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PREFACE 

THE  development  of  the  theory  of  cross-ratio  is  due,  quite 

independently  of  each  other  ̂ ,  to  Mobius,  Der  harycentrische 

Calcul,  1827,  and  to  Chasles,  Aper^u  Historique,  1829 — 1837, 
followed  by  the  Geometrie  Superieure,  1852,  where  the  subject  is 

treated  very  fully  as  regards  the  point  and  straight  line,  its 

application  to  the  conic  being  given  in  the  Traite  des  Sections 

Coniques,  1865.  Some  employment  of  its  principles  is  met  with 
in  the  various  treatises  on  what  is  sometimes  called  Modern 

Geometry  which  have  subsequently  appeared,  but  as  far  as  I  am 

aware  there  is  no  English  text-book  exclusively  devoted  to  it. 

The  power  of  the  method  of  cross- ratio,  as  an  instrument  of 

analysis,  it  is  not  easy  to  over-rate.  In  the  facility  with  which  it 
deals  alike  with  the  range  and  pencil,  with  the  points  and  line  at 

infinity,  with  questions  relating  to  concurrency  and  coUinearity, 
loci  and  envelopes,  it  can  compare  not  unfavourably  with  the 

methods  of  analytical  geometry,  and  in  those  questions  to  which 

it  is  specially  applicable,  the  steps  necessary  to  establish  any 

result  are  few  in  number,  and  are  mostly  of  the  same  character, 

dealing  as  a  rule  with  the  homography  of  certain  ranges  or  pencils, 

with  the  additional  advantage  that  the  geometrical  meaning  of 

each  step  is  in  general  obvious. 

1  See  the  note  on  p.  xxxii  of  the  Preface  to  Chasles'  Geometrie  Superieure, 
where  in  speaking  of  the  Calcul  harycentrische  he  says  "ce  que  je  n'ai  su  que 
fort  longtemps  apres  la  pubUcation  de  I'Aper^u  historique." 
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Again,  in  dealing  with  pairs  of  imaginary  points,  analytical 

geometry  is  generally  content  with  the  recognition  of  their  occur- 
rence owing  to  certain  relations  between  the  coefficients  of  an 

equation ;  but  the  theory  of  cross-ratio  goes  further,  and  not  only 
gives  us  the  geometrical  conditions  under  which  they  occur,  but 

it  gives  us  the  actual  position  of  their  mid-point,  and  the  value  of 
the  rectangle  formed  by  the  segments  joining  them  to  a  real  point. 

This  treatise  naturally  divides  itself  into  two  parts.  In 

Chapters  I — X,  which  deal  exclusively  with  the  point  and 
straight  line,  the  only  knowledge  of  geometry  which  the  reader 

is  assumed  to  possess  is  that  of  the  fundamental  properties  of 

similar  triangles  and  ratio,  and  I  have  thought  it  advisable  to 

make  this  part  of  the  subject  quite  self-contained.  It  is  usual  to 

discuss  co-axial  ranges  by  projecting  them  on  to  a  conic  or  circle, 
and  making  use  of  the  Pascal  line,  &c.,  but  by  means  of  Prof.  A. 

Lodge's  method,  given  in  Chap.  VII,  a  student  is  enabled  to 
construct  two  co-axial  ranges,  and  to  find  their  common  points, 
(fee,  without  interrupting  the  logical  course  of  his  reading.  . 

In  dealing  with  involution  it  seemed  most  simple  and  natural 

to  treat  it  as  the  case  of  two  co-axial  homographic  rows  in  which 

/  and  J',  the  correspondents  of  points  at  infinity,  coincide. 
In  the  second  part,  beginning  with  Chap.  XI,  I  have  adopted 

B.  W.  Home's  method  of  applying  the  theory  of  cross-ratio  to  the 
conic,  which  obviates  the  necessity  of  first  proving  properties  for 

the  circle,  and  then  by  projection  obtaining  the  corresponding 

properties  for  the  conic.  This  requires  the  knowledge  on  the 

part  of  the  student  of  four  elementary  propositions  in  geometrical 
conies,  viz.  those  given  in  Arts.  127,  128,  135,  136,  and  I  have 

had  no  hesitation  in  assuming  them  for  two  reasons.  In  the  first 

place,  this  part  of  the  work  is  intended  to  be  a  treatise,  not  on 

geometrical  conies,  but  on  the  application  of  the  theory  of  cross- 
ratio  to  the  subject;  and  secondly,  although  the  subject  of 

geometrical  conies  can  be  developed  by  means  of  the  theory  of 

cross-ratio,  as  Chasles  has  shewn  in  his  fascinating  Traite  des 
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Sections  Coniques,  I  am  strongly  of  opinion  that  a  student 

ought  to  have  obtained  from  one  of  the  ordinary  text-books  a 
working  knowledge  of  its  elements  before  he  is  introduced  to  the 

theorems  of  Pascal,  Brianchon,  Desargues,  &c.,  which  take  him 

at  once  to  more  advanced  work.  Another  reason  is  that  by  the 

aid  of  the  theory  of  cross-ratio  it  is  just  as  easy  to  prove  properties 
of  conies,  considered  separately  or  as  a  system,  as  it  is  to  prove  the 

corresponding  properties  for  the  circle,  in  fact  in  some  cases  it  is 

easier  and  more  complete,  as  we  might  expect  from  the  con- 
sideration that  the  circle  is  only  a  particular  case  of  the  conic. 

As  there  is  scarcely  any  part  of  conies  to  which  the  theory  of 

cross-ratio  is  not  applicable,  and  as  I  wished  to  curtail  the  size  of 
the  book  as  much  as  possible,  it  was  necessary  to  follow  some 

definite  path,  and  I  have  selected  the  course  which  leads  us  to 

consider  conies  through  four  points,  and  conies  touching  four 

lines,  their  common  chords  and  tangents,  the  relations  between 

the  four  constants  of  homology  obtained  by  taking  any  pair  of 

common  chords  with  the  pair  of  corresponding  tangent  vertices  as 

axes  and  centres  of  homology,  and  conies  having  double  contact. 

I  took  this  route  because  it  contains  parts  of  the  subject  which 

have  not  previously  been  fully  treated,  and  at  the  same  time  it 

gives  the  student  a  good  illustration  of  the  power  of  the  theory. 

A  good  deal  of  the  work  in  these  chapters  is  original,  and  where 

it  is  not  so,  references  have  been  given,  where  possible,  to  the 

original  authorities. 

I  have  thought  it  advisable  to  give  a  figure  with  almost  every 

proposition  so  that  the  student  may  be  enabled  readily  to  follow 

all  that  he  reads,  and  to  remove  any  feeling  of  indefiniteness 

in  his  ujind  I  have  given  full  solutions  in  the  case  of  problems 

which  depend  on  finding  the  common  points  of  two  co-axial 

ranges.  With  the  same  object  I  have  given  complete  figures 
in  the  different  cases  of  the  real  and  ideal  common  chords  of  two 

conies,  and  their  common  self- conjugate  triangle. 
The  reader  will  notice  that  throughout  the  work  I  have  made 
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no  use  either  of  projection,  except  in  Arts.  138,  139,  and  in 

Chap.  XIX  (which  deals  with  generalised  projection),  or  of  the 

principle  of  duality.  My  reason  for  the  omission  of  the  first  is 

that  it  was  not  necessary  for  my  purpose,  and  with  regard  to  the 
latter  the  direct  demonstration  of  a  correlative  theorem  gave  me 

an  additional  opportunity  of  illustrating  the  use  of  the  theory  of 
cross-ratio. 

I  have  given  at  intervals  throughout  the  work  historical 

notes  illustrative  of  the  subject  as  far  as  it  was  in  my  power  to 

do  so  within  the  limits  of  a  private  library,  and  by  means  of 

books  kindly  lent  from  the  library  of  St  John's  College,  Cam- 
bridge, and  in  doing  this,  one  of  my  objects  has  been  to  shew 

that  both  parts  of  the  subject  are  based  upon  ancient  geometry, 

the  theorem  that  a  pencil  cuts  all  transversals  in  equicross  ratios 

being  given  by  Pappus,  and  the  converse  of  the  anharmonic 

property  of  conies  being  due  to  Apollonius.  With  the  same 

purpose  in  viev/  I  have  given  in  an  Appendix  Pappus'  account  of 
the  lost  books  of  Euclid's  Porisms,  so  that  the  student  may  have 
the  opportunity  of  forming  an  opinion  as  to  the  probability  of 

their  connection  with  the  theory  of  cross-ratio. 

As  the  term  *'  Modern  Geometry"  is  frequently  used  without 
it  being  stated  whether  the  adjective  refers  to  the  matter  or  the 

methods  employed,  or  both,  the  following  brief  statement  respect- 

ing the  text-books  on  geometry  in  common  use  by  the  ancients 
will  give  the  reader  a  general  idea  of  the  amount  of  knowledge  of 

the  subject  which  they  possessed. 

Pappus,  in  the  preface  to  the  seventh  book  of  his  Mathematical 
Collections,  tells  us  that  when  a  student  had  read  the  Elements 

of  Euclid,  and  wished  to  proceed  to  more  advanced  work,  the 

following  was  the  order  of  the  books  which  he  would  take  up. 

I.     Euclid's  Data^  one  book  containing  100  theorems. 

This  is  still  extant,  and  to  be  met  with  in  some  of  the  older 

editions,  e.g.  that  by  Barrow  1732,  and  by  R.  Simson  1841. 
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The  following  works  by  Apollonius  : 

II.  Proportional  Section^  two  books  containing  181  theorems. 

This   was   discovered    in   an    Arabic   MS   in   the   Bodleian 

Library,  and  a  Latin  translation  was  published  by  Halley  in 
1706.     See  Art.  88. 

III.  Spatial  Section,  two  books  containing  124  theorems. 

This  has  been  "  restored  "  by  Halley,  and  published  with  the 
books  on  Proportional  Section.    Another  restoration  was  made  by 
Snell  1607. 

IV.  Determinate  Section,  two  books  containing  83  theorems. 

This  has  been  restored  by  various  geometers.     Snell   1601, 

Lawson  1772,  Wales  1772,  Simson  1776. 

V.  Tangencies,  two  books,  81  theorems. 

Restored  by  Yieta  1600,  Lawson  1771. 

VI.  Euclid's  Porisms,  three  books.     See  Appendix  I. 

The  following  by  Apollonius  : 

VII.  Inclinations,  two  books,  125  theorems. 

This  was  a  treatise  respecting  lines  which  pass  through  a 

given  point  whilst  satisfying  certain  conditions  [e.g.  through  a 

given  point  to  draw  a  straight  line  such  that  the  part  of  it  inter- 
cepted between  two  given  straight  lines  may  be  of  given  length). 

Restored  by  Ghetaldus  1607,  Horsley,  1770,  Burrow  1779. 

VIII.  Plane  loci,  two  books,  147  theorems. 

Restored  by  Schooten  1656,  Fermat  1679,  Simson  1749. 

IX.  Conies,  eight  books,  487  theorems. 

Books  I — IV  are  extant  in  Greek,  V — VII  were  discovered 

in  Arabic  and  translated  into  Latin  by  Ecchellensis  and  Borellus 

in  1661.     In  1710  Halley  published  the  first  four  books  in  Greek 

65 
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and  Latin,  and  the  next  three  in  Latin,  together  with  a  conjectural 

restitution  of  the  8th  book,  which  is  still  missing  \ 

X.     Aristaeus,  solid  loci,  five  books. 

XL    Euclid,  loci  ad  superficiem. 

XII.  Eratosthenes,  on  Means,  two  books. 

Of  these,  all  except  I,  II  and  IX  are  lost,  although  it  is  quite 

possible  they  may  still  be  in  existence,  probably  in  Arabic. 

I  have  purposely  refrained  from  giving  a  large  number  of 

Examples,  and  those  given  (260)  have  been  carefully  chosen  to 

illustrate  the  text.  The  student  who  requires  more  will  find 

admirable  collections  in  Russell's  Elementary  Treatise  on  Pure 

Geometry  (1905),  and  in  Durell's  Plane  Geometry  for  Advanced 
Students,  Part  II  (1910). 

I  take  this  opportunity  of  acknowledging  my  personal  obliga- 
tions to  Prof.  A.  Lodge,  of  Charterhouse  (late  Professor  of  Pure 

Mathematics  at  Cooper's  Hill),  for  the  stimulating  interest  he  has 
taken  in  the  book  throughout.  He  read  through  the  whole  of 

the  work  in  manuscript,  and  again  when  it  was  passing  through 

the  press,  and  was  of  the  greatest  help  in  discussing  the  difficulties 
which  arose  from  time  to  time;  in  fact  he  could  not  have  taken  a 

greater  interest  in  it  if  the  work  had  been  his  own,  and  it  is 

chiefly  owing  to  his  friendly  persistence  that  the  treatise,  which 

was  originally  written  to  gratify  my  own  interest  in  the  subject, 
has  seen  the  light. 

I  am  also  greatly  indebted  to  Prof.  Heawood,  of  Durham,  who 

kindly  read  through  the  proof-sheets,  and  from  whom  I  received 
many  valuable  criticisms  and  suggestions. 

1  For  a  fuller  account^  see  the  Math.  Gazette  for  October  1895. 

JOHN  J.  MILNE. 

Lee-on-the-Solent. 

September^  1911. 
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CHAPTER   I 

CROSS-RATIO   OF  A   RANGE   OF   FOUR   POINTS,   AND   OF   A 

PENCIL   OF   FOUR   LINES 

1.  The  subject  treated  in  the  following  pages  was  very  fully 

investigated  by  the  ancient  Greek  geometers  except  as  regards 

its  extension  to  conic  sections,  where  important  advances  have 

been  made  in  modern  times.  The  old  knowledge  has  been 

revived  during  the  last  100  years,  chiefly  on  the  Continent,  and 

has  been  systematised  partly  by  means  of  taking  signs  into 
account  in  dealing  with  measurements  of  lengths  and  angles,  and 

partly  by  means  of  an  improved  and  powerful  notation  which 

was  rendered  possible  by  this  consideration  of  sign.  In  the  foot- 
notes will  be  found  references  (with  dates)  to  the  mathematicians 

to  whom  these  improvements  are  due,  and  also  to  the  Greek 

geometers. 

This  introduction  of  sign  into  the  consideration  of  lines  and 

angles  is  one  of  the  distinguishing  features  of  the  geometry  of 
cross-ratio*. 

Any  segment  of  a  line  is  considered  to  be  positive  or  negative 

according  to  the  direction  in  which  it  is  measured,  so  that,  if 

a  and  h  are  two  points  on  a  straight  line,  ab  =  —  ha. 

*  The  first  work  in  which  we  find  the  principle  of  signs  systematically 
employed  in  geometry  is  Carnot's  Geometrie  de  position  (1803). 
M.  1 
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Again,  if  (A,  B)  is  the  angle  between  two  lines  which  is 

supposed  to  be  measured  by  rotation  starting  from  the  position  A 

towards  that  of  B^  then  (^,  B)  =  —  {B,  A).  There  is  no  necessity 
to  do  more  than  allude  to  this,  as  the  student  will  have  met  with 

a  full  treatment  of  it  at  an  earlier  stage  of  his  reading. 

2.     Def.     a  set  of   points  arranged  in  any  manner  on  a 

J.  Axis        straight  line  is  called  a  range,  and  the  straight  line 
Base,  is  called  the  axis  or  base  of  the  range. 

A  series  of  concurrent  straight  lines  is  called 

Pencil, Centre,     ̂   pencil,  and  their  common  point  is  called  its  centre 
Vertex.  / or  vertex. 

The  pencils  with  which  we  shall  deal  in  the  following  pages  are 

always  coplanar. 

Fig.  1. 

Four  collinear  points  taken  in  pairs  give  rise  to  six  segments, 

and  these  segments  have  sign  as  well  as  magnitude. 

An  expression  such  as  — ^  :  ̂ -^  is  called  a  cross-ratio  of  the 

four  points  or  range  ahcd,  and  is  the  ratio  of  the  distances  of  the 

Cross-ratio  of  point  a  from  c  and  d  divided  by  the  ratio  of  the 

four  points.  distances  of  the  point  h  from  the  same  two  points, 

and  this  ratio  of  ratios,  or  cross-ratio,  is  written  (abed)*. 

*  The  term  anharmonic  function  or  ratio  was  given  to  this  expression 

by  Chasles  in  his  Apergu  historique,  1837,  but  the  term  cross-ratio,  i.e.  ratio 
of  the  ratios  in  which  cd  is  divided  by  a  and  b,  was  introduced  by  Clifford  in 

1878,  and  is  now  generally  adopted.  The  notation  (a,  b,  c,  d)  to  denote  the 
cross-ratio  of  four  points  was  employed  by  Mobius,  1827,  but  was  not 
adopted  by  Chasles  in  his  Geovietrie  Superieure,  1852,  although  in  his  Traite 
des  Sectiom  Coniques,  1865,  he  made  use  of  it  and  of  the  corresponding 

notation  P  [a,  b,  c,  d)  to  denote  the  cross-ratio  of  a  pencil  of  four  rays.  As 
no  advantage  is  gained  by  retaining  the  commas  here,  we  have  omitted 
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3.  By  varying  the  order  in  which  the  four  points  are  taken 

we  can  form  24  cross-ratios,  which,  however,  are  not  all  different 
in  value.     For  consider 

ac     he 

.-     ,  .      hd    ad      ac     he 
(hade)  =  Y-  :  —  =  — ,  S  r-y  =  {(^hcd), 

'      he     ac     ad    hd     ̂  

,   -,  ,.      ea    da      ac     he      ,   .    ,. 

/J  z-   X     ̂^     ̂ ^       ac     he  . 
(dcha)  =  --:  —  =  — -  :  — -  ̂   (abed), 
^        '      da    ca     ad     hd  ' 

i.e.  the  value  of  a  cross-ratio  of  four  points  will  he  unaltered  if  we 

interchange  the  j)osit%ons  of  any  pair  of  points  in  it,  provided 

we  also  interchange  tL.  positions  of  the  other  pair. 

It  should  be  noticed  that  in  the  above  equal  cross-ratios  the 

pair  of  points  a  and  h  are  associated  together,  as  are  also  the  pair 

€  and  d.  It  does  not  matter  which  pair  is  mentioned  first ;  all 

that  does  matter  is  that  if  a  and  h  are  interchanged,  so  must  also 

c  and  d.  If  we  interchange  the  order  of  one  pair  only,  we  invert 

the  cross-ratio,  as  shewn  below.  If  we  pair  the  points  differently, 

we  get  entirely  different  cross-ratios,  as  the  student  may  easily 

see  for  himself  by  trial.  The  relations  between  them  will  be 

given  in  Art.  4. 

Since  (hacd)  =  .— ̂   :  — ^  =  .-^ — ^  ,  we  see  that  if  we  interchange 
^        '     hd     ad      (abed)'  ^ 

separately  either  the  first  or  last  pair  of  points  in  a  cross-ratio,  we 

shall  obtain  another   cross-ratio    which   is  the   reciprocal   of  the 

former. 

them,  and  written  the  functions  simply  {abed)  and  P  {abed),  reserving 
the  commas  for  use  in  the  notation  for  involution.  If  the  student  uses 

commas  at  all,  it  is  best  to  use  one  comma  only,  to  separate  the  pairs, 
thus  {ab,  cd). 

1—2 



4  CROSS-KATIO   GEOMETRY  [CH.  I 

Consequently,   the  24   cross-ratios  may   be   arranged   in   six 

groups  of  four  mutually  equal  cross-ratios,  which  may  be  written 

(abed),     (acdb),     (adhc), 
and  (abdc),     (acbd),     (adcb), 

of  which  the  first  three  are  formed  by  the  cyclical  interchange  of 

the  letters  b,  c,  d,  and  the  last  three  are  respectively  the  re- 
ciprocals of  the  first  three. 

Relations  between  the  cross-ratios  of  four  given 

points. 
4.     There  is  an  important  fundamental  relation,  discovered 

by  Euler  in  1747,  between  the  segments  of  a  line  made  by  four 

points,  a,  b,  c,  d,  on  it,  viz. 

ab  .cd  +  ac  .  db  +  ad .  bc  =  0, 

in  which  the  second  factors  of   the  terms  are   formed   by  the 

cyclical  interchange  of  the  letters  b,  c,  c?,  viz.  cd,  db,  be,  and  the 

first  factors  are  the  distances  of  a  from  the  remaining  points. 

We  will   prove   this   and   then   apply  it   to  find  the  relations 

between  the  various  cross-ratios  of  the  four  points. 
In  Fig.  1,  if  a,  b,  c,  d  are  the  four  points 

cd  —  ad  —  ac,     db  =  ab  —  ad,     be  =  ac  —  ab, 

.'.   ab  .  cd  +  ac  .  db  +  ad .  be 

=  ab  (ad  —  ac)  +  ac  (ab  —  ad)  +  ad  (ac  -  ab) =  0. 

Dividing  each  term  by  ad  .  be  we  have 
ab  .cd     acbd     _      „ 

+  1=0. 

••  («cc^*)-(«*^'^)-i=o   (!)•  i 
or,  if  we  denote  the  three  cross-ratios  [abed),  (acdb),  (adbc)  by 

X,  y,  z,  (1)  becomes 

  a;  +  1  =  0,      .  .   -  =  1  -  £t',      . .    y  =  -^   . 
y  y  ^-^ 

ad .  cb      ad .  be 

1 
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1                                  1                                     x—l 

Similarly    -  =  1  -  3/,    and     -  =  1  -  0,      .*.    z  =  '   . 

Hence,  if  the  value  of  one  of  the  cross-ratios  is  given,  we  can 
at  once  obtain  the  values  of  the  others.  That  is,  if  x  is  the  value 

of  any  one  of  them,  the  six  different  values  to  be  found  amongst 
the  24  cross-ratios  will  be 

1  x-\ 
^'       r^'  X     ' 
1        1  ^_ 

x'  •''        x-\' 

5.     A  little  consideration  of  the  three  expressions 

1  a;~l 
""'    r^'     IT' 

will  shew  the  student  that  two  of  them  are  always  positive  and 

the  third  negative,  or  this  may  be  seen  geometrically  as  follows  : 

-^   $   r- 
Fig.  2. 

Let  P,  Q,  B  be  three  points  on  a  line  such  that  ̂ -y  =  x.      Then 

l_,-_«^       and   J— -^ 1     X-     p^,     and   j_^-     ̂ ^, 

,  x-\     .      I     ̂       PQ      QR 

Therefore  the  six  cross-ratios  are  represented  by 

PR        QP        RQ 

PQ'      QP'      RP' 
PQ        QK        RP 

PR'      QP*      RQ' 
where  in  each  line  the  numerators   and    denominators   of   the 
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second  and  third  fractions  are  formed  by  cyclical  changes  from 
those  of  the  first  fraction. 

It  is  obvious  from  the  figure  that  two  of  these  six  ratios  are 

negative,  viz.  the  two  in  which  the  middle  letter  of  the  three 

P,  Q,  R  comes  first,  whilst  the  other  four  are  evidently  positive. 

6.  This  geometrical  connection  between  the  cross-ratios  of 

four  coUinear  points  and  the  simple  ratios  of  the  ̂  segments 

formed  by  three  collinear  points  will  probably  seem  at  present 

artificial,  but  we  shall  shortly  see  that  it  is  an  immediate  con- 

sequence of  a  very  important  property  of  cross-ratios.  Meanwhile 

the  student  may  make  use  of  it  to  deduce  the  remaining  five  cross- 
ratios  of  four  points  when  one  of  them  is  known. 

Ex.  1.  If  ah  =  2",  &c  =  3",  cd  =  l",  find  (abed),  and  deduce  the  values  of 
the  other  five  cross-ratios.  Ans.     V;  -9.  tV>  t*t>  -i'  l^* 

Ex.  2.     Verify  Euler's  Theorem  in  the  case  of  the  range  in  Ex.  1. 

7.  Seeing  then  that  the  values  of  all  the  different  cross- 
ratios  of  four  collinear  points  can  be  expressed  in  terms  of  any 

one  of  the  cross-ratios,  it  will  be  found  convenient,  and  it  will  fix 

our  attention  in  any  investigation  if  we  select  any  one  of  the 

cross-ratios  and  speak  of  it  as  the  cross-ratio  of  the  four  points 
that  we  are  considering.  It  is  of  course  immaterial  which  of  the 

24  cross-ratios  we  take  as  our  standard,  and  different  writers 

have  adopted  different  orders  of  the  letters.  All  that  is  necessary 

is  the  observance  of  consistency.     We  have  invariably  adopted 

the  order  —j'j-7i  and  our  reason  for  doing  so  is  that  it  is  the 

arrangement  adopted  by  Chasles. 

8.  If  no  two  of  the  four  points  coincide^  a  cross-ratio  cannot 
have  as  its  value  0,  +1,  or  oo  ̂   though  it  is  capable  of  assuming 

any  other  value. 

For,  taking  the  cross-ratio  to  be  — ,:  7-,,    if       /  ,    =  0,  then °  ad    ha  ad  .he 
either  a  and  c,  or  h  and  d  coincide. 



i-9] OF   A   RANGE   OF   FOUR   POINTS 

If  — ,^^-v-  =  QO  ,  either  a  and  d^  or  b  and  c  coincide. ad .  he 

If 
ac .  hd 

he 

ae ah 
ac  _ 

'     ad     hd     ad  — ah ad .  be 

.'.   ah  {ad -  ac)  =  0,       .'.   ah.cd  =  0, 

'consequently,  either  a  and  b,  or  c  and  d  coincide. 
The  relations  of  Art.  4  shew  that  the  cross-ratios  become  in 

pairs  0,  +1,  or  oo ,  if  one  of  them  does,  as  is  also  shewn  by  the 
geometrical  relations  of  Art.  5. 

9.  Given  the  cross-ratio  (A)  of  four  collinear  points  a,  6,  c,  c?, 
of  which  three  are  given  in  position,  it  is  required  to  find  the 
position  of  the  fourth. 

Suppose  the  three  given  points  are  a,  b,  c.     Through  a  draw 
any  straight  line  aa  making  any  angle  with  the  given  line  abc, 

and   on  it  take  two  points  a,   a    such  that  —  =  A..     Join  a'c. 
aa 

Through  b  draw  b^  parallel  to  aa,  meeting  ac  in  /?.  Join  a/3 
meeting  the  line  abc  in  d.  Then  d  shall  be  the  point  required. 

For  by  similar  triangles 
ac      aa         ad      aa 

Vc^b^'      bd^W 
ac     ad      aa 

Hence 
he  '  hd      aa 

\. 

In  the  above  construction  X  is  supposed  to  be  positive.     If 
it  is  negative,  we  must  take  a  and  a  on  opposite  sides  of  a. 
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10.     It   still    remains   to    be    proved    that   the   point   d  is 
^  ad      \     ac  ,  . 

unique.      We  nave  jr^  =  t  -  t-  =  x  suppose,  where  k  is  constant. 

If   possible  let   d'  be  another  point  on  the  line  ab  such  that 

ad' 

=  K. 

hd' Then 

ad' 

hd' 

ad     ad'  -  dd' 

hd     hd'-dd'' Therefore  either  ad'  =  hd',  and  consequently  ah  =  0,  or  else 

dd'  =  0.  Now  a  does  not  coincide  with  6,  therefore  d'  must coincide  with  d. 

11.     Remembering  that  A.  is  only  one  of  the  cross-ratios  of 

Fig.  4. 

the  four  points  a,  h,  c,  d,  i.e.  {ahcd)  =  \=  — ,  we  can  shew  on  Fig.  4 aoL 

the  values  of  the  other  cross-ratios  {achd)  and  (adbc). 
Through  c  and  d  draw  cy,  dS  parallel  to  aa.     Let  ac  meet  dS 

in  8,  and  let  ad  meet  cy  in  y.     Let  by  and  bS  meet  aa  in  a",  a". 
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Then 

so  that  if  aa  is  taken  as  the  unit  of  length,  a<x,  aa",  and  aa"  will 
represent  the  values  of  (abed),  (achd)  and  (adbc). 

12.     Again,  describe  a  semicircle  on  aa  as  diameter,  draw 

a'P  perpendicular  to  aa,  and  join  Pa,  Pa. 

(-M)  =  J: 
ad  aa' 
cd       Cy 

aa  aa" Cy       aa 
(adbc)^f^ 

ac  aa!" 
'  dc~  d8 

aa  aa!" 

'  d8~   aa 

Then (abed) 

aa 

aa 

aa 
aP =  cos^  0. 

Therefore  by  Art.  4,  the  six  cross-ratios  of  any  four  collinear 
points  can  be  represented  by 

cos^  Oy     cosec^  0,     —  tan^  6, 
sec^^,     sin2(9. cot^  0. 

This  also  follows  from  the  fractions  of  Art.  5.  For  if  we  take 

three  collinear  points  in  the  order  PQP  as  in  Fig.  2,  and  draw  a 

semicircle  on  PP  as  diameter,  and  draw  the  perpendicular  QS 

cutting  the  semicircle  in  S,  and  join  SP,  then  if  the  angle 

SPP  =  6f  the  values  of  the  six  ratios  are  cos^6'  &c.  as  above. 

If  we  take  the  angle  (f>  at  A'  we  shall  obtain  the  same  results 
but  in  different  order,  as  the  two  angles  0  and  <f)  are  comple- 
mentary. 

It  will  be  noted  that  the  negative  ratios  are  -  tan^^  and  —  cot-  0, 
of  which  one  is  >  -  1,  and  the  other  <  — 1,  while  of  the  four 
positive  ratios  two  must  be  >  1  and  two  <  1. 

The  student  should  also  notice  that  the  points  P,  Q,  R  are 

the  same  as  the  points  a,  a,  a  of  Art.  1 1  and  Fig.  4. 

The  method  of  Art.  5  is  most  suitable  for  expressing  the  six 

cross-ratios  of  four  points  as  vulgar  fractions,  whilst  by  Art.  1 1 
or  12  (see  Art.  13  below),  we  can  most  easily  express  them  as 
decimals. 
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13.  Suppose  now  the  range  abed  is  given,  and  we  wish  to 

find  geometrically  the  value  of  its  cross-ratio. 
In  Fig.  3,  through  a  and  h  draw  the  parallels  aa,  6/3,  and  on 

the  first  take  aa  of  unit  length.  Join  ad  cutting  6y8  in  ̂ .  Join 

CjS,  cutting  aa  in  a.     Then  aa  is  the  cross-ratio  required. 

14.  Dep.     If  we  consider  the  four  concurrent  straight  lines 

OA,  OB,  OC,  ODj  we  define  the  compound  ratio 
Cross-ratio  of       •     /  a    r\      ■     ( n   r\ 
four  lines.  ̂ !^  ̂^7  ̂/  :  ^l""   f '  ̂^  formed  by  taking  the  sines 

sm  (A,  D)    sm  (B,  D)  j  & 
of  four  of  the  six  angles  which  these  lines  make  with  one  another 

as  the  cross-ratio  of  the  pencil  0  (ABCD).     See  also  Art.  16. 

15.  If  the  pencil  0  (A  BCD)  is  cut  hy  a  transversal  in  the 

four  points  a,  b,  c,  d,  the  cross-ratio  of  the  pencil  will  be  equal 
to  that  of  the  range  abed,  and  will  have  the  same  sign. 

Fig.  5. 

For 

Similarly 

sin  (A,  C) ac 

sm  c 

sin  (A,  C)  _  sin  c 

sin  {A,  D)      sine? 

sin  (B,  G)  _  sin  c 

sin  (B,  D)  ~  sin  d 
sin  {A,  G)     sin  (B,  G) 

sin  {A,  D)      ad 
sin  d  aO 

ac 

ad' 

be 

bd' 

ac     be 

sin  {A,  D)  '  sin  {B,  D)     ad'  bd 
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16.  We  may  remark  that  the  definition  given  in  Art,  14  is 

not  often  used,  and  in  view  of  the  property  proved  in  Art.  15  it 

would  be  better  to  substitute  the  following  : 

Dbf.  The  cross-ratio  of  a  pencil  of  four  rays  is  that  of  the 
range  which  it  forms  on  any  transversal. 

As  in  Art.  2,  when  we  refer  to  the  cross-ratio  of  the  pencil 

0  (ABCD),  we  shall  speak  of  it  either  as  the  pencil  0  (ABCD), 

or  simply  0  (ABCD). 

The  conclusions  of  Arts.  3 — 8  respecting  the  cross-ratios  of 

four  points  will  apply  equally  to  the  cross-ratios  of  a  pencil  of 
four  rays,  and  need  not  be  repeated. 

17.  Given  X,  the  cross-ratio  of  four  rays  OA,  OB,  OC,  OD  of 
a  pencil  of  which  the  first  three  rays  OA,  OB,  OC  are  given  in 

position,  it  is  required  to  find  the  fourth  ray. 

In  Fig.  6  let  any  transversal  meet  the  three  given  rays  in 

a,  b,  c. 
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On  aO  take  the  point  a'  so  that  -^  -  \.    Join  a'c,  and  through 

h  draw  6y8  parallel  to  aO,  cutting  ixc  in  ̂ .     Join  0^.     This  is 

the  fourth  ray  required. 

Produce  0/3  to  cut  ahc  in  o?. 

_,  ac     be       ac     ad      aa!     aO      aa 

^''kr'bc  'hd^bp  ''b^^^^ 
It  should  be  noted  that  the  above  construction  is  the  same  as 

that  given  in  Art.  9. 

18.     Menelaus'  Theorem.     If  any  transversal  cuts  the  sides 
of  a  triangle  ABC  in  the  points  a,  b,  c, 

Ab.Ca.Bc=-bC.aB.cA. 

m 

Fig.  7. 

Through  b  draw  bb'  parallel  to  BC,  and  join  bB. 

Then  by  Art.  1 5,  the  range  (cb'A  B)  =  the  pencil  b  (cb'AB) 
=  the  range  (a  oo  CB). 

^,       ,  cA     b'A      aC     ooC Therefore  -^  :  jrh  =  -^b  •  — d  • cB    b  B      aB     CO  B 

b'A      bA  ,   ̂ C      , 
^^^  FB  =  bC^     ̂ '''^  ̂ ^^- 

cA     bA      aC 

"    dB'W  ̂ oB' 
Hence  Ab  .Ca.Bc  —  —  bC.  aB .  cA. 
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Conversely,  if  three  points  a,  h,  c  on  the  sides  of  a  triangle 

ABC  satisfy  the  relation  Ah  .Ga.  Bc  —  —  hC.  aB .  cA,  they  are 

collinear.  For  suppose  that  he  when  produced  meets  BC  in  a'. 
Then  by  the  above, 

Ah.Ca  .Bc  =  -hC.aB.cA, 

and  by  hypothesis 

Ah.Ca,Bc  =  -hC.aB.cA. 

Therefore  Ca*  :  Ca  =  a'B  :  aB, 
Ca' :  a'B  =  Ca  :  aB, 

CB  :  a'B  =  CB  :  aB. 

Consequently  the  point  a'  coincides  with  a. 

Note.  Menelaus  was  a  Greek  geometer  and  astronomer,  a 

native  of  Alexandria.  He  was  at  Rome  studying  astronomy  in 

the  first  year  of  Trajan,  a.d.  93.  The  theorem  in  the  text  is 

given  in  his  treatise  on  Spherical  Trigonometry  in  3  books, 

which  survived  in  Arabic,  and  of  which  a  Latin  translation 

was  first  published  in  a  Collection  of  Greek  Geometers  made 
at  Paris  in  1626. 

EXAMPLES. 

1.  Any  two  transversals  cut  the  sides  of  a  triangle  in  the  points  P,  Q,  R 

and  F,  Q',  R'.     Prove  that 

{BCPP')  {CA QQ')  {ABRR')  =  1. 

Expand  and  use  Menelaus'  Theorem. 

2.  If  a  transversal  meets  the  consecutive  sides  of  a  polygon  ABCD  ... 
in  the  points  a,  6,  c  ... ,  shew  that 

aA.hB.cG  ...=aB.hC  ,cB  .... 

3.  Shew  that        (1)    {PQRT)x{PQTS)  =  {PQRS). 

(2)     (PTRS)  X  {TQRS)  =  (PQRS). 

[The  student  should  notice  the  position  of  the  element  T  in  the  factors.] 

4.  If  one  of  the  cross-ratios  of  a  range  =  -1,  find  the  values  of  the 
other  cross-ratios. 



CHAPTER  II 

EQUICROSS   RANGES  AND   EQUICROSS   PENCILS. 

PERSPECTIVE 

19.  Given  a  range  of  Jour  points  abed  on  one  straight  line,  and 

a  range  of  four  points  a'b'c'd'  respectively  corresponding  to  them  on 
another  straight  line,  if  a  cross-ratio  of  the  first  range  is  equal  to 

the  corresponding  cross-ratio  of  the  second,  then  the  other  cross- 
ratios  of  the  first  range  are  respectively  equal  to  the  corresponding 

cross-ratios  of  the  second. 

For  suppose  (abed)  =  (a'b'c'd'). 
Then  by  Art.  4  (1), 

and  (a'b'c'd')  =:  I -.-^^^. ^  '  (acdb) 

Therefore  (acdb)  =  (a'c'd'b'). 

Similarly  (adbc)  =  (a'd'b'c). 

20.  It  follows  at  once  from  Art.  4  that  if  two  ranges  of  four 

points  have  a  cross-ratio  of  the  one  equal  to  a  cross-ratio  of  the 
other,  then  each  one  of  the  24  cross-ratios  of  the  one  is  equal  to 

the  corresponding  cross-ratio  of  the  other ;  and  consequently  we 

may  briefly  say  that  two  such  ranges  have  their  cross-ratios  equal, 
or  have  the  same  cross-ratios,  or  we  may  speak  of  them  still  more 
briefly  as  equicross,  or  even  as  equal  ranges. 
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If  we  have  two  ranges  whose  corresponding  segments  are 

proportional,  we  shall  call  them  similar  ranges,  and  if  the 

corresponding  segments  are  equal,  the  ranges  are  said  to  be 

identical,  and  are  then  superposable.  All  such  ranges  are,  of 

course,  equicross. 

Ex.  In  the  range  {abed)  a&  =  3cm.,  6c  =  2cm.,  cd=lcm.  In  an  equi- 
cross range  {a'b'c'd')  find  the  position  of  d'  when 
(1)     a'6'  =  2cm.,  6'c'=3cm.  (2)     a'b' =  5  cm.,  6'c'  =  6cm. 
(3)     a'6'  =  4cm.,  6'c'  =  3cm.  (4)     a'b' =  6  em.,  b'c' =  4:cm. 

Ans.     (1)  c'd'  =  3;    (2)  c'd'  =  4f  ;    (3)  c'd'  =  lj%;    (4)  c'd'  =  2. 

It  should  be  noticed  that  ranges  which  are  equicross  are  not 

usually  similarly  divided,  though  of  course  they  may  be  so.  Thus 

comparing  the  range  (abed)  with  the  equal  ranges  (1),  (2),  (3),  (4), 

we  see  that  only  in  the  last  are  the  segments  proportional  to 
those  of  (abed). 

Ranges  in  Perspective. 

21.  If  a  pencil  is  cut  by  two  transversals  in  the  points  abed, 

a'b'c'd',  the  ranges  are  equicross  by  Art.  15,  for  each  of  them  is 
equal  to  the  cross- ratio  of  the  pencil.     Hence 

A  pencil  cuts  any  two  transversals  in  equicross  ranges*. 

This  is  the  fundamental  proposition  of  the  subject,  and  is  a 

projective  property.  It  is  important  to  notice  that  while  the 

ratio  of  the  segments  into  which  a  transversal  is  divided  by  a 

pencil  of  three  rays  is  the  same  only  for  parallel  transversals  and 

for  a  pencil  of  parallel  rays,  the  cross-ratio  for  a  pencil  of  fotir 
rays  is  the  same  for  all  transversals. 

Def.  When  two  equicross  ranges  are  so  placed  that  they  are 

Perspective  transversals  of  the  same  pencil,  i.e.  when  the  lines 
Centre  of  joining  corresponding    points  on  the  ranges   are 

Perspective.         concurrent,  the  ranges  are  said  to  be  in  perspective, 
and  the  vertex  of  the  pencil  is  called  the  centre  of  perspective. 

*  Pappus,  Bk  VII,  Prop.  129. 
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If  the  ranges  are  in  perspective,  they  are  necessarily  equi- 
cross,  but  the  converse,  as  we  shall  see  later,  is  by  no  means 

necessarily  true.  What  happens  when  they  are  not  in  perspective 

is  discussed  in  Chapter  XI.  We  can,  however,  always  place 

equicross  ranges  so  that  they  shall  be  in  perspective;  a  simple 

method  of  doing  this  is  given  in  Art.  23. 

If  the  two  ranges  when  in  perspective  are  parallel  it  is  easy  to 

see  that  they  are  similar,  and  conversely,  to  put  similar  ranges 

in  perspective  all  that  is  needed  is  to  make  them  parallel. 

If  two  ranges  are  identical  they  will  also  be  in  perspective 

when  they  are  parallel,  the  centre  of  perspective  being  at 
infinity. 

All  this  was  well  known  to  and  discussed  by  the  ancient 

Geometers,  as  the  student  will  see  by  referring  to  Appendix  I. 

22.  Given  two  equicross  ranges,  if  the  lines  joining  3  pairs  of 

corresponding  points  pass  through  a  point,  the  line  joining  the 

fourth  pair  will  also  pass  through  the  same  point. 

Fig.  8. 

Let  (abed)  and  (a'b'c'd')  be  two  equicross  ranges,  and  let  aa\ 

bb',  cc'  meet  in  0.  If  Od  does  not  pass  through  d',  let  it  meet  the 
line  ab'c  in  d". 

Then  (a'b'c'd")  =  (abed)  by  Art.  21 

=  (a'b'c'd')  by  hypothesis. 

Therefore,  by  Art.  10,  d"  coincides  with  d'. 

I 



22-24]  PERSPECTIVE  17 

23.  Def.  In  two  equicross  ranges,  if  a  point  of  one  coin- 

Common  cides  with  the  corresponding  point  of  the  other, 

point.                 the  two  ranges  are  said  to  have  a  common  point. 

If  two  equicross  ranges  have  a  common  pointy  then  the  straight 

lines  joining  the  other  pairs  of  corresponding  points  are  concurrent. 

O 

Fig.  9. 

Let  the  points  a,  a'  coincide,  and  let  hh\  cc'  meet  in  0. 

Join  Oa,  and  let  Od  meet  a'h'c'  in  d". 

Then  {abcd)^(a'b'c'd")  by  Art.  21 
=  {a'h'c' d')  by  hypothesis. 

Therefore,  by  Art.  10,  d"  coincides  with  d'. 
Note.  When  this  is  the  case  the  ranges  are  in  perspective, 

centre  0,  but  of  course  they  may  be  in  perspective  even  if  (a,  a') 
do  not  coincide,  but  it  is  not  so  easy  to  put  them  in  perspective  in 

that  case.  This  will  be  discussed  when  we  come  to  homographic 

ranges  in  which  there  are  more  than  4  points  on  each  range. 

Pencils  in  Perspective. 

24.  IJ  two  pencils  are  subtended  by  the  same  ramge,  they  are 

equicross. 

By  Art.  15  the  cross-ratios  of  each  of  the  pencils  are  equal  to 
the  cross-ratios  of  the  range  abed. 

Def.  When  two  equicross  pencils  are  so  placed  that  they 

Perspective  subtend  the  same  range,  i.e.  so  that  corresponding 
Axis  of  rays  intersect  in  collinear  points,  the  pencils  are 

Perspective.         gj^j^  ̂ ^  y^g  ̂ ^  perspective,  and  the  common  range 
M.  2 
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[CH.    II is  called  the  axis  of  perspective.     A  simple  method  of  putting 

them  in  perspective  is  given  in  Art.  25. 

Just  as  in  the  case  of  ranges,  if  two  pencils  are  equicross, 

they  are  not  necessarily  in  perspective,  and  what  happens  in 

general  is  discussed  in  a  later  chapter. 

25.     Def.     In  two  equicross  pencils  if  a  ray  of  one  pencil 

coincides  with  the  corresponding  ray  in  the  other, 

the  two  pencils  are  said  to  have  a  common  tdy. 

If  two    equicross    pencils   of   4    corresponding   rays   have   a 

common   ray^   then   the  other  pairs  of  corresponding   rays   will 

intersect  in  three  points  which  are  collinear^  and  conversely. 

Let 

Oc,  O'd, 
comTHon 

Fig.  11. 

the  rays  of  the  pencils  be  Oa,  Oh,  Oc,  Od,  and  O'a,  O'h, 
so  that  the  rays  0«,  O'a  coincide.  Join  he  meeting  the 

ray  in  a,  and  let  he  meet  the  rays  Od,  O'd  in  8,  8'.    Then 

A 
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since  the  two  pencils  are  equicross,  (abcS)  =  {abch'),  and  therefore 
by  Art.  10  the  points  8,  h'  coincide,  i.e.  the  line  he  passes  through  d. 

Conversely,  if  two  pencils  are  such  that  the  intersections  oj 

three  pairs  of  corresponding  rays  are  collinear,  and  the  fourth 

pair  of  rays  are  in  the  same  straight  line,  the  pencils  are  equicross. 

For  in  Fig.  11  suppose  the  point  d,  to  lie  on  the  line  he. 

Then  by  Art.  24  the  pencils  0(ahcd)  and  0'  (ahcd)  are  equicross. 
If  two  equicross  pencils  with  centres  0,  0\  are  such  that  the 

intersections  of  three  pairs  of  corresponding  rays  are  collinear,  as 

a,  6,  c  in  Fig.  10,  then  the  fourth  pair  of  rays  tvill  also  intersect 

on  the  line  abc,  for  if  they  meet  this  line  in  two  separate  points 

8,  8',  we  should  have  (abcS)  =  (abcS'),  and  therefore,  by  Art.  10, 
8  and  8'  must  coincide. 

In  all  the  above  cases  the  pencils  are  in  perspective,  and  the 

line  on  which  the  pairs  of  corresponding  rays  intersect  is  the  axis 

of  perspective. 

Triangles  in  Perspective. 

26.  Def.  If  two  triangles  are  such  that  the  lines  joining 

Co-polar  *'^®  pairs  of  corresponding  vertices  are  concurrent. 
Triangles.  the  triangles  are  said  to  be  co-polar. 

If  two  triangles  are  such  that  the  intersections 

Co-axial  of  pairs  of  corresponding  sides  are  coUinear,  the  tri- 
Triangles.  angles  are  said  to  be  co-axial. 

Two  tria7igles  ivhich  are  co-polar  are  also  co-axial,  and  two 

triangles  which  are  co-axial  are  also  co-polar. 

Let  abc,  a'b'c  be  two  triangles  such  that  the  lines  aa,  hb',  cc 

meet  in  the  point  0.  Let  {be,  h'c)  meet  in  a,  (ca,  c'a)  in  y8  and 

{ah,  ah')  in  y.     It  is  required  to  prove  that  a,  fi,  y  are  coUinear. 
Let  the  line  Occ  meet  ab  in  8  and  ah'  in  8'. 

Then  by  Art.  21  the  range  (a86y)  =  the  range  (a'8'6'y),  and  by 

Art.  15  the  pencil  c  {ahby)  =  the  pencil  c'{a'8'b'y). 
Now  the  corresponding  rays  c8  and  c'S'  are  also  common  rays. 
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[CH.   II and  therefore  by  Art.  25  the  intersections  of  {ca,  ca\  (cb,  c'b'), 

(cy,  c'y)  are  collinear,  i.e.  the  points  /?,  a,  y  are  collinear. 
Conversely,  let  the  points  a,  /3,  y  be  collinear.  It  is  required 

to  shew  that  aa',  bb',  cc'  are  concurrent. 

Since  the  pencils  c  (aBby)  and  c'(a'B'b'y)  are  such  that  the 
intersections  of  three  pairs  of  corresponding  rays  are  collinear, 

and  the  fourth  pair  of  rays  are  common,  the  pencils  are  equicross^ 

by  Art.  25. 
y I 

Fig.   12. 

Therefore  c  (aSby)  =  c{a'S'b'y), 

.-.    by  Art.  15  (ahby)  =  (a'S'b'y), 

Perspective,        ̂ ^^^  ̂ Y  ̂ ^^'  ̂ ^j  '^^'j  ̂ ^ '  ̂̂ '  ̂^^  concurrent. 
Two  triangles  which  have  the  above  properties 

are  said  to  be  in  per.^pective.  The  point  0  is  called 

the  pole,  or  centre  of  perspective,  and  the  line  a^y 

the  axis  of  perspective. 

Pole, 
Centre  of 
Perspective, 
Axis  of 

Perspective. 

Ex.  1.  In  Fig.  8.  If  the  ranges  intersect  in  e  shew  that  the  range 
formed  from  any  four  of  the  points  a,  b,  c,  d,  e  is  equicross  with  the 
corresponding  range  on  the  other  transversal. 

Ex.  2.  If  two  pencils  O  (abed),  0' {abed)  are  in  perspective  shew  that 
the  pencil  formed  from  any  four  of  the  rays  0{0'abcd)  is  equicross  with 
the  corresponding  pencil  from  O'. 



CHAPTER   III 

HARMONIC    RATIO 

27.  Def.     If  the  points  a,  a  divide  a  segment  ef  internally 

.  and  externally  in  a  given  ratio,  i.e.  in  such  a  way 

Range,  ^j^^^  ̂ j^^  cross-ratio  (aaef),  i.e.  —  •   ,-.=  -1,  the  four 
Harmonic  \       ̂   /'         of  aj 

onjugates.        ̂ ^^  g^-^  ̂ ^  form  a  harmonic  range 'j  the  points  a,  a 
are  said  to  divide  the  segment  ef  harmonically,  and  are  called  the 

harmonic  conjugates  of  the  points  e^f. 

/• 

Since  the  above  relation  may  be  written  — r :  -r-,  ==  —  1,  we  see ^  ea    fa 

also  that  the  points  e,  /  divide  the  segment  aa  harmonically,  and 

that  they  are  the  harmonic  conjugates  of  the  points  a,  a. 

The  points  a,  a    may  be  spoken  of  as  a  pair  of  conjugate 

points,  and  similarly  for  e,  f     Also  each  point  of  a 

Harmonic,  V^^^  ̂ ^  conjugates  is  called  the  fourth  harmonic,  or 

Harmonic  the  harmoriic  conjugate  of  the  other  for  the  second 

conjugate.  ^^.^  ̂^  ̂ ^^^^^ 
28.  Substituting  the  value  —  1  in  any  one  of  the  six 

expressions  in  Art.  4  we  see  that  when  a  range  is  harmonic  the 

six  values  of  the  cross-ratios  reduce  to  three,  viz.  -  1,  J,  2. 
Conversely,  if  a  range  has  one  of  its  cross-ratios  equal  to 

either  —  1,  or  i,  or  2,  the  range  is  harmonic. 

Since  -  1  is  the  value  of  the  cross-ratio  (aa'e/),  where  aa  and 
ef  are  pairs  of  conjugate  points,  the  reciprocal  of  this  ratio,  i.e. 

(aafe),  see  Art.  3,  must  also  =—1. 
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Hence  {aa'ef)  =  (aafe)  =  (a'aef)  by  Art.  3.  Consequently,  a 
range  is  harmonic  if  it  has  a  cross-ratio  whose  value  is  unaltered 
on  interchanging  the  positions  of  a  single  pair  of  points.  When 

this  is  the  case,  the  pair  of  points  so  interchanged  are  conjugates. 

We  may  remark  that  not    only  is  (aa'ef)  =  {alaef),   but  it 
follows  that 

•       {aeaf)  =  {a'eaf)  -  {afa'e), 

and  {aefa)  =  {a'efa)  =  {afea), 

i.e.  in  a  harmonic  range  each  of  either  pair  of  conjugate  points  is 

interchangeable  in  any  of  the  cross-ratios,  not  only  in  the  funda- 
mental cross-ratio  whose  value  is  —  1. 

If  we  take  the  other  values  of  the  cross-ratios,  viz.  {aeaf)  =  2, 
we  have 

aa'  ea  .         /      /•    «   ̂        ' -— ;:-2=  =  2,      ..    aa  .ef=2aj  .ea, 
«/    «/ 

and  (a/ea')  =  J ,     — 7 :  ̂,  =  J ,      ..    aa! .  ef-  2ae  .  af 
aa   Ja       " 

These  results  can  also  be  easily  obtained  from  Euler's  Equa- 
tion, Art.  4, 

ad .  ef+  ae.fa'+  af .  a'e  =  0. 
^       .  /     ,  /.N         1        .      ae,  af        , 
For  since        (aa  e/  )  —  —  1,      i.e.   —^ — r  =  —  !>     ̂ ^      -^  '  af.  a  e 

therefore  aa! .  ef=  '2ae  .  af=  —  2af .  a'e. 

Ex.  If  aa'  =  4  cm.  and  is  divided  by  e  and  /  internally  and  externally  in 
the  ratio  3  : 1,  find  the  values  of  aa'  .ef,  ae.a'f  and  af  .a'e,  and  verify  the^ above  relations. 

29.      To  find  the  fourth  harmonic  of  three  given  points. 

We  will  employ  the  method  of  Art.  9.     See  also  Art.  32,  Cor.j 

(1)  Let  the  segment  aa'  be  cut  internally  at  the  point  e.  1\ 

is  required  to  find  the  fourth  harmonic  of  e  for  the  points  a,  a' 

Through  a  and  a'  draw  any  two  parallel  straight  lines  aa,  «'/?,] 
and  on  aa.  take  two  points  a,  a'  such  that  aa  =  —  ad. 
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I 
'       Draw  ae  meeting  a^  in  /?.     Join  ap  meeting  aa'  in  f.     Then 
/  will  be  the  point  required. 

For  ae  :  ea  =  aa  :  fta 
=  a  a  :  pa 

^af'.a'f. 

Fig.  13. 

(2)  Suppose  the  segment  aa  is  cut  externally  at  f.  As 

before,  take  aa  =  —  aa.  Join  a!f  cutting  the  parallel  a'p  in  jB. 
Then  a^  will  meet  aa   in  the  required  point  e. 

CoR.  If  one  of  the  pair  of  conjugate  points  ef  is  at  infinity, 

as  f  suppose,  then  e  is  the  mid-point  of  aa,  as  is  obvious  from 
the  construction  in  Fig.  1 3,  since  af  will  then  be  parallel  to  aa\ 

and  aft  will  =  W  —  —  aa. 

This  also  follows  from  the  algebraical  relation  {aa'ef)  =  —  1, 

/» 

as  the  student  should  verify,  noting  that  ̂ =1,  and  therefore 

ay 

-r  =  —  1  •     Hence ae 

If  one  of  the  four  points  of  a  harmonic  range  is  at  infinity,  its 

conjugate  is  at  the  mid-point  between  the  other  two,  and  vice  versa. 

30.  Given  three  rays  of  a  pencil,  to  find  the  fourth  harmonic 

of  one  of  them  for  the  other  two. 

Let  PA,  PB  be  two  of  the  given  rays,  PC  the  third.  It  is 

required  to  find  the  fourth  harmonic  of  PC  for  PA  and  PB. 
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Draw  any  line  ah  parallel  to  PC  meeting  PA,  PB  or  these 

lines  produced  in  a,  6,  and  bisect  ah  in  d.  Then  Pd  is  the  ray 

required. 

For  since  ah  is  bisected  at  d,  the  range  {ah  qo  d)  is  harmonic, 

Fig.  14. 

by  Art.  29,  and  consequently  by  Art.  15  the  pencil  P  {ABCD)  is 
harmonic. 

Cor.  From  the  above  construction  it  is  evident  that  if  one 

of  the  rays  PC,  PD  bisects  the  interior  angle  between  PA  and 

PB,  its  conjugate  will  bisect  the  exterior  angle  between  them. 
Hence, 

If  one  of  three  rays  of  a  pencil  hisects  the  angle  hetween  the 

other  two,  its  conjugate  is  at  right  angles  to  it. 

31.  Every  harmoriic  range  determines  a  harmonic  pencil  at 

every  centre,  and  every  harmonic  pencil  determines  a  harmonic 

range  on  every  transversal.     See  Arts.  15  and  21. 
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Relations  between  the  Segments  of  a  Harmonic  Range. 

32.  Let  aa\  ef  be  two  pairs  of  conjugate  points  forming  a 

harmonic  range,  and  let  0,  0'  be  the  mid-points  of  aa'  and  ef 
respectively. 

O  O' 

a' 

f 

Fig.  15. 

Then  06.0f^0a?=0a\ 

■n.       .  ae      ae     ̂ ^ 
r  or  since  — ̂   +  -7>==  U  *, af     af 

Oe-Oa_     Oe-Oa  _     Oe  +  Oa 

"    Of^~Oa~~'  Of^Ja'~~  Of+Oa' 
whence,  clearing  of  fractions,  we  have  at  once 

20e.Of=20a\ 

the  other  terms  cancelling. 

.'.    Oe.  Of=  Oa'  =  Oa'  =  (| aa'f  *. 

Similarly  O'a  .  O'a'  =  (^  eff^. 

Cor.  This  gives  rise  to  another  construction  for  the  fourth 
harmonic. 

On  aa  as  diameter  describe  a  circle,  and  let  aa'  be  the 
diameter  perpendicular  to  aa.  Let  ae  meet  the  circle  in  P. 

Then  a!P  will  meet  aa  in  the  required  point  f.  This  is  obvious 

from  consideration  of  similar  triangles. 

33.     Another  interesting  property  is  that 

1      i  -_i 
ae     af     aa  ' 

-r,       .  o^      a'e     - ± or  since  —  +  —  =0, «/     a/ 

*  Pappus,  ]5k  VII,  Lemma  xxxiv. 
t  Pappus,  Bk  VII,  Lemmas  xxvi,  xxvii. 
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[CH.    Ill ae      ae  —  aa 

af     af—  aa 

0, 

.'.    aa' .  a/+  aa  .  ae  =  2ae  .  a/, 

•    i_      1  -  A 
'  '    ae      af     aob  ' 

This  property  shews  that  aa!  is  the  harmonic  mean  between 

the  segments  ae,  af^  and  may  be  considered  the  reason  for  the 

name  '  harmonic '  being  applied  to  the  range. 

34.  The  following  7  relations  are  given  by  Pappus,  Bk  vii, 

in  his  Lemmas  to  Euclid's  Porisms,  and  are  left  as  exercises  to 
the  student. 

Lemmas  xxii  and  xxiv, 

xxiii  and  xxv. 
(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

xxvi  and  xxvii. 

Lemma  xxxi^ 

00'2-aO-^  +  eO'^ 

ae'^laO'.Oe 

ea'=2aO'.Oe 

ae^      aO' 
ea"^      a'O' 
ae .  ea  =  Oe  .  ef^ 

af:a'f=0/.e/ 
ae       of 

ea'      af 

Shew  that  if  the  cross- ratio  {aa'ef)  is  equal  to  either 

-  \ (aeaf)  or  —  2  {afea)  the  range  aa'ef  is  harmonic,  aa'  and  ej 
being  pairs  of  conjugate  points. 

35.      Given  two  segments  aa',  hh'  on  a  line,  it  is  required  to 

find  on  the  same  line  a  point  0  such  that  Oa .  Oa'  ~  Ob .  Ob'. 
Assuming  the  existence  of  such  a  point,  we  have 

Oa  .  Oa  =  Ob  .  Ob\  '^ 

Oa  _0b^  _  Ob' -Oa     ab^ 
"    Ob~0^'~  OaT^Ob  ~  ba' ' 

Hence  the  construction.  Through  a  and  b  draw  two  parallel 

lines,  and  on  them  take  aa  =  ab\  and  b/3  =  ba'.  Then  the  point 
where  a/3  meets  the  given  line  is  the  required  point  0. 

A 
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If  the  segments  aa\  bb'  do  not  overlap,  the  products  Oa .  Oa 
and  Ob  .  Ob'  are  both  positive,  and  we  may  put  them  =  Oe^  or  Of^. 

Then  each  of  the  segments  aa',  bb'  will  be  divided  harmonically  by 
the  real  points  e,  f. 

If  the  segments  aa',  bb'  overlap,  the  products  Oa .  Oa  and 
Ob .  Ob'  are  both  negative,  and  consequently  the  points  e,  f  are 

imaginary,  but  we  shall  still  say  that  the  segments  aa',  bb'  are 
divided  harmonically  by  the  imaginary  points  e,  /. 

a      b      O     a'      b' 

Fig.  17. 

It  is  evident  from  the  construction  that  for  any  given  position 

of  the  segments  aa,  bb'  there  is  one  and  only  one  position  of  the 
point  0,  and  only  one  position  of  the  segment  ef.     Hence 

Only  one  segment  can  be  found  to  divide  two  given  collinear 

segments  harmonically. 

36.  Given  a  pencil  of  four  rays,  if  we  take  the  rays  in  two 

pairs  in  any  manner,  then  in  each  arrangement  we  can  always 

find  a  third  pair  of  rays  which  will  form  a  harmonic  pencil  with 

each  of  the  given  pairs. 

This  follows  at  once  from  the  preceding  Art.  by  drawing 

a  transversal  cutting  the  arranged  pairs  in  aa',  bb',  and  finding 
the  harmonic  conjugates  e,foi  their  segments.  Then  if  0  is  the 

vertex  of  the  given  pencil,  Oe,  O/ave  conjugates  for  Oa,  Oa'^  and 

also  for  Ob,  Ob'.  The  rays  Oe,  Of  will  be  real  or  imaginary 
according  as  we  take  the  two  given  pairs  to  be  non-overlapping  or 
otherwise. 



CHAPTER  IV 

HOMOGRAPHIC  RANGES   AND   HOMOGRAPH IC   PENCILS 

37.  When  two  ranges  are  in  perspective  we  can  have  as 

many  points  as  we  please  on  each  by  supposing  a  ray  to  rotate 

round  the  centre  of  perspective,  and  so  determine  a  moving  point 

on  each  range  such  that  the  two  moving  points  are  always  a  pair 

of  corresponding  points.  The  property  of  such  ranges  in  per- 

spective is  that  the  cross-ratio  of  any  four  points  on  one  is  equal 

to  the  cross-ratio  of  the  corresponding  four  points  on  the  other. 
Now  suppose  that  in  this  way  a  whole  series  of  points  are  fixed 

on  the  two  ranges,  and  then  the  ranges  are  moved  away  so  as 

no  longer  to  be  in  perspective,  without  disturbing  the  relative 

positions  of  the  points  on  each  range*.  The  quality  of  cross- 
ratios  of  course  still  remains.  Such  ranges  are  called  homo- 

graphic.  In  the  next  article  the  definition  is  given  more  formally, 
and  without  reference  to  perspective  properties. 

38.  Def.  If  two  straight  lines  are  divided  at  corresponding 

nomographic  points  in  such  a  manner  that  the  cross-ratio  of  any 
Ranges.  fo^r  points  of  the  one  is  equal  to  the  cross-ratio  of 
the  four  corresponding  points  of  the  other,  the  two  straight  lin^s 

are  said  to  be  divided  homographically,  and  their  points  of  division 
are  said  to  form  two  homographic  ranges. 

*  We  may  even  move  the  ranges  so  that  these  lines  coincide,  having  of 
course  the  ranges  distinctly  marked  to  prevent  confusion.  This  case  is  very 
important,  and  is  discussed  later. 
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It  is  important  to  emphasize  the  fact  that  when  we  speak  of 

two  lines  Z,  IJ  being  divided  homographically,  we  mean  that 

every  point  on  L  belongs  to  the  first  range  and  every  point  on  L 

belongs  to  the  second  range,  and  that  each  point  on  either  of  the 

lines  corresponds  to  one  and  only  one  point  on  the  other.  This 

correspondence  may  be  arranged  in  an  infinite  number  of  ways  by 

taking  any  three  points  a,  6,  c  on  Z,  and  any  three  a',  h\  c'  on  L' 
as  their  correspondents.  Then,  corresponding  to  any  position  of  a 

variable  point  m  on  L,  we  can  find  one,  and  only  one  point  m  on 

L'  such  that  {ahem)  ~  {a'b'c'm'),  for  the  value  of  the  cross-ratio  is 

then  fixed,  and  by  Art.  10  the  point  m'  is  unique.  Of  course, 
for  every  different  position  of  m  the  cross-ratio  (ahem)  will  have  a 

different  value,  but  the  points  a,  h,  c  and  a',  h',  c'  will  remain  un- 
changed, and  will,  as  it  were,  determine  the  character  of  the 

Character-  different    cross-ratios.     For    this    reason    we  shall 

istic  of  a  often  refer  to  the  sets  of  points  ahc  and  a'h'c  as  the 
^''*^®*  characteristics  of  the  ranges  L  and  L'. 

For  shortness  we  shall  often  denote  a  range  (abede  ...)  by  (a), 

and  a  pencil  P (ahcde  ...)  by  P (a). 

39.  Ranges  which  are  homographic  to  the  same  range  are 

homographic  to  one  another. 

From  Def .  Art.  38,  it  follows  at  once  that  if  a  range  of  points 

(a)  is  homographic  to  a  range  (a'),  and  also  to  a  range  (a"),  then 
the  cross-ratio  of  any  four  points  of  the  range  (a)  will  be  equal  to 

the  cross-ratio  of  the  four  corresponding  points  of  the  range  (a")^ 

and  therefore  by  Art.  38  the  ranges  (a')  and  (a")  are  homo- 
graphic. 

40.  Given  two  lines  L,  L',  one  of  tvhich,  Z,  is  divided  in  any 
manner  at  the  points  a,  h,  c,  d  ...,  it  is  required  to  find  on  U 

corresponding  points  a,  h',  c',  d'  ...  so  that  the  two  lines  may  he 
divided  homographically. 

As  pointed  out  in  Art.  38  this  may  be  done  in  an  infinite 

number  of  ways,  because  we  may  select  any  three  points  a\  h\  c 
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that  we  please  on  L\  and  take  them  as  the  points  corresponding 

to  rt,  6,  c  on  Z,  we  can  then  by  Art.  9  find  the  points  c?',  e  ... 
corresponding  to  g?,  e   

It  should  be  noticed  that  there  is  one  range,  and  one  only, 

corresponding  to  each  selection  of  dh'c. 

a'  b'  c 

Fig.  18. 

One  practical  way  of  finding  the  series  of  points  on  L'  after 

having  determined  on  the  three  characteristic  points  a'h'c  is  as 
follows : 

Through  a  draw  a  line  L"  making  any  convenient  angle  with 
Z,  and  take  ah"=  a'h\  ac"  -^dc\  and  let  hh'\  cc"  meet  in  S.  Then 

the  lines  drawn  from  S  to  the  points  d,  e  ...  will  meet  L"  in 

points  d'\  e"...,  and  if  on  L'  we  take  a'd'=ad",  de-ae"....,  the 

points  d\  e  ...  will  be  the  points  required  on  L'  corresponding  to 
the  points  d',  e  ...  on  L. 

That  is,  the  line  L"  and  the  range  on  it  are  only  the  line  IJ 
and  its  range  moved  to  a  position  in  which  it  is  in  perspective 
with  the  range  on  L.     See  Art.  37. 

In  particular  we  can  find  the  points  on  each  which  correspond 

to  points  at  infinity  on  the  other  by  drawing  through  aS'  lines 

parallel  to  Z"  and  Z,  meeting  Z,  Z"  in  /  and  J" .     The  point 

I 
It  7  a 
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will  correspond  to  the  point  at  infinity  on  L'\  and  therefore  also 

to  the  point  at  infinity  on  L',  The  point  J"  will  correspond  to 

the  point  at  infinity  on  Z,  and  if  on  L'  we  take  a! J'  =  aJ'\  the 
point  J'  will  correspond  to  the  point  at  infinity  on  L.  See  also 
Art.  46,  Fig.  20,  and  Art.  54. 

This  construction  can  be  applied  to  the  case  where  the  points 

a',  6',  c'  are  on  the  line  Z,  i.e.  when  the  line  L'  coincides  with  the 
line  X,  which  is  sometimes  desirable,  and  which  has  been  referred 
to  in  the  footnote  to  Art.  37. 

41.  The  following  results  are  important  and  obvious  exten- 
sions of  the  theorems  in  Arts.   21,  23. 

(1)  If  two  straight  lines  aL,  ah"  are  cut  hy  a  pencil,  they  are 
Common  divided  homographically .  The  point  a  evidently 
Point  of  Two  represents  two  coincident  corresponding  points, 

Ranges.  ^^^^  ̂ ^  g^^-^j  ̂ ^  y^^  ̂   common  point  of  the  two 
ranges  on  L,  L". 

(2)  If  two  straight  lines  are  divided  hom,ographically,  and  if 

their  point  of  intersection  is  a  common  point  of  the  ranges,  the 

straight  lines  joining  the  other  pairs  of  corresponding  points  are  all 

concurrent,  and  tJie  ranges  are  said  to  be  in  perspective. 

