

GIFT OF

Woucare Lianiqetox /s

Ghas

rasis
$i^{2} \times 381^{3}$

```
&Yasi
```

§os!

$$
\left[\begin{array}{ll}
2 & 0,8) \\
2
\end{array}\right]
$$

ELEMENTS

0 F

GE0METRY AND TRIGON0METRY,

FROM THE WORKS OF
A. M. LEGENDRE.

ADAPTED TO THE COURSE OF MATIIEMATICAL INSTRUCTION IN THE UNITED STATES,

BY CHARLES DAVIES, LL.D.,

AUTHOR OF ARITHMETIC, ALGEBRA, PRACTICAL MATHEMATICS FOR PRACTICAL MFN, ELEMENTS OF DESCRIPTIVE AND OF ANALYTICAL GEOMETRY, ELEMENTS of differential and integral calculus, and shades, SHADOWS, AND PERSPECTIVE.
A. S. BARNES \& COMPANY, NEW YORK AND CHICAGO.

DAVIES' MATHEMATICS. 1862

THEWISTMOMN COURSE

And Only Thorough and Complete Mathematical Series, MATMis
 IN THERED PARTS.

I. COMMON SCHOOL COURSE

Davies" Primary Arithmetic:-The fundamental principles displayed in Object Lessons.
Davies ${ }^{9}$ Intellectual Arithmetic-Referring all operations to the unit 1 as the only tangible basis for logical development.
Davies ${ }^{3}$ Filements of Written Arithmetic.- Λ practical introduction to the whole subject. Theory subordinated to Practice.
Davies* Practical Arithmetic.*-The most successful combination of Theory and Practice, clear, exact, brief, and comprehensive.

II. ACADEMIC COURSE.

Davies" University Arithmetic.*-Treating the subject exhaustively as a science, in a logical series of connected propositions.
Davies" सiementary Algebras*-A connecting link, conducting the pupil easily from arithmeticsl processes to abstract analysis.
Davies University Algebra.*-For institations desiring a more complete but not the fullest course in pure Algebra.
Davies" Practical 辗athematicsa-The science practically applied to the useful arts, as Drawing, Architecture, Surveying, Mechanics, etc.
Davies' Elementary Geometry:-The important principles in simple form, but with all the exactness of vigorous reasoning.
Wavies' Zilements of Surveyinga-Re-written in 18\%0. The simplest and most practical presentation for youths of 12 to 16.

II. COLLEGIATE COURSE.

Tavies' Bourdon's Algebra.*-Embracing Sturm's Theorem, and a most exhaustive and scholarly course.
Davies' University Algebra』*-A shorter course than Bourdon, for Institntions have less time to give the subject.
Davies" Legendre"s Geometryr-Acknowledged the only satisfactory treatise of its grade. 300,000 copies have been sold.
Davies Analytical Ceometry and Caiculusa-The shorter treatises, combined in one volume, are more available for American courses of study.
Davies' Analytical Geometrya $\}_{\text {The original compendiums, for those de- }}$
Davies ${ }^{9}$ Difer Ent. Calculuse siring to give fall time to each branch.
Davies' Descrifcive (ximetry-With application tor Spherical Trigonometry, Spherical Projections, and Warped Surfaces.
Davies' Shacies, Shadows, and Serspective.-A succiuct exposition of the maihematical priaciples involvéd,
Davies" Sicience of NIathematics.-For teachers, embracing
I. Grammar of Arithmetic, III. Logic and Utility of Matiematice, II. Outhines of Mathematics, IV. Mathematical Dictionary.

* Keys may be obtained from the Publishers by Teachers only.

Entered, according to Act of Congress, in the year 1862, by CHARLES DAVIES,
In the Clerk's Office of the District Court of the United States for the Southern District of New York.

PREFACE.

Of the various Treatises on Elementary Geometry which have appeared during the present century, that of M. Legendre stands preëminent. Its peculiar merits have won for it not only a European reputation, but have also caused it to be selected as the basis of many of the best works on the subject that have been published in this country.

In the original Treatise of Legendre, the propositions are not enunciated in general terms, but by means of the diagrams employed in their demonstration. This departure from the method of Euclid is much to be regretted. . The propositions of Geometry are general truths, and ought to be stated in general terms, without reference to particular diagrams. In the following work, each proposition is first enunciated in general terms, and afterwards, with reference to a particular figure, that figure being taken to represent any one of the class to which it belongs. By this arrangement, the difficulty oxperienced by beginners in comprehending abstract truths, is lessened, without in any manner impairing the generality of the truths evolved.

The term solid, used not only by Legendre, but by many other authors, to denote a limited portion of space, seems calculated to introduce the foreign idea of matter 364332
into a science, which deals only with the abstract properties and relations of figured space. The term volume, has been introduced in its place, under the belief that it corresponds more exactly to the idea intended. Many other departures have been made from the original text, the value and utility of which have been made manifest in the practical tests to which the work has been sub-s jected.

In the present Edition, numerous changes have been made, both in the Geometry and in the Trigonometry. The definitions have been carefully revised-the demonstrations have been harmonized, and, in many instances, abbreviatedthe principal object being to simplify the subject as much as possible, without departing from the general plan. 'These changes are due to Professor Peck, of the Department of Pure Mathematics and Astronomy in Columbia College. For his aid, in giving to the work its present permanent form, I tender him my grateful acknowledgements.

CHARLES DAVIES.

[^0]
CONTENTS.

GEOMETRY.
PAGE.
Intronuotion 9
BOOK I.
Definitions, 13
Propositions, 20
BOOK II.
Ratios and Proportions, 50
BOOK III.
The Circle, and the Measurement of Angles, 69
Problems relating to the First and Third Books, 82
BOOK IV.
Proportions of Figures-Measurement of Areas, 93
Problems relating, to the Fourth Book, 129
BOOR \quad.
Regular Polygons-Measurement of the Circle, 136
BOOK VI.
Planes, and Polyedral Angles, 157
BOOK VII.
Polyedrons, 178

BOOK VIII.

Cylinder, Cone, and Sphere, ${ }_{210}^{\text {PAOR }}$BOOK IX.
Spherical Geometry, 235
PLANE TRIGONOMETRY.
INTRODUCTION.
Definition of Logarithms, 3
Rules for Characteristics, 4
General Principles, 5
Table of Logarithms, 7
Manner of Using the Table, 8
Multiplication by Logarithms, 11
Division by Logarithms, 12
Arithmetical Complement, 13
Raising to Powers by Logarithms, 15
Extraction of Roots by Logarithms, 16
PLANE TRIGONOMETRY.
Plane Trigonometry Defined, 17
Functions of the Are, 18-22
Table of Natural Sines, 22
Table of Logarithmic Sines, 22
Use of the Table, 23-27
Solution of Right-angled Triangles, 27-35
Solution of Oblique-angled Triangles, 36-47
Problems of Application, 48
ANALYTICAL TRIGONOMETRY.
Analytical Trigonometry Defined, 51
Definitions and General Principles, 51-51
Rules for Signs of the Functions, 54

CONTENTS.

PAGE.
Limiting value of Circular Functions, 55
Relátions of Circular Functions, 57-59
Functions of Negative Ares, 60-63
Particular values of Certain Functions, 63
Formulas of Relation between Functions and Arcs, 64-66
Functions of Double and Half Ares, 67
Additional Formulas, 68-70
Method of Computing a Table of Natural Sines, 71
SPHERICAL TRIGONOMETRY.
Spherical Trigonometry Defined, 73
General Principles, 73
Formulas for Right-angled Triangles, 74-76
Napier's Circular Parts, 77
Solution of Right-angled Spherical Triangles, 80-83
Quadrantal Triangles, 84
Formulas for Oblique-angled Triangles, 85-92
Solution of Oblique-angled Triangles, 92. 104
MENSURATION.
Mensuration Defined, 105
The Area of a Parallelogram, 106
The Area of a Triangle, 106
Formula for the Sine of IIalf an Angle, 108
Area of a Trapezoid, 112
Area of a Quadrilateral, 112
area of a Polygon, 113
Area of a Regular Polygon, 114
To find the Circumference of a Circle, 116
To find the Diameter of a Circle, 116
To find the length of an Arc, 117
Area of a Circle, 117
Area of a Sector, 118
Area of a Segment, 118
Area of a Circular Ring, 11.4
PAGR.
Area of the Surface of a Prism, 120
Area of the Surface of a Pyramid, 120
Area of the Frustum of a Cone, 121
Area of the Surface of a Sphere, 122
Area of a Zone, 122
Area of a Spherical Polygon, 123
V.lume of a Prism, 124
Volume of a Pyramid, 124
Volume of the Frustum of a Pyramid, 125
Volume of a Sphere, 126
Volume of a Wedge, 127
Volume of a Prismoid, 128
Volumes of Regular Polyedrons, 132

ELEMENTS

0 F
$?$

G E O M E T R Y.

INTRODUCTION.

DEFINITIONS OF TERMS.

1. Quantity is anything which can be increased, dimin. ished, and measured.

To measure a thing, is to find out how many times it contains some other thing of the same kind, taken as a standard. The assumed standard is called the unit of measure.
2. In Geometry, there are four species of quantity, viz.: Lines, Surfaces, Volumes, and Angles. These are called, Geometrical Magnitudes.

Since the unit of measure of a quantity is of the same kind as the quantity measured, there are four kinds of units of meas".re, viz.: Units of Length, Units of Surface, Units of Veinne, and Units of Angular Measure.
\therefore Geometry is that branch of Mathematics which treats r the properties, relations, and measurement of the Geo-- metrical Magnitudes.
4. In Geometry, the quantities considered are generally represented by means of the straight line and curve. Tho operations to be performed upon the quantities and the relations between them, are indicated by signs, as in Analysis.

The following are the principal signs employed:
The Sign of Addition, + , called plus:
Thus, $A+B$, indicates that B is to be added to A.
The Sign of Subtraction, - , called minus:
Thus, $A-B$, indicates that B is to be subtracted from A.

The Sign of Multiplication, \times :
Thus, $A \times B$, indicates that A is to be multiplied by B.

The Sign of Division, \div :
Thus, $A \div B$, or, $\frac{A}{B}$, indicates that A is to be divided by B.

The Exponential Sign:
Thus, A^{3}, indicates that A is to be taken three times as a factor, or raised to the third power.

The Radical Sign, $\sqrt{ }$:
Thus, $\sqrt{A}, \sqrt[3]{B}$, indicate that the square root of A, and the cube root of B, are to be taken.

When a compound quantity is to be operated upon as a single quantity, its parts are connected by a vinculum or by a parenthesis:

Thus, $\overline{A+B} \times C$, indicates that the sum of A and B is to be multiplied by C; and $(A+B) \div C$, indieates that the sum of A and B is to be civided by C.

A number written before a quantity, shows how many times it is to be taken.

Thus, $3(A+B)$, indicates that the sum of A and $\boldsymbol{1}$ is to be taken three times.

The Sign of Equality, $=$:
Thus, $A=B+C$, indicates that A is equal to the sum of B and C.

The expression, $A=B+C$, is called an equation. The part on the left of the sign of equality, is called the first momber ; that on the right, the second member.

The Sign of Inequality, $<$:
Thus, $\sqrt{A}<\sqrt[3]{B}$, indicates that the square root of A is less than the cube root of \boldsymbol{B}. The opening of the sigu is towards the greater quantity.

The sign,.\therefore is used as an abbreviation of the word hence, or consequently.

The symbols, $1^{\circ}, 2^{\circ}$, etc., mean, 1 st, 2 d , etc.
5. The general truths of Geometry are deduced by a course of logical reasoning, the premises being definitions and principles previously established. The course of reasoning employed in establishing any truth or principle, is called a demonstration.
6. A Theorem is a truth requiring demonstration.
7. An Axiom is a self-evident truth.
8. A Problem is a question requiring a solution.
9. A Postulate is a self-evident Problem.

Theorems, Axioms, Problems, and Postulates, are all called Propositions.
10. A Lemas is an auxiliary proposition.
11. A Corollary is an obvious consequence of one or more propositions.
12. A Scholium is a remark made upon one or more propositions, with reference to their connection, their use, their extent, or their limitation.
13. An Hypothesis is a supposition made, either in the statement of a proposition, or in the course of a demonstraton.
14. Magnitudes are equal to each other, when each contins the same unit an equal number of times.
15. Magnitudes are equal in all their parts, when they may be so placed as to coincide throughout their whole extent.

$$
(a, b,)
$$

ELEMENTS 0F GEOMETRY.

BOOKI.

ELEMENTARY PRINCIPLES.

DEFINITIONS.

1. Geometry is that branch of Mathematics which treats of the properties, relations, and measurements of the Geometrical Magnitudes.
2. A Point is that which has position, but not magnitude.
3. A Line is that which has length, bu ${ }^{+}$neither breadth nor thickness.

Lines are divided into two classes, straight and curved.
4. A Straight Line is one which does not change its direction at any point.
5. A Curved Line is one which changes its direction at every point.

When the sense is obvious, to avoid repetition, the word line, alone, is sometimes used for straight line; and the word curve, alone, for curved line.
6. A line made up of straight lines, not lying in the same direction, is called a broken line.
7. A Surface is that which has length and breadth without thickness.

Surfaces are divided into two classes, plane and curved surfaces.
8. A Plane is a surface, such, that if any two of its points be joined by a straight line, that line will lie wholly in the surface.
9. A Curved Surface is a surface which is neither a plane nor composed of planes.
10. A Plane Angle is the amount of divergence of two straight lines lying in the same plane.

Thus, the amount of divergence of the lines $A B$ and $A C$, is an angle. The lines $A B$ and $A C$ are called sides, and their common point A, is called the ver-
 tex. An angle is designated by naming its sides, or sometimes by simply naming its vertex; thus, the above is called the angle $B A C$, or simply, the angle A.
11. When one straight line meets another the two angles which they form are called adjacent angles. Thus, the
 angles $A B D$ and $D B C$ are adjacent.
12. A Right Angle is formed by one straight line meeting another so as to make the adjacent angles equal. The first line is then said to be perpendicular to the second.
13. An Oblique Angle is formed by one straight line meeting another so as to make the adjacent angles unequal.

Oblique angles are subdivided into two classes, acute anyles, and obtuse angles.
14. An Acute Angle is less than a right angle
15. An Obtuse Angle is greater than a right angle.
16. Two straight lines are parallel, when they lie in the same plane and cannot meet, how far soever, either way, both may be produced. They then have the same direction.
17. A Plane Figure is a portion of a plane bounded by lines, either straight or curved.
18. A Polygon is a plane figure bounded by straight lines.

The bounding lines are called sides of the polygon. The broken line, made up of all the sides of the polygon, is called the perimeter of the polygon. The angles formed by the sides, are called angles of the polygon.
19. Polygons are classified according to the number of their sides or angles.

A Polygon of three sides is called a triangle; one of four sides, a quadriluteral; one of five sides, a pentagon; one of six sides, a hexagon ; one of seven sides, a heptagon; one of eight sides, an octagon ; one of ten sides, a decagon; one of twelve sides, a dodecagon, \&c.
20. An Equilateral Polygon, is one whose sides are all equal.

An Equtangular Polygon, is one whose angles are all equal.

A Regular Polygon, is one which is both 'equilateral and equiangular.
21. Two polygons are mutually equilateral, when their sides, taken in the same order, are equal, each to each: that is, following their perimeters in the same direction, the first
side of the one is equal to the first side of the other, the second side of the one, to the second side of the other, and so on.
22. Two polygons are mutually equiangular, when their angles, taken in the same order, are equal, each to each.
23. A Diagonal of a polygon is a straight line joining the vertices of two angles, not consecutive.
24. A Base of a polygon is any one of its sides on which the polygon is supposed to stand.
25. Triangles may be classified with reference either to their sides, or their angles.

When classified with reference to their sides, there are two classes: scalene and isosceles.

1st. A Scalene Triangle is one which has no two of its sides equal.

2d. An Isosceles Triangle is one which has two of its sides equal.

When all of the sides are equal, the triangle is equilateral.

When classified with reference to their angles, there are are two classes: right-angled and oblique-angled.

1st. A Right-angled Triangle is one that has one right angle.

The side opposite the right angle, is called the hypothenuse.

2d. An Oblique-angled Triangle is one whose angles are all oblique.

If one angle of an oblique-angled triangle is obtuse, the triangle is said to be obtuse-angled. If all of the angles are acute, the triangle is said to be acute-angled.
26. Quadrilaterals are classified with reference to the relat:ve directions of their sides. There are then two classes the first class embraces those which have no two sides par allel; the second class embraces those which have at least two sides parallel.

Quadrilaterals of the first class, are called trapeziums.
Quadrilaterals of the second class, are divided into two species: trapezoids and parallelograms.
27. A Trapezoid is a quadrilateral which has only two of its sides parallel.

28. A Parallelogram is a quadrilateral which has its opposite sides parallel, two and two.

There are two varieties of parallelograms: rectangles and rhomboids.

1st. A Rectangle is a parallelogram whose angles are all right angles.

A Square is an equilateral rectangle.
24. A Rhomboin is a parallelogram whose angles are all oblique.

A Rroarbus is an equilateral rhomboid.

29. Space is indefinite extension.
30. A Volume is a limited portion of space. A Volume has three dimensions : length, breadth, and thickness.

AXIOMS.

1. Thungs which are equal to the same thing, are equa to each other.
2. If equals be added to equals, the sums will be equal.

3 If equals be subtracted from equals, the remainders will be equal.
4. If equals be added to unequals, the sums will be onequal.
5. If equals be subtracted from unequals, the remainders will be unequal.
6. If equals be multiplied by equals, the products will be equal.
7. If equals be divided by equals, the quotients will be equal.
8. The whole is greater than any of its parts.
9. The whole is equal to the sum of all its parts.
10. All right angles are equal.
11. Only one straight line can be drawn joining two given points.
12. The shortest distance from one point' to another is measured on the straight line which joins them.
13. Through the same point, only ene straight line can be drawn parallel to a given straight line.

POSTULATES.

1. A straight line can be drawn joining any two points.
2. A straight line may be prolonged to any length.
3. If two straight lines are unequal, the length of the less may be laid off on the greater.
4. A straight line may be bisected; that is, divided into two equal parts.
5. An angle may be bisected.
6. A perpendicular may be drawn to a given straight line, either from a point without, or from a point on the line.
7. A straight line may be drawn, making with a given straight line an angle equal to a given angle.
8. A straight line may be drawn through a given point, parallel to a given line.

NOTE.

In making references, the following abbreviations are employed, viz.
A. for Axiom ;
B. for Book ;
C. for Corollary ;
D. for Definition ; 1. for Introduction ; P. for Proposition; Prob. for Problem ; Post. for Postulate; and S. for Scholinm. In referring to the same Book, the number of the Book is not given; in referring to any other Book, the number of the Book is given.

PROPOSITION I. THEOREM.

If a straight line meet another straight line, the sum of the adjacent angles will be equal to two right angles.

Let $D C$ meet $A B$ at C :
then will the sum of the angles $D C A$ and $D C B$ be equal to two right angles.

At C, let $C E$ be drawn perpendicular to $A B$ (Post.6) ; then,
 by definition (D. 12), the angles $E C A$ and ECB will both be right angles, and conses. quently, their sum will be equal to two right angles.

The angle $D C A$ is equal to the sum of the angles $E C A$ and $E C D$ (A. 9) ; hence,

$$
D C A+D C B=E C A+E C D+D C B
$$

But, $E C D+D C B$ is equal to $E C B$ (A. 9); hence,

$$
D C A+D C B=E C A+E C B
$$

The sum of the angles $E C A$ and $E C B$, is equal to two right angles; consequently, its equal, that is, the sum of the angles $B C A$ and $D C B$, must also be equal to two right angles; which was to be proved.

Cor. 1. If one of the angles $D C A, D C B$, is a right angle, the other must also be a right angle.

Cor. 2. The sum of the angiles $B A C, C A D, D A E, E A F$, formed about a given point on the same side of a straight line $B F$, is equal to two right angees. For, their sum is equal to

the sum of the angles $E A B$ and $E A F$; which, from the proposition just demonstrated, is equal to two right angles.

definitions.

If two straight lines intersect each other, they form four angles about the point of intersection, which have receive! different names, with respect to each other.
1°. Adjacent Angles are those which lie on the same side of one line, and on opposite sides of the other ; thus, $A C E$ and $E C B$, or $A C E$ and $A C D$, are
 adjacent angles.
2°. Pposite, or Vertical Angles, are those which lie on opposite sides of both lines; thus, $A C E$ and $D C B$, or $A C D$ and $E C B$, are opposite angles. From the proposition just demonstrated, the sum of any two adjacent angles is equal to two right angles.

PROPOSITION II. THEOREM.

If two straight lines intersect each other, the opposite or vertical angles will be equal.

Let $A B$ and $D E$ intersect at C : then will the opposite or vertical angles be equal.

The sum of the adjacent angles $A C E$ and $A C D$, is equal to
 two right angles (P. I.) : the sum of the adjacent angles $A C E$ and $E C B$, is also equal to two right angles. But things which are equal to the same thing, are equal to each other (A. 1) ; hence,

$$
A C E+A C D=A C E+E C B ;
$$

Taking from both the common angle $A C E$ (A. 3), there remains,

$$
A C D=E C B
$$

In like manner, we find,

$$
A C D+A C E=A C D+D C B ;
$$

and, taking away the common angle $A C D$, we have,

$$
A C E=D C B
$$

Hence, the proposition is proved.
Cor. 1. If one of the angles about C is a right angle, all of the others will be tight angles also. For, (P.I., C. 1), each of its adjacent angles will be a right angle; and from the proposition just demonstrated, its opposite angle will also be a right angle.

Cor. 2. If one line $D E$, is
 perpendicular to another $A B$, then will the second line $A B$ be perpendicular to the first $D E$. For, the angles $D C A$ and $D C B$ are right angles, by definition (D. 12); and from what has just been proved, the angles $A C E$ and $\boldsymbol{E C E}$ are also right angles. Hence, the two lines are mutually perpendicular to each other.

Cor. 3. The sum of all the angles $A C B, B C D, D C E, E C F$, FCA, that can be formed about a point, is equal to four right angles.

For, if two lines be drawn through the point, mutually perpendicular to each other, the sum of the angles which they form will be equal to four right angles, and it will also be equal to the sum of the given angles (A.9). Hence, the sum of the given angles is equal to four right angles.

PROPOSITION HI. TIIEOREM.

If two straight lines have two points in common, they will coincide throughout their whole extent, and form one and the same line.

Let A and B be two points common to two lines: then will the lines coincide thronghout.

Between A and B they must coincide (A. 11). Suppose, now, that they begin to separate at some point C, beyond $A B$, the one becoming $A C E$, and the other $A C D$. If the lines do separate at C, one or the other must change direction at this point; but this is contradictory to the definition of a straight line (D. 4):
hence, the supposition that they separate at any point is absurd. They must, therefore, coincide throughout; which was to be proved.

Cor. Two straight lines can intersect in only one point.

Note.-The method of demonstration employed above, is called the reductio ad absurdum. It consists in assuming an hypothesis which is the contradictory of the proposition to be proved, and then continuing the reasoning until the assumed hypothesis is shown to be false. Its contradictory is thus proved to be true. This method of demonstration is often used in Geometry.

PROPOSITION IV. THEOREM.

If a straight line meet two other straight lines at a com. mon point, making the sum of the contiguous angles equal to two right angles, the two lines met will form one and the same straight line.

Let $D C$ meet $A C$ and $B C$ at C, making the sum of the angles $D C A$ and $D C B$ equal to two right angles: then will
 $C B$ be the prolongation of $A C$.

For, if not, suppose $C E$ to be the prolongation of $A C$; then will the sum of the angles $D C A$ and $D C E$ be equal to two right angles (P. I.) : We shall; consequently, have (A. 1),

$$
D C A+D C B=D C A+D C E
$$

Taking from both the common angle $D C A$, there re mains,

$$
D C B=D C E
$$

which is impossible, since a part cannot be equal to the whole (A. 8). IIence, $C B$ must be the prolongation of ΔC; which was to be proved.

PROPOSITION V. TIIEOREM.

If two triangles have two sides anil the included angle of the one equal to two sides and the included angle of the other, each to each, the triangles will be equal in all their parts.

In the triangles $A B C$ and $D E F$, let $A B$ be equal
to $D E, A C$ to $D F$, and the angle A to the angle D : then will the triangles be equal in all their parts.

For, let $A B C$ be applied to DEF, in such a manner that the angle A shall coincide with the angle D, the side $A B$ taking
 the direction $D E$, and the side $A C$ the direction $D F$. Then, because $A B$ is equal to $D E$, the vertex B will coincide with the vertex E; and because $A C$ is equal to $D F$, the vertex C will coincide with the vertex F; consequently, the side $B C$ will coincide with the side EF (A. 11). The two triangles, therefore, coincide throughout, and are consequently equal in all their parts (I., D. 14) ; which was to be proved.

PROPOSITION VI. THEOREM.

If two triangles have two angles and the included side of the one equal to two angles and the included side of the other, each to each, the triangles will be equal in all their parts.

In the triangles $A B C$ and $D E F$, let the angle B be equal to the angle E, the angle. C to the angle F, and the side $B C$
 to the side $E F$: then will the triangles be equal in all their parts.

For, let $A B C$ be applied to DEF in such a manner that the angle \boldsymbol{B} shall coincide with the angle E, the side
$B C^{\prime}$ taking the direction $E F$, and the side $B A$ the direction $E D$. Then, because $B C$ is equal to $E F$, the vertex C will coincide with the vertex F; and because the angle C is equal to the angle F, the side $C A$ will take the direction $F D$. Now, the rertex A being at the same time on the lines $E D$ and $F D$, it must be at their intersection D (P. III., C.) : hence, the triangles coincide throughout, and are therefore equal in all their parts (I., D. 14); which was to be proved.

PROPOSITION VII. TIIEOREM.

The sum of any two sides of a triangle is greater than the third side.

Let $A B C$ be a triangle: then will the sum of any two sides, as $A B, B C$, be greater than the third side $A C$.

For, the distance from A to C,
 measured on any broken line $A B, B C$, is greater than the distance measured on the straight line $A C$ (A. 12): hence, the sum of $A B$ and $B C$ is greater than $A C$; which was to be proved.

Cor. If from both members of the inequality,

$$
A C<A B+B C
$$

we take away either of the sides $A B, B C$, as $B C$, for example, there will remain (A. 5),

$$
A C-B C<A B
$$

that is, the difference between any two sides of a triangle is less than the third side.

Scholicm. In order that any three given lines may re-
present the sides of a triangle, the sum of any two must be greater than the third, and the difference of any two must be less than the third.

proposition viri. titeorem.

If from any puint within a triangle two straight lines b drawn to the extremities of any side, their sum will be less than that of the two remaining sides of the triangle.

Let O be any point within the triangle $B A C$, and let the lines $O B, O C$, be drawn to the extremities of any side, as $B C^{\prime}$: then will the sum of $B O$ and $O C$ be less than the sum of the sides $B A$ and $A C$.

Prolong one of the lines, as $B O$, till it meets the side $A C$ in D; then, from Prop. VII., we shall have,

$$
O C<O D+D C
$$

adding $B O$ to both members of this inequality, recollecting that the sum of $B O$ and $O D$ is equal to $B D$, we have (A. 4),

$$
B O+O C<B D+D C
$$

From the triangle $B A D$, we have (P. VII.),

$$
B D<B A+A D
$$

adding $D C$ to both members of this inequality, recollecting that the sum of $A D$ and $D C$ is equal to $A C$, we have,

$$
B D+D C<B A+A C
$$

But it was shown that $B O+O C$ is less than $B D+D C$; still more, then, is $B O+O C$ less tlan $B A+A C$; which mas to be proved.

PROPOSITION IX. TIIEOREM.

If two triangles have two sides of the one equal to two sides of the other, each to each, and the included angles unequal, the third sides will be unequal; and the greater side will belong to the triangle which has the greater included angle.

In the triangles $B A C$ and $D E F$, let $A B$ be equal to $D E, A C$ to $D F$, and the angle A greater than the angle D : then will $B C$ be greater than $E F$.

Let the line $A G$ be drawn, making the angle $C A G$ equal to the angle D (Post. 7) ; make $A G$ equal to $D E$, and draw $G C$. Then will the triangles $A G C$ and $D E F$ have two sides and the included angle of the one equal to two sides and the included angle of the other, each to each; consequently, $G C$ is equal to $E F$ (P. V.).

Now, the point G may be without the triangle $A B C$, it may be on the side $B C$, or it may be within the triangle $A B C$. Each case will be considered separately.
1°. When \boldsymbol{G} is without the triangle $A B C$.

In the triangles $G I C$ and $A I B$, we have, (1. VII.),

$$
G I+I C>G C, \quad \text { and } \quad B I+I A>A B
$$

whence, by addition, recollecting that the sum of $B I$ and $I C$ is equal to $B C$, and the sum of $G I$ and $I A$, to $G A$, we have,

$$
A G+B C>A B+G C
$$

Or, since $A G=A B$, and $G C=E F$, we have,

$$
A B+B C>A B+E F
$$

Taking away the common part $A B$, there remains (A. 5),

$$
B C>E F
$$

2°. When G is on $B C$.
In this case, it is obvious that $G C$ is less than $B C$; or, since $G C=E F$, we have,

$$
B C>E F
$$

3°. When G is within the triangle $A B C$.
From Proposition VIII., we have,

$$
B A+B C>G A+G C
$$

or, since $G A=B A$, and $G C=E F$, wo have,

$$
B A+B C>B A+E F
$$

Taking away the common part $A B$, there remains,

$$
B C>E F .
$$

Hence, in each case, $B C$ is greater than $E F$; which was to lep proved.

Conversely: If in two triangles $A B C$ and $D E F$, the side $A P$ is equal to the side $D E$, the side $A C$ to $D F$, and $B C^{\prime}$ greater than $E F$, then will the angle $B A C$ be greater than the angle EDF.

For, if not, $B A C$ must either be equal to, or less than, $E D F$. In the former case, $B C$ would be equal to $E F$ (P. V.), and in the latter case, $B C$ would be less than $E F$; either of which would be contrary to the hypothesis: hence, $B A C$ must be greater than $E D F$.

PROPOSITION X. TIEOREM.

If two triangles have the three sides of the one equal to the three sides of the other, each to each, the triangles will be equal in all their parts.

In the triangles $A B C$ and $D E F$, let $A B$ be equal to $D E, A C$ to $D F$, and $B C$ to $E F$: then will the triangles be equal in all their parts.

For, since the sides $A B, A C$, are equal to $D E, D F$, each to each, if the angle A were greater than D, it would follow, by the last $\operatorname{Pr}>$
 position, that the side $B C$ would be greater than $E F$; and if the angle A were less than D, the side $B C$ would be less than $E F$. But $B C$ is equal to $E F$, by hypothesis; therefore, the angle A can neither be greater nor less than D : hence, it must be equal to it. The two triangles have, therefore, two sides and the included angle of the one equal to two sides and the included angle of the other, each to each ; and, consequently, they are equal in all their parts (P. V.) ; which was to be proved.

Scholium. In triangles, equal in all their parts, the equal sides lie opposite the equal angles; and conversely.

PROPOSITION XI. THEOREM.

In an isosceles triangle the angles opposite the equal sides are equal.

Let $B A C$ be an isosceles triangle, having the side $A B$ equal to the side $A C$: then will the angle C be equal to the angle B.

Join the vertex A and the middle point D of the base $B C$. Then, $A B$ is equal to $A C$, by hypothesis, $A D$ common, and $B D$ equal to $D C$, by construction: hence, the triangles $B A D$, and $D A C$, have the three sides of the one equal to those of the other, each to each; therefore, by the last Proposition, the angle B is equal to the angle C;
 which was to be proved.

Cor. 1. An equilateral triangle is equiangular.
Cor. 2. The angle $B A D$ is equal to $D A C$, and $B D A$ to $C D A$: hence, the last two are right angles. Consequently, a straight line drawn from the vertex of an isosceles. triangle to the middle of the base, bisects the angle at the vertex, and is perpendicular to the base.

PROPOSITION XII. TIIEOREM.
If two angles of a triangle are equal, the sides opposite to them are also equal, and consequently, the triangle is isosceles.

In the triangle $A B C$, let the angle $A B C$ be equal to the angle $A C B$: then will $A C$ be equal to $A B$, and consequently, the triangle will be isosceles.

For, if $A B$ and $A C$ are not equal, suppose one of them, as $A B$, to be the
 greater. On this, take $B D$ equal to $A C$ (Post. 3), and draw $D C$. Then, in the triangles $A B C, D B C$, we have the side $B D$ equal to $A C$, by construction, the side $B U^{\prime}$ common, and the included angle $A C B$ equal to the included angle $D B C$, by hypothesis : hence, the two triangles are equal
in all therr parts (P. V.). But this is impossible, because a part cannot be equal to the whole (A. 8) : hence, the hypothesis that $A B$ and $A C$ are unequal, is false. They must, therefore, be equal ; which was to be proved.

Cor. An equiangular triangle is equilateral.

PROPOSITION XIII. THEOREM.

In any triangle, the greater side is opposite the greater angle; and, conversely, the greater angle is opposite the greater side.

In the triangle $A B C$, let the angle $A C B$ be greater than the angle $A B C$: then will the side $A B$ be greater than the side $A C$.

For, draw $C D$, making the angle
 $B C D$ equal to the angle B (Post. 7): then, in the triangle $D C B$, we have the angles $D C B$ and $D B C$ equal: hence, the opposite sides $D B$ and $D C$ are equal (P. XII.). In the triangle $A C D$, we bave (P. VII.),

$$
A D+D C>A C
$$

or, since $D C=D B$, and $A D+D B=A B$, we have,

$$
A B>A C
$$

which was to be proved.
Conversely: Let $A B$ be greater than $A C$: then will the angle $A C B$ be greater than the angle $A B C$.

For, if $A C B$ were less than $A B C$, the side $A B$ would be less than the side $A C$, from what has just been proved; if $A C B$ were equal to $A B C$, the side $A B$ would be equal to $A C$, by Prop. XII.; but both conclusions are contrary
to the hypothesis: hcnce, $A C B$ can neither be less than, nor equal to, $A B C$; it must, therefore, be greater ; which was to be proved.

PROPOSITION XIV. TIIEOREM.

From a given point only one perpendicular can be drazon th a given straight line.

Let A be a given point, and $A B$ a perpendicular to $D E$: then can no other perpendicular to $D E$ be drawn from A.

For, suppose a second perpendicular $A C$ to be drawn. Prolong $A B$ till $B F$ is equal to $A B$, and draw $C F$.
 Then, the triangles $A B C$ and $F B C$ will have $A B$ equat to $B F$, by construction, $C B$ common, and the included angles $A B C$ and $F B C$ equal, because both are right angles: hence, the angles $A C B$ and $F C B$ are equal (P. V.) But $A C B$ is, by a hypothesis, a right angle: hence, $F^{C} C B$ must also be a right angle, and consequently, the line $A C F$ must be a straight line (P.IV.). But this is impossible (A. 11). The hypothesis that two perpendiculars can be drawn is, therefore, absurd ; consequently, only one such perpendicular can be drawn; which was to be provect.

If the given point is on the given line, the proposition is exually true. For, if from A two perpendiculars $A B$ and $A C$ could be drawn to $D E$, we should have $B A E$ and $C A E$ each equal to a right angle; and consequently, equal to each other ; which is absurd (A. 8).

PROPOSITION XV. THEOREM.

If from a point without a straight line a perpendicular be let fall on the line, and oblique lines be drawn to differ-- ent points of it:
1°. The perpendicular will be shorter than any oblique line. 2. . Any two oblique lines that meet the given line at points equally distant from the foot of the perpendicular, will be equal:
3°. Of two oblique lines that meet the given line at points unequally distant from the foot of the perpendicular, the one which meets it at the greater distance will be the longer.

Let A be a given point, $D E$ a given straight line, $A B$ a perpendicular to $D E$, and $A D, A C, A E$ oblique lines, $B C$ being equal to $B E$, and $B D$ greater than $B C$. Then will $A B$ be less than any of the oblique lines, $A C$ will be equal to $A E$, and $A D$ greater
 than $A C$.

Prolong $A B$ until $B F$ is equal to $A B$, and draw $F C, F D$.
1°. In the triangles $A B C, F B C$, we have the side $A B$ equal to $B F$, by construction, the side $B C$ common, and the included angles $A B C$ and $F B C$ equall, because both are right angles: hence, $F C$ is equal to $A C$ (P. V.). But, $A F$ is shorter than $A C F$ (A. 12): hence, $A B$, the half of $A F$, is shorter than $A C$, the half of $A C F$; whick was to be proved.
2°. In the triangles $A B C$ and $A B E$, we have the side $B C$ equal to $B E$, by hypothesis, the side $A B$ com mon, and the included angles $A B C$ and $A B E$ equal,
because both are right angles: hence, $A C$ is equal to $A E$; which was to be proved.
3°. It may be shown, as in the first case, that $A D$ is equal to $D F$. Then, because the point C lies within the triangle $A D F$, the sum of the lines $A D$ and $D F$ will be greater than the sum of the lines $A C$ and $C F$ (P. VIII.): hence, $A D$, the half of $A D F$, is greater than $A C$, the half of $A C F$; which was to be proved.

Cor. 1. The perpendicular is the shortest distance from a point to a line.

Cor. 2. Frem a given point to a given straight line, only two equal straight lines can be drawn; for, if there could be more, there would be at least two equal oblique lines on the same side of the perpendicular; which is impossible.

PROPOSITION XVI. THEOREM.

If a perpendicular be arawn to a given straight line at its middle point:
1°. Any point of the perpendicular will be equally distant from the extremities of the line:
2°. Any point, without the perpendicular, will be unequally distant from the extremities.

Let $A B$ be a given straight line, C its middle point, and $E F$ the perpendicular. Then will any point of $E F$ be equally distant from A and B; and any point without $E F$, will be unequally distant from A and B.
1°. From any point of $E F$, as D, draw the lines $D A$ and $D B$. Then will $D \dot{A}$
 and $D B$ be equal (P. XV.) : hence, D is equally distant from A and B; which was to be proved.
2^{2}. From any point without $E F$, as I, draw $I A$ and IB. One of these lines, as $I A$, will cut $E F$ in some point D; draw $D B$. Then, from what has just been shown, $D A$ and $D B$ will be equal ; but $I B$ is less than the sum of $I D$ and $D B$ (P. VII.); and because the sum of $I D$ and $D B$ is equal to the sum of $I D$ and $D A$, or $I A$, we have $I B$ less than $I A$: hence, I is unequally distant from A and B; which was to be
 proved.

Cor. If a straight line $E F$ have two of its points E and F equally distant from A and B, it will be perpendicular to the line $A B$ at its middle point.

proposition xvil. tileorem.

If two right-angled triangles have the hypothenuse and a side of the one equal to the hypothenuse and a side of the other, each to each, the triangles will be equal in all their parts.
Let the right-angled triangles $A B C$ and $D E F$ have the hypothenuse $A C$ equal to $D F$, and the side $A B$
 equal to $D E:$ then will the triangles be equal in all their parts.

If the side $B C$ is equal to $E F$, the triangles will be equal, in accordance with Proposition X. Let us suppose then, that $B C$ and $E F$ are unequal, and that $B C$ is the longer. On $B C$ lay off $B G$ equal to $E F$, and draw $A G$. The triangles $A B G$ and $D E F$ have $A B$ equal to $D E$, by hypothesis, $B G$ equal to $E F$, by construction, and
the angles B and E equal, because both are right angles; consequently, $A G$ is equal to $D F^{\prime}$ (P. V.) But, $A C$ is equal to $D F$, by hypothesis : hence, $A G$ and $A C$ are equal, which is impossible (P. XV.). The hypothesis that $B C$ and $E F^{\prime}$ are unequal, is, therefore, absurd : hence, the triangles have all their sides equal, each to each, and are, consequently, equal in all of their parts; which was to be proved.

PROPOSITION XVIII. THEOREM.

If two straight lines are perpendicular to a third straight line, they will be parallel.

Let the two lines $A C, B D$, be perpendicular to $A B$: then will they be parallel.

For, if they could meet in a point O, there would be two perpendiculars $O A, O B$, drawn from the same point to the same
 straight line; which is impossible (P. XIV.): hence, the lines are parallel ; which was to be proved.

DEFINITIONS.

If a straight line $E F$ interssect two other straight lines $A B$ and $C D$, it is called a secant, with respect to them. The eight angles formed about the points of intersection have different names, with respect to each other.

1°. Interior angles on the same side, are those that lie on the same side of the secant and within the other two lines. Thus, $B G I I$ and $G I D$ are interior angles on the same side.
2°. Exterior angles on the same side, are those that lie on the same side of the secant and without the other two lines. Thus, $E G B$ and $D H F$ are exterior angles on the same side.
3°. Alternate angles', are those that lie on opposite sides "f the secant and within the other two lines, but not adjacent. Thus, $A G I I$ and $G I I D$
 are alternate angles.
4. Alternate exterior angles, are those that lie on opposite sides of the secant and without the other two lines. 'Thus, $A G E$ and $F H D$ are alternate exterior angles.
5°. Opposite exterior and interior angles, are those that lie on the same side of the secant, the one within and the other without the other two lines, but not adjacent. Thus, $E G B$ and GIID are opposite exterior and interior angles.

PROPOSITION XIX. THEOREM.
If two straight lines meet a third straight line, making the sum of the interior angles on the same side equal to two right angles, the two lines will be parallel.

Let the lines $K C$ and $I I D$ meet the liné $B A$, making the sum of the angles $B A C$ and $A D D$ equal to two right angles: then will $K C$ and $I D$ be parallel.

Through G, the middle point of $A B$, draw $G F$ perpendicular to $K C$, and prolong it to E.

The sum of the angles $G B E$ and $G B D$ is equal to two right

angles (P. I.); the sum of the angles $F A G$ and $G B D$ is equal to two right angles, by hypothesis : hence (A. 1),

$$
G B E+G B D=F A G+G B D
$$

Taking from both the common part $G B D$, we have the angle $G B E$ equal to the angle $F A G$. Again, the angles $B G E E$ and $A G F$ are equal, because they are vertical angies (P. II.): hence, the triangles $G E B$ and $G F A$ have two of their angles and the ineluded side equal, each to each; they are, therefore, equal in all their parts (P. VI.): hence, the angle $G E B$ is equal to the angle $G F A$. But, GFA is a right angle, by construction; GEB must, therefore, be a right angle : hence, the lines $K C$ and $I I D$ are both perpendicular to $E F$, and are, therefore, parallel (P. XVIII.); which was to be proved.

Cor. 1. If two straight lines are cut by a third straight line, making the alternate angles equal to each other, the two straight lines will be parallel.

Let the angle $I I G A$ be equal to GIID. Adding to both, the angle $H G B$, we have,
$H G A+H G B=G I I D+H G B$.
But the first sum is equal to two right angles (P. I.) : hence,
 the second sum is also equal to two right angles; therefore, from what has just been shown, $A B$ and $C D$ are parallel.

Cor. 2. If two straight lines are cut by a third, making the opposite exterior and interior angles equal, the two straight lines will be parallel. Let the angles $E G B$ and $G H D$ be equal: Now $E G B$ and $A G H$ are equal, because they are vertical angles (P. II.) ; and consequently, $A G I I$ and $G H D$ are equal: hence, from $C o r .1, A B$ and $C D$ are parallel.

IROPOSITION XX. THEOREM.

If a straight line intersect two parallel straight lines, the sum of the interior angles on the same side will be equal to two right angles.

Let the parallels $A B, C D$, be cut by the secant line $F E:$ then will the sum of $H G B$ and $G H D$ be equal to two right angles.

For, if the sum of $H G B$ and $G H D$ is not equal to two right angles, let $I G L$ be drawn, making the sum of $I I G L$ and GIID equal to two right angles; then $I L$ and $C D$ will
 be parallel (P. XIX.) ; and consequently, we shall have two lines $G B, G L$, drawn through the same point G and parallel to $C D$, which is impossible (A. 13): hence, the sum of $I I G B$ and $G I I D$, is equal to two right angles; which was to be proved.

In like manner, it may be proved that the sum of $I I G A$ and $G H C$, is equal to two right angles.

Cor. 1. If $I I G B$ is a right angle, $G I I D$ will be a right angle also : hence, if a line is perpendicular to one of two parallels,. it is perpendicular to the other also.

Cor. 2. If a straight line meet toc paralle'ls, the alternate angles will be equal,

For, if $A B$ and $C D$ are parallel, the sum of $B G I I$ and GIID is equal to two right angles; the sum of $B G I I$ and $H G A$ is also equal to two right angles (P. I.) : hence, these sums

are equal. Taking away the common part $B G I I$, there remains the angle $G I I D$ equal to $H G A$. In like manner, it may be shown that $B G I I$ and $G H C$ are equal.

Cor. 3. If a straight line meet two parallels, the opposite exterior and interior angles will be equal. The angles DHG and $I I G A$ are equal, from what has just been shown. The angles $I I G A$ and $B G E$ are equal, because they are vertical : hence, $D I I G$ and $B G E$ are equal. In like manner, it may be shown that $C I I G$ and $A G E$ are equal.

Scholium. Of the eight angles formed by a line cutting two parallel lines obliqucly, the four acute angles are equal, and so, also, are the four obtuse angles.

PROPOSITION XXI. THEOREM.

If two straight lines intersect a third straight line, making the sum of the interior angles on the same side less than two right angles, the two lines will meet if sufficiently produced.

Let the two lines $C D, I L$, meet the line $E F$, making the sum of the interior angles $I I G L, G H D$, less than two right angles: then will $I L$ and $C D$ meet if sufficiently produced.

For, if they do not meet, they must be parallel (D. 16). But, if they were parallel, the sum of the interior angles $I I G L$, $G I I D$, would be equal to two right angles (P. XX.), which is contrary to the hypothesis : hence,
 $I L, C D$, will meet if sufficiently produced; which was to be proved.

Cor. It is evident that $I L$ and $C D$, will meet on that side of $E F$, on which the sum of the two angles is less than two right angles.

PROPOSITION XXII. THEOREM.

If two straight lines are parallel to a third line, they are parallel to each other.

Let $A B$ and $C D$ be respectively parallel to $E F$: then will they be parallel to each other.

For, draw $P R$ perpendicular to $E F$; then will it be perpendicular to $A B$, and also to $C D$ (P. XX., C. 1) :
 hence, $A B$ and $C D$ are perpendicular to the same straight line, and consequently, they are parallel to each other (P. XVIII.) ; which was to be proved.

PROPOSITION XXIII. TIIEOREM.

Two parallels ate everywhere equally distant.
Let $A B$ and $C D$ be parallel : then will they be everywhere equally distant.

From any two points of $A B$, as F and E, draw $F I I$ and $E G$ perpendicular to $C D$; they will also be perpendicular to $A B$ (P. XX., C. 1),
 and will measure the distance between $A B$ and $C D$, at the points F and E. Draw also $k G$ The lines $F I I$ and $E G$ are parallel (P. XVIII.) : hence, the alternate angles $I F F G$ and $F G E$ are equal (P. XX., C. 2). The lines $A B$ and $C D$ are parallel, by hypothesis: hence,
the alternate angles $E F G$ and $F G I I$ are equal. The triangles $F G E$ and $F G H$ have, therefore, the angle $H G F$ equal to $G F E, G F I I$ equal to $F G E$, and the side $F G$ common; they are, therefore, equal in all their parts (P. VI.): hence, $F H$ is equal to $E G$; and consequently, $A B$ and $C D$ are everywhere equally distant; which was to be proved.

PROPOSITION XXIV. THEOREM.

If two angles have their sides parallel, and lying either in the same, or in opposite directions, they will be equal.
1°. Let the angles $A B C$ and $D E F$ have their sides parallel, and lying in the same direction: then will they be equal.

Prolong $F E$ to L. Then, because $D E$ and $A L$ are parallel, the exterior angle $D E F$ is equal to its opposite interior angle $A L E$ (P. XX., C. 3) ; and because $B C$ and $L F$ are parallel, the
 exterior angle $A L E$ is equal to its opposite interior angle $A B C$: hence, $D E F$ is equal to $A B C$; which was to be proved.
2°. Let the angles $A B C$ and $G H K$ have their sides parallel, and lying in opposite directions: then will they be equal.

Prolong GII to M. Then, because $K I I$ and $B M$ are parallel, the exterior angle $G I I K$ is equal to its opposite interior angle $H M B$; and because $I M M$ and $B C$ are parallel, the angle $H M B$ is equal to its alternate angle $M B C$ (P. XX., C. 2) : hence, $G H K$ is equal to $A B C$; which was to be proved.

Cor. The oppositu angles of a parallelogram are equal.

PROPOSITION XXV. THEOREM.

In any triangle, the sum of the three angles is equal to two right angles.
, Let $C B A$ be any triangle: then will the sum of the angles C, A, and B, be equal to two right angles.

For, prolong $C A$ to D, and draw $A E$ parallel to $B C$.

Then, since $A E$ and $C B$ are parallel, and $C D$ cuts them, the ex
 terior angle $D A E$ is equal to its opposite interior angle C (P. XX., C. 3). In like manner, since $A E$ and $C B$ are parallel, and $A B$ cuts them, the alternate angles $A B C$ and $B A E$ are equal: hence, the sum of the three angles of the triangle $B A C$, is equal to the sum of the angles $C A B, B A E, E A D$; but this sum is equal to two right angles (P. I., C. 2); consequently, the sum of the three angles of the triangle, is equal to two right angles (A. 1); which was to be proved.

Cor. 1. Two angles of a triangle being given, the third will be found by subtracting their sum from two right angles.

Cor. 2. If two angles of one triangle are respectively equal to two angles of another, the two triangles are mutually equiangular.

Cor. 3. In any triangle, there can be but one right angle; for if there were two, the third angle would be zero. Nor can a triangle have more than one obtuse angle.

Cor. 4. In any right-angled triangle, the sum of the acute angles is equal to a right angle.

Cor. 5. Since every equilateral triangle is also equianguar (P. XI., C. 1), each of its angles will be equal to the third part of two right angles; so that, if the right angle is expressed by 1 , each angle, of an equilateral triangie, will be expressed by $\frac{2}{3}$.

Cor. 6. In any triangle $A B C$, the exterior angle $B A D$ is equal to the sum of the interior opposite angles B and C. For, $A E$ being parallel to $B C$, the part $B A E$ is equal to the angle. B, and the other part $D A E$, is equal to the angle C.

PROPOSITION XXVI. THEOREM.

The sum of the interior angles of a polygon is equal to two right angles taken as many times as the polygon has sides, less two.

Let $A B C D E$ be any polygon: tnen will the sum of its interior angles A, B, C, D, and E, be equal to two right angles taken as many times as the polygon has sides, less two.

From the vertex of any angle A, draw diagonals $A C, A D$. The polygon will be divided into as many triangles, less two, as it has sides, having the point A for a common vertex, and for bases, the sides of the polygon, except the two which form the
 angle A. It is evident, also, that the sum of the angles of these triangles does not differ from the sum of the angles of the polygon: hence, the sum of the angles of the polygon is equal to two right angles, taken as many times as there are triangles; that is, as many times as the polygon has sides, less two; which was to be proved.

Cor. 1. The sum of the interior angles of a quadrilateral is equal to two right angles taken twice; that is, to four right angles. If the angles of a quadrilateral are equal, each will be a right angle.

Cor. 2. The sum of the interior angles of a pentagon is equal to two right angles taken three times; that is, to six right angles: hence, when a pentagon is equiangular, each angle is equal to the fifth part of six right angles, or to $\frac{8}{5}$ of one right angle.

Cor. 3. The sum of the interior angles of a hexagon is equal to eight right angles : hence, in the equiangular hexagon, each angle is the sixth part of eight right angles, or $\frac{4}{3}$ of one right angle.

Cor. 4. In any equiangular polygon, any interior angle is equal to twice as many right angles as the figure has sides, less four right angles, divided by the number of angles.

PROPOSITION XXVII. THEOREM.

The sum of the exterior angles of a polygon is equal to four right angles.

Let the sides of the polygon $A B C D E$ be prolonged, in the same order, forming the exterior angles a, b, c, d, e; then will the sum of these exterior angles be equal to four right angles.

For, each interior angle, together with
 the corresponding exterior angle, is equal to two right angles (P. I.) : hence, the sum of all the interior and exterior angles is equal to two right angles taken
as many times as the polygon has sides. But the sum of the interior angles is equal to two right angles taken as many times as the polygon has sides, less two: hence, the sum of the exterior angles is equal to two right angles taken twice ; that is, equal to four right angles; which was to bc proved.

PROPOSITION XXVIII. THEOREM.

In any parallelogram, the opposite sides are equal, each to each.

Let $A B C D$ be a parallelogram: then will $A B$ be equal to $D C$, and $A D$ to $B C$.

For, draw the diagonal $B D$. Then, because $A B$ and $D C$ are parallel, the
 angle $D B A$ is equal to its alternate angle $B D C$ (P. XX., C. 2) : and, because $A D$ and $B C$ are parallel, the angle $B D A$ is equal to its alternate angle $D B C$. The triangles $A B D$ and $C D B$, have, therefore, the angle $D B A$ equal to $C D B$, the angle $B D A$ equal to $D B C$, and the included side $D B$ common; consequently, they are equal in all of their parts: hence, $A B$ is equal to $D C$, and $A D$ to $B C$; which was to be proved.

Cor. 1. A diagonal of a parallelogram divides it into twe triangles equal in all their parts.

Cor. 2. Two parallels included between two other par allels, are equal.

Cor. 3. If two parallelograms, have two sides and the included angle of the one, equal to two sides and the included angle of the other, each to each, they will be equal.

PROPOSITION XXIX. TIIEOREM.

If the opposite sides of a quadrilateral are equal, each to each, the figure is a parallelogram.

In the quadrilateral $A B C D$, let $A B$ be equal to $D C$, and $A D$ to $B C$: then will it be a parallelogram.

Draw the diagonal $D B$. Then, the
 triangles $A D B$ and $C B D$, will have the sides of the one equal to the sides of the other, each to each ; and therefore, the triangles will be equal in all of their parts: hence, the angle $A B D$ is equal to the angle $C D B$ (P. X., S.) ; and consequently, $A B$ is parallel to $D C$ (P. XLX., C. 1). The angle $D B C$ is also equal to the angle $B D A$, and consequently, $B C$ is parallel to $A D$: hence, the opposite sides are parallel, two and two ; that is, the figure is a parallelogram (D. 28) ; which was to be proved.

PROPOSITION XXX. THEOREM.

If two sides of a quadrilateral are equal and parallel, the figure is a parallelogram.

