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PREFACE.

”z*—r-;‘;« 09_.3_/-;_ 2

{ O first commencing to read the Differential Calculus, & subject which opens

2 wide field of analytical research, the student enters upon an entirely new
tystem of thought. In his previous investigations he has always been
sccustomed to consider quantities, whether known or unknown, as having
wme fixed or determinate value; he has now to conceive the values of
certain  quantities to undergo continuous changes, and to operate upon
these changes with new symbols and new processes, which in themselves
have but a remote analogy to ordinary Algebra. .

When two quantities, thus continuously variable, are connected by an
analytical equation, and their values are therefore mutually dependent on
tach other, and they are supposed to be affected by simultaneous changes,
it is evident that the increments will also be connected by some corresponding
analytical relation. The primary object of the Calculus is to establish general
methods of investigating the nature and properties of such relations when
the changes or increments are supposed to be small. To effect this, it is
first requisite to trace the successive values of the ratio subsisting between
two increments, when the increments themselves are supposed to continuously
decrease in magnitude, and to determine the limiting value of this ratio when
they ultimately become infinitesimals. This ultimate or limiting value is,
in fact, that which represents the ratio% when the increments are supposed
absolutely to vanish, and it is completely defined and accurately determined
by referring the successive values to the recognized law of continuity. The
operation here described is the true foundation of the Calculus, and the
condition of continuity, especially insisted upon in the present treatise,
entirely removes from the limiting value that obscure and indeterminate
character which otherwise forms an insuperable obstacle to a proper
comprehension of the first principles.

We recommend the student to make himself familiar with the methods
of “limiting ratios” and “infinitesimals.” The theory of Infinitesimals
is literally that of the Differential Calculus, and the principal law which
regulates this theory is directly inferred from the method of limiting ratios.
The two methods are indeed virtually but modifications of the same idea.
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Thus, in comparing together the relative values of any two infinitesimals, the
vejection of terms involving infinitesimals of higher orders is, in effect,
precisely the same as that of proceeding to the ultimate ratio of the
infinitesimal quantities by the method of limits, and such rejection may
in reality be said to be the operation of cropping down the quantities to
their ultimate or limiting relative proportions. The method of infinitesimals,
sometimes called the method of elements, is therefore as correct in its
reasonings and deductions, and as accurate in its results, as the method
of limits, and, being less abstract in its nature, its application, when properly
understood, is usnally attended by greater facility and clearness, especially
in abstruse investigations. ,

In preparing the present publication, we have endeavoured to do justice to
each Chapter by restricting the applications to matters of general interest,
which was considered to be essentially more solid and satisfactory than any
attempt to give, within the ﬂrescribed limits, 2 meagre outline of a more
extended variety of subjects. The first five Chapters comprise the entire
theory of the Calculys as a pure branch of analysis, and the remaining
Chapters exhibit the applications to the theory of maxima and minima, and
the geometry of curve lines. The general theorems of Euler, Lagrange, and
Laplace not being essentially required in the body of the work, though very
important to ‘be known by those who may desire to extend their course of
reading, are inserted at the end of the last Chapter.

The subjects contained in the several Chapters are treated according to the
most elegant and approved methods of investigation, some of which are
presumed to be new; numerous interesting examples, exhibiting their re-
spective results, are inserted for she exercise of the student, and copious
explanations are given of the precise nature of the principles involved in
the various operations. It is hoped that these explanations may tend to
obviate the peculiar difficulties so commonly experienced in the acquirement
of correct notions, and, hy making good the foundation, conduce to the
rational and satisfactory advancement of the intelligent student in obtaining
a knowledge of one of the greatest superstructures of the human intellect.
Should this expectation be in any degree realized, we shall experience a cor-
responding gratification.

+ London, March, 1852,
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THE DIFFERENTIAL CALCULUS.

CHAPTER 1.
DEFINITIONS AND FIRST PRINCIPLES.

(1.) By means of Algebra we investigate the various numerical
and symbolical relations subsisting amongst fixed quantities,
some of which are known and others unknown, the ultimate
object in general being to evolve the unknown values, or to
express them in terms of thqse which are known.

In the Differential Calculus certain values or quantities
related to each other are supposed to continuously increase or
decrease in value, and our object is to investigate the relations
subsisting amongst the corresponding changes that take place
in their values when those changes are indefinitely diminished.
Although the changes themselves are supposed to be infinitely
small, it will be found that the ratios which these changes
bear to one another are usually finite and appreciable, and
therefore suitable subjects of investigation.

(2.) The symbols which enter into the operations of the
Differential Calculus are of two kinds, representmg constant
quantities and variable quantities.

A constant quantity is one which retains the same deter-
minate value, this value being unaffected by the supposed
(hanges in other quantities.

A variable quantity is one which admits of a succession of
different values.

(3.) A variable quantity varies continuously when in changing

A
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from one value to another it passes through every intermediatz‘
value. For example, if a point be.supposed to move along a

curve line it will do so continuously, since in moving from one |
position to another it must have passed through every inter-

mediate point. It follows therefore that quantities which vary

continuously may be supposed to increase or decrease by very

small variations, capable of being diminished to any extent.

(4.) A function is any analytical expression involving one
or more variable quantities, and is usually called a function of
the variable quantity or quantities which it contains, Thus 22,
22 4+ ax, 4/ a®?— z? are functions of 2, and az + by,
2? + y? + zy are functions of z and y.
~ Functions are frequently denoted by prefixing one of the
characters F, £, ¢, ¥, &c. to the variable or variables, and for
‘brevity they are sometimes indicated by a single letter. '

Functions are the same in form when the qmmtmes are’
involved in the same manner. Thus 22 + az is the same
function of z that y2 + ay is of y ; and supposing F to be the
characteristic of 22 + a, that is, supposing z + az to be
. indicated by Fz, the expression y? + 4y will be similarly
indicated by Fy. In like manner if 2* + y? + 2y be re-
presented by f (,y), the expression u? + 9% + u o would be
denoted by £ (u, v).

Functions which, in a finite number of terms, involve the
ordinary algebraical operations of addition, subtraction, multi-
plication, division, involution and evolution, are called Alge-
braical Functions. Accordmg to this definition, az + 4,
a!_,z’abg‘l" bz , (6 —2) ‘\/—2—2 b_z(a’-b.r+.t")*
and all expressions belonging to pure Algebra, are algebraical
. functions.

Functions which do not exhibit the ordinary algebraical
operations and which do not admit of being so expressed in
finite terms, are called Transcendental Functions. Thus a?,

_log #, sinx, are transcendental functions; the first being
exponential, the second logarithmic, and the third trigdno-




FIRST PRINCIPLES. . 8

' fnetrical. There are other transcendental functions besides
- these, arising out of certain special researches, but it will not
.be necessary to particularize any of them here.

(5.) When a variable quantity zis assumed to pass to another
value, the amount of change or the difference between the two
values is called an Increiment or Difference. Similarly the
difference between the {wo corresponding values or the cor-
responding change that takes place in the value of any
function of # is the increment or difference of the function.
' These increments are usually denoted by prefixing the symbol
. A. Thus Az, A(fz) are simultaneous increments of # and
" J, the corresponding new values being z + Az and f'(z + Az)
| or fz + A(fz). When a value becomes decreased by the

supposed change, the increment is to be understood as having
‘ a negative value, ‘
! (6.) Let u=fz denote a function of a variable quantity .
| Suppose 2 to receive a small increment Az so as to become
of the value # + Az, and let the corresponding value of u be
supposed to be u + Au=f(z+ Az). Let the binomial
function f (z + Az), when expanded in terms involving the
integral powers of A z, be also supposed to give

u+Au=f(z+Az)=_f:.z'+PAz+QA.t’
+Rar®+ & . ... (D)

in which P, Q, R, &c. are new functions of z, independent of
Az, and owing their forms entirely to that of fr; also Az is
to be regarded as a single symbol, so that Az? Aa3, &c.
indicate (Ax)3, (Az)% &c. From this and the initial equation
% = fr, we deduce :
Au=Par+ Qaz? +Raz®+ &ec. .. .. 2)
and this value would represent the difference or increment of
. the function y according to the theory of Finite Differences.
‘We have also, dividing by Az,
; ‘%‘=P+QA1'+RA¢9+&O.....(3)

i
|
|
|
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Each step in this deduction, including the division by Ax, |
is free from ambiguity when Az is of any value, great
or small, positive or negative; but the result has no
intelligible signification when Az is zero, for as soon as Az
absolutely vanishes, we immediately lose all idea of quantity
on the leff-hand side of the equation, and the fraction
takes the singular and indeterminate form g As, however,
the equation must obviously liold for every other value ex-
cepting Az = 0, we may take Az extremely small, and it still
will be strictly true for every value between that and zero ; and
as there is no symbol of discontinuity on the right-hand side '
of the equation, we may, by applying the principle of continuity
to the fraction, include the existence of the equation, when A 2
actually vanishes. Thus we should have '

Au P | - |
A—:(whenAr—O)—O_P....G) -

and the coefficient P will therefore represent the limiting
value of the fraction %:, when Au and Az simultaneously

vanish ; and here we must not overlook the implied condition
that the particular value thus assigned to the vanishing fraction

when it reaches its indeterminate state g, is determined by a

consideration of its successive values and is that which obeys
the continuity existing amongst all the other values as Ax
continuously diminishes from a.small position to a small
negative value. This condition of econtinuity forms the basis
of what is usually called the “theory of limits”’.or of “limiting
ratios,” and should be well understood by the student, who
will afterwards not experience any difficulty in acquiring a
true conception of the first principles and objects of the Calculus.

The equation (3) has been made to merge into the equation
(4) by supposing the increments Au and Az to absolutely
vanish. It is evident that the former equation will assimilate
to the latter to any degree of nearness by conceiving the values |
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of Ax, Az to diminish, and that they will be indefinitely near
when Az is indefinitely small. In order therefore to impart
some tangible signification to the symbols on the left-hand
side of the equation (4), the values of Au, Az, instead of being
absolute zeros, are supposed to be extremely small quantities
having the same ratio to each other as the limiting ratio ex-
pressed by the equation, and they are then designated by du,

. dz. The equation is therefore stated as follows :

« du
I 7l B SR
ordu = Pde

The indefinitely small quantities du, dz, thus related, are
called the differentials of u and &, so that Pdz represents the
value of the differential of the function % ; ‘and from what has
preceded it is evident that the smaller dz is conceived to be as
a change in the value of z, the more nearly will du assimilate .
to the actual corresponding change in the value of u,

The quantity « which is first supposed to vary and on the
differential of which other differentials are thus made to depend
is called the independent variable.

* The coefficient P is called the differential coefficient of the
fanction %, with respect to x, because it is the coefficient or
multiplier of the differential dz which determines the dif-
ferential of the function..

The student will observe that in the Calculus the letter & is
not in any case employed as it may be in Algebra, to represent
quantity or value. In this sense it has no isolated signification,
and it is never used excepting as the symbol of operation which
characterizes the differential of the variable to which it is
immediately prefixed.

(7.) The peculiar difficulty in the preceding deductions is pre-
cisely analogous to that which occurs in conveying an adequate
idea of the measurement of the velocity of a body when that
velocity is continuously variable.. When the velocity is uni-
form, the space and time will vary proportionally, and the
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velocity will be correctly represented by the ratio, or fraction;
‘ space described
A time of describing it :
which ratio, or fraction, will preserve the same value whether
the space and corresponding time be taken great or small.
But when the velocity is variable it is obvious that the above
fraction cannot accurately define its value at the point from
which the space is supposed to be measured, because the
space, however small, will then be described by a continuous
succession of different velocities. It is however evident that
the smaller and smaller the space and time are taken, the
closer will their ratio approximate to the true velocity, and
that the diminishing error of such approximation will become
completely exhausted when we take the limiting ratio as the
quantities are supposed to vanish. The velocity of the body
at any point is therefore represented with rigorous exactness
by the limiting value of the above-fraction when it takes the

form ?") And thus by analogy the differential coefficient of

any function might be defined to be the velocity with which it
increases when the independent variable varies uniformly at a
rate, to be taken as the unit of measurement. In the geo-
metrical application of this idea, which was the origin of Sir
Isaac Newton’s method of fluxions, a line is supposed to be
generated by the motion, or flowing, of a point, a surface is
supposed to be generated by the motion of a line, and a solid
by the motion of a surface. It should be observed however
that our preconceived notions as to the estimation of velocities
of movement, though serving the purpose of illustration, are
not sufficiently elementary to be made the basis of a branch of
pure science.

The particular considerations under which the equation (2)
has been converted into the differential equation (5) conduct
us to the ingenious theory propounded by Leibnitz, called the
theory of infinitesimals, the principles of which may .now be

_briefly explained. .
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(8. Before entering upon this part of the subject it should
first be premised that the phrases ¢ infinite number”” and ““infi-
nitely small quantity,” which embody the principal objects of
our reasonings, are to be understood as having only a relative
signification, since all operations connected with them in the
literal or absolute sense of the terms are inconceivable. Thus
an “infinite number ™ is to be considered in a qualified sense
as infinitely great in comparison with any finite number ; and
* an “infipitely small quantity” is also to be relatively con-
sidered as infinitely small in comparison with any finite
quantity.

If any finite quantity be supposed to be divided into an
infinite number of parts, each part will be infinitely small and
is called an infinitesimal, because an infinite number of these
is required to make up the finite quantity; it is also when
compared with other infinitesimals said to be of the first order.
By supposing one of these infinitesimals to be similarly divided
into an infinite number of smaller parts, each of these is called
an infinitesimal of the second order, and an infinite number of
them will be required to make up an infinitesimal of the first
order. In like manner by supposing each successive infini-
tesimal to be divided into an infinite number of parts, infini-
tesimals of still higher orders are obtained.

The same process also leads us to the conception of different
orders of infinities, the word infinity, as before, having only a
relative and qualified signification. Thus the number of
infinitesimals of the first order contained in the finite quantity,
viz. the infinite number of parts into which it is divided, is an
infinity of the first order; the number of infinitesimals of the
second order contained in the finite quantity is an infinity of
the second order, &c., &c. It is evident therefore that infini-
tesimals and infinities, of the same order, are reciprocally
related, since the one multiplied by the other produces the
finite quantity. Sometimes an infinitesimal is called an
“ element”’ of the integral or finite quantity of which it forms
a part.
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Referring to the equation (2) in which 2, as usual, is sup-
posed to represent an arithmetical value, we may assume

Ax = %I’ N denoting any number or numerical value. When

N is a large number, Az becomes a small quantity, and a term
P Ax which involves its first power is in such case usually
called a small quantity of the first order with respect to Ax;
Q A2? which involves the second power is of a still smaller
scale of value, and is said to be of the second order with respect
to Az; RAx? is called a small quantity of the third order with
respect to Az, &. If N be supposed to be an infinite
number, Az will become an infinitesimal, and denoting it by
dz, we have

) Pds =§
Q _ Qds
Q==K
R Rdz?
Rd,a=ﬁ= N
&e. &e.

Hence as P, Q, R, &c. are supposed to be finite coefficients,
it follows, according to the preceding definitions, that the
terms Pdz, Qdz? Rdz3 &c. are infinitesimals severally of
the first, second, third, &c. orders.

By supposing the number of parts into which the finite
quantity is divided to be progressively augmented, the cor-
responding infinitesimal will become diminished, and in the
extreme case the quantity may be assumed to be divided into
an infinite number of parts, in the absolute sense of the term,
in which case it is easy to conclude that each of the parts
must become ultimately zero. In thus proceeding to the
extreme case, the nature of the reasoning is in effect the same
as that employed in deducing the limiting ratio or ultimate
value of a vanishing fraction. The laws of infinitesimals are
also founded upon this extreme case, and their operation is

LY
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always exact, for this simple reason, that the extreme limit
dz = 0 is, in all mathematical investigations, understood to

* be applied to the final result of infinitesimal deductions. These
laws are as follows :

1. In any equation containing terms of finite value, other
terms which represent infinitesimal quantities may be omitted;
because in the extreme case these infinitesimals become absolute
zeros.

Thus in equation (3) when Az, Au become infinitesimals

denoted by ds, dw, the fraction 5 being not necessarily an
infinitesimal, the equation, according to this rule, becomes

du

==
being in fact the same as the extreme limit of the equation
1 before expressed in (4) or (5).

II. In an equation containing infinitesimal quanl:mes of any
arder, all infinitesimals of higher orders may be omitted.

For example, in the equation (2) if Az become an infinitesi-
mal dz, the terms du, P dz will be infinitesimals of the first
order, and the other terms will be infinitesimals of higher
orders. Therefore, omitting these, the equation will become

du =Pdaz.

This evidently follows by first deducing the equation (3) and
' then taking the extreme limit as before.

III. In comparing two infinitesimal quantities, if they are of
the same order they will have a finite ratio to each other, but
'if of different orders the ratio will be either zero or infinity.

" For example, let A dz™, B dz™ be two infinitesimals, both
of the mth order with respect to dz, then

:
%%:%.nﬁnitenﬁo.

_Again, let Adr®+», Bdz™ be two infinitesimals of the
Ab
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(m+n)th and mth orders respectively, then

m+n. n
A];hdl,,. = Af; » an infinitesimal of the ath order,

AB"JJ _d:.:“,; = —ﬁ%z-" , an infinity of the sth order;

_ and, at the extreme limit, these become

A dgmin Bdz™
Bam =0 Adgmin = ©

(9.) The method of determining the position of a tangent
to a plane curve supplies an elegant geometrical elucidation of

the signification of the differential co- 8
efficient of a function. Let APB be ? 9 —*
a curve line; P a point in the curve Hoe—ie B
the coordinates of which are AD =2,

DP =y; Qanother point in the curve 2“Z{™ >
the coordinates of which are AD =2 \

+A42,DQ=y+ Ay; and suppose the curve to be deter-:
mined by an equation of the form y = f, any fanction of &.
Then from what precedes,

Ay=PA:+QA:’+RA:’+&c.
%:P+QA=+RA:§+&¢.

In the diagram, Az =PG, Ay = GQ, and therefore

Ay —
ag = A L sPG. Consequently

tan L sPG=P+ Qaz+Raz?+&c. ..... (a)

From this equation we infer that if Az be taken less and
less towards zero, the value of tan s PG will approximate to
the differential coefficient (P) as its utmost limit. For the
geometrical limit of the angle s P G, as Az decreases, we may
suppose the point @ to appreach nearer and nearer to the
point P, and watch the progress of the line »s which passes 1
through them, or we may suppose the line re¢ to turn |
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| gradually about the fixed point P, so that the intersection Q
shall proceed towards P. The former of these suppositions
will lead ultimately to an indeterminate result, whilst the
latter will proceed at once to the extreme limit. Thus on
the former supposition, when the point Q finally arrives at the
point P, and the two points become one, it is evident that an
indefinite number of lines can be drawn through them, and
therefore that the position of the line rs is so far indetermi-

nate. But on the other supposition, if the motion of rs be
conceived to cease the instant the point Q arrives at the point
P, it will then assume the position of the tangent R 8, which
touches the curve at the point P; and this is obviously the
only position which can obey the law of continuity amongst
the positions that precede it. If we now suppose the motion
of r & to continue onward, it is evident that it will begin to
intersect the curve on the other side of the point P, or between
P and A, and that the positions will then have reference to
negative values of Az. The line rs will thus pass through a
continuous series of positions as A # gradually diminishes from
positive to negative values; and when Az = 0, though the
position, as depending on the two points through which it has
to pass, is then indeterminate, yet the position R S is the only
one that can partake of the continuity existing amongst all the
others, and the angle SPG is the only one that can partake of
the continuity existing amongst the preceding and following
values of that angle. Now, according to the equation (z), the
series

P4+ Qaz 4+ Rax? + &e.

strictly corresponds with the value of tan s P G for every value
of Az except zero ; and hence as the values of this series as Az
passes from positive to negative values are wholly continuous,
and consequently, when Az = 0, the first term P partakes of
that continuity, it is conclusive that

—p=%
tanSPG—P—E; LI oo(ﬁ)

T
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which may be either considered as a fraction whose numerator
and denominator are the differentials of the ordinates, or the
differential coefficient of y considered as a function of .

By this result it is evident that the differentials of the ordi-
nates z, y may be relatively conceived as represented by two
small coordinate lines Pm, mp terminating in the tangent at
a contiguous point p,

(10.) After what has now been explained the student will
mot fail to observe that the leading principle of the Calculus
-arises out of the following considerations : '

‘When a fraction, which in a particular case takes the inde-

terminate form g, expresses the value of a quantity which we

have reason to know from the nature of the subject does not
become discontinnous in that case, or generally when such a
fraction enters in any equation, the other terms of which are
not discontinuous, the fraction is, under such circumstances,
necessarily limited to continuous values, and consequently,
when the numerator and denominator vanish, it must take the
particular limiting value assigned by the law of continuity. It
'is on the ground of continuity alone that the mathematical
accuracy and logical rigour of the principles and applications of
the Calculus may be considered to rest. The fundamental
principle of our operations, according to the theory of limits,
consists in this, that if the increment of a fanction be divided
by the corresponding increment of the independent variable,
then as the increments are taken less and less towards zero, so
will the quotient approximate in value to the differential co-
efficient as its utmost limit. ‘Thus the differential coefficient
is that particular value of the vanishing fraction which con-
forms to the law of continuity amongst the other values: and
since this is the identical value of the fraction, which always
enters as the subject of investigation, the truth of the principle
on which the Calculus is applied, in the case of limits, may be

clear and satisfactory to the understanding. R
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(11.) There is yet another mode of laying down the first prin-
ciples of the Calculus, which, at the onset, has the advantage of
obviating all considerations of infinitesimals and limiting ratios,
30 as to bring the subject within the scope of ordinary Algebra.
This method, commonly called “ the method of derived fune-
tions,” is presented by Lagrange in his ¢ Théorie des Fonctions
Analytiques,” and the investigations, which in their nature are
purely algebraical, are at the same time elegant, systematic and
logical. In substance this method is equivalent to the following :
~ Let & denote a small accession to the value of a variable

quantity 2 which thereby becomes of the value » + 4; and
suppose the binomial function f (2 + £), when' developed
according to the powers of %, to be as in equation (1), viz. :

f@+B=fz+Ph+ QA%+ RA® + &e.
in which P, Q, R, &c., as before, denote new functions of 2
‘whose forms depend wholly upon that of fe.

Then the coefficient P, which is identical with the differen-
tial coefficient, Lagrange defines to be the first derived func-
‘tion; he designates it by f'x, and observes that it is quite
independent of the value of 4. By treating the derived
function f'z in the same manner, that is, by expanding
J'(= + &) and again taking the coefficient of &, a second derived
function, designated by f"z, is obtained; and this process is
further supposed to be successively repeated to third, fourth,
-&c. derived functions.

(12.) These definitions being premised, the more immediate
‘objects of the calculus of derived functions are :

1. The form of any function fir being given, to determine
the forms of the derived functions, and to effect generally the
form of the development of the binomial function f(z + &),
with other problems relating to the expansion of fanctions.

2. The form of a derived function being given, to ﬁnd
that of the original or primitive function, &ec., &c.

The problems comprised in the first of these are equivalent
to those of the Differential Calculus ; and those of the second,
which refer to the inverse operations of the Calculus, .are in
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effect the same as the inverse processes of integrating differen-
tials and differential equations in the Integral Calculus. And
these abstract analytical problems, which embody the essential
principles of the Calculus as an instrument of investigation, are
thus established without introducing any ideas relating to
infinitely small quantities or limiting ratios, all considerations
of small quantities being in fact deferred to their legitimate and
inevitable occurrence when we come to the actual applications
of the Calculus to the various geometrical and physical subjects
which arise in the different branches of mathematical science.

We have here given a brief exposition of the fundamental
principles according to different methods of treatment, because
a knowledge of each of these will be necessary to. enable the
student eventually to acquire a thorough command of the
powerful resources of the Calculus. After a little experience
he will not fail to discover that the collective reasonings em-
ployed in these methods are substantmlly alike, and that they
in reality constitute the same grand unique system of deduction,
only exhibited under different points of view or modified for
the purpose of more immediate adaptation to particular objects
of investigation.

(13.) Before entering upon the manual operations of the
Calculus. or discussing the practical methods of differentiating
functions, we shall here concisely repeat those preliminary
ideas respecting the operation of differentiation, which should
in the first place be distinctly impressed upon the mind :

If, when the variable quantity « increases by an increment
Az, a function % or fz increases by Au or A (fz); then the
¢ differential coefficient™ of the function is determined by
ascertaining the ultimate ratio of the increments, or the limiting

increment function _ Au

continuous value of the fraction ——————— — — or
increment variable  Ax
A(f z)

when the increments are supposed to vanish, and this

differential coefficient is symbolized by -‘Z'i or —~J— d(f z) and
sometimes more briefly by «' or f'z.
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If we further suppose the expansion of the binomial function

f(z + Az), according to the ascending powers of Az, to be
f@+azr)=fz+Pax+ Qaz? + &c.;
then the coefficient P of Az, exhibited by: the second term,
will also be the differential coefficient of the function f(z);
that is,
e ) _
dz

In these relations du and dz may be regarded as simulta-
neous infinitesimal increments of ¥ and #; but this idea is not
always necessary, because % may be either considered as a
fraction determining the ultimate ratio of two infinitesimals or
as an abstract symbolical representation of the coefficient P,
according to the nature of the investigation.

The following examples, in which the differentials are deter-
mined from first principles, will practically explain thelr
operation.

Ezample 1.—Let w= 23 ; then, as the equation is general
for all values of #, when # becomes = + Az it will give
(» + Avw) = (2 + Ax)2 =23 + 22 A2 + Ax2,
From this take away the first value » = 27, and we get

Ay
Au=22Ax + Az? .. v =2z + Ax.

This last equation is accurately true for all values of A,
however small, and the value of 2 2 + Az on the right-
hand side, will evidently change continuously as we suppose
Az to continuously diminish and ultimately to vanish. Hence
making Az =0 and taking the limiting value of the fraction

Au du .
v denoted by e obtain

Z“ 22 .or duy =2zxdz,

which is the differential of the proposed function ¥ = 22,
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Ezample 2.—Let u = 2 + 3a%z; then, when = becomes
2+ Az, . . :
8+ Au= (2 + Az)% + 8a% (x + A2)

=8 + éa’.e +3(22+a%)ar + 3xax? + Axd.
- Reject u = 2% 4 34?2, and
' Au=38(2?+a?)Ar + SxAx? + Axd
A
o —A:
* Hence, as before, making A« = 0 and taking the limit, we
get

=8 (#% + a?) + 3zAz + A22

. g; =38(@2+a?)  ordu=3(s?+a%)dz,
_a?+be,
Ezample 3.—Let u= =7 _
_ a4+ b(z+49)
thenu+Au-- m,md
_a*+br+bar _al+ba (a2 + b)) Az

b guny=yuny vy b=z T (b—2)(b—2z—A2)
Au ‘a3 4 b : )

v G—2)b—2—a2)

Therefore, at the limit,

du  a? 42 __a?+4?
a; =—(—b_:-.lT’ ordu_mdz.