42.  Def.  When  two  pencils,  each  containing  any  number 

nomographic  of  rays,  are  such  that  they  have  each  ray  of  one 

Pencils.  pencil  corresponding  to  a  ray  of  the  other  in  such 
a  way  that  the  cross-ratio  of  any  four  rays  of  the  one  is  equal  to 

the  cross-ratio  of  the  four  corresponding  rays  of  the  other,  the 
pencils  are  said  to  be  homographic. 

A  similar  remark  to  that  made  in  Art.  38  respecting 

homographic  ranges  might  be  made  here  respecting  homo- 
graphic  pencils. 

By  Art.  15  if  a  pencil  is  cut  by  a  transversal,  it  will  be 

permissible  and  convenient  to  say  that  the  pencil  and  transversal 

are  homographic. 
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•  Def.  If  two  pencils  having  either  the  same  or  different 

Superposable  vertices  are  such  that  the  angles  between  each  pair 
or  Identical  of  rays  of  the  one  are  equal  to  the  angles  taken  in 

Pencils.  ^^le  same  sense  between  the  corresponding  pairs  of 
rays   of   the  other,   the  pencils  are  said  to  be  superposable  or 
identical. 

Superposable  pencils  are  obviously  homographic. 

43.  If  two  pencils  0(ABC  ...),  0' {A' B' C . . .)  are  homographic^ 

and  frowj  0  rays  are  drawn  perpendicular  to  the  rays  O'A',  0' B' ... 

and  forming  the  pencil  0  (abc  ...),  and  if  the  pencil  0' {a'h'c' ...)  is 
formed  from  0  {ABC . ..)  ina  similar  manner,  the  pencils  0  {abc  ...) 

and  0'  {a'b'c  ...)  are  homographic. 

For  the  angle  O'Oa  is  the  complement  of  00' A',  and  O'Ob  is 

the  complement  of  00' B\  therefore  aOb  =  A'O'B',  &c.  Therefore 

the  pencils  0  {abc  ...),  0' {A' B' C  . . .)  are  superposable.  Similarly 

the  pencils  0' {a'b'c  ...),  0  {ABC ...)  are  superposable.  But 

0{ABC  ...)  and  0' {A'B'C ...)  are  homographic,  therefore  so  also 

are  0  {abc  ...)  and  0' {db'c  ...). 

44.  Pencils  which  are  homographic  to  the  same  pencil  are 

homographic  to  one  another. 

From  Def.  Art.  42  it  follows  that  if  a  pencil  P  {a)  is  homo- 

graphic  to  a  pencil  P'{a'),  and  also  to  a  pencil  P"{a"),  then  the 

cross-ratio  of  any  four  rays  of  the  pencil  P'{a')  will  be  equal  to 
the  cross-ratio  of  the  four  corresponding  rays  of  the  pencil 

P'{a"),  and  therefore  the  pencils  P'{a')  and  P'{a")  are  homo- 
graphic. 

45.  If  two  pencils  are  drawn  from  two  centres  0,  0',  and  are 
such  that  their  rays  intersect  by  pairs  iri  a  series  of  collinear 

points,  the  pencils  are  homographic. 

For  each  of  the  pencils  is  homographic  with  the  range  on 

their  common  transversal  ahc,  Fig.   19. 



48-46]  HOMOGRAPHIC   PENCILS  38 

If  the  line  00'  be  produced  to  meet  the  transversal  abc  in  Ky 

Common  Ray  *^®  ̂ ^^^  ̂ ^  ̂ ^^^  evidently  represent  two  coin- 
ofTwo  cident  corresponding  rays,  and  may   be   called  a 

Pencils.  common  ray  of  the  two  pencils. 

Pencils  in 
Perspective 

Conversely,  if  two  homographic  pencils  have  a 

common  ray,  their  other  pairs  of  corresponding  rays 

tvill  intersect  in  a  series  of  points  which  are  collinear,  jind  the 
pencils  are  said  to  he  in  perspective.     Art.  25. 

46.  To  find  a  range  which  will  he  in  perspective  with  each  of 

two  given  homographic  ranges  which  are  not  in  perspective  tuith 
each  other. 

Fig.  20. 
M. 
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Let  (abed...)  and  (a'b'c'd' ...)  be  the  given  homograph 
ranges.  Then  if  on  the  line  joining  any  pair  of  corresponding 

points  a,  a'  we  take  two  points  P,  P',  and  form  the  pencils 

P {abed ...),  P' {a'b'c'd' ...),  the  pairs  of  corresponding  rays  of 
the  two  pencils  will  intersect  in  a  series  of  collinear  points 

P,  y,  8  ...  by  Art.  25,  for  they  are  homographic,  and  have  a 
common  ray. 

47.  If  we  have  two  homographic  pencils  P {ABC ...), 

P'{A'B'C' ...),  and  if  through  the  point  of  intersection  of  a  pair 
of  corresponding  rays  we  draw  two  transversals  meeting  the  rays 

of  the  pencils  in  the  two  ranges  abc  ...,  a'b'c' . . . ,  then  since  the 

ranges  are  homographic  and  have  a  common  point,  the  lines  aa', 

bb',  cc  ...  are  concurrent  by  Art.  41  (2). 

48.  Given  a  pencil  of  four  rays,  and  of  «  second  pencil  three 

rays  which  correspond  to  three  rays  of  the  first  pencil,  it  is  required 

1 3hic  ̂ H 

I 

Fig.  21. 
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to  find  ajourth  ray  of  the  second  pencil  corresponding  to  the  fourth 

ray  of  the  first  so  that  the  two  pencils  may  he  equicross. 

Let  OA,  OB,  OC,  OD  be  the  rays  of  the  first  pencil,  0' A\  0'B\ 

O'C  the  three  rays  of  the  second  corresponding  to  OA,  OB,  OG. 

It  is  required  to  find  a  fourth  ray  O'D'  so  that  the  pencils 

0{ABGD)  and  0'{A'B'C'D')  may  be  equicross. 

Let  a  be  the  point  where  OA,  O'A'  intersect.  Through  a 

draw  a  transversal  passing  through  the  point  h  where  OB,  O'B' 
intersect,  and  let  it  meet  00  in  c  and  OD  in  d.  Through  a  draw 

a  second  transversal  passing  through  the  point  c  where  OG,  O'G' 

intersect,  and  let  it  meet  O'B'  in  h' .  Then  h  and  h'  both  lie  on 

O'B',  and  c,  c'  both  lie  on  OG.  Let  S  be  the  point  where  these 
two  lines  intersect.  Join  Sd,  and  let  it  cut  the  transversal  ab'c 

in  d'.     Then  O'd'  is  the  ray  required. 

For  (abed)  and  {ah'c'd')  are  the  ranges  in  which  two  trans- 

versals are  cut  by  a  pencil,  centre  aS',  and  are  therefore  equicross, 
by  Art.  21. 

49.  There  are  two  classes  of  questions  in  the  solution  of 

which  the  properties  of  homographic  ranges  or  pencils  in  per- 
spective are  immediately  applicable,  viz. : 

(1)  Those  in  which  it  is  required  to  prove  that  the  locus  of  a 

moving  point  is  a  straight  line ; 

(2)  Those  in  which  it  is  required  to  prove  that  a  moving 
straight  line  passes  through  a  fixed  point. 

In  (1)  we  obtain  two  homographic  pencils  having  a  common 

ray,  viz.  the  line  joining  the  vertices,  and  having  the  different 

positions  of  the  moving  point  for  the  intersections  of  pairs  of 

corresponding  rays. 

In  (2)  we  obtain  two  homographic  ranges  having  a  common 

point,  and  having  the  moving  line  in  its  different  positions  joining 
pairs  of  corresponding  points. 

3—2 
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EXAMPLES. 

1.  A  line  is  drawn  in  a  given  direction,  and  is  terminated  by  two  given 
lines.    Find  the  locus  of  the  point  which  divides  it  in  a  given  ratio. 

Let  the  moving  line  in  any  position  meet  the  given  lines  OA,  OB  in  the 

points  m,  m',  and  let  ni7n'  be  divided  at  P  so  that  mP=K .m'P  where  K  is 
constant.     Then  the  different  positions  of  the  moving  line   constitute  a 
pencil  of  parallel  rays  whose  centre  is  at  infinity,  and  therefore  the  ranges 

(m),  {m')  are  homographic.     Let  vi^P^nii  be  any  other  position  of  the  moving mP 

line.     Then  the  range  {mm' Pec  )  =  —^=K=the  range  {mimi'Picc  ). 
The  ranges  being  equicross,  and  having  go  for  a  common  point,  are  in 

perspective,  and  therefore  PP^,  mmi,  and  m'mi  are  concurrent,  i.e.  the  locus 
of  P  is  a  straight  line  passing  through  0. 

2.  Given  two  lines  Oa,  Ob,  and  two  fixed  points  a,  b  on  them,  and  also 

two  variable  points  m,  m'  on  them  such  that  0m-\-0m'=0a+0h.  Find  the 
locus  of  the  intersection  of  am'  and  bm. 

By  the  given  condition  am  =  bm',  and  the  ranges  (m),  {m')  being  identical 
are  homographic.  Therefore  the  pencils  b  (m),  a  {m')  are  homographic. 
And  when  m  is  at  a,  m'  is  at  b,  and  consequently  ab  is  a  common  ray  and  the 
pencils  are  in  perspective.     Therefore  the  required  locus  is  a  straight  line. 

3.  A  good  illustration  of  the  method  is  afforded  by  the  following 

proposition,  which  is  the  only  one  of  Euclid's  Porisms  which  has  come  down 
to   us  in  a  complete  form.     See  Appendix  I.    As  given  by  Pappus  the 
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enunciation  is  somewhat  different,  but  for  our  purpose  it  may  be  stated  as 
follows. 

Given  a  variable  triangle  ABC  wJiose  sides  pass  through  three  fixed 
collinear  points  P,  Q,  R,  If  the  vertices  B  and  C  move  along  the  given  lines 
OD,  OE,  the  vertex  A  will  also  describe  a  straight  line  passing  through  O. 

By  Art.  41  (1)  the  ranges  {B)  and  (C)  are  homographic.  Therefore  by 
Art.  15  and  Def.  Art.  42  the  pencils  Q  (J5)  and  B,  (C)  are  homographic,  and 
the  corresponding  rays  QD  and  RE  are  common  rays. 

Hence  by  Art.  45  the  pencils  Q  (B)  and  R  (C)  are  in  perspective.  There- 
fore the  point  A  lies  on  a  fixed  straight  line. 

Also,  since  0  is  a  common  point  of  the  ranges  (B)  and  (C),  the  locus  of  A 
passes  through  0. 

It  is  easily  seen  that  the  above  is  equivalent  to  the  property  proved  in 
Art.  26,  viz.  Co-axial  triangles  are  co-polar. 

4.  In  Ex.  3  if  the  points  Q,  R  instead  of  being  collinear  with  P,  are 
collinear  with  O,  find  the  locus  of  A. 

Drawing  a  figure  we  see  that  the  ranges  (B),  (C)  are  homographic,  with  0 
for  a  common  point,  and  therefore  the  pencils  Q{B)  and  R{C)  are  homo- 
graphic  with  QOR  for  common  ray,  and  the  pencils  are  in  perspective. 
Hence  the  point  A  lies  on  a  straight  line,  which,  however,  does  not  pass 
through  0.  The  student  should  draw  the  line  which  is  the  locus  of  A  in 
this  case. 

5.  Given  a  variable  triangle  ABC,  two  of  whose  sides  pass  through  the 
fixed  points  P,  Q.  If  the  vertices  move  along  three  concurrent  lines  OD, 
OE,  OF,  the  third  side  will  pass  through  a  fixed  point  R  collinear  with  P 
and  Q. 

Fig.  23. 
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The  ranges  (A)  and  (B),  by  Art.  41  (1),  are  each  homographic  with  the 
range  (C),  and  therefore  with  one  another,  by  Art.  39. 

Also,  when  G  is  at  0,  A  is  at  0,  and  B  is  at  0,  and  the  ranges  (A)  and 

(B),  having  0  for  common  point,  are  in  perspective,  i.e.  the  line  AB  passes 
through  a  fixed  point. 

If  PQ  meets  OA  in  a,  OB  in  b,  and  OC  in  c,  then  when  A  is  at  a,  C  is  at  c, 
and  B  is  at  &.  Therefore  PQ  is  one  of  the  positions  of  the  base,  and  con- 

sequently the  fixed  point  through  which  the  base  passes  is  collinear  with 
P  and  Q. 

This  proposition  may  be  stated  Co-polar  triangles  are  co-axial. 

6.  In  Ex.  5  if  the  vertex  G  moves  along  a  straight  line  which  does  not 

pass  through  0,  and  if  the  points  P,  Q  are  collinear  with  0,  shew  that  AB 
passes  through  a  fixed  point. 

Let  the  line  OPQ  meet  the  locus  of  G  in  S.  Then  when  A  is  at  0,  G  is 
at  S,  and  B  is  at  0,  and  the  ranges  (A)  and  (B)  are  in  perspective  as  before. 

If  the  locus  of  G  meets  OA  in  a  and  OB  in  ̂ ,  the  fixed  point  R  through 

which  AB  passes  is  the  intersection  of  Pa,  Q^.  The  student  should  draw  a 
figure  and  write  out  the  complete  proof. 

For  an  analytical  treatment  of  these  examples,  see  Salmon's  Gonics, 
pp.  39—48. 

7.  Three  points  F,  G,  H  are  taken  on  the  side  BG  of  a  triangle  ABG  ; 
through  G  any  line  is  drawn  cutting  AB  and  AG  in  L  and  M  respectively. 
FL  and  HM  intersect  in  K.  Prove  that  K  lies  on  a  fixed  straight  line 

passing  through  A. 
Outline  of  Proof.  (L)  and  (M)  are  homographic  ranges.  F(L)  and 

H(M)  are  homographic  pencils  having  FH  for  common  ray. 

8.  ABG  is  an  isosceles  triangle,  and  on  the  equal  sides  AB,  AG  equi- 
lateral triangles  ABD,  AGE  are  described.  BD,  GE  meet  in  F,  and  BE,  GD 

meet  in  Gr.     Shew  that  A,  F,  G  are  in  a  straight  line. 

9.  A  point  P,  capable  of  moving  along  a  given  straight  line,  is  joined  to 
two  fixed  points  B,  G,  and  the  lines  PB,  PG  intersect  another  given  straight 
line  in  X  and  Y.  Prove  that  the  locus  of  the  intersection  of  BY  and  GX  is 

a  straight  line. 

10.  A,  D,  G  are  three  fixed  points  on  a  given  straight  line.  GE  is  any 
other  fixed  line  through  C,  -B  is  a  fixed  point,  and  B  is  any  moving  point  on 
GE.  The  lines  AE  and  BD  intersect  in  Q,  the  lines  GQ  and  DE  in  R,  and 
the  lines  BR  and  ̂ C  in  P.  Prove  that  P  is  a  fixed  point  as  B  moves 
along  GE. 



CHAPTER   V 

CROSS-AXIS   AND   CROSS-CENTRE 

50.  Given  three  points  a,  b,  c  on  a  line  L,  and  also  three  points 

a,  b\  c'  on  a  line  L\  the  points  a,  ft,  y  in  which  the  pairs  of  lines 

(be,  b'c),  {ca',  c'a),  (ab',  a'b)  intersect  are  collinear. 

Let  the  lines  L,  L'  intersect  in  a  point  which,  considered  as  a 

point  on  Z,  we  will  denote  by  p,  and  considered  as  a  point  on  L' 

we  will  denote  by  q'.  Consider  the  three  points  a,  b',  c  on  L'  as 
corresponding  to  «,  6,  c  on  L.  By  Art.  40  or  46  find  p  the  point 

on  L'  corresponding  to  the  point  p  on  L,  and  find  q  the  point 

on  L  corresponding  to  the  point  q'  on  U. 

Then  {pqab)  =  (^p'q' a'b').     Therefore  the  pencils  a' (p^a6)  and 
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a  {p'q'a'h')  are  equicross,  and  have  the  common  ray  aa,  and  there- 

fore by  Art.  25  the  points  p',  g,  y  are  collinear,  i.e.  the  point  y  lies 

on  the  line  p'q.  By  a  similar  reasoning  we  see  that  the  points 

a,  ft  lie  on  the  same  line  p'q. 

Def.  The  fixed  line  p'q  is  called  the  homographic 
or  cross- axis*  of  the  two  ranges. 

51.  The  proposition  of  the  preceding  article  is  one  of 

considerable  historical  interest.  If  we  join  the  pairs  of  points 

in  the  order  a6',  6'c,  ca',  a'b,  he',  c'a,  we  obtain  the  hexagon 

ab'ca'hc',  whose  vertices  lie  by  threes  on  the  pair  of  lines  L,  L',  and 

whose  opposite  sides,  taken  in  pairs,  are  {ah',  ah),  (he,  h'c), 

(ca',  c'a),  of  which  a,  ft,  y  are  the  points  of  intersection.  Stated 
in  other  words,  the  proposition  tells  us  that  if  the  vertices  of  a 

hexagon  lie  by  threes  on  two  straight  lines,  the  points  in  which 

its  opposite  sides  intersect  lie  on  a  straight  line,  being,  in  effect, 

the  Pascal  line  of  the  hexagon  inscribed  in  a  line  pair.  This 

property  was  probably  known  to  Euclid  (300  B.C.),  and  employed 

by  him  without  proof  in  his  Treatise  on  Porisms.  600  years 

afterwards  Pappus  supplied  a  proof  depending  on  Menelaus' 
Theorem.  Thirteen  centuries  afterwards,  in  1640,  Pascal 

enunciated  a  similar  theorem  without  proof  as  a  property  of 

a  hexagon  inscribed  in  a  circle,  and  it  was  only  after  another 

interval  of  166  years  that  its  correlative  was  discovered  for  the 

conic  by  Brianchon  in  1806. 

52.  IJ  m,  m!  are  any  pair  of  i^oints  on  the  lines  L,  L'  such  that 

{ahem)  —  {a'b'c'm),  and  i/mc',  m'c  meet  in  fx,  the  point  jx  will  lie  on 
the  cross-axis. 

For  the  pencils  a  [ahem)  and  a  {ah' cm!)  have  the  same  cross- 
ratio  and  the  common  ray  aa.  Therefore  by  Art.  25  their 

corresponding  rays  intersect  on  a  straight  line.  Now  the  pairs  of 

rays  {ah',  ah)  and  {ac,  a'c)  intersect  on  the  line  yft.     Hence  the 

Suggested  by  Dr  Filon,  Projective  Geometry,  Pref.  v,  1908. 
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ntersection  of  (cm',  cm)  lies  on  the  same  straight  line,  which,  as 
we  have  seen,  depends  solely  on  the  positions  of  the  character- 

istics ahc,  a'h'c'. 

By  taking  (a,  a')  or  (6,  h')  as  centres  of  the  pencils  we  see 

that  the  pairs  of  lines  {am\  a'm)  and  {hm,  h'm)  also  intersect  on 
the  line  a/8y. 

53.  The  existence  of  the  cross-axis  is  of  supreme  importance, 

for  it  gives  us  a  simple  means  of  dividing  a  line  L'  homographic- 
ally  to  a  given  divided  line  L.  For  we  have  merely  to  take  any 

three  points  a,  h\  c  on  L'  to  correspond  to  a,  b,  c  any  three  given 
points  on  L,  and  construct  the  cross-axis.  Then  to  find  the 

point  on  L'  corresponding  to  any  point  m  on  L  join  ma,  cutting 

the  cross-axis  in  fi.     Then  a/x  will  cut  L'  in  the  required  point  m'. 

54.  Bt/  meanti  of  the  cross-axis  to  jind  the  'point  J'  on  U 
corresponding  to  the  point  at  infinity  on  L. 

Fig.  25. 

If  c,  c'  are  any  pair  of  corresponding  points,  through  c  draw  a 

line  parallel  to  L  meeting  the  cross-axis  p'q  in  j.  Then  cj  will 
meet  L'  in  J',  the  point  required. 

To  find  the  point  I  on  L  corresponding  to  the  point  at  infinity 

on  X',  draw  ci  parallel  to  L\  meeting  the  cross-axis  in  i.  Then 
c'i  will  meet  L  in  the  required  point  /. 
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55.  The  line  joining  the  points  /,  J',  which  correspond  to  the 
points  at  infinity^  is  parallel  to  the  cross-axis. 

Denoting  the  points  at  infinity  on  L  and  L  by  oo  and  oo  ', 
since 

{pqicc  )  =  {pq'zo  V), 

••   ql     p'J'^ 
.'.   IJ'  is  parallel  to  p'q. 

This  is  also  obvious  from  Art.  52  which  shews  that  IJ' 

and  oo'oo   intersect  on  the  cross-axis. 

56.  The  points  /  and  J'  can  also  be  found  by  .moving  one  of 

the  lines,  as  Z',  parallel  to  and  along  itself  until  the  point  p' 
coincides  with  its  correspondent  /;.     The   ranges   are   then   in 

Fig.  26. 

perspective,  Art.  41  (2),  and  if  S  is  the  centre  of  perspective, 

/  and  J'  are  obtained   by  drawing  through   S  parallels  to  L'  ̂ ^ 
and  L.     Cf.  Art.  40  and  Fig.   18.  | 

The   cross-axis    in   the  Fig.    26   is  the  line  through  {p,  p') 

parallel  to  IJ'  by  the  preceding  Art.  ^ 

57.     In  the  following  articles  we  will  establish  a  property  of 

homographic  pencils  which  is  similar  to  the  cross-axis  property 

J 
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of  homographic  ranges  proved  in  Art.  50,  and  may  be  called  the 

cross-centre  property  of  homographic  pencils,  viz. : 

Given  three  rays  0 A,  OB,  OC  of  one  pencil,  and  also  three 

ys  0'A\  0'B\  O'C  of  a  second  pencil,  the  line  joining  the 
points  of  intersection  of  OB,  O'C  and  OC,  O'B',  and  the  line 

joinhig  the  points  of  intersection  of  OC,  O'A'  and  OA,  O'C  are 
concurrent  with  the  line  joining  the  points  of  intersection  of 

OA,  O'B'  and  OB,  0'A\ 

To  establish  this  we  shall  prove  that  these  lines  are  each 

concurrent  with  the  lines  of  the  two  pencils  which  correspond  to 

O'O  and  00' ,  so  that  the  point  of  concurrency  is  a  fixed  point, 
which  is  called  the  cross-centre  of  the  two  pencils  in  analogy  to 

the  cross-axis  of  two  ranges. 

58.  Given  two  homographic  pencils,  vertices  0,  0',  required  to 

find 

(1)  The  ray  in  the  second  pencil  corresponding  to  the  ray  00' 
in  the  first ; 

B'   A, 

Fig.  27. 



I 

44  CROSS-RATIO   GEOMETRY  [CH.   V 

(2)  The  ray  in  the  first  pencil  corresponding  to  the  ray  00  in 
the  second. 

We  will  employ  the  method  of  Art.  48. 

Let  OA,  OB,  OC  be  three  rays  of  the  first  pencil,  and  0'A\ 

O'B',  O'C  their  corresponding  rays  in  the  second.  Let  OA,  O'A' 

meet  in  a,  OB,  O'B'  in  h,  OC,  O'C  in  c,  OC,  O'B'  in  S.  Join  ah, 

meeting  OC  in  c,  and  00'  in  I,  and  join  ac  meeting  O'B'  in  h',  and 
00'  in  m'. 

(1)  Join  SI  meeting  ac'  in  I'.  Then  O'V  is  the  ray  corre- 

sponding to  00'.  For  {ahcl)  and  {ab'c'l')  are  the  ranges  in  which 
the  two  transversals  ah,  ac  are  cut  by  a  pencil,  centre  S,  and  are 

therefore  equicross  by  Art.  21.  ^| 

(2)  If  ac  meets  00'  in  m!,  and  Sm  meets  ah  in  m,  then  Om 

is  the  ray  corresponding  to  O'O. 

Let  the  rays  Om,  O'V  meet  in  T.  Then  T  is,  b>  known  point, 
and  has  the  important  properties  given  in  the  following  Arts.  ̂  

59.  Given  two  homographic  pencils  0  {ABC  ...)  and 

0' {A'B'C ...),  if  any  two  non-corresponding  rays  OA,  O'B'  inter 

sect  in  2,  and  the  rays  OB,  O'A'  intersect  in  2',  then  22'  will 
pass  through  the  fixed  point  T. 

For  the  pencils  0{ABTO')  and  O'(A'B'OT)  are  equicross. 
Therefore  if  we  cut  them  respectively  by  the  transversals  O'A' 

and  OA,  the  ranges  (a^'u'O')  and  (a^Ou)  are  equicross,  and 
since  they  have  a  common  point  a,  they  are  in  perspective  by 

Art.  23.  And  since  Ou,  O'u  intersect  in  T,  the  line  joining  22' 
must  also  pass  through  the  same  point  T. 

60.  Def.     The  fixed  point  T  may  be  called  the  homographic 

or  cross-centre*. Cross-centre. 
Since  OA,  O'B'  are  any  two  non-corresponding 

rays,   the    position  of    T  can  be  determined   by  means  of   the 

characteristics  OA,  OB,  OC,  and  O'A',  O'B',  O'C.     For  if  OB, 
*  See  note  p.  40. 

i 
I 

i 
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'C  intersect  in  S\  and  OC,  O'B'  in  S,  the  point  of  intersection 
)f  *S>S"  and  52^  is  2\  the  cross-centre. 

61.  The  cross-centre  enables  us  in  theory,  at  any  rate,  to 
[solve  the  problem  to  construct  a  pencil  homographic  to  a  given 

pencil  in  a  very  simple  manner.  Thus,  to  find  the  ray  corre- 

sponding to  any  given  ray  OM,  let  OM  meet  any  ray  O'A'  in  S. 
Join  TS  meeting  OA  in  S'.     Then   O'S'  is  the  ray  required. 

The  only  difficulty  with  this  method  is  that  the  cross-centre 

is  often  a  distant  point,  or  that  the  construction  lines  so  fre- 
quently intersect  at  an  inconvenient  distance.  Consequently 

the  method  of  Art.  48  is  in  practice  usually  more  convenient. 

If  the  cross-centre  method  is  used,  the  best  way  to  determine 

the  position  of  2^  is  that  given  in  Art.  60. 



CHAPTER   VI 

METRICAL  PROPERTIES  OF  HOMOGRAPHIC  RANGES.  THE 

CONSTANT  OF  CORRESPONDENCE.  HOMOGRAPHIC  EQUA- 

TIONS.     ONE-TO-ONE    CORRESPONDENCE 

62.     If  m,  m!  are  any  variable  pair  of  corresponding  points, 

{ahem)  =  {ab'c'jn). 

ac  ̂   be       ac      b'c 

am    bm      a'ni  '  b'm  ' 
am    am, 

bm  '  b'm' 

ac    ac 

be  '  b'c' Let  us  denote  this  compound  ratio  7-  :  jy-j  between  segments 

given  by  the  characteristics  by  the  letter  fx. 

Then 
bm 

=  ix 

am 

6  W  • 

in  which  /a  is  a  constant, Therefore  the  equation  -^ —  —  ix  .  -,    , , bm  bm 

represents  two  homographic  ranges  in  which  a,  a  and  b,  b'  are 
two  pairs  of  corresponding  points. 

From  this  equation  we  can  find  any  number  of  points  m!  on 

the  second  range  corresponding  to  given  points  m  on  the  first. 

Here  the  character  of  the  homography  is  given  either  by 

(1)  (a,  a),  (6,  b')  and  a  third  pair  of  points  (c,  c)  \  or  by  (2)  (a,  a'), 
(6,  h')  and  the  value  of  /x ;  in  fact,  we  only  require  to  know  the 
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corresponding  lengths  ah,  ah'  on  the  two  ranges,  and  the  value 
of  /x. 

Hence,  ivhen  two  straight  lines  are  divided  homographically, 

the  ratio  of  the  distances  of  any  point  of  division  mfrojn  two  fixed 

points  on  the  first  is  equal  to  the  ratio  of  the  distances  of  the 

corresponding  point  of  division  m  from  the  two  corresponding 

fixed  points  on  the  second  range  multiplied  hy  a  constant.  Con- 
versely, 

When  two  variable  points  m,  m  divide  two  fixed  segments  ah, 

_.    _,  .  ^  J      am  am'        , ah  on  two  lines  L,  L  %n  such  a  manner  that  z —  =  ix  .  j-, — , ,  where 
hm     '^    hm 

fx  is  a  constant,  L  and  L'  are  divided  homographically  hy  the 
jyoints  m,  m. 

63.  Given  ahc,  a'h'c  the  characteristics  of  two  homographic 

ranges,  the  positions  of  /,  J'  can  be  obtained  metrically  by  actual 

calculation  of  the  lengths  al,  a  J'  as  follows: 

(ahcl)^  (a'h'c  cc'), 

ac     be       a'c'      h'c        a'c 

al '  hi     a' GO  '  *  b'co  '      h'c  ' 

al      ac    a'c 
'''hi"h'c''l7^'^^' 

.'.    al  —  fxhl  —-  fi(al  -  ah), 

.*.   al  (fx-l)  -^  fxah, 

.'.    al  =    .  ah. 

fX-l In  the  same  way  it  will  be  found  that 

a'J'      1  ,  ,,       ah' 
aJ  = h'J'     fx'  l-fx 

al        ah 

Hence       hi  =  -    =   z  ,  and  h'J'  =  ixa'J'  =     .  ah'. 
jX        JJL  —  i  I  —  u. 
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64.  If  m,  m'  are  a  -pair  of  corresponding  points  of  the  range 

to  prove  that  Im  .  J'w!  is  constant. 

Since  (aI'moo)  =  (acc'm'J'), 

am     a'm! 

.'.    (Im-  la)  J' a  +  (J'W  —  J 'a')  Im  =  0, 

.'.    Im .  J'm'=  la .  J'a'=  const.  X  (say). 

65.  The  converse  of  the  property  found  in  the  preceding 

article  is  a  very  important  one,  and  tells  us  that  jH 

If  on  two  given  straight  lines  we  take  fixed  points  /,  J',  and^ 
also  two  variable  points  m,  m!  such  that  Im .  J'rri  is  constant^  then 

the  ranges  (m)  and  {m)  will  he  homographic,  and  the  points  /,  J' 
will  correspond  to  the  points  at  infinity  in  the  two  ranges. 

The  constant  \  is  called  by  Steiner  "  the  power  of  the  corre- 

spondence," and  its  actual   value  is  seen  from  Art.   63   to  be 

^  ac    a'c'  ^m 

It  should  be  noticed  that  X  is  an  absolute  constant,  which 

holds  for  all  pairs  of  corresponding  points  on  the  ranges,  whilst  fx 

depends  on  the  characteristics  ahc,  a'h'c',  so  that  if  we  take  two 
fixed  points  on  the  lines  and  call  them  /  and  J\  all  that 

require  to  fix  the  homography  is  the  value  of  X,  whereas,  if 

employ  /a,  we  must  know  the  values  of  ah,  ah'  and  /a. 

Homographic  Equations. 

66.     The  relation  between  any  pair  of  corresponding  points 

m,  m'  in  two  homographic  ranges  can,  as  we  have  shewn 
expressed  by  equations,  of  which  the  simplest  form  is 

I.  Im.J'm'  =  Ia.J'a'      ..(1)  Art.  6- 

Here  the  origins  are  /,  J'. 
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If  the  ranges  are  on  two  separate  lines,  the  points  /,  J'  may- 
be at  their  point  of  intersection.  If  the  ranges  are  co-axial,  and 

/,  J'  coincide,  we  have  the  case  of  involution,  Chap.  IX. 
II.  The  next  in  order  of  simplicity  is 

am  am  .„.    .    ̂     co 
^— =  ̂ .  ̂ jj-,      (2)  Art.  62. 
bm     '      hm  ' 

Here  there  are  two  origins  on  each  line,  viz.  a,  h ;  a,  V. 

III.  From  (1)  we  can  obtain  other  forms  which  we  shall  find 

useful,  in  which  there  is  a  single  origin  taken  on  each  line,  con- 

sisting of  any  chosen  pair  of  non-corresponding  points  which  we 
shall  call  a,  V .  The  variable  quantities  in  these  equations  will  be 

am^  h'm\  where  m,  m!  are  a  variable  pair  of  corresponding  points. 

If  a,  a'  and  6,  h'  are  pairs  of  corresponding  points,  writing 
Im  =  am  —  aly  and  J'm'  =  b'm  —  b'J',  we  have 

(am  -  al)  [b'm'  —  b'J')  =  al .  a' J', 

.'.   am  .  b'm'  -  b'J'.  am  -  al .  b'm'  +  al.  b'J'  =  al .  a' J', 

and  b'J'  -  a' J'  =  b'a', 

.'.   am.  b'm'  -b'J' .  am  —  al.  b'm'  +  al .  b'a'=  0   (A). 
Again,  since  by  Art.  64 

al  _    bl  _    al—  bl   _  ab 
V7'~'^'" yr^^^^u' "  6V ' 

therefore  al .  b'a!  =  b'J' .  ab. 

Hence  the  relation  (A)  may  be  written 

am .  b'jri'  -  b'J' .  arn  -  al ,  b'm'  +  b'J'  .ab  =  0   (B). 

From  Art.  63,  putting  al  =  -^ .  ab,  b'J'  =  -^  .  b'a'  in  (A) 
/*—  1  //,—  1  ^    ̂ 

and  (B),  these  become 

(1  -  fi)am  .  b'm'  +  fx .  b'a'  .am  +  fi.ab.  b'm'  -fx.ab  .  b'a'  =  0. .  .(3), 

where  jx  is  an  absolute  number  which  ilepends  solely  on  the 

characteristics  of  the  ranges,  and  can  have  any  values  except  zero 
and  infinity. 

M.  4 
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IV.  If  the  origins  coincide  at  the  intersection  of  the 

ranges  (when  it  is  not  a  common  point),  i.e.  when  b'  coincides 

with  a,  we  have  merely  to  write  a  for  b'  in  (3)  and  we  obtain        j 

(1  —  fi)  am .  am'  +  fiaa' .  am  +  fxab .  am'  -  /jcab  .  aa'  =  0. . .(4), 

or  am.am'  —  aJ'.a7n  —  aI.am'  +  aI.aa'  =  0      (4'). 
The  ranges  are  not  in  perspective. 

Note.  In  equations  (4)  and  (4')  the  quantities  am',  aa',  aJ' 
could  not  exist  unless  a  were  on  the  line  L',  as  all  measurements 
are  between  points  on  the  same  line.  Hence  in  these  quantities 

a  stands  for  the  coincident  point  b'. 
In  all  the  above  equations,  except  (2)  where  four  origins  are 

used,  the  origins  have  been  non-corresponding  points. 

V.  If  the  origins  are  required  to  be  a  pair  of  corresponding 

points  a,  a,  we  shall  find  it  best  to  go  back  to  (1),  and  write  in 

it  Im  =  am  —  al,  J'm'  =  a'm,'  —  a' J',  from  which  we  shall  obtain 

am .  a'm'  —  a' J' .  am  —  al.  a'm'  =  0    (5'), 

or  (1  —  fi)  am  .  am'  —  a'b' .  am  +  fxab .  a'm'  =  0    (5). 
The  ranges  may  be,  but  are  not  necessarily,  in  perspective. 

YI.     If  the  ranges  are  in  perspective,  so  that  their  inter- 

section is  a  common  j)oint,  and  if  this  point  is  taken  as  the  ̂  

common  origin  a,  a',  then  writing  a  for  a'  in  (5)  we  have  H 

(1  —  /x)  am  .  am!  —  ab' .  am  +  fxab  .  am!  =  0   (6),       ̂ | 

or  am.am' —  aJ' .am-al .am' =0      (6'),      ̂ ^ 
and  the  line  mm!  passes  through  a  fixed  point.  S 

It  is  interesting  to  notice  that  the  coordinates  of  this  fixed 

point,  referred  to  the  two  lines  as  axes,  are  (al,  aJ').  For  if 

(X,    Y)  is  on  mm',  we  have 

—  +    — 7  =  1, am     am 

i.e.  am .  am!  —  Y .  am  ~  X .  am'  =  0, 

whence  X=al,  and  Y  =  aJ'. 
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This  is,  in  fact,  only  a  restatement  of  what  we  have  already 

shewn  geometrically  in  Art.  56. 
From  V  and  VI  we  see  that 

If  the  origins  are  a  pair  of  corresponding  points,  the  homo- 
graphic  equation  has  no  absolute  term,  and,  conversely,  if  the 

hom,ographic  equation  has  no  absolute  term,  the  origins  are  a  pair 

of  corresponding  points. 
Also,  when  the  intersection  of  the  ranges  is  taken  as  the  common 

origin,  if  the  homographic  equation  has  no  absolute  term,  the 

ranges  are  in  perspective. 

It  only  remains  for  us  to  consider  the  case  when  //,  =  1. 

Proportional  Section 

67.     When  /x=  1,  the  equation  (2)  of  Art.  QQ  becomes 
am       bin        ab 
—, — ;  =  7-7 — 7  =  -TTi  —  const. am      om,      ab 

Thereforfe  the  lines  are  divided  similarly,  or  into  proportional 

parts.     And  since,  by  Art.  63,  — -  =^=  1,  the  point  /  must  be 

a  point  at  infinity  on  the  line  L.  Similarly  J'  is  a  point  at 

infinity  on  the  line  L'.     So,  conversely 

If  tivo  straight  lines  are  divided  into  pi^oportional  parts,  they 

are  divided  homographically,  and  if  the  points  /,  J'  are  at  infinity, 
the  two  ranges  are  similar. 

Of  course,  since  /  is  by  definition  the  correspondent  of  a 

point  at  infinity,  the  condition  that  /  should  be  at  infinity  is 

equivalent  to  the  condition  that  the  ranges  should  have  a  pair  of 

corresponding  points  at  infinity,  and  so  for  J'. 

*  On  this  form  of  homographic  division  Apollonius  wrote  his  treatise 
de  Sectione  rationis  in  two  books  containing  181  propositions.  This  work, 
which  was  extant  in  Greek  at  the  time  of  Pappus,  was  discovered  in  an 
Arabic  MS  and  translated  into  Latin  by  Halley  in  1706.     See  Art.  88. 

4—2 
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68.     If  we  put  /A  ==  1  in  the  other  equations  in  Art.  66, 

VII.  (3)  becomes  -:r  +  TFT  =  1    (7), ^  ̂   ah       ha 

the  origins  being  the  non-corresponding  points  a,  h'. 

VIII.  (4)  becomes  ̂ +^'=.1    (8), 
^  ̂   ah       aa 

the  origins  being  at  the  intersection  of  the  ranges,  which,  ho"^ 
ever,  is  not  a  common  point,  and  the  ranges  are  not  in  perspective. 

IX.  (5)  becon.es  ̂ =^    (9), ^  '  ah       ah 

the  origins  being  the  corresponding  points  a,  a'. 
The  ranges  may  be,  but  are  not  necessarily,  in  perspective. 

X.  (6)  becomes  -—-  =  -—   (10), 

the  common  origin  being  the  intersection  of  the  ranges,  which  is 

a  common  point,  and  the  ranges  are  in  perspective. 

If  the  lengths  of  the  segments  from  m  and  m'  to  the  origins  are 
denoted  by  x,  x,  the  equations  in  Arts.  66  and  68  are  of  the  form 

Axx  +  Bx-\-  Cx  +  B  =  0, 

and  may  be  divided  into  two  classes.  In  the  one  in  which  the 

term  xx'  occurs  the  homography  may  be  said  to  be  of  the  second 

order,  and  in  the  other,  where  the  term  xx'  is  wanting,  it  may  be 
said  to  be  of  the  first  order,  the  ranges  being  then  divided 

similarly  or  proportionally. 

In  homographic  equations  of  the  second  order, 

( 1 )  If  the  origins  are  non-corresponding  points 
neither  A  nor  D  can  =  0. 

If  (7=0,  the  origin  for  x  is  at  7. 

If  -B  =  0,  the  origin  for  x'  is  at  J'. 

li  B=0  and  C  =  0,  the  origins  are  at  /,  /'. 
(2)  If  the  origins  are  corresponding  points 

D  =  0,  but  neither  A,  B,  nor  C  can  vanish,  and  the  equati( 

must  be  of  the  form  Axx  +  Bx  +  Cx'  =  0. 
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In  homographic  equations  of  the  first  order, 

(3)  If  the  origins  are  non-corresponding  2)oints 

neither  B,  C,  nor  D  can  vanish  (for  then  an  origin  would  be  at 

infinity),  and  the  equation  is  of  the  form  Bx  +  Cx'  +  D  =  0. 
(4)  If  the  origins  are  corresponding  points 

D  =  Oy  and  the  equation  is  of  the  form  Bx  +  Cx'  =  0,  and  we  draw 
the  same  conclusions  as  in  the  case  of  homographic  equations  of 

the  second  order  given  at  the  end  of  Art.  66. 

One-to-One  Correspondence. 

69.  In  both  orders  of  equations  corresponding  to  any  given 

value  of  x  there  is  one  and  only  one  value  of  x\  and  correspond- 
ing to  a  given  value  of  x  there  is  one  and  only  one  value  of  x. 

When  this  is  the  case  x  and  x'  are  said  to  be  connected  by  a  one- 
to-one  or  (1, 1)  correspondence,  and  the  ranges  marked  out  on  the 

two  lines  by  giving  different  values  to  x  or  x'  are  homographic. 
It  should  be  noticed,  however,  that  for  the  equation 

Axx'  +  Bx  +  Cx'  +  D  =  0 

to  give  two  homographic  ranges,  we  must  not  have  A  :  B  =  C  :D. 
For  in  that  case  the  expression  on  the  left  hand  could  be 

factorised,  and  we  should  have  (Ax  +  C)  Ix  +  -jj^O,  and  there- 

fore one  of  the  two  variables  must  have  a  certain  definite 

value,  the  other  being  then  free  to  take  ani/  value,  i.e.  in  a 

factorising  homography,  all  points  of  either  line  correspond  to 

a  single  point  of  the  other  line  *. 
The  following  examples  are  intended  to  illustrate  the  meaning 

and  application  of  the  homographic  equations  given  in  Arts.  66 — 
68.  If  the  relation  between  a  variable  pair  of  points  on  two 

straight  lines  is  of  either  of  the  types  (6)  or  (10),  their  intersec- 

*  For  a  geometrical  illustration  of  this,  see  an  article  on  **The  double 
six  "  by  G.  T.  Bennett,  in  Proceedings  of  the  London  Mathematical  Society, 
p.  336,  April  25th,  1911. 
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tion  being  a  common  origin,  then  when  x  =  0,  x'  also  -■  0  and  the 
intersection  of  the  ranges  is  a  common  point.  The  ranges  are 

then  in  perspective,  and  the  lines  joining  pairs  of  corresponding 

points  pass  through  a  fixed  point. 

If  the  equation  expressing  the  relation  is  of  any  of  the  types 

(3)  to  (10),  and  from  the  ranges  pencils  can  be  formed  having 
the  line  joining  the  vertices  for  a  common  ray,  the  pencils  are 

in  perspective,  and  the  locus  of  the  intersections  of  pairs  of 

corresponding  rays  is  a  straight  line. 

It  will  be  seen  in  Chap.  XI  that  if  the  ranges  are  homographic 

but  not  in  perspective  the  lines  joining  pairs  of  corresponding 

points  will  envelop  a  conic  touching  the  ranges ;  and  if  the 

pencils  are  not  in  perspective  the  locus  of  the  intersections  of 

pairs  of  corresponding  rays  is  a  conic  passing  through  the  centres 

of  the  pencils. 

In  forming  the  homographic  equation  connecting  two  ranges 

we  can  generally  determine  its  order  by  inspection  from  the 

consideration  that  if  the  points  /,  J'  are  at  a  finite  distance  the 
equation  is  of  the  second  order,  whilst  it  is  of  the  first  order  if 

they  are  at  infinity. 

EXAMPLES. 

1.     A  line  through  a  fixed  point  P  on  the  base  BG  of  a  triangle  ABC  cuts 

the  sides  AB,  ̂ C  in  points  m,  m'.    Find  the  homographic  equation  for  the 
ranges  (w)  and  {m')  taking  (1)  A  as  common  origin,  (2)  B  and  C  as  origins, 
and  deduce  from  them  the  positions  of  the  points  I,  J'  on  the  sides ^B,  AC. 

(1)     Let  Am  =  x,  Am'  =  x'.     Then  by  Menelaus'  Theorem,  Art.  18, 

Am'.  CP.Bm=Cm'  .BP.Am   (A), 

.-.   x'  .CP.{x-c)  =  {x' -b).BP.x, 

.-.   xx'{BP-CP)-b.BP.x  +  c.CP.x'  =  0, 

.-.   xx'--.BP.x  +  -.CP.x'  =  0. a  a 

Comparing  this  with  the  homographic  equation  (6')  of  Art.  66,  VI,  we 
&  c 

deduce  that  ̂   J' =  -.£P;  AI=  --  .CP,  as  is  of  course  obvious  from  the a  a 

geometry  of  the  figure. 

I 
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(2)    Let  Bm=x,  Gm'  =  x'.     Substituting  in  (A)  we  have 

{h-\-x')  CP  .x  =  x'  .BP{x  +  c), 

:.  xx'{BP-GP)-b.GP.x  +  c.BP.x'=:0, 

XX'--.  CP.X  +  -.BP.X' a  a 

■0, 

by  Art.  66,  V,  (5')      CJ' :-.CP;   BI-. a 
.BP. 

We  might  also  have  approached  the  question  in  the  following  manner. 

(1)  The  ranges  (m)  and  (m')  are  obviously  two  homographic  ranges  of 
the  second  order  and  in  perspective.  Therefore  by  Art.  66,  VI  their  homo- 
graphic  equation  is 

xx' -  AJ'  .x-AI.  x'  =  0, 

and  from  the  geometry  of  the  figure 

Ar  =  -.BP,    AI=--.CP. a  a 

Fig.  28. 

(2)    When  B  and  C  are  origins,  by  Art.  66,  V,  the  homographic  equation  is 

xx'  -  CJ' .  X  -  BI .  x'  =  0, 

and CJ'  =  -.  CP,    BI=-~,BP. a  a 

2.  Through  the  angle  C  of  a  parallelogram  ABCD  a  straight  line  is 

drawn  meeting  the  two  sides  AB,  AD  in  a,  a'.  Prove  that  the  rect.  Ba .  Da' 
is  constant. 
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The  ranges  (a),  {a')  are  obviously  homographic.  When  a'  is  at  infinity, 
a  is  at  B,  and  when  a  is  at  infinity,  a'  is  at  D.  Therefore  by  Art.  64 
Ba .  Da'  is  constant. 

3.  AB,  AC  are  two  given  straight  lines  of  lengths  a,  h,  in  which  points 
P  and  Q  are  taken  such  that  AP  :AB  =  AQ  :  QC.  Prove  that  the  straight 
line  PQ  passes  through  a  fixed  point. 

AP:AB=AQ:QC 

=  AQ:AC-AQ, 

.:   AP{AC-AQ)  =  AB.AQ, 

.'.   x{b-x')  =  ax',    where  AP  =  x,    AQ  =  x', 

.:  xx'  -bx  +  ax'  =  0, 

.'.  by  Art.  66  (6)  (P)  and  (Q)  are  homographic  ranges,  the  origin  A  being  a 
common  point.  They  are  therefore  in  perspective,  and  PQ  passes  through  a 
fixed  point. 

4.  In  Ex.  3  if  D  is  the  mid-point  of  AG,  shew  that  the  fixed  point  is  the 
intersection  of  BD  with  the  line  through  C  parallel  to  AB.  Prove  that  if  E 

is  taken  on  AB  such  that  AE=  -AB,  the  fixed  point  lies  on  the  parallels  to 
the  given  lines  drawn  through  E  and  C.  Shew  also  that  E  coincides  with  I 

and  C  with  J'. 

5.  Given  the  base  AB  of  a  triangle  ABC,  and  the  length  of  the  segment 

mm'  which  the  sides  intercept  on  a  straight  line  PQ  parallel  to  AB,  shew 
that  the  locus  of  the  vertex  C  is  a  straight  line. 

(m)  and  (m')  are  homographic  ranges,  being  identical,  and  A  (m),  B  (m') 
are  homographic  pencils.  When  m  is  at  infinity,  so  also  is  vi'.  Hence  AB 
is  a  common  ray,  the  pencils  are  in  perspective,  and  the  locus  of  C  is  a 
straight  line. 

What  is  the  force  of  the  limitation  that  PQ  is  parallel  to  AB  ? 

6.  In  Ex.  5  if  a' and  b  are  fixed  points  on  PQ,  and  the  ratio  of  the 
segments  am,  bm'  is  given,  shew  that  the  locus  of  the  vertex  is  a  straight 
line. 

Let  am=  k .  bm'.  Then  by  Art.  67,  [m)  and  {m')  are  homographic  ranges,  &q. 

7.  Q,  B  are  fixed  points  in  BC,  the  base  of  a  triangle  ABC.  A  line 

mm'  parallel  to  the  base  meets  the  sides  AB,  AC  in  m,  m'.  Shew  that  the 
locus  of  the  intersection  of  Qm,  Em'  is  a  straight  line. 

Am      AB 

/.   by  Art.  68  (10)  the  ranges  (m)  and  (m')  are  homographic,  &c. 
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In  Ex.  7  if  Cm,  Bm'  meet  in  P,  shew  that  the  locus  of  P  is  a  straight 
fine.  Shew  that  the  same  results  hold  in  Exs.  7,  8  if  vim',  instead  of  being 
parallel  to  the  base,  cuts  it  in  a  fixed  point. 

9.  If  on  AB,  the  base  of  a  triangle  ABC,  we  take  any  length  AT,  and  at 
the  other  end  of  the  base  another  length  BS  in  a  fixed  ratio  to  AT,  and  draw 
ET  and  FS  parallel  to  a  fixed  line  CR,  meeting  GA  in  E  and  CB  in  F,  shew 
that  the  locus  of  0,  the  intersection  of  EB  and  2^^,  is  a  straight  line.  (For 

analytical  solution  see  Salmon's  Conies,  p.  45,  Ex.  5.) 
By  Art.  66  the  pair  of  ranges  (T)  and  [S)  are  homographic,  as  are  also 

(T)  and  {E)  and  also  [S)  and  {F).  Therefore  by  Art.  39  the  ranges  {E)  and 
{F)  are  homographic,  and  therefore  also  the  pencils  B  {E)  and  A  (F). 

Now  when  £  is  at  ̂ ,  T  is  at  ̂ ,  S  is  at  B,  and  F  is  at  B.  Hence  AB  is  a 
common  ray  of  the  pencils  which  are  thus  in  perspective  and  the  locus  of  0 
is  a  straight  line. 

10.  OA,  OB  are  two  given  lines,  m  and  m'  a  pair  of  corresponding 
points  of  two  ranges  on  them  whose  homographic  equation  is  of  the  first 

order.  If  the  perpendiculars  at  m  and  m'  meet  in  P,  shew  that  the  locus  of 
P  is  a  straight  line. 

By  Art.  68  (8)  the  ranges  (m)  and  (m')  are  similar.  The  series  of 
perpendiculars  Pm  constitute  a  pencil  of  parallel  rays  whose  centre  is  at  the 

point  00  ,  and  the  perpendiculars  Pm'  form  a  pencil  whose  centre  is  at  oo '. 
The  ranges  (m)  and  {m')  being  homographic,  so  also  are  the  pencils  oo  (P) 
and  00 '(P).  Also,  when  m  is  at  infinity,  m'  is  at  infinity,  and  the  rays 
ccm,  cc'm'  coincide  in  the  line  at  infinity.  Therefore  the  pencils,  having 
a  common  raij,  are  in  perspective,  and  the  locus  of  P  is  a  straight  line. 

11.  Find  the  locus  of  the  orthocentre  of  the  triangle  two  of  whose  sides 
are  given  in  position,  and  whose  base  passes  through  a  fixed  point. 

Let  0  be  the  vertex  of  the  triangle,  P  the  fixed  point,  Pmm'  any  position  of 
the  base,  H  the  orthocentre  of  the  triangle  0mm'.  Then  the  ranges  (m),  {m') 
are  homographic,  their  equation  being  of  the  second  order.  The  series  of  per- 

pendiculars mH,  m'H  form  two  homographic  pencils,  centres  oo  ,  oo  '.  The  line 
joining  their  centres  is  the  line  at  infinity,  but  this  does  not  pass  through  m 

and  m'  at  the  same  time,  for  m  and  m'  are  not  at  infinity  together,  as  the 
ranges  are  not  similar.     The  pencils  are  therefore  not  in  perspective. 

It  will  be  seen  in  Chap.  XI  that  the  locus  of  if  is  a  hyperbola. 

12.  Two  sides  of  a  triangle  are  given  in  position,  and  their  sum  is 
constant.  Prove  that  the  centre  of  the  nine-points  circle  traces  out  a 
straight  line. 

Let  AOB  be  any  position  of  the  triangle,  and  let  OA  =  x,  OB  =  x',  so  that 
X  +  x'  =  const.     Let  D  be  the  mid-point  of  OA,  BD'  perpendicular  to  OA ,  and 
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m  the  mid-point  of  BD'.  Forming  m'  in  the  same  -way,  the  perpendicular  to 
OA  through  m  meets  the  perpendicular  to  OB  through  m'  in  the  nine-points 
centre. 

Then  20m:=^  +  x'  co^O, 

x' 

20
m'
  

=  a:c
os 

 

0-
f 

'— , 

.-.    Om  +  Om'  =  1(4  +  cos  0)  {x  +  x')  =  const. , 

.■.   by  Ex.  10  the  locus  of  the  nine-points  centre  is  a  straight  line. 

13.  Find  the  locus  of  the  centre  of  the  circum-circle  of  a  triangh 
the  position  and  the  sum  or  difference  of  two  of  the  sides  are  given. 

14.  Given  the  position  and  the  sum  or  difference  of  the  reciprocals  of 
two  sides  of  a  triangle,  shew  that  the  base  will  always  pass  through  a  fixed 

point. 

15.  In  Ex.  14,  if  Om,  Om'  are  the  sides,  shew  that  the  base  will  pass 
through  a  fixed  point  if  the  sides  are  connected  by  the  relation 

Jc_         I 
Om      Om'~   ' where  k,  I,  n  are  constants. 

16.  OA,  OB  are  two  given  straight  lines,  A  and  B  fixed  points, 
points  P  on  OA  and  Q  on  OB  vary  in  such  a  manner  that 

1   1   _  J^   1^ 

OA      0P~  OB      OQ' 
shew  that  PQ  passes  through  a  fixed  point. 

17.  OA  and  OB  are  two  given  straight  lines,  and  from  a  fixed  pom 
two  straight  lines  CM,  CN  are  drawn  to  them  so  that  the  triangles  OMN, 

CMN  are  equal.     Shew  that  3IN  passes  through  a  fixed  point.  ^H 

18.  OP,  OQ  are  fixed  lines,  and  the  circum-centre  of  the  triangle  0P(^^ 
lies  on  another  fixed  line.     Shew  that  P  and  Q  are  corresponding  points  of 

two  ranges  of  the  first  order  not  in  perspective.  ^m 

19.  Through  a  fixed  point  0  two  straight  lines  OPQ  and  OP'Q'  are  drawn^ 
meeting  two  fixed  parallel  straight  lines.     If  PQ'  and  P'Q  meet  in  R,  prove 
that  the  locus  of  ii  is  a  straight  line. 

20.  In  Ex.  19  if  the  two  fixed  lines  are  not  parallel,  shew  that  the 
of  JS  is  a  straight  line. 
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21.  Through  a  fixed  point  a  straight  line  is  drawn  meeting  two  fixed 
parallel  straight  lines  in  P  and  Q  respectively,  and  through  P  and  Q  straight 
lines  are  drawn  in  given  directions  intersecting  in  R.  Prove  that  the  locus 
of  JR  is  a  straight  line, 

22.  ABC  is  a  triangle,  MN  is  any  straight  line  parallel  to  AG^  cutting 
the  sides  BC,  BA  of  the  triangle  in  M  and  N  respectively.  Shew  that  the 
locus  of  the  intersection  of  AM  and  GN  is  a  straight  line. 

23.  A  and  B  are  fixed  points  in  a  line,  and.  C,  D  are  fixed  points  in 
another  line  parallel  to  AB.  Find  the  locus  of  a  point  P  such  that  if  PA, 
PB  meet  GB  in  Q  and  J?,  the  sum  of  GQ  and  DR  is  constant. 

24.  L,  L'  are  two  fixed  lines,  ABC  a  triangle  whose  base  BC,  of 
constant  length,  slides  along  L,  and  the  vertex  A  moves  along  L'  in  such  a 
way  that  AB  is  always  parallel  to  a  given  direction.  If  the  side  ̂ C  is 
divided  in  a  constant  ratio  at  K,  the  locus  of  ̂   is  a  straight  line.  Use 
Chap.  IV,  Ex.  1. 

25.  L,  L'  are  two  fixed  lines,  m,  m'  are  a  pair  of  corresponding  points 
on  them  in  the  two  ranges  given  by  the  equation  Bx  +  Gx'  +  Z)  =  0.  If  mm'  is 
joined  and  divided  in  a  constant  ratio  at  h,  the  locus  of  ̂   is  a  straight  line. 
Newton,  Princip.  Bk  i,  Lemma  xxiii.  For  the  case  v/here  the  equation 

between  m,  m'  is  of  the  second  order,  see  Chap.  XI,  Ex.  13. 
26.  Given  in  magnitude  and  position  the  vertical  angle  of  a  triangle, 

and  the  sum  or  difference  of  the  sides  containing  it,  the  locus  of  the  mid- 
point of  the  base  is  a  straight  line. 

27.  A  parallelogram  is  inscribed  in  a  triangle,  having  one  side  on  the 
base  of  the  triangle,  and  the  two  sides  adjacent  to  it  parallel  to  a  fixed 
direction.  Prove  that  the  locus  of  the  intersection  of  the  diagonals  of  the 
parallelogram  is  a  straight  line  bisecting  the  base  of  the  triangle. 

28.  OA,  OB  are  two  given  straight  lines.  The  points  P  on  OA  and  Q  on 
OB  vary  in  such  a  manner  that  the  ratio  of  ̂ iP  to  ̂ Q  is  constant.  Shew 

that  the  locus  of  the  mid-point  of  PQ  is  a  straight  line. 

29.  OA,  OB  are  two  given  lines,  m,  m'  a  pair  of  points  on  them  such 
that  the  perpendiculars  to  OA  at  m  and  to  OB  at  m'  meet  on  a  fixed  straight 
line.  If  through  in,  m'  are  drawn  parallels  to  the  given  lines,  shew  that  the 
locus  of  their  intersection  is  a  straight  line. 

30.  OA,  OB  are  two  fixed  lines,  m,  m'  a  pair  of  corresponding  points  on k  I 
them  in  the  ranges  given  by  the  relation  -:—  +  pr—,  =  n,  where  Jc,  I,  n  are  con- Om      Om 

stants.     If  through  m,  m'  are  drawn  parallels  to  the  given  lines,  discuss  the 
question  whether  the  locus  of  their  intersection  is,  or  is  not,  a  straight  line. 



CHAPTER  VII 

TWO   HOMOGRAPHIC  CO- AXIAL   RANGES.      THEIR   COMMON 

POINTS,   AND  METHODS   OF   FINDING  THEM 

70.  Hitherto  we  have  supposed  the  two  homographic  ranges 

to  be  on  two  separate  Hnes  L  and  L'^  on  each  of  which  are  given 

the  three  arbitrary  points  a,  6,  c  and  a\  h',  c.  Now  if  m  is  any  point 

of  the  range  on  Z,  the  corresponding  point  m'  on  L'  is  given  by 

the  relation  {m'a'h'c')  =  (mabc),  which  shews  that  the  position  of 

m  on  L'  is  quite  independent  of  the  angle  between  L  and  L'. 

Hence  in  Fig.  24,  p.  39,  if  we  suppose  L'  to  rotate  about  q'  until 

it  coincides  with  L,  each  of  the  points  of  the  range  on  L'  will 

describe  a  circle  with  q'  as  centre,  and  will  still  be  at  the  same 

distance  from  p  (or  q^)  as  before,  the  homography  of  the  ranges 
will  be  unaltered,  and  p  being  now  the  common  origin,  the 

relation  (4')  of  Art.  66  representing  two  homographic  ranges 
on  the  same  straight  line  becomes 

pm .  pm'  —  pJ\  pm  —pl.pm'  +pT.pp'  =  0. 

Common  Points. i 
71.  When  the  ranges  are  on  different  lines  their  point  of 

intersection  might  or  might  not  be  a  common  point 

of  the  ranges,  a  common  point  being  defined  as  a 

point  of  coincidence  of  two  corresponding  points  of 
the  ranges,  and  of  course  there  could  not  be  more  than  the  one 

common  point. 

J 
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When,  however,  the  ranges  are  co-axial  there  will  usually  be 
two  common  points,  but  never  more  than  two,  unless  the  ranges 

coincide.  These  common  points  are  of  great  interest  and  import- 
ance as  will  be  shewn  by  examples  in  the  following  chapter. 

They  are  obtained  by  putting  m  for  m'  in  the  relation  of 
Art.  70,  which  gives  us 

pm^  -  (pi  +  pJ')  pm  +  pi .  pp'  —  0. 
This  being  a  quadratic  equation  gives  us  two  and  only  two  values 

of  pm,  and  these  of  course  may  be  real  and  unequal,  coincident, 

or  imaginary. 

If  e  and  /  are  the  points  given  by  these  values  of  pm,  they 

are  the  common  points  of  the  ranges.  Some  of  their  properties 

are  given  in  the  following  articles. 

72.  The  mid-point  of  ef  is  also  the  mid-point  of  IJ' . 

For  if  0  is  the  mid-point  of  ef  by  the  equation  in  Art.  71  we 

have  ̂ pO=pI-vpJ'. 
The  coincidence  of  the  mid-points  may  also  be  proved  by  using 

Art.  64. 

For  since  X  =  el .  eJ'  =  If.  Jf 

.     e/  _  //•_  el+If      ef 
' '  J'f~  eJ'  ~  eJ'-^Jf  Vf    ' 

.'.  eI  =  Jf,  and  If^eJ'. 

Therefore  the  mid-point  of  e/is  also  the  mid-point  of  IJ'. 

73.  If  0,  the  mid-point  of  ef  is  a  point  on  the  first  range, 

and  0'  its  correspondent y  the  range  {efO'J')  is  harmonic. 
Transferring  the  origin  from  p  to  0,  in  which  case  pO  is  zero, 

we  have 

Oe''+OI.OO'  =  0, 

and  since  01  =  -  OJ',  and  Oe^  =  Of^,  this  becomes 

Oe''=Of'=OJ'.00'   (A), 
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and  therefore  by  Art.  32  {efO'J')  is  a  harmonic  range. 
follows  from  (A)  that  ^H 

The  common  points  are  real  or  imaginary  according  as  OJ'  atic^ 

00'  have  the  same  or  opposite  signs,  i.e.  according  as  J'  and  0'  are 
on  the  same  or  opposite  sides  of  0.  ^H 

The  above  relation  (A)  can  also  be  obtained  by  using  the 
constant  of  correspondence,  Art.  64. 

Thus,  from        Im  .  J'm'  -  const.  =  la  .  J 'a!, 

we  have     {Om  -  01) {Om'  +  01)  =  {Oa  -  01)  {Oa!  +  0I\ 

and  therefore  Om .  Om'  -  mm! .  OI=Oa.  Oa'  -  aa  .  01, 
as   the   general   relation   connecting   the   distances   from    0   of 

corresponding   points.     In   particular,    for   common   points  this 

becomes  J| 
Oe^^Oa.Oa'-aa'.OI,  ^ 

shewing  at  once  that  there  are  two  common  points  equidistant 
from  0.     If  a  coincides  with  0, 

Om  .  Om'  -  mm'  .01  =  -00'.  01=  00' .  OJ', 

.-.  Oe'  =  0/'  =  -  00' .  01  =  00' .  OJ'. 

The  cross-ratio  formed  by  the  common  points  and 
any  pair  of  corresponding  points  is  constant. 

74.     Taking  the  relation  given  in  Arts.  62,  66 

am        a!m' 

hm        h'm  ' 
since  a,  a'  and  6,  h'  may  be  any  two  pairs  of  corresponding  points, 
let  a  be  the  common  point  e,  and  b  the  common  point  f.     Then 

a  coincides  with  e,  and  h'  with/,  and  the  relation  becomes 
e7n        em! 

where  ju,  is  const. 
fm     ̂ fm" em     em'     ,  ̂      ,. 

f^  =  -^—  :  -T—,  =  (ejmm  ). 

fm     Jm      ̂^         ' 
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75.  The  above  result  may  also  be  obtained  as  follows. 

Since  {abef)  =  {a'h'ef), 

,   ae      he  _  a'e      h'e ''af'-hr-^f'-hT 
.   cLe      a'e     he      h'e 

"af''Vf=bf''¥f' 
:.  {aa'ef)  =  (hh'ef). 

Hence  the  cross-ratio  of  the  range  formed  hy  the  common  points 
and  any  pair  of  corresponding  points  is  constant. 

76.  There  cannot  he  more  than  two  com,mon  points. 

For  suppose  there  were  three,  viz.  e^f  g.     Then 

(efgm)  =  {efgm'), 

therefore  m'  would  always  coincide  with  m,  and  the  two  ranges 
would  be  identical.     See  Art.  71. 

77.  If  one  of  the  common  points,  as  /,  is  at  infinity,  since 

{meaco  )  =  (mWoo  ), 

.   ma  _  m'a' 

ea       ea'  ' 
.    ae  _  am       ah 

a'e     am!      a'b' ' 
Therefore  the  lines  are  divided  proportionally. 

Conversely  J  if  two  ranges  are  similar,  one  of  the  common  2)oints 
is  at  infinity.     See  also  Art.  67. 

If  in  addition  the  ranges  are  equal  and  in  the  same  sense,  so 

that  ah  =  ah',  then  ae  =■  a'e,  and  therefore  e  is  at  infinity,  i.e.  if 
the  ranges  are  superposable,  both  common  points  are  at  infinity. 

78.  By  Art.  73  Oe^  =  QJ' .  00'. 

If  the  point  0'  coincides  with  0,  we  see  that  Oe  vanishes, 
the  common  points  coincide  at  0,  and  the  constant  of  correspon- 

dence =  Im .  J'm'  =  10 .  J'O  =  -  \IJ''^. 
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The  case  where  0  coincides  with  J'  belongs  to  the  system  in 
involution,  and  will  be  considered  in  Chapter  IX.  00'  is  then 

infinite,  whilst  the  product  OJ' .  00'  is  still  finite. 

By  Art.  64  \  =  Ie.Je 

=  {0e-0I){0e  +01) 

=  Oe^-OI\ 

.'.  Oe'  =  OP  +  \=Of\ 

From  this  we  see  that  if  X  is  positive,  Oe  is  always  real. 

If  A,  is  negative,  and  <  OP^  Oe  is  always  real. 

If  X  is  negative  and  =  —  OP,  Oe  vanishes,  and  the  comi 
points  coincide  at  0. 

If  \  is  negative  and  >  OP,  the  common  points  are  imaginary. 

d'    e      c'      J'  f      O'     b' h d    1 

ab  6 
Fig.  29. 

L 

d'     eO' 

J' 

1 

c' 

b'      a'  L' c ii   i 
dfo 
Fig.  30. 

L 

c' 

O'
 

d' 

J' 

a'         bV 

a h i      c  6 

Fig.  31. 

d         L 

The  dififerent  cases  of  this  article  are  illustrated  by  the  above 

figures,  each  of  which  gives  two  co-axial  homographic  ranges. 

The  divisions  of  L  are  shewn  below  the  line,  and  those  of  L' 
above  it.  In  Fig.  29  the  common  points  are  real  and  separate; 

in  Fig,  30  they  are  real  and  coincident,  in  which  case  all  the 

points  e,  f,  0,  0'  coincide.  In  Fig.  31  they  are  imaginary,  although 
their  mid-point  0  is  real. 

i 
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79.  If  we  have  two  homographic  ranges  on  the  same  axis, 

and  if  a  is  a  point  on  the  axis  which  has  al  or  a!'  for  its  corre- 
spondent according  as  we  consider  it  to  be  a  point  in  the  first 

or  second  range,  then,  as  the  point  a  varies,  the  range  which  it 

describes  will  be  homographic  with  the  range  (a");  and  it  is 
by  supposition  homographic  with  the  range  {a!).  Therefore  by 

Art.  39,  the  ranges  {a!)  and  {a!')  are  homographic.  Also,  if  a  coin- 
cides with  either  of  the  common  points  of  the  ranges  (a)  and  {a!\ 

the  points  cb  and  a"  wall  also  coincide  with  it.  Hence  the  ranges 

(a')  and  (a")  will  have  the  same  common  points  as  the  ranges 
{a)  and  {a!). 

