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PREFACE

To the first edition of this work, published in 1867, the following

was prefixed :

—

'The present work was commenced in 1859, while I was a Pro-

fessor of Mathematics, and far more ready at Quaternion analysis

than I can now pretend to be. Had it been then completed I

should have had means of testing its teaching capabilities, and of

improving it, before publication, where found deficient in that

respect.

' The duties of another Chair, and Sir W. Hamilton's wish that

my volume should not appear till after the publication of his Me-

me?its, interrupted my already extensive preparations. I had worked

out nearly all the examples of Analytical Geometry in Todhunter's

Collection, and I had made various physical applications of the

Calculus, especially to Crystallography, to Geometrical Optics, and

to the Induction of Currents, in addition to those on Kinematics,

Electrodynamics, Fresnel's Wave Surface, &c, which are reprinted

in the present work from the Quarterly Mathematical Journal and

the Proceedings of the Royal Society of Edinburgh.

1 Sir W. Hamilton, when I saw him but a few days before his

death, urged me to prepare my work as soon as possible, his being

almost ready for publication. He then expressed, more strongly

perhaps than he had ever done before, his profound conviction of

the importance of Quaternions to the progress of physical science

;

and his desire that a really elementary treatise on the subject should

soon be published.



VI PREFACE.

' I regret that I have so imperfectly fulfilled this last request of

my revered friend. When it was made I was already engaged,

along with Sir W. Thomson, in the laborious work of preparing

a large Treatise on Natural Philosophy. The present volume has

thus been written under very disadvantageous circumstances, espe-

cially as I have not found time to work up the mass of materials

which I had originally collected for it, but which I had not put

into a fit state for publication. I hope, however, that I have to

some extent succeeded in producing a thoroughly elementary work,

intelligible to any ordinary student; and that the numerous ex-

amples I have given, though not specially chosen so as to display

the full merits of Quaternions, will yet sufficiently shew their admir-

able simplicity and naturalness to induce the reader to attack the

Lectures and the Elements ; where he will find, in profusion, stores

of valuable results, and of elegant yet powerful analytical investiga-

tions, such as are contained in the writings of but a very few of the

greatest mathematicians. For a succinct account of the steps by

which Hamilton was led to the invention of Quaternions, and for

other interesting information regarding that remarkable genius, I

may refer to a slight sketch of his life and works in the North

British Review for September 1866.

' It will be found that I have not servilely followed even so great

a master, although dealing with a subject which is entirely his

own. I cannot, of course, tell in every case what I have gathered

from his published papers, or from his voluminous correspondence,

and what I may have made out for myself. Some theorems and

processes which I have given, though wholly my own, in the sense

of having been made out for myself before the publication of the

Elements, I have since found there. Others also may be, for I have

not yet read that tremendous volume completely, since much of it

bears on developments unconnected with Physics. But I have

endeavoured throughout to point out to the reader all the more

important parts of the work which I know to be wholly due to

Hamilton. A great part, indeed, may be said to be obvious to any

one who has mastered the preliminaries ; still I think that, in the
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two last Chapters especially, a good deal of original matter will be

found.

' The volume is essentially a working one, and, particularly in the

later Chapters, is rather a collection of examples than a detailed

treatise on a mathematical method. I have constantly aimed at

avoiding too great extension ; and in pursuance of this object have

omitted many valuable elementary portions of the subject. One of

these, the treatment of Quaternion logarithms and exponentials, I

greatly regret not having given. But if I bad printed all that

seemed to me of use or interest to the student, I might easily have

rivalled the bulk of one of Hamilton's volumes. The beginner is

recommended merely to read the first five Chapters, then to work

at Chapters VI, VII, VIII (to which numerous easy Examples are

appended). After this he may work at the first five, with their

(more difficult) Examples ; and the remainder of the book should

then present no difficulty.

' Keeping always in view, as the great end of every mathematical

method, the physical applications, I have endeavoured to treat the

subject as much as possible from a geometrical instead of an analy-

tical point of view. Of course, if we premise the properties of i,j\ k

merely, it is possible to construct from them the whole system*

;

just as we deal with the imaginary of Algebra, Or, to take a closer

analogy, just as Hamilton himself dealt with Couples, Triads, and

Sets. This may be interesting to the pure analyst, but it is repulsive

to the physical student, who should be led to look upon i,j} k from

the very first as geometric realities, not as algebraic imaginaries.

' The most striking peculiarity of the Calculus is that multipli-

cation is not generally commutative, i.e. that qr is in general different

from rq, r and q being quaternions. Still it is to be remarked that

something similar is true, in the ordinary coordinate methods, of

operators and functions : and therefore the student is not wholly

unprepared to meet it. No one is puzzled by the fact that log.cos.#

* This has been done by Hamilton himself, as one among many methods he has

employed ; and it is also the foundation of a memoir by M. Allegret, entitled Essai

sur le Calcul des Quaternions (Paris, 1862).
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is not equal to cos.log.a?, or that y/ -j- is not equal to -j-\/y.

Sometimes, indeed, this rule is most absurdly violated, for it is

usual to take cos2# as equal to (cos#) 2
, while cos

_1
a? is not equal to

(cos a?)
-1

. No such incongruities appear in Quaternions; but what

is true of operators and functions in other methods, that they are

not generally commutative, is in Quaternions true in the multipli-

cation of (vector) coordinates.

1 It will be observed by those who are acquainted with the Cal-

culus that I have, in many cases, not given the shortest or simplest

proof of an important proposition. This has been done with the

view of including, in moderate compass, as great a variety of

methods as possible. With the same object I have endeavoured to

supply, by means of the Examples appended to each Chapter, hints

(which will not be lost to the intelligent student) of farther develop-

ments of the Calculus. Many of these are due to Hamilton, who,

in spite of his great originality, was one of the most excellent

examiners any University can boast of.

1 It must always be remembered that Cartesian methods are mere

particular cases of Quaternions, where most of the distinctive fea-

tures have disappeared; and that when, in the treatment of any

particular question, scalars have to be adopted, the Quaternion

solution becomes identical with the Cartesian one. Nothing there-

fore is ever lost, though much is generally gained, by employing

Quaternions in preference to ordinary methods. In fact, even when

Quaternions degrade to scalars, they give the solution of the most

general statement of the problem they are applied to, quite inde-

pendent of any limitations as to choice of particular coordinate

axes.

( There is one very desirable object which such a work as this

may possibly fulfil. The University of Cambridge, while seeking

to supply a real want (the deficiency of subjects of examination for

mathematical honours, and the consequent frequent introduction of

the wildest extravagance in the shape of data for "Problems"), is

in danger of making too much of such elegant trifles as Trilinear
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Coordinates, while gigantic systems like Invariants (which, by the

way, are as easily introduced into Quaternions as into Cartesian

methods) are quite beyond the amount of mathematics which even

the best students can master in three years' reading. One grand

step to the supply of this want is, of course, the introduction into

the scheme of examination of such branches of mathematical physics

as the Theories of Heat and.Electricity. But it appears to me that

the study of a mathematical method like Quaternions, which, while

of immense power and comprehensiveness, is of extraordinary sim-

plicity, and yet requires constant thought in its applications, would

also be of great benefit. With it there can be no " shut your eyes,

and write down your equations," for mere mechanical dexterity of

analysis is certain to lead at once to error on account of the novelty

of the processes employed.

'The Table of Contents has been drawn up so as to give the

student a short and simple summary of the chief fundamental for-

mulae of the Calculus itself, and is therefore confined to an analysis

of the first five [and the two last] chapters.

c In conclusion, I have only to say that I shall be much obliged

to any one, student or teacher, who will point out portions of the

work where a difficulty has been found ; along with any inaccuracies

which may be detected. As I have had no assistance in the revision

of the proof-sheets, and have composed the work at irregular in-

tervals, and while otherwise laboriously occupied, I fear it may

contain many slips and even errors. Should it reach another edition

there is no doubt that it will be improved in many important par-

ticulars.'

To this I have now to add that I have been equally surprised

and delighted by so speedy a demand for a second edition—and the

more especially as I have had many pleasing proofs that the

work has had considerable circulation in America. There seems

now at last to be a reasonable hope that Hamilton's grand in-

vention will soon find its way into the working world of science,

to which it is certain to render enormous services, and not be laid
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aside to be unearthed some centuries hence by some grubbing-

antiquary.

It can hardly be expected that one whose time is mainly en-

grossed by physical science, should devote much attention to the

purely analytical and geometrical applications of a subject like this

;

and I am conscious that in many parts of the earlier chapters I

have not fully exhibited the simplicity of Quaternions. I hope,

however, that the corrections and extensions now made, especially

in the later chapters, will render the work more useful for my chief

object, the Physical Applications of Quaternions, than it could have

been in its first crude form.

I have to thank various correspondents, some anonymous, for

suggestions as well as for the detection of misprints and slips of

the pen. The only absolute error which has been pointed out to

me is a comparatively slight one which had escaped my own notice

:

a very grave blunder, which I have now corrected, seems not to

have been detected by any of my correspondents, so that I cannot

be quite confident that others may not exist.

I regret that I have not been able to spare time enough to re-

write the work ; and that, in consequence of this, and of the large

additions which have been made (especially to the later chapters),

the whole will now present even a more miscellaneously jumbled

appearance than at first.

It is well to remember, however, that it is quite possible to

make a book too easy reading, in the sense that the student may

read it through several times without feeling those difficulties

which (except perhaps in the case of some rare genius) must

attend the acquisition of really useful knowledge. It is better to

have a rough climb (even cutting one's own steps here and there)

than to ascend the dreary monotony of a marble staircase or a

well-made ladder. Royal roads to knowledge reach only the par-

ticular locality aimed at—and there are no views by the way.

It is not on them that pioneers are trained for the exploration of

unknown regions.

But I am happy to say that the possible repulsiveness of my
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early chapters cannot long be advanced as a reason for not at-

tacking this fascinating subject. A still more elementary work

than the present will soon appear, mainly from the pen of my
colleague Professor Kelland. In it I give an investigation of

the properties of the linear and vector function, based directly

upon the Kinematics of Homogeneous Strain, and therefore so

different in method from that employed in this work that it may

prove of interest to even the advanced student.

Since the appearance of the first edition I have managed (at least

partially) to effect the application of Quaternions to line, surface,

and volume integrals, such as occur in Hydrokinetics, Electricity,

and Potentials generally. I was first attracted to the study of

Quaternions by their promise of usefulness in such applications,

and, though I have not yet advanced far in this new track, I have

got far enough to see that it is certain in time to be of incalculable

value to physical science. I have given towards the end of the

work all that is necessary to put the student on this track, which

will, I hope, soon be followed to some purpose.

One remark more is necessary. I have employed, as the positive

direction of rotation, that of the earth about its axis, or about the

sun, as seen in our northern latitudes, i.e. that opposite to the direc-

tion of motion of the hands of a watch. In Sir W. Hamilton's

great works the opposite is employed. The student will find no

difficulty in passing from the one to the other ; but, without pre-

vious warning, he is liable to be much perplexed.

With regard to notation, I have retained as nearly as possible

that of Hamilton, and where new notation was necessary I have

tried to make it as simple and as little incongruous with Hamil-

ton's as possible. This is a part of the work in which great care

is absolutely necessary ; for, as the subject gains development,

fresh notation is inevitably required ; and our object must be to

make each step such as to defer as long as possible the revolution

which must ultimately come.

Many abbreviations are possible, and sometimes very useful in

private work ; but, as a rule, they are unsuited for print. Every
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analyst, like every short-hand writer, has his own special con-

tractions ; but, when he comes to publish his results, he ought

invariably to put such devices aside. If all did not use a com-

mon mode of public expression, but each were to print as he is

in the habit of writing for his own use, the confusion would be

utterly intolerable.

Finally, I must express my great obligations to my friend

M. M. U. Wilkinson of Trinity College, Cambridge, for the care

with which he has read my proofs, and for many valuable sug-

gestions.

P. G. TAIT.
College, Edinburgh,

October 1873.
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QUATERNIONS.

t

CHAPTER I.

VECTORS, AND THEIR COMPOSITION.

Jl.] For more than a century and a half the geometrical re-

presentation of the negative and imaginary algebraic quantities,

— 1 and \/— 1, or, as some prefer to write them, — and — *, has

been a favourite subject of speculation with mathematicians. The

essence of almost all of the proposed processes consists in em-

ploying such expressions to indicate the direction, not the length,

of lines.

J 2.] Thus it was long ago seen that if positive quantities were

measured off in one direction along a fixed line, a useful and lawful

convention enabled us to express negative quantities of the same

kind by simply laying them off on the same line in the opposite

direction. This convention is an essential part of the Cartesian

method, and is constantly employed in Analytical Geometry and

pplied Mathematics.

J 3.] Wallis, towards the end of the seventeenth century, proposed

represent the impossible roots of a quadratic equation by going

t of the line on which, if real, they would have been laid off.

is construction is equivalent to the consideration of v — 1 as a

irected unit-line perpendicular to that on which real quantities

are measured.

J 4.] In the usual notation of Analytical Geometry of two

dimensions, when rectangular axes are employed, this amounts

to reckoning each unit of length along Oy as +v— 1, and on

Oy as — \/— 1 ; while on Ox each unit is +1, and on Oaf it is

B
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— 1. If we look at these four lines in circular order, i.e. in the

order of positive rotation (opposite to that of the hands of a watch),

they give /^T _, _ JZT\

In this series each expression is derived from that which precedes

it by multiplication by the factor V— 1. Hence we may consider

V^~l as an operator, analogous to a handle perpendicular to the

plane of coy, whose effect on any line is to make it rotate (positively)

about the origin through an angle of 90°.

J 5.] In such a system, a point is denned by a single imaginary

expression. Thus a +bv — 1 may be considered as a single quan-

tity, denoting the point whose coordinates are a and b. Or, it may

be used as an expression for the line joining that point with the

origin. In the latter sense, the expression a + b \/— 1 implicitly

contains the direction, as well as the length, of this line ; since, as

we see at once, the direction is inclined at an angle tan-1- to the

axis of iP, and the length is v a2
-f b2 .

-16.] Operating on this symbol by the factor \/— 1, it becomes

— b+ a \f— 1 ; and now, of course, denotes the point whose % and y
coordinates are — b and a ; or the line joining this point with the

origin. The length is still Ja2 -\-hl , but the angle the line makes

with the axis of x is tan-1 (— t) > which is evidently 90° greater

than before the operation.

S 7.] De Moivre's Theorem tends to lead us still farther in the

same direction. In fact, it is easy to see that if we use, instead

of s/— 1, the more general factor cosa+ v — 1 sin a, its effect on

any line is to turn it through the (positive) angle a in the plane

of a?, y. [Of course the former factor, V— l, is merely the par-

ticular case of this, when a = -
•]

Thus {cos a+ V— 1 sin a) (a + b \f— 1)

= a cos a— b sin a+ v—T [fb sin a + b cos a),

by direct multiplication. The reader will at once see that the new

form indicates that a rotation through an angle a has taken place,

if he compares it with the common formulae for turning the co-

ordinate axes through a given angle. Or, in a less simple manner,

thus

—

Length = *J{a cos a— b sin a) 2
-f- {a sin a + b cos a) 2

= \/a 2 + b2 as before.
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Inclination to axis of x #
, tan a -f

-
, a sin a + a cos a . a= tan * y—.— = tan-1 =

a cos a— b sin a b .

, 1 tana

= a 4- tan * - •

J 8.] We see now, as it were, why it happens that

(cosa+ \/— 1 sina)m = cos^a+ V— 1 sin^a.

In fact, the first operator produces m successive rotations in the

same direction, each through the angle a ; the second, a single

rotation through the angle ma.

J9.~\ It may be interesting, at this stage, to anticipate so far as to

state that a Quaternion can, in general,, be put under the form

JV(cos0+ *r sin0),

where N is a numerical quantity, a real angle, and

v 2 =-l.
This expression for a quaternion bears a very close analogy to the

forms employed in De Moivre's Theorem ; but there is the essential

difference (to which Hamilton's chief invention referred) that -ex

is not the algebraic v— 1, but may be any directed unit-line what-

ever in space.

J 10.] In the present century Argand, Warren, and others, extended

the results of Wallis and De Moivre. They attempted to express

as a line the product of two lines each represented by a symbol

such as a + b \/— 1. To a certain extent they succeeded, but sim-

plicity was not gained by their methods, as the terrible array of

radicals in Warren's Treatise sufficiently proves.

411.] A very curious speculation, due to Servois and published

in 1813 in Gergonne's Annates, is the only one, so far as has

been discovered, in which the slightest trace of an anticipation of

Quaternions is contained. Endeavouring to extend to space the

form a + b*/— 1 for the plane, he is guided by analogy to write for

a directed unit-line in space the form

p cos a -\- q cos /3 -f r cos y,

where a, /3, y are its inclinations to the three axes. He perceives

easily that p, q, r must be non-reals : but, he asks, " seraient-elles

imaginaires reductibles a la forme generale A +B \/— 1?" This

he could not answer. In fact they are the i,j, k of the Quaternion

Calculus. (See Chap. II.)

-12.] Beyond this, few attempts were made, or at least recorded, in

earlier times, to extend the principle to space of three dimensions

;

b %
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and, though many such have been made within the last forty

years, none, with the single exception of Hamilton's, have

resulted in simple, practical methods ; all, however ingenious,

seeming to lead at once to processes and results of fearful com-

plexity.

For a lucid, ' complete, and most impartial statement of the

claims of his predecessors in this field we refer to the Preface to

Hamilton's Lectures on Quaternions.

^L3.] It was reserved for Hamilton to discover the use of V— 1

as a geometric reality\ tied down to no particular direction in space,

and this use was the foundation of the singularly elegant, yet

enormously powerful, Calculus of Quaternions.

While all other schemes for using v — 1 to indicate direction

make one direction in space expressible by real numbers, the re-

mainder being imaginaries of some kind, leading in general to

equations which are heterogeneous ; Hamilton makes all directions

in space equally imaginary, or rather equally real, thereby ensuring

to his Calculus the power of dealing with space indifferently in

all directions.

In fact, as we shall see, the Quaternion method is independent

of axes or any supposed directions in space, and takes its reference

lines solely from the problem it is applied to.

•fl.4.] But, for the purpose of elementary exposition, it is best

to begin by assimilating it as closely as we can to the ordinary

Cartesian methods of Geometry of Three Dimensions, which are

in fact a mere particular case of Quaternions in which most of

the distinctive features are lost. We shall find in a little that

it is capable of soaring above these entirely, after having employed

them in its establishment ; and, indeed, as the inventor's works

amply prove, it can be established, ab initio, in various ways,

without even an allusion to Cartesian Geometry. As this work

is written for students acquainted with at least the elements of

the Cartesian method, we keep to the first-mentioned course of

exposition ; especially as we thereby avoid some reasoning which,

though rigorous and beautiful, might be apt, from its subtlety,

to prove repulsive to the beginner.

We commence, therefore, with some very elementary geometrical

ideas.

-<15.] Suppose we have two points A and B in space, and suppose

A given, on how many numbers does J5's relative position depend ?

If we refer to Cartesian coordinates (rectangular or not) we find
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that the data required are the excesses of i?'s three coordinates over

those of A. Hence three numbers are required.

Or we may take polar coordinates. To define the moon's position

with respect to the earth we must have its Geocentric Latitude

and Longitude, or its Right Ascension and Declination, and, in

addition, its distance or radius-vector. Three again.

V16.] Here it is to be carefully noticed that nothing has been

said of the actual coordinates of either A or B, or of the earth

and moon, in space; it is only the relative coordinates that are

contemplated.

Hence any expression, as AB, denoting a line considered with

reference to direction as well as length, contains implicitly three

numbers, and all lines parallel and equal to AB depend in the same

way upon the same three. Hence, all lines which are equal and

parallel may be represented by a common symbol^ and that symbol

contains three distinct numbers. In this sense a line is called a

vector, since by it we pass from the one extremity, A, to the

other, B ; and it may thus be considered as an instrument which

carries A to B : so that a vector may be employed to indicate a

definite translation in space.

•117.] We may here remark, once for all, that in establishing a

new Calculus, we are at liberty to give any definitions whatever

of our symbols, provided that no two of these interfere with, or

contradict, each other, and in doing so in Quaternions simplicity

and (so to speak) naturalness were the inventor's aim .

"f 18.] Let AB be represented by a, we know that a depends on

three separate numbers. Now if CD be equal in length to AB
and if these lines be parallel, we have evidently CD = AB = a,

where it will be seen that the sign of equality between vectors

contains implicitly equality in length and parallelism in direction*

So far we have extended the meaning of an algebraical symbol.

And it is to be noticed that an equation between vectors, as

Ia
= /3,

ontains three distinct equations between mere numbers.

>/19.] We must now define + (and the meaning of — will follow)

o. the new Calculus. Let A, B, C be any three points, and (with

he above meaning of = ) let

AB = a, BC=p, AC=y.
If we define + (in accordance with the idea (§ 1 6) that a vector

epresents a translation) by the equation

a + (3 = y,
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or AB+ BC = ACf

we contradict nothing that precedes, but we at once introduce the

idea that vectors are to be compounded, in direction and magnitude,

like simultaneous velocities. A reason for this may be seen in

another way if we remember that by adding the differences of the

Cartesian coordinates of A and B, to those of the coordinates of

B and C, we get those of the coordinates of A and C. Hence these

coordinates enter linearly into the expression for a vector.

^20.] But we also see that if C and A coincide (and C may be

any point) AC = 0,

for no vector is then required to carry A to C. Hence the above

relation may be written, in this case,

AB+BA = 0,

or, introducing, and by the same act defining, the symbol —

,

BA=-AB.
Hence, the symbol — , applied to a vector, simply shows that its

direction is to be reversed.

And this is consistent with all that precedes ; for instance,

AB +BC = AC,

and AB = AC-BC,

or =J5+CB,
are evidently but different expressions of the same truth.

^21.] In any triangle, ABC, we have, of course,

AB + BC+CA = 0;

and, in any closed polygon, whether plane or gauche,

AB + BC+ + TZ+ZA = 0.

In the case of the polygon we have also

AB +BC+ + YZ=AZ.
These are the well-known propositions regarding composition of

velocities, which, by the second law of motion, give us the geo-

metrical laws of composition of forces.

J22.] If we compound any number of parallel vectors, "the result

is obviously a numerical multiple of any one of them.

Thus, if A, B, C are in one straight line,

BC=oo AB;
where x is a number, positive when B lies between A and C, other-

wise negative : but such that its numerical value, independent

of sign, is the ratio of the length of BC to that of AB. This is
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at once evident if AB and BC be commensurable ; and is easily

extended to incommensurables by the usual reductio ad absurdum.
J 23.] An important, but almost obvious, proposition is that any

vector may be resolved, and in one way only, into three components

parallel respectively to any three given vectors\ no two of which are

parallel^ and which are not parallel to one plane.

Let OA, OB, OC be the three fixed vectors, q
OP' any other vector. From P draw PQ
parallel to CO, meeting the plane BOA in Q.

[There must be a definite point Q, else PQ,
and therefore CO, would be parallel to BOA,
a case specially excepted.] From Q draw

QB parallel to BO, meeting OA in R. Then

I

we have OP = OB +BQ + QP (§21),

and these components are respectively parallel to the three given

vectors. By § 22 we may express OB as a numerical multiple

of OA, BQ of OB, and QP of OC. Hence we have, generally, for

any vector in terms of three fixed non-coplanar vectors, a, (3, y,

OP = p = xa-t-yj3+ zyy

which exhibits, in one form, the three numbers on which a vector

depends (§ 16). Here x, y, z are perfectly definite, and can have

but single values. «

J 24.] Similarly any vector, as OQ, in the same plane with OA
and OB, can be resolved into components OB, BQ, parallel re-

spectively to OA and OB ; so long, at least, as these two vectors

are not parallel to each other.

425.] There is particular advantage, in certain cases, in employ-

ing a series of three mutually perpendicular unit-vectors as lines of

reference. This system Hamilton denotes by i, j, h.

Any other vector is then expressible as

p = xi-\-yj+zk.

Since i, j, k are unit-vectors, x, y, z are here the lengths of con-

terminous edges of a rectangular parallelepiped of which p is the

vector-diagonal ; so that the length of p is, in this case,

\/x* + y
2 + z2 . * fy

Let ot = fi+r]j+(&

be any other vector, then (by the proposition of § 23) the vector

equation
p
_ OT

obviously involves the following three equations among numbers,

# = £ V = i?, * = C
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Suppose i to be drawn eastwards, j northwards, and h upwards,

this is equivalent merely to saying that if two points coincide, they

are equally to the east (or west) of any third point, equally to the

north (or south) of it, and equally elevated above (or depressed below)

its level.

J26.] It is to be carefully noticed that it is only when a, (B, y are

not coplanar that a vector equation such as

p = w,

or xa + yP + zy = £a + riP+(y,

necessitates the three numerical equations

? = £ y = fi * = ft

For, if a, /3, y be coplanar (§24), a condition of the following form

must hold
y = aa + bfi.

Hence p = (sc + za)a+ (y+ zb) (3,

and the equation p = m
now requires only the two numerical conditions

x + za = £+(a, y-\-zb = rj + ffl.

J 27.] The Commutative and Associative Laws hold in the combination

of vectors by the signs -f and — . It is obvious that, if we prove

this for the sign + , it will be equally proved for — , because —
before a vector (§ 20) merely indicates that it is to be reversed

before being considered positive.

Let A, By C, D be, in order, the corners of a parallelogram ; we

have, obviously, Jb = DC, AD — BC.

And AB+BC = AC = AD+DC = BC+AB.
Hence the commutative law is true for the addition of any two

vectors, and is therefore generally true.

Again, whatever four points are represented by A, B, C, D, we

have AD = AB+JW = AC+CD,

or substituting their values for AD, BD, AC respectively, in these

three expressions,

AB+BC+CD = AB + (BC+CD) = (AB + BC) + CD.

And thus the truth of the associative law is evident.

jJ28.] The equation
p
_ x a

where p is the vector connecting a variable point with the origin,

/3 a definite vector, and x an indefinite number, represents the

straight line drawn from the origin parallel to /3 (§ 22).
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The straight line drawn from A, where OA — a, and parallel

to ft, has the equation

p = a + xft (1)

In words, we may pass directly from to P by the vector OP or p ;

or we may pass first to A, by means of OA or a, and then to P
along a vector parallel to ft (§ 16).

Equation (1) is one of the many useful forms into which Quater-

nions enable us to throw the general equation of a straight line in

space. As we have seen (§ 25) it is equivalent to three numerical

equations ; but, as these involve the indefinite quantity x, they are

virtually equivalent to but two, as in ordinary Geometry of Three

Dimensions.

J29.] A good illustration of this remark is furnished by the fact

that the equation p = y a + x ft,

which contains two indefinite quantities, is virtually equivalent to

only one numerical equation. And it is easy to see that it re-

presents the plane in which the lines a and ft lie ; or the surface

which is formed by drawing, through every point of OA, a line

parallel to OP. In fact, the equation, as written, is simply § 24

in symbols.

And it is evident that the equation

P = y+ya+xft
is the equation of a plane passing through the extremity of y, and

parallel to a and ft.

It will now be obvious to the reader that the equation

P =Pl al+P2 a2+ = ^pa,

where a15 a2 , &c. are given vectors, and px ,p2 , &c. numerical quan-

tities, represents a straight line if px ,p2 , &c* ^e linear functions of

one indeterminate number ; and a plane, if they be linear expres-

sions containing two indeterminate numbers. Later (§31 (I)), this

theorem will be much extended.

Again, the equation p = xa + y(3+zy
refers to any point whatever in space, provided a, ft, y are not

coplanar. (Ante, § 23).

J30.] The equation of the line joining any two points A and P,

where OA = a and OP = ft, is obviously

p = a-{-aj(ft— a),

or p «= ft + y (a- ft).

These equations are of course identical, as may be seen by putting

1 — ?/ for x.
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The first may be written

p-\-(%— l)a— ccj3 = 0;

or pp + qa + r(3 = 0,

subject to the condition p -f q 4- r = identically. That is—

A

homogeneous linear function of three vectors, equated to zero,,

expresses that the extremities of these vectors are in one straight

line, if the sum of the coefficients be identically zero.

Similarly, the equation of the plane containing the extremities

A, B, C of the three non-coplanar vectors a, /3, y is

p = a+ a?(/3-a) + y(y-0),
where x and y are each indeterminate.

This may be written

pp + qa + rfi + sy = 0,

with the identical relation

p+q+r+ s = 0.

which is the condition that four points may lie in one plane.

W31.] We have already the means of proving, in a very simple

manner, numerous classes of propositions in plane and solid geo-

metry. A very few examples, however, must suffice at this stage

;

since we have hardly, as yet, crossed the threshold of the subject,

and are dealing with mere linear equations connecting two or more

vectors, and even with them we are restricted as yet to operations of

mere addition. We will give these examples with a painful minute-

ness of detail, which the reader will soon find to be necessary only

for a short time, if at all.

* (a.) The diagonals of a parallelogram bisect each other.

Let ABCD be the parallelogram, the point of intersection of

its diagonals. Then *

lO+ OB = IB = WG =JX)+dC,
which gives AO-OC= BO- OB.

The two vectors here equated are parallel to the diagonals respect-

ively. Such an equation is, of course, absurd unless

(1) The diagonals are parallel, in which case the figure

is not a parallelogram

;

(2) AO = OC, and DO = OB, the proposition.

*(b.) To show that a triangle can be constructed, whose sides

are parallel, and equal, to tfie bisectors of the sides of

Let ABC be any triangle, Aa, Bb, Cc the bisectors of the sides.
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Then Ta = AB+Ba' = IE+\BC,
Bb - - - =SC+IC2,
7k - - - =CA + ilB.

Hence ^+ ]^+ ta=f (ij5+ J^+C^) = 0;

which (§21) proves the proposition.

Also Mz=AB+\BC
= IB-\(CA+ AB)
= \{AB-CA) = \{AB+ AC),

'

results which are sometimes useful. They may be easily verified

by producing Aa to twice its length and joining the extremity

with B.

« {¥.) The bisectors of the sides of a triangle meet in a point, which

trisects each of them.

Taking A as origin, and putting a, j3, y for vectors parallel, and

equal, to the sides taken in order BC, CA, AB\ the equation of

Bb is (§ 28 (1))

p = y + x (y + j) = (1-M)y+ |i&

That of Cc is, in the same way,

At the point 0, where Bb and Cc intersect,

p=(l+^) y+ |/3=-(l+^)/3-|y.

Since y and j3 are not parallel, this equation gives

II OP

I +« = -§, and - = _(i + y).

From these # = y = — f

.

Hence AO = J (y~/3) = j 2a. (See Ex. (b).)

This equation shows, being a vector one, that J# passes through 0,

and that AO : Oa : : 2 : 1.

i(c) If 62= a,

63=A
OC=aa+ b{3, Q<

be three given co-planar ^ ^^^=r^^::::----^
£i:iVlS:

vectors, and the lines in-

dicated in the figure be drawn, the points a1) b
1
,c

1
lie in a straight
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1

We see at once, by the process indicated in § 30, that

#4-6 1—

*

Hence we easily find

— b$ -^ aa jr- — aa+bfi
Oa, — ^—-y » Ob, = — -—

T > Cfc, = —=- •

1 i_ a— 2b 1
\— 2a— b

2 b—

a

These give

— (1—a-2b)Oa1+ (l-2a-b)Ob
1
-(b—a)Oc

l
= 0.

But — {\- a— 2b) + (l — 2a— b) — (b— a) = identically.

This, by § 30, proves the proposition.

< (d.) Let OA = a, OB — (3, be any two vectors. If MP be

parallel to OB ; and OQ, BQ, be drawn parallel to AP,

OP respectively ; the locus of Q is a straight line parallel

to OA.

Let OM = ea.

Then_

AP = e—la + xp.

Hence the equation of

OQ'is

p = y(e- la + xp);

and that of BQ is

~B 7aT~ p = fi + z(ea+ xp).

At Q we have, therefore,

xy — 1+zx, )

y(e-l) = ze.

)

These give xy = e, and the equation of the locus of Q is

P = efi + fa,

i. e. a straight line parallel to OA, drawn through N in OB pro-

duced, so that ON: OB:: OM: OA.

Cor. If BQ meet 17? in #, Pq= (3; and if ^P meet NQ in j9,

Qp=a.
Also, for the point R we have pR = AP, QR=Bq.

Hence, iffrom any two points, A and B, lines be drawn intercepting

a given length Pq on a given line Mq ; and if, from R their point of

intersection, Rp be laid off = PA, and RQ = qB ; Q andp lie on a

fixed straight line, and the length of Qp is constant.

• (e.) To find the centre of inertia of any system.

If OA — a, OB =s at) be the vector sides of any triangle, the

vector from the vertex dividing the base AB in C so that
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BC:CA::m:
ma +m

1
a
1

m-i is

For AB is a
Y
— ay and therefore AC is

Hence 0<? = OA +AC

= a + a)

m+ m,
x

This expression shows how to find the centre of inertia of two

masses ; m at the extremity of a, m
x
at that of a

L
. Introduce m2

at the extremity of a
2 , then the vector of the centre of inertia of the

three is, by a second application of the formula,

<ma +
+ %)( ) + „

2
u,
2 ma-\-m

1
a
l
-\-m

2
a

2

(m-\-m
1
)-{-m

2
m+m1

-\-m2

For any number of masses, expressed generally by m at the extre-

mity of the vector a, we have the vector of the centre of inertia

a_ S(*»a)
P SO)

This may be written 'Em (a— /3) = 0.

Now a
2
— /3 is the vector of m

Y
with respect to the centre of inertia.

Hence the theorem. If the vector of each element of a mass, drawn

from the centre of inertia, he increased in length in proportion to the

mass of the element> the sum of all these vectors is zero.

*(./•) We see at once that

the equation

p = at+ — >

where t is an indeterminate

number, and a, /3 given vec-

tors, represents a parabola.

The origin, 0, is a point on

the curve, (3 is parallel to

the axis, i. e. is the diameter

OB drawn from the origin,

and a is OA the tangent at the origin.

QP = at, OQ =

figure
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The secant joining the points where t has the values t and t' is

represented by the equation

p„ 9t+2L+s(ar + *£-at~££) (§30)

Put t'= t, and write x for %(tf— t) [which may have any value]

and the equation of the tangent at the point (t) is

p = at+!-^-+cc(a+ j3t).

Bt2

Put X — —t, p = — J

a

or the intercept of the tangent on the diameter is —the abscissa of

the point of contact.

Otherwise: the tangent is parallel to the vector a+ (3t or

at+ (3t
2 or at+P^+Pf. or OQ+OP. But TP = TO + OP,

hence TO = OQ.

* {g.) Since the equation of any tangent to the parabola is

Bt2

p = atf+ -£y- + a?(a + /3tf),

let us find the tangents which can be drawn from a given point.

Let the vector of the point be

p=pa + q(3 (§24).

Since the tangent is to pass through this point, we have, as con-

ditions to determine t and #, t-\-x = p,

& *— + xt = q;

by equating respectively the coefficients of a and j3.

Hence t =J0± */p2— 2q.

Thus, in general, two tangents can be drawn from a given point.

These coincide if p% _ 2 q ;

that is, if the vector of the point from which they are to be drawn

is P
2
„

i.e. if the point lies on the parabola. They are imaginary if

2q>p2
, i. e. if the point be

r being positive. Such a point is evidently within the curve, as at

R, where OQ = ^-(B, QP=pa, PR = r(3.
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*(h.) Calling the values of t for the two tangents found in (g)

tx and t
2
respectively, it is obvious that the vector join-

ing the points of contact is

a t-^ + — a. t
2
—

which is parallel to / j_ /

or, by the values of t
x
and t

2
in (g),

a+p(3.

Its direction, therefore, does not depend on q. In words, If pairs

of tangents be drawn to a parabolafrom points of a diameter produced,

the chords of contact are parallel to the tangent at the vertex of the

diameter. This is also proved by a former result, for we must have

OT for each tangent equal to Q 0.

• (i.) The equation of the chord of contact, for the point whose

vector is p=pa + q^
8t 2

is thus p = at
1 + _I~fy (a+^0).

Suppose this to pass always through the point whose vector is

p — aa + b(3.

Then we must have , . .

h+y = a
>

)

t
2

\

or tx
= p ± *fp 2 — 2pa + 2b.

Comparing this with the expression in (g), we have

q —pa— b-y

that is, the point from which the tangents are drawn has the vector

p=pa+ (pa— b)fi

= —b(3+p (a+ a(3), a straight line (§ 28 (1)).

The mere form of this expression contains the proof of the usual

properties of the pole and polar in the parabola ; but, for the sake

of the beginner, we adopt a simpler, though equally general,

process.

Suppose a = 0. This merely restricts the pole to the particular

diameter to which we have referred the parabola. Then the pole

is Q, where
p = b(3

j

and the polar is the line TV, for which

p =-bj3+pa.
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Hence the polar of any point is parallel to the tangent at the extremity

of the diameter on which the point lies, and its intersection with that

diameter is as far beyond the vertex as the pole is within, and vice

versa.

* (j.) As another example let us prove the following theorem.

If a triangle be inscribed in a parabola, the three points

in which the sides are met by tangents at the angles lie in

a straight line.

Since is any point of the curve, we may take it as one corner

of the triangle. Let t and t± determine the others. Then, if

7fflt ht2 > 'STg represent the vectors of the points of intersection of the

tangents with the sides, we easily find

t
2

/ li „\

These values give

2t—t
1

tt
Y

2^-t 2t-tx tf-fl

Al 2tl-t It-h h
2 ~P A -J x- 11Also — 7—^ ~ ^-ji— = ° identically.

Hence, by § 30, the proposition is proved.

- (k.) Other interesting examples of this method of treating

curves will, of course, suggest themselves to the

student. Thus

p = a cos t + (3 sin t

or p = a#+/3\/l — a?

represents an ellipse, of which the given vectors a and (3 are semi-

conjugate diameters.

Again, p = at+ - or p = a tan#+ /3cot#
t

evidently represents a hyperbola referred to its asymptotes.

But, so far as we have yet gone with the explanation of the

calculus, as we are not prepared to determine the lengths or in-

clinations of vectors, we can investigate only a very small class of

the properties of curves, represented by such equations as those

above written.
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• (I.) We may now, in extension of the statement in § 29, make

the obvious remark that

p == 2jf?a

is the equation of a curve in space, if the numbers p1 ,p2 ^
&c - are

functions of one indeterminate. In such a case the equation is

sometimes written
P = 6 (t).

But, if p1 ,p2 > &c - be functions of two indeterminates, the locus of

the extremity of p is a surface ; whose equation is sometimes written

p = (j)(t, u).

, (m.) Thus the equation

p = acost+ fi sin t-t-yt

belongs to a helix.

Again, p = pa + q(3 + ry

with a condition of the form

ap 2 4 bq2 -\-cr
2 — 1

belongs to a central surface of the second order, of which a, /3, y

are the directions of conjugate diameters. If a, b, c be all positive,

the surface is an ellipsoid.

J 32.] In Example {f) above we performed an operation equi-

valent to the differentiation of a vector with reference to a single

numerical variable of which it was given as an explicit function.

As this process is of very great use, especially in quaternion investi-

gations connected with the motion of a particle or point ; and as it

will afford us an opportunity of making a preliminary step towards

overcoming the novel difficulties which arise in quaternion differen-

tiation; we will devote a few sections to a more careful exposition

of it.

433.] It is a striking circumstance, when we consider the way
in which Newton's original methods in the Differential Calculus

have been decried, to find that Hamilton was obliged to employ

them, and not the more modern forms, in order to overcome the

characteristic difficulties of quaternion differentiation. Such a thing

as a differential coefficient has absolutely no meaning in quaternions,

except in those special cases in which we are dealing with degraded

quaternions, such as numbers, Cartesian coordinates, &c. But a

quaternion expression has always a differential, which is, simply,

what Newton called & fluxion.

\ As with the Laws of Motion, the basis of Dynamics, so with thel

(foundations of the Differential Calculus ; we are gradually coming
j

Ito the conclusion that Newton's system is the best after all.
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-I 34.] Suppose p to be the vector of a curve in space. Then,

generally, p may be expressed as the sum of a number of terms,

each of which is a multiple of a given vector by a function of some

one indeterminate ; or, as in § 31
(J),

if P be a point on the curve,

And, similarly, if Q be any other point on the curve,

6Q = Pl =<l>(t1)
= <i>(t+ bt),

where bt is any number whatever.

The vector-chord PQ is therefore, rigorously,

bp = p1
— p = cf)(t-\-b£)— (j>t.

J 35.] It is obvious that, in the present case, because the vectors

involved in
(f>

are constant, and their numerical multipliers alone vary,

the expression cj>(t + bt) is, by Taylor's Theorem equivalent to

*(0 (8<)
2

Hence,

»+«$(&•<+'
dP 1.2

+

*-3P«*3PB>
And we are thus entitled to write, when bt has been made inde-

finitely small,

Limit(^
dp

Tt

dcf> (t)

= +'(*).
bt^st=0

~ dt dt

In such a case as this, then, we are permitted to differentiate,

or to form the differential coefficient of, a vector, according to the

ordinary rules of the Differential Calculus. But great additional

insight into the process is gained by applying Newton's method.

436.] Let OP be

_ p = *(0,
and 0§i

p = <f>(t + dt),

where dt is any number whatever.

The number t may here be taken

as representing time, i. e. we may
suppose a point to move along the

curve in such a way that the value

of t for the vector of point P of the

curve denotes the interval which has

elapsed (since a fixed epoch) when the moving point has reached

the extremity of that vector. If, then, dt represent any interval,

finite or not, we see that

will be the vector of the point after the additional interval dt.
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But this, in general, gives us little or no information as to the

velocity of the point at P. We shall get a better approximation

by halving the interval dt, and finding Q2) where OQ2
= $ (t+ \ dt),

as the position of the moving point at that time. Here the vector

virtually described in \dt is PQ
2

. To find, on this supposition,

the vector described in dt, we must double PQ
2 , and we find, as a

second approximation to the vector which the moving point would

have described in time dt, if it had moved for that period in the

direction and with the velocity it had at P,

P~q2 = 2PQ
2
= 2(OQ

2
-OP)

= 2{0(tf+i<fc)- + (O}-
The next approximation gives

i^3=3PQ3 =3(OQ3
-OP)

»»{4 ('+*#)-+(*)} •

And so on, each step evidently leading us nearer the sought truth.

Hence, to find the vector which would have been described in time

dt had the circumstances of the motion at P remained undisturbed,

we must find the value of

dp = Pq = {**.»!*(*-{- \dt) - <t>(f)\.

We have seen that in this particular case we may use Taylor's

Theorem. We have, therefore,

dp = &=» x{mldt+r(t)^ {^ + &c.
j

= 4/ {t) dt.

And, if we choose, we may now write

dP ASIA

J 37.] But it is to be most particularly remarked that in the

whole of this investigation no regard whatever has been paid to

the magnitude of dt. The question which we have now answered

may be put in the form

—

A point describes a given curve in a given

manner. At any point of its path its motion suddenly ceases to he

accelerated. What space will it describe in a definite interval ? As
Hamilton well observes, this is, for a planet or comet, the case

of a ' celestial Atwood's machine.'

38.] If we suppose the variable, in terms of which p is expressed,

to be the arc, s, of the curve measured from some fixed point, we
find as before

, ,,,* n <b'(f)ds
dp = <p(t)dt r-

ds

cf>'(s)ds.
dt

C 2
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From the very nature of the question it is obvious that the length

of dp must in this case be ds. This remark is of importance, as

we shall see later ; and it may therefore be useful to obtain afresh

the above result without any reference to time or velocity.

39.] Following strictly the process of Newton's Vllth Lemma,
let us. describe on Pq

2
an arc similar to PQ2 , and so on. Then

obviously, as the subdivision of ds is carried farther, the new arc

(whose length is always ds) more and more nearly coincides with

the line which expresses the corresponding approximation to dp.

40.] As a final example let us take the hyperbola

Here dp = (a - ^)dt.

This shews that the tangent is parallel to the vector

t

In words, if the vector {from the centre) of a point in a hyperbola

be one diagonal of a parallelogram, two of whose sides coincide with

the asymptotes, the other diagonal is parallel to the tangent at tfie

point.

^41.] Let us reverse this question, and seek the envelope of a line

which cuts offfrom two fixed axes a triangle of constant area.

If the axes be in the directions of a and /3, the intercepts may

evidently be written at and —
- . Hence the equation of the line is

(§30)
ff

p = at-\-x (—— at) •

The condition of envelopment is, obviously, (see Chap. IX.)

dp = 0.

This gives = \ a — x (-— + a) I dt + (y — at) dx *

Hence (l—x)dt— tdx = 0,

, x ni dx
and - — dt+

t

=0.

* We are not here to equate to zero the coefficients of dt and dx; for we must
remember that this equation is of the form

=pa + q&,
where p and q are numbers ; and that, so long as a and & are actual and non-parallel
vectors, the existence of such an equation requires

p = 0, 9 = 0.
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From these, at once, x = J, since dx and di are indeterminate.

Thus the equation of the envelope is

p = at+\ (— — at)

the hyperbola as before ; a, /3 being portions of its asymptotes.

J 42.] It may assist the student to a thorough comprehension

of the above process, if we put it in a slightly different form.

Thus the equation of the enveloping line may be written

x
p = at{l-x)+ (3->

which gives dp = = ad (t(\ — x)) + fid(-\ •

Hence, as a is not parallel to /3, we must have

d(t(i-x)) = o, rf(|)=o;

and these are, when expanded, the equations we obtained in the

preceding section.

4 43.] For farther illustration we give a solution not directly em-

ploying the differential calculus. The equations of any two of the

enveloping lines are

p = at -f x (- at j)

p = arf
1+ 1

(—-atf
1)

t and i
x
being given, while x and x

x
are indeterminate.

At the point of intersection of these lines we have (§ 26),

t(l-x) = t
1
(l-x

1),
\

These give, by eliminating x
x ,

I
*(1 -») = <,(!-!*).

n

or x =
h + t

[ence the vector of the point of intersection is

att
x+ Pp=

h + t
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and thus, for the ultimate intersections, where j£y = 1,

p = 4 (at -f — ) as before.

Cor. (1). If tt
x
= I,

a + (5

P =

>+i
or the intersection lies in the diagonal of the parallelogram on a, /3.

Cor. (2). If t
x
= mt, where m is constant,

Z
3

V

?-

But we have also x =
+ 1

1

Hence the locus of a 'point which divides in a given ratio a line

cutting off a given area from two fixed axes, is a hyperbola of which

these axes are the asymptotes.

Cor. (3). If we take

U
x
(I -f tj) = constant

the locus is a parabola ; and so on.

44.] The reader who is fond of Anharmonic Ratios and Trans-

versals will find in the early chapters of Hamilton's ^Elements of

Quaternions an admirable application of the composition of vectors

to these subjects. The Theory of Geometrical Nets, in a plane,

and in space, is there very fully developed ; and the method is

shewn to include, as particular cases, the processes of Grassmann's

Ausdehnungslehre and Mobius' Barycentrische Calcul. Some very

curious investigations connected with curves and surfaces of the

second and third orders are also there founded upon the composition

of vectors.

EXAMPLES TO CHAPTER I.

"1. The lines which join, towards the same parts, the extremities

of two equal and parallel lines are themselves equal and parallel.

{Euclid, I. xxxiii.)

'2. Find the vector of the middle point of the line which joins
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e middle points of the diagonals of any quadrilateral, plane or

gauche, the vectors of the corners being given ; and so prove that

this point is the mean point of the quadrilateral.

If two opposite sides be divided proportionally, and two new

quadrilaterals be formed by joining the points of division, the mean

points of the three quadrilaterals lie in a straight line.

Shew that the mean point may also be found by bisecting the

line joining the middle points of a pair of opposite sides.

*3. Verify that the property of the coefficients of three vectors

whose extremities are in a line (§ 30) is not interfered with by

altering the origin. ^v
-4. If two triangles ABC, abc, be so situated in space that Aa, *«•_ ^

Bb, Cc meet in a point, the intersections of AB, ab, of BC, be, and a^ •

of CA, ca, lie in a straight line. A«L -*£

*5. Prove the converse of 4, i. e. if lines be drawn, one in each ^^* '

of two planes, from any three points in the straight line in which

these planes meet, the two triangles thus formed are sections of

a common pyramid.

•6. If five quadrilaterals be formed by omitting in succession each

of the sides of any pentagon, the lines bisecting the diagonals of

these quadrilaterals meet in a point. (H. Fox Talbot.)

47. Assuming, as in § 7, that the operator

cos 6 + \/—\ sin 6

turns any radius of a given circle through an angle 6 in the

positive direction of rotation, without altering its length, deduce

the ordinary formula? for cos (A+ B) y cos (A—B), sin (A + B), and

sin (A— B), in terms of sines and cosines of A and B.

8. If two tangents be drawn to a hyperbola, the line joining

the centre with their point of intersection bisects the lines joining

the points where the tangents meet the asymptotes : and the

tangent at the point where it meets the curves bisects the intercepts (CIc^a^o

of the asymptotes. &Uv
9. Any two tangents, limited by the asymptotes, divide each €+r±C**J

other proportionally.

10. If a chord of a hyperbola be one diagonal of a parallelogram

whose sides are parallel to the asymptotes, the other diagonal passes

through the centre.

Jll. Shewthat p = x2 a+ y
2 + (#+#)

2 y

is the equation of a cone of the second degree, and that its section

by the plane _ pa+qfi+ry
P ~ P+q+r
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is an ellipse which touches, at their middle points, the sides of

the triangle of whose corners a, /3, y are the vectors. (Hamilton,

Elements, p. 96.)

12. The lines which divide, proportionally, the. pairs of opposite

sides of a gauche quadrilateral, are the generating lines of a hyper-

bolic paraboloid. {Ibid. p. 97.)

13. Shew that p = a?
3
tt+ y 3

/3 + s 3
y,

where x+ y+ z = 0,

represents a cone of the third order, and that its section by the plane

pa+qfi+ry
p + q + r

is a cubic curve, of which the lines

pa + q?
p+q

are the asymptotes and the three (real) tangents of inflexion. Also

that the mean point of the triangle formed by these lines is a

conjugate point of the curve. Hence that the vector a-f f3-f-y is a

conjugate ray of the cone. (Ibid. p. 96.)



CHAPTER II.

PRODUCTS AND QUOTIENTS OP VECTORS.

45.] We now come to the consideration of points in which the

Calculus of Quaternions differs entirely from any previous mathe-

matical method; and here we shall get an idea of what a Qua-

ternion is, and whence it derives its name. These points are

fundamentally involved in the novel use of the symbols of mul-

tiplication and division. And the simplest introduction to the

subject seems to be the consideration of the quotient, or ratio, of

two vectors.

-46.] If the given vectors be parallel to each other, we have

already seen (§ 22) that either may be expressed as a numerical

multiple of the other ; the multiplier being simply the ratio of

their lengths, taken positively if they are similarly directed, nega-

tively if they run opposite ways.

^47.] If they be not parallel, let OA and OB be drawn parallel

and equal to them from any point ; and the question is reduced

finding the value of the ratio of two vectors drawn from the

same point. Let us try to find upon how many distinct numbers this

ratio depends.

We may suppose OA to be changed into OB by the following

>rocesses.

1st. Increase or diminish the length of OA till it becomes

equal to that of OB. For this only one number is

required, viz. the ratio of the lengths of the two

vectors. As Hamilton remarks, this is a positive, or

rather a signless, number.

2nd. Turn OA about until its direction coincides with that

of OB, and (remembering the effect of the first operation)
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we see that the two vectors now coincide or become

identical. To specify this operation three more numbers

are required, viz. two angles (auch as node and inclina-

tion in the case of a planet's orbit) to fix the plane in

which the rotation takes place, and one angle for the

amount of this rotation.

Thus it appears that the ratio of two vectors, or the multiplier

required to change one vector into another, in general depends upon

four distinct numbers, whence the name quaternion.

The particular case of perpendicularity of the two vectors, where

their quotient is a vector perpendicular to their plane, is fully con-

sidered below
; §§ 64, 65, 72, &c.

J 48.] It is obvious that the operations just described may be

performed, with the same result, in the opposite order, being per-

fectly independent of each other. Thus it appears that a quaternion,

considered as the factor or agent which changes one definite vector

into another, may itself be decomposed into two factors of w*hich

the order is immaterial.

The stretching factor, or that which performs the first operation

in § 47, is called the Tensor, and is denoted by prefixing T to the

quaternion considered.

The turning factor, or that corresponding to the second operation

in § 47, is called the Versor, and is denoted by the letter U prefixed

to the quaternion.

J 49.] Thus, if OA = a, OB = /3, and if q be the quaternion which

changes a to /3, we have

/3 = qa,

which we may write in the form

- = q} or (3a- 1 = q,

if we agree to define that

— .a = j3a- l.a = (3.

Here it is to be particularly noticed that we write q before a to

signify that a is multiplied by q, not q multiplied by a.

This remark is of extreme importance in quaternions, for, as we

shall soon see, the Commutative Law does not generally apply to

the factors of a product.

We have also, by §§ 47, 48,

q= TqUq= UqTq,
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where, as before, Tq depends merely on the relative lengths of

a and (3, and Uq depends solely on their directions.

Thus, if a
x
and /3X

be vectors of unit length parallel to a and /3

respectively, _ & U^ = U^ .

a, aa.

As will soon be shewn, when a is perpendicular to /3, the versor of

the quotient is quadrantal, i. e. it is a unit-vector.

J50.] We must now carefully notice that the quaternion which

is the quotient when /3 is divided by a in no way depends upon

the absolute lengths, or directions, of these vectors. Its value

will remain unchanged if we substitute for them any other pair

of vectors which

(1) have their lengths in the same ratio,

(2) have their common plane the same or parallel,

and (3) make the same angle with each other.

Thus in the annexed figure

6^B1 _ OB
T\A

X

~ OA
if, and only if,

(1)

(2)

X
A

X

" OA
'

plane AOB parallel to plane A1 1
B

1 ,

(3) LAOB = LA^OxBx
.

[Equality of angles is understood to include

similarity in direction. Thus the rotation about

an upward axis is negative (or right-handed)

from OA to OB, and also from O
x
A

1 to O
x
B

Y .]

^51.] The Reciprocal of a quaternion q is defined by the equation,

Hence if

we must have

For this gives

9r qq-> =

a
q, or

i8
= qa,

a

J3

=
1

1.

P = q-\qi

and each member of the equation is evidently equal to a.
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Or, we may reason thus, q changes OA to OB, q- 1 must therefore

change OB to OA, and is therefore expressed by - (§ 49).

The tensor of the reciprocal of a quaternion is therefore the

reciprocal of the tensor ; and the versor differs merely by the reversal

of its representative angle. The versor, it must be remembered,

gives the plane and angle of the turning—it has nothing to do

with th£ extension.

452.] The Conjugate of a quaternion q, written Kq, has the same

tensor, plane, and angle, only the angle is taken the reverse way.

Thus, if OA, OB, OA, lie in one plane, and if

0A'= OA, and LIOB=LAOB, we have

-=r = q, and-=- = coniugate 01 q == Kq.
oa "or J 5 * *

By last section we see that

Kq = {Tqfq-\
Hence ?Jfy'= Kq.q = {Tqf.

This proposition is obvious, if we recollect that the

tensors of q and Kq are equal, and that the versors

are such that either annuls the effect of the other. The joint effect

of these factors is therefore merely to multiply twice over by the

common tensor.

-4 53.] It is evident from the results of § 50 that, if a and /3 be

of equal length, their quaternion quotient becomes a versor (the

tensor being unity) and may be represented indifferently by any
one of an infinite number of arcs of given length lying on the

circumference of a circle, of which the two vectors are radii. This

js of considerable importance in the proofs which follow.

Thus the versor -= may be represented

in magnitude, plane, and direction (§ 50)

by the arc AB, which may in this extended

sense be written AB.

And, similarly, the versor l
is repre

-

kJAy

sented by A
1
B

1
which is equal to (and

measured in the same direction as) AB if

AA
1
OB

1
= LAOB,

i.e. if the versors are equal, in the quaternion meaning of the word.
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454.] By the aid of this process, when a versor is represented as r-

an arc of a great circle on the unit-sphere, we can easily prove that F* £

quaternion multiplication is not generally commutative. f -^

~ ob or ? r
Thus let a be the versor AB or -= • r . 2-

Make i?C = ^.5, (which, it must be

remembered, makes the points A, B, C
lie in one great circle), then q may also

be represented by -=- • ^*\w } "^
OB ^ ^ .,'

In the same way any other versor r

>-» cvr of *t^
may be represented by i>^ or BE and by -r=^ or -=- •

AJ F J J OB OB ^*'
The line OB in the figure is definite, and is given by the inter- ^T^lJ.

section of the planes of the two versors ; being the centre of the^ ^*

unit-sphere. £"* *

Now rOB = OB, and qOB =00, v ^
Hence qrOB = OC, ^\

OC — * C
or qr = -= > and may therefore be represented by the arc BC of & j^

?
OB

a great circle. r \
But rq is easily seen to be represented by the arc AB. S £^

For qOA = OS, and rOS = 0#, cVS
OB

whence ?*# 0^4 = OB, and r# = ^- • ^<> **
.

* OA f^*
Thus the versors r^ and ^r, though represented by arcs of equal ^j ?<

length, are not generally in the same plane and are therefore un- ^

equal : unless the planes of q and r coincide.

I

Calling OA a, we see that we have assumed, or defined, in the

above proof, that q.ra = qr.a and r.qa = rq.a when qa, ra, q.ra, and

r.qa are all vectors.

455.] jObviously CB is Kq, BB is Kr, and CB is K{qr). But

CD = BB.CB, which gives us the very important theorem

K{qr) = Kr.Kq,

i.e. the conjugate of the product of two quaternions is the product of

their conjugates in inverted order.

456.] The propositions just proved are, of course, true of quater-

nions as well as of versors ; for the former involve only an additional
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numerical factor which has reference to the length merely, and not

the direction, of a vector (§ 48).

J 57.] Seeing thus that the commutative law does not in general

hold in the multiplication of quaternions, let us enquire whether

the Associative Law holds. That is, ifp, q, r he three quaternions,

have we p.qr =pq.r?

This is, of course, obviously true if p, q, r be numerical quantities,

or even any of the imaginaries of algebra. But it cannot be con-

sidered as a truism for symbols which do not in general give

n = qp-

<f58.] In the first place we remark that p, q, and r may be con-

sidered as versors only, and therefore represented by arcs of great

circles, for their tensors may obviously (§ 48) be divided out from

both sides, being commutative with the versors.

Let AB = p, KD=:CA = q, and FF = r.

Join BC and produce the great circle till it meets EF in H, and

make KH= FE = r, and HG = CB = pq (§ 54).

Join GK. Then

KG = HG.KH = pq.r.

Join FD and produce it to

meet AB in M. Make

LM=FJD,
and MN=AB,

jfrK and join NL. Then

ZN= MN.LM= p.qr.

Hence to shew that jp.qr = pq.r

all that is requisite is to prove that LN, and KG, described as

above, are equal arcs of the same great circle, since, by the figure,

they are evidently measured in the same direction. This is perhaps

most easily effected by the help of the fundamental properties of

the curves known as Spherical Conies. As they are not usually

familiar to students, we make a slight digression for the purpose of

proving these fundamental properties ; after Chasles, by whom and

Magnus they were discovered. An independent proof of the asso-

ciative principle will presently be indicated, and in Chapter VII
we shall employ quaternions to give an independent proof of the

theorems now to be established.

^59.*] Def, A spherical conic is the curve of intersection of a cone

of the second degree with a sphere, the vertex of the cone being the

centre of the sphere.
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Lemma. If a cone have one series of circular sections, it has

another series, and any two circles belonging to different series lie

on a sphere. This is easily proved as follows.

Describe a sphere, A, cutting the cone in one circular section,

C, and in any other point whatever, and let the side OpP of the

cone meet A in p, P ; P being a point in C. Then PO-Op is

constant, and, therefore, since P lies in a plane, p lies on a sphere,

a, passing through 0. Hence the locus, <?, of p is a circle, being

the intersection of the two spheres A and a.

Let OqQ be any other side of the cone, q and Q being points in

c, C respectively. Then the quadrilateral q Q Pp is inscribed in a

circle (that in which its plane cuts the sphere A) and the exterior

angle at p is equal to the interior angle at Q. If OL, OM be the

lines in which the plane POQ cuts the cyclic planes (planes through

parallel to the two series of circular sections) they are obviously

parallel to pq, QP, respectively ; and therefore

LLOp = LOpq = AOQP = Z.MOQ.

Let any third side,

OrR, of the cone be

drawn, and let the

plane OPR cut the

cyclic planes in 01,Om
respectively. Then,

evidently,

LIOL- L qpr,

Z.3£0m = AQPR,

and these angles are independent of the position of the points p and

IP,

if Q and R be fixed points.

In a section of the above

diagram by a sphere whose

centre is 0, IL, Mm are the

great circles which repre-

sent the cyclic planes, PQR
is the spherical conic which

represents the cone. The

ioint
P represents the line OpP, and so with the others,

ropositions above may now be stated thus

Arc PL = arc MQ ;

nd, if Q and R be fixed, Mm and IL are constant arcs whatever be

tie position of P.

The
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In the figure ofJ 60.] The application to § 58 is now obvious

that article we have

FE=KH, ED = CA, HG = CB, LM = FB.
Hence L, C, G, D are points of a spherical conic whose cyclic

planes are those of AB, FE. Hence also KG passes through L,

and with LM intercepts on AB an arc equal to AB. That is, it

passes through N9
or KG and LN are arcs of the same great circle :

and they are equal, for G and L are points in the spherical conic.

Also, the associative principle holds for any number of quaternion

factors. For, obviously,

qr.st = qrs.t == &c, &c,

since we may consider qr as a single quaternion, and the above

proof applies directly.

J 61.] That quaternion addition, and therefore also subtraction,

is commutative, it is easy to shew.

For if the planes of two quaternions,

q and r, intersect in the line OA, we
may take any vector OA in that line,

and at once find two others, OB and

OC, such that

OB = qOA,

and OC = r OA.

And (q + r)OA = OB+ OC = OC+OB = (r+q) OA,

since vector addition is commutative (§ 27).

Here it is obvious that (q + r) OA, being the diagonal of the

parallelogram on OB, OC, divides the angle between OB and OC
in a ratio depending solely on the ratio of the lengths of these

lines, i.e. on the ratio of the tensors of q and r. This will be useful

to us in the proof of the distributive law, to which we proceed.

>rf52.] Quaternion multi-

plication, and therefore di-

vision, is distributive. One
simple proof of this depends

on the possibility, shortly to

be proved, of representing

any quaternion as a linear

function of three given rect-

angular unit-vectors. And
when the proposition is thus

established, the associative principle may readily be deduced from it.

But we may employ for its proof the properties of Spherical
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Conies already employed in demonstrating the truth of the asso-

ciative principle. For continuity we give an outline of the proof

by this process.

Let BA, CA represent the versors of q and r, and be the great

circle whose plane is that ofp.

Then, if we take as operand the vector OA, it is obvious that

U(q + r) will be represented by some such arc as J)A where B, B, C
are in one great circle ; for (q -+ r) OA is in the same plane as q OA
and rOA, and the relative magnitudes of the arcs BB and BC
depend solely on the tensors of q and r. Produce BA, BA, CA to

meet be in b, d, c respectively, and make

M = BA, Fd= BA, Gi= CA.

Also make b(3 = db = ey = p. Then E, F, G, A lie on a spherical

conic of which BC and be are the cyclic arcs. And, because

bfi = db = ey, (3F, bF, y G, when produced, meet in a point II

which is also on the spherical conic (§ 5 9*). Let these arcs meet

BC in J~, L, K respectively. Then we have

JH = BJ3 = pUq,

LH=Fb =pU(q + r),

KII= Gy =p Ur.

Also LJ = JDS,

and KL = CB.

And, on comparing the portions of the figure bounded respectively

by IIKJ and by ACB we see that (when considered with reference

to their effects as factors multiplying OH and OA respectively)

p U(q-\-r) bears the same relation to p Uq andj? Ur

tat U(q+ r) bears to Uq and Ur.

lut T(q+ r)U(q+ r) = q+ r = TqUq+ TrUr.

[ence T(q + r).pU(q + r) = Tq.p Uq + Tr.p Ur
;

>r, since the tensors are mere numbers and commutative with all

)ther factors, p (q+ r) = pq -Vpr.

[n a similar manner it may be proved that

(q + r)p = qp + rp.

tnd then it follows at once that

(p+ q) (r+s) = pr -^ps+ qr+qs.

^63.] By similar processes to those of § 53 we see that versors,

and therefore also quaternions, are subject to the index-law

q
m
.q

n = q
m+n

,

at least so long as m and n are positive integers.

D
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The extension of this property to negative and fractional ex-

ponents must be deferred until we have defined a negative or

fractional power of a quaternion.

^64.] We now proceed to the special case of quadrantal versors,

from whose properties it is easy to deduce all the foregoing results

of this chapter. These properties were indeed those whose in-

vention by Hamilton in 1843 led almost intuitively to the esta-

blishment of the Quaternion Calculus. We shall content ourselves

at present with an assumption, which will be shewn to lead to

consistent results ; but at the end of the chapter we shall shew

that no other assumption is possible, following for this purpose a

very curious quasi-metaphysical speculation of Hamilton.

J 65.] Suppose we have a system of three mutually perpendicular

unit-vectors, drawn from one point, which we may call for short-

ness i, J, K, Suppose also that these are so situated that a positive

(i. e. left-handed) rotation through a right angle about I as an axis

brings / to coincide with K. Then it is obvious that positive

quadrantal rotation about J will make K coincide with /; and,

about K, will make / coincide with /.

For definiteness we may suppose I to be drawn eastwards, J north-

wards, and K upwards. Then it is obvious that a positive (left-

handed) rotation about the eastward line (/) brings the northward

line (J) into a vertically upward position (K) ; and so of the others.

^66.] Now the operator which turns J into K is a quadrantal

versor (§ 53) ; and, as its axis is the vector I, we may call it i.

Thus T^ 1
'

°r K=iJ
' (

!
)

Similarly we may put -^ =?= /, or I = j K, (2)

and -f — K or J = kl. (3)

[It may here be noticed, merely to shew the symmetry of the

system we are explaining, that if the three mutually perpendicular

vectors 7, J, K be made to revolve about a line equally inclined to

all, so that I is brought to coincide with J, / will then coincide

with K, and K with I: and the above equations will still hold good,

only (1) will become (2), (2) will become (3), and (3) will become

(i)-]

'67.] By the results of § 50 we see that

IT ~ J '
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i. e. a southward unit-vector bears the same ratio to an upward

unit-vector that the latter does to a northward one ; and therefore

we have

or —J= iK.

Similarly

and

/, or -K

= k, or —/ kJ.

-J
K
-K
I

-I
J

v68.] By (4) and (1) we have

-J=iK=i(iJ) = i
2 J.

Hence i
2 = — 1

And, in the same way, (5) and (2) give

J
2 =-h
k2 =-\

(4)

(5)

(6)

(?)

(8)

(9)and (6) and (3)

Thus, as the directions of /, J, K are perfectly arbitrary, we see

that the square of every quadrantal versor is negative unity.

Though the following proof is in principle exactly the same as

the foregoing, it may perhaps be of use to the student, in shewing

him precisely the nature as well as the simplicity of the step we
have taken.

Let ABA! be a semicircle, whose centre

is 0, and let OB be perpendicular to AOA!

.

OB
Then -= > = a suppose, is a quadrantal^

OA'
versor, and is evidently equal to ^=-;

i§ 50, 53. ^B

Hence a2 = -= = = -= = — 1

.

* OB OA OA

4 69.] Having thus found that the squares of i, j, h are each equal

negative unity ; it only remains that we find the values of their

)roducts two and two. For, as we shall see, the result is such as

shew that the value of any other combination whatever of i, j, h

(as factors of a product) may be deduced from the values of these

squares and products.

Now it is obvious that

K I .

D %
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(i. e. the versor which turns a westward unit-vector into an upward

one will turn the upward into an eastward unit)

;

or K =j(-I)=-jI* (10)

Now let us operate on the two equal vectors in (10) by the same

versor, i, and we have

iK — i{—j I) = —iJL
But by (4) and (3)

iK = -J =-hL
Comparing these equations, we have

-ijl=-/d;
or, by § 54 (end), ij = h, "]

and symmetry gives jh = i, I (11)

hi = j. J

The meaning of these important equations is very simple ; and is,

in fact, obvious from our construction in § 54 for the multiplication

of versors ; as we see by the annexed figure, where we must re-

member that i, j, h are quadrantal versors whose planes are at right

angles, so that the figure represents a

hemisphere divided into quadrantal tri-

angles.

Thus, to shew that ij = h, we have,

being the centre of the sphere, N, J<J,

#, W the north, east, south, and west,

and ^the zenith (as in § 65)

;

whence ijOW~ iOZ = OS = Jc6W.

>f70.] But, by the same %ure,

WN=OZ,
whence jiON =jOZ = OE == -OW = -kON.

J 71.] From this it appears that

ji=-k, \

and similarly hj = — i, > (! 2 )

ih as—j, )

and thus, by comparing (11),

ij = ~J i = k
>

)

jk=-kj= iA ((H), (12)).

hi =—ih = j. )

* The negative sign, being a mere numerical factor, is evidently commutative with

j ; indeed we may, if necessary, easily assure ourselves of the fact that to turn the

negative (or reverse) of a vector through a right (or indeed any) angle, is the same

thing as to turn the vector through that angle and then reverse it.
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These equations, along with

*->»-*— 1 ((7), (8), (9)),

contain essentially the whole of Quaternions. But it is easy to see

that, for the first group, we may substitute the single equation

ij*=-h (13)

since from it, by the help of the values of the squares of i, j, k, all

the other expressions may be deduced. We may consider it proved

in this way, or deduce it afresh from the figure above, thus

JcON= 6W,

jkON = j6W= OZ,

ijkON'= ijOfr= iOZ' = OS --ON.
j 72.] One most important step remains to be made, to wit the

assumption referred to in § 64. We have treated i,j, k simply as

quadrantal versors ; and 7, J, K as unit-vectors at right angles to

each other, and coinciding with the axes of rotation of these versors.

But if we collate and compare the equations just proved we have

V = *, (»)
»/= K, (i)

ji=-K (12)

JI = -K, (10)

with the other similar groups symmetrically derived from them.

Now the meanings we have assigned to i,j, k are quite inde-

pendent of, and not inconsistent with, those assigned to /, J, K.

And it is superfluous to use two sets of characters when one will

suffice. Hence it appears that i, j, k may be substituted for i, /, K;

in other words, a unit-vector when employed as a factor may be con-

sidered as a quadrantal versor lohose plane is perpendicular to the

vector . This is' one of the main elements of the singular simplicity

of the quaternion calculus.
^

•i 73.] Thus the product, and therefore the quotient, of two perjpen- ^*f"*
u
*:

dicular vectors is a third vector perpendicular to both. Iku^*<M

Hence the reciprocal (§51) of a vector is a vector which has the Q*»»ot*u

opposite direction to that of the vector, and its length is the re-

ciprocal of the length of the vector.

The conjugate (§ 52) of a vector is simply the vector reversed .

I

Hence, by § 52, if a be a vector

(Taf = aKa = a (-a) = -a2
.

^74.] We may now see that every versor may be represented by
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For, if a be any vector perpendicular to i (which is any definite

unit-vector),

ia, = (3, is a vector equal in length to a, but perpendicular

to both i and a

;

i
2 a = — a,

i
3 a SB — la = -A
i*a ES5 _ij8 = — i

2 a = a

Thus, by successive applications of I, a is turned round i as an axis

through successive right angles. Hence it is natural to define i
m as

a versor which turns any vector perpendicular to i through m right

angles in the positive direction of rotation about i as an axis. Here m
may have any real value whatever, whole or fractional, for it is

easily seen that analogy leads us to interpret a negative value of m
as corresponding to rotation in the negative direction.

*76.] From this again it follows that any quaternion may be

expressed as a power of a vector. For the tensor and versor elements

of the vector may be so chosen that, when raised to the same power,

the one may be the tensor and the other the versor of the given

quaternion. The vector must be, of course, perpendicular to the

plane of the quaternion.

«! 76.~] And we now see, as an immediate result of the last two

sections, that the index-law holds with regard to powers of a

quaternion (§ 63).

•I 77.,] So far as we have yet considered it, a quaternion has been

regarded as the product of a tensor and a versor : we are now to

consider it as a sum. The easiest method of so analysing it seems

to be the following.

Let represent any quaternion. Draw

BC perpendicular to OA, produced if neces-

sary.

Then, §19, OB = OC+CB.
But, § 22, OC = xOA,

where x is a number, whose sign is the same

as that of the cosine of Z AOB.
Also, § 73, since CB is perpendicular to OA,

CB = yOA,
where y is a vector perpendicular to OA and CB, i.e. to the plane

of the quaternion.

tt OB xOA + yOA
Hence ^^ = —J-— = x + y.

OA OA
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Thus a quaternion, in general, may be decomposed into the sum of

two parts, one numerical, the other a vector. Hamilton calls them

the scalar, and the vector, and denotes them respectively by the

letters S and V prefixed to the expression for the quaternion.

J 78.] Hence q = Sq -f Vq, and if in the above example

OB

then OB = OC+ CB = Sq.OA+Vq.OA*,

The equation above gives

OC= Sq.OA,

CB = Fq.OA.

J79.] If, in the figure of last section, we produce BC to D, so as

to double its length, and join 01), we have, by § 52,

^ = Kq = SKq+FKq;

.-. OB = OC+CB ±t SKq.OA+VKq.OA,

Hence OC = SKq.OA,

and CB^FKq.OA.

Comparing this value of OC with that in last section, we find

SKq^Sq, (1)

or the scalar of the conjugate of a quaternion is equal to the scalar of

the quaternion.

Again, CB = —CB by the figure, and the substitution of their

valuesgives VKq^-Vq, (2)

or the vector of the conjugate of a quaternion is the Hector of the

quaternion reversed.

We may remark that the results of this section are simple con-

sequences of the fact that the symbols S, V, K are eommtitative f.

Thus SKq = KSq * Sq,

since the conjugate of a number is the number itself; and

VKq = KVq = -Vq (§73).

* The points are inserted to shew that 8 arid V apply only to q, and not to qOA.
*T It is curious to compare the properties of these quaternion symbols with those of

the Elective Symbols of Logic, as given in Boole's wonderful treatise on the Laws of
Thought; and to think that the same grand science of mathematical analysis, by
processes remarkably similar to each other, reveals to us truths in the science of

position far beyond the powers of the geometer, and truths of deductive reasoning to

which unaided thought could never have led the logician.
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Again, it is obvious that

2Sq = S2q, ZFq^FSq,

and thence 2Kq = EJLq.

^80.] Since any vector whatever may be represented by

xh+t/j+zk

where x, y, z are numbers (or Scalars), and i, J, h may be any three

non-coplanar vectors, §§ 23, 25—though they are usually under-

stood as representing a rectangular system of unit-vectors—and

since any scalar may be denoted by w ; we may write, for any

quaternion q, the expression

q = w+ xi + yj+ zk (§ 78).

Here we have the essential dependence on four distinct numbers,

from which the quaternion derives its name, exhibited in the most

simple form.

And now we see at once that an equation such as

where q = w' +x'i+ y'j+z'k,

involves, of course, thefour equations

w'= w, x'= x, y'=y, z'— z.

J 81.] We proceed to indicate another mode of proof of the dis-

tributive law of multiplication.

We have already defined, or assumed (§61), that

y (3 + y- + - = >

a a a

or fia-'L+ya- 1 = (jS+ yJcT 1
,

and have thus been able to understand what is meant by adding

two quaternions.

But, writing a for a
-1

, we see that this involves the equality

(P + y)a = /3a+ ya;

from which, by taking the conjugates of both sides, we derive

a'(^+y') = a'^+ a'y' (§55).

And a combination of these results (putting /3-j-y for a in the

latter, for instance) gives

(/3 + y)(/3'+ /) = (/3 + 7)/3'+(/3 + y)/
= /3/3'+ y/3'+ (3y'+ yy by the former.

Hence the distributive principle is true in the multiplication of vectors.

It only remains to shew that it is true as to the scalar and
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vector parts of a quaternion, and then we shall easily attain the

general proof.

Now, if a be any scalar, a any vector, and q any quaternion,

(a+ a
) q = aq+ aq.