The process of finding the differential coefficient or the
differential of any proposed function is called *differentiation,”
and we proceed in the following Chapters to establish the
principal rules by which we are guided for the purpose of
. facilitating the actual performance of this operation on the
different forms and varieties of functions.
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CHAPTER 1II.

DIFFERENTIATION OF FUNCTIONS.
1. Algebraical Functions.

(14.) A constant quantity connected with a fanction by the
sign of addition or subtraction will disappear after differen-
tiation. .

Let ¥ =P+ ¢, P denoting any function of a variable .
‘When # becomes z + Az, suppose P and « to respectively
become P + AP, x + Aw; then

s+ Au= (P + AP) +ec.

From this subtract =P + ¢ and there remains the in-

Au AP du dP
crement Au = AP. Therefore 22 = agand hence 2=
or du = dP, in which result the constant quantity ¢ does not
appear.

(15.) A constant quantity connected with a function as a
multiplier or divisor will remain as a multiplier or divisor after
differentiation.

Let u = ¢ P, P as before denoting any function of a variable
z; then when w, P take the new values % + Ay, P + AP,
we have

4+ Au=c (P + AP).
From this subtract ¥ = ¢ P, and we get au=caAP

. Au AP

oo X;‘ =C.Z;.
du dP
Hence == ordu=-ecdP.

Similarly, if w = L, we find 3% _ 1 9B o 5, — 9P
c dez ¢ dz ¢
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(16.) The differential of a function consisting of two or more
terms, connected by the signs of addition or subtraction, is
found by differentiating each term separately and collecting
the results with their proper signs.

Let u=P+ Q + R + &c., where P, Q, R, &c. are func-
tions of #; then when 2 takes the value £ + Az, the function
u will become

s+ Aau= P+ aP) + (Q + 2Q) + (R + AR) + &c.

From this subtracting the former value u =P+ Q + R + &e.,
we get
Au= AP + AQ + AR + &e.

'..E—E—A:—Ac T &e
du dQ
Heneed: dzid.ei +&°

ordu=dP + dQ + dR + &ec.

(17.) The differential coefficient of any constant power of
the independent variable z is found by multiplying by the
exponent and diminishing the exponent by unity.

- Let ¥ = 2% ; then when « takes the value z + Az, ¥ + Au
=(z+aa)"

coAu=(z+ AD)*— 2™

To find the value of Au in powers of Az it will be necessary
to expand this binomial ; but the second term of this expansion
will suffice for our present object, and this may be readily
found by means of induction, independently of the binomial
theorem.

First, suppose the exponent n to be a positive integer. By
multiplying successively by z + Az, disregarding the terms
which involve the second and higher powers of Az, and in-
dicating those terms by + &c., we obtain

(x+4a2) =2 +Ax
(®+ ar)* =2* + 2242 + &e.
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(x + ax)3 = 2% + 32* Az + &c.
(z+ar)4 =24+ 42% Az + &ec.
&e. &e.

And generally, (z + Az)*=2" + ns*— 1Az + &e.
The value of Au is therefore of the form
Au=nz*=1Az + QAz? + Raz® + &e.
where Q, R, &c. denote certain functions of # and n. Hence
%:»:”‘1+QA3+RAw’+&c.; \

and this equation is true for all values of A z. By proceeding -
continuously to Az =0 and taking the limiting value of the
fraction, it ultimately gives

-d—!=nz"" ordu=na"—1ldz.
dz

The same reasoning and the same result also obtain when =z,
instead of being considered the independent variable is sup-
posed to represent any function of another variable.

Secondly, suppose the exponent to be a negative integer,

1 1
ors =z ';thenu—FU+As—mmd
Au= 1 1 _(@+anr—an
YEEta @ (@ + An)

. ma*-lazr+ Qaz® +Razd 4 &e.
- " (z + Ax)®

As _ s+ QAx+ Raz? + &c.

Az z® (z + Ax)*
By proceeding as before to the limiting value, this gives

-1
i;-: = — '—'—':—:-n—-= —pr=®~lordy= —na-n-1dz.

Thirdly, suppose the exponent to be fractional, or =
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m
zn; thenw*=s"and nur=du=mae™—1dz

;. du_mam=1  mgm-1 ":E-l
Cdx T pur-1 o mo ry
nra -1 B

m
If the fractional exponent be negative, or u =z *; then u*
=z-"mand nu*-1du = — ma —™~—1dz which in the same
m ""‘,:"'1.

wa) 'vés i‘-‘— —-—=2z
y g d.l‘_ n

The rule is therefore true for all powers, whether the expo-
nent be positive or negative, integral or fractional.
* (18.) The differential of any constant power of a fanction
is found by multlplymg by the exponent, diminishing the
exponent by unity, and finally multlplymg by the differential
of the function.

Let u = P», P being a function of «; then proceeding as in
article (17), only substituting P in place of z, we obtain .

%—nP”“ and dy =aPn -1 4P,

As in the former case, this rule is also true for all powers,
whether the exponent be positive or negative, integral or frac~
tional.

Cor. Hence also —-—_uP" 1 4P

dz
and du = nP"" P da.
dz
(19.) The differential of a function consisting of two variable
factors is found by multiplying each factor by the differential
of the other, and adding together the two products. o
Let u=PQ, the factors P and Q being functions of =.
‘When r becomes # + Az the corresponding values of u, P, Q
will be u + Ay, P 4+ AP, Q + AQ respectively, and then
%+ au=(P+aP)(Q + AQ) =PQ + QAP
+ (P +aP)aQ



DIFFERENTIATION OF FUNCTIONS, 21
o Au=QAP + (P + AP) AQ
Au _ AP AQ
2: = Q5 (@ +aP)
Hence, making the increments vanish and taking the limit-

ing values, we get

de . dP _dQ .

(20.) The differential of a function consisting of any number
of variable factors is found by adding together.the products
formed by multiplying the differential of each of the factors by
all the others.

Let v = P QR, a function consisting of three variable factors
P, Q,R. By considering the function % to consist of two
factors P Qand R, we have by (19)

du=Rd(PQ) + PQdR
=R (QdP + PdQ) + PQdR
= QRdP + RPdQ + PQdR.

Similarly ifu = PQRS, the product of four factors, we
obtain

du=8d(PQR) +PQRIS,
- =8(QRdP + RPdQ + PQdR) + PQRdS
=QRSdP + RSPdQ + SPQJR + PQRdS;
and 4he same process of derivation may evidently be extended
to any number ¢f factors.

(21.) The differential of a function in the form of a fraction
is found by multiplying the differential of the numerator by
the denominator, from this product subtracting the differential
of the denominator multiplied by the numerator, and dividing
the remainder by the square of the denominator.

P

Let wu = &, P and Q being functions of &;
then‘u+Au=5;%1;,md
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au=FP+AP _P_ QaP— PAQ
Q+2Q Q QQR+2Q

AQ

. Au_Qz;— Bz

arT QRFaQ)
Hence taking the limiting values when Az = 0, we obtain

Q4T _pdd
du dz dz 5. QdP —PdQ
d_w=———¢i—- or ""’—“QT_'

The different forms of functions, considered in the foregoing
. articles (14) to (21), comprise all the combinations of quantity
that can be effected by the ordinary operations of Algebra,
" and they will therefore enable us to differentiate all algebraical
functiops, however complicated. We shall now apply them
to a few examples.

1. Let it be required to differentiate u =3z + 2a.

Here, by (14) we must disregard the constant term 24, and

by (l5)weha§e Z—: =3 ordu=3daz.

2. Differentiate 4 =--

.'This being written « = 2 —1, we have by (17),

du el — = __1 ff
ﬂ_—lxz 1=l= —p-3 —2,ordu_-’3-.
3. Differentiate u = 224 + a 28 — 3 a223,

By (15) and (17),

du _  d(z%) d@®) _, 447
iy PRl PRl

=2(42% + a(32%) — 8a%(24)
= 823 4+ 3az?2 — 6ala.

3
4. Differentiate u = 4:"'..
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Here j—:= d(t)—‘}("‘ i- )=6‘*=64/‘—"

. Differentiate z = (a + z) (6 + 2).
By (14) and (19),
du= (b + z)dz + (a +z)d.r.. (a + b+ 2z)dz

or ﬂ=a+b+2z.»
dz

6. Differentiate » = (z — 2)2 (22 + 3).
By (18) and (19),
du=(22+3) X 2(x =2)dr + (zr—2)? X 22dz
=2(x—2) (239—24' + 3) dz.
e ?— 2(z — 2)(21"" 2z + 3)..
7. Differentiate u = a™ 2™ + bnam,
By (15) and (17),
du
dz
8. Differentiate u = (¢ + z) (b + 27) (c + 32).
By (20) we have *
du= (6'.+ 22)(c + 3z) .dz + (¢ + 3z)(a + 7). 2dr
+ (a+.z')(b+ 22).3dr

=am(azn-1) + " (mam-)= namzn—14mbegm=1,

.- ‘-li‘-— &+ 22)(c + 37) + 2(c + 3z)(a + 2)

: +3(@+2)(+29)
=(8ab+bc+2ca)+(12¢+ 65 +4c)x + 1822,
a4 2

a—2

9. Differentiate v =
By 21),

du = (@a—2) xde—(a+2) x.—tk

(@a—2)?
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= (@a—2)dz+ (a+2)dz _ 2ade
(6 — z)3 T (a—a)
du _  2a
"dz T (@—aF

, L4
10. Diﬂ'erenﬁateu:&/:i:. org= E:i:;i'

Here du =
(-2t xt(@a+2)-tde—(a+2)t x —}(a—2)-tde

(e—12)
—(@—2t@+a)- i+(a+:)i(a—z) A
d-t' 2(a—2)
= (a—2)+ (e +2) a-
2(a—:)(a—.r)i(a+:)i (@a—-2)i(a+2)¢

= a
(@a—n)vVad =33

.Otherwise, by squaring, we have % = :t: and, by the
_  2adx
last example, 2udu = (—a——:_)’;
du _ a _ a [a—=z
‘de w(@—a)?¢ (@—apVats

T(@—2)Va—2t
11. Differentiate u = +/ ¢3 — z3.
Write u = (a* — 2%)¢ and by (17), (18),
du=1}% (a® —2%)-% x —2zdz=

12. Differentiate u = v @* + 26x + z’.
Here v = (a® + 25 = + 23)};
o du=14}(a% + 2b2 + 2%)-% X (2bdx + 22dx)
__(+0de
“Va+ bz tad

—zdr’ ;
Vad— o by
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V@ET P (a + a9}

13. Differentiate v = 5 = 3
& x

By (18) and (21)

_ 28 x 3 (a®+ .1'2)1}.@&'— (a? + .19)”' X 3x%dr

du P
du 3% (a®+ .z"’)% {2% — (a® + 29)}
oz z8
3a?
=——0 a® + 28,

Otherwise, writing the funetion in the form
u=(a®+ .z")%.z"' 8, we obtain by (19)
du=2-3 X 3zdzr (a® +z“)‘}+ (a® + z’)% X —3z-+

= 3d.r(a9+.z'2)% {z-3—2-4(a® + 29}

2,4 3 i 3a?
= — 3az-4dr (a® + 2?) =—-—- Va? + 22,

r z

14. Differentiate ¥ = ———— — .
Ve — z? (a’ —_ 4.2)%‘

du__(a’—.z'g)‘}xdr—.rx —(a® —2%)~tadr
= P

—(@®—2%)de + 2%z _  a¥dr

(@ — 29T (@ —a)F

4/a+¢'—4/a—.r
Yata+Va—z

Differential of the numerator

15. Differentiate u =

=j@+a2)-"tde+}(a—a2)-tdr -

__4/a+z+'Va—zd‘
- 2V a¥ =43 ’
B
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Differential of the denominator
=%i(a+2)—tde —4(a—2)~¥dr

_Vatz—Va—z
2+ a? — 22
Therefore by (21) we have J
(Va+z+4/a—x)2+(4/————4/a—.z)9
2(Vata+vVa—2z)va— dz
adr a(a—A/az—.zE)
(a+4/a2—.r2) V=2~ 2V

dz.

du =

Sat —4a%2% — g4
16. Differentiate u = — \/a:——wﬁ L.

Writing (a® — .r’)* for A/ a® — 2%, we similarly have, by
1), .

du =
(a’-—.r?)ix (—8a*x—42%)dr—(8a*—4a?22—a) x —(a2—2?)~dxdr
2l — 22
— =@~ .z-’)(Sa’z+4z3)+(8a4 40222 — .r‘)z dr = 3a%dr
(@2 — 2%} (@—a)f

17. fu=(a—2) b+ 2); thend—u=a—b.

1 3
18. Ifu—-;+;§+ ; then — = —

- du  a®+ 3bax + 522,
19. Ifu=(a“+bz+zg)\/.r;thenz;=—-——2—"—/;———z— J

_ du 38
20. fu=(2 + 2H)V1—2%; thena=—7fﬁ-

22? —a? du _ 3at
2l. fu= o Va2+z§;thenz—m~
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(a + z ) du 3a?
22. If —_—3 th dz— _.7:‘— (12-}-1".

23, u= (32% — 2a%) (a® + 29}
then ——1513Va2 + 22,

(22.) Expressions under the form of square roots are of
very frequent occurrence in analytical investigations, and their
differentiation, according to art. (18), using } for the exponent,
suggests the following simple and expeditious rule :

The differential of the square root of a function is found by
taking half the differential of the function and dividing the
same by the square root of the function.

This useful rule may be practically applied by the student
to Nos. 11, 12, 14, 16, 20, 21, of the preceding examples, and
it will enable him at once to put down the final result in all
ordinary cases of this kind.

11. Logarithmic and Ezponential Functions.

(23.) The logarithmic function « = log # depends upon the
exponential relation a* = als* =2, Thusif alos* =z, and
alogy =y, we have, by multiplication, alg#+1lgy = 2y ; but
algEn =zy,

.. log e +logy=log(zy),
which is the fundamental property of logarithms.

The constant quantity a is indeterminate and mav have any
proposed value. It is called the base of the logarithmic
system belonging to it, and, since a' = g, it is evidently the
number whose logarithm in the same system is equal to unity.

Since # = a%, we have 2 + Az = a% * A%, and therefore

Ar qutAu __ qu adv — 1
Au Au =" T

In taking the limits of this equation we observe that the
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Aw . .
limiting continuous value of the fraction ot :“ l, which in

Az 0
common with ™ takes the form 0 when Au = 0, must be a

function of a and independent of Au. Denoting this function
by A a, we have

0
Aa = limiting value of £

1wh1e110=0
8

ﬂ: a*Aa=2zA\a.
du

Again, the equation & = a* gives 28 = g%¢, ¢ denoting any
value whatever. Therefore
¥ —1_a¥0—1_ av—1
A T
This equation is necessarily true for all values of 6. By
proceeding to the limit 6 = 0, u = 0, the continuous values,
from what precedes, obviously give

Az=ula;
cu=logr= Ae
T UEREENT
The value of the function A # may readily be obtained in a
[ —_ 0 __
series by putting =1 in the form it 5 Dy -1
Thus, by expanding according to the binomial theorem and
putting 8 = 0 in the final result, we obtain
Ae=(@—-1)—}(@x—-1)2+}(@=—1B8—3(x—1*+ &c.,
so that the last expression for log # may be written
E=D—3@E-11+§@E—1) -3 @—1)*+ &e.
@=1)—-}@—12+3@—1B3—1(@—1)4+ &ec.
These equations apply generally to a system of logarithms
having any value a for the base. According to Briggs’a

system, on which the logarithmic tables in common use have
been calculated, the base a = 10, which greatly facilitates the

logz =




DIFFERENTIATION OF FUNCTIONS. 29

use of the tables in arithmetical calculations which involve
decimal numbers.

(24.) If the value of a be so assigned that A e = 1, we shall
have logz =2z, and loga=2Aa=1. This value of a will
simplify the analytical relations and give the Napierian system
of logarithms, of which the value of @ so determined is the
base. Hence it follows that the function we have indicated
by X characterizes the Napierian logasithm, To determine the
particular value of a which will fulfil the proposed condition
Aa =1, instead of using the series for A a take the initial form
of this function, and we have

_l=l,when0=0;

.. al
limit of 7

1
. a = limit of (1 + 6)°, when 6 = 0.

By expanding according to the binomial theorem, we find
1 11
: G-t
1+6=1 +}.o+°(0“_)gs
. é 2
101 1
+ .&—_12%— D s

R (1—9)(1—20)

Now, when 6 passes from a small positive to a small negative
value, the value of every term of this series will evidently vary
continuously, and when 6 =0 it gives the limiting value of

1
1 +e°

=1414-= +—-+234+&c = 2-7182818, &c.

This arithmetical value, which forms the base of the Napierian
logarithms, is usually denoted by the letter e, and sometimes
by the Greek letter ¢, and these symbols always represent this
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arithmetical value whenever they appear as roots of exponential
functions.

The Napierian system, from its greater algebraical simplicity
and convenience, is also that which is generally employed in
analytical investigations and formulee ; and therefore whenever
a logarithmic expression occurs, the Napierian logarithm should
always be understood unless the contrary is distinctly stated.
We have thus, according to this system, the following rela-
tions :

0 _
log 2 = limit of z 1, when § = 0.

e = limit of (1 + )% = 2:7182818, &c.

elogs = g,

When u=logz, the expression for % (art. 23) also

becomes % =z, giving du 5%; but we shall otherwise

determine this differentiation in the next article.
(25.) Differentiation of u = log .
When z becomes z + Az, u becomes u + Az, and we have

u+ au=1log (z + Az);
= log (1 + A’)
and, putting -? = 6, we find

“au_log(1+6) 1 { :

. au=log (z + Az) —log.t—log

In proceeding to the limit Au=0, Az =10, =0, we
1
observe that the continuous limiting value of (1 + 6)° = e and
that log e=1. Hence

du 1 dz
&= .anddu—-;-
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Therefore the differential of the logarithm of a variable
quantity is found by taking the differential of the quantity and
dividing by the quantity itself.

The differential of a power, or of the product of several
functions, may be readily deduced from this. Thus if ¥ = z7,
then log # = n log , the differential of which gives i =n d;'t H

.. Z—'; —ng_.nx"‘l the same as in art. (17). Again, if

u=P x Q xR, &c., thenlogu logP+logQ+logR+

&e., and .. d_ = +d§ +— + &c., which gives
dP  dQ
du=u vta Q + ' + &e

=PQR, &. ("P aqQ +&)

which is equivalent to the formula of art. (20).
(26.) Differentiation of u = a*,
‘When x becomes z + Ar we have u 4+ Au = g+ + Az,

é_’f__“""“ _a:_ 'aA-'-—l .
Az~ Az - Ar
But (art. 24) the limiting value of the vanishing fraction
adr—1

, which is of the form ‘-'o—;'—l, is log a; therefore

i—': =loga.a*, ordu =logq.a'd.r.

Thus the differential of an exponential quantity having an
invariable root is found by multiplying together the logarithm
of the root, the exponential itself, and the differential of its
exponent.

Hence, when a = e, or u = e, we have, since log e =1,

du

o =e% ordu=e%dz;
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that is, the differential of an exponential quantity having for its
root the Napierian base e is found by multiplying it by the
differential of the exponent.

(27.) Differentiation of u = PQ, P and Q being functions
of z.

Since u = PQ, we have log u« = Q log P, the differential of
which gives d (log ) = (log P) dQ + Qd (log P); that is, by
(25),

du
v

= (log P) dQ +Q%I:;

. du= (log P) udQ + ng
= (log P) PQdQ + QPQe-14P.

Hence the differential of an exponential quantity when the
root and exponent are both variable is found by adding together
the differentials obtained by considering each separately as
constant and the other variable.

For example, let ¥ = #+?. By considering the root z to be
constant and the exponent z® to be variable, we obtain by
(26) the differential (log z) #+* X 22dz = 22+*+! dz (log ).
Again, by éonsidering the exponént z2 to be constant and the
root # to be variable, we obtain by (17) the differential
z?.2%'-1dr = z#*+1dz. Hence, adding these, we find

du=ax**1dz (2log z + 1) or%:z"“ (Rlogz +1),
The following examples are added as exercises :
1. fu=ame*; theni—';:mm-l (m + x) e*.
‘ — q . du
2. fu=(@?—2z+ 2)e*; thend.;=.z2e«'.
— (23 2 ., du
3. Ifu=(23—322 4+ 62— 6)e*; thend—r=.;-3e'.

e* du xe*
4. fu= 1—+—;; then = m-



DIFFERENTIATION OF FUNCTIONS, 33
5. fu=¢e*logz; then du =e* 1 + log.r)-
dz &3

6. fu=em*loge; then'% = egm# (% + mlog.t)-

1+24 22
du I+
7. Ifu ‘Vl+.t§,thendt W e

ur. Trigonometrical Functions.

(28.) The trigonometrical functions sin «, cos z, tan z, &c.
are usually considered as abstract arithmetical quantities
havmg reference to a circle whose radius is unity ; or, which
is in effect the same, they are supposed to be expressed in
parts of the radius, the arithmetical value of the variable
being supposed to represent the length of the arc measured on
a circle whose radius is unity or otherwise expressed in parts
of the radius of the circle. Other forms result from the
various combinations of these elementary functions, and as
they all involve relations between arcs of circles and their
coordinates they are sometimes called ¢ circular functions.”

1. Differentiation of » = sin .

‘When z becomes & + Az, then 4 + Av = sin (¢ + Az), and

Au = sin (2 + Az) —sin 2
=sin {(» + }ar) + } Az)
—sin {(z + }Az) — } Az}
=2 cos (r + } Az) sin } Ax
=co8 (z + }Axr) ch Ar;

ch ar
Ar

Au .
E:cos(w+-}Az)

Now, when Az and Az become infinitesimals, or when we
suppose Az = 0 with the view of seeking the limit of this

A% becomes a vanishing fraction, and
BS

-equation, the fraction .ch
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therefore it will first be requisite to ascertain its limiting
value. Let ch Az be considered to be the side of a regular
polygon of n sides inscribed within the circle, and we shall
obviously have
ch Az _ nch Az _ perimeter of polygon
Ar ~  nAr  periphery of circle

If the number of sides of the polygon be supposed to be
indefinitely increased, so will Az become indefinitely diminished,
and the perimeter of the polygon will evidently approximate
more and more nearly to the circumference of the circle as
its extreme limjt, so that the numerator of the fraction

perirgeter of P olvgon ooy ultimately become equal to the de-
periphery of circle

nominator ; and thus the limiting value of ChA:'t js hdz

. dz
= unity., Therefore by supposing Az =0 and taking the
limit of the preceding value of % we obtain the ultimate

differential relation

du
— ==co8 &, Or du = dz cos 2.
dz

Cor. The limiting value of s%g =1, when 4 vanishes.
For sind__4ch26 ch26

I 0 29’

‘.’hM'ﬂ, and therefore expresses the same ratio in the limit.

which is of the same form as

2. Differentiation of # = cos «.

Here Au = cos (z + Ar) — cos 2
= cos {(# + }az) + 3 Az}
— cos {(« + }42) — } Az}
= — 2sin (z + } A7) sin } Az
= —sin (zr 4+ 4 Az) ch Az;

ch Az

Au
Ax

A@:—sin (z+ % a2)
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Hence, taking the limit as before,

du .
— = —sin#, ordy= — drsinaz.

dx
Otherwise, since u = cos 2 = sin (3 — z), we have
du=d(}nr—z)cos (37 —u)
= —dzcos }m —2) = —drein 2.
3. Differentiation of ¥ = tan .

sin
Since u = tan & = cT);—’ we have, by (21),

0

cos z dsin # — sin 2 dcos &

du = cos?z
cosx(d.zcos.r)—-smz( dz sin z)
cos?z
2 )
dz(cos .t:-sm .z) d.: = dr secdz.
cos? 2 ~ cos

4. Differentiation of ¥ = cot 2.

cos r
Here x = cot 2 = ——, and
sin »
sin # dcos # — cos z dsin @

du = sin® e

sm.t (— dz sin 2) —cos (d.reos.r)
sin? >
_ Uz (sin® 2 + cos?z)
sin?z

=——i:— = — dr cosec®z.
sin? 2

[ Otherwise, since ¥ = cota = tf}' we have, according to,

: example 2, page 22, and the preceding,
dtanz desecls  dr

- = — = - = = — drcosec?z.
, tan?z tan®2 sin®2 :

du=
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Or this differentiation may be obtained from that of tanz
by putting u = cot # = tan (} # — ) ; thus we have
du=d(Gr—2)sec? (}r—2)= —drsec? (3w —2)
= — dz cosec® 2.

5. Differentiation of u = sec .

Bince u = sec # = ——, we have
cos &

dcosz drsinz
dy= — —— = —— =drtanz secsr.
cos?z ~ cos?z

6. Differentiation of ¥ = cosec 2.
1
Here u = cosecz = ——, and
sin z

dsina dr cosx
== === — — = — dr cotz cosecz.
sin? 2 sin’z

Otherwise, since u = cosec z = sec (3 # — z), we have, by
the preceding,
du=d (} 7—z) tan (} r —2) sec (} r — z) = — dr cot # cosec .

(29.) The differentiation of other more complicated trigono-
metrical functions may be easily deduced from the elementary
differentials here obtained, because all such functions must
evidently result from certain combinations of these with
algebraic functions. As it may therefore be useful to re-
member the results of the preceding trigonometrical differenti-
ations, it will be convenient to collect them together as follows :

dsinw = dr cosz deosz = —dr sine
dtan z = dz sec®2 dcot 2 = — dz cosec®z
dseca = dr tanz sec s d cosec » = — dz cot 2 cosec 2.

They are thus arranged in two columns because the differentials
in the second column are respectively analogous to those in
the first column, o nly using the complementary angle or
substituting 4= — « in place of #; and, this analogy bemg
once recognized, a remembrance of the three differentials in
the first column will be sufficient to suggest the others. -
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Examples for exercise :

1. Ifu=cosz + z sinz; then%_—..zcosz.
2. fu=cos™z sin"z;

du . .
then;i_ = cos™~1z sin®-1z (n cos® 2 — m sin®z).
z

3. Ifu= (2 + cos?z)sinz; then :_:=‘3 cosSz.

4. Ifu=2zsinz + (2 —2?) cosz; then %:ﬁ sin z.
5. Ifu= (2 + 3cos?z)sindz; then%=15 cosd zsin? 2.
6. Ifu =3z — 3tanz + tan®z; then g-‘r'f—_—~3tan4z.