V  00' 

80.  If  two  homographic  pencils,  vertices  F,  F',  are  cut  by 
a  transversal,  we  shall  obtain  two  homographic  ranges  upon  it, 

and  if  e,  /  are  their  common  points,  Fe,  F'e  and  Yf,  Y'f  are  in 
general  the  only  pairs  of  corresponding  rays  which  intersect  on 

the  transversal.  If  there  are  more  than  two  such  pairs,  the 

pencils  are  in  perspective,  having  the  transversal  for  axis  of 
perspective.     See  Art.  45. 

If  we  have  two  co-axial  homographic  ranges,  and  we  join 

the  points  of  division  to  an  external  point  F',  we  shall  obtain 
two  homographic  concentric  pencils  in  which  the  rays  drawn  to 

the  common  points  will  be  common  raysy  and  the  pencils  will 
M.  5 
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have  properties  similar  to  those  possessed  by  two  co-axial  ranges 
of  which  the  two  most  important  are 

(1)  hy  Art.  74  the  cross-ratio  formed  by  the  two  commc 
rays  and  any  pair  of  corresponding  rays  is  constant^ 

(2)  hy  Art.  76  there  cannot  he  more  than  two  common  rayi 

81.  Given  two  homographic  ranges  on  the  same  straight  lit 

ij  the  common  points  are  imaginary  there  are  two  points  on^ 
opposite  sides  of  the  line  at  which  pairs  of  corresponding  jjoints 
suhtend  equal  angles. 

R 

J'  O  I  C 

Fig.  33. 

Since,  by  Art.  73,  0'  and  J'  are  on  opposite  sides  of  0,  there- 

fore 0'  and  /  are  on  the  same  side  of  0,  and  the  product  01.  00' 
is  positive.  Draw  OR  perpendicular  to  the  given  line  of  such 

length  that  OR^  =  01 .  00\  and  through  R  draw  a  line  parallel 

to  the  given  line.  '^^ 
Then  J'RO'  is  a  right  angle,  and  the  right-angled  triangles 

ORI,  00' R  are  similar.     Therefore  the  angle 

ORI=00'R^O'Rcx^\ 

the  angle  IR  ao  =  oo  'RJ',  and  the  angle  OR  oo  =  O'RJ'. 

Therefore  in  the  two  pencils  R  {01  oo  ),  R{0' co  'J')  the  a 
between  each  pair  of  rays  of  the  one  is  equal  to  the  angle  between 

the  corresponding  rays  of  the  other  taken  in  the  same  sense. 

Consequently  by  Art.  42,  if  m,  m'  are  any  pair  of  corresponding 

points  in  the  given  ranges,  the  pencils  R  (OIco  m),  R  (0'  co  'J'm') 

are  superposable  by  rotation  through  the  angle  ORO'. 

The  point  R\  the  image  of  R  on  the  other  side  of  O'J',  will 
course  have  similar  properties. 

angl^^ 
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Hence,  if  either  of  these  points  is  found,  and  also  any  pair 

of  corresponding  points  (m,  m'),  any  additional  number  of  pairs 
can  be  found  by  means  of  the  constancy  of  the  angle  mRm. 

Dep.     We  might  call  these  points  i?,  R'  the  rotation  centres 

Rotation  cen-      ̂ ^  *^®  homography,  and  the  constant  angle  between 
tres,  Rotation     corresponding  rays  the  rotation  angle. 

^^S"^^-  These  points  can  be  obtained  without  finding 
0  and  0'  if  we  know  the  power  of  the  correspondence  A.,  i.e.  if 

we  know  /,  /'  and  any  pair  of  corresponding  points  (m,  m). 
For  OR^=OI.OO\ 

:.  RP  =  OR^  +  OP  =  01  (00'  +  01)  =  01  {00'  -  OJ')  =  01 .  J'O'. 
:.  RP  =  RJ'^=  -\. 

Therefore  RI  and  RJ'  are  equal  to  the  mean  proportional 

between  ml  and  J'm!. 
Another  method  of  obtaining  the  positions  of  the  rotation 

centres  is  by  means  of  the  circle  in  Fig.  36,  Art.  84,  by  finding 

the  tangential  distance  of  I  or  J'  from  that  circle,  and  drawing 
arcs  with  /  and  J'  as  centres  and  this  tangential  distance  as 
radius.  The  points  of  intersection  of  these  arcs  will  be  the 

rotation  centres,  for  (the  tangent)^  = /Z> .  J'D'  =  -X. 

82.     We  will  now  consider  the  question 

To  construct  on  a  straight  line  a  row  which  shall  be  homo- 
graphic  to  a  row  already  described  upon  it. 

We  will  give  two  methods  of  construction,  and  it  will  make 

the  subject  clearer  if,  instead  of  a  single  line,  we  imagine  a 

double  line  consisting  of  two  parallel  lines  Z,  L'  indefinitely  near 
to  one  another. 

(1)  Let  abc  be  the  characteristic  of  Z,  and  take  any  three 

points  a,  b',  c  to  be  the  characteristic  of  L'.     Art.  38. 

g'   a'        b'   c   l! 
J  a  I  c  L 

Fig.  34. 
5—2 
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Take  any  point  on  the  double  line  and  let  it  be  denoted 

J)  when  considered  as  a  point  on  Z,  and  by  5^'  when  considered 

as  a  point  on  Z',  and  rotate  the  line  L'  about  c^  so  as  to  make  any 

angle  with  Z,  the  points  a',  h\  c  retaining  their  distances  from  q' 
(or  p)  unchanged.     As  we  remarked  in  Art.  70,  since 

(abcm)  =  {a'h'cm), 
the  distances  of  corresponding  points  m,  m!  from  p  are   inde- 

pendent of  the  angle  between  Z  and  Z'. 
Then  in  Fig.  24,  p.  39,  by  joining  pairs  of  non-corresponding 

points  (ab')j  (a'b)  and  (ac'),  (a'c),  and  drawing  the  line  through 
their  points  of  intersection  y,  j8,  as  in  Art.  50,  we  obtain  the 

cross-axis  p'q,  and  the  points  (p,  p')  correspond,  as  do  also 

{q,  q').  By  means  of  the  cross-axis  any  number  of  pairs  of 
points  (m,  m!)  can  be  found. 

To  find  I  and  J\  0  and  0'. 

In  Fig.  25,  p.  41,  let  c,  c'  be  any  pair  of  corresponding  points. 

Through  c  draw  a  line  parallel  to  Z'  meeting  p'q  in  i.  Then  c'i 
produced  will  meet  Z  in  the  required  point  /.  Through  /  draw 

a  line  parallel  to  p'q.  This  will  meet  Z'  in  the  required  point  J' 
by  Art.  55. 

Rotating  L'  about  q'  to  its  original  position  in  the  double 

line  and  bisecting  Z/',  we  obtain  the  point  0.  To  find  0'  let  Oc' 

meet  the  cross-axis  in  w.  Then  cm  will  meet  L'  in  the  required 

point  0'. 

(2)  Move  one  of  the  given  lines  Z,  Z'  parallel  to  itself  until  any 

pair  of  corresponding  points,  say  (jo,  p'),  coincide,  and  rotate  the 
line  L'  through  any  angle  about  this  common  point,  as  in  Fig.  26. 
By  Art.  41  the  ranges  are  now  in  perspective,  centre  S,  and  if 

we  take  any  point  m  on  Z,  and  join  Sm,  it  will  cut  L'  in  m\  the 

point  corresponding  to  m.  Draw  SI,  SJ'  parallels  to  Z'  and  Z, 

and  rotate  Z'  back  again  until  it  coincides  with  Z,  and  then  move 

it  parallel  to  itself  until  p'  is  in  its  original  position.  We  shall 
then  have  two  homographic  ranges  on  the  given  line,  with  the 

YII  ̂ H ^by  ■ 

1 

tne   H 
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points  /,  /'  marked  on  it.  It  will  be  noticed  that  we  have  given 
two  alternative  methods  of  finding  /  and  J\  but  in  most  problems 

the  conditions  will  enable  us  to  determine  these  points  without 

having  to  use  either  of  the  methods,  and  then  the  easiest  way  of 

finding  further  pairs  of  points  will  be  the  method  of  Art.  84,  as 

it  involves  no  moving  of  the  lines. 

Methods  of  finding  the  common  points  e  and  f. 

83.  Since  Oe^=  OJ' .  00\  Art.  73,  Oe  is  a  mean  proportional 

between  the  two  known  lengths  OJ'  and  00\  and  can  therefore 
at  once  be  found  by  Euc.  vi,  13. 

We  shall  refer  to  this  as  Chasles'  method  of  finding  the 

common  points  (1852)*, 

84.  The  following  simple  method  of  finding  the  common 

points  and  constructing  any  number  of  pairs  of  corresponding 

points  on  the  two  ranges  is  due  to  Prof.  Alfred  Lodge  (1907)  f. 

It  requires  the  finding  of  /  and  J\  but  does  not  make  use  of 

0  and  0'. 

Fig.  35. 

*  Traite  de  GeomStrie  Superieure,  Art.  154. 
t  Mathematical  Gazette,  April,  1909. 



70 CROSS-RATIO   GEOMETRY 

[CH.    VII 

,--''' 

,,'- 
y'
 

1 \ \ 

\ 
/ 7K 

\^ 

\ 

/ 

\ 
\\ ] 

' 

/ \ 

^^oy 

/ ^ 
v\ 

I 

v^ 

p m ^ 
~ 

P' 
m' 

Fig.  36. 

I'p  .  J'p'  =  constant  of  correspondence 

=  Ie.J'e 

=  Ie(Ie-IJ'), 

:.  Ie^-IJ'.Ie  +  Ip.p'J'  =  0. 

To  solve  this  quadratic  equation,  graphically,  measure  from 

/  and  J'  vertical  distances  IB  =  Ip,  and  J'D'  =  p'J',  ID  and  J'D' 

being  drawn  on  the  same  or  opposite  sides  of  IJ'  according  as 
Ip  and  p'J'  are  measured  in  the  same  or  opposite  directions. 

Then  the  circle  described  on  DB'  as  diameter  will  cut  the  given 
axis  in  the  required  common  points  e,  f. 

For  if  ID  (produced  if  necessary)  cuts  the  circle  again  in  Z>i, 

le .  J'e  =  er.If=  DI .  IB^  =  BI .J'B' =  Ip  .  J'p'. 
The  reason  for  putting  the  equation  in  the  form 

le'-IJ'  .Ie  +  Ip.p'J'  =  0 

is  to  make  it  clear  how  the  coefficients  in  any  such  quadratic 

equation  are  connected  with  the  lines  in  the  graph.  The  lengths 

and  signs  of  the  perpendiculars  IB,  J'B'  are  the  equivalents 
of  the  factors  of  the  constant  term,  and  the  distance  between 

them  measured  from  the  origin  /  is  equal  to  the  coefficient  of  le 
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with  its  sign  changed,  so  that  in  Fig.  35,  If  is  the  positive  root 

and  le  the  negative  root,  if  we  consider  IJ'  as  positive. 
In  Fig.  36,  the  roots  are  imaginary.  In  a  vector  sense  they 

may  be  considered  as  represented  by  the  rotation  centres  defined 

in  Art.  81,  since  0R^  =  —  Oe^,  and  the  roots  are  10  ±0e^  that  is, 

JO  ±  OR  J'^. 
We  shall  refer  to  the  above  as  Lodge's  method. 
Figs.  35  and  36  also  give  us  a  simple  method  of  constructing 

any  number  of  pairs  of  corresponding  points  on  the  two  ranges. 

For  let  m  be  any  given  point  on  the  first  range,  and  let  Dm 

cut  the  circle  in  tt.  Join  D'tt  meeting  the  axis  in  m'.  Then  the 

triangles  Dim,  in'J'D'  are  similar. 

.-.  Im.ID^J'D'  :J'm\ 

:.  Im, .  JW  =  ID  .  J'D'  =  Ip  .  Jy. 

Therefore  by  Art.  65  the  range  m'  is  homographic  to  the 
range  m.  In  Fig.  35  the  common  points  are  real,  and  in  Fig.  36 

they  are  imaginary.  If  the  ranges  are  such  that  the  circle  on  DD' 
touches  the  axis,  the  common  points  will  coincide  at  the  point  of 

contact,  as  will  also  the  points  0  and  0'. 
If  we  construct  the  Lodge  circle  for  each  pair  of  correspond- 

ing points  we  shall  obtain  a  co-axial  system  since  each  passes 

through  the  points  e,  f.  If  the  common  points  are  imaginary,  the 
circles  have  real  limiting  points  which  are  the  rotation  centres, 

for  the  distance  of  each  from  the  axis  is  equal  to  the  tangential 

distance  of  0  from  any  circle  of  the  system. 

Ex.  \i  A^B  are  two  fixed  points  on  a  circle,  and  P  a  variable  point  on 
it,  and  if  PA,  PB  produced  cut  a  fixed  line  (which  does  not  cut  the  circle  in 

real  points)  in  M  and  If',  shew  that  MM'  subtends  a  constant  angle  at  R, 
where  jR  is  either  of  the  limiting  points  of  the  system  of  co-axial  circles 
defined  by  the  given  circle  and  the  given  line  as  radical  axis. 

Find  I  on  MM'  such  that  the  angle  AIM=APB,  i.e.  so  that  A,  P,  M%  I 
are  concyclic.     Then  I  is  a  fixed  point,  and 

MI .  MM'  =  MA  .  MP=  (tangent)2=il/iJ2. 
Therefore  the  triangles  MBM\  MIR  are  similar,  and  the  angle 

MRM'^MIR, 

which  is  fixed.     Therefore  the  angle  MRM'  is  constant. 
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85.  In  comparing  the  methods  of  Arts.  83  and  84  it  will  be 

noticed  that  they  both  depend  upon  first  finding  /  and  J\  which 

it  will  be  found  in  practice  can  generally  be  determined  by 
inspection  from  the  conditions  of  a  problem.  We  thus  obtain 

the  characteristics  alcc  and  a'oo  'J'.  Chasles'  method  then  pro- 
ceeds to  find  0\  and  the  construction  is  completed  byEuc.  vi,  13. 

By  Lodge's  method  it  is  not  necessary  to  find  0',  and  the 
amount  of  construction  required  is  distinctly  less.  Moreover 

Lodge's  circle,  besides  giving  the  common  points,  enables  us  to 
construct  as  many  pairs  of  corresponding  points  as  we  please. 

86.  The  following  method  given  by  Chasles*  enables  us  to 
find  the  common  points  directly  from  the  characteristics  ahc 

and  a'h'c\  without  finding  /  and  J'. 
Through  any  arbitrary  point  g  describe  two  circles  having 

ah'  and  ha  as  chords,  and  intersecting  in  a  second  point  g'. 

Through  g  describe  two  other  circles  having  ac',  ca!  as  chords, 

and  intersecting  again  in  g".  Then  the  circle  round  gg'g"  will 
intersect  the  given  line  in  the  common  points  required. 

We  may  remark  that  this  method,  which  depends  on  the 

construction  of  five  circles,  is  one  which  it  is  not  easy  to  use,  as 

it  is  difficult  in  practice  to  construct  the  circles  with  sufficient 

accuracy  to  obtain  more  than  approximate  positions  of  the  common 

points. 

87.  Another  construction  by  means  of  a  circle  or  conic  will 

be  given  in  Art.  160,  at  the  end  of  Chapter  XII. 

Note.     Art.  84  may  be  treated  analytically  as  follows : 

If  the  homographic  equation  of  the  two  ranges  is  known  to 

be  of  the  second  order,  it  can  always  be  put  in  the  form 

(a?i  -  a)  (a?2  -  6)  +  lik  =  0, 
where  hk  is  never  zero,  i.e.,  in  the  form 

x^-a    x^—o 

*  Traite  de  Geom.  Sup.,  Art.  263. 

1 
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In  Figs.  35  and  36,  taking  the  common  axis  as  the  axis  of  x, 

suppose  the  point  m  is  given  (x^,  0).  Find  two  points  D,  D' 
with  coordinates  {a,  h)  and  (6,  k)  respectively,  and  describe  a 

circle  on  DD'  as  diameter.  From  w,  (ajj,  0),  draw  mD  meeting 

the  circle  again  in  tt.  Then  ttD'  will  cut  the  common  axis  in 
m,  (.x\^,  0),  for 

the  gradient  of  mD  is    , CL    X-y 

k 

and  the  gradient  of  m'D'  is  j   ;- , 

and  by  the  homographic  equation  their  product  =  —  1 .    Therefore 
mD  and  m!D'  meet  on  the  circle. 

CoR.  1.  It  follows  that  the  common  points  are  the  points 
where  the  circle  cuts  the  common  axis. 

Cor.  2.     The  point  /  is  at  (a,  0)  and  J'  at  {b,  0). 
Cor.  3.     The  equation  of  the  circle  is 

{x-a){x-h)^(y-h){y-k)  =  0. 

Therefore  when  2/  =  0,  {x  -  a)  {x  —  h)  +  hk  =  0,  giving  the 
common  points. 



CHAPTER   VIII 

PROBLEMS  OF  THE  THREE  SECTIONS. — OTHER  PROBLEMS 

WHOSE  SOLUTIONS  DEPEND  ON  FINDING  THE  COMMON 

POINTS  OF   TWO   CO-AXIAL   HOMOGRAPHIC   RANGES  j 

88.  The  problem  of  finding  the  common  points  of  two  homo- 

graphic  ranges  on  the  same  axis  is  one  of  frequent  occurrence, 

and  can  be  applied  to  the  solution  of  geometrical  questions  which 

in  analysis  would  depend  upon  the  solution  of  equations  of  the 

second  degree,  and  we  will  therefore  solve  somewhat  fully  a  few 

problems,  which  will  enable  the  student  to  become  familiar  with 

the  method.  We  will  follow  Chasles^  in  selecting  for  our  purpose 
three  of  the  most  noted  problems  of  the  ancients,  viz. : 

(1)  On  Determinate  Section,     rys  htoipLo-ixivq';  TOfx-fjs. 

(2)  On  Spatial  Section,     rrjq  aTroro/x^s  tov  ̂ wptov. 

(3)  On  Proportional  Section,     riys  aVoro/x^s  tov  Koyov. 

These  problems  are  of  interest  in  themselves,  for  "the  great 

geometer  "  Apollonius  wrote  separate  treatises  on  them,  intending 
them  to  be  text-books  on  the  application  of  analysis  to  geometry. 
They  were  extant  in  Greek  in  the  time  of  Pappus,  400  a.d.,  and 

the  fertility  of  the  problems  and  the  thoroughness  with  which 

they  were  treated  may  be  inferred  from  his  statement  that  the 

first  treatise  contained  83  propositions,  the  second  124,  and  the 

third  181.     It  was  generally  supposed  that  they  had  perished, 

)ose 

J 

Traite  de  Geometrie  Superieure,  Chaps,  xiv,  xv. i 
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either  from  the  destroying  hand  of  time,  edax  rerum,  or  from  the 
still  more  destructive  hands  of  barbarians,  until  Edward  Bernard, 

who  was  Savilian  Professor  of  Astronomy  from  1673  to  1691, 

discovered  an  Arabic  manuscript  containing  the  section  of  ratio 

in  the  Bodleian  Library.  Being  skilled  in  Oriental  languages  he 

began  to  translate  it  into  Latin,  but  at  his  death  his  successor, 

D.  Gregory,  found  that  he  had  hardly  completed  a  tenth  part  of 

it,  and  at  the  suggestion  of  Aldrich,  Dean  of  Christchurch,  the 

manuscript  was  submitted  to  his  friend  Halley,  who  had  just  been 
elected  Savilian  Professor  of  Geometry,  and  who  took  a  keen 

interest  in  the  editing  of  ancient  mathematical  writers.  Undis- 
mayed by  the  fact  that  he  did  not  know  a  word  of  Arabic,  he 

cheerfully  undertook  to  complete  Bernard's  unfinished  task,  and 
in  the  preface  to  the  work  he  tells  us  how  he  did  it.  With  the 

aid  of  that  part  of  the  manuscript  which  Bernard  had  translated 

(which  consisted  of  only  13  pages  out  of  138),  he  first  picked  out 

those  words  whose  meaning  he  was  able  to  recognise  from  the 

context,  and  then  by  studying  the  argument  and  turning  over 
and  over  in  his  mind  what  might  be  the  meaning  of  the  words 

which  he  did  not  recognise,  by  this  method  of  deciphering  he 

groped  his  way  through  nearly  the  whole  of  the  book,  and 
obtained  a  general  idea  of  its  contents.  Then  by  recommencing 

and  going  over  the  same  ground  step  by  step  again  and  again  he 

managed  to  complete  the  work  without  the  assistance  of  anyone 
else. 

Having  overcome  this  obstacle  so  successfully,  it  sounds 

almost  hypercritical  when  he  tells  us  that  in  addition  to  his 

other  difficulties  the  manuscript  was  badly  written,  the  diacritical 

points  were  wanting  from  many  of  the  letters,  and  occasionally 

words,  and  even  sentences,  were  missing,  so  that,  as  he  says,  it 

required  a  soothsayer  rather  than  an  interpreter  to  divine  the 

true  meaning.  He  then  proceeded  to  restore  the  treatise  de 

Sectione  Spatii,  and  here  he  had  not  even  the  help  of  an  Arabic 

version,  but  merely  a  short  description  of  its  contents  given  by 
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Pappus  in  the  preface  to  his  seventh  book  of  the  Col.  Math. 

together  with  a  few  Lemmas  dealing  with  the  subject.  The  two 

treatises  were  published  by  him  in  Latin  in  one  volume  in  1706. 
The  treatise  on  determinate  section  was  restored  from  similar 

scanty  materials  by  Snell  in  1601,  by  Lawson  in  1772,  by  Wales 
in  1772,  and  by  R.  Simson  in  his  posthumous  works  published  in 
1776. 

The  road  which  all  these  writers  have  taken  is,  however,  a 

long  and  toilsome  one,  and  as  Chasles  points  out,  homography 

gives  us  a  simple  method  by  which  we  can  solve  the  problems 

either  in  their  most  general  form,  or  in  any  of  the  particular  cases 

which  they  can  assume. 

I.     Determinate  Section. i 
89.     Given  four  collinear  points  a,  a\  b,  h',  it  is  required  to 

find  another  j)oint  m,  collinear  with  them,  such  that 
ma .  mh  ,         ,  ̂     PQ 
— 5   ,  ~  a  (const.)  =  -^ mo .  ma  qr 4 

There  will  evidently  be  two  points  satisfying  the  given  con- 
ditions, for  the  equation  is  a  quadratic,  and  these  two  points  are 

obviously  the  common  points  of  the  two  homographic  divisions 

formed  by  — ^  ==  u  .  -^77 ,  where  a,  b  are  two  points  in  the  first -^  mb     ̂     7nb 

row,  and  a',  b'  their  correspondents  in  the  second.     See  Art. 

To  determine  the  points  I  and  J'. 

Let  m'  be  at  00  '.     Then  ̂ ,  =  «,. lb 

Let  m  be  at  00  .     Then  y,—,  =  u. J  a 

Having  found  /  and  J',  we  can  determine  the  common  poini 
e,  /  by  any  of  the  methods  given  above. 

d 
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Chasles'  method,  Fig.  37. 

77 

J'  6    f  b' 
Fig.  37. 

Bisect  IJ'  in  0,  and  considering  0  as  a  point  in  the  first 

row,  find  its  corresponding  point  0'  from  either  of  the  relations 

aO        a'O' hO 

h'O' 

or  IO.J'0'=^Ia.J'a\ 

On  10'  describe  a  semi-circle,  in  which  draw  OC  perpendicular 
to  10'.  Then  the  circle  with  centre  0  and  radius  OC  will  cut  the 
axis  in  the  required  points  e,/. 

Lodgers  method^  Fig.  38. 

a' 

le  .  J'e  —la  .J  'a', 

.'.   Ie{Ie-IJ')+Ia.a'J'=(), 
:.   Ie''-IJ'  .Ie  +  Ia.aJ'  =  0, 
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On  perpendiculars  through  /,  J'  take  ID  =  la,  and  J'B'  =  a' J', 

measuring  them  on  opposite  sides  of  IJ',  because  la  and  a' J'  are 

of  opposite  signs.  Then  the  circle  described  on  DD'  as  diameter 
will  cut  the  given  line  in  the  required  common  points  e,  f. 

\ 

II.     Spatial  Section. 

90.  Given  two  straight  lines  AL,  BL'  on  which  A  and 
fixed  points,  it  is  required  to  draw  through  a  fixed  point  P  a  trans- 

versal ePe  forming  on  AL,  BL'  the  two  segments  Ae,  Be  such  that 
A  e .  Be  =  a  given  quantity  K. 

Let  a,  a'  be  two  points  on  AL,  BL'  such  that  Aa .  Ba!  =  K. 
Then  in  their  different  positions  the  divisions  {a)  and  (a)  are 

homographic  by  Art.  65;  and  if  a'P  meets  AL  in  a,  the  ranges 
{a)  and  (a)  are  homographic  by  Art.  39,  and  we  have  to  find  the 
common  points  of  these  ranges. 

When  a  is  at  infinity,  a  is  at  B,  and  a  at  J',  the  point  wheri 
BP  meets  AL. 

When  a  is  at  infinity,  a  is  at  /',  where  PI'  is  parallel  to  AL^ 
and  /  is  obtained  from  the  relation  AI .  BI'  —  K. 

[The  position  of  /  can  also  be  found  as  follows.  If  in  Fig.  4' 

we  rotate  the  line  L'  about  /'  so  as  to  come  into  the  position 

I'P,  and  if  B,  a,  ...  come  into  the  positions  B^,  %',  ...,  then  AB^ 
is  the  cross-axis  of  the  ranges  A,  a,  ...,  B^,  a{,  ....  There- 

fore if  we  join  Fa  cutting  AB^  in  X,  a^X  will  pass  through  /j 

Similarly  we  can  find  O'  in  Fig.  39.] 
Employing  Chasles'  method.  Fig.  39,  find  0  the  mid-point  of 

IJ',  and  Q!  its  corresponding  point  on  BL'  from  the  relation 

AO .  BQ'  =  K,  and  join  Q'P  meeting  AL  in  0'.  Describe  the  semi- 

circle on  10'  and  obtain  the  common  points  e,  f  as  in  the  preceding 
problem. 

Join  eP,fP  and  produce  them  to  meet  BL'  in  e',f'.  Then, 

the  two  pairs  of  points  e,  e'  and/,/'  are  the  points  required. 
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Fig.  40. 

Employing  Lodge's  method,  Fig.  40,  as  in  Art.  89,  we  have 
/e2_/J'.7e  +  /a.a'J'  =  0. 
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Find  the  points  D,  D\  which  will  be  on  the  same  side  of  IJ\ 

because  la  and  a  J',  the  factors  of  the  last  term,  are  both 
measured  in  the  same  direction.  Then  the  circle  on  DD'  as 
diameter  will  cut  ̂ Z  in  the  points  e,  y,  and  the  problem  can  be 

completed  as  before. 

III.    Proportional  Section. A 
91.  Given  two  straight  lines  AL,  BL'  on  which  A,  B  are  fixed 

points,  it  is  required  to  draw  through  a  fixed  point  P  a  transversal 

ePe'  forming  on  AL,  BL'  the  two  segments  Ae,  Be'  which  shall  he  in 
a  given  ratio  \. 

Let  a,  a'  be  two  points  on  AL,  BL'  such  that  ̂ ^,  =  X. 
Then 

in  their  different  positions  the  divisions  (a)  and  (a')  are  homo- 

graphic  by  Art.  67;  and  if  a'P  meets  AL  in  a,  the  ranges  (a)  and 
(a)  are  also  homographic,  and  their  common  points  will  give  us 
the  points  required. 

i 
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To  find  /,  the  position  of  a  when  a'  is  at  infinity,  draw  PI' 
AI 

parallel  to  A  Z,  and  take  -^j,  =  A,  for  a'  then  coincides  with  /'. 

To  find  J',  the  position  of  a  when  a  is  at  infinity,  and  when 

a'  is  also  at  infinity  by  Art.  67,  draw  FJ'  parallel  to  BL'. 
If  we  wish  to  use  Chasles'  method,  find  0  the  mid-point  of 

IJ'.     On    BL'  find   Q,'  corresponding   to    0   from   the   relation 
AO 

-o?y  =  K  ̂^^  join  O'P  meeting  AL  in  0',  and  complete  the  con- 
struction as  in  the  problems  of  Arts.  89,  90. 

Employing  Lodge's  method  we  have 

M-IJ'  .le  +  Ia.  a'J'  =  0. 

The  points  D,  D'  must  now  be  taken  on  the  same  side  of  IJ\ 

since  la  and  a  J'  have  the  same  sign. 
It  has  been  left  to  the  student  to  draw  the  circles  according 

as  he  employs  Chasles'  or  Lodge's  method. 

92.  Given  a  triangle  ABC,  and  three  points  P,  Q,  R  in  its 

plane,  it  is  required  to  inscribe  in  ABC  another  triangle  whose 

sides  shall  pass  through  P,  Q,  R. 
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Through  P  draw  any  straight  line  PI  a,  cutting  BC  in  a  and^ 

AB  in  1.     Join  ̂ 1  cutting  AC  in  1'.     Join  RV  cutting  BG  in  al 

In  the  same  way  we  can  find  as  many  pairs  of  points  such  as^ 
w,  a'  as  we  please  on  BG,  the  ranges  {a)  and  (a!)  will  be  homo- 
graphic,  and  their  common  points  will  give  us  vertices  of  the  two 

triangles  which  can  be  constructed  satisfying  the  given  conditions. 

The  process  of  finding  any  pair  of  corresponding  points  such 

as  a,  a'  is  what  Chasles  calls  a  construction  d'essai^  and  if  the 

points  a,  a'  happened  to  coincide,  then  we  should  have  found  one^ 
of  the  common  points*,  but  if  not,  the  segment  aa  would  be  a 
measure  of  the  error,  and,  as  he  puts  it,  we  may  make  use  of 

three  similar  errors  given  by  three  trial  constructions  to  solve  the 

problem,  so  that  there  is  a  sort  of  analogy  between  this  general 
method  and  the  arithmetical  rules  of  false  position.  It  will  be 
noticed,  however,  that  all  that  we  obtain  from  such  constructions 

in  general  is  three  pairs  of  corresponding  points,  which  constitute 

what  we  have  called  the  characteristics  of  the  two  homographic 

ranges,  and  even  if  we  chanced  to  hit  upon  one  pair  of  correspond- 
ing points  which  happened  to  coincide,  it  would  not  help  us  at  all 

to  find  the  other  pair.  ^ 

In  Fig.  42  let  a,  a';  b,  b';  c,  c'  be  three  pairs  of  corresponding" 

points  obtained  as  above.  Then  abc  and  a'b'c'  are  the  characteristics 
of  the  ranges,  and  we  might  now  proceed,  as  in  Art.  82,  to  rotate 

one  of  the  ranges,  construct  the  cross-axis  and  find  /,  J',  &c. 
It  will  be  found  in  practice,  however,  that  this  is  a  long  process 

requiring  a  considerable  amount  of  construction,  which  increases 

the  chance  of  error  in  the  result,  and  either  /  or  J'  can  be 
obtained  much  more  easily  and  accurately  by  direct  use  of  the 

fact  that  it  is  the  position  which  one  of  the  points  a,  a  assumes 

when  the  other  is  at  infinity ;  in  fact,  we  use  the  special  charac- 

teristics a/oo  ,  a' co'  J'  instead  of  the  general  ones  abcj  a'b'c.       jM 
To  find  /,  suppose  a  at  infinity,  and  let  the  line  through  1^ 

*  We  have  a  similar  construction  d'essai  in  Euc.  ii,  14;  vi,  28;  xi,  11. 
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parallel  to  BC  meet  CA  in  2'.    Draw  2'Q  meeting  AB  in  2.    Then 
2P  will  meet  BG  in  /. 

To  find  J\  let  the  line  through  P  parallel  to  BC  meet  AB  in 

1.     Draw  1^  meeting  ̂ C  in  1'.     Then  VR  will  meet  BC  in  J'. 

Fig.  43. 

In  Fig.  43  we  have  employed  Lodge's  method,  taking  the 

points  D,  D'  on  opposite  sides  of  IJ\  because  la,  a' J'  are  of 

opposite  signs.  The  circle  on  DD'  as  diameter  intersects  BC  in 
the  common  points  e,  /.  Join  eP  meeting  BA  in  k.  Draw  kQ 

meeting  AC  in  I.  Then  le  will  pass  through  R,  and  ekl  is  one  of 

the  required  triangles.  Similarly,  starting  from  the  point  f,  we 

obtain  the  triangle  fnm,  which  also  satisfies  the  given  conditions. 

6—2 
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93.  In  the  next  two  examples  we  will  merely  indicate  the 

opening  steps  by  which  the  points  /,  J'  can  be  obtained,  leaving  it  to 
the  student  to  draw  the  figures  and  to  find  the  common  points  by 

one  of  the  methods  given  above.  Questions  of  this  class  might 

also  be  solved  by  finding  the  characteristics,  and  then  projecting 
them  on  a  circle  or  conic,  as  will  be  explained  in  a  later  chapter. 

This  is  the  method  employed  by  Cremona  in  his  Mements  de 

Geometrie  Projective  (1875),  and  in  Section  xix  of  that  work 
several  of  these  problems  are  treated  in  this  manner.  It  should, 

however,  be  impressed  upon  a  student  that,  in  dealing  with  any 

given  problem,  when  he  has  obtained  the  two  homographic 

ranges  on  a  line,  and  found  the  three  pairs  of  corresponding 

points,  it  is  not  sufficient  for  him  to  say  "Hence  the  common 
points  of  these  ranges  which  satisfy  the  conditions  of  the  problem 

can  be  found."  For  a  complete  solution  the  actual  positions  of 
the  common  points  ought  to  be  determined  in  every  case. 

94.  Given  two  homographic  ranges  (a)  and  (a)  on  two  lines 

ALy  A'L'j  and  two  points  F,  P'  in  the  same  plane  with  them,  it  is 

required  to  find  two  corresponding  points  e,  e'  in  the  ranges  such 
that  the  lines  Pe  and  Fe'  will  contain  a  given  angle  <f>. 

Since  the  ranges  are  given,  if  we  take  any  point  in  the  one,  we 

are  supposed  to  know  the  position  of  its  corresponding  point  in  the 

other.  Let  a,  a'  be  any  pair  of  corresponding  points.  Join  Fa\ 

and  through  P  draw  a  line  making  the  given  angle  <f>  with  P'a' 

and  meeting  AL  in  a.  Then  the  ranges  (a')  and  (a')  are  homo- 
graphic,  as  are  also  (a)  and  (a),  and  consequently  by  Art.  39  the 

ranges  (a)  and  (a')  are  also  homographic  and  we  evidently  have 
to  find  their  common  points.  ^ 

To  find  the  point  I  in  the  range  (a)  corresponding  to  the  point  ~ 

at  infinity  in  (a).     When  a'  is  at  infinity.  Pa  is  parallel  to  AL. 
Through  P'  draw  a  line  making  an  angle  <f>  with  AL,  and  meeting 

A'L'  in  /'.     Then  the  point  /  in  the  range  (a)  corresponding  to  /' 

in  (a')  is  the  point  required. J 
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To  find  J\  suppose  a  is  at  infinity,  and  let  /  be  the  corre- 

^sponding  point  in  {a).  Join  j'F^  and  through  F  draw  a  line 

making  with/P'  the  angle  <^.  This  will  meet^Z  in  the  required 
point  y,  &c. 

95.  Given  two  straight  lines  Z,  L',  it  is  required  to  find  on 

them  two  points  a,  a'  such  that  the  line  aa  will  subtend  given 

angles  (f>,  cf>'  at  two  fixed  2>oints  /*,   F, 

On  L'  take  any  point  A^  and  make  the  angle  A-^  PA  =  ̂ ,  and 
A 1  Fa  =  <li\  the  points  A  and  a  being  on  the  line  L.  Then  as  A^ 

moves  along  L\  A^  and  a  trace  out  homographic  ranges,  as  do  ̂ ^ 

and  A,  and,  by  Art.  39,  A  and  a.  Hence  we  have  to  find  the 

common  points  of  the  ranges  (A)  and  (a'). 
To  find  I.  When  a  is  at  infinity,  Fa  is  parallel  to  L,  A^is 

Sit  A.^  such  that  A^Fa  =  cf>',  and  A  is  at  /,  where  A^FI-  <f>. 

To  find  J'.  When  A  is  at  infinity,  FA  is  parallel  to  Z,  A^  is 

at  A^  such  that  A^FA  -  <f>,  and  a  is  at  J',  where  A^FJ'  =  <^',  &c. 

EXAMPLES. 

1.  Determine  on  a  given  line  a  segment  which  shall  subtend  given 
angles  at  two  given  points. 

2.  Determine  on  a  given  line  a  segment  of  given  length  which  shall  sub- 
tend a  given  angle  at  a  given  point. 

3.  AIj,  AV  are  two  given  lines.  P  is  a  given  point  in  their  plane,  and 

a  a  given  point  in  Ah.  Through  P  it  is  required  to  draw  a  transversal  Fhh' 
meeting  Ah  in  6  and  Ah'  in  V  such  that  Ab'  =  ab. 

4.  In  a  given  triangle  inscribe  a  rectangle  equal  to  a  given  square. 

5.  Given  a  plane  polygon  of  any  number  of  sides,  and  the  same  number 
of  points  in  its  plane,  inscribe  in  the  polygon  another  polygon  whose  sides 
will  pass  through  the  given  points. 

6.  A,  B  are  two  fixed  points  in  a  given  straight  line.  It  is  required  to 
find  in  the  straight  line  two  other  points  E,  F  so  that  EF  may  be  of  given 
length,  and  the  cross-ratio  {ABEF)  of  given  magnitude. 
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7.  Given  two  homographic  ranges  on   two   lines  AL,  A'L',  and 
others  on  BM,  B'M',  it  is  required  to  draw  through  a  given  point  P  two 
straight  lines  each  of  which  will  intersect  AL,  A'L'  in  a  pair  of  corresponding 
points,  and  will  do  the  same  with  BM,  B'M'. 

[Let  a,  a'  be  a  pair  of  corresponding  points  on  AL,  A'L',  and  let  Pa  meet 
BM  in  b,  and  let  b'  be  the  point  on  B'M'  corresponding  to  b.  Then  if  Pb' 
meets  A'L'  in  a',  the  ranges  {a')  and  (a')  are  homographic,  and  the  lines 
joining  P  to  their  common  points  are  the  two  lines  required.  Find  I,  J',  &g.\ 

8.  Given  a  triangle  ABC  and  P  a  fixed  point  in  its  plane,  draw  through 
P  a  line  cutting  AC  in  m  and  BC  in  n  such  that  the  triangle  mnC  may  be 
equal  to  the  triangle  ABC. 

9.  Given  a  triangle  ABC  and  a  point  P  on  the  parallel  to  j5C  through  A, 
lying  between  A  and  the  median  through  B  (produced).  Draw  through  P  a 
line  which  will  bisect  the  triangle  ABC. 

For  other  examples  of  this  class  the  student  is  referred  to 

Chasles,  Giom.  Siip.  pp.  219—223. 
Cremona,  Geom.  Proj.  (1875),  pp.  179—188. 
Townsend,  Mod.  Geom.  (1863),  vol.  ii,  pp.  257—275. 

^III    ■ 
two    ̂ M 

I 



CHAPTER   IX 

INVOLUTION 

96.  Def.  When  two  co-axial  homographic  ranges  have  the 

Range  in  points  /  and  J'  coincident,  the  two  ranges  are  said 
Involution.         to  form  a  range  in  involution   or   an   involution 

range.     Hence 

A  system  in  involution  consists  of  two  co-axial  homographic 
ranges^  all  that  is  necessary  being  that  they  should  he  placed  so 

that  I  and  J'  coincide. 

We  must  remember  that  homographic  ranges  are  of  two  kinds. 

We  have  (1)  those  in  which  /  and  J'  are  at  a  finite  distance. 
These  are  homographic  ranges  of  the  second  order,  and  are  by 
far  the  most  important,  and  the  involution  to  which  we  devote 

our  chief  attention  is  when  I  and  J'  of  such  ranges  coincide. 
But  besides  these  there  are  (2)  homographic  ranges  of  the  first 

order  (Arts.  67,  68),  when  the  ranges  are  divided  similarly,  and 

both  /  and  J'  are  at  infinity.  We  shall  deal  with  the  condition 
that  such  ranges  shall  be  in  involution  in  Art.  107.  But  for  the 

present,  and  in  general,  we  shall  confine  our  attention  to  ranges 

of  the  second  order,  and  proceed  to  discover  what  special  proper- 
ties these  possess,  when  they  are  in  involution.  One  of  the 

most  important  of  these,  leading  indeed  to  a  second  definition  of 
involution,  follows  from  consideration  of  the  construction  in 

Art.  82,  where  we  may  of  course  select  any  point  we  please  on 

the  double  line  for  the  point  of  rotation,  and  the  two  points  on 

L  and  L'  corresponding  to  the  point  which  we  select  on  the 
double  line  will  in  general  be  separate,  and  the  cross-axis  which 
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[CH.  IX we  obtain  by  joining  them  after  rotation  will  have  a  diflferent 

position  for  each  point  selected  on  the  double  line,  but  it  will 

always  be  parallel  to  the  line  joining  IJ\  Art.  55. 

Fig.  44. 

m'    n'    P' 

J'
 

I 
I 

Fig.  45. 

a'h'  c 

L'
 

mn  p 

Suppose  now  we  have  the  double  line  with  its  two  homo- 

graphic  ranges,  and  we  slide  the  line  L'  along  the  double  line 

until  the  point  J'  coincides  with  /,  and  then  rotate  L'  about  any 
point  p  (=  q)  through  any  angle. 

Let  pq'  be  the  cross-axis.  Then  by  Art.  55  pq'  is  parallel  to 

IJ' ;  and  since  p'J'  =  ql,  therefore  p'q'  =  qpj,  and  if  L'  is  rotated 
back  again  about  p'  until  it  coincides  with  the  double  line,  the 

point  q'  will  fall  upon  the  point  p,  and  therefore  the  point  ̂ /  (or  q) 
has  the  same  correspondent  whether  it  is  considered  to  be  a  point 

on  L  or  on  L' ;  and  as  p'(-q)  may  be  any  point  on  the  double 
line,  we  may  say  that 

When  two  co- axial  homographic  ranges  have  the  j^oints  I  and  J' 
coincident^  then  every  point  on  the  axis  has  its  two  corresponding 
points  coincident. 

This  is  also  clear  from  consideration  of  the  equation 

Ip  ,J'p'  =  const., 

for  if  J'  coincides  with  /,  and  therefore  also  with  their  mid-point 

0  we  have  Op .  Op'  -  const.  =  Oe^  =  Of^,  and  the  symmetry  of  the 
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relation  shews  that  no  matter  which  range  p  belongs  to,  p'  is  its 
correspondent.  The  converse  is  also  true;  viz.  that  if  any  point 

taken  on  the  axis  (other  than  one  of  the  common  points)  has  its 

two  corresponding  points  coincident,  the  points  /,  J'  will  coincide. 

This  follows  at  once  from  Fig.  44,  since  if  p'q'  =  pq,  we  must  also 

have  p'J'  =  qlj  and  therefore  when  the  lines  are  rotated  so  that  q' 

falls  on  p,  J'  must  fall  on  /.  Consequently  we  have  a  second 
definition  of  involution,  co-extensive  with  the  first,  involving  the 

same  geometrical  fact,  though  emphasising  another  property,  viz. 

Def.     Two  co-axial  homographic  ranges   are  in  involution 
when  any  point  on  the  axis  (other  than  one  of  the 

Involution  common  points)  has  the  same  corresponding  point, 
whether  the  given  point  belongs  to  the  first  range 

or  to  the  second.     This  property  is  given  in  symbolic  form  in 
Art.  98. 

The  common  points  must  be  excluded  from  this  condition 

as  each  of  them  corresponds  to  itself  whether  the  ranges  are  in 

involution  or  not.  The  point  taken  on  the  axis  will  have  its 

correspondents  coinciding  with  each  other,  but  not  with  itself. 

The  sufiiciency  of  the  test,  and  the  necessity  of  excluding  the 

common  points,  are  both  obvious  from  Fig.  44. 

97.     Def.     Since  when  two  co-axial  ranges  are  in  involution 

their  pairs  of  corresponding  points  are  interchange- 
Points,  able,  we  will  in  this  case  call  them  conjugate  points, 

and  the  common  points  of  the  ranges  we  will  call 

Double                double  points.     This  distinction  will  serve  to  shew 

the  reader  whether  we  are  speaking  of  two  co-axial 

homographic  ranges  in  general,  or  in  the  special  case  where  they 
form  a  system  in  involution. 

Since  /,  J'  coincide,  they  also  coincide  with  their  mid-point  0. 

Def.     The  point  0  is  now  called  the  centime  of 

the  system*. 

*  Chasles,  Apergu  Historique,  p.  318. 
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When  two  ranges  form  a  system  in  involution  we  will  denote] 

it  by  {aa',  bb\  cc  ...),  where  aa',  bb'j  cc  ...  are  pairs  of  conjugate 
points,  and  we  shall  in  general  use  the  letters  e,  f  in  speaking  of] 
the  double  points. 

98.  When  we  have  a  system  in  involution,  if  we  take  three^ 

pairs  of  conjugate  points  and  consider  four  of  the  six  points 

(provided  they  do  not  form  two  pairs  of  conjugates),  it  is  easy  to 

see  that  their  cross- ratio  is  equal  to  that  of  their  conjugates*.        | 

Thus  if  a,  a  ;  6,  6' ;  c,  c  are  the  three  pairs  of  points,  we  may 
take  a,  6,  c,  a  as  belonging  to  the  first  range,  and  then  by  the 

secondary  definition  of  involution  given  in  Art.  96  it  follows  that 

a',  6',  c',  a  are  their  correspondents  in  the  second  range,  so  that 

{abca')  =  (a'b'c'a),  or  referring  to  Fig.  45, 

(abca')  =  (abcm)  since  m  and  a  coincide 

=  iab'c'm)  since  the  rows  are  homographic 

=  {a'b'c'a)  since  m!  and  a  coincide. 

This  property  is  the  symbolic  form  of  the  definition  of  Art.  96, 

ad  fin.  which  established  two  converse  theorems,  viz.  that  if 

a,  a'-,  b,  b';  c,  c'  are  in  involution,  then  (abca')  =  (a'b'c'a),  and 

similarly  for  other  sets  (see  equations  1 — 7,  in  Art.  106),  and'^ 
conversely,  if 

(abca')  =  {a'b'c'a), 

then  a,  a  ;  b,  b' ;  c,  c  are  pairs  of  points  in  involution.  It  will^ 
be  found  that  this  property  is  in  many  problems  the  easiest 

involution  property  to  discover.     See  also  Art.  105.  ^ 

99.  We  now  come  to  a  third  property  of  involution,  deducible  ̂  

at  once  from  Art.   98.     Since  {aa'ef)  =  {alaef),   the  range  aa!ef 
by  Art.    28   is  harmonic,   and   the  double  points  are   harmonic  i 

conjugates  for  each  pair  of  conjugate  points. 

*  Chasles,  Apercju  Historique,  p.  313. 
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As  a  special  case  if  one  of  the  double  points  is  at  infinity,  the 

other  bisects  each  of  the  segments  joining  the  pairs  of  conjugates. 

When  this  case  occurs,  the  homography  is  of  the  first  order,  and 
is  discussed  in  Art.  107. 

100.  The  property  given  in  Arts.  96,  98  may  also  be  seen 

in  Fig.  46  where  the  ranges  form  a  system  in  involution, 

centre  0.  Small  letters  denote  points  in  the  upper  range,  and 

their  conjugates  are  denoted  by  accented  capitals,  so  that  (a,  A') 

represent  a  pair  of  conjugates,  as  do  also  (a^,  A^'). 

a   b   bj    Ui   d     c    Cj  d^   

Ai  B\  B'    A'     b         b'l    C'lC  D' 

Fig.  46. 

The  relations  Oe^  =  Of^  =  Oa .  OA'  =  Oa,  .0A,'=...  shew  that  as 
regards  any  pair  of  conjugates  it  is  immaterial  which  of  them  we 

assign  to  the  upper,  and  which  to  the  lower  range,  so  that  we  can 

either  say  Oa .  OA'  or  OA^' .  Oa^ ;  i.e.  any  point  has  the  same 
conjugate  whether  it  belongs  to  the  upper  or  the  lower  range,  and 

any  pair  of  conjugate  points  (a,  A')  give  rise  to  another  pair  of 

conjugates  (a^,  A^'),  which  coincide  with  the  former  pair  when 
taken  inversely. 

The  same  result  can  be  deduced  from  the  following  proposi- 
tion. 

101.  In  two  equicross  ranges,  if  {a,  A')  are  any  pair  of 
corresponding  points,  we  can  always  find  another  pair  of  corre- 

sponding points  («!,  J/)  such  that  the  segments  aa^  and  A' A(  are 
of  equal  length. 

a   I   a\ 

~A\  T  A* 
Fig.  47. 

For  on  the  upper  range  take  a  point  a-^  such  that  la^  —  J' A'. 
Then  the  correspondent  of  a-y  is  yl/,  where 
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la^ .  J'A^'  =  la .  J' A', 
.-.   J'A;  =  Ia, 

.'.   al  +  la^  —  A^J'  +  J'A\    i.e.  aa^  =  A^'A'. 

Also  aAj'  =  a^A'  =  IJ' . 

Hence  if  we  are  given  any  two  co-axial  homographic  rows,  and 
if  we  move  one  of  them  (say  the  accented  row)  along  the  other 

until  the  points  /,  J'  coincide  at  0,  a  will  coincide  with  A(^ 
and  «!  with  A\  and  as  a  is  any  point  on  the  axis,  we  have  the 

property  of  the  previous  Article. 

102.  Given  two  pairs  of  conjugate  points  a,  a';  b,  b' ;  to  find 
the  centre  of  the  involution. 

Fig.  48 

Fig.  50. 
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I From  the  relation  Oa .  Oa'  =  Oh .  Oh'  we  have 

Oa      Oh'      Oa  +  ah'     ah' 

Oh      Oa'      Oh  +  ha'     ha' 

Through  a  and  h  draw  any  pair  of  parallel  lines  aa,  hjB  in  the 

same  or  opposite  senses,  according  as  ah',  ha  are  in  the  same  or 

opposite  directions,  and  take  aa  =  ah',  and   hjS  =  ha'.     Then  the 
line  joining  aft  will  meet  the  axis  in  the  required  point  0. 

103.  The  value  of  the  expression  Oa .  Oa  is  called  the  power 

of  the  involution,  and  is  easily  found  in  terms  of  the  segments 

between  the  points  a,  a',  h,  h'. 
For,  as  in  Art.  102, 

Oa^^,.Oh'  =  ~  (Oa  +  ah'), 
ha  ha  ̂   ' 

.'.    Oa  (h'a'  -  ah)  =  ah  .  ah'. 

Again,  Oa'  =  —7- .  Oh  =  —j  (Oa'  +  ah), 

.'.   Oa'{ah-h'a')  =  h'a'.a'h, 

ah .  ah' .  ah .  ah' 

Oa.  Oa' 

{ah  +  a'h'Y 
104.  Just  as  three  pairs  of  points  are  sufficient  to  determine 

the  homography  of  two  ranges,  two  pairs  of  points  are  sufficient 

to  determine  an  involution,  and  may  be  called  its  characteristic. 

For  if  a,  a';  h,  h'  are  two  given  pairs  of  points,  we  can  by 
Art.  102  find  the  point  0,  and  the  involution  condition  will  then 

determine  the  conjugate  c'  of  any  point  c,  which  we  can  find  by 
Euc.  VI,  12,  from  the  relation  0c.0c'  =  0a.  Oa'.  Therefore  if 
six  points  are  in  involution  there  is  a  relation  between  them  from 

which,  if  five  are  given,  the  sixth  can  be  found ;  and  three  pairs 
is  the  least  number  between  which  this  relation  can  exist.  It 

must  be  remembered  that  since  two  pairs  determine  the  involu- 

tion, if  a,  a' ',  h,h' ;  c,  c  are  in  involution,  and  also  a,  a' ;  h,h';  d,  d', 

it  follows  that  a,  a' ;  h,  h' ;  c,  c  ;  d,  d'  form  a  system  in  involution. 
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105.  If  we  have  given  six  collinear  points  which  are  con- 

nected by  an  equation  of  cross-ratios,  the  following  consideration 
enables  us  to  determine  by  inspection  of  the  equation  whether 

the  points  are  in  involution,  or  not. 

If  from  six  points  ̂ ;,  q,  r,  s,  t,  u  we  can  form  two  equicross 

ranges,  such  that  of  the  two  points  (say  q,  u)  which  are  necessarily 
common  to  both  ranges  each  has  the  other  for  its  correspondent 

wherever  they  occur,  the  six  points  are  in  involution.  Thus,  if 

(pqru)  =  (tusq),  then  p,  t ;  q,  u  and  r,  s  are  three  pairs  of  points 
in  involution. 

Of  course  we  may  have  to  rearrange  one  of  the  cross-ratios 
before  it  takes  the  requisite  form,  but  if  we  can  by  interchanging 
pairs  of  letters  in  accordance  with  the  rule  of  Art. .  3  put  one  of 

the  members  into  the  requisite  form  whilst  retaining  the  equality 

of  the  cross-ratio,  there  is  involution,  e.g.  Suppose  we  are  given 

{pqru)  =  (utqs).  The  right-hand  side  can  be  written  in  the  form 

{tusq),  and  therefore  {pqru)  =■  {tusq),  shewing  that  there  is  in- 
volution since  the  repeated  letters  now  correspond.  If  we  cannot 

do  this,  there  is  not  involution,  as  in  {pqru)  —  {qust)  or  =  {stqu). 
The  necessary  and  sufficient  condition  for  involution  is  the 

following  rule: 

Whatever  places  the  re2)eated  letters  occwpy  in  one  of  the  cross- 
ratios,  both  or  neither  of  them  must  occujyy  these  places  in  the 
second  cross-ratio. 

Important  Involution  Equations. 

106.  Since  aa'ef  is  a  harmonic  range, 

.-.    {aaef)=-  1, 

.     ae         a'e 
"   af^~<f' 

and  referring  this  to  any  arbitrary  origin  m, 

ine  —  7na         me  —  mcs' 

jnf—  ma         i^f—  'nia  ' 

.'.   {ma  +  ma'}  {me  +  7nf)  =  2ma .  ma  +  2me  .  mf 



105-106]  INVOLUTION   EQUATIONS  95 

and  if  0,  a  are  the  mid-points  of  e/J  ««', 

2ma  .  mO  =  ma  .  ma'  +  me .  mf. 

Similarly  if  /8  is  the  mid-point  of  hh' y 

2my8  .mO  =  mh .  mh'  +  me .  mf, 

.'.    2a/3 .  7nO  =  mh  .  mh'  —  ma  .  ma  *, 

with  two  similar  equations  obtained  by  introducing  y  the  mid- 

point of  cc'. 

If  m  coincides  first  with  a,  and  then  with  a',  we  obtain 

(1)     2ap.aO  =  ab.ab'f,  (2)     2al3 .a'O  =  ab .  ab'. 
Similarly  we  have 

(1)     2ay  .aO  =  ac.ac,  (2)      2ay .  a'O  -a'c  .a'c, 

ap     ab  .  ab'      a!b  .  a'b' i.e.  (aa'bc)  =  (aab'c)  ...(1). 
ay        """""""  "  ^  /        \    ' 

Similarly 
I3y 

/a 

ac  . ac 

a'c  . 

a'c" be 

.be' 

b'e 

.  b'e' 

ba. .ba 

~  b'a 

.b'a" 

ca  . ea ca. 

c'a' 

cb\ 

eh' 

~  c'b. 

e'b" 

ISa~^^    ;../-/.'.    A'."    i.e.  {bb'ca)  =  {b'bc'a)  ...{2), 

and  -^  -  '^'■^'l^  _  " ^' '  '^  7 .      {,e.  lee'ab)  -  (e'ca'b')   ...(3). yf3      cb  .cb       cb.eb  ^         '      ̂   '       ̂  

By  suitable  multiplication  we  may  obtain  the  properties 

ab' .  be'  .ea'  =  —  a'b  .  b'e .  e'a  |  or    {abe'a')  =  (a'b'ca)   . . .  (4), 

ab' .  be .  e'a'  =  -  a'b.  b'e' .  ea     or    (abca)   =  (a'b'c'a)  . . . (5), 

ab  .b'e  .ca' —  —  a'b' .be  .c'a     or    {ab'c'a)  =  {a'bca)     ...(6), 

ab .  b'e  .  c'a  =  —  a'b' .  be  .  ca    or    {ab'ea)   =  (abca)   • .  •  (7). 
Any  one  of  these  seven  equations  expresses  the  condition  that 

must  hold  when  the  six  points  a,  a  ;  b,  b' ;  c,  c  are  in  involution, 
and  consequently  from  it  each  of  the  other  six  equations  can  be 

obtained.  These  results  of  course  follow  directly  from  the 

definitions  of  Art.  96.  The  object  of  giving  them  here  is  to 

call  attention   to  the  fact  that  the  principles  involved  in  the 

*  Pappus,  Bk  VII,  Props.  45 — 56.  f  Pappus,  Bk  vii,  Prop.  41. 
X  Pappus,  Bk  VII,  Prop.  130.     See  also  Appendix  I. 
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definitions  of  involution  can  be  just  as  readily  obtained  from 
properties  given  by  Pappus. 

107.     Centre  of  the  involution  at  infinity. 

If  we  consider  the  distance  between  the  double  points  e,  f  to 

gradually  increase,  so  that,  while  e  remains  at  a  finite  distance 

f  recedes  to  infinity,  the  centre  0  of  the  involution,  which  by 

Art.  72  is  midway  between  them,  is  also  at  infinity.  As  this 

point  0  is  formed  by  the  coincidence  of  /  and  J',  it  follows  that 
the  ranges  are  similar,  but  we  shall  see  that  the  involution 

condition  of  Art,  99  makes  them  not  only  similar,  but  identical, 

in  opposite  senses.  For  when  f  is  at  infinity,  e  bisects  each  of 

the  segments  aa\  bh',  ....  Hence  ea  =  —  ea',  eb  =  —  eb\  . . . , 

.'.  ah  =  —  ah',  and  similarly  hc  =  —  h'c'y  &c. 

Consequently,  when  the  centre  of  the  involution  is  at  infinity, 
and  one  of  the  double  points  is  at  a  finite  distance,  while  the 

other  is  at  infinity,  the  two  ranges  are  identical,  but  in  opposite 

senses,  and  the  finite  double  point  bisects  each  of  the  segments 

joining  pairs  of  conjugate  points. 
This  is  the  only  practical  case  of  involution  of  the  first  order, 

for  if  both  double  points  were  at  infinity,  every  point  on  the 

range  would  have  its  conjugate  at  infinity.  Consequently,  similar 

ranges  cannot  be  in  involution  unless  they  are  identical,  and  in 

opposite  senses,  and  then  they  are  always  in  involution,  for  on 

drawing  a  figure  it  will  be  seen  that  the  point  which  bisects  the 

segment  joining  one  pair  of  conjugate  points  necessarily  bisects 

every  other  pair. 

To  avoid  repetition  in  future  we  would  remark  that  in  all 

cases  of  involution  the  ranges  are  supposed,  unless  it  is  otherwise 

stated,  to  have  their  points  /,  J'  coincident  at  a  finite  distance, 
and  consequently  their  homographic  relation  is  of  the  second  order. 

108.     Since     Oa.  Oa' =  0b  .  Oh' =  ...  =  06^=0/",  4 

it  is  evident  that  if  any  pair  of  conjugate  points  such  as  a,  a'  are 

on  opposite  sides  of    0,  the  product  Oa .  Oa!  is  negative,   am' J 
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therefore  the  double  points  e,  /  are  imaginary.  When  this  is  the 

case  for  any  pair  of  conjugates,  of  course  it  must  hold  for  every 

pair,  for  if  the  product  of  any  pair  Oa .  0(i  is  negative,  that  of 

every  pair  must  also  be  negative. 

Fig.  51. 

A  little  consideration  of  Fig.  51  will  shew  that  when  the 

point  0  divides  the  segments  act',  W  internally,  if  Oa  >  Oh,  then 

Oa  <  Ob',  and  therefore  the  segments  aa',  bb'  overlap,  and  this  will 
obviously  be  the  case  with  all  the  segments  joining  pairs  of 

conjugates,  and  the  double  points  are  imaginary. 

Fig.  52. 
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On  the  other  hand  the  double  points  will  be  real  when  the 

product  of  any  pair  such  as  Oa .  Oa!  is  positive.  The  different 

positions  where  this  can  be  the  case  are  shewn  in  Fig.  52,  in 

which,  if  we  consider  any  pair  of  the  segments  act  ̂   hh',  gc\  dd'  we 
see  that  any  segment  lies  entirely  within  or  entirely  without  the 

other,  and  that  no  two  segments  overlap.  Hence  we  have  the 

simple  rule : 

The  double  points  are  real  or  imaginary  according  as  the 

segments  joining  pairs  of  conjugate  points  do  not  or  do  overlap. 

This  might  also  be  shewn  by  using  Lodge's  method,  Art.  84. 
Thus  in  Figs.  51,  52,  if  we  draw  Oa,  Oa  perpendicular  to  the  axis 

equal  to  Oa,  Oa'  respectively,  and  on  opposite  sides  of  the  base  if 
the  product  Oa .  Oa  is  positive,  and  on  the  same  side  if  it  is 

negative,  the  double  points  will  be  the  intersection  of  the  line 
and  circle. 

Lodge's  circles  also  give  us  a  simple  method  of  constructing 
the  conjugate  of  any  point  m  on  the  base.  For  we  have  merely 
to  join  ma  cutting  the  circle  in  M.  Then  aM  will  meet  the  base 

in  the  required  point  m'.  The  construction  holds  whether  the 
double  points  are  real  or  imaginary. 

109.  If  we  rotate  the  accented  row  about  the  point  0  through 

two  right  angles  it  will  still  be  homographic  to  the  other,  and  will 

form  with  it  another  system  in  involution ;  and  since  each  of  its 

points  of  division  will  now  be  on  the  opposite  side  of  0  to  what  it 

was  before,  we  see  that  if  the  first  system  is  an  overlapping  one, 

the  second  is  a  non-overlapping  one,  and  vice  versa. 

One-to-One  Correspondence. 

110.  If  we  take  the  general  relation  given  in  Art.  70  and 

express  the  condition  that  I  and  J'  should  both  coincide  with  0, 
we  have 

pm .  pm'  —pO  (pm  +  ptn)  +pO  .  pp'  =  0, I 
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which  is  of  the  form 

a^'  +  h  {x  +  x')  +  l  =  0. 

This  gives  us  a  one-to-one  correspondence  in  which  x  and  x'  are 
interchangeable,  and  is  merely  another  way  of  expressing  the  fact 

that  the  two  series  of  points  given  by  the  equation  have  the 

property  mentioned  in  Art.  96  and  are  in  involution. 

If  the  homographic  equation  is  of  the  first  order,  if  x  and  x' 
are  to  be  interchangeable,  it  must  be  of  the  form 

x  +  x'  =  K, 

in  which  case  one  of  the  double  points  is  at  infinity,  and  the  other 

at  a  distance  ̂   from  the  common  origin. 

Involution  Pencils. 

111.  Def.  If  the  divisions  of  an  involution  range  are  joined 

Involution  to  an  external  point,  the  pencil  so  formed  is  called 

Pencil.  an  involution  pencil. 

When  two  concentric  pencils  form  a  system  in  involution,  we 

will  denote  it  by  V{aa,  hb\  ...),  where  Fa,  Va'  are  a  pair  of 
conjugate  rays,  and  Ve,  Vf  will  in  general  be  used  to  indicate 

the  double  rays. 

By  Art.  21  any  transversal  will  cut  an  involution  pencil 

in  an  involution  range,  and  the  double  rays  of  the  pencil  will 
cut  the  transversal  in  the  double  points  of  the  range. 

By  Art.  31  the  angle  between  any  pair  of  conjugate  rays  is 

divided  harmonically  by  the  double  rays;  and  conversely,  if  aVa\ 

b  Vb',  c  Vc  are  three  angles  which  are  all  divided  harmonically  by 

the  same  pair  of  lines  Ve,  Vf,  then  V  {aa',  bb',  cc')  is  an  involution 
pencil  having  Ve  and  V/ior  double  rays. 

It  should  be  noticed  that  there  is  no  ray  which  can  be  called 

the  central  ray  of  the  pencil,  and  in  that  respect  it  differs  from 

an  involution  range.     The  ray  conjugate  to  that  drawn  parallel 

7—2 
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to  the  range  passes  through  the  centre  of  the  range,  and  of  course 

this  ray  will  be  different  for  different  transversals,  except  when 
the  transversals  are  parallel. 

112.  In  an  involution  pencil  there  exists  one,  and  in  general 

only  one,  pair  of  conjugate  rays  at  right  angles.  When  there  is 

more  tJian  one,  every  pair  of  conjugate  rays  intersect  at  right 
angles. 

Let  the  pencil,  vertex  P,  cut  any  transversal  in  the  pairs  of 

conjugate  points  a,  a' ;  b,  b' ;  ...,  and  let  0  be  the  centre  of  the 
involution  range  on  the  transversal.  Join  FO,  and  on  PO,  or  PO 

produced,  take  a  point  Q  such  that  PO  .  OQ^aO .  Oa  —   
Then  every  circle  through  the  two  points  P,  Q  will  cut  the 

transversal  in  a  pair  of  conjugate  points.  There  will  be  in 

general  one  and  only  one  such  circle  having  its  centre  in  the 

transversal ;  and  this  alone  will  cut  it  in  two  conjugate  points 

c,  c  which  will  subtend  a  right  angle  at  P.  If,  however,  PO  —-  OQ, 
and  PQ  cuts  the  transversal  at  right  angles,  every  such  circle 

will  have  its  centre  in  the  transversal,  and  all  pairs  of  conjugate 

rays  will  be  at  right  angles. 
It  follows  from  the  above  that 

If  any  number  of  right  angles  have  the  same  vertex,  their  sides 

fortn  an  involution  pencil. 

Such  a  pencil  may  be  called  orthogonal. 

Circular  Points  at  Infinity. 

113.  Since  the  involution  range  formed  by  an  orthogonal 

pencil  on  any  transversal  is  overlapping,  the  double  rays  of  an 

orthogonal  pencil  are  imaginary.  If  the  rays  of  the  pencil  are 

produced  to  meet  the  line  at  infinity,  they  determine  on  it  an 

involution  range  of  ideal  points  with  imaginary  double  points. 

These  double  points,  though  imaginary,  are  of  very  great  import- 

C£PART,V,E  T  Or-  MATHEMATICS 
..      liNIVERiiry  OE  TORONTO I 
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ance  in  connection  with  the  subject.  They  are  in  a  sense  unique. 

For  any  two  orthogonal  systems  each  containing  an  infinite 

number  of  rays  are  superposable  by  mere  translation  without 

rotation,  and  parallel  rays  of  the  two  systems  will  correspond  to 

each  other.  These  parallel  rays  intersect  in  the  line  at  infinity, 

as  do  also  their  corresponding  double  rays,  so  that  we  may 

consider  that  all  orthogonal  systems  determine  the  same  involu- 
tion range  of  ideal  points  on  the  line  at  infinity,  and  consequently 

the  double  rays  of  every  orthogonal  system  pass  through  the  same 

pair  of  imaginary  points  on  this  line. 

For  reasons  that  will  be  given  in  Chap.  XIII  these  points  are 

called  the  ch'cular  points  at  infinity,  or  shortly,  the  circular  points, 
as  it  will  be  shewn  there  that  all  circles  pass  through  them.  The 

lines  joining  a  real  origin  to  these  points  are  called  isotropic  lines, 

and  their  equations  are  2/  =  +  ix,  where  i  is  the  imaginary  quantity 

V-  1,  and  as  these  points  are  imaginary  and  lie  on  these  lines  we 

will  denote  them  by  the  letters  i,  i'.  At  present  we  wish  merely 

to  direct  the  student's  attention  to  the  fact  that  they  may  be 
considered  as  perfectly  definite,  though  imaginary;  their  connec- 

tion with  circles  and  conies  will  be  discussed  later  in  Chap.  XIII 

and  more  fully  in  Chap.  XIX.  Here  we  are  not  attempting 

to  give  any  rigid  proofs  of  their  uniqueness  or  their  properties, 

but  we  thought  it  would  be  interesting  to  the  student  to  have 

his  attention  drawn  to  this  pair  of  remarkable  points. 

