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PREFACE.

The present treatise contains all the propositions which

are usually included in elementary treatises on the Theory

of Equations, together with a collection of examples for

exercise.

As the Theory of Equations involves a large number of

interesting and important results, which can be demonstrated

with simplicity and clearness, the subject may advantage-

ously engage the attention of a student at an early period

of his mathematical course. The present treatise may be

read by those who are familiar with Algebra, since no

higher knowledge is assumed, except in Arts. 149, 175, 268,

308... 314, and Chapter xxxi., which may be postponed by

those who are not acquainted with De Moivre's Theorem in

Trigonometry. This work may be regarded as a sequel to that

on Algebra by the present writer, and accordingly the student

has occasionally been referred to the treatise on Algebra for

preliminary information on some topics here discussed.

In composing the present work, the author has obtained

assistance from the treatises on Algebra by Bourdon, Lefe-

bure de Fourcy, and Mayer and Choquet ; on special points

he has consulted other writers, who are named in their ap-

propriate places in the course of the work.

The examples have been selected from the College and

University examination papers, and the results have been

given where it appeared necessary ; in most cases however,

from the nature of the example, the student will be able

immediately to test the correctness of his result.



Vi PREFACE.

In order to exhibit a comprehensive view of the sub-

ject, the present treatise includes investigations which are

not to be found in all the preceding elementary treatises,

and also some investigations which are not to be found in

any of them. Among these may be mentioned Cauchy's

proof that every equation has a root, Horner's method, the

theories of elimination and expansion, Cauchy's theorem on

the number of imaginary roots, the researches of Professor

Sylvester respecting Newton's Rule, and the theory of

determinants. The account of determinants has been princi-

pally taken from a treatise on that subject by Baltzer, which

was published at Leipsic in 1857 ; this is an excellent work,

distinguished for the completeness of its proofs of the funda-

mental theorems, and for the numerous applications of those

theorems which it affords.

For the parts of the Theory of Equations which are

beyond an elementary treatise, the advanced student may

consult Serret's Cours d'Algebre Superieure : there, for

example, will be found a demonstration of the theorem,

that the general algebraical solution of an equation of a

degree above the fourth is impossible. The article Equation,

by Professor Cayley, in the ninth edition of the Encyclopce-

dia Britannica should also be noticed. Valuable historical

information, relating to the higher parts of the subject, will

be found in papers on Approximation and Numerical So-

lution, by Mr James Cockle, in the Ladys and Gentlemam's

Diary for the years 1854 and 1855, and also in papers on

Equations of the Fifth Degree by the same author in the

same work, for the years 1848, 1851, 1856, 1857, 1858, and

1860.

I. TODHUNTER
Sx John's College,

March, 1880.
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THEORY OF EQUATES. _--_^,

I. INTRODUCTION".
UinVEESITT

1. The reader can easily obtain a general idea of tllS 6bject

of the following treatise by a reference to the theory of quad-

ratic equations which he is supposed to have already studied.

The equation acc^ + bx + c = has two roots, namely,

-b^Jb'-4:ac
2a '

and with respect to these roots, we know that their sum is
,

ft

and their product is - ; that is, their sum is equal to the coeffi-

h c
cient of the second term of the equation cc' + - a;+ — = 0, with its^ a a

sign changed, and their product is equal to the last term of this

equation. (See Algebra, Chap, xxii.) Now it may be said that

the general object of the following pages is to establish results

with respect to equations of a higher degree than the second,

similar to those which have been established in Algebra respect-

ing equations of the second degree. The results obtained will be

useful in other branches of mathematics, and the methods of

investigation will afford valuable exercise to the student, since

they are not too difficult for a person who has gained a knowledge

of Algebra, and at the same time have sufficient variety to oc-

cupy his attention.

2. The words equation and root are already familiar to the

student from their use in Algebra; but for distinctness we will

give a definition of them.

T. E. 1
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Any Algebraical expression which contains x may be called

a function of cc, and may be denoted by f{x). Any quantity

which substituted for x in /(«) makes f{x) vanish, is called a

root of the equation /(a?) = 0.

An expression of the form /U){ -^

aa;"4- Sx"-' + cx""-^ + ..,^+kx + l, A
where 71 is a positive integer, and the coefficients a,!)^ c ...h, I,

do not involve x, is called a rational integral function of x of

the w*^ degree j and if we wish to find what value of x makes

this function vanish we have to find a root of a rational integral

equation of the ^* degree ; this is the kind of equation which

we shall consider in the present treatise. In such an equation

we may if we please divide by the coefficient of the highest

power of Xf so as to leave that power with only unity for its

coefficient; the equation then takes the form

"We shall say that the equation is now in its simplest form ;

as will be seen hereafter, some of the properties of equations can'

be enunciated more concisely when the equation is in this form

than when a;" has a coefficient which is not unity. If we do

not wish to suppose the coefficient of o^ to be unity, we may

conveniently denote it by p^ ; then the equation takes the form

p^x" +pX~ ^ + p^"~^ + ...+ p,,_^x^ + p„_ !«; +K = 0.

The term p^ is called the term independent of x.

3. It must then be remembered that by equation we mean

rational integral equation ; an equation which is not of this form

may often be reduced to it by algebraical transformations; for

example, the equation ax^ + hx + c Jx =f may be reduced to a

rational integral form by transposing c Jx and f and then

squaring; it will thus become a rational integral equation of

the fourth degree. Equations which involve logarithmic func-

tions, or exponential functions, or trigonometrical functions, or

irrational algebraical functions, will not be directly included in

our investigations ; for example, such equations as tan a; - 6""= 0,
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or x\ogx — a = 0, will not be included. However, the theory

which will be given of rational integral equations will indirectly

throw some light on these excluded equations.

And when we speak of any function /(x) we shall always

mean a rational integral function of x, unless the contrary is

specified.

4. A remark of some importance must be made with respect

to the coefficients Pq, Pi, p^, -" Pni i^ *^® equation

In the quadratic equation ax^ + 6ic + c = we are able to solve

the equation without knowing what particular numbers are de-

noted by a, b, c; all we require to know is that a, h, c are some

numbers independent of x. If we have to solve the equation

x^ -I2x+ 15=^0 we may either transpose the 15 and complete

the square in the ordinary way, or we may take the general

formulae given in Art. 1, and put in them a=l, 6 = — 12, c=15.

If we wish to solve an equation without having the numerical

values of the coefficients previously assigned, we are seeking

what may be called the algebraical solution of the equation;

and if we can effect the algebraical solution of the general

equation of any degree, we may obtain a numerical solution of

an equation of that degree, by substituting the numerical values

of the coefficients in the general formula which gives the alge-

braical solution. As we proceed we shall find that the algebraical

solution of equations up to the fourth degree inclusive has been

effected; but both in equations of the third degree and of the

fourth degree, when we substitute the numerical values of the

coefficients in a specific equation in the general formula, the

result takes a form which is sometimes practically useless. And
beyond equations of the fourth degree the general algebraical

solution of equations has not been carried, and it appears cannot

be carried.

^B But with respect to what may be called the arithmetical solu-

tion of equations in which the coefficients are given numbers,

Ire
success has been obtained. Thus, for example, although

_
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we cannot solve algebraically the general equation of the fifth

degree, we can by numerical calculation discover any root which

an equation of the fifth degree with known numerical coefficients

may have, or at least we can approximate as closely as we please

to such a root.

- 5. Let us denote by/^cc) the expression

then the value of this expression when x= a may be denoted by

f{a). We will shew how the numerical value of f(a) may be

most easily calculatecl, supposing that the coefficients of f{x), and

also a itself, are specified numbers.

Take for example an expression of the third degree ^ then

we wish to find the numerical value of

Poa[+Pxa''+p,a+p^,

First obtain
"

Pf/i

;

add p^, this gives p^^a +p^;

multiply by a, this gives p^a^- + p^a ;

.

add p^, this gives • p^a'' -^-p^a+p^;

multiply by a, this gives p^a? -vp^c^^-p^;

add p^ , this gives p^c^ + p^o^ + p^a + p^

.

We may arrange the process in the following way;

P<>. Vx P^ P^.

Pf' p^d^+p^a sp^a^ + p^a^ + p^a

p,aA: pi p.d' + p^a +p^ p,d' + p^a^ -^p^a + p^

We may proceed in the same way whatever may be the

degree of /{x). For example, required the numerical value of-

3x^ -2x"-^x+7 when x = 3.

3-2 0-5+7
+ 9 +21 +63 +174

+ 7 +^1 +58 +181

Thus the result is 181.



INTRODUCTION. 5

6. If any rational integral function of x vanishes when

X = a, thefunction is divisible by x — a,.

Let f{x) denote the function; then we have given that

f(^a) = 0, and we have to prove thatfix) is divisible hj x-a.

Divide f{x) hj x-a by common algebra until the remainder

no longer contains x; let Q denote the quotient and J^ the re-

mainder if there be one. Then f (x) = Q (x - a) + JR. In this

identity put a for x; since Q is sl rational integral function of x

it cannot become infinite when x = a ; therefore Q (x — a) vanishes

when x = a. Ahof(x) vanishes when x = ahy supposition. Thus

B vanishes when x = a ; but i? does not contain tc, so that if it

vanishes when x = a it always vanishes. That is, ^ = and x — a

divides /(a;).

7. The above demonstration is important and instrtfctive

;

we may ho"wever prove the theorem in another way, which will

moreover have the advantage of exhibiting the form of the

quotient Q. Suppose

f(x)=p^x''+pf:''-'+2y,x''-'+... +p„.,x'+p^_^x+p,^^,
-

then since/(a) = we have /(a;) =f{x) -f{a)

= Po (^" - ^") +Pr (^""' - »""')
+Ps^

(^""' - ^""') + • • • +Pn-, (^ - «)•

Now the terms as" -a", a;""^— a"~\ ... are all divisible hj x — a

(see Algebra, Art. 483). By performing the division we obtain

for the quotieiit

(Po if~^+ ^^""' + ^''^""^ + ••• + ^""'^ + »""')

+ pf
(^"~' + aic"-' + aV-' + . . . + a"-')

+ ...

We may rearrange the quotient thus :

Po^""' + {Po^ +Px) ^~'+{Po^' +Pi(^ + P2)
^""^ + -

+K«"~' +p,a"~' + --' +Pn-X>

and we may denote it by

q^x''-' + q,x''-' + q,x''-'+... +q„.,x + q^_^.
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The new coefficients are therefore connected with each other

and with the old coefficients by the formulae

9'o=i'o> 9'i = «9'o+i^n 5'2 = «2'i+i?2, % = (^2+Pz^ ;

that is, each Tiew coefficient is found hy midtiplying the preceding

new coefficient hy a and tJien adding the corresponding old coeffir

dent. It will be observed that these new coefficients are succes-

sively determined by the process of Art. 5.

8. If -s. — 2i, divide f (x) which is any rational integral func-

tion of X, then a is a_ root of the equation f (x) = 0.

For let Q denote the quotient when /(a;) is divided by a; — a,

then /(a?) = ^ (a? - a). In this identity put a for a?, then Q is not \

infinite, and therefore Q{x—ob) vanishes. Thus y (a;) vanishes
y

when x — a^ and therefore a is a root of the equationy* (a;) = 0. /|[

f— . . . '

f'

9. To find tJie remainder when any rational integral function

of's.is divided hy ^—c, where c is any constant.

Let /(a;) denote any rational integral function of ai, and divide

y*(a;) by a; — c until the remainder is independent of a;; let ^
denote the quotient and R the remainder. Then

f{x)-^Q{x-c)^jR.
'

In this identity put c for a?, then Q is not infinite, and therefore

Q{x-c) vanishes j thu9/(c) = R. That is, R is equal to/(c) when

x=c, but R does not contain a?, so that R is equal to f{c) always.

For example ; if 2>x* — 2x^ — 5x + 7 is divided by x—Z, the

quotient is 3a;^+ 7aj^ + 21a; + 58, and the remainder is 181; see

Arts. 5 and 7.

For another example let us divide the same expression by a;- 4 :

3_ 2 0-5+7
+ 12 + 40+160+ 6S?0

'+10 + 40 + 155+627

Thus the quotient is 3x^+ 10a:^+ 40a;+ 155, and the remainder

is 627.

This process is a particular case of Synthetic Division; see

Algebra, Chapter LViii.
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10. Let f{x) be any rational integral function of a?, and

suppose x-^y put for x ; then we propose to arrange f{x + y)
according to powers of y, and to determine the coefficients of

the different powers.

Let fix) =p„a;" + p,cc""^ +p^x''~^ + ... +p„_^x -^p^ ; then

f(x+y)=p,{x+yy+p^(x+yy-'+p^{x+yy-'+.., + p,_,{x+y) +p^.

Expand (x + yY, {x+yy~\ ... by the Binomial Theorem, and

arrange the whole result according to powers of y ; we thus

obtain for /(x + y) the following series :

P^x"+pX~'+P2x''~'+ ... +Pn-iX+P„

+ y^np^x''-' + (n-l)p^x''-'+ (n-2)p^x"-'+... +p\

f^[n{n-l)p^x^'^ + {n-l){n-2)p^af'-'+...+.2p^_^\+

+ ...

|-|?^(?^-l)...(7^-r + l)JpX-'•+(7^-l)(7^-2)...(?^-r)^X"'"'+••.|

+ ....

+IH-
The first line of this series is obviouslyy(a;). We shall denote

the coefficient of y by f'{x)y the coefficient of ~-^ by /"(x), the

coefficient of r^- by /'" (x), and so on ; this notation becomes

inconvenient when the number of accents is large, and so in

general the coefficient of j- '^U ^^ denoted hyf^x). Hence
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By inspection it will be seen that the functions /(a?), f{x), f"{x),

f"'{x), ...f"{x) are connected by the following general law: in

order to obtain /""^^(x) we multiply each term in. f\x) by the

exponent of a; in that term and then diminish the exponent by

unity. ^
11. Let us suppose, for example, that y*(a;) is of the fourth .

degree; let

f{x) =p^x' + p,x^+p^+Ps^+p^.

Then /' (x) = ip^x^+ Zp^x^+ 2p^x +p^

,

f"(x) = 4:.3p^x'+3,2p,x + 2p,,

r'{x) = ^.3.2p^x+3.2p,,

r\x) = i.3.2.p^-

If we suppose numerical values assigned to p^^ p^, p^, p^^ p^ and

Xj we may calculate separately /(cc), /'(x), ... by the method of

Art. 5 j we shall however hereafter, in explaining Horner's method

of solving equations, shew how these calculations may be most

conveniently and systematically conducted.

For another example suppose that /(a;) =p {x + cy.

Then /(«) =^L" + wcaj"-' +^?^^?^ cV-' + ...
+«^^^

;

therefore

f'{x) =p Lx-'+n{n-l)cx-%- '^^''~^'^^^~^^
c'x""+ ... + nc^'^

;

that ia /'(*) =P'^{x + c)"'^

:

similarly f"{^ =pn {n — V) {x {- cY~^y

f"'{x) =pn (n -l){n- 2) (x + c)"-^

and so on.

Suppose that <^ (x) and \l/{x) are two rational integral functions

of a;, and that f(x) = <f>{x) + il/ (x) ; then it is easily seen that

/\x) = <}i'{x) + xp'ix), and f\x) = <}>'\x) + xj^'^x), and so on.
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12. If we write the series iov f{x-\-y), beginning with the

highest power of y, we shall have

fix + y) =py+ {l\ + riv,x)y''-' + 1^,+ (7^-l)^^a; +^"^ i^o^^'j f'^

( , ^, (n-l)(n-2) , n{n-\){n-'l) ^ „_,
+ |;?3 + (^ - 2) p^x +

^ :^ -^ p^x- + -^
1^^

-^ p,x'^ 2/"

+ ...

( / IN n(n-l)...(n-r+l) \ „_,
+ U)^ + {n-r + l)p^_^x+...+-^ '—r^ -Po^}y

This may be seen from the form already given for /{x + y), or by j;

expanding separately every term in /(cc + y), and arranging ac-y

cording to descending powers of y.

13. The function /' (x) is called the Jlrst derivedfunction of

f{x), the function /"(a?) is called the second derived function of

f{x), and so on. The reader, when he is acquainted with the ele-

ments of the Differential Calculus, will see that each derived

function is the differential coefficient with respect to x of the

immediately preceding derived function, and that the expression

for/{cc + y) m. powers of y is an example of Taylor's Theorem.

Moreover, it must be observed that/''(a3) is deduced from /'(a?)

in precisely the same way as /'(as) is deduced from /(a;). Thus

f"{x) is the first derived function oif{x), and /"'(a?) is the second

derived function of /'(aj), and so on. Hence by the preceding

Article we have

y'
Similarly f"{x + y) =/'(x) + yf"{x) + j^/""{«) + ••

.r-2

,...-^/'(x).....j|^m

And so on.
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'14. In any rational integralfunction of jl arranged according

to descending powers of x, any term which occurs may he made to

contain the sum of all which follow it, as many times as we please,

hy taking x large enough, and any term may he made to contain

the sum of all which precede it, as many times as we please, hy

taking x small enough.

Let P(pG'' +PiX"~^+p^x'*~^+ ... +p^_^x'' +p^_^x + p^ be any ra-

tional integral function of x; suppose for example that the r^ term

jo^.jCc""'"^^ occurs; that m, suppose p^_^ not zero. Let q denote the

numerical value of the greatest of the coefficients p^, p^+^i-.-p^.

The sum of all the terms which follow the r^^ term cannot exceed

2'(a;" '+«;" * ' + ...+X+1), that is, q -—
. The ratio of the r*

X — 1

term to this isP.^^z2}^^ that h,^r=^=^^^ . By taking x

large enough, the numerator can be made as large as we please,

and the denominator as near to q as we please ; thus the ratio can

be made as great as we please.

This proves the first part of the proposition. To prove the

second part put a;= - , then we obtain the series

2/~" {Po +p,y+py + ••• +Pn-y~' +Pnyl'

We have now to prove that by taking x small enough, that

is by taking y large enough, any term p^y"" which occurs can be

made to bear as great a ratio as we please to the sum of the teriMf

Po + Piy+'-'+Pr-iy""'^ which precede it; this has been already

proved in the first part. ^

15. One of the first questions which can occur in the theory

of equations is whether a root must exist for every equation ; and

we shall now give some simple propositions which establish the

existence of a root in certain cases. We shall require a theorem

which is often assumed as obvious, but which may be proved in

the manner shewn in the next Article.

16. Let /(a;) be any rational integral function of x, and /*(«),

/(&), the values oif{x) corresponding to the values a and h of a- •.
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then as x changes from aioh the function f{x) will change from

f{a) to/(6), and will pass through every intermediate value.

Let any value c be ascribed to x, and let /(c) be the corre-

sponding value of f{x) ; let c + h be another value which may be

ascribed to x ; then by taking A small enough f{c + h) may be

made to differ as little as we please fromy(c). For

Ac + h) =/(c) +//'(c) + j^/"(c) + ... + j^ /-'(«)
+
1/" {<=)

Then, by Art. 14, by taking h small enough, the first term of the

series hf'{G),
^—n/'X^)* fo/^'W? ••• which does not vanish, can

be made to contain the sum of all which follow it as often as we
please, and by taking h small enough this term will itself be ren-

dered as small as we please. Therefore /(c + h) -f{c) can be made
as small as we please by taking h small enough. This shews that

as X changes, f{x) changes gradually^ so that ii f(x) takes any

value for an assigned value of a?, it will take another value as near

as we please to the former, by taking another value of x which is

sufficiently near to the assigned value. Hence as x changes from

a to h, the function f{x) must pass without any interruption from

the value/(a) to the value/ (6); for to assert that there could be

interruption would amount to asserting that f{x) could take a

certain value, and could not take a second value as near as we

please to the first value.

/ 17. We do not assert in the preceding Article that f{x)

always increases from f{a) to /(&), or always decreases from f{a)

to/(6); it may be sometimes increasing and sometimes decreasing.

What we assert is, that it passes without any sudden change of

value, from the value f{a) to the value f{b). The proposition is

one of great importance, and probably will appear nearly evident

to the student on reflection. It is obvious that f{x) has some

finite value for every finite value ascribed to x, also we have

proved that an indefinitely small change in x can only make an

indefinitely small change in/ (a;), so that there can be no break in

the succession of values which /(a;) assumes.
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/ 18. The student who is acquainted with Co-ordinate Geo-

metry will find it useful and interesting to illustrate the present

subject by conceiving curves drawn to represent the functions.

Thus let /(a?) be denoted hjy, so that 2/=/(£c) maybe conceived to

be the equation to a curve ; then by supposing this curve drawn

for the part lying between x = a and x=^h, o. good idea is obtained

of the necessary consecutiveness in the values assumed by f{x)

between the values /(a) and/ (6).

It must be observed that we do not restrict a, h,f(a), /{b), to

be positive quantities; and by values intermediate between /(a)

and /{h) we mean intermediate in the algebraical sense; that

is, any quantity z is intermediate between f(a) and f(b) which

makes z —/{a) and/ (6) — z of the same sign.

19. If two numbers substituted /or n in a rational integral

expression f (x) give results with contrary signs, one root at least of

the equation f (x) =0 lies between those values o/x.

Let a and b denote the two numbers ; then/(a) and/ (5) have

contrary signs. By Art. 16, as a? changes gradually from a to b,

the express!on /(a?) passes without any interruption of value from

f(a) to f{b); but since f(a) and /(b) are of contrary signs the

value zero lies between them, so that /(x) must be equal to zero

for some value of x between a and b ; that is, there is a root of the

equation /(cc) = between a and b.

We do not say that there is only one root. And we do not

say that if /(a) and /(b) are of the same sign there will be no

root of the equation /(cc) = between a and b.

20. An equation o/ an odd degree has at least one real root.

Let the equation be denoted hj/(x) = 0, where

/(x) =p^"-hp^x''-' + ... +p„_rX +p,,

and n i"fe an odd number. < •.

When X is large enough the first term of /(«), namely pjx"^,

will be larger than the sum of all the rest by Art. 14, andf^there-

fore the sign of /(x) will be the same as the sign of p^x". ' Thus,

by taking x large enough, the sign of /(x) can be made the same
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as the sign of p^ when x is positive, and the contrary to that of p^

when X is negative. Since then /{x) changes its sign as x passes

from a suitable negative value to a suitable positive value, there

must be some intermediate value of x which makes /{x) vanish
;

that is, there must be some real root of the equation /(x) = 0.

We may determine whether this root is positive or negative.

For when we put zero for x the sign of /{x) is the same as that of

2?^. Thus if p^ and p^ have the same sign^ so that — is positive.

Pa

there Avill certainly be a negative root of the eqjiation /(£c) = 0;

7)

and if ^„ and p^ have contrary signs, so that — is negative, there
Po

will certainly be a positive root of the equation /(cc) = 0. Thus if

an equation be of an odd degree, and be brought into its simplest

form by dividing by the coefficient of the highest power of Xy iti

will have a real root of the sign contrary to that of the last term._J

21. An equation of an even degree which is in its simplest/orm,

and has its last term negative, has at least two real roots of contrary

Let f{x) = be the equation; then when x is zero f(x) is

negative by supposition. When x is large enough f(x) is posi

tive, whether x is positive or negative. Thus there is some

negative yalue of x which makes f{x) vanish, and also some posi-

tive value of X which makes f(x) vanish. That is, the equation

f{x)-Q has certainly one negative root and one positive root. J

22. ff the rational integral expression f (x) consists of a set of

terms in which the coefficients are all of one sign, followed hy a set

of terms in which the coefficients are all of the contrary sign, the

equation f (a?) = has one positive root and only one positive root.

By Arts. 20 and 21 the equation f(x) = must have one

positiveTroot; we will shew that it has only one positive root.

Let f{x) =p^x'* +p^x"~'' + p^x""'^ + ... +P„_tX -{-p^.

Suppose the coefficients jp^, p^, ...^^ all positive, and the remaining
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coefficients negative; let ^,+, = -P^+j, ^,+3 = -i',+2, "-Pn= -P„'

Then we may write /(aj) thus,

/(a=)=a."-' |;,x+i^,»='"'+i"X-'' + -+;'.-% - ^---p-]-

The expression Po^*" +pX~^ +^2^*^"^+ ••• +^, increases as aj in-

creases, unless r = 0, and then it remains constant; the expression

P P P .—^ + —^ + . . . + -~ diminishes as £C increases. Thus as x in-
£c a; X

creases from zero onwards, the two expressions cannot be equal

more than once. That is, f{x) = has onl^ one positive root.

The demonstration will be the same if we suppose the first set

of coefficients negative and the second set positive.

23. To prevent any mistake it will be useful to draw attention

to the precise results obtained in the last three Articles.

In Art. 20 it is proved that the equation considered has at least

one real root; it is not proved that it has one only. In Art. 21

it is proved that the equation considered has at least two real roots;

it is not proved that it has only two. In Art. 22 it is proved that

the equation considered has one positive root and onl^ one positive

root : it is not proved that it has no negative root.

24. The propositions in Arts. 20, 21, and 22, as to the exist-

ence of roots in certain cases, depend upon the fact that we are

able to shew that f{x) undergoes a change of sign or changes of

sign. We cannot infer conversely that if f{x) never changes its

sign within a certain range of values for x there is no root of the

equation f{x) = within that range of values for x. Take for

example x^ - 6x+9 ; this expression never changes its sign, and

yet it vanishes when x = 3: the expression is equal to (x — 3)^

But if the equation y(a3) = has no root within an assigned range

of values for x we are sure thaty(a;) never changes its sign within

that range of values for x.

The following statements respecting the absence of roots will be

seen to be obviously true

:
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(1 ) If the coefficients in f{x) are all positive, the equation

f^x) = has no positive root.

(2) If all the coefficients of the even powers of a; m/(x) have

one sign, and all the coefficients of the odd powers of x the contrary

sign, the equation/(cc) = has no negative root.

(3) lf/(x) involves only even powers of x and the coefficients

are all of the same sign, the equation/ (cc) = has no real root.

It is supposed in this case that there is a term independent

of a;.

(4) If f(x) involves only odd powers of x and the coefficients

are all of the same sign, the equation /(x) = has no real root,

except x = 0.

It is supposed in this case, of course, that there is no term in-

dependent of X.

We say in the last two cases that the equation has no real

root, and we do not say that the equation has no root, for we
know that by virtue of some conventions an equation may in some

cases have imaginary roots ; see Algebra^ Chapter xxv. And in

fact we shall now proceed to shew that imaginary roots 7nust

exist.

II. ON THE EXISTENCE OF A ROOT.

25. We shall now prove that every rational integral equation

has a root, either real or of the form a + b J- 1, where a and h are

real ; such an expression SiS a + b J— ly where a and b are real, we

shall call an imaginary expression. That is, when we use the term

imaginary we shall always mean that the expression to which we

apply this term is of the form a+bj- 1, where a and b are real.

26. The student is supposed to know that by virtue of certain

conventions, imaginary expressions can be used in algebraical

investigations, and theorems can be established respecting them.



I

16 ON THE EXISTENCE OF A EOOT.

Thus, for example, the positive value of the square root of a^ + h^

is called the modulus of each of the expressions a + hj-l and

a — h J— 1 ; and with this definition we can shew that the modulus

of the product of two imaginary expressions is the product

of the moduli of those two expressions. For the product of

a-^-h J- 1 and a' + 6' J- 1 is aa' — hh' + {ah' + a'h) J- 1, and the

modulus of this is the positive value of the square root of

{aa' - hhj + {ah' + a'h)', that is, of {a" + h') {a'^ + 6'^)
; that is, the

modulus is the product of the moduli of the two given expressions.

Also an imaginary expression a + hj—l is considered to vanish

when a and b vanish ; that is, an imaginary expression vanishes

when its modulus vanishes. Thus, by what has just been shewn, if

the product of two imaginary expressions vanishes, the modulus of

"one of the expressions must vanish; so that if the product of two

or more imaginary expressions vanishes, one of the expressions them-

selves must vanish ; and if one of the expressions vanishes the pro-

duct vanishes.

27. The student who has not paid attention to the subject of

imaginary expressions may consult the Algehra, Chap. xxv. The

proof however that every equation has a root, real or imaginary, to

which we shall now proceed, is somewhat difficult; the student

therefore on reading this subject for the first time may assume this

proposition, and reserve the remainder of the present Chapter for

future consideration.

28. We shall first shew that a root, real or imaginary, exists

for each of the following four equations :

aj« = l, a;" = -l, cc'' = +y^, cc" =-^^
(1) £c" = 1. It is obvious that cc = 1 is a root of this equation.

(2) £c" = — 1. If n is an odd number it is obvious that x = —l
is a root of this equation. If n is an even number suppose it equal

to 2w ; we have then to shew that there is a solution of x^'^= — 1

;

this amounts to shewing that tho-e is a solution of cc'"= '^J— 1, and

is therefore included in the next two cases.
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(3) a;" = + J- 1. If 71 is an odd number it must be of one of

the two forms im + 1 and 4m + 3 ; in the former case + J— 1 is a

root, since (+^-1)'*"*^^ = + ^-1, and in the latter case-^— 1 is a

root, since (- ^- 1)''"'"^^ = + J- 1. If w is an even number suppose

it equal to mp, where m is an odd number, and p is some power of

2, say 2'. Put ^j = ocf, then the equation x"'^ = + J-l maj be

written y"'- + J—^, and by what has been already shewn + J—

I

or - J- 1 is a suitable value of ?/, according as m is of the form

4r + 1 or 4r + 3. We have then to find a value of x which will

satisfy af= + J-l or of = -J^, where p = 2^. The required

value can be obtained by common Algebra. For take the square

root of + J- 1 or of - J- 1 ; this will give an expression of the

form a + (Sj-l, where a and y8 are real; take the square root of

a + pj—ly which will give a similar expression; and so on: see

Algebra, Chapter xxv. Thus after q extractions of the square root

we arrive at an expression a + bj-l^ such that (a + hj-iy

(4) x''^- s/^. This case is treated like (3). If n be an odd

number, -J^ or + J— 1 is a root, according as n is of the form

4«i + 1 or 4m + 3. If n be an even number suppose it equal to mp,

Avhere m is an odd number and p = 2'', and proceed as before.

29-.^ Every rational integral equation has a root real or

imaginary.

Let /(cc)=PQa;" + PjCc"~^+^2^"~^+ ... +p^_^x^-^p^_^x+p^, where

the coefficients p^, Pj, ...^?„_2, i\_ij P^ ""^^y ^ either real or

imaginary ; we have to shew that the equation/(a?) = has a root

either real or imaginary. If any imaginary expression be substi-

tuted for X vcifix), we shall obtain a result of the form U+Vj-l,

where U and V are real quantities, and we have to shew that an

imaginary expression must exist which will make U=0 and F= 0.

This we prove in the following manner. Since Z7^+ V^ is always

a real positive quantity, if it cannot be zero there must be some

Iue
which is not greater than any other value, that is, there must

T. E. 2
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be some value which, cannot be diminished ; but we shall now prove

that if U^+V^ have any value different from zero we can diminish

that value by a suitable change in the expression which is substi-

tuted for x; so that it follows that C/'^+K" must be capable of the

value zero, that is, U and V must vanish simultaneously.

Suppose a particular value assigned to x, namely, a + hj— 1

;

let f{x) then become F+Qj—lj where P and Q are not both

zero. Now put a + b J—l + h for x m/(x) ; the value which /(cc)

then takes may be found by first expanding /(x + h) in powers of

k, and then putting a + b J- 1 for x. Suppose then

f{x + h)=X + hX'+flx"+ + uPo\3

where X, X', X", ... are functions of x; see Art. 10. Put a+bj^
for X, then X becomes F+Q J-\. Some of the coefficients

X\ X'\ ... may vanish for this value of x, but they cannot all

A"
vanish, since the last coefficient, which is that of ^, is

_Po |^.

Suppose /i"* the lowest power of h for which the coefficient does

not vanish, and denote the coefficient of 7^ by R+Sj-\, so that

R and S are not both zero. Thus when a + bJ— \ + h is substi-

tuted for x the function /(ic) becomes

P+QsFl+ (E + Sj^) ir + ...

,

where the terms not expressed can only involve powers of h

higher than /A Denote this by P'+Q'J-\.

Let h = €t, where e is a real positive quantity. By Art. 28

it is in our power to take t so that f may be -f- 1 or — 1 ; thus we
can make

P'+Q'J^i=P+Qj-l^{R + Sj^)^'^+...,

'so that . F = P^R^'+ ...,

Q'=Q^Se"'+...,

and F"+Q"=r + Q'^ 2 {PR +QS)i"+ ...,
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where the terms not expressed can only involve powers of e

liigher than e'".

Kow c may be taken so small that the sign of all the terms

involving c in the value of F'^+Q'^ will be the same as the sign

of ±2 (FE + QS) e"*, provided FH+QShe not zero; see Art. 14.

We will first suppose that FE + QS is not zero. Then the

sign o^F"'-¥Q"-F'-Q' is the same as thesign oi ^2{FR+QS)^\
when e is taken small enough ; and we can ensure that this sign

shall be negative by supposing that ^'" is - 1 or +1, according as

PRa-QS i^ positive or negative. We can therefore make F'^-^Q'^

less than F^+ Q\

Next suppose that FR + QS is zero. Then instead of taking

f = ^\, take C = ^ J— 1. Proceeding as before we shall obtain

F + Q'J^=:F + Qj^^{R + Sj^)e"'\/^+...,

so that F'=F^Si"+...,

Q'=Q^R€'^+...,

and F"+Q" = F'+Q'^ 2{QR- FS) e"" + ...
,

where the terms Hot expressed can only involve powers of e

higher than c'".

Now (FR+QSy+{QR-FSy = {F'+Q'){R'+S'); and this

cannot, be zero, because by supposition F^+Q^ is not zero, and

R^+S^ likewise is different from zero. Thus since FR + QS is

zero, QR-FS is not zero. Therefore the sign of 7^'+ Q'^-F^-Q^

will be the same as the sign of =>= 2 (QR-FS) e^ when e is taken

small enough; and we can 'ensure that this sign shall be negative

by supposing that f is —J-I or +^-1, according as QR—FS is

positive or negative. We can therefore make F^^ + Q'^ less than

F'-^Q\

We have thus shewn that when TJ^-^ V^ has any value different

from zero we can diminish that value by a suitable change in the

expression which is substituted for x; that is, U^+V^ is not

susceptible of any positive value which cannot be diminished;

2—2
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lience, as we have already stated, it must be possible that U=0
and r= simultaneously.

30. It remains to be shewn that a and b in the expression

a + h J^i which is the value of x that makes f{x) vanish, are

finite.

We have fix) =p^x'' [l + -^ + ^^^ ... + l'^\
,

Substitute a + h J— 1 for x ; theny (:c) becomes

Take any term of the series within the brackets, for example,

that involving p^ ; we have

P,{a+bJ-\y Poi^'+by pAo^'+br pA'^'+by

= A +J3 J-1, say.

Then it is evident that A and B diminish without limit as

a and b increase without limit. Thus denoting the value of f(x)

when x = a + b J- 1 hj 17+ Vj-\, we have

U+Vj^ =p,{a+bJ-[Y{l+A'+B'J^],

where A' and B' diminish without limit as a and b increase with-

out limit.

If we put a-b J- 1 for x we shall obtain a result which can

be deduced from that just given by changing the sign of V-1 :

thus

u-vj:^=p^{a-bj:iy{i+A'-B^J~[};

therefore U' +V =pf(a'+by {(1 + Ay+ B"],

and this increases without limit when a and b increase without

limit; for the factor (a^+b^)" increases without limit, and the

factor (l+Ay+B'^ tends to unity as its limit. Thus U'+V^
cannot vanish when a and b are indefinitely great, or when either

of them is indefinitely great.
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31. It will be observed in the demonstration of Article 29,

that the coefl&cients of the proposed equation may be either real

or imaginary. We shall however in the subsequent part of this

book always suppose the coefficients to be real unless the contrary

be stated.

32. The proof given in this Chapter of the existence of a root

of an equation is called Cauchy's proof. The subject has recently

been again discussed by mathematicians, and two memoirs will be

found on it in the Tenth Volume of the Transactions of the

Cambridge Philosophical Society, one by Mr De Morgan, and the

other by Mr Airy; there is a supplement to the latter. It ap-

pears from Mr De Morgan's memoir that the proof known as

Cauchy's had been previously given in substance by Argand.

We may briefly notice an objection which has sometimes

been urged against Cauchy's proof. It has been said that it is

conceivable^ until the contrary is shewn, that U^ + F^ Ttiay ap-

proach indefinitely near to some limit greater than zero without ever

reaching this limit. But this objection can be removed by the aid

of Art. 30. Let z stand for W + V\ that is, for

f(a + bj^)xf(a-hj^:
then we know that z is finite for finite values of a and h, and infi-

nite for infinite values of a and h. Hence the least value of z

must occur when a and b have finite values; and if the least value

of z were not zero the demonstration of Art. 29 would be contra-

Jcted.

m The student who is acquainted with the elements of Geometry

of Three Dimensions will be assisted by supposing a, b, and z to be

coordinates of a point in space, and imagining the surface deter-

Lcd by the relation

z=f{a + bJ^ y^fia-b 7^).



22 PROPERTIES OF EQUATIONS.

III. PROPERTIES OF EQUATIONS.

/^ 33. Every equation has as many roots as the number which

expresses its degree, and no more.

Suppose the equation to be of the n^^ degree, and denote it by.

fix) = 0, where/(a;) =pjid' + Pj^c""^ + jo^cc""^ + +i^„_i^ -^Pn- -^7

Chapter il. the equation/ (ic) = has a root either real or imaginary;

let a^ denote that root. Therefore /(x) is divisible by x—a^, by

Art. 6; so that f{x) = (x— a,)^^ (x), where
<f>^

(x) is some integral

algebraical function of x of the.(?^ - l)*** degree. Again by Chapter

II. the equation ^^ (x) = has a root either real or imaginary; let

a^ denote that root. Therefore 4>i{^) is divisible by x — a^, by

Art. 6 ; so that
(f)^

(x) = (x — a^ <^^ (x), where cfi^ (x) is some rational

integral algebraical function of x of the (n— 2)'^ degree. Therefore

f(oc) = (x-cCi){x — a^)<j)^(x). By proceeding in this way we shall

obtain n factors of /(x) denoted by x-a^, ^-^2' ^-^„j
and the only other factor must be p^ because the coefficient of x"

infix) isp^. Thus

f{x)=p^{x-aXx-(^X^-%) (^-»«)-

Hence the equation /(a;) = has 71 roots, becausey* (a^) vanishes when

we put for X any one of the n quantities a^, a^, .a„. And the

equation has no more than n roots, because if we ascribe to a; a

value c which is not one of the n values a^, a^, a„, the value

oi'f{x) becomes

this is not zero because every factor is different from zero; and the

product of factors real or imaginary will not vanish if none of the

factors vanish; see Art. 2Q.

34. The roots in the preceding Article are all either real, or of

the form a+h J —\, where a and h are real. And some of the

roots a^, a^, a^ may be equal so that there are not necessarily

Qi different roots of an equation of the n^^ degree. The student may
perhaps be disposed to doubt the propriety of saying that an equa-
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tion of the n^^ degree has always n roots, when these roots are not

necessarily all different. It is however found convenient to con-

sider that an equation of then^^ degree always has n roots, although

some of the roots may be equal
;
just as in common algebra it is

fQund convenient to speak of the quadratic equation ax^ + bx + c =

as having two equal roots when 6^ = 4ac, rather than as having

then only one root.

35. The only preceding Article of the book which can be at

all affected by the consideration of the possibility of equal roots,

which has just been introduced, is Article 22. In that Article it

is shew^n that an equation of a certain form cannot have two different

positive roots, but the demonstration there given does not exclude

the possibility of a second root or of more roots equal to the root

which necessarily exists. After we have proved Descartes's Hule

of Signs however it will be obvious that the equation in question

can have only one positive root without any repetition.

36. If we know a root a^ of the equationy(x) = we know

that /(x) = (x — a^)cj>^ (x) where ^^ (x) is a function of x one degree

lower than /{x) j and the remaining roots of the equation f(x) =
can be found if we can solve the equation <j>^ (x) = which is one

degree lower than the equation /(x) = 0. Similarly if we know

two roots a
J
and a^ of the equation /(^x) = we know that

f(x) ^(x — a^ix — a^ cf)^ {x) where cf>^ {x) is a function of x two de-

grees lower than/(ic); and the remaining roots of the equation

f{x) = can be found if we can solve the equation ^^{x) = 0, which

is two degrees lower than the equation /"(cc) = 0. And so on.

37. If f{^) be any rational integral algebraical function of x

of the n}^ degree, we have shewn that f{x) must be capable of

resolution into n factors of the first degree, so that

IK /{^)=Po{^-^i) (^-aj (^-a„)y

where a^, a^, a^ are either real or imaginary. It is to be

observed that there is only one system of factors into which f{x)

can be resolved; this has already appeared when the quantities

I^a„,...a
are all unequal, but it still remains to be shewn that when
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some of the quantities a^,a^,...a^^, are equal, /(ic) cannot be formed

in different ways in which the same factors occur with different

exponents. If possible suppose that

and also f{x) =p^ (x - a^y(x - a^y{x - a.^y

Suppose r greater than p ; then dividing by (x - ajp we have

Po (^ - ^i)'"'' (^ - ^2)X^-%y =2'o(^- (^,Y{^ - ^i"

!Nbw the left-hand member vanishes when aj = a^ , but the right-

hand member does not ; the expressions then cannot be identical,

j
and therefore /(cc) cannot admit of more than one system of factors.

1\^ 38. If any rational integral function of a of the n* degree

vanishesfor nfiore than n different values ofx every coefficient in the

function must be zero, so that the ftmction 7nust he zero for every

value ofx.

For if any coefficient in the function is not zero the function

will not vanish for more than 71 different values of x, so that if the

function does vanish for more than n different values of x every

coefficient in the function must be zero.

39. The proof in the preceding Article makes the proposition

depend upon the fact that an equation of the n^^ degree has n

roots, and thus ultimately upon the investigations in Chapter 11.

We may however establish the proposition by an inductive proof

which does not require the investigations in Chapter 11.

Suppose it true that when a function of x of the n*"* degree

vanishes for more than n different values of x every coefficient in the

function is zero ; and that we require to shew that when a function

of x of the {n+ l)**" degree vanishes for more than n+1 different

values of x every coefficient in the function is zero.

Let fix) = q^x"*^ + q^x"" + q^x"'^ + 4- q^x + q„+^f and suppose

that more than n+1 values of x makey (a?) vanish. Let a be one

of these values so that/(a) =^ 0. Then f{x) =f{x) -f{a)

= q^(x^^^-a'''-') + q^{x''-a") + q^{x-^-a-^) + +5'„(^-«).
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This may be written in the form

f{x) = (x-a)<f>{x),

where <}> (x) is a function of x of the r^^ degree. Since then there

are more than n different values of x, exclusive of a, which make

f{x) vanish, there are more than n different values of x which make

<^ (x) vanish; therefore by supposition every coefficient in <^ {x) is

zero. Now by Art. 7,

^ (^) - 2'o^" + fc^ + ^>""' + &^'

+

q,(^ + 3',)^"'" + ;

thus q^^O because the coefficient of cc" is zero, then q^ = ^ because

the coefficient of £c"~^ is also zero, then 5'^ = because the coefficient

of a;"~^ is also zero, and so on.

I

Thus every coefficient infix) is zero.

This establishes the proposition, since it is known to be true

for expressions of the first and second degree.

40. 1^ f{x) be any function of x of the n^^ degree we have

shewn thaty (cc) may be resolved into n factors of the first degree.

Each of these factors will divide /(ic) so that/ (a?) will admit of n
divisors of the first degree. Similarly as the product of any two

of the factors of the first degree contained i-n.f{x) will be a factor

of the second degree contained in f{x), it follows that f{x) will

admit of———^ divisors of the second degree. Proceeding thus

we see that/(:c) will admit of as many divisors of the r^^ degree

as there are combinations of n things taken r at a time, that h,f{x)

will admit of
—

^^
'~ — divisors of the r*'* deofree.

^o'

W Bat it must be remembered that the divisors of any degree,

as for example the second, will not necessarily be all different^ be-

cause the factors of the first degree m.f{x) are not necessarily all

f^'^'^rent.

The proposition however shews that there cannot he

e than — LilS^ i different divisors of the r"' degr^
. , ee.
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41. In an equation with real coefficients imaginary roots occur

in pairs.

Let f{x) be a rational integral function of x in which the coeffi-

cients are all real; then if a + pj -I is a root of the equation

/(x) =0 so also is a- pJ -1 a root.

For when a+ /3 ^J
— I is put for cc the functiony (a;) takes the

form P + QjSJ —1, where F and Q involve even powers of ^. This

is obvious, because if such an expression as ic*" be expanded, where

x = a + (3J —1, the even powers of P J - I will give rise to real

terms, so that J — 1 will occur only in connexion with odd powers

of 13. And as the coefficients in f (x) are supposed real J -I cannot

occur except with some odd power of /8. If then a — jB J — \ be

substituted for x in f{x) the result will be obtained by changing

the sign of fB in the result obtained by substituting a + j3J -I for

x-y the result is therefore P -Qj3J -I'

Now suppose that a+ ^ J -1 is a root o?/(x) = 0; then

P+QI3j^^=0,
and, as a real quantity P cannot be equal to an imaginary quan-

tity - QI3 J - I, this requires

P=0, and^ = 0.

And then a — j3 J — \ is also a root of f{x) = 0.

42. Thus if f{x) be a rational integral function of x with real

coefficients, and have a factor x — a^ where a^ = a + ^ ^ — 1 , it has

also a factor x — a^ where a^^ = a—PJ — 1- The product of the

two factors x — a — jSJ — 1 and x — a + pj — l, is (a: — a) ^ 4- ^', or

x^ — 2aic + a^ + jS^'j that is, the product is a real quadratic factor.

43. We have thus arrived at the result that any rational

integral function of x with real coefficients may be regarded as the

product of real factors, either simple or quadratic; and that there

is only one such system of factors for any given function. Thus

f(x) must be of the form (x — a){x — h){x - c) . . .{x - k) <^ (x), where
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a, h, c,...k are all the real roots -of /(x) = 0, and c(> (x) is a function •*" *•

consisting of the product of quadratic factors which cannot change

its sign. '\.

44. In the manner of Art. 41 it may be shewn that if the ^ "

coefficients of any rational integral function /'(a;) of x be themselves

rational^ and the equation f(^x) = has a root of the form a + Jb '

where Jb is a surd, the equation has also a root a — Jb. Thusy(a?) ,

'

has a rational quadratic factor {x — df — b.

> 45. To investigate the relations between the coefficients . of the ., ^

/•/unction f (x) and the roots of the equation f (x) = 0. ^" '^

Let /(x) = x" + p^x"''^ +p^x'''' + ... +/>„_, flJ +2^,/f

and suppose that the roots of the equation /(x) = are a^,a^,. ..a^

;

then

/(x) =:(x~ a,) (x -a^)...{x- aj.

Since these two expressions for/(x) arc identically equal, relations t

exist between the coefficients p^, Pzy-Pn^ ^^^ *^^® quantities- ,

ttj, »2,...a^; these relations we shall now exhibit.

By ordinary multiplication we obtain

^^ {x — a^){x-a^)=x^-{a^ + a,^)x + a^a^, .^

^K. (x - aj{x - a,J(x - a^ = x^ - {a^ + «„ + a^ x^

+ (a^a^ + a^ttg + a^a^ + a^^g + «2«4 + %<^^ ^^

- («1V3 -^- ^l«^A + «l«^3«^4 + ^2^4) ^^ + »l«^2«3^4 • '

Now in these results we see that the following laws hold

:

^p I. The number of terms on the right-hand side is one more
^nan the number of the simple factors which are multiplied"

together.

II. The exponent of x in the first term is the same as the

number of the simple factors, and in the other terms each exponent

is less than that of the preceding term by unity.



28 PROPERTIES OF EQUATIONS.

III. The coefficient of the first term is unity; the coefficient

of the second term is the sum of the second terms of the simple

factors; the coefficient of the third term is the sum of the products

of every two of the second terms of the simple factors; the coeffi-

cient of the fourth term is the sum of the products of the second

terms of the simple factors taken three at a time, and so on;

the last term is the product of all the second terms of the simple

factors.

We shall now prove that these laws always hold whatever be

the number of simple factors. Suppose these laws to hold when

n-1 factors are multiplied together; that is, suppose

(x - a^) {x-a^)...{x- a
,_
J = x"~' + g^oj""^ + q^x"~^ + ... + q^^^^x + q^^_^ ,

where q^ = the sum of the terms — a^, —a^, ... — a^_^
,

q^ = the sum of the products of these terms taken two at a

time,

q.^ = the sum of the products of these terms taken three at

a time.

q,^_^
= the product of all these terms.

Multiply both sides of this identity by another factor a; — aj thus

{x-aj{x- eg ...{x- a) =02" + {q^
- a) x"-' + {q,_

- q^a) aj""'

+ fc-^/0^""'+ -^„-x«„-

Now q^—a= — a, — a„— ... — a , —aII II 1 2 II—

I

n

= the sum of all the terms - a^, —a^,...-a^;

9, - (Zi«„
= q, + a,{a^ + a^+... + «„_J
= the sum of the products taken two and two of all

the terms — a,. —a„, ...— a :

= the sum of the products taken three and three of

all the terms — a^, -a^,...-a^;

9n-\^n - ^^® product of all the terms - a^ , - a^, . . . — a^.
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Hence if the laws hold when n-1 factors are multiplied together

they hold w^hen n factors are multiplied together ; but they have

been proved to hold when four factors are multiplied together,

therefore they hold when five factors are multiplied together, and

so on ; thus they hold universally.

We have used the inductive method in establishing these laws;

but they may also be obtained in another way : see Algebra

j

Art. 506.

Since ii a^, a^j ... u^ are the roots of the equation

the left-hand member is equivalent to the product of the factor^

x-a^^ x-a^, ...x-a^^, we have the following results. In anyW

equation in its simplest form the coefficient of the second term is,

equal to the sum of the roots with their signs changed ; the coeffi-\

cient of the third term is equal to the sum of the products of everj^

two of the roots with their signs changed ; the coefficient of th

fourth term is equal to the sum of the products of every thre

of the roots with their signs changed; the last term is th

product of all the roots with their signs changed.

Or we may enunciate the laws tjius : the coefficient of the

second term with its sign changed is equal to the sum of the roots

;

the coefficient of the third term is equal to the sum of the pro-

ducts of every two of the roots ; the coefficient of the fourth term

with its sign changed is equal to the sum of the products of every

three of the roots ; and so on. Thus generally if p^ denote as

usual the coefficient of cc""'' in the equation, (— l)'"p^ = the sum
the products of every r of the roots.

i 4G. It might appear perhaps that the relations given in

the preceding Article would enable us to find the roots of any

proposed equation ; for they supply equations involving the roots,

and the number of these equations is the same as the number

of the roots, so that it might be supposed practicable to eliminate

all the roots but one and thus to determine that root. But on

attempting this elimination "we merely reproduce the proposed

equation itself. Take, for example, the equation of the third

degree
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suppose the roots to be a^h, Cy then

-a — h-c=p^f
ah + hc + ca =p^

-ahc=p.^.

In order to eliminate h and c and so to obtain an equation

which contains only a, the simplest method is to multiply the

first of the above three equations by aJ^, and the second by a,

and add the results to the third. Thus

— a^- a% — a^c + a^b + ahc + ca^- ahc =p^(i^ + p^a + p^

;

that is, a^+p^a^+p^a +^3=0;

we have thus the proposed equation with a instead of x to

represent the unknown quantity. And it is not difficult to see

that we ought to expect a cubic equation in a, if we eliminate

b and c from the relations we are considering. For the letters

a, b, c represent the roots without any distinction of one root

from the others; thus any equation which we deduce for deter-

mining a ought to allow of three values for a, since a may stand

for any one of the three roots of the proposed equation. Thus

we may feel certain that we shall only reproduce the original

form of the proposed equation by performing any algebraical

operations on the relations which connect the known coefficients

of the equation with its unknown roots, with the view of elimi-

nating all the roots but one.

47. Although the relations given in Art. 45 will not de-

termine the roots of any proposed equation, we shall find that

they will enable us to deduce various important results with

respect to equations. For example, if a^, a^, a^^ are the roots

of the equation

we have —p^ = a^+a^+a^+... + a^^,

thus "^)«j^ - 2p^ = a/+ a/+ ^3^+ . . . + a/,
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that is 'Px'- 2^2 is equal to the sum of the squares of the roots

of the proposed equation. If then in any equ'ation f^— 2p^ is

negative, the roots of the equation cannot be all real.

48. In the same manner as in the preceding Article we

may deduce other relations involving the roots. Thus for ex-

ample

(-l)"~^/>^_^ = the sum of the products of the roots n -1 at a time,

(- 1)"^„ = the product of all the roots

;

therefore by division

= the sum of the reciprocals of the roots.

Also p. —'=(«, + »„+ ...+a)(~ + - + ...+-)

= 51+ -i + -• + ... + -" +-^+...

;

therefore -^ + -^ + ... + -^ + -^ + ,,,=ULji^ -n.

I

Pn

lY. TRANSFOEMATION OF EQUATIONS.

49. The general object of the present Chapter is to deduce

from a given equation another equation the roots of which shall

have an assigned relation to those of the given equation. It

will be seen as we proceed that various transformations of this

kind can be effected without knowing the roots of the given

equation; and hereafter examples will occur shewing that such

transformations may be of use in the solution of equations.

^r 50. To transform an equation into another the roots of which

are those of the proposed equation with contrary signs.

Let f(^x) = denote the proposed equation; assume y = — x,

so that when x has any particular value, y has numerically the
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same value but with, the contrary sign ; thus x^ — y, and tlie

required equation is /(- y) - 0.

If f{x) =py+p^x'-' +p,x"-' +'... +p„_,x +;?,,,

the equation /(-?/) = is

Po (- yT + Pi (- yT~' +P2 (- 2/)""' + • • • -Pn-iV +Pn = ^»

that is, py-py~'+py~^~'--^p„-,y^p^=^]

thus the transformed equation may be obtained from the pro-

posed equation by changing the sign of the coefficient of every other

term beginning with the second.

51. The rule at the end of the preceding Article assumes

that the proposed equation has all the terms which can occur

in an equation of its degree, that is, it is assumed that no co-

efficient is zero. But suppose we take an example in which

this is not the case; thus let it be required to transform the

equation

x' + 3x'-4:X^-ix+7 = 0,

into another in which the roots shall be numerically the same

but with contrary signs. Put x = -y, and we get

y^-3y'+4:y^ + Ay + 7 = 0.

We may if we please write the original equation thus,

x'+3x' + 0x*-Ax^ + 0x'-4:X + 7 = 0;

then the transformed equation according to the rule in Art. 50, is

2/6 _ 3f + Oi/ + 4:y^+ Oy' + 4?/ -i- 7 = 0,

that is, 2/'-%' + 42/' + 42/ + 7-0,

as before.

An equation is said to be complete when it has all the terms

which can occur in an equation of its ' degree, that is, when no

coefficient is zero. And we shall sometimes find it useful to

render an equation complete by the artifice used above, that is,

by introducing the missing terms with zero for the coefficient

of each of them.
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52. To transform an equation into a/nother the roots of which

a/re equal to those of the proposed equation multiplied hy a given

quantity.

Let fix) = denote the proposed equation ; and let it be

required to transform it into another the roots of which are

k times as large. Assume y = kx, so that when x has any par-

ticular value, the value oi y is k times as large ; thus ^ = t ,

and the required equation is /( f ) = 0.

53. For example, transform the equation

, Sx' 5x 2 .^—2^T-9 = ^

into another the roots of which are k times as large. Put a? = t

and then multiply throughout by k^ ; thus we obtain

3 3ky' 5k'y 2k^ ^

This example will shew us an application which may be made

of the present transformation. The coefficients of the proposed

equation are not all integers; by properly assuming k we may

make the coefficients of the transformed equation all integers.

For instance, if ^ = 6, the transformed equation is

2/' -92/^ + 452/ -48 = 0.

Generally, suppose the proposed equation to be

x^'+p^x'*-' +p^x''-'+ ... +i?„_ia5+i?„ = 0,

then if we put a5 = |, and multiply throughout by k", all that

is necessary to ensure that the coefficients of the transformed

equation shall be integers is, that for each term of the transformed

equation ^^^'"y""'', every prime factor which occurs in the deno-

minator of p^ shall occur to at least as high a power in ^^.

T. E. 3
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54. To transform an equation into another the roots of which

shall he less than those of the proposed equation hy a constaM

difference. *

Let f{x) = denote the proposed equation ; and let it be

required to transform this equation into another the roots of

which shall be less than the roots of the proposed equation by

a constant difference k. Assume y=x — k^ so that when x has

any particular value, the value of y is less by k] thus x = k + y^

and the required equation \&f{k+y) = 0.

By Art. 10 the expanded form of the equation f{k + y) = is

f(k)+yf\k)+^r(k) +^^r'{k) + ... -f 2/"*^=o.

Thus if f{x)=py+p,x"-'+p^x''-''+...+p^_,x+p„

the equation /(A; + 2/) = when arranged according to descending

powers of y is by Art. 12

+ ...

r / n\ 7 n(n-\) ...in-r + V) ,-)„_.
^[Pr-^{n-r + \)p^_Jc+ ^— '-y -Po^]y

+ ...+/(A;) = 0.

A good practical mode of conducting the operation will be

found in Chapter xviii.

55. If an equation is to be transformed into another the

roots of which exceed those of the proposed equation by the

constant quantity h, we use the method of the preceding Article.

Let the proposed equation be denoted by/(aj) = 0, and suppose

y = x + h', then x = y-hy and the required equation i3f(y-h) = 0.

Thus we have only to put - A for ^ in the result of the preced-

ing Article, and we obtain the required equation. But in fact

this is included in the preceding Article; for that Article does

not require ^ to be necessarily a positive quantity.

56. The principal use of the transformation in Art. 54 is to

obtain from a proposed equation another which waaits am, as-
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signed term. Thus if we wish the transformed equation in 2/ to

be without its second term, we take k such that p^ + npjc — 0,

that is, k = — "^-^
. If we wish the transformed equation in y

Wo
to be without its third term, we must find k from the quadratic

equation

p, + {n- \)pjc + '^^^ >o^ = ^•

And generally, if we wish the transformed equation in 3/ to be

without its (r + 1)*'' term, we must find k from an equation of

the r^ degree, namely

r r(r-V) \r\n-r
pu + "Lpk^-^ + "^y

Y, p,k^-'^ . . . +^=p=^:

We shall see hereafter that the solution of an equation is some-

times facilitated by first removing some assigned term.

p 67. For example, transform the equation x^ -W + 4a; + 5 =

into another without its second term. Here PQ = ^i p^ = —^ ') thus

^ = 2, and the required equation is

(y + 2)»-6(2/ + 2)«+4(2/ + 2) + 5 = 0,

that is, y'- 8^-3 = 0.

I^P' Again, transform the equation x^—2x^— 4a;+9 = into another

without its third term. Put y + k for x ; the transformed equa-

tion is

{y + ky-2{y + ky-4:(y + k) + 9 = 0,

that is, y'+ y' {Sk -2) + y (3F- 4^ - 4) + ^»- 2^- 4yfc + 9 = 0.