In the quadrilateral $A B C D$, let $A B$ be equal and parallel to $D C$: then will the figure be a parallelogram.

Draw the diagonal DB. Then, be-
 cause $A B$ and $D C$ are parallel, the angle $A B D$ is equal to its alternate angle $C D B$. Now, the triangles $A B D$ and $C D D$, have the side $D C$ equal! to $A B$, by hypothesis, the side $D B$ common, and the included angle $A B D$ equal to $B D C$, from what has just
been shown; hence, the triangles are equal in all their parts (P. V.) ; and consequently, the alternate angles $A D B$ and $D B C$ are equal. The sides $B C$ and $A D$ are, therefore, parallel, and the figure is a parallelogram; which was to be proved.

Cor. If two points be taken at equal distances from a given straight line, and on the same side of it, the straight line joining them will be parallel to the given line.

PROPOSITION XXXI. THEOREM.

The diagonals of a parallelogram divide each other into equal parts, or mutually bisect each other.

Let $A B C D$ be a parallelogram, and $A C, B D$, its diagonals: then will $A E$ be equal to $E C$, and $B E$ to $E D$.

For, the triangles $B E C$ and $A E D$, have the angles $E B C$ and $A D E$ equal
 (P. XX., C. 2), the angles $E C B$ and $D A E$ equal, and the included sides $B C$ and $A D$ equal: hence, the triangles are equal in all of their parts (P. VI.) ; consequently, $A E$ is equal to $E C$, and $B E$ to $E D$; which was to be proved

Scholium. In a rhombus, the sides $A B, B C$, being equal, the triangles $A E B, E B C$, have the sides of the one equal to the corresponding sides of the other ; they are, therefore, equal : hence, the angles $A E B, B E C$, are equal, and therefore, the two diagonals bisect each other at right angles.

BOOK II.

RATIOS AND PROPORTIONS.

DEFINITIONS.

1. The Ratio of one quantity to another of the same kind, is the quotient obtained by dividing the second by the first. The first quantity is called the Antecedent, and the second, the Consequent.
2. A Proportion is an expression of equality between two equal ratios. Thus,

$$
\frac{B}{A}=\frac{D}{C}
$$

expresses the fact that the ratio of A to B is equal to the ratio of C to D. In Geometry, the proportion is written thus,

$$
A: B:: C: D
$$

and read, A is to B, as C is to D.
3. A Continued Proportion is one in which several ratios are successively equal to each other ; as,

4. There are four terms in every proportion. The first and second form the first couplet, and the third and fourth,
the second couplet. The first and fourth terms are called extremes; the second and third, means, and the fourth term, a fourth proportional to the other three. When the second term is equal to the third, it is said to be a mean proportional between the extremes. In this case, there are but three different quantities in the proportion, and the last is said to be a third proportional to the other two. Thus, if we have,

$$
A: B:: B: C
$$

B is a mean proportional between A and C, and C is a third proportional to A and B.
5. Quantities are in proportion by alternation, when antecedent is compared with antecedent, and consequent with consequent.
6. Quantities are in proportion by inversion, when antecedents are made consequents, and consequents, antecedents.
7. Quantities are in proportion by composition, when the sum of antecedent and consequent is compared with either antecedent or consequent.
8. Quantities are in proportion by division, when the difference of the antecedent and consequent is compared either with antecedent or consequent.
9. Two varying quantities are reciprocally or inversely proportional, when one is increased as many times as the other is diminished. In this case, their product is a fixed quantity, as $x y=m$.
10. Equimultiples of two or more quantities, are the products obtained by multiplying both by the same quantity. Thus, $m A$ and $m B$, are equimultiples of A and B.

PROPOSITION I TIIEOREM.

If four quantities are in proportion, the product of the means will be equal to the product of the extremes.

Assume the proportion,

$$
A: B: C: D ; \text { whence, } \frac{B}{A}=\frac{D}{C}
$$

clearing of fractions, we have,

$$
B C=A D
$$

which was to be proved.
Cor. If B is equal to C, there will be but three proportional quantities; in this case, the square of the mean is equal to the product of the extremes.

PROPOSITION II. TIIEOREM.

If the product of two quantities is equal to the product of two other quantities, two of them may be made the means, and the other two the extremes of a proportion.

If we have,

$$
A D=B C
$$

by changing the members of the equation, we have,

$$
B C=A D
$$

dividing both members by $A C$, we have,

$$
\frac{B}{A}=\frac{D}{C}, \quad \text { or } \quad A: B:=C: D
$$

which was to be proved.
$2 i 4: 3: 6$

PROPOSITION III. THEOREM.

If four quantities are in proportion, they will be in proportion by alternation.

Assume the proportion,

$$
A: B:: C: D ; \text { whence, } \frac{B}{A}=\frac{D}{C}
$$

Multiplying both members by $\frac{C}{B}$, we have,

$$
\frac{C}{A}=\frac{D}{B} ; \quad \text { or, } \quad A: C:: B: D ;
$$

which was to be proved.

PROPOSITION IV. THEOREM.
If one couplet in each of two proportions is the same, the other couplets will form a proportion.

Assume the proportions,

$$
A: B:=C: D ; \quad \text { whence }, \quad \frac{B}{A}=\frac{D}{C}
$$

and, $A: B:=\boldsymbol{F}: G ;$ whence, $\frac{B}{A}=\frac{G}{F}$.
From Axiom 1, we have,

$$
\frac{D}{C}=\frac{G}{F} ; \quad \text { whence, } \quad C: D:: \quad F: G
$$

which was to be proved.
Cor. If the antecedents, in two proportions, are the same the consequent will be proportional. For, the antecedents of the second couplets may be made the consequent of the first, by alternation (P. III.).

PROPOSITION V. THEOREM.

If four quantities are in proportion, they will be in pros portion by inversion.

Assume the proportion,

$$
A: B:=C: D ; \quad \text { whence }, \quad \frac{B}{A}=\frac{D}{C}
$$

If we take the reciprocals of both members (A. 7), we have,

$$
\frac{A}{B}=\frac{C}{D} ; \quad \text { whence, } B: A:: D: C ;
$$

which was to be proved.

PROPOSITION VI. THEOREM.

If four quantities are in proportion, they will be in proportion by composition or division.

Assume the proportion,

$$
A: B:: C: D ; \text { whence, } \frac{B}{A}=\frac{D}{C}
$$

If we add 1 to both members, and subtract 1 from both members, we shall have,

$$
\frac{B}{A}+1=\frac{D}{C}+1 ; \quad \text { and, } \quad \frac{B}{A}-1=\frac{D}{C}-1 ;
$$

whence, by reducing to a common denominator, we have,

$$
\begin{aligned}
& B+A \\
& A=\frac{D+C}{C}, \quad \text { and, } \quad \frac{B-A}{A}=\frac{D-C}{C} ; \quad \text { whence } \\
& A: B+A:: C: D+C, \text { and, } A: B-A:: C: D-C
\end{aligned}
$$

which was to be proved.

PROPOSITION VII. THEOREM.

Equimultiples of two quantities are proportional to the quantidies themselves.

Let A and B be any two quantities; then $\frac{B}{A}$ will denote their ratio.

If we multiply both terms of this fraction by m, its value will not be changed; and we shall have,

$$
\frac{m B}{m A}=\frac{B}{A} ; \quad \text { whence, } \quad m A: m B:: A: B ;
$$

which wows to be proved.

PROPOSITION VIII. THEOREM.

If four quantities are in proportion, any equimultiples of the first couplet will be proportional to any equimultiples of the second couplet.

Assume the proportion,

$$
A: B:: C: D ; \quad \text { whence }, \quad \frac{B}{A}=\frac{D}{C}
$$

If we multiply both terms of the first member by m, and both terms of the second member by n, we shall have,

$$
\frac{m B}{m A}=\frac{n D}{n C} ; \quad \text { whence, } \quad m A: m B:: n C: n D ;
$$

which was to be proved.

PROPOSITION IX. THEOREM.

If two quantities be increased or diminished by like parts of each, the results will be proportional to the quantities themselves.

We have, Prop. VII.,

$$
A: B:: m A: m B
$$

If we make $m=1 \pm \frac{p}{q}$, in which $\frac{p}{q}$ is any fraction, we shall have,

$$
A: B:: A \pm \frac{p}{q} A: B \pm \frac{p}{q} B
$$

which was to be proved.

PROPOSITION X. THEOREM.

If both terms of the first couplet of a proportion be increased or diminished by like parts of each; and if both terms of the second couplet be increased or diminished by any other like parts of each, the results will be in proportion.

Since we have, Prop. VIII.,

$$
m A: m B:: n C: n D
$$

if we make $m=1 \pm \frac{p}{q}, \quad$ and, $n=1 \pm \frac{p^{\prime}}{q^{\prime}}$, we shall have,

$$
A \pm \frac{p}{q} A: B \pm \frac{p}{q} B:: \quad C \pm \frac{p^{\prime}}{q^{\prime}} C: D \pm \frac{p^{\prime}}{q^{\prime}} D
$$

which was to be proved.

PROPOSITION XI. THEOREM.

In any continued proportion, the sum of the antecedents is to the sum of the consequents, as any antecedent to its corresponding sonsequent.

From the definition of a continued proportion (D. 3), $A: B:: C: D:: E: F:: G: H, \& c$, hence,

$$
\begin{array}{ccc}
\frac{B}{A}=\frac{B}{A} ; & \text { whence, } & B A=A B \\
\frac{B}{A}=\frac{D}{C} ; & \text { whence, } & B C=A D ; \\
\frac{B}{A}=\frac{F}{E} ; & \text { whence, } & B E=A F ; \\
\frac{B}{A}=\frac{\Pi}{G} ; & \text { whence, } & B G=A H ; \\
\& c . & & \& c .
\end{array}
$$

Adding and factoring, we have,
$B(A+C+E+G+\& c)=.A(B+D+F+H+\& c):$.
hence, from Proposition Π.,
$\boldsymbol{A}+C+E+G+\& c .: B+D+F+M+\& c . \cdot: \boldsymbol{A}: \boldsymbol{B} ;$
which woas to be proved.

PROPOSITION XII. TIIEOREM.

If two proportions be multiplied together, term by term, the the products will be proportional.

Assume the two proportions,

$$
A: B:: C: D ; \quad \text { whence }, \quad \frac{B}{A}=\frac{D}{C}
$$

and, $E: F:: G: H ; \quad$ whence, $\frac{F}{E}=\frac{M}{G}$.
Multiplying the equations, member by member, we have,

$$
\frac{B F}{A E}=\frac{D I I}{C G} ; \quad \text { whence, } A E: B F:: C G: D H
$$

which was to be proved.

Cor. 1. If the corresponding terms of two proportions are equal, each term of the resulting proportion will be the square of the corresponding term in either of the given proportions: hence, If four quantities are proportional, their squares will be proportional.

Cor. 2. If the principle of the proposition be extended to three or more proportions, and the corresponding terms of each be supposed equal, it will follow that, like powers of proportional quantities are proportionals.

$$
\begin{aligned}
& 2: 4: 3: 6 \\
& 4: 8: 3: 10 \\
& 8: 32: 13: 60
\end{aligned}
$$

BOOK III.

IHE CIRCLE AND THE MEASUREMENT OF ANGLES

DEFINITIONS.

1. A Circle is a plane figure, bounded by a curved line, every point of which is equally distant from a point within, called the centre.

The bounding line is called the circumference.

2. A Radius is a straight line drawn from the centre to any point of the circumference.
3. A Diameter is a straight line drawn through the centre and terminating in the circumference.

All radii of the same circle are equal. All diameters are also equal, and eacn is double the radius.
4. An Arc is any part of a circumference.
5. A Chord is a straight line joining the extremities of an arc.

Any chord belongs to two ares: the smaller one is meant, unless the contrary is expressed.
6. A Segment is a part of a circle included between an arc and its chord.
7. A Sector is a part of a circle included within an an are and the radii drawn to its extremities.
8. An Inscribed Angle is an angle whose vertex is in the circumference, and whose sides are chords.

9. An Inscribed Polygon is a polygon whose vertices are all in the circumference. The sides are chords.

10. A Secant is a straight line which cuts the circumference in two points.
11. A Tangent is a straight line which touches the circumference in one point only. This point is called, the point of contact,
 or, the point of tangency.
12. Two circles are tangent to each other, when they touch each other in one point. This point is called, the point of contact, or the point of tangency.

13. A Polygon is circumscribed about a circle, when all of its sides are tangent to the circumference.
14. A Circle is inscribed in a polygon,
 when its circumference touches all of the sides of the polygon.

POSTULATE.
A circumference can be described from any point as a sentre and with any radius.

PROPOSITION I. THEOREM.

Any diameter divides the circle, and also its circumference, into two equal parts.

Let $A E B F$ be a circle, and $A B$ any diameter: then will it divide the circle and its circumference into two equal parts.

For, let $A F B$ be applied to $A E B$, the diameter $A B$ remaining common;
 then will they coincide; otherwise there would be some points in either one or the other of the curves unequally distant from the centre; which is impossible (D. 1): hence, $\boldsymbol{A} \boldsymbol{B}$ divides the circle, and also its circumference, into two equal parts; which was to be proved.

PROPOSITION II. TIIEOREM.

A diameter is greater than any other chord.

Let $A D$ be a chord, and $A B$ a diameter through one extremity, as A : then will $A B$ be greater than $A D$.

Draw the radius $C D$. In the riangle $A C D$, we have $A D$ less than the sum of $A C$ and $C D$ (B. I., P. VII.). But this sum is equal to $A B$ (D. 3) : hence, $A B$ is greater than $A D$; which was to be proved.

PROPOSITION III. THEOREM.

A straiglt line cannot meet a circumference in more than two points.

Let $A E B F$ be a circumference, and $A B$ a straight line : then $A B$ cannot meet the circumference in more than two points.

For, suppose that they could meet in three points. We should then have three
 equal straight lines drawn from the same point to the same straight line ; which is impossible (B. I., P. XV., C. 2) : hence, $A B$ cannot meet the circumference in more than two points; which was to be proved.

PROPOSITION IV. THEOREM.

In equal circles, equal arcs are subtended by equal chords ; and conversely, equal chords subtend equal arcs.
1°. In the equal circles $A D B$ and $E G F$, let the ares $A M D$ and $E N G$ be equal: then will the chords $A D$ and $E G$ be equal.

Draw the diameters $A B$ and $E F$. If the semi-circle $A D B$ be applied to the somi-circle $E G F$, it will coincide with it, and the semi-circumference $A D B$ will coincide with the semi-circumference $E G F$. But the part $A M D$ is equal to the part $E N G$, by hypothesis: hence, the point D will fall on G; therefore, the chord $A D$ will coincide with
$E G$ (A. 11), and is, therefore, equal to it ; which was to be proved.
2°. Let the chords $A D$ and $E G$ be equal: then will the arcs $A M D$ and $E N G$ be equal.

Draw the radii $C D$ and $O G$. The triangles $A C D$ and $E O G$ have all the sides of the one equal to the corresponding sides of the other; they are, therefore, equal in all their parts: hence, the angle $A C D$ is equal to $E O G$. If, now, the sector $A C D$ be placed upon the sector $E O G$, so that the angle $A C D$ shall coincide with the angle $E O G$, the sectors will coincide throughout; and, consequently, the arcs $A M D$ and $E N G$ will coincide: hence, they will be equal; which was to be proved.

PROPOSITION V. TIEOREM.

In equal circles, a greater arc is subtended by a greater chord; and conversely, a greater chord subtends a greater arc.
1°. In the equal circles $A D L$ and $E G K$, let the arc $E G P$ be greater than the arc $A M D$: then will the chord EP be greater than the chord $A D$.

For, place the circle $E G K$ upon $A I I L$, so that the centre O shall fall upon the centre C, and the point E upon A; then, because the arc $E G P$ is greater than $A M D$, the point P will fall at some point Π, beyond D, and the chord EP will take the position $A H$.

Draw the radii $C A, C D$, and $C H$. Now, the sides $A C, C H$, of the triangle $A C I I$, are equal to the sides $A C, C D$, of the triangle $A C D$, and the angle $A C H$ is
greater than $A C D$: hence, the side $A \Pi$, or its equal $E P$, is greater than the side $A D$ (B. I., P. IX.) ; which was to be proved.
2°. Let the chord $E P$, or its equal $A \Pi$, be greater than $A D$: then will the arc $E G P$, or its equal $A D H$, be greater than AMD.

For, if $A D H$ were equal to $A M D$, the chord $A H$ would be equal to the chord $A D$ (P. IV.) ; which is contrary to the hypothesis. And, if the arc $A D H$ were less than $A M D$, the chord $A I I$ would be less than $A D$; which is also contrary to the hypothesis. Then, since the arc $A D H$, subtended by the greater chord, can neither be equal to, nor less than $A M D$, it must be greater than $A M D$; which was to be proved.

PROPOSITION VI. THEOREM.

The radius which is perpendicular to a chord, bisects that chord, and also the arc subtended by it.

Let $C G$ be the radius which is perpendicular to the chord $A B$: then will this radius bisect the chord $A B$, and also the are $A G D$.

For, draw the radii $C A$ and $C B$. Then, the right-angled triangles $C D A$ and $C D B$ will have the hypothenuse $C A$ equal to $C B$, and the side $C D$
 common ; the triangles are, therefore, equal in all their parts : hence, $A D$ is equal to $D B$. Again, because $C G$
is perpendicular to $A B$, at its middle point, the chords $G A$ and $G B$ are equal (B. I., P. XVI.) ; and consequently, the ares $G A$ and $G B$ are also equal (P. IV.) : hence, $C G$ bisects the chord $A B$, and also the are $A G B$; which was to be proved.

Cor. A straight line, perpendicular to a chord, at its mid dle point, passes through the centre of the circle.

Scholium. The centre C, the middle point D of the chord $A B$, and the middle point G of the subtended arc, are points of the radius perpendicular to the chord. But two points determine the position of a straight line (A. 11): hence, any straight line which passes through two of these points, will pass through the third, and be perpendicular to the chord.

PROPOSITION VII. THEOREM.

Through any three points, not in the same straight line, one circumference may be made to pass, and but one.

Let A, B, and C, be any three points, not in a straight line: then may one circumference be made to pass. through them, and but one.

Join the points by the lines $A B, B C$, and bisect these lines by perpendiculars $D E$ and $F G$: then will these perpendiculars meet in some point 0 . For, if they do not meat, they are
 parallel ; and if they are parallel, the line $A B K$, which is perpendicular to $D E$, is also perpendicular to $K G$ (B. I., P. XX., C. 1) ; consequently, there are two lines $B K$ and $B F$, drawn through the same
point B, and perpendicular to the same line $K G$; which is impossible : hence, $D E$ and $F G$ meet in some point 0 .

Now, O is on a perpendicular to $A B$ at its middle point, it is, therefore, equally distant from \boldsymbol{A} and \boldsymbol{B} (B. I., P. XVI.). For a like reason, O is equally distant from B and C. If, therefore, a circumference be de-
 scribed from O as centre, with a radius equal to $O A$, it will pass through A, B, and C.

Again, O is the only point which is equally distant from A, B, and C : for, $D E$ contains all of the points which are equally distant from A and B; and $F G$ all of the points which are equally distant from B and C; and consequently, their point of intersection O, is the only point that is equally distant from A, B, and C : hence, one circumference may be made to pass through these points, and but one; which was to be proved.

Cor. Two circumferences cannot intersect in more than two points; for, if they could intersect in three points, there would be two circumferences passing through the same three points; which is impossible.

PROPOSITION VIII. TIIEOREM.

In equal circles, equal chords are equally distant from the centres; and of two unequal chorcls, the less is at the greater distance from the centre.
1°. In the equal circles $A C \Pi$ and $K L G$, let the chords $A C$ and $K L$ be equal : then will they be equally distant from the centres,

For, let the circle $K L G$ be placed upon $A C M$, so that the centre R shall fall upon the centre O, and the point \boldsymbol{K} upon the point A : then will the chord $K L$ coincide with $A C^{\prime} \quad(\mathrm{P}$. IV.) ; and consequently, they will be equally distans from the centre ; which was to be proved.

2°. Let $A B$ be less than $K L$: then will it be at a greater distance from the centre.

For, place the circle. $K L G$ upon $A C H$, so that R shall fall upon O, and K upon A. Then, because the chord $K L$ is greater than $A B$, the arc $K S L$ is greater than $A M B$; and consequently, the point L will fall at a point C, beyond B, and the chord $K L$ will take the direction $A C$.

Draw $O D$ and $O E$, respectively perpendicular to $A C$ and $A B$; then will $O E$ le greater than $O F$ (A. 8), and $O F$ than $O D$ (B. I., P. XV.) : hence, $O E$ is greater than $O D$. But, $O E$ and $O D$ are the distances of the two chords from the centre (B. I., P. XV., C. 1) : hence, the less chord is at the greater distance from the centre; which was to be proved.

Scholium. All the propositions relating to chords and arcs of equal circles, are also true for chords and arcs of one and the same circle. For, any circle may be regarded as made up of two equal circles, so placed, that they coincide in all their parts.

PROPOSITION LX. TIIEOREM.

If a straight line is perpendicular to a radius at its outer extremity, it will be tangent to the circle at that point; conversely, if a straight line is tangent to a circle at any point, it will be perpendicular to the radius drawn to that point.
1°. Let $B D$ be perpendicular to the radius $C A$, at A : then will it be tangent to the circle at A.

For, take any other point of $B D$, as E, and draw $C E$: then will $C E$ be greater than $C A$ (B. I., P. XV.) ; and consequently, the point E will lie without the circle : hence, $B D$
 touches the circumference at the point A; it is, therefore, tangent to it at that point (D.11); which was to be proved.
2°. Let $B D$ be tangent to the circle at A : then will it be perpendicular to $C A$.

For, let E be any point of the tangent, except the point of contact, and draw $C E$. Then, because $B D$ is a tangent, E lies without the circle; and cobnsequently, $C E$ is greater than $C A$: hence, $C A$ is shorter than auy vther line that can be drawn from C to $B D$; it is, therefore, perpendicular to BD (B. I., P. XV., C. 1) ; which woas to be proved.

Cor. At a given point of a circumference, only one tangent can be drawn. For, if two tangents could be drawn, they would both be perpendicular to the same radius at the same point ; which is impossible (B. I., P. XIV.).

PROPOSITION X. THEOREM.

Two parallels intercept equal arcs of a circumference.
There may be three cases: both parallels may be secants: one may be a secant and the other a tangent; or, both may be tangents.
1°. Let the secants $A B$ and $D E$ be parallel : then will the intercepted $\operatorname{arcs} M N$ and $P Q$ be equal.

For, draw the radius $C I I$ perpendicular to the chord $M P$; it will also be perpendicular to $N Q$ (B. I., P. XX., C. 1), and ΠI will be at. the middle point of the arc MHPP, and also of the are $N I I Q$: hence, $M N$, which is
 the difference of $I I N$ and $I I M$, is equal to $P Q$, which is the difference of $H Q$ and $H P$ (A. 3) ; which was to be proved.
2°. Let the secant $A B$ and tangent $D E$, be parallel \cdot then will the intercepted arcs $M I I$ and $P I I$ be equal.

For, draw the radius CII to the point of contact H; it will be perpendicular to $D E$ (P. IX.), and also to its parallel $M P$. But, because $C I I$ is perpendicular to $M P, \Pi$ is the middle point of the arc MIIP (P. VI.) : hence, $M H$
 and $P I I$ are equal; which wo as to be proved.
3°. Let the tangents $D E$ and $I L$ be parallel, and let Π and K^{r} be their points of contact: then will the irtercepted ares $I L M K$ and $I P K$ be equal.

For, draw the secant $A B$ parallel to $D E$; then, from what has just been shown, we shall have $I I M$ equal to $I I P$, and $M K$ equal to $P K$: hence, HM A, which is the sum of $H M$ and $M K$, is. equal to $H P K$, which is the sum of IIP and PK; which was to be proved.

PROPOSITION XI. THEOREM.

If two circumferences intersect each other, the points of intersection will be in a perpendicular to the straight line joining their centres, and at equal distances from it.

Let the circumferences, whose centres are C and D, intersect at the points A and B : then will $C D$ be perpendicular to $A B$, and $A F$ will be equal to $B F$.

For, the points A and B, being on the circumference whose centre is C, are equally
 distant from C; and being on the circumference whose centre is D, they are equally distint from D : hence, $C D$ is perpendicular to $A B$ at its middle point (B. I., P. XVI., C.) ; which was to be proved.

PROPOSITION XII. THEOREM.

If two circumferences intersect each other, the distance between their centres will be less than the sum, and greater than the difference, of their radii.

Let the circumferences, whose centres are C and D, intersect at A : then will $C D$ be less than the sum, and greater than the difference of the radii of the two circles.

For, draw $A C$ and $A D$, forming the triangle $A C D$. Then will $C D$ be less than
 the sum of $A C$ and $A D$, and greater than their difference (B. I., P. VII.); which was to be proved.

PROPOSITION XIII. THEOREM.

If the distance between the centres of two circles is equal to the sum of their radii, they will be tangent externally.

Let C and D be the centres of two circles, and let the distance between the centres be equal to the sum of the radii : then will the circles be tangent externally.

For, they will have a point A, on the line $C D$, common, and they will have no other point in common; for, if they had two points in common, the distance between their centres would be less than the sum of
 their radii; which is contrary to the hypothesis: hence, they are tangent externally; which was to be proved.

PROPOSITION XIV. THEOREM.

If the distance between the centres of two circles is equal to the difference of their radii, one will be tangent to the other internally.

Let C and D be the centres of two circles, and let the distance between these centres be equal to the difference of the radii : then will the one be tangent to the other internally.

For, they will have a point A, on $D C$, common, and they will have no other point in common. For, if they had two points in common, the distance between their centres would be greater than the difference of their radii ; which is contrary to the hypothesis:
 hence, one touches the other internally; which woas to be proved.

Cor. 1. If two circles are tangent, either externally or internally, the point of contact will be on the straight line drawn through their centres.

Cor. 2: All circles whose centres are on the same straight line, and which pass through a common point of that line, are tangent to each other at that point. And if a straight line be drawn tangent to one of the circles at their common point, it will be tangent to them all at that point.

Scholium. From the preceding propositions, we infer that two circles may have any one of six positions with respect to each other, depending upon the distance between their centres :
1°. When the distance between their centres is greates
than the sum of their radii, they are external, one to the other:
2°. When this distance is equal to the sum of the radii, they are tangent, externally:
3°. When this distance is less than the sum, and greater than the difference of the radii, they intersect each other:
4°. When this distance is equal to the difference of thein radii, one is tangent to the other, internally:
5°. When this distance is less than the difference of the radii, one is wholly within the other:
6°. When this distance is equal to zero, they have a common centre; or, they are concentric.

PROPOSITION XV. THEOREM.

In equal circles, radii making equal angles at the cenire, intercept equal arcs of the circumference ; conversely, radii which intercept equal arcs, make equal angles at the centre.
1°. In the equal circles $A D I S$ and $E G F$, let the angles $A C D$ and $E O G$ be equal : then will the arcs $A M D$ and $E N G$ be equal.

For, draw the chords $A D$ and $E G$; then will the triangles $A C D$ and $E O G$ have wo sides and their included angle, in the one, equal to two sides and their included
 angle, in the other, each to each. They are, therefore, equal in all their parts; consequently, $A D$ is equal to $E G$. But, if the chords $A D$ and $E G$ are equal, the arcs $A M D$ and $E N G$ are also equal (P. IV.) ; which was to be proved.
2°. Let the $\operatorname{arcs} A M D$ and $E N G$ be equal : then will the angles $A C D$ and $E O G$ be equal.

For, if the arcs $A M D$ and $E N G$ are equal, the chords $A D$ and $E G$ are equal (P. IV.) ; consequently, the triangles $A C D$ and $E O G$ have therr sides equal, each
 to each; they are, therefore, equal in all their parts: hence, the angle $A C D$ is equal to the angle EOG; which was to be proved.

PROPOSITION XVI. THEOREM.

In equal circles, commensurable angles at the centre are pro portional to their intercepted arcs.

In the equal circles, whose centres are C and O, let the angles $A C B$ and $D O E$ be commensurable; that is, be exactly measured by a common unit: then will they be proportional to the intercepted arcs $A B$ and $D E$.

Let the angle M be a common unit ; and suppose, for example, that this unit is contained 7 times in the angle $A C B$, and 4 times in the angle $D O E$. Then, suppose $A C B$ be divided into 7 angles, by the radii $C m, C n, C p$, $\& c$. ; and $L O E$ into 4 angles, by the radii $O x, O y$, and $O z$, each equal to the unit M.

From the last proposition, the arcs $A m, m n$, \&c., $D x$, $x y, \& c .$, are equal to each other ; and because there are 7 of these arcs in $A B$, and 4 in $D E$, we shall have,

$$
\operatorname{arc} A B: \text { arc } D E:: 7: 4
$$

But, by hypothesis, we have,

$$
\text { angle } A C B \text { : angle } D O E:: 7: 4 ;
$$

hence, from (B. II., P. IV.), we have,
angle $A C B$: angle $D O E::$ arc $A B:$ arc $D E$.
If any other numbers than 7 and 4 had been used, the same proportion would have been found; which was to be proved.

Cor. If the intercepted arcs are commensurable, they will be proportional to the corresponding angles at the centre, as may be shown by changing the order of the couplets in the above proportion.

PROPOSITION XVII. THEOREM.

In equal circles, incommensurable angles at the centre are proportional to their intercepted arcs.

In the equal circles, whose centres are C and O, let $A C B$ and $F O I I$ be incommensurable : then will they be proportional to the arcs
 $A B$ and FII.

For, let the less angle $F \cap H$, be placed upon the greater angle $A C B$, so that it shall take the position $A C D$.

Then, it the proposition is not true, let us suppose that the angle $A C B$ is to the angle FOII, or its equal $A C D$, as the arc $A B$ is to an arc $A O$, greater than $F H$, or
 its equal $A D$; whence,
angle $A C B$: angle $A C D:$ arc $A B: \operatorname{arc} A O$.
Conceive the arc $A B$ to be divided into equal parts, each less than $D O$: there will be at least one point of division between D and O; let I be that point; and draw $C I$. Then the arcs $A B, A I$, will be commensurable, and we shall have (P. XVI.),
angle $A C B$: angle $A C I$: : arc $A B$: arc $A I$.
Comparing the two proportions, we see that the antecedents are the same in both: hence, the consequents are proportional (B. II., P. IV., C.) ; hence,
angle $A C D$: angle $A C I:$ arc $A O$ are $A I$.
But, $A O$ is greater than $A I$: hence, if this proportion is true, the angle $A C D$ must be greater than the angle $A C I$. On the contrary, it is less: hence, the fourth term of the assumed proportion cannot be greater than $A D$.

In a similar manner, it may be shown that the fourth term cannot be less than $A D$; hence, it must be equal to $A D$; therefore, we have,
angle $A C B$: angle $A C D:: \quad \operatorname{arc} A B \quad \operatorname{arc} A D$ which was to be proved.

Cor. 1. The intercepted arcs are proportional to the cor-
responding angles at the centre, as may be shown by chang. ing the order of the couplets in the preceding proportion.

Cor. 2. In equal circles, angles at the centre are proportional to their intercepted ares; and the reverse, whether they are commensurable or incommensurable.

Cor 3. In equal circles, sectors are proportional to their angles, and also to their ares.

Scholium. Since the intercepted arcs are proportional to the corresponding angles at the centre, the ares may be taken as the measures of the angles. That is, if a circumference be described from the vertex of any angle, as a centre, and with a fixed radius, the are intercepted between the sides of the angle may be taken as the measure of the angle. In Geometry, the right angle which is measured by a quarter of a circumference, or a quadrant, is tiken as a unit. If, therefore, any angle be measured by one-half or two-thirds of a quadrant, it will be equal to one-half or two-thirds of a right angle.

PROPOSITION XVIII. THEOREM.

An inscribed angle is measured by half of the arc included between its sides.

There may be three cases: the centre of the circle may lie on one of the sides of the angle; it may lie within the angle; or, it may lie without the angle.
1°. Let $E A D$ be an inscribed angle, one of whose sides $A E$ passes through the centre : then will it be measured by half of the arc $D E$.

For, draw the radius $C D$. The external angle $D C E$, of the triangle $D C A$, is equal to the sum of the opposite interior angles $C A D$ and $C D A$ (B. I., P. XXV., C. 6). But, the triangle $D C A$ being isosceles, the angles D and A are equal; therefore, the angle $D C E$ is double the angle $D A E$. Because $D C E$ is at the centre, it is measured by the $\operatorname{arc} D E$ (P. XVII., S.) : hence, the, angle $D A E$ is measured by half of the are $D E$; which was to be proved.

2°. Let $D A B$ be an inscribed angle, and let the centre lie within it: then will the angle be measured by half of the arc BED.

For, draw the diameter $A E$. Then, from what has just been proved, the angle $D A E$ is measured by half of $D E$, and the angle $E A, B$ by half of $E B$: hence, $B A D$, which is the sum of $E A B$ and $D A E$, is measured by half of the sum of $D E$ and $E B$, or by half of $B E D$; which was to be proved.
3°. Let $B A D$ be an inscribed angle, and let the centre lie without it: then will it be measured by, half of the arc arc $B D$.

For, draw the diameter AE. Then, from what precedes, the angle $D A E$ is measured by half of $D E$, and the angle $B A E$ by half of $B E$: hence, $B A D$, which is the difference of $B A E$ and $D A E$, is measured by half of the difference of $B E$ and $D E$, or by
 half of the arc $B D$; which was to be proved.

Cor. 1. All the angles $B A C$, $B D C, B E C$, inscribed in the same segment, are equal; because they are each measured by half of the same arc BOC.

Cor. 2. Any angle $B A D$, inscribed in a semi-circle, is a right angle; because it is measured by half the semi-circumference $B O D$, or by a quadrant (P. XVII., S.).

Cor. 3. Any angle $B A C$, inscribed in a segment greater than a semi-circle, is acute; for it is measured by half the arc $B O C$, less than a semi-circumference.

Any angle $B O C$, inscribed in a segment less than a semi-circle, is obtuse; for it is measured by half the arc $B A C$, greater than a semi-circumference.

Cor. 4. The opposite angles A and C, of an inscribed quadrilateral $A B C D$, are together equal to two right angles; for the angle $D A B$ is measured by half the arc.$D C B$,
 the angle $D C B$ by half the arc $D A B$: hence, the two angles, taken together, are mea sured by half the circumference : hence, their sum is equal to two right angles.

PROPOSITION XIX. THEOREM.

Any angle formed by two chords, which intersect, is measured by half the sum of the included arcs.

Let $D E B$ be an angle formed by the intersection oi the chords $A B$ and $C D$: then will it be measured by half the sum of the $\operatorname{arcs} A C$ and $D B$.

For, draw $A F^{\prime}$ parallel to $D C$: then, the arc $D F$ will be equal to $A C$ (P. X.), and the angle $F A B$ equal to the angle $D E B$ (B. I., P . XX., C. 3). But the angle $F A B$ is measured by half the arc $F D B$ (P .
 XVIII.) ; therefore, $D E B$ is measured by half of $F D B$; that is, by half the sum of $F D$ and $D B$, or by half the sum of $A C$ and $D B$; which was to be proved.

PROPOSITION XX. TIIEOREM.

The angle formed by two secants, intersecting without the circumference, is measured by half the difference of the included arcs.

Let $A B, A C$, be two secants : ther will the angle $B A C$ be measured by half the difference of the arcs $B C$ and $D I$.

Draw $D E$ parallel to $A C$: the are $E C$ will be equal to $D F$ (P. X.), and the angle $B D E$ equal to the angle $B A C$ (B. I., P. XX., C. 3.). But $B D E$ is measured by half the arc $B E$ (P. XVIII.) : hence, $B A C$ is also measured by half the are $B E$;
 that is, by half the difference of $B C$ and $E C$, or by half the difference of $B C$ and $D F$; which nors to be proved.

PROPOSITION XXI. THEOREM.

An angle formed by a tangent and a chord meeting it at the point of contact, is measured by half the inctuded arc.

Let $B E$ be tangent to the circle $A M C$, and let $A C^{\prime}$ be a chord drawn from the point of contact A : then will the angle $B A C$ be measured by half of the are $A M C$.

For, draw the diameter $A D$. The angle $B A D$ is a right angle (P. IX.), and is measured by balf the semi-circumference $A M D$ (P . XVII., S.) ; the angle $D A C$ is measured by half of the arc $D C$
 (P. XVIII.) : hence, the angle $B A C$, which is equal to the sum of the angles $B A D$ and $D A C$, is measured by half the sum of the arcs $A M D$ and $D C$, or by half of the arc $A M C$; which was to be proved.

The angle $C A E$, which is the difference of $D A E$ and $D A C$ is measured by half the difference of the arcs $D C A$ and $D C_{3}$ or by half the arc $C A$.

PRACTICAL APPLICATIONS.

PROBLEM I.

To bisect a given straight line.
Let $A B$ be a given straight line.
From A and B, as centres, with
: radius greater than one half of $A B$, describe arcs intersecting at E and I $:$ join E and F, by the straight in e $E F$. Then will $E F$ bisect the given line $A B$. For, E and F^{\prime} are each equally distant from A and B; and consequently, the line $E F$
 bisects $A B$ (B. I., P. XVI., C.).

PROBLEM II.
To erect a perpendicular to a given straight line, at a given point of that line.

Let $E F$ be a given line, and let A be a given point o that line.

From A, lay off the equal distances $A B$ and $A C$; from B and C, as centres, with a radius greater than one half

of $\boldsymbol{B C} C$, describe arcs intersecting at D; draw the line $A D$: then will $A D$ be the perpendicular required. For, D and A are each equally distant from B and C; consequently, $D A$ is perpendicular to $\boldsymbol{B C}$ at the given point A (B. I., P. XVI., C.).

PROBLEM III.

To draw a perpendicular to a given straight line, from a given point without that line.

Let $B D$ be the given line, and A the given point. From A, as a centre, with a radies sufficiently great, describe an arc cutting $B D$ in two points, B and D; with B and D as centres, and a radius greater than one-half of $B D$, describe arcs intersecting at E; draw
 $A E:$ then will $A E$ be the perpendicular required. For, A and E are each equally distant from B and D : hence, $A E$ is perpendicular to $B D$ (B. I., P. XVI., C.).

PROBLEM IV.

At a point on a given straight line, to construct an angle equal to a given angle.

Let A be the given point, $A B$ the given line, and TKL the given angle.

From the vertex K as a centre, with any radius $K I$, describe the arc $I L$, terminaling in the sides of the angle.
 From A as a centre, with a radius $A B$, equal to $K I$,
describe the indefinite arc $B O$; then, with a radius equal to the chord $L I$, from B as a centre, describe an arc cutting the are $B O$ in D; draw $A D$: then will $B A D$ be equal to the angle K.

For, the arcs $B D, I L$,
 have equal radii and equal
chords : hence, they are equal (P. IV.) ; therefore, the angles $B A D, I K L$, measured by them, are also equal (P. XV.).

PROBLEM V.

To bisect a given arc, or a given angle.
1°. Let $A E B$ be a given arc, and C its centre.
Draw the chord $A B$; through C, draw $C D$ perpendicular to $A B$ (Prob. III.) : then will $C D$ bisect the arc $A E B$ (P. VI.).
2°. Let $A C B$ be a given angle.

With C as a centre, and any radius $C B$, describe the are $B A$; bisect it by the line $C D$, as just explained : then will $C D$ bisect the angle $A C B$.

For, the arcs $A E$ and $E B$ are equal, from what was just shown; consequently, the angles $A C E$ and $E C B$ are also equal (P. XV.).

Scholium. If each half of an arc or angle be bisected, the original arc or angle will be divided into four equal parts; and if each of these be bisected, the original arc or angle will be divided into eight equal parts; and so on.

PROBLEM VI.

Through a given point, to draw a straight line parallel to a given straight line.

Let A be a given point, and $B C$ a given line.
From the point A as a centre, with a radius $A E$, greater than the shortest distance from A to $B C$, describe an indefinite arc $E O$; from E as a centre, with the same ras dius, describe the arc $A F$; lay off $E D$ equal to $A F$, and draw $A D$: then will $A D$ be the parallel required.

For, drawing $A E$, the angles $A E F, E A D$, are equal (P. XV.) ; therefore, the lines $A D, E F$ are parallel (B. I., P. XIX., C. 1.).

PROBLEM VII.

Given, two angles. of a triangle, to construct the third angle.

Let A and B be given angles of a triangle.
Draw a line $D F$, and at some point of it, as E, construct the angle $F E H$ equal to A, and $H E C$ equal to B. Then, will $C E D$ be equal to the required angle.

For, the sum of the three angles at E is equal to two right angles (B. I., P. I., C. 3), as is also the sum of the three angles of a triangle (B. I., P. XXV.). Consequently, the third ang'e $C E D$ must be equal to the third angle of the triangle.

PROBLEM VIII.

Given, two sides and the included angle of a triangle, to construct the triangle.

Let B and C denote the given sides, and A the given angle.

Draw the indefinite line $D F$, and at D construct an angle $F D E$, equal to the angle A; on $D F$, lay off $D I I$ equal to the side C, and on $D E$, lay off
 $D G$ equal to the side B; draw $\boldsymbol{G H}$: then will $D G H$ be the required triangle (B. I., P. V.).

PROBLEM IX.

Given, one side and ton angles of a triangle, to construct the triangle.

The two angles may be either both adjacent to the given side, or one may be adjacent and the other opposite to it. In the latter case, construct the third angle by Problem VII. We shall then have two angles and their included side.

Draw a straight line, and on it lay off $D E$ equal to the given sude; at D construct an angle equal to one of the adjacent angles, and at E^{\prime} construct an angle
 equal to the other adjacent angle; produce the sides $D F$ and $E G$ till they intersect at H : then will $D E H$ be the triangle required (B. I, P. VI.).

PROBLEM X .

Given, the three sides of a triangle, to construct the friangle.

Let A, B, and C, be the given sides.
Draw $D E$, and make it equal to the side A; from D as a centre, with a radius equal to the
 side B, describe an are; from E as a centre, with a radius equal
 to the side C, describe an arc intersecting the former at F; draw $D F$ and $E F$: then will $D E F$ be the triangle required (B. I., P. X.).

Scholium. In order that the construction may be possible, any one of the given sides must be less than the sum of the other two, and greater than their difference (B. I., P. VII., S.).

PROBLEM XI.

Given, two sides of a triangle, and the angle opposite one of them, to construct the triangle.

Let A and B be the given sides, and C the given angle.

Draw an indefinite line $D G$, and at some point of it, as D,
 construct an angle $G D E$ equal to the given angle; on one side of this angle lay off the distance $D E$ equal to the side B adjacent to the given angle; from E as a centre, with a radius equal to the side opposite the given angle, describe an arc cutting the side $D G$ at G; draw $E G$. Then will $D E G$ be the required triangle.

For, the sides $D E$ and $E G$ are equal to the given sides, and the angle D, opposite one of them, is equal to the given angle.

Scholium, When the side opposite the given angle is greater than the other given side, there will be but one solution. When the given angle is acute, and the side apposite the given angle is lessthan the other given side, and greater than the shortest dislance from E to $D G$, there will be two solutions, $D E G$ and DEF. When the side opposite the given angle is
 equal to the shortest distance from E to $D G$, the are will be tangent to $D G$, the angle opposite $D E$ will be a right angle, and there will be but one solution. When the side opposite the given angle is shorter than the distance from E to $D G$, there will be no solution.

PROBLEM XII.

Given, two adjacent sides of a parallelogram and their included angle, to construct the parallelogram.

Let A and B be the given sides, and ${ }^{r^{\prime}} C$ the given angle.

Draw the line $D I I$, and at some point as D, construct the angle $H D F$ equal to the angle C. Lay off $D E$ equal to the side A, and $D F$ equal to the side B; draw $F G$
 parallel to $D E$, and $E G$ parallee to $D F$. then will $D F G E$ be the parallelogram re. quire.

For, the opposite sides are parallel by construction; and consequently, the figure is a parallelogram (D. 28); it is also formed with the given sides and given angle.

PROBLEM XIII.

To find the centre of a given circumference.
Take any three points A, B, and C, on the circumference or arc, and join them by the chords $A B, B C$; bisect these chords by the perpendiculars $D E$ and $F G$: then will their point of intersection O, be the centre required (P. VII.).

Scholium. The same construc-
 dion enables us to pass a circumference through any three points not in a straight line. If the pọints are vertices of a triangle, the circle will be circumscribed about it.

PROBLEM XIV.

Through a given point, to draw a tangent to a given circle.
There may be two cases: the given point may lie on the circumference of the given circle, or it may lie without the given circle.
1°. Let C be the centre of the given circle, and A a point on the circumference, through which the tangent is to be drawn.

Draw the radius $C A$, and at A draw $A D$ perpendicular to $A C$: then will $A D$ be the tangent required (P. IX.).

2°. Let C be the centre of the given circle, and A a point without the circle, through which the tangent is to be drawn.

Draw the line $A C$; bisect it at O, and from O as a centre, with a radius $O C$, describe the circumference $A B C D$; join the point A with the points of intersection D and B : then will both $A D$ and $A B$ be tangent to the given circle, and there will be two solutions.

For, the angles $A B C$ and $A D C$
 are right angles (P. XVIII., C. 2) : hence, each of the lines $A B$, and $A D$ is perpendicular to a radius at its extremity; and consequently, they are tangent to the given circle (P. IX.).

Corollary. The right-angled triangles $A B C$ and $A D C$, have a common hypothenuse $A C$, and the side $B C$ equal to $D C$; and consequently, they are equal in all their parts (B. I., P. XVII.) : hence, $A B$ is equal to $A D$, and the angle $C A B$ is equal to the angle $C A D$. The tangents are therefore equal, and the line $A C$ bisects the angle between them.

PROBLEM XV.

To inscribe a circle in a given triangle.
Let $A B C$ be the given triangle.

Bisect the angles A and B, by the lines $A O$ and $B O$, mecting in the point O (Prob. V.) ; from the point O

let fall the perpendiculars $O D, O E, O F$, on the sides of the triangle : these perpendiculars will all be equal.

For, in the triangles $B O D$ and $B O E$, the angles $O B E^{\prime}$ and $O B D$ are equal, by construction ; the angies $O D B$ and $O E B$ are equal, because both are right angles; and consequently, the angles $B O D$ and $B O E$ are also equal (B. I., P. XXV., C. 2), and the side $O B$ is common ; and therefore, the triangles are equal in all their parts (B. I., P. VI.) : hence, $O D$ is equal to $O E$. In like manner, it may be shown that $O D$ is equal to $O F$.

From O as a centre, with a radius $O D$, describe a circle, and it will be the circle required. For, each side is perpendicular to a radius at its extremity, and is therefore tangent to the circle.

Corollary. The lines that bisect the three angles of a triangle all meet in one point.

PROBLEM XVI.

On a given straight line, to construct a segment that shall contain a given angle.

Let $A B$ be the given line.

Produce $A B$ towards D; at B construct the angle $D B E$ equal to the given angle draw $B O$ perpendicular
to $B E$, and at the middle point G, of $A B$, draw $G O$ perpendicular to $A B$; from their point of intersection O, as a centre, with a radius $O B$, describe the are $A M B$: then will the segment $A M B$ be the segment required.

For, the angle $A B F$, equal to $E B D$, is measured by half of the arc $A K B$ (P. XXI.); and the inscribed angle $A M B$ is measured by balf of the same arc : hence, the angle $A M B$ is equal to the angle $E B D$, and consequently, to the given angle.

BOOKIV.

MEASUREMENT AND RELATION OF POLYGONS.

DEEINITIONS.

1. Similar Polygons, are polygons which are mutually equiangular, and which have the sides about the equal angles, taken in the same order, proportional.
2. In similar polygons, the parts which are similarly placed in each, are called homologous.

The corresponding angles are homologous angles, the corresponding sides are homologous sides, the corresponding diagonals are homologous diagonals, and so on.
3. Similar Arcs, Sectors, or Segments, in different circles, are those which correspond to equal angles at the centre.

Thus, if the angles A and O are equal, the arcs $B F C$ and $D G E$ are similar, the sectors $B A C$ and $D O E$ are similar, and the segments $B F C$ and $D G E$ are similar.

4. The Altitude of a Triangle, is the perpendicular distance from the vertex of either an. gle to the opposite side, or the opposite side produced.

The vertex of the angle from which the distance is measured, is called the
 vertex of the triangle, and the opposite side, is called the base of the triangle.
5. The Altitude of a Parallelogram, is the perpendicular distance between two opposite sides.

These sides are called bases; one the
 upper, and the other, the lower base.
6. The Altitude of a Trapezoid, is the perpendicular distance between its parallel sides.

These sides are called bases; one the upper, and the other, the lower base.

7. The Area of a Surface, is its numerical value expressed in terms of some other surface taken as a unit. The unit adopted is a square described on the linear unit, as a side.

PROPOSITION I. THEOREM.

Parallelograms which have equal bases and equal altitudes, are equal.

Let the parallelograms $A B C D$ and $E F G I I$ have equal bases and equal altitudes: then will the parallelograms be equal.

For, let them be so placed that their lower bases shall coincide; then, because they have the same altitude, their upper bases will be in the
 same line $D G$, parallel to $A B$.

The triangles $D A H$ and $C B G$, have the sides $A D$ and $B C$ equal, because they are opposite sides of the parallelogram $A C$ (B. I., P. XXVIII.) ; the sides $A I I$ and $B G$ equal, because they are opposite sides of the parallelogram $A G$; the angles $D A H$ and $C B G$ equal, because their
sides are parallel and lie in the same direction (B. I., P. XXIV.) : hence, the triangles are equal (B. I., P. V.).

If from the quadrilateral $A B G D$, we take away the triangle $D A H$, there will remain the parallelogram $A G$; if from the same quadrilateral $A B G D$, we take away the tritriangle $C B G$, there will remain the parallelogram $A C$: hence, the parallelogram $A C$ is equal to the parallelogram EG (A. 3) ; which was to be proved.

PROPOSITION II. TIIEOREM.

A triangle is equal to one-half of a parallelogram having an equal base and an equal altitude.

Let the triangle $A B C$, and the parallelogram $A B F D$, have equal bases and equal altitudes: then will the triangle be equal to one-half of the parallelogram.

For, let them be so placed that the base of the triangle shall coincide with the lower base of the parallelogram ;
 then, because they have equal altitudes, the vertex ot the triangle will lie in the upper base of the parallelogram, or in the prolongation of that base.

From A, draw $A E$ parallel to $B C$, forming the parallelogram $A B C E$. This parallelogram will be equal to the parallelogram $A B F D$, from Proposition I. But the triangle $A B C$ is equal to half of the parallelogram $A B C E$ -(B. I., P. XXVIII., C. 1) : hence, it is equal to half of the parallelogram $A B F D$ (A. 7); which was to be proved

Cor. Triangles having equal bases and equal altitudes are equal, for they are halves of equal parallelograms.

PROPOSITION III. THEOREM.

Rectangles having equal altitudes, are proportional to their bases.

There may be two cases: the bases may be commensurable, or they may be incommensurable.
1°. Let $A B C D$ and HEFF, be two rectangles whose altitudes $A D$ and $H K$ are equal, and whose bases $A B$ and $H E$ are commensurable : then will the areas of the rectangles be proportional to their bases.

Suppose that $A B$ is to $H E$, as 7 is to 4. Conceive $A B$ to be divided into 7 equal parts, and $I E E$ into 4 equal parts, and at the points of division, let perpendiculars be drawn to $A B$ and $I E$. Then will $A B C D$ be divided into 7 , and HEFK into 4 rectangles, all of which will be equal, because they have equal bases and equal altitudes (P. I.) : bence, we have,

$$
A B C D: H E F K:: 7: 4
$$

But we have, by hypothesis,

$$
A B: H E:: \quad 7 \quad: 4
$$

From these proportions, we have (B. II., P. IV.),

$$
A B C D: H E F K \quad:: A B: H E
$$

Had any otner numbers than 7 and 4 been used, the same proportion would have been found; which was to be proved.
2°, Let the bases of the rectangles be incommensurable: then will the rectangles be proportional to their bases.

For, place the rectangle HEHK upon the rectangle $A B C D$, so that it shall take the position AEFD. Then, if the rectangles are not proportional to their bases, let us sup-
 pose that

$$
A B C D: A E F D:: A B: A O
$$

in which $A O$ is greater than $A E$. Divide $A B$ into equal parts, each less than $O E$; at least one point of division, as I, will fall between E and O; at this point, draw $I K$ perpendicular to $A B$. Then, because $A B$ and $A \dot{I}$ are commensurable, we shall have, from what has just been shown,

$$
A B C D: A I K D:: A B: A I .
$$

The above proportions have their antecedents the same in each; hence (B. II., P. IV., C.),

$$
A F F D: A I K D:: A O: A I .
$$

The rectangle $A E F D$ is less than $A I K D$; and if the above proportion were true, the line $A O$ would le less than $A I$; whereas, it is greater. The fourth term of the proportion, therefore, cannot be greater than $A E$. In liks manner, it may be shown that it cannot be less than $A E$; consequently, it must be equal to $A E$: heuce,

$$
A B C D: A E F D \quad:: A B \quad A E ;
$$

which was to be proved.
Cor. If rectangles have equal bases, they are to each other as their altitudes.

PROPOSITION IV. THEOREM.

Any two rectangles are to each other as the products of their bases and altitudes.

Let $A B C D$ and $A E G F$ be two rectangles: then wit $A B C D$ be to $A E G F$, as $A B \times A D$ is to $A E \times A F$.

For, place the rectangles so that the angles $D A B$ and $E A F$ shall be opposite or vertical; then, produce the sides $C D$ and $G E$ till they meet in H.

The rectangles $A B C D$ and
 $A D H E$ have the same altitude $A D$: hence (P. III.),

$$
A B C D: A D H E \quad:: A B: A E
$$

The rectangles $A D H E$ and $A E G F$ have the same altitude $A E$: hence,

$$
A D H E: A E G F:: A D: A F .
$$

Multiplying these proportions, term by term (B. П., P. XII.), and omitting the common factor ADHE (B. II., P. VII.), we have,
$A B C D: A E G F:: A B \times A D: A E \times A F ;$
which was to be proved.

Scholium 1. If we suppose $A E$ and $A F$, each to be equal to the linear unit, the rectangle $A E G F$ will be the superficial unit, and we shall have,

$$
A B C D \cdot 1:: A B \times A D: 1
$$

$$
A B C D=A B \times A D:
$$

hence, the area of a rectangle is equal to the product of its base and altitude; that is, the number of superficial units in the rectangle, is equal to the product of the number of linear units in its base by the number of linear units in its altitude.