114.  If  V  is  the  vertex  of  an  orthogonal  pencil,  and  Va,  Va' 

a  pair  of  conjugate  rays,  the  pencil  V  {aa'ii')  is  harmonic,  and 

conversely,  if  we  are  given  that  the  pencil  V  {aa'ii')  is  harmonic, 
tlie  angle  aVa  is  a  right  angle,     (By  Art.  113.) 

The  latter  part  of  this  property  may  be  stated:  An  involution 

pencil  having  the  isotropic  lines  for  double  rays  is  orthogonal. 
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EXAMPLES. 

1.  If  two  ranges  are  homographic,  and  any  point  P  on  their  cross-axis 
is  joined  to  the  points  of  division  on  the  ranges,  these  rays  will  form  two 
pencils  in  involution. 

[For  if  the  ranges  intersect  in  the  point  A,  then  in  both  pencils  the  cross- 
axis  will  have  PA  for  its  corresponding  ray.] 

2.  If  e,  f  are  the  double  points  of  the  involution  whose  characteristic  is 

rt,  a' ;  b,  b\  shew  that  {ab',  a'b,  ef)  form  a  system  in  involution,  also 
(a&,  a'b',  ef)  form  a  third  system  in  involution,  whose  double  points,  if  real, 
are  conjugate  points  of  the  first  system. 

Of  these  three  systems  formed  by  taking  all  possible  pairs  of  the  character- 

istic points  a,  a',  6,  &',  two  have  real  double  points,  and  one  has  them 
imaginary,  and  the  double  points  of  each  system  are  conjugate  points  of  the 
other  two. 

3.  Given  two  homographic  pencils,  centres  0,  0',  shew  that  any  trans- 
versal through  the  cross-centre  T  will  be  cut  by  the  pencils  in  two  ranges  in 

involution. 

In  Fig.  27,  p.  43,  let  any  transversal  through  T  cut  00'  in  P.  Then  in 
both  ranges  P  has  T  for  its  corresponding  point. 

4.  Three  fixed  points  A,  B,  G  are  given  on  a  straight  line,  on  which  two 
other  points  D,  E  are  taken  so  that 

{ABCD)  =  \     and  MBCE)=^^,, 

where  a,  h,  «',  h'  are  constants,  and  X  a  variable  parameter. 

Shew  that  D,  E  will  be  conjugate  points  of  an  involution  if  a^b'  =  Q. 

[Let  AG=p,  BC  =  q,     .'.   AB=p-q, 

AD  =  x,      .:   BD  =  x-p  +  q;     AE  =  y,     .'.   BE  =  y-p  +  q, 

a'\  +  b'    '  '     AE    BE     y   y-p  +  q 

Substituting  for  X  we  obtain  a  relation  between  x  and  y  of  the  form 

Pxy  +  Q(x  +  y)  +  R  =  0.] 



CHAPTER  X 

INVOLUTION  AND  HARMONIC  SECTION.  HARMONIC  PROPER- 

TIES OF  A  QUADRANGLE  AND  QUADRILATERAL.  POLE 

AND   POLAR 

Relation  between  involution  and  harmonic  section. 

115.  One  of  the  most  important  properties  connected  with 
a  system  in  involution  is  that  of  Art.  99,  which  tells  us  that 

{aa'ef)  is  a  harmonic  range,  so  that  if  aa\  bb',  cc'  are  pairs  of 
conjugate  points  forming  a  system  in  involution,  of  which  e,  f 

are  the  double  points,  we  may  say  that  the  axis  of  the  involution 

is  harmonically  divided  at  the  points  cm'^  bb\  gc\  . . .  for  the  points 
e,/,  and  it  follows  by  Art.  108  that  when  two  segments  are  harmonic 

conjugates  for  a  third  segment^  one  of  them  is  entirely  within  or 

entirely  without  the  other  when  the  third  segrnent  is  real;  but  if  the 

third  is  im^bginary,  the  other  two  will  overlap. 

AlsOf  given  three  pairs  of  points  aa',  bb\  cc  in  involution^  if 

e,  f  are  harmonic  conjugates  for  a,  a'  and  b,  b',  then  e,  f  are  the 
double  points  of  the  involution,  and  are  therefore  harmxynic  con- 

jugates for  c,  c . 

116.  By  Art.  110  we  see  that  if  axu!  is  any  given  pair,  and 

miri  a  variable  pair  of  conjugate  points, 

am> .  a»i'  —  aO  {am,  +  am')  +  aO  .  aa'  =  0, 



1 
104  CROSS-RATIO    GEOMETRY  [CH.    X 

and  when  m  and  m'  coincide,  the  double  points  are  given  by 

am?  —  2aO  .  am  +  aO  .  aa'  =  0      ( I ). 

Now  whether  the  system  is  overlapping  or  non-overlapping, 
the  point  0  is  always  real,  for  its  position  can  always  be  found  by 

Art.  102.  Therefore  the  product  aO  .  aa  is  also  always  real,  and 

consequently  the  product  of  the  roots  of  the  equation  (1),  i.e.  the 

product  ae  .  af,  is  always  real. 

Again,  suppose  we  have  given  two  real  points  e,  f  on  a  line,  if 

we  take  any  other  point  a  on  the  line  we  can  always  find  a  its 

harmonic  conjugate  for  e  andy,  i.e.  we  can  find  an  infinite  number 

of  pairs  of  conjugate  points  aa\  bb\  cc\  ...  such  that  each  pair 

taken  with  ef  forms  a  harmonic  range;  and  we  are  merely  ex- 
pressing the  same  geometrical  fact  in  a  different  way  when  we  say 

that  aa,  hh\  ...  form  a  system  in  involution  in  which  e,f  are  the 

double  points.  Also,  in  the  case  where  e,/  are  a  pair  of  imagin- 
ary points  on  the  line,  and  a  any  real  point  on  it,  if  we  know 

the  position  of  0,  and  the  value  of  the  product  ae .  af^  i.e.  the 

value  of  aO .  aa\  we  can  always  find  a  the  harmonic  conjugate 

of  a  for  e,  f.  So  that  we  can  either  commence  with  a  system 
in  involution,  and  proceed  to  find  the  double  points,  which  will 

be  imaginary  or  real  according  as  the  system  is  overlapping,  or 

non-overlapping;  or  we  can  begin  with  the  double  points  and 
from  them  construct  the  involution  system  which  will  be  over- 

lapping or  non-overlapping  according  as  the  double  points  are 
imaginary  or  real. 

In  Fig.  e02,  if  we  suppose  the  range  carrying  the  accented 

letters  to  rotate  about  0  through  two  right  angles,  so  as  to  bring 

a',  h\...  into  the  positions  a",  />",  ...,  we  shall  have 

Oa .  Oa!'  =  Ob  .  Ob"  =  ...  =-0e' =  - 0/^ 
^OE"=^OF\ 

The  points  a,  a" ;  b,  b"; ...  will  be  pairs  of  harmonic  conjugates 
for  the  imaginary  points  U,  F,  whose  mid-point  0  is  real. 
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L 

Fig.  54. 

117.  As  we  shall  frequently  in  the  following  pages  have  to 

Quadrilateral,  deal  with  quadrilaterals  and  quadrangles,  we  will 

Quadrangle.  remind  the  student  that  a  quadrilateral  is  a  col- 
lection of  four  lines,  no  three  of  which  pass  through  the  same 

point.  If  we  call  the  intersection  of  any  two  of  these  lines  a 

vertex,  there  are  three  pairs  of  opposite  vertices,  the  lines  joining 

which  are  called  diagonals,  or  diagonal  lines,  and  form  the  sides 

of  a  diagonal  triangle,  and  the  whole  figure  is  called  a  complete 

quadrilateral. 
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A  quadrangle  is  a  collection  of  four  points,  no  three  of  which 

lie  on  the  same  straight  line.  If  we  call  the  line  joining  any  two 
of  these  points  a  side,  there  are  three  pairs  of  opposite  sides,  the 

intersections  of  which  are  called  diagonal  points  and  are  the 

vertices  of  a  diagonal  triangle,  and  the  whole  figure  is  called 
a  complete  quadrangle. 

Fig.  53  shews  us  the  complete  quadrilateral  with  its  4  lines, 

6  vertices,  and  3  diagonal  lines  joining  pairs  of  opposite  vertices 

forming  the  diagonal  triangle  GG'H. 
In  Fig.  54  we  have  the  complete  quadrangle  with  its  4  points, 

6  lines  and  3  diagonal  points  forming  the  diagonal  triangle  GEF. 
In  Fig.  55,  if  ABCD  is  taken  as  a  quadrangle,  its  diagonal 

triangle  is  GEF,  but  if  we  consider  ABCD  as  a  quadrilateral  its 

diagonal  triangle  is  GG't.  In  the  same  figure  it  will  be  noticed 
that  in  the  quadrilateral  and  the  quadrangle  the  diagonal  triangles 

have  the  same  vertex  G,  and  their  bases  are  in  the  same  straight 

line.  It  is  arbitrary  which  quadrilateral  (of  three)  we  take 

in  conjunction  with  a  given  quadrangle,  and  this  accounts  for 

the  want  of  symmetry  in  the  relations  between  the  two. 

Harmonic  properties  of  a  quadrangle 
and  quadrilateral. 

118.     In  a  complete  figure  such  as  Fig.  55: 

(1)  In  the  quadrangle  ABCD  the  three  pairs  of  opposite  sides 

cut  liarmonically  the  three  sides  of  its  diagonal  triangle  GEF, 

i.e.  the  ranges  (EsGr),  (FqGp),  (FG'Et)  are  harmonic, 
(2)  In  the  quadrilateral  ABCD  the  three  pairs  of  opposite 

vertices  divide  hannionically  the  three  sides  of  its  diagonal  triangle 

GG't,  i.e.  the  ranges  (CGAt),  (DGBG'),  (FG'Et)  are  harmonic. 

The  extremities  of  the  bases  EF,  tG'  of  the  two  diagonal 

triangles  form  a  harmonic  range  (FG'Et). 
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[It  will  be  shewn  also  that  ever}'  line  in  the  figure  is  divided 
harmonically.  The  proofs  of  the  foregoing  properties  are  given 

without  reference  to  any  special  order.  Owing  to  the  particular 

quadrilateral  that  has  been  taken  in  conjunction  with  the  quad- 
rangle the  third  range  in  (1)  is  identical  with  the  third  range  in 

(2),  while  the  others  are  distinct.] 

The  ranges  (tAGC),  {tEG'F)  are  in  perspective,  centre  D; 
therefore  by  Art.  21  their  cross-ratios  are  equal.  Also  the  ranges 

(iAGC)f  (tFG'E)  are  in  perspective,  centre  B.  Therefore  their 
cross-ratios  are  equal. 

.-.  {tEG'F)  =  {tFG'E), 

i.e.  the  range  (tEG'F)  being  unchanged  in  value  when  the  pair  of 
points  E,  F  are  interchanged  separately,  is  harmonic  by  Art.  28, 

and,  consequently,  so  also  is  {tAGG\  and  F(tAGC)  is  a  harmonic 

pencil,  which  therefore  cuts  every  transversal  in  a  harmonic  range 

by  Art.  21,  and  hence  the  following  ranges  are  all  harmonic, 

viz.  (DpAE),  (rGsE),  (CqBE)  and  (DGBG). 
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[CH.  X Similarly,  since  E  {DGBG')  is  a  harmonic  pencil,  the  following 
are  all  harmonic  ranges,  viz.  (AsBF),  {pGqF)  and  (DrCF). 

We  have  proved  incidentally  the  property 

When  two  equicross  ranges  of  four  points  intersect  in  one  of 

the  pairs  of  corresponding  points,  the  condition  that  tJiey  should  be 

harmonic  is  that  they  should  he  in  perspective  at  two  different 
centres. 

Of  course,  if  two  ranges  are  in  perspective,  and  if  we  know 
that  one  of  them  is  harmonic,  the  other  will  also  be  harmonic 

by  Art.   21. 

Fig.  56. 

The  results  of  this  article  also  give  us  a  method  of  drawing 

a  fourth  ray  of  a  harmonic  pencil  when  three  of  them  are  given. 

(1)  Suppose  we  have  given  the  pairs  OC,  OD  and  OA. 
Through  A  draw  two  transversals  ACD,  Acd. 

Join  Cd,  cD,  intersecting  in  B.  Then  OB  is  the  conjugate 
of  OA. 

(2)  Suppose  we  have  given  OC,  OD  and  OB. 

On  OB  take  any  point  B,  and  through  it  draw  two  trans- 
versals cBD,  CBd.  Join  cd,  CD,  intersecting  in  A.  Then  OA 

is  the  conjugate  of  OB. 
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119.  Any  transversal  drawn  across  a  quadrangle  cuts  its 

three  pairs  of  opposite  sides  in  six  j^oints  which  form  a  system  in 

involution*. 

Fig.  57. 

Let  L  be  the  transversal,  and  let  it  cut  the  equal  pencils 

A  {BGc'D)  and  G  {BGc'D)  in  the  ranges  acc'h'  and  bcc'a'. 

Then  {acc'h')  =  (bcc'a')  =  (a'c'cb)  by  Art.  3. 

Therefore  by  rule  of  Art.  105,  aa'y  hb\  cc  are  six  points  in 
involution. 

120.  The  six  lines  drawn  from  any  point  to  the  three  pairs  of 

opposite  vertices  of  a  quadrilateral  form  a  pencil  in  involution. 

In  Fig.  57  let  0  be  the  ̂ iven  point,  and  take  the  pencils 

joining  it  to  the  ranges  {AEe'D\  (BFeC),  which  are  in  per- 
spective. 

We  have  0  (AEFD)  =  0  (BEFG)  =  0  {GFEB). 
Therefore  by  the  rule  of  Art.  105,  the  pencil  0  {AG,  BD,  EF) 

is  in  involution. 

*  Pappus,  Bk  VII,  Prop.  130.     See  also  Appendix  I,  p.  124. 
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Pole  and  Polar. 

121.  Another  relation  which  is  intimately  connected  with 

harmonic  section  is  that  of  pole  and  polar,  which  we  shall  find  of 

the  greatest  importance  when  we  come  to  treat  of  conies.  For  the 

present  we  give  the  following : 

Def.  If  we  have  an  angle  BAC  and  any  point  0  in  its  plane, 
and  if  we  draw  AP  the  harmonic  conjugate  oi  AO 

for  the  lines  AB,  AC,  then  AP  is  called  the  polar 

of  0,  and  0  is  called  the  pole  of  AP  for  the  lines  AB^  AC  or 

for  the  angle  BAC.     See  Fig.  58. 

122.  The  polars  of  a  point  for  two  angles  of  a  triangle 

intersect  on  the  line  which  joins  the  point  to  the  thii'd  vertex  of 
the    triangle. 

A 

Let  0  be  the  given  point,  AP  the  polar  of  0  for  the  angle  A, 

and  BP  the  polar  of  0  for  B.     Then  shall  CO  pass  through  P. 

For  the  pencils  A  {COBP)  and  B  {CO A  P)  are  harmonic,  and 

consequently  equicross,  and  they  have  the  common  ray  AB. 
Therefore,  by  Art.  25  their  intersections  C,  0,  P  are  collinear. 

123.  Let  AO,  BO,  CO  be  any  three  concurrent  lines  through 

the  vertices  of  a  triangle,  meeting  the  opposite  sides  in  a,  y8,  y 

respectively,  and  let  (iy  meet  BC  in  a.  Then  Aa  is  the  polar  of  0 

for  the  angle  BAC. 
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For  the  ranges  (BaCa)  and  (ySySa')  are  equicross,  being  in 

perspective,  centre  A.  And  the  ranges  {BaCa')  and  (ySSya')  are 
equicross,  being  in  perspective,  centre  0. 

Therefore  (y3/?a')  =  (^SSya'). 

Fig.  59. 

Therefore  by  Art.  28  the  range  (yS^a)  is  harmonic,  and  there- 
fore so  also  is  the  range  (BaCa)  i.e.  Aa  is  the  polar  of  0  for  AB,  AC. 

Similarly,  if  ya,  a^  meet  CA,  AB  respectively  in  y8',  y,  B(i'  is 
the  polar  of  0  for  the  angle  ABC^  and  Cy  is  the  polar  of  0  for 
the  angle  ACB. 

124.  The  polar s  of  a  given  point  for  the  three  angles  of  a 
triangle  meet  the  opposite  sides  in  three  points  which  are  collinear. 

Let  0  be  the  given  point  in  Fig.  59,  and  produce  AO,  BO,  CO 

to  meet  the  opposite  sides  in  a,  ̂ 8,  y,  and  let  the  sides  of  the 

triangle  a^y  be  produced  to  meet  BC^  CA,  AB  in  a,  p\  y 
respectively.  Then  Aa\  Bp\  Cy  are  the  polars  of  0  for  the 
angles  Ay  B,  C. 
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Now  the  triangles  a^y,  ABC  being  co-polar,  are  co-axial,  by 

Art.  26.     Therefore  a\  yS',  y  are  collinear. 

Conversely,  if  a  transversal  meets  the  sides  BC,  CA,  AB  of  a 

triangle  in  a',  yS',  y',  and  on  these  sides  we  take  a,  ̂,  y  the  harmonic 

conjugates  of  a,  fi',  y  respectively,  the  lines  Aa,  B/3,  Cy  are  con- current. 

CoR.  The  sides  BC,  CA,  AB  are  harmonically  divided  at 

a,  a  ;  /3,  p' ',  y,  y  ;  and  these  six  points  lie  by  threes  on  the  four 

straight  lines  a'yS'y',  a'^y,  a^  y,  aySy'. 

125.  In  Fig.  67  if  Q  is  any  point  in  the  plane  of  the  quad- 

rangle ABCD,  the  polar s  of  Q  for  the  angles  DEC,  AFD,  DGC  are 
concurrent. 

Let  EQ'  be  the  polar  of  Q  for  the  angle  AEC,  and  FQ'  its 

polar  for  AFC.  Join  QQ'  cutting  the  three  pairs  of  opposite 

sides  of  the  quadrangle  in  the  points  aa,  hh',  cc,  which  by  Art.  119 
form  a  system  in  involution. 

Then  since  by  Art.  31  Q,  Q'  are  harmonic  conjugates  for  a,  a, 

and  also  for  h,  h',  they  are  the  double  points  of  the  system  in 

involution  to  which  a,  a'  and  h,  h'  belong.  But  c,  c'  belong  to  the 

same  system.  Therefore  by  Art.  115  Q,  Q'  are  harmonic  con- 
jugates for  c,  G,  i.e.  the  polar  of  Q  for  the  angle  CGD  passes 

through  the  point  Q'. 

EXAMPLES. 

1.  The  lines  joining  the  vertices  of  a  triangle  to  the  mid-points  of  the 
opposite  sides  are  concurrent. 

[In  the  converse  of  Art.  124  suppose  the  transversal  to  be  at  infinity.] 

2.  In  Fig.  57  let  the  transversal  L  meet  EF  in  /,  and  on  EF  take  X  the 
harmonic  conjugate  of  I  for  the  points  E,  F. 

Similarly  on  AC  take  7  the  harmonic  conjugate  of  c  for  ̂ ,  C,  and  on  BD 

take  7'  the  harmonic  conjugate  of  c'  for  j5,  D.    Then  will  X,  7,  7'  be  collinear. 
[Let  X7  meet  BD  in  7",  and  L  in  P.  Then  by  Art.  120,  P  (EF,  AC,  BD) 

is  an  involution  pencil;  and  by  construction  P  (EF,  l\)  and  P  (AC,  cy),  i.e. 

P(AC,  l\),  are  harmonic.  .*.  P  (BD,  l\),  i.e.  P(BD,  c'y"),  is  harmonic. 
Therefore  7"  coincides  with  7'.] I 
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3.  The  mid-points  of  the  three  diagonals  of  a  complete  quadrilateral  are 
collinear. 

[In  Fig.  57  let  A  BCD  be  the  quadrilateral,  AG,  BD,  EF  its  three 
diagonals.  In  Ex.  2  let  the  transversal  L  be  the  line  at  infinity.  Then 

Z,  c,  c'  are  at  infinity,  and  X,  7,  7',  the  mid-points  of  EF,  AG,  BD,  are 
collinear.] 

4.  Shew  that  the  three  points  in  which  the  external  bisectors  of  the 
angles  of  a  triangle  meet  the  sides  produced  are  collinear. 

5.  The  corresponding  sides  be,  b'c',  etc.  of  two  triangles  abc,  a'b'c'  in 
plane  perspective  intersect  in  a,  /3,  7  respectively,  and  aa',  bb',  cc'  respectively 
intersect  the  line  a/37  in  a',  /3',  7'. 

Prove  that  the  range  (aa',  /3/3',  77')  forms  a  system  in  involution.  Use 
Fig.  12,  p.  20. 

6.  ABG  is  a  triangle,  and  O  any  point  in  its  plane.  Prove  that  the 
external  bisectors  of  the  angles  BOA,  AOG,  GOB  intersect  the  sides  AB,  AG, 
BG  respectively  in  three  points  which  lie  on  a  straight  line. 

7.  The  lines  OA',  OB',  OG'  bisect  the  internal  angles  formed  by  the  lines 
joining  any  point  0  to  the  angular  points  of  the  triangle  ABG,  meeting  BG 

in  A',  GA  in  B'  and  AB  in  G'.  Also  A",  B",  G"  are  harmonic  conjugates  of 
A',  B',  G'  for  B  and  G,  G  and  A,  A  and  B.  Prove  that  A",  B",  G"  are 
collinear. 

8.  If  a  circle  is  described  about  a  triangle,  the  points  where  the  tangents 
at  its  vertices  meet  the  opposite  sides  are  collinear. 

9.  Prove  that  if  ABG,  BEF  are  two  triangles,  and  if  <S  is  a  point  such 
that  SD,  SE,  SF  cut  the  sides  BG,  GA,  AB  respectively  in  three  collinear 
points,  then  SA,  SB,  SG  will  cut  the  sides  EF,  FD,  DE  respectively  in  three 
points  which  are  collinear. 

10.  If  through  0,  the  intersection  of  the  diagonals  of  a  quadrilateral 
ABCD,  a  line  OH  is  drawn  parallel  to  the  side  AB  meeting  GD  in  G  and  the 
third  diagonal  in  H,  prove  that  OH  is  bisected  at  G. 

M. 



APPENDIX  I 

pappus'   account   of    the   PORISMS   of   EUCLID,   AND   HIS 
LEMMAS   (l — XIX)   ON   THEM 

I  PROPOSE  to  give  in  this  Appendix  a  short  account  of  Euclid's 
Treatise  on  Porisms,  the  loss  of  which  is  probably  more  to  be 

regretted  than  that  of  any  of  the  other  treatises  on  geometrical 

analysis  which  were  extant  in  the  time  of  Pappus  (400  a.d.) 

but  which  have  since  disappeared.  The  reason  why  reference 

should  be  made  to  it  in  the  present  work  will  be  obvious  to  anyone 

who  glances  in  the  most  cursory  manner  over  the  Lemmas  which 

Pappus  gave  as  explanatory  propositions  to  it.  From  them  one 

can  hardly  fail  to  draw  the  conclusion  that  the  master  mind 

which  conceived  the  Porisms  was  quite  familiar  with  the  funda- 
mental principles  of  homography,  I  mean  with  harmonic  section, 

the  harmonic  properties  of  a  quadrilateral,  homographic  ranges 

and  pencils,  and  involution.  Unfortunately  the  ancient  geometers 

suffered  from  three  hindrances,  viz.  ( 1 )  the  non-recognition  of  con- 

tinuity, (2)  the  non-recognition  of  sense  in  the  direction  of  lines 
and  description  of  angles,  and  (3)  the  absence  of  a  suitable 
notation.  It  is  due  in  a  great  measure  to  the  removal  of  these 

fetters  that  homography  has  been  enabled  to  make  the  strides 

which  it  has  done  in  the  last  100  years. 

As  our  knowledge  of  the  Treatise  on  Porisms  is  almost  con- 

fined to  the  description  given  by  Pappus  in  the  preface  to  the 
Seventh  Book  of  the  Mathematical  Collections,  and  as  this  has 

not  up  to  the  present  time,  as  far  as  I  am  aware,  been  given  in 
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English,  I  have  thought  it  advisable  to  give  a  translation  of 

Pappus'  account  in  the  hope  that  it  may  not  only  serve  the  pur- 
pose of  allowing  the  student  to  obtain  his  information  on  the 

subject  from  the  fountain  head,  but  may  also  perchance  be  the 

means  of  enabling  some  one  versed  in  Oriental  languages  to 

recognise  a  copy,  perhaps  in  an  Eastern  dress,  in  one  of  our 

public  or  private  libraries,  where  it  is  quite  possible  that  one  may 

be  lying  involutus  pulvere  magis  quam  tenehris  sids*. 

\Translation.'\ 
"  The  Three  Books  of  Porisms. 

"After  the  books  on  contacts  (by  Apollonius)  come  the  Porisms 
of  Euclid  in  three  books,  a  most  ingenious  collection  for  solving 

more  difficult  problems  of  which  the  nature  of  the  subject 

provides  an  unlimited  number.  No  addition  has  been  made  to 

them  as  Euclid  first  wrote  them,  except  that  certain  stupid 

persons  before  our  time  have  given  alternative  versions  in  the 

case  of  a  few  of  them,  for  each  porism  has  a  definite  number  of 

ways  in  which  it  can  be  stated,  as  we  have  pointed  out,  and 

Euclid  has  given  only  one  in  each  case,  and  that  the  most 

obvious  one.  They  are  in  principle  subtle  and  natural,  and  in- 
dispensable and  quite  general,  and  afford  much  pleasure  to  those 

who  are  able  to  understand  and  investigate  them. 

Porisms  of  all  classes  are  neither  theorems  nor  problems,  but 

they  occupy  a  position  intermediate  between  the  two,  so  that 

their  enunciations  can  be  stated  either  as  theorems  or  problems, 

and  consequently  some  geometers  think  that  they  are  really 

theorems,  and  others  that  they  are  problems,  being  guided  solely 

by  the  form  of  the  enunciation.  But  it  is  clear  from  the  defi- 

nitions that  the  old  geometers  understood  better  the  difference 

between  the  three  classes.     For  they  said  that  a  theorem  is  that 
*  Cf.  p.  75. 

8—2 
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in  which  something  is  proposed  for  demonstration,  a  problem  is 

that  in  which  something  is  proposed  for  construction,  and  a 

porism  is  that  in  which  something  is  proposed  for  [discussion  or] 

investigation.  This  definition  has  been  changed  by  later  writers, 

who  were  not  able  to  fully  investigate  them,  but  as  is  usual  in 

the  Elements  [of  Euclid]  they  only  gave  a  demonstration  of  the 

quaesitum,  without  also  giving  a  discussion  of  it.  And  although 

they  are  shewn  to  be  mistaken  by  the  definition  given  above,  and 

by  what  is  known  of  the  subject,  they  gave  a  definition  some- 
what as  follows:  A  porism  is  that  which  in  the  hypothesis  is 

less  complete  than  a  local  theorem.  And  loci  are  instances 

of  this  class  of  porisms,  and  they  abound  in  analysis.  But  this 

class  of  questions,  because  it  has  a  wider  range  than  other  classes, 

has  been  separated  from  porisms,  and  a  collection  of  them  has 
been  made,  and  treatises  written  on  them  and  handed  down  to  us. 

And  of  these  loci  some  are  plane,  some  are  solid,  some  are  linear, 

and  some  depend  on  mean  proportionals. 

Now  it  sometimes  happens  that  porisms  have  enunciations 

which  are  contracted  owing  to  the  abbreviated  form  of  expres- 
sion, and  in  them  much  is  generally  supposed  to  be  supplied 

(by  the  reader),  so  that  many  geometers  only  partially  understand 
the  matter,  and  do  not  comprehend  the  more  important  part 

which  is  implied  in  them.  And  in  the  case  of  porisms  it  is  not 

possible  to  include  many  in  one  proposition  because  Euclid  him- 
self has  not  given  many  out  of  each  class;  but  for  the  sake  of 

example  out  of  a  great  number  he  has  given  a  few  belonging  to 

the  same  class  at  the  beginning  of  his  first  book,  all  of  them, 

about  10  in  number,  belonging  to  that  somewhat  numerous  class 

of  loci ;  wherefore  finding  it  possible  to  include  these  in  one  state- 

ment, we  have  given  it  as  follows*: 
In  Fig.  22,  p.  36,  given  four  straight  lines  BG,  GA,  AB,  DE 

*  For  the  Greek  text  of  this  Porism  which  is  given  by  Pappus  withou 
either  figures  or  letters,  see  p.  121. 
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intersecting  by  pairs  in  the  points  A,  B,  (7,  P,  Q,  E,  if  three  of  the 

points  P,  Q,  E  lying  on  one  of  them  BB  (or  two  of  them  in  the 

case  of  parallelism),  [i.e.  when  £G  is  parallel  to  DE,  in  which  case 

Pis  at  infinity],  are  fixed,  and  of  the  other  three  points  two,  viz. 
B  and  C,  move  along  the  fixed  straight  lines  OJD,  OE,  the  last 

point  A  will  also  move  along  a  fixed  straight  line. 

This  enunciation  refers  to  only  four  straight  lines,  of  which 

not  more  than  two  pass  through  the  same  point,  and  does  not 

mention  the  fact  that  a  similar  proposition  holds  for  any  pro- 
posed number,  which  may  be  stated  as  follows :  If  any  number  of 

straight  lines  cut  one  another,  of  which  not  more  than  two  pass 

through  the  same  point,  and  it  is  also  given  that  all  the  points 
of  intersection  lying  on  one  of  them  are  fixed,  and  of  those  which 

lie  on  the  others  each  moves  along  a  given  straight  line ;  or  more 

generally  as  follows:  If  any  number  of  straight  lines  cut  one 

another,  of  which  not  more  than  two  pass  through  the  same  point, 

and  it  is  also  given  that  all  the  points  of  intersection  lying  on 

one  of  them  are  fixed,  and  if  the  number  of  the  rest  is  a  tri- 

angular number  whose  side  is  the  same  as  the  number  of  the 

fixed  collinear  points,  and  no  three  of  them  {i.e.  of  the  points  of 

intersection  of  the  moving  lines  with  the  given  lines)  are  at  the 

vertices  of  a  triangle,  then  each  of  the  remaining  points  describes 

a  straight  line. 

Now  it  is  not  likely  that  the  writer  of  the  Elements  was  not 

aware  of  this,  but  he  was  merely  stating  the  first  principles,  and 

in  the  case  of  each  of  the  porisms  he  seems  to  have  put  forth 

only  the  first  principles  and  germs  of  many  important  properties, 

and  of  these  the  classes  are  to  be  distinguished  not  by  the  differ- 
ences of  their  hypotheses,  but  by  those  of  their  conclusions  and 

qusesita*.     For  all  hypotheses,  being  very  special  in  character, 

*  Simson  {Rel.  Op.  p.  349)  explains  this  to  mean  that  there  are  many 
porisms  which  have  different  hypotheses,  but  in  all  of  which  the  conclusion 

is  *  that  a  certain  point  lies  on  a  fixed  straight  line '  or  '  that  a  certain 
straight  line  passes  through  a  fixed  point,'  &c. 
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differ  from  each  other,  and  each  conclusion  and  qusesitum,  although 

one  and  the  same,  are  to  be  considered  separately  in  the  many 

different  hypotheses.  Noav  in  the  first  book  the  following  classes 
are  to  be  formed  by  the  qusesita  in  the  propositions.  There  is  a 

diagram  referring  to  this  at  the  beginning  of  the  seventh  book*. 

[Classes  of  Porisms.] 

I.  If  from  two  given  points  (two)  straight  lines  are  drawn 
intersecting  on  a  given  straight  line,  and  if  one  of  them  cuts  off 

from  a  given  straight  line  (a  segment  measured)  from  a  given 

point  in  it,  the  other  will  also  cut  off  from  another  straight  line 

(a  segment  measured  from  a  given  point  in  it)  having  a  given 
ratio  (to  the  former  segment)  t. 

II.  A  certain  point  lies  on  a  given  straight  line. 
III.  The  ratio  of  a  certain  line  to  a  certain  other  line 

is  given. 

TV.     The  ratio  of  a  certain  line  to  a  segment  (is  given). 

V.     A  certain  line  is  given  in  position. 

YI.     A  certain  line  passes  through  a  given  point. 

VII.  The  ratio  of  a  certain  line  to  a  segment  between  a 

certain  point  and  another  given  point  (is  given). 

VIII.  The  ratio  of  a  certain  line  to  a  segment  drawn  from  a 

certain  point  (is  given). 

IX.  The  ratio  of  a  certain  rectangle  to  that  contained  by 

a  given  line  and  a  certain  other  line  (is  given). 
X.  Of   a    certain    rectangle    one    part   is    given,    and    thei 

remainder  has  a  given  ratio  to  a  segment  of  a  line.  \ 

XI.  A  certain  rectangle,  or  a  certain  rectangle  together  with 

another  given  rectangle  is  (given),  and  the  former  has  a  (given)  i 
ratio  to  a  segment  of  a  line. 

*  This  diagram  is  unfortunately  missing, 
t  For  proof  see  Simson,  de  Porismatibus,  p.  400,  Prop.  23,  and  Chasles^ 

Porismes  d'Euclide,  p.  114,  Prop.  11. 
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XII.  A  certain  line  together  with  another  line  with  which 

a  certain  other  line  is  in  a  given  ratio  is  itself  in  a  (given)  ratio 

to  a  segment  drawn  from  a  certain  point  to  a  given  point. 

XIII.  (A  triangle  whose  vertex  is)  at  a  given  point,  and 

(whose  base  is)  a  certain  straight  line  is  equal  to  (a  triangle  whose 

vertex  is)  at  a  given  point,  and  (whose  base  is  a  segment  drawn) 
from  a  certain  point  to  a  given  point. 

XIV.  The  ratio  of  the  sum  of  a  certain  pair  of  lines  to 

a  segment  drawn  from  a  certain  point  to  a  given  point  (is  given). 

XV.  A  certain  line  cuts  off  from  two  given  lines  (segments) 

which  have  a  (given)  rectangle. 

In  the  second  book  the  hypotheses  are  different,  but  the 

greater  number  of  the  qusesita  are  the  same  as  those  in  the  first 
book  with  these  additional  ones. 

XVI.  A  certain  rectangle  or  a  certain  rectangle  together 

with  a  given  rectangle  has  a  (given)  ratio  to  a  segment  of  a  line. 

XVII.  The  ratio  of  the  (rectangle  contained)  by  certain 

lines  to  a  segment  of  a  line  (is  given). 

XVIII.  The  ratio  of  the  rectangle,  one  of  whose  sides  is  the 

sum  of  a  certain  pair  of  lines  and  the  other  side  the  sum  of 

a  certain  other  pair  of  lines,  to  a  segment  of  a  line  (is  given). 

XIX.  The  rectangle,  one  of  whose  sides  is  a  certain  line 
and  the  other  side  the  sum  of  a  certain  line  and  of  another  one 

to  which  a  certain  line  bears  a  given  ratio,  and  the  rectangle 
whose  sides  are  a  certain  line  and  another  line  to  which  a 

certain  line  bears  a  given  ratio  have  their  sum  in  a  (given) 

ratio  to  a  segment  of  a  line. 

XX.  The  ratio  of  the  sum  of  two  rectangles  to  a  segment 

drawn  from  a  certain  point  to  a  given  point  (is  given). 

XXI.  The  rectangle  contained  by  a  certain  pair  of  lines 

is  given. 
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In  the  third  book  the  majority  of  the  hypotheses  relate  to 

semicircles,  and  a  few  to  the  circle  and  segments.  Most  of  the 

qusesita  are  similar  to  those  given  above,  with  these  additional 
ones. 

XXII.  The  ratio  of  the  rectangle  contained  by  a  certain 

pair  of  lines  to  that  contained  by  a  certain  other  pair  of  lines 

(is  given). 
XXIII.  The  ratio  of  the  square  on  a  certain  line  to  a  segment 

(is  given). 
XXIV.  The  rectangle  contained  by  a  certain  pair  of  lines 

(is  equal)  to  the  rectangle  contained  by  a  given  line  and  a  line 

drawn  from  a  certain  point  to  a  given  point. 

XXV.  The  square  on  a  certain  line  (is  equal)  to  the  rectangle 
contained  by  a  given  line  and  an  abscissa  of  a  line  between  a 

given  point  on  it  and  the  foot  of  a  perpendicular. 
XXVI.  The  sum  of  a  certain  line  and  of  a  line  to  which 

a  certain  other  line  has  a  given  ratio,  has  a  (given)  ratio  to  a 

segment. 

XXVII.  There  exists  a  certain  given  point  from  which 

straight  lines  drawn  to  certain  (circles)  will  enclose  a  triangle  of 

given  species. 

XXVIII.  There  exists  a  certain  given  point  from  which 

straight  lines  drawn  to  a  certain  (circle)  cut  off  equal  arcs. 

XXIX.  A  certain  straight  line  is  either  parallel  to,  or 

makes  a  given  angle  with  a  straight  line  drawn  to  a  given  point. 

The  three  books  of  porisms  have  38  lemmas,  and  they  contain 

171  theorems." 

Poncelet  in  the  introduction  to  his  Traite  de  proprietes 

projectives  des  figures  (1822)  suggested  that  the  porisms  were 

projective  properties  deduced  by  Euclid  from  considerations  of 

perspective,  but  Chasles  has  made  it  pretty  clear  that  Euclid's 
treatise  was  concerned  with  the  principles  of  cross-ratios.  Book  i 
dealing  with  homographic  divisions  on  two  lines.   Book  ii  with I 
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co-axial  ranges,  and  Book  iii  with  the  anharmonic  properties  of 
the  circle. 

In  order  that  the  student  may  understand  the  nature  of  the 

difficulty  which  presented  itself  to  the  geometers  of  the  17th, 

18th,  and  19th  centuries,  several  of  whom  attacked  the  question, 

we  give  the  Greek  text  of  the  only  Porism  enunciated  by  Pappus. 

€av  VTTTLOv  7j  TTapvTTTLOV  Tpitt  TO,  CTTt  /xttts  (TrffxcLa  [tj  TTapaWrjXov 

€T€pa  TO,  Svo]  8c8o/u.€va  y,  to.  8c  Xolttol  ttXtjv  €i/o?  aTTTTjTaL  Oea€L  ScSo- 

A  paraphrase  of  the  above  general  proposition  is  given  on 

p.  116,  with  letters  and  a  reference  to  a  figure.  Simson  explains 
the  term  vtttlov  to  mean  a  quadrilateral  in  which  two  adjacent 

sides  tend  to  meet  in  a  direction  opposite  to  that  in  which  the 

others  tend  to  meet,  whilst  irapv-n-TLov  is  a  quadrilateral  in  which 
two  adjacent  sides  tend  to  meet  in  the  same  direction  as  the 

others,  e.g.  in  Fig.  22,  p.  36,  ABOC  is  an  example  of  vittlov, 

since  BO,  CO  tend  to  meet  in  the  opposite  direction  to  BA,  CA, 

and  PQAC,  PBAR  are  examples  of  Trapv-n-TLov,  for  PQ,  AQ  tend 
to  the  same  direction  as  PC,  AC,  and  similarly  PB,  AB  tend  to 
the  same  direction  as  PE,  AR. 

The  whole  subject  was  an  enigma  to  Fermat  (1601 — 1665), 

and  even  Halley  (1706)  confesses  "Porismatum  descriptio  nee 
mihi  intellecta,  nee  lectori  profutura.  Quid  sibi  velit  Pappus 

baud  mihi  datum  est  conjicere."  It  was  not  until  1723  that  the 

key  to  the  mystery  was  found  by  R.  Simson  (1687 — 1768),  pro- 
fessor of  mathematics  at  Glasgow,  and  his  account  of  his  discovery 

will  always  be  read  with  interest.  "I  often  tried,"  he  said,  "but 
always  in  vain,  to  understand  and  restore  the  only  porism  which 

survives  out  of  all  that  were  in  the  three  books,  and  as  my  medi- 
tations on  it  took  up  too  much  of  my  time  I  determined  that  I 

would  never  touch  the  subject  again,  especially  as  Halley  had 

given  up  all  hope  of  understanding  it.  Consequently,  whenever 
it  occurred  to  me,  I  always  refused  to  dwell  upon  it.  However, 

sometime  afterwards  it  presented  itself  to  my  mind  when  I  was 
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off  my  guard,  and  had  in  fact  forgotten  all  about  it,  and  it  held 

possession  of  my  thoughts  until  at  length  a  glimmer  of  light  was 

thrown  upon  it  which  gave  me  hopes  of  discovering  Pappus' 
general  proposition,  and  this,  after  much  thought,  I  was  at 

length  enabled  to  restore." 
In  his  Opera  qucadam  reliqua  published  in  1776,  eight  years 

after  his  death,  we  find  a  restoration  of  Euclid's  treatise  con- 
taining 93  propositions*.  This  roused  a  fresh  interest  in  the 

subject,  and  in  1860  Chasles  published  his  restoration  "Conforme- 
ment  au  sentiment  de  R.  Simson  sur  la  forme  des  enonces  de  ces 

propositions."  For  further  information  we  must  refer  the  student 
to  Chasles'  work  Les  trois  livres  de  Porismes  d'Euclide,  1860, 
324  pp.  in  which  he  gives  219  Porisms,  with  a  complete  historical 

account  of  Euclid's  treatise,  and  demonstrates  its  hiomographical 
character. 

The  following  are  Props.  127 — 144  of  the  7th  book  of  Pappus. 
The  enunciations  are  the  literal  translations  of  the  Greek  text, 

but  I  have  substituted  proofs  which  are  intended  to  shew  the 

connection  of  the  propositions  with  the  theory  of  cross-ratio. 

LEMMAS   ON   EUCLID'S   PORISMS. 

On  the  1st  Porism  of  Bk  I. 

I.     In  Fig.  60  let  ac  :  cb'  =  ah  :  he,  and  let  CD  he  joined.    I  say 

that  the  straight  lines  ac',  CD  are  parallel. 

*  On  the  outside  cover  of  an  Appendix  (1847)  to  Potts'  larger  edition  of 
Euclid  there  was  a  notice  that  it  was  proposed  to  publish  by  subscription  a 

translation  of  Simson's  Restoration  of  the  Porisms.  The  translation  was  to 
be  preceded  by  a  discussion  of  their  peculiar  character,  together  with  a  full 
development  of  the  algebraical  method  of  investigating  them. 

If  a  number  of  subscribers  had  been  obtained  sufficient  to  defray  expenses, 
it  was  intended  to  print  the  work  at  the  University  Press  in  octavo,  and  to 
issue  it  at  a  price  not  exceeding  ten  shillings. 

I 
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[Consider  ah  as  a  transversal  of   the  quadrilateral  ABCD. 
The  given  relation  is  equivalent  to 

ac  :  ah'  =  ah  :  ac',  or  ac  .  ac'  =  ah  .  ah'. 

Fig.  60  (i,  II,  IV). 

Therefore  a  is  the  centre  of  the  involution  system  of  points  in 

which  the  transversal  meets  the  sides  and  diagonals  of  the  quad- 
rilateral. 

Therefore  a,  the  conjugate  of  «,  is  at  infinity,  and  the  trans- 
versal is  parallel  to  CD.     See  Arts.  98,  119.] 

On  the  2nd  Porism. 

II.  /n  the   same  figure  let   ah   he  parallel  to  CD,  and  let 

be  :  ha  =  ch' :  ca,     I  say  that  the  points  A,  B,  a  are  collinear. 
[The  relation  is  equivalent  to 

ac' :  ah  =  ah' :  ac,    or  ah  .  ah'  =  ac .  ac' ; 
therefore  the  conjugate  of  the  point  at  infinity  is  a;  i.e.  the 

transversal  meets  the  side  AB  in  the  point  a.     Art.   119.] 

III.  T2V0  straight  lines  ad,  ad'  are  drawn  cutting  the  three 
straight  lines  Oh,  Oc,  Od.     I  say  that 

ah' .  d'c  :  ad' .  ch'  =  ah  .dead .  he. 

[i.e.  {ac'h'd')  =  (achd).     Art.  21.] 
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Fig.  61  (ill,  X,  XI,  XIV,  xvi). 

IV.  In  Fig.  60  let  aa  .  be  :  ac  .  ha!  =  aa' .  b'c  :  ab' .  ca'.  I  say 
that  Cj  B,  a'  are  collinear. 

[Otherwise,  a  transversal  meets  two  diagonals  of  a  quad- 

rilateral in  c,  c',  two  opposite  sides  in  6,  b'  and  a  third  side  in  a. 

If  a  point  a'  is  taken  on  the  transversal  such  that  {a'cah)  =  {a'b'ac') 
the  transversal  will  meet  the  fourth  side  in  the  point  a.  Art. 
119.] 

D  r  c  F 
Fig.  62  (v,  vi). 

V.  In  Fig.  62  {it  is  proved  elsewhere  that)  DF :  FC  =  Dr:  rC. 

Therefore  if  DF  \FC  =  Dr\  rC,  I  say  that  D,  G,  B  are  collinear. 

VI.  In  Fig.  62  if  AB  and  DC  are  parallel,  (it  is  proved  else- 

where that)  Dr  =  rC.  Suppose  now  that  Dr  =  rC,  I  say  that  A  Band 
DC  are  parallel. 

[DrCF  is  a  harmonic  range,  and  if  Dr  =  rC,  F  is  at  infinity, 
i.e.  AB  is  parallel  to  DC.     Arts.  118,  29.] 
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c       h 

Fig.  63  (vii). 

VII.  Let  Fc  he  a  mean  proportional  between  c'h  and  c'b'. 

I  say  that  A  C  and  Fc'   are  parallel. 

[Fc'bb'  is  a  transversal  of  the  quadrilateral  ABCD.  F  is  one 

of  the  double  points  of  the  involution,  and  since  c'b  .  c'b'  =  c'F'^,  c' 
is  the  centre,  and  its  conjugate  c,  the  intersection  oi  AG  and  Fc , 

is  at  infinity.] 

/ 

Fig.  64  (viii). 

VIII.  Let  abcdefg  be  a  Bomiscus  [i.e.  a  figure  like  a  little 

altar  with  unequal  sides],  and  let  de  be  parallel  to  be,  and  eg  to  bf. 
I  say  thatfd  is  parallel  to  eg. 

[Otherwise,  if  bcgedf  is  a  hexagon  inscribed  in  the  line-pair 
bdg,  cefi  and  if  the  opposite  sides  ge,  fb  are  parallel,  and  also  ed 

parallel  to  6c,  then  shall  the  remaining  pair  eg  and^o?  be  parallel, 

i.e.  the  Pascal  line  is  altogether  at  infinity.     See  Art.  51.] 

IX.  Pth'  is  a  triangle,  and  in  it  are  drawn  Pr,  Pk' ,  and  AD 

is  d7'awn  parallel  to  th',  and  let  A  F,  DF  be  drawn  to  a  point  F  on 

th'  such  that  tF :  Fh'  =  rF :  Fk'.     I  say  that  BG  is  parallel  to  th'. 

[By  Art.  120  Pt,  Pr,  Pk',  Ph'  are  four  rays  of  an  involution 
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pencil  drawn  from  P  to  the  four  vertices  of  the  quadrilateral 
ABCD. 

r      F  k' 
Fig.  65  (ix). 

Therefore  (t,  k')  and  (r,  h')  are  pairs  of  conjugate  points. 
Also  since  Ft .  Fk'  =  Fr .  Fh\  F  is  the  centre  of  the  involution, 
and  therefore  its  conjugate  is  at  infinity;  therefore  the  sides 

AD^  £C meet  at  infinity,  i.e.  those  sides  are  parallel.] 

X.  In  Fig.  61,  from  the  point  a  two  straight  lines  abc^  ah'c' 

are  drawn  cutting  the  two  lines  Obb',  Occ',  and  let  d,  d'  he  points 

on  them  such  that  ca  .bd:cd.ba  =  ac' .  d'b' :ab' .  d'c.  I  say  that 

the  points  0,  d,  d'  are  collinear. 

[Since  {chad)  =  (c'b'ad'),  .'.  0,  d,  d!  are  collinear  by  Art.  23.] 

XI.  In  the  same  Fig.  61,  let  Ob'c'  be  a  triangle.,  and  OD 

parallel  to  b'c  ̂   and  draw  Da  meeting  b'c'  in  a.     I  say  that 

aD  .bc-.ab.cD  —  c'b'  :  b'a. 

[In  X,  d  is  at  D,  and  d'  at  infinity,  .'.  {acbD)  =  (ac'b' ao  )  =—rr,  •] c  0 

XII.  Having  proved  the  preceding  propositions  we  will  now 

shew  that  in  Fig.  66  i/*  ac',  Oe  are  parallel,  and  are  intersected  by 
the  straight  lines  Oc,  c'd,  da,  ae,  and  the  lines  Ob' ,  b'e  are  drawuy 
I  say  that  the  points  k,  m,  b  are  collinear. 

[This  is  Pascal's  Theorem  for  the  hexagon  Ob'eadc  inscribed 
in  the  line-pair  Ode,  ah'c,  these  lines  being  parallel.     Art.  51. 
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Fig,  66  (xii,  XV,  xviii). 

Since  Ob,  Oc,  Od  are  intersected  by  abed,  ab'c',  of  which  the 

latter  is  parallel  to  Od,  .'.by  Lemma  XI,  {acbd)  =  -rr, . 

Similarly,  since  ed,  ea,  eb'  are  intersected  by  c'd,  c'a,  of  which 
the  latter  is  parallel  to  ed, 

.'.   (c'lkd)  =  ̂  .      .-.   by  Art.  3,  (acbd)  =  (Ic'kd). 

And  al,  cc'  meet  in  m.      .'.by  Art.  23,  b,  m,  k  are  collinear,  bmk 
being  the  cross-axis.     Art,  50.] 
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Fig.  67  (XIII,  xix). 

XIII.  Now  let  ac\  Oe  he  not  parallel,  and  let  them  meet  in 

the  point  n.  I  say  that  in  this  case  also  the  points  k,  m,  b  are 
collinear. 

[This  is  Pascal's  Theorem  for  the  hexagon  Ob'eadc  inscribed 

in  the  line-pair  Ode,  ab'c'  in  the  general  case.     Art.  51. 

Since  On,  Ob',  Oc  are  cut  by  ad,  ac, 

.'.    (acbd)  —  {acb'n)  by  Lemma  III 

=  (Ickd),  since  en,  ea,  eb'  are  cut  by  c'd,  c'n. 

And  al,  cc  meet  in  m,  .'.  by  Art.  23,  b,  m,  k  are  collinear  and 
bmk  is  the  cross-axis.] 

XIV.  In  Fig.  61,  let  OD  be  parallel  to  ac,  and  let  Ob',  aD  be 

drawn,  and  onhD  take  a  point  c  such  that  c'b' :  b'a  =  aD .  be  :  cD .  ab. 

I  say  that  the  points  0,  c,  c'  are  collinear. 

[See  Lemma  XI  (acbD)  =  {ac'b'oo  ).     Then  Art.  23.] 

XY.  The  previous  propositions  hamng  been  proved,  in  Fig.  66 

let  ac'  be  parallel  to  Oe,  and  let  them  be  cut  by  the  straight  lines  c'd, 

da,  eb',  b'O,  and  draw  the  lines  ae,  bk.  I  say  that  the  points  c',  m, 
0  are  collinear. 
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[Otherwise,  0,  o?,  e  and  a,  6',  c'  are  two  triads  of  points  on 
two  parallel  straight  lines.  Oh\  ad  meet  in  6,  c'd,  h'e  meet  in  A;, 
and  ae,  hk  meet  in  m.  Then  0,  m,  c'  are  coUinear.  The  converse  of 
Lemma  XII.] 

XVI.  The  same  as  X. 

XVII.  The  same  as  XV,  except  that  Oe,  ac'  are  not  parallel. 
[The  converse  of  XIII.] 

XVIII.  In  Fig.  66  Oh'c'  is  a  triangle,  and  Od  is  drawn 

parallel  to  h'c',  and  da,  eg  are  drawn  so  that  ab'^ :  ac' .  c'h'  —  h'g  :  gc'. 

I  say  that  if  h'd  is  drawn,  the  points  h,  h',  c'  are  collinear. 

rmi       •            1  ̂-       •           •     1     ̂   X    %-«c'      ah'      dc.ha  , [The  given  relation  is  equivalent  to     ,~  r,  =  }J~>=  3   i  "^y 

XI,  i.e.  (agc'b')  -  (acbd).     And  since  eg,  h'd  meet  in  k',  .'.  h,  k',  c' 
are  collinear  by  Art.  23.] 

XIX.  In  Fig.  67  from  the  point  c'  are  drawn  two  straight 

lines  c'd,  c'n  cutting  the  three  straight  lines,  en,  ea,  eh',  and  let 

c'd  :  dl  =  kc'  :  kl.     I  say  that  c'n  :  na  =  c'h'  :  h'a. 

[The  harmonic  pencil  e  (c'kld)  determines  a  harmonic  range  on 

any  transversal  c'h' an  by  Art.  31.] 

M. 



CHAPTER    XI 

ANHARMONIC    PROPERTIES   OF   POINTS    AND    TANGENTS   OF    A 

CONIC.      THE  LOCUS  AD   TRES  ET  QUATUOR  LINE  AS 

126.  We  will  now  proceed  to  apply  the  principles  of  homo- 
graphy  to  conies,  and  in  doing  so  we  shall  assume  that  the 

student  possesses  a  knowledge  of  the  elementary  properties  of 

conies  as  given  in  the  ordinary  text-books,  and  we  will  first  give 
two  propositions  which  are,  as  it  were,  the  foundations  on  which 

we  shall  build.  The  method  we  have  adopted  is  due  to  B.  W. 

Home,  Quarterly  Journal  of  Mathematics,  Vol.  iv,  278,  1861.  For 

other  ways  of  opening  the  subject  see  Chasles,  Traite  des  Sections 

Coniques  (1865).  See  also  his  Apergu  Historique,  Notes  xv,  xvi, 
and  his  Traite  de  Geometrie  Superieure,  Chap.  xxv. 

127.  A  and  B  are  two  fixed  points  on  a  conic,  focus  S,  and  0 

is  any  variable  point  on  the  curve.  OA  and  OB  meet  the  S- 
directrix  in  a,  h.     Then  the  angle  aSb  =  ̂ A  SB  =  const. 

By  the  focus  and  directrix  definition  of  a  conic, 

SO:SA  =  Oa:  Aa, 

.'.  Sa  bisects  the  angle  ASO\      .'.  aSO'  =  ̂ ASO'. 

Similarly,  SO:SB  =  Ob  :  Bb. 

/.   Sb  bisects  the  Single  BSO\     .'.   bSO'  =  ̂ BSO'. 

.'.   aSb  =  bSO'  -  aSO'  =  \  {BSO'  -  ASO')  =  IASB. 
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Fig.  68. 

128.     If  the,  tangents  at  A,  B  meet  the  tangent  at  any  point  0 

in  a,  /3,  the  angle  aS^=  ̂   AS B  =  const. 

Since  tangents  to  a  conic  subtend  equal  angles  at  a  focus,  the 

angle 
aSO  =  aSA  =  ̂ ASO, 

and  ftS0=/3SB  =  iBS0, 

:.   aSf3  =  iASB  =  aSb. 

Dep.     The  pencil  formed  by  joining  four  points  on  a  conic 

to  a  fifth  point  on  the  curve  is  called  a  conic- 
Conic-pencil 

pencil  *. 
Prof.  A.  Lodge,  1908. 

9—2 
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129.  If  A,  B,  C,  D  are  four  fixed  points  on  a  conic,  and  0 

any  variable  point  on  the  curve,  the  conic-pencil  0  {ABCD)  has  a 
constant  cross-ratio  *. 

In  Fig.  68  0  {ABCD)  =  0  {abed) 

=  S (abed)  hj  Art.  24, 

and  by  Art.  127  the  angles  subtended  at  S  by  pairs  of  the  points 

a,  b,  c,  d  are  half  the  angles  subtended  at  S  by  the  pairs  of 

corresponding  points  A,  B,  C,  D,  and  therefore  the  pencil  S  {abed) 

is  constant.     Hence  the  conic-pencil  0  {ABCD)  is  constant. 

As  the  cross-ratio  of  the  conic-pencil  0  {ABCD)  is  the  same 
for  all  points  0  on  the  conic,  we  may  speak  of  it  as  the  cross- 

ratio  of  the  four  points  A,  B,  C,  D,  and  the  above  property  may 
be  stated : 

The  cross-ratio  of  four  fixed  points  on  a  conic  is  constant, 

meaning  that  the  cross-ratio  of  the  conic-pencil  formed  by  joining 
the  four  points  to  any  variable  point  on  the  curve  is  constant. 

From  the  above  it  follows  that  if  0,  0'  are  two  positions  of 

the  variable  point,  the  conic-pencil  0  {ABCD)  =  0'  {ABCD),  and 
this  fact  is  independent  of  the  position  of  the  points  A,  B,  C,  D. 

Hence  we  may  now  suppose  0,  0'  to  be  two  fixed  points,  and 
A,  B,  C,  D  to  be  any  four  positions  of  a  variable  point  on  the 
conic,  and  we  have  the  theorem  : 

If  two  fixed  points  on  a  conic  are  joined  to  a  variable  point  on 

the  curve,  the  pencils  so  formed  are  homographic,  since  any  four 

positions  of  the  variable  point  give  two  pencils,  centres  0,  0',  having 
the  same  cross-ratio. 

Hence,  considering  any  six  points  on  a  conic, 

(a)  If  we  fix  four  of  the  points,  the  other  two  give  us  a  pair  of 

equicross  pencils,  and  the  conic-pencils  formed  by  drawing  rays 

to  the  four  points  from  any  variable  point  on  the  curve  are  equi- 
cross. 

*  Chasles,  1829;  Steiner,  1832. 
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(p)  If  we  fix  two  of  the  points  and  suppose  the  others  variable, 

the  pencils  formed  by  drawing  from  the  two  points  rays  inter- 
secting on  the  conic  are  homographic. 

130.  If  the  tangents  at  four  fixed  points  A,  B,  C,  D  on  a 

conic  meet  the  tangent  at  any  variable  2>oint  0  in  a,  /8,  y,  8,  the 

range  (a^yS)  has  a  constant  cross-ratio. 

In  Fig.  68  by  Art.  128  the  pencils  S{ahcd)  and  S  (afSyS)  are 

superposable.      .'.  S  (a/3y8)  =  >S'  (abed)  =  0  (abed)  ̂   0  (ABCD). 
Therefore  (a^yS)  =  const. 

As  the  cross-ratio  of  the  range  {a(3yB)  is  the  same  for  the 
tangent  at  any  point  0  of  the  conic,  it  may  be  called  the  cross- 

ratio  of  the  four  tangents  at  A,  B,  C,  D,  and  the  above  property 
may  be  stated : 

The  cross-ratio  of  four  fixed  ta^ngents  is  constant,  meaning  that 

the  cross-ratio  of  the  range  hi  which  four  fixed  tangents  cut  any 
variable  tangent  is  constant. 

As  in  the  previous  article,  we  might  take  two  positions  TP, 

TQ  of  the  variable  tangent,  and  let  the  four  tangents  atA,B,C,D 

meet  them  in  a,  /3,  y,  8  and  a,  fS',  y',  8'.  Then  by  the  above, 

(a/3yS)  =  {a'jS'y'S').  This  fact  is  quite  independent  of  the  positions 
of  the  points  A,  B,  C,  D.  Hence  we  may  consider  TP,  TQ  as 

two  fixed  tangents,  and  the  tangents  at  A,  B,  (7,  D  as  any  four 
positions  of  a  variable  tangent.     This  gives  us  the  theorem : 

If  two  fixed  tangents  are  cut  by  a  variable  tangent  the  ranges 
80  formed  are  homographic, 

since  any  four  positions  of  the  variable  tangent  give  points  on  the 

fixed  tangents  which  have  the  same  cross-ratio.  Hence,  consider- 
ing any  six  tangents  to  a  conic, 

(a)  If  we  fix  four  of  the  tangents,  the  other  two  give  us 

a  pair  of  equicross  ranges ;  and  so  the  ranges  formed  by  the 

intersections  of  the  four  fixed  tangents  with  any  variable  tangent 
are  equicross. 
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(^)  If  we  fix  two  of  the  tangents,  and  suppose  the  others 

variable,  we  may  remove  the  restriction  to  four,  and  think  of  any 

number,  and  these  will  determine  homographic  ranges  on  the  two 
fixed  tangents. 

Note.  The  properties  in  Arts.  129,  130,  being  projective, 

could  of  course  be  deduced  from  the  corresponding  properties  of 
the  circle. 

131.  It  follows  from  the  preceding  article  that : 

The  cross-ratio  of  the  conic-pencil  of  any  four  points  on  a  conic 

is  equal  to  the  cross-ratio  of  their  tangents. 

This  of  course  is  a  very  abbreviated  statement,  and  the 

student  should  realize  that  its  meaning,  expressed  in  full,  is : 

The  cross-ratio  of  the  conic-pencil  formed  hy  joining  four  fixed 
points  A,  B,  C,  D  on  a  conic  to  any  variable  point  on  the  curve  is 

equal  to  the  cross-ratio  of  the  range  formed  hy  the  points  of  inter- 
section of  the  tangents  at  A,  B,  C,  D  with  any  variable  tangent  to 

the  conic. 

132.  The  converses  of  Arts.  129,  130  are  very  important, 
and  are  of  two  distinct  classes.  In  the  first  it  is  assumed  that 

there  is  given  a  conic-pencil  or  a  tangent  range,  and  it  is  proved 

that  equi-pencils  or  equi-ranges  belong  to  the  same  conic,  and 
therefore  incidentally  that  only  one  conic  exists  in  each  case. 

The  second  class  is  more  general,  and  does  not  assume  the  exist- 

ence of  a  conic,  but  only  that  of  equi-pencils  or  equi-ranges,  and 
proves  that  the  locus  or  envelope  is  a  conic,  and  the  theorems  of 

this  latter  class,  which  we  may  term  complete  converses,  really 

include  those  of  the  former,  which  may  be  called  partial  con- 
verses. 

133.  We  will  now  prove  the  partial  converse  of  Art.  129  (a). 

Ifive  have  given  four  fixed  points  on  a  conic,  and  if  the  pencil 

formed  by  joining  them  to  a  point  P  has  the  same  cross-ratio  as  the 

conic-pencil  formed  hy  the  four  points,  the  point  P  lies  on  the  conic. 
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Let  A,  £,  C,  D  be  the  four  fixed  points,  and  suppose  F  is  not 

on  the  conic.  Let  one  of  the  rays  FA  meet  the  conic  in  F'. 

Then  the  pencil  F{ABCD)=  the  conic-pencil  F' (ABCD),  and 
these   have   a  common  ray,   and  are   therefore   in   perspective, 

Fig.  69. 

i.e.  by  Art.  25  the  points  B,  C,  D  are  collinear,  which  is  contrary 

to  the  supposition  that  they  are  on  the  conic. 

CoR.  If  a  conic  can  be  drawn  through  five  points,  only  one 
conic  can  be  so  drawn. 

134.  Given  four  fixed  tangents  to  a  conicj  if  they  form  on  any 

straight  line  the  same  cross-ratio  as  that  formed  by  them  on  any 
fifth  tangent^  the  straight  line  will  touch  the  conic. 

Partial  converse  of  Art.  130  (a).     See  Fig.  70. 

Let  the  tangents  at  the  fixed  points  A,  B,  C,  D  intersect  the 

straight  line  L  at  a,  b,  c,  d.  Then  if  the  line  L  is  not  a  tangent,, 

from  one  of  the  points  of  intersection,  as  a,  draw  a  tangent 

meeting  the  three  other  fixed  tangents  at  6',  c',  d'. 

Then  the  ranges  {ab'c'd')  and  {abed)  are  equicross  and  have  a 
common  point  a,  and  are  therefore  by  Art.  23  in  perspective, 

i.e.  the  three  tangents  bb',  cc',  dd'  are  concurrent,  which  is  absurd. 
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[CH.  XI Cor.     If  a  conic  can  be  drawn  to  touch  five  lines,  only  one 
conic  can  be  so  drawn. 

Fig.  70. 

Proofs  of  Arts.  129  {(3)  and  130  {/3)  based  upon 
Propositions  given  by  ApoUonius. 

135.  In  ApoUonius,  Bk  iii.  Prop.  54,  we  find  the  following 

property.     See  Fig.  71. 

TIf  TJ'  are  fixed  tangents  to  a  conic,  P  any  variable  point  on 

the  curve.  Through  I  and  J'  lines  are  drawn  parallel  to  the 

tangents,  meeting  J'F,  IP  in  a,  a'.  Then  for  all  positions  of  P  the 

rectangle  la  .  J' a  is  constant. 

Through  P  draw  a  line  PP'  parallel  to  IJ'  meeting  the  conic 

in  P',  the  tangents  in  A",  K',  and  the  diameter  C^'  in   W.     Let 
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Ca,  (7yS,  Cy  be  the  semi-diameters  parallel  to  IJ\  TI,  TJ'.  To 
shorten  the  statement  of  the  proof  we  shall  assume  a  knowledge 

of  the  following  properties  : 

(1)  KP  .KF'.KP=Ca^:C^. 

P^ 

M. 

Fig.  71. 

(2)  W  bisects  FP',  and  also  KK',  and  consequently 

KP  =  K'F,     KF  =  K'P, 

and  therefore      KP .  KP'  =  K'P' .  K'P  =  KP .  K'P. 

(3)  From  the  similar  triangles  alJ\  J' K'P, 

Ia:IJ'  =  K'J'.K'P, 

and  from  the  similar  triangles  a  J' I,  IKP, 
J' a' :  IJ'  =  KI :  KP. 
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[CH.  XI By(l) 

Similarly 

KF 

K'J"" 

Co?  ~  KF 
9f^   
Ca^     K'P .  K'F 

Cc^     ~  KF '  K'F 

KF 

KF.K'F 

K'F^ 

by  (2). 

KF .  K'F la     J' a'  ,      .^. 

7„.^V  =  54^./^': const. 

Hence  by  Art.  64  the  ranges  {a),  (a)  are  homographic,  the 

points  /,  J'  corresponding  to  the  points  at  infinity,  and  therefore 

the  pencils  I  {a'),  J' (a),  i.e.  the  conic-pencils  I{F),  J' {P),  are 
homographic.     Consequently  Apollonius'  property  may  be  stated  : 

If  /,  J',  two  fixed  points  on  a  conic,  are  joined  to  any  number 
of  points  on  the  curve,  the  conic-pencils  so  formed  are  homogr^aphic, 
which  is  equivalent  to  the  theorem  of  Art.  129  (^).  Also,  obviously, 

the  ray  in  the  pencil  J'  (a)  corresponding  to  the  ray  IJ'  in  the 

pencil  I  (a')  is  the  ray  drawn  from  J'  to  the  point  at  infinity  on 
la,  i.e.  the  tangent  at  J'.  Similarly  the  tangent  at  /corresponds 

to  the  ray  J' I  in  the  pencil  J'  (a). 

136.  A  variable  tangent  aa  meets  TP,  TQ',  two  fixed  tangents 
to  a  conic,  in  two  ranges  (a),  (of)  which  are  homographic. 

a"        I  Q  T'_ 
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PF,  QQ'  are  the  diameters  through  P,  Q',  and  CD  is  the 

semidiameter  conjugate  to  ̂ ^'.  The  tangent  aa'  meets  the  tangent 
at  Q  in  a".     It  is  proved  in  Apollonius,  Bk  iii,  Prop.  42,  that 

QI.Q'T=^CD''=Qa"  .Q'a'   (A). 

Assuming  this  result  (A),  for  proof  of  which  see  Milne  and 

Davis'  Geom.  Con.  Art.  134,  or  any  other  text-book,  and  the 
truth  of  which  can  be  seen  at  once  by  orthogonal  projection  from 
a  circle,  we  have 

QI:Q'a'  =  Qa":Q'T 

=  Qa"-QI'.Q'T-Q'a\ 

:.   J'Q'  '.Q'a'  =  Ia":a'T,  for  QI=J'Q' 
=  la  :  aT, 

.'.   J'Q':J'a'=Ia:IT, 

.'.   la.  J'a=  IT.  rQ'  =  const* 

Hence  the  ranges  (a),  (a)  are  homographic,   and  we  have 

the  theorem  of  Art.  130  (^). 

Anharmonic  Properties  of  Points  and  Tangents 
of  a  Conic. 