^fe If the third term is to disappear k must be found from the

equation 3A^ - 4yb - 4 = ; this gives k=2 or - f. With the

value k = 2 the transformed equation is

/+ 42^=4-1 = 0.

With the value k = -^ the transformed equation is

I 3—2
A .-A
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58. To tromsform an equation into a/nother the roots of which

a/re the reciprocals of the roots of the proposed equation.

Let fix) = denote the proposed equation. Assume y = - ,X

so that when x has any particular value, the value of y is the

reciprocal of that value ; thus x=~ and the required equation is

4)=»-

Thus ^^f{x)=p^x''+p^x'"^+p^x''~^+...-\-p^_^^x+p^ the equa-

tion / (-) = is

y y iT 2/
^^

that is, i?„2/"+;?„_y"'+i?„_y+ ... +i?iS^ + i?o
= 0.

59. To transform a/n equation into a/nother the roots of which

a/re the squares of the roots of the proposed equation.

Let/(£c) = denote the proposed equation. Assume y = x^j so

that when x has any particular value the value of y is the xSquare

of that value : thus x=Jy and the required equation \sf{Jy) = 0.

Thus if /(ic)=i?o*'*+i?ii«"~^+i?a^"~^+ ... +^„_iaj + ;?^ the equa-

tion f{Jy) = is

« n-l n-a ,

py+p,y' +Ps^' +'-'+p„-y+Pn=^-

By transposing and squaring we have

/ n n-2 n--4 Ns / «-l n-S Ns

Kpy+p^y" +P4y' +•••/ =\Fi2/' +p^' +•••/•

The equation will be in a rational form when both sides are

developed, and by bringing all the terms to one side we obtain

PoV+(^p,p.-p.') }/'-'+ {2p.p.+p,'- ^p.p>) t/"-'* - =0.
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60. These cases of transformation of equations might be

increased, but we have given sufficient to explain this part of the

subject. "We -will conclude with three examples which will illus-

trate the use of some of the relations established in Art, 46.

(1) If the roots of the equation x^+pa^ + g'a; + r = be a, 6, c,

form the equation of which the roots are

a h c

V

6 + c' c + a^ a + h'

Denote the required equation by

Then we have, by Art. 45,

^ a b c-F = Y + + -,,

o+G c+a a+o

ah ho ca

^^{b + c) (c + a)
*"

(c + a) (a + b)'^ (a + h) (b + c)*

(b + g){c + a) (a + b)'

a+b + c = -p, ab + bc + ca = qy abc = -r.

Thus we may now proceed to express the values of P, Q, and

in terms of p, q, and r. For example

i? =^^K ""
(b + c){c + a){a + b)'

now by actual multiplication we find

k(b + c) {c + a)(a+b)={a + b + c) {ah + bc+ ca) -a^

= -pq + r;

T
therefore R = .

K
T-pq

Similarly we can express P and Q,
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But we may evade the trouble of this process by an algebraical

artifice. We have

b + c a + b + c-a —p — a'

Thus if V = , when x takes the value a the value of y is
^ p + x'

^

, : and similarly when x takes the values b and c the values of

y are respectively and
c + a a + 6'

Thus the required equation will be obtained by eliminating x
X

between the proposed equation and y = .

Hence x--y^— ; and by substituting this value in the pro-

posed equation we obtain

{\^yf^{\^yf 1+2/
'

. or r (1 + yj +pY (1 + y) -pqy (1 + yf-vY

=

0,

that is (r -pq) y^+{3r +p^- 2pq) y^ + (3r -pq) y + r = 0.

Hence by this method we arrive indirectly at the values of P, Qy

and E : we see that

a b c _ Sr+p^— 2pq

b + c c + a a + b r —pq

ab be ca 3r-pq
(b + c)(c + a) (c + a)(a + b) (a + b) (b + c) r-pq ^

abc _ r

(h + c){c + a)(a + b)~ r -pq

'

The last result has already been obtained by direct investiga^

tion.
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(2) Required to transform the equation x^ + qx + r = into

another the roots of which are the squares of the differences of the

roots of the proposed equation.

Let a, by c denote the roots of the proposed equation; then, by

Art. 45,

a + b + c = 0, ab + bc + ca=q, abG = — r;

therefore a^ + 6^ + c^ = - 2q.

The roots of the transformed equation are to be {a - bf, (b - cf,

and {a-cy, now

= -2g + (T:
^ c

2r
thus iiy = -2q + of, when x takes the value c the value of yX

is (a — bY; and similarly when x takes the values a and 6, the values

of y are respectively {b — c)' and (c - a)^. Thus the transformed

equation will be obtained by eliminating x between the proposed

equation and y = — 2q + x^.

Thus x^ + qx + r = 0,

and x^+(2q + y)x-2r = 0;

therefore {q + y)x-3r=0.

3r
Hence x = ; substituting this value in the proposed equation

and reducing, we have finally

f + Qqy" + 9q'y + 277^ + 4^' = 0.

Thus if 27r^ + 4^^ is positive the transformed equation has a

real negative root by Art. 20; and therefore the proposed equation

must have two imaginary roots, since it is only such a pair of roots

which can produce a negative root in the transformed equation.

If 27r^ + 4^^ is zero the transformed equation has one root equal

to zero, and therefore the proposed equation must have two equal

roots.
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(3) Eequired to transform the equation oi? + 'pv? + g'as + r =

into another the roots of which are the squares of the differences

of the roots of the proposed equation.

Put x = Qc! -^\ thus the proposed equation becomes

that is, o;'^ + g-V + r' = 0,

where ^ =g._^, y=^_^+^.

Each root of the last equation exceeds the corresponding root of

the proposed equation by -^ ; and thus the squares of the differences

of the roots of the last equation are the same as the squares of the

differences of the roots of the proposed equation. Therefore by the

former example the required equation is

y^ + e^y + ^(^Sj + 27r'^ + 4^'^ = ;

that is,

8 o/o ^^ 2 /Q 2X2 (2/-9^g + 27r)V4(3g-/)^ .

Hence if a, 6, c are the roots of o^ + poi? + gcc + r = 0, we see

that

(a-6y+(6-c)^ + (c-a)^ = -2(3g-/),

(a-6)^(6-cr(c-<=-I,{(2/-9i7^+27rr + 4(3g-/)^}.

Y. DESCARTES'S RULE OF SIGNS.

61. We have already in Arts. 21... 24 given instances of the

connexion which exists between the signs of the coefficients in /"(aj)

and the nature of the roots of the equation /(a?) = 0, and we now
proceed to investigate a general theorem on the subject after some

preliminary definitions.
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62. Wlieii each term of a set of terms has one of the signs +
and — before it, then in considering the terms in order, a continioa-

tion is said to occur when a sign is the same as the immediately

preceding sign, and a change is said to occur when a sign is the

contrary to the immediately preceding sign. Thus in the expres-

sion x^ -{- 3a5^

-

4:X^^ 7x^ + Sx'^'^ 2x^-x^ + x+l, there are four con-

tinuations and four changes j the first continuation occurs at —4:X^,

the second at + 3x*, the third at + 2x^, the fourth at - a; ; the first

change occurs at - Saj^, the second at + 7x^, the third at -x', the

fourth at +1.

It is obvious that in any complete equation the number of

continuations together with the number of changes is equal to the

number which expresses the degree of the equation j see Art. 51.

And if in any complete equation we put —x for x, the continuations

and changes in the original equation become respectively changes

and continuations in the new equation. In an equation /(x) =

which is not complete, the sum of the numbers of the changes of

f(x) andy*(— a;) cannot be greater than the degree of the equation;

because if terms are missing iny*(fl3), although it may happen that,

the number of changes in f(x) or in f{-x) is thus diminished, it

cannot be increased.

We shall now enunciate and prove a theorem which is called

Descartes's Rule of Signs.

63. In a/ny equation^ complete or incomplete, the number of

positive roots cannot exceed the number of changes in the signs of

the coefficients, a/nd in any complete equation the numher of negative

roots cannot fxceed the number of continuations in the signs of the

coefficients.

We shall first shew that if any polynomial be multiplied by a

factor x — a there will be at least one more change in the product

than in the original polynomial.

Suppose for example that the signs of the terms in the original

polynomial are + + + - + 1-. We have to multiply the

polynomial by a binomial in which the signs of the terms are + -.
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Then "writing down only the signs which occur in the process and

in the result we have

•+ + --- + - + -- +

+ -

+ + + - + -- +

A double sign is placed where the sign of any term in the product

is ambiguous. The following laws will be seen by inspection to

hold.

(1) Every group of continuations in the original polynomial

has a group of the same number of ambiguities corresponding to

it in the new polynomial.

(2) In the new polynomial the signs before and after an

ambiguity or a group of ambiguities are contrary.

(3) In the new polynomial a change of sign is introduced at

the end.

Now in the new polynomial take the most unfavourable case

and suppose all the ambiguities to be replaced by continuations

;

by the second law we may then without influencing the number of

continuations adopt the upper sign for the ambiguities ; and thus

the signs of the original polynomial will be repeated in the new
polynomial, except that by the third law there is an additional

change of sign introduced at the end of the new polynomial. Thus

in the most unfavourable case there is one more change of sign in

the new polynomial than in the original polynomial.

If then we suppose the product of all the factors corresponding

to the negative and imaginary roots of an equation already formed,

by multiplying by the factor corresponding to each positive root

we introduce at least one change of sign.". Therefore no equation

can have more positive- roots than it has changes of sign.

To prove the second part of Descartes's rule of signs we suppose

the equation complete, and put - y for x ; then the original conti-
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nuations of sign become changes of sign. And the transformed

equation cannot have more positive roots than it has changes ; and

thus there cannot be more negative roots of the original equation

than the number of continuations of sign in that original equation.

64. Whether the equation f(x) = be complete or not its

roots are equal in magnitude but contrary in sign to the roots of

y(_ x) =0, that is, the negative roots of/(fl3) = are the positive roots

of /(— £c) = 0; and whether the equation be complete or not the

number of the positive roots oif(—x)=0 cannot exceed the number

of changes of sign iny*(— x). Thus the whole rule of signs may bo

enunciated in the following manner : an equation f(x) = cannot

have more positive roots than /(a:;) has changes of sign, and cannot

have more negative roots thany(— x) has changes of sign.

y^ 65. For example, take the equation x* + 3x^ + 5x — 7 = 0.

Here there is one change of sign, and therefore there cannot be

more than one positive root. And by writing — x for x we obtain

the equation x* + Sx^ -5x-7 = ; here there is one change of

sign, and therefore there cannot be . more than one positive root,

so that the original equation cannot have more than one negative

root. Thus the original equation cannot have more than two

real roots.

In this example we know by Art. 21 that there is one

positive root, and that there is one negative root ; and we have

just ascertained that there cannot be more than one of each.

Again, consider the equation x^ + qx + r = 0, where q and r

are both positive. Here there is no change of sign, and therefore

no positive root ; this also appears from Art. 24. If we write

— X for X, we obtain an equation with one change of sign, so that

the original equation cannot have more than one negative root,

and therefore the original equation must have two imaginary

roots.

Again, consider the equation x^ — qx + r = 0, where q and r

are both positive. Here there are two changes of sign, and there-

fore there cannot be more than two positive roots. If we write
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— dj for X, "we obtain an equation with one change of sign, so that

the original equation cannot have more than one negative root.

In this example we know by Art. 20 that there is one nega-

tive root, and we have just ascertained that there cannot be more

than one; whether the other two roots are real positive quan-

tities or imaginary, we cannot infer from Descartes's rule of signs.

But from Art. 60 it follows that the equation which has for its

roots the squares of the differences of the roots of the proposed

equation is y^ - Qqy^ + ^q^y + 27r^ - 4g'* = j and by Descartes's

rule of signs, or by Art. 24, if 27r^-4g'" is negative, the last

equation has no negative root, and therefore the original equation

no imaginary roots; also if 27r^— 4$'^ is positive, the last equation

has a negative root by Art. 20, and therefore the original equation

must have two imaginary roots.

66. The student should observe that the results given in

Art. 24, are all consistent with Descartes's rule of signs, and

may all be deduced from it. Also the proposition in Art. 22 is

included in Descartes's rule of signs; and we learn from this

rule that such an equation as that considered in Art. 22 can have

only one positive root, without repetition ; see Art. 35.

67. It is shewn in the proof of Descartes's rule of signs,

that on multiplying a polynomial by the factor which corresponds

to a real positive root, one change of sign at least is introduced

;

it may be observed, that the number of the changes of sign

introduced must be an odd number. For suppose in the first

place that the last sign in the original polynomial is + ; then

since the first sign is 4- , the whole number of changes of sign

in the original polynomial must be an even number or zero ; and

the sign of the last term of the new polynomial is -, so that

the number of changes of sign in the new polynomial is an odd

number. Therefore an odd number of changes of sign must have

been introduced. Next suppose that the last sign in the original

polynomial is — , so that the last sign in the new polynomial is + ;

then there must be an odd number of changes of sign in the

original polynomial, and an even number of changes of sign in
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the new polynomial. Therefore an odd number of changes of

sign must have been introduced.

68. When all the roots of an equation f (x) = a/re real, the

number of 'positive roots is equal to the number of changes of sign

in f (x), a7id the number of negative roots is equal to the number

of changes of sign ini{—x.).

Let n denote the degree of the equation, m the number of

positive roots, and m' the number of negative roots, fx the number

of changes of sign in /"(a?), and fi the number of changes of sign

in/(— a;). Since all the roots of the equation are real m + m' -^n.

Also m cannot be greater than fx, and m' cannot be greater than

/x', by Art. 63. Therefore fjL + fx^ = n, for the sum of /a and /a'

cannot exceed n. Thus m, + m' = ix + fx'. And m cannot be greater

than fx; nor can m be less than fx, for then m' would be greater

than fx\ which is impossible. Thus m = fx, and m' = fx.

In this proposition we assume that f(x) has a term in-

dependent of X, so that the equation f(x)=0 is not satisfied by

a; = 0. A root zero cannot properly be considered either positive

or negative.

If we wish to introduce the consideration of zero roots we may

proceed thus: suppose the equation to have m positive roots, m
negative roots, and the root zero repeated r times. Then we have

m + m' + r = nf so that m + m,' = n — r. And we can shew that

fx + [X can be neither less nor greater than n — r; so that

fx + fx' = n — r. Then as before m = fx and m' = fx'.

69. Suppose fx the number of changes of sign in f{x), and fx'

the number of changes of sign in /(- x). Then the equation

f(x)=0 cannot have more than /x positive roots, and cannot have

more than fx negative roots, and therefore cannot have more

than fx + fx' real roots. Hence if n is greater than jx + fx the

equation f(x) = must have at least n- fx-fx imaginary roots.

In the next two Articles we shall shew more definitely what

inferences we can draw as to the number of imaginary roots

of an equation when that equation is not complete.
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70. If any group consisting of an even number of terms is

deficient in a/ny equation there are at least as many imaginary

roots of tJie equation.

Suppose the 2r terms which might occur in /(a?) between

a;'" and a;"'"^"^ to be deficient; then the equation /(a?) = will

have at least 2r imaginary roots. Let A and B denote the co-

efficients of cc"* and cc'""^''"^ respectively in f{x), and suppose the

deficient terms introduced with coefficients q^, q^^ ^si-'-i ^^^ ^^"

note the new function by F {x). Then in the expression

Ax"" + q^x""-' + q^x""-' +...+ q.x'"-''- + Bx'"-'"-'

the number of changes of sign together with the number of

continuations of sign is 2r + 1; in other words the number of

changes of sign in this expression, together with the number of

changes of sign which it would present if the sign of x were

changed, is 2r + I. But now let the hypothetical terms be re-

moved; then if A and £ are of contrary signs there will be one

change of sign for f(x), and no change of sign for f(- x) ; and

if A and JB are of the same sign there will be one change of sign

fory(— £c) and no change of sign ior f{x). Therefore in both

cases the loss of 2r terms ensures the loss of 2r from the sum

of the number of changes of sign in F{x) and in i^(— £c).

And this result holds for every deficient group consisting of

an even number of terms. Thus there are at least as many
imaginary roots of the equation f{x) = as the sum of the num-

bers of terms in such deficient groups.

71. If any group consisting of^a^ odd number of terms is

deficient in any equation^ the equation has at^ast one more than

that number of imaginary roots if the deficient group is between

two terms of the same sign, and the equation has at least one

less than that number of imaginary roots if the deficient group

is between two terms of contrary signs.

Suppose the 2r-h 1 terms which might occur in f{x) between

cc"" and aj"'"^''"^ to be deficient. Let A and B denote the coefficients

of aj"* and a;'""^''"^ in f{x) respectively ; then if A and B are of

the same sign the equation f(x)=0 has at least 2r + 2 imaginary
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roots; if A and B are of contrary signs the equation /(x)=0
has at least 2r imaginary roots.

Suppose the deficient terms introduced with coefficients q^j q^y

^3,...; and denote the new function by F(x). Then in the ex-

pression

Ax"^ + q^x"^-' + q^x^-^ + . .
. + ^^r+i^""""' +

5^"'""""'

the number of changes of sign together with the number of

continuations of sign is 2r + 2 ; or in other words the number

of changes of sign in this expression, together with the number

of changes of sign which it would present if the sign of x were

changed, is 2r + 2. But when the hypothetical terms are removed

there will be no change of sign either for f{x) or /(- x) if A and

B have the same sign, and there will be one change of sign for

f{x) and one change of sign for /(- x) if A and B have contrary

signs. Therefore the loss of 2?* + 1 terms from F {x) ensures the

loss of 2r + 2, or of 2r, from the sum of the number of changes

of sign in F (x) and in F (- a;), according as the deficient group is

between two terms of the same sign, or of contrary signs.

And this result holds for every deficient group consisting of

an odd number of terms; therefore there will be at least as many
imaginary roots of the equation f{x) = as the sum furnished

by considering the deficient groups.

72. Thus as an example of Art. 71 we see that if a single

term is deficient any where in f{x) between two terms of the

same sign, there must be at least two imaginary roots; if a

single term is deficient between two terms of contrary signs we
cannot deduce from this fact any inference as to the number

of imaginary roots.

It will be observed that when in consequence of the deficiency

of terms the sum of the number of changes of sign in f{x) and

f{—x) falls short of the number which expresses the degree of

the equation f(x) = 0, the difierence is always an even number.

This appears from the examination of the two possible cases in

Arts. 70 and 71. That is, with the notation of Art. 69, the

number n- fi — fi is always an even number. This might have

been anticipated from Art. il.
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VI. ON EQUAL ROOTS.

73. It is sometimes convenient or necessary to know whether

a proposed equation has equal roots, as we shall see in the course

of the work. We shall therefore now explain how we can de-

termine whether an equation has equal roots, and how we can

remove factors which correspond to the equal roots when they

exist, and thus reduce the equation to one which has only un-

equal roots. We have first to prove a property concerning the

first derivedfunction of a given function.

74. Let f (x) he any rational integral fu/nction of x and f ' (x)

thefirst derivedfunction; then will

•^ ^ ' x — a x-b x — G x — fc

where a, b, c,...k, are the roots real or imaginary of the equation

f(x) = 0.

For let Pq be the coefficient of the highest power of a; in /(a;),

then we have identically by Art. 33,

f(x) =p^{x-a){x-b) {x-c)...{x- h). (1)

Put 2/+ « for x; thus

f{y + z)=p^{y + z-a){y + z-h){y+z-c)...{y+z-k)]

expand each side in a series proceeding according to ascending

powers of ^; then the left-hand side becomes by Art. 10,

/(y)+/(y)^+/"(2/)i^ +
-'

Thus the coefficient of z is fiy), and therefore f'{y) must be

equal to the coefficient of z on the right-hand side, that is, to

that is, to

/(y) ,
f(y)

,

/(y)
, ___

, /(y)
y-a y-b y-c '" y-k'
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And as it is immaterial what symbol we use for a variable which,

may have any value, we may change y into x; thus we have

X— a X/'W=^-^z^-t^—

&

(2)

The result here obtained is true if among the quantities a, h, c,...k,

there should occur one or more equal to a, or equal to 6,... and

so on. Suppose that on the whole a occurs exactly r times,

h exactly s times, c exactly t times,... ; then (1) may be written

/{x)=p,{x-ay{x-by{x-cY...,

and (2) may be written

f (x)
= "i^ + ^-^ +^ + ...

*^ ^ ' x — a x-h x — c

75. The equation f (x) = has or has not equal roots a>ccording

as f (x) and f' (x) have or have not a common measure which in-

volves X.

Suppose a, 6, c,...^ the roots real or imaginary of the equation

fix) = 0, so that y*(cc) =p^(x-a)(x-b) (x—c) ...{x-k)'j then

f{x) =^Pq{x -b)(x-c)...{x- k) +Pq{x - a){x- c) ...{x~k) -^ ...

If a, h, Cf...k are all unequal, none of the factors aj — a, a; -5,

x-Cj...x-k will divide /' (x), for (x - a) for example divides

every term in /'(a;), except the first; and no product of any number

of them will divide f\x). Thus if f{x) has no equal factors /(x)

and/'(ic) have no common measure. Hence i{ f{x) and /'(x)

have a common measure the factors oif{x) cannot be all unequal.

tNext suppose that the equation /(x) = has equal roots ;

pose that a occurs r times, that b occurs 5 times, that c occurs

t times, and so on. Then

•'(x)=^.(x-»r(.-6)-(.-c)'...{^+^+^^+...}.

In this case the factor (x - ay~^ (x - b)''^ (x - cY~^ . . . occurs in

every term oif'{x). Thus if/ (a?) has equal factors, /(oj) and /'(a;)

have a common measure. Hence if f{x) and /'(^) ^^"^® ^^ com-

In
measure /(cc) has no equal factors.

T. E. 4
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76. For example, consider the equation

f{x) = a;* - lla;« + 44a;' - 76a; + 48 = 0.
\

Here /'(a;) = 4a;' -33a;'+ 88a;-76.

It will be found that f {x) and f'{x) have the common measure

x-2'j this shews that (x — 2)^ is a factor oi/(x). It will be found

that

/(x) = (x-2y{x'-7x + 12) = (a;-2^f (a;- 3)(a;- 4);

thus the roots of the equation /(a;) = are 2, 2, 3, 4.

Again, consider the equation

f{x) = 2a;' - 12a;^ + 19a;'- 6a; + 9 = 0.

Here /(a;) and /'(a;) will be found to have the common measure

a; - 3 j and /(a;) = (a; - 3)" (2a;' 4- 1). Thus the roots of the equation

/(.) = 0are3,3,+ y(-g, -^(-i).

• 77. In the enunciation of Art. 75, the words *' which involves

x " occur at the end. We mean to indicate by these words that

we do not regard the factor p^, although that may in a certain

sense be considered as a common measure of/(a;) and /'(a;).

As we are here for the first time making an important use

of common measures of expressions it will be convenient to in-

troduce a remark on the subject. It is usual to consider the

theory of common measures and of the greatest common measure

in works on Algebra; but the theory is not necessary at an early

stage of mathematical study, and becomes more intelligible after

the result has been obtained which we have given in Art. 33.

Let f{x) and ^ (a;) denote two rational integral functions of x)

then /(a;) and «^ (a;) may be resolved into factors, so that

f{x) =;?„ {x - a,) {x - aj (a; - ^3) . .
.,

cf> (x) = q,{x- h,) {x -y (a; - 63)...;

and each of the functions can be thus resolved in only one way.

Hence the function of x of the highest degree which will divide
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both f{x) and <^ (a;) is the product of all the common factors of

the first degree in x, and this we may call the greatest common

measure oi f(x) and </> (x).

Here we have taken no notice of p^ and q^; but we may if

we please find their greatest arithmetical common measure if they

are numbers, or if they are both functions of another quantity,

as 2/, we may find the greatest common measure of these functions

of y.

78. Suppose / {x) =p^(x- ay(x - hy{x - c)*. .
.
; then we have

found in Art. 75 that y (a;) and f'{x) have the common measure

{x - ay~^(x — by~^(x - c)'~\ ... Thus the common measure involves

all the equal factors which occur in /(a;), but the exponent in each

case is less than the corresponding exponent in /(x) by unity. If

we divide /(cc) by the common measure oif{x) and/' [x), the quotient

involves all the factors which occur in f{x)^ each factor occurring

singly. Thus the equation obtained by putting this quotient equal

to zero contains without repetition all the roots which the equation

f(x) = has.

79. "We see that if the factor {x — aY occurs m/{x) the factor

(x - ay~^ occurs in /'(a;); so that the equation/'(a;)=0 has r-1 roots

each equal to a. ^owf"(x) is the first derived function of/\x);

thus if r - 1 be greater than unity /' (x) and /'' (x) will have a

common measure, and the equation f"{x) = will have r - 2 roots

equal to a. Thus in this way we can shew that if (a; - ay is a

factor oi f{x) then the derived functions /'(a;),/'' (a;),..
/''"^

(a?), all

vanish when x = a.

This may also be proved in the following way.

Let f{x) = {x- ay <^ (x), where </> (x) is a rational integral func-

tion of X which is supposed not to contain the factor x — aj put

x = a + zj thus

4—2
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As the left-hand member of this identity is divisible by ^ the

right-hand member must be so too. Therefore we must have

/(a) = 0, /'(a) = 0,...../'-(a) = 0.

And as the left-hand member is not divisible by a power of z

higher than a** the right-hand member cannot be, and therefore

/""{a) is not zero. Thus the number of terms in the series f{x),

f\x)j /"(x), . . .which vanish when x = a, is the same as the exponent

of a3-a in/(£c).

For example, suppose

f(x)=x'+2x* + 3x^ + 7x' + Sx+3;

here it will be found that /'" (x) is the first of the series f{x),f' {x), . .

.

which does not vanish when x--\] thus the factor (a; + 1)^ occurs

in/(a;). It wHl be found that/(aj) = (a; -f- Xfix^ -x + ^).

For another example we will investigate the conditions which

must hold in order that the equation

X* + qx^ + ra? + s =

may have three equal roots.

Here f{x) = a;* + qx^ + rx-^8,

f'ix) = ix^ + 2qx + r,

/"{x)=12x' + 2q.

Hence from/" (a;) = we obtain

^=-1 «•

Substitute this value in /(a;) = and /'(a;) = 0: thus

--^^+rx + s = (2),

^(-^+2^)+r=0 (3).

From (3) we obtain

-I ^ «•
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and substituting this in (2) we have

I'

*-i?-^=o (5)-

And from (1) and (4) r'='-% (6).

Hence (5) becomes 5 =-^ (7).

Thus (6) and (7) express the required conditions.

Conversely if (6) and (7) be satisfied, it will be found that

3r
/{x), f'{x) and fix) all vanish when » = —— .

80. "We will briefly indicate another way in which the test

for equal roots may be investigated. If the equation f{x) = has

more than one root equal to a, then it follows that if f{cc) be

divided by cc — a the quotient will vanish when x = a. Hence by

taking the form of the quotient given in Art. 7, we must have

npy-' + {n- l)p,a-'+... + 2ap^_^ + p^_^ = 0;

that is, /' (x) vanishes when x = a.

-^^81. It appears then that when we wish to determine the

equal roots of an equation f(x) = 0, we may begin by finding the

greatest common measure oi f{x) and /'{x); then we equate this

greatest common measure to zero, and we have an equation to

solve which has for its roots those roots of the equation /(a;) =
which are repeated. As this greatest common measure may be

itself a complex expression, involving repeated factors, it is useful

to have a systematic process by which the roots may be obtained

with as little trouble as possible. This we shall now give.

H^ 82. Suppose f{x) = to be an equation which has equal

roots ; and let

/(«)=Js:,x/Jr/x,^..x„"•,

where the product of all the factors which occur singly in/(£c)

is denoted by Xj, the product of all the factors which occur

just twice is denoted by A'^", the product of all the factors which

occur just three times is denoted by X^, and so on. Any one

or more of the quantities X^, X^, Xg,... will be unity, if thero is
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no factor in f{x) wMch is repeated just the corresponding number

of times.

ITow form the first derived function /' (oc) of f{x)j and then

obtain the greatest common measure of /(x) and f'{x). We will

denote this greatest common measure by /^{x)^ so that

Next obtain the greatest common measure of /j(cc) and its first

derived function //(a;), and denote it by /^{x), so that

Proceed in this way and form in succession

/.(x)= x^...x„-'.

Now form a new series of functions by dividing each term of the

series f{x),f^(x),f^{x),...f^{x) down to/^_^(a;) by the immediately

succeeding term. Thus we get

/(*)
= XjX^ ...X^, = <j>^{x) say,

^= X,...X„, = <A,(»)sa,y,

4^^= Jr„, = <^„(x)say.

Then finally

M^) _Y ^«(^)-X ^"-i(^) -X 6(x)-X

Thus the factors X^, X^^.-.X^ are now separated, and by solving

the equations X^ = 0, X2 = 0,...X^ = 0, we obtain all the roots of

the proposed equation /(a:) = 0; and any root found fromX. =

occurs r times in the equation f{x) =0.
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"^ 83. For an example of the process of the preceding Article

suppose that

/(x) = x^ + x^-Sx^- 6x' + 2l£c' + 9x^ - 22x'-4:X + 8.

Then retaining the notation of the preceding Article we shall find

that

/^(x) = x*+ x^- 3x'-x + 2,

.
f^{x)=^x-l,

<j>^{x)=x'-5x'-hi,

(l>,{x)=x^+2x'-x-2,

<l>^(x) =x-l,

X^ = x-2,

X3 = a;' + 3x4-2,

X=x-l,

Therefore f{x) ^{x-2) (x' + 3x + 2)'{x-iy

= {x-2){x+lY{x+2y{x-iy.

Thus the roots of the equation /(x) = are 2, - 1, - 1, - 2, - 2,

84. When the coefficients of an equation are all commen-

surable quantities the expressions X^, X^,.., of Art. 82 have

likewise all their coefficients commensurable. Hence if one and

only one of the roots of an equation, with commensurable quanti-

ties for coefficients, is repeated r times, that root must be a com-

mensurable quantity; for it will be determined by an equation

X. = which involves no incommensurable quantities.

^K Hence we can deduce the following results

:

If an equation of the third degree with commensurable quan-

tities for coefficients have no commensurable roots it has no equal

roots. For if an equation of the third degree have equal roots,

there must be either one root occurring three times, or one root

occurring twice and another root occurring once; and in either
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ca.se, as we have just seen, if the coefficients are commensurable

quantities so also are the roots.

If an equation of the fourth degree with commensurable quan-

tities for coefficients have no commensurable roots it cannot have

either one root occurring four times, or one root occurring three

times and another root occurring once. If then such an equation

have equal roots it must have two incommensurable roots each

repeated twice. Thus if f{x) = be the equation f{x) must be a

perfect square.

If an equation of the fifth degree with commensurable quan-

tities for coefficients have no commensurable roots it has no equal

roots. For it will be found on examining eveiy case which can

exist that if there be equal roots there must be one or more com-

mensurable roots. Suppose, for example, that the equation has

two roots each occurring twice and another root occurring once

;

then if the coefficients are commensurable quantities the unrepeated

root must be a commensurable quantity.

YII. LIMITS OF THE ROOTS OF AN EQUATION.

SEPARATION OF THE ROOTS.

85. In the present Chapter we shall first investigate some

theorems which will shew between what limits all the real roots

of any proposed equation must lie; and we shall then consider

to some extent the possibility of discovering limits between which

the real roots separately lie. The advantage of such a Chapter

arises from the fact that the algebraical solution of the general

equation of any degree above the fourth has not been obtained; and

as we shall see hereafter, the numerical solution of equations is

a systematic process based on the supposition that we have some

knowledge of the approximate values of particular roots.

It is to be observed that unless anything to the contrary

is specially stated, the whole of the present Chapter relates to the

real roots of equations.
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86. When we say that a certain quantity is a superior limit

of the positive roots of an equation, we mean that no positive

root can be greater than that quantity.

87. The numerically greatest negative coefficient increased hy

unity is a superior limit of the positive roots of an equation which

is in its simplestform.

Let f{x) = be the equation ; suppose it of the n^^ degree.

Let p be the numerically greatest negative coefficient which occurs

\iif{x). Then if such a value be found for x that /(a;) is positive

for that value of x and for all greater values, that value is a

superior limit of the positive roots of the equation f{x) = ; now

if any positive value of x make

x''-p{x"-' + x"-'+x''-^+ ...+X+1)

positive, it will a fortiori make f{x) positive. That is, f{x) is

a;" - 1 .

positive for a positive value of a; if cc" -^ ——r is positive, and

cc" - 1
therefore a fortiori if x^'-l-p :j- Ls positive, that is if

^a;''-l)( 1 ^-~\ is positive; and the last expression is positive

if cc - 1 is greater than p. Thus f{x) is positive if x is equal to

p + 1 or greater than p + \; that is, jo + 1 is a superior limit of the

positive roots of the equation f{x) = 0.

W 88. In the equation f{x) = put - y for x, and if n is an
J

odd number change the sign of every term so that the coefficient

of 7/" may be + 1. Let q be the numerically greatest negative

coefficient of the equation in this form ; then q +\ is a limit of

the positive values of y, and therefore -{q+1) is a limit of the

nesrative values of x.

I

Hence all the roots of the equation f{x) = must lie between

1 and -{q+ 1).
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Hence a fortiori if m be the numerical value of the greatest

coefficient in an equation without regard to sign, all the roots of

the equation lie between m + 1 and — (m + 1).

89. In an equation of the n*^ degree in its simplest form if

p he the numerical value of the greatest negative coefficient, and

x°"' the highest power of x which has a negative coefficient, 1 + ^p
is a superior limit of the positive roots.

Let f{x) = be the proposed equation ; since all the terms

which precede a;""*" have positive coefficients f{x) will certainly

be positive for a positive value of x if

a:"- jo («;""'+ £c'*~'"~^+ ... -\-x^+ x + l)

be positive^ that is, if x^'—p =— be positive. Hence, sup-
X — i

posing X greater than unity, f{x) will be positive a fortiori if

x"" -p =- is positive, that is if a?" {x — 1) - joa;""'"^^ is positive, that

is if aj*""^ (a; — 1) —^ is positive, that is a fortiori if (aj— l)"" is equal

to or greater than p. Hence if x = \ + Up or any greater value,

f{x) is positive, that is 1 + J^lp is a superior limit of the positive

roots of the equation f{x) = 0.

90. If each negative coefficient he taken positively and divided

hy the sum of all the positive coefficients which precede it, the

greatest of all the fractions thus formed increased hy unity, is

a superior limit of the positive roots.

Let the equation be f{x) = 0, where f{x) denotes

p^x''+p^x'"^ + p^x''~^-p^x''~^+p^x'"*-¥ ... -p^"'-}- ...+;?„.

Now we have

a;"'= (a; - 1) (a;'"-'+ a;"'-'+
... + a; + 1) + 1;

let all the terms of the equation with positive coefficients be

transformed by means of this formula, and let the others remain

unchanged. Thus f{x) becomes
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+ p^{x- l)x"~^ + p^{x- l)a;"~'+ ... +p^{x-l) +pj

+ p,{x-l)x''-'+... +p,{x- 1) +p,^

+ ...

Consider now the successive vertical columns of this expression.

Where there is no negative coefficient the value of the column

is positive if x is greater than unity. To ensure a positive value

of the columns in which a negative coefficient occurs we must

have y ''

iPo +Px-^Po){x-^) grea^r than p^ ,

(i^o+i^i+i^2+ ••• +Pr-i) (^-1) greater.than^^,

Therefore x must be greater than ^ + 1,... and greater
Po+P,+P.

than ~- + 1, ... Therefore if x be taken equal
Po-^Pi+P^+'-'+Pr-,

to the greatest of the expressions thus obtained, that value of x,

or any greater value, will makey(£c) positive; that is, the greatest

of the expressions is a superior limit of the positive roots of the

^^^uation fix) = 0.

91. We will now illustrate the rules by two examples. First,

take the equation

aj' + 8a;* - 14a;' - 53a;' + 56a; - 18 = 0.

By Art. 87 we have 53 + 1, that is 54, as a superior limit of

the positive roots.

By Art. 89, since 7i = 5 and r = 2, we have 1+^53 as a

limit, so that 9 is a limit.

By Art. 90 we have to take the greatest of the following ex-

pressions ;
-—- + 1, ^j—^ + 1, -

—

-—-~ + 1, that is, we must take^ ' 1 + 8 '1 + 8 ' 1 + 8 + 56 '

53
-Q- + 1 ; so that 7 is a limit.
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Again, take the equation

x' - 5x* - Ux^ + 2x'' + x- 70 =^ 0.

Here Arts. 87 and 89 give 70 + 1 as a limit; and Art. 90 gives

70
-— + 1, so that 19 is a limit.
4

Thus, in both these examples, Art. 90 supplies us with the

smallest superior limit. It is easy to see that Art. 89 always

gives a smaller limit than Art. 87, except when r= 1, and then

the two limits coincide. Art. 89 is advantageous in general when
several positive coefficients occur before the first negative coeffi-

cient, so that r is large. Art. 90 always gives a smaller limit than

Art. 87, except when the greatest negative coefficient is preceded

by only one positive coefficient, namely that of the first term,

and then the two limits coincide. Art. 90 is advantageous in

general when large positive coefficients occur before the first large

negative coefficient.

92, By particular artifices we may frequently obtain a smaller

supei'ior limit than the general rules supply.

Consider the first example of the preceding Article. Here

we have to find a superior limit of the positive roots of /(x) = 0,

where f {x) may be written thus,

x\x'-53) + 8x' (^^-y) + ^^(^-^) -

now if X be equal to 4, or to any greater number, the expressions

within the brackets are all positive, and so f{x) is positive. Thus

4 is a superior limit of the positive roots of the equation /{x) = 0.

Again, consider the second example of the preceding Article.

Here we may write f{x) thus,

x^af-5x-lS) + 2x' + x-70;

now by the aid of Art. 87 we see that x^ — 5x — lS is positive

if 05=13 + 1 or any greater number, and obviously 2^3^ + a; -70
is positive when ic=14 or any greater number. Thus 14 is a

superior Hmit of the positive roots of the equation /(x) = 0.
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93. "We may now easily find an inferior limit of the positive

roots of an equation, that is a number which is not greater than

any of the positive roots. For transform the proposed equation

into one whose roots are the reciprocals of the roots of the pro-

posed equation, and then the reciprocal of the superior limit of the

positive roots of the transformed equation will be an inferior

limit of the positive roots of the proposed equation. Thus sup-

pose the proposed equation to be

' put - for Xj and multiply by y" and divide by p^^, so that the

' transformed equation is

•^
p„ p/ p/ p.

Let a superior limit of the positive roots of this equation be found

by one of the preceding Articles, and denote it by Z; then

-= is an inferior limit of the positive roots of the proposed equa-

tion. Suppose that we use Art. 87; let — denote that coefficient

which is numerically the greatest of the negative coefficients of

the transformed equation; then 1-— is a superior limit of the

positive roots of the transformed equation, and therefore
Pn-Pr

is an inferior limit of the positive roots of the proposed equation.

Here p^ is in fact the numerically greatest among those coefficients

of the proposed equation which have the contrary sign to the

sign of p^.

For example, in the first equation of Art. 91 we have ^^=-18

I p^=56; thug

the positive roots.

_ 1 o IS
and p^=56; thus ———— , that is ^- , is an inferior limit of
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94. We will now explain another method of determining

a superior limit to the positive roots of an equation ; this method

is called Newton^s Method.

Let/(£c) = denote the equation which is to be considered;

put h + y for x and expand f{h + y) by Art. 10. Thus the equa-

tion becomes

f{h) + 2//' (A) + 1/"(h) + ... + ^/»(A) = 0.

Now suppose h positive and of such a value that f{h), /'(h),

f"{h), ./"(^) are all positive; then no positive value of y can

satisfy the above equation. But y = x-li^ and as y cannot be

positive, X cannot be greater than li; thus h is a superior limit

of the positive roots of the equation f{x) = 0. We may observe

that if the proposed equation is in its simplest form/"{7i) is neces-

sarily positive, being equal to |?*.

95. For example, take the equation

x> £c'^ + a;' -4a;' -6a:' -700a; 4- 500 = 0.

Here / {h) = h' + h'-W- 6h'- 700h + 500,

f'{h) = 5h'+ 4:h'-12h'-l2h - 700,

If (h) = 10h'+ 6h'-l2h- 6,

i/"'(/») = 10A"+a-4,

It is convenient to begin with the last function of h and

ascend regularly. Any positive value of h makes /'"' (7i) positive;

7i=l makes f"'{h) positive; A = 2 makes f"{h) positive; 7t=4

makes f'iji) positive; 7^-= 5 makes y(7i) positive. Then it will be

found that 7i= 5 makes all the functions of h positive; and there-

fore 5 is a superior limit of the positive roots of the proposed

equation.

It must be observed, that when according to the method here

given we begin with the last function and increase the value
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of h suitably as we ascend to the other functions, we shall not

require ever to re-examine the sign of those functions of h which

we have passed. For suppose, for example, w^e have ascertained

that a certain value a when put for h renders all the functions

of A positive up io f"{Ji). Then put a greater value for h, say

a + hy and since

/"(« + h) =f"{a) + If" {a) + ~/""(<^) + -

and all the terms on the right-hand side are positive by sup-

position, f"{a + h) is positive also. Hence in the preceding ex-

ample, when it was found that h=5 rendered f (h) positive, it

was unnecessary to try whether this value of h rendered the other

functions of h positive, because the method of proceeding ensured

this result.

96. To find the limits of the negative roots of an equation

f{x) = we put —
1/ for x, and then find the limits of the positive

roots of the transformed equation in y; then these limits, with

their signs changed, will be limits of the negative roots of the

proposed equation.

Take, for example, the equation

x'- 7x*- 15ir'4- 3^-4- 4a; -f 48 = 0;

put — y for X and we obtain

I 48
By Art. 90 we Lave ^—-

—

- + 1, that is 5, as a superior

48
limit of the positive roots, and by Art. 93 we have -r^—= as^ ' • 48 -f-

7

an inferior limit of the positive roots. Thus the negative roots

48
of the proposed equation must lie between — 5 and — -^ .

^ 97. Having thus shewn how limits may be found between

which all the real positive roots of an equation must lie, and

limits between which all the real negative roots of an equation

ust lie, we proceed to give some theorems with respect to the

I
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situation of the roots taken singly or in groups. It will be seen

hereafter that the complete investigation of this part of the

subject is involved in Sturm^s Theorem.

98. If we substitute successively for :k. in f(x) two quantities

which include between them an odd number of roots of the equation

f(x) = 0, we shall obtain results with contrary signs; if we sub-

stitute successively two quantities which include between them no

root or an even number of roots we shall obtain results with tlie

same sign.

Suppose A. and fx two quantities of which A is the greater;

let a,bfCy..., k, be all the real roots of the equation /(ic) - which

lie between X and [i; by Art. 43 we have

f(x) -{x—a){x — b){x-c)...{x — lc)\^ (x),

where \l/{x) is a function formed of the product of quadratic factors

which can never change their sign, and of real factors which

cannot change their sign while x lies between A and /x.

Substitute successively A. and /t for £c; thus

f{\) = {\-a){\-b){\-c)...{X^k)^{\\

/W = (^-«)(/^-^)(/^-^)---(/^-'^)'/'(/A

Now all the factors X-a, X-b, \- c,... X^ k, are positive, and

all the factors fi-a, fx-b, fx- c,... fi-k, are negative; and ij/ (X)

and ij/ (ju) have the same sign. Therefore f(X) and f(fji) have the

same sign or contrary signs, according as the number of the roots

a, 6, c,..., Jc, is even or odd.

99. Hence conversely, if two quantities when substituted

for X in f(x) give results with contrary signs an odd number

of the roots of the equation f(^x) = must lie between the two

quantities ; if they give results with the same sign either no root

or an even number of roots must lie between the two quantities.

This result includes that of Art. 19 as a particular case.

100. It is to be observed that the demonstration in Art. 98

does not require the roots a, 6, c,...,k, to be all unequal; only
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it must be remembered that a root repeated m times is to be

counted as m roots.

We see that if /(A.) and /(/x) be of the same sign, either no

root of the equation /(x) = lies between \ and /x, or else an

even number of roots. Now in the preceding Articles of the

present Chapter an argument of the following kind has been

sometimes used ; the value fi or any greater value of x makesy (a;)

positive, therefore /x is a superior limit of the positive roots of

the equation y(a:) = 0. It must be observed that by the Avords

makes /(x) positive, we mean makes /(x) a positive quantity/ and

not zero. For example, iif{x) = (a;- 4)" (a; - 1), then if x is greater

than unity /{x) cannot become negative; but we must not infer

that unity is a superior limit of the positive roots, for 4 is a root.

If then we only know that /(x) cannot become negative for

any value of x greater than //,, we cannot infer that there is

no root greater than fi; but we may infer that there is either

no root or else a root or roots each repeated an even number

of times.

101. We shall now investigate an important theorem which

furnishes relations between the roots of the equation f(x)=0
and the roots of the equation /' (jc) = 0, where /'(cc) is the first

derived function of f{x). The theorem is sometimes called by

the name of Bolle, who first used it.

-^ 102. A real root of the equation f ' (x) = lies between every

facent two of the real roots of the equation f (x) = 0.

Let the real roots of the equation f{x) = arranged in de-

scending order of algebraical magnitude be denoted by a, h, c,...k.

Let <ji [x) be the product of the quadratic factors corresponding

to the imaginary roots of the equation f{x) — 0, so that ^ (x)

cannot change its sign. Then by Art. 43

^L f{x) = {x — a){x- h) [x — c)...{x-k)<f) (x).

I

this identity put y + z for x; thus

T. E. 5

I



66 LIMITS OF THE ROOTS OF AN EQUATION.

Suppose each, member of this identity expanded in a series pro-

ceeding according to ascending powers of z. The coefficient of

z on the left-hand side will be /'{y); see Art. 10. The coefficient

of z on the right-hand side will be

{(2/-^)(2/-c)-..(y-^) + (2/-«)(:y-c)...(2/-^) + ...|<^(2/)

+ (y-«^)(2/-^)(2/-c)---(2/-^)^'(2/).

By equating these coefficients of z, and changing y into x in

the resulting identity, we have

/'{x) =\(x-b)(x-c)...{x-k)+ (x-a){x-c)...{x-Jc)+ ... l<^(a;)

+ (x — a) (x — h) (x — c) . .. {x — h) <j>{x).

N"ow put successively a,h,c,...,h, for x; the last term on the right-

hand side of the identity vanishes in every case, and therefore the

sign of /'{a) is the same as the sign of {a — h){a-c)...(a- k)^ the

sign oif'{h) is the same as the sign of {b - a)(b — c) ... (b — k), the

sign oif'{G) is the same as the sign of (c — a)(c — 6) ... (c — k), and

so on; and these signs are alternately positive and negative, for

the first expression has 7io negative factor, the second expressioD

has 07ie negative factor, the thii^d expression has two negative

factors, and so on. Hence by Art. 99 an odd number of the roots

of the equation y (a:) = lies between every adjacent two of the

roots of the equation /(x) = 0.

103. The demonstration of the preceding Article implies

that the roots a, b, c,... k, are all unequal. Suppose however

that the root a is repeated r times, that the root b is repeated

s times, that the root c is repeated t times, and so on. We shall

have

/{x) = {x-ay{x-by(x-cY...<j,{x),

f'(x)=^{x)lr(x-ay-\x-b)\x-c)K..+s{x-ay(x-by''\x-cy...+...\

+ {x-ay{x-by{x-cy...<j>'{x).
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Let fi{x) denote the greatest common measure oi f{x) and f'{x),

that is, let /, {x) = {x- ay-'{x - by-\x - c)*-\ . . Then

•0^ = <^(x) ir{x-b){x-c)... hs{x-a){x-c)... + ...>

+ {x-a){x-h){x-G)...(fi'{x).

Call this expression F (x) ; then as before we see that the equa-

tion F (x) =0 has an odd number of roots between a and b, an

odd number between b and c, and so on. And since we have

f'{x)=f^{x)Fix), whenever F {x) vanishes so also does f'{x).

Thus an odd number of the roots of the equation /' (x) = lies

between every adjacent two unequal roots of the equation/* (a?) = 0.

With respect to the equal roots of the equation /(x) = 0, we

know that the root a which is repeated r times in the equation

f(x) = is repeated r — 1 times in the equation /' (a?) = ; simi-

larly the root b which is repeated s times in the equation f(x) =

is repeated s—1 times in the equation f'{x) = 0: and so on.

It will be convenient for us to imagine that the r roots equal

to a of the equation fix) = include r — 1 intervals, in each of

which a root a occurs of the equation /'(cc) = 0; and similarly

for the other repeated roots. With this conception we may

regard the enunciation of Art. 102 as holding universally, whe-

ther the roots of the equation f{x) = are all unequal or not.

104. No more than one root of the equation /(x) = can

lie between any adjacent two of the roots of the equation /' (a?) = 0.

For if there could be more than one there would be a root or

roots of the equation /' (03) = comprised between them, and so

the two roots of the equation f'{x) = which were by supposition

adjacent would not be adjacent.

And similarly the equation /(x) = cannot have more than

one root greater than the greatest root of the equation /' (x) = 0,

or more than one root less than the least root of the equation

r{x)^o.

If the equation f(x) = has all its roots real, so also has the

equation /'(cc) = 0; for the latter equation is of a degree lower

5-2
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than the former by unity, and a root of the latter equation exists

between each adjacent two of the roots of the former equation.

And generally if the equation f{x) = has m real roots the equa-

tion/' (a;) = has certainly m - 1 real roots, and may have more.

105. Since /"(a;) is the first derived function oif'{x), the

equation f"(x) = has an odd number of roots between every

two adjacent roots of the equationy (oj) = 0. Thus if the equa-

tion f(x)=0 has m real roots, the equation /'(x) = has at least

m — 1 real roots, and the equation /" (x) = has at least m - 2

real roots. Proceeding in this way we arrive at the result that

if the equation /(x) = has m real roots, the equation f''(x) =

has at least m-r real roots.

Hence if the equation /"{x) = has jx imaginary roots, the

equation /(a:) = has at least /x imaginary roots. For if the equa-

tion /{x) = had less than /x imaginary roots it would have more

than n — fi real roots, supposing n the degree of the equation

;

thus the equation /'(oc) = would have more than n— fi-r real

roots, and as this equation is of the degree n — r it could not

have so many as /x imaginary roots, which is contrary to the

supposition.

For example, let /(x) = x"{l— x)".

The equation f(^x)=0 has all its roots real, namely, n equal

to zero, and n equal to unity. Hence the equation /" (x) = will

have all its n roots real and all lying between and 1; this

equation is

K^ 0-1 ^^+1
,

n{n-l)(n+l){n + 2)

106. From Art. 105 we may deduce the following simple

test, which will often indicate the existence of imaginary roots in

an equation.

Let p,_i, Pr, and p,^i he tJie coefficients of three consecutive terms

in f(x), then if -pj^ is less than Pr_iPp+i there must he a pair of

imaginary roots in the equation f (x) = 0.
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Take the {n-r- Vf derived function of f{x) and equate it to

zero; thus

|r+l 1.2 '
'

'^'^

Put - for X, and multiply by 2/'"^\ and divide by p^^^ \n-r- 1
;

thus

y V ^ 1.2 V ^ —
If the roots of this equation are all real the sum oftheir squares

is positive; and therefore, by Art. 47,

(n—rYp^ {n — r + l)(n — r)p_^

is positive. Therefore

P\^x Pr^^

I

2- X xi n-r+1
p^ IS greater than ^_^ ^.-li^..,.,

d afortiori

p^ is greater than ^^_jjo^^.j.

If then this condition does not hold there must be a pair of

imaginary roots in the derived equation, and therefore also in the

original equation. See also Art. 331.

y 107. If we know all the real roots of the equation f'{x) =

we can determine how many real roots the equation f{x) = has.

For let the roots of the equation f'{x) = be a, ft y, ..., k,

arranged in descending order of algebraical magnitude. Substi-

tute for X in f{x) successively a, /?, y, ..., k, and observe the signs

of the results. Then one root or no root of the equation f{x) =
lies between any adjacent two substituted values, according as

the corresponding results have contrary signs or the same sign.

This follows from Arts. 98 and 104.
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The equation f(x) = has one root algebraically greater than

a, or none, according as /(a) is negative or positive ; and it has

one root algebraically less than k if tlie equation be of an even

degree and/(K) be negative, or if the equation be of an odd degree

and /(k) be positive, otherwise not. See Arts. 98 and 104.

Hence the number of real roots of the equation f(x) = will

be the same as the number of changes of sign in the series ob-

tained by substituting +a) , a, /?, y,... k, — oo , for aj in f{x) suc-

cessively. If however y(£c) vanishes when any of the substitutions

are made, it indicates that the equation f{x) = has equal roots,

and the number of these may be discovered by Chap. vi.

108. As an example we will investigate the conditions that

the equation x^—qx + r = may have all its roots possible, sup-

posing q a positive quantity. Here /'(x) = 3x^—q, so that the

roots of the equation /'(ic) = are =i= /(|j;leta = -f- /(|)

Then /W = .(|/-.(|)^.^-2(|)^.

First suppose l-j greater than (|) j then if r be positive

/(a) andy(y8) are both positive, and the equationy(a:;) = has only

one real root, which is algebraically less than /3j if r be negative

/(a) and /(/5) are both negative, and the equation f{x) - has

only one real root, which is greater than a.

Next suppose l-j less thanf^j ; then /(a) is negative and

/(P) is positive, and the equation /(^c) = has three real roots,

namely one greater than a, one between a and (3, and one algebrai-

cally less than ^.
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109. A method of discovering the situation of the real roots

of an equation was indicated by Waring, and reproduced by

Lagrange, which we shall now explain ; it is called Waring^

s

Method of separating the Roots.

Let us suppose that tTie equal roots of an equation, if it has

any, have been discovered and the corresponding factors removed,

so that we have to deal with an equation which has only unequal

roots. Let f{x) = represent this equation. Suppose h to be

a quantity which is less than the difference of any two roots,

and let s be a superior limit to the positive roots. Substitute

for X iD.f(x) successively s, s—k, s — 2k, s—3k,... and so on down

to a quantity which is algebraically less than the least root which

the equation can have; and observe the series of the signs of

the results. Then when a change of sign occurs one root exists

between the two corresponding substituted values, and when

there is a continuation of sign no root exists in that interval.

For since k is less than the difference of any two of the roots

we are sure that more than one root cannot occur in each in-

terval.

We have then to consider how the quantity k may be de-

termined. Suppose that the equation has been formed which

has for its roots the squares of the differences of the roots of

the proposed equation, and that an inferior limit of the positive

roots of this equation has been found ; denote this by 8. Then

JS is a suitable value for k.

" We have already in Art. 60 given an example of the con-

struction of an equation which has for its roots the squares of

the differences of the roots of a proposed equation, and we shall

hereafter consider the question generally: see Chapter xx. It

will then be found that on account of the complexity of the result

obtained, Waring's method of separating the roots of a proposed

equation is generally useless in practice for equations of a degree

higher than the third, although theoretically it attains its proposed

object.
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f^ 110. As an example of Waring's method take the equation

a;3_3i^-4a;+13 = 0.

By Art. 60 the equation which has for its roots the squares of

the differences of the roots of the proposed equation is

2/'-42/+441y-49 = 0.

Put y = 1 ; thus 49;^'- 441;^*+ 42« - 1 = 0,

that is, i^^{z-^) + 42 (^ - A) = ;

thus 9 is a superior limit to the values of z, and therefore ^ is

an inferior limit to the values of y. Hence /^ , that is, ^ , is

less than the difference of any two roots of the proposed equa-

tion.

Now 4 + 1, that is 5, is a superior limit of the positive roots

of the proposed equation, by Art. 87. And - (1 + sfli) is nume-

rically a superior limit to the negative roots, by Arts. 96 and 89.

Thus all the roots of the proposed equation lie between 5 and - 5.

By substituting, in succession for x the values 5, 5-|^, 5--|,...

it will be found that one root lies between 3 and 2f , one root

> between 2f and 2J, and one root between — 2 and — 2^.

v3.- 111. We will conclude this Chapter with a proposition which
may serve as an example of some of the principles already esta-

blished. In the equation f{x) = 0,

where f(x) = p^x"" + jt?jCc"~' -t- ... + x-r,

if q is the numerical value of the numerically greatest coefficient,

and r is positive and less than -——
-

, there is a real positive root

less than 2r.

When X is zero f{x) is negative. Now a positive value of x
will make f{x) positive, afortiori^ if it make

a;-r-5'(a;"+a;""^+ ... +a;^ + a;^)

1 -OJ""^
positive, that is, if it make x-r-qx^ — positi^'e.

J. — X
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Hence a fortiori f{x) is positive if x is less than unity and

{\- x){x - r) - qx^ is positive. Now put 2r for x in the last ex-

pression and it becomes r { 1 — 2r — 4gr}, and this is positive be-

cause by supposition r (2 -f- 4^) is less than unity. Thus /(xc) is

positive when ic= 2r ; and f(x) is negative when a;= ; therefore

a root of the equation f{x) = lies between and 2r.

In like manner if the last term in f(x) is r instead of — r and

r is positive and less than -—— the equation /(x) = has a root

between and — 2r.

YIII. COMMENSURABLE ROOTS.

112. By a commensurable root is meant a root which can be

expressed exactly in a finite form, whole or fractional ; so that it

involves no irrational quantities. We shall now shew that when
the coefficients of an equation are rational numbers, whole or frac-

tional, the commensurable roots of the equation can easily be

found.

We have seen in Art. 53 that if the coefficients of an equation

are rational but not all integers, we can transform the equation

into another which has all its coefficients integers and the coeffi-

cient of its first term unity. We may therefore confine ourselves

to equations of the latter form ; and we shall first shew that equa-

tions of that form cannot have rational fractional roots.

113. Tf the coefficients of an equation are whole numbers,

and the coefficient of its first term unity^ the equation cannot

have a rational fractional root.

Let the equation be

^"^ +p,x''-' +p^x''-' + ... ^p^_^x^ +p^_^x+p^ = 0,

and if possible suppose it to have a rational fractional root which

in its lowest terms is expressed by j- . Substitute this value for x,

and multiply all through by 6""^
; thus
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and therefore

The last result is impossible because the right-hand member of

the equation is an integer^ and the left-hand member is not an

integer. Therefore - cannot be a root of the proposed equation.

114. Thus we are only concerned with the investigation of

integral commensurable roots, and we shall now explain the method

by which they may be found. The method is sometimes called

the Method of divisors^ and sometimes Newton's Method.

Let the equation be

x" + p.x''-' + p^x""-" + . . . ¥p^_^x^ + p^_^x -vp^ = 0,

and suppose a an integral root. Then substituting and writing

the terms in the reverse order we have

and therefore by division by a

Pn
a
+ p„., +p^.,a + ... -i-^X +P,a"-' + a""-' = 0.

Hence — must be an integer; denote it by g'j and divide

again by a ; thus

5^1 Pn-l , ^ I 1 ^ ^n—4 I ^ ^n-3
,
^n-2

a

Hence ^—^-^^^ must be an integer; denote it by q^ and divide

again by a, and we shall find that ——^-^^^ must be an integer.