7. fu= 2cosz+2a:sm.r—z”cos.r' thenj_;_.z?sm,
8. Ifu=3z—cosz (3 sinm+fsm3z); then %zssin“z,

9. If u = e*(cos + sinz); then %: 2e% cos .

1v. Inverse Functions.

(30.) If 2 = fu, a function of u, the reverse relation which
indicates the corresponding value of » as depending upon that
of z is called an inverse function, and is usually written
u=4f"1z. Thus if #=sin u, then v =sin~', and this
inverse trigonometrical function thevefore symbolically ex-
presses the circular arc whose sine is .  Similarly ¥ =log—'z
expresses the number whose Napierian logarithm is equal to 2.
The differentiation of an inverse function follows immediately
from that of the direct function. For, taking u = f~1z, we
have z = fu, the differential of which gives do = duf'y,

du 1 1
dz ™ f'u f’(f“r)
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‘We shall here in this way determine the differentials of the
ordinary inverse functions in their simplest form.
1. Differentiation of u = log—1a.

Since # = log u, we have by (25) dz = -?.;

S S S = -1
.-E;—u_log 2, ordu=dzlog—'s.

2. Differentiation of ¥ = sin—!a2.
Since # = sin u, we have by (29) dr = du cosu;
.. U S - ordu= dz
** dr” cosu 41—z TVl
3. Differentiation of u = cos—~1z.
Since # = cos 4, we have d2 = — du sinu;

LGV 1 _dx
gz sme vz ¥ u——.\/l_,z'

4. Differentiation of u = tan—12.
Since z = tan u, we have dz = du sec®u;
du 1 1 dz
.. y il i T or du=m§.

5. Differentiation of u = cot—1a2.

Since £ = cot u, we have dz = — du cosec?u;
. d_u___ 1 = — ! or du = — ds
** de~  coseciu = 14z Sl g

6. Differentiation of ¥ = sec~1a.

Since # = sec u, we have dr = du tanu secu;

. du 1 1 _ dr

"t dz tanw secu=34/.;3_—‘1’ Wh’"u’?‘ﬁ

7. Differentiation of u = cosec—!z.
Since z = cosec u, we have dz = — du cotu cosecu ;

, du 1 _ 1
dz~  cotucosecu  zA/gl—1
dr
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Here the diffeventials of cos—!z, cot—lx, cosec—lz are
respectively'the same as the differentials of sin~1z, tan-1z,
sec—!z only with the negative sign; and this should evidently
be the case, because is =cos—lz 4 sin—lz =cot—!z 4
tan—12 = cosec ~lx + sec 1z,

Examples for exercise :

1. fu= (2 — 22 + 2)log—'z; then ﬂ =z2log-1z.

-1 -1
log s then du _zlog—'z

2. Ifu=l+a: =0+

3. Ifu=1logzlog—'z; then d._: = (log.z' + ;')log".r.

du 1

" 1
— -1 — . —_————_—
4. Ifu ="an R r + H then = 2(1 2)

| d 1 -l‘
5. fu=tan—'z /1 + 2%; then£= ﬂ—i

\/l«lv-a'§
du sin -!
6. Ifu—z— N1 — 2% sin—lz; thendz ‘:/in__;ﬁ

7. fu= (222 —1)sin—lz + 2 /1 — 2%;
then %=4zsin'1w.

8. Ifu = 2% + (sin—'2)® — 2sin 'z . 2 /T = %;

2 gin —1
then du 4d2?sm—lp

&= fi=a

. V. Compound Functions.

(31.) If in a function « = fz the variable 2 is replaced by
another function ¢ 2, the expression # = f(¢ ), which then
becomes a function of a function, is called a compound function
of z.

Let y = ¢z, so that =7y, and let Aw, Az, Ay denote

N
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\

corresponding increments of u, &, ¥ ; then, as the equation

essentially represents an identity, and is therefore true for all
values of the increments, however small, it must evidently be
true when we proceed to the limit or suppose the increments
to vanish and take the continuous values of the respective
fractions. Hence

du di '
where d—;’ d—i are the differential coefficients of the functions .

u =fy, and y = ¢p2. Thatis, according to the usual notation
of derived functions, .

du [ /
By He=r )¢

ordu=f(¢p )¢ zde.
Similarly, if y = ¢ @, 2 = $y, # = f'2, so that the function u is
of the more complicated form u =f {y (¢2)}, or the function
of a function of a function, it may be shown that

du _du dz dy or _du dz dy
dz~ dz " dy dz’ dz "dy " dz

and these, according to the notation of derived functions, would
be written

% =fz.¥y.de=Ff Gy ¥ (p2) ¢

= GG
or du=f'{{(p2)}¥'(p2) ¢ z.dz.

In the same way the formulee may be extended to any
number of superposed functions, and it is obvious that they
<= all depend upon the following simple principle:
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The differential of a function of any variable quantity what-
ever is equal to the differential coeflicient of the function, with

respect to that variable quantity, multiplied by the differential
of the variable quantity.

Thus if, as before, u = £ { ¥ (¢«) }, by successively apply-
ing this principle, we have
du=f"{{ ()} x d {¢ (pa)}
=f'{¥(@2)} x ¥ (p2) x d(¢2)
=f'{¥ @)} X ¥ (¢2) X ¢'z X dz.

The following examples will practically show the mode of
proceeding here indicated :

1. Differentiate v = log sin z.

By (25) and (29) we have

dsine . drcosx

=——=——— ='drcotx
smao sin
2. Differentiate u = log =1~
erentiate ¥ = gb+.r
a+2\ _ (b+a2)de— (a+ 2)dr
By 1), 4 b+.z')— @ +ao2
' _ (a=Vb)dr
ST+
Therefore by (25) we have
a4z a4+
du=d b+z) b+
_ (a—bde btz __ (a—2bd)dr

Gta2® “ate.  @roG+a)
Otherwise, since » = log (a + ) — log (5 + ), we have

by (25),
du = dr de (a—0b)dr
et bte (@a+2)(b+ )

3. Differentiate u = e*n ¥ sec .
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Here du = secz d (e*i2¥) + e®in#d secuz, by (19),
= sec re®n*dsin z + e*n*dsecz, by (26),
= seczetin®, drcosz + e*d+ drtana sec 2, by (29),
= esin# (1 + tan zsec z) de.

4. Differentiate u = log (v a® + 23 + 2).

dz
By 22), AV EFF B +2) = ﬁﬁ +dz

-

_ (Va¥+ 2® + 2) da
=T vars
Therefore by (25) we have
P _d(va2+zg+z)_ dz
RV~ = BV g
5. Differentiate u = log tan e—~.
Here du = d (log tan e—%)

__d(tane—®)
~ tane—* ’

by (25),
__d(e—*)sec?e—
~  tane—* ° by (29),

_ —dze=*(1 + tan®e~)
tan'e— » by (26),

= — dre—*(tane~* + cote—*).”

6. If u = ametins; theni—t: zm=1(m + x cos z) etins,

du

i = — 2cot3z.

7. Ifu = 2logsinz + cosec®z; then

— esin~ls, du—e.in-l’
8. Ifu = esin™ '+, thendz_m




10.

11.

12.

13.

14.

16.

17.
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Ifu= (22— a2)log +2a.r,

a+x

du
then (_i; =

Ifu=log(1 +2z+2V1 + 2+ 2%);

du 1
then —_—— .
V1i+z+a®
22 2
— -—1____
If 4 = tan T—2 then'h' T7a3"
. T du 1
fu=sin-1 5———; —_——— .
If u=sin It thendz T3
b+a.cosa: du _ Va® —b?
= -1 2. —_——— .
If 4 = cos a+beosz’theud¢ a+ beos
k) d - 3
JMu=sin-1(Bxr —429%); then—— 4/1 -

du_l+a+a®
Ifu=aeton” '* thena—'—l—:}—s——-e ®

Ifu=tan-!sin-z;
then ¥ = !
a7 {14 (sin—'2)2}¥1—2?

vi. Implicit Functions.

(32.) The functions hitherto considered are supposed to be
explicitly expressed in terms of the variable quantity involved,
and upon which its value is made to depend. But a function
u may have its value depending upon that of the variable z,
though not expressed in any definite form, algebraical or other-
wise, and perhaps not capable of being so expressed in finite

terms.

In fact, the relation which connects together the cor-

responding values of » and # may be presented in the form of
an equation, f(u, z) = 0, f characterizing any function what-
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ever of v and 2. The function u is in such cases called an
implicit function of the variable quantity 2. If the equation
f (u, ) = 0 could be solved for  in finite terms involving z,
the function # would then be exhibited as an explicit function
of z; but, as before observed, this may or may not be possible.
A little consideration, however, will show that the differential of
u with respect to # may be more directly obtained by taking
the differential of the proposed equation in its original form.

‘When « becomes z + Az, u becomes % + Az, and as the
equation f (z,z) = 0 must be true for all coexistent values of
% and z, we have f(u + Au, 2 + Az) = 0, and

S+ Au, &+ Ar) ~f(u,2) =0, oraf(u,2) =0;
. Af(u,.r)= 0.
Ar

This relation will be accurately true for all values of Az,
and at the limit Az = 0 it gives

df (u, ) _ i
= 0, ordf(u,z) =0,

which is the differential of the proposed functional equation,
observing that « and z vary simultaneously,  being a function
of 2. This differential equation will be of the form Pdu
+ Qdz = 0, and it will therefore give the value of the limiting

ratio %‘_, or of the differential coeflicient of u with respect to z,

the same being expressed in terms of u and .
Ezample 1.—Differentiate the function u when
w?—2uvVal+ 2% +22=0.
By differentiating the equation, we have
2uzdr

2udu—2«/a”+¢2du—ﬂ-_s+2tdz=0,
or 2(u — NI F ) du— 2B =N+ 4.0
a +.r
du z

*/a‘+:¢"
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In this example the equation u? — 2u V¥ + 2% + 22 =0
involves u in a quadratic, and may therefore be algebraically
solved for u, giving « = Va2 + 22 4 a, which is the explicit
form of the function u, and its differentiation will also lead to
the result we have just obtained.

Ezxample 2.—Differentiate v when u3 — 3uz? + 223 = 0.

The differential of the equation gives

3uldu —322du — 6uxrdr + 6 22dr =0,
or3(u?—2%)dy— 6 (uxr — 2¥)dr=0;
. dli__ﬁ(uz—.r’)_ 2z
dr T 3@—2%  utaz
Ezxample 3.—Differentiate ¥« when zsiny — usinz = 1.
By differentiating the equation, we have

drsinu + rducosu — dusinx — udrcos z=0,
or (rcosu — sinz) du — (ucosz — sinw)de =0;

. du ucosk —sinu
‘"dr” zcosu — sinz

du 22 —au
3 _ 8—=0: aw _ _ .
4. fu*—3auz +23=0; then I T

) . _ du_ sinu— ucosz
5. Ifusinz —zsing + 1 =0; then 7'=—— —zcosu

6. If22+u2—2ava* —u*=0;

du =z a— VI3

e =3 et Vo —ut
du a

7. Ifu-logu—aa:-—o, thena—t—m.

=0; then 2 = 2~
8. Ifze*—u+1=0; thend:_.2_u.
9, Hus—(@+u) Vb —ud=0;

du _ % (a+u)(d*—ut)

'thend-;= x abd 4 o3

.
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10. Ifloga'l'“/ag_“g'—""" Val—u =0;
u a
u
thentl_r::—'\/a —u2 '

vii. Functions of Two or more Variables.

(33.) Let v = f(z, y) denote a function of two variables
wand y.

If instead of = and y varying simultaneously, « be supposed
to vary alone without any change in the value of y, then y will
be treated as the symbol of a constant quantity, and u being
then considered as a function of z only, its differential or
differential coefficient will be determined by the foregoing
methods for functions of one variable. The value so deter-
mined, however, as it is made to depend upon a change in the
value of z without any supposed change in the value of y, will
be only partial, and will not refer to a consideration of the
total change of . In order to distinguish this, the differential

coefficient is usually placed within a parenthesis; thus (d_u)

denotes the partial differential coefficient, and ( dz)‘h the

partial differential of u with rcopect to z, that is, supposing z
alone to change. Similarly, if y alone be supposed to vary

and « to be invariable, (%) will denote the partial differen-

. . d . oy
tial coefficient, and (d_;) dy the partial differential of u with

respect to y. Thege partial differentiations, as before observed,
may be effected by the preceding methods for functions of a
single variable ; first regarding u as a function of only one
variable 2, and again as a function of only one variable y.

The supposition of # or y varying separately, so as to
partially differentiate the function #, is here to be received as
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a mere conventional hypothesis assumed for the purpose of
more distinctly defining certain abstract analytical operations,
to be applied hereafter.

Returning now to the proposed function u = f(z,y), when
z and y respectively become z + Az, y + Ay, it becomes

v+ au=f(z+ Az, y + 8y);

that Au = f(z + Az, y + Ay) — f(z, y), which denotes the
otal increment of , or the combined effect produced on the
alue of the function by the two increments Az, Ay. Instead
of conceiving the values of # and y to change simultaneously,
we may suppose them to change successively, as the result will
be the same in both cases.

Thus, supposing « to become # + Az and the value of y to
remain unchanged, the function f(z, y) will become

f(z+ Az y);
and again, supposing, in this last function, y to become y + Ay
and & to remain unchanged, it will become f(z + Az, y + Ay),
which is the complete value of  consequent on the changes in
the values of 2 and y. The function u instead of passing at
once to this last value is made to assume the three values

f(& ), f(z + Az, y), f(z + b2,y + 4y), and the partial in-
crements of « in successively passing to these values are,

f@+azy)—f(=y)
= Af (2, y) with respect to z';
Sflz+az,y + 8y) —f(=s + b2, )
= Af (= + Az, y) with respect to y :
the sum of which gives f(z + Az, y + Ay) — f(z, y) = Ay,
the total increment of u.

. Aw é_»t.(‘?’ y) with respect to z °
*CarT Az

. Af (z + Az, y) with respect toy Ay
* Ay -
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Hence, taking the limiting values when Az =0, Ay = 0, we
obtain

o _ () | (B

dz de dy) dz’
oo duy= (%) dr + (Z—;‘) dy.

The differential of a function of two variables is therefore
-found by taking the sum of the partial differentials.
(34.) Again, let u = (2,9, z) be a function involving three
variables z, y, and z; then

au=f(z+ Ar,y+ Ay, 2 + 82) — f(2, 9, 2)-

But, instead of considering the values of z, y, z to change
simultaneously, we may, as before, suppose them to change
successively. In this way the function u, instead of passing at
once to the new value £ (z + Az, y + Ay, z + Az), will be made
to assume the four values f(z, y, 2), f(z + Az, y, 2),

S+ an,y +0y,2), f=s+ 82,y + 8y, 2 + 42),
“and the partial increments of u in successively passing to these
values will be

Sf+arny 2)—f(ny 2)
= Af (z, y, 2) with respect to z;
S+ oz, y+ 8y, 2) —f(z + Az, 9, 2)
= Af (¢ + Az, ¥, z) with respect to y ;
St any+oy, s+ 82)—fle+any+ay,2)
= Af (¢ + Az, y + Ay, 2) with respect to z:
the sum of which gives . ‘
S+ ar'y+ay, 2+ 82)—f(5, 9, 2) = Ay, ‘
the total increment of u. y

, Au_ Af(z,y, 2) with respect to x 2
‘Az ar
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Af (z + Az, y, 2) with respect to y Ay
Ay Az

Af (z + Az, y + Ay, z) with respect to z Az
Az ‘Az

Hence, proceeding to the limiting values when Az=0, Ay =0,
Az = 0, we have

2=+ G2+
- d,,_< )+ (2 )dﬁ(g_g)d,.

The differential of a function of three variables is therefore
obtained by taking the sum of the partial differentials; and

this principle evidently extends to functions of any number of
variables.

Ezample 1.—If u = rlogy; then supposing  only to vary
we have

1 d su Iy to v @)—‘3
(dx =logy; and supposing y only a.ry,(dy =

. du= (logy)dz + G) dy.

Ezample 2.—Ifu= 2%+ 3azy + y3;

d; du
ten (%) = 3o + 0y, (3) =307 + as);
codu=3(22 4+ ay)de + 3(y? + ax)dy.

-E.tample 3—Ifu= a%

t“""( (z+y)’B )"' (z+y)’"

2 (y dz — z dy)

i FE

c P ——
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4. fu=z+y+Na? +y%;

en = (14 )i+ (1 + o)
then du +~/?‘T? + +«/z“+y2 dy
5. If u=a¥; then du = (y2¥~1) dz + (2% log z) dy.

6. fu==zy vVa? +y%;

@222 +yYyde + (2® +2y7) 2dy
4/?’+y’

then du =

7. fu= then du =

yn+l

(mydz'-— nazdy).

”’
8. Ifu=coszsiny + sinzcosy;

then du = (dz + dy) (cos z cosy — sinz siny).
9. Ifu=2va® + y° + yvb® — 22; then

g Ty
da=(\/a‘+y’— b”—zb'h
zy NI — 22
'+( aT__+y2+ b% — 2% ) dy.

10. fu=u=zyz; thendu=yzdr + zady + zydz.
11. fu=2y+yz+22;
thendu=(y +2)dz+ (z + 2) dy + (x + y) dz.

19, Hu=Y"EP 12
zyz
C+E L@@
z y z
then du = —

zyzVa?+y3 4 23

13. Ifu=y—z;
z—x

thon dy = Y= Do+ Gy + @ =y)ds

(z—2a)?
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CHAPTER III.

SUCCESSIVE DIFFERENTIATION.
1. Functions of One Variable.

(35.) By differentiating. a function v =f=2, of a variable
quantity &, it has been shown that the differential coefficient

g_: will be another function f'z, and the methods of deter-

mining it have been established in the last Chapter. By
similarly differentiating this new function f'x so as to obtain
its differential coefficient denoted by sz, this is called the
second differential coefficient of the original function fz. In
like manner if we differentiate f"'z, itz differential coefficient
Sf"z is called the third differential coefficient of the function
f#; and, provided the variable quantity # does not disappear
from these functions, this operation may evidently be repeated
to any order of differentiation. This continued process is
called successive differentiation, and it is indicated by the

following relations :
i)
du { ( }
o (&)

f’t = fl"
which may also be thus expressed,
_ddu L, dddg
flz___’ fll __ f dz'dz Ce

According to Lagrange, fr is the primitive function, ‘and
S'a, f'z, f"z, &c., thus determined, are respectively called
the- first, second, third, &c. dérived functions.—See art. (11).
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Although in the original idea of differentiation as founded
on the theory of limits, a differential can have only a relative
signification, yet, when separately considered as an infini- {
tesimal change of the variable, it may in analytical calculations |
be regarded and operated upon as an indeterminate quantity,
the value of which is only appreciable when it is compared
with other quantities of the same order or kind.

Thus the differentiation f'z = g—: merely defines the value

of the ultimate ratio of two infinitesimal elements du and dar,
and, in other respects, we are at liberty to assign any law
whatever to the separate values of these elements as depending
upon z. We might suppose the values of du and dz to be
each of them different for different values of z, so as to change
when 2 changes. It will, however, conveniently simplify our
notation if z be taken as an independent variable ; that is, if
we suppose the infinitesimal increment dz to have the same
fixed value for all values of z, so as to admit of being treated
as a constant. In this case # is tacitly supposed to increase
by equal infinitesimal increments dz, and dz is thus independent
of the value of z; but the value of du = dzf'z will evidently
depend upon that of # and be different for different values of
2. Hence the reason why z is in such case specially called
the independent variable ; also as the invariable element dr is
to be regarded as a constant in each differentiation, the fore-
going relations obviously become

d (du)

du d {d(du)} ‘
f’.‘l.‘ — d,_t’ f”.z' fm d‘té__ , &ec. '
Or, in accordance with the general index law, these are more
conveniently written

= %’ f"z f”’ - _d_al" &e.

udu d3u

And thus the symbols ) o

&c. represent the first,
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second, third, &c. differential coefficients of » with respect to
@ ; or separately considering the numerators and denominators,
du, d?u, d3u, &c. denote the first, second, third, &c. dif-
ferentials of « supposing dz to be constant, and dz, dz2, dz3,
&c. as before, indicate dz, (dz)?, (dz)3, &c. or powers of dx.

Ezample 1. Let u = 2™; then % =nan-1,

d?u ddu

=" (n— 1) zn-3, 75 = n(n—1)(n — 2) z*-3, &c.,
Z—Tu_n(n—l)(n—‘))(n 3).....1=123....n
Ez.2. Let u = e”; then by (26),

du " diu d"u

A =e? — o =e% ... o =e*.

Er. 3. Let u=cosz; then—‘-l—?=—sin‘r=cos z+1—r),
dz 2

d’u - COSZ = CO0S z+&)
= - 2 )

Sy
‘—;—ﬁ-_smz_cos(.r+§2£), &co ooy

)

Ez. 4. Let u=e*cosz; then
du

— —e*cosz — e*sinzr = e* (cos s — sinz
A ( )
= /2 e*cos (J' + :{)

g%‘: \./‘2‘3: {cos(z + g)—sin (z + g)}
2
= (V2)2 e cos (x + T’)
| &c. &c.

| e (< + 5),
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Su
Ez.5. Ifu=2%+as?+bz+ec; then%—l23
Ez. 6. Ifu:sin.r} then%=sm @ + "__2‘[}

Ez. 7. If u=em*;

emns,

Ez.8. Ifu=uze*; then“iT (= + n) e*.

Ez. 9. Ifu= e-'sinw;

then & o (W2)mersin (= + _..)

1+.z' dw 1.28....n

Bz 10. Tu=177; then gt = 7=

11. Changing of the Independent Variable.

(36.) When an expression involving two variables #, y and
the successive differential coefficients has been arrived at on
the supposition that one of the variables is independent, it is
sometimes required to transform it into its equivalent when
the other variable is independent. This process is called
changing the independent variable, and it is accomplished by
replacing the second and higher differential coefficients by
their complete values supposing no independent variable to be
assumed, and afterwards introducing whatever new condition
may be necessary.

2 3
'I'hus if i_,y, Zzy , &c. have been calculated with respect to

z 83 an mdependent variable, to replace these coefficients by
the general values when z is not independent, and therefore dz
not constant, we shall have, art. (21),

_3! ( d’y dz — d%z dy
dz? drd )
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d2
afey
diy _ \is?
dz3 = dr
(d’ydd: d3z dy)dz — 3(d%y dz — d’zdy)d’c
- dz®
&e. - &e. &e.

P . d?y d3 y
By substituting these values in place of ¥ ¥ &c. we shall

obtain the corresponding expression when nelther z nor y is
supposed to be an independent variable. If y is required to
be an independent variable in the new expression, we must
make d?y = 0, d®y = 0, &c., in which case the equivalents
will be

dly_ _dzdy
dz? dz3
ddy _3(dPr)’dy —d% dydr ,
s = da®
&e. &c.

by the substitution of which the independent variable will be
at once changed from z to y.

11, Functions of Two or more Variables.

(37.) In art. (33) it has been shown that the total dif-
ferential of a function of two variables is obtained by taking
the sum of the partial differentials, supposing each of them to
vary alone. That is, if ¥ = f (z, y), we have

du = (@ dr + (ilf) dy.
Asthe partial differential coefficients ( ) ?) are also func-
Y

tions of the two variables z, y, it is evident that the value of du
will admit of being differentiated again in a similar manner so
as to obtain d%, and that this operation may be repeated up to
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any required order of differentiation. To exhibit the results
of these processes it will be requisite to extend our notation.
When a function  is successively differentiated with respect
to z, considered as an independent variable, the results,
according to the notation of art. (35), are thus indicated,

du d?u\. [d3u
d—.r)’ Zr—z)’ ) , &c. &c.

The same with respect to y are

du d?u d3u
d_y)’ W’)’ d_s)' &c. &c.,

the brackets indicating, as in art. (33), that the derived func-~
tions are only partial.

But we may differentiate, in succession, sometimes with
respect to one variable and sometimes another, in which cases
the notation usually adopted is as follows :

2
d% (Z_") is indicated by (dr"_;‘y)

(d ) is indicated by du ),
dz? dy

&c.

where the numerator shows how many differentiations have
been taken, and the denominator shows the variables employed
. in the reverse order of the operations. We proceed to show
that the resulting values of these successive partial derived
functions are independent of the order in which the variables
are supposed to change.

The operation .of differentiating a function ¢ () is defined
by the relation

d6() (2 ds) — $(2)
dx dz

ord% ¢(x)=¢

By applying this to the function ¥ = f(z,y), first with
respect to # and then with respect to y, we have
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_f(z+dzy) —f(w,y)

dz dz
_f@y+dy)—f(a y)
d.'/ dy

and by again applying the same principle to these functions,
we get

a (&) _
dy \dz) —
fle+do,y +dy) —f(zy +dy) —f(z+de,y) +f(29)
drdy
g (&)
de \dy) —
fzt+dey+dy) —f(z+de,y) —flz,y+dy) +f(ny)
dzdy
Hence, as these expressions are alike, we have
d (du (
dy \dz
that is,

- Ge)-Es)

This property is true when u is a function of any number of
variables, because when « and y alone vary, the other variables
only enter in the same manner as constants, and as regards the
operations performed, » may therefore be considered as a
function of only two variables. Hence it follows that in
calculating partial differential coefficients we may always
interchange at pleasure the order in which the several dif-
ferentiations are performed, without altering the results.
Thus when u = £ (z, y), we have also

d3u ) )_( d3u )
dydz?) = 2dy dy”dz ~ \dzdy?)’

and generally, when « is a function of two variables,
° ¢cb
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drtsy drtey
dy'dr') ( 'dy)

drtey drtstiy drtay drtstiy
&5 =) 5@ = (@)

Ezample 1. Let u = 2siny + ysinz; then

(d—u =siny 4 ycosa, (@)—wcos + sina;
dl' - y y td dy - .'/ ne;

. d%u : d?u
KN (W) = cosy + cos 7, (d.T@) =cosy + cos z,

which two results are identical.
Ez. 2. Let w=22%% + oty ; then

2 4 40
(dyMr) (etr dw) (dzdwdy)" 2@+ 9.
(88.) The general property established in the last article

will assist us in the successive differentiation of a function of

two or more variables. Let u =f(z,y), a function of two
variables ; then, art. (33), its first complete differential is

du du
In proceeding to the next differentiation it must be observed

that the coefficients (g), (%) are generally to be considered

as functions of both variables, and to separately admit of being
differentiated in the same manner as the original function u,
by adding together the partial differentials. Thus we have

du d (du d (du
d E‘)_Z; dx de + dy d.r)dy
d2u
(dx" (d.r dy) 4,

d (du
() dax\dy +dydyd"
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d?u
i )d + (‘Ty-é dy.