Scholium 2. The product of two lines is sometimes called the rectangle of the lines, because the product is equal to the area of a rectangle constructed with the lines as sides.

PROPOSITION V. THEOREM.

The area of a parallelogram is equal to the product of its base and altitude.

Let $A B C D$ be a parallelogram, $A B$ its base, and $B E$ its altitude: then will the area of $A B C D$ be equal to $A B \times B E$.

For, construct the rectangle $A B E F$, having the same base and altitude : then will the rectangle be equal to the parallelogram (P. I.) ; but the area of the
 rectangle is equal to $A B \times B E$: hence, the area of the parallelogram is also equal to $A B \times B E ;$ which was to be proved.

Cor. Parallelograms are to each other as the products of their bases and altitudes. If their altitudes are equal, they are to each other as their bases. If their bases are equal, they are to each other as their altitudes.

PROPOSITION VI. THEOREM.

The area of a triangle is equal to half the product of its base and altitude.

Let $A B C$ be a triangle, $B C$ its base, and $A D$ its altitude: then will the area of the triangle be equal to $\frac{1}{2} B C \times A D$ 。

For, from C, draw $C E$ parallel to $B A$, and from A, draw $A E$ parallel to $C B$. The area of the parallelogram $B C E A$ is $B C \times A D$ (P. V.); but the
 triangle $A B C$ is half of the parallelogram $B C E A$: hence, its area is equal to $\frac{1}{2} B C \times A D$; which was to be proved.

Cor. 1, Triangles are to each other, as the products of their bases and altitudes (B. II., P. VII.). If their altitudes are equal, they are to each other as their bases. If their bases are equal, they are to each other as their altitudes.

Cor. 2. The area of a triangle is equal to half the product of its perimeter and the radius of the inscribed circle.

For, let DEF be a circle inscribed in the triangle $A B C$. Draw $O D, O E$, and $O F$, to the points of contact, and $O A$, $O B$, and $O C$, to the vertices.

The area of $O B C$ will be equal to $\frac{1}{2} O E \times B C$; the area of $O A C$ will be equal to $\frac{1}{2} O F \times A C$; and the area
of $O A B$ will be equal to $\frac{1}{2} O D \times A B$ ；and since $O D$ ， $O E$ ，and $O F$ ，are equal，the area of the triangle $A B C$ （A．9），will be equal to $\frac{1}{2} O D(A B+B C+C A)$ ．

PROPOSITION VII．THEOREM．

The area of a trapezoid is equal to the product of its alti－ tude and half the sum of its parallel sides．

Let $A B C D$ be a trapezoid，$D E$ its altitude，and $A B$ and $D C$ its parallel sides：then will its area be equal to $D E \times \frac{1}{2}(A B+D C)$.

For，draw the diagonal $A C$ ，form－ ing the triangles $A B C$ and $A C D$ ． The altitude of each of these trian－ gles is equal to $D E$ ．The area of $A B C$ is equal to $\frac{1}{2} A B \times D E$（ P ．
 VI．）；the area of $A C D$ is equal to $\frac{1}{2} D C \times D E:$ hence，the area of the trapezoid，which is the sum of the triangles，is equal to the sum of $\frac{1}{2} A B \times D E$ and $\frac{1}{2} D C \times D E$ ，or to $D E \times \frac{1}{2}(A B+D C) ;$ which was to be proved．

PROPOSITION VIII．THEOREM．

The square described on the sum of two lines is equal to the sum of the squares described on the lines，increased by twice the rectangle of the lines．

Let $A B$ and $B C$ be two lines， and $A C$ their sum ：then will

$$
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}+2 A B \times B C
$$

On $A C$ ，construct the square $A C D E$ ；from B ，draw $B H$ par－

allel to $A E$; lay off $A F$ equal to $A B$, and from F, draw $F G$ parallel to $A C$: then will $I G$ and $I H$ be each equal to $B C$; and $I B$ and $I F$, to $A B$.

The square $A C D E$ is composed of four parts. The part $A B I F$ is a square described on $A B$; the part $I G D H$ is equal to a square described on $B C$; the part $B C G I$ is equal to the rectangle of $A B$ and $B C$; and the part FIIIE is also equal to
 the rectangle of $A B$ and $B C$: and because the whole is equal to the sum of all its parts (A. 9), we have,

$$
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}+2 A B \times B C
$$

which was to be proved.
Cor. If the lines $A B$ and $B C$ are equal, the four parts of the square on $A C$ will also be equal: hence, the square described on a line is equal to four times the square described on half the line.

PROPOSITION IX. THEOREM.

The square described on the difference of two lines is equul to the sum of the squares described on the lines, diminished by twice the rectangle of the lines.

Let $A B$ and $B C$ be two lines, and $A C$ their difference: then will

$$
\overline{A C}^{2}=\overline{A B}^{2}+\overline{B C}^{2}-2 A B \times B C
$$

On $A B$ construct the square $A B I F$; from C draw $C G$ parallel to $B I$; lay off $C D$ equal to $A C$, and from D draw $D K$ parallel and equal to $B A$; complete
the square $E F L K$: then will $E K$ be equal to $B C$, and $E F L K$ will be equal to the square of $B C$.

The whole figure $A B I L K E$ is equal to the sum of the squares described on $A B$ and $B C$. The part $C B L G$ is equal to the rectangle of $A B$ and $B C$; the part $D G L E$ is also equal to the rect-
 angle of $A B$ and $B C$. If from the whole figure $A B I L T E$, the two parts $C B I G$ and $D G L K$ be taken, there will remain the part $A C D E$, which is equal to the square of $A C$: hence,

$$
{\overline{A C^{2}}}^{2}=\overline{A B}^{2}+\overline{B C}^{2}-2 A B \times B C ;
$$

which was to be proved.

PROPOSITION X. THEOREM.

The rectangle contained by the sum and difference of two lines, is equal to the difference of their squares.

Let $A B$ and $B C$ be two lines, of which $A B$ is the greater : then will

$$
(A B+B C)(A B-B C)=\overline{A B}^{2}-\overline{B C}^{2}
$$

On $A B$, construct the square $A B I F$; prolong $A B$, and make $B K$ equal to $B C$; then will $A K$ be equal to $A B+B C$; from K, draw $K L$ parallel to $B I$, and make it equal to $A C$; draw $L E$ parallel to $K A$, and $C G$ parallel
 to $B I$: then $D G$ is equal to $B C$, and the figure $D H I G$ is equal to the square on $B C$, and $E D G F$ is equal to $B K L H$.

If we add to the figure $A B H E$, the rectangle $B K L H$, we shall have the rectangle $A K L E$, which is equal to the the rectangle of $A B+B C$ and $A B-B C$. If to the same figure $A B H E$, we add the rectangle $D G F E$, equal to BFLII, we shall have the figure $A B I I D G F$, which is equal to the difference of the squares of $A B$ and $B C$. But the sums of equals are equal (A.2),
 hence,

$$
(A B+B C)(A B-B C)=\overline{A B}^{2}-\overline{B C}^{2}
$$

which was to be proved.

PROPOSITION XI. THEOREM.

The square described on the hypothenuse of a right-angled triangle, is equal to the sum of the squares described on the other two sides.

Let $A B C$ be a triangle, right-angled at A : then will $\overline{B C}^{2}=\overline{A B}^{2}+\overline{A C}^{2}$.

Construct the square $B G$ on the side $B C$, the square $A H$ on the side $A B$, and the square $A I$ on the side $A C$; from A draw $A D$ perpendicular to $B C$, and prolong it to E : then will $D E$ be parallel to $B F$; draw $A F$ and $H C$.

In the triangles $H B C$ and $A B F$, we have $H B$ equal to $A B$, because they are sides of the same square;

$B C$ equal to $B F$, for the same reason, and the included angles $H B C$ and $A B F$ equal, because each is equal to the angle $A B C$ plus a right angle : hence, the triangles are equal in all their parts (B. I., P. V.).

The triangle $A B F$, and the rectangle $B E$, have the same base $B F$, and because $D E$ is the prolongation of $D A$, their altitudes are equal : hence, the triangle $A B F$ is equal to half the rectangle $B E$ (P. II.). The triangle $H B C$, and the square $B L$, have the same base $B I I$, and because $A C$ is the prolongation of $A L$ (B.I., P. IV.), their altitudes are equal : hence, the triangle $H B C$ is equal to half the square of $A H$. But, the triangles $A B F$ and $H B C$ are equal: hence, the rectangle $B E$ is equal to the square $A I I$. In the same manner, it may be shown that the rectangle $D G$ is equal to the square $A I$: hence, the sum of the rectangles $B E$ and $D G$, or the square $B G$, is equal to the sum of the squares $A H$ and $A I$; or, $\overline{B C}^{2}=\overline{A B}^{2}+\overline{A C}^{2}$; which was to be proved.

Cor. 1. The square of either side about the right angle is equal to the square of the hypothenuse diminished by the square of the other side: thus,

$$
\overline{A B}^{2}=\overline{B C}^{2}-\overline{A C}^{2} ; \quad \text { or, } \overline{A C}^{2}=\overline{B C}^{2}-\overline{A B}^{2}
$$

Cor. 2. If from the vertex of the right angle, a perpendicular be drawn to the hypothenuse, dividing it into two seyments, $B D$ and $D C$, the square of the hypothenuse will be to the square of either of the other sides, as the hypa. thenuse is to the segment adjacent to that side.

For, the square $B G$, is to the rectangle $B E$, as $B C$ to $B D$ (P. III.) ; but the rectangle $B E$ is equal to the square $A H$: hence,

$$
\overline{B C}^{2}:{\overline{A B^{2}}}^{2}:: B C \quad: B D
$$

In like manner, we have,

$$
\overline{B C}^{2}: \overline{A C}^{2} \quad:: B C \quad: \quad D C
$$

Cor. 3. The squares of the sides about the right angle are to each other as the adjacent segments of the hypothenuse.

For, by combining the proporlions of the preceding corollary (B. II., P. IV., C.), we have,

$$
\overline{A B}^{2}: \overline{A C}^{2}:: B D \quad: D C .
$$

Cor. 4. The square described on the diagonal of a square is double the given square.

For, the square of the diagonal is equal to the sum of the squares of the two sides; but the square of each side is equal to the given square: hence,

$$
\overline{A C}^{2}=2 \overline{A B}^{2} ; \quad \text { or, } \quad \overline{A C}^{2}=2 \overline{B C}^{2}
$$

Cor. 5. From the last corollary, we have,

$$
\overline{A C}^{2}: \overline{A B}^{2}:: \quad 2 \quad: \quad 1 ;
$$

hence, by extracting the square root of each term, we have,

$$
A C: A B:: \sqrt{2}: 1 ;
$$

that is, the diagonal of a square is to the side, as the square root of two to one; consequently, the diagonal and the side of a square are incommensurable.

PROIOSITION XII. THEOREM.

In any triangle, the square of a side opposite an acute angle, is equal to the sum of the squares of the base and the other side, diminished by twice the rectangle of the base and the distance from the vertex of the acute angle to the foot of the perpendicular drawn from the vertex of the opposite angle to the base, or to the base produced.

Let $A B C$ be a triangle, C one of its acute angles, $B C$ its base, and $A D$ the perpendicular drawn from A to $B C$, or $B C$ produced; then will

$$
\overline{A B}^{2}=\overline{B C}^{2}+\overline{A C}^{2}-2 B C \times C D
$$

For, whether the perpendicular meets the base, or the base produced, we have $B D$ equal to the difference of $B C$ and $C D$: hence (P. LX.),

$$
\overline{B D}^{2}=\overline{B C}^{2}+\overline{C D}^{2}-2 B C \times C D
$$

Adding $\overline{A D}^{2}$ to both members, we have,

$$
\overline{B D}^{2}+\overline{A D}^{2}=\overline{B C}^{2}+\overline{C D}^{2}+\overline{A D}^{2}-2 B C \times C D
$$

But, $\quad \overline{B D}^{2}+\overline{A D}^{2}=\overline{A D}^{2}, \quad$ and $\quad \overline{C D}^{2}+\overline{A D}^{2}=\overline{A C}^{2}:$ hence,

$$
\overline{A B}^{2}={\bar{B} \bar{C}^{2}}^{2}+\overline{A C}^{2}-2 B C \times C D ;
$$

which was to be proved.

PROPOSITION XIII. THEOREM.

In any obtuse-angled triangle, the square of the side opposits the obtuse angle is equal to the sum of the squares of the base and the other side, increased by twice the rectangle of the base and the distance from the vertex of the obtuse angle to the foot of the perpendicular drawn from the vertex of the opposite angle to the base produced.

Let $A B C$ be an obtuse-angled triangle, B its obtuse angle, $B C$ its base, and $A D$ the perpendicular drawn from A to $B C$ produced; then will

$$
\overline{A C}^{2}=\overline{B C}^{2}+\overline{A B}^{2}+2 B C \times B D
$$

For, $C D$ is the sum of $B C$ and $B D$: hence (P. VIII.),
$\bar{C} \bar{D}^{2}=\overline{B C}^{2}+\overline{B D}^{2}+2 B C \times B D$.
Adding $\overline{A D}^{2}$ to both members,
 and reducing, we have,

$$
\overline{A C}^{2}={\overline{B C^{2}}}^{2}+\overline{A B}^{2}+2 B C \times B D ;
$$

which was to be proved.
Scholium. The right-angled triangle is the only one in which the sum of the squares described on two sides is equal to the square described on the third side.

PROPOSITION XIV. THEOREM.

In any triangle, the sum of the squares described on two sides is equal to twice the square of half the third side increased by twice the square of the line drawn from the middle point of that side to the vertex of the opposite angle.
Let $A B C$ be any triangle, and $\boldsymbol{F} A$ a line drawn from
the middle of the base $B C$ to the vertex A : then will

$$
\overline{A B}^{2}+\overline{A C}^{2}=2 \overline{B E}^{2}+2 \overline{E A}^{2}
$$

Draw $A D$ perpendicular to $B C$; then, from Proposition XII., we have,
$\bar{A} \bar{C}^{2}=\overline{E C}^{2}+\overline{E A}^{2}-2 E C \times E D$.
From Proposition XIII., we have,
$\overline{A B}^{2}=\overline{B E}^{2}+\overline{E A}^{2}+2 B E \times E D$.

Adding these equations, member to member (A. 2), recollecting that $B E$ is equal to $E C$, we have,

$$
\overline{A B}^{2}+\overline{A C}^{2}=2 \overline{B E}^{2}+2 \overline{E A}^{2}
$$

which was to be proved.
Cor. Let $A B C D$ be a parallelogram, and $B D, A C$, its diagonals. Then, since the diagonals mutually bisect each other (B. I., P. XXXI.), we shall have,
and,

$$
\begin{aligned}
& \overline{A B}^{2}+\overline{B C}^{2}=2 \overline{A E}^{2}+2 \overline{B E}^{2} \\
& \overline{C D}^{2}+\overline{D A}^{2}=2 \overline{C E}^{2}+2 \overline{D E}^{2}
\end{aligned}
$$

whence, by addition, recollecting that $A E$ is equal to $C E$, and $B E$ to $D E$, we have,

$$
\overline{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}+\overline{D A}^{2}=4 \overline{C E}^{2}+4{\overline{D E^{2}}}^{2}
$$

but, $4 \overline{C E}^{2}$ is equal to $\overline{A C}^{2}$, and $4 \overline{D E}^{2}$ to $\overline{B D}^{2}$ (P. VIII., C.) : hence,

$$
\overline{A B}^{2}+\overline{B C}^{2}+\overline{C D}^{2}+\overline{D A}^{2}={\overline{A C^{2}}}^{2}+\overline{B D}^{2}
$$

That is, the sum of the squares of the sides of a parallelo. gram, is equal to the sum of the squares of its diagonals.

PROPOSITION XV. THEOREM.

In any triangle, a line drawn parallel to the base divides the other sides proportionally.

Let $A B C$ be a triangle, and $D E$ a line parallel to the base $B C$: then

$$
A D: D B \quad:: A E \quad: C E
$$

Draw $E B$ and $D C$. Then, because the triangles $A E D$ and $D E B$ have their bases in the same line $A B$, and their vertices at the same point E, they will have a common altitude: hence, (P. VI., C.)

$$
A E D: D E B \quad: \quad A D: D B .
$$

The triangles $A E D$ and $E D C$, have their bases in the same line $A C$, and their vertices at the same point D; they have, therefore, a common altitude; hence,

$$
A E D: E D C_{0}:: \quad A E: E C .
$$

But the triangles $D E B$ and $E D C$ have a common base $D E$, and their vertices in the line $B C$, parallel to $D E$; they are, therefore, equal : hence, the two preceding proportions have a couplet in eacb equal ; and consequently, the remaining terms are proportional (B. II., P. IV.), hence,

$$
A D: D B: A E: E C ;
$$

which was to be proved.
Cor. 1. We have, by composition (B. II., P. VI.),

$$
A D+D B: A D:: A E+E C: A Z ;
$$

or, $A B: A D:: A C: A E ;$
and, in like manner,

$$
A B: D B \quad:: A C \quad: E C
$$

Cor. 2. If any number of parallels be drawn cutting two lines, they will divide the lines proportionally.

For, let O be the point where $A B$ and $C D$ meet. In the triangle $O E F$, the line $A C$ being parallel to the base $E F$, we shall have,

$$
O E: A E:: O F \quad: \quad C F
$$

In the triangle $O G I I$, we shall have,

$$
O E: E G:: O F: F H ;
$$

hence (B. II., P. IV., C.),

$$
A E: E G:: C F: F H .
$$

In like manner,
and so on. $E G: G B:: F H \quad H D$;

PROPOSITION XVI. THEOREM.

If a straight line divides two sides of a triangle proportionally, it will be parallel to the third side.

Let $A B C$ be a triangle, and let $D . E$ divide $A B$ and $A C$, so that

$$
A D: D B:: A E: E C ;
$$

then will $D E$ be parallel to $B C$.
Draw $D C$ and $E B$. Then the tri-

angles $A D E$ and $D E B$ will have a common altitude; and consequently, we shall have,

$$
A D E: D E B \quad:: A D \quad: D B
$$

The triangles $A D E$ and $E D C$ have also a common altitude; and consequently, we shall have,

$$
A D E: E D C:: A E: E C \text {; }
$$

but, by hypothesis,

$$
A D: D B:: A E: E C
$$

bence (B. II., P. IV.),

$$
A D E: D E B \quad:: A D E \quad: \quad E D C .
$$

The antecedents of this proportion being equal, the consequents will be equal; that is, the triangles $D E B$ and $E D C$ are equal. But these triangles have a common base $D E$: hence, their altitudes are equal (P. VI., C.) ; that is, the points B and C, of the line $B C$, are equally distant from $D E$, or $D E$ prolonged : hence, $B C$ and $D E$ are parallel (B. I., P. XXX., O.) ; which was to be proved.

PROPOSITION XVII. THEOREM.

In any triangle, the straight line which bisects the angle at the vertex, divides the base into two segments proportional to the adjacent sides.

Let $A D$ bisect the vertical angle A of the triangle $B A C$: then will the segments $B D$ and $D C$ be proportional to the adjacent sides $B A$ and $C A$.

From C, draw $C E$ parallel to $D A$, and produce it
until it meets $B A$ prolonged, at E. Then, because $C E$ and $D A$ are parallel, the angles $B A D$ and $A E C$ are equal (B. I., P. XX., C. 3) ; the angles $D A C$ and $A C E$ are also equal (B. I., P. XX., C. 2). But, $B A D$ and $D A C$ are equal, by hypothesis ; consequent$\mathrm{ly}, A E C$ and $A C E$ are equal: hence, the triangle $A C E$ is isosceles, $A E$ being equal to
 $A C$.

In the triangle $B E C$, the line $A D$ is parallel to the base $E C$: hence (P. XV.),

$$
B A: A E:: B D \quad: \quad D C ;
$$

or, substituting $A C$ for its equal $A E$,

$$
B A: A C \quad:: B D \quad: \quad D C ;
$$

which was to be proved.

PROPOSITION XVIII. THEOREM.

Triangles which are mutually equiangular, are similar.
Let the triangles $A B C$ and $D E F$ have the angle A equal to the angle D, the angle B to the angle E, and the angle C to the angle F : then will they be similar.

For, place the triangle D) $E F$ upon the triangle $A B C$, so that the angle E shall coincide with the angle \boldsymbol{B} then will the point F fall at some
 point H, of $B C$; the point D at some point G, of $B A$;
the side $D F$ will take the position $G H$, and $B G H$ will be equal to $E D F$.

Since the angle $B H G$ is equal to $B C A, G H$ will be parallel to $A C$ (B. I., P. XIX., C. 2) ; and consequently, we shall have (P. XV.),

$$
B A: B G:: B C: B H ;
$$

or, since $B G$ is equal to $E D$, and $B H$ to $E F_{2}$

$$
B A: E D \quad:: B C: E F .
$$

In like manner, it may be shown that

$$
B C: E F \quad: \quad C A \quad: \quad F D \text {; }
$$

and also,

$$
C A: F D:: A B \quad: D E ;
$$

hence, the sides about the equal angles, taken in the same order, are proportional ; and consequently, the triangles are similar (D. 1); which was to be proved.

Cor. If two triangles have two angles in one, aqual to two angles in the other, each to each, they will ke simuivs (B. I., P. XXV., C. 2).

PROPOSITION XIX. THEOREM.
Triangles which have their corresponding sides proportiosa, are similar.

In the triangles $A B C$ and $D E F$, let the correspondirg: sides be proportional ; that is, let

$A B: D E: \quad B C: E F: C A \quad F D ;$

then will the triangles be similar.
For, on $B A$ lay off $B G$ equal to $E D$; on $B C$ lay off $B H$ equal to $E F$, and draw GII. Then, because $B G$ is equal to $D E$, and $B H$ to $E F$, we have,

$$
B A: B G:: B C: B H ;
$$

hence, $G H$ is parallel to $A C$ (P. XVI.); and consequently, the triangles $B A C$ and $B G H$ are equiangular, and therefore similar: hence,

$$
B C: B H:: C A: H G .
$$

But, by hypothesis,

$$
B C: E F:: C A: F D ;
$$

hence (B. II., P. IV., C.), we have,

$$
B H: E F:: H G: H D
$$

But, $B H$ is equal to $E F$; hence, $H G$ is equal to $F D$. The triangles $B H G$ and $E F D$ have, therefore, their sides equal, each to each, and consequently, they are equal in all their parts. Now, it has just been shown that $B H G$ and $B C A$ are similar: hence, $E F D$ and $B C A$ are also similar ; which was to be proved.

Scholium. In order that polygons may be similar, they must fulfill two conditions: they must be mutually equiargular, and the corresponding sides must be proportional. In the case of triangles, either of these conditions involves the other, which is not true of any other species of polygors.

PROPOSITION XX. THEOREM.

Triangles which have an angle in each equal, and the in cluding sides proportional, are similar.

In the triangles $A B C$ and $D E F$, let the angle B be equal to the angle E; and suppose that

$$
B A: E D:: B C: E F ;
$$

then will the triangles be similar.
For, place the angle E upon its equal $B ; F$ will fall at some point of $B C$, as $H ; D$ will fall at some point of $B A$, as
 $G ; D F$ will take the position $G I I$, and the triangle $D E F$ will coincide with $G B H$, and consequently, will be equal to it.

But, from the assumed proportion, and because $B G$ is equal to $E D$, and $B H$ to $E F$ we have,

$$
B A: B G .: B C: B H
$$

hence, $G H$ is parallel to $A C$; and consequently, $B A C$ and $B G H$ are mutually equiangular, and therefore similar. But, $E D F$ is equal to $B G H$: hence it is also similar to $B A C$; which was to be proved.

PROPOSITION XXI. THEOREM.

Triangles which have their sides parallel, each to each, or perpendicular, each to each, are similar.

1. Let the triangles $A B C$ and $D E F$ have the side $A B$ parallel to $D E, B C$ to $E F$, and $C A$ to $F D$: then will they be similar.

For, since the side $A B$ is parallel to $D E$, and $B C$ to $E F$, the angle B is equal to the angle E (B. I., P. XXIV.) ; in like manner, the angle C is equal to the angle F, and the angle A to the angle D; the triangles are, therefore, mutually equiangular, and
 consequently, are similar (P. XVIII.) ; which was to be proved.
2°. Let the triangles $A B C$ and $D E F$ have the side $A B$ perpendicular to $D E, B C$ to $E F$, and $C A$ to $F D$: then will they be similar.

For, prolong the sides of the triangle $D E F$ till they meet the sides of the triangle $A B C$. The sum of the interior angles of the quadrilateral $B I E G$ is equal to four right angles (B. I., P. XXVI.) ; but, the angles
 $E I B$ and $E G B$ are each right angles, by hypothesis; hence, the sum of the angles IEG $I B G$ is equal to two right angles; the sum of the angles $I E G$ and $D E F$ is equal to two right angles, because they are adjacent; and since things which are equal to the same thing are equal to each other, the sum of the angles $I E G$ and $I B G$ is equal to the sum of the angles $I E G$ and $D E F$; or, taking away the common part $I E G$, we have the angle $I B G$ equal to the angle $D E F$. In like manner, the angle $G C H$ may be proved equal to the angle $E F D$, and the angle $\boldsymbol{H A I}$ to the angle $E D F$; the triangles $A B C$ and $D E F$ are, therefore, mutually equiangular, and consequently similar; which was to be proved.

Cor. 1. In the first case, the parallel sides are homolo-
gous; in the second case, the perpendicular sides are homo logous.

Cor. 2. The homologous angles are those included by sides respectively parallel or perpendicular to each other.

Scholium. When two triangles have their sides perpenlicular, each to each, they may have a different relative position from that shown in the figure. But we can always construct a triangle within the triangle $A B C$, whose sides shall be parallel to those of the other triangle, and then the demonstration will be the same as above.

PROPOSITION XXII. THEOREM.

If a straight line be drawn paralled to the base of a triangle, and straight lines be drawn from the vertex of the triangle to points of the base, these lines will divide the base and the parallel proportionally.

Let $A B C$ be a triangle, $B C$ its base, A its vertex, $D E$ parallel to $B C$, and $A F, A G, A H$, lines drawn from A to points of the base : then will
$D I: B F:: I K: F G:: \pi L: G I I:: L E: H C$.
For, the triangles $A I D$ and $A F B$, being similar (P. XXI.), we have,

$$
A I: A F:: D I: B F
$$

and, the triangles $A I K$ and $A F G$,
 being similar, we have,

$$
A I: A F:: I K: F G ;
$$

hence, (B. II., P. IV.), we have,

$$
\begin{gathered}
\text { BOOK IV. } \\
D I: B F:: I K: F G .
\end{gathered}
$$

In like manner,

$$
I K: F G:: K L: G H
$$

and,

$$
K L: G H:: L E \text { : } H C \text {; }
$$

hence (B. II., P. IV.),
$D I: B F:: I K: F G:: K L: G H:: L E: H C ;$ which was to be proved.

Cor. If $B C$ is divided into equal parts at F, G, and H, then will $D E$ be divided into equal parts, at I, K, and L.

PROPOSITION XXIII. THEOREM.
If, in a right-angled triangle, a perpendicular be drawn from the vertex of the right angle to the hypothenuse:
1°. The triangles on each side of the perpendicular will be similar to the given triangle, and to each other:
2°. Each side about the right•angle will be a mean propertional between the hypothenuse and the adjacent segment: 3°. The perpendicular will be a mean proportional between the two segments of the hypothenuse.
1°. Let $A B C$ be a right-angled triangle, A the vertex of the right angle, $B C$ the hypothenuse, and $A D$ perpendicular to $B C$: then will $A D B$ and $A D C$ be similar to $A B C$, and consequently, similar to each other.

The triangles $A D B$ and $A B C$
 have the angle B common, and the angles $A D B$ and
$B A C$ equal, because both are right angles; they are, therefore, similar (P. XVIII., C). In like manner, it may be shown that the triangles $A D C$ and $A B C$ are similar; and since $A D B$ and $A D C$ are both similar to $A B C$, they are similar to each other; which was to be proned.
2°. $A B$ will be a mean proportional between $B C$ and $B D$; and $A C$ will be a mean proportional between $C B$ and $C D$.

For, the triangles $A D B$ and
 $B A C$ being similar, their homologous sides are proportional : hence,

$$
B C: A B \quad:: A B \quad: \quad B D
$$

In like manner,

$$
B C: A C:: A C: D C ;
$$

which was to be proved.
3°. $A D$ will be a mean proportional between $B L$ and $D C$. For, the triangles $A D B$ and $A D C$ being similar, their homologous sides are proportional ; hence,

$$
B D: A D:: A D: D C_{\succ}
$$

which was to be proved.
Cor. 1. From the proportions,
and,

$$
\begin{aligned}
& B C: A B \quad:: A B \quad: B D \\
& B C: A C \quad:: A C^{\gamma}: D C
\end{aligned}
$$

we have (B. II., P. I.),

$$
\begin{aligned}
& \overline{A B}^{2}=B C \times B D \\
& \overline{A C}^{2}=B C \times D C
\end{aligned}
$$

and,
whence, by addition,

$$
\overline{A B}^{2}+\overline{A C}^{2}=B C(B D+D C) ;
$$

or,

$$
\overline{A B}^{2}+\overline{A C}^{2}=\overline{B C}^{2}
$$

as was shown in Proposition XI.

Cor. 2. If from any point A, in a semi-circumference $B A C$, chords be drawn to the extremities B and C of the diameter $B C$, and a perpendicular $A D$ be drawn to the diameter: then will $A B C$ be a rightangled tri-
 angle, right-angled at A; and from what was proved above, each chord will be a mean proportional between the diameter and the adjacent segment; and, the perpendicular will be a mean proportional between the segments of the diameter.

PROPOSITION XXIV. THEOREM.

Triangles which have an angle in each equal, are to each other as the rectangles of the including sides.

Let the triangles $G \boldsymbol{H K}$ and $A B C$ have the angles G and A equal: then will they be to each other as the rectangles of the sides about these angles.

For, lay off $A D$ equal to $G H, A E$ to $G K$, and draw $D E$; then will the triangles $A D E$ and $G H K$ be equal in all their parts. Draw EB.

The triangles $A D E$ and $A B E$ have their bases in the same line $A B$, and a common vertex E; therefore, they have the same altitude, and consequently, are to each other as their bases; that is,

$$
A D E: A B E:: A D: A B
$$

The triangles $A B E$ and $A B C$, have their bases in the same line $A C$, and a common vertex B; hence, $A B E: A B C:: A E: A C ;$

multiplying these proportions, term by term, and omitting the common factor $A B E$ (В. II., P. VII.), we have,

$$
A D E: A B C:: A D \times A E: A B \times A C
$$

substituting for $A D E$, its equal, $G H K$, and for $A D \times A E$, its equal, $G H \times G K$, we have,

$$
G H K: A B C:: G H \times G K: A B \times A C
$$

which was to be proved.
Cor. If $A D E$ and $A B C$ are similar, the angles D and B being homologous, $D E$ will be parallel to $B C$, and we shall have,

$$
A D: A B:: A E: A C ;
$$

hence (B. II., P. IV.), we have,

$$
A D E: A B E:: A B E: A B C ;
$$

that is, $A B E$ is a mean proportional between $A D E$ and $A B C$.

PROPOSITION XXV. THEOREM.

Similar triangles are to each other as the squares of their homologous sides.

Let the triangles $A B C$ and $D E F$ be similar, the angle A being equal to the angle D, B to E, and C to F. then will the triangles be to each other as the squares of any two homologous sides.

Because the angles A and D are equal, we have (P. XXIV.),

$$
A B C: D E F:: A B \times A C: D E \times D F ;
$$

and, because the triangles are similar, we have,
$A B: D E: ~: ~ A C: D F ;$
multiplying the terms of this proportion by the cor-
 responding terms of the proportion,

$$
A C: D F:: A C: D F
$$

we have (B. II., P. XII.),

$$
A B \times A C: D E \times D F:: \overline{A C}^{2}:{\overline{D F^{2}}}^{2} ;
$$

combining this, with the first proportion (B. II., P. IV.), we have,

$$
A B C: D E F:: \overline{A C}^{2}: \overline{D F}^{2}
$$

In like manner, it may be shown that the triangles are to each other as the squares of $A B$ and $D E$, or of $B C$ and $E F$; which was to be proved.

PBOPOSITION XXVI. THEOREM.

Similar polygons may be divided into the same number of triangles, similar, each to each, and similarly placed.

Let $A B C D E$ and $F G H I K$ be two similar polygons, the angle A being equal to the angle F, B to G, C to H, and so on: then can they be divided into the same number of similar triangles, similarly placed.

For, from A draw the diagonals $A C$, $A D$, and from F, homologous with A, draw the diagonals $F H, F I$, to the vertices H and I, hom-
 ologous with C and D.

Because the polygons are similar, the triangles $A B C$ and $F G H$ have the angles B and G equal, and the sides about these angles proportional ; they are, therefore, similar (P. XX.). Since these triangles are similar, we have the angle $A C B$ equal to $F H G$, and the sides $A C$ and $F H$, proportional to $B C$ and $G H$, or to $C D$ and $H I$. The angle $B C D$ being equal to the angle $G H I$, if we take from the first the angle $A C B$, and from the second the equal angle $F I H G$, we shall have the angle $A C D$ equal to the angle $F H I$: hence, the triangles $A C D$ and $F H I I$ have an angle in each equal, and the including sides proportional; they are therefore similar

In like manner, it may be shown that $A D E$ and $F I K$ are similar; which was to be proved.

Cor. 1. The corresponding triangles in the two polygons are homologous triangles, and the corresponding diagonals are homologous diagonals.

Cor. 2. Any two homologous triangles are like parts of the polygons to which they belong.

For, the homologous triangles being similar, we have,

	$A B C: F G H:: \overline{A C}^{2}$
and,	$\overline{F H}^{2} ;$
whence,	$A C D: F H I:: \overline{A C}^{2}$
$: \overline{F H}^{2} ;$	
But,	$A B C: F G H:: A C D: F H I$,
and,	$A B C: F G H:: A B C: F G H ;$
	$A B C: F G H:: A D E: F I K ;$

$A B C . F G H:: A C D+A B C+A D E: F H I+F G I I+F I K ;$ that is, $A B C: F G H: ~: ~ A B C D E: F G H I K$.

Cor. 3. If two polygons are made up. of similar triangles, similarly placed, the polygons themselves will be similar.

PROPOSITION XXVII. THEOREM.

The perimeters of similar polygons are to each other as any two homologous sides ; and the polygons are to each other as the squares of any two homologous sides.
1°. Let $A B C D E$ and FGHIK be similar polygons: then will their perimeters be to each other as any two homologous sides.

For, any two homologous sides, as $A B$ and $F G$, are like parts of the perimeters to which they belong : hence (B. II., P. IX.), the perimeters of the
 polygons are to each other as $A B$ to $F G$, or as any other two homologous sides; which was to be proved.
2°. The polygons will be to each other as the squares of any two homologous sides.

For, let the polygons be divided into homologous triangles (P. XXVI., C. 1) ; then, because the homologous triangles
 $A B C$ and $F G H$ are
like parts of the polygons to which they belong, the polygons will be to each other as these triangles; but these triangles, being similar, are to each other as the squares of $A B$ and $F G$: hence, the polygons are to each other as the squares of $A B$ and $F G$, or as the squares of any other two homologous sides; which was to be proved.

Cor. 1. Perimeters of similar polygons are to each other as their homologous diagonals, or as any other homologous lines; and the polygons are to each other as the squares of their homologous diagonals, or as the squares of any other homologous lines.

Cor. 2. If the three sides. of a right-angled triangle be made homologous sides of three similar polygons, these polygons will be to each other as the squares of ${ }^{-}$the sides of the triangle. But the square of the hypothenuse is equal to the sum of the squares of the other sides, and consequently, the polygon on the hypothenuse will be equal to the sum of the polygons on the other sides.

PROPOSITION XXVIII. THEOREM.

If two chords intersect in a circle, their segments will be reciprocally proportional.

Let the chords $A B$ and $C D$ intersect at 0 : then
will their segments be reciprocally proportional ; that is, one segment of the first will be to one segment of the second, as the remaining segment of the second is to the remaining segment of the first.

For, draw $C A$ and $B D$. Then will the angles $O D B$ and $O A C$ be equal, because each is measured by half of the arc $C \boldsymbol{B}$ (B. III., P. XVIII.). The angles $O B D$ and $O C A$, will also
 be equal, because each is measured by half of the arc $A D$: hence, the triangles $O B D$ and,$O C A$ are similar (P. XVIII., C.), and consequently, their homologous sides are proportional : hence,

$$
D O: A O:: O B: O C \text {; }
$$

which was to be proved.

Cor. From the above proportion, we have,

$$
D O \times O C=A O \times O B ;
$$

that is, the rectangle of the segments of one chord is equal to the rectangle of the segments of the other.

PROPOSITION XXIX. THEOREM.

If from a point wothout a circle, two secants be drawn ter. minating in the concave arc, they will be reciprocally proportional to their external segments.

Let $O B$ and $O C$ be two secants terminating in the concave arc of the circle $B C D$: then will

$$
O B: O C:: O D: O A
$$

For, draw $A C$ and $D B$. The triangles $O D B$ and $O A C$ have the angle O common, and the angles $O B D$ and $O C A$ equal, because each is measured by half of the arc $A D$: hence, they are similar, and consequently, their homologous sides are proportional ; whence,

$$
O B: O C: O D: O A
$$

which was to be proved.

Cor. From the above proportion, we have,

$$
O B \times O A=O C \times O D
$$

that is, the rectangles of each secant and its external seg. ment are equal.

PROPOSITION XXX. THEOREM.

If from a point without a circle, a tangent and a secant be drawn, the secant terminating in the concave arc, the tangent will be a mean proportional between the secant and its external segment. .

Let $A D C$ be a circle, $O C$ a secant, and $O A$ a tangent: then will

$$
O C: O A:: O A: O D
$$

For, draw $A D$ and $A C$. The triangles $O A D$ and $O A C$ will have the angle O common, and the angles $O A D$ and $A C D$ equal, because each is measured by half of the arc $A D$ (B. III., P. XVIII., P. XXI.) ; the triangles are
 therefore similar, and consequently, their
homologous sides are proportional : hence,

$$
O C: O A:: O A: O D
$$

sohich was to be proved.

Cor. From the above proportion, we have,

$$
\overline{A O}^{2}=O C \times O D
$$

that is, the square of the tangent is equal to the rectangle of the secant and its external segment.

PRACTICAL APPLICATIONS.

PROBLEM I .

To divide a given straight line into parts proportional to given straight lines: also into equal parts.
1°. Let $A B$ be a given straight line, and let it be required to divide it into parts proportional to the lines P, Q, and R.

From one extremity A, draw the indefinite line $A G$, making any angle with $A B$; lay off $A C$ equal to $P, C D$ equal to Q, and $D E$ equal to R; draw $E B$, and from the points C and D, draw $C I$ and $D F$ parallel to $E B$: then, will $A I, I F$, and $F B$, be proportional to P, Q, and R (P XV., C. 2).
2°. Let $A H$ be a given straight line, and let it be reguired to divide it into any number of equal parts, say five.

From one extremity A, draw the indefinite line $A G$; take $A I$ equal to any convenient line, and lay off $I K, K L$, $L M$, and $M B$, each equal to $A I$. Draw
 $B H$, and from I, K, L, and M, draw the lines $I C$, $K D, L E$, and $M F$, parallel to $B H$: then will $A H$ be divided into equal parts at C, D, E, and F (P. XV., C. 2).

PROBLEM II.

To construct a fourth proportional to three given straight lines.

Let A, B, and C, be the given lines. Draw $D E$ and $D F$, making any convenient angle with each other. Lay off $D A$ equal to $A, D B$ equal
 to B, and $D C$ equal to C; draw $A C$, and from B draw $B X$ parallel to $A C$: then will $D X$ be the fourth proportional required.

For (P. XV., C.), we have,

$$
D A: D B:: D C: D X
$$

or,

$$
A: \quad B:: \quad C: D X
$$

Cor. If $D C$ is made equal to $D B, D X$ will be thi d proportional to $D A$ and $D B$, or to A and B.

PROBLEM III.

To construct a mean proportional betwen two given straight lines.

Let A and B be the given lines. On an indefinite line, lay off $D E$ equal to A, and $E F$ equal to B; on $D F$ as a diameter describe the semi-circle $D G F$, and

$B-\longrightarrow$
$\mathrm{A} \longmapsto-1$ draw $E G$. perpendicular to $D F$: then will $E G$ be the mean proportional required.

For (P. XXIII., C. 2), we have,

$$
D E: E G:: E G: E F
$$

or,

$$
A: E G:: E G: B
$$

PROBLEM IV.

T'o divide a given straight line into two such parts, that tho greater part shall be a mean proportional between the whole line and the other part.

Let $A B$ be the given line.
At the extremity B, draw $B C$ perpendicular to $A B$, and make it equal to half of $A B$. With C as a centre, and $C B$ as a radius, describe the are
 $D B E$; draw $A C$, and produce it till it terminates in the concave arc at E; with A as rentre and $A D$ as radius, describe the arc $D F$: then will $A F^{\prime}$ be the greater part required.

For, $A B$ being perpendicular to $C B$ at B, is tangent to the arc $D B E$: hence (P. XXX.),
$A E: A B:=A B: A D ;$
and, by division (B. II., P. VI.),

$$
A E-A B: A B:: A B-A D: A D
$$

But, $\mathcal{D E}$ is equal to twice $C B$, or to $A B$: hence, $A E-A B$ is equal to $A D$, or to $A F$; and $A B-A D$ is equal to $A B-A F$, or to $F B$: hence, by substitution,

$$
A F: A B:: F B: A F
$$

and, by inversion (B. II., P. V.),

$$
A B: A F:: A F: F B
$$

Schotium. When a straight line is divided so that the greater segment is a mean proportional between the whole line and the less' segment, it is said to be divided in extreme and mean ratio.

Since $A B$ and $D E$ are equal, the line $A E$ is divided in extreme and mean ratio at D; for we have, from the first of the above proportions, by substitution,

$$
A E: D E: D E: A D
$$

PROBLEM V.

Through a given point, in a given angle, to draw a straight line so that the segments between the point and the sides of the angle shall be equal.

Let $B C D$ be the given angle, and A the given point. Through A, draw $A E$ parallel to $D C$; lay off $E F$ equal to $C E$, and draw $F A D$: then will $A F$ and $A D$ be the segments required.

For (P. XV.), we have,

$$
F A: A D:: F E: E C
$$

but, $F E$ is equal to $E C$; hence, $F \dot{A}$ is equal to $A D$.

PROBLEM VI.

To construct a triangle equal to a given polygon.
Let $A B C D E$ be the given polygon.
Draw $C A$; produce $E A$, and draw $B G$ parallel to $C A$; draw the line $C G$. Then the triangles $B A C$ and $G A C$ have the common base $A C$, and because their
 vertices B and G lie in the same line $B G$ parallel to the base, their altitudes are equal, and consequently, the triangles are equal : hence, the polygon $G C D E$ is equa: to the polygon $A B C D E$.

Again, draw $C E$; produce $A E$ and draw $D F$ parallel to $C E$; draw also $C F$; then will the triangles $F C E$ and $D C E$ be equal : hence, the triangle $G C F$ is equal to the polygon $G C D E$, and consequently, to the given polygon. In like manner, a triangle may be constructed equal to any other given polygon.

PROBLEM VII.

To sonstruct a square equal to a given triangle.
Let $A B C$ be the given triangle, $A D$ its altitude, and $B C$ its base.

Construct a mean proportional between $A D$ and half of $B C$ (Prob. III.). Let $X Y$ be that mean proportional, and on
 it, as a side, construct a square: then will this be the square required. For, from the constraction,

$$
\overline{X Y}^{2}=\frac{1}{2} B C \times A D=\text { area } A B C
$$

Scholium. By means of Problems VI. and VII., a square may be constructed equal to any given polygon.

PROBLEM VIII.

On a given straight line, to construct a polygon similar to a given polygon.

Let $F G$ be the given line, and $A B C D E$ the given. polygon. Draw $A C$ and $A D$.

At F, construct the angle $G F H$ equal to $B A C$, and at G the angle $F G H$ equal to $A B C$; then will $F G H$ be similar to
 $A B C$ (P. XVIII., C.)

In like manner, construct the triangle $F H I$ similar to $A C D$, and FIK similar to $A D E$; then will the polygon $F G H I K$ be similar to the polygon $A B C D E$ (P. XXVI., C. 3).

PROBLEM IX.

To construct a square equal to the sum of two given squares: also a square equal to the difference of two given squares.
1°. Let \boldsymbol{A} and \boldsymbol{B} be the sides of the given squares, and let A be the greater.

Construct a right angle $C D E$; make $D E$ equal to A, and $D C$ equal to B; draw $C E$, and on it
 construct a square: this square will be equal to the sum of the given squares (P. XI.).

2°. Construct a right angle $C D E$.

Lay off $D C$ equal to B; with C as a centre, and $C E$, equal to A, as a radius, describe an arc cutting $D E$ at E; draw $C E$, and on $D E$ construct
 a square: this square will be equal to the difference of the given squares (P. XI., C. 1).

Scholium. A polygon may be constructed similar to either of two given polygons, and equal to their sum or difference.

For, let A and B be homologous sides of the given polygons Find a square equal to the sum or difference of the squares on A and B; and let X be a side of that square. On X as a side, homologous to A or B, construct a polygon similar to the given polygons, and it will be equal to their sum or difference (P. XXVII., C. 2).

BOOK V.

XEGULAR POLYGONS.-AREA OF THIT CIRCLE.

DEFINITION.

1. A Regular Polygon is a polygon which is both equilateral and equiangular.

PROPOSITION I. THEOREM.

Regular polygons of the same number of sides are similar.

Let $A B C D E F$ and abcdef be regular polygons of the same number of sides: then will they be similar.

For, the corresponding angles in each are equal, because any angle in either polygon is equal to twice as many right angles as the polygon
 has sides, less four right angles, divided by the number of angles (B. I., P. XXVI., C. 4) ; and further, the corresponding sides are proportional, because all the sides of either polygon are equal (D. 1): hence, the polygons are similar (B. IV., D. 1) ; which was to te proved.

PROPOSITION II. THEOREM.

The circumference of a circle may be circumscribed about any regular polygon ; a circle may also be inscribed in it.
1°. Let $A B C F$ be a regular polygon: then can the circumference of a circle be circumscribed about it.

For, through three consecutive vertices A, B, C, describe the circumference of a circle (B. III., Problem XIII., S.). Its centre O will lie on $P O$, drawn perpendicular to $B C$, at its middle point P; draw $O A$ and $O D$.

Let the quadrilateral $O P C D$ be
 turned about the line $O P$, until $P C$ falls on $\boldsymbol{P B}$; then, because the angle C is equal to B, the side $C D$ will take the direction $B A$; and because $C D$ is equal to $B A$, the vertex D, will fall upon the vertex A. ; and consequently, the line $O D$ will coincide with $O A$, and is, therefore, equal to it: hence, the circumference which passes through A, B, and C, will pass through D. In like manner, it may be shown that it will pass through all of the other vertices: hence, it is circumscribed about the polygon; which was to be proved.
2. A circle may be inscribed in the polygon.

For, the sides $A B, B C$, \&c., being equal chords o the circumscribed circle, are equidistant from the centre O hence, if a circle be described from O as a centre, with $O P$ as a radius, it will be tangent to all of the sides or the polygon, and consequently, will be inscribed in it; which was to be proved.

Scholium. If the circumference of a circle be divided into equal arcs, the chords of these ares will be sides of a regular inscribed polygon.

For, the sides are equal, because they are chords of equal arcs, and the angles are equal, because they are measured by halves of equal arcs.

If the vertices $A, B, C, \& c$., of a regular inscribed polygon be joined with the centre O, the triangles thus formed will be equal, because their sides are equal, each to each : hence, all of the angles abont the point O are equal to
 pach other.

DEFINTITONS.

1. The Centre of a Regular Polygon, is the common centre of the circumscribed and inscribed circles.
2. The Angle at the Centre, is the angle formed by drawing lines from the centre to the extremities of either side.

The angle at the centre is equal to four right angles divided by the number of sides of the polygon.
3. The Apothem, is the shortest distance from the centre to either side.

The apothegm is equal to the radius of the inscribed circle.

PROPOSITION III. PROBLEM.

To inscribe a square in a given circle.
Let $A B C D$ be the given circle. Draw any two diameters $A C$ and $B D$ perpendicular to each other ; they will divide the circumference into four equal ares (B. III., P. XVII., S.). Draw the chords $A B, B C, C D$, and $D A$: then
 will the figure $A B C D$ be the square required (P. II., S.).

Scholium. The radius is to the side of the inscribed square as 1 is to $\sqrt{2}$.

PROPOSITION IV. THEOREM.

If a regular hexagon be inscribed in a circle, any side will be equal to the radius of the circle.

Let $A B D$ be a circle, and $A B C D E H$ a regular inscribed hexagon: then will any side, as $A B$, be equal to the radius of the circle.

Draw the radii $O A$ and $O B$. Then will the angle $A O B$ be equal to one-sixth of four right angles, or to two-thirds of one right angle, because it is an angle at the centre (P. II., D. 2). The sum of the two angles $O A B$
 and $O B A$ is, consequently, equal
to four-thirds of a right angle (B. I., P. XXV., C. 1) ; but, the angles $O A B$ and $O B A$ are equal, because the opposite sides $O B$ and $O A$ are equal : hence, each is equal to
two-thirds of a right angle. The three angles of the triangle $A O B$ are therefore, equal, and consequently, the triangle is equilateral: hence, $A B$ is equal to $O A$; which was to le proved.

PROPOSITION ∇. PROBLEM.

To inscribe a regular hexagon in a given circle.
Let $A B E$ be a circle, and O its centre.
Beginning at any point of the circumference, as A, apply the radius $O A$ six times as a chord; then will $A B C D E F$ be the hexagon required (P. IV.).

Cor. 1. If the alternate vertices of the regular hexagon be joined by the straight lines
 $A C, C E$, and $E A$, the inscribed triangle $A C E$ will be equilateral (P. II., S.).

Cor. 2. If we draw the radii $O A$ and $O C$, the figure $A O O B$ will be a rhombus, because its sides are equal : hence (B. IV., P. XIV., C.), we have,

$$
\overline{A B}^{2}+\overline{B C}^{2}+\overline{O A}^{2}+\overline{O C}^{2}=\overline{A C}^{2}+\overline{O B}^{2}
$$

or, taking away from the first member the quantity $\overline{O A}^{2}$, and from the second its equal $\overline{O B}^{2}$, and reducing, we have

$$
3 \overline{O A}^{2}=\overline{A C}^{2} ;
$$

whence (B. II., P II.),

$$
\overline{A C}^{2}: \overline{O A}^{2}:: 3: 1
$$

or (B. II., P. XII., C. 2),

$$
A C: O A:: \sqrt{3}: 1
$$

that is, the side of an inscribed equilateral triangle is to the radius, as the square root of 3 is to 1.

PROPOSITION VI. THEOREM.

If the radius of a circle be divided in extreme and mean ratio, the greater segment will be equal to one side of a regular inscribed decagon.

Let $A C G$ be a circle, $O A$ its radius, and $A B$, equal to $O M$, the greater segment of $O A$ when divided in extreme and mean ratio: then will $A B$ be equal to the side of a regular inscribed decagon.

Draw $O B$ and $B M$. We have, by hypothesis,
$A O: O M:=O M: A M$;
or, since $A B$ is equal to $O M$, we have,
$A O: A B:: A B: A M$;
hence, the triangles $O A B$ and $B A M$ have the sides
 about their common angle $B A M$, proportional ; they are, therefore, similar (B. IV., P. XX.). But, the triangle $O A B$ is isosceles ; hence, $B A M$ is also isosceles, and consequently, the side $B M$ is equal to $A B$. But, $A B$ is equal to $O M$, by hypothesis : hence, $B M$ is equal to $O M$, and consequently, the angles $M O B$
and $M B O$ are equal. The angle $A M B$ being an exterior angle of the triangle $O M B$, is equal to the sum of the angles $M O B$ and $M B O$, or to twice the angle $M O B$; and because $A M B$ is equal to $O A B$, and also to $O B A$, the sum of the angles $O A B$ and $O B A$ is equal to four times the angle $A O B$: hence, $A O B$ is equal to one-fifth of two right angles, or to one-tenth of four right angles; and consequently, the arc $A B$ is equal
 to one-tenth of the circumference : hence, the chord $A B$ is equal to the side of a regular inscribed decagon; which was to be proved.

Cor. 1. If $A B$ be applied ten times as a chord, the resulting polygon will be a regular inscribed decagon.

Cor. 2. If the vertices A, C, E, G, and I, of the alternate angles of the decagon be joined by straight lines, the resulting figure will be a regular inscribed pentagon.

Scholium 1. If the arcs subtended by the sides of any regular inscribed polygon be bisected, and chords of the semiarcs be drawn, the resulting figure will be a regular inscribed polygon of double the number of sides.

Scholium 2. The area of any regular inscribed polygon is less than that of a regular inscribed pelygon of double the number of sides, because a part is less than the whole

PROPOSITION VII. PROBLEM.

To circumscribe, about a circle, a polygon which shall be similar to a given regular inscribed polygon.

Let $T N Q$ be a circle, O its centre, and $A B C D E F$ a regular inscribed polygon.

At the middle points $T, N, P, \& c$. , of the arcs subtended by the sides of the inscribed polygon, draw tangents to the circle, and prolong them till they intersect; then will the resulting figure be the polygon required.
1°. The side $H G^{6}$ be-
 ing parallel to $B A$, and $H I$ to $B C$, the angle H is equal to the angle B. In like manner, it may be shown that any other angle of the circumscribed polygon is equal to the corresponding angle of the inscribed polygon : hence, the circumscribed polygon is equiangular.
2°. Draw the straight lines $O G, O T, O H, O N$, and $O I$. Then, because the lines $H T$ and $H N$ are tangent to the circle, $O H$ will bisect the angle $N H T$, and also the angle NOT (B. III., Prob. XIV., S.) ; consequently, it will pass through the middle point B of the arc NBT. In like manner, it may be shown that the straight line drawn from the centre to the vertex of any other angle of the circumscribed polygon, will pass through the corresponding vertex of the inscribed polygon.

The triangles $O H G$ and $O H I$ have the angles $O H G$
and $O H I$ equal, from what has just been shown; the angles $G O H$ and HOI equal, because they are measured by the equal $\operatorname{arcs} A B$ and $B C$, and the side $O H$ common; they are, therefore, equal in all their parts : hence, GH is equal to HI. In like manner, it may be shown that $H I$ is equal to $I K$, $I K$ to $K L$, and so on : hence, the circumscribed polygon is equilateral.