Proceeding in this way after dividing n times by a we shall arrive

at a result denoted by ^^^—^ -^- 1 = 0.
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Hence the following conditions are necessary in order that the

integer a may be a root of the equation /(a?) = 0.

The last term of the equation must be divisible by a. Add to

the quotient thus obtained the coefficient of £c in the equation;

the sum must be divisible by a. Add to the quotient thus ob-

tained the coefficient of x^ in the equation; the sum must be

divisible by a. Proceed in this way until n — \ divisions have

been effected, add to the quotient the coefficient of £c"~^ ; the sum

must be divisible by a and the quotient must be -1.

If at any step the required condition is not satisfied the inte-

ger a is not a root.

115. We have in the preceding Article found the conditions

which are necessary in order that the integer a may be a root of

the equation y(cc) = ; it is easy to see that if the last of these con-

ditions is satisfied the integer a is a root. For that last con-

dition may be expressed thus

;

a'' a"-' a"-^ a;' a

and if this is true we see by multiplying by a" that a is a root of

/(x) = 0.

In order then to find all the commensurable roots of an equa-

tion we have only to determine all the divisors of the last term,

and try whether they satisfy the conditions of Art. 114. The

labour will often be lessened by first finding positive and negative

limits of the roots, because of course no integer need be tried which

does not fall within these limits.

116. For an example take the equation

Here 1 + 10 is a superior limit of the positive roots, by Art. 87

;

and by writing —yiovx we obtain the equation

y'' + 3y(y-|) + 10 = 0,
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for which 3 is a superior limit of the positive roots. Hence all

the roots of the proposed equation lie between 1 1 and - 3. The
divisors of -10 which fall between these limits are 10, 5, 2, 1, -1,

- 2 ; and we proceed to try if any of these numbers are roots.

+ 10

- 1

- 9

+ 5 + 2 + 1 - 1 -2
- 2 - 5 -10 10 5

-10 -13 -18 2 -3
- 2 -18 - 2

- 5 -21 - 5

- 1 -21 + 5

In the first line all the divisors of the last term are written

which it is necessary to try, and beneath each divisor the results

are placed which arise from carrying on the trial with that divisor.

Thus taking the divisor 10, we first divide the last term -10 by

it, and set down the quotient — 1 ; then we add this to the coef-

ficient of X which is — 8, and set down the sum — 9 ; this is not

divisible by 10, so that 10 is not a root. With respect to 5 all

the conditions are fulfilled, so that 5 is a root. With respect

to + 2 and — 2 we arrive at points where exact division is not

possible, so that these numbers are not roots. With respect to +

1

and —1 the final condition is not satisfied, so that these numbers

are not roots.

Thus the only commensurable root is 5 ; and denoting tlie

equation hj/(x) = 0, we know that x— 5 is a factor oi/(x). The

other factor will be found to be x'^+ 2x+ 2.

For another example take the equation

x' + 5x* + x^-Ux'- 20x - 16 - 0.

It will be found that the commensurable roots are 2, - 2,

and -4.

117. It is usual to omit +1 and -1 from the divisors to be

tried, as it is simpler to test whether these values are roots by

substituting them for x in the given equation.
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If any powers of x are missing from the proposed equation

they should be supposed to be introduced with zero coefficients

;

see Art. 51.

When we have ascertained by the method here exemplified

that certain nuiiibers a, 5, c,..., are the only commensurable roots

of an equation y(cc) = 0, it still remains to determine whether any

of these roots are repeated. We may divide f {x) by the product

(x-a){x — })){^-c)... and denoting the quotient by ^{x) we may
apply the method to the equation <^ {x) = 0, and thus determine

whether any of the quantities a, b, c,... are roots of this equation.

Proceeding in this way we shall determine the repeated roots of

the equation /{x) = 0, and how often each root is repeated.

Or we may apply the test of equal roots found in Chapter vi.

to the equation /{x) = 0.

118. Suppose that instead of taking an equation, with unitT/

for the coefficient of the first term, as in Art. 114, we take an

equation with any integer p^ for the coefficient of the first term.

The only difierence in the resulting conditions is that the last

quotient must be -p^ and not — 1. Suppose for example

2a;'-12a;^+13a;-15 = 0.

15
"re IT- + 1 is a superior limit of the positive roots by Art. 87,

and there is no negative root by Art. 24, and by trial we see that

1 is not a root; thus the only divisors of the last term to be

used are 5 and 3. The process being arranged as before we

have

TISi

I

-3 -5
10 8

2

-10
- 2^V — i^/

^pThus 5 is a root, for all the conditions are satisfied, the last

quotient being - 2; and 3 is not a root, because 8 is not divisible

by 3.
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It must be remembered that if the coefficient of the first term

is not unity the equation may have a commensurable fractional

root; see Art. 113.

119. The number of divisors of the last term which it is

necessary to try may sometimes be diminished by the following

principle. Suppose a a root of the equation f{x) = ; for cc put

m + y, then a - w is a value of y which satisfies the equation

firii + y) = 0. The term independent of y in this equation is/(m),

and all the coefficients of y are integers, if the coefficients in

/(x) are integers and m also an integer; see Art. 10. Thus if

a be an integer a —m is an integer and must therefore divide

/(m) by Art. 114. Thus any integer a which divides the last

term of /{x) is to be rejected if a — m does not divide /(m).

Here m may be any integer positive or negative ; the values

+ 1 and — 1 are advantageous from the ease with which f{m)
can then be calculated.

Take for example the second equation given in Art. 116; here

4 divides the last term, but 4+1 does not divide /(- 1) which is

— 9; thus 4 cannot be a root of the proposed equation.

Again, take the example x^ - '20x^ + 164:X - iOO = 0. This

equation has no negative root by Art. 24; and by writing it

in the form x^(x — 20) + 164: (x— ~-t-] , we see that 20 is a

superior limit of the positive roots. The positive divisors of

the last term which are less than 20 are 2, 4, 5, 8, 10, and 16. Of

these 5, 8, and 10 are not roots; for /(I) = -255, and this is

not divisible by 5 — 1, or by 8 - 1, or by 10 - 1. Thus the only

divisors of the last term which remain for trial are 2, 4, and 16;

it will be found that 4 is a root.

120. As an example of a rational fractional root, consider

the equation 4:X*-llx^+7x-6 =0, that is,
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First, put a; == ^ , in order to transform the equation into one

with integral coefficients; see Art. 53. Thus

2/*-ll2/'+142/-24 = 0,

that is, 2/'+V- ll2/'+ 1%- 24 = 0.

By Arts. 89 and 96 all the roots of this equation must lie

between 1 + ^24 and —{1 +^24:); and we see by trial that +1
and — 1 are not roots. Thus the only divisors of the last term

to be tried are 4, 3, 2, - 2, - 3, - 4. Also /(I) = - 20, and this is

not divisible by 4 — 1 or by - 2 - 1 j thus the numbers 4 and

— 2 may be rejected. The process being arranged as before we

have

3 2 -3 - 4

-8 -12 8 6

6 2 22 20

2 1 - 5

-9 -10 -16
-3 - 5 4

-3 4

-1 - 1

y 3
Thus 3 and - 4 are roots; and since ic = f , we have ^ and - 2

as roots of the original equation.

IX. OF THE DEPRESSION OF EQUATIONS.

121. In the present Chapter we shall shew how the solution

of an equation may be made to depend upon the solution of an

equation of lower degree, in certain cases where known relations

subsist among the roots; this process is called the depression of

equations.

122. When two equations have a root o^ roots in commonf

it is required to determine the root or roots.



80 OF THE DEPRESSION OF EQUATIONS.

Suppose the equations f{x) = and F{x) = to have a com-

mon root a] then y (a;) and F{x) have the common factor x — a.

Hence the greatest common measure of f{x) and F (x) must

have x — a as a factor. Similarly every factor common to f{x)

and F {x) will be a factor of their greatest common measure, and

no other factors will occur in the greatest common measure.

Hence, if we find the greatest common measure oi f{x) and

F{x), and equate it to zero, the roots of this equation will coincide

with the required roots which are common to the equations

/(£c) = Oandi^(.T) = 0.
p

If any factor is repeated in f{x) and F {x) it will also be

repeated in their greatest common measure.

123. Suppose, for example, we have the two equations

x^-^Zx'-bx^-Qx~d>=.0

and x'-^ x^- ^x'+ lOaj - 8 = 0.

The greatest common measure of the expressions which form

the left-hand members of these equations is £c^ -f 2aj — 8 ; and ' if

this be put equal to zero we obtain a? = — 4, or x = 2. Thus 2

and — 4 are the roots common to the two equations.

124. Suppose we know that there exists between a and h,

two roots of the equation f{x) = 0, the relation pa + qb — r; it is

required to determine these roots.

Since a and 6 are roots of the equation f{x) = 0, we have

f{a) = 0, and f{h) = ; but 6 = ^-11^ , therefore / (^JlP^\ = q.

Thus a is a common root of the equations /(a;) = and/(

—

~\ = 0.

Hence a may be found by the preceding Article. Thus a is

known and then h from the relation pa + qh = r. Hence /(oc)

may be divided by the product of the factors x-a and x-b;
and if the quotient be equated to zero we obtain an equation

for determining the remaining roots of the equation f(x) = 0.



OF THE DEPRESSION OF EQUATIONS. 81

125. Suppose, for example, that we have the equation

x*-7x^ + Ux'-7x+lO = (1),

and that it is known that two of its roots a and b are connected

by the relation b = 2a+l.

Substitute Sx + 1 for ic in (1) ; thus

{2x + iy-7{2x+iy+U{2x+iy-7(2x + l) + 10 = 0,

that is 1 6x' -24:X^ -IQx' -4:X + 8 = Q,

or 4x'-6x^-ix'-x + 2 = (2).

The greatest common measure of the left-hand members of

(1) and (2) will be found to be a; -2. Thus a = 2, and therefore

6 = 5; that is, 2 and 5 are two of the roots of the proposed equa-

tion. Then it will be found that

sd'-7x^+Ux'-7x + lO = {x-2){x-5){x'+l),

so that the other roots are =*= aJ{-1).

^ 126. It may happen that another pair of roots a and (3 is

subject to the same condition pa + q/S-r. In this case the ex-

pressions f(x) and /(—^
J
will have for their greatest common

measure an expression of the second degree in x which will in-

volve the factors x~a and x - a.

If the roots a and b are both repeated in the equation /(a?) = 0,

the factor x-a will be repeated in the greatest common measure

of/(x) and /(^)
127. Generally suppose that two roots a and b of the equa-

tion /(«)=: are connected by the relation b = <l>{a). Then the

equations /(cc) = and /{<^(a;)} = have a common root, namely

a, and we may determine this common root by Art. 122.

128. There is a case in which the method of Arts. 124 and

126 does not assist us in solving a proposed equation. Suppose,

T. E. 6
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for example, we have an equation f{x) = 0, and it is known that

the roots of this equation occur in pairs, and that each pair of

roots a and h satisfies the relation a + 6 = 2r. Then accordinir

to Art. 124 we should proceed to investigate the common roots

of the equations f{x) = and /{2r — x) = 0. But these equations

will be found to coincide completely ; for by supposition /(a) = 0,

that is,/(2r-5) = 0, and/{6) = 0, that is, /(2r - a) = 0, so that

the' roots a and b are common to the two equations. Similarly

every other pair of roots is common to the two equations, and

so the two equations must coincide.

yf^-^ 129. There are various ways in which we may depress the

equation in the case considered in the preceding Article; we
will explain two of them as they furnish exercises on the subject

of the present Chapter.

I. We may proceed thus. Assume a — b=2z, so that we
have simultaneously

/(a)=0, a + h=^2r, a-h = 2z.

From the second and third of these equations a = z+r. Substitute

in the first equation, so that y*(;2; + r) = 0. From this equation

values of z must be found, and then corresponding values of a and

h. It is easy to shew that the equation f{r + z) = () only involves

even powers of z^ and so if we regard z^ as the unknown quantity

the degi-ee of this equation will be half the degree of the proposed

equation. For let a and h be one pair of roots of the proposed

equation, a and ^ another pair, and so on ; then

/(x) = {x-a)(x— h)(x-a)(x~l3)...

f{z + r)-{z + r-a){z-\-r — h){z + r — a)(z + r- jS)...

.(„ili_.)(„fi-'->)(,.^jS_.)(„i±_^-,)..

that is, f{z + r) involves only even powers of z
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In fact, as no distinction in theory exists between the roots

a and 6, it might have been expected that an equation which

should be constructed to have --^— for a root would also have

as a root ; and such is the case.

II. We may also proceed thus. Assume z = ah. Then "

{x — a)(x-h)=x^ — {a + b)x + ah=x^- 2rx + z.

Hence if z be suitably determined, x^—2rx + z will be a factor

of f{x). Perform the process of dividing /{x) by x^-2rx+z

until the remainder takes the form Fx + Qj where F and Q are

functions of z, but do not contain x. Hence the necessary and

sufficient conditions for x^ — 2rx + z being a factor of f{x) are

F=0 and ^ = 0. Find by Art. 122 a value of z which will

satisfy both these equations ; then find a and b from

a + b = 2r and z = ab.

130. Suppose we know that between three roots a, b, c of

the equation /{x) = 0, the relation pa + qb + re = s exists ; it is

required to determine these roots.

Since a, b, and c are roots of the equation /{x) = 0, we have

/(a) = 0, /{J) = 0, /(c) = 0. Thus

/(a) = 0,/(6)=0,/(l:ii^«*V0.

Suppose b eliminated between the last two equations ; we thus

obtain an equation which we may denote by <^ {a) = 0. Thus the

equations f{x) = 0, and <^ (x) = have a common root a, and this

may be found by Art. 122.

131. We will here give a few miscellaneous examples con-

nected with the subject of the present Chapter.

6—2
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(1) It is required to determine the roots of the equation

aj" + ^^a;"-' + i^gX""' + . . . + p„ = 0,

which are all in arithmetical progression.

Denote them by «, a + 6, a + 26,

By Art. 47,

-p^ =a+{a + h) + {a + 2h)-\- ... + {a-¥n- 16),

p;- 2p^ = a' + {a + by +{a+ 26)*+ ... (a + n^ibf.

r™ . n(n — V)^
That IS, -p^ = na-\--^—-b,

p^- 2p^ = na?^- n{n-l)ab + ^r b' ;

see Algebra, Chapter xxx.

By squaring the first result and subtracting it from n times

the second we obtain

/ IX . o n^n'-l)b'
{n-l)p^'-2np^=

^^ ;

thus 6 is known, and then a can be found.

(2) The equation x^h 3x^-12x--4:8x-64: = has two roots

which are equal in magnitude and of opposite signs ; find them.

Here the equation obtained by changing the sign of x will have

a root in common with the proposed equation. That is, the

proposed equation has a root in common with the equation

x'-Sx^-12x^+4:Sx-U = 0.

Then by Art. 122 we may proceed to find the greatest common

measure of the left-hand members of these equations. Or thus

;

by subtraction,

6x^-96x = 0;

therefore either x = 0, or else x^=16.

The former does not give a root ; the latter gives ic = ± 4 ; and

+ 4 and — 4 are roots of the proposed equation.
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(3) The equation 3x*- 19a;'+ 9x'- 19a; + 6 = has two roots

the product of which is 2; find them.

2
Suppose 7/ to denote one root ; then ^ is another; hence

32/^-19?/' + 92/^- 19?/ + 6 = (1);

that is, 6y*- 38/+ 3Qy'- 152^/ + 48 = 0,

or 3^-192/'+ 18?/'- 762/+ 24 = 0.../ (2).

The greatest common measure of the left-hand ^members of

(1) and (2) is 3/- 19?/ + 6; and putting this equal to zero we
obtain 2/ = ^, or ?/ = 6. Thus ^ and 6 are the required roots.

X. RECIPROCAL EQUATIONS.

132. A reciprocal equation is one which is not changed

when the unknown quantity is changed into its reciprocal.

Hence if a be a root of such an equation, the reciprocal of a,

that is, - , is also a root. We shall see that the solution of a
ci

reciprocal equation may be made to depend on the solution of

an equation of not higher than half the degree of the proposed

equation. We shall first determine the relations which must hold

among the coefficients of an equation in order that it may be a

reciprocal equation, and shall then shew how the equation may

be depressed and so rendered easier of solution.

133. To find tJie conditions that a proposed equation may he

a reciprocal equation.

Let the equation be

a;"+jp,a;'-^+^^a;'-'+ •.. + p^.^x"" ¥p^_,x+p^ = 0...{l).

Change x into • , then multiply by cc" and divide by ^„, and
X
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re-arrange the terms; tlius we have

a;"+^^a;"-^+^^^a;"-'+...+^2cc'+^aj+— = 0...(2).

In order that (2) may coincide with (1), the coefficients of

the same powers of x must be coincident ; thus

^' P.' ^' P.'^-' P.' ^"-
P.' ^' P,.'-

from the last equation we have p„^=l, therefore p^ = + l, or -1,

and this gives rise to two classes of reciprocal equations.

I. Suppose 2^„= 1 ; then we obtain

Pl = Pn-iy P2= P„-2-> "'Pn-2=P2^ Pn-X= Pi'

Thus an equation is a reciprocal equation when the coefficients of

the terms equidistant from the first and last are equal.

II. Suppose p^= — l; then we obtain

Pl-=-Pn-l^ P2=-Pn~2^ ''Pn-2=-P2^ Vn-,= -P,'

In this case if the equation is of an even degree, we have among

the above series of conditions p^ = ~p^^ where m = \n, and this

is impossible unless p^ = 0. Thus an equation is a reciprocal

equation when the coefficients of terms equidistant from the

beginning and end are equal in magnitude and of contrary signs
;

with the condition that if the equation is of an even degree

the coefficient of the middle term is zero.

1 34. A reciprocal equation of the first class of an odd degree

has a root — 1, as is obvious by inspection. Thus if /[x) =

denote the equation, f{x) is divisible by a:+ 1; see Art. 6. Let

<^ (x) be the quotient, then <f>{x) = will be a reciprocal equation

of an even degree with its last term positive.

A reciprocal equation of the second class of an odd degree has

a root + 1, as is obvious by inspection. Thus if y(a;) = denote

the equation, /(x) is divisible by a? — 1 ; see Art. 6. Let cf> (x) be

the quotient, then <^{x) = () will be a reciprocal equation of an

even degree with its last term positive.
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A reciprocal equation of the second class of an even degree

has a root + 1, and a root — 1. as is obvious by inspection.

Thus, if f{x)-0 denote the equation, f{x) is divisible by x^—\',

see Art. 36. Let <^{x) be the quotient, then <^{x) = will be a

reciprocal equation of an even degree with its last term positive.

135. The statements made in the preceding Article respect-

ing the results of certain divisions will probably be admitted as

obvious. But it is easy to give formal proofs. Consider the

last case, that of a reciprocal equation of the second class of an

even degree. Suppose /(cc) = to represent the equation; then

we know that /(a:) is such that /(a;) = — cc^/f -
j

, and we know

that /(a;) is divisible by a;'- 1; we wish to prove that the quotient

is a function which has the coefficients of the terms equidistant

from the first and last equal. • - •

We have f{x) = — x'*f [-) t

1
" x'- 1 ^wtherefore „ . .,-,.,.,-

1 - 4
X'

And this shews the truth of the statement, since , is what we
1-4

X"

1 . fix)
obtain when we chancre x into - in — „---!

.

136. It follows from Art. 134 that any reciprocal equation

is either of an even degree with its last term positive, or may
be depressed to this form. We may then consider this as the

standard form of a reciprocal equation, and we shall now shew

that such an equation may be depressed to one of half its degree.

The fact that a reciprocal equation could be thus depressed

was noticed by De Moivre in 1718: see his Doctrine of Chances,

first edition, page 113.
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137. It is required to depress a reciprocal equation which

is of an even degree with its last term positive.

Let the equation be a3""+^^a;^'"~'+ j92a;"""^+ ... +J02aj^+;?ja; + 1 = 0.

Divide by a;"* and collect the terms in pairs which are equidistant

from the beginning and end; thus

i*pi---^)-p^{--^~)-- = o.
X

Now assume x + - = y: then
X

nr^ + — - 01^ - 9,X +^2-y ^,

and generally, ^'*' +^^= («''+^) ('« + ^)
" (*''"' +^ '

so that we can express a;'"*'* + -^ as a rational function of ?/ of
X

the degree ^ + 1. Hence by substitution in the above equation

we obtain an equation in y of the degree m. Then from each

value of y we deduce two corresponding values of x from the equa-

tion x^-yx+1 = 0.

138. Tlie general relation in the preceding Article may be

thus expressed

;

This shews that we may regard the quantities

,,1 si 3 1
U/"r

f
X "T 2 ) X n' jjj...

as forming a recurring series in which the scale of relation is

1 -?/+!; see Algebra, Chapter xlix. We shall hereafter give

in Chapter xxi. a general expression for x^ + —'ni terms of y.
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139. For an example of a reciprocal equation take the equation

Here +1 and —1 are roots by inspection; and we can therefore

divide the left-hand member by a;^-l. Thus we obtain

2x'' + x^-nx'+x+2 = 0;

therefore x + -^ + 7:{x + -) -^ -^ = 0.
x^ 2\ xj 2

Put £c + -=2/; t^s

or f^l-'^^O; ,

therefore y = ^ or - 3.

XT 15 1 _
Hence x + -= -, or x + - = — o ;

x 2 X

therefore x=^2 or ^ or - (- 3 ± ^5).

140, The following equation may be transformed into a re-

ciprocal equation

:

+ ... +^^c"-V +p^c"'-'x + 0"* = 0.

For assume x = z ^c, and divide by c"* ; we thus obtain a reciprocal

equation in z of the standard form.

XI. BINOMIAL EQUATIONS.

141. An equation of the form x'*-A = where ^ is a known

quantity is called a binomial equation.

The roots of this equation are all different because the first
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derived function of o^~A is wcc""^, and no "v

Qi^-A and nd(^~^ vanish simultaneously; see Art. 75.

142. If a;"- -4 = we have x = 'lJA\ that is, x is equal to

an w**" root of A. But the equation a;"—^=0 has n roots by

Art. 33, and these roots are all different by Art. 141. Hence

we obtain the following important result, any algebraical quantity

has n different n*"" roots. By an algebraical quantity here we

mean either a real quantity, or an imaginary quantity of the

form p + q J—1.

143. Let a denote one of the n^^ roots of any quantity A,

so that a"=^. Then in the equation x"-A = assume x = ay,

so that a"y''-A = ; therefore ?/"— 1 = 0. Hence y = l/l, that is,

y is equal to an n*'^ root of unit}'". And x = ay=a^l; but x = ^A;
therefore jA = alJ\. Thus all the n*^ roots of any algebraical

quantity Tnay be found by rtivltiplying any one of them in siccces-

sion by the values of the n"" roots of unity.

144. Let us now suppose that -4 is a real positive quantity,

and that we have to solve the equation cc"-^ = and the equation

'x^+A = 0. Let a be the arithmetical value of the n*^ root of A,

which may always be obtained, at least approximately, by the aid

of the Binomial Theorem ; see Algebra, Chapter xxxvi. Assume
x = ay, then the proposed equations become respectively ^/"-l = 0,

and 2/" + 1 = 0. These equations can both be solved by the

aid of Trigonometry ; see Trigonometry, Chapter xxiii. We shall

however now consider these equations without using the Trigono-

metrical expressions ; and although we are not able to solve them

generally by means of algebraical expressions, we shall be able to

prove important results respecting them.

145. If a be any root of the equation x"-l=0, then a™ is

also a root, where m is any integer, positive or negative.

For (a")" = a*"" = (a")'" = r = 1.
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146. If o. he any root of the equation x° + l=0, then a™ is

also a root, where m is any odd integer positive or negative.

For (a"*)" = a'"" = (a")'" = (1 1)"'= - 1, if m be odd.

147. //*m he prime to n, the equations x™- 1 = and x° - 1 =

have no common root except unity.

Let p and q be two integers wbicli satisfy the relation

pm -q7i = l; such integers can always be found by Algebra j see

Algehra, Chapter xlvi. And suppose that a is a common root

of the two equations. Then »'"= 1, therefore a^=\', and a"=l,

therefore (x'"=l. Hence, by division, a^""'"= 1; that is a = 1.

148. If n is a prime numher, and a any root of the equation

x" — 1 = 0, except unity, then all the roots of the equation will he

famished hy the series a, a^, a^,...a".

For these quantities are all roots by Art. 145. We have there-

fore only to shew that no two of them are equal. If possible,

suppose a'' = a*j then ar~* = l; and thus the equations aj" - 1 =

and ic*""* — 1 — have a common root which is not unity. But this

is impossible by Art. 147, since r-s is less than n and therefore

prime to it.

149. If Tfc is not a prime number, and a is any root of the

equation £c"— 1 = 0, it is true by Art. 145 that any power of a is

also a root ; but it is not necessarily true that the successive powers

of a will furnish all the roots. Suppose for example that n^pq;
and let a be a root of the equation cc'' — 1 = j then a is also a root

of the equation a^"— 1 = 0, and so is any power of a. But we can-

not obtain more than p different values by taking powers of a; for

aP"*"^= a*" X a = a, a^"^^ = a^ x a^ = a', and so on. Thus the powers of

a will not furnish all the roots of the equation a;"— 1 = 0.

If n be not a prime number it is still true that some of the

roots of the equation a;"-! = have the property of furnishing all

the roots by their successive powers. This we shall shew from

the Trigonometrical expressions for the roots.

J
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For let r be any integer ; then

2r7r /—- . Irrr
cos V J —\ sm

n ^ n

is a root ; denote it by a. Suppose r prime to n, then the succes-

sive powers of a will furnish all the roots.

Eor let s and t be two integers, neitlier of which exceeds n

;

then a' and a' will not be equal. For

, 2sr7r ,—- . 2sr7r
a' = cos +J-1 sm

,

2tr7r ,—- . 2tr7r
a* = cos + J- 1 sm :

n n

and in order that these should be equal and -— must either
n n

be equal or differ by a multiple of four right angles. See Flane

Trigonometry^ Art. 93. Thus

{s ~t)r
must be an mteo^er :

n ° •'

but this is impossible since r is prime to n and s ~ ^ is less than n.

150. The solution of the equation x" — 1 = where n is the*

product of different prime numbers can he made to depend upon the

solution of equations of a similar form having for the index of x

the different primefactors ofn.

Suppose, for example, that n is the product of three prime

factors m, jo, q. Let a be a root of the equation a?'" — 1 = 0, let ^
be a root of the equation aj^ - 1 = 0, let y be a root of the equation

02^—1 = 0; these roots being all supposed different from unity.

Then the roots of the equation a;"-l = will be the terms of the

product

(l + a + aV...+a"*-^)(l + /5 + /3^+...+/5''-^)(l + y + y=+...+/-^).

First, any term of this product is a root. For suppose a'/3*y*

to denote such a term; then {afi'y*y=l, since a''"= 1, /5'"- 1, and
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y = l. Secondly, no two terms of this product are equal. For,

if possible, suppose a*" ;S* / = aP /3<^/ j then a'-'^ = Z^*^-'
y^"'. The

quantity on the left-hand side is a root of the equation x""- 1=0,

and the quantity on the right-hand side is a root of the equation

x^- 1 = 0; but since m is prime to pq it is impossible that these

equations can have any common root except unity.

Similarly we may proceed when n has more than three prime

factors.

151. Next suppose that the prime factors of ?z occur more

than once in n; for example, let n = fJL.ir.K, where /x, tt, k are

respectively any powers of the prime numbers 7?i, p, and q.

Then it will still be true that if we obtain the /x roots of

the equation x'* - 1 = 0, the tt roots of the equation cc'^ - 1 = 0,

and the k roots of the equation a;* - 1 = 0, and take every possible

product of these roots, one from each system, we shall obtain all

the roots of the equation aj" — 1 = 0. But, by Art. 149, the roots

of each system cannot necessarily be represented by the powers of

one root taken arbitrarily.

Similarly we may proceed when n involves more than three

different primes. ^_

^ 162. It is usual to add one more proposition respecting the

equation a;"- 1 = when n is a. power of a prime; and we will give

it here although it is of little practical importance. Suppose, for

example, that n = m^ where m is a prime number. Let a be a root

of the equation a;"* - 1 = 0, let ^8 be a root of the equation a;'"- a = 0,

and let y be a root of the equation «;'"-/? = 0. Then the roots of

the equation cc"- 1 = will be the terms of the product

First, any term of the product is a root. For suppose a^'fi'Y to

denote such a term; then (a»";S'7')" = a'""/3*''y"= 1. Secondly, no
two terms of this product are equal. For, if possible, suppose

arp^y'^a^^^'f', thus o} = a\ where

l=r+ — + —75 and X = p + — + —r,

.

m 71V ' m m
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Therefore a^"^= 1, therefore a"— 1 = 0, where v = m^{l — \). But

m^{J, — X) = m^{r — p) + m(s — a) + 1 — t, and this is prime to m,

and therefore to m^ ; and therefore the equations cc" — 1 = and

a*'— 1 = cannot have a common root different from unity.

^ 153. The preceding Article is of little practical importance,

because the operations ' which it involves cannot be generally

effected. Suppose that we can solve the equation a;"* — 1 = 0, and

so find a; then all the quantities 1, a, a^, ...a^'^, are roots of

the equation a;" — 1 = 0; so that we thus obtain m roots. But to

find f3 we have to solve the equation a;"*— a = 0, that is, we have to

find ^a where a^H^l; and there is no algebraical method of

effecting this generally.

Thus, for example, when we have solved the equations a;^- 1 =

and a;^ — 1 = we can immediately/ form all the solutions of the

equation a;^^- 1 = by Art. 150. But we cannot practically solve

the equations a;'- 1 = or aj^^- 1 = by the method of Art. 152;

we can only obtain three roots of the former equation and five

roots of the latter equation.

154. We will now indicate the methods by which we can

practically solve the equations x" — 1 =0'and a;" + 1 = 0, when n is

not too great.

We may observe however that if n be any power of 2 these

equations may be solved by the process given in Algebra for

extracting the square root of a binomial surd, repeated as often as

is necessary; see Art. 28. If n =pm, where p = 2'', assume a^= y,

thus the equations a;"— 1 = and aj"+ 1 = become respectively

7/"*— 1 = and 2/"*+ 1 = 0. Then if y can be found we can deduce x

by the process of extracting the square root repeated r times.

155. In the equation a;"— 1=0 suppose that n is an odd

number, and let n = 2m + 1 . The equation a;^""*"^— 1 = has only one

real root, namely + 1 ; for it has no negative root, and if x be made

equal to any other quantity than unity x^""^^ will not be equal to

unity; thus the equation has only one real root. Divide x^'"'^^- 1
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byoj— Ij thus we reduce the equation to be solved to the fol-

lowing,

This is a reciprocal equation, and its solution can be made to

depend upon the solution of an equation of the degree m.

156. In the equation a;"— 1 =0 suppose that n is an even

number, and let n = 2m. The only real roots of the equation are

+ 1 and — 1 ; and we may divide x""" - 1 by the product of a; — 1

and x+1, that is, by a;*— 1. Thus we reduce the equation to be

solved to the following,

x"^-' + x'"'-''+.,.+x'+l = 0.

This is a recijorocal equation, and its solution can be made to

depend upon the solution of an equation of the degree m — 1.

The equation aj^"* -1 = may also be conveniently treated by

writing it thus, (a:;'"— l)(£c"*+ 1) = 0, and so resolving it into the

equations a;'" — 1 = and aj"* + 1 = 0. Or we may adopt the method

given in Art. 154.

157. In the equation 33"+ 1=0, suppose that n is an odcb

number, and let w = 2m+l. The equation a;^'"'*'^ + 1 = has

only one real root, namely — 1 ; and we may divide a;^"*"^^ +

1

by a;+l, and thus reduce the equation to be solved to the

following.

X2m— 1 , ^m—

3

+ a;'''"-'-...+aj'-a;+l =

this is a reciprocal equation, and its solution can be made to

depend upon the solution of an equation of the degree m.

If n is an odd number in the equation a;" + 1 = 0, and we
change x into — aj, we obtain a;"— 1 = Oj so we may if we please

solve the latter equation, and then change the signs of the roots,

and thus obtain the solution of the former equation.

158. In the equation a;"+l = 0, suppose that n is an even

number; then the equation has no real root. The equation is

a reciprocal equation, and its solution may be made to depend
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upon the solution of an equation of half the degree. Or the

equation may be treated by the method given in Art. 154.

159. Thus in the four preceding Articles we have shewn how

the solution of the proposed equations can be made to depend

vipon the solution of other equations which are not of higher

degrees than half the degrees of the proposed equations. In

each case we remove the factors which correspond to the real

roots and then put x+ - = z, and obtain an equation in z. Now

it may be observed that this equation in z will have all its roots

real. For suppose that a + pj — 1 denotes one of the imaginary

values of Xy then the corresponding value of z is

a-f^7^ + ^^^ .— , thatis, a + /?V^4-"^j^^—

,

and this is a real quantity, namely, 2a, provided that a^ + ^-=^ 1.

We shall shew that a^ + ^^ is = 1.

Since a-\- pJ—\ is a root of the proposed equation a;" =f 1 ^ 0,

by Ai-t. 41, a- pj -I is also a root. Thus

(a + ^7^)" = ±l, and (a -/3 y^)"= ± 1

;

hence by multiplication (a^ + py = 1 ; therefore a^ + yS^ = ± 1, and

since a^ + /3- is necessarily positive it must be equal to + 1.

160. We will now consider some examples of the equations

£c" + 1 = and a;" - 1 = 0.

(1) ic'- 1 = j this gives {x- 1) (a;'+ a; + 1) = 0.

Hence the roots are 1 and ^ ; these values are then

the three cube roots of + 1. By changing their signs we shall

obtain the three cube roots of -1, or in other words the roots

of the equation a;^ + 1 = 0.
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(2) a;*+l = 0. T\itx + - = z; wegetz'-2 = 0.

Thus is = ^J2.

Therefore x'+ 1 - {x' + xJ2 + l){x'-xJ2+l);

and the solution can be completed by finding the roots of two

quadratic equations.

(3) x'- 1 = 0. This gives (x - l)(x*+ x^+ x'+ a; + 1) = 0.

1 1

X^ X
Hence we have to solve x^ + —^ + x + - + 1 = 0, that is

z'+z-l = 0. Thusz
'A

Therefore

aj'^- 1 = (oj - 1) ('^^+ o^i:^ + 1Va^^+ ^^^ + l) ;

and the solution can be completed by finding the roots of two

quadratic equations. The roots with their signs changed will

be roots of the equation £c^+ 1 = 0.

161. If we attempt to solve the equation a;^-l = 0, we ob-

tain an equation of the tliird degree in z) and if we attempt to

solve the equation £c^- 1 =0 we obtain an equation of ^qfourth

degree in z. We shall in the next two Chapters shew how to

solve equations of the third and fourth degrees ; it will however

be found that the methods of solution are of little practical value

when the equations to be solved have all their roots real, which

is the case we have here to consider, by Art. 159.

162. In an equation of the form a;"" +^;a;" +3' = 0, we can

by the solution of a quadratic equation find the values of a",

and then the method of the present Chapter may be applied to

find the values of x.

-i We will close this Chapter by a proposition respecting the

number of values of the product of two surd quantities.

T. E. 7
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"^ 163. Suppose A and £ any two algebraical quantities, and

m and n any positive integers. Then "^A has m different values,

and J^B has n different values by Art. 142. Hence the product

of "^A and ^y^ cannot have more than mn different, values;

and we shall shew that it cannot have so many -values unless

m and n are prime to each other. This we shall shew by

proving the following proposition ; the number of different values

of the product of "^A and IJB is equal to the least common

multiple ofm and n.

Let a be one value of liJA; then all the values of "^A are

included in a^l. Let h be one of the values of H^B] then all

the values of ^B are included in h^\. Hence all the values

of the product are included in a6 x yi x ;yi; and therefore the

number of the different values of the product is the same as the

number of the different values of ^1 x ^1. Let r be the least

common multiple of m and n; then (;;yi x ^1)''= 1. Thus

!;yi X ^1 is equal to an r"" root of unity, and therefore cannot

have more than r different values.

We have however still to shew that "l^l x Ijl really has r

different values. Let p be the greatest common measure of m
and ?i, and let m=pjx, and n=pv. Let a denote a value of ^1,
and p a value of ^/l ; then ^ 1 x ijl may be written thus ^a x UfB,

or Ijap. ISTow a/5 has /x x v values, and as each p^^ root of a^

has p values we have in all pixv values, that is r values. And
these values are all different. For let a denote another of the yu,

values, and P' another of the v values, and suppose if possible

that ^a P'= ^/ap
-J

raise both sides to the p^^ power, then a'/8'= aj8;

therefore — = 7^ . The left-hand member is a root of the equation
a ^

of- — 1 = 0, and the right-hand member is a root of the equation

a;^ — 1 = ; and these equations can have no common root except

' unity by Art. 147. Thus there are fiv different values of a/3, and

r different values of ^1 x ^1.

^ 164. The essential part of the preceding Article is sometimes

,-.-..

"''*''*

Tn •{- n
treated thus. We have T/l x Z/1 = 1'"'*

. and if be reduced^ ^ 7nn
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to its lowest terms, the numerator will be' an integer and the
m+n 1

denominator will, be r ; thus 1 "*" = l*" which has r different

values. This method however is unsatisfactory, because the

ordinary theory of surds in Algebra is only proved there for the

arithmetical values of the surds, and thus does not furnish the
1 1 m+n

relation 1™ x 1"= 1 ""*
, in the sense in which this relation is here

required.

XII. CUBIC EQUATIONS. O '
''

165. It is unnecessary to say anything on the solution of

quadratic equations because that subject is fully considered in

treatises on Algebra. We propose in the present Chapter to give

the solution of equations of the third degree which are also called

cubic equations.

It appears from Art. 56 ^ that any proposed equation can

always be transformed into another equation without the second

term. As the roots of a cubic equation without the second term

are more simple expressions than the roots of a complete cubic

equation, we shall suppose that the cubic equation which we have

to solve is without the second term. The process which we shall

now give is usually called Cardan^s solution of a cubic equation.

166. To solve the equation x^ + qx + r = 0.

Assume x^y + z, so that y and z are two quantities which

are at present unknown. Substitute for x in the given equation;

thus

{y + zY + q{y + z) + r = 0,

that is, y^ + z^+ {Syz + q){y + z) + r = 0.

Now we have made only one assumption with respect to the

two quantities y and z, namely that their sum is the value of

a root of the proposed equation. We are therefore at liberty

7-2

1^
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to make another assumption ; suppose then that 3yz + q = 0.

Thus we have

Substitute for z in terms of y; thus

K<-& + r = 0,

thatis f + rf-^ = 0.

Hence 3^ = _| =. ^(^ +g ,

and
.3_,_^_r^yg^|!^_

Also x = y + z; it will lead to the same result in the value

of X whether we adopt the upper sign or lower sign in the

values of y^ and z^; for distinctness suppose the upper sign taken.

Therefore

"{-iV(i4)}'*fiV(j4)f-
Thus the expression for x is the sum of two cube roots, and

as every quantity has three cube roots, we must examine which

cube roots are to be used in the present case. Let

then by Art. 160, the three cube roots of 1 are 1, a, and a'.

Let m denote one of the cube roots of--+ /(j + ^jj then

the other cube roots are ma and ma^; let n denote one of the

cube roots of —-r — x / \T '^ 97) '^ then the other cube roots

are na and na^. If we could ascribe to each of the cube roots

which occur in the expression for x any one of its three values,

we should obtain on the whole nine values of x. But a cubic

equation can only have three roots, so that we are led to con-

clude that only three values will be admissible for x. And
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in fact the process of solution requires that yz = — -^i and it is

this condition which determines the admissible values of the cube

roots. Suppose that m and n are so taken as to satisfy the

condition mn = — ^ j thus we can have y =m and z = n as ad-
o

missible values. Then we can also have y = am and z = a^n\

and we can also have y — cLm and z = a.n\ for in these two cases

we have the relation yz = — \ satisfied. No other pair of values

however is admissible; for instance, if we suppose y =m and

z = an^ we get yz = — -^ and not - ^ , and any other pair of values

except those which we have admitted will make yz =—~
o

or =—^ instead of - 1^

.

167. For example, suppose a;^ + 6a; — 20 = 0. Here q = Q and

r = ~20; thus

aj = (10 + 7108)3 + (10-7108)3. ' --

By numerical work it may be ascertained that

(10 + 7108)3 = 2-732 ..., and (10-7l08)^ = --732...,

so that we may presume that a; = 2 is a root, and this will be found

the case on trial. Instead of expressing the other two roots by the

method of the preceding Article it will be preferable to depress the

equation to a quadratic. Since 2 is a root of the proposed equa-

tion we know that x^ + 6x— 20 is divisible by a; — 2, and we find

that

a;' + 6a; - 20 = (aj - 2) (a^ + 2a; + 1 0)

;

therefore the other two roots of the proposed equation may be

found by solving the equation

a;'+2a;+10 = 0;

thus these roots are

-l=fc7-^» thatis-l±37^.
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In the preceding example we may verify hy trial that

(10 + 7108)^ = 1 + V3 and (10-7l08)3 = 1 - ^3,

and so find the root 2 without any numerical extraction of

roots. There is however no algebraical process by which we can

universally obtain the cube root of an expression of the form

a + Jb in a finite form; see Algebra, Art. 310. We may apply

the binomial theorem to find the value of (a + Jb)^ in an infinite

series ; in this case in order to obtain a convergent series, we
must expand in ascending powers ol ^Jb or of a, according as ^/ft

is less or greater than a; see Algebra, Chapters xxxvi. and xl.

168. We have seen in Art.. 166, that although apparently

values are furnished for x only three are really admissible.

may see a reason for the occurrence of the nine values. For

the relation yz = — ^ was assumed, but this was transformed into

2/V = —^ in the process; and the latter relation would not be

changed if q were changed into qa or into qa^. Thus, in solving

the equation a?^ + g'a; + r = 0, we really found nine solutions, three

belonging to this equation, three to the equation x^ + qax + r = 0,

and three to the equation x^ + qa^x + r = 0.

169. Let us now consider more particularly the form of the

roots of the proposed cubic equation. We will assume that q and

r denote real quantities. The expressions for y^ and z^ may be

either real or imaginary.

First suppose that these expressions are real. We may then

suppose that m and n denote respectively the arithmetical values of

the cube roots of y^ and z^. The proposed cubic equation has in

this case one root which is certainly real, namely m + n; the other

two roots are ma + na^ and ma^ + na. By substituting for a its

value these roots become respectively



CUBIC EQUATIONS. 103

and --^{m^n)--{m-n)J-'^,

and these roots are imaginary unless m = n. When m = n the

cubic equation has two equal roots each being equal to —m
or - n. The condition which is necessary and sufficient to ensure

m — n, that is, y^ = z^, is that — +^ = 0.

Conversely, if the roots of the cubic equation are all real and

unequal the expressions for y^ and z^ must be imaginary.

Next suppose that the expressions for y^ and z^ are imaginary;

r^ q^ .

that is, suppose that j +^ is a negative quantity. We know

from Art. 142 that y^ and ^ will each have cube roots of a cer-

tain form. We may therefore suppose that m = ix-¥vJ -\, and

as z^ only differs from y^ in the sign of the radical, we can take

n=fx-vj—l. In this case the roots of the proposed cubic

equation are all real, namely,

{fjL + v J- i)a + {fi-v J -l)a^j that is - /a - v ^^3,

and (^ + vj- 1) a^+ (ja - v J- 1) a, that is - //, + v ^3.

170. It will now be seen that Cardan's solution of a cubic

equation is of little practical use when the roots of the proposed

equation are real and unequal. For in this case the expressions

for y^ and z^ are imaginary; and although we know that cube roots

of these expressions exist, there is no arithmetical method of obtain-

ing them, and no algebraical method of obtaining them exactly.

We have the roots in thi^ case exhibited in a form which is alge-
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braically correct, but arithmetically of little value. For example,

take the equation

03^-1003-4=0.

Here r = - 4 and q = -15. Hence we obtain

x = (2 + J^UT)^ + (2 - J^Ul)i;

that is, a; = (2 + 11 ^-1)^ + (2 - 11 J^)K
Now here we have no obvious mode of extracting the cube

roots. It may be verified by trial that

(2 + 11731)^ = 2 + 7^1,

and (2-ll7Tl)3 = 2-7^.
Thus x = 2 +J^ + 2-J^l = 4.

Hence 4 is a root. The other roots can then be found by the

method of Art. 169; or we may proceed thus,

a;* - 15aj - 4 =-- (a; - 4) {x' + 4aj + 1).

"We have therefore to solve the equation (C^ + 4cc + 1 =0; the

roots are — 2 =t JZ.

Again, consider the equation a;^ - 3 ^^a; - 2 = 0.

Here r = - 2 and ^ = - 3^2. Thus

aj=:(l + 7rT)i+(i_7n)i

It may be verified by trial that

A^+V ^} 2^2 24/2 ^ '

^ ^ ^. 2 «/2 2 4/2
"^

Thus

^~\2^2 ^2^2 ^ ^\2l72" 2f/2
^~^

1/2 2^2 ^ \2V2 24/2 -^
^r 72

The other roots may then be found; they are
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171. The case in which the three roots of a cubic equation

are real and unequal is sometimes called the irreducible case, and

sometimes it is said that Cardan's solution/aiYs in this case; these

expressions are used to indicate the fact that the roots are in this

case presented to us in a form which is very inconvenient for

arithmetical purposes.

We may however use the binomial theorem in order to ap-

proximate to the cube root of an expression of the form x> + ^ J~ 1-

For if q be numerically less than p we can expand (p + q J~ 1)^ in

a converging series proceeding according to ascending powers of

q J-l; see Algebra, Chapter xxxvi. We can thus obtain approxi-

mately {p +qj-l)^ in the form F+Qj^; and then (p-qj^)^
will have an approximate value P—^^— 1; and the sum of the

tv/o cube roots will be 2F. But if q be numerically greater than

p we may proceed thus;

p +qj^ = j~l{q-pj^l);

hence (p + qj^l)^ = U^)kq-pJ'^f-

Now ->/- 1 is a cube root of ^- 1 as we find by trial, so that

we have {p -^qj-^f^=^- J-^{q-pJ^)K

And we can expand (q — pj—l)'^ in a converging series pro-

ceeding according to ascending powers of pj~l; and thus we

may find as before the sum of the cube roots of ^ + qj— 1 and

The case in which p = q is really involved in the second

example of the preceding Article.

It may be observed that by means of De Moivre's theorem,

we can express the cube root of any quantity p+qj—^ ina form

involving Trigonometrical functions.

172. It appears from the preceding Articles that the cubic

equ^ation x^+ qx + r=^0 may always be solved by Cardan's process
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"without any difficulty when g' is a positive quantity, and also

when 3' is a negative quantity provided q^ is numerically less than

—— ; and in these cases two of the roots are imaginary. If q^ is

a negative quantity and numerically greater than —j- , Cardan's

solution is inconvenient, and in this case all the roots are real.

21r^
If q^ be negative and numerically equal to —r-^ so that

— +^ = 0, the proposed- cubic equation has two of its roots equal

by Art. 60. We have by Art. 166 in this case m-n= /--r\

and the three roots are 2m, - m, and - m.

In eveiy case where one root of a cubic equation has been

found we can, if we please, depress the equation to a quadratic,

and so find the other two roots, instead of finding the other two

roots by the process of the preceding Articles.

173. We will briefly indicate the results which are obtained

in the solution of a complete cubic equation. Let the equation be

assume x = z— , then we obtain ,
-

a

z^ + qz + r = 0,

^c W d She 2b'
where q = o ^ , r = ^ + —-r .

^ a a a a a

Hence by Cardan's method

^=(-2W4-'l7) n-2-V4^27) '

The condition which must hold if there are equal roots is

L4.I-
4 27

= 0:
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that is

(26' - ^ahc + a'dy + 4 (ac - hj = 0.'

It will be found by common Algebraical work that this can be

put in the form

{ad - hey -4:{b'- ac) (c' - hd) = 0.

174. Some cubic equations in which the coefficients have

special values may be solved without using Cardan's method.

For example, suppose

This may be written

that is, x^-(^a--j + 3\x-(a--]i = 0;

and now we see that one root is given hy x = a—

.

Again, suppose we have the complete cubic equation

x^ + ax^ + hx + c = 0,

and that the relation 3ac = b^ holds among the coefficients. The

proposed equation may be written

— x^ = ax^ +bx + c,

therefore - 3abx' = Sha^x^ + db^ax + 6",

therefore (a^ - 3ab)x*=a^x^ + Sba'x'+ Wax + b^= {ax + bf,

therefore xja^- 3ab = ax + b,

b
therefore x =

ija^- 'dab - a

• 175. A process is given in the Trigonometry^ Chapter xvii.

by which we may obtain the roots of a cubic equation in the

irreducible case, by the aid of the Trigonometrical Tables. This
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is a matter of very little practical value, but we will shew how
the Trigonometrical Tables may also be used for examples which
do not belong to the irreducible case.

Suppose x^+qx + r = 0; then

-(-iV?^)'*(-iV?4)'-
Q^ r^

If 2' is positive, assume ^= -j tan^^; then we get

=(-^»)'{(»D'-(-'"l)'}-

If q is negative, and 4:q^ niimerically less than 27r^, assume
q^ r'

^ = - J sin' ^ j then we get

..(-5*5„..)'.(-|-|„.,)'

176. An important cubic equation occurs in many mathe-

matical investigations, and it may be noticed here although not

connected with the special subject of this Chapter.

We propose to shew that the roots of the equation f(x) =
are all real, where /(a;) denotes

{x - a){x - b){x -c)- a"{x -a)- h'\x -h)- d\x -c)- 2a'h'c',

The equation may be written thus,

{x - a) ^{x - h){x - c) - a"\ - h'\x - b) + c'\x - c) + 2a'b'c\ = 0.
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K Let li and h denote the roots of the quadratic equation

(aj-6)(a;-c)-«'" = 0,

and suppose h not less than h. Then by solving the quadratic

equation it will be seen that h is greater than h or c, and that

h is less than h or c. Substitute successively + (X) ^ h, k^ — od for

X in f{x) ; the results will be respectively

+ 00 ,-{b'J{h-h) + c'J{h-c)^ , i^'J{h-h)-c'J{c-k)^

Thus the equation /(cc) = has three real roots, one greater

than /fc, one between h and ^, and one less than k.

177. There are two cases which require further examination

as they are not provided for by this demonstration, (1) that in

which h = k^ (2) that in which A or ^ is a root of the cubic

equation.

(1) Suppose h = k. Since the roots of the quadratic equa-

tion are equal we shall obtain the condition (6 — c)^+ 4a'^= 0;

therefore h = c and a'= 0. Hence it will be found that c is a root

of the cubic equation; and on dividing f{x) hj x — c and equating

the quotient to zero we obtain a quadratic equation which has

real roots.

(2) Suppose that h or ^ is a root of the cubic equation; for

example, suppose that h is. Then the process of Art. 176 shews

that the cubic equation has also a real root less than k; thus

it has two real roots, and the third root must therefore also be

real. Similarly if ^ be a root of the cubic equation, it has a real

root greater than h; aud thus the third root must also be real.

178. "We may investigate the condition which must hold in

order that h or k may be a root of the cubic equation. Suppose

that X is a root of the quadratic equation and also of the cubic

equation.

Since X is a root of the quadratic equation, we have

(X-6)(A-c)-«'^ = (1);

I
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and since \ is also supposed to be a root of the cubic equation,

"we obtain

b"{\-b) + c''{\-c) + 2a'b'c' = (2).

From (1) and (2) we deduce

b"(\ -b) + c"{\ -c) + 2b'c'J{X.-b){k-c) = 0,

that is, |6V(X -b) + c'J{X - c)X = ;

therefore b" {X - b) = c'\X - c) (3).

From (2) and (3) we obtain

^-^ =—Y\ ^~^ = ""^ (^)^

and therefore b — -77- = c ;- (5).

Hence the relation (5) must hold among the coefficients of

the cubic equation in order that one of the roots of the quadratic

equation may also be a root of the cubic equation.

Conversely, if (5) holds we may give to X the single value

determined by (4), and then both (1) and (2) will be satisfied; and

thus the quadratic equation and the cubic equation will have a

common root.

In obtaining (4) and (5) we assume that neither b' nor c

vanishes.

Suppose that b' vanishes; then from (3) either c' vanishes or

X=c. If X = c then from (1) it follows that a' must vanish.

179. Let us now investigate the conditions in order that

the cubic equation may have equal roots.

If neither h nor A; is a root of the cubic equation, the demon-

stration in Art. 176 shews that the roots of the cubic equation

are unequal. But the process of Art. 176 may be conducted so

as to use either of the quadratic equations

{x-c){x-a)-b"' = 0, or{x-a){x-b)-c" = 0,

instead of the quadratic equation

(x-b){x-c)- a' = 0.
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Hence tlie cubic equation cannot have equal roots unless it

lias a root in common with any one of these quadratic equations.

Hence from equation (5) we obtain the following as necessary

conditions for the existence of equal roots of the cubic equation,

Vg' , da! a'l/
a - = b--rr = c-—r .

a h c

Converselyj if these conditions hold the cubic equation has

equal roots. For denote these equal quantities by r, so that

h'c' , cV ah'
a = r+ —p . o = r + -rr , c = r + —- ;

a c

substitute for a, b, c in the cubic equation, and it becomes

SO that the root r occurs twice, and the other root is

h'c' c'a! olV
r +^ +-77- + —r .

a c

This assumes that a', 6', and c' are all different from zero.

Suppose now that one of these quantities vanishes, say a'.

Then from the quadratic equation

(£c-5)(ic-c)-a'' =

it follows that x must be equal to c or h. Suppose x, = c\ then

from the other quadratic equations we see that

6'=0 and (c-«){c-6)-c'^ = 0.

If a', y and g all vanish then in order that there may be equal

roots, two of the three a, 6, c must be equal ; if they are all equal

the cubic equation reduces to (a; - of = 0.

I
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XIII. BIQUADEATIC EQUATIONS.

180. "We shall now proceed to explain some methods for the

solution of equations of the fourth degree, which are also called

biquadratic equations. We suppose the biquadratic equation

which is to be solved to be deprived of its second term, for a

reason already given; see Art. 165. The first solution which

we shall give is called Descartes^s Solution.

181. To solve the equation

x^ + qd(? + roj + s = 0.

Assume x^ \- qx^ -^ rx + s = {x^ + ex +/) {x^ -ex + g);

we have then to shew that the quantities e, /, and g can be found.

Multiply together the factors on the right-hand side, and equate

the coefficients of the several powers of x to those on the left-hand

side; thus

g+f-e' = q, e(g-/)^r, g/=s;

T
that is, g +/- q^e\ g -/- -

, gf= s.

e

Find g and / in terms of e from the first two of these equa-

tions, and substitute in the third; thus

(j+,vr)(^ +,=„-) = 4..

From this equation by reduction we obtain

e^ + 2qe*+{q^-4:s)e'-r' = 0.

This may be considered as a cubic equation for finding e^, and

it will certainly have one real positive root by Art. 20. When
e^ is known we can find e, and then g and/become known. Thus

the expression x'^ + qx^ + rx + s is resolved into the product of

two real quadratic factors, and we can obtain the four roots of

the proposed biquadratic equation by solving the two quadratic

equations

X- + ex +/= 0, x^-ex + g=^ 0.
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182. It will be observed that in one of tbe two assumed

quadratic factors we introduced the term ex^ and in the other

quadratic factor the term —ex; and the reason for this is that

there is no term involving £c^ in the expression which we wish

to resolve into quadratic factors. Now e is equal to the sum of

the two roots of the second quadratic equation given at the end

of the preceding Article, so that e is equal to the sum of two of

the roots of the proposed biquadratic equation. Out of the

four roots of a biquadratic equation two roots can be selected

A Q

in ^—^ ways, that is, in 6 ways ; and thus we see the reason why

the equation in e should be of the sixth degree. But as the sum
of the four roots of the biquadratic equation is zero by Art. 45,

the sum of any two roots is equal in magnitude and opposite in

sign to the sum of the remaining two roots; and thus we see

the reason why the equation in e only involves even powers of e,

so that the values of e^ can be found by the solution of a cubic

equation.

We may observe that when we have found e^ we can give

either sign to the value of e, which we obtain by extracting the

square root ; for by changing the sign of e we merely interchange

the values of / and ^, and this has no influence on the results

which are obtained by solving the biquadratic equation.

183. Suppose, for example, that a;*— lOaj^^ 20aj- 16 =0,

Here g' = — 10, r = — 20, s = ~16. The cubic equation in e^

becomes e®-20e''+ 164e^- 400 = 0, and a root of this is e^=4;

see Art. 119. Thus e = 2 ; then f= 2, and ^ = — 8 ; therefore

X*- \W- 20ic- 16 = {sc' + 2x + 2){x'-2x-^).

The four roots of the proposed biquadratic equation will be found

to be 4, -2, -1 + /^, and ^l- J^,

184. Thus it appears that the solution of a biquadratic equa-

tion can be effected if we can obtain one root of a certain auxiliary

cubic equation. It becomes therefore a point of importance to

ascertain when this cubic equation falls under the irreducible

T. E. 8
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case; see Art. 171. This gives occasion for tlie following pro-

])Osition. The auxiliary cubic equation will not fall under the

irreducible case when the biquadratic equation has two real roots

a7id two imaginary roots.

For suppose the imaginary roots of the biquadratic equation

to be denoted by a + /? J- 1 and a-p J- 1 ; then since the sum
of the four roots is zero, the two real roots will be of the forms

-a + y and — a - y. By taking the sum of every pair of these

roots we obtain the expressions ^2a,^(y+/3j^), and ±(y-)S^^).

Thus the three values of e^ will be (2a)^, {y + Pj-lY, and

{y-Ps/-^Y'> if 7 is not zero two of these values of e^ are

imaginary, and if y is zero the values of e^ are all real, but two

of them are equal ; thus the cubic equation in e^ wiU not faU

under the irreducible case. ^
•

185. If the roots of the biquadratic equation are all real the

roots of the auxiliary cubic equation will be all real. If the roots

of the biquadratic equation are all imaginary they will be of the

forms a ± j8 J— 1 and — a ± y J— 1 . By taking the sum of every

pair of these roots we obtain the expressions ±2a, =t(/8 + y)^/-l,

and =«=(/? -y)^-lj thus the values of e^ are 4a^, -{/S + yY, and
— (y8 — yYf and so are all real.

Hence if the biquadratic equation has its roots all real or all

imaginary, the auxiliary cubic equation will in general fall under

the irreducible case ; we say in general, because it may happen that

the cubic equation has two of its roots equal, and then it does not

fall under the irreducible case.

186. We have in the two preceding Articles shewn what will

be the forms of the roots of the auxiliary cubic equation cor-

responding to the various forms of the roots of the proposed

biquadratic equation. We will now state conversely what will be

the foi-ms of the roots of the proposed biquadratic equation cor-

responding to the various forms of the roots of the auxiliary

cubic equation. Since the last term of the cubic equation is
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negative, there must be one positive root ; and as tlie product of

the roots is positive, by Art. 45, the only cases which can occur

are, (1) all the roots positive, (2) one positive root and two nega-

tive roots, (3) one positive root and two imaginary roots. The

following results follow from Arts. 184 and 185.

