

5. 34. 2

16 5381 20

C 1967 3

\$ 5081

ELEMENTS

0 F

GEOMETRY AND TRIGONOMETRY,

FROM THE WORKS OF

A. M. LEGENDRE.

ADAPTED TO THE COURSE OF MATHEMATICAL INSTRUCTION IN THE UNITED STATES,

BY CHARLES DAVIES, LL.D.,

AUTHOR OF ARITHMETIC, ALGEBRA, PRACTICAL MATHEMATICS FOR PRACTICAL MEN, ELEMENTS OF DESCRIPTIVE AND OF ANALYTICAL GEOMETRY, ELEMENTS OF DIFFERENTIAL AND INTEGRAL CALCULUS, AND SHADES, SHADOWS, AND PERSPECTIVE.

.

A. S. BARNES & COMPANY, NEW YORK AND CHICAGO.

1872.

DAVIES' MATHEMATICS. 1862

THE WEST POINT COURSE.

And Only Thorough and Complete Mathematical Series, MATHE

IN THREE PARTS.

STAT LIBRARY

I. COMMON SCHOOL COURSE

- Davies" Primary Arithmetic. The fundamental principles displayed in Object Lessons.
- Davies' Intellectual Arithmetic .- Referring all operations to the unit 1 as the only tangible basis for logical development.
- Davies' Elements of Written Arithmetic .- A practical introduction to the whole subject. Theory subordinated to Practice.
- Davies' Practical Arithmetic.*-The most successful combination of Theory and Practice, clear, exact, brief, and comprehensive.

II. ACADEMIC COURSE.

- Davies' University Arithmetic.*-Treating the subject exhaustively as a science, in a logical series of connected propositions.
- Davies' Elementary Algebra.*-A connecting link, conducting the pupil easily from arithmetical processes to abstract analysis.
- Davies' University Algebra.*-For institutions desiring a more complete but not the fullest course in pure Algebra.
- Davies' Practical Mathematics .- The science practically applied to the useful arts, as Drawing, Architecture, Surveying, Mechanics, etc.
- Davies' Elementary Geometry .- The important principles in simple form. but with all the exactness of vigorous reasoning.
- Davies' Elements of Surveying .- Re-written in 1870. The simplest and most practical presentation for youths of 12 to 16.

III. COLLEGIATE COURSE.

- Davies' Bourdon's Algebra.*--Embracing Sturm's Theorem, and a most exhaustive and scholarly course.
- Davies' University Algebra.*-A shorter course than Bourdon, for Institutions have less time to give the subject.
- Davies' Legendre's Geometry .- Acknowledged the only satisfactory treatise of its grade. 300,000 copies have been sold.
- Davies' Analytical Geometry and Calculus.-The shorter treatises, combined in one volume, are more available for American courses of study.
- Davies' Analytical Geometry. The original compendiums, for those de-Davies' Diff. & Int. Calculus. Sching to give full time to each branch. Davies' Descriptive Geometry With application to Spherical Trigonome-
- try, Spherical Projections, and Warped Surfaces.
- Davies' Shades, Shadows, and Perspective .- A succinct exposition of the mathematical principles involved,

Davies' Science of Mathematics .- For teachers, embracing

- III. LOGIC AND UTILITY OF MATHEMATICS, I. GRAMMAR OF ARITHMETIC, II. OUTLINES OF MATHEMATICS, IV. MATHEMATICAL DICTIONARY.
 - * Keys may be obtained from the Publishers by Teachers only.

Entered, according to Act of Congress, in the year 1862, by CHARLES DAVIES,

In the Clerk's Office of the District Court of the United States for the Southern District of New York.

L.

PREFACE.

OF the various Treatises on Elementary Geometry which have appeared during the present century, that of M. LEGENDRE stands preëminent. Its peculiar merits have won for it not only a European reputation, but have also caused it to be selected as the basis of many of the best works on the subject that have been published in this country.

In the original Treatise of LEGENDRE, the propositions are not enunciated in general terms, but by means of the diagrams employed in their demonstration. This departure from the method of EUCLID is much to be regretted. The propositions of Geometry are general truths, and ought to be stated in general terms, without reference to particular diagrams. In the following work, each proposition is first enunciated in general terms, and afterwards, with reference to a particular figure, that figure being taken to represent any one of the class to which it belongs. By this arrangement, the difficulty oxperienced by beginners in comprehending abstract truths, is lessened, without in any manner impairing the generality of the truths evolved.

The term *solid*, used not only by LEGENDRE, but by many other authors, to denote a limited portion of space, seems calculated to introduce the foreign idea of matter 364332

PREFACE.

into a science, which deals only with the abstract properties and relations of figured space. The term *volume*, has been introduced in its place, under the belief that it corresponds more exactly to the idea intended. Many other departures have been made from the original text, the value and utility of which have been made manifest in the practical tests to which the work has been subjected.

In the present Edition, numerous changes have been made, both in the Geometry and in the Trigonometry. The definitions have been carefully revised—the demonstrations have been harmonized, and, in many instances, abbreviated the principal object being to simplify the subject as much as possible, without departing from the general plan. These changes are due to Professor Peck, of the Department of Pure Mathematics and Astronomy in Columbia College. For his aid, in giving to the work its present permanent form, I tender him my grateful acknowledgements.

CHARLES DAVIES.

COLUMBIA COLLEGE, NEW YORK, April, 1862.

iv

GEOMETRY.

	PAGE.
INTRODUCTION	9
BOOK I.	
Definitions,	. 13
Propositions,	
BOOK II.	
Ratios and Proportions,	50
воок III.	
The Circle, and the Measurement of Angles,	59
Problems relating to the First and Third Books,	
BOOK IV.	
Proportions of Figures-Measurement of Areas,	93
Problems relating to the Fourth Book,	129
BOOK V.	
Regular Polygons-Measurement of the Circle,	136
BOOK VI.	
Planes, and Polyedral Angles,	157
BOOK VII.	
Polvedrona.	178

BOOK VIII.

							PAGE,
Cylinder,	Cone,	and	Sphere,	•••••	•	•••••	210

BOOK IX.

Spherical	Geometry,	235

PLANE TRIGONOMETRY.

INTRODUCTION.

Definition of Logarithms,	
Rules for Characteristics,	4
General Principles,	5
Table of Logarithms,	
Manner of Using the Table,	8
Multiplication by Logarithms,	11
Bivision by Logarithms,	12
Arithmetical Complement,	13
Raising to Powers by Logarithms,	15
Extraction of Roots by Logarithms,	

PLANE TRIGONOMETRY.

Plane Trigonometry Defined,	17
Functions of the Arc,	18-22
Table of Natural Sines,	22
Table of Logarithmic Sines,	22
Use of the Table,	23-27
Solution of Right-angled Triangles,	27-35
Solution of Oblique-angled Triangles,	36-47
Problems of Application,	48

ANALYTICAL TRIGONOMETRY.

Analytical Trigonometry	Defined,	51
Definitions and General	Principles,	51-54
Rules for Signs of the	Functions,	51

Limiting value of Circular Functions,	55
Relations of Circular Functions,	57-59
Functions of Negative Arcs,	60-62
Particular values of Certain Functions,	63
Formulas of Relation between Functions and Arcs,	64-66
Functions of Double and Half Arcs,	67
Additional Formulas,	68-70
Method of Computing a Table of Natural Sines,	71

SPHERICAL TRIGONOMETRY.

Spherical Trigonometry Defined,	73
General Principles,	73
Formulas for Right-angled Triangles,	74-76
Napier's Circular Parts,	77
Solution of Right-angled Spherical Triangles,	80-83
Quadrantal Triangles,	84
Formulas for Oblique-angled Triangles,	85-92
Solution of Oblique-angled Triangles,	92-104

MENSURATION.

Mensuration Defined,	105
The Area of a Parallelogram,	106
The Area of a Triangle,	106
Formula for the Sine of Half an Angle,	108
Area of a Trapezoid,	112
Area of a Quadrilateral,	112
Area of a Polygon,	113
Area of a Regular Polygon,	114
To find the Circumference of a Circle,	116
To find the Diameter of a Circle,	116
To find the length of an Arc,	117
Area of a Circle,	117
Area of a Sector,	118
Area of a Segment,	118
Area of a Circular Ring,	119

VU PAGE.

	AGE.
Area of the Surface of a Prism,	120
Area of the Surface of a Pyramid,	120
Area of the Frustum of a Cone,	121
Area of the Surface of a Sphere,	122
Area of a Zone,	122
Area of a Spherical Polygon,	123
Volume of a Prism,	124
Volume of a Pyramid,	124
Volume of the Frustum of a Pyramid,	125
Volume of a Sphere,	126
Volume of a Wedge,	127
Volume of a Prismoid,	128
Volumes of Regular Polyedrons,	132

ELEMENTS

0 F

'GEOMETRY.

INTRODUCTION.

DEFINITIONS OF TERMS.

1. QUANTITY is anything which can be increased, diminished, and measured.

To measure a thing, is to find out how many times it contains some other thing of the same kind, taken as a standard. The assumed standard is called the *unit of measure*.

2. In GEOMETRY, there are four species of quantity, viz.: LINES, SURFACES, VOLUMES, and ANGLES. These are called, GEOMETRICAL MAGNITUDES.

Since the unit of measure of a quantity is of the same kind as the quantity measured, there are four kinds of units of measthere, viz.: Units of Length, Units of Surface, Units of Volume, and Units of Angular Measure.

GEOMETRY is that branch of Mathematics which treats the properties, relations, and measurement of the Geometrical Magnitudes.

4. In Geometry, the quantities considered are generally represented by means of the straight line and curve. The operations to be performed upon the quantities and the relations between them, are indicated by signs, as in Analysis.

The following are the principal signs employed :

The Sign of Addition, +, called plus:

Thus, A + B, indicates that B is to be added to A. The Sign of Subtraction, -, called minus:

Thus, A - B, indicates that B is to be subtracted from A.

The Sign of Multiplication, \times :

Thus, $A \times B$, indicates that A is to be multiplied by B.

The Sign of Division, \div :

Thus, $A \div B$, or, $\frac{A}{B}$, indicates that A is to be divided by B.

The Exponential Sign:

Thus, A^3 , indicates that A is to be taken three times as a factor, or raised to the third power.

The Radical Sign, $\sqrt{}$:

Thus, \sqrt{A} , $\sqrt[3]{B}$, indicate that the square root of A, and the cube root of B, are to be taken.

When a compound quantity is to be operated upon as a single quantity, its parts are connected by a vinculum or by a parenthesis:

Thus, $\overline{A + B} \times C$, indicates that the sum of A and B is to be multiplied by C; and $(A + B) \div C$, indicates that the sum of A and B is to be "divided by C.

A number written before a quantity, shows how many times it is to be taken.

Thus, 3(A + B), indicates that the sum of A and I is to be taken three times.

The Sign of Equality, =:

Thus, A = B + C, indicates that A is equal to the sum of B and C.

INTRODUCTION.

The expression, A = B + C, is called an equation. The part on the left of the sign of equality, is called the *first* member; that on the right, the second member.

The Sign of Inequality, <:

Thus, $\sqrt{A} < \sqrt[3]{B}$, indicates that the square root of A is less than the cube root of B. The opening of the sign is towards the greater quantity.

The sign, ... is used as an abbreviation of the word hence, or consequently.

The symbols, 1°, 2°, etc., mean, 1st, 2d, etc.

5. The general truths of Geometry are deduced by a course of logical reasoning, the premises being definitions and principles previously established. The course of reasoning employed in establishing any truth or principle, is called a *demonstration*.

6. A THEOREM is a truth requiring demonstration.

7. An AXIOM is a self-evident truth.

8. A PROBLEM is a question requiring a solution.

9. A POSTULATE is a self-evident Problem.

Theorems, Axioms, Problems, and Postulates, are all called *Propositions*.

10. A LEMMA is an auxiliary proposition.

11. A COROLLARY is an obvious consequence of one or more propositions.

12. A SCHOLIUM is a remark made upon one or more propositions, with reference to their connection, their use, their extent, or their limitation.

13. An HYPOTHESIS is a supposition made, either in the statement of a proposition, or in the course of a demonstration.

14. Magnitudes are equal to each other, when each contains the same unit an equal number of times.

15. Magnitudes are equal in all their parts, when they may be so placed as to coincide throughout their whole extent.

(a, c.) 7952 3,900476 5903 3,771073 og x 4.072115 ... 4, 172103 :. X =11806

12

ELEMENTS OF GEOMETRY.

BOOK I.

ELEMENTARY PRINCIPLES.

DEFINITIONS.

1. GEOMETRY is that branch of Mathematics which treats of the properties, relations, and measurements of the Geometrical Magnitudes.

2. A POINT is that which has position, but not magnitude.

3. A LINE is that which has length, bu⁺ neither breadth nor thickness.

Lines are divided into two classes, straight and curved.

4. A STRAIGHT LINE is one which does not change its direction at any point.

5. A CURVED LINE is one which changes its direction at every point.

When the sense is obvious, to avoid repetition, the word *line*, alone, is sometimes used for *straight line*; and the word *curve*, alone, for *curved line*.

6. A line made up of straight lines, not lying in the same direction, is called a *broken line*.

7. A SURFACE is that which has length and breadth without thickness.

Surfaces are divided into two classes, plane and curved surfaces.

8. A PLANE is a surface, such, that if any two of its points be joined by a straight line, that line will lie wholly in the surface.

9. A CURVED SURFACE is a surface which is neither a plane nor composed of planes.

10. A PLANE ANGLE is the amount of divergence of two straight lines lying in the same plane.

Thus, the amount of divergence of the lines AB and AC, is an angle. The lines AB and AC are called sides, and their common point A, is called the ver-

tex. An angle is designated by naming its sides, or sometimes by simply naming its vertex; thus, the above is called the angle BAC, or simply, the angle A.

11. When one straight line meets another the two angles which they form are called adjacent angles. Thus, the A. angles ABD and DBC are adjacent.

12. A RIGHT ANGLE is formed by one straight line meeting another so as to make the adjacent angles equal. The first line is then said to be perpendicular to the second.

13. An OBLIQUE ANGLE is formed by one straight line meeting another so as to make the adjacent angles unequal.

Oblique angles are subdivided into two classes, acute angles, and obtuse angles.

14. An Acute Angle is less than a right angle

D

15. An OBTUSE ANGLE is greater than a right angle.

16. Two straight lines are *parallel*, when they lie in the same plane and cannot meet, how far soever, either way, both

may be produced. They then have the same direction.

17. A PLANE FIGURE is a portion of a plane bounded by lines, either straight or curved.

18. A POLYGON is a plane figure bounded by straight lines.

The bounding lines are called *sides* of the polygon. The broken line, made up of all the sides of the polygon, is called the *perimeter* of the polygon. The angles formed by the sides, are called *angles* of the polygon. \checkmark

19. Polygons are classified according to the number of their sides or angles.

A Polygon of three sides is called a triangle; one of four sides, a quadrilateral; one of five sides, a pentagon; one of six sides, a hexagon; one of seven sides, a heptagon; one of eight sides, an octagon; one of ten sides, a decagon; one of twelve sides, a dodecagon, &c.

20. An Equilateral Polygon, is one whose sides are all equal.

An EQUIANGULAR POLYGON, is one whose angles are all equal.

A REGULAR POLYGON, is one which is both equilateral and equiangular.

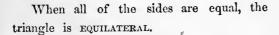
21. Two polygons are *mutually equilateral*, when their sides, taken in the same order, are equal, each to each: that is, following their perimeters in the same direction, the first

15

side of the one is equal to the first side of the other, the second side of the one, to the second side of the other, and so on.

22. Two polygons are *mutually equiangular*, when their angles, taken in the same order, are equal, each to each.

23. A DIAGONAL of a polygon is a straight line joining the vertices of two angles, not consecutive.


24. A BASE of a polygon is any one of its sides on which the polygon is supposed to stand.

25. Triangles may be classified with reference either to their sides, or their angles.

When classified with reference to their sides, there are two classes : scalene and isosceles.

1st. A SCALENE TRIANGLE is one which has no two of its sides equal.

2d. An Isosceles TRIANGLE is one which has two of its sides equal.

When classified with reference to their angles, there are are two classes: right-angled and oblique-angled.

1st. A RIGHT-ANGLED TRIANGLE is one that has one right angle.

The side opposite the right angle, is called the hypothenuse.

2d. An Oblique-Angled Triangle is one whose angles are all oblique.

If one angle of an oblique-angled triangle is obtuse, the triangle is said to be OBTUSE-ANGLED. If all of the angles are acute, the triangle is said to be ACUTE-ANGLED.

26. Quadrilaterals are classified with reference to the relative directions of their sides. There are then two classes the *first class* embraces those which have no two sides par allel; the *second class* embraces those which have at least two sides parallel.

Quadrilaterals of the first class, are called trapeziums.

Quadrilaterals of the second class, are divided into two species: trapezoids and parallelograms.

27. A TRAPEZOID is a quadrilateral which has only two of its sides parallel.

28. A PARALLELOGRAM is a quadrilateral which has its opposite sides parallel, two and two.

There are two varieties of parallelograms : rectangles. and rhomboids.

1st. A RECTANGLE is a parallelogram whose angles are all right angles.

A SQUARE is an equilateral rectangle.

2d. A RHOMBOID is a parallelogram whose angles are all oblique.

A RHOMBUS is an equilateral rhomboid.

29. SPACE is indefinite extension.

30. A VOLUME is a limited portion of space. A Volume has three dimensions : length, breadth, and thickness.

AXIOMS.

1. Things which are equal to the same thing, are equa to each other.

2. If equals be added to equals, the sums will be equal.

3 If equals be subtracted from equals, the remainders will be equal.

4. If equals be added to unequals, the sums will be unequal.

5. If equals be subtracted from unequals, the remainders will be unequal.

6. If equals be multiplied by equals, the products will be equal.

7. If equals be divided by equals, the quotients will be equal.

8. The whole is greater than any of its parts.

9. The whole is equal to the sum of all its parts.

10. All right angles are equal.

11. Only one straight line can be drawn joining two given points.

12. The shortest distance from one point to another is measured on the straight line which joins them.

13. Through the same point, only one straight line can be drawn parallel to a given straight line.

BOOK I.

POSTULATES.

1. A straight line can be drawn joining any two points.

2. A straight line may be prolonged to any length.

3. If two straight lines are unequal, the length of the less may be laid off on the greater.

4. A straight line may be bisected; that is, divided into two equal parts.

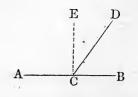
5. An angle may be bisected.

6. A perpendicular may be drawn to a given straight line, either from a point without, or from a point on the line.

7. A straight line may be drawn, making with a given straight line an angle equal to a given angle.

8. A straight line may be drawn through a given point, parallel to a given line.

NOTE.


In making references, the following abbreviations are employed, viz. A. for Axiom; B. for Book; C. for Corollary; D. for Definition; *I.* for Introduction; P. for Proposition; Prob. for Problem; Post. for Postulate; and S. for Scholium. In referring to the same Book, the number of the Book *is not* given; in referring to any other Book, the number of the Book *is* given.

PROPOSITION I. THEOREM.

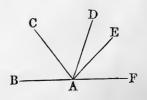
If a straight line meet another straight line, the sum of the adjacent angles will be equal to two right angles.

Let DC meet AB at C: then will the sum of the angles DCA and DCB be equal to two right angles.

An C, let CE be drawn perpendicular to AB (Post. 6); then, by definition (D. 12), the angles

ECA and ECB will both be right angles, and consequently, their sum will be equal to two right angles.

The angle DCA is equal to the sum of the angles ECA and ECD (A. 9); hence,

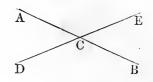

DCA + DCB = ECA + ECD + DCB; But, ECD + DCB is equal to ECB (A. 9); hence,

DCA + DCB = ECA + ECB.

The sum of the angles ECA and ECB, is equal to two right angles; consequently, its equal, that is, the sum of the angles DCA and DCB, must also be equal to two right angles; which was to be proved.

Cor. 1. If one of the angles DCA, DCB, is a right angle, the other must also be a right angle.

Cor. 2. The sum of the angles BAC, CAD, DAE, EAF, formed about a given point on the same side of a straight line BF, is equal to two right angles. For, their sum is equal to


BOOK I.

the sum of the angles EAB and EAF; which, from the proposition just demonstrated, is equal to two right angles.

DEFINITIONS.

If two straight lines intersect each other, they form four angles about the point of intersection, which have received different names, with respect to each other.

1°. ADJACENT ANGLES are those which lie on the same side of one line, and on opposite sides of the other; thus, ACE and ECB, or ACE and ACD, are adjacent angles.

2°. OPPOSITE, or VERTICAL ANGLES, are those which lie on opposite sides of both lines; thus, ACE and DCB, or ACD and ECB, are opposite angles. From the proposition just demonstrated, the sum of any two adjacent angles is equal to two right angles.

PROPOSITION II. THEOREM.

If two straight lines intersect each other, the opposite or vertical angles will be equal.

Let AB and DE intersect at C: then will the opposite or vertical angles be equal.

The sum of the adjacent angles ACE and ACD, is equal to two right angles (P. I.): the sum

of the adjacent angles ACE and ECB, is also equal to two right angles. But things which are equal to the same thing, are equal to each other (A. 1); hence,

21

ACE + ACD = ACE + ECB;

Taking from both the common angle A CE (A. 3), there remains,

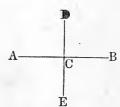
$$ACD = ECB.$$

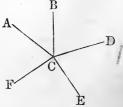
In like manner, we find,

$$ACD + ACE = ACD + DCB;$$

and, taking away the common angle ACD, we have,

ACE = DCB.

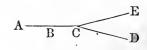

Hence, the proposition is proved.


Cor. 1. If one of the angles about C is a right angle, all of the others will be right angles also. For, (P. I., C. 1), each of its adjacent angles will

be a right angle; and from the proposition just demonstrated, its opposite angle will also be a right angle.

Cor. 2. If one line DE, is E perpendicular to another AB, then will the second line ABbe perpendicular to the first DE. For, the angles DCAand DCB are right angles, by definition (D. 12); and from what has just been proved, the angles ACE and BCE are also right angles. Hence, the two lines are mutually perpendicular to each other.

Cor. 3. The sum of all the angles ACB, BCD, DCE, ECF, FCA, that can be formed about a point, is equal to four right angles.



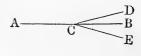
For, if two lines be drawn through the point, mutually perpendicular to each other, the sum of the angles which they form will be equal to four right angles, and it will also be equal to the sum of the given angles (Λ . 9). Hence, the sum of the given angles is equal to four right angles.

PROPOSITION HI. THEOREM.

If two straight lines have two points in common, they will coincide throughout their whole extent, and form one and the same line.

Let A and B be two points common to two lines: then will the lines coincide throughout.

Between A and B they must coincide (A. 11). Suppose, now, that they begin to separate at some point C, beyond AB, the one becoming ACE, and the other ACD. If the lines do separate at C, one or the other must change direction at this point; but this is contradictory to the definition of a straight line (D. 4): hence, the supposition that they separate at any point is absurd. They must, therefore, coincide throughout; which was to be proved.


Cor. Two straight lines can intersect in only one point.

Note.—The method of demonstration employed above, is called the *reductio ad absurdum*. It consists in assuming an hypothesis which is the contradictory of the proposition to be proved, and then continuing the reasoning until the assumed hypothesis is shown to be false. Its contradictory is thus proved to be true. This method of demonstration is often used in Geometry.

PROPOSITION IV. THEOREM.

If a straight line meet two other straight lines at a common point, making the sum of the contiguous angles equal to two right angles, the two lines met will form one and the same straight line.

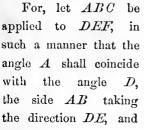
Let DC meet AC and BCat C, making the sum of the angles DCA and DCB equal to two right angles: then will CB be the prolongation of AC.

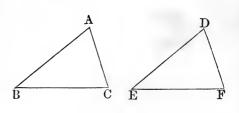
For, if not, suppose CE to be the prolongation of AC; then will the sum of the angles DCA and DCE be equal to two right angles (P. I.): We shall, consequently, have (A. 1),

$$DCA + DCB = DCA + DCE;$$

Taking from both the common angle DCA, there remains,

$$DCB = DCE,$$

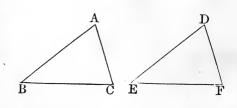

which is impossible, since a part cannot be equal to the whole (A. 8). Hence, CB must be the prolongation of AC; which was to be proved.


PROPOSITION V. THEOREM.

If two triangles have two sides and the included angle of the one equal to two sides and the included angle of the other, each to each, the triangles will be equal in all their parts.

In the triangles ABC and DEF, let AB be equal

to DE, AC to DF, and the angle A to the angle D: then will the triangles be equal in all their parts.



the side AC the direction DF. Then, because AB is equal to DE, the vertex B will coincide with the vertex E; and because AC is equal to DF, the vertex C will coincide with the vertex F; consequently, the side BCwill coincide with the side EF (A. 11). The two triangles, therefore, coincide throughout, and are consequently equal in all their parts (I., D. 14); which was to be proved.

PROPOSITION VI. THEOREM.

If two triangles have two angles and the included side of the one equal to two angles and the included side of the other, each to each, the triangles will be equal in all their parts.

In the triangles ABC and DEF, let the angle B be equal to the angle E, the angle C to the angle F, and the side BCto the side EF: then

will the triangles be equal in all their parts.

For, let ABC be applied to DEF in such a manner that the angle B shall coincide with the angle E, the side

BU taking the direction EF, and the side BA the direction ED. Then, because BC is equal to EF, the vertex C will coincide with the vertex F; and because the angle C is equal to the angle F, the side CA will take the direction FD. Now, the vertex A being at the same time on the lines ED and FD, it must be at their intersection D (P. III., C.): hence, the triangles coincide throughout, and are therefore equal in all their parts (I., D. 14); which was to be proved.

PROPOSITION VII. THEOREM.

The sum of any two sides of a triangle is greater than the third side.

Let ABC be a triangle: then will the sum of any two sides, as AB, BC, be greater than the third side AC.

For, the distance from A to C, $A \swarrow C$ measured on any broken line AB, BC, is greater than the distance measured on the straight line AC (A. 12): hence, the sum of AB and BC is greater than AC; which was to be proved.

Cor. If from both members of the inequality,

AC < AB + BC,

we take away either of the sides AB, BC, as BC, for example, there will remain (A. 5),

$$AC - BC < AB;$$

that is, the difference between any two sides of a triangle is less than the third side.

Scholium. In order that any three given lines may re-

BOOK I.

present the sides of a triangle, the sum of any two must be greater than the third, and the difference of any two must be less than the third.

PROPOSITION VIII. THEOREM.

If from any point within a triangle two straight lines b drawn to the extremities of any side, their sum will be less than that of the two remaining sides of the triangle.

Let O be any point within the triangle BAC, and let the lines OB, OC, be drawn to the

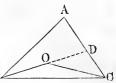
extremities of any side, as BC: then will the sum of BO and OCbe less than the sum of the sides BA and AC.

Prolong one of the lines, as BO, till it meets the side AC in D; then, from Prop. VII., we shall have,

$$OC < OD + DC$$
;

adding BO to both members of this inequality, recollecting that the sum of BO and OD is equal to BD, we have (A. 4),

$$BO + OC < BD + DC.$$


From the triangle BAD, we have (P. VII.),

$$BD < BA + AD;$$

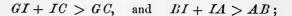
adding DC to both members of this inequality, recollecting that the sum of AD and DC is equal to AC, we have,

$$BD + DC < BA + AC.$$

But it was shown that BO + OC is less than BD + DC; still more, then, is BO + OC less than BA + AC; which was to be proved.

PROPOSITION IX. THEOREM.

If two triangles have two sides of the one equal to two sides of the other, each to each, and the included angles unequal, the third sides will be unequal; and the greater side will belong to the triangle which has the greater included angle.


In the triangles BAC and DEF, let AB be equal to DE, AC to DF, and the angle A greater than the angle D: then will BC be greater than EF.

Let the line AG be drawn, making the angle CAGequal to the angle D (Post. 7); make AG equal to DE, and draw GC. Then will the triangles AGC and DEFhave two sides and the included angle of the one equal to two sides and the included angle of the other, each to each; consequently, GC is equal to EF (P. V.).

Now, the point G may be without the triangle ABC, it may be on the side BC, or it may be within the triangle ABC. Each case will be considered separately.

1°. When G is without the triangle ABC.

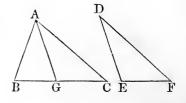
In the triangles GIC and AIB, we have, (P. VII.),

whence, by addition, recollecting that the sum of BI and IC is equal to BC, and the sum of GI and IA, to GA, we have,

AG + BC > AB + GC.

BOOK I.

Or, since AG = AB, and GC = EF, we have,


$$AB + BC > AB + EF.$$

Taking away the common part AB, there remains (A. 5),

BC > EF.

2°. When G is on BC. In this case, it is obvious that GC is less than BC; or, since GC = EF, we have,

BC > EF.

B(G

3°. When G is within the triangle ABC. From Proposition VIII., we have,

BA + BC > GA + GC;

or, since GA = BA, and $GC \doteq EF$, we have,

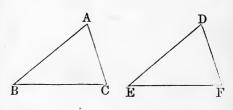
BA + BC > BA + EF.

Taking away the common part AB, there remains,

Hence, in each case, BC is greater than EF; which was to be proved.

Conversely: If in two triangles ABC and DEF, the side AB is equal to the side DE, the side AC to DF, and BC greater than EF, then will the angle BAC be greater than the angle EDF.

For, if not, BAC must either be equal to, or less than, EDF. In the former case, BC would be equal to EF(P. V.), and in the latter case, BC would be less than EF; either of which would be contrary to the hypothesis: hence, BAC must be greater than EDF.


D

PROPOSITION X. THEOREM.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles will be equal in all their parts.

In the triangles ABC and DEF, let AB be equal to DE, AC to DF, and BC to EF: then will the triangles be equal in all their parts.

For, since the sides AB, AC, are equal to DE, DF, each to each, if the angle A were greater than D, it would follow, by the last \Pr -position, that the side

BC would be greater than EF; and if the angle A were less than D, the side BC would be less than EF. But BC is equal to EF, by hypothesis; therefore, the angle Acan neither be greater nor less than D: hence, it must be equal to it. The two triangles have, therefore, two sides and the included angle of the one equal to two sides and the included angle of the other, each to each; and, consequently, they are equal in all their parts (P. V.); which was to be proved.

Scholium. In triangles, equal in all their parts, the equal sides lie opposite the equal angles; and conversely.

PROPOSITION XI. THEOREM.

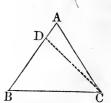
In an isosceles triangle the angles opposite the equal sides are equal.

Let BAC be an isosceles triangle, having the side AB equal to the side AC: then will the angle C be equal to the angle B.

Join the vertex A and the middle point D of the base BC. Then, AB is equal to AC, by hypothesis, AD common, and BD equal to DC, by construction: hence, the triangles BAD, and DAC, have the three sides of the one equal to those of the other, each to each; therefore, by the last Proposition, the angle B is equal to the angle C; which was to be proved.

Cor. 1. An equilateral triangle is equiangular.

Cor. 2. The angle BAD is equal to DAC, and BDA to CDA: hence, the last two are right angles. Consequently, a straight line drawn from the vertex of an isosceles triangle to the middle of the base, bisects the angle at the vertex, and is perpendicular to the base.


PROPOSITION XII. THEOREM.

If two angles of a triangle are equal, the sides opposite to them are also equal, and consequently, the triangle is isosceles.

In the triangle ABC, let the angle ABC be equal to the angle ACB: then will AC be equal to AB, and consequently, the triangle will be isosceles.

For, if AB and AC are not equal, suppose one of them, as AB, to be the

suppose one of them, as AB, to be the greater. On this, take BD equal to AC (Post. 3), and draw DC. Then, in the triangles ABC, DBC, we have the side BD equal to AC, by construction, the side BCcommon, and the included angle ACB equal to the included angle DBC, by hypothesis: hence, the two triangles are equal

in all their parts (P. V.). But this is impossible, because a part cannot be equal to the whole (A. 8): hence, the hypothesis that AB and AC are unequal, is false. They must, therefore, be equal; which was to be proved.

Cor. An equiangular triangle is equilateral.

PROPOSITION XIII. THEOREM.

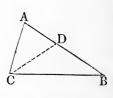
In any triangle, the greater side is opposite the greater angle; and, conversely, the greater angle is opposite the greater side.

In the triangle ABC, let the angle ACB be greater than the angle ABC: then will the side AB be greater than the side AC.

For, draw CD, making the angle BCD equal to the angle B (Post. 7):

then, in the triangle DCB, we have the angles DCB and DBC equal: hence, the opposite sides DB and DC are equal (P. XII.). In the triangle ACD, we have (P. VII.),

$$AD + DC > AC;$$


or, since DC = DB, and AD + DB = AB, we have,

$$AB > AC$$
;

which was to be proved.

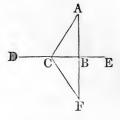
Conversely: Let AB be greater than AC: then will the angle ACB be greater than the angle ABC.

For, if ACB were less than ABC, the side AB would be less than the side AC, from what has just been proved; if ACB were equal to ABC, the side AB would be equal to AC, by Prop. XII.; but both conclusions are contrary

BOOK I.

to the hypothesis: hence, ACB can neither be less than, nor equal to, ABC; it must, therefore, be greater; which was to be proved.

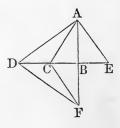
PROPOSITION XIV. THEOREM.


From a given point only one perpendicular can be drawn to a given straight line.

Let A be a given point, and ABa perpendicular to DE: then can no other perpendicular to DE be drawn from A.

For, suppose a second perpendicular AC to be drawn. Prolong AB till BF is equal to AB, and draw CF.

Then, the triangles ABC and FBC will have AB equat to BF, by construction, CB common, and the included angles ABC and FBC equal, because both are right angles: hence, the angles ACB and FCB are equal (P. V.) But ACB is, by a hypothesis, a right angle: hence, FCB must also be a right angle, and consequently, the line ACF must be a straight line (P. IV.). But this is impossible (A. 11). The hypothesis that two perpendiculars can be drawn is, therefore, absurd; consequently, only one such perpendicular can be drawn; which was to be proved.


If the given point is on the given line, the proposition is equally true. For, if from A two perpendiculars ABand AC could be drawn to DE, we should have BAE and CAEeach equal to a right angle; and consequently, equal to each other; which is absurd (A. 8). D

PROPOSITION XV. THEOREM.

- If from a point without a straight line a perpendicular be let fall on the line, and oblique lines be drawn to differ-. ent points of it:
- 1°. The perpendicular will be shorter than any oblique line.
- 2°. Any two oblique lines that meet the given line at points equally distant from the foot of the perpendicular, will be equal:
- 3°. Of two oblique lines that meet the given line at points unequally distant from the foot of the perpendicular, the one which meets it at the greater distance will be the longer.

Let A be a given point, DE a given straight line, AB a perpendicular to DE, and AD, AC, AE oblique lines, BC being equal to BE, and BDgreater than BC. Then will AB be less than any of the oblique lines, ACwill be equal to AE, and AD greater than AC.

Prolong AB until BF is equal to AB, and draw FC, FD.

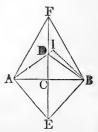
1°. In the triangles ABC, FBC, we have the side AB equal to BF, by construction, the side BC common, and the included angles ABC and FBC equal, because both are right angles: hence, FC is equal to AC (P. V.). But, AF is shorter than ACF (A. 12): hence, AB, the half of AF, is shorter than AC, the half of ACF; which was to be proved.

2°. In the triangles ABC and ABE, we have the side BC equal to BE, by hypothesis, the side AB common, and the included angles ABC and ABE equal,

because both are right angles: hence, AC is equal to AE; which was to be proved.

3°. It may be shown, as in the first case, that AD is equal to DF. Then, because the point C lies within the triangle ADF; the sum of the lines AD and DF will be greater than the sum of the lines AC and CF (P. VIII.): hence, AD, the half of ADF; is greater than AC, the half of ACF; which was to be proved.

Cor. 1. The perpendicular is the shortest distance from a point to a line.


Cor. 2. From a given point to a given straight line, only two equal straight lines can be drawn; for, if there could be more, there would be at least two equal oblique lines on the same side of the perpendicular; which is impossible.

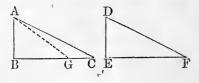
PROPOSITION XVI. THEOREM.

- If a perpendicular be drawn to a given straight line at its middle point:
- 1°. Any point of the perpendicular will be equally distant from the extremities of the line:
- 2°. Any point, without the perpendicular, will be unequally distant from the extremities.

Let AB be a given straight line, Cits middle point, and EF the perpendicular. Then will any point of EF be equally distant from A and B; and any point without EF, will be unequally distant from A and B.

1°. From any point of EF, as D, draw the lines DA and DB. Then will $D\dot{A}$ and DB be equal (P. XV.): hence, D is caually distant from A and B: which we

equally distant from A and B; which was to be proved.


2°. From any point without EF, as I, draw IA and IB. One of these lines, as IA, will cut EF in some point D; draw DB. Then, from what has just been shown, DA and DB will be equal; but IB is less than the sum of ID and DB (P. VII.); and because the sum of ID and DA, or IA, we have IB less than IA: hence, I is unequally distant from A and B; which was to be proved.

Cor. If a straight line EF have two of its points Eand F equally distant from A and B, it will be perpendicular to the line AB at its middle point.

PROPOSITION XVII. THEOREM.

If two right-angled triangles have the hypothenuse and a side of the one equal to the hypothenuse and a side of the other, each to each, the triangles will be equal in all their parts.

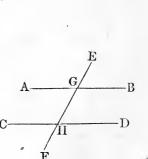
Let the right-angled triangles ABC and DEF have the hypothenuse AC equal to DF, and the side AB B equal to DE: then will the triangles be equal in all their parts.

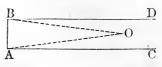
If the side BC is equal to EF, the triangles will be equal, in accordance with Proposition X. Let us suppose then, that BC and EF are unequal, and that BC is the longer. On BC lay off BG equal to EF, and draw AG. The triangles ABG and DEF have AB equal to DE, by hypothesis, BG equal to EF, by construction, and the angles B and E equal, because both are right angles; consequently, AG is equal to DF (P. V.) But, AC is equal to DF, by hypothesis: hence, AG and AC are equal, which is impossible (P. XV.). The hypothesis that BC and EF are unequal, is, therefore, absurd: hence, the triangles have all their sides equal, each to each, and are, consequently, equal in all of their parts; which was to be proved.

PROPOSITION XVIII. THEOREM.

If two straight lines are perpendicular to a third straight line, they will be parallel.

Let the two lines AC, BD, be perpendicular to AB: then will they be parallel.

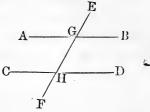

For, if they could meet in a point O, there would be two perpendiculars OA, OB, drawn from the same point to the same


straight line; which is impossible (P. XIV.): hence, the lines are parallel; which was to be proved.

DEFINITIONS.

If a straight line EF intersect two other straight lines ABand CD, it is called a *secant*, with respect to them. The eight angles formed about the points of intersection have different names, with respect to each other.

1°. INTERIOR ANGLES ON THE SAME SIDE, are those that lie on the same side of the secant and within the other two lines. Thus, BGH and GHD are interior angles on the same side.



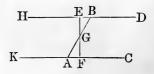
x

2°. EXTERIOR ANGLES ON THE SAME SIDE, are those that lie on the same side of the secant and without the other two lines. Thus, EGB and DHF are exterior angles on the same E

3°. ALTERNATE ANGLES, are those that lie on opposite sides of the secant and within the other two lines, but not adjacent. Thus, AGH and GHD are alternate angles.

4°. ALTERNATE EXTERIOR ANGLES, are those that lie on opposite sides of the secant and without the other two lines. Thus, AGE and FHD are alternate exterior angles.

5°. OPPOSITE EXTERIOR AND INTERIOR ANGLES, are those that lie on the same side of the secant, the one within and the other without the other two lines, but not adjacent. Thus, EGB and GHD are opposite exterior and interior angles.


PROPOSITION XIX. THEOREM.

If two straight lines meet a third straight line, making the sum of the interior angles on the same side equal to two right angles, the two lines will be parallel.

Let the lines KC and HD meet the line BA, making the sum of the angles BAC and ABD equal to two right angles: then will KC and HD be parallel.

Through G, the middle point of AB, draw GF perpendicular to KC, and prolong it to E.

The sum of the angles GBEand GBD is equal to two right

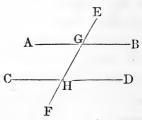
BOOK I.

angles (P. I.); the sum of the angles FAG and GBD is equal to two right angles, by hypothesis: hence (A. 1),

$$GBE + GBD = FAG + GBD.$$

Taking from both the common part GBD, we have the angle GBE equal to the angle FAG. Again, the angles BGE and AGF are equal, because they are vertical angies (P. II.): hence, the triangles GEB and GFA have two of their angles and the included side equal, each to each; they are, therefore, equal in all their parts (P. VI.): hence, the angle GEB is equal to the angle GFA. But, GFAis a right angle, by construction; GEB must, therefore, be a right angle: hence, the lines KC and HD are both perpendicular to EF, and are, therefore, parallel (P. XVIII.); which was to be proved.

Cor. 1. If two straight lines are cut by a third straight line, making the alternate angles equal to each other, the two straight lines will be parallel.

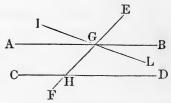

Let the angle HGA be equal to GHD. Adding to both, the angle HGB, we have,

HGA + HGB = GHD + HGB.

But the first sum is equal to two right angles (P. I.): hence, the second sum is also equal to

the second sum is also equal to two right angles; therefore, from what has just been shown, AB and CD are parallel.

Cor. 2. If two straight lines are cut by a third, making the opposite exterior and interior angles equal, the two straight lines will be parallel. Let the angles EGB and GHD be equal: Now EGB and AGH are equal, because they are vertical angles (P. II.); and consequently, AGH and GHD are equal: hence, from Cor. 1, AB and CD are parallel.

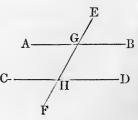


PROPOSITION XX. THEOREM.

If a straight line intersect two parallel straight lines, the sum of the interior angles on the same side will be equal to two right angles.

Let the parallels AB, CD, be cut by the secant line FE: then will the sum of HGB and GHD be equal to two right angles.

For, if the sum of HGBand GHD is not equal to two right angles, let IGL be drawn, making the sum of HGLand GHD equal to two right angles; then IL and CD will


be parallel (P. XIX.); and consequently, we shall have two lines GB, GL, drawn through the same point G and parallel to CD, which is impossible (A. 13): hence, the sum of HGB and GHD, is equal to two right angles; which was to be proved.

In like manner, it may be proved that the sum of HGA and GHC, is equal to two right angles.

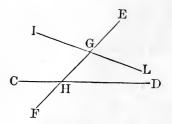
Cor. 1. If HGB is a right angle, GHD will be a right angle also : hence, if a line is perpendicular to one of two parallels, it is perpendicular to the other also.

Cor. 2. If a straight line meet two parallels, the alternate angles will be equal.

For, if AB and CD are parallel, the sum of BGH and GHD is equal to two right angles; the sum of BGH and HGA is also equal to two right angles (P. I.): hence, these sums

are equal. Taking away the common part BGH, there remains the angle GHD equal to HGA. In like manner, it may be shown that BGH and GHC are equal.

Cor. 3. If a straight line meet two parallels, the opposite exterior and interior angles will be equal. The angles DHGand HGA are equal, from what has just been shown. The angles HGA and BGE are equal, because they are vertical: hence, DHG and BGE are equal. In like manner, it may be shown that CHG and AGE are equal.


Scholium. Of the eight angles formed by a line cutting two parallel lines obliquely, the four acute angles are equal, and so, also, are the four obtuse angles.

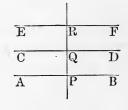
PROPOSITION XXI. THEOREM.

If two straight lines intersect a third straight line, making the sum of the interior angles on the same side less than two right angles, the two lines will meet if sufficiently produced.

Let the two lines *CD*, *IL*, meet the line *EF*, making the sum of the interior angles *HGL*, *GHD*, less than two right angles: then will *IL* and *CD* meet if sufficiently produced.

For, if they do not meet, they must be parallel (D. 16). But, if they were parallel, the sum of the interior angles IIGL, GIID, would be equal to two right angles (P. XX.), which is contrary to the hypothesis: hence,

IL, CD, will meet if sufficiently produced; which was to be proved.

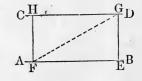

Cor. It is evident that IL and CD, will meet on that side of EF, on which the sum of the two angles is less than two right angles.

PROPOSITION XXII. THEOREM.

If two straight lines are parallel to a third line, they are parallel to each other.

Let AB and CD be respectively parallel to EF: then will they be parallel to each other.

For, draw PR perpendicular to EF; then will it be perpendicular to AB, and also to CD (P. XX., C. 1): hence, AB and CD are perpendicu-


lar to the same straight line, and consequently, they are parallel to each other (P. XVIII.); which was to be proved.

PROPOSITION XXIII. THEOREM.

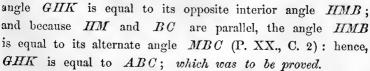
Two parallels are everywhere equally distant.

Let AB and CD be parallel: then will they be everywhere equally distant.

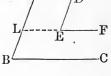
From any two points of AB, as F and E, draw FII and EG perpendicular to CD; they will also be perpendicular to AB (P. XX., C. 1), and will measure the distance between

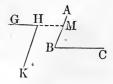
AB and CD, at the points F and E. Draw also FGThe lines FH and EG are parallel (P. XVIII.): hence, the alternate angles HFG and FGE are equal (P. XX., C. 2). The lines AB and CD are parallel, by hypothesis: hence, the alternate angles EFG and FGH are equal. The triangles FGE and FGH have, therefore, the angle HGFequal to GFE, GFH equal to FGE, and the side FG common; they are, therefore, equal in all their parts (P. VI.): hence, FH is equal to EG; and consequently, AB and CD are everywhere equally distant; which was to be proved.

PROPOSITION XXIV. THEOREM.


If two angles have their sides parallel, and lying either in the same, or in opposite directions, they will be equal.

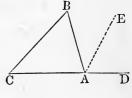
1°. Let the angles ABC and DEF have their sides parallel, and lying in the same direction : then will they be equal.


Prolong FE to L. Then, because DE and AL are parallel, the exterior angle DEF is equal to its opposite in-L terior angle ALE (P. XX., C. 3); and because BC and LF are parallel, the В exterior angle ALE is equal to its opposite interior angle ABC: hence, DEF is equal to ABC; which was to be proved.


2°. Let the angles ABC and GHKhave their sides parallel, and lying in opposite directions : then will they be equal.

Prolong GH to M. Then, because KH and BM are parallel, the exterior

Cor. The oppositu angles of a parallelogram are equal.


PROPOSITION XXV. THEOREM.

In any triangle, the sum of the three angles is equal to two right angles.

Let CBA be any triangle: then will the sum of the angles C, A, and B, be equal to two right angles. B

For, prolong CA to D, and draw AE parallel to BC.

Then, since AE and CB are parallel, and CD cuts them, the ex terior angle DAE is equal to its

opposite interior angle C (P. XX., C. 3). In like manner, since AE and CB are parallel, and AB cuts them, the alternate angles ABC and BAE are equal: hence, the sum of the three angles of the triangle BAC, is equal to the sum of the angles CAB, BAE, EAD; but this sum is equal to two right angles (P. I., C. 2); consequently, the sum of the three angles of the triangle, is equal to two right angles (A. 1); which was to be proved.

Cor. 1. Two angles of a triangle being given, the third will be found by subtracting their sum from two right angles.

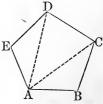
Cor. 2. If two angles of one triangle are respectively equal to two angles of another, the two triangles are mutually equiangular.

Cor. 3. In any triangle, there can be but one right angle; for if there were two, the third angle would be zero. Nor can a triangle have more than one obtuse angle.

Cor. 4. In any right-angled triangle, the sum of the acute angles is equal to a right angle.

BOOK I.

Cor. 5. Since every equilateral triangle is also equiangular (P. XI., C. 1), each of its angles will be equal to the third part of two right angles; so that, if the right angle is expressed by 1, each angle, of an equilateral triangle, will be expressed by $\frac{2}{3}$.


Cor. 6. In any triangle ABC, the exterior angle BADis equal to the sum of the interior opposite angles B and C. For, AE being parallel to BC, the part BAE is equal to the angle B, and the other part DAE, is equal to the angle C.

PROPOSITION XXVI. THEOREM.

The sum of the interior angles of a polygon is equal to two right angles taken as many times as the polygon has sides, less two.

Let ABCDE be any polygon: then will the sum of its interior angles A, B, C, D, and E, be equal to two right angles taken as many times as the polygon has sides, less two.

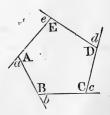
From the vertex of any angle A, draw diagonals AC, AD. The polygon will be divided into as many triangles, less two, as it has sides, having the point A for a common vertex, and for bases, the sides of the polygon, except the two which form the

angle A. It is evident, also, that the sum of the angles of these triangles does not differ from the sum of the angles of the polygon: hence, the sum of the angles of the polygon is equal to two right angles, taken as many times as there are triangles; that is, as many times as the polygon has sides, less two; which was to be proved.

Cor. 1. The sum of the interior angles of a quadrilateral is equal to two right angles taken twice; that is, to four right angles. If the angles of a quadrilateral are equal, each will be a right angle.

Cor. 2. The sum of the interior angles of a pentagon is equal to two right angles taken three times; that is, to six right angles: hence, when a pentagon is equiangular, each angle is equal to the fifth part of six right angles, or to $\frac{4}{5}$ of one right angle.

Cor. 3. The sum of the interior angles of a hexagon is equal to eight right angles: hence, in the equiangular hexagon, each angle is the sixth part of eight right angles, or $\frac{4}{3}$ of one right angle.

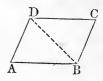

Cor. 4. In any equiangular polygon, any interior angle is equal to twice as many right angles as the figure has sides, less four right angles, divided by the number of angles.

PROPOSITION XXVII. THEOREM.

The sum of the exterior angles of a polygon is equal to four right angles.

Let the sides of the polygon ABCDEbe prolonged, in the same order, forming the exterior angles a, b, c, d, e; then will the sum of these exterior angles be equal to four right angles.

For, each interior angle, together with the corresponding exterior angle, is equal


to two right angles (P. I.): hence, the sum of all the interior and exterior angles is equal to two right angles taken as many times as the polygon has sides. But the sum of the interior angles is equal to two right angles taken as many times as the polygon has sides, less two: hence, the sum of the exterior angles is equal to two right angles taken twice; that is, equal to four right angles; which was to be proved.

PROPOSITION XXVIII. THEOREM.

In any parallelogram, the opposite sides are equal, each to each.

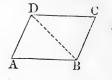
Let ABCD be a parallelogram : then will AB be equal to DC, and AD to BC.

For, draw the diagonal BD. Then, because AB and DC are parallel, the angle DBA is equal to its alternate

angle BDC (P. XX., C. 2): and, because AD and BCare parallel, the angle BDA is equal to its alternate angle DBC. The triangles ABD and CDB, have, therefore, the angle DBA equal to CDB, the angle BDA equal to DBC, and the included side DB common; consequently, they are equal in all of their parts: hence, AB is equal to DC, and AD to BC; which was to be proved.

Cor. 1. A diagonal of a parallelogram divides it into two triangles equal in all their parts.

Cor. 2. Two parallels included between two other par allels, are equal.


Cor. 3. If two parallelograms, have two sides and the included angle of the one, equal to two sides and the included angle of the other, each to each, they will be equal.

PROPOSITION XXIX. THEOREM.

If the opposite sides of a quadrilateral are equal, each to each, the figure is a parallelogram.

In the quadrilateral ABCD, let ABbe equal to DC, and AD to BC: then will it be a parallelogram.

Draw the diagonal DB. Then, the triangles ADB and CBD, will have

the sides of the one equal to the sides of the other, each to each; and therefore, the triangles will be equal in all of their parts: hence, the angle ABD is equal to the angle CDB(P. X., S.); and consequently, AB is parallel to DC (P. XIX., C. 1). The angle DBC is also equal to the angle BDA, and consequently, BC is parallel to AD: hence, the opposite sides are parallel, two and two; that is, the figure is a parallelogram (D. 28); which was to be proved.

PROPOSITION XXX. THEOREM.

If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.

In the quadrilateral ABCD, let AB = Dbe equal and parallel to DC: then will the figure be a parallelogram.

Draw the diagonal DB. Then, be- A Bcause AB and DC are parallel, the angle ABD is equal to its alternate angle CDB. Now, the triangles ABD and CDB, have the side DC equal to AB, by hypothesis, the side DB common, and the included angle ABD equal to BDC, from what has just been shown; hence, the triangles are equal in all their parts (P. V.); and consequently, the alternate angles ADB and DBC are equal. The sides BC and AD are, therefore, parallel, and the figure is a parallelogram; which was to be proved.

Cor. If two points be taken at equal distances from a given straight line, and on the same side of it, the straight line joining them will be parallel to the given line.

PROPOSITION XXXI. THEOREM.

The diagonals of a parallelogram divide each other into equal parts, or mutually bisect each other.

Let ABCD be a parallelogram, and AC, BD, its diagonals: then will AE be equal to EC, and BE to ED.

For, the triangles BEC and AED, have the angles EBC and ADE equal (P. XX., C. 2), the angles ECB and DAE equal, and the included sides BC and AD equal: hence, the triangles

included sides BC and AD equal: hence, the triangles are equal in all of their parts (P. VI.); consequently, AE is equal to EC, and BE to ED; which was to be proved.

Scholium. In a rhombus, the sides AB, BC, being equal, the triangles AEB, EBC, have the sides of the one equal to the corresponding sides of the other; they are, therefore, equal: hence, the angles AEB, BEC, are equal, and therefore, the two diagonals bisect each other at right angles.

C

B

BOOK II.

RATIOS AND PROPORTIONS.

DEFINITIONS.

1. THE RATIO of one quantity to another of the same kind, is the quotient obtained by dividing the second by the first. The first quantity is called the ANTECEDENT, and the second, the CONSEQUENT.

2. A PROPORTION is an expression of equality between two equal ratios. Thus,

$$\frac{B}{A} = \frac{D}{C},$$

expresses the fact that the ratio of A to B is equal to the ratio of C to D. In Geometry, the proportion is written thus,

A : B :: C : D,

and read, A is to B, as C is to D.

3. A CONTINUED PROPORTION is one in which several ratios are successively equal to each other; as,

A : B :: C : D :: E : F :: G : H, &c

4. There are four terms in every proportion. The first and second form the *first couplet*, and the third and fourth, the second couplet. The first and fourth terms are called extremes; the second and third, means, and the fourth term, a fourth proportional to the other three. When the second term is equal to the third, it is said to be a mean proportional between the extremes. In this case, there are but three different quantities in the proportion, and the last is said to be a third proportional to the other two. Thus, if we have,

A : B :: B : C,

B is a mean proportional between A and C, and C is a third proportional to A and B.

5. Quantities are in proportion by *alternation*, when antecedent is compared with antecedent, and consequent with consequent.

6. Quantities are in proportion by *inversion*, when antecedents are made consequents, and consequents, antecedents.

7. Quantities are in proportion by *composition*, when the sum of antecedent and consequent is compared with either antecedent or consequent.

8. Quantities are in proportion by *division*, when the difference of the antecedent and consequent is compared either with antecedent or consequent.

9. Two varying quantities are reciprocally or inversely proportional, when one is increased as many times as the other is diminished. In this case, their product is a fixed quantity, as xy = m.

10. Equimultiples of two or more quantities, are the products obtained by multiplying both by the same quantity. Thus, mA and mB, are equimultiples of A and B.

PROPOSITION I THEOREM.

If four quantities are in proportion, the product of the means will be equal to the product of the extremes.

Assume the proportion,

A : B :: C : D; whence, $\frac{B}{A} = \frac{D}{C};$

clearing of fractions, we have,

$$BC = AD;$$

which was to be proved.

Cor. If B is equal to C, there will be but three proportional quantities; in this case, the square of the mean is equal to the product of the extremes.

PROPOSITION II. THEOREM.

If the product of two quantities is equal to the product of two other quantities, two of them may be made the means, and the other two the extremes of a proportion.

If we have,

AD = BC,

by changing the members of the equation, we have,

$$BC = AD;$$

dividing both members by AC, we have,

$$\frac{B}{A}=\frac{D}{C}$$
, or A : B :: C : D ;

which was to be proved.

BOOK II.

2:31:4.6

PROPOSITION III. THEOREM.

If four quantities are in proportion, they will be in proportion by alternation.

Assume the proportion,

A : B :: C : D; whence, $\frac{B}{A} = \frac{D}{C}$.

Multiplying both members by $\frac{C}{B}$, we have,

7:4:18:4

$$\frac{C}{A}=\frac{D}{B}$$
; or, A : C :: B : D ;

which was to be proved.

PROPOSITION IV. THEOREM.

If one couplet in each of two proportions is the same, the other couplets will form a proportion.

Assume the proportions,

 $A : B :: C : D; \text{ whence, } \frac{B}{A} = \frac{D}{C};$ and, $A : B :: F : G; \text{ whence, } \frac{B}{A} = \frac{G}{F}.$

From Axiom 1, we have,

 $rac{D}{C}=rac{G}{F}\,;$ whence, C : D :: F : G;

which was to be proved.

Cor. If the antecedents, in two proportions, are the same the consequents will be proportional. For, the antecedents of the second couplets may be made the consequents of the first, by alternation (P. III.).

3:4:4:8.

PROPOSITION V. THEOREM.

If four quantities are in proportion, they will be in proportion by inversion.

Assume the proportion,

A : B :: C : D; whence, $\frac{B}{A} = \frac{D}{C}$. If we take the reciprocals of both members (A. 7), we have, $\frac{A}{B} = \frac{C}{D};$ whence, B : A :: D : C;

which was to be proved.

PROPOSITION VI. THEOREM.

If four quantities are in proportion, they will be in proportion by composition or division.

Assume the proportion,

A : B :: C : D; whence, $\frac{B}{A} = \frac{D}{C}$.

If we add 1 to both members, and subtract 1 from both members, we shall have,

$$\frac{B}{A} + 1 = \frac{D}{C} + 1$$
; and, $\frac{B}{A} - 1 = \frac{D}{C} - 1$;

whence, by reducing to a common denominator, we have,

 $\frac{B}{A} + \frac{A}{A} = \frac{D+C}{C}, \text{ and, } \frac{B-A}{A} = \frac{D-C}{C}; \text{ whence,}$ A: B+A:: C: D+C, and, A: B-A:: C: D-Cwhich was to be proved.

BOOK II.

PROPOSITION VII. THEOREM.

Equimultiples of two quantities are proportional to the quantities themselves.

Let A and B be any two quantities; then $\frac{B}{A}$ will denote their ratio.

If we multiply both terms of this fraction by m, its value will not be changed; and we shall have,

 $\frac{mB}{mA} = \frac{B}{A}; \quad \text{whence,} \quad mA : mB :: A : B;$

which was to be proved.

PROPOSITION VIII. THEOREM.

If four quantities are in proportion, any equimultiples of the first couplet will be proportional to any equimultiples of the second couplet.

Assume the proportion,

A : B :: C : D; whence, $\frac{B}{A} = \frac{D}{C}$.

If we multiply both terms of the first member by m, and both terms of the second member by n, we shall have,

 $\frac{mB}{mA} = \frac{nD}{nC}; \text{ whence, } mA : mB :: nC : nD;$

which was to be proved.

12

PROPOSITION IX. THEOREM.

If two quantities be increased or diminished by like parts of each, the results will be proportional to the quantities themselves.

We have, Prop. VII.,

A : B :: mA : mB.

If we make $m = 1 \pm \frac{p}{q}$, in which $\frac{p}{q}$ is any fraction, we shall have,

$$A : B :: A \pm \frac{p}{q}A : B \pm \frac{p}{q}B;$$

which was to be proved.

PROPOSITION X. THEOREM.

If both terms of the first couplet of a proportion be increased or diminished by like parts of each; and if both terms of the second couplet be increased or diminished by any other like parts of each, the results will be in proportion.

Since we have, Prop. VIII.,

mA : mB :: nC : nD;

if we make $m = 1 \pm \frac{p}{q}$, and, $n = 1 \pm \frac{p'}{q'}$, we shall have,

$$A \pm \frac{p}{q}A$$
 : $B \pm \frac{p}{q}B$:: $C \pm \frac{p'}{q'}C$: $D \pm \frac{p'}{q'}D$;

which was to be proved.

BOOK II.

PROPOSITION XI. THEOREM.

In any continued proportion, the sum of the antecedents is to the sum of the consequents, as any antecedent to its corresponding consequent.

From the definition of a continued proportion (D. 3),

A : B :: C : D :: E : F :: G : H, &c.,hence,

&c.,		&c.
$\frac{B}{A}=\frac{H}{G}$;	whence,	BG = AH;
$rac{B}{A}=rac{F}{E}$;	whence,	BE = AF;
$rac{B}{A}=rac{D}{C}$;	whence,	BC = AD;
$\frac{B}{A}=\frac{B}{A};$	whence,	BA = AB;

Adding and factoring, we have,

B (A + C + E + G + &c.) = A (B + D + F + H + &c.) :hence, from Proposition II., A + C + E + G + &c. : B + D + F + H + &c. : A : B;which was to be proved.

PROPOSITION XII. THEOREM.

If two proportions be multiplied together, term by term, the the products will be proportional.

Assume the two proportions,

 $A : B :: C : D; \text{ whence, } \frac{B}{A} = \frac{D}{C};$ and, $E : F :: G : H; \text{ whence, } \frac{F}{E} = \frac{H}{G}.$ Multiplying the equations, member by member, we have, $\frac{BF}{AE} = \frac{DH}{CG}; \text{ whence, } AE : BF :: CG : DH;$ which was to be proved.

Cor. 1. If the corresponding terms of two proportions are equal, each term of the resulting proportion will be the square of the corresponding term in either of the given proportions: hence, If four quantities are proportional, their squares will be proportional.

Cor. 2. If the principle of the proposition be extended to three or more proportions, and the corresponding terms of each be supposed equal, it will follow that, like powers of proportional quantities are proportionals.

2141316 4: 8: 5.10 8:32:113:60

BOOK III.

THE CIRCLE AND THE MEASUREMENT OF ANGLES

DEFINITIONS.

1. A CIRCLE is a plane figure, bounded by a curved line, every point of which is equally distant from a point within, called the *centre*.

0

The bounding line is called the *cir*cumference.

2. A RADIUS is a straight line drawn from the centre to any point of the circumference.

3. A DIAMETER is a straight line drawn through the centre and terminating in the circumference.

All radii of the same circle are equal. All diameters are also equal, and each is double the radius.

4. An ARC is any part of a circumference.

5. A CHORD is a straight line joining the extremities of an arc.

Any chord belongs to two arcs: the smaller one is meant, unless the contrary is expressed.

6. A SEGMENT is a part of a circle included between an arc and its chord.

7. A SECTOR is a part of a circle included within an an arc and the radii drawn to its extremities.

8. An INSCRIBED ANGLE is an angle whose vertex is in the circumference, and whose sides are chords.

9. An INSCRIBED POLYGON is a polygon whose vertices are all in the circumference. The sides are chords.

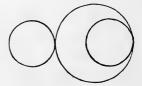
10. A SECANT is a straight line which cuts the circumference in two points.

11. A TANGENT is a straight line which touches the circumference in one point only. This point is called, the *point of contact*, or, the *point of tangency*.

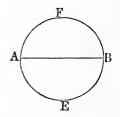
12. Two circles are tangent to each other, when they touch each other in one point. This point is called, the point of contact, or the point of tangency.

13. A Polygon is *circumscribed about* a *circle*, when all of its sides are tangent to the circumference.

14. A Circle is inscribed in a polygon, when its circumference touches all of the sides of the polygon.


POSTULATE.

A circumference can be described from any point as a centre. and with any radius.



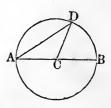
BOOK III.

PROPOSITION I. THEOREM.

Any diameter divides the circle, and also its circumference, into two equal parts.

Let AEBF be a circle, and ABany diameter: then will it divide the circle and its circumference into two equal parts.

For, let AFB be applied to AEB, the diameter AB remaining common;


then will they coincide; otherwise there would be some points in either one or the other of the curves unequally distant from the centre; which is impossible (D. 1): hence, ABdivides the circle, and also its circumference, into two equal parts; which was to be proved.

PROPOSITION II. THEOREM.

A diameter is greater than any other chord.

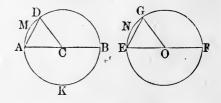
Let AD be a chord, and AB a diameter through one extremity, as A: then will AB be greater than AD.

Draw the radius CD. In the triangle ACD, we have AD less than the sum of AC and CD (B. I., P. VII.). But this sum is equal to AB (D. 3): hence, AB is greater than AD; which was to be proved.

PROPOSITION III. THEOREM.

A straight line cannot meet a circumference in more than two points.

Let AEBF be a circumference, and AB a straight line: then AB cannot meet the circumference in more than two points.


For, suppose that they could meet in three points. We should then have three

equal straight lines drawn from the same point to the same straight line; which is impossible (B. I., P. XV., C. 2): hence, AB cannot meet the circumference in more than two points; which was to be proved.

PROPOSITION IV. THEOREM.

In equal circles, equal arcs are subtended by equal chords; and conversely, equal chords subtend equal arcs.

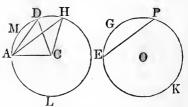
1°. In the equal circles ADB and EGF, let the arcs AMD and ENG be equal: then will the chords AD and EG be equal.

Ē

Draw the diameters AB and EF. If the semi-circle ADB be applied to the semi-circle EGF, it will coincide with it, and the semi-circumference ADB will coincide with the semi-circumference EGF. But the part AMD is equal to the part ENG, by hypothesis: hence, the point D will fall on G; therefore, the chord AD will coincide with

EG (A. 11), and is, therefore, equal to it; which was to be proved.

2°. Let the chords AD and EG be equal: then will the arcs AMD and ENG be equal.

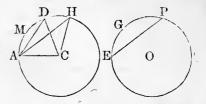

Draw the radii CD and OG. The triangles ACDand EOG have all the sides of the one equal to the corresponding sides of the other; they are, therefore, equal in all their parts: hence, the angle ACD is equal to EOG. If, now, the sector ACD be placed upon the sector EOG, so that the angle ACD shall coincide with the angle EOG, the sectors will coincide throughout; and, consequently, the arcs AMD and ENG will coincide: hence, they will be equal; which was to be proved.

PROPOSITION V. THEOREM.

In equal circles, a greater arc is subtended by a greater chord; and conversely, a greater chord subtends a greater arc.

1°. In the equal circles ADL and EGK, let the arc EGP be greater than the arc AMD: then will the chord EP be greater than the chord AD.

Х

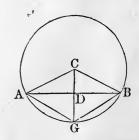


For, place the circle EGK upon AIIL, so that the centre O shall fall upon the centre C, and the point E upon A; then, because the arc EGP is greater than AMD, the point P will fall at some point II, beyond D, and the chord EP will take the position AII.

Draw the radii CA, CD, and CH. Now, the sides AC, CH, of the triangle ACH, are equal to the sides AC, CD, of the triangle ACD, and the angle ACH is

greater than ACD: hence, the side $A\Pi$, or its equal EP, is greater than the side AD (B. I., P. IX.); which was to be proved.

2°. Let the chord EP, or its equal AII, be greater than AD: then will the arc EGP, or its equal ADH, be greater than AMD.


For, if ADH were equal to AMD, the chord AHwould be equal to the chord AD (P. IV.); which is contrary to the hypothesis. And, if the arc ADH were less than AMD, the chord AH would be less than AD; which is also contrary to the hypothesis. Then, since the arc ADH, subtended by the greater chord, can neither be equal to, nor less than AMD, it must be greater than AMD; which was to be proved.

PROPOSITION VI. THEOREM.

The radius which is perpendicular to a chord, bisects that chord, and also the arc subtended by it.

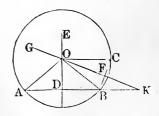
Let CG be the radius which is perpendicular to the chord AB: then will this radius bisect the chord AB, and also the arc AGB.

For, draw the radii CA and CB. Then, the right-angled triangles CDAand CDB will have the hypothenuse CA equal to CB, and the side CD

common; the triangles are, therefore, equal in all their parts : hence, AD is equal to DB. Again, because CG

is perpendicular to AB, at its middle point, the chords GA and GB are equal (B. I., P. XVI.); and consequently, the arcs GA and GB are also equal (P. IV.): hence, CG bisects the chord AB, and also the arc AGB; which was to be proved.

Cor. A straight line, perpendicular to a chord, at its mid dle point, passes through the centre of the circle.

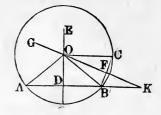

Scholium. The centre C, the middle point D of the chord AB, and the middle point G of the subtended arc, are points of the radius perpendicular to the chord. But two points determine the position of a straight line (A. 11): hence, any straight line which passes through two of these points, will pass through the third, and be perpendicular to the chord.

PROPOSITION VII. THEOREM.

Through any three points, not in the same straight line, one circumference may be made to pass, and but one.

Let A, B, and C, be any three points, not in a straight line: then may one circumference be made to pass through them, and but one.

Join the points by the lines AB, BC, and bisect these lines by perpendiculars DE and FG: then will these perpendiculars meet in some point O. For, if they do not meet, they are parallel; and if they are parallel,



the line ABK, which is perpendicular to DE, is also perpendicular to KG (B. I., P. XX., C. 1); consequently, there are two lines BK and BF, drawn through the same

65

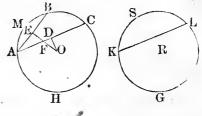
point B, and perpendicular to the same line KG; which is impossible: hence, DE and FG meet in some point O.

Now, O is on a perpendicular to AB at its middle point, it is, therefore, equally distant from A and B (B. I., P. XVI.). For a like reason, O is equally distant from B and C. If, therefore, a circumference be described from O as a centre, wit

scribed from O as a centre, with a radius equal to OA, it will pass through A, B, and C.

Again, O is the only point which is equally distant from A, B, and C: for, DE contains all of the points which are equally distant from A and B; and FG all of the points which are equally distant from B and C; and consequently, their point of intersection O, is the only point that is equally distant from A, B, and C: hence, one circumference may be made to pass through these points, and but one; which was to be proved.

Cor. Two circumferences cannot intersect in more than two points; for, if they could intersect in three points, there would be two circumferences passing through the same three points; which is impossible.


PROPOSITION VIII. THEOREM.

In equal circles, equal chords are equally distant from the centres; and of two unequal chords, the less is at the greater distance from the centre.

1°. In the equal circles ACH and KLG, let the chords AC and KL be equal: then will they be equally distant from the centres.

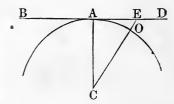
For, let the circle KLG be placed upon ACH, so that the centre R shall fall upon the centre O, and the point K upon the point A: then will the chord KL is coincide with AC (P. MED C S L IV.); and consequently,

they will be equally distant from the centre; which was to be proved.

2°. Let AB be less than KL: then will it be at a greater distance from the centre.

For, place the circle, KLG upon ACH, so that R shall fall upon O, and K upon A. Then, because the chord KL is greater than AB, the arc KSL is greater than AMB; and consequently, the point L will fall at a point C, beyond B, and the chord KL will take the direction AC.

Draw OD and OE, respectively perpendicular to ACand AB; then will OE be greater than OF (A. 8), and OF than OD (B. I., P. XV.): hence, OE is greater than OD. But, OE and OD are the distances of the two chords from the centre (B. I., P. XV., C. 1): hence, the less chord is at the greater distance from the centre; which was to be proved.


Scholium. All the propositions relating to chords and arcs of equal circles, are also true for chords and arcs of one and the same circle. For, any circle may be regarded as made up of two equal circles, so placed, that they coincide in all their parts.

PROPOSITION IX. THEOREM.

If a straight line is perpendicular to a radius at its outer extremity, it will be tangent to the circle at that point; conversely, if a straight line is tangent to a circle at any point, it will be perpendicular to the radius drawn to that point.

1°. Let BD be perpendicular to the radius CA, at A: then will it be tangent to the circle at A.

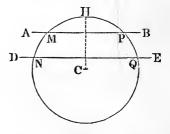
For, take any other point of BD, as E, and draw CE: then will CE be greater than CA (B. I., P. XV.); and consequently, the point E will lie without the circle : hence, BDtouches the circumference at the

point A; it is, therefore, tangent to it at that point (D. 11); which was to be proved.

2°. Let BD be tangent to the circle at A: then will it be perpendicular to CA.

For, let E be any point of the tangent, except the point of contact, and draw CE. Then, because BD is a tangent, E lies without the circle; and consequently, CEis greater than CA: hence, CA is shorter than any other line that can be drawn from C to BD; it is, therefore, perpendicular to BD (B. I., P. XV., C. 1); which was to be proved.

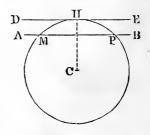
Cor. At a given point of a circumference, only one tangent can be drawn. For, if two tangents could be drawn, they would both be perpendicular to the same radius at the same point; which is impossible (B. I., P. XIV.).


PROPOSITION X. THEOREM.

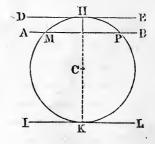
Two parallels intercept equal arcs of a circumference.

There may be three cases: both parallels may be secants; one may be a secant and the other a tangent; or, both may be tangents.

1°. Let the secants AB and DE be parallel : then will the intercepted arcs MN and PQ be equal.


For, draw the radius CIIperpendicular to the chord MP; it will also be perpendicular to NQ (B. I., P. XX., C. 1), and II will be atthe middle point of the arc MHP, and also of the arc NHQ: hence, MN, which is the difference of IIN and IIM,

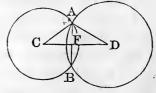
is equal to PQ, which is the difference of HQ and HP(A. 3); which was to be proved.


2°. Let the secant AB and tangent DE, be parallel \cdot then will the intercepted arcs MH and PH be equal.

For, draw the radius CIIto the point of contact H; it will be perpendicular to DE(P. IX.), and also to its parallel MP. But, because CII. is perpendicular to MP, IIis the middle point of the arc MIIP (P. VI.): hence, MIIand PII are equal; which was to be proved.

3°. Let the tangents DE and IL be parallel, and let II and K be their points of contact: then will the intercepted arcs IIMK and IIPK be equal.

For, draw the secant ABparallel to DE; then, from what has just been shown, we shall have IIM equal to IIP, and MK equal to PK: hence, HMK, which is the sum of HM and MK, is equal to HPK, which is the sum of HP and PK; which was to be proved.

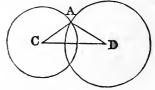


PROPOSITION XI. THEOREM.

If two circumferences intersect each other, the points of intersection will be in a perpendicular to the straight line joining their centres, and at equal distances from it.

Let the circumferences, whose centres are C and D, intersect at the points A and B: then will CD be perpendicular to AB, and AF will be equal to BF.

For, the points A and B, being on the circumference whose centre is C, are equally distant from C; and being on

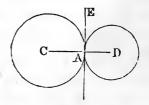

the circumference whose centre is D, they are equally distant from D: hence, CD is perpendicular to AB at its middle point (B. I., P. XVI., C.); which was to be proved.

PROPOSITION XII. THEOREM.

If two circumferences intersect each other, the distance between their centres will be less than the sum, and greater than the difference, of their radii.

Let the circumferences, whose centres are C and D, intersect at A: then will CDbe less than the sum, and greater than the difference of the radii of the two circles.

For, draw AC and AD, forming the triangle ACD. Then will CD be less than the sum of AC and AD, and greater than their difference

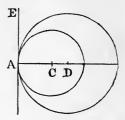

and greater than their difference (B. I., P. VII.); which was to be proved.

PROPOSITION XIII. THEOREM.

If the distance between the centres of two circles is equal to the sum of their radii, they will be tangent externally.

Let C and D be the centres of two circles, and let the distance between the centres be equal to the sum of the radii : then will the circles be tangent externally.

For, they will have a point A, on the line CD, common, and they will have no other point in common; for, if they had two points in common, the distance between their centres would be less than the sum of


their radii; which is contrary to the hypothesis: hence, they are tangent externally; which was to be proved.

PROPOSITION XIV. THEOREM.

If the distance between the centres of two circles is equal to the difference of their radii, one will be tangent to the other internally.

Let C and D be the centres of two circles, and let the distance between these centres be equal to the difference of the radii: then will the one be tangent to the other internally.

For, they will have a point A, on DC, common, and they will have no other point in common. For, if they had two points in common, the distance between their centres would be greater than the difference of their radii; which is contrary to the hypothesis:

hence, one touches the other internally; which was to be proved.

Cor. 1. If two circles are tangent, either externally or internally, the point of contact will be on the straight line drawn through their centres.

Cor. 2: All circles whose centres are on the same straight line, and which pass through a common point of that line, are tangent to each other at that point. And if a straight line be drawn tangent to one of the circles at their common point, it will be tangent to them all at that point.

Scholium. From the preceding propositions, we infer that two circles may have any one of six positions with respect to each other, depending upon the distance between their centres:

1°. When the distance between their centres is greater

BOOK JII.

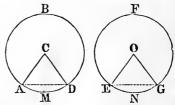
than the sum of their radii, they are external, one to the other:

2°. When this distance is equal to the sum of the radii, they are tangent, externally:

3°. When this distance is less than the sum, and greater than the difference of the radii, they intersect each other:

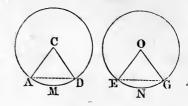
4°. When this distance is equal to the difference of their radii, one is tangent to the other, internally:

5°. When this distance is less than the difference of the radii, one is wholly within the other:


6°. When this distance is equal to zero, they have a common centre; or, they are concentric.

PROPOSITION XV. THEOREM.

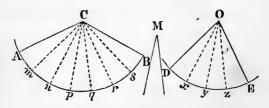
In equal circles, radii making equal angles at the centre, intercept equal arcs of the circumference; conversely, radii which intercept equal arcs, make equal angles at the centre.


1°. In the equal circles ADB and EGF, let the angles ACD and EOG be equal: then will the arcs AMD and ENG be equal.

For, draw the chords ADand EG; then will the triangles ACD and EOG have wo sides and their included angle, in the one, equal to two sides and their included

angle, in the other, each to each. They are, therefore, equal in all their parts; consequently, AD is equal to EG. But, if the chords AD and EG are equal, the arcs AMDand ENG are also equal (P. IV.); which was to be proved. 2°. Let the arcs AMD and ENG be equal: then will the angles ACD and EOG be equal.

For, if the arcs AMDand ENG are equal, the chords AD and EG are equal (P. IV.); consequently, the triangles ACD and EOGhave their sides equal, each to each; they are, therefore,



equal in all their parts: hence, the angle ACD is equal to the angle EOG; which was to be proved.

PROPOSITION XVI. THEOREM.

In equal circles, commensurable angles at the centre are proportional to their intercepted arcs.

In the equal circles, whose centres are C and O, let the angles ACB and DOE be commensurable; that is, be exactly measured by a common unit: then will they be proportional to the intercepted arcs AB and DE.

Let the angle M be a common unit; and suppose, for example, that this unit is contained 7 times in the angle ACB, and 4 times in the angle DOE. Then, suppose ACB be divided into 7 angles, by the radii Cm, Cn, Cp, &c.; and DOE into 4 angles, by the radii Ox, Oy, and Oz, each equal to the unit M.

74

From the last proposition, the arcs Am, mn, &c., Dx, xy, &c., are equal to each other; and because there are 7 of these arcs in AB, and 4 in DE, we shall have,

are AB : are DE :: 7 : 4.

But, by hypothesis, we have,

angle ACB : angle DOE :: 7 : 4;

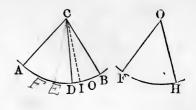
hence, from (B. II., P. IV.), we have,

angle ACB : angle DOE :: arc AB : arc DE.

If any other numbers than 7 and 4 had been used, the same proportion would have been found; which was to be proved.

Cor. If the intercepted arcs are commensurable, they will be proportional to the corresponding angles at the centre, as may be shown by changing the order of the couplets in the above proportion.

PROPOSITION XVII. THEOREM.


In equal circles, incommensurable angles at the centre are proportional to their intercepted arcs.

In the equal circles, whose centres are C and O, let ACB and FOH be incommensurable : then will they be proportional to the arcs AB and FH.

For, let the less angle FOH, be placed upon the greater angle ACB, so that it shall take the position ACD.

Then, it the proposition is not true, let us suppose that the angle ACB is to the angle FOH, or its equal ACD, as the arc AB is to an arc AO, greater than FH, or its equal AD; whence,

angle ACB : angle ACD :: arc AB : arc AO.

Conceive the arc AB to be divided into equal parts, each less than DO: there will be at least one point of division between D and O; let I be that point; and draw CI. Then the arcs AB, AI, will be commensurable, and we shall have (P. XVI.),

angle ACB : angle ACI :: arc AB : arc AI.

Comparing the two proportions, we see that the antecedents are the same in both: hence, the consequents are proportional (B. II., P. IV., C.); hence,

angle ACD : angle ACI :: are AO . are AI.

But, AO is greater than AI: hence, if this proportion is true, the angle ACD must be greater than the angle ACI. On the contrary, it is less: hence, the fourth term of the assumed proportion cannot be greater than AD.

In a similar manner, it may be shown that the fourth term cannot be less than AD; hence, it must be equal to AD; therefore, we have,

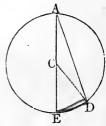
angle ACB : angle ACD :: arc AB · arc ADwhich was to be proved.

Cor. 1. The intercepted arcs are proportional to the cor-

responding angles at the centre, as may be shown by changing the order of the couplets in the preceding proportion.

Cor. 2. In equal circles, angles at the centre are proportional to their intercepted arcs; and the reverse, whether they are commensurable or incommensurable.

Cor 3. In equal circles, sectors are proportional to their angles, and also to their arcs.

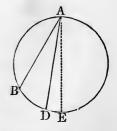

Scholium. Since the intercepted arcs are proportional to the corresponding angles at the centre, the arcs may be taken as the measures of the angles. That is, if a circumference be described from the vertex of any angle, as a centre, and with a fixed radius, the arc intercepted between the sides of the angle may be taken as the measure of the angle. In Geometry, the right angle which is measured by a quarter of a circumference, or a *quadrant*, is taken as a unit. If, therefore, any angle be measured by one-half or two-thirds of a quadrant, it will be equal to one-half or two-thirds of a right angle.

PROPOSITION XVIII. THEOREM.

An inscribed angle is measured by half of the arc included between its sides.

There may be three cases: the centre of the circle may lie on one of the sides of the angle; it may lie within the angle; or, it may lie without the angle.

1°. Let EAD be an inscribed angle, one of whose sides AE passes through the centre : then will it be measured by half of the arc DE.


For, draw the radius CD. The external angle DCE, of the triangle DCA, is equal to the sum of the opposite interior angles CAD and CDA (B. I., P. XXV., C. 6). But, the triangle DCA being isosceles, the angles D and A are equal; therefore, the angle DCE is double the angle DAE. Because DCE is at the centre, it is measured by the arc DE (P. XVII., S.) : hence, the, - R angle DAE is measured by half of the arc DE; which was to be proved. Ē

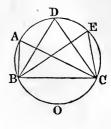
2°. Let DAB be an inscribed angle, and let the centre lie within it: then will the angle be measured by half of the arc BED.

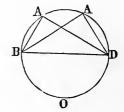
For, draw the diameter AE. Then, from what has just been proved, the angle DAE is measured by half of DE, and the angle EAB by half of EB: hence, BAD, which is the sum of EAB and DAE, is measured by half of the sum of DE and EB, or by half of BED; which was to be proved.

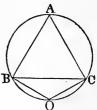
3°. Let BAD be an inscribed angle, and let the centre lie without it : then will it be measured by half of the arc arc BD.

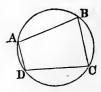
For, draw the diameter AE. Then, from what precedes, the angle DAEis measured by half of DE, and the angle BAE by half of BE: hence, BAD, which is the difference of BAEand DAE, is measured by half of the difference of BE and DE, or by half of the arc BD; which was to be proved.

Cor. 1. All the angles BAC, BDC, BEC, inscribed in the same segment, are equal; because they are each measured by half of the same arc BOC.

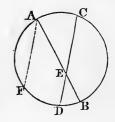

Cor. 2. Any angle BAD, inscribed in a semi-circle, is a right angle; because it is measured by half the semi-circumference BOD, or by a quadrant (P. XVII., S.).


Cor. 3. Any angle BAC, inscribed in a segment greater than a semi-circle, is acute; for it is measured by half the arc BOC, less than a semi-circumference.


Any angle BOC, inscribed in a segment less than a semi-circle, is obtuse; for it is measured by half the arc BAC, greater than a semi-circumference.


Cor. 4. The opposite angles Aand C, of an inscribed quadrilateral ABCD, are together equal to two right angles; for the angle DABis measured by half the arc DCB, the angle DCB by half the arc

DAB: hence, the two angles, taken together, are measured by half the circumference: hence, their sum is equal to two right angles.

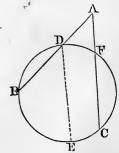


PROPOSITION XIX. THEOREM.

Any angle formed by two chords, which intersect, is measured by half the sum of the included arcs.

Let DEB be an angle formed by the intersection of the chords AB and CD: then will it be measured by half the sum of the arcs AC and DB.

For, draw AF parallel to DC: then, the arc DF will be equal to AC (P. X.), and the angle FABequal to the angle DEB (B. I., P. XX., C. 3). But the angle FAB is measured by half the arc FDB (P. XVIII.); therefore, DEB is measured

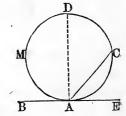

by half of FDB; that is, by half the sum of FD and DB, or by half the sum of AC and DB; which was to be proved.

PROPOSITION XX. THEOREM.

The angle formed by two secants, intersecting without the circumference, is measured by half the difference of the included arcs.

Let AB, AC, be two secants : then will the angle BAC be measured by half the difference of the arcs BC and DF.

Draw DE parallel to AC: the arc EC will be equal to DF (P. X.), and the angle BDE equal to the angle BAC (B. I., P. XX., C. 3.). But BDE is measured by half the arc BE (P. XVIII.) : hence, BAC is also measured by half the arc BE; that is, by half the difference of BCnons to be proved.


and EC, or by half the difference of BC and DF; which

PROPOSITION XXI. THEOREM.

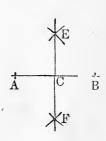
An angle formed by a tangent and a chord meeting it at the point of contact, is measured by half the included arc.

Let BE be tangent to the circle AMC, and let ACbe a chord drawn from the point of contact A: then will the angle BAC be measured by half of the arc AMC.

For, draw the diameter AD. The angle BAD is a right angle (P. IX.), and is measured by half the semi-circumference AMD (P. XVII., S.); the angle DAC is measured by half of the arc DC(P. XVIII.): hence, the angle BAC,

which is equal to the sum of the angles BAD and DAC, is measured by half the sum of the arcs AMD and DC, or by half of the arc AMC; which was to be proved.

The angle CAE, which is the difference of DAE and DAC is measured by half the difference of the arcs DCA and DC_i or by half the arc CA.

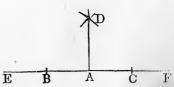

6

PRACTICAL APPLICATIONS.

PROBLEM I.

To bisect a given straight line.

Let AB be a given straight line. From A and B, as centres, with a radius greater than one half of AB, describe arcs intersecting at E and F: join E and F, by the straight line EF. Then will EF bisect the given line AB. For, E and Fare each equally distant from A and B; and consequently, the line EFbisects AB (B. I., P. XVI., C.).

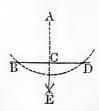


PROBLEM II.

To erect a perpendicular to a given straight line, at a given point of that line.

Let EF be a given line, and let A be a given point o that line.

From A, lay off the equal distances AB and AC; from B and C, as centres, with a radius greater than one half


of BC, describe and sintersecting at D; draw the line AD: then will AD be the perpendicular required. For, D and Aare each equally distant from B and C; consequently, DA is perpendicular to BC at the given point A (B. I., P. XVI., C.).

PROBLEM III.

To draw a perpendicular to a given straight line, from a given point without that line.

Let BD be the given line, and A the given point.

From A, as a centre, with a radius sufficiently great, describe an arc cutting BD in two points, B and D; with B and D as centres, and a radius greater than one-half of BD, describe arcs intersecting at E; draw AE: then will AE be the perpendi-

cular required. For, A and E are each equally distant from B and D: hence, AE is perpendicular to BD(B. I., P. XVI., C.).

PROBLEM IV.

At a point on a given straight line, to construct an angle equal to a given angle.

Let A be the given point, AB the given line, and IKL the given angle.

From the vertex K as a centre, with any radius KI, describe the arc IL, terminating in the sides of the angle.

From A as a centre, with a radius AB, equal to KI,

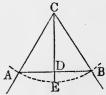
describe the indefinite arc BO; then, with a radius equal to the chord LI, from B as a centre, describe an arc cutting the arc BO in D; draw AD: then will BADbe equal to the angle K. For, the arcs BD, IL, K

have equal radii and equal chords: hence, they are equal (P. IV.); therefore, the angles *BAD*, *IKL*, measured by them, are also equal (P. XV.).

PROBLEM V.

To bisect a given arc, or a given angle.

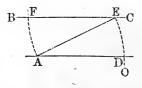
1°. Let AEB be a given arc, and C its centre. Draw the chord AB; through C, draw CD perpendicular to AB (Prob. III.): then will CD bisect the arc AEB (P. VI.).


2°. Let ACB be a given angle.

With C as a centre, and any radius CB, describe the arc BA; bisect it by the line CD, as just explained : then will CD bisect the angle ACB.

For, the arcs AE and EB are equal, from what was just shown; consequently, the angles ACE and ECB are also equal (P. XV.).

Scholium. If each half of an arc or angle be bisected, the original arc or angle will be divided into four equal parts; and if each of these be bisected, the original arc or angle will be divided into eight equal parts; and so on.



PROBLEM VI.

Through a given point, to draw a straight line parallel to a given straight line.

Let A be a given point, and BC a given line.

From the point A as a centre, with a radius AE, greater than the shortest distance from A to BC, describe an indefinite arc EO; from E as a centre, with the same radius, describe the arc AF; lay off ED equal to AE and draw AD

ED equal to AF, and draw AD: then will AD be the parallel required.

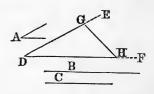
For, drawing AE, the angles AEF, EAD, are equal (P. XV.); therefore, the lines AD, EF are parallel (B. I., P. XIX., C. 1.).

PROBLEM VII.

Given, two angles of a triangle, to construct the third angle.

Let A and B be given angles of a triangle.

Draw a line DF, and at some point of it, as E, construct the angle FEH equal to A, and HECequal to B. Then, will CED be equal to the required angle.

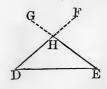

For, the sum of the three angles at E is equal to two right angles (B. I., P. I., C. 3), as is also the sum of the three angles of a triangle (B. I., P. XXV.). Consequently, the third angle *CED* must be equal to the third angle of the triangle.

PROBLEM VIII.

Given, two sides and the included angle of a triangle, to construct the triangle.

Let B and C denote the given sides, and A the given angle.

Draw the indefinite line DF, and at D construct an angle FDE, equal to the angle A; on DF, lay off DH equal to the side C, and on DE, lay off DG equal to the side B; draw


GH: then will DGH be the required triangle (B. I., P. V.).

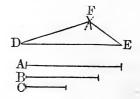
PROBLEM IX.

Given, one side and two angles of a triangle, to construct the triangle.

The two angles may be either both adjacent to the given side, or one may be adjacent and the other opposite to it. In the latter case, construct the third angle by Problem VII. We shall then have two angles and their included side.

Draw a straight line, and on it lay off DE equal to the given side; at D construct an angle equal to one of the adjacent angles, and at E construct an angle equal to the other adjacent angle;

produce the sides DF and EG till they intersect at H: then will DEH be the triangle required (B. I, P. VI.).


86

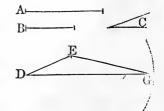
PROBLEM X.

Given, the three sides of a triangle, to construct the triangle.

Let A, B, and C, be the given sides.

Draw DE, and make it equal to the side A; from D as a centre, with a radius equal to the side B, describe an arc; from Eas a centre, with a radius equal to the side C, describe an arc

intersecting the former at F; draw DF and EF: then will DEF be the triangle required (B. I., P. X.).