The circumscribed polygon being both equiangular and equilateral, is regular ; and since it has the same number of sides as the inscribed polygon, it is similar to it.

Cor. 1. If straight lines be drawn from the centre of a regular circumscribed polygon to its vertices, and the consecutive points in which they intersect the circumference be joined by chords, the resulting figure will be a regular inscribed polygon similar to the given polygon.

Cor. 2. The sum of the lines $H T^{\prime}$ and ${ }^{t^{*}} H N$ is equal to the sum of $H T$ and $T G$, or to $H G$; that is, to one of the sides of the circumscribed polygon.

Cor. 3. If at the vertices $A, B, C, \& c$., of the inscribed polygon, tangents be drawn to the circle and prolonged till they meet the sides of the circumscribed polygon, the resulting figure will be a circumscribed polygon of double the number of sides.

Cor. 4. The area of any regular circumscribed polygon
is greater than that of a regular circumscribed polygon of double the number of sides, because the whole is greater than any of its parts.

Scholium. By means of a circumscribed and inscribed square, we may construct, in succession, regular circumscribed and inscribed polygons of $8,16,32, \& c$., sides. By means of the regular hexagon, we may, in like manner, construct regular polygons of $12,24,48, \& c$. , sides. By means of the decagon, we may construct regular polygons of $20,40,80$, \&c., sides.

PROPOSITION VIII. THEOREM.

The area of a regular polygon is equal to half the product of its perimeter and apothem.

Let $G H I K$ be a regular polygon, O its centre, and OT its apothem, or the radius of the inscribed circle: then will the area of the polygon be equal to half the product of the perimeter and the apothem.

For, draw lines from the centre to the vertices of the polygon. These lines will divide the polygon into triangles whose bases will be the sides of the polygon, and whose altitudes will be equal to the apothem. Now, the area of any triangle, as $O I I G$, is equal to half the product of the side $H G$
 and the apothem: hence, the area of the polygon is equal to half the product of the perimeter and the apothem; which was to be proved.

PROPOSITION IX. THEOREM.

The perimeters of similar regular polygons are to each other as the radii of their circurrscribed or inscribed circles; and their areas are to each other as the squares of those radii.
1°. Let $A B C$ and $K L M$ be similar regular polygons. सhet $O A$ and $Q K$ be the radii of their circumscribed, $O D$ and $Q R$ be the radii of their inscribed circles: then will the perimeters of the polygons be to each other as $O A$ is \%.O $Q K$, or as $O D$ is to $Q R$.

For, the lines 1) A and $Q K$ are homologous lines of the polygons 40 which they belong, as are also the lines $O D$ and $Q R$: hence, the
 , perimeter of $A B C$ is to the perimeter of $K L M$, as $O A$ is to $Q K$, or as DD is to $Q R$ (B. IV., P. XXVI., C. 1) ; which was to be iroved.
2°. The areas of the polygons will be to each other as $\overline{O A}^{2}$ is to $\overline{Q K}^{2}$, or as $\overline{O D}^{2}$ is to $\overline{Q R}^{2}$.

For, $O A$ being homologous with $Q K$, and $O D$ with $Q R$, we have, the area of $A B C$ is to the area of $K L M$ as $\bar{O} \bar{A}^{2}$ is to $\overline{Q K^{2}}$, or as $\overline{O D}^{2}$ is to $\overline{Q R}^{2}$ (B. IV., P^{\prime} XXVII., C. 1) ; which was to be proved.

PROPOSITION X. THEOREM.

Thoo regular polygons of the same number of sides can be constructed, the one circumscribed about a circle and the other inscribed in it, which shall differ from each other by less than any given surface.

Let $A B C E$ be a circle, O its centre, and Q the side of a square equal to or less than the given surface; then can two similar regular polygons be constructed, the one circumscribed about, and the other inscribed within the given circle, which shall differ from each other by less than the square of Q, and consequently, by less than the given surface.

Inscribe a square in the given circle (P. III.), and by means of it, inscribe, in succession, regular polygons of 8, 16, 32 , \&c., sides (P. VII., S.), untii one is found whose side is less than Q; let $A B$ be the side of such a polygon.

Construct a similar circum.
 scribed polygon abcde: then will these polygons differ from each other by less than the square of Q.

For, from a and b, draw the lines $a O$ and $b O$; they will pass through the points A and B. Draw also $O K$ to the point of contact K; it will bisect $A R$ at I and be perpendicular to it. Prolong $A O$ to E.

Let P denote the circumscribed, and p the inscribed polygon; then, because they are regular and similar, we shall have (P. IX.),

$$
P: p::{\overline{O K^{2}}}^{2} \text { or } \overline{O A}^{2}: \overline{O Y}^{2}
$$

hence, by division (B. II., P. VI.), we have,

$$
P: P-p:: \overline{O A}^{2}: \overline{O A}^{2}-\overline{O I}^{2}
$$

or,
$l^{\prime}: P-p:: \overline{O A}^{2}: \overline{A I}^{2}$.
Multiplying the terms of the second couplet by 4 (В. П., P. VII), we have,
$I^{\prime}: P-p:: 4 \overline{O A}^{2}: 4 \overline{A I}^{2}$;
whence (B. IV., P. VIII., C.),
$\Gamma: P-p:: \overline{A E}^{2}: \overline{A B}^{2}$.
But P is less than the square of $A E$ (P. VII., C. 4); hence, $P-p$ is less than the square of $A B$, and conse quently, less than the square of Q, or than the given surface; which was to be proved.

Cor. 1. When the number of sides of the inscribed polygon is increased, the area of the polygon will be increased, and the area of the corresponding circumscribed polygon will be diminished (P. VII., c. 4) ; and each will constantly approach the circle, which is the limit of both.

Cor. 2. When the number of sides of either polygon reaches its limit, which is infinity, each polygon will reach its limit, which is the circle: hence, under that supposition, the difference between the two polygons will be less than any assignable quantity, and may be denoted by zero,* and either of the polygons will be represented by the circle.

[^1]Scholium 1. The circle may be regarded as the limit of the inscribed and circumscribed polygons; that is, it is a figure towards which the polygons may be made to approach nearer than any appreciable quantity, but beyond which they cannot be made to pass.

Scholium 2. The circle may, therefore, be regarded as a regular polygon of an infinite number of sides; and because of the principle, that whatever is true of a whole class. is true of every individual of that class, we may affirm ihat whatever is true of a regular polygon, having an infinite number of sides, is true also of the circle.

Scholium 3. When the circle is regarded as a regular polygon, of an infinite number of sides, the circumference is to be regarded as its perimeter, and the radius as its apothem.

PROPOSITION XI. PROBLEM.

The area of a regular inscribed polygon, and that of a similar circumscribed polygon being given, to find the areas of the regular inscribed and circumscribed polygons. having double the number of sides.

Let $A B$ be the side of the given inscribed, and EF that of the given circumscribed polygon. Let C be their common centre, $A M B$ a portion of the circumference of the circle, and M the middle point of the arc $A M B$.

Draw the chord $A M$, and at A and B draw the tangents $A P$ and $B Q$; then will $A M$ be the side of the inscribed polygon, and $P Q$ the side of the circumscribed polygon of double the number of sides (\mathbf{P}. VII.). Draw $C E, C P, C M$, and $C F$.

Denote the area of the given inscribed polygon by p, the area of the given circumscribed polygon by P^{\prime}, and the areas of the inscribed and circumscribed polygons having double the number of sides, respectively by p^{\prime} and $P^{\prime \prime}$.

1. The triangles $C A D, C A M$, and $C E M$, are like parts of the polygons to which they belong: hence, they are proportional to the polygons themselves. But CAM is a mean proportional between $C A D$ and $C E M$ (B. IV., P. XXIV., C.) ; consequently p^{\prime}
 is a mean proportional between p and P : hence,

$$
p^{\prime \prime}=\frac{p \times p^{\prime}}{\sqrt{p \times P}}
$$

$$
\boldsymbol{p}^{\prime}=\sqrt{p \times P} \cdot \cdot \cdot \cdot \cdot \cdot \cdot(1 .)
$$

2°. Because the triangles $C P M$ and $C P E$ have the common altitude $C M$, they are to each other as their bases : hence,

$$
C P M: C P E:: P M: P E
$$

and because $C P$ bisects the angle $A C M$, we have (B. IV., P. XVII.),

$$
P M: P E:: C M: C E:: C D: C A
$$

hence (B. II., P. IV.),

$$
C P M: C P E:: C D \quad: C A \text { or } C M .
$$

But, the triangles $C A D$ and $C A M$ have the common altitude $A D$; they are therefore, to each other as their bases: hence,

$$
C A D: C A M: \quad C D: C M
$$

or, because $C A D$ and $C A M$ are to each other as the polygons to which they belong,

$$
p: p^{\prime}{ }^{\prime \prime}:: C D: C M
$$

hence (B. II., P. IV.), we have,

$$
\begin{aligned}
& \text { P. IV.), we have, } \\
& C P M: C P E:=p_{0}^{\prime \prime}: x^{\prime}
\end{aligned}
$$

and, by composition,

$$
C P M: C P M+C P E \text { or } C M E:: p: p+p^{\prime}
$$

hence (B. II., P. VII.),

$$
2 C P M \text { or CMPA : CME :: } 2 p: p+p^{\prime}
$$

But, CMPA and $C M E$, are like parts of P^{\prime} and P, hence,
or,

$$
P^{\prime}: P:: 2 p ; p+p^{\prime}
$$

Scholium. By means of Equation (1), we can find p^{\prime}, and then, by means of Equation (2), we can find P^{\prime}.

PROPOSITION XII. PROBLEM.

To find the approximate area of a circle whose radius is 1.
The area of an inscribed square is equal to twice the square described on the radius (P. III., S.), which square is the unit of measure, and is denoted by 1. The area of the circumscribed square is 4 . Making p equal to 2 , and P equal to 4 , we have, from Equations (1) and (2) of Proposition XI.,
$p^{\prime}=\sqrt{8}=2.8284271$. . . inscribed octagon;
$P^{\prime}=\frac{16}{2+\sqrt{8}}=3.3137085$. . . circumscribed octagon.

Making p equal to 2.8284271, and P equal to 3.3137085 , we bave, from the same equations,

$$
\begin{aligned}
& p^{\prime}=3.0614674 \text {. . . inscribed polygon of } 16 \text { sides. } \\
& P^{\prime}=3.1825979 \text {. . . circumscribed polygon of } 16 \text { sides. }
\end{aligned}
$$

By a continued application of these equations, we find the areas indicated below,

Number of	Sides.		Inscribed Polygons.			Circt miscribel Polygons.
4	-	-	2.0000000	-	-	4.0000000
8	-	-	2.8284271	-	-	3.3137085
16	-	-	3.0614674	-	-	3.1825979
32	-	-	3.1214451 ,	-	-	3.1517249
64	-	-	3.1365485	-	-	3.1441184
128	-	-	3.1403311	-	-	3.1422236
256	-	-	3.1412772	-	-	3.1417504
512	-	-	3.1415138	-	-	3.1416321
1024	-	-	3.1415729	-	-	3.1416025
2048	-	-	3.1415877	-	-	3.1415951
4096	-	-	3.1415914	-	-	3.1415933
8192	-	-	3.1415923	-	-	3.1415928
16384	-	-	3.1415925	-	-	3.1415927

Now, the figures which express the areas of the two last polygons are the same for six decimal places; hence, those areas differ from each other by less than one-millionth of the measuring unit. But the circle differs from either of the polygons by less than they differ from each other. Hence, 1^{2} taken 3.141592 times, expresses the area of a circle whose radius is 1 , to less than onemillionth of the measuring unit; and by increasing the number of sides of the polygons, we should obtain an area still nearer the true one. Denote the number of times which the square of the radius is taken, by π, we have,

$$
\pi \times 1^{2}=3.141592 ;
$$

that is, the area of a circle whose radius is 1 , is 3.141592 , in which the unit of measure is the square on the radius.

Sty. For ordinary accuracy, π is taken equal to 3.1416 .

PROPOSITION XIII. THEOREM.

The circumferences of circles are to each other as their radii, and the areas are to each other as the squares of their radie.

Let C and O be the centres of two circles whose radii are $C A$ and $O B$: then will the circumferences be to each other as their radii, and the areas will be to each other as the squares of their radii.

For, let similar regular polygons MNPST and EFGKT be inscribed in the circles: then will the perimeters of these polygons be to each other as their apothems, and the areas will be to each other as the squares of their apothems, whatever may be the number of their sides (P. IX.).

If the number of sides be made infinite (P. X. S. 2.), the polygons will coincide with the circles, the perimeters with the circumferences, and the apothems with the radii: hence, the circumferences of the circles are to each other as their radii, and the areas are to each other as the squares of the radiı; which was to be proved.

Cor. 1. Diameters of circles are proportional to their radii: hence, the circumferences of circles are proportional to their diameters, and the areas are proportional to the squares of the diameters.

Cor. 2. Similar arcs, as $A B$ and $D E$, are like parts of the circumferences to which they belong, and similar sectors, as $A C R$ and $D O E$, are like parts of the circles to which they belong : hence, similar arcs are to each other as their
 radii, and similar sectors are to each other as the squares of their radii.

Scholium. The term infinite, used in the proposition, is to be understood in its technical sense. When it is proposed to make the number of sides of the polygons infinite, by the method indicated in the scholium of Proposition X., it is simply meant to express the condition of things, when the inscribed polygons reach their limits; in which case, the difference between the area of either circle and its inscribed polygon, is less than any appreciable quantity. We have seen (P. XII.), that when the number of sides is 16384 , the areas differ by less than the millionth part of the measuring unit. By increasing the number of sides, we approximate still nearer.

PROPOSITION XIV. THEOREM.

The area of a circle is equal to half the product of its circumference and radius.

Let O be the centre of a circle, $O C$ its radius, aud $A C D E$ its circumference : then will the area of the circle be equal to half the product of the circumference and radius.

For, inscribe in it a regular polygon $A C D E$. Then will the area of this polygon be equal to half the pro-

duct of its perimeter and apothem, whatever may be the number of its sides (P. VIII.).

If the number of sides be made infinite, the polygon will coincide with the circle, the perimeter with the circumference, and the apothem with the radius : hence, the area of the sircle is equal to half the product of its circumference and adius; which was to be proved.

Cor. 1. The area of a sector is equal to half the product of its are and radius.

Cor. 2. The area of a sector is to the area of the circle, as the arc of the sector to the circumference.

PROPOSITION XV. PROBLEM.

To find an expression for the area of any circle in terms of its radius.

Let C be the centre of a circle, and $C A$ its radius. Denote its area by urea $C A$, its radius by R, and the area of a circle whose radius is 1 , by $\pi \times 1^{2}$ (P. XII., S.).

Then, because the areas of circles are to each other as the squares of their radii (P. XIII.), we have,

$$
\text { area } C A: \pi \times 1^{2}:: R^{2}: 1 ;
$$

whence,

$$
\text { area } C A=\pi R^{2}
$$

That is, the area of any carcle is 3.1416 times the square of the radius.

PROPOSITION XVI. PRUBLEM.
To find an expression for the circumference of a circle, in terms of its radius, or diameter.

Let C be the centre of a circle, and $C A$ its radius.

Denote its circumference by circ. $C A$, its radius by R, and its diameter by D. From the last Proposition, we have,

$$
\text { area } C \mathcal{A}=\pi R^{2} ;
$$

and, from Proposition XIV., we have,

$$
\text { area } C A=\frac{1}{2} \text { circ. } C A \times R \text {; }
$$

hence, $\frac{1}{2} \operatorname{circ.} C A \times R=\pi \boldsymbol{R}^{2} ;$

whence, by reduction,

$$
\text { circ. } C A=2 \pi R, \quad \text { or, } \quad \text { circ. } C A=\pi D
$$

That is, the circumference of any circle is equal to 3.1416 times its diameter.

Scholium 1. The abstract number π, equal to 3.1416 , denotes the number of times that the diameter of a circle is contained in the circumference, and also the number of times that the square constructed on the radius is contained in the area of the circle (P. XV.). Now, it has been proved by the methods of Higher Mathematics, that the value of π is incommensurable with 1 ; hence, it is impossible to express, by means of numbers, the exact length of a circumference in terms of the radius, or the exact area in terms of the square described on the radius. We may also infer that it i_{3} impossible to square the circle; that is, to construct a square whose area shall be exactly equal to that of the circle.

Scholium 2. Besides the approximate value of $\pi, 3.1416$, usually employed, the fractions $\frac{22}{7}$ and $\frac{355}{113}$ are also used to express the ratio of the diameter to the circumference.

BOOKVI.

PLANES AND POLYEDRAL ANGLES.

DEFINITIONS.

1. A straight line is perpendicular to a plane, when it is perpendicular to every straight line of the plane which passes through its foot; that is, through the point in which it meets the plane.

In this case, the plane is also perpendicular to the line.
2. A straight line is parallel to a plane, when it cannot meet the plane, how far soever both may be produced.

In this case, the plane is also parallel to the line.
3. Two Planes are parallel, when they cannot meet, now far soever both may be produced.
4. A Diedral angle is the amount of divergence of two planes.

The line in which the planes meet, is called the ellge of the angle, and the planes themselves are called faces of the angle.

The measure of a diedral angle is the same as that of a plane angle formed by two straight lines, one in each face, and both perpendicular to the edge at the same point. A diedral angle may be acute, obtuse, or a right angle. In the latter case, the faces are perpendicular to each other.
5. A Polyedral angle is the amount of divergence of several planes meeting at a common point.

This point is called the vertex of the angle; the lines in which the planes meet are called edges of the angle, and the portions of the planes lying between the edges are called faces of the angle. Thus, S is the vertex of the polyedral angle, whose edges are $S A, S B, S C$, $S D$, and whose faces are $A S B$, $B S C, \quad C S D, D S A$.

A polyedral angle which has but three faces, is called a triedral aingle.

POSTULATE.

A straight line may be drawn perpendicular to a plane from any point of the plane, or from any point without the plane.

PROPOSITION I. THEOREM.

If a straight line has two of its points in a plane, it will lie wholly in that plane.

For, by definition, a plane is a surface such, that if any two of its points be joined by a straight line, that line will lie wholly in the surface (B. I., D. 8).

Cor. Through any point of a plane, an infinite number of straight lines may be drawn which will lie in the plane. For, if a straight line be drawn from the given point to any other point of the plane, that line will lie wholly in the plane.

Scholium. If any two points of a plane be joined by a straight line, the plane may be turned about that line as an
axis, so as to take an infinite number of positions. Hence, we infer that an infinite number of planes may be passed through a given straight line.

PROPOSITION II. THEOREM.

Through three points, not in the same straight line, one plane can be passed, and only one.

Let A, B, and C be the three points: then can one plane be passed through them, and only one.

Join two of the points, as A and B, by the line $A B$. Through $A B$ let a plane be passed, and let this plane be turned around $A B$ until it contains the point C; in this position it will
 pass through the three points A, B, and C. If now, the plane be turned about $A B$, in either direction, it will no longer contain the point C : hence, one plane can always be passed through three points, and only one; which was to be proved.

Cor. 1. Three points, not in a straight line, determine the position of a plane, because only one plane can be passed through them.

Cor. 2. A straight line and a point without that line, determine the position of a "plane, because only one plane can be passed through them.

Cor. 3. Two straight lines which intersect, determine the - position of a plane. For, let $A B$ and $A C$ intersect at A : then will either line, as $A B$, and one point of the other, as C, determine the position of a plane.

Cor. 4. Two parallel straight lines determine the position of a
plane. For, let $A B$ and $C D$ be parallel. By definition (B. I., D. 16) two parallel lines always lie in the same plane. But either line, as $A B$, and any point of the other, as F, determine the position of a plane : hence, two parallels determine the position of a plane.
$A \longrightarrow B$
$\mathrm{C}-\mathrm{F}$

PROPOSITION III. THEOREM.

The intersection of two planes is a straight line.
Let $A B$ and $C D$ be two planes: then will their intersection be a straight line.

For, let E and F be any two points common to the planes; draw the straight line $E F$. This line having two points in the plane $A B$, will lie wholly in that plane ; and
 having two points in the plane $C D D$, will lie wholly in that plane: hence, every point of $E F$ is common to both planes. Furthermore, the planes can have no common point lying without $E F$, otherwise there would be two planes passing through a straight line and a point lying without it, which is impossible (P. II., ${ }^{\text {E }}$ C. 2) ; hence, the intersection of the two planes is a straight line; which was to be proved.

PROPOSITION IV. TIIEOREM.

If a straight line is perpendicular to two straight lines at their point of intersection, it is perpendicular to the plane of those lines.

Let $M N$ be the plane of the two lines $B B, C C$, and let $A P$ be perpendicular to these lines at $P:$ then will
$A P$ be perpendicular to every straight line of the plane which passes through P, and consequently, to the plane itself.

For, through P, draw in the plane $M N$, any line $P Q$; through any point of this line, as Q, draw the line $B C$, so that $B Q$ shall be equal to $Q C$ (B. IV., Prob. V.) ; draw $A B$,
 $A Q$, and $A C$.

The base $B C$, of the triangle, $B P C$, being bisected at Q, we have (B. IV., P. XIV.),

$$
\overline{P C}^{2}+\overline{P B}^{2}=2 \overline{P Q}^{2}+2{\overline{Q \bar{C}^{2}}}^{2}
$$

In like manner, we have, from the triangle $A B C$,

$$
\overline{A C}^{2}+\overline{A B}^{2}=2 \overline{A Q}^{2}+2{\overline{Q C^{2}}}^{2}
$$

Subtracting the first of these equations from the second, member from member, we have,

$$
\overline{A C}^{2}-\overline{P C}^{2}+\overline{A B}^{2}-\overline{P B}^{2}=2 \overline{A Q}^{2}-2 \overline{P Q}^{2}
$$

But, from Proposition XI., C. 1, Book IV., we have,

$$
\overline{A C}^{2}-\overline{P C}^{2}=\overline{A P}^{2}, \quad \text { and } \quad \overline{A B}^{2}-\overline{P B}^{2}=\overline{A P}^{2}
$$

hence, by substitution,

$$
2 \overline{A P}^{2}=2 \overline{A Q}^{2}-2 \overline{P Q}^{2} ;
$$

whence,

$$
{\bar{A} \bar{P}^{2}=\overline{A Q}^{2}-\overline{P Q}^{2} ; \quad \text { or }, \quad \overline{A P}^{2}+\overline{P Q}^{2}=\overline{A Q}^{2} . . .{ }^{2} .}
$$

The triangle $A P Q$ is, therefore, right-angled at P (B. IV, P. XIII., S.), and consequently, $A P$ is perpendicular to $P Q$: hence, $A P$ is perpendicular to every line of the plane $M N$ passing through P, and consequently, to the plane itself; which was to be proved.

Cor. 1. Only one perpendicular can be drawn to a plane from a point without the plane. For, suprose two perpendiculars, as $A P$ and $A Q$, could be drawn from the point A to the plane $M N$. Draw $P Q$; then the triangle $A P Q$ would have two right angles, $A P Q$ and
 $A Q P$; which is impossible (B. I., P. XXV., C. 3).

Cor. 2. Only one perpendicular can be drawn to a plane from a point of that plane. For, suppose that two perpendiculars could be drawn to the plane MN, from the point P. Pass a plane through the perpendiculars, and let $P Q$ be its intersection with $M N$; then we should have two perpendiculars drawn to the same straight line from a point of that line ; which is impossible (B. I., P. XIV., C.).

PROPOSITION V. THEOREM.

If from a point without a plane, a perpendicular be drawn to the plane, and oblique lines be drawn to different points of the plane:
1°. The perpendicular will be shorter than any oblique line:
2°. Oblique lines which meet the plane at equal distances from the foot of the perpendicular, will be equal:
3. Of two oblique lines which meet the plane at unequal distances from the foot of the perpendicular, the one which meets it at the greater distance will be the longer.

Let A be a point without the plane $M N$; let $A P$ be perpendicular to the plane; let $A C, A D$, be any two oblique lines meeting the plane at equal distances from the foot of the perpendicular ; and let $A C$ and $A E$ be any
two oblique lines meeting the plane at unequal distances from the foot of the perpendicular :
1°. $A P$ will be shorter than any oblique line $A C$.

For, draw $P C$; then will $A P$ be less than $A C$ (B . I., P. XV.) ; which was to be proved.

2°. $A C$ and $A D$ will be equal.
For, draw $P D$; then the right-angled triangles $A P C$, $A P D$, will have the side $A P$ common, and the sides $P C$, $P D$, equal: hence, the triangles are equal in all their parts, and consequently, $A C$ and $A D$ will be equal; which was to be proved.

3°. AE will be greater than $A C$.

For, draw $P E$, and take $P B$ equal to $P C$; draw $A B$: then will $A E$ be greater than $A B$ (B. I., P. XV.); but $A B$ and $A C$ are equal: hence, $A E$ is greater than $A C$; which was to be proved.

Cor. The equal oblique lines $A B, A C, A D$, meet the plane $M N$ in the circumference of a circle, whose centre is P, and whose radius is $P B$: hence, to draw a perpendicular to a given plane $M N$, from a point A, without that plane, find three points B, C, D, of the plane equally distant from A, and then find the centre P, of the circle whose circumference passes through these points: then will $A P$ be the perpendicular required.

Scholium. The angle $A B P$ is called the inclination of the oblique line $A B$ to the plane $M N$. The equal oblique lines $A B, A C, A D$, are all equally inclined to the plane $M N$. The inclination of $A E$ is less than the inclination of any shorter line $A B$.

If from the foot of a perpendicular to a plane, a straight line be drawn at right angles to any straight line of that plane, and the point of intersection be joined with any point of the perpendicular, the last line will be perpendicular to the line of the plane.

Let $A P$ be perpendicular to the plane $M N, P$ its foot, $B C$ the given line, and A any point of the perpendicular; draw $P D$ at right angles to $B C$, and join the point D with A : then will $A D$ be perpendicular to $B C$.

For, lay off $D B$ equal to $D C$, and draw $P B, P C, A B$, and $A C$. Because $P D$ is perpendicular to $B C$, and $D B$ equal to $D C$, we have, $P B$ equal to $P C$ (B. I., P. XV.) ; and because $A P$ is perpendicu-
 lar to the plane $M N$, and $P B$ equal to $P C$, we have $A B$ equal to $A C$ (P. V.). The line $A D$ has, therefore, two of its points A and D, each equally distant from \boldsymbol{B} and C : hence, it is perpendicular to $B C$ (B. I., P. XVI., S.) ; which was to be proved.

Cor. 1. The line $B C$ is perpendicular to the plane of the triangle $A P D$; because it is perpendicular to $A D$ and $P D$, at D. (P. IV.).

Cor. 2. The shortest distance between $A P$ and $B C$ is measured on $P D$, perpendicular to both. For, draw $B E$ between any other points of the lines : then will $B E$ be greater than $P B$, and $P B$ will be greater than $P D$: bence, $P D$ is less than $B E$.

Scholium. The lines $A P$ and $B C$, though not in the same plane, are considered perpendicular to each other. In geueral, any two straight lines not in the same plane, are considered as making an angle with each other, which angle is equal to that formed by drawing through a given point, two lines respectively parallel to the given lines.

PROPOSITION VII. THEOREM.

If one of two parallels is perpendicular to a plane, the other one is also perpendicular to the same plare.

Let $A P$ and $E D$ be two parallels, and let $A P$ be perpendicular to the plane $M N$: then will $E D$ be also perpendicular to the plane $M N$.

For, pass a plane through the parallels ; its intersection with $M N$ will be $P D$; draw $A D$, and in the plane $M N$ draw $B C$ perpendicular to $P D$ at D. Now, $B D$ is perpendicular
 to the plane $A P D E$ (P. VI., C.); the angle $B D E$ is consequently a right angle; but the angle $E D P$ is a right angle, because $E D$ is parallel to $A P$ (B. I., P. XX., C. 1) : hence, $E D$ is perpendicular to $B D$) and $P D$, at their point of intersection, and consequently, to their plane $M N$ (P. IV.) ; which was to be proved.

Cor. 1. If the lines $A P$ and $E D$ are perpendicular to the plane $M N$, they are parallel to each other. For, if not, draw through D a line parallel to $P A$; it will be perpendicular to the plane $M N$, from what has just been proved; we shall, therefore, have two perpendiculars to the the plane $M N$, at the same point; which is impossible (P . IV. C. 2).

Cor. 2. If two straight lines, A and B, are parallel to a third line C, they are parallel to each other. For, pass a plane perpendicular to C; it will be perpendicular to both A and B : hence, A and B are parallel.

PROPOSITION VIII. THEOREM.

If a straight line is parallel to a line of a plane, it is paralled to that plane.

Let the line $A B$ be parallel to the line $C D$ of the plane $M N$; then will $A B$ be parallel to the plane $M N$.

For, through $A B$ and $C D$ pass a plane (P. II., C. 4) ; CD will be its intersection with the plane $M K N$. Now, since $A B$ lies in this plane, if it can meet the plane $M N$, it will be at
 some point of $C D$; but this is impossible, because $A B$ and $C D$ are parallel : hence, $A B$ cannot meet the plane $M N$, and consequently, it is parallel to it; which was to be proved.

PROPOSITION IX. TIIEOREM.
If two planes are perpendicular to the same straight line, they are parallel to each other.

Let the planes $M N$ and $P Q$ be perpendisular to the line $A B$, at the points A and B : then will they be parallel to each other.

For, if they are not parallel,

they will meet; and let O be a point common to both. From O draw the lines $O A$ and $O B$: then, since $O A$ lies in the plane $M N$, it will be perpendicular to $B A$ at A (D. 1). For a like reason, $O B$ will be perpendicular to $A B$ at B : hence, the triangle $O A B$ will have two right angies, which is impossible ; consequently, the planes cannot meet, and are therefore parallel ; which was to be proved.

PROPOSITION X. THEOREM.

If a plane intersect two parallel planes, the lincs of intersection will be parallel.

Let the plane $E H$ intersect the parallel planes $M N$ and $P Q$, in the lines $E F$ and $G H$: then will $E F$ and $G I I$ be parallel.

For, if they are not parallel, they will meet if sufficiently prolonged, because they lie in the same plane; but if the lines meet, the planes $M N$ and $P Q$, in which they lie, will also meet; but this is impossible, because these planes are parallel: hence,
 the lines $E F$ and $G H$ cannot meet; they are, therefore, parallel ; which was to be proved.

PROPOSITION XI. THEOREM.

If a straight line is perpendicular to one of two paralle planes, it is also perpendicular to the other.

Let $M N$ and $P Q$ be two parallel planes, and let the line $A B$ be perpendicular to $P Q$ then will it also be perpendicular to $M N$.

For, through $A B$ pass any plane; its intersections with $M N$ and $P Q$ will be parallel (P. X.) ; but, its intersection with $P Q$ is perpendicular to $A B$ at B (D. 1); hence, its intersection with $M N$ is also perpendicular to $A B$ at A (B. I., P. XX., C. 1) : hence, $A B$ is perpendicular to every line of the plane $M N$ through A, and is, therefore, perpendicular to that plane; which was to
 be proved.

PROPOSITION XII. THEOREM.

Parallel straight lines included between parallel planes, are equal.
Let $E G$ and $F H$ be any two parallel lines included between the parallel planes $M N$ and $P Q$: then will they be equal.

Through the parallels conceive a plane to be passed; it will intersect the plane $M N$ in the line $E F$, and $P Q$ in the line $G I I$; and these lines will be parallel (Prop. X.). The figure $E F H G$ is, therefore, a parallelogram : hence, $G E$ and $H F$ are equal (B. I., P. XXVIII.) ; which was to be proved.

Cor. 1. The distance between two parallel planes is measured on a perpendicular to both; but any two perpendiculars between the planes are equal : hence, parallel planes are everywhere equally distant.

Cor. 2. If a straight line $G H$ is parallel to any plane $M N$, then can a plane be passed through $G H$ parallel to $M N$: hence, if a straight line is parallel to a plane, all of its points are equally distant from that plane.

PROPOSITION XIII. THEOREM

If two angles, not situated in the same plane, have their sides parallel and lying in the same direction, the angles will be equal and their planes parallel.

Let CAE and DBF be two angles lying in the planes $M N$ and $P Q$, and let the sides $A C$ and $A E$ be respectively parallel to $B D$ and $B F$, and lying in the same direction: then will the angles $C A E$ and $D B F$ be equal, and the planes $M N$ and $P Q$ will be parallel.

Take any two points of $A C$ and $A E$, as C and E, and make $B D$ equal to $A C$, and $B F$ to $A E$; draw $C E, D F$, $A B, C D$, and $E F$.
$]^{\circ}$. The angles $C A E$ and $D B F$ will be equal.

For, $A E$ and $B F$ being parallel and equal, the figure $A B F E$ is a parallelogram (B. I., P. XXX.) ; hence, $E F$ is parallel and equal to $A B$. For
 a like reason, $C D$ is parallel and equal to $A B$: hence, $C D$ and $E F$ are parallel and equal to each other, and consequently, $C E$ and $D F$ are also parallel and equal to each other. The triangles $C A E$ and $D B F$ have, therefore, their corresponding sides equal, and consequently, the cortesponding angles $C A E$ and $D B F$ are equal; which was to be proved.
2^{3}. The planes of the angles $M N$ and $P Q$ are parallel.
For, if not, pass a plane through A parallel to $P Q$, and suppose it to cut the lines $C D$ and $E F$ in G and H. Then will the lines $G D$ and $H F$ be equal respect-
ively to $A B$ (P. XII.), and consequently, $G D$ will be equal to $C D$, and $H F$ to $E F$; which is impossible : hence, the planes $M N$ and $P Q$ must be parallel; which was to be proved.

Cor. If two parallel planes $M N$ and $P Q$, are met by two other planes $A D$ and $A F$, the angles $C A E$ and $D B F$, formed by their intersections, will be equal.

PROPOSTTION XIV. THEOREM.

If three straight lines, not situated in the same plane, are equal and parallel, the triangles formed by joining the extremities of these lines will be equal, and their planes parallel.

Let $A B, C D$, and $E F^{\prime}$ be equal parallel lines not in the same plane: then will the triangles $A C E$ and $B D F$ be equal, and their planes parallel.

For, $A B$ being equal and parallel to $E F$, the figure $A B F E$ is a parallelogram, and consequently, $A E$ is equal and parallel to $B F$. For a like reason, $A C$ is equal and parallel to $B D$: hence, the included angles $C A E$ and $D B F$ are equal and their planes parallel (P. XIII.). Now, the triangles $C A E$ and
 $D B F$ have two sides and their mcluded angles equal, each to each : hence, they are equal in all their parts. The triangles are, therefore, equal and their planes parallel; which was to be proved.

PROPOSITION XV. THEOREM.

If two straight lines are cut by three parallel planes, they will be divided proportionally.

Let the lines $A B$ and $C D$ be cut by the paralle] llanes $M N, P Q$, and $R S$, in the points A, E, B, and $C, \quad F, D$; then

$$
A E: E B:: C F: F D
$$

For, draw the line $A D$, and suppose it to pierce the plane $P Q$ in G; draw $A C, B D$, $E G$, and $G F$.

The plane $A B D$ intersects the parallel planes $R S$ and $P Q$ in the lines $B D$ and $E G$; consequently, these lines are parallel (P. X.) : hence (B. IV., P. XV.),

$$
A E: E B:: A G: G D
$$

The plane $A C D$ intersects the parallel planes $M N$ and $P Q$, in the parallel lines $A C$ and $G F$: hence,

$$
A G: G D:: C F: F D
$$

Combining these proportions (B. II., P. IV.), we have,

$$
A E: E B:: C F: F D
$$

which was to be proved.
Cor. 1. If two straight lines are cut by any number of parallel planes, they will be divided proportionally.

Cor. 2. If any number of straight lines are cut by three parallel planes, they will be divided proportionally.

PROPOSITION XVI. THEOREM.

If a straight line is perpendicular to a plane, every plane passed through the line will also be perpendicular to that plane.

Let $A P$ be perpendicular to the plane $M N$, and let $B F$ be a plane passed through $A P$: then will $B F$ be perpendicular to $M N$.

In the plane $M N$, draw $P D$ perpendicular to $B C$, the intersection of $B F$ and $M N$. Since $A P$ is perpendicular to $M N$, it is perpendicular to $B C$ and $D P$ (D. 1); and since $A P$ and $D P$, in the
 planes $B F$ and $M N$, are perpendicular to the intersection of these planes at the same point, the angle which they form is equal to the angle formed by the planes (D. 4); but this angle is a right angle : hence, $\boldsymbol{B F}$ is perpendicular to $M N$; which was to be proved.

Cor. If three lines $A P, B P$, and $D P$, are perpendicular to each other at a common point P, each line will be perpendicular to the plane of the other two, and the three planes will be perpendicular to each other.

PROPOSITION XVII. THEOREM.

If two planes are perpendicular to each other, a straight line drawn in one of them, perpendicular to their intersection, will be perpendicular to the other.

Let the planes $B F$ and $M N$ be perpendicular to each other, and let the line $A P$, drawn in the plane $B F$, be perpendicular to the intersection $B C$; then will $A P$ be perpendicular to the plane MN.

For, in the plane $M N$, draw $P D$ perpendicular to $B C$ at P. Then because the planes $B F$ and $M N$ are perpendicular to each other, the angle $A P D$ will be a right angle : hence, $A P$ is perpendicular to the two lines $P D$ and $B C$, at their intersection, and consequently, is perpendicular to their plane $M N$; which was to be proved.

Cor. If the plane $B F$ is perpendicular to the plane $M N$, and if at a point P of their intersection, we erect a perpendicular to the plane $M N$, that perpendicular will be in the plane $B F$. For, if not, draw in the plane $B F$, $P A$ perpendicular to $P C$, the common intersection ; $A P$ will be perpendicular to the plane $M N$, by the theorem; therefore, at the same point P, there are two perpendiculars to the plane $M N$; which is impossible (P. IV., C. 2).

PROPOSITION XVIII. THEOREM.

If two planes cut each other, and are perpendicular to a third plane, their intersection is also perpendicular to that plane.

Let the planes $B F, D H$, be perpendicular to $M N$: then will their intersection $A P$ be perpendicular to $M N$.

For, at the point P, erect a perpendicular to the plane $M N$; that perpendicular must be in the plane $B F$, and also in the plane $D H$ (P. XVII., C.) ; therefore, it is their common intersection $A P$: which was to be proved.

The sum of any two of the plane angles formed by the edges of a triedral angle, is greater than the third.

Let $S A, S B$, and $S C$, be the edges of a triedral angle: then will the sum of any two of the plane angles formed by them, as $A S C$ and $C S B$, be greater than the third $A S B$.

If the plane angle $A S B$ is equal to, or less than, either of the other two, the truth of the proposition is evident. Let us suppose, then, that $A S B$ is greater than either.

In the plane $A S B$, construct the angle $B S D$ equal to $B S C$; draw $A B$ in that plane, at pleasure; lay off $S C$ equal to $S D$, and draw $A C$ and $C B$. The triangles $B S D$ and $B S C$ have the side $S C$ equal to $S D$, by
 construction, the side $S B$ common, and the included angles $B S D$ and $B S C$ equal, by construction ; the triangles are therefore equal in all their parts : hence, $B D$ is equal to $B C$. But, from Proposition VII., Book I., we have,

$$
B C+C A>B D+D A
$$

Taking away the equal parts $B C$ and $B D$, we have,

$$
C A>D A
$$

hence (B. I., P. IX.), we have,

$$
\text { angle } A S C>\text { angle } A S D \text {; }
$$

and, adding the equal angles $B S C$ and $B S D$,
angle $A S C+$ angle $C S B>$ angle $A S D+$ angle $D S B ;$
or, \quad angle $A S C+$ angle $C S B>$ angle $A S B$;
which was to be proved.

PROPOSITION XX. THEOREM.

The sum of the plane angles formed by the edges of any polyedral angle, is less than four right angles.

Let S be the vertex of any polyedral angle whose edges are $S A, S B, S C, S D$, and $S E$; then will the sum of the angles about S be less than four right angles.

For, pass a plane cutting the edges in the points A, B, C, D, and E, and the faces in the lines $A B, B C$, $C D, D E$, and $E A$. From any point within the polygon thus formed, as O, draw the straight lines $O A, O B, O C$, $O D$, and $O E$.

We then have two sets of triangles,
 one set having a common vertex S, the other having a common vertex O, and both having common bases $A B, B C, C D, D E, E A$. Now, in the set which has the common vertex S, the sum of all the angles is equal to the sum of all the plane angles formed by the edges of the polyedral angle whose vertex is S, together with the sum of all the angles at the bases : viz., $S A B$, $S B A, S B C, \& c . ;$ and the entire sum is equal to twice as many right angles as there are triangles. In the set whose common vertex is O, the sum of all the angles is equal to the four right angles about O, together with the interior angles of the polygon, and this sum is equal to twice as many right angles as there are triangles. Since
the number of triangles, in each set, is the same, it follows that these sums are equal. But in the triedral angle whose vertex is B, we have (P. XIX.),

$$
A B S+S B C>A B C
$$

and the like may be shown at each of the other vertices, C, D, E, A : hence, the sum of the angles at the bases, in the triangles whose common vertex is S, is greater than the sum of the angles at the bases, in the set
 whose common vertex is O : therefore, the sum of the vertical angles about S, is less than the sum of the angles about O : that is, less than four right angles; which was to be proved.

Scholium. The above demonstration is made on the supposition that the polyedral angle is convex, that is, that the diedral angles of the consecutive faces are each less than two right angles.

PROPOSITION XXI. THEOREM.

If the plane angles formed by the edges of two triedral angles are equal, each to each, the planés of the equal angles are equally inclined to each other.

Let S and T be the vertices of two triedral angles, and let the angle $A S C$ be equal to $D T F, A S B$ to $D T E$, and $B S C$ to $E T F$: then will the planes of the equal angles be equally inclined to each other.

For, take any point of $S B$, as B, and from it draw in the two faces $A S B$ and $C S B$, the lines $B A$ and $B C$, respectively perpendicular to $S B$: then will the angle $A B C$ measure the inclination of these faces. Lay off $T E$ equal
to $S B$, and from E draw in the faces $D T E$ and $F T E$, the lines $E D$ and $E F$, respectively perpendicular to $T E$. then will the angle $D E F$ measure the inclination of these faces. Draw $A C$ and $D F$.

The right-angled triangles $S B A$ and TED, have the side $S B$ equal to $T E$, and
 the angle $A S B$ equal to $D T E$; hence, $A B$ is equal to $D E$, and $A S$ to $T D$. In like manner, it may be shown that $B C$ is equal to $E F$, and $C S$ to $F T$. The triangles $A S C$ and $D T F$, have the angle $A S C$ equal to $D T F$, by hypothesis, the side $A S$ equal to $D T$, and the side $C S$ to $F T$, from what has just been shown; hence, the triangles are equal in all their parts, and consequently, $A C$ is equal to $D F$. Now, the triangles $A B C$ and $D E F$ have their sides equal, each to each, and consequently, the corresponding angles are also equal ; that is, the angle $A B C$ is equal to $D E F$: hence, the inclination of the planes $A S B$ and $C S B$, is equal to the inclination of the planes $D T E$ and $F T E$. In like manner, it may be shown that the planes of the other equal angles are equally inclined; which was to be proved.

Scholium. If the planes of the equal plane angles are tike placed, the triedral angles are equal in all respects, for they may be placed so as to coincide. If the planes of the equal angles are not similarly placed, the triedral angles are equal by symmetry. In this case, they may be placed so that two of the homologous faces shall coincide, the triedral angles lying on opposite sides of the plane, which is then called a plane of symmetry. In this position, for every point on one side of the plane of symmetry, there is a corresponding point on the other side.

BOOK VII.

POLYEDRONS.

DEFINITIONS.

1. A Polfedron is a volume bounded by polygons.

The bounding polygons are called faces of the polyedron; the lines in which the faces meet, are called edges of the polyedron ; the points in which the edges meet, are called vertices of the polyedron.
2. A Prism is a polyedron in which two of the faces are polygons equal in all their parts, and having their homologous sides parallel. The other faces are parallelograms (B. I., P. XXX.).

The equal polygons are called bases of the prism ; one the upper, and the other the
 lower base; the parallelograms taken together make up the lateral or convex surface of the prism; th: lines in which the lateral faces meet, are calléd lateral edges of the prism.
3. The Altitude of a prism is the perpendicular distance between the planes of its bases.
4. A Right Prism is one whose lateral edges are perpendicular to the planes of the bascs.

In this case, any lateral edge is equal to
 the altitude.
5. An Oblique Prism is one whose lateral edges are oblique to the planes of the bases.

In this case, any lateral edge is gieater than the altitude.
6. Prisms are named from the number of sides of their bases; a triangular prism is one whose bases are triangles; a pentangular prism is one whose bases are pentagons, \&c.
7. A Parallelopipedon is a prism whose bases are parallelograms.

A Right Parallelopipedon is one whose lateral edges are perpendicular to the planes of the bases.

A Rectangular Parallelopipedon is one whose faces are all rectangles.

A Cube is a rectangular parallelopipedon whose faces are squares.
8. A Pyramid is a polyedron bounded by a polygon called the base, and by triangles meeting at a common point, called the vertex of the pyramid.

The triangles taken cogether make up the lateral or convex surface of the pyramid; the lines in which the lateral faces meet, are called the lateral edges of the pyramid.

9. Pyramids are named from the number of sides of their bases; a triangular pyramid is one whose base is a triangle; a quadrangular pyramid is one whose base is a quadrilateral, and so on.
10. The Altitude of a pyramid is the perpendicular distance from the vertex to the plane of its base.
11. A Right Pyranid is one whose base is a regular polygon, and in which the perpendicular drawn from the vertex to the plane of the base, passes through the centre of the base.

This perpendicular is called the axis of the pyramid.

12 The Slant Height of a right pyramid, is the perpendicular distance from the vertex to any side of the base.
13. A Truncated Pyramid is that portion of a pyramid included between the base and any plane which cuts the pyramid.

When the cutting plane is parallel to the base, the truncated pyramid is called
 a frustum of a pyramid, and the intersection of the cutting plane with the pyramid, is called the upper base of the frustum; the base of the pyramid is called the lower base of the frustum.
14. The Altitude of a frustum of a pyramid, is the perpendicular distance between the planes of its bases.
15. The Slant Height of a frustum of a right pyramid, is that portion of the slant height of the pyramid which lies between the planes of its upper and lower bases.
16. Similar Polyedrons are those which are bounded by the same number of similar polygons, similarly placed.

Parts which are similarly placed, whether faces, edges, or angles, are called homologous.
17. A Diagonal of a polyedron, is a straight line joining the vertices of two polyedral angles not in the same face.
18. The Volume of a Polyedron is its numerical value expressed in terms of some other polyedron as a unit.

The unit generally employed is a cube constructed on the linear unit as an edge.

PROPOSITION I. THEOREM.

The convex surface of a right prism is equal to the perimeter of either base multiplied by the altitude.

Let $A B C D E-K$ be a right prism : then is its convex surface equal to,

$$
(A B+B C+C D+D E+E A) \times A F
$$

For, the convex surface is equal to the sum of all the rectangles $A G, B H$, $C I, D K, E F$, which compose it. Now, the altitude of each of the rectangles $A F, B G, C I I, \& c .$, is equal to the altitude of the prism, and the area of each rectangle is equal to its base multiplied by its altitude (B. IV., P. V.) :
 hence, the sum of these rectangles, or the convex surface of the prism, is equal to,

$$
(A B+B C+C D+D E+E A) \times A F
$$

that is, to the perimeter of the base multiplied by the aliitude; which was to be proved.

Cor. If two right prisms have the same altitude, their convex surfaces are to each other as the perimeters of their bases.

PROPOSITION II. THEOREM.

In any prism, the sections made by parallel planes are polygons equal in all their parts.

Let the prism $A I I$ be intersected by the parallel planes $N P, S V$: then are the sections $N O P Q R$, STVXY, equal polygons.

For, the sides $N O, S T$, are parallel, being the intersections of parallel planes with a third plane $A B G F$; these sides, $N O, S T$, are included between the parallels $N S, O T$: hence, $N O$ is equal to $S T$ (B. I., P. XXVIII., C. 2). For like reasons, the sides• $O P, P Q, Q R, \& c$., of $N O P Q R$, are equal to the sides $T V, V X, \& c .$, of STVXY, each to each; and since the equal sides are par-
 allel, each to each, it follows that the angles $N O P, O P Q, \& c$. , of the first section, are equal to the angles $S T V, T V X, \& c$., of the second section, each to each (B. VI., P. XIII.) : hence, the two sections $N O P Q R$, STVXY, are equal in all their parts; which was to be proved.

Cor. The bases of a prism, and every section of a prism, parallel to the bases, are equal in all their parts.

PROPOSITION III. THEOREM.

If a pyramid be cut by a plane parallel to the base.
1°. The edges and the altitude will be divided proportionally: $\mathbf{2}^{\circ}$. The section will be a polygon similar to the base.

Let the pyramid $S-A B C D E$, whose altitude is $S O$, be cut by the plane abcde, parallel to the base $A B C D E$.
10. The edges and altitude will be divided proportionally.

For, conceive a plane to be passed through the vertex S, parallel to the plane of the base ; then will the edges and the altitude be cut by three parallel planes, and consequently they will be divided proportionally (B. VI., P. XV., C. 2) ; which was to be proved.
2°. Tho section $a b c d e$, will be similar to the base $A B C D E$. For, $a b$ is parallel to $A B$, and bc to $B C$ (B. VI., P. X.) : hence, the angle $a b c$ is equal to
 the angle $A B C$. In like manner, it may be shown that each angle of the polygon abcde is equal to the corresponding angle of the base: hence, the two polygons are mutually equiangular.

Again, because $a b$ is parallel to $A B$, we have,

$$
a b: A B:: s b: S B ;
$$

and, because $b c$ is parallel to $B C$, we have,

$$
b c: B C:: s b: S B \text {; }
$$

hence (B. II., P. IV.), we have,

$$
a b: A B:: b c: B C
$$

In like manner, it may be shown that all the sides of abcde are proportional to the corresponding sides of the polygon $A B C D E$: hence, the section abcde is similar to the base $A B C D E$ (B. IV., D. 1) ; which was to je proved.

Cor. 1. If two pyramids $S-A B C D E$, and $S-X Y Z$, having a common vertex S, and their bases in the same plane, be cut by a plane $a b c$, parallel to the plane of their bases, the sections will be to each other as the bases.

For, the polygons $a b c d$ and $A B C D$, being similar, are to each other as the squares of their homologous sides $a b$ and $A B$ (B. IV., P. XXVII) ; but,

$$
\overline{a b}^{2}: \overline{A B}^{2}:: \overline{S a}^{2}: \overline{S A}^{2}: \overline{S o}^{2}: \overline{S O}^{2} ;
$$

Lence (B. II., P. IV.), we have,
$a b c d e: A B C D E:: \overline{S o}^{2}: \overline{S O}^{2}$.
In like manner, we have,
$x y z: X Y Z:: \overline{S o}^{2}: \overline{S O}^{2} ;$ hence,

$a b c d e ~: ~ A B C D E:: x y z: X Y Z$.
Cor. 2. If the bases are equal, any sections at equal distances from the bases will be equal.

Cor. 3. The area of any section parallel to the base, is proportional to the square of its distance from the vertex.

PROPOSTIION IV. THEOREM.

The convex surface of a right pyramid is equal to the perimeter of its base multiplied by half the slant height.

Let S be the vertex, $A B C D E$ the base, and $S F$, perpendicular to $E A$, the slant height of a right pyramid: then will the convex surface be equal to,

$$
(A B+B C+C D+D E+E A) \times \frac{1}{2} S F
$$

Draw $S O$ perpendicular to the plane of the base.

From the definition of a right pyramid, the point O is the centre of the base (D .11) : hence, the lateral edges, $S A, S B$, \&c., are all equal (B. VI., P. V.) ; but the sides of the base are all equal, being sides of a regular polygon : hence, the lateral faces are all equal, and consequently their altitudes are all equal, each being equal to the slant height of the pyramid.

Now, the area of any lateral face, as $S E A$, is equal to its base $E A$, multiplied by half its altitude $S F^{\prime}$: hence, the sum of the areas of the lateral faces, or the convex surface of the pyramid, is equal to,

$$
(A B+B C+C D+D E+E A) \times \frac{1}{2} S F
$$

which was to be proved.

Scholium. The convex surface of a frustum of a right pyramid is equal to half the sum of the perimeters of its upper and lower bases, multiplied by the slant height.

Let $A B C D E-e$ be a frustum of a right pyramid, whose vertex is S : then will the section abcde be similar to the base $A B C D E$, and their homologous sides will be parallel, (P. III.). Any lateral face of the frustum, as $A E e a$, is a trapezoid, whose altitude is equal to $F f$, the slant height of the frustum; hence, its area is equal to $\frac{1}{2}(E A+e a) \times F f$ (B. IV., P. VII.). But the area of the con-
 vex surface of the frustum is equal to the sum of the areas of its lateral faces; it is, therefore, equal to the half sum of the perimeters of its upper and lower bases, multiplied by the slant height.

PROPOSITION V. THEOREM.

If the three faces which include a triedral angle of a prism are equal in all their parts to the three faces which include a triedral angle of a second prism, each to each, and are like placed, the two prisms are equal in all their parts.

Let B and b be the vertices of two triedral angles, included by faces respectively equal to each other, and similarly placed: then will the prism $A B C D E-K$ be equal to the prism abcde-k, in all of its parts.

For, place the base abcde upon the equal base $A B C D E$, so that they shall coincide; then because the triedral angles whose vertices are b and B, are equal, the parallelogram $b h$ will coincide with BII, and the parallelogram $b f$ with
 $B F$: hence, the two sides $f g$ and $g h$, of one upper base, will coincide with the homologous sides of the other upper base ; and because the upper bases are equal in all their parts, they must coincide throughout; consequently, each of the lateral faces of one prism will coincide with the corresponding lateral face of the other prism : the prisms, therefore, coincide throughout, and are therefore equal in all their parts; which was to be proved.

Cor. If two right prisms have their bases equal in all their parts, and have also equal altitudes, the prisms themselves wili be equal in all their parts. For, the faces which include any triedral angle of the one, will be equal in all their parts to the faces which include the corresponding triedral angle of the other, each to each, and they will be similarly placed.

PROPOSITION VI. THEOREM.

In any parallelopipedon, the opposite faces are equal in all their parts, each to each, and their planes are parallel.