(1) If the cubic equation has all its roots positive, the roots

of the biquadratic equation are all real. ' 1/

(2) If the cubic equation has one positive root and two

negative roots, the biquadratic equation has two real roots and

two imaginary roots, or else four imaginary roots.

(3) If the cubic equation has one positive root and two ima-

ginary roots, the biquadratic equation has two real roots and two

imaginary roots.

'
'' 187. The four roots of the biquadratic equation can be ex-

pressed very simply in terms of the three roots of the auxiliary

cubic equation. Let a^, /3', y* denote the three values of e^ ob-

tained from the cubic equation

eV25e" + (g'-4s)e'-r*=0.

Then by Art. 45 we have r^ = ^P'y\ and -2q = a? + jS" + y\

Thus we may put r = a^y, and take a as a value of e j therefore

x^ + ex +/= x^ ¥ ax + -^(q -{• a^—

)

= (k" 4- aa; -}- i (a'- ^'- y^- 2/?y).

By solving the equation x^ + ex +f= we shall therefore obtain

^ = ^{-<^-P-y), or ^=2^-^ + P + i)'

Similarly, by putting a;^ - ea; + ^ = we shall obtain

a' = 2(«-^ + y)» or x = -^{a + P-y),

Thus the four roots of the biquadratic equation are

l{-a-P-y), l(_a + ^+y), \{a-p^y), \(<i + p-y).

8—2
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In order that the biquadratic equation may have equal roots

the auxiliary cubic equation must have equal roots. For suppose,

for example, that

i(-a-^-y) = l(-a + ^-fy),

then p + y = 0,

therefore P^ = y^'}

and a similar result will follow in any other case.

Hence we can express the condition which must hold in order

that the proposed biquadratic equation may have equal roots; for

by Art. 173 the condition in order that the auxiliary cubic equa-

tion may have equal roots is

(27r^ -72qs + 2qy = 4.{q'+l 2s)\

It will be seen, by Art. 79, that the conditions which must

hold in order that the proposed biquadratic equation may have

three equal roots may be expressed thus

:

27r^- 72^5 4-2^^ = 0, and^'+12s = 0.

It will be useful to note the forms of these conditions for a

complete biquadratic equation.

Let the equation be

ax* + ihx^ 4- ^cx^ + idx + e = ;

assume x = z— , then we obtain
a

z^ + qz^ -^ rz -¥ 8 = 0,

where q = s ,^ a or

^ 4^ __
126c 8&«

a o? a^

_e^__4:hd 6b'c Sb'
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Hence we shall find that

and 27r'-72qs + 2q' =^^{ad' + eh' + c'-ace-'2bcd).

Thus the condition for equal roots is

(ae - ihd + 3c')' = 27 {ad^ + eh^ + c' - ace - 2hcdy;

and the conditions for three equal roots are

ae-46c^4-3c' = 0,

and ad^ + eh^ + c^ - ace - 2hcd = 0.

188. Another mode of solving a biquadratic equation has

been given under slightly different forms by various mathema-

ticians; and thus it is sometimes called Ferraris method, some-

times Waring's method, and sometimes Simpson^s method. We
will now explain it.

Let the biquadratic equation be

add to both sides aoif + hx + c, and then let a, 6, c be so determined

as to render each side a perfect square. We have then

x* + px^ •\-[q-\-a)af+{r + h)x + 8-{-c = ax^-\-hx + c.

The right-hand member will be a perfect square if 6*= iac. Sup-

'pose the left-hand member to be equal to

by comparing the coefficients we obtain

2m + ^= q + a, pm = r + b, m^ = s + c.

These three relations express a, 6, c in terms of m; substituting

the values of a, 6, and c in the equation b' = 4cac we obtain

{pm-ry = 4:{27n+^-q^(m'-s).
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From this cubic equation m must be found, and then a, 6,

and c. And since we now have

f 2 P^ \'
2 7 9,6^

we obtain x^ + --— + 7n = ^ -rr—,— .

2 2 s/

a

Thus we have two quadratic equations to solve, namely,

x-+^ + m+ -=0, and x'+^ +m-
^^ ,

=0.

189. It may be shewn that the auxiliary cubic equation

which this method requires us to solve will in general fall under

the irreducible case, unless the proposed biquadratic equation has

two real roots and two imaginary roots. For let a, ^, y, 8, denote

the four roots of the proposed biquadratic equation; then from

considering the two quadratic equations obtained in Art. 188, it

follows that m + -^—j- must be equal to the product of two of the

four quantities a, j8, y, 8, and m — ^r—y- must be equal to the pro-

duct of the remaining two. Suppose then

h h

thus ^ = o {'^P + 7^)-

Hence we infer by symmetry that the other two values of m

will be ^ (ay + ph) and ^ (aS + ySy).

It is obvious that if a, jB, y, 8, are all real, these three values of

m are all real; and it may be shewn that such will be the case

if a, pj y, Bj are all imaginary. If however two of the four

quantities are real and two imaginary, it will be found that two

of the values of m are imaginary and one real, or else they are

aU real and two of them equal.
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190. We will now give Euler's method of solving a biquad-

ratic equation. Suppose the equation to be

Assume x = y-¥z-\-u\ thus

x^ = y^ + z" -tu^ + 2 [yz + zu + uy),

that is, x^-y^-z^-u^ = 2 (yz + zu + uy).

Square both sides; thus

a;"- 2£c'(t/' + z'^^v^) + (i/' + ;s' + uy = 4c(yz+zu + uy)'

= 4 (y^z^ + z^u^ + v?y^) + ^y:m (y + z + u).

Put X for y + z+u, and transpose ; thus

X*- 2x' {y'+ z'+ u') - ^xyzu + {y^ + ^^ +uy - 4 (^/V + 5;V + uY) - 0.

In order that this equation may coincide with the proposed

biquadratic equation, we must have

q^-2{y^+^ + u% r = -^yzu,

8^{f + z' + uy - 4 (2/V + «V + uY).

Thus y' + z' + u'=- 2̂'

2/V-..v+^y=^(|-.)=^-^g

64

Therefore it follows from Art. 45, that y', z^, and u^ are the

values of t furnished by the following cubic equation,

^^2^^
16 ^64-^-

Let the roots of this equation be denoted by ^^, f^, and f^; then

If we substitute these values in the expression for x, namely,

y -^-z + Uj we obtain eight different results on account of the am-
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biguities in sign. But these results are not all admissible; for we

must have yzu = - « , so that the sign of the product of y, 2;, and

u^ must be the contrary to the sign of r.

If we suppose r 'positive^ we have the following admissible

values of a;,

If we suppose r negative, we have the following admissible

values of x,

V^z+n/««+V^3» JK-Jh-Jh^ -n/^i+A-A» -A-A+A-
A \ , 191. The reason why eight values of x present themselves in

T
the preceding Article is because the relation yzu = — ^ was

o

squared and used in the process in the form 'i^si^u^ ~ «! ^ ^^^ since

the relation in the latter form is not changed by changing the

sign of r, the process really determines the roots of the biquadratic

equation cc* + qx^ -rx-¥s-0, as well as the roots of the biquad-

ratic equation £c*+ qx^ + rx + s = 0.

The auxiliary cubic equation of Art. 181 will be found to

coincide with that 6f Art. 190 by supposing e' = it', thus the re-

marks made in Arts. 184... 186, respecting the connexion between

the root? of the auxiliary cubic equation and the biquadratic

equation, and the circumstances under which the cubic equation

falls under the iiTeducible case, apply to Euler's method of solu-

tion as well as to Descartes's.

192. It may happen that special forms of biquadratic equa-

tions admit of simpler solution than the general equation. The
following is an example. The biquadratic equation

x^+px^-r qx^ + rx-\-s = Q

can be solved as a quadratic equation if jo^— 4p5'+ 8r = 0. For

the equation x*+px^ + qx'^ + rx + s = may be written
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and this may be solved as a quadratic equation, if —^ = -^ , that

is, if f^— ^pq + 8r= 0.

Some valuable jremarks on Biquadratic Equations by Professor

E-. S. Ball will be found in the Quarterly Journal of Mathematics,

Vol. VII. 1866.

XIY. STUHM'S THEOBEM. • „

1 93. In the preceding Chapters of the present work we have

demonstrated various theorems respecting the roots of equations,

and have given the algebraical solution of equations of the third

and fourth degrees. We are now about to enter upon a different

part of the subject, namely, the methods of finding approximately

the numerical values of the roots of equations; the present .

Chapter commences this part of the subject by proving Sturm's

theorem, the object of which is to_determine the situation and the

number of the real roots of any equatiQjt We shall enunciate

and prove the theorem in the next Article; we shall then give

some remarks connected with the theorem, and finally apply it to

some examples.

194. Sturmis Theorem. Let f{x) = be an equation cleared,

of equal roots, and let f^{x) be the first derived function off(x);

let the operation of finding tlie greatest common measure oi f{x)

and y*j (x) be performed with this modification, that the sign of 'u"^

every remainder is changed before it is used as a divisor, and let

the operation be continued until the remainder is obtained which is

independent of x, and change the sign of that remainder also.

JjQt f^{x),f.^(x),...f^{x), be the series of modified remainders

thus obtained. Let a be any quantity, and /3 another which is
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algebraically greater, then^ the^ number of real roots of the ecjua-

tion f(x) = 0^ between a and y8 is the excess of the number ~oF
changes of"sigirin 'the series /{x), A(x), /,{x), .../^^{x)^^^^
x^^ over the number of changes of sign when x = fi.

We shall call the whole series f{x),f^{x), /^(x), .../^{x),

Sturm'sfunctions, and we shall call the seri('^8f{x),f^(x),...f^(x),

the auxiliary/ functions, so that the auxiliary functions consist of

Sturm's functions omitting f{x).

^^* ^u 2'2> ••• 5'm-i> denote the successive quotients which
arise in performing the operations indicated; then we have the

following relations,

From these relations we can draw three inferences.

(1) The last of the functions /^(ic) is not zero; for by supposi-

tion it is independent of x and if it were zerof(x) and/^(£c) would

have a common measure, and then the equation f(x) = would

have equal roots by Art. 75, and this is contrary to the hypothesis.

(2) Two consecutive auxiliary functions cannot vanish simul-

taneously; for if they could all the succeeding auxiliaiy functions

would vanish including f^(x)j and this is impossible by (1).

(3) When any auxiliary function vanishes the two adjacent

functions have contrary signs. Suppose for example thsLtf(x) = ;

then from the third of the above system of relations we have

Now no alteration can be made in the sign of any one of

Sturm's functions except when x passes through a value which

makes that function vanish; and we shall now prove that when

X passes through a value which makes f(x) vanish one change
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of sign is lost by Sturm's functions, and that no change of sign is

lost or gained in consequence of x passing through a value which

makes one of the auxiliary functions vanish.

I. Suppose c a root of the equationy (a?) = 0, so thaty(c) = 0.

Let h be a positive quantity. Now f(c — h) may be expanded

in powers of h by Art. 10, and h may be taken so small that the

sign of the whole series shall be the same as the sign of the first

term that does not vanish, hjjAxt. 14; that is^ the sign of/{c- A)

will be the same as the sign ^- h/^(c) since /(c) = 0. The sign of

yj (c — h) will be the same as the sign of/ (c) when h is taken small

enough. Thus if x = c-h and h is taken small enough, /(x) and

/ (x) have contrary signs.

Similarly, it may be shewn that if x = G + h and h is taken

small enough, /(aj) and/(cc) have the same sign.

Thus as X increases through a root of the equation /(a;) = 0,

Sturm's functions lose one change of sign.

II. Let c now denote a value of x which makes one of the

auxiliary functions vanish, for example, f^{x), so that/.(c) = 0.

Then /._,(c) and /.+ ,(c) have contrary signs, and thus just before

x = c and also just after x = c, the three terms/_j(rc), /^{x), /+i(^) t. :

will present one permanence of sign and one change of sign; for if (

fr-A^) 9'^d/(fl3) have the same sign,/(.'^;) a,ndf^^^{x) have contrary

signs, and vice versa. Thus Sturm's functions neither lose nor

gain a change of sign when x passes through a value which makes

one of the auxiliary functions vanish.

No value of x can make two consecutive functions simul-

taneously vanish. If two or more vanish simultaneously which are

not consecutive, then, if /(x) be one of them, it follows by I. that

a change of sign is lost as x increases through that value, and iff{x)

be not one of them it follows by II. that no change of sign is lost.

. Thus we have proved that as x increases, Sturm's functions never
[

lose a change of sign except when x passes through a root of the

equation f(x) == 0, and never gain a change of sign. Hence the i

/
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number of changes of sign lost as x increases from any value a to

a greater value ^, is equal to the number of the roots of the equa-

tion /(a;) = which lie between a and yS.

195. "We have shewn that no alteration occurs in the number

of the changes of sign in Sturm's functions in consequence of x
passing through a value which makes one of the auxiliary functions

vanish; but alterations may take place, and in general do take

place, with respect to the order in which the signs + and — are

distributed among the series of functions. Suppose, for example,

that a and h are two roots of the equation f{x)=0 and that a is

less than h ; then f{x) and /, {x) have contrary signs just he/ore

x = a and have the same sign, just after x = a. "Nowjust be/ore x=b
the signs of f(x) and f^{x) are again contrary. In fact the equa-

tion fj^x) = has one root between x=a and x = b, and so f^{x)

must pass from positive to negative or vice versa between x = a and

x = b. This transition of f^ (x) from positive to negative or vice

versa between a and b, cannot alter the whole number of changes

of sign in the series of Sturm's functions, as we have proved, but

it does modify the distribution of the signs + and - among the

series, and thus renders it possible after a change has been lost as

X increases through a, for another change to be lost as x increases

through b.

The present Article adds nothing to the proof of Sturm's

theorem ; but is merely intended to assist a student in the diffi-

culty which is often felt as to how the changes of sign are lost.

""^
196. In counting the number of changes of sign in the series

of Sturm's functions, it may happen that the value of x which we

are considering makes one of the auxiliary functions vanish.

Then it is indifferent whether we ascribe the positive sign or

the negative sign to the vanishing function, since the signs of

the functions which precede and follow it are necessarily contrary.

197. In order to find the whole number of real roots of an

equation fix) = 0, we may first put — oo for x and then + oo for x in

Sturm's functions; the excess of the number of changes of sign in
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the first case over the number of changes of sign in the second

case is the whole number of real roots. When x is made equal to

+ 00 or — 00 the sign of any one of the functions will be the same

as the sign of the highest power of x in that function.

198. Let n denote the degree oi/{x); then the number of the

auxiliary functions/j(aj),/2(£c),...will in general also be n; because

each remainder is generally of one degree lower than the preced-

ing remainder. We will suppose that the number of auxiliary

functions is the same as the degree of /(x), and we will suppose

that the highest power of x inf{x) has a positive coefBcient.

(1) If the first terms in all the auxiliary functions have posi-

tive coefficients all the roots of the equation /(a;) = are real. For

all Sturm's functions will then be positive when a;= + oo , and they

will be alternately positive and Negative when a; = — oo ; thus n
changes of sign are lost as x passes from — oo to + oo .

(2) If the coefficients of the first terms are not all positive,

there will be a pair of imaginary roots for every change of sigti in

the series formed of these coefficients. For suppose that in this

series of coefficients there are m changes of sign and n —m con-

tinuations of sign. Then when a; = + oo there .arem changes of sign

and n — 7)% continuations of sign in Sturm's functions. Now change

X from +00 to - 00 j then the changes of sign are replaced by con-

tinuations of sign and the continuations of sign by changes of sign,

so that for a; = - 00 there are n — m changes of sign. The excess of

the number of changes of sign when a; = — oo over the number when

a; = + 00 is therefore n - 2m; thus there are n — 2m real roots of the

equationy (a;) = 0, and therefore 2m imaginary roots.

Hence in order that an equation may have all its roots real, it

is necessary and sufficient that the coefficients of the first terms in

all the auxiliary functions should be of the same sign.

199. Suppose that among the auxiliary functions we find one,

as f^{x), which cannot change its sign; then we may disregard all

the functions which follow it, and count only the number of changes

of sign in the series /(x), f^ (x), J\{x), .

.

./. {x). For in the original
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demonstration of Sturm's theorem the necessary property of the

last auxiliary function is that it should not vanish, and as

f^{x) cannot vanish, the demonstration will hold for the series

This remark is of practical importance, because the labour

attending the formation of Sturm's functions is considerable in

examples of equations of high degrees, and thus it is usefiil to

have a rule which sometimes relieves us from the necessity of

forming the entire series of functions.

"^ 200. Suppose </> {x) to be a function which has no factor in

common with /(a;), and suppose that <^{x) and /^{x) take the

same sign when any root of the equation f{x) = is substituted

for X in them. Then we may use <^ {x) instead of/j {x) and deduce

the remaining auxiliary functions from f{x) and <l>{x) instead of

from /(£c) and/j(a3). For on recurring to the demonstration of

Sturm's theorem it will be seen that with this new set of functions

the two fundamental properties are still true, namely, that no

change of sign is lost owing to the vanishing of any auxiliary

function, and that a change of sign is lost when /(a:) vanishes.

201. We have hitherto supposed that the equation to be

treated by Sturm's method is cleared of equal roots; we shall now

shew that this limitation is unnecessary, and that the theorem will

always give the number of distinct roots between assigned limits,

no regard being had to the repetition of any roots.

Suppose for example that the root a occurs p times and the

root h occurs q times in the equation f{x) = 0.

Let f{x) = {x-ay{x-h)\x-c){x-d),.,

then f^{x) = {x-ay-\x-hy-'{p{x-h){x-c){x-d)..,

+ q{x — a){x — c){x — d)...

}
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Thus {x - aY~^ (x - hy~'^ is the greatest common measure of /(x)

and y,(a3), and this expression will divide all the auxiliary func-

tions jf^(a;), /g(aj) ,.../„(a:) which are formed as in Art. 194.

Now let if/ (x) = {x — a){x - b) (x — c) {x — d) . .

.

and <l)(x) =p{x-h){x — c)(x — d)...

+ q{x — a) {x — c) (x — d) . .

.

+ {x-a){x-h)(x — d)...

+ ...

Then <j>(x) is not the first derived function of if/(x), for that would

be what
<f>

(x) would become if ^9 = 1 and q=l; but cf> (x) has the

same sign as the first derived function of 1/^(0;), when we make

x = a, or b, or c,... Hence, by Art. 200, we may determine the

situation of the real roots of the equation i}/(x) = by taking if/{x)

and <^ (x) as the first two of Sturm's functions and forming the rest

from them.

But the series of Sturm's functions formed from f(x) and /^ (x)

only difiers from the series formed from i}/(x) and cfi(x) by reason of

the additional factor (x — af~^ {x — by~^ in every term of the series.

Thus when any value is ascribed to x, the signs of the terms in

the former series will all be the same as those of the latter, or all

contrary; and thus the number of changes of sign will be the

same.

Hence by examining the series of Sturm's functions formed

from f(x) and /^ (x) we can ascertain how many of the roots of

the equation ij/(x) = lie between assigned limits, that is, how
many distinct and separate roots of the equation /(a;) = lie be-

tween those limits.

Thus we need not apply the test for equal roots before we
apply Sturm's method; in fact, in calculating Sturm's functions

we shall be warned of equal roots if they exist by the fact that the

last remainder will be zero.
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202. We may observe tliat in the operation by "which all the

auxiliary functions after the first are found, we may always mul-

tiply or divide the divisors or dividends by any positive number

we please, as in the operation of finding the greatest common mea-

sure; for the auxiliary functions thus only become multiplied or

divided by positive numbers, so that their signs remain un-

changed.

We may by Sturm's theorem determine the number of real

roots of any proposed equation. Then, by substituting successive

integers for x in the series of Sturm's functions, we can determine

between what consecutive integers the roots lie; or if it is found

that more than one root lies between two assigned integers, we

can substitute 'for x successively fractions which lie between those

integers, until we at last determine intervals between which the

roots lie singly.

203. We will now take some examples.

Suppose /{x) = x^- Sx'- 4aj + 13 = 0.

Here /i (x) = dx^- 6x - 4,-

f^{x) = 2x-5,

The roots of the equation are all real by Art. 198. The following

is the series of signs corresponding to the values of x indicated.

/i{*) /.(^) M'^)/(^)

+

1 +

2 4-

3 +

Here there are two changes of sign when x = 2, and none when

a; = 3 ; thus there are two positive roots between 2 and 3, and no

other positive roots.
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It will be found that when x = -3, the succession of signs is

- + - +, and when x = - 2 it is + + - +, so that one change of sign

is lost in proceeding from — 3 to — 2, and therefore the negative root

lies between — 2 and - 3. To separate the two roots which lie be-

tween 2 and 3 we should substitute for x some number or numbers

lying between 2 and 3. Suppose, for example, we put x = 2^; then

the succession of signs is + , and thus we have only one change

of sign, whether we consider the to carry the sign + or —. Thus

a change of sign is lost in proceeding from 2 to 2^, and therefore

one root lies between 2 and 2^ ; hence the other root lies between

2J and 3.

Again, suppose /(a;) =«;''- 6x^+ 5x^+ 14a; - 4 = 0.

Here /^ (x) = 2x'^- 9x^+ 5x + 7, omitting a factor 2,

f^(x) = 17x'-57x-p,

f^{x)=\62x-457,

In this example it will be found that the calculation of f^(x)

is somewhat complicated; it is sufficient for our purpose however

to know the sigriy and thus when we ascertain that it is positive

we need not calculate it exactly, but merely put downy^(a3) = +.

The roots of the equation are all real by Art. 1 98. .

The following is the series of signs corresponding to the values

of X indicated.

• -2 + - + - +

- 1 - - + - . +

_.+ __.+
1 + 4- . - - , +

2 +•---.+
3 + - - - +

4 + + + + +

There is one change of sign lost between — 2 and - I, one be-

tween and 1, and two between 3 and 4.

T. E.

'

9
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If we put 3J for aj the succession of signs is - + + +, and thus*

there is only one change of sign, so that one root of the equation

lies between 3^ and 3J; therefore another root lies between 3^

and 4.

Again, suppose/(aj) = 2a;*-13a;^+ lOic- 49 = 0.

Here f^ {x) - 4aj^- 13a3 + 5, omitting a factor 2,

/,(«) = 13a;'- 15aj+ 98.

It is easy to see that the roots of the equa,tion fjix) = are

imaginary, that is, fj^x) cannot vanish for any real value of x ;

therefore by Art. 199 we need not obtain any more of Sturm's

functions in this example. When aj = — oo the succession of signs

is + - +, and when cc = + oo the succession of signs is + + + ; thu&

the equation has two real roots and two imaginary roots, ^ne of

the real roots is positive and the other negative by Art. 21.

XV. FOUHIER'S THEOREM.

204. Sturm's theorem constitutes the complete solution of a

problem which has engaged the attention of many of the most

eminent mathematicians during the last two hundred years; this

theorem was published in the volume of Memoires presentes i

pa/r des Savants Etrangers, Paris, 1835.
\

Among those who attempted the solution of the problem

before Sturm two are deserving of especial notice, Budan and

Fourier; the methods of these two mathematicians start from a

theorem which English writers usually call Fourier's theorem, and

which Fi'ench writers connect with the name of Budan as well as

with that of Fourier. Fourier's work on equations was published

in 1831 after the death of, the author; Budan published a work

on the subject in 1807. There is evidence however that Fourier

had given the theorem in a course of lectures delivered before the •

publication of Budan's work. We will now enunciate and prove

the theorem.
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205. Fourier's Theorem. Let f(x) be an algebraical function

of the 71* degree; let /(a;), f^{x),...fjx) be the successive derived

functions of f{x). Let a be any quantity and /? another which

is algebraically greater; then the number of the real roots of

the equation /(cc) = between a and ^, cannot be greater than

the excess of the number of the changes of sign in the series

f{x)^f^(x),fjx),...f^{x), when a3 = a, over the number of the changes

of sign when x = p.

We shall call the whole seriea/{x),/^{x\f^{x)f...f^(x)j Fov/rier's

functions.

No alteration can occur in the sign of any one of Fourier's

functions except when x passes through a value which makes that

function vanish. We shall now have four cases to consider.

I. Suppose when x = c that f{x) vanishes and that f{x) does

not vanish. Put c — h for x where h is a positive quantity; then

h may be taken so small that the sign of f{c — h) is the same as

that of -hf(c), and the sign of f^(c-h) the same as that of /^(c);

see Art. 14. Thus if x = c-h and h is taken small enough, /(«)

aiidy*j (x) have contrary signs.

Similarly it may be shewn that if x-c-^-h and h is taken

small enough, /(cc) and f^{x) have the same sign.

Thus as X increases through a value c, which is an unrepeated

root of the equation f{x) = 0, Fourier's functions lose one change of

sign.

II. Suppose when x — c that /"(cc) vanishes and also the de-

rived functions /j(cc),/2 (a?),... up tof_J^x), and that/.(ir) does not

vanish. Put c — h for x where A is a positive quantity; then h

may be taken so small that the signs of the series of terms

f{c-h), /,(c-/»), Uc-h), ./,.,(c-A), fXo-h)

shall be respectively the same as the signs of the series of terms

(-j^rm, (-*)-/,(«), {-hrvxc),...-hfXc),fxo);

9—2
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see Arts. 10 and 14. Thus ii x = c-h and h is taken small enough,

the first r + 1 of Fourier's functions present r changes of sign.

Similarly it may be shewn that if x = c + h and h is taken

small enough, the first r + 1 of. Fourier's functions present no

change of sign.

Thus as X increases through a value c which is a root of the

equation f(x) = repeated r times, Fourier's functions lose r

changes of sign.

III. Suppose when x=c that one of the derived functions

vanishes, but neither of the two adjacent functions; thus letf^(x)

vanish when x^c but neither f^_^{x) nor /^+i(£c). Then if h is

taken small enough, when x = c — h the signs of the three terms

fr-M)i fri^)> fr+ii^)' ^^'® rcspcctivoly the same as the signs of

fr-i{(^)) -hfr+ii^)i/r+i(^)f ^^^ whcn X -^ G + k thc signs are the same

as the signs of X_^(c), A/,^.,(c), f^^{c). Thus if f_^(c) and /^^c)

have the same sign, Fourier's functions lose two changes of sign as

X increases through c, and if /^_^{g) and /^^^{c) have contrary

signs Fourier's functions neither gain nor lose a change of sign.

IV. Suppose when x = c that several successive derived func-

tions vanish; for example, suppose when x = c that the 7n func-

tions fXx), f^^{x),...f^^_^{x) vanish, and that /.^ (a?) and /^,„(a;)

do not vanish. By proceeding as before, and supposing h taken

small enough and positive, we shall obtain the foUowiag results

with respect to the ?7i + 2 terms, f_,(x), /.(a?),. ••/+«.-! (a^), /r+mH-

(1) Let m be even. If /^_^(c) and/.+^(c) have the same sign,

the terms present m changes of sign when x = c—hf and no change

of sign when x = c + h. If /,_i(c) and f+J.c) have contrary/ signs,

the terms present m+ 1 changes of sign when x = c — h, and one

change of sign when x = c + h. Thus in both cases Fourier's func-

tions lose m changes of sign as x increases through c.

(2) Let m be odd. If f_^(c) and f^Jc) have the same sign

the terms present m + \ changes of sign when a; = c — A, and no

change of sign when x = c + h. Thus Fourier's functions lose m + 1
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changes of sign as x increases through c. Ify^_j(c) and/^^^(c) have

contrary signs, the terms present m changes of sign when x = c — h,

and one change of sign when x = c + h. Thus Fourier's functions

lose m — 1 changes of sign as x increases through c.

Thus on the whole Fourier's functions never gain a change of

sign, but they do lose one change of sign when x increases through

a root of the equation /(a:;) = 0; and thus the theorem is proved.

206. It will be observed that the demonstration of Art. 205

gives us something more than the enunciation to which for sim-

plicity we confined ourselves. For it appears that whenever an

alteration occurs in the number of the changes of sign of Fourier's

functions, except by reason of the variable increasiug through a

root of the given equation, an even number of changes of sign is

lost. Thus on the whole we have the following result if we sub-

stitute successively a number a and a greater number y8 in Fourier's

functions.

(1) Suppose that Fourier's functions lose no change of sign;

then no root of the given equation lies between a and fi.

(2) Suppose that Fourier's functions lose an odd number of

changes of sign; then we are certain that some odd number of

roots lies between a and j8, but cannot tell what odd number, ex-

cept when only one change of sign is lost, and then we are certain

of on,e root.

(3) Suppose that Fourier's functions lose an even number of

changes of sign; then we can only infer that there is either no

root or else some even number of roots between a and jS.

207. The advantage of Fourier's theorem is that it can be

easily applied, because the successive derived functions of a given

function can be immediately formed. The disadvantage of. the

theorem is that it may require an almost unlimited number of

trials. For if two roots are very nearly equal, it would require

very minute subdivision of an interval in which they were con-

jectured to lie, in order to distinguish them from two imaginary



134 FOURIER'S THEOREM.

roots. It would be necessary to aj^ply the test for equal roots

before begiimmg Fourier's process, as otherwise an even number of

repeated roots might remain undiscovered.

208. Budan and Fourier both gave methods for examining a

doubtful interval more closely in order to discover whether roots

of the proposed equation were or were not situated in the interval.

But it is unnecessary to explain these methods since Sturm's

theorem attains the proposed object with simplicity and certainty.

209. It may be shewn that Descartes's rule of signs is

included in Fourier's Theorem.

Suppose that f{x) = is a comphte equation.

If we put a; = in Fourier's functions the signs are the same as

the signs in the expression f{x) taken from right to left; and if

we put x=co in Fourier's functions the signs are all positive.

Hence, by Fourier's theorem, the equation /(x) = cannot have

more positive roots than f(x) has changes of sign.

If the proposed equation be not complete, we may suppose the

absent terms supplied with zero coefficients, and such signs may be

ascribed to these coefficients as to make Fourier's functions have

the same number of changes of sign when these terms are counted

as when they are omitted.

The part of the rule of signs which relates to the negative

roots can be deduced from that part of it which refers to the posi-

tive roots; see Art. 63.

210. Fourier's theorem also includes the rule given by New-

ton for finding a superior limit to the positive roots of an equa-

tion ; see Art. 94. For if /(x) = be the equation, Newton's

method directs us to find h such that when x = h Fourier's func-

tions are all positive; and then by Fourier's theorem no roots of

the proposed equation exist between x = h and a? = + oo

.
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XYI. LAGEANGE'S METHOD OF APPEOXIMATIOlSr.

211. We have already shewn how the commensurable roots

of an equation may be found; we shall now consider how the

approximate numerical values of the real incommensurable roots

may be calculated.

By Sturm's theorem we can always determine how many roots

lie within a given interval, and we may then divide that interval

into smaller intervals within which the roots lie singly. Suppose

then that we know that an equation has one root and only one

between two given quantities a and ^, and we wish to approxi-

mate to the value of this root. If we substitute any quantity y
which is intermediate between a and P for x in f{x), we shall

know by the sign of f{y) whether the root lies between a and y
or between y and p. Suppose it to lie between a and y] then we
may substitute for x a quantity S which lies between a and y, and

we shall know by the sign of /(S) whether the root lies between

a and 8 or between 8 and y. This process may be continued to

any extent, and we may approximate as closely as we please to

the numerical value of the root; for by each operation we can

thus halve the interval within which the root must lie.

The operation here described would however be very laborious

and methods have been proposed for attaining the required result,

with less calculation. We shall first explain Lagrange's method.

212. Let/*(aj) = be an equation which is known to have

one root, and only one, between two consecutive positive integers

a and a + 1. Put x = a + -. and substitute this value of x in the
y

proposed equation; thus /( a + -
j
= 0. If we clear this equation

of fractions, we obtain an equation in y of the same degree as the

original equation in x ; denote it by </> {y) = 0. This equation in y

has only one positive integral root, since the original equation in x
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has only one root between a and a+\. We may then determine

the consecutive integers between which the value of y must lie,

by substituting in <fi{y) successively the values 1, 2, 3,... until

two consecutive results are obtained which are of contrary signs.

Suppose it is thus found that y lies between h and 6+1. Put

y = h-¥~ f and substitute; thus ^f6 + -j = 0. Hence, as before,

we obtain an equation in which the unknown quantity has only

one positive root, and we may * determine the consecutive integers

between which the value of z must lie; let these be c and c + 1.

Then put z = c + -; and so on.^ u

Thus we shall obtain the required value of x to any degree of

approximation in the form of a continued fraction, namely,

1
x-a +

I.'
c+ ...

213. Next suppose that the equation f{x) = has more than

one root lying between the integers a and a-\-\. By Sturm's

theorem, or by some other method of separating the roots, we

may determine by what number the roots of the equation which

lie between the same two consecutive integers must be multi-

plied in order that the products may lie between different con-

secutive integers. Transform the equation into another whose

roots are those of the proposed equation multiplied by the number

thus determined; and then the method of the preceding Article

may be applied to the transformed equation.

Or we may adopt the method of the preceding Article with-

out effecting this transformation. In this case the equation in y
will have more than one positive root and we must seek the

greatest integer in each root, and then proceed to the separate cal-

culation of the several resulting values of z. It may happen that

the equation in y has more than one root between certain consecu-

tive integers; then the equation in z may be used to discriminate

them, and the calculation of each root continued; and so on.
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214. From the given equation f{x)= we deduce/ f a + - j
= 0^

that is, supposing /(a?) of the degree n,

multiply by 3/" and we obtain

3/"/(»)-^2'"-/(«) + ^'-'-^+ - +-^^ = 0-

Thus in order to form the equation in y we must calculate the

numerical values of /(a), f'{cb\ f"(^)j-"', these calculations

may be performed in the manner explained in Art. 5 ; but, as we

have stated in Art. 11, the best method will be explained here-

after in the Chapter on Horner's method. A similar remark

holds with respect to the formation of the equation in z.

By referring to Arts. 54 and 58, we see that Lagrange's

method of approximation may be thus stated. Suppose a root of

an assigned equation to lie between a and a + 1, diminish the

roots of the equation by a, and take the reciprocal equation.

Find a root of the last equation lying between integers b and

ft + 1, diminish the roots by b, and take the reciprocal equation.

Find a root of the last equation lying between integers c and

c + 1, diminish the roots by c, and take the reciprocal equation.

Proceed in this way. Then the continued fraction

1

b+
c + ...

is a. root of the original equation.

215. Example. cc^-2a;-5 = 0.

By Art. 108, this equation has only one real root, and by

Art. 20, this root must be a positive quantity; it will be found

on trial to lie between 2 and 3.
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Assume a; = 2 + -
; then

y

/(2)-2^-2.2-5 = -l,

/'(2)= 3.2^-2 -10,

J/'' (2)= 3.2 =6,

and the equation in 3/ is - ^/^ + 10?/^ + 6y + 1 = 0, that is,

2/^-102/^-63/- 1 = 0, say ^{y) = 0.

Here y=\0 makes <^ (?/) negative, and y=\l makes 4>{y)

positive; therefore the required value of y must lie between 10

and 11. Assume y=\0+-', then
z

<f>{lO) = W- 10 . 10^- 6 . 10 - 1 = - 61,

<^'(10)= 3.10^-20.10-6 =94,

icf>"{lO)= 3.10-10 =20,

and the equation in 2; is - 612;^+ 9 4^;^+ 20^; +1 = 0, that is,

6U'-94;s'-20;2;-l=0, say if;{z)=--0.

Here z = 2 makes if/(z) positive, so that the required value of z

must lie between 1 and 2. Assume z = l+-: then
u

f (1) = 61 . r- 94 . r- 20 . 1 - 1 = - 54,

i/r'(l)= 183.1^-188.1-20 =-25,

Ji/a"(1)= 183.1-94 =89,

and the equation in «* is - 54?*^- 25u^+ 89u + 61=0, that is,

54?^^+ 25^^-89^-61=0.

This equation shews that the value of u must lie between 1

and 2 ; and we may proceed as before.

Hence x=2 + r-

10+

1 +
1+&C.
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The convergents corresponding to this continued fraction are

J , Y^, YT ,
^ry, See Algebra, Chapter xliv. The difference

1 lU 11 ZL

4:4: . 1
between -— and the real value of the root is less than „., ,„-,—rrrr

,

21 21(21 + 11)

that is, less than ^=^ .

b7 J

For another example take the equation cc^ — 7a; + 7 = 0. By
Art. 108 this equation has all its roots real; and by Sturm's

theorem it maybe shewn that one root lies between 1 and IJ, and

that another root lies between IJ and 2, Therefore if we put

cc = -^ and form an equation in x' this equation will have one

root between 2 and 3, and one root between 3 and 4. The equa-

tion in a;' is CD -
7
1- + 7 = 0, that is, x'^~ 2Sx'+ 56 = 0.

The root which lies between 2 and 3 will be found to be

1

1+ 1

2 + &C.

The root which lies between 3 and 4 will be found to be

1

1

1 +&C.

The roots of the original equation will be obtained by taking

half of each of these values.

Or we may apply Lagrange's method to the original equation

without any preliminary transformation. Assume a; = 1 + - ; thus

fl^-J-l fl+-\ + r = 0. This will give y^- iy' + 3y+ I = 0,

say (j>{y) = 0. Here <^(1) is positive, ^(2) is negative, and <^(3) is

positive; thus one value of y must lie between 1 and 2, and the
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other between 2 and 3. Then we may put y =1 + - in order to

continue the approximation to the first root, and y = 2 + -m
z

order to continue the approximation to the second root.

The equation a;^— 7a5+7 = has one negative root; we may-

find it by changing x into —x and calculating the positive root

of the resulting equation, that is of the equation

(-xY-1{-x) + 1 = Q.

Or since the sum of the three roots of the equation a;^— 7a;+7 =

is zero, when two of the roots are calculated approximately the

third can be immediately found approximately.

216. If in following Lagrange's method we arrive at an equa-

tion which has an integer for a root, we obtain a finite continued

fraction as a root of the original equation, that is, we obtain a com-

rtiensurahle fractional root. This of course cannot occur if we have

previously determined all the commensurable roots both whole and

fractional of any proposed equation, and removed the corresponding

factors by division.

217. It may happen that in following Lagrange's method we
arrive at an equation which is identical with one of those which

preceded it; in this case the quotients of the continued fraction

recur, so that the continued fraction is a periodic continued frac-

tion and its value can be found by solving a quadratic equation;

see Algebra, Chapter xlv. The roots of this quadratic equation

will involve a quadratic surd, and both of the roots will be roots of

the proposed equation by Art. 44.

218. We will here give the general process which has been

exemplified in Art. 215 in the second method of treating the

equation cc^- 7a3 + 7 = 0. The object in view, is to apply Lagrange's

method of approximation when a proposed equation has more than

one root between consecutive integers. Let f{x) = be the pro-

posed equation; form the avjxiliaryfunctions f^{x),f^{x), f^{x),...
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which occur in Sturm's theorem, stopping when one is obtained

which is positive for all values of x; see Art. 199. Suppose that

more than one root of the proposed equation lies between the

consecutive integers a and a+1. Put a + - for a? in the functions

/{x),f^{x)^f^(x),..., and denote what they become respectively by

F(y), F^(y), F^(y),... If in the latter series of functions we sub-

stitute successively any two numbers, as b and 6 + 1, the difference

of the numbers of the changes of sign in the two cases will give us

the number of roots of the equation F(y) = which lie between

b and b + 1. For the results which we obtain by substituting b

and 6 + 1 in F(y), F^{y), FJ^y),...^ are the same as those we should

obtain by substituting respectively « + r a-nd a + -—- in the series

f{x),f^{x),/^{x),...'j and therefore the difference of the numbers of

the changes of sign must be equal to the number of the roots of the

equation f(x) = which lie between a + j- and a + 7—y , that is, to

the number of the roots of the equation F(y)=0 which lie between

b and b + 1.

If then we find that more than one value of y lies between

the consecutive integers b and 6+1, we substitute 6 + - for y
z

in the series F{y), F^{y), FJ^y),...; then, by giving two consecutive

integral values successively to z and substituting them we can

determine whether more than one value of z lies between two

consecutive integers.o

We proceed in this way until we obtain an equation which has

only one root between consecutive integers; and after that we need

not pay any regard to Sturm's functions but continue the calcula-

tion for this particular root by the method of Art. 212.

Thus we are able to separate the roots and can calculate them
without any omissions.

As we do not require to know the values, but only the signs

of F(y), F^{y), F„{y), ^.., we may in all cases multiply these
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functions by such powers of y as will clear them of fractions; for y
is supposed to be a positive quantity, and therefore any power of y
is positive. Thus, for example, instead of F{y), that is, instead of

1
, we may useA-%
2/'/(«) + 2/"-'/'(») + ^V"(») + - + j^/"(»).

supposing that/(a3) is of the degree n.

XVn. NEWTON'S METHOD OF APPROXIMATION
WITH FOURIER'S ADDITIONS.

219. We shall now explain Newton's method of approxima-

tion to the numerical value of a root of an equation.

Let f(x) = be an equation which has a root between certain

limits a and jB the difference of which is a small fraction; let c be

a quantity between a and p which is assumed as a first approxi-

mation to the required root, and let c + h denote the exact value

of the root, so that h is a small fraction which is to be determined.

Thus/(c + h) = 0, that is, by Art. 10,

/(c) + hf{c) -^ 1^2^(0) + ^/-(c) + ... + |/«(c) = 0.

Now since h is supposed to be a small fraction A^, h^,... will be

small compared with A; if we neglect the squares and higher

powers of A in the above equation we obtain/ (c) -f- A/"' (c) = 0; thus

Supposing then that we thus obtain an approximation to the

f{c)
value of h, we have c — ,,

'

as a new approximation to the root
/ {^)

of the proposed equation. Denote this new approximation by Cj

,

fie )
and then proceeding as before we obtain c^ - VtVK as a new ap-

proximation; and so on.

We shall presently examine more closely the conditions which
,
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must hold in order that this method may be safely applied. It is

of course obvious that such examination is necessary, since the pro-

cess is not universally applicable; for if /'(c) is small compared

with /(c) the supposed approximate value of h is not a small

fraction as it should be.

220. As an example of Newton's method we will take the

equation which Newton himself selected, namely, x^~2x-6 =0,

say fix) = 0. Here as = 2 makes /(x) negative, and x = S makes

/(x) positive, so that a root of the equation f(x) = lies between

2 and 3. Again, aj= 2J makes /{x) positive, so that the root lies

between 2 and 2^; also a3 = 2-2 makes /(«) positive; thus the

root cannot differ from 2*1 by so much as •!. Suppose then

c = 2-l; then

thus c, = 2*0946 nearly.

Then for a new approximation we have

c, -p^ = G^ - -.00004852 nearly = 2-09455148 nearly.

221. This process is very simple in theory and not difficult in

practice; but it is not of certain success unless some precautions

are taken which we shall presently explain. For suppose that c

is an approximate value of the root, and that c^= c- jrj-r , we are

not sure without further investigation that c^ is nearer than c to

the real value of the root. In the preceding example, after we
had ascertained that there was a root between 2 and 2*2, we
assumed 2-1 as a first approximation and deduced 2 '0946 as a

new approximation. But we are not sure as yet that 2-0946 is

nearer to the root than 2*2; if however we put 2-1 for x we
find that f{x) is positive, and thus the required root must lie

between 2 and 2*1, and now we know that 2-0946 is nearer than

2-2 to this root. But we do not know even now that 2-0946 is

nearer to the root than 2-1. If we put 2-0946 for x we find
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that f{x) is positive, and this shews that the root lies between

2-0946 and 2; thus 2*0946 is nearer to the root than 2-1.

222. Fourier has given a rule by which we are saved the

trouble of such repeated examinations as we have exemplified in

the preceding Article; this rule guarantees the success of New-
ton's method when certain conditions are satisfied. Fourier's

supplement to Newton's method depends upon a property of the

first derived function of a given function, which we will now

prove.

223. If a and h are any two quantities, some quantity \ inter-

mediate between a and h exists, such that

m-f{o) = {h-a)f'{\).

For let F{x) denote f{x) -f(a) -1^ |/(6) -/(a)\ ; then F{x)

vanishes when x = a and also when x = b. Therefore by Art. 102

the equation F'{x) = has a root between a and b. And, by Art. 1 1,

F'{x} =/'(x) — 1 ) hence some quantity X intermediate be-

tween a and h must exist, such that /'(^) ~^},—"LjlJ. = O; there-

fore /(*)-/(«) = (6 -a)/'(X).

224. Suppose that h is greater than a-, then f(b) is algebrai-

cally greater or less than f{a) according as /'(X) is positive or

negative. Ji f'{x) is positive between x = a and a3 = 6, then /'(A.)

is necessarily positive, and if /' (a?) is negative between x-a and

x=h, then /'(A) is necessarily negative.

Hence we have the following result; iif'{x) is constantly posi-

tive through any interval, f{x) increases with x through that

interval, and ii f {x) is constantly negative, f{x) decreases as x

increases through that interval. By the increase or decrease of

f{x) we mean algebraical increase or decrease. We may however

state our result thus; \i f'{x) retain the same sign through any

interval, then as x increases through that interval f{x) increases

numerically when it has the same sign as /'(x), and decreases

numerically when it has the contrary sign.
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225. We shall now enunciate and prove Fourier's rule. Let

f{x) = be an equation which has one root and only one between

a and p', and suppose that the equation /'{x) = has no root

between a and p, and also that the equation /"(x) = has no root

between a and /?; then Newton's method of approximation will

certainly be successful if it be begun and continued from that limit

for whichy (a?) and /"(oo) have the same sign.

It follows from our suppositions that /(x) changes sign once

and only once between a and ^8, and that /'(x) and /^'{x) do not

change sign between a and p. We will suppose /3 - a to be

positive.

(1) Suppose that f{x) and /"(x) have the same sign when

x=a. Take a for the first approximation ; then Newton's second

approximation is a - "^ttt- • I^et a + h denote the true value of

the root ; then /(a + h) = 0. Now by Art. 223, we have

/{oi+h)-/{a)=h/'(k), where X lies between a and a + h, thus

h = - •{// , and the true value of the root is a - ^7^ . We have
/ W J {^)

then to shew that a - 'i,Y^ is nearer than a to the true value

of the root. Since h is necessarily a positive quantity, /(a) and

/'(A) are of contrary signs, and /(a) is of the same sign as f'\o),

and therefore /'(A) and /"(a) are of contrary signs. Hence/' (x)

decreases numerically as x increases between a and P, by Art. 224,

so that y*'(A) is numerically less than/' (a) j therefore — ^, ,

is a positive quantity which is numerically less than the positive

quantity -^^ . This shews that Newton's second approxima-

tion is nearer to the true value of the root than the first approx-

imation.

Let a^ = a - "0^^ ^ *^^^^ /('^i) ^^^ /''("i) ^^^® *^® ^^^® ^^o^»
>/ \ )

and the approximation can be continued from a,.

T. E. 10
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(2) Suppose that /(a;) and /"(a;) have the same sign when
x=^p. Take P for the first approximation, then Newton's second

approximation is P- j-rnl:- I^et P + h denote the true value of

the root; then /{/3 + h) = 0. Now, by Art. 223, we have

f{P + h)-f(/3) = h/'{\)j where X lies between ^ and /3 + h; thus

h = - ^i^T7v-\ • ^^ "hsLve then to shew that /? - jftttt is nearer than

p to the true value of the root. Since h is necessarily a negative

quantity, /{P) and /'(A.) are of the same sign, and/{/S) is of the

same sign asy"(/5), and thereforey*'(A) £ind/"{p) are of the same

sign. Hence /'(a?) increases numerically as x increases between

a and Pj by Art. 224:, so that /'(A) is numerically less thsmf (p).

Therefore
, ^

is a positive quantity which is numerically less

than the positive quantity j^yfy. • -^^^^ shews that Newton's

second approximation is nearer to the true value of the root than

the first approximation.

Let P, = P-P^ ; then /(^J and f"{P,) have the same sign,

and the approximation can be continued from p^.

226. The preceding Article shews that the conditions given

by Fourier are sufficient to ensure the success of Newton's method

of approximation. When these conditions are satisfied, and the

approximation is begun and continued from that limit for which

f{x) and f"{x) have the same sign, we obtain a succession of

values, which continuously increase up to the real value of the

root or diminish down to it, according as the limit from which we

start is less or greater than the true value of the root We will

now briefly shew that Fourier's conditions are necessary.

If we start with an assumed value c, Newton's second ap-

f(c)
proximation corrects this by adding — "^/Vt, while the true value

of the root would be obtained by adding — -tttA • Hence the
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permanence of sign oi f'{x) is necessary in order that we may be

sure that f'{c) and f'Q^ have the same sign; if these quantities

do not have the same sign the Newtonian correction has the wi'ong

sign, and Newton's second approximation is further from the true

value of the root than the first approximation.

The permanence of sign oi f'\x) is necessary in order to en-

sure that f'{\) is numerically less than f {c). If this is not the

case the Newtonian correction is numerically greater than the

true correction, and thus, supposing the correction to be of the

right sign, the true value of the root lies between Newton's first

and second approximations. In this case Newton's second approxi-

mation may be nearer to the true value of the root than the first

approximation, but is not necessarily so.

227. In the example of Art. 220, it may be shewn that the

equation f{x) =0 has only one root between 2 and 2*1, and that

the equations f'{x) = and f"{x) = have no roots between these

limits; also /(ic) and /''(cc) are both positive when £c = 2*l.

Hence the Newtonian approximation will certainly succeed if it

be begun and continued from the limit 2'1.

For another example take the equation a;^ — 7a3 + 7 = 0, say

f{x) = 0. It may be shewn by trial that the equation has one

root between 1'3 and 1*4; the equations /'(a;) = 0, and/"(a;) = 0,

have no roots between these limits; also y (a;) and /"''(a?) are

both positive when a; = 1 "3. Hence the Newtonian approxima-

tion will certainly succeed if it be begun and continued from the

limit 1*3.

228. We will now shew how to estimate the rapidity of the

approximation. Suppose c to be the approximate value of the

root which has been obtained at any stage of the process; then

fie)
the true value of the root is c - ^./

'
, so that the numerical value

/ v)
fie)

of the error at this sta^e is .;;/, . which we will denote by r.

e next approximate value will be c - jftt-} ^^^ ^^'^ *^® ^^"

10—2

i
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nierical value of the error is "].} \ - ^^^ , that is, r
~

^ -
.

/ W J \9) J (c)

And by Art. 223, we have /' (c) -/'W = (c - ^) /" W, where

[i lies between c and A; thus the error is —^^

—

,.;•{ ^^A
. Now X

/ (c)

lies between c and the real value of the root, so that c — A, is less

r^ f"(n\
than r : hence the error is less than •;,

,
\^ . Let the greatest

value which f"(x) can take between the limits considered be

divided by the least value which f {x) can take, and denote the

quotient by q\ then the error is a fortiori less than qr^.

For example, in Art. 220, the root lies between 2 aud 2 1.

Thus to find q we divide the value of 6a; when x = 2'1 by the

value of 3oc^- 2 when x=2; therefore q=l-26; and as q is nearly

unity, the number of exact decimal places in the approximation

will be nearly doubled at each step.

229. The student who is acquainted with the elements of the

application of the Differential Calculus to the theory of curves,

will find it easy to illustrate geometrically Fourier's rule for con-

ducting Newton's approximation.

Suppose FQE to be a part of the curve determined by the

equation y=f{x). Then we may be supposed to know OJ/and

ON^ and to require the value of OQ) that is, we require to know
the point where the curve cuts the axis of x.

At the point P it is obvious that f{x) is negative if Oy be the

positive direction of the axis of y\ and f"{x) is also negative at

P, since the curve at F is convex to the axis of x. Draw the

fl \

tangent TTj let OM=a, then MT=-~~, as is known by the
*^ \ /

Differential Calculus; so that, starting from M the ISTewtonian

approximation proceeds to T. And as T falls between M and Q
it is obvious that the method succeeds in this case, and that the

approximation can be continued from T.
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A

At the point R we have /(a;) positive and/"(£c) negative.

Draw the tangent RS-, then, starting from N the Newtonian ap-

proximation proceeds to S, and *S' and N are on oj^posite sides of Q.

Moreover there is no security that ^*S' is less than QN, and there

is no security that the approximation can be continued from S.

Thus the approximation cannot be safely begun from N.

The student may easily illustrate by figures the condition that

f'{x) and f"{x) should retain an unchanged sign between the

limits considered.

If however, in any example, we know that NS is less than

NM we may start from N^ as the point aS' will then fall between

Q and J/, and the approximation can be continued from S.

'i,jn[ is less than

/S- a. Messenger of Mathematics^ Vol. iii. page 40.

Let ON = P; then we may start from N if
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#
XVIII. HORNER'S METHOD.

230. "We shall now explain the method of approximating

to the numerical value of a root of an equation which was in-

vented by the late W. G. Horner.

Foy the history of this part of the subject we refer to a memoir

by Professor De Morgan in the Companion to the Almanac for

1839.

Lety(a;) = be any equation ; theny(a + a;) = is an equation

the roots of which are less by a than the roots of the first equation.

The equation f{a + x)^0 becomes when developed

f(a) +^/'(a) -.x^-g + «=' 7^-^+ - .+ ^'"•^ = 0-

Now the essential part of Horner's method consists of a pro-

cess by which the coefficients of the last equation may be system-

atically and economically calculated ; we have already - observed

that such a process will be useful ; see Arts. 11, 54, and 214.

231. Suppose, for example, that

f{x) = Ax' + Bx^ ¥ Cx^ + Dx^ + Ex + F

;

then f{a) =Aa' + Ba*+ Ca^ + Da' + Ea + F,

f (a) =5Aa' + iBa' + 3(7<+ 2Dc^ + E,

1 f"(a) = lO^a' + QBd" + 2>Ca + D, ^,
0^

i/""'(a)=x'

(1) We may calculate /(a) in the manner explained in

Art. 5, thus; /
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A =1,

Aa + B =F say,

Fa + C=Aa^ + Ba + Q = § say,

Qa+B=Aa' + Ba' + Ca+D = R ssij,

JRa +11 = Aa^ + Ba^ + Ca' + Da + U = S say,

Sa + F= Aa' + Bo" + Ca^ +Da^ + Fa + F =f{q).

Here each line is obtained by multiplying the preceding lino

by a, and adding on in succession the terms B^ G, D, F, F.

(2) We may now calculate /'(a) in the same way as /(a) was

calculated, using A, P, Q, F, S in the same way as A, B, C, F, F, F
were used;

^ziJuJ-^Jii

A - A,

Aa + F=2Aa + B = Tseij,

Ta+Q= 3Aa' + 2Ba + = CTsay,

Ua + F = 4:Aa^ + 3Ba' + 2Ca + F= F say,

Va + S = 5Aa' + 4:Ba^ + 3Ca' + 2Fa + F =/'{a).

(3) We may now calculate \f"{cL) in the same way as /(a)

and/'(cfc) were calculated, using A, T^ U, F;

A =A,

Aa + T = 3Aa + B=Wssij,

Wa+U= QAa^ + 3Ba + C = Xssij,

I-

Xa + F= lOAa' + eBa' + 3Ca + F = lf\a).

I (4) We may now calculate -r^f"'{a) in the same way, using

A =A,

Aa+ W= 4:Aa + B^ Y say,

Ta+X= lOAa' + iBa + (7= i/'"(«).
1^
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(5) We may now calculate 17 /""(^) ^ ^^® same way, using

A and Yj
A =A,

Aa+Y^5Aa + B = ^f'"\ay

(6) Lastly, ^ = ^ /-'(«).

The above process may be conveniently arranged thus

;

An Fa Qa Ba Sa

Aa' Ta Ua Ya

IT, F 7>1.
Aa
W

Wa
X

Xa

Aa Ya
f

Aa *

\\r"i-)~

The quantity under any horizontal line, is obtained by adding the

two quantities immediately over the line.

We have thus shewn Horner's process of forming the coeffi-

cients of the- equation f{a + x) = when the equation is of the

fifth degree ; we will hereafter prove that this process is applicable

whatever may be the degree of the equation. We will give a

numerical illustration of the process and then explain the use of

the process in approximating to the root of an equation.

For a numerical illustration suppose a = 2 and

f(x). = Zx\-x^ + ix' + 5x-K
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a

f

-1 + 4 + 5 -8 (Jr
^ 6 12 2^

,

5^ 114

./-)6"
11 26 57 106^

6 24 70 192.

12 35 . 9.6 249' f ^^K .

6 36 142

18 71 238^,:t/^ (^

'

6 48 -^^ " '.

24 ¥?
, a III

6

30 r.n^
Thus/(2 + a;) = 3a;'+30«*+ 119a;'+238aj^+ 249a; +106..

232. Suppose, for example, that we have an equation with a

root lying between 300 and 400 ; form a second equation the roots

of which are less than those of the first equation by 300, so that

the second equation has a root lying between and 100. By
trial let the greatest multiple of 10 which is contained in this

root be found; suppose it to be 70; form a third equation the

roots of which are less than those of the second equation by 70,

so that the third equation has a root between and 10. By
trial let the greatest integer which is contained in this root be

found; suppose it to be 2; form a fourth equation the roots of

which are less than those of the third equation by 2, so that the

fourth equation has a root lying between and 1. By trial let

the greatest number of tenths which is contained in this root be

found; suppose- it to be 8 tenths; form a fifth equation the roots

of which are less than those of the fourth equation by '8, so that

the fifth equation has a root lying between and -1. By trial

let the greatest number of hundredths which is contained in this

root be found; suppose it to be 7 hundredths.

Now suppose that -07 is exactly a root of the fifth equation;

it follows that 372-87 is exactly a root of the first equation.

Next suppose that '07 is not exactly a root of the fifth equa-

tion; then it follows that an equation exists the roots of which

are less than those of the first equation by 372-87, and which
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has a root lying between and '01. Thus the first equation has

a root which lies between 372-87 and 372-88.

Thus we see how by a series of operations of the kind given

in Art. 231, we either arrive at the exact value of the root of

an equation, or we may approximate to it as closely as we please.

233. In the preceding Article we have stated that certain

numbers must be found hy trial; we shall now shew that we
can easily guide ourselves in these trials. Let f{x) = be the

proposed equation, and suppose that by one or mare- operations

we have derived the equation which has its roots less than those

of the proposed equation by c, that is, suppose we have formed

the equation f{G + x)=-0, and suppose that this last equation

has a small root. Then c is an approximate value of a root of

f ( A
the original equation; hence by the pi-eceding Chapter c — ^, > will

be in general a nearer approximation to that root. Thus — jr)-:]

is an approximate value of the number which we want in ordei-

to continue the operation.

234. Example. Let f(x) = 2x^ - 473a:^ - 234a; - 711-. It

will be found by trial that/(200) is negative and/(300) positive,

so that the equation /(x) = has a root between 200 and 300.

We proceed to diminish the roots by 200.

2 -473 -234 -711 {20.(1

400 -14600 -2966800.

-73 -14834 -2967511
.

400, 65400

327 50566

400

727
,\

Hence the equation which has its roots less than those of

f[x) = by 200 is 2ic'+ 727ic'+ 50566aj- 2967511 = 0; so that

/(200) = - 2967511 and /' (200) = 50566.