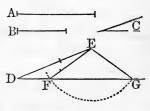

Scholium. In order that the construction may be possible, any one of the given sides must be *less* than the sum of the other two, and *greater* than their difference (B. I., P. VII., S.).

PROBLEM XI.

Given, two sides of a triangle, and the angle opposite one of them, to construct the triangle.

Let A and B be the given sides, and C the given angle.

Draw an indefinite line DG, and at some point of it, as D, construct an angle GDE equal to the given angle; on one side of this angle lay off the distance DE equal to the side B adjacent to the given angle; from E as

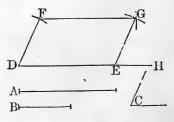


a centre, with a radius equal to the side opposite the given angle, describe an arc cutting the side DG at G; draw EG. Then will DEG be the required triangle.

For, the sides DE and EG are equal to the given sides, and the angle D, opposite one of them, is equal to the given angle.

Scholium. When the side opposite the given angle is greater than the other given side, there will be but one solution. When the given angle is acute, and the side opposite the given angle is less.

than the other given side, and greater than the shortest distance from E to DG, there will be two solutions, DEGand DEF. When the side opposite the given angle is

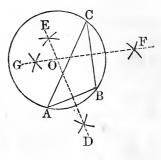

equal to the shortest distance from E to DG, the arc will be tangent to DG, the angle opposite DE will be a right angle, and there will be but one solution. When the side opposite the given angle is shorter than the distance from E to DG, there will be no solution.

PROBLEM XII.

Given, two adjacent sides of a parallelogram and their included angle, to construct the parallelogram.

Let A and B be the given sides, and C the given angle.

Draw the line DH, and at some point as D, construct the angle HDF equal to the angle C. Lay off DE equal to the side A, and DF equal to the side B; draw FGparallel to DE, and EG par-


allel to $DF \cdot$ then will DFGE be the parallelogram required.

For, the opposite sides are parallel by construction; and consequently, the figure is a parallelogram (D. 28); it is also formed with the given sides and given angle.

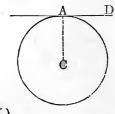
PROBLEM XIII.

To find the centre of a given circumference.

Take any three points A, B, and C, on the circumference or arc, and join them by the chords AB, BC; bisect these chords by the perpendiculars DEand FG: then will their point of intersection O, be the centre required (P. VII.).

Scholium. The same construc-

tion enables us to pass a circumference through any three points not in a straight line. If the points are vertices of a triangle, the circle will be circumscribed about it.


PROBLEM XIV.

Through a given point, to draw a tangent to a given circle.

There may be two cases: the given point may lie on the circumference of the given circle, or it may lie without the given circle.

1°. Let C be the centre of the given circle, and A a point on the circumference, through which the tangent is to be drawn.

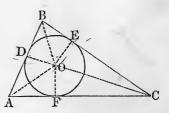
Draw the radius CA, and at Adraw AD perpendicular to AC: then will AD be the tangent required (P. IX.).

2°. Let C be the centre of the given circle, and A a point without the circle, through which the tangent is to be drawn.

Draw the line AC; bisect it at O, and from O as a centre, with a radius OC, describe the circumference ABCD; join the point A with the points of intersection D and B: then will both AD and AB be tangent to the given circle, and there will be two solutions.

For, the angles ABC and ADCare right angles (P. XVIII., C. 2):

hence, each of the lines AB and AD is perpendicular to a radius at its extremity; and consequently, they are tangent to the given circle (P. IX.).


Corollary. The right-angled triangles ABC and ADC, have a common hypothenuse AC, and the side BC equal to DC; and consequently, they are equal in all their parts (B. I., P. XVII.): hence, AB is equal to AD, and the angle CAB is equal to the angle CAD. The tangents are therefore equal, and the line AC bisects the angle between them.

PROBLEM XV.

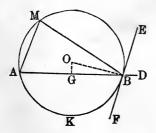
To inscribe a circle in a given triangle.

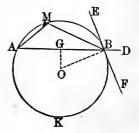
Let ABC be the given triangle.

Bisect the angles A and B, by the lines A O and B O, meeting in the point O (Prob. V.); from the point O

let fall the perpendiculars OD, OE, OF, on the sides of the triangle : these perpendiculars will all be equal.

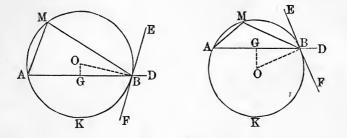
For, in the triangles BOD and BOE, the angles OBEand OBD are equal, by construction; the angles ODBand OEB are equal, because both are right angles; and consequently, the angles BOD and BOE are also equal (B. I., P. XXV., C. 2), and the side OB is common; and therefore, the triangles are equal in all their parts (B. I., P. VI.): hence, OD is equal to OE. In like manner, it may be shown that OD is equal to OF.


From O as a centre, with a radius OD, describe a circle, and it will be the circle required. For, each side is perpendicular to a radius at its extremity, and is therefore tangent to the circle.


Corollary. The lines that bisect the three angles of a triangle all meet in one point.

PROBLEM XVI.

On a given straight line, to construct a segment that shall contain a given angle.


Let AB be the given line.

Produce AB towards D; at B construct the angle DBE equal to the given angle draw BO perpendicular

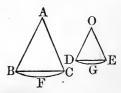
to BE, and at the middle point G, of AB, draw GOperpendicular to AB; from their point of intersection O, as a centre, with a radius OB, describe the arc AMB: then will the segment AMB be the segment required.

For, the angle ABF, equal to EBD, is measured by half of the arc AKB (P. XXI.); and the inscribed angle AMB is measured by half of the same arc : hence, the angle AMB is equal to the angle EBD, and consequently, to the given angle.

BOOK IV.

MEASUREMENT AND RELATION OF POLYGONS.

DEFINITIONS.


1. SIMILAR POLYGONS, are polygons which are mutually equiangular, and which have the sides about the equal angles, taken in the same order, proportional.

2. In similar polygons, the parts which are similarly placed in each, are called *homologous*.

The corresponding angles are homologous angles, the corresponding sides are homologous sides, the corresponding diagonals are homologous diagonals, and so on.

3. SIMILAR ARCS, SECTORS, or SEGMENTS, in different circles, are those which correspond to equal angles at the centre.

Thus, if the angles A and O are equal, the arcs BFC and DGE are similar, the sectors BAC and DOEare similar, and the segments BFCand DGE are similar.

4. The ALTITUDE OF A TRIANGLE, is the perpendicular distance from the vertex of either angle to the opposite side, or the opposite side produced.

The vertex of the angle from which the distance is measured, is called the *vertex of the triangle*, and the opposite side, is called the *base of the triangle*.

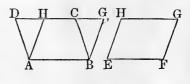
5. The ALTITUDE OF A PARALLELOGRAM, is the perpendicular distance between two opposite sides.

These sides are called bases; one the upper, and the other, the lower base.

6. The ALTITUDE OF A TRAPEZOID, is the perpendicular distance between its parallel sides.

These sides are called *bases*; one the upper, and the other, the *lower base*.

7. The AREA OF A SURFACE, is its numerical value expressed in terms of some other surface taken as a *unit*. The unit adopted is a square described on the linear unit, as a side.


PROPOSITION I. THEOREM.

Parallelograms which have equal bases and equal altitudes, are equal.

Let the parallelograms ABCD and EFGH have equal bases and equal altitudes: then will the parallelograms be equal.

For, let them be so placed that their lower bases shall Dcoincide; then, because they have the same altitude, their upper bases will be in the same line DG, parallel to AB.

The triangles DAH and CBG, have the sides AD and BC equal, because they are opposite sides of the parallelogram AC (B. I., P. XXVIII.); the sides AH and BGequal, because they are opposite sides of the parallelogram AG; the angles DAH and CBG equal, because their

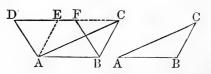
94

sides are parallel and lie in the same direction (B. I., P. XXIV.) : hence, the triangles are equal (B. I., P. V.).

If from the quadrilateral ABGD, we take away the triangle DAH, there will remain the parallelogram AG; if from the same quadrilateral ABGD, we take away the tritriangle CBG, there will remain the parallelogram AC: hence, the parallelogram AC is equal to the parallelogram EG (A. 3); which was to be proved.

PROPOSITION II. THEOREM.

A triangle is equal to one-half of a parallelogram having an equal base and an equal altitude.

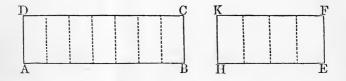

Let the triangle ABC, and the parallelogram ABFD, have equal bases and equal altitudes: then will the triangle be equal to one-half of the parallelogram.

For, let them be so placed that the base of the triangle shall coincide with the lower base of the parallelogram ;

then, because they have equal altitudes, the vertex of the triangle will lie in the upper base of the parallelogram, or in the prolongation of that base.

From A, draw AE parallel to BC, forming the parallelogram ABCE. This parallelogram will be equal to the parallelogram ABFD, from Proposition I. But the triangle ABC is equal to half of the parallelogram ABCE(B. I., P. XXVIII., C. 1): hence, it is equal to half of the parallelogram ABFD (A. 7); which was to be proved

Cor. Triangles having equal bases and equal altitudes are equal, for they are halves of equal parallelograms. \times



PROPOSITION III. THEOREM.

Rectangles having equal altitudes, are proportional to their bases.

There may be two cases: the bases may be commensurable, or they may be incommensurable.

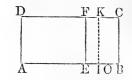
1°. Let ABCD and HEFK, be two rectangles whose altitudes AD and HK are equal, and whose bases AB and HE are commensurable : then will the areas of the rectangles be proportional to their bases.

Suppose that AB is to HE, as 7 is to 4. Conceive AB to be divided into 7 equal parts, and HE into 4 equal parts, and at the points of division, let perpendiculars be drawn to AB and HE. Then will ABCD be divided into 7, and HEFK into 4 rectangles, all of which will be equal, because they have equal bases and equal altitudes (P. I.): hence, we have,

ABCD : HEFK :: 7 : 4.

But we have, by hypothesis,

AB : HE :: 7 : 4.


From these proportions, we have (B. II., P. IV.),

ABCD : HEFK :: AB : HE.

Had any other numbers than 7 and 4 been used, the same proportion would have been found; which was to be proved.

2°, Let the bases of the rectangles be incommensurable: then will the rectangles be proportional to their bases.

For, place the rectangle HEFKupon the rectangle ABCD, so that it shall take the position AEFD. Then, if the rectangles are not proportional to their bases, let us suppose that

ABCD : AEFD :: AB : AO;

in which AO is greater than AE. Divide AB into equal parts, each less than OE; at least one point of division, as I, will fall between E and O; at this point, draw IK perpendicular to AB. Then, because AB and AI are commensurable, we shall have, from what has just been shown,

ABCD : AIKD :: AB : AI.

The above proportions have their antecedents the same in each; hence (B. II., P. IV., C.),

AFFD : AIKD :: AO : AI.

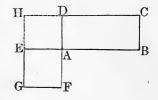
The rectangle AEFD is less than AIKD; and if the above proportion were true, the line AO would be less than AI; whereas, it is greater. The fourth term of the proportion, therefore, cannot be greater than AE. In like manner, it may be shown that it cannot be less than AE; consequently, it must be equal to AE: hence,

ABCD : AEFD :: AB AE;

which was to be proved.

Cor. If rectangles have equal bases, they are to each other as their altitudes.

97


PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of their bases and altitudes.

Let ABCD and AEGF be two rectangles: then wil ABCD be to AEGF, as $AB \times AD$ is to $AE \times AF$.

For, place the rectangles so that the angles DAB and EAFshall be opposite or vertical; then, produce the sides CDand GE till they meet in H.

The rectangles ABCD and ADHE have the same altitude AD: hence (P. III.),

ABCD : ADHE :: AB : AE.

The rectangles ADHE and AEGF have the same altitude AE: hence,

ADHE : AEGF :: AD : AF.

Multiplying these proportions, term by term (B. II., P. XII.), and omitting the common factor *ADHE* (B. II., P. VII.), we have,

ABCD : AEGF :: $AB \times AD$: $AE \times AF$; which was to be proved.

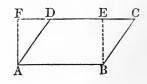
Scholium 1. If we suppose AE and AF, each to be equal to the linear unit, the rectangle AEGF will be the superficial unit, and we shall have,

 $ABCD \cdot 1 :: AB \times AD : 1;$

BOOK IV.

$ABCD = AB \times AD$:

hence, the area of a rectangle is equal to the product of its base and altitude; that is, the number of superficial units in the rectangle, is equal to the product of the number of linear units in its base by the number of linear units in its altitude.


Scholium 2. The product of two lines is sometimes called the *rectangle* of the lines, because the product is equal to the area of a rectangle constructed with the lines as sides.

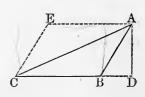
PROPOSITION V. THEOREM.

The area of a parallelogram is equal to the product of its base and altitude.

Let ABCD be a parallelogram, AB its base, and BE its altitude: then will the area of ABCD be equal to $AB \times BE$.

For, construct the rectangle ABEF; having the same base and altitude: then will the rectangle be equal to the parallelogram (P. I.); but the area of the rectangle is equal to $AB \times BE$:

hence, the area of the parallelogram is also equal to $AB \times BE$; which was to be proved.

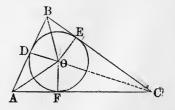

Cor. Parallelograms are to each other as the products of their bases and altitudes. If their altitudes are equal, they are to each other as their bases. If their bases are equal, they are to each other as their altitudes.

PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its base and altitude.

Let ABC be a triangle, BC its base, and AD its altitude: then will the area of the triangle be equal to $\frac{1}{2}BC \times AD$,

For, from C, draw CE parallel to BA, and from A, draw AE parallel to CB. The area of the parallelogram BCEA is $BC \times AD$ (P. V.); but the triangle ABC is half of the par-


allelogram BCEA: hence, its area is equal to $\frac{1}{2}BC \times AD$; which was to be proved.

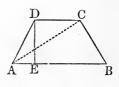
Cor. 1. Triangles are to each other, as the products of their bases and altitudes (B. II., P. VII.). If their altitudes are equal, they are to each other as their bases. If their bases are equal, they are to each other as their altitudes.

Cor. 2. The area of a triangle is equal to half the product of its perimeter and the radius of the inscribed circle.

For, let DEF be a circle inscribed in the triangle ABC. Draw OD, OE, and OF, to the points of contact, and OA, OB, and OC, to the vertices.

The area of OBC will be equal to $\frac{1}{2}OE \times BC$; the area of OAC will be equal to $\frac{1}{2}OF \times AC$; and the area

BOOK, IV, 101


of OAB will be equal to $\frac{1}{2}OD \times AB$; and since OD, OE, and OF, are equal, the area of the triangle ABC (A. 9), will be equal to $\frac{1}{2}OD(AB + BC + CA)$.

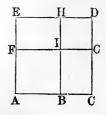
PROPOSITION VII. THEOREM.

The area of a trapezoid is equal to the product of its altitude and half the sum of its parallel sides.

Let ABCD be a trapezoid, DE its altitude, and ABand DC its parallel sides: then will its area be equal to $DE \times \frac{1}{2}(AB + DC)$.

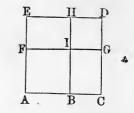
For, draw the diagonal AC, forming the triangles ABC and ACD. The altitude of each of these triangles is equal to DE. The area of ABC is equal to $\frac{1}{2}AB \times DE$ (P. VI.); the area of ACD is equal to

 $\frac{1}{2}DC \times DE$: hence, the area of the trapezoid, which is the sum of the triangles, is equal to the sum of $\frac{1}{2}AB \times DE$ and $\frac{1}{2}DC \times DE$, or to $DE \times \frac{1}{2}(AB + DC)$; which was to be proved.


PROPOSITION VIII. THEOREM.

The square described on the sum of two lines is equal to the sum of the squares described on the lines, increased by twice the rectangle of the lines.

Let AB and BC be two lines, and AC their sum: then will


$$\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 + 2AB \times BC.$$

On AC, construct the square ACDE; from B, draw BH par-

allel to AE; lay off AF equal to AB, and from F; draw FG parallel to AC: then will IG and IH be each equal to BC; and IB and IF, to AB.

The square ACDE is composed of four parts. The part ABIF is a square described on AB; the part IGDH is equal to a square described on BC; the part BCGI is equal to the rectangle of AB and BC; and the part FIHE is also equal to the rectangle of AB and BC: and

because the whole is equal to the sum of all its parts (A. 9), we have,

 $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 + 2AB \times BC;$

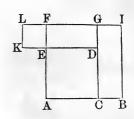
which was to be proved.

Cor. If the lines AB and BC are equal, the four parts of the square on AC will also be equal: hence, the square described on a line is equal to four times the square described on half the line.

PROPOSITION IX. THEOREM.

The square described on the difference of two-lines is equal to the sum of the squares described on the lines, diminished by twice the rectangle of the lines.

Let AB and BC be two lines, and AC their difference: then will


 $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 - 2AB \times BC.$

On AB construct the square ABIF; from C draw CG parallel to BI; lay off CD equal to AC, and from D draw DK parallel and equal to BA; complete

102

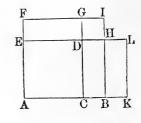
the square EFLK: then will EK be equal to BC, and EFLK will be equal to the square of BC.

The whole figure ABILKE is equal to the sum of the squares described on AB and BC. The part CBIG is equal to the rectangle of AB and BC; the part DGLK is also equal to the rectangle of AB and BC. If from

the whole figure ABILKE, the two parts CBIG and DGLK be taken, there will remain the part ACDE, which is equal to the square of AC: hence,

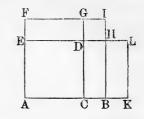
 $\overline{AC}^2 = \overline{AB}^2 + \overline{BC}^2 - 2AB \times BC$;

which was to be proved.


THEOREM. PROPOSITION X.

The rectangle contained by the sum and difference of two lines, is equal to the difference of their squares.

Let AB and BC be two lines, of which AB is the greater: then will


$$(AB + BC) (AB - BC) = A\overline{B}^2 - BC^2$$

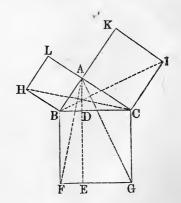
On AB, construct the square ABIF; prolong AB, and make BK equal to BC; then will AKbe equal to AB + BC; from K, draw KL parallel to BI, and make it equal to AC; draw LEparallel to KA, and CG parallel to BI: then DG is equal to

BC, and the figure DHIG is equal to the square on BC, and EDGF is equal to BKLH.

If we add to the figure ABHE, the rectangle BKLH, we shall have the rectangle AKLE, which is equal to the the rectangle of AB + BC and AB - BC. If to the same figure ABHE, we add the rectangle DGFE, equal to BKLH, we shall have the figure ABHDGF, which is equal to the difference of the squares of AB and BC. But the sums of equals are equal (A. 2), hence.

 $(AB + BC) (AB - BC) = \overline{AB^2} - \overline{BC^2};$

which was to be proved.


PROPOSITION XI. THEOREM.

The square described on the hypothenuse of a right-angled triangle, is equal to the sum of the squares described on the other two sides.

Let ABC be a triangle, right-angled at A: then will $\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2.$

Construct the square BG on the side BC, the square AH on the side AB, and the square AI on the side AC; from A draw AD perpendicular to BC, and prolong it to E: then will DE be parallel to BF; draw AF and HC.

In the triangles HBCand ABF, we have HB equal to AB, because they are sides of the same square;

BC equal to BF, for the same reason, and the included angles HBC and ABF equal, because each is equal to the angle ABC plus a right angle : hence, the triangles are equal in all their parts (B. I., P. V.).

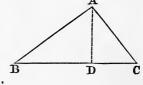
The triangle ABF, and the rectangle BE, have the same base BF, and because DE is the prolongation of DA, their altitudes are equal: hence, the triangle ABFis equal to half the rectangle BE (P. II.). The triangle HBC, and the square BL, have the same base BH, and because AC is the prolongation of AL (B. I., P. IV.), their altitudes are equal: hence, the triangle HBC is equal to half the square of AH. But, the triangles ABF and HBC are equal: hence, the rectangle BE is equal to the square AH. In the same manner, it may be shown that the rectangle DG is equal to the square AI: hence, the sum of the rectangles BE and DG, or the square BG, is equal to the sum of the squares AH and AI; or, $\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2$; which was to be proved.

Cor. 1. The square of either side about the right angle is equal to the square of the hypothenuse diminished by the square of the other side : thus,

 $\overline{AB}^2 = \overline{BC}^2 - \overline{AC}^2$; or, $\overline{AC}^2 = \overline{BC}^2 - \overline{AB}^2$.

Cor. 2. If from the vertex of the right angle, a perpendicular be drawn to the hypothenuse, dividing it into two segments, BD and DC, the square of the hypothenuse will be to the square of either of the other sides, as the hypothenuse is to the segment adjacent to that side.

For, the square BG, is to the rectangle BE, as BC to BD (P. III.); but the rectangle BE is equal to the square AH: hence,


 \overline{BC}^2 : \overline{AB}^2 :: BC : BD.

In like manner, we have,

\overline{BC}^2 : \overline{AC}^2 :: BC : DC.

Cor. 3. The squares of the sides about the right angle are to each other as the adjacent segments of the hypothenuse.

For, by combining the proportions of the preceding corollary (B. II., P. IV., C.), we have,

 \overline{AB}^2 : \overline{AC}^2 :: BD : DC.

X Cor. 4. The square described on the diagonal of a square is double the given square.

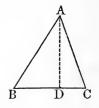
For, the square of the diagonal is equal to the sum of the squares of the two sides; but the square of each side is equal to the given square: hence,

 $\overline{AC}^2 = 2\overline{AB}^2$; or, $\overline{AC}^2 = 2\overline{BC}^2$.

Cor. 5. From the last corollary, we have,

 \overline{AC}^2 : \overline{AB}^2 :: 2 : 1;

hence, by extracting the square root of each term, we have,

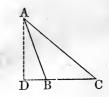

 $AC : AB :: \sqrt{2} : 1;$

that is, the diagonal of a square is to the side, as the square root of two to one; consequently, the diagonal and the side of a square are incommensurable.

PROPOSITION XII. THEOREM.

In any triangle, the square of a side opposite an acute angle, is equal to the sum of the squares of the base and the other side, diminished by twice the rectangle of the base and the distance from the vertex of the acute angle to the foot of the perpendicular drawn from the vertex of the opposite angle to the base, or to the base produced.

Let ABC be a triangle, C one of its acute angles, BC its base, and AD the perpendicular drawn from Ato BC, or BC produced; then will



 $\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2 - 2BC \times CD.$

For, whether the perpendicular meets the base, or the base produced, we have BD equal to the difference of BC and CD: hence (P. IX.),

 $\overline{BD}^2 = \overline{BC}^2 + \overline{CD}^2 - 2BC \times CD.$

Adding \overline{AD}^2 to both members, we have,

 $\overline{BD}^2 + \overline{AD}^2 = \overline{BC}^2 + \overline{CD}^2 + \overline{AD}^2 - 2BC \times CD.$

But, $\overline{BD}^2 + \overline{AD}^2 = \overline{AB}^2$, and $\overline{CD}^2 + \overline{AD}^2 = \overline{AC}^2$: hence, \cdot

$$\overline{AB^2} = \overline{BC}^2 + \overline{AC}^2 - 2BC \times CD;$$

which was to be proved.

PROPOSITION XIII. THEOREM.

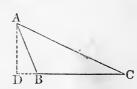
In any obtuse-angled triangle, the square of the side opposits the obtuse angle is equal to the sum of the squares of the base and the other side, increased by twice the rectangle of the base and the distance from the vertex of the obtuse angle to the foot of the perpendicular drawn from the vertex of the opposite angle to the base produced.

Let ABC be an obtuse-angled triangle, B its obtuse angle, BC its base, and AD the perpendicular drawn from A to BC produced; then will

$$\overline{AC}^2 = \overline{BC}^2 + \overline{AB}^2 + 2BC \times BD.$$

For, CD is the sum of BCand BD: hence (P. VIII.), $\overline{CD}^2 = \overline{BC}^2 + \overline{BD}^2 + 2BC \times BD.$

Adding \overline{AD}^2 to both members, and reducing, we have,


$$\overline{AC}^2 = \overline{BC}^2 + \overline{AB}^2 + 2BC \times BD;$$
which was to be proved.

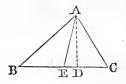
Scholium. The right-angled triangle is the only one m which the sum of the squares described on two sides is equal to the square described on the third side.

PROPOSITION XIV. THEOREM.

In any triangle, the sum of the squares described on two sides is equal to twice the square of half the third side increased by twice the square of the line drawn from the middle point of that side to the vertex of the opposite angle.

Let ABC be any triangle, and EA a line drawn from

the middle of the base BC to the vertex A: then will


$$\overline{AB}^2 + \overline{AC}^2 = 2\overline{BE}^2 + 2\overline{EA}^2.$$

Draw AD perpendicular to BC; then, from Proposition XII., we have,

$$\overline{AC}^{2} = \overline{EC}^{2} + \overline{EA}^{2} - 2EC \times ED.$$

From Proposition XIII., we have,

 $\overline{AB}^2 = \overline{BE}^2 + \overline{EA}^2 + 2BE \times ED.$

Adding these equations, member to member (A. 2), recollecting that BE is equal to EC, we have,

$$\overline{AB}^2 + \overline{AC}^2 = 2\overline{BE}^2 + 2\overline{EA}^2;$$

which was to be proved.

Cor. Let ABCD be a parallelogram, and BD, AC, its diagonals. Then, since the diagonals mutually bisect each other (B. I., P. B. C. XXXI.), we shall have,

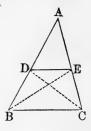
and, $\overline{AB^2} + \overline{BC}^2 = 2\overline{AE^2} + 2\overline{BE^2};$ $\overline{CD^2} + \overline{DA^2} = 2\overline{CE^2} + 2\overline{DE^2};$

whence, by addition, recollecting that AE is equal to CE, and BE to DE, we have,

 $\overline{AB^2} + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = 4\overline{CE}^2 + 4\overline{DE}^2;$ but, $4\overline{CE}^2$ is equal to \overline{AC}^2 , and $4\overline{DE}^2$ to \overline{BD}^2 (P. VIII., C.): hence,

 $\overline{AB^2} + \overline{BC}^2 + \overline{CD}^2 + \overline{DA}^2 = \overline{AC}^2 + \overline{BD}^2.$

That is, the sum of the squares of the sides of a parallelogram, is equal to the sum of the squares of its diagonals.


PROPOSITION XV. THEOREM.

In any triangle, a line drawn parallel to the base divides the other sides proportionally.

Let ABC be a triangle, and DE a line parallel to the base BC: then

AD : DB :: AE : CE.

Draw EB and DC. Then, because the triangles AED and DEB have their bases in the same line AB, and their vertices at the same point E, they will have a common altitude : hence, (P. VI., C.)

AED : DEB :: AD : DB.

The triangles AED and EDC, have their bases in the same line AC, and their vertices at the same point D; they have, therefore, a common altitude; hence,

AED : EDC :: AE : EC.

But the triangles DEB and EDC have a common base DE, and their vertices in the line BC, 'parallel to DE; they are, therefore, equal: hence, the two preceding proportions have a couplet in each equal; and consequently, the remaining terms are proportional (B. II., P. IV.), hence,

AD : DB :: AE : EC;

which was to be proved.

Cor. 1. We have, by composition (B. II., P. VI.), AD + DB : AD :: AE + EC : AE;

or, AB : AD :: AC : AE;

and, in like manner,

AB : DB :: AC : EC.

Cor. 2. If any number of parallels be drawn cutting two lines, they will divide the lines proportionally.

For, let O be the point where ABand CD meet. In the triangle OEF, the line AC being parallel to the base EF, we shall have,

OE : AE :: OF : CF. In the triangle OGH, we shall have,

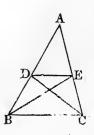
OE : *EG* :: *OF* : *FH* ; hence (B. II., P. **IV.**, C.),

AE : EG :: CF : FH.

In like manner,

EG : GB :: FH HD;and so on.

PROPOSITION XVI. THEOREM.


If a straight line divides two sides of a triangle proportionally, it will be parallel to the third side.

Let ABC be a triangle, and let DEdivide AB and AC, so that

AD : DB :: AE : EC;

then will DE be parallel to BC.

Draw DC and EB. Then the tri-

angles ADE and DEB will have a common altitude; and consequently, we shall have,

ADE : DEB :: AD : DB.

The triangles ADE and EDC have also a common altitude; and consequently, we shall have,

ADE : EDC :: AE : EC; but, by hypothesis,

AD : DB :: AE : EC;

hence (B. II., P. IV.),

ADE : DEB :: ADE : EDC.

The antecedents of this proportion being equal, the consequents will be equal; that is, the triangles DEB and EDC are equal. But these triangles have a common base DE: hence, their altitudes are equal (P. VI., C.); that is, the points B and C, of the line BC, are equally distant from DE, or DE prolonged : hence, BC and DE are parallel (B. I., P. XXX., C); which was to be proved.

PROPOSITION XVII. THEOREM.

In any triangle, the straight line which bisects the angle at the vertex, divides the base into two segments proportional to the adjacent sides.

Let AD bisect the vertical angle A of the triangle BAC: then will the segments BD and DC be proportional to the adjacent sides BA and CA.

From C, draw CE parallel to DA, and produce it

D E

113

until it meets BA prolonged, at E. Then, because CEand DA are parallel, the angles BAD and AEC are equal (B. I., P. XX., C. 3); the angles DAC and ACE are also equal (B. I., P. XX., C. 2). But, BAD and DAC are equal, by hypothesis; consequently, AEC and ACE are equal: hence, the triangle ACE is isosceles, AE being equal to AC.

In the triangle BEC, the line AD is parallel to the base EC: hence (P. XV.),

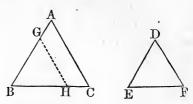
BA : AE :: BD : DC;

or, substituting AC for its equal AE,

BA : AC :: BD : DC;

which was to be proved.

PROPOSITION XVIII. THEOREM.


Triangles which are mutually equiangular, are similar.

Let the triangles ABC and DEF have the angle A equal to the angle D, the angle B to the angle E, and the angle C to the angle F: then will they be similar.

For, place the triangle DEF upon the triangle ABC, so that the angle E shall coincide with the angle B then will the point F fall at some B H C E Fpoint H, of BC; the point D at some point G, of BA;

the side DF will take the position GH, and BGH will be equal to EDF.

Since the angle BHGis equal to BCA, GHwill be parallel to AC(B. I., P. XIX., C. 2); and consequently, we shall have (P. XV.),

BA : BG :: BC : BH;

or, since BG is equal to ED, and BH to EF,

BA : ED :: BC : EF.

In like manner, it may be shown that

BC : EF :: CA : FD; and also, CA : FD :: AB : DE:

hence, the sides about the equal angles, taken in the same order, are proportional; and consequently, the triangles are similar (D. 1); which was to be proved.

Cor. If two triangles have two angles in one, equal to two angles in the other, each to each, they will be similar (B. I., P. XXV., C. 2).

PROPOSITION XIX. THEOREM.

Triangles which have their corresponding sides proportional, are similar.

In the triangles ABC and DEF, let the corresponding sides be proportional; that is, let

AB : DE :: BC : EF : CA FD ;

then will the triangles be similar.

For, on BA lay off BG equal to ED; on BC lay off BH equal to EF, and draw GH. Then, because BG is equal to DE, and BH to EF, we have, BA : BG :: BC : BH;

hence, GH is parallel to AC (P. XVI.); and consequently, the triangles BAC and BGH are equiangular, and therefore similar: hence,

BC : BH :: CA : HG.

But, by hypothesis,

BC : EF :: CA : FD ;

hence (B. II., P. IV., C.), we have,

BH : EF :: HG : FD.

But, BH is equal to EF; hence, HG is equal to FD. The triangles BHG and EFD have, therefore, their sides equal, each to each, and consequently, they are equal in all their parts. Now, it has just been shown that BHG and BCA are similar: hence, EFD and BCA are also similar; which was to be proved.

Scholium. In order that polygons may be similar, they must fulfill two conditions: they must be mutually equiangular, and the corresponding sides must be proportional. In the case of triangles, either of these conditions involves the other, which is not true of any other species of polygons.

PROPOSITION XX. THEOREM.

Triangles which have an angle in each equal, and the including sides proportional, are similar.

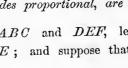
In the triangles ABC and DEF, let the angle B be equal to the angle E; and suppose that

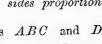
BA : ED :: BC : EF;

then will the triangles be similar.

For, place the angle EG upon its equal B; Fwill fall at some point of BC, as H; D will fall at some point of BA, as R G; DF will take the position GII, and the triangle DEF will coincide with GBH, and consequently, will be equal to it.

But, from the assumed proportion, and because BG is equal to ED, and BH to EF we have,


BA : BG :: BC : BH;

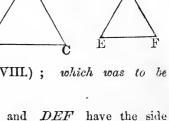

hence, GH is parallel to AC; and consequently, BACand BGH are mutually equiangular, and therefore similar. But, EDF is equal to BGH: hence it is also similar to BAC; which was to be proved.

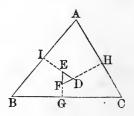
PROPOSITION XXI. THEOREM.

Triangles which have their sides parallel, each to each, or perpendicular, each to each, are similar.

1°. Let the triangles ABC and DEF have the side AB parallel to DE, BC to EF, and CA to FD: then will they be similar.

For, since the side AB is parallel to DE, and BCto EF, the angle B is equal to the angle E (B. I., P. XXIV.); in like manner, the angle C is equal to D the angle F, and the angle A to the angle D; the triangles are, therefore, mutually equiangular, and consequently, are similar (P. XVIII.); which was to be proved.


2°. Let the triangles ABC and DEF have the side AB perpendicular to DE, BC to EF, and CA to FD: then will they be similar.


For, prolong the sides of the triangle DEF till they meet the sides of the triangle ABC. The sum of the interior angles of the quadrilateral BIEG is equal to four right angles (B. I., P. XXVI.); but, the angles EIB and EGB are each right

angles, by hypothesis; hence, the sum of the angles IEG IBG is equal to two right angles; the sum of the angles IEG and DEF is equal to two right angles, because they are adjacent; and since things which are equal to the same thing are equal to each other, the sum of the angles IEG and IBG is equal to the sum of the angles IEG and DEF; or, taking away the common part IEG, we have the angle IBG equal to the angle DEF. In like manner, the angle GCH may be proved equal to the angle EFD, and the angle HAI to the angle EDF; the triangles ABC and DEF are, therefore, mutually equiangular, and consequently similar; which was to be proved.

Cor. 1. In the first case, the parallel sides are homolo-

gous; in the second case, the perpendicular sides are homologous.

Cor. 2. The homologous angles are those included by sides respectively parallel or perpendicular to each other.

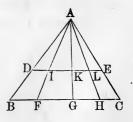
Scholium. When two triangles have their sides perpenlicular, each to each, they may have a different relative position from that shown in the figure. But we can always \Rightarrow construct a triangle within the triangle *ABC*, whose sides shall be parallel to those of the other triangle, and then the demonstration will be the same as above.

PROPOSITION XXII. THEOREM.

If a straight line be drawn parallel to the base of a triangle, and straight lines be drawn from the vertex of the triangle to points of the base, these lines will divide the base and the parallel proportionally.

Let ABC be a triangle, BC its base, A its vertex, DE parallel to BC, and AF, AG, AH, lines drawn from A to points of the base: then will

DI : BF :: IK : FG :: KL : GII :: LE : HC.


For, the triangles *AID* and *AFB*, being similar (P. XXI.), we have,

AI : AF :: DI : BF;

and, the triangles AIK and AFG, being similar, we have,

AI : AF :: IK : FG;

hence, (B. II., P. IV.), we have,

DI : BF :: IK : FG.

In like manner,

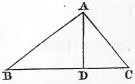
IK : FG :: KL : GH,

and.

KL : GH :: LE : HC ;

hence (B. II., P. IV.),

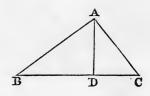
DI : BF :: IK : FG :: KL : GH :: LE : HC;which was to be proved.


Cor. If BC is divided into equal parts at F, G, and H, then will DE be divided into equal parts, at I, K, and L.

PROPOSITION XXIII. THEOREM.

- If, in a right-angled triangle, a perpendicular be drawn from the vertex of the right angle to the hypothenuse:
- 1°. The triangles on each side of the perpendicular will be similar to the given triangle, and to each other:
- 2°. Each side about the right angle will be a mean proportional between the hypothenuse and the adjacent segment:
- 3°. The perpendicular will be a mean proportional between the two segments of the hypothenuse.

1°. Let ABC be a right-angled triangle, A the vertex of the right angle, BC the hypothenuse, and AD perpendicular to BC: then will ADB and ADCbe similar to ABC, and consequently, similar to each other. B D


The triangles ADB and ABChave the angle B common, and the angles ADB and

BAC equal, because both are right angles; they are, therefore, similar (P. XVIII., C). In like manner, it may be shown that the triangles ADC and ABC are similar; and since ADB and ADC are both similar to ABC, they are similar to each other; which was to be proved.

2°. AB will be a mean proportional between BC and BD; and AC will be a mean proportional between CB and CD.

For, the triangles ADB and BAC being similar, their homologous sides are proportional : hence,

BC : AB :: AB : BD.

In like manner,

BC : AC :: AC : DC;

which was to be proved.

3°. AD will be a mean proportional between BL and DC. For, the triangles ADB and ADC being similar, their homologous sides are proportional; hence,

 $BD : AD :: AD : DC_{2}$

which was to be proved.

Cor. 1. From the proportions,

and, BC : AB :: AB : BD,BC : AC :: AC : DC,

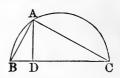
we have (B. II., P. I.),

 $\overline{AB^2} = BC \times BD,$ $\overline{AC^2} = BC \times DC;$

120

and,

whence, by addition,

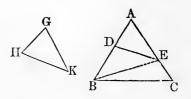

 $\overline{AB}^{2} + \overline{AC}^{2} = BC(BD + DC);$

or,

$$\overline{AB^2} + \overline{AC^2} = \overline{BC^2}$$
;

as was shown in Proposition XI.

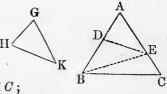
Cor. 2. If from any point A, in a semi-circumference BAC, chords be drawn to the extremities B and C of the diameter BC, and a perpendicular ADbe drawn to the diameter: then will ABC be a right-angled tri-


angle, right-angled at A; and from what was proved above, each chord will be a mean proportional between the diameter and the adjucent segment; and, the perpendicular will be a mean proportional between the segments of the diameter.

THEOREM. PROPOSITION XXIV.

Triangles which have an angle in each equal, are to each other as the rectangles of the including sides.

Let the triangles GHK and ABC have the angles Gand A equal: then will they be to each other as the rectangles of the sides about these angles.


For, lay off AD equal to GH, AE to GK, and draw DE; then will the triangles ADE and GHK be equal in all their parts. Draw EB.

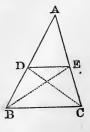
The triangles ADE and ABE have their bases in the same line AB, and a common vertex E; therefore, they have the same altitude, and consequently, are to each other as their bases; that is,

ADE : ABE :: AD : AB.

The triangles ABE and ABC, have their bases in the same line AC, and a H \leq common vertex B; hence, ABE : ABC :: AE : AC;

multiplying these proportions, term by term, and omitting the common factor *ABE* (B. II., P. VII.), we have,

ADE : ABC :: $AD \times AE$: $AB \times AC$; substituting for ADE, its equal, GHK, and for $AD \times AE$, its equal, $GH \times GK$, we have,


GHK : ABC :: $GH \times GK$: $AB \times AC$; which was to be proved.

Cor. If ADE and ABC are similar, the angles Dand B being homologous, DE will be parallel to BC, and we shall have,

AD : AB :: AE : AC; hence (B. II., P. IV.), we have,

ADE : ABE :: ABE : ABC;

that is, ABE is a mean proportional between ADE and ABC.

PROPOSITION XXV. THEOREM.

Similar triangles are to each other as the squares of their homologous sides.

Let the triangles ABC and DEF be similar, the angle A being equal to the angle D, B to E, and C to F. then will the triangles be to each other as the squares of any two homologous sides.

Because the angles A and D are equal, we have (P. XXIV.),

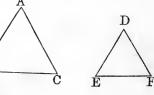
ABC : DEF :: $AB \times AC$: $DE \times DF$;

and, because the triangles are similar, we have,

AB: DE:: AC: DF;

multiplying the terms of Bthis proportion by the corresponding terms of the proportion,

AC : DF :: AC : DF

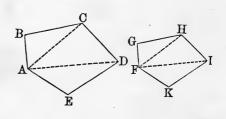

we have (B. II., P. XII.),

 $AB \times AC$: $DE \times DF$:: \overline{AC}^2 : \overline{DF}^2 ;

combining this, with the first proportion (B. II., P. IV.), we have,

ABC : DEF :: \overline{AC}^2 : \overline{DF}^2 .

In like manner, it may be shown that the triangles are to each other as the squares of AB and DE, or of BC and EF; which was to be proved.



PROPOSITION XXVI. THEOREM.

Similar polygons may be divided into the same number of triangles, similar, each to each, and similarly placed.

Let ABCDE and FGHIK be two similar polygons, the angle A being equal to the angle F, B to G, C to H, and so on: then can they be divided into the same number of similar triangles, similarly placed.

For, from A draw the diagonals AC, AD, and from F, homologous with A, draw the diagonals FH, FI, to the vertices H and I, homologous with C and D.

Because the polygons are similar, the triangles ABC and FGH have the angles B and G equal, and the sides about these angles proportional; they are, therefore, similar (P. XX.). Since these triangles are similar, we have the angle ACB equal to FHG, and the sides AC and FH, proportional to BC and GH, or to CD and HI. The angle BCD being equal to the angle GHI, if we take from the first the angle ACB, and from the second the equal angle FHG, we shall have the angle ACD equal to the angle ACD and FHI have an angle in each equal, and the including sides proportional; they are therefore similar

In like manner, it may be shown that *ADE* and *FIK* are similar; which was to be proved.

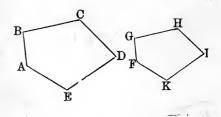
Cor. 1. The corresponding triangles in the two polygons are homologous triangles, and the corresponding diagonals are homologous diagonals.

Cor. 2. Any two homologous triangles are *like parts* of the polygons to which they belong.

For, the homologous triangles being similar, we have,

	ABC: FGH	$:: \overline{AC^2}$: \overline{FH}^2 ;
and,	ACD : FHI	$:: \overline{AC^2}$: \overline{FH}^2 ;
whence,	ABC: FGH	:: ACD	: FHI.
But,	ABC: FGH	::ABC	: FGH ;
and,	ABC: FGH	:: ADE	: FIK;
by composition, ·			

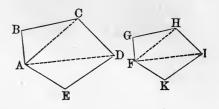
ABC. FGH :: ACD + ABC + ADE : FHI + FGH + FIK; that is, ABC : FGH :: ABCDE : FGHIK.


Cor. 3. If two polygons are made up of similar triangles, similarly placed, the polygons themselves will be similar.

PROPOSITION XXVII. THEOREM.

The perimeters of similar polygons are to each other as any two homologous sides; and the polygons are to each other as the squares of any two homologous sides.

1°. Let ABCDE and FGHIK be similar polygons: then will their perimeters be to each other as any two homologous sides.


For, any two homologous sides, as ABand FG, are like parts of the perimeters to which they belong : hence (B. II., P. IX.), the perimeters of the

polygons are to each other as AB to FG, or as any other two homologous sides; which was to be proved.

2°. The polygons will be to each other as the squares of any two homologous sides.

For, let the polygons be divided into homologous triangles (P. XXVI., C. 1); then, because the homologous triangles *ABC* and *FGH* are

like parts of the polygons to which they belong, the polygons will be to each other as these triangles; but these triangles, being similar, are to each other as the squares of AB and FG: hence, the polygons are to each other as the squares of AB and FG, or as the squares of any other two homologous sides; which was to be proved.

Cor. 1. Perimeters of similar polygons are to each other as their homologous diagonals, or as any other homologous lines; and the polygons are to each other as the squares of their homologous diagonals, or as the squares of any other homologous lines.

Cor. 2. If the three sides of a right-angled triangle be made homologous sides of three similar polygons, these polygons will be to each other as the squares of 'the sides of the triangle. But the square of the hypothenuse is equal to the sum of the squares of the other sides, and consequently, the polygon on the hypothenuse will be equal to the sum of the polygons on the other sides.

PROPOSITION XXVIII. THEOREM.

If two chords intersect in a circle, their segments will be reciprocally proportional.

Let the chords AB and CD intersect at O: then

will their segments be reciprocally proportional; that is, one segment of the first will be to one segment of the second, as the remaining segment of the second is to the remaining segment of the first.

For, draw CA and BD. Then will the angles ODB and OAC be equal, because each is measured by half of the arc CB (B. III., P. XVIII.). The angles OBD and OCA, will also be equal, because each is measured by

half of the arc AD: hence, the triangles OBD and OCA are similar (P. XVIII., C.), and consequently, their homologous sides are proportional: hence,

DO : AO :: OB : OC;

which was to be proved.

Cor. From the above proportion, we have,

 $DO \times OC = AO \times OB;$

that is, the rectangle of the segments of one chord is equal to the rectangle of the segments of the other.

PROPOSITION XXIX. THEOREM.

If from a point without a circle, two secants be drawn terminating in the concave arc, they will be reciprocally proportional to their external segments.

Let OB and OC be two secants terminating in the concave arc of the circle BCD: then will

OB : OC :: OD : OA.

For, draw AC and DB. The triangles ODB and OAC have the angle O common, and the angles OBD and OCA equal, because each is measured by half of the arc AD: hence, they are similar, and consequently, their homologous sides are proportional; whence,

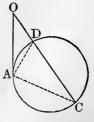
OB : OC :: OD : OA;

which was to be proved.

Cor. From the above proportion, we have,

$OB \times OA = OC \times OD;$

that is, the rectangles of each secant and its external segment are equal.


PROPOSITION XXX. THEOREM.

If from a point without a circle, a tangent and a secant be drawn, the secant terminating in the concave arc, the tangent will be a mean proportional between the secant and its external segment.

Let ADC be a circle, OC a secant, and OA a tangent: then will

OC : OA :: OA : OD.

For, draw AD and AC. The triangles OAD and OAC will have the angle O common, and the angles OADand ACD equal, because each is measured by half of the arc AD (B. III., P. XVIII., P. XXI.); the triangles are therefore similar, and consequently, their

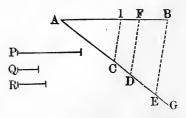
homologous sides are proportional : hence,

which was to be proved.

Cor. From the above proportion, we have,

$$\overline{AO^2} = OC \times OD;$$

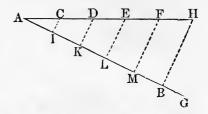
that is, the square of the tangent is equal to the rectangle of the secant and its external segment.


PRACTICAL APPLICATIONS.

PROBLEM I.

To divide a given straight line into parts proportional to given straight lines: also into equal parts.

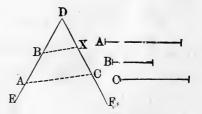
1°. Let AB be a given straight line, and let it be required to divide it into parts proportional to the lines P, Q, and R.


From one extremity A, draw the indefinite line AG, making any angle with AB; lay off AC equal to P, CDequal to Q, and DE equal to R; draw EB, and from the points C and D, draw CI and DF parallel and FB, be proportional to

draw CI and DF parallel to EB: then, will AI, IF, and FB, be proportional to P, Q, and R (P XV., C. 2).

2°. Let AH be a given straight line, and let it be required to divide it into any number of equal parts, say five.

From one extremity A, draw the indefinite line AG; take AI equal to any convenient line, and lay off IK, KL, LM, and MB, each equal to AI. Draw



BH, and from I, K, L, and M, draw the lines IC, KD, LE, and MF, parallel to BH: then will AH be divided into equal parts at C, D, E, and F (P. XV., C. 2).

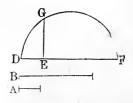
PROBLEM II.

To construct a fourth proportional to three given straight lines.

Let A, B, and C, be the given lines. Draw DE and DF, making any convenient angle with each other. Lay off DAequal to A, DB equal to B, and DC equal

to C; draw AC, and from B draw BX parallel to AC: then will DX be the fourth proportional required. For (P. XV., C.), we have,

or,


$$A : B :: C : DX.$$

Cor. If DC is made equal to DB, DX will be third proportional to DA and DB, or to A and B.

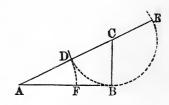
PROBLEM III.

To construct a mean proportional between two given straight lines.

Let A and B be the given lines. On an indefinite line, lay off DE equal to A, and EF equal to B; on DF as a diameter describe the semi-circle DGF, and draw EG. perpendicular to DF:

then will EG be the mean proportional required. For (P. XXIII., C. 2), we have,

> DE : EG :: EG : EF; A : EG :: EG : B.

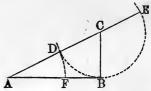

or,

PROBLEM IV.

To divide a given straight line into two such parts, that the greater part shall be a mean proportional between the whole line and the other part.

Let AB be the given line.

At the extremity B, draw BC perpendicular to AB, and make it equal to half of AB. With C as a centre, and CB as a radius, describe the are DBE; draw AC, and produce



it till it terminates in the concave arc at E; with A as centre and AD as radius, describe the arc DF: then will AF be the greater part required.

For, AB being perpendicular to CB at B, is tangent to the arc DBE: hence (P. XXX.),

AE : AB :: AB : AD;

and, by division (B. II., P. VI.),

AE - AB : AB :: AB - AD : AD.

But, DE is equal to twice CB, or to AB: hence, AE - AB is equal to AD, or to AF; and AB - ADis equal to AB - AF, or to FB: hence, by substitution,

AF : AB :: FB : AF;

and, by inversion (B. II., P. V.),

AB : AF :: AF : FB.

Scholium. When a straight line is divided so that the greater segment is a mean proportional between the whole line and the less' segment, it is said to be divided in extreme and mean ratio.

Since AB and DE are equal, the line AE is divided in extreme and mean ratio at D; for we have, from the first of the above proportions, by substitution,

AE : DE : : DE : AD.

PROBLEM V.

Through a given point, in a given angle, to draw a straight line so that the segments between the point and the sides of the angle shall be equal.

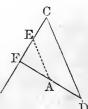
Let BCD be the given angle, and A the given point. Through A, draw AE parallel to DC; lay off EF equal to CE, and draw FAD: then will AF and ADbe the segments required. F

For (P. XV.), we have,

FA : AD :: FE : EC ;

but, FE is equal to EC; hence, FA is equal to AD.

PROBLEM VI.

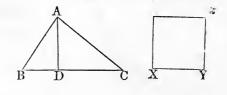

To construct a triangle equal to a given polygon.

Let ABCDE be the given polygon.

Draw CA; produce EA, and draw BG parallel to CA; draw the line CG. Then the triangles BAC and GAC have the common base AC, and because their vertices B and G lie in the

same line BG parallel to the base, their altitudes are equal, and consequently, the triangles are equal : hence, the polygon GCDE is equal to the polygon ABCDE.

Again, draw CE; produce AE and draw DF parallel to CE; draw also CF; then will the triangles FCEand DCE be equal: hence, the triangle GCF is equal to the polygon GCDE, and consequently, to the given polygon. In like manner, a triangle may be constructed equal to any other given polygon.


B

PROBLEM VII.

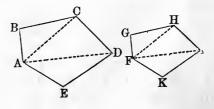
To construct a square equal to a given triangle.

Let ABC be the given triangle, AD its altitude, and BC its base.

Construct a mean proportional between ADand half of BC (Prob. III.). Let XY be that mean proportional, and on it, as a side, construct a

square: then will this be the square required. For, from the construction,

$$\overline{XY}^2 = \frac{1}{2}BC \times AD = \text{area } ABC.$$


Scholium. By means of Problems VI. and VII., a square may be constructed equal to any given polygon.

PROBLEM VIII.

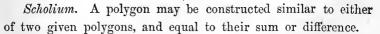
On a given straight line, to construct a polygon similar to a given polygon.

Let FG be the given line, and ABCDE the given. polygon. Draw AC and AD.

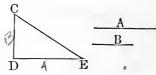
At F, construct the angle GFH equal to BAC, and at Gthe angle FGH equal to ABC; then will FGH be similar to ABC (P. XVIII., C.)

In like manner, construct the triangle FHI similar to ACD, and FIK similar to ADE; then will the polygon FGHIK be similar to the polygon ABCDE (P. XXVI., C. 3).

PROBLEM IX.


To construct a square equal to the sum of two given squares : also a square equal to the difference of two given squares.

1°. Let A and B be the sides of the given squares, and let A be the greater.


Construct a right angle CDE; make DE equal B to A, and DC equal to B; draw CE, and on it Á D construct a square : this square will be equal to the sum of the given squares (P. XI.).

2°. Construct a right angle CDE.

Lay off DC equal to B; with Cas a centre, and CE, equal to A, as a radius, describe an arc cutting DE at E; draw CE, and on DE construct a square : this square will be equal to the difference of the given squares (P. XI., C. 1).

For, let A and B be homologous sides of the given polygons Find a square equal to the sum or difference of the squares on A and B; and let X be a side of that square. On X as a side, homologous to A or B, construct a polygon similar to the given polygons, and it will be equal to their sum or difference (P. XXVII., C. 2).

REGULAR POLYGONS .- AREA OF THE CIRCLE.

DEFINITION.

1. A REGULAR POLYGON is a polygon which is both equilateral and equiangular.

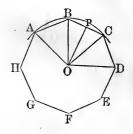
PROPOSITION I. THEOREM.

Regular polygons of the same number of sides are similar.

Let *ABCDEF* and *abcdef* be regular polygons of the same number of sides : then will they be similar.

For, the corresponding angles in each are equal, because any angle in either polygon is equal to twice as many right angles as the polygon has sides, less four right

angles, divided by the number of angles (B. I., P. XXVI., C. 4); and further, the corresponding sides are proportional, because all the sides of either polygon are equal (D. 1): hence, the polygons are similar (B. IV., D. 1); which was to be proved.


PROPOSITION II. THEOREM.

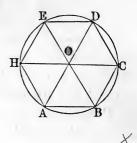
The circumference of a circle may be circumscribed about any regular polygon; a circle may also be inscribed in it.

1°. Let ABCF be a regular polygon: then can the circumference of a circle be circumscribed about it.

For, through three consecutive vertices A, B, C, describe the circumference of a circle (B. III., Problem XIII., S.). Its centre O will lie on PO, drawn perpendicular to BC, at its middle point P; draw OAand OD.

Let the quadrilateral OPCD be turned about the line OP, until PC

falls on PB; then, because the angle C is equal to B, the side CD will take the direction BA; and because CDis equal to BA, the vertex D, will fall upon the vertex A; and consequently, the line OD will coincide with OA, and is, therefore, equal to it: hence, the circumference which passes through A, B, and C, will pass through D. In like manner, it may be shown that it will pass through all of the other vertices: hence, it is circumscribed about the polygon; which was to be proved.


2°. A circle may be inscribed in the polygon.

For, the sides AB, BC, &c., being equal chords o the circumscribed circle, are equidistant from the centre Ohence, if a circle be described from O as a centre, with OP as a radius, it will be tangent to all of the sides or the polygon, and consequently, will be inscribed in it; which was to be proved.

Scholium. If the circumference of a circle be divided into equal arcs, the chords of these arcs will be sides of a regular inscribed polygon.

For, the sides are equal, because they are chords of equal arcs, and the angles are equal, because they are measured by halves of equal arcs.

If the vertices A, B, C, &c., of a regular inscribed polygon be joined with the centre O, the triangles thus formed will be equal, because their sides are equal, each to each : hence, all of the angles about the point O are equal to each other.

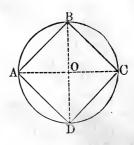
DEFINITIONS.

1. The CENTRE OF A REGULAR POLYGON, is the common centre of the circumscribed and inscribed circles.

2. The ANGLE AT THE CENTRE, is the angle formed by drawing lines from the centre to the extremities of either side.

The angle at the centre is equal to four right angles divided by the number of sides of the polygon.

3. The APOTHEM, is the shortest distance from the centre to either side.

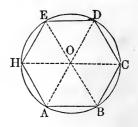

The apothegm is equal to the radius of the inscribed circle.

BOOK V.

PROPOSITION III. PROBLEM.

To inscribe a square in a given circle.

Let ABCD be the given circle. Draw any two diameters ACand BD perpendicular to each other; they will divide the circumference into four equal arcs (B. III., P. XVII., S.). Draw the chords AB, BC, CD, and DA: then will the figure ABCD be the square required (P. II., S.).


Scholium. The radius is to the side of the inscribed square as 1 is to $\sqrt{2}$.

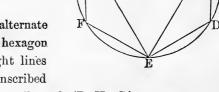
PROPOSITION IV. THEOREM.

If a regular hexagon be inscribed in a circle, any side will be equal to the radius of the circle.

Let ABD be a circle, and ABCDEH a regular inscribed hexagon: then will any side, as AB, be equal to the radius of the circle.

Draw the radii OA and OB. Then will the angle AOB be equal to one-sixth of four right angles, or to two-thirds of one right angle, because it is an angle at the centre (P. II., D. 2). The sum of the two angles OABand OBA is, consequently, equal

to four-thirds of a right angle (B. I., P. XXV., C. 1); but, the angles OAB and OBA are equal, because the opposite sides OB and OA are equal: hence, each is equal to


two-thirds of a right angle. The three angles of the triangle AOB are therefore, equal, and consequently, the triangle is equilateral: hence, AB is equal to OA; which was to be proved.

PROPOSITION V. PROBLEM.

To inscribe a regular hexagon in a given circle.

Let *ABE* be a circle, and *O* its centre. Beginning at any point of the circumference, as *A*, apply the radius *OA* six times as a chord ; then will *ABCDEF* be the hexagon required (P. IV.).

Cor. 1. If the alternate vertices of the regular hexagon be joined by the straight lines AC, CE, and EA, the inscribed

triangle ACE will be equilateral (P. II., S.).

Cor. 2. If we draw the radii OA and OC, the figure AOOB will be a rhombus, because its sides are equal: hence (B. IV., P. XIV., C.), we have,

$$\overline{AB}^2 + \overline{BC}^2 + \overline{OA}^2 + \overline{OC}^2 = \overline{AC}^2 + \overline{OB}^2;$$

or, taking away from the first member the quantity \overline{OA}^2 , and from the second its equal \overline{OB}^2 , and reducing, we have

$$B\overline{\partial A}^2 = \overline{AC}^2;$$

whence (B. II., P II.),

 \overline{AC}^2 : \overline{OA}^2 :: 3 : 1;

BOOK V.

or (B. II., P. XII., C. 2),

AC : OA :: $\sqrt{3}$: 1;

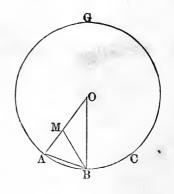
that is, the side of an inscribed equilateral triangle is to the radius, as the square root of 3 is to 1.

PROPOSITION VI. THEOREM.

If the radius of a circle be divided in extreme and mean ratio, the greater segment will be equal to one side of a regular inscribed decagon.

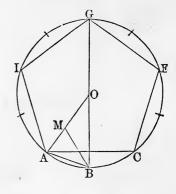
Let ACG be a circle, OA its radius, and AB, equal to OM, the greater segment of OA when divided in extreme and mean ratio: then will AB be equal to the side of a regular inscribed decagon.

Draw OB and BM. We have, by hypothesis,


AO: OM:: OM: AM;

or, since A.B is equal to OM, we have,

AO:AB::AB:AM;


hence, the triangles OABand BAM have the sides about their common angle

BAM, proportional; they are, therefore, similar (B. IV., P. XX.). But, the triangle OAB is isosceles; hence, BAMis also isosceles, and consequently, the side BM is equal to AB. But, AB is equal to OM, by hypothesis: hence, BM is equal to OM, and consequently, the angles MOR

and MBO are equal. The angle AMB being an exterior angle of the triangle OMB, is equal to the sum of the

angles MOB and MBO, or to twice the angle MOB; and because AMB is equal to OAB, and also to OBA, the sum of the angles OAB and OBA is equal to four times the angle AOB: hence, AOBis equal to one-fifth of two right angles, or to one-tenth of four right angles; and consequently, the arc AB is equal to one-tenth of the circumference : hence the chord AB

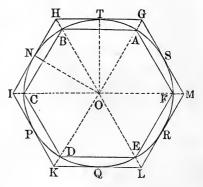
ence: hence, the chord AB is equal to the side of a regular inscribed decayon; which was to be proved.

Cor. 1. If AB be applied ten times as a chord, the resulting polygon will be a regular inscribed decagon.

Cor. 2. If the vertices A, C, E, G, and I, of the alternate angles of the decayon be joined by straight lines, the resulting figure will be a regular inscribed pentagon.

Scholium 1. If the arcs subtended by the sides of any regular inscribed polygon be bisected, and chords of the semiarcs be drawn, the resulting figure will be a regular inscribed polygon of double the number of sides.

Scholium 2. The area of any regular inscribed polygon is less than that of a regular inscribed polygon of double the number of sides, because a part is less than the whole

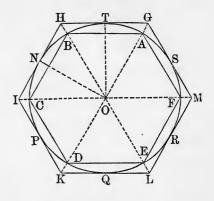

PROPOSITION VII. PROBLEM.

To circumscribe, about a circle, a polygon which shall be similar to a given regular inscribed polygon.

Let TNQ be a circle, O its centre, and ABCDEFa regular inscribed polygon.

At the middle points T, N, P, &c., of the arcs subtended by the sides of the inscribed polygon, draw tangents to the circle, and prolong them till they intersect; then will the resulting figure be the polygon required.

1°. The side HG being parallel to BA, and


HI to BC, the angle H is equal to the angle B. In like manner, it may be shown that any other angle of the circumscribed polygon is equal to the corresponding angle of the inscribed polygon : hence, the circumscribed polygon is equiangular.

2°. Draw the straight lines OG, OT, OH, ON, and OI. Then, because the lines HT and HN are tangent to the circle, OH will bisect the angle NHT, and also the angle NOT (B. III., Prob. XIV., S.); consequently, it will pass through the middle point B of the arc NBT. In like manner, it may be shown that the straight line drawn from the centre to the vertex of any other angle of the circumscribed polygon, will pass through the inscribed polygon.

The triangles OHG and OHI have the angles OHG

and OHI equal, from what has just been shown; the angles GOH and HOI equal, because they are measured by

the equal arcs AB and BC, and the side OH common; they are, therefore, equal in all their parts : hence, GH is equal to HI. In like manner, it may be shown that HI is equal to IK, IK to KL, and so on : hence, the circumscribed polygon is equilateral.

The circumscribed poly-

gon being both equiangular and equilateral, is *regular*; and since it has the same number of sides as the inscribed polygon, it is similar to it.

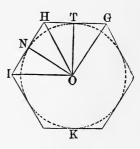
Cor. 1. If straight lines be drawn from the centre of a regular circumscribed polygon to its vertices, and the consecutive points in which they intersect the circumference be joined by chords, the resulting figure will be a regular inscribed polygon similar to the given polygon.

Cor. 2. The sum of the lines HT and HN is equal to the sum of HT and TG, or to HG; that is, to one of the sides of the circumscribed polygon.

Cor. 3. If at the vertices A, B, C, &c., of the inscribed polygon, tangents be drawn to the circle and prolonged till they meet the sides of the circumscribed polygon, the resulting figure will be a circumscribed polygon of double the number of sides.

Cor. 4. The area of any regular circumscribed polygon

is greater than that of a regular circumscribed polygon of double the number of sides, because the whole is greater than any of its parts.


Scholium. By means of a circumscribed and inscribed square, we may construct, in succession, regular circumscribed and inscribed polygons of 8, 16, 32, &c., sides. By means of the regular hexagon, we may, in like manner, construct regular polygons of 12, 24, 48, &c., sides. By means of the decagon, we may construct regular polygons of 20, 40, 80, &c., sides.

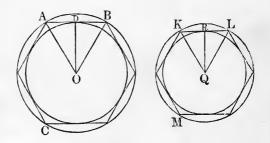
PROPOSITION VIII. THEOREM.

The area of a regular polygon is equal to half the product of its perimeter and apothem.

Let GHIK be a regular polygon, O its centre, and OT its apothem, or the radius of the inscribed circle: then will the area of the polygon be equal to half the product of the perimeter and the apothem.

For, draw lines from the centre to the vertices of the polygon. These lines will divide the polygon into triangles whose bases will be the sides of the polygon, and whose altitudes will be equal to the apothem. Now, the area of any triangle, as OIIG, is equal to half the product of the side IIGand the apothem : hence, the area of the polygon is equal to half the

145


of the polygon is equal to half the product of the perimeter and the apothem; which was to be proved.

PROPOSITION IX. THEOREM.

The perimeters of similar regular polygons are to each other as the radii of their circumscribed or inscribed circles; and their areas are to each other as the squares of those radii.

1°. Let ABC and KLM be similar regular polygons. Let OA and QK be the radii of their circumscribed, ODand QR be the radii of their inscribed circles: then will the perimeters of the polygons be to each other as OA is to QK, or as OD is to QR.

For, the lines $\mathcal{O}A$ and QK are homologous lines of the polygons to which they belong, as are also the lines OD and QR: hence, the perimeter of ABC

is to the perimeter of KLM, as OA is to QK, or as OD is to QR (B. IV., P. XXVII., C. 1); which was to be proved.

2°. The areas of the polygons will be to each other as \overline{OA}^2 is to \overline{QK}^2 , or as \overline{OD}^2 is to \overline{QR}^2 .

For, OA being homologous with QK, and OD with QR, we have, the area of ABC is to the area of KLM as \overline{OA}^2 is to \overline{QK}^2 , or as \overline{OD}^2 is to \overline{QR}^2 (B. IV., P XXVII., C. 1); which was to be proved.

PROPOSITION X. THEOREM.

Two regular polygons of the same number of sides can be constructed, the one circumscribed about a circle and the other inscribed in it, which shall differ from each other by less than any given surface.

Let ABCE be a circle, O its centre, and Q the side of a square equal to or less than the given surface; then can two similar regular polygons be constructed, the one circumscribed about, and the other inscribed within the given circle, which shall differ from each other by less than the square of Q, and consequently, by less than the given surface.

Inscribe a square in the given circle (P. III.), and by means of it, inscribe, in succession, regular polygons of 8, 16, 32, &c., sides (P. VII., S.), until one is found whose side is less than Q; let AB be the side of such a polygon.

KI D R Q

Construct a similar circumscribed polygon *abcde* : then

will these polygons differ from each other by less than the square of Q.

For, from a and b, draw the lines aO and bO; they will pass through the points A and B. Draw also OKto the point of contact K; it will bisect AB at I and be perpendicular to it. Prolong AO to E.

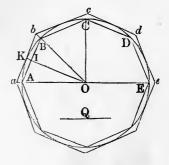
Let P denote the circumscribed, and p the inscribed polygon; then, because they are regular and similar, we shall have (P. IX.),

$$P : p :: \overline{OK}^{\circ}$$
 or $\overline{OA}^{\circ} : \overline{OI}^{\circ};$

hence, by division (B. II., P. VI.), we have,

 $P : P - p :: \overline{OA}^2 : \overline{OA}^2 - \overline{OI}^2$

or,


 $P: P-p:: \overline{OA}^2: \overline{AI}^2$.

Multiplying the terms of the second couplet by 4 (B. II., P. VII), we have,

 $P: P-p:: 4 \overline{OA}^2 : 4\overline{AI}^2;$

whence (B. IV., P. VIII., C.),

P : P - p :: \overline{AE}^2 : \overline{AB}^2 .

But P is less than the square of AE (P. VII., C. 4); hence, P - p is less than the square of AB, and conse quently, less than the square of Q, or than the given surface; which was to be proved.

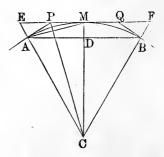
Cor. 1. When the number of sides of the inscribed polygon is increased, the area of the polygon will be increased, and the area of the corresponding circumscribed polygon will be diminished (P. VII., c. 4); and each will constantly approach the circle, which is the *limit* of both.

Cor. 2. When the number of sides of either polygon reaches its limit, which is *infinity*, each polygon will reach its limit, which is the circle: hence, under that supposition, the difference between the two polygons will be less than any assignable quantity, and may be denoted by zero,* and either of the polygons will be represented by the circle.

* Univ. Algebra, Arts. 72, 73. Bourdon, Art. 71.

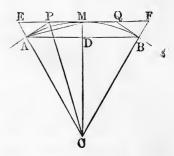
Scholium 1. The circle may be regarded as the limit of the inscribed and circumscribed polygons; that is, it is a figure towards which the polygons may be made to approach nearer than any appreciable quantity, but beyond which they cannot be made to pass.

Scholium 2. The circle may, therefore, be regarded as a regular polygon of an *infinite number of sides*; and because of the principle, that whatever is true of a whole class. is true of every individual of that class, we may affirm that whatever is true of a regular polygon, having an *infinite* number of sides, is true also of the circle.


Scholium 3. When the circle is regarded as a regular polygon, of an infinite number of sides, the circumference is to be regarded as its *perimeter*, and the radius as its *apothem*.

PROPOSITION XI. PROBLEM.

The area of a regular inscribed polygon, and that of a similar circumscribed polygon being given, to find the areas of the regular inscribed and circumscribed polygons having double the number of sides.


Let AB be the side of the given inscribed, and EF that of the given circumscribed polygon. Let C be their common centre, AMB a portion of the circumference of the circle, and M the middle point of the arc AMB.

Draw the chord AM, and at A and B draw the tangents AP and BQ; then will AMbe the side of the inscribed polygon, and PQ the side of the circumscribed polygon of double the number of sides (P. VII.). Draw CE, CP, CM, and CF.

Denote the area of the given inscribed polygon by p, the area of the given circumscribed polygon by P, and the areas of the inscribed and circumscribed polygons having double the number of sides, respectively by p^{h} and P'.

1°. The triangles CAD, CAM, and CEM, are like parts of the polygons to which they belong: hence, they are proportional to the polygons themselves. But CAMis a mean proportional between CAD and CEM (B. IV., P. XXIV., C.); consequently p'is a mean proportional between p and P: hence,

2°. Because the triangles CPM and CPE have the common altitude CM, they are to each other as their bases : hence,

CPM : CPE :: PM : PE;

and because *CP* bisects the angle *ACM*, we have (B. IV., P. XVII.),

PM : *PE* :: *CM* : *CE* :: *CD* : *C.*4; hence (B. II., P. IV.),

CPM : CPE :: CD : CA or CM.

But, the triangles CAD and CAM have the common altitude AD; they are therefore, to each other as their bases: hence,

CAD : CAM :: CD : CM;

BOOK V.

or, because CAD and CAM are to each other as the polygons to which they belong,

hence (B. II., P. IV.), we have, CPM : CPE :: p : p',

and, by composition,

CPM : CPM + CPE or CME :: p : p + p';2P PP" hence (B. II., P. VII.),

2CPM or CMPA : CME :: 2p : p + p'

and CME, are like parts of P' and P, But, CMPA hence, P' : P :: 2p; p + p'; $P = \frac{2p \times P}{p + p';} \cdots \cdots \cdots (2.)$ or,

Scholium. By means of Equation (1), we can find p', and then, by means of Equation (2), we can find P'.

PROBLEM. PROPOSITION XII.

To find the approximate area of a circle whose radius is 1.

The area of an inscribed square is equal to twice the square described on the radius (P. III., S.), which square is the unit of measure, and is denoted by 1. The area of the circumscribed square is 4. Making p equal to 2, and P equal to 4, we have, from Equations (1) and (2) of Proposition XI.,

 $p' = \sqrt{8} = 2.8284271$. . . inscribed octagon; $P' = \frac{16}{2 + \sqrt{8}} = 3.3137085$. . . circumscribed octagon.

Making p equal to 2.8284271, and P equal to 3.3137085, we have, from the same equations,

p' = 3.0614674 . . . inscribed polygon of 16 sides.

P' = 3.1825979 . . . circumscribed polygon of 16 sides.

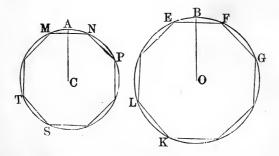
By a continued application of these equations, we find the areas indicated below,

NUMBER OF	SIDES.		INSCRIBED POLYGONS.			CIRCUMSCRIBED POLYGONS.
4		•	2.0000000			4.0000000
8			2.8284271		۰.	3.3137085
16	•		3.0614674			3.1825979
32	•	•	3.1214451			3.1517249
64	-	•	3.1365485		•	3.1441184
128	•	•	3.1403311			3.1422236
256			3.1412772			3.1417504
512	•	•	3.1415138			3.1416321
1024			3.1415729			3.1416025
2048			3.1415877			3.1415951
4096		•	3.1415914			3.1415933
8192			3.1415923			3.1415928
16384	•	•	3.1415925	•		3.1415927

Now, the figures which express the areas of the two last polygons are the same for six decimal places; hence, those areas differ from each other by less than one-millionth of the measuring unit. But the circle differs from either of the polygons by less than they differ from each other. Hence, 1² taken 3.141592 times, expresses the area of a circle whose radius is 1, to less than onemillionth of the measuring unit; and by increasing the number of sides of the polygons, we should obtain an area still nearer the true one. Denote the number of times which the square of the radius is taken, by π , we have,

$\pi \times 1^2 = 3.141592;$

that is, the area of a circle whose radius is 1, is 3.141592, in which the unit of measure is the square on the radius.


Sch. For ordinary accuracy, π is taken equal to 3.1416.

BOOK V.

PROPOSITION XIII. THEOREM.

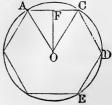
The circumferences of circles are to each other as their radii, and the areas are to each other as the squares of their radii.

Let C and O be the centres of two circles whose radii are CA and OB: then will the circumferences be to each other as their radii, and the areas will be to each other as the squares of their radii.

For, let similar regular polygons MNPST and EFGKL be inscribed in the circles: then will the perimeters of these polygons be to each other as their apothems, and the areas will be to each other as the squares of their apothems, whatever may be the number of their sides (P. IX.).

If the number of sides be made infinite (P. X. S. 2.), the polygons will coincide with the circles, the perimeters with the circumferences, and the apothems with the radii : hence, the circumferences of the circles are to each other as their radii, and the areas are to each other as the squares of the radii ; which was to be proved.

Cor. 1. Diameters of circles are proportional to their radii: hence, the circumferences of circles are proportional to their diameters, and the areas are proportional to the squares of the diameters. Cor. 2. Similar arcs, as AB and DE, are like parts of the circumferences to which they belong, and similar sectors, as ACR and DOE, are like parts of the circles to which they belong : hence, similar arcs are to each other as their radii, and similar sectors are to each other as the squares of their radii.


Scholium. The term *infinite*, used in the proposition, is to be understood in its *technical sense*. When it is proposed to make the number of sides of the polygons *infinite*, by the method indicated in the scholium of Proposition X., it is simply meant to express the condition of things, when the inscribed polygons reach their limits; in which case, the difference between the area of either circle and its inscribed polygon, is less than any appreciable quantity. We have seen (P. XII.), that when the number of sides is 16384, the areas differ by less than the millionth part of the measuring unit. By increasing the number of sides, we approximate still nearer.

PROPOSITION XIV. THEOREM.

The area of a circle is equal to half the product of its circumference and radius.

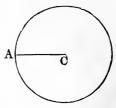
Let O be the centre of a circle, OC its radius, and ACDE its circumference: then will the area of the circle be equal to half the product of the circumference and radius.

For, inscribe in it a regular polygon *ACDE*. Then will the area of this polygon be equal to half the pro-

duct of its perimeter and apothem, whatever may be the number of its sides (P. VIII.).

If the number of sides be made infinite, the polygon will coincide with the circle, the perimeter with the circumference, and the apothem with the radius : hence, the area of the vircle is equal to half the product of its circumference and adius; which was to be proved.

Cor. 1. The area of a sector is equal to half the product of its are and radius.


Cor. 2. The area of a sector is to the area of the circle, as the arc of the sector to the circumference.

PROPOSITION XV. PROBLEM.

To find an expression for the area of any circle in terms of its radius.

Let C be the centre of a circle, and CA its radius. Denote its area by area CA, its radius by R, and the area of a circle whose radius is 1, by $\pi \times 1^2$ (P. XII., S.).

Then, because the areas of circles are to each other as the squares of their radii (P. XIII.), we have,

area CA : $\pi \times 1^2$:: R^2 : 1; area $CA = \pi R^2$.

whence,

That is, the area of any circle is 3.1416 times the square of the radius.

PROPOSITION XVI. PROBLEM.

To find an expression for the circumference of a circle, in terms of its radius, or diameter.

Let C be the centre of a circle, and CA its radius.

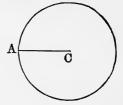
Denote its circumference by circ. CA, its radius by R, and its diameter by D. From the last Proposition, we have,

area
$$CA = \pi R^2$$
;

and, from Proposition XIV., we have,

area $CA = \frac{1}{2}$ circ. $CA \times R$;

hence, $\frac{1}{2}circ, CA \times R = \pi R^2$;


whence, by reduction,

circ.
$$CA = 2\pi R$$
, or, circ. $CA = \pi D$.

That is, the circumference of any circle is equal to 3.1416 times its diameter.

Scholium 1. The abstract number π , equal to 3.1416, denotes the number of times that the diameter of a circle is contained in the circumference, and also the number of times that the square constructed on the radius is contained in the area of the circle (P. XV.). Now, it has been proved by the methods of Higher Mathematics, that the value of π is incommensurable with 1; hence, it is impossible to express, by means of numbers, the exact length of a circumference in terms of the radius, or the exact area in terms of the square described on the radius. We may also infer that it is impossible to square the circle; that is, to construct a square whose area shall be exactly equal to that of the circle.

Scholium 2. Besides the approximate value of π , 3.1416, usually employed, the fractions $\frac{22}{7}$ and $\frac{365}{113}$ are also used to express the ratio of the diameter to the circumference.

BOOK VI.

PLANES AND POLYEDRAL ANGLES.

DEFINITIONS.

1. A straight line is PERPENDICULAR TO A PLANE, when it is perpendicular to every straight line of the plane which passes through its FOOT; that is, through the *point* in which it meets the plane.

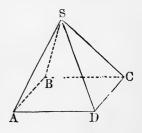
In this case, the plane is also perpendicular to the line.

2. A straight line is PARALLEL TO A PLANE, when it cannot meet the plane, how far soever both may be produced.

In this case, the plane is also parallel to the line.

3. Two PLANES ARE PARALLEL, when they cannot meet, how far soever both may be produced.

4. A DIEDRAL ANGLE is the amount of divergence of two planes.


The line in which the planes meet, is called the *edge of* the angle, and the planes themselves are called *faces of the* angle.

The measure of a diedral angle is the same as that of a plane angle formed by two straight lines, one in each face, and both perpendicular to the edge at the same point. A diedral angle may be *acute*, *obtuse*, or a *right angle*. In the latter case, the faces are *perpendicular* to each other. 5. A POLYEDRAL ANGLE is the amount of divergence of several planes meeting at a common point.

This point is called the *vertex of the angle*; the lines in which the planes meet are called *edges of the angle*, and the portions of the planes lying between the edges are

called faces of the angle. Thus, S is the vertex of the polyedral angle, whose edges are SA, SB, SC, SD, and whose faces are ASB, BSC, CSD, DSA.

A polyedral angle which has but three faces, is called a *triedral* angle.

POSTULATE.

A straight line may be drawn perpendicular to a plane from any point of the plane, or from any point without the plane.

PROPOSITION I. THEOREM.

If a straight line has two of its points in a plane, it will lie wholly in that plane.

For, by definition, a plane is a surface such, that if any two of its points be joined by a straight line, that line will lie wholly in the surface (B. I., D. 8).

Cor. Through any point of a plane, an infinite number of straight lines may be drawn which will lie in the plane. For, if a straight line be drawn from the given point to any other point of the plane, that line will lie wholly in the plane.

Scholium. If any two points of a plane be joined by a straight line, the plane may be turned about that line as an

BOOK VI.

axis, so as to take an infinite number of positions. Hence, we infer that an infinite number of planes may be passed through a given straight line.

PROPOSITION II. THEOREM.

Through three points, not in the same straight line, one plane can be passed, and only one.

Let A, B, and C be the three points: then can one plane be passed through them, and only one.

Join two of the points, as A and B, by the line AB. Through AB let a plane be passed, and let this plane be turned around AB until it contains the point C; in this position it will pass through the three points A, B, and C. If now, the plane be turned

about AB, in either direction, it will no longer contain the point C: hence, one plane can always be passed through three points, and only one; which was to be proved.

Cor. 1. Three points, not in a straight line, determine the position of a plane, because only one plane can be passed through them.

Cor. 2. A straight line and a point without that line, determine the position of a "plane, because only one plane can be passed through them.

Cor. 3. Two straight lines which intersect, determine the position of a plane. For, let AB and AC intersect at A: then will either line, as AB, and one point of the other, as C, determine the position of a plane.

Cor. 4. Two parallel straight lines determine the position of a

plane. For, let AB and CD be parallel. By definition (B. I., D. 16) two parallel lines always lie in the same plane. But either line, as AB, and any point of the other, as F, determine the position of a plane : hence, two parallels determine the position of a plane. A_____B

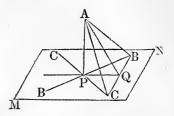
PROPOSITION III. THEOREM.

The intersection of two planes is a straight line.

Let AB and CD be two planes: then will their intersection be a straight line.

For, let E and F be any two points common to the planes; draw the straight line EF. This line having two points in the plane AB, will lie wholly in that plane; and having two points in the plane CD,

will lie wholly in that plane: hence, every point of EF is common to both planes. Furthermore, the planes can have no common point lying without EF, otherwise there would be two planes passing through a straight line and a point lying without it, which is impossible (P. II.; C. 2); hence, the intersection of the two planes is a straight line; which was to be proved.


PROPOSITION IV. THEOREM.

If a straight line is perpendicular to two straight lines at their point of intersection, it is perpendicular to the plane of those lines.

Let MN be the plane of the two lines BB, CC, and let AP be perpendicular to these lines at P: then will

AP be perpendicular to every straight line of the plane which passes through P, and consequently, to the plane itself.

For, through P, draw in the plane MN, any line PQ; through any point of this line, as Q, draw the line BC, so that BQ shall be equal to QC(B. IV., Prob. V.); draw AB, AQ, and AC.

The base BC, of the triangle BPC, being bisected at Q, we have (B. IV., P. XIV.),

$$\overline{PC}^2 + \overline{PB}^2 = 2\overline{PQ}^2 + 2\overline{QC}^2.$$

In like manner, we have, from the triangle ABC,

$$\overline{AC}^2 + \overline{AB}^2 = 2\overline{AQ}^2 + 2\overline{QC}^2.$$

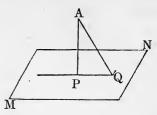
Subtracting the first of these equations from the second, member from member, we have,

$$\overline{AC}^2 - \overline{PC}^2 + \overline{AB}^2 - \overline{PB}^2 = 2\overline{AQ}^2 - 2\overline{PQ}^2.$$

But, from Proposition XI., C. 1, Book IV., we have,

$$\overline{AC}^2 - \overline{PC}^2 = \overline{AP}^2$$
, and $\overline{AB}^2 - \overline{PB}^2 = \overline{AP}^2$;

hence, by substitution,


$$2\overline{AP}^2 = 2\overline{AQ}^2 - 2\overline{PQ}^2;$$

whence,

$$ar{A}\overline{P}^2=\overline{A}\overline{Q}^2-\overline{P}\overline{Q}^2\,; \quad ext{or}, \quad \overline{A}\overline{P}^2+\overline{P}\overline{Q}^2=\overline{A}\overline{Q}^2.$$

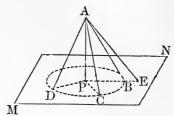
The triangle APQ is, therefore, right-angled at P (B. IV., P. XIII., S.), and consequently, AP is perpendicular to PQ: hence, AP is perpendicular to every line of the plane MN passing through P, and consequently, to the plane itself; which was to be proved.

Cor. 1. Only one perpendicular can be drawn to a plane from a point without the plane. For, suppose two perpendiculars, as AP and AQ, could be drawn from the point A to the plane MN. Draw PQ; then the triangle APQ would have two right angles, APQ and

AQP; which is impossible (B. I., P. XXV., C. 3).

Cor. 2. Only one perpendicular can be drawn to a plane from a point of that plane. For, suppose that two perpendiculars could be drawn to the plane MN, from the point P. Pass a plane through the perpendiculars, and let PQbe its intersection with MN; then we should have two perpendiculars drawn to the same straight line from a point of that line; which is impossible (B. I., P. XIV., C.).

PROPOSITION V. THEOREM.


- If from a point without a plane, a perpendicular be drawn to the plane, and oblique lines be drawn to different points of the plane:
- 1°. The perpendicular will be shorter than any oblique line:
- 2°. Oblique lines which meet the plane at equal distances from the foot of the perpendicular, will be equal:
- 3.° Of two oblique lines which meet the plane at unequal distances from the foot of the perpendicular, the one which meets it at the greater distance will be the longer.

Let A be a point without the plane MN; let APbe perpendicular to the plane; let A.C, AD, be any two oblique lines meeting the plane at equal distances from the foot of the perpendicular; and let AC and AE be any

two oblique lines meeting the plane at unequal distances from the foot of the perpendicular:

1°. AP will be shorter than any oblique line AC.

For, draw PC; then will AP be less than AC (B. I., P. XV.); which was to be proved.

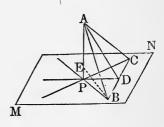
2°. AC and AD will be equal.

For, draw PD; then the right-angled triangles APC, APD, will have the side AP common, and the sides PC, PD, equal: hence, the triangles are equal in all their parts, and consequently, AC and AD will be equal; which was to be proved.

3°. AE will be greater than AC.

For, draw PE, and take PB equal to PC; draw AB: then will AE be greater than AB (B. I., P. XV.); but AB and AC are equal: hence, AE is greater than AC; which was to be proved.

Cor. The equal oblique lines AB, AC, AD, meet the plane MN in the circumference of a circle, whose centre is P, and whose radius is PB: hence, to draw a perpendicular to a given plane MN, from a point A, without that plane, find three points B, C, D, of the plane equally distant from A, and then find the centre P, of the circle whose circumference passes through these points: then will AP be the perpendicular required.


Scholium. The angle ABP is called the inclination of the oblique line AB to the plane MN. The equal oblique lines AB, AC, AD, are all equally inclined to the plane MN. The inclination of AE is less than the inclination of any shorter line AB.

PROPOSITION VI. THEOREM.

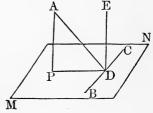
If from the foot of a perpendicular to a plane, a straight line be drawn at right angles to any straight line of that plane, and the point of intersection be joined with any point of the perpendicular, the last line will be perpendicular to the line of the plane.

Let AP be perpendicular to the plane MN, P its foot, BC the given line, and A any point of the perpendicular; draw PD at right angles to BC, and join the point Dwith A: then will AD be perpendicular to BC.

For, lay off DB equal to DC, and draw PB, PC, AB, and AC. Because PD is perpendicular to BC, and DB equal to DC, we have, PB equal to PC (B. I., P. XV.); and because AP is perpendicular to the plane MN, and PB

equal to PC, we have AB equal to AC (P. V.). The line AD has, therefore, two of its points A and D, each equally distant from B and C: hence, it is perpendicular to BC (B. I., P. XVI., S.); which was to be proved.

Cor. 1. The line BC is perpendicular to the plane of the triangle APD; because it is perpendicular to AD and PD, at D. (P. IV.).


Cor. 2. The shortest distance between AP and BC is measured on PD, perpendicular to both. For, draw BEbetween any other points of the lines : then will BE be greater than PB, and PB will be greater than PD : hence, PD is less than BE. Scholium. The lines AP and BC, though not in the same plane, are considered perpendicular to each other. In general, any two straight lines not in the same plane, are considered as making an angle with each other, which angle is equal to that formed by drawing through a given point, two lines respectively parallel to the given lines.

PROPOSITION VII. THEOREM.

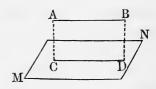
If one of two parallels is perpendicular to a plane, the other one is also perpendicular to the same plane.

Let AP and ED be two parallels, and let AP be perpendicular to the plane MN: then will ED be also perpendicular to the plane MN.

For, pass a plane through the parallels; its intersection with MN will be PD; draw AD, and in the plane MN draw BC perpendicular to PD at D. Now, BD is perpendicular to the plane APDE (P. VI., C.);

the angle BDE is consequently a right angle; but the angle EDP is a right angle, because ED is parallel to AP (B. I., P. XX., C. 1): hence, ED is perpendicular to BD and PD, at their point of intersection, and consequently, to their plane MN (P. IV.); which was to be proved.

Cor. 1. If the lines AP and ED are perpendicular to the plane MN, they are parallel to each other. For, if not, draw through D a line parallel to PA; it will be perpendicular to the plane MN, from what has just been proved; we shall, therefore, have two perpendiculars to the the plane MN, at the same point; which is impossible (P. IV. C. 2).

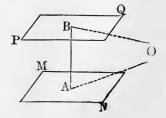

Cor. 2. If two straight lines, A and B, are parallel to a third line C, they are parallel to each other. For, pass a plane perpendicular to C; it will be perpendicular to both A and B: hence, A and B are parallel.

PROPOSITION VIII. THEOREM.

If a straight line is parallel to a line of a plane, it is parallel to that plane.

Let the line AB be parallel to the line CD of the plane MN; then will AB be parallel to the plane MN.

For, through AB and CDpass a plane (P. II., C. 4); CD will be its intersection with the plane MN. Now, since AB lies in this plane, if it can meet the plane MN, it will be at some point of CD; but this is impossible, because AB and CD are parallel: hence, ABto it; which was to be proved.


cannot meet the plane MN, and consequently, it is parallel

PROPOSITION IX. THEOREM.

If two planes are perpendicular to the same straight line, they are parallel to each other.

Let the planes MN and PQbe perpendicular to the line AB, at the points A and B: then will they be parallel to each other.

For, if they are not parallel,

they will meet; and let O be a point common to both. From O draw the lines OA and OB: then, since OAlies in the plane MN, it will be perpendicular to BA at A (D. 1). For a like reason, OB will be perpendicular to AB at B: hence, the triangle OAB will have two right angles, which is impossible; consequently, the planes cannot meet, and are therefore parallel; which was to be proved.

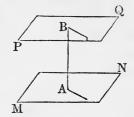
PROPOSITION X. THEOREM.

If a plane intersect two parallel planes, the lincs of intersection will be parallel.

Let the plane EH intersect the parallel planes MN and PQ, in the lines EF and GH: then will EF and GH be parallel.

For, if they are not parallel, they will meet if sufficiently prolonged, because they lie in the same plane; but if the lines meet, the planes MN and PQ, in which they lie, will also meet; but this is impossible, because these planes are parallel : hence,

the lines *EF* and *GH* cannot meet; they are, therefore, parallel; which was to be proved.

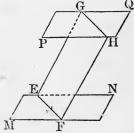

PROPOSITION XI. THEOREM.

If a straight line is perpendicular to one of two parallel planes, it is also perpendicular to the other.

Let MN and PQ be two parallel planes, and let the line AB be perpendicular to PQ then will it also be perpendicular to MN.

For, through AB pass any plane; its intersections with MN and PQ will be parallel (P. X.); but, its intersection with PQ is perpendicular to AB at B (D. 1); hence, its intersection with MN is

also perpendicular to AB at A(B. I., P. XX., C. 1) : hence, AB is perpendicular to every line of the plane MN through A, and is, therefore, perpendicular to that plane; which was to be proved.



PROPOSITION XII. THEOREM.

Parallel straight lines included between parallel planes, are equal.

Let EG and FH be any two parallel lines included between the parallel planes MN and PQ: then will they be equal.

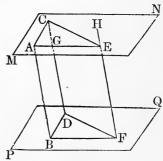
Through the parallels conceive a plane to be passed; it will intersect the plane MN in the line EF, and PQ in the line GII; and these lines will be parallel (Prop. X.). The figure EFIIG is, therefore, a parallelogram : hence, GE and IIF

are equal (B. I., P. XXVIII.); which was to be proved.

Cor. 1. The distance between two parallel planes is measured on a perpendicular to both; but any two perpendiculars between the planes are equal: hence, parallel planes are everywhere equally distant.