For, if j3 be the vector in which the plane of q is intersected by

a plane perpendicular to a, we can find other two vectors, y and 8,

in these planes such that

y £

And, of course, a may be written -~ ; so that

= aq + aq.

And the conjugate may be written

tf(af + a') = q'a' + q'a' (§ 55).

Hence, generally,

(a + a)(fl + j3) = ah+ af3+ la + al3;

or, breaking up « and 5 each into the sum of two scalars, and a, £
each into the sum of two vectors,

fa+dfa+Oi + <4)(*1+VH3|+&
= K+ «

a) & + ftji) + fa + flj (ft+ ft) + ft + 6
2) fa+ a

2)

+ («l + «2)(ft + ft)

(by what precedes, all the factors on the right are distributive, so

I

that we may easily put it in the form)

= fa+ «i) (h+ ft) + fa + «i) ih

+

ft)+ fa + «2) (*i+ ft)

+ fa+ a2)ft + ft).

Putting «! + a
2
= p, a

2 + a2
= q, ^ + ft = r, b

2 + ft = 5,

we have (i? + ?)(r + 5) =^+ jtw+ gr + gtf.

•i 82.] For variety, we shall now for a time forsake the geometrical

mode of proof we have hitherto adopted, and deduce some of our

next steps from the analytical expression for a quaternion given

in § 80, and the properties of a rectangular system of unit-vectors

as in § 71.

We will commence by proving the result of § 77 anew.

83.] Let a = % i + yj+ z k,

(3=z x'i+y'j-\ zk.
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Then, because by § 7 1 every product or quotient of i, j, k is reducible

to one of them or to a number, we are entitled to assume

where co, £ 77, f are numbers. This is the proposition of § 80.

<J 84.] But it may be interesting to find co, £, -q, £ in terms of x, y, z,

x 3 y ,
z.

We have /3 = qa,

or x'i + y'j + z'h = (a +&+ r]j+ C&) (xi + yj+zk)

= — (f«i »^ + &) + (<^ +^— &)i + {<»y+&— £z)j+(aiZ + £y— rix)&
i

as we easily see by the expressions for the powers and products of

i,j\ k, given in § 71. But the student must pay particular attention

to the order of the factors, else he is certain to make mistakes.

This (§ 80) resolves itself into the four equations

0= & + ]# + &>
x'=ojx + rjz — (y,

y'=a>y-£z +f>,

/= a>z+ iy— 7]x.

The three last equations give

xof+ yy +zz'=z a (x2 + y
2 + z2\

which determines 00.

Also we have, from the same three, by the help of the first,

£»' + >?/ + (>'= 0;

which, combined with the first, gives

1 * = < .

yz'—zy' zx'—xz' xy'—yx"

and the common value of these three fractions is then easily seen

to be 1

x2
-\-y

2
-V z2

It is easy enough to interpret these expressions by means of

ordinary coordinate geometry : but a much simpler process will

be furnished by quaternions themselves in the next chapter, and, in

giving it, we shall refer back to this section.

^85.] The associative law of multiplication is now to be proved

by means of the distributive (§ 81). We leave the proof to the

student. He has merely to multiply together the factors

w + xi + yj + zk, w' + afi+ y'j+ z'k, and w" -\-x"i + y"j + z"k,

as follows :

—

First, multiply the third factor by the second, and then multiply

the product by the first ; next, multiply the second factor by the

X>
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first and employ the product to multiply the third : always re-

membering that the multiplier in any product is placed before the

multiplicand. He will find the scalar parts and the coefficients of

i, j, k, in these products, respectively equal, each to each.

' 86.] With the same expressions for a, /3, as in section 8 3, we have

a/3= (xi+yj+ zk) (x'i + yj+ zk)

= - (xx' + yy'+ zz) + (yz' - zy') i + (zx'— xz')j + (xy'—yx') k.

But we have also

fia=— (xx'+ yy'+ zz') — (yz"— zy') i— {zx'— xz')j— (xy'—yx
f

) k.

The only difference is in the sign of the vector parts.

Hence £a/3 = #/3a, (1)

Fal3=-F(3a, (2)

also afi+ j3a = 2Sal3, (3)

a/3 -/3a = 2 Fa/3, (4)

and, finally, by § 79, aj3 = Kl3a (5)
J 87.] If a = (3 we have of course (§ 25)

x-x\ y=y\ z = z\

and the formulae of last section become

a/3 = /3a = a 2 == — (x 2 +y 2
^-z

2

) ;

which was anticipated in § 73, where we proved the formula

(7
7
a) 2 =-a%

and also, to a certain extent, in § 25.

J 88.] Now let q and r be any quaternions, then

S.qr = S.(Sq+Fq)(Sr+Fr),

= S.(SqSr+ Sr.Vq + Sq.Fr + VqVr\

= SqSr+ SFqFr,

since the two middle terms are vectors.

Similarly, S. rq = SrSq + SVrVq.

Hence, since by (1) of § 86 we have

SFqVr ** SFrVq,

we see that S.qr = S.rq, (1)

a formula of considerable importance.

I
It may easily be extended to any number of quaternions, because,

>eing arbitrary, we may put for it rs. Thus we have

S.qrs = S.rsq,

= S.sqr

by a second application of the process. In words, we have the

theorem

—

the scalar of theproduct of any number ofgiven quaternions

defends only upon the cyclical order in which they are arranged.
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J 89.] An important case is that of three factors, each a vector.

The formula then becomes

S.a(3y = S.fiya — S.ya(3.

But S. aPy = Sa(S(3y+ Ffly)

= SaFfiy, since aSfiy is a vector,

= -SaFy(3, by (2) of §86,

= -Sa(Syt3+FyP)

= -S.ayfi.

Hence the scalar of the product of three vectors changes sign when the

cyclical order is altered.

Other curious propositions connected with this will be given

later, as we wish to devote this chapter to the production of the

fundamental formulae in as compact a form as possible.

^90.] By (4) of §86,
2V(3y = py-y(3.

Hence 2 Fa F(3y = Fa {(3y- yfi)

(by multiplying both by a, and taking the vector parts of each side)

= F(aPy+ Pay-(3ay-ayfl)

(by introducing the null term (3ay—(3ay).

That is

2rarfiy=r.(ap+ (3a)y-r((3Say+ pray+ Say.p-t-Fay.p)

= F(2Sa(3)y-2Fl3Say

(if we notice that V. Fay.p = - Y$Vay, by (2) of § 86).

Hence VaVfiy — ySafi—pSya, (1)

a formula of constant occurrence.

Adding aSfiy to both sides we get another most valuable formula

V.a^y — aSfiy— pSya + ySafi', (2)

and the form of this shews that we may interchange y and a

without altering the right-hand member. This gives

F.afiy = Ky(3a,

a formula which may be greatly extended.

J 91.] We have also

VFap Vyb = - VVyb Fa/3 by (2) of § 86 :

= SSyFaP-ySbra(3 = bS.aPy-yS.afib,

= -{3SaFyb + aS(3ryb=-(3S.ayb+ aS.l3yb i

all of these being arrived at by the help of § 90 (1) and of § 89 ;

and by treating alternately Vafi and Vyb as simple vectors.

Equating two of these values, we have

bS.a(3y = aS.pyb + (3S.yab + yS.aftb, (3)
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a very useful formula, expressing any vector whatever in terms

of three given vectors.

J 92.] That such an expression is possible we knew already by

§ 23. For variety we may seek another expression of a similar

character, by a process which differs entirely from that employed

in last section.

a, (3, y being any three vectors, we may derive from them three

others ^aft, F/3y, Vya ; and, as these will not generally be coplanar,

any other vector 8 may be expressed as the sum of the three, each

multiplied by some scalar (§ 23). It is required to find this ex-

pression for 8.

Let 8 = x Vaj3+y Vfiy+ z Vya.

Then Syb = xS.yafi = xS.afiy,

the terms in y and z going out, because •

SyVfry = S.yfiy = S(3y 2 = y
2
Sj3 = 0,

for y
2

is (§ 73) a number.

Similarly Sfib = zS.fiya = zS.afiy,

and Sab = yS.afiy. 4 U^^XZjr
Thus bS.apy = FapSyb+ F(3ySab+ FyaS(3b. . .

.

\?%% '. .... (4)

J 93.] We conclude the chapter by shewing (as promised in § 64)

that the assumption that the product of two parallel vectors is

a number, and the product of two perpendicular vectors a third

vector perpendicular to both, is not only useful and convenient,

but absolutely inevitable, if our system is to deal indifferently with

all directions in space. We abridge Hamilton's reasoning.

• Suppose that there is no direction in space pre-eminent, and

that the product of two vectors is something which has quantity,

so as to vary in amount if the factors are changed, and to have

its sign changed if that of one of them is reversed ; if the vectors

be parallel, their product cannot be, in whole or in part, a vector

inclined to them, for there is nothing to determine the direction

in which it must lie. It cannot be a vector parallel to them ; for

by changing the sign of both factors the product is unchanged,

whereas, as the whole system has been reversed, the product vector

ought to have been reversed. Hence it must be a number. Again,

the product of two perpendicular vectors cannot be wholly or partly

a number, because on inverting one of them the sign of that

number ought to change; but inverting one of them is simply

equivalent to a rotation through two right angles about the other,

and (from the symmetry of space) ought to leave the number
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unchanged. Hence the product of two perpendicular vectors must

be a vector, and a simple extension of the same reasoning shews

that it must be perpendicular to each of the factors. It is easy

to carry this farther, but enough has been said to shew the character

of the reasoning.

EXAMPLES TO CHAPTER II.

Jl. It is obvious from the properties of polar triangles that any

mode of representing versors by the sides of a triangle must have

an equivalent statement in which they are represented by angles in

the polar triangle.

Shew directly that the product of two versors represented by

two angles of a spherical triangle is a third versor represented

by the supplement of the remaining angle of the triangle; and

determine the rule which connects the directions in which these

angles are to be measured.

4 2. Hence derive another proof that we have not generally

pa = qp.

3. Hence shew that the proof of the associative principle, § 57,

may be made to depend upon the fact that if from any point of

the sphere tangent arcs be drawn to a spherical conic, and also arcs

to the foci, the inclination of either tangent arc to one of the focal

arcs is equal to that of the other tangent arc to the other focal arc.

**4. Prove the formulae

2&a/3y = afiy— yfia,

2 T.a/3y = a/3y + y/3a.

^5. Shew that, whatever odd number of vectors be represented by

a, j3, y, &c, we have always

r.aj3y8c= F.e8y/3a,

F.ajSydeft = V.rjfrbypa, &c.

J6. Shew that

S.VapVpyVya = -(&a/3y) 2
,

F.VapVpyVya= Fa£(y2£a/3-£/3y£ya) + ,

and V. ( Fafi F. Vfiy Vya) = ((3Say- aSj3y) S.afiy.

47. If a, (3, y be any vectors at right angles to each other, shew that

(a3 + /3
3 + y

3
) S.aPy = a4 Vpy + /3

4 Vya + y
4 Ta/3.
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J 8. If a,(3,y be non-coplanar vectors, find the relations among
the six scalars, x, y> z and f, 17, t» which are implied in the equation

xa+ yfi + zy = iFpy+ rjFya+ CVap.

<l 9. If a, (S, y be any three non-coplanar vectors, express any

fourth vector, b, as a linear function of each of the following sets of

three derived vectors,

F.yafi, V.afiy, F.(3ya,

and V. Fa/3 F(3y Vya, V. F(3y Vya Fa(3, V, Vya Fa/3 Fj3y .

J10. Eliminate /o from the equations

Sap = a, S(3p = 6, iSV/o — C, % 3= ^, Avl^
'where a, y3, y, 8 are vectors,, and a, h, c, d scalars.

'

v\l. In any quadrilateral, plane or gauche, the sum of the squares

of the diagonals is double the sum of the squares of the lines joining

the middle points of opposite sides,



CHAPTER III.

INTERPRETATIONS AND TRANSFORMATIONS OF

QUATERNION EXPRESSIONS.

^ 94.] Among the most useful characteristics of the Calculus of

Quaternions, the ease of interpreting- its formulae geometrically,

and the extraordinary variety of transformations of which the

simplest expressions are susceptible, deserve a prominent place.

We devote this Chapter to some of the more simple of these, to-

gether with a few of somewhat more complex character but of

constant occurrence in geometrical and physical investigations.

Others will appear in every succeeding Chapter. It is here,

perhaps, that the student is likely to feel most strongly the peculiar

difficulties of the new Calculus. But on that very account he

should endeavour to master them, for the variety of forms which

any one formula may assume, though puzzling to the beginner, is

of the most extraordinary advantage to the advanced student, not

alone as aiding him in the solution of complex questions, but as.

affording an invaluable mental discipline.

«*95.] If we refer again to the figure of § 77 we see that

OC= OB cos AOB,

CB = OB sin AOB.

Hence, if OA = a, OB = /3, and Z AOB = 0, we have

OB = Tp, OA = Ta}

OC = Tp cos 0, CB = T/3 sin 6.

Hence

Similarly

jS oc
a~ OA

T8= T-cos*

(3 CB
a~ OA

T0
• «= 77r-sin0

la
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Hence, if € be a unit-vector perpendicular to a and /3, or

UOA a

. _/3 Tfr . •

we have V- — 7=- sm 0.e.
a La

^96.] In the same way we may shew that

Sa(3 = -TaT(3cos0 t

TFap= TaT/S sin 6,

and Fa(3 = Ta Tfi sin 0.77

where 77 = UFap = Vr^-
a

Thus ^<? *rafer 0/" the product of two vectors is the continuedproduct

of their tensors and of the cosine of the supplement of the contained

angle.

The tensor of the vector of the product of two vectors is the con-

tinued product of their tensors and the sine of the contained angle ;

and the versor of the same is a unit-vector perpendicular to both, and

such that the rotation about itfrom the first vector (i. e. the multiplier)

to the second is left-handed or positive.

Hence TVafi is double the area of the triangle two of whose sides

are a, /3.

» 97.]

^(a.) In any triangle ABC we have

AC = AB+ BC.

ence AC* = SACAC = S.AC(AB + BC).

With the usual notation for a plane triangle the interpretation

of this formula is

— b 2 = — be cosA— ab cos C,

or b = a cos C+ c cos A.

{b.) Again we have, obviously,

FAB AC = VAB(AB\BC)
= VABBC,

or cb sin A = ca sin B,

, sin A sin B sin C
whence = —-

7
— =

a c

These are truths, but not truisms, as we might have been led

to fancy from the excessive simplicity of the process employed.

E
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J 98.] From § 96 it follows that, if a and p be both actual (i. e.

real and non-evanescent) vectors, the equation

Sa(3 =
shews that cos = 0, or that a is perpendicular to (3. And, in fact,

we know already that the product of two perpendicular vectors is a

vector.

Again, if Fa/3 = 0j

we must have sin 6 — 0, or a is parallel to (3. We know already

that the product of two parallel vectors is a scalar.

Hence we see that

Sa(3 =
is equivalent to a = Fy/3,

where y is an undetermined vector ; and that

Fa/3 =
is equivalent to a = xj3,

where x is an undetermined scalar.

J 99.] If we write, as in § 83,

a = ix +jy -\-kzy

P = ix'+jY+ kz',

we have, at once, by § 86,

Safi = — sox* —yy'— zzf

, , x x' y y' z z\
\ r r r r r r '

where t — Vx2 +y2 + z2\ r'— */x'2 + y 2 + z'
2

.

Also T+ =tp^i+^J* *3*.U\.

These express in Cartesian coordinates the propositions we have

just proved. In commencing the subject it may perhaps assist

the student to see these more familiar forms for the quaternion

expressions ; and he will doubtless be induced by their appearance

to prosecute the subject, since he cannot fail even at this stage to

see how much more simple the quaternion expressions are than

those to which he has been accustomed.

^100.] The expression
S.afiy

may be written S ( Fa/3) y,

because the quaternion a(3y may be broken up into

(£a/3)y + (ra/3)y

of which the first term is a vector.
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But, by § 96,

S(Fa(B) y = TaTjB sin 6 Srjy.

Here Trj = 1, let ^ be the angle between rj and y, then finally

S.a(3y =-TaTp Ty sin 6 cos (/>.

But as rj is perpendicular to a and /3, Ty cos $ is the length of the

perpendicular from the extremity of y upon the plane of a, /3. And
as the product of the other three factors is (§ 96) the area of the

parallelogram two of whose sides are a, /3, we see that the mag-

. nitude of -&a/3y, independent of its sign, is the volume of the parallel-

epiped of which three coordinate edges are a, /3, y; or six times the

volume of the pyramid which has a, /3, y for edges.

1101.] Hence the equation

S.afiy = 0,

if we suppose a, /3, y to be actual vectors, shews either that

sin 0=0,
or cos</> = 0,

i. e. two of the three vectors are parallel, or all three are parallel to

one plane.

This is consistent with previous results, for if y = p /3 we have

S.afiy =pS.a(32 = 0;

and, if y be coplanar with a, (3, we have y = i?a+ #/3, and

S.afiy = S.aj3(pa + q(3) = 0.

•1102.] This property of the expression S.afty prepares us to find

that it is a determinant. And, in fact, if we take a, /3 as in § 8 3,

and in addition
y
_ y* +/y+^

we have at once

S. a/3y = — a?" (yz — ztf)—y" (zaf— xz) —z" {xy
f
—yx'\

X y z

X' / z'

x" f t/
z

The determinant changes sign if we make any two rows change

places. This is the proposition we met with before (§ 89) in the

form S.apy = -S./3ay = S.(3ya, &c.

I

If we take three new vectors

ax = ix +jx' -f kaf\ .

e thus see that they are coplanar if a, /3, y are so. That is, if

S.afiy = 0,

then S.a
l ^1 y1

= 0.

e 2
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vfl03.] We have, by § 52,

{Tqf = qKq . (%+ F0 (ty- Ff) (§ 79),

= (Sqf-(Fqf by algebra,

= (Sqf+(TFqf (§73).

If # = a/3, we have Kq = /3a, and the formula becomes

a/3./3a = a2
/3

2 = (£a/3)2 -(Fa/3) 2
.

In Cartesian coordinates this is

(tf
2 +/ + *2 )(tf

,2 +/ 2 +*'2
)

= (^
/ +

<^, + ^)2 + (^
,-^/

)

2 +K-^,

)

2 + (xy'-yx'f.

More generally we have

(T(qr)) 2 = qrK(qr)

= ^J&X? (§ 55) = (Tqf (Trf (§ 52).

If we write q=zW +a = w + ^. 4.^ +^
r = w'+ fi

•=. w'+ ix
f
-\-jy' -\-M

\

this becomes

(
W2 +iC2 +^2 +02) ^1 ^ ^2+/2 +/ 2

)

= {ww — ##'

—

yy'— zz'f+ (w#' -f w'x +y/—zy'f
+ (w/+ wfy+ zx'—xz'f + (w/+ w'z + #/ —yx'fi

a formula of algebra due to Euler.

J 104.] We have, of course, by multiplication,

(a+ /3)
2 = a2 +a/3+ /3a + /3

2 = a2 + 2 £a/3+ /3
2 (§86 (3)).

Translating into the usual notation of plane trigonometry, this

becomes c2 — a2 -2ab cos C+ b2
,

the common formula.

Again, V(a+ ^) (a-/3) = - Fa/3 + Vfia - -2 Fa/3 (§ 86 (2)).

Taking tensors of both sides we have the theorem, the parallelogram

whose sides are parallel and equal to the diagonals of a given paral-

lelogram, has double its area (§96).

Also £(a+ /3)(a -/3) = a2 -/32
,

and vanishes only when a2 = /3
2

, or Ta = Tj3 ; that is, the diagonals

of a parallelogram are at right angles to one another', when, and only

when, it is a rhombus.

Later it will be shewn that this contains a proof that the angle in

a semicircle is a right angle.

4105.] The expression p = a/3a
_1

obviously denotes a vector whose tensor is equal to that of /3.

But we have S.(3ap = 0,

so that p is in the plane of a, 3.

Also we have Sap = Sa{3,
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so that /3 and p make equal angles with a, evidently on opposite

sides of it. Thus if a be the perpendicular to a reflecting surface

and (3 the path of an incident ray, p will be the path of the re-

flected ray.

Another mode of obtaining these results is to expand the above

expression, thus, § 90 (2),

p = 2a- 1Sal3-P
= 2a- 1Sa/3-a- l (Sa(3+Fal3)

= a- 1(Sap— Fa/3),

so that in the figure of § 77 we see that if OA = a, and OB = ft we
have OB = p = apa" 1

.

Or, again, we may get the result at once by transforming the

equation to U- = U->^
a p

j 106.] For any three coplanar vectors the expression

p = a(3y

is (§ 1 1 ) a vector. It is interesting to determine what this vector

is. The reader will easily see that if a circle be described about

the triangle, two of whose sides are (in order) a and ft and if from

the extremity of /3 a line parallel to y be drawn again cutting the

circle, the vector joining the point of intersection with the origin

of a is the direction of the vector apy. For we may write it in the

form a

which shews that the versor (-) which turns /3 into a direction

parallel to a, turns y into a direction parallel to p. And this ex-

presses the long-known property of opposite angles of a quadri-

lateral inscribed in a circle.

Hence if a, (3, y be the sides of a triangle taken in order, the

tangents to the circumscribing circle at the angles of the triangle

are parallel respectively to

Ia^y, /3ya, and ya/3.

Suppose two of these to be parallel, i. e. let

a(3y = x$ya = xayfi (§ 90),

since the expression is a vector. Hence

Py = «yft
which requires either

m = 1, Fy/3 = or y || ft

a case not contemplated in the problem
;

or x = — 1 , Spy = .0,
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i. e. the triangle is right-angled. And geometry shews us at once

that this is correct.

Again, if the triangle be isosceles, the tangent at the vertex is

parallel to the base. Here we have

#/3 = a(3y,

or x(a + y) = a(a + y)y

;

whence x = y
2 = a2 , or Ty = Ta, as required.

As an elegant extension of this proposition the reader may prove

that the vector of the continued product aftyb of the vector-sides of

a quadrilateral inscribed in a sphere is parallel to the radius drawn

to the corner (a, 8).

v! 107.] To exemplify the variety of possible transformations even

of simple expressions, we will take two cases which are of frequent

occurrence in applications to geometry.

Thus T{p + a) = T{p-a),

[which expresses that if

OA = a, OA'= -a, and OP = p,

we have AP = A'P,

and thus that P is any point equidistant from two fixed points,]

may be written
(p + a

)

2 = (p— a) 2
,

or p
2 + 2Sap + a2 = p

2 -2Sap + a2
(§ 104),

whence Sap — 0.

This may be changed to

ap + pa = 0,

or ap + Kap = 0,

SU?- = 0,
a

or finally, WU ^ = 1,

all of which express properties of a plane.

Again, Tp = Ta

may be written T - = 1

,

v a y v a y

(p + a)2 -2Sa{p + a) = 0,

p=(p + a)- 1a(p + a) >

S(p + a)(p— a) = 0, or finally,

Z\(p + a)(p-a) = 2TVap.
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All of these express properties of a sphere. They will be in-

terpreted when we come to geometrical applications.

V108.] We have seen in § 95 that a quaternion may he divided

into its scalar and vector parts as follows :

—

£ = S?+ Y^ = |^(cos0+ csin0)

;

where is the angle between the directions of a and /3, and e= UF-
a

is the unit-vector perpendicular to the plane of a and j3 so situated

that positive (i. e. left-handed) rotation about it turns a towards /3.

Similarly we have (§ 96)

a/3 = Safi + Faj3

= TaT(3(-cos0 + €sin0)
)

6 and e having the same signification as before.

V109.] Hence, considering the versor parts alone, we have

3
U- = cos + e sin 0.
a

Similarly Uj = cos $ + e sin #

;

<l>
being the positive angle between the directions of y and /3, and e

the same vector as before, if a, /3, y be coplanar.

Also we have

U- = cos (0 -f (f>) + e sin (0 + <£).

But we have always

7- •
—

" ss — . and thereforepa a

p a a

or cos (</> -j- 0)+ € sin (<}> + 6) = (cos <£+ e sin $) (cos -f- e sin 0)

= cos cf) cos 0— sin sin -{- e (sin </> cos -j- cos $ sin 0),

from which we have at once the fundamental formulae for the

cosine and sine of the sum of two arcs, by equating separately the

scalar and vector parts of these quaternions.

And we see, as an immediate consequence of the expressions

above, that

cosM0 + esin^0 = (cos + e sin 0)
m

if m be a positive whole number. For the left-hand side is a versor

which turns through the angle m0 at once, while the right-hand
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side is a versor which effects the same object by m successive turn-

ings each through an angle 0. See § 8.

J 110.] To extend this proposition to fractional indices we have
a

only to write - for 0, when we obtain the results as in ordinary

trigonometry.

From De Moivre's Theorem, thus proved, we may of course

deduce the rest of Analytical Trigonometry. And as we have

already deduced, as interpretations of self-evident quaternion trans-

formations (§§97, 104), the fundamental formulae for the solution

of plane triangles, we will now pass to the consideration of spherical

trigonometry, a subject specially adapted for treatment by qua-

ternions ; but to which we cannot afford more than a very few

sections. (More on this subject will be found in Chap. X, in con-

nexion with the Kinematics of rotation.) The reader is referred to

Hamilton's works for the treatment of this subject by quaternion

exponentials.

J 111.] Let a, j3, y be unit-vectors drawn from the centre to the

corners A> B, C of a triangle on the unit-sphere. Then it is evident

that, with the usual notation, we have (§ 96),

Saj3 = — cos c} Sfiy = — cos a, Sya = — cos b,

TFa{3= sine, TV$y= sin a, TVya = sin b.

Also UFafi, UFfiy, UVya are evidently the vectors of the corners

of the polar triangle.

Hence 8. UFap UF(3y = cos By &c,

TV.UVapUVpy = sin B, &c.

Now (§ 90 (1)) we have

SVapVpy = S.aV.$VPy

z=-SapSPy+ J3
2Say.

Remembering that we have

SVapVpy = TVapWpyS.UVapUVpy,

we see that the formula just written is equivalent to

sin a sin c cos B = —cos a cos c -f cos b,

or cos b = cos a cos c -f sin a sin c cos B.

^112.] Again, V.Va$V$y = -(3Sa(3y,

which gives

TV. VapVPy = S.a(3y = S.aFpy = S.f3Fya = S.yFa(3,

or sin a sin c sin B = sin a sinpa = sin b sin pb = sin c sinpc ;

where pa is the arc drawn from A perpendicular to BC3 &c.
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Hence sin jt?a = sin c sin B>

sin a sin c . ^
sin pb

= =—=— sin B.
sin

sinjoc = sin a sin i?.

J 113.] Combining the results of the last two sections, we have

Vap . Vpy = sin a sin c cos 7?— /3 sin a sin c sin B
= sin# sine (cosi?— j3sin_S).

Hence U. Faj3 Vpy = (cos B—psmB),
and 27. Fy/3 F/3a = (cos B+ /3 sin B)

.

These are therefore versors which turn the system negatively or

positively about OB through the angle B.

As another instance, we have

sinjB

::S

tan^ =
cosB

~" S.VapVpy

V.VapVpy
P S.VapVpy

8'^ =&c.
Say+ SapSpy

The interpretation of each of these forms gives a different theorem

in spherical trigonometry.

Again, let us square the equal quantities

V. aPy and aSpy—pSay+ ySaP,

supposing a, /?, y to be any unit-vectors whatever. We have

f-(F.aPy)

2 = S2
py + S2ya+ S2aP+2SpySyaSap.

ut the left-hand member may be written as

T2.aPy-S2
.aPy}

hence

\-S2 .apy = S*Py+ S*ya+ S*ap + 2SpySyaSaP,

1 — cos2#— cos2#— cos2c -f 2 cos a cos b cos c

= sin2# sin2jt?a = &c.

= sin2# sin 2£ sin2C = &c,

ail of which are well-known formulae.

Such results may be multiplied indefinitely by any one who has

mastered the elements of quaternions.
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114.] A curious proposition, due to Hamilton, gives us a qua-

ternion expression for the spherical excess in any triangle. The

following proof, which is very nearly the same as one of his, though

by no means the simplest that can be given, is chosen here because

it incidentally gives a good deal of other information. We leave

the quaternion proof as an exercise.

Let the unit-vectors drawn from the centre of the sphere to

A, B} C, respectively, be a, fi} y. It is required to express, as an

arc and as an angle on the sphere, the quaternion

/3a" 1
y,

The figure represents an orthographic projection made on a plane

perpendicular to y. Hence C is the centre of the circle BEe. Let

the great circle through A, B meet BEe in E, e, and let BE be a

quadrant. Thus ^represents y (§ 72). Also make EF=AB= /3a" 1
.

Then, evidently, pp 4.
/3a

-i
y,

which gives the arcual representation required.

Let BF cut Ee in G. Make Ca — EG, and join B, a, and a, F.

Obviously, as B is the pole of Ee, Ba is a quadrant ; and since

EG = Ca, Ga = EG, a quadrant also. Hence a is the pole of BG,

and therefore the quaternion may be represented by the angle BaF.

Make Cb = Ca, and draw the arcs Paj3, Fba from P, the pole of

AB. Comparing the triangles Eba and eafi, we see that Ea = e(3.

But, since P is the pole of AB, Ffia is a right angle : and therefore

as Fa is a quadrant, so is Fj3. Thus AB is the complement of Ea
or (3e, and therefore a/3 = 2 AB.
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Join bA and produce it to c so that Ac = bA; join c, P, cutting

AB in 0. Also join c, B, and B, a.

Since P is the pole of AB, the angles at are right angles ; . and

therefore, by the equal triangles baAy coA, we have

aA = Ao.

But ap = 2AB,

whence oB = i?/3,

and therefore the triangles coB and ifa/3 are equal, and c, B, a lie

on the same great circle.

Produce cA and cB to meet in H (on the opposite side of the

sphere). II and c are diametrically opposite, and therefore cP,

produced, passes through II.

Now Pa = Pb = PH, for they differ from quadrants by the equal

arcs aj3, ba, oc. Hence these arcs divide the triangle Hab into three

isosceles triangles.

But IPHb + LPEa = Lallb = Lbca.

Also LPab^it—Lcab-LPaH,
LPba = ZPab = n-lcba-lPbH.

Adding, 2 LPab = 2-n—/-cab— Lcba— Lbca

•=. it— (spherical excess of abc).

But, as /.Fa (3 and Ll)ae are right angles, we have

angle of /3a
_1
y = IFaB = l(3ae = IPab

= - — \ (spherical excess of abc).

[Numerous singular geometrical theorems, easily proved ab initio

by quaternions, follow from this : e.g. The arc AB, which bisects

two sides of a spherical triangle abc, intersects the base at the

distance of a quadrant from its middle point. All spherical tri-

angles, with a common side, and having their other sides bisected

by the same great circle (i. e. having their vertices in a small circle

parallel to this great circle) have equal areas, &c, &c]

115.] Let Oa = a, Ob = /3', Oc = /, and we have

= C^.BA

= FG.FF=FG.
But FG is the complement of JDF. Hence the angle of the

quaternion v x * 1 yx
\&) Uv Lv
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is half the spherical excess of the triangle whose angular points are at

the extremities of the unit-vectors a', /3', y'.

[In seeking a purely quaternion proof of the preceding proposi-

tions,, the student may commence by shewing that for any three

unit-vectors we have o .. n

The angle of the first of these quaternions can be easily assigned

;

and the equation shews how to find that of /3a
-1

y. But a still

simpler method of proof is easily derived from the composition of

rotations.]

^116.] A scalar equation in p, the vector of an undetermined

point, is generally the equation of a surface; since we may sub-

stitute for p the expression _ Xa

where x is an unknown scalar, and a any assumed unit-vector.

The result is an equation to determine x. Thus one or more points

are found on the vector xa whose coordinates satisfy the equation

;

and the locus is a surface whose degree is determined by that of the

equation which gives the values of x.

But a vector equation in p, as we have seen, generally leads to

three scalar equations, from which the three rectangular or other

components of the sought vector are to be derived. Such a vector

equation, then, usually belongs to a definite number of points in

space. But in certain cases these may form a line, and even a

surface, the vector equation losing as it were one or two of the

three scalar equations to which it is usually equivalent.

Thus while the equation ap = 8

gives at once
p
_ a-i@

which is the vector of a definite point (since we have evidently

Sap = 0)

;

the closely allied equation Yap = 8

is easily seen to involve gaa = q

and to be satisfied by
p = a-ip+ X0Li

whatever be x. Hence the vector of any point whatever in the line

drawn parallel to a from the extremity of a~ 1
/3 satisfies the given

equation.

A 117.] Again, Vap .Fp/3 = (Pa/3) 2

is equivalent to but two scalar equations. For it shews that Fap
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and Fj3p are parallel, i. e. p lies in the same plane as a and /3, and

can therefore be written (§24)

p = xa+y(S,

where x and y are scalars as yet undetermined.

We have now Vap = y Fa/3,

VpP=xVaP,

which, by the given equation, lead to

xy = 1, or y = -, or finally
x

x

which (§ 40) is the equation of a hyperbola whose asymptotes are

in the directions of a and /3.

4 118.] Again, the equation

F.FafiFap = O
i

though apparently equivalent to three scalar equations, is really

equivalent to one only. In fact we see by § 91 that it may be

written -aS.a(3p = 0,

whence, if a be not zero, we have

S.afip = 0,

and thus (§ 101) the only condition is that p is coplanar with a, /3.

Hence the equation represents the plane in which a and (3 lie.

^119.] Some very curious results are obtained when we extend

these processes of interpretation to functions of a quaternion

q = w + p

instead of functions of a mere vector p.

A scalar equation containing such a quaternion, along with

quaternion constants, gives, as in last section, the equation of a

surface, if we assign a definite value to w. Hence for successive

values of w, we have successive surfaces belonging to a system

;

and thus when w is indeterminate the equation represents not a

surface, as before, but a volume, in the sense that the vector of any

point within that volume satisfies the equation.

Thus the equation (Tq) 2 = a 2
,

or w2 —p2 = a2
,

or (Tp) 2 = a2-w2
t

represents, for any assigned value of w, not greater than a, a sphere

whose radius is */a2— w2
. Hence the equation is satisfied by the
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vector of any point whatever in the volume of a sphere of radius a,

whose centre is origin.

Again, by the same kind of investigation,

(T(q-p))* = a2
,

where q = w+ p, is easily seen to represent the volume of a sphere

of radius a described about the extremity of j3 as centre.

Also S(q2
) = — a 2

is the equation of infinite space less the space

contained in a sphere of radius a about the origin.

Similar consequences as to the interpretation of vector equations

in quaternions may be readily deduced by the reader.

*120.] The following transformation is enuntiated without proof

by Hamilton (Lectures, p. 587, and Elements, p. 299).

r-\r*q2)*q- 1 = U(rq + KrKq).

To prove it, let r
_1

(r
2
^
2
)^^

_1 = t, then

Tt — 1, and therefore

Kt=t~ 1
;

But {r2q
2f = rtq,

or r2q
2 = rtqrtq,

or rq = tqrt.

Hence KqKr = t- lKrKqt~\

or KrKq - tKqKrt.

Thus we have jj^ ± KrKq) = tU
^
qr± KqKr) ^

or, if we put s — U{qr±KqKr)
y

Ks= ± tst.

Hence sKs = (Tsf = 1 = + stst,

which, if we take the positive sign, requires

gist + 1,

or t— +s-1 = + UKs,

which is the required transformation.

[It is to be noticed that there are other results which might

have been arrived at by using the negative sign above ; some in-

volving an arbitrary unit-vector, others involving the imaginary of

ordinary algebra.]

4121.] As a final example, we take a transformation of Hamil-

ton's, of great importance in the theory of surfaces of the second

order.
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Transform the expression

in which a, /3, y are any three mutually rectangular vectors, into

the form
,T(lp+ pk\*

V K 2 -t2 )

-Inch involves only two vector-constants, t, k.

{^ + />*)}
2 = {ip+ PK)(P i + KP) (§§ 52, 55)

= (l
2 + K 2 )p

2 + (ftpicp + pKpt)

= (l
2 + k

2
)p

2 +2S.lPkp

= (L- K
)

2
p
2 + 4:SipSKp.

Hence (Sap)2 + (fl/3/>)
a + (Syp)2 -

,

(t— k)
2

a t A
SipSKp

(
K2_ t

2 )2
P
2 + 4

(K2 -t2
)

2

25, 73).But a~ 2(%) 2 + /3~ 2
(#/3p)

2 + y~2(%) 2 = P
2

Multiply by /3
2 and subtract, we get

Tie left side breaks up into two real factors if ft
2 be intermediate

in value to a2 and y
2

: and that the right side may do so the term

in p
2 must vanish. This condition gives

p

P
2 = ri

—
~¥V2 > an^ the identity becomes

(»C
2 -l2

)

:

,/3

«(aV(l-^) + yV(^-l)) P*(aV(l-^)- yV(^-l)> = 4
(««-»)2^2

Hence we must have

2t_ =iJ (
av/(1_g ) + yV(^-l)) J

^ = 1(^(1-5)-^-!)),

where jt? is an undetermined scalar.

To determine^, substitute in the expression for j3
2

, and we find

= O 2 + ^)(«
2-r2)-2(«2 +y2

) t 4/s«.
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Thus the transformation succeeds if

2
. 1 2(a2 + y

2
)

jt?
2 a2 —

y

2

1 ,
« 2

which gives jo+ - = + 2 y/
a*— y'

1 v2

/>-- = + 2v//-2
J) ~ az—yz

,2>

Hence i£-^J = (I -j>») (*-/) = ± 4J*?t

or (k
2 -i2)- 1 = + 7aZy.

Ta + Ty 1 Ta-Ty

and therefore

2k =

^a^y vv
y
2_ a2 - v

y
2__ ai

TaZy VV
y
2_ a2 v

y
s

Thus we have proved the possibility of the transformation, and

determined the transforming vectors i, k.

122.] By differentiating the equation

{Sap? +my + (%,)* = (~J^)
2

we obtain, as will be seen in Chapter IV, the following,

where // also may be any vector whatever.

This is another very important formula of transformation ; and

it will be a good exercise for the student to prove its truth by

processes analogous to those in last section. We may merely

observe, what indeed is obvious, that by putting p'= p it becomes

the formula of last section. And we see that we may write, with

the recent values of l and k in terms of a, /3, y, the identity

(i
2 + k

2)p+2VaPkaSap+ /3Sj3p + ySyp =
(K2 -t2

)

2

ft— K)
2
p + 2(tSicp+ kSlP)

(k 2 -l2
)
2

123.] In various quaternion investigations, especially in such

as involve imaginary intersections of curves and surfaces, the old

imaginary of algebra of course appears. But it is to be particularly
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noticed that this expression is analogous to a scalar and not to a

vector, and that like real scalars it is commutative in multiplica-

tion with all other factors. Thus it appears, by the same proof as

in algebra, that any quaternion expression which contains this

imaginary can always be broken up into the sum of two parts, one

real, the other multiplied by the first power of \/—-1. Such an

expression, viz.
q = tf+ \^=7//

,

where q' and q" are real quaternions, is called a biquaternion.

Some little care is requisite in the management of these expressions,

but there is no new difficulty. The points to be observed are : first,

that any biquaternion can be divided into a real and an imaginary

part, the latter being the product of V— 1 by a real quaternion;

second, that this V— 1 is commutative with all other quantities in

multiplication ; third, that if two biquaternion s be equal, as

we have, as in algebra, q'= /, #"= /';

so that an equation between biquaternions involves in general eight

equations between scalars. Compare § 80.

124.] We have, obviously, since V— 1 is a scalar,

Stf+ V^lq") = Sq'+ J^VSf,
ry+ V^iq") = Vf+ J~\V4\

Hence (§ 103)

= (^' + J _ iSq"+ Fq'+ >/-\Vq"){Sq'+*f~^lSq"- Vq'- */-lFq")

m {Sq'+ J-ZriSq"f-{Vq'+ *J^\Vq")\

= {Tq'f - (Tq"f + 2 y*=T£. q'Kq".

The only remark which need be made on such formulae is this, that

the tensor of a biquaternion may vanish while both of the component

fatemions are finite.

Thus, if Tq'= Tq",

and S.q'Kq"= 0,

the above formula gives

T(q'+J-if) = 0.

The condition S.q'Kq"=

may be written

Kf=^a, or f^-aKq'-^-^,
where a is any vector whatever.
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Hence Tq'= Tq"= TKq"=^ ,

and therefore

Tq'(Uq'- J^lUa.Uq') = (1 - S-lW%tf
is the general form of a biquaternion whose tensor is zero.

125.] More generally we have, q, r, q\ / being any four real and

non-evanescent quaternions,

(q+ V^lq) (r+ >/^l/) = qr-q'r'+ */^\{qr'+ q'r).

That this product may vanish we must have

qr = qY,

and q/= —q'r.

Eliminating / we have qq
/~ 1qr = — #V,

which gives (g~ l
qf = — 1

,

i. e. q — cfa

where a is some unit-vector.

And the two equations now agree in giving

— r = a/,

so that we have the biquaternion factors in the form

q'{a + V^T ) and — (a- \/^T)/
;

and their product is

_2'(a + y3I)(a-y~)/,
which, of course, vanishes.

[A somewhat simpler investigation of the same proposition may
be obtained by writing the biquaternions as

q'iq'^q+ \/~l ) and (r/' 1 + \f^\ )r,

or q'(q
"+JZTi) and (/'+ V^l)r',

and shewing that

/'= -/'= a, where Ta = 1.]

From this it appears that if the product of two bivectors

p-\-a*J— 1 and //-fc/v— 1

is zero, we must have

a~ l
p = — p

/a~ 1 = Ua,

where a may be any vector whatever. But this result is still more

easily obtained by means of a direct process.

126.] It may be well to observe here (as we intend to avail our-

selves of them in the succeeding Chapters) that certain abbreviated
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forms of expression may be used when they are not liable to confuse,

or lead to error. Thus we may write

T2
q for {Tqf,

just as we write cos2^ for
(
cos 0)2^

although the true meanings of these expressions are

T(Ta) and cos (cos 0).

The former is justifiable, as T(Ta) = Ta, and therefore T2a is not

required to signify the second tensor (or tensor of the tensor) of a.

But the trigonometrical usage is quite indefensible.

Similarly we may write

S2
q for (Sqf, &c,

but it may be advisable not to use

Sq 2

as the equivalent of either of those just written; inasmuch as it

might be confounded with the (generally) different quantity

S.q2 or %2
),

although this is rarely written without the point or the brackets.

127.] The beginner may expect to be a little puzzled with the

aspect of this notation at first ; but, as he learns more of the sub-

ject, he will soon see clearly the distinction between such an ex-

pression as S.Fa(3Fpy,

where we may omit at pleasure either the point or the first V with-

out altering the value, and the very different one

which admits of no such changes, without altering its value.

All these simplifications of notation are, in fact, merely examples

of the transformations of quaternion expressions to which part of

this Chapter has been devoted. Thus, to take a very simple ex-

ample, we easily see that

S.VapV(3y = SFa(SF(3y = S.a^Vpy = SaV.pFpy = -SaF.{Vpy)p
= SaF.{FyP)p = S.aV(yp)(3 = £.F(y/3)/3a = SVypVfia

= S.y&rpa = &c., &c.

The above group does not nearly exhaust the list of even the simpler

ways of expressing the given quantity. We recommend it to the

careful study of the reader. He will find it advisable, at first, to

use stops and brackets pretty freely ; but will gradually learn to

dispense with those which are not absolutely necessary to prevent

ambiguity.

p 2
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EXAMPLES TO CHAPTER III.

tv ^1. Investigate, by quaternions, the requisite formulae for changing'

from any one set of coordinate axes to another; and derive from

your general result, and also from special investigations, the usual

expressions for the following cases :

—

(a.) Rectangular axes turned about z through any angle.

(b. ) Rectangular axes turned into any new position by rota-

tion about a line equally inclined to the three.

(c. ) Rectangular turned to oblique, one of the new axes lying

in each of the former coordinate planes.

• 2. If Tp= Ta = Tj3 = 1, and S.afip = 0, shew by direct transfor-

mations that g xHp-a)U(p-fS) = ± yi(l_£a/3).

Interpret this theorem geometrically.

IS. If Sa(3 OfftaQsl, shew that

(1 + 0/3 = 2 cos™a
2

J3 = 2Sa*.a*0.

*4. Put in its simplest form the equation

pS.V*$V$yVya = aV.VyaV*$ + bV.Va$V$y + cV.r$yVya-y

and shew that a = S.ftyp, &c.

*6. Prove the following theorems, and exhibit them as properties

of determinants :

—

>(*.) S.(a+ /3)(/3-{-y)(y4 a) = 2&a/3y,

•(*.) S.VapFpyVya = -(&a/3y)2
,

•(<!.) 8.r[a+ p){fi + y)r{fi + y){y+ a)V(y+ a){a+ p) = -4(£.a/3y) 2
,

'(d.) S.V(Vaprpy)V{rpyrya)r(VyaVap)=-(S.aPy)\

(<?.) SM = — 16(&a/3y)4
, where

5 = r(r(a + «(/3 + y)r(/3-fy)(y + a)),

« = r(rO+y)(y+a)r(y+o)(a+/3)),

r= r(r{y+o)(a+i8)r<a4-i8)W+y)).

6. Prove the common formula for the product of two determi-

nants of the third order in the form

S.a^yS.a
1^1 y1

= — Saa
±

S/3^ Sya
x

Sa^ SPfr Syfr

Say
x
S^ Syy

Y

7. If, in § 102, a, (3, y be three mutually perpendicular vectors,

can anything be predicted as to a15 j3lf yx
? If a, /3, y be rectangular

unit vectors, what of ax , j31} yx
?
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•8. If- a, /3, y, a, /3', y be two sets of rectangular unit-vectors,

shew that Saa'= SypSpy' -SfSpSyy', &c, &c. *
7^', /

'' f?^
• 9. The lines bisecting pairs of opposite sides of a quadrilateral ""

*

are perpendicular to each other when the diagonals of the quadri-

lateral are equal.

-10. Shew that

• (a.) S.q2 =2S2q-T2
q,

C~ \* « lc~$-l

•(*.) S.q*=S*q-3SqT2 Fq, <- ** * Cm^ m %t~+ {t-tm

•(c) a2
p

2
y
2 + S2.a(3y = F2

.a(3y,

*{d.) S(KaPyK(3yaF.yap) = iSafiSpySyaS.aPy,

•(*.) V.q^{3S2q-T2 Vq)Yq,
,

VO qUFq-i = -Sq.UFq + TFq; ff*t •'«$ Sf *j l/J ^!^\j
and interpret each as a formula in plane or spherical trigonometry. :/"^

• ^

11. If ^ be an undetermined quaternion, what loci are repre-

sented by

(<?.) &(£-a) 2 =tf 2
,

where a is any given scalar and a any given vector ?

12. If ^ be any quaternion, shew that the equation

is satisfied, not alone by Q= +q but also, by

Q = ± J^\(Sq.TJVq-TVq\
(Hamilton, Lectures, p. 673.)

•13. Wherein consists the difference between the two equations .

f-j-i, and g)--.,» ^tZ^^r-o
What is the full interpretation of each, a being a given, and p an

undetermined, vector ?

14. Find the full consequences of each of the following groups of

equations, both as regards the unknown vector p and the given

vectors a, /3, y :

—

Sap = 0, Sap = 0,

"to C"fl I ft • 'to AflA> = °> W A^ = °>
A.^yp-0, ^ =0 . &a/3yp=0.

15. From §§ 74, 109, shew that, if e be any unit-vector, and m
mi: . mir

any scalar, e
TO = cos—- -f e sin—- •

2 2i
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Hence shew that if a, /3, y be radii drawn to the corners of a tri-

angle on the unit-sphere, whose spherical excess is m right angles,

a+ p y+a {3 + y =am
j3+ y' a+ p'y + a

Also that, if A, B, C be the angles of the triangle, we have

2C 2B 2A

y
ir

(3
n a n = — l.

16. Shew that for any three vectors a, (3, y we have

(Ua(3) 2 + (Uj3y) 2 + ( Uay)
2 + (U.a(3y) 2 + 4 Uay.SUa(3SUpy = - 2.

(Hamilton, Elements, p. 388.)

17. If a19 a
2 , a

3 , $ be any four scalars, and plt p2 , p3 any three

vectors, shew that

+ 2U(x2 +%p2 + a
L
a
2)
= 2n(#2 4 p

2
) + 2Ua 2

+ 2{(*
2 +a

1
*+ Pl

2
)
((VP2p3 )

2 + 2¥3(^ +^3) -tf
2
(P2-P3)

2
)} J

where n#2 = a^a
2
2a

3
2

.

Verify this formula by a simple process in the particular case

a
x
= a

2
= #3 = # = 0.

(/«.)



CHAPTER IV.

DIFFERENTIATION OF QUATERNIONS.

J 128.] In Chapter I^we have already considered as a special case

the differentiation of a vector function of a scalar independent

variable : and it is easy to see at once that a similar process is

applicable to a quaternion function of a scalar independent variable.

The differential, or differential coefficient, thus found, is in general

another function of the same scalar variable ; and can therefore be

differentiated anew by a second, third, &c. application of the same

process. And precisely similar remarks apply to partial differentia-

tion of a quaternion function of any number of scalar independent

variables. In fact, this process is identical with ordinary differ-

entiation.

J129.] But when we come to differentiate a function of a vector,

or of a quaternion, some caution is requisite ; there is. in general,

nothing which can be called a differential coefficient

;

and in fact

we require (as already hinted in § 33) to employ a definition of a

differential, somewhat different from the ordinary one but, coinciding

with it when applied to functions of mere scalar variables.

^130.] If r= F(q) be a function of a quaternion q,

where n is a scalar which is ultimately to be made infinite, is defined

to be the differential of r or Fq.

Here dq may be any quaternion whatever\ and the right-hand

ember may be written », -, s

where / is a new function, depending on the form of F\ homo-

geneous and of the first degree in dq ; but not, in general, capable

of being put in the form f tq\ ^„

mi
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^131.] To make more clear these last remarks, we may observe

that the function ft~ ^q\

thus derived as the differential of F(q), is distributive with respect

to dq. That is
/fe r + s) = /(<? , r) + /fe ^

r and 5 being any quaternions.

For /k r+#) »_jC . (F(f+ i±£) - i%))

And, as a particular case, it is obvious that if x be any scalar

f(q, xr) = xf{q, r).

i 132.] And if we define in the same way

dF(q,r,s ,)

as being the value of

«.;{#(, + *. f+ *.+* )-F{q,r,s, )},

where q, r, s, ... dq, dr, ds, are any quaternions whatever ; we

shall obviously arrive at a result which may be written

f(q, r, s, ...dq, dr, ds, ),

where f is homogeneous and linear in the system of quaternions

dq, dr, ds, and distributive with respect to each of them. Thus,

in differentiating any power, product, &c. of one or more quater-

nions, each factor is to be differentiated as if it alone were variable
;

and the terms corresponding to these are to be added for the com-

plete differential. This differs from the ordinary process of scalar

differentiation solely in the fact that, on account of the non-com-

mutative property of quaternion multiplication, each factor must in

general be differentiated in situ. Thus

d(qr) = dq.r+qdr, but not generally = rdq-\-qdr.

4 133.] As Examples we take chiefly those which lead to results

which will be of constant use to us in succeeding Chapters. Some

of the work will be given at full length as an exercise in quaternion

transformations.

' (1) {Tpf=- P *.

The differential of the left-hand side is simply, since Tp is a scalar,

2TP dTp.
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That of^ is ^((p +J)
2

-/)

= 2 Spelp.
Hence TpdTp=-Spdp,

or dTP =-S.Updp=:sf?-,Up

Tp p

(2) Again, p = ^tfp

dp = dTp.Up + TpdUp,

dp dTp dUp
whence -£- = -jjf- + -y^-

P Tp Up

Hence d£/p ^dp

This may be transformed into V-^- or ,1
2

> &c

Op P
^p.p Vpdp

w
(3) {Tqf = qKq

2TqdTq = rffojj) = £.»[(#+*) X(|+ J) -qKq]

= ^X^ 4- dqKq,

= qKdq+ K(qKdq) (§55),

= 2S.qKdq = 2S.Kqdq.

Hence eflfy = S.UKqdq = S.Uq^dq

since 7
7

# = 1%, and *7Z^ = Uq~\

If ^ = p, a vector, Kq = Kp = —p, and the formula becomes

dfp = —S. TJpdp, as in (1).

Again, -^- = S— •s Tq q

But <fy
= 7^ £fy+ ZfytMty,

which gives _=_ + -__;

whence, as S—= -—-
>

we have F-±- = -^ •

q Uq
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(4) %2
) = ^„»((?+f)

2

-?2

)
= qdq -+ dq.q

= 2S.qdq + 2^ .T^ + 2Sdq . Vq.

If q be a vector, as p, Sq and &/<? vanish, and we have

d(p2
) = 2Spdp, as in (1).

(5) Let q = A
This gives dr% = d#. But

dr = <#(#
2
) = qdq + dq.q.

This, multiplied #y ^ and into Kq, gives

^r = q
2dq+ qdq.q,

and 6?riT^ = dq.Tq2 +qdq.Kq.

Adding, we have

qdr + &*.£$ = (#
2 +^2 + 2Sq.q) dq

;

whence dq, i. e. </r*, is at once found in terms of dr. This process

is given by Hamilton, Lectures, p. 628.

(6) trlml *

qdq'1
-f dq.q-

1 = ;

. • . dq'1 = — q-1 dq.q-1
.

If q is a vector, = p suppose,

dq'1 =—p-^dp.p- 1

— „ o

v
p p >

(7) q = Sq+Fq,

dq = *% + ^^.
But dq = &?# + T

7"^.

Comparing, we have

dSq = Sdq, dVq = F<fy.

Since Kq = Sq— Vq, we find by a similar process

tf£f = Kdq.

134.] Successive differentiation of course presents no new dif-

ficulty.

Thus, we have seen that

d(q2
) = dq.q + qdq.
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Differentiating again, we have

d2
(q

2
) = d2

q.q + 2 (dq) 2
-f qd2

q,

and so on for higher orders.

If q be a vector, as p, we have, § 133 (1),

d(p2
) = 2SP dp.

Hence d2
(p

2
) = 2(dp) 2 + 2Spd2

p, and so on.

Similarly #»0p=: -d(^ *>*)

1 2dTp_2SPdp

and £?. Fpdp = r. p^2
p.

Hence -*lfr— ffi(W +^^ +
'^ffi*

*

135.] If the first differential of q be considered as a constant

quaternion, we have, of course,

d2
q = 0, dz

q = 0, &c,

and the preceding formulae become considerably simplified.

Hamilton has shewn that in this case Taylors Theorem admits of

an easy extension to quaternions. That is, we may write

Ai + *<k) =/(?) + **/(?)+ £2
&/(s) +

if d2
q = ; subject, of course, to particular exceptions and limita-

tions as in the ordinary applications to functions of scalar variables.

Thus, let y*(^) _ ^
3
, and we have

df(q) = q^dq + qdq.q+ dq.q2
,

d2
f{q) = 2dq.qdq + 2q(dq) 2 + 2(dq) 2

q,

and it is easy to verify by multiplication that we have rigorously

(q + xdqf= q* + x(q2dq+ ^.y+ dq.q2) f x2 (dq.qdq + (rfy)
2+ (<fy)^) + #3

(^)
3

;

which is the value given by the application of the above form of

Taylor's Theorem.

As we shall not have occasion to employ this theorem, and as the

demonstrations which have been found are all too laborious for an

elementary treatise, we refer the reader to Hamilton's works, where

he will find several of them.

* This may be farther simplified ; but it may be well to caution the student that
we cannot, for such a purpose, write the above expression as

-^v.p{apVpdp + d>p.p*-2dpSpdP }.
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1 36.] To differentiate a function of a function of a quaternion

we proceed as with scalar variables, attending to the peculiarities

already pointed out.

137.] A case of considerable importance in geometrical appli-

cations of quaternions is the differentiation of a scalar function of p,

the vector of any point in space.

Let F(p) = C,

where F is a scalar function and C an arbitrary constant, be the

equation of a series of surfaces. Its differential,

A?, dp) = 0,

is, of course, a scalar function : and, being homogeneous and linear

in dp, § 130, may be thus written,

Svdp = 0,

where v is a vector, in general a function of p.

This vector, v, is easily seen to have the direction of the normal

to the given surface at the extremity of p ; being, in fact, per-

pendicular to every tangent line dp, §§ 36, 98. Its length, when JPis

a surface of the second degree, is as the reciprocal of the distance of

the tangent-plane from the origin. And we will shew, later, that if

p = ix+jy+ kz,

/. d . d , d \ —, .

EXAMPLES TO CHAPTER IV.

1. Shew that

(*0 d.suq = s.uqr%.=-s^Trus,

(J.) A. VUq= V. Ug- 1 F(dg.q-
1
),

(d.) d.ax = ^ax+1d^
a

(<?.) d2.Tq={S*.dqq- 1 -S.(dqq- 1
)
2}Tq=:-Tqr2 -£'

2. If Fp = 2.SapS(3p+i&p2

give dFp — Svdpj

shew that v = 2 V. ap(3 + (g i 2 Safi) p.



CHAPTER V.

THE SOLUTION OF EQUATIONS OF THE FIRST DEGREE.

138.] We have seen that the differentiation of any function

whatever of a quaternion, q, leads to an equation of the form

* =/(?» ch)>

where/ is linear and homogeneous in dq. To complete the process

of differentiation, we must have the means of solving this equation

so as to be able to exhibit directly the value of dq.

This general equation is not of so much practical importance as

the particular case in which dq is a vector; and, besides, as we
proceed to shew, the solution of the general question may easily be

made to depend upon that of the particular case ; so that we shall

commence with the latter.

The most general expression for the function/ is easily seen to be

dr =f(q, dq) = ^V.adqb+ S.cdq,

where a, b, and c may be any quaternion functions of q whatever.

Every possible term of a linear and homogeneous function is re-

ducible to this form, as the reader may easily see by writing down
all the forms he can devise.

Taking the scalars of both sides, we have

Sdr = S.cdq = SdqSc + S. Vdq Vc.

But we have also, by taking the vector parts,

Fdr = ^V.adqb = Sdq.2Fab+2r.a(Fdq)b.

Eliminating Sdq between the equations for Sdr and Vdr it is

obvious that a linear and vector expression in Vdq will remain.

Such an expression, so far as it contains Vdq, may always be reduced

to the form of a sum of terms of the type aS.fiFdq, by the help of

formulae like those in §§ 90, 91. Solving this, we have Vdqy and
Sdq is then found from the preceding equation.
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139.] The problem may now be stated thus.

Find the value of p from the equation

aSfip+ a^ftp + . . . = 2.aS(3p = y,

where a, ft al9 ft, ... y are given vectors. [It will be shewn later

that the most general form requires but three terms, i. e. sice vector

constants a, ft o
1 , ft, a

2 , ft in all.]

If we write, with Hamilton,

(f)p
= 2.a#/3p,

the given equation may be written

+p = y>

or p = c^y,

and the object of our investigation is to find the value of the in-

verse function (/>

_1
.

140.] We have seen that any vector whatever may be expressed

in terms of any three non-coplanar vectors. Hence, we should ex-

pect a priori that a vector such as <£<£</>p, or
<f>

3
p, for instance, should

be capable of expression in terms of p, <pp, and cf>
2
p. [This is, of

course, on the supposition that p, (pp, and
(f>

2
p are not generally co-

planar. But it may easily be seen to extend to this case also. For

if these vectors be generally coplanar, so are
<f>p, </>

2
p, and $

3
p, since

they may be written a-, cfxr, and 2
<r. And thus, of course, $

3
p can

be expressed as above. If in a particular case, we should have, for

some definite vector p, <f>p=gp where g is a scalar, we shall obviously

have
<f)

2p=g2
p and 3/>=^ 3

p, so that the equation will still subsist.

And a similar explanation holds for the particular case when, for

some definite value of p, the three vectors p} <f>p} <p
2
p are coplanar.

For then we have an equation of the form

<f)

2
p — Ap-\- Bipp,

which gives <£
3
p = A(pp + Bty

2
p

= ABP + (A + B2
)(l>p.

So that <j)
3
p is in the same plane.]

If, then, we write

— 3
p = #p+y(/>p+£(/)

2
p, (1)

it is evident that #, y, z are quantities independent of the vector p,

and we can determine them at once by processes such as those in

§§ 91, 92.

If any three vectors, as i, j, k, be substituted for p, they will in

general enable us to assign the values of the three coefficients on
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the right side of the equation, and the solution is complete. For

by putting 4>~ 1
p for p and transposing, the equation becomes

— xcf)'
1 = yp-\ Z(pp + <l>

2
p;

that is, the unknown inverse function is expressed in terms of direct

operations. If x vanish, while y remains finite, we substitute <j>~ 2 p

for p, and have __y
^-i

p
_ zp+^

and if x and y both vanish

141.] To illustrate this process by a simple example we shall

take the very important case in which <j> belongs to a central surface

of the second order ; suppose an ellipsoid ; in which case it will be

shewn (in Chap. VIII.) that we may write

<f)p
= — a2 iSip— b2jSjp—

c

2kSkp.

Here we have

(j)i =. a2 i, (j)
2
i = a*i, <j>H — aQ

i,

<t>j
= 6% tfj = 6% 4>*J = b*J,

<j)k = c2Tcy <\>
2
Jc = c*k, ^k = c6k.

Hence, putting separately i,j
y
h for p in the equation (1) of last

section, we have _ a <> = x +ya2 +^4

-b* = x+yb 2 + zb\

— c 6 = x-\yc2 +zc*.

Hence a2
, b 2 , c2 are the roots of the cubic

£»+#£* +*£*-»« o,

which involves the conditions

z =:-(a2+ b2 + c2 ),

y = a2b 2 + b2c2 -f- c
2a2

,

x = -a 2b2c2 .

Thus, with the above value of #, we have

4>
3
p = a2b2c2p-(a2b2 + b2c2+ c2a2

)<l>p + (a2+ b2+c2
)(f>

2
p.

142.] Putting (f)'
1
a- in place of p (which is any vector whatever)

and changing the order of the terms, we have the desired inversion

)f the function
<f>

in the form

aWc2^-^ = (a2b2 + b2c2 + c2a2
) (r-(a

2 + b2+ c2) <j>o-+ tf>

2
<r,

where the inverse function is expressed in terms of the direct func-

tion. For this particular case the solution we have given is com-
plete, and satisfactory ; and it has the advantage of preparing the

reader to expect a similar form of solution in more complex cases.
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143.] It may also be useful as a preparation for what follows, if

we put the equation of § 141 in the form

= 4>(p) = 4)*p-(a2 + b2+ c2)(t)
2
p + (a?b 2 +b 2

c
2 +cW)(})p-a2b2c2 p

= {^-(a2 + b2 + c2 ) cj>
2 + (a2 b 2 + b 2 c2 +c2a2

)
4>-a2 b 2c2 } p

= {(4>-a2)(4>-^)^-o2
)} P (2)

This last transformation is permitted because (p is commutative with

scalars like #2
, i. e. <p(a2p) = a2

<pp.

Here we remark that (by § 140) the equation

V.p<pP = 0, or $p = gp,

where g is some undetermined scalar, is satisfied, not merely by

every vector of null-length, but by the definite system of three rect-

angular vectors Ai, Bj, Ck whatever be their tensors, the corre-

sponding particular values of g being a 2
, b2 , c 2

.

144.] We now give Hamilton's admirable investigation.

The most general form of a linear and vector function of a vector

may of course be written as

0P= ^V.qpr,

where q and r are any constant quaternions, either or both of which

may degrade to a scalar or a vector.

Hence, operating by S.a where a is any vector whatever,

Sa<t>p = 2S<rF.qpr = '2SpF.raq = Sp(}>'(T, (3)

if we agree to write (p'a = SF.raq,

and remember the proposition of § 88. The functions cp and <£' are

thus conjugate to one another, and on this property the whole in-

vestigation depends.

145.] Let A, p. be any two vectors, such that

fa = F\ix.

Operating by S.X and S.p. we have

S\(pp = 0, Sfjicpp = 0.

But, introducing the conjugate function <£', these become

SpQ'X = 0, SpQ'p = 0,

and give p in the form mp = F^'A^'/x,

where m is a scalar which, as we shall presently see, is independent

of A, /u, and p.

But our original assumption gives

p = qrWkp',

hence we have mcj)' 1 VXp, = Vfy'Xfy'p., (4)

and the problem of inverting cf) is solved.
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146.] It remains to find the value of the constant m, and to

express the vector Fd/kd/fj,

as a function of FX/x.

Operate on (4) by S.d/v, where v is any vector not coplanar with

A and /x, and we get

mS.d/vdj-1^^ = mS.vdjdj^Fk^ (by (3) of § 144)

= mS.kfxv = S.d/kd/pd/v, or

S.d/kd/fxd/v

S.kixv
(5)

S4'\'4>y<i>v= i? <1 r

A Si r
i

P2 $2 r2

id S.k'pY= p 9.
r

Pi Si r
i

P2 & r
2

[That this quantity is independent of the particular vectors A, p, v

is evident from the fact that if

k'= jpk + qij.+ rv, ix=_p1k-\-q1 fj,
+ r

1
v, and i>'= #2k+ q2 iJ.+ r2v

be any other three vectors (which is possible since A, /u, v are not

coplanar), we have

<£'A'= pd/k + qd/ix+ rd/v, &c, &c.

;

from which we deduce

S.d/kdj'iMffv,

S.kfAV,

so that the numerator and denominator of the fraction which ex-

presses m are altered in the same ratio. Each of these quantities

is in fact an Invariant, and the numerical multiplier is the same for

both when we pass from any one set of three vectors to another.

A still simpler proof is obtained at once by writing k +p\k for k

in (5), and noticing that neither numerator nor denominator is

altered.]

147.] Let us now change </> to fy+g, where g is any scalar. It

is evident that d/ becomes d/+g, and our equation (4) becomes

= Fdj'kdj'n+gFid/kvL + kdj'ri+gZFkix,

= (m<p~ l +gx+g 2)Vkix suppose.

In the above'equation

^ S.(d>'+g)k{d/+g)
i
x(df+g)v

S.kfXV

= wi+ m1 g +m2g
2 +g"
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is what m becomes when <£ is changed into $+#; m
Y
and m

2 being

two new scalar constants whose values are

_ S.(k<t>'ti4>'v+ tfkiitfp+ 4>'k<l>'iu>)m
l
— err

o.Ap.v

S. (kjJL(f)'v+ (p' kfJLV+ k(f)
f
[Xv)

If, in these expressions, we put A -hpp. for A, we find that the terms

in p vanish identically ; so that they also are invariants. Substi-

tuting for mgi and equating the coefficients of the various powers

of# after operating on both sides by §+g> we have two identities

and the following two equations,

^2 = <£ + X>

[The first determines x, and shews that we were justified in treat-

ing Ffy'kfjL + A^/ju) as a linear and vector function of F.kfx. The

result might have been also obtained thus,

&Ax rA/x = S.kQ'kfx = -S.kfxQ'k = -S.\<\>Vkn,

S.ixxVkiM = S.pX^n = -S.^FkfM,

S.VX^ktJL = S.(v(t>'k[JL + vk<j)'lJ.)

= m2 S\fjiv— #.A/x(//z;

= S.v (m2 Fkfx— $Vhp) ;

and all three (the utmost generality) are satisfied by

X = %"<?>•]

148.] Eliminating x from these equations we find

m
Y
— cfy^—^ + m^- 1

,

or m($>~ 1 = m1—m2 (p-\-(\>
2

i

which contains the complete solution of linear and vector equations.

149.] More to satisfy the student of the validity of the above

investigation, about whose logic he may at first feel some diffi-

culties, than to obtain easy solutions, we take a few very simple

examples to begin with : we treat them with all desirable prolixity,

and we append for comparison easy solutions obtained by methods

specially adapted to each case.

150.] Example I.

Let cf>p = F.apfi = y.

Then <jfp = Kppa =
<f>p.

Hence m — -*-— S
(
V. ak/3 V. apfi V. avfi).

o.KpiV
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Now A, (A, v are any three non-coplanar vectors; and we may
therefore put for them a, (3, y if the latter be non-coplanar.

With this proviso

m^-^-S{a2p.ap 2.V.ayP)

= a2
/S

2
Sal3,

m
x
= j^—S{a2

p.aP
2.y-^a.ap 2 .T

r
.ayP + a2p.p.V.ayp)

= -a 2
fi

2
,

™
2
= j^-S(a2

p.p.y + a.ap 2
.y + apF.ayp)

Hence

a2
P

2Sap.4>- 1
y = a2

p
2Sap.p = -a2

j3
2
y + SapF.ayP + F.a (F.ay/3)ft

which is one form of solution.

By expanding the vectors of products we may easily reduce it to

the form a*pSafi.p = - a2/3 2 y+ ap 2Say + 8a2S(3y,

a- 1Say+ B- 1SBy-y
OT

" = Sap

151.] To verify this solution, we have

r' ap(S = ^Ww+^Py-^yP) = y>

which is the given equation.

152.] An easier mode of arriving at the same solution, in this

simple case, is as follows :

—

Operating by S.a and S.p on the given equation

Kap(3 = y,

we obtain a2Spp = Say,

p
2Sap = Spy

;

and therefore aSpp = a^Say,

pSap = P^Spy.
But the given equation may be written

aSpp—pSaP + pSap — y.

Substituting and transposing we get

pSaP = a^Say + p-iSpy—y,

which agrees with the result of § 150.

153.] If aj p, y be coplanar, the above mode of solution is appli-

cable, but the result may be deduced much more simply.

For (§ 101) S.apy = 0, and the equation then gives S.aPp = 0, so

that p is also coplanar with a, /3, y.

G 2
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Hence the equation may be written

apfi = y,

and at once
p
_ a-i o-i .

and this, being a vector, may be written

= cr 1 Sp- 1
y + p- 1Sa-1 y-ySa-1p-1

.

This formula is equivalent to that just given, but not equal to it

term by term. [The student will find it a good exercise to prove

directly that, if a, (3, y are coplanar, we have

-^{a^Say + p^Spy-y) = a^Sp^y + p- 1 Sa- 1 y-ySa- 1p-\~]

The conclusion that no.app = 0,

in this case, is not necessarily true if

SaP = 0.

But then the original equation becomes

aSpp + pSap = y,

which is consistent with

S.aPy = 0.

This equation gives

y(a282-S2aB) - J** ^l + fll^ **y{ap tap) - a|^
p2\ + P\

SaY a2

by comparison of which with the given equation we find

Sap and Sfip.

The value of p remains therefore with one indeterminate scalar.

154.] Example II.

Let cpp = V.app = y.

Suppose a, /3, y not to be coplanar, and employ them as A, /x, v to

calculate the coefficients in the equation for <£
-1

. We have

S.afyp = S.aapp = S.pV.craP = S.pcf/a.

Hence (f/p = F.pap = V.pap.

We have now

S(Pa2.pap.V.pay) = ^-^- S.apKpay
S.aPy ^ r r r " S.aPy

= a2
p

2Sap,

k = -g^-S(a.pap.V.pay + Pa2.p.V.pay + pa2 .pap.y)

= 2(Sap) 2 + a2p
2

,

h = ~s^py
s («'P-r'P*y+*P«P>v+P*2

-P-v)

= 3Sap.
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Hence

a2
p
2
Sa(3.(t>-

l y = a2
p

2Sap.p

= (2 (Sap) 2 + a2
/3

2
)
y- 3Sa(3 F.aPy + V.a(3 V.apy,

which, by expanding the vectors of products, takes easily the simpler

form a2p*Sap.p = a2
/3

2y-a/32ft*y + 2/3&i/3£ay-/3a2
£/3y.

155.] To verify this, operate by V.ap on both sides, and we have

a2
p
2SapF.app = a2

/3
2 F.a/3y- V.apa^Say + 2ap 2SapSay^aa2

p
2Spy

= a2
p

2 (aSpy-pSay + ySap)-{2aSap-pa2
)p

2Say

+ 2 a(3
2Sa^Say-aa2

(3
2S(3y

= a2
/3

2
ftz/3.y,

or V. app = y.

156.] To solve the same equation without employing the general

method, we may proceed as follows :

—

y = K app = pSa(3 + V. F (a/3) p.

Operating by ft Vap we have

fta/3y = S.a(3pSa(3.

Divide this by Sap, and add it to the given equation. We thus

obtain a *

7 +^gf = pSa? + V. F(a/3) p + ft F(ajS) P ,

= (ftx/3+ra/3)p,

= a£p.

Hence , =r»a-
(y +^) ,

a form of solution somewhat simpler than that before obtained.

To shew that they agree, however, let us multiply by a2
/3

2
ftx/3,

and we get a2
p

2Sap.p = (3aySa(3 + /3a'fta/3y.

In this form we see at once that the right-hand side is a vector,

since its scalar is evidently zero (§ 89). Hence we may write

a2
p

2Sa(3.p = V.PaySap- VapS.apy.

But by (3) of §91,

—yS.aP Vap + aS.p
(
Vap) y + pS. F (a/3) ay + VapS.aPy = 0.

Add this to the right-hand side, and we have

a2
p

2Sap.p = y ((fti/3)
2 -fta/3Fa/3) -a {SapSPy-S.p (Pa/8) y)

+ P{SapSay + S.F(aP)ay).

But (SaPf-S.apVaP = (ftx/3)
2- (Fa/3) 2 = a2

/3
2

,

SapSpy-S.p(FaP) y = SapSpy-SpaSPy +

p

2Say = /3
2ftzy

Sa/3/Say + ft F(aj8) ay = £a/3ftiy + SapSay-a2Spy

= 2SapSay~a2Spy;

and the substitution of these values renders our equation identical

with that of §154.
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[If a, /3, y be coplanar, the simplified forms of the expression for p

lead to the equation

Sap.p^a^y = y-a- 1Say+2(3Sa- 1
(S-

1Say-j3- 1S,3y,

which, as before, we leave as an exercise to the student.]

157.] Example III, The solution of the equation

F€p = y
leads to the vanishing of some of the quantities m. Before, how-

ever, treating it by the general method, we shall deduce its solution

from that of V.app = y
already given. Our reason for so doing is that we thus have an

opportunity of shewing the nature of some of the cases in which one

or more of m
i
m1 , m2

vanish; and also of introducing an example

of the use of vanishing fractions in quaternions. Far simpler solu-

tions will be given in the following sections.

The solution of the last-written equation is, § 1 54,

a 2
(3

2Sap.p = a2
p

2
y— ap 2Say—pa2Spy+2pSapSay.

If we now put ap = e + e

where e is a scalar, the solution of the first-written equation will

evidently be derived from that of the second by making e gradually

tend to zero.

We have, for this purpose, the following necessary transforma-

tions : - a2
/3

2 = a/3 K.cfi = {e + e) (e - c) = e2- €
2

,

aP 2Say + t3a
2Spy = ap.pSay+£a.aSpy

t

= (e + e) pSay + {e- e) aSfiy,

= e ((3Say + aSfy) + e V.y Fa/3,

= e (pSay + aSPy) + e Fye.

Hence the solution becomes

(*
2 -e2

)*p = (e
2— €

2)y~e(pSay + aSpy)— €Fy€ + 2epSay,

= (e
2-€2

)y + er.yraP-€Fy€,
--

(
e2—

€

2
)y + eFye + y€

2—€%,
= e2 y + eVye— tSye.

Dividing by e, and then putting e = 0, we have

_^ = rye-< (^l).

Now, by the form of the given equation, we see that

Sye = 0.

Hence the limit is indeterminate, and we may put for it x}
where x

is any scalar. Our solution is, therefore,

p=-F^ + xe-i;

or, as it may be written, since Sy€ = 0,

p = €
-i(

y + ;r).
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The verification is obvious—for we have

ep = y + %.

158.] This suggests a very simple mode of solution. For we
see that the given equation leaves Sep indeterminate. Assume,

therefore, Sep = x
and add to the given equation. We obtain

ep = x + y,

or pmc~Hy+w),
if, and only if, p satisfies the equation

Vep = y.

159.] To apply the general method, we may take e, y and ey

(which is a vector) for A, p., v.

We find <j>'p = Vpe.

Hence m = 0,

% =-_&(€ . €y. €2y) == .-e2

m
2
= 0.

Hence -€*$+^ = 0,

or *~2 «£*+*-*<>.

That is, p = -^-^y + x€,

= e~ x
y + xe, as before.

Our warrant for putting cce, as the equivalent of
<f)~

2 is this :

—

The equation ^ _
may be written KeFea = = ae2 - eSea.

Hence, unless o- = 0, we have o- 1| e = we.

