of A is a root

of the equation

h" + A/i«-» +....= 0.

And we shall have as many different immediate or first
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integrals of the {n — l)tli order as tliere are roots of this

equation given.

If there be n roots given, by the n corresponding in-

tegrals, the (w — 1) differential coefficients may be eli-

minated, and the complete integral thus obtained ; and if

any number of roots less than the entire number be known,

the order of the equation may be reduced by the elimina-

tion of as many differential coefficients.

(378.) We shall now explain Lagrange's method, which

is founded upon the most general theorem which has yet

been delivered upon the integration of differential equations.

In (371.) it was proved that the integral of the equation

d"7/ d^'-h/ d^'-'^y dud + ^^' + ^fe»^
+

•
• • •«£+''3'=o [1]

was of the form

y = c^r + c^eT + Cs^r • ' . . [2],

where «/i = e"^, y^ = e^, .... were particular values of^
which satisfied the equation [1], the sum of which, involved

with the necessary number of arbitrary constants, constituted

the general solution.

The equation to be integrated at present is more general

than [1], being of the form

d"y d'^-^y d'-'^y du

X being any function of jr. Let it then be proposed to

assign the functions of a , into which the arbitrary constants

Ci, Ca, • • • • in [2] should be changed, in order that [2]

should become the complete integral of [3]. If this can be

effected^ it will follow that the several terms of [2] will be

so many particular values of y, which will satisfy the pro-

posed equation [3], and, therefore, that if n particular values

of j/ be given, the integral of the equation [3] may be im-

mediately determined.

We shall investigate the values of the functions c^, Ca,
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• • • • in an equation of the third order, and the principle

may thence be easily generalised.

Let the equation

y = c,2/i + C2J/2 + c.^ [4]

be the sought integral, Cj, c^, C3, being arbitrary functions

of d7.

By differentiating, we obtain

di/ = Cxdy^ -f Q^dij^ + c^dy^ + y^do,^ -f y^dc^ + y^dc.^.

Let the arbitrary functions Cj, C2, C3, be limited by the

condition

«/i^Ci + y4^^ 'V yjic^ = 0,

which reduces the differential equation to

dy = c^dy^ + c^dy^ + c.,dy^,

the form it would have had if Ci, Ca, Cg, were constant.

Differentiating this again, we find

J«j/= c4'y^ + c^d'^y^ + c4^y^ + dc^dy^ + dc^^dy^ + ^c^rfj/g.

Again, limiting the functions c^, Cj, C3, by the condition

dc^dy^ + fl?C2<?«/2 + ^Csflf^s = 0,

we find

d'^y = cd'^y, + c^rf^j/^ + c^d'^yz^

Differentiating this, the result will be

d^y=Cid^yi + Cud^+c^d^ + dcid^yi+dc^d^yz^dc^d^ys,

By substituting these values in the equation

d^y d^y dy

we find
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dc,d\y, dc^d'^y^ dc.,d^y^ _
"^

dx' ^ da;-' ^ dx'
+X-U.

But since by liypothesis z/i, y.^, j/3, severally satisfy the

equation

S + -S+^l^ + '^2'=*' 16]'

the former equation is reduced to

dcid"^y, -{- d(^.jd^y.i + dQ.^d'^y^ 4- yidx^ = 0.

By this equation, therefore, united with the conditions

y^dii, + y^Q.^ + y^dc, = 0,

dy^dCi 4- dy.jdcj, -f- dy-^dc^ = 0,

the values of the three differentials will be determined as

functions of y^, y.^, 3/3, vi^hich being themselves determinate

functions of ^, we shall obtain by the methods for integrating

functions of a single variable values of c,, C;^, C3, of the

forms

Cx = x' I- Ci,

c, = x'" \- c,,

Ciy Ci^ c?3, being arbitrary constants. Hence the equation [4]

becomes

y = i/,(x' + c) + t/,(x" + c,) + t/3(x"' -f C3),

which is the complete integral of the equation [5].

If two values only of «/, which will satisfy the equation

[6], be known, the integration of the proposed equation [5]

will depend on that of an equation of the second order. For

let the known values be t/^ and y.^,
'.'

y ^ c^y, 4- c,y.,,

'.' dy =. c,dy, + c^dy.,,

y,dc, + y.,dc., ^ 0.

As only one of the functions c,, c^, is disposable, the

equation

d^y == c.d^y, -f c.,d% + dy.dci + dy,dc.,

cannot be further reduced, and by differentiation, it gives

A A
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Making these substitutions in [5], it becomes, after mul-

tiplying by dx^,

dy^d^c^ + dy^d^c^ + ^d^y^dci^ + ^d^y^dc^

^ + Adt/idc^dx + Ady^dc^dx + xdx^ = 0.

The differentials dc^^ c^c^, may be eliminated by this

equation united with the equation

«/i^Ci + y^dCi = 0,

and its differential, and the resulting equation will only

contain dcy and (^Ci, and functions of x.

This equation is therefore reducible to a differential

equation of the first order by (368.).

If only one value of «/, which satisfies [6], be known, an

auxihary equation of the third order may be found, in-

cluding dci and d^c^^ which may be reduced to one of the

second order by (369.).

The method which we have just explained being extended

to equations of every order, we conclude, that if n particular

values of^ satisfying the equation [1] be given, the general

solution of this equation may immediately be obtained, and

thence the general solution ofthe more general equation [3].

And further, that if (/i — 1) particular values of 3/ only be

given, that the integration of [3] may be reduced to the inte-

gration of an equation of the first order and first degree *.

* See Laeroi^,Aio, torn. ii. p. 529.
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SECTION XXIV.

Praxis on the integration of equations of the second and

superior orders.

In the arrangement of the examples on the integration of

equations of the second and superior orders, we shall follow

the order of the preceding section.

I.

Examples on equations of the second order*

(379.) 1. Equations of the form 1^(3/%) =0.

Ex. 1. d^y — adx^. Hence we have dy^ = adx^ %

y = ax + c,

\' dy = axdx + cdx,

2y = flf-r* + ^cx + c',

c and d being the two arbitrary constants.

^ ds^ d^y I ^ ,

Ex. 2. j-r • :r~« = " cos, -r , where
dx^ dx^ a b'

ds = Vdx^ + dy^ is constant,

••• dsdh — dxd^x + dyd'^y = ;

and since

/2'

where 2,' = ^, •••

^ , dx X
vdy = -COS.y,

A A
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•••!^ = T ''"•!: +
''

bdx . a:
,

•,• dy = sin. -7- + eaXf

•.'
2/ = - — COS. -^ + co; + c',

c and d being arbitrary constants.

Ex. 3. A body moves uniformly along a given right line,

and another moves uniformly in pursuit of it, to find the

path of the latter.

Let the given right Hne be the axis of x, and let yx be

the co-ordinates of the place of the pursuer, and let c be the

exponent of the ratio of the velocities of the two bodies. The

pursuer may be considered at each instant as moving in the

tangent to the curve of pursuit, and the tangent itself as

continually passing through the pursued body.

The distance of the point where the tangent meets the

axis of X from the origin is

xdy^ydx
dy

Now, if s be the arc of the curve of pursuit measured

from the point where the tangent is perpendicular to the

axis of vT, in which position we may assume the axis of ^,

we have

xdy^ydx
-z = cs.
dy

Differentiating this equation, considering y as the inde-

pendent variable, we find

d^x _ cdy
"

^/dy^-^dx^
~

y
'

dx
Let x' -- -T"'

''

dy
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cdy da^

... a:' + V\ + 00'^ = (ay)%

where a is an arbitrary constant. Hence

__ ay+^ 1

This is the simplest case of curves of pursuit. See

Peacock, p. 370.

(380.) % Equations of the form ¥(y"y) = 0.

Ex. 1. a^d^i/ — 2/^2 _- 0^ ...

multiplying by 9.dy, and integrating, we obtain

dy^ ^ 2/'^ + c

'. (^ =__ ady

Vy^-\-c

c

or

y = ce~ + c'^~ «

.

Ex. 2. d^ys/liy ^ dx" = 0, \'

y = iay)~^;

multiplying by ^dy, and integrating,

'£-y(ayr% = 0,

dy V 4 /v/y - c

which becomes

' ^'^ ^a '

dx =
^

'.tZy,

V ^Vy-c
which is integrated by the established rules.
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(381.) 3. Equations coming under the form F(y'y)=0).

Ex. 1. Let ad^ydx + (dy'^ + d^«)* = 0. Let /- =y>

'.• ;rT= ;^. The equation, therefore, becomes
doo^ dx

(i+y»)^

and since c?y = i/dx, '.'

ai/di/
dy =

3

(1 +yo
Integrating these, we obtain

ay' a
a? = A ^, 7/ = B 4- ;•.

(1+yo^ (1+yT
Ehminating y\ we find

(A -Ory^-f (B-^)* = ff2.

This example proves that the circle is the only curve of

which the radius of curvature is constant.

Ex. 2. ady — dydx. By the usual substitution, we

find

dx = ^, •.• X = ay + c,

dy = ady', '.' y = ay' -\- c'.

Eliminating y, we find

X = c -\- al\(*^>

Ex. 3. To find the curve in which the radius of cur-

vature varies as the angle under its tangent and the axis

qfji.

Taking the arc s of the curye as tl>e independent variable,

the radius of curvature is
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^o2

R =

But since ds^ — dy^ + dx^, •/

di/d'y •{ dxd*x = 0.

Eliminating d'-y by this, we obtain

dsdy
^-

d^x

Hence by hypothesis,

a^cT dx

But ify = -^, ••• ds = (1 +y*)*J;r, •.• differentiating

• ' i+y^-

Hence the equation becomes

ady*
, ,

dr = ^—jtan.-y.
(1+yT

Integrating this, we obtain

aw'
^ ,

aiJ
X = c tan."" y - —

. ,

y = e -{- - tan.~y —

Eliminating y, we obtain the required curve.

Ex. 4. -^ = "-7—, <y being the independent variable,
dy

and

ds = ^/dx^^~V~dy'^,

- 2fdy^dx
d^s =^^TVl+y* +---=--,

vi+y*
y^y(^^



860 THE INTEGRAL CALCULUS, w«;ECT. XXIV.

Hence we obtain

a 1 + ^i+y-s = c + al-
^

y = c -

s/\-\-t
y'

(382.) 4. Equations of the form F(i^"y'x) = 0.

Ex. 1. Tofind the curve ofwhich the radius ofcurvature

varies inversely as the abscissa.

By (137.),

(l+y'T

Since it varies inversely as or, let

a being constant. Hence the equation to be integrated is

a'y" + 2x{l + ?/")^ = 0.

This has been already integrated in (S56,), and the result

is the equation of the elastic curve. See Poisson, vol. i.

p. 219.

Ex. 2. Tofind the curve in which the radius ofcurvature

is a givenfumction ofthe abscissa.

In this case

„ x'dx

Vl-x'^
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This formula solves all the inverse problems relating to the

radius of curvature.

Ex. 3. Let the given equation be

(1 -h y') - ay\\ + y^)^ -k- ooy^f = 0;

by the usual transformation, this may be reduced to

dx(\ + 2/'^) H- xy^di/ = ady'^1 + y'\

dividing by -v/ 1 + 3/'^, and integrating

But y = y'a: —fxdy\ •/

y = y'x — av/1 + y'" — h . l[y^ + v/ 1 +«/'*] + ^/c?

By this and the former, y being eliminated, we find

x-\-a
y = z -h'l

c(b-zy

where & — */a^ + />^ - x\
3_

Ex. 4. uidx"- 4- %'')^ = x^dxd^y. Hence

t\r— fl

y =

»/=/-
{cx — a)dx

/ 9^acx a"

--

—

-. r- a tCxC\- c^) ~\-ac
^.y^c^x^-icx^ar -I]—7=T-

+ A/^'-(cx-a^)^ + c'.

Ex. 5. c?.r2fi?z/ — xds^d^y = ack-^.? ^/d^-x^ -\- d'y^, s being

the independent variable, and

ds = x/dy^ -\- dx^.

Hence wc obtain d\'} = 0, •.•
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Hence

y
di/ dy'

or ?/ — .r -~ = tt—-,

which comes under Clairaut's formula (350.).

- 0-7/" = aij\

Ex. 6. adxdy^ -h x^dxd-y~nxdy V dx'^ + a^d'-y'-^

*.• aifHx + ^^dfy = nxif^dx"^ -{- ardif^.

This being homogeneous with respect to a; and y', let

a? = y^, •.•

dx ~ ^ ~ 'ii^uSi^-X '

and

dx du

X y"— 7i

dx du M^«V— 1

(383.) 5. Equations of the form ^{y^y) - 0.

Ex. 1. y'(2/y + a) == y(l + y'^-). since y'dy = y^dy\

this is reduced to

dy\yy^ -V a) = dy{\ 4 y^).

This being integrated by Clairaut's formula (350.), gives

J/
= dy + cv/i 4-y%

- /'^^ -X =/-^ = apy) + ci{y^ + v^i +y^).

Eliminating y by these equations, the integral may be

found.

Ex. 2. Let the equation be

abf = a/j/* + «y *

;

this becomes, after substitution.

ahy^dif = dyVy^ + «y^
To integrate this, let ^ - ijz, and the equation becomes
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ahzdy — abydz — z^dy ^/z^ + a*.

The variables in this equation are separable by making

^/z^ -f d^ = tz, by which the values of z and dz being

found, the equation is reduced to

dy — htdt

which is integrable "by rules already given.

Ex. 3. Let the equation be

yu + Ay + B^ = 0,

A and B being constant. This becomes, by the usual sub-

stitution,

y^dj/ + Ayc?y + ^ydy — 0,

which being homogeneous, may be integrated by the sub-

stitution y = xiy. Hence

dy _ —udu —udu

y "'m*-!- Aw +B~ (m—a)(w — 6)'

a and h being the roots of the equation

M^ + AM 4- B = 0.

Also, •

dy __ du —diL

y" ""^ ~ (w -a)(M36)'

dy
,

—du
•.•—^ adx — ;,

y u — o

dy
, ,

—du
-^ — bdx = ,

y u—a

•.* Ly — ax = I J,^ u~b
n

ly — bx = I ,

\' u — a = , u -— —
y y

Hence

yQi — a) = m^^ — mef',

which is the complete integral.
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This result may also be obtained by the process in (371.),

which, when the roots «, b, are imaginary, gives

and when they are equal, gives an integral of the form

y = cef^'[x + /c).

!E)x> 4'« '

. -zz. 7}y. Hence
' ^dy^dx-Vy^dx^—yd^ydx ^'

••• <^j/(y' + y'"t = ^nfydy -}- ny'^dy - ny-'x/d^.

This being homogeneous with respect to y and y\ let

dy ?iiidu

^ 7idu
clx = .

(l+0(^<-Vl+w^)

y(fy -f- ydy = i/^dy + ydy — zdz,

,,
zdz

•••y' + i/ = ^,
which gives

x^dy =^ 2azdy - aydz,

\*y= ~ -^ -^

2a -2 2^_^/«^*^.y^'

which is an equation of the first order.

(384.) 6. Equations of the second order, which include

both variables.
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Comparing this with the formula [2] (361.), we find

x' ^ - —r, x" =
x' x"'

^

\-x^'

Hence the equation [1] (365.)? becomes

dx^'^'x ' dx'~ X''
" '

which, by putting z = ^/w^, gives (362.),

du / u 1 \ ^

rf^ + ("^+T-W = '*-

This equation is rendered homogeneous by making u = —

;

the variables are then separated by putting x = su'. Hence

du' _ 5^ + 5—1

s V *—

1

neglecting the constant. Substituting for u' and 5, their

values, we find

Also,

V = f •^^''•^ = ^^ = ^.

Hence we find

Jx"vzdx =Jadx = ax -{ b,

and, therefore,

_ X'—l {ax-rh)xdx

^ ~ X '^ (^^-1)^ '

which is integrated by the rules for rational differentials.

II.

(385.) Integration of equations which do not include

either variable.

. T7 1 "'^V d^y T d^y d'u dy „
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the proposed equation becomes

Multiplying by 2du, and integrating, we find

/J.2//7/.2

= u" + L

Hence

dx =

dx'

adu

^u^Arb

And

Hence we find

-^ =zfudx = a Vii^ + 6 + h^

y = a'u 4- ab"l[u + v'w* + 6] + /{>"',

or ^ = ce"« + c'^ « + c"a; -f c"^

III, IV.

(386.) Integration of equations, including y only,

Ex. 1. Let the equation be

da^ -^dx'^^d^^ -^dx^^-^'
This equation being homogeneous with respect to y and its

differentials, and of the first degree, comes under [1] (370.)

By comparing the coefficients, we find

A= —% B=iH-2, c=— 2, N=l.
The equation [3] (371.) becomes, therefore,

w* — 9m^ -f 2m2 - 2w + 1 = 0,

or (1 - my(l + ?7i«) = 0.
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Hence its complete integral is

2/ = (a 4- ox)e'' + ce + c'^ >

or y = (a + Z>^)e'' -f a cos.a: + b sin.a?.

SECTION XXV.

Ofthe integration ofsimultaneous differential equations of

thefirst degree.

(387.) If m equations be given, involving {m + 1) varia-

bles, all these variables, except one, may be considered as

determinate functions of that one. The forms of these

functions are determined by eliminating every combination

of (wi — 1) variables, which can be obtained from the entire

number of variables, except that one, on which the others

are supposed to depend. This process will give m equa-

tions by which each of the m variables are connected with

the independent variable, and by which they will be implicit

functions of it. By the solution of these equations, they

would become explicit functions of it.

If the equations between the several variables be dif-

ferential equations, the process of elimination would be at-

tended with considerable difficulty « Instead, therefore, of

eliminating first, and then integrating the several differential

equations, so as to obtain each variable as a function of the

independent variable, we shall explain a method of inte-

grating simultaneous differential equations without any pre-

vious elimination.

(388.) Let it be proposed to fntegrate simultaneously the

two equations



368 THE INTEGRAL CALCULUS. SECT. XXV.

du dx
MJ, + N^ + r^ + Q.^ = T,

which are the most general equations of the first degree

between the variables x^ j/, and the differential coefficients

du dx
-f-and-j—. In these equations the several coefficients

M, m', n, n', • • • • are supposed to be functions of the

independent variable ^.

Let these equations be expressed thus,

(m^ H- iix)dt + Fdif + (^dx — 'idt,

(M'y + ^^x)dt + p'Jz/ -f- Qidx = T'dt.

Multiplying the second by an arbitrary function (9) of ty

and adding the product to the first, we obtain the equation

Hijdt + Kxdt -f- iidy 4- sdx == vdt,

where

H = M + m'5,. K = N + n'5,

11 = i. 4- p'a, s = a + q'5,

U — T 4- t'9.

This equation may be expressed under the form

K S

This will become a linear equation of the first order with

TJ

X and d{ij -\ x)^

dz = dt/ -\ • dxy

respect to 7/ + —x and a(// -j x), it

XT

where z — // -j x ; for in that case we have
X

n , u ,

dz +- —zdt.= — -fif^,

R R

which is of the form integrated in (314.).
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The condiiion

K S

ix rv

gives

<^)-i (/.r,

K , ,K S _

••• — ax ^ xd— = —ax,

" d— = — = —
H ' H R

'

Substituting for k, h, s, and R, their vakics, and dif.

ferentiating and ehminating 0, the resulting equation between

the coefficients m, m', • • • • will be the condition under which

the integration of the proposed equations can be effected by

the formula (314.).

(389.) The simultaneous integration of the equations

{uy + Njr)J^ + vdy + Q.dx = Tdty

(u'y -f- T^'x)dl; + v'dy + oldx = T^dt,

may also be effected thus : let dy and dx be alternately

eliminated, and the results will be two equations of the

forms

dy + (p7/ 4" QLx)dt = idtj

dx -\- (v'y -f a'*')^^ = T'dt,

the coefficients representing the functions of the former co-

efficients, which are determined by the process of elimina-

tion. Multiplying, as before, the second by 6, and adding,

we find

dy + Qdx + [(p + v^^)y + {o, + Q!^)x]dt = (t + T'Q)dl.

Let y + Qx = z, *.*

dy + Qdx = dz -- xdQ, y = z — ^x.

By these substitutions, the equation becomes

B B
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Let such a value be assigned to the function 9 as will

satisfy the equation

J9 + [(p + p'e)a - (a + Q!^)]dt = 0;

and the equation will be reduced to the form

dz + Tzdt = t'^^,

T and t' expressing new functions of t. This form is in-

tegrated as before by (314.).

(390.) If the coefficients P, p', • • • • instead of being

functions of t, as we before supposed, be constant quantities,

we have the conditions

d^ = 0, (p + p'0)9 - (a + a'0) = 0.

The function 9 then becomes a constant quantity, and its

values are the roots of the latter equation. Let these be fi',

0". The equation

dz + (v + ^^)zdt = (t + T^)dt

becomes

dz + mzdt = \dty

by putting

?7i = p + p'9, V = T -f t'S.

The integral of which is, (314.),

2 = e''"'lfe^*vdt.

Whence we deduce

2/ + 0'^ = e^''[fe^'*v'dty

y + 9"^ = (r^"lfe>'"W^dt,

by substituting successively the two values of 6, and the cor-

responding values of m and v.

(391.) We shall now apply the same principles to two

differential equations between three variables. These may

by alternate elimination be, as before, reduced to the forms

du + {vu + Q<r + J!iij)dt = 'Tdt,

dx + {v'u + q'^ + Ti!y)dt — T'dt,

dy + (?"?/+ Q"a;+ R^'y)dt = T^dt.

Multiply the second by 0, and the third by 0', and add
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the results to the first. In the equation resulting from this

process let

u {- (^x -{- ^'y =. z,

\' du ^ Qdx -f Q'di/ = dz •- xd^ — yd^\

u = z — Qx — ^'y.

By these substitutions, an equation being obtained, let the

coefficients of on and 7/ in it be supposed to become = by

the values of the arbitrary quantities 9, 9'. This gives the

equations

J9

dt

di^'

-^ = Q + q'9 + q"5' - (P + P'9 -f P^'i

^^
_ R + r'9 + r"9' — (p + p'a -}. y"S')Q',

for the determination of S. These conditions reduce the

proposed equation to

dz + (p + ^Q + Tf'Q')zdt = (t + t'Q 4. T:"S')dt.

Substituting in this values of 9 which satisfy the former

equations, it will be integrable as in the former case.

If the several coefficients p, p', • • • • be constant quan-

tities, we have dS = 0, d^' = 0, •••

(p + p'9 + p"5')9 = Q + a'S + qTiQ',

(p + p'fl + v"S')^' = R + r'9 + r"9',

which, by putting p + p'9 + p"9' = m, become

(m - q')9 - a"Q' = a,

(m - r")9' _ r'3 = R.

These equations will give*values for 9, 9', which being sub-

stituted in the value of m, will give an equation of the third

degree to determine m. Each of the roots of this equation

gives corresponding values for 9 and S'. If then we put

T + t'9 + t"9' = V, we obtain three systems of values for

0, 0', m, V ; scil.

Qi, S'l, m^, Vj, Q.,, Q'.„ m.,, v.,, 9„ S'^, m^, V3,

which being successively substituted in

B B 2
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give

M + Ojo: + ^\y - e-'"//^";'vidj5,

It is unnecessary to pursue this process to a greater number

of equations, as it is very easily generalised. We shall not

enter here into an examination of the consequences of the

values of 6, 0', becoming imaginary or equal, as it would

protract the discussion to an undue length.