Cor. 2. If a straight line GH is parallel to any plane MN, then can a plane be passed through GH parallel to MN: hence, if a straight line is parallel to a plane, all of its points are equally distant from that plane.

PROPOSITION XIII. THEOREM


If two angles, not situated in the same plane, have their sides parallel and lying in the same direction, the angles will be equal and their planes parallel.

Let CAE and DBF be two angles lying in the planes MN and PQ, and let the sides AC and AE be respectively parallel to BD and BF, and lying in the same direction: then will the angles CAE and DBF be equal, and the planes MN and PQ will be parallel.

Take any two points of AC and AE, as C and E, and make BD equal to AC, and BF to AE; draw CE, DF, AB, CD, and EF.

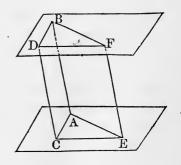
1°. The angles CAE and DBF will be equal.

For, AE and BF being parallel and equal, the figure ABFE is a parallelogram (B. I., P. XXX.); hence, EF is parallel and equal to AB. For

a like reason, CD is parallel and equal to AB: hence, CD and EF are parallel and equal to each other, and consequently, CE and DF are also parallel and equal to each other. The triangles CAE and DBF have, therefore, their corresponding sides equal, and consequently, the corresponding angles CAE and DBF are equal; which was to be proved.

2°. The planes of the angles MN and PQ are parallel. For, if not, pass a plane through A parallel to PQ, and suppose it to cut the lines CD and EF in G and H. Then will the lines GD and HF be equal respect-

ively to AB (P. XII.), and consequently, GD will be equal to CD, and HF to EF; which is impossible: hence, the planes MN and PQ must be parallel; which was to be proved.


Cor. If two parallel planes MN and PQ, are met by two other planes AD and AF, the angles CAE and DBF, formed by their intersections, will be equal.

PROPOSITION XIV. THEOREM.

If three straight lines, not situated in the same plane, are equal and parallel, the triangles formed by joining the extremities of these lines will be equal, and their planes parallel.

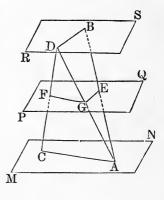
Let AB, CD, and EF be equal parallel lines not in the same plane: then will the triangles ACE and BDFbe equal, and their planes parallel.

For, AB being equal and parallel to EF, the figure ABFEis a parallelogram, and consequently, AE is equal and parallel to BF. For a like reason, AC is equal and parallel to BD: hence, the included angles CAE and DBF are equal and their planes parallel (P. XIII.). Now, the triangles CAE and DBF have two sides and their

mcluded angles equal, each to each: hence, they are equal in all their parts. The triangles are, therefore, equal and their planes parallel; which was to be proved.

BOOK VI.

PROPOSITION XV. THEOREM.


If two straight lines are cut by three parallel planes, they will be divided proportionally.

Let the lines AB and CD be cut by the parallel planes MN, PQ, and RS, in the points A, E, B, and C, F, D; then

AE : EB :: CF : FD.

For, draw the line AD, and suppose it to pierce the plane PQ in G; draw AC, BD, EG, and GF.

The plane ABD intersects the parallel planes RS and PQin the lines BD and EG; consequently, these lines are parallel (P. X.) : hence (B. IV., P. XV.),

AE : EB :: AG : GD.

The plane A CD intersects the parallel planes MN and PQ, in the parallel lines AC and GF: hence,

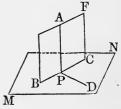
AG : GD :: CF : FD.

Combining these proportions (B. II., P. IV.), we have,

AE : EB :: CF : FD;

which was to be proved.

Cor. 1. If two straight lines are cut by any number of parallel planes, they will be divided proportionally.


Cor. 2. If any number of straight lines are cut by three parallel planes, they will be divided proportionally.

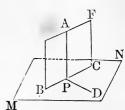
PROPOSITION XVI. THEOREM.

If a straight line is perpendicular to a plane, every plane passed through the line will also be perpendicular to that plane.

Let AP be perpendicular to the plane MN, and let BF be a plane passed through AP: then will BF be perpendicular to MN.

In the plane MN, draw PDperpendicular to BC, the intersection of BF and MN. Since APis perpendicular to MN, it is perpendicular to BC and DP (D. 1); and since AP and DP, in the

planes BF and MN, are perpendicular to the intersection of these planes at the same point, the angle which they form is equal to the angle formed by the planes (D. 4); but this angle is a right angle : hence, BF is perpendicular to MN; which was to be proved.

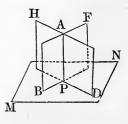

Cor. If three lines AP, BP, and DP, are perpendicular to each other at a common point P, each line will be perpendicular to the plane of the other two, and the three planes will be perpendicular to each other.

PROPOSITION XVII. THEOREM.

If two planes are perpendicular to each other, a straight line drawn in one of them, perpendicular to their intersection, will be perpendicular to the other.

Let the planes BF and MN be perpendicular to each other, and let the line AP, drawn in the plane BF, be perpendicular to the intersection BC; then will AP be perpendicular to the plane MN.

For, in the plane MN, draw PD perpendicular to BC at P. Then because the planes BF and MN are perpendicular to each other, the angle APD will be a right angle : hence, AP is perpendicular to the two lines PDand BC, at their intersection, and consequently, is perpendicular to their plane MN; which was to be proved.

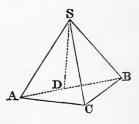

Cor. If the plane BF is perpendicular to the plane MN, and if at a point P of their intersection, we erect a perpendicular to the plane MN, that perpendicular will be in the plane BF. For, if not, draw in the plane BF. PA perpendicular to PC, the common intersection ; APwill be perpendicular to the plane MN, by the theorem; therefore, at the same point P, there are two perpendiculars to the plane MN; which is impossible (P. IV., C. 2).

PROPOSITION XVIII. THEOREM.

If two planes cut each other, and are perpendicular to a third plane, their intersection is also perpendicular to that plane.

Let the planes BF, DH, be perpendicular to MN: then will their intersection AP be perpendicular to MN.

For, at the point P, erect a perpendicular to the plane MN; that perpendicular must be in the plane BF, and also in the plane DH(P. XVII., C.); therefore, it is their common intersection AP: which was to be proved.


PROPOSITION XIX. THEOREM.

The sum of any two of the plane angles formed by the edges of a triedral angle, is greater than the third.

Let SA, SB, and SC, be the edges of a triedral angle: then will the sum of any two of the plane angles formed by them, as ASC and CSB, be greater than the third ASB.

If the plane angle ASB is equal to, or less than, either of the other two, the truth of the proposition is evident. Let us suppose, then, that ASB is greater than either.

In the plane ASB, construct the angle BSD equal to BSC; draw AB in that plane, at pleasure; lay off SC equal to SD, and draw AC and CB. The triangles BSD and BSC have the side SC equal to SD, by construction, the side SB com-

mon, and the included angles BSD and BSC equal, by construction; the triangles are therefore equal in all their parts : hence, BD is equal to BC. But, from Proposition VII., Book I., we have,

BC + CA > BD + DA.

Taking away the equal parts BC and BD, we have,

CA > DA;

hence (B. I., P. IX.), we have,

angle ASC > angle ASD;

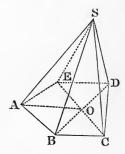
and, adding the equal angles BSC and BSD,

BOOK VI.

angle ASC + angle CSB > angle ASD + angle DSB;

or, angle ASC + angle CSB > angle ASB;

which was to be proved.

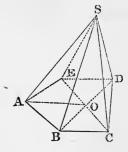

PROPOSITION XX. THEOREM.

The sum of the plane angles formed by the edges of any polyedral angle, is less than four right angles.

Let S be the vertex of any polyedral angle whose edges are SA, SB, SC, SD, and SE; then will the sum of the angles about S be less than four right angles.

For, pass a plane cutting the edges in the points A, B, C, D, and E, and the faces in the lines AB, BC, CD, DE, and EA. From any point within the polygon thus formed, as O, draw the straight lines OA, OB, OC, OD, and OE.

We then have two sets of triangles, one set having a common vertex S, the



other having a common vertex O, and both having common bases AB, BC, CD, DE, EA. Now, in the set which has the common vertex S, the sum of all the angles is equal to the sum of all the plane angles formed by the edges of the polyedral angle whose vertex is S, together with the sum of all the angles at the bases : viz., SAB, SBA, SBC, &c.; and the entire sum is equal to twice as many right angles as there are triangles. In the set whose common vertex is O, the sum of all the angles is equal to the four right angles about O, together with the interior angles of the polygon, and this sum is equal to twice as many right angles as there are triangles. Since

the number of triangles, in each set, is the same, it follows that these sums are equal. But in the triedral angle whose vertex is B, we have (P. XIX.),

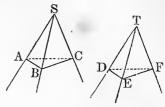
ABS + SBC > ABC;

and the like may be shown at each of the other vertices, C, D, E, A: hence, the sum of the angles at the bases, in the triangles whose common vertex is S, is greater than the sum of the angles at the bases, in the set whose common vertex is O: therefore,

the sum of the vertical angles about S, is less than the sum of the angles about O: that is, less than four right angles; which was to be proved.

Scholium. The above demonstration is made on the supposition that the polyedral angle is convex, that is, that the diedral angles of the consecutive faces are each less than two right angles.

PROPOSITION XXI. THEOREM.


If the plane angles formed by the edges of two triedral angles are equal, each to each, the planes of the equal angles are equally inclined to each other.

Let S and T be the vertices of two triedral angles, and let the angle ASC be equal to DTF, ASB to DTE, and BSC to ETF: then will the planes of the equal angles be equally inclined to each other.

For, take any point of SB, as B, and from it draw in the two faces ASB and CSB, the lines BA and BC, respectively perpendicular to SB: then will the angle ABCmeasure the inclination of these faces. Lay off TE equal

to SB, and from E draw in the faces DTE and FTE, the lines ED and EF, respectively perpendicular to TE. then will the angle DEFmeasure the inclination of these faces. Draw AC and DF.

The right-angled triangles SBA and TED, have the side SB equal to TE, and the angle ASB equal to

DTE; hence, AB is equal to DE, and AS to TD. In like manner, it may be shown that BC is equal to EF, and CS to FT. The triangles ASC and DTF, have the angle ASC equal to DTF, by hypothesis, the side ASequal to DT, and the side CS to FT, from what has just been shown; hence, the triangles are equal in all their parts, and consequently, AC is equal to DF. Now, the triangles ABC and DEF have their sides equal, each to each, and consequently, the corresponding angles are also equal; that is, the angle ABC is equal to DEF: hence, the inclination of the planes ASB and CSB, is equal to the inclination of the planes DTE and FTE. In like manner, it may be shown that the planes of the other equal angles are equally inclined; which was to be proved.

Scholium. If the planes of the equal plane angles are tike placed, the triedral angles are equal in all respects, for they may be placed so as to coincide. If the planes of the equal angles are not similarly placed, the triedral angles are equal by symmetry. In this case, they may be placed so that two of the homologous faces shall coincide, the triedral angles lying on opposite sides of the plane, which is then called a *plane of symmetry*. In this position, for every point on one side of the plane of symmetry, there is a corresponding point on the other side.

BOOK VII.

POLYEDRONS.

DEFINITIONS.

1. A POLYEDRON is a volume bounded by polygons.

The bounding polygons are called *faces* of the polyedron; the lines in which the faces meet, are called *edges* of the polyedron; the points in which the edges meet, are called *vertices* of the polyedron.

2. A PRISM is a polyedron in which two of the faces are polygons equal in all their parts, and having their homologous sides parallel. The other faces are parallelograms (B. I., P. XXX.).

The equal polygons are called *bases* of the prism; one the *upper*, and the other the *lower base*; the parallelograms taken together

make up the *lateral* or *convex surface* of the prism; the lines in which the lateral faces meet, are called *lateral edges* of the prism.

3. The ALTITUDE of a prism is the perpendicular distance between the planes of its bases.

4. A RIGHT PRISM is one whose lateral edges are perpendicular to the planes of the bases.

In this case, any lateral edge is equal to the altitude.

5. An OBLIQUE PRISM is one whose lateral edges are oblique to the planes of the bases.

In this case, any lateral edge is greater than the altitude.

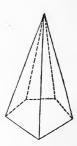
6. Prisms are named from the number of sides of their bases; a triangular prism is one whose bases are triangles; a pentangular prism is one whose bases are pentagons, &c.

7. A PARALLELOPIPEDON is a prism whose bases are parallelograms.

A Right Parallelopipedon is one whose lateral edges are perpendicular to the planes of the bases.

A Rectangular Parallelopipedon is one whose faces are all rectangles.

A *Cube* is a rectangular parallelopipedon whose faces are squares.


8. A PYRAMID is a polyedron bounded by a polygon called the *base*, and by triangles meeting at a common point, called the vertex of the pyramid.

The triangles taken together make up the *lateral or convex surface* of the pyramid; the lines in which the lateral faces meet, are called the lateral edges of the pyramid.

9. Pyramids are named from the number of sides of their bases; a *triangular pyramid* is one whose base is a triangle; a *quadrangular* pyramid is one whose base is a quadrilateral, and so on.

10. The ALTITUDE of a pyramid is the perpendicular distance from the vertex to the plane of its base.

11. A RIGHT PYRAMID is one whose base is a regular polygon, and in which the perpendicular drawn from the vertex to the plane of the base, passes through the centre of the base.

This perpendicular is called the axis of the pyramid.

12 The SLANT HEIGHT of a right pyramid, is the perpendicular distance from the vertex to any side of the base.

13. A TRUNCATED PYRAMID is that portion of a pyramid included between the base and any plane which cuts the pyramid.

When the cutting plane is parallel to the base, the truncated pyramid is called a FRUSTUM OF A PYRAMID, and the inter-

section of the cutting plane with the pyramid, is called the *upper base* of the frustum; the base of the pyramid is called the *lower* base of the frustum.

14. The ALTITUDE of a frustum of a pyramid, is the perpendicular distance between the planes of its bases.

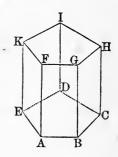
15. The SLANT HEIGHT of a frustum of a right pyramid, is that portion of the slant height of the pyramid which lies between the planes of its upper and lower bases.

16. SIMILAR POLYEDRONS are those which are bounded by the same number of similar polygons, similarly placed.

Parts which are similarly placed, whether faces, edges, or angles, are called *homologous*.

17. A DIAGONAL of a polyedron, is a straight line joining the vertices of two polyedral angles not in the same face. 18. The VOLUME OF A POLYEDRON is its numerical value expressed in terms of some other polyedron as a unit.

The unit generally employed is a cube constructed on the linear unit as an edge.


PROPOSITION I. THEOREM.

The convex surface of a right prism is equal to the perimeter of either base multiplied by the altitude.

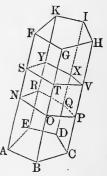
Let ABCDE-K be a right prism: then is its convex surface equal to,

 $(AB + BC + CD + DE + EA) \times AF.$

For, the convex surface is equal to the sum of all the rectangles AG, BH, CI, DK, EF, which compose it. Now, the altitude of each of the rectangles AF, BG, CH, &c., is equal to the altitude of the prism, and the area of each rectangle is equal to its base multiplied by its altitude (B. IV., P. V.): hence, the sum of these rectangles, or the convex surface of the prism, is equal to,

$(AB + BC + CD + DE + EA) \times AF;$

that is, to the perimeter of the base multiplied by the altitude; which was to be proved.


Cor. If two right prisms have the same altitude, their convex surfaces are to each other as the perimeters of their bases.

PROPOSITION II. THEOREM.

In any prism, the sections made by parallel planes are polygons equal in all their parts.

Let the prism AH be intersected by the parallel planes NP, SV: then are the sections NOPQR, STVXY, equal polygons.

For, the sides NO, ST, are parallel, being the intersections of parallel planes with a third plane ABGF; these sides, NO, ST, are included between the parallels NS, OT: hence, NO is equal to ST (B. I., P. XXVIII., C. 2). For like reasons, the sides $\bullet OP$, PQ, QR, &c., of NOPQR, are equal to the sides TV, VX, &c., of STVXY, each to each; and since the equal sides are parallel, each to each, it follows that the

angles NOP, OPQ, &c., of the first section, are equal to the angles STV, TVX, &c., of the second section, each to each (B. VI., P. XIII.): hence, the two sections NOPQR, STVXY, are equal in all their parts; which was to be proved.

Cor. The bases of a prism, and every section of a prism, parallel to the bases, are equal in all their parts.

PROPOSITION III. THEOREM.

If a pyramid be cut by a plane parallel to the base · 1°. The edges and the altitude will be divided proportionally: 2°. The section will be a polygon similar to the base.

Let the pyramid S-ABCDE, whose altitude is SO, be cut by the plane *abcde*, parallel to the base ABCDE. 1°. The edges and altitude will be divided proportionally.
For, conceive a plane to be passed through the vertex S, parallel to the plane of the base; then will the edges and the altitude be cut
by three parallel planes, and consequently they will be divided proportionally (B. VI.,
P. XV., C. 2); which was to be proved.

2°. The section *abcde*, will be similar to the base *ABCDE*. For, *ab* is parallel to *AB*, and *bc* to *BC* (B. VI., P. X.): hence, the angle *abc* is equal to the angle *ABC*. In like manner, it may

be shown that each angle of the polygon *abcde* is equal to the corresponding angle of the base: hence, the two polygons are mutually equiangular.

Again, because ab is parallel to AB, we have,

ab : AB :: sb : SB;

and, because bc is parallel to BC, we have,

bc : BC :: sb : SB;

hence (B. II., P. IV.), we have,

ab : AB :: bc : BC.

In like manner, it may be shown that all the sides of *abcde* are proportional to the corresponding sides of the polygon ABCDE: hence, the section *abcde* is similar to the base ABCDE (B. IV., D. 1); which was to be proved.

Cor. 1. If two pyramids S-ABCDE, and S-XY2, having a common vertex S, and their bases in the same plane, be cut by a plane *abc*, parallel to the plane of their bases, the sections will be to each other as the bases.

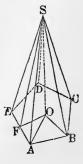
B

For, the polygons *abcd* and ABCD, being similar, are to each other as the squares of their homologous sides *ab* and AB (B. IV., P. XXVII); but,

 $\overline{ab^{4}} : \overline{AB^{2}} :: \overline{Sa^{2}} : \overline{SA^{2}} :: \overline{So^{2}} : \overline{SO^{2}};$ hence (B. II., P. IV.), we have, $abcde : ABCDE :: \overline{So^{2}} : \overline{SO^{2}}.$ In like manner, we have, $xyz : XYZ :: \overline{So^{2}} : \overline{SO^{2}};$ hence, $\overline{ABCDE} :: \overline{So^{2}} : \overline{SO^{2}};$

abcde : ABCDE :: xyz : XYZ.

Cor. 2. If the bases are equal, any sections at equal distances from the bases will be equal.


Cor. 3. The area of any section parallel to the base, is proportional to the square of its distance from the vertex.

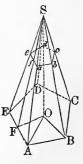
PROPOSITION IV. THEOREM.

The convex surface of a right pyramid is equal to the perimeter of its base multiplied by half the slant height.

Let S be the vertex, ABCDE the base, and SF, perpendicular to EA, the slant height of a right pyramid: then will the convex surface be equal to,

 $(AB + BC + CD + DE + EA) \times \frac{1}{2}SF.$ Draw SO perpendicular to the plane of the base.

From the definition of a right pyramid, the point O is the centre of the base (D. 11): hence, the lateral edges, SA, SB, &c., are all equal (B. VI., P. V.); but the sides of the base are all equal, being sides of a regular polygon: hence, the lateral faces are all equal, and consequently their altitudes are all equal, each being equal to the slant height of the pyramid.

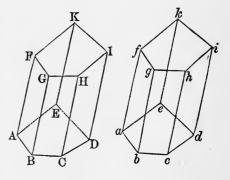

Now, the area of any lateral face, as SEA, is equal to its base EA, multiplied by half its altitude SF: hence, the sum of the areas of the lateral faces, or the convex surface of the pyramid, is equal to,

 $(AB + BC + CD + DE + EA) \times \frac{1}{2}SF;$

which was to be proved.

Scholium. The convex surface of a frustum of a right pyramid is equal to half the sum of the perimeters of its upper and lower bases, multiplied by the slant height.

Let ABCDE-e be a frustum of a right pyramid, whose vertex is S: then will the section *abcde* be similar to the base ABCDE, and their homologous sides will be parallel, (P. III.). Any lateral face of the frustum, as AEea, is a trapezoid, whose altitude is equal to Ff, the slant height of the frustum; hence, its area is equal to $\frac{1}{2}(EA + ea) \times Ff$ (B. IV., P. VII.). But the area of the con-


vex surface of the frustum is equal to the sum of the areas of its lateral faces; it is, therefore, equal to the half sum of the perimeters of its upper and lower bases, multiplied by the slant height.

PROPOSITION V. THEOREM.

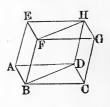
If the three faces which include a triedral angle of a prism are equal in all their parts to the three faces which include a triedral angle of a second prism, each to each, and are like placed, the two prisms are equal in all their parts.

Let B and b be the vertices of two triedral angles, included by faces respectively equal to each other, and similarly placed: then will the prism ABCDE-K be equal to the prism *abcde-k*, in all of its parts.

For, place the base abcde upon the equal base ABCDE, so that they shall coincide; then because the triedral angles whose vertices are b and B, are equal, the parallelogram bh will coincide with BH, and the parallelogram bf with BF; hence, the two

sides fg and gh, of one upper base, will coincide with the homologous sides of the other upper base; and because the upper bases are equal in all their parts, they must coincide throughout; consequently, each of the lateral faces of one prism will coincide with the corresponding lateral face of the other prism: the prisms, therefore, coincide throughout, and are therefore equal in all their parts; which was to be proved.

Cor. If two right prisms have their bases equal in all their parts, and have also equal altitudes, the prisms themselves will be equal in all their parts. For, the faces which include any triedral angle of the one, will be equal in all their parts to the faces which include the corresponding triedral angle of the other, each to each, and they will be similarly placed.


BOOK VII.

PROPOSITION VI. THEOREM.

In any parallelopipedon, the opposite faces are equal in all their parts, each to each, and their planes are parallel.

Let ABCD-H be a parallelopipedon : then will its opposite faces be equal and their planes will be parallel.

For, the bases, ABCD and EFGHare equal, and their planes parallel by definition (D. 7). The opposite faces AEHD and BFGC, have the sides AEand BF parallel, because they are opposite sides of the parallelogram BE; and the sides EH and FG parallel,

because they are opposite sides of the parallelogram EG; and consequently, the angles AEH and BFG are equal (B. VI., P. XIII.). But the side AE is equal to BF, and the side EH to FG; hence, the faces AEHD and BFGC are equal; and because AE is parallel to BF, and EH to FG, the planes of the faces are parallel (B. VI., P. XIII.). In like manner, it may be shown that the parallelograms ABFE and DCGH, are equal and their planes parallel : hence, the opposite faces are equal, each to each, and their planes are parallel; which was to be proved.

Cor. 1. Any two opposite faces of a parallelopipedon may be taken as bases.

Cor. 2. In a rectangular parallelopipedon, the square of either of the diagonals is equal to the sum of the squares of the three edges which meet at the same vertex.

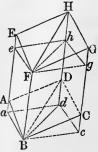
For, let FD be either of the diagonals, and draw FH.

Then, in the right-angled triangle FHD, we have,

$\overline{FD}^2 = \overline{DH}^2 + \overline{FH}^2.$

But DH is equal to FB, and \overline{FH}^2 is equal to \overline{FA}^2 plus \overline{AH}^2 or \overline{FC}^2 : hence,

 $\overline{FD}^2 = \overline{FB}^2 + \overline{FA}^2 + \overline{FC}^2.$ Cor. 3. A parallelopipedon may be constructed on three straight lines AB, AD, and AE, intersecting in a common point A, and not lying in the same plane. For, pass through the extremity of each line, a plane parallel to the plane of


PROPOSITION VII. THEOREM.

the other two; then will these planes, together with the planes of the given lines, be the faces of a parallelopipedon.

If a plane be passed through the diagonally opposite edges of a parallelopipedon, it will divide the parallelopipedon into two equal triangular prisms.

Let ABCD-H be a parallelopipedon, and let a plane be passed through the edges BF and DH · then will the prisms ABD-H and BCD-H be equal H in volume.

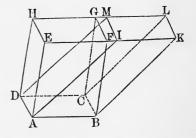
For, through the vertices F and Blet planes be passed perpendicular to FB, the former cutting the other lateral edges in the points e, h, g, and the latter cutting those edges produced, in the points a, d, and c. The sections Fehg and Bade will be parallelograms,

because their opposite sides are parallel, each to each (B. ∇I ., P. X.); they will also be equal (P. II.): hence, the polyedron *Badc-g* is a right prism (D. 2, 4), as are also the polyedrons *Bad-h* and *Bcd-h*.

Place the triangle Feh upon Bad, so that F shall coincide with B, e with a, and h with d; then, because eE, hH, are perpendicular to the plane Feh, and aA, dD, to the plane Bad, the line eE will take the direction aA, and the line hH the direction dD. The lines AE and ae are equal, because each is equal to BF(B. I., P. XXVIII.). If we take away from the line aEthe part ae, there will remain the part eE; and if from the same line, we take away the part AE, there will remain the part Aa: hence, eE and aA are equal (A. 3); for a like reason hH is equal to dD: hence, the point E will coincide with A, and the point H with D, and consequently, the polyedrons Feh-H and Bad-D will coincide throughout, and are therefore equal.

If from the polyedron Bad-H, we take away the part Bad-D, there will remain the prism BAD-H; and if from the same polyedron we take away the part *Feh-H*, there will remain the prism Bad-h: hence, these prisms are equal in volume. In like manner, it may be shown that the prisms BCD-H and Bcd-h are equal in volume.

The prisms Bad-h, and Bcd-h, have equal bases, because these bases are halves of equal parallelograms (B. I., P. XXVIII., C. 1); they have also equal altitudes; they are therefore equal (P. V., C.): hence, the prisms BAD-H and BCD-H are equal (A. 1); which was to be proved.


Cor. Any triangular prism ABD-H, is equal to half of the parallelopipedon AG, which has the same triedral angle A, and the same edges AB, AD, and AE.

PROPOSITION VIII. THEOREM.

If two parallelopipedons have a common lower base, and their upper bases between the same parallels, they are equal in volume.

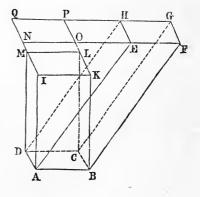
Let the parallelopipedons AG and AL have the common lower base ABCD, and their upper bases EFGHand IKLM, between the same parallels EK and IIL: then will they be equal in volume.

For, the lines EF and IK are equal, because each is equal to AB; hence, the sum of EF and FI, or EI, is equal to the sum of FI and IK, or FK. In the triangular prisms AEI-M and

BFK-L, we have the line AE equal and parallel to *BF*, and *EI* equal to *FK*; hence, the face AEI is equal to *BFK*. In the faces *EIMH* and *FKLG*, we have, HE=.GF, EI=FK and HEI=GFK: hence, the two faces are equal (Bk. I. P. xxviii. C. 3): the faces *AEHD* and *BFGC* are also equal (P. VI.): hence, the prisms are equal (P. V.)

If from the polyedron ABKE-H, we take away the prism BFK-L, there will remain the parallelopipedon AG; and if from the same polyedron we take away the prism AEI-M, there will remain the parallelopipedon AL: hence, these parallelopipedons are equal in volume (A. 3); which was to be proved.

BOOK VII.


PROPOSITION IX. THEOREM.

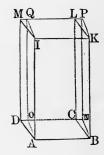
If two parallelopipedons have a common lower base and the same altitude, they will be equal in volume.

Let the parallelopipedons AG and AL have the common lower base ABCD and the same altitude: then will they be equal in volume.

Because they have the same altitude, their upper bases will lie in the same plane.

Let the sides IM and KLbe prolonged, and also the sides FE and GH; these prolongations will form a parallelogram OQ, which will be equal to the common base of the given parallelopipedons, because its sides are respectively parallel and equal to the corresponding sides of that base.

Now, if a third parallelopipedon be constructed, having for its lower base the parallelogram ABCD, and for its upper base NOPQ, this third parallelopipedon will be equal in volume to the parallelopipedon AG, since they have the same lower base, and their upper bases between the same parallels, QG, NF (P. VIII.). For a like reason, this third parallelopipedon will also be equal in volume to the parallelopipedon AL: hence, the two parallelopipedons AGAL, are equal in volume; which was to be proved.


Cor. Any oblique parallelopipedon may be changed into a right parallelopipedon having the same base and the same altitude; and they will be equal in volume.

PROPOSITION X. PROBLEM.

To construct a rectangular parallelopipedon which shall be equal in volume to a right parallelopipedon whose base is any parallelogram.

Let ABCD-M be a right parallelopipedon, having for its base the parallelogram ABCD.

Through the edges AI and BK pass the planes AQ and BP, respectively perpendicular to the plane AK, the former meeting the face DL in OQ, and the latter meeting that face produced in NP: then will the polyedron AP be a rectangular parallelopipedon equal to the given parallelopipedon. It will be a rectangular parallelopipedon, because all of its

faces are rectangles, and it will be equal to the given parallelopipedon, because the two may be regarded as having the common base AK (P. VI., C. 1), and an equal altitude AO (P. IX.).

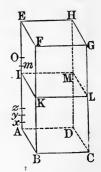
Cor. 1. Since any oblique parallelopipedon may be changed into a right parallelopipedon, having the same base and altitude, (P. IX., Cor.); it follows, that any oblique parallelopipedon may be changed into a rectangular parallelopipedon, having an equal base, an equal altitude, and an equal volume.

Cor. 2. An oblique parallelopipedon is equal in volume to a rectangular parallelopipedon, having an equal base and an equal altitude.

Cor. 3. Any two parallelopipedons are equal in volume when they have equal bases and equal altitudes.

BOOK VII.

PROPOSITION XI. THEOREM.


Two rectangular parallelopipedons having a common lower base, are to each other as their altitudes.

Let the parallelopipedons AG and AL have the common lower base ABCD: then will they be to each other as their altitudes AE and AI.

1°. Let the altitudes be commensurable, and suppose, for example, that AE is to AI, as 15 is to 8.

Conceive AE to be divided into 15 equal parts, of which AI will contain 8; through the points of division let planes be passed parallel to ABCD. These planes will divide the parallelopipedon AG into 15 parallelopipedons, which have equal bases (P. II. C.) and equal altitudes; hence, they are equal (P. X., Cor. 3).

Now, AG contains 15, and AL 8 of these equal parallelopipedons; hence, AG is to AL, as 15 is to 8, or as AE is to AI. In like manner, it may be shown that AG is to AL, as AEis to AI, when the altitudes are to each other as any other whole numbers.

2°. Let the altitudes be incommensur-

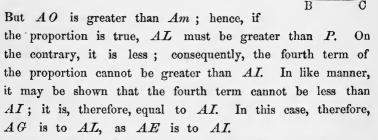
Now, if AG is not to AL, as AE is to AI, let us suppose that,

AG : AL :: AE : AO,

in which AO is greater than AI.

Divide AE into equal parts, such that each shall be less than OI; there will be at least one point of division

m, between O and I. Let P denote the parallelopipedon, whose base is ABCD, and altitude Am; since the altitudes AE, Am, are to each other as two whole numbers, we have,


AG : P :: AE : Am.

But, by hypothesis, we have,

AG : AL :: AE : AO;

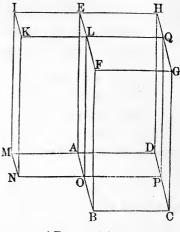
therefore (B. II., P. IV., C.),

AL : P :: AO : Am.

K

Hence, in all cases, the given parallelopipedons are to each other as their altitudes; which was to be proved.

Sch. Any two rectangular parallelopipedons whose bases are equal in all their parts, are to each other as their altitudes.


PROPOSITION XII. THEOREM.

Two rectangular parallelopipedons having equal altitudes, are to each other as their bases.

Let the rectangular parallelopipedons AG and AK have the same altitude AE: then will they be to each other as their bases.

For, place them as shown in the figure, and produce the plane of the face NL, until it intersects the plane of the face IIC, in PQ; we shall thus form a third rectangular parallelopipedon AQ.

The parallelopipedons AGand AQ have a common base AH; they are therefore to each other as their altitudes AB and AO(P. XI.): hence, we have the proportion,

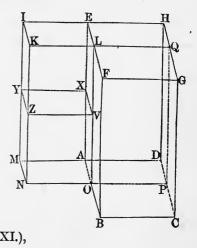
vol. AG : vol. AQ :: AB : AO.

The parallelopipedons AQ and AK have the common base AL; they are therefore to each other as their altitudes AD and AM: hence,

vol. AQ : vol. AK :: AD : AM.

Multiplying these proportions, term by term (B. II., P. XII.), and omitting the common factor, vol. AQ, we have,

vol. AG : vol. AK :: $AB \times AD$: $AO \times AM$.


But $AB \times AD$ is equal to the area of the base ABCD: and $AO \times AM$ is equal to the area of the base AMNOhence, two rectangular parallelopipedons having equal alti tudes, are to each other as their bases; which was to be proved.

PROPOSITION XIII. THEOREM.

Any two rectangular parallelopipedons are to each other as the products of their bases and altitudes; that is, as the products of their three dimensions.

Let AZ and AG be any two rectangular parallelopipedons: then will they be to each other as the products of their three dimensions.

For, place them as in the figure, and produce the faces necessary to complete the rectangular parallelopipedon M. AK. The parallelopipedons AZ and AK have a common base AN; hence (P. XI.),

vol. AZ : vol. AK :: AX : AE.

The parallelopipedons AK and AG have a common altitude AE; hence (P. XII.),

vol. AK : vol. AG :: AMNO : ABCD.

Multiplying these proportions, term by term, and omitting the common factor, vol. AK, we have,

vol. AZ : vol. AG :: $AMNO \times AX$: $ABCD \times AE$; or, since AMNO is equal to $AM \times AO$, and ABCD to $AB \times AD$, vol. AZ : vol. AG :: $AM \times AO \times AX$: $AB \times AD \times AE$;

vol. AZ : vol. AG :: $AM \times AO \times AX$: $AB \times AD \times AE$; which was to be proved. Cor. 1. If we make the three edges AM, AO, and AX, each equal to the linear unit, the parallelopipedon AZ will be a cube constructed on that unit, as an edge; and consequently, it will be the unit of volume. Under this supposition, the last proportion becomes,

1 : vol. AG :: 1 : $AB \times AD \times AE$; whence, vol. $AG = AB \times AD \times AE$.

Hence, the volume of any rectangular parallelopipedon is equal to the product of its three dimensions; that is, the number of times which it contains the unit of volume, is equal to the number of linear units in its length, by the number of linear units in its breadth, by the number of linear units in its height.

Cor. 2. The volume of a rectangular parallelopipedon is equal to the product of its base and altitude; that is, the number of times which it contains the unit of volume, is equal to the number of superficial units in its base, multiplied by the number of linear units in its altitude.

Cor. 3. The volume of any parallelopipedon is equal to the product of its base and altitude (P. X., C. 2).

PROPOSITION XIV. THEOREM.

The volume of any prism is equal to the product of its base and altitude.

Let ABCDE-K be any prism : then is its volume equal to the product of its base and altitude.

For, through any lateral edge, as AF, and the other lateral edges not in the same faces, pass the planes AH, AI, dividing the prism into triangular prisms. These prisms will all have a common altitude equal to that of the given prism.

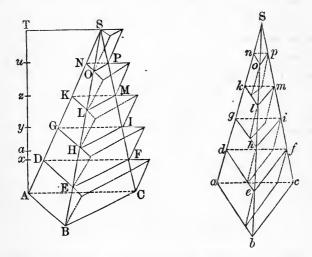
11

B

Now, the volume of any one of the triangular prisms, as ABC-H, is equal to half that of a parallelopipedon constructed on the edges BA, BC, BG (P. VII., C.); but the volume of this parallelopipedon is equal to the product of its K base and altitude (P. XIII., C. 3); and F because the base of the prism is half D that of the parallelopipedon, the volume E of the prism is also equal to the product of its base and altitude : hence, the sum of the triangular prisms, which

make up the given prism, is equal to the sum of their bases, which make up the base of the given prism, into their common altitude; which was to be proved.

Cor. Any two prisms are to each other as the products of their bases and altitudes. Prisms having equal bases are to each other as their altitudes. Prisms having equal altitudes are to each other as their bases.


PROPOSITION XV. THEOREM.

Two triangular pyramids having equal bases and equal altitudes, are equal in volume.

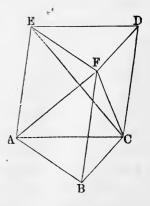
Let S-ABC, and S-abc, be two pyramids having their equal bases ABC and abc in the same plane, and let AT' be their common altitude : then will they be equal in volume.

For, if they are not equal in volume, suppose one of them, as S-ABC, to be the greater, and let their difference be equal to a prism whose base is ABC, and whose altitude is Aa.

Divide the altitude AT into equal parts Ax, xy, &c., each of which is less than Aa, and let k denote one of these parts; through the points of division pass planes parallel to the plane of the bases; the sections of the two pyramids, by each of these planes, will be equal, namely, DEF to def, GHI to ghi, &c. (P. III., C. 2).

On the triangles ABC, DEF, &c., as lower bases, construct exterior prisms whose lateral edges shall be parallel to AS, and whose altitudes shall be equal to k: and on the triangles def, ghi, &c., taken as upper bases, construct interior prisms, whose lateral edges shall be parallel to Sa, and whose altitudes shall be equal to k. It is evident that the sum of the exterior prisms is greater than the pyramid S-ABC, and also that the sum of the interior prisms is less than the pyramid S-abc: hence, the difference between the sum of the exterior and the sum of the interior prisms, is greater than the difference between the two pyramids.

Now, beginning at the bases, the second exterior prism EFD-G, is equal to the first interior prism $efd \cdot a$,


because they have the same altitude k, and their bases EFD. efd, are equal: for a like reason, the third exterior prism HIG-K, and the second interior prism hig-d, are equal, and so on to the last in each set : hence, each of the exterior prisms, excepting the first BCA-D, has an equal corresponding interior prism; the prism BCA-D, is, therefore, the difference between the sum of all the exterior prisms, and the sum of all the interior prisms. But the difference between these two sets of prisms is greater than that between the two pyramids, which latter difference was supposed to be equal to a prism whose base is BCA, and whose altitude is equal to Aa, greater than k; consequently, the prism BCA-D is greater than a prism having the same base and a greater altitude, which is impossible. hence, the supposed inequality between the two pyramids cannot exist ; they are, therefore, equal in volume ; which was to be proved.

PROPOSITION XVI. THEOREM.

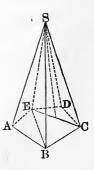
Any triangular prism may be divided into three triangular pyramids, equal to each other in volume.

Let ABC-D be a triangular prism: then can it be divided into three equal triangular pyramids.

For, through the edge AC, pass the plane ACF, and through the edge EF pass the plane EFC. The pyramids ACE-F and ECD-F, have their bases ACEand ECD equal, because they are halves of the same parallelogram ACDE; and they have a common

altitude, because their bases are in the same plane AD, and their vertices at the same point F; hence, they are equal in volume (P. XV.). The pyramids ABC-F and DEF-C, have their bases ABC and DEF, equal because they are the bases of the given prism, and their altitudes are equal because each is equal to the altitude of the prism; they are, therefore, equal in volume: hence, the three pyramids into which the prism is divided, are all equal in volume; which was to be proved.

Cor. 1. A triangular pyramid is one-third of a prism, having an equal base and an equal altitude.


Cor. 2. The volume of a triangular pyramid is equal to one-third of the product of its base and altitude.

PROPOSITION XVII. THEOREM.

The volume of any pyramid is equal to one-third of the product of its base and altitude.

Let S-ABCDE, be any pyramid: then is its volume equal to one-third of the product of its base and altitude.

For, through any lateral edge, as SE, pass the planes SEB, SEC, dividing the pyramid into triangular pyramids. The altitudes of these pyramids will be equal to each other, because each is equal to that of the given pyramid. Now, the volume of each triangular pyramid is equal to onethird of the product of its base and altitude (P. XVI., C. 2); hence, the sum of the volumes of the triangular pyramids, is

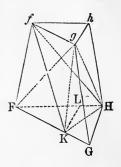
equal to one-third of the product of the sum of their bases

by their common altitude. But the sum of the triangular pyramids is equal to the given pyramid, and the sum of their bases is equal to the base of the given pyramid: hence, the volume of the given pyramid is equal to onethird of the product of its base and altitude; which was to be proved.

Cor. 1. The volume of a pyramid is equal to one-third of the volume of a prism having an equal base and an equal altitude.

Cor. 2. Any two pyramids are to each other as the products of their bases and altitudes. Pyramids having equal bases are to each other as their altitudes. Pyramids having equal altitudes are to each other as their bases.

Scholium. The volume of a polyedron may be found by dividing it into triangular pyramids, and computing their volumes separately. The sum of these volumes will be equal to the volume of the polyedron.


PROPOSITION XVIII. THEOREM.

The volume of a frustum of any triangular pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between the two bases.

Let FGH-h be a flustum of any triangular pyramid: then will its volume be equal to that of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base FGH, the upper base fgh, and a mean proportional between their bases.

For, through the edge FH, pass the plane FHg, and through the edge fg, pass the plane fgH, dividing the

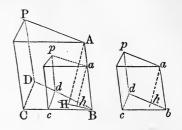
frustum into three pyramids. The pyramid g-FGH, has for its base the lower base FGH of the frustum, and its alitude is equal to that of the frustum, because its vertex g, is in the plane of he upper base. The pyramid H-fgh, has for its base the upper base fgh of the frustum, and its altitude is equal to that of the frustum, because its vertex lies in the plane of the lower base.

The remaining pyramid may be regarded as having the triangle FfH for its base, and the point g for its vertex. From g, draw gK parallel to fF, and draw also KH and Kf. Then will the pyramids K-FfH and g-FfH, be equal; for they have a common base, and their altitudes are equal, because their vertices K and g are in a line parallel to the base (B. VI., P. XII., C. 2).

Now, the pyramid K-FfII may be regarded as having FKH for its base and f for its vertex. From K, draw KL parallel to GH; it will be parallel to gh: then willthe triangle FKL be equal to fgh, for the side FK is equal to fg, the angle F to the angle f, and the angle Kto the angle g. But, FKH is a mean proportional between FKL and FGH (B. IV., P. XXIV., C.), or between fgh and FGH. The pyramid f-FKH, has, therefore, for its base a mean proportional between the upper and lower bases of the frustum, and its altitude is equal to that of the frustum; but the pyramid f-FKH is equal in volume to the pyramid g-FfH: hence, the volume of the given frustum is equal to that of three pyramids whose common altitude is equal to that of the frustum, and whose bases are the upper base, the lower base, and a mean proportional between them; which was to be proved.

Cor. The volume of the frustum of any pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between them.

For, let $ABCDE-\epsilon$ be a frustum of any pyramid. Through any lateral edge, as eE, pass the planes eEBb, eECc, dividing it into triangular frustums. Now, the sum of the volumes of the triangular frustums is equal to the sum of three sets of pyramids, whose common altitude is that of the given frustum. The bases of the first set make up the lower base of the given


frustum, the bases of the second set make up the upper base of the given frustum, and the bases of the third set make up a mean proportional between the upper and lower base of the given frustum: hence, the sum of the volumes of the first set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is the lower base of of the frustum; the sum of the volumes of the second set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is the lower base of the frustum, and whose base is the upper base of the frustum; and, the sum of the third set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is a mean proportional between the two bases.

PROPOSITION XIX. THEOREM.

Similar triangular prisms are to each other as the cubes of their homologous edges.

Let CBD-P, cbd-p, be two similar triangular prisms, and let BC, bc, be any two homologous edges: then will the prism CBD-P be to the prism cbd-p, as \overline{BC}^3 to \overline{bc}^3 For, the homologous angles B and b are equal, and the faces which bound them are similar (D. 16): hence,

these triedral angles may be applied, one to the other, so that the angle cbd will coincide with CBD, the edge bawith BA. In this case, the prism cbd-p will take the position Bcd-p. From Adraw AH perpendicular to

the common base of the prisms: then will the plane BAHbe perpendicular to the plane of the common base (B. VI., P. XVI.). From *a*, in the plane BAH, draw *ah* perpendicular to BH: then will *ah* also be perpendicular to the base BDC (B. VI., P. XVII.); and AH, *ah*, will be the altitudes of the two prisms.

Since the bases *CBD*, *cbd*, are similar, we have (B. IV., P. XXV.),

base CBD : base cbd :: \overline{CB}^2 : \overline{cb}^2 .

Now, because of the similar triangles ABH, aBh, and of the similar parallelograms AC, ac, we have,

AH : ah :: CB : cb;

hence, multiplying these proportions term by term, we have,

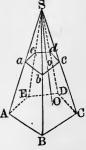
base $CBD \times AH$: base $cbd \times ah$:: \overline{CB}^3 : \overline{cb}^3 .

But, base $CBD \times AH$ is equal to the volume of the prism CDB-A, and base $cbd \times ah$ is equal to the volume of the prism cbd-p; hence,

prism CDB-P : prism cbd-p :: \overline{CB}^3 : \overline{cb}^3 ; which was to be proved.

Cor. 1. Any two similar prisms are to each other as the cubes of their homologous edges.

For, since the prisms are similar, their bases are similar polygons (D. 16); and these similar polygons may each be divided into the same number of similar triangles, similarly placed (B. IV., P. XXVI.); therefore, each prism may be divided into the same number of triangular prisms, having their faces similar and like placed; consequently, the triangular prisms are similar (D. 16). But these triangular prisms are to each other as the cubes of their homologous edges, and being like parts of the polygonal prisms, the polygonal prisms themselves are to each other as the cubes of their homologous edges.

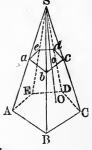

Cor. 2. Similar prisms are to each other as the cubes of their altitudes, or as the cubes of any other homologous lines.

PROPOSITION XX. THEOREM.

Similar pyramids are to each other as the cubes of their homologous edges.

Let S-ABCDE, and S-abcde, be two similar pyramids, so placed that their homologous angles at the vertex shall coincide, and let AB and ab be any two homologous edges: then will the pyramids be to each other as the cubes of AB and ab.

For, the face SAB, being similar to Sab, the edge AB is parallel to the edge ab, and the face SBC being similar to Sbc, the edge BC is parallel to bc; hence, the planes of the bases are parallel (B. VI., P. XIII.).



BOOK VII.

Draw SO perpendicular to the base ABCDE; it will also be perpendicular to the base *abcde*. Let it pierce that plane at the point o: then will SO be to So, as SA is to Sa (P. III.), **S** or as AB is to ab; hence,

 $\frac{1}{1}SO$: $\frac{1}{1}So$:: AB : ab.

But the bases being similar polygons, we have (B. IV., P. XXVII.),

base ABCDE : base abcde :: $\overline{AB^2}$: $\overline{ab^2}$.

Multiplying these proportions, term by term, we have,

base $ABCDE \times \frac{1}{3}SO$: base abcde $\times \frac{1}{3}So$:: \overline{AB}^3 : \overline{ab}^3 .

But, base $ABCDE \times \frac{1}{3}SO$ is equal to the volume of the pyramid S-ABCDE, and base abcde $\times \frac{1}{3}So$ is equal to the volume of the pyramid S-abcde; hence,

pyramid S-ABCDE : pyramid S-abcde :: $\overline{AB^3} \cdot \overline{ab^3}$;

which was to be proved.

Cor. Similar pyramids are to each other as the cubes of their altitudes, or as the cubes of any other homologous lines.

GENERAL FORMULAS.

If we denote the volume of any prism by V, its base by B, and its altitude by H, we shall have (P. XIV.),

$$V = B \times H \cdot \cdot \cdot \cdot \cdot \cdot (1.)$$

If we denote the volume of any pyramid by V, its base by B, and its altitude by H, we have (P. XVII.),

$$V = \frac{1}{3}B \times H \cdot \cdot \cdot \cdot \cdot \cdot (2.)$$

If we denote the volume of the frustum of any pyramid by V, its lower base by B, its upper base by b, and its altitude by H, we shall have (P. XVIII., C.),

$$V = \frac{1}{3}(B + b + \sqrt{B \times b}) \times H \cdot \cdot (3.)$$

REGULAR POLYEDRONS.

A REGULAR POLYEDRON is one whose faces are all equal regular polygons, and whose polyedral angles are equal, each to each.

There are five regular polyedrons, namely :

1. The TETRAEDRON, or *regular pyramid*—a polyedron bounded by four equal equilateral triangles.

2. The HEXAEDRON, or cube-a polyedron bounded by six equal squares.

3. The OCTAEDRON—a polyedron bounded by eight equal equilateral triangles.

4. The DODECAEDRON—a polyedron bounded by twelve equal and regular pentagons.

5. The ICOSAEDRON-a polyedron bounded by twenty equal equilateral triangles.

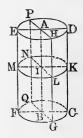
In the Tetraedron, the triangles are grouped about the polyedral angles in sets of three, in the Octaedron they are grouped in sets of four, and in the Icosaedron they are grouped in sets of five. Now, a greater number of equilateral triangles cannot be grouped so as to form a salient polyedral angle; for, if they could, the sum of the plane angles formed by the edges would be equal to, or greater than, four right angles, which is impossible (B. VI., P. XX.).

In the Hexaedron, the squares are grouped about the polyedral angles in sets of three. Now, a greater number of squares cannot be grouped so as to form a salient polyedral angle; for the same reason as before.

In the Dodecaedron, the regular pentagons are grouped about the polyedral angles in sets of three, and for the same reason as before, they cannot be grouped in any greater number, so as to form a salient polyedral angle.

Furthermore, no other regular polygons can be grouped so as to form a salient polyedral angle; therefore, *Only five* regular polyedrons can be formed.

BOOK VIII.


THE CYLINDER, THE CONE, AND THE SPHERE.

DEFINITIONS.

1. A CYLINDER is a volume which may be generated by a rectangle revolving about one of its sides as an axis.

•Thus, if the rectangle ABCD be turned about the side AB, as an axis, it will generate the cylinder FGCQ-P.

The fixed line AB is called the axis of the cylinder; the curved surface generated by the side CD, opposite the axis, is called the convex surface of the cylinder; the equal circles FGCQ, and EHDP, generated by the remaining sides BC and AD, are called bases of the cylinder; and the perpendicular distance between the planes of the bases, is called the altitude of the cylinder.

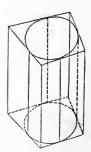
The line DC, which generates the convex surface, is, in any position, called an *element of the surface*; the elements are all perpendicular to the planes of the bases, and any one of them is equal to the altitude of the cylinder.

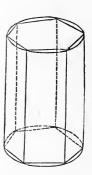
Any line of the generating rectangle ABCD, as IK, which is perpendicular to the axis, will generate a circle whose plane is perpendicular to the axis, and which is equa to either base: hence, any section of a cylinder by a plan perpendicular to the axis, is a circle equal to either base Any section, FCDE, made by a plane through the axis is a rectangle double the generating rectangle.

2. SIMILAR CYLINDERS are those which may be generated by similar rectangles revolving about homologous sides.

The axes of similar cylinders are proportional to the radii of their bases (B. IV., D. 1); they are also proportional to any other homologous lines of the cylinders.

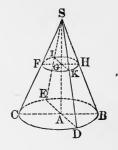
3. A prism is said to be *inscribed* in a cylinder, when its bases are inscribed in the bases of the cylinder. In this case, the cylinder is said to be circumscribed about the prism.


The lateral edges of the inscribed prism are elements of the surface of the circumscribing cylinder.


4. A prism is said to be circumscribed about a cylinder, when its

bases are circumscribed about the bases of the cylinder. In this case, the cylinder is said to be *inscribed in the* prism.

The straight lines which join the corresponding points of contact in the upper and lower bases, are common to the surface of the cylinder and to the lateral faces of the prism, and they are the only lines which are common. The lateral faces of the prism are said to be *tangent* to the cylinder along these lines, which are then called *elements of contact*.


5. A CONE is a volume which may be generated by a right-angled triangle revolving about one of the sides adjacent to the right angle, as an axis.

Thus, if the triangle SAB, right-angled at A, be turned about the side SA, as an axis, it will generate the cone S-CDBE.

The fixed line SA, is called the axis of the cone; the curved surface generated by the hypothenuse SB, is called the convex surface of the cone; the circle generated by the side AB, is called the base of the cone; and the point S, is called the vertex of the cone; the distance from the vertex to any point in the circumference of the

base, is called the slant height of the cone; and the perpendicular distance from the vertex to the plane of the base, is called the *altitude of the cone*.

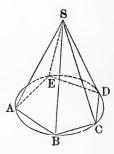
The line SB, which generates the convex surface, is, in any position, called an *element of the surface*; the elements are all equal, and any one is equal to the slant height; the axis is equal to the altitude.

Any line of the generating triangle SAB, as GH, which is perpendicular to the axis, generates a circle whose plane is perpendicular to the axis: hence, any section of a cone by a plane perpendicular to the axis, is a circle. Any section SBC, made by a plane through the axis, is an isosceles triangle, double the generating triangle.

6. A TRUNCATED CONE is that portion of a cone included between the base and any plane which cuts the cone.

When the cutting plane is parallel to the plane of the base, the truncated cone is called a FRUSTUM OF A CONE, and the intersection of the cutting plane with the cone is called the *upper base* of the frustum; the base of the cone is called the *lower base* of the frustum.

If the trapezoid HGAB, right-angled A and G, be revolved about AG, as an axis, it will generate a frustum of a cone, whose bases are ECDBand FKH, whose altitude is AG, and whose slant height is BH.


F G K E B D

7. SIMILAR CONES are those which may be generated by similar right-angled triangles revolving about homologous sides.

The axes of similar cones are proportional to the radii of their bases (B. IV., D. 1); they are also proportional to any other homologous lines of the cones.

8. A pyramid is said to be *inscribed in a cone*, when its base is inscribed in the base of the cone, and when its vertex coincides with that of the cone.

The lateral edges of the inscribed pyramid are elements of the surface of the circumscribing cone.

9. A pyramid is said to be *circumscribed about a cone*, when its base is circumscribed about the base of the cone, and when its vertex coincides with that of the cone.

In this case, the cone is said to be *inscribed in the* pyramid.

The lateral faces of the circumscribing pyramid are tangent to the surface of the inscribed cone, along lines which are called *eiements of contact*.

10 A frustum of a pyramid is inscribed in a frustum

of a cone, when its bases are inscribed in the bases of the frustum of the cone.

The lateral edges of the inscribed frustum of a pyramid are elements of the surface of the circumscribing frustum of a cone.

11. A frustum of a pyramid is circumscribed about frustum of a cone, when its bases are circumscribed about those of the frustum of the cone.

Its lateral faces are tangent to the surface of the frustum of the cone, along lines which are called *elements of contact*.

12. A SPHERE is a volume bounded by a surface, every point of which is equally distant from a point within called the *centre*.

A sphere may be generated by a semicircle revolving about its diameter as an axis.

13. A RADIUS of a sphere is a straight line drawn from the centre to any point of the surface. A DIAMETER is any straight line drawn through the centre and limited at both extremities by the surface.

All the radii of a sphere are equal: the diameters are also equal, and each is double the radius. r^{*}

14. A SPHERICAL SECTOR is a volume which may be generated by a sector of a circle revolving about the diameter passing through either extremity of the arc.

The surface generated by the arc is called the *base of* the sector.

15. A plane is TANGENT TO A SPHERE when it touches it in a single point.

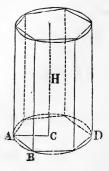
16. A ZONE is a portion of the surface of a sphere included between two parallel planes. The bounding lines

of the sections are called *bases* of the zone, and the distance between the planes is called the *altitude* of the zone.

If one of the planes is tangent to the sphere, the zone has but one base.

17. A SPHERICAL SEGMENT is a portion of a sphere included between two parallel planes. The sections made by the planes are called *bases* of the segment, and the distance between Them is called the *altitude of the segment*.

If one of the planes is tangent to the sphere, the segment has but one base.


The CYLINDER, the CONE, and the SPHERE, are sometimes called THE THREE ROUND BODIES.

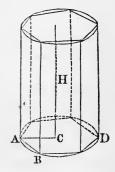
PROPOSITION I. THEOREM.

The convex surface of a cylinder is equal to the circumference of its base multiplied by the altitude.

Let ABD be the base of a cylinder whose altitude is H: then will its convex surface be equal to the circumference of its base multiplied by the altitude.

For, inscribe within the cylinder a prism whose base is a regular polygon. The convex surface of this prism will be equal to the perimeter of its base multiplied by its altitude (B. VII., P. I.), whatever may be the number of sides of its base. But, when the number of sides is infinite (B. V., P. X., C. 1), the convex surface of the prism coincides with that of the cylinder, the perimeter of

the base of the prism coincides with the circumference of the base of the cylinder, and the altitude of the prism is the same as that of the cylinder : hence, the convex surface of the cylinder is equal to the circumference of its base multiplied by the altitude ; which was to be proved.


Cor. The convex surfaces of cylinders having equal altitudes are to each other as the circumferences of their bases.

PROPOSITION II. THEOREM.

The volume of a cylinder is equal to the product of its base and altitude.

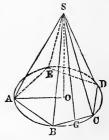
Let ABD be the base of a cylinder whose altitude is H; then will its volume be equal to the product of its base and altitude.

For, inscribe within it a prism whose base is a regular polygon. The volume of this prism is equal to the product of its base and altitude (B. VII., P. XIV.), whatever may be the number of sides of its base. But, when the number of sides is infinite, the prism coincides with the cylinder, the base of the prism with the base of the cylinder, and the altitude of the prism is the same

as that of the cylinder: hence, the volume of the cylinder is equal to the product of its base and altitude; which was to be proved.

Cor. 1. Cylinders are to each other as the products of their bases and altitudes; cylinders having equal bases are to each other as their altitudes; cylinders having equal altitudes are to each other as their bases.

Cor. 2. Similar cylinders are to each other as the cubes of their altitudes, or as the cubes of the radii of their bases.

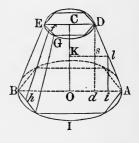

For, the bases are as the squares of their radii (B. V., P. XIII.), and the cylinders being similar, these radii are to each other as their altitudes (D. 2): hence, the bases are s the squares of the altitudes; therefore, the bases multiplied by the altitudes, or the cylinders themselves, are as the cubes of the altitudes.

PROPOSITION III. THEOREM.

The convex surface of a cone is equal to the circumference of its base multiplied by half the slant height.

Let S-ACD be a cone whose base is ACD, and whose slant height is SA: then will its convex surface be equal to the circumference of its base multiplied by half the slant height.

For, inscribe within it a right pyramid. The convex surface of this pyramid is equal to the perimeter of its base multiplied by half the slant height (B. VII., P. IV.), whatever may be the number of sides of its base. But when the number of sides of the base is infinite, the convex surface coincides with that of the


cone, the perimeter of the base of the pyramid coincides with the circumference of the base of the cone, and the slant height of the pyramid is equal to the slant height of the cone: hence, the convex surface of the cone is equal to the circumference of its base multiplied by half the slant height; which was to be proved. -

PROPOSITION IV. THEOREM.

The convex surface of a frustum of a cone is equal to half the sum of the circumferences of its two bases multiplied by the slant height.

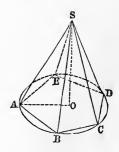
Let BIA-D be a frustum of a cone, BIA and EGDits two bases, and EB its slant height: then is its convex surface equal to half the sum of the circumferences of its two bases multiplied by its slant height.

For, inscribe within it the frustum of a right pyramid. The convex surface of this frustum is equal to half the sum of the perimeters of its bases, multiplied by the slant height (B. VII., P. IV., C.), whatever may be the number of its lateral faces. But when the number of these faces is infinite,

the convex surface of the frustum of the pyramid coincides with that of the cone, the perimeters of its bases coincide with the circumferences of the bases of the frustum of the cone, and its slant height is equal to that of the cone: hence, the convex surface of the frustum of a cone is equal to half the sum of the circumferences of its bases multiplied by the slant height; which was to be proved.

Scholium. From the extremities A and D, and from the middle point l, of a line AD, let the lines AO, DC, and lK, be drawn perpendicular to the axis OC: then will lK be equal to half the sum of $AO \cdot$ and DC. For, draw Dd and li, perpendicular to AO: then, because Alis equal to lD, we shall have Ai equal to id (B. IV., P. XV.), and consequently to ls; that is, AO exceeds lK as much as lK exceeds DC: hence, lK is equal to the half sum of AO and DC.

Now, if the line AD be revolved about OC, as an axis, it will generate the surface of a frustum of a cone whose slant height is AD; the point l will generate a bicumference which is equal to half the sum of the circumferences generated by A and D: hence, if a straight line be revolved about another straight line, it will generate a surface whose measure is equal to the product of the generating line and the circumference generated by its middle point.


This proposition holds true when the line AD meets OC, and also when AD is parallel to OC.

PROPOSITION V. THEOREM.

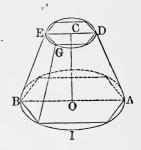
The volume of a cone is equal to its base multiplied by one-third of its altitude.

Let ABDE be the base of a cone whose vertex is S, and whose altitude is So: then will its volume be equal to the base multiplied by one-third of the altitude.

For, inscribe in the cone a right pyramid. The volume of this pyramid is equal to its base multiplied by onethird of its altitude (B. VII., P. XVII.), whatever may be the number of its lateral faces. But, when the number of lateral faces is infinite, the pyramid coincides with the cone, the base of the pyramid coincides with that of the

cone, and their altitudes are equal: hence, the volume of a cone is equal to the base multiplied by one-third of the a'titude; which was to be proved.

Cor. 1. A cone is equal to one-third of a cylinder having an equal base and an equal altitude.


Cor. 2. Cones are to each other as the products of their bases and altitudes. Cones having equal bases are to each other as their altitudes. Cones having equal altitudes are to each other as their bases.

PROPOSITION VI. THEOREM.

The volume of a frustum of a cone is equal to the sum of the volumes of three cones, having for a common altitude the altitude of the frustum, and for bases the lower base of the frustum, the upper base of the frus tum, and a mean proportional between the bases.

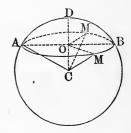
Let BIA be the lower base of a frustum of a cone, EGD its upper base, and OC its altitude: then will its volume be equal to the sum of three cones whose common altitude is OC, and whose bases are the lower base, the upper base, and a mean proportional between them.

For, inscribe a frustum of a right pyramid in the given frustum. The volume of this frustum is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases re the lower base, the upper base, and a mean proportional between the two (B. VII., P. XVIII.), whatever may be the number of lateral faces.

may be the number of lateral faces. But when the number of faces is infinite, the frustum of the pyramid coincides with the frustum of the cone, its bases with the bases of the cone, the three pyramids become cones, and their altitudes

 $\mathbf{220}$

BOOK VIII.


are equal to that of the frustum; hence, the volume of the frustum of a cone is equal to the sum of the volumes of three cones whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the apper base of the frustum, and a mean proportional between them; which was to be proved.

PROPOSITION VII. THEOREM.

Any section of a sphere made by a plane, is a circle.

Let C be the centre of a sphere, CA one of its radii, and AMB any section made by a plane: then will this section be a circle.

For, draw a radius CO perpendicular to the cutting plane, and let it pierce the plane of the section at O. Draw radii of the sphere to any two points M, M', of the curve which bounds the section, and join these points with O: then, because the radii CM, CM' are equal, the points

M, M', will be equally distant from O (B. VI., P. V., C.); hence, the section is a circle; which was to be proved.

Cor. 1. When the cutting plane passes through the centre of the sphere, the radius of the section is equal to that of the sphere; when the cutting plane does not pass through the centre of the sphere, the radius of the section will be less than that of the sphere.

A section whose plane passes through the centre of the sphere, is called a *great circle* of the sphere. A section whose plane does not pass through the centre of the sphere,

is called a *small circle* of the sphere. All great circles of the same, or of equal spheres, are equal.

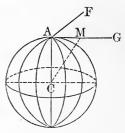
Cor. 2. Any great circle divides the sphere, and also the surface of the sphere, into equal parts. For, the parts may be so placed as to coincide, otherwise there would be some points of the surface unequally distant from the centre, which is impossible.

Cor. 3. The centre of a sphere, and the centre of any small circle of that sphere, are in a straight line perpendicular to the plane of the circle.

Cor. 4. The square of the radius of any small circle is equal to the square of the radius of the sphere diminished by the square of the distance from the centre of the sphere to the plane of the circle (B. IV., P. XI., C. 1): hence, circles which are equally distant from the centre, are equal; and of two circles which are unequally distant from the centre, that one is the less whose plane is at the greater distance from the centre.

Cor. 5. The circumference of a great circle may always be made to pass through any two points on the surface of a sphere. For, a plane can always be passed through these points and the centre of the sphere (B. VI., P. II.), and its section will be a great circle. If the two points are the extremities of a diameter, an infinite number of planes can be passed through them and the centre of the sphere (B. VI., P. I., S.); in this case, an infinite number of great circles can be made to pass through the two points.

Cor. 6. The bases of a zone are the circumferences of circles (D. 16), and the bases of a segment of a sphere are circles.


BOOK VIII.

THEOREM. PROPOSITION VIII.

Any plane perpendicular to a radius of a sphere at its outer extremity, is tangent to the sphere at that point.

Let C be the centre of a sphere, CA any radius, and FAG a plane perpendicular to CA at A: then will the plane FAG be tangent to the sphere at A.

For, from any other point of the plane, as M, draw the line MC: then because CA is a perpendicular to the plane, and CM an oblique line, CM will be greater than CA(B. VI., P. V.): hence, the point M lies without the sphere. The plane FAG, therefore, touches the sphere which was to be proved.

at A, and consequently is tangent to it at that point,

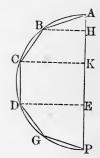
Scholium. It may be shown, by a course of reasoning analogous to that employed in Book III., Propositions XI., XII., XIII., and XIV., that two spheres may have any one of six positions with respect to each other, viz. :

1°. When the distance between their centres is greater than the sum of their radii, they are external, one to the other : "

2°. When the distance is equal to the sum of their radii, they are tangent, externally :

3°. When this distance is less than the sum, and greater than the difference of their radii, they intersect each other : 4°. When this distance is equal to the difference of their radii, they are tangent internally :

5°. When this distance is less than the difference of their radii, one is wholly within the other :


6°. When this distance is equal to zero, they have a common centre, or, are concentric.

DEFINITIONS.

1°. If a semi-circumference be divided into equal ares, the chords of these ares form half of the perimeter of a regular inscribed polygon; this half perimeter is called a regular semi-perimeter. The figure bounded by the regular semi-perimeter and the diameter of the semi-circumference is called a regular semi-polygon. The diameter itself is called the axis of the semi-polygon.

2°. If lines be drawn from the extremities of any side, and perpendicular to the axis, the intercepted portion of the axis is called the *projection* of that side.

The broken line ABCDGP is a regular semi-perimeter; the figure bounded by it and the diameter AP, is a regular semi-polygon, AP is its axis, HK is the projection of the side BC, and the axis,

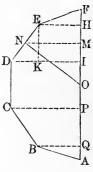
AP, is the projection of the entire semi-perimeter.

PROPOSITION IX. LEMMA.,

If a regular semi-polygon be revolved about its axis, the surface generated by the semi-perimeter will be equal to the axis multiplied by the circumference of the inscribed circle.

Let ABCDEF be a regular semi-polygon, AF its axis, and ON its apothem : then will the surface generated by the regular semi-perimeter be equal to $AF \times circ. ON$.

From the extremities of any side, as DE, draw DIand EH perpendicular to AF; draw also NM perpendicular to AF, and EK perpendicular to DI. Now, the surface generated by ED is equal to $DE \times circ. NM$


BOOK VIII.

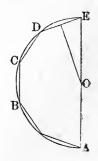
(P. IV., S.). But, because the triangles EDK and ONM are similar (B. IV., P. XXI.), we have,

DE : EK or IH :: ON : NM :: circ. ON : circ. NM ; whence, R

$DE \times circ. NM = IH \times circ. ON$;

that is, the surface generated by any side is equal to the projection of that side multiplied by the circumference of the inscribed circle : hence, the surface generated by the entire semi-perimeter is equal to the sum of the projections of its sides, or the axis, multiplied by the circumfer-

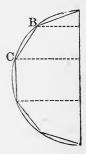
ence of the inscribed circle; which was to be proved.


Cor. The surface generated by any portion of the perimeter, as CDE, is equal to its projection PH, multiplied by the circumference of the inscribed circle.

PROPOSITION X. THEOREM.

The surface of a sphere is equal to its diameter multiplied by the circumference of a great circle.

Let ABCDE be a semi-circumference. O its centre, and AE its diameter : then will the surface of the sphere generated by revolving the semi-circumference about AE, be equal to $AE \times circ. OE$.


For, the semi-circumference may be regarded as a regular semi-perimeter with an infinite number of sides, whose axis is AE, and the radius of whose inscribed circle

is OE: hence (P. IX.), the surface generated by it is equal to $AE \times circ. OE$; which was to be proved.

Cor. 1. The circumference of a great circle is equal to $2\pi OE$ (B. V., P. XVI.): hence, the area of the surface of the sphere is equal to $2OE \times 2\pi OE$, or to $4\pi \overline{OE}^2$ that is, the area of the surface of a sphere is equal to four great circles.

Cor. 2. The surface generated by any arc of the semicircle, as BC, will be a zone, whose altitude is equal to the projection of that arc on the diameter. But, the arc BC is a portion of a semiperimeter having an infinite number of sides, and the radius of whose inscribed circle is equal to that of the sphere: hence (P. IX., C.), the surface of a zone

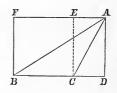
is equal to its altitude multiplied by the circumference of a great circle of the sphere.

Cor. 3. Zones, on the same sphere, or on equal spheres, are to each other as their altitudes.

PROPOSITION XI. LEMMA.

If a triangle and a rectangle having the same base and equal altitudes, be revolved about the common base, the volume generated by the triangle will be one-third of that generated by the rectangle.

Let ABC be a triangle, and EFBC a rectangle, having the same base BC, and an equal altitude AD, and let them both be revolved about BC: then will the volume generated by ABC be one-third of that generated by EFBC.


For, the cone generated by the right-angled triangle ADB, is equal to one-third of the cylinder generated by

the rectangle ADBF (P. V., C. 1), and the cone generated by the triangle ADC, is equal to one-third of the cylinder generated by the rectangle ADCE.

When AD falls within the triangle, the sum of the cones generated by ADB and ADC, is equal to the volume generated by the triangle ABC; and the sum of the cylinders generated by ADBF and ADCE, is equal to the volume generated by the rectangle EFBC.

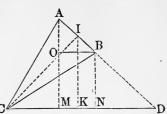
When AD falls without the triangle, the difference of the cones generated by ADB and ADC, is equal to the volume generated by

ABC; and the difference of the cylinders generated by ADBF and ADCE, is equal to the volume generated by EFBC: hence, in either case, the volume generated by the triangle ABC, is equal to one-third of the volume generated by the rectangle EFBC; which was to be proved.

D

F

Cor. The volume of the cylinder generated by EFBC, is equal to the product of its base and altitude, or to $\pi \overline{AD}^2 \times BC$: hence, the volume generated by the triangle ABC, is equal to $\frac{1}{2} \pi \overline{AD}^2 \times BC$.


PROPOSITION XII. LEMMA.

If an isosceles triangle be revolved about a straight line passing through its vertex, the volume generated will be equal to the surface generated by the base multiplied by one-third of the altitude.

Let CAB be an isosceles triangle, C its vertex, AB its base, CI its altitude, and let it be revolved about the line CL, as an axis: then will the volume generated be equal to surf $AB \times \frac{1}{2}$ CI. There may be three cases:

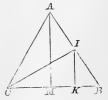
E

1°. Suppose the base, when produced, to meet the axis at D; draw AM, IK, and BN, perpendicular to CD, and BO parallel to DC. Now, the volume generated by CAB is equal to the difference of the volumes generated by CAD and CBD; hence (P. XI., C.),

vol. $CAB = \frac{1}{2}\pi \overline{AM}^2 \times CD - \frac{1}{2}\pi \overline{BN}^2 \times CD = \frac{1}{2}\pi (\overline{AM}^2 - \overline{BN}^2) \times CD.$ But, $\overline{AM}^2 - \overline{BN}^2$ is equal to (AM + BN) (AM - BN), (B. IV., P. X.); and because AM + BN is equal to 2IK(P. IV., S.), and AM - BN to AO, we have,

vol.
$$CAB = \frac{2}{3} \pi IK \times AO \times CD$$
.

But, the right-angled triangles AOB and CDI are similar (B. IV., P. XVIII.; hence,


AO : AB :: CI : CD; or, $AO \times CD = AB \times CI$. Substituting, and changing the order of the factors, we have, vol. $CAB = AB \times 2 \pi IK \times \frac{1}{3} CI.$

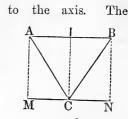
But, $AB \times 2\pi IK$ = the surface generated by AB; hence, vol. $CAB = surf. AB \times \frac{1}{3} CI.$

2°. Suppose the axis to coincide with one of the equal sides.

Draw CI perpendicular to AB and AM, and IK perpendicular to CB. Then,

vol.
$$CAB = \frac{1}{3} \pi \overline{AM}^2 \times CB = \frac{1}{3} \pi AM \times AM \times CB.$$

But, since AMB and CIK are similar.


AM : AB : : CI : CB; whence $AM \times CB = AB \times CI$. Also, AM = 2 IK; hence, by substitution, we have,

vol. $CAB = AB \times 2\pi IK \times \frac{1}{3}CI = surf. AB \times \frac{1}{3}CI.$

BOOK VIII.

3°. Suppose the base to be parallel to the axis.

Draw AM and BN perpendicular volume generated by CAB, is equal to the cylinder generated by the rectangle ABNM, diminished by the sum of the cones generated by the triangles CAM and BCN; hence,

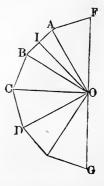
vol. $CAB = \pi \overline{CI}^2 \times AB - \frac{1}{3} \pi \overline{CI}^2 \times AI - \frac{1}{3} \pi \overline{CI}^2 \times IB.$

But the sum of AI and IB is equal to AB: hence, we have, by reducing, and changing the order of the factors,

vol.
$$CAB = AB \times 2 \pi CI \times \frac{1}{3} CI$$
.

But $AB \times 2 \pi CI$ is equal to the surface generated by AB; consequently,

vol.
$$CAB = surf. AB \times \frac{1}{3} CI;$$


hence, in all cases, the volume generated by CAB is equal to surf. $AB \times \frac{1}{3} CI$; which was to be proved.

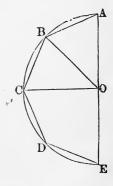
PROPOSITION XIII. LEMMA.

If a regular semi-polygon be revolved about its axis, the volume generated will be equal to the surface generated by the semiperimeter multiplied by one-third of the apothem.

Let FBDG be a regular semi-polygon, FG its axis, OI its apothem, and let the semi-polygon be revolved about FG: then will the volume generated be equal to surf. $FDBG \times \frac{1}{3}OI$.

For, draw lines from the vertices to the centre *O*. These lines will divide the semi-polygon into isosceles triangles whose bases are sides of the semi-polygon, and whose altitudes are equal to *OL*.

Now, the sum of the volumes generated by these triangles is equal to the volume generated by the semi-polygon. But, the volume generated by any triangle, as OAB, is equal to surf. $AB \times \frac{1}{3}OI$ (P. XII.): hence, the volume generated by the semi-polygon is equal to surf. $FBDG \times \frac{1}{3}OI$; which was to be proved.


Cor. The volume generated by a portion of the semi polygon, OABC, limited by radii OC, OA, is equal to surf. $ABC \times \frac{1}{3}OI$.

PROPOSITION XIV. THEOREM.

The volume of a sphere is equal to its surface multiplied by one-third of its radius.

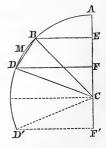
Let ACE be a semicircle, AE its diameter, O its centre, and let the semicircle be revolved about AE: then will the volume generated be equal to the surface generated by the semi-circumference multiplied by one-third of the radius OA.

For, the semicircle may be regarded as a regular semi-polygon having an infinite number of sides, whose semi-perimeter

coincides with the semi-circumference, and whose apothem is equal to the radius: hence (P. XIII.), the volume generated by the semicircle is equal to the surface generated by the semi-circumference multiplied by one-third of the radius; which was to be proved.

Cor. 1. Any portion of the semicircle, as OBC, bounded by two radii, will generate a volume equal to the surface generated by the arc BC multiplied by one-third of the radius (P. XIII., C.). But this portion of the semicircle is a circular sector, the volume which it generates is a spherical sector, and the surface generated by the arc is a zone: hence, the volume of a spherical sector is equal to the zone which forms its base multiplied by one-third of the radius

Cor. 2. If we denote the volume of a sphere by V, and its radius by R, the area of the surface will be equal to $4\pi R^2$ (P. X., C. 1), and the volume of the sphere will be equal to $4\pi R^2 \times \frac{1}{8} R$; consequently, we have,


$$V = \frac{4}{3}\pi R^3.$$

Again, if we denote the diameter of the sphere by D, we shall have R equal to $\frac{1}{2}D$, and R^3 equal to $\frac{1}{6}D^3$, and consequently,

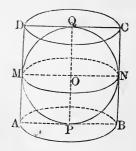
$$V=\tfrac{1}{6}\pi D^3;$$

hence, the volumes of spheres are to each other as the cubes of their radii, or as the cubes of their diameters.

Scholium. If the figure EBDF, formed by drawing lines from the extremities of the are BD perpendicular to CA, be revolved about CA, as an axis, it will generate a segment of a sphere whose volume may be found by adding to the spherical sector generated by CDB, the cone generated by CBE, and subtracting from their sum the cone generated by CDF. If the arc BD is so taken that the

points E and F fall on opposite sides of the centre C, the latter cone must be added, instead of subtracted: zone $BD = 2 \pi CD \times EF$; hence,

segment $EBDF = \frac{1}{3} \pi (2 \overline{CD}^2 \times EF + \overline{BE}^2 \times CE \mp \overline{DF}^2 \times CF).$


PROPOSITION XV. THEOREM

The surface of a sphere is to the entire surface of the circumscribed cylinder, including its bases, as 2 is to 3 : and the volumes are to each other in the same ratio.

Let PMQ be a semicircle, and PADQ a rectangle, whose sides PA and QD are tangent to the semicircle at P and Q, and whose side AD, is tangent to the semicircle at M. If the semicircle and the rectangle be revolved about PQ, as an axis, the former will generate a sphere, and the latter a circumscribed cylinder.

1°. The surface of the sphere is to the entire surface of the cylinder, as 2 is to 3.

For, the surface of the sphere is equal to four great circles (P. X., C. 1), the convex surface of the cylinder is equal to the circumference of its base multiplied by its altitude (P. I.); that is, it is equal to the circumference of a great circle multiplied by its diameter, or to four great circles (B. V., P. XV.); adding to this the

two bases, each of which is equal to a great circle, we have the entire surface of the cylinder equal to six great circles: hence, the surface of the sphere is to the entire surface of he circumscribed cylinder, as 4 is to 6, or as 2 is to 3; which was to be proved.

2°. The volume of the sphere is to the volume of the cylinder as 2 is to 3.

For, the volume of the sphere is equal to $\frac{4}{3}\pi R^3$ (P. XIV., C. 2); the volume of the cylinder is equal to its base multiplied by its altitude (P. II.); that is, it is equal to $\pi R^2 \times 2R$, or to $\frac{6}{3}\pi R^3$: hence, the volume of the sphere is to that of the cylinder as 4 is to 6, or as 2 is to 3; which was to be proved.

Cor. The surface of a sphere is to the entire surface of a circumscribed cylinder, as the volume of the sphere is to volume of the cylinder.

Scholium. Any polyedron which is circumscribed about a sphere, that is, whose faces are all tangent to the sphere, may be regarded as made up of pyramids, whose bases are the faces of the polyedron, whose common vertex is at the centre of the sphere, and each of whose altitudes is equal to the radius of the sphere. But, the volume of any one of these pyramids is equal to its base multiplied by onethird of its altitude: hence, the volume of a circumscribed polyedron is equal to its surface multiplied by one-third of the radius of the inscribed sphere.

Now, because the volume of the sphere is also equal to its surface multiplied by one-third of its radius, it follows that the volume of a sphere is to the volume of any circumscribed polyedron, as the surface of the sphere is to the surface of the polyedron.

Polyedrons circumscribed about the same, or about equal spheres, are proportional to their surfaces.

GENERAL FORMULAS.

If we denote the convex surface of a cylinder by S, its volume by V, the radius of its base by R, and its altitude by H, we have (P. I., II.),

If we denote the convex surface of a cone by S, its volume by V, the radius of its base by R, its altitude by H, and its slant height by H', we have (P. III., V.),

If we denote the convex surface of a frustum of a cone by S, its volume by V, the radius of its lower base by R, the radius of its upper base by R', its altitude by H, and its slant height by H', we have (P. IV., VI.),

If we denote the surface of a sphere by S, its volume by V, its radius by R, and its diameter by D, we have (**P.** X., **C.** 1, XIV., **C.** 2, XIV., **C.** 1),

If we denote the radius of a sphere by R, the area of any zone of the sphere by S, its altitude by H, and the volume of the corresponding spherical sector by V, we shall have (P. X., C. 2),

$$S = 2\pi R \times H \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (9.)$$
$$V = \frac{2}{2}\pi R^2 \times H \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (10.)$$

If we denote the volume of the corresponding spherical segment by V, its altitude by H, the radius of its upper base by R', the radius of its lower base by R'', the distance of its upper base from the centre by H', and of its lower base from the centre by H'', we shall have (P. XIV., S.):

 $V = \frac{1}{3} \pi \left(2 R^2 \times H + R'^2 H' \mp R''^2 \times H'' \right) \quad . \quad . \quad (11.)$

BOOK IX.

SPHERICAL GEOMETRY.

DEFINITIONS.

1. A SPHERICAL ANGLE is an angle included between the arcs of two great circles of a sphere meeting at a point. The arcs are called *sides* of the angle, and their point of intersection is called the *vertex* of the angle.

The measure of a spherical angle is the same as that of the diedral angle included between the planes of its sides. Spherical angles may be *acute*, *right*, or *obtuse*.

2. A SPHERICAL POLYGON is a portion of the surface of a sphere bounded by three or more arcs of great circles. The bounding arcs are called *sides* of the polygon, and the points in which the sides meet, are called *vertices* of the polygon. Each side is supposed to be less than a semi-circumference.

Spherical polygons are classified in the same manner as plane polygons.

3. A SPHERICAL TRIANGLE is a spherical polygon of three sides.

Spherical triangles are classified in the same manner as plane triangles.

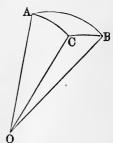
4. A LUNE is a portion of the surface of a sphere bounded by two semi-circumferences of great circles.

5. A SPHERICAL WEDGE is a portion of a sphere bounded by a lune and two semicircles, which intersect in a diameter of the sphere.

6. A SPHERICAL PYRAMID is a portion of a sphere bounded by a spherical polygon and sectors of circles whose common centre is the centre of the sphere.

The spherical polygon is called the base of the pyramid, and the centre of the sphere is called the vertex of the pyramid.

7. A POLE OF A CIRCLE is a point on the surface of the sphere, equally distant from all the points of the cir cumference of the circle.


8. A DIAGONAL of a spherical polygon is an arc of a great circle joining the vertices of any two angles which are not consecutive.

PROPOSITION I. THEOREM.

Any side of a spherical triangle is less than the sum of the other two.

Let ABC be a spherical triangle situated on a sphere whose centre is O: then will any side, as AB, be less than the sum of the sides AC and BC.

For, draw the radii OA, OB, and OC: these radii form the edges of a triedral angle whose vertex is O, and the plane angles included between them are measured by the arcs AB, AC, and BC (B. III., P. XVII., Sch.). But any plane angle, as AOB, is less than the sum of the plane angles AOCand BOC (B. VI., P. XIX.): hence, the arc AB is less than the sum of the arcs AC and BC; which was to be proved.

Cor. 1. Any side AB, of a spherical polygon ABUDE, is less than the sum of all the other sides.

For, draw the diagonals AC and AD, dividing the polygon into triangles. The arc AB is less than the sum of AC and BC, the arc AC is less than the sum of AD and DC, and the arc AD is less than the sum of DE and EA; hence, AB is less than the sum of BC, CD, DE, and EA.

Cor. 2. The arc of a small circle, on the surface of a sphere, is greater than the arc of a great circle joining its two extremities.

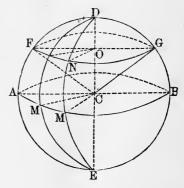
For, divide the arc of the small circle into equal parts, and through the two extremities of each part, suppose the arc of a great circle to be drawn. The sum of these arcs, whatever may be their number, will be greater than the arc of the great circle joining the given points (C. 1). But when this number is infinite, each arc of the great circle will coincide with the corresponding arc of the small circle, and their sum is equal to the entire arc of the small circle, which is, consequently, greater than the arc of the great circle.

Cor. 3. The shortest distance from one point to another on the surface of a sphere, is measured on the arc of a great circle joining them.

PROPOSITION II. THEOREM.

The sum of the sides of a spherical polygon is less than the circumference of a great circle.

Let ABCDE be a spherical polygon situated on a sphere whose centre is O: then will the sum of its sides be less than the circumference of a great circle.


For, draw the radii OA, OB, OC, OD, and OE: these radii form the edges of a polyedral angle whose vertex is at O, and the angles included between them are measured by the arcs AB, BC, CD, DE, and EA. But the sum of these angles is less than four right angles (B. VI., P. XX.): hence, the sum of the arcs which measure them is less than the circumference of a great circle; which was to be proved.

PROPOSITION 111. THEOREM.

If a diameter of a sphere be drawn perpendicular to the plane of any circle of the sphere, its extremities will be poles of that circle.

Let C be the centre of a sphere, FNG any circle of the sphere, and DE a diameter of the sphere perpendicular to the plane of FNG: then will the extremities D and E, be poles of the circle FNG.

The diameter DE, being perpendicular to the plane of FNG, must pass through the centre O (B. VIII., P. VII., C. 3). If arcs of great circles DN, DF, DG, &c., be drawn from D to different points of the circumference FNG, and chords of these arcs be drawn, these chords will be equal (B. VI.,

P. V.), consequently, the arcs themselves will be equal. But these arcs are the shortest lines that can be drawn from the point D, to the different points of the circumference (P. I., C. 2): hence, the point D, is equally distant from all the points of the circumference, and consequently is a pole of the circle (D. 7). In like manner, it may be shown that the point E is also a pole of the circle: hence, both D, and E, are poles of the circle FNG; which was to be proved.

Cor. 1. Let AMB be a great circle perpendicular to DE: then will the angles DCM, ECM, &c., be right angles; and consequently, the arcs DM, EM, &c., will each be equal to a quadrant (B. III., P. XVII., S.): hence, the two poles of a great circle are at equal distances from the circumference.

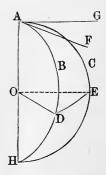
Cor. 2. The two poles of a small circle are at unequal distances from the circumference, the sum of the distances being equal to a semi-circumference.

Cor. 3. If any point, as M, in the circumference of a great circle, be joined with either pole, by the arc of a great circle, such arc will be perpendicular to the circumference AMB, since its plane passes through CD, which is perpendicular to AMB. Conversely: if MN be perpendicular to the arc AMB, it will pass through the poles D and E: for, the plane of MN being perpendicular to AMB and passing through C, will contain CD, which is perpendicular to the plane AMB (B. VI., P. XVIII.).

Cor. 4. If the distance of a point D, from each of the points A and M, in the circumference of a great circle, is equal to a quadrant, the point D, is the pole of the arc AM.

For, let C be the centre of the sphere, and draw the radii CD, CA, CM. Since the angles ACD, MCD, are right angles, the line CD is perpendicular to the two straight lines CA, CM: it is, therefore, perpendicular to their

plane (B. VI., P. IV.): hence, the point D, is the pole of the arc AM.


Scholium. The properties of these poles enable us to describe arcs of a circle on the surface of a sphere, with the same facility as on a plane surface. For, by turning the arc DF about the point D, the extremity F' will describe the small circle FNG; and by turning the quadrant DFA round the point D, its extremity A will describe an arc of a great circle.

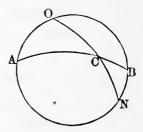
PROPOSITION IV. THEOREM.

The angle formed by two arcs of great circles, is equal to that formed by the tangents to these arcs at their point of intersection, and is measured by the arc of a great circle described from the vertex as a pole, and limited by the sides, produced if necessary.

Let the angle BAC be formed by the two arcs AB, AC: then is it equal to the angle FAG formed by the tangents AF, AG, and is measured by the arc DE of a great circle, described about A as a pole.

For, the tangent AF, drawn in the plane of the arc AB, is perpendicular to the radius AO; and the tangent AG, drawn in the plane of the arc AC, is perpendicular to the same radius AO: hence, the angle FAG is equal to the angle contained by the planes ABDH, ACEH (B. VI., D. 4); which is that of the arcs AB, AC. Now, if the arcs AD and AE are both quad-

rants, the lines OD, OE, are perpendicular to OA, and

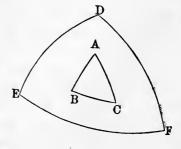

BOOK IX.

the angle DOE is equal to the angle of the planes ABDH, ACEH: hence, the arc DE is the measure of the angle contained by these planes, or of the angle CAB; which was to be proved.

Cor. 1. The angles of spherical triangles may be com pared by means of the arcs of great circles described from their vertices as poles, and included between their sides.

A spherical angle can always be constructed equal to a given spherical angle.

Cor. 2. Vertical angles, such as ACO and BCN are equal; for either of them is the angle formed by the two planes ACB, OCN. When two arcs ACB, OCN, intersect, the sum of two adjacent angles, as ACO, OCB, is equal to two right angles.



PROPOSITION V. THEOREM.

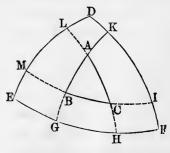
If from the vertices of the angles of a spherical triangle, as poles, arcs be described forming a spherical triangle, the vertices of the angles of this second triangle will be respectively poles of the sides of the first.

From the vertices A, B, C, as poles, let the arcs EF, FD, ED, be described, forming the triangle DFE: then will the vertices D, E, and F, be respectively poles of the sides BC, AC, AB.

For, the point A being

241

the pole of the arc EF, the distance AE, is a quadrant; the point C being the pole of the arc DE, the distance CE, is likewise a quadrant: hence, the point E is at a quadrant's distance from the points A and C: hence, it is the pole of the arc AC (P. III., C. 4). It may be shown, in like manner, that D is the pole of the arc BC, and F that of the arc AB; which was to be proved.

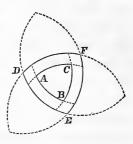

Scholium. The triangle ABC, may be described by means of DEF, as DEF is described by means of ABC. Triangles thus related are called *polar triangles*, or *supplemental triangles*.

PROPOSITION VI. THEOREM.

Any angle, in one of two polar triangles, is measured by a semi-circumference, minus the side lying opposite to it in the other triangle.

Let ABC, and EFD, be any two polar triangles: then will any angle in either triangle be measured by a semi-circumference, minus the side lying opposite to it in the other triangle.

For, produce the sides AB, AC, if necessary, till they meet EF, in G and H. The point A being the pole of the arc GH, the angle A is measured by that arc (P. IV.). But, since E is the pole of AH, the arc EH is a quadrant ; and since F is the



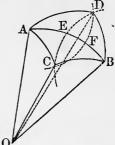
pole of AG, FG is a quadrant: hence, the sum of the arcs EH and GF, is equal to a semi-circumference. But,

$\mathbf{242}$

the sum of the arcs EH and GF, is equal to the sum of the arcs EF and GH: hence, the arc GH, which measures the angle A, is equal to a semi-circumference, minus the arc EF. In like manner, it may be shown, that any other angle, in either triangle, is measured by a semicircumference, minus the side lying opposite to it in the other triangle; which was to be proved.