160.] Example IV. As a final example let us take the most

general form of $, which, as will be soon proved, may be expressed

as follows :

—

<f>p
= aS(3p + a

x
S^p + a2Sj32 p = y.

Here tfp = {3Sap + ^SalP + (32Sa2 p,

and, consequently, taking a, aXi a
2 , which are in this case non-

coplanar vectors, for A, /u, v, we have

= a S.(/3Saa + faS^a + (32Sa2a) (iSSa^ + faSc^ %+...) (f3Saa2 + )
.aa^c^

_&£ft& Saa /S'a
1
a /Saga

/Sac^ #040^ ^2%
Saa2 Sa^a

2
Sa

2
a2

S.acL-^(i2

= Sf^2 (ASaa + J^aja +A2
Sa2a),S.aa

±
a
2
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where A = 8a1a18aiai^-'8aia18a1<i2
= — S. Va

x
a
2 Vax

a2

A
x
= Sa

2
a
1
Saa

2
—Saa1

Sa
2a 2

= — S. Va2 a VaY
a2

A2
= <Saa

1
#a

1
a
2
—Sa^Sao^

= —S. Vaa-L VaY
a2 .

Hence the value of the determinant is

— (SaaS. Fa
x
a2 Vax

a
2+ Sa

x
aS. Va

2a Vax
a
2 -f Sa2aS. Vaa x Vax

a2)

= —S.a(ra
1a2S.aa1

a2) {by §92 (3)}= -{8.aa
x
a2f.

The interpretation of this result in spherical trigonometry is very

interesting. (See Ex. (6) p. 68.)

By it we see that

m = -S.aa
1
aaS.pp1pl .

Similarly,

m
l= * &[a (/3£aax+faSc^+ P2Sa2ai) (PSac^+M^^ +Ma2ai) + &c-lO tCLCL-tOLn

= g (S.afifii (Saa-fSa^c,— &a
1
a
1
&aa2) -f- )

= ^ (S.afifaS.a V.ax Va2ax+ )

= - yi [&a ( P/8&& Taajraia2+ P&J8& Va2a Fax
a2 + Fftftfl. Vax

a2Va^)
b.aa

x
a
2 +^ (^^ Vaax Va2

a + )

+ S.a
2

( F/3&& Fa^ Vaa
x+ )] ;

or, taking the terms by columns instead of by rows,

= - c
— [^.r/3

i
3
1
(a^.raa

i
ra

1
a2 + a

1
^.raa

i
ra

2 a + a2 /S
r

.raa
i
raa

1)b.aa^ -

= - ^—lS.r(3(31
(raa

1
8.aa

1
a2) + ],

. = -S(Faa
i
r/3/3

1 + Faia2 T%(32 + Va
2
aV(S

2 p).

Again,

w2 = ^ S [act! ((3Saa
2 + j31

6'a
1
a
2 + . .

.
) -f a2

a (jStfaci! + ...) + ai«2 (fiSaa+ ...)!

or, grouping as before,

= -5 aS [/3 (
Faa

x
Saa

2 + Va
2
a8aa

x
4- FajCtySaa) 4- . • •] j

/o.aajOg

tj.aa
x
a2

= S(a(S + a
1
(B

1 + a2(S2).

And the solution is, therefore,

<£
_1 y#.aa

1
a
2#./3/31 j32 = pS.aa

1
a
2
S.(3(3

1 l32
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[It will be excellent practice for the student to work out in detail

the blank portions of the above investigation, and also to prove

directly that the value of p we have just found satisfies the given

equation.]

161.] But it is not necessary to go through such a long process

to get the solution—though it will be advantageous to the student

to read it carefully—for if we operate on the equation by S.a
x
a2,

S.a^ and S.aa
x
we get

S.a^aS^p = S.a^y,

S.o^aa^Sfi-jjp = S.a
2
ay,

/#.aa1a2#/32p = S.aajy.

From these, by § 92 (4), we have at once

pS.aa^S.fip^ = Vfifi1
S.aa

1y+ V^^S.a^y + F(3.
2
(3S.a

2ay.

The student will find it a useful exercise to prove that this is equi-

valent to the solution in § 160.

To verify the present solution we have

{aS(3p +a^p+a^p) S.aa^S.pp^

= aS.(3j3
1 (32

S.a
1a2y+ a

1
/S

r

./31 /32
/3&a

2ay + a
2#./32 /3/31£.aa1y

= S.pp^iyS.aa^), by § 91 (3).

162.] It is evident, from these examples, that for special cases

we can usually find modes of solution of the linear and vector equa-

tion which are simpler in application than the general process of

§148. The real value of that process however consists partly in

its enabling us to express inverse functions of <p, such as (fy+g)"
1

for instance, in terms of direct operations, a property which will be

of great use to us later
;
partly in its leading us to the fundamental

cubic 03_m^2 _|_m^_m _ 0j

which is an immediate deduction from the equation of § 148, and

whose interpretation is of the utmost importance with reference to

the axes of surfaces of the second order, principal axes of inertia,

the analysis of strains in a distorted solid, and various similar

enquiries.

163.] When the function <£ is its own conjugate^ that is, when

Sp<f)(r = Sacfyp

for all values of p and <r, the vectors for which

(*-£)/> =
form in general a real and definite rectangular system. This, of

course, may in particular cases degrade into one definite vector, and

any pair of others perpendicular to it ; and cases may occur in

which the equation is satisfied for every vector.
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Suppose the roots of mg = (§ 147) to be real and different, then

,

1 _ 1 1
1 where p19 p2i p3 are three definite vectors determined

.

2 2 2
( by the constants involved in d>.

Hence M2Sp±p2 — &(pPi#2

= S.p^pz, or = S.p2<p
2
Pl ,

because <p is its own conjugate.

But
(f)

2
p2 = g\p2 ,

<P
2
Pi=&iPi,

and therefore M2sPiP2 = fflsPiP2 = A8PiP* J

which, as gx
and ^2

are by hypothesis different, requires

SpiP2 = 0.

Similarly /Sp2p3 = 0, Sp^ = 0.

If two roots be equal, as g2i g3 , we still have, by the above proof,

&PiPt = ° an(^ BpiPs — °- But there is nothing farther to determine

p2 and p3 , which are therefore any vectors perpendicular to pv
If all three roots be equal, every real vector satisfies the equation

{$-g)p = 0.

164.] Next, as to the reality of the three directions in this case.

Suppose g2 + k
2
\/—l to be a root, and let p2 + o-

2
\/— 1 be the

corresponding value of p, where g2 and h
2 are real numbers, p2 and er

2

real vectors, and v— 1 the old imaginary of algebra.

Then <p(p2 + o-
2y~T) = (^ + ]h JZZ\) (p2 + w% yCTf),

and this divides itself, as in algebra, into the two equations

#2 =^2p2— ^2(r2J

<p<r
2
= h

2p2 +g2
a2 .

Operating on these by S.tr2i S.p2 respectively, and subtracting the

results, remembering our condition as to the nature of <p

S(T
2(f)p2

= Sp
2(f)(T2 ,

we have h
2
{a\ -fpf) = 0.

But, as cr
2 and p2 are both real vectors, the sum of their squares

cannot vanish. Hence h
2 vanishes, and with it the impossible part

of the root.

165.] When
<f>

is self-conjugate, we have shewn that the equa-

tlon
g

z—

m

2g
2 + m

xg—m —
has three real roots, in general different from one another.

Hence the cubic in <p may be written
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and in this form we can easily see the meaning of the cubic. For,

let ft , p2 , />3
be three vectors such that

(<l>—9i)pi = °> (4>-92)p2 = °> (*—&)/* = °-

Then any vector p may be expressed by the equation

P&P1P2P3 = PAP2P3P + P2S'P3PIP + P38'P1P2P (§ 91
)>

and we see that when the complex operation, denoted by the left-

hand member of the above symbolic equation, is performed on p, the

first of the three factors makes the term in p1 vanish, the second

and third those in p2 and p3 respectively. In other words, by the

successive performance upon a vector of the operations $—-gl9 $—g2 ,

<f)—g3 , it is deprived successively of its resolved parts in the direc-

tions of pl5 p2i p3 respectively; and is thus necessarily reduced to

zero, since pl5 p2 , p 3 are (because we have supposed glt g2 , gz to be

listinct) distinct and non-coplanar vectors.

166.] If we take pl3 p2 , p3 as rectangular ?mY-vectors, we have

~P = PlfylP + P2SP2P + p3SPsP>

whence <f>p = —9iPiSPiP—92p2SP2p—93p3SP3p '>

or, still more simply, putting *, j, k for pl5 p2 , p3 , we find that any

self-conjugate function may be thus expressed

= —9iiSip—g2J8JP—93Jc8h>

provided, of course, i, j, k be taken as roots of the equation

Fp(pp = 0.

167.] A very important transformation of the self-conjugate

linear and vector function is easily derived from this form.

We have seen that it involves three scalar constants only, viz. glt

g2 , g3
. Let us enquire, then, whether it can be reduced to the fol-

lowing form fa —fp + 1 V. (i + eh)p{i—eh\

which also involves but three scalar constants/, k, e. Here, again,

i, j, h are the roots of
Vp<f>p = 0.

Substituting for p the equivalent

p = —iSip—jSjp—JcSkp,

expanding, and equating coefficients of i,j, h in the two expressions

for Qp, we find _^ -= __/*+ h (2— 1 + e2 ),

-92=~f-h^-e2
)>

g3
= -f-h(2e* + l~e2

).

These give at once

-(9i-92) = 2^,

— {92-93) = 2e2k >
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Hence, as we suppose the transformation to be real, and therefore e 2,

to be positive, it is evident that g\—g2
and g2

—gz
have the same

sign ; so that we must choose as auxiliary vectors in the last term

of
<fip

those two of the rectangular directions i, J, k for which the

coefficients g have the greatest and least values.

We have then ^ft-fl,
9\—g*

^=-i(gi-g2l

and /-i (&+&).

168.] We may, therefore, always determine definitely the vec-

tors A, [x, and the scalar f, in the equation

when cf) is self-conjugate, and the corresponding cubic has not equal

roots, subject to the single restriction that

T.Xfx

is known, but not the separate tensors of A and /*. This result is

important in the theory of surfaces of the second order, and will be

considered in Chapter VII.

169.] Another important transformation of $ when self-conju-

gate is the following, ^p - aaya? + b(3S(3p,

where a and b are scalars, and a and j3 unit-vectors. This, of

course, involves six scalar constants, and belongs to the most gen-

eral form <f>p
= —g1p1Sp1p—g2p2Sp2p—g3p3SP<

ip,

where pL , p2i p3 are the rectangular unit-vectors for which p and (/>/>

are parallel. We merely mention this form in passing, as it be-

longs to the focal transformation of the equation of surfaces of the

second order, which will not be farther alluded to in this work. It

will be a good exercise for the student to determine a, j3, a and b,

in terms of glt g2 , gZi and pl5 p2 , p3 .

170.] We cannot afford space for a detailed account of the sin-

gular properties of these vector functions, and will therefore content

ourselves with the enuntiation and proof of one or two of the most

important.

In the equation m<\r x V\\L — Fcf/Kcj/fx (§ 145),

substitute A for </>'A and p for <j/fjL, and we have

Change $ to <f)+g, and therefore <£' to <\> +g, and m to mg , we have

mgVW+gy^'+g)-^ = (<t> + g)F\p.;

a formula which will be found to be of considerable use.
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171.] Again, by § 147,

+/5)-1
p = o,J

(>

7H 7th

-f &pW>
+9)~1

P = —%>_
V + SpXP+9P2

>

j y
7YI WL

Similarly -^ S.p((j> + h)~ Y
p = -j Sp^p + Sp\p + hp2

.

Hence

That is, the functions

^S.ptt+vyip, and J&P (« + i)-V

are identical, i. e. when equated to constants represent the same series

of surfaces, not merely when
g = h,

but also, whatever be g and h, if they be scalar functions of p which

satisfy the equation mS.p^p = ghp2
.

This is a generalization, due to Hamilton, of a singular result ob-

tained by the author *.

172.] The equations

S.p(cl>+g)- 1
p = O

i

**(*
are equivalent to mSp<f>~

1p+gSpxp+g2
p
2 = 0,

mSpQ-ip + hSpxp + /*V =0.
Hence /» (1 — x)Spcf)~

1
p + (g— hx)Spxp + (g

2 — h2x)p2 = 0,

whatever scalar be represented by x.

That is, the two equations (1) represent the same surface if this

identity be satisfied. As particular cases let

(1) 0=1, in which case

fy~
1
XP+9 •***=* °-

(2) g—hx = 0, in which case ~

m(l - l^-^-V +O2-^!) = 0,

or mSp~ 1
(f>~

1p—gh = 0.

a2 . .

(
3
) * = ;p> glvmg

or ^ (h+g)8p(f>-
1
p +ghSpxp = 0.

* Note on the Cartesian equation of the Wave-Surface. Quarterly Math. Journal,
)ct. 1859.
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173.] In various investigations we meet with the quaternion

q = acfm+ /3$/3+ y<\>y,

where a, /3, y are three unit-vectors at right angles to each other.

It admits of being put in a very simple form, which is occasionally

of considerable importance.

We have, obviously, by the properties of a rectangular unit-

system
q
- py^a + ya(pp + a^y#

As we have also &a/3y - _ .j (§ 71 (13)),

a glance at the formulae of § 147 shews that

Sq—-m
2 ,

at least if (j> be self-conjugate. Even if it be not, still (as will be

shewn in § 1 74) ^ = fp + y^
and the new term disappears in Sq.

We have also, by § 90 (2),

Vq= a(Sp<l>y-Sy4>P) + p(Sy<$>a- Sa4>y)+ y{Sa(PP-Sp<\>a)

= a^(^-^)y + /3^y(0-^)a + y^a(0-^)i3
== aS.fiey+ fiS.yea+ yS.atfi

= — (atfae -f /3#/3e -f ySye) = e.

[We may note in passing that this quaternion admits of being

expressed in the remarkable form

where s7 = a-j-+fi-r-+y-r->

dx dy ' dz

and p=zax + (3i/ + yz.

We will recur to this towards the end of the work.]

Many similar singular properties of cf> in connection with a rect-

angular system might easily be given ; for instance,

V{a FQftcfry + /3 Vc^y^a + y VtyafyP)

= m V{a(\/-1a +W^p + y^~l
y) a «» V.Vtf^p = 0e

j

which the reader may easily verify by a process similar to that just

given, or (more directly) by the help of § 145 (4). A few others

will be found among the Examples appended to this Chapter.

174.] To conclude, we may remark that as in many of the

immediately preceding investigations we have supposed $ to be

self-conjugate, a very simple step enables us to pass from this to

the non-conjugate form.

For, if <j)' be conjugate to 0, we have

Spcf/cr = Scnpp,

and also Sptpa- = Sacf/p.
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Adding, we have

Sp(<f> + <j>')<r = S<T(<l> + (l>')p;

so that the function (<£ -f <\S) is self-conjugate.

Again, Sp<j>p = Sp<ffp,

which gives Sp(cf>— (j/)p = 0.

Hence (<£— cf>

/

)p = Fep,

where, if cf> be not self-conjugate, e is some real vector, and therefore

# = i(0 + <£')/> + i(4>-4>
,

)/>

= i (0 + ^)p + 4^p-

Thus tf#£?y non-conjugate linear and vector function differs from

a conjugate function solely by a term of theform

Ftp.

The geometric signification of this will be found in the Chapter on

Kinematics.

175.] We have shewn, at some length, how a linear and vector

equation containing an unknown vector is to be solved in the most

general case; and this, by § 138, shews how to find an unknown

quaternion from any sufficiently general linear equation containing

it. That such an equation may be sufficiently general it must have

both scalar and vector parts : the first gives one, and the second

three, scalar equations ; and these are required to determine com-

pletely the four scalar elements of the unknown quaternion.

176.] Thus Tq = a

being but one scalar equation, gives

q = aUr,

where r is any quaternion whatever.

Similarly Sq = a

gives q = a + 0,

where is any vector whatever. In each of these cases, only one

scalar condition being given, the solution contains three scalar in-

determinates. A similar remark applies to the following :

TVq = a

gives q = x + ad,

and SUq — cos a,

2a

gives q — xQ 71

,

in each of which x is any scalar, and any unit vector.

177.] Again, the reader may easily prove that

V.aVq = fa
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where a is a given vector, gives, by putting Sq = x,

Vaq = jflj + xa.

Hence, assuming Saq = y,

we have aq-= y + xa + fi,

or q = x +ya~1 + a_1/3.

Here, the given equation being equivalent to two scalar con-

ditions, the solution contains two scalar indeterminates.

178.] Next take the equation

Vaq = /3.

Operating by S.a~\ we get

Sq = So.'1
?,

so that the given equation becomes

Fa(Sa-1p+rq) = (3,

or Va Vq = (3- aSa^P = a Va'1^
From this, by § 158, we see that

Fq = a-1 (x + aFa- 1
j3),

whence q = Sa"1
/-* + a-1 (x + aVa'1

/3)

= a-1
(/3 + #),

and, the given equation being equivalent to three scalar conditions,

but one undetermined scalar remains in the value of q.

This solution might have been obtained at once, since our equation

gives merely the vector of the quaternion aq, and leaves its scalar

undetermined.

Hence, taking x for the scalar, we have

aq = Saq + Vaq

= a? + 0.

179.] Finally, of course, from

aq = (3,

which is equivalent to four scalar equations, we obtain a definite

value of the unknown quaternion in the form

q = a- 1^
180.] Before taking leave of linear equations, we may mention

that Hamilton has shewn how to solve any linear equation con-

taining an unknown quaternion^ by a process analogous to that

which he employed to determine an unknown vector from a linear

and vector equation ; and to which a large part of this Chapter has

been devoted. Besides the increased complexity, the peculiar fea-

ture disclosed by this beautiful discovery is that the symbolic

equation for a linear quaternion function, corresponding to the cubic
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in (j> of § 162, is a biquadratic, so that the inverse function is given

in terms of the first, second, and third powers of the direct function.

In an elementary work like the present the discussion of such a

question would be out of place : .although it is not very difficult to

derive the more general result by an application of processes already

explained. •But it forms a curious example of the well-known fact

that a biquadratic equation depends for its solution upon a cubic.

The reader is therefore referred to the Elements of Quaternions,

p. 491.

181.] The solution of the following frequently-occurring par-

ticular form of linear quaternion equation

aq + qb = c,

where a
} b, and c are any given quaternions, has been effected by

Hamilton by an ingenious process, which was applied in § 133 (5)

above to a simple case.

Multiply the whole by Ka, and into b> and we have

T2a.q + Ka.qb=Ka.c,

and aqb-\-qb2 — cb.

Adding, we have

q (T
2a + b 2 + 28a.b) = Ka.e + cb,

from which q is at once found.

To this form any equation such as

a'qb'+ c'qd'=e'

can of course be reduced, by multiplication by c~l and into b'~ x
.

182.] As another example, let us find the differential of the cube

root of a quaternion. If „3 _ f
*

we have q
2dq + qdq.q+ dq.q2 = dr.

Multiply by q, and into q~ x
} simultaneously, and we obtain

q^dq.q' 1
-f q

2dq + qdq.q = qdr.q' 1
.

Subtracting this from the preceding equation we have

dq.q2—

q

sdq.q* 1 = dr— qdr.q* 1
,

or dq.q 3 — q
zdq = dr.q— qdr,

from which dq, or d(f*)
}
can be found by the process of last section.

The method here employed can be easily applied to find the

differential of any root of a quaternion.

183.] To shew some of the characteristic peculiarities in the

solution even of quaternion equations of the first degree when they

are not sufficiently general, let us take the very simple one

aq = qb,

and give every step of the solution, as practice in transformations.

H
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Apply Hamilton's process (§ 181), and we get

T2a.q = Ka.qb,

qb2 = aqb.

These give q (T
2a+ b 2~ 2bSa) = 0,

so that the equation gives no real finite value for q unless

T*a+b*-2bSa = 0,

or b = Sa + $TVa,

where j3 is some unit-vector.

By a similar process we may evidently shew that

a = Sb + aTVb,
a being another unit-vector.

But, by the given equation,

Ta = Tb,

or S2a + T 2 Fa = S2b + T2 Vb;

from which, and the above values of a and b. we see that we may
write sa Sb

Wa = Wb = *> 6UW°Se '

If, then, we separate q into its scalar and vector parts, thus

q = r+p,

the given equation becomes

(a + a)(r + p) = (r + p)(a + /3) (1)

Multiplying out we have
r(a-j3) = pfi-ap,

which gives S(a—ft)p = 0,

and therefore p — Vy (a— /3),

where y is an undetermined vector.

We have now

r{a-(3) = pp-ap

= Fy(a-/3)./3-a/7y(a-/3)

= y(SaP+l)-(a-P)Spy + y(l+Sap)-{a-p)Say
= -(a-(3)S(a + (3)y.

Having thus determined /•, we have

2?=-(a + /3)y-y(a + j8) + y(a-0)-(a-£)y

= — 2ay— 2y/3.

Here, of course, we may change the sign of y, and write the solution

of aq — qb

in the form q=.ay + y/3,

where y is any vector, and

a = UFa, (3 = UFb.
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To verify this solution, we see by (1) that we require only to

shew that ag = ##

But their common value is evidently

— y + ay/3.

It will be excellent practice for the student to represent the terms

of this equation by versor-arcs, as in § 54, and to deduce the above

solution from the diagram directly. He will find that the solution

may thus be obtained almost intuitively.

184.] No general method of solving quaternion equations of the

second or higher degrees has yet been found ; in fact, as will be

shewn immediately, even those of the second degree involve (in

their most general form) algebraic equations of the sixteenth degree.

Hence, in the few remaining sections of this Chapter we shall con-

fine ourselves to one or two of the simple forms for the treatment

of which a definite process has been devised. But first, let us

consider how many roots an equation of the second degree in an

unknown quaternion must generally have.

If we substitute for the quaternion the expression

w+w+jy+k* (§80),

and treat the quaternion constants in the same way, we shall have

(§ 80) four equations, generally of the second degree, to determine

w, x\y, z. The number of roots will therefore be 2 4 or 16. And
similar reasoning shews us that a quaternion equation of the ^th

degree has m4 roots. It is easy to see, however, from some of the

simple examples given above (§§ 175-178, &c.) that, unless the

given equation is equivalent to four scalar equations, the roots will

contain one or more indeterminate quantities.

185.] Hamilton has effected in a simple way the solution of the

quadratic £ _ qa + b,

or the following, which is virtually the same (as we see by taking

the conjugate of each side),

q
2 = aq + b.

He puts q = \{a + w + p\

where w is a scalar, and p a vector.

Substituting this value in the first equation, we get

a2 + (w + p)
2 + 2wa + ap + pa =a 2 (a2 + wa + pa) + 4 b,

or (to + p)
2 + ap— pa = a2 + 4b.

If we put Fa = a, S(a2 + 4$) = c, V(a2 + \b) = 2y, this becomes

(to + p)
2 + 2 Vap = c + 2 y

;

H 2
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which, by equating separately the scalar and vector parts, may be

broken up into the two equations

id
2 + p

2 = c,

V{w + a)p = y.

The latter of these can be solved for p by the process of § 156, or

more simply by operating at once by S.a which gives the value of

S {w + a) p. If we substitute the resulting value of p in the former

we obtain, as the reader may easily prove, the equation

(w2-a2)(wi-cw2 + y
2)-(Fay) 2 = 0.

The solution of this scalar cubic gives six values of w, for each of

which we find a value of p, and thence a value of q.

Hamilton shews (Lectures, p. 633) that only two of these values

are real quaternions, the remaining four being biquaternions, and

the other ten roots of the given equation being infinite.

Hamilton farther remarks that the above process leads, as the

reader may easily see, to the solution of the two simultaneous

equations
q + r = a,

qr = -b;

and he connects it also with the evaluation of certain continued

fractions with quaternion constituents, (^ee the Miscellaneous Ex-

amples at the end of the volume.)

186.] The equation q
2 = aq+ qb,

though apparently of the second degree, is easily reduced to the

first degree by multiplying by, and into, q~ l
, when it becomes

1 =q~ 1 a + bq- 1
,

and may be treated by the process of § 181.

187.] The equation q
m = aqb,

where a and b are given quaternions, gives

q(aqb) = (aqb)q;

and, by § 54, it is evident that the planes of q and aqb must coincide.

A little consideration will shew that the solution depends upon

drawing two arcs which shall intercept given arcs upon each of two

great circles ; while one of them bisects the other, and is divided by

it in the proportion of m : 1

.
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EXAMPLES TO CHAPTER V.

1

.

Solve the following equations :

—

(a.) F.ap/3 = V.ayfi.

(b.) ap(3p = pap(3.

(c.) ap + p/3 = y.

(d.) S.afip + (3Sap-aV^p- y.

(<?.) p + ap(3 = a/3.

(/.) ap(3p = p(3pa.

Do any of these impose any restriction on the generality of a and /3 ?

2

.

Suppose p = ia+j# + fa,

and (jyp = aiSip + #/$/> + ckSkp
;

put into Cartesian coordinates the following equations :

—

(a.) %,= 1.

(«.) Sp<t>
2p=-1.

(«.) S.p{^- P^p = -\.

(d.) Tp = T4Up. ,

3. If A, /u, v -be #?z^ three non-coplanar vectors, and

q = Vpiv.(f)k+ VvX.^p.-^- Vkp..<\>v,

shew that ^ is necessarily divisible by S.\p.v.

Also shew that the quotient is

m
2
-2 e,

where Pep is the non-commutative part of cf>p.

Hamilton, Elements, p. 442.

4. Solve the simultaneous equations :

—

Sap =0,1W £.ap# = O.J

lap =0,1W %>p =*0.J

v "' /S'.atpjfp = 0. )

5. If
<f>p
= 2/3#ap+ Frp,

where r is a given quaternion, shew that

I=2 (AoiagOjAftftft) + 2fl(rFa^ . F&ft) + Sr2S.a(3r- 2 (flaftf/3r) + flrfl"
2
,

and m(fi
- 1

(T=2(ra1a2S.I32 (31(T) + ^r.ar(Fp(T.r)+rarSr-rrSar.

Lectures, p. 561.
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6. If [_pq~] denote pq—qp,
(pqr) „ Sp [gr],

\j>qr] » (pqr) + [rq] Sn + [j>r]Sq + \jqp~] Sr,

and (pqrs) „ S.p \jqrs~]
;

shew that the following relations exist among any five quaternions

=p (qrst) + q(rstp) + r(stpq) + s(tpqr) + t(pqrs),

and q(prst) ={r$t]Spq—[stp~]Srq.+ [tpr~\Ssq— [_prs]Stq.

Elements, p. 492.

7. Shew that if <£, \js be any linear and vector functions, and

a, /3, y rectangular unit-vectors, the vector

6 — F(<fwfa+ (frpffi + <t>y\ry)

is an invariant. [This will be immediately seen if we write it in

the form 6 = V.QV^p,

which is independent of the directions of a, /3, y. But it is good

practice to dispense with V.]

If <j>p = 2r)S(P,

and \\rp = S^tf^p,

shew that this invariant may be expressed as

Shew also that cf)\j/p—\j/(ffp = V6p.

The scalar of the same quaternion is also an invariant, and may be

written as — SS^tJi^CCi

8

.

Shew that if
<f>p
= aSap + pS/Sp + ySyp,

where a, fi, y are any three vectors, then

—
<f>-

1pS2
. a(3y = a^atf -f (3L

Sj3
Lp + yfiytf,

where a
x
= F/3y, &c.

9. Shew that any self-conjugate linear and vector function may
in general be expressed in terms of two given ones, the expression

involving terms of the second order.

Shew also that we may write

+ z = a (sr+ x)2 + b (w + x) (a> +y) + c(a> +y)
2
,

where «, £, c, x, yy z are scalars, and ot and co the two given func-

tions. What character of generality is necessary in tn- and o> ? How
is the solution affected by non-self-conjugation in one or both ?

10. Solve the equations :

—

(a.) q
2 = 5qi+10j.

(b.) q
2 = 2q + i.

(c.) qaq = bq + c.

(d,) aq = qr = rb.
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11.

12.

Shew that <t>VV<t>p = mW^p.

13.

14.

15.

If </> be self-conjugate, and a, /3, y a rectangular system,

S.VatyaV^pVy^y = 0.

<f)\jf and \f/rf) give the same values of the invariants m, mlf

If </>' be conjugate to </>, <£<£' is self-conjugate.

Shew that ( FaO) 2 + (
F/30) 2 + (

Fyd) 2 = 20 2

if a, /3, y be rectangular unit-vectors. ^

16. Prove that V 2
($—(/) p =—pV 2

</ + 2V</.

17. Solve the equations :

—

(a.)
(f>

2 = >& •

W 4> + x =
<£X =0

where one, or two, unknown linear and vector functions are given

in terms of known ones. (Tait, Proc. K S. E. 1870-71.)

18. If <p be a self-conjugate linear and vector function, f and 77

two vectors, the two following equations are consequences one of

the other, viz. :

—

f V. rjcfyrj

';}

S3
.rj(j)r](f)

2
rj

From either of them we obtain the equation

Safari = S*.Z4W*£8Krftn<l>\

This, taken along with one of the others, gives a singular theorem

when translated into ordinary algebra. What property does it give

of the surface S.pQp^p = 1 ?



CHAPTER VI.

GEOMETRY OF THE STRAIGHT LINE AND PLANE.

•J 188.] Having, in the five preceding Chapters, given a brief

exposition of the theory and properties of quaternions, we intend

to devote the rest of the work to examples of their practical appli-

cation, commencing, of course, with the simplest curve and surface,

the straight line and the plane. In this and the remaining Chapters

of the work a few of the earlier examples will be wrought out in

their fullest detail, with a reference to the first five whenever a

transformation occurs ; but, as each Chapter proceeds, superfluous

steps will be gradually omitted, until in the later examples the full

value of the quaternion processes is exhibited.

4 189.] Before proceeding to the proper business of the Chapter we
make a digression in order to give a few instances of applications

to ordinary plane geometry. These the student may multiply in-

definitely with great ease.

(a.) Euclid, I. &. Let a and ft be the vector sides of an iso-

sceles triangle
; /3— a. is the base, and

Ta = Tp.

The proposition will evidently be proved if we shew that

a(a-{3)-i= K{3({3-a)-i (§ 52).

This gives a(a-/3)- 1= (/3-a)- 1
^,

or (/3— a)a = /3(a— /3),

or - a2 = -(3 2
.

(b.) Euclid, I. 32. Let ABC be the triangle, and let

AB
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where y is a unit-vector perpendicular to the plane of the triangle.

If I — 1, the angle CAB is a right angle (§ 74). Hence

4 = J- (§74). Let £=*»-, C=n^. We have

UAC=yl UAB,

UCBz=yn UCA,

UBA= y
m UBC.

Hence UBA= y
m

. y
n

. y
1 UAB,

or — 1 = y
l+m+n

.

That is l+ m + n=2,
or A + B+C—t:.

This is, properly speaking, Legendre's proof ; and might have been

given in a far shorter form than that above. In fact we have for

any three vectors whatever,

/3 y a

which contains Euclid's proposition as a mere particular case.

(c.) Euclid, I. 35. Let /3 be the common vector-base of the

parallelograms, a the conterminous vector-side of any

one of them. For any other the vector-side is a + x/3

(§28), and the proposition appears as

TF(3(a + %p) = TVpa (§§ 96, 98),

which is obviously true.

(d.) In the base of a triangle find the point from which lines,

drawn parallel to the sides and limited by them, are

equal.

If a, /3 be the sides, any point in the base has the vector

p = (1— oc)a-\-xfi.

For the required point

(l-x)Ta = ccTp

which determines x.

Hence the point lies on the line

p=y(Ua+U(3)
which bisects the vertical angle of the triangle.

This is not the only solution, for we should have written

T(\-x)Ta = TxT/3,

instead of the less general form above which tacitly assumes that \—x
and x are positive. We leave this to the student.
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(e.) If perpendiculars be erected outwards at the middle points

of the sides of a triangle, each being proportional to

the corresponding side, the mean point of the triangle

formed by their extremities coincides with that of the

original triangle. Find the ratio of each perpendicular

to half the corresponding side of the old triangle that

the new triangle may be equilateral.

Let 2 a, 2/3, and 2 (a + /3) be the vector-sides of the triangle, i a

unit-vector perpendicular to its plane, e the ratio in question. The

vectors of the corners of the new triangle are (taking the corner

opposite to 2/3 as origin)

pl
= a + eia,

p2 == 2a + /3 + ^/3,

p3 = a + (3—ei(a + /3).

From these

%{Pi + p2 + Pz) = i(4 «+2/3) = i (2a + 2(a + /3)),

which proves the first part of the proposition.

For the second part, we must have

T(P2
-

Pl) = T(Ps-p2)
= T(Pl- P3).

Substituting, expanding, and erasing terms common to all, the

student will easily find 3 e2 __
j m

Hence, if equilateral triangles be described on the sides of any tri-

angle, their mean points form an equilateral triangle.

^190.] Such applications of quaternions as those just made are of

course legitimate, but they are not always profitable. In fact, when
applied to plane problems, quaternions often degenerate into mere

scalars, and become (§33) Cartesian coordinates of some kind, so

that nothing is gained (though nothing is lost) by their use. Before

leaving this class of questions we take, as an additional example, the

investigation of some properties of the ellipse.

4191.] We have already seen (§31 (Jc)) that the equation

p = acos0-f/3sin0

represents an ellipse, being a scalar which may have any value.

Hence, for the vector-tangent at the extremity of p we have

dp . n
in — -£

i

= —asiJi6 + ficos6 i

eld

which is easily seen to be the value of p when 6 is increased by -

Thus it appears that any two values of p} for which differs by
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- , are conjugate diameters. The area of the parallelogram circum-
m

scribed to the ellipse and touching it at the extremities of these

diameters is, therefore, by § 96,

4TFP -^ = 4TF(acos0+ (3sm6)(—asm0 + (3cos6)
ad

= 4tTFaP,

a constant, as is well known.

W192.] For equal conjugate diameters we must have

jP(acos0-rjSsin0) = T(— asin0+ /3cos0),

or (a2— /3
2 )(cos20— sin 20)-M#a/3cos0sin0 = 0,

a2— B2

or *"_*•-- TEF'
The square of the common length of these diameters is of course

a2 + /3
2

because we see at once from § 191 that the sum of the squares of

conjugate diameters is constant.

J193.] The maximum or minimum of p is thus found;

dTp _ JL~ dp_

dO ~~"fy
p dd'

- —~ (— (a2— /3
2
) cos sin + Sa(3 (cos20- sin2

0)).
J-P

For a maximum or minimum this must vanish *, hence

2Sa(3
tan 26= -T—

~

2
,

er— fir

and therefore the longest and shortest diameters are equally inclined

to each of the equal conjugate diameters. Hence, also, they are at

right angles to each other.

^194.] Suppose for a moment a and (3 to be the greatest and least

semidiameters. Then the equations of any two tangent-lines are

p = a cos -f ft sin + %(— a sin + j3 cos 0),

p = a cos X + /3 sin X + cc
1
(—a sin

1 + (3 cos X).

If these tangent-lines be at right angles to each other

S (—aBUi + p cos 6) (—asm X + p cosQj) = 0,

or a2 sin 6 sin 6
X + ft

2 cos cos
X
= 0.

* The student must carefully notice that here we put —- = 0, and not ~ = 0.

A little reflection will shew him that the latter equation involves an absurdity.
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Also, for their point of intersection we have, by comparing coeffi-

cients of a, /3 in the above values of p,

cos 0—x sin = cos
l
—x

l
sin

X ,

sin + x cos = sin 6
l + x

Y
cos

X
.

Determining x
x
from these equations, we easily find

Tp2=-(a* + (3Z),

the equation of a circle ; if we take account of the above relation

between 6 and 1#

Also, as the equations above give x = —x1} the tangents are equal

multiples of the diameters parallel to them ; so that the line joining

the points of contact is parallel to that joining the extremities of

these diameters.

J 195.] Finally, when the tangents

p = a cos 6 + {3 sin +x (— a sin + /3 cos 0),

p = a cos
X + /3 sin X -f xY

(—a sin 9
l + /3 cos 2 ),

meet in a given point /o = aa + bfi,

we have a = cos 0—# sin == cos 0i~xL
sin

X ,

# = sin + a? cos = sin
X + #

x
cos 6

X
.

Hence a?
2 = a2 + b 2— 1 = x\

and a cos -}- # sin = l = a cos
X
4- b sin 0j

determine the values of and a? for the directions and lengths of

the two tangents. The equation of the chord of contact is

p = y (a cos + p sin 0) + (1 —y) (a cos
1 + /3 sin 0j).

If this pass through the point

p^pa + qfr

we have p = ^ cos + ( 1 —y) cos
X ,

q = y sin + ( 1 —y) sin
X ,

from which, by the equations which determine and 0, , we get

ap + bq =y+\—y = 1.

Thus if either a and £, or p and ^, be given, a linear relation con-

nects the others. This, by § 30, gives all the ordinary properties of

poles and polars.

^196.] Although, in §§ 28-30, we have already given some of the

equations of the line and plane, these were adduced merely for their

applications to anharmonic coordinates and transversals ; and not

for investigations of a higher order. Now that we are prepared to

determine the lengths and inclinations of lines we may investigate

these and other similar forms anew.
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J 197.] The equation of the indefinite line drawn through the origin

0, of which the vector OA, = a,forms apart, is evidently

p = xa,

or p ||
a,

or Vap = 0,

or Up = Ua;

the essential characteristic of these equations being that they are

linear, and involve one indeterminate scalar in the value of p.

We may put this perhaps more clearly if we take any two

vectors, (3, y, which, along with a, form a non-coplanar system.

Operating with S.Va{3 and S.Vay upon any of the preceding equa-

tions, we get S.app = 0,

and S.ayp

Separately, these are the equations of the planes containing a, /3,

and a, y ; together, of course, they denote the line of intersection.

v/198.] Conversely, to solve equations (1), or to find p in terms of

known quantities, we see that they may be written

S.pFafi = 0,1

S.pVay = 0,)

so that p is perpendicular to Faj3 and Fay, and is therefore parallel

to the vector of their product. That is,

p\\ F. Fa/3 Fay,

|| -aS.afiy,

or p = 00a.

J 199.] By putting p— /3 for p we change the origin to a point B
where OB = — /3, or BO = (3 ; so that the equation of a line parallel

to a, and passing through the extremity of a vector j3 drawn from

the origin, is p-/3 = xa,

or p = j8 + xa.

Of course* any two parallel lines may be represented as

p = (3 +xa,

p = ^1
+x

1
a;

or Va(p— p) = 0,

ra(p-ft) = 0.

4 200.] The equation of a line, drawn through the extremity of (3, and

meeting a perpendicularly, is thus found. Suppose it to be parallel

.

to y, its equation is p = ^3 _j_ Xy %

To determine y we know, first, that it is perpendicular to a, which

gives Say = 0.
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Secondly, a, (3, and y are in one plane, which gives

S.afiy = 0.

These two equations give y || V.aVafi,

whence we have p = (3-t-xaVafi.

This might have been obtained in many other ways ; for instance,

we see at once that

j3 = a^ofi = a^Sap + crWap.

This shews that a~ 1
Vafi (which is evidently perpendicular to a)

is coplanar with a and /3, and is therefore the direction of the re-

quired line ; so that its equation is

the same as before if we put —
jjfe

for x.
J. a »

•*201.] By means of the last investigation we see that

—arWa$
is the vector perpendicular drawn from the extremity of ft to the

line
p
- xa .

Changing the origin, we see that

-a-Watf-y)
is the vector perpendicular from the extremity of /3 upon the line

p = y+ xa.

^202.] The vector joining B (where OB = ft) with any point in

p = y + xa

is y + xa—ft.

Its length is least when

dT(y+ xa-p) = 0,

or Sa(y+xa— (3) = 0,

i. e. when it is perpendicular to a.

The last equation gives

xa2 +Sa{y-(3) = 0,

or xa = — a~ lSa(y— j3).

Hence the vector perpendicular is

y-p-a-'Saiy-p),

or a^Faiy-p) = -a^Va^—y),
which agrees with the result of last section.

203.] To find the shortest vector distance betiveen two lines

p = j3+ xa,

and Pi=fii+ af1al ;
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we must put dT(p^p
1 )
= 0,

or S(p- Pl)(dp-dPl ) = 0,

or S(p— pj) (adx
— aY

dx^) = .

Since x and x
L
are independent, this breaks up into the two con-

ditions Sa
(p
-

Pl) = o,

&*i(p-Pi) = °;

proving the well-known truth that the required line is perpendicular

to each of the given lines.

Hence it is parallel to Vaa^ and therefore we have

P— Pi = /3-Ma— ft— #!% = yVaa
x (1)

Operate by S.a^ and we get

&aa
1 (/3-/31

)=y(raa
1)

2
.

This determines y, and the shortest distance required is

T(P
-

Pl) m T{yWaai ) =
ma^M = TS.{Uraai){H-M.

[Note. In the two last expressions T before S is inserted simply

to ensure that the length be positive. If

S.aa^p—fij) be negative,

then (§89) S.a
La(^

—
ft) is positive.

If we omit the T, we must use in the text that one of these two ex-

pressions which is positive.]

To find the extremities of this shortest distance, we must operate

on (1) with S.a and S.av We thus obtain two equations, which

determine x and xx , as y is already known.

A somewhat different mode of treating this problem will be dis-

cussed presently.

4 204.] In a given tetrahedron to find a set of rectangular coordinate

axes, such that each axis shallpass through a pair of opposite edges.

Let a, ft y be three (vector) edges of the tetrahedron, one corner

being the origin. Let p be the vector of the origin of the sought

rectangular system, which may be called i, j\ h (unknown vectors).

The condition that i, drawn from p, intersects a is

S.iap = 0. (1)

That it intersects the opposite edge, whose equation is

w = /3 + fl08-y),

the condition is

&*08-y)(p-/3) = O, or Si{(p-y)p-Py} = (2)

There are two other equations like (1), and two like (2), which can

be at once written down.
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Put /3—y=a1 ,
y—a = (31 , a— (S = y1 ,

F/3y = a2 , Vya = (32 , Fa/3 = y2 ,

Va
x
a = a

3 , F&/3 = /33 , Vyxy = y3 ;

and the six become

8.lap = 0, S.iatf — Sia
2
= 0,

S.jpp = 0, S.j(3lP -Sj(32
= 0,

S.kyp — 0, S.kyip— Sky
2
= 0.

The two in i give i
\\
aSa

2p— p(Saa2 + Sa^p).

Similarly,,

j ||
{3S{3

2
p-p{S{3p

2 + S(3
3p),

and k
|| y#y2p-p(£yy2 + %p).

The conditions of rectangularity, viz.,

Sij = 0, <#//£ = 0, Ski = 0,

at once give three equations of the fourth order, the first of which is

= Sa(3 Sa2p Sj3
2p—Sap Sa^ (£/3/32 + S(3

3p)
— S(3p S/3

2p {Saa2 + Sa
3p)

+ p2(Saa2 fSa3
p)(S(3{3

2 + Sl3zp).

The required origin of the rectangular system is thus given as

the intersection of three surfaces of the fourth order.

sf 205.] The equation Sap =
imposes on p the sole condition of being perpendicular to a ; and

therefore, being satisfied by the vector drawn from the origin to

any point in a plane through the origin and perpendicular to a, is

the equation of that plane.

To find this equation by a direct process similar to that usually

employed in coordinate geometry, we may remark that, by § 29, we
may write p = xfi +yy,

where (3 and y are any two vectors perpendicular to a. In this

form the equation contains two indeterminates, and is often useful

;

but it is more usual to eliminate them, which may be done at once

by operating by S.a, when we obtain the equation first written.

It may also be written, by eliminating one of the indeterminates

only, as Vfip = ya,

where the form of the equation shews that Sa(3 = 0.

Similarly we see that

Su(p— /3) =
represents a plane drawn through the extremity of /3 and perpen-

dicular to a. This, of course, may, like the last, be put into various

equivalent forms.

^206.] The line of intersection of the two planes

S.a (p-(3) =0,\
and S.a

1 (p-(3 l )
= 0,)

{ }
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contains all points whose value of p satisfies both conditions. But

we may write (§ 92), since a, al5 and Faa
x
are not coplanar,

pS.aa
1
T
raa

1
== Vaa

1
S.aa

1
p-\- V.^Vaafiap + J

r.V(aa
1
)aSa

1 p,

or, by the given equations,

-pT2 Vaa
1
= V.a

l
Va*

1
Sa&+ V.F{aa

1) aSa^+ xFaa^ (2)

where x, a scalar indeterminate, is put for S.aa
1 p which may have

any value. In practice, however, the two definite given scalar

uations are generally more useful than the partially indeterminate

vector-form which we have derived from them.

When both planes pass through the origin we have f3 = (31
=

i

nd obtain at once p=xVaa
l

the equation of the line of intersection.

f 207.] The plane passing through the origin, and through the line of

intersection of the two planes (1), is easily seen to have the equation

Safifiap— SafiSa^p = 0,

or S(aSa
1^1
— a

1 Sal3)p = 0.

For this is evidently the equation of a plane passing through the

origin. And, if p be such that

Sap = Safi,

we also have Sa^p = /Sai(31}

which are equations (1).

Hence we see that the vector

aSa^— a^aft

is perpendicular to the vector-line of intersection (2) of the two

planes (1), and to every vector joining the origin with a point in

that line.

The student may verify these statements as an exercise.

^208.] To find the vector-perpendicular from the extremity of ft on

the plane Sap = 0,

we must note that it is necessarily parallel to a, and hence that the

value of p for its foot is p — p _|_ X0Li

where xa is the vector-perpendicular in question.

Hence Sa (/3 + a?a) = 0,

which gives xa2= — Sa/3,

or xa = — a~ 1
Sal3.

Similarly the vector-perpendicular from the extremity of fi on the

Plane Sa(p-y) =
may easily be shewn to be

-a^Saip-y).
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^209.] The equation of the plane which passes through the extremities

of a, /3, y may be thus found. If p be the vector of any point in it,

p— a, a— /3, and /3—y lie in the plane, and therefore (§ 101)

£.(p-a)(a-/3)(/3-y) = 0,

or Sp(Fa(3+ Vfiy+ Vya)—S.afiy = 0.

Hence, if b = x
(
Fa/3+ Ffiy+ Fya)

be the vector-perpendicular from the origin on the plane containing

the extremities of a, /3, y, we have

b = (Fa/3+ Vpy+VycLr 1S.aPy.

From this formula, whose interpretation is easy, many curious pro-

perties of a tetrahedron may be deduced by the reader. Thus, for

instance, if we take the tensor of each side, and remember the

result of § 100, we see that

T(Vap+Vpy+Vya)

is twice the area of the base of the tetrahedron. This may be more

simply proved thus. The vector area of base is

4F(a-/3)(y-/3) = - \ (Va$+ F(3y+ Vya).

Hence the sum of the vector areas of the faces of a tetrahedron,

and therefore of any solid whatever, is zero. This is the hydrostatic

proposition for solids immersed in a fluid subject to no external

forces.

J 210.] Taking any two lines whose equations are

p = (3+ xa,

p = /3X + #!<*!,

we see that S.aa
1 (p— b) =

is the equation of a plane parallel to both. Which plane, of course,

depends on the value of b.

Now if b == (3, the plane contains the first line; if b = (31} the

second.

Hence, \iyVaa
Y
be the shortest vector distance between the lines,

we have ^^_^_yyaa^ _ ,

or T(yFaa^ = TS.tf-pj UVaaly

the result of §203.

211.] Find, the equation of the plane, passing through the origin,

which makes equal angles with three given lines. Also find the angles

in question.

Let a, /3, y be unit-vectors in the directions of the lines, and let

the equation of the plane be

Sdp = 0.
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Then we have evidently

Sab s £/38 = #yS = x, suppose,

x
where _

—

n
is the sine of each of the required angles.

But (§92) we have

bS.a(3y = x(Faj3+ Vfiy + Vya).

Hence S.p
(
Fa/3 + r/3y + Fya) =

is the required equation ; and the required sine is

&a/3y

* 212.] Find the locus of the middle points of a series of straight

lines, each parallel to a given plane and having its extremities in two

'xed lines.

Let Syp =
be the plane, and

p
_ £ + X€Li p = ft+ x

x
a
x ,

the fixed lines. Also let x and x
x
correspond to the extremities of

one of the variable lines, to- being the vector of its middle point.

Then, obviously, 2m = /3 + xa+ ft + x
x
a
x

.

Also Sytfi— Pi + xa—Xya^ = 0.

This gives a linear relation between x and #15 so that, if we sub-

stitute for x
x
in the preceding equation, we obtain a result of the

form v = b+xe,

where b and e are known vectors. The required locus is, therefore,

a straight line.

\/213.] Three planes meet in a point, and through the line of inter-

section of each pair a plane is drawn perpendicular to the third ; prove

that, in general, these planes pass through the same line.

Let the point be taken as origin, and let the equations of the planes

be Sap = 0, S/3p = 0, Syp = 0.

The line of intersection of the first two is
|| Vafi, and therefore the

normal to the first of the new planes is fly SO*r ^fl f
x °

Hence the equation of this plane is

S.pV.yVafi = 0,

or S(3pSay—SapS(3y = 0,
\

and those of the other two planes may be easily formed from this

by cyclical permutation of a, ft y.

I 2
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We see at once that any two of these equations give the third by

addition or subtraction, which is the proof of the theorem.

214.] Given any number of points A, J5, C, fyc, whose vectors

{from the origin) are a1} a2 , a3 , fyc, find the plane through the origin

for which the sum of the squares of the perpendiculars let fall upon it

from these points is a maximum or minimum.

Let Svrp =
be the required equation, with the condition (evidently allowable)

T*T = 1.

The perpendiculars are (§208) — ct
-1^^, &c.

Hence S^wa
is a maximum. This gives

2.$Wa/SWw = ;

and the condition that ^ is a unit-vector gives

/SW^ot = 0.

Hence, as d& may have any of an infinite number of values, these

equations cannot be consistent unless

2.cnSW = XUT,

where a? is a scalar.

The values of a are known, so that if we put

'E.aSa'ur as <£sr,

(f>
is a given self-conjugate linear and vector function/ and therefore

x has three values (gli g2 , g3 , § 164) which correspond to three

mutually perpendicular values of -ot. For one of these there is a

maximum, for another a minimum, for the third a maximum-
minimum, in the most general case when gt , g2 , g3

are all different.

V 215.] The following beautiful problem is due to Maccullagh.

Of a system of three rectangular vectors, passing through the origin,

two lie on given planes
; find the locus of the third.

Let the rectangular vectors be ot, p, a. Then by the conditions

of the problem Serp = Spa = S(rvr _ 0>

and Savr = 0, Sftp = 0.

The solution depends on the elimination of p and -cr among these

five equations. [This would, in general, be impossible, as p and -cr

between them involve six unknown scalars ; but, as the tensors are

(by the very form of the equations) not involved, the five giv£n

equations are necessary and sufficient to eliminate the four unknown

scalars which are really involved. Formally to complete the re-

quisite number of equations we might write

Tw = a, Tp = b,

but a and b may have any values whatever.]
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From <SW = 0, /SW = 0,

we have -sr = xVav.

Similarly, from Sfip = 0, Sa-p = 0,

we have 9 — y Vfiv-

Substitute in the remaining equation

8mp = 0,

and we have S.VaaVpcr = 0,

or SaaSl3(T— (T
2
Sal3 = 0,

the required equation. As will be seen in next Chapter, this is a

cone of the second order whose circular sections are perpendicular

to a and fi. [The disappearance of x and y in the elimination in-

structively illustrates the note above.]

EXAMPLES TO CHAPTER VI.

J 1 . What propositions of Euclid are proved by the mere form of

the equation p = (1 — x) a-\-x(3,

which denotes the line joining any two points in space ?

»2. Shew that the chord of contact, of tangents to a parabola

which meet at right angles, passes through a fixed point.

3. Prove the chief properties of the circle (as in Euclid, III) from

the equation p = a cos 6+ j3 sin 6
;

where Ta = Tfi, and Sa{3 = 0.

•4. What locus is represented by the equation

S2ap + p
2 = 0,

where Ta = 1 ?

•5. What is the condition that the lines

Fap = {3, FalP = (31 ,

intersect? If this is not satisfied, what is the shortest distance

between them ?

• 6. Find the equation of the plane which contains the two parallel

lines Va(p-P) = 0, Va{p-^) = 0.

• 7 . Find the equation of the plane which contains

Fa(p-/3) = 0,

and is perpendicular to gyp _ q.

• 8. Find the equation of a straight line passing through a given

point, and making a given angle with a given plane.

Hence form the general equation of a right cone.
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9. What conditions must be satisfied with regard to a number of

given lines in space that it may be possible to draw through each

of them a plane in such a way that these planes may intersect in a

common line ?

10. Find the equation of the locus of a point the sum of the

squares of whose distances from a number of given planes is con-

stant.

11. Substitute "lines" for "planes" in (10).

12. Find the equation of the plane which bisects, at right angles,

the shortest distance between two given lines.

Find the locus of a point in this plane which is equidistant from

the given lines.

1 3. Find the conditions that the simultaneous equations

Sap = a, Sfip = b, Syp = c,

may represent a line, and not a point.

14. What is represented by the equations

{Sapf =(W = {Sypf,

where a, /3, y are any three vectors ?

15. Find the equation of the plane which passes through two

given points and makes a given angle with a given plane.

16. Find the area of the triangle whose corners have the vectors

a, /3, y.

Hence form the equation of a circular cylinder whose axis and

radius are given.

17. (Hamilton, Bishop Law's Premium Ex., 1858).

(a.) Assign some of the transformations of the expression

Fa/3

P-a
where a and /3 are the vectors of two given points A and B.

(b.) The expression represents the vector y, or OC, of a point C
in the straight line AB.

(<?.) Assign the position of this point C.

18. (Ibid.)

(a.) If a, /3, y, 8 be the vectors of four points, A, B, C, 1), what

is the condition for those points being in one plane ?

(b,) When these four vectors from one origin do not thus ter-

minate upon one plane, what is the expression for the

volume of the pyramid, of which the four points are the

corners ?

(c). Express the perpendicular 8 let fall from the origin on

the plane ABC, in terms of a, /3, y.
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19. Find the locus of a point equidistant from the three planes

Sap = 0, Sfip = 0, Syp = 0.

20. If three mutually perpendicular vectors be drawn from a

point to a plane, the sum of the reciprocals of the squares of their

lengths is independent of their directions.

2 1

.

Find the general form of the equation of a plane from the

condition (which is to be assumed as a definition) that any two

planes intersect in a single straight line.

22. Prove that the sum of the vector areas of the faces of any

polyhedron is zero.



CHAPTER VII.

THE SPHERE AND CYCLIC CONE.

1216.] After that of the plane the equations next in order of

simplicity are those of the sphere, and of the cone of the second

order. To these we devote a short Chapter as a valuable prepara-

tion for the study of surfaces of the second order in general.

217.] The equation fp _ fa
or p

2 = a2
,

denotes that the length of p is the same as that of a given vector a,

and therefore belongs to a sphere of radius Ta whose centre is the

origin. In § 107 several transformations of this equation were ob-

tained, some of which we will repeat here with their interpretations.

Thus S(p+ a)(p-a) =
shews that the chords drawn from any point on the sphere to the

extremities of a diameter (whose vectors are a and — a) are at right

angles to each other.

T(p+ a)(p-a) = 2TFap

shews that the rectangle under these chords is four times the area

of the triangle two of whose sides are a and p.

p = (p-\-a)-1 a(p-\-a) (see §105)

shews that the angle at the centre in any circle is double that at

the circumference standing on the same arc. All these are easy

consequences of the processes already explained for the interpretation

of quaternion expressions.

^ 218.] If the centre of the sphere be at the extremity of a the

equation may be written

T(p-a) = Zj8,

which is the most general form.

If Ta = Tfr

or a2 = j3
2
,
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in which case the origin is a point on the surface of the sphere, this

becomes
p
2 -2#ap = 0.

From this, in the form
Sp(p-2a) =

another proof that the angle in a semicircle is a right angle is de-

rived at once.

^ 219.] The converse problem is

—

Find the locus of thefeet ofper-

pendiculars letfallfrom a given point (p=(3) on planes passing through

the origin.

Let Sap =
be one of the planes, then (§ 208) the vector-perpendicular is

— a
_1

#a/3,

and, for the locus of its foot,

p = ^-a"1^,
= oTWap.

[This is an example of a peculiar form in which quaternions some-

times give us the equation of a surface. The equation is a vector

one, or equivalent to three scalar equations ; but it involves the

undetermined vector a in such a way as to be equivalent to only

two indeterminates (as the tensor of a is evidently not involved).

To put the equation in a more immediately interpretable form, a

must be eliminated, and the remarks just made shew this to be

possible.]

Now (P-/3)
2 = cT 2S2

afr

and (operating by S.(3)

Adding these equations, we get

p*-Spp = 0,

r(,-f)=4
so that, as is evident, the locus is the sphere of which Q is a dia-

meter.

220.] To find the intersection of the two spheres

T(p--a) = T/3,

and Tip-aJ = Tfa
square the equations, and subtract, and we have

25(a-o1)p = a*-al»-03»-A*))

which is the equation of a plane, perpendicular to a— a
Y
the vector

joining the centres of the spheres. This is always a real plane

whether the spheres intersect or not. It is, in fact, what is called

their Radical Plane.
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J 221.] Find the locus of a point the ratio of whose distances from

two given points is constant.

Let the given points be and A, the extremities of the vector a.

Also let P be the required point in any of its positions, and OP=p.
Then, at once, if n be the ratio of the lengths of the two lines,

T{p-a) = nTp.

This gives p
2— 28ap+ a2 = n2

p
2

,

or, by an easy transformation,

Thus the locus is a sphere whose radius is T(- ^) > and whose

centre is at B, where OB = ^ > a definite point in the line OA.
\—n 2 L

J 222.] If in any line, OP, drawn from the origin to a given plane,

OQ be taken such that OQ.OP is constant, find the locus of Q.

Let Sap = a

be the equation of the plane, ct a vector of the required surface.

Then, by the conditions,

Trn Tp = constant = b 2 (suppose),

and Urn = Up.

b2 U<n b2v
From these p = —^— = 5- •

Substituting in the equation of the plane, we have

aisP+ b 2Sa'n = 0,

which shews that the locus is a sphere, the origin being situated on

it at the point farthest from the given plane.

^ 223.] Find the locus ofpoints the sum of the squares of whose dis-

tancesfrom a set ofgiven points is a constant quantity. Find also the

least value of this constant, and the corresponding locus.

Let the vectors from the origin to the given points be a
x , a

2 ,

an , and to the sought point p, then

_«« = (p-a
lf + (p-aif + + (p-a„) 2

,

= nP
2-2Sp2a+2(a2

).

Otherwise (P-K = _ *+»<*> + df,v n / n n2

the equation of a sphere the vector of whose centre is -— > i.e.

whose centre is the mean of the system of given points.

Suppose the origin to be placed at the mean point, the equation

becomes ,2 , v (n i\

p
2 = - 6 -*-^«;

(for 2a = 0, § 31 («)).
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The right-hand side is negative, and therefore the equation denotes

a real surface, if c2 > ^Ta2

as might have been expected. When these quantities are equal,

the locus becomes a point, viz. the new origin, or the mean point of

the system.

^ 224.] If we differentiate the equation

TP = Ta

we get Spdp = 0.

Hence (§ 137), p is normal to the surface at its extremity, a well-

known property of the sphere.

If jsr be any point in the plane which touches the sphere at the

extremity of p, txr— p is a line in the tangent plane, and therefore

perpendicular to p. So that

Spfa—p) = 0,

or S'srp — — Tp2 as a2

is the equation of the tangent plane.

>^225.] If this plane pass through a given point B, whose vector

is /3, we have $pp = a 2
>

This is the equation of a plane, perpendicular to fi, and cutting

from it a portion whose length is

Ta2

Tp
'

If this plane pass through a fixed point whose vector is y we must

have Spy
_

fl2j

so that the locus of /3 is a plane. These results contain all the

ordinary properties of poles and polars with regard to a sphere.

V 226.] A line drawn parallel to y, from the extremity of /3, has

the equation
p
_ a _^_ xy ^

This meets the sphere
p
2 _ a2

in points for which x has the values given by the equation

(3
2 + 2xS(3y + x2

y
2 = a2

.

The values of x are imaginary, that is, there is no intersection, if

a2y
2 + ^2/3y<0#

The values are equal, or the line touches the sphere, if

a 2
y
2 + ^2/3y = ^

or S 2
/3y = y

2
(/3

2 -a2
).

This is the equation of a cone similar and similarly situated to the

cone of tangent-lines drawn to the sphere, but its vertex is at the

centre. That the equation represents a cone is obvious from the
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fact that it is homogeneous in Ty, i.e. that it is independent of the

length of the vector y.

[It may be remarked that from the form of the above equation

we see that, if x and x' be its roots, we have

(xTy)(x'Ty)=a2 -(S 2
,

which is Euclid, III, 35, 36, extended to a sphere.]

i227.] Find the locus of thefoot of the perpendicular let fall from

a given point of a sphere on any tangent-plane.

Taking the centre as origin, the equation of any tangent-plane

may be written 8^p
_ q2>

The perpendicular must be parallel to p} so that, if we suppose it

drawn from the extremity of a (which is a point on the sphere) we

have as one value of -sr

w = a + xp.

From these equations, with the help of that of the sphere

P
2 = «2

,

we must eliminate p and x.

We have by operating on the vector equation by S.ijt

tv2 sr Saur -f xSurp

= Savr+ xa2
.

XT iv— a a2 (jz— a)
Hence p = = —s—o

x ^—oasr
Taking the tensors, we have

(rx2 -Sa*r) 2 = a2 (^-a) 2
,

the required equation. It may be put in the form

S2erU{*r-a)=-a2
i

and the interpretation of this gives at once a characteristic property

of the surface formed by the rotation of the Cardioid about its axis

of symmetry.

i 228.] We have seen that a sphere, referred to any point what-

ever as origin, has the equation

T(p-a) = T/3.

Hence, to find the rectangle under the segments of a chord drawn

through any point, we may put

p= xy;

where y is any unit-vector whatever. This gives

x2
y
2 -2xSay + a2 = P 2

,

and the product of the two values of x is

r
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This is positive, or the vector-chords are drawn in the same direc-

tion, if Tp<Ta,

i.e. if the origin is outside the sphere.

229.] A, B are fixed points ; and, being the origin and P a point

in space, JJ>2 + ftp* _ Qp2 .

find the locus of P, and explain the result when LAOB is a right, or

an obtuse, angle.

Let OA = a, OB = /3, OP = p, then

or P
2-2S(a+ P) P =-{a2 + p2

),

or T{p-(a + p)}=V(-2Sa(3).

While Sap is negative, that is, while LAOB is acute, the locus is a

sphere whose centre has the vector a + p. If Sap= 0, or LAOB= -

,

the locus is reduced to the point

P = a+ p.

If LAOB>- there is no point which satisfies the conditions.

230.] Describe a sphere, with its centre in a given line, so as to

pass through a given point and touch a given plane.

Let xa, where x is an undetermined scalar, be the vector of the

centre, r the radius of the sphere, /3 the vector of the given point,

and Syp == a

the equation of the given plane.

The vector-perpendicular from the point xa on the given plane is

(§208) {a-xSya)y-\

Hence, to determine x we have the equation

T.(a-xSya)y-x = T(xa~P) = r,

so that there are, in general, two solutions. It will be a good

exercise for the student to find from this equation the condition

that there may be no solution, or two coincident ones.

231.] Describe a sphere whose centre is in a given line, and which

passes through two given points.

Let the vector of the centre be xa, as in last section, and let the

vectors of the points be /3 and y. Then, at once,

T{y-xa) =T(P-xa) = r.

Here there is but one sphere, except in the particular case when we

have Ty = Tp, and Say = Sap,

in which case there is an infinite number.
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The student should carefully compare the results of this section

and the last, so as to discover why in general two solutions are

possible in the one case, and only one in the other.

232.] A sphere touches each of two straight lines, which do not

meet : find the locus of its centre.

We may take the origin at the middle point of the shortest dis-

tance (§203) between the given lines, and their equations will then

be p = a+ %j3,

P = -a+ x
1 fa,

where we have, of course,

Saj3 = 0, Safa = 0.

Let o- be the vector of the centre, p that of any point, of one of the

spheres, and r its radius ; its equation is

T(p-c) = r.

Since the two given lines are tangents, the following equations in x

and mx must have pairs of equal roots,

T{a -f a?/3— a) = r,

T{-a+ x
1fa-a) = r.

The equality of the roots in each gives us the conditions

S2
(3<r =p 2 ((a-(r) 2 +r2

) i

S*facT=p\{{a + *Y + r*).

Eliminating r we obtain

p-*S*pcr-fc*S2
fa<r = (

a_ a)2_(a + (r)2 = _4Sa<r,

which is the equation of the required locus.

[As we have not, so far, entered on the consideration of the qua-

ternion form of the equations of the various surfaces of the second

order, we may translate this into Cartesian coordinates to find its

meaning. If we take coordinate axes of x, y, z respectively parallel

to /3, fa, a, it becomes at once

{%+ myf— (y + wiz) 2 = pz,

where m and p are constants ; and shews that the locus is a hy-

perbolic paraboloid. Such transformations, which are exceedingly

simple in all cases, will be of frequent use to the student who is

proficient in Cartesian geometry, in the early stages of his study of

quaternions. As he acquires a practical knowledge of the new

calculus, the need of such assistance will gradually cease to be

felt.]

Simple as the above solution is, quaternions enable us to give one

vastly simpler. For the problem may be thus stated

—

Find the

locus of the point whose distances from two given lines are equal.
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And, with the above notation, the equality of the perpendiculars is

expressed (§ 201) by

TF.(a-*)U(3 = TF.{a+ <T)Up
1 ,

which is easily seen to be equivalent to the equation obtained above.

233.] Two spheres being given, shew that spheres which cut them at

given angles cut at right angles another fixed sphere.

If c be the distance between the centres of two spheres whose radii

are a and b, the cosine of the angle of intersection is evidently

a*+b2 -c2

2ab

Hence, if a, ax , and p be the vectors of the centres, and a, a19 r the

radii, of the two fixed, and of one of the variable, spheres ; A and

A
1
the angles of intersection, we have

(p— a)2 + a2 + r2 = 2 ar cos A,

(p— a^
2 +a\+r2 = 2a

1
reosA

1
.

Eliminating the first power of r, we evidently must obtain a result

such as
(p _/3)2 + j2 + r2 _ 0j

where (by what precedes) /3 is the vector of the centre, and b the

radius, of a fixed sphere

(p-/3)
2 + £ 2 = 0,

which is cut at right angles by all the varying spheres. By effect-

ing the elimination exactly we easily find b and /3 in terms of given

quantities.

234.] To inscribe in a given sphere a closed polygon, plane or

gauche, whose sides shall be parallel respectively to each of a series of

given vectors.

Let Tp = 1

be the sphere, a, /3, y, , -q, 6 the vectors, n in number, and let

p! , p2 , pn , be the vector-radii drawn to the angles of the polygon.

Then p2— Pl = x
x a, &c, &c.

From this, by operating by S.(p
2 + p1),

we get

P% — Pi — ° = $aP2 + 8aPi •

Also = Vap
2
— Vap

x
.

Adding, we get = ap2 + Kap
x
= ap2 + pl

a.

Hence p2
=

—

a~1
pl a.

[This might have been written down at once from the result of

§105.]

Similarly p3 = — /3
-1

p2/3 = /3
-1 a-1px a^} &c.

Thus, finally, since the polygon is closed,

p«+i = h = (-r^-v1 r^-Vi^ VS.
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We may suppose the tensors of a, (3 77, 6 to be each unity.

Hence, if a — a/3 7)9,

we have arY = -1
77

-1 (3~x a
-1

,

which is a known quaternion ; and thus our condition becomes

This divides itself into two cases, according as n is an even or an

odd number.

If n be even, we have

aPl = Pl a.

Removing" the common part Pl Sa, we have

FPl Fa = 0.

This gives one determinate direction, 4 Va, for Pl ; and shews that

there are two, and only two, solutions.

If n be odd, we have aPl = — Pl a,

which requires that we have

Sa — 0,

i. e. a must be a vector.

Hence SaPl = 0, .

and therefore Pl may be drawn to any point in the great circle of

the unit-sphere whose poles are on the vector a.

235.] To illustrate these results, let us take first the case of n= 3.

Here we must have S.aBy = 0,

or the three given vectors must (as is obvious on other grounds) be

parallel to one plane. Here afiy, which lies in this plane, is (§ 106)

the vector-tangent at the first corner of each of the inscribed tri-

angles ; and is obviously perpendicular to the vector drawn from

the centre to that corner.

If#= 4, we have
Pl ||F.a/3y5,

as might have been at once seen from § 106.

236.] Hamilton has given (Lectures, p. 674) an ingenious and

simple process by which the above investigation is rendered ap-

plicable to the more difficult problem in which each side of the

inscribed polygon is to pass through a given point instead of being

parallel to a given line. His process depends upon the integration

of a linear equation in finite differences. By an immediate appli-

cation of the linear and vector function of Chapter V, the above

solutions may be at once extended to any central surface of the

second order.

237.] To find the equation of a cone of revolution, whose vertex is

the origin.
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Suppose a, where Ta = 1 , to be its axis, and e the cosine of its

semi-vertical angle ; then, if p be the vector of any point in the

cone, SaUp = +e,

or S2ap = —e2
p
2

.

238.] Change the origin to the point in the axis whose vector is

xa
}
and the equation becomes

(-x+ Sav) 2 =-e2 (xa + <n)
2

.

Let the radius of the section of the cone made by

Savr =
retain a constant value b, while x changes ; this necessitates

x

Vb2 + x2

so that when x is infinite, e is unity. In this case the equation

becomes
. S2a&+ ot

2
-f b

2 = 0,

which must therefore be the equation of a circular cylinder of radius

b, whose axis is the vector a. To verify this we have only to notice

that if -or be the vector of a point of such a cylinder we must (§201)

have TVav = b,

which is the same equation as that above.

239.] To find, generally, the equation of a cone which has a circular

section

:

—
Take the origin as vertex, and let the circular section be the

intersection of the plane Sap = 1

with the sphere (passing through the origin)

P
2 = Sj3P .

These equations may be written thus,

SaUp=z y-,

-TP = S{3Up.

Hence, eliminating Tp, we find the following equation which Up

must satisfy— £a jjp$p Up = -\,

or p
2 —SapS(3p = 0,

which is therefore the required equation of the cone.

As a and /3 are similarly involved, the mereform of this equation

proves the existence of the subcontrary section discovered by Apol-

lonius.

240.] The equation just obtained may be written

1

S.UaUpS.UpUp =
T.a/3
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or, since a and /3 are perpendicular to the cyclic arcs (§ 59 *),

sinp sinj»/= constant,

where p and p
f
are arcs drawn from any point of a spherical conic

perpendicular to the cyclic arcs. This is a well-known property of

such curves.

241.] If we cut the cyclic cone by any plane passing through

the origin, as Syp = 0,

then Vay and Ffiy are the traces on the cyclic planes, so that

p = xUVay+ t/UVfiy (§ 29),

Substitute in the equation of the cone, and we get

-x2 -y2 + Pxy=0,
where P is a known scalar. Hence the values of x and y are the

same pair of numbers. This is a very elementary proof of the

proposition in § 59* that PL = MQ (in the last figure of that

section).

242.] When x and y are equal, the transversal arc becomes a

tangent to the spherical conic, and is evidently bisected at the

point of contact. Here we have

This is the equation of the cone whose sides are perpendiculars

(through the origin) to the planes which touch the cyclic cone, and

from this property the same equation may readily be deduced.

243.] It may be well to observe that the property of the Stereo-

graphic projection of the sphere, viz. that the projection of a circle

is a circle, is an immediate consequence of the above form of the

equation of a cyclic cone.

244] That § 239 gives the most general form of the equation

of a cone of the second order, when the vertex is taken as origin,

follows from the early results of next Chapter. For it is shewn

in § 249 that the equation of a cone of the second order can always

be put in the form 22.SapS/3p + Ap2 = 0.

This may be written Sp(pp = 0,

where
<f)

is the self-conjugate linear and vector function

<j>p = 2F.a/>/3 + (^+ 2£a/3)/).

By § 168 this may be transformed to

and the general equation of the cone becomes

(p-S\n)p2 + 2S\pSnp = 0,

which is the form obtained in § 239.
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245.] Taking the form SP(f>p
=

as the simplest, we find by differentiation

Sdp(pp + Spd(f)p = 0,

or 2Sdpcj)p = 0.

Hence <pp is perpendicular to the tangent-plane at the extremity of

p. The equation of this plane is therefore (vr being the vector of

any point in it) s$p (w- p) = 0,

or, by the equation of the cone,

S&cfyp = 0.

246.] The equation of the cone of normals to the tangent-planes of

a given cone can be easilyformedfrom that of the cone itself. For we

may write it in the form

and if we put (pp= a, a vector of the new cone, the equation becomes

Sacfy^a = 0.

Numerous curious properties of these connected cones, and of the

corresponding spherical conies, follow at once from these equations.

But we must leave them to the reader.

247.] As a final example, let us find the equation of a cyclic cone

when five of its vector-sides are given—i. e. find the cone of the second

order whose vertex is the origin, and on whose surface lie the vectors

a, P, y> b, €.

If we write

o = s.r(rapvbe)r(rpy rcp)r(rybrpa), (i)

we have the equation of a cone whose vertex is the origin—for the

equation is not altered by putting xp for p. Also it is the equation

of a cone of the second degree, since p occurs only twice. Moreover

the vectors a, p, y, 6, e are sides of the cone, because if any one of

them be put for p the equation is satisfied. Thus if we put /3 for p

the equation becomes -

o = s.r(rapn*)r(rpy rep)r{rybrpa)

= s.F(rapnc){rQaS.rybrpyrcp-rybS.rpaVpyrcp}.

The first term vanishes because

S.F(Fapn<:)rpa=O
i

and the second because

S.FpaVpynp=z 0,

since the three vectors F/3a, Vpy> Vep, being each at right angles to

p, must be in one plane.

As is remarked by Hamilton, this is a very simple proof of Pascal's

k %
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Theorem—for (1) is the condition that the intersections of the

planes of a, /3 and 5, e ; /3, y and e, p ; y, b and p, a ; shall lie in one

plane ; or, making the statement for any plane section of the cone,

that the points of intersection of the three pairs of opposite sides, of

a hexagon inscribed in a curve, may always lie in one straight line,

the curve must be a conic section.

EXAMPLES TO CHAPTER VII.

«1 . On the vector of a point P in the plane

Sap = 1

a point Q is taken, such that QO.OP is constant ; find the equation

of the locus of Q.

2. What spheres cut the loci of P and Q in (1) so that both

lines of intersection lie on a cone whose vertex is ?

3. A sphere touches a fixed plane, and cuts a fixed sphere. If

the point of contact with the plane be given, the plane of the inter-

section of the spheres contains a fixed line.

Find the locus of the centre of the variable sphere, if the plane of

its intersection with the fixed sphere passes through a given point.

4. Find the radii of the spheres which touch, simultaneously, the

four given planes

Sap=0, Sj3p=0, Syp=0, Sbp = l.

[What is the volume of the tetrahedron enclosed by these planes ?]

5. If a moveable line, passing through the origin, make with

any number of fixed lines angles 0, l5 2 , &c, such that

a cos.0+ a
x COS.0J + = constant,

where a, a
x ,

are constant scalars, the line describes a right cone.

6. Determine the conditions that

Sp<pp —
may represent a right cone.

7. What property of a cone (or of a spherical conic) is given

directly by the following form of its equation,

S.ipKp = ?

8. What are the conditions that the surfaces represented by

Spcf>p = 0, and S.ipKp = 0,

may degenerate into pairs of planes ?
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9. Find the locus of the vertices of all right cones which have a

common ellipse as base.

10. Two right circular cones have their axes parallel, shew that

the orthogonal projection of their curve of intersection on the plane

containing their axes is a parabola.

1 1

.

Two spheres being given in magnitude and position, every

sphere which intersects them in given angles will touch two other

fixed spheres and cut a third at right angles.

12. If a sphere be placed on a table, the breadth of the elliptic

shadow formed by rays diverging from a fixed point is independent

of the position of the sphere.

1 3. Form the equation of the cylinder which has a given circular

section, and a given axis. Find the direction of the normal to the

subcontrary section.