The same principles are applicable to equations of su-

perior orders, by reducing them to equations of the first

order.

SECTION XXVI.

T^he integration ofequations by approocimatimi,

(392.) When a differential equation cannot be integrated

in finite terms by a;ny known methods, it becomes necessary

^ to approximate to the value of the differential coefficient by

a series. A method has already been explained, by which

the integral may be obtained in a series of ascending integral

powers of x. But it sometimes happens that the nature of

the functions engaged in the equation is such, that this form

of development is inapplicable. In such cases, the form of

the series must be obtained by other analytical contrivances.

If the form of the series for y in powers of x be

y = AOf + -Qx^ + c^'^ -f • • • •

the problem is reduced to the determination of the ex-

ponents a, b, c, ' ' • ' and the coefficients a, b, c, • • • • so

as to satisfy the proposed differential equation. To effect
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this, let the values of dy^ d^y, d^y, • • • • be derived from

the series and equated with the same quantities derived

from the proposed equation. The several results should be

identical, and therefore the coefficients of the corresponding

dimensions of the variable should be equal. The values of

the coefficients and exponents will, in general, be derived

from,these conditions.

A few examples will render these general principles easily

comprehended.

(393.) Ex, 1 . Let the proposed equation be

((ir + dy)y = dx\

and let the series be

y = AJC" + Bjr^ + CJT'' • • • •

the exponents being in ascending order.

By differentiating, we find

dy = aAoif^~'^dx + hBx^^^dx + ccx'^^^dx - - - -

Making this substitution for dy in the given equation, and

expunging the common factor dx, we find

(1 + Aax^-^ -r Bbx''-^ + )(ax'* + b^^ + c^' )= 1.

Hence

A2a^-»+AB(a+ A)^''+^-» + Ac(a+c>'^+'^-'
-1 + A^ +B«6:i26-i

This will be rendered identically by the following conditions,

2a— 1=0, a + 6— l=a, a + c — 1=5.--.
A^a = 1, AB(a + 6) + A =

Hence

a=j, 6=1, c = ^....

A = V^, B = — -g-, C = -jg-,

v,V= v'2 ^ "3 ^^ + 18
"^^ *

If the law of the exponents t> !> I> • ' ' * had been known

l:::;Uo.
+ 3
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in the first instance, the coefficients might have been im-

mediately deduced, or the series of Maclaurin might have

been immediately applied by substituting z^ for x.

Ex. 2. Let the equation be

^y -Vydx — mx^dx\

let

Differentiating this, and substituting the values of3/ and dy

in the proposed equation, and omitting the factor dx^ the

result arranged by the dimensions of x is

aAa:«--»+(a+l)Ba7«+(a+2)c^^+^+ (a+3)D^+H....? ^
—mx"+ Ajj°+ Ba7'*+'+ c.r'»+2^ ^

"~

This is rendered identically by

m
a — 1, •.• a = w + 1, A = — , B

c =

a' fl(a+l)'

m —m
a(a-\- l)(a+2)' a(a+l)(a+2)(fl+3)*

Hence we obtain

the law of which is evident. This series is, however, not

the complete integral, unless the arbitrary constant be in-

troduced. This is always the case when the arbitrary con-

stant in the development of y in powers of x cannot be

separated from x.

1^,
We may, however, obtain the complete integral in the

following manner. Let ^{xyc) = be the integral sought.

To determine the constant c, it would be necessary to find

some one system of values of the variables x, «/, which will

satisfy the primitive equation. Suppose a, b, be such a

system. The condition F(a, b, c) = 0, would give c in

terms of a and b. Let the expression for ^, derived from

the differential equation, be prepared in such a manner,

that when x becomes equal to «, y will necessarily be equal
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to b. This may be done by substituting 2 4- a for a?, and

u + bfoY y, and then developing w in a series of powers of

z, so that u and z should = at the same time ; then sub-

stituting ^ — a for 2f, and z/ — i for u. Under these cir-

cumstances, the resulting condition would give x = a and

^ = i at the same time, and the quantities a and b would

supply the place of the arbitrary constant. The integral

would therefore have all the necessary generality.

The proposed equation

dy + t/dx = mx^'dx

becomes, by the transformation just explained,

du 4- (6 + u)dz = m(a + zy^dz*

Let

Hence we obtain

OA2«-> + (a + 1)bz« -i- (a + 2)c;s«+» -f

The condition a — 1 = 0, gives

a = 1, A = TTia - 6, B = j-g ,

- *== 0:3 '^'=-

The investigation may also be conducted by Taylor's

series. If b be considered as a function of a, it will be-

come

db z^ d^ il . ^ _?1

when a is changed into a -^ z. And since y =: b ^ u,

when a? = a + ;2r,
•.*

db z d^b z'

^ = ^ + 5S-T+d^^da* 1.2
+

Since a and b are a system of values of x and y, which
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satisfy the proposed equation, the same relation must subsist

between a, b, and -r, as between x, y, and ^. Hence the

value of -r will be found by substituting for a; and y in the

differential equation the values a and b, and thence deriving

db

J-.
The successive differentials of this equation will, there-

fore, give the values of ^^, d^i'
' ' ' '

When z is small, the series will converge rapidly. To
extend numerical calculations to greater values of a:, it will

be necessary to substitute successively «, for a + r, and to

change x into «, -H z, and then substitute a^ for a^ + z, and

^a + 2 for jr, and so on.

This process becomes inapplicable when any differential

coefficient becomes infinite. This can only happen when

X =. a renders y infinite, or when the development of y
contains fractional powers of x. If the series of exponents

be known in this case, we may frequently employ Taylor's

scries. If the exponents be such, that they are all mul-

tiples of any one fraction —, then let x = z « , and the

series of Taylor will be applicable.

Ex. 3. Let the proposed equation be

d\y -I- cx^ydx' = 0.

Let

+ (a + /t)(« + 7i - 1)b^'^+^-*

+ (a + 2//)(a + 2A — l)c^«+=^*-^ + ]dx''.

Also,

d^y
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It is obvious,, that it is impossible that the terms

a(a — 1)a^^-*, — CA^+",

can be identified in any other case than that in which

ji = — 2, which would only include a particular case of the

proposed equation. Therefore, such a value must be as-

signed to a as will remove the first term altogether. This

is effected either by

a = 0, or a = I.

We may then identify the terms

(a + h){a + 7i — 1)b^+^-^ — ca^+«,

by the conditio^

^ — 2 = w, ••• /i = 7i + 2.

The two series will then agree, and the coefficients will be

determined by the equations

{a + h)(a + A — 1)b + CA = 0,

(a + ^h)(a + 2^ - l)c + CB = 0.

Since the number of arbitrary quantities a, b, is

greater by one than the number of equations, one (a) will

remain arbitrary. If the two values of a already obtained

be substituted successively for it, we find the two series

a —

"
(7^+l)(r^+2)(2AHF3)(2«+ 4)(3^^+5)(37^ + 6)

^^ ""
(7i+2)(72+3)

"^
{71 r}-2)(w+ 3)(2?2+ 4)(2/i+ 5)

Each of these series are particular integrals, since each con-

tains only one arbitrary constant; but by changing the a in the

last scries into a', and adding them, the result will be the
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complete integral, since the proposed equation is homo-

geneous with respect to y and d^y,

(394.) Another method of approximating to the integrals

of equations by a continued fraction merits attention.

Let

y =
1 +Ba7^

1 + c^*^

1 + TjX"^

1 +

where the coefficients and exponents are indeterminate.

Let hyf^ and aAof^'^dx be first substituted for y and dy in

the proposed differential equation. If the integral corre-

sponding to an indefinitely small value of the independent

variable be sought, let all the terms of this equation in-

volving the powers of x, whose exponents exceed the lowest

exponent, be rejected.

By a comparison of the corresponding terms, the values of

A and a may be determined. Next let

A^

be substituted for y, and its differential for dy, and by a

similar process, b and h may be determined, and this process

may be continued until a sufficiently near approximation to

the integral may be found.

Ex. 1. Let the proposed equation be

mydx + (1 + x)dy = 0.

First substitute Aaf for ?/, and aAaf*-^dx for dj/. Hence

we find
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(m -f a)A^ + aAx'"-^ = 0,

•/ {m + a)Ax 4- GA = 0.

Neglecting the term ax, we find

OA = 0, ••• a = 0,

the quantity A remaining arbitrary. Now let

_ A

be substituted in the proposed equation, and the result is

m(l -i- Bx^)dx - (1 + x)d{JiX^) = 0,

•.• m — bBx^-^ + (771 — I))Ba/' = 0.

Rejecting the last term, we find

m = bBx^'^,

which is satisfied by
b = 1, 3 3= 772.

Now let
*

A

2/ = --

1 + mx

1 + ca?'

Substituting this fori/, and its differential for di/, as be-

fore, we obtain c = 1 and c = ^, and by continuing

the process, we find

A
t/=z^

mx
1 +—

l-(m-l)|-

1 + i(m + 1).

1 -\(m- ')4

l+4(w + 2).
X

1 + . . . . . .
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(395.) When, as is frequently the case, the integral of the

proposed equation can also be obtained in finite terms, this

method furnishes a mean for converting the function which

expresses the integral into a continued fraction. Hence, to

convert a function of x into a continued fraction, dif-

ferentiate it, and integrate the result by the continued

fraction, supplying the arbitrary constant; this fraction

will represent the proposed function. Thus, in the ex-

ample just given, the integral in finite terms is a(1 -f ^7)"""*.

Hence this function is equivalent to the continued fraction

already found, and dividing both by the arbitrary constant

A, we find

(1 + x)- = 1 + mx

1 -k™- 1)^

1 4- 4(«

1

.+l)-f

- k™ - «>f

l+i(m + 2).
X
"2

1 +

(

By comparing the developments of e'' with that of

1-4 I , we find that they become identical when m is

m/
supposed infinite. Hence, if in the fraction just found,

~ be substituted for w, and, in the result, m be supposed

infinite, we obtain



SECT. XXVI. THE INTEGRAL CALCULUS.

e' = 1 + X

•-^f

i+i-l

.-i.|

t...|

1

.

381

Ex. 2. Let the proposed equation be

dx - (1 -^ x'')dy = 0.

By a similar process to that used in the former example,

we obtain

dx X
y "J 1 _l_ ^n1-1-0?" , X^ 1 +

7i + l

1 1-
"'""

^+(» + lK2»+l)

(2»»)^^»

' (3ra + l)(4,« + l)

1+
•

In this case, if n = 1, we find
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7/1
,

I
^\ _ .

^

SECT. XXVI,

'+.1

2a:

+&

Un =

1 + ...

S, we find

1 ^
tan. a; _

^3.5

1 + ...

There are other methods of approximation, one depend-

ing on the method of substitutions used by Newton, to

resolve by approximation algebraic equations, combined

with the methods of integrating equations of the first degree;

also one derived from Lagrange's theory of the variation of

arbitrary constants ; but the discussion of these would lead

us into details unsuitable to the ends of this treatise.
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SECTION XXVII.

Integration of differential equations oftwo variables by the

geometry of'plane curves,

(396.) Before the methods of approximation to the roots

of algebraic equations were known, a method of representing

them by the co-ordinates of the intersections of plane curves

was used, (Geometry, Sec. XX.) This method is, how-

ever, now introduced into the elements of mathematical

science only on account of its elegance, since it has been

altogether superseded, for practical purposes, by the more

accurate process of approximation. In the same manner

the calculus, when in its infancy, borrowed methods of in-

tegration from geometry, which, though they have since

been abandoned for the more useful and accurate methods

of approximation, yet merit notice for their elegance, as well

as because they constitute the particular connexion with

geometry, which first led philosophers to the discovery of

the calculus.

The problem which called this science into existence

(Geometry, Introduction, p. xxv.), was " to draw a tangent

to a given curve," and hence the differential calculus, imme-

diately after its first discovery, was called " the method of
tangents" Problems of another kind presented themselves,

which proposed the discovery of the curve from some given

property of its tangent. As the former depended on what

is now called " differentiation," so the latter depended on

what is now called " integration."

The integral calculus, when in its infancy, was therefore
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called " the inverse method of tangents." As the calculus,

however, advanced to a greater state of perfection, and

became more extended in its applications, these deno-

minations were necessarily abandoned, being in no respect

adequate to the extent of the science. They include no

application of either calculus but a geometric one, and

even in that, contemplate no differential coefficient beyond

the first.

The " inverse method of tangents" consisted in constructing

the curve represented by a given differential equation of the

dij
first order. If the equation be solved for -^ -, let this be y.

The subtangent is therefore —, and the tangent is "
-j

•

Hence by means of an equation between the ordinate y and

the differential coefficient z/', the curve may be constructed

by points, and this will represent the integral of the pro-

posed equation.

(397.) Let the proposed differential equation be y^x^t/)= 0,

y being the first differential coefficient. Let the curve be

assumed to pass through a point, of which the co-ordinates

are x = a and y = b, a and b being values which do not

render ?/ in the equation ¥{xyy^) = imaginary. The
equation Y{ah/) = will give the value of ?/', by which the

position of the tangent will be known. A point indefinitely

near the assumed point, and also upon the tangent, being

assumed, and its co-ordinates, in like manner, substituted in

the proposed equation, another value of y may be deduced,

which will determine the direction of another tangent.

Then a third point being assumed upon this second tangent

indefinitely near the second assumed point, a third tangent

may be found, and by continuing the process, and not pro-

ducing the several tangents beyond the several assumed

points, a polygon will be determined. The smaller the

i
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distances between the several points are assumed, the more

nearly will this polj^gon approach to a curve, and the curve,

which is its limits when the several distances are supposed

actually to vanish, is the geometric representation of the in-

tegral of the proposed equation.

(398.) A still more accurate and rapid approximation to

the curve may be obtained by the following process. Let

the equation Y{xyy^) = be differentiated, and the value of

the second differential coefficient obtained, as a function of

the two variables and the first differential coefficient. Hence

may be found the radius of the circle osculating at any pro-

posed point. As before, let a point be assumed, and the

tangent at that point found by the proposed equation, and

thence the normal. The radius of the osculating circle

being determined in the manner already described, let a

part equal to it be assumed upon the normal in a direction

determined by the sign of the second differential coefficient

(151.), and let a small arc of the osculating circle passing

through the given point be described. Upon this arc, and

near the given point, let another point be assumed, and the

circle osculating at that point being found as before, a third

point may be assumed upon its arc, and so on.

By this process a polygon will be found, the sides of

which are circular arcs, and the smaller these arcs are as-

sumed, so much the nearer will the polygon approach to the

curve which represents the integral of the proposed equation.

The limit of this polygon, when its sides actually vanish, is

the geometric representation of the integral of the proposed

equation. The first point, arhitrarily assumed in these

cases, represents the arbitrary constant.

(399.) If the proposed differential equation be ofthe second

order, it is necessary not only arbitrarily to assume a point

through which the curve is supposed to pass, but also the

direction of the tangent at that point. This is equivalent to

c c
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assigning particular values to x, y, and i/\ in the equation

v(xyM) = 0. Hence the value ofy is determined, and

the direction of the curvature and the radius of the oscu-

lating circle are known. Proceeding then as in the last

case, a polygon, whose sides are small circular arcs, may be

determined, the limit of which represents the integral of the

sought equation.

(400.) In approximating to the integrals of equations of

the higher orders, the osculating parabolas (134.) are used,

their several parameters representing the arbitrary constants.

The osculating parabola of the second order may also sup-

ply the place of the osculating circle in the former cases.

(401.) When the variables in the proposed differential

equation are separable, its integral may be otherwise re-

presented by geometrical construction. Let it be reduced

to the form

Ydy -f xdx = 0,

where Y is a known function of ?/, and x of x.

Let two curves be constructed relatively to the same axes

of co-ordinates, represented by the equations

.3/
= x,

a? = Y,

'.'f(yidx 4- Ydy) =JXydx) -^/{xdy) = 0.

But the area of any part of the first curve intercepted

between the axis of 3/, and any proposed value of ?/, repre-

sents the first integral ; and the area of the second intercepted

between the axis of x, and the value of x corresponding to

the same value of y^ represents the other. Their com-

bination, therefore, represents the integral of the sought

equation.

The preceding results also show that every differential

equation between two variables has an integral, a theorem

which was before estabhshcd in Sect. XVI.
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SECTION XXVIII.

The problem of trajectories and other geometrical applka^

tions ofthe integral calculics.

(402.) Amongst the different questions to which the in-

vention of the calculus gave rise, and which were proposed

very soon after its invention, one of the most interesting

is the *' problem of trajectories.'' In the correspondence

between Bernoulli and Leibnitz, on subjects arising out of

the new calculus, Bernoulli proposed the solution of the

problem, " to find the curve which intersects at right angles

a system of curves of the same kind described according to

some given law."

This problem, he considered, would lead to the solution

of the physical problem, to determine the path of a ray of

light through the atmosphere, Hght being supposed to be

propagated according to the Huygenian hypothesis. The

problem soon became generalised to that of the determination

of the curve which intersects a system of similar curves at

the same angle ; such a curve is called a trajectory * of the

proposed system of curves, and if it intersect them at right

angles, it is called the rectangular trajectory.

By '' similar curves," is here meant curves whose equa-

tions having the same form, differ only in the value of one

of the constants, which we shall call in general the variable

parameter.

* The term " trajectory," used here, has no relation to the

same term used in physics, where it signifies an orbit described

by a projectile round a centre of force.

c c2

•f
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(403.) Let the equation of the proposed system of curves

be F(a?j/c) = 0, the constant c representing the variable

parameter, and for every particular value of which the

equation Y{xyc) = represents some one of the proposed

system of curves. Let the equation of the sought trajectory

hej'(xj/) = 0. Let the differential coefficient deduced from

the equation F(<ri/c) = be ^5 the variable constant c being

eliminated, and the value of p obtained as a function of the

variables x^ y, and the other constants. This value of p
being independent of c, will be common to the entire of the

proposed system of curves. Let the differential coefficient

deduced from the equation f{ooy) = be -7- , and let the

angle at which the sought trajectory is to intersect the pro-

posed system of curves be <p. Hence

^^ ^

dy
V

-f-(p
tan.tp —1) -\-p + tan.<p = 0.

This being integrated, considering tan.9 as a constant

quantity, will give the equation y(.ry) = of the sought

trajectory. It is obvious that p expresses a given function

of the variables x, y,

(404.) In order to find the rectangular trajectory, let the

above equation be divided by tan.<^, by which it becomes

^(/7 - cot.^) + p cot.?5 + 1=0. . . . [1].

If (p = 90°, •.• cot.<p = 0, '.• the equation becomes

pdy -irdx = ^ [2],

the integral of which is the rectangular trajectory.

(405.) If the variable parameter c be not eliminated by

the given equation ¥{xyc) = and its immediate differential,
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then p in [1] will be a function of c, as well as of the

variables. In this case the differential equation of the tra-

jectory may be found by eliminating c by the equation [1]

and the equation of the proposed system of curves, or by

[1] and the differential of that equation. As an arbitrary

constant is always introduced, there is always a system of

trajectories.

We shall now subjoin a few geometrical problems il-

lustrative of these principles.

PROP. CIV.

(406.) A system of parabolas having' a common vertex

and axis, or hyperbolas having a common centre and asyTn-

ptotes, is given, tojind the trajectory intersecting them at a

given angle.

The equation of parabolic and hyperbolic curves in ge-

neral is

y = CJ?"*,

y
•.* p = mcx*^~'^ — m -^

.

^ X

Hence the differential equation of the sought trajectorjr is

dy[m^ — cot.(?) + m— cot.(p dx •{ dx =z 0,
X X

•.* mydy + xdx + coi.(p{mydx — xdy) = 0.

This equation being homogeneous, and of the first order, is

integrated by (313.). We shall not pursue the general in-

tegral here, as its results have not any particular interest.

If 7W = 1, the curve is the right line. In this case the

equation becomes

{y — X cot.<p)dy -^ (x '\- y c.oi.(p)dx r= 0,

or

xdx -\-ydy + cot.<p(ydx' — xdy) = 0.
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This becomes integrable by dividing it by x^ +^®; and

since

Therefore the equation of the trajectory is

K -Z^* + «/*) + cot.<I> tan.-i— = c,

c being an arbitrary constant.

Let z^ =: x^ + y^, and m = tan.-^— , •.•

h -{• w cot.^ = c ;

or, if when a? = 0, we suppose that ^ = 0, •.• c = 0, and

the equation assumes the form

—w . COt.(p

—COt.f

JLet e = a, *.•

which is the logarithmic spiral, of which it is a characteristic

property to intersect at the same angle all lines through its

pole*.

In this case, for the rectangular trajectory cot.<p = 0, •.*

z is constant, which shows that the solution is a circle,

whose centre is at the origin and radius arbitrary.

In general, the rectangular trajectory of the system of

parabolas is determined by integrating

mi/di/ + icda: = 0,

•.• my^ -\. x" =: c.

Ifw > 0, the trajectories are a system of similar ellipses.

* Geom. (433.).
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having a common centre at the common vertex of the system

of parabolas, and an axis coincident with the axis of the

system, the ratio of their axes being 1: ^/m. If the parabola

be the parabola of the sec6nd degree, tt* = S. This case is

remarkable for having been the first to which the problem

of trajectories was applied. The general problem having

been proposed by Bernoulli, Leibnitz gave a general me-

thod of solving it, and effected the solution in this in-

stance as an example. Leibnitz*'s method was founded upon

the variation of the constant c in passing from one curve of

the proposed system to another, from which he deduced his

method of differentiation de curvd in curvam.

Ifm < 0, the proposed equation represents a system of

hyperbolas having a common centre and asymptotes, and

the trajectories are also a system of conical hyperbolas, of

which the axes coincide with the common asymptotes of the

system.

If the given system of hyperbolas be equilateral, the tra-

jectories are also equilateral hyperbolas.

PROP. cv.

(407.) To determine the trajectory of a system qfcircks

toitching a given right line at a given point.

The right line being assumed as axis of «/, and the given

point as origin, the equation of the circles is

?/« + a?^ - 9^rx = 0,

••• jOj/ -f (a? ~ r) = 0,

••• r = py \' X,

This being substituted in the first, we find

Hence the difierential equation of the trajectory is
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dy(y'^ - .r«~ 2 cot-ip • yx) +[%^+cot.(?(2/* - x^yidx- 0.

This equation being homogeneous, may be integrated by

(313.).

If the rectangular trajectories be sought, cot.<p = 0, *.•

dtj{if - X*) + ^yxda^ = 0.

This is immediately integrable by putting z = .r*, by which

the equation becomes

z
•.-7/=z 1- C,

••• y = - 2 + q^/j

•.•3/8 4- 'I* — cj/ = 0.

Hence the system of rectangular trajectories are circles

passing through the given point of contact, and having their

centres upon the given tangent.

(408.) Instances of the class of problems which gave the

name of the inverse method of tangents to the integral cal-

culus are not infrequent. In these, some property of the

tangent, or some line depending on the tangent, as the

normal, subtangent, subnormal, &c. is given, to determine

the curve. It will be sufficient here to give a few examples

of these, to show that they are always capable of solution by

the integration of equations of two variables.

PROP. CVL

(409.) To determine the curve in which the normal is a

givenJunction ofthe intercept ofthe axis ofx between it and

the origin.