Scholium. Besides the triangle DEF, three others may be formed by the intersection of the arcs DE, EF, DF. But the proposition is applicable only to the central triangle, which is distinguished from the other three by the circumstance, that the two vertices, A and D, lie on the same side of BC; the two vertices, Band E, on the same side of AC; and

the two vertices, C and F, on the same side of AB.


PROPOSITION VII. THEOREM.

If from the vertices of any two angles of a spherical triangle, as poles, arcs of circles be described passing through the vertex of the third angle; and if from the second point in which these arcs intersect, arcs of great circles be drawn to the vertices, used as poles, the parts of the triangle thus formed will be equal to those of the given triangle, each to each.

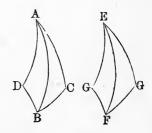
Let ABC be a spherical triangle situated on a sphere whose centre is O, CED and CFD arcs of circles described about B and A as poles, and let DA and DB be arcs of great circles: then will the parts of the

triangle ABD be equal to those of the given triangle ABC, each to each.

For, by construction, the side ADis equal to AC, the side DB is equal to BC, and the side AB is common: hence, the sides are equal, each to each. Draw the radii OA, OB, OC, and OD. The radii OA, OB, and OC, will form the edges of a triedral angle whose vertex is

O; and the radii OA, OB, and OD, will form the edges of a second triedral angle whose vertex is also at O; and the plane angles formed by these edges will be equal, each to each: hence, the planes of the equal angles are equally inclined to each other (B. VI., P. XXI.). But, the angles made by these planes are equal to the corresponding spherical angles; consequently, the angle BAD is equal to BAC, the angle ABD to ABC, and the angle ADB to ACB: hence, the parts of the triangle ABD are equal to the parts of the triangle ABD are equal to the parts of the triangle ABD are equal to the parts of the triangle ABD are equal to the parts of the triangle ACB, each to each; which was to be proved.

Scholium 1. The triangles ABC and ABD, are not, in general, capable of superposition, but their parts are symmetrically disposed with respect to AB. Triangles which have all the parts of the one equal to all the parts of the other, each to each, but not capable of superposition, are called, symmetrical triangles.

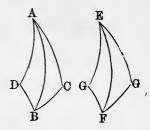

Scholium 2. If symmetrical triangles are isosceles, they can be so placed as to coincide throughout: hence, they are equal in area.

PROPOSITION VIII. THEOREM.

If two spherical triangles, on the same, or on equal spheres. have two sides and the included angle of the one equal to two sides and the included angle of the other, each to each, the remaining parts are equal, each to each.

Let the spherical triangles ABC and EFG, have the side EF equal to AB, the side EG equal to AC, and the angle FEG equal to BAC: then will the side FG be equal to BC, the angle EFG to ABC, and the angle EGF to ACB.

For, the triangle EFG may be placed upon ABC, or upon its symmetrical triangle ADB, so as to coincide with it throughout, as may be shown by the same course of reasoning as that employed in Book I., Proposition V.: hence, the side FG is equal to BC, the angle EFG to ABC, and the angle EGF to ACB; which was to be proved.

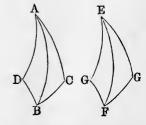

PROPOSITION IX. THEOREM.

If two spherical triangles on the same, or on equal spheres, have two angles and the included side of the one equal to two angles and the included side of the other, each to each, the remaining parts will be equal, each to each

Let the spherical triangles ABC and EFG, have the angle FEG equal to BAC, the angle EFG equal to ABC, and the side EF equal to AB: then will the

side EG be equal to AC, the side FG to BC, and the angle FGE to BCA.

For, the triangle EFG may be placed upon ABC, or upon its symmetrical triangle ADB, so as to coincide with it throughout, as may be shown by the same course of reasoning as that employed in Book I., Proposition VI.: hence, the side EG is equal to AC, the side FG to BC,


to AC, the side FG to BC, and the angle FGE to BCA; which was to be proved.

PROPOSITION X. THEOREM.

If two spherical triangles on the same, or on equal spheres, have their sides equal, each to each, their angles will be equal, each to each, the equal angles lying opposite the equal sides.

Let the spherical triangles EFG and ABC have the side EF equal to AB, the side EG equal to AC, and the side FG equal to BC: then will the 'angle FEG be equal to BAC, the angle EFG to ABC, and the angle EGF to ACB, and the equal angles will lie opposite the equal sides.

For, it may be shown by the same course of reasoning as that employed in B. I., P. X., that the triangle EFG is equal in all respects, either to the triangle ABC, or to its symmetrical triangle ABD: hence, the angle EFC expects to the side FC is

FEG, opposite to the side FG, is equal to the angle BAC,

BOOK IX.

opposite to BC; the angle EFG, opposite to EG, is equal to the angle ABC, opposite to AC; and the angle EGF, opposite to EF, is equal to the angle ACB, opposite to AB; which was to be proved.

PROPOSITION XI. THEOREM.

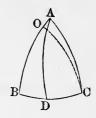
In any isosceles spherical triangle, the angles opposite the equal sides are equal; and conversely, if two angles of a spherical triangle are equal, the triangle is isosceles.

1°. Let ABC be a spherical triangle, having the side AB equal to AC: then will the angle C be equal to the angle B.

For, draw the arc of a great circle from the vertex A, to the middle point D, of the base BC: then in the two triangles ADB and ADC, we shall have the side AB equal to AC, by hypothesis, the side BD equal to DC, by construction, and the side AD common;

B D C

consequently, the triangles have their angles equal, each to each (P. X.): hence, the angle C is equal to the angle B; which was to be proved.


2°. Let ABC be a spherical triangle having the angle C equal to the angle B: then will the side AB be equal to the side AC, and consequently the triangle will be isosceles.

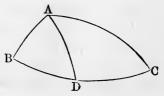
For, suppose that AB and AC are not equal, but that one of them, as AB, is the greater. On AB lay off the arc BO equal to AC, and draw the arc of a great circle from O to C: then in the triangles ACB and OBC, we shall have the side AC equal to OB, by construction,

GEOMETRY.

the side BC common, and the included angle ACB equal to the included angle OBC, by hypothesis: hence, the remaining parts of the triangles are equal,

each to each, and consequently, the angle OCB is equal to the angle ABC. But, the angle ACB is equal to ABC, by hypothesis, and therefore, the angle OCB is equal to ACB, or a part is equal to the whole, which is impossible: hence, the supposition that AB and AC are un-

equal, is absurd; they are therefore equal, and consequently, the triangle ABC is isosceles; which was to be proved.


Cor. The triangles ADB and ADC, having all of their parts equal, each to each, the angle ADB is equal to ADC, and the angle DAB is equal to DAC; that is, if an arc of a great circle be drawn from the vertex of an isosceles spherical triangle to the middle of its base, it will be perpendicular to the base, and will bisect the vertical angle of the triangle.

PROPOSITION XII. THEOREM.

In any spherical triangle, the greater side is opposite the greater angle; and conversely, the greater angle is opposite the greater side.

1°. Let ABC be a spherical triangle, in which the angle A is greater than the angle B: then will the side BC be greater than the side AC.

For, draw the arc AD, making the angle BAD equal to ABD: then will AD be equal to BD (P. XI.). But, the sum of AD and DC is

greater than AC (P. I.); or, putting for AD its equal BD, we have the sum of BD and DC, or BC, greater than AC; which was to be proved.

2°. In the triangle ABC, let the side BC be greater than AC: then will the angle A be greater than the angle B.

For, if the angles A and B were equal, the sides BCand AC would be equal; or if the angle A was less than the angle B, the side BC would be less than AC, either of which conclusions is contrary to the hypothesis: hence, the angle A is greater than the angle B; which was to be proved.

PROPOSITION XIII. THEOREM.

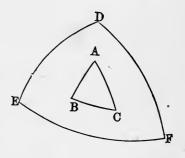
If two triangles on the same, or on equal spheres, are mutually equiangular, they are also mutually equilateral.

Let the spherical triangles A and B, be mutually equiangular: then will they also be mutually equilateral.

For, let P be the polar triangle of A, and Q the polar triangle of B: then, because the triangles A and B are mutually equiangular, their polar triangles P and Q, must be mutually equilateral (P. VI.), and consequently mutually equiangular (P. X.). But, the triangles P and Q being mutually equiangular, their polar triangles A and B, are mutually equilateral (P. VI.)

mutually equilateral (P. VI.); which was to be proved.

Scholium. This proposition does not hold good for plane triangles, for all similar plane triangles are mutually equiangular, but not necessarily mutually equilateral. Two spherical triangles on the same or on equal spheres, cannot be similar without being equal in all their parts.


GEOMETRY.

PROPOSITION XIV. THEOREM.

The sum of the angles of a spherical triangle is less than six right angles, and greater than two right angles.

Let ABC be a spherical triangle, and DEF its polar triangle: then will the sum of the angles A, B, and C, be less than six right angles and greater than two.

For, any angle, as A, being measured by a semi-circumference, minus the side EF (P. VI.), is less than two right angles: hence, the sum of the three angles is less than six right angles. Again, because the measure of each angle is equal to a semi-circumference minus the side lying opposite

to it, in the polar triangle, the measure of the sum of the three angles is equal to three semi-circumferences, minus the sum of the sides of the polar triangle *DEF*. But the latter sum is less than a circumference; consequently, the measure of the sum of the angles A, B, and C, is greater than a semi-circumference, and therefore the sum of the angles is greater than two right angles: hence, the sum of the angles A, B, and C, is less than six right angles, and greater than two; which was to be proved.

Cor. 1. The sum of the three angles of a spherical triangle is not constant, like that of the angles of a rectilineal triangle, but varies between two right angles and six, without ever reaching either of these limits. Two angles, therefore, do not serve to determine the third.

Cor. 2. A spherical triangle may have two, or even three of its angles right angles; also two, or even three of its angles obtuse.

Cor. 3. If a triangle, ABC, is bi-rectangular, that is, has two right angles B and C, the vertex A will be the pole of the other side BC, and AB, AC, will be quadrants.

For, since the arcs AB and AC are perpendicular to BC, each must pass through its

pole (P. III., Cor. 3): hence, their intersection A is that pole, and consequently, AB and AC are quadrants.

If the angle A is also a right angle, the triangle ABCis tri-rectangular; each of its angles is a right angle, and its sides are quadrants. Four tri-rectangular triangles make up the surface of a hemisphere, and eight the entire surface of a sphere.

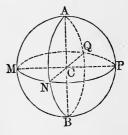
Scholium. The right angle is taken as the unit of measure of spherical angles, and is denoted by 1.

The excess of the sum of the angles of a spnerical triangle over two right angles, is called the spherical excess. If we denote the spherical excess by E, and the three angles expressed in terms of the right angle, as a unit, by A, B, and C, we shall have,

$$E = A + B + C - 2.$$

The spherical excess of any spherical polygon is equal to the excess of the sum of its angles over two right angles taken as many times as the polygon has sides, less two. If we denote the spherical excess by E, the sum of the angles by S, and the number of sides by n, we shall have.

$$E = S - 2(n-2) = S - 2n + 4.$$


GEOMETRY.

PROPOSITION XV. THEOREM.

Any lune, is to the surface of the sphere, as the arc which measures its angle is to the circumference of a great circle; or, as the angle of the lune is to four right angles.

Let AMBN be a lune, and MCN the angle of the lune, then will the area of the lune be to the surface of the sphere, as the arc MN is to the circumference of a great circle MNPQ; or, as the angle MCN is to four right angles (B. III., P. XVII., C. 2).

In the first place, suppose the are MN and the circumference MNPQ to be commensurable. For example, let them be to each other as 5 is to 48. Divide the circumference MNPQ into 48 equal parts, beginning at M; MN will contain five of these parts. Join each point

of division with the points A and B, by a quadrant: there will be formed 96 equal isosceles spherical triangles (P. VII., S. 2) on the surface of the sphere, of which the lune will contain 10: hence, in this case, the area of the lune is to the surface of the sphere, as 10 is to 96, or as 5 is to 48; that is, as the arc MN is to the circumference MNPQ, or as the angle of the lune is to four right angles.

In like manner, the same relation may be shown to exist when the arc MN, and the circumference MNPQ are to each other as any other whole numbers.

If the arc MN, and the circumference MNPQ, are not commensurable, the same relation may be shown to exist by a course of reasoning entirely analogous to that employed in Book IV., Proposition III. Hence, in all cases, the area of a lune is to the surface of the sphere, as the arc measuring the angle is to the circumference of a great circle; or, as the angle of the lune is to four right angles; which was to be proved.

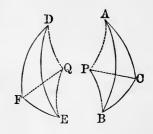
Cor. 1. Lunes, on the same or on equal spheres, are to each other as their angles.

Cor. 2. If we denote the area of a tri-rectangular triangle by T, the area of a lune by L, and the angle of the lune by A, the right angle being denoted by 1, we shall have,

L : 8T :: A : 4; $L = T \times 2A$;

whence,

hence, the area of a lune is equal to the area of a trirectangular triangle multiplied by twice the angle of the lune.


Scholium. The spherical wedge, whose angle is MCN, is to the entire sphere, as the angle of the wedge is to four right angles, as may be shown by a course of reasoning entirely analogous to that just employed: hence, we infer that the volume of a spherical wedge is equal to the lune which forms its base, multiplied by one-third of the radius.

PROPOSITION XVI. THEOREM.

Symmetrical triangles are equal in area.

Let ABC and DEF be symmetrical triangles, the side DE being equal to AB, the side DF to AC, and the side EF to BC: then will the triangles be equal in For, conceive a small circle to be drawn through A, B, and C, and let P be its pole; draw arcs of great circles from P to A, B, and C: these

arcs will be equal (D. 7). Draw the arc of a great circle FQ, making the angle DFQ equal to ACP, and lay off on it, FQequal to CP; draw arcs of great circles QD and QE.

In the triangles PAC and FDQ, we have the side FD

equal to AC, by hypothesis; the side FQ equal to PC, by construction, and the angle DFQ equal to ACP, by construction: hence (P. VIII.), the side DQ is equal to AP, the angle FDQ to PAC, and the angle FQD to APC. Now, because the triangles QFD and PAC are isosceles and equal in all their parts, they may be placed so as to coincide throughout, the base FD falling on AC, DQ on CP, and FQ on AP: hence, they are equal in area.

If we take from the angle DFE the angle DFQ, and from the angle ACB the angle ACP, the remaining angles QFE and PCB, will be equal. In the triangles FQE and PCB, we have the side QF equal to PC, by construction, the side FE equal to BC, by hypothesis, and the angle QFE equal to PCB, from what has just been shown: hence, the triangles are equal in all their parts, and being isosceles, they may be placed so as to coincide throughout, the side QE falling on PC, and the side QF on PB; these triangles are, therefore, equal in area.

In the triangles QDE and PAB, we have the sides QD, QE, PA, and PB, all equal, and the angle DQE equal to APB, because they are the sums of equal angles: hence, the triangles are equal in all their parts, and

BOOK IX.

because they are isosceles, they may be so placed as to coincide throughout, the side QD falling on PB, and the side QE on PA; these triangles are, therefore, equal in area.

Hence, the sum of the triangles QFD and QFE, is equal to the sum of the triangles PAC and PBC. If from the former sum we take away the triangle QDE, there will remain the triangle DFE; and if from the latter sum we take away the triangle PAB, there will remain the triangle ABC: hence, the triangles ABC and DEFare equal in area; which was to be proved.

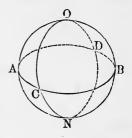
Scholium. If the point P falls within the triangle ABC, the point Q will fall within the triangle DEF. In this case, the triangle DEF is equal to the sum of the triangles QFD, QFE, and QDE, and the triangle ABC is equal to the sum of the equal triangles PAC, PBC, and PAB; the proposition, therefore, still holds good.

PROPOSITION XVII. THEOREM.

If the circumferences of two great circles intersect on the surface of a hemisphere, the sum of the opposite triangles thus formed, is equal to a lune whose angle is equal to that formed by the circles.

Let the circumferences AOB, COD, intersect on the surface of a hemisphere: then will the sum of the opposite triangles AOC, BOD, be equal to the lune whose angle is BOD.

For, produce the arcs OB, OD, on the other hemisphere, till they meet at N. Now, since AOB and OBN



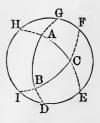
are semi-circumferences, if we take away the common part

GEOMETRY.

OB, we shall have BN equal to AO. For a like reason, we have DN equal to CO, and BD equal to AC: hence, the two triangles AOC, BDN,

have their sides respectively equal: they are therefore symmetrical; consequently, they are equal in area (P. XVI.). But the sum of the triangles BDN, BOD, is equal to the lune OBNDO, whose angle is BOD: hence, the sum of AOC and BOD is equal to the lune whose angle is BOD; which was to be proved.

Schollum. It is evident that the two spherical pyramids, which have the triangles AOC, BOD, for bases, are together equal to the spherical wedge whose angle is BOD.


PROPOSITION XVIII. THEOREM.

The area of a spherical triangle is equal to its spherical excess multiplied by a tri-rectangular triangle.

Let ABC be a spherical triangle : then will its surface be equal to

$$(A+B+C-2)\times T.$$

For, produce its sides till they meet the great circle *DEFG*, drawn at pleasure, without the triangle. By the last theorem, the two triangles *ADE*, *AGH*, are together equal to the lune whose angle is A; but the area of this lune is equal to $2A \times T$ (P. XV., C. 2):

hence, the sum of the triangles ADE and AGH, is equal to $2A \times T$. In like manner, it may be shown that the

sum of the triangles BFG and BID, is equal to $2B \times T$, and that the sum of the triangles CIII and CFE, is equal to $2C \times T$.

But the sum of these six triangles exceeds the hemisphere, or four times T, by twice the triangle ABC. We shall therefore have,

 $2 \times area \ ABC = 2A \times T + 2B \times T + 2C \times T - 4T;$

or, by reducing and factoring,

area
$$ABC = (A + B + C - 2) \times T;$$

which was to be proved.

Scholium 1. The same relation which exists between the spherical triangle ABC, and the tri-rectangular triangle, exists also between the spherical pyramid which has ABC for its base, and the tri-rectangular pyramid. The triedral angle of the pyramid is to the triedral angle of the tri-rectangular pyramid, as the triangle ABC to the tri-rectangular triangle. From these relations, the following consequences are deduced:

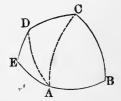
1°. Triangular spherical pyramids are to each other as their bases; and since a polygonal pyramid may always be divided into triangular pyramids, it follows that any two spherical pyramids are to each other as their bases.

2°. Polyedral angles at the centre of the same, or of equal spheres, are to each other as the spherical polygons intercepted by their faces.

Scholium 2. A triedral angle whose faces are perpendicular to each other, is called a *right triedral angle*; and if the vertex be at the centre of a sphere, its faces will intercept a tri-rectangular triangle. The right triedral angle is

GEOMETRY.

taken as the unit of polyedral angles, and the tri-rectangular spherical triangle is taken as its measure. If the vertex of a polyedral angle be taken as the centre of a sphere, the portion of the surface intercepted by its faces will be the measure of the polyedral angle, a tri-rectangular triangle of the same sphere, being the unit.


PROPOSITION XIX. THEOREM.

The area of a spherical polygon is equal to its spherical excess multiplied by the tri-rectangular triangle.

Let ABCDE be a spherical polygon, the sum of whose angles is S, and the number of whose sides is n: then will its area be equal to

$(S-2n+4) \times T$

For, draw the diagonals AC, AD, dividing the polygon into spherical triangles: there will be n-2 such triangles. Now, the area of each triangle is equal to its spherical excess into the tri-rectangular triangle : hence,

the sum of the areas of all the triangles, or the area of the polygon, is equal to the sum of all the angles of the triangles, or the sum of the angles of the polygon diminished by 2(n-2) into the tri-rectangular triangle; or,

area
$$ABCDE = [S - 2(n - 2)] \times T$$
;

whence, by reduction,

area
$$ABCDE = (S - 2n + 4) \times T$$
;

which was to be proved.

BOOK IX.

GENERAL SCHOLIUM.

Through any point on a hemisphere, two arcs of great circles can always be drawn which shall be perpendicular to the vircumference of the base of the hemisphere, and they will in general be unequal. Now, it may be proved, by a course o reasoning analogous to that employed in Book I., Proposition XV.:

1°. That the shorter of the two arcs is the shortest are that can be drawn from the given point to the circumference.

2°. That two oblique arcs drawn from the same point, to points of the circumference at equal distances from the foot of the perpendicular, are equal:

3°. That of two oblique arcs, that is the longer which meets the circumference at the greater distance from the foot of the perpendicular.

This property of the sphere is used in the discussion of triangles in spherical trigonometry.

TRIGONOMETRY

AND

MENSURATION.

INTRODUCTION TO TRIGONOMETRY.

LOGARITHMS.

1. THE LOGARITHM of a number is the exponent of the power to which it is necessary to raise a fixed number, to produce the given number.

The fixed number is called the *base of the system*. Any positive number, except 1, may be taken as the base of a system. In the common system, the base is 10.

2. If we denote any positive number by n, and the corresponding exponent of 10, by x, we shall have the exponential equation,

 $10^{z} = n. \ldots \ldots \ldots \ldots (1.)$

In this equation, x is, by definition, the logarithm of n, which may be expressed thus,

$$x = \log n. \ldots (2.)$$

3. From the definition of a logarithm, it follows that, the logarithm of any power of 10 is equal to the exponent of that power: hence the formula,

$$\log (10)^p = p. \dots (3.)$$

If a number is an exact power of 10, its logarithm is a whole number.

'INTRODUCTION.

If a number is not an exact power of 10, its logarithm will not be a whole number, but will be made up of an entire part plus a fractional part, which is generally expressed decimally. The entire part of a logarithm is called the characteristic, the decimal part, is called the mantissa.

4. If, in Equation (3), we make p successively equal to 0, 1, 2, 3, &c., and also equal to -0, -1, -2, -3, &c., we may form the following

TABLE.

log	1	=	0				
\log	10	==	1٠	log	.1	=	- 1
log	100	=	2	\log	.01	=	- 2
log	1000	==	3	\log	.001	=	- 3
	&c.,	æc.			&c.,	&c.	

If a number lies between 1 and 10, its logarithm lies between 0 and 1, that is, it is equal to 0 *plus* a decimal; if a number lies between 10 and 100, its logarithm is equal to 1 *plus* a decimal; if between 100 and 1000, its logarithm is equal to 2 *plus* a decimal; and so on : hence, we have the following

RULE.

The characteristic of the logarithm of an entire number is positive, and numerically 1 less than the number of places of figures in the given number.

If a decimal fraction lies between .1 and 1, its loga rithm lies between -1 and 0, that is, it is equal to -1*plus* a decimal; if a number lies between .01 and .1, its logarithm is equal to -2, *plus* a decimal; if between .001 and .01, its logarithm is equal to -3, *plus* a decimal; and so on : hence, the following

TRIGONOMETRY.

RULE.

The characteristic of the logarithm of a decimal fraction is negative, and numerically 1 greater than the number of 0's that immediately follow the decimal point.

The characteristic alone is negative, the mantissa being always positive. This fact is indicated by writing the negative sign over the characteristic: thus, $\overline{2.371465}$, is equivalent to -2 + .371465.

It is to be observed, that the characteristic of the logarithm of a mixed number is the same as that of its entire part. Thus, the mixed number 74.103, lies between 10 and 100; hence, its logarithm lies between 1 and 2, as does the logarithm of 74.

GENERAL PRINCIPLES.

5. Let m and n denote any two numbers, and xand y their logarithms. We shall have, from the defini tion of a logarithm, the following equations,

 $10^{x} = m.$ (4.)

$$10^{9} = n.$$
 (5.)

Multiplying (4) and (5), member by member, we have,

$$10^{x+y} = mn$$
;

whence, by the definition,

$$x + y = \log(mn)$$
. (6.)

That is, the logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.

INTRODUCTION.

6. Dividing (4) by (5), member by member, we have,

$$10^{x-y} = \frac{m}{n};$$

whence, by the definition,

$$x - y = \log\left(\frac{m}{n}\right) \cdot \cdot \cdot \cdot \cdot (7.)$$

That is, the logarithm of a quotient is equal to the logarithm of the dividend diminished by that of the divisor.

7. Raising both members of (4) to the power denoted by p, we have,

 $10^{xp} = m^p;$

whence, by the definition,

$$xp = \log m^{p} \cdot \cdot \cdot \cdot \cdot (8.)$$

That is, the logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.

8. Extracting the root, indicated by r, of both members of $(4)_t$, we have,

$$10^{\frac{m}{r}} = \sqrt{m};$$

whence, by the definition,

$$\frac{x}{r} = \log \sqrt[r]{m} \cdot \cdot \cdot \cdot (9.)$$

That is, the logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.

The preceding principles enable us to abbreviate the oper ations of multiplication and division, by converting them into the simpler ones of addition and subtraction.

TRIGONOMETRY.

TABLE OF LOGARITHMS.

9. A TABLE OF LOGARITHMS, is a table containing a set of numbers and their logarithms, so arranged, that having given any one of the numbers, we can find its logarithm; or, having the logarithm, we can find the corresponding number.

In the table appended, the complete logarithm is given for all numbers from 1 up to 10,000. For other numbers, the mantissas alone are given; the characteristic may be found by one of the rules of Art. 4.

Before explaining the use of the table, it is to be shown that the mantissa of the logarithm of any number is not changed by multiplying or dividing the number by any exact power of 10.

Let *n* represent any number whatever, and 10^p any power of 10, *p* being any whole number, either positive or negative. Then, in accordance with the principles of Arts. 5 and 3, we shall have,

 $\log (n \times 10^{p}) = \log n + \log 10^{p} = p + \log n;$

but p is, by hypothesis, a whole number: hence, the decimal part of the $\log (n \times 10^{p})$ is the same as that of $\log n$; which was to be proved.

Hence, in finding the mantissa of the logarithm of a number, we may regard the number as a decimal, and move the 'decimal point to the right or left, at pleasure. Thus, the mantissa of the logarithm of 456357, is the same as that of the number 4563.57; and the mantissa of the logarithm of 2.00357, is the same as that of 2003.57.

INTRODUCTION.

MANNER OF USING THE TABLE.

1°. To find the logarithm of a number less than 100.

10. Look on the first page, in the column headed "N," for the given number; the number opposite is the logarithm required. Thus,

 $\log 67 = 1.826075.$

2°. To find the logarithm of a number between 100 and 10,000.

11. Find the characteristic by the first rule of Art. 4.

To find the mantissa, look in the column headed "N," for the first three figures of the number; then pass along a horizontal line until you come to the column headed with the fourth figure of the number; at this place will be found four figures of the mantissa, to which, two other figures, taken from the column headed "0," are to be prefixed. If the figures found stand opposite a row of six figures, in the column headed "0," the first two of this row are the ones to be prefixed; if not, ascend the column till a row of six figures is found; the first two, of this row, are the ones to be prefixed.

If, however, in passing back from the four figures, first found, any *dots* are passed, the two figures to be prefixed must be taken from the hne immediately below. If the figures first found fall at a place where dots occur, the dots must be replaced by 0's, and the figures to be prefixed must be taken from the *line below*. Thus,

> Log 8979 = 3.953228 Log 3098 = 3.491081 Log 2188 = 3.340047

TRIGONOMETRY.

3°. To find the logarithm of a number greater than 10,000.

12. Find the characteristic by the first rule of Art. 4.

Fo find the mantissa, place a decimal point after the fourth figure (Art. 9), thus converting the number into a mixed number. Find the mantissa of the entire part, by the method last given. Then take from the column headed "D," the corresponding *tabular difference*, and multiply this by the decimal part and add the product to the mantissa just found. The result will be the required mantissa.

It is to be observed that when the decimal part of the product just spoken of is equal to or exceeds .5, we add 1 to the entire part, otherwise the decimal part is rejected.

EXAMPLE.

1. To find the logarithm of 672887.

The characteristic is 5. Placing a decimal point after the fourth figure, the number becomes 6728.87. The mantissa of the logarithm of 6728 is 827886, and the corresponding number in the column "D" is 65. Multiplying 65 by .87, we have 56.55; or, since the decimal part exceeds .5, 57. We add 57 to the mantissa already found, giving 827943, and we finally have,

$\log 672887 = 5.827943.$

The numbers in the column "D" are the differences between the logarithms of two consecutive whole numbers, and are found by subtracting the number under the heading "4" from that under the heading "5."

In the example last given, the mantissa of the logarithm of 6728 is 827886, and that of 6729 is 827951, and their difference is 65; 87 hundredths of this difference is

INTRODUCTION.

57: hence, the mantissa of the logarithm of 6728.87 is found by adding 57 to 827886. The principle employed is, that the differences of numbers are proportional to the differences of their logarithms, when these differences are small.

4°. To find the logarithm of a decimal.

13. Find the characteristic by the second rule of Art. 4. To find the mantissa, drop the decimal point, thus reducing the decimal to a whole number. Find the mantissa of the logarithm of this number, and it will be the mantissa required. Thus,

5°. To find the number corresponding to a given logarithm.

14. The rule is the reverse of those just given. Look in the table for the mantissa of the given logarithm. If it cannot be found, take out the next less mantissa, and also the corresponding number, which set aside. Find the difference between the mantissa taken out and that of the given logarithm; annex as many 0's as may be necessary, and divide this result by the corresponding number in the column "D." Annex the quotient to the number set aside, and then point off, from the left hand, a number of places of figures equal to the characteristic plus 1: the result will be the number required. If the characteristic is negative, the result will be a pure decimal, and the number of 0's which immediately follow the decimal point will be one less than the number of units in the characteristic.

TRIGONOMETRY.

EXAMPLES.

1. Let it be required to find the number corresponding to the logarithm 5.233568.

The next less mantissa in the table is 233504; the corresponding number is 1712, and the tabular difference is 253.

OPERATION.

Given mantissa, · · · · 233568 Next less mantissa, · · · <u>233504</u> · · <u>1712</u> <u>253</u>) 6400000 (25296

... The required mumber is 171225.296.

The number corresponding to the logarithm $\overline{2.233568}$ is .0171225.

2. What is the number corresponding to the logarithm $\overline{2.785407}$? Ans. .06101084.

3. What is the number corresponding to the logarithm 1.846741? Ans. .702653.

MULTIPLICATION BY MEANS OF LOGARITHMS.

15. From the principle proved in Art. 5, we deduce the following

RULE.

Find the logarithms of the factors, and take their sum, then find the number corresponding to the resulting logarithm, and it will be the product required.

INTRODUCTION.

EXAMPLES.

1. Multiply 23.14 by 5.062.

OPERATION.

log 23.14	•	•	•	1.364363			
log 5.062	•	•	•	0.704322			
				2.068685	. • •	117.1347,	product.

2. Find the continued product of 3.902, 597.16, and 0.0314728.

OPERATION.

log	3.902	•	•	•	0.591287		,
log	597.16	•	•	•	2.776091		
log	0.0314728	•	•	•	$\overline{2.497936}$		
					1.865314	 73.3354,	product.

Here, the $\overline{2}$ cancels the + 2, and the 1 carried from the decimal part is set down.

3. Find the continued product of 3.586, '2.1046, 0.8372, and 0.0294. Ans. 0.1857615.

DIVISION BY MEANS OF LOGARITHMS.

16. From the principle proved in Art. 6, we have the following

RULE.

Find the logarithms of the dividend and divisor, and subtract the latter from the former; then find the number corresponding to the resulting logarithm, and it will be the quotient required.

TRIGONOMETRY.

EXAMPLES.

1. Divide 24163 by 4567.

OPERATION.

log	24163	٠	•	•	4.383151
log	4567	•	•	•	3.659631
					0.723520

5.29078, quotient,

Divide 0.7438 by 12.9476. 2

OPERATION.

					2.759267	 0.057447,	quotient.
log	12.9476	•	•	•	1.112189		
log	0.7438	•	•	•	$\bar{1.871456}$		

Here, 1 taken from $\overline{1}$, gives $\overline{2}$ for a result. The subtraction, as in this case, is always to be performed in the algebraic sense.

3. Divide 37.149 by 523.76.

Ans. 0.0709274.

The operation of division, particularly when combined with that of multiplication, can often be simplified by using the principle of

THE ARITHMETICAL COMPLEMENT.

17. The ARITHMETICAL COMPLEMENT of a logarithm is the result obtained by subtracting it from 10. Thus, 8.130456 is the arithmetical complement of 1.869544. The arithmetical complement of a logarithm may be written out by commencing at the left hand and subtracting each figure from 9, 18

INTRODUCTION.

until the last significant figure is reached, which must be taken from 10. The arithmetical complement is denoted by the symbol (a. c.).

Let a and b represent any two logarithms whatever, and a - b their difference. Since we may add 10 to, and subtract it from, a - b, without altering its value, we have,

$$a-b = a + (10-b) - 10. . . (10.)$$

But, 10 - b is, by definition, the arithmetical complement of b: hence, Equation (10) shows that the difference between two logarithms is equal to the first, plus the arithmetical complement of the second, minus 10.

Hence, to divide one number by another by means of the arithmetical complement, we have the following

RULE.

Find the logarithm of the dividend, and the arithmetical complement of the logarithm of the divisor, add them together, and diminish the sum by 10; the number corresponding to the resulting logarithm will be the quotient required.

EXAMPLES.

1. Divide 327.5 by 22.07.

OPERATION.

\log	327.5		•	•	2.515211		
(a. c.) log	22.07	•	•	•	8.656198		
					1.171409	 14.839,	quotient

2. Divide 37 149 by 523.76.

Ans. 0.0709273.

TRIGONOMETRY.

3. Multiply 358884 by 5672, and divide the product by 89721.

OPERATION.

4. Solve the proportion,

3976 : 7952 : : 5903 : x.

Applying logarithms, the logarithm of the 4th term, is equal to the sum of the logarithms of the 2d and 3d terms, minus the logarithm of the 1st: Or, the arithmetical complement of the 1st term, plus the logarithm of the 2d term, plus the logarithm of the 3d term, minus 10, is equal to the logarithm of the 4th term.

OPERATION.

(a. c.)	log 3976	•			6.400554		
	log 7952				3.900476		
	$\log 5903$	•		•	3.771073		
	$\log x$	•	•		4.072103	. •.	x = 11806

The operation of subtracting 10, is performed mentally.

RAISING OF POWERS BY MEANS OF LOGARITHMS.

18. From Article 7, we have the following

RULE.

Find the logarithm of the number, and multiply it by the exponent of the power; then find the number corresponding to the resulting logarithm, and it will be the power required.

INTRODUCTION.

EXAMPLES.

1. Find the 5th power of 9.

OPERATION.

 $\log 9 \cdot \cdot \cdot 0.954243$ <u>5</u> <u>4.771215</u> . . . 59049, power.

2. Find the 7th power of 8. Ans. 2097152.

EXTRACTING ROOTS BY MEANS OF LOGARITHMS.

19. From the principle proved in Art. 8, we have the following

RULE.

Find the logarithm of the number, and divide it by the index of the root; then find the number corresponding to the resulting logarithm, and it will be the root required.

EXAMPLES.

1. Find the cube root of 4096.

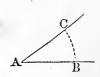
The logarithm of 4096 is 3.612360, and one-third of this is 1.204120. The corresponding number is 16, which is the root sought.

When the characteristic is negative and not divisible by the index, add to it the smallest negative number that will make it divisible, and then prefix the same number, with a plus sign, to the mantissa.

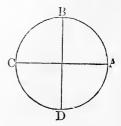
2. Find the 4th root of .00000081.

The logarithm of .00000081 is $\overline{7.908485}$, which is equal to $\overline{8} + 1.908485$, and one-fourth of this is $\overline{2.477121}$.

The number corresponding to this logarithm is 03: hence, .03 is the root required.


20 PLANE TRIGONOMETRY is that branch of Mathematics which treats of the *solution* of plane triangles.

In every plane triangle there are six parts : three sides and three angles. When three of these parts are given, one being a side, the remaining parts may be found by computation. The operation of finding the unknown parts, is called the solution of the triangle.


21. A plane angle is measured by the arc of a circle included between its sides, the centre of the circle being at the vertex, and its radius being equal to 1.

Thus, if the vertex A be taken as a centre, and the radius AB be equal to 1, the intercepted arc BCwill measure the angle A (B. III., P. XVII., S.).

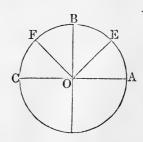
Let ABCD represent a circle whose 1, and AC, BD, two diameters perpendicular to each other. These diameters divide the circumference into four equal parts, called quadrants; and because each of the angles at the centre is a right angle, it follows that a right angle is measured by a quad-

radius is equal to

18

rant. An acute angle is measured by an arc less than a quadrant, and an obtuse angle, by an arc greater than a quadrant.

22. In Geometry, the unit of angular measure is a right angle; so in Trigonometry, the primary unit is a quadrant, which is the measure of a right angle.


For convenience, the quadrant is divided into 90 equal parts, each of which is called a *degree*; each degree into 60 equal parts, called *minutes*; and each minute into 60 equal parts, called *seconds*. Degrees, minutes, and seconds, are denoted by the symbols °, ', ". Thus, the expression 7° 22' 33", is read, 7 *degrees*, 22 *minutes*, and 33 *seconds*. Fractional parts of a second are expressed decimally.

A quadrant contains 324,000 seconds, and an arc of 7° 22' 33" contains 26553 seconds; hence, the angle measured by the latter arc, is the $\frac{25553}{324000}$ th part of a right angle. In like manner, any angle may be expressed in terms of a right angle.

23. The complement of an arc is the difference between

that arc and 90°. The complement of an angle is the difference between that angle and a right angle.

Thus, EB is the complement of AE, and FB is the complement of AF. In like manner, EOBis the complement of AOE, and FOB is the complement of AOF.

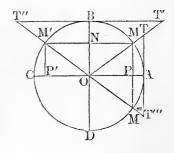
In a right-angled triangle, the acute angles are complements of each other.

24. The supplement of an arc is the difference between

that arc and 180°. The supplement of an angle is the difference between that angle and two right angles.

Thus, EC is the supplement of AE, and FC the supplement of AF. In like manner, EOC is the supplement of AOE, and FOC the supplement of AOF.

In any plane triangle, either angle is the supplement of the sum of the other two.


25. Instead of employing the arcs themselves, we usually employ certain *functions* of the arcs, as explained below. A *function* of a quantity is something which depends upon that quantity for its value.

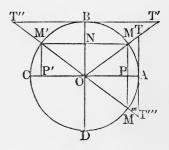
The following functions are the only ones needed for solving triangles :

26. The sine of an arc is the distance of one extremity of the arc from the diameter, through the other extremity.

Thus, PM is the sine of AM, and P'M' is the sine of AM'.

If AM is equal to M'C, AM and AM' will be supplements of each other; and because MM' is parallel to AC, PM will be equal to P'M'(B. I., P. XXIII.): hence, the sine of an arc is equal to the sine of its supplement.

27. The cosine of an arc is the sine of the complement of the arc.


Thus, NM is the cosine of AM, and NM' is the cosine of AM'. These lines are respectively equal to OP and OP'.

It is evident, from the equal triangles of the figure, that the cosine of an arc is equal to the cosine of its supplement.

28. The *tangent* of an arc is the perpendicular to the radius at one extremity of the arc, limited by the prolongation of the diameter through the other extremity

Thus, AT is the tangent of the arc AM, and AT''' is the tangent of the arc AM'.

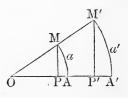
If AM is equal to M'C, AM and AM' will be supplements of each other. But AM'''and AM' are also supplements of each other : hence, the arc AM is equal to the arc AM''', and the corresponding angles,

AOM and AOM''', are also equal. The right-angled triangles AOT and AOT''', have a common base AO, and the angles at the base equal; consequently, the remaining parts are respectively equal: hence, AT is equal to AT'''. But AT is the tangent of AM, and $AT'''_{t'}$ is the tangent of AM': hence, the tangent of an arc is equal to the tangent of its supplement.

It is to be observed that no account is taken of the algebraic signs of the cosines and tangents, the numerical values alone being referred to.

29. The *cotangent* of an arc is the tangent of its complement.

Thus, BT'' is the cotangent of the arc AM, and BT'' is the cotangent of the arc AM'.


The sine, cosine, tangent, and cotangent of an arc, a, are, for convenience, written sin a, cos a, tan a, and cot a.

These functions of an arc have been defined on the supposition that the radius of the arc is equal to 1; in this case, they may also be considered as functions of the angle which the arc measures.

Thus, PM, NM, AT, and BT'', are respectively the sine, cosine, tangent, and cotangent of the angle AOM, as well as of the arc AM.

30. It is often convenient to use some other radius than 1; in such case, the functions of the arc, to the radius 1, may be reduced to corresponding functions, to the radius R.

Let AOM represent any angle, AM an arc described from O as a centre with the radius 1, PMits sine; A'M' an arc described from O as a centre, with any raradius R, and P'M' its sine. Then, because OPM and OP'M'are similar triangles, we shall have,

OM : PM :: OM' : P'M', or, 1 : PM :: R : P'M';

whence,

 $PM = \frac{P'M'}{R}$, and, $P'M' = PM \times R$;

and similarly for each of the other functions.

That is, any function of an arc whose radius is 1, is equal to the corresponding function of an arc whose radius is R_i , divided by that radius. Also, any function of an arc whose radius is R, is equal to the corresponding function of an arc whose radius is 1, multiplied by the radius R.

By making these changes in any formula, the formula will be rendered *homogeneous*.

TABLE OF NATURAL SINES.

31. A NATURAL SINE, COSINE, TANGENT, OR COTANGENT, is the sine, cosine, tangent, or cotangent of an arc whose radius is 1.

A TABLE OF NATURAL SINES is a table by means of which the natural sine, cosine, tangent, or cotangent of any arc, may be found.

Such a table might be used for all the purposes of trigonometrical computation, but it is found more convenient to employ a table of logarithmic sines, as explained in the next article.

TABLE OF LOGARITHMIC SINES.

32. A LOGARITHMIC SINE, COSINE, TANGENT, OF COTAN-GENT is the logarithm of the sine, cosine, tangent, or cotangent of an arc whose radius is 10,000,000,000.

A TABLE OF LOGARITHMIC SINES is a table from which the logarithmic sine, cosine, tangent, or cotangent of any arc may be found.

The logarithm of the tabular radius is 10.

Any logarithmic function of an arc may be found by multiplying the corresponding *natural* function by 10,000,000,000 (Art. 30), and then taking the logarithm of the result; or more simply, by taking the logarithm of the corresponding *natural* function, and then adding 10 to the result (Art. 5).

33. In the table appended, the logarithmic functions are given for every *minute* from 0° up to 90° . In addition, their rates of change for each *second*, are given in the column headed "D."

The method of computing the numbers in the column headed "D," will be understood from a single example. The logarithmic sines of 27° 34', and of 27° 35', are, respectively, 9.665375 and 9.665617. The difference between their mantissas is 242; this, divided by 60, the number of seconds in one minute, gives 4.03, which is the change in the mantissa for 1", between the limits 27° 34' and 27° 35'.

For the sine and cosine, there are separate columns of lifferences, which are written to the right of the respective columns; but for the tangent and cotangent, there is but a single column of differences, which is written between them. The logarithm of the tangent increases, just as fast as that of the cotangent decreases, and the reverse, their sum being always equal to 20. The reason of this is, that the product of the tangent and cotangent is always equal to the square of the radius; hence, the sum of their logarithms must always be equal to twice the logarithm of the radius, or 20.

The angle obtained by taking the degrees from the top of the page, and the minutes from any line on the left hand of the page, is the complement of that obtained by taking the degrees from the bottom of the page, and the minutes from the same line on the right hand of the page. But, by definition, the cosine and the cotangent of an arc are, respectively, the sine and the tangent of the complement of that are (Arts. 26 and 28): hence, the columns designated *sine* and *tang*, at the top of the page, are designated *cosine* and *cotang* at the bottom.

USE OF THE TABLE.

To find the logarithmic functions of an arc which is expressed in degrees and minutes.

34. If the arc is less than 45°, 100k for the degrees at the top of the page, and for the minutes in the left hand column; then follow the corresponding horizontal line till you

come to the column designated at the top by sine, cosine, tang, or cotang, as the case may be; the number there found is the logarithm required. Thus,

> log sin 19° 55′ · · · 9.532312 log tan 19° 55′ · · · 9.559097

If the angle is greater than 45°, look for the degrees at the bottom of the page, and for the minutes in the right hand column; then follow the corresponding horizontal line backwards till you come to the column designated at the bottom by *sine*, *cosine*, *tang*, or *cotang*, as the case may be; the number there found is the logarithm required. Thus,

> log cos 52° 18' · · · 9.786416 log tan 52° 18' · · · 10.111884

To find the logarithmic functions of an arc which is expressed in degrees, minutes, and seconds.

35. Find the logarithm corresponding to the degrees and minutes as before; then multiply the corresponding number taken from the column headed "D," by the number of seconds, and add the product to the preceding result, for the sine or tangent, and subtract it therefrom for the cosine or cotangent.

EXAMPLES.

1. Find the logarithmic sine of 40° 26' 28".

OPERATION.

$\log \sin 40^{\circ} 26' \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	9.811952
Tabular difference 2.47	
No. of seconds 28	
Product $\cdot \cdot \cdot \overline{69.16}$ to be added $\cdot \cdot$	69
$\log \sin 40^{\circ} 26' 28'' \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	9.812021

 $\mathbf{24}$

The same rule is followed for decimal parts, as in Art. 12.

2. Find the logarithmic cosine of 53° 40' 40".

OPERATION.

$\log \cos 53^\circ 40' \cdot \cdot \cdot$	• • • • • •	9.772675
Tabular difference 2.86		
No. of seconds 40		
Product • • • 114.40	to be subtracted	114
log cos 53° 40' 40" \cdot		9.772561

If the arc is greater than 90°, we find the required function of its supplement (Arts. 26 and 28).

3. Find the logarithmic tangent of 118° 18' 25".

OPERATION.

 180° Given arc $\cdot \cdot \cdot \cdot \cdot \cdot \frac{118^{\circ} \ 18' \ 25''}{61^{\circ} \ 41' \ 35''}$ log tan 61° 41′ $\cdot \cdot 10.268556$ Tabular difference 5.04
No. of seconds 35
Product $\cdot \cdot \cdot 176.40$ to be added $\cdot \frac{176}{10.268732}$ log tan 118° 18′ 25″ $\cdot \cdot 10.268732$

4. Find the logarithmic sine of 32° 18′ 35″. Ans. 9.727945.

5. Find the logarithmic cosine of 95° 18' 24". Ans. 8.966080.

Find the logarithmic cotangent of 125° 23' 50".
 Ans. 9.851619.

To find the arc corresponding to any logarithmic function.

36. This is done by reversing the preceding rule: Look in the proper column of the table for the given logarithm; if it is found there, the degrees are to be taken from the top or bottom, and the minutes from the left or right hand column, as the case 'may be. If the given logarithm is not found in the table, then find the next less logarithm, and take from the table the corresponding degrees and minutes, and set them aside. Subtract the logarithm found in the table, from the given logarithm, and divide the remainder by the corresponding tabular difference. The quotient will be seconds, which must be *added* to the degrees and minutes set aside, in the case of a sine or tangent, and *subtracted*, in the case of a cosine or a cotangent.

EXAMPLES.

1. Find the arc corresponding to the logarithmic sine 9.422248.

OPERATION.

Given logarithm $\cdot \cdot \cdot 9.422248$ Next less in table $\cdot \cdot \cdot 9.421857 \cdot \cdot \cdot 15^{\circ} 19'$ Tabular difference 7.68) 391.00 (51", to be added. Hence, the required arc is 15° 19' 51".

1

2. Find the arc corresponding to the logarithmic cosine 9.427485.

OPERATION.

Given logarithm ·	· · 9.427485	
Next less in table	• • 9.427354 • • • 74° 29'.	
	7.58) 131.00 (17, to be subt.	
Hence, the required	arc is 74° 28' 43".	

 $\mathbf{26}$

3. Find the arc corresponding to the logarithmic sine 9.880054. Ans. 49° 20' 50".

4. Find the arc corresponding to the logarithmic cotangent 10.008688. Ans. 44° 25' 37".

5. Find the arc corresponding to the logarithmic cosine 9.944599. 9.66-201 Ans. 28° 19' 45".

SOLUTION OF RIGHT-ANGLED TRIANGLES.

37. In what follows, we shall designate the three angles of every triangle, by the capital letters A, B, and C, A denoting the right angle; and the sides lying opposite the angles, by the corresponding small letters a, b, and c. Since the order in which these letters are placed may be changed, it follows that whatever is proved with the letters placed in any given order, will be equally true when the letters are correspondingly placed in any other order.

Let CAB represent any triangle, right-angled at A. With C as a centre, and a radius CD, equal to 1, describe the arc DG, and draw GFand DE perpendicular to CA: then will EG^{+} be the sine of the angle

will FG^* be the sine of the angle C, CF will be its cosine, and DE its tangent.

Since the three triangles CFG, CDE, and CAB are similar (B. IV., P. XVIII.), we may write the propor tions,

CB: AB:: CG: FG,	or,	a	:	C	::	1	:	\sin	C
CB: CA:: CG: CF,	or,	a	:	Ъ	::	1	:	cos	<i>C</i> .
CA: AB:: CD: DE,	or,	Ъ	:	с	::	1	:	tan	С,

hence, we have (B. II., P. I.),

 $c = a \sin C \cdot \cdot \cdot (1.)$ $b = a \cos C \cdot \cdot (2.)$ $c = b \tan C \cdot \cdot (3.)$ $\begin{cases} \sin C = \frac{c}{a}, \cdot \cdot (4.) \\ \cos C = \frac{b}{a}, \cdot \cdot (5.) \\ \tan C = \frac{c}{b}, \cdot \cdot (6.) \end{cases}$

Translating these formulas into ordinary language, we have the following

PRINCIPLES.

1. The perpendicular of any right-angled triangle is equat to the hypothenuse into the sine of the angle at the base.

2. The base is equal to the hypothenuse into the cosine of the angle at the base.

3. The perpendicular is equal to the base into the tangent of the angle at the base.

4. The sine of the angle at the base is equal to the perpendicular divided by the hypothenuse.

5. The cosine of the angle at the base is equal to the base divided by the hypothenuse.

6. The tangent of the angle at the base is equal to the perpendicular divided by the base.

Either side about the right angle may be regarded as the base; in which case, the other is to be regarded as the perpendicular. We see, then, that the above principles are sufficient for the solution of every case of right-angled triangles. When the table of logarithmic sines is used, in the solution, Formulas (1) to (6) must be made homogeneous, by substituting for sin C, cos C, and tan C, respectively,

 $\frac{\sin C}{R}$, $\frac{\cos C}{R}$, and $\frac{\tan C}{R}$, R being equal to 10,000,000, as explained in Art. 30.

Making these changes, and reducing, we have,

c	=	$\frac{a \sin C}{R}$	•	•	•	(7.)	$\sin C = \frac{Rc}{a} \cdot \cdot \cdot (10)$
ь	=	$\frac{a \cos C}{R}$	•	•	•	(-8.)	$\cos C = \frac{Rb}{a} \cdot \cdot (11.)$
e	=	$\frac{b \ \tan C}{R}$	•	•	•	(9.)	$\tan C = \frac{Rc}{b} \cdot \cdot \cdot (12.)$

In applying logarithms to these formulas, remember, that the sum of the logarithms of the two terms which multiply together, is equal to the sum of the logarithms of the other two terms, and that the required term comes last in the operation. Also, that the logarithm of R is 10, and the arithmetical complement of it, is 0.

There are four cases.

CASE I.

Given the hypothenuse and one of the acute angles, to find the remaining parts.

38. The other acute angle may be found by subtracting the given one from 90° (Art. 23).

The sides about the right angle may be found by Formulas (7) and (8).

EXAMPLES.

1. Given a = 749, and $C = 47^{\circ} 03' 10''$; required *B*, *c*, and *b*.

OPERATION.

 $B = 90^{\circ} - 47^{\circ} 03' 10'' = 42^{\circ} 56' 50''.$

Applying logarithms to formula (7), we have,

 $\log a + \log \sin C - 10 = \log c;$ $\log a \quad (749) \quad \dots \quad 2.874482$ $\log \sin C \quad (47^{\circ} \ 03' \ 10'') \quad 9.864501$ $\log c \quad \dots \quad \dots \quad 2.738983 \quad \dots \quad c = 548.255.$

Applying logarithms to Formula (8), we have,

 $\log a + \log \cos C - 10 = \log b;$ $\log a \quad (749) \quad \dots \quad 2.874481$ $\log \cos C \quad (47^{\circ} \ 03' \ 10'') \quad 9.833354$ $\log b \quad \dots \quad \dots \quad 2.707835 \quad \dots \quad b = 510.31.$ Ans. $B = 42^{\circ} \ 56' \ 50'', \ b = 510.31, \ \text{and} \ c = 548.255.$

2. Given a = 439, and $B = 27^{\circ} 38' 50''$, to find C, c, and b.

OPERATION.

 $C = 90^{\circ} - 27^{\circ} 38' 50'' = 62^{\circ} 21' 10'';$ $\log a \quad (439) \quad \dots \quad 2.642465$ $\log \sin C \quad (62^{\circ} 21' 10'') \quad 9.947346$ $\log c \quad \dots \quad \dots \quad 2.589811 \quad \dots \quad c = 388.875.$ $\log a \quad (439) \quad \dots \quad 2.642465$ $\log \cos C \quad (62^{\circ} 21' 10'') \quad 9.666543$ $\log b \quad \dots \quad \dots \quad 2.309008 \quad \dots \quad b = 203.708.$ Ans. $C = 62^{\circ} 21' 10'', \ b = 203.708, \ \text{and} \ c = 388.875.$

3. Given a = 125.7 yds., and $B = 75^{\circ} 12'$, to find the other parts.

Ans. $C = 14^{\circ}$ 48', b = 121.53 yds., and c = 32.11 yds.

CASE II.

Given one of the sides about the right angle and one of the acute angles, to find the remaining parts.

39. The other acute angle may be found by subtracting the given one from 90°.

The hypothenuse may be found by Formula (7), and the unknown side about the right angle, by Formula (8).

EXAMPLES.

1. Given c = 56.293, and $C = 54^{\circ} 27' 39''$, to find B, a, and b.

OPERATION.

 $B = 90^{\circ} - 54^{\circ} 27' 39'' = 35^{\circ} 32' 21''$

Applying logarithms to Formula (7), we have,

 $\log c + 10 - \log \sin C = \log a;$

but, $10 - \log \sin C = (a. c.)$ of $\log \sin C$; whence,

Applying logarithms to Formula (8), we have,

 $\log a \quad (69.18) \quad . \quad . \quad 1.839981$ $\log \cos C \quad (54^{\circ} \ 27' \ 39'') \quad . \quad 9.764370$ $\log b \quad . \quad . \quad . \quad . \quad 1.604351 \quad . \quad b = 40.2114.$ Ans. $B = 35^{\circ} \ 32' \ 21'', \ a = 69.18, \ \text{and} \ b = 40.2114.$

$$\log a + \log \cos C - 10 = \log b;$$

2. Given c = 358, and $B = 28^{\circ} 47'$, to find C, a. and b

OPERATION.

 $C = 90^{\circ} - 28^{\circ} 47' = 61^{\circ} 13'.$

We have, as before,

 $\log c + 10 - \log \sin C = \log a;$ $\log c \qquad (358) \qquad . \qquad 2.553883$ (a. c.) $\log \sin C \qquad (61^{\circ} 13') \qquad . \qquad 0.057274$ $\log a \qquad . \qquad . \qquad . \qquad 2.611157 \qquad . \qquad . \qquad a = 408.466;$

Also,
$$\log a + \log \cos C - 10 = \log b$$
;

Ans. $C = 61^{\circ} 13'$, a = 408.466, and b = 196.676.

3. Given b = 152.67 yds., and $C = 50^{\circ} 18' 32''$, to find the other parts.

Ans. $B = 39^{\circ} 41' 28''$, c = 183.95, and a = 239.05.

4. Given c = 379.628, and $C = 39^{\circ} 26' 16''$, to find B, a, and b.

Ans. $B = 50^{\circ} 33' 44''$, a = 597.613, and b = 461.55.

CASE III.

Given the two sides about the right angle, to find the re maining parts.

40. The angle at the base may be found by Formula (12), and the solution may be completed as in Case II.

 $\mathbf{32}$

EXAMPLES.

1. Given b = 26, and c = 15, to find C, B, and a.

OPERATION.

Applying logarithms to Formula (12), we have,

 $\log c + 10 - \log b = \log \tan C;$

 $B = 90^{\circ} - C = 60^{\circ} 01' 06''$.

As in Case II., $\log c + 10 - \log \sin c = \log a$;

Ans. $C = 29^{\circ} 58' 54''$, $B = 60^{\circ} 01' 06''$, and a = 30.017.

2. Given b = 1052 yds., and c = 347.21 yds., to find **B**, C, and a. $B = 71^{\circ} 44' 05''$, $C = 18^{\circ} 15' 55''$, and a = 1107.82 yds.

3. Given b = 122.416, and c = 118.297, to find *B*, *U*, and *a*.

 $B = 45^{\circ} 58' 50''$, $C = 44^{\circ} 1' 10''$, and a = 170.235

4. Given b = 103, and c = 101, to find B, C and α .

ę

 $B = 45^{\circ} 33' 42''$, $C = 44^{\circ} 26' 18''$, and a = 144.256.

CASE IV.

Given the hypothenuse and either side about the right angle, to find the remaining parts.

41. The angle at the base may be found by one of Formulas (10) and (11), and the remaining side may then be found by one of Formulas (7) and (8).

EXAMPLES.

1. Given a = 2391.76, and b = 385.7, to find C, B, and c.

OPERATION.

Applying logarithms to Formula (11), we have,

 $\log b + 10 - \log a = \log \cos C;$

 $B = 90^{\circ} - 80^{\circ} 43' 11'' = 9^{\circ} 16' 19''.$

From Formula (7), we have,

$$\log a + \log \sin C - 10 = \log c;$$

$$\log a \quad (2391.76) \quad 3.378718 \\ \log \sin C \quad (80^{\circ} \ 43' \ 11'') \quad \frac{9.994278}{3.372996} \\ \log c \quad \cdots \quad \cdots \quad \frac{3.372996}{3.372996} \quad \cdots \quad c = 2360.45.$$

Ans. $B = 9^{\circ} 16' 49''$, $C = 80^{\circ} 43' 11''$, and c = 2360.45.

2. Given a = 127.174 yds., and c = 125.7 yds., to find C B, and b.

OPERATION.

From Formula (10), we have,

 $\log c + 10 - \log a = \log \sin C;$

 $B = 90^{\circ} - 81^{\circ} \ 16' \ 6'' = 8^{\circ} \ 43' \ 54''.$

From Formula (8), we have,

 $\log a + \log \cos C - 10 = \log b;$

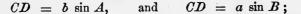
Ans. $B = 8^{\circ} 43' 54''$, $C = 81^{\circ} 16' 6''$, and b = 19.3 yds.

3. Given a = 100, and b = 60, to find B, C, and c. Ans. $B = 36^{\circ} 52' 11''$, $C = 53^{\circ} 7' 49''$, and c = 80.

4. Given a = 19.209, and c = 15, to find *B*, *C*, and *b*.

Ans. $B = 38^{\circ} 39' 30'' C = 51^{\circ} 20' 30'', b = 12.$

SOLUTION OF OBLIQUE-ANGLED TRIANGLES.


42. In the solution of oblique-angled triangles, *four* cases may arise. We shall discuss these cases in order.

CASE I.

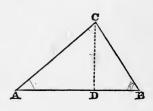
Given one side and two angles, to determine the remaining parts.

43. Let ABC represent any oblique-angled triangle. From the vertex C, draw CD perpendicular to the base, forming two right-angled triangles ACD and BCD. Assume the notation of the figure.

From Formula (1), we have,

Equating these two values, we have,

 $b \sin A = a \sin B;$


whence (B. II., P. II.),

 $a : b :: \sin A : \sin B$. . . (13.)

Since a and b are any two sides, and A and B the angles lying opposite to them, we have the following principle :

The sides of a plane triangle are proportional to the sines of their opposite angles.

It is to be observed that Formula (13) is true for any value of the radius. Hence, to solve a triangle, when a side and two angles are given:

First find the third angle, by subtracting the sum of the given angles from 180°; then find each of the required sides by means of the principle just demonstrated.

EXAMPLES.

1. Given $B = 58^{\circ} 07'$, $C = 22^{\circ} 37'$, and a = 408, to find A, b, and c.

OPERATION.

\boldsymbol{B}	•	•	•	•	•	•	58°	07'			
C	•	•	•	•	•		22°	37'			
\boldsymbol{A}	•			18	30°		80°	44'	=	99°	16'.

To find b, write the proportion,

 $\sin A : \sin B :: a : b;$

that is, the sine of the angle opposite the given side, is to the sine of the angle opposite the required side, as the given side is to the required side.

Applying logarithms, we have (Ex. 4, P. 15),

(:	a. c.) log	g sin	. A -	+ log	\sin	B	+ log	<i>a</i> –	10 =	= log	; b;
(a. c.)	log sin	A	(99°	16')			0.005	705			
	log sin	B	(58°	07')		• •	9.928	3972			
	$\log a$		(408).	•		2.610	660			
	\log	Ъ	• •	• •	•		$\frac{2.545}{2.545}$	337	•••	b =	351.024.
In lil	ke man	ner,	\sin	A :	\sin	C	:: a	: c;			
and,	(a. c.)	sin .	A +	log	\sin	C +	log a	s — 1	0 =	\log	с.
(a. c.)	log sin	A	(99°	16')	•		0.005	705			
	log sin	C	(22°	37')	•		9.584	968			
	$\log a$	•••	(408) .	•	•••	2.610	660			
	\log	с.	• •	• •	•	• •	2.201	333	·••	c =	158.976.

Ans. $A = 99^{\circ}$ 16', b = 351.024, and c = 158.976.

2. Given $A = 38^{\circ} 25'$, $B = 57^{\circ} 42'$, and c = 400, to find C, a, and b.

Ans.
$$C = 83^{\circ} 53'$$
, $a = 249.974$, $b = 340.04$.

3. Given $A = 15^{\circ} 19' 51''$, $C = 72^{\circ} 44' 05''$, and c = 250.4 yds, to find B, a, and b.

Ans. $B = 91^{\circ} 56' 04''$, a = 69.328 yds., b = 262.066 yds.

4. Given $B = 51^{\circ} 15' 35''$, $C = 37^{\circ} 21' 25''$, and a = 305.296 ft., to find A, b, and c.

Ans. $A = 91^{\circ} 23'$, b = 238.1978 ft., c = 185.3 ft.

CASE II.

Given two sides and an angle opposite one of them, to find the remaining parts.

44. The solution, in this case, is commenced by finding a second angle by means of Formula (13), after which we may proceed as in CASE I.; or, the solution may be completed by a continued application of Formula (13).

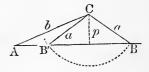
EXAMPLES.

1. Given $A = 22^{\circ} 37'$, b = 216, and a = 117, to find B, C, and c.

From Formula (13), we have,

 $a:b::\sin A:\sin B;$

that is, the side opposite the given angle, is to the side opposite the required angle, as the sine of the given angle is to the sine of the required angle.


Whence, by the application of logarithms,

(a. c.) $\log a + \log b + \log \sin A - 10 = \log \sin B$; (a. c.) $\log a$. . (117) . . 7.931814 $\log b$. . (216) . . 2.334454 $\log \sin A$ (22° 37′) . . 9.584968 $\log \sin B$ 9.581236 . . $B = 45^{\circ} 13' 55''$, and $B' = 134^{\circ} 46' 05''$.

Hence, we find two values of B, which are supplements of each other, because the sine of any angle is equal to the sine of its supplement. This would seem to indicate that the problem admits of two solutions. It now remains to determine under what conditions there will be *two solutions*, one solution, or no solution.

There may be two cases: the given angle may be acute, or it may be obtuse.

First Case. Let ABC represent the triangle, in which the angle A, and the sides a and b are given. From C let fall a perpendicular upon AB, pro-

longed if necessary, and denote its length by p. We shall have, from Formula (1), Art. 37,

$$p = b \sin A$$
;

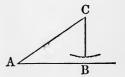
from which the value of p may be computed.

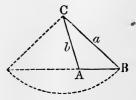
If a is intermediate in value between p and b, there will be *two solutions*. For, if with C as a centre, and a as a radius, an arc be described, it will cut the line AB in two points, B and B', each of which being joined with C, will give a triangle which will conform to the conditions of the problem.

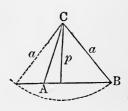
In this case, the angles B' and B, of the two triangles AB'C and ABC, will be supplements of each other.

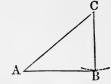
If a = p, there will be but one solution. For, in this case, the arc will be tangent to AB, he two points B and B' will unite, and there will be but a single triangle formed.

In this case, the angle ABC will be equal to 90°.


If a is greater than both pand b, there will also be but one solution. For, although the arc cuts AB in two points, and consequently gives two triangles, only one of them conforms to the conditions of the problem.


In this case, the angle ABC will be less than A, and consequently acute.


If a < p, there will be no solution. For, the arc can neither cut AB, nor be tangent to it.

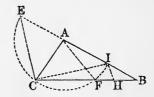

Second Case. When the given angle A is obtuse, the angle ABC will be acute; the side a will be greater than b, and there will be but one solution.

In the example under consideration, there are two solutions, the first corresponding to $B = 45^{\circ} 13' 55''$, and the second to $B' = 134^{\circ} 46' 05''$.

In the first case, we have, $C \ldots \ldots 180^{\circ} - \overline{67^{\circ} 50' 55''} = 112^{\circ} 09' 05''.$ To find c, we have, $\sin B : \sin C : : b : c;$ and (a. c.) $\sin B + \log \sin C + \log b - 10 = \log c$; (a. c.) log sin B (45° 13' 55") . 0.148764 $\log \sin C$ (112° 09′ 05″) . 9.966700 $\log b$. . . (216) . . . 2.334454 log c. 2.449918 $\therefore c = 281.785$. Ans. $B = 45^{\circ} 13' 55''$, $C = 112^{\circ} 09' 05''$, and c = 281.785. In the second case, we have, $C \ldots \ldots 180^{\circ} - 157^{\circ} 23' 05'' = 22^{\circ} 36' 55'';$ and as before, (a. c.) $\log \sin B'$ (134° 46' 05") . 0.148764 $\log \sin C$ (22° 36′ 55″) . 9.584943 $\log b$. . . (216) . . . 2.334454 $\log c \ldots \ldots \ldots \ldots 2.068161 \ldots c = 116.993.$ Ans. $B' = 134^{\circ} 46' 05''$, $C = 22^{\circ} 36' 55''$, and c = 116.993. 2. Given $A = 32^{\circ}$, a = 40, and b = 50, to find B, C, and c. Ans. $\begin{cases} B = 41^{\circ} 28' 59'', \quad C = 106^{\circ} 31' 01'', \quad c = 72.368 \\ B = 138^{\circ} 31' 01'', \quad C = 9^{\circ} 28' 59'', \quad c = 12.436. \end{cases}$

3. Given $A = 18^{\circ} 52' 13''$, a = 27.465 yds., and b = 13.189 yds., to find B, C, and c.

Ans. $B = 8^{\circ} 56' 05''$, $C = 152^{\circ} 11' 42''$, c = 39.611 yds.


4. Given $A = 32^{\circ} 15' 26''$, b = 176.21 ft., and a = 94.047 ft., to find B, C, and c.

Ans. $B = 90^{\circ}$, $C = 57^{\circ} 44' 34''$, c = 149.014 ft.

CASE III.

Given two sides and their included angle, to find the remaining parts.

45. Let ABC represent any plane triangle, AB and AC any two sides, and A their included angle. With A as a centre, and AC, the shorter of the two sides, as a radius, describe a semi-

circle meeting AB in I, and the prolongation of AB in E. Draw CI and EC, and through I draw IH parallel to EC.

Since the angle CAE is exterior to the triangle CBA, we have (B. I., P. XXV., C. 6),

$$CAE = C + B.$$

But the angle CIA is half the angle CAE; hence, $CIA = \frac{1}{2} (C + B).$

Since AC is equal to AF, the angle AFC is equal to the angle C; hence, the angle B plus FAB is equal to C; or FAB is equal to C - B. But ICH = is equal to one-half of FAB;

hence, ICI

 $ICH = \frac{1}{2} (C - E).$

Since the angle ECI is inscribed in a semicircle, it is a right angle (B. III., P. XVIII., C. 2); hence, CE is perpendicular to CI, at the point C. But since HI is parallel to CE, it will also be perpendicular to CI.

From the two right-angled triangles *ICE* and *ICH*, we have (Formula 3, Art. 37),

 $EC = IC \tan \frac{1}{2}(C+B)$, and $III = IC \tan \frac{1}{2}(C-B)$;

hence, from the preceding equations, we have, after omitting the equal factor IC (B. II., P. VII.),

$$EC$$
 : IH :: $\tan \frac{1}{2}(C+B)$: $\tan \frac{1}{2}(C-B)$.

The triangles ECB and IIIB being similar, their homologous sides are proportional; and because EB is equal to AB + AC, and IB to AB - AC, we shall have the proportion,

$$EC$$
 : IH :: $AB + AC$: $AB - AC$.

Combining the preceding proportions, and substituting for AB and AC their representatives c and b, we have, c+b : c-b :: $\tan \frac{1}{2}(C+B)$: $\tan \frac{1}{2}(C-B)$. (14.)

Hence, we have the following principle :

In any plane triangle, the sum of the sides including, either angle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference.

The half sum of the angles may be found by subtracting the given angle from 180°, and dividing the remainder by 2 the half difference may be found by means of the principle just demonstrated. Knowing the half sum and the half

difference, the greater angle is found by adding the half difference to the half sum, and the less angle is found by subtracting the half difference from the half sum. Then the solution is completed as in Case I.

EXAMPLES.

1. Given c = 540, b = 450, and $A = 80^{\circ}$, to find B, C, and a.

OPERATION.

c + b = 990; c - b = 90; $\frac{1}{2}(C+B) = \frac{1}{2}(180^{\circ} - 80^{\circ}) = 50^{\circ}$.

Applying logarithms to Formula (14), we have,

- (a. c.) $\log (c + b) + \log (c b) + \log \tan \frac{1}{2} (C + B) 10 = \log \tan \frac{1}{2} (C B).$
- (a. c.) $\log (c + b)$. . (990) 7.004365 $\log (c - b)$. . (90) 1.954243 $\log \tan \frac{1}{2} (C+B) (50^{\circ})$ 10.076187 $\log \tan \frac{1}{2} (C-B)$ 9.034795 $\therefore \frac{1}{2} (C-B) = 6^{\circ} 11';$

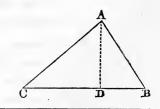
 $C = 50^{\circ} + 6^{\circ} 11' = 56^{\circ} 11'; \quad B = 50^{\circ} - 6^{\circ} 11' = 43^{\circ} 49'.$

From Formula (13), we have,

sin C : sin A : : c : a; whence,

(a. c.)	$\log \sin C$	$(56^{\circ} 11')$	•	0.080492	
	$\log \sin A$	(80°) .	•	9.993351	
	log c	. (540) .	•	2.732394	
	$\log a$.	• • • •	•	2.806237	a = 640.082.
	Ans. 1	$3 = 43^{\circ} 49'$		$C = 56^{\circ} 11',$	a = 640.082.

2. Given c = 1686 yds., b = 960 yds., and $A = 128^{\circ} 04'$, to find *B*, *C*, and *a*. *Ans.* $B = 18^{\circ} 21' 21''$, $C = 33^{\circ} 34' 39''$, a = 2400 yds. 3. Given a = 18.739 yds., b = 7.642 yds., and $C = 45^{\circ} 18 28''$, to find *A*, *B*, and *c*. *Ans.* $A = 112^{\circ} 34' 13''$, $B = 22^{\circ} 07' 19''$, c = 14.426 yds 4. Given a = 464.7 yds, b = 289.3 yds., and $C = 87^{\circ} 03' 48''$, to find *A*, *B*, and *c*. *Ans.* $A = 60^{\circ} 13' 39''$, $B = 32^{\circ} 42' 33''$, c = 534.66 yds. 5. Given a = 16.9584 ft., b = 11.9613 ft., and $C = 60^{\circ} 43' 36''$, to find *A*, *B*, and *c*. *Ans.* $A = 76^{\circ} 04' 10''$, $B = 43^{\circ} 12' 14''$, c = 15.22 ft.


6. Given a = 3754, b = 3277.628, and $C = 57^{\circ} 53' 17''$, to find A, B, and c.

Ans. $A = 68^{\circ} 02' 25''$, $B = 54^{\circ} 04' 18''$, c = 3428.512.

CASE IV.

Given the three sides of a triangle, to find the remaining parts.*

46. Let ABC represent any plane triangle, of which BC is the longest side. Draw AD perpendicular to the base, dividing it into two segments CD and BD.

* The angles may be found by Formula (A) or (B), Lemma. Pages 109, and 110, Mensuration.

From the right-angled triangles CAD and BAD, we have,

$$\overline{AD}^2 = \overline{AC}^2 - \overline{DC}^2$$
, and $\overline{AD}^2 = \overline{AB}^2 - \overline{BD}^2$;

Equating these values of \overline{AD}^2 , we have,

$$\overline{AC^2} - \overline{DC}^2 = \overline{AB^2} - \overline{BD}^2;$$

whence, by transposition,

$$\overline{AC}^2 - \overline{AB}^2 = \overline{DC}^2 - \overline{BD}^2.$$

Factoring each member, we have,

$$(AC + AB) (AC - AB) = (DC + BD) (DC - BD).$$

D

Converting this equation into a proportion (B. II., P. II.), we have,

DC + BD : AC + AB :: AC - AB : DC - BD; or, denoting the segments by s and s', and the sides of the triangle by a, b, and c,

s + s' : b + c :: b - c : s - s'; (15.)

that is, if in any plane triangle, a line be drawn from the vertex of the vertical angle perpendicular to the base, dividing it into two segments; then,

The sum of the two segments, or the whole base, is to the sum of the two other sides, as the difference of these sides is to the difference of the segments.

The half difference added to the half sum, gives the greater, and the half difference subtracted from the half sum gives the less segment We shall then have two rightangled triangles, in each of which we know the hypothenuse and the base; hence, the angles of these triangles may be found, and consequently, those of the given triangle.

EXAMPLES.

1. Given a = 40, b = 34, and e = 25, to find A, B, and C.

OPERATION.

Applying logarithms to Formula (15), we have,

(a. c.) $\log (s + s') + \log (b + c) + \log (b - c) = \log (s - s');$ (a. c.) $\log (s + s') \cdot \cdot (40) \cdot \cdot 8.397940$ $\log (b + c) \cdot \cdot (59) \cdot 1.770852$ $\log (b - c) \cdot \cdot (9) \cdot \frac{0.954243}{1.123035} \cdot \cdot s - s' = 13.275.$ $s = \frac{1}{2} (s + s') + \frac{1}{2} (s - s') = 26.6375$

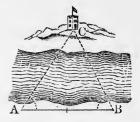
$$s' = \frac{1}{2}(s + s') - \frac{1}{2}(s - s') = 13.3625$$

From Formula (11), we find,

log s + (a. c.) log b = log cos C ... C = 38° 25′ 20″, and log s' + (a. c.) log c = log cos B ... $B = \frac{57^{\circ} 41' 25''}{96^{\circ} 06' 45''}$

 $A = 180^{\circ} - 96^{\circ} 06' 45'' = 83^{\circ} 53' 15''$

2. Given a = 6, b = 5, and c = 4, to find A. B, and C.


Ans. $A = 82^{\circ} 49' 09''$, $B = 55^{\circ} 46' 16''$, $C = 41^{\circ} 24' 35''$

3. Given a = 71.2 yds., b = 64.8 yds., and c = 37. yds., to find A, B, and C.

Ans. $A = 83^{\circ} 44' 32'', B = 64^{\circ} 46' 56'', C = 31^{\circ} 28' 30''.$

PROBLEMS.

1. Knowing the distance AB, equal to 600 yards, and the angles $BAC = 57^{\circ} 35'$, $ABC = 64^{\circ} 51'$, find the two distances AC and BC.

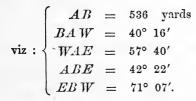
Ans. AC = 643.49 yds., BC = 600.11 yds.

2. At what horizontal distance from a column, 200 feet high, will it subtend an angle of 31° 17′ 12″?

Ans. 329.114 ft.

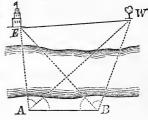
3. Required the height of a hill D above a horizontal plane AB, the distance between A and Bbeing equal to 975 yards,

and the angles of elevation at A and B being respectively 15° 36' and 27° 29'. Ans. DC = 587.61 yds.

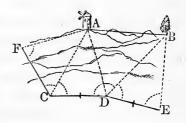

4. The distances AC and BCare found by measurement to be, respectively, 588 feet and 672 feet, and their included angle 55° 40'. Required the distance AB.

Ans. 592.967 ft.

5. Being on a horizontal plane, and wanting to ascertain the height of a tower, standing on the top of an inaccessible hill, there were measured, the angle of elevation of the top of the hill 40° , and of the top of the tower 51° ; then measuring in a direct line 180 feet farther from the hill, the


angle of elevation of the top of the tower was 33° 45'; required the height of the tower. Ans. 83.998 ft.

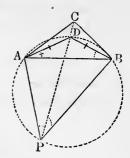
6. Wanting to know the horizontal distance between two inaccessible objects E and W, the following measurements were made : 1


Required the distance EW.

7. Wanting to know the horizontal distance between two inaccessible objects A and B, and not finding any station from which both of them could be seen, two points C and D, were chosen at a distance from each other

Ans. 939.634 yds.

Ans. 345 467 yds.



equal to 200 yards; from the former of these points, A could be seen, and from the latter, B; and at each of the points C and D, a staff was set up. From C, a distance CF was measured, not in the direction DC, equal to 200 yards, and from D, a distance DE, equal to 200 yards, and the following angles taken:

 $AFC = 83^{\circ} 00', \quad BDE = 54^{\circ} 30', \quad ACD = 53^{\circ} 30'$ $BDC = 156^{\circ} 25', \quad ACF = 54^{\circ} 31', \quad BED = 88^{\circ} 30'$

Required the distance AB.

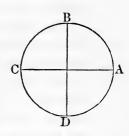
8. The distances AB, AC, and BC, between the points A, B, and C, are known; viz.: AB = 800 yds., AC = 600 yds., and BC = 400 yds. From a fourth point P, the angles APC and BPC are measured; viz.: $APC = 33^{\circ} 45'$, and $BPC = 22^{\circ} 30'$.

Required the distances AP, BP, and CP.

Ans. $\begin{cases} AP = 710.193 \text{ yds.} \\ BP = 934.291 \text{ yds.} \\ CP = 1042.522 \text{ yds.} \end{cases}$

This problem is used in locating the position of buoys in maritime surveying, as follows. Three points A, B, and C, on shore are known in position. The surveyor stationed at a buoy P, measures the angles APC and BPC. The distances AP, BP, and CP, are then found as follows:

Suppose the circumference of a circle to be described through the points A, B, and P. Draw CP, cutting the circumference in D, and draw the lines DB and D.4.


The angles CPB and DAB, being inscribed in the same segment, are equal (B. III., P. XVIII., C. 1); for a like reason, the angles CPA and DBA are equal: hence, in the triangle ADB, we know two angles and one side; we may, therefore, find the side DB. In the triangle ACB, we know the three sides, and we may compute the angle B. Subtracting from this the angle DBA, we have the angle DBC. Now, in the triangle DBC, we have two sides and their included angle, and we can find the angle DCB. Finally, in the triangle CPB, we have two angles and one side, from which data we can find CP and BP. In like manner, we can find AP.

ANALYTICAL TRIGONOMETRY.

47. ANALYTICAL TRIGONOMETRY is that branch of Mathematics which treats of the general properties and relations of trigonometrical functions.

DEFINITIONS AND GENERAL PRINCIPLES.

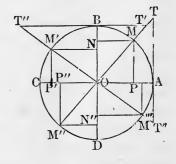
48. Let ABCD represent a circle whose radius is 1, and suppose its circumference to be divided into four equal parts, by the diameters AC and BD, drawn perpendicular to each other. The horizontal diameter AC, is called the *initial diameter* ; the vertical diameter BD, is called

the secondary diameter; the point A, from which arcs are usually reckoned, is called the origin of arcs, and the point B, 90° distant, is called the secondary origin. Arcs estimated from A, around towards B, that is, in a direction contrary to that of the motion of the hands of a watch, are considered positive; consequently, those reckoned in a con trary direction must be regarded as negative.

The arc AB, is called the *first quadrant*; the arc BC, the second quadrant; the arc CD, the third quadrant; and the arc DA, 'the fourth quadrant. The point at which

ANALYTICAL

an arc terminates, is called its *extremity*, and an arc is said to be in that quadrant in which its extremity is situated. Thus, the arc AM is in the *first*


quadrant, the arc AM' in the secoud, the arc AM'' in the third, and the arc AM''' in the fourth.

49. The *complement* of an arc has been defined to be the difference between that arc and 90° (Art. 23); geometrically considered, the

complement of an arc is the arc included between the extremity of the arc and the secondary origin. Thus, MB is the complement of AM; M'B, the complement of AM'; M''B, the complement of AM'', and so on. When the arc is greater than a quadrant, the complement is negative, according to the conventional principle agreed upon (Art. 48). The supplement of an arc has been defined to be the difference between that arc and 180° (Art. 24); geometrically considered, it is the arc included between the extremity of the arc and the left hand extremity of the initial diameter. Thus, MC is the supplement of AM, and M''C the supplement of AM''. The supplement is negative, when the arc is greater than two quadrants.

50. The sine of an arc is the distance from the initial diameter to the extremity of the arc. Thus, PM is the sine of AM, and P''M'' is the sune of the arc AM''. The term distance, is used in the sense of shortest or perpendicular distance.

51. The cosine of an arc is the distance from the secondary diameter to the extremity of the arc : thus, NM is the cosine of AM, and NM' is the cosine of AM'.

The cosine may be measured on the initial diameter: thus, OP is equal to the cosine of AM, and OP' to the cosine of AM'.

52. The versed-sine of an arc is the distance from the sine to the origin of arcs: thus, PA is the versed-sine of AM, and P'A is the versed-sine of AM'.

53. The co-versed-sine of an arc is the distance from the cosine to the secondary origin : thus, NB is the co-versed-sine of AM, and N''B is the co-versed-sine of AM''.

54. The tangent of an arc is that part of a perpendicular to the initial diameter, at the origin of arcs, included between the origin and the prolongation of the diameter through the extremity of the arc: thus, AT is the tangent of AM, or of AM'', and AT'' is the tangent of AM', or of AM'''.

55. The cotangent of an arc is that part of a perpendicular to the secondary diameter, at the secondary origin, included between the secondary origin and the prolongation of the diameter through the extremity of the arc : thus, BT' is the cotangent of AM, or of AM'', and BT'' is the cotangent of AM', or of AM'''.

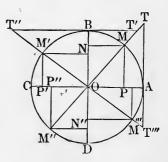
56. The secant of an arc is the distance from the centre of the arc to the extremity of the tangent: thus, OT is the secant of AM, or of AM'', and OT''' is the secant of AM', or of AM'''.

57. The cosecant of an arc is the distance from the

ANALYTICAL

centre of the arc to the extremity of the cotangent : thus, OT' is the cosecant of AM, or of AM'', and OT'' is the cosecant of AM', or of AM'''.

The term co, in combination, is equivalent to complement of; thus, the cosine of an arc is the same as the sine of the complement of that arc, the cotangent is the same as the tangent of the complement, and so on.


The eight trigonometrical functions above defined are also called circular functions.

RULES FOR DETERMINING THE ALGEBRAIC SIGNS OF CIRCULAR FUNCTIONS.

58. All distances estimated upwards are regarded as positive; consequently, all distances estimated downwards must be considered negative.

Thus, AT, PM, NB, P'M', are positive, and AT''', P'''M''', P''M'', &c., are negative.

All distances estimated towards the right are regarded as positive; consequently, all distances estimated towards the left must be considered negative.

Thus, NM, BT', PA, &c., are positive, and N'M', BT'', &c., are negative.

All distances estimated from the centre in a direction to towards the extremity of the arc are regarded as positive; consequently, all distances estimated in a direction from the second extremity of the arc must be considered negative.

Thus, OT, regarded as the secant of AM, is estimated in a direction towards M, and is positive; but OT, re-

TRIGONOMETRY.

garded as the secant of AM'', is estimated in a direction from M'', and is negative.

These conventional rules, enable us at once to give the proper sign to any function of an arc in any quadrant.

59. In accordance with the above rules, and the definiions of the circular functions, we have the following principles:

The sine is positive in the first and second quadrants, and negative in the third and fourth.

The cosine is positive in the first and fourth quadrants, and negative in the second and third.

The versed-sine and the co-versed-sine are always positive.

The tangent and cotangent are positive in the first and third quadrants, and negative in the second and fourth.

The secant is positive in the first and fourth quadrants, and negative in the second and third.

The cosecant is positive in the first and second quadrants, and negative in the third and fourth.

LIMITING VALUES OF THE CIRCULAR FUNCTIONS.

60. The limiting values of the circular functions are those values which they have at the beginning and end of the different quadrants. Their numerical values are discovered by following them as the arc increases from 0° around to 360° , and so on around through 450° , 540° , &c. The signs of these values are determined by the principle, that the sign of a varying magnitude up to the limit, is the sign at the limit. For illustration, let us examine the limiting values of the sine and tangent.

ANALYTICAL

If we suppose the arc to be 0, the sine will be 0; as the arc increases, the sine increases until the arc becomes equal to 90°, when the sine becomes equal to +1, which is its greatest possible value; as the arc increases from 90°, the sine goes on diminishing until the arc becomes equal to 180°, when the sine becomes equal to +0; as the arc increases from 180°, the sine becomes negative, and goes on increasing numerically, but *decreasing algebraically*, until the arc becomes equal to 270°, when the sine becomes equal to -1, which is its least *algebraical* value; as the arc increases from 270°, the sine goes on decreasing numerically, but *increasing algebraically*, until the arc becomes 360°, when the sine becomes equal to -0. It is -0, for this value of the arc, in accordance with the principle of limits.

The tangent is 0 when the arc is 0, and increases till the arc becomes 90°, when the tangent is $+\infty$; in passing through 90°, the tangent changes from $+\infty$ to $-\infty$, and as the arc increases the tangent decreases, numerically, but increases algebraically, till the arc becomes equal to 180°, when the tangent becomes equal to -0; from 180° to 270°, the tangent is again positive, and at 270° it becomes equal to $+\infty$; from 270° to 360°, the tangent is again negative, and at 360° it becomes equal to -0.

If we still suppose the arc to increase after reaching 360° , the functions will again go through the same changes, that is, the functions of an arc are the same as the functions that are increased by 360° , 720° &c.

By discussing the limiting values of all the circular functions we are enabled to form the following table:

TRIGONOMETRY.

$Arc = 0. \qquad Arc = 90^{\circ}.$		Arc =	180°.	Arc =	270°.	Arc =	$Arc = 360^{\circ}.$		
sin	= 0	sin	- 1	sin	= 0	sin	=-1	sin	=-0
1					= -1		-		, i i
COS	= 1	COS	= 0	COS		cos	= -0	cos	= 1
v-sin	= 0	v-sin	= 1	v-sin	= 2	v-sin	= 1	v-sin	= 0
co-v-sir	n = 1	co-v-sir	n = 0	co-v-sir	i = 1	co-v-sin	n = 2	c-v-si	n = 1
tan	= 0	tan	= ∾	tan	= -0	tan	= ~~	tan	= -0
cot	= ∞	cot	= 0	cot	$= -\infty$	cot	= 0	cot	$= -\infty$
sec	= 1	sec	$= \infty$	sec	=-1	sec	=- 0	sec	= 1
cosec	= 00	cosec	= 1	cosec	= ~	cosec	=-1	cosec	$= -\infty$
								<u> </u>	

TABLE 1.

RELATIONS BETWEEN THE CIRCULAR FUNCTIONS OF ANY ARC.

61. Let AM represent any arc denoted by a. Draw the lines as represented in the figure. Then we shall have, by definition

B T' N A

OM = OA = 1; $PM = ON = \sin a$; $NM = OP = \cos a$; PA = ver-sin a; NB = co-ver-sin a; $AT = \tan a$; $BT' = \cot a$; $OT = \sec a$; and $OT' = \operatorname{cosec} a$.

From the right-angled triangle OPM, we have,

 $\overline{P}\overline{M}^2 + \overline{O}\overline{P}^2 = \overline{OM}^2$, or, $\sin^2 a + \cos^2 a = 1$. (1.)

The symbols $\sin^2 a$, $\cos^2 a$, &c., denote the square of the sine of a, the square of the cosine of a, &c.

From Formula (1) we have, by transposition,

$$\sin^2 a = 1 - \cos^2 a$$
. (2); and $\cos^2 a = 1 - \sin^2 a$. (3.)

ANALYTICAL

We have, from the figure,

PA = 0A - 0P,

or, ver-sin $a = 1 - \cos a$. (4.)

and, NB = OB - ON,

or, co-ver-sin $a = 1 - \sin a$. . . (5.)

From the similar triangles ONM and OBT', we have, ON: NM::OB:BT', or, $\sin a : \cos a :: 1 : \cot a;$

whence,
$$\cot a = \frac{\cos a}{\sin a} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (7.)$$

Multiplying (6) and (7), member by member, we have,

$$\tan a \cot a = 1; \cdot \cdot \cdot \cdot (8.)$$

whence, by division,

 $\tan a = \frac{1}{\cot a};$ (9.) and $\cot a = \frac{1}{\tan a}$ (10.)

From the similar triangles ONM and OBT', we have, ON: OM:: OB: OT', or, $\sin a : 1 :: 1 : \text{co-sec } a;$ whence, $\text{co-sec } a = \frac{1}{\sin a} \cdot \cdot \cdot \cdot \cdot (12.)$

From the right-angled triangle OAT, we have,

$$\overline{OT}^2 = \overline{OA}^2 + \overline{AT}^2$$
; or, $\sec^2 a = 1 + \tan^2 a$. (13.)

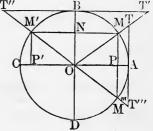
From the right-angled triangle OBT', we have,

$$\overline{OT'^2} = \overline{OB^2} + \overline{BT'^2}$$
; or, co-sec² $a = 1 + \cot^2 a$. (14.)

It is to be observed that Formulas (5), (7), (12), and (14), may be deduced from Formulas (4), (6), (11), and (13), by substituting $90^\circ - a$, for a, and then making the proper reductions.

Collecting the preceding Formulas, we have the following table :

1	$\sin^3 a + \cos^3 a$		1. $1 - \cos^3 a$.	(9.)	tan a	=	$\frac{1}{\cot a}$.
(3.)	cos²a		$1 = \cos a.$ $1 = \sin^2 a.$	(10.)	cot a	×	$\frac{1}{\tan a}$.
1	ver-sin a co-ver-sin a	=	$1 - \cos a.$ $1 - \sin a.$	(11.)	sec a	=	$\frac{1}{\cos a}$.
(6.)	'tan a	=	$\frac{\sin a}{\cos a}$.	(12.)	cosec a	-	$\frac{1}{\sin a}$.
	cot a	=	$\frac{\cos a}{\sin a}$.	(18.)	sec ^a a	-	1 + tan ³ a.
(8)	tan a cot a	=	1.	(14.	cosec ³ a		1 + cot ³ a.


TABLE II.

ANALYTICAL

FUNCTIONS OF NEGATIVE ARCS.

62. Let AM''', estimated from A towards D, be numerically equal to AM; then, if we denote the arc AM by a, $T'' \xrightarrow{B} T''$ the arc AM''' will be denoted by -a (Art. 48).

All the functions of AM''', will be the same as those of ABM'''; that is, the functions of -a are the same as the functions of $360^\circ - a$.

From an inspection of the figure, we shall discover the following relations, viz.:

 $\sin (-a) = -\sin a; \quad \cos (-a) = \cos a;$ $\tan (-a) = -\tan a; \quad \cot (-a) = -\cot a;$ $\sec (-a) = \sec a; \quad \csc (-a) = -\cot a.$

FUNCTIONS OF ARCS FORMED BY ADDING AN ARC TO, OR SUB-TRACTING IT FROM ANY NUMBER OF QUADRANTS.