137.  We  will  now  give  the  complete  converses  of  Arts.  1 29  (/3), 

130  (^),  which  are  due  to  Chasles,  and  are  two  of  the  most 

important  propositions  in  this  part  of  the  subject. 

(1)  Given  tivo  homographic  pencils  not  in  perspective,  the 
intersections  of  corresponding  rays  lie  on  a  conic  which  passes 

through  the  centres  of  the  pencils. 

(2)  Given  two  homographic  ranges  not  in  perspective  on  two 

given  straight  lines,  the  lines  joinifig  pairs  of  corresponding  points 
envelop  a  conic  which  touches  the  two  given  lines. 

Chasles  called  (1)  the  ayiharmonic  property  of  the  points  of  a 

conic,  and  (2)  the  anharmonic  property  of  the  tangents  of  a  conic, 
and  these,  with  their  converses  given  in  Arts.  129,  130,  he  takes 

*  Newton's  Principia,  Bk  i,  Sect,  v,  Lemma  25. 
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[CH.  XI as  the  fundamental  propositions  on  which  he  bases  his  Traite  des 

Sections  Coniques  (1865).  They  are  first  met  with  in  Notes  xv, 

XVI  of  his  Aper^u  Historique  (1837),  where  he  proves  the 

properties  for  the  circle,  and  then  employs  the  property  of 

Art.  21,  which  shews  that  the  cross-ratio  of  four  collinear  points 
is  unaltered  by  projection.  In  his  Geometrie  Superieure  (1852), 

Chap.  XXV,  he  treats  independently  the  locus  and  envelope 
referred  to,  and  shews  that  the  curve  locus 

(1)  passes  through  the  centres  of  the  pencils, 

(2)  cannot  meet  a  straight  line  in  more  than  two  points, 

(3)  if  about  two  of  its  points  rays  are  rotated  intersecting 

on  the  curve,  the  rays  form  two  homographic  pencils, 

(4)  two  such  curves  can  be  considered  as .  homographic 
figures,  and  can  be  placed  in  perspective  with  each  other,  and  can 

therefore  always  be  considered  as  the  plane  section  of  a  cone  on  a 

circular  base,  with  similar  properties  for  the  curve  envelope,  and 

in  this  way  he  deduces  that  both  curves  are  conies. 

The  proofs  given  below  are  taken  from  Chasles'  Traite  des 

Sections  Coniques,  Arts.  8  and  9,  where  he  adds  the  note  "L'idee 
de  construire  sur  la  figure  meme  le  cercle  dont  la  courbe  en- 

gendree  sera  la  perspective,  m'a  ete  suggeree  par  M.  J.  Delbalat." 
138.  Given  two  homographic  pencils  not  in  perspective,  the 

intersections  of  corresponding  rays  lie  on  a  conic  which  passes 

through  the  centres  of  the  pencils. 
A 

8     y fi^ 
Fig.  73. 
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Let  P{ABG  ...),  Q(ABC  ...)  be  two  homographic  pencils. 

It  is  required  to  shew  that  the  locus  of  the  points  A,  B,  C  ... 

is  a  conic  passing  through  the  points  P,  Q. 

Let  FT  be  the  ray  in  the  first  pencil  corresponding  to  QP  in 

the  second,  so  that  P  {ABCT)  =  Q{ABCP).  Describe  a  circle 

touching  PT  at  P,  and  let  it  cut  PA,  PB,  PC  ..,  PQ  in  a,  b,c  ...  q. 

Join  qa,  qb,  qc  ...,  and  produce  them  to  meet  the  rays  QA,  QB, 

QC  ...  in  a,  p,  y  .... 

Now  Q  (ABCP)  =  P{ABCT) 
=  P(abcT) 

=  q  (abcP)j 

since  the  pencils,  centres  P  and  q,  are  equiangular. 

And  the  pencils  Q  (A  BOP),  q  (abcP)  being  equicross,  and 

having  a  common  ray  QqP,  are  in  perspective.  Therefore  a,  ̂,  y, 

the  points  where  corresponding  rays  meet,  are  collinear.  Let  L 

denote  the  line  on  which  they  meet.  Then  in  the  two  triangles 

QAB,  qab  the  lines  joining  the  vertices  Aa,  Bb,  Qq  meet  in  P, 

therefore  the  triangles  being  co-polar  are  also  co-axial,  Art.  26. 
Therefore  the  sides  AB,  ab  meet  on  the  line  joining  a^,  i.e.  the 

line  L  ',  i.e.  the  sides  of  the  triangles  QAB,  qab  intersect  respec- 

tively in  the  line  L',  and  this  will  still  hold  when  the  circle  is 
rotated  about  L  into  any  other  position.  Therefore  in  the  new 

position  QA,  qa;  QB,  qb ;  AB,  ab  are  co-planar,  and  so  Aa,  Bby 
Qq  meet  in  a  point,  the  intersection  of  the  three  planes.  Thus 

Bb,  the  line  joining  any  two  corresponding  points,  passes  through 

a  tixed  point  0  (not  shewn  in  the  figure),  viz.  that  in  which  Qq 
intersects  Aa,  i.e.  the  two  figures  are  in  perspective,  and  0,  the 

centre  of  perspective,  is  the  vertex  of  a  cone  passing  through 
the  circle  and    through  the   curve   which   is    the  locus  of  the 

points  A,  B,  C       Therefore  this  curve,  being  the  section  of 

a  cone  by  a  plane,  is  a  conic. 
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[CH.  XI 139.  Given  tivo  homographic  ranges  not  in  perspective  on  two 

given  straight  liyies,  the  lines  joining  pairs  of  corresponding  points 
envelop  a  conic  which  touches  the  two  given  lines. 

Let  (a6c  ...),  {a'h'c'  ...)  be  two  homographic  ranges  on  the  lines 
P,  P'.  It  is  required  to  shew  that  the  lines  aa,  hh\  cc'  ...  envelop 
a  conic  touching  the  lines  P,  P. 

Let  the  lines  P,  P'  intersect  in  the  point  p' ,  where  p'  is  a 

point  in  the  range  {ah'd  ...),  and  let  jt?  be  its  corresponding  point 
in  the  range  {ahc  . . .).  Describe  a  circle  touching  the  line  P  at  jo, 

and  to  it  draw  the  tangents  aa,  6^,  cy  . . .  meeting  the  tangent  p'lr 
in  a,  /3,  y  .... 

Then  the  range      {ah' dp')  =  (abcp)  by  hypothesis 

=  (a^yp')  by  Art.  130. 

The  ranges  (a'b'c'p'),  (a^y/>')  being  equicross  and  having  a 

common  point  p'  are  in  perspective.  Therefore  the  lines  a'a,  6'/3, 
cy  are  concurrent. 
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Now  rotate  the  circle  with  its  tangent  pV  about  the  line  P. 

For  any  position  of  the  moving  plane  the  lines  a' a,  b'0,  c'y  are 

concurrent,  since  the  ranges  are  still  in  perspective,  p'  being  the 
common  point.  Let  them  meet  in  0.  Then  with  0  as  vertex  of 

projection  the  lines  aa,  bb',  cc  ...  will  be  the  projections  of  the 
lines  aa,  bjS,  cy  ....  Therefore  the  curve  enveloped  by  the  lines 

aa',  bb',  cc' ...  will  be  the  perspective  of  the  curve  enveloped  by 
the  lines  aa,  bp,  cy       But  the  latter  curve  is  a  circle.     Hence 
the  former  is  a  plane  section  of  a  cone  on  a  circular  base,  i.e.  a 
conic. 

140.  A  conic  can  be  drawn  through  five  points,  no  three  of 
which  are  collinear. 

In  Fig.  73  let  P,  Q,  A,  B,  C  be  the  five  points.  It  is  required 

to  shew  that  they  lie  on  a  conic. 

Take  P(ABC)  and  Q  {ABC)  as  the  characteristics  of  two 

homographic  pencils,  and  draw  PT  in  the  first  pencil  correspond- 
ing to  QP  in  the  second,  by  Art.  58,  so  that 

P{ABCT)  =  Q{ABCP). 

Then  with  the  same  construction  and  demonstration  as  in 

Art.  138  it  follows  that  the  five  points  P,  Q,  A,  B,  C  are  the 

projections  from  0  of  the  five  concyclic  points  p,  q,  a,  b,  c.  There- 
fore the  five  points  P,  Q,  A,  B,  C  lie  on  the  projection  of  a  circle, 

i.e.  on  a  conic. 

CoR.  1.  Only  one  conic  can  be  drawn  through  five  given 

points. 
Cor.  2.  By  taking  any  other  point  d  on  the  circle  in  its 

original  position  in  Fig.  73,  producing  dq  to  meet  L  in  8,  and 

finding  the  point  D  where  Pd  intersects  8Q,  we  can  find  as  many 

more  points  as  we  please  on  the  conic.  Also,  PT  is  obviously  a 
tangent  to  the  conic  at  P. 

To  obtain  the  tangent  at  Q,  draw  the  tangent  to  the  circle  at 

q,  meeting  L  in  K  (not  shewn  in  the  figure).  Then  KQ  is  the 
tangent  required. 
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Since  the  tangents  at  any  two  corresponding  points  such  as 

i),  d  intersect  on  Z,  this  provides  us  with  a  simple  method  of 

drawing  the  tangent  at  any  point. 

The  problem  "  to  construct  a  conic  through  five  points "  is 
solved  for  an  ellipse  by  Pappus,  Bk  viii,  Props.  13,  14,  where  the 

method  depends  on  a  property  given  by  Apollonius,  Bk  iii, 

Props.  16 — 23,  sometimes  called  Newton's  Theorem,  viz,  "The 
ratio  of  the  rectangles  contained  by  the  segments  of  two  inter- 

secting chords  of  a  conic  is  equal  to  the  ratio  of  the  rectangles 

contained  by  the  segments  of  any  other  pair  of  chords  parallel  to 

them."  It  is  needless  to  say  that  the  construction  is  theoretical 
rather  than  practical. 

For  other  solutions  of  the  same  problem  see  Newton's 
Principia,  Bk  i.  Sect,  v,  Prop.  22,  and  Problem  Lix  of  his 
Universal  Arithmetic,  and  Art.   278  infra. 

141.  It  only  remains  to  consider  the  case  when  three  of  the 

points,  as  A,  B,  C\  lie  on  a  straight  line.  Let  this  meet  the  line 

through  P,  Q  in  K.  The  ray  in  the  first  pencil  corresponding  to 

QP  in  the  second  is  now  PQ,  and  if  we  describe  a  circle  touching 

this  ray  at  P,  we  should  not  obtain  any  point  q,  and  the  con- 
struction fails. 

It  should  be  noticed  that  when  this  case  occurs,  the  locus 

consists  of  the  two  lines  through  A,  B,  C  and  P,  Q,  because  the 

common  rays  PQ,  QP  intersect  each  other  not  only  at  the  point 

K,  but  anywhere  along  the  line  PQ.  This  is  evidently  the  case 

of  two  pencils  in  perspective. 

142.  A  conic  can  he  drawn  touching  five  straight  lines,  no 

three  of  which  are  concurrent. 

In  Fig.  74  let  P,  P',  aa',  bb',  cc'  be  the  five  lines.  It  is 
required  to  shew  that  they  are  tangents  to  a  conic. 

Take  (abc')  and  {a'b'c')  as  the  characteristics  of  two  homo- 

graphic  ranges,  and  let  the  point  ̂   on  P  correspond  to  p'  the 
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intersection  of  the  bases  considered  as  a  point  on  F,  so  that 

(abcp)  =  (ah'c'p).  Then  with  the  same  construction  and  demon- 
stration as  in  Art.  139  it  follows  that  the  five  lines  P,  F,  aa\  hh\ 

ec'  are  the  projections  from  0  of  the  five  lines  P,  pV,  aa,  bjS,  cy, 
which  are  tangents  to  a  circle.  Therefore  the  five  given  lines  are 

tangents  to  the  projection  from  0  of  the  circle,  i.e.  a  conic. 

As  in  the  previous  article,  if  three  of  the  lines  aa,  bb\  cc' 

meet  in  a  point  u,  then  if  P,  F  meet  in  p',  the  envelope  of  the 

tangents  degenerates  into  the  two  points  it  and  p'. 

143.  In  questions  relating  to  the  anharmonic  property  of 

tangents  of  a  conic,  if  the  homographic  ranges  are  of  the  second 

order,  so  that  the  points  /,  J'  are  at  a  finite  distance,  the  conic 
which  is  enveloped  by  the  lines  joining  pairs  of  corresponding 

points  is  a  central  one,  the  centre  being  the  mid-point  of  the  line 

joining  the  points  /,  J'. 

If  the  ranges  are  similar,  the  points  /,  J'  are  at  infinity,  so 
that  the  conic  has  its  centre  at  infinity,  and  is  therefore  a 

parabola. 

If  the  points  /,  J'  coincide  at  C,  the  intersection  of  the 
ranges,  by  Art.  68  (1)  the  homographic  equation  is 

Cm  .  Cm  =  const   (A), 

the  points  of  contact  are  at  infinity,  the  conic  is  a  hyperbola,  the 

bases  of  the  ranges  are  asymptotes,  and  (A)  tells  us  that  any 

tangent  forms  with  the  asymptotes  a  triangle  of  constant  area. 

144.  In  dealing  with  the  anharmonic  property  of  points  of  a 

conic  it  is  important  to  notice  that  any  transversal  is  cut  by  the 

pencils  in  two  homographic  ranges,  the  common  points  of  which 

are  evidently  the  points  where  the  transversal  cuts  the  conic. 

If  the  ranges  on  the  transversal  are  similar,  one  of  the  common 

points  is  at  infinity,  and  the  transversal  is  parallel  to  an  asymptote. 
If  in  addition  to  being  similar  the  ranges  are  superposable,  the 

common  points  are  both  at  infinity,  and  the  transversal  is  an 

asymptote. 
M.  10 
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The  tangents  to  the  conic  at  the  vertices  of  the  pencils  are  the 

rays  which  correspond  to  the  line  joining  the  vertices  which  it 
must  be  remembered  are  points  on  the  conic. 

If  these  rays  are  parallel,  the  line  joining  the  vertices  is  a 

diameter,  and  its  mid-point  is  the  centre  of  the  conic. 

If  we  move  the  pencil,  vertex  0',  parallel  to  itself  so  that  0' 
is  made  to  coincide  with  0,  any  transversal  will  be  cut  by  the  two 

pencils,  common  vertex  0,  in  two  homographic  ranges.  Let  e,  / 

be  their  common  points.  Then  Oe,  Of  being  the  comraon  rays  of 

the  pencils  in  their  new  position  give  us  the  directions  of  the  two 

pairs  of  parallel  corresponding  rays  of  the  pencils  in  their  original 

position,  and  therefore  these  are  the  directions  of  the  points  at 
infinity. 

If  the  common  points  are  real  and  separate,  Oe  and  Of  are 

parallel  to  the  asymptotes,  and  the  curve  is  a  hyperbola. 

If  the  common  points  are  real  and  coincident  at  e,  the  curve  is 

a  parabola,  and  Oe,  is  parallel  to  its  axis. 

If  the  common  points  are  imaginary,  the  curve  is  an  ellipse. 

Locus  ad  tres  et  quatnor  lineas. 

145.  We  will  conclude  this  chapter  with  a  short  account  of 

the  above  locus,  which  in  point  of  interest  can  compare  with  any 

of  the  problems  known  to  the  ancients,  the  history  of  which  makes 

the  study  of  mathematics  such  a  fascinating  subject. 

In  the  general  introduction  to  his  Conies  Apollonius  says 

"The  third  book  contains  many  curious  theorems  which  are  useful 
in  the  synthesis  of  solid  loci,  and  in  discriminating  between  their 

different  cases ;  of  which  theorems  the  greater  part  and  the  most 

interesting  are  new,  and  the  knowledge  of  these  enabled  me  to 

construct  completely  the  locus  ad  tres  et  quatuor  lineas,  which  was 

not  completed  by  Euclid,  but  only  a  small  part  of  it,  and  that  not 

satisfactorily,  for  it  was  not  possible  for  its  synthesis  to  be  com- 
pleted without  the  knowledge  of  the  properties  which  I  have 

discovered." 
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From  Pappus,  Bk  vii,  c.  36,  we  learn  that  the  enunciations  of 
the  two  cases  of  the  locus  were  as  follows  : 

I.  If  three  straight  lines  are  given  in  position^  and  from  a 

point  straight  lines  are  drawn  to  thenn  meeting  them  at  given 

angles,  and  if  the  ratio  of  the  rectangle  contained  hy  two  of  these 

lines  to  the  square  on  the  third  is  given,  the  point  lies  on  a  given 

II.  If  there  are  four  given  straight  lines,  and  from,  a  point 

straight  lines  are  drawn  to  them  meeting  them  at  given  angles,  and 

if  the  ratio  of  the  rectangle  contained  hy  two  of  these  lines  to  the 

rectangle  contained  hy  the  other  two  is  given,  in  this  case  also  the 

point  lies  on  a  given  conic. 

As  Apollonius  does  not  make  any  further  reference  to  the 

locus,  nor  give  a  solution  in  so  many  words,  it  was  taken  for 

granted  that  his  solution  had  been  lost,  and  no  further  search 

seems  to  have  been  made  for  one  in  his  Conies,  fortunately  for 

mathematics,  as  Ball  (1888)  in  his  SJiort  History  of  Mathematics, 

p.  242,  tells  us  that  "  the  general  theorem  had  baffled  previous 
geometricians,  and  it  was  in  the  attempt  to  solve  it  that  Descartes 

was  led  to  the  invention  of  analytical  geometry"  (1659).  Subse- 
quently, in  1687,  a  geometrical  solution  was  given  by  Newton 

(as  he  thought  for  the  first  time)  in  his  Principia^  Bk  i,  Sect,  v, 

Lemmas  17 — 19,  where  he  takes  first  the  case  of  a  trapezium, 
and  then  of  any  quadrilateral,  and  employs  Apollonius,  Bk  in, 

Props.  17,  19,  21,  23.  But,  as  was  pointed  out  by  a  writer  in  the 

Math.  Gazette,  No.  6,  of  October  1895,  Apollonius,  Bk  in,  Prop.  54, 

referred  to  in  Art.  135,  not  only  virtually  contains  the  solution, 

but  also  gives  us  the  value  of  the  constant  ratio  in  terms  of  the 

diameters  of  the  conic  parallel  to  the  given  lines  in  the  case 

where  the  straight  lines  are  drawn  to  them  at  right  angles. 

Thus,  in  Fig.  71,  through  P  draw  lines  PF,  PF',  KPK'  parallel 

to  TJ',  TI,  IJ',  and  PL,  PM,  PN  perpendicular  to  them. 

10—2 
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PF    PF' 
~  FJ''  F'l 

_  PF^    PT 
~  PK' '  PK 

_PN   PN 
~¥L'PM' 

which  is  the  locus  ad  tres  lineas  when  the  angles  are  right  angles. 

If  instead  of  being  at  right  angles  PL,  PM,  PN  make  angles  ̂ ^ , 

^2,  ̂3  with  TJ',  TI,  IJ\  the  proposition  obviously  still  holds,  but 
^1         1        c  l.^.  1.     J.      J.'    •  C/S .  Cy    sin  Oi .  sin  Oo 
the  value  or  the  constant  ratio  is  now  — _,  .,  '  .   ^—    . Ca'  sm^  Os 

The  locus  ad  quatuor  lineas  at  once  follows  by  repeated 

applications  of  the  above,  as  shewn  in  Milne  and  Davis'  Conies, 
Art.  254  (1894),  where  the  value  of  the  constant  ratio  is  given  in 

terms  of  the  angles  and  the  diameters  parallel  to  the  given  lines. 

Seeing  that  the  locus  ad  quatuor  lineas  can  be  derived  from 

the  converse  of  the  anharmonic  property  of  the  points  of  a 

conic,  the  anharmonic  property,  as  we  might  have  expected,  can 

be  readily  deduced  from  the  locus.  For  let  ABC  J)  be  a  quadri- 

lateral inscribed  in  a  conic,  P,  P'  any  two  points  on  the  curve, 

and  draw  Pa,  P'a!  perpendiculars  on  A  B.  Then  expressing  twice 
the  area  of  the  triangle  PAB  in  the  two  equivalent  forms 

Pa.AB  =  PA.  PB  sin  A PB,  &c., 

we  have 

Pa.Py.AB.CD     sm  A  PB.  sin  CPJ)     p,,«^^,,      ,,., 

Pft.A.BC.AI)  =  smBPC.sinDPA=^^'^^^^^  
^^  ̂'''  ̂^> 

and 

P'a'.P'y'.AB.CD  _  sin  APB.  sin  CPD_  pr.r^pry. 
P'/3'.P'S\BC.AD     sin  BP'C.  sin  DP' A     ̂   

V^^^^> 
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Now  by  the  property  of  the  locus        '  JL  =  ̂     '  p,^, . 

Therefore  P  {ABCD)  =  F  {ABCD). 

The  importance  of  the  locus  is  obvious  when  we  notice  that 

its  two  cases  expressed  in  trilinear  and  quadrilinear  coordinates 

take   the   well-known   forms  a(i  =  K-^'f  and  ajS  —  K^ySj  kj  and   k^ 

being  7= — ^:iy  and  ̂   '    -,,  ,  where  Ca,  &c.  are  the  semi-diameters ^  Ca  .  Go  Ca .  Co 

parallel  to  the  given  lines. 

We  shall  see  in  a  later  chapter  that  Desargues',  Pascal's  and 
other  well-known  theorems  are  immediate  consequences  of  it. 

EXAMPLES. 

1.  OL,  OU  are  two  given  lines,  A,  B  are  fixed  points  on  OL.  On  OL' 
G,  D  are  fixed  points,  and  m,  m'  variable  points.  Am  and  Bm'  meet  in  P. 
Find  the  locus  of  P 

(1)  when  the  segment  mm'  is  of  constant  length, 
(2)  when  Cm  :  Dm'  is  a  constant  ratio, 
(3)  when  the  product  Cm  .  Dm'  is  constant. 

Fig.  75. 

(1)  As  the  segment  mm'  moves  along  the  line  OL',  the  ranges  (w)  and 
(w'),  being  superposable,  are  homographic. 

Therefore  the  pencils  A  (m)  and  B  {vi')  are  homographic,  Art.  42,  and  the 
locus  of  P  is  a  conic  passing  through  A  and  B,  Art.  138. 
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Since  the  ranges  (m),  (m')  made  by  the  pencils  on  the  transversal  OL'  are 

superposable,  the  line  OL'  is  an  asymptote,  Art.  144. 
The  hyperbola  will  be  rectangular  if  mm'  =  AB  cos  0. 
(2)  Here  the  ranges  (m),  (m')  are  similar,  but  not  superposable. 
Therefore  the  locus  of  P  is  a  hyperbola  having  one  of  its  asymptotes 

parallel  to  0L\ 

(3)  By  Arts.  65,  70  the  ranges  (m),  {m')  are  homographic,  and  therefore  the 
locus  of  P  is  a  conic.  To  determine  its  species  draw  rays  through  A  parallel 
to  the  rays  of  the  pencil  B.  Then  the  conic  will  be  a  hyperbola,  parabola  or 
ellipse  according  as  the  two  pencils  whose  common  vertex  is  A  have  their 
common  rays  real  and  separate,  real  and  coincident,  or  imaginary. 

2.  Shew  that  the  locus  of  the  vertex  of  an  isosceles  triangle  whose  equal 
sides  pass  through  fixed  points  and  whose  base  lies  on  a  fixed  straight  line  is 
a  rectangular  hyperbola  having  its  centre  midway  between  the  fixed  points, 
and  one  asymptote  parallel  to  the  fixed  line. 

A'    AH'     D 

Fig.  76. 

Let  0,  0'  be  the  fixed  points,  L  the  fixed  line,  ABC,  A'B'C  any  two 
positions  of  the  triangle. 

Then  the  angle  ̂ 0^'  =  ̂ --4'=P-£'  =  P0'P'. 

Therefore  the  pencils  0  {A)  and  0'  (B),  being  superposable,  are  homo- 
graphic,  and  the  locus  of  (7  is  a  conic  passing  through  0  and  0'. 

To  find  the  ray  of  the  pencil  0  corresponding  to  the  ray  O'O  in  the  pencil 
0',  let  00'  meet  L  in  G.  Draw  OD  perpendicular  to  L,  and  take  DH=DG. 
Then  OH  is  the  ray  required,  for  the  angle  OHG=0'GH. 

Similarly  by  drawing  O'D'  perpendicular  to  L  we  can  find  O'H',  the  ray 
corresponding  to  00'.  And  OH,  O'H',  which  are  the  tangents  at  0,  0',  are 
parallel,  for  each  makes  with  L  the  angle  which  00'  makes  with  L.  There- 

fore 00'  is  a  diameter,  and  the  mid-point  of  00'  is  the  centre  of  the  conic. 
By  the  geometry  of  the  figure  the  ranges  (A)  and  (B)  are  obviously 

similar,  but  not  superposable,  therefore  one  asymptote  is  parallel  to  L  ;  and 

the  parallel  lines  OD,  O'D'  are  a  pair  of  corresponding  rays,  and  are  therefore 

parallel  to  the  other  asymptote.     Therefore'  the  hyperbola  is  rectangular. 
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3.  The  points  A,  B  are  fixed,  and  a  moving  point  P  lies  on  a  fixed  line 
L  in  the  same  plane  with  AB.  Prove  that  the  locus  of  the  orthocentre  of  the 
triangle  PAB  is  a  hyperbola,  one  of  whose  asymptotes  is  perpendicular  to 
AB,  and  the  other  perpendicular  to  L.  Also  shew  how  to  draw  the  tangents 
at  A  and  B. 

P 

A  B  Q 
Fig.  77. 

Let  P,  P'  be  two  positions  of  the  moving  point,  and  0,  0'  the  orthocentres 
of  the  triangles  PAB,  P'AB. 

Then  the  angle  OAO'  =  PBP',  and  OBO'  =  PAP'. 
Therefore  the  pencils  A[0),  B{P)  are  superposable,  as  are  also  P(0), 

A  (P).  And  the  pencils  A  (P),  B  (P)  are  homographic  by  Art.  45.  Therefore 
A  (0)  and  B{0)  are  also  homographic  by  Art,  44;  and  the  locus  of  0  is  a 
conic  passing  through  A ,  B. 

To  find  the  asymptotes.  When  P  is  at  infinity,  AP  and  BP  are  parallel 
to  L.  Therefore  the  rays  through  A  and  B  perpendicular  to  L  correspond, 
and  being  parallel  give  the  direction  of  an  asymptote.  When  P  is  at  Q  the 
rays  through  A  and  B  perpendicular  io  AB  correspond,  and  give  the  direction 
of  the  other  asymptote. 

To  draw  the  tangents  at  A  and  B.  Draw  Ap  perpendicular  to  AB 
meeting  L  in  p.     Join  Bp,  and  draw  AT  perpendicular  to  Bp. 

Then  AT  is  the  tangent  at  A.     Similarly  we  can  draw  the  tangent  at  B. 

4.  Prove  that  the  tangents  to  a  parabola  meet  two  fixed  tangents  in 
points  forming  two  similar  ranges,  Art.  143.  Also  prove  that  if  a  straight 
line  cuts  the  sides  of  a  triangle  in  the  points  L,  M,  N  such  that  the  ratio  of 
the  segments  is  constant,  it  will  envelop  a  parabola  touching  the  sides  of  the 
triangle. 

Let  any  tangent  cut  the  sides  of  a  given  tangent  triangle  of  a  parabola  in 
the  points  P,  Q,  R,  and  let  it  cut  the  tangent  at  infinity  in  oo  .     Then  by 

PR     QR      .      PP 

Poo  •  goo  '  ̂'^'  QR  ' 

Art.  130  {PQRoD )  is  const. ,  i.e. Then  use  Art.  134. 
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5.  Prove  that  if  the  corner  of  a  rectangular  piece  of  paper  is  folded  down 
so  that  the  sum  of  the  edges  unfolded  is  constant,  the  crease  will  envelop  a 
parabola. 

Let  A  be  the  corner  of  the  rectangle  ABCD,  and  let  the  crease  cut  AB  in 

m  and  AD  in  tw'.  Then  wjB  +  m'D  =  const.  .*.  by  Art.  68  (3)  the  ranges 
(m),  (m')  are  similar.     .'.  &c.,  Arts.  136,  143. 

6.  Given  two  sides  AB,  AC  oi  &  triangle  in  position,  and 
(1)  the  sum  or  difference  of  these  sides  is  constant,  or 

(2)  h .  AB  +  k  .  AC=l,  where  h,  k,  i  are  constant, 
shew  that  the  envelope  of  the  base  is  a  parabola. 

By  Art.  68,  in  each  case  the  ranges  (B)  and  (C)  are  similar.  ,".  &c., 
Arts.  136,  143. 

7.  Given  two  sides  of  a  triangle  in  position  and  its  area,  shew  that  the 
envelope  of  the  base  is  a  hyperbola. 

The  SLYea  =  ̂ AB  .AC  .sin  A.  :.  AB  .AC  is  constant.  .-.  by  Art.  66  (1) 
the  ranges  (B)  and  (C)  are  homographic.     .'.  &c.,  Art.  143. 

8.  Given  the  base  and  the  difference  of  the  base  angles  of  a  triangle,  the 
locus  of  the  vertex  is  a  hyperbola. 

Take  G,  C  two  positions  of  the  vertex,  AB  the  base. 

Then  the  angle  CBA  -  GAB=C'BA  -  CAB. 
:.   CBC'  =  GAC'.      .:   pencil  A  {C)=B  {C). 

9.  Given  in  position  two  sides  of  a  triangle,  if  the  base  subtends  a 
constant  angle  at  a  fixed  point,  shew  that  it  envelops  a  conic  touching  the 
two  sides. 

Let  BC  be  the  base,  D  the  fixed  point.  The  pencils  D  (B),  B(C)  are 

superposable.     .-.  the  ranges  [B),  (C)  are  homographic,  &c. 

10.  A  perpendicular  is  drawn  to  each  of  two  fixed  tangents  to  a  parabola 
at  the  point  where  it  is  cut  by  a  variable  tangent.  Prove  that  their  point  of 
intersection  lies  on  a  fixed  straight  line. 

Let  the  variable  tangent  meet  the  fixed  tangents  in  m,  m',  and  let  the 
perpendiculars  at  m  and  m'  meet  in  P. 

By  Art.  143  the  ranges  [m)  and  (m')  are  similar.     See  Chap.  VI,  Ex.  10. 

11.  Given  the  base  and  area  of  a  triangle,  shew  that  the  locus  of  its 
orthocentre  is  a  conic  passing  through  the  extremities  of  the  base. 

Let  AB  be  the  base.  The  vertex  is  on  a  line  parallel  to  AB.  Let  C,  C 

be  two  positions  of  the  vertex,  P,  P'  the  corresponding  positions  of  the  ortho- 
centre.  Then  PAB  is  the  complement  of  CBA,  and  P'AB  the  complement  of 
CBA.  .:  PAP'=CBC,  .:  the  pencil  A{P)=B  (C).  Similarly  PBP'  =  CAC, 
.-.  B{P)  =  A{C).  And  B{C)  =  A{C)  by  Art.  45,  .-.  B{P)  =  A{P).  .'.  &c., 
Art.  138. 
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12.  The  line  PQ  subtends  a  right  angle  at  each  of  the  fixed  points  A 
and  B,  and  the  point  P  lies  on  a  fixed  straight  line.  Prove  that  the  locus  of 
Q  is  a  hyperbola  passing  through  A  and  B,  and  having  one  of  its  asymptotes 
perpendicular  to  AB,  and  the  other  perpendicular  to  the  fixed  straight  line. 

By  Art.  45  A{P)  =  B  (P).  Also  A{Q)  =  A  (P),  being  superposable,  and  for 
a  similar  reason  B  {Q)  =  B  (P).     /.  A  {Q)  =  B  (Q).      .:  &c.,  Art.  138. 

The  rays  through  A  and  B  perpendicular  to  AB  correspond,  and  are 
parallel,  and  therefore  give  the  direction  of  an  asymptote,  Art.  144. 

13.  AB,  AC,  two  fixed  tangents  to  a  central  conic,  are  cut  by  a  variable 

tangent  at  m,  m',  and  the  segment  mm'  is  divided  in  a  constant  ratio  at  P. 
The  locus  of  P  is  a  hyperbola  having  its  asymptotes  parallel  to  A B,  AC,  and 
having  double  contact  with  the  given  conic. 

Through  P  draw  lines  parallel  to  the  fixed  tangents,  meeting  AB,  AC  in 

fx,  fi'.     Itet  mP  =  \  . mm' .     Then  Afji.=  {l-\)  Am,  AiJ.'  =  \.  Am'. 
Then  the  relation  between  m,  m'  is,  by  Art.  130  (j8) 

a .  Am  .  Am'  +  h .  Am  +  c  .  Am'  +  d  =  0. 

.'.  by  substitution  the  relation  between  /a,  fx'  is 

.Afji..A/M'  +  - — -.Afi  +  ̂.Afi'  +  d  =  0. 

.•.  the  ranges  (fx),  (/*')  are  homographic,  and  if  oo,  oo '  are  points  at 
infinity  on  AB,  AC,  the  pencils  oo'  (/x),  oo  {/j.')  are  homographic,  and  are  not 
in  perspective,  because  the  line  joining  their  vertices  is  not  a  common  ray, 

since  the  relation  between  jx,  fx'  is  of  the  second  order. 
.-.  by  Art.  138  the  locus  of  P  is  a  conic  through  oo  ,  oo ',  i.e.  a  hyperbola. 

Moving  the  pencils,  as  in  Art.  144,  the  common  rays  are  evidently  parallel 
to  the  fixed  tangents.  Also,  for  two  positions  of  the  variable  tangent,  P  is  a 

point  of  contact.      .".  &c. 
When  the  given  conic  is  a  parabola,  the  relation  between  m,  m',  and 

.-.  also  between  fx,  fx'  is  of  the  first  order,  and  the  pencils  oo '  (yu),  oo  (jx')  are 
in  perspective.     Cf.  Chap.  VI,  Ex.  10.     See  also  Chap.  VI,  Ex.  25. 

14.  ABCD  is  a  rectangle  having  the  side  BC  produced  to  E  so  that 
CE  =  BC.  Points  L  and  M  are  taken  in  CD,  DA  respectively  such  that 
CL  :  CD  =  AM:  AD.  Prove  that  the  locus  of  the  intersection  of  EL  and  BM 

is  an  ellipse  with  semi-axes  CD,  CB. 

15.  AB  is  a  fixed  diameter  of  a  circle,  mm'  a  movable  chord  perpen- 
dicular to  it.  Am,  Bm'  meet  in  P.  Shew  that  the  locus  of  P  is  a  rectangular 

hyperbola. 

16.  If  AB  is  a  fixed  chord  of  a  circle,  and  CD  a  chord  of  constant 

length  but  variable  position,  find  the  locus  of  the  intersection  of  the  lines 
AD,  BG. 
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17.  AL,  AL'  are  two  given  lines,  and  B  a  fixed  point.  Any  circle  passing 
through  A  and  B  cuts  the  lines  in  the  points  m,  m'.  Shew  that  the  envelope 
of  mm'  is  a  parabola  touching  AL  and  AL'. 

18.  If  A  and  B  are  two  fixed  points  on  a  conic,  and  a  variable  tangent 

meets  the  tangents  at  ̂ ,  J5  in  m,  m',  prove  that  the  locus  of  the  intersection 
of  Am',  Bm  is  another  conic. 

19.  Through  a  fixed  point  ̂   on  a  conic  two  straight  lines  AI,  AV  are 

drawn,  S  and  &'  are  two  other  fixed  points  and  P  a  variable  point  all  on  the 
conic.  PS,  PS'  meet  AI,  AI'  in  Q,  Q'  respectively.  Shew  that  QQ'  passes 
through  a  fixed  point. 

20.  BB'  is  the  niinor  axis  of  an  ellipse,  and  BP,  BQ  any  two  perpen- 
dicular chords  through  B.  Shew  that  BP,  B'Q  intersect  on  a  fixed  straight 

line. 

21.  AB  is  the  base  of  an  isosceles  triangle  ABC.  On  AC  or  AC 
produced  any  length  AP  is  taken  ;  and  on  BC  or  BG  produced  a  length  BQ 
is  taken  such  that  the  rectangle  contained  by  AP,  BQ  is  equal  to  a  constant. 
Shew  that  the  locus  of  the  intersection  of  AQ  and  BP  is  a  conic. 

22.  Two  sides  AB,  AC  oi  a  triangle  are  given  in  position,  and  the  base 
BC  passes  through  a  fixed  point.  BP  is  perpendicular  to  AB,  and  CP 
perpendicular  to  ̂   C.  Shew  that  the  locus  of  P  is  a  conic.  Use  the  method 
of  Chap.  VI,  Ex.  10. 

23.  ABPC  is  a  parallelogram  having  its  sides  AB,  AC  given  in  position, 
and  the  diagonal  BC  passes  through  a  fixed  point.  Shew  that  the  locus  of  P 
is  a  conic. 

24.  Two  sides  of  a  triangle  are  given  in  position,  and  the  circumcentre 
lies  on  a  fixed  straight  line.     Shew  that  the  base  envelops  a  parabola. 

25.  Two  tangents  to  a  conic  are  fixed,  and  two  others  are  drawn  so  as 
to  form  with  the  first  pair  a  quadrilateral  having  two  opposite  sides  along 
the  fixed  tangents.  Shew  that  the  locus  of  the  intersection  of  the  diagonals 
of  this  quadrilateral  is  a  straight  line. 

26.  If  the  three  sides  QR,  RP,  PQ  of  a  movable  triangle  PQR  pass 
through  the  fixed  points  D,  E,  F  respectively,  and  P  lies  on  a  fixed  conic 
through  E  and  F,  whilst  Q  lies  on  a  fixed  conic  through  F  and  D,  then  B 
lies  on  a  fixed  conic  through  D  and  E. 

27.  TA,  TB  are  fixed  tangents  to  a  conic,  and  are  cut  by  a  variable 

tangent  in  the  points  m,  m'.  Shew  that  the  locus  of  the  circumcentre  of  the 
triangle  Tmm'  is  a  conic. 
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28.  A,  B  are  two  fixed  points  on  a  conic,  and  the  variable  chords  Am, 

Bm'  intersect  on  a  fixed  straight  line.  Shew  that  the  locus  of  the  intersection 
of  Am',  Bm  is  a  conic. 

29.  If  two  triangles  circumscribe  a  conic,  their  six  vertices  will  lie  on 
another  conic. 

30.  If  two  triangles  are  inscribed  in  a  conic,  their  six  sides  will  touch 
another  conic. 

31.  ABG  is  a  given  triangle,  and  PQR  is  a  triangle  of  constant  species 
inscribed  in  it.  Shew  that  the  sides  of  the  latter  triangle  envelop  three 
parabolas  having  the  same  focus. 

32.  If  a  polygon  of  constant  species  moves  in  such  a  manner  that  three 

of  its  vertices  move  along  three  fixed  straight  lines  which  are  not  con- 
current, shew  that  the  sides  envelop  parabolas  all  of  which  have  the  same 

focus. 

33.  The  base  of  a  triangle  touches  a  given  conic,  its  extremities  move 
on  two  fixed  tangents  to  the  conic,  and  the  other  two  sides  of  the  triangle 
pass  through  fixed  points.     Find  the  locus  of  the  vertex. 

Let  AB,  AG  he  the  two  fixed  tangents,  D,  E  the  fixed  points,  PQR  any 
position  of  the  triangle  so  that  P  is  on  AB,  Q  on  AC,  D  on  PR,  E  on  QR. 

Since  PQ  is  a  tangent,  (P)  and  (Q)  are  homographic  ranges.  .-.  D  (P)  and 
E  (Q)  are  homographic  pencils,  as  are  also  D  (R)  and  E  {R).  .:  the  locus  of 
i?  is  a  conic  passing  through  I)  and  E. 
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PASCAL — BRIANCHON — NEWTON — MACLAURIN 

146.  Pascal's  Theorem  (1640).  If  a  hexagon  is  inscribed  in\ 
a  conic  the  three  points  of  intersection  of  the  three  pairs  of  opposite! 

sides  are  collinear*. 

Let  ab'ca'bc'  be  a  hexagon  inscribed  in  a  conic.  The  pairs  of 
opposite  sides  are  obtained  by  omitting  one  vertex  in  turn,  and 

are  (ab',  a'b) ;  (b'c,  be) ;  {ca,  c'a).  Let  their  intersections  be 
respectively  y,  a,  )8.     These  points  shall  be  collinear. 

*  For  the  history  of  this  theorem,  which  was  proved  by  Pappus  for  the 
line-pair,  and  was  stated,  but  without  proof,  to  be  true  for  the  circle  by 
Pascal  at  the  age  of  15,  see  Art.  51.  For  a  proof  by  the  methods  of  ancient 
geometry,  applicable  both  to  the  line-pair  and  conic,  see  Appendix  II. 



146-148]  pascal's  theorem  157 

For  by  Art.  129     a  {hh'c'a')  =  c  (bb'c'a'). 

Therefore  cutting  these  pencils  by  the  transversals  ba'j  bc\ 

the  range  (bySa)  =  (bac'c). 
Therefore  by  Art.  23  the  two  ranges  are  in  perspective, 

and  consequently  ya,  8c',  and  ea  are  concurrent,  i.e.  ya  passes 
through  f3. 

147.  Conversely,  if  a  hexagon  has  the  three  intersections  of  the 
three  pairs  of  opposite  sides  collinear,  it  can  be  inscribed  in  a 
conic. 

For  in  Fig.  78,  taking  the  hexagon  to  be  ab'ca'bc'  as  before, 

the  ranges  (bySa)  and  (bac'e)  have  the  point  b  common,  and  the 

lines  ya,  Sc',  ac  concurrent  in  jS.  Hence  the  ranges  are  in  per- 
spective, and  are  therefore  equicross  by  Art.  21. 

.-.    (6y8a')  -  (6ac'e), 

.'.    a  (bySa)  —  c  (baCi). 

Therefore  by  Art.  138  the  points  a,  b',  c,  a,  b,  d  lie  on  a  conic. 

148.  We  will  give  another  proof  of  this  important  theorem. 

Taking  a  and  a!  as  vertices,  we  have 

the  pencil  a (b' cbc')  =  a' (b' cbc)  by  Art.   129, 

=  a(cb'cb)  by  Arts.  3  and  16. 

Therefore  by  Art.  59  the  cross-centre  of  the  two  pencils 

a{b'cbc')  and  a' (cb'c'b)  is  on  the  line  joining  the  intersection  of 

the  lines  (ab',  a'b')  to  the  intersection  of  {ac,  a'c),  i.e.  it  is  on 
the  line  b'c. 

Similarly  it  is  on  the  line  joining  the  intersection  of  {ab,  a'b) 

to  that  of  {ac,  a'c),  i.e.  it  is  on  the  line  be'. 
Therefore  a,  the  intersection  of  b'c  and  be',  is  the  cross-centre. 
Similarly  it  may  be  shewn  to  be  on  the  line  joining  the  inter- 

section of  {ac',  a'c)  to  that  of  {ab',  a'b),  i.e.  a  is  on  the  line  py. 
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Since  a  is  the  cross-centre  of  the  pencils  a  (6'c6c')  and  a{ch'ch), 

it  follows  from  Art.  58  that  {aa,  a  a)  are  a  pair  of  corresponding 

rays,  as  are  also  {a'a,  aa). 

149.  Brianchon's  Theorem  (1806).  If  a  hexagon  is  cir- 
cumscribed about  a  conic,  the  three  diagonals  joining  the  three 

pairs  of  opposite  vertices  are  concurrent.  (The  correlative  of 

Pascal's  Theorem.) 

Fig.  79. 

The  hexagon  is  obey d' a. 

The  range  {abed)  =  {a'b'c'd')  by  Art.   1 30, 

-  {b'a'd'c')  by  Art.   3. 

Therefore  by  Art.  50  the  cross-axis  passes  through  the  inter- 

sections of  {aa',  bb') ;  {bd' ,  ca') ;  and  {cc,  dd'),  i.e.  the  points 
a,  p,  y  are  collinear. 

J 
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Newton's  Method  of  describing  a  conic  (1687)*. 

150.  Two  angles  aOP,  aO'P,  of  given  magnitudes  a,  /?,  rotate 
about  their  vertices  0,  0'  which  are  fixed.  If  the  intersection  a 

of  two  of  their  sides  Oa,  O'a  moves  along  a  fixed  straight  line  L, 

the  intersection  P  of  the  other  two  sides  OP,  O'P  will  describe 
a  conic. 

o  L 

Fig.  80. 

The  pencils  0{a)  and  0  {P)  are  superposable,  and  therefore 

homographic.  Similarly  0'  {a)  and  0'  (P)  are  homographic.  The 

pencils  0(a)  and  0' {a),  being  in  perspective,  are,  by  Art.  45, 
homographic.  Therefore  by  Art.  44  0  (P)  and  0'  (P)  are  homo- 
graphic,  and  consequently  by  Art.  138  the  locus  of  P  is  a  conic 

passing  through  0  and  0'.  Of  course,  if  the  point  a,  instead  of 
describing  the  straight  line  L,  moves  along  a  fixed  conic  passing 

through  0  and  0',  the  pencils  0(a)  and  0' (a)  will  be  homo- 
graphic  by  Art.  129,  and  the  locus  of  P  will  still  be  a  conic 

through  0,  O'f. 

151.  Maclaurin's^  Theorem  (1722).  If  the  sides  of  a 

triangle  aa'm  pass  through  three  fixed  points  P,  Q,  H,  whilst 
two  of  tJie  vertices  a  and  a  describe  straight  lines  OL,  0L\  the 

locus  of  the  third  vertex  m  is  a  conic. 

*  Principia,  Bk  i,  Sect,  v,  Lemma  21. 
t  Chasles,  Apergu  Historique,  Note  xv,  Sect.  9  (1837). 
X  Professor  of  Mathematics  at  Aberdeen  1717,  and  at  Edinburgh  1725. 

"  The  one  mathematician  of  the  first  rank  trained  in  Great  Britain  in  the 

18th  century,"  Dictionary  of  National  Biography. 
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P 

Fig.  81. 

The  ranges  (a)  and  (a)  are  in  perspective,  centre  F,  and  by- 
Art.  4:1  (1)  are  homographic.  Therefore  the  pencils  Q  (a)  and 

E  (a'),  i.e.  Q  (m)  and  R  (m),  are  homographic.  Hence  by  Art.  138 
the  locus  of  m  is  a  conic  through  Q  and  E. 

If  PQ  meets  OL'  in  h\  and  PE  meets  OL  in  c,  the  conic  will 

evidently  pass  through  the  points  0,  6',  c. 

152.  If  the  points  P,  Q,  E  are  in  a  straight  line,  let  it  meet 

OL,  OL'  in  6,  h'.  Then  this  line  is  a  common  ray  of  the  two 
pencils,  which  are  consequently  in  perspective,  and  the  locus  of  m 
is  a  straight  line.     See  also  Chap.  lY,  Ex.  3. 

153.  Maclaurin's  Theorem  can  also  be  derived  from  Pascal's, 

for  in  Fig.  78  if  we  suppose  a,  b,  c,  a',  c  to  be  five  fixed  points,  and 

b'  movable,  and  consider  the  triangle  yb'a,  its  sides  pass  through 
three  fixed  points,  viz.  a,  fB,  c,  and  two  of  its  vertices  move  along 

the  fixed  lines  ba',  be'. 
We  might  also  derive  Pascal  from  Maclaurin,  for  in  Fig.  81 

since  by  Art.  151  the  locus  of  m  is  a  conic  through  0,  Q,  E, 

b',  c,  m,  if  we  consider  the  inscribed  hexagon  Qb'OcEm,  the  inter- 
sections of  pairs  of  opposite  sides  obtained  by  omitting  one  vertex 

in  turn  are  (Qb',  cE),  i.e.  P;  (b'O,  Em),  i.e.  a' ;  (Oc,  7nQ),  i.e.  a; 
and  these  three  points  are  in  a  straight  line. 
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154.  If  the  three  vertices  of  a  tHangle  move  on  fixed  straight 

lines,  and  two  of  its  sides  pass  through  fixed  points,  the  third  side 

will  envelop  a  conic.     (Correlative  of  Maclaurin.) 

If  ama!  is  any  position  of  the  moving  triangle,  the  ranges  (a) 

and  {a)  are  obviously  homographic  with  (m),  and  therefore  by 
Art.  39  with  each  .other.  Consequently,  by  Art.  139,  aa  envelops 
a  conic. 

By  giving  m  different  positions  we  see  that  the  conic  touches 
the  five  lines  PS,  QR,  BS,  OP,  OQ,  and  it  may  be  shewn  that  a 

similar  relation  exists  between  this  proposition  and  Brianchon's 
Theorem  as  was  shewn  to  hold  between  Maclaurin  and  Pascal, 
viz.  that  either  of  the  two  can  be  derived  from  the  other. 

155.  If  two  ranges  of  points  on  a  conic,  abc  ...,  ab'c  ...,  are 

Common  such  that  the  two  conic-pencils  formed  by  joining 
points  of  them  to  any  other  point  on  the  curve  are  homo- 

conic-ranges,  graphic,  the  ranges  (i.e.  the  conic-pencils)  abc... 
and  ab'c  ...  are  said  to  be  homographic,  and  the  points  where 
the  common  rays  of  the  pencils  cut  the  curve  are  called  the 

co7nmo7i  points  of  the  ranges. 

The  student  should  carefully  notice'^he  difference  between 
the  homography  of  ranges  on  a  conic,  and  "that  of  ranges  on  a 
M.  H 
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straight  line  or  lines.  In  the  latter  case  the  ranges  are  homo- 

graphic  when  their  cross-ratios  are  equal,  but  we  cannot  speak 
of  the  cross-ratios  of  ranges  of  points  on  a  conic.  In  the  latter 

case  we  always  imply  the  cross-ratios  of  the  conic-pencils  formed 
by  joining  the  points  of  the  ranges  to  some  point  or  points  on 
the  conic. 

156.  Given  a  range  of  points  (abc  ...)  on  a  conic,  to  construct 
a  range  on  the  conic  homographic  to  it. 

As  in  Art.  38  this  can  be  done  in  an  infinite  number  of 

ways ;  for  if  we  take  ahc  for  the  characteristic  of  the  first  range, 

we  can  take  any  three  points  a',  6',  c'  on  the  conic  as  the  charac- 
teristic of  the  second  range. 

If  m  is  any  variable  point  on  the  first  range  we  can  find  its 

corresponding  point  as  follows  : 

As  in  Art.  146  construct  the  Pascal  line  ef  of  the  hexagon 

ah'ca'hc'.  This  will  pass  through  B  and  C,  the  intersections  of 

{ab',  ah)  and  {ac',  a'c).  Join  a'm  meeting  ef  in  M.  Then  aM 
will  meet  the  conic  in  the  required  point  m'. 

For  the  pencils  a  {ahem)  and  a  {ah' cm),  i.e.  a!  {ABCM)  and 
a  {ABCM),  are  homographic  by  Art.  45.  Therefore,  by  Art.  129, 

if  V  is  any  point  on  the  conic,  V{abcm)  =  V{a'h'cm'),  i.e.  the  ranges 

{ahem,)  and  {a'h'c'in)  are  homographic. 
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The    Pascal    line    may  be  called  the  cross-axis  of   the  two 

157.  If  we  suppose  the  point  m  to  coincide  with  e,  the  above 
construction  shews  that  m!  will  also  coincide  with  e,  so  that  e  is 

one  of  the  common  points  of  the  ranges.  Similarly y  is  the  other 

common  point. 

158.  If  the  Pascal  line  ef  is  cut  by  the  pencils  V  {ahem)  and 

V{a'h'c'm')  in  the  ranges  (aySy/x,)  and  (a'yS'y'yu,'),  these  ranges  are 
obviously  homographic,  and  e,  f  are  their  common  points. 

159.  As  in  Arts.  75,  80,  the  cross- ratio  of  {aaef)  is  constant, 

where  a,  a  is  any  pair  of  corresponding  points  on  ef,  and  there- 

fore the  cross-ratio  of  V {aaef)  is  constant,  where  a,  a!  is  any 
pair  of  corresponding  points  and  V  any  point  on  the  curve. 

And  conversely,  if  e,  f  are  two  fixed  points  on  the  co7iic,  and 

a,  a'  two  variable  points  on  the  curve  such  that  the  cross-ratio  {aa'ef) 

is   constant,  a  and  a'  will  trace  out   two  homographic  divisions 
in  which  e,f  are  the  common  points,     Cf.  Arts.  192,  201  Cor. 

a    b 

M'  F   MC     B  A   E 

Fig.  84. 

11—2 
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160.  On  a  given  straight  line  to  construct  a  range  homo- 

graphic  to  a  given  co-axial  range. 

Let  ABC  be  the  characteristic  of  the  given  range.  Take  any 

three  points  A ',  B',  C  on  the  given  line  to  be  the  characteristic  of 
the  required  range.  Describe  any  conic,  or  circle,  and  on  it  take 

any  point  V. 
Join  V  to  the  different  points  of  the  characteristics,  and 

produce  the  joining  lines  to  meet  the  conic  in  a6c,  a'h'c'.  Con- 

struct the  Pascal  line  ef  of  the  hexagon  ah'ca'hc.  Let  M  be  any 
point  on  the  given  range.  It  is  required  to  find  M\  the  point  on 

the  given  line  corresponding  to  M. 

Join  MV  meeting  the  conic  in  m.  Join  a'm  meeting  the 
Pascal  line  ef  in  /x,  and  let  a/x  meet  the  conic  in  m.  Then  m  V 

will  meet  the  given  line  in  the  required  point  M'. 

For  by  Art.  156  the  conic-pencils  V  {ahem)  and  V {a'h'c  m') 
are  homographic,  and  therefore  so  also  are  the  ranges  {ABCM) 

and  {A'B'C'M')  in  which  these  pencils  are  cut  by  the  given  line, 
the  common  points  being  E,  F  where  the  given  line  cuts  the  rays 

Fe,  Vf.     See  also  Arts.  82—86. 



CHAPTER   XIII 

POLE  AND  POLAR.  CONJUGATE  POINTS  AND  LINES.  CIRCULAR 

POINTS  AT  INFINITY.  DESARGUES'  THEOREM  AND  ITS 
CORRELATIVE.  PROPOSITIONS  RESPECTING  TRIANGLES, 

QUADRANGLES  AND  QUADRILATERALS  INSCRIBED  I>^ 

AND  CIRCUMSCRIBED  ABOUT  A  CONIC.  CONTRA-POLAR 

CONICS 

161.  If  p  is  a  fixed  point  in  the  plane  of  a  conic,  and  any 
chord  is  drawn  through  it,  the  locus  of  the  fourth  harmonic  oj 

p  for  the  points  in  which  the  chord  is  cut  hy  the  conic  is  a  straight 

line*. 

Let  paa'  and  pbh'  be  any  two  chords  through  p.  Let  aj),  a'p' 

the  tangents  at  a,  a  meet  in  P.  Let  ah,  a'h'  meet  in  m,  and  ah', 

ah  in  n,  and  let  mn  meet  aa  in  a  and  hh'  in  /?. 

Then  from  the  quadrilateral  aa'h'h  the  ranges  {paaa'),  (ph(Bh') 

are  in  perspective,  centre  m,  and  (pa'aa),  (ph^b')  are  in  perspective, 
centre  n,  therefore  as  in  Art.  118,  a  is  the  fourth  harmonic  of  p 

for  a,  a'  and  similarly  for  ̂ .  We  will  shew  that  the  tangents  at 
a,  a'  meet  on  mn  f. 

The  pencil  a{ahh'a')  =  a' (ahh'a)  by  Art.    129, 

=  a'  (a'b'ha)  by  Arts.  3  and  1 6, 

and  as  the  pencils  have  a  common   ray  aa',  they  are   in  per- 

*  Apollonius,  Bk  in,  Prop.  37. 
+  Lahire,  Bk  ii,  Props.  24,  27. 
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spective,  by  Art.  45,  and  the  intersections  of  (ah,  a'h'\  {ah',  a'b) 

and  (aa,  a'a'\  i.e.  of  the  tangents  ap,  a'p,  are  collinear.  Hence 
P  lies  on  mn. 

Therefore  for  every  chord  hb'  through  p,  the  fourth  harmonic 
)8  of  p  for  the  points,  real  or  imaginary,  in  which  the  chord  cuts 
the  conic  lies  on  the  line  Pa. 

We  have  proved  incidentally  that  the  line  which  is  the  locus 

of  the  fourth  harmonics  passes  through 

(1)  The  cross-intersections  such  as  {ah',  ah). 

(2)  The  intersections  of  tangents  at  the  extremities  of  the 
chords  through  p. 

(3)  The  points  of  contact  of  the  tangents  from  p.  These  of 

course  are  imaginary  if  p  is  an  internal  point. 

I 

Fig.  85. 
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Pole  and  Def.     The  point  p  and  the  locus  of  its  fourth 

polar.  harmonic  are  called  pole  and  polar. 
It  is  obvious  from  the  definition  that  every  point  has  but  one 

polar,  and  consequently  every  line  has  but  one  pole. 

162.  If  from  any  point  P  on  a  fixed  straight  line  L  we  draw 

two  tangents  Pa^  Pa'  to  a  conic,  and  a  straight  line  L'  the  fourth 

harmonic  of  L  for  Pa  and  Pa,  the  line  L'  will  always  pass  through 
a  fixed  point,  viz.  the  pole  of  L.     (The  correlative  of  Art.  161*.) 

m 

Fig.  86. 

Let  the  chord  of  contact  aa'  meet  Z  in  a  and  L'  \n  p.  Then 

since  P (aapa)  is  a  harmonic  pencil,  (aapa')  is  a  harmonic  range. 
Therefore  the  polar  of  a  passes  through  p.  And  the  polar  of  P, 

i.e.  aa,  passes  through  p.  Consequently  p  is  the  pole  of  L,  and  is 
therefore  a  fixed  point. 

*  Lahire,  Bk  ii,  Props.  23,  26. 
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163.  The  intersection  of  two  chords  is  the  pole  of  the  line 

joining  their  poles. 

In  Fig.  85,  let  aa\  hh'  be  the  chords.  The  pole  P  of  the 

chord  aaJ  lies  on  mn,  as  does  also  the  pole  of  hh' ;  and  the  pole  of 
mn  is  p,  the  intersection  of  the  chords. 

Note,  mn  obviously  divides  both  the  chords  aa',  hh'  har- 
monically for  p. 

164.  Any  number  of  rays  through  a  fixed  point  intersecting 

a  conic  determine  on  it  two  sets  of  divisions  {i.e.  a  conic-pencil)  in 
involution,  whose  double  points  are  the  points  of  contact  of  the 

tangents  from  the  fixed  point. 

In  Fig.  85  if  the  polar  of  the  fixed  point  p  meets  the  conic  in 

e,  f  pe,  pf  are  the  tangents  from  p,  the  polar  of  p  is  the  axis  of 

perspective  of  the  pencils  a' (ahc  ...)  and  a(ah'c  ...),  and  there- 

fore the  divisions  or  conic-pencils  [ahc  ...)  and  {a'h'c  ...)  are 
homographic,  and  have  e,  f  for  their  common  points.  They  are 

also  in  involution,  for  if  pVV  is  any  chord  through  p,  Fa,  FV 

intersect  on  efhy  Art.  161,  as  do  also  Va,  V'a.  Therefore  ef  is 

the  axis  of  perspective  of  the  pencils  F  (ahca')  and  V  {a'h'c' a). 
Therefore  by  Art.  24 

V{ahca')  =:  V  {a'h'c  a) 

=  V {a'h'c  a)  by  Art.   129. 

Therefore  any  transversal  is  cut  by  these  homographic  pencils 

in  two  ranges  which  by  Art.  Ill  are  in  involution,  and  conse- 

quently, the  pencils  V {ahc  ...)  and  V {a'h'c' ...)  are  in  involution, 

i.e.  the  divisions  {ahc...)  and  {a'h'c',..)  are  in  involution,  e,  f 
being  the  double  points. 

Conversely  if  we  have  on  a  conic  two  sets  of  divisions  forming 

a  conic-pencil  in  involution,  tJie  lines  joining  corresponding  points 
pass  through  a  fixed  point,  and  the  polar  of  this  point  is  the  Pascal 

line  of  the  system. 
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Therefore,  to  construct  a  conic-pencil  in  involution,  given  two 

pairs  of  conjugate  elements  {aa\  hh'),  in  Fig.  85  produce  aa\  hh' 
to  meet  in  p.  Then  any  chord  through  p  will  give  a  pair  of 

conjugate  elements,  and  the  double  points  of  the  involution  are 

the  points  where  the  polar  of  p  cuts  the  conic. 

Conjugate  points  and  lines. 

165.  Def.  Two  points  are  said  to  be  conjugate  for  a  conic 

Conjugate  when  one  lies  on  the  polar  of  the  other. 

PO"its.  If  P  is  a  fixed  point,  the  locus  of  its  conjugate 
^  is  a  straight  line,  viz.  the  polar  of  P. 

Two  conjugate  points  cannot  both  lie  within  the  conic,  for 

the  polar  of  each  would  then  be  outside  the  curve  and  could  not 

pass  through  a  point  lying  within  it. 

If  P,  Q  are  two  external  conjugate  points,  Q  lies  on  the 

produced  part  of  the  chord  of  contact  of  tangents  from  P,  and 
therefore  PQ  cannot  cut  the  curve. 

Two  lines  are  said  to  be  conjugate  for  a  conic  when  one  passes 

Conjugate  through  the  pole  of  the  other. 

lilies.  Any  pair  of  conjugate  lines  through   a  fixed 
point  form  with  the  pair  of  tangents  from  the  point  a  harmonic 

pencil. 
Of  two  conjugate  lines,  always  one,  sometimes  both,  meet  the 

curve. 

A  triangle  is  said  to  be  self-conjugate  for  a  conic  when  each 

Self-conju-  vertex  is  the  pole  of  the  opposite  side, 
gate  triangle.  It  follows  from  the  above  that  a  self-conjugate 

triangle  has  one,  and  only  one  vertex  within  the  curve,  and  the 

side  opposite  to  it  is  entirely  without  the  curve. 

166.  It  will  be  noticed  that  we  have  made  frequent  use  of 

the  word  conjugate,  viz.  in  the  case  of  the  two  pairs  of  points  in 

a  harmonic  range,  in  the  case  of  two  corresponding  points  in  an 
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involution  range,  and  again  in  the  theory  of  pole  and  polar. 
A  little  consideration  will  shew  the  student  that  we  are  justified 

in  doing  so,  and  that  the  expression  two  conjugate  points  for  a 

conic  may  be  taken  to  imply  that  they  possess  the  following 

properties : 

(a)  The  two  points  are  such  that  each  lies  on  the  polar  of 
the  other. 

(/3)  The  two  points  are  harmonic  conjugates  for  two  fixed 

points  on  the  line  joining  them,  viz.  the  points  (real  or  imaginary) 
where  the  line  cuts  the  conic,  and 

(y)  The  two  points  are  corresponding  points  in  two  homo- 

graphic  co-axial  ranges  which  together  form  a  system  in  involution, 

the  double  points  being  the  real  or  imaginary  points  in  which  the 

line  joining  the  two  conjugate  points  meets  the  curve. 

Similarly  the  expression  two  conjugate  lines  for  a  conic  im- 

plies : 

(a)  The  two  lines  are  such  that  each  passes  through  the  pole 
of  the  other.  Hence  a  pair  of  conjugate  diameters  of  a  conic  are 

conjugate  lines,  for  each  passes  through  the  pole  (at  infinity)  of 

the  other.  Also,  any  pencil  of  diameters  is  homographic  to  the 

pencil  formed  by  their  conjugates. 

(^')  The  two  lines  are  harmonic  conjugates  for  two  fixed 
lines  through  their  point  of  intersection,  viz.  the  tangents  (real 

or  imaginary)  from  it  to  the  conic. 

{y)  The  two  straight  lines  are  corresponding  rays  in  two 
concentric  homographic  pencils  which  together  form  a  system  in 

involution,  the  double  rays  being  the  tangents  (real  or  imaginary) 
from  the  common  centre  of  the  pencils  to  the  conic. 

From  the  preceding  articles  it  follows  that : 

(A)  The  pole  is  the  conjugate  of  every  point  on  its  polar, 
and  the  polar  is  the  conjugate  of  every  line  through  the  pole. 

(B)  One  point,  and  one  only  (which  may  be  at  infinity),  can 

always  be  found  conjugate  to  each  of  two  given  points,  viz.  the 
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intersection  of  their  polars;  and  one  line,  and  one  only  (which 

may  be  at  infinity),  can  always  be  found  conjugate  to  each  of  two 

given  lines,  viz.  the  line  joining  their  poles. 

(C)  The  lines  joining  two  conjugate  points  to  the  pole  of  the 

line  drawn  through  them  are  the  polars  of  the  conjugate  points, 

and  are  themselves  conjugate  lines ;  and  the  points  where  two 

conjugate  lines  intersect  the  polar  of  their  intersection  are  the 

poles  of  the  conjugate  lines,  and  are  themselves  conjugate  points, 

i.e.  in  each  case  the  assemblage  of  lines  and  points  form  a  self- 
conjugate  triangle. 

167.  From  Art.  166  (y)  we  obtain  a  very  important  property. 

In  Fig.  85  since  the  ranges  of  points  (P),  (a)  form  a  system  in 

involution,  they  are  homographic  by  Art.  96,  and  consequently  so 
are  the  range  (P)  and  the  pencil  p  (a).     Hence 

Given  any  number  of  'poles  on  a  straight  line,  tJie  range  which 
they  form  is  hom,ographic  with  the  pencil  formed  hy  their  polars  for 
a  conic. 

168.  If  we  have  given  a  pair  of  lines  Z,  L'  which  are  not 
conjugate,  and  if  any  point  P  is  taken  on  Z,  it  has  one  and  only 

one  conjugate  point  P'  on  L',  viz.  the  point  where  the  polar  of  P 

meets  L' ;  and  if  the  points  P,  P'  move  along  L  and  L\  they  will 
form  homographic  ranges  by  Arts.  167  and  42. 

If  we  have  given  a  pair  of  points  P,  P'  which  are  not  con- 
jugate, and  if  any  line  L  is  drawn  through  P,  it  has  one,  and 

only  one,  conjugate  line  L'  passing  through  P',  viz.  the  line 

joining  P'  to  the  pole  of  L ;  and  if  the  lines  Z,  L'  rotate  about 
P  and  P\  they  will  form  homographic  pencils,  by  Arts.  167 
and  42. 

169.  We  will  now  consider  the  two  cases  in  which  the  line 

joining  two  conjugate  points  meets  the  conic  in  two  (1)  real, 

(2)  imaginary  points. 
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Fig.  87. 

(1)  Suppose  we  have  a  conic  intersected  by  a  line  L  in  the 

real  points  e,  f,  and  let  0  be  the  mid-point  of  ef.  Then  if  P  is 
any  point  on  the  line,  and  a  another  point  on  it  such  that  ( Peaf) 

is  a  harmonic  range,  P  and  a  are  connected  by  the  property  that 
each  lies  on  the  polar  of  the  other,  and 

0P.0a=0e^=0f\     Art.  32. 

(2)  If  the  line  L  does  not  meet  the  conic  in  real  points,  find 

C  the  centre  of  the  conic,  draw  any  chord  pq  parallel  to  L,  and 

bisect  pq  by  a  diameter,  meeting  L  in  0.  If  P  is  any  point  on  Z, 

let  the  chord  of  contact  of  the  two  tangents  from  P  meet  L  in  a. 

Then  P  and  a  are  conjugate  points  for  the  conic,  and  if  E,  F  are 

the  imaginary  points  in  which  L  meets  the  conic, 

OE-^=OF'=^OP.Oa=OQ.O^^.... 

In  each  case  P  and  a  are  conjugate  points  of  an  involution 

range,  the  first  system  being  a  non-overlapping  one,  and  the 
second  overlapping.  In  both  the  centre  0  is  real,  and  the  value 

of  the  product  OP .  Oa  is  constant  and  real,  being  positive  in  the 

first  and  negative  in  the  second. 
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170. 

conic. 

Fig.  88. 

To  construct  a  triangle  self-conjugate  (Art.  165)  for  a 

Let  0  be  a  point  external  to  a  conic.  Its  polar  PQ  meets 

the  conic  in  two  real  points  F,  Q,  and  the  other  points  on  PQ 
are  some  of  them  internal  and  some  of  them  external  to  the 

conic.  Let  p  be  any  external  point  on  PQ.  The  polar  of  p 

passes  through  0.  Let  it  meet  PQ  in  p.  Then  Opp  is  a  self- 
conjugate  triangle,  having  each  pair  of  its  vertices  conjugate 

points,  and  each  pair  of  its  sides  conjugate  lines. 