The intercept between the normal and the origin is the

sum of the subnormal and the value of x for the point
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where the normal meets the curve. Hence the problem is

reduced to the integration of the equation

V'-g=<'-©-
The integration of this equation will solve the proposed

question.

If the normal be supposed equal to the intercept, the

equation becomes

' ^V^ dx^)'^'' ^^ dx^'^'^^^ dx'

dx 2i/x 9,\x yj
The integral of which is

y^ j^ x''^ 2rx = 0,

r being an arbitrary constant. The curve sought is there-

fore the circle.

If the normal be the ordinate of a parabola, of which the

absciss is the intercept

K'-t=>K- + f)
dy

Obtaining from this the value oi y.. , and dividing by

the radical, we find

dy

""-ydx
, ,= +1=0. ,

^a'^-\-9^ax—y^

Integrating this, and supplying the constant, we find an

equation of the form

ry^^x^ — ^rx ^- A = 0,

which is that of a circle. This is the general solution.
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The singular solution is obtained by putting the radical

= (339.)> ••• it is

which is the equation of a parabola. This parabola is the

curve to which all the circles included in the general so-

lution are tangents.

If

K'^+^^)=^+^'
a being a constant quantity, we have

\' 3/2 _ 2ax + c,

which shows that the parabola is the only curve whose sub-

normal is constant.

(410.) Geometrical questions which relate to the oscu-

lating circle are solved by the integration of differential

equations of the second order. The following proposition

furnishes an'example of this.

PROP. CVII.

(411.) To determine tJie curve in which the radius ofthe

osculating circle is a g-ivenjunction ofthe normal.

This problem, reduced to an equation, is

d^i/da: ~^n\ +^V 3'

the integration of which will solve the problem.

If the radius be equal to the normal, the equation be-

comes

di^^^-dx'^ _ y
d^T/da;

"~
div*
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••• d^ + dx" + yd'^y = 0.

The first integral of which is

ydy + xdx = cdx^

which being again integrated, gives

^« + j?« - 2c.r + c?' = 0,

which is the equation of a circle of which the centre is on

the axis of x,

(412.) The student will find no difficulty in reducing

geometrical questions relating to contact or curvature to

equations. These equations are generally of the first or

second degree, and integrable by the rules already esta-

blished. To extend the examples on this farther would

occupy more space here than the difficulty of the inves-

tigation requires. We shall therefore conclude this section

with the following proposition, as an example of another and

different species of problem.

PROP. cvin.

(4)13.) A system of parabolas Itaving a common ver-

tex and axis, or hyperbolas havvng common asymptotes,

being given, tofind the curve which intersects them all, so

tJiat the areas included by the co-ordinates of the point of

intersection, and the arc of'the parabola or hyperbola between

tlmt point and the axis qfy^ shall be constant.

Let the equation of the proposed system of curves be

y = px"^.

The area included by the co-ordinates and the arc is

fydx = pfx^d^ = -^^,

No constant is added, as the area is supposed to commence

when 07 = 0.
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Ifm = — 1, the integral is

fydx = pZ(j7),

and if 771 < — 1, the area is infinite when a: = 0, which

is also the case when w = — 1. These cases will then be

excepted in the following investigation, which will therefore

only apply to parabolas, and to such hyperbolas as have

?7l > - 1.

Let the given area be a, '.•

A = » —=,
^m + 1

Eliminate p by this and the equation of the proposed system,

and the result is

yx = A(m + 1),

which is the equation of a common hyperbola.

SECTION XXIX.

Ofthe integration of total differential equations ofthefirst

degree ofseveral variables, which satisfy the conditions of

integrability,

(414.) A total differential equation of the first order

between three variables must always come under the

formula

vdx + Q.dy + B.dz = 0.

If the first member of this equation satisfy the criterion

of integrability, (286.), for functions of three variables, its

integral may be immediately obtained by the rules for these

functions, and will be of the form

Ti^xyz) + c = 0,

c being an arbitrary constant.
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If any one of the three variables be capable of being

separated from the other two, the equation may be integrated

by the rules for the integration of functions of two variables.

For if z be separable from x and y, the equation may be

reduced to the form

zdz = vdx + Q(iy,

where z represents a function of z.

This separation is easily effected whenever the given

equation has the form

z{vdx + Qjdy) + nildz = 0,

by dividing the whole equation by zr ; P, Q, and n, being

functions of x and y only.

(415.) If the proposed equation be not an exact dif-

ferential of an equation of three variables, it may sometimes

be rendered so by the introduction of a factor. To de-

termine the condition under which it is rendered integrable

by a multiplier, let

Tvdx + Ta<i«/ + Ti3.dz —

be the equation after the introduction of the factor t. If

this be an immediate or exact differential, it follows that

T^dx H- TQ.dy =

is the exact differential of the same equation, z being con-

sidered constant, and, in like manner, that

Tvdx + nYidz — 0,

TQdy 4- T^dz = 0,

are the immediate differentials, y and x being taken suc-

cessively constant. It appears, therefore, that any factor

which renders the total equation integrable, also renders all

the partial equations integrable ; and it is obvious, that if

the same factor render all three partial differential equations

integrable, it will render the total equation also integrable.

In order that the three partial equations should be exact

differentials, it is necessary, (286.), that the conditions



398 THE INTEGRAL CALCULUS. SECT. XXIX,

d(TV)

dt/

d(TQ)

da;

should be fulfilled.

d(Tv) _ d(TR)

dz
""

dv '

Hence we find

dz

d(TTl)

dy

dy
f d^ dQ.\

\dy dx)
/dR dp \ dT

\dx dz ) dx

/da dR \

\dz^dy)

dT
-f. P- Q^. =

dT_

dz
— R

dx

dT
'^

dr

dy

=

=

Ul

Multiplying the first by R, the second by a, and the third

by P, adding them, and dividing the result by its factor t,

we obtain

/dp dQ.\ /dR dp\ /do, dR\ ^ ^^^

%-dj; + <^-&;

+

\s-^) =^ t^^-

This equation must therefore be satisfied by the proposed

equation when it is capable of being rendered integrable by

a multiplier. On the other hand, if the proposed equation

do not satisfy this condition, there is no multiplier by which

it can be rendered integrable. It will not be difiicult to

generalise these principles, and obtain conditions of in-

tegrability for equations of four or more variables. The

number of equations of condition is, however, greater,

being always the number of combinations of two, which can

be made with m — 1 things, m being the entire number of

variables. The number of equations of condition is, there-

, m--l.m—2
fore, m general, r-^-—

.

Equations of three or more variables, therefore, differ

from equations of two in the same manner as functions of

two or more variables differ from functions of a single

variable. Equations of two variables, and functions of one,

can always be integrated, either exactly or by approxima-

tion ; but there are cases in wliich differential equations of
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three or more variables, and functions of two or more,

admit of no integral either exact or by approximation.

(416.) When the condition [2] is fulfilled, the integration

of the proposed differential equation of three variables may

be shown to depend upon the integration of an equation of

two variables. Let z be supposed constant, so that dz = 0,

and the proposed equation becomes

vdx + adi/ = 0.

Let this be integrated, and the result will have the

form

u 4- z = 0,

where u is a function of ar, i/, z, and z an arbitrary function

of Zy which takes the place of the arbitrary constant.

Let this equation be differentiated with respect to x, y^

and 21, and let the function z be so assumed, as to render the

differential equation thus deduced identical with the pro-

posed equation. The value of the function which satisfies

this condition being substituted for it, gives the sought

integral.

The following examples of the application of this rule will

render it more easily apprehended.

Ex. 1. Let the proposed equation be

(y + z)dx + (a; + %)dy + (jt + yyiz = 0.

Let dz = 0, *.•

(2/ + z)dx + (^ + z)dy - 0,

dx du
+ -^ = 0.

x-\-z y-\-z

Since z is considered constant, the integral of this is

{x -f- z){y + 2) + z = 0.

To determine the function z, which will render this the

integral sought, let it be differentiated with respect to x, y^

z, and the result is

{y 4- z)dx 4- (.r + z)dy + ( j/ + Jf -f ^z)dz f dz = 0,
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That this may be identical with the proposed equation,

we must have

9>zdz + dz =0,
'.' z'^ + z = c.

Hence the integral sought is

xy -{ zy + zx + c = 0.

Ex. 2. Let the proposed equation be

zdx + xdy + ydz = 0.

In this case P = 2;, q = «r, and R = «/, by which it ap-

pears that the equation [2] is not fulfilled, and therefore the

proposed equation is not integrable. If this equation were

submitted to the preceding process, we should find that

z could not be disengaged from x and z/, so that we should

find z = Y{xyz\

Ex. 3. Let the proposed equation be such, that

p = «/'^ + 3^^ + 2*,

Q = or- + X2 + z^

R = J78 _|_ jj.^ _}_ ^2^

In this case the criterion [2] is satisfied. If dz = 0, we

have

dx dy

x'i^xz-\-z'^'^ y^-\-yz-{-z'^
~

*

Since z is constant, the integral of this is

-A-Jtan.-i±2? + tan.-^^+!^}=/(4

If an arc be a function of 2, its tangent must be also a

function of z ; and hence by taking the tangents of both

sides, we find

z^—zx—zy—^xy

Differentiating this, and identifying the result with the pro-

posed equation, we find

%x^z + '^txyz -\-y^z + z^x + z'^y + ^"y + y^x)dz

-|- (2* — zx -- zy ^ ^xyydz = 0.
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Eliminating the latter parenthesis by

2* — z.v — zy — %xy = ,

and expunging the common factor {x -\-y -{- z), we obtain

2{a:y +yz -{- xz)z^dz + (a? + 2/ + 2)2* 6?z = 0.

Also by the integral just obtained, we find

Making this substitution, and dividing by the common

factor 2z(2® — ii/), we obtain

z(z — \)dz -{ zdz = 0,

dz dz dz cz

z
•.• z = .

z — c

Hence the integral required is

(xy + xz + yz) — c{x { y -\- z) = 0.

(417.) If the proposed differential equation exceed the

first degree, these methods are only applicable when it can

be decomposed into rational factors of the form

vdx + Q,dy + Kdz — 0;

this being the only form it can have when it is an immediate

differential.

If for example the proposed equation be

vdx^ + Q.dy'^ + Rdz'' + ^sdxdy + 9.Tdxdz + 9.wdydz = 0.

When this is solved for dz, the quantity under the ra-

dical is

(t* — VB)dx^ + 2(tv — K%)dxdy + (v^ — QjC)dy^.

It is necessary that this should be a complete square, which

can only take place under the condition

(tv — Rs)* — (t2 — pr)(v* — qr) = 0.

D D
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SECTION XXX.

Integration of total differential equations which do not

satisfy the criterion ofintegrability,

(418.) Differential equations, which do not satisfy the

criterion [2] established in the last section, were long con-

sidered as absurd or impossible relations ; and all questions,

whose solution was reduced to such equations, were con-

sidered as involving some contradiction, as is the case

when the solution involves the even roots of negative

quantities.

MoNGE, however, has shown that this is not the case, and

that such equations indicate a real relation between the

variables. It happens, however, that the integral of such

an equation is not, like those which satisfy the criterion, one

equation between three variables, but it is expressed by two

equations between three variables which must subsist to-

gether, and which involve an arbitrary function of one of

the variables.

(419.) The integral of an ordinary differential equation

ofthree variables, which satisfies the criterion ofintegrability,

would, if represented geometrically, be a curved surface,

since the integral is an equation of three variables. The
integral of an equation which does not satisfy the criterion,

if represented geometrically, would be a class of curves of

double curvature, enjoying some common characteristic pro-

perty.

For each value of the arbitrary function which enters the

system of equations, there is a particular curve of double

curvature. The part of the equations which does not

depend on this function, being common to all particular
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values of the function, gives the general geometric cha-

racter to the class of curves.

(420.) To determine the system of equations which re-

presents the integral of any given equation of this kind, let

z. be considered as constant, •.*

vdx + Qidy — 0.

Let T be the factor which renders this integrable, and let

u + z = be the integral of ^
ivAx + TQciz/ = 0.

Diiferentiating u + z = 0, and identifying it with

I'edx + iQidy + TRof^ = 0,

we obtain

u + z = 0,

dz du

dz dz

dz
In this case ^r is not a function of the variable z alone,

dz

for if it were, the equation would be integrable by the

process (416.), and would fulfil the criterion, which is

contrary to hypothesis. These equations must then subsist

together, z being an arbitrary function of z. Let z = f(z),

. dz , .

and^=F'(^), •.•

U -f ¥{Z) = 0,

d\5

Tz + * <") - ™ =-<^'

which are two equations between the three variables, and

taken together, represent a relation between jn/^, which

satisfies the proposed differential equation.

(42L) Since the function f(;s:) is absolutely arbitrary, it

follows that there are an infinite number of systems of two

equations which satisfy the proposed equation, and that,

therefore, it has an infinite number of systems of integrals.

If the integral be represented geometrically for each form

dd2
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assigned to the function f(2), there is a different curve of

double curvature. The terms u, t, and r, however, not

changing with the form of this function, will give some

common character to all these curves.

As an example, let the proposed equation be

dz xdx -{-ydy

^ In this case,

vdx +

Z--C x{x-'a)-\-y{y-'h)

xdx\ydy

1
R = .

z— c

T =^(^- a) -^ y(y - b).

Let

We find

Hence

U = .37* + «/\ .

oo(x — «) + 2/Cy — *) = f'(«) • (^ — ^)-

in which f(2) is absolutely arbitrary.

SECTION XXXI.

Ofthe integration ofpartial differential equations ofthe

first order,

(422.) The integration of partial differential equations is

a part of the calculus which has not yet reached that state

of perfection which might enable an elementary author to

introduce such an exposition of its principles as is suitable to

the class of students for whose use his work is intended. In

this, as in some other parts of the calculus, the utmost which



SECT. XXXI. THE INTEGRAL CALCULUS. 405

can be attempted in the present work is to explain the

methods of integrating some particular classes of equa-

tions, which are most suited to our object, referring students,

desirous of further information, to such works as the com-

plete treatise of Lacroix.

(423.) The most simple class of partial differential equa-

tions are those which involve but one partial differential co-

efficient. The integration of these may be always reduced

either to the integration of functions of one variable, or to

the integration of equations of two variables. Let jp be a

partial differential coefficient of z with respect to or, i. e,

dz
p = y-y and let m be a function of x and several other

variables, and let the given partial differential equation be

F(p, u) = 0.

First, suppose that u does not include the variable 2. Let

the equation in this case be solved for p, and its value sub-

stituted, •.*

dz
, ^

T. =•/(")'

*.• dz ^/{u) • dx.

dz
Since the coefficient -^ was obtained by differentiating z

as a function of x only, all the other variables being con-

sidered constant, so the integration must be effected upon

the same supposition. Let oc therefore be considered to be

the only variable in w, all the others being taken as con-

stants, and let the integral o^/{u) • dx be found by the

rules for the integration of functions of one variable. Let

the integral be

2 = u + c,

u expressing the function of all the variables obtained by

the integration, and c the arbitrary constant.

Since all functions of the variables, not including x, which
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entered the original function, necessarily disappeared by the

dz
differentiation which gave -^5 it therefore follows that an

arbitrary function of these variables should be introduced in

the integration. We must then consider c, not as an ar-

bitrary constant, but an arbitrary function of all the variables,

except z and x,

(424.) If, however, the function u contain z as well as x,

the equation may be integrated as a differential equation

between z and x, the other variables being considered as

constants ; and in place of an arbitrary constant, introducing

in the integration an arbitrary function of the other va-

riables.

(425.) The most general partial differential equation of

the first degree, including two partial differential coefficients,

is of the form

pp + Q^ = V • • . . [1].

We shall consider p and q as the partial differential co-

efficients of z with respect to the variations of x and «/,
•.•

dz dz

If other variables enter the functions p, q, v, besides x, y,

and z, they are to be treated as constants ; and in place of

arbitrary constants, arbitrary functions of these other va-

riables should be introduced in the integral. In what fol-

lows, we shall consider the equation [1] to include only the

variables x^ y, and z.

(426.) By the definitions of partial differentials (94.), wc

have

dz — pdx H- qdy • • • • [2].

Eliminating p by this equation and [1], the result will be

vdz -^ \dx = q{vdy - adr) ....
[3],

This equation must be satisfied independently of q^ since in



SECT. XXXI. THE INTEGRAL CALCULUS. 407

the proposed equation q is indeterminate. The integration

proposed may be reduced to two cases

:

l^'. When vdz — ydx does not contain y, nor vdy — odx,

z, or what amounts to the same, where these variables may

be disengaged from them.

2^. Where one or both of these quantities contain all

three variables a;, «/, z.

(4^7.) 1^ If the quantity

Fdz — vdx

do not contain z/, it either is an exact differential of a func-

tion of x, z, or may be rendered so by a factor. Let the

factor which renders it exact be f^, and let the function of

which it is a differential be m, •.•

vdz — vdx = —

.

In like manner, since

pdy — Q.dx

does not contain z, we have

pay — QCld? = —7 -

Hence the equation [3] becomes

dm = ^dM'.

QIX,

This is only integrable when -— is a function of m'. Let

f'(m') = ^du^, and let the integral of this be f(m'), •.•

M = f(m'),

where f(m') is an arbitrary function of m'.

Had q been ehminated by [1] and [2] instead of p, the

result would have been

Q,dB — \dy — plQdx — vdy),

and the integration would, in this case, depend on the in-

tegration of the formulae
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adz — \di/y

adx — vdy.

It therefore follows in general, that if any two of the three

equations

vdy — adx — 0^
vdz — vdx = > • • • • [4],

Q.dz — \dj/ =z OJ

be integrated, and that their integrals be m, m', each of

which represent functions of a:, i/, z, the integral of [1]

Will be

M = f(m'),

the form of the function being absolutely arbitrary.

(428.) We have supposed that each of these formulae [4]

excludes one of the variables. The principles we have just

established are, however, applicable, even if any two of the

formulae [4] included all the three variables, provided that

the third contained only the two variables whose differen-

tials are engaged in it. For this being integrated as a

function of two variables, and its integral being m = 0,

either of the two variables may be eliminated by means of

this integral; and either of the other two formulae, in-

cluding the three variables, by which a formula may be ob-

tained, including only two of the three variables and their

differentials, whose integral m' being obtained, the integral

of [1] will be M = f(m'), the function as before being

arbitrary.

(429.) Even if the three equations [4] should all contain

the three variables, yet, if any two of them, and therefore

the third (since they are not independent), be satisfied by

the equations m = and m' = 0, the integral of [1] will be

M = f(m') as before. To prove this, it will be necessary to

show that the differential of m = f(m') satisfies the con-

ditions [4] independently of the form of the function.
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Let the difFerential of the equation m = f(m') be
dm = f'(m')Jm'.

That this may be satisfied independently of f'(m'), the form
of which depends on that of f(m'), it is necessary that the
conditions

cIm = 0, du' = 0,
should be fulfilled. Since m and m' are functions of a^ y, ,
their differentials must be of the form

'

Adoc + Bdy 4- cdz = 0,

A!dx + B'dy -{- ddz = 0.
If the equation m = f(m') be differentiated with respect

to z and ^, we shall have

Adx 4- cdz = F'(M')(A'dx + ddz);
and if it be diflPerentiated with respect to z and^,

Bdl/ + cdz = F'(M'){B'dl/ + ddz).

Substituting for^ and |- their values p and ,, we find

[C - dF'(M')]p + A - aV(m') = 0,

^
[c - c'f'(m')]^ + B ~ bV{m') = 0.

Deducing hence the values of ^ and ,, and substituting
them in [1], we find

^

AP + BQ + cv = F'(M')(A'P + b'q + c'v).
Substunung in the values of du, du', the values of dr, dyobtamed from [4], and taking out the common facto; S,

AP + EQ + CV = J

a'p + b'q + c'v =
S

' ' f^l-

Hence the above equation is satisfied independently of theform o .V). It follows, therefore, that unless L dif!
ferent,aIs of M and m' combined with [4] satisfy the con-
J^ns [5], the equation m = p(m-) „,„„,, ^e tL integral
of the proposed equation.

^

It is obvious that M = « and m' = b are particular in-
tegrals, a and b being arbitrary constants, for p(m') may be
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considered constant, and *.• the equation m = f(m') becomes,

in this particular case, m = ; or f~^(m) * may be constant

;

in which case the equation becomes m' = h,

(430.) If V = 0, the equation [1] becomes

pp 4- Qg- = 0,

and the equations [4] become

vdy — Qdr = 0,

dz = 0.

Hence z = m, and there can be only two variables in the

first, the integral of which being m', the complete integral

will be ;2 = f(m').

For example, let the proposed equation be^^ = qi^, \'

xdy — ydx = 0, •.* y = ajt, and a = f(z), *.• y = ¥{z) • a;,

oic z =J'('—\ which is the general equation of conical

surfaces.

l£py = qx, •.• p = 3^, a = - ^, •••

ydy 4- xdx = 0,

•.• 2/2 + ^« = m',

'.' z = ¥{x" -f /),

which is the general equation of surfaces of revolution round

the axis of z.

Let q =-• Fp, V not containing z. The integral is

z = f(m'), m' =fT(dx 4- py),

1 being the factor which renders the proposed equation in-

tegrable.

If two of the equations [S] contain but two of the three

variables, the integration presents no difficulty. For ex-

ample, let the proposed equation be px -{• qy = uz. Hence

xdz = uzdx,

xdy = ydx,

F-H^) means a quantity u, such, that b(w) = m.
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z

X \x J
This result, applicable to homogeneous functions, has been

already obtained in (322.).

(431.) Ex. 1. Let the proposed equation be

V^ + qf = ^%

•/ x'^dz •=. z^dx, X'dy = ifdx^

* 2 X "
"* y X ^

"*

z X \y xj
x— z /x— iA

or =:f( ^).
zx \yx J

Ex. 2. Let the proposed equation be g^ = x^; + v, where

X and V are functions of x only. Hence

y.dz + ydx = 0,

xdy + cir = 0,

„\dx / r.dx\
••- = -/— + .(3^+/-).

Ex. 3. Let the proposed equation be

qxy — px^ = ^/^

••• x^dz -^y^dx = 0, x^dy -f- ^j/f/x = 0.

In this case, one of the equations [4] includes but two

variables. This being integrated, gives xy = m'. Sub-

stituting in the first— for y, it becomes
X

x*dz H- u'^dx = 0,

which being integrated, gives

z = Jm'2^-3 _^ ^^

Substituting xy for m', and F(xy) for m, we find, for the

integral sought,

Szx = 3/2 -f SxF(xi/).
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Let the equation be

*.* xdz = n*/x^ +y^ dx, xdy — ydx =
The latter being integrated, gives

y - y^x,

by which y being eliminated, the former becomes

dz — n y/\ -^r m'2 dx^

\' z — nx^ 1 + m'^ = M,

Hence

<f>z = n\/x^ + «/* + F(

(432.) ^, In general, when each of the equations [4]

contains all the variables, they cannot be integrated sepa-

rately, because we cannot suppose two of the variables to

change, while the third remains constant. Various analytical

artifices have been suggested for obtaining the integral in

these cases.

By integration by parts, the equation

dz = pdx + qdy,

may assume any of the three following forms

:

z=^ px +f(qdj/ - xdp),

^ = 9y -^/{pdx - ydq),

z =px + qy -/{xdp +ydq).

It frequently happens that we can obtain the sought

integral by substituting the value of p or q derived from

the proposed equation [1] in any of the preceding.