HORNER'S METHOD. 155

Hence -
^/,^

^ is more tlian 50. We then proceed to climi-

nish the roots of the equation just given by 50.

2 727 50566 -2967511(^50

100- 41350 4595800

827 91916 , 1628289

We thus find that 50 is too large a number, for we have

/(250) = 1628289 a positive quantity, while /(200) is negative;

_so that the root we are seeking is less than 250. In £act, in

guiding ourselves in the manner explained in Art. 233 we are

Jiable to select too large a number for trial, especially in the early

part of the operation; a similar failure occurs sometimes in the

-ordinary process of extracting the square root of a number.

We then try 40.

'2 727 50566 -2967511 (^40

^ _^ 32280 3313840 •

807 82846 346329

ms 40 is also, too large, for/(240) is positive. We then try 30.

727 50566 -2967511 (30

2225280 •

-742231

60

787

23610

74176

60 25410

847 99586

60

"9^7

Thus /(230)= - 742231 a negative quantity, so that 30 is the

right number.

Hence the equation which has its roots less than those of

[a:) = by 230 is 2ic^+ 907ic'+ 99586a; - 742231 = 0.

[Here/' (230) = 99586 so that - 4L^ -7 approximately.
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We proceed then to diminish the roots of the equation just

given by 7.

2 907 99586 -742231 (J
14 6447 742231

921 106033
'

This shews that /{237) = 0j so that 237 is a root of the

original equation.

The whole operation is usually exhibited thus;

-473 -234 -711 {237

400 -14600 -2966800

-73 -14834/ -2967511*)

400 65400 2225280

327 U
" 50566*- -7422311^

400/ 23610 742231

727* 74176

60 25410

787f 99586t

60
1

6447

847 r 106033

60/

907t

14 _^j

921

Here the mark *. shews wliere the first part of the operation

ends, and the mark f shews where the second part of the operation

ends.

235. We will now take an example of an equation which

has no commensurable root. Let f{x) -x^- 3x^— 2x + 5. It will

be found by trial that /(3) is negative and /'(4) positive, so that

tlie equation /(x) = has' a root between 3 and 4. The following

will be the operation for approximating to this root as far as

three places of decimals.
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3 -2 5 (^3-128.

3 -6

-2 -I*-.

3 ^ •761

3 T* - •239t

3 •61

7-61

•167128

6* --071872^,

•l
-62

8-23t.

•068273152

61 - -003598848

•1 -1264

6-2 8-3564

•1 •1268*

6-3t

•02

8-4832^^^

•050944

6-32 8-534144

•02 •051008

6-34 8-585152

•02

6-36J
•008

6-368

•008

6-376

•008

6-384

Here to find the second figure of the root we have —~ , so& 7 '

that *1 is the nearest number to be tried ; to find the third figure

— -239
of the root we have—^Toq" > ^^ *^^* *^^ ^^ *^^® nearest number

to be tried; to find the fourth figure of the root we have
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•071872
, so that -008 is the nearest number to be tried. In

^
8-4832

all these cases the number suggested is found to be correct.

236. As another example take the equation given in the pre-

ceding Article, and approximate to the root which it has between

1 and 2. The operation is usually exhibited thus

;

1 3

1

-2
— 2

-4
-1

5 (1-2016

-4

2

1

1000*

-992

1

1

-500*

4

'80000001

-4879399

00*

2

-496

8

3120601000+

-2927060904

2

2

-48800001

601

193540096

4

2

-4879399

602

600t

1

-487879700+

36216

601

1

-487843484

36252

602

1

6030+

6

6036

6

6042

6

- 487807232

6048
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The difference between this arrangement and that in Art. 235

arises from the fact that it is usual in practice to omit the decimal

points, just as they are omitted in the process for extracting the

square roots of numbers approximately. The following rule with

respect to the decimal part of the root will be sufficient. When
all the whole figures of the root have been found and the decimal

part of the root is about to appear, annex one cipher to the right

of the first working column, two ciphers to the right of the second

working column, three ciphers to the right of the third working

column, and so on if there are more than three workinor columns

:

then proceed completely through one stage of the operation as if

the new figure of the root were a whole number. Then annex

ciphers again as before.

It will be observed that after the 2 in the root the next fiomre

considered as an integer would be approximately given by

8000 in..-,, . . 1 . . -,

Toonn ' ^ •^^ than unity ; so a cipher is put m the

root and we annex another cipher to the first working column,

two more to the second working column, and three more to the

third, and proceed as before. The ciphers will serve to distin-

guish the several stages of the operation, so that the marks'^!

J

may be omitted.

It is obvious that in all the preceding examples the first work-

ing column might have been shortened by performing in the head

the easy work which occurs, and putting down only the results,

but we have thought it clearer to exhibit the whole for the

student.

237. After a certain number of figures in the root have been

found correctly, an additional number may be obtained by a con-

tracted operation. We will exemplify this by calculating the

positive root of the equation x^ + 3x^ - 2x - 5 = 0. We will first

perform the operation at full until five decimal places of the root

have been determined.
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3 -2 -5 (1-33005

1
• 4 2

4 2 -3000

1 5 2667

5 700 - 333000

1 189 332337

"60 889 - 663000000000

3 198 564352475125

63 108700 -*9864752487igi

3 2079

66 110779

3 2088

690 112867000000

3 3495025

693 112870495025

3 3495050

696 1128739900^

3

699U00

5 *

699005
•

5

699010

5

699015

Tlie rule for contracting the operation is the following ; strike off

at every step one figure from the right of the last column but one,

two figures from the right of the last column but two, and so on.

We will now resume the example just considered and apply

this contracted process.
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699015 112873990075

55921

-98647524875 (^1-33005873

90299639432

11287454929

55921

- 8347885443^

7901261018

11287510850*

489

-4466244251

338625624

1128751574

489

- 107998801

1128752063t
2

112875208

2

112875210

At the point where the full operation terminated we have 8 sug-

gested for the next figure; we then reject 5 from the end of the

last working column but one, and 15 from the end of the last

working column but^wo. The first step in carrying on the work

is to multiply 6990 by 8, and put the product in the next working

column; the product is considered to be 55921, because we con-

ceive 69901 multiplied by 8 and the last figure struck off", and so

55921 is nearer than 55920 to the true value. Then we add

55921 to 11287399007; the figure in the units' place of the sum

we take to be 9 by allowing for the rejected 5. Thejmark ^ indi-

cates where the first stage of the contracted operation finishes.

Kow strike off" from the end of the second working column and

90 from the end of the first working column, so that the first work-

ing column is reduced to 69. The next figure of the root is 7, and

this stage of the operation finishes where the mark f is put.

Strike off" 3 from the end of the second working column and 69

from the end of the first working column. The first working

column now disappears, but still exercises a slight influence be-

cause the next figure in the root is 3, and when 69 is multiplied

by 3 and two figures rejected there remains a 2.

T. E. 11
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Only two working columns are now left; the remainder of the

work coincides with the ordinary process of contracted division,

and it will supply eight more figures in the root.

1287521,0 -107998801 (1-3300587395679825

101587689

1128752,1 -6411112

5643761

112875,2 -767351

677251

11287,5 -90100

79013

1128,7 -11087

10158

112,8 -929

902

11,2 -27
22

1,1 -5

The approximation may be relied upon very nearly up to the

last figure. For if the whole operation were performed at full,

the last working column would present a large number of figures

on the right-hand side of those here exhibited, but those which

are here exhibited would retain their places without alteration

except perhaps the exchange in some lines of the last figure for

another difiering from it by unity.

238. The root found in the preceding Article is the numeri-

cal value of the negative root of the equation x^— 3x^- 2a; + 5 = 0.

Hence the sum of the roots found in Arts. 235 and 236 should

exceed the root found in Art. 237 by 3; because the sum
of the three roots of the equation with their proper signs is 3.

This will be found to hold approximately; and the student may
exercise himself in carrying on the approximations to the two
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positive roots to more places of decimals than we have given, in

order to verify more clearly the connexion between the sum of

those two roots and the root calculated in Art. 237.

239. Various suggestions have been offered with the view of

saving labour in the use of Horner's method. With respect to

such suggestions we may quote the following remarks which occur

in connexion with one of them. "But considering that the

process is onfe which no person will very often perform, we doubt

whether to recommend even this abridgment. All such simplifica-

tions tend to make the computer lose sight of the uniformity of

method which runs through the whole; and we have always found

them, in rules which only occur now and then, afford greater as-

sistance in forgetting the method than in abbreviating it." Fenny

Gyclopcedia^ article Involution.

240. In Art. 231 it was stated that it would be proved that

Horner's method of forming the equation f{a + x)=0 is uni-

versally true. We will now consider this point.

Let f{x) =p^x''+p^x''-'-hp^x'"'+ ... +p^^_^x+p^^,

for X put y + a, and suppose thaty(a;) then becomes

we have to prove that 5'„, 2'„_i, ...
5'ij S'o?

^^^ found correctly by

Horner's process. It is obvious that g„=^^. Since y = x — a the

following expressions are identically equal,

p^x''+p^x"-' + p^x"-'+ ... +p„_,x+p^,

and q^ {x
- a)"+ q^ {x

- «)""' + q^ {x
- aY~^+ . . . + q^_^ (a; - a) + q^.

Therefore q^^ is the remainder that would be found on dividing

f{x) hy x-a; also the quotient arising from this division must be

identically equal to

11—2
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Then again q^_^ is the remainder that would be found on di-

viding* the last expression by a; — a; also the quotient arising from

this division must be identically equal to

%{^ - »)""'+
^, {^ - «)""'+ ^.(^ - «)""'+

• • • + 9,.-,'

Then again q^_^ is the remainder that would be found on di-

viding the last expression hy x-a; also the quotient arising from

this division must be identically equal to

q,{x-ay-'+q^{x-ay-'+q^{x-ar-'+...+q,^_^;

and so on.

Thus q^, q„_^f q,^_^, ^n-z^ ••• ^^® *^® successive remainders

which occur in dividing, first f{x) hj x-a, then the quotient by

x-a, then the new quotient by a; — a; and so on. And we see

by Arts. 5, 7, and 9 that Horner's process determines these succes-

sive remainders.

241. We have thus sufficiently discussed the subject of the

approximate values of the real roots of equations. There is no easy

practical method of calculating the imaginary roots of equations

at present known; but theoretically this may be made to depend

on what has been already given. For suppose a + hJ—\ is an

imaginary root of an equation f{x) = ; then since the real and

imaginary parts of/ (a + h J— I) must separately vanish, we obtain

two results, which we may denote by P = and Q = i), as in

Art. 41. Here F and Q will be functions of a and h, and if we

eliminate a or 5 from the equations F = and ^ = 0, we obtain a

single equation involving one unknown quantity ; and we require

real values of this unknown quantity. Hence we can determine the

imaginary roots of a given equation if we can form a certain other

equation and determine its real roots. We shall hereafter shew

how to form the equation which results by eliminating one of two

unknown quantities from two given equations.

We shall in Chapter xxi. explain another method which has

been used for calculating the imaginary roots of equations. The
student may also consult Dr Rutherford's essay on the Complete

Solution of Numerical Equations.



SYMMETKICAL FUNCTIONS OF THE ROOTS. 165

XIX. SYMMETRICAL FUNCTIONS OF THE BOOTS.

242. A function of two or more quantities is said to be a

symmetrical function of those quantities if the function is not

altered when any two of the quantities are interchanged.

Thus, for example, a^ + lf + c^ is a symmetrical function of the

three quantities a, h c; so also is ab + bG+ ca; for each of these

functions is unaltered when we interchange a and b, or a and c, or

b and c.

243. The coefficients of an equation are syminetrical func-

tions of the roots of the equation.

For by Art. 45, if the equation be £c" -hp^x''~^ +i^2«^"~^ + ... = 0,

we have

-/>j = the sum of the roots,

p^ = the sum of the products of the roots taken two at a time,

and so on ; and it is manifest that the functions of the roots which

occur here are symmetrical functions.

The object of the present Chapter is to shew that every rational

symmetrical function of the roots of an equation can be expressed

in terms of the coefficients of that equation. We shall begin with

proving Newton's theorem for the sums of the powers of the roots

of an equation.

244. Let /(^) denote cc" +jc>ja;""^ +;:>2aj""^-f ... +/>„, and let

a, 6, c, d,... denote the roots of the equation f{x) = 0.

Let S^ = a + b + c -h d + ...,

S^ = a'+b'+c' + d'+...,

S^ = a^ + b'+c^+d'+...,

and so on ; thus S^ is the sum of the roots, S^ is the sum of the

squares of the roots, S^ is the sum of the cubes of the roots, and in

general S^ is the sum of the m^^ powers of the roots.
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By Art. 74 we have

"^ "" ' X — a X — x — G

The divisions indicated on the right-hand side of this identity

can all be exactly performed by Art. 7 j and we have

fix) fix)
and similar expressions hold for "^—j^

, , . .

.

By addition then we obtain

fix) = 72^"-' + (.S', + np^) x''-^ + (S^ +p^S, + np^'x""-^ -f . .

.

Also f'{x) = nx"-' + {n- l)p,x"-' + {n - 2)p^^x"-^ + ...

\-{n-m)p^x"— ' + ....

Equate the coefficients of the same powers of x in the identity

;

thus

Si + np^ = (')i-l)p^ or S^+p^ = Oy

S^ +p,S^ + np,= (n - 2} p^ or S^ +p^S^ + 2p^ --= 0,

and generally

<^r ^n. +PA-1 +P2^m-2 + • • • +Pm-lS. + ^^Pm = ^'

In this general result m is supposed to be less than n.

By means of the general result we can express the sum of the

m^ powers of the roots in terms of the coefficients and the sums of

inferior powers of the roots ; and thus by repeated operations we
may express the sum of the m^^ powers of the roots in terms of the

coefficients only.
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Next suppose that m is not restricted to be less than n.

Multiply the given equation f{x) = by aj"'"'*; thus aj"'~"/(cc) = 0,

that is, x"" + p^x"^"" + p^x"^'"" + . . . +px'^~'' = 0.

Substitute for x successively a, 6, c, ... and add the results

;

thus

By this theorem we can express the sum of the m**" powers of

the roots of an equation in terms of the coefficients and the sums of

inferior powers of the roots when m is not less than n ; and thus

by repeated operations we may express the sum of the m^^ powers

of the roots in terms of the coefficients.

Practically the following is a very convenient method. We
have

^ ' x — a x-o x-c
therefore

xf'ix) XXX
f{x) X — a X— b x — c

'('-r*('-r*('-r-
'S', s^ S^

X x^ x^

Thus, if we actually divide af(x) hj /(x), the coefficients of

the terms in order will be n, S^, S^, The division may be

advantageously performed in the manner explained in the Algebra^

Chapter lviii.

245. To find the sum of the negative powers of the roots of

the equation /{x) = 0, we may put — for x and find the sum of the

corresponding positive powers of the roots of the transformed equa-

tion in 2/.
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Or we may make m successively equal to ?i - 1, ?^ - 2, 9^ - 3, . .

.

in the result of the preceding Article; and thus obtain suc-

cessively >S'_j , a9_2, aS'_3,. . .

.

246. The general problem of finding the value of any rational

symmetrical function of certain quantities may be reduced to the

problem of finding the value of certain simple functions, as we
shall now shew.

Any rational symmetrical function which is not integral will

be the quotient of one rational symmetrical integral function by

another ; so that only integral functions need be considered. Any
rational symmetrical integral function which is not homogeneous

will be the sum of two or more rational symmetrical integral func-

tions which are homogeneous; so that only homogeneous functions

need be considered., A homogeneous function may consist of

different parts in which although the sum of the exponents remains

the same, the exponents themselves are different; in such a case

the homogeneous function is the sum of two or more homogeneous

functions of the same degree in which the exponents are the same

for all the terms.

Hence it follows that we need only consider such rational

symmetrical functions as are integral and homogeneous, and in

which the exponents are the same for all the terms.

247. Let (X, h, c, d,... denote the roots of a given equation.

By Art. 244 we can express in terms of the coefficients the

value of

a'^ + h"' + c"' + d'"+ ...

This function may be said to be of the Ji7'st order, since each

term involves only one of the roots.

A function may be said to be of the second order when each

term involves two of the roots, as

a"'b^ + a'"c^ + h"'c^ + ...

Here every permutation is to be formed of the roots taken two

at a time, and the exponent m placed over the first root and p over
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the second. We shall denote this function by '^oTh^, as it is the

sum of all the terms which can be formed like a""}/.

A function may be said to be of the tJiird order when each term

involves three of the roots, as

arh^d'+ oTc^'d' + a'^h^d' + . .

.

Here every permutation is to be formed of the roots taken three

at a time, and the exponent m placed over the first root, p over

the second, and q over the third. We shall denote this function by

'^oTh^'c', as it is the sum of all the terms which can be formed like

Similarly we may have functions of the fourth and higher

orders, and may use a similar notation to represent them.

Since we have shewn how to express the function denoted by

S^^ in terms of the coefficients of the equation it will be sufficient to

shew that any of the functions we have to consider can be expressed

in terms of such functions as S .

248. To find the value of the symmetrical function of the

second order Sa^b''.

We have /S',„ = a'" + 6'" + c'"+ .,.,

S^, = a'' + Jf + (f + ....

By multiplication we obtain

SJ^ = a'""P + h'^^v + c'+P + . .

.

that is, SJ^ = S^^^ + %a-lf,

and therefore ^a'^lf = SJ^ - S^^^.

This supposes that m and p are unequal. If we suppose p
equal to m the terms in "^a""!)^ become equal two and two, so that

this sum may be expressed thus, 2S (a^)""; and therefore
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249. Tofind the value of the symmetricalfunction of the third

order 2a™bPc**.

We have '^a'^b' = a""!)' + h^'c^ + a'^c^^ . .
.

,

By multiplication we obtain

S^a'^y = a"'^'b'' + JT'-^'c'' + c'"-'W + . .

.

+ a'"h^^'' + h'^c^^'^ + c'^a^^' + . .

.

+ a'^lfc'+...

The terms on the right-hand side form three sets, which in our

notation are denoted by ^a'^^'^l/, ^a^^'^lT, ^a'^h^'c''; thus

S.^a^'b^ = ^a"'^^b' + ^a^^^"^ + S^r^V.

Substitute for ta'"b^, ^a'^^'^b^, and ^d'^'^b'^ their values from

Ai't, 248, and we obtain

We have supposed m, p, q all unequal. Suppose, however,

that m=p; then, as in Art. 248, we have

2S (a5)V = SIS, - S^S, - 2S^,,S^ + 2S,„^,.

If m =p = q, the sura "S.aTW reduces to 2 . 35 {abc)'; thus

The method of this and the preceding Article may be con-

tinued to any extent, and thus a function of any order like

Sa"^ and '^a"'b^c'^ may be expressed in terms of the coefficients.

Hence by Art. 246, the object proposed in tlie present Chapter

can be attained.

250. We have shewn how the function denoted by aS',^ can

be expressed in terms of the coefficients; and thus of course the

sum of any number of such functions as S^ can be so expressed.

The following method will, however, be generally more advan-

tageous in such a case. If (f>{x) denote any rational integral

function of x, it is required to express in terms of the coefficients

the sum </> (a) + <^ (6) + ^ (c) + ...
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^^r 1
r(x) 1 1 1We have -ft-^ = + , + + ...;

/ {x) X — a X — X — c

therefore ^^f^ ^ *M ^^ .M ^ ...

J {x) x — a X — X —c

ct>(x)-<f>{a)
,
<k(x)- cf>(b)

,
cf>(x)-<i>(c)

,= f-
—

, 1 f- . .

.

x—a x—o x—c

^

<t,(a)
^
Mb)

,

<l>{c)
, _X—a x—b x—c

In this identity the integral parts and the fractional parts will

be separately equal; also such expressions as — are in-
X — a

tegral by Art. 7. Let <l>{x)f'{x) be divided hj /(x), the process

being carried on until the remainder is an integral function of x

of lower degree thany(aj); let li be this remainder. Then by

considering the fractional parts of the identity we have

E _Ma)
,
<^(^)

,

He)
^_^

y (£fc) x —ax — h x — c

Multiply up; then

i?- a"-* U{a) + 4>{h) +<f>{c) + ...|

+ terms involving lower powers of x than a;"~\

Thus (fi{a) + (f>{b) + <f>{c) + ... is equal to the coefficient of x"~^ in I?.

251. As an example of the formulae of this Chapter suppose

it required to find the sums of the powers of the roots of the

equation x* -x^ — 7x^ + x+ 6 = 0.

^\---pA-2p^=l + U=15,

^« =-i^A-M- 3^^3 = 15 + 7-3 = 19,

^^* =-^A-^A-M-4i'.= 19 + 105- 1-24= 99,

'^5 = -pA-pAs-PsS.-P,^,= 99+133-15- 6 = 211,

'S'6 = -M5-i^A-M-J^A=211 + 693-19-90 = 795,

and so on.
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Put - for X in the given equation; then

Thus for the sums of negative powers of the roots of the

original equation we have

and so on.

These results may be easily verified, as the original equation has
been constructed so as to have for its roots - 2, - 1, 1, 3.

L^- Again, suppose we require the values of S^ , S^, S^ and S^ in the

biquadratic equation

x*-irpx^+ qx^+ rx + s = 0.

S\+p=^ 0, therefore S^ = -p,

aS; +pS^ + 2q = 0, therefore aS^=/ - 2q,

S\ + 2jS^ + qS^ + 3r = 0, therefore S^ = -p(p^- 2q) +pq-3r
= — p^ + 3pq - 37'j

S,+pS^ + qS^ + rS, + 4:3 = 0,

therefore S^ = -p{-p^ + 3pq -3r)-q {p^ - 2q) + rp-is
= // - 4:p^q + 4rp + 2q^ - is.

As another example, let a, p, y, S denote the four roots of the

biquadratic equation a;* + px^ + qx^ + rx + s = 0;

letA = l{al3 + yS), 5 = i(ay + ;88), C = ^(a8 + /3y);

and let it be required to find the value of the following sym-

metrical functions of the roots of the biquadratic equation,

(1) A+JB + C,

(2) AB + BC+CA,

(3) ABC.
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(1) A+B+C=haP + ay+aS+l3y + pS+yS)=l ,

(2) AB + BC-^CA =
^ {a'l3y + a'yS +•.•) = T ^<^'Py

= ^ (^S^^S^ - S,' - 2S^S^ + 2S^) j by the metliod of Art. 249.

Then the values of S^, S^, S^ and S^ may be substituted which

have already been obtained, and the value of - ^a^/3y will be

known. Or we may proceed thus,

And a^yS = 5, and 2 ^
=^ - 4, by Art. 48

;

therefore AB + BC + CA = - {j^r - is).

(3) ABC = \ {a'Pyh + . .
. + a^^V' ^"')=\ ^^'/^^^ + \ ^""'^V-

The values of these two symmetrical functions may be found

by the methods of the present Chapter directly ; or we may ab-

breviate those methods thus,

2a'/3yS = a/?y82a' = S (/ - 2g),

ct \_s s J

for to find 2-^ we have only to obtain the sum of the squares

of the roots of the equation in y which is formed by writing - for x.

Thus ABG = ^{f^fs-iqs).

The values of the functions o£ A, B, G which have been found

may be verified; for A, B, C, by Art. 189, are the roots of the

cubic equation in m in Art. 188.
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XX. APPLICATIONS OF SYMMETEICAL FUNCTIONS.

252. In the present Chapter we shall give two applications of

the theory of symmetrical functions of the roots of an equation

;

the first application will consist in forming the equation which has

for its roots the squares of the differences of the roots of a given

equation, and the second application will be to prove an important

theorem in elimination.

253. To form the equation which has for its roots the squares

of the differences of the roots of a given equation.

Suppose the given equation to be of the rC^ degree, and

denote its roots by a, b, c, . . . . Then the roots of the required

equation will be (a — by, {a — cf, . . .(6 — c)^. .
.

; the number of these

is the same as the number of combinations of n things taken 2 at a

time, that is, -n{n — V); and this number will therefore denote the

degree of the required equation. Put m for -n(n — 1), and suppose

that the required equation is denoted by

£c'" + g^cc"*-' + g,aj"*~^+ . . . + g,„ = 0.

Also let s^ denote the sum of the r^^ powers of the roots of this

equation. We have only to determine s^, s^,...s^, and then the

coefficients of the required equation will be found in succession by

the formulse of Art. 244, namely, s^ + q^ = 0, s^ + q^s^^ + 2q^ =^ 0, and

so on.

Let c}>{x) = {x-ay' + {x-by'' + {x-cy'+ ...,

then 2s^ = (l>{a) + <f>{b) + <f>{c)+ ...

Now let aS'p S^, S^,... denote the sums.of the powers of the roots

of the given equation ; thus

<}>{x) = naf'- 2rS^x^-' +
^'' ^^'''^'^

S,x''-' --.., + S^^.
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Put for X in succession a, h, c,... and add ; thus

The terms on the right-hand side which are equidistant from

the beginning and the end are equal; therefore by rearranging

and dividing by 2 we obtain

s, = nS,^ - 2rSS_ +M?!!^ s.S,
1.2

..4(_l)^M2>-l)...(r.l)^^._

Now S^, S^,... can be expressed in terms of the coefficients of

the given equation; thus s^ can be found, and then finally the

coefficients of the required equation.

//' • 254. The last term of the required equation, namely that

denoted by q^ in the preceding Article, may be calculated in another

way. Let the given equation be denoted hjf{x) --=^ 0, so that

/(x) = (x — a){x — h){x-c)...

Then f'{x)=^ {x-h){x- c) ... + (x- a)(x-c) ... + ...
;

thus f'{a) = {a-h){a-c)...,

f\h) = {h-.a){h-c)...

Hence g^=/'(a)/X&) /'(c)....

Now let a, p, y,... be the roots of the equation/'(cc) = 0; then

/'(x) = n{x-a){x-l3){x-y)...;

therefore / ' (a)f (b)f (c) . .

.

= 7i"(a-a)(a-/5)(a-y)...(6-a){6-/5)...(c-a)

But («-a)(6-a){c-a)... = (-l)''/(a)...,

(a-^)(6-^)(c-/5)... = (-l)y(^)...,

and so on

;
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thus f{a)f{h)f{c)... = n- (-ir^"-V(a)/(/S)/(7) ...

= ^"/(a)/(^)/(7)-..,

for (-1)"'"-''=!.

Now y(a)y*(/8)y(y)... is a symmetrical function of the roots

of the derived equation/' (cc) = 0, and may therefore be calculated.

255. In Art. 109 we have explained one use which we may make

of the equation whose roots are the squares of the differences of

the roots of a proposed equation ; namely, we may thus determine

the situation of the real roots of the proposed equation. But

Sturm's theorem now answers this purpose more readily. However

the equation which has for its roots the squares of the dififerences

of the roots of a proposed equation will sometimes on inspection

give information respecting the number of imaginary roots in the

proposed equation ; for it is obvious that if this new equation can

have negative roots the proposed equation must have imaginary

roots ; and if the new equation has no negative roots the proposed

equation has no imaginary roots. Also if the new equation has

imaginary roots the proposed equation must have imagirary roots

;

it will not however follow that if the new equation has no

imaginary roots the proposed equation has none. For example,

the proposed equation might be a biquadratic equation with roots

^\J—\ and ^fjij—l; in this case the new equation will only

have real negative roots.

It will be convenient to give the product of the squares of the

differences of the roots in algebraical equations of the second,

third, and fourth degrees.

(1) ax" + 2bx + c = 0.

rvu 1 ^ • iib'^-ac)
Ihe product is ^ .

(2) x^ +px" + qx + r = 0.

By Art. 60 the product is
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If the equation be

aoi? + 2>bx^ + Zcx + c? =^ 0,

this becomes -^ |(26' - 3a6c + a^d^ + 4 («c - 5')^j ,

or more symmetrically

-^f{ad- hey -4:{b'- ac) (c' - hcl) \ .

(3) x* + qx^-i-rx + s=0.

By Art. 187 the product is

where a", jS', y^ are the roots of a certain cubic.

Hence the product is

-^ |(27r^ - 72^5 + 2qy - 4 {q' +12sf \ .

If the equation be

ax^ + 4:bx^ + Qcx^ + idx + e = 0,

this becomes by Art. 187,

-^^Uae-ibd+^cy-21{ad' + eh'+c^-ace-2hcdy\.

256. We shall now shew how to eliminate one of the unknown

quantities irom two equations containing two unknown quantities,

by the theory of symmetrical functions.

Let the equations be

and q^p(P + 5'j^""^ + S'g^""^ + ...+ q^^
= 0.

The coefficients joi^,^:> J, p^i---, 2'oj 3'i)
5'2>--- ^^^ supposed rational

integral functions of a quantity y, and x is to be eliminated.

T. E. 12
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Suppose that from the first of these equations the values of x

could be found in terms of ij ; let these values be denoted by

a^ hj c, Substitute them in the second equation, and we obtain

m equations for determining y^ namely

qy + q^-' + q^-' + . . . + ^„ = 0,

so that all admissible values of y are contained among the roots of

these equations. And conversely any root of any one of these

equations is an admissible value of y. For suppose, for example,

that the first of these equations has a root /?, and suppose, when

/? is put for y in a, that the value is a; then a; = a, 2/ = /8 will

satisfy the two original equations. For these values obviously

satisfy the second equation ; and the first equation is satisfied by

x = a, whatever y may be, and is therefore satisfied when we take

x = a and give to y itl a the value jS. Hence it follows that by

multiplying together the left-hand members of the above equations

in y and equating the product to zero we obtain the final equation

in y. Now in this product no alteration is made by interchanging

any two of the quantities a, b, c, ..., so that the product is a

symmetrical function of these quantities, and the value of it can

therefore be expressed in terms of the coefficients Poy Pi^ P2^--' ^^

the first equation. Thus we shall finally obtain a rational integral

equation in y, and this equation has for its roots all the admissible

values of y and no others.
"

257. For a particular example, suppose that the first equa-

tion is a cubic in x, and the second a quadratic in x, so that we
have to eliminate x from the equations

where the coefficients are supposed functions of y. Here with the

notation of the preceding Article we have
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{q^a^ + q,a + q,) (qj)' + qfi + ^J (q^c' + q^c + q^) = 0, that is,

q.2 + q^ahc + q^a%^c' + q^q^a?lr + q^q^a-h^c + q^q^tah

+ ?,<7/:S« + 5'o?2'^a' + qoqi'^a'bo + q,q,q,^a'b = 0.

Also ahc = ~^\ a'b'c'^Ky

^a'b'c = abc^ab = -^:$ab = - ^--^^
2 7

Vo Po

Po Po Po

ta-bc^abc^ci^^-^^,
Po

^cirb = abc^ "" = -^ (Ilil-^ _ 3V by Art. 48.

And by substituting these values we shall obtain the equation

which results from the elimination of x.

258. If ive eliminate one unknown quantity between two

equations of the degrees m and n respectively, the degree of the

residting equation ivill not exceed mn.

Let the equations be

p,X- + p^X-^ +p^T"'-' + 4-^„. = 0,

q^x" + q^x""^ + q^^x""'^ -f- + 9',.
= ;

the coeflScients in these equations are supposed to be functions of

y. Moreover it is now supposed that the sum of the exponents

of X and y in the same term is never greater than m in the first

equation, and never greater than n in the second equation

;

so that pp and qp may be of the degree p in y, but not higher.

12—2
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Now suppose that x is eliminated by the method of Art. 257; the

first member of the final equation in 2/ then consists of a series of

terms, each of which is the product of m factors, and is of the

form q a""*" x $,6""* x g'^c""* x ... And as we know that the series

of terms forms a symmetrical function of a, 6, c, ..., the aggregate

of the terms with the exponents just indicated will be

Now the degree of qj^cit--- is not higher than r + s + ^+..., so

that we have only to shew that the degree of %a"~''b"~'c'*~\.. is

not higher than n-r + n-s + n-t+ ..., and then it will follow
^tt

that the degree of the product is not higher than mn. The re-

quired result follows from two observations. (1) From the formulae

of Art. 244, it can be shewn that Sp does not involve higher

powers of y than yp. (2) From the process of Arts. 248 and 249,

it will follow that the value of '^a^bf^C ... will involve powers

and products of JS^, S.^, AS3, ... /S'a+^+v+...; and in each term

the sum of the subscript letters attached to the symbol S is

X + ijt. + v+ ...

Hence we conclude that in the final equation in y no power of

y higher than y""" will occur.

259. The preceding Article gives the limit which the degree

of the final equation in y cannot surpass; it may however in

particular cases fall short of this limit.

The theorem may be extended and the following general result

obtained; if between any number of equations involving the

same number of unknown quantities all those quantities are

eliminated except one, the degree of the final equation cannot

exceed the product of the degrees of the original equations. See

Serret's Cours d'Algehre Superieure.
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XXI. SUMS OF THE POWERS OF THE EOOTS.

260. By Newton's method, which is explained in Art. 244,

the sums of the powers of the roots of an equation may be found

successively; we shall now explain a method by which the sum for

any assigned integral power of the roots of an equation may be

obtained independently.

Let a, &, c,... denote the roots of an equation fix) = 0, so that

we have / (x) = {x — a) (x - b) (x - c). .. ; and suppose the equation

of the n*'^ degree. Then

fix) (. a\(. h

X \ xj \ xj \ xj

Take the logarithm of both sides, and then expand the loga-

rithms on the right-hand side; thus

log'^-^r^ = - - (a + ^ + c + ...)° X x^ '

1 ^
Thus on the riofht-hand side the coefficient of — is — '"

;

X m
S 1

hence we have -^ = the coefficient of -- in the expansion ofm X ^

1 f(^) •IT n- log -\ in descending powers of x.
X

This supposes m positive; if the sum for any negative integral

power is required we can change x into - and find the sum for the

corresponding positive power of the roots of the equation in y.
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2G1. For example, find the sum of the m^^ powers of the

roots of the equation x^ -px 4- g' = 0.

XX 2\x x-J 3 \x x^J m \x x^J

The complete coefficient of —^ may be obtained by selection
X

fix)
from the various terms in the value of -I02: -V^in which this

° x^

power of X can occur; these terms written in the reverse order

are

m \x X J m-l\x icV 'm - 2 \x

wi-2

The coefficient of —
;;,

is therefore

-1 1. ^ ^^m-2 1.2 ^ ^ -

Thus S,=p'^- mp'^-'q +^ ^
^^
p
m—4.

_^,_ m(m-r-l) (m-2r + l) ^

Suppose q—1, then the quadi'atic equation is a reciprocal

equation, and its roots are of the form a and-: see Art. 133.
a

Thus we have a + - = v, and also
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, ^, 77i(m-r- l)...(m- 2r + 1) „ ,,+ i-iy-^ ^-r^ ^p-^^4- ...

We have thus obtained a general expression for a"" + -- in

terms of powers of a + -; see Art. 138.

Again, suppose q = — l; then the roots of the quadratic are of

1 / 1\'"

the form a and— : thus we get an expression for »'"+(--) in

terms of powers oi a— .

a

262. Again, let it be required to find the sum of the 7/i*^

powers of the roots of the equation a;" - 1 = 0.

fix) , 1
, f(x) 111 1

Here the coefficient of — is zero unless m is a multiple of n,

and then the coefficient is — ; so that ^„= unless w is a multiple

of 01, and then *S'„^= n.

This result is often useful, and we will give three applications

of it in the following three Articles.

263. We will shew how to find the sum of selected terms of

a given series.

Suppose that the sum of a^ + a^x + a^x^ -v ... ad infinitwin is

known, and denote it by <^{x) : and let it be required to find the

sum of the series

a^cc"* + o^,„+„a3'"^" + a^+2„a5'""^^" + «c? infinitum.

Let a, ^, y, . . , denote the rif°- roots of unity, that is, the n roots

of the equation a;"- 1 = 0. Multiply both sides of the given

identity by a"~"*, and then change x into ojx) thus
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Similarly,

/-'"</>(y:c) = «„/-"' + ay-'''-'x+ a^f-"'^'x'+ ..,

and so on.

Add together the n identities which can thus be formed ; then

on the right-hand side we obtain n times the required series,

by Art. 262; thus

=
I
|a"-> (ax) + r-<f> (I3x) + /--<^ (yx) + ...}.

As an example we will find the sum of

x^ x' . .

x+ rj + rj^ + ... ad infinitum.

Here w = 1, ti = 3, <t>{oo) = e*.

Thus the required sum

= i{aV(aa.) + /3^^(i8iB) + /<^ (yx)| .

Now a=l, ^= 2 » 7 = Y •

Hence <f>{l3x) = e ^ ^

<l>{yx) = e 2(^cos -^--V-lsm-y-^.

And finally the required sum is

i.-Je-1(eos^-#-V3sin£f^).



SUMS OF THE POWERS OF THE ROOTS. 185

264. Again, by means of Art. 262 we can prove the foliowing

theorem ; the expression {x + y)" -x" -y" is divisible by x^+xy+y^

if n be an odd positive integer not divisible by 3, and it is

divisible by (of + xy + y^Y if w be a positive integer of the form

6w + 1.

Let 1, a, j8, be the three cube roots of unity, that is, the three

roots of the equation a;^ — 1 = 0. Then the product of these roots

is 1, that is, a/? = l, by Art. 45; and 1 + a*" + /S"* = 0, provided m
be not a multiple of 3, by Art. 262.

Thus ^ + xy + 2/^ = (a; - a?/) {x— py).

Hence {x + yY - a;" - y" is divisible by x^ + xy + 'if provided

it vanishes when x = ay, and when x = l3y; and it is divisible

by (x^ + xy + i/Y, provided its derived function also vanishes when
x = ay, and when x = py : this derived function, by Arts. 11, 13, is

71 (a; + ?/)""' -m;"-'.

When x = ay we have

(a, + 2/)" _ a:" - 2/" = 2/" {(1 + a)" - a" - l| = 2/» |(- iS)"- a"-
1|

,

and this vanishes when n is an odd integer which is not divisible

by 3.

Also, when x = ay^

n{x + yy-'-nx''-'=ny"-' |(l+a)"-^-a'-^| = 7i/-^|(-i8)"-*-a-'j ;

this vanishes if n — 1 is an even integer and a multiple of 3,

because a^=l, and j8^=l. And if oi-l is an even integer and

a multiple of 3, it follows that n is an odd integer and not divisible

by 3, so that (x + y)" — x" — y" also vanishes.

The same results would be obtained by putting py for x.

Comptes Rendus Yol. ix. p. 360.
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265. The last application we shall make of Art. 262 is to

pi'ove the following theorem.

Let S denote the sum of the series

n-3 (n -4:){n- 5) (n - 5)(n - (j){n-7)

3 "...
Then S=- ii. w is an odd positive integer divisible by 3,

/S' = if n is an odd positive integer not divisible by 3,

S =— if ?^ is an even positive integer divisible by 3,
n .

2
S=- iin is an even positive integer not divisible by 3.

In Art. 261 put xy for q and x + y ior p, so that S^ = x" + y"

;

thus, if n is a positive integer,

(x + yf-x^-f^ nxy {x + y) Ux + 2/)""' -^ xy {x + y)"-'

Let 1, a, /3, denote the three cube roots of unity
;
put x = ay,

then the right-hand member of (1) becomes

„a(lH.a)y»{(l+a)"--^a(l+ar-+(^^ri|izi).=(U„)w_...}.

But a/3 = 1, and therefore /3^ = a^^ = a ; also a + ^ + 1 = 0, so

that — y8 = a + 1 ; thus a = (a + 1)^ Hence the right-hand member

of (1) reduces to

/-. ^n „(. ^-3 (n-i)(7i-5)
),z(l+a)y|l—^-f^ g ^-...j,

that is n{-pyy"S.



SUMS OF THE POWERS OF THE ROOTS. 187

Also when x = ay the left-hand member of (1) becomes

2/"|(l + a)"-a"-lj, that is, 2/" |(-/8)" - a" - l| .

Therefore {-py-ar-l=n{- /3yS (2).

If n is an odd positive integer divisible by 3, the left-hand member

of (2) is equal to - 3 by Art. 262; therefore -3 = -nl3''S=-nS

;

3
therefore S=- .

n

If n is an odd positive integer not divisible by 3, the left-hand

member of (2) is zero by Art. 262 j therefore S -^.

Ifn isan even positiveinteger divisible by 3, the left-hand member

of (2) is —1, and the right-hand member is nS\ therefore 8 = .

If n is an even positive integer not divisible by 3, the left-hand

member of (2) is ^"-a"-!, that is 2jS", since a" -f- j8" + 1 - ;

thus 2Q'' = nB"S, and therefore S= ^ .

It is to be observed that the series denoted by S consists of a

finite number of terms ; in fact if n-2m or 2m + 1 there are m
terms in the series.

Crelle's MatJiematical JouvTial, Yol. xx. p. 321.

This Article serves to illustrate the present subject : but we

may observe that the result can be obtained more simply by

another method.

It is known, see Plane Trigonometry, Chapter xx, that

2 cos nO = (2 cos ef-n (2 cos Oy-' + Vl^^z3 (2 cos Oy-' ~

...+(-l)-"("-'-^)("-'--^)-("-^'-+^)(2coser'-+...

Put ^ = o ; hence, transposing and dividing by n, we obtain
o

..l(l-2co.f).
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266. As another example of the theorem of Art. 260 we will

shew how to express a;" + 2/" + (- cu - y)" in terms of x^ + xy + if,

and xy {x + y).

Let a^x^ -^xy + y^, b^xy(x + y),

and put z (or - X - y.

Then x + y + z-^0^

xy + yz + zx = xy—(x + yy= — a,

xyz = — h;

thus X, y, and z are the roots of the cubic equation

f-at + h=0;

and therefore - (x" + 2/" + «") is equal to the coefficient of — in the
7Z

3

+

expansion of - log
( 1 - t^ + 73 ) .

Now -log (1-1+^3)

1 / b\ 1 / bV 1 / bV

We can then expand la— ) , (a— ),... and collect the coeffi-

cient of any assigned power of — .

If n be an even number we thus obtain a formula for

(x + yy + x^' + y";

and if n be an odd number for

(x+yY-x^'-y^

The following are special cases

:

(x + yY -xJ -y'' = la'b = 1{x^ + xy->r yyxy {x + y),

(aj + 2/)V ic« + 2/' = 2aV 8a5'

= 2 (x^ + a;?/ + f) {{x' + xy + yj + ixY {x + y)'}.

i
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The general formulae may be easily obtained by putting 2m and

2m -r 1 for n. Thus it will be found that

{x + yy-^x^-+y'- _ar .
m - 2 ^,.3^,

^

(m - 3) (m - 4) (m - 5) ^,_,^,

2//1 m 1 .

2

14

(m-r-l)(m-r-2)...(m-3r + l) ^^-3.; .._^ .

\Ir
'

and that

2m + 1 \3

_^
(m-r-l)(m-r-2)...(m-3r) ,_, ^_,^,

|2r+l

2G7. It has been proposed to make use of the values of the

sums of the powers of the roots of an equation in order to ap-

proximate to a root of the equation; we will give an account

of this method drawn from Murphy's Treatise on the Theory of

Algebraical Equations.

Let a, b, c,... denote the roots of an equation; suppose them

all real and a numerically the greatest. We have

^...
^n^+l^jm+I^^n^-M + ...

1

a""' + 6"* + c"* + ,

+ ...

1 + ©"*©"-^'

Thus if 771 be taken large enough the right-hand member can

be made to approach as near as we please to a, that is, to the value

of the numerically greatest root.

268. We may now examine how far the result of the pre-

ceding Article is modified by the presence of imaginary roots.

Let p + yJ—\ and jS — yJ— l be a pair of conjugate imaginary

roots ; their sum is 2/3 and their product is (3^ + y^, which is the

square of their modulus; see Algebra, Chap, xxv.
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Now p^yj:-i=i,(^^Tj'lA),

Assume - = cos 6, and - = sin ^,

so that tan 6 =^ and /x^= P^+y^;

thus fjL is the modulus. Then the conjugate roots may be put in

the form tJi,{cosO^J^ sinO); and hy De Moivre's theorem the

sum of the 7n}^ powers of the two roots is 2/a"* cos mO.

Thus if the numerical value of the greatest real root be greater
o

than the greatest modulus of the imaginary roots, —^ will tend

to a limit as m is indefinitely increased, namely, to the numerically

greatest root ; but if there is a modulus of the imaginary roots

greater than the numerically greatest root, there will be no

S
limiting value of —^^ .

Example. x^-2x-5 = 0. Here the series aS'^ , S^, S^, is

0, 4, 15, 8, 50, 91, 140, 432, 735, 1564, 3630, 6803, 15080, 31756,

64175, 138912, 287130, 598699, By dividing each term by

the preceding, we observe a tendency to a limit a little greater

than 2, so that we may conclude that there is a real root a little

greater than 2. The example however is not a very favourable

one for the method; for since the product of all the roots is 5,

and the real root is rather greater than 2, the product of the

other two root.-s is nearly 2 '5. These two roots are imaginary by

Art. 172, and as their modulus is the square root of their product,

the modulus is greater than I'O; thus the modulus is not very

small compared with the real root, and so the expression —~-

approaches slowly towards its limit.

269. We may obtain the product of the two numerically

greatest roots in certain cases, by a method similar to that in

Art. 267.
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For ' S^ = or + }r + c'^+...,

m + 2

Therefore SJ^,^^,-S\^, = a-h-{a-hf-^a-G''\a-cy

+ bV{b-cy+.„

We will denote this by u^, so that

..=<«>-.) {wf(s)-.5(^j....}.

Hence by proceeding as in Arts. 267 and 268 we may obtain the

following results.

(1) If all the roots are real -'"^ can be brought as near as

we please to the product of the two numerically greatest roots by

increasing m sufiiciently.

.

(2) If there are real roots numerically greater than the

modulus of any imaginary root, there is a limiting value of

^ , namely, the product of the two greatest of these roots.

(3) If there be one or more moduli greater than the numori-

cally greatest real root there is a limiting value of -'"—
, namely,

u
the square of the greatest of these moduli, that is, the product of

the corresponding imaginary roots.

(4) Thus the only case in which "'"^^ can fail to have a limit
u

is when there is one real root, and only one, numerically greater

than the greatest modulus of the imaginary roots. In this case

that real root can be found by Art. 267.

270. We may also obtain in certain cases the sum of two

roots of an equation by a similar method.
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From the values of /?„, S^^^y S^^^y and S^^^, we shall obtain

we will denote this by v„. Then u^ having the meaning assigned

in the preceding Article, we shall find that there is a limit of

-^ in the cases named in the preceding Article, and that this limit

is the sum of the numerically greatest roots, or the sum of the two

imaginary roots with the greatest modulus.

271. Thus in cases (1), (2), and (3) of Art. 209 we can get

the product of two roots by Art. 269 and their sum by Art. 270;

and in cases (1) and (2) w^e can get the sum of two roots by

Art. 270 and the greater of them by Art. 267.

272. Example, x' +x^ + 4:X^ - 4:X+1 = 0.

Here we obtain the following values :

forks',, /^„...-l, -7, 23,-3,-116, 227, 202,-1571,...;

for w,, u^,... - 72, - 508, - 2677, - U137, -74961, - 397421,...

;

for v^, ^,,...164, 881, 4873, 25726, 136382,...

Here no definite limit is obtained by dividing each term in the

series 8^,8^,... by its predecessor; we are therefore sure of the

existence of imaginary roots. By dividing each term of the series

Wj, Wg,... by its predecessor, we obtain quotients which indicate

5 -301... as the value of the product of two roots. By dividing

each term of the series v^, v^,... by the corresponding term of the

series u^, ^^2'••• ^^ obtain quotients which indicate — 1*8 19... as

the sum of these two roots. From these values we can obtain

approximate values of two imaginary roots.

Since the sum of all the four roots of the equation is — 1, and

their product is 1, the sum of the remaining two roots is '819...

and their product —
; these two roots are therefore also

D'OKJi. ..

.

imaginary.
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Thus we shall find in this example that the modulus of the

first pair of imaginary roots is about five times as great as the mo-

dulus of the other pair. Hence with the notation of Art. 269 we

shall find that in taking u^ = a'"b"' (a — by and neglecting the other

terms, the error is about — of the whole quantity; and hence we
o

canjudge of the accuracy of our result. For example ; we have

given above the values of u^ as far as u^ and u^, so that we can

depend upon having found the product of the roots with an error

/l\th
of only about f —5

j
part of the whole.

XXII. ELIMINATION.

273. Suppose that we have to solve two simultaneous equa-

tions involving two unknown quantities ; there are certain cases

in which the solution can be readily effected. Suppose that x and

y denote the unknown quantities; then if one of the equations

involves x"" and no other power of x, we can immediately find x"'

from this equation in terms of y and substitute it in the other

equation ; we shall thus obtain an equation involving y only, and

the roots of this equation may be found exactly or approximately

by methods already explained.

Again suppose that the equations are represented hj A = and

B = 0, and that A and B can be readily decomposed into factors

;

suppose for example that A = UU'U" and B^VV\ Then all the

solutions of the proposed equations are obtained by solving the

simultaneous equations U = and F= 0, t^=Oand F' = 0, U'=^0

and F=0, ?7'=.0and F'^O, ^"=Oand F= 0, ^'' = Oand F' = 0,

Thus the solution of the proposed equations is made to depend

upon the solution of other equations of lower degrees.

It may happen that one of the factors of A is identical with one

of the factors of B ; for example, suppose that U and F are iden-

T. E. 13
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tical. Then any values of x and y which satisfy the equation

^=.0 will satisfy the simultaneous equations ^ = and ^ = 0.

Thus if U involves both x and ?/, we can assign any value we

please to one of the unknown quantities and determine the cor-

responding value of the other, and so obtain as many solutions as

we please. If U involves only one of the unknown quantities we

can satisfy the equations A-^ and ^ = 0, by giving to that un-

known quantity a value deduced from the equation U^^^ and any

value we please to the other unknown quantity.

274. We have already shewn how by the aid of the theory of

symmetrical functions we can eliminate one of the unknown quan-

tities from two equations, and so obtain a final equation which

involves only the other unknown quantity. We are now about to

explain another method of performing the elimination, which

depends on the process of finding the greatest common measure of

two algebraical expressions.

275. Let the two simultaneous equations be denoted by

f^{x, 2/)
= 2i\idi f^{x, y)^0. Suppose that x^a and y = /3 are

values which satisfy these equations ; then the equationsyj (x, fS) =

Had f^{Xj P) = are satisfied by the value x = a. Hence yj(a7, )3)

and yi('^) /^) must have a common measure; this common measure

must be such that when equated to zero it furnishes the value a,

and also any other value or values by which in conjunction with

v/ = ^ the proposed equations are satisfied.

Suppose then that we arrange /^(x, y) andy^(£c, y) according to

descending powers of x, and proceed in the usual way to find

their greatest common measure, carrying on the operation until

we arrive at a remainder which is a function of y only, say ^ (?/).

Then no values of y will be admissible except such as make

<f>{y) = ^; for unless <^(2/) vanishes /^ (a:, y) and /^fe v) have no

common measure and therefore do not vanish simultaneously.

It is not however true conversely that every value of y which

makes ^{y) vanish is necessarily admissible. For it may happen

that in the process the coefiicients of some of the powers of x are
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fractions involving y in their denominators; and a value of y
which satisfies the equation <j>(^y) = may make some of these

denominators vanish, and thus introduce infinite or indeterminate

quantities. Suppose, for example, that we have

Then if q is an integral expression it will not be rendered

infinite by any finite value of y, and any value of y which makes

<^ (?/) vanish, combined with the corresponding value of x deduced

from the equation /^(a;, y) — 0, will makeyj(cc, y) vanish. But if q

is a fraction, involving y in its denominator, q may be infinite

when <^ (v/) vanishes, andy,(.x, y) will not necessarily vanish when

(fi(^y) =0 -dnd/^^x, y) = 0. The same exception may occur when we

carry on the process in the usual way, and introduce factors which

are not functions of x in order to avoid fractional coefficients.

Suppose, for example, that we multiply yj(.^, y) by a quantity c in

order to avoid the fractional coefiicients which are functions of y

;

and suppose we now have

^/i{^,y) = 9A(^^ y) + ^(yy

If we find y from the equation <^ (y) = 0, and then x from the

equation ^2(3?, y)=0, the values so obtained must necessarily make

(l/\{x, y) vanish; but it does not follow that ^j (a;, y) vanishes, for

it may be that the value of y which has been taken makes c vanish.

Hence we require a rule which shall point out the admissible

solutions, and to this rule we shall now proceed. We shall

suppose that in finding the gi-eatest common measure the usual

precautions are taken to avoid fractional coefficients. "We may
assume that in the equations which we shall denote by ^4 —0 and

i/ = 0, neither A nor B contains any factor which is a function of y
only; for such a factor can be separately considered and all the

solutions found which depend on it. The method we are about to

explain is due to MM. Labatie and Sarrus ; we shall give it from

I

the Algebra of MM. Mayer and Choquet.

276. Let the two simultaneous equations be denoted by
and JB=0; we will suppose that neither A nor B has a

13—2
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factor which is a function of y only, and that B is not of a higher

degree in x than A. Let c denote the factor by which A must be

multiplied in order that it may be divisible by B\ let g be the

quotient and rR the remainder, where r is a function of y only.

Let Cj denote the factor by which B must be multiplied in order

that it may be divisible by R ; let q^ be the quotient and rj^^ the

remainder, where r^ is a function of y only. Proceed in this way,

and suppose, for example, that at the fourth division we have a

remainder which does not contain x, and which we may denote

by rj. Thus we shall have the following identities

:

c A = qB -\- rR
,

cfi =q^R +r^R^,

c,R =q,R, + rfi^,
(1)

Let d be the greatest common measure of c and r, let d^ be the

greatest common measure of —~ and r^, let d^ be the greatest

cc c
common measure of -~~ and r^, let d^ be the greatest common

del,

measure of //,^ and r„. We shall now prove that the solutions
dd^d^ ^

of the equations -4 = and ^ = will be obtained by solving the

following systems

:

- = and^ =0,
(t

5- = and^ =0,
I

^ = and i?j = 0,

^ = andi? =0;
d^

(2)

that is, we shall shew in the first place that all the solutions

obtained from (2) do satisfy the equations ^ = and B~ 0, and in
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the second place that all the values of x and y which satisfy the

equations ^ = and ^ = are included among the solutions

obtained from the system (2).

Divide both members of the first identity (1) by d; thus

5^ = l^^5^ (^)-

Now, by hypothesis, -^ and - are both integral functions of y;

thus -y- is also an integral function; but by hypothesis B has no

factor which is a function of y only, and therefore d must

divide q.

The identity (3) shews that the values of x and y which satisfy

7* C C 7*

the equations -; = and ^ = make -. A vanish : but - and -: by^ d d ' d d ^

hypothesis have no common factor, and therefore these values

make A vanish. Hence all the solutions of the equations -^ =

and i? — satisfy the equations ^ = and B — 0.

Again, multiply both members of the identity (3) by Cj, and

substitute for c^B its equivalent obtained from the second of the

identities (1); thus

cc

The expression -—-r-^-^ is integral, for r and q are divisible by
Ob

CC^
d; moreover this expression is divisible by d^, for d^ divides -^

and rj and does not divide R. Di\ide by c/, ; then, for shortness,

putting M for ^ and M^ for ^
.

,

, we have
d dd

,^A^M,R,^MR,... (4).
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ft

Multiply both members of the second of the identities (1) by -

;

thus

Since d^ will divide ^ and r^, it will divide -^ ^ ',
but R is

not divisible by d^ and therefore -|-' must be. Divide by d^ ; then,

C CO
for shortness, putting i\r for - and N^ for -^j , we have

^5 = if.i?.-^i? (5).

The identities (4) and (5) shew that all the values of x and v/

7' CC CC
which make -y and E vanish, make -tt-^ ^^^^ tt ^ vanish: but

d^ dd^ dd^

CC 7*

~r and -7^ have no common factor, and therefore all the solu-
dd^ «!

T
tions of the equations -7 = and R—0 satisfy the equations

^ = andi? = 0.

Again, multiply both members of the identity (4) by c^, and

substitute for c^R its equivalent from the third of the identities

(1); thus

ccxc, . / ,, cjr.

By hypothesis d^ divides the first member of this identity, and(c v \
q^M^ + -~ MjR^, but

i?i is not divisible by d^; therefore q^^i + -^- M is divisible by d^.

Denote the quotient by M^-, thus

J^^^ =^A+^i/A (6).
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Multiply both members of the identity (5) by Cg, and substitute

for c^R its equivalent from the third of the identities (1); thus

cc

lid
f^B--{,^Nyf^N)E^.r^N^R^,

We may prove as before that the coefficient of R^ is divisible by

<Z^, and denoting the quotient hy N^y^Q have

m^-VA^-^A (T).

The identities (6) and (7) shew that all the values of x and y
T

which make -y and R^ vanish, make the first members of these

cc C V
identities vanish: but -—% and -p have no common factor, and

dd^d^ d^

T
therefore all the solutions of the equations

-f
= ^ and R^ = satisfy

the equations A-0 and B = 0.

In the same way as before if we multiply both members of

the identities (G) and (7) by c^, and substitute for c^R^ its equiva-

lent from the fourth of the identities (1), we obtain

(8).
dd^d^d^

A =-KR.
^i K

dddd^
B--^^R.

^k K (9).

where M^ and I^.^ are integral functions of x and ?/. The identi-

d.
ties (8) and (9) shew that all the solutions of the equations y =

and i?2= satisfy the equations A = and ^ = 0.

We have thus proved the first part of the proposition, namely,

that all the solutions obtained from the system of equations (2)

do satisfy the equations ^ = and ^ = 0; we have now to shew

that all the values of x and y which satisfy the equations ^ =

and ^ -- are included among the solutions obtained from the

system (2).
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The identity (3) may be written

NA-MB = '^-^R (10).

Multiply (4) by B and (5) by A and subtract; thus

{M^B - N'^A)R + {MB - NA) ^B, = 0,

and therefore by (10)

dd
{M^B-N^A)R-'^RR^^O,

and therefore

M n-W A =
dd.

M.B-N^A^'^^^R^ (11).

Multiply (6) by B and (7) by A and subtract; thus

{M^B - 2{,A) B^ + (Jf,5 - N^A )'^R, = 0,

and therefore by (11)

ddd
(M^B-N^A)R^^g^R^R^^^,

and therefore

^fi-^A =-"IhK (12).
dd^d,^

Similarly from (8) and (9) we deduce •

The identity (13) shews that all the values of x and y which

make A and B vanish make ^ ^^ ^ vanish; so that one of the
d d^ d^ d^

T T T T
factors -

, ^ , ^ , and -^ must vanish. Hence the equations

r^'^' jr'' jr'' ^^ir''
supply all the admissible values of y.



ELIMINATION. 201

Suppose then that x = a and y = P are values which satisfy the

equations ^ = and B = 0.

T
First suppose that ^ is a root of the equation -^ = ; then it is

manifest that the values x = a and y — ^ satisfy the equations

- = Oandi?-0.
a

Next suppose that ^ is not a root of the equation - = 0, but is

a root of the equation y = 0; since -^ does not vanish when y = P,

it follows from (10) that the values x = a and y-jS make i? vanish,

and so they satisfy the equations y = and E = 0.