Again, if we adopt the principle of general differentiation,
and suppose dz and dy to be variable, we shall have, art. (19),

NIE AN
::_';)dy} =dy. d(%) + (Z—: d?y.

The sum of the left-hand members of these is the differen-
tial of the value of du, and is therefore equal to d?s. Hence,

adding together these two equations and substituting the
. du du .
preceding values of d (E;)’ d(d_s;)’ we obtain

d2u d% d?u
Qg == [ —— 2 + —_— padihoy 2
iy = (d.l’z) dz 2 (d.r dy) fzdy +(dy2) d
dy du )
+( = t] +(— 2 .
dz &'z (dy &y.

~ IThe process of differentiation may be successively carried on
to higher orders in precisely the same manner, so as to deter-
mine general expressions for d3u, d%u, &c.; but as the
formulee for the higher orders become rather cumbrous and
are seldom required, it will not be necessary to give any of
them here.

If the variables # and y are independent of each other, and
their values admit of being connected by a relation of thes
form y = ax + B, so that we may consider both of them to
increase by constant increments ; then dz and dy = a dz may be
both supposed to be invariable. On this hypothesis, d®z = 0,
&c. and d?y = 0, &c. and the expressions become

u —f (w, 9>
du = i dz + (d—“)dy,

d?u
3u=(-— —_— -3 2
du (d.r’) dz3 4 2(dzdy)d.tdy + (dy" dy?,
&e, &e. &e.
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Here the numerical coefficients will be found to observe the
same law as those of the binomial theorem; and the nth
differential may be put down as follows :

( )d 2" + n (.r" =ig )dz"“'dy

— n
2 (’1‘.2 D) dzf—;‘dyz den-3dy?..... + e =) dy*.

The successive differentiations of a function of any number
of variables may be determined in the same way as the pre-
ceding. Let v =f(z,y, %) be afunction of three independent
variables, and suppose y =az + 8, c=d z + £, so that 2, y
and z may severally increase by constant increments ; then we
find

u=rf(2y9,2),

du du du
du= (fr) dz + (—) dy + (—) dz,

2
d2u=(d2 d u d u
+2( )d dz+2( )dz 2(m;)dzdy,
&e.
CHAPTER IV.

EXPANSION OF FUNCTIONS.
1. Functions of One Variable.
(39.) Let u = (z) denote a function of z, and, % denoting
a finite quantity, let the binomial function f(2 + %) when
expanded in terms involving the integral powers of A be

supposed to be
S@+B=f(@)+Ph+ QA +RA + &,
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in which P, Q, R, &c. are new functions of z to be determined
from f(z). It has been shown, art. (6), that the coefficient
P of the second term of this development is the differential
coefficient of the function f(z), and is therefore to be obtained
at once by differentiation. The other coeflicients Q, R, &c.
may be similarly determined by means of successive differen-
tiation. Thus, by differentiating successively the above form
of expansion, we get the following equations :

f@+h)=P+2Qk + 3RA?+&c.

flz+k= 12Q +23RA + &c.

S+ k)= 1.23R + &c.
&e. &e.

As these must be true for all values of %, by supposing the
coefficients P, Q, R, &c. to be finite in value, and making
A& = 0, we obtain,
f@®=P flx)=12Q f"(z) = 1.2.3R, &c. &ec.;

e f@ _ @ (@)
T P= R=T3> R=133 &

Hence the expansion of f (z+5h) is,
FE+N=F6) +7@F +1'6) 15 + 1) o + .

&ec.

d’s k3  d%« A3
g+ T2t e 123
which is Taylor’ s theorem, and is one of considerable import-
ance.

In deducing it we have in the first place assumed without
proof that the function is capable of being developed in the
proposed form. The mere fact of obtaining an intelligible
result will, however, be sufficient to establish the truth of this
supposition.

We have also necessarily assumed that all the coefficients

-—u+ + &c.,
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P, Q, R, &c. should be finite, as the reasoning evidently ceases
to be conclusive when any of these coeflicients become infinite
in value. When one of these coefficients becomes infinite in
value, we shall find that all the coefficients which succeed it
will also be infinite in value. Whenever this happens, which
can only be in particular cases and for particular values of 2,
Taylor’s theorem is commonly said to fail; but it may in
such cases be more properly said to be inapplicable, in conse-
quence of the impossibility of exhibiting the complete expan-
sion of the given function in the required form for that par-
ticular value of . We shall hereafter give a more satisfactory
investigation of the development in a modified form, so as to
obviate any want of generality or of logical accuracy that
would otherwise be experienced in the many important appli-
cations of this celebrated theorem
(40 ) By making # =0, Taylor’s theorem becomes

£ (#) =£(0) +f’(0) + f”(0) + SO 5 2 =+

Or, substituting « for A,
X . .
F@=AO0) +F0) § +110) 15+ F"(0) 55 + &e.y

which is generally known as ‘Maclaurin’s theorem,” and is
useful for the expansion of functions in powers of the variable.
. Professor De Morgan has observed, that Maclaurin was
anticipated in the use of this theorem, and it has in consequence
been latterly called < Stirling’s theorem ;> but of this it may
be remarked, that it is an obvious and very easily deduced
particular case of Taylor’s theorem, of still earlier date ; being,
in fact, merely the development of f(.z') considered as a
binomial function (0 + ).

11. Theorems which Limit the Values of Functions.

(41.) Let f(z), f(z + %) be two values of a funetion which
varies continuously between « and # + & ; then if any value of
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z between z and # + A be substituted in the proposed function,
the result will be an intermediate function. For example, the

fanctions £(s + 44, /(e + &), f(.r F o h) are all

intermediate functions with respect to f(z) and f(= + %) ; but
it does not necessarily follow that their values are arithmeti-
cally intermediate between f(z) and f(x + A) unless the
function between these limits either continually increases or
continually decreases. If, however, z be supposed to vary
continuously and to take every possible value from ztoz + A,
and V, o denote respectively the greatest and least values of
the function between those limits, then the value of every
intermediate function will obviously be comprised between
V and o,

(42.) When a variable z takes m progressive values r,, 2,
X3 ee...&m, let the corresponding values of a function u
= f(z) be denoted by u,, ug, us..... um; then if the
function be continuous in value from %, to %, we shall have

u, +ugtug;..... + Uy, =mugm

where 4 is some arithmetical value between zero and unity, so
that the value of ém is between 1 and m, and u oy, is a function
of z intermediate with respect to u, and .

Let V, v denote the greatest and least values of the function
u when z is supposed to pass continuously through every value
from z, to &,, 8o that u,, u,, ¥y .....un, are severally
comprised between them, that is, less than V and greater than
o; also let the sum of these m functions be denoted by m (u),
then '

V+V+V & tomterms =mV .....(1)
U, +u, %y e, tup=m@).....(2)
v +v +0 &c.tomterms =mv ..... (3).
On inspecting these we observe that the terms of (2) are

severally less than the corresponding terms of (1) and greater
than the corresponding terms of (3), and therefore the total
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value of (2) is less than that of (1) and greater than that of
(3). That is, the value of (x) is comprised between V
and v, and is therefore a value of the function between these
values. Hence, as V and v are each intermediate with respect
to u, and %pm, (%) must necessa'rily be the value of an inter-
mediate function with respect to v, and %,,, and may therefore
be represented by %gm, 6 expressing a numerical value between
zero and unity.

It will be observed that the basis of this proof is the evident
proposition that when, with respect to certain functional
limits, a value is arithmetically intermediate it must also be
functionally intermediate, provided that the function is con-
tinuous between the stated limits.

(43.) Let f(z) be a function of z, continuous and finite
from 0 to x, and ‘which vanishes when # = 0; then will

S (@) =af'(6a),
where 4 is some arithmetical value between zero and unity.
Suppose # to be divided into a number (m) of parts, each
equal to dz, so that m dz = z, the number m being indefinitely
great and dz indefinitely small. Then, according to the first
principle of differentiation,

L0 +ds) —£(0) =
f(dz + dz) — £ (dz) =
) —/( = f"(dz)

f(2dz + dz—f@ &) _ roa)

f(3h+d;2—f(3¢h =f(3dz)

&e, &e.
dz) — —Ddx
f(mds) fir(m YA} _ 1y i)

Hence, observing that m dz = z, the sum of these equations,
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according to (42), gives
L@ =SO) _ oo,

. or, since £(0) =0,
S(@) =mdzf'(6z) = zf'(62).
Cor. If a function f(z) be continuous in value from 0 to z,

and also vanishes at each of these limits, so thgt SO =0,
* S (®) = 0; then, by the preceding theorem,
zf'(6x) =f(x) =0
oo f(62) =

That is, if £(z) vanishes at both of the values 0 and 2, the
derived function or differential coefficient f’(z) will vanish at
0x, some value between O and 2.

(44.) If £ (%) a function of 4 together with its first n derived
functions be finite and continuous from 0 to %2; and if more-

over the function and the first » — 1 of these derived functions
severally vanish when 2= 0; then -

FB) = Ty fO6),

where 6 is some positive anthmetwa value less than unity.
Let % be supposed to be constant and z variable, and
assume

| F(s) = h"f (2) — 2"f ().

Then, since F(z) vanishes when 2 = 0 and z = 4, it follows
from the corollary to (43), that the derived function

F(a) = A"f'(s) — nan-1f (B)

will vanish when #=60,A=~%,, where %, is some value
between 0 and 4. But since, by hypothesis, f ’(0) = 0, this
derived function F'(z) also vanishes when z=0. Hence
again, as the function F'(z) vanishes when # = 0 and z = A,
it follows from the same corollary, that its derived function

F'@) =hnf"(@) —n(n —1) 231 (k)
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will vanish when 2 = &,, some value between 0 and 2,. But
since, by hypothesis, /”(0) =0, this function F"(z) also
vanishes when z = 0. Hence, as before,

F'(z) = knf"(2) — n(n—1) (n—2) 2731 (k)
will vanish when 2 = %;, some value between 0 and %,.

By pursuing this process we shall evidently find that
F®(z) =h*f®™(z2)—n(n—1)(n—2)....1/(h)
vanishes when x = 4,, some value between 0 and 4,_;. That

is, substituting for & this last value,

O (h,) — 1.2.3....0f (k) =

oo fR) = N 3 nf(")("”)’

where A, is some ¥alue between 0 and A, which may therefore
be designated by 6k, 6 being an anthmetlcal value between
zero and unity. Hence we have

which is a further extension of the theorem of art. (43).
Since A>h, Db, >hy .. ... kn—1>h, it follows that as the
order n advances, the value of A,, or of ,, diminishes.

11. Limitations to Taylor's Theorem.

(45.) Let R(%) be a function of A which represents the
sum of all the terms after the firs¢ in the expansion of the
binomial function £ (z + &) ; that is, let

fle+ k) =f(@)+R®A),
and suppose % alone to be variable ; then the values of R(A)
and its differential coefficient or derived function R'(%) will be

R®) =f(=+ 8 —f()
R'(B) = f'(z + ).
Therefore as the value of R(%) vanishes when & = 0, if the

.
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fanction £ (z) be continuous and finite from & to » + &, we
have by the theorem of art. (43), or the more general theorem
of art. (44),

R(h) = AR'(6h) = hf'(z + 6R),
the value -of R/(6%) being expressed by substituting 6% for &
in the value of R'(%) ;

f@+B)=Ff@ +hf'@+0)..c.o...Q)
which is the development made complete in two terms.

Let now R(A) be a function of 4 which represents the sum
of all the terms after the fwo first in the development of the
binomial function £ (z + %) ; that is, as suggested by equation
(1), let

S+ =fethf() + RO,
and, as before, suppose 4 alone to be variable ; then the values
of R(%) and its derived functions will be

R®) =f(z+ k) —f(2) —hf'()
R® =f'(z+ 8 —f'@)
R'(®&) =f"(z + ).
Therefore as the values of R(%), R'(A) both vanish when

h = 0, if f(), f'(z) be continuous and finite from z to # + 4,
we have by the theorem of art. (44)

R(k) = R”(eh) = 2f"(.t + 6h);

o fe+ B =1 @) + hf'@) +3 f"(.r +h)...... @,

which is the development when made complete in three terms.

Again, let R(%) represent the sum of all the terms succeed-
ing the three first in the development of f(z + &) ; that is, as
suggested by equation (2), let

S+ B =F@) + A + 12 f) + RO

then the values of R(%) and its derived functions will be
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RO) =f(e+ B —F@) —hf@) — 1 f1(e)
RO) =f'e+ B —f(e) = hf'@)

RI(h) =" + 1) — %)

RY(h) = fs + ). :

Hence, as the values of R(%), R'(%), R"(%) severally vanish
when % = 0, if £(2), f'(2), f"(z) be continuous and finite in
value from « to 2 + h, we have by the same theorem, art.
(44),

hS

R(k) = 1.2.3

o3 N (6h) = ——f"'(e +6h);
o et D =16 + A + 1)

A3 .
+ I.T.3fm(’ +6R) ..., 3),

which is the development completed in four terms.

In like manner, so long as the functions are continuous and
finite in value, may the binomial function f(z + %) be com-
pletely exhibited in any number of terms. Thus, let R(%) be
a function of 2 which expresses the exact residue of the
development after the first n terms, so that

J@+h)=f()+< f’(@) + f”(-') + 133 f”’(a')
25—/ @ + R®.
Then the values of R(%) and its derived functions will be
RB)=f(z + k) —f(z)— éf’(.r —:ﬁf"(z‘) _ -—I‘i-f"'(.t)
1 1.2 1.2.3

hn-1

- teeeeeee -— mf("—” (z)
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2
R() =+ 0= &) = 2 ) = 22 7G) .. ..
hn—2 1)
T ies....a—/ @

R"(h) =fll(4. + h) —f”('t) — %f’”(’) ......
hn—3
~123....a=3/" @
&ec. &e. &ec.

R@-9(k) = f0-9(z + B) — f0-9e) — 2 pra-ng)

RO-D(k) = f4=D(z + k) — f@=(a)
RO(E)  =F®(z + B).
Therefore, when % vanishes,

R(0) =0, R'(0)=0,R"(0)=0,........ R(*-1)(0) = 0;
and hence if £(z), f'(2), /() . ....f®(z) are severally
continuous and finite in value from z to z 4 &, the function
R(%) fulfils the conditions of the theorem of art. (44), which
gives

R(h) = —1

hn
123....n 23, /@ + o)
The development in Taylor’s series, when made complete in
n + 1 terms is therefore

Se@+h=r (@) +7 f’(-") + f”( ) +1 3 3f"”(w) -----

+ g/ +1
where 6 is some positive nnmencal quantity, the value of which
is undetermined further than that it is contained between the
limits of zero and unity. We are hereby enabled to affix
corresponding Xmits to the completion of Taylor’s series after
any number o terms; but it must be remembered, art. (41),
_ that the valie of f®(z + 6k), though functionally inter-
mediate, is not necessarily contained arithmetically between
J™(z) and £ (2 + £). Let V and v denote the greatest and

R™(Gh) =

f &z + 6h)......(n),
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least values of #®(z) which occur from z to z + %, then we
conclude that, by stopping at the ath term, the final correction,
to make the value of the development ezact, will always be

% B
comptised between 75— n Vand 2. s

This formula is Lagrange’s limitation to Taylor’s theorem,
and it should be remembered that the conditions on which it
depends are, that the » + 1 functions f(z), f'(2), f"(2),
'@ eenn.. S™(z) must be severally continuous and finite
in value between the limits z and » + 4. It is not affected
" by any of the subsequent functions f+l(z), f(r+2)(g),
&c. becoming discontinuous or infinite, and it is true when
" stopped at any number of terms, provided only that the
functions are so far continuous and finite. Thus we may
have

Fe+H=f@) +2f+0.h)

=/ @+ E10e) + 1% e+ 0,0)
=f@+270e) + 110 + o + 0,0,
&e. &e. &e.

which equations admit of being made exact by values of 6,,
8,, 6,, &c., each less than unity, so that # 4 64 is in every
case comprised between the limits # and # + %A. By equating

each of these values of f (¢ + %) with the next, we deduce the
following relations,

Fle+0.8) =F16) + 2f"(e + 0,h),
£+ 0,8) = 1) + 2f" + 0.,
&e, . - &e. &e.

FOD (& + Ouma B) = fOD @) +2£@ e 4 61);3

and from these we infer that, when 4 is small,
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6,=% 0,=1%, 6,=%....00 =
and they will seldom in any case differ much from these values.

(46.) By making # = 0 in the formula (%), Taylor’s theorem
with limits becomes

A L 4 M
S@) =ﬂ°)+if(°)+1_.2f(°)+123f ©......

34
+1'2“”nﬂ)(8h);

or, substituting « for &,

A=) =£0) +1£1(0) + :—;f’(O) + i%f”(O) ......

and this equation, which is necessarily exact for some value of

0 less than unity, is the corresponding limitation of the theorem

of Maclaurin or Stirling. The conditions essential to this

theorem are, that the functions f(2), f'(z), f'(z) .....

f®(z) should be continuous and finite in value from 0 to z.
This theorem may also be put under the form

z (du & (d2%u z3 dsuA
“'—"°+i(z; +t13 m) + 123 d—zs)

(d.t" ox

1v. Functions of Two or more Variables.

(47.) Let u = F (z,y) be a function of two variables, and
let it be required to expand F(z + 4, y + %) in powers of
k and k. Take Z = ak and put

U=F@+hy+B)=F(@+hy+ah).
Then, by supposing % alone to vary, U may be considered as
a fanction of one variable 4, and expanded in powers of A by
Stirling’s theorem, art.(46). When % becomes 4 + dh, the
function U becomes F (¢ + % + d&, y + a% + adh), and this
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form is identically the same as if we had supposed  to become
z + dk and y to become y + a dk. Therefore, substituting
dh for dz and a dk for dy, in the formula

d dU
= ()= + ()

we find the differential of U = F(z + &, y + ak), with respect
to A, to be

0= (D)ar+ (D
A () 4o (D).

As this value of % must be a function of z + &, y + ak, it
" may evidently be again differentiated by applying to it the
same formula (1). Thus
d4u_ 44U\ cddvy
dh dh ~ \dz dh (dy di )’
: - . dau .
that is, operating on the preceding value of 7 indicated on
the right hand of this equation,

d’U U d?U o (@
( ) 2a dd‘dy)+a —dy—‘;')...(Q).

In the same way, treating this as another function of = + £,
vy + ak, and again employing the formula (1), the process may
be carried to any order of differentiation ; and we shall obtain

generally

U _ d"U d»U n(n—l) d*U
r7 na (dz"-ldu dzn—3dy®

....... ( U) . (m),
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in which the numerical coefficients are those of the expansionA

of (1+ 2)~. .
Now, by Stirling’s theorem with limits, art. (46), we have
auU\ ‘
U= U,+1( ) ey e IO
h» d»U
tizo dh").‘.

in which expansion the function U and its differential co-
efficients are the values when A = 0, excepting the last, in
which % takes the value 6%k. But when 2 = 0, functions of
x + &, y + ak become corresponding functions of z, y, and
U, and its differential coefficients with respect to # and y
become the same as if the function » had been employed ; also
when % becomes 64, functions of # + A, y + ak become
corresponding functions of z + 0k, y + 6ak. Hence substi-
tuting the values according to the preceding-expressions (1),
@s.c.-. (n), and observing these transformations, we have
for U the following development :

U=F(.t+ll,y+ah)=

O )
)

d'u dry
(@) "(w-'dy) |
n(n—1) . dry
t—g (da»—’dyﬂ)
(52)
esessssta dy };I::»
the value of the term exhibited in the last three lines being

taken when 2 and y become & + 64, y + 9ak, where 6 <1.
D
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—

By substituting # in place of its value a, the formuls

becomes .
=F@E+hy+bH=

u+h(g)+k ‘ﬂ‘)
{h, d’u)+2hk( d’u)}

+ 1.2.... )+”"'_"‘(dc-~ldy)

-1
2R (55

. }
L e
ceesest K dy") ;13:

(48.) In the formula just determined make 2 = 0, y=0,
and afterwards change 4 into » and % into y; then

u=F(-”!l)='“+t(%) +y(§-;)

+12{ (d’“) +2”(dcdy) ty dy’) }

o () (g

ety (”"“)}.,

where we have to make z, y each = 0 in the several functions,
except in the term which occupies the last two lines, where they
are to be replaced by 6z, 8y, 6 being < 1.

Note.—It may here be remarked with respect to expansions,
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generally, that if the ath or limiting term decreases without
limit as » increases without limit, the development may be
then continued without introducing any limiting term.

(49.) If in Taylor's theorem we make % = dz, it becomes

4f (@) , #f(2) | /()

Sz +da)y=f(2) + 12 153 + &ec.;
that is, if u = f(z), }
Usfe+dn=ut B 80, B0 g

This formula represents in a simple form the most general
theory of expansion, and may be extended to the expansion of
a function of any number of variables, under the following
general enunciation :

*Let u=/f(2, y, £, &c.) be a function of any number of
variables, and let 3z, 3y, 8¢, &c. denote arbitrary increments of
the respective variables.

Suppose the function

U=f(z + 8, y + 8y, ¢ + 8z, &c.)
to be partly expanded, and denote by du the terms which
involve the first order of the increments 3z, 3y, 8z, &c.

Then « + 3z, y + 8y, £+ 3z, &c. being substituted for
2, ¥, 2, &c. in the value of 3x and the result again partly
expanded, denote by 8%u the terms which involve the second
order of the increments,

And again, the same substitutions being made in 8%, and
the result expanded, denote by 3% the terms which involve
the third order of the increments, &ec., &c.

Then will :

du 3%
U=u+ T + 2 T 1a3
gnd the values of 3u, 3%u, 8%u, &c. may be determined by
successively differentiating the function u = f(z, y, £, &c.) on

* This theorem was first announced by the author in the Appendix to
‘the ¢ Gentleman’s Diary ’ for the year 1835.
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the supposition that dr, dy, dz, &c. do not change, only
writing 8z, 3y, 3z, &c. in place of dr, dy, dz, &c.; also the
series may be stopped at pleasure by sdbstituting » + 63z,
y+ 0%, z+ 0%z, &c. for z, y, 2z, &c. in the last term,
8 being < 1. '

By making z, y, z, &c. severally = 0, and writing @, y, 2, &c.
in place of 3z, 3y, 3z, &c., the result will be the expansion of
the function » = f(z, y, £, &c.) in powers of the variables.

The preceding developments may all be deduced from this
general theorem.

Ezamples.
1. Expand f(z + &) = (¢ + &)* by Taylor’s theorem.
Since £ (¢) = #*, we have by successive differentiation

fl@=nz",  flx)=n(@m-—1)z""3
S"@)=n(n-1) (n — 2) 2-3, &c.
Hence, by the theorem, art. (39),
(@+hr=a2r+= ‘rn—lh+.'i"_2_2¢u—lhﬂ
s(n—1)(n—2)
1.2.3

which is the formula of the binomial theorem.
2. Expand log (x + £).
Here f(#) = log 2, and by differentiation

Sfl@=2", [fl@=-—1lz"% f"@) =122 &e.
Therefore, by the theorem,

+ 2n-34% + &e.,

t R
S+ =loge+ N =log@+2— 21 B g

which is divergent and inapplicable when 2 < 4.
If we employ the theorem with the limitations, art. (45),

we shall obtain
A
. log (¢ 4- &) =log () +¢+61&
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A8

2(z + 035’

which expressions will be strictly accurate with values of ¢

between the limits of zero and unity. Let =1, then

A
=log(s) + - —

g+ B =at=he P
g+ =1 == r o

By the first of these expressions it follows that the value of
4

log (1 + &) is comprised between % md_—l-,:-h; and by the
second the same value is comprised between the narrower
. . A3 A3

3. Expand the function % = sinz in powers of z by
Maclaurin’s theorem.

By differentiation,

d3u B«
— = Co8 T, 3= —ens o8 = —coss,
dly du
F:mz, m =Ccosa, &e.

which, when z = 0, respectively become 1, 0, — 1, 0, 1, &c.
‘Therefore by the theorem, art. (40),

8 zb
123 ti2345
Or, by the theorem with limitations, art. (46),

&e.

sing=2—

3
sin::zeos&:::—-:—2sin0,r; where §, <8<,

and which may be similarly expressed in any required number
of terms.
4. Expand u = cos z, in powers of z.

du . d%u
Here L= s = —coe,
U du
de:lm.r, E—;:coa:, &e.,
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which, when = 0, become 0, — 1, 0, 1, &c.;
1 23 x4 &
Soesr=lTTetiaa T o
Or, with the limitations,
28
cos.r—l—:smo.r_l—-l—zeoso,r—-&c.
5. Expand u = e* = log—'z in powers of &.
dy d%u
By art. (26) we have d—;—e’, dz‘_e &c., which, when
z2=0, severallybeoomoeqnaltonmty

z
"—l+i"‘1 123+&°‘

Also, with the limitations,
e*=1+4+- e"_l-i- +—e"'=&c

6. Letu=2yz, and. expnnd
=(z+8)(y +3)(z+ &)
by the general theorem of art. (49).
By operating upon % = zy £ with the symbol 3in & manner
- analogous to successive differentiation, and supposing 3z, 3y, 8z
to be invariable, we have
u=2ryz
Su=yzdr+ z2dy +2ydz
Bu=2s88 + 2y 328z + 22328
3%u = 63zr3ydz,
which substituted in the formula

8 8% 3%
U="+T+ﬁ+m+&c.
we obtain
(+3)(y+ &) (z+3)=2yz+ (ysz+zzby+:ybg)
+ (v 8y 3z +y 828z 4 23z 8y)
+ 3z 8y 3z,

which may be verified by multiplication.
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* (50:) In the series for e#, example 5, replace z by £/ —1;
then

v N e 2
¢ 1+2v-1 12 123 l+129.4+
28 24
=l-15+ti332 %

+(w-— +&c)v—

that is, examples 3 and 4,
eV TT=cose+V—1sing......... .
In this equation replace # by — &, and we have also
e=/"i=cosz—N—1snz.......(2);
C.I-—l +e—lJ—_l
2
. etV 1 — e—a¥ T}
=TV .
which are Euler’s formulee.
Again, replacing # by ma in (1) and (2),
e*-'*’-—‘=cosm.ri'\/—lsinmt.
Hence, as e2=aV=1 = (¢x#¥=1)m we have

cos mz + vV —1ginmz = (cosz + v/ —lsinz)™......(4),
which is De Moivre’s formula and is true for all integral
values of m. When expanded by the binomial theorem, by
equating separately the real and the unreal portions, we may
obtain from it the trigonometrical values of cos ms and sin mx
in powers of cos z, sin &,

In (4) replice # by x4 2rm, r denoting any integral
namber; then

e COBZ = ’

ceeeea (3

(cosz + V—lsiné)':
cos (mz + 2rmz) + v —1sin (me + 2rmn) . . .. (5),
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which is the complete form of equation (4) and is now true for
all values of m, whether integral, fractional, real or unreal;
and both sides will now always contain the same number of
identical values.*

From the preceding values of cos z, sinz, equations (3), it
is evident that all the trigonometrical functions of # may be
expressed in algebraical functions of the exponentials esV=1
and e—*v-1.