Let $A B C D-H$ be a parallelopipedon : then will its opposite faces be equal and their planes will be parallel.

For, the bases, $A B C D$ and EFGII are equal, and their planes parallel by definition (D. 7). The opposite faces $A E I I D$ and BFGC, have the sides $A E$ and $B F$ parallel, because they are opposite sides of the parallelogram $B E$;
 and the sides ELI and FG parallel, because they are opposite sides of the parallelogram $E G$; and consequently, the angles $A E H$ and $B F G$ are equal (B. VI., P. XIII.). But the side $A E$ is equal to $B F$, and the side EHI to $F G$; hence, the faces AEIID and $B F F_{X} C$ are equal ; and because $A E$ is parallel to $B F$, and $E H$ to $F G$, the planes of the faces are parallel (B. VI., P. XIII.). In like manner, it may be shown that the parallelograms $A B F E$ and $D C G H$, are equal and their planes parallel : hence, the opposite faces are equal, each to each, and their planes are parallel ; which was to be proved.

Cor. 1. Any two opposite faces of a parallelopipedon may be taken as bases.

Cor. 2. In a rectangular parallelopipedon, the square of either of the diagonals is equal to the sum of the squares of the three edges which meet
 at the same vertex.

For, let $F D$ be either of the diagonals, and draw $\boldsymbol{F H}$.

Then, in the right-angled triangle $F H D$, we have,

$$
\overline{F D}^{2}=\overline{D H}^{2}+\overline{F U M}^{2}
$$

Bat $D H$ is equal to $F B$, and $\overline{F H}^{2}$ is equal to $\overline{H A}^{2}$ plus $\overline{A M}^{2}$ or $\overline{F C}^{2}$: hence,

$$
\overline{F D}^{2}=\overline{F B}^{2}+\overline{F A}^{2}+\overline{F C}^{2}
$$

C'or. 3. A parallelopipedon may be constructed on three straight lines $A B, A D$, and $A E$, intersecting in a common point A, and not lying in the same plane. For, pass through the extremity of each line, a plane parallel to the plane of the other two; then will these planes, together with the planes of the given lines, be the faces of a parallelopipedon.

PROPOSITION VII. THEOREM.

If a plane be passed through the diagonally opposite edges of a parallelopipedon, it will divide the parallelopipedon into two equal triangular prisms.

Let $A B C D-I I$ be a parallelopipedon, ${ }^{*}$ and let a plane be passed through the edges $B F$ and $D H$. then will the prisms $A B D-H$ and $B C D-H$ be equal in volume.

For, through the vertices F and B let planes be passed perpendicular to $F B$, the former cutting the other lateral edges in the points e, h, g, and the latter cutting those edges produced, in the points a, d, and c. The sections Frehg and Badc will be parallelograms,

because their opposite sides are parallel, each to each (B. VI., P. X.) ; they will also be equal (P. II.) : hence, the polyedron $B a d c-g$ is a right prism (D. 2, 4), as are also the polyedrons Bad-h and Bcd-h.

Place the triangle $F e h$ upon $B a d$, so that F shall coincide with $B, \quad e$ with a, and h with d; then, because $e E, h H$, are perpendicular to the plane $F e h$, and $a A, d D$, to the plane $B a d$, the line $e E$ will take the direction αA, and the line $h H$ the direction $d D$. The lines $A E$ and ae are equal, because each is equal to $B F$ (B. I., P. XXVIII.). If we take away from the line $a E$ the part αe, there will remain the part $e E$; and if from the same line, we take away the part $A E$, there will remain the part $A a$: hence, $e E$ and $a A$ are equal (A. 3); for a like reason $h H$ is equal to $d D$: hence, the point E will coincide with A, and the point $I I$ with D, and consequently, the polyedrons $F e h-H$ and $B a d-D$ will coincide throughout, and are therefore equal.

If from the polyedron $B a d-I I$, we take away the part $B a d-D$, there will remain the prism $B A D-H$; and if from the same polyedron we take away the part Feh-II, there will remain the prism Bad-h: hence, these prisms are equal in volume. In like manner, it may be shown that the prisms $B C D-I I$ and $B c d-h$ are equal in volume.

The prisms $B a d-h$, and $B c d-h$, have equal bases, because these bases are halves of equal parallelograms (B. I., P. XXVIII., C. 1); they have also equal altitudes; they are therefore equal (P. V., C.) : hence, the prisms $B A D-H$ and $B C D-H$ are equal (A. 1); which was to be proved.

Cor. Any triangular prism $A B D-H$, is equal to half of the parallelopipedon $A G$, which has the same triedral angle A, and the same edges $A B, A D$, and $A E$.

PROPOSITION VIII. THEOREM.

If two parallelopipedons have a common lower base, and their upper bases between the same parallels, they are equal in volume.

Let the parallelopipedons $A G$ and $A L$ have the common lower base $A B C D$, and their upper bases $E F G H$ and $I K L M$, between the same parallels $E K$ and $I L$: then will they be equal in volume.

For, the lines $E F$ and $I K$ are equal, because each is equal to $A B$; hence, the sum of $E F$ and $F Y$, or $E I$, is equal to the sum of $F I$ and $I K$, or $F K$. In the triangular
 prisms $A E I-M$ and $B F K-L$, we have the line $A E$ equal and parallel to $B F$, and $E I$ equal to $F K$; hence, the face $A E I$ is equal to $B F K$. In the faces $E I M H$ and $F K L G$, we have, $H E=. G F, E I=F K$ and $H E I=G F K$: hence, the two faces are equal (Bk. I. P. xxviii. C. 3) : the faces $A E H D$ and $B F G C$ are also equal (P. VI.) : hence, the prisms are equal (P . V.)

If from the polyedron $A B K E-H$, we take away the prism $B F K-L$, there will remain the parallelopipedon $A G$; and if from the same polyedron we take away the prism $A E I-M$, there will remain the parallelopipedon $A L$: hence, these parallelopipedons are equal in volume (A. 3); which was to be proved.

PROPOSITION IX. THEOREM.

If two parallelopipedons have a common lower base and the same altitude, they will be equal in volume.

Let the parallelopipedons $A G$ and $A L$ have the common lower base $A B C D$ and the same altitude: then will they be equal in volume.

Because they have the same altitude, their upper bases will lie in the same plane. Let the sides $I M$ and $K L$ be prolonged, and also the sides $F E$ and $G I I$; these prolongations will form a parallelogram $O Q$, which will be equal to the common base of the given parallelopipedons, because its sides are respectively parallel and equal to the correspond-
 ing sides of that base.

Now, if a third parallelopipedon be constructed, having for its lower base the parallelogram $A B C D$, and for its upper base $N O P Q$, this third parallelopipedon will be equal in volume to the parallelopipedon $A G$, since they have the same lower base, and their upper bases between the same parallels, $Q G, N F$ (P. VIII.). For a like reason, this third parallelopipedon will also be equal in volume to the parallelopipedon $A L$: hence, the two parallelopipedons $A G$ $A L$, are equal in volume; which was to be proved.

Cor. Any oblique parallelopipedon may be changed into a right parallelopipedon having the same base and the same altitude; and they will be equal in volume.

PROPOSITION X. PROBLEM.

To construct a rectangular parallelopipedon which shall be equal in volume to a right parallelopipedon whose base is any parallelogram.

Let $A B C D-M$ be a right parallelopipedon, having for its base the parallelogram $A B C D$.

Through the edges $A I$ and $B K$ pass the planes $A Q$ and $B P$, respectively perpendicular to the plane $A K$, the former meeting the face $D L$ in $O Q$, and the latter meeting that face produced in $N^{T} P$: then will the polyedron $A P$ be a rectangular parallelopipedon equal to the given parallelopipedon. It will be a rect-
 angular parallelopipedon, because all of its faces are rectangles, and it will be equal to the given parallelopipedon, because the two may be regarded as having the common base $A K$ (P. VI., C. 1), and an equal altitude $A O$ (P. IX.).

Cor. 1. Since any oblique parallelopipedon may be changed into a right parallelopipedon, having the same base and altitude, (P. IX., Cor.) ; it follows, that any oblique parallelopipedon may be changed into a rectangular parallelopipedon, having an equal base, an equal altitude, and an equal volume.

Cor. 2. An oblique parallelopipedon is equal in volume to a rectangular parallelopipedon, having an equal base and an equal altitude.

Cor. 3. Any two parallelopipedons are equal in volume when they have equal bases and equal altitudes.

PROPOSITION XI. THEOREM.

Two rectangular parallelopipedons having a common lower base, are to each other as their altitudes.

Let the parallelopipedons $A G$ and $A L$ have the com mon lower base $A B C D$: then will they be to each other as their altitudes $A E$ and $A I$.
1°. Let the altitudes be commensurable, and suppose, for example, that $A E$ is to $A I$, as 15 is to 8.

Conceive $A E$ to be divided into 15 equal parts, of which $A I$ will contain 8 ; through the points of division let planes be passed parallel to $A B C D$. These planes will divide the parallelopipedon $A G$ into 15 parallelopipedons, which have equal bases (P. II. C.) and equal altitudes; hence, they are equal (P. X., Cor. 3).

Now, $A G$ contains 15 , and $A L 8$ of these equal parallelopipedons ; hence, $A G$ is to $A L$, as 15 is to 8 , or as $A E$ is to $A I$. In like manner, it may be shown that $A G$ is to $A L$, as $A E$ is to $A I$, when the altitudes are to each other as any other whole numbers.
2°. Let the altitudes be incommensur-
 able.

Now, if $A G$ is not to $A L$, as $A E$ is to $A I$, let us suppose that,

$$
A G: A L:: A E: A O
$$

in which $A O$ is greater than $A I$.
Divide $A E$ into equal parts, such that each shall be less than $O I$; there will be at least one point of division
m, between O and I. Let P denote the parallelopipedon, whose base is $A B C D$, and altitude $A m$; since the altitudes $A E, A m$, are to each other as two whole numbers, we have,

$$
A G: P:: A E: A m
$$

But, by hypothesis, we have,

$$
A G: A L:: A E: A O
$$

therefore (B. II., P. IV., C.),

$$
A L: P:: A O: A m
$$

But $A O$ is greater than $A m$; hence, if the proportion is true, $A L$ must be greater than P. On the contrary, it is less ; consequently, the fourth term of the proportion cannot be greater than $A I$. In like manner, it may be shown that the fourth term cannot be less than $A I$; it is, therefore, equal to $A I$. In this case, therefore, $A G$ is to $A L$, as $A E$ is to $A I$.

Hence, in all cases, the given parallelopipedons are to each other as their altitudes; which was to be proved.

Sch. Any two rectangular parallelopipedonstwhose bases are equal in all their parts, are to each other as their altitudes.

> PROPOSITION XII. THEOREM.

Two rectangular parallelopipedons having equal altitudes, are to each other as their bases.

Let the rectangular parallelopipedons $A G$ and $A K$ have the same altitude $A E$: then will they be to each other as their bases.

For, place them as shown in the figure, and produce the plane of the face $N L$, until it intersects the plane of the face $H C$, in $P Q$; we shall thus form a third rectangular parallelopipedon $A Q$.

The parallelopipedons $A G$ and $A Q$ have a common base $A H$; they are therefore to each other as their altitudes $A B$ and $A O$ (P. XI.) : hence, we have the proportion,

$$
\text { vol. } A G: \text { vol. } A Q \quad:: A B: A O
$$

The parallelopipedons $A Q$ and $A K$ have the common base $A L$; they are therefore to each other as their altitudes $A D$ and $A M$: hence,

$$
\text { vol. } A Q: \text { vol. } A K:: A D: A M .
$$

Multiplying these proportions, term by term (B. II., P. XII.), and omitting the common factor, vol. $A Q$, we have,

$$
\text { vol. } A G: \text { vol. } A K:: A B \times A D: A O \times A M .
$$

But $A B \times A D$ is equal to the area of the base $A B C D$: and $A O \times A M$ is equal to the area of the base $A M N O$ hence, two rectangular parallelopipedons having equal alti tudes, are to each other as their bases; which was to be proved.

PROPOSITION XIII. THEOREM.

Any two rectangular parallelopipedons are to each other as the products of their bases and altitudes; that is, as the products of their three dimensions.

Let $A Z$ and $A G$ be any two rectangular parallelopipedons: then will they be to each other as the products of their three dimensions.

For, place them as in the figure, and produce the faces necessary to complete the rectangular parallelopipedon $A K$. The parallelopipedons $A Z$ and $A K$ have a com-
 mon base $A N^{\top}$; hence (P. XI.),

$$
\text { vol. } A Z: \text { vol. } A K:: A X: A E \text {. }
$$

The parallelopipedons $A K$ and $A G$ have a common altitude $A E$; hence (P. XII.),

$$
\text { vol. } A K: \text { vol. } A G:: A M N O: A B C D
$$

Multiplying these proportions, term by term, and omitting the common factor, vol. $A K$, we have,
vol. $A Z:$ vol. $A G:: A M N O \times A X: A B C D \times A E ;$ or, since $A M N O$ is equal to $A M \times A O$, and $A B C D$ to $A B \times A D$,
vol. $A Z:$ vol. $A G:: A M \times A O \times \dot{A} X: A B \times A D \times A E ;$ which was to be proved.

Cor. 1. If we make the three edges $A M, A O$, and $A X$, each equal to the linear unit, the parallelopipedon $A Z$ will be a cube constructed on that unit, as an edge; and consequently, it will be the unit of volume. Under this supposition, the last proportion becomes,

$$
1: \text { vol. } A G:: 1: A B \times A D \times A E ;
$$

whence,

$$
\text { vol. } A G=A B \times A D \times A E
$$

Hence, the volume of any rectangular parallelopipedon is equal to the product of its three dimensions ; that is, the number of times which it contains the unit of volume, is equal to the number of linear units in its length, by the number of linear units in its breadth, by the number of linear units in its height.

Cor. 2. The volume of a rectangular parallelopipedon is equal to the product of its base and altitude; that is, the number of times which it contains the unit of volume, is equal to the number of superficial units in its base, multiplied by the number of linear units in its altitude.

Cor. 3. The volume of any parallelopipedon is equal to the product of its base and altitude (P. X., C. 2).

PROPOSITION XIV. THEOREM.

The volume of any prism is equal to the product of its base and altitude.

Let $A B C D E-K$ be any prism : then is its volume equal to the product of its base and altitude.

For, through any lateral edge, as $A F$, and the other lateral edges not in the same faces, pass the planes $A H, A I$, dividing the prism into triangular prisms. These prisms will all have a common altitude equal to that of the given prism.

Now, the volume of any one of the triangular prisms, as $A B C-H$, is equal to half that of a parallelopipedon constructed on the edges $B A, B C, B G$ (P. VII., C.) ; but the volume of this parallelopipedon is equal to the product of its lase and altitude (P. XIII., C. 3) ; and because the base of the prism is half that of the parallelopipedon, the volume of the prism is also equal to the product of its base and altitude: hence,
 the sum of the triangular prisms, which make up the given prism, is equal to the sum of their bases, which make up the base of the given prism, into their common altitude; which was to be proved.

Cor. Any two prisms are to each other as the products of their bases and altitudes. Prisms having equal bases are to each other as their altitudes. Prisms having equal altitudes are to each other as their bases.

PROPOSITION XV. THEOREM.

Two triangular pyramids having equal bases and equal altitudes, are equal in volume.

Let $S-A B C$, and $S-a b c$, be two pyramids having their equal bases $A B C$ and $a b c$ in the same plane, and let $A T$ be their common altitude : then will they be equal in volume.

For, if they are not equal in volume, suppose one of them, as $S-A B C$, to be the greater, and let their difference be equal to a prism whose base is $A B C$, and whose altitude is Aa.

Divide the altitude $A T$ into equal parts $A x, x y, \& c$., each of which is less than $A a$, and let k denote one of these parts ; through the points of division pass planes paralle] to the plane of the bases; the sections of the two pyranids, by each of these planes, will be equal, namely, $D E F$ to def, GIII to ghi, \&c. (P. III., C. 2).

On the triangles $A B C, D E F$, \&c., as lower bases, construct exterior prisms whose lateral edges shall be parallel to $A S$, and whose altitudes shall be equal to k : and on the triangles def, ghi, \&c., taken as upper bases, construct interior prisms, whose lateral edges shall be parallel to $S a$, and whose altitudes shall be equal to k. It is evident that the sum of the exterior prisms is greater than the pyramid $S-A B C$, and also that the sum of the interior prisms is less than the pyramid S. abc: hence, the difference between the sum of the exterior and the sum of the interior prisms, is greater than the difference between the two pyramids.

Now, beginning at the bases, the second exterior prism $E F D-G$, is equal to the first interior prism efd•a,
because they have the same altitude k, and their bases E'FD, efd, are equal: for a like reason, the third exterior prism $H I G-K$, and the second interior prism hig-d, are equal, and so on to the last in each set: hence, each of the exterior prisms, excepting the first $B C A-D$, has an equal corresponding interior prism; the prism $B C A-D$, is, therefore, the difference between the sum of all the exterior prisms, and the sum of all the interior prisms. But the difference between these two sets of prisms is greater than that between the two pyramids, which latter difference was supposed to be equal to a prism whose base is $B C A$, and whose altitude is equal to $A a$, greater than k; consequently, the prism $B C A-D$ is greater than a prism having the same base and a greater altitude, which is impossible. hence, the supposed inequality between the two pyramids cannot exist ; they are, therefore, equal in volume; which was to be proved.

PROPOSITION XVI. THEOREM.

Any triangular prism may be divided into three triangular pyramids, equal to each other in volume.

Let $A B C-D$ be a triangular prism : then can it be divided into three equal triangular pyramids.

For, through the edge $A C$, pass the plane $A C F$, and through the edge $E F$ pass the plane $E F C$. The pyramids $A C E-F$ and $E C D-F$, have their bases $A C E$ and $E C D$ equal, because they are halves of the same parallelogram
 $A C D E$; and they have a common
altitude, because their bases are in the same plane $A D$, and their vertices at the same point F; hence, they are equal in volume ($\mathrm{P} . \mathrm{XV}$.). The pyramids $A B C-F$ and $D E F-C$, have their bases $A B C$ and $D E F$, equal because they are the bases of the given prism, and their altitudes are equal because each is equal to the altitude of the prism; they are, therefore, equal in volume : hence, the three pyramids into which the prism is divided, are all equal in volume; which was to be proved.

Cor. 1. A triangular pyramid is one-third of a prism, having an equal base and an equal altitude.

Cor. 2. The volume of a triangular pyramid is equal to one-third of the product of its base and altitude.

PROPOSITION XVII. THEOREM.

The volume of any pyramid is equal to one-third of the product of its base and altitude.

Let $S-A B C D E$, be any pyramid : then is its volume equal to one-third of the product of its base and altitude.

For, through any lateral edge, as $S E$, pass the planes $S E B, S E C$, dividing the pyramid into triangular pyramids. The altitudes of these pyramids will be equal to each other, because each is equal to that of the given pyramid. Now, the volume of each triangular pyramid is equal to oncthird of the product of its base and altitude (P. XVI., C. 2) ; hence, the sum of the volumes of the triangular pyramids, is equal to one-third of the product of the sum of their bases
by their common altitude. But the sum of the triangular pyramids is equal to the given pyramid, and the sum of their bases is equal to the base of the given pyranid: hence, the volume of the given pyramid is equal to onethird of the product of its base and altitude; which was to be proved.

Cor. 1. The volume of a pyramid is equal to one-third of the volume of a prism having an equal base and an equal altitude.

Cor. 2. Any two pyramids are to each other as the products of their bases and altitudes. Pyramids having equal bases are to each other as their altitudes. Pyramids having equal altitudes are to each other as their bases.

Scholium. The volume of a polyedron may be found by dividing it into triangular pyramids, and computing their volumes separately. The sum of these volumes will be equal to the volume of the polyedron.

PROPOSITION XVIII. THEOREM.

The volume of a frustum of any triangütar pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the upper base of the frustum, and a mean proportional between the two bases.

Let $F G H-h$ be a fiustum of any triangular pyramid : then will its volume be equal to that of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base $F G H$, the upper base $f g h$, and a mean proportional between their bases.

For, througk. the edge $F H$, pass the plane $F H g$, and through the edge $f g$, pass the plane $f g I I$, dividing the frustum into three pyramids. The pyramid g-F'GII, has for its base the lower base FGII of the frustum, and its alitude is equal to that of the frustum, secause its vertex g, is in the plane of he upper base. The pyramid H - $f g h$, has for its base the upper base fgh of the frustum, and its altitude is equal to that of the frustum, because its vertex
 lies in the plane of the lower base.

The remaining pyramid may be regarded as having the triangle $F f I I$ for its base, and the point g for its vertex. From g, draw $g K$ parallel to $f F$, and draw also $K H$ and $K f$. Then will the pyramids $K-F f H$ and $g-F f I I$, be equal; for they have a common base, and their altitudes are equal, because their vertices K and g are in a line parallel to the base (B. VI., P. XII., C. 2).

Now, the pyramid $K-F f I I$ may be regarded as having $F K H$ for its base and f for its vertex. From K, draw $K L$ parallel to $G H$; it will be parallel to $g h$: then will the triangle $F K L$ be equal to $f g h$, for the side $F K$ is equal to $f g$, the angle F to the angle f, and the angle K to the angle g. But, $F K H$ is a mean proportional between $F K L$ and $F G I I$ (B. IV., P. XXIV., C.), or between fgh and FGH. The pyramid f-FhII, has, therefore, for its base a mean proportional between the upper and lower bases of the frustum, and its altitude is equal to that of the frus tum ; but the pyramid f-FKII is equal in volume to the pyramid g-FfH: hence, the volume of the given frustum is equal to that of three pyramids whose common altitude is equal to that of the frustum, and whose bases are the upper base, the lower base, and a mean proportional between them; which was to be proved.

Cor. The volume of the frustum of any pyramid is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases are the lower base of the fiustum, the upper base of the frustum, and a mean proportional between them.

For, let $A B C D E-\epsilon$ be a frustum of any pyramid. Through any lateral edge, as $e E$, pass the planes eEBb, eECc, dividing it into triangular frustums. Now, the sum of the volumes of the triangular frustums is equal to the sum of three sets of pyramids, whose common altitude is that of the given frustum. The bases of the first set make up the lower base of the given
 frustum, the bases of the second set make up the upper base of the given frustum, and the bases of the third set make up a mean proportional between the upper and lower base of the given frustum : hence, the sum of the volumes of the first set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is the lower base of of the frustum; the sum of the volumes of the second set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is the upper base of the frustum; and, the sum of the third set is equal to that of a pyramid whose altitude is that of the frustum, and whose base is a mean proportional between the two bases.

PROPOSITION XIX. THEOREM.

Similar triangular prisms are to each other as the cubes of their homologous edges.

Let $C B D-P, \quad c b d-p$, be two similar triangular prisms, and let $B C, b c$, be any two homologous edges: then will the prism $C B D-P$ be to the prism $c b d-p$, as $\overline{B C}^{3}$ to $\overline{b c}^{3}$

For, the homologous angles B and b are equal, and the faces which bound them are similar (1). 16): hence, these triedral angles may be applied, one to the other, so that the angle $c b d$ will coincide with $C B D$, the edge $b a$ with $B A$. In this case, the prism $c b d-p$ will take the position $B c d-p$. From A
 draw $A I I$ perpendicular to the common base of the prisms: then will the plane $B A H$ be perpendicular to the plane of the common base (B. VI., P. XVI.). From a, in the plane $B A H$, draw $a h$ perpendicular to $B H$: then will $a h$ also be perpendicular to the base $B D C$ (B. VI., P. XVII.) ; and $A H$, ah, will be the altitudes of the two prisms.

Since the bases $C B D, c b d$, are similar, we have (B. IV., P. XXV.),

$$
\text { base } C B D \text { : base cbd : : } \overline{C B}^{2}: \overline{c b}^{2} \text {. }
$$

Now, because of the similar triangles $A B H, a B h$, and of the similar parallelograms $A C, a c$, we have,

$$
A H: a h:: C B: c b ;
$$

hence, multiplying these proportions term by term, we have,

$$
\text { base } C B D \times A H: \text { base } c b d \times a h:: \overline{C B}^{3}: \overline{c b}^{3} .
$$

But, base $C B D \times A H$ is equal to the volume of the prism $C D B-A$, and base $c b d \times a h$ is equal to the volume of the prism $c b d-p$; hence,

$$
\text { prism } C D B-P: p r i s m \text { cbd-p }:: \overline{C B}^{3}: \overline{c b}^{3} ;
$$

which was to be proved.

Cor. 1. Any two similar prisms are to each other as the cubes of their homologous edges.

For, since the prisms are similar, their bases are similar polygons (D. 16) ; and these similar polygons may each be divided into the same number of similar triangles, similarly placed (B. IV., P. XXVI.) ; therefore, each prism may be divided into the same number of triangular prisms, having their faces similar and like placed ; consequently, the triangular prisms are similar (D. 16). But these triangular prisms are to each other as the cubes of their homologous edges, and being like parts of the polygonal prisms, the polygonal prisms themselves are to each other as the cubes of their homologous edges.

Cor. 2. Similar prisms are to each other as the cubes of their altitudes, or as the cubes of any other homologous lines.

PROPOSITION XX. THEOREM.

Similar pyramids are to each other as the cubes of their homologous edges.

Let $S-A B C D E$, and S-abcde, be two similar pyramids, so placed that their homologous angles at the vertex shall coincide, and let $A B$ and $a b$ be any two homologous edges: then will the pyramids be to each other as the cubes of $A B$ and $a b$.

For, the face $S A B$, being similar to $N a b$, the edge $A B$ is parallel to the edge $a b$, and the face $S B O$ being similar to $S b c$, the edge $B C$ is parallel to $b c$; hence, the planes of the bases are
 parallel (B. VI., P. XIII.).

Draw $S O$ perpendicular to the base $A B C D E$; it will also be perpendicular to the base $a b c d e$. Let it pierce that plane at the point $o:$ then will $S O$ be to $S o$, as $S A$ is to $S a$ (P. III.), or as $\boldsymbol{A} \boldsymbol{B}$ is to $a b$; hence,

$$
\frac{1}{3} S O: \frac{1}{3} S o:: A B: a b \text {. }
$$

But the bases being similar polygons, we have (B. IV., P. XXVII.), base $A B C D E$: base abcde : : $\overline{A B}^{2}$: $\overline{a b}^{2}$.

Multiplying these proportions, term by term, we have,
base $A B C D E \times \frac{1}{3} S O:$ base abcde $\times \frac{1}{3} S o:: \overline{A B}^{3}: \overline{a b}^{3}$.

But, base $A B C D E \times \frac{1}{3} S O$ is equal to the volume of the pyramid $S-A B C D E$, and base abcde $\times \frac{1}{3} S o$ is equal to the volume of the pyramid S-abcde; hence,
pyramid $S-A B C D E$: pyramid S-abcde : : $\overline{A B}^{3} \cdot \overline{a b}$;
which was to be proved.

Cor. Similar pyramids are to each other as the cubes of their altitudes, or as the cubes of any other homologous lines.

GENERAL FORMULAS.

If we denote the volume of any prism by V, its base by B, and its altitude by H, we shall have (P. XIV.),

$$
V=B \times H \cdot \cdot \cdot \cdot \cdot \cdot(1 .)
$$

If we denote the volume of any pyramid by V, its base by B, and its altitude by H, we have (P. XVII.),

$$
\begin{equation*}
V=\frac{1}{3} B \times H \tag{2.}
\end{equation*}
$$

If we denote the volume of the frustum of any pyramid by V, its lower base by B, its upper base by b, and its altitude by π, we shall have (P. XVIII., C.),

$$
\begin{equation*}
V=\frac{1}{3}(B+b+\sqrt{B \times b}) \times I I \cdot \tag{3.}
\end{equation*}
$$

REGULAR POLYEDRONS.

A Regular Polyedron is one whose faces are all equal regular polygons, and whose polyedral angles are equal, each to each.

There are five regular polyedrons, namely:

1. The Tetramdron, or regular pyramid-a polyedron bounded by four equal equilateral triangles.
2. The Hexaedron, or cube-a polyedron bounded by six equal squares.
3. The Octaedron-a polyedron bounded by eight equal equilateral triangles.
4. The Dodecaedron-a polyedron bounded by twelve equal and regular pentagons.
5. The Icosaedron-a polyedron bounded by twenty equal equilateral triangles.

In the Tetraedron, the triangles are grouped about the polyedral angles in sets of three, in the Octaedron they are grouped in sets of four, and in the Icosaedron they are grouped in sets of five. Now, a greater number of equilateral triangles cannot be grouped so as to form a salient polyedral angle; for, if they could, the sum of the plane angles formed by the edges would be equal to, or greater than, four right angles, which is impossible (B. VI., P. XX.).

In the Hexaedron, the squares are grouped about the polyedral angles in sets of three. Now, a greater number of squares cannot be grouped so as to form a salient polyedral angle; for the same reason as before.

In the Dodecaedron, the regular pentagons are grouped about the polyedral angles in sets of three, and for the same reason as before, they cannot be grouped in any greater number, so as to form a salient polyedral angle.

Furthermore, no other regular polygons can be grouped so as to form a salient polyedral angle; therefore,

Only five regular polyedrons can be formed.

BOOK VIII.

THE CYLINDER, THE CONE, AND THE SPHERE.

DEFINITIONS.

1. A Cylinder is a volume which may be generated by a rectangle revolving about one of its sides as an axis.
-Thus, if the rectangle $A B C D$ be turned about the side $A B$, as an axis, it will generate the cylinder $F G C Q-P$.

The fixed line $A B$ is called the axis of the cylinder; the curved surface generated by the side $C D$, opposite the axis, is called the convex surface of the cylinder ; the equal circles $F G C Q$, and $E H D P$, generated by the remaining sides $B C$ and $A D$, are called bases of the cylinder ; and the perpendicular distance between the planes of the bases, is
 called the altitude of the cylinder.

The line $D C$, which generates the convex surface, s, in any position, called an element of the surface ; the elements are all perpendicular to the planes of the bases, and any one of them is equal to the altitude of the cylinder.

Any line of the generating rectangle $A B C D$, as $I K$, which is perpendicular to the axis, will generate a circle whose plane is perpendicular to the axis, and which is equa to either base : hence, any section of a cylinder by a plan perpendicular to the axis, is a circle equal to either base Any section, $F C D E$, made by a plane through the axis is a rectangle double the generating rectangle.
2. Simtlar Cylinders are those which may be generated by similar rectangles revolving about homologous sides.

The axes of similar cylinders are proportional to the radii of their bases (B. IV., D. 1) ; they are also proportional to any other homologous lines of the cylinders.
3. A prism is said to be inscribed in a cylinder, when its bases are inscribed in the bases of the cylinder. In this case, the cylinder is said to be circumscribed about the prism.

The lateral edges of the inscribed prism are elements of the surface of the circumscribing cylinder.
4. A prism is said to be circum-
 scribed about a cylincuer, when its bases are circumscribed about the bases of the cylinder. In this case, the cylinder is said to be inscribed in the prism.

The straight lines which join the corresponding points of contact in the upper and lower bases, are common to the surface of the cylinder and to the lateral faces of the prism, and they are the only lines which are common. The lateral faces of the prism are said to be tangent to the cylinder along these lines, which are then called ele-

ments of contact.
5. A Cone is a volume which may be generated by a right-angled triangle revolving about one of the sides adjacent to the right angle, as an axis.

Thus, if the triangle $S A B$, right-angled at A, be turned about the side $S A$, as an axis, it will generate the cone $S-C D B E$.

The fixed line $S A$, is called the axis of the cone; the curved surface generated by the hypothenuse $S B$, is called the convex surface of the cone; the circle generated by the side $A B$, is called the base of the cone; and the point S, is called the vertex of the cone; the distance from the vertex
 to any point in the circumference of the base, is called the slant height of the cone; and the perpendicular distance from the vertex to the plane of the base, is called the altitude of the cone.

The line $S B$, which generates the convex surface, is, in any position, called an element of the surface; the elements are all equal, and any one is equal to the slant height; the axis is equal to the altitude.

Any line of the generating triangle $S A B$, as $G H$, which is perpendicular to the axis, generates a circle whose plane is perpendicular to the axis: hence, any section of a cone by a plane perpendicular to the axis, is a circle. Any section $S B C$, made by a plane through the axis, is an isosceles triangle, double the generating triangle.
6. A Truncated Cone is that portion of a cone included between the base and any plane which cuts the cone.

When the cutting plane is parallel to the plane of the base, the truncated cone is called a Frustum of a Cone, and the intersection of the cutting plane with the cone is called the upper base of the frustum; the base of the cone is called the lover base of the frustum.

If the trapezoid $H G A B$, right-angled A and G, be revolved about $A G$, as an axis, it will generate a frustum of a cone, whose bases are $E C D B$ and $F K H$, whose altitude is $A G$, and
 whose slant height is $B H$.
7. Simmar Cones are those which may be generated by similar right-angled triangles revolving about homologous sides.

The axes of similar cones are proportional to the radii of their bases (B. IV., D. 1) ; they are also proportional to any other homologous lines of the cones.
8. A pyramid is said to be $i n$ scribed in a cone, when its base is inscribed in the base of the cone, and when its vertex coincides with that of the cone.

The lateral edges of the inscribed pyramid are elements of the surface of the circumscribing cone.

9. A pyramid is said to be circumscribed about a cone, when its base is circumscribed about the base of the cone, and when its vertex coincides with that of the cone.

In this case, the cone is said to be inscribed in the pyramid.

The lateral faces of the circumscribing pyramid are tangent to the surface of the inscribed cone, along lines which are called eiements of contact.

10 A frustum of a pyramid is inscribed in a frustum
of a cone, when its bases are inscribed in the bases of the frustum of the cone.

The lateral edges of the inscribed frustum of a pyramid are elements of the surface of the circumscribing frustum of a cone.
11. A frustum of a pyramid is circumscribed about frustum of a cone, when its bases are circumscribed about; those of the frustum of the cone.

Its lateral faces are tangent to the surface of the frustum of the cone, along lines which are called elements of contact.
12. A Sphere is a volume bounded by a surface, every point of which is equally distant from a point within called the centre.

A sphere may be generated by a semicircle revolving about its diameter as an axis.
13. A Radius of a sphere is a straight line drawn from the centre to any point of the surface. A Diameter is any straight line drawn through the centre and limited at both extremities by the surface.

All the radii of a sphere are equal : the diameters are also equal, and each is double the radius.
14. A Splierical Sector is a volume which may be generated by a sector of a circle revolving about the diameter passing through either extremity of the arc.

The surface generated by the arc is called the base of the sector.
15. A plane is Tangent to a Sphere when it touches it in a single point.
16. A Zone is a portion of the surface of a sphere included between two parallel planes. The bounding lines
of the sections are called bases of the zone, and the distance between the planes is called the altitude of the zone.

If one of the planes is tangert to the sphere, the zone lias but one base.
17. A Spherical Segment is a portion of a sphere included between two parallel planes. The sections made by the planes are called bases of the segment, and the distance between them is called the altitude of the segment.

If one of the planes is tangent to the sphere, the seg. ment has but one base.

The Cylinder, the Cone, and the Sphere, are sometimes called The Three Round Bodies.

PROPOSITION I.- THEOREM.

The convex surface of a cylinder is equal to the circumference of its base multiplied by the altitude.

Let $A B D$ be the base of a cylinder whose altitude is H : then will its convex surface be equal to the circumference of its base multiplied by the altitude.

For, inscribe within the cylinder a prism whose base is a regular polygon. The convex surface of this prism will be equal to the perimeter of its base multiplied by its altitude (B. VII., P. I.), whatever may be the number of sides of its base. But, when the number of sides is infinite (B. V., P. X., C. 1), the convex surface of the prism coincides with that of the cylinder, the perimeter of

the base of the prism coincides with the circumference of the base of the cylinder, and the altitude of the prism is the same as that of the cylinder: hence, the convex surface of the cylinder is equal to the circumference of its base multiplied by the altitude; which was to be proved.

Cor. The convex surfaces of cylinders having equal altitudes are to each other as the circumferences of their bases.

PROPOSITION II. THEOREM.

The volume of a cylinder is equal to the product of its base and altitude.

Let $A B D$ be the base of a cylinder whose altitude is $I I$; then will its volume be equal to the product of its base and altitude.

For, inscribe within it a prism whose base is a regular polygon. The volume of this prism is equal to the product of its base and altitude (B. VII., P. XIV.), whatever may be the number of sides of its base. But, when the number of sides is infinite, the prism coincides with the cylinder, the base of the prism with the base of the cylinder, and
 the altitude of the prism is the same as that of the cylinder: hence, the volume of the cylinder is equal to the product of its base and altitude; which woas to be proved.

Cor. 1. Cylinders are to each other as the products of their bases and altitudes; cylinders haring equal bases are to each other as their altitudes; cylinders having equal altitudes are to each other as their bases.

Cor. 2. Similar cylinders are to each other as the cubes of their altitudes, or as the cubes of the radii of their bases.

For, the bases are as the squares of their radii (B. V., I. XIII.), and the cylinders being similar, these radii are to each other as their altitudes (D. 2) : hence, the bases are s the squares of the altitudes; therefore, the bases multiplied by the altitudes, or the cylinders themselves, are as the cubes of the altitudes.

PROPOSITION III. THEOREM.

The convex surface of a cone is equal to the circumference of its base multiplied by half the slant height.

Let $S-A C D$ be a cone whose base is $A C D$, and whose slant height is $S A$: then will its convex surface be equal to the circumference of its base multiplied by half the slant height.

For, inscribe within it a right pyramid. The convex surface of this pyramid is equal to the perimeter of its base multiplied by half the slant beight (B. VII., P. IV.), whatever may be the number of sides of its base. But when the number of sides of the base is infinite, the
 convex surface coincides with that of the cone, the perimeter of the base of the pyramid coincides with the circumference of the base of the cone, and the slant height of the pyramid is equal to the slant height of the cone: hence, the convex surface of the cone is equal to the circumference of its base multiplied by half the slant height; which was to be proved.

PROPOSITION IV. THEOREM.

The convex surface of a frustum of a cone is equal to half the sum of the circumferences of its two bascs multiplied by the slant height.

Let $B I A-D$ be a frustum of a cone, BIA and $E G D$ its two bases, and $E B$ its slant height: then is its convex surface equal to half the sum of the circumferences of its two bases multiplied by its slant height.

For, inscribe within it the frustum of a right pyramid. The convex surface of this frustum is equal to half the sum of the perimeters of its bases, multiplied by the slant height (B. VII., P. IV., C.), whatever may be the number of its lateral faces. But when
 the number of these faces is infinite, the convex surface of the frustum of the pyramid coincides with that of the cone, the perimeters of its bases coincide with the circumferences of the bases of the frustum of the cone, and its slant height is equal to that of the cone : hence, the convex surface of the frustum of a cone is equal to half the sum of the circumferences of its bases multiplied by the slant height; which was to be proved.

Scholium. From the extremities A and D, and from the middle point l, of a line $A D$, let the lines $A O, D C$, and $l K$, be drawn perpendicular to the axis $O C$: then will $I K$ be equal to half the sum of $A O$ and $D C$. For, draw $D d$ and $l i$, perpendicular to $A O$: then, because $A l$ is equal to $l D$, we shall have $A i$ equal to id (B.IV., P. XV.), and consequently to $l s$; that is, $A O$ exceeds $l K$
as much as $l K$ exceeds $D C$: hence, $l K$ is equal to the half sum of $A O$ and $D C$.

Now, if the line $A D$ be revolved about $O C$, as an axis, it will generate the surface of a frustum of a cone whose slant height is $A D$; the point l will generate a sircumference which is equal to half the sum of the circumerences generated by A and D : hence, if a straight line 3e revolved about another straight line, it will generate a surface whose measure is equal to the product of the generating line and the circumference generated by its middle point.

This proposition holds true when the line $A D$ meets $O C$, and also when $A D$ is parallel to $O C$.

PROPOSITION V. THEOREM.

The volume of a cone is equal to its base multiplied by one-third of its altitude.

Let $A B D E$ be the base of a cone whose vertex is S, and whose altitude is $S o$: then will its volume be equal to the base multiplied by one-third of the altitude.

For, inscribe in the cone a right pyramid. The volume of this pyramid is equal to its base multiplied by onethird of its altitude (B. VII., P. XVII.), whatever may be the number of its lateral faces. But, when the number of lateral faces is infinite, the pyramid coincides with the cone, the base of
 the pyramid coincides with that of the cone, and their altitudes are equal : hence, the volume of a cone is equal to the base multiplied by one-third of the a'titude; which was to be proved.

Cor. 1. A cone is equal to one-third of a cylinder having an equal base and an equal altitude.

Cor. 2. Cones are to each other as the products of their bases and altitudes. Cones having equal bases are to each other as their altitudes. Cones having equal altitudes are to each other as their bases.

PROPOSITION VI. THEOREM.

The volume of a frustum of a cone is equal to the sum of the volumes of three cones, having for a common altitude the altitude of the frustum, and for bases the lower base of the frustum, the upper base of the frus tum, and a mean proportionul between the bases.

Let BIA be the lower base of a frustum of a cone, $E G D$ its upper base, and $O C$ its altitude: then will its volume be equal to the sum of three cones whose common altitude is $O C$, and whose bases are the lower base, the upper base, and a mean proportional between them.

For, inscribe a frustum of a right pyramid in the given frustum. The volume of this frustum is equal to the sum of the volumes of three pyramids whose common altitude is that of the frustum, and whose bases re the lower base, the upper base, and a mean proportional between the
 two (B. VII., P. XVIII.), whatever may be the number of lateral faces. But when the number of faces is infinite, the frustum of the pyramid coincides with the frustum of the cone, its bases with the bases of the cone, the three pyramids become cones, and their altitudes
are equal to that of the frustum; hence, the volume of the frustum of a cone is equal to the sum of the volumes of three cones whose common altitude is that of the frustum, and whose bases are the lower base of the frustum, the apper base of the frustum, and a mean proportional between them; which was to be proved.

PROPOSITION VII. THEOREM.

Any section of a sphere made by a plane, is a circle.
Let C be the centre of a sphere, $C A$ one of its radii, and $A M B$ any section made by a plane: then will this section be a circle.

For, draw a radius $C O$ perpendicular to the cutting plane, and let it pierce the plane of the section at O. Draw radii of the sphere to any two points M, M^{\prime}, of the curve which bounds the section, and join these points with O : then, because the radii
 $C M, C M^{\prime}$ are equal, the points M, M^{\prime}, will be equally distant from O (B. VI., P. V., C.) ; bence, the section is a circle; which was to be proved.

Cor. 1. When the cutting plane passes through the centre of the sphere, the radius of the section is equal to that of the sphere; when the cutting plane does not pass throngh the centre of the sphere, the radius of the section will be less than that of the sphere.

A section whose plane passes through the centre of the sphere, is called a great circle of the sphere. A section whose plane does not pass through the centre of the sphere,
is called a small circle of the sphere. All great circles of the same, or of equal spheres, are equal.

Cor. 2. Any great circle divides the sphere, and also the surface of the sphere, into equal parts. For, the parts may be so placed as to coincide, otherwise there would be some points of the surface unequally distant from the centre, which is impossible.

Cor. 3. The centre of a sphere, and the centre of any small circle of that sphere, are in a strajght line perpendicular to the plane of the circle.

Cor. 4. The square of the radius of any small circle is equal to the square of the radius of the sphere diminished by the square of the distance from the centre of the sphere to the plane of the circle (B. IV., P. XI., C. 1) : hence, circles which are equally distant from the centre, are equal; and of two circles which are unequally distant from the centre, that one is the less whose plane is at the greater distance from the centre.

Cor. 5. The circumference of a great circle may always be made to pass through any two points on the surface of a sphere. For, a plane can always be passed through these points and the centre of the sphere (B. VI., P. II.), and its section will be a great circle. If the two points are the extremities of a diameter, an infinite number of planes can be passed through them and the centre of the sphere (B. VI., P. I., S.) ; in this case, an infinite number of great circles can be made to pass through the two points.

Cor. 6. The bases of a zone are the circumferences of circles (D. 16), and the bases of a segment of a sphere are circles.

PROPOSITION VIII. THEOREM.

Any plane perpendicular to a radius of a sphere at its outer extremity, is tangent to the sphere at that point.

Let C be the centre of a sphere, $C A$ any radius, and $F A G$ a plane perpendicular to $C A$ at A : then will the plane $F A G$ be tangent to the sphere at A.

For, from any other point of the plane, as M, draw the line $M C$: then because $C A$ is a perpendicular to the plane, and $C M$ an oblique line, $C M$ will be greater than $C A$ (B. VI., P. V.) : hence, the point M lies without the sphere. The plane
 $F A G$, therefore, tonches the sphere at A; and consequently is tangent to it at that point, which was to be provect.

Scholium. It may be shown, by a course of reasoning analogous to that employed in Book III., Propositions XI., XII., XIII., and XIV., that two spheres may have any one of six positions with respect to each other, viz. :
1°. When the distance between their centres is greater than the sum of their radii, they are external, one to the other:
2°. When the distance is equal to the sum of their radii, they are tangent, externally:
3°. When this distance is less than the sum, and greater than the difference of their radii, they intersect each other:
4°. When this distance is equal to the difference of their radii, they are tangent internally:
5°. When this distance is less than the difference of their radii, one is wholly within the other:
6°. When this distance is equal to zero, they have a common centre, or, are concentric.

DEFINTTIONS.

1°. If a semi-circumference be divided into equal ares, the chords of these arcs form half of the perimeter of a regular inscribed polygon; this half perimeter is called a regular semi-perimeter. The figure bounded by the regular semiperimeter and the diameter of the semi-circumference is called a regular semi-polygon. The diameter itself is called the axis of the semi-polygon.
2°. If lines be drawn from the extremities of any side, and perpendicular to the axis, the intercepted portion of the axis is called the projection of that side.

The broken line $A B C D G P$ is a regular semi-perimeter; the figure bounded by it and the diameter $A P$, is a regular semi-polygon, $A P$ is its axis, $H K$ is the projection of the side $B C$, and the axis,
 $A P$, is the projection of the entire semi-perimeter.

PROPOSITION IX. LEMMA,

If a regular semi-polygon be revolved about its axis, the surface generated by the semi-perimeter will be equal to the axis multiplied by the circumference of the inscribed circle.

Let $A B C D E F$ be a regular semi-polygon, $A F$ its axis, and $O N$ its apothem : then will the surface generated by the regular semi-perimeter be equal to $A F \times$ circ. $O N$.

From the extremities of any side, as $D E$, draw $D I$ and $E H$ perpendicular is $A F$; draw also $N M$ perpen. dicular to $A F$, and $E K$ perpendicular to $D I$. Now, the surface generated by $E D$ is equal to $D E \times \operatorname{circ} . N M$
(P. [V., S.). But, because the triangles $E D K$ and $O N M$ are similar (B. IV.. P. XXI.), we have,
$D E: E K$ or $I H:: O N: N M:: \operatorname{circ} . O N: \operatorname{crc} . N M$; whence,

$$
D E \times \text { circ. } . S M=I I I \times \text { circ. } O N
$$

that is, the surface generated by any side is equal to the projection of that side multiplied by the circumference of the inscribed circle: hence, the surface generated by the entire semi-perimeter is equal to the sum of the projections of its sides,
 or the axis, multiplied by the circumference of the inscribed circle; which was to be proved.

Cor. The surface generated by any portion of the perimeter, as $C D E$, is equal to its projection $P H$, multiplied by the circumference of the inscribed circle.

PROPOSITION X. THEOREM.

The surface of a sphere is equal to its diameter multiplied by the circumference of a great circle.
Let $A B C D E$ be a semi-circumference, O its centre, and $A E$ its diameter: then will the surface of the sphere generated by revolving the semi-circumference about $A E$, be equal to $A E \times$ circ. $O E$.

For, the semi-circumference may be regarded as a regular semi-perimeter with an infinite number of sides, whose axis is $A E$,
 and the radius of whose inscribed circle is OE: hence (P. IX.), the surface generated by it is equal to $A E \times$ circ. OE; which was to be proved.

Cor. 1. The circumference of a great circle is equal to $2 \pi O E$ (B. V., P. XVI.) : hence, the area of the surface of the sphere is equal to $2 O E \times 2 \pi O E$, or to $4 \pi \overline{O E}^{2}$ that is, the area of the surface of a sphere is equal to four great circles.

Cor. 2. The surface generated by any arc of the semicircle, as $B C$, will be a zone, whose altitude is equal to the projection of that arc on the diameter. But, the arc $B C$ is a portion of a semiperimeter having an infinite number of sides, and the radius of whose inscribed circle is equal to that of the sphere:
 hence (P. IX., C.), the surface of a zone is equal to its altitude multiplied by the circumference of a great circle of the sphere.

Cor. 3. Zones, on the same sphere, or on equal spheres, are to each other as their altitudes.

PROPOSITION XI. LEMMA,

If a^{\prime} triangle and a rectangle having the same base and equal altitudes, be revolved about the common base, the volume generated by the triangle will be one-third of that generated by the rectangle.
Let $A B C$ be a triangle, and $E F B C$ a rectangle, having the same base $B C$, and an equal altitude $A D$, and let them both be revolved about $B C$: then will the volume generated by $A B C$ be one-third of that generated by AFB.

For, the cone generated by the right-angled triangle $A D B$, is equal to one-third of the cylinder generated by
the rectangle $A D B F$ (P. V., C. 1), and the cone generated by the triangle $A D C$, is equal to one-third of the cylinder generated by the rectangle $A D C E$.

When $A D$ falls within the triangle, the sum of the cones generated by $A D B$ and $A D C$, is equal to the volume generated by the triangle $A B C$; and the sum of the cylinders generated by $A D B F$ and $A D C E$, is equal to the volume generated by the
 rectangle $E F B C$.

When $A D$ falls without the triangle, the difference of the cones generated by $A D B$ and $A D C$, is equal to the volume generated by $A B C$; and the difference of the cylinders generated by $A D B F$ and $A D C E$, is equal to the volume generated by $E F B C$: hence, in either case, the volume generated by the triangle $A B C$, is equal to one-third of the volume generated by the rectangle
 EFBC; which was to be proved.

Cor. The volume of the cylinder generated by $E F B C$, is equal to the product of its base and altitude, or to $\pi \overline{A D}^{2} \times B C$: hence, the volume generated by the triangle $A B C$, is equal to $\frac{1}{3} \tau \overline{A D}^{2} \times B C$.

PROPOSITION XII. LEMMA.

If an isosceles triangle be revolved about a straight line passing through its vertex, the volume generated will be equal to the surface generated by the base multiplied by one-third of the altitude.

Let $C A B$ be an isosceles triangle, C its vertex, $A B$ its base, $C I$ its altitude, and let it be revolved about the line $C I$, as an axis: then will the volume generated be equal to surf $A B \times \frac{1}{3} C I$. There may be three cases:
1°. Suppose the base, when produced, to meet the axis at D; draw $A M, I K$, and $B N$, perpendicular to $C D$, and $B O$ parallel to $D C$. Now, the volume generated by $C A B$ is equal to the difference of the volumes generated by $C A D$ and $C B D$; hence (P. XI., C.),

vol. $C A B=\frac{1}{3} \pi \overline{A M}^{2} \times C D-\frac{1}{3} \pi \overline{B N}^{2} \times C D=\frac{1}{3} \pi\left(\overline{A M}^{2}-\overline{B N}^{2}\right) \times C D$. But, $\overline{A M}^{2}-\overline{B N}^{2}$ is equal to $(A M+B N)(A M-B N)$, (B. IV., P. X.) ; and because $A M+B N$ is equal to $2 I K$ (P. IV., S.), and $A M-B N$ to $A O$, we have,

$$
\text { vol. } C A B=\frac{2}{3} \pi I K \times A O \times C D .
$$

But, the right-angled triangles $A O B$ and $C D I$ are similar (B. IV., P. XVIII.; hence,
$A O: A B:: C I: C D ;$ or, $A O \times C D=A B \times C I$. Substituting, and changing the order of the factors, we have, vol. $C A B=A B \times 2 \pi I K \times \frac{1}{3} C I$.
But, $A B \times 2 \pi I K=$ the surface generated by $A B$; hence, vol. $C A B=\operatorname{surf} . A B \times \frac{1}{3} C I$.
2°. Suppose the axis to coincide with one of the equal sides.
Draw $C I$ perpendicular to $A B$ and $A M$, and $I K$ perpendicular to $C B$. Then,
vol. $C A B=\frac{1}{3} \pi \overline{A M}^{2} \times C B=\frac{1}{3} \pi A M \times$ $A M \times C B$.

But, since $A M B$ and $C I K$ are similar,
 $A M: A B:: C I: C B$; whence $A M \times C B=A B \times C I$. Also, $A M=2 I K$; hence, by substitution, we have, vol. $C A B=A B \times 2 \pi I K \times \frac{1}{3} C I=\operatorname{surf} . A B \times \frac{1}{3} C I$.
3. Suppose the base to be parallel to the axis.

Draw $A M$ and $B N$ perpendicular to the axis. The volume generated by $C A B$, is equal to the cylinder generated by the rectangle $A B N M$, diminished by the sum of the cones generated by the triangles $C A M$ and $B C N$; hence,

vol. $C A B=\pi \overline{C I}^{2} \times A B-\frac{1}{3} \pi \overline{C I}^{2} \times A I-\frac{1}{3} \pi \overline{C I}^{2} \times I B$.
But the sum of $A I$ and $I B$ is equal to $A B$: hence, we have, by reducing, and changing the order of the factors,

$$
\text { vol. } C A B=A B \times 2 \pi C I \times \frac{1}{3} C I \text {. }
$$

But $A B \times 2 \pi C I$ is equal to the surface generated by $A B$; consequently,

$$
\text { vol. } C A B=\text { surf. } A B \times \frac{1}{3} C I \text {; }
$$

hence, in all cases, the volume generated by $C A B$ is equal to surf. $A B \times \frac{1}{3} C I$; which was to be proved.

PROPOSITION XIII. LEMMA.

If a regular semi-polygon be revolved about its axis, the volume generated will be equal to the surface generated by the semiperimeter multiplied by one-third of the apothem.
Let $F B D G$ be a regular semi-polygon, $F G$ its axis, $O I$ its apothem, and let the semi-polygon be revolved about $F^{\prime} G$: then will the volume generated be equal to surf. $F D B G \times \frac{1}{3} O I$.

For, draw lines from the vertices to the centre 0 . These lines will divide the semi-polygon into isosceles triangles whose bases are sides of the semi-polygon, and whose altitudes are equal to $O I$.