171.  In  Fig.  88  if  PQ,  P'Q'  are  a  pair  of  conjugate  li7ies 

which  intersect  within  the  conic,  the  conic-pencil  [QPPQ')  is 
harmonic. 

Let  the  chords  PQ,  PQ'  intersect  in  p,  and  let  the  tangents  at 
P,  Q  meet  in  0. 
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Then  {OP'pQ')  is  a  harmonic  range. 

Therefore  Q  {OP'pQ')  is  a  harmonic  pencil,  and  {QP'PQ')  is  a 
harmonic  conic-pencil. 

172.  If  0,  p  are  a  pair  of  conjugate  points,  OP,  OQ,  p'P,  p'Q' 

the  tangents  from  them,  (QP'PQ')  is  a  harm,onic  conic-pencil,  and 

conversely  if  {QP'PQ')  is  a  harmonic  conic-pencil,  then  PQ,  P'Q' 
are  conjugate  lines,  and  their  poles  0,  p  are  conjugate  points. 

This  may  be  stated  as  follows  : 

If  two  points  are  conjugate,  their  polars  are  conjugate  lines ; 

and  if  two  lines  are  conjugate,  their  poles  are  conjugate  points. 

173.  If  PQ,  P'Q'  are  a  pair  of  conjugate  chords,  the  tangents 
a,t  their  extremities  cut  any  variable  tangent  in  a  harmonic  range 

hy  Arts.  U\,  111. 

174.  Given  a  fixed  chord  PQ,  whose  pole  is  0,  and  a  variable 

point  r  on  the  conic,  rP,  rQ  will  meet  any  line  OP'Q'  through  0  in 
two  conjugate  points. 

For  by  Art.  166  PQ,  P'Q'  are  conjugate  lines,  and  by  Art.  172 

the  conic-pencil  r  {QP'PQ')  is  harmonic. 
Therefore  the  range  {X'P'XQ')  is  harmonic,  and  consequently 

X,  X'  are  conjugate  points. 

Conversely,  if  X,  X'  are  any  pair  of  conjugate  points  on  a 

line  through  0,  the  lines  PX,  QX'  intersect  on  the  conic.  In 
other  words : 

If  X,  X'  are  a  pair  of  conjugate  points,  P' ,  Q'  the  points 
where  the  line  joining  them,  cuts  the  conic,  and  r  any  point  on  the 

curve,  then  if  fX,  rX'  meet  the  conic  in  P,  Q,  the  chords  PQ,  P'Q' 
are  conjugate. 

175.  PQ,  P'Q'  are  a  pair  of  conjugate  chords  meeting  in  p, 

and  OP,  OQ,  p'P',  p'Q'  the  tangents  at  their  extremities  are  cut  by 

a  variable  tangent  in  T,  T',  t,  t'.  Then  (1)  Ot,  Of,  (2)  p'T,  p'T', 

(3)  pT,  pT'  are  pairs  of  conjugate  lines. 

J 
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(1)  By  Art.  173  (^TtT't')  is  a  harmonic  range. 

Therefore  0{TtT't!)  is  a  harmonic  pencil,  and  consequently 
Ot^   Ot'  are  conjugate  lines. 

(2)  Since  p  (TtT't')  is  a  harmonic  pencil,  p'l\  p'T'  are  con- 
jugate. 

(3)  Let  rP,  rQ  meet  Op'  in  Z,  Y'. 
Then  Op  is  the  polar  of  p  (Art.  163),  and  rP  is  the  polar  of 

T,  and  therefore  Y  is  the  pole  of  pT. 

Similarly,  since  rQ  is  the  polar  of  T\  Y'  is  the  pole  of  p7". 

And  since  by  Art.  174  7  and  Y'  are  conjugate  points,  the  polar 
of  each  passes  through  the  other,  i.e.  pT  passes  through  Y'  which 

is  the  pole  of  pT',  and  pT'  passes  through  F,  which  is  the  pole 
of  p2\     Therefore  pT,  pT'  are  conjugate.     Hence 

The  pairs  of  lines  joining  1\  T'  to  any  point  on  PQ,  external 
or  internal,  are  conjugate. 

176.  Ot,  Ot'  are  a  pair  of  conjugate  lines,  and  OP,  OQ  the 
tangents  from  0.  A  variable  tangent  at  r  meets  these  lines  in  t,  t', 

T,  T',  and  tP',  t'Q'  the  second  tangents  from  t,  t'  intersect  in  p. 
Then  p  lies  on  the  polar  of  0. 

For  -l  =  0{PtQt') 

=  {TtT't') 
=  pencil  of  polars  r  (PP'QQ'). 

Therefore  the  conic-pencil  (PP'QQ')  is  harmonic,  and  the  lines 

PQ,  P'Q'  are  conjugate,  i.e.  p,  the  pole  of  P'Q',  lies  on  PQ  the 
polar  of  0. 

177.  The  pairs  of  tangents  to  a  conic  from  points  on  a  given 

straight  line  determine  an  involution  on  any  tangent  to  the  conic. 

In  Fig.  88  let  Op  be  the  given  line,  p  its  pole,  r  the  point  of 

contact  of  a  variable  tangent.  Then  if  the  tangents  from  any 

points  Oi,  Og,  O3 ...  on  the  given  line  meet  the  variable  tangent 

at  T„  T;-  T„  T;;  T„  T;,  ...,  {pT„  pT,'),  {pT„  pT,')  ...  are  pairs 
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of  conjugate  lines  by  Art.  175.     Therefore  p(T^T^,  T^T;,  ...)  is 

an  involution  pencil,  and  {T/f^,  T^T^,  ...)  an  involution  range. 
Otherwise,  the  chords  of  contact  all  pass  through  a  fixed 

point,  viz.  the  pole  of  the  given  line,  therefore  by  Art.  164  they 
determine  an  involution  range  on  the  conic,  &c. 

178.  If  two  tangents  are  drawn  to  a  conic,  any  variable 

tangent  is  divided  harmonically  by  the  two  tangents,  their  chord  of 

contact,  and  the  curve. 

In  Fig.  88  let  OF,  OQ  be  the  given  tangents,  and  let  a  variable 

tangent  meet  them  in  T,  T',  their  chord  of  contact  in  R,  and 
the  curve  at  r.  Let  Or  meet  PQ  in  S.  Then  because  the  polar 

of  0  passes  through  R,  the  polar  of  R  passes  through  0.  But 

the  polar  of  R  also  passes  through  r.  Therefore  the  polar  of  A^ 
is  Or. 

Therefore  -  1  =  the  range  (RPSQ) 

=  the  pencil  0  (RPSQ) 

=  the  range  {RTrT'). 
Since  (RPSQ)  is  harmonic,  it  follows  that 

Any  chord  of  a  conic  is  cut  harmo7iically  by  any  tangent  and 

the  line  joining  its  point  of  contact  to  the  pole  of  the  chord. 

Circular  points  at  infinity. 

179.  The  circular  points  have  been  defined  in  connection 

with  orthogonal  pencils  in  Art.  113.  We  will  now  shew  how 

they  are  connected  with  the  circle  and  the  conic. 

By  Art.  114  if  a  segment  aa  subtends  a  right  angle  at  a 

point  V,  the  pencil  V (aa'ii')  is  harmonic.  Hence,  if  V,  V  are 

any  two  points  on  the  circle  whose  diameter  is  aa', 

V {aa'ii')  =  V  {aa'ii'). 

Therefore  by  Art.  129  the  six  points  a,  a',  i,  i',  V,  V  lie  on  a 
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conic.  And  since  this  is  true  for  all  positions  of  F',  the  conic 
must  be  the  circle  on  aa!  as  diameter.     Hence 

Every  circle  passes  through  the  points  i,  i'. 
This  may  also  be  shewn  as  follows.  By  Art.  166  (y)  for  any 

conic  a  pencil  consisting  of  pairs  of  conjugate  lines  through  any 

point  forms  an  involution  system  whose  double  rays  are  the 

tangents  through  the  point,  their  points  of  contact  being  on  the 

polar  of  the  point.  Now  let  the  conic  be  a  circle,  and  let  the 

point  be  its  centre  C.  Then  the  pencil  is  orthogonal,  the  double 

rays  are  the  lines  Ci,  Ci'  which  are  consequently  the  asymptotes 

to  the  circle,  the  points  of  contact  being  %  i'  since  the  line  at 
infinity  is  the  polar  of  C,  and  as  before  we  infer  that  all  circles 

pass  through  these  two  points. 

If  the  circle  is  of  indefinitely  small  radius,  the  above 

property  leads  us  to  infer  that  it  coincides  with  its  asymptotes 

Ci,  Ci'. 

180.  To  obtain  the  converse,  viz.  that  any  conic  through  i,  i 

is  a  circle,  draw  the  tangents  at  i,  ̂'.  Their  intersection,  having 
for  its  polar  the  line  at  infinity,  is  the  centre,  and  the  involution 

of  conjugate  diameters,  having  Ci,  Ci'  for  double  rays,  is  ortho- 
gonal, i.e.  the  conic  is  a  circle. 

181.  If  the  angle  aVa'  is  not  a  right  angle,  describe  any 

circle  passing  through  V,  and  cutting  Va,  Va'  in  a,  a'.  Then 

since  the  circle  passes  through  i,  i',  the  pencil  V  (aa'ii')  is  constant 
for  all  points  V  on  it.  Also,  if  we  suppose  V  to  be  fixed,  and 

the  chord  aa'  to  vary  in  position  whilst  retaining  its  length,  the 

condition  that  V  {aa'ii')  is  constant  is  equivalent  to  the  statement 
that  aVa'  is  a  constant  angle. 

182.  If  the  tangent  at  any  point  P  of  a  conic  meets  the 

directrix  corresponding  to  the  focus  S  in  the  point  Z,  we  know 

that  the  angle  PSZ  is  a  right  angle,  and  SF,  SZ  are  a  pair  of 

conjugate  lines  by  Art.  166  (a').    Hence  any  pair  of  perpendicular 
M.  12 
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chords  through  a  focus  are  conjugate  lines,  and  a  pencil  formed 

of  pairs  of  such  chords,  being  orthogonal,  is  in  involution,  the 

double  rays  being  by  Art.  113  the  lines  joining  S  to  i  and  i\  and 

by  Art.  166  (y')  these  are  the  imaginary  tangents  from  aS'  to  the 
conic,  the  points  of  contact  lying  on  the  polar  of  aS^,  i.e.  the 

directrix.  This  is  sometimes  expressed  by  saying  "  The  focus 
is  a  point  circle  having  double  contact  with  the  conic  along  the 

directrix." 
The  converse  of  the  above  property  is  sometimes  given  as  a 

definition,  viz.  Any  point  in  the  plane  of  a  conic 

from  which  there  can  be  drawn  more  than  one  pair 

of  conjugate  lines  at  right  angles  to  one  another  is  a  focus. 

Since  the  tangents  from  i,  i'  intersect  in  a  focus,  there  are  in 
general  four  foci,  two  being  real,  and  two  imaginary. 

In  the  case  of  a  parabola  the  circum-circle  of  a  tangent- 

triangle  passes  through  the  focus,  and  since  Si,  Si'  are  tangents, 
the  line  joining  i,  i\  i.e.  the  line  at  infinity,  is  a  tangent. 

183.  If  Ca,  Cal  are  the  asymptotes  of  a  rectangular  hyper- 

bola meeting  the  line  at  infinity  in  a,  a',  the  pencil  C (aaii')  is 

harmonic  by  Art.  114,  and  therefore  by  Art.  166  {/3)  i,  i'  are 
conjugate  points  for  the  conic. 

Conversely,  any  conic  which  has  2,  %  for  conjugate  points  is  a 

rectangular  hyperbola. 

The  triangle  CO!  is  evidently  self -con  jugate  for  the  rectangular 

hyperbola. 

184.  Fregier's  Theorem.  If  P  is  a  fixed  point  on  a  conic, 
PQ,  PR  any  pair  of  chords  through  P  at  right  angles,  the  chord 

QR  always  passes  through  a  fixed  point  on  the  normal  at  P. 

The  pencil,  centre  P,  is  orthogonal,  and  therefore  in  involu- 
tion. Therefore  by  Art.  164  the  chord  QR  passes  through  a 

fixed  point.  If  the  angle  QPR  is  rotated  about  P  until  R  coin- 
cides with  P,  QR  becomes  the  normal  at  P.  Hence  the  fixed 

point  through  which  QR  passes  lies  on  the  normal  at  P. 
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185.  A  and  B  are  two  fixed  points,  AP,  BP  lines  through 

them  conjugate  for  a  given  conic  a.  The  locus  of  P  is  a  conic  p 

passing  through  A  and  B,  and  through  the  j^oints  where  their 
2)olars  meet  a. 

Fig.  89. 

Let  OD,  EF  be  the  polars  of  A,  B,  and  let  c,  c^  be  a  pair  of 

conjugate  points  on  CD.  Let  Ac,  Bd  meet  in  P.  Then  since 

BP  passes  throughj  d,  the  pole  of  Ac,  AP  and  BP  are  conjugate 

lines.  And  the  range  (c)  =  the  range  {d),  therefore  the  pencil 

A  (P)  =  the  pencil  B{P),  and  by  Art.  138  the  locus  of  P  is  a 
conic  passing  through  A  and  B.  The  locus  evidently  passes 

through  the  points  G,  D  E,  F,  and  this  indirectly  gives  us  a 

proof  of  the  property  of  Art.   199. 

Again,  since  P  and  d  are  conjugate  points  for  a,  the  proposi- 
tion might  be  stated  as  follows  : 

If  through  a  fixed  point  B  a  transversal  is  drawn  meeting  a 

fixed  line  CD  in  d  and  a  given  conic  a  in  Q,  H,  and  on  it  is  taken 

the  point  P  siich  that  (PdQR)  is  harmonic,  the  locus  of  P  is  the 

conic  /?.     (See  Art.  191.) 

Also,  if  from  any  point  P  on  p  tangents  FT,  FT'  are  drawn 
to  a,  since  PA,  PB  are  conjugate  lines  for  a  these  form  with  FT, 

12—2 
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PT'  a  harmonic  pencil,  Art.  166  (j8'),  which  therefore  cuts  AB 
harmonically.     Hence 

The  locus  of  the  intersection  of  tangents  to  a  conic  a  which 

divide  a  given  segment  AB  of  a  line  harmonically  is  the  conic  (i. 

If  the  given  line  AB  touches  the  given  conic  a,  the  locus  /? 

degenerates  into  the  line  AB  and  the  line  joining  the  points  of 
contact  of  tangents  to  a  from  A  and  B. 

If  CD  and  EF  meet  in  H,  and  if  CD  meets  AB  in  G,  then 

(x,  ZTare  conjugate  points  for  a  and  /?,  and  H  is  the  pole  oi  AB 
for  both  conies. 

Again,  if  on  CD  we  take  any  point  c,  and  on  EF  its  con- 

jugate c'  for  a,  this  pair  of  points  will  trace  out  two  homographic 

ranges,  and  the  envelope  of  the  line  joining  them  is  a  conic  yS' 
touching  the  lines  CD,  EF,  and  the  tangents  to  a  from  A  and  B, 

This  is  the  property  of  Art.  200  and  may  be  stated  as  follows  : 

If  a  chord  of  a  given  conic  a  is  divided  harmonically  hy  the 

conic  and  hy  two  given  straight  lines,  its  envelope  is  a  conic  fi^ 
touching  the  two  given  straight  lines  and  the  tangents  to  a  drawn 
at  the  points  where  the  two  given  lines  intersect  it. 

CoR.  If  in  the  first  part  of  the  proposition  the  points  A,  B 

are  the  circular  points  at  infinity,  since  the  tangents  PT,  PT' 

divide  ii'  harmonically,  they  are  at  right  angles  by  Art.  113,  and 
the  locus  p  becomes  the  director  circle.  If  in  addition  the  conic 

a  is  a  parabola,  the  locus  degenerates  into  the  line  at  infinity  and 

the  line  joining  the  points  of  contact  of  tangents  from  i,  i' ,  i.e. 
the  directrix. 

Note.  The  student  should  insert  the  conic  /?  in  Fig.  89,  and 

notice  that  quadrilaterals  can  be  circumscribed  about  a  having 

the  ends  of  two  diagonals  on  y8,  the  third  diagonal  being  fixed, 

containing  the  given  segment  AB;  and  the  fixed  point  H,  the 
pole  of  the  third  diagonal,  is  the  intersection  of  the  other  two 
diagonals.     Hence 
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If  a,  ̂   are  two  conies  such  that  quadrilaterals  can  be  cir- 
cumscribed about  a  and  inscribed  in  /?,  then  P  is  the  locus  of  the 

intersection  of  tangents  to  a  which  divide  harmonically  the 

chord  of  /3  which  lies  on  the  third  diagonal  of  any  of  the  quadri- 
laterals. 

For  these  and  other  theorems  of  this  chapter  demonstrated 

analytically  by  means  of  the  theory  of  invariants  and  covariants 

see  Wolstenholme's  Mathematical  Problems,  3rd  edition  (1891), 
pp.  261—269.     See  also  infra  Chap.  XIX,  Exs.  22—24. 

186.  If  round  two  fixed  points  p,  p'  two  straight  lines  rotate 
intersecting  on  a  given  conic  at  a,  and  cutting  the  conic  again  in 

a  and  a',  the  divisions  (a)  and  (a)  are  homograj)hic,  and  their 
com/mon  points  are  the  points  e,  f  where  the  line   pp   meets  the 

conic*. 

   a 

Fig.  90. 

In  Fig.  90  take  any  point  V  on  the  conic.  Then  since  aa 

passes  through  the  fixed  point  p,  the  conic-pencils  V  (a)  and  V  (a) 

are  homographic  by  Art.  164.  Similarly  the  pencils  V  (a')  and 
V  (a)  are  homographic.  Therefore  by  Art.  44  the  pencils  V  (a) 
and  V (a)  are  homographic.  If  a  is  at  f  a  and  a  will  coincide 

at  e,  so  that  e  is  a  common  point  of  the  divisions  (a)  and  [a'). 
Similarly  f  is  the  other  common  point. 

*  Chasles,  Sections  Coniqiies,  Art.  229. 
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187.  Desargufs'  Theorem  (1593 — 1662).  If  a  quadrangle 
is  inscribed  in  a  conic,  any  transversal  meets  its  three  pairs  of 

opposite  sides  and  the  conic  in  four  pairs  of  points  in  invo- 
lution. 

B, 

Fig.  91. 

A  BCD  is  the  inscribed  quadrangle,  2)p'  the  transversal; 

By  Art.  1 29      A  {DBpp')  =  C  {DBpp'), 

.'.  {ahpp')  =  {h'a'pp') 
=  ia'h'p'p)  by  Art.  3. 

Therefore  by  Art.  105,  a,  a' ;  b,  b' ;  p,  p'  are  in  involution. 

Similarly  by  equating  the  pencils  B^ADpp')  and  C  {ADpp'),  we 

find  that  b,  b' ;  c,  c  ;  p,  p  are  in  involution.  Hence  by  Art.  104, 

a,  a' ;  b,  b' ;  c,  c  ;  p,  p'  form  a  system  in  involution. 
See  also  Art.  118  which  shews  that  the  first  three  pairs  are 

in  involution. 

The  centre  0  of  the  system  can  be  found  by  the  construction 

of  Art.  102.  We  leave  it  to  the  student  to  shew  that  Desargues' 
Theorem  can  be  obtained  from  Pascal's,  and  that  each  of  them 
can  be  readily  derived  from  the  locus  ad  quatuor  lineas,  Art.  145, 

which  is,  as  it  were,  the  fons  et  origo  of  all  these  important 

properties. 

188.  If  a  quadrilateral  aba'b'  circumscribes  a  conic,  and  if 
from  any  point  P  we  draw  pairs  of  lines  to  its  opposite  vertices, 

and  also  the  tangents  PQ,  PR,  these  six  lines  will  form  a  pencil  in 

involution.     (Correlative  of  Desargues'  Theorem.) 
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Fig.  92. 

Consider  the  tangents  ah,  ah',  and  let  them  be  cut  by  any 

number  of  tangents  mm\  nn' ....  Then  by  Art.  1 30  the  ranges 

{artm  ...  h)  and  (b'm'n  ...  a)  are  homographic,  as  are  also  the 

pencils  F  (amn  ...  6)  and  F {b'm'n' . . .  a),  and  their  common  rays 
are  obviously  the  tangents  FQ,  FR. 

Hence  F  {ahQR)  =  F  {h'a'QR) 
=  F  (a'h'RQ). 

Therefore,  by  Art.  105,  F  (aa',  hb',  QR)  is  a  pencil  in  involution. 

Note.  If  ah  meets  ah'  in  c,  and  ah'  meets  a'h  in  c',  the  rays 
Fc,  Fc'  belong  to  the  same  involution. 

189.  In  Fig.  92  if  the  tangents  a'h,  a'h'  move  round  the  conic 

until  the  point  a'  coincides  with  a,  the  points  h,  h'  will  coincide 

with  the  points  of  contact  £,  B'  of  the  tangents  from  a,  and  the 
theorem  of  Art.  188  becomes 



184  CROSS-RATIO   GEOMETRY  [CH.  XIII 

If  the  sides  of  an  angle  BaB'  touch  a  conic  at  B,  B\  and  if 
the  sides  of  another  angle  QPB,  touch  the  conic  at  Q^  R,  then  Pa 

is  a  double  ray  in  each  of  the  involution  pencils  P  (QE,  BB)  and 

a  (QP,  BB'). 

190.  If  a  quadrangle  is  inscribed  in  a  conic,  and  a  quadri- 
lateral circumscribed  about  it  by  drawing  tangents  at  the 

vertices  of  the  quadrangle,  the  two  figures  will  possess  the 

following  properties  : 

(1)  Their  internal  diagonals  will  intersect  in  the  same  point  G^ 

and  form  a  harmonic  pencil ; 

(2)  Their  third  diagonals  are  in  the  same  straight  line,  the 

polar  of  G,  and  their  extremities  form  a  harmonic  range. 

(3)  The  three  diagonals  of  the  quadrilateral  and  the  three 

diagonal  points  of  the  quadrangle  form  the  same  self  conjugate 

(4)  If  aiiy  transversal  is  drawn  through  any  one  of  the  three 

diagonal  points  E,  F,  G,  the  part  intercepted  either  hy  the  conic 

or  hy  two  opposite  sides  of  either  of  the  figures  is  divided  harmonic- 

ally hy  the  diagonal  point  and  its  polar*, 

ABCD  is  the  quadrangle,  E,  F,  G  its  diagonal  points.  Then 

since  by  Art.  118  (1)  (RAGC)  is  a  harmonic  range,  FG  is  the 

fourth  harmonic  of  FE  for  FA,  FC.  Hence,  by  Art.  161,  Def., 

EF  is  the  polar  of  G  for  the  conic,  and  FG  is  the  polar  of  E, 

and  therefore  the  tangents  at  (A,  C)  and  (.5,  D)  intersect  on  EF. 

Let  these  tangents  form  the  quadrilateral  prqs. 

Then  p  is  the  pole  of  ED,  and  G  the  pole  of  EF.  Therefore 

pG  i^  the  polar  of  E,  and  is  coUinear  with  GF.  In  the  same  way 

it  may  be  shewn  that  q  lies  on  GF.  Similarly  EG  passes  through 

r  and  s.  Therefore  the  two  figures  have  their  internal  diagonals 

passing  through  the  same  point  G,  and  the  intersections  E,  F,  t,  t' 

*  Poncelet,  Prop.  Prqj.  Vol.  i,  §  ii,  cap.  ii,  p.  97  Note,  states  that  (1),  (2) 
and  (3)  are  due  to  Maclaurin,  and  (4)  to  Lahire. 
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t 
T   E 

Fig.  93. 

of  their  opposite  sides  lying  on  the  same  straight  line.  Also 

these  four  points  form  a  harmonic  range,  for  in  the  quadrilateral 

prqs,  by  Art.  118  (1)  the  diagonals  rs,  pq  divide  the  third  diagonal 

tt'  harmonically  in  £J,  F. 

Since  the  range  formed  by  the  points  t',  t,  F,  E  is  harmonic, 
the  pencil  formed  by  their  polars  AG,  BD,  pq,  rs  is  harmonic 

by  Art.  167. 
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Again  by  Art.  118  {EL AD)  and  (EMBC)  are  harmoni 
ranges.  Therefore  FG  is  the  polar  of  E.  Similarly  EG  is  the 

polar  of  F.  Consequently  EF  is  the  polar  of  G,  and  EFG  is  a 

self -conjugate  triangle. 

(4)  These  properties  follow  at  once  by  employing  Desargues' 
Theorem  and  its  correlative. 

Note.  If  from  any  point  T  on  the  third  diagonal  we  draw 

tangents  TP,  TQ,  then  by  Art.  162  T{PQGF)  is -a  harmonic 
pencil.  Also  by  Art.  11 8  ( 1 )  (^  CGH)  and  {BDGK)  are  harmonic 

ranges.  Therefore  by  Arts.  104,  111,  T{AC,  BD,  PQ)  is  an 

involution  pencil  in  which  TG,  TF  are  the  double  rays. 

191.  Given  a  fixed  point  p,  a  fi^oced  line  L,  and  a  conic  C, 

let  any  transversal  through  p  meet  L  in  m,  and  G  in  a,  a.     Let 

Fig.  94. 
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P  be  the  pole  of  X,  and  fx  the  fourth  harmonic  of  mfor  a,  a.     As 

the  transversal  rotates  about  p,  the  locus  of  fx.  is  a  conic,  and  the 

envelope  of  its  polar  is  another  conic*.     (See  also  Art.  185.) 

Pfi  is  the  polar  of  wi,  therefore  as  m  moves  along  L 

the  pencil  p  (m)  =  the  range  of  poles  (m),  by  Art.  15 

=  the  pencil  of  polars  P(/x),  Art.  167. 

Therefore  by  Art.  138  the  locus  of  /x  is  a  conic  through  p,  P. 

In  Fig.  94  let  mm'  the  conjugate  of  mp  for  C  meet  bb'  the 

polar  of  p  in  m\     Then  the  pole  of  pm,  being  on  mm\  is  at  m'. 
Also  the  range  of  poles  (m')  =  pencil  of  polars  p(ni)i  Art.  167 

=  the  range  (m),  Art.  1 5. 

Therefore  by  Art.  139  mm'  envelops  a  conic  which  touches  L 
and  the  polar  of  p. 

192.  Given  two  homographic  divisions  on  a  conic,  the  rays 

joining  the  pole  of  the  Pascal  line  to  the  common  points  and  to  any 

pair  of  corresponding  points  form  a  pencil  whose  cross-ratio  is 
constant. 

Fig.  95. 

Chasles,  Sections  Coniques,  p.  136. 
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Let  ahc. . .,  a'h'c' . . .  be  two  homographic  divisions.  By  Art.  1461 
draw  the  Pascal  line  meeting  the  conic  in  e,f.  Then  by  Arts.  156, 

157  e,/aire  the  common  points  of  the  divisions.  Let  T  be  the 

pole  of  ef.  Then  by  Art.  146,  B  the  intersection  of  ab',  ha'  lies 
on  ef,  and  the  polar  of  B  passes  through  jT,  therefore  T  lies  on 

the  third  diagonal  of  the  quadrangle  abh'a'.  Therefore  by  Art. 

190  Note,  T  {ah\  ha',  ef)  is  an  involution  pencil,  the  double  rays 
being  TB  and  the  third  diagonal  through  T. 

Therefore      T  {aa'ef)  =  T{h'hfe),  by  Art.  98 
=  T{hh'ef), 

Conversely^  if  ef  is  a  given  chord  of  a  conic,  T  its  pole,  and 

a,  a  a  pair  of  variable  points  on  the  conic  such  that  T  {aa'ef)  is 

constant,  {a)  and  {a')  will  mark  out  two  homographic  divisions  of 
which  e,f  are  the  common  points,     Cf.  Arts.  159  and  201  Cor. 

193.  If  two  triangles  ahc,  def  are  inscribed  in  a  conic  C,  their 

sides  will  touch  another  conic  C*. 
d 

Fig.  96. 

By  Art.  129,  a{hcef)  =  d{bcef). 
Therefore  the  ranges  which  these  pencils  make  on  ef  and  he 

are  equicross,  i.e.  (/3yef)  =  {hc€(f>). 
Therefore,  by  Art.  139,  6^,  cy,  ee,  /</>  are  tangents  to  a  conic 

touching  Ohc  and  Oef 
*  Brianchon,  1817. 
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194.  If  two  triangles  ahc,  def  are  circumscribed  about  a  conic 

C,  their  vertices  will  lie  on  another  conic. 

In  Fig.  96  by  Art.  130 

{pyef)  =  {bc.<t>), 

.'.  a  (^yef)  =  d  {bci<f>), 

.'.  a  (beef  )  =  d  (beef). 

Therefore  by  Art.   138   the  points  b,  c,  e,  f  lie  on  a  conic 

through  a,  d. 

195.  If  two  conies  C,  C  are  such  that  07ie  triangle  abc  can 

be  inscribed  in  C  and  circumscribed  about  C,  then  an  infinite 

number  of  such  triangles  can  be  drawn. 

In  Fig.  96  let  b'c'  be  any  chord  of  C  which  touches  C. 

Through  b\  c'  draw  the  other  tangents  to  G\  meeting  in  a'.  Then 
by  Art.  194  the  point  a  lies  on  the  conic  through  the  five  points 

a,  b,  c,  b\  c',  that  is,  it  lies  on  C. 

196.  Given  a  conic  C  and  two  self  conjugate  triangles  abc,  a'b'c'. 

Their  six  vertices  lie  on  a  conic  C",  and  their  six  sides  are  tangents 
to  a  conic  C". 

a 

Fig.  97. 
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Let  dh'  meet  ac,  he  in  a,  /?,  and  let  ah  meet  a'c',  6'c'  in  a',  /8'. 

Then  the  pencil  of  polars  c  {aba'b') 

=  range  of  poles  (ba/S'd),  by  Art.  167 

=  pencil  c'  (ba^'a) 

=  pencil  G  {bah' a) 

=  pencil  c  {aba'b'). 

Therefore,  by  Art.  138,  a,  6,  a',  h'  lie  on  a  conic  through  c,  c'J 

Again  the  range  of  poles  {abaft')  =  pencil  of  polars  c {bah' a) 

=  pencil  c  {ft ah' a') 

—  range  {ftab'a') 

=  range  {afta'b'). 

Therefore,  by  Art.  1 39,  aa,  5/3,  a'a',  b'ft'  are  tangents  to  a  conic 
which  touches  ah  and  a'b'. 

197.  If  two  conies  G,  C  are  such  that  one  triangle  abc  which 

is  self-conjugate  for  C  can  be  inscribed  in  C,  then  an  infinite 
number  of  triangles  can  be  inscribed  in  C  which  are  also  self- 
conjugate  for  C. 

Fig.  98. 

Let  a  be  any  point  on  C  and  let  the  polar  of  a'  for  C  meet  C" 

in  b',  c.    Then  if  a',  b'  are  considered  as  two  vertices  of  a  triangh 
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self -conjugate  for  (7,  the  third  vertex  will  lie  on  6'c'.  But  by 
Art.  196  the  third  vertex  will  lie  on  the  conic  through  a,  6,  c,  a!^  h\ 
i.e.  the  conic  C.     Therefore  the  third  vertex  is  at  c. 

198.  If  two  conies  C,  C  are  such  that  one  triangle  abc  which 

is  self-conjugate  for  C  can  be  circumscribed  about  C\  then  an 
infinite  number  of  triangles  can  be  circumscribed  about  C  which 

are  also  self  conjugate  for  C. 

Let  b'c'  be  any  tangent  to  C\  and  let  a  be  the  pole  of  b'c  for 

C,  and  let  a  tangent  from  a'  to  C  meet  b'c'  in  b' .  Then  if  a',  b' 
are  considered  as  vertices  of  a  triangle  self -con jugate  for  (7,  the 

third  vertex  c  will  lie  on  b'c. 
But  by  Art.  196  the  third  side  a!c  will  touch  the  conic  which 

touches  a6,  &c,  c«,  db\  b'c\  i.e.  the  conic  C. 

199.  If  a  quadrilateral  PRQS  circumscribes  a  conic,  its 

points  of  contact  and  two  of  its  opposite  vertices  lie  on  a  conic. 

Fig.  99. 

P  is  the  pole  of  ab,  and  c  is  the  pole  of  QR.     Therefore  y  is 
the  pole  of  Pc.     Similarly  8  is  the  pole  of  Pd. 
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The  pencil  of  polars  P  (abed)  =  range  of  poles  (abyS) 
=  pencil  Q  (abyS) 

=  pencil  Q(abGd). 

Therefore  by  Art.  138  «,  6,  c,  (Z  lie  on  a  conic  through  P,  Q. 

Similarly  a,  b,  c,  d  lie  on  another  conic  which  passes  through 

i?,  Sy  and  also  on  a  third  conic  passing  through  the  points 

(PJi,  QS)  and  (PS,  QE),  not  shewn  in  the  figure. 

200.  If  a  quadrangle  abed  is  inscribed  in  a  eonic,  the  tangents 

at  its  vertices  and  a  pair  of  opposite  sides  are  tangents  to  another 
conic. 

In  Fig.  99  the  range  of  poles  (aby8)  =  pencil  of  polars  P  (abed) 
=  pencil  P  (aped) 

—  range  (ajScd). 

Therefore  aa,  6^,  cy,  dS  are  tangents  to  a  conic  touching  ab,  cd. 
There  are  two  more  such  conies,  viz.  one  touching  be,  ad,  and 

one  touching  ac,  bd. 

Note.  The  properties  of  Arts.  199,  200  are  sometimes  stated 
thus : 

If  ab,  cd  are  two  chords  of  a  conic,  P,  Q  their  poles,  the  six 

vertices  of  the  triangles  Pab,  Qcd  lie  on  one  conic,  and  their  six 

sides  are  tangents  to  another. 

201.  If  ab,  cd  are  two  chords  of  a  conic,  P,  Q  their  poles,  then 

if  the  conic-pencil  (abed)  =  X, 

the  pencil  P  (abed)  =  Q  (abed)  =  X^. 

In  Fig.  99      X  =  conic-pencil  (abed)  =  c  (abed)  =  (abyy), 

also  X  =  d  (abed)  =  d  (aby'8)  =  (aby'S), 

.'.   Xx  X  =  (abyy)  X  (aby'S) 

=  (abyS),  by  expansion,  see  p.  13,  Ex.  3, 

=  pencil  of  polars  P  (abed)  =  Q  (abed),  by  Art.  199. 
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Cor.  If  {abc. . , ),  {a'h'c  . .,)  are  two  homographic  divisions  on  a 

conic,  e,  f  their  common  points,  (aa'ef)  is  constant,  and  conversely, 
if  e,  f  are  two  given  points  on  a  conic,  and  a,  a'  a  pair  of  variable 

points  on  the  curve  such  that  (aa'ef)  is  constant,  (a)  and  {a')  will 
mark  out  two  homographic  divisions  of  which  e,  /  are  the  common 

points,  by  Art.  192.     See  also  Art.  159. 

Contra-polar  conies. 

202.  Two  conies  a,  /3  intersect  in  A,  B,  I,  I',  and  the  poles 

of  one  of  the  chords  as  II'  for  a  and  jS  are  T,  C  respectively. 
Then  if  TA  is  a  tangent  to  jS, 

(1)  TB  will  be  a  tangent  to  (3, 

(2)  CA  and  CB  will  be  tangents  to  a. 

Fig.  100. 
13 
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(1)  Let  AB,  II'  meet  in  D.  Join  CT  meeting  J  5  in  E  and 

//'  in  F.  Then  by  Art.  163  the  polar  of  D  for  a  must  pass 

through  T  and  cut  II'  and  AB  harmonically.  Similarly  the 
polar  of  D  for  /S  must  pass  through  C  and  divide  the  same  two 

chords  harmonically.  Hence  CT  is  the  polar  of  D  for  both 

conies.  And  AT  is  the  polar  of  A  for  p.  Therefore  T  is  the 

pole  of  AD  for  /3,  i.e.  TB  is  the  tangent  to  (3  at  B. 

(2)  For  /?,  C  is  the  pole  of  //',  and  A  is  the  pole  of  AT, 

therefore  M  is  the  pole  of  CA.  Hence  by  Art.  161  {II'MN)  is 
harmonic,  therefore  for  a,  M  and  N  are  conjugate  points,  and  T 
being  the  pole  of  MN,  TM  is  the  polar  of  iV,  i.e.  NA  touches  a  at 

A.  And  AN  passes  through  G.  Therefore  GA  is  the  tangent 

at  A.     Similarly  it  may  be  shewn  that  GB  is  the  tangent  at  B. 

203.  Def.  Since  the  poles  of  a  pair  of  common  chords  of  a,  j8 

Contra-polar  for  one  of  the  conies  are  also  their  poles  for  the  other 

conies.  Poles,  conic  when  the  chords  are  taken  in  the  contrary 

order,  we  shall  call  conies  which  are  so  related  contra-polar  conies, 
and  the  points  (7,  T  their  poles. 

From  Art.  202  we  obtain  a  simple  method  of  describing  a 

conic  contra-polar  to  a  given  conic  a.  Take  any  point  G  outside 

a,  draw  a  tangent  GA,  and  join  G  to  any  two  points  /,  /'  on  the 
curve.  Then  the  conic  which  passes  through  A  and  touches 

Cly  CI'  at  the  points  /,  /'  is  the  conic  required. 

204.  In  two  contra-polar  conies  the  tangents  at  any  one  of 

the  points  of  intersection,  as  A,  divide  the  opposite  chord  II' 
harmonically. 

Let  the  tangents  at  A  meet  //'  in  i/,  N,  and  let  TA  meet 

a  again  in  A'.  Then  for  a,  TA,  II'  are  conjugate  lines,  and  by 

Art.  171  the  conic-pencil  {II' A  A')  is  harmonic. 

Therefore  A  {II' AA')  is  harmonic,  and  therefore  also  {II' NM), 
i.e.  the  tangents  at  A  divide  //'  harmonically. 

Similarly  it  may  be  shewn  that  //'  is  divided  harmonically  by 
the  tangents  at  B,  and  AB  by  the  tangents  at  /  and  /'. 
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From  the  property  of  this  article  these  conies  might  be  called 

harmotomic  (on  the  analogy  of  orthotomic),  a  term  which  would 

help  to  remind  the  student  of  the  connection  between  them  and 

orthogonal  circles,  see  Chap.  XIX,  Data  23,  and  Examples 
51—61. 

205.  In  two  contra-polar  conies,  a,  /?,  any  transversal  through 
either  of  the  poles  is  divided  harmonically  by  the  two  conies. 

Let  a  transversal  through  2'  meet  a  in  F,  Q.  We  will  shew 
that  F,  Q  are  conjugate  points  for  fi. 

Join  CQ  meeting  a  again  in  i?,  and  //'  in  K.  Join  RF 

meeting  //'  in  L  and  AB  in  L'. 

Then  FQ  and  //'  are  conjugate  lines  for  a. 

.*.  the  pencil  R{QFII')  is  harmonic,  i.e.  {KLII')  is  harmonic. 

.*.  K,  L  are  conjugate  points  for  y8, 

i.e.  X  is  the  pole  of  (7^  for  y8      (1). 

Again  QR  and  AB  are  conjugate  lines  for  a. 

.*.  the  pencil  F(QRAB)  is  harmonic,  i.e.  {K'L'AB)  is  harmonic. 

.*.  K\  L'  are  conjugate  points  for  y8, 

i.e.  Z' is  the  pole  of  r^' for  y8      (2). 

.-.  from  (1)  and  (2),  by  Art.  163,  Q  is  the  pole  of  LL'  for  ft 
and  therefore  the  polar  of  Q  passes  through  F.  Hence  F  and  Q 

are  conjugate  points  for  /?,  as  we  had  to  prove. 

CoR.  If  //'  is  a  given  chord  of  a  conic  ft  C  its  pole,  and  if 
any  transversal  is  drawn  through  C,  and  on  it  are  taken  a  pair  of 

conjugate  points  Q,  R,  then  any  conic  through  the  four  points 

Q,  R,  I,  I'  is  contra-polar  to  the  given  conic  jS.  Consequently,  if 

we  have  a  system  of  conies  through  four  given  points  /,  /',  Q,  R, 
a  conic  which  passes  through  two  of  them,  as  /,  /',  and  is  contra- 
polar  to  one  of  the  conies,  is  contra-polar  to  every  conic  of  the 

system,  and  its  pole  for  //'  lies  on  QR,  the  corresponding  common 
chord  of  the  system. 

13—2 
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206.  If  we  have  given  four  points  a,  b,  c,  d  on  a.  conic  a, 

and  if  the  tangents  at  these  points  form  a  quadrilateral  whose 

opposite  vertices  are  P,  Q ;  i^,  S ;  T,  U,  it  is  clear  that  through 

the  four  points  a,  b,  c,  d  three  conies  can  be  described  contra-polar 
to  a,  viz.  those  having  for  their  poles  P,  Q ;  R^  S ;  and  T^  JJ. 

207.  If  on  a  conic  a  we  take  four  points  forming  a  harmonic 

c.  p.  as  {A  A' II')  in  Fig.  100,  the  poles  being  N,  T^  the  contra- 
polar  conic  ̂   through  the  four  points  degenerates  into  the  lines 

AA\  II,  the  tangents  to  (i  at  /,  /'  passing  through  N,  and  those 
at  ̂ ,  A'  passing  through  T. 

Note.  Prof.  A.  Lodge  has  pointed  out  to  me  that  the  relations 

between  contra-polar  conies  can  be  readily  established  by  means 
of  Art.  201. 

(1)  If      X  =  c.p.{ABir)iova,X^  =  C{ABir), 

and  if  fx  =  c.  p.  {ABU')  for  jB,   ix^  =  G  (ABIF). 

.'.  A.2  =  /A^.  Now  since  A  4=//,,  X  must  =  — /a,  and  the  condition 
that  two  conies  through  four  given  points  should  be  contra-polar 
is  X  +  /A  =  0. 

(2)  To  prove  Art.  204  we  have 

X  =  (ABIF)  for  a  =  A  {ABII')  =  (MDII'). 

.-.  ̂=(DMir)  by  Art.    3. 

-X  =  fji  =  (ABIF)  iov  P  =  A  {ABIF)  =  {NDIF). 

.-.  -  1  =  -  A  X  1  -  {NDIF)  X  {DMIF) A 

=  {NMII')  by  expansion. 

(3)  In  the  particular  case  when  A,  =  —  1,  and  the  conic-pencil 
for  a  is  harmonic,  ii  =  +\,  and  P  degenerates  into  the  two  lines 

AB,  IF. 

For  since  C  {ABII')  =  1,  one  pair  of  rays  CI  and  CI'  coincide 

by  Art.  8.  Hence  the  tangents  to  P  at  /,  /'  which  have  to 

pass  through  C  coincide  with  the  line  //'. 
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Similarly  since  T{ABII')=l,  TA,  TB  coincide,  and  the 
tangents  to  /3  at  A,  B  must  lie  along  ̂ ^,  i.e.  ̂   is  the  two  lines 
AB,  IF.     Art.  207. 

208.  The  following  useful  properties  in  connection  with  con- 
jugate points  and  lines  are  given  here  for  convenience  of  reference. 

Other  properties  will  be  found  in  Exs.  1 — 7,  35,  36,  in  which 
the  letters  have  been  so  arranged  that  Fig.  101  will  apply  to 
them. 

AB^  II'  are  two  chords  of  a  conic  intersecting  in  H ;  C,  T 
their  poles.  CT  meets  AB,  II'  in  G,  F,  and  the  curve  in  iV",  0. 

The  tangents  at  ̂ ,  ̂   meet  //'  in  K,  L. 
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1.  If  TPQ  is  any  chord  through  T, 

(a)     PQ,  II'  are  conjugate  lines.     Art.  166  (a'). 
{(i)    the  c.  p.  (PQir)  is  harmonic.     Art.  171. 

If  B  is  any  point  on  the  conic  and  i?P,  BQ  meet  //'  in  D, 

(y)  the  range  (II'DE)  is  harmonic,  and  consequently 
D,  E  are  conjugate  points,  TD,  TE  are  conjugate 

lines  and  TDE  is  a  self-conjugate  triangle.  Art. 
174. 

(8)     Also,  if  D,  E  are  two  conjugate  points  on  //',  and 
PR  is  any  chord  through  one  of  them,  Z>, 

T  {II' ,  PB,  DE)  is  an  involution  pencil,  in  which 
TD,  TE  are  the  double  rays.      Art.  118. 

2.  (e)     The   ranges   {ABGH)   and    (IPFH)   are   harmonic. 
Art.  163. 

(^)  T{AB,  II',  KL,  CH)  is  an  involution  pencil,  in  which 
TC,  TH  are  the  double  rays.     2  (c). 

[r])  If  TA  meets  //'  in  J/,  K  and  M  are  conjugate  points. 
Art.  171. 

3.  {&)     If  P  is  a  variable  point  on  the  curve,  the  double  rays 

of  the  involution  pencil  P  {II\  AB)  always  pass 

through  N  and  0.     Art.   166  (a). 

EXAMPLES. 

[In  Exs.  1—7,  36,  36  the  letters  are  the  same  as  in  Fig.  101.] 

1.  ir  is  a  given  chord  of  a  conic,  T  its  pole.  J^  is  a  point  on  /I', 
and  KA,  KA'  are  two  tangents  cut  by  the  variable  tangent  at  B  in  the  points 
C,  C     Then  T  {II' GC)  is  harmonic.     (Chap.  XIX,  Ex.  10.) 

2.  TPQ  is  a  chord  through  T.  The  tangent  at  any  point  A  meets  11' 
in  K.  M  is  the  harmonic  conjugate  of  K  for  I,  I'.  PM  meets  the  curve  in 
P'.  Then  PA  is  a  double  line  of  the  involution  pencil  P  (II 'QP')  and  QP' 
passes  through  K.     (Chap.  XIX,  Ex.  15.) 
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3.  Given  a  chord  W,  T  its  pole,  and  any  chord  PR  cutting  IV  in  D. 
Divide  PR  at  S  so  that  (PRSD)  is  harmonic,  and  let  TS  meet  W  in  E. 

Then  {II'DE)  is  harmonic.  Conversely,  if  (II'DE)  is  harmonic,  so  also 
is  (PRSD). 

Also,  TD,  TE  are  the  double  rays  of  the  involution  pencil  T  {II ',  PR,  BE). 
(Chap.  XIX,  Ex.  6.) 

4.  ir  is  a  chord  of  a  conic,  T  its  pole,  D  a  fixed  point  on  11',  If  DPR, 
any  chord  through  D,  is  divided  harmonically  at  D,  S,  the  locus  of  S 

is  a  straight  line  through  T;  and  if  this  line  meets  11'  in  E,  the  range 
{II'DE)  is  harmonic. 

5.  II',  AB  are  two  given  chords  of  a  conic,  T,  C  their  poles.  AB  meets 
II'  in  H,  and  {II'FH)  is  harmonic.  TPQ  is  a  chord  through  T.  Then  II' 
is  one  of  the  double  rays  of  the  involution  pencil  F(AB,  PQ). 

6.  D,  E  are  two  conjugate  points,  R  any  point  on  the  conic.  If  RD, 
BE  meet  the  curve  in  P,  Q,  then  PQ  and  DE  are  conjugate  lines. 

7.  11'  is  a  given  chord  of  a  conic,  T  its  pole,  TA'A  a  chord  meeting 
ir  in  ill.  The  tangent  at  any  point  B  meets  II'  in  L,  and  V  is  taken  on 
II'  so  that  {II'LV)  is  harmonic.  ^F  meets  the  curve  in  W.  Then  AB  is  a 
double  line  of  the  involution  pencil  A  {II',  A'W)  and  A'W  passes  through  L, 

8.  ir  is  a  chord,  T  its  pole,  TAB,  TA'B'  two  chords  through  T.  If 
^^',  5P'  meet  in  G,  and  ̂ J5',  A'B  meet  in  D,  the  points  G,  D  will  lie  on  II', 
and  divide  it  harmonically.     (Chap.  XIX,  Ex.  20.) 

9.  AB  is  a  chord,  G  its  pole.  Through  B  a  straight  line  is  drawn 
meeting  the  conic  in  D  and  AG  in  E.  The  tangent  at  D  meets  AG  in  F. 

Then  {AEGF)  is  harmonic. 

10.  Given  three  tangents  to  a  conic,  draw  a  fourth  tangent  so  that  the 

part  intercepted  between  two  of  the  given  tangents  shall  be  bisected  by 
the  third. 

[Let  or,  OT'  be  the  two  given  tangents,  P  the  point  of  contact  of  the 
third.  Join  OP  and  produce  it  to  meet  the  conic  again  in  P' .  The  required 
tangent  is  parallel  to  the  tangent  at  P'.] 

11.  AB  is  a  chord  of  a  conic,  G  its  pole,  T  the  focus.  Then  AB  is 
divided  harmonically  by  GT  and  the  directrix. 

12.  Given  a  chord  AB  and  its  pole  G,  if  the  internal  bisector  of  the 
angle  AGB  meets  AB  in  D,  and  EF  is  any  chord  through  D,  then  GD  bisects 
the  angle  EGF. 

13.  In  Ex.  12  the  poles  of  all  chords  through  D  lie  on  the  line  through 
G  perpendicular  to  GD, 
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14.  P,  Q  are  two  conjugate  points.  P  moves  on  a  fixed  straight  line 
whose  pole  is  E,  and  PQ  passes  through  a  fixed  point  S.  Shew  that  the 
locus  of  Q  is  a  conic  through  B,  S. 

15.  P,  Q  are  two  conjugate  points.  P  moves  on  a  fixed  straight  line 
whose  pole  is  R,  and  PQ  subtends  a  constant  angle  at  a  fixed  point  T. 
Shew  that  the  locus  of  Q  is  a  conic  through  R,  T. 

16.  PQ,  P'Q'  are  two  conjugate  chords,  PR,  any  chord  through  P, 
meets  P'Q  in  A,  QQ'  in  B  and  Q'P'  in  G.     Shew  that  (RABC)  is  harmonic. 

17.  11'  is  a  chord  of  a  conic,  T  its  pole,  A  a  fixed  point  in  the  plane  of 
the  curve.  Any  chord  BG  through  A  meets  11'  in  D,  and  (BGDP)  is  harmonic. 
Shew  that  the  locus  of  P  is  a  conic  through  A  and  T. 

[For  let  TP  meet  II'  in  E,  Then  the  polar  of  D  passes  through  P  and 
T,  and  therefore  also  through  E.  And  D,  E,  being  conjugate  points  in  an 
involution  range,  form  two  homographic  divisions. 

Hence  A{D)  =  T  (E),  i.e.  A{P)  =  T  (P).     .-.  &c. ,  Art.  138.] 

18.  If  two  chords  are  drawn  through  any  point,  the  lines  joining  their 
extremities  meet  on  the  polar  of  the  point  and  divide  it  harmonically. 

19.  In  a  hyperbola  the  portion  of  any  tangent  intercepted  between  the 
asymptotes  is  bisected  at  the  point  of  contact. 

^20.  Any  tangent  to  a  conic  cuts  the  six  sides  of  an  inscribed  quadrangle 
in  an  involution  range  of  which  the  point  of  contact  is  a  double  point. 

21.  TP,  TQ  are  two  tangents  to  one  branch  of  a  hyperbola.  They  and 
the  chord  of  contact  PQ  intersect  an  asymptote  in  H,  K,  L  respectively. 

TH,  TK,  TL  cut  the  other  asymptote  in  W,  K',  L',  and  a  parallel  through 
T  to  the  first  asymptote  cuts  the  second  in  X'.  Prove  that  {H'L'K'X')  is  a 
harmonic  range,  and  that  H'K,  PQ,  HK'  are  parallel. 

22.  The  straight  line  PP'  is  the  normal  chord  at  P.  The  chords  PQ, 
PQ'  are  equally  inclined  to  PP'.  Shew  that  P'Q  and  P'Q'  are  harmonic 
conjugates  to  PP'  and  the  tangent  at  P'. 

23.  If  through  a  fixed  point  on  a  conic  two  chords  are  drawn  making 
equal  angles  with  a  fixed  line,  the  chord  joining  their  extremities  will  pass 
through  a  fixed  point. 

24.  If  a  triangle  is  self-conjugate  to  a  rectangular  hyperbola,  its  circum- 
circle  passes  through  the  centre  of  the  conic. 

[In  Art.  196  take  GW  for  one  of  the  triangles.] 

25.  If  a  triangle  is  inscribed  in  a  rectangular  hyperbola,  its  nine-point 
circle  passes  through  the  centre  of  the  conic. 

[Shew  that  the  pedal  triangle  is  self-conjugate  to  the  conic] 
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26.  Shew  that  two  conies  which  have  the  same  focus  and  directrix  may 
be  considered  as  having  double  contact. 

27.  The  circumcircle  of  a  tangent  triangle  of  a  parabola  passes  through 
*he  focus. 

[In  Art.  194  note  that  SW  is  a  tangent  triangle.] 

28.  0  is  a  fixed  point.  A  variable  chord  through  0  meets  a  conic  in 

a,  a',  and  on  the  chord  is  taken  a  point  P  such  that  [OPaa')  is  constant. 
Shew  that  the  locus  of  P  is  a  conic. 

29.  The  locus  of  the  intersection  of  two  tangents  to  a  given  conic  drawn 
from  corresponding  points  of  an  involution  range  is  a  conic  passing  through 
the  double  points  of  the  involution  and  through  the  points  of  contact  of  the 
tangents  to  the  given  conic  drawn  from  the  double  points.     See  Art.  185. 

30.  The  envelope  of  a  chord  of  a  given  conic  whose  extremities  lie  on 
corresponding  rays  of  a  pencil  in  involution  is  a  conic  touching  the  double 
rays  of  the  involution  pencil,  and  also  touching  the  tangents  drawn  to  the 
given  conic  at  the  points  where  the  double  rays  meet  it.     See  Art.  185. 

31.  Two  fixed  tangents  to  a  conic  meet  a  fixed  line  in  ̂ ,  jB.  A  variable 
tangent  meets  the  fixed  tangents  in  Q,  B,  and  the  fixed  line  in  S,  and  on  it 
is  taken  a  point  P  such  that  (PQRS)  is  constant.  Shew  that  the  locus  of  P 
is  a  conic  passing  through  A  and  B. 

32.  A  tangent  to  a  conic  cuts  two  conjugate  lines  OP,  OQ  in  P,  Q. 
Shew  that  the  other  tangents  from  P  and  Q  intersect  on  the  polar  of  0. 

33.  ̂   is  a  fixed  point  on  a  conic,  and  BCD  an  inscribed  triangle.  Any 

transversal  through  p  cuts  PC,  CD,  DB  in  a',  h' ,  c',  and  the  conic  in  p'. 
Shew  that  {p'a'h'c')  is  constant. 

[In  Fig.  91,  since  {pp',  aa',  hh',  cc')  is  an  involution  range, 

{jp'a'h'c')  =  {pahc)=A  {pahc)  =  A  (2?-DPC')  =  const.] 

34.  If  the  extremities  of  two  diagonals  of  a  quadrilateral  are  conjugate 
points  for  a  conic,  the  extremities  of  the  third  diagonal  will  also  be  conjugate; 
and  if  two  of  the  three  pairs  of  opposite  sides  of  a  quadrangle  are  conjugate 
lines,  the  third  pair  will  also  be  conjugate.  Hesse  (1840).  See  Chasles, 
Sect.  Con.,  Arts.  133,  134. 

35.  ir,  AB  are  two  chords  of  a  conic,  T,  C  their  poles.  TPQ  is  any 
chord  through  T,  and  AP,  BQ  intersect  in  X.  Shew  that  the  locus  of  X  is 

a  conic  passing  through  A  and  B  and  contra-polar  to  the  given  conic. 
[In  Fig.  101  join  TB  meeting  the  conic  in  Y. 
Then  since  T  is  a  fixed  point,  P,  Q  are  conjugate  points  in  an  involution 
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range.     .".  {P)  =  {Q).     .'.  A{P)  =  B  {Q).     .:  the  locus  of  Z  is  a  conic  through 
A  and  B.    It  also  evidently  passes  through  7,  I'. 

Now  when  P  is  at  B,  Q  is  at  Y.  :.  the  ray  corresponding  to  AB  ia  BY, 
i.e.  the  tangent  at  B  passes  through  T.  .:  by  Art.  202,  the  conies  are 
contra-polar.] 

36.  II'  is  a  chord  of  a  conic,  T  its  pole.  TPQ  is  any  chord  through  T. 
PU,  QV  &re  two  chords  intersecting  in  X,  and  Y  is  the  pole  of  UV.  Shew 

that  the  conic  through  the  five  points  U,  V,  X,  I,  I'  is  contra-polar  to  the 
given  conic. 

37.  In  Fig.  100  if  CT  meets  the  conic  a  in  u,  v,  shew  that  Au,  Av  meet 

j8  in  two  points  u',  v'  which  are  such  that  the  line  joining  them  passes 
through  G  and  D. 

38.  In  Fig.  100  if  any  transversal  through  G  meets  AB  in  W,  shew  that 

any  conic  through  the  points  C,  W,  I,  I'  will  be  contra-polar  to  the  conic  a. 

39.  In  Fig.  100  if  a  system  of  conies  passes  through  the  four  points 

Q,  B,  I,  I',  and  from  G  pairs  of  tangents  are  drawn  to  all  the  conies, 
the  points  of  contact  will  all  lie  on  the  conic  ̂ . 
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COMMON  CHORDS  AND  COMMON  TANGENTS  OF  TWO  OR 

MORE  CONICS  (1)  PASSING  THROUGH  FOUR  POINTS, 

(2)  TOUCHING  FOUR  STRAIGHT  LINES,  i.e.  OF  PENCILS 

AND   RANGES    OF   CONICS 

Two  conies  circumscribing  a  quadrangle. 

209.  Two  conies  will  in  general  intersect  in  four  points 

which  form  an  inscribed  quadrangle. 

Defs.  The  line  joining  any  two  of  the  points  of  intersection 

Pair  of  ^^  ̂ ^^  conies  is  called  a  common  chord  of  the  conies, 
common  Of  the  six  lines  which  can  be  so  drawn,  any 

chords.  ^^Q  whose  point  of  intersection  does  not  lie  on  the 
conies  are  called  a  pair  of  common  chords. 

When  we  use  the  word  pair  in  this  restricted  sense  we  shall 

print  it  in  different  type.  It  is  obvious  from  Fig.  102  that  there 
are  in  general  three  pairs  of  common  chords. 

The  point  of  intersection  of  a  pair  of  common Chord  vertex. 
chords  we  shall  call  a  chord  vertex*. 

In  what  follows,  the  three  chord  vertices  will  always  be 

denoted  hy  P^,  F2,  Ps. 

*  Suggested  by  Prof.  A.  Lodge. 
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Fig.  102. 

210.  The  distinctive  property  of  a  common  chord  of  two 
conies  is : 

The  two  polars  of  any  point  on  a  common  chord  intersect  on  the 
chord. 

For  if  P  is  any  point  on  g^g^  a  common  chord  of  two  conies  A 

and  jB,  and  if  P'  is  the  fourth  harmonic  of  P  for  ̂ i  and  g^^  the 

polars  of  P  for  both  A  and  B  will  pass  through  the  point  P'  by 
Art.  161. 

211.  The  intersection  of  a  pair  of  common  chords  has  the  same 

polar  for  both  conies. 

For  if  in  Fig.  102  g^g2  and  g^g^  are  the  common  chords  inter- 
secting in  Pi,  the  two  polars  of  Pj  considered  as  a  point  on  g^g^ 

intersect  on  g^g^  by  Art.  210.  Considered  as  a  point  on  g^g^, 

they  intersect  on  this  chord  also.  Hence  they  must  coincide. 
Consequently, 

I 
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If  P\i  P25  Pa  ̂^<3  the  three  chord  vertices,  P^P^P^  is  a  self- 

conjugate  triangle  common  to  both  conies. 

212.  Any  point  Q  which  has  the  same  polar  for  both  conies  is 
a  chord  vertex. 

For  join  Q  to  g,  one  of  the  points  where  the  conies  intersect, 

and  produce  Qg  to  meet  the  conies  again  in  g'j  g",  and  the  common 

polar  in  Q'.  Then  by  Art.  161,  Def.,  {QQ'gg')  and  (QQ'gg")  are 
harmonic  ranges. 

Therefore  g'  and  g"  coincide.  Hence  Q  lies  on  one  common 
chord.  Similarly  it  lies  on  the  other  common  chord  of  the  pair, 

and  therefore  coincides  with  a  chord  vertex.     Consequently 

Two  conies  can  have  only  one  common  self-conjugate  triangle. 

213.  The  five  pairs  of  points  in  which  any  transversal  meets 

the  two  conies  and  the  three  pairs  of  opposite  sides  of  the  common 

inscribed  quadrangle  form,  a  system  in  involution. 

By  Desargues'  Theorem,  Art.  187. 

CoR.  If  the  transversal  is  a  comm^on  tangent,  the  points  of 

contact  are  harmonic  conjugates  of  the  points  where  it  cuts  the 

opposite  sides  of  the  quadrangle,  being  the  double  points  of  the 
involution. 

214.  In  Fig.  102  i/"  the  polar  of  P^  meets  the  conies  A  and  B 
and  the  pair  of  common  chords  through  P^  in  aa',  bb',  pp',  these 
pairs  of  points  will  form  a  system  in  involution  whose  double 

points  are  P^  and  P^. 

By  Desargues. 

215.  If  three  conies  have  one  chord  common  to  all,  their  three 

other  corresponding  common  chords  are  concurrent. 

Let  ̂ ,  ̂ ,  C  be  the  conies,  and  let  G  be  the  chord  common 

to  all,  and  let  G-^  be  the  corresponding  common  chord  for  A  and 
B,  G^  for  A  and  C,  and  G^  for  B  and  C.     Let  G^  and  G^  intersect 
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in  g^.  Through  g-^  draw  any  transversal  meeting  the  conies  in 

a,  a  ]  b,  V ;  c,  c',  and  meeting  G  and  G^  in  g,  g^.  Then  it  is 

evident  that  g^  coincides  with  g^,  for  by  Art.  213  (aa',  bb',  cc)  is 
an  involution  range,  in  which  (g,  g^  and  (g,  g^)  are  pairs  of  con- 

jugate points.  In  other  words:  Given  a  system  of  conies  through 
four  fixed  points,  the  corresponding  common  chord  of  any  conic 

of  the  system  with  a  fixed  conic  through  two  of  the  given  points 

will  pass  through  a  fixed  point. 

Pencil  of  conies. 

Pencil  of  Def.      A   system   of   conies  circumscribing   a 

conies.  quadrangle  is  called  by  Chasles  a  pencil  of  conies*. 

216.  Given  a  pencil  of  conies,  any  transversal  will  intersect 

them  in  a  system  of  pairs  of  points  in  involution,  and  the  double 

points  of  the  system  will  be  conjugate  points  for  each  of  the  conicsf. 
See  Art.  213. 

Since  the  double  points  are  the  harmonic  conjugates  of  each 

pair  of  points  of  intersection,  the  polar  of  one  passes  through  the 
other  by  Art.  161,  Def. 

By  Arts.  211,  212  a  pencil  of  conies  has  one,  and  only  one, 

common  self-conjugate  triangle. 
Also,  since  Pj  is  the  pole  of  P^Pzi  the  poles  of  chords  through 

Pi  lie  on  P2P3. 

217.  A  given  pair  of  points  are  conjugate  for  only  one  conic 

of  a  pencil. 

For  if  P,  P'  are  the  points,  the  transversal  PP'  cuts  the  pencil 

in  a  range  in  involution  of  which  the  double  points  Q,  Q'  will 

not  in  general  coincide  with  P,  P'.     By  taking  on  PP'  pairs  of 

*  Sect.  Con.,  Art.  306. 
t  This  proposition  was  enunciated  for  a  system  of  three  conies  by 

Sturm,  1826. 

I 
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points  harmonic  conjugates  for  P,  P\  we  can  obtain  a  range  in 

involution  having  P,  P'  for  double  points.  By  Art.  35  we  can 

find  on  the  transversal  one  and  only  one  pair  of  points  a,  a' 
which  will  divide  harmonically  both  the  segments  PP\  and  QQ\ 

and  which  will  therefore  be  conjugate  points  in  both  involutions. 

Then  the  conic  of  the  pencil  which  passes  through  a  will  also 

pass  through  a',  and  will  have  P,  P'  for  conjugate  points. 

218.  In  a  pencil  of  conies  the  polars  of  any  point  P  will  all 

pass  through  the  same  point  P'*. 
Let  the  polars  of  P  for  two  conies  A,  B  oi  the  pencil  intersect 

in  F,  and  let  PP'  meet  A  in  a,  a'  and  B  in  h,  b'.  Then  P  and  P' 
are  the  double  points  of  the  involution  range  of  which  the 

characteristic  is  (aa',  hh').  Let  a  third  conic  C  of  the  pencil  cut 

the  transversal  PP'  in  c  and  c'.  Then  by  Desargues'  Theorem, 

Art.  187,  c,  c'  belong  to  the  involution  {aa\  hh').  Therefore  the 

range  {cc'PP')  is  harmonic,  and  by  Art.  161  the  polar  of  P  for  C 
passes  through  P',     Hence 

If  two  points  are  conjugate  for  two  conies  A,  B,  they  are  con- 
jugate for  the  pencil  of  conies  to  which  A  and  B  belong. 

If  P,  P'  are  a  pair  of  conjugate  points  for  a  pencil,  it  is 

evident  that  PP'  is  a  common  tangent  of  the  two  conies  of  the 

pencil  which  pass  through  the  points  P,  P'  respectively. 
From  this  it  follows  that  a  system  of  conies  passing  through 

three  given  points  ̂ i,  g^,  g^  and  having  a  given  pair  of  conjugate 

points  P,  P',  pass  through  a  fourth  fixed  point  g^,  viz.  the  fourth 
point  of  intersection  of  the  two  conies  round  g^g^g^  which  touch 

the  line  PP'  at  P  and  P'  respectively,  and  therefore  the  system 
constitutes  a  pencil.      In  other  words  : 

If  three  points  are  given  on  a  conic,  a  pair  of  conjugate  points 
are  equivalent  to  a  fourth  point  on  the  curve. 

*  Lam^,  1818. 
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It  can  also  be  shewn  that 

Two  points  on  a  conic  and  two  pairs  of  conjugate  points 

are  equivalent  to  four  points  on  the  curve,  i.e.  determine  a  pencil 

of  conies. 

For  let  the  lines  PP'  and  QQ'  meet  in  A,  and  on  them  take 

the  points  A-y,  A^  such  that  {PP'AA^  and  (J^Q'AA^  are  harmonic. 
Then  the  conic  through  g^g^AA^Ac^  obviously  belongs  to  the 

system.  Again,  let  the  line  g^g^  meet  PP'  in  JB  and  QQ'  in  C. 

On  PP'  take  B'  such  that  [PPBB')  is  harmonic,  and  on  QQ'  take 

C  such  that  (QQ'CC)  is  harmonic.  Then  the  line-pair  g-^g^  and 

B'C  passes  through  the  points  gi,  g^,  B,  B',  G,  C  and  therefore 
is  a  conic  belonging  to  the  system.  Let  these  two  conies  inter- 

sect again  in  ̂ 3,  g^.  Then  since  P,  P'  are  conjugate  for  both 
conies,  they  are  conjugate  for  the  pencil  to  which  they  belong, 

and  similarly  for  Q,  Q' .  Hence  the  system  forms  a  pencil 
through  the  points  gi,  g^,  g^,  9^- 

Two  points  and  three  pairs  of  conjugates  determine  a  conic. 

For  if  we  take  a  third  pair  of  points  R,  B' ,  by  Art.  217  only 

one  conic  of  the  pencil  will  have  B,  B'  for  a  pair  of  conjugates, 
unless  R,  B'  are  themselves  conjugate  points  of  the  system. 

219.  If  a  point  P  move  along  a  fixed  line  L,  its  conjugate  P 

for  a  pencil  of  conies  will  describe  a  conic  passing  through  the 

poles  of  L  for  the  pencil*. 
By  Art.  219  it  is  only  necessary  to  consider  two  of  the  conies, 

A  and  B. 

Let  Z^,  Iji  be  the  poles  of  L  for  A  and  B.  Then  P'l^  and  P'l^ 
are  the  polars  of  P  for  A  and  B.  And  by  Art.  167,  as  P  moves 
along  X, 

the  range  of  poles  (P)  =  the  pencil  of  polars  Ij^  {P') 
and  also  —  the  pencil  of  polars  l^  (P'). 