'CHAPTER V.

INDETERMINATE FORMS.

(51.) When a function for a particular value of the variable
assumes any one of the forms

0_,2,0 X @, 0o —; 0% ool or 12,

0 o . :
the function, absolutely considered under this singular form,
becomes then essentially indeterminate and admits of having
any value whatever assigned to'it. But if the proposed
function represent a quantity which varies continuously so
that the function up to the particular value of the variable
is subject to a condition of continuity, its value will evidently
be determinable in a manner analogous to that by which we
obtained the differential coefficient of a function in art. (6).

1. Functions in the Form of Fractions.
(52.) Let u = F_((_?) be a function of » which becomes g
when # =a. It is evident that this will arise from the in-
corporation of certain vanishing factors in both numerator and

* An investigation of the general theory of exponential and imaginary
quantities arising out of this last equation is given by the author in the
Appendix to the ¢ Gentleman's Diary’ for 1837,
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denominator. Suppose the resolution of these factors to give
fG) _ (=P
F@ (—aQ

where P and Q are of finite value when # =a. Then by
division we should have
L@ _
F@

and when z = g, this would obviously give for the required
value,

= (r— a)"*'%;

0ifm >n; %ifm:n,oroo if m< .
The elimination of the vanishing factors will in most cases
be facilitated by substituting @ + 4 for 2, so that + — a = &.
The form of % will then be a function of A which becomes

g when A=0. By expanding, if necessary, the numerator

aud denominator of this fanction in ascending powers of &,
and dividing by the power of 4 which is common to them both,
and afterwards making % = 0, the result will be the required
continuous value of the proposed vanishing fraction when
z=a.

(53.) The continuous value of the vanishing fraction may
be otherwise determined by ascertaining in a different’ manner
an expression of its value in a continuous form for values of 2
contiguous to £ = a. Thus when 2 takes the value a + %, we
have by Taylor’s theorem, art. (45), observing that f(a) =0,
F(a) =0,

SfG@+B)  f@+TSG@+OB)  f(a+0h)
Fa+k F@+]F@+0h) )

This equation is necessarily strictly true when £ is of any
value, however small, positive or negative, and if J (@,
Db
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F’(a) do not both vanish or become infinite, the fraction on
the right hand will be continuous in form when A vanishes;
therefore, making A = 0, we obtam for the continuous value,
f() _ f'(a)
....... 1).
F@ F@) o
But if f’(a), F'(a) both vanish, by extending Taylor’s
series to another term, we shall have
A, m o,
@+  fla)+ 7@ + 3@+ 06k
- )
F@+h F@+21F@ + 15F@+0k)
=f(a+ 0")
Fia + oh) °
Hence, if f"'(a), F"(a) do not both vanish or beeome mﬁmte,
we obtain, by making 2 = 0,
L@ _ @ _
@) F) """ ve e (2).

By proceeding in this way, we similarly find that if the
numerator and denominator with their first # —1 differential
coefficients, viz. £(z), f'(), f"'(@) .. . . . f®=V (), and F (),
F@),FF'@)...... F ®=1) (z) severally vanish when # = g,
and the ath differential coefficients £® (z), F® () do not both

vanish or become infinite, then the continuous value of the
fraction will be

f@ _ f®(a)
F@) Fo@ " """ (n).

(54.) Suppose the numerator and-denominator of the fanc-

"I;E ; to be both of them infinite in value when z = a, s0

that it becomes of the form% . Then by expressing the
function by the reciprocals, thus,
1
7 _ra,
F(a)

tion

1
s (9)

e e d
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it will become of the form 0 . Therefore by equation (1)

0
we get, by differentiating the numerator and denominator,
F'(a) '

f@_ [FOP_ ;7@ 1*F@)
Fo - _ 7@ - \Fol7f@’

{f@})
which gives

f@_ S

F(a) ~ F'(a)

This being the same as the equation (I) before obtained,
we conclude that the mode of operating in this case is identical
with that already indicated when the function is of the

form g .
Thus, if after n—1 differentiations the fractions g,éa;
f"(a) j‘"’(a) . Jea) severally become of the form

F”(a) Fi@y """ Fo-i)(g)

- .
‘3. or -. and if {; = Ea; does not become of either of those forms;

then, acoordmg to equation (n),

L@ _ f™G@)
. F(a) F™(a)

(55.) We have therefore the following rule for determining
the continuous value of a fraction which for a particular value

of the variable becomes of the fonng or z. :—Divide the dif-

ferential coefficient of the numerator by the differential coeffi-
cient of the denominator for a new fraction, in which substitute
the given value of the variable. Should this latter fraction

still assume the form 96 or %, the same process may be suc-
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cessively repeated until one or both of the numerator and
denominator ceases to vanish or become infinite in value.
Ezample1.—When £ =0, find the continuous value of

l—co's.r__g
sin®z 0
Here fr =1 — cosz, F(z) = sin%2; and by differentiation,

f@_  sns 1
F'(z) 2sinrcosz 2cosz
which, when # = 0, gives } for the required value.

_ . log sin 2
Ezample 2.—When & = 0, required the value of logsin 2=
_—®
=— .
Since f'(z) = log sinz, F(r) = log sin 22, we have
cosx 2cos 22
f-‘l‘ —, F'(I) sin2z H

. f'(®) _ coszx sin2z

F'(z) 2cos22 sinsx
When & = 0, the first factor of this expression is determi-

-*}, but the other factor‘ln2z still
sinz

te and is e
nate and is 5000

maintains the indeterminate form g, and its numerator and

denominator must therefore be again differentiated, - giving

2cos 22
cosz

, therefore § x 2 =1.

' Ezample 3.—When # = o, determine the continuous value

= 2. The value of the proposed expression is

of -—.- = —, the exponent m bemg a finite integer.
Here we have :—— L@ _ = °—°-, when s =,
F@o) ©
L' @) e _»
F,(I)—F—;,When:—w,

&e. &e. &e.
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S (z) e’
Fmr)  1.23....m

= w, whensr = .

The sought value is therefore infinite.”

. Whene =1, thenl_: _‘1=2.
0 n
‘ef—es 0
5. When = a, then Y _6_..3'.
6. When 2 =0, thena’_b'=%=logg.
7. When2 =0, theni—.——e—:=2=2.
sing 0
sin.r 0 1
. When2=0, then = =533
9. Whenae = 0, then—;sm—'r=(—)=3.
r—sinz- 0
¥ —2 0
10. Whell.t —.1, then H'__l_(;é_;_—-‘t = (—)——— 2.
11. Whenz= 0, then!(—’g-c—.it— L =1
log 2 —®

_ cosar—cosfz __ 0 _
12. When2= 0, thencm 0= F=
11. Functions in the Form of Products.
(56.) Again, if F(z) A(z) be a function of # which, whed
2 = a, becomes 0 X o, it may be differently expressed, as
follows :

Fa) /) =22 = A9,
7(7) T@)

ance, when z =g, F(z) =0, f(z) = », the former of

these will assume the form%, and the latter will assume
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the form %, and either of them may be evaluated by art.
(55). .

Also, if F(r)—f(x) be a function of x which, when
3= a, becomes of the form w—w, it may be expressed
thus: :

1 1
Fo—s0=L0 TG,
1
F@ /(@
which, when & = a, will now become (—(:, and may therefore be

evaluated as before.
Ezample1.—When 2 = ;, required the value of

(1& tanr =0 X .
T

In this example we have
22

2z |
) (1_.‘-..)1;3113: LA
- cot 2
When = 1‘;, this expression assumes the form :—:. and

its value is hence found to be

1 22 _g
T [ 3 _2_
cotr ~ —coseclr o

Esample 2.—When z =1, find the value of —*— —
logz log«
=w -,
z 1 z—1
Here fogz " logz — Togz’

which, when 2 =1, takes the form g, and its value is there-

fore found to be
e |
logz

=z=1.

81l
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2 1

3. Whenz:l,thenl—:;s—l—:;=oo—w=}.

4. When.z =, then e~*logz =0 X 0 =0.
5. When # = 0, then #logz =0 X — o =0.,
1

&
6. Whgnz_l,then;—_—l-—m_oo—ao_-}.
1 1
7. When 2 =0, then—~ ——, =® —@=4.
T Tsin%r 2
8. Whenz =0 then-!--——l——ao—eo—
' "_, ’ 22 ztanz -

111, Functions in the Form of Ezponentials.
(57.) The general exponential function u = F(2)1*) may
for a particular value of # become one or other of the forms
) 00, 0% 1+, 0%, o0 2,

Only the first three of these are indeterminate in their
character: the other two are determinate, and their values
are evidently

o [0 o =]
0*_{m w* ._.{0.

Since ¥ = F(z)/*), we have

_ logu = f(z) log F(z) = log f(") .

S ()
Therefore, referring to this expression for log u,

0° ke

whenu is of the form { ¢ log u is of the form
F1

olosi8s

Hence the value of log ¥ may be determined by art. (55),
and thence the corresponding value of u.
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Ezample 1,—When « = 0, find the value of 2* = 09,
log 2

Here u = 2*, and logu = zlogz =
z
When « = 0, this expression for log u takes the form %:i-

and hence, by differentiation, its value is found to be

1

. -
logu=—oig—a"= —l’=—z‘=0; sou=l.

T T

.'When 2 =0, then z*ir*=0=1,
. When # = 0, then (cot z)8r*= %=1,

1
4. When 2 = w, then zlgme = 0=,

W N

1
5. When # = 0, then (1 + mz)* = 1®=¢™,

1 1
6. When z =1, thenz!~*=1°=

1v. Ezceptions to Taylor’s Theorem.

(58.) In art. (39) allusion has been made to the existence
of certain functions, to the development of which Taylor's
theorem ceases to be applicable for particular values of the
varigble, in consequence of the differential coefficients or
derived functions becoming infinite in value.

Let (=) be a function of z, and suppose a given finite value
a to be a root of either of the equations

1
=0, —— =0
ve vE
then it may be shown that y(z) will be of the form
v@)=@E—are@.....Q0),
the function ¢(z) not vanishing or becoming infinite when

2 = a, and therefore not involving as a factor any other power
N
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of 2 —a. Also, the exponent ; will be positive or negative
according as £ = a causes ¥ (z) to become zero or infinity, or

according as a is a root of ¥ (z) =Oorof1l-':_) =0; and it
&

will evidently be the limiting value of the fraction log ¥(2) |

log (+—a)

which assumes the form %, whensr=ga.

(59.) Suppose a given function f(z) to contain a term of
the form y(z) ; then, if we proceed to the derived functions,
J' () will contain the term (z — a)*~'¢(2) . p
S"@) ” ”» (x—a)*=2¢p (@) . p(e—1)
S" (@ » n  (@—ap-@) . p(r—1)(E—2)
&e. &e. &e.

Consider now the following cases :

1. If p be a positive whole number, these terms will wholly
disappear after f*(z), and since the exponents p —1, p — 2,
p — 3, &c. are all positive, it is evident that when » = a and
z — a=0, the original introduction of the factor (» — a)*
cannot thus affect the finite character of the values of the
derived functions. This case therefore does not form an
exception to Taylor’s theorem.

2. If p be of the form m + %. a positive whole number with

the addition of a finite fraction, then the exponents p — 1,
p—2, p—3, &c. of the factor (z — @) in the above terms
will be positive for the first m derived functions, but will
afterwards become negative. Therefore, when z =a, the
terms will vanish from the first m derived functions and will
become infinite in value in all the subsequent functions.

Hence, as regards the factor (¢ — a)"""’;’, the derived functions
will, when & = a, be finite up to £™)(z), but £(™+1)() and all
the subsequent functions will be infinité. The expansion of
the proposed function by Taylor’s theorem, for the particular
value z=a, will therefore not in this case admit of being

.
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Am :
carried to any terms beyond 2. m f™(z + k), and it

may be stopped at any previous term 12h+ S®(z 4 04),
where n < m. Within these limits the accuracy of the
development will not be affected by the infinite values of the
higher derived functions.

3. If 4 have a negative value, or a positive value less than
unity, then the exponents g — 1, p — 2, u — 3, &e. will be all
negative, and when # = ¢ all the derived functions will become
infinite in value, so that the conditions of Taylor's theorem
not being fulfilled, it will be wholly inapplicable to the develop-
ment of the proposed function for the particular value r =a;

" but the application will nevertheless be true in all cases for

values of z which differ from a by a finite quantity.”

The cause of these singular results may be ascertained by
examining the effect produced upon the form of the function
proposed for development. Thus when £(x) contains the term
(2 — a)*¢ (), f(x + k) will contain the corresponding term
(2 + k — a)*¢(z + k), and, when z =a, this will become
hedp(a + k). As ¢(a) cannot =0 or w, the expansion of
this term will give a series involving powers of A beginning

with A*: when pisa positive integral number, no peculiarity
is induced; but when p is positive and fraetional, all the
powers of 4 will likewise be fractional, and when y is negative,
the development will contain negative powers of 4 to the same
extent.

In these remarks, which apply equally to Stirling’s theorem,
the symbol p, to observe the utmost generality, might have been
considered as a function of x, and it is evident that all the
peculiarities of form and result would then be determined in
exactly the same way and would . similarly depend upon the
particular value of x when z = a.

(60.) From what precedes we are led to the following
general conclusions :

If when the variable # takes the finite value a, the function
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S(*) and its first m derived functions be finite and the
m + 1th derived function be infinite ; then all the succeeding
derived functions will likewise be infinite, and Taylor's
theorem with the limitations, art. (45), will be correct if not
carried further than the term involving 2. Beyond this term
the theorem will be inapplicable, as indicated by the infinite
values of the differential coefficients, becanse the further ex-
pansion of the proposed function f(z + &) will consist of
fractional powers of A, the first fractional exponent being
contained between m and m + 1.

If when 2 = a the value of the function itself be infinite,
then the values of all the derived functions will likewise be
infinite, and the true expansion will contain negative powers
of A.

In either of these exceptional cases the definite expansion of *
the proposed function f(z + %) for # = a may be generally
obtained by first substituting a in place of + and afterwards
.expanding the reduced result, supposing a to be variable, for
which Taylor’s theorem may be employed if necessary.

Ezample—Let f(2) =28 + (% — a)¥; then £'(z) will
involve (22 — a’)‘}, and f"(z) will involve (22 — a%)—% and
become infinite when 2 = a.

Therefore the true expaunsion of £(# + %) when = @ will

contain fractional powers of 4 commencing from an exponent
between 1 and 2. ‘To determine this expansion, we have

fe+h)=@@+m+ {(=+ lt)’—a’}*
cf@ED=@+B+ {@+ip—a)F
= (a +h)® + 2ak + 39}

= (a + 8 + AT @a + B,
which may be readily expanded by the binomial theorem,
Again, suppose ¥ (2) to be of the form e",l—.. ¢(), where m

——
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is positive and finite and ¢(z) not =0 or © when r=0.

vSmce elog =z, or e=.rl°u this function may be transformed
into the equivalent expression ¥ () = 2~ ,1,,, YOR
1.
s™logz’
When z=a=0, the particular value of the functlon
1

‘a=0and p= —

differentiating the numerator and denominator according to

m

Zmt1 )
art. (35); thus we find ,‘_T'=;";'.. Hence, making

z

=0, the particular value of pAiS infinite, so that if & were
‘considered as an infinitesimal, the value of the function y ()
would become an infinitesimal of an infinite order. Therefore
the values of ¥ () and all its differential coefticients or derived
functions will vanish when & =0, and the expansion by
Taylor’s theorem will in this case not fail.

v. Differential Cocfficients of the form (—(;

(61.) When two variables » and y are implicitly related by
an equation

u=f(z,y) =0,
let the partial differential coefficients with respect to » and
y be d di
u AW
@)= )=

then, the value of the differential coefficient or differential
ratio :_z. art. (32), will be

dy__P
-~ Q
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If values of = and y can be found which will fulfil the three
equations ¥ =0, P=0, Q =0, we shall have, for these
particular values,

and the determination of the continuous value in this case may
be found by successively differentiating the numerator and
denominator of the fraction, as in art. (55), with this difference

that the result will lead to an equation involving :_i’, the roots
of which will give multiple values to this symbol. But these
values may be more readily found by means of the expansion
of f(z + & y + ah) ; since by making f(z + 4, y + ¢h) =0,
it is evident that 4 and a’ will be corresponding increments of

z and y in the equation f(#, y) = 0, and when these increments
become infinitesimals, the symbol a will therefore represent

. d
d values of 2
the required values o =

The expansion of £ (z + &, y + ah), given in art. (47), being
equated with zero, omitting the first term f(x, y), which = 0
by hypothesis, we obtain

o=1{@+@)}
+13{ (@) +2 d.rdy)a+( )}
+ia{ ""‘)+3(£'2y)"+3(£3§)’+( 7))

&e.

which may be made eomplete in any number of terms by
replacing z and y by = 4+ 64 and y + 6ak in the last term,
where 6 < 1.

. di
Now if particular values of z and y give (g) =0, i) =0,
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the first term of this equatiop will disappear ; and hence by
stoppmg the series at the second term and dividing by the
i 2, we get an equation determining the value of a = y for
all values of 4, and finally, making =0, the .r+0h,
"y + a6k become simply z, y, and we obtain, for determining
the continuous value of a, the equation

d"'u + 2( d%u d’u) s,

a quadratic, which will therefore give two values for a = %

If, however, for the same values of & and y, also

d3y d3u du
@)= (@)= G)=>

then the first and second terms of the preceding equation will

disappear, and hence stopping the series with the third term

and, as before, dividing by the —— T 2 123 and afterwards making

k=0, we get ‘
d3u dBu ddu \ o, (ddw\

0=(5) +3(zg) =+ 3 (zg) = + &)

a cubic equation, which will therefore determine three values

for o

or a = - ,

Should the partial differential coefficients simultaneously
vanish for still higher orders, the same process may be
extended by including additional terms of the preceding form
of development ; but it will be unnecessary to do so here, as
the general law of the successive terms is obvious, and these
higher orders of multiple values do not often occur. It will
be observed that the numerical coefficients of any order are
those of the binomial theorem. )

Ezample.— Given y3— 72y — 623 + 24 =0, to find the

values of :—Z, corresponding to # = 0 and y = 0.




INDETERMINATE FORMS, 95
When z =0, y = 0, we have, by partial differentiation,
du
(E) =—142y —182% + 42%=0,

(%)=3y’—7:’=0

&3

E'.;)=—14y 36z +122%3=0,

2

d“)—-—lu_o ('p)_sy 0;
d3u

b
— 36+ 24z=— 36, (d:,: )=...14,

dsu) (ds,, 6;

dz dy® =
e 0==86—42a+6a5 ora®—7a—6=0,

the three roots of which are e = 3, — 1 and — 2; and these

as) =

are therefore the required multiple values of % when 2 =0,

y=0.
(62.) The multiple values of a differential coefficient, which

takes the form g_, may be more simply and expeditiously deter-

mined algebraically in the following manner:

If the particular values of the variables be s =a, y =3,
first transform the given function f(z, y) by substituting
2/ + a, y + b respectively for # and y, so as to get the equi-

valent function in which the value of % is to be obtained

fors =0,y =0.

This last function being arranged in the ascending order of
degree, with respect to the variables #/, y', let it be denoted
by

[&", ?/']l + [-”: !/,]H-n + [’l’ y’]l+m+n + &c. =0,

where [#, y']; is supposed to comprise all the homogeneous
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terms of the least degree I with respect to &’ and ¥/, («, ¥')1+m
the homogeneous terms of the next higher degree ! + m, &c.
As these functions are homogeneous, it is evident that

I:-z’__;%'_]:_: [l’g]{ M]‘L;"= [1, %] » &c.,

Z/itm i+m

which will now represent algebraical functions of v, Hence, -

e
dividing the preceding equation by &/, the result may be thus

expressed :

z_, 'm. ]Z] m+n[ -'L'] +&.=0-
[1’1’]1-*:‘ ['@’ z+m+d Ly I+mtn ¢

This equation, which must necessarily be true generally,

determines % as a function of 2. Now, when # =0, ' =0,
the continuous value of % is obviously :% or %; and there-

fore, making #/ = 0 and replacihg % by %, the equation for

determining this is
| @ =
[l' lh']z 0

Hence the equation for determining the required values of
%’ is to be found by simply retaining only the homogeneous
terms of least dimensions with respect to the variables, then
dividing the same by a power of 2’ of equal dimensions, and
finally replacing %I, by :—-Z The accuracy of the result will
evidently not be affected, should the function, which oompﬁseé
the terms of least dimensions, at the same time involve terms

of higher dimensions that do not admit of convenient separa-
tion, as these will finally vanish on making # =0,y = 0.

P awt -
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This general rule will be found to apply with remarkable
brevity and facility.

Ezrample. — Take that given in the last article, viz.
y3— 723y — 623+ 24*=0 to find the values of % when
2=0, y = 0. Since the particular values of the variables
are already £ = 0, y = 0, the equation does not require any
preliminary change. The first three terms are homogeneous
and of the third degree, with respect to the variables; but the

last term being of the fourth and therefore of a higher degree
must be rejected. Hence, dividing 3 — 72%y — 623 by #3 .

and replacing % by % we obtain

(&)-r(&)-e=0

the three roots of which are the values of (%) as before

found.

CHAPTER VI.

MAXIMA AND MINIMA.

(63.) The value of a function is a marimum if less values
obtain when the variable is supposed to increase or decrease
by small quantities.

The value is a minimum if greater values obtain when the
variable is supposed to increase or decrease by small quantities.

A marimum value of a function is,therefore greater and
a minimum value is less than the values which immediately
"precede and follow it ; and thus the relative analytical applica-
tion of the terms maxima and minima has reference only to
the values of the function which are immediately adjacent to
the values so designated.

x
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The same circumstances or conditions may recur for dif-
ferent values of the variable, and thus a function may admit of
geveral maxima and minima, and the extreme values of these
will obviously be the maximum gnd minimum values of the
function in the absolute sense of the terms.

In some cases, however, the value of a function either
always increases or always decreases when the variable is
supposed to increase, and it therefore does not admit of an
ordinary maximum or minimum according to the preceding
definition.

Y. Functions of One Variable.

(64.) Let u = f(«) be a function of a variable #, and let it
be required to find the particular values of the variable when
the function is & maximum or a minimum,

Supposing the value of & to change by a small quantity 4,
if £(z) be & maximum we must have £(z) > f(z + %), and if
J(z) be & minimum we must have f(z) < f(z + %), and these
relations must be maintained whether 4 be positive or negative.
Therefore, as % passes from —to -+, the value of the fanction

S() will be

* a maximum continuesto be negative,
a minimum > when f(z + £)—f(#)< continues to be positive,
neither changes its sign.

But, art. (45), .

S + B)—f(2) = hf(z + 6F).

If the first derived function f(z) have a finite value, it is
evident that £ may be taken so small that /'(x + 44) shall not
change its algebraic sign when that of A changes.. As this
value of f(z + &) — f(z) will then have different signs, accord-
ing to the sign of 4, the function f(z) will in such case be’
neither a maximum nor a minimum. N

The preceding conditions of maxima and minima will require
that 2 and /(¢ + 64) shall change sign simultaneously when A
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passes through zero. But, art. (58), when a variable quantity
changes its algebraic sign it must either pass through 0 or
(—l). Therefore we must have Z_: =f'(#) =0o0r + ; and then
supposing z, by increasing, to pass through its value, the
fanction f'(z) will be

2 ) b =) e om { £ 2

to +.

In the case f'(z) =0, by extending Taylor's series to
another term, we have

et D—S@ =L+ ).

Here again, if f"(z) be supposed not to vanish, the value of A
may be taken so small that f"'(z + k) shall not change sign
when the sign of 4 is changed. As A2 is necessarily positive
the value of f(z + %) —f(z) will have the same fixed alge-
braic sign as (¢ + 6k&) or f”'(z); and therefore the function
will be

& maximum } when ﬂ = f"(a) is neg.ai.:ive,

a minimum dz® positive.

Again, suppose that a value of z which makes f'(z) =

also causes several of the subsequent derived functions f"(z),

J"'(2), &c. to vanish, and let /™ (z) be the first that does not
vanish, Then, art. (45),

S @+ B —f(2) = j5——0nf®™ (= + k).

As _f™)(z) does not vanish, it is ev1dent, as before, that a value
may be assigned to A so small that f™(z + 64) shall not
change its sign when that of A changes. The effect upon the
sign of A* will however depend upon wihtether the number » be
odd or even. Thus we find,

If n be an odd number, £(z) is neither a maximum nor a

minimum, unless /" passes through % .
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If n be an even number,

. maximum d*u __ negative
s (.r).u 8 | minimum § ¥ 7 dz* =f®s {positive.’
(65.) The nature of the preceding relations, which constitute
the theory of maxima and minima of functions of one variable,
may perhaps be made more familiar by the following simple
considerations :

As the derived function :T: = f'(z) represents the limiting

ratio of the increment of the function to that of the variable,
and as a decrement is indicated by a negative increment, let
the variable 2 be supposed to increase continuously ; then the
value of the function f{z) will increase when f'(z) is positive
and decrease when f'(z) is negative.

But if f{z) increases up to a certain value of # and afterwards
decreases, it will evidently pass through a maximum value,
and if it decreases and afterwards increases, it will pass through
a minimum value. The function will therefore pass through
a maximum or a minimum value whenever the value of the

first derived function % = Jf(z) passes from + to — or from

— to + respectively.
After determining the values of # which make #'(z) = 0 and

@ ( 3 =0, this last simple criterion, which is that first ob-

tained in art. (64), will generally be sufficient to distinguish
the maxima and minima values, if any exist ; and then it will
be unnecessary to proceed to any derived functions beyond
S(@).