Now, the sum of the volumes gencrated by these triangles is equal to the volume generated by the semi-polygon. But, the volume generated by any triangle, as $O A B$, is equal to surf. $A B \times \frac{1}{3} O I$ (P. XII.) : hence, the volume generated by the semi-polygon is equal to surf. $F B D G \times \frac{1}{3} O I$; which was to be proved.

Cor. The volume generated by a portion of the semi polygon, $O A B C$, limited by radii $O C, O A$, is equal to surf. $A B C \times \frac{1}{3} O I$.

PROPOSITION XIV. THEOREM.

The volume of a sphere is equal to its surface multiplied by one-thircl of its radius.

Let $A C E$ be a semicircle, $A E$ its diameter, O its centre, and let the semicircle be revolved about $A E$: then will the volume generated be equal to the surface generated by the semi-circumference multiplied by one-third of the radius $0 A$.

For, the semicircle may be regarded as a regular semi-polygon having an infi-
 nite number of sides, whose semi-perimeter coincides with the semi-circumference, and whose apothem is equal to the radius: hence (P. XIII.), the volume gencrated by the semicircle is equal to the surface generated by the semi-circumference multiplied by one-third of the radius; which was to be proved.

Cor. 1. Any portion of the semicircle, as $O B C$, bounded by two radii, will generate a volume equal to the surface
gemerated by the are $B C$ multiplied by one-third of the radius (P. XIII., C.). But this portion of the semicircle is a circular sector, the volume which it generates is a spherical sector, and the surface generated by the arc is a zone: hence, the volume of a spherical sector is equal to the zone whith forms its base multiplied by one-third of the radius

Cor. 2. If we denote the volume of a sphere by V, and its radias by R, the area of the surface will be equal to $4 \pi R^{2}$ (P. X., C. 1), and the volume of the sphere will be equal to $4 \pi R^{2} \times \frac{1}{3} R$; consequently, we have,

$$
V=\frac{4}{3} \pi R^{3}
$$

Again, if we denote the diameter of the sphere by D, we shall have R equal to $\frac{1}{2} D$, and R^{3} equal to $\frac{1}{8} D^{3}$, and consequently,

$$
V=\frac{1}{6} \pi D^{3} ;
$$

hence, the volumes of spheres are to each other as the cubes of their radii, or as the cubes of their diameters.

Scholium. If the figure $E B D F$, formed by drawing lines from the extremities of the are $B D$ perpendicular to $C A$, be revolved about $C A$, as an axis, it will generate a segment of a sphere whose volume may be found by adding to the spherical sector generated by $C D B$, the cone generated by $C B E$, and subtracting from their sum the cone generated
 by $C D F$. If the $\operatorname{arc} B D$ is so taken that the points E and F fall on opposite sides of the centre C, the latter cone must be added, instead of subtracted: zone $B D$ $=2 \pi C D \times E F$; hence,
segment $E B D F=\frac{1}{3} \pi\left(2 \overline{C D}^{2} \times E F+\overline{B E}^{2} \times C E \mp \overline{D F}^{2} \times C F\right)$,

PROPOSITION XV. THEOREM

The surface of a sphere is to the entire surface of tho circumscribed cylinder, including its bases, as 2 is to 3 : and the volumes are to each other in the same ratio.

Let $P M Q$ be a semicircle, and $P A D Q$ a rectangle, whose sides $P A$ and $Q D$ are tangent to the semicircle at P and Q, and whose side $A D$, is tangent to semicircle at M. If the semicircle and the rectangle be revolved about $P Q$, as an axis, the former will generate a sphere, and the latter a circumscribed cylinder.
1°. The surface of the sphere is to the entire surface of the cylinder, as 2 is to 3 .

For, the surface of the sphere is equal to four great circles (P. X., C. 1), the convex surface of the cylinder is equal to the circumference of its base multiplied by its altitude (P. I.) ; that is, it is equal to the circumference of a great circle multiplied by its diameter, or to four great circles
 (B. V., P. XV.) ; adding to this the two bases, each of which is equal to a great circle, we have the entire surface of the cylinder equal to six great circles: hence, the surface of the sphere is to the entire surface of he circumscribed cylinder, as 4 is to 6 , or as 2 is to 3 ; which was to be proved.
2°. The volume of the sphere is to the volume of the cylinder as 2 is to 3.

For, the volume of the sphere is equal to $\frac{4}{3} \pi R^{3}$ (P. XIV., C. 2) ; the volume of the cylinder is equal to its base multiplied by its altitude (P. II.) ; that is, it is equal to
$\pi R^{2} \times 2 R$, or to $\frac{6}{3} \pi R^{3}$: hence, the volume of the sphere is to that of the cylinder as 4 is to 6 , or as 2 is to 3 ; which was to be proved.

Cor. The surface of a sphere is to the entire surface of a circumscribed cylinder, as the volume of the sphere is to volume of the cylinder.

Scholium. Any polyedron which is circumscribed about a sphere, that is, whose faces are all tangent to the sphere, may be regarded as made up of pyramids, whose bases are the faces of the polyedron, whose common vertex is at the centre of the sphere, and each of whose altitudes is equal to the radius of the sphere. But, the volume of any one of these pyramids is equal to its base multiplied by onethird of its altitude: hence, the volume of a circumscribed polyedron is equal to its surface multiplied by one-third of the radius of the inscribed sphere.

Now, because the volume of the sphere is also equal to its surface multiplied by one-third of its radius, it follows that the volume of a sphere is to the volume of any circumseribed polyedron, as the surface of the sphere is to the surface of the polyedron.

Polyedrons circumscribed about the same, or about equal spheres, are proportional to their surfaces.

GENERAL FORMULAS.

If we denote the convex surface of a cylinder by S, its volume by V, the radius of its base by R, and its altitude by H, we have (P. I., II.),

$$
\begin{gathered}
S=2 \pi R \times H \cdot \\
V=\pi R^{2} \times H \quad .
\end{gathered} \cdot \cdot \cdot . \quad . \quad . \quad . \quad . \quad(1 .)
$$

If we denote the convex surface of a cone by S, ite volume by V, the radius of its base by R, its altitude by $I T$, and its slant height by H^{\prime}, we have (P. III., V.),

$$
\begin{align*}
& S=\pi R \times H^{\prime} . \tag{3.}\\
& V=\frac{1}{3} \pi R^{2} \times \frac{1}{3} H . \tag{4.}
\end{align*}
$$

If we denote the convex surface of a frustum of a cone by S, its volume by V, the radius of its lower base by R, the radius of its upper base by R^{\prime}, its altitude by H, and its slant height by H^{\prime}, we have (P. IV., VI.),

$$
\begin{align*}
& S=\pi\left(R+R^{\prime}\right) \times H^{\prime} \cdot \cdot \tag{5.}\\
& V=\frac{1}{3} \pi\left(R^{2}+R^{\prime 2}+R \times R^{\prime}\right) \times \dot{H} \tag{6.}
\end{align*}
$$

If we denote the surface of a sphere by S, its volume by V, its radius by R, and its diameter by D, we have (P. X., C. 1, XIV., C. 2, XIV., C. 1),

$$
\begin{align*}
& S=4 \pi R^{2} \cdot . \cdot . \tag{7.}\\
& V=\frac{4}{3} \pi R^{3}=\frac{1}{6} \pi D^{2} \tag{8.}
\end{align*}
$$

If we denote the radius of a sphere by R, the area of any zone of the sphere by S, its altitude by H, and the volume of the corresponding spherical sector by V, we shall have (P. X., C. 2),

$$
\begin{align*}
S & =2 \pi R \times H \tag{9.}\\
V & =\frac{2}{3} \pi R^{2} \times H \tag{10.}
\end{align*}
$$

If we denote the volume of the corresponding spherical segment by V, its altitude by H, the radius of its upper base by R^{\prime}, the radius of its lower base by $R^{\prime \prime}$, the distance of its upper base from the centre by H^{\prime}, and of its lower base from the centre by $H^{\prime \prime}$, we shall have (P. XIV., S.) :

$$
\begin{equation*}
V=\frac{1}{3} \pi\left(2 R^{2} \times H+R^{\prime 2} H^{\prime} \mp R^{\prime \prime 2} \times H^{\prime \prime}\right) \tag{11.}
\end{equation*}
$$

BOOK IX.

SPHERICAL GEOMETRY.

DEFINITIONS.

1. A Spherical Angle is an angle included between the arcs of two great circles of a sphere meeting at a point. The arcs are called sides of the angle, and their point of intersection is called the vertex of the angle.

The measure of a spherical angle is the same as that of the diedral angle included between the planes of its sides. Spherical angles may be acute, right, or obtuse.
2. A Spherical Polygon is a portion of the surface of a sphere bounded by three or more arcs of great circles. The bounding arcs are called sides of the polygon, and the points in which the sides meet, are called vertices of the polygon. Each side is supposed to be less than a semi-circumference.

Spherical polygons are classified in the same manner as plane polygons.
3. A Spherical Triangle is a spherical polygon of three sides.

Spherical triangles are classified in the same manner as plane triangles.
4. A Lune is a portion of the surface of a sphere bounded by two semi-circumferences of great circles.
5. A Spherical Wedge is a portion of a sphere bounded by a lune and two semicircles, which intersect in a diameter of the sphere.
6. A Spherical Pyramid is a portion of a sphere bounded by a spherical polygon and sectors of circles whose common centre is the centre of the sphere.

The spherical polygon is called the base of the pyramid, and the centre of the sphere is called the vertex of the pyramid.
7. A Pole of a Circle is a point on the surface of the sphere, equally distant from all the points of the cir cumference of the circle.
8. A Diagonal of a spherical polygon is an arc of a great circle joining the vertices of any two angles which are not consecutive.

PROPOSITION I. THEOREM.

Any side of a spherical triangle is less than the sum of the other two.

Let $A B C$ be a spherical triangle situated on a sphere whose centre is O : then will any side, as $A B$, be less than the sum of the sides $A C$ and $B C$.

For, draw the radii $O A, O B$, and $O C$: these radii form the edges of a triedral angle whose vertex is O, and the plane angles, included between them are measured by the arcs $A B, A C$, and $B C$ (B. III., P. XVII., Sch.). But any plane angle, as $A O B$, is less than the sum of the plane angles $A O C$
 and $B O C$ (B. VI., P. XIX.) : hence, the arc $A B$ is less than the sum of the arcs $A C$ an! BC; which was to be proved.

Cor. 1. Any side $A B$, of a spherical polygon $A B C D E$, is less than the sum of all the other sides.

For, draw the diagonals $A C$ and $A D$, dividing the polygon into triangles. The arc $A B$ is less than the sum of $A C$ and $B C$, the arc $A C$ is less than the sum of $A D$ and $D C$, and the arc $A D$ is less than the sum of $D E$ and $E A$; hence, $A B$ is less than the sum of $B C, C D$, $D E$, and $E A$.

Cor. 2. The arc of a small circle, on the surface of a sphere, is greater than the arc of a great circle joining its two extremities.

For, divide the arc of the small circle into equal parts, and through the two extremities of each part, suppose the arc of a great circle to be drawn. The sum of these arcs, whatever may be their number, will be greater than the are of the great circle joining the given points (C. 1). But when this number is infinite, each arc of the great circle will coincide with the corresponding arc of the small circle, and their sum is equal to the entire arc of the small circle, which is, consequently, greater than the arc of the great circle.

Cor. 3. The shortest distance from one point to another on the surface of a sphere, is measured on the arc of a great circle joining them.

PROPOSITION II. TIIEOREM.

The sum of the sides of a spherical polygon is less than the circumference of a great circle.

Let $A B C D E$ be a spherical pulygon situated on a sphere whose centre is O : then will the sum of its vides be less than the circumference of a great circle.

For, draw the radii $O A, O B, O C, O D$, and $O E$: these radii form the edges of a polyedral angle whose vertex is at O, and the angles included between them are measured by the arcs $A B, B C$, $C D, D E$, and EA. But the sam of these angles is less than four right angles (B. VI., P. XX.) : hence, the sum of the ares which measure them is less than the circumference of a great sircle; which was
 to be proved.

PROPOSITION III. THEOREM.

If a diameter of \dot{a} sphere be drawn perpendicular to the plane of any circle of the sphere, its extremities will be poles of that circle.

Let C be the centre of a sphere, $F N G$ any circle of the sphere, and $D E$ a diameter of the sphere perpendicular to the plane of $F N G$: then will the extremities D and E, be poles of the circle $F N G$.

The diameter $D E$, being perpendicular to the plane of $F N G$, must pass through the centre O (B. VIII., P. VII., C. 3). If arcs of great circles $D N, D F, D G$, \&c., be drawn from D to different points of the circumference $F N G$, and chords of these ares be drawn, these
 chords will be equal (B. VI., P. V.), consequently, the ares themselves will be equal. But these ares are the shortest lines that can be drawn from the
point D, to the different points of the circumference (P . I., C. 2) : hence, the point D, is equally distant from all the points of the circumference, and consequently is a pole of the circle (D. 7). In like manner, it may be shown that the point E is also a pole of the circle : hence, both D, and E, are poles of the circle $F N G$; which was to be proved.

Cor. 1. Let $A M B$ be a great circle perpendicular to $D E$: then will the angles $D C M, E C M$, \&c., be right angles ; and consequently, the arcs $D M, E M, \& c$. , will each be equal to a quadrant (B. III., P. XVII., S.) : hence, the two poles of a great circle are at equal distances from the circumference.

Cor. 2. The two poles of a small circle are at unequal distances from the circumference, the sum of the distances being equal to a semi-circumference.

Cor. 3. If any point, as M, in the circumference of a great circle, be joined with either pole, by the arc of a great circle, such arc will be perpendicular to the circumference $A M B$, since its plane passes through $C D$, which is perpendicular to $A M B$. Conversely: if $M N$ be perpendicular to the are $A M B$, it will pass through the poles D and E : for, the plane of $M N$ being perpendicular to $A M B$ and passing through C, will contain $C D$, which is perpendicular to the plane $A M B$ (B. VI., P. XVIII.).

Cor. 4. If the distance of a point D, from each of the points A and M, in the circumference of a great circle, is equal to a quadrant, the point D, is the pole of the are $A M$.

For, let C be the centre of the sphere, and draw the radii $C D, C A, C M$. Since the angles $A C D, M C D$, are right angles, the line $C D$ is perpendicular to the two straight lines $C A, C M$: it is, therefore, perpendicular to their
plane (B. VI., P. IV.) : hence, the point D, is the pole of the arc A.M.

Scholium. The properties of these poles enable us to describe arcs of a circle on the surface of a sphere, with the same facility as on a plane surface. For, by turning the arc $D F$ about the point D, the extremity F will describe the small circle $F N G$; and by turning the quadrant $D F A$ round the point D, its extremity A will describe an arc of a great circle.

PROPOSITION IV. THEOREM.

The angle formed by two arcs of great circles, is equal to that formed by the tangents to these arcs at their point of intersection, cand is measured by the arc of a great circle described from the vertex as a pole, and limited by the sides, produced if necessary.

Let the angle $B A C$ be formed by the two arcs $A B$, $A C$: then is it equal to the angle $F A G$ formed by the tangents $A F, A G$, and is measured by the arc $D E$ of a great circle, described about A as a pole.

For, the tangent $A F$, drawn in the plane of the arc $A B$, is perpendicular to the radius $A O$; and the tangent $A G$, drawn in the plane of the are $A C$, is perpendicular to the same radius $A O$: hence, the angle $F A G$ is equal to the angle contained by the planes $A B D H, A C E H$ (B. VI., D. 4) ; which is that of the arcs $A B, A C$. Now, if
 the $\operatorname{arcs} A D$ and $A E$ are both quadrants, the lines $O D, O E$, are perpendicular to $O A$, and
the angle $D O E$ is equal to the angle of the planes $A B D H$, $A C E H$: hence, the are $D E$ is the measure of the angle contained by these planes, or of the angle $C A B$; which roas to be proved.

Cor. 1. The angles of spherical triangles may be com pared by means of the arcs of great circles described from their vertices as poles, and included between their sides.

A spherical angle can always be constructed equal to a given spherical angle.

Cor. 2. Vertical angles, such as $A C O$ and $B C N$ are equal; for either of them is the angle formed by the two planes $A C B, O C N$. When two ares $A C B, O C N$, intersect, the sum of two adjacent angles, as $A C O, O C B$, is equal
 to two right angles.

PROPOSITION V. THEOREM.

If from the vertices of the angles of a spherical triangle as poles, arcs be described forming a spherical triangle, the vertices of the angles of this second triangle will be respectively poles of the sides of the first.

From the vertices A, B, C, as poles, let the arcs $E F, F D$, $E D$, be described, forming the triangle $D F E$: then will the vertices D, E, and F, be respectively poles of the sides $B C, A C, A B$.

For, the point A being

the pole of the arc $E F$, the distance $A E$, is a quadrant; the point C being the pole of the arc $D E$, the distance $C E$, is likewise a quadrant: hence, the point E is at a quadrant's distance from the points A and C : hence, it is the pole of the arc $A C$ (P. III., C. 4). It may be shown, in like manner, that D is the pole of the arc $B C$, and F that of the arc $A B$; which was to be proved.

Scholium. The triangle $A B C$, may be described by means of $D E F$, as $D E F$ is described by means of $A B C$. Triangles thus related are called polar triangles, or supplemental triangles.

PROPOSITION VI. THEOREM.

Any angle, in one of two polar triangles, is measured by a semi-circumference, minus the side lying opposite to it in the other triangle.

Let $A B C$, and $E F D$, be any two polar triangles : then will any angle in either triangle be measured by a semi-circumference, minus the side lying opposite to it in the other triangle.

For, produce the sides $A B$, $A C$, if necessary, till they meet $E F$, in G and H. The point A being the pole of the are $G H$, the angle A is measured by that arc (P.IV.). But, since E is the pole of $A H$, the are $E H$ is a quad-
 rant ; and since F is the pole of $A G, F G$ is a quadrant: hence, the sum of the arcs $E H$ and $G F$, is equal to a semi-circumference. But,
the sum of the $\operatorname{arcs} E H$ and $G F$, is equal to the sum of the arcs $E F$ and $G I I$: hence, the arc $G H$, which measures the angle A, is equal to a semi-circumference, minus the are $E F$. In like manner, it may be shown, that any other angle, in either triangle, is measured by a semicircumference, minus the side lying opposite to it in the other triangle; which was to be proved.

Scholium. Besides the triangle $D E F$, three others may be formed by the intersection of the arcs $D E, E F, D F$. But the proposition is applicable only to the central triangle, which is distinguished from the other three by the circumstance, that the two vertices, A and D, lie on the same side of $B C$; the two vertices, B
 and E, on the same side of $A C$; and the two rertices, C and F, on the same side of $A B$.

PROPOSITION VII. THEOREM.

If from the vertices of any two angles of a spherical triangle, as poles, arcs of circles be described passing through the vertex of the third angle; and if from the second point in which these arcs intersect, arcs of great circles be drawn to the vertices, used as poles, the parts of the triangle thus formed will be equal to those of the given triangle, each to each.

Let $A B C$ be a spherical triangle situated on a sphere whose centre is $O, \quad C E D$ and $C F D$ arcs of circles described about B and A as poles, and let $D A$ and $D B$ be arcs of great circles: then will the parts of the
triangle $A B D$ be equal to those of the given triangle $A B C$, each to each.

For, by construction, the side $A D$ is equal to $A C$, the side $D B$ is equal to $B C$, and the side $A B$ is common : hence, the sides are equal, each to each. Draw the radii $O A$, $O B, O C$, and $O D$. The radii $O A$, $O B$, and $O C$, will form the edges of a triedral angle whose vertex is O; and the radii $O A, O B$, and $O D$, will form the edges of a second triedral angle whose vertex is also at O; and the plane angles formed by these odges will be equal, each to each: hence, the planes of the equal angles are equally inclined to each other (B. VI., P. XXI.). But, the angles made by these planes are equal to the corresponding spherical angles; consequently, the angle $B A D$ is equal to $B A C$, the angle $A B D$ to $A B C$, and the angle $A D B$ to $A C B$: hence, the parts of the triangle $A B D$ are equal to the parts of the triangle $A C B$, each to each; which was to be proved.

Scholium 1. The triangles $A B C$ and $A B D$, are not, in general, capable of superposition, but their parts are symmetrically disposed with respect to $A B$. Triangles which have all the parts of the one equal to all the parts of the other, each to each, but not capable of superposition, ars called, symmetrical triangles.

Scholium 2. If symmetrical triangles are isosceles, they can be so placed as to coincide throughont: hence, they are equal in area.

PROPOSITION VIII. THEOREM.

If two spherical triangles, on the same, or on equal spheres, have two sides and the included angle of the one equal to two sides and the included angle of the other, each to each, the remaining parts are equal, each to each.

Let the spherical triangles $A B C$ and $E F G$, have the side $E F$ equal to $A B$, the side $E G$ equal to $A C$, and the angle $F E G$ equal to $B A C$: then will the side $F G$ be equal to $B C$, the angle $E F G$ to $A B C$, and the angle $E G F$ to $A C B$.

For, the triangle $E F G$ may be placed upon $A B C$, or upon its symmetrical triangle $A D B$, so as to coincide with it throughout, as may be shown by the same course of reasoning as that employed in Book I., Proposition V. :
 hence, the side $F G$ is equal to $B C$, the angle $E F G$ to $A B C$, and the angle $E G F$ to $A C B$; which was to be proved.

PROPOSITION IX. THEOREM.

If two spherical triangles on the same, or on equal spheres, have two angles and the included side of the one equal to two angles and the include.l side of the other, each to each, the remaining parts will be equal, each to each

Let the spherical triangles $A B C$ and $E F G$, have the angle $F E G$ equal to $B A C$, the angle $E F G$ equal to $A B C$, and the side $E F$ equal to $A B$: then will the
side $E G$ be equal to $A C$, the side $F G$ to $B C$, and the angle $F G E$ to $B C A$.

For, the triangle $E F G$ may be placed upon $A B C$, or upon its symmetrical triangle $A D B$, so as to coincide with it throughout, as may be shown by the same course of reasoning as that employed in Book I., Proposition
 VI.: hence, the side $E G$ is equal to $A C$, the side $F G$ to $B C$, and the angle $F G E$ to BCA; which was to be proved.

PROPOSITION X . THEOREM.

If two spherical triangles on the same, or on equal spheres, have their sides equal, each to each, their angles will be equal, each to each, the equal angles lying opposite the equal sides.

Let the spherical triangles $E F G$ and $A B C$ have the side $E F$ equal to $A B$, the side $E G$ equal to $A C$, and the side $F G$ equal to $B C$: then will the angle $F E G$ be equal to $B A C$, the angle $E F G$ to $A B C$, and the angle $E G F$ to $A C B$, and the equal angles will lie opposite the equal sides.

For, it may be shown by the same course of reasoning as that employed in B. I., P. X., that the triangle $E F G$ is equal in all respects, either to the triangle $A B C$, or to its symmetrical triangle $A B D$: hence, the angle
 $F E G$, opposite to the side $F G$, is equal to the angle $B A C$,
opposite to $B C$; the angle $E F G$, opposite to $E G$, is equal to the angle $A B C$, opposite to $A C$; and the angle $E G F$, opposite to $E F$, is equal to the angle $A C B$, opposite to $A B$; which was to be proved.

PROPOSITION XI. THEOREM.

In any isosceles spherical triangle, the angles opposite the equal sides are equal; and conversely, if two angles of a spherical triangle are equal, the triangle is isosceles.
1°. Let $A B C$ be a spherical triangle, having the side $A B$ equal to $A C$: then will the angle C be equal to the angle B.

For, draw the arc of a great circle from the vertex A, to the middle point D, of the base $\boldsymbol{B C}$: then in the two triangles $A D B$ and $A D C$, we shall have the side $A B$ equal to $A C$, by hypothesis, the side $B D$ equal to $D C$, by con-
 struction, and the side $A D$ common; consequently, the triangles have their angles equal, each to each (P. X.) : hence, the angle C is equal to the angle \boldsymbol{B}; which was to be proved.
2°. Let $A B C$ be a spherical triangle having the angle C equal to the angle B : then will the side $A B$ be equal to the side $A C$, and consequently the triangle will be isosceles.

For, suppose that $A B$ and $A C$ are not equal, but that one of them, as $A B$, is the greater. On $A B$ lay off the arc $B O$ equal to $A C$, and draw the are of a great circle from O to C : then in the triangles $A C B$ and $O B C$, we shall have the side $A C$ eqzal to $O B$, by construction,
the side $B C^{\prime}$ common, and the included angle $A C B$ equal to the included angle $O B C$, by hyporhesis : hence, the remaining parts of the triangles are equal, each to each, and consequently, the angle $O C B$ is equal to the angle $A B C$. But, the angle $A C B$ is equal to $A B C$, by hypothesis, and therefore, the angle $O C B$ is equal to $A C B$, or a part is equal to the whole, which is impossible: hence, the
 supposition that $A B$ and $A C$ are unequal, is absurd; they are therefore equal, and consequently, the triangle $A B C$ is isosceles; which was to be proved.

Cor. The triangles $A D B$ and $A D C$, having all of their parts equal, each to each, the angle $A D B$ is equal to $A D C$, and the angle $D A B$ is equal to $D A C$; thatis, if an arc of a great circle be drawn from the vertex of an isosceles spherical triangle to the middle of its base, it will be perpendicular to the base, and will bisect the vertical angle of the triangle.

PROPOSITION XII. THEOREM,

In any spherical triangle, the greater side is opposite the greater angle ; and conversely, the greater angle is oppo site the greater side.
1°. Let $A B C$ be a spherical triangle, in which the angle \boldsymbol{A} is greater than the angle B : then will the side $\boldsymbol{B O}$ be greater than the side $A C$.

For, draw the are $A D$, making the angle $B A D$ equal to $A B D$: then will $A D$ be equal to $B D$ (P. XI.). But, the sum of $A D$ and $D C$ is

greater than $A C$ (P.I.); or, putting for $A D$ its equal $B D$, we have the sum of $B D$ and $D C$, or $B C$, greater than $A C$; which was to be proved.
2°. In the triangle $A B C$, let the side $B C$ be greater than $A C$: then will the angle A be greater than the angle \boldsymbol{B}.

For, if the angles A and B were equal, the sides $B C$ and $A C$ would be equal ; or if the angle A was less than the angle B, the side $B C$ would be less than $A C$, either of which conclusions is contrary to the hypothesis: hence, the angle A is greater than the angle B; which was to be proved.

PROPOSITIUN XIII. THEOREM.

If two triangles on the same, or on equal spheres, are mutually equiangular, they are also mutually equilateral.

Let the spherical triangles A and B, be mutually equiangular: then will they also be mutually equilateral.

For, let P be the polar triangle of A, and Q the polar triangle of B : then, because the triangles A and B are mutually equiangular, their polar triangles P and Q,
 must be mutually equilateral (P. VI.), and consequently mutually equiangular (P. X.). But, the triangles P and Q being mutually equiangular, their polar triangles A and B, are mutually equilateral (P. VI.) ; which was to be proved.

Scholium. This proposition does not hold good for plane triangles, for all similar plane triangles are mutually equiangular, but not necessarily mutually equilateral. Two spherical triangles on the same or on equal spheres, cannot be similar without being equal in all their parts.

PROPOSITION XIV. THEOREM.

The sum of the angles of a spherical triangle is less than six right angles, and greater than two right angles.

Let $A B C$ be a spherical triangle, and $D E F$ its polar triangle : then will the sum of the angles A, B, and C, be less than six right angles and greater than two.

For, any angle, as A, being measured by a semi-circumference, minus the side $E F$ (P. VI.), is less than two right angles: hence, the sum of the three angles is less than six right angles. Again, because the measure of each angle is equal to a semi-circumference
 minus the side lying opposite
to it, in the polar triangle, the measure of the sum of the three angles is equal to three semi-circumferences, minus the sum of the sides of the polar triangle $D E F$. But the latter sum is less than a circumference; consequently, the measure of the sum of the angles A, B, and C, is greater than a semi-circumference, and therefore the sum of the angles is greater than two right angles: hence, the sum of the angles A, B, and C, is less than six right angles, and greater than two ; which was to be proved.

Cor. 1. The sum of the three angles of a spherical triangle is not constant, like that of the angles of a rectilineal triangle, but varies between two right angles and six, without ever reaching either of these limits. Two angles, therefore, do not serve to determine the third.

Cor. 2. A spherical triangle may have two, or even three of its angles right angles; also two, or even three of its angles obtuse.

Cor. 3. If a triangle, $A B C$, is $b i$-rectangular, that is, has two right angles B and C, the vertex A will be the pole of the other side $B C$, and $A B, A C$, will be quadrants.

For, since the arcs $A B$ and $A C$ are perpen-
 dicular to $B C$, each must pass through its pole (P. III., Cor. 3) : hence, their intersection A is that pole, and consequently, $A B$ and $A C$ are quadrants.

If the angle A is also a right angle, the triangle $A B C$ is tri-rectangular ; each of its angles is a right angle, and its sides are quadrants. Four tri-rectangular triangles make up the surface of a hemisphere, and eight the entire surface of a sphere.

Scholium. The right angle is taken as the unit of mear sure of spherical angles, and is denoted by 1.

The excess of the sum of the angles of a spnerical triangle over two right angles, is called the spherical excess. If we denote the spherical excess by E, and the three angles expressed in terms of the right angle, as a unit, by A, B, and C, we shall have,

$$
B=A+B+C-2
$$

The spherical excess of any spherical polygon is equal to the excess of the sum of its angles over two right angles taken as many times as the polygon has sides, less two. If we denote the spherical excess by E, the sum of the angles by S, and the number of sides by n, we shall have,

$$
E=S-2(n-2)=S-2 n+4
$$

PROPOSITION XV. THEOREM.

Any lune, is to the surface of the sphere, as the arc which measures its angle is to the circumference of a great circle; or, as the angle of the lune is to four right angles.

Let $A M B N$ be a lune, and $M C N$ the angle of the lune, then will the area of the lune be to the surface of the sphere, as the arc $M N$ is to the circumference of a great circle $M N P Q$; or, as the angle $M C N$ is to four right angles (B. III., P. XVII., C. 2).

In the first place, suppose the are $M N$ and the circumference $M N P Q$ to be commensurable. For example, let them be to each other as 5 is to 48. Divide the circumference $M N P Q$ into 48 equal parts, beginning at M; $M N$ will contain
 five of these parts. Join each point of division with the points A and B, by a quadraut: there will be formed 96 equal isosceles spherical triangles (P. VII., S. 2) on the surface of the sphere, of which the lune will contain 10 : hence, in this case, the area of the lune is to the surface of the sphere, as 10 is to 96 , or as 5 is to 48 ; that is, as the arc $M N$ is to the circumference $M N P Q$, or as the angle of the lune is to foar right angles.

In like manner, the same relation may be shown to exist when the arc $M N$, and the circumference $M N P Q$ are to each other as any other whole numbers.

If the arc $M N$, and the circumference $M N P Q$, are not commensurable, the same relation may be shown to exist by
a course of reasoning entirely analogous to that employed in Book IV., Proposition III. Hence, in all cases, the area of a lune is to the surface of the sphere, as the arc measuring the angle is to the circumference of a great circle; or, as the angle of the lune is to four right angles; which was to be proved.

Cor. 1. Lunes, on the same or on equal spheres, are to each other as their angles.

Cor. 2. If we denote the area of a tri-rectangular triangle by T, the area of a lune by L, and the angle of the lune by A, the right angle being denoted by 1 , we shall have,

$$
L: 8 T:: A: 4
$$

whence,

$$
L=T \times 2 A
$$

hence, the area of a lune is equal to the area of a trirectangular triangle multiplied by twice the angle of the lune.

Scholium. The spherical wedge, whose angle is $M C N$, is to the entire sphere, as the angle of the wedge is to four right angles, as may be shown by a course of reasoning entirely analogous to that just employed: hence, we infer that the volume of a spherical wedge is equal to the lune which forms its base, multiplied by one-third of the radius.

PROPOSITION XVI. THEOREM.

Symmetrical triangles are equal in area.
Let $A B C$ and $D E F$ be symmetrical triangles, the side $D E$ being equal to $A B_{x}$ the side $D F$ to $A C$, and the side $E F$ to $B C$: then will the triangles be equal in

For, conceive a small circle to be drawn through A, B, and C, and let P be its pole; draw arcs of great circles from P to A, B, and C : these ares will be equal (D. 7). Draw the are of a great circle $F Q$, making the angle $D F Q$ equal to $A C P$, and lay off on it, $F Q$ equal to $C P$; draw arcs of great circles $Q D$ and $Q E$.

In the triangles $P A C$ and
 $F D Q$, we have the side $F D$ equal to $A C$, by hypothesis; the side $F Q$ equal to $P C$, by construction, and the angle $D F Q$ equal to $A C P$, by construction : hence (P. VIII.), the side $D Q$ is equal to $A P$, the angle $F D Q$ to $P A C$, and the angle $F Q D$ to $A P C$. Now, because the triangles $Q F D$ and $P A C$ are isosceles and equal in all their parts, they may be placed so as to coincide throughout, the base $F D$ falling on $A C$, $D Q$ on $C P$, and $F Q$ on $A P$: hence, they are equal in area.

If we take from the angle $D F E$ the angle $D F Q$, and from the angle $A C B$ the angle $A C P$, the remaining angles $Q F^{\prime} E$ and $P C B$, will be equal. In the triangles $F Q E$ and $P C B$, we have the side $Q F$ equal to $P C$, by construction, the side $F E$ equal to $B C$, by hypothesis, and the angle $Q F E$ equal to $P C B$, from what has just been shown: hence, the triangles are equal in all their parts, and being isosceles, they may be placed so as to coincide throughout, the side $Q E$ falling on $P C$, and the side $Q F$ on $P B$; these triangles are, therefore, equal in area.

In the triangles $Q D E$ and $P A B$, we have the sides $Q D, Q E, P A$, and $P B$, all equal, and the angle $D Q E$ equal to $A P B$, because they are the sums of equal angles: hence, the triangles are equal in all their parts, and
because they are isosceles, they may be so placed as to coincide throughout, the side $Q D$ falling on $P B$, and the side $Q E$ on $P A$; these triangles are, therefore, equal in area.

Hence, the sum of the triangles $Q F D$ and $Q F E$, is equal to the sum of the triangles $P A C$ and $P B C$. If from the former sum we take away the triangle $Q D E$, there will remain the triangle $D F E$; and if from the latter sum we take away the triangle $P A B$, there will remain the triangle $A B C$: hence, the triangles $A B C$ and $D E F$ are equal in area; which was to be proved.

Scholicm. If the point P falls within the triangle $A B C$, the point Q will fall within the triangle $D E F$. In this case, the triangle $D E F$ is equal to the sum of the triangles $Q F O, Q F E$, and $Q D E$, and the triangle $A B C$ is equal to the sum of the equal triangles $P A C, P B C$, and $P A B$; the proposition, therefore, still holds good.

PROPOSITION XVII. THEOREM.

If the circumferences of two great circles intersect on the surface of a hemisphere, the sum of the opposite triangles thus formed, is equal to a lune whose angle is equal to that formed by the circles.

Let the circumferences $A O B, C O D$, mersect on the surface of a hemisphere : then will the sum of the opposite triangles $A O C, B O D$, be equal to the lune whose angle is $B O D$.

For, produce the arcs $O B, O D$, on the other hemisphere, till they meet
 at N. Now, since $A O B$ and $O B N$ are semi-circumferences, if we take away the common part
$O B$, we shall have $B N$ equal to $A O$. For a like reason, we have $D N$ equal to $C O$, and $B D$ equal to $A C$: hence, the two triangles $A O C, B D N$, have their sides respectively equal: they are therefore symmetrical ; consequently, they are equal in area (P. XVI.). But the sum of the triangies $B D N, B O D$, is equal to the lune $O B N D O$, whose angle is $B O D$: hence, the sum of $A O C$ and
 $B O D$ is equal to the lune whose $\mathrm{an}_{\mathrm{g}}^{-1 \mathrm{l}}$ is $B O D$; which was to be proved.

Scho:um. It is evident that the two spherical pyramids, which have the triangles $A O C, B O D$, for bases, are together equal to the spherical wedge whose angle is $\boldsymbol{B O D}$.

PROPOSITION XVIII. THEOREM.

The area of a spherical triangle is equal to its spherical excess multiplied by a tri-rectangular triangle.

Let $A B C$ be a spherical triangle : then' will its surface be equal to

$$
(A+B+C-2) \times T
$$

For, produce its sides till they meet the great circle $D E F G$, drawn at pleasure, without the triangle. By the last theorem, the two triangles $A D E, A G H$, are together equal to the lune whose angle is A; but the area of this lune
 is equal to $2 A \times T$ (P. XV., C. 2): hence, the sum of the triangles $A D E$ and $A G I I$, is equal to $2 A \times T$. In like manner, it may be shown that the
sum of the triangles $B F G$ and $B I D$, is equal to $2 B \times T$, and that the sum of the triangles $C I I I$ and $C F E$, is equal to $2 C \times T$.

But the sum of these six triangles exceeds the hemisphere, or four times T, by twice the triangle $A B C$. We shall therefore have,

$$
2 \times \text { area } A B C=2 A \times T+2 B \times T+2 C \times T-4 T ;
$$

or, by reducing and factoring,

$$
\text { area } A B C=(A+B+C-2) \times T^{\prime}
$$

which was to be proved.
Scholium 1. The same relation which exists between the spherical triangle $A B C$, and the tri-rectangular triangle, exists also between the spherical pyramid which has $A B C$ for its base, and the tri-rectangular pyramid. The triedral angle of the pyramid is to the triedral angle of the trirectangular pyramid, as the triangle $A B C$ to the tri-rectangular triangle. From these relations, the following consequences are deduced:
1°. Triangular spherical pyramids are to each other as their bases; and since a polygonal pyramid may always be divided ato triangular pyramids, it follows that any two spherical pyramids are to each other as their bases.
2°. Polyedral angles at the centre of the same, or of equal spheres, are to each other as the spherical polygons intercepted by their faces.

Scholium 2. A triedral angle whose faces are perpendicular to each other, is called a right triedral angle; and if the vertex be at the centre of a sphere, its faces will intercept a tri-rectangular triangle. The right triedral angle is
taken as the unit of polyedral angles, and the tri-rectangular spherical triangle is taken as its measure. If the vertex of a polyedral angle be taken as the centre of a sphere, the portion of the surface intercepted by its faces will be the measure of the polyedral angle, a tri-rectangular triangle of the same sphere, being the unit.

PROPOSITION XIX. THEOREM.

The area of a spherical polygon is equal to its spherical excess multiplied by the tri-rectangular triangle.

Let $A B C D E$ be a spherical polygon, the sum of whose angles is S, and the number of whose sides is $n:$ then will its area be equal to

$$
(S-2 n+4) \times T
$$

For, draw the diagonals $A C, A D$, dividing the polygon into spherical triangles: there will be $n-2$ such triangles. Now, the area of each triangle is equal to its spherical excess
 into the tri-rectangular triangle : hence, the sum of the areas of all the triangles, or the area of the polygon, is equal to the sum of all the angles of the triangles, or the sum of the angles of the polygon diminished by $2(n-2)$ into the tri-rectangular triangle ; or,

$$
\text { area } A B C D E=[S-2(n-2)] \times T
$$

whence, by reduction,

$$
\text { area } A B C D E=(S-2 n+4) \times T ;
$$

which was to be proved.

GENERAL SCHOLIUM.

Through any point on a hemisphere, two arcs of great circles can always be drawn which shall be perpendicular to the sircumference of the base of the hemisphere, and they will in general be unequal. Now, it may be proved, by a course o yeasoning analogous to that employed in Book I., Proposition XV.:
1°. That the shorter of the two arcs is the shortest are that can be drawn from the given point to the circumference .
2°. That two oblique arcs drawn from the same point, to points of the circumference at equal distances from the foot of the perpendicular, are equal:
3°. That of two oblique arcs, that is the longer which meets the circumference at the greater distance from the foot of the perpendicular.

This property of the sphere is used in the discussion of triangles in spherical trigonometry.

TRIG0N0METRY

AND

MENSURATION.

INTRODUCTION TO TRIGONOMETRY.

LOGARITIIMS.

1. The Logarithm of a number is the exponent of the power to which it is necessary to raise a fixed number, to produce the given number.

The fixed number is called the base of the system. Any positive number, except 1 , may be taken as the base of a system. In the common system, the base is 10 .
2. If we denote any positive number by r, and the corresponding exponent of 10 , by x, we shall have the exponential equation,

$$
\begin{equation*}
10^{x}=n \tag{1.}
\end{equation*}
$$

In this equation, x is, by definition, the logarithm of m which may be expressed thus,

$$
\begin{equation*}
x=\log n \tag{2.}
\end{equation*}
$$

3. From the definition of a logarithm, it follows that, the logarithm of any power of 10 is equal to the exponent of that power: hence the formula,

$$
\begin{equation*}
\log (10)^{p}=p . \quad . \quad . \quad . \quad . \tag{3.}
\end{equation*}
$$

If a number is an exact power of 10 , its logarithm is a whole number.

If a number is not an exact power of 10 , its logarithm will not be a whole number, but will be made up of an entire part plus a fractional part, which is generally expressed decimally. The entire part of a logarithm is called the characteristic, the decimal part, is called the mantissa.
4. If, in Equation (3), we make p successively equal to $0,1,2,3, \& c$. , and also equal to $-0,-1,-2,-3$, \&c., we may form the following

TABLE.

\log	1	$=0$	
\log	10	$=1$	$\log .1$
$\log 100$	$=2$	$\log .01$	$=-1$
\log	1000	$=3$	$\log .001$
\&c., \&c.	$\& c .$,	$\& c$.	

If a number lies between 1 and 10 , its logarithm lies between 0 and 1 , that is, it is equal to 0 plus a decimal; if a number lies between 10 and 100 , its logarithm is equal to 1 plus a decimal ; if between 100 and 1000 , its logarithm is equal to 2 plus a decimal; and so on: hence, we have the following

RULE.

The characteristic of the logarithm of an entire number is positive, and numerically 1 less than the number of places of figures in the given number.

If a decimal fraction lies between . 1 and 1 , its loga rithm lies between -1 and 0 , that is, it is equal to -1 plus a decimal ; if a number lies between .01 and . 1 , its logarithm is equal to -2 , plus a decimal ; if between . 001 and .01 , its logarithm is equal to -3 , plus a decimal ; and so on: hence, the following

RULE.

The characteristic of the logarithm of a decimal fraction is negative, and numerically 1 greater than the number of 0 's that immediately follow the decimal point.

The characteristic alone is negative, the mantissa being always positive. This fact is indicated by writing the negative sign over the characteristic: thus, $\overline{2} .371465$, is equivalent to $-2+.371465$.

It is to be observed, that the characteristic of the logarithm of a mixed number is the same as that of its entire part. Thus, the mixed number 74.103, lies between 10 and 100 ; hence, its logarithm lies between 1 and 2 , as does the logarithm of 74 .

GENERAL PRINCIPLES.

5. Let m and n denote any two numbers, and x and y their logarithms. We shall have, from the defini tion of a logarithm, the following equations,

$$
\begin{align*}
10^{x} & =m . \tag{4.}\\
10^{y} & =n . \tag{5.}
\end{align*}
$$

Multiplying (4) and (5), member by member, we have,

$$
10^{x+y}=m n ;
$$

whence, by the definition,

$$
\begin{equation*}
x+y=\log (m n) \tag{6.}
\end{equation*}
$$

That is, the logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers.
6. Dividing (4) by (5), member by member, we have,

$$
10^{x-y}=\begin{gathered}
m \\
n
\end{gathered} ;
$$

whence, by the definition,

$$
x-y=\log \left(\frac{m}{n}\right) \cdot \cdot . \quad . \quad(7 .)
$$

That is, the logarithm of a quotient is equal to the logarithm of the dividend diminished by that of the divisor.
7. Raising both members of (4) to the power denoted by p, we have,

$$
10^{x p}=m^{p} ;
$$

whence, by the definition,

$$
x p=\log m^{p} \cdot \quad . \quad . \quad \text {. (8.) }
$$

That is, the logarithm of any power of a number is equal to the logarithm of the number multiplied by the exponent of the power.
8. Extracting the root, indicated by r, of both members of (4) we have,

$$
10^{\frac{x}{r}}=\sqrt[r]{m}
$$

whence, by the definition,

$$
\begin{equation*}
\frac{x}{r}=\log \sqrt[r]{m} \tag{9.}
\end{equation*}
$$

That is, the logarithm of any root of a number is equal to the logarithm of the number divided by the index of the root.

The preceding principles enable us to abbreviate the oper ations of multiplication and division, by converting them into the simpler ones of addition and subtraction.

TABLE OF LOGARITHMS.

9. A Table of Logarithms, is a table containing a set of numbers and their logarithms, so arranged, that having given any one of the numbers, we can find its logarithm; or, having the logarithm, we can find the corresponding number.

In the table appended, the complete logarithm is given for all numbers from 1 up to 10,000 . For other numbers, the mantissas alone are given ; the characteristic may be found by one of the rules of Art. 4.

Before explaining the use of the table, it is to be shown that the mantissa of the logarithm of any number is not changed by multiplying or dividing the number by any exact power of 10 .

Let n represent any number whatever, and 10^{p} any power of $10, \quad p$ being any whole number, either positive or negative. Then, in accordance with the principles of Arts. 5 and 3 , we shall have,

$$
\log \left(n \times 10^{p}\right)=\log n+\log 10^{p}=p+\log n
$$

but p is, by hypothesis, a whole number: hence, the decimal part of the $\log \left(n \times 10^{p}\right)$ is the same as that of $\log n$; which was to be proved.

Hence, in finding the mantissa of the logarithm of a number, we may regard the number as a decimal, and move the - decimal point to the right or left, at pleasure. Thus, the mantissa of the logarithm of 456357, is the same as that of the number 4563.57; and the mantissa of the logarithm of 2.00357, is the same as that of 2003.57.

MANNER OF USING THE TABLE.

1. To find the logarithm of a number -less than 100.
2. Look on the first page, in the column headed "N," for the given number ; the number opposite is the logarithm required. Thus,

$$
\log 67=1.826075
$$

2. To find the logarithm of a number between 100 and 10,000 .
3. Find the characteristic by the first rule of Art. 4.

To find the mantissa, look in the column headed " N," for the first three figures of the number ; then pass along a horizontal line until you come to the column headed with the fourth figure of the number ; at this place will be found four figures of the mantissa, to which, two other figures, taken from the column headed " 0 ," are to be prefixed. If the figures found stand opposite a row of six figures, in the column headed " 0 ," the first two of this row are the ones to be prefixed; if not, ascend the column till a row of six figures is found; the first two, of this row, are the ones to be prefixed.

If, however, in passing back from the four figures, first found, any dots are passed, the two figures to be prefixed must be taken from the line immediately below. If the figures first found fall at a place where dots occur, the dots must be replaced by 0 's, and the figures to be prefixed must be taken from the line below. Thus,

$$
\begin{aligned}
& \log 8979=3.953228 \\
& \log 3098=3.491081 \\
& \log 2188=3.340047
\end{aligned}
$$

3°. To find the logarithm of a number greater than 10,000.
12. Find the characteristic by the first rule of Art. 4.

「o find the mantissa, place a decimal point after the fourth figure (Art. 9), thus converting the number into a mixed number. Find the mantissa of the entire part, by the method last given. Then take from the column headed " D ," the corresponding tabular difference, and multiply this by the decimal part and add the product to the mantissa just found. The result will be the required mantis 3 a.

It is to be observed that when the decimal part of the product just spoken of is equal to or exceeds .5, we add 1 to the entire part, otherwise the decimal part is rejected.

EXAMPLE.

1. To find the logarithm of 672887.

The characteristic is 5. Placing a decimal point after the fourth figure, the number becomes 6728.87. The mantissa of the logarithm of 6728 is 827886, and the corresponding number in the column " D " is 65 . Multiplying 65 by .87 , we have 56.55 ; or, since the decimal part exceeds $.5,57$. We add 57 to the mantissa already found, giving 827943, and we finally have,

$$
\log 672887=5.827943
$$

The numbers in the column " D " are the differences between the logarithms of two consecutive whole numbers, and are found by subtracting the number mader the heading " 4 , from that under the heading " 5 ."

In the example last given, the mantissa of the logarithm of 6728 is 827886, and that of 6729 is 827951, and their difference is $65 ; 87$ hundredths of this difference is

57 : hence, the mantissa of the logarithm of 6728.87 is found by adding 57 to 827886 . The principle employed is, that the differences of numbers are proportional to the differences of their logarithms, when these differences are small.

4. To find the logarithm of a decimal.

13. Find the characteristic by the second rule of Art. 4.

To find the mantissa, drop the decimal point, thus reducang the decimal to a whole number. Find the mantissa of the logarithm of this number, and it will be the mantissa required. Thus,

$$
\begin{aligned}
& \log .0327=\overline{2} .514548 \\
& \log 378.024=2.577520
\end{aligned}
$$

5°. To find the number corresponding to a given logarithm.
14. The rule is the reverse of those just given. Look in the table for the mantissa of the given logarithm. If it cannot be found, take out the next less mantissa, and also the corresponding number, which set aside. Find the differ. ence between the mantissa taken out and that of the given logarithm; annex as many 0 's as may be necessary, and divide this result by the corresponding number in the column "D." Annex the quotient to the number set aside, and then point off, from the left hand, a number of places of figures equal to the characterististio plus 1: the result will be the number required. If the characteristic is negative, the result will be a pure decimal, and the number of 0 's which immediately follow the decimal point will be one less than the number of units in the characteristic.

EXAMPLES.

1. Let it be required to find the number corresponding to the logarithm 5.233568 .

The next less mantissa in the table is 233504 ; the corresponding number is 1712 , and the tabular difference is 253.
operation.
Given mantissa, • 233568
Next less mantissa, • $\cdot \frac{233504 \cdot}{253) 6400000}\left(_{25296} 1712\right.$
\therefore The required mumber is 171225.296.
The number corresponding to the logarithm $\overline{2} .233568$ is .0171225.
2. What is the number corresponding to the logarithm $\overline{2} .785407$?

Ans. . 06101084.
3. What is the number corresponding to the logarithm 1.846741? Ans. . 702653.
multiplication by means of logarithms.
15. From the principle proved in Art. 5, we deduce the following rule.

Find the logarithms of the factors, and take their sum, then find the number corresponding to the resulting logarithm, and it will be the product required.

EXAMPLES.

1. Multiply 23.14 by 5.062 .

operation.

| $\log 23.14$ | \cdot | 1.364363 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\log 5.062$ | \cdot | | | |
| 2.704322 | | | | |
| | | | | |
| 2.068685 | | 117.1347, product. | | |

2. Find the continued product of $3.902,597.16$, and 0.0314728 .

\log	3.902	\cdot	\cdot	\cdot	0.591287			
\log	597.16	\cdot	\cdot	\cdot	2.776091			
\log	0.0314728	\cdot	\cdot		$\underline{2.497936}$			
					$\underline{1.865314}$	\cdot	73.3354,	product.

Here, the $\overline{2}$ cancels the +2 , and the 1 carried from the decimal part is set down.
3. Find the continued product of $3.586,{ }^{r^{\prime}} 2.1046,0.8372$, and 0.0294 . Ans. 0.1857615.

division by means of logarithms.

16. From the principle proved in Art. 6, we have the following

$$
\mathbf{R} \mathbb{U} \mathbf{L} \mathbf{E}
$$

Find the logarithms of the dividend and divisor, and subtract the latter from the former ; then find the number corresponding to the resulting logarithm, and it will be the quotient required.

EXAMPLES.

1. Divide 24163 by 4567 .

OPERATION.
$\log 24163$ • • 4.383151
$\log 4567$ • • 3.659631
$0.723520 \quad \therefore \quad 5.29078$, quotient.

2 Divide 0.7438 by 12.9476 .
OPERATION.

$$
\begin{array}{lccccc}
\log 0.7438 & \cdot & \overline{1} .871456 \\
\log 12.9476 & \cdot & & \\
& & & \frac{1.112189}{\overline{2} .759267} & \therefore & 0.057447, \\
\end{array}
$$

Here, 1 taken from $\overline{1}$, gives $\overline{2}$ for a result. The subtraction, as in this case, is always to be performed in the algebraic sense.
3. Divide 37.149 by 523.76 .

$$
\text { Ans. } 0.0709274 .
$$

The operation of division, particularly when combined with that of multiplication, can often be simplified by using the principle of

THE ARITHMETICAL COMPLEMENT.

17. The Artimetical Complement of a logarithm is the result obtained by subtracting it from 10. Thus, 8.130456 is the arithmetical complement of 1.869544 . The arithmetical complement of a logarithm may be written out by commencing at the left hand and subtracting each figure from 9 ,
until the last significant figure is reached, which must be taken from 10. The arithmetical complement is denoted by the symbol (a. c.).

Let a and b represent any two logarithms whatever, and $a-b$ their difference. Since we may add 10 tn, and subtract it from, $a-b$, without altering its value, we have,

$$
\begin{equation*}
a-b=a+(10-b)-10 \tag{10.}
\end{equation*}
$$

But, $10-b$ is, by definition, the arithmetical complement of b : hence, Equation (10) shows that the difference between two logarithms is equal to the first, plus the arith metical complement of the second, minus 10.

Hence, to divide one number by another by means of the arithmetical complement, we have the following

RULE.

Find the logarithm of the dividend, and the arithmetical complement of the logarithm of the divisor, add them togo ther, and diminish the sum by 10 ; the number correspond. ing to the resulting logarithm will be the quotient required.

EXAMPLES.

1. Divide 327.5 by 22.07 .

OPERATION.

| $\log 327.5$ | \cdot | \cdot | 2.515211 |
| ---: | :--- | :--- | :--- | :--- | :--- |
| (a. c.) $\log 22.07$ | \cdot | | |
| | | | 8.656198 |
| 1.171409 | | | |

2. Divide 37149 by 523.76 .

Ans. 0.0709273.
3. Multiply 358884 by 5672 , and divide the product by 89721 .

4. Solve the proportion,

$$
39 \% 6: 7952:: 5903: x .
$$

Applying logarithms, the logarithm of the 4th term, is equal to the sum of the logarithms of the 2 d and 3 d terms, minus the logarithm of the 1st: Or, the arithmetical complement of the 1 st term, plus the logarithm of the $2 d$ term, plus the logarithm of the $3 d$ term, minus 10 , is equal to the logarithm of the 4 th term.

OPERATION.

$$
\begin{aligned}
& \text { (a.c.) } \log 3976 \text {. . . } 6.400554 \\
& \log 7952 \text {. . . } 3.900476 \\
& \log 5903 \text {. . . } \frac{3.7 \% 10 \% 3}{4.72103} \\
& \log x \text {. . . } 4.072103 \quad . \quad x=11806
\end{aligned}
$$

The operation of subtracting 10, is performed mentally.
raising of powers by means of logarithms.
18. From Article 7, we have the following

RULE.