T
Next suppose that p is not a root of the equation ;> - 0, nor of

T . T
the equation y=0, but is a root of the equation y=0; since

-^ y does not vanish when y = P, it follows from (11) that the

values x = a and y = P make R^ vanish, and so they satisfy the equa-

tions ^? - and i?= 0.

Next suppose that P is not a root of any of the equations

T T V T .

-^0, -r = 0, v = 0, but is a root of the equation -r = 0: since

-j-j
-f

^^^^ Jiot vanish when y = p, it follows from (12) that the

1 2

values x = a and y = P make Ji^ vanish, and so they satisfy the

equations -y =- and i?^= 0.

This proves the second part of the proposition.

T T V T
The equation -: - ^ -? -5 = which jnves all the admissible

dd^d^d^

values of y may be called t\iQfinal equation in y.
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277. Examples.

(1) x'+'iyx'+{Zy'-y-^\)x + y'-y-+2y = 0,

x^+2yx+y'^-y = 0.

Here we have x-¥2y for tlie first remainder, so that r = 1, and

y~—y for the second remainder, which is independent of x. The

T
only solutions are those furnished by -^ = and E = 0, that is, by

y^*- y = and x + 2y = 0,

(2) «'+ 22/a;'+ 2y{y-2)x + y'-4:=^0,

a^+ 2yx + 2y'- 5y + 2 = 0.

The first remainder here is (y — 2)[x + y + 2) ; so that r = y-2
and Ii=x + y + 2'j the second remainder is y^— 5y+ 6, which is

7'

independent of x. The solutions are those furnished by - =

aud-J5 = 0, that is, hy y~2^0 and x^+27/x + 2y'- 5y + 2=^0;

and those furnished by y = and ^ = 0, that is, hy y'—5y + 6 =

and x + y+2^0.

Thefinal equation in 2/ is (?/ - 2) (2/^- 5y + 6) = 0.

(3) x^ + 3?/x'- 3a;' + 2,y^x - 6ya; - aj + 2/^- 3?/' - 7/ + 3 = 0,

a;'- 32/a;'+ 3x'+ 3?/'£c - 6?/a; - a; - 2/' + 3^/' + y - 3 - 0.

The first remainder is 2(?/- l)(3a;^ + 2/*— 2y- 3); the second

remainder is 8(y^—2y)x; the third remainder is y'^-2y— 3. The

solutions are those furnished by

y- 1 = 0, and x""- 2>yx'+ 2>x^+ '6ifx -6yx-x-y^-\-^y^+ y-Z= %

by y'- 2y = 0, and 3a;'+ y^-2y-^ = 0,

and by y^— 2?/ - 3 = 0, and a? = 0.

The^wa^ equation in. y is {y - \) (y^- 2y) {y^— 2y—^)- 0.
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(4) {y-2)x^-2x+5y-2 = 0,

yx'— 5x'4- iy = 0.

Here we multiply the left-hand member of the first expression

by y to render the division possible without introducing fractional

coefficients. Thus c = y. The first remainder is (3?/— 10) a; + y^+ 6?/.

In order to carry on the division we now multiply yx^— 5a; + 4?/

hy 3?/— 1 0, and perform the following operation

:

(3y - 1 0) .'« + y^- + 6
?/| (32/ - 1 0) yx'' - {?>y - 1 0) 5cc + (3?/ - 1 0) iy^yx

{?>y-lO)yx'+{y~+Qy)yx

- (2/^ + 6/ + 15y - 50) a; + 12/ - 407/

We may either regard the terms in the last line as forming the

second remainder, or we may continue the operation of division as

the remainder is not of a lower degree in x than the divisor; if we

adopt the latter plan we must again multiply by 3?/ -10, which

will give rise to the same remainder as if we had originally multi-

plied by (3?/ - 10)^. Thus we continue the operation as follows:

-(2/^+62/^4-15y/-50)(3y-10)a;+(122/^-402/)(3y-10)|-(2/^+62/^+157/-50)

-(y+6?/'+15?/-50)(3?/-10)a:-(2/'+6/+15?/-50)(7/'+6?/)
'

?/'+122/*+87/-2002/'+100?/

We have here a remainder independent of x, which is the

value of rj and d^ here =2/; so that the solutions are those

furnished by

y'+ 12/+ 87/- 200v/ + 100 = 0, and {^y -I0)x + /+ Gy = 0.

278. The following remarks may be made on the process of

Art. 276.

I. We may always take c such that c and r have no common

factor. .For if d be the greatest common measure of c and r the

c
division of ^ ^ by 5 can be eflfected without introducing fractional

coefficients, as appears from the identity (3); thus c is not the most
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simple factor which can be used as a multiplier of A before divid-

ing by B. Hence by choosing the most simple factor we can make

Similarly we may take Cj, c^,..., such that c, and r^ shall have

no common factor, and that c^ and r^ shall have no common factor,

and so on.

Hence on the whole we may take c, Cj, c^, Cg,... so that c?= 1,

that d^ is the greatest common measure of c and r, , that d^ is the

cc
greatest common measure of -7^ and r^, that d.^ is the greatest com-

^\

cc c
mon measure of -r^ and r

, and so on.
dA

n. Suppose that the remainder independent of x which has

been denoted by r^ is zero; then j?^ is a common measure of A
and B. Hence the solutions of the equations A = and JB=0
consist, (1) of an infinite number of values of x and y which may
be deduced from the single equation i?2=0, (2) of the finite

number of values of x and ?/ which may be obtained by solving

A B
the equations yj- ^ ^ ^^^ "p" ^ ^' -^^^ since ^3= it follows from

the identities (1) of Art.. 276 that R^ divides E and i?,. Divide

the identities (3), (4), (5), (6), (7), (10), (11), (12) of Art. 276 by

li^; we thus obtain new identities in which A, B, E, E^ and E^ are

, ^ ^ A B E E - E„ _- - , . , .

replaced by -rj- , -7- , -77 , -75^ and -^^ . Bv means of these identi-
-^2 K K -^2 -^2

ties we can prove, as in Art. 276, that all the solutions of the

A B
equations -p- = and p- = ^ will be obtained by solving the

2 —

2

following systems:

J
= Oand| = 0.

'^ = and^ = 0.
d, E^
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For example, suppose

a;'+ yx^- {y''+ \)x + y-y^= 0,

and re'- yx'- (y'+ 6y + 9)x + y^+ Qy^+ 9y = 0.

Here the first division gives 2Ujx^+ {3y + 4)a; - (/+ 3y'+ iy) r

for the remainder, so that we may take

R = yx^+ (3?/ + 4)^;- (7/'+ 3?/"+ 4v/).

To perform the second division multiply the dividend by y,

and after one step in the division multiply again by y in order

to continue the division. We then obtain 8 (t/^ + 3?/ + 2) (x - ?/)

for the remainder rJR^. Divide R by x-y and the quotient is

yx + y^+?>y + 4, and there is no remainder.

Thus the solutions of the proposed equations consist, (1) of an

infinite number of values of x and y which may be deduced from

the single equation ic-?/ = 0, (2) of the finite number of values

of x and y which may be obtained by solving the equations

?/'+3?/ + 2 = and ya? + 2/*+ 3?/+ 4= 0.

III. The demonstration in Art. 276 implicitly supposes that

the values of x and y are finite; it is however possible to have

infinite solutions of an equation. Suppose for example that

(y — 1) a;" - 2cc -4- ?/" = ; then so long as y is not equal to unity the

two values of x furnished by this quadratic equation are finite. If

y approaches indefinitely near to unity one value of x increases

indefinitely; see Algebra, Chapter xxii. Thus when ?/ = 1 we may

say that x has an infinite value.

We have not included such infinite values of x and y in our

investigations in Art. 276; these can be easily discovered indepen-

dently. If, for example, we wish to ascertain whether an infinite

value of X is admissible, we may put — for x, then clear of frac-

tions, and suppose a;'=0; we have now two equations in y, and if

they have a common root or roots, such root or roots combined with

an infinite value of x may be said to satisfy the proposed equations.
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XXIII. EXPANSION OF A FUKCTION IN SERIES.

279. Suppose we have an equation connecting two unknown

quantities x and y. If we could solve the equation so as to obtain

the values of y in terms of x, we might expand each value of y in

a series proceeding according to powers of x. We are now about

to explain a method for effecting these expansions of the values of

y in series, .without having previously obtained the values of y in

finite terms.

The method in its complete form is due to Lagi^ange; it was

suggested by a process given by Newton which is called NewtonJs

Parallelogram. For the history of the method, and for full infor-

mation respecting it, the student may refer to Memoirs by Professor

De Morgan in the first volume of the Quarterly Journal of Mathe-

matics and in the ninth volume of the Cambridge Philosophical

Transactions; from these memoirs the brief account of the method

which we shall give has been derived. An account of Newton's

Parallelogram will also be found in the translation of Newton's

work on Lines of the Third Order by C. R. M. Talbot, published

in 1861.

280. Let the equation be denoted by

where A, B, ...K, ...Sj are all functions of x. We suppose

a, jS, ...K, ...o" to be arranged in descending order of algebraical

magnitude; and throughout the investigation such words as ^rea^er

and less, greatest and least, are to have their algebraical meaning.

Let A be of the degree a, that is, suppose x" the greatest power

of X which occurs in A; let -5 be of the degree 6, , K of the

degree A:, , aS' of the degree s. Our object now requires the

solution of •the problem given in the next Article.

281. It is required to determine all the ways in which t can

be taken so that two or more out of the following series of terms

may be equal and greater than any of the rest

:

a + at, b + ptj k + Kt, s + (Tf.
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Begin by supposing that ^ is + oo ; the first term is then greater

than any of the others. As t diminishes each term diminishes, but

each term diminishes more slowly than any of the terms which pre-

cede it. Let t have that value for which a + at first becomes equal

to one or more of the subsequent terms. This is found by taking

the greatest value of t which can be obtained from the equations

a + at — h + ^tj a + at = c + ytj ...a + at = k + Ktj ...a+ at = s + crt^

that is, the greatest value of t must be found from the set

h — a c — a h — a s — a

a — y8
' a — y'

a — k' a — tr

*

Let be the greatest of these values, if one is greater than
a— K

any of the others; or if several are equal and greater than any of

the rest, let be the last of them : denote by t.
tt-K a-K ''

Let t continue to diminish from the value t until h-hKt first

becomes equal to one or more of the similar subsequent terms.

This value of t is found, as before, by taking the greatest value of

t which can be obtained from the equations

h + Kt = l-{-\tj k + Kt = m + fxt, k -h Kt = s + at,

that is, the greatest value must be taken from the set

l — k m — k s — k

K — X' K — fl* k—(t'

Let the greatest of these be selected, if one is greater than any

of the others; or if several are equal and greater than any of the

rest let the last of them be selected; let t denote the value of the

selected term, which we will suppose to be .

K—V

Let t continue to diminish from the value t'; and proceed as

before to find another value t" from the equations

n + vt = p + TZitj n + vt = s + at.
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This process must be continued until the term 5 + cr^ is used in

obtaining a value of t.

Thus we see how all the suitable values of t may be found.

282. Suppose now that A=x:'{a^ + A^, where a^ is indepen-

dent of (T, and A^ vanishes \Vhen x is infinite; similarly let

B = x^(f>^ + B^; and so on. Assume y =x*{u-[-U), where u is

independent of x, and U vanishes when x is infinite. Substitute

these values in the proposed equation involving x and y, thus

... +x^^+'^t{k^+iQ{u+uy+... + xs+<^t(s^+s^){io+ uy=o.

Since this is to hold for all values of x it must hold when x is

infinite; and this will not be the case if the highest power of x

occurs in only one term. In other words, the sum of the coeffi-

cients of the highest power of x must vanish. At this point the

investigation of the preceding Article finds its application.

By supposition r is the greatest admissible value of t, and we

obtain for the part of the expression on the left-hand side of the

above equation involving the highest power of £c,

'd+ar
|(<., +AXu+irr+... + {k, + JQ (u ^uyj.

When X is infinite the coefficient of x'^'^"'^ must vanish; this

gives the following equation for finding u,

a^u- + + k^u" = 0.

From this equation values of it must be obtained, and to each

value of u corresponds a value of y in which the term involving

the highest power of x is ux'^.

In a similar way by considering the value t' we arrive at the

following equation for determining u,

h^ + -f-n^= 0.

From this equation values of u must be found, and to each

value of u corresponds a value of y in which the term involving

the highest power of a; is wa;'".
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By proceeding in this way, we shall obtain the highest power

of X in each value of y.

Next use one of the pairs of corresponding values of t and u

which have been determined; put y = x*(u+ U), and substitute

this value of y in the original equation involving x and y. We
thus obtain an equation connecting x and U and known quantities.

We then apply the method to determine the highest power of x

in the values of U, and thus we obtain the second terms in the

expansions of the several values of y in series proceeding accord-

ing to descending powers of x. And this process may be con-

tinued to any extent we please.

283. There is nothing in the preceding method which re-

quires the given exponents a, ^, ...<r, (X, 6, ...», to be integers/

they will however be such when we apply the method to deter-

mine the Jlrst terms in the case of equations of the kind considered

in tlie present Treatise.

We will now apply the method to an example.

Suppose we have the equation

y* (x' -3x)+y' (x^ + 2x') - y {ix' + 3) + 3a;'' = 0.

The set of terms , .... is, in the present case,
a-(3 a-y ^

3_2 5 — 2 6 — 2
J—^ ) 7—j- , T—jY*

The second and third of these are equal to

1, which is greater than ^ , which is the value of the first term.

Thus T=l. Hence we put y = x(u+ U), and substitute in the

proposed equation. The highest power of x is then cc^, and the

term involving it is

a;«|(w+?7)*-4(w+Z7) + 3|.

The coefficient must vanish when x is infinite ; this gives

w*-4?i-h3 = 0.

It is obvious that w = 1 is a solution, and as the derived func-

tion 4:ijb^~4^ also vanishes when w=l, the root 1 is repeated.

T. E. 14
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Divide u*-4:U + 3 by (u- ly; the quotient is u^ + 2u + 3. Thus

the other values of u are furnished by the equation u'+2u+3 = 0y

and they are - 1 =fc ^-2. "We infer then that the proposed equa-

tion will only furnish two real values of y in terms of x, and that

X is the first term in each of these values when they are expanded

in series according to descending powers of x.

"We may now put x{l + U) for 9/ in the proposed equation, and

proceed to find the values of U; we will resume this example

presently.

284. The following inferences may be drawn from Arts. 281

and 282. . .

(1) If a + a, b + P, ... , i^ + K, ..., s + a are all equal, the

quantities t, t , t", ... are all equal to unity.

(2) If of the quantities a + a, b + 13, ..., k + K, ... , s + a;

two or more are equal and greater than all the rest, then unity

occurs among the set t, t', t"j ... For it is obvious that ^ = 1 is

a suitable value in the investigation of Art. 281, since this value

makes two or more of the terms there given equal, and greater

than all the rest.

These two inferences involve the theory of the rectilinear

asymptotes of algebraical curves.

In the remainder of this Article we suppose that a, ySj y, ...

are all integers, and that a- is zero.

(3) The first equation for u in Art. 282 will have a- k roots,

the second will have k — v roots, and so on; thus on the whole we
get a values for the first term of y, as should be the case, since

the proposed equation is of the degree a in y.

(4) Suppose that the degrees of all the functions of x from

K to iV^ inclusive are equal and higher than any of the others.

Then out of the values of y there will be a - k which begin with

a positive power of £c, and k- v which begin with the zero power

of x, and v which begin with a negative power of ». For the

K- V values of y whicl\ begin with the zero power of x arise
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from the fact that by hypothesis the value ^ = makes all the

following terms equal and greater than any which follow them,

k + Ktj 1+ Xt, ...n + vt. The a — /c values of y which begin with a

positive power of x arise from positive values of t, and the corre-

sponding values of u obtained relative to the exponents a, /3, ... k.

The V values of y which begin with a negative power of x arise

from negative values of t, and the corresponding values of u ob-

tained relative to the exponents v, . . . cr, where cr = 0.

(5) If ^, ^, ... Sf are all of the same degree except If, and

M is of a higher degree than the rest, there are a — /x values of y

in which the highest power of x has the positive index ,

and fx values of y in which the highest power of x has the nega-

. ^ m — a
tive index .

285. A remark should be made respecting the equation in U
which is obtained when the second terms in the values of y are

required; see Art. 282. Suppose we assume y = ocf{u+ U), where

u and t are known, and substitute this value of y in the proposed

equation. We thus obtain an equation in U of the same degree

as the original equation in y. However in general only some

of the values of U will be admissible. For, by supposition, U
vanishes when x is infinite, and so we must reject any value of U
which commences with a positive power of x or with the zero

power of x. These rejected values of U must belong to the other

values of y with which we are not at the moment concerned, since

by supposition we are seeking only that particular value of y
which commences with ux*, or those particular values which so

commence if there are more than one, where u and t have known
values.

286. Let us now resume the example in Art. 283. We have

to substitute x{u + U) for y, and make u = \. We shall thus ob-

tain the following result after dividing by x,

U'(x\..)+U\4.x\..) + U\^x\..)-U{\0x\..)-'2x\.. = ().

14—2
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Here in the coefficients of the powers of U we have only ex-

T)ressed the highest powers of x. Form the fractions according to

Art. 282; thus we obtain

5-5 5-5 4-5 4-5
133' IZli"? 4^' 4-0*

Here the first two terms are zero, and are algebraically greater

than the others ; but a zero value is to be rejected as explained in

the preceding Article. We therefore proceed in the manner of

Art. 281, supposing that t = 0, and that we have to find t.

Thus we form the fractions

4-5 4-5
2-r 2^0*

Of these the second, which is -^, is algebraically the greater.

Accordingly we put U = ux~^, and to find u we obtaii> the equa-

tion 6i^'-2 = 0, so that i^=-i—-. Thus the first terni of U is

- ._= or—j= . Therefore, as far as we have gone, we hav^e

287. The nature of the values of U may be seen by exartiin-

ing the formation of the general equation in U. Let us first P^t

x^u for 7/ and then change u into u+U, When we put x^u ior y

the left-hand member of the proposed equation will take the j-orm

where w^, w^, Wg, ... are supposed in descending order of magnitude.

Denote this expression by </>(w); then the equation in TJ will be

^ (w + U) =0. We will suppose the exponents of y in the pi'o-

posed equation positive integers. The equation in U may. ^^

written

<l>aU''+4>^_,U'-'+^^_,u-'-'+... + ^,ir+<t> = o,

where 4*a stands for — <li^(u\ and similar meanings belong' to
a
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<j>a- y ^ - i
"• Now if no special value were assigned to u, the

coefficients of the several powers of U in the above equation would

be functions of x, all of the same degree, namely n^ Thus by

Art. 284 the values of IT would all commence with the zero power

of X. But if u be such that Xi(^0
'-^ ^' *^^® function <^ is of a lower

degree in x than the function
<f>^ ; hence one of the values of U

begins with a negative power of x, namely, with cc-("i~^2). And

this is the value of U which we are seeking, because Xi(^) = ^ is

the equation from which u is to beTound according to our process.

If however the equation Xi(^) — ^ ^^^ equal roots, we obtain more

than one suitable value of U. Suppose, for example, that the

particular root which we have selected occurs /our times ; then

</>^ will be of the degree n^ in a;, while </>3, t^g, </>j, <^, will only be of

the degree n^. Hence, by Art. 284, there will be four suitable

values of Cf, each commencing with x raised to the negative

power --(?i^- 71^).

We have here supposed that X2(^*) ^^^ ^^^ derived functions

do not vanish for the value of u which is considered.

288. In what we have hitherto given we have investigated

values of y proceeding according to descending powers of x. Thus

if we illustrate our results by geometry, and suppose curves traced

corresponding to the values of y in terms of x, the first term of

the series which we have found for a value of y will exhibit the

nature of the curve at a great distance from the origin.

But the method may also be applied to find the values of ?/

proceeding according to ascending powers of x, so that the first

term in a value of y will exhibit the nature of the curve close to

the origin, when the curve passes through the origin.

In order to apply the method to find the values of 7/ proceed-

ing according to ascending powers of x we need only make the

following changes. We must suppose a, /?, ... a arranged in as-

cending order of algebraical magnitude; and A^ must vanish when

X vanishes and not when x is infinite, so that a;" must be the lowest

power of cc in ^ and not, as before, the highest power; a similar
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change of meaning must be made in B^ and 6, and in the remain-

ing similar quantities.

Then when ^ is + oo the following quantities are in ascending

order of magnitude, a + at, h + ^t, ... k + Kt, ... s + at

As before, the greatest value of t is to be found from the

equations

a + at = h+pt, a + at= c + yt, ... a + ai=^k+ Kf, ... a + at = s + a-t.

XXIV. MISCELLANEOUS THEOREMS.

289. In the present Chapter we shall collect some miscel-

laneous theorems of interest and importance, which will exemplify

many of the principles established in the preceding pages.

To prove that the following equation has no imaginary roots,

A' B' C K'
, ^+ + + . . . + —: -X=0.

x—a x—o x—G x—k

If possible suppose that p + ^J—^ is a root; then p — qJ—

I

is also a root. Substitute successively these values for x and sub-

tract one result from the other; thus

f
A' B' C^_ _K' \

'^\{p-ar + f'^{p-br + q''^(J^cy^q'-'-'''^{p~ky~+qi-

and this is impossible unless q=0.

Or we may prove the theorem thus. Denote the left-hand

member of the proposed equation by (f>{x), and suppose a, b, c,...k,

in ascending order of algebraical magnitude. When aj is a little

greater than a the first term of c{>{x) is very large and posi-

tive, and by taking x sufficiently near to a we may ensure a

jjositive value for <ji(x). When cc is a little less than b the second

term of ^ (x) is very large and negative, and by taking x suffici-

ently near to b we may ensure a negative value for ^(ic). Thus

<^ (x) changes sign for some value of x between a and b. Similarly,

<^(x) changes sign for some value of x between b and c; and

so on. In this way we may shew that the roots of the equation

<^ (x) = are all real and unequal.
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The form in which the equation (f)(x) = is presented, enables

us to recognise more easily the property we had to prove. But

our result will not be affected if we clear the equation of fractions,

so as to bring it to the .standard form; that is, in fact, if instead

of <fi (ic) = we consider the equation

<f>(x) (x -a){x- h) {x— c) ... {x-k) = 0.

290. Required the values of the w quantities x^, x^^ x^, ... x^

from the following n equations,

cc^ + a?^ + cCg + . . . + £c,, = 0,

a^x^ + a^x^ + a^x^ + . . . + ax^^ = 0,

a^\ + aX + «3H+ • • • + «^>„ = ^>

a" "aj, + a " ^x^ + « " ^x^ -\- ...-{ a '' ^a: = 0,

a^-'x^ + a^'^x^ + a.^~'x.^ + ... + «„"~'£c„ = h.

Multiply these equations respectively by c^_j, c^_„, ...c^, Cj, 1,

where c^_,, c^.g, ...c^, c^, are at present undetermined, and add the

results. Assume c^.j, c^^_^^...c^^ c^, such that the coefficients of

x^^ a?3,...cc^^, vanish; then

x^{a;'-' + c^a;"' + c^a/'-^ + ... + c^.gCij + c„_j) = 5.

From the assumption with respect to c^_j, c^_,, ...c^, c^, it follows

that ^2) ^3? •••"„ ^^^ tli6 roots of the equation

s"-' + c/- + c,."- + ... + c„.,. + c,,., = 0.

Therefore the left-hand side of this equation is identically equal to

{z-a^){z-a^)...{z-ay

Hence substituting a, for z the equation which determines x

may be put in the form

x^{a^-a^){a^-a.^...{a^-a^) = h.

Thus x^ is known; and the values of cc^, x^,...x^^, can be deduced

by symmetry.
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291. Eequired the values of the n quantities x^y^z^... from

the following n equations,

+ 7-^+T + ... = 1,
k^ — a k^ — h k^ — c

X y z
7 + r^ +1 + ... = 1,

X y z

k^-a k —h kIn n

We may regard the n quantities k^, k^^...k^ as the roots of the

single equation

X 11 z

k-d k—h k-c

which is of the ?i*^ degree with respect to k. Assume k = a — t', it

will follow that a-k^, cL — k^, a-k^,... are the values of the roots

of the following equation in ^,

1 + -+ —^ ¥- +... = 0.
t t + — a t+ c — a

Multiply by the product of the denominators so as to put this

equation in the usual form ; thus

r +^/-» +^/-^ + ... +^„ - 0,

where the term independent of t, that is -4^, is x(b-a){c-a)...

Therefore, by Art. 45,

{a-k^){a-k^){a-k^)...={~iyx{b-a)(c-a)...y

that is, x = - (^-K)i^-K)(<^-K)-"
{a — b){a—.c)...

From this expression the values of y, z,... may be deduced by
symmetrical chauges in the letters a,h,c...

Grunert's Archiv der Mathematik und PJiysik, Yol. xxiii. p. 235.
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292. To prove that the sum= of the products of the n quanti-

ties c, c^, cV • • c"> taken m at a time is

(c-l)(c«-l)...(c--l) '
'

Assume

(x+c){x + c^)...{x + c'') = x''+pX~'+ "• +Pn-i^+K (!)•

Then by Art. 4.5 we have to find the value of p^. In (1) change

X
X into - and multiply by c"; thus

c

(x + c^)(aj + c')...(aj + c""'')=a;" + fica3""'+ ... +^^_^c''~'aj + 2?„c"...(2).

From (1) and (2) we obtain

{x + c''-''){x" +^X"' + ••• +Pn-X^+2\)

= {x + c)(x'' ^p^cx"'^ + ... +p^_^c"~^x+p^(f).

Equate the coefficients of ic""'""*'^ in the two members of this iden-

tity; thus

therefore p„ =p^_^ c<^
' ^^^'

we can
c(c"-l)

And p^ = c + c^ + ... +c'*--— ~
; then by meaus of (3)

c — J.

determine successively p^) P^j P^i-"'} and thus we shall arrive at

the required value for p^.

293. Let there be n quantities a, b, c,... ; let s^^ denote their

sum, s^_^ the sum of any ti— 1 of them, and so on; and let >S^

denote

(«„)'- s{«,.,)' + sfe._/- ...+(- ir-'s(.,)'.

Here '^{s^Y denotes the sum of such terms as {s^Y formed by

taking all possible selections of m quantities out of the n quanti-

ties a, b, c,... Then we shall shew that aS'= if r is less than n,
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and that >S^ is divisible by a6c... if r is equal to n or greater

than n-y and in particular that

/S^= [w a5c. .
.
, when r = w,

k + 1

and S = —,r— {a + h + c + ...)ahc...^ \vhenr = w4-l.

We may separate S into two parts, one part in which a occurs in

every term and another part in which a does not occur at all. We
may write the former part thus,

w- s.(v,r + 2,kJ'- - + (- 1)"-'«'.

and the latter part thus,

where 3^ indicates certain of the terms formerly included under %
and iSg indicates the remainder. Now suppose a = 0, then «S^

vanishes; for we have in this case

.s,K.,r-s.(.„.3)'=o,
.

Similarly, we may prove that aS^ vanishes when 6 = 0, and when

c = 0, and so on. Thus we conclude that S is in general divisible

by each of the quantities a, b, c, . . . and therefore by their product.

But the product will be of n dimensions, and therefore if S be of

less than n dimensions it must be identically zero. And as S is

of r dimensions it follows that aS' vanishes when r is less than n,

and is divisible by ahc, when r is not less than n.

When r = n we have therefore S=XahG...f where A. is some

numerical quantity which is to be determined. To determine X.

suppose that a, h, c,... are all equal to unity; then S becomes

„-_„(„_l)"+!i^^(„_2)"_...,

that is Iti, by Algebra, Chapter xxxix.
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Next, suppose r = n + l. Then aS' is divisible by ahc.,.; and as

S is o£ n+1 dimensions, it must have a factor which is of one

dimension and symmetrical with respect to a, 6, c...; this factor

must therefore he a + b + c + ...

Hence S^ iiahG...{a + 6 + c + ...), where /x is a numerical quan-

tity which is to be determined. To determine /a suppose that

«j 6, c,... are all equal to unity; then S becomes

n"^' -n{n-\y^' + '^^'^~^^\n-2y^' - .... .

and this must equal iin. Hence by Algebra, Chapter xxxix. we

have a = „ ./^

294. Let [c\ denote c(c - l)(c— 2) ... (c -r+ 1), whatever c

may be; then will

[a + hi = [«]„ + n [al_fi +?^M [„],__^[6]^ + . . . + [J],_.

For suppose that a is a positive integer; then we know that this

theorem is true for any positive integral value of b, for it follows

by equating the coefficients of cc" in (1 -k-xY'^'' and in (1 + x)" x (1 + x^.

Hence since this is true for more than n values of b it is iden-

tically true by Art. 39; that is^ when a is a positive integer the

theorem is true for all values of b. Then since it i^ true for any

positive integral value of a, it is true for more than n values of a,

and therefore by Art. 39 it is true for all values of a.

Thus we are able to prove the proposed theorem, by assuming

the Binomial Theorem for a positive integral index and also the

Theorem of Art. 39. The theorem is sometimes called by the name

of Yandermonde. The theorem is required in Euler's proof of the

Binomial Theorem for any index, and as is well known, is there

established by an appeal to the principle of the permanence of

equivalentforms.
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295. Let (f>(x) = be an equation which has a root a, so that

we may suppose <f>{x) = (x-a) \{/(x); then

X
=(i-3^w.

Suppose that log ^-^ can be expanded in a series involving posi-
X

tive and negative powers of cc, and that log y\r (x) can be expanded

in a series involving only positive powers of x ; then assuming the

identity of the two members of the equation we obtain this result,

— a = the coefficient of - in the expansion of log —^ .

X X

296. The theorem of the preceding Article is given by

Murphy in his Theory of Equations and illustrated by examples

;

see his pages 7 7... 82. The demonstration of the theorem is

imperfect, since the infinite series may be divergent; but the

theorem is of some importance. It had been noticed before Mur-

phy drew attention to it ; see De Morgan's Differential and Inte-

gral CalculuSj pages 328 and 644, and also the Philosophical

Magazvne for June 1848, page 421; according to the latter work

the theorem was given by Lagrange in 1768.

It appears that the process furnishes the numerically least

root of the equation to which it is applied; and some reason may

be assigned for this, at least when all the roots are real.

For suppose that the roots of the equation <^{x) = ^ are

a, 5, c, . . . in ascending order of magnitude. Then

(j>{x) = Aix - a){x -h){x - c) ,

where -d is a constant.

. 0..^ ^)=.(i-«)(i-|)(i-3.......

where ^ is a constant.
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Since a is the numerically least root of tlie equation ^ ioc) = 0,

if X lies between a and b the expansions of

iog(i-3, iog(i-g, iog(i-3

will all give convergent series; and hence we see that log -^-^ can

be developed in the required form in a manner which is arithmeti-

cally intelligible and true. Then as x can have any value between

a and b we may, by a natural extension of the theory of indeter-

minate coefficients, equate the coefficient of - in the expansion of
X

\o2 ljl^ to -a.
X

In the same way as the coefficient of - in the expansion of

los: —- is seen to be - a, we see that the coefficient of -r is ;° X X n

thus we can determine the value of any assigned integral power of

the numerically least root of the equation <f>(x) = 0.

297. For example, required a root of the equation

x" + cx-b = 0.

= logc-5;-2« "3^; -...,

b a;"-' b /, cc"\
where » = = — 1 - --

.

ex c cx\ b J

We have now to pick out the terms involving - ; we shall obtain
X

such a term from «, from «""^\ from s^""^^, and so on. Hence we

shall find for the root the series

b_ b^
^

2nb'"-' dn{3n-l)b'^-'

2.3 c^"^^'^'"
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298. Let (fi{x)~0 be an equation of whicli a^, a^j ••'«,„> ^i'©

roots, so that we may suppose

<fi{x)=-(x-aXx-a^)...(x-aJil/(x);

Take the logarithms of both sides; then, as in Art. 295, we infer

that — (a^ + a,^+ ... + aJ) is equal to the coefficient of - in the

expansion of log—,^ . See Murphy's Theory of Equations^
pages

82 and 83.

As in Art. 296 we may conclude that the process will give the

sum of the numerically least m roots.

299. We shall now give some theorems relating to the decom-

position of a rational fraction into other fractions, which relatively

to the original fraction are cdl\Qdi partialfractions.

Suppose that <^ {x) is a function of x of the n^^ degree ; let the

roots of the equation </)(ic) = be all unequal and let them be

denoted by a, 6, c,...^. Let \l/{x) be a function of x which is of the

{n - ly^ degree or of a lower degree. Then the following relation

will be identically true,

x};(x) ABC K
</)(£c) x-a x — b x — c x-k*

provided proper constant values be assigned to A, B, C,...K.

For in order that this relation may be identically true it is neces-

sary and sufficient that the following should be identically true

:

^(^)=^*M+£^) + (7*M+ ^K^.
^ ^ ' X-a x-b x-c x~fc
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The members of this equation are not of a higher degree than

that expressed by ?^ — 1, hence the relation will be identically true

if n values of x can be found for which it is true; see Art. 39. And
by properly choosing A^ B, C,..,K the relation can be made true

for the n values a, h, c,...k, of x. For suppose x = a, then all the

terms on the right-hand side vanish, except that which involves

A] and we obtain

H-)-A[m\ ,-r^ ^ {x-a\^=,a

that is, by Art. 74,

il/{a) = A<}>'{a).

This determines A; and similar values will be found for

B,C,.,.K.

300. Next suppose that j/^ (a;) is not of lower degree than <l>{x).

By common division we may obtain

where F (x) and /{x) are integral functions of a?, and /{x) is of a

f/x)
lower degree than </>(£c). We may then decompose --r)—. into

partial fractions in the manner shewn in the preceding Article.

Since we have

iHx)^<l>{x)F{x)+/{x);

it follows that ij/^x) and/(a;) have the same value when
<f>

(x) vanishes.

Hence the partialfractions corresponding to —^-/ , when determin-

ed by the method of Art. 299, can be found without previously

dividing xj/^x) by <t>{x); we must however not omit the part F(x)

il/ (x)
if we wish to obtain the complete value of -i-7-c .
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301. Various Algebraical identities may be established by

means of the principles of the preceding two Articles.

For example, if n be any positive integer

\n \ n I

(«+ l)(iC+2)...(£c + 7^+ 1) £c+l la;4-2

1.2 a;+3 x-\-n-\-\

For we may assume that the left-hand member can be put in

the form

A^ J„ A. A.^,

£C+ 1 x+2 x+'6 aj + w + l'

and then we may determine A^, A^,...A^^^: this is effected by

multiplying both sides by

(a; + l)(a;+2) ... (cc + w+l),

and then substituting for x in succession the values - 1, — 2, ...

Again, if w be any positive integer

1 n n{n — \)

^T~(^+l)(£c + 2)'^
(a; + l)(a; + 2)(a; + 3)^"*

(oj + l) (a; + 2) ... (a3+7i+ 1) x + n-\-\'

For we may assume that the left-hand member can be put in

the form

A. A^ A. A ^,—V + —S + —^ + +—''^H-;aj+l x-^^, £c + 3 x + n+l

multiply both sides by (cc-H l)(a;+ 2) ... (a; + ?i+ 1) and then sub-



MISCELLANEOUS THEOREMS.

stitute for x in succession the values - 1,

obtain

Thus

^, = (1 - 1)" = 0, j^'%7\^^^

1.2
(l-l)'-=0,\^^jpQ^^

and by proceeding thus we find that A^, A^,...A^^2iTQ bM zero, and

that A_^, = 1.

Again, if m be any positive integer

(^ + l)(x-+2) 1-2/

m (w — 1

)

(a;+l)(a; + 2}(£c+3) 1 -2//

(a;+ l)(a; + 2)...(a; + 7;i + l)

_1_
x + 1

my m{m—V) y^

i^T2"^ 1.2 ^4^3

(ryi
(-i)y

_

a5 +m+ 1
*

This may be demonstrated in the way already exemplified by

assuming that the left-hand member can be put in the form

x+ 1

then we deduce

4- +
x + )L a; + m + 1

A^ = - my {I -y -\-y)"'-' ^- my,

and so on.

Or we may establish this result by the aid of the second ex-

ample. For if we expand the left-hand member in powers of y,

and compare the coefficients of y" in the two sides, we find them

equal by the second example.

302. We have in Articles 299 and 300 given separately the

decomposition of a rational fraction when its denominator has

no repeated factorSy on account of the simplicity of the result; it

T. E. 15
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is however only a particular case of the general investigation to

"wbich we now proceed.

Suppose that <^(£c) is a function of x which involves repeated

factors ; for example, let

<l>
(x) =p^ {x - ay(x - by {x - cy. ..{x- Jc),

and let il/{x) be any other function of x. Then the expression

"^^-r niay be resolved into the following parts.

(1) Any factor x-k which is not repeated will give rise to a

single term —, .

on '^ K

(2) The factor {x— cbf will give rise to the series of terms

{x - ay {x - ay ^ {x - ay~^ ' x-a

A similar series of teims will arise from each of the other

repeated factors.

(3) There will also be an integral expression if ij/{x) be not

of a lower degree than <^(aj).

For suppose <^(a;) = (»-«)''x (a?); then we have identically,

whatever A may be,

<j>{x) {x-ay <^{x)

Now let A be determined by the equation i/^ (a) - ^xW = ^ 3 *^®^^

}l/{x)-Ax{x) vanishes when x=a, and is therefore divisible by a; - a.

Therefore with this value of A we may put

and therefore

</)(«;) {x - ay {x - ay \{x)'
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In the same way we may decompose the last fraction and

obtain

By proceeding in this way the required result is established.

303. It is easy to shew after the manner of Art. 37 that there

\1/ (x)
is only one mode of decomposing ~-4 into an integral function, and

a series of partial fractions each of wliich involves only one distinct

factor in its denominator. Hence we infer that the result obtained

must be the same in whatever order the operations are conducted,

that is, whatever factor we first consider.

Practically tlie best way to determine the numerators of the

partial fractions will often be the following. Put x-a-\-hj thus

\lf{x) ^(x) ij/{a + h)
^

c}) (x) (x — aYx (x) h\ (a + h)'

now expand by some algebraical method — — in powers of A,

X (a + ft)

and according to the notation already used the result must be

t^^^.A-.A.h^AJ.'^A.k^^

That is, A^ must be the coefficient of /t"* in the expansion of

~
j^^

according to ascending powers of h.

Similarly, the numerators of the other partial fractions may be

determined.

304. In the next two Articles we shall give some theorems

relative to limits of the roots of an equation; they were communi-

cated to the writer by the late Professor de Morgan, in a letter

dated Feb. 6, 1858.

15—2
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305. The following theorem relative to limits of the roots of

an equation will be found to include two of those which are given

in Chapter vii., and to add something to them.

Jjet /{x)=pjx;'' + p^x"~^ + ... + p„_iX+pj then we proceed to

investigate a superior limit to the positive roots of the equation

Let a be equal to the coefficient of the first term, or to any-

thing less ; let b be equal to the least of the positive coefficients

which immediately follow, and precede any negative coefficient,

or to anything less ; let c be equal to the numerical value of the

numerically greatest negative coefficient, or to anything greater.

Suppose that cc""*"^ is the first term with a negative coefficient.

Then /{x) is certainly positive when the following expression is

positive,

ace" + 6 (cc"~^ + ... +a3"~*)-c(aj""*"^ + ... +03+ 1),

that is, when the following expression is positive,

ax + b
x-1 x-l '

that is, supposing x greater than unity, when

L {x-l) + b\ «;"-(& + c) x"-" + c

is positive, that is, a fortiori, when

L{x-l) + b\x''-{b + c)

is zero or positive.

(1) Take & = 0, and let c be the numerically greatest negative

coefficient ; then f(x) is positive if a (cc — 1) — c is zero or positive^

that is, if cc = 1 + - or anything greater. See Art. 87.
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(2) Take h = 0, and let c be the numerically greatest negative

coefficient; then y (a:;) is positive if a(x—l)M —c is zero or posi-

tive, and therefore a fortiori if a(£c— l)*^^-c is so; that is, if

x= 1 + /_V+i or anything greater. See Art. 89.

(3) Put zero for a', then / (x) is positive if hx^-ih + c) is

zero or positive, that is, if £c =
( 1 + - j* or anything greater. This

is a new limit, which may be less than that in (2) when h can be

taken greater than j^^.

(4) If a is not greater than h we havey*(£c) positive if

\a{x- \) + a\x^ -{a + c)

is zero or positive, that is, if a? =
(
1 + - V+^ or anything greater.

This furnishes a less limit than that in (3) whenever h cannot

be taken so great as ^^.

(5) Suppose that a is not less than c; then from (2) we

obtain 1 + 1*"^^, that is 2, as a superior limit.

(6) Suppose that h is not less than c; then from (3) we

obtain 2* as a superior limit.

(7) Suppose that neither a nor h is less than c ; then from

(4) we obtain 2*"*"^ as a superior limit.

306. We shall now give another theorem on the limits of

the roots of equations. It depends on the mode of calculating

the value of an expression of the form ax" + bx"~'^ + cx"~^ + ... for

an assigned value of x, which we have explained in Art. 5. If

denote that assigned value the calculation determines successively

ae, aO + b, {a6 + b)e, {a6 + b)6 + c,
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Lety*(aj) = be the equation. Arrange f{x) in groups, eacli

group consisting of all the positive terms which come together

followed by all the negative terms which come together before

the next positive term. Thus, writing only the signs, supposing

we have the succession,

+ + + -+ + +— +,

then they will be arranged in groups thus,

(++—), (+-), (++ ), (+—), +.

Let the first group involve the powers of x from a;" to a;"~*

both inclusive. Suppose the factor a;""* removed by division.

Take 6 on trial as a value of £c, and calculate the value when

x = 6 oi the quotient after division by £c"~*. If the result is

positive denote it by Jj, and put tIjCc""* at the head of the next

group. Suppose this group to extend to the term involving a;""'.

After ^j£c"~* has been prefixed to the second group divide by a;""',

and find the value of the quotient when x = 6. If the result be

positive denote it by A^, and put A^~^ at the head of the next

group; and so on. If all the results be positive up to the last,

6' is a superior limit of the positive roots. The number B to be

tried may be selected by one of the easier rules, remembering

that it is not likely a number will be required much higher than

the superior limit found from consideriog only the first group.

For example, take an equation of the 18^ degree. We will

write down coefficients only, in groups,

(7 + 4+ 3 -80 - 100) + (20-100) + (3 + 2 + 1-40-1000 - 1000)

+ (70 - 8000 - 2000) + (1000 - 400 - 4000).

Here from considering only the first group we see that 2 is

too small; we will try 3. We proceed to calculate the value

when a; = 3 of

7a;' + 4a;' + 3a;' -80a; -100

7 4 3 -80 -100

7 25 78 154 362

Thus A, = 362.
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We proceed to calculate the value "when a; = 3 of

362^^+ 20a;- 100

362 20 -100

362 1106 3218

Thus ^= 3218.

We have next to calculate the value when a; = 3 of

3218a;' + 3a;'' + 2a;' + a;' - 40a;' - 1000a; - 1000. .

It is however sufficiently obvious now that we shall obtain posi-

tive results to be denoted hy A^, A^^ and ^5 ; so that 3 is a superior

limit of the positive- roots.

In this example the i*ule of Art. 90 would give 1 +
,

which is more than 70 ; and the rule of Art. 89 would give

1 + / , which is more than 11.

The following is a brief statement of the theorem. Divide

the whole expression into successive positive and integer lots,

A —B^ + C^ — D^+ ... ; p, q, r, 5,... representing the last expo-

nent of X in each lot. Divide A^ — B^ by x\ and ascertain a

value of X, say X, which makes the quotient positive ; let I be this

quotient. Divide Ix^ + C^ — D, by x', and ascertain a value of x,

say fji, which is perhaps not greater than X but pciust not be less

than A., which makes the quotient positive ; let m be this quotient.

Continue the process with mx' + JEJ^ — F^, and so on to the end.

The last value of x used is greater than any root of the equation

;

and the first value of a;, namely X, is very often the last also.

XXV. CAUCHY'S THEOREM.

307. We shall devote the present Chapter to the demonstra-

tion of a remarkable theorem given by Cauchy, the object of which

is to ascertain how many roots real or imaginary lie within as-

signed limits ; in fact, the theorem proposes to effect with respect

to the roots in general what Sturm's theorem effects with respect

to the real roots.
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308. Take any rectangular axes, and let a?, y be the co-ordi-

nates of any point. Let <^ {z) be any rational function of z
;

then <i>{x + yJ —^) can be expressed in the form p + q J — I. A
point whose co-ordinates are such that p and q simultaneously

vanish, will be called a radical point. Describe any contour

ABCD ; then the number of radical points which lie within this

contour will be given by the following rule. Let a point move

round this contour in the positive direction, and note how often -

passes- through the value and changes its sign; suppose it to

change k times from + to — , and I times from — to -f ; then tlie

number of radical points which lie within the contour is r){^- 0-

2A

It is to be observed that the contour is supposed to be so

taken that no radical point lies on it ; also if any imaginary root

of the equation <^ (2;) = is repeated two, or three, or more times,

we consider that we have two, or three, or more radical points,

although these points coincide. By movement in the positive

direction we imply that a radius vector drawn from a fixed point

within the contour to the moving point passes over a positive

angle equal to four right angles, while the moviag poiat passes

round the contour.

The theorem is proved by first considering tiie case of an in-

finitesimal contour, and then the case of a finite contour.
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309. Take any point G, which is not a radical point, within

the contour, and describe an infinitesimal contour including G.

Suppose that the moving point passes in the positive direction

round this infinitesimal contour; we have then four cases to

consider.

(1) Suppose that neither p nor q vanishes within or on the

contour. Here - does not change sign at all during the circuit

;

so that the rule asserts that there is no radical point within the

contour, and this is true because p and q do not vanish.

(2) Suppose that q does not vanish within or on the contour,

p
but that p does. In this case — may change sign as the moving

point passes through a position for which p vanishes. But at the

end of the circuit p has resumed its original sign, and thus there

must have been the same number of changes from + to — as from

— to +. Hence h and I are equal, and the rule asserts that there

is no radical point within the contour, and this is true because q

does not vanish.

(3) Suppose that p does not vanish within or on the contour,

7)

but that a does. In this case - never vanishes, so that the rule

asserts that there is no radical point within the contour, and this

is true because p does not vanish.

(4) Suppose that both p and q vanish within or on the con-

tour. If they do not vanish simultaneously we may divide the

space bounded by the contour into other spaces, for some of which

2) alone vanishes, and for others q alone vanishes; thus we obtain

two or more contours instead of one, and these fall under the

cases (2) and (3). We have then only to consider the case in

which p and q vanish simultaneously, so that there is a radical

point within or on the contour. And we may suppose the con-

tour so small that there is only one distinct radical point within

it, and none on it.
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Let a, h be the co-ordinates of this radical point ; and put

x = a + r cos 0, and y=h-{-rsiu6', thus

x + yJ- l=a + b^-l+r (cos + jj^ sin 6\

= a + hj—l + v, say.

Suppose now that the equation <l>(z) = has the root a + h J-l
repeated m times ; then <j>{a-^h J —1 + v) takes the form

cv"" >( c^v'^'^^ + c^^"^^ + ..., where c, c^, c^,... are certain imaginary

expressions of the standard form; so that we may suppose

c = h{cos a + ^ - 1 sin a), c^ = h^ (cos a^ + ^ - 1 sin a^), . .

.

Hence, by De Moivre's theorem we shall obtain

p hcos{md + a) + h^r cos {(m + I) + a,} +h^r^cos {(m + 2)6 + a^}-i- ..

.

q
~ h&iD.{mO + a) + 7^/ sin{(m + 1)6 +a^} +hy shi{{m + 2) + a^}+ . .

.

We may suppose r so small that the number of changes of sign

IT)

shall be unaffected by r ; that is, we may proceed as if - = cot (m^+ a).

And as m6 increases from one multiple of tt to the next

multiple of tt, there is always one passage through zero accom-

panied by a change of sign from + to -. Thus we have k = 2m,

and 1 = 0; so that - {k-l) = my according to the rule.

310. The theorem is thus proved for an infinitesimal contour;

and we shall now consider the finite contour ABCD. Let the

contour be divided into an indefinitely large number of infini-

tesimal contours, these contours being so taken that no radical

point falls on any of them. Then the number of radical points

within ABGD can be found by making a point describe all these

infinitesimal contours, and adding together the numbers furnished

by the rule, which we may denote by ^ ^ (^ — l). But the same

result will be obtained if we omit all the interior lines of division,

and retain only the boundary ABCD. For each point on any

interior line of division belongs to two contours, and is therefore
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traversed by the describing point twice and in contrary directions;

so that, if in one case there is a change in - from + to — , there is

a change in the other case from — to +, and on the whole the

number -^^{k — I) is unaffected. Hence the interior lines of

division may be omitted, and the moving point constrained to

describe the contour ABCD alone.

Thus the theorem is proved.

311. We can now immediately deduce the theorem that an

equation of the n^^ degree must have n roots. Suppose the contour

ABGD to be a circle with the origin as centre and an indefinitely

7)

large radius. The value of - will now depend only on the term in-

volving the highest power of z in 4>{^)} ^^^ if ^^ suppose that term

to be h (cos a + /y/— 1 sin a);s", we shall have - = cot {nO + a). Thus

we shall obtain h = 2w, and ^ = ; so that -{k — l)=n.

312. We have drawn the figure in Art. 308 so that if from any

point within the contour a radius vector is drawn in one direction

it meets the contour in only one point. The figure however need

not be so restricted; it may be such that a radius vector drawn in

one direction may meet the contour any odd number of times.

Hence as a point moves round the contour the radius vector drawn

to the moving point from any fixed origin within the contour will

not always revolve in the same direction. By the positive direc-

tion of movement of the describing point we must understand that

for which, although the vectorial angle may not be always increas-

ing, yet on the whole the positive angle 2ir is gained in the

circuit.

The demonstration will not be affected by the admission of the

kind of figure here contemplated; for the infinitesimal contours
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may still be supposed, if we please, ovals whicli have only one radius

vector drawn in any definite direction from a fixed origin. Or if

we do not adopt this restriction we must observe that at the end

of Art. 309, as $ now does not always increase, there may be more

values of for which — vanishes, than we contemplated; but if so,

there will be exactly as many more changes from + to — as from

- to +.

313. We have supposed throughout that there is no radical

point on a contour considered. If there be, no change is made in

our investigations except at the end of Art. 309; and here instead

of having the range 27r for 6 we have only ir, so that m occurs

instead of 2/?^ as the number of changes of sign.

314. Cauchy's Theorem is given in the Penny Cyclopcedia,

Article Theory of Equations, in Mr De Morgan's Trigonometry

and Double Algehra, and in Mr De Morgan's Memoir to which

we have referred in Art. 32; from these sources the present

account of it has been derived.

XXVI. NEWTON'S RULE AND SYLVESTER'S
THEOREM.

315. Newton enunciated a rule respecting the number of

positive, of negative, and of imaginary roots in an equation,

which remained without demonstration until the recent researches

of Professor Sylvester, who has established a remarkable general

theorem which includes Newton's rule as a particular case. The

original sources of information on the subject are th.Q Philosophical

Transactions for 1864, the publications of the London Mathema-

tical Society, No. li., and the Philosophical Magazine for March,

1866; from these sources the exposition which we shall now give

has been essentially derived.

310. We begin by enunciating in substance Newton's rule.
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Let/(£c) = be an algebraical equation of the n^^ degree; and

suppose

/./ X „ «-l ^(^— 1) «-2
J [x) = a^x + na^x H—^

—

-^ a^ + . . . + na^_ ^x-¥ a^-y

then a^, a^, a^,...a^ may be termed the simple elements of/{x).

Let a new series of quantities A^, A^^ A^,...A^ be formed in

the following way

:

then A^j A^, A^,...A^ may be termed the quadratic elements oif{x).

We shall call a^, a^^j a succession of simple elements, and

yl^, A^^^ a succession of quadratic elements ; and we shall call

an associated couple of successions.

Now a succession may present either a permanence or a varia-

tion of sign j and this will be termed for brevity a permanence or

a variation. Thus in an associated couple of successions we shall

have one of four cases ; two permanences, or two variations, or a

superior permanence with an inferior variation, or a superior

variation with an inferior permanence : these may be called

respectively a double permanence, a double variation, a perma-

nence-variation and a variation-permanence.

The following is equivalent to Newton's complete rule :

Write the whole series of quadratic elements off(x) under the

whole series of simple elements in their natural order ; then :

The number of double permanences in the associated series is

a superior limit of the number of negative roots of the equation

/W = o.

The number of variation-permanences is a superior limit of

the number of positive roots.

From either of these two statements the other follows by

changing the sign of x inf(x).
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It follows from these two statements that the whole number

of real roots cannot exceed the number of permanences in the

series of quadratic elements ; and therefore the number of imagi-

nary roots cannot be less than the number of variations in the

series of quadratic elements.

It should be noticed that writers who have quoted Newton's

rule seem always to have restricted themselves to that part which

relates to the number of imaginary roots.

317. "We will illustrate Newton's rule by some examples.

Suppose 2x^-13af+10x- 4:9 = 0.

Here the series of simple and quadratic elements are

2. 0,-^, ^. -49,

. 13 169 1199 ....
*' T> 16-' -T2-' ^*^^-

Thus whether we suppose the zero which forms the second of

the simple elements to be positive or negative, we find that there

is one double permanence, and one variation-permanence ; so there

cannot be more than one positive root, and there cannot be more

than one negative root : there are then certainly two imaginary

roots.

These results agree with those in Art. 203. In this example

Descartes's rule would indicate that there cannot be more than

three positive roots ; so that Newton's rule gives us fuller informa-

tion than Descartes's.

Next suppose x^ + x^-x^-x^ + x^ -x+l = 0.

"We will write down the series of simple elements, and the

signs of the quadratic elements :

'6' 15' 20' 15' 6' '

+ , +, +, +, -, -, +.

Here there are two double permanences, and two variation-

permanences; so that by Newton's rule there cannot be more

than two positive roots, and there cannot be more than two nega-

tive roots.
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Descartes's rule would indicate that there cannot be more

than/our positive roots.

In this example it may be shewn by Sturm's theorem that

all the roots are imaginary; or we may obtain the same result

thus : It is obvious that there can be no positive root greater

than unity ; and the equation may be written in the forms

x' + {l-x){l+x'-x') = 0, x'(x+iy{x-l) + x'-x+l = 0,

which shew respectively that there is no positive root less than

unity, and no negative root.

Next suppose x^ - 12a;'' + 60x* + l2Saf + 4567a;- 89012 = 0.

We will write down the series of simple elements, and the

signs of the quadratic elements •

1, -2, 4, 0, 1\ 1^, -89012,

+, 0, +, -, +, +, +.

There is one double permanence whether we suppose the zero

in the upper series to be positive or negative, and one variation-

permanence if we suppose the zero in the lower series to be nega-

tive; so that by Newton's rule there cannot be more than one

positive root, and there cannot be more than one negative root.

Descartes's rule would indicate that there cannot be more

than three positive roots.

In this example we know by Art. 21 that there is certainly

one positive root and one negative root ; it will be found on trial

that the former lies between 1 and 10, and the latter between — 1

and - 10.

318. The preceding examples shew that Newton's rule may
often be applied with facility. It is obvious that it always tells

us as much as Descartes's rule, and often tells us more. For with

respect to positive roots, for example, Descartes's rule takes the

number of variations in the series of simple elements, while

Newton's rejects those variations which are unaccompanied by

a permanence in the series of quadratic elements.
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319. The following is Professor Sylvester's Theorem :

Let f{x + X) be arranged according to powers of x ; let the

series of simple elements and the series of quadratic elements be

formed, and let the number of double permanences be called the

number of double permanences due to X, and be denoted by cr (X).

In like manner let the number of double permanences for

f(x + ^) be called the number of double permanences due to /a,

and be denoted by c7(/i.). Suppose /a greater than A; then

cr(ju} —m{X) is either equal to the number of roots of the equa-

tion /(x) = between X and yu,, or surpasses that number by some

even integer.

320. Before demonstrating this theorem we will shew that

it includes Newton's rule.

Put for ft and — x for X. We have m {-cc ) = ; for when

X is — oc , the simple elements oi /(x + X) are alternately positive

and negative, so that there can be no double permanences.

Thus ^{0) = 'UT (0) - CT (- oc ).

Therefore, by the above theorem, ztr (0) is either equal to the

number of roots of the equation y (a?) = between — x and 0, or

surpasses that number by some even integer. This establishes the

first part of Newton's rule, from which the other parts follow.

321. The simple elements off{x + X) are

rw i r-'w 1.2 /-(x) i.^awm
[n. ' n \ri-l ' n{7i-\) \n-2_' n'^ W»/W

It will make no change in sign if we multiply every element

by
I

w ; thus the series becomes

/-W,/"-'W, 1.2/"-'W, |3/"-=W, !»-!/' (A), \n/{X).

In like manner by omitting the square of |r — 1 from the /''

quadratic element we obtain the series

where G^(\) stands for {f'{X)Y - yj"-' (X)/'^' (X),

, ^. n~r+l
y, denoting .
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We have then to determine the laws of the change in the

number of double permanences in the associated series

f'{t),r-'{t),r-\t), /'(<},/(«),

GMG.-A'-)'Gn-M, GAt),G((),

as t increases.

Ko change can take place except when t passes through a value

which makes one or more terms vanish in either or both of the

series of elements.

322. It will be necessary to investigate the value of the de-

rived function of a quadratic element; let G^^{t) denote the quadra-

tic element, and G'^{t) its derived function.

To obtain G\^{t) we must suppose G^^{t +h) to be expanded in

powers of A, and take the coeflBcient of h.

The coefficient of ^ is

(2 - rJ/" (<)/"*'
(«) - r„/"- (OZ-^W-

Kow it is easily seen thafe

/m+X

thus G'„{t)=^r{t)r»{t)-yj"'-\t)r*\t)
7»n+l

I

= :^/"W/""(0 -^j|/""W +^^5 <^»(0

/"W
+1777 '^"+1W + TS+rrrt G„{t).

T. E. 16
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323. Suppose that a single term in the series of simple ele-

ments intermediate between the first and the last vanishes when

Let h be an indefinitely small quantity ; this will be the mean-

ing of h throughout the investigation : then/*'(c + /i) has the sign

of /i/''"*'*(c). Thus the associated terms

/'^'(c + h), fic + h), /'-'(c + A).

have the same signs as

r\c), hf'^^c), /'-'(c),

{r"{o)}\ -f'*'{c)f'-\c), {/'-(«)}'.

Ify*''"*'^(c) andy'"~^(c) have the same sign, the terms here con-

sidered have no double permanence. If/'"^^(c) and /"^^c) have

contrary signs, there is one double permanence whether we suppose

h negative or positive.

Thus no change is made in the number of double permanences

when t increases through the value c.

324. Suppose that a single term in tl^e series of quadratic

elements intei-mediate between the first and last vanishes when

t = c, say G^{c) = 0.