14. Given the base of a spherical triangle, and the product of

the cosines of the sides, the locus of the vertex is a spherical conic,

the poles of whose cyclic arcs are the extremities of the given

base.

15. (Hamilton, JBis/wp Law's Premium Ex., 1858.)

(a.) What property of a sphero-conic is most immediately in-

dicated by the equation

a p

(b.) The equation ( VKpf + (Sfip)
2 =

also represents a cone of the second order ; A is a focal

line, and ju is perpendicular to the director-plane cor-

responding.

(<?.) What property of a sphero-conic does the equation most

immediately indicate ?

16. Shew that the areas of all triangles, bounded by a tangent

to a spherical conic and the cyclic arcs, are equal.

1 7. Shew that the locus of a point, the sum of whose arcual dis-

tances from two given points on a sphere is constant, is a spherical

conic.

18. If two tangent planes be drawn to a cyclic cone, the four

lines in which they intersect the cyclic planes are sides of a right

cone.

19. Find the equation of the cone whose sides are the intersections

of pairs of mutually perpendicular tangent planes to a given cyclic

cone.
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20. Find the condition that five given points may lie on a

sphere.

21. What is the surface denoted by the equation

p
2 = xa2

-fy/3
2 + zy2

,

where p = xa -f yfi+ zy,

a, /3, y being given vectors, and x, y, z variable scalars ?

Express the equation of the surface in terms of p, a, /3, y alone.

22. Find the equation of the cone whose sides bisect the angles

between a fixed line and any line, in a given plane, which meets the

fixed line.

What property of a spherical conic is most directly given by

this result ?



CHAPTER VIII.

SURFACES OF THE SECOND ORDER.

4 248.] The general scalar equation of the second order in a vector

p must evidently contain a term independent of p, terms of the form

S.apb involving p to the first degree, and others of the form S.apbpc

involving p to the second degree, a
t
b, c, &c. being constant quater-

nions. Now the term S.apb may be written as

SpF(ba),

or as S.(Sa + Fa) P {Sb + Vb) = SaSpVb + SbSpVa+S.pVbVa,

each of which may evidently be put in the form Syp, where y is a

known vector.

Similarly * the term S.apbpc may be reduced to a set of terms,

each of which has one of the forms

Ap2
,

(Sap) 2
, SapS(3p,

the second being merely a particular case of the third. Thus (the

numerical factors 2 being introduced for convenience) we may write

the general scalar equation of the second degree as follows :

—

22.SapS0p+ Ap2 + 2Syp = C. (1)

^249.] Change the origin to D where OB = b, then p becomes

p + 5, and the equation takes the form

22.SapSpp + Ap2 + 22(SapS(3b + SjSpSab) + 2ASbp+2Syp

+ 22.SabS(3b + Ab2 + 2Syb-C=zO;
from which the first power of p disappears, that is the surface is

referred to its centre, if

2(aS(3b+ (3Sab) + Ab + y = 0, (2)

* For S.apbpc= S.capbp = S.a'pbp = (2Sa'Sb—Sa'b)p'i + 2Sa'pSbp; and in particular

cases we may have Vol— Vb.
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a vector equation of the first degree, which in general gives a single

definite value for 8, by the processes of Chapter V. [It would lead

us beyond the limits of an elementary treatise to consider the

special cases in which (2) represents a line, or a plane, any point of

which is a centre of the surface. The processes to be employed in

such special cases have been amply illustrated in the Chapter re-

ferred to.]

With this value of 8, and putting

D = C-2Syb-Ah 2 -22.SabSj3b,

the* equation becomes

22.SapS{3p + Ap2 = D.

IfD = 0, the surface is conical (a case treated in last Chapter)
;

if not, it is an ellipsoid or hyperboloid. Unless expressly stated not

to be, the surface will, when D is not zero, be considered an ellip-

soid. By this we avoid for the time some rather delicate con-

siderations.

By dividing by D, and thus altering only the tensors of the

constants, we see that the equation of central surfaces of the second

order, referred to the centre, is (excluding cones)

22(SapS(3p)+gp*=l (3)

J 250.] Differentiating, we obtain

22{SadpSpP + SapSpdp} + 2gSpdp = 0,

or S.dp{2(aSpp + fiSap)+gp} = 0,

and therefore, by § 137, the tangent plane is

8{m-p) {2(aSpp + pSap) + </p} = 0,

i.e. S.<n{2(aSpp+ pSap)+gp} = 1, 1>y (3).

Hence, if v = 2(aSj3p+ (3Sap) + <7p, (4)

the tangent plane is /SW = 1,

and the surface itself is Sup = 1.

And, as z/
_1 (being perpendicular to the tangent plane, and satis-

fying its equation) is evidently the vector-perpendicular from the

origin on the tangent plane, v is called the vector ofproximity.

"J251."] Hamilton uses for v, which is obviously a linear and vector

function of p, the notation <pp, <p expressing a functional operation,

as in Chapter V. But, for the sake of clearness, we will go over

part of the ground again, especially for the benefit of students who

have mastered only the more elementary parts of that Chapter.

We have, then, ^ = s
(
a^p + pgap) + gp.
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With this definition of (/>, it is easy to see that

(a.) 4> (p + a
) = #+#°"> &c -> f°r amJ two or more vectors.

(b.) ${xp) = x<j>p] a particular case of (a), x being a scalar.

(&) tfcrc^p = 2(Sa(rSpp+ S{3(TSap) + </Sp<T = SpQa,

or is, in this case, self-conjugate.

This last property is of great importance.

^ 252.] Thus the general equation of central surfaces of the second

degree (excluding cones) may now be written

*Wp-v .- (i)

Differentiating, Sdpcpp -f Spd(pp = 0,

which, by applying (c.) and then (d.) to the last term on the left,

gives 2%^p=0,
and therefore, as in § 250, though now much more simply, the

tangent plane at the extremity of p is

8(*r-p)4>p = 0,

or Svrcpp = Sp<pp = 1.

If this pass through A{OA = a), we have

Sa<f)p = 1,

or, by (d.), Spcpa = 1,

for all possible points of contact.

This is therefore the equation of the plane of contact of tangent

planes drawn from A.

sT253.] To find the enveloping cone whose vertex is A, notice that

(Spfa-^+piSpQa-l) 2 = 0,

where p is any scalar, is the equation of a surface of the second

order touching the ellipsoid along its intersection with the plane.

If this pass through A we have

(Sa(f)a— l)+p(Sa(f)a+l) 2 = 0,

and^ is found. Then our equation becomes

(Spcpp- l)(Sa(j)a-l)— (Sp<f>a— l)
2 = 0, (1)

which is the cone required. To assure ourselves of this, transfer

the origin to A, by putting p + a for p. The result is, using (a.)

and (d.),

(Sp<pp+2Sp(j>a+ Sa(l)a—l)(Sa(l)a—l)— (Sp(l)a+ Sa<pa-l) 2 = 0,

or Sp(pp(Sa(f)a—l)— (Sp(j)a)
2 = 0,

which is homogeneous in Tp2
, and is therefore the equation of a

cone.
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Suppose A infinitely distant, then we may put in (1) xa for a,

where x is infinitely great, and, omitting1 all but the higher terms,

the equation of the cylinder formed by tangent lines parallel to a is

(Sp<pP—l)Sa(t)a— (Spcl)a)
2 = 0.

v

'254.J To study the nature of the surface more closely, let us

find the locus of the middle points of a system ofparallel chords.

Let them be parallel to a, then, if w be the vector of the middle

point of one of them, w+ xa and or—xa are simultaneous values of

p which ought to satisfy (1) of§ 252.

That is S.(^±xa)(j)(^±xa) = 1.

Hence, by (a.) and (d.), as before,

Svrcp'sy -f x2
Sacf)a = 1

,

Svr(f)a=0 (1)

The latter equation shews that the locus of the extremity of -st,

the middle point of a chord parallel to a, is a plane through the

centre, whose normal is cf>a j that is, a plane parallel to the tangent

plane at the point where OA cuts the surface. And (d.) shews that

this relation is reciprocal—so that if /3 be any value of «r, i. e. be

any vector in the plane (1), a will be a vector in a diametral plane

which bisects all chords parallel to fi. The equations of these

planes are SvrQa = 0,

&a$p = 0,

so that if V.fyafyfi = y (suppose) is their line of intersection, we have

Sycfya = = Sa<py, \

Sy<t>p = = SpiyyA (2)

and (1) gives 8p<f>a = = Sa<f>p.

)

Hence there is an infinite number of sets of three vectors a, /3, y,

such that all chords parallel to any one are bisected by the diametral

plane containing the other two.

J 255.] It is evident from § 23 that any vector may be expressed

as a linear function of any three others not in the same plane, let

then p = xa+yfi+ zy,

where, by last section, Sa<f){3 = Sficfya = 0,

Sa<f)y = Sy(pa = 0,

Sj3(f>y = SyQP = 0.

And let Sacpa = 1, \

#/3#*=l,(

Sycfry = 1, )

so that a, (3, and y are vector conjugate semi-diameters of the surface

we are engaged on.
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Substituting the above value of p in the equation of the surface,

and attending to the equations in a, /3, y and to (a.), (#.), and (d.),

we have Sp^p = 8{xa +yj3 + zy) $ (xa +yj3 + zy),

= x2 +y2
-\-z2 = 1.

To transform this equation to Cartesian coordinates, we notice that

x is the ratio which the projection of p on a bears to a itself, &c.

If therefore we take the conjugate diameters as axes of f, rj, £ and

I

their lengths as a, b, c, the above equation becomes at once

a2 ^ b2
+

c2
~ '

the ordinary equation of the ellipsoid referred to conjugate diameters.

^56.] If we write — \\/
2 instead of cj>, these equations assume an

interesting form. We take for granted, what we shall afterwards

prove, that this halving or extracting the root of the vector func-

tion is lawful, and that the new linear and vector function has the

same properties (a.), (#.), (c), (d.) (§ 251) as the old. The equation

of the surface now becomes

SP^P = -h
or S\f/p\f/p = — 1

,

or, finally, Tfp = 1

.

If we compare this with the equation of the unit-sphere

Z>=1,
we see at once the analogy between the two surfaces. The sphere

can be changed into the ellipsoid^ or vice versa, by a linear deformation

of each vector, the operator being the function \jr or its inverse. See

the Chapter on Kinematics.

/257.] Equations (2) § 254 now become

Saxj/
2^ = = xtya^/3, &c, (1)

so that \j/a, \^/3, \jsy, the vectors of the unit-sphere which correspond to

semi-conjugate diameters of the ellipsoid
',
form a rectangular system.

We may remark here, that, as the equation of the ellipsoid referred

to its principal axes is a case of § 255, we may now suppose i,j, and

X2 V 2 z2

k to have these directions, and the equation is -5- + tt H—« = *j
, . , . . . a2 b 2, <r

which, m quaternions, is

We here tacitly assume the existence of such axes, but in all cases,

by the help of Hamilton's method, developed in Chapter V, we at

once arrive at the cubic equation which gives them.
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It is evident from the last-written equation that

iSip jSjp kSkp

and #=_(I^V^ +^)>
\ a o c '

which latter may be easily proved by shewing that

f2
P=-(f>p.

And this expression enables us to verify the assertion of last section

about the properties of \^.

As Sip= —a?, &c, cc,g, z being the Cartesian coordinates referred

to the principal axes, we have now the means of at once transform-

ing any quaternion result connected with the ellipsoid into the or-

dinary one.

. v/258.] Before proceeding to other forms of the equation of the

f J
|A

ellipsoid, we may use those already given in solving a few problems.

1 **/ Find the locus of a point when the perpendicularfrom the centre on

its polar plane is of constant length.

If w be the vector of the point, the polar plane is

Spfyvr = 1,

and the length of the perpendicular from is ^— (§208).

Hence the required locus is

T<f>vr = C,

or S^2^=-C2
i

a concentric ellipsoid, with its axes in the same direction as those

of the first. By § 257 its Cartesian equation is

xl + t + *. - C2

J 259.] Find the locus of a point whose distance from a given point

is always in a given ratio to its distancefrom a given line.

Let p=ccfi be the given line, and A(OA= a) the given point, and

let Safi = 0. Then for any one of the required points

T(P-a) = eTF!3p,

a surface of the second order, which may be written

p
2 -2Sap+a2 = e2 (S 2(3p-{32

p
2
).

Let the centre be at b, and make it the origin, then

p
2 + 2 Sp(b-a) + (b-a) 2 =e2 {S2

.{3(p + b)-p 2
(p + b)

2
} i

and, that the first power of p may disappear,

(b -a) = e2 (/3Sj3b-(32
b),

a linear equation for b. To solve it, note that Sa(3 = 0, operate by

S.(3 and we get (1 —e2
/3

2 + e2(3
2 )S/3b = Sj3b = 0.
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or b =

Hence S - a = - e2/3
2
8,

wh
ord

l+<? 2
/3

2

ferred to this point as origin the equation becomes

hich shews that it belongs to a surface of revolution (of the second

der) whose axis is parallel to ft, as its intersection with a plane

Sj3p= a, perpendicular to that axis, lies also on the sphere

I

2 _ e2a 2 e2p 2a2

9 '" l+e 2
(3

2 (l + e2(3
2
)
2

'

In fact, if the point be the focus of any meridian section of an

blate spheroid, the line is the directrix of the same.

*/260.] A sphere, passing through the centre of an ellipsoid, is cut by

a series of spheres whose centres are on the ellipsoid and which pass

through the centre thereof; find the envelop of the planes of inter-

section.

Let {p— a) 2 = a2 be the first sphere, i.e.

p
2— 2Sap = 0.

One of the others is p
2— 2Swp = 0,

where Sn^w = 1

.

The plane of intersection is

S(vr—a)p = 0.

Hence, for the envelop, (see next Chapter,)

xSW'^sr = 0, ) , 7
, _ > where ts = dw,

oot p = 0, )

or $sr = xp, { Vx = 0},

i.e. «r = xfy^p.

Hence x2
Spc})-

1
p = 1, |

and x8p^~1
p = Sap, )

and, eliminating x}

Sp^p = (Sap) 2
,

a cone of the second order.

v'261.] From a point in the outer of two concentric ellipsoids a tan*

gent cone is drawn to the inner, find the envelop of the plane of contact.

If Ssy(\)ST = 1 be the outer, and Sp\j/p = 1 be the inner, <£ and \jr

being any two self-conjugate linear and vector functions, the plane

of contact is Szsrxj/p = 1

.

Hence, for the envelop, Sm\j/p = 0,

8v
Vp = o,

)

'<fm = 0, \
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therefore <$>& — x\\/p,

or tsr = X(P~
l
\jjp.

This gives xS.yj/p^^p = 1,

)

and x2
S.\f/p(f)~

1
\lfp = 1, )

and therefore, eliminating cc,

S.fpcf)-
1^ = I s

or S.pKJ/^-^p = I,

another concentric ellipsoid, as yjrcf)'
1^ is a linear and vector func-

tion = ^ suppose ; so that the equation may be written

SPXp= 1.

^262.] Find the locus of intersection of tangent planes at the extre-

mities qf conjugate diameters.

If a, ft, y be the vector semi-diameters, the planes are

Svn^ft= — \,
[

with the conditions § 257.

Hence — ^S.-tyatyft^y = \^ct = yj/a + yl/ft + yj/y, by § 92,

therefore T\j/vj — \/3,

since x/m, yj/ft, yj/y form a rectangular system of unit-vectors.

This may also evidently be written

&sn/r2cr = - 3,

shewing that the locus is similar and similarly situated to the given

ellipsoid, but larger in the ratio \/3 : 1.

^263.] Find the locus of the intersection of three spheres whose dia-

meters are semi-conjugate diameters of an ellipsoid.

If a be one of the semi-conjugate diameters

Sa$2a=-l.
And the corresponding sphere is

p
2 -Sap = 0,

or p
2
—S\jra\l/~

1
p — 0,

with similar equations in ft and y. Hence, by § 92,

and, taking tensors, Tyj/^p = \/3Tp2
,

or ^-1p"1 =V3,
or, finally, Sp\j/~2p = — 3p4

.

This is Fresnel's Surface of Elasticity in the Undulatory Theory.

4 264.] Before going farther we may prove some useful properties

of the function <£ in the form we are at present using—viz.

iSip jSjp JcSJcp
<
t,p = ^- + -^ +

c-



265.] SURFACES OF THE SECOND ORDER. 143

kWe
have p = —iSip—jSjp—kSkp,

and it is evident that

H

^ a2 &=-&' **=-^

[ence 9P~ a* ~~ b* ~ c* _

Also

and so on.

(^r
1
p — aHSip + b 2jSjp + c2kSkp

ai

But as

we have

Again

Again, if a, /3, y be any rectangular unit-vectors

Sacpa
(8Uf (fa)_

2 (Skaf
*>2 + „2F

fee. = &c.

{8ip) 2 + {8jp)
2 + {8kp) 2 =-p2

)

Safya + 6J3^9 + Sycpy
b*

4Sia iSi/3 -iSiy

«#^y-A03?+...)C3r+ -)(?+.,.)

&q
tf
2

tf
2

$q
6 2

b 2

b2

Ska

T2
"

Skp

I2
'

Sky

a 2b 2
c'

Sia, Sja, Ska

Sip, Sj(3, Sk/3

Sly, Sjy, Sky

= +
1

a 2 b 2 c2

And so on. These elementary investigations are given here for the

benefit of those who have not read Chapter V. The student may
easily obtain all such results in a far more simple manner by means

of the formulae of that Chapter.

N 265.] Find the locus of intersection of a rectangular system of three

tangents to a,n ellipsoid.

Ifw be the vector of the point of intersection, a, /3, y the tangents,

then, since Tn + xa should give equal values of x when substituted in

the equation of the surface, giving

S(tsr + Xa) <!)(-& + xa) = 1

,

or x2Sa(pa + 2xS&<j)a + (SurQw— 1 ) = 0,

we have (Sxrtya)
2 = Sa^a (<SW<£ct— 1).

Adding this to the two similar equations in ft and y

(&wfrcr)
a + (#/3<K)

2 + (Sy<f>*r)
2 = (Sa(}>a + Sfiffl + Sytyy) {Sur^- 1 ),
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or -faf = (I + i + I) (8w**-l),

an ellipsoid concentric with the first.

266.] If a rectangular system of chords be drawn through any point

within an ellipsoid, the sum of the reciprocals of the rectangles under

the segments into which they are divided is constant.

With the notation of the solution of the preceding* problem, -cr

giving the intersection of the vectors, it is evident that the product

of the values of x is one of the rectangles in question taken nega-

tively.

Hence the required sum is

1 1_ 1

ZSacfxx a^
+

b*
+

c2

Sm<pnr—

1

Suj<$>-gt—

1

This evidently depends on Ssrcfysr only and not on the particular

directions of a, j3,y: and is therefore unaltered if ot be the vector

of any point of an ellipsoid similar, and similarly situated, to the

given one. [The expression is interpretable even if the point be

exterior to the ellipsoid.]

267.] Shew that if any rectangular system of three vectors be drawn

/ from a point of an ellipsoid, the plane containing their other extremities

passes through a fixed point. Find the locus of the latter point as the

former varies.

With the same notation as before, we have

SarcjyGT = 1,

and S (&+ x a) $ fa + xa) = 1
;

. , P 2Sad)zr
therefore x — - ^ •

oacfia

Hence the required plane passes through the extremity of

Sacpvr

Sa(f)a

and those of two other vectors similarly determined. It therefore

passes through the point whose vector is

Sa(pa+ /S(3(j)j3 + Sy<py

Thus the first part of the proposition is proved.

or = OT+^ (§173).
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me
_1

But wc have also w = — (</> h—-\ $,2^2
whence by the equation of the ellipsoid we obtain

the equation of a concentric ellipsoid.

268.] Find the directions of the three vectors which are parallel to

a set of conjugate diameters in each of two central surfaces of the second

degree.

Transferring the centres of both to the origin, let their equations

be %=lorO ;
|

and Spjtp= 1 orO.) {)

If a, p, y be vectors in the required directions, we must have (§254)

Safyfi = 0, Saxlfp = 0, \

S{3<j>y = 0, S{3fy=0A (2)

Sycf)a = 0, Sy\j/a — 0. )

From these equations <£a
||
F(3y

\\
\j/a, &c.

Hence the three required directions are the roots of

V.<t>rtp=0 (3)

This is evident on other grounds, for it means that if one of the

surfaces expand or contract uniformly till it meets the other, it will

touch it successively at points on the three sought vectors.

We may put (3) in either of the following forms

—

or F. Pf-
1
(f)p=0,)

* ;

and, as
<f>

and \js are given functions, we find the solutions by the

processes of Chapter V.

\_Note. As
(f>~

1^ and yj/~1
cf) are not, in general, self-conjugate

functions, equations (4) do not signify that a, /3, y are vectors parallel

to the principal axes of the surfaces

S.pcf)-
1^ = 1, S.pxjr- 1^ = 1.

In these equations it does not matter whether </>

_1
v/f is self-conjugate

or not ; but it does most particularly matter when they are differ-

entiated, so as to find axes, &c]
Given two surfaces of the second degree, there exists in general a set

of Cartesian axes, whose directions are those of conjugate diameters in

every one of the surfaces of the second degree passing through the inter-

section of the two surfaces given.

L
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For any surface through the intersection of

Sp<f)p = 1 and 8(p—a)\j/(p— a) = e,

is /Sp(j)p-S(p-a)\jf(p-a) =f-e,
where/ and e are scalars.

The axes of this depend only on the term

8p(f<t>-^)p-
Hence the set of conjugate diameters which are the same in all are

the roots of

7(ft-ld P (fit-*) P=°, ^ P<MrP =0,
as we might have seen without analysis.

The locus of the centres is given by the equation

W-Mp-*« = 0,

where/" is a scalar variable.

269.] Find the equation of the ellipsoid of which three conjugate

K^ semi-diameters are given.

\\ J Let the vector semi-diameters be a, /3, y, and let

Sp(f>p = 1

be the equation of the ellipsoid. Then (§ 255) we have

Sa<f)a = 1, SaxfrP = 0,

0/30/3=1, ^y = 0,

Sycfyy = 1, Sycpa = ;

the six scalar conditions requisite (§ 139) for the determination of

the linear and vector function
<f>.

They give a
||
T0/30y,

or xa = cf)-
1 Vpy.

Hence x = scScupa = S.apy,

and similarly for the other combinations. Thus, as we have

pS.afiy = aS.fiyp + pS.yap -f yS.afip,

we find at once

cfipSZ.aPy = VPyS.pyp + FyaS.yap + VapS.aPp;

and the required equation may be put in the form

SKapy = S2 .app + S2
.pyp + S2 .yap.

The immediate interpretation is that iffour tetrahedra beformed by

grouping•, three and three , a set of semi-conjugate vector axes of an

ellipsoid and any other vector of the surface, the sum of the squares of

3 the volumes of three of these tetrahedra is equal to the square of the

volume of thefourth.
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«

b

270.] When the equation of a surface of the second order can be

put in the form Sp(j>~ 1
p = 1 , (1)

where (<f>-g) W>-ft) W>-<72)
= 0,

we know that g, gx , g2
are the squares of the principal semi-diameters.

Hence, if we put
(f>
+ h for cf> we have a second surface, the differ-

ences of the squares of whose principal semiaxes are the same as for

the first. That is, Sp^ + h^p = 1 (2)

is a surface confocal with (1). From this simple modification of the

equation all the properties of a series of confocal surfaces may easily

be deduced. We give one as an example.

271.] Any two confocal surfaces of the second order, which meet,

intersect at right angles.

For the normal to (2) is, evidently,

(4,+iyyi
and that to another of the series, if it passes through the common
point whose vector is p, is there

But S.it +hr^ +h^p = S.p^^^p

and this evidently vanishes if h and h
x
are different, as they must be

unless the surfaces are identical.

272.] To find the conditions of similarity of two central surfaces

of the second order.

Referring them to their centres, let their equations be

Sptyp = l/>

**'p=M [1)

Now the obvious conditions are that the axes of the one are pro-

portional to those of the other. Hence, if

g*+m2g
2 + m

x g +^= 0, )

/ 8 +</a +^1/+»'=o,J W
be the equations for determining the squares of the reciprocals of

the semiaxes, we must have

— = f*j —- = M, — = jU
3

, (3)m2 m
l

m v '

where \k is an undetermined scalar. Thus it appears that there are

but two scalar conditions necessary. Eliminating \k we have

'I _ m\ m'm'
2 _ m'\

(| % mm
2 m\mm,

which are equivalent to the ordinary conditions.

L %

» W
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*Y$*~
X 273.] Find the greatest and least semi-diameters of a centralplane

'section of an ellipsoid.

Here Spfp = 1)

SaP =o] W
together represent the elliptic section ; and our additional condition

is that Tp is a maximum or minimum.

Differentiating the equations of the ellipse, we have

S(ppdp = 0,

Sadp = 0,

and the maximum condition gives

dTp = 0,

or Spdp — 0.

Eliminating the indeterminate vector dp we have

S.apcf)p = (2)

This shews that the maximum or minimum vector, the normal at its

extremity, and the perpendicular to the "plane of section, lie in one

plane. It also shews that there are but two vector-directions which

satisfy the conditions, and that they are perpendicular to each other,

for (2) is satisfied if ap be substituted for p.

We have now to solve the three equations (1) and (2), to find the

vectors of the two (four) points in which the ellipse (1) intersects

the cone (2). We obtain at once

cf)p = xF.(f)~
1 aVap.

Operating by S.p we have

,
1 = xp2

Sacf)~
1
a.

Hence ' ,**.,-,g£j5

or >-t£Sa-*^. (3)

from which S.a(l —p
2(p)-

1a = 0; (4)

a quadratic equation in p
2

, from which the lengths of the maximum
and minimum vectors are to be determined. By § 147 it may be

written mp*Sa4>-1a—p28.a(m
2
— <l>)a+a

2 = (5)

[If we had operated by S.cf>-
1a or by S.<p~ 1

p, instead of by S.p,

we should have obtained an equation apparently different from this,

but easily reducible to it. To prove their identity is a good exercise

for the student.]

Substituting the values of p
2 given by (5) in (3) we obtain the

vectors of the required diameters. [The student may easily prove

directly that (1 —p\ <f>)-i a and (1 —pity)-
1 a
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V>

are necessarily perpendicular to each other, if both be perpendicular

to a, and if p\ and pf be different. See § 271.]

s
274.] By (5) of last section we see that

rf^-mSa^a
Hence the area of the ellipse (1) is

ttTo.

</

\/—m&a<\rxa

Also the locus of normals to all diametral sections of an ellipsoid,

whose areas are equal, is the cone

dty-'a = Co2
.

When the roots of (5) are equal, i.e. when

(m2a
2 —Satya)2 — 4 ma2Satyr 1

a, , (6)

the section is a circle. It is not difficult to prove that this equation

is satisfied by only two values of Ua, but another quaternion form

of the equation gives the solution of this and similar problems by

inspection. (See § 275 below.)

275.] By § 168 we may write the equation

8p4>p = 1

in the new form S.\pp.p + pp
2 = 1,

where p is a known scalar, and A and p. are definitely known (with

the exception of their tensors, whose product alone is given) in

terms of the constants involved in <$>. [The reader is referred again

also to §§ 121, 122.] This may be written

2S\pSp.p + (p-Skp)p2 = 1 (1)

From this form it is obvious that the surface is cut by any plane

perpendicular to A or p. in a circle. For, if we put

Sxp = a,

we have 2aSp.p + {p— S\p<) p
2 = 1

,

the equation of a sphere which passes through the plane curve of

intersection.

Hence A and p. of § 168 are the values of a in equation (6) of the

preceding section.

276.] Any two circular sections of a central surface of the second

order\ whose planes are not parallel, lie on a sphere.

For the equation (Skp—a) (Sp.p— b) = 0,

where a and b are any scalar constants whatever, is that of a

system of two non-parallel planes, cutting the surface in circles.

Eliminating the product S\pSp.p between this and equation (1) of

last section, there remains the equation of a sphere.
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277.] Tofind the generating lines of a central surface of the second

order.

Let the equation be Spcpp = 1
;

then, if a be the vector of any point on the surface, and m a vector

parallel to a generating line, we must have

p = a + X'Gj

for all values of the scalar x.

Hence 8 (a + xw)
<fi

(a + #sr) = 1

,

which gives the two equations

Sacpvr = 0,

}

Sz!J(f)ZJ = 0. )

The first is the equation of a plane through the origin parallel to

the tangent plane at the extremity of a, the second is the equation

of the asymptotic cone. The generating lines are therefore parallel

to the intersections of these two surfaces, as is well known.

From these equations we have

yfy-m = Vat?

where y is a scalar to be determined. Operating on this by S./3 and

S.y, where (3 and y are any two vectors not coplanar with a, we have

fe(^/3+ra/3) = 0, iSW(^y-rya) = (1)

Hence S.fya (j<j>fi + Fa/3) (y4>y— Vya) = 0,

or m,y2S.afiy—Sa(t)aS.afiy = 0.

Thus we have the two values

* —^m — ^

m

belonging to the two generating lines.

278.] But by equation (1) we have

ZW = V. (y^ + Vafi) (ycf>y- Vya)

= my 2 4r 1 FPy + yF.<l>arpy—aJ8.aFpy
;

which, according to the sign of y, gives one or other generating

line.

Here Vfiy may be any vector whatever, provided it is not per-

pendicular to a (a condition assumed in last section), and we may
write for it 6.

Substituting the value ofy before found, we have

ztv = (b^d— aSaO -}- *J— Fcbad,~ ^ m
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or, as we may evidently write it,

=z(f>-
1 (r.aFct>ae)± s/—r(f>ae (2)

lib

Put t = F(j>a0,

and we have zm = cb' 1 Var + *J— r,

with the condition Sr<f>a = 0.

[Any one of these sets of values forms the complete solution of the

problem ; but more than one have been given, on account of their

singular nature and the many properties of surfaces of the second

order which immediately follow from them. It will be excellent

practice for the student to shew that

is an invariant. This may most easily be done by proving that

V.^HG\ — ° identically.]

Perhaps, however, it is simpler to write a for F/3y, and we thus

obtain . _ , _ rr J _ / 1 Tr ,zuT=—(b v VaVa<ba + »J— racba.^ m
[The reader need hardly be reminded that we are dealing with the

general equation of the central surfaces of the second order—the

centre being origin.]

EXAMPLES TO CHAPTER VIII.

>J 1 . Find the locus of points on the surface

Sp(f>p = 1

where the generating lines are at right angles to one another.

>f2. Find the equation of the surface described by a straight line

which revolves about an axis, which it does not meet, but with

which it is rigidly connected.

3. Find the conditions that

Sptfyp = 1

may be a surface of revolution, with axis parallel to a given vector.

4. Find the equations of the right cylinders which circumscribe

a given ellipsoid.

5. Find the equation of the locus of the extremities of perpen-

diculars to central plane sections of an ellipsoid, erected at the
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centre, their lengths being the principal semi-axes of the sections.

[Fresnel's Wave-Surface. See Chap. XI.]

6. The cone touching central plane sections of an ellipsoid, which

are of equal area, is asymptotic to a confocal hyperboloid.

7. Find the envelop of all non-central plane sections of an ellip-

soid whose area is constant.

8. Find the locus of the intersection of three planes, perpendicular

to each other, and touching, respectively, each of three confocal

surfaces of the second order.

9. Find the locus of the foot of the perpendicular from the centre

of an ellipsoid upon the plane passing through the extremities of a

set of conjugate diameters.

10. Find the points in an ellipsoid where the inclination of the

normal to the radius-vector is greatest.

1 1

.

If four similar and similarly situated surfaces of the second

order intersect, the planes of intersection of each pair pass through

a common point.

12. If a parallelepiped be inscribed in a central surftice of the

second degree its edges are parallel to a system of conjugate dia-

meters.

13. Shew that there is an infinite number of sets of axes for which

the Cartesian equation of an ellipsoid becomes

x2 +y2 -M2 = e2 .

14. Find the equation of the surface of the second order which

circumscribes a given tetrahedron so that the tangent plane at each

angular point is parallel to the opposite face; and shew that its

centre is the mean point of the tetrahedron.

15. Two similar and similarly situated surfaces of the second

order intersect in a plane curve, whose plane is conjugate to the

vector joining their centres.

16. Find the locus of all points on

Spcfyp = 1

,

where the normals meet the normal at a given point.

Also the locus of points on the surface, the normals at which

meet a given line in space.

17. Normals drawn at points situated on a generating line are

parallel to a fixed plane.

18. Find the envelop of the planes of contact of tangent planes

drawn to an ellipsoid from points of a concentric sphere. Find the

locus of the point from which the tangent planes are drawn if the

envelop of the planes of contact is a sphere.
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19. The sum of the reciprocals of the squares of the perpendiculars

from the centre upon three conjugate tangent planes is constant.

20. Cones are drawn, touching an ellipsoid, from any two points

of a similar, similarly situated, and concentric ellipsoid. Shew that

they intersect in two plane curves.

Find the locus of the vertices of the cones when these plane sec-

tions are at right angles to one another.

21. Find the locus of the points of contact of tangent planes

which are equidistant from the centre of a surface of the second'

order.

22. From a fixed point A, on the surface of a given sphere, draw

any chord AB ; let B' be the second point of intersection of the

sphere with the secant BB drawn from any point B ; and take a

radius vector AE, equal in length to BB'', and in direction either

coincident with, or opposite to, the chord AB : the locus ofE is an

ellipsoid, whose centre is A, and which passes through B. (Hamilton,

Elements, p. 227.)

23. Shew that the equation

l*(e*—l) (e + Saa') = (Sap) 2 -2eSapSa'p+ (Sa'p) 2 -f-(l-*2
) p

2
}

where e is a variable (scalar) parameter, and a, a unit-vectors, repre-

sents a system of confocal surfaces. {Ibid. p. 644.)

24. Shew that the locus of the diameters of

Sp<f)p = 1

which are parallel to the chords bisected by the tangent planes to

the cone Spxjrp =
is the cone S.pcf>ylr~

1
(f)p
= 0.

25. Find the equation of a cone, whose vertex is one summit of

a given tetrahedron, and which passes through the circle circum-

scribing the opposite side.

26. Shew that the locus of points on the surface

Sp4>p = l,

the normals at which meet that drawn at the point p= ct, is on the

cone S.(p—w)4*r4>j>=: 0.

27. Find the equation of the locus of a point the square of whose

distance from a given line is proportional to its distance from a

given plane.

28. Shew that the locus of the pole of the plane

Sap = I,

with respect to the surface

Sp<f>p = 1,
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is a sphere, if a be subject to the condition

Sa(\>~2a = C.

29. Shew that the equation of the surface generated by lines

drawn through the origin parallel to the normals to

/Sp0
_1

p = 1

along its lines of intersection with

£P (<H£rv= i,

is m 2—kSmi^ + k)- 1™ = 0.

30. Common tangent planes are drawn to

2SKpSixp + (p— SXp) p
2 = 1 , and Tp = h,

find the value of h that the lines of contact with the former surface

may be plane curves. What are they, in this case, on the sphere ?

Discuss the case of p 2 — S 2
\p. = 0.

31. If tangent cones be drawn to

from every point of Spcf>p = 1,

the envelop of their planes of contact is

Spc})
zp= 1.

32. Tangent cones are drawn from every point of

S(p-a)4>(p-a) = n 2
,

to the similar and similarly situated surface

Sp4>P = l,

shew that their planes of contact envelop the surface

(Sc«t>p-l) 2 =:n2
Sp(l>p.

33. Find the envelop of planes which touch the parabolas

p = at2 + (3t, p = ar2 + yr,

where a, (3, y form a rectangular system, and t and r are scalars.

34. Find the equation of the surface on which lie the lines of

contact of tangent cones drawn from a fixed point to a series of

similar, similarly situated, and concentric ellipsoids.

35. Discuss the surfaces whose equations are

SapSfip = Syp,

and S2ap + S.al3p=: 1.

36. Shew that the locus of the vertices of the right cones which

touch an ellipsoid is a hyperbola.

37. If a1? a2 , a3 be vector conjugate diameters of

Spcpp = 1,

where $
3—m

2 <f>

2 +%$—m= 0,

shew that S(o2)=- 1
, 2 (Fa^) 2 = --2

, S2 .a
x
a
2
a- = - — ,

and 2( (/m) 2 as m2 .



CHAPTER IX.

GEOMETRY OP CURVES AND SURFACES.

279.] We have already seen (§31 (I)) that the equations

p = <!>( = S.afit),
'

and p = <p{t} u) = 2.q/'(^, u),

where a represents one of a set of given vectors, and/* a scalar func-

tion of scalars t and u, represent respectively a curve and a surface.

We commence the present too brief Chapter with a few of the im-

mediate deductions from these forms of expression. We shall then

give a number of examples, with little attempt at systematic devel-

opment or even arrangement.

280.] What may be denoted by t and u in these equations is, of

course, quite immaterial : but in the case of curves, considered

geometrically, t is most conveniently taken as the length, s, of the

curve, measured from some fixed point. In the Kinematical in-

vestigations of the next Chapter t may, with great convenience, be

employed to denote time.

281.] Thus we may write the equation of any curve in space as

P = <t*>

where <p is a vector function of the length, s, of the curve. Of

course it is only a linear function when the equation (as in § 31 (I))

represents a straight line.

282.] We have also seen (§§ 38, 39) that

dp d .

is a vector of unit length in the direction of the tangent at the ex-

tremity of p.

At the proximate point, denoted by s+ §s, this unit tangent vector

becomes tfs + </>"«? hs + &c.
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But, because Tfy's = 1,

we have S. (/>'<? <f>"s = 0.

Hence (}>"s is a vector in the osculating plane of the curve, and per-

pendicular to the tangent.

Also, if hd be the angle between the successive tangents cf/s and

cf)'s -f cp"s bs + , we have

<Z = *r 81

so that the tensor of <jf's is the reciprocal of the radius of absolute

curvature at the point s.

283.] Thus, if OP = cf>s be the vector of any point P of the

curve, and if C be the centre of curvature at P, we have

<p s

and thus OC = cf>s
—

<P s

is the equation of the locus of the centre of curvature.

Hence also V.<\fs eft's or <f/s<})"s

is the vector perpendicular to the osculating plane ; and

is the tortuosity of the given curve, or the rate of rotation of its

osculating plane per unit of length.

284.] As an example of the use of these expressions let us find

the curve whose curvature and tortuosity are both constant.

We have curvature = T<j>"s = Tp"= c.

Hence fiscf/'s = p'p"= ca,

where a is a unit vector perpendicular to the osculating plane. This

PP +p *=zc\— = cc
l
Up =clP ,

if c
x
represent the tortuosity.

Integrating we get
py- Clp'+ p, (1)

where (3 is a constant vector. Squaring both sides of this equation,

we get - C2 _ C 2_ /3
2 _ 2 Cispp

'

= -c{-p
(for by operating with S.p upon (1) we get +c

t
= #/3//),

or T{3 = vWcf.
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Multiply (1) by p, remembering that

TP'= l,

and we obtain — p"= — c
x + pp}

or, by integration, p'= c^s— p(3 + a, (2)

where a is a constant quaternion. Eliminating p', we have

I—
p"= — c

x+ wP—pP 2 + ap,

f which the vector part is

(f'—ppP-z—CiSP—rap.

?he complete integral of this equation is evidently

p = $cos.sTp + r
l
sin.sTp-—^(e

l
sp+Vap), (3)

and f] being any two constant vectors. We have also by (2),

Spp = c
x
8 + Sa,

diich requires that Sp£ = 0, Spr) = 0.

The farther test, that Tp'= 1, gives us

- 1 = 2j3
2
(£

2sin2
. sTp+ ij

2cos 2
. sTp- 2 flfrsin . sTpcos . sTp)- -~^-

c -jr c
1

This requires,, of course,

8(71 = 0, T£=Tr
1

c2 + c2
'

so that (3) becomes the general equation of a helix traced on a right

cylinder. (Compare § 31 (m).)

285.] The vector perpendicular from the origin on the tangent

to the curve « = &$

is, of course, -, Vp'p, or p'Ypp'

(since p is a unit vector).

To find a common property of curves w/iose tangents are all equi-

distantfrom the origin.

Here TVpp'= c,

which may be written —p 2 -~S2pp'= c 2 (1)

This equation shews that, as is otherwise evident, every curve on

a sphere whose centre is the origin satisfies the condition. For ob-

viously —p2 --c2 gives Spp'= 0,

and these satisfy (1).

If Spp' does not vanish, the integral of (1) is

V'Tp2 —c*=8, (2)

an arbitrary constant not being necessary, as we may measure s

from any point of the curve. The equation of an involute which

commences at this assumed point is

vr = p— sp '

.
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This gives Tv2 = TP2 + s2 + 2 sSPP
'

= TP 2 +s2-2sVTp2-c2
, by(l),

= c\ by (2).

This includes all curves whose involutes lie on a sphere about the origin.

286.] Find the locus of the foot of the perpendicular drawn to a

tangent to a right helixfrom, a point in the axis.

The equation of the helix is

p = a cos—|- B sin—\- ys,
a a '

where the vectors a, (3, y are at right angles to each other, and

Ta = T{3 = b, while aTy = Va2-b2
.

The equation of the required locus is, by last section,

w = pVpp

, s a2 —b2
. S\ •/. s a2— b2 S\ b 2

= a (cos- -\ ^— asm-) + /3{sm 5— scos-)4- y-^-s.
V a a3 a J \ a as a / a 2

This curve lies on the hyperboloid whose equation is

&av+S*P*r-a*S*yw = b\

as the reader may easily prove for himself.

287.] To find the least distance between consecutive tangents to a

tortuous curve.

Let one tangent be ot = p+ xp',

then a consecutive one, at a distance bs along the curve, is

bs2 bs2

CT = p4-p^ + p
,'_ + &c. +^(p' + p"8*+ p'"— +...).

The magnitude of the least distance between these lines is, by

§§203,210,

S.(p'k + P"g +p'"^+ ..)UV.p'(P
'+ p"hs+ p'"

h

^-
2
+ ...)

-j^S.ppp

TVP'p"hs
if we neglect terms of higher orders.

It may be written, since p'p" is a vector, and Tp — 1,

b±s.wrP
'

P
'".

But
(§1 33 ( 2))

b-^^r r
r̂
s = p-2P's.P

'

Py'

Hence ^S.Up'Vp'p'"
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is the small angle, 8$, between the two successive positions of the

osculating plane. [See also § 283.]

Thus the shortest distance between two consecutive tangents is

expressed by the formula hQhs2

12r
'

where r, = 7fr7? , is the radius of absolute curvature of the tortuous

curve.

288.] Let us recur for a moment to the equation of the parabola

(§31(/0) , M2

Here p'= (a + ftt) j,

whence, if we assume Saj3 = 0,

ds

from which the length of the arc of the curve can be derived in

terms of t by integration.

d2
t dt\ 2

Again, p"= (a+ffl^ + /9 (^) .

dH_d_ _l_ dt S.pja+ pt)

ds*
~ ds

' T(a + fit)
~ +

ds T(a + fitf

'

„ (a + fit)Vafi
HenCG P =~ T(a +W '

and therefore, for the vector of the centre of curvature we have

(§ 283), ^ _ ^ +
fit? _(a2

+j32^2( -/3a2 + a/32Q-^
m

3t2 a2
x *

3
/3

2
.

which is the quaternion equation of the evolute.

289.] One of the simplest forms of the equation of a tortuous

curve is fit
2 yt z

where a, fi, y are any three non-coplanar vectors, and the numerical

factors are introduced for convenience. This curve lies on a para-

bolic cylinder whose generating lines are parallel to y ; and also on

cylinders whose bases are a cubical and a semi-cubical parabola,

their generating lines being parallel to fi and a respectively. We
have by the equation of the curve

/ ~. yt2 \ dt
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from which, by 2//=l, the length of the curve can be found in

terms of t ; and

from which p" can be expressed in terms of s. The investigation

of various properties of this curve is very easy, and will be of great

use to the student.

[Note.—It is to be observed that in this equation t cannot stand

for 8, the length of the curve. It is a good exercise for the student

to shew that such an equation as

p = a5 + /35
2 + y*

3
,

or even the simpler form

p = a$ + /3s
2

,

involves an absurdity.]

290.] The equation p = <£'«,

where <£ is a given self-conjugate linear and vector function, t a

scalar variable, and e an arbitrary vector constant, belongs to a

curious class of curves.

We have at once — = 4/ log $e,

where log$ is another self-conjugate linear and vector function,

which we may denote by x- These functions are obviously commu-
tative, as they have the same principal set of rectangular vectors,

hence we may write gp
dt

~= XP>

which of course gives
d2

p

dt2
"= X

2
P> &c j

since x does n°t involve t.

As a verification, we should have

C}>
t + St

€ = dp
p + di

bt2

]L2
+ &c.

(1 + 8
u2

x
2 -f

1.2

= e
st*

Pi

where e is the base of Napier's Logarithms.

This is obviously true if 4>
st = e

s%
or

(f>
= ex,

or log = Xi

which is our assumption.

[The above process is, at first sight, rather startling, but the
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student may easily verify it by writing1

, in accordance wjth the

results of Chapter V,

<t>
€ = —9\ aSae-g^Sfie-gzySye,

whence <£*e = —g{aSa€—g^SjSe—fflySye.

He will find at once

X* = —log^aSae-logfaPSpe— logfoySye,

and the results just given follow immediately.]

291.] That the equation

p = (i>{t,u) = 2.af(t,u)

represents a surface is obvious from the fact that it becomes the

equation of a definite curve whenever either t or u has a particular

value assigned to it. Hence the equation at once furnishes us with

two systems of curves, lying wholly on the surface, and such that

one of each system can, in general, be drawn through any assigned

point on the surface. Tangents drawn to these curves at their

point of intersection must, of course, lie in the tangent plane, whose

equation we have thus the means of forming.

292.] By the equation we have

where the brackets are inserted to indicate partial differential coeffi-

cients. If we write this as

dp =
<f/t

dt -f (j)'u du,

the normal to the tangent plane is evidently

and the equation of that plane

293.] As a simple example, suppose a straight line to move along

a fixed straight line, remaining always perpendicular to it, while

rotating about it through an angle proportional to the space it has

advanced ; the equation of the ruled surface described will evidently

be p = at+ u ((3 cos t+ ysmt), (1)

where a, /3, y are rectangular vectors, and

T/3 = Ty.

This surface evidently intersects the right cylinder

p = a (j3 cos t + y sin t)+ va,

in a helix (§§ 31 {m), 284) whose equation is

p — at + a (fi cos t -f y sin t).

These equations illustrate very well the remarks made in §§31 (Q, 291

M



162 QUATERNIONS. [294.

as to tfre curves or surfaces represented by a vector equation ac-

cording as it contains one or two scalar variables.

From (1) we have

dp = [a— u (j3 sin t— y cos t)~\ clt -f- (/3 cos t + y sin t) du,

so that the normal at the extremity of p is

Ta (y cos t-fi sin t)-uT^ Ua.

Hence, as we proceed along a generating line of the surface, for

which t is constant, we see that the direction of the normal changes.

This, of course, proves that the surface is not developable.

294.] Hence the criterion for a developable surface is that if it

be expressed by an equation of the form

p = <pt + U\j/t,

where cj>t and \frt are vector functions, we must have the direction of

the normal V{tft + uxj/'t} ^t
independent of u.

This requires either V^ttft = 0,

which would reduce the surface to a cylinder, all the generating

lines being parallel to each other ; or

V^t^t = 0.

This is the criterion we seek, and it shews that we may write, for a

developable surface in general, the equation

p = (j)t + U(f)'t (1)

Evidently p = <pt

is a fcurve (generally tortuous) and <\>t is a tangent vector. Hence

a developable surface is the locus of all tangent lines to a tortuous

curve.

Of course the tangent plane to the surface is the osculating plane

at the corresponding point of the curve ; and this is indicated by

the fact that the normal to (1) is parallel to

Vtfttf't.. (See §283.)

To find theform of the section of the surface made by a normal plane

through a point in the curve.

The equation of the surface is

s2

ct = p + sp'+—-p" + &c.+a?(p'+s//'+ &c.).

The part ofw— p which is parallel to p' is

-p>S(er-P)p'=-p'(-(S+x)-p"*(^ +$ + ...);

therefore OT-P = Jp'+ (y+») p"-(T + y) p'FPy +
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And, when A= 0, i.e. in the normal section, we have approximately

X = — 8,

so that w— p =—— p"—— p Vpp f
\

Hence the curve has an equation of the form

o- = $2a-M3
/3,

a semicubical parabola.

295.] A Geodetic line is a curve drawn on a surface so that its

osculating plane at any point contains the normal to the surface.

Hence, if v be the normal at the extremity of p, p and p" the first

and second differentials of the vector of the geodetic,

S.vp'p"= 0,

which may be easily transformed into

V.vdUp'= 0.

296.] In the sphere Tp = a we have

v
II P,

hence S.pp'p"= 0,

which shews of course that p is confined to a plane passing through

the origin, the centre of the sphere.

For a formal proof, we may proceed as follows

—

The above equation is equivalent to the three

SBp = 0, S0P'= 0, S0p"= 0,

from which we see at once that is a constant vector, and therefore

the first expression, which includes the others, is the complete in-

tegral.

Or we may proceed thus

—

= - pS.pp'p"+ p"S.p2p'= V.Vpp'Vpp"= VTpp'dVpp',

whence by § 133 (2) we have at once

JJVpp=- const. = 6 suppose,

which gives the same results as before.

297.] In any cone we have, of course,

Svp = 0,

since p lies in the tangent plane. But we have also

Svp'= 0.

Hence, by the general equation of § 295, eliminating v we get

= S.pp'Vp'p"= SpdUp' by § 133 (2).

Integrating C = SpUp'-jSdpUp'= SpUp' +jTdp.

The interpretation of this is, that the length of any arc of the geo-

detic is equal to the projection of the side of the cone (drawn to its

m %
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extremity) upon the tangent to the geodetic. In other words, when

the cone is developed the geodetic becomes a straight line. A similar

result may easily be obtained for the geodetic lines on any develop-

able surface whatever.

298.] To find the shortest line connecting two points on a given

surface.

Here / Tdp is to be a minimum, subject to the condition that dp

lies in the given surface.

Now hJTdp =JbTdP =-/^^ = -fs. Udpdhp

= -[S. Udphp-] +Js.hpdUdp i

where the term in brackets vanishes at the limits, as the extreme

points are fixed, and therefore bp = 0.

Hence our only conditions are «

/<S.bpdUdp = 0, and Svbp = 0, giving

V.vdUdp — 0, as in § 295.

If the extremities of the curve are not given, but are to lie on

given curves, we must refer to the integrated portion of the ex-

pression for the variation of the length of the arc. And its form

S.Udpbp

shews that the shortest line cuts each of the given curves at right

angles.

299.] The osculating plane of the curve

p = <t>t

is S4't4>"t{v-p) = 0, (1)

and is, of course, the tangent plane to the surface

p = (Jyt+ ucf/t (2)

Let us attempt the converse of the process we have, so far, pursued,

and endeavour to find (2) as the envelop of the variable plane (1).

Differentiating (1) with respect to t only, we have

S.<t>'cp'"(er-p) = 0.

By this equation, combined with (1), we have

T3-p\\v.v<w'r<W"\\V,
or zj = p+ u<f>'= + lift',

which is equation (2).

300.] This leads us to the consideration of envelops generally,

and the process just employed may easily be extended to the problem
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of finding the envelop of a series of surfaces whose equation contains

one scalar parameter.

When the given equation is a scalar one, the process of finding

the envelop is precisely the same as that employed in ordinary

Cartesian geometry, though the work is often shorter and simpler.

If the equation he given in the form

p = \fr(t, u, v),

where \jr is a vector function, t and u the scalar variahles for any

one surface, v the scalar parameter, we have for a proximate surface

Pi = ^Ol>%,*>i) = p + y\r'
t
bt+ yir'u hu + yir'v bv.

Hence at all points on the intersection of two successive surfaces

of the series we have

Vt
ht+ y\r'u hu+y\r'v hv = 0,

which is equivalent to the following scalar equation connecting the

quantities t, u, and v
;

This equation, along with

enables us to eliminate t} u, v, and the resulting scalar equation

is that of the required envelop.

301.] As an example, let us find the envelop of the osculating

plane of a tortuous curve. Here the equation of the plane is (§ 299),

S.(vr—p)<l>'t4>"t= 0,

or -sr = <\>t+ x4>'t+ y(t>"t = \j/(x,y, t),

if p = cf)t

be the equation of the curve.

Our condition is, by last section,

**.*;+''. -o,
or S4't 4>"t [0'tf + xtf't+y cf>'"t~] = 0,

or yS.(l>'t<l)"t<l>'"t = 0.

Now the second factor cannot vanish, unless the given curve
be plane, so that we must have

and the envelop is « =
(frt+ x^'t

the developable surface, of which the given curve is the edge of
regression, as in § 299.

302.] When the equation contains two scalar parameters its

differential coefficients with respect to them must vanish, and we
have thus three equations from which to eliminate two numerical
quantities.
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A very common form in which these two parameters appear in

quaternions is that of an unknown unit-vector. In this case the

problem may be thus stated

—

Find the envelop of the surface whose

scalar equation is pfp a) =
where a is subject to the one condition

Ta = 1.

Differentiating with respect to a alone, we have

Svda = 0, Sada = 0,

where v is a known vector function of p and a. Since da may have

any of an infinite number of values, these equations shew that

Vav = 0.

This is equivalent to two scalar conditions only, and these, in addi-

tion to the two given scalar equations, enable us to eliminate a.

With the brief explanation we have given, and the examples

which follow, the student will easily see how to deal with any other

set of data he may meet with in a question of envelops.

303.] Find the envelop of a plane whose distancefrom the origin is

constant.

Here Sap = —c,

with the condition Ta = 1

.

Hence, by last section, Vpa = 0,

and therefore p = ca }

or Tp = c,

the sphere of radius c, as was to be expected.

If we seek the envelop of those only of the planes which are parallel

to a given vector /3, we have the additional relation

Sap = 0.

In this case the three differentiated equations are

Spda = 0, Sada = 0, S(3da — 0,

and they give S.afip = 0.

Hence a = U.pFfip,

and the envelop is TFfip = cT(3,

the circular cylinder of radius c and axis coinciding with /3.

By putting Sa(3 = e, where e is a constant different from zero,

we pick out all the planes of the series which have a definite in-

clination to /3, and of course get as their envelop a right cone.

304.] The equation S 2ap+ 2S.a$p = 6

represents a parabolic cylinder, whose generating lines are parallel

to the vector a Va$. For the equation is of the second degree, and
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is not altered by increasing p by the vector xaVafi ; also the surface

cuts planes perpendicular to a in one line, and planes perpendicular

to Vafi in two parallel lines. Its form and position of course depend

upon the values of a, (3, and b. It is required to find its envelop if (3

and b be constant, and a be subject to the one scalar condition

tTa= 1.

he process of § 302 gives, by inspection,

pSap + F/3p = 00a.

perating by S.a, we get

S2ap+ S.a(3p= — x,

hich gives S.afip = x -\- b.

But, by operating successively by S. Fj3p and by S.p, we have

(V(3p)2 = xS.a(3p,

and (p
2 —x)Sap = 0.

Omitting, for the present, the factor Sap, these three equations give,

by elimination of x and a,

which is the equation of the envelop required.

This is evidently a surface of revolution of the fourth order whose

axis is fi ; but, to get a clearer idea of its nature, put

c2 p
_1 = OT,

and the equation becomes ( F/3ot)
2 = <?

4 + b-aj
2
,

which is obviously a surface of revolution of the second degree,

referred to its centre. Hence the required envelop is the reciprocal

of such a surface, in the sense that the rectangle under the lengths of

condirectional radii of the two is constant.

We have a curious particular case if the constants are so related

that b + fl
2 = 0,

for then the envelop breaks up into the two equal spheres, touching

• each other at the origin, p
2 = + Sj3p,

while the corresponding surface of the second order becomes the

two parallel planes S^vr = + c2 .

305.] The particular solution above met with, viz.

Sap = 0,

limits the original problem, which now becomes one of finding the

envelop of a line instead of a surface. In fact this equation, taken

in conjunction with that of the parabolic cylinder, belongs to that

generating line of the cylinder which is the locus of the vertices of

the principal parabolic sections.
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Our equations become 2S.a(3p = b,

Sap = 0,

Ta =1;
whence Vpp = xa, giving

x = — S.app = — —j

and thence TVpp = -
;

so that the envelop is a circular cylinder whose axis is /3. [It is to

be remarked that the equations above require that

Sa/3 = 0,

so that the problem now solved is merely that of the envelop of a

parabolic cylinder which rotates about its focal line. This discussion

has been entered into merely for the sake of explaining a peculiarity

in a former result, because of course the present results can be

obtained immediately by an exceedingly simple process.]

306.] The equation SapS.aPp = a2
,

with the condition Ta = 1,

represents a series of hyperbolic cylinders. It is required to find

their envelop.

As before, we have pS.aPp + VppSap — xay

which by operating by S.a, S.p, and S. Vpp, gives

2a2 =-x,
p
2S.app = as Sap,

(VpP)
2Sap=xS.app.

Eliminating a and x we have, as the equation of the envelop,

p
2 (Vpp)2 = ia\

Comparing this with the equations

P
2 =-2a\

and (Fpp) 2 = -2a2
i

which represent a sphere and one of its circumscribing cylinders,

we see that, if condirectional radii of the three surfaces be drawn

from the origin, that of the new surface is a geometric mean be-

tween those of the two others.

307.] Find the envelop of all spheres which touch one given line

and have their centres in another.

Let p = p+ yy
be the line touched by all the spheres, and let xa be the vector of

the centre of any one of them, the equation is (by § 200, or § 201)

y»(p-«.)*=-(r.y08-*o))",
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or, putting for simplicity, but without loss of generality,

Ty=l, Sa(3 = 0, S(3y = 0,

so that /3 is the least vector distance between the given lines,

(p-xa) 2 = (P-xa)2 + x2S2ay,

and, finally, p
2 —

fi
2 — 2x Sap = x2 S2ay.

Hence, by § 300, — 2Sap = 2xS2ay.

[This gives no definite envelop if

Say = 0,

i.e. if the line of centres is perpendicular to the line touched by all

the spheres.]

Eliminating %, we have for the equation of the envelop

S 2ap + S 2ay{p 2-p2
) = 0,

which denotes a surface of revolution of the second degree, whose

axis is a.

Since, from the form of the equation, Tp may have any magnitude

not less than T(3, and since the section by the plane

Sap =
is a real circle, on the sphere

p
2 -(3 2 = 0,

the surface is a hyperboloid of one sheet.

[It will be instructive to the student to find the signs of the

values of glt g2i gz
as in § 165, and thence to prove the above con-

clusion.]

308.] As a final example let us find the envelop of the hyperbolic

cylinder SapSfip — c = 0,

where the vectors a and ft are subject to the conditions

Ta = T{3=: 1,

Say = 0, S& = 0,

y and h being given vectors.

[It will be easily seen that two of the six scalars involved in a, (3

still remain as variable parameters.]

We have Sada = 0, Syda = 0,

so that da = xVay,

Similarly dft—yVfth.

But, by the equation of the cylinders,

SapSpdfi + SpdaSfip = 0,

or ySapS.fibp+xS.aypSj3p = 0.

Now by the nature of the given equation, neither Sap nor Sfip can

vanish, so that the independence of da and dfi requires

S.ayp = 0, S.fibp = 0.
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Hence a = U.y Fyp, fi — U. b Fhp,

and the envelop is T.VypVhp— cTyh = 0,

a surface of the fourth order, which may be constructed by laying

off mean proportionals between the lengths of condirectional radii

of two equal right cylinders whose axes meet in the origin.

309.] We may now easily see the truth of the following general

statement.

Suppose the given equation of the series of surfaces, whose envelop

is required, to contain m vector, and n scalar, parameters ; and that

the latter are subject io> p vector, and q scalar, conditions.

In all there are 3m + n scalar parameters, subject to 3p-\-q scalar

conditions.

That there may be an envelop we must therefore in general have

(3m+ n)— (3p-{q) — 1, or =2.

In the former case the enveloping surface is given as the locus of a

series of curves, in the latter of a series ofpoints.

Differentiation of the equations gives us 3p +q+\ equations,

linear and homogeneous in the 3m + n "differentials of the scalar

parameters, so that by the elimination of these we have one final

scalar equation in the first case, two in the second ; and thus in each

case we have just equations enough to eliminate all the arbitrary

parameters.

310.] To find the locus of thefoot of the perpendicular drawnfrom

the origin to a tangent plane to any surface.

If Svdp -
be the differentiated equation of the surface, the equation of the

tangent plane is S(w—p)v=0.
We may introduce the condition

Svp = 1,

which in general alters the tensor of v, so that v~l becomes the

required vector perpendicular, as it satisfies the equation

Smv = 1.

It remains that we eliminate p between the equation of the given

surface, and the vector equation

The result is the scalar equation (in w) required.

For example, if the given surface be the ellipsoid

Spcfyp = 1,

we have ot
_1 = v — (f>p,



3I3-] GEOMETRY OF CURVES AND SURFACES. 171

so that the required equation is

Szt- 1 ^- 1 ™- 1 = 1,

or <<$W(£
-1

ar = -gt
4
,

which is Fresnel's Surface of Elasticity. (§263.)

It is well to remark that this equation is derived from that of the

reciprocal ellipsoid Spdr^p — 1

by putting ct
_1

for p.

311.] To find the reciprocal of a given surface with respect to the

unit sphere whose centre is the origin.

With the condition Spv = 1,

of last section, we see that — v is the vector of the pole of the

tangent plane S(vr-p)v = 0.

Hence we must put txr= — v,

and eliminate p by the help of the equation of the given surface.

Take the ellipsoid of last section, and we have

OT =—(pp,
so that the reciprocal surface is represented by

Sm(j)~3ct = 1.

It is obvious that the former ellipsoid can be reproduced from this

by a second application of the process.

And the property is general, for

Spv = 1

gives, by differentiation, and attention to the condition

Svdp = 0,

the new relation Spdv = 0,

so that p and v are corresponding vectors of the two surfaces : either

being that of the pole of a tangent plane drawn at the extremity of

the other.

312.] If the given surface be a cone with its vertex at the origin,

we have a peculiar case. For here every tangent plane passes

through the origin, and therefore the required locus is wholly at an

infinite distance. The difficulty consists in Spv becoming in this

case a numerical multiple of the quantity which is equated to zero

in the equation of the cone, so that of.course we cannot put as above

Spv = 1.

313.] The properties of the normal vector v enable us to write

the partial differential equations of families of surfaces in a very

simple form.

Thus the distinguishing property of Cylinders is that all their
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generating lines are parallel. Hence all positions of v must be

parallel to a given plane—or

Sav = 0,

which is the quaternion form of the well-known equation

7
dF dF dF n

l-j- +m-j- -f rc— = 0.
ax dy dz

To integrate it, remember that we have always

Svdp = 0,

and that as v is perpendicular to a it may be expressed in terms of

any two vectors, /3 and y, each perpendicular to a.

Hence v = a?/3+ yy,

and xSfidp+ ySydp = 0.

This shews that Sj3p and Syp are together constant or together

variable, so that S(3p = f(Syp),

where/
1

is any scalar function whatever.

314.] In Surfaces of Revolution the normal intersects the axis.

Hence, taking the origin in the axis a, we have

S.apv = 0,

or v = xa+ yp.

Hence xSadp+ ySpdp = 0,

whence the integral Tp =f(Sap).

The more common form, which is easily derived from that just

written, is TVap = F(Sap).

In Cones we have Svp = 0,

and therefore

Svdp = S.v{TpdUp+ UpdTp) = TpSvdUp.

Hence SvdUp — 0,

so that v must be a function of Up, and therefore the integral is

which simply expresses the fact that the equation does not involve

the tensor of p, i. e. that in Cartesian coordinates it is homogeneous.

315.] If equal lengths be laid off on the normals drawn to any

surface, the new surface formed by their extremities is normal to the

same lines.

For we have -sr = p -f a TJv,

and Svd-n = Svdp+ aSvdUv = 0,

which proves the proposition.

Take, for example, the surface

Sp(f>p = 1 ;
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the above equation becomes
a<bp

so that p — (^ + l) w,

and the equation of the new surface is to be found by eliminating

jgj- (written x) between the equations
1(f)p

a2

and % = S-<l> (sB<j) + 1
)

-1w0 {x<f> + 1 )

_1
isr.

x

316.] It appears from last section that if one orthogonal surface

can be drawn cutting a given system of straight lines, an inde-

finitely great number may be drawn : and that the portions of

these lines intercepted between any two selected surfaces of the

series are all equal.

Let p = (j+xt,

where <r and r are vector functions of p, and x is any scalar, be the

general equation of a system of lines : we have

Stdp = = S{p— a)dp

as the differentiated equation of the series of orthogonal surfaces, if

it exist. Hence the following problem.

317.] It is required to find the criterion of integrability of the

equation Svdp = (1)

as the complete differential of the equation of a series of surfaces.

Hamilton has given (Elements, p. 702) an extremely elegant solu-

tion of this problem, by means of the properties of linear and vector

functions. We adopt a different and somewhat less rapid process,

on account of some results it offers which will be useful to us in

the next Chapter ; and also because it will shew the student the

connection of our methods with those of ordinary differential equa-

tions.

If we assume Fp = C

to be the integral, and apply to it the very singular operator de-

vised by Hamilton, t

__ . d . d 7 d

dx J dy dz

„ .dF JF 7
dF

we have VJp
7= i-z- +7-7- +^-7-"

dx dy dz
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But p = ix +jy 4- kz,

whence dp = idx +jdy+ k dz,

._ dF . dF . dF _ «*„„«
and = dF= — dx+ -=- dy +— dz = —SdpVF.

OjX ciy dz

Comparing with the given equation, we see that the latter repre-

sents a series of surfaces if v, or a scalar multiple of it, can be ex-

pressed as VF.

If v = VF,

r,*W f^F d *F d *F\wehave Vv = V>F=-(^ +_ + -^) ,

a well-known and most important expression, to which we shall

return in next Chapter. Meanwhile we need only remark that

the last-written quantities are necessarily scalars, so that the only

requisite condition of the integrability of (1) is

Wv = (2)

If v do not satisfy this criterion, it may when multiplied by a scalar.

Hence the farther condition

rv {wv) = 0,

which may be written

FvVw—wWv = (3)

This requires that SvVv = (4)

If then (2) be not satisfied, we must try (4). If (4) be satisfied w
will be found from (3) ; and in either case (1) is at once integrable.

[If we put dv = <f>dp

where <j> is a linear and vector function, not necessarily self-con-

jugate, we have

by § 173. Thus, if $ be self-conjugate, e = 0, and the criterion (2)

is satisfied. If <\> be not self-conjugate we have by (4) for the cri-

terion s& = 0.

These results accord with Hamilton's, lately referred to, but the

mode of obtaining them is quite different from his.]

318.] As a simple example let us first take lines divergingfrom a

point. Here v
|| p, and we see that if v = p

Vv = -3,

so that (2) is satisfied. And the equation is

Spdp — 0,

whose integral Tp = C
gives a series of concentric spheres.
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Lines perpendicular to, and intersecting, a fixed line.

If a be the fixed line, /3 any of the others, we have

S.afip = 0, Sa(3 = 0, Sfidp = 0.

Here v
\\
aVap,

and therefore equal to it, because (2) is satisfied.

Hence S.dpaVap = 0,

or S.VapVadp = 0,

whose integral is the equation of a series of right cylinders

T2 FaP = C.

319.] To find the orthogonal trajectories of a series of circles whose

centres are in, and their planes perpendicular to, a given line.

Let a be a unit-vector in the direction of the line, then one of

the circles has the equations

TP = G,l
Sap = C, J

where G and C are any constant scalars whatever.

Hence, for the required surfaces

v
||
dlP ||

Vap,

where dxp is an element of one of the circles, v the normal to the

orthogonal surface. Now let dp be an element of a tangent to the

orthogonal surface, and we have

Svdp = S.apdp = 0.

This shews that dp is in the same plane as a and p, i.e. that the

orthogonal surfaces are planes passing through the common axis.

[To integrate the equation S.apdp =
evidently requires, by § 3

1

7, the introduction of a factor. For

VWap = V{iVai+jVaj+ kVak)

= 2a,

so that the first criterion is not satisfied. But

S.VapVWap = iS.aVap = 0,

so that the second criterion holds. It gives, by (3) of § 31 7,

V.VwVap-}-2wa = 0,

or pSaVw— aSpVw+ 2 wa = .

That is SdVw = 0,
|

SpVw =.2w.\

These equations are satisfied by
1

r*ap
t

But a simpler mode of integration is easily seen. Our equation

may be written

P Up 5
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which is immediately integrable, (3 being an arbitrary but constant

vector.

As we have not introduced into this work the logarithms of ver-

sors, nor the corresponding angles of quaternions, we must refer to

Hamilton's Elements for a farther development of this point.]

320.] To find the orthogonal trajectories of a given series of sur-

faces.

If the equation Fp = C,

give Svdp = 0,

the equation of the orthogonal curves is

Vvdp = 0.

This is equivalent to two scalar differential equations (§ 197), which,

when the problem is possible, belong to surfaces on each of which

the required lines lie. The finding of the requisite criterion we
leave to the student.

Let the surfaces be concentric spheres.

Here p
2 = C,

and therefore Vpdp — 0.

Hence Tp2 dUp = -Up Vpdp = 0,

and the integral is Up = constant,

denoting straight lines through the origin.

Let the surfaces be spheres touching each other at a common point.

The equation is (§218)
Sap' 1 = C,

whence V.papdp = 0.

The integrals may be written

S.aj3p = 0, p
2 i-hTFap = 0,

the first (/3 being any vector) is a plane through the common dia-

meter ; the second represents a series of rings or tores (§323) formed

by the revolution, about a, of circles touching that line at the point

common to the spheres.

Let the surfaces be similar, similarly situated, and concentric, sur-

faces of the second order.

Here Spxp = C,

therefore ^xpdp = 0.

But, by § 290, the integral of this equation is

p = e
l*€

where <£ and x are related to each other, as in § 290 ; and e is any

constant vector.
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321.] To integrate the linear partial differential equation of a

family of surfaces.

The equation (see § 313)

-pdu du du _
dx dy dz

may be put in the very simple form

S(<rV)u = 0,

if we write a = iP+jQ 4- kR
9

„ . d . d , d
and v=xTx ^^^di-

This gives, at once, Vu sb m VQa,

where m is a scalar and 6 a vector (in whose tensor m might have

been included, but is kept separate for a special purpose). Hence

du =—S(dpV)u
= — mS.Oadp

= -S.Odr,

if we put dr = ^r.(rdp

so that m is an integrating factor of V. a dp. If a value of m can be

found, it is obvious, from the form of the above equation, that

must be a function of t alone ; and the integral is therefore

u — F(t) sb const,

where F is an arbitrary scalar function.

Thus the differential equation of Cylinders is

S(aV)u=z 0,

where a is a constant vector. Here m=l
)
and

u = F(Vap) = const.

That of Cones referred to the vertex is

S(pV)u= 0.

Here the expression to be made integrable is

F.pdp.

But Hamilton long ago shewed that (§133 (2))

dTJp __ vdp _ F.pdp

-W-^J^jTpf'
which indicates the value of m, and gives

u — F{Up) = const.

It is obvious that the above is only one of a great number of

different processes which may be applied to integrate the differential

equation. It is quite easy, for instance, to pass from it to the

assumption of a vector integrating factor instead of the scalar m,

N
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and to derive the usual criterion of integrability. There is no diffi-

culty in modifying the process to suit the case when the right-hand

member is a multiple of u. In fact it seems to throw a very clear

light upon the whole subject of the integration of partial differ-

ential equations. If, instead of S (<rV), we employ other operators

as 8(<rV) S(tV), S.vVtV, &c. (where V may or may not operate on

u alone), we can pass to linear partial differential equations of the

second and higher orders. Similar theorems can be obtained from

vector operations, as F{aV)*,

322.] Find the general equation of surfaces described by a line

which always meets, at right angles, a fixed line.

If a be the fixed line, /3 and y forming with it a rectangular unit

system, then p = xa+y ((3 + zy\

where y may have all values, but x and z are mutually dependent,

is one form of the equation.

Another, expressing the arbitrary relation between x and z is

But we may also write

p = aF{x)+yax
(3,

as it obviously expresses the same conditions.

The simplest case is when F(x) = hx. The surface is one which

cuts, in a right helix, every cylinder which has a for its axis.

323.] The centre of a sphere moves in a given circle, find the equa-

tion of the ring described.

Let a be the unit-vector axis of the circle, its centre the origin,

r its radius, a that of the sphere.

Then (p-(3)
2 =-a2

is the equation of the sphere in any position, where

Sap = 0, Tj3 = r.

These give S.aj3p = 0, and /3 must now be eliminated. The result

is that p = raUFap,

giving (p
2 -r2 + a2

)
2 = 4 r2T2 Vap,

which is the required equation. It may easily be changed to

(pa-aa+f2)a=-4aV-4r2
-S
2
a/B, (1)

and in this form it enables us to give an immediate proof of the

very singular property of the ring (or tore) discovered by Villarceau.

* Tait, Proc. R. S. E., 1869-70.
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For the planes S.p (a ± _ ) = 0,
v rvr2— a 2

which together are represented by

r2 (r
2-a 2)S 2ap-a2S2

{3p = 0,

evidently pass through the origin and touch (and cut) the ring.

The latter equation may be written

r2S 2ap-a2 (S2ap + S2
P U(3) = 0,

or r2S2ap + a2
(p

2 + S2.apl/p) = (2)

The plane intersections of (1) and (2) lie obviously on the new
surface (,>a-aa + ra

)

a = 4 a*S*.apUp,

which consists of two spheres of radius r, as we see by writing its

separate factors in the form

(p±aaU(3) 2 +r2 = 0.

324.] It may be instructive to work out this problem from a

different point of view, especially as it affords excellent practice in

transformations.

A circle revolves about an axis passing within it, the perpendicular

from the centre on the axis lying in the plane of the circle : shew that,

for a certain position of the axis, the same solid may be traced out by a

circle revolving about an external axis in its own plane.

Let a — s/b 2
-f c2 be the radius of the circle, i the vector axis of

rotation, — ca (where Ta = 1) the vector perpendicular from the

centre on the axis *, and let the vector

bi + cia

be perpendicular to the plane of the circle.

The equations of the circle are

(p-ca) 2 + b2 + c* = 0, \

S(i + ^ia)p = 0. (

Also -p2 = S 2ip + S 2ap + S 2
.iap,

= S 2ip + S 2ap+ ^S2ip

by the second of the equations of the circle. But, by the first,

(p
2 + b2

)

2 = 4 c2S2ap = - 4 (c
2
p
2 + a2S 2ip\

which is easily transformed into

(p
2~b2

)
2 = -4a2

(p
2 + S2 ip),

or p
2—b2 = -2aTFip.

If we put this in the forms

p
2-b2 =: 2aS(3p,

and (/)- 0/3)
2 + c2 = 0,

N %



180 QUATERNIONS. [325.

where (3 is a unit-vector perpendicular to i and in the plane of i

and p, we see at once that the surface will be traced out by a circle

of radius c, revolving about i, an axis in its own plane, distant a

from its centre.

This problem is not well adapted to shew the gain in brevity and

distinctness which generally follows the use of quaternions ; as,

from its very nature, it hints at the adoption of rectangular axes

and scalar equations for its treatment, so that the solution we have

given is but little different from an ordinary Cartesian one.

325.] A surface is generated by a straight line which intersects two

fixed lines : find the general equation.

If the given lines intersect, there is no surface but the plane con-

taining them.

Let then their equations be,

p = a + x/3, p = a
1 + x

1 (31
.

Hence every point of the surface satisfies the condition, § 30,

p=y{a + xp) + {\-y)(a
1+ x

1 pi) (1)

Obviously y may have any value whatever : so that to specify a

particular surface we must have a relation between x and x
x

. By
the help of this, x

x
may be eliminated from (1), which then takes

the usual form of the equation of a surface

p = 4>(x,y).

Or we may operate on (1) by V.(a + xfi— a
x
— x-^^), so that we get

a vector equation equivalent to two scalar equations (§§ 98, 116),

and not containing y. From this x and x
x
may easily be found in

terms of p, and the general equation of the possible surfaces may be

written f{x, x
x)
= 0,

wheref is an arbitrary scalar function, and the values of x and x
x

are expressed in terms of p.

This process is obviously applicable if we have, instead of two

straight lines, any two given curves through which the line must

pass ; and even when the tracing line is itself a given curve, situated

in a given manner. But an example or two will make the whole

process clear.