Find the logarithm of the number, and multiply it by the exponent of the power; then find the number corresponding to the resulting logarithm, and it will be the power required.

1. Find the 5th power of 9.

operation.

$$
\log 9 \cdot . \cdot 0.954243
$$

$4.771215 \quad \therefore \quad 59049$, power.
2. Find the 7th power of $8 . \quad$ Ans. 2097152.

FETRACTING ROOTS BY means of logarithms.
19. From the principle proved in Art. 8, we have the following
RULE.

Find the logarithm of the number, and divide it by the index of the root; then find the number corresponding to the resulting logarithm, and it will be the root required.

EXAMPLES.

1. Find the cube root of 4096.

The logarithm of 4096 is 3.612360 , and one-third of this is 1.204120 . The corresponding number is 16 , which is the root sought.

When the characteristic is negative and not divisible by the index, add to it the smallest negative number that will make it divisible, and then prefix the same number, with a plus sign, to the mantissa.
2. Find the 4 th root of .00000081 .

The logarithm of .00000081 is $\overline{7} .908485$, which is equal to $\overline{8}+1.908485$, and one-fourth of this is $\overline{2} .477121$.

The number corresponding to this logarithm is 03 : hence, .03 is the root required.

PLANE TRIGON0METRY.

20 Plane Trigonometry is that branch of Mathematics which treats of the solution of plane triangles.

In every plane triangle there are six parts : three sides and three angles. When three of these parts are given, one being a side, the remaining parts may be found by computation. The operation of finding the unknown parts, is called the solution of the triangle.
21. A plane angle is measured by the arc of a circle included between its sides, the centre of the circle being at the vertex, and its radius being equal to 1 .

Thus, if the vertex A be taken as a centre, and the radius $A B$ be equal to 1 , the intercepted are $B C$ will measure the angle A (B. III., P . XVII., S.).

Let $A B C D$ represent a circle whose radius is equal to 1 , and $A C, B D$, two diameters perpendicular to each other. These diameters divide the circumference into four equal parts, called quadrants ; and because each of the angles at the centre is a right angle, it follows that a right angle is measured by a quad-

rant. An acute angle is measured by an arc less than a quadrant, and an obtuse angle, by an arc greater than a quadrant.
22. In Geometry, the unit of angular measure is a right angle; so in Trigonometry, the primary unit is a quadiant, which is the measure of a right angle.

For convenience, the quadrant is divided into 90 equal parts, each of which is called a degree ; each degree into 60 equal parts, called minutes; and each minute into 60 equal parts, called seconds. Degrees, minutes, and seconds, are denoted by the symbols ${ }^{\circ}$, ', ". Thus, the expression $7^{\circ} 22^{\prime} 33^{\prime \prime}$, is read, 7 degrees, 22 minutes, and 33 seconds. Fractional parts of a second are expressed decimally.

A quadrant contains 324,000 seconds, and an are of 7° $22^{\prime} 33^{\prime \prime}$ contains 26553 seconds; hence, the angle measured by the latter arc, is the $\frac{26553}{324000}$ th part of a right angle. In like manner, any angle may be expressed in terms of a right angle.
23. The complement of an arc is the difference between that are and 90°. The complement of an angle is the difference between that angle and a right angle.

Thus, $E B$ is the complement of $A E$, and $F B$ is the comolement of $A F$. In like manner, $E O B$ is the complement of $A O E$, and $F^{\prime} O B$ is the complement of $A O F$.

In a right-angled triangle, the acute angles are complements of each other.
24. The supplement of an arc is the difference between
that are and 180°. The supplement of an angle is the dif. ference between that angle and two right angles.

Thus, $E C$ is the supplement of $A E$, and $F C$ the supplement of $A F$. In like manner, $E O C$ is the supploment of $A O E$, and $F O C$ the supplement of $A O F$.

In ans plane triangle, either angle is the supplement of the sum of the other two.
25. Instead of employing the arcs themselves, we usually employ certain functions of the ares, as explained below. A function of a quantity is something which depends upon that quantity for its value.

The following functions are the only ones needed for solving triangles :
26. The sine of an arc is the distance of one extremity of the arc from the diameter, through the other extremity.

Thus, $P M$ is the sine of $A M$, and $P^{\prime} M^{\prime}$ is the sine of $A M^{\prime}$.

If $A M$ is equal to $M^{\prime} C$, $A M$ and $A M^{\prime}$ will be supplements of each other ; and because $M M^{\prime}$ is parallel to $A C$, $P^{\prime} M$ will be equal to $P^{\prime} M^{\prime}$ (B. I., P. XXIII.): hence, the
 sine of an arc is equal to the sine of its supplement.
27. The cosine of an arc is the sine of the complement of the arc.

Thus, $N M$ is the cosine of $A M$, and $N M^{\prime}$ is the cosine of $A M^{\prime}$. These lines are respectively equal to $O P$ and $O P^{\prime}$.

It is evident, from the equal triangles of the figure, that the cosine of an arc is equal to the cosine of its supplement.
28. The tangent of an arc is the perpendicular to the radius at one extremity of the arc, limited by the prolongation of the diameter through the other extremity

Thus, $A T$ is the tangent of the arc $A M$, and $A T^{\prime \prime \prime}$ is the tangent of the are $A M^{\prime}$.

If $A M$ is equal to $M^{\prime} C$, $A M$ and $A M^{\prime}$ will be supplements of each other. But $A M^{\prime \prime \prime}$ and $A M^{\prime}$ are also supplements of each other : hence, the arc $A M$ is equal to the arc $A M^{\prime \prime \prime}$,
 and the corresponding angles, $A O M$ and $A O M^{\prime \prime \prime}$, are also equal. The right-angled triangles $A O T$ and $A O T^{\prime \prime \prime}$, have a common base $A O$, and the angles at the base equal; consequently, the remaining parts are respectively equal: hence, $A T$ is equal to $A T^{\prime \prime \prime}$. But $A T$ is the targent of $A M$, and $A T^{\prime \prime \prime}{ }_{r^{\prime}}$ is the tangent of $A M^{\prime}$: hence, the tangent of an arc is equal to the tangent of its supplement.

It is to be observed that no account is taken of the algebraic signs of the cosines and tangents, the numerical values alone being referred to.
29. The cotangent of an are is the tangent of its com. plement.

Thus, $B T^{\prime \prime}$ is the cotangent of the are $A M$, and $B T^{\prime \prime}$ is the cotangent of the are $A M^{\prime}$.

The sine, cosine, tangent, and cotangent of an arc, a, are, for convenience, written $\sin a, \cos a, \tan a$, and cot a.

These functions of an arc have been defined on the supposition that the radius of the arc is equal to 1 ; in this case, they may also be considered as functions of the angle which the are measures.

Thus, $P M, N M, A T$, and $B \dot{T}^{\prime}$, are respectively the sine, cosine, tangent, and cotangent of the angle $A O M$, as well as of the arc $A M$.
30. It is often convenient to use some other radius than 1 ; in such case, the functions of the arc, to the radius 1 , may be reduced to corresponding functions, to the radius R.

Let $A O M$ represent any angle, $A M$ an arc described from O as a centre with the radius $1, P M$ its sine; $A^{\prime} M^{\prime}$ an are described from O as a centre, with any raradius R, and $P^{\prime} M^{\prime}$ its sine.
 Then, because $O P M$ and $O P^{\prime} M^{\prime}$ are similar triangles, we shall have,
$O M: P M:: O M^{\prime}: P^{\prime} M^{\prime}$, or, $1: P M:: R: P^{\prime} M^{\prime} ;$
whence,

$$
P M=\frac{P^{\prime} M^{\prime}}{R}, \quad \text { and, } \quad P^{\prime} M^{\prime}=P M \times R
$$

and similarly for each of the other functions.
That is, any function of an arc whose radius is 1 , is equal to the corresponding function of an arc whose radius is $R_{\text {: }}$ divided by that radius. Also, any function of an arc whose radius is R, is equal to the corresponding function of an arc whose radius is 1 , multiplied by the radius R.

By making these changes in any formula, the formula will be rendered homogeneous.

TABLE OF NATURAL SINES.

31. A Natural Sine, Cosine, Tangent, or Cotangent, is the sine, cosine, tangent, or cotangent of an arc whose radius is 1 .

A Table of Natural Sines is a table by means of which she natural sine, cosine, tangent, or sotangent of any arc, may be found.

Such a table might be used for all the purposes of trigonometrical computation, but it is found more convenient to employ a table of logarithmic sines, as explained in the next article.

TABLE OF LOGARITIMMC SINES.

32. A Logarithmic Sine, Cosine, Tangent, or Cotangent is the logarithm of the sine, cosine, tangent, or cotangent of an are whose radius is $10,000,000,000$.

A Table of Logarithmic Sines is a table from which the logarithmic sine, cosine, tangent, or cotangent of any arc may be found.

The logarithm of the tabular radius is 10.
Any logarithmic function of an are may be found by multiplying the corresponding natural function by $10,000,000,000$ (Art. 30), and then taking the logarithm of the result; or more simply, by taking the logarithm of the corresponding natural function, and then adding 10 to the result (Art. 5).
33. In the table appended, the logarithmic functions are given for every minute from 0° up to 90°. In addition, their rates of change for each second, are given in the column headed "D."

The method of computing the numbers in the column headed " D," will be understood from a single example. The
logarithmic sines of $27^{\circ} 34^{\prime}$, and of $27^{\circ} 35^{\prime}$, are, respectively, 9.665375 and 9.665617 . The difference between their mantissas is 242 ; this, divided by 60 , the number of seconds in one minute, gives 4.03 , which is the change in the mantissa for $1^{\prime \prime}$, between the limits $27^{\circ} 34^{\prime}$ and $27^{\circ} 35^{\prime}$.

For the sine and cosine, there are separate columns of lifferences, which are written to the right of the respective solumus; but for the tangent and cotangent, there is but a single column of differences, which is written between them. The logarithm of the tangent increases, just as fast as that of the cotangent decreases, and the reverse, their sum being always equal to 20 . The reason of this is, that the product of the tangent and cotangent is always equal to the square of the radius ; hence, the sum of their logarithms must always be equal to twice the logarithm of the radius, or 20 .

The angle obtained by taking the degrees from the top of the page, and the minutes from any line on the left hand of the page, is the complement of that obtained by taking the degrees from the bottom of the page, and the minutes from the same line on the right hand of the page. But, by definition, the cosine and the cotangent of an arc are, respectively, the sine and the tangent of the complement of that arc (Arts. 26 and 28) : hence, the columns designated sine and tang, at the top of the page, are designated cosine and cotang at the bottom.

USE OF THE TABLE.

T'o find the logarithmic functions of an arc which is exspressed in degrees and minutes.
34. If the are is less than 45°, rook for the degrees at the top of the page, and for the minutes in the left hand solumn; then follow the corresponding horizontal line till you
come to the column designated at the top by sine, cosine, tang, or cotang, as the case may be; the number there found is the logarithn required. Thus,

$$
\begin{aligned}
& \log \sin 19^{\circ} 55^{\prime} \\
& \log \tan 19^{\circ} 55^{\prime}
\end{aligned} \cdot \quad \cdot \quad . \quad 9.532312
$$

If the angle is greater than 45°, look for the degrees at the bottom of the page, and for the minutes in the right hand column; then follow the corresponding horizontal line backwards till you come to the column designated at the bottom by sine, cosine, tang, or cotang, as the case may be; the number there found is the logarithm required. Thus,

$$
\begin{array}{lllllr}
\log \cos 52^{\circ} 18^{\prime} & \cdot & \cdot & 9.786416 \\
\log \tan 52^{\circ} 18^{\prime} & \text { P } & \cdot & \cdot & 10.111884
\end{array}
$$

To find the logarithmic functions of an arc which is expressed in degrees, minutes, and seconds.
35. Find the logarithm corresponding to the degrees and minutes as hefore; then multiply the corresponding number taken from the column headed " D ," by the, number of seconds, and add the product to the preceding result, for the sine or tangent, and subtract it therefrom for the cosine or cotangent.

EXAMPLES.

1. Find the logarithmic sine of $40^{\circ} 26^{\prime} 28^{\prime \prime}$.

operation.

PLANE TRIGONOMETRY.

The same rule is followed for decimal parts, as in Art. 12.
2. Find the logarithmic cosine of $53^{\circ} 40^{\prime} 40^{\prime \prime}$.

operation.

If the arc is greater than 90°, we find the required function of its supplement (Arts. 26 and 28).
3. Find the logarithmic tangent of $118^{\circ} 18^{\prime} 25^{\prime \prime}$.

operation.

$$
180^{\circ}
$$

Tabular difference 5.04
No. of seconds 35
Product . . . $\overline{176.40}$ to be added . 176
$\log \tan 118^{\circ} 18^{\prime} 25^{\prime \prime} \cdot$ • • • • • 10.268732
4. Find the logarithmic sine of $32^{\circ} 18^{\prime} 35^{\prime \prime}$.

Ans. 9.727945.
5. Find the logarithmic cosine of $95^{\circ} 18^{\prime} 24^{\prime \prime}$.

Ans. 8.966080.
8. Find the logarithmic cotangent of $125^{\circ} 23^{\prime} 50^{\prime \prime}$. Ane. 9.851619 .

23 find the arc corresponding to any logarithmic function. 36. This is done by reversing the preceding rule: Look in the proper column of the table for the given logarithm; if it is found there, the degrees are to be taken from the top or bottom, and the minutes from the left or right hand column, as the case may be. If the given logarithrn is not found in the table, then find the next less logarithm, and take from the table the corresponding degrees and minutes, and set them aside. Subtract the logarithm found in the table, from the given logarithm, and divide the remainder by the corresponding tabular difference. The quotient will be seconds, which must be added to the degrees and minutes set aside, in the case of a sine or tangent, and subtracted, in the case of a cosine or a cotangent.

EXAMPLES.

1. Find the arc corresponding to the logarithmic sine 9.422248.
operation.
Given logarithm • • . 9.422248
Next less in table • • 9.421857 • • $15^{\circ} 19^{\prime}$
Tabular difference 7.68) $391.00\left(51^{\prime \prime}\right.$, to be added.
Hence, the required are is $15^{\circ} 19^{\prime} 51^{\prime \prime}$.
2. Find the arc corresponding to the logarithmic cosine 9.427485 .
oferation.
Given logarithm • • • 9.427485
Next less in table - • 9.427354 - . $74^{\circ} 29^{\prime}$.
Tabular difference 7.58) 131.00 (17, to be subt.
Hence, the required arc is $74^{\circ} 28^{\circ} 43^{\prime \prime}$.
3. Find the arc corresponding to the logarithmic sine 9.880054 . Ans. $49^{\circ} 20^{\prime} 50^{\prime \prime}$.
4. Find the are corresponding to the logarithmio cotangent 10.008688 . Ans. $44^{\circ} 25^{\prime} 37^{\prime \prime}$.
5. Find the arc corresponding to the logarithmic cosine 9.944599 .

SOLUTION OF RIGit-ANGLED TRIANGLES.
37. In what follows we shall designate the three angles of every triangle, by the capital letters A, B, and C, A denoting the right angle; and the sides lying opposite the angles, by the corresponding small letters a, b, and c. Since the order in which these letters are placed may be changed, it follows that whatever is proved with the letters placed in any given order, will be equally true when the letters are correspondingly placed in any other order.

Let $C A B$ represent any triangle, right-angled at A. With C as a centre, and a radius $C D$, equal to 1 , describe the arc $D G$, and draw $G F$ and $D E$ perpendicular to $C A$: then will $F G^{\circ}$ be the sine of the angle $C, C F$ will be its cosine, and $D E$ its tangent.

Since the three triangles $C F G, C D E$, and $C A B$ are similar (B. IV., P. XVII.), we may write the propor tions,

$C B: A B: ~ C G: F G$,	or,	a			1	\sin	C
$C B: C A: ~ C G: C F$,	or,	a	b		1	cos	C
$C A: A B: ~ C D: D E$,	or,	b			1	\tan	C,

hence, we have (B. II., P. I.),

Translating these formulas into ordinary language, we have the following

PRINCIPLES.

1. The perpendicular of any right-angled triangle is equa, to the hypothenuse into the sine of the angle at the base.
2. The base is equal to the hypothenuse into the cosine of the angle at the base.
3. The perpendicular is equal to the base into the tangent of the angle at the base.
4. The sine of the angle at the base is equal to the perpendicular divided by the hypothenuse.
5. The cosine of the angle at the base' is equal to the base divided by the hypothenuse.
6. The tangent of the angle at the base is equal to the perpendicular divided by the base.

Either side about the right angle may be regarded as the base; in which case, the other is to be regarded as the perpendicular. We see, then, that the above principles are sufficient for the solution of every case of right-angled triangles. When the table of logarithmic sines is used, in the solution, Formulas (1) to (6) must be made homogeneous, by substituting for $\sin C, \cos C$, and $\tan C$, respectively,
$\frac{\sin C}{R}, \quad \frac{\cos C}{R}, \quad$ and $\frac{\tan C}{R}, \quad R$ being equal to $10,000,000,000$, as explained in Art. 30.

Making these changes, and reducing, we have,
$c=\frac{a \sin C}{R}$.
(7.) $\sin C=\frac{R c}{a}$.
$b=\frac{a \cos C}{R}$.
$\cos C=\frac{R b}{a}$.
$c=\frac{b \tan C}{R}$.
$\tan C=\frac{R c}{b} \cdot \cdot \cdot(12$.

In applying logarithms to these formulas, remember, that the sum of the logarithms of the two terms which multiply together, is equal to the sum of the logarithms of the other two terms, and that the required term comes last in the operation. Also, that the logarithm of R is 10 , and the arithmetical complement of it, is 0 .

There are four cases.

CASE I.

Given the hypothenuse and one of the acute angles, to find the remaining parts.
38. The other acute angle may be found by subtracting the given one from 90° (Art. 23).

The sides about the right angle may be found by Formulas (7) and (8).
examples.

1. Given $a=749$, and $C=47^{\circ} 03^{\prime} 10^{\prime \prime}$; required B, c, and b.
operation.

$$
B=90^{\circ}-47^{\circ} 03^{\prime} 10^{\prime \prime}=42^{\circ} 56^{\prime} 50^{\prime \prime}
$$

Applying logarithms to formula (7), we have,

$$
\log a+\log \sin C-10=\log c
$$

Applying logarithms to Formula (8), we have,

$$
\left.\begin{array}{l}
\log a+\log \cos C-10=\log b ; \\
\log a \\
\log \cos C\left(47^{\circ} 03^{\prime} 10^{\prime \prime}\right)
\end{array} \cdot \underline{9.833354}\right)
$$

Ans. $B=42^{\circ} 56^{\prime} 50^{\prime \prime}, b=510.31$, and $c=548.255$.
2. Given $a=439$, and $B=2 \%^{\circ} 38^{\prime} 50^{\prime \prime}$, to find C, c, and b.

operation.

$$
C=90^{\circ}-27^{\circ} 38^{\prime} 50^{\prime \prime}=62^{\circ} 21^{\prime} 10^{\prime \prime} ;
$$

$\log a \quad(439)$. . . . 2.642465
$\log \sin C\left(62^{\circ} 21^{\prime} 10^{\prime \prime}\right) \cdot \underline{9.947346}$
$\log c$. 2.589811 $\cdot . c=388.875$.
$\log a \quad(439)$. . . . 2.642465
$\log \cos C\left(62^{\circ} 21^{\prime} 10^{\prime \prime}\right) \cdot \underline{9.6665543}$

$$
\log b \quad . \quad . \quad . \quad . \quad 2.309008 \quad \therefore \quad b=203 . \% 08
$$

Ans. $C=62^{\circ} 21^{\prime} 10^{\prime \prime}, b=203 . \% 08$, and $c=388.8 \%$.
3. Given $a=125.7$ gds., and $B=75^{\circ} 12^{\prime}$, to find the other parts.

Ans. $C=14^{\circ} 48^{\prime}, \quad \zeta=121.53$ gds., and $c=32.11 \mathrm{yds}$.

CASE II.

Given one of the sides about the right angle and one of the acute angles, to fiud the remaining parts.
39. The other acute angle may be found by subtracting the given one from 90°.

The hypothenuse may be found by Formula (7), and the unknown side about the right angle, by Formula (8).

EXAMPLES.

1. Given $c=56.293$, and $C=54^{\circ} 27^{\prime} 39^{\prime \prime}$, to find B, a, and b.

operation.

$$
B=90^{\circ}-54^{\circ} 27^{\prime} 39^{\prime \prime}=35^{\circ} 32^{\prime} 21^{\prime \prime}
$$

Applying logarithms to Formula (7), we have,

$$
\log c+10-\log \sin O=\log a
$$

but, $10-\log \sin C=$ (a. c.) of $\log \sin C$; whence,
$\log c \quad(56.203)$. . . $1 . \% 50454$
(a.c.) $\log \sin C\left(54^{\circ} 27^{\prime} 39^{\prime \prime}\right)$. 0.089527
$\log a$. $1.839981 \quad \therefore \quad a=69.18$.
Applying logarithms to Formula (8), we have,

$$
\log a+\log \cos C-10=\log b
$$

Ans. $B=35^{\circ} 32^{\prime} 21^{\prime \prime}, a=69.18$, and $b=40.2114$.
2. Given $c=358$, and $B=28^{\circ} 47^{\prime}$, to find C, a and b

operation.

$$
C=90^{\circ}-28^{\circ} 47^{\prime}=61^{\circ} 13^{\prime}
$$

We have, as before,

$$
\log c+10-\log \sin C=\log a
$$

$\log c \quad(358) \quad . \quad .2 .553883$
(a. c.) $\log \sin C\left(61^{\circ} 13^{\prime}\right) \cdot .0 .057271^{\prime}$

$$
\log a \text {. } 2.611157 . \cdot a=408.466 ;
$$

Also, $\quad \log a+\log \cos C-10=\log b ;$

$$
\begin{array}{lllll}
\log a & (408.466) & \cdot & \cdot & 2.611157 \\
\log \cos C & \left(61^{\circ}\right. & \left.13^{\prime}\right) & \cdot & \cdot \\
\underline{9.682595} \\
\log b & \cdot & \cdot & \cdot & \\
\hline 2.293752 & \therefore & b=196.670
\end{array}
$$

Ans. $\quad C^{\prime}=61^{\circ} 13^{\prime}, \quad a=408.466, \quad$ and $\quad b=196.676$.
3. Given $b=152.67 \mathrm{yds}$, and $C=50^{\circ} 18^{\prime} 32^{\prime \prime}$, to find the other parts.

Ans. $B=39^{\circ} 41^{\prime} 28^{\prime \prime}, \quad c=183.95$, and $a=239.05$.
4. Given $c=379.628$, and $C=39^{\circ} 26^{\prime} 16^{\prime \prime}$, to find $B, \quad a$, and b.

Ans. $B=50^{\circ} 33^{\prime} 44^{\prime \prime}, \quad a=597.613$, and $b=461.55$,

CASE III.

Given the two sides about the right angle, to find the re maining parts.
40. The angle at the base may be found by Formula (12), and the solntion may be completed as in Case II.

EXAMPLES.

1. Given $b=26$, and $c=15$, to find C, B, and a.

operation.

Applying logarithms to Formula (12), we have,

$$
\log c+10-\log b=\log \tan C
$$

$\log c(15)$. . . . 1.176091
(a. c.) $\log b$ (26) 8.58502\%

$$
\begin{gathered}
\log \tan C \cdot \cdot \cdot \overline{9.761118} \cdot C=29^{\circ} 58^{\prime} 54^{\prime \prime}: \\
B=90^{\circ}-C=60^{\circ} 01^{\prime} 06^{\prime \prime} .
\end{gathered}
$$

As in Case II., $\log c+10-\log \sin C=\log a$;

$$
\log c \quad \cdot \quad \cdot(15) \cdot \quad 1176091
$$

(a. c.) $\log \sin C \quad\left(29^{\circ} 58^{\prime} 54^{\prime \prime}\right) \quad 0.301271$

$$
\log a \cdot \text {. . . . } \overline{1.477362} \quad . \therefore \quad a=30.017 .
$$

Ans. $C=29^{\circ} 58^{\prime} 54^{\prime \prime}, \quad B=60^{\circ} 01^{\prime} 06^{\prime \prime}, \quad$ and $a=30.017$.
2. Given $b=1052$ yds., and $c=347.21$ yds., to find B, C, \quad and a.

$$
B=71^{\circ} 44^{\prime} 05^{\prime \prime}, C=18^{\circ} 15^{\prime} 55^{\prime \prime}, \text { and } a=1107.82 \mathrm{yds}
$$

3. Given $b=122.416$, and $c=118.297$, to find B, C, and a.

$$
B=45^{\circ} 58^{\prime} 50^{\prime \prime}, \quad C=44^{\circ} 1^{\prime} 10^{\prime \prime}, \text { and } a=170.235
$$

4. Given $b=103$, and $c=101$, to fird B, C and a.

$$
B=45^{\circ} 33^{\prime} 42^{\prime \prime}, \quad C=44^{\circ} 26^{\prime} 18^{\prime \prime}, \quad \text { and } a=144.256
$$

CASE IV.

Given the hypothenuse and either side about the right angle, to find the remaining parts.
41. The angle at the base may be found by one of Formulas (10) and (11), and the remaining side may then ${ }^{\text {" }}$ be found by one of Formulas (7) and (8).

EXAMPLES.

1. Given $a=2391.76$, and $b=385 . \%$, to find C^{\prime}, B, and c.
operation.
Applying logarithms to Formula (11), we have,

$$
\log b+10-\log a=\log \cos C
$$

$\log b(385.7) \cdot$ • 2.586250
(a. c.) $\log _{5} a \quad(2391.76) \cdot \quad 6.621282$

$$
\log \cos C \cdot . \underline{\underline{9.207532}} \therefore C=80^{\circ} 43^{\prime} 11^{\prime \prime} ;
$$

$$
B=90^{\circ}-80^{\circ} 43^{\prime} 11^{\prime \prime}=9^{\circ} 16^{\prime} 19^{\prime \prime}
$$

From Formula (7), we have,

$$
\log a+\log \sin C-10=\log c
$$

$$
\begin{array}{llll}
\log a & (2391.76) & \cdot & 3.378718 \\
& \\
\log \sin C & \left(80^{\circ} 43^{\prime} 11^{\prime \prime}\right) & \underline{9.994278} \\
\log c & \cdot & \cdot & \cdot
\end{array} \underline{3.372996} \quad \therefore c=2360.45 .
$$

Ans. $\quad B=9^{\circ} 16^{\prime} 49^{\prime \prime}, \quad C=80^{\circ} 43^{\prime} 11^{\prime \prime}, \quad$ and $\quad c=2360.45$.
2. Given $a=12 \% .174$ gds., and $c=125 . \%$ yds., to find $C B$, and b.

operation.

From Formula (10), we have,

$$
\log c+10-\log a=\log \sin C
$$

$\log c(125.7)$. . . 2.099335
(a. c.) $\log a(12 \% .174) \quad$. 7.895602
$\log \sin C \quad . \quad . \underline{9.994937} \cdot C=81^{\circ} 16^{\prime} 6^{\prime \prime}$;

$$
B=90^{\circ}-81^{\circ} 16^{\prime} 6^{\prime \prime}=8^{\circ} 43^{\prime} 54^{\prime \prime}
$$

From Formula (8), we have,

$$
\log a+\log \cos C-10=\log b
$$

$\log a$	(127.174)	$\cdot 2.104398$	
$\log \cos C$	$\left(81^{\circ} 16^{\prime} 6^{\prime \prime}\right)$	$\cdot \underline{9.181292}$	
$\log b$	$\cdot \cdot$	\cdot	
		\cdot	

Ans. $\quad B=8^{\circ} 43^{\prime} 54^{\prime \prime}, \quad C=81^{\circ} 16^{\prime} 6^{\prime \prime}$, and $b=10.3 \mathrm{yds}$.
3. Given $a=100$, and $b=60$, to find B, C, and a

Ans. $\quad B=36^{\circ} 52^{\prime} 11^{\prime \prime}, \quad C=53^{\circ} 7^{\prime} 49^{\prime \prime}, \quad$ and $c=80$.
4. Given $a=19.209$, and $c=15$, to find B, C, and b.

Ans. $B=38^{\circ} 3 \xi^{\prime} 30^{\prime \prime} \quad C=51^{\circ} 20^{\prime} 30^{\prime \prime}, \quad b=12$.

```
SOLUTION OF OBLIQUE-ANGLED TRIANGLES.
```

42. In the solution of oblique-angled triangles, four cases may arise. We shall discuss these cases in order.

CASE 1.

Given one side and two angles, to determine the remaining parts.
43. Let $A B C$ represent any nblique-angled triangle. From the vertex C, draw $C D$ perpendicular to the base, forming two rightangled triangles $A C D$ and $B C D$.
 Assume the notation of the figure.

From Formula (1), we have,

$$
C D=b \sin A, \quad \text { and } \quad C D=a \sin B
$$

Equating these two values, we have,

$$
b \sin A=a \sin B
$$

whence (B. II., P. II.),

$$
a: b:: \sin A: \sin B . \quad . \quad \text { (13.) }
$$

Since a and b are any two sides, and A and B the angles lying opposite to them, we have the following principle :

The sides of a plane triangle are proportional to the sines of their opposite angles.

It is to be observed that Formula (13) is true for any value of the radius. Hence, to solve a triangle, when a side and two angles are given:

First find the third angle, by subtracting the sum of the given angles from 180°; then find each of the required sides by means of the principle just demonstrated.

EXAMPLES.

1. Given $B=58^{\circ} 07^{\prime}, C=22^{\circ} 37^{\prime}$, and $a=408$, to find A, b, and c.

OPERATION.

$$
\begin{array}{rllll}
B & \cdot & \cdot & \cdot & \cdot \\
C & \cdot & \cdot & \cdot & \cdot \\
A & \cdot & \cdot & 22^{\circ} 37^{\prime} \\
& 180^{\circ} \\
80^{\circ} 44^{\prime}
\end{array}=99^{\circ} 16^{\prime} .
$$

To find b, write the proportion,

$$
\sin A: \sin B \quad:: a \quad b ;
$$

that is, the sine of the angle opposite the given stde, is to the sine of the angle opposite the required side, as the given side is to the required side.

Applying logarithms, we have (Ex. 4, P. 15),
(a. c.) $\log \sin A+\log \sin B+\log a-10=\log b$;
(a. c.) $\log \sin A\left(99^{\circ} 16^{\prime}\right)$. . . 0.005705
$\log \sin B\left(58^{\circ} 07^{\prime}\right)$. . . 9.928972
$\log a$. . (408) 2.610660
$\log b$. $\overline{2.545337} . \cdot \quad b=351.024$.
In like manner, $\sin A: \sin C:: a: c$;
and, (a.c.) $\sin A+\log \sin C+\log a-10=\log c$.
(a. c.) $\log \sin A\left(99^{\circ} 16^{\prime}\right)$. . . 0.005705
$\log \sin C\left(22^{\circ} 37^{\prime}\right)$. . . 9.584968
$\log a$. . (408) 2.610660
$\log c$. 2.201333 . $c=158.976$.
Ans. $A=99^{\circ} 16^{\prime}, \quad b=351.024$, and $c=158.976$.
2. Given $A=38^{\circ} 25^{\prime}, \quad B=57^{\circ} 42^{\prime}$, and $c=400$, to find C, a, and b.

$$
\text { Ans. } \quad C=83^{\circ} 53^{\prime}, \quad a=249.974, \quad b=340.04
$$

3. Given $A=15^{\circ} 19^{\prime} 51^{\prime \prime}, \quad C=72^{\circ} 44^{\prime} 05^{\prime \prime}$, and $c=250.4 \mathrm{yds}$, to find B, a, and b.

Ans. $\quad B=91^{\circ} 56^{\prime} 04^{\prime \prime}, \quad a=69.328$ yds., $\quad b=262.066 \mathrm{yds}$.
4. Given $B=51^{\circ} 15^{\prime} 35^{\prime \prime}, \quad C=37^{\circ} 21^{\prime} 25^{\prime \prime}, \quad$ and $a=305.296 \mathrm{ft}$. , to find A, b, and c.

$$
\text { Ans. } \quad A=91^{\circ} 23^{\prime}, \quad b=238.1978 \mathrm{ft} ., \quad c=185.3 \mathrm{ft} .
$$

CASE II.

Given two sides and an angle opposite one of them, to find the remairing parts.
44. The solution, in this case, is commenced by finding a second angle by means of Formula (13), after which we may proceed as in Case I.; or, the solution may be completed by a continued application of Formula (13).

EXAMPLES.

1. Given $A=22^{\circ} 37^{\prime}, \quad b=216$, and $a=117$, to find B, C, and c.

From Formula (13), we have,

$$
a: b:: \sin A: \sin B
$$

that is, the bide opposite the given angle, is to the side opposite the required angle, as the sine of the given angle is to the sine of the required angle.

Whence, by the application of logarithms,

$$
\text { (a. c.) } \log a+\log b+\log \sin A-10=\log \sin B \text {; }
$$

$$
\begin{array}{llll}
\text { (a. c.) } \left.\begin{array}{llll}
\log a & \cdot & (117) & \cdot
\end{array}\right) 7.931814 \\
\log b & \cdot(216) & \cdot & 2.334454 \\
\log \sin A\left(22^{\circ} 37^{\prime}\right) & \cdot & \cdot \frac{9.584968}{9.851236}
\end{array} \cdot B=45^{\circ} 13^{\prime} 55^{\prime \prime \prime},
$$

Hence, we find two values of B, which are supplements of each other, because the sine of any angle is equal to the sine of its supplement. This would seem to indicate that the problem admits of two solutions. It now remains to determine under what conditions there will be two solutions, one solution, or no solution.

There may be two cases: the given angle may be acute, or it may be obtuse.

First Case. Let $A B C$ represent the triangle, in which the angle A, and the sides a and b are given. From C let fall
 a perpendicular upon $A B$, prolonged if necessary, and denote its length by p. We shall have, from Formula (1), Art. 37,

$$
p=b \sin A ;
$$

from which the value of p may be computed.
If a is intermediate in value between p and b, there will be two solutions. For, if with C as a centre, and a as a radius, an arc be described, it will cut the line $A \|$ in two points, B and B^{\prime}, each of which being joined with C, will give a triangle which will conform to the conditions of the problem.

In this case, the angles B^{\prime} and B, of the two triangles $A B^{\prime} C^{C}$ and $A B C$, will be supplements of each other.

If $a=p$, there will be but one solution. For, in this case, the are will be tangent to $A B$, he two points B and B^{\prime} will
 unite, and there will be but a single triangle formed.

In this case, the angle $A B C$ will be equal to 90°.
If a is greater than both p and b, there will also be but one solution. For, although the arc cuts $A B$ in two points, and consequently gives two triangles, only
 one of them conforms to the conditions of the problem.

In this case, the angle $A B C$ will be less than A, and consequently acute.

If $a<p$, there will be no solution. For, the arc can neither cut $A B$, nor be tangent to it.

Second Case. When the given angle \boldsymbol{A} is obtuse, the angle $A B C$ will be acute; the side a will be greater than b, and there will be but one solution.

In the example under considera-
 tion, there are two solutions, the first corresponding to $B=45^{\circ} 13^{\prime} 55^{\prime \prime}$, and the second to $B^{\prime}=134^{\circ} 46^{\prime} 05^{\prime \prime}$.

In the first case, we have,

$$
\begin{aligned}
& \text { A } 22^{\circ} 37^{\prime} \\
& B \text {. } 45^{\circ} 13^{\prime} 55^{\prime \prime} \\
& C \text {. } 180^{\circ}-67^{\circ} 50^{\prime} 55^{\prime \prime}=112^{\circ} 09^{\prime} 05^{\prime \prime} \text {. }
\end{aligned}
$$

To find c, we have,

$$
\sin B: \sin C:: b: c ; \text { and }
$$

$$
\text { (a. c.) } \sin B+\log \sin C+\log b-10=\log c \text {; }
$$

(a.c.) $\log \sin B\left(45^{\circ} 13^{\prime} 55^{\prime \prime}\right) \cdot 0.148764$
$\log \sin C\left(112^{\circ} 09^{\prime} 05^{\prime \prime}\right) \cdot 9.966700$
$\log 6$ • . . (216) • . . 2.334454
$\log c$. $2.449918 \quad \therefore c=281.785$.
Ans. $B=45^{\circ} 13^{\prime} 55^{\prime \prime}, \quad C=112^{\circ} 09^{\prime} 05^{\prime \prime}, \quad$ and $c=281.785$.

In the second case, we have,

$$
\begin{aligned}
& \text { A } 22^{\circ} 37^{\prime} \\
& B^{\prime} \text {. } 134^{\circ} 46^{\prime} 05^{\prime \prime} \\
& \text { C } 180^{\circ}-157^{\circ} 23^{\prime} 05^{\prime \prime}=22^{\circ} 36^{\prime} 55^{\prime \prime} \text {; }
\end{aligned}
$$

and as before,
(a. c.) $\log \sin B^{\prime}\left(134^{\circ} 46^{\prime} 05^{\prime \prime}\right) \quad$ - 0.148764
$\log \sin C\left(22^{\circ} 36^{\prime} 55^{\prime \prime}\right)$. 9.584943
$\log b$ • . . (216) • . . 2.334454
$\log c$. $\overline{2.068161} . \quad c=116.993$.
Ans. $\quad B^{\prime}=134^{\circ} 46^{\prime} 05^{\prime \prime}, \quad C=22^{\circ} 36^{\prime} 55^{\prime \prime}, \quad$ and $c=116.993$.
2. Given $A=32^{\circ}, a=40$, and $b=50$, to find B, C, and c.

$$
\text { Ans. } \begin{cases}B=41^{\circ} 28^{\prime} 59^{\prime \prime}, & C=106^{\circ} 31^{\prime} 01^{\prime \prime}, \\ B=72.368 \\ B=138^{\circ} 31^{\prime} 01^{\prime \prime}, & C=9^{\circ} 28^{\prime} 59^{\prime \prime}, \\ c=12.436\end{cases}
$$

3. Given $A=18^{\circ} 52^{\prime} 13^{\prime \prime}, \quad a=27.465 \mathrm{gds}$., and $\delta=13.189 \mathrm{yds}$, to find B, C, and c.

Ans. $B=8^{\circ} 56^{\prime} 05^{\prime \prime}, \quad C=152^{\circ} 11^{\prime} 42^{\prime \prime}, \quad c=39.611 \mathrm{yds}$,
4. Given $A=32^{\circ} 15^{\prime} 26^{\prime \prime}, \quad b=176.21 \mathrm{ft}$, and $a=94.047 \mathrm{ft}$. , to find B, C, and c.

Ans. $B=90^{\circ}, \quad C=57^{\circ} 44^{\prime} 34^{\prime \prime}, \quad c=149.014 \mathrm{ft}$.

CASE III.

Given two sides and their included angle, to find the romaining purts.
45. Let $A B C$ represent any plane triangle, $A B$ and $A C$ any two sides, and A their included angle. With A as a centre, and $A C$, the shorter of the two
 sides, as a radius, describe a semicircle meeting $A B$ in I, and the prolongation of $A B$ in E. Draw $C I$ and $E C$, and through I draw $I I I$ parallel to $E C$.

Since the angle $C A E$ is exterior to the triangle $C B A$, we have (B. I., P. XXV., C. 6),

$$
C A E=C+B
$$

But the angle $C I A$ is half the angle $C A E$;
hence,

$$
C I A=\frac{1}{2}(C+B)
$$

Since $A C$ is equal to $A F$, the angle $A F C$ is equal to the angle C; hence, the angle B plus $F A B$ is equal to C; or $F A B$ is equal to $C-B$. But $I C I I=$ is equal to onehalf of $F A B$;
hence,

$$
I C H=\frac{1}{2}(C-P)
$$

Since the angle $E C I$ is inscribed in a semicircle, it is a right angle (B. III., P. XVIII., C. 2) ; hence, $C E$ is perpendicular to $C Y$, at the point C. But since $H I$ is parallel to $C E$, it will also be perpendicular to $C I$.

From the two right-angled triangles ICE and ICII, we have (Formula 3, Art. 37),
$E C=I C \tan \frac{1}{2}(C+B), \quad$ and $\quad I \Pi=I C \tan \frac{1}{2}(C-B) ;$
hence, from the preceding equations, we have, after omitting the equal factor $I C$ (B. II., P. VII.),

$$
E C: I I I:: \tan \frac{1}{2}(C+B): \tan \frac{1}{2}(C-B)
$$

The triangles $E C B$ and $I I I B$ being similar, their homo logous sides are proportional ; and because $E B$ is equal to $A B+A C$, and $I B$ to $A B-A C$, we shail have the proportion,

$$
E C: I H:: A B+A C: A B-A C
$$

Combining the preceding proportions, and substituting for $A B$ and $A C$ their representatives c and b, we have,
$c+b: c-b:: \tan \frac{1}{2}(C+B): \tan \frac{1}{2}(C-B) \cdot .(14$.
Hence, we have the following principle:
In any plane triangle, the sum of the sides including either ungle, is to their difference, as the tangent of half the sum of the two other angles, is to the tangent of half their difference.

The half sum of the angles may be found by subtracting the given angle from 180°, and dividing the remainder by 2 the half difference may be found by means of the principle just demonstrated. Knowing the half sum and the half
difference, the greater angle is found by adding the half difference to the half sum, and the less angle is found by subtracting the half difference from the half sum. Then the solution is completed as in Case I.

EXAMPLES.

1. Given $c=540, b=450$, and $A=80^{\circ}$, to find B, C, and a.
operation.
$c+b=990 ; c-b=90 ; \quad \frac{1}{2}(C+B)=\frac{1}{2}\left(180^{\circ}-80^{\circ}\right)=50^{\circ}$.
Applying logarithms to Formula (14), we have,
(a. c.) $\log (c+b)+\log (c-b)+\log \tan \frac{1}{2}(C+B)-10=$ $\log \tan \frac{1}{2}(C-B)$.
(a. c.) $\log (c+b)$. . (990) 7.004365
$\log (c-b)$ • (90) 1.954243
$\log \tan \frac{1}{2}(C+B)\left(50^{\circ}\right) \quad 10.076187$
$\log \tan \frac{1}{2}(C-B) \underline{9.034795} \cdot \therefore \frac{1}{2}(C-B)=6^{\circ} 11^{\prime} ;$
$C=50^{\circ}+6^{\circ} 11^{\prime}=56^{\circ} 11^{\prime} ; \quad B=50^{\circ}-6^{\circ} 11^{\prime}=43^{\circ} 49^{\prime}$.

From Formula (13), we have,

$$
\sin C: \sin A:: c: a ; \text { whence, }
$$

(a. c.) $\log \sin C\left(56^{\circ} 11^{\prime}\right) \quad$ - 0.080492
$\log \sin A \quad\left(80^{\circ}\right)$. . 9.993351
$\log c$. . . (540) • . 2.732394
$\log a$. 2.806237 . $a=640.082$.
Ans. $\quad B=43^{\circ} 49^{\prime}, \quad C=56^{\circ} 11^{\prime}, \quad a=640.082$.
2. Given $c=1686 \mathrm{yds} ., \quad b=960 \mathrm{yds}$. , and $A=128^{\circ} 04^{\prime}$, to find B, C, and a.

Ans. $B=18^{\circ} 21^{\prime} 21^{\prime \prime}, \quad C=33^{\circ} 34^{\prime} 39^{\prime \prime}, \quad a=2400 \mathrm{yds}$.
3. Given $\quad a=18.739$ yds., $\quad b=7.642 \mathrm{yds}$., and $C=45^{\circ} 1828^{\prime \prime}$, to find A, B, and c.

Ans. $A=112^{\circ} 34^{\prime} 13^{\prime \prime}, \quad B=22^{\circ} 07^{\prime} 19^{\prime \prime}, \quad c=14.426 \mathrm{yds}$
4. Given $\quad a=464.7 \mathrm{yds}, \quad b=289.3 \mathrm{yds}$., and $C=87^{\circ} 03^{\prime} 48^{\prime \prime}$, to find A, D, and c.

Ans. $A=60^{\circ} 13^{\prime} 39^{\prime \prime}, \quad B=32^{\circ} 42^{\prime} 33^{\prime \prime}, \quad c=534.66 \mathrm{yds}$.
5. Given $a=16.9584 \mathrm{ft}$., $\quad b=11.9613 \mathrm{ft}$, and $C=60^{\circ} 43^{\prime} 36^{\prime \prime}$, to find A, B, and c.

Ans. $A=76^{\circ} 04^{\prime} 10^{\prime \prime}, B=43^{\circ} 12^{\prime} 14^{\prime \prime}, \quad c=15.22 \mathrm{ft}$.
6. Given $a=3754, b=3277.628$, and $C=57^{\circ} 53^{\prime} 17^{\prime \prime}$, to find A, B, and c.

Ans. $A=68^{\circ} 02^{\prime} 25^{\prime \prime}, \quad B=54^{\circ} 04^{\prime} 18^{\prime \prime}, \quad c=3428.512$.

CASE IV.

Given the three sides of a triangle, to find the remaining parts.*
46. Let $A B C$ represent any plane triangle, of which $B C$ is the longest side. Draw $A D$ perpendicular to the base, dividing it into two segments $C D$ and $B D$.

[^2]From the right-angled triangles $C A D$ and $B A D$, we have,

$$
\overline{A D}^{2}=\overline{A C}^{2}-\overline{D C}^{2}, \quad \text { and } \quad \overline{A D}^{2}=\overline{A B}^{2}-\overline{B D}^{2} ;
$$

Equating these values of $\overline{A D}^{2}$, we have,

$$
\overline{A C}^{2}-{\overline{D C^{2}}}^{2}=\overline{A B}^{2}-\overline{B D}^{2}
$$

whence, ly transposition,

$$
\overline{A C}^{2}-\overline{A B}^{2}=\overline{D C}^{2}-\overline{B D}^{2}
$$

Factoring each member, we have,

$$
(A C+A B)(A C-A B)=(D C+B D)(D C-B D)
$$

Converting this equation into a proportion (B. II., P. II.), we have,

$$
D C+B D: A C+A B:: A C-A B: D C-B D ;
$$

or, denoting the segments by s and s^{\prime}, and the sides of the triangle by a, b, and c,

$$
\begin{equation*}
s+s^{\prime}: b+c:: b-c: s-s^{\prime} \tag{15.}
\end{equation*}
$$

that is, if in any plane triangle, a line be drawn from the vertex of the vertical angle perpendicular to the base, dividing it into two segments; then,

The sum of the two segments, or the whole base, is to the sum of the two other sides, as the difference of these sides is to the difference of the segments.

The half difference added to the half sum, gives the greater, and the half difference subtracted from the half sum gives the less segment We shall then have two right. angled triangles, in each of which we know the hypothenuse and the base; hence, the angles of these triangles may be found, and consequently, those of the given triangle.

EXAMPLES.

1. Given $a=40, b=34$, and $e=25$, to find A, B, and C.
operation.
Applying logarithms to Formula (15), we have,

$$
\begin{aligned}
& \text { (a. c.) } \log \left(s+s^{\prime}\right)+\log (b+c)+\log (b-c)=\log \left(s-s^{\prime}\right) \text {; } \\
& \text { (a. c.) } \log \left(s+s^{\prime}\right) \text { • . (40) • . } 8.397940 \\
& \log (b+c) \text {. . (59) . . } 1.7 \% 0852 \\
& \log (b-c) \cdot \text { • } 9) \text { • • } 0.954243 \\
& \log \left(s-s^{\prime}\right) \text {. . . . } 1.123035 . \cdot s-s^{\prime}=13.275 . \\
& s=\frac{1}{2}\left(s+s^{\prime}\right)+\frac{1}{2}\left(s-s^{\prime}\right)=26.6375 \\
& s^{\prime}=\frac{1}{2}\left(s+s^{\prime}\right)-\frac{1}{2}\left(s-s^{\prime}\right)=13.3625
\end{aligned}
$$

From Formula (11), we find,
$\log s+$ (a.c.) $\log b=\log \cos C . \therefore C=38^{\circ} 25^{\prime} 20^{\prime \prime}$, and $\log s^{\prime}+$ (a.c.) $\log c=\log \cos B . \therefore B=\underline{57^{\circ} 41^{\prime} 25^{\prime \prime}} \underline{\underline{96^{\circ} 06^{\prime} 45^{\prime \prime}}}$ $A=180^{\circ}-96^{\circ} 06^{\prime} 45^{\prime \prime}=83^{\circ} 53^{\prime} 15^{\prime \prime}$.
2. Given $a=6, b=5$, and $c=4$, to find A. B, and C.

Ans. $A=82^{\circ} 49^{\prime} 09^{\prime \prime}, \quad B=55^{\circ} 46^{\prime} 16^{\prime \prime}, C=41^{\circ} 24^{\prime} 35^{\prime \prime}$
3. Given $a=71.2$ gds., $b=64.8$ gds., and $c=37$. rds., to find A, B, and C.

Ans. $A=83^{\circ} 44^{\prime} 32^{\prime \prime}, \quad B=64^{\circ} 46^{\prime} 56^{\prime \prime}, \quad C^{\prime}=31^{\circ} 28^{\prime} 30^{\prime \prime}$.

PROBLEMS.

1. Knowing the distance $A B$, equal to 600 yards, and the angles $B A C=57^{\circ} 35^{\prime}, \quad A B C=64^{\circ} 51^{\prime}$, find the two distances $A C$ and $B C$.

Ans. $\quad A C=643.49$ yds., $\quad B C=600.11 \mathrm{yds}$.
2. At what horizontal distance from a column, 200 feet high, will it subtend an angle of $31^{\circ} 17^{\prime} 12^{\prime \prime}$?

Ans. 329.114 ft .
3. Required the height of a hill D above a horizontal plane $A B$, the distance between A and B being equal to 975 yards,
 and the angles of elevation at A and B being respect. ively $15^{\circ} 36^{\prime}$ and $27^{\circ} 29^{\prime}$.

Ans. $D C=587.61 \mathrm{yds}$.
4. The distances $A C$ and . $B C$ are found by measurement to be, respectively, 588 feet and 672 feet, and their included angle $55^{\circ} 40^{\prime}$. Required the distance $A B$.

Ans. $\quad 592.967 \mathrm{ft}$.

5. Being on a horizontal plane, and wanting to ascertain the height of a tower, standing on the top of an inaccessible hill, there were measured, the angle of elevation of the tcp of the hill 40°, and of the top of the tower 51°; then measuring in a direct line 180 feet farther from the hill, the
angle of elevation of the top of the tower was $33^{\circ} 45^{\prime}$; required the height of the tower.
6. Wanting to know the horizontal distance between two inaccessible objects E and W, the following measurements were made :

$$
\text { viz }:\left\{\begin{aligned}
A B & =536 \text { yards } \\
B A W & =40^{\circ} 16^{\prime} \\
" W A E & =57^{\circ} 40^{\prime} \\
A B E & =42^{\circ} 22^{\prime} \\
E B W & =71^{\circ} 07^{\prime}
\end{aligned}\right.
$$

Ans. 939.634 yds .

Required the distance $E W$.
7. Wanting to know the horizontal distance between two inaccessible objects A and B, and not finding any station from which both of them could be seen, two points C and D, were chosen
 at a distance from each other equal to 200 yards; from the former of these points, A could be seen, and from the latter, B; and at each of the points C and D, a staff was set up. From C, a distance $C F$ was measured, not in the direction $D C$, equal to 200 yards, and from D, a distance $D E$, equal to 200 yards, and the following angles taken:
$A F C=83^{\circ} 00^{\prime}, \quad B D E=54^{\circ} 30^{\prime}, \quad A C D=53^{\circ} 30^{\prime}$
$B D C=156^{\circ} 25^{\prime}, \quad A C F=54^{\circ} 31^{\prime}, \quad B E D=88^{\circ} 30^{\prime}$
Required the distance $A B$.
Ans. 345467 yds.
8. The distances $A B, A C$, and $B C$, between the points A, B, and C, are known ; viz. : $A B=800 \mathrm{yds}$, $A C=600 \mathrm{yds}$., and $B C=400 \mathrm{yds}$. From a fourth point P, the angles $\triangle P C$ and $B P C$ are measured; viz. : $\quad A P C=33^{\circ} 45^{\prime}$, and $\quad B P C=22^{\circ} 30^{\prime}$.

Required the distances $A P, B P$, and $C P$.
Ans. $\left\{\begin{array}{l}A P=710.193 \mathrm{yds} . \\ B P=934.291 \mathrm{yds} . \\ C P=1042.522 \mathrm{yds} .\end{array}\right.$
This problem is used in locating the position of buoys in maritime surveying, as follows. Three points A, B, and C, on shore are known in position. The surveyor stationed at a buoy P, measures the angles $A P C$ and $B P C$. The distances $A P, B P$, and $C P$, are then found as follows:

Suppose the circumference of a circle to be described through the points A, B, and I. Draw $C P$, cutting the circumference in D, and draw the lines $D B$ and D.A.

The angles $C P B$ and $D A B$, being inscribed in the same segment, are equal (B. III., P. XVIII., C. 1) ; for a like reason, the angles $C P A$ and $D B A$ are equal : hence, in the triangle $A D B$, we know two angles and one side; we may, therefore, find the side $D B$. In the triangle $A C B$, we know the three sides, and we may compute the angle B. Subtracting from this the angle $D B A$, we have the angle $D B C$. Now, in the triangle $D B C$, we have two sides and their included angle, and we can find the angle $D C B$. Finally, in the triangle $C P B$, we have two angles and one side, from which data we can find $C P$ and $B P$. In like manner, we can find $A P$.

ANALYTICAL TRIGONOMETRY.

47. Analytical Trigonometiy is that branch of Mathematics which treats of the general properties and relations of trigonometrical functions.

definitions and general principles.

48. Let $A B C D$ represent a circle whose radius is 1 , and suppose its circumference to be divided into four equal parts, by the diameters $A C$ and $B D$, drawn perpendicular to each other. The horizontal diameter $A C$, is called the initial diameter ;
 the vertical diameter $B D$, is called the secondary diameter ; the point A, from which arcs are usually reckoned, is called the origin of arcs, and the point $B, 90^{\circ}$ distant, is called the secondary origin. Arcs estimated from A, around towards B, that is, in a direction contrary to that of the motion of the hands of a watch, are considered positive ; consequently, those reckoncd in a con trary direction must be regarded as negative.