For example, if jp be a function of q, so that p = a, the

last of the preceding equations becomes

z= ax -{- gy —/(xo! -f y)dq,

where a' = -y-. Hence
dq

xq! + y = F'(q),

',' z = Qx ^ qy - F{q),

where the function r is arbitrary. The integral for par-
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ticular forms of the function F(q) may be found from these

equations by eUminating q.

(433.) The integration of partial differential equations of

the first order is sometimes effected by the following process.

Let the given differential equation be

Y\xyzpq) — 0.

Let this be solved for either of the partial differential

coefficients {p), and let the value of jo, thus determined, be

substituted in

dz = pdcc + qdj/,

by which we obtain an equation of the form

dz =:f{xyzq)dx + qdy.

Let 9 be such a function of q, as being considered constant,

this equation will become an exact differential ; and let its

integral be

II = Y^ocyzQ) = c,

c being an arbitrary constant. This equation being dif-

ferentiated, 9 being considered constant, ought to reproduce

the differential equation from which it was obtained ; and it

should also reproduce it, if 9 being considered variable in

the first member, c were such a function of 9 as would fulfil

the condition

For differenitiating, as if B and c were both constant, we

should get

du . du . du ,

and differentiating, considering 9 variable, and c a function

of fl, we should obtain

du ^ du ^ ^
du , du ,. dc ,^

dx ' dy ^ ' dz dS d9

In order that this and the former may be identical, we

must therefore have
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du ,- dc ,-

Hence, if by taking 9 as constant, the equation becomes

an exact differential, we obtain by integration an equation

of the form

u = F{xyz^) =/(9),

the function 9 being restricted by the condition

du _ df{S}

W~ dS '

These two equations will satisfy the proposed equation, the

function y(fi) being arbitrary. If this function be deter-

mined, the elimination of by the two equations will give the

integral of the proposed equation.

As an example of the application of this method, let the

proposed equation be 2 =^ pq- Substituting in

z = pdx + qdi/,

the value ofp derived from the proposed equation, we find

z
dz = —da; + qdy,

qdz—zdx

This will be an exact differential, if = g^ — a: and be

considered as constant, '.*

_ {^'{x)dz— zdx

.
. z ^ df{Q)

' •
(A' + d)« d^ '

These two equations conjointly represent the integral of

z=zj)q.

(434.) The integration of partial differential equations

of the first order is often effected by the introduction of

an indeterminate quantity. Let the proposed equation be
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f{px) = F(qi/). hei/ipx) = w, *.• T{qy) = w. Deducing

from these the values ofp and q, we obtain equations of the

forms

p =^f'(Xaj), q = F'(2/a;),

••• dz =.f\x(i)) ' dx 4- ¥\yu))dy.

Let the integral of/' (xuj)dx, integrated with respect to x
be p, and that of F'(i/uj)di/, integrated with respect to «/ be

Q. Hence, considering that p and q must be also functions

of the indeterminate w, we have

dp dv
f^(Xj (jo)dx — -T-dx = dp —'1~^^9

f'(2/, oj)dy = -^dy = dQ.^ -^dcv.

Hence we find

dz = dp + da — (— + --j—jduj.

This equation can only be an exact differential when the

quantity within the parentheses is a function of w, i. e.

dp da
-5;; + "ST = «'(">'

Hence the combination of equations

Z -f (p(uj) = P + Q,

dp do,

• ^ ^ duj d(v'

where <p(a;) is an arbitrary function, represent the integral

of the proposed equation.

As an example of this process, let the proposed equation

be a'^pq = x'^y^. Hence

x^ aq'

ap v'

x^ ^ aq ^
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Hence the integral is represented by the equations

(435.) If the proposed equation of the form

vp + Qq — y

be homogeneous with respect to the three variables, let

X — tz and y = uz. The quantities p, a, v, evidently as-

sume the forms p'z", q'^% v';s", ?i being the sum of the

dimensions of the variables in each term of the proposed

equation. Hence the three equations [4] (427.), become

(p' - yH)dz - zv'dt,'

(q! — \'u)dz= zy'du,

'.' (p' - tY')du = (q! — uv)dt.

The last being integrated as an equation between the

variables t and u, will enable us to eliminate either t or u

from one of the preceding equations, which may then be in-

tegrated. This being effected, and u and t finally eliminated

by ^ = ^^ and 3/ = uz, we shall obtain the sought integral.

As an example of this process, let the given equation be

pxz + qyz = x%

-.' (1 - t^)dz = ztdt,

u{\ — P)dz = zf^t,

'.' udt = tdu, \- t = MW, ;2 -v/1 — ?« = m',

•.• 2 = uy, A/a* — a?^ = m', ••• 2* = j;« + <p\--\
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SECTION XXXII.

Ofthe integration of'partial differential equations ofthe

higher orders.

(436.) A partial differential equation of the wth order, in

its most general form, should include, besides the original

function and independent variables, all the partial differential

coefficients from those of the first to those of the n\h order

inclusive. It is not consistent with the objects of this work

to enter at length into the subject of partial differential

equations. We shall, therefore, in the present section,

confine ourselves chiefly to differential equations of the

second order between three variables, first, however, stating

some cases of equations of the higher orders which admit of

reduction.

(437.) 1*^. Equations between three variables of the

form

^l
^' ^' d^' dxdf "" dx^^'S ~ "

d'^z
may be reduced to the with order by putting v = -r^; for

in this case they become

r dv d^v d'"v >

Since all the differential coefficients which enter this equa-

tion relate to the variation of a?, of which v is a function, it

may be integrated as an equation between two variables

V, ^, the variable 7/ being treated as a constant, and intro-

ducing m arbitrary functions ofj/ in the integration in place

E E
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of the m arbitrary constants. The quantity v being ob-

tained by this process as a function of x and y, the final in-

d'^z
tegral will be obtained by integrating -r-j;^ = tJ. In this last

integration, x being taken as constant, it will be necessary

to introduce n arbitrary functions of x. Thus the complete

integral will include m arbitrary functions of^, and n arbi-

trary functions of x.

(438.) ^, Equations of the rith order, which include partial

differential coefficients with respect to one variable only, may

be treated as differential equations between two variables,

scil. the function and the variable with respect to which the

differentials are taken. In this case, however, in place

of introducing arbitrary constants, it will be necessary to

introduce arbitrary functions of the remaining variables.

Under this case come the two following forms of equations

of three variables

:

fU,
dz dH

dx^'

d>'z\

' dx'O'^
= 0,

fUj
dz

y^^' dy'

d^z

dy'''

d"z\
' dy-J-

: 0.

The equations

4-^
d"z

%

dx^dy^

d''z

%

where p and q contain no variables. except X andj/, also

d'^z
come under this class. For let -j-r = V, '.' the former be-

comes
' d'^v

dy^
+ Pt; = Q.

And by a similar substitution, the latter assumes the form

d"v

dx"
+ PV = Q.
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Ifw = 1, the former equation will become

dv

^ + w = ^,

which is of the first order with respect to v and ?/, and may

be integrated according to the rules already given, sup-

plying an arbitrary function of x in place of the constant.

(439.) Before we proceed to consider more general

equations, we shall illustrate the preceding cases by some

examples.

Ex. 1. Let the proposed equation be

fe _ dz

where p and Q are functions of x, y^ and z. Let -=-=p, •,•

dp
dx

'.' dp =i vpdx + Qidx.

If w =JvdXf the integral of this equation is (314.),

dz

f{y) replacing the arbitrary constant.

Integrating this again, we obtain the sought integral, in-

troducing another arbitrary function of z/.

Ex. % Let the proposed equation be

d'^z dz

•.• z =fdxf<^dx + xji^y) +/'(«/),.

/(j/) andy'(«/) being arbitrary functions ofy.

Ex. 3. Let the equation be

dH
%« ^xy.

Az Xlf
+/W,

•.* Z =
xy^

6« -l-.y/W +/'W
EE
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Ex. 4. Let the proposed equation be

d^
dxdj/ ~ '

M being a function of ^, j/, z. First integrating with re-

spect to^, we obtain

dz
^=fMdy+f{x).

And integrating with respect to x, we find

z =fdx/kdt/ •\-ff(x)dx +f'(i/%

f(iv) and/'(3/) being arbitrary functions.

Ex, 5. Let the proposed equation be

dH

5^ = ^^ + *^'

^ = ^a^" + hyx +/(«/),

•.• z = lax'^y + \hy^x + f(^) + F'(;r),

where f(^)5 F'(:r), are arbitrary functions.

Ex. 6. Let the proposed equation be

d'^z _ dz_

dxdy ~ dx

M and N being functions of x and y. Let -r- = p>
'.*^

^ = MP + N.

Integrating this by (314.), we find

p = e''\j(x) -\-Je~''Ndi/].

Integrating this with respect to x, we find

z ^fie^'dxfe-'^Ndy) +fe''F{x)dx + F'(y),

where F (a?), f'(^), are arbitrary functions.

Ex. 7. Let the proposed equation be

d^z , dz

^^5^ = ^^^ + ""^^

dz ay . , ^

1
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(440.) We shall now proceed to consider the method

of integrating partial differential equations of the second

order and first degree. The most general equation of this

kind is

dH d"~z dH
dx^ ^ dxdy dxf-

'

where r, s, t, v, are given functions of ^, 3/, z^ and the

partial differential coefficients of the first order.

Let

dz dz

d^ "^P' '^^^'

d^z __ d^z _ d^z _
d? "" ^* d^y "^^ W*'

*.* dp = rdx \- zdy^ dq = sdx + tdy.

By the last two equations, and the general equation

rR + 5S + ^T = V,

any two of the three differential coefficients r, s, t, may be

eliminated; the third will, however, still remain indeter-

minate. If r and t be eliminated, the result will be

ndpdi/ + idqdx — \dxdy = siyidy"^ — sdwdy + Tdx%

This is simplified by putting

dy = mdx;

\* dz = pdx + qmdXf

by which substitution, it becomes

^mdp + idq — \mdx = ^(rw^ — sm 4- t) • • • • [!]•

Since the quantity s must remain absolutely indeterminate'

the integral sought must satisfy the conditions

Rm2 — sw + T = • . • • [2],

Rmdp + idq — vjndx = • • • [3].

If M = o, m' = fit', be two equations which satisfy these

conditions [2], [3], M, m', being functions of x, y, s, p, and

q, and a, a', being arbitrary constants, then the equation
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M = r(M') [4],

in which the form of the function is arbitrary, will be the

first integral of the proposed equation. To prove this, it

will only be necessary to show that the differential of [4]

will always be satisfied by the conditions [2] and [3], inde-

pendently of the form of the function f(m').

Let the differential of [4] be

dm = f^(m')^m',

f'(m') being the differential coefficient of f(m') with respect

to the variation of m'. Since m, m', are functions of the

three variables, and the two first differential coefficients, the

total differentials dm, dm', have the forms

du = Adx + Bdi/ + cdz 4- vdp + T£.dq,

dM.' = A'da; + b'% + ddz -f D'dp -{- E'dq,

which, by the substitutions of ?wjjr for Jz/, and pdx + qmdx

for dz, become

(Zm = (a + Bm -\- cp -{- cqm)dx + Jidp + 'Edq,

dm' = (a' + B'm -} dp + dqm)dx + n'dp + E'dq.

Substituting in these the value of dq, deriyed from [3], they

become

EV DT— ERWl
,AM= (a + Bm 4- €/? + cqm H m)ax i dp,

, , . , . , , ,
e'v

^ , .
d't -- E'Rm

,

dm'= (a' + Bhn + dp -\-dqm H m)dx -\ ; dp.

Since by hypothesis the functions m, m', are constant, these

differentials must each = ; and since dx and dp are in-

determinate, these conditions must be satisfied by their

coefficients. Hence we obtain the four equations of con-

dition,

t(a + am + cp + cqm) -f Evm = 0,

t(a' + B'm + dp 4- dqm) + E'vm = 0,

DT — ERm = 0,

d't — e'ewx = 0.
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The four quantities a, a', d, d', being eliminated by these

conditions, and the equation

xdx+ B^Zy+ cdz-\'Jidp-\--E.dq=:^\u\A!dx-\-'B^dy-{-ddz+

the result, after substituting pdx + qdy for dz, will be

(b + cq)(d^ — mdx) -\— {nmdp + Tdq — \mdx) =

e'
f'(m')[(b' + dq){dy — indx) -\ (nrndp + idq — vw2J.r)],

••• ^mdp + xd^f — VTwcZa; = w{dy — wdf^),

where

B+ cflT

—

f'(m')(b'+ c'g')

«;=
J

.

~[E-r'(M')E']

Substituting rdx + sdy for Jp, and ^da? + tdy fcr <Zg',

we shall obtain an equation between the independent dif-

ferentials dxy dy^ which being fulfilled independently of

them, will give the equations

umr + T5 — vm = — oom,

Rms -{- It = w.

Eliminating w by these equations, we obtain

Kmr -\- Rm^s + T* + Tmt -- ym = 0.

But by the equation [2]

Rw^ =z sm — T.

Hence we obtain

m(Rr + 85 + T^ — v) = 0,

*.- Rr + ss -f Tt — V = 0,

which is the proposed equation.

(441.) Hence we conclude in general, that if the proposed

partial differential equation have the form

Rr + 85 + T^ — V = ;

and that either value ofm deduced from

Rw* — sm + T =
being substituted in the equations
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dy — mdx = 0, v

^mdp + Tdq — ymdx = ;

these equations are satisfied by the differentials of the

equations

M = a, m' = 6.

M and m' being functions of x, 3/, z, /?, g, the first integral of

the proposed equation is

M = f(m'),

the form of the function being perfectly arbitrary.

Since there are but three equations, viz.

dy — mdx = 0,

^mdp + idq — \mda: = 0,

dz = pdx + qdy^

between the five variables x, y, z, jp, q, the elimination of

two will give a differential equation between the remaining

three ; this, therefore, may not fulfil the criterion of integra-

bility (S84.), and the equation, in that case, cannot have a

single equation for its integral (418.).

(442.) The following examples will serve as illustrations

of these general principles.

Ex. 1. To integrate the equation

q'^r — ^qs + pH = 0.

In this case,

R = 5r2^ s = — S;?^, T = p\ V = 0.

Hence the equation [2] becomes

q^m^ + 2pqm -j- p^ = 0,

'.' qm + p = 0,

Eliminating m from the equations dy — mdx = and [3],

we obtain

pdx + qdy = 0, qdp — pdq = 0.

Integrating the latter, we find p = bq, b being an arbitrary

constant. The former gives dz = 0, -/ z = a; where a is

also an arbitrary constant. Hence the functions m and m'

axe in this case — and z^ and therefore the first integral of
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the proposed equation is

where the form of the function is arbitrary. In order to

arrive at the primitive equation, it will be necessary to in-

tegrate this equation. To effect this, it must be observed,

that

Pm = — —f \- dy = — F{z)dx,

which being integrated, gives

which is the primitive equation.

Ex. 2. Let the equation to be integrated be

x^r + 9>xys + yH = 0.

Hence e = ^*5 s = ^y, t = 3/^, •.• mx ^ 1/ = 0, and the

equations di/ -- mdx = 0, and [3], become, in this case,

i/djc — xdt/ = 0,

xdp 4- 7/dq = 0.

The former being integrated, gives

1/ = oje;

and eliminating 7/ from the second, we find

dj) + adq = 0,

'.' p + aq =b.
Hence the equation M = r(M') becomes

px +qt/= ^F
(^f^.

This being treated by the methods for partial differential

equations of the first order, we have

dz = F{a)dx,

',' z =z xF{a) + F'(a).

y
But since a = — ,

*.•

'•="(f)-<i>
(443.) If the coefficients of/*, ^,.if, in the equation

nr + S5 + T^ = V
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be all constant^ and the quantity v be a function of the inde-

pendent variables alone, the equation [2] becomes a nu-

merical equation, the roots of which are therefore constant.

Let these roots be m\ m" ; which, being substituted in

d7/ — md^ = and [3], and the results respectively in-

tegrated, give the two systems of equations

y — m'x = a 7

B,m'p + Tq — nifydx — h\

y — ifri^x = d \
^rnJ^p -^ Tq — rnJ^Jxdx = 6' j

'

in which v may be considered as a function of x alone,

since it may be rendered so by substituting mix or ml^x for j/.

Hence we have the two first integrals

ETTi'p -\- iq — Tflfvdx = Y{y — wlx),

B,m"p 4- T5' — m'l/ydx = r'(j/ — mi'x).

By integrating either of these equations, we shall obtain the

primitive integral of the proposed equation. If the former

be solved for p, we find

T fvdx 1 ,
, ^

^ ^m^ R R -^

T
But since by the equation [2] m'm" = — , this becomes

^ = — TriJ^q +*^
1 F(«/ - 7n!x).

Substituting this value oip in the equation

dz = pdx + qdy,

we obtain

-Sidz — dxfvdx — ct3?F(y — 7n!x) = 'Rq{dy — m^'dx).

The equations therefore to be integrated'are

di/ — m"dx = 0,

Rdz — dxjvdx — dxY(y — m^x) = 0.

The former gives y — w"j? = a', and the latter becomes

R^ —fdxfsdx ^jdx¥(y — rnJx) = h.
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In effecting the integrations indicated in this equation, the

following circumstances should be attended to.

P. In determining Jvdx, y should be replaced in v by

<rdx + a \ and after the integration of ydx has been eiffected,

a should be replaced by 3/ — ifrioc. Then before effecting

the integration of dxfsdx\ y should be replaced vsxf^dx by

rri^x + a', and after the integi-ation has been effected,

y — tri^x should be substituted for d.

2^. Before the integration of dx¥{y — m'x), mJ'x + a'

should be substituted for y ; and after the integration has

been effected, j/ — m"x should be substituted for a',

3^. The constant b is an arbitrary function of «/ — m"x.

Hence the complete integral has the form

R2 •=: fdxfsdx + f(2/ — frlx) + f'(«/ — TV^X),

where the functions f, f', are arbitrary.

(444.) The following examples will illustrate the pre-

ceding formulae.

Ex. 1 . Let the equation be

y
Hence tw* + m = 2, •.* m' = 1, w" = — 2, \' y — x -^ «,

y = — 2^ + a', •.•

kdx
fvdx =f-^^ = ^K^ + «) =%

fdxfvdx -ss^fUdxly =J'l€dxl{a} — ^x).

This becomes, after substituting ^x -{- y for a',

fdxfvdx = — kx — kyl\/y,

V z +k(x -jr ylVy) = f(«/ - x) + v\y + 9x).

Ex. % Let the equation be r - hH = 0, •.•

— - h^^~
dx^ ~ 1^'

This equation is remarkable, being that of vibrating chords.

In this case R=5l, s=:v = 0, and t = - ^>2. Hence
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7»'=^, ?7i"= — ^, \'y=hW'\rafy=bx-\-a\BXidLjUxJydx==^0, v
z = f(2/ — hx) + f'(3/ + bx).

(445.) The integration of partial differential equations

of the second order is sometimes effected by a process

similar to that used in (433.), scil. by the introduction of an

indeterminate function 9.

The equation of developable surfaces rt = «*, gives

r s

7=7 = ^'

•.• s = ^9,

r = 59,

rdx + sdy = 0(5£^ + tdy\ -.' dp = Sdq.

This equation is only integrable when 9 is a function of q,

and in that case the first integral is ;? = t(^). -The

equation

dz — pdx + qdy

becomes

dz = dx Y{q) + qdy.

Integrating this by the method in (433.), we find, con-

sidering q constant,

z = X¥iq) + qy + F'(q),

= xAq) +y +f(q\
where y(3'), f\q)y are the differential coefficients of the

functions ^{q)^ Y\q),

SECTION XXXIII.

Of the integration ofpartial differential equations by

series,

(446.) By the theorem of Taylor, we are enabled to in-

tegrate partial differential equations in series by a method
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similar to that explained in Section VI. Let x and y be

the independent variables, and % the dependant variable in a

differential equation between two variables. Let

dz dH J«z
^' dx' dx^

*
dc'*

be what

dz d^z

^'
da:' dx''

'

d^z

dx""

become when ^r = 0, and which are therefore functions of

y, and the constants which enter z. Hence by Maclaurin's

series.

dz X . dH
1.2 ' dx' 1.2.3 "-J'

If it happen that any coefficient when a; = become in-

finite, the series may be obtained by substituting a: -{- a for

X in the function, and developing by the powers of x,

(447.) If the given partial differential equation be of the

first order, let it be solved for either of the partial differen-

tial coefficients, so that it will assume the form

dz f dz\

This being differentiated successively with respect to x^ and

X being supposed = in the several coefficients, all the co-

efficients of the series [1] will be determined as functions of

the first term z, which is an arbitrary function of^. Thus

the series in this case will include one arbitrary function

of 2/.

If the proposed differential equation be of the second

order, let it be

dH _ /d^z d'z dz dz \

d^ ~ \d^' d^f 1^' ~d^' ^'V
It is plain that all the quantities which are included in

the parenthesis depend on, and can be derived from the
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dz
values of z and -y-, by making x = after the operations

indicated by the different symbols have been effected, and

the subsequent coefficients of the series [1] may be ob-

tained by continued differentiation. The quantities z,

dz . .

-J-,
are in this case arbitrary functions of «/, and therefore

the complete integral of a partial differential equation of the

second order requires the introduction of two arbitrary

functions.

By continuing this process, we find, in general, that a

partial differential equation of the nth order requires in its

complete integral as many arbitrary functions as there are

units in n the exponent of its order.

(448.) As an example of integration by series, let the

proposed equation of the second order be

d^z __ d^z_

do^
""

^^dy^'

By successive differentiation, we find

dz\
<£'d^z d^z \dxJ= c* = c®—^

—

da^ dxdif- dy^

d^z
d^-

d*z d*z dx^ d^%
= c*-

dx"^ dxHy'^ dif dy^'

d^z d^z dx^

dH ,y dz
Or

»a. = C
<s)

dx^ dx^dy^ dy"^ dy*

These several quantities depend only upon the co-

efficients

dz d^z

'dx' ^*
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Let F(y) be what z becomes when j; = 0, and f"(3/)

be the corresponding value of-rv, and \etf{y) be what

dz
-z—becomes when zr = 0. Hence we find
ax

In this case the functions ^(j/), y(«/), are both arbitrary,

but the succeeding coefficients may be derived from them.

The equation proposed may be integrated in finite terms

by the rules estabhshed in the last section, and its integral

will be

2 = f(2/ + c^) +f(y — ex).

By developing each of these functions, and adding the

results, we shall obtain the series already found for z.

(449.) Integrals of partial differential equations may fre-

quently be obtained in series by the method of indeter-

minate coefficients. This method, used by Lagrange in

his Mecmiique Analytique, consists in assuming a series for

z in powers of x, as

2 = Y 4- Y'.r 4- Y".r2 + y^^'x^ [2],

which being successively differentiated, gives values for the

several differential coefficients. These being substituted in

the proposed equation, and the coefficients of the same

dimensions of x being equated, the successive coefficients of

the above development will be determined. An example

will illustrate this. Let the proposed equation be

d^z dz

dx^~'~d^'

By differentiating [2] twice for ^, and once for y, we

obtain
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^ = 1.2.Y" + 2.S.y"'x + SA.Y""a;^

dz _ dy dr' dY"

dy dy dy dy

Equating the coefficients of the corresponding powers of x
in these series, we find

^Y 1 rfY' 1
y"

dy 1.2' ^ '- dy 1.2.3

y'w = dy

dy

1

1.2.3.4
'

Hence, if y = F(y), and y' =f{y), :

If the equation to be integrated be the following between

four variables,

^ ^ I ^-. ft

Let

the successive coefficients being functions of x and y.