326.] Suppose the moveable line to be restricted by the condition

that it is always parallel to a fixed plane.

Then, in addition to (1), we have the condition

flyfo + ^ft-a-ar/3) = 0,

y being a vector perpendicular to the fixed plane.

We lose no generality by assuming a and al5 which are any
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vectors drawn from the origin to the fixed lines, to be each per-

pendicular to y ; for, if for instance we could not assume Sya = 0, it

would follow that Syfi = 0, and the required surface would either

be impossible, or would be a plane, cases which we need not con-

sider. Hence x^y^-xSy/3 = 0.

Eliminating' xXi by the help of this equation, from (1) of last section,

we have
, **/»*/ ^ Sy&\

p =y(a + ^) + (l-y)(a
1 +^/31 ^-).

Operating by any three non-coplanar vectors and with the charac-

teristic S, we obtain three equations from which to eliminate x andy.

Operating by S.y we find

Syp = xSj3y.

Eliminating x by means of this, we have finally

which appears to be of the third order. It is really, however, only

of the second order, since, in consequence of our assumptions, we
have Vaa

x || y}

and therefore Syp is a spurious factor of the left-hand side.

327.] Let the fixed lines be perpendicular to each other, and let

the moveable line pass through the circumference of a circlei whose

centre is in the common perpendicular, and whose plane bisects that line

at right angles.

Here the equations of the fixed lines may be written

p = a + x{3, p = —a+ x
1 y,

where a, /3, y}
form a rectangular system, and we may assume the

two latter to be unit-vectors.

The circle has the equations

p
2 — —a 2

, Sap = 0.

Equation (1) of § 325 becomes

p =y(a+^) + (l-y)(-a + a?
1 y).

Hence SaT^-p = g—{\—y) = 0, or y=J.
Also p

2=-a2 = (2y-l) 2 a2-x2f-x2 (l-y) 2
,

or 4#2 = (x2 +x\)t

so that if we now suppose the tensors of j3 and y to be each 2«, we

may put x — cos 6, xt = sin 6, from which

p = (2y— l)a+ y/3cos0-f-(l—y)y sin0;

t n 11 S*pP S2
yp

alld fina11^ (1-fSa-V) 2 + (1-Ja-V)'
= ^ '
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For this very simple case the solution is not better than the

ordinary Cartesian one; but the student will easily see that we

may by very slight changes adapt the above to data far less sym-

metrical than those from which we started. Suppose, for instance,

(3 and y not to be at right angles to one another ; and suppose the

plane of the circle not to be parallel to their plane, &c, &c. But

farther, operate on every line in space by the linear and vector

function
<f>,

and we distort the circle into an ellipse, the straight

lines remaining straight. If we choose a form of $ whose principal

axes are parallel to a, /3, y, the data will remain symmetrical, but

not unless. This subject will be considered again in the next

Chapter.

328.] To find the curvature of a normal section of a central surface

of the second order.

In this, and the few similar investigations which follow, it will

be simpler to employ infinitesimals than differentials ; though for a

thorough treatment of the subject the latter method, as may be seen

in Hamilton's Elements, is preferable.

We have, of course, Sp<f>p = 1,

and, if p + bp be also a vector of the surface, we have rigorously,

whatever be the tensor of bp,

S(p + bp)cf>(p + bp)= 1.

Hence 2Sbpcf>p+Sbp<i>bp = 0..., (1)

Now <f)p is normal to the tangent plane at the extremity of p, so

that if t denote the distance of the point p + bp from that plane

t =-SbpU(f>p,

and (1) may therefore be written

2tT(t>p-T2bpS.Ubp(f)Ubp = 0.

But the curvature of the section is evidently

p 2 *

* T2bP
'

or, by the last equation,

In the limit, bp is a vector in the tangent plane ; let m be the vector

semidiameter of the surface which is parallel to it, and the equation

of the surface gives T*wS.U^Uw = 1,

so that the curvature of the normal section, at the point p} in the

direction of to-, is X •

Tcf>pT2*T
'



329.] GEOMETRY OF CURVES AND SURFACES. 183

directly as the perpendicular from the centre on the tangent plane, and

inversely as the square of the semidiameter parallel to the tangent line,

a well-known theorem.

329.] By the help of the known properties of the central section

parallel to the tangent plane, this theorem gives us all the ordinary

properties of the directions of maximum and minimum curvature,

their being at right angles to each other, the curvature in any

normal section in terms of the chief curvatures and the inclination

to their planes, &c, &c, without farther analysis. And when, in a

future section, we shew how to find an osculating surface of the

second order at any point of a given surface, the same properties

will be at once established for surfaces in general. Meanwhile we

may prove another curious property of the surfaces of the second

order, which similar reasoning extends to all surfaces.

The equation of the normal at the point p + bp in the surface

treated in last section is

•a = p + bp + X(f) (p + bp) (1)

This intersects the normal at p if (§§ 203, 210)

S.bp(f>p(f)bp = 0,

that is, by the result of § 273, if bp be parallel to the maximum or

minimum diameter of the central section parallel to the tangent

plane.

Let o"! and a
2
be those diameters, then we may write in general

bp =pcr
1 + q(T2i

where p and q are scalars, infinitely small.

If we draw through a point P in the normal at p a line parallel

to <t19 we may write its equation

or = p+ a<f>p+ y&\ •

The proximate normal (1) passes this line at a distance (see § 203)

S . (acfip— bp) TJVcr^ <j>(p + bp),

or, neglecting terms of the second order,

Tya(L (apS.<l>P<Ti<l>(ri + aqS.cppa^^ + qS.cr
1
<r2<l>p).

The first term in the bracket vanishes because o-j is a principal vector

of the section parallel to the tangent plane, and thus the expression

becomes / a m \

Hence, if we take a = 2V|, the distance of the normal from the new

line is of the second order only. This makes the distance ofP from

the point of contact TcfypTal, i.e. the principal radius of curvature
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along the tangent line parallel to <r
2

. That is, the group of normals

drawn near a point of a central surface of the second order pass ulti-

mately through two lines each parallel to the tangent to one principal

section, andpassing through the centre of curvature of the other. The

student may form a notion of the nature of this proposition by con-

sidering a small square plate, with normals drawn at every point,

to be slightly bent, but by different amounts, in planes perpendicular

to its edges. The first bending will make all the normals pass

through the axis of the cylinder of which the plate now forms part

;

the second bending will not sensibly disturb this arrangement,

except by lengthening or shortening the line in which the normals

meet, but it will make them meet also in the axis of the new
cylinder, at right angles to the first. A small pencil of light, with

its focal lines, presents this appearance, due to the fact that a series

of rays originally normal to a surface remain normals to a surface

after any number of reflections and refractions. (See § 315).

330.] To extend these theorems to surfaces in general, it is only

necessary, as Hamilton has shewn, to prove that if we write

dv = 4>d<p,

cf) is a self-conjugate function ; and then the properties of </>, as ex-

plained in preceding Chapters, are applicable to the question.

As the reader will easily see, this is merely another form of the

investigation contained in § 317. But it is given here to shew

what a number of very simple demonstrations may be given of

almost all quaternion theorems.

The vector v is defined by an equation of the form

dfp = Svdp,

wheref is a scalar function. Operating on this by another inde-

pendent symbol of differentiation, b, we have

bdfp = Sbvdp+ Svbdp.

In the same way we have

dbfp = Sdvbp + Svdbp.

But, as d and 8 are independent, the left-hand members of these

equations, as well as the second terms on the right (if these exist

at all), are equal, so that we have

Sdvbp = Sbvdp.

This becomes, putting dv = (f>dp,

and therefore bv = $ bp,

Sbpcf)dp = SdpQbp,

which proves the proposition.
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331.] If we write the differential of the equation of a surface in

the form dfp = 2Svdp,

then it is easy to see that

f(p + dp) =fp+ 2Svdp+ Sdvdp + &c.,

the remaining- terms containing as factors the third and higher

powers of Tdp. To the second order, then, we may write, except

for certain singular points,

= 2Svdp+ Sdvdp,

and, as before, (§ 328), the curvature of the normal section whose

tangent line is dp is 1 ~ dv

Tv dp'

332.] The step taken in last section, although a very simple one,

virtually implies that the first three terms of the expansion of

f(p + dp) are to be formed in accordance with Taylor's Theorem,

whose applicability to the expansion of scalar functions of quater-

nions has not been proved in this work, (see § 135); we therefore

give another investigation of the curvature of a normal section,

employing for that purpose the formulae of § (282).

We have, treating dp as an element of a curve,

Svdp = 0,

or, making s the independent variable,

SvP'= 0.

From this, by a second differentiation,

*$/+*V- o.

The curvature is, therefore, since v
||
p" and Tp'= 1,

333.] Since we have shewn that

dv = <f>dp

where
(f)

is a self-conjugate linear and vector function, whose con-

stants depend only upon the nature of the surface, and the position

of the point of contact of the tangent plane ; so long as we do not

alter these we must consider $ as possessing the properties explained

in Chapter V.

Hence, as the expression for Tp" does not involve the tensor of

dp, we may put for dp any unit-vector t, subject of course to the

condition Svt = (1)

And the curvature of the normal section whose tangent is t is

1 <^r l
8~A>

Tv
ST = -Tv ST(t,T -
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If we consider the central section of the surface of the second order

made by the plane Svar = 0,

we see at once that the curvature of the given surface along the normal

section touched by r is inversely as the square of the parallel radius in

the auxiliary surface. This, of course, includes Euler's and other

well-known Theorems.

334.] To find the directions of maximum and minimum curvaturet

we have St$t = max. or min.

with the conditions, Svr = 0,

Tr = 1.

By differentiation, as in § 273, we obtain the farther equation

S.vtQt = (1)

If r be one of the two required directions, r'= tIIv is the other, for

the last-written equation may be put in the form

S.tIIv(I>(vtUv) = 0,

i.e. S./(f)(vT) = 0,

or S.vt^t = 0.

Hence the sections of greatest and least curvature are 'perpendicular to

one another.

We easily obtain, as in § 273, the following equation

S.v^-^St^t)-^ = 0,

whose roots divided by Tv are the required curvatures.

335.] Before leaving this very brief introduction to a subject, an

exhaustive treatment of which will be found in Hamilton's Elementsy

we may make a remark on equation (1) of last section

S.VT(f)T = 0,

or, as it may be written, by returning to the notation of § 333,

S.vdpdv = 0.

This is the general equation of lines of curvature. For, if we define

a line of curvature on any surface as a line such that normals drawn

at contiguous points in it intersect, then, bp being an element of

such a line, the normals

w = p + ccv and w = p + bp + y (v 4- bv)

must intersect. This gives, by § 203, the condition

as above. ^P"8" = °>



EXAMPLES TO CHAPTER IX. 187

EXAMPLES TO CHAPTER IX.

1

.

Find the length of any arc of a curve drawn on a sphere so as

to make a constant angle with a fixed diameter.

2. Shew that, if the normal plane of a curve always contains a

i
fixed line, the curve is a circle.

3. Find the radius of spherical curvature of the curve

Also find the equation of the locus of the centre of spherical

curvature.

4. (Hamilton, Bishop Law'*s Premium Examination, 1854.)

(a.) If p be the variable vector of a curve in space, and if the

differential d* be treated as = 0, then the equation

dT(p-K) =
obliges k to be the vector of some point in the normal

plane to the curve.

(b.) In like manner the system of two equations, where die

and d 2 K are each = 0,

dT(p-K) = 0, d 2T(P-K) = o,

represents the axis of the element, or the right line

drawn through the centre of the osculating circle, per-

pendicular to the osculating plane.

(c.) The system of the three equations, in which k is treated

as constant,

dT(p-K) = 0, d 2T(p-K) = 0, d*T(p-K) = 0,

determines the vector k of the centre of the osculating

sphere.

(d.) For the three last equations we may substitute the follow-

ing

:

S.(p—K)dp = 0,

S.(P-K)d*p+ dp2 = 0,

S.(p-K)d3
p+ 3S.dpd 2

p = 0.

(e.) Hence, generally, whatever the independent and scalar

variable may be, on which the variable vector p of the

curve depends, the vector k of the centre of the oscu-

lating sphere admits of being thus expressed :

SV.dpd2pS.dpd2p-dp2 r.dpd 3
p

P +
S.dPd

2pd 3
p
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(f.) In general,

d(d-2 KdP Up) = d(Tp-*F.pdp)

= Tp-5 (3F.pdpS.pdp-p2 F.pd 2
p) ;

whence,

3r.pdpS.pdp- P
2 F.pd2

p = p*Tpd{p- 2 V.dpUp);

and, therefore, the recent expression for k admits of

being thus transformed,

dpH{dp-2 V.d2pVdp
)

K ~P+
S.d2pd*P Udp

(g.) If the length of the element of the curve be constant,

dTdp= 0, this last expression for the vector of the centre

of the osculating sphere to a curve of double curva-

ture becomes, more simply,

d.d2pdp3

K = p-\r

or k = p+

S.dpd 2
Pdy

r.tppdp*

S.dPd
2pd3

p

(k.) Verify that this expression gives k = 0, for a curve de-

scribed on a sphere which has its centre at the origin

of vectors ; or shew that whenever dTp = 0, d 2Tp = 0,

d3Tp = 0, as well as dTdp = 0, then

PS.dp-
ld2pd*p = V.dpd^p.

5. Find the curve from every point of which three given spheres

appear of equal magnitude.

6. Shew that the locus of a point, the difference of whose dis-

tances from each two of three given points is constant, is a plane

curve.

7. Find the equation of the carve which cuts at a given angle

all the sides of a cone of the second order.

Find the length of any arc of this curve in terms of the distances

of its extremities from the vertex.

8. Why is the centre of spherical curvature, of a curve described

on a sphere, not necessarily the centre of the sphere ?

9. Find the equation of the developable surface whose generating

lines are the intersections of successive normal planes to a given

tortuous curve.

10. Find the length of an arc of a tortuous curve whose normal

planes are equidistant from the origin.

1 1

.

The reciprocals of the perpendiculars from the origin on the

tangent planes to a developable surface are vectors of a tortuous
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curve ; from whose osculating planes the cusp-edge of the original

surface may be reproduced by the same process.

1 2. The equation p = Fa'/3,

where a is a unit-vector not perpendicular to /3, represents an ellipse.

If we put y = Fa/3, shew that the equations of the locus of the

centre of curvature are

S.pyp = 0,

13. Find the radius of absolute curvature of a spherical conic.

14. If a cone be cut in a circle by a plane perpendicular to a side,

the axis of the right cone which osculates it, along that side, passes

through the centre of the section.

15. Shew how to find the vector of an umbilicus. Apply your

method to the surfaces whose equations are

Sp<t>P = h
and SapSfipSyp = 1.

16. Find the locus of the umbilici of the surfaces represented by

the equation $p (^+ $y-i
p = 1

5

where h is an arbitrary parameter.

17. Shew how to find the equation of a tangent plane which

touches a surface along a line, straight or curved. Find such planes

for the following surfaces

Spcf>p = 1,

Sp(cf>-p*)-ip=l,

and (p
2 -a2 + 6 2

)

2 + 4 (a 2
p
2 + 62S2 ap) = 0.

18. Find the condition that the equation

S(p+ a)<j>p= 1,

where $ is a self-conjugate linear and vector function, may represent

a cone.

19. Shew from the general equation that cones and cylinders are

the only developable surfaces of the second order.

20. Find the equation of the envelop of planes drawn at each

point of an ellipsoid perpendicular to the radius vector from the

centre.

2 1

.

Find the equation of the envelop of spheres whose centres lie

on a given sphere, and which pass through a given point.

22. Find the locus of the foot of the perpendicular from the

centre to the tangent plane of a hyperboloid of one, or of two,

sheets.
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23. Hamilton, Bishop Law's Premium Examination, 1852,

{a.) If p be the vector of a curve in space, the length of the

element of that curve is Tdp ; and the variation of the

length of a finite arc of the curve is

IfTd9 = —f&UdpMp = -ASUdpbp+fSdUdPSp.
(b.) Hence, if the curve be a shortest line on a given surface,

for which the normal vector is v, so that Svbp = 0, this

shortest or geodetic curve must satisfy the differential

equation, VvdJJdp = 0.

Also, for the extremities of the arc, we have the limiting

equations,

SUdp bp = ; SUdp! bp
x
as 0.

Interpret these results.

(c.) For a spheric surface, Fvp= 0, pdUdp= ; the integrated

equation of the geodetics is p Udp = txr, giving Suxp =
(great circle).

For an arbitrary cylindric surface,

Sav = 0, adUdp = ;

the integral shews that the geodetic is generally a helix,

making a constant angle with the generating lines of

the cylinder.

(d.) For an arbitrary conic surface,

Svp = 0, SpdUdp = ;

integrate this differential equation, so as to deduce from

it, TVpUdp = const.

Interpret this result ; shew that the perpendicular from

the vertex of the cone on the tangent to a given geo-

detic line is constant ; this gives the rectilinear develop-

ment.

When the cone is of the second degree, the same property

is a particular case of a theorem respecting confocal

surfaces.

(e.) For a surface of revolution,

S.apv = 0, S.apdUdp = ;

integration gives,

const. = S.apUdp = TFapSU (Fap.dp)

;

the perpendicular distance of a point on a geodetic

line from the axis of revolution varies inversely as the

cosine of the angle under which the geodetic crosses a

parallel (or circle) on the surface.
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(/.) The differential equation, S.apdUdp = 0, is satisfied not

only by the geodetics, but also by the circles, on a

surface of revolution ; give the explanation of this fact

of calculation, and shew that it arises from the coinci-

dence between the normal plane to the circle and the

plane of the meridian of the surface.

(g.) For any arbitrary surface, the equation of the geodetic

may be thus transformed, S.vdpd2
p = ; deduce this

form, and shew that it expresses the normal property

of the osculating plane.

(h.) If the element of the geodetic be constant, dTdp = 0, then

the general equation formerly assigned may be reduced

to F.vd2p= 0.

Under the same condition, d2
p = —v~ 1Sdvdp.

(i.) If the equation of a central surface of the second order

be put under the form fp = 1, where the function f
is scalar, and homogeneous of the second dimension,

then the differential of that function is of the form

dfp = 2S.vdp, where the normal vector, v = </>/>, is a dis-

tributive function of p (homogeneous of the first dimen-

sion), dv— d(pp= (f)dp.

This normal vector v may be called the vector ofproximity

(namely, of the element of the surface to the centre)

;

because its reciprocal, v~1
i represents in length and in

direction the perpendicular let fall from the centre on

the tangent plane to the surface.

(Jc.) If we make S(r(pp =f(a-,p), this function/" is commutative

with respect to the two vectors on which it depends,

f(p, or) =/(<t, p) ; it is also connected with the former

function,/, of a single vector p, by the relation,
#

/(/o, p) —fp

:

so thatfp= Sp<pp.

fdp = Sdpdp ; dfdp = 2S.dvd2
p ; for a geodetic, with con-

stant element,

dfdp
| Q dv _

2fdp
+

v
'

this equation is immediately integrable, and gives

const. —TvV(fUdp) = reciprocal of Joachimstal's pro-

duct, PD.
If we give the name of " Didonia" to the curve (discussed

by Delaunay) which, on a given surface and with a

given perimeter, contains the greatest area, then for
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such a Didonian curve we have by quaternions the

formula, fS. Uvdpbp + c h/Tdp = 0,

where c is an arbitrary constant.

Derive hence the differential equation of the second order,

equivalent (through the constant c) to one of the third

order, c-idp = V.UvdUdp.

Geodetics are, therefore, that limiting case of Didonias for

which the constant c is infinite.

On a plane, the Didonia is a circle, of which the equation,

obtained by integration from the general form, is

p = vr + cUvdp,

w being vector of centre, and c being radius of circle.

(m.) Operating by S. Udp, the general differential equation of

the Didonia takes easily the following forms :

c-^Tdp =S(Uvdp.dUdP);
c- 1Tdp2 = S(Uvdp.d2

p);

c~ 1 Tdpi = S.Ui;dpd2
p;

g-i = 8
d2pdP

~ 2

Uvdp

(n.) The vector g>, of the centre of the osculating circle to a

curve in space, of which the element Tdp is constant,

has for expression,

dp2

Hence for the general Didonia,

c- 1 = S
{(o-p)- 1

Uvdp

T(p-a) = cSU
p— CD

vdp

(o.) Hence, the radius of curvature of any one Didonia varies,

in general, proportionally to the cosine of the inclination

of the osculating plane of the curve to the tangent

plane of the surface.

And hence, by Meusnier's theorem, the difference of the

squares of the curvatures of curve and surface is con-

stant; the curvature of the surface meaning here the

reciprocal of the radius of the sphere which osculates

in the reduction of the element of the Didonia.

[p.) In general, for any curve on any surface, if f denote the

vector of the intersection of the axis of the element (or
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the axis of the circle osculating to the curve) with the

tangent plane to the surface, then

t- |

vdP
Z

C ~ p±
S.vdpd2p'

Hence, for the general Didonia, with the same significa-

tion of the symbols,

f = p—cUvdp
;

and the constant c expresses the length of the interval

p— £, intercepted on the tangent plane, between the

point of the curve and the axis of the osculating

circle.

(q.) If, then, a sphere be described, which shall have its centre

on the tangent plane, and shall contain the osculating

circle, the radius of this sphere shall always be equal

to c. •

(r.) The recent expression for f, combined with the first form

of the general differential equation of the Didonia, gives

d£ = -cVdUvUdp ; 7v&£ = 0.

(s.) Hence, or from the geometrical signification of the con-

stant c, the known property may be proved, that if a

developable surface be circumscribed about the arbitrary

surface, so as to touch it along a Didonia, and if this

developable be then unfolded into a plane, the curve

will at the same time be flattened (generally) into a

circular arc, with radius = c.

24. Find the condition that the equation

*(*+/)-V=i
may give three real values off for any given value of p. If/ be a

function of a scalar parameter £, shew how to find the form of this

function in order that we may have

9f. d 2$ d 2
i d 2

£_V 2£ = - 4- —- 4-
b = 0.c dx2 + df

+
dz2

Prove that the following is the relation betweenf and f,

e£= f
v - f

v

in the notation of § 147.

25. Shew, after Hamilton, that the proof of Dupin's theorem,

that "each member of one of three series of orthogonal surfaces

cuts each member of each of the other series along its lines of

curvature," may be expressed in quaternion notation as follows :

o



194 QUATERNIONS.

If Svdp = 0, Sv'dp = 0, S.vvclp =
be integrable, and if

Svv = 0, then Vv'dp = 0, makes S.vv'dv = 0.

Or, as follows,

If SvVv = 0, S/Vv'= 0, 8p"ViT= 0, and F.^V'= 0,

then S.v"(Sv'V.v) = 0,

, _ . d . d 7 d
where ?.= ,_+,_+*_.

26. Shew that the equation

Tap = pVfip

represents the line of intersection of a cylinder and cone, of the

second order, which have /3 as a common generating line.

27. Two spheres are described, with centres at A, B, where

OA — a, OB = ft, and radii a, b. Any line, OPQ, drawn from the

origin, cuts them in P, Q respectively. Shew that the equation of

the locus of intersection of AP, BQ has the form

r{a + aU(p-^a)) {ft+ bU(p-ft)) = 0.

Shew that this involves S.aftp = 0,

and therefore that the left side is a scalar multiple of V.aft, so that

the locus is a plane curve.

Also shew that in the particular case

Vaft = 0,

the locus is the surface formed by the revolution of a Cartesian

oval about its axis.
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KINEMATICS.

336.] When a point's vector, p, is a function of the time t, we

have seen (§36) that its vector-velocity is expressed by -— or, in

Newton's notation, by p.

That is, if p = (\>t

be the equation of an orbit, containing (as the reader may see) not

merely theform of the orbit, but the law of its description also, then

p = Q't

gives at once the form of the Hodograph and the law of its de-

scription.

This shews immediately that the vector-acceleration of a poinds

motion, d2
p

w orp'

is the vector-velocity in the hodograph. Thus the fundamental pro-

perties of the hodograph are proved almost intuitively.

337.] Changing the independent variable, we have

dp ds
= vp,p = TsTt
=Vfi

if we employ the dash, as before, to denote

This merely shews, in another form, that p expresses the velocity

in magnitude and direction. But a second differentiation gives

This shews, that the vector-acceleration can be resolved into two

components, the first, vp, being in the direction of motion and
dv

equal in magnitude to the acceleration of the velocity, v or -=-

;

at

the second, v2p\ being in the direction of the radius of absolute

o 2,
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curvature, and having for its amount the square of the velocity

multiplied by the curvature.

[It is scarcely conceivable that this important fundamental pro-

position, of which no simple analytical proof seems to have been

obtained by Cartesian methods, can be proved more elegantly than

by the process just given.]

338.] If the motion be in a plane curve, we may write the

equation as follows, so as to introduce the usual polar coordinates,

r and 0, 20

p = ra"p,

where a is a unit-vector perpendicular to, (3 a unit-vector in, the

plane of the curve.

Here, of course, r and 6 may be considered as connected by one

scalar equation ; or better, each may be looked on as a function of t.

By differentiation we get
20 29

p = ra n (3 + r0aa n
/3,

which shews at once that r is the velocity along, rO that perpen-

dicular to, the radius vector. Again,

20 20

p = (r—rd 2)a*$ + {2rd + r8)aa" fi,

which gives, by inspection, the components of acceleration along,

and perpendicular to, the radius vector.

339.] For uniform acceleration in a constant direction , we have at

once, p = a>

Whence p = at + fi,

where /3 is the vector-velocity at epoch. This shews that the

hodograph is a straight line described uniformly.

a i at2

Also p = — +j3t,

no constant being added if the origin be assumed to be the position

of the moving point at epoch.

Since the resolved parts of p, parallel to (3 and a, vary respect-

ively as the first and second powers of t, the curve is evidently a

parabola (§31 (/)).

But we may easily deduce from the equation the following result,

T(p + iPa-*j3)=-SUa(p+^a-i),

the equation of a paraboloid of revolution, whose axis is a. Also

S.afip = 0,
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and therefore the distance of any point in the path from the point

— 4/3a
-1

/3 is equal to its distance from the line whose equation is

B 2

p = — a x +xaVa$.
a

Thus we recognise the focus and directrix property.

340.] That the moving point may reach a point y we must

have, for some real value of t,

Now suppose Tfi, the velocity of projection, to be given = t>, and,

for shortness, write w for Up.

Then y = ^t2 + vtv.

Since Tm = 1,

we have -^— (v 2 - Say) t
2 + Ty2 = Q.

The values of t
2 are real if

(y
2 -Say) 2 -Ta2Ty2

is positive. Now, as TaTy is never less than Say, it is evident that

v 2 — Say must always be positive if the roots are possible. Hence,

when they are possible, both values of t
2 are positive. Thus we

have/our values of t which satisfy the conditions, and it is easy to

see that since, disregarding the signs, they are equal two and two,

each pair refer to the same path, but described in opposite directions

between the origin and the extremity of y. There are therefore, if

any, in general two parabolas which satisfy the conditions. The

directions of projection are (of course) given by the corresponding

values of w.

341.] The envelop of all the trajectories possible with a given

velocity, evidently corresponds to

(v2 -Say) 2 -Ta2Ty 2 = 0,

for then y is the vector of intersection of two indefinitely close paths

in the same vertical plane.

Now V 2 - Say = TaTy

is evidently the equation of a paraboloid of revolution of which the

origin is the focus, the axis parallel to a, and the directrix plane at

a distance „- •

la

All the ordinary problems connected with parabolic motion are

easily solved by means of the above formulae. Some, however, are

even more easily treated by assuming a horizontal unit-vector in
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the plane of motion, and expressing /3 in terms of it and a. But

this must be left to the student.

342.] For acceleration directed to or from a fixed point, we have,

taking that point as origin, and putting P for the magnitude of

the central acceleration,

p =PUP .

Whence, at once, Vpp = 0.

Integrating, Vpp = y = a constant vector.

The interpretation of this simple formula is

—

-first, p and. p are in

a plane perpendicular to y, hence the path is in a plane (of course

passing through the origin) ; second, the area of the triangle, two

of whose sides are p and p is constant.

[It is scarcely possible to imagine that a more simple proof than

this can be given of the fundamental facts, that a central orbit is a

plane curve, and that equal areas are described by the radius vector

in equal times.]

343.] When the law of acceleration to orfrom the origin is that of

the inverse square of the distance, we have

P-JL.
Tp^

where /x is negative if the acceleration be directed to the origin.

Hence ? = W '

The following beautiful method of integration is due to Hamilton.

(See Chapter IV.)

n ,, dUp Up. Vpp Up.y
Generally, -^ = ^- .- -^

,

therefore py = —p. —rr >

and py = e

—

pUp,

where e is a constant vector, perpendicular to y, because

Syp = 0.

Hence, in this case, we have for the hodograph,

p = ey"
-1—piUp.y-1

.

Of the two parts of this expression, which are both vectors, the

first is constant, and the second is constant in length. Hence the

locus of the extremity of p is a circle in a plane perpendicular to y

(i.e. parallel to the plane of the orbit), whose radius is ^-j and

whose centre is at the extremity of the vector ey
_1

.

[This equation contains the whole theory of the Circular Hodo-
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graph. Its consequences are developed at length in Hamilton's

Elements.']

344.] We may write the equations of this circle in the form

y(p-,y->) = ^,
(a sphere), and Syp =
(a plane through the origin, and through the centre of the sphere).

The equation of the orbit is found by operating by V.p upon that

of the hodograph. We thus obtain

y =.V.pey-i + nTpy-\

or y* ^Stp+ fxTp,

or {JlTp = S€{y2 €- 1 -p);

in which last form we at once recognise the focus and directrix

property. This is in fact the equation of a conicoid of revolution

about its principal axis (e), and the origin is one of the foci. The

orbit is found by combining it with the equation of its plane,

Syp = 0.

We see at once that y
2
€
_1

is the vector distance of the directrix

# , Te
from the focus ; and similarly that the eccentricity is — > and the

major axis

2 f*

>» + «*

345.] To take a simpler case : let the acceleration vary as the dis-

tancefrom the origin.

Then p = ±m2
p,

the upper or lower sign being used according as the acceleration is

from or to the centre.

This is (_T ^2) /) = 0>

Hence p = a€mt + fte~
mt

;

or p = a cos mt + (3 sin mty

where a and /3 are arbitrary, but constant, vectors; and s is the

base of Napier's logarithms.

The first is the equation of a hyperbola (§ 31, Jc) of which a and /3

are the directions of the asymptotes ; the second, that of an ellipse

of which a and /3 are semi-conjugate diameters.

Since p = m {atm— f$*- mi
} 3

or = m {— a sin mt+ j3 cos mt},

the hodograph is again a hyperbola or ellipse. But in the first

case it is, if we neglect the change of dimensions indicated by the



200 QUATERNIONS. [346.

scalar factor m, conjugate to the orbit ; in the case of the ellipse it

is similar and similarly situated.

346.] Again, let the acceleration be as the inverse third power of

the distance, we have „ Jjp

Of course, we have, as usual,

Vpp = y.

Also, operating by S.p,

Spp = ^
of which the integral is ^

P
P
2 = C- .

T9 "

is

p
2 =

«

the equation of energy.

Again, Spp = -£ -

Hence Spp + p
2 — C,

or xS/3/j = Ctf,

no constant being added if we reckon the time from the passage

through the apse, where Spp = 0.

We have, therefore, by a second integration,
*

fj* =&+C ..."
(1)

[To determine C", remark that

pp = Ct + y,

or P
2
p
2 = C2

t
2 -y2

.

But p
2
p
2 — Cp2 —\k (by the equation of energy),

= CH2 + CC'-ix, by(l).

Hence CC'= fi-y2 .']

To complete the solution, we have, by § 133,

p dt
K HJ

dt
B

/3

where /3 is a unit-vector in the plane of the orbit.

But r£=--£.

Hence log&^-yf-*—.
The elimination of tf between this equation and (1) gives Tp in

terms of £//), or the required equation of the path.

We may remark that if be the ordinary polar angle in the

orbit, Up nlJ\og-£ = 6Uy.
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Hence we have 6 = — Ty / -

^ 2

'

„, > /

and r2 =-(Ct2 + C'), )

from which the ordinary equations of Cotes' spirals can be at once

found. [See Tait and Steele's Dynamics of a Particle, third edition,

Appendix (A).]

347.] To find the conditions that a given curve may be the hodo-

graph corresponding to a central orbit.

If sx be its vector, given as a function of the time, fnrdt is that of

the orbit ; hence the requisite conditions are given by

V-Grfvidt = y,

where y is a constant vector.

We may transform this into other shapes more resembling the

Cartesian ones.

Thus Vitfmdt = 0,

and Vzsfrs dt -\- Virw — 0.

From the first ftndt = x-tr,

and therefore xF^i: = y,

or the curve is plane. And

X Vizi; + Virn = ;

or eliminating x, yVisih — — (Fotct)2
.

Now if v' be the velocity in the hodograph, JRf its radius of curva-

ture, p' the perpendicular on the tangent ; this equation gives at

once hv'= E'p'2
,

which agrees with known results. .

348.] The equation of an epitrochoid or hypotrochoid, referred to

the centre of the fixed circle, is evidently

p = ai * a + bi * a,

where a is a unit-vector in the plane of the curve and i another

perpendicular to it. Here o> and o)
x
are the angular velocities in

the two circles, and t is the time elapsed since the tracing point

and the centres of the two circles were in one straight line.

Hence, for the length of an arc of such a curve,

s =fTpdt =fdt \/ { (a
2a 2 + 2 coo)! ab cos (to— co

x)
t+ o^2 b2 }

,

/'-,. /(/ — 7no 7 cos2 <*>— <*iA
dtv <(o># + a>1 0)

2 + 4o)o)
1«0 .

2 —^""M'

which is, of course, an elliptic function.
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But when the curve becomes an epicycloid or a hypocycloid,

coa+a)^ = 0, and

which can be expressed in finite terms, as was first shewn by Newton

in the Principia.

The hodograph*is another curve of the same class, whose equa-

tion is 2w« 2coi«

p = i(a<ai n a + 6(0^ n a);

and the acceleration is denoted in magnitude and direction by the

vector 2wt 2^t

p = —aa)2
i * a— ba>l i

n
a.

Of course the equations of the common Cycloid and Trochoid may
be easily deduced from these forms by making a indefinitely great

and a) indefinitely small, but the product aa> finite ; and transferring

the origin to the point p = aa.

349.] Let i be the normal-vector to any plane.

Let m and p be the vectors of any two points in a rigid plate in

contact with the plane.

After any small displacement of the rigid plate in its plane, let

dm and dp be the increments of m and p.

Then Sidm = 0, Sidp = ; and, since T(m— p) is constant,

S(m—p) (dm— dp) = 0.

And we may evidently assume

dp = m(p— r),

dm = m(m— r)

;

whete of course r is the vector of some point in the plane, to a rota-

tion o) about which the displacement is therefore equivalent.

Eliminating it, we have
d(m—p)m = — — >m— p

which gives to, and thence r is at once found.

For any other point a in the plane figure

Sida = 0,

S(p— a) (dp— da) — 0. Hence dp— da = co
1
i(p— a).

S(a—m)(dm—da) — 0. Hence da—dm = oa
2
i(a— m).

From which, at once, Wj = co2
= o>, and

da = (oi (a— r),

or this point also is displaced by a rotation w about an axis through

the extremity of r and parallel to i.
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350.] In the case of a rigid body moving about a fixed point

let ot, p, a- denote the vectors of any three points of the body ; the

fixed point being origin.

Then or
2

, p
2

, <r
2 are constant, and so are S-crp, Spa, and $W.

After any small displacement we have, for w and p,

SibcIts = 0, \

Spdp = 0, I (1)

Svrdp + Spdsr = 0. )

Now these three equations are satisfied by

d-ar = Vavr, dp = Vap,

where a is any vector whatever. But if dsr and dp are given, then

Vdvrdp = V.VavrVap = aS.apvr.

Operate by S.V&p, and remember (1),

SPvrdp = S2pdv = S2
.apsr.

Vd&dp Vdpd-sr ..
Hence a=

l&di
= -s^- (2 >

Now consider a, Svda = 0, \

Spdd = — Sadp, >

Susda = — Sadsr. )

da- = Vacr satisfies them all, by (2), and we have thus the proposi-

tion that any small displacement of a rigid body about a fixed point is

equivalent to a rotation. •

351.] To represent the rotation of a rigid body about a given axis,

through a given finite angle.

Let a be a unit-vector in the direction of the axis, p the vector

of any point in the body with reference to a fixed point in the axis,

and the angle of rotation.

Then p = a~ 1Sap-\-a~1 Vap,

= — aSap— a Vap.

The rotation leaves, of course, the first part unaffected, but the

second evidently becomes

— a n afap,

or — a Vap cos 6 + Vap sin 6.

Hence p becomes

pl — — aSap— a Vap cos 6 + Vap sin 0,

= (cos- + asm-)p(cos--asin-J,

= a pa
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352.] Hence to compound two rotations about axes which meet, we

may evidently write, as the effect of an additional rotation $ about

the unit-vector /3, i. _i
P2 = /r Pl /3 *.

t — it
Hence p2 = @" a" pa~

n
fi~

w
.

If the /3-rotation had been first, and then the a-rotation, we should

have had ± ± _* _1
p'

2
= a"P"pt3 "a \

and the non-commutative property of quaternion multiplication

shews that we have not, in general,

9 2= ft'-

If a, /3, y be radii of the unit sphere to the corners of a spherical

triangle whose angles are - 1 3l
, _ , We know that

£1 m m

y" fi^a" = — 1. (Hamilton, Lectures, p. 267.)

Hence p* an = —y~"
,

-t t
and we may write p2 = y ""py 71

*,

or, successive rotations about radii to two corners of a spherical triangle,

and through angles double of those of the triangle, are equivalent to a

single rotation about the radius to the third corner, and through an

angle double of the exterior angle of the triangle.

Thus any number of successive finite rotations may be compounded

into a single rotation about a definite axis.

353.] When the rotations are indefinitely small, the effect of

one is, by § 351,
Pl = p+ aFap,

and for the two, neglecting products of small quantities,

p2
= p + aVap+ WPp,

a and b representing the angles of rotation about the unit-vectors

a and (3 respectively.

But this is equivalent to

p2 = p + T (aa+ b/3) FU(aa + b/3) p,

representing a rotation through an angle T(aa + b/3), about the unit-

vector U(aa + bfi). Now the latter is the direction, and the former

the length, of the diagonal of the parallelogram whose sides are

aa and b/3.

We may write these results more simply, by piftting a for aa,

/3 for b/3, where a and (3 are now no longer unit-vectors, but repre-
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sent by their versors the axes, and by their tensors the angles (small),

of rotation.

Thus pl
= p + Fa/a,

Pa = P + Tap + ^/fy,

= p+ F(a+£)/>.

354.] The general theorem, of which a few preceding sections

illustrate special cases, is this

:

By a rotation, about the axis of q, through double the angle of q,

the quaternion r becomes the quaternion qrq~ 1
. Its tensor and

angle remain unchanged, its plane or axis alone varies.

A glance at the figure is sufficient for . q
the proof, if we note that of course

T.qrq~1= Tr, and therefore that we need

consider the versor parts only. Let Q
be the pole of q,

AB=q, AB'= q~\ tRj' == r.

Join C'A, and make AC = C'A. Join

CB.

Then CB is qrq~\ its arc CB is evidently equal in length to that

of r, B'C; and its plane (making the same angle with B'B that

that of B'C does) has evidently been made to revolve about Q, the

pole of q, through double the angle of q.

If r be a vector, = p, then qpq~l (which is also a vector) is the

result of a rotation through double the angle of q about the axis

of q. Hence, as Hamilton has expressed it, if B represent a rigid

system, or assemblage of vectors,

is its new position after rotating through double the angle of q
about the axis of q.

355.] To compound such rotations, we have

r .qBq~ x.r~ x = rq .B .(rq)* 1
.

To cause rotation through an angle ^-fold the double of the angle

of q we write q
lBq- 1

.

To reverse the direction of this rotation write q-*B<f.

To translate the body B without rotation, each point of it moving

through the vector a, we write a + B.

To produce rotation of the translated body about the same axis,

and through the same angle, as before,

f(a+J)f-».
Had we rotated first, and then translated, we should have had

a+ qBq- 1
.
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The obvious discrepance between these last results might perhaps

be useful to those who do not believe in the Moon's rotation, but

to such men quaternions are unintelligible.

356.] Given the instantaneous axis in terms of the time, it is re-

quired to find the single rotation which will bring the bodyfrom any

initialposition to its position at a given time.

If a be the initial vector of a point of the body, w the value of

the same at time t, and q the required quaternion, we have

-st = qaq- 1
(1)

Differentiating with respect to t, this gives

'sr = qaq 1— qaq 1
qq

1
,

= qq- 1.qaq- 1 -qaq~ 1
.n

= 2F.(Fqq- l.qaq- 1
).

But w- = Vesr = V.eqaq' 1
.

Hence, as qaq'1 may be any vector whatever in the displaced

body, we must have e = 2 Vqq~ x
(2)

This result may be stated in even a simpler form than (2), for we

have always, whatever quaternion q may be,

and, therefore, if we suppose the tensor of q, which may have any

value whatever, to be a constant (unity, for instance), we may write

(2) in the form cq = 2q (3)

An immediate consequence, which will be of use to us later, is

q.q-^q = 2q (4)

357.] To express q in terms of the usual angles \jr, 0, <f>.

Here the vectors i, j, k in the original position of the body corre-

spond to OA, OB, OC, respectively,

at time t. The transposition is ef-

fected by

—

firsty a rotation \jr about

h ; second, a rotation about the

new position of the line originally

coinciding with/; third, a rotation

<f>
about the final position of the line

at first coinciding with k.

Let i, jt
k be taken as the initial

directions of the three vectors which

at time t terminate at A, B, C re-

spectively.

The rotation \jr about k has the operator

t &
k"( )k *.
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This converts j into 77, where

t Jt
rj = k*jk "=z j cos \f/—i sin \jr.

The body next rotates about r? through an angle 0. This has

the operator t JL
i"( )n '

It converts k into

OC- (= rfkii)
n= (cos- +r)sm-)k(cos-— 17 sin-)

= £ cos ~f- sin (i cos \// -f / sin i/r).

The body now turns through the angle </j about £ the operator

being * -t
C*( K *•

Hence

, <b M . (f)\ / . 0\ / ^ 7 . "v/r\

= (cos - + C sin
-J (cos - + 77 sin -) (cos | + £ sin ~)

= (cos — + c sin-) cos -cos — + A; cos- sin --

V 2
b

2' |_ 2 2 2 2

4- sin - cos^ (j cos\j/—i smxjs) + sin - sin ~ (i cos\l/-\-jsm\j/)
2 2 2 2 J

= (cos— + t sin--) cos-cos —— flsm-sm— + 1 sin -cos- + a: cos- sin—
V 2

b
2'L. 2 2 2 2

J
2 2 2 2J

<£ \lr . (}> . . \U .- „= cos — cos - cos — + sin — sin - sin— sin cos w222222 Y

. $ . $ ijr . . . <j> <9 . 1^ /,— sin — sin - cos — sin sm \lr— sm — cos - sin — cos
2 2 2

Y
2 2 2

./ <f>
. . yjr . 4> & . A

-f * ( — cos — sm - sin 4- + sin — cos - cos j- sm cos \lr

V 222222 r

. 4> . \Ir A .(f) • ^ . „ - ,\—sm — sm - cos — cos + sm — cos - sm — sm sm 1//

)

222 222 r '

./ 6.0 \I/- . d> ^• /,. l

+ j ( cos 7: sm - cos ~ + sin — cos - cos —sm sin \/f
' \ 2 2 2 2 2 2

r

. d> . . \lf „ . </> . \Zr . „ n—sm J sm - sm ^ cos 0— sin — cos - sm T sm cos \j/)
2 2 2 2 2 2 '

7 / <t> . ylr . <b \ls

+ k ( cos -- cos - sin 7- + sm -- cos - cos — cosV2222222 2 2 2 2 2

• •*••*• . . </> . \lr . „ \
-f sin — sm-sm — sm0smi/r + sm^- sin -cos- sm0cos\M

2 2 2 2 2 2 '

+ xlr . . — yjf . (h— \l, . _ . 6+ x/r (9= cos——^cos- 4-zsm—

—

L sin- +^cos T sin- -f# sin-—-cos->22 2 2 22 22
which is, of course, essentially unsymmetrical.
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358.] To find the usual equations connecting \j/, 0, <f)
with the an-

gular velocities about three rectangular axes fixed in the body.

Having the value of q in last section in terms of the three angles,

it may be useful to employ it, in conjunction with equation (3) of

§ 356, partly as a verification of that equation. Of course, this is

an exceedingly roundabout process, and does not in the least re-

semble the simple one which is immediately suggested by qua-

ternions.

We have 2q = eq = {©x
OA + ©

2
OB + ©

3
OC} q,

whence %<l~
x
q = q~ x

{g^ OA + (o2
0.Z? + ©

3
OC} q,

or 2q — £ (*©!+,/ a>
2+ £©3).

This breaks up into the four (equivalent to three independent)

equations

d, Q + yfr 0x2— (cos ^ cos-)
dt V 2 2^

. (b— \I/ . d>— \lr . . d> + \l/= — ©t sm sin ©„ cos sin ©~ sin -—— cos - >1
2 2

2
2 2

3
2 2

d , . </>— \jr

2— (sin ^ n
r sm-)

dt V 2 2'

6 + \l/ . (b + \l; d>— \l; .= ©j cos—•— cos - — ©2 sm—~- cos - + ©
3
cos -—— sin - >

2 2 £1 it 2 2

n d / </>—^ • 0\
2— (cos „ sm-)^ \ 2 2'

. <i> + ^ 6 + \lf . (b—xlr .= ©
x
sin cos - + ©

2
cos cos - — ©

3
sin -—- sm - >

2 2 2 2 2 2

2-T-(sm ^ tt

T cos-)
<& V 2 2'

#— v/r . . <A— v/r . d> + \l/= — ©, cos -—— sin - -f ©9 sin ^ sm - + ©o cos -—— cos - •

2 2 2 2 2 2

From the second and third eliminate </>—^ and we get by in-

spection • ,r cos - . = (©x
sm + ©

2
cos </>) cos - >

2 2

or = ©
x
sin <£ + ©2 cos (f>. (1)

Similarly, by eliminating between the same two equations,

* 0, • • .0
sin-((|)-^) = ©3 sin—}-©

1
cos^)Cos ©

2
sm(/> cos--

<s S3 m 2

And from the first and last of the group of four

*,± U e
•

e
j. • $

cos -
{(f) + \j/) = ©3 cos ©j cos <p sm - + ©

2
sm 9 sm - •
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These last two equations give

<£ -f \j/ cos = ft)3 (2)

(f>
cos 6+ yj/ = ( — a^ cos $ + o>

2
sin 0) sin + <o3 cos 0.

From the last two we have

yfr sin = — a^ cos </>+ a>2
sin <£ (3)

(1), (2), (3) are the forms in which the equations are usually given.

359.] To deduce expressions for the direction-cosines of a set of

rectangular axes in any position in terms of rationalfunctions of three

quantities only.

Let a, /3, y be unit-vectors in the directions of these axes. Let q

be, as in § 356, the requisite quaternion operator for turning the

coordinate axes into the position of this rectangular system. Then

q = w + xi + yj+ zk,

where, as in § 356, we may write

1 = w2 + x2 + y
2 +z2

.

Then we have q'1 = w— xi—yj-hzk,

and therefore

a = qiq~x = {wi—x—yk + zj){w—xi—yj—zk)
= (w2 + x2—y2 —z2 )i + 2 (wz + xy)j-\-2(xz—wy)k,

where the coefficients of i, j, h are the direction-cosines of a as

required. A similar process gives by inspection those of /3 and y.

As given by Cayley*, after Rodrigues, they have a slightly

different and somewhat less simple form—to which, however, they

are easily reduced by putting

_ x _ y z 1

A.
fj.

v Ki

The geometrical interpretation of either set is obvious from the

nature of quaternions. For (taking Cayley's notation) if be the

angle of rotation : cos/, cosy, cos h, the direction-cosines of the axis,

we have

q = w + xi+ yj + zk = cos- -f sin- (i cosf-\-j cosy + k cos h),

so that W — COS - i

a

x = sin -cos//
2

.

y = sin -cosy,

•
6

iz = sin -cos/?.

* Camb. and Dub. Math. Journal. Vol. i. (1846.)

P
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From these we pass at once to Rodrigues' subsidiary formulae,

1
2
d

k = —= = sec^ - j

w 2 2

x
*

e *a = — = tan - cos /,w 2
Ji

&c. = &c.

360.] By the definition of Homogeneous Strain, it is evident that

if we take any three (non-coplanar) unit-vectors a, 0, y in an un-

strained mass, they become after the strain other vectors, not neces-

sarily unit-vectors, a l3 /313 yY
.

Hence any other given vector, which of course may be thus ex-

pressed, p = xa + ?/(3 + zy,

becomes p
x
= xa

1 +y(3L
-\- zy

x ,

and is therefore known if alf (3lf yx
be given.

More precisely

pS.afiy = aS.fiyp+ pS.yap + yS.afip
becomes

p1
S.a(3y — (JypS.afty = a

1
S./3yp + fi1

S.yap + yl S.afip.

Thus the properties of <£, as in Chapter V, enable us to study with

great simplicity strains or displacements in a solid or liquid.

For instance, to find a vector whose direction is unchanged by the

strain, is to solve the equation

Fpcpp = 0, or $p = gp,

where g is a scalar unknown.

[This vector equation is equivalent to three simple equations, and

contains only three unknown quantities ; viz. two for the direction

of p (the tensor does not enter, or, rather, is a factor of each side),

and the unknown g.~]

We have seen that every such equation leads to a cubic in g
which may be written

gZ— mzgZ + i^g-m = 0,

where m
2 , m lt m are scalars depending in a known manner on the

constant vectors involved in 0. This must have one real root, and

may have three.

361.] For simplicity let us assume that a, (3, y form a rectangular

system, then we may operate by S.a, S.jB, and S.y; and thus at

once obtain the equation for g, in the form

(i)Saa
±

-t g, A&, Say
1

S0alt Wi i g> Spyi
Syai , Syfr> sWi+9
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To reduce this we have

Sac*!, Saj31} Say
l

Sj3alf SP&, SfSy,

Syalt Sy/3
L , Syy

x

1_
8aal

oaa
1

S^ad! + S2/^+ S2ya
x , 2 &K*! Saft

,

2 flac^ #ayi^ Sfifilt S(37l

Syalt SyPlt Syy
x

which, if the mass be rigid, becomes successively

Thus the equation becomes

- 1 -^(fla^ + S/3& + Sy^) + $'
2 (flaa

1 + S/3^ + SyyJ +g* = 0, '

or {g-^tf+g^+SaoLi + Sph + Syy^+l) = 0.

362.] If we take Tp = C we consider a portion of the mass

initially spherical. This becomes of course

Zty-Vt = ft

an ellipsoid, in the strained state of the body.

Or if we consider a portion which is spherical after the strain, i. e

TPl = C,

its initial form was T(f>p = C,

another ellipsoid. The relation between these ellipsoids is obvious

from their equations. (See § 311.)

In either case the axes of the ellipsoid correspond to a rectangular

set of three diameters of the sphere (§ 257). But we must care-

fully separate the cases in which these corresponding lines in the

two surfaces are, and are not, coincident. For, in the former case

there is pure strain, in the latter the strain is accompanied by ro-

tation. Here we have at once the distinction pointed out by

Stokes* and Helmholtzf between the cases of fluid motion in

which there is, or is not, a velocity-potential. In ordinary fluid

motion the distortion is of the nature of a pure strain, i. e. is differ-

entially non-rotational ; while in vortex motion it is essentially ac-

companied by rotation. But the resultant of two pure strains is

generally a strain accompanied by rotation. The question before us

beautifully illustrates the properties of the linear and vector function.

* Cambridge Phil Trans. 1845.

t Crelle, vol. lv. 1857. See also Phil Mag. (Supplement) June 1867.

P 2
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363.] To find the criterion of a pure strain. Take a, 13, y now as

unit-vectors parallel to the axes of the strain-ellipsoid, they become

after the strain a a. ij3, cy.

Hence p x
— cpp — —aaSap— b(3 Sfip— cy Syp.

And we have, for the criterion of a pure strain, the property of the

function $, that it is self-conjugate, i. e.

Sp<fia = S(T(j)p,

364.] Two pure strains, in succession, generally give a strain ac-

companied by rotation. For if <£, \js represent the strains, since they

are pure we have Sp(jxr — S<j<\>p,
|

But for the compound strain we have

Pi = XP — Wp*
ami we have not generally

Spx* = S*xp.

For Sp\j/(f)o- = Sa-(f)\j/p,

by (1), and \j/(j> is not generally the same as
(f)\j/.

(See Ex. 7 to

Chapter V.)

365.] The simplicity of this view of the question leads us to

suppose that we may easily separate the pure strain from the rotation

in any case, and exhibit the corresponding functions.

When the linear and vector function expressing a strain is self-

conjugate the strain is pure. When not self-conjugate, it may be

broken up into pure and rotational parts in various ways (analogous

to the separation of a quaternion into the sum of a scalar and a

vector part, or into the product of a tensor and a versor part), of

which two are particularly noticeable. Denoting by a bar a self-

conjugate function, we have thus either

<t>
= ++r.e( ),

<t>
= qm( )q~\ or

<f>
= v

1 .q{ )q~\

where e is a vector, and q a quaternion (which may obviously be

regarded as a mere versor).

That this is possible is seen from the fact that <£ involves nine

independent constants, while \jr and ot each involve six, and e and q

each three. If iff be the function conjugate to
<f),

we have

so that 2
\f/
—

<f) + 4>',

and 2V.e{ ) = </>— </>',

which completely determine the first decomposition. This is, of
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course, perfectly well known in quaternions, but it does not seem

to have been noticed as a theorem in the kinematics of strains that

there is always one, and but one, mode of resolving a strain into the

geometrical composition of the separate effects of (1) & pure strain,

and (2) a rotation accompanied by uniform dilatation perpendicular

to its axis, the dilatation being measured by (sec. 0—1) where 6 is

the angle of rotation.

In the second form (whose solution does not appear to have been

attempted), we have

<j) = qw( )q~\

where the pure strain precedes the rotation, and from this

^=^.q-1
( )q,

or in the conjugate strain the rotation (reversed) is followed by the

pure strain. From these

^ = w.^- 1 (yw( )q~ 1
)q

= ™\
and sr is to be found by the solution of a biquadratic equation *.

It is evident, indeed, from the identical equation

S.a(j)^(f)p = S.pcf/(f)(r

that the operator
<f/<f>

is self-conjugate.

In the same way

W( ) = q**(q-i( )q)q-\

or r* (Wp) q = ^ 2
(q^pq) = tf>'</> for V?),

which shew the relations between <£<£', <£'<£, and q.

To determine q we have

<pp.q = q*rp

* Suppose the cubic in ar to be

vf
3 + g^ 2 + gi^ + g2 = 0,

write a) for <p'(p in the given equation, and by its help this may be written as

(w + g) oj + gx
5= + g2

= = w- (« + gt) + goj + g2 .

Eliminating y,we have

This must agree with the (known) cubic in oj,

oj
3 + map + m l

eu + m2 =0,
suppose, so that by comparison of coefficients we have

so that g2 is known, and
2 /y/—m2

where fe.»-&£=S£.

The values of the quantities </ being found, *r is given in terms of cw by the equation
above. {Proc. E. S. E., 1870-71.)
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whatever be p, so that

S.Vq(<j>—v)p = 0,

or S.p(<f>'—&)Vq = 0,

which gives ($'— ot) Vq = 0,

The former equation gives evidently

whatever be a and /3 ; and the rest of the solution follows at once.

A similar process gives us the solution when the rotation precedes

the pure strain.

366.] In general, if

Pi = # =—a1Sap—i3l
Sj3p—y

1
Syp,

the angle between any two lines, say p and a, becomes in the

altered state of the body

cos- 1
(-S.U(l>pU<l>(T).

The plane 8(p = becomes (with the notation of § 144)

SCPl = = S&p = Sp<f>'(.

Hence the angle between the planes S£p = 0, and Srjp = 0, which

is cos
_1 (— S.U(Ur)), becomes

eos-^- S.UQ'CUcfy'r)).

The locus of lines equally elongated is, of course,

T<pUp = e,

or T<f>p = eTPi
a cone of the second order.

367.] In the case of a Simple Shear, we have, obviously,

Pi = 4>P = P + fiSap,

where Sa(3 = 0.

The vectors which are unaltered in length are given by

TPl = Tp,

or 2 S(3pSap + j3
2S2ap = 0,

which breaks up into S.ap = 0,

and Sp(2/3 + p2
a) = 0.

The intersection of this plane with the plane of a, {3 is perpen-

dicular to 2/3 + /3
2
a. Let it be a + cc{3, then

£.(2/3 + /3
2a)(a + tf/3) = 0,

i.e. 2a?— 1 = 0.

Hence the intersection required is

.«.
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For the axes of the strain, one is of course a/3, and the others

are found by making T<fiUp a maximum and minimum.

Let p = a + a?j8,

then px
= cpp = a + xfi—fi,

and
TPl
-j^ = max. or mm.,

gives *2-*+^T = '

from which the values of x are found.

Also, as^a verification,

S.(a + x
1 l3)(a + x

2 j3)
= — l+^ 2 x

x
x2 ,

and should be = 0. It is so, since, by the equation,

1

Again

^{a + (^-l)/3} {a + (x2 -l)(3} = -1 + (3
2 {^^-fe + ^)+ 1 },

which ought also to be zero. And, in fact, x
1 + x

2 — 1 by ^ne equa-

tion ; so that this also is verified.

368.] We regret that our limits do not allow us to enter farther

upon this very beautiful application.

Bat it may be interesting here, especially for the consideration

of any continuous displacements of the particles of a mass, to in-

troduce another of the extraordinary instruments of analysis which

Hamilton has invented. Part of what is now to be given has been

anticipated in last Chapter, but for continuity we commence afresh.

If Fp = C (1)

be the equation of one of a system of surfaces, and if the differential

of (l)be 8vdp = 0, (2)

v is a vector perpendicular to the surface, and its length is inversely

proportional to the normal distance between two consecutive surfaces.

In fact (2) shews that v is perpendicular to dp, which is any tangent

vector, thus proving the first assertion. Also, since in passing to a

proximate surface we may write

Svhp = bC,

we see that F{p + v~ 1 hC) = C + hC.

This proves the latter assertion.

It is evident from the above that if (1) be an equipotential, or an

isothermal, surface, — v represents in direction and magnitude theforce

at any point or theflux of heat. And we have seen (§ 317) that if

V-i— '— h—
dx dy dz



216 QUATERNIONS. [369.

d 2 d 2 d 2

giving ?*=^_.__-_,
then v = VFp.

This is due to Hamilton (Lectures on Quaternions, p. 611),

369.] From this it follows that the effect of the vector operation

V, upon any scalar function of the vector of a point, is to produce

the vector which represents in magnitude and direction the most rapid

change in the value of thefunction.

Let us next consider the effect of V upon a vector function as

<r = *£+./»? 4- #C
We have at once

-=-(i^^S)-^(£-|)-&-
and in this semi-Cartesian form it is easy to see that :

—

If o- represent a small vector displacement of a point situated at

the extremity of the vector p (drawn from the origin)

SVa represents the consequent cubical compression of the group

of points in the vicinity of that considered, and

VV (t represents twice the vector axis of rotation of the same

group of points.

Similarly IrV— (*£
+,-J +*£)

—A.

or is equivalent to total differentiation in virtue of our having

passed from one end to the other of the vector <r.

370.] Suppose we fix our attention upon a group of points which

originally filled a small sphere about the extremity of p as centre,

whose equation referred to that point is

Ta> = e (1)

After displacement p becomes p+ o-, and, by last section, p-fo>

becomes p-f co -ftr— (#coV)o-. Hence the vector of the new surface

which encloses the group of points (drawn from the extremity of

p + v) is a>
x
= — (SaV)ar (2)

Hence co is a homogeneous linear and vector function of co
x ; or

and therefore, by (1), T^^ = e,

the equation of the new surface, which is evidently a central surface

of the second order, and therefore, of course, an ellipsoid.

We may solve (2) with great ease by approximation, if we re-

member that Tkt is very small, and therefore that in the small term

we may put o^ for co ; i.e. omit squares of small quantities ; thus

CO = COj + ^COjV)^.
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371.] If the small displacement of each point of a medium is in the

direction of and proportional to, the attraction exerted at that point

by any system of material masses, the displacement is effected without

rotation.

For if Fp = C be the potential surface, we have Sadp a complete

differentia] ; i. e. in Cartesian coordinates

£dx + 7)dy + (dz

is a differential of three independent variables. Hence the vector

axis of rotation A{ $„

vanishes by the vanishing of each of its constituents, or

r.Va- = 0.

Conversely, if there be no rotation, the displacements are in the

direction of and proportional to, the normal vectors to a series of

surfaces.

For =F.dp V.Va- = (SdpV) or- VSadp,

where, in the last term, V acts on <r alone.

Now, of the two terms on the right, the first is a complete differ-

ential, since it may be written —Ddp a} and therefore the remaining

term must be so.

Thus, in a distorted system, there is no compression if

SVa- = 0,

and no rotation if V.Vv = ;

and evidently merely transference if <t = a = a constant vector,

which is one case of v<r = 0.

In the important case of a = eVFp

there is evidently no rotation, since

Vo- = eV 2Fp

is evidently a scalar. In this case, then, there are only translation

and compression, and the latter is at each point proportional to the

density of a distribution of matter, which would give the potential

Fp. For if r be such density, we have at once

V 2Fp = 4 7T/-*.

372.] The Moment of Inertia of a body about a unit vector a as

axis is evidently Mk2 = -^m{Vap) 2
,

where p is the vector of the portion m of the mass, and the origin

of p is in the axis.

* Proc. E. S. K, 1862-3.
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Hence if we take kTa= e2 , we have, as locus of the extremity of a,

Me* = — ^m(Vap) 2 = MSatya (suppose),

the momental ellipsoid.

If m be the vector of the centre of inertia, <r the vector of m with

respect to it, we have p = ^r + a-
;

therefore MP = - 2m
{

(

Fam) 2 + (
Fa*) 2

}

= -M( Fam) 2 + MSa^a.
Now, for principal axes, h is max., min., or max.-min., with the

condition a2 = __ i

.

Thus we have Sa^Favr—^a) = 0,

Sa'a = ;

therefore —§x
a + TxVaix = pa = k2a (by operating by #a).

Hence (<^ -fP -f ar2)a = + vrSavy, (1)

determines the values of a, P being found from the equation

S3t(4> +P + vt
2)- 1*t= 1 (2)

Now the normal to &r(</> + £2 + ot
2)-1

o- = 1, (3)

at the point o- is (<£+P + ct2
)

-1
<t.

But (3) passes through — ct, by (2), and there the normal is

(0 +F + ^ 2)-V,

which, by (1), is parallel to one of the required values of a. Thus

we prove Binet's theorem that the principal axes at any point are

normals to the three surfaces, confocal with the momental ellipsoid,

which pass through that point.

EXAMPLES TO CHAPTER X.

1. Form, from kinematical principles, the equation of the cyctoid
;

and employ it to prove the well-known elementary properties of the

arc, tangent, radius of curvature, and evolute, of the curve.

2. Interpret, kinematical ly, the equation

p = aU((3t- P),

where /3 is a given vector, and a a given scalar.

Shew that it represents a plane curve ; and give it in an in-

tegrated form independent of t.
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3. If we write vs = fil—p,

the equation in (2) becomes

/3

—

zj = aUnr.

Interpret this kinematically ; and find an integal.

What is the nature of the step we have taken in transforming1

from the equation of (2) to that of the present question ?

4. The motion of a point in a plane being given, refer it to

(a.) Fixed rectangular vectors in the plane.

(6.) Rectangular vectors in the plane, revolving uniformly

about a fixed point.

(<?.) Vectors, in the plane, revolving with different, but uni-

form, angular velocities.

(d.) The vector radius of a fixed circle, drawn to the point of

contact of a tangent from the moving point.

In each case translate the result into Cartesian coordinates.

5. Any point of a line of given length, whose extremities move
in fixed lines in a given plane, describes an ellipse.

Shew how to find the centre, and axes, of this ellipse ; and

the angular velocity about the centre of the ellipse of the tracing

point when the describing line rotates uniformly.

Transform this construction so as to shew that the ellipse is a

hypotrochoid.

6. A point, A, moves uniformly round one circular section of

a cone; find the angular velocity of the point, a, in which the

generating line passing through A meets a subcontrary section

about the centre of that section.

7. Solve, general^, the problem of finding the path by which a

point will pass in the least time from one given point to another,

the velocity at the point of space whose vector is p being expressed

by the given scalar function y«

Take also the following particular cases :

—

(a.) fp = a while Sap> 1,

fp = b while Sap < 1

.

00 fp = Sap.

(e.) fp = -p2
. (Tait, Trans. R. S. E., 1865.)

8. If, in the preceding question,^ be such a function of Tp that

any one swiftest path is a circle, every other such path is a circle,

and all paths diverging from one point converge accurately in

another. (Maxwell, Cam. and Bub. Math. Journal, IX. p. 9.)
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9. Interpret, as results of the composition of successive conical

rotations, the apparent truisms

yjSa'

and «*± -1^=1-Kid y p a

(Hamilton, Lectures, p. 334.)

10. Interpret, in the same way, the quaternion operators

? = .(»r-
1
)*(<C-

J)*(Cl-
1)*l

1 1

.

Find the axis and angle of rotation by which one given rect-

angular set of unit-vectors a, /3, y is changed into another given

set ctj, ft, yt .

12. Shew that, if $p = p-f Fep,

the linear and vector operation <£ denotes rotation about the vector e,

together with uniform expansion in all directions perpendicular

to it.

Prove this also by forming the operator which produces the

expansion without the rotation, and that producing the rotation

without the expansion ; and finding their joint effect.

13. Express by quaternions the motion of a side of one right

cone rolling uniformly upon another which is fixed, the vertices of

the two being coincident.

14. Given the simultaneous angular velocities of a body about

the principal axes through its centre of inertia, find the position

of these axes in space at any assigned instant.

15. Find the linear and vector function, and also the quaternion

operator, by which we may pass, in any simple crystal of the

cubical system, from the normal to one given face to that to an-

other. How can we use them to distinguish a series of faces be-

longing to the same zone ?

16. Classify the simple forms of the cubical system by the

properties of the linear and vector function, or of the quaternion

operator.

17. Find the vector normal of a face which truncates symmetri-

cally the edge formed by the intersection of two given faces.

18. Find the normals of a pair of faces symmetrically truncating

the given edge.
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19. Find the normal of a face which is equally inclined to three

given faces.

20. Shew that the rhombic dodecahedron may be derived from

the cube, or from the octahedron, by truncation of the edges.

21. Find the form whose faces replace, symmetrically, the edges

of the rhombic dodecahedron.

22. Shew how the two kinds of hemihedral forms are indicated

by the quaternion expressions.

23. Shew that the cube may be produced by truncating the edges

of the regular tetrahedron.

24. Point out the modifications in the auxiliary vector function

required in passing to the pyramidal and prismatic systems re-

spectively.

25. In the rhombohedral system the auxiliary quaternion operator

assumes a singularly simple form. Give this form, and point out

the results indicated by it.

26. Shew that if the hodograph be a circle, and the acceleration

be directed to a fixed point ; the orbit must be a conic section,

which is limited to being a circle if the acceleration follow any other

law than that of gravity.

27. In the hodograph corresponding to acceleration/"(i)) directed

towards a fixed centre, the curvature is inversely as D2f(D).
28. If two circular hodograph s, having a common chord, which

passes through, or tends towards, a common centre of force, be cut

by any two common orthogonals, the sum of the two times of hodo-

graphically describing the two intercepted arcs (small or large) will

be the same for the two hodographs. (Hamilton, Elements, p. 725.)

29. Employ the last theorem to prove, after Lambert, that the

time of describing any arc of an elliptic orbit may be expressed in

terms of the chord of the arc and the extreme radii vectores.

30. If q( )
q-1 be the operator which turns one set of rect-

angular unit-vectors a, /3, y into another set alf fil9 y1} shew that

there are three equations of the form



CHAPTER XI.

PHYSICAL APPLICATIONS.

373.] We propose to conclude the work by giving a few in-

stances of the ready applicability of quaternions to questions of

mathematical physics, upon which, even more than on the Geo-

metrical or Kinematical applications, the real usefulness of the

Calculus must mainly depend—except, of course, in the eyes of that

section of mathematicians for whom Transversals and Anharmonic

Pencils, &c. have a to us incomprehensible charm. Of course we

cannot attempt to give examples in all branches of physics, nor

even to carry very far our investigations in any one branch : this

Chapter is not intended to teach Physics, but merely to shew by

a few examples how expressly and naturally quaternions seem to be

fitted for attacking the problems it presents.

We commence with a few general theorems in Dynamics—the

formation of the equations of equilibrium and motion of a rigid

system, some properties of the central axis, and the motion of a solid

about its centre of inertia.

374.] When any forces act on a rigid body, the force /3 at the

point whose vector is a, &c, then, if the body be slightly displaced,

so that a becomes a + 8 a, the whole work done is

2S(3ba.

This must vanish if the forces are such as to maintain equilibrium.

Hence the condition of equilibrium of a rigid body is

ZSfiba = 0.

For a displacement of translation ba is any constant vector, hence

2/3=0 (1)

For a rotation-displacement, we have by § 350, e being the axis,

and Te being indefinitely small,

ba = Vta,
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and VS.pFza = 2&eFa/3 = &«2 (Pa/3) = 0,

whatever be e, hence 2 . Fafi s (2)

These equations, (1) and (2), are equivalent to the ordinary six

equations of equilibrium.

375.] In general, for any set of forces, let

2/3 = ft,

2. Fa/3 = al5

it is required to find the points for which the couple a
x
has its axis

coincident with the resultantforce ft . Let y be the vector of such a

point.

Then for it the axis of the couple is

S.^a-y^^-Fyft,
and by condition #ft = a

i
— Py/3

X
.

Operate by #ft ; therefore

and Fyft = a
x -ft-^ft = -ft^ft- 1

,

or y = f
r
aiPr 1

+yPi>

a straight line (the Central Axis) parallel to the resultant force.

376.] To find the points about which the couple is least.

Here T (a1
— Fy^) = minimum.

Therefore S. {a
x
- Pyft) Ffty'= 0,

where y is any vector whatever. It is useless to try y'= ft, but

we may put it in succession equal to a
x
and Fa

1 [31 . Thus

S.yF^Fa^^O,
and

(
Fa

x ft)
2 -

/3f S.y Fa± ft = 0.

Hence y = xFaxft + yft

,

and by operating with /S./^ft, we get

Hi

or y = T^ft- 1
+^ft,

the same locus as in last section.

377.] The couple vanishes if

a^Fyft = 0.

This necessitates tfc^ft = 0,

or the force must be in the plane of the couple. If this be the case,

y = ajft^+tfft,
still the central axis.
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378.] To assign the values of forces f, fx , to act at €, e1} and be

equivalent to the given system.

£+& = &,

Hence F€£+ ^(ft-f) = a15

and £ = (€-e
1
)- 1 (ai-re1 /31) + ^(e-e1).

Similarly for £, The indefinite terms may be omitted, as they

must evidently be equal and opposite. In fact they are any equal

and opposite forces whatever acting in the line joining the given

points.

379.] For the motion of a rigid system, we have of course

2#(^a-/3)5a = 0,

by the general equation of Lagrange.

Suppose the displacements ba to correspond to a mere translation,

then ba is any constant vector, hence

2(^-/3) = 0,

or, if a1
be the vector of the centre of inertia, and therefore

a^m = 2^a,

we have at once a\2,m— 2/3 = 0,

and the centre of inertia moves as if the whole mass were concen-

trated in it, and acted upon by all the applied forces.

380.] Again, let the displacements ba correspond to a rotation

about an axis e, passing through the origin, then

ba = V^a,

it being assumed that Te is indefinitely small.

Hence 2S.cFa(m'd— 0) = 0,

for all values of e, and therefore

2. Fa (ma— 0) = 0,

which contains the three remaining ordinary equations of motion.

Transfer the origin to the centre of inertia, i.e. put a = a
1 + vr,

then our equation becomes

2F(a i +'Cj)(ma1 + miv— 0) = 0.

Or, since Sm^r = 0,

^V^imUr—0)+Fa
1
(a\

y2,m— 2/3) = 0.

But ^2^—2/3 = 0, hence our equation is simply

2r«r(«iOT- /3) = 0.

Now 2^/3 is the couple, about the centre of inertia, produced

by the applied forces ; call it </>, then

^mF^zJ =
(f> (1)
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381.] Integrating once,

2«jF«w = y+/<(»^ (2)

Again, as the motion considered is relative to the centre of inertia,

it must be of the nature of rotation about some axis, in general

variable. Let e denote at once the direction of,- and the angular

velocity about, this axis. Then, evidently,

Hence, the last equation may be written

HmmVeur = y+f(f>clL

Operating by £.e, we get

^m{V^f = S y + Stffrlt (3)

But, by operating directly by 2fSedt upon the equation (1), we get

-2m(n*7)2 =-/i 2 + 2fS<:<t>dt (4)

(2) and (4) contain the usual four integrals of the first order.

382.] When no forces act on the body, we have $ = 0, and

therefore 2msr Fcct = y, (5)

Zm^ 2 = 2a»(7W) 2 = — >i
2

, (6)

and, from (5) and (6), Sey = —h2
(7)

One interpretation of (6) is, that the kinetic energy of rotation

remains unchanged : another is, that the vector e terminates in an

ellipsoid whose centre is the origin, and which therefore assigns

the angular velocity when the direction of the axis is given
; (7)

shews that the extremity of the instantaneous axis is always in

a plane fixed in space.

Also, by (5), (7) is the equation of the tangent plane to (6) at

the extremity of the vector e. Hence the ellipsoid (6) rolls on the

plane (7).

From (5) and (6), we have at once, as an equation which -e must

satisfy,
y

2 2.m(FeOT
)

2=-/* 2 (2.mOT res7) 2
.

This belongs to a cone of the second degree fixed in the body. Thus

all the ordinary results regarding the motion of a rigid body under

the action of no forces, the centre of inertia being fixed, are deduced

almost intuitively : and the only difficulties to be met with in more

complex properties of such motion are those of integration, which

are inherent to the subject, and appear whatever analytical method

is employed. (Hamilton, Proc. R. I. A. 1848.)

383.] Let a be the initial position of -nr, q the quaternion by

which the body can be at one step transferred from its initial posi-

tion to its position at time t. Then

qaq 1

Q



226 QUATERNIONS, [384.

and Hamilton's equation (5) of last section becomes

l̂.mqaq~ 1 F.€qaq~ 1 = y,

or 2.mq {aS.aq
-1 (q—q^eqa2

}
q~* = y.

Let (pp = ^,.m(aSap— a2p), (1)

where <£ is a self-conjugate linear and vector function, whose con-

stituent vectors are fixed in the body in its initial position. Then

the previous equation may be written

q<\>{q-
1n)r x = y>

or 4>{g~ 1
^) = q~ 1

y^
For simplicity let us write

q-^q
q-^yq 1}

;

«
Then Hamilton's dynamical equation becomes simply

<h = C •

'

(3)

384.] It is easy to see what the new vectors 77 and { represent.

For we may write (2) in the form

« = nrl
. l (2-)

from which it is obvious that 77 is that vector in the initial position

of the body which, at time t, becomes the instantaneous axis in the

moving body. When no forces act, y is constant, and C is the

initial position of the vector which, at time t, is perpendicular to

the invariable plane.

385.] The complete solution of the problem is contained in equa-

tions (2), (3) above, and (4) of § 356 *. Writing them again, we

have

S*?=2& (4)

y2 = 2& (2)

fa = L (3)

We have only to eliminate f and rj, and we get

2q = q4>- 1 (q~ 1
yq) i (5)

in which q is now the only unknown
; y, if variable, being supposed

known in terms of q and t. It is hardly conceivable that any

simpler, or more easily interpretable, equation for q can be presented

* To these it is unnecessary to add

Tq = constant,

as this constancy of Tq is proved by the form of (4). For, had Tq been variable, there

must have been a quaternion in the place of the vector rj. In fact,

^(Tq)*= 2S.qKq = (Tq)*SV = 0.
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until symbols are devised far more comprehensive in their meaning

than any we yet have.