63. Let α denote any arc less than 90°. From what has preceded, we know that,

 $\sin (90^\circ - a) = \cos a; \qquad \cos (90^\circ - a) = \sin a.$ $\tan (90^\circ - a) = \cot a; \qquad \cot (90^\circ - a) = \tan a.$ $\sec (90^\circ - a) = \csc a; \qquad \csc (90^\circ - a) = \sec a.$

Now, suppose that BM' = a, then will $AM' = 90^\circ + a$. We see from the figure that,

 $NM' = \sin a$, $P'M' = \cos a$, $BT'' = \tan a$, $AT''' = \cot a$, $OT'' = \sec a$, $OT''' = \csc a$, without reference to their signs.

By a simple inspection of the figure, observing the rul for signs, we deduce the following relations:

 $\sin (90^{\circ} + a) = \cos a, \qquad \cos (90^{\circ} + a) = -\sin a,$ $\tan (90^{\circ} + a) = -\cot a, \qquad \cot (90^{\circ} + a) = -\tan a,$ $\sec (90^{\circ} + a) = -\csc a, \qquad \csc (90^{\circ} + a) = \sec a.$

Again, suppose

M'C = AM = a; then will $AM' = 180^\circ - a$.

We see from the figure that,

 $P'M' = \sin a$, $OP' = \cos a$, $AT''' = \tan a$, $BT'' = \cot a$, $OT'' = \sec a$, $OT''' = \csc a$,

without reference to their signs: hence, we have, as before, the following relations:

 $\sin (180^{\circ} - a) = \sin a, \quad \cos (180^{\circ} - a) = -\cos a,$ $\tan (180^{\circ} - a) = -\tan a, \quad \cot (180^{\circ} - a) = -\cot a,$ $\sec (180^{\circ} - a) = -\sec a, \quad \csc (180 - a) = \csc a,$

By a similar process, we may discuss the remaining arcs in question. Collecting the results, we have the following table :

 $\mathbf{21}$

ANALYTICAL

TABLE III.

$Arc = 90^\circ + a.$	Arc = $270^{\circ} - a$.					
$\sin = \cos a$, $\cos = -\sin a$,	$\sin = -\cos a$, $\cos = -\sin a$,					
$\tan = -\cot a$, $\cot = -\tan a$,	$\tan = \cot a$, $\cot = \tan a$,					
$\sec = -\csc a$, $\csc c = \sec a$.	$\sec = -\csc a$, $\csc = -\sec a$.					
$Arc = 180^{\circ} - a.$	Are = $270^{\circ} + a$.					
$\sin = \sin a, \cos = -\cos a,$	$\sin = -\cos a$, $\cos = \sin a$,					
$\tan = -\tan a$, $\cot = -\cot a$,	$\tan = -\cot a$, $\cot = -\tan a$,					
$\sec = -\sec a$, $\csc = \csc a$.	$\sec = \csc a$, $\csc e = -\sec a$.					
$Arc = 180^{\circ} + a.$	Arc = $360^{\circ} - a$.					
$\sin = -\sin a, \cos = -\cos a,$	$\sin = -\sin a$, $\cos = \cos a$,					
$\tan = \tan a, \cot = \cot a,$	$\tan = -\tan a$, $\cot = -\cot a$,					
$\sec = -\sec a$, $\csc = -\csc a$.	$\sec = \sec a$, $\csc = -\csc a$.					

It will be observed that, when the arc is added to, or subtracted from, an *even* number of quadrants, the name of the function is the *same* in both columns; and when the arc is added to, or subtracted from, an *odd* 'number of quadrants, the names of the functions in the two columns are *contrary*: in all cases, the algebraic sign is determined by the rules already given (Art. 58).

By means of this table, we may find the functions of any arc in terms of the functions of an arc less than 90° Thus,

> $\sin 115^{\circ} = \sin (90^{\circ} + 25^{\circ}) = \cos 25^{\circ},$ $\sin 284^{\circ} = \sin (270^{\circ} + 14^{\circ}) = -\cos 14^{\circ},$ $\sin 400^{\circ} = \sin (360^{\circ} + 40^{\circ}) = \sin 40^{\circ},$ $\tan 210^{\circ} = \tan (180^{\circ} + 30^{\circ}) = \tan 30^{\circ}$

PARTICULAR VALUES OF CERTAIN FUNCTIONS.

64. Let MAM' be any arc, denoted by 2a, M'M its chord, and OA a radius drawn perpendicular to M'M: then will PM = PM', and AM = AM'(B. III., P. VI.). But PM is the sine of AM, or, $PM = \sin a$: hence.

$$\sin a = \frac{1}{2}M'M;$$

that is, the sine of an arc is equal to one half the chord of twice the arc.

Let $M'AM = 60^{\circ}$; then will $AM = 30^{\circ}$, and M'M will equal the radius, or 1: hence, we have,

$$\sin 30^\circ = \frac{1}{2};$$

that is, the sine of 30° is equal to half the radius. Also,

$$\cos 30^\circ = \sqrt{1 - \sin^2 30^\circ} = \frac{1}{2}\sqrt{3};$$

hence,

$$\tan 30^{\circ} = \frac{\sin 30^{\circ}}{\cos 30^{\circ}} = \sqrt{\frac{1}{3}}$$
.

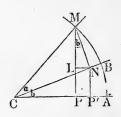
Again, let $M'AM = 90^\circ$: then will $AM = 45^\circ$, and $M'M = \sqrt{2}$ (B. V., P. III.): hence, we have,

$$\sin 45^{\circ} = \frac{1}{2}\sqrt{2};$$

Also,

$$\cos 45^\circ = \sqrt{1 - \sin^2 45^\circ} = \frac{1}{2}\sqrt{2};$$

lience,


$$\tan 45^\circ = \frac{\sin 45^\circ}{\cos 45^\circ} = 1.$$

Many other numerical values might be deduced.

ANALYTICAL

FORMULAS EXPRESSING RELATIONS BETWEEN THE CIRCULAR FUNCTIONS OF DIFFERENT ARCS.

65. Let MB and BA represent two arcs, having the common radius 1; denote the first by a, and the second by b: then, MA = a + b. From M draw MP perpendicular to CA, and MN perpendicular to CB; from N draw NP' perpendicular to CA, and NL parallel to AC.

Then, by definition, we shall have,

 $PM = \sin (a + b)$, $NM = \sin a$, and $CN = \cos a$. From the figure, we have,

$$PM = ML + LP. \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad (1).$$

Since the triangle MLN is similar to CP'N (B. IV., P. 21), the angle LMN is equal to the angle P'CN; hence, from the right-angled triangle MLN, we have,

$$ML = MN \cos b = \sin a \cos b.$$

From the right-angled triangle CP'N (Art. 37), we have,

$$NP' = CN \sin b;$$

or, since NP' = LP, $LP = \cos a \sin b$.

Substituting the values of PM, ML, and LP, in Equation (1), we have,

$$\sin (a + b) = \sin a \cos b + \cos a \sin b; \quad (\Delta).$$

that is, the sine of the sum of two arcs, is equal to the sine of the first into the cosine of the second, plus the cosine of the first into the sine of the second.

Since the above formula is true for any values of a and b, we may substitute -b, for b; whence,

$$\sin (a - b) = \sin a \cos (-b) + \cos a \sin (-b);$$

but (Art. 62),

or,

 $\cos(-b) = \cos b$, and, $\sin(-b) = -\sin b$; hence,

 $\sin (a - b) = \sin a \cos b - \cos a \sin b; \quad (\textcircled{D}.)$

that is, the sine of the différence of two arcs, is equal to the sine of the first into the cosine of the second, minus the cosine of the first into the sine of the second.

If, in Formula (3), we substitute $(90^\circ - a)$, for a, we have,

 $\sin (90^{\circ} - a - b) = \sin (90^{\circ} - a) \cos b - \cos (90^{\circ} - a) \sin b; \quad (2.)$ but (Art. 63),

 $\sin (90^\circ - a - b) = \sin [90^\circ - (a + b)] = \cos (a + b),$ and,

 $\sin (90^\circ - a) = \cos a, \qquad \cos (90^\circ - a) = \sin a;$

hence, by substitution in Equation (2), we have,

 $\cos (a + b) = \cos a \cos b - \sin a \sin b; \quad (@.)$

that is, the cosine of the sum of two arcs, is equal to the rectangle of their cosines, minus the rectangle of their sincs.

If, in Formula (Θ), we substitute -b, for b, we find

 $\cos (a-b) = \cos a \cos (-b) - \sin a \sin (-b),$

 $\cos (a - b) = \cos a \cos b + \sin a \sin b; \cdot \cdot (\mathfrak{D})$

ANALYTICAL

that is, the cosine of the difference of two arcs, is equal to the rectangle of their cosines, plus the rectangle of their sines.

If we divide Formula (\triangle) by Formula (\bigcirc) , member by nember, we have,

$$\frac{\sin (a+b)}{\cos (a+b)} = \frac{\sin a \cos b + \cos a \sin b}{\cos a \cos b - \sin a \sin b}.$$

Dividing both terms of the second member by $\cos a \cos b$, recollecting that the sine divided by the cosine is equal to the tangent, we find,

$$\tan (a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}; \cdot \cdot \cdot \cdot (2.)$$

that is, the tangent of the sum of two arcs, is equal to the sum of their tangents, divided by 1 minus the rectangle of their tangents

If, in Formula (12), we substitute -b, for b, recollecting that $\tan(-b) = -\tan b$, we have, r'

$$\tan (a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}; \quad \cdots \quad (\mathfrak{P})$$

that is, the tangent of the difference of two arcs, is equal to the difference of their tangents, divided by 1 plus the rectangle of their tangents.

In like manner, dividing Formula (\mathfrak{G}) by Formula (\mathfrak{A}) , member by member, and reducing, we have,

$$\cot (a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}; \quad \cdot \quad (\mathbf{G}.)$$

and thence, by the substitution of -b, for b,

$$\cot (a-b) = \frac{\cot a \cot b+1}{\cot b-\cot a}; \quad \cdots \quad (\underline{\text{ur.}})$$

FUNCTIONS OF DOUBLE ARCS AND HALF ARCS.

66. If, in Formulas (A), (G), (B), and (G), we make a = b, we find,

$$\sin 2a = 2 \sin a \cos a ; \cdots (\Delta'.)$$

$$\cos 2a = \cos^2 a - \sin^2 a ; \cdots (\Phi'.)$$

$$\tan 2a = \frac{2 \tan a}{1 - \tan^2 a} ; \cdots (\Phi'.)$$

$$\cot 2a = \frac{\cot^2 a - 1}{2 \cot a} ; \cdots (\Phi'.)$$

Substituting in (\mathfrak{G}') , for $\cos^2 a$, its value, $1 - \sin^2 a$; and afterwards for $\sin^2 a$, its value, $1 - \cos^2 a$, we have,

 $\cos 2a = 1 - 2 \sin^2 a$, $\cos 2a = 2 \cos^2 a - 1$;

whence, by solving these equations,

$$\sin a = \sqrt{\frac{1-\cos 2a}{2}}; \cdots \cdots (1.)$$

$$\cos a = \sqrt{\frac{1+\cos 2a}{2}} \cdot \cdot \cdot \cdot (2.)$$

We also have, from the same equations,

 $1 - \cos 2a = 2 \sin^2 a; \cdot \cdot \cdot \cdot \cdot \cdot (3.)$ $1 + \cos 2a = 2 \cos^2 a. \cdot \cdot \cdot \cdot \cdot (4.)$

ANALYTICAL

Dividing Equation (Δ') , first by Equation (4), and then by Equation (3), member by member, we have,

$$\frac{\sin 2a}{1+\cos 2a} = \tan a; \quad \cdots \quad \cdots \quad (5.)$$
$$\frac{\sin 2a}{1-\cos 2a} = \cot a. \quad \cdots \quad \cdots \quad (6.)$$

Substituting $\frac{1}{2}a$, for a, in Equations (1), (2), (5), and (6), we have,

$$\sin \frac{1}{2}a = \sqrt{\frac{1-\cos a}{2}}; \cdot \cdot \cdot (\Delta''.)$$

$$\cos \frac{1}{2}a = \sqrt{\frac{1+\cos a}{2}}; \cdots (\mathfrak{G}'')$$

$$\tan \frac{1}{2}a = \frac{\sin a}{1 + \cos a}; \quad \cdots \quad (\mathfrak{B}'')$$

$$\cot \frac{1}{2}a = \frac{\sin a}{1 - \cos a} \cdot \cdot \cdot \cdot \cdot (G''.)$$

Taking the reciprocals of both members of the last two formulas, we have also,

$$\cot \frac{1}{2}a = \frac{1+\cos a}{\sin a}$$
, and, $\tan \frac{1}{2}a = \frac{1-\cos a}{\sin a}$.

ADDITIONAL FORMULAS.

67. If Formulas (\underline{A}) and (\underline{D}) be first added, member to member, and then subtracted, and the same operations be performed upon (\underline{O}) and (\underline{D}) , we shall obtain,

$$\sin (a + b) + \sin (a - b) = 2 \sin a \cos b;$$

$$\sin (a + b) - \sin (a - b) = 2 \cos a \sin b;$$

$$\cos (a + b) + \cos (a - b) = 2 \cos a \cos b;$$

$$\cos (a - b) - \cos (a + b) = 2 \sin a \sin b.$$

If in these we make,

whence, a + b = p, and a - b = q, $a = \frac{1}{2}(p + q)$, $b = \frac{1}{2}(p - q)$;

and then substitute in the above formulas, we obtain,

$\sin p + \sin q$	=	$2 \sin \frac{1}{2} (p+q) \cos \frac{1}{2} (p-q)$	•	(또.)
$\sin p - \sin q$	=	$2 \cos \frac{1}{2} (p+q) \sin \frac{1}{2} (p-q)$	•	(1.)
$\cos p + \cos q$	=	$2 \cos \frac{1}{2} (p+q) \cos \frac{1}{2} (p-q)$	•	(M.)
$\cos q - \cos p$	=	$2 \sin \frac{1}{2} (p+q) \sin \frac{1}{2} (p-q)$		(11.)

From Formulas (B) and (B), by division, we obtain,

$$\frac{\sin p - \sin q}{\sin p + \sin q} = \frac{\cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)} = \frac{\tan \frac{1}{2}(p-q)}{\tan \frac{1}{2}(p+q)} \cdot (1.)$$

That is, the sum of the sines of two arcs is to their difference, as the tangent of one half the sum of the arcs is to the tangent of one half their difference.

ANALYTICAL

Also, in like manner, we obtain,

$$\frac{\sin p + \sin q}{\cos p + \cos q} = \frac{\sin \frac{1}{2}(p+q)\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)\cos \frac{1}{2}(p-q)} = \tan \frac{1}{2}(p+q) \cdot (2.)$$

$$\frac{\sin p - \sin q}{\cos p + \cos q} = \frac{\cos \frac{1}{2}(p+q)\sin \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)\cos \frac{1}{2}(p-q)} = \tan \frac{1}{2}(p-q) \cdot (3.)$$

$$\frac{\sin p + \sin q}{\sin (p+q)} = \frac{\sin \frac{1}{2}(p+q)\cos \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q)\cos \frac{1}{2}(p+q)} = \frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)} \quad . \quad (4.)$$

$$\frac{\sin p - \sin q}{\sin (p+q)} = \frac{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p+q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p+q)} = \frac{\sin \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q)} \cdot (5.)$$

$$\frac{\sin (p-q)}{\sin p - \sin q} = \frac{\sin \frac{1}{2}(p-q)\cos \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p-q)\cos \frac{1}{2}(p+q)} = \frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)} \quad . \quad (6.)$$

all of which give proportions analogous to that deduced from Formula (1).

Since the second members of (6) and (4) are the same, we have,

$$\frac{\sin p - \sin q}{\sin (p-q)} = \frac{\sin (p+q)}{\sin p + \sin q} ; \quad \cdots \quad (7.)$$

That is, the sine of the difference of two arcs is to the difference of the sines as the sum of the sines to the sine of the sum.

All of the preceding formulas may be made homogeneous in terms of R, R being any radius, as explained in Art. 80; or, we may simply introduce R, as a factor, into each term as many times as may be necessary to render all of its terms of the same degree.

METHOD OF COMPUTING A TABLE OF NATURAL SINES.

68. Since the length of the semi-circumference of a circle whose radius is 1, is equal to the number 3.14159265..., f we divide this number by 10800, the number of minutes n 180°, the quotient, .0002908882..., will be the length of the arc of one minute; and since this arc is so small that it does not differ materially from its sine or tangent, this may be placed in the table as the sine of one minute Formula (3) of Table II., gives,

$$\cos 1' = \sqrt{1 - \sin^2 1'} = .9999999577 \cdot \cdot (1.)$$

Having thus determined, to a near degree of approximation, the sine and cosine of one minute, we take the first formula of Art. 67, and put it under the form,

$$\sin (a+b) = 2 \sin a \cos b - \sin (a-b),$$

and make in this, b = 1', and then in succession,

 $a = 1', \quad a = 2', \quad a = 3', \quad a = 4', \quad \&c.,$

and obtain,

 $\sin 2' = 2 \sin 1' \cos 1' - \sin 0 = .0005817764 \dots$ $\sin 3' = 2 \sin 2' \cos 1' - \sin 1' = .0008726646 \dots$ $\sin 4' = 2 \sin 3' \cos 1' - \sin 2' = .0011635526 \dots$ $\sin 5' = \&c.,$

thus obtaining the sine of every number of degrees and minutes from 1' to 45° .

72 ANALYTICAL TRIGONOMETRY.

The cosines of the corresponding arcs may be computed by means of Equation (1).

Having found the sines and cosines of arcs less than 45° , those of the arcs between 45° and 90° , may be deduced, by considering that the sine of an arc is equal to the cosine of its complement, and the cosine equal to the sine of the complement. Thus,

 $\sin 50^\circ = \sin (90^\circ - 40^\circ) = \cos 40^\circ, \quad \cos 50^\circ = \sin 40^\circ,$

in which the second members are known from the previous computations.

To find the tangent of any arc, divide its sine by its cosine. To find the cotangent, take the reciprocal of the corresponding tangent.

As the accuracy of the calculation of the sine of any arc, by the above method, depends upon the accuracy of each previous calculation, it would be well to verify the work, by calculating the sines of the degrees separately (after having found the sines of one and two degrees), by the last proportion of Art. 67. Thus, r'

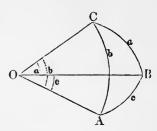
 $\sin 1^\circ$: $\sin 2^\circ - \sin 1^\circ$: $\sin 2^\circ + \sin 1^\circ$: $\sin 3^\circ$;

 $\sin 2^\circ$: $\sin 3^\circ - \sin 1^\circ$: : $\sin 3^\circ + \sin 1^\circ$: $\sin 4^\circ$; &c.

SPHERICAL TRIGONOMETRY.

69. SPHERICAL TRIGONOMETRY is that branch of Mathematics which treats of the solution of spherical triangles.

In every spherical triangle there are six parts: three sides and three angles. In general, any three of these parts being given, the remaining parts may be found.


GENERAL PRINCIPLES.

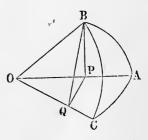
70. For the purpose of deducing the formulas required in the solution of spherical triangles, we shall suppose the triangles to be situated on spheres whose radii are equal to 1. The formulas thus deduced may be rendered applicable to triangles lying on any sphere, by making them homogeneous in terms of the radius of that sphere, as explained in Art. 30. The only cases considered will be those in which each of the sides and angles is less than 180°.

Any angle of a spherical triangle is the same as the diedral angle included by the planes of its sides, and its mea sure is equal to that of the angle included between two right lines, one in each plane, and both perpendicular to their common intersection at the same point (B. VI., D. 4).

The radius of the sphere being equal to 1, each side of the triangle will measure the angle, at the centre, subtended by it. Thus, in the triangle ABC, the angle at A is

the same as that included between the planes AOC and AOB; and the side a is the measure of the plane angle BOC, O being the centre of the sphere, and OB the radius, equal to 1.

71. Spherical triangles, like plane triangles, are divided into two classes, right-angled spherical


triangles, and oblique-angled spherical triangles. Each class will be considered in turn.

We shall, as before, denote the angles by the capital letters A, B, and C, and the opposite sides by the small letters a, b, and c.

FORMULAS USED IN SOLVING RIGHT-ANGLED SPHERICAL TRIANGLES.

72. Let CAB be a spherical triangle, right-angled at A,

and let O be the centre of the sphere on which it is situated. Denote the angles of the triangle by the letters A, B, and C, and the opposite sides by the letters a, b, and c, recollecting that B and C may change places, provided that b and c change places at the same time.

Draw OA, OB, and OC, each of which will be equal to 1. From B, draw BP perpendicular to OA, and from P draw PQ perpendicular to OC; then join the points Q and B, by the line QB. The line QB will be perpendicular to OC (B. VI., P. VI.), and the angle PQB

will be equal to the inclination of the planes OCB and OCA; that is, it will be equal to the angle C.

We have, from the figure,

$$PB = \sin c$$
, $OP = \cos c$, $QB = \sin a$, $OQ = \cos a$.
Also, $\frac{QP}{QB} = \cos C$; and $\frac{QP}{OP} = \sin b$.

From the right-angled triangles OQP and QPB, we have, $OQ = OP \cos AOC$; or, $\cos a = \cos c \cos b$. (1.) $PB = QB \sin PQB$; or, $\sin c = \sin a \sin C$. (2.)

Multiplying both terms of the fraction $\frac{QP}{QB}$ by OQ, and remembering that $\cot a = \tan (90^\circ - a)$, we have, $\frac{QP}{QB} = \frac{OQ}{QB} \times \frac{QP}{QQ}$; or, $\cos C = \tan (90^\circ - a) \tan b$. (.3.)

Multiply both terms of the fraction $\frac{QP}{OP}$, by *PR*, and remembering that cot $C = \tan (90^\circ - C)$, we have,

 $\frac{QP}{OP} = \frac{PB}{OP} \times \frac{QP}{PB}; \quad \text{or,} \quad \sin b = \tan c \, \tan \left(90^\circ - C\right). \quad (4.)$

If, in (2), we change c and C, into b and B, we have,

 $\sin b = \sin a \sin B \cdot \cdot \cdot \cdot \cdot \cdot (5.)$

If, in (3), we change b and C, into c and B, we have,

$$\cos B = \tan (90^{\circ} - a) \tan c \cdot \cdot \cdot \cdot (6.$$

If, in (4), we change b, c, and C, into c, b, and B, we have,

 $\sin c = \tan b \tan (90^\circ - B) \cdot \cdot \cdot \cdot (7.)$

Multiplying (4) by (7), member by member, we have,

 $\sin b \sin c = \tan b \tan c \tan (90^\circ - B) \tan (90^\circ - C).$

Dividing both members by tan b tan c, we have,

$$\cos b \ \cos c = \tan (90^{\circ} - B) \ \tan (90^{\circ} - C);$$

and substituting for $\cos b \cos c$, its value, $\cos a$, taken from (1), we have,

$$\cos a = \tan (90^\circ - B) \tan (90^\circ - C) \cdot \cdot (8.)$$

Formula (6) may be written under the form,

$$\cos B = \frac{\cos a \sin c}{\sin a \cos c} \cdot$$

Substituting for $\cos a$, its value, $\cos b \cos c$, taken from (1), and reducing, we have,

$$\cos B = \frac{\cos b \sin c}{\sin a} \cdot$$

Again, substituting for $\sin c$, its value, $\sin a \sin C$, taken from (2), and reducing, we have,

$$\cos B = \cos b \sin C \cdot \cdot \cdot \cdot (9.)$$

21

Changing B, b, and C, in (9), into C, c, and B, we have,

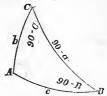
 $\cos C = \cos c \ \sin B \ \cdot \ \cdot \ \cdot \ (10.)$

These ten formulas are sufficient for the solution of any right-angled spherical triangle whatever.

NAPIER'S CIRCULAR PARTS.

73. The two sides about the right angle, the complements of their opposite angles, and the complement of the hypothenuse, are called Napier's Circular Parts.

If we take any three of the five parts, as shown in the figure, they will either be


adjacent to each other, or one of them will be separated from each of the other two, by an intervening part. In the first case, the one lying between the other two parts, is called the middle part, and the other two, adjacent parts. In the second case, the one separated from both the other parts, is called the middle part, and the other two, opposite parts. Thus, if $90^{\circ} - a$, is the middle part. $90^{\circ} - B$, and $90^{\circ} - C$, are *adjacent parts*; and *b* and *c*, are opposite parts; and similarly, for each of the other parts, taken as a middle part.

ho: 74. Let us now consider, in succession, each of the five parts as a middle part, when the other two parts are opposite. Beginning with the hypothenuse, we have, from formulas (1), (2), (5), (9), and (10), Art. 72,

0.2 2 1		1 V.		the states of the second states and the	
(and fee	sin	$(90^\circ - \alpha)$	=	$\cos b \cos c \cdot \cdot \cdot \cdot \cdot$	(1.)
39591	sin		=	$\cos (90^{\circ} - a) \cos (90^{\circ} - C)$.	(2.)
ditta (dis)	sin	Ь	=	$\cos (90^\circ - a) \cos (90^\circ - B)$.	(3.)
861 10	sin	(90°-B)	=	$\cos b \cos (90^\circ - C) \cdot \cdot \cdot$	(4.)
6391 1	sin	$(90^{\circ} - C)$	=	$\cos c \cos (90^\circ - B) \cdot \cdot \cdot$	(5.)

Comparing these formulas with the figure, we see that,

The sine of the middle part is equal to the rectangle of the cosines of the opposite parts. 22

Let us now take the same middle parts, and the other parts adjacent. Formulas (8), (7), (4), (6), and (3), Art. 72, give

sin	$(90^{\circ} - a)$	=	tan	(9	0°-	B)	tan	(9	0°-	- (2)	•	(6.)
sin	с	=	tan	b	tan	(90)°	B)	•	•	•	•	(7.)
sin	Ъ	=	tan	с	tan	(9	0°—	C)	•	•	•	•	(8.)
sin	(90°-B)	=	tan	(9	0°-	a)	tan	C	•	•	·	•	(9.)
sin	$(90^{\circ} - C)$	==	tan	(9	0°-	a)	tan	ь	•	•	•	•	(10.)

Comparing these formulas with the figure, we see that,

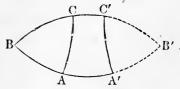
The sine of the middle part is equal to the rectangle of the tangents of the adjacent parts.

These two rules are called Napier's rules for Circular Parts, and they are sufficient to solve any right-angled spherical triangle.

75. In applying Napier's rules for circular parts, the part sought will be determined by its sine. Now, the same sine corresponds to two different arcs, supplements of each other; it is, therefore, necessary to discover such relations between the given and required parts, as will serve to point out which of the two arcs is to be taken.

Two parts of a spherical triangle are said to be of the same species, when they are both less than 90°, or both greater than 90°; and of *different species*, when one is less and the other greater than 90°.

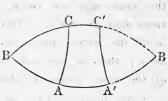
From Formulas (9) and (10), Art. 72, we have.


$$\sin C = \frac{\cos B}{\cos b}$$
, and $\sin B = \frac{\cos C}{\cos c}$;

since the angles B and C are both less than 180°, their sines must always be positive : hence, $\cos B$ must have the same sign as $\cos b$, and the $\cos C$ must have the same sign as $\cos c$. This can only be the case when Bis of the same species as b, and C of the same species as c; that is, the sides about the right angle are always of the same species as their opposite angles.

From Formula (1), we see that when a is less than 90°, or when $\cos a$ is positive, the cosines of b and cwill have the same sign; that is, b and c will be of the same species. When a is greater than 90°, or when $\cos a$ is negative, the cosines of b and c will be contrary; that is, b and c will be of different species: hence, when the hypothenuse is less than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of the same species; when the hypothenuse is greater than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of different species.

These two principles enable us to determine the nature of the part sought, in every case, except when an oblique angle and the opposite side are given, to find the remaining parts. In this case, there may be two solutions, one solution, or no solution at all.


Let BAC be a right-angled triangle, in which Band b are given. Prolong the sides BA and BC till they meet in B'. Take

B'A' = BA, B'C' = BC, and join A' and C' by the arc of a great circle: then, because the triangles BAC and B'A'C' have two sides and the included angle of the one, equal to two sides and the included angle of the other, each to each, the remaining parts will be equal, each to each;

that is, A'C' = AC, and the angle A' equal to the angle A : hence, the two triangles BAC, B'A'C', right-angled ; they have also one oblique angle and the opposite side, in each, equal. Now, if b differs more from

 $J0^{\circ}$ than B, there will evidently be two solutions, the sides

are

1. 51 .0.

1 1 1 13

mail in all

19.09 9.013

including the given angle, in the one case, being supplements of those which include the given angle, in the other case.

If b = B, the triangle will be bi-rectangular, and there will be but a single solution. in the other as the

If b differs less from 90° than B, the triangle cannot be constructed, that is, there will be no solution.

SOLUTION OF RIGHT-ANGLED SPHERICAL TRIANGLES.

76. In a right-angled spherical triangle, the right angle is always known. If any two of the other parts are given, the remaining parts may be found by Napier's rules for circular parts. Six cases may arise. There may be given,

- The hypothenuse and one side. I.
- The hypothenuse and one oblique angle. II.
- The two sides about the right angle. III.
- One side and its adjacent angle. IV.
- One side and its opposite angle. V.
- The two oblique angles. VI.

In any one of these cases, we select that part which is either adjacent to, or separated from, each of the other given parts, and calling it the middle part, we employ that one of Napier's rules which is applicable. Having determined a third part, the other two may then be found in a similar manner.

It is to be observed, that the formulas employed are to be rendered homogeneous, in terms of R, as explained in Art. 30. This is done by simply multiplying the radius of the Tables, R, into the middle part.

EXAMPLES.

1. Given $a = 105^{\circ} 17' 29''$, and $b = 38^{\circ} 47' 11''$, to find C, c, and B.

Since $a > 90^{\circ}$, b and c must be of different species, that is, $c > 90^{\circ}$; for the same reason, $C > 90^{\circ}$.

C b A o B

OPERATION.

Formula (10), Art. 74, gives, for $90^{\circ} - C$, middle part,

log cos $C = \log$ cot $a + \log$ tan b - 10; log cot a (105° 17′ 29″) 9.436811 log tan b (38° 47′ 11″) 9.905055 log cos C... D = 102° 41′ 33″.

Formula (2), Art. 74, gives for c, middle part,

 $\log \sin c = \log \sin a + \log \sin C - 10;$

log sin a (105° 17' 29") 9.984346

log sin C (102° 41′ 33″) 9.989256

 $\log \sin c$ 9.973602 . . $c = 109^{\circ} 46' 32''$.

Formula (4), gives, for $90^{\circ} - B$, middle part,

 $\log \cos B = \log \sin C + \log \cos b - 10;$

 $\log \sin C$ (102° 41′ 33″) 9.989256

 $\log \cos b \quad (38^{\circ} \ 47' \ 11'') \quad 9.891808$ $\log \cos B \quad . \quad . \quad \frac{9.891804}{9.881064} \quad . \quad B = 40^{\circ} \ 29' \ 50''.$ Ans. $c = 109^{\circ} \ 46' \ 32'', \quad B = 40^{\circ} \ 29' \ 50'', \quad C = 102^{\circ} \ 41' \ 33''.$

2. Given $b = 51^{\circ}$ 30', and $B = 58^{\circ}$ 35', to find c, a, and C.

Because b < B, there are two solutions.

OPERATION.

Formula (7), gives for c, middle part,

 $\log \sin c = \log \tan b + \log \cot B - 10;$

log tan b (51° 3	30') .	10.099395			
log cot B (58° $\stackrel{\circ}{_{\sim}}$	35') .	9.785900			*
$\log \sin c$.	• • •	9.885295	. • •	c =	50° 09' 51",
			and	c =	129° 50' 09".

Formula (1), gives for $90^{\circ} - a$, middle part,

 $\log \cos a = \log \cos b + \log \cos c - 10;$ $\log \cos b \quad (51^{\circ} \ 30') \quad . \quad 9.794150$ $\log \cos c \quad (50^{\circ} \ 09' \ 51'') \quad \underline{9.806580}$ $\log \cos a \quad . \quad . \quad \underline{9.600730} \quad . \quad . \quad a = \ 66^{\circ} \ 29' \ 54'',$ and $a = 113^{\circ} \ 30' \ 06''.$

Formula (10), gives for $90^{\circ} - C$, middle part,

 $\log \cos C = \log \tan b + \log \cot a - 10;$

 $\log \tan b \quad (51^{\circ} \ 30') \quad \cdot \quad 10.099395$ $\log \cot a \quad (66^{\circ} \ 29' \ 54'') \quad \underbrace{9.638336}_{9.737731} \quad \cdot \cdot \quad C = 56^{\circ} \ 51' \ 38'',$ $and \quad C = 123^{\circ} \ 08' \ 22''.$

In a similar manner, all other cases may be solved.

3. Given $a = 86^{\circ} 51'$, and $B = 18^{\circ} 03' 32''$, to find b, c, and C.

Ans. $b = 18^{\circ} 01' 50''$, $c = 86^{\circ} 41' 14''$, $C = 88^{\circ} 58' 25''$.

4. Given $b = 155^{\circ} 27' 54''$, and $c = 29^{\circ} 46' 08''$, to find a, B, and C. Ans. $a = 142^{\circ} 09' 13''$, $B = 137^{\circ} 24' 21''$, $C = 54^{\circ} 01' 16''$.

5. Given $c = 73^{\circ} 41' 35''$, and $B = 99^{\circ} 17' 33''$, to find a, b, and C.

Ans. $a = 92^{\circ} 42' 17''$, $b = 99^{\circ} 40' 30''$, $C = 73^{\circ} 54' 47''$.

6. Given $b = 115^{\circ} 20'$, and $B = 91^{\circ} 01' 47''$, to find a, c, and C.

 $a = \begin{cases} 64^{\circ} 41' 11'', \\ 115^{\circ} 18' 49'', \end{cases} \quad c = \begin{cases} 177^{\circ} 49' 27'', \\ 2^{\circ} 10' 33'', \end{cases} \quad C = \begin{cases} 177^{\circ} 35' 36''. \\ 2^{\circ} 24' 24''. \end{cases}$

7. Given $B = 47^{\circ} 13' 43''$, and $C = 126^{\circ} 40' 24''$, to find a, b, and c.

Ans. $a = 133^{\circ} 32' 26', b = 32^{\circ} 08' 56'', c = 144^{\circ} 27' 03''.$

In certain cases, it may be necessary to find but a single part. This may be effected, either by one of the formulas given in Art. 74, or by a slight transformation of one of them.

Thus, let a and B be given, to find C. Regarding $90^{\circ} - a$, as a middle part, we have,

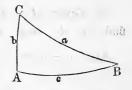
 $\cos a = \cot B \cot C$;

whence,

$$\cot C = \frac{\cos a}{\cot B};$$

and, by the application of logarithms,

 $\log \cos a + (a. c.) \log \cot B = \log \cot C;$


from which C may be found. In like manner, other cases may be treated.

QUADRANTAL SPHERICAL TRIANGLES.

77. A QUADRANTAL SPHERICAL TRIANGLE is one in which one side is equal to 90°. To solve such a triangle, we pass to its polar triangle, by subtracting each side and each angle from 180° (B. IX., P. VI.). The resulting polar triangle will be right-angled, and may be solved by the rules already given. The polar triangle of any quadrantal triangle being solved, the parts of the given triangle may be found by subtracting each part of the polar triangle from 180°.

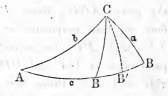
EXAMPLE.

Let A'B'C' be a quadrantal triangle, in which $B'C' = 90^{\circ}$, $B' = 75^{\circ} 42'$, and $c' = 18^{\circ} 37'$. Passing to the polar triangle, we have,

1111

. .

 $A = 90^{\circ}$, $b = 104^{\circ} 18'$, and $C = 161^{\circ} 23'$.


Solving this triangle by previous rules, we find,

 $a = 76^{\circ} 25' 11'', \quad c = 161^{\circ} 55' 20'', \quad B = 94^{\circ} 31' 21'';$ hence, the required parts of the given quadrantal triangle are, $A' = 103^{\circ} 34' 49'', \quad C' = 18^{\circ} 04' 40'', \quad b' = 85^{\circ} 28' 39''.$

In a similar manner, other quadrantal triangles may be solved.

O as the second of the second FORMULAS USED IN SOLVING OBLIQUE-ANGLED SPHERICAL TRI-ANGLES.

. 78. Let ABC represent an oblique-angled spherical triaugle. From either vertex, C, draw the arc of a great circle CB', perpendicular to the opposite side. The two triangles ACB' and BCB' will be rightangled at B'.

From the triangle ACB', we have Formula (2), Art. 74,

$$\sin CB' = \sin A \sin b.$$

From the triangle BCB', we have,

 $\sin CB' = \sin B \sin a.$

Equating these values of $\sin CB'$, we have,

 $\sin A \, \sin b = \, \sin B \, \sin a \, ;$

of the first of the second sec

from which results the proportion,

 $\sin a : \sin b :: \sin A : \sin B \dots (1.)$

In like manner, we may deduce,

 $\sin \alpha : \sin c :: \sin A : \sin C \dots (2.)$ $\sin b : \sin c :: \sin B : \sin C \dots (3.)$

That is, in any spherical triangle, the sines of the sider are proportional to the sines of their opposite angles.

Had the perpendicular fallen on the prolongation of AB, the same relation would have been found.

.1

79. Let ABC represent any spherical triangle, and Othe centre of the sphere on which it is situated. Draw the radii OA, OB, and OC; from C draw CP perpendicular to the plane AOB; from P, the foot of this perpendicular, draw PD and PE respectively perpendicular to OA and OB; join

CD and CE, these lines will be respectively perpendicular to OA and OB (B. VI., P. VI.), and the angles CDP and CEP will be equal to the angles A and B respectively. Draw DL and PQ, the one perpendicular, and the other parallel to OB. We then have,

$$OE = \cos a$$
, $DC = \sin b$, $OD = \cos b$.

We have from the figure,

$$OE = OL + QP \cdot \cdot \cdot \cdot \cdot (1.)$$

In the right-angled triangle OLD,

 $OL = OD \cos DOL = \cos b \cos c$.

The right-angled triangle PQD has its sides respectively perpendicular to those of OLD; it is, therefore, similar to it, and the angle QDP is equal to c, and we have,

$$QP = PD \sin QDP = PD \sin c \cdot \cdot \cdot (2.)$$

The right-angled triangle CPD gives,

$$PD = CD \cos CDP = \sin b \cos A$$
;

substituting this value in (2), we have,

 $QP = \sin b \sin c \cos A$;

87

and now substituting these values of OE, OL, and QP, in (1), we have,

$$\cos a = \cos b \, \cos c + \sin b \, \sin c \, \cos A \quad \cdot \quad (3.)$$

In the same way, we may deduce,

 $\cos b = \cos a \cos c + \sin a \sin c \cos B \cdot \cdot (4.)$ $\cos c = \cos a \cos b + \sin a \sin b \cos C \cdot \cdot (5.)$

That is, the cosine of either side of a spherical triangle is equal to the rectangle of the cosines of the other two sides plus the rectangle of the sines of these sides into the cosine of their included angle.

80. If we represent the angles of the polar triangle of ABC, by A', B', and C', and the sides by a', b' and c', we have (B. IX., P. VI.),

 $a = 180^{\circ} - A', \quad b = 180^{\circ} - B', \quad c = 180^{\circ} - C',$ $A = 180^{\circ} - a', \quad B = 180^{\circ} - b', \quad C = 180^{\circ} - c'.$

Substituting these values in Equation (3), of the preceding article, and recollecting that,

 $\cos (180^\circ - A') = -\cos A', \quad \sin (180^\circ - B') = \sin B', &c.,$ we have,

 $- \cos A' = \cos B' \cos C' - \sin B' \sin C' \cos a';$

or, changing the signs and omitting the primes (since the preceding result is true for any triangle),

 $\cos A = \sin B \sin C \cos a - \cos B \cos C \quad (1.)$

ς.,

In the same way, we may deduce,

 $\cos B = \sin A \sin C \cos b - \cos A \cos C \cdot (2.)$ $\cos C = \sin A \sin B \cos c - \cos A \cos B \cdot (3.)$

That is, the cosine of either angle of a spherical triangle is equal to the rectangle of the sines of the other two angles into the cosine of their included side, minus the rectangle of the cosines of these angles.

81. From Equation (3), Art. 79, we aeduce,

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c} \cdot \cdot \cdot \cdot (1.)$$

If we add this equation, member by member, to the number 1, and recollect that $1 + \cos A$, in the first member, is equal to $2 \cos^2 \frac{1}{2}A$ (Art. 66), and reduce, we have,

$$2 \cos^2 \frac{1}{2}A = \frac{\sin b \sin c + \cos a - \cos b \cos c}{\sin b \sin c};$$

or, Formula (3), Art. 65,

$$2 \cos^{2} \frac{1}{2}A = \frac{\cos a - \cos (b + c)}{\sin b \sin c} \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad (2.)$$

And since, Formula (II), Art. 67,

$$\cos a - \cos (b + c) = 2 \sin \frac{1}{2}(a + b + c) \sin \frac{1}{2}(b + c - a),$$

Equation (2) becomes, after dividing both members by 2.

$$\cos^{2} \frac{1}{2}A = \frac{\sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(b+c-a)}{\sin b \sin c}$$

If, in this we make,

 $\frac{1}{2}(a+b+c) = \frac{1}{2}s$; whence, $\frac{1}{2}(b+c-a) = \frac{1}{2}s - a$, and extract the square root of both members, we have,

$$\cos \frac{1}{2}A = \sqrt{\frac{\sin \frac{1}{2}s \sin (\frac{1}{2}s-a)}{\sin b \sin c}} \cdot \cdot \cdot (3.)$$

That is, the cosine of one-half of either angle of a spherical triangle, is equal to the square root of the sine of one-half of the sum of the three sides, into the sine of one-half this sum minus the side opposite the angle, divided by the rectangle of the sines of the adjacent sides.

If we subtract Equation (1), of the preceding article, member by member, from the number 1, and recollect that,

$$1 - \cos A = 2 \sin^2 \frac{1}{2}A,$$

we find, after reduction,

1.1

$$\sin \frac{1}{2} \mathbf{A} = \sqrt{\frac{\sin \left(\frac{1}{2}s - b\right) \sin \left(\frac{1}{2}s - c\right)}{\sin b \sin c}} \cdot \cdot \cdot (4.)$$

Dividing the preceding value of $\sin \frac{1}{2}A$, by $\cos \frac{1}{2}A$, we obtain,

$$\tan \frac{1}{2}A = \sqrt{\frac{\sin (\frac{1}{2}s - b) \sin (\frac{1}{2}s - c)}{\sin \frac{1}{2}s \sin (\frac{1}{2}s - a)}} \cdot \cdot \cdot (5.)$$

82. If the angles and sides of the polar triangle of ABC be represented as in Art. 80, we have,

$$A = 180^{\circ} - a', \quad b = 180^{\circ} - B', \quad c = 180^{\circ} - C',$$

$$\frac{1}{2}s = 270^{\circ} - \frac{1}{2}(A' + B' + C'), \quad \frac{1}{2}s - a = 90^{\circ} - \frac{1}{2}(B' + C' - A').$$

Substituting these values in (3), Art. 81, and reducing by the aid of the formulas in Table III., Art. 63, we find,

$$\sin \frac{1}{2}a' = \sqrt{\frac{-\cos \frac{1}{2}(A'+B'+C') - \cos \frac{1}{2}'B'+C'-A'}{\sin B' \sin C'}}$$

Placing

 $\frac{1}{2}(A'+B'+C') = \frac{1}{2}S;$ whence, $\frac{1}{2}(B'+C'-A') = \frac{1}{2}S-A'.$

Substituting and omitting the primes, we have,

$$\sin \frac{1}{2}a = \sqrt{\frac{-\cos \frac{1}{2}S \cos \left(\frac{1}{2}S - A\right)}{\sin B \sin C}} \cdot \cdot \cdot (1.)$$

In a similar way, we may deduce from (4), Art. 81.

$$\cos \frac{1}{2}a = \sqrt{\frac{\cos (\frac{1}{2}S - B) \cos (\frac{1}{2}S - C)}{\sin B \sin C}} \cdot \cdot (2.)$$

and thence,

$$\tan \frac{1}{2}a = \sqrt{\frac{-\cos \frac{1}{2}S \cos (\frac{1}{2}S - A)}{\cos (\frac{1}{2}S - B) \cos (\frac{1}{2}S - C)}} \cdot \cdot \cdot (3.)$$

1

83. From Equation (1), Art. 80, we have,

 $\cos A + \cos B \cos C = \sin B \sin C \cos a = \sin C \frac{\sin A}{\sin a} \sin b \cos a;$ (1.)

since, from Proportion (1), Art. 78, we have,

$$\sin B = \frac{\sin A}{\sin a} \sin b.$$

Also, from Equation (2), Art. 80, we have,

 $\cos B + \cos A \cos C = \sin A \sin C \cos b = \sin C \frac{\sin A}{\sin a} \sin a \cos b$ (2.)

Adding (1) and (2), and dividing by sin C, we obtain,

$$(\cos A + \cos B) \frac{1 + \cos C}{\sin C} = \frac{\sin A}{\sin a} \sin (a + b).$$
 (3.)

The proportion, $\sin A$: $\sin B$:: $\sin \alpha$: $\sin b$, taken first by composition, and then by division, gives,

$$\sin A + \sin B = \frac{\sin A}{\sin a} (\sin a + \sin b) \cdot \cdot \cdot (4.)$$

$$\sin A - \sin B = \frac{\sin A}{\sin a} (\sin a - \sin b) \cdot \cdot \cdot (5.)$$

Dividing (4) and (5), in succession, by (3), we obtain,

$$\frac{\sin A + \sin B}{\cos A + \cos B} \times \frac{\sin C}{1 + \cos C} = \frac{\sin a + \sin b}{\sin (a + b)} \cdot \cdot (6.)$$
$$\frac{\sin A - \sin B}{\cos A + \cos B} \times \frac{\sin C}{1 + \cos C} = \frac{\sin a - \sin b}{\sin (a + b)} \cdot \cdot (7.)$$

But, by Formulas (2) and (4), Art. 67, and Formula (2)', Art. 66, Equation (6) becomes,

$$\tan \frac{1}{2}(A+B) = \cot \frac{1}{2}C \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)}; \quad \cdot \quad (8.)$$

and, by the sinular Formulas (3) and (5), of Art. 67, Equation (7) becomes,

$$\tan \frac{1}{2}(A - B) = \cot \frac{1}{2}C \frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)} \cdot \cdot \cdot (9.)$$

• These last two formulas give the proportions known as the first set of Napier's Analogies.

 $\cos \frac{1}{2}(a+b) : \cos \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A+B).$ (10.) $\sin \frac{1}{2}(a+b) : \sin \frac{1}{2}(a-b) :: \cot \frac{1}{2}C : \tan \frac{1}{2}(A-B).$ (11.)

If in these we substitute the values of a, b, C, A, and B, in terms of the corresponding parts of the polar triangle, as expressed in Art. 80, we obtain,

 $\cos \frac{1}{2}(A+B)$: $\cos \frac{1}{2}(A-B)$:: $\tan \frac{1}{2}e$: $\tan \frac{1}{2}(a+b)$. (12.) $\sin \frac{1}{2}(A+B)$: $\sin \frac{1}{2}(A-B)$:: $\tan \frac{1}{2}e$: $\tan \frac{1}{2}(a-b)$. (13.) the second set of Napier's Analogies.

In applying logarithms to any of the preceding formulas, they must be made homogeneous, in terms of R, as explained in Art. 30.

SOLUTION OF OBLIQUE-ANGLED SPHERICAL TRIANGLES.

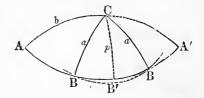
84. In the solution of oblique-angled triangles six different cases may arise : viz., there may be given,

- I. Two sides and an angle opposite one of them.
- II. Two angles and a side opposite one of them.
 - III. Two sides and their included angle.
- IV. Two angles and their included side.
 - V. The three sides.
 - VI. The three angles.

{

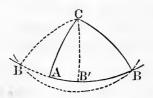
. CASE I.

Given two sides and an angle opposite one of them.


85. The solution, in this case, is commenced by finding the angle opposite the second given side, for which purpose Formula (1), Art. 78, is employed.

As this angle is found by means of its sine, and because the same sine corresponds to two different arcs, there would seem to be two different solutions. To ascertain when there are two solutions, when one solution, and when no solution at all, it becomes necessary to examine the relations which

may exist between the given parts. Two cases may arise, viz., the given angle may be *acute*, or it may be *obtuse*.


We shall consider each case separately (B. IX., P. XIX., Gen. Scholium).

First Case. Let A be the given angle, and let aand b be the given sides. Prolong the arcs AC and AB till they meet at A', forming the lune AA'; and

from C, draw the arc CB' perpendicular to ABA'. From C, as a pole, and with the arc a, describe the arc of a small circle BB. If this circle cuts ABA', in two points between A and A', there will be two solutions; for if C be joined with each point of intersection by the arc of a great circle, we shall have two triangles ABC, both of which will conform to the conditions of the problem.

If only one point of intersection lies between Aand A', or if the small circle is tangent to ABA', there will be but one solution.

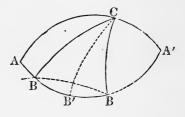
If there is no point of intersection, or if there are points of intersection which do not lie between A and A', there will be no solution.

From Formula (2), Art. 72, we have,

$$\sin CB' = \sin b \, \sin A,$$

from which the perpendicular, which will be less than 90° , will be found. Denote its value by p. By inspection of the figure, we find the following relations:

23


1. When a is greater than p, and at the same time less than both b and 180° - b, there will be two solutions.

2. When a is greater than p, and intermediate in value between b and 180° - b; or, when a is equal to p, there will be but one solution.

If a = b, and is also less than $180^\circ - b$, one of the points of intersection will be at A, and there will be but one solution.

3. When a is greater than p, and at the same time greater than both b and $180^{\circ} - b$; or, when a is less than p, there will be no solution.

Second Case. Adopt the same construction as before. In this case, the perpendicular will be greater than 90°, and greater also than any other arc CA, CB, CA', that can be drawn from C

to ABA'. By a course of reasoning entirely analogous to that in the preceding case, we have the following principles:

4. When a is less than p, and at the same time greater than both b and 180° — b, there will be two solutions.

5. When a is less than p, and intermediate in value between b and $180^{\circ} - b$; or, when a is equal to p, there will be but one solution.

6. When a is less than p, and at the same time less than both b and $180^{\circ} - b$; or, when a is greater than p, there will be no solution.

Having found the angle or angles opposite the second side, the solution may be completed by means of Napier's Analogies.

TRIGONOMETRY.

EXAMPLES.

1. Given $a = 43^{\circ} 27' 36''$, $b = 82^{\circ} 58' 17''$, and $A = 29^{\circ} 32' 29''$, to find B, C, and c.

We see at a glance, that a > p, since p cannot exceed A; we see further, that a is less than both b and $180^{\circ} - b$; hence, from the first condition there will be two solutions.

Applying logarithms to Formula (1), Art. 78, we have,

From the first of Napier's Analogies (10), Art. 83, we find, (a. c.) $\log \cos \frac{1}{2} (a-b) + \log \cos \frac{1}{2} (a+b) + \log \tan \frac{1}{2} (A+B) - 10$ $= \log \cot \frac{1}{2} C.$

Taking the first value of B, we have,

$$\frac{1}{2}(A + B) = 37^{\circ} 26' 45'';$$

also,

SPHERICAL

The side c may be found by means of Formula (12), Art. 83, or by means of Formula (2), Art. 78.

Applying logarithms to the proportion,

sin A : sin C :: sin a : sin c, we have, (a. c.) log sin A = log sin C + log sin a - 10 = log sin c; (a. c.) log sin A (20° 32′ 29″) 0.307107 log sin C (139° 43′ 30″) 9.810539 log sin a (43° 27′ 36″) 9.837492 log sin c 9.955138 . . c = 115° 35′ 48″.

We take the greater value of c, because the angle C, being greater than the angle B, requires that the side cshould be greater than the side b. By using the second value of B, we may find, in a similar manner,

$$C = 32^{\circ} 20' 28''$$
, and $c = 48^{\circ} 16' 18''$.

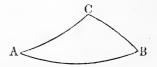
2. Given $a = 97^{\circ} 35'$, $b = 27^{\circ} 08' 22''$, and $A = 40^{\circ} 51' 18''$, to find B, C, and c.

Ans. $B = 17^{\circ} 31' 09''$, $C = 144^{\circ} 48' 10''$, $c' = 119^{\circ} 08' 25''$.

3. Given $a = 115^{\circ} 20' 10''$, $b = 57^{\circ} 30' 06''$, and $A = 126^{\circ} 37' 30''$, to find B, C, and c.

Ans. $B = 48^{\circ} 29' 48''$, $C = 61^{\circ} 40' 16''$, $c = 82^{\circ} 34' 04''$.

CASE II.


Given two angles and a side opposite one of them.

86. The solution, in this case, is commenced by finding the side opposite the second given angle, by means of Formula (1), Art. 78. The solution is completed as in Case L

Since the second side is found by means of its sine, there may be two solutions. To investigate this case, we pass to the polar triangle, by substituting for each part its supplement. In this triangle, there will be given two sides and an angle opposite one; it may therefore be discussed as in the preceding case. When the polar triangle has two solutions, one solution, or no solution, the given triangle will, in like manner, have two solutions, one solution, or no solution.

The conditions may be written out from those of the preceding case, by simply changing *angles* into *sides*, and the reverse; and *greater* into *less*, and the reverse.

Let the given parts be A, B, and a, and let p be an arc computed from the equation,

$$\sin p = \sin a \sin B.$$

There will be two cases : a may be greater than 90° ; or, a may be less than 90° .

In the first case,

1. When A is less than p, and at the same time greater than both B and $180^{\circ} - B$, there will be two solutions.

2. When A is less than p, and intermediate in value between B and $180^\circ - B$; or, when A is equal to p, there will be but one solution.

3. When A is less than p, and at the same time less than both B and $180^{\circ} - B$; or, when A is greater than p, there will be no solution.

SPHERICAL

In the second case,

4. When A is greater than p, and at the same less than both B and $180^{\circ} - B$, there will be two solutions.

5. When A is greater than p, and intermediate in value between B and $180^{\circ} - B$; or, when A is equal to p, there will be but one solution.

6. When A is greater than p, and at the same time greater than both B and $180^{\circ} - B$; or, when A is less than p, there will be no solution.

EXAMPLES.

1. Given $A = 95^{\circ} 16'$, $B = 80^{\circ} 42' 10''$, and $a = 57^{\circ} 38'$, to find c, b, and C.

Computing p, from the formula,

 $\log \sin p = \log \sin B + \log \sin a - 10;$

we have, $p = 56^{\circ} 27' 52''$.

The smaller value of p is taken, because a is loss than 90°.

Because A > p, and intermediate between 80° 42' 10" and 99° 17' 50", there will, from the fifth condition, be but a single solution.

Applying logarithms to Proportion (1), Art. 78, we have,

(a. c.) $\log \sin A + \log \sin B + \log \sin a - 10 = \log \sin b$;

(a. c.) $\log \sin A$ (95° 16') 0.001837 $\log \sin B$ (80° 42' 10'') 9.994257 $\log \sin a$ (57° 38') 9.926671 $\log \sin b$ 9.922765 ... $b = 56^{\circ}$ 49' 57''.

We take the smaller value of b, for the reason that A, being greater than B, requires that a should be greater . than b.

Applying logarithms to Proportion (12), Art. 83, we have,

(a. c.) $\log \cos \frac{1}{2} (A-B) + \log \cos \frac{1}{2} (A+B) + \log \tan \frac{1}{2} (a+b) - 10$ = $\log \tan \frac{1}{2} c$;

we have,

 $\frac{1}{2} (A + B) = 87^{\circ} 59' 05'', \quad \frac{1}{2} (a + b) = 57^{\circ} 13' 58'',$ and, $\frac{1}{2} (A - B) = 7^{\circ} 16' 55''.$

Applying logarithms to the proportion,

sin a : sin c :: sin A : sin C, we have, (a. c.) log sin a + log sin c + log sin A - 10 = log sin C; (a. c.) log sin a (57° 38') . . 0.073329 log sin c (6° 18' 18'') . 9.040685 log sin A (95° 16') . . 9.998163 log sin C 9.112177 ... C = 7° 26' 21".

The smaller value of C is taken, for the same reason as before.

2. Given $A = 50^{\circ} 12'$, $B = 58^{\circ} 08'$, and $\alpha = 62^{\circ} 42'$ to find b, c, and C.

$$b = \begin{cases} 79^{\circ} \ 12' \ 10'', \\ 100^{\circ} \ 47' \ 50'', \end{cases} \quad c = \begin{cases} 119^{\circ} \ 03' \ 26'', \\ 152^{\circ} \ 14' \ 18'', \end{cases} \quad C = \begin{cases} 130^{\circ} \ 54' \ 28'', \\ 156^{\circ} \ 15' \ 06''. \end{cases}$$

SPHERICAL

CASE III.

Given two sides and their included angle.

87. The remaining angles are found by means of Napier's Analogies, and the remaining side, as in the preceding cases.

EXAMPLES.

1. Given $a = 62^{\circ} 38'$, $b = 10^{\circ} 13' 19''$, and $C = 150^{\circ} 24' 12''$, to find c, A, and B.

Applying logarithms to Proportions (10) and (11), Art. 83, we have, (a. c.) $\log \cos \frac{1}{2} (a + b) + \log \cos \frac{1}{2} (a - b) + \log \cot \frac{1}{2} C - 10$ $= \log \tan \frac{1}{2} (A + B);$ (a. c.) $\log \sin (a + b) + \log \sin \frac{1}{2} (a - b) + \log \cot \frac{1}{2} C - 10$ $= \log \tan \frac{1}{2} (A - B);$ we have, $\frac{1}{2}(a-b) = 26^{\circ} 12' 20'', \quad \frac{1}{2}C = 75^{\circ} 12' 06'',$ $\frac{1}{2}(a + b) = 36^{\circ} 25' 39''.$ and, ._f (a. c.) $\log \cos \frac{1}{2} (a + b)$. (36° 25′ 39″) . 0.094415 $\log \cos \frac{1}{2} (a - b)$. (26° 12′ 20″) . 9.952897 log cot $\frac{1}{2}$ C . . . (75° 12′ 06′′) . 9.421901 $\therefore \frac{1}{2}(A + B) = 16^{\circ} 24' 51'$ (a. c.) $\log \sin \frac{1}{2} (a + b)$. (36° 25′ 39″) . 0.226356 $\log \sin \frac{1}{2} (a - b)$. (26° 12′ 20″) . 9.645022 log cot $\frac{1}{2}$ C . . . (75° 12′ 06″) . 9.421901 $\therefore \frac{1}{2}(A-B) = 11^{\circ} 06' 53''.$

TRIGONOMETRY.

The greater angle is equal to the half sum plus the half difference, and the less is equal to the half sum minus the half difference. Hence, we have,

$$A = 27^{\circ} 31' 44''$$
, and $B = 5^{\circ} 17' 58''$.

Applying logarithms to the Proportion (13), Art. 83, we have, (a. c.) $\log \sin \frac{1}{2} (A-B) + \log \sin \frac{1}{2} (A+B) + \log \tan \frac{1}{2} (a-b) - 10$ $= \log \tan \frac{1}{2} c$; (a. c.) $\log \sin \frac{1}{2} (A - B) \cdot (11^{\circ} 06' 53'') \cdot 0.714952$ $\log \sin \frac{1}{2} (A + B) \cdot (16^{\circ} 24' 51'') \cdot 9.451139$ $\log \tan \frac{1}{2} (a - b) \cdot (26^{\circ} 12' 20'') \cdot 9.692125$ $\log \tan \frac{1}{3} c \cdot \frac{9.692125}{9.858216}$ $\therefore \frac{1}{2}c = 35^{\circ} \cdot 48' 33'', \text{ and } c = 71^{\circ} 37' 06''.$

2. Given $a = 68^{\circ} 46' 02''$, $b = 37^{\circ} 10'$, and $C = 39^{\circ} 23' 23''$, to find c, A, and B.

Ans. $A = 120^{\circ} 59' 47''$, $B = 33^{\circ} 45' 05''$, $c = 43^{\circ} 37' 38''$.

3. Given $a = 84^{\circ} 14' 29''$, $b = 44^{\circ} 13' 45''$, and $C = 36^{\circ} 45' 28''$, to find A and B.

Ans. $A = 130^{\circ} 05' 22''$, $B = 32^{\circ} 26' 06''$.

CASE IV.

Given two angles and their included side.

88. The solution of this case is entirely analogous to Case III.

Applying logarithms to Proportions (12) and (13), Art. 83, and to Proportion (11), Art. 83, we have,

SPHERICAL

- (a. c.) $\log \cos \frac{1}{2} (A + B) + \log \cos \frac{1}{2} (A B) + \log \tan \frac{1}{2} c 10$ = $\log \tan \frac{1}{2} (a + b);$
- (a. c.) $\log \sin \frac{1}{2} (A + B) + \log \sin \frac{1}{2} (A B) + \log \tan \frac{1}{2} c 10$ = $\log \tan \frac{1}{2} (a - b);$

(a. c.)
$$\log \sin (a - b) + \log \sin (a + b) + \log \tan \frac{1}{2} (A - B) - 10$$

= $\log \cot \frac{1}{2} C$.

The application of these formulas are sufficient for the solution of all cases.

EXAMPLES.

1. Given $A = 81^{\circ} 38' 20''$, $B = 70^{\circ} 09' 38''$, and $c = 59^{\circ} 16' 22''$, to find C, $\cdot a$, and b.

Ans. $C = 64^{\circ} 46' 24''$, $a = 70^{\circ} 04' 17''$, $b = 63^{\circ} 21' 27''$.

2. Given $A = 34^{\circ} 15' 03''$, $B = 42^{\circ} 15' 13''$, and $c = 76^{\circ} 35' 36''$, to find C, a, and b.

Ans. $C = 121^{\circ} 36' 12''$, $a = 40^{\circ} 0' 10''$, $b = 50^{\circ} 10' 30''$.

CASE V.

Given the three sides, to find the remaining parts.

89. The angles may be found by means of Formula (3), Art. 81; or, one angle being found by that formula, the other two may be found by means of Napier's Analogies.

EXAMPLES.

1. Given $a = 74^{\circ} 23'$, $b = 35^{\circ} 46' 14''$, and $c = 100^{\circ} 30'$, to find A, B, and C.

TRIGONOMETRY.

Applying logarithms to Formula (3), Art. 81, we have, $\log \cos \frac{1}{2}A = 10 + \frac{1}{2} [\log \sin \frac{1}{2}s + \log \sin (\frac{1}{2}s - a)]$ + (a. c.) $\log \sin b$ + (a. c.) $\log \sin c - 20$]; or, . og cos $\frac{1}{2}A = \frac{1}{2} \left[\log \sin \frac{1}{2}s + \log \sin (\frac{1}{2}s - a) \right]$ + (a. c.) log sin b + (a. c.) log sin c], we have, $\frac{1}{2}s = 105^{\circ} 24' 07''$, and $\frac{1}{2}s - a = 31^{\circ} 01' 07'$. $\log \sin \frac{1}{2}s$ · · · (105° 24' 07'') · 9.984116 $\log \sin (\frac{1}{2}s - a)$ · (31° 01′ 07″) · 9.712074 (a. c.) $\log \sin b \cdot \cdot \cdot \cdot (35^{\circ} 46' 14'') \cdot 0.233185$ (a. c.) $\log \sin c \cdot \cdots \cdot (100^{\circ} 39') = 0.007546$ 2)19.936921 $\log \cos \frac{1}{2}A$ · · · · · · · · • 9.968460 $\therefore \frac{1}{2}A = 21^{\circ} 34' 23''$, and $A = 43^{\circ} 08' 46''$.

Using the same formula as before, and substituting B for A, b for a, and a for b, and recollecting that $\frac{1}{2}s - b = 69^{\circ} 37' 53''$, we have,

 $\log \sin \frac{1}{2}s \cdots (105^{\circ} 24' \ 07'') = 9.984116$ $\log \sin (\frac{1}{2}s - b) = (69^{\circ} 37' \ 53'') = 9.971958$ (a. c.) $\log \sin a \cdots = (74^{\circ} \ 23') = 0.016336$ (a. c.) $\log \sin c \cdots = (100^{\circ} \ 39') = 0.007546$ $2)\overline{19.979956}$ $\log \cos \frac{1}{2}B = \cdots = 0 = 0$ $B = 24^{\circ} \ 31' \ 26' = 0$

Using the same formula, substituting C for A, c for a, and a for c, recollecting that $\frac{1}{2}s - c = 4^{\circ} 45' 07''$, we have,

104 SPHERICAL TRIGONOMETRY.

 $\log \sin \frac{1}{2}s \quad \cdot \quad (105^{\circ} 24' \ 07'') \qquad 9.984116$ $\log \sin \left(\frac{1}{2}s - c\right) \quad \cdot \quad (4^{\circ} 45' \ 07'') \quad \cdot \quad 8.918250$ (a. c.) $\log \sin a \quad \cdot \quad \cdot \quad (74^{\circ} \ 23') \quad \cdot \quad \cdot \quad 0.016336$ (a. c.) $\log \sin b \quad \cdot \quad \cdot \quad (35^{\circ} \ 46' \ 14'') \quad \cdot \quad 9.233185$ $2) \underbrace{19.151887}_{9.575943}$ $\cdot \quad \frac{1}{2}C = 67^{\circ} 52' \ 25'', \quad \text{and} \quad C = 135^{\circ} \ 44' \ 50''$

2. Given $a = 56^{\circ} 40'$, $b = 83^{\circ} 13'$, and $c = 114^{\circ} 30'$. Ans. $A = 48^{\circ} 31' 18''$, $B = 62^{\circ} 55' 44''$, $C = 125^{\circ} 18' 56''$.

CASE VI.

. .

The three angles being given, to find the sides.

90. The solution in this case is entirely analogous to the preceding one.

Applying logarithms to Formula (2), Art. 82, we have,

$$\log \cos \frac{1}{2}a = \frac{1}{2} [\log \cos (\frac{1}{2}S - B) + \log \cos (\frac{1}{2}S - C) + (a. c.) \log \sin B + (a. c.) \log \sin C].$$

In the same manner as before, we change the letters, to suit each case.

EXAMPLES.

1. Given $A = 48^{\circ} 30'$, $B = 125^{\circ} 20'$, and $C = 62^{\circ} 54'$. Ans. $a = 56^{\circ} 39' 30''$, $b = 114^{\circ} 29' 58''$, $c = 83^{\circ} 12' 06''$

2. Given $A = 109^{\circ} 55' 42''$, $B = 116^{\circ} 38' 33''$, and $C = 120^{\circ} 43' 37''$, to find a, b, and c.

Ans. $a = 98^{\circ} 21' 40''$, $b = 109^{\circ} 50' 22''$, $c = 115^{\circ} 13' 28''$.

91. MENSURATION is that branch of Mathematics which treats of the measurement of Geometrical Magnitudes.

92. The measurement of a quantity is the operation of finding how many times it contains another quantity of the same kind, taken as a standard. This standard is called the *unit of measure*.

93. The unit of measure for surfaces is a square, one of whose sides is the linear unit. The unit of measure for volumes is a *cube*, one of whose edges is the linear unit.

If the linear unit is one foot, the superficial unit is one square foot, and the unit of volume is one cubic foot. If the linear unit is one yard, the superficial unit is one square yard, and the unit of volume is one cubic yard.

94. In Mensuration, the term *product of two lines*, is used to denote the product obtained by multiplying the number of linear units in one line by the number of linear units in the other. The term *product of three lines*, is used to denote the continued product of the number of linear units in each of the three lines.

Thus, when we say that the area of a parallelogram is equal to the product of its base and altitude, we mean that the number of superficial units in the parallelogram is equal to the number of linear units in the base, multiplied by the number of linear units in the altitude. In like manner, the

number of units of volume, in a rectangular parallelopipedon, is equal to the number of superficial units in its base multiplied by the number of linear units in its altitude, and so on.

MENSURATION OF PLANE FIGURES.

To find the area of a parallelogram.

95. From the principle demonstrated in Book IV., Prop. V., we have the following

RULE.

Multiply the base by the altitude; the product will be the area required.

EXAMPLES.

1. Find the area of a parallelogram, whose base is 12.25, and whose altitude is 8.5. Ans. 104.125.

2. What is the area of a square, whose side is 204.3 feet? Ans. 41738.49 sq. ft.

3. How many square yards are there in a rectangle whose base is 66.3 feet, and altitude 33.3 feet?

Ans. 245.31 sq. yd.

4. What is the area of a rectangular board, whose length is $12\frac{1}{2}$ feet, and breadth 9 inches? Ω_3^3 sq. ft.

5. What is the number of square yards in a parallelogram, whose base is 37 feet, and altitude 5 feet 3 inches? Ans. $21_{\frac{7}{2}}$.

To find the area of a plane triangle.

96. First Case. When the base and altitude are given.

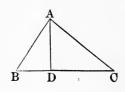
OF SURFACES.

From the principle demonstrated in Book IV., Prop. VI., we may write the following

RULE.

Multiply the base by half the altitude; the product will be the area required.

EXAMPLES.


1. Find the area of a triangle, whose base is 625, and altitude 520 feet. Ans. 162500 sq. ft.

2. Find the area of a triangle, in square yards, whose base is 40, and altitude 30 feet. Ans. $66\frac{2}{3}$.

3. Find the area of a triangle, in square yards, whose base is 49, and altitude $25\frac{1}{4}$ feet. Ans. 68.7361.

Second Case. When two sides and their included angle are given.

Let ABC represent a plane triangle, in which the side AB = c, BC = a, and the angle B, are given. From A draw AD perpendicular to BC; this will be the altitude of the triangle. From For-

mula (1), Art. 37, Plane Trigonometry, we have,

$$AD = c \sin B.$$

Denoting the area of the triangle by Q, and applying the rule last given, we have,

$$Q = \frac{ac \sin B}{2}$$
; or, $2Q = ac \sin B$.

Substituting for sin B, $\frac{\sin B}{R}$ (Trig., Art. 30), and applying logarithms, we have,

 $\log (2Q) = \log a + \log c + \log \sin B - 10;$

hence, we may write the following

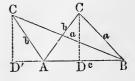
RULE.

Add together the logarithms of the two sides and the logarithmic sine of their included angle; from this sum subtract 10; the remainder will be the logarithm of double the area of the triangle. Find, from the table, the number answering to this logarithm, and divide it by 2; the quotient will be the required area.

EXAMPLES.

1. What is the area of a triangle, in which two sides a and b, are respectively equal to 125.81, and 57.65, and whose included angle C, is $57^{\circ} 25'$?

Ans. 2Q = 6111.4, and Q = 3055.7 Ans.


2. What is the area of a triangle, whose sides are 30 and 40, and their included angle 28° 57'? Ans. 290.427.

3. What is the number of square yards in a triangle, of which the sides are 25 feet and 21.25 feet, and their included angle 45° ? Ans. 20.8694.

LEMMA.

To find half an angle, when the three sides of a plane triangle are given.

97. Let ABC be a plane triangle, the angles and sides being denoted as in the figure.

We have (B. IV., P. XII., XIII.),

$$a^2 = b^2 + c^2 \mp 2c \cdot AD \cdot \cdot \cdot \cdot \cdot (1.)$$

When the angle A is acute, we have (Art. 37),

 $AD = b \cos A$; when obtuse, $AD' = b \cos CAD'$.

OF SURFACES.

But as CAD' is the supplement of the obtuse angle A,

 $\cos CAD' = -\cos A$, and $AD' = -b \cos A$. Either of these values, being substituted for AD, in (1), gives,

$$a^2 = b^2 + c^2 - 2bc \cos A;$$

whence,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.)$$

If we add 1 to both members, and recollect that $1 + \cos A = 2 \cos^2 \frac{1}{2}A$ (Art. 66), Equation (4), we have,

$$2 \cos^{2} \frac{1}{2}A = \frac{2bc + b^{2} + c^{2} - a^{2}}{2bc}$$
$$= \frac{(b + c)^{2} - a^{2}}{2bc} = \frac{(b + c + a)(b + c - a)}{2bc};$$

or,

$$\cos^2 \frac{1}{2}A = \frac{(b+c+a)(b+c-a)}{4bc} \cdot \cdot \cdot (3.)$$

If we put b + c + a = s, we have,

$$\frac{b+c+a}{2} = \frac{1}{2}s$$
, and, $\frac{b+c-a}{2} = \frac{1}{2}s - a;$

Substituting in (3), and extracting the square root,

$$\cos \frac{1}{2}A = \sqrt{\frac{\frac{1}{2}s(\frac{1}{2}s-a)}{bc}}, \cdots$$
 (4.)

the plus sign, only, being used, since $\frac{1}{2}A < 90^{\circ}$; hence,

The cosine of half of either angle of a plane triangle, is equal to the square root of half the sum of the three sides, into half that sum minus the side opposite the angle, divided by the rectangle of the adjacent sides.

By applying logarithms, we have, $\frac{1}{2} \left[\log \frac{1}{2}s + \log (\frac{1}{2}s - a) + (a. c.) \log b + (a. c.) \log c \right] \cdot (\Delta .)$

If we subtract both members of Equation (2), from 1, and recollect that $1 - \cos A = 2 \sin^2 \frac{1}{2}A$ (Art. 66.), we have,

$$2 \sin^2 \frac{1}{2}A = \frac{2bc - b^2 - c^2 + a^2}{2bc}$$
$$= \frac{a^2 - (b - c)^2}{2bc} = \frac{(a + b - c)(a - b + c)}{2bc} (5,$$

Placing, as before, a + b + c = s, we have,

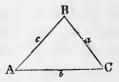
$$\frac{a+b-c}{2} = \frac{1}{2}s-c$$
, and, $\frac{a-b+c}{2} = \frac{1}{2}s-b$.

Substituting in (5), and reducing, we have,

$$\sin \frac{1}{2}A = \sqrt{\frac{(\frac{1}{2}s-b)}{bc}} \cdot \cdot \cdot \cdot (6.)$$

hence,

The sine of half an angle of a plane triangle, is equal to the square root of half the sum of the three sides, minus one of the adjacent sides, into the half sum minus the other adjacent side, divided by the rectangle of the adjacent sides.


Applying logarithms, we have,

$$\log \sin \frac{1}{2}A = \frac{1}{2} \left[\log \left(\frac{1}{2}s - b \right) + \log \left(\frac{1}{2}s - c \right) + (a. c.) \log b + (a. c.) \log c \right]. \quad (B.)$$

_1

Third Case. To find the area of a triangle, when the three sides are given.

Let ABC represent a triangle whose sides a, b, and c are given. From the principle demonstrated in the last case, we have,

$$Q = \frac{1}{2}bc \sin A$$
.

OF SURFACES.

But, from Formula (\underline{A}'), Trig., Art. 66, we have,

$$\sin A = 2 \sin \frac{1}{2}A \cos \frac{1}{2}A;$$

whence,

$$Q = bc \sin \frac{1}{2}A \cos \frac{1}{2}A.$$

Substituting for $\sin \frac{1}{2}A$ and $\cos \frac{1}{2}A$, their values, taken from Lemma, and reducing, we have,

$$Q = \sqrt{\frac{1}{2}s} \, \left(\frac{1}{2}s - a \right) \, \left(\frac{1}{2}s - b \right) \, \left(\frac{1}{2}s - c \right) \, ;$$

hence, we may write the following

RULE.

Find half the sum of the three sides, and from it subtract each side separately. Find the continued product of the half sum and the three remainders, and extract its square root; the result will be the area required.

It is generally more convenient to employ logarithms; for this purpose, applying logarithms to the last equation, we have, $\log Q = \frac{1}{2} [\log \frac{1}{2}s + \log (\frac{1}{2}s - a) + \log (\frac{1}{2}s - b) + \log (\frac{1}{2}s - c)]$ hence, we have the following

RULE.

Find the half sum and the three remainders as before, then find the half sum of their logarithms; the number corresponding to the resulting logarithm will be the area required.

EXAMPLES.

I. Find the area of a triangle, whose sides are 20, 30, and 40.

We have, $\frac{1}{2}s = 45$, $\frac{1}{2}s - a = 25$, $\frac{1}{2}s - b = 15$, $\frac{1}{2}s - c = 5$. By the first rule,

 $Q = \sqrt{45 \times 25 \times 15 \times 5} = 290.4737$ Ans.

By the second rule,

\log	$\frac{1}{2}\varepsilon$	•••	•	•	(45)	•	•	•	•	1.653213
log	$(\frac{1}{2}s - $	<i>a</i>)		•	(25)	•	•	•	•	1.397940
log	$(\frac{1}{2}s -$	<i>b</i>)	•	•	(15)		•		•	1.176091
log	$(\frac{1}{2}s - $	c)	•	•	(5)	•	•	•	•	0.698970
									2)4.926214
le	g Q	•••	•		• •	•	•	•	•	2.463107
		.•.	Q	=	290.4	737	,	An	s.	

2. How many square yards are there in a triangle, whose sudes are 30, 40, and 50 feet? Ans. 663.

To find the area of a trapezoid.

98. From the principle demonstrated in Book IV., Prop. VII., we may write the following

RULE.

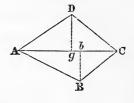
Find half the sum of the parallel sides, and multiply it by the altitude; the product will be the area required.

EXAMPLES.

1. In a trapezoid the parallel sides are 750 and 1225, and the perpendicular distance between them is 1540; what is the area? Ans. 1520750.

2. How many square feet are contained in a plank, whose length is 12 feet 6 inches, the breadth at the greater end 15 inches, and at the less end 11 inches? Ans. $13\frac{13}{23}$.

3. How many square yards are there in a trapezoid, whose parallel sides are 240 feet, 320 feet, and altitude 66 feet? Ans. $2053\frac{1}{3}$ sq. yd


To find the area of any quadrilateral. 99. From what precedes, we deduce the following

RULE.

Join the vertices of two opposite angles by a diagonal; from each of the other vertices let fall perpendiculars upon this diagonal; multiply the diagonal by half of the sum of the perpendiculars, and the product will be the area rcquiréd.

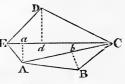
EXAMPLES.

1. What is the area of the quadrilateral ABCD, the diagonal ACbeing 42, and the perpendiculars Dg, Bb, equal to 18 and 16 feet? Ans. 714 sq. ft.

2. How many square yards of paving are there in the quadrilateral, whose diagonal is 65 feet, and the two perpendiculars let fall on it 28 and $33\frac{1}{2}$ feet? Ans. $222\frac{1}{12}$.

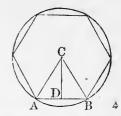
To find the area of any polygon.

100. From what precedes, we have the following


RULE.

Draw diagonals dividing the proposed polygon into trapezoids and triangles : then find the areas of these figures separately, and add them together for the area of the whole polygon.

EXAMPLE.


1. Let it be required to determine the area of the polygon *ABCDE*, having five sides.

Let us suppose that we have measured the diagonals and perpendiculars, and found AC = 36.21, EC = 39.11, Eb = 4Dd = 7.26, Aa = 4.18: required the area. Ans. 296.1292.

To find the area of a regular polygon.

101. Let AB, denoted by s, represent one side of a regular polygon, whose centre is C. Draw CA and CB, and from C draw CD perpendicular to AB. Then will CD be the apothem, and we shall have AD = BD.

Denote the number of sides of the polygon by n; then will the angle ACB, at the centre, be equal to $\frac{360^{\circ}}{n}$, (B. V., Page 138, D. 2), and the angle ACD, which is half of ACB, will be equal to $\frac{180^{\circ}}{n}$.

In the right-angled triangle ADC, we shall have, Formula (3), Art. 37, Trig.,

$$CD = \frac{1}{2}s \tan CAD.$$

But CAD, being the complement of ACD, we have, tan $CAD = \cot ACD$;

hence, $CD = \frac{1}{2}s \cot \frac{180^\circ}{m}$,

a formula by means of which the apothem may be computed.

But the area is equal to the perimeter multiplied by half the apothem (Book V., Prop. VIII.): hence the following

RULE

Find the apothem, by the preceding formula; multiply the perimeter by half the apothem; the product will be the area required.

EXAMPLES.

1. What is the area of a regular hexagon, each of whose sides is 20? We have,

 $CD = 10 \times \cot 30^{\circ}; \text{ or, } \log CD = \log 10 + \log \cot 30^{\circ} - 10$ $\log \frac{1}{2}s \dots (10) \dots 1.000000$ $\log \cot \frac{180^{\circ}}{n} (30^{\circ}) \dots 10.238561$ $\log CD \dots \dots \dots 1.238561 \dots CD = 17.3205.$

OF SURFACES.

The perimeter is equal to 120: hence, denoting the area by Q,

$$Q = \frac{120 \times 17.3205}{2} = 1039.23$$
 Ans.

2. What is the area of an octagon, one of whose sides is 20? Ans. 1931.36886.

The areas of some of the most important of the regular polygons have been computed by the preceding method, on the supposition that each side is equal to 1, and the results are given in the following

\mathbf{T}	A	в	L	\mathbf{E}	•

NAMES. SODES.		AREAS.		NAMES.	SIDES.			AREAS.		
Triangle,		3			0.4330127	Octagon, .	. 8	•		4.8284271
Square,		4			1.0000000	Nonagon, .	. 9			6.1818242
Pentagon,		5			1.7204774	Decagon, .	. 10		•	7.6942088
Hexagon		6			2.5980762	Undecagon,	. 11	•		9.3656399
-					3.6339124	Dodecagon,	. 12	•		11.1961524

The areas of similar polygons are to each other as the squares of their homologous sides (Book IV., Prop. XXVII.).

Denoting the area of a regular polygon whose side is s, by Q, and that of a similar polygon whose side is 1, by T, the tabular area, we have,

 $Q : T :: s^2 : 1^2; \therefore Q = Ts^2;$

hence, the following RULE.

Multiply the corresponding tabular area by the square of the given side; the product will be the area required.

EXAMPLES.

1. What is the area of a regular hexagon, each of whose sides is 20?

We have, T = 2.598)762, and $s^2 = 400$: hence,

 $Q = 2.5980762 \times 400 = 1039.23048$ Ans.

2. Find the area of a pentagon, whose side is 25. Ans. 1075.298375.

3. Find the area of a decagon, whose side is 20. Ans. 3077.68352.

To find the circumference of a circle, when the diameter is given.

102. From the principle demonstrated in Book V., Prop. XVI., we may write the following

RULE.

Multiply the given diameter by 3.1416; the product will be the circumference required.

EXAMPLES.

1. What is the circumference of a circle, whose diameter is 25? Ans. 78.54.

2. If the diameter of the earth is 7921 miles, what is the circumference? Ans. 24884.6136.

To find the diameter of a circle, when the circumference is given.

103. From the preceding case, we may write the following

RULE.

Divide the given circumference by 3.1416; the guotient will be the diameter required.

EXAMPLES.

1. What is the diameter of a circle, whose circumference is 11652.1944?

2. What is the diameter of a circle, whose circumference is 6850? Ans. 2180.41

OF SURFACES.

To find the length of an arc containing any number of degrees.

104. The length of an arc of 1°, in a circle whose diameter is 1, is equal to the circumference, or 3.1416 divided by 360; that is, it is equal to 0.0087266: hence, the length of an arc of n degrees, will be, $n \times 0.0037266$. To find the length of an arc containing n degrees, when the diameter is d, we employ the principle demonstrated in Book V., Prop. XIII., C. 2: hence, we may write the following

RULE.

Multiply the number of degrees in the arc by .0087266, and the product by the diameter of the circle; the result will be the length required.

EXAMPLES.

What is the length of an arc of 30 degrees, the diameter being 18 feet?
 Ans. 4.712364 ft.
 What is the length of an arc of 12° 10′, or 12¹/₆°, the

diameter being 20 feet? Ans. 2.123472 ft.

To find the area of a circle.

105. From the principle demonstrated in Book V., Prop. XV., we may write the following

RULE.

Multiply the square of the radius by 3.1416; the product will be the area required.

EXAMPLES.

1. Find the area of a circle, whose diameter is 10, and circumference 31.416. Ans. 78.54.

2. How many square yards in a circle whose diameter is $3\frac{1}{2}$ feet? Ans. 1.069016.

3. What is the area of a circle whose circumference is 12 feet? Ans. 11.4595.

To find the area of a circular sector.

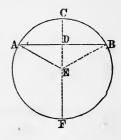
106. From the principle demonstrated in Book V., Prop. XIV., C. 1 and 2, we may write the following

RULE.

I. Multiply half the arc by the radius; or,

II. Find the area of the whole circle, by the last rule; then write the proportion, as 360 is to the number of degrees in the sector, so is the area of the circle to the area of the sector.

EXAMPLES.


1. Find the area of a circular sector, whose arc contains 18°, the diameter of the circle being 3 feet. 0.35343 sq. ft.

2. Find the area of a sector, whose arc is 20 feet, the radius being 10. Ans. 100.

3. Required the area of a sector, whose are is 147° 29', and radius 25 feet. Ans. 804.3986 sq. ft.

To find the area of a circular segment.

107. Let AB represent the chord corresponding to the two segments ACB and AFB. Draw AE and BE. The segment ACB is equal to the sector EACB, minus the triangle AEB. The segment AFB is equal to the sector EAFB, plus the triangle AEB. Hence, we have the following

RULE.

Find the area of the corresponding sector, and also of the triangle formed by the chord of the segment and the two extreme radii of the sector; subtract the latter from the former when the segment is less than a semicircle, and take their sum when the segment is greater than a semicircle; the result will be the area required.

OF SURFACES.

EXAMPLES.

1. Find the area of a segment, whose chord is 12 and the radius 10.

Solving the triangle AEB, we find the angle AEB is equal to 73° 44', the area of the sector EACB equal to 31.35, and the area of the triangle AEB equal to 48; hence, the segment ACB is equal to 16.35 Ans.

2. Find the area of a segment, whose height is 18, the diameter of the circle being 50. Ans. 636.4834.

3. Required the area of a segment, whose chord is 16, the diameter being 20. Ans. 44.764.

To find the area of a circular ring contained between the circumferences of two concentric circles.

108. Let R and r denote the radii of the two circles, R being greater than r. The area of the outer circle is $R^2 \times 3.1416$, and that of the inner circle is $r^2 \times 3.1416$; hence, the area of the ring is equal to $(R^2 - r^2) \times 3.1416$. Hence, the following

RULE.

Find the difference of the squares of the radii of the two circles, and multiply it by 3.1416; the product will be the area required.

EXAMPLES.

1. The diameters of two concentric circles being 10 and 6, required the area of the ring contained between their circumferences. Ans. 50.2656.

2. What is the area of the ring, when the diameters of the circles are 10 and 20? Ans. 235.62,

MENSURATION OF BROKEN AND CURVED SURFACES.

To find the area of the entire surface of a right prism.

109. From the principle demonstrated in Book VII., Prop. I., we may write the following

RULE.

Multiply the perimeter of the base by the altitude, the product will be the area of the convex surface; to this add the areas of the two bases; the result will be the area required.

EXAMPLES.

1. Find the surface of a cube, the length of each side being 20 feet. Ans. 2400 sq. ft.

2. Find the whole surface of a triangular prism, whose base is an equilateral triangle, having each of its sides equal to 18 inches, and altitude 20 feet. Ans. 91.949 sq. ft.

To find the area of the entire surface of a right pyramid.

110. From the principle demonstrated in Book VII., Prop. IV., we may write the following

RULE.

Multiply the perimeter of the base by half the slant height; the product will be the area of the convex surface; to this add the area of the base; the result will be the area required.

EXAMPLES.

 Find the convex surface of a right triangular pyramid, the slant height being 20 feet, and each side of the base 3 feet. Ans. 90 sq. ft

2. What is the entire surface of a right pyramid, whose slant height is 15 feet, and the base a pentagon, of which each side is 25 feet? Ans. 2012.798 sq. ft.

×,

To find the area of the convex surface of a frustum of a right pyramid.

111. From the principle demonstrated in Book VII., Prop. IV., S., we may write the following

RULE.

Multiply the half sum of the perimeters of the two bases by the slant height; the product will be the area required.

EXAMPLES.

1. How many square feet are there in the convex surface of the frustum of a square pyramid, whose slant height is 10 feet, each side of the lower base 3 feet 4 inches, and each side of the upper base 2 feet 2 inches? Ans. 110 sq. ft.

2. What is the convex surface of the frustum of a heptagonal pyramid, whose slant height is 55 feet, each side of the lower base 8 feet, and each side of the upper base 4 feet? Ans. 2310 sq. ft.

112. Since a cylinder may be regarded as a prism whose base has an infinite number of sides, and a cone as a pyramid whose base has an infinite number of sides, the rules just given, may be applied to find the areas of the surfaces of right cylinders, cones, and frustums of cones, by simply changing the term *perimeter*, to circumference.

EXAMPLES.

What is the convex surface of a cylinder, the diameter of whose base is 20, and whose altitude 50? Ans. 3141.6
 What is the entire surface of a cylinder, the altitude being 20, and diameter of the base 2 feet? 131.9472 sq. ft.
 Required the convex surface of a cone, whose slant height is 50 feet, and the diameter of its base 8½ feet.

height is 50 feet, and the diameter of its base $\frac{3}{2}$ feet. Ans. 667.59 sq. ft.

4. Required the entire surface of a cone, whose slant height is 36, and the diameter of its base 18 feet. Ans. 1272.348 sq. ft.

5. Find the convex surface of the frustum of a cone, the slant height of the frustum being $12\frac{1}{2}$ feet, and the circumferences of the bases 8.4 feet and 6 feet. Ans. 90 sq. ft.

6. Find the entire surface of the frustum of a cone, the slant height being 16 feet, and the radii of the bases 3 feet, and 2 feet. Ans. 292.1688 sq. ft.

To find the area of the surface of a sphere.

113. From the principle demonstrated in Book VIII, Prop. X., C. 1, we may write the following

RULE.

Find the area of one of its great circles, and multiply it by 4; the product will be the area required.

EXAMPLES.

1. What is the area of the surface of a sphere, whose radius is 16? Ans. 3216.9984.

2. What is the area of the surface of a sphere, whose radius is 27.25 Ans. 9331.3374.

To find the area of a zone.

114. From the principle demonstrated in Book VIII, Prop. X., C. 2, we may write the following

RULE.

Find the circumference of a great circle of the sphere, and multiply it by the altitude of the zone; the product will be the area required.

EXAMPLES.

1. The diameter of a sphere being 42 inches, what is the area of the surface of a zone whose altitude is 9 inches. Ans. 1187.5248 sq. in.

2. If the diameter of a sphere is $12\frac{1}{2}$ feet, what will be the surface of a zone whose altitude is 2 feet? 78.54 sq. ft.

To find the area of a spherical polygon.

115. From the principle demonstrated in Book IX., Prop. XIX., we may write the following

RULE.

From the sum of the angles of the polygon, subtract 180° taken as many times as the polygon has sides, less two, and divide the remainder by 90°; the quotient will be the spherical excess. Find the area of a great circle of the sphere, and divide it by 2; the quotient will be the area of a tri-rectangular triangle. Multiply the area of the trirectangular triangle by the spherical excess, and the product will be the area required.

This rule applies to the spherical triangle, as well as to any other spherical polygon.

EXAMPLES.

1. Required the area of a triangle described on a sphere, whose diameter is 30 feet, the angles being 140°, 92°, and 68° . Ans. 471.24 sq. ft

2. What is the area of a polygon of seven sides, de . scribed on a sphere whose diameter is 17 feet, the sum of the angles being 1080°? Ans. 226.98

3. What is the area of a regular polygon of eight sides, described on a sphere whose diameter is 30 yards, each angle of the polygon being 140° ? Ans. 157.08 sq. yds.

MENSURATION OF VOLUMES.

To find the volume of a prism.

116. From the principle demonstrated in Book VII., Prop. XIV., we may write the following

RULE.

Multiply the area of the base by the altitude; the product will be the volume required.

EXAMPLES.

 What is the volume of a cube, whose side is 24 inches? Ans. 13824 cu. in.
 How many cubic feet in a block of marble, of which

the length is 3 feet 2 inches, breadth 2 feet 8 inches, and height or thickness 2 feet 6 inches? Ans. $21\frac{1}{2}$ cu. ft.

3. Required the volume of a triangular prism, whose height is 10 feet, and the three sides of its triangular base 3, 4, and 5 feet. Ans. 60.