The process is also sometlmes facilitated when the function
admits of being reduced or simplified by first multiplying or
dividing it by some constant, raising it to some power, taking

the logarithm, or performing some other operation according

to the particular form of the function under consideration, the
only restriction being that this preparation of the fanction
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should not disturb the general relations as to corresponding
maxima and minima.

(66.) The different cases specified in art. (64) may also be
characterized geometrically by making the’ variable z the
abscissa, and the function f(z) the ordinate of a curve line, of

which the equation is y = f(z). Fig. 1.
1. If for a value of # which makes
J(#) =0, the value of f"'(r) is negative, p

or if the first of the successive derived 7 ’T
functions that does not vanish be of an
even order and its value negative, the
corresponding value of the functional ordinate will be a maxzi-.
mum as represented in fig. 1.

2. If for a value of » which makes f'(z) = 0, the value of

o D >

S (z) is positive, or if the first of the Fig. 2.
successive derived functions that does y

not vanish be of an even order and its

value positive, the corresponding value of b

_the functional ordinate will be & minimum 0 + -

as represented in fig. 2.
8. If for a value of # which makes f'(z)=0, also f"(z)
= 0, and the value of /"'(z) is positive, or if the first of the

successive derived functions that does not Fig. 3.
vanish be of an odd order and its value ¥

positive, or if the first of the derived .Z
functions that does not vanish be of an ‘7"'

even order and its value passes through % oD EJ

from — o to + o, the corresponding value of the functional
ordinate will be neither a maximum nor a minimum, and will

be of the kind represented in fig. 3. Fig. 4.

4. If for a value of # which makes f'(z) o
= 0, also f"'(x)= 0, and the value of /() .
is megative, or if the first of the successive P‘T

derived functions that does not vanish be of
an odd order and its value megative, or if

o D »
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the first of the derived functions that does not vanish be of an
even order and its value passes through -16 from + o to —

the corresponding value of the functional ordinate will be
neither a maximum nor 8 minimum, and will be of the kind
represented in fig. 4.

5. If for a value of 2 which makes LI 0, lfhe value of

JS(=)
f(2), as x increases, passes from + o to Fig. 5.
—a, or if for a value of z the first of the y
successive derived functions f'(z), f"(z), g
. &c. that does not vanish is of an odd order
and its value passes from + o to —a, the o L -~

corresponding value of the functional ordi-
nate will be a mazimum as represented in fig. 5 or fig. 1.

6. If for a value of z which makes 1 __ 0, the value ot
S (@
J'(#), as z increases, passes from — o to Fig. 6.

+ o, or if for a value of « the first of the
derived functions f'(z), f"'(z), &c. that does
not vanish is of an odd order and its value r
passes from — o to 4 o, the correspond-
ing value of the functional ordinate will
be a minimum as represented in fig. 6 or fig. 2.

Ezample 1.—Divide a number « into two parts, such that
their product shall be the greatest possible.

Let 2 be one of the parts, and ¢ — # the other; then
f(z) =z (a—z) = ar — z?isrequired to be made a maximum;
o fi(@) =a— 2z put =0, gives 2 =1a. When z is less
than 1a the value of f/(z) is +, and when « exceeds }a the
value of f'(z) is — ; hence, when 2 passes through its value,
f'(z) passes through + 0 —, which indicates that the value of
the function first increases and then decreases, and therefore

passes through a maximum, the number being then equally
divided.
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Ezample 2.—If u =f(z) =223 —9a2? + 12 2% — 4 a%;
then '

du =f(z) = 622—18azr +12a° = 6 (r—a)(z—2a)=0

gives 2= a and r = 2¢. When z passes through the first of
these values, f'(z) passes through + 0 —, which indicates
a maximum, and when z passes through the second value,
f'(z) passes through — 0 4, which indicates a minimum. °
Therefore, when @ = @, f(z) = a® a maximum, and when
z = 24, f(z) = 0 a minimum.

Ez. 3.—Ifu=056+ (v — a)%;
then :“‘_;. =f()=4% (‘"‘")* = 0 gives & = a, and as z passes

through this value, /'(2) passes through — 0 +, which indi-
cates a minimum of the kind represented in fig. 2.

Er. 4—Ifu=5+ (z—a)3;
then :—:= fl(@) = %(z'—-a)% =0gives #=a. As z passes

through this value, f'(z) passes through + 0 + and does not
change sign. The value of the function therefore first increases,
then just ceases to increase, and again increases. It is hence
neither a maximum nor a minimum, but of the character
shown in fig. 3.

Ez. 5—Ifu=15 +(.1—a)§;
then:r—“ = f(2) = 2 (z—a) Y, which = o when z =g, and

as z passes through this value, f'(z) passes through — @ +,
which indicates a minimum of the kind represented in fig. 6.

Ez. 6.—Required the height (z) at which a light should be
placed above a table so that a small portion of the surface of
the table at a given horizontal distance (a) shall receive the
greatest illumination from it.

If ¢ denote the angle under which the rays of light meet the
given surface, the degree of illumination will vary as the sine
of this angle directly and the square of the distance (r) inversely.
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But r*=a®+ 2% andsing = 2= F_; ==

¢ Vs @t
must be a maximum ; or, taking the logarithm, the value of
logz —3 log (4®*+2%) must be a maximum. Denoting this
last function by u, we have

du 1 3z  &—2.°
d:_z_a§+z§—a:(a§ )’

which = 0, whenz-—a\/-:mdas passesthrough+0—

the value of the function is then a maximum as required.

7. fu= ’a.r ; then when 2 = ¢, ¥ = } a maximum,
a® 4+ 2%
and when # = — g, ¥ = — } a minimum,
8. Of all rectangles of a given ares, a square exhibits the
least perimeter.

9. Ifu=23—3az? + 44%; thenz=0 gives u=44% a
maximum, and £ = 24 gives ¥ = 0 a minimum,

10. Ifuz%'; thenwhen::e,u:lamaximnm.
e

1 1 1
11. Ifu = #*™; then s =™ makes ¥ = ¢™ a maximum.

‘ 0}
12. Ifﬂ = m);

1 .
thenz:\ﬁfbmakesu:m & maximum,
13. If u = cos®zsin #; then cos®z = %, sin®z =1} give

u=+ m‘\/§ammmumandammnmum

11. Functions of Two Variables,

(67.) Letu = f(, y) be a function of two variables z and y.
When the value of u is & maximum we must have f(z, y)
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> Az + k, y + %), and when it is a minimum we must have
Rz, y) <Az + hy + k), and in either case this relation must
remain unchanged whatever may be the algebraic signs of
k and £ = ah. Therefore, for all combinations of values and
algebraic signs that can be given to the small quantities 4 and
k = ah, if for brevity we put
Sz +hy+ak) —flz,y) = d,
the value of the function # will be

a maximum continues to be negative,
a minimum > when 8x < continues to be positive,

neither changes its sign.
But, art. (47), we have

du du

‘ w=i{(Z)+(5)}srn,
| ‘When the value of this expression continues to be of the
¥ same algebraic sign, the value of the factor contained between
} the brackets, which corresponds to = + 64, y + dah, must

change sign with %, and this change of sign must occur when
| h =0, or when z + 6k, y + a6h become z, y. Therefore, as
the value of a is arbitrary, we must then have

du du
z)=o  (5)=°

unless one or both of these partial differential coefficients should

pass through the value %— with corresponding algebraic signs.

These two equations or conditions will determine the particular
values of the variables.
To ascertain further regarding the algebraic sign of the value

du du .
of du when (E =0 and @) = 0, let the ex'pansmn of

S (@ + 4k y+ ah), art. (47), be extended to another term ;
then, as the term of the first order in A now vanishes, we
obtain

__ A3
“=13 )*2“ )+“(dy9)}::::,“-
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If the second differential coefficients do not severally vamsh
and their relative magnitudes be such that the value of

) + 2= (i) + ()

shall not vanish but continue of the same sign for all values of
a, it is evident that # may be taken so small that the value of
8u will always have a corresponding sign, which will not change
with that of . For brevity let this expression be denoted by
(A) + 2()a + (B)a?;
then when a-= 0 its value will be A, and, when the arbitrary
quantity e, which is unrestricted in value, is made indefinitely
great, its algebraic sign will be determined by that of B. The
differential coefficients represented by A and B must therefore
have like signs, and for all other values of a the expression
must retain the same sign. By putting the expression under
the equivalent form,

(o 30) + 2524}

it becomes evident that it will necessanly have the same sign
with the coefficient A when the value of AB—c¢? is positive, or
AB > ¢?; thatis,

NG

This is Lagrange’s Condition of maxima and minima, and
when it is satisfied the value of the function u will be

. a mf\x.imum { if(A)= (d_”t;) is neg.at_ive,

a minimum positive.

If (A) and (B) or( ) nd( )have dlﬁ'erent signs, or 1f

Lagrange’s Condition be otherwxse unsatisfied, the function
is neither a maximum nor a minimum. Also if the values of

. d d
2 and y which make (E;') =0, ( J_?,) = 0 should happen to
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2 2
cause the second differential coeﬁiclents( ) ( d’u ) (d u)

to vanish, it may be shown, as in art. (64), that a maximum or
minimum value of the function will require that the first set of
differential coefficients that do not vanish be of an even order.

111. Functions of Three Variables.

(68.) Let u=f(x, y, z) be a function of three variables
2, y, and z.

‘When 4 is a maximum f(z, v, 2) > fle + by + &, 2z + ),
" and when it is a minimum f(, y, 2) < Az + h,'y +4z410),
where the symbols %, X = a% and [ = 8% denote small changes
in the values of the variables. As in the last article, the
values of z, y, z which maintain either of these relations
must be found amongst the systems determined by the
equations

@@= @)= @)=

excepting, as before, the occurrence of infinite values.
If the second differential coefficients do not vanish, 2 may
‘ve taken so small that the value of
du=flze+hy+ak z+Bh)—f(z,y, z)
shall have the same sign as the expression -

d?u d%u o d*u
dﬁ) ( ( )ﬁ+ (dydz aB+2 B
d2%u
+2(gg)e

and not change its sign' when that of % changes. For a
maximum or a minimum therefore it will be essential that the
value of this expression be either always negative or always
positive, whatever values be given to the arbitrary quantities
a and B, which are wholly unrestricted. To facilitate the
determination of the requisite conditions amongst the coeffi-
cients, let the expression be more briefly denoted by

«=(A) + (B)a®+ (C) 82+ 2(a)aB +2(6)B + 2(c)a

e
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and by putting it under the equivalent form
—_c®
A{(1+ 2B +5e )+AB Carol 3 —bep
H
AC 6 Bg}

it is obvious that it will always have the same sign mth the
coefficient A, provided that the value of (AB — c¢?)a® +
2(Aa—bc) a8 + (AC—b2) B2 be always positive, and this will
be the case when AB—¢? and (AB—¢%)(AC—5%) —(Aa—b¢c)?
are both positive, or AB> ¢? and (AB — ¢%)(AC — %) >

(Aa — be)3.  There afe therefore two conditions of maxima

and minima, viz. d2" ) (df;y)s
{(@)&)- (Ji’:y) H@ @) -(a)'
> {(@)Ga)-EaEw))

* When Jotk of these conditions are fulfilled, the function %
will, as before, be

a maximum [ . u\ . [ negative,
« a minimum { if (4) = 'Eﬁ)“ {posi,tive.

(69.) The conditions may be otherwise obtained in a .

symmetrical form, and the extreme value of ¢ determined as a
maximum or minimum value of a function of two variables
a, 8. Thus we have

(Zi =2(Ba+a8+¢)=0....(1)
(&):2(05+a¢+b)=0....(2)

(da)—zn P\ _ac, ( = 2a.

* The first of these conditions is as essential as the second, although it
is commonly neglected by writers on this subject.
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Hence (67) if BC> a? the value of e will be

a maximum | . negative,
a minimum } if A, B, sud Care { positive;,

8o that if this value have the same signas A, B, and C, all the
values of e will have the same sign. From equations (1) and
(2) the values of a and 8 which determine this value of ¢ are
— ab—Cec g=23— Bb
BC-a¥’ T BC-&& '

For simplification, previous to the substitution of thesevalues,
multiply equation (1) by a, equation (2) by 8, and add the
results, and Ba? 4 CB2 4+ 2aaB + 68 + ca=0. These
terms being therefore omitted in the expression for ¢, it
becomes e = A + 88 + ca, in which, now substituting the
particular values of a, 8, we get

_ ABC al 52 2 abe
‘=80 ‘—Eé—ex—.xﬁ+ABc cere (@)

‘When this extreme value of ¢ is of the same sign as A, B, and
C, we have therefore-the symmetrical condition

a® 52 2 abe
l_B—C-_éK—A-._B-+ABC>0"°()'
Also, putting
ﬁ?.—aSI 9'=_b_2 ”’:c-i..
cos?p = s b A’ cosp AB ),

the value of ¢ becomes

= (A3¢ (1 —cos®p—cos®¢p'—cos?¢” + 2cos ¢ cos¢’ cosg”).

But if ¢, ¢/, ¢" denote the sides of a spherical triangle, and
®, o, o" the perpendiculars upon them from the opposite
angles, this last expression, by spherics, is equivalent to

e=(A) sin%e = (ﬂ sin?w ;

..bu- 2 (z")sm’u.
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which, for a given small increment % and arbitrary small in-
crements % and /, represents the least possible value of 8u when
considered apart from its algebraic sign.

Slmllarly, for a given small increment % and arbitrary small
increments 7 and A the least possible value of Bu, or the value

d%u
that approaches nearest to zero, is du = 13 (Ey—g)sm’m' ;
and for a given increment / and arbitrary increments % and %,

itis du = T dzﬂ) sin?e".

‘

We also here conclude that the conditions of maxima or
minima, with respect to the value of the function u, will be
definitely indicated by the values of the angles ¢, ¢', ¢" given
by equations (5). These conditions will be :

1. That the values of the angles be real.

2. That their relative magnitudes be such as to admit of
being made the sides of a spherical triangle, which will simply
require the value of each of them to be less than half their
sum. .

For functions of two variables there will be only one angle ¢,
and the analogous condition will only require that the value of
this angle be real. Also the values of 8z nearest to zero for a
given value of % with % arbitrary and for a given value of
h? (d%

Z: with % arbitrary will then be du = 13\ ,) sin?¢ and

2 ) :
Su= li2 (%) sin?¢p.

The form of the condition (4), for three variables, is equiva-
lent to that first obtained, since (AB—¢?)(AC—8%) — (Aa—b&c)?
= A(ABC—Aa?—Bb%—Cc? + 2abc) >0, which divided by
the positive factor A’BC gives (4). Also when the values fulfil
the condition (4) and any one of the three conditions AB > ¢2,
BC > a? AC > b2 the other two will necessarily follow.

In conclusion, it may be as well to observe that the conditions
and criteria of maxima and minima here investigated, though
occasionally indispensable, are not often required, as the general
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circumstances are in most cases sufficiently indicated in the
nature of the problem, and it is then only requisite to solve

. du\ _ du _ d_u _ ) L.
the equations (d_.r) = 0, d—y) =0, =)= 0, for the determi-

nation of the variables.

CHAPTER VII.
PROPERTIES OF PLANE CURVES.
1. Quadrature and Rectification.

(70.) The theory of plane curve lines forms a leading subject
in Analyﬁcal Geometry of Two Dimensions, and the investi-
gation of the various properties is generally found to be con-
venient and symmetrical when the positions are referred to
rectangular coordinate axes.

In the annexed diagram let Oz, Oy represent the positive
directions of the axes; then, OD =2,

DP = y being the two coordinates of the ¥ o/
point P, the curve which is the locus of P P Pt
is determined by an equation " 1

y=¢(), orflzy)=0. e o

Suppose 2 and y to receive the increments Az and Ay, and
let theé new coordinates OD' =z + Az, DQ =y + Ay de-
termine a second point Q, so that DD’ = PG = Az and
GQ =Ay. Then if A denote the function which expresses
the value of the area contained between the ordinate, the
curve, and the axis of z, the curvilinear area between the two
ordinates DP, D'Q will geometrically represent the value of
AA, and it is evident from the diagram that this value of AA.
will be comprised between the two rectangles yAz and
(y + Ay) Az, being greater than one and less than the other;

% is comprised between y and y 4 Ay. Hence, proceed-
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ing to the continuous values at the limit when Az =0, we
obtain
dA
==Y

As this relation must correspond with the differentiation of
A as a function of 2, it is evident that the determination of A
from it will be the inverse process to that of differentiation.
This inverse process is called Integration, and is usually
indicated by prefixing the symbol /; thus

A = fydz.

The method of obtaining the value of this integral is the
province of the Integral Calculus; and, when taken between
given limits, it will express the area contained between the
corresponding ordinates.

(71.) Again, let it be required to express, by means of
infinitesimals, the area contained between the curve, two given
ordinates yo, ¥m, and the axis of z.

Suppose a number m — 1 of equidistant ordinates y,, y,,
Ys ... Ym—1 to be inserted between them, and let dr be the
common difference of the abscisses zy, z,, 2,..... Zm. For
brevity let (y, y,) denote the portion of area contained
between y,, y,, the axis of z and the curve, and the same
for the other ordinates. Then it is evident that

(¥ 0y,) will be comprised between y,dz and y,dz
(y,9,) » n » U N
(¥ays) » » » Yz 5, yydz
&e. &e. &e. '
(Ym-1ym) » ”» » Ym-1dz , Ymde.
Hence, if
Syde =y,dr + y,dr + y.dr..... + Ym-1dz,

" the sum of these relations proves that the total area (y,Ym) will
be comprised between Syds and yde + (ym — yo)de.

or dA = ydzr.
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If we now suppose the number m —1 of intermediate
ordinates to be increased without limit, dz and (ym — y,) d=
will decrease without limit, and therefore Syda will approxi-
mate to the proposed curvilinear area-as its utmost limit;
that is,

A =3ydz.

But we have seen that this curvilinear area is expressed by

the integral /ydz. Therefore
Sydz = sydz.

Hence it appears that every integral fyds expresses that
value to which Sydz approximates as its ultimate limit, on
increasing indefinitely the number of subdivisions dz, both
being estimated between the same limiting values of #. This
character of an integral presents to the mind a clear view as
to the result of a process of integration, and the area of a curve
offers the most simple geometrical representation of the pro-
cess. When dx is taken indefinitely small so as to be con-
sidered as an infinitesimal, called an element of z, each of the
terms ydz of Sydz is a similar element of the area; and we
have shown that the nearer the values of these elements are
taken to zero, the more accurately will they represent the
relative changes of their respective primitive quantities, and
the more accurately will a succession of them compose those
quantities so as to form a continuous result. The idea of
elements greatly facilitates our reasonings in the higher
applications of the Differential and Integral Calculus, and
gives to the mind the most ample scope in geometrical and
physical researches, whilst a strict adherence either to the
principle of derived functions or to what is usually called the
theory of limits, which some authors rigidly contend for,
would render many investigations exceedingly cramped, and
others almost impossible.

(72.) If a right line r& which passes through the two points
P and Q be supposed to revolve about the point P so that the
intersection Q with the curve may proceed towards P, it has
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been shown, art. (9), that when the point Q arrives at the
point P or when the distance PQ becomes an infinitesimal,
the corresponding continuous position of the line rs will
ultimately coincide with the tangent TP which touches, the
curve at the point P, and that the infinitesimal line PQ
becomes then an element of the arc of the curve. These
.considerations are equivalent to that of conceiving the tangent
to be a line which passes through two points of the curve
that are infinitely near to each other. Let ¢ denote the length
of the arc from a given point in the curve to the point P';
then will dz, dy, and ds symbolize the relative infinitesimal
velues of PG, GQ, and PQ. But PQ?*=PG? + GQ?;

., ds? =dz% + dyg

dy3
ands:/\/dz'7+dy'7=/d, ,\/l + d%

When y is known as a function of #, explicit or implicit,
this expression serves to determine the length or rectification
of the curve; but the inverse operation of integration, indi-
cated by /; will require the aid of the integral calculus.

11. Tangent and Normal.,

(73 ) Let » denote the angle PTD or the inclination of the
tangent with the axis of x; then, from what precedes, we
have, as before deduced in art. (9),

%
tan 0 = d‘—r'

If a, B be the coordinates of any point in the tangent P'T,

this gives

B—y_dy,
a—az dr

therefore the equation to the fangent is

AOD N

=%
B—y=(a—2a).
The normal PN being perpendiculer to the tangent, if o, 8'
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be the coordinates of any of its points, its equation is hence
— dz /
B —y= _Fy(“ —a).

Hence if p denote the perpendicular OH from the origin
upon the' tangent and p' = PH that upon the normal, we
shall have

_xdy —yde _adz+ydy
=% p=—0"

Also, if a", 8" be the coordinates of any point in the line
OH drawn through the origin perpendicular to the tangent,
the equation to this line is

pr=-%

',
dy

Again, since tan o = %’ and ds? = dt? + dy?, we have

cosw=di,mddnm=‘l_y;
- ds

ds
.+ PT = tangent = siTy—m = _g/d_;l;,
PN = normal = ‘T‘Zm- = "%',
DT = subtangent = thI =7 d‘_f; ,
ydy

DN = subnormal = ytan = -
(74.) When the equation of the curve is of the form

u=f(2,y) =0, the differential elements dz, dy will be
connected by the corresponding differential equation

du du
— —\Ydy = 0.
)%t (dy) y =0

Therefore the elements dr, dy, and ds will have the same
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mutual proportions as the respective quantities

du 7du d du\? du)g.
3) (@) =/ (Z)+(G):
and by replacing them by these quantities the preceding
relations, and any formulee involving the ratios of the elements,
will then become adapted to the case in which y is an implicit
function of 2.
The equation to the fangent, under this form, is thus

:—: fa—x)+(j—$)(ﬂ—y)=0,

and it is therefore to be practically obtained by this simple rule:
Differentiate the given equation of the curve, ¥ = f(z,y) =0,
and write a — 2, 8 — y in place of dr and dy.

Also the equation of the normal is

G)e-a-(z)e-n=

Ezample.—The equation to an ellipse when referred to its
centre and principal semidiameters a, , 1s — + -'/_ =1,

By differentiating, this gives ;:,dr + g, dy=0;
d__¥s  d_ NETES
tdeT a®y’ e~  a%y
& NaFTIEa
dy b3z ’
Valy? 1 5458 Vat 3 + b4
tangent =.y yb——”: normal = ¥2Y T2 e s

btangent = — %L, and subnormal = —
subtangen! = — 43, and subnorm, _—cz_’"
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Also, the equation to the tangent is
:—;(a—z')+{—.z(ﬂ—y)=0, oraiua-!-%ﬁ:l;

and the equation to the normal is

Y d—) =L@ =y =0, ald-Yg=
b,(a’ z) as(ﬁ’ ¥) =0, or:a’ yﬂ'—a’—b’.

1. Asymptotes.

(75.) Two curves or a curve and straight line are mutually
asymptotic when they continually approach indefinitely nearer
and nearer to each other, but ‘do not meet at any finite distance.
By an asymptote to a curve we generally understand a straight
line, such that if it and the curve be indefinitely continued
they will thus continually approach each other but never
meet. It may therefore be considered as a determinate
tangent to the curve when the point of contact is removed
to an infinite distance.

The position of the tangent to the curve is geometrically
determined when the intercepts OT, O¢ of the coordinate

axes are known. o
In the equation of the tangent, y
art. (73), make 8 = 0,-and we shall o .
find the intercept of the axis of z, P
:):t]:e:n the origin and the tangent, LD L -

—OT= _Y_‘l_'-ﬂtﬂ’_‘.
ag=0T=2 dy_ ay

Also, by makmg a = 0 we similarly find the correspondmg
intercept of the axis of y to be

* In the diagram, OT being in the contrary direction to Ox must be
accounted a negative quantity, and equal to OD-DT.
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If, when # = @ or y = w, either of these values of e, and
8, should be finite, the curve will have one or more asymptotes
which will thence be determined.

‘When a, is infinite and B, finite the asymptote is parallel to
the axis of 2.

When a, is f£aite and B, infinite the asymptote is parallel to
the axis of y.

When a, and 8, are both finite the asymptote passes through
the two determined points T, ¢.

‘When the values of a, and 8, are otk = 0 the asymptote
passes through the origin, and its direction will be determined

bythevalueof%whenz:uo ory=o.

But when the values of o, and 8, are both of them infinite,
the tangent is at an infinite distance from the origin, cannot
be constructed, and is not an asymptote.

The asymptotic branches of the curve will, with few ex-
ceptions, be analogous to one or other of the forms exhibited
in the annexed diagrams, and will only differ with respect to
relative situation.

4 4 4

These diagrams, for example, may be considered to represent
the general features of the respective curves determined by
the equations

_ /a+.t _ a _ad
y=2 b—t, y———;,andy-.;‘—a-

‘When the axes of coordinates or lines parallel to them are
asymptotes to a curve, the circumstance will at once be
indicated as follows :

If, when y = 0, # = ®, the axis of z is an asymptote ; and
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if, when # = 0, y = o, the axis of y is an asymptote. Such
is the case with the curve whose equation is 2y = a?.

- If, when y = &, = , a line parallel to the axis of 2, at
the distance y = &, is an asymptote; and if when z =g,
y = w, a line parallel to the axis of y, at the 'distance z = q,
is an asymptote. Such is the case when the equation is -
ay—ay — bz = 0.

In other cases the position of the asymptotic tangent, if any
such exist, will be ascertained by determining as before the
values of the intercepts a, and 8;. -

(76.) The practical calculation of the values of ap, B, and
of the equation to the asymptote may be considerably facilitated
by putting the expressions under the following form:

6, 40
FONC)
. y—B _dy .
Now since T ar where a, 8 are the coordinates of any
point whatever in the tangent, if when # =, y = o this

tangent be an asymptote and pass at a finite distance from the
origin, this point can be taken so that a and 8 shall be both

finite, and the relation then gives % = % Let therefore %

;——tand;-=v; thenﬁo=d—t

7’ and the equation to the tan-

; dy .
gent when it becomes an asymptote is y = B, + Z—‘:z =

By + tz. Hence the following easy rule :

. 1
In the given equation of the curve substitute »= p and

y= f, and, after reducing the equation so obtained in ¢ and o,

dt

determine from this equation the values of ¢y and 8, = %o
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when o is made to vanish; then, if the value of B, be finite,
the equation to the requued asymptote is
=%y + By .