Diffisrentiating twice for each of the variables, we obtain

^_d^ d^ dy
^

J2<p fZ^^' 6/*^'' eZ^^W

0- = 1.2.^" + 2.3./'z + 3.4.^"V

Substituting these values in the proposed equation, we

obtain

rf«<p' dH^ , ^ „,

J
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+
+

By equating the corresponding coefficients in this and the

assumed series, we obtain

^
• %.^\da^ ^dj/« S

^_ 1 cd^ d^f 7
"^^

SAl'd^'^ dy^ i

~ 1.2.3.4 \ doc"^
"^ dxHf di/" ]'

Hence we find

SECTION XXXIV.

Ofarbitraryfunctions.

(450.) The arbitrary functions introduced in the integrals

of partial differential equations are analogous to the arbi-

trary constants introduced in the integrals of exact dif-

ferentials. The differential equation itself furnishes no data

in either case whereby the form of the function, or the value

of the constant, may be found. But the differential is ge-

nerally the result of the analytical statement of some pro-

F F
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posed question, and is often more general than the question

itself, which may be subject to limitations which the dif-

ferential equation resulting from it does not express. In

these limitations, we sometimes find means for determining

the form of the arbitrary function, or the value of the arbi-

trary constant which enters the solution. Examples, both in

geometry and physics, of the determination of the arbitrary

constant occur so frequently, that it is not necessary to intro-

duce many here. Let a body be accelerated by an uniform

force, commencing to move along the axis of..r at the distance

x^ from the origin, its initial velocity being nothing. The

differential equation resulting from this statement will be

vcZv = Ydx,

V being the velocity, and F the force.

This being integrated, gives

v^ = ^Z¥X + c,

c being the arbitrary constant. The differential equation,

however, does not include the limitation of the body com-

mencing to move at the distance xK In order to apply our

integral to the solution of the question, it will be therefore

necessary to introduce this condition, soil, that v = when

X = a^y '.'

- 2f^ = c, •.• v^ = ^f(x — y).

Thus, the condition of the question, which was not ex-

pressed by the differential, is introduced by assigning a

proper value to the constant, and therefore serves to de-

termine it.

(451 .) The arbitrary functions which are involved in the

integrals of partial differential equations are, in particular

cases, determined in the same manner.

As an example, let it be required to find the equation of

a cylindrical surface generated by the motion of a right line

parallel to that whose equations are

y = b'zy X zzi dz [1],

i
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and which always passes through an ellipse described upon

the plane of j?j/, and represented by the equation

ay + h'^x'' - a^h^ [2].

Let --r- = Pt -T-^ = §'• Since the tangent plane to the

proposed cylindrical surface is always parallel to the right

line [1], its differential equation is

^dz dz _
dx dy

~'
'

This equation being then the differential equation of the

proposed cylindrical surface, its integral

{y - Vz) = F{a: - a'z) • • • • [3],

is the equation of the cylindrical surface. In this, T{x—a}z)

is an arbitrary function, and must be determined by the

remaining condition of the question. The equation [3] is,

in fact, a general equation of all cylindrical surfaces, whose

tangent planes are parallel to [1]. In order that the inter-

section of the cylinder with the plane xy should be the

ellipse [2], it will be necessary that [3] be identical with [2]

when 2 = 0, •.•

F(jr) = — v/a«— a7«.

Hence the form of the arbitrary function is determined.

(452.) In like manner, to find the equation of a surface

of revolution round the axis of z, of which the generating

curve is a parabola, we find the differential equation

ydy + xdx = 0,

since every section parallel to the plane xy is a circle, z

being taken constant. Integrating this, we obtain

y^ -\- x^ = ¥(z).

This is the general equation of surfaces of revolution round

the axis of z. The equation of the intersection with the

plane zy is

y = f (^)

;

F F 2
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and since this, by supposition, is a parabola, *••

t(z) = aZf

'.' 1/^ -\- x'' = az,

is the equation sought.

(453.) In general, then, the arbitrary function of 2, which

enters the integral, should .be determined by some assigned

relation between x and «/, giving the function z some known

form, just as the arbitrary constant is determined by some

assigned value of the variable giving the integral some

known value.

Thus, let the integral of a partial differential equation

have the form

mf(v) = 1,

where m and v express explicit functions of the variables

.V7/Z, and f(v) an arbitrary function. Suppose that it is

known from the conditions of the question that the variables

satisfy at the same time the two equations

yXxi/z)^0, f\xyz) = 0,

where the functions are explicitly given. Let \ = t, and

by this and the two preceding equations, let w, y, and z, be

found as functions of t. This being done, substitute those

values for jt^z in m, and let the result, which will be a

function of t, be t. Hence

• tf(0 = 1,

Now, since t is a known function of t, •.• the form of F(t)

becomes known.

(454.) It frequently occurs, that there are more arbitrary

functions than one to be determined. In the following ex-

ample there are two.

Let the integral be

mf(v) 4- nf'(v) = L
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In this case, two conditions must be found in the data of the

proposed problem, to determine the functions.

Suppose that it is known that the variables satisfy simul-

taneously

and also,

r'"(^j/2) = 0, f\xyz) = 0.

As before, let v = ^, and by this and the former pair

of equations, let xyz be determined as functions of t^ and

thence m and n determined as functions of t\ let these

be T and s. Also, let them be determined as functions of

t by the latter pair, and let them be t', s'. Hence we have

the two equations

TF(0 -f sf'(0 = 1,

t'f(^) + s'f'(^) = 1.

From which the values of the two functions may be derived

as explicit functions of t, and therefore their forms will be

known.

This process may easily be generalised and applied to all

equations, whatever be the number of arbitrary functions

which enter them, provided they be of the form

mf(v) + xf'(v) -f of"(v) • • • • =1.

If the integral mf(v) = 1 be supposed to be the equation

of a curved surface, the supposition that the variables satisfy

simultaneously the equations

Y\xijz) = 0, f'iwyz) = 0,

is equivalent to supposing that the surface passes through a

line represented by these equations.

(455.) Very frequently, both in geometrical and phy-

sical investigations, the functions are absolutely indeter-

minate, and remain so. In this case, the results point

out general properties, which, without particularising the

functions, are common to the whole class included in
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the general equation. The function may not even be

one which, if represented geometrically, would produce

one continued line, but may l^e represented by any line

or combination of lines, however irregular, or may be a

curve described libera manu by no assignable law.

i
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PART III

THE CALCULUS OF VARIATIONS.

SECTION I.

Preliminary Observations and Definitions.

(456.) The method of variations derived its origin from

problems in geometry and physics, relative to maxima and

minima. An extensive class of such problems, as has been

already shown, can be solved with considerable elegance and

facility by the application of the principles of the differential

calculus. A variety of most interesting questions respecting

maxima and minima still, however, remain, and very fre-

quently present themselves in geometrical and physical in-

vestigations, to the solution of which the methods established

in differential calculus are inadequate.

In general, these methods are only applicable when some

maximum or minimum property of a curve or surface of a

given species is to be determined. But when among all

curves or surfaces whatever, which can be drawn under

given restrictions, that species is sought which possesses

some maximum or minimum property, the methods of so-

lution founded on the development of functions, and esta-
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blished in. Part I, fail. Such questions are solved by the

calculus of variations.

These different species of problems respecting maxima

and minima will probably be more clearly perceived by

examples.

•Of the first class are the following

:

" Round a given triangle to circumscribe an ellipse,

whose area is a minimum.""

" In a given triangle to inscribe an ellipse, whose area is

a maximum."

In these cases, the species of the sought curve is given,

being an ellipse; and such questions can always be solved

by the common methods.

The following are examples of the second class of pro-

blems before mentioned

:

" To find the shortest line which can be drawn connect-

ing two points."

" To find the curve of a given perimeter, which shall

enclose the greatest possible area."

" Of all the curves of a given length joining two points,

to determine that, which, by its revolution round the

right line joining the given points, produces the solid

of greatest volume."

The class of problems to which the last two of these ex-

amples belong are called isoperimetricaL They form one

of the principal subjects of investigation which led to the

calculus qf variations. The two Bernoullls, John and

James, and Taylor, the inventor of the development of

functions, were the first who obtained solutions of these

problems, and laid thereby the foundation of this science:

the methods of investigation gradually improving for a series

of years under their hands, were still further advanced by

Euler ; it was, however, reserved for Lagrange to render
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it an uniform, systematic, and perfect science, both in prin-

ciples and notation *.

Those who wish to be informed in the history of the

gradual progress and improvement of this interesting de-

partment of science without the trouble of tracing it through

the volumes of transactions of learned societies, and the va-

rious tracts of the Bernoulli's, Taylor, Euler, and Lagrange,

will find a very compact account of it in Professor Wood-

house''s Tract on Isoperimetrical Problems.

In these latter problems, the species of the line is sought,

and such investigations are attended with difficulties of a

peculiar kind, which we do not meet with in the former

class. Problems of this kind occur even more frequently in

physics than in geometry. The following are examples of

them:

*' To find the Une joining two points at different heights,

by which a heavy body would descend from the one

point to the other in the shortest possible time; or

to determine the hrachystochronous curve.''''

" To determine the curve of a given length joining two

given points, of which the centre of gravity is lowest."

" To determine the solid of least resistance f .'*

To make the peculiar difficulty attending the solution of

such problems apparent, it will be sufficient to reduce one of

them to an analytical form. To take one of the simplest,

suppose that it is required to draw the shortest possible line

between two given points. Let the co-ordinates of the points

* The name " calculus of variations" was first given to this

part of analytical science by Euler.

f This appears to have been one of the earliest problems of

this kind. It was proposed by Newton in his Principia,

lib, i'l. prop. 34. Scholium.
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be -ifsf, z/V, and let the equation of the hne sought be

^(xy) = 0. The length of the line will be expressed by

the integral

taken between the limits o^ and ar". But since the form of

the function ^{xy) is unknown, dy cannot be eliminated, and

therefore the integral is indeterminate, and the integration

cannot be effected. We are here required to assign the form

of the function f(^3/), which will establish such a relation

between the variables xy as will render the integral taken

between the given limits a minimum.

If such a state of the integral u could be assigned, that

every variation in its value consistent with the conditions of

the problem would render it greater, that state would be

the sought one, and would solve the problem. To deter-

mine this state, it must be considered that u varies on two

accounts, jfirst, by reason of the variation of the co-ordinates

xy of the sought curve ; and secondly, by reason of the

variation in the form of the function ^{xy)^ which con-

stitutes the relation between these co-ordinates. One of

these causes of variation will be removed by assuming the

integral between the given limits, for then the co-ordinates

of the given points y^x\ y^^x\ will take the place of the

variables, and the only cause of variation will be that which

depends on the relation between x and y.

(457.) A particular notation has been invented for ex-

pressing that variation of x and y which proceeds from a

change in the relation between them, which will be most

readily apprehended by referring to its geometrical ap-

plication.

Let A and b be the points whose co-ordinates, are y^x\

«/V. By a change in the form of the function, let the

curve be supposed to change from a/?b to a/>'ij. Let p be
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Y B
i

A
' \5^111^^

Pr X
C "^ m D

any point whose co-ordi-

nates are xy. If, while

the form of the function

remains unchanged, the

value of X is increased

by Mm, the value of y is

changed from pm to ym ;

and if these changes be

assumed of indefinitely

small magnitude, they are expressed, as has been explained

in the differential calculus, by om = a: + dx.^ pm =y -\- dy.

Thus the sign d implies that variation of x and y, which is

made on the supposition that the equation ^(xy) = re-

mains unchanged, otherwise than by the change in the

variables; or, to speak geometrically, differentiation ex-

pressed by the character d implies a transition from one

point to another of the same curve.

Suppose now that the form of the equation ¥(xy) —
undergoes a change. This change producing a change in

the relation between x and j/, it follows that for each value of

X there will be a corresponding value of^ different from that

value cf 2/ which corresponded to the same value of a: before

the change in the equation. Thus pm being the value of^
corresponding to om before the change, let p'm be the value

corresponding to om = a? after the change. Thus we have

a variation of 3/ of a kind different from that expressed by

dy. This variation of y depending entirely on the change

in the equation 'P(pcy) = 0, is usually expressed by ^^, and a

similar variation of x by ^x.

Thus d and ^ both signify changes in the variables, the

former signifying a change in either produced by a corre-

sponding change in the other, the relation between them

being constant; the latter expressing a change in either

variable produced by a change in the relation between them.
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the other variable being constant. The one is the differen-

tial, and the other is called the variation of the variable.

In physics, the points of the surface of any body being

expressed by xyz referred to three axes of co-ordinates, the

variations of ocyz by the transition from one point of the

surface to another, the position of the surface being un-

altered, is expressed by the differentials dy, dx, dz ; but a

change in any point produced by any motion of the body

itself is usually expressed by the variations 8x, $j/, Sz, The

differentials dx, di/, dz, depend altogether on the figure of

the surface, but the variations ^a?, ^y, Sz, depend on the

time, or on some function of it.

(458.) The differential dy being a function derived from

the primitive function, is susceptible of variation from the

same causes,as the primitive function, and the same may be

said of d'^y • • • • or of d"y.

A similar observation applies to the other variables .r, z,

&c. Hence the meaning of the symbols

Sdy, Sd^y • - - - $dy,

$dx, W^x ' • . . Wx,

is manifest.

Also the variations hj, $x, &c. being functions of the

variables, are susceptible of differentiation.

Hence we perceive the meaning of the expressions

d^y, d^ty . . . • dny,

d^x, d^8x • • • • d"Sx.

In the same manner the meaning of the symbols

^u, fSv,

iff", ffiv.

will be readily apprehended.
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From what has been observed, it is plain that the de-

termination of the variation of a function is differentiating

it under another point of view, that is to say, ascribing its

variation to another cause.

SECTION II.

Ofthe variation ofafunction.

PROP. cix.

(459.) In any formula to which dP^ and ^ are prefixed

the transposition ofthese characters does not affect the value

ofthe quantity.

That is to say,

Wi; = d'^Bi/.

This might, perhaps, be assumed as true upon the general

principle, that when certain given operations are to be per-

formed upon a function, the final result must be the same

in whatever order the proposed operations may have been

effected. It may, however, be considered satisfactory also

to establish it independently of this general principle.

Since

PM=J/,

\'pm=^y\-dy,

\'p^m= y \dy\ l{y + dy\

'rp^m^y + dy-\-^y-\-Uy.

But also,

p'm=2/+^^,

•.• /}'w =:_3/ + ^yi-diy+ $y),

p'm=y-\-$y-^dy^d$y,

•.* ^dy~d^y.
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In general, let d'^'^y ^ u^ *.• d'^y = du. By what has

been just established,

Mu = d^u,

i. e. ^dy = d"$j/.

As this is the fundamental principle of the calculus of varia-

tions, it may be proper to establish it independently of the

consideration of curves.

Let j/ = F(a;), and when the function by a change in its

form becomes f'{x)^ we have

$1^ = ^\x) — f{x).

In consequence of the supposed relation between the

variables, the difference of these functions must be some

function of j/-. Hence we have

Let y -y + dy, .-

••• Jy + Uy =/(y),
••• % =/(y) -f(y) = df(y),

\' $di/ = dSj/.

And hence, in general,

$d"i/ = d"$i/.

PROP. ex.

(460.) In anyformula to whichf^*^ and $ are prefixed, the

transposition of these characters does not affect the value of
the quantiti/.

That is,

n signifying 7i successive integrations.

Lety=/"z/,v

y = dy\

Taking the nth integral of these, we find
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PRO!'. CXI.

(461.) To determine the variation of afunction ofseveral

variables and their successive differentials.

Wc shall consider the problem applied to functions of

two variables, and the result may then be easily generalised.

Let

u = F{x, y, X,, x^, JTg, . . . . y^^ y^, Vz, ' ' ' •)

where x^^ x^^ jTa, • • • • signify dx^ d^x, d^x, .... and

«/i5 3/i, 3/3» • • ' • signify dy, d% d'y. • • •
•

Let u become u' when x, «/, .ri, 3/1, • • • • become x + ^'^r,

y + ^5 x-^ -\- ^<r„ ?/i + ^^1, .... and by developing, we

find

i d\5 . d\] du du 7

In variations, as in differentials, the change of the function

is supposed indefinitely small, and therefore the terms of this

development, in which the powers of the variations which

exceed the first enter, may be rejected, and we assume

dv ^ dv ^
du ^

du

If there were a greater number of variables, the expression

would obviously be similar to this, and hence we derive the

following rule :

Tofind the variation of afunction ofseveral variables

and their successive differentials, find the several partial

differential coefiicients of the function with respect to the

variables x, y, • • • ' and their successive differentials x,, Xj,

G G
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• • • • yij ys) • • • • considered as so many independent va^

riables, and multiplying each coefficient by the corresponding

variation, the sum of the products is the total variation of

ikefunction.

The method of finding the variation of a function of

several independent variables is, therefore, the same as for

finding its total differential.

By the result of (458.), combined with the preceding

rule, it follows that the variation of a function (u) of several

variables (^, ?/, 2: . . . .), and their successive differentials,

may be expressed thus

:

^u = x^'jc + x'^^^ + x"W2^ . • • . x<">^J^';r,

+ zH + 'ilUz + il'W^z . . . . z^^'^Sd^z,

Where x, x', • • • • Y, y', • • • • z, z', • • • • signify the

several partial differential coefficients of u considered as a

function of x, dx, • • • • t/, d[y, - • - - z, dz. - • • -

(462.) Cor, If u contain only x, j/, and the successive

differential coefficients of y considered as a function of x,

scil.

dy
,

d'^y „ d'y
„,

d"y

dx "-•^'
dx'^ y^dx^-^' dx- " ^ '

we shall have, as before,

Su = x^^ + Y^y + Y'Jy + Y^'Sy" Y'^"^$y^''\

where y', y", • • • • are the partial differential coefficients of

u considered as a function of ?/', y'L ....

(463.) The variations $y', Sy^', • • • • may easily be ob-

tained in terms of $y, ^x'.

^ dx dx dx dx\

Mij-y'd$x (d^y—y'M
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These being substituted in the value of ^u, we shall have it

expressed in terms of ^x and Bi/.

PROP. CXII.

(464.) To determine the variation of the integral of a
givenfunction ofseveral variables and their differentials.

Let the function given be u. By (460.),

jTu =/^u.
Let us first suppose u to be a function of two variables x

and y. Hence by (461.),

+/[Y^j/ + y'% + Y"W^e/ ].

This may be modified by the following substitutions sug-
gested by integrating by parts united with the principle

My = d^ij:

fK$X=fK$X,

f>i'5dx= x'$x-fdK'Sx,

fxJ'U^x= x"d$x-flK'^x= x''d$jc-dx'h i-fd^x''^r,

fx"Wa: ^ x"'d^lv- dx!hBx -^-/d^x'Wx= x"'d^$jt;- dx"'d$x

+dV$x-fdV$j:.

fii^''^Sd^x= x^^'>d^-Hx~-dx'^d^-'$x + dVd''-'$a; ....
d''-'x'$x±/d"x^"^$a;.

And, in like manner,

f^^rj^fYhj,

G G S
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d''-^Y'>5t/±fd''Y^''^Sl/.

Making these substitutions in the value of ^u, it be-

comes

$fv =/(x - dx' + d'x" - d'x'" .... )Sx,

+ (x' - dx" + d^x"' — )o"a7,

+ (x" ~ dx'" + (^x^^ - )d$2-,

+ (x"' - )d'$a;,

^/(Y - dY' + ^V - f/^Y"' + . . . . )^j/,

+ (y' - dY" + ^^y'" - )$y,

+ {y" -fZY^' + cZ-^yi^- )%,
+ (y'" - )d^^y,

in
This vahie of Sfu consists, therefore, of two parts, the

one depending on the variation of jr, and the other on the

variation of y. If there were a greater number of variables

involved in the function u, we should have as many more

series, and each of them of the same form as the preceding.

Thus, if u included the variable Zj.as well as x and ^, we

should have, in addition to the above, the following,

+/(z — dz' + d'^z" - . . . ,yz,

+ (z' - dz" + r/*z'" - . e . . )h,

+ (z"-</z'"+ )ddz,

+ (z'"- )dHz.
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It may be observed, that the value of J/u will include as

many terms affected with the signy*as there are independent

variables.

(iiGS,) Cor. The conditions

X - d/x' + ^*x" . . . . = 0,

Y - f/Y' + fi?2Y" . . . . = 0,

z - d?} + rf^z" .... =0,

....*....'.... [2],

leave the variation ofyi; free from any integral sign.

These are the conditions which determine the function

u to be an exact differential, or to be integrable. The

general process for establishing this criterion by the prin-

ciples of the integral calculus is not sufficiently elementary

to render its introduction in the second part of this work

proper. We shall here, however, establish the conditions by

the method of variations.

Let u be supposed to be the exact differential of a func-

tion Ui, and let u = Jui, '.*

^u = Wu, = ^^Up

It appears from this, that if u be a complete differential,

^u v/ill also be one. Hence, when all those terms which

are susceptible of integration shall be brought from under

the signyj those which remain must, collectively, = 0,

independently of any relations between the variables or

their variations.

PROP. cxin.

(466.) To determine the variation of the integral of a

given differential vdx, when v is afunction ofseveral va-

riables, and their differential coefficients considered asJune-

lions ofone common variable x.

As before, we shall first consider the problem applied to
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two variables. Let v then be a function of t/, x^ ?/', y • • • <

where

y^ ~ dx' y ~ dx^' ' ' '
'

In the present case, u = Ydx, \- (460.),

Sfvdx =fS(ydx) =fyd8x -\-fdxSv.

But

JvdSx = ySjc —Jdv^x,
'.' \fsdx — y^x -\-f{dx^N — dvSx),

The values of ^v and dv are, (462.),

^v = xjr 4- y5?/ + Y'^y + y'V ....

dv = xdx + Y^/z/ -f y'fZy + y"^«/'' ....

where y', y''
. . . . signify -^, -^, • • • •

By which substitutions, we obtain

dxh— d\$x= Y (dx^j/—dy^x) + y \dxSi/^ — dy^lv)

-\-Yyxh/-di/'^x)+ . . .

By the values of y, 5//", .... found in (463.), we obtain

dx$y — dy$x = dx(Si/ — i/Sx) = udx,

dxSy — di/'$x = d{8j/ — y^^x) = du,

-. ^ „ . „r. d^(Su— y'$a:) , du

where ii = St/ -- y'Sx.
^

Hence we obtain

f{dxSy - d\Sx) ^J'Yudx -\-frdu -Vf^'d "3" • • • •

Integrating by parts each term which contains differentials

of u, we find

dY^
f'Y^du— y'm— f-—udx.^ '^ dx

•^* "dx" dx J dx
""-^

dx dx "+-^ dx ,lx
""'''
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Hence we find

C dY" ")

^vdx = v^or + J
y' •: h . . . . > 2/,

+
+

^C £/y' 1 A" "?
r

This is the variation sought.