386.] Before entering into considerations as to the integration

of this equation, we may investigate some other consequences of

the group of equations in § 385. Thus, for instance, differentiating

(2), we have

yq + yq = q(+q(,

and, eliminating q by means of (4),

yqr) + 2yq =qr}(+2q£

whence (= V(ri + q~~ 1
yq;

which gives, in the case when no forces act, the forms

C=rC4>~H, (6)

and (as C= <Pv)

4>rj= — F.ri(l»i (7)

To each of these the term q~ l
yq, or q~ 1

y\rq
J must be added on the

right, if forces act.

387.] It is now desirable to examine the formation of the func-

tion </>. By its definition (1) we have

<pp — 2.772 (aSap— a2
p),

= — *2.maVap.

Hence -Sp^p = Z.m (Wap) 2
,

so that —Sp(pp is the moment of inertia of the body about the

vector p, multiplied by the square of the tensor of p. Thus the

equation
Spcf>p = -A2

,

evidently belongs to an ellipsoid, of which the radii-vectores are

inversely as the square roots of the moments of inertia about them
;

so that, if i, j, h be taken as unit-vectors in the directions of its

axes respectively, we have

Si(f>i = —A, \

Sjcf>j=-B, (8)

8&4>k = - C, )

A3 B, C, being the principal moments of inertia. Consequently

<l>p
= — {AiSip + BjS;p + CX;SX:p} (9)

Thus the equation (7) for r\ breaks up, if we put

7] = ia)± + j(o2+ &a>
3 ,

into the three following scalar equations

Aul
+(C-B)u

2
<oz
= 0, \

^a>a+ (-4-C ,

)«>30)1 = 0, I

Cvz + iB-A)*)^ = 0, )

Q %
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which are the same as those of Euler. Only, it is to be understood

that the equations just written are not primarily to be considered

as equations of rotation. They rather express, with reference to

fixed axes in the initial position of the body, the motion of the

extremity, co1} co
2 , o>

3 , of the vector corresponding to the instan-

taneous axis in the moving body. If, however, we consider mli co
2 , o)

3

as standing for their values in terms of w, a, y, z (§ 391 below), or

any other coordinates employed to refer the body to fixed axes, they

are the equations of motion.

Similar remarks apply to the equation which determines £ for if

we put C=i^i + j^2 + k^
(6) may be reduced to three scalar equations of the form

,\ In
OT

1— (-Q — -g) OT2 OT3 = °- •

388.] Euler's equations in their usual form are easily deduced

from what precedes. For, let

4>p = q(j>(q-
1pq)q- 1

whatever be p ; that is, let
<f>
represent with reference to the moving

principal axes what
(f>

represents with reference to the principal

axes in the initial position of the body, and we have

+€ = q(\> (q-
1 iq) q~Y = q$ (rj) q~ l

= -qF(r
1 (f)T1)q-

1

= -Tr
-qn<P(v)q-

1

= - V.qr\q-Y
q(t>

(q^cq) q' 1

= ~r. €«>e,

which is the required expression.

But perhaps the simplest mode of obtaining this equation is to

start with Hamilton's unintegrated equation, which for the case

of no forces is simply

S.^FWot = 0.

But from ct = Ven

we deduce ot = Vv&+ Vk?x

= ore2 — €S€vr+ Vim,

so that 2.7ft ( Fear fco-—k^+ vrSkTv) = 0.

If we look at equation (1), and remember that <|> differs from cf>

simply in having & substituted for a, we see that this may be

written
FH>e + <M = 0,
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the equation before obtained. The first mode of arriving at it has

been given because it leads to an interesting set of transformations,

for which reason we append other two.

By (2) y = qCq
-i

f

therefore = qq~ x
.qCq~

x + qCq'
1— qCq'

1 qq~ x
,

or qtq"
1 = 2V.yVqq~ x

= Fye.

But, by the beginning of this section, and by (5) of § 382, this

is again the equation lately proved.

Perhaps, however, the following is neater. It occurs in Hamil-

ton's Elements.

By (5) of § 382 <j>6 = y.

Hence <|>e = — <j>e = — 2.m {is Fesr+ ot few-)

= — ^.mirSe'ST

= — Y.€'2.m'&Se&

= - V^.
389.] However they are obtained, such equations as those of

§ 387 were shewn long ago by Euler to be integrable as follows.

Putting 2/co
1
<o
2 a>3^ = *,

we have A^ =Aa^ + (£- C) s,

with other two equations of the same form. Hence

2dt =

(<v +^,)V +^)VvtW
so that t is known in terms of s by an elliptic integral. Thus,

finally, rj or ( may be expressed in terms of i ; and in some of the

succeeding investigations for q we shall suppose this to have been

done. It is with this integration, or an equivalent one, that most

writers on the farther development of the subject have commenced

their investigations.

390.] By § 381, y is evidently the vector moment of momentum
of the rigid body ; and the kinetic energy is

But Sty = S.q^eqq^yq = SrjC,

so that when no forces act

But, by (2), we have also

T(=Ty, or T<pV = Ty,

so that we have, for the equations of the cones described in the
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initial position of the body by rj and £, that is, for the cones de-

scribed in the moving- body by the instantaneous axis and by the

perpendicular to the invariable plane,

P((f)r1)
2 + y

2
Sr)<t>r] = 0.

This is on the supposition that y and h are constants. If forces act,

these quantities are functions of t, and the equations of the cones

then described in the body must be found by eliminating t between

the respective equations. The final results to which such a process

will lead must, of course, depend entirely upon the way in which t

is involved in these equations, and therefore no general statement

on the subject can be made.

391.] Recurring to our equations for the determination of q, and

taking first the case of no forces, we see that, if we assume 77 to

have been found (as in § 389) by means of elliptic integrals, we have

to solve the equation .»

that is, we have to integrate a system of four other differential

equations harder than the first.

Putting, as in § 3 8 7, rjtau^ +ja>
2 + ka>

3 ,

where <alf o>
2 , o>3

are supposed to be known functions of t, and

q = w+ix + jy + kz,

,, . . 1 _, dw dx dy dz
this system is -<fc = ^ = — = jL = _.,

* To get an idea of the nature of this equation, let us integrate it on the suppos
tion that n is a constant vector. By differentiation and substitution, we get

Hence ^ Trj . Tn
q= Qx

cos -± t + Q2 sin
—- t.

Substituting in the given equation we have

TV (-& sin ^-t + &eos^.«) = (& cos^-* + &sin^ ty.

Hence ^VQa = Qi 17,

which are virtually the same equation, and thus

2= Qi (cos -^- 1 + Urj sin -£- 1)

tTr,

And the interpretation of q ( )
q-1 will obviously then be a rotation about 17 through

the angle tTrj, together with any other arbitrary rotation whatever. Thus any posi-

tion whatever may be taken as the initial one of the body, and Qi ( )
Q~x brings it

to its required position at time t = 0.
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where W= — o>, x— co
2y— a>3 z,

X= <a
x
W -\- to^y— to2

z>

Y= (D
2
W + <&\Z— <>>2>%)

Z = (O3W + (a
2
x— <o

1yJ

or, as suggested by Cayley to bring out the skew symmetry,

1^=— a>sx . -\-Qi
1
z + (a2

w
i

Z— a>
2
#— a>

lt^ . +(*>3w,

W = — o)
x
x— o)

2
y—a>3z .

Here, of course, one integral is

w2
-{-x

2 +y2 + z2 =. constant.

It may suffice thus to have alluded to a possible mode of solution,

which, except for very simple values of r?, involves very great diffi-

culties. The quaternion solution, when 77 is of constant length and

revolves uniformly in a right cone, will be given later.

392.] If, on the other hand, we eliminate 77, we have to inte-

grate q<i>-
l {q-1

yq) = H>
so that one integration theoretically suffices. But, in consequence

of the present imperfect development of the quaternion calculus, the

only known method of effecting this is to reduce the quaternion

equation to a set of four ordinary differential equations of the first

order. It may be interesting to form these equations.

Put q = w+ ix + jy + kz,

y = ia +jb -f he,

then, by ordinary quaternion multiplication, we easily reduce the

given equation to the following set

:

dt dw dx _ dy dz

T = F~ X " Y ~~z'
where

r=--x%—y"&— z<& or X= . yC—*B+w«,
x= w%+y&—z& Y=—x(& . +2&-fw2S,

r= wft + zyL—x®, Z— x^—y% . +w&,

z = w(&+x&—y%l W= — x<&—y®—z& . ,

and

$ = -7 [« {w2 —x2 ~y2 — z2 ) + 2x (ax+ by + cz) + 2w (bz—cy)~],

^ — -—[b (w2 —x2 —y2 —z2
) + 2y (ax+ by+ cz)+ 2w (cx—az)~],

(£ = — [c (w2 —x2 —y2 —z2
) + 2z(ax + by + cz) + 2w (ay—bx)\,
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W> X, Y, Z are thus homogeneous functions of w, x, y} z of the third

degree.

Perhaps the simplest way of obtaining these equations is to trans-

late the group of § 385 into w, x, y, z at once, instead of using the

equation from which £ and 77 are eliminated.

We thus see that
^ =^^ +£<£.

One obvious integral of these equations ought to be

w2
-f x2 +y2

-f- z
2 = constant,

which has been assumed all along. In fact, we see at once that

wW+xX+yY+zZ =
identically, which leads to the above integral.

These equations appear to be worthy of attention, partly because

of the homogeneity of the denominators W, X, Y, Z, but particularly

as they afford (what does not appear to have been sought) the means

of solving this celebrated problem at one step, that is, without the

previous integration of Euler's equations (§ 387).

A set of equations identical with these, but not in a homogeneous

form (being expressed, in fact, in terms of k, A, jx, v of § 359, instead

of w, x, y, z), is given by Cayley (Camb. and Dub. Math. Journal,

vol. i. 1846), and completely integrated (in the sense of being re-

duced to quadratures) by assuming Euler's equations to have been

previously integrated. (Compare § 391.)

Cayley's method may be even more easily applied to the above

equations than to his own ; and I therefore leave this part of the

development to the reader, who will at once see (as in § 391) that

% 33, (£ correspond to <olt <o2 , o>3
of the rj type, § 387.

393.J It may be well to notice, in connection with the formulae

for direction cosines in § 359 above, that we may write

<E = -j- [a (w2
-f x2 r-y2 — z2 )-\-2b(xy+ wz) + 2c [xz—wy)\

33 = -^[2a{xy— wz)-\-b(w2 —x2 +y 2—

z

2
) + 2c{yz + wx)~],

C = 77- [2 a (xz + wy) + 2b (yz—wx) + c {w2 —x2 —y2 + z2 )~\.

These expressions may be considerably simplified by the usual

assumption, that one of the fixed unit-vectors (t suppose) is perpen-

dicular to the invariable plane, which amounts to assigning defi-

nitely the initial position of one line in the body ; and which gives

the relations
b = c =
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394.] When forces act, y is variable, and the quantities a, 6, c

will in general involve all the variables w} w, y, z, t, so that the

equations of last section become much more complicated. The type,

however, remains the same if y involves t only ; if it involve q we
must differentiate the equation, put in the form

and we thus easily obtain the differential equation of the second

order ^ - ±y,q$ (q-*q) q-* + 2q<f> {V.q^q) q' 1
;

if we recollect that, because q
_1

q is a vector, we have

Though remarkably simple, this formula, in the present state of

the development of quaternions, must be looked on as intractable,

except in certain very particular cases.

395.] Another mode of attacking the problem, at first sight

entirely different from that in § 383, but in reality identical with

it, is to seek the linear and vector function which expresses the

Homogeneous Strain which the body must undergo to pass from its

initial position to its position at time t.

Let -or = xai

a being (as in § 383) the initial position of a vector of the body,

ot its position at time t. In this case x is a linear and vector

function. (See § 360.)

Then, obviously, we have, ^ being the vector of some other point,

which had initially the value a13

xSctCTj = S.^ax^ = Sadi,

(a particular case of which is

2W = Tya = Ta)

and Vm^ — ^-xaxai = X âa
i

•

These are necessary properties of the strain-function x, depending

on the fact that in the present application the system is rigid.

396.] The kinematical equation

becomes Xa = ^ eXa

(the function x being formed from x by the differentiation of its

constituents with respect to t).

Hamilton's kinetic equation

2 . mrs Ven = y,

becomes 2.^xa ^- €Xa = "Y-
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This may be writteii

2.m(xaS.€xa— ea.
2
) = y,

or ^.m(aS.ax€ — x~ le
' a2

) — X~
l

Y>

where x' is the conjugate of j(.

But, because S.^ax^i = Saalf

we have Sa^ = #.ax'xal5

whatever be a and a
x , so that

X = X •

Hence 2.^(a/S'.ax
_1 e~x~ 1 e.a 2

) = x
_1

y»

or,by§ 383, 4>X
-1

e = X~V
397.] Thus we have, as the analogues of the equations in

§§ 383, 384,
x
-i

e = %
x"

1y=£
and the former result xa = ^ eXa

becomes \a = 7
r
.xrlXa — X^7a -

This is our equation to determine x> V being supposed known.

To find 7] we may remark that

<M = C

and C = x"V-

But XX
_1

« = «>

so that XX~la + XX-la = °-

Hence f = -X_1
XX

_1
y

or $77 = — Vrjtyrj.

These are the equations we obtained before. Having found r\

from the last we have to find x from the condition

x
- 1xa=Fi1a.

398.] We might, however, have eliminated rj so as to obtain an

equation containing x alone, and corresponding to that of § 385.

For this purpose we have

V = <t> *C= <t>

1
x

x
y>

so that, finally, x~
1
x« = ^- </>"

1
x~

1
y«5

or X~la = ^-X"
1 a^X"1^

which may easily be formed from the preceding equation by putting

X
-1

a for a, and attending to the value of x
_1 given in last section.
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399.] We have given this process, though really a disguised form

of that in §§ 383, 38 5, and though the final equations to which

it leads are not quite so easily attacked in the way of integration as

those there arrived at, mainly to shew how free a use we can make

of symbolic functional operators in quaternions without risk of

error. It would be very interesting, however, to have the problem

worked out afresh from this point of view by the help of the old

analytical methods : as several new forms of long-known equations,

and some useful transformations, would certainly be obtained.

400.] As a verification, let us now try to pass from the final

equation, in x alone, of § 398 to that of § 385 in q alone.

We have, obviously,

m = qaq-1 = x«,

which gives the relation between q and x-

[It shews, for instance, that, as

S.(3Xa = S.aX%
while S . /3x« = S . fiqaq-

1 = S.aq^fiq,

we have xfi = q^fiq,

and therefore that xx'/3 = ^C^ft?)?"
1 = ft

or x' = X
-1

?
as above.]

Differentiating, we have

qaq- 1 -qaq-1qq- 1 = xa.

Hence X
_1

Xa = q~1qo.— aq~ 1
q

= 2KF(q- 1q)a.

Also (f)-
1
x
_1

y = 4>
-1

(q'1
yq\

so that the equation of § 398 becomes

2 V. V{q~1
q) a=F. Q-1 {q~l

yq) a,

or, as a may have any value whatever,

2Kq~1
q = <l>-'(q-

l
yq),

which, if we put Tq — constant

as was originally assumed, may be written

2q = q(f>-
1 (q-1yq),

as in § 385.

401.] To form the equation for Precession and Nutation. Let a

be the vector, from the centre of inertia of the earth, to a particle

m of its mass : and let p be the vector of the disturbing body, whose

mass is M. The vector-couple produced is evidently
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U(p-a)
M^.mV.a

= M2.m

= Jf2

T\p-a)

Fap

T*{p-a)

Vvp

T 3
P , 2S*p T**^

[} ;+ ^ + T 2
p
)

no farther terms being necessary, since ~- is always small in the

actual cases presented in nature. But, because a- is measured from

the centre of inertia, 2. ma- = 0.

Also, as in § 383, (f>p
= '2.m (oS(rp— <T

2
p).

Thus the vector-couple required is

Referred to coordinates moving with the body, </> becomes <{> as in

§ 388, and § 388 gives

Simplifying the value of 4> by assuming that the earth has two

principal axes of equal moment of inertia, we have

Be— {A—B)aSaz = vector-constant+ 3M(A—B) / —JL^ dt.

This gives Sae = const. = 12,

whence € = — X2a + ad,

so that, finally,

BFaa-Aad = ^L(A-B)FapSaP .

The most striking peculiarity of this equation is that the/0m of

the solution is entirely changed, not modified as in ordinary cases

of disturbed motion, according to the nature of the value of p.

Thus, when the right-hand side vanishes, we have an equation

which, in the case of the earth, would represent the rolling of a

cone fixed in the earth on one fixed in space, the angles of both

being exceedingly small.

If p be finite, but constant, we have a case nearly the same as

that of a top, the axis on the whole revolving conically about p.
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But if we assume the expression

p = r (j cos mt + k sin mt),

(which represents a circular orbit described with uniform velocity,)

o revolves on the whole conically about the vector i, perpendicular

to the plane in which p lies. (Trans. B. S. U., 1868-9.)

402.] To form the equation of motion of a simple pendulum,

taking account of the earth's rotation. Let a be the vector (from

the earth's centre) of the point of suspension, A its inclination to

the plane of the equator, a the earth's radius drawn to that point

;

and let the unit-vectors i, j, k be fixed in space, so that i is parallel

to the earth's axis of rotation ; then, if <o be the angular velocity

of that rotation

a = a [i sin A + (j cos cat + k sin cot) cos A]. .
.

,

(1)

This gives a = a a>
(
—j sin cot + k cos cot) cos A

= (oFia (2)

Similarly a = co Fid = — o>
2 (a—ai sin A) (3)

403.] Let p be the vector of the bob m referred to the point of

suspension, R the tension of the string, then if ax
be the direction

of pure gravity m (d + p) =-m#Ua1
-RUPi (4)

which may be written

rPd+rPp = r̂ ra
1 p (5)

To this must be added, since r (the length of the string) is constant,

TP = r, (6),

and the equations of motion are complete.

404.] These two equations (5) and (6) contain every possible case

of the motion, from the most infinitesimal oscillations to the most

rapid rotation about the point of suspension, so that it is necessary

to adapt different processes for their solution in different cases.

We take here only the ordinary Foucault case, to the degree of

approximation usually given.

405.] Here we neglect terms involving co
2

. Thus we write

a = 0,

and we write a for a
2 , as the difference depends upon the ellipticity

of the earth. Also, attending to this, we have

r
p— a + -or, (7)

a

whereby (by (6)) San = 0, , (8)

and terms of the order ot2 are neglected.
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With (7), (5) becomes

— -Fair = ?-Vaix;
a a

so that., if we write - = n2
. (9)

r v '

we have Va(z& + n2™) = (10)

Now, the two vectors ai— a sin A and Via

have, as is easily seen, equal tensors ; the first is parallel to the line

drawn horizontally northwards from the point of suspension, the

second horizontally eastwards.

Let, therefore, & = x{ai- a sin \)+y Via, (11)

which (x and y being very small) is consistent with (6).

From this we have (employing (2) and (3), and omitting a>
2
)

tjt = x{ai— a sin \)-\-y Via—xa>sin\Via— yea (a— aisin A),

zr = x(ai— a sink)+yVia— 2%a>sin\Via— 2yio(a— aisink).

With this (10) becomes

Va [£(ai— a sin A) + yVia—2x(s> sin Wia— 2yu)(a—ai sin A)

+ n2x{ai— a sin \)-\-n2yVia~] = 0,

or, if we note that V. a Via = a(ai— a sin A),

(—i?-— 2yo>sinA— n2x)aVia + {y— 2x<asin\ + n2y)a(ai— a sin A) = 0.

This gives at once %+ n2x+2(t>ysiii A = 0, |

y + n2y— 2 cousin A = 0, 3
"*

'

which are the equations usually obtained ; and of which the solution

is as follows :

—

If we transform to a set of axes revolving in the horizontal plane

at the point of suspension, the direction of motion being from the

positive (northward) axis of x to the positive (eastward) axis of y,

with angular velocity X2, so that

x = f cos £lt— 7) sin £lt, )

y = f sin X2 1 + rj cos X2 1, 3

"
'

and omit the terms in 122 and in a>X2 (a process justified by the

results, see equation (15)), we have

(f+»2f)cosX2£— (ij+ n 2
rj) sin £lt— 2y (X2— cosinA) = 0, )

(f+ »*£) sin Qt+ (rj+%2tj) cos X2*f+ 2a?(12— o> sin A) = 0.3 ' * '

So that, if we put 12 = w sin A, (15)

we have simply . f+ ^2
f = 0, J

ij +A = o,l
(16)

the usual equations of elliptic motion about a centre of force in the

centre of the ellipse. (Proc. R. S. K, 1869.)
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406.] To construct a reflecting surface from which rays, emitted

from a point, shall after reflection diverge uniformly, but horizontally.

Using the ordinary property of a reflecting surface, we easily

obtain the equation

S.dPf
+aFap

fP = 0.

r

By Hamilton's grand Theory of Systems of Hays, we at once write

down the second form

Tp—T((3+aFap) = constant.

The connection between these is easily shewn thus. Let w and

r be any two vectors whose tensors are equal, then

2

(I±5) = 1 + 2 ^r-1 + (^rr-1
)
2

= 2ott- 1 (1+xW- 1
),

whence, to a scalar factor pres, we have

/ur\i T +m

Hence, putting w = U((3 + aVap) and r= Up, we have from the first

equation above
S.dp[Up+ U((3 + aFapJ] = 0.

But d(J3-{-aFap) = aVadp =—dp—aSadp,

and S. a (/3 + a Tap) = 0,

so that we have finally

S.dpUp-S.d{p + aVap)U{p + aVap) = 0,

which is the differential of the second equation above. A curious

particular case is a parabolic cylinder, as may be easily seen geo-

metrically. The general surface has a parabolic section in the plane

of a, (3 ; and a hyperbolic section in the plane of /3, a/3.

It is easy to see that this is but a single case of a large class of

integrable scalar functions, whose general type is

s.ap^ffp^o,

the equation of the reflecting surface ; while

S((T— p)d(T =
is the equation of the surface of the reflected wave : the integral of

the former being, by the help of the latter, at once obtained in the

form Tp ± T(a-p) = constant*.

407.] We next take FresnePs Theory of Double liefraction, but

* Proc. E.8.E., 1870-71.
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merely for the purpose of shewing how quaternions simplify the

processes required, and in no way to discuss the plausibility of the

physical assumptions.

Let tsr be the vector displacement of a portion of the ether, with

the condition OT2__ 1
r^\

the force of restitution, on Fresnel's assumption, is

t{aHSi™+ b 2jSJTx + cHSJcw) = tyw,

using the notation of Chapter V. Here the function cf) is obviously

self-conjugate, a 2
, b 2

, c 2 are optical constants depending on the

crystalline medium, and on the colour of the light, and may be

considered as given.

Fresnel's second assumption is that the ether is incompressible,

or that vibrations normal to a wave front are inadmissible. If, then,

a be the unit normal to a plane wave in the crystal, we have of

course u2 = -l, (2)

and Savr = ; (3)

but, and in addition, we have

1\ctcdct a

or S.a'&Q'Gr = (4)

This equation (4) is the embodiment of Fresnel's second assumption,

but it may evidently be read as meaning, the normal to thefront, the

direction of vibration, and that of the force of restitution are in one

plane.

408.] Equations (3) and (4), if satisfied by -or, are also satisfied

by OTa, so that the plane (3) intersects the cone (4) in two lines

at right angles to each other. That is, for any given wave front

there are two directions of vibration, and they are perpendicular to each

other.

409.] The square of the normal velocity of propagation of a plane

wave is proportional to the ratio of the resolved part of the force of

restitution in the direction of vibration, to the amount of displace-

ment, hence vi — S^vr.

Hence Fresnel's Wave-surface is the envelop of the plane

Sap = v#gx(^sx, (5)

with the conditions <*r
2 = — 1

,

(1)

a2 =-h (2)

Sav = 0, (3)

tf.ttOT^CT = (4)
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Formidable as this problem appears, it is easy enough. From (3)

and (4) we get at once,

Hence, operating by #.«,

— X = —STXtyTZ = — v2
.

Therefore (<£ 4- v
2
)w = — aScupm,

and S.a((j) + v2)- la= (6)

In passing, we may remark that this equation gives the normal velo-

cities of the two rays whosefronts are perpendicular to a. In Cartesian

coordinates it is the well-known equation

I
2 m 2 n2

a2— v2 b 2— v 2 c2— v 2 ~
By this elimination of w, our equations are reduced to

S.aft + v 2)- 1* = 0, (6)

v=—Sap, (5)

1 (2)a2

They give at once, by § 309,

(Q+v^a+ vpSafa + v 2)-^ = ha.

Operating by S.a we have

v 2
Sa((f> + v 2 )-2a = h.

Substituting for h, and remarking that

Sa(<l> + v2)-2a =-T 2
(<j> + v2)- 1

a,

because </> is self-conjugate, we have

p^ + w*

This gives at once, by rearrangement,

i?(<£ + t;
2
)

-:1 a = (<£—

p

2
)

_1
p.

Hence (0-P2
)~V = ^^2

'

Operating by S.p on this equation we have

ty(+-p")-V = -i, (?)

which is the required equation.

[It will be a good exercise for the student to translate the last

ten formulae into Cartesian coordinates. He will thus reproduce

almost exactly the steps by which Archibald Smith * first arrived

at a simple and symmetrical mode of effecting the elimination. Yet,

as we shall presently see, the above process is far from being the

shortest and easiest to which quaternions conduct us.]

* Cambridge Phil. Trans., 1835.
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410.] The Cartesian form of the equation (7) is not the usual

one. It is, of course,

x2
y

2 z2

a2— r2 b2— t2 c2— r x

But write (7) in the form

and we have the usual expression

c z--*—3=0.
a2— r2 b2 —r2 c2 —rl

This last quaternion equation can also be put into either of the new

or T(p-2 -(j)-1)-^p = 0.

411.] By applying the results of §§ 171, 172 we may introduce

a multitude of new forms. We must confine ourselves to the most

simple ; but the student may easily investigate others by a process

precisely similar to that which follows.

Writing the equation of the wave as

^(r1
+^)-v = o,

where we have g = — p
-2

,

we see that it may be changed to

Sp(<f>~
1+ h)-1

p = O
i

if mSp<f)p = ghp2 = —h.

Thus the new form is

Sp((j>-1 -'mSp(t>p)-
1
p = (i;

Here m —
2 , SpQp = a 2x2 + b2y

2 + c2z2
,

and the equation of the wave in Cartesian coordinates is, putting

r2 = a2x2 + b2y
2 + c2z2

,

aP ij
2 z2

r\ c2a2— r\ a2b 2— r\

412.] By means of equation (1) of last section we may easily

prove Plucker's Theorem. The Wave-Surface is its own reciprocal with

respect to the ellipsoid whose equation is

Sp^p = 4- •
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The equation of the plane of contact of tangents to this surface from

the point whose vector is p is

The reciprocal of this plane, with respect to the unit-sphere about

the origin, has therefore a vector a where

cr = *s/m<fi* p.

Hence p = —7— <2>~*o-,Vm
and when this is substituted in the equation of the wave we have

for the reciprocal (with respect to the unit-sphere) of the reciprocal

of the wave with respect to the above ellipsoid,

S.a (</> Sacf)-
1
<t) a = 0.

This differs from the equation (1) of last section solely in having

</>
-1

instead of <£, and (consistently with this) — instead of m. Hence

it represents the index-surface. The required reciprocal of the wave

with reference to the ellipsoid is therefore the wave itself.

413.] Hamilton has given a remarkably simple investigation of

the form of the equation of the wave-surface, in his Elements, p. 736,

which the reader may consult with advantage. The following is

essentially the same, but several steps of the process, which a skilled

analyst would not require to write down, are retained for the benefit

of the learner.

Let S{xp=-1 (1)

be the equation of any tangent plane to the wave, i. e. of any wave-

front. Then /x is the vector of wave-slowness, and the normal

velocity of propagation is therefore -~— . Hence, if w be the vector
j. p.

direction of displacement, pr2™ is the effective component of the

force of restitution. Hence, <\>tx denoting the whole force of re-

stitution, we have ^_pr2™
\\ p.,

or sr
|| (0—/x-2)~V,

and, as <sr is in the plane of the wave-front,

Sp& = 0,

or fyfo-f*-
8)- 1

** = (2)

This is, in reality, equation (6) of § 409. It appears here, how-

ever, as the equation of the Index-Surface, the polar reciprocal of

r a
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the wave with respect to a unit-sphere about the origin. Of course

the optical part of the problem is now solved, all that remains being

the geometrical process of § 311.

414.] Equation (2) of last section may be at^once transformed,

by the process of § 4 1 0, into

Let us employ an auxiliary vector

r =
(M
2_ri)-i^

whence p. = (/x
2—#

_1
)r (1)

The equation now becomes
*r*.l, (2)

or, by (1), pt^-Sr^r = 1 (3)

Differentiating (3), subtract its half from the result obtained by

operating with §.t on the differential of (1). The remainder is

T2 Sp.dp.—STdp. = 0.

But we have also (§311) Spdp. = 0,

and therefore xp = /uit
2— r,

where a? is a scalar.

This equation, with (2), shews that

Srp = (4)

Hence, operating on it by S.p, we have by (1) of last section

xp2 = — r2
,

and therefore p' 1 =— p. + r
_1

.

This gives p' 2 = p.
2 — r" 2

.

Substituting from these equations in (1) above, it becomes

T-l_ p
-l =

(/)

-2 +r_2_rl
) ^

or r = ((f>-
1 -p-2)- 1p- 1

.

Finally, we have for the required equation, by (4),

or, by a transformation already employed,

415.] It may assist the student in the practice of quaternion

analysis, which is our main object, if we give a few of these invest-

igations by a somewhat varied process.

Thus, in §407, let us write as in § 168,

a2iSii*+ b2jSj*y+ c2]cSIcK = \'Sii'*F + n'Sk'vr-ififf.

We have, by the same processes as in § 407,

S.ivaX'Spf'GT + S.<srapf'Sk'vr — 0.
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(1)

This may be written, so far as the generating lines we require are

concerned,

S.vTaF.y*TfA'= = S.TVak'TZlX,

since ma is a vector.

Or we may write

/SyF.wWa = = &//*rA'«ra.
-

Equations (1) denote two cones of the second order which pass

through the intersections of (3) and (4) of § 407. Hence their in-

tersections are the directions of vibration.

416.] By (1) we have

S.<5T\''GTail'=Z 0.

Hence -crAV, a, \i! are coplanar ; and, as ct is perpendicular to a, it

is equally inclined to Vk'a and Vyta.

For, if Z, M, A be the projections of A.', //, a on the unit

sphere, BC the great circle whose

pole is A, we are to find, for the

projections of the values of vr on

the sphere points P and P', such

that if LP be produced till

Q may lie on the great circle AM.
Hence, evidently,

CP = PB,

and CTP^PB;
which proves the proposition, since

the projections of Vh!a and Fj/a on the sphere are points b and

c in BC> distant by quadrants from C and B respectively.

417.] Or thus, Bvr'a = 0,

S.<&F.a\'<srn'=: 0,

therefore %& =.V.aV. aW/m',

- _ V. k'^'-aSaF.XV'
Hence (Sky -x)*T = (k'+ aSak') fy'w +y+ aSaf/) Sk'v*

Operate by SX, and we have

(a> + S\'aSii'a)Sk'>cF = [A'2 a2-£2 A'a]£/zV

=>sfaT*rx*.
Hence by symmetry,

Sk S^/w
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SK'vr SfSur
°r

TFk'a ± TFp'a ~ °'

and as Stxa = 0,

*r = U{UFk'a±UFp?a).

418.] The optical interpretation of the common result of the

last two sections is that the planes of polarization of the two rays

whose wave-fronts are parallel^ bisect the angles contained by planes

passing through the normal to the wave-front and the vectors (optic

axes) k'} //.

419.] As in § 409, the normal velocity is given by

v 2 = &T0OT = 2^A/CT^/xV-y^2

, _ S 2 .k'p?a~ P +
{T+S).rJi'arp'a

[This transformation, effected by means of the value of -ar in

§ 4 1 7, is left to the reader.]

Hence, if vlt v
2
be the velocities of the two waves whose normal

is «> v\-vl = 2T.Vh'aV
l
x'a

oc sin \'a sin \xa.

That is, the difference of the squares of the velocities of the two waves

varies as the product of the sines of the angles between the normal to

the wave-front and the optic axes (A', //).

420] We have, obviously,

{T*-S*).Vk'aVtk'a = T 2 F. Fk'aFpfa = S 2 k'p!a.

Hence v 2 = pf + (T± S). Fh'a Ff/a.

The equation of the index surface, for which

T? = - ? Up = a,

is therefore 1 = -p'
P
2 + (T±S). Fk'p Fpfp.

This will, of course, become the equation of the reciprocal of the

index-surface, i.e. the wave-surface, if we put for the function
(f>

its

reciprocal : i. e. if in the values of k', //, p'- we put - > j- > - for

a, b, c respectively. We have then, and indeed it might have been

deduced even more simply as a transformation of § 409 (7),

l = -pp 2 T{T±S).FkPFm
as another form of the equation of Fresnel's wave.
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If we employ the l,' k transformation of § 1 21, this may be written,

as the student may easily prove, in the form

(k
2 -i2

)

2 = S2 (l-k) P+ (TFlP + TVkP)
2

.

421.] We may now, in furtherance of our object, which is to

give varied examples of quaternions, not complete treatment of any

one subject, proceed to deduce some of the properties of the wave-

surface from the different forms of its equation which we have

given.

422.] FresneVs construction of the wave by points.

From § 273 (4) we see at once that the lengths of the principal

semidiameters of the central section of the ellipsoid

#/><*>"V = lj

by the plane Sap = 0,

are determined by the equation

S.a^-p-^a^O.
If these lengths be laid off along a, the central perpendicular to the

cutting plane, their extremities lie on a surface for which a = Up,

and Tp has values determined by the equation.

Hence the equation of the locus is

as in §§409, 414. *
f*""* -<r*)~V = °>

Of course the index-surface is derived from the reciprocal ellip-

soid SP<t>p
= 1

by the same construction.

423.] Again, in the equation

1 =-jpp2 + {T±S).FkpFfjLp}

suppose Vkp — 0, . or Vpp = 0,

we obviously have
Uk

,
Up

P = ±—F or P = ±—7=>

Vjp V_p

and there are therefore four singular points.

To find the nature of the surface near these points put

Uk

where Tv? is very small, and reject terms above the first order in

Tex. The equation of the wave becomes, in the neighbourhood of

the singular point,

2pSk>n -\-S.>nJ
r
.\ VXp. as ± T, FAot Vkp.,

which belongs to a cone of the second order.

424.] From the similarity of its equation to that of the wave, it
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is obvious that the index-surface also has four conical cusps. As
an infinite number of tangent planes can be drawn at such a point,

the reciprocal surface must be capable of being" touched by a plane

at an infinite number of points ; so that the wave-surface has four

tangent planes which touch it along ridges.

To find their form, let us employ the last form of equation of the

wave in § 420. If we put

TFlP =TFkP , (1)

we have the equation of a cone of the second degree. It meets the

wave at its intersections with the planes

S(l-k) P =±(k2 -l2
) (2)

Now the wave-surface is touched by these planes, because we cannot

have the quantity on the first side of this equation greater in abso-

lute magnitude than that on the second, so long as p satisfies the

equation of the wave.

That the curves of contact are circles appears at once from (1)

and (2), for they give in combination

P* = +S(i + k) P, (3)

the equations of two spheres on which the curves in question are

situated.

The diameter of this circular ridge is

[Simple as these processes are, the student will find on trial that

the equation Sp(<p~1 —p-~2)~ 1
p = 0,

gives the results quite as simply. For we have only to examine

the cases in which —p
-2 has the value of one of the roots of the

symbolical cubic in <£
-1

. In the present case Tp= b is the only one

which requires to be studied.]

425.] By § 41 3, we see that the auxiliary vector of the succeed-

ing section, viz.

r = fc»-#-*)-V = (^-i-p^-V 1
,

is parallel to the direction of the force of restitution, <£^r. Hence,

as Hamilton has shewn, the equation of the wave, in the form

Srp = 0,

(4) of § 414, indicates that the direction of theforce of restitution is

perpendicular to the ray.

Again, as for any one versor of a vector of the wave there are two

values of the tensor, which are found from the equation
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we see by § 422 that the lines of vibration for a given 'plane front

are parallel to the axes of any section of the ellipsoid

S-pQ-ip = 1

made by a plane parallel to the front ; or to the tangents to the lines

of curvature at a point where the tangent plane is parallel to the wave-

front.

426.] Again, a curve which is drawn on the wave-surface so as to

touch at each point the corresponding line of vibration has

$4>ll Op-'-rV p-

Hence Scf)pdp = 0, or Spcpp = C,

so that such, curves are the intersections of the wave with a series

of ellipsoids concentric with. it.

427.] For curves cutting at right angles the lines of vibration we

have dp
|| Vpfy-

1 (0- 1 -p"2)- 1
/)

||Fp(*-p»)-y

Hence Spdp = 0, or Tp =C,

so that the curves in question lie on concentric spheres.

They are also spherical conies, because where

TP = C

the equation of the wave becomes

S.p(cj>-l + C-z)- 1
p = 0,

the equation of a cyclic cone, whose vertex is at the common centre

of the sphere and the wave-surface, and which cuts them in their

curve of intersection. (Quarterly 3Iath. Journal, 1859.)

428.] As another example we take the case of the action of

electric currents on one another or on magnets; and the mutual

action of permanent magnets.

A comparison between the processes we employ and those of

Ampere (Theorie des Phenomenes JElectrodynamiques, fyc, many of

which are well given by Murphy in his Electricity) will at once

shew how much is gained in simplicity and directness by the use of

quaternions.

The same gain in simplicity will be noticed in the investigations

of the mutual effects of permanent magnets, where the resultant

forces and couples are at once introduced in their most natural and

direct forms.

429.] Ampere's experimental laws may be stated as follows

:

I. Equal and opposite currents in the same conductor produce

equal and opposite effects on other conductors: whence it follows
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that an element of one current has no effect on an element of an-

other which lies in the plane bisecting the former at right angles.

II. The effect of a conductor bent or twisted in any manner is

equivalent to that of a straight one, provided that the two are

traversed by equal currents, and the former nearly coincides with

the latter.

III. No closed circuit can set in motion an element of a circular

conductor about an axis through the centre of the circle and per-

pendicular to its plane.

IV. In similar systems traversed by equal currents the forces are

equal.

To these we add the assumption that the action between two

elements of currents is in the straight line joining them : and two

others, viz. that the effect of any element of a current on another is

directly as the product of the strengths of the currents,, and of the

lengths of the elements.

430.] Let there be two closed currents whose strengths are a

and a
x ; let a, a

x
be elements of these, a being the vector joining

their middle points. Then the effect of a on ax must, when resolved

along a
l5 be a complete differential with respect to a (i.e. with respect

to the three independent variables involved in a), since the total

resolved effect of the closed circuit of which a is an element is zero

by III.

Also by I, II, the effect is a function of Ta, Saa, Saa
± , and Saa

L ,

since these are sufficient to resolve a and a
x
into elements parallel

and perpendicular to each other and to a. Hence the mutual effect

is aa-JJafiTa.) Saa\ Saalf Saaj),

and the resolved effect parallel to a
L
is

aa
1
8Uax UaJ*.

Also, that action and reaction may be equal in absolute magnitude,

j^must be symmetrical in Saa and Sa^. Again, a (as differential

of a) can enter only to the first power', and must appear in each term

of/.

Hence f= ASa'a^ + BSaaSa^

.

But, by IV, this must be independent of the dimensions of the

system. Hence A is of — 2 and B of — 4 dimensions in Ta. There-

fore 1
. sf- {ASaaySa'a-i + BSaaS 2aa

l \

is a complete differential, with respect to a, if da =#a'. Let

,
C
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where C is a constant depending on the units employed, therefore

,1
C B

C '

or B — f
C_

Ta*
and the resolved effect

Caa
l

S2aa
r

„ Saa-, . 9 a , , , c=
2Tcl~ ~TaF

=
x T^k^~ a6afli+* SaaSaaj)

= GWi ^ {S. Vaa'Vaa
x+ \ Saa'SaaJ.

The factor in brackets is evidently proportional in the ordinary

notation to sin sin 6'eos a>— \ cos 6 cos 6'.

431.] Thus the whole force is

Caa
x
a , -t9

2aa
1

Caa
x
a , 8 2aa

2Saai Ta* 2Saa! * Ta*

as we should expect, d^a being* = a
x

. [This may easily be trans-

formed into iCaaJJa

which is the quaternion expression for Ampere's well-known form.]

432.] The whole effect on a
Y
of the closed circuit, of which a is

an element, is therefore

Caa
Y f a ^(Saa^) 2
'i

f
a

J Saa
l

Ta l

Caa
x

C a Saax v f Vaa )

between proper limits. As the integrated part is the same at both

limits, the effect is

Caa, rr „ , f Vaa fdUa--^Fa,A where = /^- =/--,
and depends on the form of the closed circuit.

433.] This vector /3, which is of great importance in the whole

theory of the effects of closed or indefinitely extended circuits, cor-

responds to the line which is called by Ampere " directrice de Paction

electrodynamique." It has a definite value at each point of space,

independent of the existence of any other current.

Consider the circuit a polygon whose sides are indefinitely small

;

join its angular points with any assumed point, erect at the latter,

perpendicular to the plane of each elementary triangle so formed, a

&
vector whose length is - > where a> is the vertical angle of the tri-
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angle and r the length of one of the containing sides ; the sum of

such vectors is the " directrice" at the assumed point.

434.] The mereform of the result of § 432 shews at once that

if the element a
x
be turned about its middle point, the direction of the

resultant action is confined to the plane whose normal is ft.

Suppose that the element a
x
is forced to remain perpendicular to

some given vector 6, we have

Soyh = 0,

and the whole action in its plane of motion is proportional to

TV.bVa^.

But V.hVa
1ft=-a1

Spo'.

Hence the action is evidently constant for all possible positions

of a
L ; or

The effect of any system of closed currents on an element of a con-

ductor which is restricted to a given plane is (in that plane) independent

of the direction of the element.

435.] Let the closed current be plane and very small. Let e

(where Te = 1) be its normal, and let y be the vector of any point

within it (as the cenlre of inertia of its area) ; the middle point of

a±
being the origin of vectors.

Let a = y-f-p ; therefore a'= p,

and P ~J To* 'J T(y + Pf

to a sufficient approximation.

Now (between limits) fVpp = 2Ae,

where A is the area of the closed circuit.

Also generally

/Vyp'Syp = ^SypVyp + yV.yfVpp')

= (between limits) AyVyc.
Hence for this case

__ A
(r \
M^

~~ iy \
**" Ty2 y

436.] If, instead of one small plane closed current, there be a

series of such, of equal area, disposed regularly in a tubular form,

let x be the distance between two consecutive currents measured

along the axis of the tube; then, putting y'= #e, we have for the

whole effect of such a set of currents on a,
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ca**i v „ [r V ,

3ysyy\

CAaa, Vax y ... ,. .,
N-= ——* -~~ (between proper limits).

diX 1. y

If the axis of the tubular arrangement be a closed curve this will

evidently vanish. Hence a closed solenoid exerts no influence on an

element of a conductor. The same is evidently true if the solenoid be

indefinite in both directions.

If the axis extend to infinity in one direction, and y be the

vector of the other extremity, the effect is

CAaa
x
Va

x y

and is therefore perpe?idicular to the element and to the line joining it

with the extremity of the solenoid. It is evidently inversely as Ty%

and directly as the sine of the angle contained between the direction of

the element and that of the line joining the latter with the extremity of

the solenoid. It is also inversely as x, and therefore directly as the

number of currents in a unit of the axis of the solenoid.

437.] To find the effect of the whole circuit whose element is a
x

on the extremity of the solenoid, we must change the sign of the

above and put ax
= y '; therefore the effect is

CAaa
1
[Vy^yQ

l ,320 J Ty

an integral of the species considered in § 432 whose value is easily

assigned in particular cases.

438.] Suppose the conductor to be straight, and indefinitely extended

in both directions.

Let hO be the vector perpendicular to it from the extremity of

the canal, and let the conductor be
|| 77, where TO = Trj = 1

.

Therefore y = hO+ yrj (where y is a scalar),

ryoVo =W,
and the integral in § 436 is

S = 7 TV-
J<B (h2 +y2

)% h '

The whole effect is therefore-^
and is thus perpendicular to the plane passing through the conductor

and the extremity of the canal, and varies inversely as the distance of

the latterfrom the conductor.
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This is exactly the observed effect of an indefinite straight current

on a magnetic pole, or particle of free magnetism.

439.] Suppose the conductor to be circular, and the pole nearly in its

axis.

Let EPB be the conductor, AB its axis, and C the pole ; BC
perpendicular to AB, and small in comparison with AE = h the

radius of the circle.

Let

where

Then

AB be a
x
i, BC = bk, AP = h (jx + hj)

*} =
{

e0S
}ABAP={

C0S
}6.

vJ l smJ lsmJ

ex

CP = y = a-ii+bk— h^jx + ky).

And the effect on C^f^rT >

h f
°' {(6-^)1+ a

i
xJ+ ai$k}

f

J (a2 + b2 +h2 -2bhyf
where the integral extends to the whole circuit.

440.] Suppose in particular C to be one pole of a small magnet

or solenoid CC whose length is 2 1, and whose middle point is at G
and distant 'a from the centre of the conductor.

Let LCGB = A. Then evidently

a
1
= a-\-l cos A,

b = I sin A.

Also the effect on C becomes, if a\ + b 2 + h2 = A2
,

3% 15 h2 b2y
2* [„c,i r v • nf, 3% \bh2 b2f ,

j-3j 0'{(h-by)t + a
1
xj+a

1
yk} {I + -^/ + — -jf~ + ...}

3b 2
i Za

Y
bk 15 h 2b 2 i

+
2 A*

)
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since for the whole circuit

fb'y
2n = 2tt

2 2n (in)2'

fey^ = o,

fQ'xy
m - 0.

- If we suppose the centre of the magnet fixed, the vector axis of

the couple produced by the action of the current on G is

IF. (i cos A + k sin A)
/ «rr

/n-P^sinA .( 3b 2 15 h2 b 2 3«^cosAj
^3 J

l~ A2
' 2 A* ^2 sinA

If .4, &c. be now developed in powers of I, this at once becomes

;a

f 36* 15^6*

v~a^ + y~a^
loped in powers of I,

7r^
2 /sinA . C 6#/cosA 15&2

/
2 cos2 A Si2

(a2 + h2f
J

\ ~ a2 + h2 +
(a2 + k2

)
2 ^ + A J

3l2sin2A 15 F^2sin2A (a + £ cos A) £ cosA x 5^ cos A x
}

«2 +^2 + ~2~
(«

2 + /£
2
)

2 ^HhP v «2 + £2 ')

Putting — I for £ and changing the sign of the whole to get that

for pole C, we have for the vector axis of the complete couple

4irk2lsmA .( ^2 (4« 2-^2)(4-5sin2A) )

which is almost exactly proportional to sin A if 2 a = h and I. be

small.

On this depends a modification of the tangent galvanometer.

(Bravais, Ann. de CMmie, xxxviii. 309.)

441.] As before,, the effect of an indefinite solenoid on ax is

CAaa
x
Va

x y
~2^~ Ty*

'

Now suppose a
x
to be an element of a small plane circuit, b the

vector of the centre of inertia of its area, the pole of the solenoid

being origin.

Let y = 8 + p, then ax = p.

The whole effect is therefore

CAaa
1 [ F(b+ p)p'

2oo J T(jb+p?

_ CAA
x
aa

x
, 3bSb€^

where A±
and e

x
are, for the new circuit, what A and e were for the

former.

Let the new circuit also belong to an indefinite solenoid, and

let b be the vector joining the poles of the two solenoids. Then

the mutual effect is
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CAA
1
aa

x

2xx

CAA
1
aa

1
OC

TV

2 xx
L

(Tb f (2%)*

which is exactly the mutual effect of two magnetic poles. Two finite

solenoids, therefore, act on each other exactly as two magnets, and the

pole of an indefinite solenoid acts as a particle offree magnetism.

442.] The mutual attraction of two indefinitely small plane closed

circuits, whose normals are e and e15 may evidently be deduced by
TTh

twice differentiating the expression -^-^ for the mutual action of
lb*

the poles of two indefinite solenoids, making db in one differentiation

II
e and in the other

||
€
t .

But it may also be calculated directly by a process which will

give us in addition the couple impressed on one of the circuits by

the other, supposing for simplicity the first to be circular.

Let A and B be the centres of inertia of the areas of A and B,

e and e2 vectors normal to their planes, o- any vector radius of B,

AB = p.

Then whole effect on o-', by §§ 432, 435,

C£

ocw\ r°'<

T(P + °)
'Fa'K +

3(/3 + o-)£(/3+ rr)e

1 +

T(p + <r)
2

!

v
+

Tp2 '

+

Tp
:

) + Tp*

+ 3
Vcr'aSpt

Tp2 ' Tp 2
S

But between proper limits,

fVa'riSda = -Ax V.i)VQiXi

for generally JYfj'-q Stor =- 4

(

FrjaSOa +V.r)F. QfV™').

Hence, after a reduction or two, we find that the whole force

exerted by A on the centre of inertia of the area of B

(X
AA

X

Tp 5 {/8(^ + ^S) +c^ + c
1^}
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This, as already observed, may be at once found by twice differ-

entiating -nri- In the same way the vector moment, due to A,

about the centre of inertia of B,

T/3 3 V €€l+
T/32 )

These expressions for the whole force of one small magnet on the

centre of inertia of another, and the couple about the latter, seem

to be the simplest that can be given. It is easy to deduce from

them the ordinary forms. For instance, the whole resultant couple

on the second magnet

°= w '

may easily be shewn to coincide with that given by Ellis (Camb.

Math. Journal, iv. 95), though it seems to lose in simplicity and

capability of interpretation by such modifications.

443.] The above formulae shew that the whole force exerted by

one small magnet M} on the centre of inertia of another m, consists

of four terms which are, in order,

1st. In the line joining the magnets, and proportional to the cosine

of their mutual inclination.

2nd. In the same line, and proportional to jive times the product of

the cosines of their respective inclinations to this line.

3rd and 4th. Parallel to {,.-} and proportional to the cosine of the

M ....
inclination of { }

to the joining line.

All these forces are, in addition, inversely as the fourth power of

the distance between the magnets.

For the couples about the centre of inertia of m we have

1st. A couple whose axis is perpendicular to each magnet, and which

is as the sine of their mutual inclination.

2nd. A couple whose axis is perpendicular to m and to the line

joining the magnets, and whose moment is as three times the product of

the sine of the inclination ofm, and the cosine of the inclination of~NL,

to the joining line.

In addition these couples vary inversely as the third power of the

distance between the magnets.

s
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[These results afford a good example of what has been called the

internal nature of the methods of quaternions, reducing, as they do

at once, the forces and couples to others independent of any lines of

reference, other than those necessarily belonging to the system

under consideration. To shew their ready applicability, let us take

a Theorem due to Gauss.]

444.] If two small magnets be at right angles to each other, the

moment of rotation of the first is approximately twice as great when the

axis of the second passes through the centre of the first, as when the

axis of the first passes through the centre of the second.

In the first case e
|| fi±e1 ;

C 2C'
therefore moment = -^-3 T^^ — 3^) = 7jT

-^Tzt
1

.

In the second e
2 || /3_Le ;

c
therefore moment = 7jT

-^Te€
l

. Hence the theorem.

445.] Again, we may easily reproduce the results of § 442, if for

the two small circuits we suppose two small magnets perpendicular

to their planes to be substituted. j3 is then the vector joining the

middle points of these magnets, and by changing the tensors we

may take 2 e and 2 €
1
as the vector lengths of the magnets.

Hence evidently the mutual effect

which is easily reducible to

as before, if smaller terms be omitted.

If we operate with V. €
x
on the two first terms of the unreduced

expression, and take the difference between this result and the same

with the sign of €
1
changed, we have the whole vector axis of the

couple on the magnet 2elf which is therefore, as before, seen to be

proportional to

7/3
3 V l€+

Tfi* y
446.] We might apply the foregoing formulae with great ease

to other cases treated by Ampere, De Montferrand, &c.—or to two

finite circular conductors as in Weber's Dynamometer— but in

general the only difficulty is in the integration, which even in some

of the simplest cases involves elliptic functions, &c, &c. (Quarterly

Math. Journal, 1860.)
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447.] Let F(y) be the potential of any system upon a unit

particle at the extremity of y.

F{y) = C- (1)

is the equation of a level surface.

Let the differential of ( 1 ) be
8vdy = 0, (2)

then v is a vector normal to ( 1 ), and is therefore the direction of the

force.

But, passing to a proximate level surface, we have Svhy = hC.

Make by =xv, then — xTu2 = hC,

- -*-£:
Hence v expresses the force in magnitude also. (§ 368.)

Now by § 435 we have for the vector force exerted by a small

plane closed circuit on a particle of free magnetism the expression

A , 3ySy€\

~~Ty* V +
Ty% ''

omitting the factors depending on the strength of the current and

the strength of magnetism of the particle.

Hence the potential, by (2) and (1),

JSty

area of circuit projected perpendicular to y
oc . ^y I

oc spherical opening subtended by circuit.

The constant is omitted in the integration, as the potential must

evidently vanish for infinite values of Ty.

By means of Ampere's idea of breaking up a finite circuit into

an indefinite number of indefinitely small ones, it is evident that

the above result may be at once ex-

tended to the case of such a finite closed

circuit.

448.] Quaternions give a simple me-

thod of deducing the well-known pro-

perty of the Magnetic Curves.

Let A, A be two equal magnetic

poles, whose vector distance, 2 a, is bi-

sected in 0, QQ' an indefinitely small

magnet whose length is 2p, where p= OP. Then evidently, taking

moments,
s %
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r(p+a) 9
'

_ r(P- ay
T(p + af - ± T{P-af

'

where the upper or lower sign is to be taken according as the poles

are like or unlike.

Operate by S. Fap,

-^
T (p + a)*

± {SamG ""*'

t

or S.aVf-^—)U(p + a) = ± {same with — a},

i.e. SadU(p + a) = ± SadU(p-a),

Sa { U(p + a) +U(p— a)} = constv

or cos Z OAP ± cos Z OA'P = const.,,

the property referred to.

If the poles be unequal, one of the terms to the left must be

multiplied by the ratio of their strengths.

449.] If the vector of any point be denoted by

p = ix+jy + kz, (1)

there are many physically interesting and important transformations

depending upon the effects of the quaternion operator

_ . d . d , dVmtE +'W +*S (2)

on various functions of p. When the function of p is a scalar, the

effect of V is to give the vector of most rapid increase. Its effect

on a vector function is indicated briefly in § 369.

450.] We commence with one or two simple examples, which

are not only interesting, but very useful in transformations.

Vp= (ij- +&c.)(*a> + &c.) = — 3, (3)

"> = ('» +&c
-)iw*-

(

-^¥

=

h
= Up

' (4)

V{TP)

n = niTpf-^VTp = n(TP)

n- 2
p; (5)

and, of course, V— = --J£l-
} (5)

1

1 _p_ Up

tp
~~ iy ~~ tp *

whence, V m_ m- -£j i= - -=£ , (6)

and, of course, V2 ^- =-V^ = (6)
1

Also, V/o = — 3 = TpVUp+ VTp.UP = TpVUp-l,

^=-i <
7
>
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451.] By the help of the above results, of which (6) is especially-

useful (though obvious on other grounds), and (4) and (7) very

remarkable, we may easily find the effect of V upon more complex

functions.

Thus, V£ap=— V(«* + &c.) = -a, (1)

VVap = —Wpa =—V(pa— Sap) = 3a— a = 2a (2)

Hence

Fap __ 2a 3pVap _ 2ap2 -\-3pVap _ap2— 3pSap .

Tf
=Z
Tp*~~W~~ W~ ~Tp*~~~ {)

Hence

Vap p
2 Sabp— 3SapSpbp Sabp 3SapSpbp ^Sap

This is a very useful transformation in various physical applica-

tions. By (6) it can be put in the sometimes more convenient form

S.SPV^ = SS.aV-l (5)

And it is worthy of remark that, as may easily be seen, —8 may be

put for V in the left-hand member of the equation.

452.] We have also

Vr.Qpy = V{pSyp-pS(3y + yS(3p}=-yl3 + 3S(3y-(3y = Sj3y. (1)

Hence, if
<f>

be any linear and vector function of the form

<f)p
= a + ZF.ppy+ mp, (2)

i.e. a self-conjugate function with a constant vector added, then

V(f>p = 2S{3y—3m = scalar (3)

Hence, an integral of

Vo- = scalar constant, is a = cj)p (4)

If the constant value of Vo- contain a vector part, there will be

terms of the form Fep in the expression for <r, which will then ex-

press a distortion accompanied by rotation. (§ 371.)

Also, a solution of Vq = a (where q and a are quaternions) is

q = S(p+nP+ (Pp.

It may be remarked also, as of considerable importance in phy-

sical applications, that, by (1) and (2) of § 451,

V(S+iF)ap = 0,

but we cannot here enter into details on this point.

453.] It would be easy to give many more of these transforma-

tions, which really present no difficulty ; but it is sufficient to shew
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the ready applicability to physical questions of one or two of those

already obtained ; a property of great importance, as extensions of

mathematical physics are far more valuable than mere analytical or

geometrical theorems.

Thus, if o- be the vector-displacement of that point of a homo-

geneous elastic solid whose vector is p, we have, p being the con-

sequent pressure produced,

Vi?+ V 2
o- = 0, (1)

whence SbpV 2a— — SbpVp = hp, a complete differential (2)

Also, generally, p = kSVv,

and if the solid be incompressible

SVa = (3)

Thomson has shewn (Camb. and Bub. Math. Journal, ii. p. 62),

that the forces produced by given distributions of matter, electricity,

magnetism, or galvanic currents, can be represented at every point

by displacements of such a solid producible by external forces. It

may be useful to give his analysis, with some additions, in a qua-

ternion form, to shew the insight gained by the simplicity of the

present method.

454.] Thus, if Sabp = b =- , we may write each equal to

This gives <t = —V^->
J-P

the vector-force exerted by one particle of matter or free electricity

on another. This value of <t evidently satisfies (2) and (3).

q
Again, if S.bpVa = b -^-j 3 either is equal to

-S.bpV^ by (4) of §451.

Here a particular case is

Vap

which is the vector-force exerted by an element a of a current upon

a particle of magnetism at p. (§436.)

455.] Also, by §451 (3),

V
Vap _ ap2— SpSap
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and we see by §§ 435, 436 that this is the vector-force exerted by a

small plane current at the origin (its plane being perpendicular to a)

upon a magnetic particle, or pole of a solenoid, at p. This expres-

sion, being a pure vector, denotes an elementary rotation caused by

the distortion of the solid, and it is evident that the above value of

o- satisfies the equations (2), (3), and the distortion is therefore pro-

ducible by external forces. Thus the effect of an element of a

current on a magnetic particle is expressed directly by the displace-

ment, while that of a small closed current or magnet is represented

by the vector-axis of the rotation caused by the displacement.

456.] Again, let %W=5^§.
It is evident that or satisfies (2), and that the right-hand side of the

above equation may be written

-s.bpVj^-

Hence a particular case is

VaP

and this satisfies (3) also.

Hence the corresponding displacement is producible by external

forces, and Vo- is the rotation axis of the element at p, and is seen

as before to represent the vector-force exerted on a particle of mag-

netism at p by an element a of a current at the origin.

457.] It is interesting to observe that a particular value of o- in

this case is a
a = -^VSaUp- 7fr ,

1 P

as may easily be proved by substitution.

Again, if Shp<r= — b ~-g- >

we have evidently a = V -7p§

Now, as y~ is the potential of a small magnet a, at the origin,

on a particle of free magnetism at p, a- is the resultant magnetic

force, and represents also a possible distortion of the elastic solid

by external forces, since Vo- = V 2
o- = 0, and thus (2) and (3) are

both satisfied.

458.] We conclude with some examples of quaternion integra-

tion of the kinds specially required for many important physical

problems.
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It may perhaps be useful to commence with a different form

of definition of the operator V, as we shall thus, if we desire it,

entirely avoid the use of ordinary Cartesian coordinates. For this

purpose we write

S.aV=—da ,

where a is any unit-vector, the meaning of the right-hand operator

(neglecting its sign) being the rate of change of thefunction to which

it is applied per unit of length in the direction of the unit-vector a.

If a be not a unit-vector we may treat it as a vector-velocity, and

then the right-hand operator means the rate of change per unit of

time due to the change of position.

Let a, /3, y be any rectangular system of unit-vectors, then by a

fundamental quaternion transformation

V=z—aSaV—p8pV—ySyV= ada+fidp + ydyi

which is identical with Hamilton's form so often given above.

(Lectures, § 620.)

459.] This mode of viewing the subject enables us to see at once

that the effect of applying V to any scalar function of the position

of a point is to give its vector of most rapid increase. Hence, when

it is applied to a potential u, we have

Vu = vector-force at p.

If u be a velocity-potential, we obtain the velocity of the fluid

element at p ; and if u be the temperature of a conducting solid we

obtain the flux of heat. Finally, whatever series of surfaces is repre-

sented by u = C,

the vector Vu is the normal at the point p, and its length is inversely

as the normal distance at that point between two consecutive sur-

faces of the series.

Hence it is evident that

S.dpVu = — du,

or, as it may be written,

—S.dPV=zd;

the left-hand member therefore expresses total differentiation in

virtue of any arbitrary, but small, displacement dp,

460.] To interpret the operator V.aV let us apply it to a poten-

tial function u. Then we easily see that u may be taken under

the vector sign, and the expression

V{aV)u =F.aVu

denotes the vector-couple due to the force at p about a point whose

relative vector is a.
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Again, if <r be any vector function of p, we have by ordinary

quaternion operations

V(aV).(T = S.aFVa + aSVcr— VSacr.

The meaning of the third term (in which it is of course understood

that V operates on <r alone) is obvious from what precedes. It

remains that we explain the other terms.

461.] These involve the very important quantities (not operators

such, as the expressions we have been hitherto considering),

S.Va- and V.Vcr,

which form the basis of our investigations. Let us look upon <r as

the displacement, or as the velocity, of a point situated at p, and

consider the group of points situated near to that at p, as the quan-

tities to be interpreted have reference to the deformation of the

group.

462.] Let t be the vector of one of the group relative to that

situated at p. Then after a small interval of time t, the actual

coordinates become p -f ta

and p + T+ t(<r—S(rV)cr)

by the definition ofV in § 458. Hence, if <p be the linear and vector

function representing the deformation of the group, we have

(f)T = T—tS(TV)<T.

The farther solution is rendered very simple by the fact that we

may assume t to be so small that its square and higher powers

may be neglected.

If <p' be the function conjugate to <p, we have

<p'r = T—tVSror.

Hence <pr = £ (<p + <p') r + \ (<p— <fS) t

- t-- [S(tV)<t+ V/SVo-]-^ r.rFVcr.

The first three terms form a self-conjugate linear and vector func-

tion of r, which we may denote for a moment by wr. Hence

<pr = -err— - V.tWv,

or, omitting t
2 as above,

<j)T — vst V.tztVVct.

Hence the deformation maybe decomposed into—(1) the pure strain

«r, (2) the rotation t v
2

Thus the vector-axis of rotation of the group is

*FvV.
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If we were content to avail ourselves of the ordinary results of

Cartesian investigations, we might at once have reached this con-

clusion by noticing that

^dy dz> J ^dz doc J ^dx dif

and remembering as in (§362) the formulae of Stokes and Helmholtz.

463.] In the same way, as

/SV(7=-— -----
dx dy dz

we recognise the cubical compression of the group of points considered.

It would be easy to give this a more strictly quaternionic form by

employing the definition of § 458. But, working with quaternions,

we ought to obtain all our results by their help alone ; so that we

proceed to prove the above result by finding the volume of the

ellipsoid into which an originally spherical group of points has been

distorted in time t.

For this purpose, we refer again to the equation of deformation

<t>T = T—tS(TV)(T,

and form the cubic in </> according to Hamilton's exquisite process.

We easily obtain, remembering that t
2

is to be neglected *,

or = (0- l) 2 (<£- 1 + tSVa).

The roots of this equation are the ratios of the diameters of the

ellipsoid whose directions are unchanged to that of the sphere.

Hence the volume is increased by the factor

from which the truth of the preceding statement is manifest.

* Thus, in Hamilton's notation, A, /i, v being any three non-coplanar vectors, and
m, m, , mz the coefficients of the cubic,

— mS \flV m S.<p'\<p'/JL<f>'v

= S.(\-tVS\a) (n-tVSfio) (v-tVSra)

= S.(\-tVS\a)(V(Av-tVnVSvff + tVvVSfM<T)

= S.\nv-t[S.nvVS\ff + S.v\vSix<r + S.\tiVSva]

= S.\nv-tS.[\S.fivV + nS.v\V + vS.\nV~\<r

= S.\/XV-tS.\fJLvSV(T.

m^.\nv =S.\<p'fi<p'v + S.fx<{>'v<f>'\ + S ,v(p'\<t>'p
= S.\ (Vfxv-tVfxVSva + tVvVSfiff) + &c.

= S.\fiv-tS.XixV8va-tS.v\vSfi(T + &c.

= SS.\fiv-2tSV<rS.\{iv.

— im 2S.\fj.v = S.\fi(p'v + S./xv<p'\ + S.v\<p'p

= S.\nv-tS.\fiVSvcr + &c.

= ZS.\fiv-tSV<xS.\fiv
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464.] As the process in last section depends essentially on the

use of a non-conjugate vector function, with which the reader is less

likely to be acquainted than with the more usually employed forms,

I add another investigation.

Let «r = cf)T = T—tS(TV) o\

Then r = $
-V = vr + tS (nrV) (T.

Hence since if, before distortion, the group formed a sphere of radius

1, we have Tt = 1,

the equation of the ellipsoid is

T{™ + tS(™V)<T) = 1,

or ot
2 + 2 tSurVSvra = — 1

.

This may be written

#.CTX?3" = $.'3T ("ST+ t VS-GJCT -f- tS (otV) (r) = — 1 ,

where x is now self-conjugate.

Hamilton has shewn that the reciprocal of the product of the

squares of the semiaxes is

whatever rectangular system of unit-vectors is denoted by i,j, k.

Substituting the value of x, we have

— S.{i + WSi(r+tS(iV)o) C/ + &C.) (/£+ &c)

= —S.(i + tVSi(i + tS(iV)(T)(i+2tiSV(T-lS(iV)(T— tVSiv)

= l+2tSV<r.

The ratio of volumes of the ellipsoid and sphere is therefore, as

before, i

.
= 1 -tSVa.

*/l + 2tSV<F

465.] In what follows we have constantly to deal with integrals

extended over a closed surface, compared with others taken through

the space enclosed by such a surface ; or with integrals over a

limited surface,, compared with others taken round its bounding

curve. The notation employed is as follows. If Q per unit of

length, of surface, or of volume, at the point p, Q being any qua-

ternion, be the quantity to be summed, these sums will be denoted

by f/Qds and JffQds,

when comparing integrals over a closed surface with others through

the enclosed space ; and by

f/Qds and /QTdp,

when comparing integrals over an unclosed surface with others round

its boundary. No ambiguity is likely to arise from the double use of
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for its meaning in any case will be obvious from the integral with

which it is compared.

466.J We have just shewn that, if o- be the vector displacement

of a point originally situated at

p = ix+jy+ fcz,

then S.Va

expresses the increase of density of aggregation of the points of the

system caused by the displacement.

467.] Suppose, now, space to be uniformly filled with points, and

a closed surface 2 to be drawn, through which the points can freely

move when displaced.

Then it is clear that the increase of number of points within the

space 2, caused by a displacement, may be obtained by either of two

processes—by taking account of the increase of density at all points

within 2, or by estimating the excess of those which pass inwards

through the surface over those which pass outwards. These are

the principles usually employed (for a mere element of volume) in

forming the so-called { Equation of Continuity.'

Let v be the normal to 2 at the point p, drawn outwards, then

we have at once (by equating the two different expressions of the

same quantity above explained) the equation

ff/S.Vads =ffS.<rUvds,

which is our fundamental equation so long as we deal with triple

integrals.

468.] As a first and very simple example of its use, suppose a-

to represent the vector force exerted upon a unit particle at p (of

ordinary matter, electricity, or magnetism) by any distribution of

attracting matter, electricity, or magnetism partly outside, partly

inside 2. Then, if P be the potential at p,

<r = VP,

and if r be the density of the attracting matter, &c, at p,

Vd=V 2P = 4tt?-

by Poisson's extension of Laplace's equation.

Substituting in the fundamental equation, we have

*vjyyrds= ±i:M=ffS.VPUvd8,

where if denotes the whole quantity of matter, &c, inside 2. This

is a well-known theorem.

469.] Let P and P
x
be any scalar functions of p, we can of course

find the distribution of matter, &c, requisite to make either of them
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the potential at p ; for, if the necessary densities be r and r
x
re-

spectively, we have as before

V 2P = 4 7rr, V 2P
l
= 4^.

Now V (P VPj) =VP VPi +PV 2P
X ,

Hence, if in the above formula we put

cr=PVP
1 ,

we obtain

ff/S.VPVPJs = -fffPVzP^+f/PS.VPJIvds,.
= -ff/P^Pd, +//P1S.VPUvdt,

which are the common forms of Green's Theorem. Sir W. Thomson's

extension of it follows at once from the same proof.

470.] If P
x
be a many-valued function, but VPX

single-valued,

and if 2 be a multiply-connected*" space, the above expressions

require a modification which was first shewn to be necessary by

Helmholtz, and first supplied by Thomson. For simplicity, suppose

2 to be doubly-connected (as a ring or endless rod, whether knotted

or not). Then if it be cut through by a surface s, it will become

simply-connected, but the surface-integrals have to be increased by

terms depending upon the portions thus added to the whole surface.

In the first form of Green's Theorem, just given, the only term

altered is the last : and it is obvious that ifj^ be the increase of P
2

after a complete circuit of the ring, the portion to be added to the

right-hand side of the equation is

pJ-fSXPUvd*,

taken over the cutting surface only. Similar modifications are

easily seen to be produced by each additional complexity in the

space 2.

471.] The immediate consequences of Green's theorem are well

known, so that I take only one instance.

Let P and P
x
be the potentials of one and the same distribution

of matter, and let none of it be within 2. Then we have

fff{VP) 2 ds =ffPS.VPUvds,

so that if VP is zero all over the surface of 2, it is zero all through

the interior, i.e., the potential is constant inside 2. If P be the

velocity-potential in the irrotational motion of an incompressible

fluid, this equation shews that there can be no such motion of the

* Called by Helmholtz, after Riemann, mehrfach zusammenh'dngend. In translating

Helmholtz's paper (Phil. Mag. 1867) I used the above as an English equivalent. Sir

W. Thomson in his great paper on Vortex Motion (Trans. E. S. E. 1868) uses the ex-
pression '

' multiply-continuous
. '

'
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fluid unless there is a normal motion at some part of the bounding

surface, so long at least as 2 is simply-connected.

Again, if 2 is an equipotential surface,

fff{VPfds = PffS.VPUvds = Pfff^Pd,
by the fundamental theorem. But there is by hypothesis no matter

inside 2, so this shews that the potential is constant throughout

the interior. Thus there can be no equipotential surface, not in-

cluding some of the attracting matter, within which the potential

can change. Thus it cannot have a maximum or minimum value

at points unoccupied by matter.

472.] If, in the fundamental theorem, we suppose

cr =Vt,

which imposes the condition that

S.Vv = 0,

i.e., that the a displacement is effected without condensation, it

becomes ffS.VTUvds =ff/S.V 2Tds = 0.

Suppose any closed curve to be traced on the surface 2, dividing

it into two parts. This equation shews that the surface-integral is

the same for both parts, the difference of sign being due to the fact

that the normal is drawn in opposite directions on the two parts.

Hence we see that, with the above limitation of the value of <r, the

double integral is the same for all surfaces bounded by a given

closed curve. It must therefore be expressible by a single integral

taken round the curve. The value of this integral will presently

be determined.

473.] The theorem of § 467 may be written

ff/V 2Pds =/fS.UvVPds =//S(UvV)Pds.

From this we conclude at once that if

a = iP +jP1 +kP2 ,

m (which may, of course, represent any vector whatever) we have

///WA = //S(UvV)<rds,

or, if V 2
<j = r,

fffrd,=ffS{UvV-^)rJS .

This gives us the means of representing, by a surface-integral, a

vector-integral taken through a definite space. We have already

seen how to do the same for a scalar-integral—so that we can now
express in this way, subject, however, to an ambiguity presently

to be mentioned, the general integral

fffl'h,



476.] PHYSICAL APPLICATIONS. 271

where q is any quaternion whatever. It is evident that it is only

in certain classes of cases that we can exvect a perfectly definite

expression of such a volume-integral in terms of a surface-integral.

474.] In the above formula for a vector-integral there may
present itself an ambiguity introduced by the inverse operation

V" 1

to which we must devote a few words. The assumption

V 2
d- = r

is tantamount to saying that, as the constituents of o- are the

potentials of certain- distributions of matter, &c, those of r are the

corresponding densities each multiplied by 4 it.

If, therefore, r be given throughout the space enclosed by 2,

a is given by this equation so far only as it depends upon the

distribution within 2, and must be completed by an arbitrary vector

depending on three potentials of mutually independent distributions

exterior to 2.

But, if o- be given, r is perfectly definite ; and as

Vo- = V^r,
the value of V-1

is also completely defined. These remarks must

be carefully attended to in using the theorem above : since they

involve as particular cases of their application many curious theorems

in Fluid Motion, &c.

475.] As a particular case, the equation

FV(t=6
of course gives Vo- = u, a scalar.

Now, if v be the potential of a distribution whose density is ii, we
have V 2v = 47rw.

We know that this equation gives one, and but one, definite value

for v, so that there is no ambiguity in

v = 4 7rV~2w,

and therefore o- = —— Vv is also determinate.
4tt

476.] This shews the nature of the arbitrary term which must
be introduced into the solution of the equation

FVa= t.

To solve this equation is (§ 462) to find the displacement of any

one of a group of points when the consequent rotation is given.

Here SVr = S.V VVa = SV 2
cr = ;

so that, omitting the arbitrary term (§ 475), we have

V 2<t=Vt,

and each constituent of a- is, as above, determinate.
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Thomson * has put the solution in a form which may be written

<r = IfFr&p+ Vu,

if we understand by /*( ) dp integrating the term in 6.x as if y
and z were constants, &c. Bearing this in mind, we have as

verification,

= i{3r+A/p^Vr}=r.
477.] We now come to relations between the results of integra-

tion extended over a non-closed surface and round its boundary.

Let (t be any vector function of the position of a point. The

line-integral whose value we seek as a fundamental theorem is

/S.adr,

where r is the vector of any point in a small closed curve, drawn

from a point within it, and in its plane.

Let o" be the value of o- at the origin of r, then

or = o- -£(rV)o-
,

so that fS.adr =fS.(cr -S(TV)a )fh.

But fclr = 0,

because the curve is closed ; and (Tait on Electro-Dynamics, § 1 3,

Quarterly Math. Journal, Jan. 1860) we have generally

/S.tVS.gJt = \S.V{rScr T-(T fr.Tdr).

Here the integrated part vanishes for a closed circuit, and

\/r.rdr = dsUv,

where ds is the area of the small closed curve, and Uv is a unit-

vector perpendicular to its plane. Hence

/S.a dr = S.V(TQ Uv.ds.

Now, any finite portion of a surface may be broken up into small

elements such as we have just treated, and the sign only of the

integral along each portion of a bounding curve is changed when

we go round it in the opposite direction. Hence, just as Ampere

did with electric currents, substituting for a finite closed circuit

a network of an infinite number of infinitely small ones, in each

contiguous pair of which the common boundary is described by

equal currents in opposite directions, we have for a finite unclosed

surface fS.vdp = f/S.VaUv.ds.

There is no difficulty in extending this result to cases in which the

* Electrostatics and Magnetism, § 521, or Phil. Trans., 1852.
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bounding curve consists of detached ovals, or possesses multiple

points. This theorem seems to have been first given by Stokes

(Smith's Prize Exam. 1854), in the form

f(adx + fidy + ydz)

It solves the problem suggested by the result of § 472 above.