If by making £ = o we obtain a finite corresponding value
of v, this will determine an asymptote parallel to the axis of y
at the distance » = %-

Ezample 1.—Let the equation to the curve be ry—ay—bz

= 0; then substituting % and ; for # and y, and reducing, we

obtain

dt _at+ b
t—avt—bv=0, B= %= T—an"
Therefore, making » = 0, we get £,=0 and 8, = &, and
the equation of the asymptote is y = b, indicating that it is
parallel to the axis of # at this distance.

By making £ = we get v=%; .. z=a is another

asymptote and is parallel to the axis of y.

Ezample 2.—Let y® + 25—axzy = 0; then substituting as
before we get
d t _  at

3 _ - —
t34+ 1—atv=0, B= =358—m"

Hence making v=0 we obtain £,= — 1 .and 8, = -g,

and the equation to the required asymptote is therefore

- g
y=—x—3

3. The curve (z + 1) y = (z—1) z has an asymptote de-
termined by the equation y = 2—2,
4. The curve y3 — az? 4 2% = 0 has an asymptote deter-

minedbyy:%—.r.

5. The curve y3— 2zy? + 2% = a® has two asymptotes,



PROPERTIES OF PLANE CURVES, 121

viz. the axis of = and the line y = z, which makes equal angles
with the coordinate axes.
6. The curve 2y?—y = 2% + 2a2® + b2 + ¢ has three
asymptotes, viz. the axis of y and the two lines y =« 4 a and
=—z—a.

" 1v. Circle of Curvature.

(77.) A tangent to a curve may be conceived to be a line
drawn through two of its points which are indefinitely near to
each other; and these points being considered as the extremi-
ties of a differential element of the curve, it is evident that
the first differentials of the coordinates which appertain to
the tangent will correspond with those of the curve at the
point of contact.

Similarly, the cirele of curvature or the osculating cirele
may be conceived to be that circle which passes through
three consecutive points of the curve which are indefinitely
near to each other, the position and magnitude of a circle
being determined when three of its points are known.

These three points being considered as the extremities of
two successive differential elements of the curve, it is evident
that both the first and second differentials of the coordinates
which belong to the circle and curve nrust correspond at the
point of contact.

Let 2", y' be the coordinates of the centre of the circle,
and z—a", y—y" will be the two lines drawn from it respect-
ively parallel to z and y and terminating in the circumference °
at the point of contact; hence, denoting its radius by p, its
equation is

(=" + (y—y"P ="

Now since this circle corresponds with the curve at two
. other points contiguous to the point of contact, we may dif-

* ferentiate twice and consider the first and second differential

of the ordinates z, y as agreeing with those of the curve.
r
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Hence differentiating, observing that in proceeding to these
points z”, y" remain invariable, we get
dr (x—7") + dy (y—y") =0,
d%r(z2—-2") + d’y (y—y") + ds¥ =0

where ds? = dr?+ dy?, art. (72), s denoting the length of the
curve. The first of these two equations requires the centre of
the circle to be situated in the normal, and the second com-
pletes the determination of its position. Thus, from the two
equations we deduce

_n_  —dyds? o drds?
= ey VY S aE—ndy
y y

Therefore, substituting these values in the equation p?

= (2—2")} + (y—y")? we find
dss
p= dyd?r—dsdy’

Having proceeded on the princjple of general differentiation
in obtaining this expression for the radius of curvature, we
may hereafter assume an independent variable at pleasure. If
we consider the axis of & to be horizontal, the value of the
radius will be positive when the convex side of the curve is
presented upwards, and it will be negative when the convex
side of the curve is presented downwards.

(78.) The value of the radius of curvature may be otherwise
determined by conceiving the centre of the circle to be the
intersection of two normals drawn from
two points which are indefinitely near
to each other. Let PR, PR be two
consecutive normals meeting in R, the
centre of curvature, the element PP’
of the curve being ds. Let also two
tangents be supposed to be drawn at P ‘and P, the former
making an angle o with the axis of #. Then, as  is decreas-
ing, the angle included by the tangents will be—dew, and this
must evidently be the same as that included by the normals.

4
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We have thus PR = P'R=p, PP =ds, and the angle
PRP = — do.

oo —pdo=ds
ds
&nd p——a-

But, art. (73), tan o = d and hence, art. (29),

9.
dr.

dy 2 dy

o dtmme  Tap B4 g

T 1 +tan%o — dy? ™ a3
1+ 32

'l;herefore. by substitution,
— ds? ds®
p= .l T TPy

By making « the independent variable, or supposing de to
be constant, this becomes

dy®\§

ds$ (I+Zﬁ

P= Ty~ ay
dz?

which is the formula mostly employed in calculating the radius
of curvature. The measure of the curvature of the curve at P
will be the reciprocal ofthismdins, or%, being the same as
that of the circle.

Differentiating the equation dz? + dy2? = ds%, we have

dz d?z + dy d%y = ds d®s;
o 0= (dzd?% + dy d%)*— (ds d%)%,
Adding (dy d%z— dw d®)? to this, the result is
(dy Bz —dz d)8 = ds?{ (d%)? + (d%)*— (d%)%}
ds?
S p =\/{(d’-l')’ + (dny)s_(dg‘)g}s
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and, making s the independent variable, this becomes
ds?
PT V{@P + @y’
which is a symmetrical form of expression for the radius of

curvature.
Ezample 1.—Find the radius of curvature at any point '

g 40
in an ellipse whose equation is :-'5 + %5 =l.
Making # the independent variable, we have
dy b ddy b
= "y W=

3

42 4 pags)T

p= (@’ + 4% "(Jy 2)*,

Ezample 2.—In the cycloid, taking the vertex as the origin |
of coordinates, %

y= 2az — 22 +avers—1 Z;

a

dy _ ,/2a—=x diy _ a
dz s dt 2N 2azx — 23°

. p=2N2a(2a—12).
Ezample 3.—In the parabola y® = 4muz,

Ezample 4.—In the rectangular hyperbola, referred to its
asymptotes, 2zy=a?, p= — :.:, r being the line drawn from
a
the origin to the point in the curve. .
. 23 2 e
Ezample 5.—In the conjugate hyperbolas e e 6% =41, - 1

_ (aty® + p4en)}
T @)
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&2,

= 3
Ezample 6.—In the catenary y = e"‘ +e ‘),,,:-%.
Ezample 7.—In the hypocycloid .z'% + y'} = a*
p=— 3(a.ty)'}.

V. Evolute and Involute.

(79.) If we suppose the point P to pass continuously
through every point of the curve, the corresponding positions
of the centre R of curvature will trace out another curve.
This curve, which is the locus of the point R, is denominated
the evolute of the proposed curve, and conversely the proposed
curve is its involute. If the normal PR be supposed to move
along with the point P, it is evident that the locus of the
consecutive intersections R will be that curve to which the
normal is always a tangent. This is rendered still further
evident by considering it inversely: thus, by supposing a
tangent to roll over a curve line, its successive indefinite inter-
sections will obviously be the points of contact and therefore
trace out the same curve. Hence a tangent drawn to the
evolute at any point coincides with the radius of the osculating
circle drawn to the point of contact. The equation of this
tangent, art. (73), gives

dy'(z — ') — d"(y —y") = 0.
Differentiate the equation
@—V+ @ —yY=0p}
supposing 2”, y", and p to vary, and we have
(dr —do") (z — ") + (dy — dy") (y — ¥') = pdp;

but, 2", y" appertaining to the normal of the curve at the point
xy, we have by its equation

de (s — &) + dy (y—y") =0,
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which rejected and the signs changed, we get |
d'(z — &) + dy' (y —y") = — pdp.
From this and the preceding equation to the tangent to the

evolute we find
"

dz"
1—1"=—pdpm; . y—y”:—pdp#s '

where ds'? = dz"3 + dy''?, &' being the arc of the evolute ‘
from any given point.

These values of 2 — "’ and y — y"” being substituted in the |
equation p?= (z — 2”")2 4+ (y — )%, we get i

dp? -
p’:p’d—::r’- or ds’”:dp’;

. dd" =dp
o 8'=p—py,
where p, is the radius of curvature corresponding to the given
point from which ¢” is estimated.

Hence the length of the arc of the evolute between any two
points is equal to the difference between the radii of the
corresponding osculating circles.

From this elegant property it follows that the original curve
may be described by the unwinding of an inextensible thread
from off the evolute. Thus if the normal or radius of
curvature AQ be conceived to be a thread extending round
the evolute QR, it is obvious that
by unwinding this thread, keeping
AQ always stretched, the point A
will trace out thé curve AB, and
the unwound portion of the thread
having passed from AQ to PR,
the intercepted arc QR of the
evolute will be equal to PR— AQ.

Considering the evolute as a primitive curve, its involute is
thus described.

(80.) For the determination of the equation of the evolute
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to any prgposed curve we have, art.(77), the following ex-

pressions for the coordinates of the point R or of the centre
of curvature, viz. ;

1 dy ds

F=a +dyd’¢'—dz—ﬂ

" deds®  _ dr

; V=Y P —dzdy VP&’

! or, making & the independent variable,

di
=¢+p£s

dyg
1 o AN
4‘"=¢‘—dyd‘2=z—-£¥. +d‘t’
dz d% dz d§y
dr?
dy?
14 =
ds? dz®
" —
y —y+d9y y+ 2y
. dz?

By means of these and the equation of the curve AB, if the
ordinates zy and their differentials admit of being eliminated
an equation will thence be found expressing the relation
between 2/’ and y”, and will be that of the evolute.

Let the equation of the evolute be given to find that of its
involutes ; then since p = p, + &' and dp = ds", the values of
z—a, /A .1/". art. (79), give

1
3=""—(Po+‘”)%: y=y"—(p+¢ %s
which being calculated in terms of #’ and y", if these variables
can be eliminated, the resulting equation in z and y will be
the required equation to the involutes, p, being an arbitrary
_constant. .
Ezample 1.—Determine the evolute of the Ellipse whose

equation is
22 ¢

y _
ate="
Taking = as the independent variable,
dy bz dY b4

dz Fy @ ays
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2__ 3 3__p8
2 =2 a4b z3, andy":—a b‘b ¥

. az 1 _ by" 3 .
. z=a(a9—b9 Y Y= —b(,;f.z'.bﬂ) , and by substitu-
tion the required equation of the evolute is

@b+ yyt= @ -k

Ezample 2.—The evolute to the parabola y% = 4mx is the
semicubical parabola 27my"3 = 4 (& — 2m)3.

Ezample 3.—The evolute to the rectangular hyperbols
sy=atis (@ +9) — (@ — ¥ = o)l

3 48

Ezample 4.—The evolute to the hyperbola ;‘s‘_%‘i =1
is (a.z")"— (by”)% (a® + 6’)*

Ezample 5.—The evolute to the cycloid y = 4/2ax — &*
+ a vers—! '2 is a cycloid equal to the original one, but in an
inverse position.

vi. Position of Convexity. '
(81.) As before, let » denote the angle which the tangent to
the curve at the point 2y makes with the axis of z; then,

art. (73), ,
tano = d—z .

For the purpose of conveniently expressing the relative
positions, let the axis of 2 be considered to be horizontal, and
that of y verticel, the positive direction of z being to the
right hand and the positive direction of y being upwards.
Then the tangent being supposed to be drawn in the positive
direction with respect to the axis of =, its inclination (e)
with the horizontal will be

upwards } when tan e = dy . {positi.ve,
downwards dz ' negative.
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Now, when the curve at the point P, as in the diagram, has
its convex side upwards, the angle o
thus estimated will evidently decrease

as x increases; .. dt‘;:"’ will be ne-

gative.
Also, when the convex side of the
curve is downwards, the angle o will increase as z increases,

or dt;: 2 will be positive.

The position of convezity is therefore thus determined :
d?y . {negative s {upwards,
‘When R positive } it is presented\ downwards.

In a similar manner the position of convexity with respect
to the vertical will be determined by the algebraic sign of

dt;;", or of dy dtan » ; and
dy d3 . {positive 1. . fto the right hand
When dr " dz? negative } 81 to the left hand.

vi1. Points of Inflexion.

(82.) When & curve is convex downwards, or in any other
direction, and becomes afterwards convex in the opposite
direction, it must have passed a point of contrary flexure in
the vicinity of which the curve will resemble the middle turn
of the letter . In passing through one of these points, the

2
second differential coefficient %, which determines the posi-

tion of convexity upwards or downwards, must change its

algebraic sign, and its value must therefore pass through
1
Oor-.
ors

The condition for determining a point of contrary flexure or

point of inflexion is therefore
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d’y

If the value of = at this point pass through — 0 +, the

inflexion will be of the character represented  Diagram 1.
in diagram 1; and if it pass through +0—, »
it will be as exhibited in diagram 2. These

two forms will represent all cases of inflexion |»
if they are only placed in différent positions

with respect to the coordinate axes, Itis ° L
also obvious that the value of the angle o,

which the tangent RS makes with the axis of z, will be a
minimom in disgram 1, and a maximum

in diagram 2. gram 2.
The expression, art. (78), for determining ’ s
the radius of curvature p, contains Z_% in y
R
the denominator.  Therefore when %:% o »

passes through 0 and changes its sign, the value of the radius
~ p will also change sign by passing through (l). Hence the

reason why the formula referred to expresses the value of p
when the convex side of the curve is upwards, and gives to p
a negative value when the convexity is downwards. Also as
these radii are drawn in opposite directions, the centres of
curvature being on opposite sides of the curve, this is in
strict conformity with the usual geometrical interpretation of
the symbols + and —.

Ezample.—The Witch 2y = 24(2a2 — z’)} has two points
of inflexion determined by » = 32—", y=+ ;a /3.

(83.) Note.—When the equation to the curve is given in
the implicit form % = f(z, y) = 0 the values of the differential

coefficients, Z—Z, Zi =, of y with respect to =, used in the
preceding formule, arts. (75) to (82), will require some
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preliminary calculation. The consideration reouired for this
may be obviated by expressing the formulee in terms of the
partial differential coefficients of the function % =f(s, y).
To effect this, the successive differentiation of the equation
» =0, art. (38), making z the independent variable and
d3z = 0, gives

)+ (§)a=
ds“)dz’-i— 2(dady dedy + (75

« (@)r@a=o

d’s) of v d3u y d®u tiy_’. du\diy
@ dray) dz T\3p) a2 t @) &=

d’u g du —a.
dy +(,,—y dty=0;

=0,

which are the relations connecting the values of -2 % ong Y
with those of the partial differential coefficients of u. Hence

we obtain —.(-Z_i
2
g G- (1)

The substitution of these values will accomplish the requisite
transformation. For example, the expression for the radius
of curvature, art. (78), becomes

el
Dl R e R3]
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which is necessarily symmetrical with respect to the co-
ordinates.

. The corresponding transformation of other formule is
obvious and may be here left to the student.

vin. Multiple Points.

(84.) A multiple point is a point in which two or more
branches of a curve meet or intersect. If it is common to
two branches of the curve it is called a dowdle point; if it is
the concourse of ¢iree branches it is called a ¢riple point, &c.

At a multiple point there will be a tangent to each branch
of the curve that passes through it, and therefore the dif-

ferential coefficient i’. which determines the position of the

tangent, must admlt of correspondmg multiple values. In
this case the expression for & — deduced from the equation

of the curve, will take the indeterminate form g, and its

multiple values may be obtained by either of the methods
given in arts. (61) and (62).

Let w = f(2, y) =0 be the equation to the curve ; then,
art. (61), the conditions for a multiple point will be

(du du
@)= G)=o

and if, for the values of x and y which simultaneously fulfil
these equations, the second partial differential coefficients do
not all vanish, the point will be double and the values of

a= % will be determined by the quadratic equation
H 2
37';) + 20 22 ) +a?
For the convenience of abbrevmtlon, let tlns be denoted by
(A) + 2()a + (B)a? =
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then the two values of a will be

_c+Aei—AB
a= ‘=.__—_B —

'We may hence, according to the nature of these roots of the
quadratic, distinguish three classes of double points:

1. If the two roots or values of a be real and unequal, the
two branches of the curve will take
different directions, and the point

will be a point of intersection or Q

real double point as represented in P
diagrams 1 and 2. These and the > C><>
following diagrams may be placed

in any position with respect to the axes of coordinates.

11. If the values of a be equal, the two branches of the
curve will have a common tangent, and therefore also have
mutual contact at the point under consideration. In this
case if the convexities of the two branches

Diagram 1. Diagram 2.

be situated on opposite sides, the contact ’Dmsmm 3
will be external, as shown in diagram 3, 8
and the point is called a point of contact P

of the first kind or point of embrassement ; i

and if the convexities lie in the same o —_—

direction the contact will be internal, as in

diagram 4, and the point is then called a point of contact of

the second kind or point of osculation. Diagram 4.
If, however, the value of ¢ — AB under

the radical, which vanishes at the point P,

should change its sign and become nega- P

tive on one side of the point, the cor- R

responding value of a will be unreal, and © ®

therefore the two branches of the curve will be restricted to

one side of the point, which is then denominated a cusp.

As before, if the convexities of the two branches lie in con-

trary directions, the cusp is of the firsz kind, as shown in
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diagram 5; and if the convexities are in the same direction
it is of the second kind, as shown in dia- Diagram 5.
gram 6.

y R
111. If the values of a be unreal, then no
real branch of the curve can pass through
or meet the proposed point, which, being »

thus detached from its associated curve line, © =
is in such case called an isolated or conjugate point. ’

(85.) The analytical criteria for discrimi-
nating the character of a double point are Diagram 6.

therefore as follows : y
du du R
Letu=0, (d-:' —0, (E —O;then %
1. When d’u) d’u) (d’u <
dzdy

the point is an infersection of two branches of the curve and
is a real double point.

When (2 > 0t pi
. en ) (d.zﬁ)( =0; if > 0 for points

immediately precedmg and followmg, it is a contact of two
branches ; if of different signs at these points, it is a cusp.
The contact or cusp will be of the first or second kind

. d? . .
‘acoordmg as de for the two branches has different signs or
the same sign. If Z’_}s{ = 0, this will indicate an inflezion.

d2u\e  [d%u\ /d°
1. When d.t_;y) “)( e <0, it is an tsolated
or conjugate point.

It is easy to extend the process to higher orders of multi-
plicity. If, for the values of # and y which fulfil the

. du du
equatlons u=0, (—) =0, (—- =0;
dy

du .
dm dy @) =0, and the third par-

Lo
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tial differential coefficients do not vanish, then the values of a
will be the roots of the cubic equation

) se (i) so0(c) () =0

If the three roots of this equation be real and unequal, the
point will be an intersection of three branches or a real ¢riple
point, of which the point P in the annexed diagram, No. 7, is

an example. Di ..
If two of the roots be equal, 1t will be a
point of contact and intersection; if the three P

roots be equal, it will be a point of double
contact; but if the equation contain a pair of
unreal roots, then only one real branch of the curve passes
through the point, and it is therefore in that case not a real
triple point.

Should the point P be a guadruple point, as in diagram 8,
the third partial differential coefficients will
also vanish, and the values of o will be deter- Disgram 8,
mined in like manner by an equation of the
fourth degree.

Since an algebraic equation of odd dimen-
sions must necessarily have at least one real
root, it is evident that a conjugate point can only occur when
the degree of multiplicity is even.

(86.) An examination of the character of multiplicity of
any proposed point of a curve may in general be more readily
effected by 2 method analogous to that given in art. (62), for

determining multiple values of 5 Y when of the form g, and

which we shall here repeat with a slight modification.

Let the coordinates of the point P be # = a, y = 4; then
if in the equation of the curve z and y be replaced by a + &,
b + y', we shall have an equation in which #/, ¥’ are now the
coordinates of any other point P' in the curve estimated from
the proposed point P as a new origin. In this equation make
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y' = B2'; then dividing throughout by the power of 2/ that
may be common to the several terms, we shall obtain an
equation :

¢, B =0,
in which g will denote :':_;
the chord PP makes with 2/, and when &’ is made = 0 the
corresponding values of 8, given by this equation will evidently

be those of Z_Z, and the number of such values will, as before,

or the tméent of the angle which

determine the multiplicity of the point.

Also, by giving to #/ a small positive or a small negative
value, we may ascertain the number and situation of the
corresponding points P' in the immediate vicinity of P on
either side.

Since y'= B+ we have, by differentiating with #/ as the
independent variable,

dy' dﬁ d¥y' d*g
a7 =B+ 't dz-’ + 2573 dz'? 5
therefore at the point P, where & =0,
dy' d?y'
y = By ;3{2 2(

The first of these shows that the values of 8 when &/ =0
are those of %, as before stated; the second will determine

the positions of convexity by art. (81) or the radii of curvature
by art. (78) if required, the formula for the latter being

(14 309)3. '

)

The nature of each separate bmnch of the curve may,
however, be easily made known by comparing with 8, the two
values of 8 which correspond to small positive and negative
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values of #/. Thus, if (8 —B8,) 2/ continues to be positive, the
convexity is evidently downwards ; if it continue to be negative,
the convexity is upwards; and if it change sign with #, the
point is one of inflexion.

Ezample 1.—Let 24 — ax?y + by® = 0, and determine the
nature of the point at the origin where # = 0, y= 0.

Here ‘

du du
U — 48— = = —az® S —
( 428~ 2ary =0, ( ) az? 4 3by?=0

& Pu P
—_— = 3 - = = - = -_—) = =
(Z3) =1202 = 2ay =0, (hdy) 22z =0, (d 3) = 6y =0;

ds d3u d3u d’u

Therefore the equation for determining the values of a
dx

—6aa+ 6ba3=0, orbal—aa=0;

the roots of which area =0, and a =+ /\/ ;-' , & herefore

the point is a real triple point similar to that shown in
diagram 7.

Otherwise, the origin being already situated at the pro-
posed point P, substitute y =Bz, and z4—a 2’8 + 52383
=0, which divided by «® gives +—aB + 88% = 0. Hence,

- at the origin, —aB + 683 =0; ..8=0and 8= +,\/

and the point is a real triple point.

Ezample 2.— The equation being a y’ + 623 —22=0,
required the nature of the point at the origin.

Substitute B+ for y and divide by 2%; then, 8%+ &

—2=0; .'.B’:—b—:—z,md at the origin, + =0 and
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By =A — ; which being unreal, the point is detached from

its curve, and is a conjugate point.

Ezample 3.—The curve (ay—2%)%(a® + 2%) — m3a%z4=0
passes through the origin; it is required to find the nature of
this point.

Substitute, as before, y = Bz ; then, dividing by =% we
get,

@B —2)%(a® + 2%) —miad22=0; .. 8= %j—_ 7%—3'

At the origin 8, = 0, and, as the double values of 8 here
merge into one, the two branches have mutual contact with
the axis of # at this point. Differentiating the value of 8 we
have also :

Therefore, if m > 1, the convexities lie in opposite directions
and the contact is external; if m <1, the contact is internal,
or a point of osculation, and the two branches have their con-
vexities presented downwards ; and in either case the two radii
of curvature are p, = — 2—(1-—;—’“).

Ezample 4.—The curve whose equation is az?+ 23— by3=0
has a double point at the origin, and the directions of the

branches are determined by 8, = 4 /\/ .g .

Ezample 5.—The curve (¢*—22) y2— (a® + 2%)2% = 0 has
a double point at the origin, and 8, = + 1, or the branches
make equal angles with the axes of coordinates.

Ezample 6.—The Lemniscate (2 + y%)® —a%(#3—y%) =0
has a double point at the origin, and the branches make equal
angles with the axes.

Ezample 7.~If b (y — z)* — 2% =0, the origin will be
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‘a cusp of the first kind, the common tangent making equal

angles with the axes.

Erample 8.—If z° + a%23— b3 y3 = 0, the origin will be a
cusp of the first kind touching the axis of .

Erample 9.—In the Cissoid y%(2a —&) —23 = 0, the origin
is a cusp of the first kind also touching the axis of z.

Ezample 10.—If (ay —azr— z%)3—2% = (), the origin will be
a cusp of the second kind, with the two convexities down-
wards, and the common tangent making equal angles with the
coordinate axes; also the branches at this point will have
the same centre of curvature, the common radius being p,
=—aV/2, so that the contact is of the second order.

Ezample 11.—The evolute to the ellipse, example 1, art.
(80),

@t + Gt = @-m}
has four cusps of the first kind at the points

et
. .

—b3
2=0,y= + ,a.ndy_.o.r—+

1x. Tracing of Curves.

(87.) The equation of a curve being given, it is sometimes
required to develop its particular structure, peculiarities of
form, and general character. Such an investigation is usually
called discussing or tracing a curve from its equation, and
only requires the practical application of the preceding for-
mulee. It will be sufficient here to indicate the chief points
that should engage attention.

1. If the equation be in the implicit form, it w111 be advisable,
if practicable, to solve it with respect to one of the variables,
provided the result be in a convenient form for calculation.

By first making y = 0 and then # = 0, we shall ascertain if
the curve crosses the axes and the positions (2, 0), (0, ¥,)
of the points of intersection. Also, by assigning to one of the




140 THE DIFFERENTIAL CALCULUS.

variables a series of positive values from 0 to », and of
negative values from 0 to —oo, and calculating the" correspond-
ing values of the other variable, we shall be enabled to follow
the course of the curve, and to discover if it has any infinite
‘branches. In all these calculations both positive and negative
results should be carefully included, so as to obtain the com-
-plete branches of the curve.

11. Should the curve possess any infinite branches, ascertain
if they have asymptotes and determine their equations, and
thence their geometrical positions.

111. Determine the value of %, and from it deduce the maxi-

mum and minimum values of # and y, and the angles at which
the curve cuts the axes, &e.

1v. Determine the value of :z—gz and thence the relative posi-

tions of convexity of the different branches, and the points of
inflexion if there be any.

v. Should the expression for %, for particular values of the

variables, become of the form g—, determine the nature of the

corresponding multiple points.

Note.— In some cases the character of a curve can be
discussed with greater facility when its equation is transformed
into polar coordinates. See the following Chapter.

X. Envelopes.

'(88.) Let the equation to a system or family of curves be
denoted by

U=f(29,a) =0,
where a is a variable parameter which is only constant for

“each curve. For each specific value of a the equation will be
. that of a determinate curve ; and when a varies continuously



PROPERTIES OF PLANE CURVES., 141

it will determine a continuous succession of curves, the posmon
and character of each of which will differ but little from
that which precedes it.