(467.) Cor, Since u = 5i/ -- y^^x^ it appears that the co-

efficients of ^y and ^Xj under the sign of integration, have a

common factor ; and it. therefore follows that the same con-

dition will make them both vanish, and leave the variation

independent of any integral. This condition is evidently

^y' 1 ,rfY"
Y — 3- + :r ^^ = 0-

ax ax ax

From what has been already observed, it is plain that

this is the condition which determines \dx to be integrable.

SECTION III.

On the maxima and minima ofindeterminate integrals.

(468.) We shall now proceed to the investigation of the

class of maxima and minima problems already mentioned,

and to which the methods explained in the differential calculus

do not reach. These problems, when reduced to an analy-

tical statement, generally come under the following form :

" Given a differential expression u between any variables

" and their differentials to assign that relation between
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" the variables for which the integral of the proposed

" expression taken between any assigned limits will

" have a maximum or minimum value.""

To apply the method explained in the differential cal-

culus, it would be necessary to know the form of the in-

tegral ; whereas, in the present case, the form is the thing

sought, and must be deduced from the very circumstance of

the integral being a maximum or minimum.

If the problem be geometrical, the integral, whose maxi-

mum is sought, usually expresses some quantity depending

on a curve or surface. Thus the integrals

f^dy'- + dx^, fydx,

although really indeterminate, since no relation is given

between x and j/, yet express quantities depending on the

sought curve, the former signifying its length, the latter its

area.

In like manner, if the question be physical, the inde-

terminate integral may express the time, velocity, force, &c.

the maximum or minimum of which is sought.

The principles of variations already established, however,

will enable us to extend the method for finding the maxima

and minima of determinate functions to indeterminate in-

tegrals.

(469.) Let u be the indeterminate function of which the

maximum or minimum is sought, and let u' be what this

becomes when jr, z/, dx, dy, .... are changed into x -j- ^x^

y -\- oy, dx + Mx, dy -{ Idy .... In order that u may be

a maximum or minimum, it is necessary that the sign of

u' — u may be independent of the signs of the increments

Jr, ly Hence the term which involves the first

powers of these must =0, •.• ^u = 0. Thus, that the in-

determinate function may be a maximum or minimum, it is

necessary that its variation should vanish. This condition

is necessary y but not svjffiviuit. JBcsides this^ it is rc(j[uired
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that the terms involving the increments in two dimensions

should collectively, as to sign, be independent of ^.r, (^^, . . .

.

and hence all the circumstances incident on common maxima

and minima of functions of several variables are also to be

attended to here.

PEOP. cxiv.

(470.) To determine the relation between the variables

which will render an indeterminate integral taken between

assigned limits a maximum or minimum.

If the proposed indeterminate integral beyu, it is neces-

sary that lf\5
= 0. Assuming the value [1] of this, deter-

mined in (464.), it is necessary that this should = 0. This

value consists of very distinct parts, some affected by the

sign of integrationy^ others free from it. Since the varia-

tions ^^, ^j/, .... are supposed to be independent, the

terms affected by the sign f are integrable, and, therefore,

of the whole value of 6/u = 0, those parts which are affected

by the signy must separately = 0; for, otherwise, they

would be equal to the remaining part, and would be there-

fore integrable. Hence the condition Ifxj = requires

that the system of equations [1] and [2] should be both

satisfied.

The number of equations in the system [2] is, in general,

equal to that of the independent variations. In case, how-

ever, of but two variables, u assuming the form ydx, these

equations may be reduced to one (467.).

The conditions [2] reduce [1] to the form

/^u = x'^^ + x"^^^ + x"'^2j^, . : . .

where x', x", • . • • y', y", .... signify the quantities in-
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eluded in the parentheses in [1]. Let the values of the va-

riables corresponding to the limits of the integral beo^yz' ••••

a/yv .... and when these are substituted for the variables,

let the values of the integral^Ju become l' and l". Hence

y*^U = L"— l';

and, therefore,

l" - l' =
is a condition of the proposed maximum or minimum.

This equation will then contain no variables, except

those which correspond to the limits, which, however,

may or may not be variable according to the conditions

"which regulate the proposed limits. The system of equa-

tions [2] express the sought relation between the varia-

bles. If the problem be geometrical, these will be the

equation of the curve or surface sought, observing, however,

that it is to be modified by the conditions of l" — l' = 0,

and the relation between the proposed limits. The process

of solution will be more readily perceived by considering

successively the different conditions which may affect the

limits of the integral, and illustrating these conditions by

their geometrical application.

(471.) 1^. If the limits of the proposed integral are abso-

lutely given and fixed. In this case, xif^ .... ^"yV .... being

supposed to be the particular values of the variables cor-

responding to the limits, are fixed, and subject to no varia-

tion. Hence, in l" and l' we must put lot} — 0, d^od = 0,

. . . . ^y = 0, d'^'ij = . . . . and since these quantities enter

every term of l" and l' as factors, the condition l" —- l' =
will be fulfilled independently of the coefficients. In this case

the relation between the variables is found by integrating

the system of equations [2], and ascribing such values to

the arbitrary constants, that the integral will satisfy the con-

ditions of the proposed limits.

Thus, in geometry, if the curve sought, and which must
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have the proposed maximum or minimum property, is also

required to pass through two given points, the co-ordinates

of these points determine the Rmits of the integral.

The equations [2] being integrated, give the general

equation of the curve sought ; but it will be necessary to

assign such values to the arbitrary constants introduced in

the integration, that the curve shall pass through tjie two

given points.

(472.) 2^. If the limits be absolutely arbitrary and in-

dependent, it is necessary that the equation l" — l' =
shall be fulfilled by its coefficients; that is, that the co-

efficient of each variation in it shall separately = 0.

(473.) B°. If the values of the variables corresponding to

the limits be subject to any conditions expressed by equa-

tions, these equations will give, by differentiation, relations

between the variations of the variables corresponding to

the limits. As many variations may be eliminated from

l" ~ l' = as there are independent equations of condition.

The remaining variations being absolutely arbitrary and inr

dependent, the resulting equation must be fulfilled by its

coefficients ; that is, the coefficient of each remaining varia-

tion must separately = 0.

(474.) The same may be effected upon another principle.

Let w = and i; = be the equations by which the par-

ticular values of the variables corresponding to the limits are

restricted.

Hence the conditions Su' = 0, W = 0, must subsist at

the same time with l" — l' = 0. These three equations

may be expressed by one, thus,

l"- L + a'5«' + A''fw" = 0,

the coefficients a', a", being supposed to be arbitrary con-

stants entirely independent of l" — l', W, or hu". This

supposition evidently renders the one equation equivalent to

the three former, for, otherwise, it would express a relation
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between the quantities a', a", and the quantities l" -- l',

W, and W, which is contrary to hypothesis.

This principle is of very extensive use in the apphca-

tion of the calculus of variations to geometry and phy-

sics. In place of eliminating the dependant variations, we

treat them as independent quantities in the above equation,

and equate each of their coefficients with 0, and from the

equations thus resulting, the arbitrary quantities a', a", ••••

being eliminated, the result, which will be obtained, will be

equivalent to that which would have been found by eli-

minating the variations by the equations of condition. The

method which we have now explained is, however, in most

cases preferable.

(475.) Thus, in geometry, if the curve sought be not as

before restricted to terminate in two fixed points, but only

to terminate in two given curves or surfaces : in this case,

the co-ordinates of the limits are only restricted to satisfy the

equations of the limiting curves or surfaces. In this case,

the variations of the co-ordinates at the limits must be re-

lated to each other in the same manner as the differentials

of the co-ordinates of the given curves or surfaces. These

conditions being introduced into l" — l' = by elimination,

as already described, the coefficients of those independent

variations which remain must be put separately = 0.

Again, the limits may be still further restricted. Let the

sought curve be not only required to be terminated in given

curves or surfaces, but also to touch them. In this case it

will not be enough that the co-ordinates of the limits satisfy

the equations of the limiting curves or surfaces, but the dif-

ferentials of the co-ordinates must also satisfy them. Hence

the variations of the diff*erentials of these co-ordinates must

be equivalent to the second differentials of the co-ordinates

of the limiting surfaces. By these conditions, the number

of variations which may be eliminated are mcrcased, and
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the independent equations involved in l" — l' = are there-

fore diminished.

In these cases, as in the first, the constants introduced in

the integration of [2] must be so assumed as to satisfy the

equations resulting from l" — l' = 0.

(476.) From the form of the differential equations [2], it is

evident that their order may be marked by any number not

exceeding twice that which characterises the formula u, and

therefore the integral may involve any number of arbitrary

constants not exceeding this.

The number of terms in the equation l" — l' = in-

creases with the order of the formula u, and, therefore, with

the number of arbitrary constants in u. In general, then,

the highe4' the order of the formula u, the greater number

of conditions we are at liberty to impose upon the limits

;

these conditions being always satisfied by the values

ascribed to the arbitrary constants in the integrals of [2].

(477.) When the co-ordinates of the limits are variable,

as in the cases last mentioned, and enter the formula u,

which sometimes happens in taking the variation of u, these

co-ordinates are to be considered as independent variables,

and their variations must enter the total variation of u.

But, in integrating ^u with respect to the variables ^, ^, z,

• • • • the co-ordinates of the limits, and their variations, are

to be regarded as constants, and brought outside the sign of

integration, so that any term of the formyk^j;' may be re-

placed by ^^yX. This is evident, since the integration may

be conceived to respect the variation of ^i/z - • • • through

the sought curve, and not from one of its positions to another.

An instance of the necessity of attending to this circumstance

occurs in investigating the hrachystochronous curve.

(478.) It sometimes happens that the variations ^x, ^y,

5;s, • • • • are restricted by equations of condition altogether

independent of the limits of the integral. Thus, for ex-
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ample, when the curve sought is required to be drawn

upon a given curved surface, as in the case of finding

the shortest distance between two points upon a given

surface.

Since in this case a relation subsists between the varia-

tions, it is not necessary, in order that the integral sign

should disappear from the value of ^u, that the several

terms which it affects should severally = 0. The number of

these terms may be diminished by eliminating as many of the

variations as there are independent equations of condition

given, and then putting the coefficients of the remaining

variations = 0. The number of equations in the system

[2] will, in this case, not be equal to the number of va-

riables, but to the number of independent variations.

SECTION IV.

Examples on the calculus ofvariations

.

PROP. cxv.

(479.) Tofind the shortest line between two points.

In this case

/u =fVdx'' + df + dz^ =fds,

dx ^, dy ^ dz ^^

Comparing this with the formula for ^u in (461.), we

find

X = 0, Y = 0, z = 0,

x' - -^ y' - -^ z' - —
ds' ^ - ds* ^ -^

ds'

and all the other coefficients = 0.
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The system of equations [2] become

<i)-o- <!)=» <$)-».
•.* dx = ads, dy = hds, dz = cds,

a, h, c, being arbitrary, subject, however, to the condition

a^ + 6^ + c« = 1.

Eliminating ds^ and integrating the resulting equations

between dx\ dy^ dz^ we find two equations of the forms

Z =: AX -\- B,

z' = A'y + b'j

which are equations of a right line. Since the hmits of the

integral are absolutely fixed, the equation l" — l' = is

necessarily fulfilled ; so that all which remains to complete

the solution is, to subject the right line to pass through the

two given points, by which condition, the arbitrary con-

stants A, B, a', b', are determined.

Let x'y'z^, x''y"z''^ be the co-ordinates of the limits.

The equations become

x'—x'
(x - x%

Z''-'Z^

which are the equations of the line sought.

PROP. cxvi.

(480.) To find the shortest line between txm surfaces.^ of

which the equations are given*

The solution of this problem is precisely the same as

the last, except in the elimination of the arbitrary con-

stants. Let the equations of the two limiting surfaces be
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Since the value of ^u is, in this case,

djr ^ dy . dz ^

or da:^x ^ dy^j/ -\- dzSz = 0.

Substituting successively for the variables x'ij'z\ a^^i/''z^',

and eliminating Sz', ^2", we find

l" - l' = {dx^ + p^dz^x' + (di/f + c/dzyi/

-(dx" + fdzyx^' -- (df + ^^2")%/' = 0.

Since the variations here are independent, their coefficients

must severally vanish, •.•

da/ + P'd:^ = 0, dj/' + qW = 0,

rfx"+pW = 0, Jy + q'W = 0.

But by differentiating the equations of the line, we find

Hence

From which it is evident, that the line must be a normal to

both the given surfaces.

(481.) Cor. 1. If the line were drawn from a fixed point

to one of the surfaces, it would in like manner follow, that

it must be normal to that surface.

(482.) Cor, 2. A process exactly similar will show that

the shortest line which can be drawn between two curves in

the same plane is their common normal.

dz dz

d.
=^'

dy

1 1

= -yy' - ^'"

1 1

r - - /•
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PROP. CXVII.

(483.) Tojind the equation ofthe shortest linejoining two

points upon a given curved surface.

In this case the variations ^^, ^z/, hz^ are connected by an

equation found by differentiating under the character ^, the

equation w = of the given surface ;
•.* (461.)

du . da ^ du ^

and since the values of the coefficients x, See. are the same

as in the former propositions, we have by the equation [1]

(464.)

dy;!$x + dx^hj + dz^^z = ;

Ehminating ^z by this and the first, we find

c du , / dz\ du/ da:\ ^ ^

Since S'j/ and $x are here independent, we have

du ./dz\ du ^f dx\

du ^/dz\ du ^/d?j\

which are the equations of the curve sought. It will be

necessary, in integrating these, to eliminate the arbitrary

constants by the conditions of the curve passing through

the given points.

If, for example, the surface be a sphere, of which tlie

origin is the centre, we have

du ^ du ^ du ^

dx dy •^' dz

H H
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Ifds be considered constant, we find by this

xd'z - zd^x — 0, yd^z — zd^y = 0,

•/ yd'^x - xd'^y = 0.

Integrating these, we have

xdz — zdx = adSf ydz — zdy = hds^

ydx — xdy = cds.

Multiplying by y, x, and z, respectively, and adding, we

find, after expunging the common factor ds,

ay -{- bx + cz = 0,

which is the equation of a plane passing through the centre

of the sphere. In this plane, therefore, the sought curve

must be, and since it is also on the surface of the sphere, it

is evident that it must be the arc of a great circle.

PROP. CXVIII.

(484.) Tojind that curve of a given length drawn be-

tween two given points which will include with its extreme

ordinates and the intercept of the axis ofx between them the

greatest possible area.

In this case u —fydx and JUs is constant, *.• the con-

ditions of the question are expressed by the equations

J/b = Sfydx = 0,

$fds=:0;

or if A be an arbitrary constant, these two equations are in-

cluded in (474.),

^fydx + A^fds = 0,

Ifydv — f{lydx •\- yMx)^

, x4- dyMy -\- dx^da:
sfcb =/«((/)/- + <h^r =/"^^—

.
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Hence by comparing this with the result of (464.), we
find

x = 0, x'=3/ + A^,

Y — doc. y' = A -^

.

as

Hence the equations [2] (465.) become

clx — kd~ = 0,
as

which being integrated, give

djp dy

These equations being integrated, would be identical;

they will not, therefore, serve to eliminate a. Substituting

Vdy" + dx^ for ds, in the first we find

dy ^ VA'^-(i/~cj^

dx y — o '

•.• (x - df + (y - cY = A«.

The curve is therefore a circle, and the result will be a

maximum or minimum, according as the concavity is turned

towards or from the axis of x. The co-ordinates c, c', of

the centre, and the arbitrary A^, must be determined by the

two points through which the circle is required to pass, and

the length of the arc between them.

From this it is obvious, that of all isoperimetrical figures,

the circle includes the greatest area, and also, that of all

figures including a given area, the circle has the least pe-

rimeter.

H H 2
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PROP. CXIX.

(485.) Of all solids of revolution having equal surfaces

included between given limits, to determine that which has

the greatest volume.

The conditions of this question give

Ttjy^dx = maximum,

^Ttjyds = constant.

Hence, by the same principles as those used in the last

proposition, we have

/{^ydx^y +yW^ + ^^y——^~-^ + 2aJ%) = 0,

which gives

dx
X = 0, x' = 2az/-^ + «/2,

Y = %/dr + ^A.ds, y' = 2az/-^.

d[^^y^ +2/^) = 0,

Hence the equations [2] become

doL

Ts

ydx + kds — kd[y -r-] = 0.

The former gives

^ dx

which gives

v4a2j/2—(c—y^)2

The integral of which, assumed within any proposed hmits,

will give the generatrix of the solid sought.

If c = 0, the equation to be integrated becomes
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-ydy
dx =

v/4a«-5/*

••• X — -v/^A""—^*+c',

which is the equation of a circle, whose centre is on the axis

of X. The values of a and d are to be determined by the

limits of the proposed solid. These limits may be sup-

posed to be given by the distances of the planes which

bound the solid perpendicular to its axis from the origin of

co-ordinates.

PEOP. cxx.

(486.) Ofallplane curves of a given length drawn join-

ing two given points, to determine that which produces by

its revolution the solid ofgreatest volume.

In this case

/u = ntffdx,

'.' $fu = 7tf(ymx + 2yda;$i/).

But since the curve has a given length,

/(flf«/' + dx^)^ = constant,

pdyMy -hdx^dx
' -^ Is

—

Multiplying this by the arbitrary coefficient a and adding it

to the former, we obtain

/[2'Jtydx8y -{- {'jry'^ + A-^ydx + a-^%] = 0.

Hence

, ^ dx
X = 0, x' = Tty^ + -j^,

dy
Y = %(ydx, y' = -~,

By integrating the first of [2], after these substitutions, we

obtain
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dx

which being equivalent to the second, a cannot be ehminated.

This equation, by eUminating c?s, becomes

This is the equation of the elastic curve. There will be

three arbitrary constants in the primitive equation, viz.

A, c, and the constant introduced in the final integration.

These three constants will be determined by the two given

points and the given length of the curve.

PROP. cxxi.

(487.) Of all plane curves of a given length draiou he-

tween tzvo given points, to determine that wJiich by its revo-

lution produces the solid ofgreatest surface.

In this case we have

fv ciy^ -T dx^ = constant,

f^'^yyd'if + dx' = max.

Taking the variations of these, we have

dy^dy + dxldx

Multiplying the former by the indeterminate constant a,

id adding, we find

f^^itdshj + {2ity + A)(^% -f
-J^^^)]

= 0,

•.• X = 0, x' = (% + A)-^,

y = ^Ttds, y' = (^TTT/ 4- A)-yf

,
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^
%fydx-{-A.dx

ds

This is tlie differential equation of a catenary, which

gives the maximum or minimum, according as its concavity

is turned from or towards the axis.

PROP, cxxii.

(488.) Two points are given at different perpendicular

distances from the horizon^ to find the line of swiftest

descentfrom the one to the other, or the brachystochronous

curvejoining them.

The origin being assumed at the higher point, and the

axis of 1/ vertical, the velocity of the body may be repre-

— , . ds
sented by -/y, and, therefore, the time will bey

—

-. Hence

we must find, when this integral taken between the proposed

limits is a minimum. Since

ds = Vdx^ + c/3/« + dz'\

In this case,

ds ^ dx^dx+ dy^dy + dz dz ds 7

Vy .

^ ^y^^ %
Hence

x = 0,

dx

ds^y

_ ds
,
_ dy

dz
z = 0, z' =

ds Vy

The first and third of the equations [2] become
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dx \ / dz

\ds*s/y/ \dsx/y/

•.• dos = c A/i/ds, dz = c' t/yds.

Eliminating ds by these, we obtain ddx = cdz^ which

being integrated gives dx = cz^ no constant being necessary,

since the curve passes through the origin of co-ordinates.

This being the equation of a right hne, shows that the curve

sought is a curve described in the vertical plane through the

two given points. If this plane be assumed as that of the

axes of ^ and y^ the integral of the equation

dx = c Vyds

will give the sought curve. Let it be squared, and the

value of ds^ = dy^ + dx^ substituted, and we find

dx'^{l — c^y) = c^i/cZj/^,

which is the differential equation of a cycloid. This curve

is therefore the brachystochrone.

To complete the solution, it is only necessary to restrict

the cycloid to pass through the two given points.

Let a be the axis of the cycloid. By comparing the

differential equation just found with that of the cycloid, we

find

_ J_
" ""

c«

'

By which substitution, the equation becomes

y^/a— y
It is evident that the base of the cycloid is horizontal,

and its axis vertical. The value of a must be selected, so

that it shall pass through the two points.

(489.) If the problem be to find the line of swiftest de-

scent from (i fixed point to a given curve, then l" = 0, and



SECT. IV. THE CALCULUS OF VARIATIONS. 473

l' = =77^^' + —^=r—l^.
s/y^ds o/y'd^

Let the equation of the limiting curve bej/ =/(a:), and

let ^x^ — p^y^ = 0. Multiplying this by the arbitrary co-

efficient A, and adding it to the former, we find

\ Vj/d^ J \ vy^y ^ )

doc^ ^ dil
+ A = 0, ^= /JA = 0.

V 'i/d^ A/y^d^

Eliminating a, we obtain

dy^ p'

Hence the cycloid must be drawn so as to be perpendicular

to the proposed limiting curve at the point where they

intersect, or the normal of each must be a tangent to the

other.

In the same manner, if the problem were to find the line

of swiftest descent from one curve to another, it would be a

cycloid intersecting both perpendicularly.

PllOP. CXXIII.

(490.) A solid of revolution moves in a Jluid in the di-

rection of its axis, to determine its figure so that, caeteris

paribus, it will stiffer least resistance *.

By the established principles of Mechanics, the resistance

which the «olid suffers is represented by the integral

. .ydy'

Hence

Newton, Princip. prop. 34, lib. ii. Scholium.
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"^ \ ds^ )•

Hence we find

X _ u, X ^^ ,

^ " ds'' ^ ~
ds^

The first two equations of [2] become

If -V- = y\ it is evident that

But
"^Vn-yv" 1+y^^^ (i+y^)^^"^

^'

Hence

But y = c?y'. Therefore, by integrating we obtain

The same result exactly would be obtained by inte-

grating the former of our equations. We have then the

equations
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^^
il
'

jf
^-i y'

Substituting for y in the last integral its value derived

from the first equation, and integrating the result, we shall

have two equations free from integral signs involving or, y^

and y. By these, y being eliminated, we shall have the

equation of the sought curve.

PROP, cxxiv.

(491.) To determine the curve ofa given lengthjoining

two given points^ ofwhich the centre ofgravity is lowest.

In this case,

Jds = ccmst,, Jyds = max,

dyhdy-\-dx^dx _
^ Is

~" '

Multiplying the former by the indeterminate const, a,

and adding, we find

/(</% + (. + A)»±-'^0 = «'

diic
'.' X = 0, X' = (2/ + A)-^,

^ dx• ^y + ^^ir = <='

., dec = ^
:,

[(»/+A)'-c^]'

which is the differential equation of the catenary

* Geometry, note on Art. 652, 653.
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PART IV

THE CALCULUS OF DIFFERENCES.

SECTION I.

Definitions and Notation.

(492.) If the numbers of the arithmetical series

0, 1, 2, 3, 4, 5, ... .

be successively substituted for the variable in any function,

that function will assume a series of corresponding values,

which will, in general, depend on the form of the function,

the values of its constants, and the particular number of

the series which is substituted for the variable.

Although the differences between every pair of successive

values of the variable are equal, being unity, yet it is

obvious that this will not, in general, be the case with

the differences between the pairs of corresponding values

of the function. The value of any such difference will

depend on the values which have been assigned to the

variable.