To find the volume of a pyramid.

117. From the principle demonstrated in Book VII., Prop. XVII., we may write the following

RULE.

Multiply the area of the base by one-third of the altitude; the product will be the volume required.

EXAMPLES.

1. Required the volume of a square pyramid, each side of its base being 30, and the altitude 25. Ans. 7500.

2. Find the volume of a triangular pyramid, whose altitude is 30, and each side of the base 3 feet. 38.9711 cu. ft.

OF VOLUMES.

3. What is the volume of a pentagonal pyramid, its altitude being 12 feet, and each side of its base 2 feet.

Ans. 27.5276 cu. ft. 4. What is the volume of an hexagonal pyramid, whose Educted is 6.4 feet, and each side of its base 6 inches? Ans. 1.38564 cu. ft

To find the volume of a frustum of a pyramid.

118. From the principle demonstrated in Book VII., Prop., XVIII., C., we may write the following

RULE.

Find the sum of the upper base, the lower base, and a mean proportional between them; multiply the result by onethird of the altitude; the product will be the volume required.

EXAMPLES.

1. Find the number of cubic feet in a piece of timber, whose bases are squares, each side of the lower base being 15 inches, and each side of the upper base 6 inches, the altitude being 24 feet. Ans. 19.5.

2. Required the volume of a pentagonal frustum, whose altitude is 5 feet, each side of the lower base 18 inches, and each side of the upper base 6 inches. Ans. 9.31925 cu. ft.

119. Since cylinders and cones are limiting cases of prisms and pyramids, the three preceding rules are equally applicable to them.

EXAMPLES.

1. Required the volume of a cylinder whose altitude is 12 feet, and the diameter of its base 15 feet.

Ans. 2120.58 cu. ft. 2. Required the volume of a cylinder whose altitude is 20 feet, and the circumference of whose base is 5 feet 6 inches. Ans. 48.144 cu. ft.

3. Required the volume of a cone whose altitude as 27 feet, and the diameter of the base 10 feet.

Ans. 706.86 cu. ft. 4. Required the volume of a cone whose altitude is $10\frac{1}{2}$ feet, and the circumference of its base 9 feet.

Ans. 22.56 cu. ft.

5. Find the volume of the frustum of a cone, the altitude being 18, the diameter of the lower base 8, and that of the upper base 4. Ans. 527.7888.

6. What is the volume of the frustum of a cone, the altitude being 25, the circumference of the lower base 20, and that of the upper base 10? Ans. 404.216.

7. If a cask, which is composed of two equal conic frustums joined together at their larger bases, have its bung diameter 28 inches, the head diameter 20 inches, and the length 40 inches, how many gallons of wine will it contain, there being 231 cubic inches in a gallon? Ans. 79.0613.

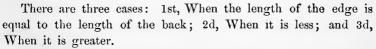
To find the volume of a sphere.

120. From the principle demonstrated in Book VIII., Prop. XIV., we may write the following

RULE.

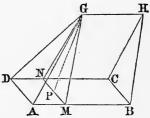
Cube the diameter of the sphere, and multiply the result by $\frac{1}{6}\pi$, that is, by 0.5236; the product will be the volume required.

EXAMPLES.


1. What is the volume of a sphere, whose diameter is 12? Ans. 904.78:38

2. What is the volume of the earth, if the mean diam eter be taken equal to 7918.7 miles.

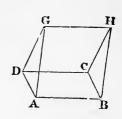
Ans. 259992792083 cu. miles.


To find the volume of a wedge.

121. A WEDGE is a volume bounded by a rectangle ABCD, called the back, two trapezoids ABHG, DCHG, called faces, and two triangles ADG, CBH called ends. The line GH, in which the faces meet, is called the edge. The two faces are equally inclined to the back, and so also are the two ends.

In the first case, the wedge is a right prism, whose base is the triangle ADG, and altitude GH or AB: hence, its volume is equal to ADG multiplied by AB.

In the second case, through II, the middle point of the edge, pass a plane HCB perpendicular to the back and intersecting it in the line BC parallel to AD. This plane will divide the wedge into two parts, one of which is represented by the figure.



Through G, draw the plane GNM parallel to HCB, and it will divide the part of the wedge represented by the figure into the right triangular prism GNM - B, and the quadrangular pyr amid ADNM - G. Draw GP perpendicular to NM: it will also be perpendicular to the back of the wedge (B. VI., P. XVII.), and hence, will be equal to the altitude of the wedge.

Denote AB by L, the breadth AD by b, the edge GH by l, the altitude by h, and the volume by V; then,

 $AM = L - l, MB = GH = l, \text{ and area } NGM = \frac{1}{2}bh: \text{ then}$ $Prism = \frac{1}{2}bhl; Pyramid = b(L - l)\frac{1}{3}h = \frac{1}{3}bh(L - l), \text{ and}$ $V = \frac{1}{2}bhl + \frac{1}{3}bh(L - l) = \frac{1}{2}bhl + \frac{1}{3}bhL - \frac{1}{3}bhl = \frac{1}{6}bh(l+2L).$

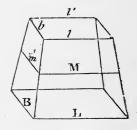
We can find a similar expression for the remaining part of the wedge, and by adding, the factor within the parenthesis becomes the entire length of the edge plus twice the length of the back.

In the third case, l is greater than L, and denotes the altitude of the prism; the volume of each part is equal to the difference of the prism and pyramid, and is of the same form as before. Hence, the following

RULE.—Add twice the length of the back to the length of the edge; multiply the sum by the breadth of the back, and that result by one-sixth of the altitude; the final product will be the volume required.

EXAMPLES.

 If the back of a wedge is 40 by 20 feet, the edge
 35 feet, and the altitude 10 feet, what is the volume? Ans. 3833.33 cu.ft.
 What is the volume of a wedge, whose back is 18 feet


2. What is the volume of a wedge, whose back is 18 feet by 9, edge 20 feet, and altitude 6 feet? 504 cu. ft.

To find the volume of a prismoid.

122. A PRISMOID is a frustum of a wedge.

Let L and B denote the length and breadth of the lower base, l and b the length and breadth of the upper base, M and m the length and breadth of the section equidistant from the bases, and h the altitude of the prismoid.

Through the edges L and l', let a plane be passed, and it will divula the prismoid into two wedge

divide the prismoid into two wedges, having for bases, the bases of the prismoid, and for edges the lines L and l'.

The volume of the prismoid, denoted by V, will be equal to the sum of the volumes of the two wedges; hence,

 $V = \frac{1}{6}Bh(l+2L) + \frac{1}{6}bh(L+2l);$

or,

 $V = \frac{1}{b}h(2BL + 2bl + Bl + bL);$

which may be written under the form,

$$V = \frac{1}{6}h[(BL+bl+Bl+bL)+BL+bl]. \quad (A.)$$

Because the auxiliary section is midway between the bases, we have,

2M = L + l, and 2m = B + b; hence,

4Mm = (L+l) (B+b) = BL + Bl + bL + bl.

Substituting in (Δ) , we have,

$$V = \frac{1}{6}h(BL + bl + 4Mm).$$

But BL is the area of the lower base, or lower section, bl is the area of the upper base, or upper section, and M_{in} is the area of the middle section; hence, the following

RULE.

To find the volume of a prismoid, find the sum of the areas of the extreme sections and four times the middle section; multiply the result by one-sixth of the distance between the extreme sections; the result will be the volume required.

This rule is used in computing volumes of earth-work in railroad cutting and embankment, and is of very extensive application. It may be shown that the same rule holds for every one of the volumes heretofore discussed in this work. Thus, in a pyramid, we may regard the base as one extreme section, and the vertex (whose area is 0), as the other extreme; their sum is equal to the area of the base. The area of a section midway between between them is equal to one-fourth of the base : hence, four times the middle section is equal to the base. Multiplying the sum of these by onesixth of the altitude, gives the same result as that already found. The application of the rule to the case of cylinders, frustums of cones, spheres, &c., is left as an exercise for the student.

EXAMPLES.

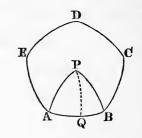
1. One of the bases of a rectangular prismoid is 25 feet by 20, the other 15 feet by 10, and the altitude 12 feet required the volume. Ans. 3700 cu. ft.

2. What is the volume of a stick of hewn timber, , whose ends are 30 inches by 27, and 24 inches by 18, its length being 24 feet? Ans. 102 cu. ft.

MENSURATION OF REGULAR POLYEDRONS.

123. A REGULAR POLYEDRON is a polyedron bounded by equal regular polygons.

The polyedral angles of any regular polyedron are all equal.


124. There are five regular polyedrons (Book VII., Page 208).

To find the diedral angle between the faces of a regular polyedron.

125. Let the vertex of any polyedral angle be taken as the centre of a sphere whose radius is 1: then will this sphere, by its intersections with the faces of the polyedral angle, determine a regular spherical polygon whose sides will be equal to the plane angles that bound the polyedral angle, and whose angles are equal to the diedral angles between the faces.

It only remains to deduce a formula for finding one angle of a regular spherical polygon, when the sides are given. Let ABCDE represent a regular spherical polygon, and let P be the pole of a small circle passing through its verti-

ces. Suppose P to be connected with each of the vertices by arcs of great circles; there will thus be formed as many equal isosceles triangles as the polygon has sides, the vertical angle in each being equal to 360° divided by the number of sides. Through P draw PQ perpendicular to AB: then will AQ

be equal to *BQ*. If we denote the number of sides by *n*, the angle *APQ* will be equal to $\frac{360^\circ}{2n}$, or $\frac{180^\circ}{n}$.

In the right-angled spherical triangle APQ, we know the base AQ, and the vertical angle APQ; hence, by Napier's rules for circular parts, we have,

$$\sin (90^\circ - APQ) = \cos (90^\circ - PAQ) \cos AQ;$$

or, by reduction, denoting the side AB by s, and the angle PAB, by $\frac{1}{2}A$,

cos	$\frac{180^{\circ}}{n}$	=	$\sin \frac{1}{2}A \cos \frac{1}{2}s;$
si	$1 \frac{1}{2}A$		$\frac{\cos \frac{180^{\circ}}{n}}{\cos \frac{1}{2}s}.$

whence,

EXAMPLES.

In the Tetraedron,

 $\frac{180^{\circ}}{n} = 60^{\circ}$, and $\frac{1}{2}s = 30^{\circ}$ $\therefore A = 70^{\circ} 31' 42''$.

In the Hexaedron, $\frac{180^{\circ}}{n} = 60^{\circ}$, and $\frac{1}{2}s = 45^{\circ}$. $A = 90^{\circ}$. In the Octaedron, $\frac{180^{\circ}}{n} = 45^{\circ}$, and $\frac{1}{2}s = 30^{\circ}$... $A = 109^{\circ} 28' 19''$. In the Dodecaedron, $\frac{180^{\circ}}{n} = 60^{\circ}$, and $\frac{1}{2}s = 54^{\circ}$... $A = 116^{\circ} 33' 54''$. In the Icosaedron, $\frac{180^{\circ}}{n} = 36^{\circ}$, and $\frac{1}{2}s = 30^{\circ}$... $A = 138^{\circ} 11' 23''$.

To find the volume of a regular polyedron.

126. If planes be passed through the centre of the polyedron and each of the edges, they will divide the polyedron into as many equal right pyramids as the polyedron has faces. The common vertex of these pyramids will be at the centre of the polyedron, their bases will be the faces of the polyedron, and their lateral faces will bisect the diedral angles of the polyedron. The volume of each pyramid will be equal to its base into one-third of its altitude, and this multiplied by the number of faces, will be the volume of the polyedron.

It only remains to deduce a formula for finding the distance from the centre to one face of the polyedron.

Conceive a perpendicular to be drawn from the centre of the polyedron to one face; the foot of this perpendicular will be the centre of the face. From the foot of this perpendicular, draw a perpendicular to either side of the face in which it lies, and connect the point thus determined with the centre of the polyedron. There will thus be formed a right-angled triangle, whose base is the apothem of the face, whose angle at the base is half the diedral angle of the polyedron, and whose altitude is the required altitude of the pyramid, or in other words, the radius of the inscribed sphere.

OF POLYEDRONS. 133

Denoting the perpendicular by P, the base by b, and the diedral angle by A, we have Formula (3), Art. 37, Trig.,

$$P = b \tan \frac{1}{2}A;$$

but b is the apothem of one face; if, therefore, we denote the number of sides in that face by n, and the length of each side by s, we shall have (Art. 101, Mens.),

$$b = \frac{1}{2}s \cot \frac{180^{\circ}}{n};$$

whence, by substitution,

$$P = \frac{1}{2}s \cot \frac{180^{\circ}}{n} \tan \frac{1}{2}A;$$

hence, the volume may be computed. The volumes of all the regular polyedrons have been computed on the supposition that their edges are each equal to 1, and the results are given in the following

TABLE.

NAMES.				N	10.	OF FA	CES.			VOLUMES.
Tetraedron,	•	•	•			4				0.1178513
Hexaedron,										
Octaedron,										
Dodecaedron										
Icosaedron,										

From the principles demonstrated in Book VII., we may write the following

RULE.

To find the volume of any regular polyedron, multiply the cube of its edge by the corresponding tabular volume : the product will be the volume required.

MENSURATION.

EXAMPLES.

1. What is the volume of a tetraedron, whose edge is 15? Ans. 397.75.

2. What is the volume of a hexaedron, whose edge is 12? Ans. 1728.

3. What is the volume of a octaedron, whose edge is 20? Ans. 3771.236.

4. What is the volume of a dodecaedron, whose edge is 25? Ans. 119736.2328.

5. What is the volume of an icosaedron, whose edge is 20? Ans. 17453.56.

A TABLE

0F

LOGARITHMS OF NUMBERS

FROM 1 TO 10,000.

N.	Log.	N.	Log.	N.	Log.	N.	Log.
I	0.000000	26	1.414973	51	1.707570	76	1.880814
2	0.301030		1.431364	52	1.716003		1.886491
3	0.477121	27 28	1.447158	53	1.724276	77 78	1.892095
4	0.602060	29	1.462398	54	1.732394		1.897627
5	0.698970	30	1-477121	55	1.740363	79 80	1.903090
6	0.778151	31	1.491362	56	1.748188	81	1.908485
78	0.845098	32	1.505150	57	1.755875	82	1.913814
8	0.903090	33	1.518514	58	1.763428	83	1.919078
9	0.954243	34	1.531479	59	1.770852	84	1.924279
10	1.000000	35	1.544068	60	1.778151	85	1.929419
11	1.041393	36	1.556303	61	1.785330	86	1.934498
12	1.079181	37	1.568202	62	1.792392	87	1.939519
13	1.113943	38	1.579784	63	1.799341	88	1.944483
14	1.146128	39	1.591065	64	1.806181	89	1.949390
15	1 • 176091	40	1.602060	65	1.812913	90	1.954243
16	1.204120	41	1.612784	66	1.819544	91	1.959041
17	1.230449	42	1.623249	67	1.826075	92	1.963788
18	1 • 255273	43	1.633468	68	1.832509	93	1.968483
19	1.278754	44	1.643453	69	1.838849	94	1.973128
20	1.301030	45	1.653213	70	1.845098	95	1.977724
21	1.322219	46	1.662758	71	1.851258	96	1. 382271
22	1.342423	47	1.672098	72	1.857333	97	1.986772
23	1.361728	48	1.681241	73	1.863323	98	1.991226
24	1.380211	49	1.690196	74	1.869232	99	1.995635
25	1.397940	50	1.698970	75	1.875061	100	2.000000

REMARK. In the following table, in the nine right hand columns of each page, where the first or leading figures change from 9's to 0's, points or dots are introduced instead of the 0's, to eatch the eye, and to indicate that from thence the two figures of the Logarithm to be taken from the second column, stand in the next line below.

	D.	9	8	7	6	5	4	3	2	I	0	N.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3891										
	4 428	8174								4751		
									2680	3250		
	5 419 5 416	0010	0197									
	5 410	4806	4486	4075	3664							
		8978		8164				6533	6125	5715	5306	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 404	3021	2619		1812					9789		107
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		7028								3820		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 396	•998	•602	•207		· ·	9017		8223			109
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4932			3755		2269			1787	041393	
						7273					3323	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									3293		0210	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0563					7665		6005	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4083	3700	3333								115
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 372	7815	7443		6600		5953		5206		4458	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 309	1514	1145	•776	•407		9668	9298				117
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					4085	3718						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	363	8819	8437	8094			, .					119
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2426	2067	1707					2204	2543		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6004	5647	5291		4576	4219		3003	5144		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3071	9145				7781	7420 •063	7071 •611			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 349	6562		5866							003/22	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	346	0026										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 343	3462	3119			2091	1747	1403	1059	0715	100371	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	340	6871	6531	6191			2169		4487			127
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												128
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1									1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				6270								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3108	2851							120574	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	325	6781	6456	6131							3852	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	323	••12		9368	9045	8722	8399	8076		7429	7105	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3219	2000	2580		1939			0077			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									4177			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	315 314	9304					7987	7071	7304		0721	137
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	311	5818			4885		4263	3051		3327	143015	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	Eq11										1 '
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	307	1982		1370	1063	•756	•449	0142	9835		9219	14!
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 305	50.32	4728	4424	4120		3510	3205	2900	2594	152288	142
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7759	7457								143
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3758	*409 3460		9568						44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									4047			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	297 295	9968		0380					7908			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	293	2895	2603				1434		0848	0555		148
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 291	5802	5512	5222	4932			4060	3769	3478	3186	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	289	8689			7825	7536	7248				176091	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					•692	•413	•126			9264	8977	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					3000	3270	2053	2700				
155 190332 0612 0892 1171 1451 1730 2010 2289 2567 2846 156 3125 3403 3681 3050 4237 4514 4702 5060 5346 5623	203	●25g						8366				154
156 3125 3403 3681 3050 4237 4514 4702 5060 5346 5623	279	2846		2230								155
	278	5623	5346	5060	4792	4514	4237	3959	3681	3403	3125	156
157 5800 6176 6453 6720 7005 7281 7556 7832 8107 832	276	8382		7832	7556			6729			5899	157
		1124 3848		•377 3305			9700 2488					
N. 0 1 2 3 4 5 6 7 8 9	 D.											

N.	0	I	2	3	4	5	6	7	8	9	D.
100	204120	4391	4663	4934	5:04	5475	5746	6016	6286	6556	271
161	6826	7006	7365	7634	7 904 •586	8173 •853	8441	8710	8979	9247	260
162	9515	9783	••51	•319			1121	1388		1921	267
163	212188	2454	2720	2986	3252	3518	3783	4049	4314	4579	266
154	4844	5109	5373	5638	5002	6166	6430	6694	6957	7221	264
165 166	7484	7747	8010	8273	8536	8798	9060	9323	9585	9846	262
100	220108	0370	0631 3236	0892	1153 3755	1414 4015	1675	1936	2196	2456	261
168	2716	2076 5568	5826	3496 6084	63.42	6600	4274 6858	4533	4792	5051	259
169	7887	8144	8400	8657	8913	9170	9426	9682	7372 9938	•193	256
170	230449	0704	0960	1215	1470	1724	1979	2234	2488	2742	254
171	2006 5528	3250	3504	3757	4011	4264	4517	4770	5023	5276	253
172	5528	5781	6033	6285	6537	6789	7041	7292	7544	7795	252
173	8046	8297	8548	8799	9049	9299	9550	9800	•050	•300	250
174	240549	0799	1048	1297	1546	1795	2044	2293	2541	2790	249
175	3038	3286	3534	3782	4030	427 7 6745	4525	4772 7237	5019	5266	248
175	5513	5759	6006	6252	6499 8954	0743	6991	7237	7482	7728	246
177 178	7973	8219	8464	8709	0904	9198	9443	9687	9932	•176	245
170	250420 2853	0664	0008	1151	1395	1638	1881	2125	2368	2610	243
179 180	1	3096	1	3580	3822	4064	4306	4548	4790	5031	2.42
	255273	5514	5755	5996	6237	6477	6718	6958	7198	7439	241
181 182	7679	7918 0310	8158	8328	8637	8877	9116	9355	9594	9833	239
183	260071 2451		0548	0787		1203	1501	1739	1976	2214	238
184	24.01	2688	2925	3162	3399	3636	3873	4109	4346	4582	237
185	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	235
186	7172	7400	7641	7875	8110	8344	8578	8812	9046	9279	234
187	9513 271842	9746 2074	9980 2306	•213 2538	•446	•679 3001	•912 3233	3464	1377	1609	233
188	4158	4389	4620	4850	2770 5081	5311	5542		3696	3927	232
189	6462	6692	6921	7151	7380	7609	7838	5772	6002 8296	6232 8525	230
190	278754	8982	9211	9439	9667	9895	•123	•351	•578	•806	228
191	281033	1261	1488	1715	1942	2160	2396	2622	2849	3075	227
192	3301	3527	3753	3979	4205	4.431	4656	4882	5107	3075 5332	226
193	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
194	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	222
196	2256	2478	2699	2920	3141	3363	3584	3864	4025	4246	221
197	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
198	6665	6884	7104	7323	7542	7761	7979 •161	8198	8416	8635	219
199	8853	9071	9289	9507	9725	9943	1	•378	•595	•813	218
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980	217
201	3196	3412	3628	3844	4059	4275	4491 6639	4706	4921	5136	216
202	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282	215
203 204	7496	7710 9843	7924 ●●56	8137 •268	8351	8564	8778	8991	9204	9417	213
204	9630			•208 2380	•481	•593	•906	1118	1330	1542	212
200 206	311754 3867	1966 4078	2177 4289	2309	2600	2812	3023 5130	3234	3445 5551	3656	211
207	5070	6180	6390	4499 6599	4710 6809	4920 7018		5340 7436	5551 7646	5760	210
208	5970 8063	8272	8481	8689	8898	9106	7227 9314	9522	9730	7854 9938	209 208
200	320146	0354	0562	0769	0977	1184	1391	1598	1805	2012	200
210	322219	2426	2633	2839	3046	3252	3458	3665	3871	4077	206
311	4282	4488	4694	4899 6950	5105	5310	5516	5721	5926	6131	205
212	6336	6541	6745		7155	7359	7563	7767	7972	8176	204
213	8380	8583	8787	8991	9194	9398	9601	9805		•211	203
214	330414	0617	0819	1022	1225	1427	1630	1832	2034	2236	202
215	2438	2640	2842	3044	3246	3447	3649	3850	4051	4253	202
216	4454	4655	4856 .	5057	5257	5458	5658	5859	6059	6260	201
217 218	6460	6660 8656	6860 8855	7060	7260	7459	7659	7858	8058	8257	200
	8456	8656	8855	9054	9253	9451	9650	9849	••47	•246	199
218	340444	0642	0841	1030	1237	1433	1032 !	1830	2028	2225	108
	340444	0642	2	1039	4	1435 5.	1632 	1830	2028 8	2225 	198 D.

N	1 0	1 1	2	3	4	5	6	1 -	1 0	1	
		_!						7	8	9	D.
220		3 2620 2 4580	2817 4785	3014 4981	3212	3409	3606 5570	3802	3999	4196	197
22	2 635	3 6549	6744	6939	7135	7330	7525	7720	7915	8110	196 195
22			8694	8889	9083	9278	9472	9666	9860	••54	194
22			0636 2568	0829 2761	2954	1216	3339	1603 3532	1796	1989	193
220			4493	4685	48,0	5068	5260	5452	3724 5643	3916 5834	193 192
22			6408	6599	6790	6981	7172	7363	7554	7744	191
228		5 8125 5 ••25	8316 •215	8506	8696	8886	9076	9266	9456	9646	190
230	1 .			•404	•593	•783	•972	1161	1350	1539	189
230			2105 3988	2294 4176	2482 4363	2671 4551	2859	3048 4926	3236	3424 5301	188 188
232	5488		5862	6049	6236	6423	6610	6796	6983	7169	187
233	10-0	7542	7729	7915	8101	8287	8473	8659	8845	9030	186
234			9587	9772	9958	•143	•328 2175	•513 2360	•698 2544	•883	185
236	2012	1	3280	3464	3647	1991 3831	4015	4198	4382	2728 4565	184 184
237	4748	4932	5115	5298	548i	5664	5846	6029	6212	6394	183
238	6077	0739	6942	7124	7306	7488	7670	7852	8034	8216	182
	1 '	1	8761	8943	9124	9306	9487	9668	9849	••30	181
240			0573 2377	0754 2557	0934	2917	1296 3097	1476	1656 3456	1837	181
242	2017 3815	2197 3995	4174	4353	2737 4533	4712	4891	3277 5070	5249	5428	180
243	5606	5785	5964	6142	6321	6499	6677 8456	6856	7034	7212	178
244	7390		7746 9520	7923 9698	8101 9875	8279 ••51	8456 ●228	8634	8811 •582	8989	1 178
1 : 46	39166		1288	1464	1641	1817	1993	•405 2169	2345	•759 2521	177
247	2697 4452	2873	3048	3224	3400	3575	3751	3926	4101	4277	176
248	4452	4627	4802 6548	4977	5152	5326	5501 7245	5676	5850	6020	175
249	6199		8287	6722	6896	7071		7419	7592	7766	174
250	397940		€207 €€20	8461 •192	8634 •365	8808 •538	8981 •711	9154 •883	9328 1056	9501 1228	173
252	401401	1573	1745	1917 3635	2089	2261	2433	2605	2777	2949	173
253	3121	3292	3464		3807	3978	4149 5858	4320	4492	4663	171
254	4834 6540	5005 6710	5176 6881	5346 7051	5517 7221	5688 7391	7561	6029 7731	6199 7901	6370 8070	171 170
256	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	169
257	9933	•102	•271	•440	•609	•777 2461	•946	1114	1283	1451	169
258	411620	1788 3467	1956 3635	2124 3803	2293 3970	2401 4137	2629 4305	2796 4472	2964 4639	3132 4806	168
260	1	5140	5307		5641	5808		6141	6308		1 1
261	414973	6807	6973	5474 7139	7306	7472	5974 7638	7804	7970	6474 8135	167
262	8301	8467	8633	8798	8964	9129	9295	9460	9625	9791 1439	165
263 264	9956	•121 1788	•286 1933	•451	•616 2261	•781 2426	•945 2590	1110	1275	1439	165
265	421604	3410	3574	2097 3737		4065	4228	2754 4392	2918 4555	3082	164 164
266	4882	5045	5208	5371	3901 5534	5697	5860	6023	6186	4718 6349	163
267	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973 9501	162
268	8135	8297 9914	8459 ••75	8621 •236	•398	8944 •559	•720	9268 •881	9429 1042	9091 1203	162 151
270	431364	1525	1685	1846	2007	2167	2328	2488	2649	2809	161
271	2969	3130	3290	3450	3610	3770	3930	4090	4249	4409	150
272	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	159
2/3	6163	6322 7909	6481 8067	6640 8226	6798 8384	6957 8542	7116 8701	7275 8859	7433	7592 9175	159 158
275	9333	9491	9648	0806	9964	•122	•279	•437	•594	•732	158
276	440909	1066	1224	1 91	1538	1695	•279 1852	2009	2166	2323	157
277	2480 4045	2637	2793 4357	2000	3106	3263 4825	3419 4981	3576	3732 5293	3889 5449	157
279	5604	5760	5915	6071	622	6382	6537	6692	6848	7003	155
				3			6		8		D.
N.		1	2	3	4	2	0	7	0	9	D.

N.	¹ 0	1	2	3	4	5	6	7	8	9	D.
280	447158	7313	7468	7623	778	7933	8088	8242	8397	8552	155
281	8706	8861	9015	9170	9324	9478	9633	9787	9941	••95 1633	154
282	450249	0403	0557	0711	0865	1018 2553	1172	1326	1479 3012	3165	154
283 284	1786 3318	1940	2093	2247	2400 3930	4082	2706 4235	2859 4387	4540	4602	153
285	4845	3471 4997	5150	5302	5454	5606	5758	5910	6062	6214	152
286	6366	5518	6670	6821	6973	7125	7276	7/28	7579	7731	152
287	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242	151
288	9392	9543	9694	9845	9995	•146	•296	•447	•597	•748	151
289	460898	1048	1198	1348	1499	1649	1799	1948	2098	2248	150
290	462398	2548	2697	2847	2997	3146	3296	3445	3594	3744	150
291	3893	4042	4191	4340	4490	4639	4788	4936	5085	5234	149
292	5383	5532	5680	5829	5977	6126	6274 7756	6423	6571 8052	6719	149 148
293 294	6868 8347	7016 8495	7164 8643	7312 8790	7460 8938	9085	9233	7904 9380	9527	9675	148
294	9822	9969	•116	•263	•410	•557	•704	•851	•998	1145	
296	471292	1438	1585	1732	1878	2025	2171	2318	2464	2610	147 146
297	471292 2756	2903	3049	3195 4653	3341	3487	2171 3633	3779	3925	4071	146
298	4216	4362	4508		4799	4944	5090	5235	5381	5526	146
299	5671	5816	5962	6107	6252	6397	6542	6587	6832	6976	145
300	477121	7266	7411 8855	7555 8999 0438	7700	7844	7989	8133	8278	8422	145
301	8566	8711		8999	9143	9287	9431	9575	9719	9863	144
302	480007	0151	0294	0438	0582	0725	0869	1012	1156	1209	144
303	1443	1586 3016	1729 3159	1872 3302	2016	2159 3587	2302 3730	2445	2588 4015	2731 4157	143
304 305	2874 4300	4442	4585	6727	3445	5011	5153	5295	5437	5579	142
306	5721	5863	6005	6147	6289	6430	6572	6-14	6855	6997	142
307	7138	7280	7421	7563	7704	7845	7986	8127	8269	8410	141
308	8551	8692	8833	8974	9114	9255	9396	9537	9677	9818	1.41
309	9958	••99	•239	•38o	•520	●661	•8ó1	•941	1081	1222	140
310	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621	140
311	2760	2900	3040	3179	3319	3458	3597	3737	3876	4015	130
312	4155	4294	4433 5822	4572	4711	4850 6238	4989	5128 6515	5267 6653	5406	139 139
313 314	5544 6930	5683 7068	7206	7344	6099 7483	7621	6376	7897	8035	6791 8173	138
315	8311	8448	8586	8724	8862	8999	0137	9275	9412	9550	138
316	9687	9824	9962	••99	•236	•374	•511	•648	•785	•922	137
317 318	501059	1196	1333	1470	1607	1744	1880	2017	2154	2291	137
	2427	2564	2700	2837	2973 4335	3109	3246	3382	3518	3655	136
319	3791	3927	4063	4199		4471	4607	4743	4878	5014	136
320	505150	5286	5421	5557	5693	5828	5964	6099	6234	6370	136
321	6505	6640	6776	6911 8260	7046 8395	7181 8530	7316	7451	7586	7721 9068	135 135
322 323	7856 9203	799 1 9337	8126 9471	9606	0395	8030 9874	8664	8799 •143	8934 ●277	9008 ●411	135
324	510545	0679	0813	0947	9740 1081	1215	1349	1482	•277 1616	1750	134
325	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084	133
326	3218	3351	3484	3617	3750	3883	6016	4149	4282	4414	133
327	4548	4681	4813	4946	5079	5211	5344	5476	5609	5741	133
328	5874	6006	6139	6271	6403	6535	6668	6800	6932 8251	7064 8382	132 132
329	7196	7328	7460	7592	7724	7855	7987	8119			
330	518514	8646	8777	8909	9040 •353	9171 •484	9303	9434	9566	-9697	131
331 332	9828 521138	9959 1269	••90 1400	•221 1530	•303 1661		●615 1922	•745 2053	•876 2183	1007 2314	131 131
333	2444	2575	2705	2835	2965	1792 3096	3226	3356	3486	3616	130
334	3746	3876	4006	4136	4266	4396	4526	4655	4785	4915	130
335	5045	5174	5304	5434	5563	5603	5822	5951	6081	6210	129
336	6339	6469	6598	6727	6856	6985	7114	7243	7372	7501	129
337	7630	7759	7888	8016	8145	8274	8402	8531	8660	8788	120
338 339	8917 530200	9045 0328	9174 0456	9302 0584	9430 0712	9559 0840	9687 0968	9815 1096	9943 1223	••72 1351	128 128
			2	3	4	5	6		8		D.

A TABLE OF LOGARITHMS FROM 1 TO 10,000.

N. 340 341 342 343	v 531479 2754 4026 5294	1 1607 2882	2	3	4	5	6	7	8	9	D .
341 342	2754 4026		1734								
342	4026	2882		1862	1990	2117	2245	2372	2500	2627	128
			3009	3136	3264	339i	3518	3645	3772	3899	127
		4153 5421	4280 5547	4407 5674	4534 5800	4661 5927	4787 6053	4914 6180	5041 6306	5167 6432	127
344	6558	6685	6811	6937	7063	7189	7315	7441	7567	7693	126
345	7819	7945	8071	8197	8322	8448	8574	8699	7567 8825	8951	126
346	9076	9202	9327	9452	9578	9703	9829	9954	••79	•204	125
347	540329	0.455	o58o	0705	0830	6955	1080	1205	1330	1454	125
348	1579	1704	1829	1953	2078 3323	2203	2327	2452	2576	2701	125
349		2950	3074	3199		3447	3571	3696	3820	3944	
350 351	544068	4192	4316	4440	4564	4688	4812	4936	5060	5183	124
352	5307 6543	5431 6666	5555 6789	5678 6913	5802 7036	5925 7159	6049 7282	6172 7405	6296 7529	6419 7652	124 123
353	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
354	9003	9126	9249	9371	9494	9610	9739	9861	9984	•106	123
355	550228	ó351	0473	0595	6717 1938	0840	0962	1084	1206	1328	122
356	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547 3762	122
357 358	2668 3883	2790	2911 4126	3033	3155 4368	3276 4489	3398 4610	3519 4731	3640 4852	4973	121
359	5094	4004 5215	5336	4247 5457	5578	5699	5820	5940	4552 6061	6182	121
360			1			6905					120
361	556303 7507	6423 7627	6544 7748	6 664 7868	6785 7988	8108	7026 8228	7146 8349	7267 8469	7387 8589	120
362	8709	8829	8948	9068	0188	9308		9548	9667	9787	120
363	9907	••26	•146	•265	9188 ●385	•5o4	9428 •624	•743	•863	• <u>9</u> 82	119
364	561101	1221	1340	1459	1578	1698	1817	1936	2055	2174 3362	119
365	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362 4548	119
366	3481	3600	3718	3837 5021	3955 5139	4074 5257	4192 5376	4311 5494	4429 5612	4340 5730	119 118
367 368	5848	4784 5966	4903 6084	6202	6320	6437	6555	6673	6791	6909	118
369	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	118
170	568202	8319	8436	8554	8671	8788*	8905	9023	9140	9257	117
171	9374	9491	9608	9725	9842	9959	••76	•193	•309	•426	117
172	570543	0660	0776	ó893	1010	1126	12.43	1359	1476	1592	117
173	1709	1825	1942	2058	2174	2201	2407	2523	2639	2755	116
374	2372	2988	3104 4263	3220	3336	3452 4610	3568 4726	3684 4841	3800 4957	3915 5072	116
375 376	4031 5188	4147 5303	5419	4379 5534	4494 5650	5765	5880	5996	6111	6226	115
377	6341	6457	6572	6687	6802	6917	7032	7147	7262	7377 8525	115
377 378	7492	7607	7722 8868	7836	7951	6917 8066	8181	7147- 8295	7262 8410		115
379	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	114
380	579784	9898	••12	•126	•241	•355	•469	•583	•697	•811	114
381	580925	1039	1153	1267	1381	1495	1608	1722 2858	1836	1950 3085	114
382 383	2063	2177	2291	2404 3539	2518 3652	2631 3765	2745 3879	3992	2972	4218	114
384	3199 4331	3312	3426 4557	4670	4783	4896	5009	5122	4105 5235	5348	113
385	5461	4444 5574	5686	5799	5912	6024	6137	6250	6362	6475	113
386	6587	6700	6812	6925	7637	7:49	7262	7374	7486	7599 8720	112
387	7711	7823	7935	8047	8160	8272	8384	8496	8608	9838	112
388	8832	8944	9056	9167	9279	9391	9503 •619	9615 •730	9726 •342	●953	112
389	9950	••61	•173	•284	•396	•307				2066	1 1
340	591065	1176	1287	1399	1510	16 71 2732	1732 2843	1843 2954	1955 3064		111
391	2177 3286	2288 3397	2399 3508	2010	3729	38.40	3950	4061	4171	3175 4282	111
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386	110
394	1 5496	5606	5717	5827	5937	6047	6157	6267	6377	6487	110
390	6507	6707	6817	6927	1037	7146	7256	7366	7476	7586 8681	110
396	7695	7805	7914	8024	8134	8243 9337	8353	9556	8572 9665	0774	100
397 398	7695 8791 9883	8900	9009 •101	9119 •210	9228 •319	•428	•537	•646	•755	9774 •864	100
399	600973	9992 1082	1191	1299	1408	1517	1625	1734	1843	1951	109
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	U	I	2	3	4	5	6	7	8	9	D.
400	602060	2169	2277	2386	2.494	2603	2711	2819	2928	3036	108
401	3144	3253	3361	3469	3577 4658	3686	3794	3902	4010	4118	108
402	4226	4334	4442	4550	4658	4766	4874	4982	5089	5197	108
4 03	5305	5413	5521	5628	5736	5844	5951	6059	6166	6274	108
404	6381	6489	6596	6704	6811	6919	7026	7133	7241	7348	107
405	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419	107
406	8526	8633	8740 9808	8847	8954	9061 •128	9167 •234	9274 •341	9381	9488 •554	107
107 502	9594 610660	9701 0767	0873	9914	1086	1192	1298	1405	•447 1511	1617	107 106
400	1723	1829	1936	2042	2148	2254	2360	2466	2572	2678	100
	t 12784	2890	2996	3102	3207	3313	3419	3525	3630	3736	106
4111	3842	3947	4053	4159	4264	4370	4475 5529	4581	4686	4792	106
412	4897	5003	5108	5213	5319	5424	3029	5634	5740	5845	105
413	5050	6055 5105	6160	6265 7315	6370	6476	6581	6686	6790	6895	105
414	7000	7105 8153	7210	8362	7420 8466	7525 8571	7629	8780	8884	7943	105
416	9093	9198	9302	9406	9511	9615	9719	9824	9928	0032	104
417	620136	0240	0344	0448	0552	0656	0700	0864	0968	1072	104
417 418	1176	1280	1384	1488	1502	1695		1903	2007	2110	104
419	2214	2318	2421	2525	2628	2732	1799 2835	2939	3042	3146	104
420	623249	3353	3456	3559	3663	3766	3869	3973	4076	4179	103
421	4282	4385	4488	4591	4695	4798	4901	5004	5107	5210	103
422	5312	5415	5518	5621	5724	5827 6853	5929	6032	6135	6238	103
423	6340	6443	6546	6648	6751		6956	7058 8082	7161 8185	7263 8287	103
424	7366	7468	7571	7673	7775 8797	7878	7980			8287	102
425 426	8389	8491	8593 9513	8695	9817	8900	9002 6921	9104 •123	9206 •224	9308 •326	102
420	9410 630.428	9512 0530	0631	9715 0733	0835	9919 0936	1038	1139	1241	1342	102 102
428	1444	1545	1647	1748	1849	1951	2052	2153	2255	2356	101
429	2457	2559	2660	2761	2862	2963	3064	3165	3266	3367	101
430	633468	3569	3670	3771	3872	3973	4074	4175	4276	4376	100
431	4477	4578	4679	4779 5785	4880	4981	5081	5182	5283	5383	100
432	5484	5584	2685	5785	5886	5986	6087	6187	6287	6388	100
433	6488	6588	6683	6789	6889	6939	7089	7189	7290	7390	100
434	7490	7590	7690	7790	7899	7990	8090	8190	8290	8389	99
435	8489	8589	8689 9686	8739	8888 9885	8938	9088	9188	9287 •283	9387	99
436	9486	9586 0581	0680	9785	0879	9984 0978	••84	•183		•382	99
437 438	640481 1474	1573	1672	0779 1771	1871	1970	1077	2168	1276	1375 2366	99
439	2465	2563	2662	2761	2860	2959	3058	3156	3255	3354	99 99
440	643453	3551	3650	3749	3847	3946	4044	4143	4242	4340	o 8
441	4.439	4537	4636	4734	4832	4931	5029	5127	5226	5324	98
442	5.422	5521	5619	5717	5815	5913	6011	6110	6208	6306	081
443	6404	6502	6600	6698	6796	6894	6992	7089	7187	7285	o 8
444	7383 8360	7481 8458	7579 8555	7676	7774 8750	7872	7969 8945	8067	8165	8262	98
445	8360	8408	0300	8653	0750	8848		9043	9140	9237	97
446	9335	9432	9530 0502	9627 0599	9724 0696	9821	9919	••16 ••87	•113 1084	•210	97
447	650308 1278	0405 1375	1472	1569	1660	0793 1762	0800 1850	0987 1956	2053	1181 2150	97
44)	2246	2343	2440	2536	2633	2730	2826	2923	3019	3116	97 97
450	653213	3309	3405	3502	3598	3695	3791	3888	3984	408 0	96
451	4177 5138	4273 5235	4369	4465	4562	4658	4754	485 0	.4946	5042	06
452	5138		5331	5427	5523	5619	5715	5810	5906	6002	95
453	6098 7056	6104	6290	6386	6482	6577 7534	6673	6769	6864	6960	96
454	7056	7152	7247	7343	7438 8393	7034	7629	7725 8679	7820	7916 8870	c61
455	8011	8107	8202	8298	0395	8488	8584	6079	8774	0570	95
456	8965	9060 9911	9155 •106	9250 •201	9346 •296	9441 •391	9536	963 i •581	9726 •676	9821	95
458	9916 660865	0960	1055	1150	1245	1339	•486 1434	1529	1623	•771 1718	95 95
459	1813	1907	2002	2096	2191	2286	2380	2475	2569	2663	95 95
				3							

N.	0	1	2 1	3	4	5	6	7	8	9	D.
460 1	662758	2852	2947	3041	3135	3230	3324	3418	3512	3607	9 4
61	3701	3795	3889	3983	4078	4172	4266	4360	4454	4548	94
62	4642	4736	4830	4924 5862	5018 5956	5112 6050	5206 6143	5299 6237	5393 6331	6424	94 94
(63	5581 6518	5675	5769 6705	6799	6502	6986		7173	7266	7360	94
64 65		7546	7640	7733	7826	7920	7079 8013	8106	8199	8293	- <u>6</u> 3
66	7453 8386	8479	8572	8665	8759	8852	8945	9038	9131	9224	- 93
67	9317	9110	9503	9596	9689	9782	9875	9967	6060	•153	- 93
	670246	0339	0431	0524	0617	0710	0802	0895	0988	1080	- 93
69	1173	1265	1353	1451	1543	1636	1728	1821	1913	2005	<u>ģ</u> 3
\$70	672098	2190	2283	2375	2467	2560	2652	2744	2836	2029 3850	92
\$71	3021	3113	3200	3297	3390	3482	3574	3666 4586	3758	4769	92 92
72	3942	4034	4126 5045	4218	4310 5228	4402 5320	4494 5412	5503	4677 5595	5687	92
\$73	4861	4953 5870	5962	5137 6053	6145	6236	6328	6419	6511	6602	92
474	5778 6694	6785	6376	6968	7050			7333		7516	- ģi
476	7607	7698	7789	7881	7972	7151 8063	7242 8154	8245	7424 8336	8427	91
477	8518	8609	8700	8791	8882	8973	9064	9155	9246 •154	9337 •245	. 91
473	9428	9519	9610	9700	9791	9882	9973	•=63			91
179	686336	0420	0517	0607	0698	0789	0879	0970	1060	1151	91
480	681241	1332	1422	1513	1603	1693	1784	1874	1964	2055	90
481	2145	2235	2326	2416	2506	2596	2680	2777 3677	2867	2957 3857	90
482	3047	3137	3227	3317	3407	3497	3587	3077	3767 4666	4756	90 90
483	3947	4037	4127	4217	4307 5204	4396	4486 5383	4576 5473	4000 5563	5652	90
484	4845	4935 5331	5025 5921	5114 6010	6100	5294 6189	6279	6368	6458	6547	89
485 486	5742 6636	6726	6815	6904	6994	7083	7172	7261	7351	7440 8331	. 89
487	7529	7618	7707	7706	7886	7975 8865	806.4	8153	8242	8331	89
488	8420	8500	7707 8598 9485	8637	8776	8865	8953	90.12	9131	9220	89
489	9309	9398	9485	9575	9664	9753	9841	9930	••19	•107	89
490	690196	0285	0373	0462	0550	0639	0728	0816	0905	0993	89 89
491	1081	1170 2003	1258	1347	1435	1524	1612	1700 2583	1789	1877	88
492	1965	2003	2142	2230	2318	2406	2494	3463	2671 3551	3630	88
493	2847	2935 3815	3023 3903	3111 3991	3199	4166	3375 4254	4342	4430	4517	89
494	3727	4693	4781	4868	4078 4956	5044	5131	5219	5307	5394	88
495 496	5482	5559	5657	5744	5832	5919	6007	6094	6182	6269	87
497	6356	6444	6531	6618	6706	6793 7665	6880	6968	7055	7142	87
498	7229	7317	7404	7491 8362	7578	7665	7752 8622	7839	7926 8796	8014	8
499	8101	8183	8275		8449	8535		8709	1		87
500	698970	9057	9144	9231	9317	9.40.4	9401 •358	9578	9664	9751	8
501	9838	9924	#01I	6098	•184	•271		•444	•531	•617 1482	8-
502	700704	0790	0877	0963	1050	1136	1222 2086	1309-2172	1305 2258	2344	86
503	1568		1741 2603	1827	1913	1999 2861	2000	3033	3119	3205	86
504 505	2431		3463	3549	2775 3635	3721	3807	3803	3979	4065	86
505	4151	4236	4322	4403		4579	4665	4751 5607	4837	4922	80
507	5008		5179	5265	4494 5350	4579 5436	5522	5607	5693	5778	80
508	5864	5949	0033	6120	6206	6291	6376	6462	6547	6632	8
509	6718	6803	6888	6974	7059	7144	7229	7315	7400	7485	1
510	707570	7655	7740	7826	7911 8761	7996 8846	8081	8166	8251	8336 9185	8
511	8421	8506		8676			8931	9015 9863	9100	6033	8
512	9270		9440	9524	9609 0456	9694 0540	9779	0710	0794	0870	8
513	710117	0202	0287	1217	1301	1385	1470	1554	1639	1723	8
514 515	0963	0	1976	2000	2144	2229	2313	2397	2481		; 8
516	180-		2818	2002	2986	3070	3154	3233	3323	3.407	8
517	349		3559	3742	3826	3910	399.4	4078	4162	4246	
218	4330	4414	4497 5335	4581	4665	4749	4833	4916	5000	5084 5920	8
519	516	7 5251	5335	5418	5502	5586	5669	5753			- D.
									8		

N.	0	1 1	2	3	4	5	6	7	8		D.
		.				-				9	
520	716003		5170	6254	6337	6421	6504	6588	6671	6754	83
521	7671		7004	7088 7920	8003	7254	7338 8169	7421 8253	7504	7587	83
523	8502		8668	8751	8834		9000	9083	8336 9165	8419	83
524	9331		9497	0580	9663	8917 9745	1 9828	9000	99994	9248 ••77	83
525	720159		0325	0407	0490	0573	0655	0738	0821	2003	83
526	0986		1151	1233	1316	1398	1481	1563	1646		82
527	1811	1893	1975	2058	2140	2222	2305	2387	2469	1728	82
528	2634 3456		2798	2881	2963	3045	3127	3209	3291	3374	82,
529	1	1	1	3702	3784	3866	3948	4030	4112	4194	82
530	724276	4358	4440	4522	4604	4685	4767	4849	4931	5013	82
531 532	5095 5912	5176 5993	5258 6075	5340 6156	5422	5503	5585	5667	5748 6564	5830	82
533	6727	6809	6890	6972	6238 7053	6320	6401	6483	6004	6646	82
534	7541	7623	7704	7785	7866	7948	7216 8029	7297	7379	7460 8273	81
535	7541	8435	8516	7785	8678	8759	8841	8922	9003	9084	81 81
536	9165	9246	9327	9408	9489	9570	. 9651		9813	9893	81
537 538	9974	6055	é 136	\$217	•298	•378	•459	9732 •540	·621	•702	81
	730782	0863	0944	1024	1105	1186	1266	1347	1428	1508	81
539	1589	1669	1750	1830	1911	1991	2072	2152	2233	2313	81
540	732394	2474	2555	2635	2715 3518	2796 3598	2876	2956	3037	3117	80
541	3197	3278	3358	3438		3598	3679	3759	3839	3010	80
542 543	3999	4079 4880	4160	4240	4320	4400	4480	4560	4640	4720 5519	80
545	5599		4960 5750	5040 5838	5120 5918	5200	5279	5359 6157	5439	5519	80
545	6397	6476	5759 6556	6635	6715	5998	6078	6954	6237 7034	6317	80
546	7193	7272	7352	7431	7511	6795 7590 8384	7670		7829	7113	80
547	7987 8781	8067	8146	8225	8305	8384	8463	7749 8543	8622	8701	79 79
548	8781	8860	8939	9018	9097	9177 9968	9256	9335	9414	9493	79
549	9572	9651	9731	9810	9889	9968	·••47	•126	•205	•284	79
550	740363	0442	0521	0600	0678	0757	0836	0915	0994	1073	79
551	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860	79
552 553	1939	2018 2804	2096 2882	2175	2254	2332	2411	2489	2568	2647	79
554	2725 3510	3588	3667	2961	3039 3823	3118	3196 3980	3275 4058	3353	3431	79 78 78 78 78
555	4293	4371	4449	3745 4528	4606	4684	4762	4840	4136	4215	78
556	5075	5153	5231	5309	5387	5465	5543	5621	5699	4997	78
557	5855	5933	6011	6089	6167	6245	6323	6401	6479	5777 6556	781
558	6634	6712	6790	6868	6945	7023	7101	7179	6479 7256	7334	78
559	7412	7489	7567	7645	7722	7800	7878	7955	8033	0118	78
560	748188	8266	8343	8421	8498	8576	8653	8731	8808	8885	77
561	8963	9040	9118	9195	9272	9350	9427	9504	9582	9659	77
562 563	9736	9814 0586	9891 0663	9968	60 45	•123	·200	•277 1048	•354	•43í	77
564	750508 1279	1356	1433	0740	0817 1587	0894	0971	1048	1125	1202	77
565	2048	2125	2202	2279	2356	1664 2433	1741 2500	2586	1895 2663	1972	77
566	2816	2893	2970 3736	3047	3123	3200	3277	3353	3430	2740 3506	77
567 568	3583	3660	3736	3813	3889	3966	4042	4119	4105	4272	77
568	4348	4425	4501	4578	4654	4730	4807	4883	4960	5036	77
569	5112	5189	5265	5341	5417	5494	5570	5646	5722	5799	70
	753875	5951	6027	6103	6180	6256	6332	6408	6484	6560	76
571	6636	6712	6788	6864	6940	7016	7092	7168	7244	7320	76
572	7396 8155	7472 8230	7548 8306	7624 8382	7700 8458	7775 8533	7851	7927	8003	8079	76
573 574	8912	8958	9063	9139			8609	8685	8761	8836	76
575	9668	9743	9819	9894	9214 9970	9290 ••45	9366 •121	9441 •196	9517 •272	9592 •347	76 75
576	760422	0498	0573	0649	0724		0875	0050	1025	1101	251
577 578	1176	1251	1326	1402	1477	0799 1552	1627	1702	1778	1853	731
578	1928	2003	2078	2153	2228	2303	2378	2453	2029	2604	75 75
579	2679	2754	2829	2904	2978	3053	3128	3203	3278	3353	751
N.	0	1	2	3	4	5	6	7	8	9	D .
			1		*			1		9	D.

Γ	N.	0	I	2	3	4	5	6	7	8	9	D.
1	580	763428	3503	3578	3653	3727	3802	3877	3052	4027	4101	75
	581	4176	4251	4326	4400	4475	4550	4624	4699	4774	4848	7.70
	582	4923	4998	5072	5147	.5221	5296	5370	5445	5520	5594	15
	583	5669		5818	5892	5956	6041	6115	6190	6264	6538	74
	584 585	6413	6487 7230	6562	6636	6710	6785	6859	6933	7007	7082	74
	586	7156	7972	7304 8046	7379 8120	7453	7527 8268	7601	7675	7749	7823 8564	74
1	587	1 8638	8712	8786	8860	8934	9008	9082	9156	9230	9303	74
1	588	9377	9451	9525	9599	9073	9746	9820	9894	9968	••42	74
	589	770115	0189	0263	6336	0410	0484	ó557	0631	0705	0778	74
	590	770852	0926	0999 1734	1073	1146	1220	1293	1367	1440	1514	74
	591 592	1587	1661 2395	2468	1803 2542	1881 2615	1955 2688	2028 2762	2102	2175 2908	2248	73
1	203	3055	3128	3201	3274	3348	3421	3494	3567	3040	2981 3713	73
Ł	504	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	1 73
1	393 -	4517	4590	4663	4736	4809	4882	4955	5028	5100	5173	73
	506	5246	5319	5392	5465	5538	5610	5683	5756	5829	5902	73 73 73 73 73 73 73 73
1	597 598	5974	6047	6120	6193	6265	6338	6411	6483	6556	6629	73
1	J98	6701	6774	6846	6919	6992	7064	7137	7209	7282	7354	73
÷ -	599	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079	72
	600 601	778151 88 7 4	8224 8947	8296	8368	8441 9163	8513 9236	8585 9308	8658 9380	8730 9452	8802	72
	602	9596	9669	9019 9741	9091 9813	9105	9230	9308 ••29	9380 •101	•173	9524 •245	72
	603	786317	0380	0461	0533	0605	0677	0749	0821	0893	0965	72 72
	604	1037	1100	1181	1253	1324	1396	1468	1540	1612	1684	72
10	605	1755	1827	1899	1971 2688	2042	2114	2186	2258	2329	2401	72
	506	2473	2544	2616		2759	2831	2902	2974	3046	3117	72
1 2	507	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	71
	508 i 509	3904 4617	3975 4689	4046 4760	4118 4831	4189 4902	4261 4974 ·	4332 5045	4403 5116	4475 5187	4546	71 71
1	510	785330	5401	5472	5543	5615	5686	5757	5828	5899	5970	71
	511	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	71
	512	6751	6822	6893	6964	7035	7106	7177 7885	7248	7319	7390	71
	513	7460	7531	7602	7673	7744 8451	7815	7885	7956	8027	8098	71
	514 515	8168 8875	8239 8946	8310	8381	8431	8522	8593	8663	8734	8804	71
	616	9581	9651	9016 9722	9087 9792	9157 9863	9228 9933	9299 •••4	9369	9440 •144	9510 •215	71
		790285	0356	0426	0496	0567	0637	0707	••741 0778 1480	0848	0018	70 70
	818	0988	1059	1129	1199	1269	1340	1410	1480	1550	1620	70
1	919	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
		792392	2462 3162	2532	2602	2672	2742	2812	2882	2952	3022	70
	21	3092 3790	3860	3231	3301	3371 4070	3441	3511 4200	3581	3651 4349	3721	70
	23	4488	4558	3930 4627	4607	4070	4139 4836	4906	4279 4976	5045	4418 5115	70
	24	5185	5254	5324	4697 5393	5463	5532	5602	5672	5741	5811	70
6	25	588o	5949	6019	6088	6158	6227	6297	6366	5741 6436	6505	70
	26	6574	6644	6713	6782	6852	6921	6990 7683	7060	7129	7198	601
	27	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890	69
	28	7960 8651	8029 8720	8098 8789	8167 8858	8236 8927	83o5 8996	8374 9065	8443 9134	8513 9203	8582 9272	69 69
		799341	9409	9478	9547	0616	9685	9754	9823	0892	9961	60
6	31 1	800029	0005	0167	0236	0305	0373	0442	0511	0580	0648	69
6	32	0717	0786	o854	0923	0992	1061	1129	1198	1266	1335	69
	33	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	60
	34	2089	2158	2226	2295	2363	2432	2500	2568	2037	2705 3389	69
6	35	2774	2842 3525	2910 3594	2979 3662	3047 3730	3116 3798	3184	3252 3035	3321 4003	6071	68 68
		4139	4208	4276	4344	4412	4480	4548	4616	4685	4071 4753	68
	37 38	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
6	39	5501	556 <u>9</u>	5637	5705	5773	5841	5908	5976	6044	6112	68
	T.	0	1	2	3	4	5	6	7	8		D.

N.	0	I	2	3	4	5	6	-	6	9	D.
640	805180	6248	6316	6384	6451	6519	6587	6655	6723	6790	68
541 842	6858 7535	6926 7603	6994 7670	706:	7129	7197	7264	7332	7400 8076	8143	68
643	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818	67
644	8886	Sq53	9021	9088	9156	9223	9290	9358	9425	9492	67
645	9560	9627	9694	9762	9829	9890	9964	6 •31	•• <u>9</u> 8	•165	67
646	810233	0300	0367	0434	0501	0569	0636	0703	0770	5837	67
647 648	0904	0971 1642	1039	1106	1173	1240 1910	1307	1374 2044	1441 2111	1508	67
649	2245	2312	2379	2445	2512	2579	2046	2713	2780	2847	67
650	812913		3047	3114	3181	3247	3314	3381	3448	3514	67
651 652	3581	3648 4314	3714 4381	3781	3848	3914 4581	3081	4048	4114	4181	67
653	4248 4913	4980	5046	4447 5113	5179	5246	53/12	4714 5378	4 7 80 5445	4847	67
654	5578	5644	5711	5777	5843	5910	5976	6042	6100	6175	66
655	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
656 657	6904	6970 7631	7036	7102	7169	7 235 7896	7301	7367	6771 7433 8094	7499 8160	66
658	7565 8226	8292	7698 8358	7764 8424	7830 8490	8556	7962 8622	8688	8754	8820	66
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
660	819544	9610	9676	9741	9807	9873	9939	•••4	••70	•136	66
661	820201	0267	6333	0399	0464	0530	0595	0661	0727	0792	66
662	o858	0924	0989	6399 1055	1120	1186	1251	1317	1382	1448	66
663	1514	1579 2233	1645	1710 2364	1775 2430	1841	1906	1972	2037	2103	65
664 565	2168	2233	2299 2952	2304 3018	2430 3083	2495 3148	2060 3213	2625	2691 3344	2756	65 65
\$66	3474	3539	3605	3670	3735	3500	3865	3279 3930	3996	4061	65
567	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
568	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361	65
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	65
670 571	826075 6723	6140 6787	6204 6852	6269	6334 6981	6399 7046	6464	6528	6593	6658	65
572	7360	7434	7499	6917 7563	7628	7692	7757	7175	7240 7886	7305	65 65
673	7369 8015	8080	8144	8209	8273	8338	8402	8467	8531	7951 8595	64
674	8660	8724	8789	8853	8918	8982	9046	9111	9175	9239	64
675 676	9304	9368 ••11	9432 ••75	9497 •139	9561	9625 •268	9690 •332	9754 •396	9818	9882 9525	64
677	9947 830589	0653		0781	•204 0845	0909	0973	1037	•460 1102	1166	64 64
678	1230	1294	0717 1358	1422	1486	1550	1614	1678		1806	64
679	1870	1934	1998	2062	2126	2189	2253	2317	1742 2381	2445	64
680	832509	2573 3211	2637	2700 3338	2764	2828	2892 3530	2050	3020	3083	64
681 682	3147 3784	3848	3275 3912	3975	3402 4039	3456 4103	4166	3503 4230	3657 4294	3721 4357	64 64
683	4421	4484	4548	4611	4675	4739	4802	4866	4294	4993	64
684	5056	5120	5183	5247	5310	5373	5437	5500	4929 5564	5627	63
685 496	5691	5754	5817	5881	5944	6007	6071	6134	6197 6830	6261	63
686 687	6324 6957	6387 7020	6451 7083	6514 7146	6577 7210	6641 7273	6704 7336	6767 7399	6830 7462	6894 7525	63 63
688	7588	7652	7715	7778	7841	7001	7967	8030	8003	8156	63
689	8219	8282	7715 8345	8408	8471	7904 8534	8597	8660	8723	8786	63
690	838849	8912	8975	9038	9101	9164	9227	ç2 89	9352	9415	63
691 692	9478 840106	9541 0169	9604 0232	9667 0294	9729 0357	9792 0420	9855 0482	9918 0545	9981 0608	••43 5671	63 53
693	0733	0796	0859	0921	0984	1046	1100	1172	1234	1297	63
694	1359	1422	1485	1547	1610	1672	1735 2360	1797	1860	1922	63
695	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547	62
696 697	2609 3233	2672 3295	2734 3357	2796 3420	2859 3482	2921 3544	2983 3606	3046 3669	3108 3731	3170	62 62
698	3855	3918	3980 *	4042	4104	4166	4229	4291	4353	3793 4415	62
699	4477	453ç	4601	464 4	4726	4788	4850	4912	4974	5036	62
N.	0	1	3	3	4	5	6	7	8	9	D.

N	. 0	I	2	3	4	5	6	7	8	9	D.
700			5222	5284	5346	5408	5470	5532	5594	5656	1 (2
701		8 5780 7 6399	5842 6461	5904	5966 6585	6028 6646	6090	6151	6213	6275	62
703	695	5 7017	7079	7141	7202	7264	7326	6770 7388	6832	6394 7511	62
704	1 757.	3 7634	7696	7758 8374	7819	7881	7943 8559	8004	8066	8128	61
705		8231	8312	8374	8435	8497		8620	8682	8743	1 62
			8928 9542	9604	9051	9112	9174	9235	9297	9358	51
707	85003		0156	0217	0279	9726 0340	0401	9849 0462	9911	9972 0585	61
709	0640	6 0707	0769	0830	0891	0952	1014	1075		1197	51
710	851258	3 1320	1381	1442 2053	1503	1564	1625	1686	1747	1800	61
711	1870	1931	1992		2114		2236	2297	2358	2419	61
713	3090	2541 3150	3211	2663	2724	2785	2846 3455	2907	2968	3029	61
714	3698		3820	3881	3941	4002	4063	4124	3577 4185	3637	61
715	4306	4367	4428	4488	4549	4610	4670	4731	4792	4852	61
716	4913	4974 5580	5034 5640	5095	5156	5216	5277	5337	4792 5398	5459	61
717 718	6124	6185	6245	5701 6306	5761 6366	5822 6427	5882	5943 6548	6003	6064 6668	61
719	6729		6850	6910	6970	7031	7091	7152	7212	7272	60 60
720	857332	7303	7453	7513	1	7634	7694			7875	60
721	7935 8537	7995 8597 9198	8056	7513 8116	7574 8176	8236	8297 8898	7755 8357	7815 8417 9018	8477	60
722 723	9138	8597	8657 9258	8718	8778	8838	8898	8938	9018	9078	60
724	0730	0700	9859	9918 9918	9379	9439 ••38	9499 ••98	9559 •158	9619 •218	9679 •278	60 60
725	9739 860338	9799 0398	0458	0518	0578	0637	0697	0757	0817	0877	60
726	0937	0996	1056	1116	1176	1236	1200	1355	0817 1415	0877	60
727 728	1534	1594 2191	1654 2251	1714 2310	1773	1833	1893	1952	2012	2072 2668	60
729	2728	2787	2847	2906	2370 2966	2430 3025	2489 3085	2549 3144	2608 3204	3263	60 60
730	863323	3382	3442	3501	3561	3620	3680	3739	3799	3858	59
731	3917	3977	4036	4096	4155	4214	4274	4333	4302	4452	50
732 733	4511 5104	4570 5163	4630 5222	4689 5282	4748	4808	4867	4926	4985	5045	59
734	5696	5755	5814	5874	- 5341 5933	5400	5459 6051	5519 6110	5578 6169	5637 6228	59 59
735	6287 6878	6346	6405	6465	6524	5992 6583	6642	6701	6760	6819	59
736	6878	6937	6996	7055	7114	7173	7232	7291	7350	7409	001
737 738	7467 8056	7526 8115	7585 8174	7644 8233	7703 8292	7762 8350	7821 8409	7880+ 8468	7939 8527	7998 8586	59
739	8644	8703	8762	8821	8879	8938	8997	9056	9114	9173	59 59
740	869232	9290	9349	9408	9466	9525	9584	0642	9701		59
741	9818	9877	9935	9994	စ်ခဉ်3	•111	•170 0755	•228	•287	9760 •345	59 58
742 743	870404	0462	0.521	0579	0638	0696	0755	0813	087 2 1456	0930	58
744	0989 1573	1047 1631	1690	1164	1223 1806	1281 1865	1339 1923	1398 1981	1400 2040	1515 2098	58 58
745	2156	2215	2273 2855	1748 2331	2389	2448	2506	2564	2622	2681	58
746	2739	2797		2913	2972	3030	3088	3146	3204	3262	58
747 748	3321 3902	3379 3960	3437	3495 4076	3553 4134	3611	3669 4250	272 <u>7</u> 4308	3785 4366	3844 4424	58 58
749	4482	4540	4598	4070	4134	4192	4830	4305	4945	4424 5003	58
750	875061	5119		5235	5293	5351	5409	5466	5524	5582	58
701	5640	5608	5177 5756	5813	5871	5929	5987	6045	6102	6160	58
752 753	6218	6276 6853	6333	6391	6449	6507	6564	6622	6680	6737	58 58
754	6795 7371	7429	6910 7487	6968 7544	7026	7083	7141	7199	7256 7832	7314	58
400	7947	8004	7487 8062	8110	8177	8234	7717 8292	7774 8349	8407	8464	57
756	8522	8579	8637	8694	8702	8809	8866	8924	8931	9039	57
756 757 758	9096 9669	9153 9726	9211 9784	9268 9841	9325 9898	9383 9956	9440 ••13	9497 ••70	9555 •127	9612 •185	27 57
759	880242	0299	0356	0413	0471	0528	0585	0642	0699	0756	57

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N.	0	r	2	3	4	5	6	7	3	9	D.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	760							1				57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761											27
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	702											1 27
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				13/13			4512				41/2	57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4852		4065						5305	51
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	768	5361		5474	5531		5644		5757			57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											6434	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	772	836491		660.4			6773			6942	6998	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	771	1 7054	7111	7167	7223	7280	7336	7392	7449	7505	7561	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	772	7617	7674	7730	7786		7898	7955				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	773	8179		8292								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8741	8797	8853		8200	9021	9077		9190		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9302			9470	2020			0004	0750		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		9002		9974				0756				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		00121	1035					1314	1370		1482	56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	179	1537			1705			1872				56
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			· · ·	.,		· ·	2373			1 '	· ·	56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	781	2651						2085				56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	782			3318	3373		3484	3540				56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	783				3928		4039			4205		55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	784		4371	4427	4482	4538	4593					55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				4980			5146					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	785			2033			5699					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	107											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · ·						· ·					55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				8286	8341	8306	8451	8506				55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				8835					9109		9218	55
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	193	9273	9328		9437	0402	0547			9711	9766	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9821			9985		••94	•149			•312	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1600							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0968									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								1705				54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								r i		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3687									54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4283	4337	/301	4445					54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							4986			5148		54
	804		5310				5526					54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5796	585o	5904		6012		6119			6281	54
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	506								6712		6820	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6927		7030	7089	7143	7196	7200		7358	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7460		7573		7080	7734	7787		7893	54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						0235	0280					54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0556	0610				0823			0084	ee37	53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	813					0304	0358					53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	814	0624				o838	0891		0998		1104	53
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1158	1211	1264		1371		1477	1530			
818 2753 2806 2859 2913 2¢66 3019 3072 3125 3178 3231 53 819 3284 3337 3390 3443 3496 3549 3602 3655 3708 3761 53				1797			1956					.53
<u>819</u> <u>3284</u> <u>3337</u> <u>3396</u> <u>3443</u> <u>3496</u> <u>3549</u> <u>3662</u> <u>3655</u> <u>3768</u> <u>3761</u> <u>53</u>	517		2275						2094	2647		
												53
						4	5	6	7			

N.	0	I	2	3	4	5	6	7	8	0	D.
820	91381.4		3920	3973	4026	4079	4132	4184	4237	4200	53
821	4343		4449	4502	4555	4608	4660	4713	4766	4810	53
822	4872	4925	4977	5030	5083	5136	5189	5241	5294	5347	53
823	5400	5453	5505	5558	5611	5664	5716	5769	5822	5875	1 53
824	5927	5980	6033	6085	6138	6191	6243	6296	6349	6.401	53
825	6454	6507	6559	6612	6664	6717	6770	6822	6875	5927	53
826	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453	53
827	7506	7558	7011 8135	7663	7716	7768	7820	7873	7925 8450	7978 8502	52
828	i 803c	8083	8135	8188	8240	8293	8345	. 8397		8502	52
829	8555		8659	8712	8764	8816	8869	8921	8973	9026	52
830	919078	9130	9183	9235	9287	9340	9392	9444	9496	9549	52
831	9601	9653	9706	9758	9810	9862	9914	9967	0019	0071	52
832 833	920123	0176	0228	0280	0332	0384	0436	0489	0541	0593	52
834	0645 1166	0697	0749	0801	0853	0906	0958	1010	1062	1114	52
835	1686	1218	1270	1322	1374	1426	1478	1530	1582	1634	52
836	2206	1738 2258	1790 2310	1842 2362	1894	1946	1998 2518	2050	2102	2154	54
837			2310	2881	2414	2466		2570	2622	2674	52
838	,725 3244	2777	2829 3348	3399	2933 3451	2085	3037	3089	3140	3192	52
839	3762	3296 3814	3865	3917	3969	3503 4021	3555	3607	3658	3710	52
	1 1		{		1	1	4072	4124	4176	4228	1
840	924279	4331	4383	4434	4486	4538	4589	4641	4693	4744	52
841	4796 5312	4848	4899	4951	5003	5054	5106	5157	5209	5261	52
842 843	5828	-5364 5879	5415 5931	5467 5982	5518 6034	5570 6085	5621	5673	5725	5776	52
844	6342	6301					6137	6188	6240	6291	51
845	6857	6394 6908	6445 6959	6497 7011	6548 7062	6600	6651	6702	6754	6805	13
846	7370	7422	7473	7524	7576	7114	7165	7215	7268	7319	51 51
847	7883	7935	7986	8037	8088	8140	7678	7730 8242	7781 8293	8345	51
848	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857	51
849	8908	8959	9010	9061	9112	9163	9215	9266	9317	9368	51
	929419	9470	9521	9572	9623	9674	9725	9776	9827	9879	51
851	9930	9981	0032	0083	*134	●185	•236	\$287	•338	•380	51
	930440	0491	0542	0592	0643	0694	0745	0796	0847	0898	51
853	0949	1000	1001	1102	1153	1204	1254	1305	1356	1407	5,
854	1458	1500	1560	1610	1661	1712	1763	1814	1865	1915	5-
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423	51
856	2474	2524	2575	2626	2677	2727	2778	2829 .	2879	2930	51
957	2981	3031	3052	3133	2677 3183	3234	3285	3335	3386	3437	51
858	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	51
859	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	51
	934498	4549	4599	4650	4700	4751	4801	4852	4902	4953	50
861	5003	5054	5104	5154	5205	5255	5306	5356	5406	5457	50
562	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	50
503	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	50
364	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	50
365	7016	7066	7117 7618 8119	7167	7217	7267	7317	7367	7418	7468	50
365	7518	7568	7018	7668	7718 8219	7769 8269	7819	7869 8370	7919 8420	7969	50
867 868	8019 8520	8069	5119	8169 8670			8320			8470	50
369	9020	8570	8620 9120	91-0	8720 9220	8770	8820 9320	8870 9369	8920	8970 9469	50 50
. 1					-	9270	1		9419		1
70	39519	9569	9619	9069	9719	9769	9819	9869	9918	9968	50 50
	940018 0516	0068	0118	0100	0218	0267	6317	0367	0417	0467	50
372	1014	0566	0616	1163	0716	0765	0815	0865 1362	0915	0964 1462	50
374	1511	1561	1611	1660	1710	1203	1313	1302	1412 1909	1402	50
375	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	50)
376	2504	20.00	2603	2653	2702	2752	2801	2851	2405	200	501
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3445	49
877 878	3495	3544	3593	3643	3692	3742	3791	3841	3890	3939	49
379	3989	4038	4088	4137	4186	4236	4285	4335	4384	4433	49
N.	0	1	2	3	4	5	6	7	8	9	D.]
							h				

N.	0	1	2	3	4	5	6	7	8	9	D.
880	944483	4532	4581	4631	4680	4729	4779	4828	4877	4927	49
881	4076	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
882	4976	5518	5567	5616	5665	5715	5764	5813	5862	5212	49
883	5061	6010	6059	6108	6157	6207	6256	6305	635.4	6403	49
884	6451		6551	6600	6649	6698	6747	6796	6845	689.1	
885	6943		7041	7090	7140	7189	7238	7237	7336	7385	47
886	7434		7532	7581	7630	7679	1200		7826	7875	49
887	1404	7973	8022	8070		8168	7728	7777	8315	8364	49
888	7924 8413	1913	8511	8560	8119	8657	0217		8804	8853	49
					8609		8706	8755			49
889	8902	8951	8999	9048	9097	91.46	9195	9244	9292	93.41	49
890	949390	9439	9488	9536	9585	0634	9683	9731	9780	0829	49
891	9878	9926	9975	\$024	073	6121	0170	•219	·267	0316	49
892	956365	0414	0462	0511	0560	0608	0657	0700	0754	0803	49
893	0851	0000	0919	0997	1046	1005	1143	1192	1240	1289	49
894	1338	1386	1435	1483	1532	1580	1620	1677	1726	1775	49
895	1823	1872	1920	1969	2017	2066	2114	1677 2163	2211	2200	48
896	2308	2356	2405	2453	2502	2550	2500	2647	2696		48
807	2792	2350	2889	2938		3034	3083	3131	3180	2744 3228	40
897	3276				2986	3034			3663		40
898		3325	3373	3421	3470		3566	3615		3711	48
899	3760	3808	3856	3905	3953	4001	4049	4098	4146	4194	48
Q00	954243	4291	4330	4387	4435	4484	4532	4580	4628	4677	48
901	4725	4773	4821	4869	4918	4966	5014	5062	5110	4677 5158	48
9 02	5207	4773 5255	5303	5351	5399	5/17	5495	5543	5592	56.40	48
903	5688	5736	5781	5832	5880	5447 5928	5495	6024	6072	6120	49
	6168	6216	6265	6313		6/20	5976	6505	6072 6553	6601	49
905	6049				6361	6409 6888	6457		7032	7080	
905	7128	6697	6745	6793	6840	-260	6936	6984	1032	7080	48
906		7176	7224	7272	7320	7368	7416	7464	7512	7559	48
907	7007	7655	7703 8181	7751	7799	7847	7894	7942 8421	7990	8033	48
908	8086	8134	8181	8229	8277	8325	8373		8468	8516	48
909	8564	8612	8659	8707	8277 8255	8803	8850	8898	8946	8994	48
010	959041	9089	9137	9185	9232	9280	9328	9375	9423	9471	48
911	9518	9566	9614	9661	9709	9757	9804	0852	9900	9947	48
912	.9995	ee.42	0090	•138	•185	•233	·280	•328	•376	·423	48
913	900471	0518	0566	0613				0804	0851	0899	48
	0946			1080	0661	0709	0756		1326	0.000	
914	1421	0994	1041		1136	1184	1231	1279 1753		1374	47
913	1805	1469	1516	1203	1611	1658	1706	1703	1801	1848	47
916		1943	1990	2038	2085	2132	2180	2227	2275	2322	47
917	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
918	2843	2890	2937	2985	3032	3079	3126	3174	3221	3268	47
919	3316	3363	3410	3457	3504	3552	3599	3646	3693	3741	47
920	963788	3835	3882	3929	30==	4024		4118	4165	4212	47
920	4260	4307	4354		3977		4071		4637	4684	4/
	4731	4778	4354	4401 4872	4448	4495	4542	4590 5061	5108	5155	47
922 923	5202		4025 5296		4919	4966	5013	5531	5578	5625	47
	5672	5249		5343	5300	5437	5484				47
924		5719	5766	5813	586o	5907	5954	6001	6048	6005	47
925	61.42	5189	6236	6283	6329	6376	6423	6470	6517	6564	47
<u>9</u> 26	5611	6658	6705	6752	6799	6845	6892	6939	6986	7033	47
927	7080	7127	7173	7220	7267	7314	7361	7408	7454	7501	47
ç28	7548	7595	7642	7688	7735	7782	7829	7875	7922	7969	47
929	8010	8062	8109	8156	8203	8249	8296	8343	8390	8436	47
o30	968483	8530	8576	8623	8670	8716	8763	8810	8856	8003	47
931 931	8050		9043			9183			9323	9369	
932	3416	8996	9045	9090 9556	9136		9229	9276	9323 9789	9509	47
932	9882	9463		9006 ee21	9602	9649	9695	9742	9709 •254	9835 •3oc	47
933		9928	9975	21	6068	•114	•161	•207		-300	47
934	970347	0393	0440	0486	0533	0579	0626	0672	0719	0765	46
935	3812	0858	0904	0951	0997	1044	1090	1137	1183	1229	46
936	1276	1322	1369	1415	1461	1508	1554	1601	1647	1693	46
937	1740	1786	1832	1879	1925	1971	2018	2064	2110	2157	46
938	2203	2249	2295	2342	2388	2434	2481	2527	2573	2619	46
7											
939	2666	2712	2758	3804	2851	2897	2943	2989	3035	3082	46
939 N.	2566 0	2712	2708	3804	2851 	2897	2943 6	2989		9	40 D.

N.	1	-	1 -	1 2	1 .	1 5	1 /	1	1 0		1.72
	0	1	1 3	3	4	5	6	7	8	4	1 D.
940 941	973128 3590	3174 3636	3220 3682	3266	3313	3359 3820	3405 3866	3451 3913	3497	3543	46
941	4051		4143	4189	3774 4235	4281	4327	4374	3959	4005	46
943	4512	4097 4558	4604	4650	4696	4742	4788	4834	4880	4926	40
944	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	40
945	5.132	5478	5524	5570	5616	5662	5707	5753		5845	45
946	5891	5937	5983	6029	6075	6121	6167	6212	5799 6258	6304	46
947	6300	6396	6442	6488	6533	6579	6625	6671	6717	6763	40
948	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	41,
949	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	40
950	977724 8181	7769 8226	7815	7861	7906	7952	7998 8454	8043	8089	8135	46
951	8181	8220	8272	8317	8363	8409		8500	8546	8591	40
952	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	46
953 954	9093 9548	9138 9594	9184 9639	9230 9685	9275	9321	9366 9821	9412 9867	9457	9503 9958	46
955	980003	0049	0094	0140	9730 0185	9776 0231	0276	0322	9912 0367	0412	46
956	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867	45 45 45
	0912	0057	1003	1048	1093	1139	1184	1229	1275	1320	45
957 958	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	45
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
960	982271	2316	2362	2407	2452	2497	2543	2588	2633	2678	45
961	2723	2769	2814	2859	2004	2949	2994	3040	3085	3130	45
962	3175	3220	3265	3310	3356	3401	3446	3491	3536	358 I	45
953	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	45
964	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	45
965 966	4527	4572 5022	4617 5067	4662	4707	4752	4797	4842	4887 5337	4932	45
367	4977 5426	5471	5516	5112 5561	5157 5600	5202 5651	5247 5696	5292 5741	5786	5382 5830	45 45
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279	45
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727	45
	986772	6817	6861	6906	6951	6996	70.40	7085	7130	7175	45
971	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622	45
972	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	45
973	8113	7711 8157	7756 8202	8247	7845 8291	8336	7934 8381	8425	8470	8514	45
974	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	- 45
975	9005	9049	9094	9138	9183	9227	9272	9316	9361	9405	45
976	9450	9494	9539	<u>9583</u>	9628	9672	9717	9761	9806 • 250	9850	44
977 978	9895) 990339	9939 0383	9983 0428	••28 0472	••72 0516	•117 0561	•161 0605	•206 0650	0694	•294 0738	44
979	0783	0827	0871	0916	0060	1004	1049	1093	1137	1182	44
	991226	1270	1315	1359	1403	1448	1492	1536	1580	1625	44
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	44
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2500	44
983	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	44
o84	2995 3436	3039	3083	3127	3172	3216	3260	3304	3348	3302	- 44
685 I	3436	3480	3524	3568	3613	3657	3701	3745	3789	3833	44
9 36	3877	3921	3965	4009	4053	4007	4141	4185	4229	4273	44
087 1	4317	4361	4405	4449	4493	4537	4581	4625 5065	4669	4713 5152	44
988 989	4757 5196	4801 5240	4845 5284	4889 5328	4933 5372	4977	5021 5460	5504	5547	5591	44
		-		-	. 1	5854	5808		5986	6030	1
990	995635	5679	5723. 6161	5767 6205	5811 6249	5854 6293	6337	5942 6380	6424	6468	44
991 992	6074 6512	6117 6555	6599	6643	6687	6731	6774	6818	6862	6006	44
993	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	44
994	7386	7430	7474	7517	7561	7605	76.48	7692	7736	7779	44
995	7823,	7867		7954	7998	8041	8085	8129	8172	8216	44
996 I	8259	8303	7910 8347	7954 8390	7998 8434	8477	8521	8564	8608	8652	44
997	8695	8739	8782	8826	8869	8913	8956	9000	9043	9087	4.4
998	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522 9957	44 43
999	9565	9609	9652	9696	9739	9783	9826	9870	9913	9957	45
			2	3	4	5	6	7	8	9	D.

A TABLE

OF

LOGARITHMIC

SINES AND TANGENTS

FOR EVERY

DEGREE AND MINUTE

OF THE QUADRANT.

REMARK. The minutes in the left-hand column of each page, increasing downwards, belong to the degrees at the top; and those increasing upwards, in the right-hand column, belong to the degrees below. 18 (0 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0. 1 2 3	0.000000 6.463726 764756 940847	5017 · 17 2934 · 85 2082 · 31	10.000000 000000 000000	•00 •00 •00	0.000000 6.463726 764756 940847	5017 · 17 2934 · 83 2082 · 31	Infinite. 13-536274 235244 - 059153	60 59 58 57
4 5 6	7.065786 162696 241877	1615+17 1319+68 1115+75	000000 000000 9•999999	•00 •00 •01	7.065786 162696 241878 308825	1615.17 1319.69 1115.78	12.034214 837304 758122	56 55 54 53
7 8 9 10	308824 366816 417968 463725	966 • 53 852 • 54 762 • 63 689 • 88	9999999 9999999 9999999 9999999	•01 •01 •01 •01	366817 417970 463727	996.53 852.54 762.63 689.88	691175 633183 582030 536273	52 51 50
11 12 13 14 15 16 17 18	7.505118 542906 577668 609853 639816 667845 694173 718997	529.81 579.36 536.41 499.38 467.14 438.81 413.72 391.35	9.999998 999997 999997 999996 999996 999995 999995 999994	10 • 10 • 10 • 10 • 10 • 10 • 10 • 10 •	7.505120 542909 577672 609857 639820 667849 694179 719004 719094	629.81 579.33 536.42 409.39 467.15 438.82 413.73 391.36 371.28	12.494880 457091 422328 390143 360180 332151 305821 280997 257516	49 48 47 46 45 44 43 42 41
19 20 21 22	742477 76475 4 7•78594 3 806146	371.27 353.15 336.72 321.75	999993 999993 9•999992 999991	•01 •01 •01	742484 764761 7•785951 806155	351.36 336.73 321.76	235239 12•214049 193845	40 39 38
23 24 25 26 27 28 29 30	825451 843934 861662 878695 895085 910879 926119 940842	308.05 205.47 283.88 273.17 263.23 253.00 245.38 237.33	999990 999988 999988 999988 999987 999986 999985 999983	•01 •02 •02 •02 •02 •02 •02 •02 •02	825460 843944 861674 878708 895099 910894 926134 940858	308.06 205.49 283.90 273.18 263.25 254.01 245.40 237.35	174540 156056 138326 121292 104901 689106 073865 059142	37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	7-955082 968870 982233 995198 8-007787 020021 031919 043501 054761 065776	229.80 222.73 216.08 209.81 103.00 198.31 103.02 188.01 183.25 178.72	9.909082 900981 999980 909079 909077 909075 909075 909073 909072 909071	•02 •02 •02 •02 •02 •02 •02 •02 •02 •02	7 • 955100 968889 982253 995219 8 • 007809 020045 031945 043527 054809 065806	229.81 222.75 216.10 209.83 203.92 198.33 193.05 188.03 183.27 178.74	12.044900 031111 017747 004781 11.992191 979955 968055 956473 945191 934194	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 49 50	8.076500 086965 097183 107167 116926 126471 135810 144953 153907 162681	174.41 170.31 166.30 162.65 159.08 155.66 152.38 149.24 146.22 143.33	9-999969 999968 999966 999964 • 099963 999961 999959 999958 999955 999954	•02 •02 •03 •03 •03 •03 •03 •03 •03	8.076531 086997 097217 107202 116063 126510 135851 144996 153952 162727	174.44 170.34 166.42 162.68 159.10 155.68 152.41 149.27 146.27 143.36	11 •923469 913003 902783 802797 873490 864149 855004 864048 837273	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56	8 · 171280 179713 187985 196102 204070 211895	140.54 137.86 135.29 132.80 130.41 128.10 125.87	9 • 999952 999950 999948 999946 999944 999942 999942	•03 •03 •03 •03 •03 •04 •04	8 • 171328 179763 188036 196156 204126 211953 219641	140.57 137.90 135.32 132.84 130.44 128.14 125.90	11-828672 820237 811964 803844 795874 788047 780359	98 76 5 43
57 58 59 60	219581 227134 234557 241855	123.87 123.72 121.64 119.63	9999940 999938 999936 999934	•04 •04 •04 •04	227195 234621 241921	123.76 121.68 119.67	772805 765379 758079	2 1 0
	Cosine	D.	Sine		Cotang.	D.	Tang.	М.

(89 DEGREES.)

SINES AND TANGENTS. (1 DEGREE.) 19

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0 1 2 3 4 5 6 7 5 9 10	8-:41855 249033 255094 263042 269881 27614 283243 283243 283773 295207 302546 308794	119-63 117-68 115-80 113-98 112-21 110-50 108-83 107-21 105-65 104-13 102-66	9-999934 999932 999929 999925 999922 999920 999920 999918 999915 999913 999910	•04 •04 •04 •04 •04 •04 •04 •04 •04 •04	8 • 241921 249102 256165 269956 276591 283323 289856 296292 302634 308884	119.67 117.72 115.84 114.02 112.25 110.54 108.87 107.26 105.70 104.18 102.70	11 758379 750898 743835 734885 730044 723309 716677 710144 703708 697366 691116	60 53 58 57 56 55 53 52 51 50
II 12 13 14 15 16 17 18 19 20	8-314904 321027 327016 332924 338753 344504 356181 355783 361315 366777	101-22 99-82 98-47 97-14 95-86 94-60 93-38 92-19 91-03 89-90	9 999907 999905 999902 999899 999897 999891 999888 999888 999885 999885	•04 •04 •05 •05 •05 •05 •05 •05	8.315046 321122 327114 333025 338856 344610 350289 355895 361430 366895	101 · 26 99 · 87 98 · 51 97 · 19 95 · 90 94 · 65 93 · 43 92 · 24 91 · 08 89 · 95	1 1-684954 678878 672886 666975 661144 655390 649711 644105 638570 633105	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	8.372171 377499 382762 387962 393101 398179 403199 408161 413068 417919	88.80 87.72 86.67 85.64 83.66 82.71 81.77 80.84 79.96	9·999879 999876 999873 999870 999867 999864 999864 999858 999858 999854 999851	• 05 • 05 • 05 • 05 • 05 • 05 • 05 • 05	8.372292 377622 382889 388092 393234 398315 403338 408304 413213 418068	88.85 87.77 86.72 85.70 84.70 83.71 82.76 81.82 80.91 80.02	11.627708 622378 617111 611908 606766 601685 596662 591696 586787 581932	39 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	8-422717 427452 432156 436800 441394 445941 450440 454893 459301 463665	79.09 78.23 77.40 76.57 75.77 74.99 74.22 73.46 72.73 72.00	9-999848 999844 999841 999831 999831 99983 999827 999823 999823 999820 999816	• 06 • 06 • 06 • 06 • 06 • 06 • 06 • 05 • 06	8-422869 427618 432315 436962 441560 446110 450613 455070 459481 463849	79.14 78.30 77.45 76.63 75.83 75.05 74.28 73.52 72.79 72.06	11.577131 572382 567685 563038 558440 553890 549387 549387 544930 540519 536151	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 40 47 48 49 50	8.467985 472263 476498 480693 484848 488963 493040 497078 501080 505045	71 · 29 70 · 60 69 · 91 68 · 59 67 · 94 67 · 31 66 · 69 66 · 08 65 · 48	9-999812 999809 999805 999801 999797 999793 999790 999786 999786 99978	•06 •06 •06 •07 •07 •07 •07 •07 •07	8-468172 472454 476693 480892 485050 489170 493250 - 497293 501208 505267	71.35 70.66 69.98 69.31 68.65 68.01 67.38 66.76 66.15 65.55	11 • 531828 527546 523307 519108 514950 510830 506750 506750 502707 498702 494733	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	$\begin{array}{r} 8\cdot 508974\\ 512867\\ 516726\\ 520551\\ 524343\\ 528102\\ 531828\\ 535523\\ 539186\\ 542819\end{array}$	64.89 64.31 63.75 63.19 62.64 62.11 61.58 61.06 60.55 60.04	9-999774 999769 999765 999751 999753 999748 999748 999744 999740 999735	•07 •07 •07 •07 •07 •07 •07 •07	8.509200 513058 516061 520790 524586 528349 532080 533779 539447 543084	64.96 64.39 63.82 63.26 62.72 62.18 61.65 61.13 60.62 60.12	11-490800 486902 483039 479210 475414 471651 467920 464221 460553 456916	98 76 5 4 3 2 1 0
	Cosine	D.	Sine		Cotang.	D.	Tang	

(88 DEGREES.)