478.] If o- represent the vector force acting on a particle of

matter at p, — S.adp represents the work done while the particle is

displaced along dp, so that the single integral

fS.vdp

of last section, taken with a negative sign, represents the work

done during a complete cycle. When this integral vanishes it is

evident that, if the path be divided into any two parts, the work

spent during the particle's motion through one part is equal to that

gained in the other. Hence the system of forces must be con-

servative, i. e., must do the same amount of work for all paths

having the same extremities.

But the equivalent double integral must also vanish. Hence a

conservative system is such that

ffdsS.VaUv = 0,

whatever be the form of the finite portion of surface of which ds is

an element. Hence, as Vo- has a fixed value at each point of space,

while Uv may be altered at will, we must have

TVo- = 0,

or Vo- = scalar.

If we call X, J, Z the component forces parallel to rectangular

axes, this extremely simple equation is equivalent to the well-known

conditions

dX_dY_ dY_dZ__ ^?_^_
dy dx "

' dz dy "
' dx dz

Returning to the quaternion form, as far less complex, we see that

Vo- = scalar = 47rr, suppose,

implies that <r = VP,

where P is a scalar such that

V 2P = 477/;

that is, P is the potential of a distribution of matter, magnetism, or

statical electricity, of volume-density r.
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Hence, for a non-closed path, under conservative forces

-fS.vdp = -fS.VPdp

= -/S(dpV)P

= /d„
pP=fdP

= Pt-P ,

depending solely on the values of P at the extremities of the path.

479.] A vector theorem, which is of great use, and which cor-

responds to the Scalar theorem of § 473, may easily be obtained.

Thus, with the notation already employed,

fV.vdr =/r(<r -S(TV)cr )dT,

= -/S(TV)K«QdT.

Now r(r.vr.rrfT)(r = -5(TV)r.«r rfT-5(^v)rT(r
,

and d(S(TV)F(r T) = £(rV)F.e7 ^r + £(^rV) Fa r.

Subtracting, and omitting the term which is the same at both

limits, we have fV. (rdr= — r.( V. UvV) cr ds.

Extended as above to any closed curve, this takes at once the form

fV.<Tdp=-ffdsV.{V.UvV)<r.

Of course, in many cases of the attempted representation of a

quaternion surface-integral by another taken round its bounding

curve, we are met by ambiguities as in the case of the space-

integral, § 474 : but their origin, both analytically and physically,

is in general obvious.

480.] If P be any scalar function of p, we have (by the process

of § 477, above)

/Pdr =f(P -S(TV)P )dr

= -fS.TVP .dr.

But V.W.TdT = drS.TV-rS.drV,

and cI(tStV) = drS.rV + TS.drV.

These give

fPdr = -\ {TSTV-V.rrdrV)P = dsV.UvVP
Q ,

Hence, for a closed curve of any form, we have

fPdp =/fdsKUvVP,
from which the theorems of §§ 477, 479 may easily be deduced.

481.] Commencing afresh with the fundamental integral

ff/SVads = f/S.aUvds,

put o- = w/3,

and we have ff/SpVuds= ffu S. /3 Uvds ;
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from which at once J//V uds = ffu Uvds, (1

)

or fffVrch=ffUv.rds (2)

Putting u
x
t for r, and taking the scalar, we have

fff{SrV «! 4- *! SV r) ds = /fuY
St Uvds,

whence fff{8(TV)v + <rS.VT)ds = //(TSrUvds (3)

482.] As one example of the important results derived from these

simple formulae, take the following, viz. :

—

//F.{V<jUv)Tds = //aSrUvds-//UvScTTds,

where by (3) and (1) we see that the right-hand member may be

written = ///{S{tV)<t+ <jSVt-V SaT)d<:

= -///r.r{Va)Tds (4)

This, and similar formulae, are easily applied to find the potential

and vector-force due to various distributions of magnetism. To
shew how this is introduced, we briefly sketch the mode of expressing

the potential of a distribution.

483.] Let a be the vector expressing the direction and intensity

of magnetisation, per unit of volume, at the element ds. Then if

the magnet be placed in a field of magnetic force whose potential

is u, we have for its potential energy

U = —///SaVuds
= ///uSVcrds-//uS(rUvds.

This shews at once that the magnetism may be resolved into a

volume-density S(y<r), and a surface-density — Sa-Uv. Hence, for a

solenoidal distribution, S.Va = 0.

What Thomson has called a lamellar distribution (Phil, Trans.

1852), obviously requires that

Sa dp

be integrable without a factor ; i. e., that

VV<t = 0.

A complex lamellar distribution requires that the same expression

be integrable by the aid of a factor. If this be u, we have at once

W(u(j) — 0,

or S.aVa = 0.

With these preliminaries we see at once that (4) may be written

//r.(FcrUv)Tds=~///r.Trv(Td^///r.(TVTds+///Sav.Tds.

Now, if t = V (-),

where r is the distance between any external point and the element

T 2



276 QUATERNIONS. [484.

(h, the last term on the right is the vector-force exerted by the

magnet on a unit-pole placed at the point. The second term on

the right vanishes by Laplace's equation, and the first vanishes as

above if the distribution of magnetism be lamellar, thus giving

Thomson's result in the form of a surface integral.

484.] An application may be made of similar transformations to

Ampere's Birectrice de Paction electrodpiamique, which, § 432 above,

is the vector-integral (Todp
1-

where dp is an element of a closed circuit, and the integration

extends round the circuit. This may be written

-jr.{dPv)\,

so that its value as a surface integral is

Jjs{UvV)V -ds-ffui;V 2 -ds.

Of this the last term vanishes, unless the origin is in, or infinitely

near to, the surface over which the double integration extends.

The value of the first term is seen (by what precedes) to be the

vector-force due to uniform normal magnetisation of the same

surface.

2
485.] Also, since V Up = — ~- >

we obtain at once

- 2///| =/M^*>
whence, by differentiation, or by putting p + a for p, and expanding

in ascending powers of Ta (both of which tacitly assume that the

origin is external to the space integrated through, i. e., that Tp

nowhere vanishes), we have

and this, again, involves

486.] The interpretation of these, and of more complex formulae

of a similar kind, leads to many curious theorems in attraction and

in potentials. Thus, from (1) of § 481, we have

///M/$<.=//f*
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which gives the attraction of a mass of density t in terms of the

potentials of volume distributions and surface distributions. Putting

this becomes

fff
Vach _ [[[ Up. crds _ [[ Uv.vds

JJJ Tp JJJ Tp* -JJ Tp '

By putting <r = p, and taking the scalar, we recover a formula

given above ; and by taking the vector we have

VffUvUpds = 0.

This may be easily verified from the formula

/Pdp = r/fUv.vPds,

by remembering that VTp = Up.

Again if, in the fundamental integral, we put

<r = tUp,

487.] As another application, let us consider briefly the Stress-

function in an elastic solid.

At any point of a strained body let k be the vector stress per

unit of area perpendicular to i
t p. and v the same for planes per-

pendicular to j and k respectively.

Then, by considering an indefinitely small tetrahedron, we have

for the stress per unit of area perpendicular to a unit-vector «> the

expression kSiu + txSju + vSkoo = -$o>,

so that the stress across any plane is represented by a linear and

vectorfunction of the unit normal to the plane.

But if we consider the equilibrium, as regards rotation, of an

infinitely small parallelepiped whose edges are parallel to i, j, k

respectively, we have (supposing there are no molecular couples)

V{ik +jp. + k v) = 0,

or 2 Vi(\>i = 0,

or V.Vfyp — 0.

This shews (§ 173) that in this case
(f>

is self-conjugate, or, in other

words, involves not nine distinct constants but only six.

488.] Consider next the equilibrium, as regards translation, of

any portion of the solid filling a simply-connected closed space.

Let u be the potential of the external forces. Then the condition

is obviously ffcf> (
Uv) ds +fffdsVu = 0,

where v is the normal vector of the element of surface ds. Here



278 QUATERNIONS. [4&9-

the double integral extends over the whole boundary of the closed

space, and the triple integral throughout the whole interior.

To reduce this to a form to which the method of § 467 is directly

applicable, operate by S.a where a is any constant vector whatever,

and we have ff S.(j)aUvds-{- fffds SdVu =
by taking advantage of the self-conjugateness of $. This may be

written ffffc (S.VQa + S.aVu) = 0,

and, as the limits of integration may be any whatever,

S.Vcfxx + S.aVu = (1)

This is the required equation, the indeterminateness of a rendering

it equivalent to three scalar conditions.

There are various modes of expressing this without the a. Thus,

if A be used for V when the constituents of $ are considered, we

may write ^u = —SVA.fo.
In integrating this expression through a given space, we must

remark that V and p are merely artificial symbols of construction,

and therefore are not to be looked on as variables in the integral.

489.] As a verification, it may be well to shew that from this

equation we can get the condition of equilibrium, as regards rotation,

of a simply connected portion of the body, which can be written

by inspection as

//r.P<i,(Up)d*+///r.pv*dl = o.

This is easily done as follows : (1) gives

S.V(f>(T+ S.(rVu = 0,

if, and only if, cr satisfy the condition

S.<t>(V)(r = 0.

Now this condition is satisfied if

a = Vap

where a is any constant vector. For

S.<l>(V)Vap=-S.aV(}>{V)p

= S.aW^p = 0.

Hence fffds (S.Vfy Vap+ S.apVu) = 0,

or ffdsS.apty JJv +fffdsS.apVu — 0.

Multiplying by a, and adding the results obtained by making a in

succession each of three rectangular vectors, we obtain the required

equation.

490.] Suppose a to be the displacement of a point originally at

p, then the work done by the stress on any simply connected portion

of the solid is obviously

W=ffS4(Uv)<rdst
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because <\>{Uv) is the vector force overcome per unit of area on the

element ds. This is easily transformed to

491.] In this case obviously the strain-function is

X (ct) = vr— S.(zrV)ar.

Now if the strain be a mere rotation, in which case

whatever be the vectors -sr and r, no work is done by the stress.

Hence the expression for the work done by the stress must vanish

if these conditions are fulfilled.

Again, it is easily seen that when the strain is infinitely small

the work must be a homogeneous function of the second degree of

these critical quantities ; for, if it exist, it is essentially positive.

Hence, even when finite, the work on unit-volume may be ex-

pressed as w - S.(S.xfx/-. &e') (S.xvxn'-Srrf),

where €, e', 77, rf, which are in general functions of a, become con-

stant vectors if the stress is indefinitely small. When this is the

case it is easy to see that, whatever be the number of terms under

S, w involves twenty-one separate and independent constants only
;

viz. the coefficients of the homogeneous products of the second order

of the six values of form

for the values i, j, k of -a or r.

Supposing the strain to be indefinitely small, we have for the

variation of w, the expression

bw = '2(S.bxex*' + SSx*x€)(S'X.'nxn'— Sr
i
ri')

Now, by the first equation, we have

b)(VT as —S (ctV) 8cr.

Hence, writing the result for one of the factors only, the variation

of the whole work done by straining a mass is

bW = bffjwds =fffbwds
== -V//*(%TO'-*W) {S.X^S.(eV)ba + S.XeS(/V)ba\.

Now, if we have at the limits

bo- = 0,

i.e. if the surface of the mass is altered in a given way, we have

obviously,

fffdsS.vrS{&)h<T sa -fffdsS.bvS(tV)TX.
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Hence

6W= 2///<k S.bv L«(«V) { X«'(«.XW>' -Sm)

}

+ S(*'V){ X<(S.XVM'-Sr,rl')n
Now any arbitrary change in a will in general increase the amount

of work done, so that we have

which is our equation for the determination of <r, as the constants

e, c', 7], rf are dependent solely on the elastic properties of the sub-

stance distorted, and may therefore be considered as known ; while

X essentially involves a.

492.] Since the algebraic operator

e dx

when applied to any function of #, simply changes x into x + /i, it

is obvious that if or be a vector not acted on by

_ . d . d 7 d

dx J dy dz

we have ^V(p) =/(/> + <0,

whatever functionfmay be. From this it is easy to deduce Taylor's

theorem in one important quaternion form.

If A bear to the constituents of a- the same relation as V bears to

those of p, and if/ and F be any two functions which satisfy the

commutative law in multiplication, this theorem takes the curious

form e-SAv/(p) F{fr) =Ap+ A) F{a) =F{<T + v)/{p) .

of which a particular case is

The modifications which the general expression undergoes, when
yand F are not commutative, are easily seen.

If one of these be an inverse function, such as, for instance, may
occur in the solution of a linear differential equation, these theorems

of course do not give the arbitrary part of the integral, but they

often materially aid in the determination of the rest.

Other theorems, involving operators such as e^v , cSaPv, &c, &c.

are easily deduced, and all have numerous applications.

493.] But there are among them results which appear startling

from the excessively free use made of the separation of symbols. Of
these one is quite sufficient to shew their general nature.

Let P be any scalar function of p. It is required to find the

difference between the value ofP at p, and its mean value throughout
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a very small sphere, of radius r and volume v
9
which has the ex-

tremity of p as centre.

From what is said above, it is easy to see that we have the fol-

lowing expression for the required result :

—

;///<•
-&rV, l)Pds,

where o- is the vector joining the centre of the sphere with the ele-

ment of volume ds, and the integration (which relates to a and ds

alone) extends through the whole volume of the sphere. Expanding

the exponential, we may write this expression in the form

higher terms being omitted on account of the smallness of r, the

limit of Ta.

Now, symmetry shews at once that

//A* = o.

Also, whatever constant vector be denoted by a,

///{Savfds = -aV/A&rV'Fd*-
Since the integration extends throughout a sphere, it is obvious

that the integral on the right is half of what we may call the

moment of inertia of the volume about a diameter. Hence

/// rUafds =
V
-^

If we now write V for a, as the integration does not refer to V,

we have by the foregoing results (neglecting higher powers of r)

UII^-v pds =-rov2p>

which is the expression given by Clerk-Maxwell*. Although, for

simplicity, P has here been supposed a scalar, it is obvious that in

the result above it may at once be written as a quaternion.

494.] If p be the vector of the element ds, where the surface

density isfp, the potential at a is

ffdsfPFT{p-<T),

F being the potential function, which may have any form whatever.

By the preceding, § 492, this may be transformed into

ffasfp^FTp;

* London Math. Soc. Proa, vol. iii, no. 34, 1871.



282 QUATERNIONS. [495-

or, far more conveniently for the integration, into

ffdsfpt^FTa,

where A depends on the constituents of a in the same manner as V
depends on those of p.

A still farther simplification may be introduced by using a vector

(r , which is finally to be made zero, along with its corresponding

operator A , for the above expression then becomes

where p appears in a comparatively manageable form. It is obvious

that, so far, our formulae might be made applicable to any distribu-

tion. We now restrict them to a superficial one.

495.] Integration of this last form can always be easily effected

in the case of a surface of revolution, the origin being a point in

the axis. For the expression, so far as the integration is concerned,

can in that case be exhibited as a single integral

» it

cfa(f>£ce
(

where <p may be any scalar function, and x depends on the cosine of

the inclination of p to the axis. And

f.
,"*""-.(B'

As the interpretation of the general results is a little troublesome,

let us take the case of a spherical shell, the origin being the centre

and the density unity, which, while simple, sufficiently illustrates

the proposed mode of treating the subject.

We easily see that in the above simple case, a being 'any constant

vector whatever, and a being the radius of the sphere,

r+a 2-7I7X

ffdst8^ = 2-naj €*T«doc = -=-
(
€
«^_ €

-«r«).

Now, it appears that we are at liberty to treat A as a has just been

treated. It is necessary, therefore, to find the effects of such opera-

tors as TA, €
aTA

, &c, which seem to be novel, upon a scalar function

of Ta; or % as we may for the present call it.

2F'
Now {TA) 2F= -A 2F = F" +~>

whence it is easy to guess at a particular form of TA. To be sure

that it is the only one, assume
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where </> and \f/
are scalar functions of € to be found. This gives

(rA)»jp P-(*^+*)(#>'++i)

= <pF" + (W+^ + W) J' 4- (<W' + V'
2
)^

Comparing, we have

4>
2 =1,

2

4n//+ x//
2 = 0.

From the first, = + 1

,

whence the second gives y\r = + —

;

the signs of <£ and \\r being alike. The third is satisfied identically.

That is +27A = |- + i.— d% %

Also, an easy induction shews that

x±(^=(£)"+!(£r
Hence we have at once

e
aTA = 1 + (V H )+... + (V-) + —(-7-) + &c.

by the help of which we easily arrive at the well-known results.

This we leave to the student*.

496.] As an elementary example of the use of V in connection

with the Calculus of Variations, let us consider the expression

A =/QTdP,

where Tdp is an element of a finite arc along which the integration

extends, and Q is in general a scalar function of p and constants.

We have bA = f(bQTdp+ QbTdp)

=f(bQTdP -QS.Udpdbp)

= -[QSUdPbp]+/(bQTdp+ S.bpd(QUdp)),

where the portion in square brackets refers to the limits only, and

gives the terminal conditions. The remaining portion may easily

be put in the form

Sfbp(d(QUdp)-VQ.TdP).

* Proc.E.S.E., 1871-2.
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If the curve is to be determined by the condition that the varia-

tion of A shall vanish, we must have, as hp may have any direction,

d(QUdp)-VQ.Tdp = 0,

or, with the notation of Chap. IX,

This simple equation shews that

(1) The osculating* plane of the sought curve contains the

vector VQ.

(2) The curvature at any point is inversely as Q, and directly as

the component of V Q parallel to the radius of absolute curvature.

497.] As a first application, suppose A to represent the action of

a particle moving freely under a system of forces which have a

potential ; so that Q = Tp,

and p
2 = 2 [P-H),

where P is the potential, H the energy constant.

These give TpVTp = QVQ = -VP,

and Qp'z= p,

so that the equation above becomes simply

p + VP= 0,

which is obviously true.

498.] If we look to the superior limit only, the first expression

for bA becomes in the present case

~\_TpSUdpbP^ = -Spbp.

If we suppose a variation of the constant H, we get the following

term from the unintegrated part

thH.

Hence we have at once Hamilton's equations of varying action in

the forms V^ = p

A dA
4and m = t.

The first of these gives, by the help of the condition above,

(V^) 2 = 2 (P-H),

the well-known partial differential equation of the first order and

second degree.

499.] To shew that, if A be any solution whatever of this equa-

tion, the vector VA represents the velocity in a free path capable of
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have d . .. _,_ . ..,_ _ _

being described under the action of the given system of forces, we

= p =-VP =-
= -S(VA.V)VA.

But ^.VJ=-£(pV)W.

A comparison shews at once that the equality

VA = p

is consistent with each of these vector equations.

500.] Again, if o refer to the constants only,

4 o(VAf = S.VAoVA = -oH
by the differential equation.

But we have also —- = t,

Oil

which gives -g- (vA) = -S(pV)oA = oH.

These two expressions for cH again agree in giving

VA = p,

and thus shew that the differential coefficients of A with regard to

the two constants of integration must, themselves, be constants.

We thus have the equations of two surfaces whose intersection

determines the path.

501.] Let us suppose next that A represents the time of passage,

so that the brachistochrone is required. Here we have

the other condition being as in § 497, and we have

it*-****-**
which may be reduced to the symmetrical form

P + p" 1VPp = 0.

It is very instructive to compare this equation with that of the free

path as above, § 497.

The application of Hamilton's method may be easily made, as in

the preceding example. (Tait, Trans. R. S. K, 1865.)

502.] As a particular case, let us suppose gravity to be the only

force, then VP = a,

a constant vector, so that

d . , . „



286 QUATERNIONS. [503.

The form of this equation suggests the assumption

p
_1 = /3—patanqt,

where p and q are scalars and

Sap = 0.

Substituting, we get

-^sec 2^ + (-/3 2 -^2 a2 tan2
^) = 0,

which gives _pq = T2
(3 = p2T2

a.

Now let p$-~ x a = y

;

this must be a unit-vector perpendicular to a and £, so that

p
-1 =

,
(cos at— y sin at),

cosqt 2 2

whence p = cos qt (cos ^ 4- y sin gtf) /3~
x

(which may be verified at once by multiplication).

Finally, taking the origin so that the constant of integration

may vanish, we have

2 p/3 = t + — (sin 2 qt—y cos 2 /7Q,

which is obviously the equation of a cycloid referred to its vertex.

The tangent at the vertex is parallel to /3, and the axis of symmetry

to a.

503.] In the case of a chain hanging under the action of given

forces Q = Pr,

where P is the potential, r the mass of unit-length.

Here we have also, of course,

/Tip = *,

the length of the chain being given.

It is easy to see that this leads, by the usual methods, to the

equation -7- {(Pr+ n)p} — rVP = 0,

where n is a scalar multiplier.

504.] As a simple case, suppose the chain to be uniform. Then

T may be merged in u. Suppose farther that gravity is the only

force, then P = Sap, VP = — a,

and -j- {(£ap-f w)p'}+a = 0.

Differentiating, and operating by Sp', we find

v{p'0V+ J) + «} = <>;

which shews that u is constant, and may therefore be allowed for

by change of origin.
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The curve lies obviously in a plane parallel to a, and its equation

is (Sap) 2 + a2 s2 — const.,

which is a well-known form of the equation of the catenary.

When the quantity Q of § 496 is a vector or a quaternion, we

have simply an equation like that there given for each of the con-

stituents.

505.] Suppose P and the constituents of a to be functions which

vanish at the bounding surface of a simply-connected space 2, or

such at least that either P or the constituents vanish there, the

others (or other) not becoming infinite.

Then, by § 467,

ff/dsS.V (Pa) =ffdsP8aUv = 0,

if the integrals be taken through and over 2.

Thus
. fffch S.a-VP = -fffds PS.Va.

By the help of this expression we may easily prove a very re-

markable proposition of Thomson (Cam. and Dub. Math. Journal,

Jan. 1848, or Reprint of Papers on Electrostatics, § 206.)

To shew that there is one, and but one, solution of the equation

S.V(e2Vu)= 4-nr

where r vanishes at an infinite distance, and e is any real scalar what-

ever, continuous or discontinuous.

Let v be the potential of a distribution of density r, so that

V 2 v = 4:7rr,

and consider the integral

1 \
2

ds (eVu Vv) •

That Q may be a minimum as depending on the value of u (which

is obviously possible since it cannot be negative, and since it may
have any positive value, however large, if only greater than this

minimum), we must have

= \iq = -fffds S.(e 2Vu-Vv)Vbu
= fffds to S -V (e

2Vu-Vv),

by the lemma given above,

=fffdshu {S.V (e
2Vu)-4i:r}.

Thus any value of u which satisfies the given equation is such as to

make Q a minimum.

But there is only one value of u which makes Q a minimum

;

for, let Q1
be the value of Q when

«j = u +
is substituted for this value of u. and we have

«=-///
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Q1= -jjj ds (eV (u + <t>)-

l

-Vv)

= Q-2fffdsS(e*Vu-Vv)V4>-fffdse\V<l>)\

The middle term of this expression may, by the proposition at the

beginning of this section, be written

2fffds<i>{SV(e2 Vu)-4:TTr},

and therefore vanishes. The last term is essentially positive. Thus

if u
x
anywhere differ from u (except, of course, by a constant quan-

tity) it cannot make Q a minimum ; and therefore u is a unique

solution

MISCELLANEOUS EXAMPLES.

1. The expression

Fa/3 Fyh + Fay F8/3 + Fab F{3y

denotes a vector. What vector ?

2. If two surfaces intersect along a common line of curvature,

they meet at a constant angle.

3. By the help of the quaternion formulae of rotation, translate

into a new form the solution (given in § 234) of the problem of

inscribing in a sphere a closed polygon the directions of whose sides

are given.

4. Express, in terms of the masses, and geocentric vectors of the

sun and moon, the sun's vector disturbing force on the moon, and

expand it to terms of the second order; pointing out the mag-

nitudes and directions of the separate components.

(Hamilton, Lectures', p. 615.)

5. If q = /•*, shew that

2 dq = 2dr* = \ (dr+ Kqdrq-^Sq- 1 = i {dr + q'1 drKq)Sq~l

= {drq+Kqdr)q- l
{q + Kq)- 1 = (drq+ Kqdr^r + Tr)- 1

_ dr+Uq-^drUq- 1 _ drUq+Uq^dr _ q- 1 (Uqdr + drUq' 1

)

~ TqiUq+Uq-1
)
~ q{Uq^Uq~ x

)
'' Uq+Uq' 1

_ q' 1 {qdr + Trdrq- 1
) _ drUq+ Uq~ldr _ drKq^+q^dr

~ Tq(Uq+Uq- 1
)
~ Tq{\ + Ur) ~~ I + Ur
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2dq =
|
dr + r.Fdrjqlf* = j

dr - F.Fdrjq~ L Iq- 1

dr — 7rdr V dr Trdr F -= - + F.F- -^q = V.V- -q- 1

q q S* q q 8*

= drq- 1 + V. Fq- 1 Fdr (l + ^q' 1
) :

«ind give geometrical interpretations of these varied •expressions for

the same quantity. (Ibid. p. 628.)

6. Shew that the equation of motion of a homogeneous solid of

revolution about a point in its axis, which is not its centre of

gravity, is B Fpp- A£Lp = Fpy,

where £2 is a constant. (Trans. R. S. E., 1869.)

7. Integrate the differential equations :

M § + «? = *,

\P>) -£ +# = <*,

where a and b are given quaternions, and <\> and \j/ given linear and

vector functions. (Tait, Proc. R.S.E., 1870-1.)

8. Derive (4) of § 92 directly from (3) of § 91.

9. Find the successive values of the continued fraction

*-<&*
where i and j have their quaternion significations, and x has the

values 1, 2, 3, &c. (Hamilton, Lectures, p. 645.)

10. If we have ux — (^-) c,

where c is a given quaternion, find the successive values.

For what values of c does u become constant ? (Ibid. p. 652.)

1 1

.

Prove that the moment of hydrostatic pressures on the faces

of any polyhedron is zero, (a.) when the fluid pressure is the same

throughout, (b.) when it is due to any set of forces which have a

potential.

12. What vector is given, in terms of two known vectors, by the

relation p"1 = \ (or 1 + ft-
1
) ?

Shew that the origin lies on the circle which passes through the

extremities of these three vectors.

TJ
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13. Tait, Trans, and Proc. B.S.E., 1870-3.

With the notation of §§ 467, 477, prove

(a.) SffS{a\7)rds = ffrSaUvds.

(6.) If S(pV)T = -nr,

(» + 3)///r^ = -ffrSp Uvds.

(c.) With the additional restriction V 2r = 0,

ffS.Uv(2np+(n + 3)p
2V).Tds= 0.

(d.) Express the value of the last integral over a non-

closed surface by a line-integral.

(e.) -/Tdp=ffdsS.UvV<j,

if o- = Udp all round the curve.

{/.) For any portion of surface whose bounding edge lies

wholly on a sphere with the origin as centre

ffdsS.{UpUvV).<r = 0, .

whatever be the vector a.

(g.) /VdpV.a- =ffds(UvV 2 -S(UvV)V)(T,

whatever be <r.

14. Tait, Trans. R. S. R, 1873.

Interpret the equation

da = uqdpq~~l
,

and shew that it leads to the following results

V 2
o- = qVuq~x

,

V.uq~l = 0,

V 2.^ = 0.

Hence shew that the only sets of surfaces which, together, cut

space into cubes are planes and their electric images.

15. .What problem has its conditions stated in the following six

equations, from which £, rj, ( are to be determined as scalar functions

of os, y, *, or of
p = b+jjf+U ?

V 2f=0, V 2
r/ = 0, v 2C=o,

SV^Vrj = 0, SVr)V(= 0, SV(V£ = 0,

, „ . d . d . d
where S/ = i-1- + 7-r--\-k-r -

dx J dy dz

Shew that they give the farther equations

= V 2^ = V 2
rjC = V 2& = V 2.^f
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Shew that (with a change of origin) the general solution of these

equations may he put in the form

where is a self-conjugate linear and vector function, and f, 77, (

are to be found respectively from the three values of/" at any point

by relations similar to those in Ex. 24 to Chapter IX. (See Lame,

Journal cle Mathematiques3 1843.)

16. Shew that, if p be a planet's radius vector, the potential P of

masses external to the solar system introduces into the equation of

motion a term of the form S(pV)VP.

Shew that this is a self-conjugate linear and vector function

of p, and that it involves only^e independent constants.

Supposing the undisturbed motion to be circular, find the chief

effects which this disturbance can produce.

17. In § 405 above, we have the equations

Va (ix + n2
ot) = 0, Sazj =0, a = (aFia, Ta = 1,

where co
2

is neglected. Shew that with the assumptions

tat u>\t

q = i
n

, a = q$q~ x
, r = f3

n
, vr — qrrr^q-1

,

we have /3 = 0, Tfi = 1, S/3t=0, F^(t+ n2
r) = 0,

provided axS^'a— a^ = 0. Hence deduce the behaviour of the Fou-

cault pendulum without the x, y, and £, 77 transformations in the

text.

Apply analogous methods to the problems proposed at the end of

§401 of the text.

18. Hamilton, Bishop Laic's Premium Examination, 1862.

(a.) If oabp be four points of space, whereof the three first are

given, and not collinear ; if also oa = a, OB = j3, op = p ;

and if, in the equation

a a

the characteristic of operation F be replaced by S> the

locus of P is a plane. What plane ?

(b.) In the same general equation, if F be replaced by V, the

locus is an indefinite right line. What line ?

(c.) If F be changed to JT, the locus of p is a point. What
point ?

(d.) If F be made = U, the locus is an indefinite half-line, or

ray. What ray ?

u i
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(e.) IfF be replaced by T, the locus is a sphere. What sphere ?

{/.) If jP be changed to TV, the locus is a cylinder of revo-

lution. What cylinder ?

(g.) IfF be made TVU, the locus is a cone of revolution. What
cone ?

(k.) If SUbe substituted for F, the locus is one sheet of such a

cone. Of what cone ? and which sheet ?

(?'.) IfF be changed to Ft/, the locus is a pair of rays. Which

pair?

19. Hamilton, Bishop Law's Premium Examination, 1863.

(a.) The equation Spp'+ a2 =
expresses that p and p' are the vectors of two points

p and p', which are conjugate with respect to the sphere

p
2 +a2 = 0;

or of which one is on the polar plane of the other.

(b.) Prove by quaternions that if the right line pp', connecting

two such points, intersect the sphere, it is cut har-

monically thereby.

(<?.) If p' be a given external point, the cone of tangents drawn

from it is represented by the equation,

and the orthogonal cone, concentric with the sphere, by

(%/) 2 +aV = 0.

(d.) Prove and interpret the equation,

T(np-a) = T(p-na), if Tp = Ta.

(e.) Transform and interpret the equation of the ellipsoid,

T(lP + Pk) = k 2 -i 2
.

{/.) The equation

(
K2_ t2)2 = ^ + K2)Spp' + 2SipKp

expresses that p and p' are values of conjugate points,

with respect to the same ellipsoid.

(g.) The equation of the ellipsoid may also be thus written,

Svp = 1, if (fc
2 -t2

)

2
i; = (l-k) 2p+2lSkp+2kSlP .

(h.) The last equation gives also,

(k 2 -l2
)

2v = (l
2 + k

2
)p

2 + 2ViPk.
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(2.) With the same signification of v, the differential equations

of the ellipsoid and its reciprocal become

Svdp = 0, Spdu = 0.

(/.) Eliminate p between the four scalar equations,

Sap = a, S(3p = b} Syp = c, Sep = e.

20. Hamilton, Bishop Law's Premium Examination, 1864.

(a.) Let A
1
B

1 , A2
B2 , ... AnBn be any given system of posited

right lines, the 2n points being all given; and let

their vector sum,

AB = A
1
B

1 + A2B2 +...+ AnBn ,

be a line which does not vanish. Then a point H, and

a scalar h, can be determined, which shall satisfy the

quaternion equation,

HA
1
.A

1
B

1
+...+HAn .AnBn = k.AB;

namely by assuming any origin 0, and writing,

QH=z v
OA

1
.A

1
B

1 +... + OAn .AnBn

A==s
OA AB1+ ...

t

A
X
B1+ ...

{b.) For any assumed point C, let

Qc = CA1.A1B1+... + CAn.AnBn i

then this quaternion sum may be transformed as follows,

Qc = QH + CH.AB = (k + CII).AB
;

and therefore its tensor is

TQc = {7i
2 + CH2)KAB,

in which AB and CH denote lengths.

(<?.) The least value of this tensor TQC is obtained by placing

the point C at //; if then a quaternion be said to be a

minimum when its tensor is such, we may write

min. Qc = Qh = h.AB;

so that this minimum of Qc is a vector.

(d.) The equation

TQC = c = any scalar constant > TQH
expresses that the locus of the variable point C is a

spheric surface, with its centre at the fixed point H,

and with a radius r
3
or CH, such that

r.AB = (TQc
2-TQH

2
)? = (c

2- h2
. AB2f ;
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so that H, as being thus the common centre of a series

of concentric spheres, determined by the given system

of right lines, may be said to be the Central Point, or

simply the Centre, of that system.

(e.) The equation

TVQc = c
i
= any scalar constant > TQH

represents a right cylinder, of which the radius

= (c
2 -h 2.AB2

)*

divided by AB, and of which the axis of revolution is

the line, yqc = QH = h.AB\

wherefore this last right line, as being the common

axis of a series of such right cylinders, may be called

the Central Axis of the system.

(/.) The equation

SQC = C
2
= any scalar constant

represents a plane; and all such planes are parallel to

the Central Plane, of which the equation is

SQC = 0.

(g.) Prove that the central axis intersects the central plane

perpendicularly, in the central point of the system.

(A.) When the n given vectors A
1
B

1 , ... AnBn are parallel, and

are therefore proportional to n scalars, b
Y
,...bn , the

scalar h and the vector QH vanish ; and the centreH is

}

then determined by the equation

b
l
.HA

1
+b

2
.HA

2
+...+bn.HAn = 0,

or by the expression,

b
1
.OA

l + ...-\bn.OAn
^

b^...+bn

where is again an arbitrary origin.

21. Hamilton, Bishop Law's Premium Examination, 1860.

(a.) The normal at the end of the variable vector p, to the

surface of revolution of the sixth dimension, which is

represented by the equation

(^-a2
)3 = 27a2 (p-a)S (a)

or by the system of the two equations,

p
2-a2 = 3l 2 a2

,
(p-a) 2 = Pa2

, (a')
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and the tangent to the meridian at that point, are

respectively parallel to the two vectors,

v = 2{p—a)— tp,

and r = 2(1 — 2t)
(p
- a) + l

2
p;

so that they intersect the axis a, in points of which the

vectors are, respectively,

2a , 2(1 — 20a

(b.) Iff//) be in the same meridian plane as p, then

i(l-t)(4-t)dP =3Tdt, and S P~ =^-~ t
-

(<?.) Under the same condition,

(</.) The vector of the centre of curvature of the meridian, at

the end of the vector p, is, therefore,

/fA\ _1
3 v 6a—U — t)p

° = p
- V

(
8
d,) =»-2T=t= 2(1-0 '

(e.) The expressions in Example 38 give

v 2 = a2
t
2 (l-t) 2

, t
2 = a2

^
3(l-0 2 (4-0;

9 9 a2
t

hence (<r— p)
2 = -a2

t
2

, and dp 2 = 7^2
;

the radius of curvature of the meridian is, therefore,

B = T(a-p) = ltTa;

and the length of an element of arc of that curve is

. t -

A— t-

ds =:Tdp=3 Ta {-^-fdt.

(/.) The same expressions give

4(Fap) 2 =_a4
^
3 (l-02 (4-0;

thus the auxiliary scalar t is confined between the limits

and 4, and we may write t = 2 vers 9, where 6 is a

real angle, which varies continuously from to 2 77 ; the

recent expression for the element of arc becomes, there-

fore, ds = 3Ta.td9,

and gives by integration

s = 6Ta(6-smO),
if the arc s be measured from the point, say F, for which.

p = a, and which is common to all the meridians ; and

the total periphery of any one such curve is= \2TrTa.
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(</.) The value of a gives

4(<r
2-o2)= 3a2 l(4-t), 16(Faa) 2 = - aH :i (4- t)'

s
',

if, then, we set aside the axis of revolution a, which is

crossed by all the normals to the surface (a), the surface

of centres of curvature which is touched by all those

normals is represented by the equation,

4 (a 2-a2
)
3 + 27 a2 (Fa*) 2 = (b)

(h.) The point F is common to the two surfaces (a) and (b),

and is a singular point on each of them, being a triple

point on (a), and a double point on (b) ; there is also at

it an infinitely sharp cusp on (b), which tends to coincide

with the axis a, but a determined tangent plane to (a),

which is perpendicular to that axis, and to that cusp ;

and the point, say F\ of which the vector = — a, is

another and an exactly similar cusp on (b), but does not

belong to (a).

(?'.) Besides the three universally coincident intersections of the

surface (a), with any transversal, drawn through its

triple point F, in any given direction /3, there are

always three other real intersections, of which indeed one

coincides with F if the transversal be perpendicular to

the axis, and for which the following is a general

formula :

P = Ta.[Ua+{2SU(aP)*yUp].

(j.) The point, say V
9
of which the vector is p = 2 a, is a

double point of (a), near which that surface has a cusp,

which coincides nearly with its tangent cone at that

point ; and the semi-angle of this cone is = - •

Auxiliary Equations

:

(2Sp(p-a) = aH2
(3 + fy

\2Sa(p-a) = aH2 (3-t).

r Svp =-a2t{l—l)(l — 2t),

\2Sv(p-a) = a2t*{l-t).

( Spr = a2
t
2 (l-t)(4-t),

\2S(p-a)T= a2
*
3 (l-tf)(4-0.
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PUBLICATIONS OF

Cfte Cambn'tige 2Bnfber$itp press*

THE HOLY SCRIPTURES, fee.

THE CAMBRIDGE PARAGRAPH BIBLE of the Au-
thorized English Version, with the Text Revised by a Collation of its

Early and other Principal Editions, the Use of the Italic Type made
uniform, the Marginal References remodelled, and a Critical Intro-

duction prefixed, by F. H. A. Scrivener, M.A., LL.D., Editor of

the Greek Testament, Codex Augiensis, &c, and one of the Revisers

of the Authorized Version. Crown 4to. gilt. 21s.

From the Times. Syndics of the Cambridge University Press,

"Students of the Bible should be particu- an edition of the English Bible, according to

larly grateful (to the Cambridge University the text of 1611, revised by a comparison with
Press) for having produced, with the able as- later issues on principles stated by him in his

sistance of Dr Scrivener, a complete critical Introduction. Here he enters at length into

edition of the Authorized Version of the Eng- the history of the chief editions of the version,

lish Bible, an edition such as, to use the words and of such features as the marginal notes, the
of the Editor, 'would have been executed long use of italic type, and the changes of ortho-

ago had this version been nothing more than graphy, as well as into the most interesting

the greatest and best known of English clas- question as to the original texts from which
sics.' Falling at a time when the formal revi- our translation is produced."
sion of this version has been undertaken by

From the Methodist Recorder.
distinguished company of scholars and divines, llT,f

run
"
c "%*%?, ^ I. i„

the publication of this edition must be con- ^^^^^eSSr^SSSS
stdered-gje.^^ 7 ^ ^ V

"Apart from its religious importance, the
Press » grantee enough for its perfection in

English Bible has the glory, which but few outward form, the name of the editor is equal

sister versions indeed can claim, of being the grantee for the worth and accuracy of its

chief classic of the language, of having, in
contents Without question it is the best

conjunction with Shakspeare, 'and in aifim- Paragraph Bible ever published, and its re-

measurable degree more than he, fixed the
duce

,

d P"ce of a guinea brings it within reach

language beyond any possibility of important
of a larSe number of stude» ts -

change. Thus the recent contributions to the From the London Quarterly Review.
literature of the subject, by such workers as "The work is worthy in every respect of the

Mr Francis Fry and Canon Westcott, appeal editor's fame, and of the Cambridge University

to a wide range of sympathies; and to these Press. The noble English Version, to which
may now be added Dr Scrivener, well known our country and religion owe so much, was
for his labours in the cause of the Greek Testa- probably never presented before in so perfect a
ment criticism, who has brought out, for the form."

THE CAMBRIDGE PARAGRAPH BIBLE. Student's
EDITION, on good writing paper, with one column of print and wide
margin to each page for MS. notes. This edition will be found of
great use to those who are engaged in the task of Biblical criticism.

Two Vols. Crown 4to. gilt. 31J. 6d.

THE AUTHORIZED EDITION OF THE ENGLISH
BIBLE (1611), ITS SUBSEQUENT REPRINTS AND MO-
DERN REPRESENTATIVES. Being the Introduction to the
Cambridge Paragraph Bible (1873), re-edited with corrections and
additions. By F. H. A. Scrivener, M.A., D.C.L., LL.D., Pre-
bendary of Exeter and Vicar of Hendon. Crown 8vo. js. 6d.

THE LECTIONARY BIBLE, WITH APOCRYPHA,
divided into Sections adapted to the Calendar and Tables of
Lessons of 1871. Crown 8vo. 3^. 6d.

London : C. J. Cla y &* Sons, Cambridge University Press Warehouse,
Ave Maria Lane.



Usher (indignantly)—" Is that cipnr lit, sir ?

Mr. Shorts—" No. Got a match ?
"

men uas
recently appeared under their auspices."—
Notes and Queries.

"Cambridge has worthily taken the lead
with the Breviary, which is of especial value
for that part of the reform of the Prayer-Book
which will fit it for the wants of our time . . .

leny i\ evieiv.

"The editors have done their work excel-
lently, and deserve all praise for their labours
in rendering what they justly call ' this mo<-t
interesting Service-book ' more readily access-
ible to historical and liturgica students."

—

Saturday Review.

Fasciculus III. In quo continetur Proprium Sanctorum
quod et sanctorale dicitur, una cum accentuario. Demy 8vo. \$s.

Fasciculi I. II. III. complete, £2. 2s.

GREEK AND ENGLISH TESTAMENT, in parallel
Columns on the same page. Edited by J. Scholefield, M.A. late

Regius Professor of Greek in the University. Small Octavo. New
Edition, with the Marginal References as arranged and revised by
Dr Scrivener. Cloth, red edges. 7s. 6d.

GREEK AND ENGLISH TESTAMENT. The Stu-
dent's Edition of the above, on large writingpaper. 4to. \2s.

GREEK TESTAMENT, ex editione Stephani tertia, 1550.
Small 8vo. 3-r. 6d.

THE NEW TESTAMENT IN GREEK according to the
text followed in the Authorised Version, with the Variations adopted
in the Revised Version. Edited by F. H. A. Scrivener, M.A.,
D.C.L., LL.D. Crown 8vo. 6s. Morocco boards or limp. 12s.

THE PARALLEL NEW TESTAMENT GREEK AND
ENGLISH, being the Authorised Version set forth in 161 1 Arranged
in Parallel Columns with the Revised Version of 1881, and with the
original Greek, as edited by F. H. A. Scrivener, M.A., D.C.L.,
LL.D. Prebendary of Exeter and Vicar of Hendon. Crown 8vo.

12s. 6d. The Revised Version is the Joint Property of the Universi-
ties of Cambridge and Oxford.

London : C. f, Clay& Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE BOOK OF ECCLESIASTES, with Notes and In-

troduction. By the Very Rev. E. H. Plumptre, D.D., Dean of

Wells. Large Paper Edition. Demy 8vo. 7s. 6d.
" No one can say that the Old Testament is point in English exegesis of the Old Testa-

a dull or worn-out subject after reading this ment; indeed, even Delitzsch, whose pride it

singularly attractive and also instructive com- is to leave no source of illustration unexplored,

mentary. Its wealth of literary and historical is far inferior on this head to Dr Plumptre."

—

illustration surpasses anything to which we can Academy, Sept. 10, 1881.

THE GOSPEL ACCORDING TO ST MATTHEW in

Anglo-Saxon and Northumbrian Versions, synoptically arranged

:

with Collations of the best Manuscripts. By J. M. Kemble, M.A.
and Archdeacon Hardwick. Demy 410. 10s.

New Edition. By the Rev. Professor Skeat. {Immediately.

THE GOSPEL ACCORDING TO ST MARK in Anglo-
Saxon and Northumbrian Versions, synoptically arranged : with Col-

lations exhibiting all the Readings of all the MSS. Edited by the

Rev. W. W. Skeat, Litt.D., Elrington and Bosworth Professor of

Anglo-Saxon. Demy 4to. \os.

THE GOSPEL ACCORDING TO ST LUKE, uniform
with the preceding, by the same Editor. Demy 4to. \os.

THE GOSPEL ACCORDING TO ST JOHN, uniform
with the preceding, by the same Editor. Demy 4to. \os.

" The Gospel according to St John, in Kemble, some forty years ago. Of the par-

Anglo-Saxon and Northumbrian Versions: ticular volume now before us, we can only say
Edited for the Syndics of the University it is worthy of its two predecessors. We repeat
Press, by the Rev. Walter W. Skeat, M.A, that the service rendered to the study of Anglo-
completes an undertaking designed and com- Saxon by this Synoptic collection cannot easily

menced by that distinguished scholar, J. M. be overstated."

—

Contemporary Review.

THE POINTED PRAYER BOOK, being the Book of
Common Prayer with the Psalter or Psalms of David, pointed as

they are to be sung or said in Churches. Royal 24mo. is. 6d.

The same in square 32mo. cloth. 6d.

THE CAMBRIDGE PSALTER, for the use of Choirs and
Organists. Specially adapted for Congregations in which the " Cam-
bridge Pointed Prayer Book" is used. Demy 8vo. cloth extra, 3s. 6d.

cloth limp, cut flush, is. 6d.

THE PARAGRAPH PSALTER, arranged for the use of
Choirs by Brooke Foss Westcott, D.D., Regius Professor of
Divinity in the University of Cambridge. Fcap. 4to. 5^.

The same in royal 32mo. Cloth Is. Leather Is. 6d.
"The Paragraph Psalter exhibits all the and there is not a clergyman or organist in

care, thought, and learning that those acquaint- England who should be without this Psalter
ed with the works of the Regius Professor of as a work of reference."

—

Morning Post.
Divinity at Cambridge would expect to find,

THE MISSING FRAGMENT OF THE LATIN TRANS-
LATION OF THE FOURTH BOOK OF EZRA, discovered,
and edited with an Introduction and Notes, and a facsimile of the
MS., by Robert L. Bensly, M.A., Reader in Hebrew, Gonville and
Caius College, Cambridge. Demy 4to. 10s.

"It has been said of this book that it has Bible we understand that of the larger size

added a new chapter to the Bible, and, startling which contains the Apocrypha, and if the
as the statement may at first sight appear, it is Second Book of Esdras can be fairly called a
no exaggeration of the actual fact, if by the part of the Apocrypha."—Saturday Review.

GOSPEL DIFFICULTIES, or the Displaced Section of
S. Luke. By the Rev. J. J. HALCOMBE, Rector of Balsham and
Rural Dean of North Camps, formerly Reader and Librarian at the
Charterhouse. Crown 8vo. 10s. 6d.

London : C. J. Cla V &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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THEOLOGY-(ANCIENT).
THE GREEK LITURGIES. Chiefly from original Autho-

rities. By C. A. Swainson, D.D., Master of Christ's College, Cam-
bridge. Crown 4to. Paper covers. 15^.

"Jeder folgende Forscher wird dankbar Griechischen Liturgien sicher gelegt hat."

—

anerkennen, dass Swainson das Fundament zu Adolph Harnack, Theologische Literatur-
einer hisrbrisch-kritischen Geschichte der Zeitung.

THE PALESTINIAN MISHNA. By W. H. Lowe, M.A.,
Lecturer in Hebrew at Christ's College, Cambridge. Royal 8vo. 11s.

SAYINGS OF THE JEWISH FATHERS, comprising
Pirqe Aboth and Pereq R. Meir in Hebrew and English, with Cri-

tical and Illustrative Notes. By Charles Taylor, D.D. Master
of St John's College, Cambridge, and Honorary Fellow of Kingr

s

College, London. Demy 8vo. 10s.
"The ' Masseketh Aboth' stands at the " A careful and thorough edition which does

head of Hebrew non-canonical writings. It is credit to English scholarship, of a short treatise

of ancient date, claiming to contain the dicta from the Mishna, containing a series of sen-
of ter.chers who nourished from B.C. 200 to the tences or maxims ascribed mostly to Jewish
same year of our era. The precise time of its teachers immediately preceding, or immediately
compilation in its present form is, of course, in following the Christian era..."

—

Contempo-
doubt. Mr Taylor's explanatory and illustra- rary Review.
tive commentary is very full and satisfactory."—Spectator.

THEODORE OF MOPSUESTIA'S COMMENTARY
ON THE MINOR EPISTLES OF S. PAUL. The Latin Ver-
sion with the Greek Fragments, edited from the MSS. with Notes
and an Introduction, by H. B. Swete, D.D., Rector of Ashdon,
Essex, and late Fellow of Gonville and Caius College, Cambridge.
In Two Volumes. Volume I., containing the Introduction, with
Facsimiles of the MSS., and the Commentary upon Galatians

—

Colossians. Demy 8vo. \is.
"In dem oben verzeichneten Buche liegt handschriften . . . sind vortreffliche photo-

uns die erste Halfte einer vollstandigen, ebenso graphische Facsimile's beigegeben, wie iiber-

sorgfaltig gearbeiteten wie schon ausgestat- haupt das ganze Werk von der University
teten Ausgabe des Commentars mit ausfiihr- Press zu Cambridge mit bekannter Eleganz
lichen Prolegomena und reichhaltigen kritis- ausgestattet ist."— Theologische Literaturzei-
chen und erlauternden Anmerkungen vor."

—

tung.
Literarisches Centralblatt. *'It is a hopeful sign, amid forebodings

"It is the result of thorough, careful, and which arise about the theological learning of
patient investigation of all the points bearing the Universities, that we have before us the
on the subject, and the results are presented first instalment of a thoroughly scientific and
with admirable good sense and modesty."

—

painstaking work, commenced at Cambridge
Guardian. and completed at a country rectory."- Church

"Auf Grund dieser Quellen ist der Text Quarterly Review (Jan. 1881).
bei Swete mit musterhafter Akribie herge- " Hernn Swete's Leistung ist eine so
stellt. Aber auch sonst hat der Herausgeber tuchtige dass wir das Werk in keinen besseren
mit unermiidlichem Fleisse und eingehend- Handen wissen mochten, und mit den sich-

ster Sachkenntniss sein Werk mit alien den- ersten Erwartungen auf das Gelingen der
jenigen Zugaben ausgeriistet, welche bei einer Fortsetzung entgegen sehen."

—

Gottingische
solchen Text-Ausgabe nur irgend erwartet gelehrte Anzeigen (Sept. 1881).
werden konnen. . . . Von den drei Haupt-

Volume II., containing the Commentary on I Thessalonians

—

Philemon, Appendices and Indices. 12s.
"Eine Ausgabe . . . fur welche alle zugang- mene a bien dans les deux volumes que je

lichen Hiilfsmittel in musterhafter Weise be- signale en ce moment. ..Elle est accompagnee
niitzt wurden . . . eine reife Frucht siebenjahri- de notes erudites, suivie de divers appendices,
gen Fleisses."

—

Theologische Literaturzeitung parmi lesquels on appreciera surtout un recueil
(Sept. 23, 1882). des fragments des oeuvres dogmatiques de

"Mit derselben Sorgfalt bearbeitet die wir Theodore, et precedee d'une introduction ou
bei dem ersten Theile geruhmt haben."

—

sont traitees a fond toutes les questions d'his-

Literarisches Centralblatt (July 29, 1882). toire litteraire qui se rattachent soit au com-
"M. Jacobi...commenga...une edition du mentaire lui-meme, soit a sa version Latine."

—

texte. Ce travail a ete repris en Angleterre et Bulletin Critique, 1885.

London ; C. J. Cla V &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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SANCTI IRENiEI EPISCOPI LUGDUNENSIS libros

quinque adversus Haereses, versione Latina cum Codicibus Claro-
montano ac Arundeliano denuo collata, praemissa de placitis Gnos-
ticorum prolusione, fragmenta necnon Graece, Syriace, Armeniace,
commentatione perpetua et indicibus variis edidit W. WlGAN
Harvey, S.T.B. Collegii Regalis olim Socius. 2 Vols. 8vo. i8j.

M. MINUCII FELICIS OCTAVIUS. The text newly
revised from the original MS., with an English Commentary,
Analysis, Introduction, and Copious Indices. Edited by H. A.
Holden, LL.D. Examiner in Greek to the University of London.
Crown 8vo. ys. 6d.

THEOPHILI EPISCOPI ANTIOCHENSIS LIBRI
TRES AD AUTOLYCUM edidit, Prolegomenis Versione Notulis
Indicibus instruxit Gulielmus Gilson Humphry, S.T.B. Collegii

Sancliss. Trin. apud Cantabrigienses quondam Socius. Post 8vo. $s.

THEOPHYLACTI IN EVANGELIUM S. MATTH^EI
COMMENTARIUS, edited by W. G. Humphry, B.D. Prebendary
of St Paul's, late Fellow of Trinity College. Demy Svo. ys. 6d.

TERTULLIANUS DE CORONA MILITIS, DE SPEC-
TACULIS, DE IDOLOLATRIA, with Analysis and English Notes,
by George Currey, D.D. Preacher at the Charter House, late

Fellow and Tutor of St John's College. Crown Svo. $s.

FRAGMENTS OF PHILO AND JOSEPHUS. Newly
edited by J. Rendel Harris, M.A., Fellow of Clare College,

Cambridge. With two Facsimiles. Demy 4to. I2J-. 6d.

THE ORIGIN OF THE LEICESTER CODEX OF THE
NEW TESTAMENT. By J. Rendel Harris, M.A.

[Nearly ready.

THEOLOGY—(ENGLISH).
WORKS OF ISAAC BARROW, compared with the Ori-

ginal MSS., enlarged with Materials hitherto unpublished. A new
Edition, by A. Napier, M.A. of Trinity College, Vicar of Holkham,
Norfolk. 9 Vols. Demy 8vo. £3. 3s.

TREATISE OF THE POPE'S SUPREMACY, and a
Discourse concerning the Unity of the Church, by Isaac Barrow.
Demy 8vo. ys. 6d.

PEARSON'S EXPOSITION OF THE CREED, edited
by Temple Chevallier, B.D. late Fellow and Tutor of St Catha-
rine's College, Cambridge. New Edition. 'Revised by R. Sinker,
B.D., Librarian of Trinity College. Demy 8vo. 12s.

" A new edition of Bishop Pearson's famous places, and the citations themselves have been
work On the Creed has j ust been issued by the adapted to the best and newest texts of the
Cambridge University Press. It is the well- several authors—texts which have undergone
known edition ofTemple Chevallier, thoroughly vast improvements within the last two centu-
overhauled by the Rev. R. Sinker, of Trinity ries. The Indices have also been revised and
College. The whole text and notes have been enlarged Altogether this appears to be the
most carefully examined and corrected, and most complete and convenient edition as yet
special pains have been taken to verify the al- published of a work which has long been re-
most innumerable references. These have been cognised in all quarters as a standard one."

—

more clearly and accurately given in very many Guardian.

AN ANALYSIS OF THE EXPOSITION OF THE
CREED written by the Right Rev. John Pearson, D.D. late Lord
Bishop of Chester, by W. H. Mill, D.D. late Regius Professor of
Hebrew in the University of Cambridge. Demy 8vo. $s.

London : C. J. Cla y <Sr> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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WHEATLY ON THE COMMON PRAYER, edited by
G. E. Corrie, D. D. late Master of Jesus College. Demy 8vo. 7s. 6d.

TWO FORMS OF PRAYER OF THE TIME OF QUEEN
ELIZABETH. Now First Reprinted. Demy 8vo. 6d.

"From ' Collections and Notes' 1867— 1876, ker Society's volume of Occasional Forms of
by W. Carew Hazlitt (p. 340), we learn that— Prayer, but it had been lost sight of for 200
'A very remarkable volume, in the original years.' By the kindness of the present pos-
vellum cover, and containing 25 Forms of sessor of this valuable volume, containing in all
Prayer of the reign of Elizabeth, each with the 25 distinct publications, I am enabled to re-
autograph of Humphrey Dyson, has lately fallen print in the following pages the two Forms
into the hands of my friend Mr H. Pyne. It is of Prayer supposed to have been lost."

—

Ex-
mentioned specially in the Preface to the Par- tract from the Preface.

C^SAR MORGAN'S INVESTIGATION OF THE
TRINITY OF PLATO, and of Philo Judseus, and of the effeas
which an attachment to their writings had upon the principles and
reasonings of the Fathers of the Christian Church. Revised by H. A.
Holden, LL.D. Crown 8vo. 4^.

SELECT DISCOURSES, by John Smith, late Fellow of
Queens' College, Cambridge. Edited by H. G. Williams, B.D. late

Professor of Arabic. Royal 8vo. 7s. 6d.
"The 'Select Discourses' of John Smith, with the richest lights of meditative genius...

collected and published from his papers after He was one of those rare thinkers in whom
his death, are, in my opinion, much the most largeness of view, and depth, and wealth of
considerable work left to us by this Cambridge poetic and speculative insight, only served to
School [the Cambridge Platonists]. They have evoke more fully the religious spirit, and while
a right to a place in English literary history." he drew the mould of his thought from Plotinus
—Mr Matthew Arnold, in the ContemJ>o- he vivified the substance of it from St Paul."

—

rary Review. Principal Tulloch, Rational Theology in
"Of all the products of the Cambridge England in the 17 th Century.

School, the 'Select Discourses' are perhaps "We may instance Mr Henry Griffin Wil-
the highest, as they are the most accessible liams's revised edition of Mr John Smith's
and the most widely appreciated. ..and indeed 'Select Discourses,' which have won Mr
no spiritually thoughtful mind can read them Matthew Arnold's admiration, as an example
unmoved. They carry us so directly into an of worthy work for an University Press to

atmosphere of divine philosophy, luminous undertake."

—

Times.

THE HOMILIES, with Various Readings, and the Quo-
tations from the Fathers given at length in the Original Languages.
Edited by G. E. Corrie, D.D. late Master of Jesus College. Demy
8vo. 7s. 6d.

DE OBLIGATIONE CONSCIENTLE PR^LECTIONES
decern Oxonii in Schola Theologica habitae a Roberto Sanderson,
SS. Theologian ibidem Professore Regio. With English Notes,
including an abridged Translation, by W. Whewell, D.D. late

Master of Trinity College. Demy 8vo. 7s. 6d.

ARCHBISHOP USHER'S ANSWER TO A JESUIT,
with other Tracls on Popery. Edited by J. Scholefield, M.A. late

Regius Professor of Greek in the University. Demy 8vo. 7s. 6d.

WILSON'S ILLUSTRATION OF THE METHOD OF
explaining the New Testament, by the early opinions of Jews and
Christians concerning Christ. Edited by T. TURTON, D.D. late

Lord Bishop of Ely. Demy 8vo. $s.

LECTURES ON DIVINITY delivered in the University
of Cambridge, by John Hey, D.D. Third Edition, revised by T.
TURTON, D.D. late Lord Bishop of Ely. 2 vols. Demy 8vo. 15J.

S. AUSTIN AND HIS PLACE IN THE HISTORY
OF CHRISTIAN THOUGHT. Being the Hulsean Lectures for

1885. By W. Cunningham, B.D., Chaplain and Birkbeck Lecturer,

Trinity College, Cambridge. Demy 8vo. Buckram, 12s. 6d.

London : C. J. Cla Y St* Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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ARABIC, SANSKRIT, SYRIAC, &c

THE DIVYAvADANA, a Collection of Early Buddhist
Legends, now first edited from the Nepalese Sanskrit MSS. in

Cambridge and Paris. By E. B. Cowell, M.A., Professor of

Sanskrit in the University of Cambridge, and R. A. Neil, M.A.,
Fellow and Lecturer of Pembroke College. Demy 8vo. i8j.

POEMS OF BEHA ED DIN ZOHEIR OF EGYPT.
With a Metrical Translation, Notes and Introduction, by E. H.
Palmer, M.A., Barrister-at-Law of the Middle Temple, late Lord
Almoner's Professor of Arabic, formerly Fellow of St John's College,

Cambridge. 2 vols. Crown 4to.

Vol. I. The Arabic Text. \os. 6d. ; cloth extra. 15J.

Vol. II. English Translation. \os. 6d. ; cloth extra. 15J.
"We have no hesitation in saying that in remarked, by not unskilful imitations of the

both Prof. Palmer has made an addition to Ori- styles of several of our own favourite poets,

ental literature for which scholars should be living and dead."

—

Saturday Review.
grateful ; and that, while his knowledge of " This sumptuous edition of the poems of

Arabic is a sufficient guarantee for his mastery Beha-ed-din Zoheir is a very welcome addition

of the original, his English compositions are to the small series of Eastern poets accessible
distinguished by versatility, command of Ian- to readers who are not Orientalists."

—

Aca-
guage, rhythmical cadence, and, as we have demy.

THE CHRONICLE OF JOSHUA THE STYLITE, com-
posed in Syriac A.D. 507 with an English translation and notes, by
W. Wright, LL.D., Professor of Arabic. Demy 8vo. \os. 6d.

" Die lehrreiche kleine Chronik Josuas hat ein Lehrmittel fur den syrischen Unterricht ; es
nach Assemani und Martin in Wright einen erscheint auch gerade zur rechten Zeit, da die
dritten Bearbeiter gefunden, der sich um die zweite Ausgabe von Roedigers syrischer Chres-
Emendation des Textes wie um die Erklarung tomathie im Buchhandel vollstandig vergriffen

der Realign wesentlich verdient gemacht hat und dicjenige von Kirsch-Bernstein nur noch
. . . Ws. Josua-Ausgabe ist eine sehr dankens- in weni^en Exemplaren vorhanden ist."

—

werte Gabe und besonders empfehlenswert als Deutsche Litteraturzeitung.

KALlLAH AND DIMNAH, OR, THE FABLES OF
BIDPAI ; being an account of their literary history, together with
an English Translation of the same, with Notes, by I. G. N. Keith-
Falconer, M.A., Lord Almoner's Professor of Arabic in the Univer-
sity of Cambridge. Demy 8vo. ys. 6d.

NALOPAKHYANAM, OR, THE TALE OF NALA

;

containing the Sanskrit Text in Roman Characters, followed by a
Vocabulary and a sketch of Sanskrit Grammar. By the late

Rev. Thomas Jarrett, M.A. Trinity College, Regius Professor

of Hebrew. Demy 8vo. ioj-.

NOTES ON THE TALE OF NALA, for the use of
Classical Students, by J. Peile, Litt. D., Fellow and Tutor of
Christ's College. Demy 8vo. 12s.

CATALOGUE OF THE BUDDHIST SANSKRIT
MANUSCRIPTS in the University Library, Cambridge. Edited
by C. Bendall, M.A., Fellow of Gonville and Caius College. Demy
8vo. 1 2S.

" It is unnecessary to state how the com- those concerned in it on the result . . . Mr Ben-
pilation of the present catalogue came to be dall has entitled himself to the thanks of all

placed in Mr Bendall's hands; from the cha- Oriental scholars, and we hope he may have
racter of his work it is evident the selection before him a long course of successful labour iu

was judicious, and we may fairly congratulate the field he has chosen."

—

Atheuceum.

London : C. J. Cla y & Sows, Cambridge University Press Warehouse,
Ave Maria Lane.
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GREEK AND LATIN CLASSICS, &c.

SOPHOCLES: The Plays and Fragments, with Critical
Notes, Commentary, and Translation in English Prose, by R. C.
Jebb, Litt.D., LL.D., Professor of Greek in the University of Glasgow.

Part I. Oedipus Tyrannus. Demy 8vo. New Edition, In the Press.
Part II. Oedipus Coloneus. Demy 8vo. 12s. 6d.

Part III. The Antigone. [In the Press.
"Of his explanatory and critical notes we vivacity. In fact, one might take this edition

can only speak with admiration. Thorough with him on a journey, and, without any other
scholarship combines with taste, erudition, and help whatever, acquire with comfort and de-
boundless industry to make this first volume a light a thorough acquaintance with the noblest
pattern of editing. The work is made com- production of, perhaps, the most difficult of all

plete by a prose translation, upon pages alter- Greek poets—the most difficult, yet possessed
nating with the text, of which we may say at the same time of an immortal charm for one
shortly that it displays sound judgment and who has mastered him, as Mr Jebb has, and
taste, without sacrificing precision to poetry of can feel so subtly perfection of form and lan-
expression."— The Times. guagc.We await with lively expectation the

"This larger edition he has deferred these continuation, and completion of Mr Jebb's
many years for reasons which he has given in great task, and it is a fortunate thing that his
his preface, and which we accept with entire power of work seems to be as great as the style
satisfaction, as we have now the first portion is happy in which the work is done."

—

The
of a work composed in the fulness of his powers A tJienteum.

and with all the resources of fine erudition and "An edition which marks a definite ad-
laboriously earned experience...We will confi- vance, which is whole in itself, and brings a
dently aver, then, that the edition is neither mass of solid and well-wrought material such
tedious nor long ; for we get in one compact as future constructors will desire to adapt, is

volume such a cyclopaedia of instruction, such definitive in the only applicable sense of the
a variety of helps to the full comprehension of term, and such is the edition of Professor Jebb.
the poet, as not so many years ago would have No man is better fitted to express in relation to

needed a small library, and all this instruction Sophocles the mind of the present generation."
and assistance given, not in a dull and pedantic — The Saturday Review.
way, but in a style of singular clearness and

AESCHYLI FABULAE.—IKETIAES XOHTOPOI IN
LIBRO MEDICEO MENDOSE SCRIPTAE EX VV. DD.
CONIECTURIS EMENDATIUS EDITAE cum Scholiis Graecis
et brevi adnotatione critica, curante F. A. Paley, M.A., LL.D.
Demy 8vo. ys. 6d.

THE AGAMEMNON OF AESCHYLUS. With a Trans-
lation in English Rhythm, and Notes Critical and Explanatory.

New Edition Revised. By Benjamin Hall Kennedy, D.D.,
Regius Professor of Greek. Crown 8vo. 6s.

" One of the best editions of the masterpiece of Greek tragedy."

—

Athenceum.

THE THE^TETUS OF PLATO with a Translation and
Notes by the same Editor. Crown 8vo. Js. 6d.

ARISTOTLE.—nEPI ¥TXH2. ARISTOTLE'S PSY-
CHOLOGY, in Greek and English, with Introduction and Notes,

by Edwin Wallace, M.A., late Fellow and Tutor of Worcester
College, Oxford. Demy 8vo. iSs.

"The notes are exactly what such notes "Wallace's Bearbeitung der Aristotelischen

ought to be,—helps to the student, not mere Psychologie ist das Werk eines denkenden und
displays of learning. By far the more valuable in alien Schriften des Aristoteles und grossten-

parts of the notes are neither critical nor lite- teils auch in der neueren Litteratur zu densel-

rary, but philosophical and expository of the ben belesenen Mannes . . . Der schwachste
thought, and of the connection of thought, in Teil der Arbeit ist der kritische . . . Aber in

the treatise itself. In this relation the notes are alien diesen Dingen liegt auch nach der Ab-
invaluable. Of the translation, it may be said sicht des Verfassers nicht der Schwerpunkt
that an English reader may fairly master by seiner Arbeit, sondern."—Prof. Susemihl in

means of it this great treatise of Aristotle."

—

Philologische Wochenschrift.
Spectator.

ARISTOTLE.—nEPI AIKAIOSTNH2. THE FIFTH
BOOK OF THE NICOMACHEAN ETHICS OF ARISTOTLE.
Edited by Henry Jackson, Litt.D., Fellow of Trinity College,

Cambridge. Demy 8vo. 6s.

"It is not too much to say that some of the will hope that this is not the only portion of

points he discusses have never had so much the Aristotelian writings which he is likely to

light thrown upon them before. . . . Scholars edit."

—

Athenceum.

London : C. J. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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ARISTOTLE. THE RHETORIC. With a Commentary
by the late E. M. Cope, Fellow of Trinity College, Cambridge, re-

vised and edited by J. E. Sandys, Litt.D. With a biographical

Memoir by the late H. A. J. Munro, Litt.D. 3 Vols., Demy 8vo.

Now reduced to 21s-. {originally published at 31$. 6d.)
"This work is in manyways creditable to the "Mr Sandys has performed his arduous

University of Cambridge. If an English student duties with marked ability and admirable tact.

wishes to have a full conception of what is con- In every part of his work—revising,

tained in the Rhetoric of Aristotle, to Mr Cope's supplementing, and completing—he has done
edition he must go."

—

Acmdtmjf. exceedingly well."

—

Examiner.

PINDAR. OLYMPIAN AND PYTHIAN ODES. With
Notes Explanatory and Critical, Introductions and Introductory

Essays. Edited by C. A. M. Fennell, Litt. D., late Fellow of

Jesus College. Crown 8vo. ox
" Mr Fennell deserves the thanks of all c!as- In comparative philology."

—

Athenceum.
sical students for his careful and scholarly edi- "Considered simply as a contribution to the

tion of the Olympian and Pythian odes. He study and criticism of Pindar, Mr Fennell's

brings to his task the necessary enthusiasm for edition is a work of great merit."

—

Saturday
his author, great industry, a sound judgment, Review.
and, in particular, copious and minute learning

THE ISTHMIAN AND NEMEAN ODES. By the same
Editor. Crown 8vo. gs.

"... As a handy and instructive edition of valuable help to the study of the most difficult

a difficult classic no work of recent years sur- of Greek authors, and is enriched with notes
passes Mr Fennell's 'Pindar.'"

—

Athenceum. on points of scholarship and etymology which
"This work is in no way inferior to could only have been written by a scholar of

the previous volume. The commentary affords very high attainments."

—

Saturday Review.

PRIVATE ORATIONS OF DEMOSTHENES, with In-
troductions and English Notes, by F. A. Paley, M.A. Editor of
Aeschylus, etc. and J. E. Sandys, Litt.D. Fellow and Tutor of St
John's College, and Public Orator in the University of Cambridge.

PART I. Contra Phormionem, Lacritum, Pantaenetum, Boeotum
de Nomine, Boeotum de Dote, Dionysodorum. New Edition.
Crown 8vo. 6s.

"Mr Paley's scholarship is sound and literature which bears upon his author, and
accurate, his experience of editing wide, and the elucidation of matters of daily life, in the
if he is content to devote his learning and delineation of which Demosthenes is so rich,

abilities to the production of such manuals obtains full justice at his hands. . . . We
as these, they will be received with gratitude hope this edition may lead the way to a more
throughout the higher schools of the country. general study of these speeches in schools
Mr Sandys is deeply read in the German than has hitherto been possible."—Academy.

Part II. Pro Phormione, Contra Stephanum I. II.; Nicostra-
tum, Cononem, Calliclem. New Edition. Crown 8vo. js. 6d.

" It is long since we have come upon a work mosthenes '."

—

Saturday Review.
evincing more pains, scholarship, and varied " the edition reflects credit on
research and illustration than Mr Sandys's Cambridge scholarship, and ought to be ex-
contribution to the 'Private Orations of De- tensively used."

—

Athcncrum.

DEMOSTHENES AGAINST ANDROTION AND
AGAINST TIMOCRATES, with Introductions and English Com-
mentary, by William Wayte, M.A., late Professor of Greek, Uni-
versity College, London. Crown 8vo. js. 6d.

"These speeches are highly interesting, as prehended subject matter .... Besides a most
illustrating Attic Law, as that law was in- lucid and interesting introduction, Mr Wayte
fluenced by the exigences of politics ... As has given the student effective help in his
vigorous examples of the great orator's style, running commentary. We may note, as being
they are worthy of all admiration; and they so well managed as to form a very valuable
have the advantage—not inconsiderable when part of the exegesis, the summaries given with
the actual attainments of the average school- every two or three sections throughout the
boy are considered—of having an easily com- speech."

—

Spectator.

PLATO'S PHiEDO, literally translated, by the late E. M.
Cope, Fellow of Trinity College, Cambridge, revised by Henry
Jackson, Litt.D., Fellow of Trinity College. Demy 8vo. 5-r.

London : C. J, Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE BACCHAE OF EURIPIDES. With Introduction,
Critical Notes, and Archaeological Illustrations, by J. E. Sandys,
Litt.D. New and Enlarged Edition. Crown 8vo. \2s. 6d.

" Of the present edition of the Bacclue by Mr able advance in freedom and lightness of style.

Sandys we may safely say that never before has . . . Under such circumstances it is superfluous
a Greek play, in England at least, had fuller to say that for the purposes of teachers and ad-
justice done to its criticism, interpretation, vanced students this handsome edition far sur-
and archaeological illustration, whether for the passes all its predecessors."

—

Athenceum.
young student or the more advanced scholar. "It has not, like so many such books, been
The Cambridge Public Orator may be said to hastily produced to meet the momentary need
have taken the lead in issuing a complete edi- of some particular examination ; but it has em-
tion of a Greek play, which is destined perhaps ployed for some years the labour and thought
to gain redoubled favour now that the study of of a highly finished scholar, whose aim seems
ancient monuments has been applied to its il- to have been that his book should go forth totus
lustration."

—

Saturday Review. teres atque rotundus, armed at all points with
" The volume is interspersed with well- all that may throw light upon its subject. The

executed woodcuts, and its general attractive- result is a work which will not only assist the
ness of form reflects great credit on the Uni- schoolboy or undergraduate in his tasks, but
versity Press. In the notes Mr Sandys has more will adorn the library of the scholar."

—

The
than sustained his well-earned reputation as a Guardian.
careful and learned editor, and shows consider-

THE TYPES OF GREEK COINS. By Percy Gardner,
Litt. D., F.S.A., Disney Professor of Archaeology. With 16 Autotype
plates, containing photographs of Coins of all parts of the Greek World.
Impl. 4to. Cloth extra, £l. i is. 6d.; Roxburgh (Morocco back), £2. 2s.

" Professor Gardner's book is written with is less purely and dryly scientific. Neverthe-
such lucidity and in a manner so straightfor- less, it takes high rank as proceeding upon a
ward that it may well win converts, and it may truly scientific basis at the same time that it

be distinctly recommended to that omnivorous treats the subject of numismatics in an attrac-
class of readers—'men in the schools'."

—

Sa- tive style and is elegant enough to justify its ap-
turday Review. pearance in the drawing-room. "

—

A thenceum.
' '

' The Types ofGreek Coins ' is a work which

A SELECTION OF GREEK INSCRIPTIONS, with
Introductions and Annotations by E. S. ROBERTS, M.A., Fellow
and Tutor of Gonville and Caius College. \Nearly ready.

ESSAYS ON THE ART OF PHEIDIAS. By C. Wald-
stein, M.A., Phil. D., Reader in Classical Archaeology in the
University of Cambridge. Royal 8vo. With numerous Illustrations.

16 Plates. Buckram, 30s-.

" I acknowledge expressly the warm enthu- very valuable contribution towards a more
siasm for ideal art which pervades the whole thorough knowledge of the style of Pheidias."

—

volume, and the sharp eye Dr Waldstein has The Academy.
proved himself to possess in his special line of " 'Essays on the Art of Pheidias' form an
study, namely, stylistic analysis, which has led extremely valuable and important piece of
him to several happy and important discoveries. work. . . . Taking it for the illustrations alone,

His book will be universally welcomed as a it is an exceedingly fascinating book."

—

Times.

M. TULLI CICERONIS AD. M. BRUTUM ORATOR.
A revised text edited with Introductory Essays and with critical

and explanatory notes, by J. E. Sandys, Litt.D. Demy 8vo. 16s.

M. TULLI CICERONIS DE FINIBUS BONORUM
ET MALORUM LIBRI QUINQUE. The text revised and
explained ; With a Translation by JAMES S. Reid, Litt. D., Fellow
and Tutor of Gonville and Caius College. 3 Vols. \In the Press.

VOL. III. Containing the Translation. Demy 8vo. Ss.

M. T. CICERONIS DE OFFICIIS LIBRI TRES, with
Marginal Analysis, an English Commentary, and copious Indices,

by H. A. Holden, LL.D., Examiner in Greek to the University

of London. Sixth Edition, Revised and Enlarged. Crown 8vo. gs.

"Few editions of a classic have found so position of the work secure."— American
much favour as Dr Holden's De Officii*, and Journal ofPhilology.
the present revision (sixth edition) makes the

M. TVLLI CICERONIS PRO C RABIRIO [PERDVEL-
LIONIS REO] ORATIO AD QVIRITES With Notes Introduc-

tion and Appendices by W. E. Heitland, M.A., Fellow and Tutor of

St John's College, Cambridge. Demy 8vo. js. 6d.