Let

Uo=f('t: Y a) =0,
U,=f(,9,a+da) =0,
Uy,=f(7, ¥, a + 2da) = 0,

be three consecutive curves in this series, and suppose P to be
a point in which the curves U, and U, mutually intersect,
and P’ the corresponding point in which U, and U, intersect.
Then, since the two points P, P are both situated in the curve
U,, it is evident that the curve which is the locus of the
points P will have the element of its arc, PP’ =ds, co-
inciding with an equal element of the curve U,. Therefore
the curve traced by the intersection P will have contact with
the entire family of curves U, and it is hence called the
envelope of the system.

The envelope to the family of curves U is therefore to be
found by determining the locus of the point of intersection of
two consecutive curves taken indefinitely near to each other.
Let 2, y be the coordinates of the point of intersection P;
then these coordinates will fulfil both of the equations U = 0,
U,=0. Hence, in passing from U to U,, the point P will
remain fixed and only e will vary, so that we must have
(&)-o

We have thus the two equations

d
U=0, (d—‘:)=0,

from which the variable parameter a being eliminated we shall
obtain an equation involving # and y, the coordinates of the
point P, which will be the equation to the envelope of the
proposed curves U.

(89.) If the equation U =f(2, ¥, a) be of the first degree
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in z and y, it will represent a system of straight lines ; and if,
as the parameter a varies continuously, the variable line be
supposed to be in motion, the point P will obviously be the
centre of instantaneous rotation; and its locus will be that
curve to which the line is always a tangent. This may be
made apparent by conceiving the envelope or the curve which
is the locus of P to be represented by a rectilinear polygon of
an indefinite number of sides, each of these sides at the same
time representing an infinitesimal element  ds of the curve.
The sides produced will represent "tangents to the curve,
and the angular points will evidently be the intersections of
consecutive tangents.

This property of a curve being generated by the ultimate
intersections of a series of lines determined by a given law
may be further instanced in the evolute to a curve. Since,
art. (79), the normal drawn to a curve at any point is always
a tangent to the evolute, it is evident that the evolute will be
the envelope to all the normals, in the same way that a curve
is the envelope to all its tangents.

Ezample 1.—Find the envelope to the system of lines

determined by the equation z +% =1, where « and 8 are
a

variable parameters subject to the condition a8 = 4m2.
By differentiating the equations with respect to the para-
meters, we have

L Y 78—
;a+§m—m
Bda 4+ adf =0,
from which eliminating da, d8, we get . % = %, ora=2a,
a

B=2y. These substituted in af = 4m? we have for the
envelope the equation zy = m3, which is that of a hyperbola
referred to its asymptotes. g3

Ezample 2.—The equation to an ellipse bemg zJ + 3= 1,
that of the normal drawn through the point :’y’ is, example
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‘ art. (74), %"-' - b;:z: a%— b%; determine the envelope to

all these normals.

The two variable parameters &/, ¥’ may be reduced to one
by making 2 =a cos a, ¥’ = b sina; then, putting ¢?=a?—59,
we shall have

and, differentiating with respect to the variable parameter q,

dU sina cosa
(Z) = amt =0 ,

1
From the latter equation, tana = — (%) ; and by sub-

stituting the corresponding values of cos q, sina in U = 0 and
reducing we finally obtain

@yt + ept=@h,
which is the evolute to the ellipse, and agrees with the result
before obtained in art. (80).
Ezample 3.—The envelope to the system of straight lines

determined by the equation y =az + — is the parabola
a

¥y =4dma.
Ezample 4.—The envelope to the system of circles
(z — m — a)® + y® = 4ma is also the parabola y? = 4ma.
Ezample 5.—If a straight line whose length is ¢ slide with
its extremities upon the axes of coordinates, its variable equa-
tion will be represented by —— 4 —¥ _=1; and the |
ccosa = csina

envelope, or curve to which the line is always a tangent, will :

be the hypotrochoid £¥ + y¥ = .

Ezample 6.—The parabolas described by projectiles dis-
charged, in vacuo, from a given point with a given veloeity are
included in the equation 4my=4maz — (1 + a®)2%; and
the envelope to these is the parabola 2% = 4m (m — y).
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CHAPTER VIII.

FORMULX FOR POLAR EQUATIONS, &c.

(90.) The system of representing positions by means of
éoordinates relative to fixed axes gives the greatest facility
and the widest range to the applications of the analysis. Itis
on that account much employed in geometry, and almost
exclusively in physics, to which in nearly every branch of
inquiry it seems to be particularly adapted. In the geometry
of curve lines, however, it is sometimes convenient to in-
vestigate the properties of certain curves from what is called
the polar equation, and which is especially applicable to
curves of the spiral kind. ’

A fixed indefinite right line Oz, origi-
nating at O, is called the polar azis or
prime radius; the fixed point O is the
pole or origin ; any right line OP drawn
from the pole O to a variable point P is'
called the radius vector to that point,
and its angle POz with the axis the polar angle. .

The radius vector OP is denoted by », and the polar angle
POz by 6; these evidently define the position of the point P,
which may be symbolically designated the point »4.

The polar equation to a curve expresses a relation betwéen
r and 6, and is of the form

F(r, 6) =c;
. and, in most cases, + may be separated so as to give the
explicit form

.

r =),
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F and £ in most cases involving the polar ‘angle 4 under the
form of trigonometrical functions.

The quantities », 6 being thus made subject to an equation,
we shall have particular values of » for each successive value
of 6; and hence the point P becomes restricted to a particular
curve determined by the equation.

The perpendicular O H from the pole upon the tangent
being, as before, denoted by p, the equation to a curve is
in some cases advantageously expressed in » and p.

(91.) Polar Equivalents.—By taking the axis of # for the
polar axis, and the origin of the rectangular coordinates for
the pole, we shall obviously have

z=rcosd, y=rsind;
and hence also, by differentiation, '
dz = drcos§ — rdgsin 6,
dy = drsind + rdfcosf;
d% = d%r cosd — 2dr dfsinf — rdé3 cosd — rd?0sind,
d% = d*rsind + 2dr df cosd — rdé?siné + rd26 cosé.

These values substituted in any given formula involving
rectangular coordinates, will give the equivalent polar formula
in terms of », 4 and their differentials.

'The following relations are sometimes useful in dynamical
investigations :

dz cosf + dy sind = dr,
dy cosd — dz sinf = rdé,
&%z cosd + d?ysind = d%—rdb?,
)
d% cosd — d’zsind = rd®9 + 2drdf = M).
r

When 6 is taken as the independent variable, dd will be
constant, and the terms containing d%6 will disappear.

(92.) Rectification. — Substituting the foregoing values of
dz, dy in the equation ds® = dz? + dy?, we get

ds® = dr? + r2de?,
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oo de = o/(dr® + r2d8?),
dr?
= g4 2,
and c_/da\/(r + 75
(93.) The value of ds may be immediately deduced from the
diagram. Thus if OP and OP' be the radii vectores, sub-
tending the arc P P'=ds and containing the angle POP'=d5,
let Pm be a small arc described with the radius O P and
meeting OP' in m; then, when the elements are infinitesimal,
this small arc may be regarded as a right line perpendicular
to OF'; also, we shall obviously have mP' = dr, and Pm
=rdf;
. dsS =PP'3 = mP'S + Pm® = dr® + r°d6®.
Several of the subsequent formulee may also be obtained
geometrically from the diagram, and the determination of
them in this way would form useful exercises for the student.
(94.) Perpendicular on the Tangent.—The perpendicular
OH from the origin upon the tangent being denoted by p,
we have, art. (73),

— vdy—yda
r=—" o
By substituting the preceding polar equivalents, this gives
_rido _ r3do
P="3 T Y@t + )
Cor.—Ifu= ;; then du = — :1—;-, and we obtain the neat
formula |
1 _ du? ' |
P° - de®

(95.) Sectorial Area.—Conceive two consecutive radii vec- '
tores OP = r, OP' =r + dr to be drawn, subtending the
element PP’ = ds of the curve and containing the angle
POP = db. The sectorial element thus formed by these
radii vectores and ds may be considered as a plane triangle,
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and the perpendicular from the origin on the opposite side
ds produced will obviously be that on the tangent to the
curve. Therefore, p denoting this perpendicular, the area
of the sectorial element =£g—' - That is, denoting by 8 the
sectorial area of the curve estimated from a given radius

_pds zdy—yde _ r’do
vector, dS ="7-. But, art. (94),p = —— 3’
. zdy—yde _ ridf
oo dS = -———-—-—-2 5
)

(96.) Inclination of the tangent with the radius vector.—
Let the angle OPT included by the tangent and radius vector
be denoted by P; then by the diagram,

OH

smP—(—)—P

. rg — .
oo cosP = \-Z—('_—L, tan P = -\7(75:_—112).

Substituting the value of p, art. (94), these become

} sin P = rdd __ rdf
| s N(@r® + ridé)
! cosP = ‘—lf = dr
| T ds — Af(dr* + r¥de?)’
wrf
Cor.—Hence we obtain,
_ dr rdr
T cosP T A\/(rP—p?)
dr par
dé= —t P= w’
_ r’d& . prdr
B=7 = ey
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which are here expressed in terms of the radius vector
and the perpendicular on the tangent.
(97.) Tangent and Normal.—Let a
straight line NOT be drawn through
« the origin at right angles to the radius
vector OP, and intersecting the tangent
and normal in the points T and N.
This line we shall here designate the
relative axis to the point P. It is
evident that the positions of the tangent and normal with
respect to this axis will enable us to construct them geometri-
cally. The line PT is the polar tangent, PN is the polar
normal, OT is the polar subtangent, and ON is the polar sub-
normal. From the angle P, determined in the last article,
the values of these lines are immediately deduced as follows :

r? rds
PT = polar tangent = ﬁ m
r r? ds
‘PN._polarnormal——m—P—;—d—a -
_ _ __pr r’da
OT = polar subtangent = rtan P = V(r’—p“)

ON = polar subnormal = — =

. r2dé
OH_p—rsmP_ —d:"

1

OK=p,=rcosP =+ (r2—p%) = %

(98.) Aaymptotea.—lf for any finite value of @ the value of
becomes infinite, the radius vector does not meet the curve
at any finite distance, and therefore it must be parallel to the .
tangent which belongs to the corresponding point at the infinite

2
distance. The polar subtangent OT = r_;g will then become
identical with the perpendicular from the pole on the tangent,
and if its value be finite, the tangent admits of being con-
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structed and is then an asymptote to the curve. If the polar
subtangent = 0, the asymptote passes through the pole and
coincides with the radius vector: but if the value of the polar
subtangent be infinite, the tangent, being at an infinite distance
from the pole, is not an asymptote.

If the diagram be conceived to be turned round into such a
position. that the radius vector shall proceed from the pole
towards the right hand, the rule of signs to be observed in the
consttuction will be simply as follows : If the value of the

polar subtangent OT = r’TiB be positive, it must be measured

downwards, and if it be negutive, it must be measured upwards;
then the right line drawn through the point T parallel to the
radius vector, will be the required asymptote.

(99.) A polar curve may have a circular asymptote. If,
when the value of the polar angle 4 is supposed to proceed
positively or negatively to infinity, the point P recedes from
the pole until the radius vector ultimately attains, as a
superior limit, the finite value a; then a circle whose centre is
the pole O and radius a will evidently be an exterior asym-
ptotic circle. But if the point P approaches the pole, until the
radius vector reaches as an inferior limit the finite value a, the
circle will be an interior asymptotic circle.

(100.) Circle of Curvature.—The value of the radius of
curvature obtained by general differentiation, art. (77), is

dsd
P=t e may

But, using the polar equivalents, art. (91), we have
dyd®s—dzdy =
dr(d®z sin 0—d3y cosd) + rdf (d%s cosd + d% sind)
=—dr(2drdd + rd®6) + rdé (d*r—rdd%)
=—di(r*d8% + 2dr?—rd%) —rdrd®0;
ds8
= WA T 2d — rd®r) + rdrd®0’

. p
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By taking 4 as the independent variable,
_ dsd (drs + r2ae)¥
P= B+ 2dP—rdr) — WP + 2dr—r )’
which will be positive when the convexity is downwards, and
negative when it is upwards. ‘

Ifu-_l thenr——,dr——-d:d’r_——i;‘ Lw,)
r’ % u¥ % ud

and the expression for p reduces to the convenient form

1 dut\¥
( +d09) =(I+Fd?9

d’u d%
“s (u + dog) % + E-é-i
(101.) The value of the radius of curvature in terms of r

and p may be found as follows :

Referring to the diagram, we have the angle OPI =P,
POI=6,and PID=o0w; ..o =P + 6, and do = dP + d4.
But from the values of sin P, cos P, art. (96), we deduce

dsm P rdp—pdr

dP =

REY/CETUN
Also, art. (96),
' rdr dr
= o= = e
.. do = dp .
T VE -
Hence, art. (78),
ds _ rdr
P= 4 E'
This neat relation may be verified by substituting for dp

r3d
the differential of the expression p = @ +ar’ 205’ The

result will be found to correspond with the value before
obtained.
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Ezamples. .
1. In the lemniscate r® = a® cos 26, p—%.
2. In the spiral of Archimedes » = a4 _(a’+r’)*
& AN esp =a ,p—wa
3
3 4,27
3. In the reciprocal spirnlu:ag, p=raa+r)

4. In the cardmoxdr—a(l—coso),p_g\/i;a—,

5. In the logarithmic spiral p = mr, p = i

$(r8 — g2
6. In the epicycloid p% =" (: — a‘: )
s _
p=pt gt = -N/(c's —a%) (r? —a¥):

c?

(102.) Chord of Curvature.—The'portion of the radius
vector, produced if necessary, intercepted by the circle of
curvature, is called the ckord of curvature. As this chord
evidently subtends an angle, at the centre of the circle, equal
to 2P, its value is

Chord of Curvature = 2psin P = L: M
r dp
Ezample 1.—In the lemniscate * = a? cos 26, the chord of

2
curvature = 3 r.
Ezample 2.—In the cardioid r = a(1 — cos ), the chord of
curvature = g r.

(103.) Evolute and Involute.—The radius of curvature
coincides with the normal and touches the evolute, art. (79).
Let r,= OR, p,= OK be the radius vector and perpendicular
on the tangent which belong to the evolute at the point of
contact. By referring to the figure, page 148, it will be seen
that p and p, constitute a rectangle HOKP with the tangent
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and normal to the curve ; also that OK*=HP3=0P2—OH?
and OR2 = RK? 4 OK?, that is
pi=ri—pb
rl’ = —P)’ +Pl’
=(p—pPF+ri—p
=p%—2pp + 1.
The value of p = %;’ being previously determined, we can.
usually by means of these two equations and the equation of
the curve f(r, p) = 0, eliminate r and. p, and so obtain the
equation of the evolute in r, and p,.
Ezample 1.—The evolute to the logarithmic spiral p = mr
is a similar logarithmic spiral p, = mr,.

Ezample 2.—The evolute to the epicycloid p? =

)

P

c¥(r*—ab)

c? — a3

is another epicycloid p,

(104.) The value of the radius of curvature may be simply

deduced from the equation
=p2—2pp + 12

Since, when we proceed to a consecutive point in the curve,
OR = r, and PR = p, which have reference to the pole O and
the intersection R of consecutive normals, do not change, we
may differentiate with respect to » and p only, which gives
_rdr
=% .

(105.) Let 7, p' be the radius vector and perpendicular on
the tangent which belong to an snvolute of the curve. As the
curve is its evolute, we have from the foregoing equations,
substituting ’i for o',

ps =73 —p'

a ,w )+r”—p

— 2pdp 4 2rdr=0,
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The values of p and r given by these equations being
substituted in the equation of the curve, we shall find an
equation involving #, p' and their differentials. If it can be
integrated, the equation of the involutes of the curve will
thence be found.

(106.) With respect to the evolute, let p, be the radius
of curvature at the point R, ds, the element of the are, and o,
the inclination of the tangent RP with the polar axis. Then

ml=m+'§randd8,= dp;
. ds

e p= Zl’
_ds, dp _d%

it w4
the differentiations being with respect to » as the independent
variable. .

* These formulee are useful if s or p can be expressed as a
function of w, or when a curve can be reduced to an equation
of the form F(s, ) = 0, or f(p, ») = 0. Thus in the example
of the cycloid, page 124, we have

- - T
CcCosw = d: = 5—; .
p=2V2a(2a — z)=4asino;

d, .
p,=a£ =4acoso = —4asine,;

and the two equations p =4asine, and p,= —4asino,
which determine the respective curves, show that the evolute
to the cycloid is an equal cycloid placed in an inverted
position. .

(107.) Positions of Converity and Points of Inflexion.—
When p is constant or dp = 0, the curve becomes a straight

* It may here be suggested that a curve may be determined by an
equation between any two, or more, of the quantities r, 6, p, , p, 8, and
that in particular cases the investigation of the properties of a curve may
be greatly simplified by an appropriate selection of variables.
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line and therefore has no convexity. On examining the
diagram it is evident that if a curve is concave towards the
pole, r and p will either both increase or both decrease, and

therefore =% P will be positive; and if the curve is convex

towards the pole, r and p will one of them decrease when the

other increases, so that Z—Q will be negative.
r

Hence, we have this rule: If
dp . [ positive

.. [ concave
5 ! negative} the curve is } towards the pole.

convex

When -g’_’ changes sign by passing through 0 or (_l) the
r

direction of curvature will become reversed, and this will
indicate a point of inflexion.

(108.) Locus of the point where the perpendicular meets the
tangent.—Let it be required to find the equation to the curve
which is the locus of the point H, where the perpendicular
from the pole intersects the tangent. Denote the radius
vector OH of this curve by »,, and the corresponding polar
angle and perpendicular upon the tangent by 6, and p,. Then
we shall have p = 7, and, since O H is perpendicular to P H,
the angle between two consecutive positions of OH will be
equal to that between corresponding positions of the tangent
PH; that is, d6,= dw. But, art. (101),

d(p =.__dp__ = _r”—_,

| VO = S
and, art. (96),  df, = —Pudru__;
( ) ll‘\/ (ru __p”2)

. 1 = Dy and 7 —:ﬂ?
NE=rDH T V=D Py
Hence, if the polar equation to the given curve be £ (p, 7)

2
= 0, that of the locus of H will be f(r”, %) = 0, being ob-
' i

AT Y
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tained by simply substituting the values p =1, » =;,L"- in the
U]
given equation.
Ezample 1.—In the case of the logarithmic spiral, the locus
of the point H is an equal and similar logarithmic spiral.
Ezample 2.—In the’case of the rectangular hyperbola, the
locus is a lemniscate.

The preceding articles present a complete digest of the
most useful formulee which relate to curves referred to polar
coordinates, and by them we are enabled to trace and discuss
all the peculiarities and properties of curves from their polar
equations.

(109.) For convenience of reference, we shall here collect
together the equations of the principal known curves; and we
shall then conclude with some general theorems, which have
been deferred for insertion at the end of the volume.

1. The Parabola; referred to its vertex and axis, y3= 4mx; the focus

. A 2m
being the pole, the polar equation is r = 1T cort

2. The Elipse ; referred to its centre and principal axes, the equation -

or p3 = mr.

2
is E,—-f- £= 1; when the centre is the pole, the polar equation is

1—-6
! Y. —c ). : s s
r a’(l—e’coa’o)’ and, when the focus is the pole, it is

a(1—¢%) /[ (a2 =3
"= Tt eome TP =N 5= where e= ———=
3. The Hyperbola. — Referred to its centre and principal axes, the

.. a3 . e—-1
equation is pr —_% =1; when the centre is the pole, 9 = “’1-&4»:!0'

. a(e3—1) [ r
and when the focus is the pole, r = Treooe TP= b 2a 7

where e = ﬂ‘%"l + The hyperbola has two asymptotes.
4. The Eguilateral Hyperbola, when referred to its asymptotes, has forits

a3 a?
2 =q3: ion i = — - —
equation 2zy - a%; and the polar equation is s¥ = — 20' TP =
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5. The Cyeloid.—Referred to its vertex and axis, the equation is
y = V(2az—a2) + avers ' %, .
a

which may be otherwise stated # = a(1—cos¢), y = a(¢p + sing).
6. The Catenary.— Referred to a point at the distance ¢ below the
lowest point of the curve, with the axis of & horizontal ; its equation is
L4 L4

y=-§ (e"‘ +e "'); and the radius of curvature p = —-fm equdto the
normal, but drawn in the opposite direction.

l
7. The Logarithmic Curve.—Its equation is y = ce ", the mbtangent
= a is constant, and the negative axis of 2 is an asymptote.

8. The Cissoid of Diocles.— Its equation is y? = ﬂ——x ; the origin is a

cusp of the first kind, and the curve has‘evidently an asymptote perpen-
dicular to the axis of 2‘at the distance & = 2a. )
9. The Conchoid of Nicomedes.—Its equation is 23y? =(a3—3?) (5 +y)*;
the axis of y contains a double point, and the axis of  is an asymptote.
10. The Lemniscate of Bernoulli. — Its form resembles the symbol oo,
and, referred to its centre or double point, the equation is

(8 +9 = (et o 12 = PPeon26, orp=
11. The Witch of Agnesi.— Referred to its vertex, the equation is
ar . P . . a a
= —_ =,y =t —
[ oyt it has inflexions at the points oy== ‘\/5, and an

asymptote perpendicular to the axis at the distance 2 = a.

12. The Spiral of Archimedes.— The polar equation is

r3
r=af, orp= -—_’__J(a T
13, The Reciprocal Spiral.—Its polar equation is
a ar
=P TPy

14. The Logarithmic Spiral.—Its polar equation is » = af; or p = mr;
the curve intersects its radius vector at a constant angle P ; and its evolute
and involute are spirals equal to the original one.

15. The Cardioid.—Its polar equation is r = a (1 — cos 6) or 13 = 2ap?;
the origin is a cusp of the first kind, and its evolute is another cardioid ;
also the lines drawn through the pole, and intercepted by the curve, are
all of the same length 2a.

16. Quadratrix of Dinostratus.— Its equation is y = & tan '(a2¢')
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and it has an infinite number of asymptotes perpendicular to the axis

of x. When.r=0,y=0xw=.2_:..

17. Quadratriz of Tschirnhausen.—Its equation is y = asin -2—, and it

has inflexions at the points where y = 0.
18. Companion to the Cycloid: x = a(1—cos¢), y = a¢,
19. Trochoid; & = a(1—n cos¢), y = a(p— uuimp)

20 Epitrochoid ; x = (a + b) cos¢ — hcos( )4»

y = (a + b)sing —Asin (“ ';b)cp.

21. When A = b, this becomes the Epicycloid ; and when also a = J, it
becomes the Cardioid.

22. Hypotrochoid; & = (a—b)cos¢ + hcos( )4»,
= (a—3)sin ¢— Asin (a bb)‘P
23. When A = 4, this becomes the Hypocyeloid ; : whend = ; it gives
e y’i-—a§ and when & = .., 1t becomes an Ellipse. <!
24. The Lituus.~—Its polar equation is y2= —
Euler’s Theorems on Homogeneous Functions.

(110.) If w = f(z, y, 2, &c.) be a homogeneous function of
n dimensions and of any number of variables ; then '

(@)er(@) o) =
d?u d?u d?u
2 m)+y2(m->+....-+2ly(m§)+&c.

=n(n—1)u,

d3u g [(BBu g dsu)
dz>+y @)+""'+3zy(d.r2dy + &e.

 =am—-1)(n—2)u,
&e. &c. &ec.
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Since the function  is homogeneous and # is the sum of '
the exponents of the variables in each term, if for z, y, z, &c.
there be substituted (1 + o)z, (1 + a)y, (14 a)2, &ec. it is
evident that the value of « will become (1 + a)*u; that is

1+ a)*u=f(z + az, y + ay, z + az, &c.)

The first of these being expanded by the binomial theorem,
and the second by the formula of art. (47), by equating the
coefficients of the like powers of the arbitrary quantity a, we
obtain the elegant relations stated in the theorems. !

Laplace’s Theorem.

(111.) If y =f(z + £¢y), in which y is an implicit func-
tion of two variables # and z depending on the forms of the
functions characterized by f and ¢; then the development of
any other function Fy may be obtained from the following
general theorem :

ry=Fre+ 20 o+ 2{ I e} 5
+ S 5 i5mee e

d*-! [d. d.Ffz z*
t &\ T ("’f’)'} iz »
By considering ¥ = Fy as a function of & its expansion in
powers of z, art. (46), is

u=1+ 3 ( ) d‘”)ﬁ% i |+ &...(0)

where the values of u, and the differential coefficients, as
indicated, are to be taken when # = 0. For the investigation
of the proposed theorem it will therefore only be requisite to
determine the values of these coefficients. Let

B=sz+axdy; .
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then y =/B8 =/(z + z¢y). By differentiating first with
respect to # and then with respect to 2, we have

(¢y+z¢' d”)fﬁ. or % _9uSB_

1—2¢' f'ﬂ
dy_ U ?___'l / ﬂ/__,z
-d—z_(l+z¢ydz)fﬁ’ N "Rl iy oy L
. dy _dy
“E'z'_dzw'

This equation being independent of the form of the function

! y = f8 must evidently be true if y be replaced by any function
‘of B or by any function of y. Substituting therefore x = Fy,

‘ we get

f

i Again, since « is a function of y, which is a function of two
variables x and z, we have, art. (37) and this equation (1),

d’u ddupy _ ddudy _9a
a2 " dz dz  dz dr dz dz(¢ )2} -2,
du _ d ddu(py)® _ d? du(gpy)® _ < p
! Bt dede dz dB dr (4’”)3}
e 3)
&e. &e. &c.
dru _ d dnt du(py)nt _ d du(gy)nt
dz»  dzdi*?  ds dz» dr
dn 1 "
=& {dz @) } - @)

In deducing the values of the differential coefficients when

= 0 we may obviously make & =0 before differentiating ;
that is, we may at once use u, = Fy, = Ffz, and ¢y,= ¢f=.
Thus we find,
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u,=Ffz,

)= L2 (o,

29220

)= L wrer s
&e. &e.

( = P {2l wrr s

and by snbstxtutmg these values in
d’u a3
u=1ty+ - ( 12 +123 73 ), + &ec.

we obtain the theorem st;ated.

Lagrange’s Theorem.
(112.) If y =z + 2¢y, where ¢y denotes a given func-
tion ; then the development of another function Fy in ascend-
ing powers of z will be

py=Fr+ 02 22Ty )’}12

d? sz z8
+ 23 @Pl“.
blsz .
.............. 2 {LE 0 }12__” + &c.

This is a case of Laplace’s more general theorem, from
which it immediately follows on making fz=¢; and when
¢z =1, it becomes Taylor’s theorem.
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