If w be taken to express the form of a function of .r, the

value which u assumes when is substituted for a^ is ex-

pressed thus, Uq; and, in general, the several values of the

function u corresponding to the values

0, 1, 2, 3, 4, 5, ... . X
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of the variable are expressed thus,

Wo, "i, W2, W35 «4J %, • • • • M^.

These are sometimes also expressed thus,

^u, ^u, ^u, ^u, %, ^w, • • • • 'u.

The series of negative integers

— 1,-2, — o, • • • • — ^,

may also be substituted for the variable, and the results ex-

pressed thus,

w_i, w_2, w_3, .... w.^,

or ~'w, "^w, ~%, .... ""-^w.

(493.) Every series, the terms of which increase or de-

crease by any fixed law or condition, may be conceived to

be generated by this successive substitution fbr the variable

in a function, which function is called the general term^

and expresses by its form the law of the series. The

variable x is called the index of the term in which it

occurs.

Thus, for example, let the series be

a, a + ^5 « 4- 26, a + 3Z>, . • • - a -{^ xh.

In this case the general term is

u^ = a •{ ccb.

By successively substituting

0, 1, J2, . . . .

for X in u^^ the successive terms may be found.

If the series do not commence at a, the preceding terms

may be found by substituting successively

- 1, - 2, - 3, ...

.

for X.

Thus it appears, that the nature or law of an arithmetic

series is expressed by the equation

Uj. = a -|- xh.

Again, if the scries be

a, ar, ar', ar^, • • • •
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The general term is

u^ = «?-*,

in which the successive substitution of

0, 1, 2, 3, . • • •

for X, gives a and the terms which succeed it ; and the sub-

stitution of

_ 1, - 2, - 3, ... .

gives the terms which precede it.

As in geometry, Hnes are always supposed to be extended

indefinitely in both directions, unless the contrary be ex-

pressed ; so in the calculus of differences, series are sup-

posed to be continued through an infinite number of terms,

unless the question imposes express limits upon them, or

they assume limits from the nature of their general term or

generatrix.

(494.) The difference between two values of the function

which correspond to two successive values of the variable

is called the difference of the function., The notation ex-

pressing this difference should also express the value of the

variable in one of the two states of the function. If then

the two successive values of the variable be 1 and 2, the

corresponding values of the function are

and the difference

U2 — Wi,

which is usually expressed thus, Awi-

In general, if the two successive values of the variable be

X and X -{• \y those of the function are

and the difference is

The several differences

«i ~ Wo, ?/2 — ii„ u, - «2, . . . •

U
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are therefore expressed,

Amq, Amj, AW2, • • • •

(495.) It is obvious that the difference aw^ of a function

is itself a function of the variable, and receives a succession

of different values by the substitution of the successive

integers for the variable. It therefore has a difference in

the same sense as the function itself. The difference of the

difference of a function A/y^ would be therefore expressed

thus,

a(am^.),

or more simply,

This being again a function of the variable, we find by

continuing the same reasoning, a series of successive dif-

ferences,

Aw^, A2«^^, ^hi^^ AHi,, ....

and, in general, A"«/^, which are called theJirst difference^

the second difference^ &c. and, in general, the nXh dif-

ference.

The analogy of this language and notation to those of the

differential calculus is sufficiently obvious.

(496.) The calculus of differences may be divided into

two parts analogous to those of the differential and integral

calculus. The direct calculus of differences, the object of

which is the determination of the successive differences when

the function is given ; and the inverse calculus of differences,

the object of which is^ the determination of the function

when the difference is given.
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SECTION II.

Of the direct method of differences,

PROP. CXXV.

(497.) To determine the difference of the algebraical sum

of several functions of the same variable.

Let

% = < + u\ - w"'^»

••• w^+, = <+, + u\+i — m'",+,.

Subtracting, we find

And, in general, if

u^ = 2«),
Uj, = (am'j).

PROP. CXXVI,

(498.) The constant quantities connected with the variable

of a function by addition or subtraction disappear in its

difference; and those united by multiplication or division

are united in the same manner with its difference.

1°. Let the function be

u^ -r a.

Hence the diiference is

A(u^ + a) = (m^+i + «) - (w^ + «) = Wx+i - «. = -^^x*

•.• A[u^ + «) = A%.

S^. Let the function be

aUjt

I I ^
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But

'.• A(au^) = aAuj,.

PROP. CXXVII.

(499.) To determine the values ofu^ and AUx in a series

qfuQ, and its successive differences,

'By what has been already explained, we have

«^i = ^0 + AMo,

•.• Au, = Amq + A^Wq,

•/ w^ + Awj = Wo + 2Awo + A^Wj^.

Also,

u^ z= Ui + Aui

'.' U2=- Uq + ^Auq -f A'Mq,

•.• Aw2 = Auq 4- SA'-^Wq -f A^Mo>

which, by addition, gives

^2 + AU2 = Wo + ^^^0 + SA^j^o -I- A3j/o-

But, also,

U3 = U2 -\- AWaj

•.• M3 = Wo + SAMq + Sa'^o + ^^^05

•.• AM3 = AUq + 3A%o + 3AX + AX»
which, by addition and a similar substitution, gives

«4 = 2^0 + 4AWo, + 6A2?,Q -f 4AX + A^Mo,

•.• Aw^ = Awo + 4A2?^Q -f 6A\ + 4A%o + AX;
and, in general,

X
^ , x.x — \ „ x.x—\,x— 9>^^ r ,

m^=«^oH-yAwo+ nr^" " "^—r¥3
—

^^° * * * f^^'

ir „ jc.j:—1 „ x.x — l.x--^^ ^ ^ ,aw,=amo+-yax+-y^ax+—r;2¥~^ ^^' " f^^'

and in Hke manner we have, in general,
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, ^^ .r.jT-l .r.jc— l.jr-2 „ ^ ^w,+„=tt.+ yAw„+ -j-^-AX+
j^g^g

AX • • • [o];

or,

w
^ ,

n.n—1 „ .
w.n— l.w—2 . ^ ,«W.=w,+ ~Aw^+-y-^AX+ j^g AX- . . [d].

This series may easily be retained in the memory, by

observing that it is the development of

2^.(1 H-A)";

and the former shows that Uj^+n may be expressed thus,

Un{l + Ay.

So that any of the four expressions may be indiscriminately

used one for the other.

PROP. CXXVIII.

(500.) To determine AX in a series of Wj+„, Uj,+n—u

W^+n—2" • • •

By what has been established, we have

AWo = w, — Uo,

A^u^ = Aw, — AWo

;

but, also,

AMi = Wa — W,,

••• A*Mo = U.^ - 2^1 -f Wq-

By taking the difference of this, we find

A'X = AMa — 2AWi + AWo-

Substituting for these differences their values, we have

A^Mq = Us — Su.^ + SUi — U^,

In like manner, taking the differences of these,

A^Uo = AUs — 3Aw2 + 3Awi — AWq.

Substituting as before, we find

n n.n—

1

7i.n—l.n— 2
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and, in general,

n Tl.W—

1

71.71— 1.71—

S

Thus the value of A"m^ is equivalent to. the develop-

ment of

The exponents of u in the successive terms being removed

below the letter thus, u^+n-

(501.) When the function is given, its successive dif-

ferences are easily obtained.

Let w„ = (?/ + nh)"", \'

u, = {^ + hy\

^2 = («/ + ^'hy,

«3 = (2/ + 3^)^

Hence

, 7?^.7?i—

1

,, 7?l.7?l— 1.771—

2

•/ Aw,=7w^—*AH—i;^""-^""''^' *

—

TK^—^ '
^**

To obtain the second, third, and succeeding differences,

it is necessary to change y into y -\- hm Aw, a^m.

Hence we obtain

AW, = m(y + hy-^h + ^'^~
(3/ + hy-^'h'' + • • •

It is evident that by developing Am,, and arranging the

result by the ascending powers of A, and subtracting A?^

from the result, the series will have the form

A^W = 771.771 - 1 .
7/'»-27ii _}_ M^y^-^h^ + M4a?''»-*A*4- • • • •

where Mg, M4 • • • signify the functions of ttz, which form

the successive coefficients.

By a similar substitution in this last series, and observing
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the condition A^w =-. c^u^ — A^?/, we shall obtain

A^w = m.m - l.wi — g.^/'^-Vi^ + M'4y«-'*M+ • • • •

It is obvious then that the first term of the development

of A^'m must be

m-m — 1-m — 2 • • • • (m — ;* F \)y"'-''h'\

It follows, therefore, that when the exponent w is a

positive integer, the number of terms of the development

ofAX arranged by the powers of?/, diminishes by unity as

ri increases by unity, and that when n — m^ we have

^"^n = m-m - 1-m - 2 • • • • 3.2.1.^'^.

This difference being constant, all the succeeding differences

must = 0.

We can obtain the general term of the series A"tt by

means of the values of w, Wj, w^, • • • • independently of Aw,

A^Uj A^u, . • • . We have

«^n = («/ + nhy

Hence by (500.)

T? *it 'ill
•

'

•

I

TU~^^ "^ (""^ ^^^]'"+
• •

•

If i be the exponent of h in any term of this, when each

term shall have been separately developed, the general ex-

pression for this term will be

m.m — 1.171—2' '•' (m— i+ I)

.3 •• i ^~* ^

But the development of A"m cannot involve any powers

of h of which the exponents are less than w, as appears

from the lowest exponent in the development of A% being
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71. Hence it follows, that the function

n , . n.n— l, ^ .

n' - j(n - 1)' + -j^(n-^y

consisting of (w + 1) terms must = when i < n.

Also the coefficient

m.m — l.m — ^- • • •
(m— i-\-l)

L2.3 ~^i
must vanish when m = e -f 1. It follows, therefore, that

no power of h in the development of A^w can have a higher

exponent than m.

PROP, cxxix.

(502.) To determine the successive differences of a rational

and integral/unction ofx.

The form of the proposed function is

u = Aa?" + BX^ + c^'' + Bx'^ ....

Taking the 7ith difference

A"w = aA^a*" + BA'^a:^ + cA"a?* .... *

by (498.).

The Tith differences of each of the powers of x must then

be separately found by the methods given in (501.).

If a be the highest exponent in the series, we have

A«^« = 1.2.3 .... ah",

A«<a7^ 3= 0, A^'x' = . . . .

Hence

A«M = 1.2.3 . . . . aAh\

* By AV I denote the nth diflPerence o£x^; and (A"a;)« ex-

presses the flth power of the wth difference of a:. Lacroix ex-

presses the former by A". ««, and the latter A"x^, I do not think

these sufficiently distinct.
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(503.) Hence it follows, that " every rational and integral

function of oc has a constant difference, and the order of this

difference is expressed by the exponent of the highest power

of X which enters the function."

(504. ) Hence every function which admits of being ex-

panded in a finite series of ascending integral and positive

powers of x, has a constant difference of the wth order, n

being the exponent of x in the last term.

(505.) No function of x whose development in ascending

positive and integral powers of x is not finite, can have a

constant difference of any order.

(506.) The following example will illustrate what has just

been established.

Let

w^ = a?3 + 2.37 + 3.

Substituting successively 0, 1, 2, 3, • • • • for x, we obtain

the values of u^ u^, u^, Wg, • • • • By subtraction, we

thence obtain the values of A?^^, A^^n AW25 AM3, • • • • and

thence, in like manner, the values of A%o, A^Wgj A'wg

and so on. Thus,

u^ = 3, III = 6, U2 = 15, U3 = 36, U4, = 75

Auq = 3, Au^ = 9, AM2 = 21, AW3 = 39 • • •

A%o = 6, A^, = 12, A^M2 = 18 . . .

.

^«" = 6, A^Ui = 6 . . .

.

AX -= . . . .

^39

Here we perceive that the differences of the second order are

in arithmetical progression, those of the third order equal,

and all superior orders — 0.

It will easily appear that this is universally the case with

rational and integral functions.

(507.) The calculus of differences is of considerable use

in approximating to the values of transcendental functions,
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as in the calculation of trigonometrical, logarithmic, and

other tables.

Let Mq = Ix. Hence

Wj = l{x + 2A),

2/3 = l{x + S^),

-^{^""^ + 3^3" •••• j'

A^Wo := Z(a; + 2/i) - 92{x -\- h) ^- Ix,

='0-?)-K'+^).

A^Wq = Z(:r + 3^) - 3/(a7 + g^) + 37(^ 4- h) - Ix,

These differences must be continued until one is found

so small, that it may be neglected without producing an

error of any practical importance in the proposed cal-

culation.

Suppose, for example, that x ~ 10000 and h —\^ we

should then have

u = 1 10000

Am = 0,00004 34272 76863

A«w = - 0,0000 00043 42076

A^w = 0,0000 00000 00868.

If in the final result it should be only required to pro-

ceed as far as ten places, the differences of the fourth order

might be neglected for the several successive numbers, for

they should be repeated very often before they could pro-
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duce any effect upon the difference of the third order. If

the differences of the third, second, and first orders be

found, the logarithms of 10001, 10002, 10003, may be

computed when that of 10000 is known, which is

4.00000 00000 00000.

It is necessary that the calculation should be extended

to fifteen decimal places, in order to determine when the

accumulation of error arising from the value of the neg-

lected places will begin to produce an effect upon the last

figure, to which it is proposed to extend the computed re-

sult. This may be always determined by the logarithms of

numbers rigorously computed, a priori^ at stated intervals,

and by comparison with which it may be ascertained. If

the first ten places be not the same, the difference has been

taken as constant through too great a number of teims.

The formula [a] determined in (499.),

n n.n— 1 n.n—l,n—2
Wn = Wo + Y^^° + I 2

^^^° + f2"3 ^X+-
furnishes an easy method of determining the error pro-

duced by the suppression of the differences of any proposed

order.

In the example already given, let n = 50, and let the

corresponding value of

w.w— 1.71—2.W—3 .

be computed. Since

-AX

/6714 \

we find that it produces no influence upon the tenth decimal

place of the logarithm of 10050. It will be therefore a

fortiori the same for differences of superior orders.
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SECTION III.

0/ interpolation.

(508.) In calculating the various tables used in the dif-

ferent departments of physical science, the process would be

elaborate in the extreme, if each particular number required

a separate, a priori, computation. To remedy this incon-

venience, mathematicians propose the following problem

:

" Given several terms of a series to introduce between

them other terms in such a manner that the law of

the series shall not be changed."

The solution of this problem is called the method of

interpolation.

If the law of the series were explicitly given, the solution

would be obvious. For, by this law, the general term

would be expressed, and the successive substitution of any

series of proposed values for the variable in that term would

introduce the required terms in the series. This must be

obvious from what has been observed in Section I.

In this point of view the problem is equivalent to being

given any number of ordinates of a given curve to draw the

intermediate ordinates, which correspond to any proposed

intermediate abscissae, which can always be done when the

equation of the curve is given. The value of the ordinate

derived from the equation of the curve is, in this case, the

general term of the series.

The case in which the use of the method of interpolation

is more generally required, is that in which the law of the

series is not given ; but only the numerical values of cer-
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tain terms of the series at stated intervals. The law in

this case cannot be known, but may in a manner be ap-

proximated to.

In this case the question becomes equivalent to drawing

a curve through a number of given points, the species of the

curve not being given, which is a question evidently inde-

terminate. The calculus of differences, however, presents

a method of solving the problem approximately.

(509.) Let u be the general term of the series, and let

Uo, ?/i, n.2, Us, ....
be the values of m, which correspond to the particular values,

of the variable. We shall suppose u in general developed

in a series of ascending powers of x,

M = A + B^ + ^^^ + ^^^ ....
The several coefficients a, b, c, d, . . . . may be de-

termined by the supposition that u becomes

Woj Wi, W2» . • • •

when ,r becomes

'^05 ^IJ '^29 • • • •

We shall first suppose that this series of values of .r are in

arithmetical progression.

If X be assumed very small, the series

u = A -\- BX -^ cx^ + BX^ ....

may be supposed to end at such a term Mx"" as will leave

the remainder so small as to produce an inconsiderable effect

upon the value of u.

The mih difference of the function u may, under these

circumstances, be considered constant (503.), and, conse-

quently, (499.), we have

n n.n—\ n.n—\n— 9>

Wo + j^2'o+ ^2 ^'^" ^ 1.2.3

n.n— 1 .... (n— ?7i-|-l)

1.2.3 m
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By this series, if Wo, AWo? A«Woj • • • • be known, the value

of Un will be determined for any value of w.

Let .r = ^0 + w/j, *.* n = —7-^, and if jr — .ro = h',

h'
•••^ = x-
Hence the series becomes

h! h}(h!-h) h{}i!-h){hJ-^1i)
, .

and if w„ — m^ = A'w, •.•

^^--=T^^-+-W-^^"--+ A.^;.^/.
—̂-^-^^ + • • •

•

This being a rational function of A', or (<r — a^o), or a?, of

the same degree as

it will be the function required, and rnay be therefore con-

sidered as the general term of the series.

(510.) As an example of the application of this process,

let the terms of the series which are given be

?^o = S, Ui - 7, Uz = 19, f(3 = 39, u^ = 67 ' ' ' '

Hence,

Wo = «3, Am = 4, A^u = 8, A^u = 0, A = 1.

The series A'm is in this case reduced to its first two terms,

and becomes

A\(. = W \- 4/V(A' - 1) = ^h\

Hence we find

71^, =S + 4,V*.

Thus, if A' := 4, the corresponding term of the series

would be 28 ; and, in like manner, the term of the series

corresponding to any other exponent might be determined.

Again, let the given terms of the series be

M„ = 1 , ?/, = 4, U2 = 2,

//a — 3, II4 — 9, Ui =16.
f
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Hence

«o = 1, Ai(,^ =. 3, AX = -5, A'Wo = 8,

A^w = 6, A^w = 0, h = 1.

Hence

Un = 1+3 h!

h
— 5

' 1.2
i^8 h!W -2)

-6
/^A' -1)(A' -2)(7*' -3)

>

1.2.3.4

which being developed and arranged by the powers of ^•,

becomes

12 + 11 &i! - 1 llA'^+ 34//3—3/1'^

-n = j^ .

In these cases the law of the series has been rigorously

determined, and the values of any proposed term Un can be

determined, not approximately, but exactly. This is always

the case when we obtain a constant difference, however high

its order may be, because, in that case, the successive values

can only result from an algebraic function.

(511.) The series expressing a'm is generally used when

the differences Am^, A^^^o? A'^?*^, .... continually decrease,

because, in that case, it is convergent. In case the general

term of the series be not an algebraic function, the terms

intermediate between any two may be determined ap-

proximately by assuming one of the differences AUq, A"?/^,

&c. of a sufficiently high order, and considering it as con-

stant for all the intermediate terms, and determining the in-

termediate terms and their differences by the method already

given for the case of algebraic functions.

As an example, let it be required to compute the common

logarithm of the number

3,1415926536

by means of a table containing the logarithms of all integers

from 1 to 1000 to ten decimal places. We shall take these

logarithms as particular values of n, and the numbers them-
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selves as the indices of the functions ; thus, let

t/o = /(3,14), u, = /(8,15), u, = Z(3,16),

ti, = /(3,17), 7/4 = 1(S,IS).

Hence by the tables, we have

u, = 0,4969296481

7H = 0,4983105538

?*2 = 0,4996870826

W3 = 0,5010592622

W4 = 0,5024271200.

Hence we find

Auo = 0,0013809057

Au, = 0,0013765288

Au^ = 0,0013721796

All, = 0,0013678578.

AHio = - 0,0000043769

A'u, = - 0,0000043492

A^w, = - 0,0000043218.

A^uo = 0,0000000277

A%, == 0,0000000274.

AX = - 0,0000000003.

By continuing the process, and taking from the tables

the logarithms of 3,19, 3,20, &c. we should find the dif-

ferences A^Uo, A^Uq, &c. still decreasing, and for several suc-

cessive numbers we should find the fourth differences AX>
A*wi, A%2, A*W3 • • • • as far as the tenth decimal place, the

same as that already found, we assume that in calculating

A^* to the tenth place, the series expressing it should

rigorously terminate at the fourth term.

Since, then,

h = 3,15-3,14=0,01,

h' = 3,1415926536 - 3,14 = 0,0015926536.
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Hence,

^ = 0,15926536

^^ = - 0,42036732,

:- 0,61357821,

h'-Sh
= - 0,71018366.

4A

Substituting these in the formula

h'{h'-h)(h'-n)ih'-sh) ^^
h.2hMAh

^''''

and effecting the operations indicated by the signs, the

result is

a'u = 0,0002202245,

•.• log. (3,1415926536) = 0,4971498726.

(512.) In the preceding cases we have supposed that the

given values

*^0) "^IJ *^2J "^SJ • • • •

were in arithmetical progression. When this is not the

case, let the particular values be successively substituted for

X in the series

U = A -\- BX -\- ex' -\- DX^ 4- . . . .

which gives

t^^, = A 4- B^o + CXl -h DXl ....

Z^j = A + B^'i + COJJ + BXl . . . •

M2 = A + B^2 + C^^ + D^l • . . .

?4 = A + BXa 4- C^J + DXl - - - -

The number of given values Uq, w^, Wa • • • • ought to be

equal at least to the number of coefficients A, b, c, • • •
•

which it is required to determine.

K K



498 THE CALCULUS OF DIFFERENCES. SECT. III.

By subtracting successively each equation from that which

follows it, and dividing the successive results by x^ — Xq,

a*2 — -^ij • • • • the results will be

— -^ = B + C(^, + ^o) + D(JC2. + X^Xo + ^o)
Xi Xq

J J = B 4- cfe + ^i) + D(.r^, +x^i + x^)

= B + C(^3 + ^2) 4- I>(^3 + ^3^2 +^l)
il>2 """1^2

Let

Ui—Wo W3— Wj o= Uo, ^ = U,, &C.

Subtracting u^ from u^, u, from Ua, &c. and dividing

the successive results by x^ — x^^ x^ — iCg, &c. and calling

the quantities

X2,'—'Xi 373— J7j

u'o, u'l, &c. we obtain

U'o = C + D(^a + ^x + ^0) • • • •

U'j = C 4- d(x, -{- X^ + X,) . , , ,

from whence we find

u'x - u'o = b(x, — X,).

Substituting u" for

u\-u^o

•^3-^0'

we have u"o = d -f , &c. If we suppose that the first four

terms give a sufficient approximation to ti, we shall have

D = u"o,

c = u'o — \j\{x, 4- ^i + ^o),

B = Uo — u'o(^, + Xo)'{-v"o(x,Xi-\-X^Xo-\-X^Xo\

A = Wo — Uo^^o + v'oXiX^ — u"x^X^Xo.
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Substituting these values in the general expression for m,

we find

?/= Wo + Uo(^ - ^o) + u'o[.r*— (oTi -f-a^o)^ +^xaro]

By this reasoning, we should have a formula similar to

this, whatever may be the number of given values of x, and

it may in general be expressed thus

:

u=Uo 4- Uo(j:- ^o)+ ^'o(^—^o)(^—^i)+v"o(3!'-a:o)(a:—a:,)(ar-a;2)

+ \j'"o{a;-' X o)(x - :v ^){a; - a; ,)(^-^x 3) -{- ....

The meaning of the several coefficients being determined

by

Ur'-Uo U2 Wj U3 — U0 W4 W3
=Uo, = Ui, =U2, = U3, &C.

tl?i "~"ti7o «l?2'~'*^l 'p8"~"^2 *p4"~~^t"a

U.-Uo
,
U.-U, U3-U2= u'o, =u'i, = u'2, &c.