Therefore  by  Art.  44, 

the  pencil  Ij^  (P')  =  the  pencil  l^  {P'). 
*  Poncelet,  Prop.  Proj.  Vol.  i,  Art.  370. 
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Therefore  by  Art.  138  the  locus  of  P'  is  a  conic  passing 
through  ̂ 4  and  l^.  Now  A  and  B  are  any  two  conies  of  the 

pencil.  Therefore  the  locus  of  P'  passes  through  the  poles  of  L 
for  all  the  conies  of  the  pencil. 

„    ,         ,  Def.     The  point  P'  in  which  the  polars  of  P Reciprocal  .  ^  ,  ^ 
point.  intersect  is  called  the  reciprocal  of  the  point  P, 

Reciprocal  and  the  locus  of  P'  is  called  the  reciprocal  conic 
of  L  for  the  pencil*. 

220.  The  cross-ratio  of  the  pencil  formed  by  the  polars  of  any 
point  P  for  four  conies  of  a  pencil  of  conies  is  independent  of  the 

position  of  P. 

Let  P'  be  the  reciprocal  of  P.     Let  Q  be  any  other  point,  Q' 
its  reciprocal.     Let  L  be  the  line  PQ,  l^,  Ib-"  its  poles. 

Then  by  Art.  219 

i.e.  the  cross-ratio  of  the  pencil  formed  by  the  polars  of  P  is  equal 
to  that  of  the  pencil  formed  by  the  polars  of  any  other  point. 

Note.  This  cross-ratio  is  called  the  cross-ratio  of  the  four 

conies  circumscribing  the  given  quadrangle  f. 

CoR.  The  cross-ratio  of  the  tangents  at  a  point  of  inter- 
section of  four  conies  of  a  pencil  is  the  same  as  that  of  the 

tangents  at  each  of  the  other  common  points. 

221.  In  Art.  219  if  L  meets  the  line  P2P3  in  Q,  the  polars 

of  Q  will  pass  through  P^.  Hence  P^  is  a  point  on  the  reciprocal 

conic,  and  similarly  for  the  points  P^  and  P3.     Consequently 

The  reciprocal  conic  of  any  line  for  the  pencil  passes  through 
the  vertices  of  the  common  self  conjugate  triangle. 

*  Poncelet,  Prop.  Proj.  Vol.  i,  Arts.  82,  370. 
t  Chasles,  Traite  des  Sect.  Con.,  Art.  325. 

M.  14 
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The  reciprocal  conic  of  L  for  the  pencil  passes  through  the 
following  eleven  points  : 

(1)  The  three  vertices  of  the  common  self-conjugate  triangle. 
(2)  The  six  points  which  are  the  harmonic  conjugates  of  the 

points  where  L  cuts  the  sides  of  the  quadrangle. 

(3)  The  double  points  of  the  involution  on  L  determined  by 

the  pencil. 

For  the  above  reasons  the  reciprocal  conic  is  sometimes  called 

the  eleven-point  conic  of  L. 

CoR.  If  L  passes  through  one  of  the  vertices  of  the  common 

self -conjugate  triangle,  as  Pj,  the  reciprocal  conic  degenerates 

into  two  straight  lines*,  viz. 

(1)  The  line  P^Pz,  which  contains  the  poles  of  L  for  the 

pencil. 
(2)  The  fourth  harmonic  of  L  for  the  pair  of  common  chords 

through  Pj. 

222.  The  locus  of  the  centres  of  the  pencil  of  conies  is  a  conic 
which  passes  through 

(1)  The  points  Pi,  P^,  Ps, 

(2)  The  mid-points  of  each  of  the  six  sides  of  the  quadrangle, 
(3)  The  double  points  of  the  involution  determined  hy  the 

pencil  on  the  line  at  infinity  \. 

Suppose  L  to  be  the  line  at  infinity. 

Two  conies  inscribed  in  a  quadrilateral. 

223.  Fig.  102  shews  us  that  in  general  two  conies  have  four 

common  tangents  forming  a  circumscribing  quadrilateral  whose 

sides  intersect  iu  six  points. 

*  Poncelet,  Prop.  Froj.  Vol.  i,Art.  373. 
t  Dr  Taylor,  Geometry  of  Conies,  p.  284  (1881),  called  the  locus  of  centres 

"the  eleven-point  conic  of  the  quadrilateral,"  but  it  seems  better  to  apply 
the  term  to  the  reciprocal  conic  of  L. 

I 



222-226]  TANGENT   VERTICES  211 

Def.  The  point  of  intersection  of  two  common  tangents  we 

Tangent  shall  call  a  tangent  vertex. 

vertex.  rpj^^  g-^  tangent  vertices  will  be  denoted  by  the letter  T  with  suffixes  1...6. 

As  in  Art.  209,  we  shall  speak  of  any  two  opposite  vertices  of 

the  circumscribing  quadrilateral  as  a  pair  of  tangent  vertices. 

The  figure  shews  us  that  there  are  in  general  three  joairs  of 

tangent  vertices,  viz.  1\,  T.,;  T^,  T^;  and  1\,  T^. 

224.  The  distinctive  property  of  a  tangent  vertex  is  that 

Any  two  lines  through  it  which  are  conjugate  for  one  of  the 

conies  are  also  conjugate  for  the  other, 

for   each    is  the  harmonic  conjugate  of   the  other  for  the  two 

common  tangents  through  the  vertex.  Art.   166  (^'). 

225.  The  line  joining  a  pair  of  tangent  vertices  T^,  T^  has  the 

same  pole  for  both  conies. 

For  if  it  had  two  poles  Q,  Q'  the  line  joining  them  would  pass 
through  T^,  being  the  fourth  harmonic  of  ̂ 1:7^2  for  the  common 
tangents  through  Ty^.  Similarly  it  would  also  pass  through  T^, 
which  is  impossible. 

226.  Any  straight  line  L  which  has  the  same  pole  I  for  both 

conies  is  a  line  joining  a  pair  of  tangent  vertices. 

For  let  L  meet  one  of  the  common  tangents  as  T^l\  in  T. 

Join  Tl,  and  draw  TQ,  TQ'  the  other  tangents  from  T  to  A  and 

B.  Then  T(LIT^Q)  is  a  harmonic  pencil,  as  is  also  T  (LIT^Q'), 
so  that  TQ'  coincides  with  TQ,  i.e.  7^  is  a  tangent  vertex,  and 
coincides  with  T^^  suppose.  Similarly  it  may  be  shewn  that  L 

passes  through  T^.     Hence 

The  lines  joining  the  three  pairs  of  tangent  vertices  form  a 

common  self-conjugate  triangle. 

14—2 
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Consequently,  by  Art.  212, 

The  line  joining  a  pair  of  chord  vertices  passes  through  a  pair 

of  tangent  vertices,  and  similarly,  the  line  joining  a  pair  of  tangent 
vertices  passes  through  a  pair  of  chord  vertices. 

Def.  a  pair  of  common  chords  are  said  to  correspond  to 

Correspond-        the  pair  of  tangent  vertices  which  lie  on  the  polar 
ing  common        ^^f  ̂ he  vertex  of  the  chords. chords  and 
tangent  Thus  in  Fig.  102  F^^g^g^  and  P^g^g^,  correspond 
vertices.  to  T^  and  T^. 

227.  The  poles  of  any  common  chord  lie  on  the  line  joining  the 
corresponding  tangent  vertices. 

By  Arts.  211,  226. 

228.  If  from  any  point  P  two  pairs  of  tangents  PQ,  PR ; 

PQ',  PR'  are  drawn  to  the  conies,  the  pencil  P  (QR,  Q'R',  T^T^  ...) is  in  involution. 

By  Art.  188. 

229.  Tn  Art.  228,  if  the  point  P  is  taken  at  one  of  the 

points  of  intersection  of  the  conies,  as  g^,  and  if  the  tangents  at 

^1  meet  T^T^  in  a,  ̂,  the  pencil  g^  (a^T-^T^  is  harmonic,  g^a,  g-^/S 
being  the  double  rays  of  the  involution  pencil. 

Also  by  Art.  227  a,  /?  are  the  poles  of  the  common  chord  ̂ 1^4. 

230.  By  Art.  214  (aa',  bb',  pp)  is  an  involution  range,  in 
which  the  double  points  are  evidently  P^  and  P3. 

By  Art,  228  Pi  {aa,  bb',  T^T^  is  an  involution  pencil,  in  which 
the  double  rays  are  PjPg  ̂ ^d  P1P3. 

Therefore  T^T^  is  a  pair  of  conjugate  points  in  the  involution 

range  {aa!,  bb' ,  pp). 
231.  If  three  conies  have  a  common  tangent  vertex,  their  three 

other  corresponding  tangent  vertices  are  collinear. 

Let  A,  B,  G  be  the  conies,  T  the  given  tangent  vertex, 

T^,  T^,  T^  the  corresponding  tangent  vertices  for  A  and  B, 
B  and   C,  A  and  C. 

i 
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Draw  ̂ i^2>  ̂ ^d  from  any  point  P  on  it  draw  pairs  of  tangents 
PQ,  PR,  &c.  to  the  conies,  and  join  PT,  PT^. 

Then  P  (QB,  Q'R\  Q"B")  is  an  involution  pencil,  in  which 
PT,  PT^ ;  PT,  PT^ ;  and  PT,  PT.,  are  pairs  of  corresponding 

rays,  i.e.  T^  lies  on  the  line  ̂ 1^2- 

Range  of  Conies. 

Range  of  •  Def.     A  system  of  conies  inscribed  in  a  quadri- 
conics.  lateral  is  called  a  range  of  conies. 

232.  Given  a  range  of  conies,  the  pairs  of  tangents  drawn  to 

them  from  the  same  point  P  will  form,  a  pencil  in  involution. 

See  Art.  188.  The  double  rays  are  the  tangents  at  P  to  the 

conies  which  pass  through  P. 

By  Arts.  225,  226  a  range  has  one,  and  only  one,  common 

self-conjugate  triangle. 
As  in  Art.  217  it  may  be  shewn  that 

A  given  pair  of  lines  are  conjugate  for  only  one  conic  of  a 

range. 

233.  The  poles  of  any  straight  line  L  for  the  range  are 
collinear. 

Let  l^,  l^  be  the  poles  of  L  for  A  and  B,  and  let  Ij^l^  meet 
L  in  P. 

Then  PIa^b  ̂ ^^^  ̂ ^  ̂ ^^  conjugate  lines  for  both  A  and  B,  and 

are  therefore  the  double  rays  of  the  involution  pencil  formed  by 

the  pairs  of  tangents  from  P  with  the  lines  drawn  from  P  to 

opposite  vertices  of  the  quadrilateral.  But  the  tangents  from 

P  to  a  third  conic  C  of  the  range  belong  to  the  same  involu- 
tion, and  consequently  have  the  same  double  rays,  viz.  their 

harmonic  conjugates.  Hence  PZ^Z^  passes  through  l^,  the  pole  of 
L  for  G.     Hence 
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A  pair  of  lines  which  are  conjugate  Jbr  two  conies  A,  B  are 

conjugate  for  the  range  to  which  A   and  B  belong. 

If  OL,  OL'  are  a  pair  of  conjugate  lines  for  a  range,  it  is 
evident  that  0  is  a  common  point  of  the  two  conies  of  the  range 

which  touch  the  lines  OZ,  OL'  respectively. 
The  line  L  and  the  locus  of  its  poles  being  conjugate  lines  for 

the  range  we  infer  that 

All  conies  touching  three  given  lines  and  having  a  given  pair  of 

lines  conjugate  touch  a  fourth  line. 

Hence,  if  three  tangents  are  given  and  a  pair  of  conjugate 
lines,  the  conies  touch  a  definite  fourth  line,  viz.  the  fourth 

common  tangent  of  the  two  conies  which  touch  the  three  given 

tangents,  and  of  which  each  touches  one  of  the  two  conjugate 
lines  at  their  intersection. 

In  other  words  : 

If  three  tangents  are  given  to  a  conic,  a  pair  of  conjugate  lines 

are  equivalent  to  a  fourth  tangent. 

We  leave  it  to  the  student  to  shew  as  in  Art.  218  that 

(1)  A  system  of  conies  touching  two  give7i  lines  and  having 

given  two  pairs  of  conjugate  lines  constitute  a  range,  and 

(2)  Two  tangents  and  three  pairs  of  conjugate  lines  determine 
a  conic. 

234.  In  Art.  233  if  the  line  L  rotates  about  a  fixed  point  P, 

the  line  which  is  the  locus  of  the  poles  of  L  will  envelop  a  conic 

which  also  touches  the  polars  of  P  for  the  range. 

By  Art.  233  it  is  only  necessary  to  consider  two  of  the  conies, 

A  and  B.  Let  P^,  Pj^  be  the  polars  of  P  for  A  and  B.  Then 

if  l^  and  l^  are  the  poles  of  L  in  any  position,  ̂ ^  will  lie  on  P^ , 

and  l^  on  P^ ;  and  as  L  rotates  about  P,  the  range  of  polars  (L) 

is  homographie  to  each  of  the  ranges  of  poles  (Z^)  and  {Ij^),  by 
Art.  167. 
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Therefore  the  range  {I a)  =  the  range  (l^),  by  Art.  39,  and  by- 
Art.  139  the  line  Ij^l^  envelops  a  conic  touching  the  lines  Fj^ 
and  F^. 

The  same  reasoning  shews  that  the  conic  touches  the  polar  of 

F  for  each  conic  of  the  range. 

235.  The  cross-ratio  of  the  range  formed  by  the  poles  of  any 
line  L  for  four  conies  of  a  range  is  independent  of  the  position 

of  L. 

By  Art.  233  the  poles  of  Z,  viz.  l^^  /^,  l^^  Ij),  lie  on  a  line  X', 
and  if  M  is  any  other  line  its  poles,  viz.  m^,  m^,  m^.,  rrijy,  lie  on 

another  line  M'.  Let  L  and  M  meet  in  the  point  F.  Then  the 
polar  of  P  for  A  is  the  line  l^'^Ai  by  Art.  163,  and  similarly 
for  its  polars  for  the  other  conies.  By  Art.  234  these  polars  are 

tangents  to  a  conic  which  touches  L'  and  M'. 
Therefore  by  Art.  130  the  range  {lAhh^D)  =  {'^A'"^B''^c^D)i 

i.e.  the  cross-ratio  of  the  range  formed  by  the  poles  of  L  is  equal 
to  that  of  the  range  formed  by  the  poles  of  any  other  line. 

Note.  Chasles  called  this  the  cross-ratio  of  the  four  conies  of 

the  range. 

236.  When  the  line  L  passes  through  F^,  its  poles  lie  on  the 

line  F2P3,  and  the  conic  envelope  touches  F^F^.     Hence 

The  conic  envelope  touches  the  sides  of  the  common  self  conjugate 

triangle. 

237.  The  conic  envelope  of  L  for  the  range  touches  the 

following  eleven  lines : 

(1)  The  three  sides  of  the  common  self-conjugate  triangle. 

(2)  The  six  lines  obtained  by  joining  any  tangent  vertex  to 

the  point  P,  and  taking  the  harmonic  conjugate  of  this  line  for 

the  two  common  tangents  through  that  vertex. 

(3)  The  double  rays  of  the  involution  pencil  obtained  by 

drawing  pairs  of  tangents  from  F  to  each  conic  of  the  range. 
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Hence  the  conic  envelope  of  L  may  be  called  "the  eleven- 

tangent  conic." 
Cor.  If  P  lies  on  one  of  the  sides  of  the  common  self-con- 

jugate triangle  as  P^Pz^  the  conic  envelope  degenerates  into  two 

points,  viz. 

(1)  The  point  P^,  through  which  the  polars  of  P  pass,  and 

(2)  The  fourth  harmonic  of  P  for  the  jmir  of  tangent 
vertices  on  P^P^- 

238.  The  locus  of  the  centres  of  the  range  is  a  straight  line*. 
Suppose  the  line  L  in  Art.  233  to  be  at  infinity. 

239.  Let  PQRS  he  a  quadrangle,  A,  JB,  C  its  diagonal  points, 

and  let  X,  Y  he  two  conjugate  points  for  the  pencil  of  conies  cir- 
cumscribing the  quadrangle, 

A 

Fig.  103. 
Newton,  Princip.  Bk  i,  §  v,  Lemma  25,  cor.  3. 
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H         Then  X  (PQRS)  =  Y{XABC)*. 

^f  ^^  the  pencil  of  conies,  if  we  draw  the  two  a,  /3  passing 

respectively  through  the  points  X,  Y,  they  will  have  the  line 

XY  for  a  common  tangent  by  Art.  218.  Then  T,  the  pole  of 

PS  for  a,  lies  on  AB,  by  Art.  216.  Let  PS  meet  XY  in  F,  XT 

in  G,  and  AB  in  H,  Then  F  is  the  pole  of  XT  for  a,  and 

therefore,  by  Art.  166  (a),  F  and  G  are  conjugate  points  ...(1). 

Then  the  conic-pencil 

X{PQPS)  =  P{PQPS)--={TABH)   (2). 

Now  by  Art.  221  the  eleven-point  conic  which  is  the  locus  of 
the  poles  of  the  line  XY  for  the  pencil  of  conies  passes  through 

the  points  A,  B,  C,  X,  Y,  and  also  through  the  point  G,  since 

(FGPS)  is  harmonic,  by  (1). 

.*.  the  conic-pencil 

Y{XABC)  =  G  (XABC)  =  {TABH)  =  X(PQES)  by  (2). 

240.  Let  PQRS  be  a  quadrilateral,  ABC  its  diagonal  triangle, 

and  let  Ox,  Oy  he  two  lines  conjugate  for  the  range  of  conies 

inscribed  in  the  quadrilateral.  Let  one  of  them.  Ox,  meet  the  lines 

PQ,  QR,  RS,  SP  in  the  points  p,  q,  r,  s,  and  let  the  other,  Oy, 

meet  BC,  CA,  AB  in  the  points  a,  ft,  y. 

Then  (pqrs)  =  {Oa/3y).     (Correlative  of  Dr  Milne's  Theorem.) 
Of  the  range  of  conies,  if  we  draw  the  two  a,  b  touching 

respectively  the  conjugate  lines  Ox,  Oy  they  will  have  0  for  a 
common  point.  Let  a  touch  the  lines  PQ,  QR,  RS,  SP  in  the 

points  Op,  aq,  a^.,  ag. 

Then  the  polar  of  P  for  a  passes  through  C.  Let  this  polar 

meet  Ox  in  x.  Then  since  P  is  the  pole  of  Ca^,  and  0  is  the 
pole  of  Ox,  therefore  x  is  the  pole  of  PO, 

Therefore  Px,  PO  are  conjugate  lines  for  a    ( 1 ). 

*  This  theorem,  with  a  proof  by  analysis,  was  given  by  Dr  W.  P.  Milne 
in  the  Math.  Gazette,  Jan.  1911,  p.  386. 
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.*.  the  range  {pqrs)  on  the  tangent  Ox 

=  conic-pencil  of  points  of  contact  {a^a^fb^a^      Art.  13L 

=  the  range  on  the  tangent  FQ 

=  {a,QTP)    (2). 

Now  by  Art.  237  the  eleven- tangent  conic,  which  is  the 
envelope  of  the  polars  of  0  for  the  range  of  conies,  touches  the 

lines  BC,  CA,  AB,  Ox,  Oy,  and  also  touches  the  line  Fx,  since 

F  (xOQS)  is  harmonic,  by  (1). 

Let  Fx  meet  BC  in  k  and  GA  in  I. 

Then  the  ranges  made  by  the  four  tangents  Ox,  BC,  CA,  AB 

on  the  two  tangents  Oi/  and  Fx  are  equicross,  i.e. 

{Oa/3y)  =  {xklP)=C{xklF)  =  (apQTF)  =  (pqrs)  by  (2). 
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EXAMPLES. 

1.  If  two  conies  touch  one  another,  the  line  joining  the  poles  of  their 
common  chord  passes  through  the  point  of  contact. 

2.  Two  conies  touch  one  another  at  P,  and  T,  T'  are  the  poles  of  their 
common  chord  IF.  If  any  chord  PQR  is  drawn  through  P,  TR,  T'Q  will 
intersect  on  II'. 

Conversely,  if  TR,  T'Q  intersect  on  II\  QR  passes  through  P.  (Chap. 
XIX,  Ex.  28.) 

3.  A  system  of  conies  is  described  touching  a  given  conic  at  a  given 

point  P,  and  intersecting  it  in  two  fixed  points  I,  I'.  The  locus  of  the  pole 
of  ir  for  the  system  is  a  straight  line  passing  through  P.  (Chap.  XIX, 
Ex.  29.) 

4.  A  system  of  conies  which  pass  through  three  given  points  and  have 
the  poles  of  the  line  joining  two  of  them  on  a  fixed  line  have  a  fourth 
common  point. 

5.  Given  two  tangents  CA,  CB,  and  two  points  J,  Z'  on  a  conic,  the 
locus  of  the  pole  of  the  common  chord  II'  is  a  double  line  of  the  involution 
pencil  C{ir,  AB).     (Chap.  XIX,  Ex.  30.) 

6.  Two  conies  intersect  in  the  points  A,  B,  I,  I'.  Any  chord  through 
A  meets  the  conies  in  P,  Q.  Then  B  (II'PQ)  is  constant.  (Chap.  XIX, 
Ex.  33.) 

[In  Examples  7 — 12  the  reference  is  to  Fig.  102.] 

7.  P,  Q  are  the  points  of  contact  of  one  of  the  common  tangents  T^T^. 
The  pencil  P^  {PQg^g^)  is  harmonic.     Art.  213. 

8.  If  the  tangent  P-^a  meets  the  pair  of  common  chords  through  Pg 

in  G,  G',  and  the  conic  B  in  H,  K,  the  ranges  {PiaGG')  and  {P^aHK)  are harmonic. 

9.  The  tangent  to  the  conic  B  at  any  point  Q  meets  A\xi  R,  S,  g^g^  in 

(r,  and  ̂ 3^4  in  G'.  Then  P^Q  is  one  of  the  double  rays  of  the  involution 
pencil  Pi  (RS,  g^g^.     Art.  213. 

10.  If  P,  Q  are  the  points  of  contact  of  the  common  tangent  T^T^,  the 

six  points  P,  Q,  P-^,  P^,  gi,  g^  lie  on  a  conic  having  PQ,  g-^g^  for  conjugate 
lines.     See  Ex.  7. 

Also  P,  Q  are  conjugate  points  for  any  conic  of  the  pencil  through 

gig29394-     By  Desargues. 
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11.  A  straight  line  through  T^  meets  the  conic  A  in  a,  a'  and  B\ia.h,h' 
so  that  the  points  are  in  the  order  T^aba'h',  Then  aa,  j86  meet  on  g-^g^^  as 
do  also  aa',  /36'. 

12.  If  the  pole  of  g^g^  for  B  lies  on  A,  the  pole  of  g^^  for  B  will  also  lie 
on  A. 

13.  Three  conies  have  a  common  chord  the  poles  of  which  are  collinear. 
If  the  polars  of  a  point  for  the  conies  are  concurrent  the  conies  belong  to  a 

pencil. 

14.  A  pencil  of  conies  passes  through  the  points  A,  B,  I,  I',  and  0  is  a 
fixed  point  in  the  plane.  For  any  one  of  the  conies  T  is  the  pole  of  II',  and 
the  polar  of  G  meets  TC  in  P.  Shew  that  the  locus  of  P  for  the  pencil  is  a 

conic  through  G,  I,  I'. 

15.  In  Art.  218,  by  taking  the  pair  of  conjugate  points  to  be  the 

circular  points  i,  i',  shew  that 
(1)  If  two  conies  of  a  pencil  are  rectangular  hyperbolas,  so  are  all  the 

conies  of  the  pencil. 

(2)  Two  conies  of  the  pencil  touch  the  line  at  infinity  at  the  points  i,  i' 
respectively. 

(3)  li  A,  B,  G  are  three  of  the  common  points,  the  locus  of  the  centres 
is  the  nine-point  circle  of  the  triangle  ABC. 

16.  A  is  one  of  the  common  points  of  a  pencil  of  conies.  Any  trans- 
versal through  A  meets  three  of  the  conies  in  P,  Q,  R,  and  a  common  chord 

in  K.   As  the  transversal  rotates  about  ̂ ,  (PQEK)  is  constant,  by  Desargues. 

17.  II'  is  a  common  chord  of  two  conies.  Through  T,  T'  its  poles  are 
drawn  two  chords  intersecting  on  11'.  Shew  that  each  of  the  lines  joining 
the  extremities  of  the  chords  passes  through  a  tangent  vertex. 

18.  Shew  that  in  Fig.  102  the  points  T^,  1\ ,  gi,  g2^  ds,  O4  lie  on  a  conic, 
i.e.  that  one  of  the  conies  of  a  pencil  passes  through  a  pair  of  tangent  vertices 
of  each  pair  of  the  conies. 

19.  In  Fig.  102  shew  that  a,  /3  are  conjugate  points  for  the  conic  of  the 
pencil  which  passes  through  the  points  Ti,  T^. 

20.  Two  conies  touch  at  G  and  have  a  common  chord  II'.  The  tangent 

to  one  conic  a  at  ̂   meets  the  other  conic  /3  in  B,  B',  and  T  being  the  pole  of 
II'  for  a,  TA  cuts  a  in  A'.  Then  GA'  is  one  of  the  double  rays  of  the 

involution  pencil  G  {BB',  II'). 
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21.  If  four  conies  are  inscribed  in  a  quadrilateral,  the  cross-ratio  of  the 
poles  of  any  straight  line  is  equal  to  the  cross-ratio  of  the  points  of  contact 
on  each  of  the  sides  of  the  quadrilateral. 

22.  A  given  line  L  meets  any  conic  of  a  pencil  in  a,  a'.  Prove  that  a,  a' 
are  conjugate  points  for  the  eleven-point  conic  corresponding  to  the  line  L. 

23.  If  a  conic  y  is  contra-polar  to  each  of  two  conies  a,  /3  : 

(1)  7  will  have  a  chord  11'  common  to  a  and  j3, 

(2)  The  pole  of  II'  for  y  will  lie  on  AB,  the  other  common  chord  of 
a  and  /3, 

(3)  A  and  B  are  conjugate  points  for  y, 

(4)  7  will  be  contra-polar  to  the  pencil  of  conies  through  A,  B,  I,  I', 

(5)  7  will  pass  through  two  of  the  vertices  of  the  common  self- 
con  jugate  triangle  of  the  pencil. 

24.  In  Fig.  102  shew  that  any  conic  through  gig^a^  is  contra-polar  to  the 
conic  of  the  pencil  which  passes  through  T-^,  Tg.     See  Ex.  18. 

25.  In  Fig.  102,  g^a,  g^  meet  the  conies  A^  B  in  a^,  b^.  Shew  that  the 

conic  round  T^T^g-^^g^g^g^  is  contra-polar  to  the  conic  round  gig^g^cLx^i- 

26.  A  variable  conic  passes  through  a  fixed  point  and  intersects  a  conic 

to  which  it  is  contra-polar  in  two  fixed  points.  Shew  that  it  passes  through 
a  fourth  fixed  point. 

27.  Three  given  conies  have  a  common  chord.  Shew  that  the  locus  of 

a  point  whose  polars  for  them  are  concurrent  is  a  conic  contra-polar  to  each 
of  the  given  conies. 
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HOMOLOGY 

THE  HOMOLOGUE  OF  A  LINE  AND  CONIC.  RELATIONS 

BETWEEN  A  PAIR  OF  COMMON  CHORDS  AND  THE 

CORRESPONDING  PAIR  OF  TANGENT  VERTICES.  RELA- 

TIONS  BETWEEN    THE    FOUR    CONSTANTS    OF    HOMOLOGY 

241.  Def.  Given  a  fixed  point  T  and  a  fixed  line  X,  and  any- 
plane  figure  A,  if  through  T  we  draw  a  transversal 

meeting  ̂   in  P  and  L  in  G,  and  if  on  the  trans- 

versal TP  we  take  a  point  P'  such  that  the  cross- 

ratio  (TGPP')  is  constant  {=X.'),  then 
The  locus  of  the  point  P'  is  called  the  homo- 

logue  of  A, 

The  point  T  is  called  the  centre  of  homology ̂  
The  line  L  is  called  the  axis  of  homology^ 

A.'  is  called  the  constant  of  homology. 
242.  The  homologue  of  a  straight  line  is  a  straight  line. 

Homologue. 
Centre  of 
homology. 
Axis  of 
homology. 
Constant  of 
homology. 
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In  the  above  Def.  let  ̂   be  a  straight  line,  and  let  it  meet  L 

in  g.  Through  T  draw  two  transversals,  one  meeting  A  in.  P  and 

L  in  G,  the  other  meeting  A  in  P-^  and  L  in  G'.  On  TP  and 

TP^  take  points  P'  and  P/  such  that 

\'^{TGPP')  =  {TG'P,P^'),  by  Art.  9. 

Then  by  Art.  41  (2)  these  ranges,  being  homographic  and 
having  T  a  common  point,  are  in  perspective,  and  consequently 

P'Pj  passes  through  the  fixed  point  g.  Therefore  the  homologue 
of  ̂   is  a  straight  line  passing  through  g. 

If  the  line  A  is  at  infinity,  its  homologue  is  evidently  a  line 

parallel  to  L. 

243.     The  homologue  of  a  conic  is  a  conic. 

Lemma.  In  Art.  74  we  proved  that  if  abc...,  a'b'c'...  are  two 
homographic  ranges  on  the  same  straight  line,  and  e,  f  their 

common  points,  the  cross-ratio  (aea'f)  is  constant,  where  {a,  a') 
are  any  pair  of  corresponding  points.  Conversely,  if  e^fsiYei  two 

fixed  points  on  a  straight  line,  and  abc...,  a'b'c  ...  two  rows  of 

points  on  the  same  line  such  that  (aea'f)  is  constant,  (a,  a')  being 
any  pair  of  corresponding  points,  the  two  rows  are  homographic 

and  e,  /  are  their  common  points. 
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[CH.  XV Through  one  of  the  common  points  f  draw  any  straight  line 

Z,  and  from  any  point  g  on  it  draw  rays  to  the  points  of  the  rows, 
and  from  e  draw  a  transversal  M  meeting  these  rays  in  the  points 

aj^iCi...,  CTi'^/c/ . . . ,  and  meeting  L  iny^. 
Then  by  Art.  41  (1)  the  systems  on  the  two  transversals 

through  e  are  homographic,  being  in  perspective,  centre  g.  Also 

by  Art.  39  the  rows  a^h-^c-^...^  a^h-[c-[...  are  homographic,  and  e^f-^ 
are  their  common  points. 

Fig.  107. 

Now  let  ̂   be  a  conic,  L  the  axis  of  homology  cutting  A 

in  ̂ ,  g\  and  T  the  centre  of  homology,  and  let  if  be  a  fixed 
transversal  through  T. 

Through  T  draw  any  transversal  meeting  A  in  P,  and  L  in  (r, 

and  on  this  transversal  TPG  take  a  point  P'  such  that 

{TGPF)  =  a  constant  X',  by  Art.  9. 
Then  we  will  prove  that  as  the  transversal  rotates  about  T,  the 

locus  of  P'  is  a  conic  passing  through  the  points  g,  g . 
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Through  T  draw  any  other  transversal  meeting  the  conic  A  in 

Pj,  and  X  in  6?!,  and  on  it  take  the  point  P/  such  that 

Then  by  Art.  41  (2)  the  two  ranges  {TGPF)  and  (TG^P^P,'), 
their  cross-ratios  being  equal,  and  their  point  of  intersection  T 
being  a  common  point,  are  in  perspective,  the  centre  of  per. 

spective  lying  on  the  line  L. 

Suppose  now  we  draw  a  system  of  transversals  through  T, 

and  form  on  each  a  range  =  k'  as  above.  Join  g  to  the  two  series 

of  points  PP^P^...,  P'P{P^....  Also  join  gT,  and  let  the  pencil, 
centre  ̂ ,  which  is  thus  formed  be  cut  by  the  transversal  M  in 

the  points  a^\c^...^  a^h(c{  ...,  T^  f^. 

Then  by  Art.  40  (2)  X  =  {Tf^a,a^)  =  (Tf^hh^)  =  .... 

Therefore  by  the  above  Lemma  a-^b^Cj^  ...  and  a^hiCi...  are 
two  homographic  rows  of  which  T,f^  are  the  common  points. 

.*.  (ai6iCi...)  =  «6/ci'...), 

.-.  g{(hhiCi...)  =  g{aj'biC,' ...), 

:.g{PP,P,...)=g{FP;P^...). 
In  a  similar  manner  we  can  shew  that 

g'{PP,P,...)=g'{P'P^P^...). 

But  g{PP,P,...)=g'{PP,P,...),  by  Art.  129. 

.-.  g(P'P,'P,'  ...)  =  g'{P'P,'P,' ...),  by  Art.  44. 

Therefore  by  Art.  138  the  locus  of  P'  is  a  conic  passing 

through  g  and  g'.     We  will  call  this  conic  £. 

244.  It  will  be  noticed  that  in  the  course  of  Art.  243  we 

incidentally  proved  the  following  property : 

If  through  the  centre  of  homology  we  draw  two  transversals 

TPP'  and  TP^P(^  each  meeting  the  conies  in /our  points  PP'pp' 
and  PiPiPiPi,  the  lines  joining  corresponding  pairs  of  these  points 

such  as  PPi,  P'Pj  will  meet  on  the  axis  of  homology. 
M.  15 
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If  the  transversal  TP^  rotate  into  the  position  TP^  the  lines 

P^P  and  P^P'  become  the  tangents  at  P  and  P',  which  therefore 

intersect  on  gg'. 
If  the  transversal  through  T  touches  ̂   at  ̂   and  meets  B  in 

Q'  and  L  in  F',  then  since  the  tangents  at  Q  and  Q'  intersect  on 
L,  viz.  at  F\  it  follows  that  the  tangent  at  Q  is  also  the  tangent 

at  Q'.  Hence  T  is  the  point  of  intersection  of  a  pair  of  common 

tangents  and  gg'  is  one  of  the  corresponding  common  chords. 
Consequently  if  we  have  two  conies,  one  of  them  is  the  homo- 

logue  of  the  other,  a  tangent  vertex  being  the  centre  of  homo- 
logy, and  one  of  the  corresponding  common  chords  the  axis  of 

homology. 

Relations  between  a  pair  of  common  chords  and  the 
corresponding  pair  of  tangent  vertices. 

245.  The  object  of  the  next  two  articles  is  to  prove  the 

following  propositions: 

(1)  If  from  any  point  on  a  common  chord  we  draw  the  four 
tangents  to  the  two  conies,  the  straight  lines  joining  the  points  of 

contact  on  the  first  conic  to  the  points  of  contact  on  the  second  conic 

will  pass  hy  pairs  through  the  two  tangent  vertices  which  correspond 
to  the  common  chord. 

(2)  If  through  a  tangent  vertex  we  draw  any  transversal 

meeting  the  conies  in  four  points,  and  draw  the  tangents  at  these 

points,  the  pair  of  tangents  to  the  one  conic  nnll  meet  the  tangents 

to  the  other  in  four  points  which  lie  hy  pairs  on  the  pair  of  common 

chords  corresponding  to  the  tangent  vertex. 

246.  If  from,  any  point  on  the  a^s  of  homology  four  tangents 

are  drawn,  one  pair  of  the  lines  joining  the  points  of  contact  pass 

through  one  of  the  corresponding  tangent  vertices,  and  another  pair 

pass  through  the  other. 

1 
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qVX 

pp 

n'l 

Fig.  108. 

15-2 
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If  through  T^  we  draw  any  chord  meeting  the  conic  A  inp 

and  gg'  in  F,  it  will  meet  the  conic  B  in  two  points  q^  q\  and  of 

these  points  one  {q  suppose)  will  be  such  that  (T^Fpq)  =  X'^  and 
the  tangents  at  p,  q  will  intersect  in  a  point  n  which  lies  on  gg', 

by  Art.  244.  Conversely,  if  on  gg'  we  take  a  point  n,  and  draw 
the  four  tangents  np,  nq,  npi,  nq^,  the  line  joining  the  points  of 

contact  of  two  of  these  will  pass  through  T^ .  Let  p,  q  be  the 

pair.  The  line  joining  another  pair  of  points  of  contact  will  also 

pass  through  I^j,  for  if  we  join  T^  to  either  of  the  points  pi  or  q^, 
it  will  obviously  pass  through  the  other,  for  the  tangents  at  these 

points  intersect  in  n. 
We  will  now  shew  that  the  line  joining  the  points  of  contact 

Pi  Qi  passes  through  7^2* 
The  lines  pp^  and  qq^  are  the  polars  of  n,  and  intersect  in  a 

point  m  which  lies  on  gg',  by  Art.  210,  and  they  pass  respectively 

through  the  fixed  points  a,  (i',  which  are  the  poles  of  gg',  and  lie 
on  T^l\,  by  Art.  227. 

Since  the  triangle  ma'/3'  is  cut  by  the  transversal  T^pq,  by^ 
Menelaus'  Theorem mp    oTj    ̂  

a!p'  (i'T^'mq    ^  '' 

Since  (ap^mp)  is  a  harmonic  range, 
mp        mpi 

ap~~  a'pi' 

Since  (T^T^a/B')  is  harmonic  by  Art.  229, 

a'T,_     a'T^ 

P'T,       PT,' 
Therefore  by  substitution  in  (1)  we  obtain 

mp,    oT^    §^^i 

d'p, '  /3'T^ '  mq 

Therefore,  by  the  converse  of  Menelaus'  Theorem,  p^^q  passes 
through  T^.     Similarly  q^p  passes  through  T^, 
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We  have  thus  proved  that  certain  relations  hold  between  a 

pair  of  tangent  vertices  and  one  of  the  corresponding  common 

chords,  and  it  could  be  shewn  in  exactly  the  same  manner  that 

the  same  relations  hold  for  the  same  pair  of  tangent  vertices  and 

the  other  corresponding  common  chord,  but  of  course  the  constant 

of  homology  would  have  a  different  value. 

Hence,  if  we  take  any  point  on  one  of  a  pair  of  common  chords, 

and  from,  it  draw  the  four  tangents  to  the  two  conies,  and  take  any 

pair  of  the  points  of  contact  which  lie  on  different  conies,  then  of 

the  four  lines  which  join  them  two  will  pass  through  one  of  the  pair 

of  tangent  vertices  corresponding  to  the  common  chords,  and  the 

other  two  will  pass  through  the  other  tangent  vertex. 

247.  If  from  a  tangent  vertex  we  draw  any  transversal 

cutting  the  two  conies  in  four  real  points,  and  draw  the  tangents 

at  these  points,  the  tangents  to  one  conic  will  meet  the  tangents  to 

the  other  in  four  points  which  lie  hy  pairs  on  the  two  common 

chords  corresponding  to  the  tangent  vertex. 

For  let  the  transversal  through  T^  cut  the  conies  in  p,  q,  and 

let  the  tangent  to  ̂   at  jt?  meet  the  common  chords  in  n,  n^. 

Then  by  Art.  246  of  the  two  tangents  from  n  to  B  one  of  the 

points  of  contact  lies  on  T^p  and  is  therefore  q,  i.e.  the  tangent  at 

p  meets  the  tangent  at  q  on  the  common  chord  gg'.  Similarly 
it  may  be  shewn  that  the  other  points  of  intersection  of  the 

tangents  at  p,  q,  p',  q'  lie  on  one  or  other  of  the  pair  of  common 
chords  corresponding  to  T^. 

In  Fig.  108  the  four  points  are  n,  n^,  n',  n/. 

248.  From  Art.  246  we  see  that  in  Fig.  108 

If  m  is  any  point  on  a  common  chord  Pg,  poles  a,  /B',  and 

ma,  m^'  meet  the  conies  in  two  pairs  of  points  p,Pi,  q,  qi',  the  lines 
joining  the  pairs  of  these  points  which  lie  on  separate  conies  will 

pass  by  pairs  through  the  points  T^,  T^  corresponding  to  the  common 
chord  Pg. 

Also  X'  =  {T^Fpq)  =  {T^c'a'P),  by  Art.  41  (1). 
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Relations  between  the  four  constants  of  homology. 

249.  In  Fig.  108  let  T-^pp'qq  be  any  transversal  through  1\ 
We  have  shewn  in  Art.  247  that  the  tangents  at  jo,  q  intersect 

on  the  common  chord  PF^  as  do  also  the  tangents  at  p',  q'^  i.e.  T^ 
is  a  centre  and  PF  the  corresponding  axis  of  homology  of  the  two 

curves,  the  constant  of  homology  being  \'  suppose.  Also  by 

Art.  247  the  tangents  at  p,  q'  intersect  on  the  common  chord  Pf, 
as  do  also  the  tangents  at  p\  q\  i.e.  T^  is  a  centre  and  Pf  the 

corresponding  axis  of  homology  of  the  two  curves,  the  constant 

of  homology  being  A.  suppose. 

Similarly  T^  is  a  centre  of  homology,  and  has  Pf  and  PF  as 

its  corresponding  axes  according  as  we  take  for  constants  /a  or  /a'. 
By  Art.  248  these  four  constants  of  homology  are  determined 

by  the  equations 

{T,cal3)  =  K  {T,c'a'ft')  =  X', 

Writing  X  in  the  form  ̂ ^  :  -^ ,  &c.  we  see  that  these  equa- 1  ip    cp 

tions  are  connected  by  the  relations 

Similarly  ̂ ,  =^  (T^T^a' P')  =  -  1. 

Also,  if  T^QGQ'G'  is  a  common  tangent, 

\  =  {TmQ'\     X'={T,G'QQ'). 

''  X'  =  §^'  ̂  ̂  =  (^'^W)  =  -1,  by  Art.  213,  Cor. 

X  =  -\'  = fX  =  fX 

250.  The  results  obtained  in  the  previous  article  may  be 
stated  as  follows : 

Considering  two  conies  as  homologous  figures,  if  we  take  one  of 

a  pair  of  tangent  'vertices  as  centre  of  honfiology,  and  one  of  the 
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pair  of  corresponding  common  chords  as  axis,  the  constant  of 

homology  has  the  same  value  both  in  magnitude  and  sign  as  when 

we  take  the  second  tangent  vertex  as  centre  of  hom,ology  and  the 

second  corresponding  common  chord  as  axis  ;  and  it  has  its  value 

the  same  in  magnitude  hut  of  opposite  sign  when  we  take  the  first 
vertex  as  centre  with  the  second  chord  as  axis,  or  the  second  vertex 

as  centre  with  the  first  chord  as  axis. 

251.  In  Figs.  107,  108  let  PG  intersect  A  and  B  in  the 

points  g^,  g^.  Then  retaining  the  same  centre  T^,  axis  PG,  and 
constant  X,  if  we  construct  the  homologue  of  B  we  shall  obtain  a 

third  conic  C,  which  will  touch  the  common  tangents  from  T^  to 

A  and  B,  and  pass  through  the  points  ̂ i,  g^^;  but  the  second 

centre  and  axis  will  not  be  T^  and  PG'.  Similarly  a  fourth  conic 
can  be  obtained  from  C,  and  so  on.  This  system  is  a  particular 
case  of  that  considered  in  Art.  288. 

If  X  =  — 1,  the  homologue  of  B  will  be  A,  and  the  system 
Harmonic  will  in  this  case  consist  of  these  two  conies  only, 

homology.  For    (T^GPF)  -  -  1  =  (T^GP'P).     This    is    called 
harmonic  homology*. 

Also  since  (T^c'a'ft')  =  1,  T^  coincides  with  c',  and  therefore 

the  centre  T^  lies  on  the  axis  PG'.  Similarly  T^  lies  on  the 
axis  PG. 

EXAMPLES. 

1.  Shew  that  if  the  conies  described  in  Art.  251  are  denoted  by 
A,  J5i,  B2,  B3...  the  successive  conies  ̂ 1,  B2,  B^...  are  the  homologue s 

of  A  for  the  constants  X,  X^,  X^  ...  respectively. 

2.  In  the  general  case  shew  that  the  second  centres  for  any  pairs  of  the 
system  are  collinear,  and  that  all  the  second  axes  are  concurrent. 

3.  If  with  the  same  centre  and  axis,  and  constants  X,  -X  respectively, 
two  conies  jBj  ,  B2  are  homologues  of  A ,  shew  that  Bi  and  B2  are  in  harmonic 
homology. 

*  Eussell,  Elementary  Treatise  on  Pure  Geometry,  p.  325, 



CHAPTER  XVI 

CONSTRUCTION  OF  COMMON  CHORDS  AND  TANGENT  VERTICES 

AND  COMMON  SELF-CONJUGATE  TRIANGLE  OF  TWO 

CONICS 

252.  We  will  now  consider  the  reality  and  imaginarity  of 
the  different  groups  each  consisting  of  a  pair  of  common  chords 

and  the  corresponding  pair  of  tangent  vertices,  and  we  will  shew 

how  to  construct  them  when  it  is  possible  to  do  so. 

253.  Poncelet  in  his  Prop.  Proj.  Vol.  i,  Art.  54  divides 
common  chords  into  three  classes : 

(1)  real,  when  they  pass  through  two  real  points  of  inter- 
section of  the  curves, 

(2)  ideal,  when  the  points  of  intersection  of  the  curves 

through  which  they  pass  are  unreal,  but  the  chords  themselves 
are  real, 

(3)  imaginary,  when  the  chords  cannot  be  constructed. 

Similarly,  tangent  vertices  may  be 

(1)  real,  when  they  are  the  intersection  of  two  real  common 

tangents, 

(2)  ideal,  when  the  tangents  through  them  are  unreal,  but 

the  points  themselves  are  real, 

(3)  imaginary,  when  the  points  cannot  be  constructed. 

1 

i 
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^f        254.     I.      When   the   conies  intersect    in  four   real  separate 

points. 

il
n 
 Fig.  102 

 the  three
  groups 

i              
               

            

Tu  T^y  9x9^,  9i9^    (1)» 

^           
            

          

^3,  ̂ 4,  9x9^.  9^9^    (2), 

^^           
             

          

^6,  ̂ 6,  9i9zy  9i9A    (3), 

are  all  real,  as  are  also  the  three  vertices  Pj,  Pg,  Pg  of  the 

common  self -conjugat
e  

triangle. 

255.     II.      When  two  of  the  points^  as  9^,  ̂ 4,  coincide,  whilst 

the  other  two,  9^,  ̂ 3,  are  real  and  separate. 

Fig.  109. 

T3=Tfi 

Here  g^=g^=  T,  =  F,  =  P,, 

T,  =  T,  and  T,=  T,. 

The  three  groups  are  all  real,  but  (2)  coincides  with  (3). 
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[CH.  XVI 
256.     III.      When  the  conies  have  double  contact  along  the  line 

LMj  N  being  the  intersection  c^  tangents  at  L,  M. 

M 

Fig.  110. 

Pj  and  Pg  are  indeterminate,  being  any  pair  of  conjugate 
points  on  LM. 

The  three  groups  are  all  real,  being 

M,  L,  LN,  MN, 

N,  N,  LM,  LM, 

N,  iV^,  LM,  LM, 

i.e.  (3)  coincides  with  (2). 

257.     lY.      When  the  conies  osculate  at  the  point  L  the  three 

groups  are  real  and  identical,  being  N,  L,  LM. 

L  =  g,  =  g^  =  g,=  T,  =  T,=  T,  =  P,  =  P,=.P„ 
N=T.=  T, 

n. 
258.  V.    When  the  conies  have  four  consecutive  points  common. 

The  three  groups  are  all  real  and  identical,  the  common  chords 

being  the  common  tangent,  and  the  tangent  vertices  all  coinciding 
at  the  point  of  contact. 

259.  VI.      When  the  conies  intersect  in  only  two  real  points. 
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First  method. 

Let  the  two  real  common  tangents  intersect  in  ̂ 4,  through 

which  draw  a  transversal  meeting  the  conies  in  the  four  real  points 

a,  a\  b,  h'.  Let  the  tangents  at  a,  h  meet  in  n,  and  let  them 

intersect  the  real  common  chord  g^^g^  in  m,  m'.  Then  by  Art.  247 

ma',  Tn'h'  are  the  tangents  at  a',  h' ;  produce  them  to  meet  in  n'. 

By  Art.  247  n,  n'  are  two  points  on  the  corresponding 
common  chord,  which  is  ideal.  Join  nn\  meeting  ̂ 1^2  in  P^ 

which  has  one  common  polar  for  the  two  conies.  Draw  the 

tangent  mb"  and  also  the  common  polar  of  Pj,  which  will  pass 

through  ̂ 4  by  Art.  226,  and  let  it  meet  h"a'  in  T^.  Then 
by  Art.  246  T^  is  the  real  point  of  intersection  of  a  pair  of 

imaginary  common  tangents,  and  is  an  ideal  tangent  vertex. 

Let  the  polar  of  P^  meet  the  conies  in  %,  cf,^,  b^,  6/.  By 

Art.  230  P1P2,  P1P3  are  the  double  rays  of  the  overlapping 

involution  P^ia^a^,  b-Jb-^),  and  are  consequently  unreal. 
Therefore  the  points  Pg,  P3  are  imaginary,  and  lie  on  the 

real  line  T^T^. 
A  little  consideration  will  shew  us  that  the  other  two 

pairs  of  common  chords  must  be  imaginary.  For  by  Def.  of 

Art.  209,  two  common  chords  which  do  not  belong  to  the  same 

pair  must  intersect  at  a  point  where  the  curves  also  intersect. 

Consequently,  if  it  were  possible  to  construct  a  second  pair  of 

common  chords,  they  would  meet  the  pair  already  drawn  in 

points  where  the  curves  intersect,  which  is  contrary  to  the 

hypothesis  that  the  curves  intersect  in  only  two  real  points. 
Second  method. 

Draw  any  transversal  meeting  the  curves  in  a,  a  and  )8,  /8', 
and  the  real  common  chord  in  y,  and  find  y  such  that  the 

range  (aa,  /8/8',  yy')  is  in  involution,  Arts.  104,  108  ad  fin. 
Then  by  Art.  213,  y  is  a  point  on  the  second  common  chord. 

Similarly,  by  drawing  any  other  transversal  we  can  find  a 

second  point  y"  on  the  second  common  chord.  The  line  joining 

y'y"  is  the  line  required. 

J 
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Third  method. 

Let  the  common  tangent  TJPQ  meet  the  real  common  chord  in 

(r,  and  on  it  find  the  point  G'  such  that  the  range  {PQGG')  =  —  1, 

Arts.  29,  32,  Oor.  Then,  by  Art.  213,  Cor.,  G'  is  a  point  on 
the  second  common  chord. 

Similarly  from  the  other  common  tangent  we  can  find  another 

point  G"  on  the  second  common  chord. 

260.     VII.      When  the  two  conies  touch  externally. 

T,=T. 

T, 

Fig.  113. 
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[CH.   X^ 
The  common  tangent  at  the  point  of  contact  T^  is  also  a  real 

common  chord.  The  line  ̂ 37^4  is  a  common  polar  by  Art.  225, 
and  its  pole  P^  is  the  point  of  intersection  of  a  pair  of  common 

chords.  Through  T^  draw  any  transversal  meeting  the  conies 

in  a,  h.  If  the  tangents  at  a,  h  meet  in  n,  the  line  P^n  is  the 

second  common  chord  (ideal)  by  Art.  247. 
The  three  groups  consist  of 

(2)  T,,  T,,  P,T,,  P,n, 

(1)  and  (3)  T^,  T^^  and  two  imaginary  lines  intersecting  in  the 

real  point  T^. 

261.     VIII.      When  the  conies  touch  internally. 

\ 

Fig.  114. 

The  tangent  at  T^  is  a  real  common  chord.  Through  T^  draw 

any  transversal  T^ah  meeting  the  conies  in  a,  h.  By  Art.  247  the 

tangents  at  a,  h  meet  at  a  point  n  on  the  second  common  chord. 



261-262]     CONSTRUCTION   OF   COMMON  CHORDS,   ETC.         239 

Through  n  draw  the  other  two  tangents,  touching  the  conies  in 

a\  h'.  Let  ab\  a'b  meet  in  T^  (an  ideal  tangent  vertex).  Let  P^ 
be  the  pole  of  T^T^.  Then  P^n  is  the  second  common  chord 

(ideal).     P^  and  P^  coincide  at  T^. 

262.     IX.     When  the  conies  have  no  real  points  of  intersection^ 

each  conic  being  entirely  without  the  other. 

Fig.  115. 
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[CH.  X\ Let  a  transversal  through  T^  cut  the  conies  in  aa\  bb\  Let 

the  tangents  at  a,  b'  meet  in  m,  and  those  at  a,  b  in  n,  and  find 
Pg  the  pole  of  ̂ ^1^2  with  respect  to  either  conic.  Then  by 
Art.  247  Pa^,  ̂ 2^^  ̂ ^^  ̂   joair  of  ideal  common  chords.  The 

other  common  chords  are  imaginary,  one  pair  intersecting  in 

the  real  point  Pj,  the  other  pair  in  the  real  point  Pg. 

263.  X.  When  the  conies  have  no  real  points  qf  intersection^ 

one  being  entirely  within  the  other. 
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To  solve  the  problem  in  this  case  we  will  make  use  of  the 

property  of  Art.  219,  viz.  if  we  have  a  straight  line  Z,  and  if  P' 
be  the  intersection  of  the  polars  of  any  point  P  on  Z,  then  as  P 

moves  along  L,  P'  describes  the  eleven-point  conic  passing  through 
the  poles  of  L  for  A  and  B. 

Denote  the  reciprocal  conic  by  C,  and  describe  it  by  points, 

denoting  the  different  points  on  L  by  the  numbers  1,  2,  3...n..., 

and  the  points  on  C  corresponding  to  them  by  1',  2',  3'...n'.... 

Take  another  line  M,  and  construct  its  reciprocal  conic  C", 
denoting  the  different  points  on  M  by  the  letters  a,  6,  c . . .  m . . . , 

and  the  reciprocal  points  on  C  by  a',  h',  c  ...m! .... 
Then  it  is  clear  that  if  L  arid  M  intersect  in  R^  its  reciprocal 

point  R'  will  be  common  to  C  and  C. 
Let  Pi,  Pgj  ̂ 3  be  the  other  three  points  of  intersection  of  C 

and  C.  These  will  always  be  real,  except  in  Case  VI,  Art.  259, 

where  A  and  B  have  only  two  real  points  of  intersection,  when 

only  one  of  the  points  Pj,  Pg,  P3  Avill  be  real. 

Suppose  we  consider  one  of  the  points  as  Pj.  Regarded  as 

a  point  on  C,  the  two  polars  of  P^  intersect  at  a  point  on  L,  and 

as  a  point  on  C  they  intersect  at  a  point  on  M.  Consequently 

they  must  coincide,  and  hence  Pj  is  a  point  which  has  the  same 

polar  for  A  and  P,  and  similarly  for  P^  and  P3.  Therefore,  by 

Art.  212,  P^PJP^  is  the  common  self -con  jugate  triangle  of  A 
and  B. 

If  w,  n'  denote  any  pair  of  reciprocal  points,  they  are  con- 
jugate points,  by  Art.  219,  the  polar  of  n  for  the  pair  of  common 

chords  through  Pj  (say),  which  is  one  of  the  conies  of  the  system, 

passes  through  n',  and  the  rays  Pjn,  P^n!  form  a  harmonic  pencil 
with  the  common  chords  through  Pj,  Art.  121,  Def. 

The  same  propert}}.  holds  for  all  pairs  of  reciprocal  points 

(w,  vi).  Also  Pg  and  P3  are  conjugate  points.  Therefore,  giving 

to  n  the  different  values  1,  2,  3...,  by  Art.  Ill, 

Pi(n',  22',  ̂ Z'...nn'...P^.^ 
forms  a  pencil  in  involution  in  which  the  double  rays   are  the 
M.  16 
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common  chords  through  Pj,  and  similarly  for  the  common  chords 

through  Pa  and  P3. 

Now  the  pair  of  common  chords  through  P3  is  clearly  imagi- 
nary. And  if  we  give  to  n  any  value  such  as  5  or  8,  we  see 

from  the  figure  that  the  pencil  P^{P^P^,  nn')  is  non-overlapping, 
whilst  P^i^P^P^,  nn)  is  overlapping.  Consequently  the  common 
chords  through  P^  are  real,  and  those  through  P^  are  imaginary. 

It  is  obvious  from  the  figure  that  one  of  the  double  rays 

through  Pj,  viz.  P^G,  cuts  L  between  the  points  1  and  2,  near  2, 

and  the  other,  P^G\  cuts  it  between  5  and  6,  at  about  5*7.  Hence 

P^G  and  P^G'  are  a  pair  of  ideal  common  chords. 

P2 

Fig.  117. 

To  find  the  tangent  vertices  take  any  point  m  on  one  of  the 

common  chords  P^G^  draw  the  tangents  ina^  7na\  mb,  mh' .  Then, 
by  Art.  246,  ah^  ah  will  intersect  P2P3  in  the  points  T^^  T^^  a 
pair  of  ideal  tangent  vertices. 



CHAPTER   XVII 

CONICS   HAVING   DOUBLE  CONTACT 

T 

Fig.  118. 

264.     If  in  Fig.  102  the  points  g^  and  g^  move  up  to  and 

Conies  having     coincide  with  one  another,  as  also  the  points  g., 

and  ̂ 4,  the  two  conies  will  touch  one  another  at 

the  points  Q,  E,  as  shewn  in  Fig.   118,  and  are 
said  to  have  double  contact  with  each  other. 

16—2 

Double  Con 
tact. 

I 
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The  pair  of  common  chords  g^^,  g^^  coincide  in  the  hne  QR^ 

„^    ̂     ̂   which  is  called  the  chord  of  contact,  and  the  corre- Chord  of  . 
Contact.  sponding  pair  of  tangent  vertices  T^,  T^  coincide  in 

l*ole  of  the  point  T,  which  is  called  the  pole  of  contact. 
The  pair  of  common  chords  g^g^  and  g^^,  will 

also  coincide  with  QR,  and  their  corresponding  pair  of  tangent 

vertices  T^,  T^  coincide  with  T. 

Also  the  tangents  TQ,  TR  are  the  limiting  positions  of  the 

jyair  of  common  chords  g-^g^,  g^^,  of  which  the  corresponding 
2)air  of  tangent  vertices  7\,  T^  are  at  Q,  R  respectively. 

265.  Any  two  conjugate  points  on  the  chord  of  contact  form 

with  the  pole  of  contact  a  common  self-conjugate  triangle. 

For  if  Fj  G  are  the  two  conjugate  points,  FT  is  the  polar 

of  G,  GT  is  the  polar  of  F,  and  T  is  the  pole  of  GF.     Hence 

Any  point  on  the  chord  of  contact  has  the  same  polar  for  both 

conies,  and  this  polar  passes  through  the  pole  of  contact. 

In  other  words  : 

If  any  transversal  is  drawn  through  the  pole  of  contact,  the 

ta/ngents  at  the  points  where  it  cuts  the  conies  all  pass  through  the 

same  point  on  the  chord  of  contact. 

This  also  follows  from  Art.  247. 

266.  If  any  transversal  meets  the  conies  in  aa',  and  hh\  and 
the  chord  of  contact  in  F,  the  point  F,  by  Art.  187,  is  obviously 

a  double  point  of  the  involution  range  whose  characteristic  is 

{aa',  hh').     Hence 

Any  tangent  to  the  one  is  cut  harmonically  at  its  point  of 
contact,  and  at  the  points  where  it  meets  the  chord  of  contact  and 
the  other  conic. 

267.  The  polars  of  any  point  E  intersect  on  the  chord  of 
contact. 
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Let  the  polar  of  E  for  the  conic  A  meet  QR  in  F,  and  let 

^^meet  the  conies  A  and  B  in  aa,  and  hb'.  Then  by  Art.  187 

F is  one  double  point  of  the  involution  range  given  by  {aa,  bb'), 

and  F,  its  harmonic  conjugate  for  a,  a',  is  obviously  the  other. 
Hence  the  polar  of  F  for  £  passes  through  F. 

Cor.  Of  two  conjugate  points  one  is  always  on  the  chord  of 
contact. 

268.  Again,  if  from  any  point  E  we  draw  pairs  of  tangents 

to  A  and  B,  the  line  FT  is  a  double  ray  of  the  involution  pencil 

determined  by  these  pairs  of  tangents  by  Art.  228,  since  a  pair 
of  tangent  vertices  coincide  at  T. 

269.  The  poles  of  any  straight  line  L  are  collinear  with  the 

pole  of  contact. 

Let  l^j  l^  be  the  poles,  and  let  the  line  joining  them  meet 

L  in  P,  and  from  P  draw  the  pairs  of  tangents  to  A  and  B. 

Then  by  Art.  233  PIJ^b  is  a  double  ray  of  the  involution  pencil 

determined  by  these  tangents,  and  therefore,  by  Art.  188,  passes 
through  T. 

The  two  lines  L  and  IJ^^  ̂ ^®  conjugate,  hence 

Of  ttvo  conjugate  lines  one  always  passes  through  the  pole  of 
contact. 

270.  If  a  common  chord  of  two  conies  has  the  same  pole,  the 

conies  have  double  contact  along  the  chord,  and  if  a  tangent  vertex 

of  two  conies  has  the  same  polar,  they  have  double  contact  along 

the  polar. 

271.  Tftivo  conies  have  double  contact,  and  through  the  points 

of  contact  a  third  conic  is  drawn,  its  corresponding  common  chords 

with  each  of  the  conies  will  intersect  on  the  chord  of  contact. 
Art.  215. 
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[CH.  XVII 272.  7/  two  conies  A  and  B  have  each  double  contact  with  a 

third  conic  C,  a  pair  of  their  common  chords  pass  through  the 

point  of  intersection  of  the  two  chords  of  contact^  and  form  a 

harmonic  pencil  with  them,*. 

For  the  intersection  P  of  the  chords  of  contact  is  the  pole  of 

the  line  joining  the  poles  of  contact  T,  T\  and  therefore  has  the 

same  polar  for  all  three  conies;  consequently,  by  Art.  212,  it  is 
the  intersection  of  a  pair  of  common  chords  of  A  and  B. 

PT,  PT'  form  with  the  pair  of  common  chords  through  P  a 
harmonic  pencil  by  Art.  230. 

273.  If  any  transversal  through  the  pole  of  cmitact  T  meets 

the  conies  in  aa\  bb',  then  as  the  transversal  rotates  about  T  the 

value  of  the  cross-ratio  {Tbaa')  remains  constant,  and  is  the  re- 

ciprocal of  (Tb'aa). 

Fig.  119. 

Let  Ta^b-fi-^a^  be  any  other  position  of  the  transversal. 
Then,  by  Art.  244,  aaj,  bb^  meet  on  the  chord  of  contact,  as 

do   also  «%,   a'oi',  by  Art.    161.      Therefore  the  three  chords 

*  Poncelet,  Prop.  Prqj.  Art.  427;  Chasles,  Sect.  Con.  Art.  415;  Salmon, 
Art.  263. 
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fiai,  aa^j  bb^  all  pass  through  the  same  point  G  on  the  chord 

of  contact,  and  by  Art.  161  b'bi  passes  through  the  same  point. 

Therefore  the  ranges  {Tbaa')  and  (Tb^a^a^)  have  T  for  a  corre- 
sponding common  point,  and  are  in  perspective,  centre  G^  and 

their  cross-ratios  are  consequently  equal  by  Art.  21.  And  since 

these  are  any  two  positions  of  the  transversal,  the  cross-ratio 
{Tbaa)  is  the  same  for  all  positions  of  it. 

Again,   by  Art.   230   T  is  one  of  the  double  points  of  the 

involution  determined  by  (aa',  bb'). 

Therefore   {Tbaa')  =  {Tb'a'a) 

Conversely  we  have : 

1 

{Tb'aa) 
by  Art.  3. 

If  through  a  given  point  T  a  transversal  is  drawn  meeting 

a  conic  in  aa,  and  on  it  a  point  b  is  taken  such  that  the  cross-ratio 

{Tbaa')  is  constant,  the  locus  of  b  is  a  conic  having  double  contact 
with  the  given  conic  along  the  polar  of  T. 

274.  The  chords  which  join  pairs  of  corresponding  points  of 

two  homographic  rotes  on  a  conic  envelop  a  second  conic  which  has 

double  conta>ct  with  the  given  one  at  the  common  points  of  the  rows, 

M'  H 

Fig.  120. 
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Let  AA\  BB'  be  pairs  of  corresponding  points  of  two  home 

graphic  rows  on  the  conic.  Let  jE',  F  be  the  common  points  of 
the  rows.  Then  by  Art.  157  EF  is  the  cross-axis  on  which  paii 
of  chords  joining  pairs  of  corresponding  points  taken  inverselyl 

intersect.  Let  AB\  A'B  intersect  on  EF  in  M,  and  produce] 

AA\  BB'...  to  meet  the  tangents  at  E,  F  in  aa\  hh' ....  We  will" 
shew  that  these  are  pairs  of  corresponding  points  of  two  homo- 
graphic  ranges. 

Consider    the   inscribed   quadrangle   ABA'B'.     Its   diagonal 
points  are  G^  H,  M.     Therefore  HG  is  the  polar  of  if  for  the 

conic.    But  since  M  is  on  EF,  its  polar  passes  through  T.    There-, 
fore  TGH  is  a  straight  line,  and  the  following  are  harmonic : 

G{TMAB),    (Tmab),    {Tm'a'b'),    (Tm'bW). 

Therefore  (Tmab)  =  (Tm'b'a'),  and  ab',  ba  intersect  on  mm, 
i.e.  on  MG. 

Let  them  intersect  in  M'.     Join  TM'. 

Then  in  the  quadrangle  aba'b',  T,  G,  M'  are  the  diagonal 
points.  Therefore  TG  is  the  fourth  harmonic  of  TM'  for  TE,  TF. 
But  from  the  conic,  since  TG  is  the  polar  of  i/,  TG  is  the  fourth 

harmonic  of  TM  for  the  tangents  TE,  TF.  Hence  TM'  coincides 
with  TM,  and  M'  with  M.  Therefore  ab',  a'b  intersect  in  M, 
i.e.  on  the  fixed  line  EF,  which  is  consequently  the  cross-axis  of 

the  two  homographic  ranges  of  which  aa',  bb'...  are  pairs  of 

corresponding  points.  Therefore,  by  Art.  139,  aa',  bb' ...  are 
tangents  to  a  conic  which  touches  TE^  TF  at  the  points  E,  F. 
Conversely, 

If  two  conies  C  and  C'  have  double  contact  at  E,  F,  and  a 

chord  A  A'  of  C  rolls  upon  C,  its  extremities  A,  A'  form  two  homo- 
graphic  conic-j)encils  whose  common  points  are  at  E,  F. 

Cor.  1 .  If  TP,  TQ  are  two  fixed  tangents  to  a  conic,  R  and 

S  two  variable  points  on  the  curve  such  that  either  (1)  (PQRS)  or 

(2)  T(PQBS)  is  constant,  the  chord  PS  will  envelop  a  conic  having 
double  contact  with  the  given  conic  at  P,  Q,  and  conversely/. 
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For  by  Arts.  159,  192  {R)  and  {S)  form  two  homographic 
divisions  on  the  conic,  having  P,  Q  for  common  points. 

Cor.  2.  If  tangents  are  drawn  at  pairs  of  corresponding  points 

of  two  homographic  divisions  on  a  conic,  the  locus  of  their  point 

of  intersection  is  a  conic  having  double  contact  with  the  former  at 

the  common  points  of  the  rows. 

This  theorem,  which  is  the  correlative  of  Art.  274,  can  easily 

be  proved  by  the  method  of  Art.  275. 

275.  If  the  locus  oj  a  point  a  is  a  conic  C,  the  enveloj^e  of  its 

polar  for  a  conic  C  is  a  conic  C" ;  and  conversely,  if  a  straight 

line  OKi'  moves  so  as  to  envelop  a  conic  C'\  the  locus  of  its  pole  for 
a  conic  C  is  a  conic  C*. 

Fig.  121. 

Let  P,  P'  be  two  fixed  points  on  C,  and  let  a,  fi,  y...  be  any 

other  points  on  C.  Let  OA,  OA'  be  the  polars  of  P,  P'  for  C", 

and  let  the  polars  of  a,  ft,  y...  for  C"  meet  OA  in  a,  h,  c...  and 
OA'  in  a',  h\  c' .... 