20 (2 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang	D.	Cotang.	
0 1 2 3 4 5 6 7 8 9 10	8.542819 546422 553539 557054 560540 563909 567431 570836 574214 577566	60.04 59.55 59.06 58.58 58.11 57.65 57.19 56.74 56.30 55.87 55.44	9-999735 999731 999726 999712 999717 999713 999708 999708 999704 999699 999694 999689	•07 •07 •08 •08 •08 •08 •08 •08 •08 •08 •08	8-543084 546691 550268 553817 557336 560828 564291 564727 571137 574520 574520 577877	6c · 12 59 · 62 59 · 14 58 · 66 58 · 19 57 · 73 57 · 27 56 · 82 56 · 38 55 · 95 55 · 52	11-456916 453309 449732 446183 442664 439171 435709 432273 428863 425480 425480	60 59 58 57 55 54 53 52 51 50
11 12 13 14 15 16 17 18 19 20	8.586892 584193 587469 590721 593948 597152 600332 603489 606623 609734	$55 \cdot 02 \\ 54 \cdot 60 \\ 53 \cdot 79 \\ 53 \cdot 39 \\ 53 \cdot 00 \\ 52 \cdot 01 \\ 52 \cdot 23 \\ 51 \cdot 86 \\ 51 \cdot 49 $	9.999685 999675 999675 999675 999655 999655 999655 999650 999645 999640	•08 •08 •08 •08 •08 •08 •08 •08 •08 •09 •09	8.581208 584514 587795 591051 594283 597492 600677 603839 606978 610094	$\begin{array}{c} 55 \cdot 10 \\ 54 \cdot 68 \\ 54 \cdot 27 \\ 53 \cdot 87 \\ 53 \cdot 47 \\ 53 \cdot 08 \\ 52 \cdot 70 \\ 52 \cdot 32 \\ 51 \cdot 94 \\ 51 \cdot 58 \end{array}$	11 • 418792 415486 412205 408949 405717 402508 369323 36161 303022 389906	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	8.612823 615891 618937 621962 624965 627948 630911 633854 636776 639680	51 · 12 50 · 76 50 · 41 50 · 06 49 · 72 49 · 38 49 · 04 48 · 71 48 · 39 48 · 06	9 · 999635 999629 999624 999619 999613 999603 999503 999597 999592 999586	•09 •09 •09 •09 •09 •09 •09 •09 •09	8.613189 616262 619313 622343 625352 628340 631308 634256 637184 640093	51 • 21 50 • 85 50 • 50 50 • 15 49 • 81 49 • 47 49 • 13 48 • 80 48 • 48 48 • 48 48 • 16	11-386811 383738 380687 377657 374648 371660 368692 365744 362816 359907	30 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	8.642563 645428 648274 651102 653911 656702 659475 662230 664968 667689	47 • 75 47 • 43 47 • 12 46 • 82 46 • 52 46 • 22 45 • 92 45 • 63 45 • 35 45 • 06	9-999581 999575 999570 999558 999558 999553 999547 999541 999535 999529	·09 ·09 ·09 ·10 ·10 ·10 ·10 ·10 ·10	8.642982 645853 648704 651537 654352 657149 659928 662689 665433 668160	47 · 84 47 · 53 47 · 22 46 · 91 46 · 61 46 · 61 46 · 92 45 · 73 45 · 44 45 · 26	11 • 357018 354147 351296 348463 345648 342851 340072 337311 334567 331840	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 49 50	8.670393 673080 675751 678405 681043 683665 686272 688863 691438 693998	44.79 44.51 44.24 43.97 43.70 43.44 43.18 42.92 42.67 42.42	9·999524 999518 999512 999506 999483 999487 999481 999481 999475 999469	•10 •10 •10 •10 •10 •10 •10 •10 •10	8.670870 673563 676239 678900 681544 684172 686784 689381 691963 694529	44.88 44.61 44.34 44.17 43.80 43.54 43.28 43.03 42.77 42.52	11-329130 326437 323761 321100 318456 315828 313216 310619 308037 305471	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	8.696543 699073 701589 704090 706577 709049 711507 713952 716383 718800	42 • 17 41 • 92 41 • 68 41 • 44 41 • 21 40 • 97 40 • 74 40 • 51 40 • 20 40 • 06	9 • 999463 999456 999450 999433 999431 999424 999424 999418 999411 999404	• I I • I I	8.697081 699617 702139 704646 707140 709618 712083 714534 716972 719396	42 • 28 42 • 03 41 • 76 41 • 55 41 • 32 41 • 08 40 • 85 40 • 62 40 • 40 40 • 17	11 · 302019 300383 297861 295354 292860 290382 287917 285465 283028 280604	9 8 7 5 4 3 2 1 0
	Cosine	D.	Sine		Cotang.	D.	Tang.	М.

(87 pegrees.)

SINES AND TANGENTS. (3 DEGREES.)

М.	Sine	D.	Cosine	D.	Tang.	- D.	Cotang.	
0 1 2 3 4 5 6 7 8 9 10	8.718800 721204 723595 725972 728337 730688 733027 735354 735354 737667 739969 742259	40.06 39.84 39.62 39.41 39.19 38.98 38.77 38.57 38.36 38.16 37.96	9.999404 999398 999391 999384 999378 999371 999364 999357 999350 999343 999336	• 11 • 11 • 11 • 11 • 11 • 11 • 12 • 12	8.719396 721806 724204 726588 728959 731317 733663 735996 738317 740626 742922	40.17 39.95 39.74 39.52 39.30 37.09 38.86 38.68 38.68 38.48 38.48 38.27 38.07	11 • 280604 278194 275796 273412 271041 268683 266337 264004 261683 259374 257078	60 59 58 57 56 55 55 54 53 52 51 50
11 12 13 14 15 16 17 18 19 20	8.744536 746802 749055 751297 753528 755747 757955 760151 762337 764511	37.76 37.56 37.37 37.17 36.98 36.79 36.61 36.42 36.24 36.06	9.999329 999322 999315 999308 999308 999294 999286 999279 999272 999265	•12 •12 •12 •12 •12 •12 •12 •12 •12 •12	8.745207 747479 749740 751989 754227 756453 758668 760872 763065 765246	37.87 37.68 37.49 37.29 37.10 36.92 36.73 36.55 36.36 36.18	1: 254793 252521 250260 248011 245773 243547 241332 239128 236935 234754	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	8.766675 768828 770970 773101 775223 777333 77943.4 781524 783605 785675	35.88 35.70 35.53 35.35 35.18 35.01 34.84 34.67 34.51 34.31	9.999257 999250 999242 999235 999227 999220 999212 999205 999187 -999189	•12 •13 •13 •13 •13 •13 •13 •13 •13 •13	8.767417 769578 771727 773866 775995 778114 780222 782320 784408 786486	36.00 35.83 35.65 35.48 35.31 35.14 34.97 34.80 34.64 34.47	11-232583 230422 228273 226134 224005 221886 219778 219780 215592 213514	30 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	8.787736 789787 791828 793859 795881 797894 799897 801892 803876 805852	34.18 34.02 33.86 33.70 33.54 33.30 33.23 33.08 32.93 32.78	9.999181 999174 999166 999158 999150 999142 999142 999126 999128 999110	•13 •13 •13 •13 •13 •13 •13 •13 •13 •13	8-788554 790613 792662 794701 796731 798752 800763 800763 802765 804758 804758 806742	34.31 34.15 33.09 33.83 33.68 33.52 33.37 33.22 33.07 32.92	11-211446 209387 207338 205299 203269 201248 199237 197235 195242 193258	20 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 49 50	8.807819 809777 811726 813667 815599 817522 819436 821343 823240 825130	32.63 32.49 32.34 32.19 32.05 31.91 31.63 31.49 31.35	9-999102 999094 999086 999077 999069 999061 999053 999053 999044 999036	• 13 • 14 • 14 • 14 • 14 • 14 • 14 • 14 • 14	8.808717 810683 812641 814589 816529 818461 820384 822298 824205 824205 826103	32 • 78 32 • 62 32 • 48 32 • 33 32 • 19 32 • 05 31 • 91 31 • 77 31 • 63 31 • 50	11-191283 189317 187359 185411 183471 181539 179613 172702 175795 173897	19 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	8.827011 828884 830749 832607 834456 836297 838130 836956 841774 843585	31 • 22 31 • 08 30 • 05 30 • 82 30 • 60 30 • 56 30 • 43 30 • 30 30 • 17 30 • 00	9-999019 999010 999022 998903 998984 998976 998957 998958 998950 998950 998941	•14 •14 •14 •14 •14 •14 •15 •15 •15 •15	8.827992 829874 831748 833613 835471 837321 839163 842825 842825 844644	31.56 31.23 31.10 30.66 30.83 30.70 30.57 30.45 30.32 30.19	11 - 172008 170126 168252 166387 164529 162679 160837 159002 157175 155356	98 76 5 4 3 2 1 0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

(86 DEGREES.)

22

(4 DEGREES.) A TABLE OF LOGARITHMIC

M. Sine D. Cosine D. Tang. D. Cotang. 0 8.843585 30.05 9.998941 .15 8.844644 30.19 11-155356 60 845387 998932 30.07 I 29.92 +15 846455 153545 59 58 2 847183 29.80 998923 998914 .15 848260 29.95 151740 3 848971 29.67 850057 .15 29.82 149943 57 998905 850751 851846 4 20.55 .15 56 29.70 5 998896 852525 29.43 .15 853628 29.58 146372 55 998887 5 854201 29.31 ·15 855403 144597 54 29.46 998878 8:0049 857171 78 20.10 ·15 29.35 142829 53 837801 20.07 28.06 998869 858032 .15 141068 29.23 52 859546 998860 9 .15 860686 29.11 139314 51 998851 10 861283 28.84 .15 862433 137567 29.00 5c 28.73 II 8.863014 9.998841 8.864173 .15 28.88 11.135827 49 12 864738 28.61 998832 865906 ·15 28.77 28.66 134004 48 998823 13 866455 28.50 .16 867632 132368 47 868165 14 28.30 998813 .16 869351 28.54 130649 46 15 860868 28.28 998804 •16 871064 28.43 128036 45 871565 16 28.17 998795 •16 872770 28.32 127230 44 873255 28.21 17 28.06 008785 .16 874469 125531 43 18 874938 998776 27.95 •16 876162 28.11 123838 42 876615 27.86 998766 19 .16 877849 28.00 122151 41 20 878285 27.73 998757 .16 879529 27.89 120471 40 8.8799.49 21 9.998747 11.118798 27.63 .16 8.881202 27.79 30 39 881607 998738 22 27.52 882860 .16 117131 998728 23 883258 884530 27.58 27.42 •16 115470 37 24 884903 27.31 998718 .16 886185 113815 36 27.47 25 886542 998708 .16 887833 27.37 27.21 112167 35 998699 26 888174 27.11 .16 889476 27.27 110524 34 998689 27 880801 27.00 .16 27.17 33 891112 108888 998679 998669 28 891421 26.90 •16 892742 27.07 107258 32 20 803035 26.80 894366 .17 105634 31 998659 30 894643 26.70 895984 26.87 .17 30 104016 .31 9.998649 3.896246 26.60 8.897506 26.77 .17 11.102404 20 32 998639 897842 26.51 899203 26.67 100797 .17 28 33 998629 900803 899432 26.41 .17 26.58 099197 27 34 998619 097602 901017 26.31 .17 902308 26.48 26 3.5 902596 998609 .17 26.38 26.22 903987 006013 25 36 998599 904169 26.12 905570 .17 26.29 094430 24 37 998580 26.03 092853 23 005736 .17 907147 26.20 38 907297 908853 998578 26.10-1 908719 910285 25.93 091281 .17 22 998568 39 25.84 089715 ·17 26.01 21 40 910404 25.75 998558 .17 25.92 088154 911846 20 41 8.911949 25.66 9.998548 25.83 .17 8.013401 11.086500 19 18 998537 42 913488 25.56 085049 25.74 .17 914951 25.47 998527 43 015022 25.65 o835o5 .17 916495 17 25.38 998516 44 916550 •18 o18034 25.56 081066 998506 45 *§*18073 25.20 •18 919568 25.47 080/32 15 998495 25.38 46 919591 078904 25.20 .18 921096 14 998485 47 077381 921103 25.12 •18 922610 25.30 13 998474 998464 25.21 922610 25.03 •18 924136 075864 12 49 924112 24.94 .18 925649 25.12 074351 11 998453 925609 24.86 50 .18 927156 25.03 072844 10 51 •18 9.998442 8-927100 24.77 8.928658 24.93 24.86 11.071342 8 928587 998431 52 069845 •18 930155 53 998421 030068 24.60 .18 068353 931647 24.78 7 54 998410 931544 24.52 •18 066866 933134 24.70 55 998300 933015 24.61 065384 24.43 .18 934616 5 56 998388 063907 936093 034481 24.35 +18 24.53 43 57 58 998377 .18 035042 637565 24.45 062435 24.27 998366 .18 937398 24.37 060068 050506 24.19 939032 2 59 038850 24.11 998355 .18 940404 24.30 1 6ó 058048 940206 24.03 998344 .18 941952 24.21 0 Tang. Cosine D. Sine Cotang. D. M.

(85 DEGREES.)

SINES AND TANGENTS. (5 DEGREES.) 25

М.,	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	1
0	8-940296	24.03	9.998344	.19	8.941952	24.21	11.058048	60
I	94 138	23.94	998333	.19	943404	24.13	056596	59 58
2	943174	23.87	998322	•19	944852	24.05	055148	
3	944606	23.79	998311	•19	946295	23.97	053705	57
45	946034	23.71	998300	.19	947734	23.9C	052266	56
	947456	23.63	998289	.19	949168	23.82	050832	55
6	9.48874	23.55	998277	•19	950597	23.74	349403	54
78	950287	23.48	998266	1.19	952021	23.66	047979	53
	951696	23.40	998255	•19	953441	23.6c	046559	52
9	953100	23.32	998243	.19	954856	23.51	045144	51
10	954499	23.25	998232	•19	956267	23.44	043733	50
11	8 955894	23.17	9.998220	.19	8.957674	23.37	11.042326	49
12	957284	23.10	998209	•19	959075	23.29	040935	48
13	958670	23.02	998197	•19	960473	23.23	039527	47
14	960052	22.95	998186	•19	901866	23.14	038134	46
15	961429	22.88	998174	•19	963255	23.07	036745	45
16	962801	22.80	998163	•19	964639	23.00	035361	44
17	964170	22.73	998151	•19	966019	22.93	n33q81	43
	965534	22.66	998139	•20	967394	22.86	032606	42
19	966893	22.59	998128	•20	968766	22.79	031234	41
20	968249	22.52	998116	•20	- 970133	22.71	029867	40
21	5.069600	22.44	9.998104	·20	8.971496	22.65	11.028504	39
22	970947	22.38	998092	•20	972855	22.57	027145	38
23	972289	22.31	998080	• 20	974209	22.51	025791	37
24	973628	22.24	998068	• 20	975560	22.44	024440	36
25	974962	22.17	998056	•20	976906	22.37	62309.4	35
26	976293	22.10	998044	•20	978248	22+3a	021752	34
27 28	977619	22.03	998032	•20	979586	22.23	020414	33
	978941	21.97	998020	•20	980921	22.17	019079	32
29	980259	21.30	998008	•20	982251	22.10	017749	31
36	981573	21.03	997996	•20	983577	22.04	016423	30
31	3.982883	21.77	9.997985	•20	3.984899	21.97	11.015101	29
32	984189	21.70	997972	·20	986217	21.91	013783	28
33	985491	21.63	997959	+20	987532	21.84	012468	27
34	986789	21.57	997947	•20	988842	21.78	011158	26
35	988083	21.50	997935	+21	990149	21.71	009851	25
36	989374	21.44	997922	•21	991451	21.65	008549	24
37	990660	21.38	997910	•21	992750	21.58	007250	23
38	991943	21.31	997 ⁸ 97	•21	994045	21.52	005955	22
39	993222	21.25	997885	•21	995337	21.46	004663	21
40	994497	21.19	997872	• 21	996624	21.40	003376	20
41	8.995768	21.12	9.997860	• 2 1	8.997908	21.34	11.002092	19
42	997036	21.06	007847	· 21	999188	21.27	000812	19
43	998299	21.00	997835	• 21	9.000465	21.21	10.999535	17
44	999560	20.94	997822	·21	001738	21.15	998262	16
45	9.000816	20.87	997809	· 21	003007	21.09	996993	15
46	002069	20.82	997797	• 21	004272	21.03	995728	14
47 48	003318	20.76	997784	• 2 1	o o5534	20.97	994466	13
	co4563	20.70	997771	• 2 1	006792	20.01	993208	12
49	005805	20.64	997758	• 2 I	208047	20.80	991953	11
50	007044	20.58	997745	• 21	009298	20.80	990702	10
51	9.008278	20.52	9.997732	• 21	9.010546	20.74	10.989454	0
52	009510	20.46	997719	• 21	011790	20.68	988210	8
53	010737	20.40	997706	• 2 I	013031	20.62	986969	
54	011962	20.34	997693	• 22	014268	20.56	985732	2
55	013182	20.29	997680	· 22	015502	20.51	984498	5
56	014400	20.23	997667	• 2 2	016732	20.45	983268	
57 58	015613	20.17	997654	.22	017959	20.40	982041	43
58	016824	20.12	997541	• 2 2	019183	20.33	980817	2
59	018031	20.06	997628	·22	020403	20.28	979597	1
60	019235	20.00	997614	•22	021620	20.23	978380	0

(84 DEGREES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotar.g.	Ţ
0	9.019:35	20.00	9.997614	· 22	9.021620	20.23	10.978380	60
1	020435	19.95	997601	•22	022834	20.17	977166	50
23	021632	19.89	997588	•22	024044	20.11	9750.56	58
	022825	19.84	997574	•22	025251	20.06	9747 19	57
45	024016 025203	19.78	997561	•22	026455	20.00	973545	
6	026386	19.73	997547	·22 ·23	027655	19.95	972345	55
	027567	19.67	997534	.23	028852	19.90	971148	54
8	02/30/	19.62	997520	•23	030046	19.85	960954	53
9	020744	19.51	997507	•23	031237	19.79	968763	52
10	029910	19.31	997493 997480	•23	032425	19.74	967575 966391	51 50
11	9.032257	19.41	9.997466	.23	9.034791	19.64	10.965209	49
12	033421	19.36	997452	·23	035969	19.58	964031	48
13	034582	19.30	997439	.23	037144	19.53	962856	47
14	035741	19.25	997425	· 23	038316	19.48	961684	46
15	036896	19.20	997411	·23	039485	19.43	960515	45
16	038048	19.15	997397	·23	040651	19.38	959349	44
17	039197	19.10	997383	·23	041813	19.33	958187	43
18	040342	19.05	997369	.23	042973	19.28	957027	42
19	041485	18.99	997355	·23	044130	19.23	955870	41
20	042625	18.94	997341	·23	045284	19.18	954716	40
21	9.043762	18.89	9.997327	·24	9.046434	19.13	10.953566	39 38
22	044895	18.84	997313	•24	047582	19.08	952418	38
23	046026	18.79	697299	•24	048727	19.03	951273	37
24	047154	18.75	997285	•24	049869	18.98	950131	36
25	048279	18.70	997271	•24	051008	18.93	948992	35
26	049400	18.65	997257	•24	052144	18.89	947856	34
27 28	050510	18.60	997242	·24	053277	18.84	946723	33
	051635	18.55	997228	·24	054407	18.79	945593	32
29 30	052749 053859	18.50 18.45	997214 997199	•24 •24	o55535 o5665q	18.74 18.70	944465	31 30
31	9.054966	18.41	9.997185	•24	9.057781	18.65	10.942219	29
32	056071	18.36	997170	·24	058900	18.69	941100	28
33	057172	18.31	997156	·24	060016	18.55	939984	27
34	058271	18.27	997141	•24	061130	18.51	938870	26
35	059367	18.22	997127	·24	062240	18.46	937760	25
36	060460	18.17	997112	·24	063348	18.42	936652	24
37	061551	18.13	997098	·24	o64453	18.37	935547	23
38	062639	18.08	997083	•25	o65556	18.33	934444	22
39	063724	18.04	997068	·25	066655	18.28	933345	21
40	o 648o6	17.99	997053	• 2 5	067752	18-24	932248	20
41	9.065885	17.94	9.997039	·25	9.068846	18.19	10.931154	19 18
42	066962 068036	17.90	997024	· 25	069938	18-15 18-10	930062	18
43		17.86	907000	·25	071027	18.10	928973	17 16
44 45	069107	17.81	996994	·25 ·25	072113	18.00	927887	10
	070176	17.77	996979		073197		926803	- 1
46	071242 072306	17·72 17·68	996964	·25	074278 075356	17.97	925722	14
47 48	072300		996949 996934	· 25		17.93	924644	13
		17.63 17.59	996919	·25 ·25	076432	17.85 17.84	923568	12
49 50	074424 075480	17.55	990919	·25 ·25	077505 078576	17.80	922495 921424	10
51	9.076533	17.50	9.996889	·25	9.079644	17.76	10.920356	
52	077583	17.46	996874	.25	080710	17.72	919290	8
53	078631	17.42	996858	· 25	081773	17.67	918227	
54	079676	17.38	996843	·25	o82833	17 63	917167	2
55	080719	17.33	996828	•25	083891	17 59	916109	5
56	081759	17.29	996812	•26	084947	17 55	915053	
57 58		17.25	996797	· 26	086000	17.51	914000	4 3
	082797 083832	17.21	996782	·26	087050	17.47	912950	2
59	084864	17.17	996766	•26	088098	17-43	911902	1
60	085894	17.13	996751	•26	089144	17.38	910856	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	М.

(83 DEGREES.)

SINES AND TANGENTS (7 DEGREES.)

0	g 085894							
I		17.13	9.996751	• 26	9.089144	17.38	10.910856	60
	086922	17.09	996735	·26	090187	17.34	909813	59
2	087947	17.04	996720	•26	091228	17.30	908772	59 58
3	088970	17.00	996704	·26	092266	17.27	907734	57 56
45	089990	16 96	996688	·26	093302	17.22	906698	56
5	091008	16.92	996673	· 26	094336	17.19	905664	55
6	092024	16.88	996657	• 26	095367	17.15	904633	54
78	093037	16.84	996641	•26	096395	17.11	903605	53
	094047	16.80	996625	· 26	097422	17.07	902578	52
9	095056	16.76	996610	·26	098446	17.03	901554	51
10	096062	16.73	996594	•26	099468	16.99	900532	50
11	9.097065	16.68	9.996578	.27	9.100487	16.95	12.899513	40
12	098066	16.65	996562	+27	101504	16.91	898496	49 48
13	099065	16.61	996546	.27	102519	16.87	897481	47
14	100062	16.57	996530	.27	103532	16.84	896468	46
15	101056	16.53	996514	.27	104542	16.80	895458	45
16	102048	16.49	996498	. 27	105550	16.76	894450	44
17	103037	16.45	996482	. 27	106556	16.72	893444	43
18	104025	16.41	996465	. 27		16.60	892441	42
19	105010	16.38	996449	.27	107559 108560	16.65	891440	41
20	105092	16.34	996433	.27	109559	16.61	890441	40
21	9.106073	16.30	9.996417	.27	9.110556	16.58	10.889444	
22	107051	16.27	996400	.27	111551	16.54	888449	39 38
23	10/051	16.23	996384	.27	112543	16.50	887457	2-
24		16.19	996368		112545		886467	37 36
25	109901	16.10	996351	• 27	113555	16.46	885/00	35
26	111842	16.12	996335	• 27	114521	16.43 16.39	885479	35
27	112800	16.08	996318	·27 ·27	115507	16.36	884493 883500	34 33
28		16.05	996302	.28			882528	32
29	113774	16.01	996285	· 28	117472	16.32	881548	31
30	115698	15.97	996269	·20	110432	16 · 29 16 · 25	880571	30
31	9-116656	15.94	9.996252	·28	9.120404	16.22	1	1
32	117613		9996235	·20 ·28			10.879596	29 28
33	118567	15.90	990233	·28	121377	16-18 16-15	878623	20
34	119519	15.83	990219	·20 ·28	122348		877652	27
35	120460	15.80	996185	· 20 · 28	123317	16.11	876683 875716	25
36	121417	15.76	996168	·28	125249	16.04		24
37	122362	15.73	996151	·28	120249	16.04	874751 873789	24
37 38	123306	15.60	996134	·28		15.97	812828	23
39	124248	15.66	996117	·28	127172	15.94	871870	21
40	125187	15.62	996100	.28	120130	15.94	870913	20
41	9-126125	15.50						
41	127060	15.56	9·996083 996066	·29 ·29	9.130041	15.87 15.84	10-869959 869006	18
43		15.52	990000		130994	15.81	868o56	
44	127993 128925	15.49	996032	• 29	131944			!7
44	120025	15.49	990032	•29	132893 133839	15.77	867107 866161	16
40	129634	15.45	995998	•29		15.74	865216	
		15.39	995998 995980	• 20	134784	15.71		14
47 48	131706	15.35	993910	• 29	135726	15.64	864274 863333	13
	132030	15.32	995946	•29	136667	15.61	862395	12
49 50	133351	15.29	995928 995928	·29 ·29	137003	15.58	861458	10
				- 1				
51 52	9·135387 136303	15.25 15.22	9·995911 995894	• 29	9.139476	15.55	10.860524	8
53	137216	15.10	995876	·29 ·29	140409	15.48	859591 858660	
54	138128	15.10	995859	·29 ·20	141340	15.45		2
55	130037	15.12	995839	•29	142200	15.42	857731 856804	5
56	139944	15.00	995823	•29	144121	15.39	855879	
	140850	15.00	095806	.29	145044	15.35	854956	43
57 58	141754	15.03	995788	. :9	145966	15.32	854034	2
50	142655	15.00	995771	.29	146885	15.29	853115	ī
		1						
66	143555	14.96	995753	·29	147803	15.26	852197	0

(82 DEGREES.)

26 (8 DEGREES) A TABLE OF LOGARITHMIC

0	9-143555							
2		14.96	9 995753	.30	9.147803	15.26	16 852197	60
2		14.93	995735	•30	148718	15.23	851282	50
		14.90	995717	•30	149632	15.20	850368	59 58
3		14.87	995099	•30	150544	15.17	849456	57 56
45	147136	14.84	995681	•30	151454	15-14	848546	56
6	148026	14.81	995664	•30	152363	15.11	847637	55
	140915	14.78	995646 995628	•30	153269	15.08	846731	54
3	150686	14·75 14·72	993028	•30 •30	154174	15.05	845826	53
9	151560	14.60	995591	•30	15507-	15.02	844923	52
10	152451	14.66	995573	•30	156877	14.99	844022 843123	51 50
11	9.153330	14.63	9.995555	•30	9.157775	14.93	10.842225	1
12	154208	14.60	995537	•30	158671	14.90	841329	49 48
13	155083	14.57	995519	•30	159565	14.87	840435	47
14 15	155957	14.54	995501	.31	160457	14.84	839543	40
16	157700	14.51	995482	.31	161347	14.81	838653	45
	158569	14.40	995464 995446	·31 ·31	162236	14.79	837764	44 43
17	159435	14.43	995427	.31	164008	14.76	836877	
19	160301	14.30	995409	.31	164802	14·73 14·70	835992 835198	42
20	161164	14.36	995390	.31	165774	14.67	834226	41
21	9.162025	14.33	9.995372	.31	9.166654	14.64	10.833346	39
22	162885	14.30	995353	.31	167532	14.61	832468	38
23	163743	14.27	995334	.31	168409	14.58	831591	37 36
24 25	164600	14.24	995316	.31	169284	14.55	830716	36
25	165454	14.22	995297	.31	170157	14.53	829843	35
27	167159	14.19	995278	·31 ·31	171029	14.50	828971	34
28	168008	14.13	995200	•32	172767	14.47	828101	33
29	168856	14.10	995222	.32	173634	14.44	827233 826365	31
30	169702	14.07	995203	.32	174499	14.39	825501	30
31	9.170547	14.05	9:995184	.32	9.175362	14.36	10.824638	29
32	171389	14.02	995165	•32	176224	14.33	823776	28
33	172230	13.99	995146	•32	177084	14.31	822916	27
34 35	173070	13.96	995127	• 32	177942	14.28	822058	26
36	173908	13.94 13.01	995108	•32 •32	178799	14.25	821201	25
	174744 175578	13.88	995089 995070	·32	179655 180508	14.23	820345	24
37 38	176411	13.86	995051	·32	181360	14.20	819492 818640	23
39	177242	13.83	995032	.32	182211	14.15	817789	21
40	178072	73.80	995013	•32	183059	14.12	816941	20
41	9.178000	13.77	9.994993	•32	9.183907	14.09	10.816093	19 18
42	179726	13.74	994974	•32	184752	14.07	815248	
43	180551	13.72	994955	•32	185597	14.04	814403	17
44	181374	13.69	994935	· 32	186439	14.02	813561	16
45	182196	13.65	994916	33	187280	13.99	81,2720	15
46	183016 183834	13.64	994896 994877	·33 ·33	188120 188958	13.96	811880 811042	14 13
47 48	184651	13.50	994877 994857	.33	189794	13.93	811042 810205	13
60	185466	13.56	994838	.33	190629	13.89	800371	11 '
49 50	186280	13.53	994818	.33	191462	13.86	808538	10
51	9.187092.	13.51	9.994798	.33	9.192294	13.84	10.807706	9
52	187903	13.48	994779	•33	193124	13.81	806876	8
53	188712	13.46	994759	•33	193953	13.79	806047	
54	189519	13.43	994739	•33	194780	13.76	805220	765
55	190325	13.41	994719	•33	195606	13.74	804394	5
56	191130	13.38	994700	•33	196430	13.71	803570	43
57 58	191933	13.36	994680	•33	197253	13.09	802747	
59	192734	13.33	994660 994640	·33	198074 198894	13.66	801926 801106	2
60	193332	13.28	994620	.33	190094	13.61	800287	0

(81 DEGREES.)

SINES AND TANGENTS. (9 LEGREE.) 27

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.194332	13.28	9.994620	.33	9.199713	13.61	10.800287	6c
1	195129	13.26	994600	•33	200529	13.59	799471	59
.2	195925	13.23	994580	•33	201345	13.56	798655	59 58
3	196719	13.21	994560	34	202159	13.54	797841	57
4	197511	13-18	994540	.34	202971	13.52	7970:9	56
4 5 6	198302	13.16	994519	•34	203782	13.49	796218	55
	199091	13-13	994499	.34	20.4592	13.47	795408	54
78	199879	13.11	994479	.34	205400	13.45	794600	53
	200666	13.08	994459	.34	206207	13.42	793793	52
9	201451	13.06	994438	34	207013	13.40	792987	51
10	202234	13.04	994418	.34	207817	13.38	792183	50
11	9.203017	13.01	9.994397	.34	9.208619	13.35	10.791381	49
12	203797	12.99	994377	.34	209420	13.33	790580	49 48
13	204577	12.96	094357	.34	210220	13.31	789780	47
14	205354	12.94	994336	•34	211018	13.28	788982	46
15	206131	12.92	994316	•34	211815	13.26	788185	45
16	206906	12.89	994295	•34	212611	13.24	787389	44
17	2076 7 9	12.87	994274	•35	213405	13.21	786595	43
18	208452	12.85	994254	•35	214198	13.19	785802	42
19	209222	12.82	994233	·35	214989	13.17	785011	41
20	209992	12.80	994212	•35	215780	13.15	784220	40
21	9.210760	12.78	9.994191	•35	9.216568	13.12	10.783432	39
22	211526	12.75	994171	.35	217350	13.10	782644	38
23	212201	12.73	994150	.35	218142	13.08	781858	37
24	213055	12.71	994129	·35	218926	13.05	781074	36
25	213818	12.68	994108	.35	219710	13.03	780200	35
26	214579	12.66	994087	.35	220402	13.01	779508	34
	215338	12.64	994066	.35	221272	12.99	778723	33
27 28	216097	12.61	994045	.35	222052	12.97	777948	32
29	216854	12.50	994024	.35	222830	12.94	777170	31
30	217609	12.57	994003	•35	223606	12.92	776394	30
31	9.218363	12.55	9.993981	.35	9.224382	12.90	10.775618	29
32	219116	12.53	993960	.35	225156	12.88	774844	28
33	219868	12.50	993939	.35	225929	12.86	774071	27
34	220618	12.48	993918	.35	226700	12.84	773300	26
34 35	221367	12.46	993896	•36	227471	12.81	772529	25
36	222115	12.44	993875	.36	228239	12.79	771761	24
37	222861	12.42	993854	.36	229007	12.79	770993	23
38	223606	12.39	993832	.36	229773	12.75	770227	22
39	224349	12.37	993811	•36	230539	12.73	769461	21
40	225092	12.35	993789	.36	231302	12.71	768698	20
41	9.225833	12.33		.36				
41	226573	12.33	9.993768	· 30 · 36	9.232065 232826	12.69	10.767935	19
43	227311	12.31	993746	•36	232526	12.67	767174	
44	228048	12.20	993725 993703	•36		12.65	766414	17
44	228784	12.20		•36	234345		765655	
46	220704	12.24	993681	•36	235103	12.60	764897	15
	230252		993660	.30	235859	12.58	764141	14
47 48	230232	12·20 12·18	993638	· 30 · 36	236614	12.56	763386	13
40	230904	12.10	993616 993594	.30	237368 238120	12.54	762632 761880	12
49 50	232444	12.10	993594	.37	238872	12.52	761:28	11 10
	1							
51	9.233172	12.12	9.993550	•37	9.239622	12.48	1:.760378	8
52 53	233899	12.09	993528	.37	240371	12.46	759629	
	234625	12.07	993506	•37	241118	12.44	758882	7
54 55	235349	12.05	993484	•37	241865	12.42	758135	7 6 5
56	236073	12.03	993462	•37	242610	12.40	757390	Э
57	236795	12.01	993440	.37	243354	12.38	756646	43
58	237515	11.99	993418	.37	244097	12.36	755903	
50	238235	11.97	993396	-37	244839	12.34	755161	2
60	238953 239670	11.95	993374 993351	.37	245579	12.32	754421	I
	2090 /0	11.93	993331	•37	246319	12.30	753681	.0
	Cosine	D.	Sine	1	Cotang.	D.		M.

(80 DEGREES.)

28

(10 DEGREES.) A TABLE OF LOGARITHMIC

М.	Sine.	D.	Cosine	D.	Fang.	D.	Cotang.	Τ
0	9.239670	11.93	9.993351	.37	9.246319	12.30	10.753681	60
I	240386	11.01	993329	.37	247057	12.28	752943	59
2	241101	11.89	993307	.37	247794	12.26	75 2206	58
3	241814	11.87	993285	.37	248530	12.24	751470	
400	242526	11.85	903262	1.37	249264	12.22	750736	57
3	243237	11.83	993240	·37 ·38	249998	12.20	750002	55
\$	243947	11.81	993217	•38	250730	12.18	749270	54
78	244656	11.79	993195	•38	251461	12.17	748539	53
	245363	11.77	993172	•38	252191	12.15	747809	52
9 10	246069	11.75	993149	•38	252920	12.13	747080	51
	246775	11.73	993127	•38	253648	12.11	746352	50
11	9 247478 248181	11.71	9.903104	•38	9.254374	12.09	10.745626	49 48
13	248883	11.69	993081	38	255100	12.07	744900	
14	240003	11.65	993059 993036	·38 ·38	255824	12.05	744176	1 47
13	250282	11.63	993038	.38	256547	12.03	743453	46
16	250980	11.61	993013	.38	257269	12.01	742731	45
17	251677	11.59	992990	.38	257990 258710	12.00	742010	44 43
18	252373	11.58	992967	.38		11.98	. 741290	43
10	253067	11.56		.38	259429	11.96	740571	42
20	253761	11.50	992921	.38	260146 260863	11.94	739854	41
21	9.254453	11.52	9.992875	.38	9.261578	11.00	10.738422	3,
22	255144	11.50	992852	.38	262292	11.89	737708	33
23	255834	11.48	992829	.39	263005	11.87	736995	30
24	256523	11.46	992806	.30	263717	11.87 11.85	736283	37 36
25	257211	11.44	992783	•30	264428	11.83	735572	35
26	257898	11.42	992759	•39	265138	11.81	734862	34
	258583	11.41	992736	.39	265847	11.79	734153	33
27 28	259268	11.39	992713	.30	266555	11.78	733445	32
2Ç	259951	11.37	992690	.30	267261	11.76	732739	31
3ó	260633	11.35	992666	•39	267967	11.74	732033	30
31	9.261314	11.33	9.992643	·39	9.268671	11.72	10.731329	20
32	261994	11.31	992619	•39	269375	11.70	730625	28
33	262673	11.30	992596	•39	270077	11.69	729923	27
34 35	263351	11.28	992572	·39	270779	11.67	729221	26
35	264027	11.26	992549	•39	271479	11.65	728521	25
36	264703 265377	11.24	992525	•39	272178	11.64	727822	24
37	265377	11.22	992501	•39	272876	11.62	727124	23
38	266031	11.20	992478	•40	273573	11.60	726427	22
39	266723	11.19	992454	40	274269	11.58	725731	21
40	267395	11.17	992430	•40	274964	11.57	725036	20
41	9.268065	11.15	9.992406	·40	9.275658	11.55	10.724342	19
42	268734	11+13	992382	·40	276351	11.53	723649	18
43	269402	11.11	992359	•40	277043	11.51	722957	17
44	270069	11.10	992335	·40	277734	11.50	722266	
45	270735	11.08	992311	•40	278424	11.48	721576	15
46	271400	11.06	992287	•40	279113	11.47	720887	14
47 48	272064	11.02	992263	•40	279801	11.45	720199	13
	272726	11.03	992239	•40	280488	11.43	710512	12
49 50	273388	11.01	992214 992190	•40	281174 281858	11.41	718826	11
1		10.99		•40	1	11.40	718142	10
51 52	9·274708 275367	10.98 10.96	9992166	•40 •40	9·282542 283225	11.38 11.36	16775 17458 1000	8
53	276024		992142	•40	283907	11.30		
54	276681	10.94	991093	•41	284588	11.33	716093	1
55	277337		992009	•41	285268	11.33	715412	76 5
56		10.91		•41		11.31	714732	
	277991	10.89	992044	•41	285947 286624	11.30	714053	43
57 58	279297	10.87	992020		287301	11.20		2
59		10.84	991996	·41 ·41		11.20	712699	2
60	279948	10.82	991971 991947	•41	287977	11.23	712023	ò
			11.141				1	-

(79 DEGREES.)

SINES AND TANGENTS. (11 DEGREES.)

M.]	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.280599	10.82	9.901947	•41	9.288652	11.23	10 711348	60
1	281248	10.81	991922	•41	289326	11.22	710674	59 58
2	281897	10.79	991897	•41	289999	11.20	710001	58
3	282544	10.77	991873	·41	290671	11.18	709329	57 55
4	283190	10.76	991848	•41	291342	11.17	708658	56
45	2 83836	10.74	991823	•41	292013	11.15	707987	55
6	284480	10.72	991799	·41	292682	11.14	707318	54
78	285124	10.71	991774	•42	293350	11.12	- 7:0650	53
8	285766	10.69	991749	•42	294017	11.11	705983	52
9	286.408	10.67	991724	•42	294684	11.09	705316	51
10	287048	10.66	991699	•42	295349	11.07	704651	50
11	Q. 287687	10.64	9.991674	•42	9.296013	11.06	10·703987 703323	49 48
12	288326	10.63	991649	•42	296677	11.04		40
13	288964	10.01	991624	•42	297339	11.03	702661	47
14	289600	10.59	991599	·42	298001	11.01	701999	46
15	290236	10.28	991574	• 42	298662	11.00	701338	45
16	290870	10.56	991549	•42	299322	10.98	700678	44
17 18	291504	10.54	991524	•42	299980	.0.96	700020	43
	292137	10.53	991498	•42	300638	10.95	699362	42
19	292768	10.21	991473	•42	301295	10.93	698705	41
20	293399	10.20	991448	•42	301951	10.92	698049	40
21	9.294029	10.48	9.991422	·42	9.302607	10.90	10.697393	39 38
22	294658	10.46	991397	•42	303261	10.89	696739	38
23	295286	10.42	991372	•43	303214	10.87	696086	37 36
24	295913	10.43	991346	•43	304567	10.86	695433	
25	295539	10.42	991321	•43	305218	10.84	694782	35
26	297164	10.40	991295	•43	305869	10.83	694131	34
27	297788	10.39	991270	•43	306519	10.81	693481	33
28	298412	10.37	991244	•43	307168	10.80	692832	32
29	299034	10.36	991218 991193	·43 ·43	307815 308463	10.78 10.77	692185	31 30
30	299655	10.34		•43			10.690891	1
31	9.300276	10.32	9.991167	•43	9.309109	10.75	690246	29 28
32	300895	10.31	991141	•43	309754	10.74	689602	27
33	301514	10.29	991115		310398 311042	10.73	688958	26
34 35	302132	10.28	991090	·43 ·43	311685	10.71	688315	25
36	302748	10.26	991064	•43	312327	10.68	687673	24
	303364	10.25	991038	•43	312957	10.03	687033	23
37 38	303979	10·23 10·22	991012 990986	•43	313608	10.65	686392	22
	304593	10.22	990960	•43	314247	10.65	685753	21
39 40	305207 305819	10.20	990934	.44	314885	10.62	685115	20
41	9.306430	10.17	9.990908	.44	q.315523	10.61	10.684477	19
42	307041	10.16	990382	.44	316159	10.60	683841	18
43	307650	10.14	990855	.44	316795	10.58	683205	17
	308250	10.13	990829	.44	317430	10.57	682570	16
44 45	308867	10.11	990803	.44	318064	10.55	681936	15
46	309474	10.10	999777	.44	318697	10.54	681303	14
47	310030	10.08	990750	•44	319329	10.53	680671	13
47 48	310685	10.07	990724	.44	319961	10.51	680039	:2
49	311289	10.05	990697	.44	320592	10.50	679408	11
50	311893	10.04	990671	.44	321222	10.48	678778	10
51	9.312495	10.03	9.990644	.44	9.321851	10.47	10-678149	9
52	313097	10.01	990618	•44	322479	10.45	677521	8
53	313698	10.00	990591	.44	323106	10.44	676894	17
54	314297	9.98	990565	.44	323733	10.43	676267	7 6 5
55	314897	9.97	990538	.44	324358	10.41	675642	
56	315495	9.96	990511	.45	32.4983	10.40	675017	43
57 58	316092	9.94	990435	•45	325607	10.39	674393	
58	316689	9.93	990458	.45	326231	10.37	673769	2
	317284	9.91	990431	•45	326853	10.36	673147	1
59								
59 60	317879	9.90	9904)4	•45	327475	10.35	672525	0

(78 DEGREES)

30 (12 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
U	9.317879	9.90	9.990404	•45	9.327474	10.35	10.672526	60
1	318473	9.88	000378	.45	328005	10.33	671905	50
2	319066	9.87	990351	• 45	328715	10.32	671285	50 58
3	319658	9.86	990324	•45	329334	10.30	670666	57
	320249	9.84	000207	•45	320053	10.20	670047	56
45	320840	9.83	990270	• 45	330570	10.28	.669430	55
6	321430	9.82		•45	331187	10.26	668813	54
		9.02	990243	•45	331803		668197	53
3	322019	9.80	990215			10.25		52
	322607	9.79	990188	·45	332418	10.24	667582	
9	323194	9.77	990161	•45	333033	10.23	666967	51
10	323780	9.76	990134	•45	333646	10.21	666354	50
11	9 324366	9.75	9.990107	•46	9.334259	10.20	10.665741	49
12	32/4950	9.73	990079	•46	334871	10.19	665129	48
13	325534	9.72	990052	·46	335482	10.17	664518	47
14	326117	9.70	990025	•46	336093	10.16	663907	46
15	326700	9.69	989997	·.46	336702	10.15	663298	45
16	327281	9.68	989970	. 16	337311	10-13	662689	44
17	327862	9.66	989942	• 46	337919	10.12	662081	44 43
18	328442	9.65	989915	• 46	338527	10.11	661473	42
	329021	9.05	989887	•46	339133	10.10	660867	41
19 20	329599	9.64 9.62	989860	•46	339739	10.10	660261	40
21	9.330176	9.61	9.989832	•46	9.340344	10.07	10.659656	39
22	330753	9.60	989804	•46	340948	10.06	659052	38
23	33:329	9.58	989777	•46	341552	10.04	658448	37
24	331923	0.57	989749	•47	342155	10.03	657845	
25	332478	9.56	989721	•47	342757 343358	10.05	657243	35
26	333001	9.54	989693	•47	343358	10.00	656642	34
27	333624	9.53	989665	.47	343958	9.99	656042	33
28	334195	9.52	989637	.47	344558	9.98	655442	32
29	334766	9.50	989609	.47	345157	9.97	654843	31
30	335337	9.49	989582	•47	345755	9.96	654245	30
					9.346353		10.653647	
31	9.335906	9.48	9.989553	•47		9.94	65205	20 28
32	336475	9.46	989525	•47	346949	9.93	653051	
33	337043	9.45	989497	-47	347545	9.92	652455	27
34	337610	9.44	989469	•47	348141	9.91	651859	26
35	338176	9.43	989441	•47	348735	9.90	651265	25
36	338742	9.41	989413	•47	349329	9.88	650671	24
37	330306	9.40	989384	•47	349922	9187	650078	23
37 38	339871	9.39	989356	•47	350514	Q+86	- 649486	22
39	340434	1.37	089328	•47	351106	9.85	648894	21
40	340996	9.36	989300	•47	351697	9.83	648363	20
		0.35	9.989271	•47	9.352287	9.82	10.647713	19
41	9.341558				352876	9.81	647124	18
42	342119	9.34	989243	•47			646535	17
43	342679	9.32	989214	•47	353465	9.80		10
44	343239	9.31	989186	•47	354053	9.79	645947	
45	343797	9.30	989157	•47	354640	9.77 9.76	645360	15
46	344355	9.29	989128	·48	355227	9.70	644773	14
47	344912	9.27	989100	·48	355813	9.75	644187	13
47 48	345469	9.20	989071	•48	356398	9.74	643602	12
49	346024	9.25	989042	•48	356982	9.73	643018	11
50	346579	9.24	989014	•48	357566	9.71	642434	10
51	9.347134	9.22	9.988985	•48	9.358149	9.70	10 641851	0
52	347687	9.22	988956	•48	358731	9.69	641269	8
53			988927	•48	359313	9.68	640687	
	3482.40	9.20		. 19		9.67	640107	6
54 55	348792	9.19	988898	•48	359893	2.64	630516	:5
55	349343	9.17 9.16	988869	•48	360474	9.66		
56	349893	9.10	988840	•48	361053	9.65	638947	43
57	300443	9.15	988811	•49	361632	9.63	638368	
57 58	350992	9.14	988782	•49	362210	9.62	637790	3
59	350992 351549	9.13	988753	•49	362787	9.61	637213	1
60	352088	9.11	988724	•49	36336.4	9.60	636636	3
						COLUMN TWO IS NOT THE OWNER.		

(77 DEGREES.)

SINES AND TANGENTS. (13 DEGREES.)

M	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	T
0	9.352088	9.11	9.988724	.49	q.363364	9.60	10-636036	60
1	352635	9.10	988695	.49	363940	9.59	636060	59
3	353181	9.09	988666	.49	364515	9.58	635485	58
3	353726	9.08	988636	.49	365090	9.57	634910	57
45	354271	9.07	988607	•49	365664	9.55	634336	56
6	354815	9.05	988578	•49	366237	9.54	633763	55
2	355358 355901	9.04	988548	•49	366810	9.53	633190	54
78	356443	9.03 9.02	983519 988489	•49	367332	9.52	632518	53
9	356984	9.02	988460	·49 ·49	367053	9.51	6320.47	52
10	357524	8.99	988430	49	369094	9.30	631476 630906	51 50
li	9.358064	8.98	9.988401	.49	9.369663	9.48	10.630337	40
12	358603	8.97	989371	.49	370232	9.46	620768	49 48
13	359141	8.96	988342	•49	370799	9.45	629201	47
14	359678	8.95	988312	.50	371367	9.44	628633	47
15 16	360215	8.93	988282	.50	371933	9.43	628067	45
	360752	8.92	988252	•50	372.499	9.42	627501	44
17	361287 361822	8.91	988223 988193	•50 •50	373064	9.41	626936	43
19	362356	8.80	988163	.50	373629	9.40	626371	42
20	362889	8.88	988133	.50	374193 374756	9.39 9.38	625807 625244	41 40
21	9.363422	8.87	9.988103	.50	9.375319	9.37	10.624681	30
22	363954	8.85	9'9073	·50	375881	9.35	624119	38
23	364485	8.84	983043	.50	376442	9.34	623558	37
24	365016	8.83	988013	.50	377003	9.33	622997	36
25 26	355546	8.82	987983	.50	377563	9.32	622437	35
	366075	8.81	987953	.50	378122	9.31	621878	34
27	366604 367131	8.80	987922	•50	378681	9.30	621319	33
29	367650	8.79	987892 987862	•50 •50	379239	9.28	620761	32
3é	368185	8.75 8.76	987832	•51	379797 380354	9·28 9·27	620203 619646	31 30
31	9.368711	8.75	9.987801	·51	9.380910	9.26	10.619000	29
32	369236	8.74	987771	۰5ı	381466	9.25	618534	28
13	369761	8.73	987740	•5t	382020	9.24	617280	27
4	370285	8.72	987710	•21	382575	9.23	617425	26
15 16	370808	8.71	987679	•21	383129	9.22	616871	25
7	371330	8.70	987649	•21	383682	9.21	616318	24
8	371852 372373	8.69	987618	•51	384234	9.20	615766	23
9	372894	8.67 8.66	987588 987557	·51 ·51	384786	9·15	515214	22
io	373414	8.65	987526	.51	385337 385888	9.18 9.17	614663 614112	21 20
1	9 373933	8.64	9.987496	.51	9.386438		10-613562	19
2	374452	8.63	987465	·51	386987	9.14	613013	18
3	374970	8.62	987434	·51	387536	9.13	612464	17
4	375487	8.61	987403	.52	388084	9.12	611916	16
5	376003	8.60	987372	·52	388631	9.11	611369	15
ó	376510	8.59	987341	.52	389178	9.10	610822	14
3	377035	8·58 8·57	987310	• 52	389724	9.09	610276	13
9	37549 378063	8.56	9 ⁸ 7279 9 ⁸ 7248	• 52	390270	9.08	609730	12
0	378577	8.54	987217	· 52	390815	9·07 9·06	609185 608640	11 10
1	9.379089	8.53	9.987186	.52	9.391903			1
2	379601	8.52	987155	.52	392447	9.05 9.04	10.608097 607553	8
3	386113	8.51	987124	.52	392989	9.03	607011	
4 .	380624	8.50	987092	.52	393531	9.02	606469	2
5	381134	8.49	987061	.52	394073	9.01	605927	5
6	381643	8.48	987030	·52	394614	9.00	605386	
8	332152	8.47	986998	•52	395154	8.99	604846	43
9	382661 383168	8.46	986967	·52	395694	5.98	604306	2
0	383675	8.45 8.44	986936 986904	·52 ·52	396233	8.97	603767	1
į.						8.96	603229	0

27

(76 DEGREES.)

32 (14 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cusine	D.	Tang.	D.	Cotang.	1
0 I 2 3 4 5 6 7 8 9 10	9 · 383675 384182 384687 385192 385697 386201 386704 387207 387709 388210 388711	8 · 44 8 · 43 8 · 42 8 · 41 8 · 40 8 · 30 8 · 33 8 · 37 8 · 36 8 · 35 3 · 34	9-986904 96873 96841 986809 986778 986746 986746 986714 98683 986683 986651 986619 986587	•52 •53 •53 •53 •53 •53 •53 •53 •53 •53 •53	9-396771 397309 397846 399383 398919 399455 399990 400524 401058 401591 402124	8.96 8.96 8.95 8.93 8.92 8.91 8.90 8.80 8.80 8.88 8.88 8.88	10.603229 602631 602154 501547 601581 600545 600010 599476 598400 598400 59876	60 57 53 57 55 55 55 54 53 52 51 50
11 12 13 14 15 16 17 18 19 20	9-389211 389711 390210 390708 391206 391703 392199 392695 393191 393685	8.33 8.32 8.31 8.28 8.27 8.26 8.25 8.24 8.23	9-986555 986523 986491 986459 986459 986363 986363 986331 986299 986266	.53 .53 .53 .53 .53 .53 .53 .54 .54 .54 .54 .54	9-402656 403187 403718 404249 404778 405308 405836 406364 406892 407419	8.86 8.85 8.84 8.83 8.82 8.81 8.80 8.79 8.78 8.77	10.507344 506813 506282 505751 505222 504694 504164 503636 503108 502581	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 25 25 27 28 29 30	9.394179 394673 395166 395658 396150 396641 397132 397621 398111 398600	8.22 8.21 8.20 8.19 8.18 8.17 8.17 8.16 8.15 8.14	9 · 986234 986202 986169 986137 986137 986072 986039 986039 986007 985974 985942	.54 .54 .54 .54 .54 .54 .54 .54 .54 .54	9.407945 408471 408997 409521 410045 410569 411092 411615 412137 412658	8.76 8.75 8.74 8.74 8.73 8.72 8.71 8.70 8.60 8.68	10-592055 591529 591003 58955 589431 588908 588385 587863 587863 587342	30 38 37 36 35 34 33 31 30
31 32 33 34 35 36 37 38 39 40	9.399088 399575 400062 400549 401035 401520 402005 402489 402972 403455	8.13 8.12 8.11 8.00 8.03 8.05 8.05 8.04	9.985909 985876 985843 985811 985778 985745 985712 985679 985646 985613	.55 .55 .55 .55 .55 .55 .55 .55 .55 .55	9.413179 413699 414219 414738 415257 415257 416293 416810 417326 417842	8.67 8.66 8.65 8.64 8.64 8.63 8.62 8.61 8.60 8.59	10-586821 586301 585781 585262 584743 584225 583707 583190 582674 582158	29 28 27 26 25 24 23 21 21 20
41 42 43 44 45 46 47 48 49 50	9.403938 404420 404901 405382 405862 406341 406820 407299 407777 408254	8.03 8.02 8.01 8.00 7.99 7.98 7.97 7.96 7.95 7.95	9.985580 985547 985514 985480 985447 985444 985380 985380 985347 985314 985280	•55 •55 •55 •55 •55 •56 •56 •56 •56	9.418358 418873 419387 419901 420415 420927 421440 421952 422463 422974	8.58 8.57 8.55 8.55 8.55 8.53 8.53 8.53 8.51 8.50	19.581642 581127 580613 580099 579585 579573 578569 578569 578548 577537 577026	19 18 17 16 15 14 -3 .2 11 10
51 52 53 54 55 56 57 58 59 60	9.408731 409207 409682 410157 410632 411106 411579 412052 412524 412996	7.94 7.93 7.92 7.91 7.90 7.88 7.88 7.88 7.85	9.985247 985213 985180 985146 985143 985079 985045 985045 985011 984978 984978	•56 •56 •56 •56 •56 •56 •56 •56 •56	9-423484 423993 424503 425011 425519 426527 426534 427041 427547 428052	8 · 49 8 · 48 8 · 48 8 · 47 8 · 46 8 · 45 8 · 44 8 · 43 8 · 43 8 · 43 8 · 42	10.576516 576007 575497 574989 574481 573973 573466 572959 572453 571948	98 765 43 10
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

(75 DEGREES.)

SINES AND TANGENTS. (15 DEGREES.)

М.	Sine	D.	Cosine	Э.	Tang.	D.	Cotang.	
0	9-412006 413467	7.85 7.84	9.984944 984910	•57 •57	9.428052 428557	8 · 42 8 · 41	10.571948 571443	60 59
2	413938	7.83	984876	.57	429062	8.40	570938	59 58
3	414408	7.83	934842	.57	429566	8.39	570434	57
45	414878	7.82 7.81	984808	·57 ·57	430070	8.38	569930	56
6	415815	7.80	9 ⁸ 4774 9 ⁸ 4740		430573	8.38	569427	55 54
	416283	7.79	084706	.57	431577	8.36	568423	53
8	416751	7.78	984672	.57	432079	8.35	567921	52
9	417217	7.77	984637	.57	432580	8.34	567420	51
10	417684	7.76	934603	.57	433080	8.33	566920	50
11	9.418150	7.75	9.984569	•57	9.433580	8.32	10.566420	49
12	418615	7.74	984535	•57	434080	8.32	565920	48
14	419079	7.73	984500	•57	434579	8.31	565421	47
15	419544	7 · 73 7 · 72	98.4466	·57 •58	435078	8.30 8.20	564922	46
16	420007 420470	7.71	984432 984397	.58	435576 436073	8.29	564424	45
17	420933	7.70	984363	.58	436570	8.28	563927 563430	44 43
18	421395	7.60	984328	.58	437067	8.27	562933	42
19	421857	7.68	984294	.58	437563	8.26	562.437	41
20	422318	7.67	984259	•58	438059	8.25	561941	40
21	9.422778	7.67	9.084224	•58	9.438554	8.24	10.561446	39
22	423238	7.65	984190	•58	439048	8.23	560952	38
23	423697	7.65	984155	•58	439543	8.23	560457	37
24	424156	7.64	984120	· 58	440036	8.22	559964	36
26	424615 425073	7.63 7.62	984085	.58 .58	440529	8 · 21 8 · 20	559471	35
27	425530	7.61	984050 984015	.58	441022 441514	8.19	558978 558486	34 33
28	425987	7.60	983981	.58	441014	8.19	557994	$\frac{3.3}{32}$
29	426443	7.60	983946	.58	442497	8.18	557503	31
30	426899	7.59	983911	•58.	442988	8.17	557012	30
31	9.427354	7.58	9.983875	•58	9.443479	8.16	10.556521	20
32 33	427809	7.57	983840	•59	4.43968	8.16	556032	28
34	428263	7.56	983805	·59	444458	8-15	555542	27
35	428717 429170	7.55 7.54	983770	•59	444947	8.14	555053	26
36	429623	7.53	983735 983700	·59 ·59	445435 445923	8 · 13 8 · 12	554565	25
37 38	430075	7.52	983664	•50	440411	8.12	554077 553589	24 23
	430527	7.52	983629	.59	446898	8-11	553102	22
39	430978	7.51	953594	·50	447384	8.10	552616	21
40	431429	7.50	983558	•59	447870	8.09	552130	20
41	9.431879	7.49	9.983523	•59	9-448356	8.09	10-551644	19
42	432329	7.48	983487	·59	448841	8.08	551159	18
44	432778 433226	7·48 7·47	983452 983416	·59	449326	8.07 8.06	550674	17
45	433675	7.46	983381	.59	449 ⁹ 10 450294	0.00 8.06	550190 549706	16 15
46	434122	7.45	983345	•59	430294	8.05	549700 549223	13
47	434569	7.44	983309	+59	451260	8.04	548740	13
48	435016	7.44	983273	•60	451743	8.03	548257	12
49 50	435462	7.43	983238	•60	452225	8.02	547775	Iī į
51	435908	7.42	983202	•60	452706	8.02	547204	10
52	9-436353 436708	7 41 7 40	9·983166 983130	•60 •60	9.453187	8.01	10.546813	8
53	437242	7.40	983094	•00 •60	453668 454148	8.00	546332 545852	
54	437686	7.39	383058	•60	454628	7·99 7·99	545372	76
55	438129	7.38	983022	.60	455107	7.95	544893	5
55	438572	7.37	982985	.60	455556	7.97	544414	
57	439014	7.36	982950	.60	456064	7.96	543936	43
50	439456	7.36	982914	•60	45 542	7.96	543458	2
60	439897 440338	7.35	982878 982842	•60 •60	457019	7.95	542081	I
				.00	457496	7.94	542504	•
·!	Cosine	D.	Sire		Cotang.	D.	Tang.	<u>M</u> .

(74 DECREES.)

34 (16 DEGREES.) A TABLE OF LOGARITHMIC

М.	Sine ·	D.	Cosine	D.	Tar.g.	D.	Cottang.	T
0	9.440338	7.34	9.982842	•60	9.457496	7.94	10.542504	60
1	440778	7.23	982805	•60	457973	7.93	542027	
2	441218	7.32	982769	•61	458449	7.93	541551	59
3	441658	7.31	982733	•61	458925	7.92	541075	1 57
4	442096	7.31	982696	•61	439400	7.91	540600	1 56
45	442535	7.30	982660	•61	459875	7.90	540125	55
6	4421173	7.29	982624	.61	460349	1.00	539651	54
	443410	7.28	982587	.61	460823	7.20	539177	53
78	443847	7.27	982551	.61	461297	7.88	538703	
9	444284	7.27	982514	.61		7.88	538230	52
10	444720	7.26	982477	•61	461770	7.87		
10			1		402242		537758	50
11	9.445155	7.25	9.982441	.61	9.462714	7.86	10.537286	1 49
12	445590	7.24	982404	•61	463186	7.85	536814	46
13	446025	7.23	982367	.61	463658	7.85	536342	47
14	446459	7.23	982331	•61	464129	7.84	535871	46
15	446893	7.22	982294	•61	464599	7.83	535401	45
16	447326	7.21	982257	+61	465060	7.83	534931	44
17	447759	7.20	982220	.62	465530	7.82	534461	43
17 18	448191	7.20	982183	.62	466008	7.81	533992	42
19	448623	7.19	982146	.62	165476	7.80	533524	41
20	449054	7.18	982100	.62	466945	7.80	533055	40
	9.449485			.62				1
21		7.12	9.982072		9.467413	7.78	10.532587	39
22	449015	7.16	982035	•62	467880	7.78	532120	38
23	450345	7.16	981998	•62	468347	7.78	531653	37
24	450775	7.15	981961	•62	468814	7.77	531186	36
25	451204	7.14	981924	•62	469280	7.70	530720	35
26	451632	7.13	981886	•62	4697.46	7.75	530254	34
27 28	452060	7 13	981849	•62	470211	7 • 75	529789	33
28	452488	7.12	981812	•62	470676	7.74	529324	21
29	452915	7.11	981774	•62	471141	7.73	528859	3:
30	453342	7.10	981737	62	471605	7.73	528395	30
31	9.453768	7.10	9.981699	.63	9.472068	7.72	10.527932	29
32	454194	7.09	981662	•63	472532	7.71	527468	25
33	454619	7.08	981625	•63	472995	7.71	527005	27
34	455044	7.07	981587	.63	473457	7.70	526543	25
35	455469	7.07	981549	.63	473919	7.69	526081	1 25
36	455893	7.06	981512	.63	474381	7.69	525610	24
37	456316	7.05	981474	.63	474842	7.68	525158	23
38	456739	7.04	981436	.63	475303	7.67	524697	22
39	457162	7.04	981300	.63	475763	7.67	524237	21
40	457584	7.03	981361	.63	476223	7.66	523777	20
						-	1	
41	9.458006	7.02	9.981323	•63	9.476683	7.65	10.523317	19
42	458427	7.01	981285	•63	477142	7.65	522858	18
43	458848	7.01	981247	•63	477601	7.64	522399	17
44	459268	7.00	981209	•63	478059	7.63	521941	16
45	459638	6.99	981171	•63	478517	7.63	521483	15
46	460108	6.98	981133	.64	478975	7.62	521025	14
4-	460527	6.98	<u>9</u> 810q5	.6.4	479432	7.61	520568	r3
48	460946	6.97	981057	.64	479889	7.61	520111	13
49 50	461364	6.96	981019	•64	480345	7.60	519655	11
50	461782	6.95	· 980981	•64	480801	7.59	519199	10
51	9.462199	6.95	9.980942	.64	9.481257	7.59	10.518743	9
52	462616	6.94	980904	+64	481712	7.58	518288	8
53	463032	5.93	930866	.64	482167	7.57	517833	7
54	463448	6.93	980827	.64	482621	7.57	517379	7 6 5
55	463864	6.92	980789	.64	483075	7.56	516925	5
56	464279	6.91	980750	.64	483520	7.55	516471	
	464694	6.90	980712	.64	483982	7.55	516018	43
57 58	465108	6.90	980673	.64	484435	7.54	515563	2
50	465522	6.89	980635	.64	484887	7.53	5151:3	I
60	465935	6.88	980596	.64	485339	7.53	51461	0
							1	

(73 DEGREES.)

SINES AND TANGENTS. (17 DEGREES.) 35

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.465935	6.88	9.980596	.64	9.485339	7.55	10.514661	6
1	466348	6.88	980558	.64	485791	7.52	514209	
2	466761	6.87	980519	.65	486242	7.51	513758	5
3	467173	6.86	980480	.65	486693	7.51	513307	1.
4	467585	6.85	980442	.65	487143	7.50	512857	5
4 5	467996	6.85	980403	.65	487593	7.49	512407	5
6	468407	0.84	980364	+65	488043		511957	5
-	468817	6.83	980325	.65	488492	7.48		
78	469227	6.83	980286	.65	400492	7.48	511508	5
	469637	6.81			488941	7.47	511059	5
9 10		6.81	980247	•65	489390	7:47	510610	5
	470046		980208	•65	489838	7.46	510162	50
11	9·470455 470863	6.80 6.80	9.980169	•65	9.490286	7.46	10.509714	4
13			980130	.65	490733	7.45	509267	4
	471271	5.78	980091	•65	491180	7.44	508820	4
14	471679	6.78	980052	•65	491627	7.44	508373	40
15	472086	6.78	980012	.65	492073	7.43	507927	4
16	472492	6.77	979973	.65	492519	7.43	507481	44
17	472898	6.76	979934	•66	492965	7.42	507035	43
18	473304	6.76	979895	.66	493410	7.41	506590	4
19	473710	6.75	979855	.66	493854	7.40	506146	4
20	474115	6.74	979816	•66	494299	7.40	505701	40
21	9.474519	6.74	9.979776	•66	9.494743	7.40	10.505257	39
22	474923	6.73	979737	•66	495186	7.39	504814	38
23	475327	6.72	979697	•66	495630	7.38	504370	37
24	475730	6.72	979658	.66	496073	7.37	503927 503485	36
25	476133	6.71	979618	.66	496515	7.37	503485	35
26	476536	6.70	979579	.66	496957	7.36	5030.43	34
27 28	476938	6.69	979539	.66	497399	7.36	502601	33
28	477340	6.69	979499	.66	497841	7.35	502150	32
29	477741	6.68	979459	.66	498282	7.34	501718	31
3ó	478142	6.67	979420	•66	498722	7.34	501278	30
31	9.478542	6.67	9.979380	.66	9.499163	7.33	10.500837	20
32	478942	6.66	979340	.66	499603	7.33	500397	29 28
33	479342	6.65	979300	.67	500042	7.32	499958	
34		6.65	979260	.67	500481	7.31	499519	27
35	479741 480140	6.64	979220	.67	500920	7.31	499090	25
36	480530	6.63	979180	.67	501350	7 30	498641	24
37 38	480937	6.63	979140	.67	501797	7.30	498203	23
38	481334	6.62	979100	.67	502235	7.29		23
30	481731	6.61	979059	.67	502672	7.28	497765	21
40	482128	6.61	979019	.67	503100	7.28	497328 496891	20
41	9.482525	6.60	9.978979	.67	9.503546	7.27	10.496454	
42	482921	6.50	978939	.67	503982	7.27	496018	18
43	483316	6.59	978898	.67	504418	7.26	495582	17
44	483712	6.58	978858	.67	504854	7.25	495146	17
45	484107	6.57	978817	.67	505289	7.25	494711	15
46	484501	6.57	978777	.67	505724	7.24		
	484995	6.56	978736	.67	506159	7.24	494276 493841	14
47 48	485280	6.55	978696	.68	506503	7.24		
40	485682	6.55	978655	.68		7.23	493407	12
49 50	486075	6.54	978615	•68	507027 507460	7.22	492973 492540	10
51	9.486467	6.53	9.978574	.68	9.507893	7.21	10.492107	
52	486860	6.53	978533	.68	508326	7.21	491674	8
53	487251	6.52	978493	.68	508750	7.20		
54	487643	6.51	978452	.68	500101		491241	1
55	488034	6.51	978411	.68		7.19	490809	765
56	488424	6.50	970411	.68	509622	7.18	490378	3
57	488814	6.50	978370		510054	7.18	489946	43
57 58	489204		97832	•68	510485	7-18	489515	
59		6.49	978288	•68	510916	7.17	489084	2
59 60	489593	6·48 6·48	978247 978206	·68 ·68	511346	7.16	488454 488224	1
		- 40	910200	.00	11/0	1.10	400224	U

(72. DEGREES.)

36 (18 DEGREES.) A TABLE OF LOGARITHMIC

м.	Sine	D.	Cosine	D.	Tang.	D,	Cotang.	
0 1 2	9.489982 490371 490759	6.48 6.48 6.47	9-978206 978165 978124	•68 •68 •68	9.511776 512206 512635	7.16 7.16 7.15	10.488224 487794 487365	60 59 58
345	491147 491535 491922	6 • 46 6 • 46 6 • 45	978083 978042 978001	•69 •69 •69	513064 513493 513921	7 · 14 7 · 14 7 · 13	486036 486507 486079	57 55 55
678	492308 492695	6.44 6.44	977959 977918	•69 •69	514349 514777	7 · 13 7 · 12	485651 485223	54 53
9 10	493081 493466 493851	$ \begin{array}{r} 6 \cdot 43 \\ 6 \cdot 42 \\ 6 \cdot 42 \end{array} $	977877 977835 977794	•69 •69 •69	515204 515631 516057	7 · 12 7 · 11 7 · 10	484796 484369 483943	52 51 50
11 12 13 14 15	9·494236 494621 495005 495388 495772	6 · 41 6 · 41 6 · 40 6 · 39 6 · 39	9·977752 977711 977669 977628 977586	•69 •69 •69 •69 •69	9.516484 516910 517335 517761 518185	7·10 7·09 7·09 7·08 7·08	10-483516 483090 482665 482230 481815	49 48 47 46 45
16 17 18 19 20	496154 496537 496919 497301 497682	6.38 6.37 6.37 6.36 6.36	977544 977503 977461 977419 977377	•70 •70 •70 •70 •70	518610 519034 519458 519882 520305	7.07 7.06 7.06 7.05 7.05	481300 480966 480542 480118 479695	44 43 42 41 40
21 22 23 24 25 26 27 28	9.498064 498444 498825 499204 499584 499584 499963 500342 500721	6.35 6.34 6.34 6.33 6.32 6.32 6.31 6.31	9.977335 977293 977251 977209 977167 977125 977083 977041	·70 ·70 ·70 ·70 ·70 ·70 ·70 ·70 ·70	9.520728 521151 521573 521995 522417 522838 523259 523680	7.04 7.03 7.03 7.02 7.02 7.02 7.01 7.01	10-479272 478849 478427 478005 477583 477162 476741 476320	39 38 37 36 35 34 33 32
29 30	501099 501476	6.30 6.29	976999 976957	•70 •70	524100 524520	7.00	475900 475480	31 30
31 32 33 34 35 36 37 38 39 40	9.501854 502231 502607 503360 503735 504110 504485 504860 505234	6 · 29 6 • 28 6 · 28 6 · 27 6 · 26 6 · 26 6 · 25 6 · 25 6 · 25 6 · 24 6 · 23	9.976914 976872 976830 976787 976745 976702 976600 976617 976574 976532	· 70 · 71 · 71 · 71 · 71 · 71 · 71 · 71 · 71	9-524939 525350 525778 526197 526615 527033 527451 527868 528285 528702	6.99 6.98 6.98 6.97 6.97 6.96 6.95 6.95 6.95 6.94	10+475061 474641 474222 473803 473855 472967 472549 472132 471715 471298	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46	9 · 505608 505981 · 506354 506727 507099 507471	6 · 23 6 · 22 6 · 21 6 · 20 6 · 20 6 · 20	9·976489 976446 976404 976561 676318 976275	•71 •71 •71 •71 •71 •71	9.529119 529535 529950 530366 530781 531196	6.93 6.93 6.93 6.92 6.91 6.91	10-470881 470465 470050 469634 469219 468804	19 18 17 16 15 14
47 48 49 50	507843 508214 508585 508956	6 · 19 6 · 19 6 · 18 6 · 18	976232 976189 976146 976103	·72 ·72 ·72 ·72 ·72	531611 532025 532430 532853	6.90 6.90 6.89 6.89	468389 467975 467561 467147	13 12 11 10
51 52 53 54 55	9-509326 509696 510065 510434 510803	6 · 17 6 · 16 5 · 16 6 · 15 6 · 15	9·976060 976017 975974 975930 975887	·72 ·72 ·72 ·72 ·72 ·72	9 · 533266 533679 534092 534504 534916	6.88 6.88 6.87 6.87 6.87	10-466734 466321 465908 465496 465084	8765
56 57 58 59	511172 511540 511907 512275	6 · 14 6 · 13 6 · 13 6 · 12	975844 975800 975757 975714	·72 ·72 ·72 ·72 ·72	535328 535739 536150 536561	5.86 6.85 6.85 6.84	464672 464261 463850 463439	4 3 2 1
60	512642 Cosine	6.12 D.	975670 Sine	·72	536972 Cotang.	6.84 D.	463028 Tang.	M.

(71 DEGREES.)

SINES AND TANGENTS. (19 DEGREES.) 37

М.	Sine	D.	Cosino	D.	Tang.	D.	Cotang.	1
0 1 2 3 4	9.512642 513009 513375 513741 514107	6.12 6.11 6.11 5.10 5.00	9.975670 975627 975583 975539 975496	•73 •73 •73 •73 •73 •73	9.536972 537382 537792 538202 538611	6.84 6.83 6.83 6.82 6.82	10-463028 462618 462208 461798 461389	60 59 58 57 56
4 5 6 7 8 9	514472 514837 515202 515566 515930 516294	6.09 5.08 6.08 6.07 6.07 6.07	975452 975408 975365 975321 975277 975233	·73 ·73 ·73 ·73 ·73 ·73 ·73 ·73	539020 539429 539837 540245 540653 541061	6;81 6:81 6:80 6:80 6:79		55 54 53 52 51 50
11 12 13 14 15 16 17 18 19	9.516657 517020 517382 517745 518107 518468 518829 518829 519190 519531	6.05 6.05 6.04 6.03 6.03 6.03 6.02 6.01 6.01	9·975189 975145 975101 975057 975013 974969 974969 974925 974880 974880 974836	·73 ·73 ·73 ·73 ·73 ·74 ·74 ·74 ·74	9.541468 541875 542281 542688 543094 543499 543905 544310 544715	6.79 6.78 6.78 6.77 6.77 6.76 6.76 6.75 6.75 6.74	10-458532 458125 457719 457312 456906 456501 456995 455690 455285	49 48 47 46 45 44 43 42 41
20 21 22 23 24 25 26 27 28 29 30	519911 9-520271 520631 520990 521349 521707 522066 522424 522781 523138 523138 523495	6.00 5.99 5.99 5.98 5.98 5.98 5.97 5.96 5.95 5.95	974792 9•974748 974703 974659 974614 974525 974525 974481 97436 974391 974347	·74 ·74 ·74 ·74 ·74 ·74 ·74 ·74 ·74 ·74	545119 9.545524 545928 546735 546735 547138 547540 547943 548345 548747 548747	6 • 74 6 • 73 6 • 73 6 • 72 6 • 72 6 • 71 6 • 71 6 • 70 6 • 70 6 • 69 6 • 69	454881 10-454476 454072 453669 453265 452862 452460 452057 451655 451253 451253	40 39 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	9-523852 524208 524564 525275 525630 525984 526330 526693 526693 527046	5.94 5.93 5.93 5.92 5.91 5.91 5.90 5.90 5.90 5.89	9.974302 974257 974212 974167 974122 974077 974032 973987 973987 973897	·75 ·75 ·75 ·75 ·75 ·75 ·75 ·75 ·75 ·75	9.549550 549951 550352 550752 551152 551552 551952 552351 552351 552750 553149	6.68 6.63 6.67 6.66 6.66 6.65 6.65 6.65 6.65	10.450450 450049 449648 449248 44848 44848 44848 448048 447649 447250 446851	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 49 50	9.527400 527753 528105 528458 52810 529161 529513 529864 530215 530565	5.89 5.88 5.88 5.87 5.87 5.86 5.86 5.85 5.85 5.85 5.85 5.85	9.973852 973807 973761 973716 973625 973580 973585 973489 973444	·75 ·75 ·75 ·76 ·76 ·76 ·76 ·76 ·76 ·76	9.553548 553946 554344 555139 555536 55533 556329 556329 556725 557121	6.64 6.63 6.62 6.62 6.61 6.61 6.60 6.60 6.59	10.446452 446054 445656 445259 444861 44464 444067 443671 443275 442879	19 18 17 16 15 14 13 12 11
51 52 53 54 55 56 57 58	9.530915 531265 531614 531963 532312 532661 533009 533357	5.84 5.83 5.82 5.82 5.81 5.81 5.80 5.80	9.973398 973352 973367 973261 973215 973169 973124 973078	·76 ·76 ·76 ·76 ·76 ·76 ·76 ·76	9.557517 557913 558308 558702 559097 559491 559885 560279	6.59 6.59 6.58 6.58 6.57 6.57 6.57 6.56 6.56	10-442483 442087 441692 441298 44093 440903 440500 440115 439721	98 76 5 4 3 2
59 60	533704 534052 Cosine	5.79 5.78 D.	973032 972986 Sine	·77 ·77 D.	560673 561066 Cotang.	6.55 6.55 D.	439327 438934 Tang.	і о <u>У</u> .

(70 DEGREES.)

38 (20 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0 1 2 3 4 5 6 7 8 9	9.534052 534399 534745 535092 535438 535783 536129 536474 536818 537163 537163	5.78 5.77 5.77 5.77 5.76 5.76 5.76 5.75 5.74 5.74 5.73 5.73	9-972986 972940 972894 972848 972802 972755 972709 972663 972617 972570 972524	۲۲ ۲٦ ۲٦ ۲٦ ۲٦ ۲٦ ۲٦ ۲٦ ۲٦ ۲٦	9.561066 561459 561851 562244 562636 563023 563419 563811 564202 564592 564983	$\begin{array}{c} 6\cdot55\\ -6\cdot54\\ 6\cdot54\\ 6\cdot53\\ 6\cdot53\\ 6\cdot53\\ 6\cdot53\\ 6\cdot52\\ 6\cdot52\\ 6\cdot51\\ 6\cdot51\\ 6\cdot50\end{array}$	10-438934 438541 438149 437756 437364 436572 436561 436189 435798 435408 435709	60 50 58 57 55 55 51 51 51 51 51
11 12 13 14 15 16 17 18 19 20	9.537851 538194 538538 538880 539223 539565 539907 540249 540590 540590	5.72 5.72 5.71 5.70 5.70 5.69 5.69 5.69 5.68 5.68	9·972478 972431 972385 972385 972291 972245 972198 972151 972105 972058	·77 ·78 ·78 ·78 ·78 ·78 ·78 ·78 ·78 ·78	9.565373 565763 566153 566542 56632 567320 567709 568093 568486 568873	$\begin{array}{c} 6.50 \\ 6.49 \\ 6.49 \\ 6.48 \\ 6.48 \\ 6.48 \\ 6.47 \\ 6.47 \\ 6.47 \\ 6.46 \\ 6.46 \end{array}$	10-434627 434237 433847 433847 43368 43368 432680 432291 431902 431514 431127	49 48 44 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	9.541272 541613 541953 542293 542293 542971 543310 543649 543987 543987 543987	5.67 5.66 5.66 5.65 5.65 5.64 5.64 5.63 5.63	9.972011 971964 971917 971870 971823 971776 971776 971729 971682 971635 971588	·78 ·78 ·78 ·78 ·78 ·78 ·79 ·79 ·79 ·79 ·79	9.569261 569648 570035 570422 570809 571195 571581 571967 572352 572738	6 · 45 6 · 45 6 · 45 6 · 44 6 · 44 6 · 43 6 · 43 6 · 42 6 · 42 6 · 42	10.430739 430352 429965 429578 429191 428805 428419 428033 427648 427262	30 38 37 36 35 34 33 32 37 30
31 32 33 34 35 36 37 38 39 40	9.544663 545000 545338 545674 546011 546347 54683 547019 547354 547689	5.62 5.61 5.61 5.60 5.60 5.59 5.59 5.59 5.58 5.58	9.971540 971493 9 7 1446 971398 971351 971303 971256 971208 971101 971113	•79 •79 •79 •79 •79 •79 •79 •79 •79 •79	9.573123 573507 573892 574276 574660 575044 575427 575810 576193 576193 576576	6 · 41 6 · 40 6 · 40 6 · 39 6 · 39 6 · 39 6 · 39 6 · 38 6 · 38 6 · 37	10-426877 426493 426108 425724 425340 424956 424573 424190 423807 423807 423424	20 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 69 50	9.548024 548359 548693 549027 549360 549693 550020 550020 550359 550692 551024	5.57 5.56 5.56 5.55 5.55 5.54 5.54 5.53 5.53 5.53	9-971066 971018 970970 970874 970874 970877 970779 970731 970683 970635	.80 .80 .80 .80 .80 .80 .80 .80 .80	9.576958 577341 577723 578104 578486 578867 579248 579629 580009 580389	6-37 6-36 6-36 6-35 6-35 6-34 6-34 6-34 6-33	10.423041 422659 422277 421896 421514 421133 420752 420371 419991 419611	10 18 17 16 15 14 13 12 11 10
51 52 53 54 55 56 57 58 59 60	9.551356 531687 552018 552349 552680 553010 553341 553670 554000 554020	5.52 5.52 5.52 5.51 5.51 5.50 5.50 5.49 5.49 5.49	9.970586 970538 970490 970442 970394 970345 970297 970297 970249 970200 970152	-80 -80 -80 -80 -81 -81 -81 -81 -81	9.580769 581149 581528 581907 582286 582665 583043 583422 583800 584177	6.33 6.32 6.32 6.31 6.31 6.30 6.30 6.29 6.29	10.419231 418851 418472 418093 417714 417335 416957 416578 416578 416200 415823	98 765 43 2 10
-	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

(69 DEGREES.)

SINES AND TANGENTS. (21 DEGREES.) 39

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.554329	5.48	9.970152	.81	9·584177 584555	6.29	10-415823	60
I	554658	5.48	970103	•81		6.29	415445	59 58
2	- 554987	5.47	970055	•81	584932	6.28	413068	
3	555315	5.47	970006	•81	585309	6.28	414691	57
45 E	555643	5.46	969957	•8r	585686	6.27	414314	56
5	555971	5.46	969909	•81	586062	6.27	413938	55
ť	556299	5.45	969860	•81	586439	6.27	413561	54
3	556626	5.45	969811	•81	586815	6.26	413185	51
	556953	5.44	969762	.81	587190	6.26	412810	52
9	557280	5.44	969714	•81	587566	6.25	412434	51
10	557606	5.43	969665	-81	587941	6.25	412059	50
11	9.557932	5.43	9.969616	•82	9.588316	6.25	10-411684	42
12	558258	5.43	969567	•82	588691	6.24	411309	48
13	558583	5.42	969518	·82	589066	5.24	410934	47
14	558909	5.42	969469	·82	589440	6.23	410560	46
15	559234	5.41	969420	+82	589814	6.23	410186	45
16	559558	5.41	969370	•82	590188	6.23	409812	44
17	559883	5.40	969321	.82	590562	6.22	409438	43
	560207	5.40	969272	.82	590935	6.22	409065	42
19	56o53i	5.39	969223	·82	591308	6.22	408692	41
20	560855	5.39	969173	·82	591681	6.21	408319	40
21	9.561178	5.38	9.969124	.82	1.592054	6.21	10.407946	32
22	561501	5.38	969075	•82	592426	6.20	. 407574	38
23	561824	5.37	969025	•82	592798	6.20	407202	37
24	562146	5.37	968976	•82	593170	6.19	406829	36
₹Ž	562468	5.36	968926	•83	593542	6.19	406458	35
26	562790	5.36	968877	•83	593914	6.18	406086	34
27 28	563112	5.36	968827	•83	594285	6.18	405715	33
	563433	5.35	968777	•83	594656	6.18	405344	32
29	563755	5.35	968728	.83	595027	6.17	404973	31
30	564075	5.34	968678	•83	595398	6.17	404602	30
31	9.564396	5.34	9.968628	•83	9.595768	6.17	10.404232	29 28
32	564716	5.33	068578	•83	596138	6.16	403862	28
33	565036	5.23	968528	•83	596508	6.16	403492	27
34	51 5356	5.32	968479	83	596378	6.16	403122	26
35	51 5676	5.32	968429	·83	597247	6.15	402753	25
36	565995	5.31	968379	•83	597616	6.15	402384	2.4
37	565314	5.31	968329	•83	597985	6.15	402015	23
38	565632	5.31	968278	•83	: 98354	6.14	401646	22
39	560951	5.30	968228	.84	538722	6.14	401278	21
40	567269	5.30	968178	.84	599091	6.13	400909	20
41	9.567587	5.29	9.968128	.84	9.599459	6-13	10-400541	19
42	567904	5.29	968078	.84	599827	6.13	400173	18
43	568222	5.28	968027	.84	000194	6-12	399806	17
44	568539	5.28	957977	.84	600562	6.12	399438	16
45	568856	5.28	967927	.84	600929	6.11	399071	15
46	564172	5.27	967870	.84	601296	6.11	398704	14
47 48	569488	5.27	967826	.84	601662	6.11	398338	13
	569804	5.26	967775	.84	622029	6.10	397971	12
49 50	570120	5.26	967725	.84	662395	6.10	397605	11
	570435	5.25	967674	.84	602761	6.10	397239	10
51 51	9.570751	5.25	9.967624	.84	9.603127	6.09	10 396873	8
	571066	5.24	967573	.84	603493	6.09	396507	
j3	571380	5.24	967522	•85	603858	6.09	396142	6 5
04 55	5-1695	5.23	967471	•85	604223	6.08	305777	6
55 56	572009	5.23	967421	•85	604588	6.08	395412	5
50	572323	5.23	967370	•85	604953	6.07	395017	43
57 58	572636	5.22	967319	.85	605317	6.07	394683	
59	572950	5.22	967268	+85	605682	6.07	394318	2
60	573263 573575	5.21 5.21	9672:7	·85 ·85	606046 606410	6.06	393954 393590	1
	010010	0.41	1 401100	1.03	000410	0.00	090090	
	Cosine	D.	Sine	D.		D.		M

(68 DEGREES.)

40 (22 DEGREES.) A TABLE OF LOGARITHMIC

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.573575	5.21	9.967166	.85	9.606410	6.06	10.303500	(x
I	573888	5.20	967115	.85	606773	6.06	393227	
2	574200	5.20	967064	.85	607137	6.05	302863	50
3	574512	5.19	067013	•85	607500	6.05	392500	5
4	574824	5.19	966961	.85	607863	6.04	392137	5, 50
456	575136	5.19	966910	·85 ·	608225	6.04	391775	5
6	575447	5.18	o66850	·85	608588	6.04	391412	5.
2	575758	5.18	966808	·85	608950	6.03	301050	5
8	576069	5.17	966756	•86	609312	6.03	390688	5
9	576379	5.17	966705	•86	609674	6.03	390325	5
IÓ	576689	5.16	9 66653	•86	610036	6.02	389964	5
11	9.576999	5.16	9 966602	•86	9.610397	6.02	10.389603	4
12	577309	5.16	966550	•86	610759	6.02	389241	
13	577618	5.15	966499	•86	611120	6.01	388880	4
14	577927	5.15	966447	•86	611480	6.01	388520	14
15	578236	5.14	966395	•86 •86	611841	6.01	388159	4
16	578545	5.14	966344	.86	612201	6.00	387799	4
17 18	578853	5·13 5·13	966292	.86	612561	6.00 6.00	387439	4
	579162	5.13	966240	.86	612921 613281	5.99	387079 386719	4
19 20	579470 579777	5.13	966188 966136	.86	613641	5.99	386359	4
21	9.530085	5.12	9.966085	.87	9.614000	5.98	10-386000	3
22	580392	5.11	966033	.87	614359	5.98	385641	3
23	580699	5.11	965981	.87	614718	5.98	385282	3
24	581005	5.11	965928	.87	615077	5.07	384923	3
25	581312	5.10	965876	.87	615077 615435	5.07	384565	3
26	. 581618	5.10	o65824	.87	615793	2.97	384207	3
27	581924	5.00	G65772	0.87	616151	2.00	383849	3
28	582220	5.00	065720	.87	616509	5.06	383491	3
29	582535	5.09	965668	.87	616867	5.96	383133	3
3ó	582840	5.08	965615	.87	617224	5.95	382776	3
31	9.5831 15	5.08	9-965563	.87	9.617582	5.95	10.382418	2
32	5834.19	5.07	965511	.87	617939 618295	5.95	382061	2
33	583754	5.07	965458	.87	618295	5.94	381705	2
34	584058	5.06	965406	.87	618652	5.94	381348	2
35	584361	5.06	965353	•88	619008	5.94	380992	2
36	584665	5.06	965301	• 98	619364	5.93	380636	2
37 38	584968	5.05	965248	•88	619721	5.03	380279	2
	585272	5.05	965195	•88 •88	620076	5.93	379924	2
39 40	585574 585877	5.04 5.04	965143 965090	•88	620432 620787	5.92 5.92	379568 379213	2
41	9.586179	5.03	9.965037	.88	9.621142	5.92	10.378858	1
42	586482	5.03	964984	.88	621497	5.91	378503	1
43	586783	5.03	964931	.88	621852	5.91	378148	1
44	587085	5.02	964879	.88	622207	5.90	377793	
45	587386	5.02	964826	.88	622561	5.90	377439	1
46	587688	5.01	964773	.88	622915	5.90	377085	1
	587989	5.01	964719	.88	623269	5.89	376731	1
47 48	588289	5.01	- 964666	.89	623623	5.89	376377	1
40	588590	5.00	964613	.89	623976	5.89	376024	1
50	588890	5.00	964560	•89	624330	5.88	375670	I
51	9.589190	4.99	9.964507	•89	9.624683	5.88	10.375317	
52	589489	4.99	964454	.89	625036	5.88	37/1964	
53	589789	4.99	964400	.89	625388	5.87	374612	
54	590038	4.98	964347	.89	625741	5.87	374259	
55	590387	4.98	964294	.89	626093	5.87	373907	
56	590686	4.97	964240	.89	626445	5.86	373555	
57 58	590984	4.97	964187	1.89	626797	5.86 5.86	373203 372851	
	591282	4.97	964133	1 .89	627149	5.85	372199	
59 60	591580 591878	4.96	96408c 964026	·89 ·89	627501 · 627852	5.85	372148	
					······································			

(67 DEGREES.)

SINES AND TANGENTS. (23 DEGREES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.591878	4.96	9.964026	.89	9.627852	5.85	10.372148	60
1	592176	4.95	963972	.89	628203	5.85	371797	59
2	592473	4.95	963919	.89	628554	5 .85	371446	58
3	592770	4.95	g63865	.90	628905	5.84	371095	57 56
4	593067	4.94	963811	.90	629255	5.84	370745	56
5	593363	4.94	963757	.90	629606	5.83	370394	55
6	593659	4.93	963704	.90	629956	5.83	3700.44	54
8	593955	4.93	963650	.90	630306	5.83	369694	5.3
8	594251	4.93	963596	.90	630656	5.83	369344	52
9	594547	4.92	963542	.90	631005	5.82	368995	51
10	594842	4.92	963488	•90	631355	5.82	368645	50
11	9.595137	4.91	9.963434	.90	9.631704	5.82	10.368296	49
12	595432	4.91	963379	.90	632053	5.81	367947	48
13	595727	4.91	963325	.90	632401	5.81	367599	47
14	595021	4.90	963271	.90	632750	5.81	367250	46
15	596315	4.90	963217	•90	633098	5.80	366902	45
:6	596509	4.89	963163	.90	633447	5.80	366553	44
17	596903	4.89	963108	.91	633795	5.80	366205	43
	597196	4.89	963054	•91	634143	5.79	365857	42
19 20	597490	4.88	962999	•91	634490 634838	5.79	365510 365162	41
	597783	4.88	9629.45	•91		5.79	1	
21	9.598075	4.87	9.962890	•91	9.635185	5.78	10.364815	39
22	598368	4.87	962836	•91	635532	5.78	364468	38
23	598660	4.87	962781	•91	635879	5.78	364121	37
24	598952	4.86	962727	+91	636226	5.77	363774	36
25	599244	4.86	962672	•91	636572	5.77	363428	35
26	599536	4.85	962617	•91	636912	5.77	363081	34
27 28	599827	4.85	962562	•91	0.37200	5.77	362735	33
	600118	4.85	962508	•91	637611	5.76	362389	32
29	600409	4.84	962453	•91	637956	5.76	362044	31
30	600700	4.84	y62 398	•92	638302	5.76	361698	30
31	9.600990	4.84	9.962343	•92	9.638647	5.75	10.361353	29 28
32	601280	4.83	962288	.92	638992	5.75	361008	
33	601570	4.83	962233	.92	639337	5.75	360663	27
34	601860	4.82	962178	.92	639682	5.74	360318	26
35	602150	4.82	962123	.92	640027	5.74	359973	25
36	602439	4.82	962067	•92	640371	5.74	359629	24
37 38	602728	4.81	962012	.92	640716	5.73	359284	23
38	603017	4.81	961957	•92	641060	5.73	358940	22
39	603305	4.81	961902	.92	641404	5.73	358596	21 20
	603594	4.80	961846	•92	641747	5.72	358253	1
14	9.603882	4.80	9.961791	•92	9-642091	5.72	10.357909	10
42	604170	4.79	961735	.92	642434	5.72	357566	
43	604457	4.79	961680	•92	642777	5.72	357223	17
44	604745	4.79	961624	.93	643120	5.71	356880	10
45	605032	4.78	961369	•93	643463	5.71	356537	15
46	605319	4.78	961513	.93	643806	5.71	356194	14
47	605606	4.78	961458	.93	644148	5.70	355852	13
48	605892	4.77	961402	•93	644490	5.70	355510	12
49 50	606179	4.77	961346	•93	644832	5.70	355168	11
	606465	4.76	961290	•93	645174	,		
51 52	G 606751	4.76	9.961235	.93	9.645516	5.69	10-354484	8
53	607036	4.76	961179	.93	645857		354143	
54	607322	4.75	961123	•93	646199	5.69	353801	1 2
55	607607	4.75	961067	.93	646540	5.68	353460	6
55 56	607892 608177	4.74	961011	.93	646881	5.68	353119	
50	008177	4.74	960955	•93	647222	5.68	352778	43
57 58	608461	4.74	960899	•93	647562	5.67	352438	
59	608745	4.73	960843	.94	647903	5.67	352097	
99 60	609029	4.73	960786 960730	94	648243 648583	5.67	351757 351417	
	1	- 10	400100	1 74	0.40000		1	1
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M

(66 DEGREES.)