Since G^g) = it follows that/'"^(c) and/'""^^(c) have the same

sign. Thus the associated terras

f'»{c + h), f'{c + h), /-(c + A),

Gr„{c + h), e,{c + h), G,_,(c + h),

have the same signs as

.
/'"{<=), /'(c), /-'(c),

G.lA"), ''<?',(«). <?,-.(<=).

and by Art. 322 the sign of G\{c) is the same as that of
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j£yr+i^^^ and /""(c) have contrary signs, the terms here con-

sidered have no double permanence.

If/'"^^{c) and/''(c) have the same sign, and ^^+j(c) and G^_^{c)

have contrary signs, there is one double permanence whether we
suppose h negative or positive.

j£yr+i^^j has the same sign as/''(c), and G^_^^{c) the same sign

as G^_^ (c), there is no double permanence when h is negative, and

there are two when h is positive : thus in this case two double

permanences are gained when t increases through the value c.

325. Suppose that several consecutive terms of the series of

simple elements vanish when t = c, say

f"-\c) = 0, /'*-'{c) = 0,.../'{c) = 0.

Thus we suppose 8 consecutive terras to vanish, and as /"(c) is a

constant which cannot vanish, r + s cannot be greater than n : we
suppose that r is not zero.

We have to consider the changes in the signs of

r*-{t), /—
'(0, /'*-'{t),.../'{t), f'-^t),

produced when t increases through the value c. Let ^ (c) stand

for /'^'
(c) ; then when t = c + h, the signs of the simple elements

here considered are the same as the signs of

</,(c), hct>{c\ A^(^(c),...7.'^(c), /--(c).

We proceed to investigate the signs of the quadratic elements

:

^r+.(c) = ]
/'"*"'

(^) [ >
which is positive,

0^_^(c) = \ f^^(c) [ , which is positive,

IG—

2
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expand in powers of h and take the term which involves the lowest

power of h : thus we obtain

so that the sign is the same as that of

-/^-(c)c/>(c)A-\

We shall now shew that the other quadratic elements which we

have to consider are positive. For

let IX stand for r + s - m ; then by expanding and picking out tlie

term which involves the lowest power of h we obtain

the sign of this is the same as the sign of

that is as the sign of

r+s-w+1 n—m+l
r + 8 — m

that is as the sign of

1

r + 8 — m n — m
Now r + s is not greater than n so that the sign is never negative;

the case in which r + s = n will require further examination.

In this case

/'(c) = 0, /-'(o) = 0,.../"-'(c) = 0;

and as/''(^) is of 7i-r dimensions in t it follows that all the roots

of/'(^) = are equal to c. Thus /"(«) is of the form G{t-cy-'

where (7 is a constant.
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Then f-' it) = C{n-r){t- cy-"-',

f^'{t) = C{n-r){n-r-\){t-cy-''-';

and thus it will be found that G^^^{t) is identically zero. And in

like manner it will be found that G-^^^{t)^ ^r+sW? ••• ^n-iW ^^'^

all identically zero.

We will adopt the convention that these quadratic elements

which are identically zero shall be supposed to have the positive

sign ; and thus the case in which r-^s = n will lead to the same

results as that in which r + s is less than n.

Thus finally the signs of the terms of the associated serie?

which we have to consider are the same as the signs of

<^(c), h<i>{c\ A'<^(c), /.'(^(c), /^-'(c),

+ , +, + +, -h'-'4>{c)r-\c), +.

We can now ascertain the number of double permanences; the

following results will be easily obtained

:

Suppose s even, and <^ (c) and f'~^ (c) of the same sign ; when
h is negative there is one double permanence, and when h is posi-

tive there are s - 1 : thus s-2 double permanences are gained

when t increases through the value c.

Suppose s even, and <^(c) and /"^(c) of contrary signs; when
h is negative there is no double permanence, and when h is posi-

tive there are s : thus s are gained.

Suppose s odd, and <^(c) and /"""'(c) of the same sign; when h

is negative there is no double permanence, and when h is positive

there are s — l: thus s — 1 are gained.

Suppose s odd, and <^(c) and f'~\c) of contrary signs; when h

is negative there is one double permanence, and when h is positive

there are s : thus s—l are gained.

Hence an even number of double permanences is gained when
t increases through the value c.
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326. Suppose that several consecutive terms of the series of

quadratic elements vanish when t = Cj say

&,..M = 0, G^,Uo) = 0. e,{c) = 0.

Thus we suppose s consecutive terms to vanish, and as G^{c) is a

constant which cannot vanish, r + s cannot be greater than n: we

suppose that r is not zero.

In consequence of the vanishing of the s consecutive quadratic

elements, we have the following conditions holding among the

simple elements comprised between /,+,{c) and f^_^{c), both in-

clusive :

/,+,(c), /r+s-i{c), /,+,_4(c),... are aU of the same sign;

/,+,_i(c),/,+,_3(c), /+._s(c),... are all of the same sign.

If the terms in the second set have the contrary sign to those

in the first set there is no double permanence when t = c + h,

whether we suppose h positive or negative.

We have then only to consider the case in which the terms in

the two sets have all the same sign.

Let G^^^[t) and G^^{t) be any two consecutive quadratic

elements comprised between 6^^+,(0 and G^^), both inclusive:

then G^^_^^{c + h) and G^^(c + h) shall have contrary signs when h

is negative and the same sign when h is positive.

Por by Art. 322,

Put c + h for t, and expand in powers of h.

Suppose that in G^^ {c + h) the term which involves the lowest
r)

power of ^ is — A'', so that R is the value of the p^^ differential
P

coefficient of G^{c) with respect to c. Then the term which
r>

involves the lowest power of h in G\X'^ + h) will be r~Z\^^'"''
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Hence from the above equation the term which involves the lowest

power of A in G^_^_^{c + h) will be

Ifm +W \^) J?Tp-l

7>yEi
Hence finally G^^(c + h) has the sign of Rh^ and G^^^ (c + h) has

the sign of RltJ''^ ; so that G^^_^_^{G + h) and G^X^ + h) have con-

tiary signs when h is negative, and have the same sign when h

is positive.

Thus the simple elements which we have to consider have all

the same sign; and the quadratic elements comprised between

^'r+X^ + ^0 ^^^ ^r{^'*'^0> ^^^^^ inclusive, have alternate signs when

h is negative and have the same sign when h is positive.

"We can now determine the number of double permanences;

the ibllowing results will be easily obtained

:

Suppose s even, and G^^g{c) and G^_^{c) of the same sign; when

h is negative there is one double permanence, and when h is posi-

tive there are s + 1 : thus s double permanences are gained when

t increases through the value c.

Suppose s even, and G^+^{c) and G^_y^{c) of contrary signs; when

h is negative there is no double permanence, and when It is posi-

tive there are s: thus s are gained.

Suppose s odd, and G^^.^{c) and G^_^{c) of the same sign; when h

is negative there is no double permanence, and when ?i is positive

tilere are s + 1 : thus s + 1 are gained.

Suppose s odd, and G^_^_^{c) and G^_^(c) of contrary signs; when

h is negative there is one double permanence, and when h is posi-

tive there are s: thus s — 1 are gained.

Hence an even number of double permanences is gained when

t increases through the value c.

327. We now consider what takes place when an extreme

term vanishes.
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/''(^) and G''{t) are constants, and can never vanish; and G{t)

is essentially positive.

Suppose however that /-yc) = 0, /*-'(c) = 0,... /(c) = 0, so

that c is a root repeated s times of the equation fix) ~ 0. Then,

as in Art. 325, the last s+ 1 terms of the associated series will

have the same signs when t=c + A, as

/'(c), //'(c), hT{c), A'-y'(c), hT{ch

3 s
+ , 2-y,_„ 2-'/*-2 ^^TJ"'^^'

*"•

Here when h is negative there are no double permanences,

and when h is positive there are s: thus s double permanences

are gained when t increases through the value c.

328. This completes the demonstration of the theorem. The

general result is that the number of double permanences belonging

to the associated series is increased by at least as many units as

there are real roots, equal or unequal, passed over as t increases

from one specific value to another ; and the excess, if any, of such

number over the number of real roots will be an even number.

Thus, with the notation of Art. 319, we know that the num-

ber of real roots between A. and fi cannot exceed 'n7{fjt)
— -cr (A). If

we know that some of the double permanences gaioed arise from

the vanishing of any of the elements except /(^) we can of coui'se

make a corresponding reduction in the extreme num))er of real

roots. Thus, for example, suppose that s double permanences are

gained in the manner considered in Art. 325, then the number of

real roots between A and /x, is not greater than -cr (/a) — -cr (A) — s.

329. Some extension may be given to the theorem by ascrib-

ing another value to y^. The principal property of y^ which is

required in the preceding investigation is that used in Art. 322,

namely.
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We may then examine what form of y^ will satisfy this equa-

tion. We will solve" the equation, though the process will require

from the student a knowledge of the elements of the Calculus of

Finite Differences.

Put Ir^—'y

thus 2-^ = ^-

therefore u^^^ - ^u^^^ + u^ = 0.

The solution of this equation is

where A and B. are constants.

Hence y^= \ /^~

_ C+r-l
" C + r *

where G stands for ^

.

n

The student who is not acquainted with the Calculus of Finite

Differences may easily verify that this value of y^ satisfies the

relation

1

7.+ 1

We have also to satisfy the condition that y^ shall be positive,

and also the condition assumed in Art. 325, that y^ shall

be positive ; these conditions will be satisfied if G be any positive

quantity, and also if G be negative provided it does not lie between

and — n.

330. Professor Sylvester observes that his theorem bears the

same relation to Newton's rule which Fourier's theorem bears to

Descartes's rule. Fourier's theorem may be stated thus

:

2-r,'
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Forni the simple elements corresponding to/(a; + X) and to

/{x + fx). Let jo(X) and J9(/a) denote the corresponding numbers of

permanences of sign; and suppose ft greater than A, Then

p{fx) -jo(>v) is either equal to the number of roots of the equation

f{x) = between X and /x, or surpasses that number by some even

integer.

331. We have given in Art. 106 a simple proposition which

resembles a special case of Newton's rule; and it is easy to extend

the pioposition so as to convert the resemblance into a coinci-

dence. For take the equation there obtained,

this equation has at least as many imaginary roots as any of its

derived equations. Take the (r- 1)^ derived equation, which is

(r+\)r 3 r(n-r)p^ (n-r+l)(n-r)p^
, ^

--.—«- y + -^ -^ y + ^
^

—

-T —- ^ 0.

This equation has imaginary roots if

{n-T)rp^ - {n-T ^-Y) {t ^\)ip^_^p^^^

is negative ; and hence in this case the original equation

has imaginary roots.

It will be found that the above condition is equivalent to

having one of the quadratic elements negative; and as the first

and last quadratic elements are positive, there must be at least

two variations in the quadratic elements and therefore at least

two imaginary roots. See Art. 316.

This special case of Newton's rule, and only this, had been

established before Professor Sylvester's investigations.

332. If we consider the intrinsic beauty of the theorem which

has now been expounded, the interest which belongs to the rule

associated with the great name of Newton, and the long lapse of

years during Avhich the reason and extent of that rule remained



REMOVAL OF TERMS FROM AN EQUATION. 251

UDdiscovered by mathematicians, among whom Maclaurin, Waring,

and Euler are explicitly included, we must regard Professor

Sylvester's investigations as among the most important contri-

butions made to the Theory of Equations in modern times, justly

to be ranked with those of Fourier, Sturm, and Cauchy.

XXYII. REMOVAL OF TERMS FROM AN
EQUATION.

333. We have already in Art. 56 shewn how to transform

an equation into another which shall want an assigned term. We
shall now consider this subject more generally, and shew how

theoretically any number of terms may be removed. The method

of transformation which we shall explain is called by the name of

its inventor Tschirnhausen.

334. Suppose we have the equation

£c" + />j.'r"~^ +^'2^''"^+
+/'„_i^ + i\ = (!)•

Assume

y = a^ + a^x + a^x''-^ + a^x"" (2),

where m is an integer less than n, and a^,, a,, ... a„ are constants

at present undetermined. We propose to eliminate x, and thus

form an equation in terms of y. Since there are as many values

of 2/ as of a; the equation in y will be of the degree n.

The elimination may be effected thus : raise the equation (2)

to the powers denoted by 2, 3, ...w; and by means of (1) de-

press the exponents of x, so that none of them shall exceed w- 1,

in the following way,

a;" = _^^a;'-^-^^a;'-2_ -Vn-v^-V.^

x''^'=-p,x'' -p.^x''-' - -Pn-i^^-Pn^>

substitute for .t" its value from the preceding line, and we have

o:""^^ expressed in terms of x"'^ and lower powers of x; then mul-
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tiply by x and substitute as before, and we have a;""^* so expressed
;

aaid so on. Thus we shall obtain results of the following form :

y'=bQ + b^x + h^x^+ ... +b^

2/" k^ + k.x + kx^ + ... + k
i 2 n

(3).

Here h^, ^j, ... &„_i are integral homogeneous functions of the

second degree of the undetermined quantities a^, a^,...a^; also

c„, Cj,...c^_j are integral homogeneous functions of the thio'd

degi'ee of a^, a^, ...»„; and so on.

Let 5j, 5jj, ^3, ... denote the sums of the first, second, third, ...

powers of the roots of (1) ; and let S^, S^, tS^y ... denote the sums

of the first, second, third, ... powers of the roots of the required

equation in y. Then from (2) and (3) we have

^. = ^K + K^ + K^ + '"+ K-i^n-r >

'S'3 = ?^C„ + CjS, +c/^ +

S^^ = nh^ + k^s^ + k^s^ + . . . + ^^_ j5„_,

.

(4).

Thus, as the sums of the powers of the roots of the equation

in y are known we can construct the equation; see Ai*t. 244.

Or we may proceed thus : from equations (3) we can obtain

the values of £c, x^, ... ic"~^ in terms of the powers of y ; then

by substituting in (2) we have the required equation in y. This

method has the advantage of giving x as a rational function of y,

and thus the value of each root of (1) will be known as soon as

the equation in y is solved.

335. We may now take the hitherto undetermined quanti-

ties a^, a^y ...a^ so as to make some terms disappear from the

equation in y. For example, suppose we wish to make the coeffi-

cients of the m terms which succeed the first disappear; it will

be sufficient to put

s=o, s.-o, ^„=0.
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But from equations (4) we see that aS'i is of the first degree

with respect to a©* »i> ••• ^^> *^^* '^2 is of the second degree, S^

of the third degree, and so on. Hence by Art. 259 the determi-

nation of these quantities a^^, «,,... «„,, of which one may be

assumed arbitrarily, will depend on the solution of an equation of

the degree Im.

336. "We shall make an application of the preceding method

which is of especial interest in connexion with equations of the

fifth degree : a preliminary proposition will be required, which

we shall now give.

337. An integral homogeneous /unction of the second degree

of n variables can he expressed as the sum of the squares of v

linea/r functions^ the number v not being greater than n.

Let V be an integral homogeneous function of the second

degree of the n variables ajj, x^,...x^.

If 71 = 1, the function contains only one variable, so that it is

of the form f^x^, that is, {x^slPT'

Suppose that n is greater than 1, and that V involves the

square of one of the variables, say x^ ; then by arranging in

powers of cc^ we obtain

V=Px,^ + 2Qx^ + R,

where ^ is a constant, § is a linear function of the n-\ varia-

bles, ajjj, £^3, ...a;^, and i? is an integral homogeneous function of

the second degree of these n—\ variables.

Put ^,=^. + |, ^. = -K-|;

thus F=(X,V/3r+F„

and Fj is an integral homogeneous function of the second degree

of 71 - 1 variables at most.

Next suppose that V does not contain the square of any of the

variables j then, arranging V with respect to two variables x^ and

ajjj, we have
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V= jSx^x^ + Qx^ + Ex^ + S

Put x. = l(».. + x, +^), •

thus F=^(x.'-x/)+ r,=(x, V/8r + (x.V^)'+ r,.

Here Xj and X^ are linear functions which may involve the n
variables aj^, a;^, ... a;^; and F^ is an integral homogeneous function

of the second degree which involves at most w — 2 variables.

Thus in the first case the function F which involves n vari-

ables is made the sum of a certain square and of Fj, where

Fi involves only n-\ variables at most ; and in the second case

F is made the sum of two squares and of F^, where F^ involves

only w — 2 variables at most. Then by continuing the process on

Fj or Fg we can finally express F as the sum of not more than

n squares.

338. Let there be an equation

a" +;?^a;"~' +^^03""^ + ... +jp^ = 0.

Assume y = % + «i^ + cOg^^ "^ ^a^ "^ *4***

Let the equation in y obtained by eliminating x be de-

noted by
2/" +^y +qy + . . . + g, = 0.

Now from Art. 334 it will follow that q^, q^, 5-3, ...are re-

spectively of the first, second, third, . . . degrees with respect to

the quantities a„, a^, a^, a^, a^. Suppose then that we wish to

make the second, third, and fourth terms of the equation in y
disappear. We put

y.-O, q^=0, ^3=0.
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The first of these equations is of the first degree. Suppose

we obtain «„ from it in terms of a^, a^, c^a, a^, and substitute

in the second and third equations; and then denote these

equations bv

Here q\ is an integral homogeneous function of the second

degree with respect to a,, a^, a^, a^ ; and q'^ is an integral homo-

geneous function of the third degree.

By Art. 337 the equation §''2 = may be put in the form

where yj g, h, and k are linear functions. This equation will be

satisfied by putting

these two equations are linear. Suppose we deduce from them

the values of a^ and a^ in terms of a^ ajid a^ and substitute in

the equation q\ = ] and then denote this equation by

Here q'\ is an integral homogeneous function of the third

degree with respect to a^ and a^. One of these quantities may

be taken arbitrarily, and the other can then be found by the

solution of a cubic equation.

If we wish to make the second, third, and fifth terms

disappear from the equation in y the process will be similar

but the final equation will be of the fourth degree.

339. If with the transformation of Tschirnhausen we com-

bine that of changing the unknown quantity into its reciprocal

we can by the aid of a single equation of the third or fourth

degree remove from an equation the three terms which precede

the last, or the two terms which precede the last, together with

the fifth from the end.

340. Thus we see that the general equation of the fifth

degree can always be reduced to any one of the following forms

:

x^ +px->rq = Oj x'^ ¥px^ + q = Oj x^ ^px^ ¥q = Oi x^ -^-px* + q^O,
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311. The foregoing Articles of the present Chapter have been

derived from Serret's Cours d'Algebre Superieure, /

The reduction of the equation of the fifth degree to the form

of the preceding Article was given by Mr Jerrard; it appears

from a paper by Mr Harley in the Quarterly Journal of Mathe-

matics, Yol. VI., that the result had been previously obtained by

E. S. Brinp^, a Swedish mathematician.*o»

Mr Jerrard considered that the algebraical solution of equa-

tions of the fifth degree could be effected ; his proposed method

formed the subject of an enquiry by Sir W. R. Hamilton in

the Reports of the British Association, Vol. vi. Most mathema-

ticians admit that Abel has demonstrated the impossibility of

tlie algebraical solution of equations of a higher degree than

the fourth. An abstract of Sir W. E,. Hamilton's exposition of

Abel's argument will be found in the Quarterly Journal of
Mathematics, Vol. v.

A simpler demonstration due to Wantzel will be found in

Seri'et's Cours d'Algebre Superieure.

An Essay on the Resolution of Algebraical Equations by the

late Judge Hargreave has been recently published; the results

arrived at are to some extent at variance with those of Abel and

Sir W. E. Hamilton.

XXVIII. INTRODUCTION TO DETERMINANTS.

342. We now propose to give some account of the theory of

determinants, a branch of Mathematics of comparatively recent

origin, but already of great and rapidly increasing importance. In

the present Chapter we shall consider some particular examples and

illustrations which will enable the student to form a conception of

the nature and properties of determinants ; in the next Chapter

we shall 4emonstrate the principal general theorems of the subject,

and in the following Chapter we shall give some applications to

the theor}'- of equations.
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Consider the simultaneous equations

from these equations we obtain

V'» + 6,?/ = Ca;

afi^
y=

(X',b„ — ajb.

The common denominator cbfi^-(^fi^ is called the determhiant of

the four quantities a,, h^, a^, b^, and is denoted by the following

symbol,

The numerators of the values of x and y are also determinants

;

and we may exhibit the values of x and y thus,

«u bi

»2. ^'^ I

343. The determinants here considered are all said to be of

the second order, because they consist of terms each of which is the

product of two quantities. Th^ quantities a^, b,, a^, b^ which

occur in the determinant cifi^-aj)^ are called the constituents of

the determinant; the products afi^ and ajj^ are called the ele-

ments of that determinant. Thus a determinant of the second

order consists of two elements involving four constituents. In

the symbol used to denote this determinant the constituents are

arranged in a square forming two rows or two columns,

344, We shall now indicate some properties of determinants

of the second order.

Since we have

b\^K

it follows that the determinant is not altered by changing the rows

into columns.

T. E. 17
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345. The following identities may be easily verified.

a,, 5i K «l %^ K K %
«2» h K % ^i» ^ K «x

Thus in the determinant, if the two rows or the two columns are

interchanged, the sign of the determinant is altered, but not its

value; if both these interchanges are made, the determinant is

unaltered.

346. We have

JP«,» \ «^i» K pa^, p\ «^i» K
v%^ K

=p
"^2^ K

f

«2» K
=p

%^ K

Thus if each constituent in one row or in one column is multiplied

by a given quantity, the determinant is multiplied by that

quantity.

347. We have

= 0,
ttj, «1

I Q

Thus if two rows or two columns are identical the determinant

vanishes.

348. It may be proved by developing the determinants that

«2, h
1, ^1 1.' W

., bj «<,', bj

Thus the determinant, each of whose constituents is the sum of two

terms, is equivalent to the four determinants which can be formed

by taking instead of each column one of its partial columns. As

a special case, suppose <z/*5i and a^ = b^', then the second of the

above four determinants vanishes by Art. 347, and we have

a, + b,, b, + b/ «i, K +
a,, 6/

+
a, + 6„ b, + b,' «2> h a„ b;



INTRODUCTION TO DETERMINANTS.

349. By Art. 348 we have

259

a,a, + bAi + hA
+ hA ,

= +
bA, ^2

+
a,a„ bA2

+
^2A, a2a2

= <x,a^ a,, a,
+ PA b„ b, ,aA a,, b,

a„ b.

,As 6„a
b„a

1

2

by Art. 346. By Art. 347 the first two of the four determinants

just written vanish. And by Art. 345

5„ a. «!, b^

»2) h

Thus we have left

(aA-Atts)

refore

a„ 5i that is X
a,, b.

I i8.

A ^3, 62

«1, ^1

»2> ^2

ai^i + ^iA? ^ittg + ^iA
a^a^ + bAii a^ct^ + bAi

Thus the product of two determinants of the second order is a

determinant of the second order.

As a particular case, suppose the constituents a,
, ^1 , Og

, A *o

be respectively equal to the constituents a^, b^, a^, b^; then we

tind that the square of the determinant

^2, 6s

is equal to the determinant

IB. l<+^^
«l«2 + ^^2> »2' +V

17—2
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350. We will now proceed to determinants of the third order.

Consider the simultaneous equations

a^x + h^y + c^z = d^ , a^x + h^y + c^z = c?„ a^x + h^ + c^z = d^]

from these equations we obtain

and similar expressions for the values of y and z.

The denominator of the value of x is called a determinant of

the third order, involving the nine constituents a^, b^, c^, a^, b^, c^,

a , b , c^; the determinant consists of six elements, each element

being the product of three constituents. This determinant is de-

noted by the following symbol, —

'

Since the value of this determinant is-1

we may express it in terms of determinants of the second or<Ier

thus

^2^ ^2 + «^, K ^3 + «3 ^, ^.

K «3 ^l> Cl K <^2

Tlie numerator of the value of x is also a determinant of the

third order; we have only to change a^, a^i % i^*^ ^i> ^2» <^3

respectively in the symbolical expressions already given for the

denominator, and we obtain symbolical expressions for the

numerator.

We shall now see that determinants of the third order have

the same jiropei-ties as determinants of the second order.
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351. Suppose a^ = 1, a2 = 0, and ^3 = 0; then we have

1, h^, Ci,

0, &2> <^2J

0, &3» ^3

J

Thus the determinant of the third order reduces in this case to

a determinant of the second order. The values of hy and c^ have

no influence on the value of this determinant, and we may if we

please suppose them zero.

Hence we see that when we have any relation holding among

determinants of the third order we can deduce the correspond-

ing relation for determinants of the second order by supposing

certain constituents to vanish.

352. It may be shewn by developing the determinants that

«1 ^2 J ^2 + «2 ^3, C3 + <^3 Ky C,

K Cz b,y C, hi ^2

= aj K h + ^ (^2, ^3 + <'l «2, «3

^2 J ^3 ^2, ^3 h, h

= h, h, h

that is,

Thus the determinant is not altered by changing the rows into

columns.

«i, 6,, <^X

«'2, &2» ^2 =

«^3, ^3. <^3

353. The following identities may be easily verified, by

expressing the determinants of the third order in terms of deter-

minants of the second order and developing :

I
^2, 62J ^2

«3J hi ^3

h, a„ c.

^2i ^2i ^2
=

hi «3> ^3

= h

Thus if two columns are interchanged the sign of the determi-

nant is altered but not its value, and therefore if this operation is
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performed twice the determinant is unaltered. Hence, by Art. 352,

if two rows are interchanged the sign of the determinant is altered

but not its value, and therefore if this operation is performed twice

the determinant is unaltered.

Hence too ib follows that if two columns are interchanged and

also two rows the determinant is unaltered ; so that

«!, ^, Cj h,, a^, c^

^2, 5^, c^ = b,, a„ c.

«35 ^3' ^3 hy «^3> Cg

354. As in Article 346 we may prove that if every consti-

tuent in one row or in one column is multiplied by a given

quantity the determinant is multiplied by that quantity.

355. It is easy to shew that

<^2> Ki ^2 = and

a3> h^ K

«!, Sj, C

a^y h^, c. = 0.

Thus if two rows or two columns are identical the determinant

vanishes.

356. It is easy to see that the determinant

ttg + ag' + aa", 63, C3

1

is equivalent to the sum of the three determinants

a^y h„ Ci

«2> ^2> <^2

^3> h, ^3
)

<', Ki «2

<^3'i ^3> C3^3 J ^ 3> ^3

and a similar result would be obtained if each constituent in the

first column consisted of the sum of four terms, or of the sum of

five terms, and so on. Again, if each of the constituents 61, h^y 63

is replaced by three terms, each of the above three determinants

becomes equivalent to the sum of three determinants; and so on.
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In this way tlie following determinant may be seen to be equiva-

lent to the sum of 27 determinants :

a^ + <x/ + a^\ 61 + 6/ + 6/', c^ + c/ + c"

ttg + aZ + a,'; h^ + h^ + h^\ C3 + C/+C3"

The 27 determinants are to be formed by taking instead of

each column one of the partial columns ; thus for example three

of these determinants will be the three which are given above.

357. As a particular case of Art. 356 we will take the follow-

ing determinant

:

Vi + ^ai^l + ^sTl' V.+ ^A+^aTs' «3«3+ ^3^ + ^373

It will be found that of the 27 determinants of which this may

be considered the sum, all except 6 vanish by Arts. 354 and 355.

For example, we have for one of the 27 determinants,

^l^lJ «1«2, ^A
»2«-l, «2«2J ^2pz

a^a,, ttgtt^, 63/83

ttittA

that is,

»1, »!, &i

^2, ^2, 62

by Art. 354; and this determinant vanishes by Art. 355.

the six determinants which remain Is

One of

»2ai, ^2^2' <^273

«3«1, ^3^2 J ^373

«l/^273

that is,

a„ ^, Cx

«2» &2, C2

«3, &3, C3

Another of the six determinants which remain is

«i72Aa^a^,
^l72' ^^^3

V.5 ^.72' KA
a3«i. ^372» ^aft

-«.7A
that is,

that is.

«2, h,

K ^3

by Art. 353.
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a„ h„ Ci

«2 K, <^2

»3> K Cs

u

The result is that the six determinants which do remain

constitute

f,
(ftra - P.y.) + «. (/^sT. - ^,Ta) + «3 (/J.y. - ^.7,)

that is,

Hence we see that the product of two determinants of the

third order can be exhibited as a determinant of the third order.

If we suppose a^, b^, ... respectively equal to a^, ft,... we obtain

a determinant of the third order which is equivalent to the square

of a determinant of the third order.

^» A> 7i
X

S> ^2> 72

%, ft' 73

'1

'2

'3

358. We have now given sufficient examples of the nature

and properties of determinants to enable the student to form a

conception of the subject. We might have confined ourselves to

determinants of the third order, because by Art. 351 the pro-

perties of determinants of the second order can be immediately

derived from the corresponding properties of determinants of the

third order, but the method we have adopted will be of service to

the beginner. In the next Chapter we shall give general demon-

strations applicable to determinants of any order.

It will be observed that we introduce the subject of determi-

nants by considering the forms obtained in solving certain simul-

taneous equations. The student thus may see at once that the

expressions called determinants do naturally present themselves

in mathematics. It is however more convenient in treating the

general theory to give an independent definition of a determinant,

and this we shall do in the next Chapter. It will prepare the

student for that definition if we here consider the determinant of

the third order in this new light.
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359. The value of the determinant

i» ^'

2» 2' 2

«3> ^3' <^2

The first element here is ct,J)^c^, which is the product of con-

stituents situated diagonally in the square symbol denoting the

determinant. The other elements may all be deduced from the

first element in a way which we shall now explain. The suffixes

1, 2, 3 are to be attached to the letters a, b, c in all the different

ways in which permutations can be made of these suffixes ; and

the sign + or — is to be prefixed to any element according as it can

be deduced from the first element by an even number or an odd

number of mutual interchanges of two suffixes. Thus the second

element given above is oi}>.f^\ this can be derived from the first

element by interchanging the suffixes 2 and 3, and so according to

the rule it is to have the sign — prefixed. The third element is

^2^3^i ^ *^^^^ ^^^ ^® derived from the second element by interchang-

ing the suffixes 2 and 1, and therefore it can be derived from the

first element by two interchanges of two suffixes, and so according

to the rule it is to have the sign + prefixed. Similarly the remain-

ing elements with their proper signs may be determined.

V 360. The following examples are particular cases of determi-

nants of the third order, which the student may verify

:

.(1)

(2)

•
(3)

I

a, h, g

K h, f =

9, L c

1, ^1, 2/i

1, ^2» y.

\ «^3. VJ

= ahc — of' — hg^ — ch" + 2/gh.

= ^1^2 - ^^Jx + ^2?y3 - ^32/2 + ^^X - ^12/3

1, a, + a^, a^a^

1, ^ + ^2, ¥2
1» ^1 + ^2. ^1^2

(^-^.)(^-0(^-^2) + (^2-^)(^2-^l)fe-«l)-
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(4) 1, y, -P
-y, 1, a

A - a, 1

\+o^ + P' + y\

h > XXIX. PROPEETIES OF DETERMINANTS.

361. Let there be n symbols «Xj, a^, ...a^; then one of these

symbols will be called higher than another when it has a greater

suffix, so that for example a.^ is higher than a^ or a^ , a^ is higher

than ^3 or a^ or a^ , and so on.

Now suppose that permutations are formed of these symbols

;

then whenever in a permutation the higher of two symbols pre-

cedes the other there is said to be a disarrangement. Thus, for

example, in the permutation a^cb^aj^^ there are four disarrange-

ments, namely a^a^^ a^a^, <^^^t and a^a^.

362. The permutations of the symbols a^, a^^...a^ may be

divided into two classes, those in which there is an even number

of disarrangements and those in which there is an odd number.

363. When in any 'permutation two symbols interchange their

places while the others remain unchanged the number of disarrange-

ments is increased or diminished by an odd number.

Let g and k denote two symbols of which k is the higher.

Let A denote the group of symbols before g and k, let B denote

the group between g and k, and let G denote the group after

g and k ; so that the permutations which we have to compare may

be denoted by AgBkO and AkBgC. Then the difference of the

numbers of the disarrangements depends upon the symbols which

constitute the groups gBk and kBg. Let B consist of /5 symbols

and suppose that P^ of them are higher than g and p^ of them

higher than k. Then in the group gBh, besides the disarrange-

ments in B itself, there are /3 - /?, + yS^ disarrangements ; for g is

higher than j^ - /?, of the symbols in B, and there are P^ symbols
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in B higher than k. In the group hBg, besides the disarrange-

ments in B itself, there are ft- ^2 + fi^ + 1 disarrangements ; for k

is higher than ft
- P^ symbols in B^ and there are ft^ symbols in

B higher than g, and k is higher than g. Therefore the difference

of the numbers of the disarrangements is

that is, 2 (/^i
- p^ + 1; thus this difference is an odd number.

364. By repeated interchanges of two symbols all the permu-

tations of a set of n symbols taken all together can be deduced

from a given permutation. In this mode of deriving the permu-

tations we shall, by Art. 363, obtain alternately permutations with

an even number of disarrangements and permutations with an odd

number of disarrangements. The whole number of the permu-

tations of a set of symbols taken all together is an even number

;

hence it follows that there are as many permutations with an even

number of disarrangements as there are with an odd number of

disarrangements.

365. Let there be n^ quantities arranged in the form of a

1.1 J «i.

luare, thus

a, 3 > '-''1,

1

^2, 3 > ^2

Here for any quantity a^^ the first suffix, r, indicates the row, and

the second suffix, h, indicates the column in which the quantity

^r.k appears.

The above symbol is used to denote the determinant of the n^

quantities occurring in it ; these quantities are called constituents

of the determinant. The value of the determinant is found by

taking the aggregate of a certain number of elements, each element

being the product of n constituents. The first element is the pro-

duct of the constituents a^ ^ , a^ 2 > ^3. 3 j • • • *» .« 5 which lie in the
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diagonal drawn from the upper left-hand corner of the square to

the opposite corner; we shall call this diagonal the diagonal of the

square, for we shall only have occasion to refer to this diagonal.

All the other elements are to be derived from the first element

^1.1^2. 2^8.3 •••^n.n ^7 permutatlous of the second suffixes, the first

suffixes being left unchanged. The sign + or - is to be prefixed to

each element of the determinant according as it is or is not of the

same class as the first element, the class being determined by the

number of disarrangements in the permutations of the second

suffixes ; see Art. 362.

366. The above detei-minant is said to be of the n^^ order

because each element is the product of n constituents. The num-
ber of elements is the same as the number of the permutations of

n things taken all together, that is \n] half of these elements will

have the sign + prefixed, and half of them the sign — prefixed. It

will be seen from the mode of formation of the elements, that each

element involves one and only one constituent out of each row or

each column in the symbol which denotes the detenuinant.

367. Instead of the above symbol for the determinant, it is

sometimes denoted by 2=^<^i,i0^2,2<^3.3 ••• ^n, n^ ^^^^ is? ^^^ fi^st ele-

ment is written and the symbol S =fc put before it to indicate the

aggregate of elements which can be derived from the first element

by suitable permutations and adjustment of the signs + and —

.

The constituents of the determinant may be denoted in various

ways; tlius sometimes (i, k) is used instead of a^ j, and in this case

we must remember that (^, k) and (k, i) in general denote difierent

quantities. In examples of determinants of low orders, we may
find it convenient to avoid double suffixes, and use the same letter

for all the constituents in one column, distinguishing the con-

stituents by single sufiixes ; this notation was adopted in the pre-

ceding Chapter.

368. The other elements of a determinant are derived from

the first element by permutations of the second suffixes while the
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first suffixes remain unclianged ; these elements may however be

derived in a different way, namely, by permutations of the first

suffixes while the second suffixes remain unchanged. For suppose

that a, p, y,...v represents a certain permutation of the n numbers

1, 2, 3,...n; then a^ a «2, /g
<^3,

v • • • ^n. v i^ ^^^ element of the determi-

nant which arises from the first element by changing the second

suffixes 1, 2,...n, into a, /3, y,...v, respectively. This element may

however also be derived from the first element ^i, 1 0^2.2- ••^n.« ^^

the second suffixes are left unchanged and the first suffixes are

suitably changed, namely, a to 1, j8to 2, y to 3,...v to n. In these

two modes of derivation there is the same number of interchanges

of two suffixes, and therefore the same sign is obtained to prefix to

the element by the rule in Art. 365.

369. The value ofa determinant is not altered if the successive

roivs are changed into successive columns ; that is

fti- , . Oj- ...... a-.

a, , . a.^ „ • . . .

.

a„

(ii ,. a ....a

'^l, 2> <^2. 2J-- ^n. 2

^1, n> ^2, n) ^n,n

For it is obvious from Art. 365, that the elements in these deter-

minants are of equal value; and they have the same signs, as

appears from Art. 368.

370. If two roivs or two columns are interchanged, the sign of

the determhiant is changed.

t

For let R denote the given determinant, R' that which arises

from the interchange. Then the elements in R and R' are the

same as to value, and we have only to examine their signs. The

first element in R' can be derived from the first element in R by

interchanging two of the second suffixes, and thus these elements

have contrary signs in the two determinants. Then an element
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in R' which arises from the first element in 2i' by m interchanges

of the second suffixes will be deducible from the first element in R
by m + 1 interchanges, and therefore it will appear in R and R!

with contrary signs prefixed.

371. If two rows or two columns are identical, the determinant

vanishes.

For by interchanging two row^s or two columns, a determinant

is changed froQi i? to -^ by Art. 370. But if two rows or two

columns are identical, the interchange of these rows or columns

can have no influence on the determinant, so that R = — R; and

therefore R — 0.

372. When all the constituents excejit one of a row or of a

column vanish^ the determinant reduces to the product of that con-

stituent and of a determinant of the next inferior order.

Consider, for example, the determinant

«1> *., «i. d,

«2, K, e^, d.

«3, h, "3. d.

0, 0, "..

By three successive interchanges of single rows we can bring

the row which contains c^ to be the highest row ; and by two suc-

cessive interchanges of single columns we can bring the column

which contains c^ to be the first column. Thus, by Art. 370,

«n h. Ci, d.

«„ K <^2, d..

«3> h. C3, d.

0, 0, ^V

^4' 0, •0,

^15 a,, K d.

^2, «2, K d.

C3, «3, K d.

The first element of the determinant on the right-hand side is

c^a,&2^3, and the other elements are to be derived from this by

)>ermutations of the suffixes. But c^ is the only constituent with

the suffix 4 which is not zero, and thus c^ will be a factor of every
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element which does not vanish, and the other factor will be de-

ducible from ap^d^ by permutations of the suffixes 1, 2, 3. Thus

the original determinant reduces to

(-!)'«.

This mode of demonstration applies, whatever may be the

order of the proposed determinant.

The negative sign which arises in this example from (-1)^

may if we please be removed by interchanging two rows or two

columns in the determinant of the third order.

»l. K d,

a„ K d.

«3. h, ds

373. The top row of a determinant of the n^^ order can be

brought to the bottom hy n-1 successive interchanges of two

rows; and similarly, the first column can be brought to the end

hy n—1 successive interchanges of successive columns. Each of

these is called a cyclical interchange, and it is sometimes conve-

nient to effect any proposed interchange of rows or columns by a

series of cyclical interchanges, for the sake of greater symmetry in

the arrangement of rows and columns. In tlie preceding example

we may bring c^ to the place which we want it to occupy by per-

forming three successive cyclical interchanges of rows and two

successive cyclical interchanges of columns. Thus we obtain for

the original determinant the following forms successively :

(-1)=

(-1)-

«2. K Ci., d.

»3. h, «a. d.

0, 0, <u.

«1. K Ci, d.

0, <^v 0,

i.,
<^l, d„ «i

K, Cj. </„ «2

K «3. d.

(-1)=

(-ir

«3> h^ Czi ^3 (-1)'

0, 0, c,,

»!> hi Cli ^1

<^2t hy ^2> ^2
>

c„ 0, 0, (-^y\
Cj, d^f «!, 6,

^2, ^2, a^, h
C3, c?3, a^,b^

>

0, 0, c,,

»l> ^, c,, c?i

«2> hi <^2) ^2

^a* Ky ^3? ^a

^2, «2> ^2
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374. A determinant can always he expressed in the form of

a determinant of any higher order.

For example, by Art. 373,

«n K Ci 1, 0, 0, 1, 0, 0, 0,

<*2> ^2J ^2
= A »i, ^, Cj = /., 1, 0, 0,

«3, K, ^3 y, a^, &2, c^

8, ag, 63, C3 P, 7) »2> ^2» <^2

0-, 8, C^3, &3, C,

where /?, y, 8, /x, v, p, o-, are any quantities. Similarly, we may

carry on this process to any extent.

375. Let i and h denote any two suffixes out of the set

1, 2, ...ii; let R denote the determinant 2=tai. i«2, 2 ...«„„

;

and let Ai^ j^
denote the coefficient of a^ ^ in i?. Then each of the

expressions

and ai.iA* + «2.A *+•••+ ^n.i^«.i>

is equal to R or to 0, according as i and h are equal or unequal.

For every element of R contains as a factor one out of the

constituents a^j, a^.^, a^g, ... a,, „, which form the i^ row.

And since ^^^ ^ denotes the coefficient of a^ ^ in R, we have

^ = ai.A i + ^f.2^i.2 +••• + »». n^«.«-

Similarly we have

^ = «i.Ai + «2. A<+---+^>t.Ai-

In the first of these expressions for 7?, put a^, i"«;fc. u

^i. 2 = ^jfe,2J ••• ^^^ so on; thus we obtain the value of a determi-

nant with two rows identical, which is zero by Art. 371.

Similarly, in the second expression for R put «i. i
=

»i, ^ >

*s,« = ^2. *j ••• and so on j thus we obtain the value of a determi-

nant with two columns identical, which is zero by Art. 371.
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376. If every constituent in one row or one column is multv

plied by a given quantity^ the determinant is multiplied by that

quantity.

For R = a^^A^.^^+ a.^A..^-\- ... +ai.„^i,„; and if every term in

the i*^ row is multiplied by p we must put pa^^ for a^ i, pa^^ for

a. 2, and so on; thus we obtain p times the former result for the

new determinant.

Similarly, we may prove the theorem in the case in which all

the constituents of a column are multiplied by a given quantity.

377. If each of tlie co7istituents in one row or one column is

the sum of m termSy the determinant can be considered as the sum

of m determinants.

Suppose, for example, that each constituent of the i^^ row is

the sum of m terms j and suppose that

«i.i = 7-^1 + ^1 + ^1 + •••

Then A' = a. i.4,i + a,.2^,,2+ +(ii,n^i,n

^ PAi.l+ P2A2+ + PuAn

+ Mi.l+ ^2^i.2+ + 9n^i.n

+ M,.i+ r,A,,+ + r„^.,

+

Thus i? may be considered as the sum of m determinants

which have for their i^^ row^s respectively

P,^ P2^ Pny

?u (?2' 5'„»

^'ij ^> ^„v

T. E. 18
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378. We shall now shew how the coefficient of a. ^ in a de-

terminant can be itself exhibited as a determinant. In order to

obtain those elements of a determinant which involve a certain

constituent a^J^, and those alone, we may suppose all the consti-

tuents in the i^ row to be zero, except a^ ^ ; then putting 1 for a. ^

we shall obtain the required coefficient. In this way we get

^i,*= «i.i> «!.*>

0, ... 0, 1, 0, ...

a.

%,k+li

Thus -4 . t
is here exhibited as a determinant of the n^^ order.

We may, without influencing the value of A^^^, put for each

constituent in the k^^ column except that which is 1.

By Art. 372, or by Art. 373, we may exhibit -4^ ^ as a

determinant of the (n-lf^ order. Thus, adopting the method

of Art. 373, we make i— 1 cyclical changes in the rows and ^-^1

cyclical changes in the columns. Therefore

^i,* — €^ ^t+i,i+i> •• "i+i. ., «^,•+1,1' i+l.i-1

... a„

... a. a,i, ... a^

^i-i.k+if ••• ^.

where €= (- 1)«-^+*-^k«-i)^(_ ly
(i+i)(«-l)

379. By the aid of Arts. 375 and 378 we can express any de-

terminant of the n^^ order as the aggregate of n terms, each of

which is the product of one constituent and of a determinant of

the (n~iy^ order; the determinants of the (n—iy^ order may

themselves be similarly treated ; and the process continued to any

extent. For example,
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«,j ^i,
Cj, d^ = ^1 ^2» ^2' ^2 -^ c^^ d,, 0^, + Cj ^., «2, ^2 -d. «2, ^2, C,

a^, b^c'^, d^ K ^3' ^3 ^3' ^3' «3 ^3' ^3» K «3. ^3' ^3

«3' K ^3' ^3 ^.« ^.. < ^4. ^4' «4 d„ a^, \ «4' ^4' ^4

«4' K ^.. <N

{ h ^3, ^3

C4, C?4

^2 ^3» «3

C?4, «4

+ «2
i

^3> K

+ ^2!«3» ^3

+ c/„

+ a„

^3' <^

"'{

{'

«3' ^3 i+«2 K ^3 + ^2 ^3' »3

^4, 64
!

64, ^4 C^4, (^4

K % ^\ «3' «3 + ^2 «3. ^3

64, C4 C4, ^4 «4, &4

C4, c/4
1 i

}

380. We now proceed to an important part of the subject,

that which relates to the multiplication of determinants.

Let there be two given sets of symbols, namely,

"Li.*

and

n.p)

K.,

From these let a third set of symbols be formed,

Xni

ese symbols being determined by the general relation

Let R denote the determinant ^'^c.^xC^^,., c^.^. We shall

now prove the following results

:

18—2
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(1) Suppose p less than w; then i? = 0.

(2) Suppose p = n] then R is equal to the product of the two

detenninants which consist of the two given sets of symbols in the

order they occupy.

(3) Suppose p greater than n ; then H is equal to the sum of a

set of products of pairs of determinants, each pair of determinants

being formed by taking any n columns out of the first given set

of symbols for one determinant, and the corresponding n columns

out of the other given set of symbols for the other determinant.

The first element of B is c^ iCg 2 ••• c„ „, and the value of

this is

where in the first factor ^ denotes a summation with respect to r,

in the second factor 2 denotes a summation with respect to s, in

the third factor 2 denotes a summation with respect to t, and so

on ; and all these summations extend from 1 to p, both inclusive.

Thus the product may be obtained by taking the sum of the

values of the expression

where r, s, ^, . . . take all integral values from 1 to p.

We may denote this sum by

2,..,,,...Kr«2..«3.« ••• KAsht"-)'

The other elements of E are derived from the first element by

permutations of the second suffixes and prefixing the proper sign.

Now from the general value of c,^ ^ it follows that by changing the

second suffixes of the symbol c no change is made in the suffixes

of the symbol a, but the first suffixes of the symbol b are changed,

and these alone.

Hence "we obtain a result which we may denote thus,

^^X.».t....Kr^2„%f"^^KAAf-)'
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Here ^^bj^^^h-^^b^^... constitutes a determinant of the n^^

order, wliich is formed from the second given set of symbols by

taking certain columns, and the ^ refers to changes of the first

suffixes j see Art. 368. We shall denote this determinant by Q.

Now, in the first place, suppose p less than n. The suffixes

Ty s, tj ... are n in number, and none of them can exceed p ; hence

it follows that there must be always two or more of them which

have the same value. Thus Q always vanishes, by Art. 371 ; and

therefore H vanishes.

Secondly, suppose p = n. Then the system of suffixes r, s, f,...

can be a permutation of the n symbols 1, 2j...n; and they can

be nothing else without making Q vanish. And by taking in

succession difierent permutations the sign of Q will change, but not

its value, by Art. 370. Thus the value of E reduces to the product

of the determinant formed out of the second given set of symbols,

into the sum of all the elements denoted by ^=*=<^i,i<^2,2 ••• ^«,n»

where 1$ refers to changes of the second suffixes. Therefore when

p = n,

R «1.1, • •«^l.n

X

Jm, .-h.

««.l;- ••^„.n J.,„ • -K.
Lastly, suppose p greater than n. Then the system of suffixes

r,s,t,... can be any combinatioi^ of n numbers that can be formed

out of the^ numbers 1, 2,...p; and the number of such combina-

[p
tions is ,

—

. Let P denote what Q becomes by chanmnor

b into a. Hence, as in the second case, we shall obtain FQ for

one term in i?, which arises from the selection of a definite combina-

\p
tion out of the ,

—

possible combinations. Therefore when
\n\p-n ^

p is greater than n we have H = %PQ, where S refers to the sum-

\E
mation of r-; terms arising from all the possible combina-

m \p — n °

tions.
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381. By the second case of the preceding Article we see that

the product of two determinants of the order n can be exhibited

as a determinant of the same order. Similarly, the product of

three determinants of the order n can be exhibited as a determi-

nant of the order n ; for we can first exhibit the product of two of

them as a new determinant of the order n, and then the product

of this new determinant and the third of the original determi-

nants can be exhibited as a determinant of the order n. Thus

we see that the product of any number of determinants which

are all of the same order can be exhibited as a determinant of

that order.

Hence generally the product of any number of determinants

of any orders can be exhibited as a determinant of the same order

as that of the determinant of the highest order among the factors.

For by Art. 374, all the other determinants may be made to be of

the same order as that which is of the highest order; and then

the product of these determinants of the same order can be ex-

hibited as a determinant of that order.

382.

minants

Suppose we wish to form the product of the two deter-

and

By Art. 369 we may change the successive rows into successive

columns in either or both of these determinants. Thus, if we
denote the product by

^1,1 J ••• ^l,n
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we may form the new constituents in four ways, for we may
adopt either of the following laws throughout,

or C^* = «a.i&*.l + «^2. A,2+ ••• + (^n,An>

or Ci.k = ai.Ak + <^2,Alc+'"+(^n,iKk'

383. Let A.J. denote the coefficient of ct. ^ in a determinant E.

The system of symbols

^2, 15 -^2, 2) •••-^2, n

AAA
is called the reciprocal of the system of symbols

^1, U ^1, 2>'*'^l, n

"2, U "^2, 2J ...tto

384. The determinant of a system which is the reciprocal of a

proposed system of n* symbols is the (^ — 1)*^ power of the determi-

nant of the proposed system.

If we multiply the determinants

and

we obtain for the product

I
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where c,. * = ^i, i
o^*.

a + ^f, 2«*. 2 + . . . + ^ . ^a,^ „. Hence, by Art. 375,

the constituents of the last determinant have the value -S or

according as i and k are equal or unequal. Thus this determinant

reduces to its first element Cj^iCg 2...c„ „, that is, to R". Therefore

therefore

385. Suppose we have a determinant of the n^ order, and in

the square symbol denoting it suppose m columns and m rows

destroyed; the remaining symbols may then be supposed moved

close up so as to form a new square symbol which is a determinant

of the order n — m. This determinant is called a partial determi-

nant or a minor determinant, with respect to the original determi-

nant. The symbols common to the w rows and columns will form

a square symbol which is a determinant of the order m. This is

also a partial determinant or minor determinant. The two

partial or minor determinants are said to be complemeiitary to

each other.

386. Let i? denote a' determinant of the order n. A partial

determinant of the reciprocal system of the order m is numerically

equal to the product of H""'^ into the complementary of the corre-

sponding partial determinant of the original system.

Let /, g,.'.ry s,... denote one permutation of the n numbers

1, 2,...n'j and let ^, h,...u, r,... denote another permutation. And
suppose fi g^... and ^, ^, . . . to be groups of w numbers each, while

r, », . . . and w, v, . . . are groups oin-m numbers each. Thus

g.kv

is a partial determinant of the reciprocal system of the order

m ; we shall denote it by S.
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Now

^/,i» *^/.*' •••^/.«> ^/.t.y.fj

«..i> ^..*5 • -'%,u, %..•> •••

€i2

where € is + 1 or - 1 according as the permutations f, g,...r, s,...

and i, k, ...Uj V, ... belong to the same class or to different classes.

We now propose to obtain the product of these two deter-

minants. The determinant S may be raised to the order n by

inserting additional constituents; see Art. 374. Thus we may

put for S the following determinant,

^,.i< A,"-- ^,.., '*.,.,-

K. £

where the constituents denoted by the letter B with suffixes are

all supposed zero, except those standing in the diagonal which are

all supposed equal to unity.

Now form the product of S and ei?, which will be a new deter-

minant of the order n. Let the constituents of this new determi-

nant be denoted by the letter c with two suffixes, the first of which

indicates as usual the row and the second the column. By

Art. 382 there are four ways by which we may determine the

constituents in the product of aS' and €R; we shall select the first

of these, according to which c^^ ^ is obtained by multiplying respec-

tively the constituents in the p^^ row of aS' by those in the q^^ row

f ci?. Thus

A
f.i'^f.i ^f.i^'^f.i

+ ...+^,_„ay^„+^,^,ay^,+

^/.i«^.i + A.»^ir.*+ ••• +^/.«»^.«+^/.A,»+ •••
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Therefore by Art. 375, we have 0,1, C2 2,...c„,^ all equal to R,

while all the other constituents in the first m rows of the determi-

nant which is the product of S and tR are zero.

For the first term in the (m + 1)* row, we have

because all the symbols denoted by B with suffixes which occur

here are zero except B^^, and that is unity. For the second term

in the (m + 1)*^ row we have similarly

Proceeding in this way, we find that the (w+1)*^ row in the

product of aS' and ci? is the same as the (m + 1)"" column in Ui.

Similarly, the (m + 2)*^ row in the product is the same as the

(m + 2)*^ column in ^R. '

The determinant then which is equivalent to S^R reduces by

Art. 372 to the product of R"" and the following determinant of

the {n - rrif order,

Thus S=€Rr- <^r.ui »r.«J

a.

387. The following examples may be verified by the student.

In examples (4), (5), and (G), we have determinants of which the

constituents are themselves determinants.

(1) 0, a, A y.

a, 0, 7i> ^,

A r,» 0, «,

y» P. «i»

a'a.'+^'/J,'+/y,'-2aa./3y3,-2ao.yy.-2/3y3.yy.



PROPERTIES OF DETERMINANTS. 283

(2) 0, a, ft y

r,-^.,

= (aa^-^ft+yy,r

(3) 0, a, ^, 7
a, 0, y,, /?,

A -7i) ^J «i

y, -ft,-a^, ^

?4 + 0' {a' + IS' + y'+ af + P^' + y;)

+ (aa,-^ft + yy,r

(4) c, 5' ?,

»

1 ^, a /,^ = a a, h, g

9, « a, h K h, f
/,^ h,b ^./j c

(5) g,a f.c

a, h

Kg
h, h

gj

= h ay Kg
KKf

(6) hj /,<= h,b

f,o k,g 9

J

/,« 0,9 9, a

h,g 9, a. f,h

h,b 9, a- a, h

9,/ f,h Kb

a, Kg
square of K K f

g,f, c

(7) a, h c, d

^v^x

bj c a, d

(Tj, d^

c, a b, d
= 0.
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XXX. APPLICATIONS OF DETERMINANTS.

388. Suppose we have to find the values of n unknown quan-

tities iCj, x^^...x^^ from the following n simple equations

Let R denote the determinant S=*=a^na2,2 •••»„.„? and let A.^^

denote the coefficient of a^^i in R. Then the values of the unknown
quantities will be given by the formula

Rx, = u,A,^ , + u.,A^ *+...+ w,.^„. *,

where h may have any value between 1 and n both inclusive.

For let the given equations be multiplied respectively by

^1*) ^%ki-'-^n,k'} ^^^ a^^ *^6 results. The coefficient of x^ is

then

which is equal to R by Art. 375. The coefficient of x. is

which is zero by Art. 375.

We may write the formula which gives x,^ thus

Rx^= S,

where S is also a determinant, namely the determinant which is

obtained from R by removing the k^ column of R and substituting

for it the column formed oiu^, u^^...u^,

389. Suppose that the determinant R vanishes; then the

values of the unknown quantities become infinite. This indicates

that the given equations are inconsistent; see Algebra, Chapter xv.



APPLICATIONS OF DETERMINANTS. 285

390. Suppose that u^, u^j ... u^ vanish, and that E also

vanishes. The method of Art. 388 gives for the unknown quan-

tities the indeterminate form ^ . In this case we may take n—1

of the given equations, and these will be sufficient to determine

the ratios of ?* - 1 of the unknown quantities to the remaining

unknown quantity.

These ratios can however be at once assigned : we shall have

X, : X,: x^ : ...=A^, : A^^ : A.^^ : ...

where i is any integer not greater than n.

For since i?= 0, we have by Art. 375, for all integral values

of i and k between 1 and w, -^^^

%. 1^ f. 1 + «*. 2^ .. 3 + «*. 3^ i. 3 + = ;

and thus when x^, x^, x^,... are taken in the ratios assigned above,

we have

a*.ia^i + a*.3^2 + «*.3»^3+ = ^•

By taking n-l of the given equations, and supposing

«j, u^,...u^ all zero, we shall obtain in general a single definite^

value for the ratio of each of ?^ — 1 of the unknown quantities to

the remaining unknown quantity. Hence it follows that when

^=^0 the ratios

^i.I ' ^i.2 - A
are independent of i.

391. If w,, u^^,...u^ all vanish, and E does not vanish, the

system of equations in Art. 388 has no solutions, except we suppose

a?!, .x^,...x^ all zero. The condition i? = is thus necessary in

order that the unknown quantities may have values which are not

zero.

392. For example, in order that the equations

a^x + \y + c^z = 0.
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may admit of solutions which are not zero we must have

= 0.

If this condition is satisfied the equations may be satisfied by

X '. y \ z

ov X : y '. z

or X : y : z

These three forms of solution coincide by Art. 390..

393. From the given equations in Art. 388 we have deduced

U,A,^ 1 + ^2^2. 1 + ^3^3, , + ...+ w,^„,i = Bx„ .

U^A,^ 2 + U^A, 2 + t^3^3 2 + • • • + ^HA. 2 = ^^2

J

h, «. : 1^2, »2 : ttj, h
K, Cj !C3, «^3 ^a. h

>

h, "s : Cg, ^3 : ^3, h
K «I <^l'>

a, a„ h
»

h. «J: <^iy
a, : a„ h

K, c= ^2, ^2 ttj. h

u,A^^^ + u^A^^ + u^A^^+ ...+u^A^^^=Rx^.

Let p denote the determinant ^±^i i-42_2---Ai,«^ 3,nd let a^ ^

denote the coefficient of ^^^ in p. "We may from the above equa-

tions find the values of «^j, u^,...u^; and by proceeding as in

Art. 388 we shall obtain the general result

pu, = i2 i^x,a^ 1 + x,a,^ 2 + ... + x^aA .

By comparing this result with the given equation in Art. 388^

we have, since the values of w^ must be identical,

P
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But p^E"-' by Art. 384 ; thus

394. We now proceed to apply determinants to another

problem, that of forming the product of all the differences of

given quantities.

Let 01 quantities be denoted by a^, a^,..,a^. Let P denote the

product of the differences obtained by subtracting each of these n

quantities from all those which follow it, so that

^ =K - «l) («3 - «l) • • • {% - «l) («3 - %)k -%)'- («n - «„-l)-

Then F may be exhibited as a determinant of the order n. For

consider the determinant

., a^, a/, ...a/

1,

This determinant is a rational integral function of the quantities

a^, a^,... a^; and it vanishes when any two of these quantities are

equal, by Art. 371. It is therefore divisible by the product

which we have denoted by P. Also both the determinant and

the product P are of the degree —\—^ in powers and products

of a^, ttg, ...a^; therefore the quotient when the determinant is

divided by P is some number. And this number must be unity,

as we see by comparing the first element of the determinant with

the product of the first terms of the binomial factors of which P
is composed.