Poncelet,  Fro^.  Proj.  Art.  231. 
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Then  Pa  is  the  polar  of  a,  and  P'a  the  polar  of  a\  &c.,  and] 
since  by  Art.  167 

the  range  of  poles  {ahc. ..)  =  the  pencil  of  polars  P  (aySy . . . ), 
and 

the  range  of  poles  (a'6'c'...)  =  the  pencil  of  polars  P' (a^y...), 
and  by  Art.  129      P {a^y . . .)  =  F  {a^y . . .), 

therefore  {ahc . . . )  =  {a'h'c' . . . ), 

and  by  Art.  139  the  lines  aa,  hh' ...  envelop  a  conic  touching  OAi 
and  OA'. 

To  prove  the  converse,  let  OA^  OA'  be  two  positions  of  the- 

moving  line  aa',  and  let  P,  P'  be  the  poles  of  OA^  OA'  for  C 

Then  by  Art.  1 30  {abc. ..)  =  {a'h'c  . . . ), 

therefore  by  Art.  167      P  (a/8y . . . )  =  P'  (a^y . . . ), 

and  by  Art.  138  the  locus  of  a  is  a  conic  through  P  and  P' . 

276.  If  a  triangle  ABO  inscribed  in  a  conic  moves  so  that' 

two  of  its  sides  pass  through  fixed  points  P,  P',  its  third  side  wilV 
envelop  a  conic  having  double  contact  with  the  given  conic  at  the 

points  where  the  latter  is  met  by  the  line  PP'*. 

As  the  triangle  moves,  the  conic  pencils  {A)  and  {B)  being 

homographic  to  (C)  are  homographic  to  each  other  by  Art. 

186.  Therefore  by  Art.  274  AB  envelops  a  conic  having 

double  contact  with  the  given  conic  at  e  and  f. 

277.  If  a  triangle  circumscribing  a  conic  moves  so  that  its 

base  angles  move  along  fixed  straight  lines  OM,  OM',  its  vertex 
will  describe  a  conic  having  double  contact  with  the  given  conic 

at  the  points  where  the  latter  is  met  by  the  polar  of  Of. 

In  Fig.  122  through  A,  B,  0  draw  the  tangents  forming  the 

circumscribing  triangle  abc,  and  let  0  be  the  pole  of  PP'.     Then 

*  Poncelet,  Prop.  Proj.  Art.  431. 
+  Poncelet,  Art.  435 ;  Salmon,  Art.  272,  Exs.  2,  3. 
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fO 

Fig.  122. 
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as  the  triangle  ABC  moves  it  is  evident  that  the  points  a,  6, 

being  the  poles  of  BC,  CA,  will  move  along  the  fixed  lines 

OM,  OM'  the  polars  of  P,  P',  and  by  Art.  275  the  point  c  will 
describe  a  conic.     Then  use  Art.  274,  Cor.  2. 

EXAMPLES. 

1.  A,  B  are  two  fixed  points  on  a  conic,  and  L  is  a  given  straight  line 
meeting  it  in  M,  N.  P  is  a  variable  point  on  L,  and  AP,  BQ  meet  the  conic 
again  in  Q,  R.  Shew  that  the  envelope  of  QR  is  a  conic  having  double 
contact  with  the  given  conic  at  the  points  M,  N,  and  touching  the  line  AB. 

2.  CA,  GB  are  two  given  tangents  to  a  conic,  and  D  a  fixed  point  in  the 
plane.  Any  transversal  through  D  meets  CA,  GB  at  E,  F,  and  from  E,  F 
other  tangents  are  drawn  meeting  in  T.  Shew  that  the  locus  of  T  is  a  conic 
passing  through  C,  and  having  double  contact  with  the  given  conic  at  the 
points  of  contact  of  the  tangents  from  D. 

3.  Two  conies  A,  B  have  double  contact  at  Q,  E;  T  being  the  pole. 

(1)  If  P  is  a  variable  point  on  A,  and  PQ,  PR  meet  B  in  D,  J5J,  then 
BE  envelops  a  conic  having  double  contact  with  A  and  B  at  Q  and  R. 

(2)  If  FG  is  any  chord  of  A  which  is  also  a  tangent  to  B,  and  if  QF,  RG 
intersect  in  H,  the  locus  of  If  is  a  conic  having  double  contact  with  A  and 
P  at  Q  and  R. 

4.  If  two  conies  have  double  contact  the  cross-ratio  of  four  of  the  points 
in  which  any  four  tangents  to  the  one  meet  the  other  is  the  same  as  that  of 
the  other  four  points  in  which  the  four  tangents  meet  the  curve,  and  also 
the  same  as  that  of  the  four  points  of  contact.  [Townsend.] 

5.  aa',  bb',  cc'  are  three  fixed  chords  of  a  conic.  Shew  that  the  envelope 
of  a  fourth  chord  dd'  such  that  {abcd)  =  {a'b'c'd')  is  a  conic  having  double 
contact  with  the  given  conic. 

6.  The  locus  of  the  intersection  of  tangents  to  a  conic  which  divide  a 

finite  segment  II'  of  a  given  tangent  in  a  constant  cross-ratio  is  a  conic 
having  double  contact  with  the  given  conic  at  the  points  of  contact  of  tangents 
from  I  and  I\ 
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7.  Two  conies  A  and  B  have  double  contact  &t  Q,  R.  If  through  two 

points  m,  m'  on  B  we  draw  tangents  to  it  meeting  A  in  the  two  pairs  of  points 
a,  b  and  a',  b',  then  the  two  chords  aa\  bb'  will  pass  through  the  intersection 
of  the  lines  QR  and  mm'. 

8.  In  Ex.  7  if  from  two  points  n,  n'  on  A  we  draw  chords  touching  B 
and  forming  the  circumscribed  quadrilateral  abed,  one  diagonal  of  this 
quadrilateral  will  pass  through  T  the  pole  of  contact  of  the  conies,  and 

through  the  pole  of  nn'  for  A. 

9.  In  Ex.  7,  if  the  vertex  p  of  an  angle  circumscribing  B  moves  along  A, 

the  points  m,  m'  where  the  sides  of  the  angle  meet  A  form  two  homographic 
divisions  which  have  Q,  R  for  common  points,  and  the  chord  mm'  envelops 
a  conic  having  double  contact  with  the  given  conies  at  Q,  jR. 



CHAPTER   XVIII 

CONSTRUCTION   OF  A  CONIC   SATISFYING  CERTAIN 

CONDITIONS 

278.     To  describe  a  conic  through  jive  given  points. 

This  problem  has  been  fully  solved  in  Art.  140  by  what  we 
may  term  the  first  method,  due  to  Chasles.  On  account  of  the 

importance  of  the  question,  and  the  frequent  reference  that  is 
made  to  it  in  constructions  connected  with  the  conic,  we  have 

given  a  few  other  methods  so  that  when  a  student  is  told  to 

"describe  a  conic  through  five  points"  he  may  select  any  one 
of  the  methods  and  know  exactly  what  the  words  imply. 

Second  method. 

Let  a,  6,  c,  0,  0'  be  the  given  points.  By  Art.  138  the  locus 
of  the  intersections  of  corresponding  rays  of  two  homographic 

pencils  not  in  perspective  is  a  conic  passing  through  the  centres 

of  the  pencils.  If  then  we  take  two  of  the  five  points  0,  0'  as 
centres,  and  join  each  of  them  to  the  remaining  three  points  a,  6,  c 

we  shall  obtain  two  pencils  each  containing  three  rays,  and  if 

through  one  of  the  centres,  0,  we  draw  any  fourth  ray  Od,  and 

construct  the  ray  corresponding  to  it  in  the  second  pencil,  the 

point  8  where  these  two  rays  intersect  will  be  a  point  on  the 

conic.  This  problem  is  solved  completely  in  Art.  48,  and  by 

drawing  different  rays  through  0,  and  repeating  the  construction, 

we  can  obtain  as  many  points  8  on  the  curve  as  we  please. 

Third  m>ethod,  employing  Pascal's  Theorem,  Art.  146. 

Through  y  the  intersection  of  06,  O'a  draw  any  straight  line 
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Fig.  123. 

meeting  O'c  in  a  and  Oc  in  ft.  Join  a^  and  6a  meeting  in  c. 

Then  by  Art.  147  c'  is  a  point  on  the  curve,  and  by  drawing 
different  lines  through  y,  and  treating  them  as  Pascal  lines, 

we  can  obtain  other  points  on  the  curve. 

Fourth  method,  employing  Maclaurin's  Theorem,  Art.  151. 
In  Fig.  123  let  aO\  Ob  meet  in  y.  Through  a  draw  any 

straight  line  ac  meeting  Oc  in  fi,  and  join  ̂ y  meeting  O'c  in  a. 
Then  g\  the  intersection  of  a^  and  ba,  is  a  point  on  the  curve, 

for  it  is  the  vertex  of  the  triangle  cap  whose  base  angles  /8  and  a 

move  along  the  fixed  lines  cO,  cO\  and  whose  sides  pass  through 

the  fixed  points  a,  6,  y. 

Fifth  method,  by  Desargues'  Theorem,  Art.  187. 

Consider  OacO'  as  an  inscribed  quadrangle,  and  through  b 

draw  any  transversal  meeting  the  opposite  sides  ac,  00'  in  d,  d\ 
and  the  diagonals  O'a,  Oc  in  e,  e',  and  on  the  transversal  find  the 

point  c'  such  that  {dd\  ee\  be)  is  an  involution  range.  Arts.  104, 
\0%adjin.    Then  by  Art.  187  c  is  a  point  on  the  required  conic. 

Other  methods  might  be  given,  but  these  are  sufiScient  to 

shew  the  application  of  the  theory  of  cross-ratio  to  the  problem. 

279.     To  draw  the  tangent  at  0\   any  one  of  the  fine  given 
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If  we  take  a  point  d  on  the  curve  very  near  to  0',  since  Od,  O'd 
are  corresponding  rays  in  the  two  homographic  pencils  centres 

0  and  0\  it  is  obvious  that  the  tangent  at  0'  is  the  ray  in  the 

pencil  whose  centre  is  0'  corresponding  to  the  ray  00'  in  the 
pencil  centre  0 ;  and  consequently  the  rays  constructed  in 

Art.  58  are  the  tangents  at  0  and  0',  their  intersection  T  being 
the  cross-centre  of  the  pencils. 

280.  To  find  the  points  where  the  conic  through  five  points 

meets  a  given  straight  line  L. 

Let  the  pencils  0{abc)  and  0' (abc)  meet  L  in  the  points 

a,  13,  y  and  a,  yS',  y.  Then  the  points  required  are  obviously  the 
common  points  of  the  two  homographic  co-axial  ranges  of  which 

aySy  and  a'jS'y'  are  the  characteristics.  This  problem  is  solved  in 
Arts.  83—86. 

281.  To  find  the  directions  of  the  asymptotes  oj  the  conic 

through  five  points. 

Fig.  124. 
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This  is  equivalent  to  the  problem  of  finding  a  pair  of  parallel 

corresponding  rays  in  the  two  pencils  centres  0,  0'. 

Through  0  draw  three  rays  Oa\  Ofi',  Oy  parallel  respectively 

to  O'a,  0'6,  O'c.  Then  we  have  two  concentric  pencils  whose 

characteristics  are  0  {abc)  and  0  (a')8  y'),  and  if  we  cut  them  by 
any  transversal  Z,  the  common  rays  Oe,  Of,  which  can  be  found 

bj'  Art.  84,  give  us  the  required  directions. 

282.  To  draw  the  asymptotes  of  the  conic  through  five  points. 

In  Fig.  124,  -through  a,  h,  c  draw  pairs  of  lines  respectively 

parallel  to  Oe  and  Of  (Art.  281),  meeting  any  transversal  L'  in 
a-Jy^c^  and  a-^h^c^.  The  parallel  lines  aa^,  bb^,  cc^  are  three  rays 
of  a  pencil  whose  centre  is  at  infinity  along  Oe,  and  aa^^,  bb^,  cc( 

are  three  rays  of  a  pencil  whose  centre  is  at  infinity  along  Of 

Consider  the  two  ranges  whose  characteristics  are  a^^c^  and 

a^b-^c^.  Find  by  Art.  82  /  the  point  on  the  first  range  corre- 

sponding to  the  point  at  infinity  on  the  second,  and  J'  the  point 
on  the  second  corresponding  to  the  point  at  infinity  on  the  first. 

Then  the  line  through  /  parallel  to  Oe  is  one  asymptote,  and  the 

line  through  J'  parallel  to  O/is  the  other. 

283.  To  construct  a  conic  given  five  tangents. 

In  Fig.  79  let  the  five  tangents  be  ab,  aa,  a'b',  bb',  cc . 
Let  ab,  a'b'  meet  in  0.  Consider  the  ranges  on  Oa,  Oa'  whose 

characteristics  are  abc  and  a!b'd .  Find  d,  d'  any  pair  of  corre- 

sponding points  by  Art.  40.     Then  by  Art.  139  dd'  is  a  tangent. 
Similarly  any  number  of  tangents  can  be  drawn,  and  the 

conic  constructed  by  means  of  them. 

284.  Given  five  tangents,  to  find  the  point  of  contact  of  any 

one  of  them,  a'b'  suppose. 
First  method. 

Find  by  Art.  40  the  point  A'  in  the  range  a'b'c'  corresponding 
M.  17 
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to  0  in  the  range  ahc.  By  Art.  130  ac^  fin.  A'  is  the  point 
required. 

Second  method. 

In  Fig.  79  join  ac'  meeting  a'c  in  8.  Then  68  will  meet  a'b' 

in  the  point  required.  For  if  d'  moves  up  to  and  coincides  with 

A',  y  will  coincide  with  c',  etc. 

285.  Given  five  tangents,  to  draw  a  pair  of  tangents  from  a 

given  point  P. 

In  Fig.  79  let  the  given  tangents  be  ah,  aa\  a'h\  hh\  cc. 

Join  P  to  the  points  a,  6,  c  and  a',  h\  c'.  Then  the  required 
tangents  are  evidently  the  common  rays  of  the  pencils  whose 

characteristics  are  P{abG)  and  P{a'b'c'),  and  can  be  constructed 
as  in  Art.  84. 

286.  To  construct  a  conic  given  four  points  and  a  tangent. 

Let  a,  b,  c,  d  be  the  four  points,  L  the  given  tangent. 

Consider  Z  as  a  transversal  meeting  the  opposite  sides  of  the 

quadrangle  abed  in  the  pairs  of  points  aa',  ySyS'.  Then  by  Des- 
argues'  Theorem,  Art.  187,  e,y  the  double  points  of  the  involution 

determined  by  (aa,  fi/3')  are  the  points  of  contact  of  L  with  the 
two  conies  which  satisfy  the  conditions  of  the  problem.  These 

can  then  be  constructed  by  one  of  the  methods  of  Art.  278. 

287.  To  construct  a  conic  given  four  tangents  and  a  point. 

Let  P  be  the  given  point,  and  join  P  to  the  pairs  of  opposite 

vertices  of  the  quadrilateral  formed  by  the  four  given  tangents. 

Then  by  Art.  188  these  four  rays  determine  a  pencil  in  involu- 
tion in  which  the  double  rays  are  tangents  to  the  two  conies, 

which  can  then  be  constructed  from  the  two  sets  of  five  tangents 

by  Art.  283. 

288.  If  a  system  of  conies  is  described  passing  through  two 

given  points  a,  6,  and  touching  two  given  straight  lines  OT,  OT', 
(I)  the  polar 8  of  the  point  0  pass  through  one  or  other  of  two  fixed 
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points  on  the  line  ab^  and  (2)  the  poles  of  the  line  ah  lie  on  one 
or  other  of  two  fixed  lines  passing  through  0. 

Fig.  125. 

Let  d,  e  be  the  points  where  any  conic  of  the  system  touches 

OT,  0T\  so  that  de  is  the  polar  of  0  for  that  conic.  Then  the 

segment  de  may  be  considered  as  a  quadrilateral  inscribed  in  the 

conic,  two  of  its  opposite  sides  being  the  tangents  at  d  and  e, 

the  other  pair  of  opposite  sides  being  represented  by  de  con- 
sidered as  two  coincident  straight  lines. 

(1)  Let  ah  meet  OT,  OT  in  the  points  T,  T',  and  de  in  /. 
Then  by  Desargues'  Theorem,  Art.  187,  the  two  pairs  of  points 

(a6),  {TT')  determine  a  system  in  involution  in  which  /  is  one 

of  the  double  points;  and  if/'  is  the  harmonic  conjugate  of/ 

for  a  and  6,  /'  is  the  other  double  point  of  the  involution, 
by  Art.  99.     Hence  the  polars  of  0  for  the  different  conies  of 

17—2 
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the   system   pass  through  one   or  other   of   the   known   points 

(2)  Again,  considering  the  same  conic  we  see  that  Q/*,  Of 
are  harmonic  conjugates  both  for  (Oa,  Oh)  and  for  {OT^  OT'), 
and  therefore  by  Art.  161  the  pole  of  ah  lies  on  one  of  the  lines 

Of  or  Of.  Hence  the  poles  of  ah  for  the  dififerent  conies  of  the 

system  lie  on  one  or  other  of  the  known  lines  0/*,  Of. 

289.  To  construct  a  conic  given  three  points  and  two  tangents. 

Let  a,  6,  c  be  the  three  points,  OT,  OT'  the  two  tangents. 
It  was  shewn  in  Art.  288  that  for  the  system  of  conies 

passing  through  the  points  a,  h  and  touching  the  lines  OT^  0T\ 

the  polars  of  the  point  0  pass  through  one  or  other  of  two  known 

points  /,  /'  on  the  line  a6,  see  Fig.  1 25.  Similarly  for  the  system 
of  conies  passing  through  the  points  6,  c  and  touching  the  same 

pair  of  lines  OT,  0T\  the  polars  of  the  point  0  pass  through  one 
or  other  of  two  known  points  g,  g  on  the  line  he. 

Now  the  conies  which  pass  through  the  three  points  a,  h,  c, 

and  touch  the  lines  OT,  01",  are  those  which  are  common  to  the 
above  two  systems,  and  are  therefore  such  that  the  polars  of  O 

pass  through  one  of  the  points  f,f,  and  also  through  one  of  the 

points  g,  g'.  Hence  there  are  four,  and  only  four,  polars,  and 
consequently  four,  and  only  four,  conies.  If  one  of  the  polars 

meets  OT,  OT'  in  d,  e,  the  problem  is  reduced  to  the  construction 
of  a  conic  through  five  points,  Art.  278. 

290.  To  construct  a  conic  given  three  tangents  and  two 

points. 

Let  the  points  be  a,  h  and  the  tangents  OT,  OT',  TT',  and 

let  the  line  ah  meet  them  in  the  points  t,  t',  t"  respectively. 
It  was  shewn  in  Art.  288  that  for  the  system  of  conies 

passing  through  a,  h  and  touching  the  lines  OT,  OT'  the  poles 
of  the  line  ah  lie  on  one  or  other  of  two  known  lines  passing 

through  0,  viz.  Of,  Of,  where/,/'  are  the  double  points  of  the 
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involution  determined  by  (a6,  tt').  Similarly  for  the  system  of 

conies  passing  through  a,  h  and  touching  the  lines  OT^  TT',  the 
poles  of  the  line  ah  lie  on  one  or  other  of  two  known  lines 

passing  through  T,  viz.  Tf^,  Tf-[^  where /j,//  are  the  double  points 

of  the  involution  determined  by  (a6,  tt"). 
Now  the  conies  which  pass  through  a,  h  and  touch  the  three 

straight  lines  OT^  OT',  TT'  are  those  which  are  common  to  the 
above  two  systems,  and  are  therefore  such  that  the  poles  of  ah 

lie  on  one  of  the  lines  0/*,  Of\  and  also  on  one  of  the  lines 
Tf^f  Tf^.  Therefore  there  are  four,  and  only  four,  poles,  and 

consequently  four,  and  only  four,  conies. 

If  one  of  the  poles  is  P,  then  Pa  and  Fh  are  tangents,  and 

the  problem  is  reduced  to  the  construction  of  a  conic  touching 
five  lines,  Art.  283. 



CHAPTER   XIX 

HOMOGRAPHIC   GENERALISATION   OF   CIRCLES    AND    THE 

CULAR  POINTS   AT   INFINITY,   CONICS    AND    THEIR    FOCI, 

AND   OTHER  ASSOCIATED   POINTS  AND  LINES 

291.  We  touched  briefly  on  the  relations  of  the  circular  points 

with  points  and  lines  in  Arts.  113,  114,  and  with  circles  and  conies 

in  Arts.  179 — 183.  We  will  now  consider  them  more  fully.  We 
shall  use  small  letters  to  denote  points  in  the  original,  and  their 

capitals  to  denote  the  corresponding  points  in  the  generalised 

or  derived  figure.  As  the  equations  to  the  isotropic  lines  joining 

the  origin  to  the  circular  points  are  y  =  ±ix,  we  shall  always 

denote  these  points  in  the  original  figure  by  the  letters  i,  i',  and 

their  generalised  positions  by  their  capitals,  /,  /'.  Since  every 

circle  passes  through  i,  i' ,  the  points  /,  /'  will  only  lie  on  a  conic 
when  it  is  generalised  from  a  circle  in  the  original  figure.  If 

a  conic  generalises  into  another  conic  so  that  the  focus  of  the 

first  becomes  the  intersection  of  two  tangents  to  the  second, 

the  points  /,  /'  are  finite  points  on  these  tangents  but  not  on 
the  curve,  being  the  points  of  contact  only  when  the  original 

conic  is  a  circle,  its  centre,  the  pole  of  the  line  at  infinity, 

becoming  the  intersection  of  the  tangents,  i.e,  the  pole  of  //'. 
We  will  first  give  a  list  of  the  more  important  fundamental 

results  which  are  obtained  from  the  consideration  of  the  circulai 

points.  These  the  student  will  easily  verify  from  what  we  havt 

said  on  the  subject  in  the  above  quoted  articles,  and  we  will' 
then  shew  how  these  results  can  be  applied  to  obtain  generalised 

properties  of  conies  from  the  known  properties  of  circles. 
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Data. 

1.  The  line  at  infinity  becomes  a  finite  line,  on  which  are 

two  finite  points  /,  /'  corresponding  to  i,  i'  the  circular  points  at 
infinity. 

2.  If  c  is  the  mid-point  of  a  linear  segment  ab,  and  d  the 
point  at  infinity  on  the  line,  and  ii  A,B,C,D  are  the  generalised 

positions  of  a,  6,  c,  c?,  then  D  lies  on  //',  and  (A  BCD)  is  harmonic. 
3.  If  c  divides  ab  in  a  given  ratio,  with  the  notation  of  2, /■in 

(ABCD)  =  (aic^)  =  ̂ ^. 

4.  Lines  which  are  parallel  in  the  original  figure  become 

lines  intersecting  on  //'. 
5.  Pairs  of  concurrent  lines  at  right  angles  become  pairs  of 

lines  which  cut  the  segment  //'  harmonically. 
6.  Pairs  of  concurrent  lines  containing  a  constant  angle 

become  pairs  of  lines  which  cut  the  segment  //'in  a  constant 
cross-ratio. 

7.  Pairs  of  concurrent  lines  containing  angles  bisected  by 

a  single  pair  of  lines  become  pairs  of  concurrent  lines  cutting 

the  segment  IT  in  a  series  of  points  in  involution  in  which  /,  /' 

are  conjugate  points,  and  the  bisectors  cut  //'  in  the  double  points 
of  the  involution. 

8.  A  circle  becomes  a  conic  through  the  points  /,  /',  and  the 

centre  of  the  circle  becomes  the  pole  of  //'. 
9.  A  figure  consisting  of  a  conic,  a  pole  and  its  polar  can 

represent  a  circle,  its  centre,  and  the  line  at  infinity. 

10.  A  circle  on  ab  as  diameter  becomes  a  conic  through 

A,  B,  /,  /',  and  having  AB  and  //'  for  a  pair  of  conjugate 
chords. 

Since  only  one  circle  can  be  described  on  a  given  finite 

straight  line  as  diameter,  it  follows  that  if  we  have  given  two 
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pairs  of  points  in  a  plane,  only  one  conic  can  be  described  passing 

through  them,  and  having  the  line  joining  one  pair  conjugate  to 
the  line  joining  the  other  pair. 

11.  A  focus  is  equivalent  to  the  intersection  of  two  tangents 

passing  through  the  points  /,  I'  which  are  not  on  the  conic. 
The  other  focus  becomes  the  intersection  of  the  other  tangents 

from  /,  /'. 

12.  A  straight  line  through  a  given  focus  becomes  a  straight 

line  through  the  intersection  of  two  given  tangents. 

13.  The  tangents  from  the  foci  intersect  in  i,  i\  and 

therefore  to  have  given  two  foci  is  equivalent  to  having  given  a 

quadrilateral  circumscribing  a  conic,  /,  /'  being  a  pair  of  opposite 
vertices. 

14.  Confocals  become  conies  inscribed  in  a  quadrilateral 

having  /,  /'  for  a  pair  of  opposite  vertices. 

15.  A  parabola  touches  the  line  at  infinity,  and  S  being  the 

focus,  it  has  aS'i,  Si'  for  tangents,  and  therefore  Sii'  is  a  tangent 
triangle ;  hence  a  parabola  and  its  focus  become  a  conic  inscribed 

in  a  given  triangle. 

16.  A  rectangular  hyperbola,  having  its  asymptotes  at  right 

angles,  has  i,  i'  for  conjugate  points,  and  therefore  becomes  a 

conic  cutting  the  segment  //'  harmonically. 
17.  Concentric  circles  become  conies  having  double  contact 

with  one  another  at  /,  /'. 

18.  Conies  having  the  same  focus  and  directrix  become  conies 

having  double  contact. 

19.  Similar  conies,  having  the  angles  between  their  asym- 

ptotes constant,  become  conies  cutting  the  segment  //'  in  a 
constant  cross-ratio. 

20.  Co-axial  circles  become  conies  circumscribing  the  same 

quadrangle,    two   of   whose   vertices  are  /,   /',    the   other   two 
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vertices  being  the  points  A,  B^  corresponding  to  the  points 
where  the  radical  axis  meets  the  circles. 

In  Fig.  102  let  g^  =  A,  g^  =  B,  g,  =  I,  g,=  /'. 
The  line  of  centres  becomes  the  line  containing  the  poles 

of  //',  and  is  therefore  the  line  P^P^,  one  of  the  sides  of  the 
common  self -conjugate  triangle,  and  p  is  the  intersection  of  the 
radical  axis  and  the  line  of  centres.  Since  these  two  lines 

are  at  right  angles,  {g^g^j)'P^  is  harmonic  by  5  supra. 
Limiting  points.  This  term  is  a  little  misleading.  Perhaps 

it  would  be  better  to  call  them  limiting  circles,  as  they  are 

limiting  forms  of  circles  of  the  system.  There  are  three  limiting 

circles,  two  of  them  being  point  circles  on  the  line  of  centres,  and 

the  third  a  circle  of  infinitely  large  radius  consisting  of  the  radical 

axis  and  the  line  at  infinity. 

The  limiting  point  circles  when  considered  as  points  become 

Pzf  Psi  two  of  the  vertices  of  the  common  self -conjugate  triangle. 
When  considered  as  circles  they  coincide  with  their  asymptotes 

by  Art.  179,  and  become  respectively  the  pairs  of  common  chords 

through  Pg  and  Pg. 

The  limiting  circle  of  infinitely  large  radius  becomes  the  pair 

of  common  chords  through  the  third  vertex  P^. 

The  property  that  the  radical  axis  bisects  the  segment  joining 

the  limiting  point  circles  becomes  (ppP^Ps)  =  —  1. 
Of  any  pair  of  common  chords  one  can  be  taken  to  represent 

the  radical  axis,  and  the  other  to  represent  the  line  joining  the 

circular  points  in  the  original  figure. 

21.  The  centres  of  similitude  of  two  circles  become  a  pair  of 

tangent  vertices. 

22.  The  condition  that  two  chords  pq,  p'q  of  a  circle,  centre 
t,  are  equal,  is  equivalent  to  either  of  the  conditions 

T(irPQ)=T(irPQ'), 

or  the  c.p.  (IPPQ)  =  (IP P'Q'). 
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23.  Two  orthogonal  circles,  centres  c,  t,  intersecting  in  a,  6, 

possess  the  following  fundamental  properties,  from  any  one  of 
which  the  others  can  be  deduced  : 

(1)  The  tangents  at  a  point  of  intersection  are  at  right  angles. 

(2)  The  tangents  at  a  point  of  intersection  pass  through  the 
centres. 

(3)  The  centre  of  one  circle  is  the  pole  of  the  common  chord 
for  the  other  circle  and  the  pole  of  W  for  its  own 
circle. 

In  (1)  and  (2)  it  follows  that  if  the  property  is  true  for  one 
point  of  intersection,  and  in  (3)  for  one  centre,  it  is  true  for  the 
other  also,  and  any  one  of  the  three  properties  might  be  taken 

as  defining  two  orthogonal  circles. 

Consequently,  if  we  generalise  two  orthogonal  circles  we 
shall  obtain  two  conies  a,  ̂   which  will  possess  the  following 

properties : 

Let  //',  A B  he  Si  pair  of  common  chords,  T,  C  the  poles  of 

//'  for  a,  ft  see  Fig.  100.     Then 

(1)  The  tangents  at  A  divide  //'  harmonically. 

(2)  The  tangents  at  A  pass  through  T^  C. 

(3)  T  is  the  pole  of  AB  for  ft 

In  (1)  and  (2)  it  follows  that  if  the  property  is  ti'ue  for  the 
point  A  corresponding  properties  hold  for  the  tangents  at  B^  and 

in  (3)  C  is  the  pole  of  ̂ ^  for  a.  From  the  property  in  (3)  for 
convenience  of  reference  we  have  called  two  conies  which  are  so 

related  contra-polar  conies,  or  from  the  property  in  (1)  they 
might  be  called  harmotomic  conies  as  explained  in  Arts.  203, 

204.  Hence  a  pair  of  orthogonal  circles  become  a  pair  of  contra- 
polar  conies. 
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In  the  column  on  the  left  are  given  the  elements  of  the  original  figure 
which  the  student  should  draw  for  himself.  In  the  column  on  the  right  will  be 
found  the  corresponding  elements  and  properties  of  the  generalised  theorems. 

In  every  case  the  letters  I,  I'  are  the  representatives  of  the  circular 
points  at  infinity,  and  when  I,  I'  are  on  the  curve,  T  the  pole  of  II'  repre- 

sents the  centre  of  the  circle. 

The  letters  have  been  so  chosen  that  Fig.  126  will  apply  to  Examples 
1—14. 

L 

Fig.  126. 
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[CH.  XIX 
1.     The  angle  contained  in   the  The  cross-ratio  of  four  fixed  points 

same  segment  of  a  circle  is  constant.       on  a  conic  is  constant.     Art.  129. 
Let  a,  &  be  two  fixed  points  on  a  circle,  p  a  variable  point  on  it,  and  let 

pa,  pb  meet  the  line  at  infinity  in  a,  /3.  Then  by  6  supra  p  (a^ii')  is 
constant.     If  the  circle  becomes  a  conic  we  have  P  (^BII')  =  constant. 

2.  The  tangent  at  any  point  of 
a  circle  is  at  right  angles  to  the 
radius  through  the  point  of  contact. 

Any  chord  of  a  conic  is  cut  har- 
monically by  any  tangent  and  the 

line  joining  its  point  of  contact  to 
the  pole  of  the  chord.  Art.  178. 

The  line  at  infinity  becomes  a  chord  cutting  the  conic  in  I,  I'.  The 
centre  of  the  circle  becomes  T,  the  pole  of  II'.  The  radius  of  the  circle 
becomes  the  line  joining  I'  to  any  point  A  on  the  curve.  Then  by  5  supra 
TA  and  the  tangent  at  A  cut  II'  harmonically.  From  this  we  can  at  once 
deduce  that  if  a  variable  tangent  meets  two  fixed  tangents,  it  is  divided 
harmonically  by  them,  their  chord  of  contact  and  the  curve.  Also  if  the 

tangent  at  A  meets  II'  in  JT,  TA  and  TK  are  conjugate  lines  since  they 
divide  II'  harmonically. 

3.     Any  diameter  of  a  circle  is 
bisected  at  the  centre. 

Any  chord  through  a  given  point 
is  divided  harmonically  by  the  curve, 

the  point,  and  its  polar.     Art.  161. 

4.     If  pq  is  a  diameter  of  a  circle  If  IF  is  a  chord  of  a  conic,  T  its 

centre  t,  the  c.p.  {pqii')  is  harmonic.       pole,  and  TPQ  a  chord  through  T, 
the  c.p.   {PQII')  is  harmonic,   i.e. 
PQ,  II'  are  conjugate  lines.  Art.  171. 

Two  chords  are  conjugate  if  either  passes  through  the  pole  of  the  other. 
Art.  165. 

5.    The  angle  in  a  semi-circle  is 
a  right  angle. 

In  Ex.  4,  i?  is  any  point  on  the 

curve.  If  PR,  QR  meet  II'  in  D,  E, 
then  {II'DE)  is  harmonic.  Art. 
208  (7). 

6.  If  a  straight  line  through  the 
centre  of  a  circle  bisects  a  chord 

which  does  not  pass  through  the 
centre,  it  cuts  it  at  right  angles ;  and 
conversely,  if  it  cuts  it  at  right  angles, 
it  bisects  it. 

Given  a  chord  of  a  conic  II',  T 
its  pole,  and  any  chord  PR  cutting 

II'  in  D,  and  S  on  PR  so  that 
(PRDS)  is  harmonic.  Let  TS  meet 

II'  in  E.  Then  {II'DE)  is  harmonic; 

and  conversely,  if  {II'DE)  is  har- 
monic, so  also  is  {PRDS). 

Also,  since  T{irDE)  and  T(PRDE)  are  harmonic,  T  {PR,  II',  DE) 
is  an  involution  pencil,  of  which  TD,  TE  are  the  double  rays.     Art.  208  (5). 
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7.    ca,  cb  are  tangents  to  a  circle, 
centre  t ;  ab  and  ct  meeting  in  g. 

(1)  ct  bisects  the  angle  atb. 

(2)  ct  bisects  the  angle  acb. 

(3)  ct  bisects  ab  at  right  angles 
atgr. 

II',  A B  are  two  chords  of  a  conic, 
T,  C  their  poles. 

(1)  TC  is  one  of  the  double  rays 
of  the  involution  pencil  T  {II\  AB). Art.  208  (f). 

(2)  If  CT,  AB,  AG,  BG  meet 
ir  in  F,  H,  K,  L,  GT  is  a  double 
ray  of  the  involution  pencil 

G  [II ',  KL). 

(3)  The  ranges  (ABGH)  and 

{II' FH)  are  harmonic. 
Hence  TG  and  TH  are  the  double  rays  of  the  involution  pencil 

T{ir,  AB,   KL). 
From  the  above  we  also  obtain  the  properties : 

Tangents  to  a  conic  subtend  equal  angles  at  the  focus,  and  if  T  is  the 
focus  and  G  the  pole  of  a  chord  AB,  then  AB  is  divided  harmonically  by 
GT  and  the  directrix,  the  polar  of  T. 

8.     If  the  tangent  at  any  point  Given  a  chord  II'  and  its  pole  T, 
a  of  a  conic  meets  the  S  directrix       if  the  tangent  at  any  point  A  meets 

in  k,  aSk  is  a  right  angle.  II'  in  K,  TA  and  TK  are  conjugate 
lines.     See  Ex.  2  ad  fin. 

9.  ab  is  a  fixed  chord  of  a  circle, 

c  its  pole,  and  r  any  point  on  the 
circumference.  The  bisectors  of  the 

angle  arb  pass  through  two  fixed 
points,  viz.  the  extremities  of  the 
diameter  passing  through  c. 

10.  Two  parallel  tangents  to  a 
circle  intercept  on  any  variable 
tangent  a  segment  which  subtends 
a  right  angle  at  the  centre. 

11.  If  ca,  cb  are  tangents  to  a 
circle,  centre  t,  the  circle  round  abc 
has  ct  for  a  diameter. 

II',  AB  are  two  given  chords  of  a 
conic,  T,  G  their  poles.  GT  meets 
the  conic  in  N,  0.  If  R  is  any 
variable  point  on  the  curve,  the 
double  rays  of  the  involution  pencil 

R  {AB,  II')  always  pass  through  the 
points  N,  0.     Art.  164  ad  fin, 

II'  is  a  given  chord  of  a  conic,  T 

its  pole.  K  is  &  point  on  II'.  KA, 
KA'  are  two  tangents  cut  at  C,  C"  by 
the  variable  tangent  at  B.  Then 

T{II'GG')  is  harmonic.  Art.  175 

(1). AB,  II'  are  two  chords  of  a 
conic,  G,  T  their  poles.  The  six 
points  mentioned  lie  on  a  conic  and 
GT  is  the  polar  of  the  intersection  of 

AB  and  II'  for  both  conies.  Art.  199. 
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[CH.  XIX 
12.     Chords  of    a   circle  which 

subtend  equal  angles 

(1)  at  the  centre, 
(2)  at  the  circumference, 

envelop  a  concentric  circle. 

II'  is  a  given  chord  of  a  conic, 
T  its  pole,  R,  Q  two  points  on  the 
curve  such  that 

(1)  T{II'RQ)  is  constant, 
(2)  the  c.p.  {II'RQ)  is  constant, 

RQ  envelops  a  conic  having  double 

contact  with  the  given  conic  at  I,  I'. 
Arts.  159,  192,  274. 

13.  The  envelope  of  the  chord  of  a  conic  which  subtends  a  constant 
angle  at  the  focus  is  a  conic  having  the  same  focus  and  directrix ;  and  so  is 
the  locus  of  its  pole. 

The  focus  and  directrix  become  a  pole  T  and  its  polar  UV.  Let  I  be  on 

TU  and  2'  on  TV,  Then  corresponding  to  the  moving  chord  pq  of  the  given 
conic  in  the  original  figure  we  have  a  chord  PQ  in  the  generalised  figure  such 

that  T  (UVPQ)  is  constant,  and  as  in  Ex.  12  (1)  PQ  envelops  a  conic  having 
double  contact  with  the  other,  and  similarly  for  the  locus  of  the  pole  of  PQ. 

14.  In  any  conic  the  intercept  on  a  variable  tangent  made  by  two 
fixed  tangents  subtends  a  constant  angle  at  the  focus. 

Here  I,  I'  are  points  (other  than  the  points  of  contact)  on  the  tangents 

from  T.  In  Fig.  126  let  a  variable  tangent  meet  the  tangents  from  T'mti,  1-2, 
and  those  from  G  in  Ci,  C2.  Then  by  Data  No.  6  the  generalised  property 

becomes:  T {II'ciC2)  is  const,  i.e.  (^1^20102)  is  const,  and  we  have  the  anhar- 
monic  property  of  tangents,  Art.  130. 

Fig.  127. 
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[The  letters  in  Examples  15—19  refer  to  Fig.  127.] 

15.  If  ap  is  any  chord  of  a  circle, 
pq  the  diameter  through  p,  and  p7n 
the  perpendicular  on  the  tangent  at 

a  meeting  the  circle  in  p',  then  ap 
bisects  the  angle  p'pq,  and  p'q  is 
parallel  to  the  tangent  at  a. 

II'  is  a  given  chord  of  a  conic,  T 
its  pole,  TPQ  a  chord  through  T. 
The  tangent  at  any  point  A  meets 

II'  in  K.  ilf  is  the  harmonic  conju- 
gate of  K  on  ir,  PM  meets  the 

curve  in  P'.  Then  PA  is  a  double 

line  of  the  involution  pencil  P  (II'QP') 
and  QP'  passes  through  K. 

16.  The  envelope  of  a  chord  uv 
of  a  circle  which  subtends  a  right 
angle  at  a  fixed  point  c  not  on  the 
curve  is  a  conic  having  the  fixed 
point  and  the  centre  of  the  circle 
for  foci. 

17.  c  is  a  fixed  point  in  the 
plane  of  a  circle,  u  any  point  on  the 
curve.  If  vd  is  drawn  making  a 
right  (or  any  constant)  angle  with 
uc,  ud  envelops  a  conic  having  c  for 
focus. 

18.  c  is  a  fixed  point  in  the 
plane  of  a  circle,  centre  t.  The 

locus  of  the  mid-points  of  all  chords 
through  c  is  the  circle  on  ct  as 
diameter. 

19.  The  locus  of  the  points 
where  parallel  chords  of  a  circle  are 
cut  in  a  given  ratio  is  an  ellipse 
having  double  contact  with  the  circle 
at  the  extremities  of  the  diameter 

perpendicular  to  the  chords. 

ir  is  a  fixed  chord  of  a  conic,  T 

its  pole,  and  C  a  point  not  on  the 
curve.  If  UV  is  a  variable  chord 

such  that  C(II'UV)  is  harmonic, 
UV  envelops  a  conic  inscribed  in  the 

quadrilateral  CITI',  and  CT  is  a 
side  of  the  common  self -conjugate 
triangle  of  the  two  conies. 

II'  is  a  given  chord  of  a  conic, 
C  a  fixed  point  in  its  plane.  Any 
straight  line  through  G  cuts  the 

conic  in  U,  and  II'  in  E,  and 
{II'ED)  is  harmonic  (or  constant). 
Then  UDW  envelops  a  conic  touch- 

ing CI  and  CI'. 

II'  is  a  chord  of  a  conic,  T  its 
pole,  C  a  fixed  point  in  its  plane. 

Any  chord  UU'  through  C  meets  II' 
in  E  and  {UU'EX)  is  harmonic. 
The  locus  of  X  is  a  conic  through 

C,  T,  I,  I'  and  having  CT,  W  con- 
jugate chords.    Art.  191. 

If  through  a  fixed  point  C  a 
straight  line  is  drawn  meeting  a 

conic  in  C7,  U',  and  on  it  a  point  Y 

is  taken  such  that  (UU'CY)  is  con- 
stant, the  locus  of  F  is  a  conic 

having  double  contact  with  the  given 
conic  at  the  extremities  of  the  polar 
of  C.     Art.  273. 
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20.  Two  pairs  of  the  lines  join-  II'  is  a  chord  of  a  conic,  T  its 
ing  the  extremities  of  two  diameters  pole,  TAB,  TA'B'  are  two  chords 
of  a  circle  are  parallel,  and  the  other  through  T.  Then  if  ̂ ^',  BE'  meet 
two  pairs  are  at  right  angles.  in  C,  and  AB',  A'B  meet  in  D,  the 

points  0,  D  will  lie  on  II'  and  divide 
it  harmonically. 

21.  The  locus  of  the  mid-points  If  a  series  of  chords  of  a  conic  all 
of  a  series  of  parallel  chords  of  a  pass  through  a  point  D,  the  locus  of 
circle  is  the  diameter  perpendicular  the  harmonic  conjugates  of  D  on  the 
to  the  chords.  chords  is  a  straight  line  on  which 

are  situated  the  poles  of  all  the 
chords.  Art.  161. 

Let  AB  be  any  chord  through  D,  C  its  pole,  and  R  a  point  on  it  such 
that  {ABBB)  is  harmonic.  Let  T  be  the  pole  of  any  chord  PQ  not  passing 
through  D,  and  let  CR  cut  PQ  in  E.  Then  E  lies  on  the  polars  of  D  and  T. 
Hence  any  chord  through  E,  such  as  PQ,  is  cut  harmonically  at  E  and  the 
point  where  it  meets  DT.  Therefore  TE,  TD  are  harmonic  conjugates  of 
the  tangents  TP,  TQ.  Now  draw  any  transversal  through  D,  cutting  TP, 

TQ  in  the  points  I,  I',  and  transform  so  that  I,  I'  become  i,  i' .  Then  D  is 
on  the  line  at  infinity,  and  ORE  becomes  the  locus  of  the  mid-points  of  a 
system  of  parallel  chords  of  which  TB  is  the  direction.  Moreover,  T  is  now 
a  focus,  and  PQ  the  corresponding  directrix,  and  TD,  TE  .being  conjugate 

for  Ti,  Ti',  are  at  right  angles  to  each  other.  Hence  we  have  the  theorem: 
'  *  The  locus  of  the  mid-points  of  a  series  of  parallel  chords  of  a  conic  is  a 
straight  line  which  cuts  a  directrix  in  a  point  E  such  that  the  corresponding 
focal  distance  TE  is  perpendicular  to  the  system  of  chords.  Also  the  poles 

of  the  system  of  chords  all  lie  on  the  locus  of  their  mid-points." 
22.  If  a  line  is  drawn  through  T^ ,  TjB  are  two  given  tangents  to 

a  focus  of  a  central  conic  making  a  a  conic,  I,  I'  given  points  on  them, 
constant  angle  with  a  tangent,  the  If  a  variable  tangent  at  0  meets 

locus  of  their  intersection  is  a  circle.  TA,  TB,  II'  in  P,  Q,  R  respectively, 
and  (PQRS)  is  constant,  the  locus  of 

S  is  a,  conic  through  I,  I'. 
[In  the  original  figure  let  s  be  the  focus,  and  let  st  meet  the  tangent 

at  p  in  t  so  that  stp  is  constant,  and  draw  sy  perpendicular  to  pt.  Then  the 
triangle  syt  is  of  constant  species,  and  since  y  describes  a  circle,  the  locus  of 
f  is  a  circle.] 

If  the  line  II'  is  at  an  infinite  distance  so  that  R  is  at  infinity,  and  PQ 
is  divided  in  a  constant  ratio  at  S,  the  theorem  becomes  "The  locus  of  the 
point  where  the  intercept  on  a  variable  tangent  made  by  two  fixed  tangents 
is  divided  in  a  constant  ratio  is  a  hyperbola  whose  asymptotes  are  parallel 

to  the  given  tangents."     Chap.  XI,  Ex.  13. 
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If  the  original  conic  is  a  parabola,  the  locus,  instead  of  being  a  circle,  is 

a  straight  line;  and  as  II'  is  now  a  tangent,  the  property  becomes  "  If  a 
variable  tangent  to  a  conic  meets  three  fixed  tangents  in  P,  Q,  R,  and 

{PQRS)  is  constant,  the  locus  of  S  is  a  straight  line."  If  one  of  the 
tangents,  as  II',  is  at  infinity,  the  generalised  conic  is  a  parabola,  one  of 
the  three  points,  as  R,  is  at  infinity,  and  the  theorem  becomes  "The  locus 
of  the  point  where  the  intercept  on  a  variable  tangent  to  a  parabola  made  by 

two  fixed  tangents  is  divided  in  a  constant  ratio  is  a  straight  line."  See 
Chap.  VI,  Ex.  26. 

23.  The  locus  of  the  intersection 

of  tangents  to  a  conic  at  right  angles 
is  a  circle. 

The  locus  of  the  intersection  of 

tangents  to  a  conic  which  divide  a 

finite  segment  II'  harmonically  is  a 

conic  through  I,  I'. 
If  P  is  any  point  on  the  locus,  PI,  PI'  are,  by  Art.  166  (jS'),  conjugate 

lines  for  the  conic.    Therefore  I,  I'  are  conjugate  points,  and  the  proposition 
is  clearly  equivalent  to  that  of  Art.  185. 

If  the  given  conic  is  a  parabola,  the  segment  II'  is  a  tangent,  and  the 
locus  becomes  the  line  II'  and  the  line  joining  the  points  of  contact  of 
tangents  from  I  and  I'. 

24.  The  locus  of  the  intersection 

of  tangents  to  a  parabola  which 
meet  at  a  given  angle  (not  a  right 
angle)  is  a  hyperbola  having  double 
contact  with  the  parabola. 

25.  If  a  variable  triangle  is  in- 
scribed in  a  circle,  and  two  of  its 

sides  are  parallel  to  given  directions, 
the  base  envelops  a  concentric  circle. 

26.  If  two  circles  are  concentric, 
any  chord  of  one  which  touches  the 
other  is  bisected  at  the  point  of 
contact. 

27.     If    two    circles    touch    one 

another,   the   straight    line    joining 
their    centres    passes    through    the 
point  of  contact. 

M. 

The  locus  of  the  intersection  of 

tangents  to  a  conic  which  divide  a 

finite  segment  II'  of  a  given  tangent 
in  a  constant  cross-ratio  is  a  conic 
having  double  contact  with  the  given 
conic  at  the  points  of  contact  of 

tangents  from  I  and  I', 
If  a  triangle  is  inscribed  in  a 

conic,  having  two  of  its  sides  passing 
through  two  fixed  points  on  a  given 

chord  II',  the  base  envelops  a  conic 
having  double  contact  with  the  given 

conic  at  the  points  J,  /'.     Art.  276. 
If  two  conies  have  double  contact, 

any  chord  of  one  which  touches  the 
other  is  divided  harmonically  by  its 
point  of  contact,  the  chord  of  contact 
and  the  curve.     Art.  266. 

If  two  conies  touch  one  another, 

the  line  joining  the  poles  of  their 
common  chord  passes  through  their 

point  of  contact. 
18 
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[CH.  XIX 
28.  If  two  circles,  centres  t,  t', 

touch  one  another  at  p,  and  a  chord 

pqr  is  drawn,  the  radii  tr,  t'q  are 
parallel ;  and  conversely. 

29.  The  locus  of  the  centres  of 

circles  touching  a  given  circle  at  a 
given  point  is  a  straight  line  passing 
through  the  given  point. 

30.  The  centre  of  any  circle 
which  touches  two  intersecting 
straight  lines  lies  on  the  bisector  of 
the  angle  between  them. 

31.  Given  the  focus  and  two 

points  on  a  conic,  the  directrix 
passes  through  one  of  two  fixed 

points. 

32.  The  locus  of  the  centres  of 
circles  which  touch  each  of  two 

parallel  lines  is  a  straight  line 
parallel  to  the  others  and  midway 
between  them. 

33.  If  two  circles  intersect  at  a, 

h,  and  through  a  any  double  chord 

'paq  is  drawn,  jog  subtends  a  constant 
angle  at  h. 

Two  conies  touch  one  another  at 

P,  and  T,  T'  are  the  poles  of  their 
common  chord  H',  If  any  chord 
PQR  is  drawn  through  P,  TR,  T'Q 
will  meet  on  II' ;  and  conversely,  if 
TR,  T'Q  meet  on  II',  QR  passes 
through  P. 

A  system  of  conies  is  described 
touching  a  given  conic  at  a  given 
point  P,  and  intersecting  it  in  two 

fixed  points  I,  I'.  The  locus  of  the 
poles  of  II'  is  a  straight  line  passing 
through  P. 

Given  two  tangents  CA,  CB  and 

two  points  I,  I'  on  a  conic,  the  locus 

of  the  pole  of  the  common  chord  II' 
is  a  double  line '  of  the  involution 
pencil  G  {W,  AB).    Art.  288. 

Given  two  tangents  and  two 

points  on  a  conic,  their  chord  of 
contact  will  pass  through  one  of  two 
fixed  points.    Art.  288. 

I,  I'  are  two  fixed  points,  PQ, 
PR  two  fixed  lines  intersecting  in  P 

on  II'.  If  a  system  of  conies  is 

described  passing  through  I,  I'  and 
touching  PQ,  PR,  the  locus  of 

the  pole  of  II'  is  a  straight  line 
through  P. 

Two  conies  intersect  in  the  points 

I,  I',  A,  B.  Any  chord  through  A 
meets  the  conies  in  P,  Q.  Then 

B  {II'PQ)  is  constant. 

System  of  Co-axial  circles.  Pencil  of  conies. 

34.     The  centres  of  the  circles  The  poles  of  any  pair  of  common 
are  collinear.  chords  are  collinear.     Art.  216. 

The  poles  lie  along  one  of  the  sides  of  the  common  self -conjugate  triangle 
P1P2P3  (Fig.  102),  which  may  be  called  the  line  of  poles  corresponding  to 
that  pair. 
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Any  pair  of  common  chords 
forms  a  harmonic  pencil  with  the 
two  lines  of  poles  through  their 
vertex.     Art.  214. 

Two  given  points  are  conjugate 
for  only  one  conic  of  a  pencil.  Art. 
217. 

If  two  points  are  conjugate  for 
two  conies  A,  B,  they  are  conjugate 
for  the  pencil  to  which  A  and  B 
belong.     Art.  218. 

A  line  of  poles  cuts  the  pencil  of 
conies  in  a  range  in  involution  of 
which  a  pair  of  vertices  of  the  self- 
conjugate  triangle  P1P2P3  are  the 
double  points.     Art.  214. 

A  system  of  conies  which  pass 

through  three  fixed  points  A,  I,  I', 
and  have  the  poles  of  //'  collinear, 
pass  through  a  fourth  point  B.  It  L 

is  the  line  of  poles,  cutting  //'  in  K, 
then  AB  is  the  harmonic  conjugate 
of  AK  for  AI,  AF,  and  B  is  the 
harmonic  conjugate  of  A  for  the 

points  where  AB  cuts  L  and  H'. 

40.  A  system  of  circles  which  A  system  of  conies  which  pass 
pass  through  a  fixed  point  and  have  through  three  fixed  points  and  have 

a  pair  of  points  conjugate  are  co-  a  pair  of  points  conjugate  form  a 
axial.  pencil.     Art.  218. 

If  the  pair  of  conjugate  points  are  i,  i',  the  conies  are  all  rectangular 
hyperbolas,  and  the  fourth  point  through  which  they  pass  is  the  orthocentre 
of  the  triangle  formed  by  the  three  given  points. 

41.  A  system  of  circles  which 
have  two  pairs  of  conjugate  points  is 
co-axial. 

35.     The  line  of  centres  is  per- 
pendicular to  the  radical  axis. 

36.  Two  given  points  are  con- 
jugate for  only  one  circle  of  a  co-axial 

system. 

37.  If  two  points  are  conjugate 
for  two  circles,  they  are  conjugate 
for  the  co-axial  system  to  which  they 
belong. 

38.  The  line  of  centres  cuts  the 

system  in  a  range  in  involution  of 
which  the  limiting  point  circles  are 
the  double  points. 

39.  A  system  of  circles  which 
pass  through  a  fixed  point  a  and  have 
their  centres  collinear  are  co-axial, 
the  second  point  h  being  such  that  ah 
is  bisected  at  right  angles  by  the  line 
of  centres. 

42.     Three    pairs    of    conjugate 
points  determine  a  circle. 

A  system  of  conies  which 
through  two  fixed  points  and  have 
two  pairs  of  conjugate  points  form  a 

pencil.    Art.  218. 

Two  points  and  three  pairs  of 
conjugates  determine  a  conic.  Art. 
218. 

18—2 
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43.  The  polar s  of  any  point  on 

the  radical  axis  intersect  on  the 
radical  axis. 

44.  The  polar s  of  any  point 
P  will  all  pass  through  the  same 

point  P'. 

45.  The  radical  axis  bisects 

(1)  The  segment  PP'  in  Ex.  44. 

(2)  The  common  tangents  of 
any  pair  of  circles  of  the  system. 

(3)  The  segment  joining  the 

limiting  point  circles  L,  L'. 

(4)  The  tangents  from  either 
limiting  point  circle  to  any  circle  of 
the  system. 

46.  If  three  circles  are  co-axial  a 
common  tangent  to  two  of  them  is 
cut  harmonically  by  the  third. 

The  polars  of  a  point  on  any 
common  chord  intersect  on  that 
common  chord.     Art.  210. 

The  polars  of  any  point  P  will  all 

pass  through  the  same  point  P'. 
Art.  218. 

Any  pair  of  common  chords 
divide  harmonically 

(1)  The  segment  PP'  in  Ex.  44. Art.  218. 

(2)  The  common  tangent  of  any 
pair  of  conies  of  the  pencil.  Art. 
213,  Cor. 

(3)  One  of  the  sides  of  the  com- 
mon self -con  jugate  triangle  P1P2P3 . 

Art.  214. 

(4)  The  tangents  from  any  vertex 
of  the  triangle  P^P^P^  to  any  conic 

of  the  pencil.     Art.  214. 

A  common  tangent  to  two  conies 
of  a  pencil  is  cut  harmonically  by 
any  other  conic  of  the  pencil.  Art. 
213,  Cor. 

47.  The  three  radical  axes  of 

any  three  circles  taken  in  pairs  are 
concurrent  in  the  radical  centre. 

48.  If  in  Ex.  47  c  is  the  radical 

centre,  and  from  c  tangents  are 
drawn  to  the  three  circles,  the  six 

points  of  contact  will  lie  on  a  circle 
called  the  radical  circle,  whose  centre 

If  three  conies  have  a  common 

chord  II',  and  the  other  common 
chord  of  the  pair  be  drawn  for  each 

pair  of  conies,  these  latter  common 
chords  meet  in  a  point  which  may 
be  called  the  radical  pole.     Art.  215. 

If  in  Ex.  47  C  is  the  radical  pole, 
and  from  G  tangents  are  drawn  to  the 
three  conies,  the  six  points  of  contact 
lie  on  a  conic,  which  may  be  called 
the  radical  conic,  which  passes 

through  the  points  J,  Z',  and  has  C 

for  the  pole  ot  II'. 
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Limiting  point  circles,  L,  TJ . 

49.  (1)  L,  L'  are  inverse  points 
for  each  circle. 

(2)  The  points  of  contact  of  a 
common  tangent  of  two  circles  of  the 
system  subtend  a  right  angle  at  L 

and  L'. 
(3)  If  PQ  is  a  common  tangent 

to  two  of  the  circles,  the  circle  on 

PQ  as  diameter  passes  through  the 

points  I/,  L'. 

(4)  If  a  transversal  touches  one 
circle  at  Q  and  cuts  another  at  jR,  *Sf, 
LQ  bisects  the  angle  UhS. 

(5)     If    the    transversal    in    (4) 

passes  through  L,   (LQRS)  is  har- 

Vertices  of  self-conjugate  tri- 
angle P1P2P3. 

(1)  See  Ex.  38. 

(2)  See  Ex.  45  (3). 

(3)  If  QB  is  a  common  tangent 

of  two  conics»  I,  I'  a  pair  of  com- 
mon points,  the  conic  described 

through  Q,  R,  I,  I',  having  QR 
and  II'  for  conjugate  lines  passes 
through  two  vertices  of  the  triangle 
P1P2P3. 

(4)  A  tangent  to  one  conic  at  Q 
cuts  another  in  R,  S.  If  P  is  a 
vertex  of  the  triangle  P1P2P3 ,  PQ  is 

a  double  ray  of  the  involution  pencil 

P{II',  RS). 

(5)  If  the  tangent  in  (4)  passes 
through  a  vertex  P  of  the  triangle 

P1P2P3,  (PQRS)  is  harmonic. 

Centres  of  similitude  of  two  circles. 

50.  (1)  The  centres  of  similitude 
and  the  centres  of  the  two  circles 

form  a  harmonic  range. 

(2)  The  two  circles  and  their 
circle  of  similitude  are  co-axial. 

(3)  Any  transversal  through  a 
centre  of  similitude  meets  the  two 

circles  in  four  points  which  lie  by 
pairs  at  the  extremities  of  parallel 
radii. 

Tangent  vertices  of  two  conies. 

(1)  In  Fig.  102,  g^g^  is  a  com- 
mon chord,  a,  /3  its  poles,  Tj ,  Tg 

the  corresponding  tangent  vertices, 

(a^T^T^)  is  harmonic.     Art.  229. 
(2)  The  conic  through  Tj ,  1\, 

g-^,  g^  having  T^T^  and  g^g^^  for  con- 
jugate lines  passes  through  the 

points  g^,  g^ . 

(3)  If  in  Fig.  106  a  transversal 
through  Tj  meets  the  conic  A  in 

p,  p'  and  the  conic  B  in  q,  q\  and 
a',  j3'  are  the  poles  of  the  common 
chord  FF',  a'p  and  §'q  meet  on  FF\ 
&c.     Art.  248. 
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Orthogonal  circles. 

51.     A  circle  which  is  orthogonal 
to  two  circles  has  its  centre  on  their 
radical  axis. 

52.  A  circle  which  is  orthogonal 
to  two  circles  is  orthogonal  to  the 

system  which  is  co-axial  with  them. 

63.  A  system  of  circles  which  is 
orthogonal  to  two  given  circles  is 
co-axial. 

54.  If  a  system  of  conies  has 
its  centres  coUinear  and  cuts  a  given 

circle  orthogonally,  it  is  co-axial. 

55.  If  a  system  of  circles  passes 
through  a  fixed  point  and  cuts  a 
given  circle  orthogonally,  the  system 
is  co-axial. 

56.  If  c  is  any  point  on  the 
radical  axis  of  a  co-axial  system,  and 
tangents  are  drawn  from  c  to  each 
circle,  the  points  of  contact  will  all 
lie  on  a  circle  which  cuts  the  system 
orthogonally. 

57.  Given  a  system  of  co-axial 
circles,  there  exists  another  co-axial 
system  such  that  each  circle  of  either 
system  cuts  every  circle  of  the  other 
system  orthogonally. 

Contra-polar  conies. 

A  conic  A  which  is  contra-polar 
to  two  conies  B,  C  passes  through 
two  of  their  common  points,  and  the 
pole  of  the  line  joining  them  for  the 
conic  A  lies  on  the  line  joining  the 
other  pair  of  common  points  of  B 
and  C. 

A  conic  which  is  contra-polar  to 
two  conies  is  contra-polar  to  the 
pencil  to  which  they  belong. 

A  system  of  conies  which  is 

contra-polar  to  two  given  conies 
forms  a  pencil  of  conies. 

If  a  system  of  conies  has  two 
common  points,  and  the  poles  of  the 
line  joining  them  are  collinear,  and 

also  a  conic  through  them  is  contra- 
polar  to  the  system,  the  conies  form 

a  pencil. 

If  a  system  of  conies  has  three 

points  common,  and  is  contra-polar 
to  a  given  conic  through  two  of  them, 
the  system  forms  a  pencil. 

If  C  is  any  point  on  one  of  a  pair 
of  common  chords  of  a  pencil  of 
conies  and  tangents  are  drawn  from 

G  to  each  conic,  the  points  of  con- 
tact will  all  lie  on  a  conic  which 

passes  through  the  two  points  where 
the  other  common  chord  of  the  pair 

intersects  the  conies,  and  is  contra- 

polar  to  the  pencil. 

Given  a  pencil  of  conies  there 
exists  another  pencil  such  that  each 

conic  of  either  pencil  is  contra-polar 
to  every  conic  of  the  other.  The 

two  pencils  have  two  points  /,  I' 
common  to  both. 
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58.  In  Ex.  57  the  line  of  centres 

of  one  system  is  the  radical  axis  of 
the  other. 

If  QR,  II'  are  &  pair  of  common 
chords  of  the  first  pencil,  and  Q'R', 
II'  a  pair  of  the  second,  Q'R'  is  the 
locus  of  the  poles  of  11'  for  the  first, 
and  QR  the  locus  of  the  poles  of  II' 
for  the  second. 

59.  In  Ex.  48,  the  radical  circle 
of  the  three  given  circles  cuts  them 
orthogonally. 

60.  If  two  circles  cut  one  another 

orthogonally,  any  diameter  of  one  is 
cut  harmonically  by  the  other. 

Given  three  conies  which  have  a 
common  chord,  their  radical  conic  is 

contra-polar  to  them. 

If  two  conies  are  contra-polar, 
any  chord  through  the  pole  of  one 
is  cut  harmonically  by  the  other. 
Art.  205. 

Any  conic  through  two  of  the 
common  points  of  a  pencil  and  two 
vertices  of  the  common  self -con  jugate 
triangle  is  contra-polar  to  the  pencil. 

Polax  conic. 

Given  a  triangle  ABC  and  two 

points  7,  I',  only  one  conic  can  be 
described  passing  through  J,  I'  and 
having  ABC  self-conjugate.      This 
may  be  called  the  polar  conic  of  the 
triangle. 

To  construct  the  conic,  join  AI  meeting  BG  in  D,  and  take  E  so  that 
(AIDE)  is  harmonic.     Then  E  is  a  point  on  the  conic.     Similarly  by  taking 
I  with  B  and  G  we  obtain  two  other  points  F,  G  on  the  curve.     We  thus 
obtain  five  points  on  the  conic. 

63.     The  polar  circle  of  a  triangle  The  polar  conic   of    a    triangle 
divides  the  sides  harmonically,  and  divides  the  sides  harmonically,  and 
is  orthogonal  to  the  circles  on  the  is  contra-polar  to  the  three  conies 
sides  as  diameters.  constructed  as  follows. 

Given  a  triangle  ABG  and  two  points  I,  I'.  Describe  the  conic  passing 
through  A,  B,  I,  I'  and  having  AB  and  II'  for  conjugate  lines,  and  similarly 
for  the  groups  B,  G,  J,  I'  and  G,  A,  I,  I'.  These  represent  the  circles  on 
AB,  BG,  GA  as  diameters.  Having  two  points  common  they  have  a  radical 
pole  which  represents  the  orthocentre  in  the  original  figure,  and  the  polar 
conic  is  contra-polar  to  them. 

61.  Any  circle  through  the 

limiting  points  of  a  co-axial  system 
is  orthogonal  to  the  system,  and 
conversely. 

Polar  circle. 

62.  Given  a  triangle  ABG,  only 
one  circle  can  be  described  for  which 

ABG  is  self-conjugate.  This  is  called 
the  polar  circle  of  the  triangle. 
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[CH.  XI Confocal  conies. 

64.    Confocal  conies  cut  at  right 

Range  of  conies.     (I,  I'  are  now 
pair  of  opposite  tangent  vertices.)] 

In  Fig.  102  (a^TiTa)  is  harmoni Art.  229. 

65.  If  from  a  point  P  on  a  conic 
tangents  are  drawn  to  a  confocal, 
they  make  equal  angles  with  the 
tangent  to  the  given  conic  at  P. 

Art.  228. 

66.  The  locus  of  the  pole  of  a 

straight  line  L  for  a  system  of  con- 
f  ocals  is  a  straight  line  perpendicular 
toL. 

Art.  233. 



APPENDIX  II 

pascal's  theorem  proved  for  the  conic  and  line-pair 
by  the  methods  of  euclid  and  apollonius 

In  Figs.  128,  129,  a,  6,  c  and  a\  b\  c'  are  any  six  points  on  the 

conic,  or  by  threes  on  the  pair  of  lines  L,  L' . 

a,  y8,  y  are  the  intersections  of  (5c',  h'c),  [ca',  ca),  {ab',  a'h). 
It  is  required  to  prove  that  a,  ̂,  y  are  collinear. 

Fig.  128. 
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Fig.  129. 
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Through  a  draw  ae  parallel  to  ca'.  In  the  conic,  0  is  the 

centre,  hst,  b's't',  and  OA  are  parallel  to  ca',  and  OB  is  parallel 

to  aa'.     Complete  the  figures  by  joining  points  as  required. 
I.     For  the  conic. 

By  similar  triangles 

eh  :b' 

Again 

and 

he  :  cb' =  am  :  mb' 

=  aa'  :  a't', 
a'm  :  b't'  =  aa'  :  a^', 

i .  a'm  :  aa'^  =  b's' .  b't'  :  at' .  a!t' 
^OA^'.  OW   

ck  :  sb  —  ec  :  es 
=  aa'  :  at, 

ck  :  aa'  =  sb  :  at, 

al  :  aa'  =  bt  :  ta', 

ck .  al  :  aa'^  =  8b  .bt  :  at.  ta' 

=  0A^  :  OB^   

ck.al  =  eh.  a'm. 

.(1). 

(2); 

by  (1)  and  (2) 

II.     For  the  line-pair. 

By  similar  triangles 
ck  \  ae  =  kb  :  be 

=  ka'  :  le, 

ck  :  ka'  =  ae  :  le, 

ck  :  ca'  =  ae  :  al, 

ck.al  =  ca'.ae       

Again,  from  the  similar  triangles  b'eh,  b'a'c, 

eh  :  a'c  =  b'e  :  b'a' 
—  ae  :  a'm, 

.*.     eh .  a'm  =  a'c  .ae-ck.  al,  by  (3), 

,(3). 
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.*.  in  both  the  conic  and  the  line-pair, 

eh  :  ck  =  al  :  a'm, 

:.      eg  -.gk^ly:  ya\ 

ek  :  gk  -  la  :  ya'    (4), 

and  bk  :  be  =  ha!  :  hi, 

hk  :  ek  =  ha'  :  a'l    (5), 

.'.  by  (4)  and  (5),  hk  :  gk  =  ha'  :  ya', 

.'.  7^  is  parallel  to  a'c  or  ae. 

Now  y  is  the  intersection  of  (ah',  ah),  and  g  of  (eh,  h'c). 

Therefore  if  we  introduce  the  point  c'  in  the  place  of  h',  and 

if  n  be  the  intersection  of  (ac',  ah),  and  n  that  of  {eh,  cc),  nn 

will  be  parallel  to  a'c  or  ae,  and  therefore  also  to  yg. 

ftp  :  pc  =  nr  :  rn' =  n  •  m 

:.      Pp'.yq=pc:qg -  ap  :  aq, 

.-.      ftp  :  pa  -  yq  :  qa, 

.*.  a,  ft,  y  are  collinear. 
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