42

(24 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	T
0	9.609313	4.73	9.960730	•94	9.648583	5.60	10.351417	60
1	609597	4.72	960674	.94	648923	5.66	351077	50
2	609880	4.72	960618	.94	649263	5.66	350737	50 58
3	610164	4.72	950561	.94	640502	5.66	350308	57
4 5	610447	4.71	060505	.94	649942	5.65	350058	57
5	610729	4.71	950448	.94	650281	5.65	349719	55
6	611012	4.70	960392	.94	650620	5.65	349380	54
7	611294	4.70	960335	.94	650959	5.64	349041	53
Į	611576	4.70	950279	.94	651297	5.64	348703	57
9	611858	4.69	960222	.94	651636	5.64	348364	51
10	612140	4.60	960165	.94	651974	5.63	348026	50
1							1	1
11	9.612421	4.69	9.960109	.95	9.652312	5.63	10.347688	49 48
12	612702	4.68	960052	.95	652650	5.63	347350	
13	612983	4.68	959995	.95	652988	5.63	347012	47
14	613264	4.67	959938	.95	653326	5.62	346674	46
15	613545	4.67	959882	.95	653663	5.62	346337	45
16	613825	4.67	959825	•95	654000	5.62	346000	44
17	614105	4.65	959768	.95	654337	5.61	345663	43
18	614385	4.66	959711	1 .02	654674	5.61	345326	42
19	614665	4.66	959654	• 95	655011	5.61	344989	41
20	614944	4.65	959596	.95	655348	5.61	344652	40
21	9-615223	4.65	9.959539	.95	0.655684	5.60	10.344316	30
22	615502	4.65	9 59482	.95	656020	5.60	343980	30 38
23	615731	4.04	959402	.95	656356	5.60	343644	3.
24	616660	4.64	959368	.95	656692	5.59	343044	3- 31
25	615338	4.64	959310	.96	657028	5.50		32
26	616616	4.63	959253	.96	657364	5.59	342972 342636	2.
	616894	4.63			657602	5.59		34 33
27 28	617172	4.62	959195	•96	657699 658034	5.58	342301	32
17	617450	4.62	959138	•96	658369	5.58	341966	31
30	617727	4.62	959081 959023	•96 •96	658704	5.58	341631 341296	30
31								
32	9.618004	4.61	9 258965	•96	9.659039	5.58	10.340901	20 28
33	618281 618558	4.61	958908	•96	659373	5.57	340627	
34	618834	4.61	958850	•96	659708	5.57	340202	27
35		4.60	958792	•96	660042	5.57	339958	20
36	619110	4.60	958734	•96	660376	5.57	339624	25
	619386	4.60	958677	•96	660710	5.56	339290	24 23
37 38	619662	4.59	958619	•96	661043	5.36	338957	
39	619938	4.59	958561	•96	661377		338623	22
40	620213 620488	4.59	958503	•97	661710	5.55	338290	21
		4.58	958445	•97	662043		337957	20
41	9.620763	4.58	9.958387	•97	9.662375	5.55	10.337624	19 18
42	621038	4.57	958329	.97	662709	5.54	337291	
43	621313	4.57	958271	•97	663042	5.54	336958	17
64	621587	4.57	958213	•97	663375	5.54	336625	16
65	621861	4.56	958154	.97	663 7 07	5.54	336293	15
-46	622135	4.56	958096	.97	664039	5.53	335961	14
47 42	622409	4.56	958038	•97	664371	5.53	335629	13
42	622682	4.55	957979	·97	664703	5.53	335297	12
49 50	622956	4.55	957921	.97	665035	5.53	334965	11
20	623229	4.55	957863	•97	665366	5.52	334634	10
51	9.623502	4.54	9.957804	.97	9.665697	5.52	10.334303	9
22	623774	4.54	957746	.98	666029	5.52	333971	8
53	624047	4.54	957687	. 98	666360	5.51	333640	
54	624319	4.53	957628	.08	666691	5.51	333300	2
55	624591	4.53	057570	.98	667021	5.51	332979	5
56	624863	4.53	957511	.98	667352	5.51	332648	43
57 58	625135	4.52	957452	. 98	667682	5.50	332318	3
58	625406	4-52	957393	.98	668013	5.50	331987	2
59	625677	4.52	95-335 J	.98	668343	5.50	331657	1
60	625948	4.51	957276	· 98	668672	5.50	331328	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.
	Juoune 1	D+ 1	MILLO I	D. 1	Jorang.	<i>N</i> .	T comp.	

(65 DEGREES.)

SINES AND TANGENTS. (25 DEGREES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.625948 626219	4.51	9-957275	·98 ·98	9.668673	5.50 5.49	10.331327 330998	60 50
2	626490	4.51	957158	·98	6693.32	5.49	330668	50 58
3	626760	4.50	957099	•98	659561	5.49	330339	57
	627030	4.50	957040	·98	669991	5.48	330000	56
456	627300	4.50	956981	•98	670320	5.48	329680	55
	627570	4.49	956921	•99	670649	5.48	329351	54
3	627840	4.49	956862	•99	670977	5.48	329023	53
	628109	4.49	956803	•99	671306	5.47	328694	52
3	628378	4.48	956744	•99	671634	5.47	328366	51
10	628647	4.48	956684	•99	671963	5 47	328037	50
11	3 528916	4.47	9-956625	•99	9.672291	5.47	10.327709	49
12	623185	4.47	956566	•99	672619	5.46	327381	48
13	019452	4.47	956506	•99	672917	5.46	327053	47
IA	629;21	4.46	956447	•99	673274	5.46	326726	46
15	629989	4.46	956387	•99	673602	5.46	326398	45
16	63025-	4.46	956327	•99	673929	5.45	326071	44
17 18	630524	4 · 46 4 · 45	956268 956208	•99 1•00	674257	$5.45 \\ 5.45$	325743	43
10	630792 631050	4.45	9.0205 956148	1.00	674584	5.43	325416	42
20	631326	4.45	930140 956089	1.00	674910 675237	5.44	325090 324763	41
21	9.531593	4.44	9.956029	1.00	9.675564	5.44	10.324436	39
22 23	631859	4.44	955969	I • 00 I • 00	675890	5.44	324110	38
	632125 632302	4.44	955909	1.00	676216	5.43	323784	37
24 25	632658	4 · 43 4 · 43	955849	1.00	676543	5.43	323457	36
26	632923	4.43	955789 955729	1.00	676869	$5.43 \\ 5.43$	323131 322806	35
27	633180	4.42	955669	1.00	677194 677520	5.43	322480	34
28	633454	4.42	955609	1.00	677846	5.42	322154	32
29	633719	4.42	955548	1.00	678171	5.42	321820	31
30	633984	4.41	955488	1.00	678496	5-42	321504	30
31	9.634240	4-41	9.955428	1.01	9.678821	5-41	10.321179	29
32	634514	4.40	955368	1.01	679146	5.41	320854	28
33	634778	4.40	055307	1.01	679471	5.41	320520	27
34	635042	4.40	955247	1.01	679795	5.41	320205	26
35	635306	4.39	955186	1.01	680120	5.40	319880	25
36	635570	4.39	955126	101	680444	5.40	319556	24
37 38	635834	4.39	955065	1001	680768	5.40	310232	23
	636097	4.38	955005	1.01	681092	5.40	318908	22
39	636360 636623	4·38 4·38	954944	1.01	681416	5.39	318584	21
40			954883	1.01	681740	5.39	318260	20
41	9.636886	4.37	9.954823	1.01	9.682063	5.39	10.317937	18
42	637148	4.37	954762	1.01	682387	5.39	317613	
43	637411	4.37	954701	1.01	682710	5.38	317290	17
44	637673	4.37 4.36	954640	1.01	683033	5.38	316967	16
45 46	637935 638197	4.30	954579	1.01	683356	5.38	316644	15
47	638458	4.30	954518 954457	I • 02 I • 02	683679 684001	5.38	316321	14
48	638720	4.35	954396	1.02	684324	$5 \cdot 37$ 5 \cdot 37	315676	13
49	638981	4.35	054335	1.02	684646	5.37	315354	
50	639242	4.35	954274	1.02	684968	5.37	315032	10
51	9.630503	4.34	9.954213	1.02	c.685200	5.36	10.314710	
52	639764	4.34	954152	1.02	685612	5.36	314388	8
53	640024	4.34	954090	1.02	685934	5.36	314066	
54	640284	4.33	954029	1.02	686255	5.36	313745	7
55	640544	4.33	953968	1.02	686577	5.35	313423	5
56	640804	4.33	953006	1.02	686898	5.35	313102	
57 58	641064	£.32	953845	1.02	687219	5.35	312781	43
	641324	1.32	953783	1.02	687540	5.35	312460	2
59	641584	1.32	953722	1.03	687861	5.34	312-39	1
60	641842	1.31	953660	1.03	688182	5.34	311818	0
		D.	Sine	1				1

(64 DEGREES.)

44 (26 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D,	Cotang.	
0	9.641842	4.31	9.953660	1.03	9.688182	5.34	10-311818	60
1	642101	4.31	953599	1.03	688502	5.34	311498	59 58
2	642360	4.31	953537	1.03	688823	5.34	311177	58
3	642618	4.30	953475	1.03	689143	5.33	310837	57
456	642877	4.30	953413	1.03	689.463	5.33	310537	50
5	643135	4.30	953352	1.03	689783	5.33	310217	55
	643393	4.30	953290	1.03	690103	5.33	309897	54
3	64365c	4.29	953228	1.03	690423	5.33	309577	53
	643908	4.29	953166	1.03	690742	5.32	309258	52
9	644165	4.29	953104	1.03	691062	5.32	308938	51
10	644423	4.28	953042	1.03	691381	5.32	308619	50
H	9.644680	4.28	9.952980	1.04	9.691700	5.31	10.308300	49 48
12	644936	4.28	952918	1.04	692019	5.31	307981	48
13	645193	4.27	952855	1.04	692338	5.31	307662	47
14	645450	4.27	952793	1.04	692656	5.31	307344	46
15	645706	4.27	952731	1.04	692975	5.31	307025	45
16	645962	4.26	052669	1.04	693293	5.30	306707	44
17	646218	4.26	952606	1.04	693612	5.30	306388	43
18	646474	4.26	952544	1.04	693930	5.30	306070	42
19	646729	4.25	952481	1.04	694248	5.30	305752	41
20	646984	4.25	952419	1.04	694566	5.29	305434	40
21	9.647240	4.25	9.952356	1.04	9.604883	5.29	10.305117	30
22	647494	4.24	952294	1.04	695201	5.20	304799	39
23	647749	4.24	952231	1.04	695518	5.29	304482	37
24	648004	4.24	952168	1.05	695836	5.29	304164	36
25	648258	4.24	952106	1.05	696153	5.28	303847	35
26	648512	4.23	952043	1.05	696470	5.28	303530	34
	648766	4.23	951980	1.05	696787	5.28	303213	33
27 28	649020	4.23	951917	1.05	697103	5.28	302897	32
29	649274	4.23	951854	1.05	697420	5.27	302580	31
36	649527	4.22	951791	1.05	697736	5.27	302264	30
31	9.649781	4.22	9.951728	1.05	9.608053	5.27	10.301047	29
32	650034	4.22	951665	1.05	698369	5.27	301631	28
33	650287	4.21	951602	1.05	698685	5.26	301315	
34	650539		951539	1.05	699001	5.26	300999	27
35	650792	4.21	951476	1.05	699316	5.26	300084	25
36			951412	1.05	699632	5.26	300.358	24
	651044 651297	4.20	951349	1.06		5.261	300053	23
37 38		4.20	951286	1.06	699947	5.25	200737	22
30	651549 651800	4.20		1.06	700263	5.25	299.422	21
39 40	652052	4.19	951222	1.00	700578 70,803	5.25	299327	20
41	9.652304	4.19	9.951096	1.06	9.701208	5.24	10.298792	19
42	652555	4.18	951032	1.06	701523	5.24	298477	
43	652806	4.18	950968	1.06	701837	5.24	208163	17
44	653057	4.18	\$50005	1.06	702152	5.24	297848	
45	653308	4.18	950841	1.06	702466	5.24	297534	15
46	653558	4.17	950778	1.06	702780	5.23	297220	14
47	653808	4.17	950714	1.06	703095	5.23	206005	13
	654059	4.17 4.16	950650	1.06	703402	5.23	2,0091	12
49	654309	4.16	950586	1.06	703723	5.23	296277	11
50	654558	4.16	950522	1.07	704036	5.22	295963	10
51	9.654808	4.16	9.950458	1.07	9.704350	5.22	10.295650	98
52	655058	4.16	950394	1.07	704663	5.22	295337	
53	655307	4.15	950330	1.07	704977	5.22	295023	75543
54	655556	4.15	950266	1.07	705290	5.22	294710	5
55	655805	4.15	250202	1.07	705603	5.21	294397	5
56	656054	4.14	950138	1.07	705016	5.21	294084	4
57	656302	4.14	950074	1.07	706:28	5.21	293772	
57 58	656551	4.14	950010	1.07	706541	5.21	93459	2
50	656799	4.13	949945	1.07	706854	5.21	293146	1
60	657047	4.13	949881	1.07	707166	5.20	292834	
~	1							

(63 DEGREES.)

SINES AND TANGENTS. (27 DEGREES.) 45

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M.	Sine	D.	Cosine	D	Tang.	D.	Cotang.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0								60
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1								59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		657542	4.12	949752	1.07	707790			58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			4.12						57
	4								56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				949558					55
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				949494	1.08				54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7								53
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				949364					52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9								51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	60901-	4.10	949235	1.08	1 1			50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						9.710593			49 48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						710004			
				949040					46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						711323			45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						711030			44
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$						712140			43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16								42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						112/00			41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.07			713386			40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4:07	0/8/5/		71/005			38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						71/31/			37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						71/033			35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						715242			34
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			4.05			715551			33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						715860			32
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									31
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								283523	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	9.664648	4.04	2.947863	1.10	9.716785	5.14	10.283215	29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	664891	4.04		1.10		5.13	282907	28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.03		1.10	717401		282399	27
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34			947665	1.10	717709			26
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.03		1.10				25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.02		1.10	718325			24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37			947467	1.10	718633			23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	38			947401	1.10	718940			22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				947335	1.10	719248			21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40		4.01	947269	1.10	719555	5.12	280445	20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	9.667065			1.10				19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		667305		947136		720169			18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				947070		720476			17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44			947004	1	720783			16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				946937					15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4.00						14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47		3.99						13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.00			722002		277991	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49		3.99						11 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1		1	-		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.98			9.722927			1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.08	0/6/0/					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.07						165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55		3.07						5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3 07				5.00	275546	1 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3.07				5.08	2752.41	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58		3.06						2
<u>60 671609 3.96 945935 1.12 725674 5.08 274326</u>	50		3.06						
	60		3.96						G
Cosine D. Sine D. Cotang. D. Tang.		Casing	D.	Sine	D.	Cotang.	D.	Tang.	M

(62 DEGREES.)

48

(28 DEGREES.) A TABLE OF LOGARIFHMIO

М. Sine D. Cosine D. Tang. D. Cotang. 9.671600 3.96 9.945935 9.725674 5.08 60 1.12 10.274326 0 945868 s 671847 3.65 1.12 725979 5.08 274021 59 58 045800 5.07 3.95 2 672084 1.12 273716 945733 945666 3 726588 5.07 3.65 57 672321 1.12 273412 5.07 672558 3.65 1.12 726802 273108 56 4 5 3.94 945598 5.07 5! 672795 1.12 727197 272803 645531 727501 5.07 6 673032 3.94 1.12 272499 272195 54 945464 727805 53 673268 1.13 5.06 3 3.94 945306 673505 3.94 728100 5.06 271891 52 1.13 045328 5.06 673741 51 3.93 1.13 728412 271588 9 045261 5.06 50 1.13 728716 ١Ò 673977 3.93 271284 5.06 9.674213 3.93 9.945193 1.13 9.720020 10.270:80 40 1.5 945125 5.05 3.92 270677 12 674448 1.13 729323 48 5.05 674684 3.92 945058 13 1.13 720626 270374 47 46 3.92 944990 5.05 1.13 729929 14 674919 270071 675155 3.92 5.05 269767 45 15 944922 944854 1.13 730233 5.05 675390 3 91 1.13 730535 269465 44 16 43 5.04 675624 944786 1-13 730838 269162 17 3.91 5 04 675850 3.91 944718 268850 1.13 731141 42 5.04 676004 3.91 944650 268556 1.13 731444 41 19 676328 944582 5.04 731746 268254 20 3.90 1.14 40 9.944514 5.04 0.676562 3.90 3.732048 10.267052 30 21 1.14 5.03 38 3.90 944446 267649 22 676796 1.14 732351 944377 5.03 37 36 3.90 732653 267347 23 677030 1.14 944300 732955 5.03 267045 24 677264 1.14 3.89 944241 5.03 266743 35 25 677498 1.14 733257 3.89 26 677731 944172 733558 5.03 266442 34 1.14 3.89 733860 5.02 33 27 677964 678197 944104 1.14 266140 944036 28 5.02 265838 32 3.88 734162 1.14 31 678430 5.02 265537 3.88 643967 734463 29 1.14 5.02 265236 30 3.88 943899 30 678663 1.14 734764 3.87 9-943830 9.735066 31 9.678805 1.14 5.02 10.264034 29 28 3.87 943761 5.02 32 679128 1.14 735367 264633 3.87 943693 5.01 33 735668 26.4332 27 679360 1.15 3.87 943624 34 35 679592 1.15 735969 5.01 26 264031 943555 5.01 25 679824 680055 3.86 1-15 736260 263731 5.01 36 3.86 943486 1.15 736570 263430 24 736871 5.01 23 37 39 680288 3.86 943417 1.15 263120 5.00 6S0519 3.85 943349 1.15 737171 262820 22 39 1.15 5.00 262520 680750 3.85 043270 737471 21 5.00 680082 3.85 1.15 20 40 943210 737771 262229 9-681213 9.738071 3.85 9.943141 1.15 5.00 10.261929 19 18 41 943072 738371 5.00 42 681443 3-84 1.15 261629 3.84 738671 17 681674 1.15 261320 43 943003 4.99 3.84 681905 942934 942864 1.15 738971 4.99 261020 44 1.15 739271 15 45 682135 3.84 4.99 260720 46 682365 3.83 942795 1.16 730570 4.99 260.430 14 682595 3.83 739870 260130 13 47 942726 1.16 4.99 3.83 942556 740160 4.99 259831 2 682825 1.16 942587 250532 683055 3.83 740468 11 49 50 1.16 4.98 683284 3.82 ¢42517 259233 10 1.16 740767 5 9-683514 3.82 9.942448 1.16 9.741066 4.98 12.258034 8 258635 52 741365 4.08 683743 3.82 942378 1.16 942308 4.98 53 683972 3.82 258336 7 1.16 741664 54 55 684201 3.81 942230 258038 1.16 4.97 741962 5 742261 257739 684430 3.81 942160 1.16 4.97 56 257441 43 684658 3.81 942000 1.16 742550 4.97 57 58 742858 257142 684887 3.80 942020 1.16 4.97 743156 256844 2 685115 3.80 941959 4.97 1.16 941889 256536 1 59 685343 743454 3.80 1.17 4.97 60 685571 941819 743752 256248 o 3.80 4.96 1.17 Tang. ML D Sine D. Cosine D. Cotang.

(61 DEGREES.)

SINES AND TANGENTS. (29 DEGREES.) 47

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0 1 2 3 4 5 6 7 6 9 10	9-685571 685799 686027 686254 686482 686482 686482 686482 687163 687163 687389 687616 687843	3.80 3.75 3.79 3.79 3.79 3.78 3.78 3.78 3.78 3.78 3.78 3.78 3.78	9.941819 941749 941679 941679 941639 941398 941398 941398 941398 941258 941187 941117	1 · 17 1 · 17	9-743752 744050 744348 744645 744943 745240 745538 745538 745835 746132 746429 746726	$\begin{array}{c} 4 \cdot 96 \\ 4 \cdot 95 \end{array}$	10 · 256248 255650 255652 255657 255657 255657 254760 254462 254462 254465 253568 253571 253274	60 59 58 57 55 55 55 55 54 53 52 51 50
11 12 13 14 15 16 17 18 19 20	9.688069 688295 688521 688747 68972 689193 689423 689423 689423 689423 689423 689423 689423 689423 689648	$\begin{array}{c} 3.77\\ 3.77\\ 3.76\\ 3.76\\ 3.76\\ 3.76\\ 3.76\\ 3.75\\ 3.75\\ 3.75\\ 3.75\\ 3.75\\ 3.75\\ 3.75\\ 3.75\end{array}$	9.941046 940975 940905 940834 940763 940693 940622 940551 940480 940480 94049	I • 18 I • 19 I • 18 I • 18 I • 18	9.747023 747319 747616 747913 748209 748505 748505 748801 749097 749393 749689	4.94 4.94 4.94 4.94 4.93 4.93 4.93 4.93	10-252977 252681 252384 252087 251791 251495 251199 250903 250607 250607	49 48 47 46 45 44 43 42 41 40
21 22 23 24 25 26 27 28 29 30	9.690323 690548 690 7 72 690996 691420 691444 691668 691892 692115 692339	3.74 3.74 3.74 3.73 3.73 3.73 3.73 3.73	9.940338 9.5267 940196 940125 940054 939982 939911 939840 939768 939697	1 · 18 1 · 18 1 · 19 1 · 19	9.749985 750281 750576 750872 751167 751462 751757 752052 752347 752642	4.93 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.91 4.91	10 · 250015 249719 249424 249128 248333 248538 248243 247948 247653 247653 247358	30 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	9.692562 692785 693008 693231 693453 693676 693898 694120 694342 694564	3.72 3.71 3.71 3.71 3.71 3.70 3.70 3.70 3.70 3.70 3.69	9.939625 939554 939482 939410 93939 939267 939195 939123 939052 938980	I · 19 I · 19 I · 19 I · 19 I · 20 I · 20 I · 20 I · 20 I · 20 I · 20 I · 20	9.752937 753231 753526 753820 754115 75400 754703 754997 75591 755291 75585	4.91 4.91 4.90 4.90 4.90 4.90 4.90 4.90 4.90 4.90	10.247063 246769 246474 246180 245885 245591 245297 245003 244709 244415	29 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 45 46 47 48 45	9-694786 695007 695229 695450 695671 695892 696113 696334 696554 696775	3.69 3.69 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.67 3.67	9.938909 938836 938763 938691 938691 938547 938473 938402 93830 938258	1 · 20 1 · 21 1 · 21 1 · 21	9.755878 756172 756465 756759 757052 757345 757638 757931 757931 758224 758217	4.89 4.89 4.89 4.89 4.83 4.83 4.88 4.88 4.88 4.88	10 • 244122 243828 243535 243241 242948 242655 242362 242362 242069 241776 241433	19 18 17 16 15 14 13 12 11
51 52 53 54 55 56 57 58 79 60	9-696995 697215 697435 697654 537874 695094 698313 698532 698751 698751	3.67 3.66 3.66 3.66 3.65 3.65 3.65 3.65 3.65	9-938185 938113 938040 937667 937895 937822 937749 937676 937604 937604 937531	I • 21 I • 21 J • 21	9 • 758810 759102 759305 759687 759979 760272 760564 760856 761148	4.88 4.87 4.87 4.87 4.87 4.87 4.87 4.87	10 • 241 190 240898 240605 240313 240221 239728 239436 239144 238352	9 8 7 6 5 4 3 2 1 0
00	Cosine	3.64 D.	937531 Sine	1 · 21 D.	761439 Cotang.	$\frac{4 \cdot 86}{D.}$	238561 Tang.	о М.

28

(60 DEGREES.)

48 (30 DEGREES.) A TABLE OF LOGARITHMIC

	M.	Sme	D.	Cosine	D.	Tang.	D.	Cotang.	
	0 1 2 3 4 5 6	9.658970 599189 699407 699626 699844 700062 700280	3.64 3.64 3.64 3.63 3.63 3.63 3.63 3.63	9.937531 937458 937385 937312 937238 937165 937092	I • 2I I • 22 I • 22	9.761439 761731 762023 762314 762606 762897 763188	4.86 4.86 4.86 4.86 4.85 4.85 4.85 4.85	10 · 238561 238269 237977 23,686 237394 237102 236812 236812	50 50 58 57 56 55 54
and a summaries and an other of	7 8 9 10	700498 700716 700933 701151 9.701368	3.63 3.63 3.62 3.62 3.62	937019 936946 936872 936799 9-936725	$ \begin{array}{c} 1 \cdot 22 \\ \end{array} $	763479 763770 764061 764352	$4 \cdot 85$ $4 \cdot 85$ $4 \cdot 85$ $4 \cdot 84$ $4 \cdot 84$	236521 236230 235930 235648	53 52 51 50
	12 13 14 15 16 17 18 19 20	701585 701802 702019 702235 702452 702669 702835 703101 703317	3.62 3.61 3.61 3.61 3.61 3.61 3.60 3.60 3.60 3.60	936652 936578 936505 936431 936357 936284 936210 936136 936662	1 • 23 1 • 23	9 764643 764933 765224 765514 765805 766095 766385 766075 766965 766965 767255	4.84 4.84 4.84 4.84 4.83 4.83 4.83 4.83	235067 234776 234486 234195 233905 233615 233325 233035 232745	49 48 47 46 45 44 43 42 41 40
	21 22 23 24 25 26 27 28 29 30	9 · 703533 703749 703964 704179 704395 704610 704825 705040 705254 705469	3.59 3.59 3.59 3.59 3.59 3.59 3.58 3.58 3.58 3.58 3.58 3.58 3.58	9.935988 935914 935840 935766 935692 935618 935543 935469 935395 935320	I • 23 I • 23 I • 23 I • 24 I • 24	9.767545 767834 768124 768413 768703 768992 769281 769570 769860 770148	4.83 4.83 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82	10-232455 232166 231876 231587 231297 231008 230719 230430 230140 229852	39 38 37 36 35 34 33 32 31 30
	31 32 33 34 35 36 37 38 39 40	9 · 705683 705898 706112 706326 706539 706753 706967 707180 707393 707606	3.57 3.57 3.57 3.56 3.56 3.56 3.56 3.55 3.55 3.55 3.55	9.935246 935171 935097 935022 934948 934873 934798 934723 934649 934574	I • 24 I • 25 I • 25 I • 25 I • 25 I • 25	9 770437 770726 771015 771303 771502 771880 772168 772168 772457 772745 773033	4-81 4-81 4-81 4-81 4-80 4-80 4-80 4-80 4-80	10.229563 229274 228985 228697 228408 228120 227832 227543 22755 226967	20 28 27 26 25 24 23 22 21 20
	41 42 43 44 45 46 47 48 49 50	9.707819 708032 708245 708458 708670 708882 709094 709094 709306 709518 709730	3.55 3.54 3.54 3.54 3.54 3.53 3.53 3.53	9·934499 934424 934349 934274 934199 934123 934048 933973 933898 933822	I • 25 I • 26 I • 26	9.773321 773608 773896 774184 77471 774759 775046 775333 775621 775908	4.80 4.79 4.79 4.79 4.79 4.79 4.79 4.79 4.78 4.78	10.226679 226392 226104 225816 225529 225241 224954 224954 224667 224379 224092	10 18 17 16 15 14 13 12 11 10
	51 52 53 54 55 56 57 58 59	9 700741 710153 710364 710575 710786 710997 711208 711419 711419 711629	3.52 3.52 3.52 3.52 3.51 3.51 3.51 3.51 3.51	9.933747 933671 933596 933520 933445 933269 933293 933217 933141	I · 26 I · 26	9-776195 776482 776769 777055 777 3 42 777628 777915 7778201 778201 778487	4.78 4.78 4.78 4.78 4.78 4.77 4.77 4.77	10.223805 223518 223231 222945 222658 222372 222085 221799 221512	98 765 4 3 2 T
	60	711839	3.50	933066	1 • 26	778 487	4.77	221226	0
		Cosing	D.	Sine	D.	Cetang.	D.	Tang.	M.

(59 DEGREES.)

SINES AND TANGENTS. (31 DEGREES.) 49

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.711839	3.50	9.933066	1 · 26	9.778774	4.77	10·221226	60
1	712050	3.50	932990	1 · 27	779060	4.77	220940	59
2	712260	3.50	932914	1 · 27	779346	4.76	220654	58
3 4 5 6	712469 712679 712889	3.49	932838 932762 932685	1 · 27 1 · 27 1 · 27	779632 779918 780203	4.76 4.76	220368 220082	57 56 55
078	713098 713368	3·49 3·49 3·49	932609	1 • 27	780489 780775	4.76 4.76 4.76	219797 219511 219225	54 53
8	713517	3 · 48	032457	1 · 27	781060	4·76	218940	52
9	713726	3 · 48	932380	1 · 27	781346	4·75	218654	51
10	713935	3 · 48	932304	1 · 27	781631	4·75	218369	50
11	9·714144	3.48	9.932228	1 · 27	9·781916	4.75	10-218084	49
12	714352	3.47	932151	1 · 27	782201	4.75	217799	48
13	714561	3.47	932075	1 · 28	782486	4.75	217514	47
14	714769	3 · 47	931998	1 · 28	782771	4·75	217229	46
15	714978	3 · 47	931921	1 · 28	783056	4·75	216944	45
16	715186	3 · 47	931845	1 · 28	783341	4·75	216659	44
17	715394	3 · 46	931768	1 · 28	783626	4• 7 4	216374	43
18	715602	3 · 46	931691	1 · 28	783910	4•74	216090	42
19	715809	3 · 46	931614	1 · 28	784195	4•74	215805	41
20	716017	3·46	931537	1 · 28	784479	4·74	215521	40
21	9.716224	3·45	91931460	1 · 28	9·784764	4·74	10+215236	30
22	716432	3·45	931383	1 · 28	785048	4·74	214052	38
23 24 25	716639 716846 717053	3 · 45 3 · 45 3 · 45 3 · 45	931306 931229 931152	1 · 28 1 · 29 1 · 29	785332 785616 785000	4·73 4·73 4·73	214668 214384 214100	37 36 35
26	7:7259	$3 \cdot 44 \\ 3 \cdot 44 \\ 3 \cdot 44$	9.31075	1 • 29	786184	4.73	213816	34
27	7:7466		930998	1 • 29	786468	4.73	213532	33
28	717673		930921	1 • 29	786752	4.73	213248	32
29	717879	$3 \cdot 44 \\ 3 \cdot 43$	930843	1 • 29	787036	4·73	212964	31
30	718085		930766	1 • 29	787319	4·72	212681	30
31	9·718291	$3 \cdot 43 \\ 3 \cdot 43 \\ 3 \cdot 43 \\ 3 \cdot 43$	9+930688	1 · 29	9·787603	4·72	10-212397	29
32	718497		930611	1 · 29	787886	4·72	212114	28
33	718703		930533	1 · 29	788170	4·72	211830	27
34	718909	3 · 43	930456	1 · 29	788453	4·72	211547	26
35	719114	3 · 42	930378	1 · 29	788736	4·72	211264	25
36	719320	3 · 42	930300	1 · 30	789019	4·72	210991	24
37	719525	3.42	930223	1.30	789302	4.71	210698	23
38	719730	3.42	930145	1.30	789585	4.71	210415	22
39	719935	3.41	930067	1.30	789868	4.71	210132	21
40	720140	3.41	9299 ⁸ 9	1.30	790151	4 • 7 1	209849	20
41	9.720345	3.41	9•929911	1.30	9•790433	4 • 7 1	10-209567	10
42	720549	3.41	929833	1.30	790716	4 • 7 1	209284	19
43	720754	3.40	929755	1.30	799999	4.71	209001	17
44	720958	3.40	929677	1.30	791281	4.71	208719	16
45	721162	3.40	929599	1.30	791563	4.70	208437	15
46	721366	3.40	929521	1.30	791846	4·70	208154	14
47	721570	3.40	929442	1.30	792128	4·70	207872	13
48	721774	3.30	929364	1.31	792410	4·70	207592	12
49	721978	3.39	929286	1.31	792692	4·70	207308	11
50	722181	3.39	929207		792974	4·70	207026	10
51	9·722385	3.39	9.929129	1.31	9·793256	4.70	10 206744	8
52	722588	3.39	929050	1.31	793538	4.69	206462	
53	722791	3.38	928972	1.31	793819	4.69	206181	
54	722994	3.38	928893	1.31	794101	4.69	205899	5
55	723197	3.38	928815	1.31	794383	4.69	205617	4
56	723400	3.38	928736	1.31	794664	4.69	205336	3
57 58 59	723603 723805 724007	$ \begin{array}{c c} 3.37 \\ 3.37 \\ 3.37 \\ 3.37 \end{array} $	928657 928578 928499	1.31 1.31 1.31	794945 795227 795508	4.69 4.69 4.68	205055 204773 204492	2 1
60	724210 Cosine	$\frac{3 \cdot 37}{D.}$	928420 Sine	$\frac{1\cdot 31}{D.}$	795789 Cotang.	4.68 D.	204211 Tang.	o M.

(58 DEGREES.)

50 (32 DEGREES.) A TABLE OF LOGARITHMIC

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	7 724210	3.37	9 928420	1.32	9.795789	4.68	10.204211	60
I	724412	3.37	928342	1.32	796070	4.68	203930	59 58
2	724614	3.36	928263	1.32	796351	4.68	203640	58
3	724816	3.36	928183	1.32	796632	4.68	203368	57 56
45	725017	3.36	928104	1.32	796913	4.68	203087	56
2	125219	3.36	928025	1.32	797194	4.68	202806	55
6	725420	3.35	927946	1·32 1·32	797470	4.68	202525	54
7	725622 725823	3.35 3.35	927867	1.32	797755 798036	4.68	202245	53
	726024	3.35	927787 927708	1.32	798316	4.67 4.67	201964	51
9 10	726225	3.35	927629	1.32	798596	4.67	201404	50
11	9.726426	3.34	9.927549	1.32	9.798877	4.67	10.201123	49 48
12 13	726526	3.34	927470	1.33	799157	4.67	200843 200563	
	726827	3.34	927390	1 · 33 1 · 33	799437	4.67 4.67	200303	47
14 15	727027 727228	$3.34 \\ 3.34$	927310 927231	1.33	799717 799997	4.67	200203	46
16	727428	3.33	927151	1.33	800277	4.66	199723	44
	727628	3.33	927071	1.33	800557	4.66	199723	44
17 18	727828	3.33	920001	1.33	800836	4.66		43
19	728027	3.33	926911	1.33	801116	4.66	199164 198884	41
20	728227	3.33	926831	1.33	801396	4.66	198604	40
			·	1.33	9.801675		1	1
21	9 128427 128626	3.32 3.32	9 926751	1 · 33 1 · 33	9.001075 801055	4.66 4.66	10.198325	3G 38
22	728825	3.32	926671	1.33	802234	4.00 4.65	198045 197766	37
23		3.32	926591 926511	1.33	802234	4.65		36
24	729024 729223	3.32	926311	1.34	802702	4.05	197487	35
25	729422	3.31	926351	1.34	803072	4.65	197208 196928	34
27	729621	3.31	926270	1.34	803351	4.65	196649	33
28	129820	3.31	926190	1.34	803630	4.65	196370	32
29	730018	3.30	926110	1.34	803908	4.65	196092	31
30	730216	3.30	926629	1.34	804187	4.65	195813	30
31		3.30		$1 \cdot \frac{3}{34}$ $1 \cdot \frac{3}{4}$	9.804466	4.64	10.105534	1
32	····730415 730613	3.30	9·925949 925868	37	804745	4.04	105255	23
33	730811	3.30	925788	1.34	805023	4.64	193233	27
34	731009	3.20	925707	1.34	e05302	4.64	194698	26
35	731206	3.29	925626	1.34	805580	4.64	194420	25
36	731404	3.29	925545	1.35	805859	4.64	194141	24
37	731602	3.29	925465	1.35	806137	4.64	193863	23
38	731799	3.29	925384	1.35	806415	4.63	193585	22
39	731996	3.28	925303	1.35	806693	4.63	193307	21
40	732193	3.28	925222	1.35	806971	4.63	193029	20
41	9.732390	3.28	9.925141	1.35	9.807249	4.63	10.192751	10
42	732587	3.28	925060	1.35	807527	4.63	192473	-8
43	732784	3.28	924979	1.35	807805	4.63	19:195	
44	732980	3.27	924897	1.35	8o8o83	4.63	19:917	17
45	733177	3.27	924816	1.35	808361	4.63	101639	15
46	733373	3.27	924735	1.36	808638	4.62	191362	14
	733569	3.27	924654	1.36	808916	4.62	191084	13
47 48	733765	3.27	924572	1.36	809193	4.62	190907	12
49	733961	3.26	924491	1.36	809471	4.62	190529	11
50	,734157	3.26	924409	1.36	809748	4.62	1902.5.3	10
51	9.734353	3.20	9.924328	1.36	9.810025	4.62	12.189975	9
5,	734549	3.26	924246	1.36	810302	4.62	189698	8
53	734744	3.25	924164	1.36	810580	4.62	189420	2
5.i	734939 735135	3.25	924083	1.36	810857	4 62	189143	6
55	735135	3.25	92 1001	1.36	811134	4.61	188866	5
56	730330	3-25	923919	:.36	811410	4.61	188590	43
57 58	736525	3.25	923837	1.36	811687	4.61	188313	
	735719	3.24	923755	1.37	811964	4.61	188036	2
59	735914	3.24	9236-3	1.37	812241	4.61	187159	1
60	736109	3.24	923591	1.37	812517	4.61	187483	

(57 DEGREES.)

SINES AND TANGENTS (33 DEGREES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0 1 2 3 4	9.736100 736303 736498 736692 736886	3·24 3·24 3·24 3·23 3·23	9·923591 923509 923427 923345 923263	1 · 37 1 · 37 1 · 37 1 · 37 1 · 37 1 · 37	9.812517 812791 813070 813347 813623	4.61 4.61 4.61 4.60 4.60	10 187482 187206 186930 186653 186377	60 59 59 57 56
4 5 7 8 9	737080 737274 737467 737661 737855	3.23 3.23 3.23 3.22 3.22 3.22	923181 923098 923016 922933 922851	1.37 1.37 1.37 1.37 1.37 1.37	813899 814175 814452 814728 814728 815004	4.60 4.60 4.60 4.60 4.60	186101 185825 185548 185272 184996	55 54 53 52 51
10 11 12 13 14 15 16 17 18	738048 9-738241 738434 738627 739013 739013 739206 739398 739398 739590	3.22 3.22 8.21 3.21 3.21 3.21 3.21 3.21 3.21 3.20	922768 9-922686 922603 -922520 922438 922355 92272 922189 922106	1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38	815279 9-815555 815831 816107 815382 816658 816933 817209 817484	4.60 4.59 4.59 4.59 4.59 4.59 4.59 4.59 4.59	184721 10-184445 184169 183893 183618 183342 183007 182791 182516	50 49 48 47 46 45 44 43 42
19 10 21 22	739783 739975 9·740167 740359	3.20 3.20 3.20 3.20 3.20	922023 921940 9•921857 9 2 1774	1.38 1.38 1.39 1.39	817759 818035 9-818310 818585	4.59 4.58 4.58 4.58	182241 181965 10+181690 181415	41 40 39 38
23 24 25 26 27 28 29 30	740550 740742 740934 741125 741316 741508 741699 741889	3 · 19 3 · 19 3 · 19 3 · 19 3 · 19 3 · 19 3 · 18 3 · 18 3 · 18	921691 921607 921524 921441 921357 921274 921274 921190 921107	1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39	818860 819135 819410 819684 819959 820234 820508 820783	4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.57 4.57	181140 180865 180590 180316 180041 179766 179492 179217	37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	9.742080 742271 742462 742652 742842 743033 743223 743223 743413 743413 743602 743792	3.18 3.18 3.17 3.17 3.17 3.17 3.17 3.16 3.16 3.16 3.16	9-921023 920939 920856 920772 920608 920520 920520 920436 920352 920268	1 · 39 1 · 40 1 · 40	9-821057 821332 821606 821880 822154 822429 822703 822977 823250 823524	4.57 4.57 4.57 4.57 4.57 4.57 4.57 4.56 4.56 4.56	10.178943 178668 178394 178120 177846 177571 177297 177023 176750 176476	20 28 27 26 25 24 23 22 21 20
41 42 43 44 45 46 47 48 49 50	9.743982 744171 744361 744550 744730 744928 745117 745306 745306 745494 745683	3.16 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.14 3.14 3.14	9.920184 920099 920015 919931 919846 919762 919593 919508 919508 919424	I · 40 I · 40 I · 40 I · 41 I · 41	9-823798 824072 824345 824619 82484 3 825166 825436 825713 825986 826259	4.56 4.56 4.56 4.56 4.56 4.55 4.55 4.55	10 · 176202 175028 175655 175381 175107 174834 174561 174287 174014 174014	19 18 17 16 15 14 13 12 11
51 52 53 54 55 56	9·745871 746059 746248 746436 746624 746812	3 · 14 3 · 14 3 · 13 4 · 13 3 · 13 3 · 13 3 · 13	9-919339 919254 919169 919085 919000 918915	1 · 41 1 · 41 1 · 41 1 · 41 1 · 41 1 · 41 1 · 42	9·826532 826805 827078 827351 827624 827897	4.55 4.55 4.55 4.55 4.55 4.55 4.55	10 - 173468 173195 172922 172649 172376 172103	9876543
57 58 59 60	746999 747187 747374 747562 Cosine	$\begin{array}{c} 3.13 \\ 3.12 \\ 3.12 \\ 3.12 \\ \hline 0. \end{array}$	918830 918745 918659 918574 Sine	$ \begin{array}{c} 1 \cdot 42 \\ 1 \cdot 42 \\ 1 \cdot 42 \\ 1 \cdot 42 \\ \hline $	828170 828442 828715 828987 Cotang.	4.54 4.54 4.54 4.54 <u>4.54</u> <u>D.</u>	171830 171558 171285 171285 171013 Tang.	3 2 1 0 M.

(56 DEGREES.)

52 (34 DEGREES.) A TABLE OF LOGARITHMIC

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9 747562	3.12	9.918574	1.42	9.828987	4.54	10 171013	60
1	747749	3.12	918489	1.42	829260	4.54	170740	
2	1 747936	3.12	918404	1.42	829532	4.54	170468	59 58
3	748123	3.11	918318	1.42	829805	4.54	170195	5-
45	748310	3.11	918233	1.42	830077	4.54	169923	1 50
	748497	3.11	918147	1.42	830349	4.53	169651	55
6	748683	3.11	918062	1.42	830621	4.53	169379	54
78	748870	3.11	917976	1.43	830893	4.53	1 169107	53
	749056	3.10	917891	1.43	831165	4.53	168835	52
9	749243	3.10	917805	1.43	831437	4.53	168563	51
10	749429	3.10	917719	1.43	831709	4.53	168291	50
11	9.749615	3.10	9.917634	1.43	9.831981	4.53	10.168019	49
12 13	749801	3.10	917548	1 43	832253 832525	4.53	167747	48
14	749987	3.09	917462	1.43	832796	4.53	167475	47
15	750172	3.09	917376	1.43	833068	4.53 4.52	167204	46
16		3.09	917290	1.43	833339	4.52	166932	45
	750543	3.09	917204	1.43	833611	4.52	166061	44
17 18	750729	3.00	917118	1.44	833882	4.52	166389	43
19	751000	3.08	917032 916946	1.44	834154	4.52	166118	42
20	751284	3.08	916859	1.44	834425	4.52	165575	41
21	9.751469	3.08	9.916773	1.44	9.834696	4.52	10.165304	1
22	75.654	3.08	916687	1.44	834967	4.52	165033	39 38
23	751839	3.08	916600	1.44	835238	4.52	164762	37
24	752023	3.07	916514	1.44	835509	4.52	164491	36
25	752208	3.07	916427	1.44	835780	4.51	164220	35
26	752392	3.07	916341	1.44	836051	4.51	163949	34
27 28	752576	3.07	916254	1.44	836322	4.51	163678	33
28	752760	3.07	916167	1.45	836593	4.51	163407	32
29	752944	3.06	916081	1.45	836864	4.51	163136	31
3ó	753128	3.06	915994	1.45	837134	4.51	162866	30
31	9.753312	3.06	9.915907	1.45	9.837405	4.51	10.162595	29 28
32	753495	3.06	915820	1.45	837675	4.51	162325	
33	753679	3.06	915733	1.45	837946	4.51	162054	27
34 35	753862	3.05	915646	1.45	838216	4.51	161784	26
36	754046	3.05	915559	1 · 45 1 · 45	838487 838757	4.50	161513	25
20	754229	3.05	915472	1.45	839027	4.50 4.50	161243	24
37 38	754412	3.05 3.05	915385	1.45	839297	4.50	160973	23
39	754595	3.03	915297 915210	1.45	839568	4.50	160703	22
40	754778 754960	3.04	915123	1.46	839838	4.50	160162	21
41	9.755143	3.04	9.915035	1.46	9.840108	4.50	10.159892	19
42	755326	3.04	914948	1.46	840378	4.50	159622	18
43	755508	3.04	914860	1.46	840647	4.50	159353	17
44	755690	3.04	914773	1.46	840917	4.49	159083	16
45	755872	3.03	914685	1.46	841187	4.49	158813	15
46	756054	3.03	914598	1.46	841457	4.49	158543	14
47	756236	3.03	914510	1.46	841726	4.49	158274	13
48	756418	3.03	914422	1.46	841996	4.49	158004	12
49 50	756600	3.03	914334	1.46	842266	4.49	157734	11
	756782	3.02	914246	1.47	842535	4.49	157465	10
51 52	9.756963	3.02	9.914158	1.47	9.842805	4.49	10.157195	8
53 D	757144	3.02	914070	1.47	843074	4.49	156926	
	757326	3.02	913982	1.47	843343	4 49	156657	7
54 55	757507	3.02	213894	1.47	843612 843882	4.49	156388	765
56	757688	3.01 3.01	913865	1.47	844151	4·48 4·48	155840	
57	757869 758050	3.01	913718 013630	1.47	844420	4.48	155580	43
57 58	758230	3.01	913541	1.47	844689	4.48	155311	2
50	758411	3.01	013453	1.47	844958	4.48	155042	1
60	758591	3.01	913365	1.47	845227	4.48	154773	ō
~ 1								

(55 DEGREES.)

SINES AND TANGENTS. (35 DEGREES.)

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.758591	3.01	9-913365	1.47	9.845227	4.48	10.154773	60
1	758772	3.00	913276	: . 47	845496	4.48	154504	59
	758952	3.00	913187	1.48	845764	4.48	154236	58
3	759132	3.00	913099	1.48	846033	4.48	153967	57
	759312	3.00	913010	1.48	846302	4.48	153698	56
45	759492	3.00	012022	1.48	846570	4.47	153430	55
6	759672		912833	1.43	846839	4 47	153161	54
	150072	2.99					152803	53
7	159852	2.99	912744	1.48	847107	4.47	152624	
	760031	2.99	912655	1.48	847376	4.47		52
9	760211	2.99	912566	1.48	847644	4.47	152356	51
10	760300	2.99	912477	1.48	847913	4.47	152087	50
11	c.760569	2.98	9.912388	1.48	Q.848181	4.47	10.151819	60
12	760748	2.98	912299	1.49	848449	4.47	151551	49 48
13	760927	2.98	912210	1.49	8.18717	4.47	151283	47
14	761106	2.98	912121	1.49	848956	4.47	151014	46
15	761285	2.98	912031				150746	45
16				1.49	849254	4.47		
	761464	2.98	911912	1.49	840522	4.47	150478	44
17 18	761642	2.97	911853	1.49	849790	4.46	150210	43
	761821	2.97	911763	1 • 49	850058	4.45	149942	42
19	761999	2.97	911674	1.49	850325	4.46	149670	41
20	762177	2.97	911584	1.49	850593	4.46	149407	40
21	9.762356	2.97	9.911495	1.49	9.850861	4.46	10.149139	39
22	762534	2.96	911405	1.49	851129	4.46	148871	38
23	762712	2.96	911315	1.50	851396	4.40	148604	
24				1.50			148336	37 36
25	762889	2.96	911226	1.50	851664	4.46	148050	35
	763067	2.96	911136	1.50	851931	4.46		
26	763245	2.96	911046	1.50	852199	4.46	147801	34
27	763422	2.96	910956	1.50	852466	4.46	147534	33
28	763000	2.95	910866	1.50	852733	4.45	147267	32
29	763777	2.95	910775	1.50	853001	4.45	1.46999	31
30	763954	2.95	910686	1.50	853268	4.45	146732	30
31	9.764131	2.95	9.910596	1.50	9.853535	4.45	10-146465	20
32	764308	2.95	910506	1.50	853802	4.45	146198	29 28
33	764485	2.94	910415	1.50	85.4050	4.45	145931	27
34	764662	2.94	010325	1.51	851336	4.45	145664	25
35	764838		910235	1.51	854603	4.45	145397	25
36	765015	2.94				4.45	145130	
20	105015	2.94	910144	1.51	854870			24
37 38	765191	2.94	910054	1.51	855137	4.45	144863	23
38	765367	2.94	909963	1.51	855404	4.45	144596	22
39	765544	2.93	909873	1.51	855671	4.44	144329	21
40	765720	2.93	909782	1.21	855938	4.44	144062	20
41	9.765896	2.93	9.909691	1.51	9.856204	4.44	10.143796	19
42	766072	2.03	909601	1.51	856471	4.44	143529	18
43	766247	2.93	909510	1.51	856737	4.44	143263	17
44	766423	2.93	909419	1.51	857004	4.44	142996	16
45	766598	2.92	909323	1.52	857270	4.44	1.427.30	15
46	766774	2.92	909237	1.52	857537	4.44	142463	14
	766949	2.92	909146	1.52	857803	4.44	142197	13
47	, 767124	2.92	909055	1.52	858060	4.44	141931	12
40	767300		903055	1.52	858336		141664	11
45 50		2·92 2·91	308073	1.52	858602	4·44 4·43	141398	10
	767475		1	-				10
51	9 767649	2.91	9.908781	1.52	9.858868	4.43	10.141132	8
52	767824	2.91	908690	1.52	859134	4.43	140866	8
53	767999	2.91	908599	1.52	859400	4.43	140600	7
54	768173	2.91	908507	1 52	859666	4.43	140334	7 5 5
55	768348	2.90	908416	1.53	859932	4.43	140068	
56	768522	2.90	908324	1.53	860198	4.43	139802	4
51	768697	2.90	008233	1.53	860464	4.43	139536	43
57 58	768871	2.90	908141	1.53	860730	4.43	139270	2
59	769045	2.90	908049	1.53	860995	4.43	139005	1
66	769219	2.90	907958	1.53	861261	4.43	138739	o
	Casin				0.1		(T)	M.
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

54 (36 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	1
0	9·769219 769393 769566	2.90 2.89 2.89	9·907958 907866 907774	1.53 1.53 1.53	9.361261 361527 861792	4 · 43 4 · 43 4 · 42	IO 138730 38473 138268	60 50 58
3 4 5 6	769740 769913 770087 770260	2.89 2.89 2.89 2.89 2.88	907682 907590 907498 907406	1.53 1.53 1.53 1.53	862058 862323 862589 862854	$4 \cdot 42$ $4 \cdot 42$ $4 \cdot 42$ $4 \cdot 42$ $4 \cdot 42$	137942 137677 137411 137146	57 56 55 54
7 8 9	770433 770606 770779 770729	2.88 2.88 2.88 2.88 2.88	907314 907222 907120 907037	1.54 1.54 1.54 1.54	863119 863385 863650 863915	4 · 42 4 · 47 4 · 4' 4 · 4'	136881 136615 136350 136985	53 52 51 50
11 12 13 14	9.771125 771298 771470 771643	2.88 2.87 2.87 2.87 2.87	9·906945 906852 - 906760 906667	1.54 1.54 1.54 1.54	9-864180 864445 864710 864975	4 · A J 4 · A J 4 42 4 · 41	10·135820 135555 135290 135025	49 48 47 46
15 16 17 18 19 20	771815 771987 772159 772331 772503	2.87 2.87 2.87 2.86 2.86 2.86 2.86	906575 906482 906389 906296 906204	1.54 1.55 1.55 1.55 1.55 1.55	865240 865505 865770 866035 866300 866564	4.41 4.41 4.41 4.41 4.41 4.41	134760 134495 134230 133965 133700	45 44 43 42 41
21 22 23 24	772675 9.772847 773018 773190 773361	2.86 2.86 2.86 2.85	906111 9.906018 905025 905832 905739	1 · 55 1 · 55 1 · 55 1 · 55	9 · 866829 867094 867358 867623	4 · 41 4 · 41 4 · 41 4 · 41 4 · 41	133436 133171 132906 132642 132377	40 39 38 37 36
25 26 27 28 29 30	73533 73704 738 7 5 774046 714217 74388	2.85 2.85 2.85 2.85 2.85 2.85 2.85	905645 905552 905459 905366 905272 905179	1.55 1.55 1.55 1.56 1.56 1.56 1.56	867887 868152 868416 868680 858945 869209	4 · 41 4 · 40 4 · 40 4 · 40 4 · 40 4 · 40	132113 131848 131584 131320 131055 130794	35 34 33 32 31 30
31 32 33 34 35 36	9.774558 774729 774899 775070 775240 775240 775410	2.84 2.84 2.84 2.84 2.84 2.84 2.84 2.83	9.905085 904992 904898 904804 904711 904617	1.56 1.56 1.56 1.56 1.56 1.56	9.869473 869737 87001 870265 870529 870793	4 · 40 4 · 40 4 · 40 4 · 40 4 · 40 4 · 40	10 · 130527 130263 120909 120735 120471 120207	29 28 27 26 25 25
37 38 39 40	775580 775750 775920 776090	2.83 2.83 2.83 2.83 2.83	904523 904429 904335 904241	1 • 56 1 • 57 1 • 57 1 • 57	871057 871321 871585 871585 871849	4 • 40 4 • 40 4 • 40 4 • 39	128943 128679 128415 128151	23 22 21 20
41 42 43 44 45 46	9.776259 776429 776598 776768 776937 776937 77106	2.83 2.82 2.82 2.82 2.82 2.82 2.82	9.904147 904053 903959 903864 903770 903676	1.57 1.57 1.57 1.57 1.57 1.57	9.872112 872376 872640 872903 873167 873430	4.39 4.39 4.39 4.39 4.39 4.39	10 · 127888 127624 127360 127007 126833 126570	10 18 17 16 15 14
47 48 43 50	77275 777444 777613 77781	2.81 2.81 2.81 2.81 2.81	903581 903487 903392 903298	1.57 1.57 1.58 1.58 1.58	873694 873957 874220 874484	4 · 39 4 · 39 4 · 39 4 · 39	126306 126043 125780 125516	13 12 11 10
51 52 53 54	9.777950 778119 778287 778455	2.81 2.81 2.80 2.80	9·903203 903108 903014 902919	1.58 1.58 1.58 1.58 1.58	9 · 874747 875010 875273 875536	4·39 4·39 4·38 4·38	10 · 125253 124990 124727 124464	999 7-64
55 56 57 58	778624 778792 778960 779128	2.80 2.80 2.80 2.80	902824 902729 902634 902539	2.58 1.58 1.58 1.59 1.59	875800 876063 876326 876326 876589 876551	4·38 4·38 4·38 4·38	124209 123937 123674 123411	54321
59 60	779295 779463 Cosine	2.79 2.79 D.	902444 902349 Sine	1.59 1.59 D.	876851 877114 Cotang.	4.38 4.38 D.	123149 122886 Tang.	э —

(53 DEGREES.)

SINES AND TANGENTS. (37 DEGRIES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
012	9.779463 779631 779798	3.79 2.79 2.79 2.79	9.902349 902253 902158	1 • 59 1 • 59 1 • 59	9.877114 877377 877640	4.38 4.38 4.38	10 · 122886 122623 122360	60 59 58
3 45 6	779966 780133 780300	2·79 2·79 2·78	902063 901967 901872	1.59 1.59 1.59 1.59	877903 878165 878428	4.38 4.38 4.38 4.38	122007 121835 121572	57 56 55
789	780467 780634 780801 780968	2·78 2·78 2·78 2·78 2·78	901776 901681 901585 901490	1.59 1.59 1.59 1.59	878691 878953 879216 879478	4.38 4.37 4.37 4.37	121309 121047 120784 120522	54 53 52 51
1ó 11	781134 9.781301	2·78 2·77	901394 9-901298	1.60 1.60	879741 9+880003	4·37 4·37	120259 10-119997	50 49
12 13 14 15 16 17 18	781468 781634 781800 781966 782132 782298 782464	2.77 2.77 2.77 2.77 2.77 2.77 2.76 2.76	901202 901106 901010 900914 900818 900722 900626	1.60 1.60 1.60 1.60 1.60 1.60 1.60	880265 880528 880790 881052 881314 881576 881839	4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37	119735 119472 119210 118948 118686 118424 118161	48 47 46 45 44 43 42
19 20	782630 782796	2·76 2·76	900529 900433	1.60 1.61	882101 882363	4·37 4·36	117899 117637	41 40
21 22 23 24 25 26 27 28 29 30	9.782961 783127 783292 783458 783623 783788 783953 784118 784282 784447	2 · 76 2 · 76 2 · 75 2 · 74 2 · 74	9-900337 900240 900144 900047 899951 899854 899757 899660 899564 899467	1 · 61 1 · 61 1 · 65 1 · 61 1 · 61 1 · 61 1 · 61 1 · 61 1 · 61 1 · 61	9-882625 882887 883148 883410 883672 883934 884196 884457 884457 884457 884458	4.36 4.36 4.36 4.36 4.36 4.36 4.36 4.36	10-117375 117113 116852 116590 116328 116066 115804 115543 115281 115020	39 38 37 36 35 34 33 32 31 30
31 32 33 34 35 36 37 38 39 40	9.784612 784776 784941 785105 785269 785533 785597 785597 785925 786089	2 · 74 2 · 74 2 · 74 2 · 73 2 · 73	9.899370 899273 899176 899078 898931 898884 898787 898787 898689 898592 898494	1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62	9 885242 885503 885765 886026 886288 886549 886810 887072 887333 887594	4.36 4.36 4.36 4.36 4.35 4.35 4.35 4.35 4.35 4.35	10-114758 114497 114235 113974 113712 113451 113190 112928 112667 112406	20 28 27 26 25 24 23 22 21 20
41 42 43 44	9·786252 786416 786579 786742	2·72 2·72 2·72 2·72 2·72	9-898397 898299 898202 898104	1.63 1.63 1.63 1.63	9 · 887855 888116 888377 888639	4.35 4.35 4.35 4.35	10 · 112145 111884 111623 111361	19 18 17 16
45 46 47 48 49	786906 787069 787232 787395 787395 787557	2·72 2·72 2·71 2·71 2·71 2·71	898006 897908 897810 897712 897614	-63 1-63 1-63 1-63 1-63	888900 889160 889421 889682 889943	4.35 4.35 4.35 4.35 4.35 4.35	111100 110840 110579 110318 110057	15 14 13 12 11
00 51	787720 9.787883	2·71 2·71	897516 9.897418	1.63 1.64	890204 9+890465	4·34 4·34	109796 10+109535	10 9 8
52 53 54 55	783045 788208 788370 788532	2.71 2.71 2.70 2.70	897320 897222 897123 897025	1.64 1.64 1.64 1.64	890725 890986 891247 891507	4.34 4.34 4.34 4.34	109275 109014 108753 108493	7
56 57 58 59	788694 788856 789018 789180	2.70 2.70 2.70 2.70 2.70	896926 896828 896729 896631	1.64 1.64 1.64 1.64	891768 892028 892289 892549	4.34 4.34 4.34 4.34	108232 10797 2 107711 107451	5 4 3 2 1
60	789342 Cosine	2.69 D.	896532 Sine	1.64 D.	S92810 Cotang.	4.34 D.	107190 Tang.	0 <u>)</u>

(52 DEGREES.)

56 (38 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D,	Tang.	D.	Cotang.	
0	9.789342	2.69	g.896532	1.64	9.892810	4.34	10.107100	60
I	789504	2.69	896433	1.65	893070	4.34	106930	59 58
23	789665	2.69	896335	1.65	863331	4.34	106669	58
	789827	2.69	896236	1.65	893591	4.34	106409	57
4 5 6	789988	2.69	896137	1.65	893851	4.34	1061.49	56
5	790149	2.69	896038	1.65	894111	4.34	105889	55
Ć	790310	2.68	895939	1.65	894371	4.34	105629	54
78	790471	2.68	895840	1.65	894632.	4.33	105368	53
	790632	2.68	895741	1.65	894892	4.33	105108	52
9	790793	2.68	895641	1.65	895152	4.33	104848	51
10	790954	2.68	895542	1.65	895412	4.33	104588	50
11	9.791115	2.68	9.895443	1.66	9.895672	4.33	10.104328	49
12	791275	2.67	895343	1.66	895932	4.33	104068	48
13	791436	2.67	895244	1.66	896192	4.33	103808	47
14	791596	2.67	895145	1.66	896452	4.33	103548	46
15	791757	2.67	895045	1.66	896712	4.33	103288	45
16	791917	2.67	894945	1.66	896971	4.33	~ 103029	44
17 18	792077	2.67	894846	1.66	897231	4.33	102769	43
	792237	2.66	894746	1:66	897491	4.33	102509	42
19 20	792397 792557	2.66	894646 894546	1.66	897751 898010	4.33 4.33	102249	41 40
21		2.66	9.894446	1.67	9.898270	4.33	10.101730	39
22	9.792716	2.66	894346	1.67	898530	4.33	101470	38
23	792876 793035	2.66	894246	1.67	898789	4.33	101211	
24	793195	2.65	894146	1.67	899049	4.32	100021	37 36
25	793354	2.65	894046	1.67	899308	4.32	100692	35
26	793514	2.65	893946	1.67	899568	4.32	100432	34
27	793673	2.65	893846	1.67	899827	4.32	100173	33
28	793832	2.65	893745	1.67	000086	4.32	099914	32
29	793991	2.65	803645	1.67	900346	4.32	099654	31
30	794150	2.64	893544	1.67	900605	4.32	099395	30
31	9.794308	2.64	9.893444	1.68	9.900864	4.32	10.090136	29
32	794467	2.64	893343	1.68	901124	4.32	093876	28
33	794626	2.64	893243	1.68	901383	4.32	098617	27
34	794784	2.64	893142	1.68	901642	4.32	098358	26
35	794942	2.64	893041	1.68	901901	4.32	098099	25
36	795101	2.64	892940	1.68	902160	4.32	097840	24
37 38	795259	2.63	892839	1.68	902419	4.322	097581	23
	795417	2.63	892739	1.68	902679	4.32	097321	22
39	795575	2.63	892638	1.68	902938	4.32	097062	21
40	795733	2.63	892536	1.68	903197	4.31	096803	20
41	9.795891	2.63	9.892435	1.69	9.903455	4.31	10.096545	19
42	796049	2.63	892334	1.69	903714	4.31	096286	18
43	796206	2.63	892233	1.69	903973	4.31	096027	17
44	796364	2.62	892132	1.69	904232	4.31	095768*	16
45	796521	2.62	892030	1.69	904491	4.31	095509 095250	15
46	796679	2.62	891929	1.69	904750	4.31		13
47 48	796836	2.62	891827	1.69	905008	4.31	094992	13
	796993	2.62	891726 891624	1.69	905267	4.31 4.31	094733 094474	
49 50	797150	2.61	891024 891523	1.69 1.70	905526 905784	4.31	094474	10
51		2.61	9.891421	1.70	9.00043	4.31	10.093957	1 '
51	9.797464 797621	2.01	891319	1.70	906302	4.31	093698	8
53	797777	2.61	891217	1.70	906560	4.31	093440	2
54	797934	2.61	891115	1.70	906819	4.31	093181	6
55	798091	2.61	891013	1.70		4.31	092923	5
56	798247	2.61	800011	1.70	907077 907336	4.31	092664	43
57 58	798403	2.60	890809	1.70	907594	4.31	092406	
	708560	2.60	890707	1.70	907852	4.31	092148	2
59	798716	2.60	800605	1.70	908111	4.30	091889	1
60	798872	2-50	890503	1.70	908369	4.30		
ability many								M.

(51 DEGREES.)

SINES AND TANGENTS. (39 DEGREES.)

M.	Sine	D.	Cosine	D.	'Tang.	D.	Cotang.	1
0	9.798872	2.60	g.800503	I. 70	9.908369	4.30	10.001631	60
1	799028	2.60	800400	1.71		4.30	001372	
2	1 799184	2.60	890298	1.71	908886	4.30	001114	59 58
3	799339	2.59	800105	1.71	909144	4.30	090856	57
45	799425	2.59	890093	1.71	909402	4.30	090598	56
	799651	2.59	889990	1.71	909660	4.30	090340	55
t.	799806	2.59	889888	1.71	909918	4.30	090082	54
2	799962	2.59	889785	1.71	910177 910435	4.30	089823	53
9	800117	2.59	889682 889579	1.71	910433	4·30 4·30	289565 089307	51
10	800427	2.58	889477	1.71	910005	4.30	089049	50
	1						1	
11	9.800582 800737	2.58 2.58	9.889374 889271	1.72	9.911209	4·30 4·30	1C+088791 088533	49
13	800892	2.58	889168	1.72	911467 911724	4.30	088276	47
14	801047	2.58	889064	1.72	911982	4.30	088018	46
15	801201	2.58	888961	1.72	912240	4.30	087760	45
16	801356	2.57	888858	1.72	912408	4.30	087502	44
	801511	2.57	888755	1.72	912756	4.30	087244	43
18	801665	2.57	888651	1.72	913014	4.29	086986	42
19	801819	2.57	888548	1.72	913271	4.29	086729	41
20	801973	2.57	888444	1.73	913529	4.29	086471	40
21	9.802128	2.57	9.888341	1.73	9.913787	4.29	10.086213	39
22	802282	2.56	888237	1.73	914044	4.29	085956	38
23 24	802436	2.56	888134	1.73	914302	4.29	085698	37
25	802589 802743	2.56	888030	1.73	914560	4.29	085440	36 35
26	802897	2.56	887926 887822	1.73 1.73	914817 915075	4.29	085183 084925	34
27	803050	2.56	887718	1.73	915332	4.29	084668	33
27 28	803204	2.56	887614	1.73	915500	4.29	084410	32
20	803357	2.55	887510	1.73	915847	4.29	084153	31
3ó	803511	2.55	887406	1.74	916104	4.29	083896	30
31	9.803664	2.55	9.887302	1.74	9.916362	4.29	10.083638	20
32	803817	2.55	887198	1.74	916619	4.29	083381	29 28
33 34	803970	2.55	887093	1.74	916877	4.29	083123	27
35	804123	2.55	886989	1.74	917134	4.29	082866	26
36	804276 804428	2.54 2.54	886885 886780	1·74 1·74	917391	4.29	082609	25 24
37	80,1581	2.54	886576	1.74	917648	4.29	082352	23
37 38	804734	2.54	886571	1.74	917905 918163	4.28	081837	22
39	804886	2.54	886466	1.74	918420	4.28	081580	21
40	805039	2.54	886362	1.75	918677	. 4.28	081323	20
41	9.805191	2.54	g.886257	1.75	9.918934	4.28	10.081066	10 18
42	805343	2.53	886152	1.75	919191	4.28	080809	
43	805495	2.53	886047	1.75	919448	4.28	080552	17
44 45	805647 805799	2·53 2·53	885942 885837	1.75	919705	4 · 28 4 · 28	080205 080038	15
46	805951	2.53	885732	1.75 1.75	919962 920219	4.20	030038	13
	806103	2.53	885627	1.75	920219	4.28	079524	13
47 48	806254	2.53	885522	1.75	920733	4.28	079267	12
49	806406	2.52	885416	1.75	920940	4.28	079010	11
5ó	806557	2.52	885311	1.70	921247	4.28	078753	10
51	9.806709	2.52	9.885205	1.76	9-921503	4.28	10.078497	8
52 53	806860	2.52	885100	1.76	921760	4.28	078240	
54	807011. 807163	2·52 2·52	884994	1.76	922017	4.28	077983	2
55	807314	2.52	884889 884783	1.76	922274 922530.	4.28 4.28	077726	5
56	807465	2.51	884677	1.76	922330.	4.28	077470 077213	6
57 58	807615	2.51	884572	1.76	923044	4.28	076056	43
	807766	2.51	884466	1.76	923300	4.28	076700	2
50	807917 808067	2.51	884360	1.76	923557	4.27	076443	:
60	808067	2.51	884254	1.77	923813	4.27	076187	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

(50 DEGREES.)

58 (40 DEGREES.) A TABLE OF LOGARITHMIC

0					Tang.		-	
1	9.808067	2.51	9.884254	1.77	9.923813	4.27	10 076187	60
	808218	2.51	884148	1.77	924070	4.27	075930	50 58
.2	808368	2.51	884042	1.77	24327	4.27	075673	58
3	808519	2.50	883936	1.77	924583	4.27	075417	57
45	808669	2.50	883829	1.77	924840	4.27	075160	56
5	808817	2.50	883723	1.77	925096	4.27	074904	55
6	808969	2.50	883617	1.77	925352	4.27	074648	54
3	809119	2.50	883510	1.77	925609	4.27	074391	53
8	809269	2.50	883404	1.77	925865	4.27	074135	52
9	809419	2.49	883297	1.78	926122	4.27	073878	51
10	809569	2.49	883191	1.78	926378	4.27	073621	50
11	9.80.3718	2.49	9.883084	1.78	9·926634 926890	4.27	10.073366 073110	49 48
12	809868	2.49	882977	1.78		4.27	072853	
13	810017	2.49	882871	1 · 78 1 · 78	927147 927403	4.27	072597	47
14	810167	2.49	882764 882657 ~	1.78	927659	4.27 -	072341	45
16		2.40	882550	1.78	927915	4.27	072085	44
	810465	2.48	882443	1.78	92/913	4.27	071829	43
17	810614	2.40	882336		928427	4.27	071573	42
	810763	2.40	88222Q	1.79	928683	4.27	071317	41
19	810912	2.40	882121	1.79	928040 928940	4.27	071060	40
21	9.811210	2.48	9.882014	1.79	9.929196	4.27	10.070804	39
22	811358	2.47	881907	1.79	929452	4.27	070548	38
23	811507	2.47	881700	1.79	929708	4.27	070292	
24	811655	2.47	881799 881692	1.79	929964	4.26	070036	37 36
25	811804	2.47	881584	1.79	930220	4.26	069780	35
26	811952	2.47	881477	1.79	930475	4.26	069525	34
	812100	2.47	881360	1.79	930731	4.26	069269	34 33
27 28	812248	2.47	881261	1.80	g30987	4.26	060013	32
29	812396	2.46	881153	1.80	931243	4.26	068757	31
30	812544	2.46	881046	1.80	931499	4.26	068501	30
31	3.812692	2.46	9.880938	1.80	9.931755	4.26	10.068245	29
32	812840	2.46	880830	1.80	932010	4.26	067990	28
33	812988	2.46	880722	1.80	932266	4.26	067734	27
34	813135	2.46	880613	1.80	932522	4.26	067478	26
35	813283	2.46	880505	1.80	932778	4.26	067222	25
36	813430	2.45	880397	1.80	933033	4:26	066967	24
37 38	813578	2.45	880289	1.81	933289	4.26	066711	23
38	813725	2.45	880180	1.81	933545	4.26	066455	22
39	813872	2.45	880072	1.81	933800	4.26	066200	21
40	814019	2.45	879963	1.81	934056	4.26	065944	20
41	9.814166	2.45	G.870855	1.81	9.934311	4.26	10.065689 065433	19
42	814313	2.45	879746	1.81	934567	4.26		
43	814460	2.44	87,637	1.81	934823	4.26	065177	17
44	814607	2.44	879529	1.81	935078	4.26	064922	15
45	814753	2.44	879420	1.81	935333	4.26	064667	15
46	814900	2.44	879311	1.81	935589	4.26	064411	14
47	815046	2.44	879202	1.82	935844	4.26	064156	12
47 48	815193	2.44	879093	1.82	936100	4.26	063900	12
49	815339	2.44	878984	1.82	936355 936610	4.26 4.26	063645	10
50	815485	2.43	878875	1.82			1	
51	9.815631	2.43	9.878766	1.82	9-936866 937121	4.25 4.25	10.063134	8
52	815778	2.43	878656	1.82	937376	4.25	062624	7
53 .	815924	2.43	878547 878438	1.82	937532	4.25	062368	2
54	816069	2.43	878328	1.82	03 1887	4.25	062113	5
55	816215	2.43	878219	1.83	038142	4.25	061858	
56	816361	2.43	878109	1.83		4.25	061602	43
57 58	816507	2.42		1.83	93865 3	4.25	061347	2
58	816652	2.42	877999	1.83	938908	4.2.	06100*	1
59 60	8167ç3 816943	2.42	877890 877780	1.83	939163	4.2	060837	0
~	Cosine	 D.	Sine	D.	Cotang.	D.	Tang.	M.

(49 DEGREES.)

9.94457 9.94457 SINES AND TANGENTS. (41 DEGREES.) 59 70

М.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.816943	2.42	9.377780	•83	9.939163	4.25	10.060837	60
I	817088	2.42	877670	1.83	939418	4.25	060582	59 58
3	817233	2.42	877560	1.83	939673	4.25	060327	
3	817379	2.42	877450	1.83	939928	4.25	060072	57
456	817524	2.41	877340	1.83	940183	4.25	059817	56
5	817668	2.41	877230	1.84	940438	4.25	059562	55
0	817813	2.41	877120	1.84	940694	4.25	059306	54
7	817958	2.41	877010	1.84	040949	4.25	059051	53
	818103	2.41	876899	1.84	941204	4.25	058796	52
9	818247	2.41	876789	1.84	941458	4.25	058542	51
10	818392	2.41	876678	1.84	941714	4.25	058286	50
11	9.818536	2.40	g.876568	1.84	9.941968	4.25	10.058032	40
12	818681	2.40	876457	1.84	942223	4 25	777750	49 48
13	818825	2.40	876347	1.84	942478	4.25	057522	47
14	818969	2.40	876236	1.85	942733	4 - 25	057267	46
15	819113	2.40	876125	1.85	942988	4.25	057012	45
16	819257	2.40	876014	1.85	943243	4.25	036757	44
	819401	2.40	875904	1.85	943498	4.25	056502	43
17 18	819545	2.30	875793	1.85	943752	4.25	056248	42
19	819689	2.39	875682	1.85	944007	4.25	055993	41
20	819832	2.39	875571	1.85	944262	4.25	055738	40
21	9.819976	2.30	9.875459	1.85	9.944517	4.25	10.055483	30
22	820120	2.39	875348	1.85		4.25	055220	38
23	820263	2.39	875237	1.85	944771	4.24		
24	820406		875126	1.86	945026	4.24	054974	$\begin{vmatrix} 37 \\ 36 \end{vmatrix}$
2Ĵ	820350	2.30 2.38	875014	1.80	945281		054719	
26	820093	2.30		1.80	945535	4.24	054465	35
	820836	2.38	874903	1.86	945790	4.24	054210	34
27 28	820030	2.38	874791	1.86	946045	4.24	053955	33
29	820979 821122	2.30	874680	1.86	A 946299	4.24	053701	32
30	821265	2.38	874568 874456	1.86	946554 946808	4.24 4.24	053446	31
								1 1
31 32	9.821407 821550	2.38	9.874344	1.86	9.947063	4.2.1	10.052537	29
33	821550	2.38	874232	1.87	947318	4.24	052682	28
	821835	2.37	874121	1.87	947572	4.24	052428	27
34 35		2.37	874009	1.87	947826	4.24	052174	26
36	821977 822120	2.37	873896	1.87	948081	4.24	051919	25
37	822262	2.37	873784	1.87	948336	4.24	051664	24
38	822404	2.37	873672	1.87	948590	4.24	051410	23
30	822546	2.37	873560	1.87	948844	4.24	051156	22
40	822688	2.37 2.36	873448 873335	1.87	949099 949353	4.24	050901	21 20
41	9.822830	2.36 2.36	9.873223	1.87	9.949607	4.24	10.050303	19 18
42 43	822972 823114	2.30	873110	1.88	949862	4.24	050138	
	823255	2.30	872998		950116	4.24	049884	!7
44 45	823397		872885	1.88	950370	4.24	049630	16
45	8235397 823539	2.36	872772	1.88	950625	4.24	049375	15
	823539	2.36	872659	1.88	950879	4.24	049121	14
47 48		2.35	872547	1.88	951133	4.24	048867	13
	823821 823963	2.35	872434	1.88	951388	4.24	048612	12
49 50	823903	2·35 2·35	872321 872208	1.88 1.88	951642	4.24	048358 048104	11
					951896	4.24		10
51 52	9.824245	2.35	9.872095	1.89	9.952150	4.24	10.047850	8
53	824386	2.35	871981	1.89	952405	4.24	047595	
	824527	2.35	871868	1.89	952659	4.24	047341	2
54 55	824668	2.34	871755	1.89	952913	4.24	047087	0
	824808	2.34	871641	1.89	953167	4.23	046833	5
56	824949	2.34	871528	1.89	953421	4.23	046579	4
57 58	825090	2.34	871414	1.89	953675	4.23	046325	
50	825230	2.34	871301	1.80	953929	4.23	046071	2
59 60	825371 825511	2.34	871187	1.89	954183	4.23	045817	6
~	025511	2.34	871073	1.90	954437	4.73	o45563	-

(48 DEGREES.)

60 (42 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.825511 825651	2.34 2.33	9.871073 870960	1.90 1.90	9.954437 954691	4 • 23 4 • 23	1(045563	60
2	825791	2.33	870846	1.90	954945	4.23	045055	59 58
3	825931	2.33	870732	1.90	055200	4.23	.044800	57
45	826071	2.33	870618	1.90	955454	4.23	044546	55
	826211	2.33	870504	1.90	955707	4.23	044293	55
6	826351	2.33	870390	1.90	955961	4.23	044039	54
78	826491	2.33	870276	1.90	956215	4.23	043785	53
	826631	2.33	870161	1.90	956469	4.23	043531	52
9	826770 826910	2·32 2·32	8700.17	1.91	956723	4.23	043277	51
10			869933	1.01	956977	4.23	043023	50
п	9.827049	2.32	9.869818	1.91	9.957231	4.23	10.042769	49
12	827189	2.32	869704	1.91	957485	4.23	042515	48
r3	827328	2.32	869589	1.91	957739	4.23	042261	47
13	827467	2.32	869474	1.91	957993	4.23	042007	46
15	827606	2·32 2·32	869360 869245	1.91	958246 958500	4·23 4·23	041754	45
17	827745 827884	2.32	869130	1.91 1.91	958754	4.23	041300	44
18	828023	2.31	860015	1.92	959008	4.23	040240	43
19	828162	2.31	868900	1.92	959262	4.23	040738	41
20	828301	2.31	868785	1.92	959516	4.23	040484	40
		2.31		· · ·	· · ·			
21	9·828430 828578	2.31	9·868670 868555	1.92	9·959769 960023	4.23	10.040231	39 38
22 23	828716	2.31	868440	1 · 92 1 · 92	960277	4·23 4·23	039977	
24	828855	2.30	868324	1.92	960531	4.23	039409	37
25	828993	2.30	868209	1.92	960784	4.23	039210	35
26	829131	2.30	868093	1.92	961038	4.23	038962	34
27	829269	2.30	867978	1.93	961291	4.23	038700	33
28	829407	2.30	867862	1.93	961545	4.23	o38455	32
29	829545	2.30	867747	1.93	961799	4.23	038201	31
3ó	829683	2.30	867631	1.93	962052	4.23	037948	30
31	9.829821	2.29	9.867515	1.93	9-962306	4.23	10.037694	29
32	829959	2.29	867399	1.93	962560	4.23	037440	28
33	830097	2.29	867283	1.93	962813	4.23	037187	27
34	830234	2.29	867167	1.93	963067	4.23	036933	26
35	830372	2:29	867051	1.93	963320	4.23	036680	25
36	830509	2.29	866935	1.94	963574	1 4.23	036426	24
37 38	830646	2.29	866819	1.94	963827	4.23	036173	23
	830784	2.29	866703 866586	1.94	964081 964335	4 · 23 4 · 23	035919	22
39 40	830921 831058	2·28 2·28	866470	1 · 94 1 · 94	96.1588	4.22	035412	20
41	9.831195	2.28	9.866353	1.94	9.964842	4.22	10.035158 034905	19
42	831332	2·28 2·28	866120	1.94	965095 965349	4.22	034903	
43	831469 831606	2.28	866004	1.94	903349	4.22	034398	17
44 45	831742	2.20	865887	1.95	065855	4.22	034145	15
46	831879	2.28	865770	1.95	966105	4.22	033891	14
	832015	2.27	865770 865653	1.95	966362	4.22	o33638	13
47	832152	2.27	865536	1.95	966616	4.22	o33384	12
49	832288	2.27	865419	1.95	966869	4.22	033131	II
50	832425	2.27	865302	1.95	967123	4.22	032877	10
51	9.832561	2.27	9.865185	1.95	9.967376	4.22	10.032624	8
52	832697	2.27	865068	1.95	967629	4.22	032371	
53	832833	2.27	864950	1.95	967883	4.22	0.32117	2
54	832969	2.26	864833	1.96	968136	4.22	031864	6
55	833105	2.26	864716	1.96	968389	4.22	031611	5
56	833241	2-26	864598	1.96	968643	4.22	031357	4
57 58	833377	2.26	864481	1.96	968896	4 · 22 4 · 22	o31104 o3o851	2
58	833512 833648	2·26 2·26	864363 864245	1.96	969149 969403	4.22	030597	. 1
59 60	833783	2.20	864127	1.90	969656	. 4.22	0.30344	o
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

(47 DEGREES.)

SINES AND TANGENTS. (43 DEGREES.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.833783	2.26	a.864127	1.96	9 969656	4.22	10.030344	50
1	833919	2.25	864010	1.96	969909	4.22	030001	34
23	834054	2.25	863892	1.97	970162	4.22	029838	59 58
3	834189	2.25	863774	1.97	970416	4.22	029584	57
45	834325	2.25	863656	1.97	970669	4.22	029331	56
5	834460	2.25	863538	1.97	970922	4.2%	029078	55
6	834595	2.25	863.419	1.97	071175	4.22	028825	54
78	834730	2.25	863301	1.97	971429	4.22	028571	53
8	834865	2.25	863183	1.97	971682	4.22	028318	52
9	83.4999	2.24	863054	1.97	971935	4.22	028065	51
IÓ	835134	2.24	862946	1.98	972188	4.22	027812	50
11	9.835269	2.24	9.862827	1.98	9.972441	4.22	10.027559	42
12	835403	2.24	862709	1.98	972694	4.22	c27306	48
13	835538	2.24	862590	1.98	972948	4.22	027052	47
14	835672	2.24	862471	1.98	973201	4.22	U26799	46
15	835807	2.24	862353	1.98	973454	4.22	026546	45
16	835941	2.24	862234	1.98	973707	4.22	026293	44
17	836075	2.23	862115	1.98	973960	4.22	026040	43
	836209	2.23	861996	1.98	974213	4.22	025787	42
19	836343	2.23	861877	1.98	974466	4.22	025534	41
20	836477	2.23	861758	1.99	974719	4.22	025281	40
21	9.836611	2.23	9.861638	1.99	9.974973	4.22	10.025027	39
22	836745	2.23	861519	1.99	975226	4.22	024774	38
23	836878	2.23	861400	1.99	975479	4.22	024521	37
24	837012	2.22	861280	1.99	975732	4.22	024268	
2 5	837146	2.22	861161	1.99	975985	4.22	024015	35
26	837279	2.22	861041	1.99	976238	4.22	023762	34
27 28	837412	2.22	860922	1.99	976491	4.22	023500	33
28	8375.46	2.22	860802	1.99	976744	4.22	023256	32
29	837679	2.22	860682	2.00	976997	4.22	023003	31
30	837812	2.22	860562	2.00	- 977250	4.22	022750	30
31	9.837945	2 . 2 2	9.860442	2.00	9.977503	4.22	10.022407	29
32	838078	2.21	860322	2.00	977756	4.22	022244	28
33	838211	2 • 21	860202	2.00	978000	4.22	021991	27
34	838344	2.21	860082	2.00	\$78262	4.22	021738	26
35	838477	2 . 21	859962	2.00	978515	4-22	021485	25
36	838610	2.21	859842	2.00	978768	4.22	021232	24
37 38	838742	2.21	859721	2.01	979021	4.22	320979	23
	838875	2.21	859601	2.01	979274	4.22	020726	22
39	839007	2.21	859480	2.01	979527	4.22	020473	21
40	839140	2.20	859360	2.01	979780	4.22	020220	20
41	9.839272	2.20	9.859239	2.01	9.980033	4.22	10.019967	19
42	839404	2.20	859119	2.01	980286	4.22	019714	18
43	839536	2.20	858998	2.01	980538	4.22	019462	17
44	839668	2.20	858877	2.01	980791	4.21	019209	16
45	839800	2.20	858756	2.02	981044	4.21	018956	15
46	839932	2.20	858635	2.02	981297	4.21	018703	14
47 48	840064	2.19	858514	2.02	981550	4.21	018450	13
	840196	2.19	858393	2.02	981803	4.21	018197	12
49	840328	2.19	858272	2.02	982056	4.21	017944	II
5ó	840459	2.19	858151	2.02	982300	4.21	017691	10
51	9.840591	2.19	9.858029	2.02	9.982562	4.21	10.017438	6
52	840722	2.19	857908	2.02	982814	4:21	017186	
53	840854 .	2.19	857786	2.02	983067	4.21	016933	2
54	840985	2.19	857665	2.03	983320	4.21	016680	0
55	841116	2.18	857543	2.03	983573	4.21	016427	5
56	841247	2.18	857422	2.03	983826	4 21	016174	43
57 58	841378	2.18	857300	2.03	984079	4 • 21	015921	
28	841509	2.18	857178	2.03	984331	4.21	015669	2
59	841640	2.18	857056	2.03	984584	4.21	015416	I
60	841771	2.18	856934	2.03	984837	4.21	015163	0

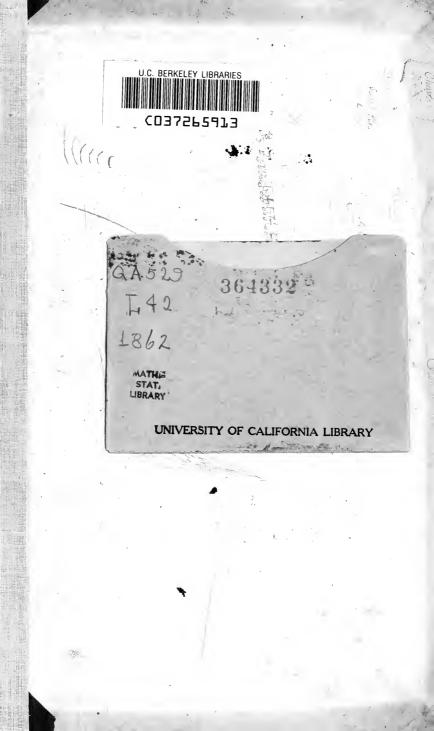
(46 DEGREES.)

62

(44 DEGREES.) A TABLE OF LOGARITHMIC

M.	Sine	D.	Cosine	D.	Tang.	′ D.	Cotang.	
0	9.841771	2.18	9.856934	2.03	9.984837	4.21	10.015163	60
I	841902	2.18	856812	2.03	085000	4.21	014010	
2	842033	2.18	856690	2.04	9 85343	4.21	014657	50 58
3	842163	2.17	856568	2.04	985596	4.21	014404	57
45	842294	2.17	856446	2.04	9 85848	4.21	014152	56
5	842424	2.17	856323	2.04	986101	4.21	013800	5.4
6	842555	2.17	656201	2.04	986354	4.21	013646	54
8	842685	2.17	856078	2.04	986607	4.21	013393	53
8	842815	2.17	855956	2.04	986860	4.21	013140	52
9	842946	2.17	855833	2.04	987112	4.21	012888	51
io	843076	2.17	855711	2.05	987365	4.21	012635	50
п	9.843206	2.16	9.855588	2.05	9.987618	4.21	10.012382	49
2	843336	2.16	855465	2.05	987871	4.21	012129	48
3	843466	2.16	855342	2.05	988123	4.21	778110	47
14	843595	2.16	855219	2.05	988376	4.21	011624	46
5	843725	2.16	855096	2.05	988629	4.21	011371	45
16	843855	2.16	854973	2.05	988882	4.21	011118	44
78	843984	2.16	. 854850	2.05	989134	4.21	010866	43
	844114	2.15	854727	2.06	989387	4.21	010613	42
19	844243 844372	2·15 2·15	854603 854480	2.06 2.06	989640 • 989893	4 · 21 4 · 21	010360	41
			q.854356					1
11	9.844502	2.15	9.834330 854233	2.06	9.990145	4.21	10.009855	39 38
22	844631	. 2.15		2.06	990398	4.21	009602	
	844760	2.15	854109 853986	2.06	990651	4.21	009349	37 36
14	844889 845018	2.15	853862	2·06 2·06	990903	4 · 21 4 · 21	009097	35
16		2.15	853738	2.00	991156	4.21	008591	
	845147 845276	2.13	853614	2.00	991409 991662	4.21	008338	34 . 33
78	845405	2.14	853490	2.07	991002	4.21	008086	32
	845533		853366	2.07	991914	4.21	007833	31
29	845662	2.14	853242	2.07	992107	4.21	007580	30
31	9.845790	2.14	Q·853118	2.07	9.992672	4.21	10.007328	i
32	845919	2.14	852994	2.07	992925	4.21	007070	29 28
33	846047	2.14	852869	2.07	993178	4.21	006822	27
34	846175	2.14	852745	2.07	993430	4.21	006570	26
35	846304	2.14	852620	2.07	993683	4.21	006317	25
36	846432	2.13	852496	2.08	993936	4.21	006064	24
	846560	2.13	852371	2.08	994189	4.21	005811	23
87	846688	2.13	852247	2.08	994441	4.21	005550	22
19	846810	2.13	852122	2.08	994694	4.21	005306	21
10	846944	2.13	851997	2.08	994947	4.21	005053	20
ii	9.847071	2.13	q.851872	2.08	9.995199	4.21	10.004801	19 18
2	847199	2.13	851747	2.08	995452	4.21	004548	18
3	847327	2.13	851622	2.08	995705	4.21	004295	17
4	847454	2.12	851497.	2.09	995957	4.21	004043	16
5	847582	2.12	851372	2.09	996210	4.21	003790	15
6		2.12	851246	2.09	996463	4.21	003537	14
57	847709 847836	2.12	851121	2.09	996715	4.21	003285	13
17 18	847964	2.12	850996	2.09	996968	4.21	003032	12
9	847964 848091	2.12	850870	2.09	997221	4.21	002779	11
ó	848218	2.12	650745	2.09	997473	-4 • 21	002527	10
51	9.848345	2 . 12	9.850619	2.09	9.997726	4.21	10.002274	8
2	848472	2.11	850493	2.10	997979 998231	4.21	002021	
53	848599	2 • 1 1	850368	2.10	998231	4.21	001769	7
54	848726	2 · 11	850242	2.10	998484	4.21	001516	5
55	848852	2 . 11	850116	2.10	998737	4.21	001263	5
56	848979	2 • 11	849990	2.10	998989	4.21	001011	43
57	849106	2.11	849864	2.10	999242	4.21	000758	32
58	849232	2.11	849738	2.10	999495	4.21	000505	2
59 60	849359 849485	2.11	849611 849485	2·10 2·10	999748 10+000000	4 · 21 4 · 21	10.000000	0
	040405	4.11	049405				1	

(45 DEGREES.)


وروح وملامية منتقى		14 DA*	THE MAN	F Y Louise				
RETURN	Astronomy/Mathematics/Statistics Library							
TO→	100 E	vans Hall	642-3381					
1		2	3					
4		5	6					

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

Due and of SE DUE	AS STAMPED BEL	OW
Subject to recall after		
JAN 1 1 199	4	
RECEIVE	N 3Y	
FEBCS	100A	
CIRCULATIO	N DEPT.	
JG 22 1994	-	
		r ¹
······································		
	LINIVERSITY OF CAL	IFORNIA BERKELEY

FORM NO. DD 19

JNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA 94720