London : C. y. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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M. TULLII CICERONIS DE NATURA DEORUM
Libri Tres, with Introduction and Commentary by Joseph B.
Mayor, M.A., together with a new collation of several of the
English MSS. by J. H. Swainson, M.A.

Vol.I. Demy 8vo. \os. 6d. Vol.11. 12s. 6d. Vol. III. 10s.
"Such editions as that of which Prof. Mayor jetzt, nachdem der grosste Theil erschienen

has given us the first instalment will doubtless ist, sagen, dass niemand, welcher sich sachlich

do much to remedy this undeserved neglect. It oder kritisch mit der Schrift De Nat. Deor.
is one on which great pains and much learning beschaftigt, die neue Ausgabe wird ignoriren

have evidently been expended, and is in every diirfen."—P. Schwencke in JB. f. cl. Alt.
way admirably suited to meet the needs of the vol. 35, p. 90 foil.

student . . . The notes of the editor are all that "Nell' edizione sua e piu compiuto, che in

could be expected from his well-known learn- qualunque altra edizione anteriore, e in parte

ingand scholarship."

—

Academy. nuove, non meno 1' apparato critico dal testo

"Der vorliegende zweite Band enthalt che 1' esame ed il commento del contenuto del

N. D. II. und zeigt ebenso wie der erste einen libro."—R. Bonghi in Nuova Antologia, Oct.
erheblichen Fortschritt gegen die bisher vor- 1881, pp. 717—731.
handenen commentirten Ausgaben. Man darf

P. VERGILI MARONIS OPERA cum Prolegomenis
et Commentario Critico edidit B. H. Kennedy, S.T.P., Graecae
Linguae Prof. Regius. Extra Fcap. 8vo. $s.

See also Pitt Press Series, pp. 24—27.

MATHEMATICS, PHYSICAL SCIENCE, &c.

MATHEMATICAL AND PHYSICAL PAPERS. By
Sir W. Thomson, LL.D., D.C.L., F.R.S., Professor of Natural Phi-

losophy in the University of Glasgow. Collected from different

Scientific Periodicals from May 1841, to the present time. Vol. I.

Demy 8vo. iZs. Vol. II. i$s. [Volume III. In the Press.
"Wherever exact science has found a fol- age of 17, before the author had commenced

lower Sir William Thomson's name is known as residence as an undergraduate in Cambridge."
a leader and a master. For a space of 40 years — The Times.

each of his successive contributions to know- "We are convinced that nothing has had a
ledge in the domain of experimental and mathe- greater effect on the progress of the theories ot

matical physics has been recognized as marking electricity and magnetism during the last ten

a stage in the progress of the subject. But, un- years than the publication of Sir W. Thomson's
happily for the mere learner, he is no writer of reprint of papers on electrostatics and magnet-
text-books. His eager fertility overflows into ism, and we believe that the present volume is

the nearest available journal . . . The papers in destined in no less degree to further the ad-
this volume deal largely with the subject of the vancement of physical science."

—

Glasgow
dynamics of heat. They begin with two or Herald.
three articles which were in part written at the

MATHEMATICAL AND PHYSICAL PAPERS, by
George Gabriel Stokes, M.A., D.C.L., LL.D., F.R.S., Fellow of
Pembroke College, and Lucasian Professor of Mathematics in the
University of Cambridge. Reprinted from the Original Journals and
Transactions, with Additional Notes by the Author. Vol. I. Demy
8vo. i$s. Vol. II. i$s. [Volume III. In the Press.

" ...The same spirit pervades the papers on which well befits the subtle nature of the sub-
pure mathematics which are included in the jects, and inspires the completest confidence in
volume. They have a severe accuracy of style their author."— TJie Times.

A HISTORY OF THE THEORY OF ELASTICITY
AND OF THE STRENGTH OF MATERIALS, from Galilei to

the present time. Vol. I. Galilei to Saint-Venant, 1639- 1850.
By the late I. Todhunter, D. Sc, F.R.S., edited and completed
by Professor Karl Pearson, M.A. Demy 8vo. 25^.

A TREATISE ON GEOMETRICAL OPTICS. By
R. S. Heath, M.A., Professor of Mathematics in Mason Science
College, Birmingham. Demy 8vo. [Nearly ready.

THE SCIENTIFIC PAPERS OF THE LATE PROF.
J. CLERK MAXWELL. Edited by W. D. Niven, M.A. In 2 vols.

Royal 4to. [Nearly ready.

London : C. J. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.



THE CAMBRIDGE UNIVERSITY PRESS. 13

A TREATISE ON NATURAL PHILOSOPHY. By
Sir W. Thomson, LL.D., D.C.L., F.R.S., and P. G. Tait, M.A.,
Professor of Natural Philosophy in the University of Edinburgh.
Parti. Demy 8vo. ids. Part II. Demy 8vo. i8j.

ELEMENTS OF NATURAL PHILOSOPHY. By Pro-
fessors Sir W. Thomson and P. G. Tait. Demy 8vo. Second
Edition. gs.

AN ATTEMPT TO TEST THE THEORIES OF
CAPILLARY ACTION by Francis Bashforth, B.D., and

J. C. Adams, M.A., F.R.S. Demy 4to. ,£1. is.

A TREATISE ON THE THEORY OF DETERMI-
nants and their applications in Analysis and Geometry, by R. F.

Scott, M.A., Fellow of St John's College. Demy 8vo. 12s.

HYDRODYNAMICS, a Treatise on the Mathematical
Theory of the Motion of Fluids, by Horace Lamb, M.A., formerly
Fellow of Trinity College, Cambridge. Demy 8vo. 12s.

THE ANALYTICAL THEORY OF HEAT, by Joseph
Fourier. Translated, with Notes, by A. Freeman, M.A., Fellow
of St John's College, Cambridge. Demy 8vo. i6j-.

PRACTICAL WORK AT THE CAVENDISH LABORA-
TORY. HEAT. Edited by W. N. Shaw, M.A., Fellow and Lecturer of

Emmanuel College. Demy 8vo. y.

THE ELECTRICAL RESEARCHES OF THE Hon. H.
Cavendish, F.R.S. Written between 177 1 and 1781. Edited from
the original MSS. in the possession of the Duke of Devonshire, K. G.,

by the late J. Clerk Maxwell, F.R.S. Demy 8vo. 18s.
" Every department of editorial duty ap- faction to Prof. Maxwell to see this goodly

pears to have been most conscientiously per- volume completed before his life's work was
formed ; and it must have been no small satis- done."

—

Athenceum.

An ELEMENTARY TREATISE on QUATERNIONS.
By P. G. Tait, M.A. Second Edition. Demy 8vo. 14^.

THE MATHEMATICAL WORKS OF ISAAC BAR-
ROW, D.D. Edited by W. Whewell, D.D. Demy 8vo. 7s. 6d.

COUNTERPOINT. A Practical Course of Study, by Pro-
fessor Sir G. A. Macfarren, M.A., Mus. Doc. New Edition,

revised. Crown 4to. 7s. 6d.

A TREATISE ON THE GENERAL PRINCIPLES OF
CHEMISTRY, by M. M. Pattison Muir, M.A., Fellow and Prse-

lector in Chemistry of Gonville and Caius College. Demy 8vo. 15^.
"The value of the book as a digest of the more comprehensive scheme, has produced a

historical developments of chemical thought systematic treatise on the principles of chemical

is immense."

—

Academy. philosophy which stands far in advance of any
" Theoretical Chemistry has moved so rapidly kindred work in our language. It is a treatise

of late years that most of our ordinary text that requires for its due comprehension a fair

books have been left far behind. German acquaintance with physical science, and it can
students, to be sure, possess an excellent guide hardly be placed with advantage in the hands
to the present state of the science in ' Die of any one who does not possess an extended
Modernen Theorien der Chemie' of Prof. knowledge of descriptive chemistry. But the

Lothar Meyer ; but in this country the student advanced student whose mind is well equipped
has had to content himself with such works as with an array of chemical and physical facts

Dr Tilden's ' Introduction to Chemical Philo- can turn to Mr Muir's masterly volume for

sophy', an admirable book in its way, but rather unfailing help in acquiring a knowledge of the
slender. Mr Pattison Muir having aimed at a principles of modern chemistry."

—

Athenceum.

ELEMENTARY CHEMISTRY. I. PRINCIPLES. By
M. M. Pattison Muir, M.A., and Charles Slater, M.A., M.B.
II. COURSE OF LABORATORY WORK. By M. M. Pattison
Muir, M.A., and D. J. Carnegie, B.A. [In the Press.

NOTES ON QUALITATIVE ANALYSIS. Concise and
Explanatory. By H. J. H. Fenton, M.A., F.I.C., Demonstrator of

Chemistry in the University of Cambridge. Cr. 4to. New Edition. 6s.

London : C. J. Cla y &> Sons, Cambridge University Pi-ess Warehouse,
Ave Maria Lane.
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LECTURES ON THE PHYSIOLOGY OF PLANTS,
by S. H. Vines, D.Sc., Fellow of Christ's College. Demy 8vo.

With Illustrations, lis.

"To say that Dr Vines' book is a most science that the works in most general use in

valuable addition to our own botanical litera- this country for higher botanical teaching have
ture is but a narrow meed of praise : it is a been of foreign origin This is not as it should
work which svill take its place as cosmopolitan : be; and we welcome Dr Vines' Lectures on
no more clear or concise discussion of the diffi- the Physiology of Plants as an important step

cult chemistry of metabolism has appeared

—

towards the removal of this reproach—The
In erudition it stands alone among English work forms an important contribution to the

books, and will compare favourably with any literature of the subject. ...It will be eagerly

foreign competitors."

—

Nature. welcomed by all students, and must be in the

"It has long been a reproach to English hands of all teachers."

—

Academy.

A SHORT HISTORY OF GREEK MATHEMATICS.
By J. Gow, Litt.D., Fellow of Trinity College. Demy 8vo. 10s. 6d.

DIOPHANTOS OF ALEXANDRIA; a Study in the
History of Greek Algebra. By T. L. Heath, M.A., Fellow of

Trinity College, Cambridge. Demy 8vo. js. 6d.
" This study in the history of Greek Algebra classification of Diophantus's methods of solu-

is an exceedingly valuable contribution to the tion taken in conjunction with the invaluable

history of mathematics."

—

Academy. abstract, presents the English reader with a
"The most thorough account extant of capital picture of what Greek algebraists had

Diophantus's place, work, and critics. . . . [The really accomplished.]"

—

Atlienceum.

THE FOSSILS AND PAL^EONTOLOGICAL AFFIN-
ITIES OF THE NEOCOMIAN DEPOSITS OF UPWARE
AND BRICKHILL with Plates, being the Sedgwick Prize Essay
for the Year 1879. By W. Keeping, M.A., F.G.S. Demy 8vo. ioj-. 6d.

A CATALOGUE OF BOOKS AND PAPERS ON PRO-
TOZOA, CCELENTERATES, WORMS, and certain smaller groups
of animals, published during the years 1861—1883, by D'Arcy W.
Thompson, B.A. Demy 8vo. 12s. 6d.

ASTRONOMICAL OBSERVATIONS made at the Obser-
vatory of Cambridge by the late Rev. James Challis, M.A., F.R.S.,
F.R.A.S. For various Years, from 1846 to i860.

ASTRONOMICAL OBSERVATIONS from 1861 to 1865.
Vol. XXI. Royal 4to. 15J. From 1866 to 1869. Vol. XXII.
Royal 4to. {Nearly ready.

A CATALOGUE OF THE COLLECTION OF BIRDS
formed by the late H. E. Strickland, now in the possession of the
University of Cambridge. By O. Salvin, M.A. Demy8vo. £1. ix.

A CATALOGUE OF AUSTRALIAN FOSSILS, Strati-
graphically and Zoologically arranged, by R. Etheridge, Jun.,
F.G.S. Demy 8vo. \os. 6d.

ILLUSTRATIONS OF COMPARATIVE ANATOMY,
VERTEBRATE AND INVERTEBRATE, for the Use of Stu-
dents in the Museum of Zoology and Comparative Anatomy. Second
Edition. Demy 8vo. is. 6d.

A SYNOPSIS OF THE CLASSIFICATION OF THE
BRITISH PALAEOZOIC ROCKS, by the Rev. Adam Sedgwick,
M.A., F.R.S., and Frederick McCoy, F.G.S. One vol., Royal 4to.

Plates, £1. is.

A CATALOGUE OF THE COLLECTION OF CAM-
BRIAN AND SILURIAN FOSSILS contained in the Geological
Museum of the University of Cambridge, by J. W. Salter, F.G.S.
With a Portrait of Professor Sedgwick. Royal 4to. ys. 6d.

CATALOGUE OF OSTEOLOGICAL SPECIMENS con-
tained in the Anatomical Museum of the University of Cambridge.
Demy 8vo. is. 6d.

London : C. J. Cla y &-» Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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LAW.
A SELECTION OF CASES ON THE ENGLISH LAW

OF CONTRACT. By Gerard Brown Fjnch, M.A., of Lincoln's
Inn, Barrister at Law ; Law Lecturer and late Fellow of Queens
College, Cambridge. Royal 8vo. iZs.

"An invaluable guide towards the best method of legal study."—Law Quarterly
Review.

THE INFLUENCE OF THE ROMAN LAW ON
THE LAW OF ENGLAND. Being the Yorke Prize Essay for

1884. By T. E. SCRUTTON, M.A. Demy 8vo. \os. 6d.
"Legal work of just the kind that a learned University should promote by its prizes."

—

Law Quarterly Review.

LAND IN FETTERS. Being the Yorke Prize Essay for

1885. By T. E. SCRUTTON, M.A. Demy 8vo. 7s. 6d.

AN ANALYSIS OF CRIMINAL LIABILITY. By E. C.
Clark, LL.D., Regius Professor of Civil Law in the University of Cam-
bridge, also of Lincoln's Inn, Barrister-at-Law. Crown 8vo. js. 6d.

"Prof. Clark's little book is the substance Students of jurisprudence will find much to
of lectures delivered by him upon those por- interest and instruct them in the work of Prof,
tions of Austin's work on jurisprudence which Clark."

—

Athenceum.
deal with the "operation of sanctions" . . .

PRACTICAL JURISPRUDENCE, a Comment on AUSTIN.
By E. C. Clark, LL.D. Regius Professor of Civil Law. Crown
8vo. gs.

"Damit schliesst dieses inhaltreiche und tical Jurisprudence."—Konig. Centralblatt/ur
nach alien Seiten anregende Buch iiber Prac- Rechtswissenschaft.

A SELECTION OF THE STATE TRIALS. By J. W.
Willis-Bund, M.A., LL.B., Barrister-at-Law, Professor of Con-
stitutional Law and History, University College, London. Crown
8vo. Vols. I. and II. In 3 parts. Now reduced to 30s. {originally

Published at 46^.)
"This work is a very useful contribution to not without considerable value to those who

that important branch of the constitutional his- seek information with regard to procedure and
tory of England which is concerned with the the growth of the law of evidence. We should
growth and development of the law of treason, add that Mr Willis-Bund has given short pre-
as it may be gathered from trials before the faces and appendices to the trials, so as to form
ordinary courts. The author has very wisely a connected narrative of the events in history
distinguished these cases from those of im- to which they relate. We can thoroughly re-

peachment for treason before Parliament, which commend the book."

—

Law Times.
he proposes to treat in a future volume under '" To a large class of readers Mr Willis-

the general head 'Proceedings in Parliament.'" Bund's compilation will thus be of great as-
— The Academy. sistance, for he presents in a convenient form a

" This is a work of such obvious utility that judicious selection of the principal statutes and
the only wonder is that no one should have un- the leading cases bearing on the crime of trea-

dertaken it before ... In many respects there- son . . . For all classes of readers these volumes
fore, although the trials are more or less possess an indirect interest, arising from the
abridged, this is for the ordinary student's pur- nature of the cases themselves, from the men
pose not only a more handy, but a more useful who were actors in them, and from the numerous
work than Howell's."

—

Saturday Review. points of social life which are incidentally illus-
" But, although the book is most interesting trated in the course of the trials."

—

Athenceum.
to the historian of constitutional law, it is also

THE FRAGMENTS OF THE PERPETUAL EDICT
OF SALVIUS JULIANUS, collected, arranged, and annotated by
Bryan Walker, M.A., LL.D., Law Lecturer of St John's College, and
late Fellow of Corpus Christi College, Cambridge. Crown 8vo. 6s.

" In the present book we have the fruits of such a student will be interested as well as per-
the same kind of thorough and well-ordered haps surprised to find how abundantly the ex-
study which was brought to bear upon the notes tant fragments illustrate and clear up points

to the Commentaries and the Institutes . . . which have attracted his attention in the Com-
Hitherto the Edict has been almost inac- mentaries, or the Institutes, or the Digest."

—

cessible to the ordinary English student, and Law Titties.

London : C. J. Cla y &* Sons, Cambridge University Press Warehouse,
Ave Maria La?ie.
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AN INTRODUCTION TO THE STUDY OF JUS-
TINIAN'S DIGEST. Containing an account of its composition
and of the Jurists used or referred to therein. By Henry John
Roby, M.A., formerly Prof, of Jurisprudence, University College,
London. Demy 8vo. gs.

JUSTINIAN'S DIGEST. Lib. VII., Tit. I. De Usufructu
with a Legal and Philological Commentary. By H. J. Roby, M.A.
Demy 8vo. gs.

Or the Two Parts complete in One Volume. Demy 8vo. 18s.

"Not an obscurity, philological, historical, tamed and developed. Roman law, almost
or legal, has been left unsifted. More inform- more than Roman legions, was the backbone
ing aid still has been supplied to the student of of the Roman commonwealth. Mr Roby, by
the Digest at large by a preliminary account, his careful sketch of the sages of Roman law,
covering nearly 300 pages, of the mode of from Sextus Papirius, under Tarquin the
composition of the Digest, and of the jurists Proud, to the Byzantine Bar, has contributed to
whose decisions and arguments constitute its render the tenacity and durability of the most
substance. Nowhere else can a clearer view enduring polity the world has ever experienced
be obtained of the personal succession by which somewhat more intelligible."

—

The Times.
the tradition of Roman legal science was sus-

THE COMMENTARIES OF GAIUS AND RULES OF
ULPIAN. With a Translation and Notes, by J. T. Abdy, LL.D.,
Judge of County Courts, late Regius Professor of Laws in the
University of Cambridge, and Bryan Walker, M.A., LL.D., Law
Lecturer of St John's College, Cambridge, formerly Law Student of
Trinity Hall and Chancellor's Medallist for Legal Studies. New
Edition by Bryan Walker. Crown 8vo. 16s.

"As scholars and as editors Messrs Abdy way of reference or necessary explanation,
and Walker have done their work well . . . For Thus the Roman jurist is allowed to speak for
one thing the editors deserve special commen- himself, and the reader feels that he is really
dation. They have presented Gaius to the studying Roman law in the original, and not a
reader with few notes and those merely by fanciful representation of it."

—

Atheneeum.

THE INSTITUTES OF JUSTINIAN, translated with
Notes by J. T. Abdy, LL.D., and Bryan Walker, M.A., LL.D.
Crown 8vo. i6.r.

"We welcome here a valuable contribution the ordinary student, whose attention is dis-
to the study ofjurisprudence. The text of the tracted from the subject-matter by the dif-
Institiites is occasionally perplexing, even to ficulty of struggling through the language in
practised scholars, whose knowledge of clas- which it is contained, it will be almost indis-
sical models does not always avail them in pensable."

—

Spectator.
dealing with the technicalities of legal phrase- "The notes are learned and carefully com-
ology. Nor can the ordinary dictionaries be piled, and this edition will be found useful to
expected to furnish all the help that is wanted. students."

—

Law Times.
This translation will then be of great use. To

SELECTED TITLES FROM THE DIGEST, annotated
by B. Walker, M.A., LL.D. Part I. Mandati vel Contra. Digest
XVII. 1. Crown 8vo. $s -

"This small volume is published as an ex- Mr Walker deserves credit for the way in which
periment. The author proposes to publish an he has performed the task undertaken. The
annotated edition and translation of several translation, as might be expected, is scholarly."
books of the Digest if this one is received with —Law Times.
favour. We are pleased to be able to say that

Part II. De Adquirendo rerum dominio and De Adquirenda vel
amittenda possessione. Digest XLI. 1 and 1 1. Crown 8vo. 6s.

Part III. De Condictionibus. Digest XII. 1 and 4—7 and Digest
XIII. 1—3. Crown 8vo. 6s.

GROTIUS DE JURE BELLI ET PACIS, with the Notes
of Barbeyrac and others ; accompanied by an abridged Translation
of the Text, by W. Whewell, D.D. late Master of Trinity College.
3 Vols. Demy 8vo. 12s. The translation separate, 6s.

London : C. J. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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HISTORY.
LIFE AND TIMES OF STEIN, OR GERMANY AND

PRUSSIA IN THE NAPOLEONIC AGE, by J. R. Seeley,
M.A., Regius Professor of Modern History in the University of

Cambridge, with Portraits and Maps. 3 Vols. Demy 8vo. 30J.

" Dr Busch's volume has made people think are apt to shi ink."— Times.
and talk even more than usual of Prince Bis- " In a notice of this kind scant justice can
marck, and Professor Seeley's very learned work be done to a work like the one before us; no
on Stein will turn attention to an earlier and an short resume" can give even the most meagre
almost equally eminent German statesman. It notion of the contents of these volumes, which
has been the good fortune of Prince Bismarck contain no page that is superfluous, and none
to help to raise Prussia to a position which she that is uninteresting .... To understand the

had never before attained, and to complete the Germany of to-day one must study the Ger-
work of German unification. The frustrated many of many yesterdays, and now that study
labours of Stein in the same field were also has been made easy by this work, to which no
very great, and well worthy to be taken into one can hesitate to assign a very high place

account. He was one, perhaps the chief, of among those recent histories which have aimed
the illustrious group of strangers who came to at original research."

—

Atheneeum.
the rescue of Prussia in her darkest hour, about "We congratulate Cambridge and her Pro-
the time of the inglorious Peace of Tilsit, and fessor of History on the appearance of such a
who laboured to put life and order into her noteworthy production. And we may add that

dispirited army, her impoverished finances, and it is something upon which we may congra-
her inefficient Civil Service. Stein strove, too, tulate England that on the especial field of the

—no man more,—for the cause of unification Germans, history, on the history of their own
when it seemed almost folly to hope for sue- country, by the use of their own literary

cess. Englishmen will feel very pardonable weapons, an Englishman has produced a his-

pride at seeing one of their countrymen under- tory of Germany in the Napoleonic age far

take to write the history of a period from the superior to any that exists in German."

—

Ex-
investigation of which even laborious Germans aminer.

THE DESPATCHES OF EARL GOWER, English Am-
bassador at the court of Versailles from June 1790 to August 1792,
to which are added the Despatches of Mr Lindsay and Mr Munro,
and the Diary of Lord Palmerston in France during July and
August 1791. Edited by Oscar Browning, M.A., Fellow of King's

College, Cambridge. Demy 8vo. 15^.

THE GROWTH OF ENGLISH INDUSTRY AND
COMMERCE. By W. Cunningham, B.D., late Deputy to the

Knightbridge Professor in the University of Cambridge. With
Maps and Charts. Crown 8vo. \2s.

" Mr Cunningham is not likely to disap- merce have grown. It is with the process of
point any readers except such as begin by mis- growth that he is concerned ; and this process
taking the character of his book. He does not he traces with the philosophical insight which
promise, and does not give, an account of the distinguishes between what is important and
dimensions to which English industry and com- what is trivial."

—

Guardian.

CHRONOLOGICAL TABLES OF GREEK HISTORY.
Accompanied by a short narrative of events, with references to the
sources of information and extracts from the ancient authorities, by
Carl Peter. Translated from the German by G. Chawner,
M.A., Fellow of King's College, Cambridge. Demy 4to. iar.

CHRONOLOGICAL TABLES OF ROMAN HISTORY.
By the same. [Preparing.

KINSHIP AND MARRIAGE IN EARLY ARABIA,
by W. Robertson Smith, M.A., LL.D., Fellow of Christ's College
and University Librarian. Crown 8vo. Js. 6d.

" It would be superfluous to praise a book ally throws light, not merely on the social

so learned and masterly as Professor Robertson history of Arabia, but on the earlier passages
Smith's ; it is enough to say that no student of of Old Testament history .... We must be
early history can afford to be without Kinship grateful to him for so valuable a contribution
in Early Arabia."—Nature. to the early history of social organisation."

—

"It is clearly and vividly written, full of Scotsman.
curious and picturesque material, and incident-

London : C. J. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.



PUBLICATIONS OF

TRAVELS IN NORTHERN ARABIA IN 1876 AND
1877. By Charles M. Doughty, of Gonville and Caius College.
With Illustrations. Demy 8vo. [In the Press.

HISTORY OF NEPAL, translated by MunshI Shew
Shunker Singh and Pandit ShrI Gunanand ; edited with an
Introductory Sketch of the Country and People by Dr D. WRIGHT,
late Residency Surgeon at Kathmandu, and with facsimiles of native
drawings, and portraits of Sir Jung Bahadur, the King of Nepal,
&c. Super-royal 8vo. \os. 6d.

" The Cambridge University Press have Introduction is based on personal inquiry and
done well in publishing this work. Such trans- observation, is written intelligently and can-
lations are valuable not only to the historian didly, and adds much to the value of the
but also to the ethnologist; . . . Dr Wright's volume"

—

Nature,

A JOURNEY of LITERARY and ARCHAEOLOGICAL
RESEARCH IN NEPAL AND NORTHERN INDIA, during
the Winter of 1884-5. B y Cecil Bendall, M.A., Fellow of Gonville
and Caius College, Cambridge ; Professor of Sanskrit in University
College, London. Demy 8vo. 10s.

THE UNIVERSITY OF CAMBRIDGE FROM THE
EARLIEST TIMES TO THE ROYAL INJUNCTIONS OF
1535, by J. B. Mullinger, M.A., Lecturer on History and Librarian
to St John's College. Part I. Demy 8vo. (734 pp.), 12s.

Part II. From the Royal Injunctions of 1535 to the Accession of

Charles the First. Demy 8vo. 18s.
"That Mr Mullinger's work should admit "Mr Mullinger has succeeded perfectly in

of being regarded as a continuous narrative, presenting the earnest and thoughtful student
in which character it has no predecessors with a thorough and trustworthy history."

—

worth mentioning, is one of the many advan- Guardian.
tages it possesses over unnalistic compilations, "The entire work is a model of accurate
even so valuable as Cooper's, as well as over and industrious scholarship. The same quali-

Athenae."—Prof. A. W. Ward in the Academy. ties that distinguished the earlier volume are
" Mr Mullinger's narrative omits nothing again visible, and the whole is still conspi-

which is required by the fullest interpretation cuous for minuteness and fidelity of workman-
of his subject. He shews in the statutes of ship and breadth and toleration of view."

—

the Colleges, the internal organization of the Notes and Queries.
University, its connection with national pro- " Mr Mullinger displays an admirable
blems, its studies, its social life, and the thoroughness in his work. Nothing could be
activity of its leading members. All this he more exhaustive and conscientious than his

combines in a form which is eminently read- method: and his style. ..is picturesque and
able."- Prof. Creighton in Cont. Review. elevated."

—

Times.

HISTORY OF THE COLLEGE OF ST JOHN THE
EVANGELIST, by Thomas Baker, B.D., Ejected Fellow. Edited
by John E. B. Mayor, M.A. Two Vols. Demy 8vo. 24s.

"To antiquaries the book will be a source "The work displays very wide reading, and
of almost inexhaustible amusement, by his- it will be of great use to members of the col-

torians it will be found a work of considerable lege and of the university, and, perhaps, of
service on questions respecting our social pro- still greater use to students of English his-

gress in past times: and the care and thorough- tory, ecclesiastical, political, social, literary

ness with which Mr Mayor has discharged his and academical, who have hitherto had to be
editorial functions are creditable to his learning content with 'Dyer.'"

—

Academy.
and industry."

—

Athenaeum.

SCHOLAE ACADEMICAE: some Account of the Studies
at the English Universities in the Eighteenth Century. By Chris-
topher Wordsworth, M.A., Fellow of Peterhouse. Demy 8vo.

lay. 6d.
"Mr Wordsworth has collected a great education and learning."

—

Saturday Review.
quantity of minute and curious information "Of the whole volume it may be said that
about the working of Cambridge institutions in it is a genuine service rendered to the study
the last century, with an occasional comparison of University history, and that the habits of
of the corresponding state of things at Oxford. thought of any writer educated at either seat of
... To a great extent it is purely a book of re- learning in the last century will, in many cases,

ference, and as such it will be of permanent be far better understood after a consideration
value for the historical knowledge of English of the materials here collected."

—

Academy.

London : C. J. Cla y 6-» Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE ARCHITECTURAL HISTORY OF THE UNI-
VERSITY OF CAMBRIDGE AND OF THE COLLEGES OF
CAMBRIDGE AND ETON, by the late Robert Willis, M.A.
F.R.S., Jacksonian Professor in the University of Cambridge. Edited
with large Additions and brought up to the present time by John
Willis Clark, M.A., formerly Fellow of Trinity College, Cam-
bridge. Four Vols. Super Royal 8vo. £6. 6s.

Also a limited Edition of the same, consisting of 120 numbered
Copies only, large paper Quarto ; the woodcuts and steel engravings
mounted on India paper

;
price Twenty-five Guineas net each set.

MISCELLANEOUS.
A CATALOGUE OF ANCIENT MARBLES IN GREAT

BRITAIN, by Prof. Adolf Michaelis. Translated by C. A. M.
Fennell, Litt. D., late Fellow of Jesus College. Royal 8vo. Rox-
burgh (Morocco back), £2. 2s.

"The object of the present work of Mich- remarkable. The book is beautifully executed,
aelis is to describe and make known the vast and with its few handsome plates, and excel-

treasures of ancient sculpture now accumulated lent indexes, does much credit to the Cam-
in the galleries of Great Britain, the extent and bridge Press. It has not been printed in

value of which are scarcely appreciated, and German, but appears for the first time in the

chiefly so because there has hitherto been little English translation. All lovers of true art and
accessible information about them. To the of good work should be grateful to the Syndics
loving labours of a learned German the owners of the University Press for the liberal facilities

of art treasures in England are for the second afforded by them towards the production of
time indebted for a full description of their rich this important volume by Professor Michaelis."
possessions. Waagen gave to the private col- —Saturday Review.
lections of pictures the advantage of his in- " Professor Michaelis has achieved so high
spection and cultivated acquaintance with art, a fame as an authority in classical archaeology
and now Michaelis performs the same office that it seems unnecessary to say how good
for the still less known private hoards of an- a book this is."— The Antiquary.
tique sculptures for which our country is so

RHODES IN ANCIENT TIMES. By Cecil Torr, M.A.
With six plates. Demy 8vo. 10s. 6d.

RHODES IN MODERN TIMES. By the same Author.
[Nearly ready.

CHAPTERS ON ENGLISH METRE. By Rev. Joseph
B. Mayor, M.A. Demy 8vo. js. 6d.

THE WOODCUTTERS OF THE NETHERLANDS
during the last quarter of the Fifteenth Century. In three parts.

I. History of the Woodcutters. II. Catalogue of their Woodcuts.
III. List of the Books containing Woodcuts. By William Martin
Conway. Demy 8vo. ioj. 6d.

A GRAMMAR OF THE IRISH LANGUAGE. By Prof.

Windisch. Translated by Dr Norman Moore. Crown 8vo. 7s. 6d.

LECTURES ON TEACHING, delivered in the University
of Cambridge in the Lent Term, 1880. By J. G. Fitch, M.A., LL.D.
Her Majesty's Inspector of Training Colleges. Cr. 8vo. New Edit. 5^.

"As principal of a training college and as a "Therefore, without reviewing the book for

Government inspector of schools, Mr Fitch has the second time, we are glad to avail ourselves
got at his fingers' ends the working of primary of the opportunity of calling attention to the
education, while as assistant commissioner to re-issue of the volume in the five-shilling form,
the late Endowed Schools Commission he has bringing it within the reach of the rank and
seen something of the machinery of our higher file of the profession. We cannot let the oc-
schools . . . Mr Fitch's book covers so wide a casion pass without making special reference to
field and touches on so manv burning questions the excellent section on 'punishments' in the
that we must be content to recommend it as lecture on 'Discipline.'"

—

SchoolBoard Citron-
the best existing vade mecum for the teacher." icle.

—Pall Mall Gazette.

For other books on Education, see Pitt Press Series, pp. 30, 31.

London ; C. J. Cla V &* Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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FROM SHAKESPEARE TO POPE: an Inquiry into

the causes and phenomena of the rise of Classical Poetry in England.
By Edmund Gosse, M.A., Clark Lecturer in English Literature at

Trinity College, Cambridge. Crown 8vo. 6s.

THE LITERATURE OF THE FRENCH RENAIS-
SANCE. An Introductory Essay. By A. A. Tilley, M.A., Fellow
and Tutor of King's College, Cambridge. Crown 8vo. 6s.

STUDIES IN THE LITERARY RELATIONS OF
ENGLAND WITH GERMANY IN THE SIXTEENTH
CENTURY. By C. H. Herford, M.A. Crown 8vo. 9*.

CATALOGUE OF THE HEBREW MANUSCRIPTS
preserved in the University Library, Cambridge. By Dr S. M.
Schiller-Szinessy. Volume I. containing Section I. The Holy
Scriptures; Section II. Commentaries on the Bible. Demy 8vo. gs.

Volume II. In the Press.

A CATALOGUE OF THE MANUSCRIPTS preserved
in the Library of the University of Cambridge. Demy 8vo. 5 Vols.

ioj. each. INDEX TO THE CATALOGUE. Demy 8vo. 10s.

A CATALOGUE OF ADVERSARIA and printed books
containing MS. notes, preserved in the Library of the University of

Cambridge. 3^. 6d.

THE ILLUMINATED MANUSCRIPTS IN THE LI-
BRARY OF THE FITZWILLIAM MUSEUM, Catalogued with
Descriptions, and an Introduction, by W. G. Searle, M.A., late

Fellow of Queens' College, Cambridge Demy 8vo. ys. 6d

A CHRONOLOGICAL LIST OF THE GRACES,
Documents, and other Papers in the University Registry which
concern the University Library. Demy 8vo. is. 6d.

CATALOGUS BIBLIOTHEOE BURCKHARDTIAN^.
Demy 4to. $s.

GRADUATI CANTABRIGIENSES : SIVE CATA-
LOGUS exhibens nomina eorum quos ab Anno Academico Admis-
sionum MDCCC usque ad octavum diem Octobris MDCCCLXXXIV
gradu quocunque ornavit Academia Cantabrigiensis, e libris sub-
scriptionum desumptus. Cura Henrici Richards Luard S. T. P.

Coll. SS. Trin. Socii atque Academiae Registrarii. Demy 8vo. \2s. 6d.

STATUTES OF THE UNIVERSITY OF CAMBRIDGE
and for the Colleges therein, made published and approved (1878

—

1882) under the Universities of Oxford and Cambridge Act, 1877.
With an Appendix. Demy 8vo. \6s.

STATUTES OF THE UNIVERSITY OF CAMBRIDGE.
With some Acts of Parliament relating to the University. Demy
8vo. 3s. 6d.

ORDINANCES OF THE UNIVERSITY OF CAM-
BRIDGE. Demy 8vo., cloth. 7s. 6d.

TRUSTS, STATUTES AND DIRECTIONS affecting

(1) The Professorships of the University. (2) The Scholarships
and Prizes. (3) Other Gifts and Endowments. Demy 8vo. 5s.

COMPENDIUM OF UNIVERSITY REGULATIONS,
for the use of persons in Statu Pupillari. Demy 8vo. 6d.

London : C. J. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.



THE CAMBRIDGE UNIVERSITY PRESS. 21

Cfje Camlmtnje Bftle for

i^chools anU Colleges,

General Editor : The Very Reverend J. J. S. Perowne, D.D.,

Dean of Peterborough.

" It is difficult to commend too highly this excellent series, the volumes of which are now
becoming numerous."

—

Guardian.

"The modesty of the general title of this series has, we believe, led many to misunderstand
its character and underrate its value. The books are well suited for study in the upper forms of
our best schools, but not the less are they adapted to the wants of all Bible students who are not
specialists. We doubt, indeed, whether any of the numerous popular commentaries recently
issued in this country will be found more serviceable for general use."

—

Academy.

"One of the most popular and useful literary enterprises of the nineteenth century."

—

Baptist
Magazine.

" Of great value. The whole series of comments for schools is highly esteemed by students
capable of forming a judgment. The books are scholarly without being pretentious: information
is so given as to be easily understood."

—

Sword and Trowel.

The Very Reverend J. J. S. Perowne, D.D., Dean of Peterborough, has
undertaken the general editorial supervision of the work, assisted by a staff of
eminent coadjutors. Some of the books have been already edited or undertaken
by the following gentlemen :

Rev. A. CARR, M.A., late Assistant Master at Wellington College.

Rev. T. K. Cheyne, M.A., D.D., late Fellow ofBalliol College, Oxford.

Rev. S. Cox, Nottingham.

Rev. A. B. Davidson, D.D., Professor ofHebrew, Edinburgh.

The Ven. F. W. Farrar, D.D., Archdeacon of Westminster.

Rev. C. D. Ginsburg, LL.D.

Rev. A. E. Humphreys, M.A., late Fellow of Trinity College, Cambridge.

Rev. A. F. Kirkpatrick, M.A., Fellow of Trinity College, Regius Professor

ofHebrew.

Rev. J. J. Lias, M. A., late Professor at St David's College, Lampeter.

Rev. J. R. Lumby, D.D., Norrisian Professor ofDivinity.

Rev. G. F. Maclear, D.D., Warden ofSt Augustine's College, Canterbury.

Rev. H. C. G. Moule, M.A., late Fellow of Trinity College, Principal of
Ridley Hall, Cambridge.

Rev. W. F. Moulton, D.D., Head Master ofthe Leys School, Cambridge.

Rev. E. H. Perowne, D.D., Master of Corpus Christi College, Cambridge.

The Ven. T. T. Perowne, B.D., Archdeacon ofNorwich.

Rev. A. Plummer, M.A., D.D., Master of University College, Durham.

The Very Rev. E. H. Plumptre, D.D., Dean of Wells,

Rev. W. Simcox, M.A., Rector of Weyhill, Hants.

W. Robertson Smith, M.A., Felloio of Christ's College, and University

Librarian.

Rev. H. D. M. Spence, M.A., Dean of Gloucester.

Rev. A. W. Streane, M.A., Felloio of Corpus Christi College, Cambridge.

London : C. J. Cla y <Sp» Sons, Cmnbridge University Press Warehouse,
Ave Maria Lane.
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THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.
Continued.

Now Ready. Cloth, Extra Fcap. 8vo.

THE BOOK OF JOSHUA. By the Rev. G. F. Maclear, D.D.
With i Maps. is. 6d.

THE BOOK OF JUDGES. By the Rev. J. J. Lias, M.A.
With Map. y. 6d.

THE FIRST BOOK OF SAMUEL. By the Rev. Professor
Kirkpatrick, M.A. With Map. y. 6d.

THE SECOND BOOK OF SAMUEL. By the Rev. Professor
Kirkpatrick, M.A. With 1 Maps. 3s. 6d.

THE FIRST BOOK OF KINGS. By the Rev. Prof. Lumby, D.D.
y. 6d.

THE BOOK OF JOB. By the Rev. A. B. Davidson, D.D. 5*.

THE BOOK OF ECCLESIASTES. By the Very Rev. E. H.
Plumptre, D.D., Dean of Wells. $r.

THE BOOK OF JEREMIAH. By the Rev. A. W. Streane,
M.A. With Map. 4*. 6d.

THE BOOK OF HOSEA. By Rev. T. K. Cheyne, M.A., D.D. 3s.

THE BOOKS OF OBADIAH AND JONAH. By Archdeacon
Perowne. is. 6d.

THE BOOK OF MICAH. By Rev. T. K. Cheyne, D.D. is. 6d.

THE BOOKS OF HAGGAI AND ZECHARIAH. By Arch-
deacon Perowne. 3-5-.

THE GOSPEL ACCORDING TO ST MATTHEW. By the
Rev. A. Carr, M.A. With 1 Maps. is. 6d.

THE GOSPEL ACCORDING TO ST MARK. By the Rev.
G. F. Maclear, D.D. With 4 Maps. as. 6d.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
F. W. Farrar. With 4 Maps. 4J. 6d.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev.
A. Plummer, M.A., D.D. With 4 Maps. 4s. 6d.

THE ACTS OF THE APOSTLES. By the Rev, Professor
Lumby, D.D. With 4 Maps. 4s. 6d.

THE EPISTLE TO THE ROMANS. By the Rev. H. C. G.
Moule, M.A. 3s. 6d.

THE FIRST EPISTLE TO THE CORINTHIANS. By the Rev.

J. J. Lias, M.A. With a Map and Plan. is.

THE SECOND EPISTLE TO THE CORINTHIANS. By the
Rev. J. J. Lias, M.A. is.

THE EPISTLE TO THE EPHESIANS. By the Rev. H. C G.
Moule, M.A. is. 6d.

THE EPISTLE TO THE HEBREWS. By Arch. Farrar. 3^. 6d.

THE GENERAL EPISTLE OF ST JAMES. By the Very Rev.
E. H. Plumptre, D.D., Dean of Wells, is. 6d.

THE EPISTLES OF ST PETER AND ST JUDE. By the
same Editor, is. 6d.

THE EPISTLES OF ST JOHN. By the Rev. A. Plummer,
M.A., D.D. 3J. 6d.

London : C. y. Cla y &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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THE CAMBRIDGE BIBLE FOR SCHOOLS & COLLEGES.
Continued.

Preparing.
THE BOOK OF GENESIS. By the Very Rev. the Dean of

Peterborough.
THE BOOKS .OF EXODUS, NUMBERS AND DEUTERO-

NOMY. By the Rev. C. D. Ginsburg, LL.D.
THE SECOND BOOK OF KINGS. By the Rev. Prof. Lumby, D.D.
THE BOOK OF PSALMS. By the Rev. Prof. Kirkpatrick, M.A.
THE BOOK OF ISAIAH. By W. Robertson Smith, M.A.
THE BOOK OF EZEKIEL. By the Rev. A. B. Davidson, D.D.
THE EPISTLE TO THE GALATIANS. By the Rev. E. H.

Perowne, D.D.
THE EPISTLES TO THE PHILIPPIANS, COLOSSIANS

AND PHILEMON. By the Rev. H. C. G. Moule, M.A.
THE EPISTLES TO THE THESSALONIANS. By the Rev.

W. F. Moulton, D.D.
THE BOOK OF REVELATION. By the Rev. W. Simcox, M.A.

THE CAMBRIDGE GREEK TESTAMENT
FOR SCHOOLS AND COLLEGES,

with a Revised Text, based on the most recent critical authorities, and
English Notes, prepared under the direction of the General Editor,

The Very Reverend J. J. S. PEROWNE, D.D.

Now Ready.
THE GOSPEL ACCORDING TO ST MATTHEW. By the

Rev. A. Carr, M.A. With 4 Maps. 4s. 6d.

"Copious illustrations, gathered from a great variety of sources, make his notes a very valu-
able aid to the student. They are indeed remarkably interesting, while all explanations on
meanings, applications, and the like are distinguished by their lucidity and good sense."

—

Pall Mall Gazette.

THE GOSPEL ACCORDING TO ST MARK. By the Rev.
G. F. Maclear, D.D. With 3 Maps. 4s. 6d.

'•The Cambridge Greek Testament, of which Dr Maclear's edition of the Gospel according to

St Mark is a volume, certainly supplies a want. Without pretending to compete with the leading
commentaries, or to embody very much original research, it forms a most satisfactory introduction
to the study of the New Testament in the original . . . Dr Maclear's introduction contains all that
is known of St Mark's life, with references to passages in the New Testament in which he is

mentioned ; an account of the circumstances in which the Gospel was composed, with an estimate
of the influence of St Peter's teaching upon St Mark ; an excellent sketch of the special character-
istics of this Gospel ; an analysis, and a chapter on the text of the New Testament generally . . .

The work is completed by three good maps."

—

Saturday Review.

THE GOSPEL ACCORDING TO ST LUKE. By Archdeacon
Farrar. With 4 Maps. 6s.

THE GOSPEL ACCORDING TO ST JOHN. By the Rev. A.
Plummer, M.A., D.D. With 4 Maps. 6s.

"A valuable addition has also been made to 'The Cambridge Greek Testament for Schools,'

Dr Plutnmer's notes on ' the Gospel according to St John' are scholarly, concise, and instructive,

and embody the results of much thought and wide reading."

—

Expositor.

THE ACTS OF THE APOSTLES. By the Rev. Prof. Lumby, D.D.,
with 4 Maps. 6s.

THE FIRST EPISTLE TO THE CORINTHIANS. By the
Rev. J- J- Lias, M.A. 3^.

THE EPISTLE TO THE HEBREWS. By Archdeacon Farrar.
[In the Press.

THE EPISTLES OF ST JOHN. By the Rev. A. Plummer,
M.A., D.D. 4 .r.

London : C. J. Cla y &» Sons, Cambridge University Press Warehouse,
Ave Maria Lane.



24 PUBLICATIONS OF

THE PITT PRESS SERIES.
[ Copies of the Pitt Press Series may generally be obtained bound in two parts for

Class use, the text and notes in separate volumes.]

I. GREEK.
SOPHOCLES.—OEDIPUS TYRANNUS. School Edition,

with Introduction and Commentary, by R. C. Jebb, Litt. D., LL.D., Professor

of Greek in the University of Glasgow. 4s. 6d.

XENOPHON.—ANABASIS, Books I. III. IV. and V.
With a Map and English Notes by Alfred Pretor, M.A., Fellow of

St Catharine's College, Cambridge, vs. each.
" In Mr Pretor's edition of the Anabasis the text of Kuhner has been followed in the main,

while the exhaustive and admirable notes of the great German editor have been largely utilised.

These notes deal with the minutest as well as the most important difficulties in construction, and
all questions of history, antiquity, and geography are briefly but very effectually elucidated."

—

The
Examiner.
"We welcome this addition to the other books of the Anabasis so ably edited by Mr Pretor.

Although originally intended for the use of candidates at the university local examinations, yet
this edition will be found adapted not only to meet the wants of the junior student, but even
advanced scholars will find much in this work that will repay its perusal."

—

The Schoolmaster.
"Mr Pretor's 'Anabasis of Xenophon, Book IV.' displays a union of accurate Cambridge

scholarship, with experience of what is required by learners gained in examining middle-class
schools. The text is large and clearly printed, and the notes explain all difficulties. . . . Mr
Pretor's notes seem to be all that could be wished as regards grammar, geography, and other
matters."

—

The Academy.

BOOKS II. VI. and VII. By the same Editor. 2s. 6d. each.
"Another Greek text, designed it would seem for students preparing for the local examinations,

is 'Xenophon's Anabasis,' Book II., with English Notes, by Alfred Pretor, M.A. The editor has
exercised his usual discrimination in utilising the text and notes of Kuhner, with the occasional
assistance of the best hints of Schneider, Vollbrecht and Macmichael on critical matters, and of
Mr R. W. Taylor on points of history and geography. . . When Mr Pretor commits himself to

Commentator's work, he is eminently helpful. . . Had we to introduce a young Greek scholar

to Xenophon, we should esteem ourselves fortunate in having Pretor's text-book as our chart and
guide."

—

Contemporary Review.

XENOPHON.—ANABASIS. By A. Pretor, M.A., Text
and Notes, complete in two Volumes, js. 6d.

XENOPHON.—AGESILAUS. The Text revised with
Critical and Explanatory Notes, Introduction, Analysis, and Indices. By
H. Hailstone, M.A., late Scholar of Peterhouse. is. 6d.

XENOPHON.—CYROPAEDEIA. Books I. II. With In-
troduction, Notes and Map. By Rev. H. A. Holden, M.A., LL.D.
9 vols. Vol. I. Text. Vol. II. Notes. 6s.

BOOKS III., IV. By the same Editor. [In the Press.

ARISTOPHANES—RANAE. With English Notes and
Introduction by W. C. Green, M.A., late Assistant Master at Rugby
School, jf. 6d.

ARISTOPHANES—AVES. By the same Editor. New
Edition, y. 6d.

"The notes to both plays are excellent. Much has been done in these two volumes to render
the study of Aristophanes a real treat to a boy instead of a drudgery, by helping him to under-
stand the fun and to express it in his mother tongue. —The Examiner.

ARISTOPHANES—PLUTUS. By the same Editor. 3s. 6d.

PLATONIS APOLOGIA SOCRATIS. With Introduction,
Notes and Appendices by J. Adam, B.A., Fellow and Classical Lecturer of
Emmanuel College. 3J. 6d.

HERODOTUS, Book VIIL, Chaps. 1—90. Edited with
Notes and Introduction by E. S. Shuckburgh, M.A., late Fellow of
Emmanuel College. [Immediately.

London : C. J. Cla y £r» Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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EURIPIDES. HERCULES FURENS. With Intro-
ductions, Notes and Analysis. By A. Gray, M.A., Fellow of Jesus College,

and J. T. Hutchinson, M.A., Christ's College. New Edition, with addi-

tions, is.

"Messrs Hutchinson and Gray have produced a careful and useful edition."

—

Saturday
Review.

EURIPIDES. HERACLEID.E. With Introduction and
Critical Notes by E. A. Beck, M.A., Fellow of Trinity Hall. is. 6d.

LUCIANI SOMNIUM CHARON PISCATOR ET DE
LUCTU, with English Notes by W. E. Heitland, M.A., Fellow of

St John's College, Cambridge. New Edition, with Appendix. $s. 6d.

PLUTARCH'S LIVES OF THE GRACCHI. With In-
troduction, Notes and Lexicon by Rev. Hubert A. Holden, M.A., LL.D.,
Examiner in Greek to the University of London. 6s.

PLUTARCH'S LIFE OF SULLA. With Introduction,
Notes, and Lexicon. By the Rev. Hubert A. Holden, M.A., LL.D. 6s.

OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.
Edited by E. Wallace, M.A. (See p. 31.)

II. LATIN.
M. T. CICERONIS DE AMICITIA. Edited by J. S.

Reid, Litt. D., Fellow and Tutor of Gonville and Caius College. New
Edition, with Additions. %s. 6d.

"Mr Reid has decidedly attained his aim, namely, 'a thorough examination of the Latinity
of the dialogue. ' The revision of the text is most valuable, and comprehends sundry
acute corrections. . . . This volume, like Mr Reid's other editions, is a solid gain to the scholar-
ship of the country."

—

AtJienceum.
"A more distinct gain to scholarship is Mr Reid's able and thorough edition of the De

Amicitid of Cicero, a work of which, whether we regard the exhaustive introduction or the
instructive and most suggestive commentary, it would be difficult to speak too highly. . . . When
we come to the commentary, we are only amazed hy its fulness in proportion to its bulk.
Nothing is overlooked which can tend to enlarge the learner's general knowledge of Ciceronian
Latin or to elucidate the text."— Sattirday Review.

M. T. CICERONIS CATO MAJOR DE SENECTUTE.
Edited by J. S. Reid, Litt. D. Revised Edition, y. 6d.

'* The notes are excellent and scholarlike, adapted for the upper forms of public schools, and
likely to be useful even to more advanced students."

—

Guardian.

M. T. CICERONIS ORATIO PRO ARCHIA POETA.
Edited by J. S. Reid, Litt. D. Revised Edition, is.

" It is an admirable specimen of careful editing. An Introduction tells us everything we could
wish to know about Archias, about Cicero's connexion with him, about the merits of the trial, and
the genuineness of the speech. The text is well and carefully printed. The notes are clear and
scholar-like. . . . No boy can master this little volume without feeling that he has advanced a long
step in scholarship."

—

The Academy.

M. T. CICERONIS PRO L. CORNELIO BALBO ORA-
TIO. Edited by J. S. Reid, Litt. D. is. 6d.

"We are bound to recognize the pains devoted in the annotation of these two orations to the

minute and thorough study of their Latinity, both in the ordinary notes and in the textual
appendices."

—

Saturday Review.

M. T. CICERONIS PRO P. CORNELIO SULLA
ORATIO. Edited by J. S. Reid, Litt. D. 3J. 6d.

" Mr Reid is so well known to scholars as a commentator on Cicero that a new work from him
scarcely needs any commendation of ours. His edition of the speech Pro Sulla is fully equal in

merit to the volumes which he has already published ... It would be difficult to speak too highly
of the notes. There could be no better way of gaining an insight into the characteristics of
Cicero's style and the Latinity of his period than by making a careful study of this speech with
the aid of Mr Reid's commentary . . . Mr Reid's intimate knowledge of the minutest details of
scholarship enables him to detect and explain the slightest points of distinction between the
usages of different authors and different periods . . . The notes are followed by a valuable
appendix on the text, and another on points of orthography ; an excellent index brings the work
to a close."

—

Saturday Review.

London: C. J. Clay& Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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M. T. CICERONIS PRO CN. PLANCIO ORATIO.
Edited by H. A. Holden, LL.D., Examiner in Greek to the University of

London. Second Edition. 4*. 6d.

"As a book for students this edition can have few rivals. It is enriched by an excellent intro-

duction and a chronological table of the principal events of the life of Cicero; while in its ap-
pendix, and in the notes on the text which are added, there is much of the greatest value. The
volume is neatly got up, and is in every way commendable.*'

—

The Scotsman.

M. T. CICERONIS IN O. CAECILIUM DIVINATIO
ET IN C. VERREM ACTIO PRIMA. With Introduction and Notes
by W. E. Heitland, M.A., and Herbert Cowie, M.A., Fellows of

St John's College, Cambridge. 3s.

M. T. CICERONIS ORATIO PRO L. MURENA, with
English Introduction and Notes. By W. E. Heitland. M.A., Fellow
and Classical Lecturer of St John's College, Cambridge. Second Edition,

carefully revised. y.
"Those students are to be deemed fortunate who have to read Cicero's lively and brilliant

oration for L. Murena with Mr Heitland's handy edition, which may be pronounced 'four-square
'

in point of equipment, and which has, not without good reason, attained the honours of a

second edition."

—

Saturday Review.

M. T. CICERONIS IN GAIUM VERREM ACTIO
FRIMA. With Introduction and Notes. By H. Cowie, M.A., Fellow
of St John's College, Cambridge, is. 6d.

M. T. CICERONIS ORATIO PRO T. A. MILONE,
with a Translation of Asconius' Introduction, Marginal Analysis and
English Notes. Edited by the Rev. John Smyth Purton, B.D., late

President and Tutor of St Catharine's College. 2s. 6d.

"The editorial work is excellently done."

—

The Academy.

M. T. CICERONIS SOMNIUM SCIPIONIS. With In-
troduction and Notes. By W. D. Pearman, M.A., Head Master of Potsdam
School, Jamaica, is.

M. TULLI CICERONIS ORATIO PHILIPPICA
SECUNDA. With Introduction and Notes by A. G. Peskett, M.A,
Fellow of Magdalene College, y. 6d.

P. OVIDII NASONIS FASTORUM Liber VI. With
a Plan of Rome and Notes by A. Sidgwick, M.A., Tutor of Corpus Christi

College, Oxford, is. 6d.

" Mr Sidgwick's editing of the Sixth Book of Ovid's Fasti furnishes a careful and serviceable

volume for average students. It eschews 'construes' which supersede the use of the dictionary,

but gives full explanation of grammatical usages and historical and mythical allusions, besides

illustrating peculiarities of style, true and false derivations, and the more remarkable variations of
the text."

—

Saturday Review.

"It is eminently good and useful. . . . The Introduction is singularly clear on the astronomy of
Ovid, which is properly shown to be ignorant and confused; there is an excellent little map of
Rome, giving just the places mentioned in the text and no more ; the notes are evidently written

by a practical schoolmaster."

—

The Academy.

M. ANNAEI LUCANI PHARSALIAE LIBER
PRIMUS, edited with English Introduction and Notes by W. E. Heitland,
M.A. and C. E. Haskins, M.A., Fellows and Lecturers of St John's Col-
lege, Cambridge, ix. 6d.

"A careful and scholarlike production."

—

Times.

" In nice parallels of Lucan from Latin poets and from Shakspeare, Mr Haskins and Mr
Heitland deserve praise."

—

Saturday Review.

London: C. J. Clay& Sons, Cambridge University Press Warehouse^
Ave Maria Lane.
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GAI IULI CAESARIS DE BELLO GALLICO COM-
MENT, I. II. III. With Maps and English Notes by A. G. Peskett,
M.A., Fellow of Magdalene College, Cambridge. 3s.

" In an unusually succinct introduction he gives all the preliminary and collateral information
that is likely to be useful to a young student ; and, wherever we have examined his notes, we
have found them eminently practical and satisfying. . . The book may well be recommended for
careful study in school or college."

—

Saturday Review.
"The notes are scholarly, short, and a real help to the most elementary beginners in Latin

prose."

—

The Examiner.

COMMENT. IV. and V. and COMMENT. VII. by
the same Editor. 2s. each.

COMMENT. VI. and COMMENT. VIII. by the
same Editor, is. 6d. each.

P. VERGILI MARONIS AENEIDOS Libri L, II., III.,

IV., V., VI., VII., VIII., IX., X., XI., XII. Edited with Notes by A.
Sidgwick, M.A., Tutor of Corpus Christi College, Oxford, is. 6d. each.

"Much more attention is given to the literary aspect of the poem than is usually paid to it in

editions intended for the use of beginners. The introduction points out the distinction between
primitive and literary epics, explains the purpose of the poem, and gives an outline of the story."—Saturday Review.

" Mr Arthur Sidgwick's 'Vergil, Aeneid, Book XII.' is worthy of his reputation, and is dis-

tinguished by the same acuteness and accuracy of knowledge, appreciation of a boy's difficulties

and ingenuity and resource in meeting them, which we have on other occasions had reason to

praise in these pages."

—

The Academy.
"As masterly in its clearly divided preface and appendices as in the sound and independent

character of its annotations. . . . There is a great deal more in the notes than mere compilation
and suggestion. ... No difficulty is left unnoticed or unhandled."

—

Saturday Review.

BOOKS IX. X. in one volume. is.

BOOKS X., XL, XII. in one volume. $s. 6d.

P. VERGILI MARONIS GEORGICON LIBRI I. II.

By the same Editor, is.

Libri III. IV. By the same Editor. 2s.

QUINTUS CURTIUS. A Portion of the History.
(Alexander in India.) By W. E. Heitland, M. A., Fellow and Lecturer
of St John's College, Cambridge, and T. E. Raven, B.A., Assistant Master
in Sherborne School. %s. 6d.

"Equally commendable as a genuine addition to the existing stock of school-books is

Alexander in India, a compilation from the eighth and ninth books of Q. Curtius, edited for
the Pitt Press by Messrs Heitland and Raven. . . . The work of Curtius has merits of its

own, which, in former generations, made it a favourite with English scholars, and which still

make it a popular text-book in Continental schools The reputation of Mr Heitland is a
sufficient guarantee for the scholarship of the notes, which are ample without being excessive,
and the book is well furnished with all that is needful in the nature of maps, indices, and
appendices." —Academy.

BEDA'S ECCLESIASTICAL HISTORY, BOOKS
III., IV., the Text from the very ancient MS. in the Cambridge University

Library, collated with six other MSS. Edited, with a life from the German of
Ebert, and with Notes, &c. by J. E. B. Mayor, M.A., Professor of Latin,

and J. R. Lumby, D.D., Norrisian Professor of Divinity. Revised edition.

is. 6d.
"To young students of English History the illustrative notes will be of great service, while

the study of the texts will be a good introduction to Mediaeval Latin."

—

The Nonconformist.
"In Bede's works Englishmen can go back to origines of their history, unequalled for

form and matter by any modern European nation. Prof. Mayor has done good service in ren-
dering a part of Bede's greatest work accessible to those who can read Latin with ease. He
has adorned this edition of the third and fourth books of the 'Ecclesiastical History' with that
amazing erudition for which he is unrivalled among Englishmen and rarely equalled by Germans.
And however interesting and valuable the text may be, we can certainly apply to his notes
the expression, La sauce vaut mieux que le poisson. They are literally crammed with interest-

ing information about early English life. For though ecclesiastical in name, Bede's history treats

of all parts of the national life, since the Church had points of contact with all."

—

Examiner.

BOOKS I. and II. In the Press.

London : C.J. Clay &> Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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III. FRENCH.

LA CANNE DE JONC. By A. De Vigny. Edited with
Notes by Rev. H. A. Bull, M.A., late Master at Wellington College, is.

BATAILLE DE DAMES. By Scribe and Legouve.
Edited by Rev. H. A. Bull, M.A. is.

JEANNE D'ARC by A. De Lamartine. With a Map
and Notes Historical and Philological and a Vocabulary by Rev. A. C.

Clapin, M.A., St John's College, Cambridge, and Bachelier-es-Lettres of

the University of France. IS.

LE BOURGEOIS GENTILHOMME, Comedie-Ballet en
Cinq Actes. Par J.-B. Poquelin de Moliere (1670). With a life of

Moliere and Grammatical and Philological Notes. By the same Editor. is.6d.

LA PICCIOLA. By X. B. Saintine. The Text, with
Introduction, Notes and Map, by the same Editor. 2s.

LA GUERRE. By Mm. Erckmann-Chatrian. With
Map, Introduction and Commentary by the same Editor. $s.

LAZARE HOCHE—PAR EMILE DE BONNECHOSE.
With Three Maps, Introduction and Commentary, by C. Colbeck, M.A.,
late Fellow of Trinity College, Cambridge. 2s.

LE VERRE D'EAU. A Comedy, by SCRIBE. With a
Biographical Memoir, and Grammatical, Literary and Historical Notes. By
the same Editor. 2s.

"It may be national prejudice, but we consider this edition far superior to any of the series
which hitherto have been edited exclusively by foreigners. Mr Colbeck seems better to under-
stand the wants and difficulties of an English boy. The etymological notes especially are admi-
rable. . . . The historical notes and introduction are a piece of thorough honest work."—Journal
of Education.

HISTOIRE DU SIECLE DE LOUIS XIV PAR
VOLTAIRE. Parti. Chaps. I.—XIII. Edited with Notes Philological and
Historical, Biographical and Geographical Indices, etc. by Gustave Masson,
B. A. Univ. Gallic, Assistant Master of Harrow School, and G. W. Prothero,
M. A., Fellow and Tutor of King's College, Cambridge. 2s. 6d.

Part II. Chaps. XIV.—XXIV. With Three Maps
of the Period. By the same Editors. 2s. 6d.

Part III. Chap. XXV. to the end. By the same
Editors. 2s. 6d.

M. DARU, par M. C. A. Sainte-Betjve, (Causeries du
Lundi, Vol. IX.). With Biographical Sketch of the Author, and Notes
Philological and Historical. By Gustave Masson. 2s.

LA SUITE DU MENTEUR. A Comedy in Five Acts,
by P. Corneille. Edited with Fontenelle's Memoir of the Author, Voltaire's
Critical Remarks, and Notes Philological and Historical. By Gustave
Masson. 2s.

LA JEUNE SIBERIENNE. LE LEPREUX DE LA
CITE D'AOSTE. Tales by Count Xavier de Maistre. With Bio-
graphical Notice, Critical Appreciations, and Notes. By G. Masson. 2s.

London: C. y. Clay & Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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LE DIRECTOIRE. (Considerations sur la Revolution
Francaise. Troisieme et quatrieme parties.) Par Madame LA Baronne DE
Stael-Holstein. With a Critical Notice of the Author, a Chronological
Table, and Notes Historical and Philological, by G. Masson, B.A., and
G. W. Prothero, M.A. Revised and enlarged Edition, is.

" Prussia under Frederick the Great, and France under the Directory, bring us face to face
respectively with periods of history which it is right should be known thoroughly, and which
are well treated in the Pitt Press volumes. The latter in particular, an extract from the
world-known work of Madame de Stael on the French Revolution, is beyond all praise for
the excellence both of its style and of its matter."

—

Times.

DIX ANNEES D'EXIL. Livre II. Chapitres 1—8.
Par Madame la Baronne De Stael-Holstein. With a Biographical
Sketch of the Author, a Selection of Poetical Fragments by Madame de
Stael's Contemporaries, and Notes Historical and Philological. By Gustave
Masson and G. W. Prothero, M.A. Revised and enlarged edition. is.

FREDEGONDE ET BRUNEHAUT. A Tragedy in Five
Acts, by N. Lemercier. Edited with Notes, Genealogical and Chrono-
logical Tables, a Critical Introduction and a Biographical Notice. By
Gustave Masson. is.

LE VIEUX CELIBATAIRE. A Comedy, by COLLIN
D'Harleville. With a Biographical Memoir, and Grammatical, Literary

and Historical Notes. By the same Editor, is.

LA METROMANIE, A Comedy, by PlRON, with a Bio-
graphical Memoir, and Grammatical, Literary and Historical Notes. By the

same Editor, is.

LASCARIS, ou LES GRECS DU XVE
. SIECLE,

Nouvelle Historique, par A. F. Villemain, with a Biographical Sketch of

the Author, a Selection of Poems on Greece, and Notes Historical and
Philological. By the same Editor, is.

LETTRES SUR L'HISTOIRE DE FRANCE (XIII—
XXIV.). Par Augustin Thierry. By Gustave Masson, B.A. and
G. W. Prothero, M.A. With Map. is. 6d.

IV. GERMAN.
SELECTED FABLES. Lessing and Gellert. Edited

with Notes by Karl Hermann Breul, M.A., Lecturer in German at the

University of Cambridge. 3^.

DIE KARAVANE von Wilhelm Hauff. Edited with
Notes by A. Schlottmann, Ph. D. 3*. 6d.

CULTURGESCHICHTLICHE NOVELLEN, von W. H.
Riehl, with Grammatical, Philological, and Historical Notes, and a Com-
plete Index, by H. J. Wolstenholme, B.A. (Lond.). 4s. 6d.

ERNST, HERZOG VON SCHWABEN. UHLAND. With
Introduction and Notes. By H. J. Wolstenholme, B.A. (Lond.),

Lecturer in German at Newnham College, Cambridge, y. 6d.

ZOPF UND SCHWERT. Lustspiel in funf Aufzugen von
Karl Gutzkow. With a Biographical and Historical Introduction, English
Notes, and an Index. By the same Editor. $s. 6d.

"We are glad to be able to notice a careful edition of K. Gutzkow's amusing comedy
'Zopf and Schwert' by Mr H. J. Wolstenholme. . . . These notes are abundant and contain
references to standard grammatical works."

—

Academy.

GJoet&e'd tfnabenjafyre. (1749— 1759.) GOETHE'S BOY-
HOOD: being the First Three Books of his Autobiography. Arranged
and Annotated by Wilhelm Wagner, Ph. D., late Professor at the

Johanneum, Hamburg, is.

London : C. y. Cla y &* Sows,. Cambridge University Press Warehouse,
Ave Maria Lane.



30 PUBLICATIONS OF

HAUFF. DAS WIRTHSHAUS IM SPESSART. Edited
by A. Schlottmann, Ph.D., late Assistant Master at Uppingham School.

3.y. 6d.

DER OBERHOF. A Tale of Westphalian Life, by Karl
Immermann. With a Life of Immermann and English Notes, by Wilhelm
Wagner, Ph.D., late Professor at the Johanneum, Hamburg. $s.

A BOOK OF GERMAN DACTYLIC POETRY. Ar-
ranged and Annotated by the same Editor. y.

2)er crfte tfreuMiig (THE FIRST CRUSADE), by Fried-
rich von Raumer. Condensed from the Author's 'History of the Hohen-
staufen', with a life of Raumer, two Plans and English Notes. By
the same Editor. 2s.

"Certainly no more interesting book could be made the subject of examinations. The story
of the First Crusade has an undying interest. The notes are, on the whole, good."

—

Educational
Times.

A BOOK OF BALLADS ON GERMAN HISTORY.
Arranged and Annotated by the same Editor. %s.

"It carries the reader rapidly through some of the most important incidents connected with
the German race and name, from the invasion of Italy by the Visigoths under their King Alaric,

down to the Franco-German War and the installation of the present Emperor. The notes supply
very well the connecting links between the successive periods, and exhibit in its various phases of
growth and progress, or the reverse, the vast unwieldy mass which constitutes modern Germany."
— Times.

DER STAAT FRIEDRICHS DES GROSSEN. By G.
Freytag. With Notes. By the same Editor. 2s.

GOETHE'S HERMANN AND DOROTHEA. With
an Introduction and Notes. By the same Editor. Revised edition by J. W.
Cartmell, M.A. 3J. 6d.

"The notes are among the best that we know, with the reservation that they are often too

abundan t.
"

—

Academy.

2)0$ 3af)r 1813 (The Year 1813), by F. Kohlrausch.
With English Notes. By W. Wagner, is.

V. ENGLISH.
COWLEY'S ESSAYS. With Introduction and Notes. By

the Rev. J. Rawson Lumby, D.D., Norrisian Professor of Divinity; Fellow

of St Catharine's College. 4^.

SIR THOMAS MORE'S UTOPIA. With Notes by the
Rev. J. Rawson Lumby, D.D. 3*. 6d.

"To Dr Lumby we must give praise unqualified and unstinted. He has done his work
admirably Every student of history, every politician, every social reformer, every one
interested in literary curiosities, every lover of English should buy and carefully read Dr
Lumby's edition of the ' Utopia.' We are afraid to say more lest we should be thought ex-

travagant, and our recommendation accordingly lose part of its force."

—

T/ie Teacher.
" It was originally written in Latin and does not find a place on ordinary bookshelves. Avery

great boon has therefore been conferred on the general English reader by the managers of the

Pitt Press Series, in the issue of a convenient little volume of More's Utopia not in the original

Latin, but in the quaint English Translation thereof made by_ Raphe Robynson, which adds a
linguistic interest to the intrinsic merit of the work. . . . All this has been edited in a most com-
plete and scholarly fashion by Dr J. R. Lumby, the Norrisian Professor of Divinity, whose name
alone is a sufficient warrant for its accuracy. It is a real addition to the modern stock of classical

English literature."

—

Guardian.

BACON'S HISTORY OF THE REIGN OF KING
HENRY VII. With Notes by the Rev. J. Rawson Lumby, D.D. y.

London : C. 7, Cla y Sp» Sons, Cambridge University Press Warehouse,
Ave Maria Lane.
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MORE'S HISTORY OF KING RICHARD III. Edited
with Notes, Glossary and Index of Names. By J. Rawson Lumby, D.D.
to which is added the conclusion of the History of King Richard III. as given

in the continuation of Hardyng's Chronicle, London, 1543. y. 6d.

THE TWO NOBLE KINSMEN, edited with Intro-
duction and Notes by the Rev. Professor Skeat, Litt.D., formerly Fellow
of Christ's College, Cambridge. $s. 6d.

"This edition of a play that is well worth study, for more reasons than one, by so careful a
scholar as Mr Skeat, deserves a hearty welcome."

—

Atheneeum.
"Mr Skeat is a conscientious editor, and has left no difficulty unexplained."

—

Times.

LOCKE ON EDUCATION. With Introduction and Notes
by the Rev. R. H. Quick, M.A. 3*. 6d.

"The work before us leaves nothing to be desired. It is of convenient form and reasonable
price, accurately printed, and accompanied by notes which are admirable. There is no teacher
too young to find this book interesting; there is no teacher too old to find it profitable."

—

The
School Bulletin, New York.

MILTON'S TRACTATE ON EDUCATION. A fac-
simile reprint from the Edition of 1673. Edited, with Introduction and
Notes, by Oscar Browning. M.A., Senior Fellow of King's College,

Cambridge, and University Lecturer, is.

"A separate reprint of Milton's famous letter to Master Samuel Hartlib was a desideratum,
and we are grateful to Mr Browning for his elegant and scholarly edition, to which is prefixed the
careful resume" of the work given in his 'History of Educational Theories.'"

—

Journal of
Education.

THEORY AND PRACTICE OF TEACHING. By the
Rev. Edward Thring, M.A., Head Master of Uppingham School, late

Fellow of King's College, Cambridge. New Edition. 4^. 6d.

"Any attempt to summarize the contents of the volume would fail to give our readers a
taste of the pleasure that its perusal has given us."

—

Journal of Education.

LECTURES ON THE TEACHING OF MODERN
LANGUAGES. By C. Colbeck, M.A., Assistant Master of Harrow
School. [In the Press.

GENERAL AIMS OF THE TEACHER, AND FORM
MANAGEMENT. Two Lectures delivered in the University of Cambridge
in the Lent Term, 1883, by F. W. Farrar, D.D. Archdeacon of West-
minster, and R. B. Poole, B.D. Head Master of Bedford Modern School.

is. 6d.

THREE LECTURES ON THE PRACTICE OF EDU-
CATION. Delivered in the University of Cambridge in the Easter Term,
1 882, under the direction of the Teachers' Training Syndicate, is.

JOHN AMOS COMENIUS, Bishop of the Moravians. His
Life and Educational Works, by S. S. Laurie, A.M., F.R.S.E., Professor of

the Institutes and History of Education in the University of Edinburgh.
Second Edition, revised, y. 6d.

OUTLINES OF THE PHILOSOPHY OF ARISTOTLE.
Compiled by Edwin Wallace, M.A., LL.D. (St Andrews), late Fellow
of Worcester College, Oxford. Third Edition Enlarged. 4s. 6d.

"A judicious selection of characteristic passages, arranged in paragraphs, each of which is

preceded by a masterly and perspicuous English analysis."

—

Scotsman.
"Gives in a comparatively small compass a very good sketch of Aristotle's teaching."

—

Sat.
Review.

A SKETCH OF ANCIENT PHILOSOPHY FROM
THALES TO CICERO, by Joseph B. Mayor, M.A. 3*. 6d.

"Professor Mayor contributes to the Pitt Press Series A Sketch of Ancient Philosophy in

which he has endeavoured to give a general view of the philosophical systems illustrated by the
genius of the masters of metaphysical and ethical science from Thales to Cicero. In the course
of his sketch he takes occasion to give concise analyses of Plato's Republic, and of the Ethics and
Politics of Aristotle ; and these abstracts will be to some readers not the least useful portions of
the book."

—

The Guardian.

{Other Volumes are in preparation.,]

London : C. J. Cla y &> Sons, Cambridge University Press Warehonse
>

Ave Maria Lane.
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LOCAL EXAMINATIONS.
Examination Papers, for various years, with the Regulations for the

Examination. Demy 8vo. 2s. each, or by Post, is. 2d.

Class Lists, for various years, Boys is., Girls 6d.

Annual Reports of the Syndicate, with Supplementary Tables showing
the success and failure of the Candidates. 2s. each, by Post 2s. 3d.

HIGHER LOCAL EXAMINATIONS.
Examination Papers for various years, to which are added the Regu-

lationsfor the Examination. Demy 8vo. 2s. each, by Post 2s. 2d.

Class Lists, for various years, is. By post, is. 2d.

Reports of the Syndicate. Demy 8vo. is., by Post is. 2d.

LOCAL LECTURES SYNDICATE.
Calendar for the years 1875—80. Fcap. 8vo. cloth. 2s . ; for 1880—81. is.

TEACHERS' TRAINING SYNDICATE.
Examination Papers for various years, to which are added the Regu-

lations for the Examination. Demy 8vo. 6d, by Post yd.

CAMBRIDGE UNIVERSITY REPORTER.
Published by Authority.

Containing all the Official Notices of the University, Reports of

Discussions in the Schools, and Proceedings of the Cambridge
Philosophical, Antiquarian, and Philological Societies. 3d. weekly.

CAMBRIDGE UNIVERSITY EXAMINATION PAPERS.
These Papers are published in occasional numbers every Term, and in

volumes for the Academical year.

Vol. XIII. Parts 177 to 195. Papers for the Year 1883— 84, 15^. cloth.

Vol. XIV. „ 1 to 20. „ „ 1884—85, 15.5-. cloth.

Vol. XV. „ 21 to 43. „ „ 1885—86, 15s. cloth.

Oxford and Cambridge Schools Examinations.
Papers set in the Examination for Certificates, July, 1885. 2s. 6d.

List of Candidates who obtained Certificates at the Examinations
held in 1885 and 1886 ; and Supplementary Tables. 6d.

Regulations of the Board for 1887. 9d.

Report of the Board for the year ending Oct. 31, 1886. is.

Studies from the Morphological Laboratory in the Uni-
versity of Cambridge. Edited by Adam Sedgwick, M.A., Fellow and
Lecturer of Trinity College, Cambridge. Vol. II. Part I. Royal 8vo. 10s.

Vol. II. Part II. p. 6d. Vol. III. Part I. Js. 6d.
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