395. The above determinant of the w*^ order consists of ^
terms. The product P prior to simplification and cancelling would

w(n-l)

involve a much larger number of terms, namely, 2 '^

. Thus the

determinant is an advantageous form for the product on account

of the saving in terms.
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396. We have

F'

1, a , a*,... a"-'

1, aj, a^^,...a^

1, ttg, a/,... a/~^

12 n—

1

, a , a ,... a

Now the product of these determinants can be exhibited as a

single determinant; adopting the last of the four methods given

in Art. 382, we have

°i? *'2> •••*'«-i

^here a;+a/+...+a/.

397. Suppose, for example, that a^ , a^, . . . a^ are the roots of an

equation of the n^^ degree ; then P^ is the product of the squares

of the differences of the roots. Thus the product of the squares

of the differences of all the roots of an equation can be exhibited

as a determinant, the constituents of which are known in terms of

the coefficients of the given equation, for s^ can be expressed in

terms of the coefficients.

398. Suppose we have to find the values of the n unknown
quantities a^ x^, ... x^ from the equations

jrj + a?2 + 0^3+ ... +93^ = 1,

«^i«i + ^2«2 + a^3«3 + • • • + ^„«„ = ^»

The values of the unknown quantities will be determined by

the formula
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For by Art. 388 we have Iix^=S,

where i?= 1, 1, 1, ...1

289

1, ...1, 1, 1, ...1and^:

n-1 „n-l yn-1 „n-l „ n-l

Now let the i*^ column in ^ be placed first, and the i* column in

She placed first; see Art. 373. Then let the two determinants

be changed into products of differences by Art. 394; and by can-

celling: common factors in the numerator and denominator we
obtain the value of ccj in the form assigned above.

As a verification we observe that if ai=t the equations are

obviously satisfied by supposing x^= 1, and all the other unknown

quantities zero,

399. The method of determinants may also be used to obtain

the resulting equation when certain quantities are eliminated

i'rom given equations. Suppose we have to eliminate x from the

equations /(x) = and
<f>

[x) = 0, where

/{x) = %+ a^x + ajjif + a,oi?^ ^ (x) = b^ + h^x + \x*.

We may proceed thus

^f{x) -a^ + a^x + a^ + a^a? + 0,

xf{x) = + a^x + a^T^ + a^ + a^*^

{x) = 6^ + h^x + l^x} + + 0,

x^ (ic) = + h^x + hx^ + h^^ + 0,

a'<^( £c) = + + l^x^ + &,x' + h^x\

19
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Let R= %, a,, a^, a^, I

^ f %, «i) «^2» «3
I

^0. ^, ^„ 0,
I

0, ^'o. K K
0, 0, Jo, ^, h\]

then since by suppositiony(a;) = and ^ (cc) = 0, and therefore also

xf{x), X(j> (x), and x'^<f> (x) are all zero, it follows by Art. 391 that

j^ = is the necessary relation which must hold among the coeffi-

cients of /{x) and <^ (x).

400. We have given a particular example in the preceding

Article, as the general investigation to which ^Ve now proceed will

thus be more intelligible. Let

/(x) = % + a^x + a^a^ + . . . + a„x'"= 0,

<f>
(x) = b^ + h^x + h^x^ + ... + bx"" = 0;

and suppose we have to eliminate x between these equations.

We have

/{x) = a^ + a^x + a^x^ + . . . + a ^o;'",

xf{x) = a^x + a^x" +...+ a^^_^x^ + aj^^\

x-'f{x)^

cj> {x) = h^ + h^x + h^x' +... + hx\

x4> (x) = \x + h^x^ + ... + ^..^a;" + hx""^',

x'^-'<l>{x) = hx"'-' + h.x'"+...

Let E denote the determinant of the order m + n which has for ita

first n rows

«o> »,» «2» •••»«.» 0> ^, ^,--

0, a„ a^,...a^_^, a^, 0, 0,...

0, 0, «„,... a^_^, «,„_,, «,„, 0,...
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and for its next m rows

6^, \, &„...&., 0, 0, 0,...

0, \, ^,...6„_,, 6„, 0, 0,...

0, 0, 6o,...&„_3, 6„_,, 6„, 0,...

then i?:= is the necessary relation among the coefficients in order

that fix) and <^ {x) may simultaneously vanish.

The relation i? = has been called the resultant or the elimi-

nant of the proposed equations /(a;) = and <j) {x) = 0.

401. The terms in the quotient obtained by dividing one

algebraical expression by another may be exhibited as deter-

minants.

Let <^ (x) = a^x"" + a^cc"*"' + ajxT'^ + ...+ ajx"'"" + . .
.

,

i/r (a^) = 6,x" + h^x""-^ + 5,a;"-' + ... + t^"'" + ...,

and let the quotient of <^ (x) divided by xj; {x) be denoted by

qy-" + q^x""-"-' + ... + qx""-"-"- + ...

Multiply by the denominator, and equate the coefficients of

«'""' on both sides. Thus

Similarly,

a _i
=

q^-fio + Ir-J'i + '" + 9'o^-.»

We may regard these as r+ 1 equations for finding q^, q^_^^ "-q^-

19—2
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We have

5'r *.. *,> K,
0, Jo, 6.,

...5,

-K0, 0, 0, «o. 0,0,... K

Therefore by evaluating the determinant on the left-hand

side, and rearranging that on the right-hand side, we obtain

^'^ir
K 0, 0, 0,

0, 0,

K 0,

K K-, r— 2' r

402. We will now give some applications of the theory of

determinants which occur in a case of the transformation of func-

tions by linear substitutions.

Let there be any function of the n independent variables

x^, x^, ...x^; and let these variables be expressed in terms of n
new independent variables

2/i> 2/2? •••2^n ^7 means of the following

n linear equations

:

(1);

Xn= »«.l2/x + an.22/2 + ••• +«„.„2/„ J

then by substituting the values of cCj, x^, ...x^, the assigned func-

tion becomes a function of 2/,, 2/2) •••y„*

Suppose now that we impose the condition that

< + <+... + r«; = y/ + y/+...+3,; (2);

then certain relations will hold among the coefficients of the linear

equations (1); these relations we shall now demonstrate.
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T. For every value of i and k between 1 and n inclusive

<^i\i + <.i+ +<i=l
I

/gv

and ^i,i^i.* + ^2, A,*+ + <*n,A,fc= ^/

Substitute the values of a?,, x^, ...x^ from (1) in the identity

(2); and then by comparing the coefficients of like terms we

obtain (3).

II. From (1) we can express y^, yiii"'yn ^^ terms of

ajj, a;^, ...ic„; we shall shew that for every value of i between 1

and n inclusive

2/i=ai./»i + «2,ia^2 + ^^Ki^n W-
To establish this it will be sufficient to verify the statement

:

substitute for cCj, a;„, ... x^ from (1) in (4); then by means of (3) it

will be found that the right-hand member of (4) reduces to y.

.

III. In the same way as we obtained (3) by substituting from

(1) in (2) we may obtain, by substituting from (4) in (2), the fol-

lowing results for every value of i and h between 1 and n both

inclusive

:

«i.l«*.l+»i.2»*.2+---+»i.n»*.n=0.j
(5).

lY. The square of the following determinant is equal to

unity

:

^2,1> ^2,2> ••• *2.n

a«,i> «^„.2>--- »«

Denote the proposed determinant by E : then JR^, by Art. 380,

is equal to the determinant

'1, If ^1, 2 >
... c.

. c

rhere <^i.*=i«i.l»*.l+ai.2»i.3 + "-+ »«.n«*.«'
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Thus, by (5), we have c,i=0 when i is not equal to Jc, and

c^^=l. Thus the latter determinant reduces to its first element,

that is, to unity : therefore JS* = 1.

V. Let ulj^jfc have the same meaning as in Art. 388: then

we obtain from (1)

Hence, comparing this result with (4), we have

A.
"^'^ £ ,(6).

YI. The following partial determinants which can be formed

of the constituents of H are numerically equal:

^m+2,m+ li <^m+2.7n+ 2> '•• ^m+2.

:

and

^2, 1) ^2,2J ••• ^2,OT

Denote the first determinant by P, and the second hj Qj
then by Art. 386,

-^l.l> -^1,2 > ••• -^1,.

^2.1» •^2,2> ••• ^2,1

-^m,l> ^m.2> ••• -^m.

is numerically equal to E"'~^F.

And by Art. 376 and equation (6),

-^2,l> -^2,2> ••• -^2,,

<„ ^»i,l> '*«t,2» . ^.
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Hence, since ^^ = 1, we see that P and Q are numerically

equal.

403. "VVe will finish with some examples.

(1) Shew that 1 a, by c = a' + b^ + c'-dabG,

c, a, b

b, c, a

Shew that a + h + c must be a factor of this determinant.

(2) Shew that

a, h, c, d = a* -b' + c* ' d*- 2a'c' + 2b'd'

d, a, b, c - 4:a'bd + Wac- ic'bd+ Ad'ac.

c, d, a, h

b, c, d, a
.

Shew that a + b + c + d must be a factor of this determinant.

(3) Let there be a determinant of the order w + 1 in which

all the constituents are equal to unity except those which form

the diagonal series, and these are 1, 1 + a^, 1 +a^, ...1+a^: the

value of this determinant is a,a ...a .
1 2 n

For if any one of the quantities a^, a^,...a^ vanishes the

determinant vanishes, because it then has' two rows identical

;

thus the determinant is divisible by a^a^ ••• ^„« And the quotient

of this division must be unity, as we see by considering the first

element of the determinant.

(4) Let there be a determinant of the order n in which alf

the constituents are unity except those which form the diagonal

series, and these are l+a^, 1 + a^,... 1 + a^: the value of this

determinant is

IFoT if any one of the quantities a,, a^, ... a^ vanishes the

determinant reduces to a case of the preceding example ; and the

term a^a^ • • • ^m ^^ found by considering the first element of the

determinant.

Quarterly Journal of Mathematics, Vol. I. page 364.
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XXXI. TPJGONOMETRICAL FORMULA.

404. "We will give in the present Chapter a few propositions

which bring the Theory of Equations into connexion with Trigo-

nometry.

405. In Art. 272 of the Plane Trigonometry we have an

expression for tan^i^ in powers of tan^, supposing n to be a positive

integer. Suppose now that tan nO is given, and we require tan 6.

Clear of fractions, and thus we obtain the following equation of

the n^ degree for determining tan 6',

. .L n{n-\)^ ,. n{n-\)(n-2){n-Z), ,. \
tan w^ U ^—^- tan^d +—^^ '^ '^ tan'^ -. .

.J

= n tan^ ^^ ^ ' tan'^

\^

^
^(n-l)(.-2)(^-3)(n-4)

^^^,^_
[5

Now the value of tan nB is not changed if we put instead of

any one of the following angles :

n n n n

Hence we infer that the roots of (1) are

tan^, tan(^ + -), tan(^+ — ) tan{^+ ir] .

\ nj' \ nj \ n J

Let S denote the sum, and P the product, of the n quantities

just expressed ; then, by the aid of Art. 45, we may deduce from

(1) values for S and P : but for this purpose we shall have to

consider separately two cases.
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I. Suppose n even. Then (1) becomes

tan 71^ h -'^-^^ tan*^ + + (- iftan"6>|

= 7itan^- ''^''"^^^''"^^an^^+... + 7i(-l)'^tan'-^^.

In this case in order to put our equation in the standard form,

that is, with unity for the coefficient of the highest power of the
n

unknown quantity, we must divide by (— 1)^ tan nO. Thus we
obtain

n-a

S^ n(--l)
_^— = _7icotn^, P=ilir = (-lf ...(2).

(- 1)"^ tan nO (- 1)^

II. Suppose n odd. Then (1) becomes

tanw^ |l -
^^"""^^

tan^^+ ... +n{- l)"'^\an'-^^|

= ^taii^-
^^^"|)<^-"^)

tan-g + ... + (- l^-^Un-f?.

In this case in order to put our equation in the standard form,
n-l

we must divide by (—1) /* . Thus we obtain

n-l

S= nt3inne, P= (-l)« tanw^ (3).

406. Again, take equation (1) of Art. 405, and multiply by

cot"^; thus we have

tan nO \coV6 ^r—^ cot" ^6 + -^ ^-\-,—^-^ ^ cot" *$-.
. .

V

.-1/. n(n-l)(n-2) ^..-n= n cof"'^ ^ p^-^ cot* .^6

If

^ n{n-l)(n-2)(n-Z){n-i)
^^^...^

15
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Divide by tan nO, and we obtain an equation in the standard

form for determining cot^ when tanw^ is given. Hence, proceed-

ing as in Art. 404, we have

cot ^ + cot (^ + -j+COtf^ +— j+ + COt (O ^^^^^TTJ

= n cot nd (4).

407. From equations (3) and (4) we see that, if n be any

odd integer, the product

of -ftan ^ + tan
( ^ + - j + + tan T^ + ''llL_ ^ jl

into jcot ^+ cot (^ + -) + + cot (6 + ttH

408. Propositions like those of Arts. 405 and 406 may be

easily deduced from other formulae of Trigonometry. We will

By Art. 287 of the Plane Trigonometry we have, when n is

even.

. - w* . „. n^n'-2') . ,. ,^,cosn^ = l - tt; sm-^ +—^-^ ^sm*^- (5).
[2 ^ 14

Let cos nO = 0', then we may put for 6 any one of the follow-

ing n values

:

IT Stt Stt n — \

2n' 2n' In' "In

Let 771 = ^ , and a; = cosec^^; then dividing (5) by sin"^, we get

"-^
[2^ ^ [4 ^

The 771 values of x are

cosec rr— , cosec ^r—

,

cosec —;r— tt :

In zn 2n

hence, by Art. 45, the sum. of these m quantities = Tn •
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Thus, if n be an even integer,

cosec 7— + cosec ^^ + + cosec -—:— 7? = --,
2n In 271 2

409. We see by Art. 142 tliat any algebraical quantity has

n different 7^*^ roots. If then we have found an expression for

the n^^ root of an algebraical quantity that expression must be

susceptible of n different values, unless some restriction has been

introduced in our reasoning by virtue of which this multiplicity

of values has been excluded. In other words, if two expressions

are asserted to be equal, one of them must in general admit of

as many values as the other.

Various Trigonometrical formulae involving expansions were

given by some of the older mathematicians, as for instance by

Euler and Lagrange, which were not in accordance with the

principle here stated, and which have been shewn to be inaccurate

by Poinsot in a memoir, published in 1825, entitled Becherches

stir Vanalyse des sections angulaires. A memoir by Abel also

treats on the same subject : see his Oeuvres Completes^ Vol. I.

page 91. We will illustrate the point by considering one case,

and will follow Poinsot, though his method is not very rigorous

:

for a more elaborate investigation we refer to Abel.

410. Let it be required to investigate a series for (2cos^)'*

in terms of cosines or sines of multiples of 0.

The case in which tj- is a positive integer is treated in the

Plane Trigonometry, Art. 280 ; we proceed to the more general

proposition in which n is not restricted to be an integer, though

it is assumed to be positive.

First suppose cos 6 positive; and let p denote the arithmetical

value of (2 cos Oy, Then we may put

(2cos^)- = l> (1).

Now 2 cos ^ = e*^ + e~'^, where t is used for J- 1 ; thus

(2cos^)"=(e'^ + e-^«)''
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But e"'^ = cos nO + L sin. nOf

e("-2)tfl = cos {n-2)e + L sin (» - 2) 0,

and so on.

Hence (2 cos $y = c + ts,

where c stands for a certain series involving cosines, and s for a

corresponding series involving sines.

Again, l"p = (cos 2nfxTr + t sin 2n}nr) p,

where ti denotes any integer.

If then we were to equate this to c + 15 we should fall into the

error against which we are warned in Art. 409. "We observe that

(1) remains unchanged when 6 is increased by any even multiple

of Stt. Let then c^ and s^ denote what c and s respectively be-

come when in them 6 is changed to ^ + 2m7r. Then we may put

c^ + f^^= (cos 2nfX7r + l sin 2nfnr) p (2).

411. If we suppose n an integer, we have c^ and s^ coin-

ciding with c and s respectively. Then equating the real and

imaginary parts of (2) we obtain

c = p and s = 0.

The former agrees with the result which is obtained and more

closely discussed in the Plane Trigonometry^ Art. 280.

412. But we now suppose that n is not an integer. The first

point to be established is that in equation (2) we must take m = fi.

This point has sometimes been assumed; but Poinsot gives a

reason for it in the following manner. Let us suppose to

diminish without limit. Then it will be found that

c^ = cos 2n7mr <l + n + —^-——
^ + ...[,

• o (^ n(n-l)
)

8^ = sm 2nm7r ? 1 +n+ —^—^ + ...>.
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The series within the brackets may be regarded as equal to 2",

by the Binomial Theorem ; so that

.c^ = 2" cos Inrmr = p cos ^nrmry

s^ = 2" sin 2nmir = p sin 2/imir,

Hence by (2) we get

cos ^nrrnr + t sin 2n7mr = cos 2w/x,7r + t sin 2?i/i,7r

;

from which we conclude that m = ft.

413. Thus, when n is not an integer, we have from (2)

^^^P-z^Z-:::z (3);'^ cos 2nmTr sin 2nm

so that p may be expressed either in a series of cosines or in a

series of sines.

414. If we put w = in the first of equations (3) we obtain

p = c

;

this coincides with Art. 280 of the Plane Trigonometry in form,

and we see that it is true so long as cos 6 is positive.

Again, putm = in the second of equations (3); then, since

sin 2n7mr vanishes with m, it follows that s = so long as cos d is

positive.

415. Let us now suppose that cos 9 is negative ; and let p de-

note as before the arithmetical value of (2 cos 6)". Then we may
put

(2cos^)"-(-l)>.

Also (-!)'• = cos (2/X + l)n7r + t sin (2/x,+ l)?27r.

Hence instead of (2) we now obtain

c^ + t5^ = {cos(2ft + 1) mT-¥ tsin(2/x+ \)mr] p (4).
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41 G. If we suppose n an integer, we have c,„ and s^ coinciding

with c and s respectively. Then equating the real and imaginary

parts of (4) we obtain

c = — p and s == 0.

The former agrees substantially with the result obtained in the

Plane Trigonometry, Art. 280.

417.- But we now suppose that n is not an integer. We first

shew, as in Art. 412, that m = fx; then, as in Art. 413, we have

and p = ——-;—^^^—TT (5).
cos(2m> + l)mr ^ sin ('2m + I) nrr

If we put m = in the first of equations (5) we obtain

c

p = .

cos UTT

This shews that when cos^ is negative the numerical value of

(2 cos 9)" is not equal to c, but to c divided by cosqittj and this

divisor is in general not equal to unity.

Also, if we put m = in the second of equations (5) we obtain

s

•^ sm mr

thus s is in general not zero.

418. Return to equation (3) of Art. 413; and let us deter-

mine when p can be expressed by cosines only, and when by sines

only.

We may suppose that n is equal to some integer together with

a proper fraction ; let this proper fraction in its lowest terms be

r
denoted by - ; then we shall not require to consider a value of m

greater than s - 1.

If p can be expressed by cosines only, it is obvious we must

have sin 2nm7r =0 ; thus m = is one value of m, and if s be even,

m = - ia another.
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If p can be expressed by sines only, it is obvious we must have

cos 2nm7r = j therefore must be an odd multiple of ^ ; thus

s 3*
if r is odd and s sl multiple of 4 we may take wi = - or =— .

419. Again, take the equations (5) of Art. 417; and let us

determine when p can be expressed by cosines only, and when by

sines only.

Use the same notation as before.

If p can be expressed by cosines only, it is obvious we must have

sin (2m +l)mjr=0 ; therefore sin (2m + 1) - tt = j thus, if *• is
s

odd, we can take 2m +l=s.

If p can be expressed by sines only, it is obvious we must have
* T

COS (2m + 1) 7177= 0; therefore cos (2m + 1) -7r = ; thus, if r is odd,
s

and - an odd integer, we may take 2m + 1 = ^ or 2??i + 1 = --
.

420. Abel shews that the formulae here obtained for (2 cos Oy

hold when n has any positive value ; and also when n has any

negative value numerically less than unity, except for those values

of 6 which make cos vanish.

421. We might investigate series for (2sin^)" in the same

way as for (2 cos 6)" ; or we may deduce the results by putting

TV-- 6 ioY 6 in the formulae already obtained.

422. In the Plane Trigonometry, Chapter xxiii., the ex-

pression a;"" - 2cc" cos a + 1 is resolved into quadratic factors by a

process which depends on De Moivre's Theorem, and which there-

fore involves the use of the imaginary symbol J- 1. It has been
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lately shewn by mathematicians that the result can be obtained

without the use of the -imaginary symbol ; we will here reproduce

the process employed for this purpose by Professor Adams in

Vol. XI. of the Transactions of the Cambridge Philosophical

Society.

423. The relation between successive values of a"* +-- cor-

responding to successive integral values of m is given by the

formula

when m = 1 this becomes

An exactly similar relation holds between the successive

values of 2 cos m^ ; thus

2 cos (m+\)e = {2 cos 6) (2 cos w^) - 2 cos (m - 1)^

;

when m = 1 this becomes

2 cos 26 = (2 cos 6) (2 cos 6) - 2.

'Now let v^y v^, v^^...%\ be a series of quantities the successive

terms of which are connected by the same relation as that which

we have just seen to hold for the successive values of a;'" + — and

of 2 cos m.9 3 that is to say, let

Also, as in those cases, let v^ = 2, but let v^ be any quantity

whatever ; thus we have

and so on.

^2 ~ '^1^1 ~ ^?

^a = ^i^B - "^1 = V^ — 3^1,



TRIGONOMETRICAL FORMULA. 305

Hence it is obvious (1) that v^ is a definite integral function of

t'j of n dimensions, and that the coefl&cient of Vj" is unity; (2) that

a v^ = x + -, then i?„= ic" + —
; (3) that \iv^ = 2 cos 6, then v^^= 2 cos nO,

Hence 'y„ — 2 cos na will vanish when v^ is equal to any one of

the following n quantities

:

2 cos a, 2cos(a + /5), 2cos (a+ 2y8), ... 2cos(a + w- l,/5),

where B is put for — . Therefore v -2 cos na ^

|v,- 2 cos aXiv, - 2 cos (a + /S)| |v, - 2 cos (a + 2/3)| ...

... lvi-2cos(a + w-l^)| .

Now put X + - for tJ^; thus we obtain •

£c" + — - 2 cos na =
a;

la; + -— 2 cos a
I
L + - - 2 cos (a + /5)|

|ic + - - 2 cos (a + 2^)| . .

.

... |ce + --2cos(a + 7i-ly8)|-.

This gives the required resolution.

Similarly if we put 2 cos for t\ we obtain 2 cos n9-2 cos wa =

|2cos^-2cosa||2cos^-2cos(a+y8)j|2cos^-2cos(a + 2^)| ...

... |2cos(9-2cos(a + 7r^^)|.

Hence we see that the two equations just found are particular

cases of the general equation from which they have been derived;

Vj being in the former case numerically not less than 2, and in the

latter case numerically not greater than 2. Two special examples

may be formed by taking first a; = 1 or ^ = 0, and then £c=- 1 or ^=7r.

T. E. 20
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424. Various theorems may be obtained by the aid of the

imaginary symbol, which can be verified if required by other

methods.

For example, we have by Plane Trigonometry, Art. 287, if n

be an even integer,

co8nO = l--^ sm'' 6 +—^-, sin^^

_.-(n--2-)K-4-)^.^.^_
(^^^

and if 71 be an odd integer,

. ^ . ^ n{n'-l) . ,. n(n'-l)(n'-3') . ,. ,^.
sm ne = nsmO ^-rr, sm' + -^ r^ ' sin» 6-... 12).

Now substitute x- (
^

)
for sin 0, where t denotes ^ — 1 ; and

for brevity put p for x .

z

Then from (1) we deduce, when n is even^

1 (." + ^.) = 1 +
2?J2

y +—t]4pP*

n>--2-')K-4-)
^

2«[6 ^ ^
'''

and from (2) we deduce, -wlieii n is odd,

2V «V 2^^ 2'f3 ^ 2^|5
^ ^'

Thus we obtain the algebraical identities (3) and (4).

These may be verified by the aid of Art. 244. For suppose

/{xj^x^-px-l, so that the roots of/(£c) = are of the form

1 '
1

z and— , and z = p. Then
z z

xf'ix) ^ x(2x~p)
^ ^

x'^l
^ 1 ,

A ,

^\ A 1 ;^y^

f{x) af—px—l x^-px-l \ xy \ x^ x)

=-04){(>-r*('4n*('-ir&'-}-
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First suppose n even; then by Art. 244 we have ;s" + (
) ,

that is 2;" + — , equal to the coefficient of — in the expression just

given. The terms involving odd powers of p will not furnish any

part of the coefficient, since n is even.

Now the coefficient of— in
( 1 + -^

) (
1 A is 1 + 1, that is 2.

so \ SC J \ SC /

The coefficient of—-in(l + -i)(l 5) '^is
X \ X J \ X J X

«'-'• ffi(i'')*(i-')i}''""|S-

The coefficient of— infl+-;2)(l—j) "^is
X \ X / \ X / X

.("-ji„)C_ii'..)("-.,)(--i5..))..

""0(l-')iG*')S*^)H5-')6-')5S*')}^

And so on. Thus we obtain (3). Similarly by supposing n odd

we obtain (4).

20—2
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EXAMPLES.

I.

1. Find the quotient and the remainder when

x' + Ix" 4- 3a;' +\lx^ + lOx-U

is divided by cc - 4.

2. Expand (a + 5x)" in powers of x, and then obtain the^rs^

^ derivedfunction of {a + 6x)".

"^ 3. Shew that the equation a;' + 3£c^ + fl3- 6 = has one root

and oiily one between 1 and 2.

II.

1. Find a root of the equation x^ = + J-l.

2. Find a root of the equation x^ = - J- 1.

III.

1. Form the equation whose roots are 1, 1, 1, - 1, - 2.

2. Form the equation whose roots are 1 =±= ^ -^ ^^^ 2 =t^/-3.

3. Form the equation of the eighth degree one of whose roots

4. Solve the following six equations in each of which one root

is given

:

(1) x^-x'+3x+5 = 0; 1-2^^.

(2) x' + 4:x'' + 6x' + ^x + 5 = 0; J^.
(3) x'' + x^-25x' + Ux+66 = 0- 3 + J^.
(4) x*+2x''-4x'-ix+4: = 0; J2.

(5) x''-2x^-5x'-6x+2 = 0; 2+^3.

(6) x'-a^-8x'+2x'+2\x'-9x-H = 0; J2 + J^.
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5. Solve the equation x^ - x^ -\- Sx^ - 9x - 15 =^ 0, one root

being ^^3, and another 1 — 2^-1.

6. The equation x^—4:X^ + x + c^0 has one root =3; find c - (^

and the other roots.

7. Find the sum of the reciprocals of the roots, the sum of

the squares of the roots, and the sum of the squares of the reci-

procals of the roots of x^ - 6x^ + iOx^ +60a;^-aj-l=0.

8. The equation x* - 21ic' + UQx^ - 54:6x + 580 = 0, has roots

of the form a, /?, a + ^ + (a — ;8) J— 1 j solve the equation.

r^ 9. Find the sum of the cubes of the roots of a given equation.

^ 10. Form the equation the roots of which a, jS, y, 8, are

1 (l + V3 ± v/2V3) , and i (l - ^3 i 7^1^) ;

2 j^ 02 2 j^ 2

and thence shew that ^ + — + . . . = 0.
a/j ay

11. If a, 6, c, ... are the roots of an equation, find the value of

12. Assuming that the arithmetic mean of any number of

positive quantities is greater than their geometric mean, shew

that if p^^ - 2p^ is less than np^^ the equation has impossible

roots.

13. If a, 6, c, ... are the roots of an equation in its simplest

form, shew that

14. If a, 6, c,...are the roots of an equation in its simplest

form, shew that

p; - 1p,p., + 2/., - a%'' + aV + h\^ + . ..
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IV.

1. Transform each of the following three equations into

another the roots of which are formed by adding to the roots of

the original equation the number assigned :

(1) x'-3x*-x'+4: = 0', 1. (2) x' + x + l = 0; 3.

(3) x'+ix^-x' + U^O; -3.

2. Transform each of the following four equations into

another wanting the second term ;

(1) x'-3x'+ix-4: = 0. (2) x^-6x'+l2x + l9 = 0.

(3) a;'- 8a;' +5 = 0. (4) x'+5x'+3x^+ x'+x-l = 0.

3. Transform each of the following four equations into two

others each wanting the third term

:

(1) x^^6x'+Sx-l=0. (2) a;''- 6^'+ 9^ -10 = 0.

(3) x^-'8x''+l8af-l5x +U = 0. (4) x'-lSx'-60x'+x-2 = 0.

4. Transform the equation x^+ 2£c^+ - x+ -^ = into another

with integral coefficients, and unity for the coefficient of the first

term.

5. Kemove the second term and solve the equation

a;=^-18a;'+ 157a;- 510 = 0.

6. Transform each of the following two equations into

another whose roots are the squares of the differences of its roots;

and discuss the nature of the roots :

(1) a;^+7a;-l-0. (2) a;^-6x+6-0.

7. Transform a;*— 12a;^+ 12a; — 3 = into an equation whose

roots shall be the reciprocals of those of the given equation ; and

then diminish the roots of the transformed equation by unity.

8. Shew that the equation a;'* + a;^-8a;- 15 = has two real

roots of contrary signs, and that it cannot have more real roots

;

and that they lie between - 2 and 3.
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9. The roots of the equation cc^ k-'poi? + ga: + r = are denoted

by a, 6, c ; transform the equation into others which have the

roots assigned in the following fourteen cases :

(1) a\ h\ c\ (2) h + c, c + a, a + h,

/3\ J_ _1_ J_. U\ ^ L L
^' h + c* c + a^ a+h' ^^ be* ca^ ab'

(5) b'c\ c'a', a%\ (6) ^{ha), sj{kb), J{kc).

(7) -(b^c-a), -{c+a-b), -{a + b-c).

(8) b + c + ka, c + a + kb, a + b + kc.

(9)
_«^_ ^

^
.

^ ^ b + G-a^ c + a-b* a + b-c

(10) bc+-, ca + l, ab + -. (11) b'+c', c'+a\ a'+b\
a b

. b c c a a b ,^ .

^^-^^ c^b' a'^c' b'^a' ^^^^ 6V ' cV ' a'b'c c a

(14) b-c, c — b, c-a, a-c, a -by b-a.

10. The roots of the equation x^+qx + r^O are denoted by

a, by c; transform the equation into others which have the roots

assigned in the following two cases :

0) G~)'. c-f.y. (.4j)'

(2) ba + aCy cb + ba, ac + cb.

11. If «., 5, c denote the roots of a;^ — 6x"+ llx-G =^0, form

the equation whose roots are

1 1 1

52 + c^' c'^a'' a' + b''

12. If ay b, c denote the roots of x"-2x''+ 2=0, form the

equation whose roots are

b^ + c^ c^ + a^ a^ + b^

~~^
' ~~W~ ' d" '

1 3. Shew that the third term of the equation

x^ +px^ + qx+r=0
cannot be removed if p* be less than 3q.
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14. Shew that the second and fourth terms of the equation

can be removed by the same transformation if ^Pq = p^{^P2 — p^).

15. Solve the following two equations

:

(1) x'+4.x^+1x^+Qx-lO = 0. (2) x'+4.x^ + 2>x'-2x-Q = 0,

16. Shew that the equation £c^ + 4aj^+ 6a;+ 3 = does not

admit of the second and third terms being remoA^ed by the same

transformation, but that it does if multiplied by x.

17. Shew that it is possible to remove the second and third

terms of an equation of the 'nP^ degree if

n X (sum of squares of roots) = square of sum of roots.

Y.

1. Shew that the equation x^-4:X^+3 = has at least two

imaginary roots. ^. '^

2. Shew that the equation x"^- 2x*+x^-l = has at least

four imaginary roots.

3. What may be inferred respecting the roots of the follow-

ing two equations 1

(1) x''-5x'+x'-x~l=0. (2) x^"-x"' + x'' + x + l = 0.

VI.

1. Solve the following twenty equations, each of which has

equal roots :

(1) aj'-7.oc=+16ic-12 = 0. (2) x^-3x'-9x + 27 = 0.

(3) a;^-a;^-8a; + 12»0. (4) x'-5x'-Sx + 4.S=^0.

(7) a;'+8;:c^+ 20a: +16-0. (8) x'-lx + ~^0.
^ ' 2 lb
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(9) a;^-llaj'+18a;-8 = 0.

(10) x^-2x'-x'-4:x + 12 = 0.

(11) X* - 7cc'+ Ux'+ 3aj - 18 = 0.

(12) x'-4:x^- Qx' + 3Qx-27 = 0.

(13) a;*+13:«^+33a;^ + 31aj+10 = 0.

(14) 2x^ -Ux^+ 19^'- 6ic + 9 = 0.

(15) a;^+16:c''+79aj^+126aj + 98 = 0.

(16) 8^'+4ic'-18a;^+ll:r-2 = 0.

(17) a;'-a;*-2x'+2;r'+cc-l = 0.

(18) x'-2x''-6x^+4:x' + Ux + Q^0.

^ (19) aj'- 13^*+ 67a;'- 171a;'+ 216^- 108 = 0.

(20) x'- 3x'+ 6a;'- 3a;' - 3a; + 2 = 0.

2. Find the condition tliat a;"— j9a;' + r = may have equal

roots.

3. Shew that x* + qx^ + s = cannot have three equal roots.

4. If a;"+jOja;"~^+ ... +p,, = have two roots equal to a,

shew that p^x"'^ + 2p^x"~^ + . .. + np^ = has a root equal to a.

5. If a;'4-g'a;'+ra;' + ^ = has two equal roots, prove that

one of them will be a root of the quadratic

^ 5r^^3r 15 ~
^•

YII.

1. Find limits to the positive and negative roots of

x'- 5x'+ x'+ 12a;'- 12a;' + 1 = 0.

2. Write x* - Sa;' + 12a;'+ 16a; - 39 = so as to shew that 6 is

a superior limit of the positive roots.

3. Shew that the real roots of the following six equations lie

between the limits respectively assigned :
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(1) x*-x^+4:x'-3x + l = 0; i and 1.

(2) a;" + a;'-10ic'-a;+15 = 0j -4 and 3.

(3) x'+ 5x'+ x^-lQx'- 20x-l6 = ; - 5 and 3, by Art. 92.

(4) («'- 26)(x'+5x + l) + Q0x = 0; -5 and 3.

(5) (x'- 4:x - 2y- 43 = j - 2 and 6.

(6) x'+xU x'- 25x-36 = 0; - 3 and 3, by Art. 92.

4. Find by Newton's method limits to the roots of the

following five equations

:

(1) x'^-x^-dx'+Sx^Q^O. (2) x^-5x' + 6x-l = 0.

(3) x*-x^+4.x' + x-4: = 0, (4) x''-5x^+naf-20=^0.

(5) x'- 2x'- 3x'- 15x-3--= 0.

5. Prove that x^ + 5x*-20x^ -l9x-2 = has one root be-

tween 2 and 3, but none greater than 3, and one root between — 5

and - 4, but none less than - 5.

6. Apply the method of Art. 102 to find the number and

situation of the real roots of the following six equations

:

(1) a;' -12a; + 17 = 0. (2) a;' - 325C + 20 ::= 0.

(3) x^-3x + 3 = 0. (4) 4xV9a;'-12£c + 2 = 0.

(5) x'-a'x'+c'^O. (6) x'"'-px'+r=0.

7. Shew that the equation Sx* + 8x^ — 6x^ — 24a; + r = will

have four real roots if r is less than —8 and greater than —13,

and two real roots if r is greater than -8 and less than 19, and

no real root if r is greater than 19.

YIII.

1. Obtain the commensurable roots of the following twelve

equations :

(1) aj''- 106a; -420 = 0. (2) a;'- 9a;'4-22a;- 24 = 0.

(3) a;"- 2a;' -25a; + 50 = 0. (4) 2a;'- 3a;' + 2a;- 3 = 0.
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(5) 3x'-2x'-Qx + 4: = 0. (6) 3x' - 2Qx' + Six - 12 = 0.

(7) a;*-2x'+8a;-16 = 0. (8) x''-af-Ux' + 16x-iS = 0.

(9) x*-x^-x'+19x-4:2 = 0. (10) x^+8x^-7x'-i9x + 5Q = 0.

(11) a;'-3£c*-9x'+2l£c''-10a; + 24 = 0.

(12) a;«- 7^'+ llo;^- 7x'+ Ux'- 28a; + 40 = 0.

2. The coefficients of the equation f(x) = are all integers :

shew that if/(0) and /(I) are both odd numbers the equation

can have no integral roots.

IX.

1. Solve the following four equations each of which has two

roots of the form a, - a :

(1) x^-2x^-2x'+8x-S = 0. (2) a;*+ 3ir'~-7£c'- 27a; -18-0.

(3) x'+3x^ + 2x'+dx-3^0. (4) a;' + a'- 11a;-"- 9ic + 18 = 0.

2. Solve the following four equations in each of which the

roots are in Arithmetical Progression :

(1) x^-6x'+nx-6=^0. (2) a;^ - 9a;' + 23a; -15 = 0.

(3) a;^-8a;^+14a;^+8a;-15 = 0. (4) a;*+4a;'-4a;'- 16a; = 0.

3. Solve the following six equations in Avhich certain con-

ditions relative to the roots are given :

(1) 3a;' - 2a;'- 27a; + 18 = ; product of two roots is 2.

(2) X* - 3af — 6a; — 2 = ; product of two roots is - 1.

(3) x^- 4a;'+ 5a;'- 16a; + 4 = ; product of two roots is 1.

(4) 2a;*-5a;' + lla;'-lla;+ 6 = ; product of two roots is 1.

(5) X* - 45a;'— 40a; + 84 = ; difference of two roots is 3.

(6) a;' - 7a;'' 4- 15a;' - 15a;' + 14a; - 8 = j one root double another.

4. Solve the following six equations in which the roots are of

the forms respectively assigned

:

(1) a;'-10a;'+27a;-18 = 0; a, Sa, 6a.

(2) a;*-10a;'+35a;'-50x+24 = 0; a + 1, a-1, 6 + 1,6-1.
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(3) 6x*-4:Zx'+l07x'-10Sx+36 = 0: a,h,^, -.
a

(i) x' + 8a;* + 5a;"- 50a;'- 36a; + 72 = ; a, 2a, b, 2b, a + b.

(5) x'-4:x'+lOx*-16x^+Ux'-l6x + o6 = 0; adt: J2^.Jb, ^Jc.

(6) a;'-12a;*-2a;"+37a;'+10^-10 = 0; 1^ Ja, b^J2, ^^c.

5. Solve the following two pairs of equations, eacli pair

having a root in common :

(1) a;" -3a;' -16a; -12 = 0; a;"-7a;'+5a;+ 13 = 0.

(2) a;"-3a;'+lla;-9-0; a;"- 5a;'+lla;-7 - 0.

6. Solve a;' -7a;' + 36 = 0, and a;'-3a;' - 10a; + 24 = 0, the

former of which has a root equal to three times one of the roots

of the latter.

7. Solve the following two equations which have two roots in

common :

X*- 2x'-7x' + 26x-20^0; a;*+ 4a;'- 2a;'- 12a; + 8 = 0.

8. Find in terms of m and a the roots of the equation

a;* +pax^ + (m' + m) a^af + qa^x + a* = 0,

which are in Geometrical Progression ; and determine p and q in

terms of m and a.

1. Solve the following ten reciprocal equations

:

(1) a;*-2a;^+ 3a;'- 2a;+ 1 = 0. (2) a;* + 4a;' - 5a;' + 4a; + 1 = 0.

(3) 2a;*- 5a;^+ 6a;'- 5a;+ 2 = 0. (4) a;*+4a;»-10a;'+ 4a; + l =0.

(5) a;'-2a;*-19a;"-19a;'-2a;+l=0. (6) a;'-4a;*+a;'+a;'-4a;+l = 0.

(7) 6a;'*-lla;*- 33a;'+ 33a;' + lla;- 6 = 0.

(8) 2x' - 5x' + 4a;*- 4a;'+ 5a; - 2 = 0.

(9) 8a;'-16a;*-25a;*-16a;'+8=0. (10) l + x'^a{l+xy.
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2. Obtain roots of the following four equations, and depress

the equations

:

(1) x''-2x'+x'+x^-2a^+l = 0.

(2) jc^+ 2x^- 8x'- Ix"- 7x^- 8£cV 2.^• +1 = 0.

(3) x^+2x'+^x^+2o(^-2x^-2>x^-2x^\=^0. (4) x''-\ = 0.

3. Exhibit the roots of x^+px^+ 1 = in the form

a, 6, -
, J-.a

4. If a, 6, c, . . . denote the roots of the recurring equation

a;* +jpa5'*"^ + qx""'^ + . . . + g'a;^ + joa; + 1 = 0,

5. In the recurring equation af"—^x'""^ + ... = 0, if the terms

are alternately positive and negative and p less than 2n, the roots

cannot be all real.

XI.

1. Solve the following three equations :

(1) aj«-l = 0. (2) a;«-l = 0. (3) aj'+l=0.

2. Shew that the factors of a^+h^+c^- 3ahc are of the form

a + bi + ci^f where i^—l = 0.

3. Shew that the factors of

a'{a'-4:hd - c')-b\b'- iac^d') + c" {c'- ihd-a') - d\d'- iac - h')

are of the form a-\-hk + c¥+ dk^, where ^''- 1 = 0.

XIT.

1. Solve the following eight equations :

(1) a;'-3aj-2 = 0. (2) a;'- 9a; -28 = 0.

(3) a:'-a;+6 = 0. (4) a;' + 3a; = |.

(5) 3a;'-6a;''-2 = 0. (6) a;'- 15a;'- 33a; + 847 = 0.

(7) a;^+6aa;''=36a^ (8) a;'-3 (a'+ 6')a; = 2a(a«-35').
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2. Determine the relation between q and r necessary in order

that the equation a;^ + g'a; + r= may be put into the form

and hence solve the equation 8x^— 36aj + 27 = 0.

3. If the roots of the equation ^ + 'pQ(^ + g'o; + r = are in

Geometrical Progression, r/>^= (f. Hence solve the equation

a;'-a;'+ 2a;- 8 = 0.

4. If the roots of the equation a?" + g'a; + r = are diminished

by 7i, shew that the transformed equation will have its roots in

Geometrical Progression if h be such that 27rA^- ^(fK^- q^= 0.

5. If the roots of the equation x^-\- ?)px^+ 2>qx + r^0 are in

Harmonical Progression, 2q^=r{^pq — r).

6. If the roots of the equation x^ + 2>p3(? + 2fqx + r = are in

Harmonical Progression, the equation rx^ + 2q^x + qr = contains

the greatest and least of them.

7. The impossible roots oix^ + qx-\-r = being put under the

form a ± ^ ^^1, shew that ^' = 3a' + q.

8. If r, a+ JP, a — J/S, are the three roots of the equation

x^ +p^oi:^ +p^ +JP3 = ^) of which r is real, and if x^ + m^a:;' + m^x =

is the equation resulting from the diminution of all the roots by r,

shew that a = — -^^ +T and ^= — - (m^ + 3p^ -Pi)-

9. Reduce the equation x^+px^-¥qx-\-r = to the form

y^—2>y + mF= 0, by assuming x = ai/ + b; and solve this equation

by assuming y = z + -. Hence shew that if the original equation

has equal roots,

4 (/- 3qf= (2/- 9pq + 27ry.

10. If the roots of the equation x^4-px^+qx + r = are in

Harmonical Progression, so also are the roots of the equation

(pq

-

r) 2/'- {p^- 2pq + 3r) y^+ (pq -3r)y-r= 0.
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XIII.

1. Solve the following four equations :

(1) x*+4:X^+3x'-Ux-S4:=^0. (2) x'- 6x'-8x-3 = 0.

(3) a;*-12ic"+49^'-78a;+40 = 0.

(4) x'- 2ax'+ {a'- W) x'+ 2ah'x - a'b'= 0. (Art. 192.)

2. If r^-p^s = the equation x*+px^+qx^+rx + s = may

be solved as a quadratic.

3. If s and p are positive, and 27p* less than 2565, the roots

of the equation x*+px^+ s-0 are all imaginary.

4. Assuming that the equation x^+ qx^+rx + s = has roots

of the form a^/Sj-l, shew that the values of a and jS may be

found by the equations

64a« + 32^a*+(4^^-16s)a^-r*=0, l3'=a'+^^ + ~,
2 4a

XIV.

1. Apply Sturm's Theorem to determine the situation of tlie

real roots of the following five equations in which the values of

some of Sturm's functions are assigned :

(1) a;^-4aj'-3a; + 23 = 0; /3{aj) = -491a; + 1371, /4(x) = -.

(2) a^-4:X^+x'+(jx + 2 = 0; f^{x) =6x'-10x-7, f^{x) = x-\,

(3) x'+x^ + x-l = 0; /^(a:) = 3:c^-12a; + 17, Art. 199.

(4) x'-2x^+x^-8x + 6 = 0; f^{x) = 16af-2dx + 9,

(5) x^+ bx"- 20a;'- 19x-2 = ; f^{x) = 20x'+ 60x'+ 36x

-

9,

f^{x)=:^96x'+lS7x+67, /, (a;) = 43651a; + 54571, /,{x) = +,

2. Apply Sturm's Theorem to shew that each of the follow-

ing two equations has only one real root; and determine its

situation :

(1) a:'+6a;'+10ic-l=0. (2) a'- 6a;'+ 8a; + 40 = 0.
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3. Determine the situation of the positive roots of the

equation x^- 2x^+ ^x^-6x-l = 0, having given

f^{x)=:^x{x-iy+\^x-\-Q.

4. Apply Sturm's Theorem to the following four equations :

(1) x^+x^-2x-l = 0. (2) a;'- 4x'- 4a; +20 = 0,

(3) tc*+2a;^-4aj+10 = 0. (4) aj"-a; + l«0.

XY.

1. Shew that the equation

««_ 3a;^_ 24a;'+ 95a;'- 46a; - 101 =

has all its real roots between —10 and 10, that it has one real root

between —10 and —1, one between —1 and 0, no root between

and 1, and one at least between 1 and 10.

2. Apply Fourier's Theorem to the equation

a;*+3a;'+7a;'+10a; + l = 0.

XYI.

1. Approximate by Lagrange's method to the positive root of

the equation 3a;'' - 4a; - 1 = 0.

2. Approximate by Lagrange's method to the root of the

equation x*-\- x^— 2a;'- 3a;- 3 = 0, which lies between 1 and 2.

—-— XYli.

1. Apply Newton's method to calculate the root which is

situated between the assigned limits in the following five

equations

:

(1) a;^- 4a; -12 = 0; root between 2 and 3.

(2) a;'- 4a;'- 7a; + 24 = ; root between 2 and 3.

(3) a;'- 24a; + 44 = ; root between 3-2 and 3-3.

(4) x^— 15a; - 5 = ; root between 4 and 4'1.

(5) x*- 8a;V 1 2a;' + 8a; - 4 = ; root betweer. and 1.
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2. Apply Newton's method to calculate a root of the follow-

ing two equations

;

(1) a;^+3a;-5 = 0. (2) a;'- 3x'- 3a: + 20 = 0.

XVIII.

1. Apply Horner's method to calculate the root which is

situated between the assigned limits in the following three

equations :

(1) x^+ 10af+ 6a; - 120 = ; root between 2 and 3.

(2) x*- 2x^+ 21a;- 23 = ; root between 1 and 2.

(3) X*- 5x^+ 3x'+ 35a; - 70 = ; root between 2 and 3.

2. Solve the equation x^— 17 = by Horner's method.

3. Calculate the real roots of the following four equations

by Horner's method

:

(1) a;'4-a;-3 = 0. (2) a;' + 2a; - 20 = 0.

(3) 3a;'+5a;-4:0 = O. (4) a;'+ 10a;^+ 8a;- 120 - 0.

XIX.

1. Find the value of the following seven symmetrical func-

tions of the roots a, 6, c of the equation a;^+^a;''+ qx + r = 0:

(1) {a + h + ah){b + c + hc){c + a + ca).

(2) {a + b-2c){b + c-2a)(a + c- 26).

(3) :^{a + by{a + c). (4) ^{a + b-2c){b + c-2a).

(7) (b-cY(c-ay{a-by.

I 2. If a, bf c, d are the roots of the equation

x*+px^+ qx^+rx + 8 = 0,

find the value of 2 (a + b) {c + d).

T. E. 21
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3. In the equation x^+p^x"*'^ + .,. +p^_^x+p^ = 0, suppos-

ing the roots to he a, b, c, ... I find

(1) 2a'b. (2) ^{a + h){a + c)...{a + r).

4. Form the equation the roots of which are the squares of

the sums of every three roots of the equation a;* + px^ + rx + s = 0.

Also form the equation the roots of which are the sums of the

squares of every three roots of the same equation.

5. If the equation x"* + p^x"~^ +p^x''~^+ p^x"*'^^ ... +p^ = is

transformed into another of which the roots are the sum of every

pair of roots of the original equation, find the first three coefficients

of the transformed equation.

XX.

1. Transform the following three equations into others whose

roots are the squares of the differences of their roots :

(1) a;'-4a;+2 = 0. (2) x'+4:X+3 = 0. (3) a;^+l = 0.

2. Eliminate x from the equations

ax'+hx + c = 0, ax^+h'x + c'=0.

XXL

1. Find the sum of the assigned powers of the roots of the

following five equations :

(1) a;*-aj'-19a;'+ 49a;- 30 = 0; the cubes.

(2) a;'- 3x^- 5x + l =0 ; the fourth powers.

(3) x'- 2x^- 22x^- 2Sx'+ 72a; + 144 = ; the cubes.

(4) 03*+ 2a; + 1 = 0; the inverse squares.

(5) x^- a; - 1 = ; the sixth powers.
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2. If a, 6, c,... are the roots of a?"- 1 =0, find %arh^.

3. If the sum of the r^ powers of the roots of the equation

a;"+ a; + 1 = be expressed by S^, and the sum of the r**" powers of

their reciprocals by 2^, prove that

^„_,->S, = l, and 2„_,-S,. = ^-2(-l)-.

4. In the equation a;"- a;^+ 1 = 0, find 5a""^, :§»""*, and 5a"

;

supposing w greater than 3.

5. Find the sums of the r*^ and (2w)* powers of the roots of

the equation x-''—px^+ 2'= 0, supposing n greater than r.

XXIL

1. Solve the equations

{y-l)x + y = J*

2. Solve the equations

(^j-l)x'+y{y + l)x'+{3y'+ij-2)x + 27j = 0)

(y-l)x'+y{y + l)x + 3y'-l=0 ' )'

3. Shew that the following equations have no solution

:

yx^-{y^-3y-l)x + y=
x'-y'+3 = }

XXIII.

1. Find the first term of each value of y when expanded in

descending powers of x from the equation

y*x - yV + Zyx^- y^x + hj-2x = 0.

2. Find the first term of each value of y when expanded in

ascending powers of x from the equation

x'^+x''+ x''y ~ a^y + 2a;y- xY+y' - Zxf+ x'Y' = 0.
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MISCELLANEOUS EXAMPLES.

1. If there be n quantities a, 5, c..., and if n functions of

them be taken of the form

(a; - 5) (aj - c) . .

.

shew that the sum of these functions is unity.

2. Remove the term which involves the cube of the unknown
quantity from the equation

a5'+5a;V200x'-lla; + 6 = 0,

3. Shew how to transform an equation which has both

changes and continuations of signs (1) into one which has only

continuations of sign, (2) into olae which has only changes of sign,

4. If j9 and q are positive, the equation a;^"-^a;^''+g = has

four different real roots or none according as (—J is greater or

less than (
j ; and it has two pairs of equal roots if

(5y=(.4f-
5. If — ^„_,«"~', —i?„_^a;"~^ -j^„_,a^"~*> ••• are the negative

terms of an equation of the rlf^ degree, then the greatest root

of the equation will be less than the sum of the two greatest of

the quantities (;?,_j^ {Vn-^\ (P«-,)'> -
6. If li be the last term of an equation of the ri^ degree

whose roots are in geometrical progression, shew that - A;'* is a
root, if n be odd. Shew that, in a similar manner, one root of an
equation of an odd degree whose roots are either in arithmetical

or harmonical progression may be found.

7. Find the greatest common measure of a' - a' - 3a: - 1 and
«*- 6a;* + 7a;' + 7a;' -6a; -3.

Solve the equation a;**- ^x*->f 7a;'+ 7a;'- 6a; - 3 = 0.
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8. Diminish by h the roots of the equation

X* + q:*? + raj + s = ;

give such a value to h that the roots of the transformed equation

may be of the form a, — , &j x ' ^^^ shew how this equation may

be solved. Example, x^— 2a3*+ 16a; + 1 = 0.

9. Shew by the process for extracting the square root of an

algebraical expression that the equation a;*+joa;^+5'x^+ra; + s=-0

can be immediately reduced to quadratics if j^^s — ^.qs + r^ = 0,

or if 'p^- 4:pq + 8r = 0.

3
10. Prove that the equation ic*+ ^ qx^+ rx + s = cannot have

all its roots real if q^-\- r^ is positive.

11. Ify(cc) be a rational integral function of x^ eithery (a?) =

or fix) - has certainly a real root.

12. Shew how to find the value of the semi-symmetrical

function o^h + h^c + c^a of the roots of a cubic equation.

1 3. Let a, 5, c, . . . ^ denote the roots of the equation <^ {x) = 0,

which is of the vl^ degree and in its simplest form, and suppose

these roots all unequal : shew that the expression

a' V c' le
+ T77TT + -rn-\ + ••• +T77TV

^'(«) <^'W ^{<^) '" *<^'W
is equal to unity if r = n — 1, and is zero if r is zero or any positive

integer less than n—1.

Shew also, that if r = - 1 the expression = ^^r—^—, .

14. If </){a;) =a;'*-l, and a, h, c, ... are the roots of <^(a;) = 0,

shew that

wcc"-^ 1 1 1
+ r + + ...

a;"—! x-a x — b x — c

15. Shew that the integral part of -70 (\/3 +^5)**"' is divi-

Bible by 2\
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ANSWEKS.

T. 1. a;*+ llic'+ 47a;'+ 205a; + 830 j remainder 3306.

II 1
/s/2-i-iy, r^^"^?n 2 i-+^^^"• ^- V2,/2>' "^UV^H"^- ^' ^'2^ V2 •

III. 7. -1; 36; 121. 8 a=5; p=2.

9. _jt>^3+ 32?j??2- 3^3. 10. x"- 2x^- 2^ + 1 = 0; then see Art. 48.

11. (p^'- 2p^)
^'"-~

^f
'^"-^ - n. 13. In the identity of Art. 45

substitute successively J-I and —J-I for x.

IV. 5. The roots are 6, 6 ±77-1. 7. ^*-2y' + -^ = 0.

8. See Arts. 22 and 50. 15. Apply Example 14.

YI. 1. (15) - 7 is a root. (I6) ^ is a root. (1?) The

root 1 occurs three times. (18) The root -1 occurs three times.

(19) 2 and 3 are roots. (20) The roots 1 and -1 are repeated.

3. Denote the root which is repeated by a, and the other by

h ; then the left-hand member of the proposed equation must be

identical with {x-aY{x-b) ; then we may equate coefficients.

VII. 7. The roots of /' (cc) -= are - 2, -1, 1; use Art. 102.

VIII. 1. (4) |. (6) |.

IX. 2. (3) -1, 1, 3, 5. (4) -4,-2,0,2.

3. (1)3, |. (2)1=^^2. (3)2^^3. (4)1(3^^^7).

(5) -2, 1. (6) 1, 2.

4. (l)a=]. (2)a = 3,6 = 2. (3)a = 2,6=3. {4>) a = l, h = -3,

(5) a = l, 6 = -3, c = -2. (6) a = 3, 6 = -l, c = 5.

' 5. (1) -1. (2) 1. 6. The roots are 6 and 2.

7. The common roots are given by a;^+ 2a; - 4 = 0.
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8. Denote the roots by -^ , -^ , a/?, a^' ; equate tlieir product

to a*, and the sum of the products of every pair to (m^+ m) a*.

It may be shewn that p must be equal to q.

XII. 1.(1)2. (2)4. (3) -2. (4)23-2-^. (5)1(^2^2 4-2^1

^a
(6) The root 1 1 occurs twice. (7) -^ 1

.

(8) 2a.

XIII. 1. (1)3,-2. (2) The root -1 is repeated.

(3) Diminish the roots by 3, then the biquadratic can be solved.

XIV. 1. (1) A root between 2 and 3, another between

3 and 4, and two impossible roots. (2) Two roots between

and -1, and two between 2 and 3.

XVIII. 1. (1) 2-833066480704857...

(2) M57451508098991... (3) 2-64575131106459059 ...

2. 2-57128159065823535...

3. (1) 1-2134116627622296... (2)2-4695456501065939...

(3) 2-13781194169747... (4) 2-76834546088879...

XIX. 1. (1) (r-qy+p{r-q) + r. (2) 2p^-9pq + 27r,

q^ + rp
(3) -2p^ + pq-^r. (4) 9^-3/. (5)

r —pq

(6) p-'-^-^^^- (7) l{3g-p'){5pr-f)-l{P3-^ry.

2. 2q. 3. (1) ^Ps-PiP^- (2) If we denote the equation by

/{x) = 0, the proposed expression following the symbol 2 becomes

-^—=^ , Hence the required sum is

I
{s.-. -pA-, +^A-3- ••• + (- i)>A,} •

(3)^^. + n^_2„. (4) ^,_ fa'-y>-,.
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5. Let the transformed equation be

a;'"+ 5',a;'"~' + q^^~^-\- q^x""^+ . . . = ;

"

then m = '—^^^ . Find the sums of the powers of the roots of
2

the transformed equation, and then the Coefficients by Art. 244. We

shaUget q,= {n-\)p,', q,=
~ ^^^ " ^^ p'+ {n -2)p^;

XXII. 1. The solutions are given by

y^-2i/ = and {i/-l)x + y = 0. /^y

2. The solutions are given by

y»-l = and (7/-l)a; + 2y = 0.

/— 2
XXIII. 1. y = x^ ...) y = ^j2>x+ ...J 2/ = 3-^+---

2. Six values of the form y = x^{u-h U), where u is to be

determined from l-u^-u* + u^ = ; three values of the form

y=:x~^ (u + U), where u is to be determined from 1 - 3u^= ; and
_13

four values of the form y=x * {u + U)y where u is to be deter-

mined from 3-u*=0.

MISCELLAKEOUS EXAMPLES.

1. Call the sum <j> {x) ; then shew that <ji{x) — l is identically

zero by Art. 39.

2. y'- Uy'+Q5y*-SiOy'+ 2037?/- 1428 = 0.

15. Form a quadratic with roots ^3 + J5 and J^- J^', then

use Art. 261; see also Algebra^ Art. 526.
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