= U"o, = u"„ &C.

(513.) The series already found for the case in which the

values

are in arithmetical progression, may, without difficulty, be

deduced from the more general formula which we have just

established.

In this case we have

t* J
•"" X (j

"~" X2 "~" "'I ~~" '^3 "~~ X <^ — • . » .

Hence

Xi=i X \ h^

x^ — X -\- 9Jii

a?3 = a? 4- 3^.

a?a~^,"

u. -u,

^3 — Xi

XT'.-<

Therefore

KK 53
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AWo AW I Aw,
o

Uo = --, u. = -^, u, =^-^,&c.

^Hi^ , A«Wi ,
A^M

^0 — , aioi Ui U'2 = T-d^i &c.

ft — -^^^°
ff _ ^^^^

<^,

AX
u'"o = :r-7r7TTT, &C.

Let X = Xq -\- h\ •.*

X — Xo = Ji\ X - x^ = h' — h, X — x^=: h' — 2)^5

X — Xj z= h' — 2h ' • • •

By which the formula found in the preceding article be-

comes

which is the same as the result of (509.)'

(514.) The general formula for u may also be expressed

in another way. Since the values of

Mo, w,, Ma, ...

.

in terms of

*^'oj ^l> "^zj . • • .

are all simple equations with respect to the several co-

efficients A, B, c, . . . .

It follows that the expression for u should be such, that

by changing x successively into Xq, Xi, Xz, . . > . u should

become Wo? Uu u^y . . . Hence we should have

U = XWo + XjMi + X2W2 + . . . .

provided that the functions Xq, x^, x^, .... be such, that

the successive substitutions of .ro, jTi, a^aj . . . • for x give

Xo = 1, Xi = 0, Xa = 0, X3 = 0, • . . •

Xo = 0, X, = iTi, Xjj = 0, X3 = 0, • • • •

Xo = U, Xj = U, X2 = <2^25 X3 = U^ • • • •
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which conditions are satisfied by

Xn =

Xi =

Xo = (tg-a?o)(cg--^i)(jr— J73) '

The numerator and denominator of these several ex-

pressions each contains a number of factors one less than

the number of given values of x. The formula for inter-

polation therefore becomes

(x—aCiYx—X2)(x^Xo) ....
u = ; ^ ^——Wo,

(a:—Xo){x—X2){x^Xs)

(^~37o)(a?— 3?i)(a?~ar3)

This formula is particularly adapted for computation,

since each term may be calculated by logarithms. See

Geometry (617.).

(515.) The method of quadratures, or of approximating

to the value of the integral ykt/^, is facilitated by inter-

polation.

Let the curve, of which the ordinate is w = x, and of

which the area is therefore yxc?;r, be supposed to be inter-

sected in a certain number of given points by a parabolic

curve represented by the equation

w = A + B^ + cjr® -f DX^ ....

the coefficients being indeterminate.

The area of this curve will be

X x^
fudx = A Y + B^ + c-g- + D-^ . . . . + const.
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By (499.) we have

each of these series being continued through as many terms

as there are points common to the two curves.

Let the number of common points be three. Taking the

first three terms of the preceding formulae, we have

A = Wo, B = Auo — ^A^Woj c = ^A^u.

These quantities depend only on the three successive values

Uo, Ui, Wa, which correspond to

h' =: 0, h'=z h, ^' = 2^, or jr = 0, ^ = 1, a; = 2.

If the integral be taken between the limits of the first and

last, its value will be

2Uo + 2{AUo — iA^Uo) + -JA^Wo

= 2(u, + Az^o + iA^Wo).

The value of the integral thus found is the area of the

segment of a parabola meeting the proposed curve in three

points, and comprised between the ordinates through the

first and third point.

It is evident that this parabolic area has a part in common

with the area of the proposed curve ; and that the second

ordinate divides both areas into two parts, one of the parts

of the parabolic area exceeding the corresponding part of

the required area, and the other falling short of it, the dif-

ference of these differences being the error in the total

result.
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SECTION IV.

The inverse calculus qfdifferences.

(516.) The object of the inverse method of differences is

to determine the primitive function from its differences.

Thus, as has been already observed, this part has the same

relation to the direct calculus of differences as the integral

has to the differential calculus.

We shall here confine ourselves to the integration of that

class of differences only which are expressed as immediate

functions of the independent variable. All such come under

the form

A'-w^ = F(.r),

the increment li of x we shall suppose given and constant.

(517.) There are three theorems which are obvious from

the inversion of the corresponding ones in the direct calculus

of differences.

1*^. That as constants united to any function by addition

or subtraction, disappear in its difference, so in integrating

the difference of a function, an arbitrary constant should be

added. Thus,

2(Aw^) = w^ + c.

^^ As constants connected by multiplication or division

with a function are similarly connected with its difference,

so, in integrating, the constants thus connected with the dif-

ference should be preserved in its integral. Thus, since

A(Ajr) = AAor,

••• 2(a^) = KZx.

It should be observed, that the sign 2 before any quan-
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tity implies the integral of which that quantity is the dif-

ference. Thus, ^x is the integral of which x is the dif-

ference. So that

A2^ = X, or 2A.r = x ;

the operations indicated by 2 and A being subversive each

of the other.

3^ That as the difference of several quantities united by

addition or subtraction is found by uniting similarly their

several differences, so also the integral of several differences

thus united is found by uniting similarly their several in-

tegrals. Thus, since

A(a: + 3/ — s) = A.r + Ay — A2:,

•.• ^{x + 3/ — 2;) = 2^ + Sj/ — 22:.

(518.) When the proposed difference is a rational and

integral function of the independent variable, its exact in-

tegral may always be determined. It appears from what

has been already established, that there is a certain order of

differences of such a function which are constant. Let the

exponent of this order be m. Since, in general,

A'M^ = r(T),

•.• A'+'"w^ - A'^fCjt).

Since this latter is constant, we have

n n.7i—\
Un = u^ jAu + ——-A^u ....

7^.7^~l.. ..(7^-r-m + l)
^

13.2..,. (r-^m)
""'

in which ?/, Au, AHi, .... are those values which correspond

to 07 ~ a. If « 4- w/i = X, '.' Un becomes u^.

If we suppose i;^. = F(a:), *.•

A'u = V, A'-^^u = Av A'-+"'?/ = A^'v,

u and its differences, as far as the (r — l)th order inclusive,

being arbitrary.

As an example of this, let

Au^ =z x^ - 5x- + 6x — 1,
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the increment of x being unity. In this case r = 1, w = 3,

h — 1. If we suppose a — 0, we have

t; = - 1, Av = 2, A^v = — 4,

A^u = 6, A*ZJ = 0.

Hence

2(:r3 - 5^* f 6jr - 1) = w^ =

^ " S ^ "^
1.2 ^ 1.2.3

^a;(^-l)(a:-2)(^-3) 3^*-26^' + 69^' -58a:
"

+ ^
1.2.3.4
— 12 +-"^-

(519.) The method of integrating an extensive class of

differences may be derived from the form of the difference

of the formula

u = x{x + h){x +2^) [^ + (w - \)h\

The difference of this is

Aw = (^ + h){x -f 9.h){x +Sh) (j; + wiA)

- x{x f 70(^ + 2//) [^ + (m - l)7i]

= (^ + /OC*^ + 27i) . . . . [a? + (w - l)A]wA.

Hence by taking the integrals, observing that mh is con-

stant, we obtain

2:(J? + h){x + 2A)(ji' + 3A) [^ + (m - 1 )^]

_ ^(^ + A)(;r + 27i) [a7 + (w — 1)A]~
mh

By changing :r into x ^ h, and tw into 77t -f- Ij this

becomes

2^(^ + JiXx -\- 2h) .... [a: + (772 — l)h]

{x— h)x{xih){X'^2h) [x^-{m- \)h
]

^~
{m + l)h

• • • L J-

By means of this formula, every function which can

be reduced to a product of equidifferent factors may be

integrated. The analogy which the formula just found

bears to
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is obvious. In both, the number of factors in the numerator

is increased by one by the integration, and the factor m + 1

is introduced into the denominator.

(520.) A method of integrating another class of differences

may be deduced from the difference of

1
u =

mh)

L'~a:{a;+h){x-\-^h) [^+(7/2-

—mh

Taking the integrals, and substituting for u its value, we

have

2 zi

1

mhx(a:-\-h)(X'\-2h) [a; + {7n-l)h]'

In order that m may express the number of factors in the

proposed difference, let it be changed into r/z — 1, and the

formula becomes

1

4jr+A)(^+2^) [^ + (m--l)7i]

-1
•ra-

(521.) Functions of the form

AX'' + B/r^ -{- CJ7'' • • • •

may without difficulty be integrated by the formula [1],

which we have just obtained. For such functions may, in

general, be transformed into products of equidifferent fac-

tors. As an example, let

X' = (x i- 7i){.v + n)(x 4- 3/0

+ A{x -f ^)(a; + 2A) + B{a; + //,) 4 c.
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h expressing the increment of x. This being developed and

arranged by the powers of .r, we find

x^ = x^ -{- Qhx'^ -f Wh'^x -I-
6^3

+ Aar2 4- SaJix + 2Ah\

+ C.

That this equation should be identical, it is necessary

that

6A + A = 0,

ll/i2 + 3aA + B = 0,

6^3 + 2A/i« + B/i + c = 0,

which give

A = - 6/i, B = 7/i% c=-A^
•.• ^5 = (^ + A)(a7 + %h){x + 37i) — U{x + /i)(ar + S/z)

+ ^h\x + 70 - //^

which by (519.)) gives

1.ar^ = —x{x -h ^)(^ + ^2h)(x -f S;^)

7— ^x(x + /z)(j7 + 2A) + -^hx(x + 7i) - 7A«jr + const.

Since 2(- 7^^) =^ - 7i'2l = - li'^x.

(52^.) Each of the integrals

i:^% 2t, 2^^ Sjt^ 2^:''^-% 2^"",

depend on those which precede it, in such a manner, that if

the (m — l)th be known, the ?wth may immediately be de-

termined.

If each term of the equation (501 .)

^
1.2.3.4

'' ^'
+/i ^

be integrated, we obtain
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Hence we find

w + 1

By the application of this formula, it is evident that by

knowing the integral

we may successively obtain

Xx, 2^7^, 2^5, .... 2^'",

by substituting successively 1, 2, 3, • • • • m for ttz.

Hence the results in the following, table may easily be

obtained

:

X

^•"°=T'

x^ 07

-I- 2 "^6'

-=£-" 2
"*"

4 '

. ^
^-M-

^* kx^
' 2 '^ S

~
30'

^-'-eA-
x' 5hx*

2 ^ 12 12'

^^'=5-
^6 ^^

6 "^42'

-=.t-
x^ Ikx^

' 2 "^ 12

Wx^ h'x^

24 "^12'
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^ 9^"" 2
"^

3 ""15~"^~9~""W'

^^= 10A-T+-4—rr+-2— ^T' ^^- ^^-

In applying these formulae to particular cases, the arbitrary

constant should be supplied.

(523.) In general, let

^
2.r"» = A^'^^* + B^"" -f cx'"--^ + D^'"-^

By taking the differences, we obtain

x"^ — A—.j

—

x'^h

(W f l)m ,„ (W2+l)w(?7Z — 1)
+ K ^^ ^-^/t^ + A^

f;g^3
^.T-Vi»+ ....

m , m.{m—\)
+ B-=-a7''*-Vi+B—=-^— a?'"-Vi«+ • . . .

w—

1

+ c-Y—^'"~^A+ • • • •

,

4- . . . .

This will be rendered identical by the conditions

1

m\-\K

B = — aA-^— = - i,

C = - A/^*—^3 B/Z-,

2.3.4 2.3 "' 2

Hence, we find in general

im+]

^^ -(m+l)A ^"^ '

+ 4.3 X*""" 6.5.4 1.2.3 "^ ^'

J__ m(7^-l)(m-2](m-3)(m-4)
.,

^
36.7 1.2.3.4.5
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^ 7?z(7?2~l---(m-6)
""

10.9.8 1.2.3 7
"^ '^

'

"^60.11 1.2.3 9

691 7^(m^l)...,(^~10)

210.13.12 1.2.3 11

+ 215X5 1.2.3 13 "" ^ '

_ 3617 r/z(m-l)....(m-14)

30.17.16 1.2.3 15
'

43867 ^m-l)....(m-16)
"^

42.19.17 1.2.3 17
'

_ 1222277 7/z(m~l)....(m-18) _,^^,g
110.21.20 1.2.3 19

^

In this series, after the first two terms

(m-l-l)/^"'*^'"'

the succeeding terms may be found by multiplying the even

terms (2nd, 4th, 6th ) of the development of {x + hf
successively by the numeral factors

^ 4.3' ~ 6.5.4' "^ 3.7.6'

3 5
"~

loias'
"^ gooT'

^''•

These numeral coefficients are called the numbers of

Bernoulli, because they were first determined by James

Bernoulli *. They frequently occur in the theory of

series.

* For a full development ofthe properties of these remarkable

numbers, see Mr. Herschel's excellent Treatise on Differences,

with the examples on it.
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In obtaining the above development in this way, the last

term IV"^ of the development of {x + Tiy"^ should be omitted,

even when it holds an even place.

(524.) To determine the method of integrating expo-

nential functions, let Uj. = a". Taking the difference, we

find

tiu, - a'ip}' — 1),

•.• u^ = sa'^Ca'* — 1) = a%

fl*—

1

Hence the method of integrating an exponential function.

(525.) Let u^ = cos. a?,
*.•

A cos.a? = cos.(a: -f h) — cos.a? = — 2sin.(.r + 4A)sin.-i7t.

Integrating this, we find

. , ,, COS.iT
2 sm.(^ + ^h) = —

gsin.^A
'

or.

by substituting 7/ for x + \h.

By a similar process we obtain

sin.{2/--M)
2COS.J/ = -7r^--T^.^ 2 sm. yi

Powers of the sine and cosine are integrated by de-

veloping them in a series of sines or cosines of the multiples

of the arc (Trigonometry), and then integrating the several

terms of the development.

(526.) If the integral of the product of two functions

x', x", of .r, be expressed thus,

Dx'x" = x'2x" -V X,

where x is an unknown function of x, let x be changed into

* It may in general be observed that an arbitrary constant

should be added in these integrations.
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X -}- km x'2x" -}- X, and let x', x" and x become x' + Ax',

x" -f Ax", and x + Ax •••

= Ax'.S(x" 4- Ax") -f Ax,

••• X = - 2[Ax'.2(x" + Ax")],

•.• Dx'x" = x'Sx" — 2[Ax'.2:(x" + ^x")]

This formula corresponds to that found in the integral

calculus for integration by parts.

(527.) The integral of a function considered as a difference

can seldom be found in finite terms. Its value, however,

may generally be expressed by a series. By Taylor's

theorem,

_dz h dH h^ d^z ¥
^^~d^' T'^d^^' T^'^d^^'TI^s'

Taking the integral of both members, we have

''"T^di'^T:^^d?^lJ73^d^'~^ ' ' '

'

If w = -r- •,' z = fudx '.'

fudx = h^u + och^^ -T- + /SA^S ^2 -f- • • • •

where a, /3, y, • • • represent the successive numerical co-

efficients. Hence we infer,

1 ^ , ^^du ^. d^u

Taking the differential coefficients of each member, ob-

serving that

d^ii

dx
~ du

^dx
obtain

dx~
1 — ahX

d'u
-/3A^

d'u

d^u 1 du
' dx

ahl.
d^ti

dx'

1 d^
dx^

.v^^'^

^^^d^^--»-£
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Eliminating successively the functions

da _ dH „

the final result must have the form

1 ^ , y du \, d^u

h^ dx dx^

In a similar way we may obtain the values of the integrals

22m or 2'm, 222w or 2^m, and in general for 2"'m. The for-

mula

•.•25 =^•"2'"-,— + a^'"+»2'" 5—r; + l3A'"+»2'»+2

Let ;7-^ =zu\- z ^f^vdaf* ',-

1 /< » , <^w ^,, d^u

Assuming the differential coefficients of each member of

this equation we find successively,

du 1 d^u d^u

Eliminating the functions

Sm^ vm^ ....

the final result will have the form

^""u = jip^f^ydx"' + -^.r'^'udx^"'

L L
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SECTION V.

Of the summation of series.

(528.) If the successive terms of a series be expressed by

the notation explained in (492.) the sum of all the terms from

that whose index is 1 to that whose index is x inclusive may

be expressed by sw^, ; thus

SM^ = Wi + Wa + %•

In like manner

SW^+„ = Wi + W2 +2^^ -f^+1 + + ".+ «•

Subtracting the former from this we have

by which we may express the sum of any number of terms

of a series commencing and terminating at any proposed

terms.

(529.) Ifw = 1 we have

But by (494.)

A(sw^) = s%+i — sw^,

••• s% = 2w,,+i + c,

c being the arbitrary constant. When a: = 0, s% = .'

= 2Mi + c.

Subtracting this equation from the last we find

sw^ = Dm^+i - 2w,.

Hence the summation of the series depends on the inte-

gration of Wj:+i and Ui considered as differences.

(530.) In like manner if the sum of the series from the

wth to the ath term, including the latter, be required, we

have
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But by what has just been proved,

•.• SM^ — SM„ = ^u,^i - 2w„+,.

(531.) We shall now give some examples of the applica-

tion of these principles to the summation of series.

Ex. 1. To determine the sum of a series ofjigurate num-

bers ofthefirst^ second^ and sitccessive orders^ beginning with

unity in each series.

The figurates of the first order are the series of integers

1,2,3,4, ....

of which the general term is x.

Those of the second order are

L2 2^ 3^4 4^
1.2' 1.2' 1.2' 1.2'

ic X -4-

1

of which the general term is
'

^. .

Those of the third order are

1.2.3 2.3.4 3.4.5

1.2.3' 1.2.3' 1.2.3'

X X -\-\ X -4-

2

of which the general term is -^

—

YtTa— •

x.Ai.O

Those of the fourth order are

1.2.3.4 2.3.4.5 3.4.5.6

1.2.3.4' 1.2.3.4' 1.2.3.4'

„ , . , , , . x.x + \,x-\-9>.x-\-S
of which the general term is Tq^ *

And in general the figurates of the nth order are

1.2.3 ' ' ' n 2.3.4 . . • n+ 1

1.2.3 . . . n' 1.2.3 • ' ' n

3A5j_^-f2 4.5.6 ^^_ • n+S
~TXS . . . w ' 1.2.3 ' ' ' n



516 THE CALCULUS OF DIFFEEENCES. SECT. V.

of which the general term is

X.X+l.a;^2 x + jn— 1

)

1.2.3 n
•

For those of the first order we have

M^ = jr.

Hence by (529.)

su, = 2(a; -I- 1) -I- c.

By the table in (522.) we have

x^ X

Changing x into x -^1 and h into 1, we have

{x+\f - X
,

V 2w, = i-+ c.

Subtracting this from the former, we have

^(^+1)
2?/^+, — 2Mi = —j-^ = SM^

vl+2+ 3....+. = ^:f±i.

For the figurates of the second order,

''^ - "TF *•* ""'^
'
- iTs •

By the formula estabhshed in (519.),

Hence

2«,+. =—j^— + C.

no constant being added because when ^ = 0, su^ ~ 0.

In general for the sum of the figurates of the wth order

a?+l . a:+ 2. x+S' ' ' - -x^n
W.+. - ~i—~S . 3 n '

X'X-\-\ x^^ x-\-n
'•'^"'+1 = 1-2 . 3 »+r
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;r-;r + l'a:-f-2 £c-{-n
*•* ^"- = 1.2 . 3 n-hV

Ex. 2. To determine the sum ofa series ofthe reciprocals

ofthejigarate numbers heginningfrom unity.

The general terms of the several series are in this case,

X

07(0: +1)'

1.2-3

Hence, by (520.) the sums for 2°, 30^ ^^

1 .2 2_^

%(^+l)~ 074-1
"^^^

1 2 • 3 3
^ ^(.r+l)(o;-}-2)

~
(07 + 1X^4-2)

+ ^' ^*'*

The formula (520.) fails for s f —
J.

The constants being

supplied by the condition

= ~
-J-

+ c,

= - :j--g + C, &C:

12 2 2 2o:
s
07(:r-fl)~" 1 07+1 '~07f 1'

1.2-3 3 3

%(07 4-lX^ +^)~l -2" (^+ l)(07+ 2)'
^""^

2 3
When 07 is infinite, these values become -j-, -^—r, &c.

Ex. 3. To determine the sum of

13+23 + 33 07^.

By the table in (522.) we have

(0;+l)* (07 + 1)3 (07+1)2
2(07 + 1)^==

4 3 ' 4



518 THE CALCULUS OF DIFFERENCES. SECT. V.

^ A(^-fi)Y

Hence it follows that

13 + 23 ^ 33 . . . a;3 = (1 + 2 + 3 . • . ^)2.

Ex. 4. To determine the sum of an arithmetical series

a +(a + (I) +(a + ^d) + [a + (j: - 1 )rf].

In this case

u, = a-\-(x- l)d,

'.' u^+i = a + xd,

^(;r— 1) -

•.• Dm^+i = xa +
^ ^

rf.

Hence

sw^ = ^a H —^— a.

Ex. 5. To find the sum of a geometrical series

In this case

Hence (524.),

ff, «r, ar*, «r'

u^ = ar''~\ '.' Ur+i — «?**".

r — 1

When X = 0, su, = 0, •.•

a
',' c = r-V

a(r'-\)

Ex. 6. To find the sum of the series

_ 1 J__ _]__
1
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In this case (520.),

1 1

Whence c = 1,
*.*

Ex. 7. To determine the sum of the series

12 4- 22 + 3« + .r2.

In this case,

u,+i = (^ + 1)%

_ (^4-1)3 i^ + iy (^'-\-l)

1 1 1

X^ X^ X

Ex. 8. To determine the sum of the series

sUj. = cos. (p + cos. 2^ + COS. S(p + cos. x(p.

Hence (5^5.),

U^+l = COS. {x + 10"??

^"^^^ - 2sin.i^ + ^'

sin. 4^
2 sm. i(^

Ex. 9. To find the sum of

su^ = sin. (p 4- sin. 2<p + sin. S<p . . . . sin. .^(25,

M^+i = sin. (a? + 1)^,

cos.
(^+4)^ , ^

COS. i(25
.

2 sm. 4-(p * '

__ ^^^' 19—'COS. {x-\-^)(p

'

"
2 sin. 4-0

*
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Ex. 10. To sum the series

sw^ = 1 • 52 + 3 . 5^ 4- 5 • 7* +
In this case

u, = (^x - 1) (2x + ly,

•/ w,+, = (2^ + 1) (2x 4- 3)« = 8^3 + 28a?2 + 30j:+ 9.

By (516.), •/

2M^+i = 82m-^ + 2S2x^- + 30207 + 92a^.

By substituting the values in (520.), we find

2m^+i = g \- c,

-.• 2Wi ^ + c,

Ex. 11. To sum the series

SM, = 1' + 3* + 5^

In this case

w^ = (2a7-iy,

•.• w^+i = (2x +1)2 =4^« + 4a: + 1,

•.' 2:t^x+. = 3—- 4- c,

2Wj = 4- c,

.r(4^*-l)
'.• Si^r =

3

THE END.
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