The are $A B$, is called the first quadrant ; the arc $B C$, the second quadrant; the are $C D$, the third quadrant; and the arc $D A$, the fourth quadrant. The point at whicb
an arc terminates, is called its extremity, and an arc is said to be in that quadrant in which its extremity is situated. Thus, the arc ΛM is in the first quadrant, the arc $A M^{\prime}$ in the second, the arc $A M^{\prime \prime}$ in the third, and the are $A M^{\prime \prime \prime}$ in the fourth.
49. The complement of an arc has been defined to be the difference between that arc and 90° (Art.
 23) ; geometrically considered, the complement of an are is the arc included betwoen the extremity of the arc and the secondary origin. Thus, MBB is the complement of $A M ; M^{\prime} B$, the complement of $A M^{\prime}$; $M^{\prime \prime} B$, the complement of $A M^{\prime \prime}$, and so on. When the are is greater than a quadrant, the complement is negative, according to the conventional principle agreed upon (Art. 48).

The supplement of an arc has been defined to be the difference between that are and 180° (Art. 24); geometrically considered, it is the arc included betzoeen the extremity of the arc and the left hand extremity of the initial diameter. Thus, $M C$ is the supplement of $A M$, and $M^{\prime \prime} C$ the supplement of $A M^{\prime \prime}$. The supplement is negative, when the arc is greater than two quadrants.
50. The sine of an arc is the distance from the initial diameter to the extremity of the arc. Thus, $P M$ is the sine of $A M$, and $P^{\prime \prime} M^{\prime \prime}$ is the sine of the arc $A M^{\prime \prime}$. The term distance, is used in the sense of shortest or perpendicu-
 lar distance.
51. The cosine of an arc is the distance from the secondary diameter to the extremity of the arc: thus, NM is the cosine of $A M$, and $N M^{\prime}$ is the cosine of $A M^{\prime}$.

The cosine may be measured on the initial diameter : thus, $O P$ is equal to the cosine of $A M$, and $O P^{\prime}$ to the cosine of $A M^{\prime}$.
52. The versed-sine of an arc is the distance from the sine to the origin of arcs : thus, $P A$ is the versed-sine of $A M$, and $P^{\prime} A$ is the versed-sine of $A M^{\prime}$.
53. The co-versed-sine of an arc is the distance from the cosine to the secondary origin : thus, $N B$ is the co-versed-sine of $A M$, and $N^{\prime \prime} B$ is the co-versed-sine of $A M^{\prime \prime}$.
54. The tangent of an arc is that part of a perpendicular to the iniiial diameter, at the origin of arcs, in. cluded between the origin and the prolongation of the diameter through the extremity of the arc : thus, $A T$ is the tangent of $A M$, or of $A M^{\prime \prime}$, and $A T^{\prime \prime}$ is the tangent of $A M^{\prime}$, or of $A M^{\prime \prime \prime}$.
55. The cotangent of an arc is that part of a perpendicular to the secondary diameter, at the secondary origin, included between the secondary origin and the prolongation of the diameter through the extremity of the arc : thus, $B T^{\prime \prime}$ is the cotangent of $A M$, or of $A M^{\prime \prime}$, and $B T^{\prime \prime}$ is the cotangent of $A M^{\prime}$, or of $A M^{\prime \prime \prime}$.
56. The secant of an arc is the distance from the ceritre of the arc to the extremity of the tangent: thus, OT is the secant of $A M$, or of $A M^{\prime \prime}$, and $O T^{\prime \prime \prime}$ is the secant of $A M^{\prime}$, or of $A M^{\prime \prime \prime}$.
57. The cosecant of an arc is the distance from the
centre of the arc to the extremity of the cotangent : thus, $O T^{\prime \prime}$ is the cosecant of $A M$, or of $A M^{\prime \prime}$, and $O T^{\prime \prime}$ is the cosecant of $A M^{\prime}$, or of $A M^{\prime \prime \prime}$.

The term $c o$, in combination, is equivalent to complement of; thus, the cosine of an arc is the same as the sine of the complement of that arc, the cotangent is the same as the tangent of the complement, and so on.

The eight trigonometrical functions above defined are also called circular functions.
rdles for determining the algebraid signs of circular FUNCTIONS.
58. All distances estimated upwards are regarded as positive ; consequently, all distances estimated downwards must be considered negative.

Thus, $A T, P M, N B, P^{\prime} M^{\prime}$, are positive, and $A T^{\prime \prime \prime}, P^{\prime \prime \prime} M^{\prime \prime \prime}$, $P^{\prime \prime} M^{\prime \prime}, \& c$., are negative.

All distances estimated towards the right are regarded as positive; consequently, all distances estimated towards the left must be considered negative.

Thus, NM, BT', PA, \&c., are positive, and $N^{\prime} M^{\prime}, B T^{\prime \prime}$, \&c., are negative.

All distances estimated from the centre in a direction to towards the extremity of the arc are regarded as positive; consequently, all distances estimated in a direction from the second extremity of the arc must be considered negative.

Thus, OT, regarded as the secant of $A M$, is estimated in a direction towards M, and is positive; but $O T$, re-
garded as the secant of $A M^{\prime \prime}$, is estimated in a direction from $M^{\prime \prime}$, and is negative.

These conventional rules, enable us at once to give the proper sign to any function of an are in any quadrant.
59. In accordance with the above rules, and the definiions of the circular functions, we have the following princi lles :

The sine is positive in the first and sccond quadrants, and negative in the third and fourth.

The cosine is positive in the first and fourth quadrants, and negative in the second and third.

The versed-sine and the co-versed-sine are always positive.
The tangent and cotangent are positive in the first and third quadrants, and negative in the second and fourth.

The secant is positive in the first and fourth quadrants, and negative in the second and third.

The cosecant is positive in the first and second quadrants, and negative in the third and fourth.

limiting values of the circular fungtions.

60. The limiting values of the circular functions are those values which they have at the beginning and end of the different quadrants. Their numerical values are discovered by following them as the are increases from 0° around to 360°, and so on around through $450^{\circ}, 540^{\circ}$, \&c. The signs of these values are determined by the principle, that the sign of a varying magnitude up to the limit, is the sign at the limit. For illustration, let us examine the limiting values of the sine and tangent.

If we suppose the arc to be 0 , the sine will be 0 ; as the are increases, the sine increases until the arc becomes equal to 90°, when the sine becomes equal to +1 , which is its greatest possible value; as the arc increases from 90°, the sine goes on diminishing until the arc becomes equal to 180°, when the sine becomes equal to +0 ; as the arc increases from 180°, the sine becomes negative, and goes on increasing numerically, but decreasing algebraically, until the arc becomes equal to 270°, when the sine becomes equal to -1 , which is its least algebraical value; as the are increases from 270°, the sine goes on decreasing numerically, but increasing algebraically, until the arc becomes 360°, when the sine becomes equal to -0 . It is -0 , for this value of the arc, in accordance with the principle of limits.

The tangent is 0 when the arc is 0 , and increases till the arc becomes 90°, when the tangent is $+\infty$; in passing through 90°, the tangent changes from $+\infty$ to $-\infty$, and as the arc increases the tangent decreases, numerically, but increases algebraically, till the arc becomes equal to 180°, when the tangent becomes equal to -0 ; from 180° to 270°, the tangent is again positive, and at 270° it becomes equal to $+\infty$; from 270° to 360°, the tangent is again negative, and at 360° it becomes equal to -0.

If we still suppose the arc to increase after reaching 360°, the functions will again go through the same changes, that is, the functions of an are are the same as the functions that are increased by $360^{\circ}, 720^{\circ}$ \&c.

By discussing the limiting values of all the circular func tions we are enabled to form the following table:

TABLET.

relations between the circular functions of any arc.
61. Let $A M$ represent any arc denoted by a. Draw the lines as represented in the figure. Then we shall have, by definition
$O M=O A=1 ; \quad P M=O N=\sin a ;$
$N M=O P=\cos a ; \quad P A=\operatorname{ver}-\sin a ;$
 $N B=$ co-ver-sin $a ; A T=\tan a ;$ $B T^{\prime}=\cot a ; \quad O T=\sec a ; \quad$ and $\quad O T^{\prime}=\operatorname{cosec} a$.

From the right-angled triangle $O P M$, we have,

$$
\bar{P} \bar{M}^{2}+\bar{O} \bar{P}^{2}=\overline{O M}^{2}, \quad \text { or }, \quad \sin ^{2} a+\cos ^{2} a=1
$$

The symbols $\sin ^{2} a, \cos ^{2} a, \quad \& c$., denote the square of the sine of a, the square of the cosine of a, \&c.

From Formula (1) we have, by transposition,

$$
\begin{equation*}
\sin ^{2} a=1-\cos ^{2} a \quad . \quad(2) ; \quad \text { and } \cos ^{2} a=1-\sin ^{2} a \tag{3.}
\end{equation*}
$$

We have, from the figure,

$$
\begin{align*}
P A & =O A-O P, \\
\text { or, } \quad \text { ver-sin } a & =1-\cos a . \quad . \quad \text { (4.) } \tag{4.}\\
\text { and, } \quad N B & =O B-O N, \\
\text { or, cover -sin } a & =1-\sin a . \tag{5.}
\end{align*}
$$

From the similar triangles $O A T$ and $O P M$, we have, $O P: P M: O A: A T, \quad$ or, $\quad \cos a: \sin a:: 1: \tan a ;$ whence, $\quad \tan a=\frac{\sin a}{\cos a}$.

From the similar triangles $O N M$ and $O B T^{\prime \prime}$, we have, $O N: N M:: O B: B T^{\prime}, \quad$ or, $\sin a: \cos a:: 1: \cot a ;$ whence,

$$
\begin{equation*}
\cot a=\frac{\cos a}{\sin a} \tag{7.}
\end{equation*}
$$

Multiplying (6) and (7), member by member, we have,

$$
\begin{equation*}
\tan a \cot a=1 \tag{8.}
\end{equation*}
$$

whence, by division,
$\tan a=\frac{1}{\cot a} ; \quad$ (9.) and $\quad \cot a=\frac{1}{\tan a}$.

From the similar triangles $O P M$ and $O A T$, we have,
$O P: O M:=O A: O T, \quad$ or, $\cos a: 1:: 1: \sec a$
whence,

$$
\begin{equation*}
\text { sec } a=\frac{1}{\cos a} . \tag{11.}
\end{equation*}
$$

From the similar triangles $O N A$ and $O B T^{\prime}$, we have, $O N: O M:=O B: O T^{\prime}$, or, $\sin a: 1:: 1: \operatorname{cosec} a ;$ whence,

$$
\begin{equation*}
\operatorname{co-sec} a=\frac{1}{\sin a} . \tag{12.}
\end{equation*}
$$

From the right-angled triangle $O A T$, we have, $\overline{O T}^{2}=\overline{O A}^{2}+\bar{A} \bar{T}^{2} ; \quad$ or, $\quad \sec ^{2} a=1+\tan ^{2} a$.

From the right-angled triangle $O B T^{\prime}$, we have, ${\overline{O T^{\prime}}}^{2}=\bar{O} \bar{B}^{2}+{\overline{B T^{\prime \prime}}}^{2} ; \quad$ or, $\quad c o-\sec ^{2} a=1+\cot ^{2} a$. (14.)

It is to be observed that Formulas (5), (7), (12), and (14), may be deduced from Formulas (4), (6), (11), and (13), by substituting $90^{\circ}-a$, for a, and then making the proper reductions.

Collecting the preceding Formulas, we have the following table :

```
TABLEII.
```


FUNCTIONS OF NEGATIVE ARCS.

62. Let $A M^{\prime \prime \prime}$, estimated from A towards D, be numerically equal to $A M$; then, if we denote the arc $A M$ by a, the arc $A M^{\prime \prime \prime}$ will be denoted by $-a$ (Art. 48).

All the functions of $A M^{\prime \prime \prime}$, will be the same as those of $A B M^{\prime \prime \prime}$; that is, the functions of $-a$ are the same as the functions of $360^{\circ}-a$.

From an inspection of the figure, we shall discover the following relations, viz.:

$$
\begin{array}{ll}
\sin (-a)=-\sin a ; & \cos (-a)=\cos a \\
\tan (-a)=-\tan a ; & \cot (-a)=-\cot a \\
\sec (-a)=\sec a ; & \operatorname{cosec}(-a)=-\operatorname{cosec} a
\end{array}
$$

FUNCTIONS OF arcs formed by anding an ${ }^{\circ}$ ARC to, or subtracting it from any number of quadrants.
63. Let a denote any arc less than 90°. From what has preceded, we know that,

$$
\begin{array}{ll}
\sin \left(90^{\circ}-a\right)=\cos a ; & \cos \left(90^{\circ}-a\right)=\sin a \\
\tan \left(90^{\circ}-a\right)=\cot a ; & \cot \left(90^{\circ}-a\right)=\tan a \\
\sec \left(90^{\circ}-a\right)=\operatorname{cosec} a ; & \operatorname{cosec}\left(90^{\circ}-a\right)=\sec a
\end{array}
$$

Now, suppose that $B M^{\prime}=a$, then will $A M^{\prime}=90^{\circ}+a$. We see from the figure that,
$\begin{array}{lll}N M^{\prime}=\sin a, & P^{\prime} M M^{\prime}=\cos a, & B T^{\prime \prime}=\tan a, \\ A T^{\prime \prime \prime}=\cot a, & O T^{\prime \prime}=\sec a, & O T^{\prime \prime \prime}=\operatorname{cosec} a,\end{array}$
without reference to their signs.

By a simple inspection of the figure, observing the rul for signs, we deduce the following relations:
$\sin \left(90^{\circ}+a\right)=\cos a, \quad \cos \left(90^{\circ}+a\right) \quad=-\sin a$, $\tan \left(90^{\circ}+a\right)=-\operatorname{cotan} a, \quad \cot \left(90^{\circ}+a\right)=-\tan a$, $\sec \left(90^{\circ}+a\right)=-\operatorname{cosec} a, \quad \operatorname{cosec}\left(90^{\circ}+a\right)=\sec a$.

Again, suppose

$$
M^{\prime} C=A M=a ; \text { then will } A M^{\prime}=180^{\circ}-a
$$

We see from the figure that,

$$
\begin{array}{lll}
P^{\prime} M^{\prime}=\sin a, & O P^{\prime}=\cos a, & A T^{\prime \prime \prime}=\tan a \\
B T^{\prime \prime}=\cot a, & O T^{\prime \prime}=\sec a, & O T^{\prime \prime \prime}=\operatorname{cosec} a
\end{array}
$$

without reference to their signs: hence, we have, as before, the following relations:
$\sin \left(180^{\circ}-a\right)=\sin a, \quad \cos \left(180^{\circ}-a\right)=-\cos a$, $\tan \left(180^{\circ}-a\right)=-\tan \alpha_{\nu} \quad \cot \left(180^{\circ}-a\right)=-\cot a$, $\sec \left(180^{\circ}-a\right)=-\sec a, \quad \operatorname{cosec}(180-\alpha)=\operatorname{cosec} a$,

By a similar process, we may discuss the remaining arcs in question. Collecting the results, we have the following table :

TABLEIII.

	$\begin{gathered} \operatorname{Arc}=270^{\circ}-\alpha . \\ \sin =-\cos a, \quad \cos =-\sin a, \\ \tan =\cot a, \quad \cot =\tan a, \\ \sec =-\operatorname{cosec} a, \\ \operatorname{cosec}=-\sec a . \end{gathered}$
$\begin{gathered} \operatorname{Arc}=180^{\circ}-a . \\ \sin =\sin a, \quad \cos =-\cos a \\ \tan =-\tan a, \\ \cot =-\cot a \\ \sec =-\sec a, \\ \operatorname{cosec}=\operatorname{cosec} a . \end{gathered}$	$\begin{gathered} \operatorname{Arc}=270^{\circ}+a . \\ \sin =-\cos a, \quad \cos =\sin a, \\ \tan =-\cot a, \quad \cot =-\tan a, \\ \sec =\operatorname{cosec} a, \\ \operatorname{cosec}=-\sec a . \end{gathered}$
$\begin{gathered} \operatorname{Arc}=180^{\circ}+a . \\ \sin =-\sin a, \quad \cos =-\cos a, \\ \tan =\tan a, \\ \sec =-\cot a, \\ \sec =\operatorname{cosec} a, \\ =-\operatorname{cosec} a . \end{gathered}$	$\begin{gathered} \operatorname{Arc}=360^{\circ}-a . \\ \sin =-\sin a, \\ \cos =\cos a, \\ \tan =-\tan a, \\ \sec =\sec a, \\ \sec =-\cot a, \\ =-\operatorname{cosec} a . \end{gathered}$

It will be observed that, when the arc is added to, or subtracted from, an even number of quadrants, the name of the function is the same in both columns; and when the are is added to, or subtracted from, an odd number of quadrants, the names of the functions in the two columns are contrary: in all cases, the algebraic sign is determined by the rules already given (Art. 58).

By means of this table, we may find the functions of any arc in terms of the functions of an arc less than 90° Thus,

$$
\begin{aligned}
& \sin 115^{\circ}=\sin \left(90^{\circ}+25^{\circ}\right)=\cos 25^{\circ}, \\
& \sin 284^{\circ}=\sin \left(270^{\circ}+14^{\circ}\right)=-\cos 14^{\circ}, \\
& \sin 400^{\circ}=\sin \left(360^{\circ}+40^{\circ}\right)=\sin 40^{\circ}, \\
& \tan 210^{\circ}=\tan \left(180^{\circ}+30^{\circ}\right)=\tan 30^{\circ}
\end{aligned}
$$

Particular values of certain functions.

64. Let $M A M^{\prime}$ be any arc, denoted by $2 a, M^{\prime} M$ its chord, and $O A$ a radius drawn perpendicular to $M M^{\prime} M$: then will $P M=P M^{\prime}$, and $A M=A M^{\prime}$ (B. III., P. VI.). But $P M$ is the sine of $A M$, or, $P M=\sin a$: hence.

$$
\sin a=\frac{1}{2} M \Gamma^{\prime} M ;
$$

that is, the sine of an arc is equal to one half the chord of twice the arc.

Let $M^{\prime} A M=60^{\circ}$; then will $A M=30^{\circ}$, and $M^{\prime} M$ will equal the radius, or 1 : hence, we have,

$$
\sin 30^{\circ}=\frac{1}{2}
$$

that is, the sine of 30° is equal to half the radius.
Also,

$$
\cos 30^{\circ}=\sqrt{1-\sin ^{2} 30^{\circ}}=\frac{1}{2} \sqrt{3} ;
$$

hence,

$$
\tan 30^{\circ}=\frac{\sin 30^{\circ}}{\cos } 30^{\circ}=\sqrt{\frac{1}{3}}
$$

Again, let $M^{\prime} A M=90^{\circ}$: then will $A M=45^{\circ}$, and $M^{\prime} M=\sqrt{2}$ (B. V., P. III.) : hence, we have,

$$
\sin 45^{\circ}=\frac{1}{2} \sqrt{2} ;
$$

Also,

$$
\cos 45^{\circ}=\sqrt{1-\sin ^{2} 45^{\circ}}=\frac{1}{2} \sqrt{2} ;
$$

licence,

$$
\tan 45^{\circ}=\frac{\sin 45^{\circ}}{\cos 45^{\circ}}=1
$$

Many other numerical values might be deduced.
formulas expressing relations between the circllal FUNCTIONS OF DIFFERENT ARCS.
65. Let $M B$ and $B A$ represent two ares, having the common radius 1 ; denote the first by a, and the second by b : then, $M A=a+b$. From M draw $M P$ perpendicular to $C A$, and $M V$ perpendicular to $C B$; from N draw $N P^{\prime}$ perpendicular to $C A$, and $N L$ parallel to $A C$.

Then, by definition, we shall have,

$$
P M=\sin (a+b), \quad N M=\sin a, \quad \text { and } C N=\cos a
$$

From the figure, we have,

$$
P M=M L+L P . \quad \text { • • • }(1)
$$

Since the triangle $M L N$ is similar to $C P^{\prime} N$ (B. IV., P. 21), the angle $L M N$ is equal to the angle $P^{\prime} C N$; hence, from the right-angled triangle $M L N$, we have,

$$
M L=M N \cos b=\sin a \cos b
$$

From the right-angled triangle $C P^{\prime} N$ (Art. 37), we have,

$$
N P^{\prime}=C N \sin b ;
$$

or, since

$$
N P^{\prime}=L P, \quad L P=\cos a \sin b
$$

Substituting the values of $P M, M L$, and $L P$, in Equation (1), we have,

$$
\sin (a+b)=\sin a \cos b+\cos a \sin b ; \text {. (A.). }
$$

that is, the sine of the sum of two arcs, is equal to the sine of the first into the cosine of the second, plus the cosine of the first iato the sine of the second.

Since the above formula is true for any values of a and b, we may substitute $-b$, for b; whence,

$$
\sin (a-b)=\sin a \cos (-b)+\cos a \sin (-b) ;
$$

but (Art. 62),

$$
\cos (-b)=\cos b, \quad \text { and, } \quad \sin (-b)=-\sin b ;
$$

hence,

$$
\sin (a-b)=\sin a \cos b-\cos a \sin b ; \text { (3.) }
$$

that is, the sine of the difference of two arcs, is equal to the sine of the first into the cosine of the second, minus the cosine of the first into the sine of the seconal.

If, in Formula (3), we substitute $\left(90^{\circ}-a\right)$, for a, we have,
$\sin \left(90^{\circ}-a-b\right)=\sin \left(90^{\circ}-a\right) \cos b-\cos \left(90^{\circ}-a\right) \sin b ; \cdot$
but (Art. 63),

$$
\sin \left(90^{\circ}-a-b\right)=\sin \left[90^{\circ}-(a+b)\right]=\cos (a+b)
$$

and,

$$
\sin \left(90^{\circ}-a\right)=\cos a, \quad \cos \left(90^{\circ}-a\right)=\sin a ;
$$

hence, by substitution in Equation (2), we have,

$$
\cos (a+b)=\cos a \cos b-\sin a \sin b ; \quad \text { (©.) }
$$

that is, the cosine of the sum of two arcs, is equal to the rectangle of their cosines, minus the rectangle of their since.

If, in Formula (©)), we substitute $-b$, for b, we find

$$
\begin{aligned}
& \text { or, } \quad \cos (a-b)=\cos a \cos (-b)-\sin a \sin (-b) \\
& \quad \cos (a-b)=\cos a \cos b+\sin a \sin b ; \text { • (D.) }
\end{aligned}
$$

that is, the cosine of the difference of t:oo arcs, is equal to the rectangle of their cosines, plus the rectangle of their sines.

If we divide Formula (A) by Formula (소), member liy nember, we have,

$$
\frac{\sin (a+b)}{\cos (a+b)}=\frac{\sin a \cos b+\cos a \sin b}{\cos a \cos b-\sin a \sin b}
$$

Dividing both terms of the second member by $\cos a \cos b$, recollecting that the sine divided by the cosine is equal to the tangent, we find,

$$
\begin{equation*}
\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b} ; \cdot . . \tag{겨.}
\end{equation*}
$$

that is, the tangent of the sum of too arcs, is equal to the sum of their tungents, divided by 1 minus the rectangle of their tangents

If, in Formula (${ }^{4}$), we substitute $-b$, for b, recollecting that $\tan (-b)=-\tan b$, we have, ${ }^{r}$

$$
\tan (a-b)=\frac{\tan a-\tan b}{1+\tan a \tan b} ; \cdot \cdot . \cdot\left(3^{\circ}\right)
$$

that is, the tangent of the difference of two arcs, is equend to the difference of their tangents, divided by 1 plus the rectangle of their tangents.

In like manner, dividing Formula (©) by Formula (目), member by member, and reducing, we have,

$$
\begin{equation*}
\cot (a+b)=\frac{\cot a \cot b-1}{\cot a+\cot b} ; \tag{G.}
\end{equation*}
$$

and thence, by the substitution of $-b$, for b,

$$
\begin{equation*}
\cot (a-b)=\frac{\cot a \cot }{\cot b-\frac{b+1}{\cot a} ; \cdot . . .} \tag{19.}
\end{equation*}
$$

functions of double arcs and half arcs.
 make $a=b$, we find,

$$
\begin{aligned}
& \left.\sin 2 a=2 \sin a \cos a ; \cdot \text { •• (} \Delta^{\prime} .\right) \\
& \left.\cos 2 a=\cos ^{2} a-\sin ^{2} a ; \text {. . . }()^{\prime} .\right) \\
& \tan 2 a=\frac{2 \tan a}{1-\tan ^{2} u} ; \text {. . . . ((} \mathfrak{y}^{\prime} \text {.) } \\
& \cot 2 a=\frac{\cot ^{2} a-1}{2 \cot a} \cdot \text {. . . . }\left(\Theta^{\prime} .\right)
\end{aligned}
$$

Substituting in $\left(\Theta^{\prime}\right)$, for $\cos ^{2} a$, its value, $1-\sin ^{2} a$; and afterwards for $\sin ^{2} a$, its value, $1-\cos ^{2} a$, we have,

$$
\begin{aligned}
& \cos 2 a=1-2 \sin ^{2} a \\
& \cos 2 a=2 \cos ^{2} a-1 ;
\end{aligned}
$$

whence, by solving these equations,

$$
\begin{align*}
& \sin a=\sqrt{\frac{1-\cos 2 a}{2}} ; \ldots \cdot \tag{1.}\\
& \cos a=\sqrt{\frac{1+\cos 2 a}{2}} \cdot \ldots \cdot . \tag{2.}
\end{align*}
$$

We also have, from the same equation,

$$
\begin{align*}
& 1-\cos 2 a=2 \sin ^{2} \alpha ; \cdot . \quad . \quad . \quad . \quad . \quad(3 .) \\
& 1+\cos 2 \alpha=2 \cos ^{2} a . \quad . \quad . \quad . \quad . \quad .(4 .) \tag{4.}
\end{align*}
$$

Dividing Equation (A^{\prime}), first by Equation (4), and then by Equation (3), member by member, we have,

$$
\begin{align*}
& \frac{\sin 2 a}{1+\cos 2 a}=\tan a \tag{5.}\\
& \frac{\sin 2 a}{1-\cos 2 a}=\cot a \tag{6.}
\end{align*}
$$

Substituting $\frac{1}{2} a$, for a, in Equations (1), (2), (5), and (6), we have,

$$
\begin{aligned}
& \sin \frac{1}{2} a=\sqrt{\frac{1-\cos a}{2}} ; \cdots \cdot\left(\Delta^{\prime \prime} .\right) \\
& \cos \frac{1}{2} a=\sqrt{\frac{1+\cos a}{2}} ; \cdot \cdot \cdot\left(0^{\prime \prime} .\right) \\
& \tan \frac{1}{2} a=\frac{\sin a}{1+\cos a} ; \quad . \quad . \quad\left(\operatorname{la}^{\prime \prime}\right) \\
& \cot \frac{1}{2} a=\frac{\sin a}{1-\cos a} \cdot\left(G^{\prime \prime} .\right)
\end{aligned}
$$

Taking the reciprocals of both members of the cast two formulas, we have also,

$$
\cot \frac{1}{2} a=\frac{1+\cos a}{\sin a}, \quad \text { and, } \quad \tan \frac{1}{2} a=\frac{1-\cos a}{\sin a}
$$

additional formulas.

67. If Formulas (A) and (\boldsymbol{B}) be first added, member to member, and then subtracted, and the same operations be performed upon (\mathcal{O}) and (\mathbb{D}), we shall obtain,

$$
\begin{aligned}
& \sin (a+b)+\sin (a-b)=2 \sin a \cos b ; \\
& \sin (a+b)-\sin (a-b)=2 \cos a \sin b ; \\
& \cos (a+b)+\cos (a-b)=2 \cos a \cos b ; \\
& \cos (a-b)-\cos (a+b)=2 \sin a \cdot \sin b
\end{aligned}
$$

If in these we make,

$$
a+b=p, \quad \text { and } \quad a-b=q
$$

whence,

$$
a=\frac{1}{2}(p+q), \quad b=\frac{1}{2}(p-q) ;
$$

and then substitute in the above formulas, we obtain,

$$
\begin{aligned}
& \sin p+\sin q=2 \sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q) \cdot(\mu .) \\
& \sin p-\sin q=2 \cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q) \cdot(\mathbb{Z}) \\
& \cos p+\cos q=2 \cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q) \cdot(\text { (没.) } \\
& \cos q-\cos p=2 \sin \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q) \cdot(\mathbb{E} .)
\end{aligned}
$$

From Formulas ($\sqrt{ }$) and (4), by division, we obtain,
$\frac{\sin p-\sin q}{\sin \frac{-1}{p+\sin q}=\frac{\cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}=\frac{\tan \frac{1}{2}(p-q)}{\tan \frac{1}{2}(p+q)} ~ . ~ . ~ . ~}$
'That is, the sum of the sines of two arcs is to their dif. ficrence, as the tangent of one half the sum of the arcs is to the tangent of one half their difference.

Also, in like manner, we obtain,

$$
\begin{equation*}
\frac{\sin p+\sin q}{\cos p+\cos q}=\frac{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}=\tan \frac{1}{2}(p+q) \tag{2.}
\end{equation*}
$$

$\frac{\sin p-\sin q}{\cos p+\cos q}=\frac{\cos \frac{1}{2}(p+q) \sin \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}=\tan \frac{1}{2}(p-q)$.
$\frac{\sin p+\sin q}{\sin (p+q)}=\frac{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p+q)}=\frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)}$.
$\frac{\sin p-\sin q}{\sin (p+q)}=\frac{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p+q)}{\sin \frac{1}{2}(p+q) \cos \frac{1}{2}(p+q)}=\frac{\sin \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p+q)}$.
$\frac{\sin (p-q)}{\sin p-\sin q}=\frac{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p-q)}{\sin \frac{1}{2}(p-q) \cos \frac{1}{2}(p+q)}=\frac{\cos \frac{1}{2}(p-q)}{\cos \frac{1}{2}(p+q)}$.
all of which give proportions analogous to that deduced from Formula (1).

Since the second members of (6) and (4) are the same, we have,

$$
\begin{equation*}
\frac{\sin p-\sin q}{\sin (p-q)}=\frac{\sin (p+q)}{\sin p+\sin q} ; \cdot \text {. . . } \tag{7.}
\end{equation*}
$$

That is, the sine of the difference of two arcs is to the difference of the sines as the sum of the sines to the sine of the sum.

All of the preceding formulas may be made homogencons in terms of $\boldsymbol{R}, \boldsymbol{R}$ being any radius, as explained in Art. $\mathbf{8 0}$; or, we may simply introduce R, as a factor, into each term as many times as may be necessary to render all of its terms of the same degree.

```
METHOD OF COMPUTING A TABLE OF NATURAL SINES.
```

68. Since the length of the semi-circumference of a circle whose radius is 1 , is equal to the number $3.14159265 \ldots$, f we divide this number ly 10800, the number of minutes n 180°, the quotient, . $0002908882 \ldots$, will be the length of the arc of one minute; and since this are is so small that it does not differ materially from its sine or tangent, this may be placed in the table as the sine of one minute

Formula (3) of Table II., gives,

$$
\cos 1^{\prime}=\sqrt{1-\sin ^{2} 1^{\prime}}=.9999999577 \text {. } \quad \text { (1.) }
$$

Having thus determined, to a near degree of approximation, the sine and cosine of one minute, we take the first formula of Art. 67, and put it under the form,

$$
\sin (a+b)=2 \sin a \cos b-\sin (a-b)
$$

and make in this, $b=1^{\prime}$, and then in succession,

$$
a=1^{\prime}, \quad a=2^{\prime}, \quad a=3^{\prime}, \quad a=4^{\prime}, \quad \& \mathrm{c} .
$$

and obtain,

$$
\begin{aligned}
& \sin 2^{\prime}=2 \sin 1^{\prime} \cos 1^{\prime}-\sin 0=.0005817764 \ldots \\
& \sin 3^{\prime}=2 \sin 2^{\prime} \cos 1^{\prime}-\sin 1^{\prime}=.0008726646 \ldots \\
& \sin 4^{\prime}=2 \sin 3^{\prime} \cos 1^{\prime}-\sin 2^{\prime}=.0011635526 \ldots \\
& \sin 5^{\prime}=\& c .
\end{aligned}
$$

thus oltaining the sine of every number of degrees and minutes from 1^{\prime} to 45°.

The cosines of the corresponding ares may be computed by means of Equation (1).

IIaring found the sines and cosines of ares less than 45°, those of the ares between 45° and 90°, may be deduced, hy considering that the sine of an are is equal to the cosine of its complement, and the cosine equal to the sine of the complement. Thus,

$$
\sin 50^{\circ}=\sin \left(90^{\circ}-40^{\circ}\right)=\cos 40^{\circ}, \quad \cos 50^{\circ}=\sin 40^{\circ}
$$

in which the second members are known from the previons computations.

To find the tangent of any, arc, divide its sine by 11 s cosine. To find the cotangent, take the recprocal of the corresponding tangent.

As the accuracy of the calculation of the sine of any arc, by the above method, depends upon the accuracy of each previous calculation, it would be well to verify the work, by calculating the sines of the degrees separately (after having found the sincs of one and two degrees), by the last proportion of Art. 67. Thus,

$$
\begin{aligned}
& \sin 1^{\circ}: \sin 2^{\circ}-\sin 1^{\circ}:: \sin 2^{\circ}+\sin 1^{\circ}: \sin 3^{\circ} ; \\
& \sin 2^{\circ}: \sin 3^{\circ}-\sin 1^{\circ}:: \sin 3^{\circ}+\sin 1^{\circ}: \sin 4^{\circ} ; d 0^{\circ}
\end{aligned}
$$

SPIIERICAL TRIGONOMETRY.

69. Spherical Trigonometry is that branch of Mathematics which treats of the solution of spherical triangles.

In every spherical triangle there are six parts: three sides and three angles. In general, any three of these parts being given, the remaining parts may be found.

general princtples.

70. For the purpose of deducing the formulas required in the solution of spherical triangles, we shall suppose the triangles to be situated on spheres whose radii are equal to 1. The formulas thus deduced may be rendered applicable to triangles lying on any sphere, by making them homogeneous in terms of the radius of that sphere, as explained in Art. 30. The only cases considered will be those in which each of the sides and angles is less than 180°.

Any angle of a spherical triangle is the same as the diedral angle included by the planes of its sides, and its mea sure is equal to that of the angle included between two right lines, one in each plane, and both perpendicular to their common intersection at the same point (B. VI., D. 4).

The radius of the sphere being equal to 1 , each side of the triangle will measure the angle, at the centre, subtended by it. Thus, in the triangle $A B C$, the angle at A is
the same as that included between the planes $A O C$ and $A O B$; and the side a is the measure of the plane angle $B O C$, O being the centre of the sphere, and $O B$ the radius, equal to 1 .
71. Spherical triangles, like plane triangles, are divided into
 two classes, right-angled splucrical triangles, and oblique-angled spherical triangles. Each class will be considered in turn.

We shall, as lefore, denote the angles by the eapital letters A, B, and $C \prime$, and the opposite sides by the small letters a, b, and c.

FORMLLAS LSED IN SOLVING RIGHT-ANGLED SPMERICAL TRIANGLES.

72. Let $C A B$ be a spherical triangle, rightangled at A, and let O be the centre of the sphere on which it is situated. Denote the angles of the triangle by the letters A, B, and C, and the opposite sides by the letters a, b, and c, recollecting that B and C may cliange places, provided that b and c
 change places at the same time.

Draw $O A, O B$, and $O C$, each of which will be equal to 1. From B, draw $B P$ perpendicular to $O A$, and from P draw $P Q$ perpendicular to $O C$; then join the points Q and B, by the line $Q B$. The line $Q B$ will be perpendicular to $O C$ (B. VI., I. VI.), and the angle $P Q B$
will be equal to the inclination of the planes $O C B$ and $O C A$; that is, it will be equal to the angle C.

We have, from the figure,

$$
\begin{gathered}
P B=\sin c, \quad O P=\cos c, \quad Q B=\sin a, \quad O Q=\cos a . \\
\text { Also, } \quad \frac{Q P}{Q B}=\cos C ; \quad \text { and } \quad \frac{Q P}{O P}=\sin b .
\end{gathered}
$$

From the right-angled triangles $O Q P$ and $Q P B$, we have, $O Q=O P \cos A O C ; \quad$ or, $\quad \cos a=\cos c \cos b$. (1.) $P B=Q B \sin P Q B ; \quad$ or, $\quad \sin c=\sin a \sin C$. (2.)

Multiplying both terms of the fraction $\frac{Q P}{Q B}$ by $O Q$, and remembering that cot $a=\tan \left(90^{\circ}-a\right)$, we have, $\frac{Q P}{Q B}=\frac{O Q}{Q B} \times \frac{Q P}{O Q} ; \quad$ or, $\quad \cos C=\tan \left(90^{\circ}-a\right) \tan$ b. (3.)

Multiply both terms of the fraction $\frac{Q P}{O P}$, by $P R$, and remembering that $\cot C=\tan \left(90^{\circ}-C\right)$, we have,
$\frac{Q P}{O P}=\frac{P B}{O P} \times \frac{Q P}{P B} ; \quad$ or, $\quad \sin b=\tan c \tan \left(90^{\circ}-C\right)$.

If, in (2), we change c and C, into b and B, we have,

$$
\begin{equation*}
\sin b=\sin a \sin B \tag{5.}
\end{equation*}
$$

If, in (3), we change b and C, into c and B, we have,

$$
\cos B=\tan \left(90^{\circ}-\alpha\right) \tan c \cdot \cdot \cdot \cdot(6
$$

If, in (4), we change b, c, and C, into c, b, and B, we have,

$$
\begin{equation*}
\sin c=\tan b \tan \left(90^{\circ}-B\right) \tag{7.}
\end{equation*}
$$

Multiplying (4) by (7), menber by member, we have, $\sin b \sin c=\tan b \tan c \tan \left(90^{\circ}-B\right) \tan \left(90^{\circ}-C\right)$.

Dividing botb members by $\tan b \tan c$, we have,

$$
\cos b \cos c=\tan \left(90^{\circ}-B\right) \tan \left(90^{\circ}-C\right)
$$

and substituting for $\cos b \cos c$, its value, $\cos a$, taken from (1), we have,

$$
\cos a=\tan \left(90^{\circ}-B\right) \tan \left(90^{\circ}-C\right) \cdot \cdot(8 .)
$$

Formula (6) may be written under the form,

$$
\cos B=\frac{\cos a \sin c}{\sin a \cos c}
$$

Substituting for $\cos a$, its value, $\cos b \cos c$, taken from (1), and reducing, we have,

$$
\cos B=\frac{\cos b \sin c}{\sin a}
$$

Again, substituting for $\sin c$, its value, $\sin a \sin C$, taken from (2), and reducing, we bave,

$$
\cos B=\cos b \sin C \cdot \cdot \cdot \cdot(9 .)
$$

Changing B, b, and C, in (9), into C, c, and P, we have,

$$
\cos C=\cos c \sin B \cdot \cdot \cdot \cdot(10 .)
$$

These ten formulas are sufficient for the solution of any right-angled spherical triangle whatever.

NAPIER'S CIRCULAR PARTS.

73. The two sides about the right angle, the complements of their opposite angles, and the complement of the hypothenuse, are called Napier's Circular Parts.

If we take any three of the five parts, as shown in the figure, they will either be
 adjacent to each other, or one of them will be separated from each of the other two, by an intervening part. In the first case, the one lying between the other two parts, is called the middle part, and the other two, adjacent parts. In the second case, the one separated from both the other parts, is called the middle part, and the other two, opposile parts. Thus, if $90^{\circ}-a$, is the middle part, $90^{\circ}-B$, and $90^{\circ}-C$, are adjacent parts; and b and c, are opposite parts; and similarly, for each of the other parts, taken as a middle part.
74. Let us now consider, in succession, each of the five parts as a middle part, when the other two parts are opposite. Beginning with the hypothenuse, we have, from formulas (1), (2), (5), (9), and (10), Art. 72,

$$
\begin{array}{ll}
\sin \left(90^{\circ}-a\right) & =\cos b \cos c \cdot \cdot \cdot \cdot \cdot \\
\sin c & =\cos \left(90^{\circ}-a\right) \cos \left(90^{\circ}-C\right) \cdot(2 .) \\
\sin b & =\cos \left(90^{\circ}-a\right) \cos \left(90^{\circ}-B\right) \cdot(3 .) \\
\sin \left(90^{\circ}-B\right) & =\cos b \cos \left(90^{\circ}-C\right) \cdot \cdot \cdot(4 .) \\
\sin \left(90^{\circ}-C\right) & =\cos c \cos \left(90^{\circ}-B\right) \cdot \cdot \cdot(5 .)
\end{array}
$$

Comparing these formulas with the figure, we see that.
The sine of the middle part is equal to the rectangle of the cosines of the opposite parts.

Let us now take the same middle parts, and the other parts adjacent. Formulas (8), (7), (4), (6), and (3), Art. 72, give

$$
\left.\left.\begin{array}{ll}
\sin \left(90^{\circ}-a\right) & =\tan \left(90^{\circ}-B\right) \tan \left(90^{\circ}-C\right) \cdot(6 .) \\
\sin c & =\tan b \tan \left(90^{\circ}-B\right) \cdot \\
\sin b & =\tan c \tan \left(90^{\circ}-C\right) \cdot \\
\sin \left(90^{\circ}-B\right) & =\tan \left(90^{\circ}-a\right) \tan c \cdot
\end{array}\right)(8 .),(8 .)\right)
$$

Comparing these formulas with the figure, we seo that,
The sine of the middle part is equal to the rectangle of the tangents of the adjacent parts.

These two rules are called Napier's rules for Circular Parts, and they are sufficient to solve any right-angled spherical triangle.
75. In applying Napicr's rules for circular parts, the part sought will be determined by its sine. Now, the same sine corresponds to two different ares, supplements of each other; it is, therefore, necessary to diseover such relations between the given and required parts, as will serve to point out which of the two ares is to be taken.

Two parts of a spherical triangle are said to be of the same species, when they are both less than 90°, or beth greater than 90°; and of different species, when one is less and the other greater than 90°.

From Formulas (9) and (10), Art. 72, we havn.

$$
\sin C=\frac{\cos B}{\cos b}, \quad \text { and } \quad \sin B=\frac{\cos }{\cos } \frac{C}{0}
$$

since the angles B and C are both less than 180°, their sines must always be positive : hence, $\cos B$ must have the same sign as $\cos b$, and the $\cos C$ must have the same sign as $\cos c$. This can only be the case when B is of the same species as b, and C of the same species as c; that is, the sides about the right angle are always of the same species as their opposite angles.

From Formula (1), we see that when a is less than 90°, or when $\cos a$ is positive, the cosines of b and c will have the same sign; that is, b and c will be of the same species. When a is greater than 90°, or when $\cos a$ is negative, the cosines of b and c will be contrary; that, is, b and c will be of different species : hence, when the hypothenuse is less than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of the same species ; when the hypothenuse is greater than 90°, the two sides about the right angle, and consequently the two oblique angles, will be of different species.

These two principles enable us to determine the nature of the part sought, in every case, except when an oblique angle and the opposite side are given, to find the remaining parts. In this case, there may be two solutions, one solur tion, or no solution at all.

Let $13 A C$ be a right-angled triangle, in which B and b are given. Irolong the sides $B A$ and $B C$ till they meet in B^{\prime}. Take $B^{\prime} A^{\prime}=I B A, B^{\prime} C^{\prime}=D C$, and join A^{\prime} and $C^{\prime \prime}$ by the are of a great circle: then, because the triangles $B A C$ and $B^{\prime} A^{\prime} C^{\prime}$ have two sides and the inchuded angle of the one, equal to two sides and the included angle of the other, each to each, the remaining parts will be equal, eacl to each;
that is, $A^{\prime} C^{\prime}=A C$, and the angle A^{\prime} equal to the angle A : hence, the two triangles $B A C, B^{\prime} A^{\prime} C^{\prime}$, aro right-angled ; they have also one oblique angle and the opposite side, in each, equal.

Now, if b differs more from 10° than B, there will evidentJy be two solutions, the sides
 including the given angle, in the one case, being supplements of those which include the given angle, in the other case.

If $b=B$, the triangle will be bi-rectangular, and there will be but a single solution.

If b differs less from 90° than B, the triangle cannot be constructed, that is, there will be no solution.

GOLUZITON OF RIGIIT-ANGLED SPHERICAL TRIANGLES.

76. In a right-angled spherical triangle, the right angle is always known. If any two of the other parts are given, the remaining parts may be found by Napier's rules for circular parts. Six cases may arise. There may be given,
I. The hypothenuse and one side.
II. The hypothenuse and one oblique angle.
III. The two sides about the right angle.
IV. One side and its adjacent angle.
V. One side and its opposite angle.
VI. The two oblique angles.

In any one of these cases, we select that part which is either adjacent to, or separated from, each of the other given parts, and calling it the middle part, we employ that one of Napier's rules which is applicable. Having determined a third part, the other two may then be found in a similar manner.

It is to be observed, that the formulas employed are to be rendered homogeneous, in terms of R, as explained in Art. 30. This is done by simply multiplying the radius of the Tables, R, into the middle part.

EXAMPLES.

1. Given $a=105^{\circ} 17^{\prime} 29^{\prime \prime}$, and $b=38^{\circ} 47^{\prime} 11^{\prime \prime}$, to find C, c, and B.

Since $a>90^{\circ}, b$ and c must be of different species, that is, $c>90^{\circ}$;
 for the same reason, $C>90^{\circ}$.

OPERATION.
Formula (10), Art. 74 , gives, for $90^{\circ}-C$, middle part,

$$
\begin{aligned}
& \log \cos C=\log \cot a+\log \tan b-10 \\
& \log \cot a\left(105^{\circ} 17^{\prime} 29^{\prime \prime}\right) \\
& \log \tan b\left(38^{\circ} 47^{\prime} 11^{\prime \prime}\right) \\
& \quad \frac{9.905055}{9} \log \cos C^{\prime}
\end{aligned}
$$

Formula (2), Art. ${ }^{74} 4$, gives for c, middle part,

$$
\log \sin c=\log \sin a+\log \sin C-10
$$

```
log}\operatorname{sin}a(10\mp@subsup{5}{}{\circ}1\mp@subsup{7}{}{\prime}29\mp@subsup{9}{}{\prime\prime})\quad9.98434
log}\operatorname{sin}C(10\mp@subsup{2}{}{\circ}4.\mp@subsup{1}{}{\prime}3\mp@subsup{3}{}{\prime\prime})\quad\underline{9.989256
    log}\operatorname{sin}c . . . . . 9.973602 . . c= 109 4 46' 32'.
```

Formula (4), gives, for $90^{\circ}-B$, middle part,
$\log \cos B=\log \sin C+\log \cos b-10 ;$

$$
\begin{array}{rll}
\log \sin C & \left(102^{\circ} 41^{\prime} 33^{\prime \prime}\right) & 9.989256 \\
\log \cos b & \left(38^{\circ} 47^{\prime} 11^{\prime \prime}\right) & \underline{9.891808} \\
-\log \cos B & \cdot & \cdot
\end{array} \underline{9.881064} \cdot \therefore B=40^{\circ} 29^{\prime} 50^{\prime \prime} .
$$

Ans. $\quad c=109^{\circ} 46^{\prime} 32^{\prime \prime}, \quad B=40^{\circ} 29^{\prime} 50^{\prime \prime}, \quad C=102^{\circ} 41^{\prime} 33^{\prime \prime}$.
2. Given $b=51^{\circ} 30^{\prime}$, and $B=55^{\circ} 35^{\prime}$, to find c, a, and C.

Because $b<B$, there are two solutions.

operation.

Formula (7), gives for c, middle part,

$$
\log \sin c=\log \tan b+\log \cot B-10 ;
$$

$\log \tan b \quad\left(51^{\circ} 30^{\prime}\right)$ - 10.099395
$\log \cot B \quad\left(58^{\circ} 35^{\prime}\right) \cdot \underline{9.785900}$
$\log \sin c$. . . $\underline{9.855295} \cdot \therefore \quad c=50^{\circ} 09^{\prime} 51^{\prime \prime}$, and $c=120^{\circ} 50^{\prime} 09^{\prime \prime}$.

Formula (1), gives for $90^{\circ}-a$, middle part,

$$
\log \cos a=\log \cos b+\log \cos c-10
$$

$\log \cos b\left(51^{\circ} 30^{\prime}\right) \quad$ - 9.794150
$\log \cos c \quad\left(50^{\circ} 09^{\prime} 51^{\prime \prime}\right) \quad \underline{9.806} 580$

$$
\begin{array}{ll}
\log \cos a \quad . \quad . \underline{9.600730} & \therefore a=66^{\circ} 29^{\prime} 54^{\prime \prime}, \\
& \text { and } a=113^{\circ} 30^{\prime} 06^{\prime \prime} .
\end{array}
$$

Formula (10), gives for $90^{\circ}-\mathrm{C}$, middle ${ }_{\text {r }}$ part,

$$
\log \cos C=\log \tan b+\log \cot a-10 ;
$$

$\log \tan b \quad\left(51^{\circ} 30^{\prime}\right) \cdot 10.099395$
$\log \cot a \quad\left(66^{\circ} 29^{\prime} 54^{\prime \prime}\right) \quad \underline{9.638336}$

$$
\begin{aligned}
& \log \cos C^{\prime} \cdot . \cdot \cdot \underline{9.737731} \cdot C=56^{\circ} 51^{\prime} 38^{\prime \prime} \\
& \text { and } C=123^{\circ} 08^{\prime} 22^{\prime \prime}
\end{aligned}
$$

In a similar manner, all other cases may bo solved.
3. Given $a=86^{\circ} 51^{\prime}$, and $B=18^{\circ} 03^{\prime} 32^{\prime \prime}$, to find b, c, and C.

Ans. $\quad b=18^{\circ} 01^{\prime} 50^{\prime \prime}, \quad c=86^{\circ} 41^{\prime} 14^{\prime \prime}, \quad C=88^{\circ} 58^{\prime} 25^{\prime \prime}$.
4. Given $b=155^{\circ} 27^{\prime} 54^{\prime \prime}$, and $c=29^{\circ} 46^{\prime} 08^{\prime \prime}$, to fiud $a, \quad B$, and C.

Ans. $\quad a=142^{\circ} 09^{\prime} 13^{\prime \prime}, \quad B=137^{\circ} 24^{\prime} 21^{\prime \prime}, \quad C=54^{\circ} 01^{\prime} 16^{\prime \prime}$.
5. Given $c=73^{\circ} 41^{\prime} 35^{\prime \prime}$, and $B=99^{\circ} 17^{\prime} 33^{\prime \prime}$, to fiud a, b, and C.

Ans. $\quad a=92^{\circ} 42^{\prime} 17^{\prime \prime}, \quad b=99^{\circ} 40^{\prime} 30^{\prime \prime}, \quad C=73^{\circ} 54^{\prime} 47^{\prime \prime}$ 。
6. Given $b=115^{\circ} 20^{\prime}$, and $B=91^{\circ} 01^{\prime} 47^{\prime \prime}$, to find a, c, and C.
$a=\left\{\begin{array}{c}64^{\circ} 41^{\prime} 11^{\prime \prime}, \\ 115^{\circ} 18^{\prime} 49^{\prime \prime},\end{array} \quad c=\left\{\begin{array}{r}177^{\circ} 49^{\prime} 27^{\prime \prime}, \\ 2^{\circ} 10^{\prime} 33^{\prime \prime},\end{array} \quad C=\left\{\begin{array}{r}177^{\circ} 35^{\prime} 36^{\prime \prime} . \\ 2^{\circ} 24^{\prime} 24^{\prime \prime} .\end{array}\right.\right.\right.$
7. Given $B=47^{\circ} 13^{\prime} 43^{\prime \prime}$, and $C=126^{\circ} 40^{\prime} 24^{\prime \prime}$, to find a, b, and c.

Ans. $\quad a=133^{\circ} 32^{\prime} 26^{\prime}, \quad b=32^{\circ} 08^{\prime} 56^{\prime \prime}, \quad c=144^{\circ} 27^{\prime} 03^{\prime \prime}$.

In certain cases, it may be neccssary to find but a single part. This may be effected, either by one of the formulas given in Art. 74, or liy a slight transformation of one of them. .

Thus, let a and B be given, to find C. Regarding $90^{\circ}-a$, as a middle part, we have,

$$
\begin{aligned}
& \cos a=\cot B \cot C ; \\
& \cot C=\frac{\cos a}{\cot B} ;
\end{aligned}
$$

whence,
and, by the application of logarithms,

$$
\log \cos a+\text { (a. c.) } \log \cot B=\log \cot C ;
$$

from which C may be found. In like manner, other cases may be treated.

QUADRANTAL SPGERICAL TRIANGLEE.

77. A Quadrantal Spherical Triangle is one in which one side is equal to 90°. To solve such a triangle, we pass to its polar triangle, by subtracting each side and each angle from 180° (B. LX., P. VI.). The resulting polar triangle will be right-angled, and may be solved by the rules already given. The polar triangle of any quadrantal triangle being solved, the parts of the given triangle may be found by sultracting each part of the polar triangle from 180°.

EXAMPLE.

Let $A^{\prime} B^{\prime} C^{\prime}$ be a quadrantal triangle, in which $B^{\prime} C^{\prime}=90^{\circ}$, $B^{\prime}=75^{\circ} 42^{\prime}$, and $c^{\prime}=18^{\circ} 37^{\prime}$.

Passing to the polar triangle, we have,

$$
A=90^{\circ}, \quad b=104^{\circ} 18^{\prime}, \quad \text { and } \quad C=161^{\circ} 23^{\prime}
$$

Solving this triangle by previous rules, we find,'
$a=76^{\circ} 25^{\prime} 11^{\prime \prime}, \quad c=161^{\circ} 55^{\prime} 20^{\prime \prime}, \quad B=94^{\circ} 31^{\prime} 21^{\prime \prime} ;$
hence, the required parts of the given quadrantal triangle are,
$A^{\prime}=103^{\circ} 34^{\prime} 49^{\prime \prime}, \quad C^{\prime}=18^{\circ} 04^{\prime} 40^{\prime \prime}, \quad b^{\prime}=85^{\circ} 28^{\prime} 39^{\prime \prime}$.

In a similar manner, other quadrantal triangles may be solved.

FORMUIAS USED IN SOLVING OBLIQUE-ANGLED EPHERICAL TRIANGLES.
.78. Let $A B C$ represent an oblique-angled spherical triangle. From either vertex, C, draw the are of a great circle $C B^{\prime}$, perpendicular to the opposite side. The two triangles $A C B^{\prime}$ and $B C B^{\prime}$ will be rightangled at B^{\prime}.

From the triangle $A C B^{\prime}$, we have Formula (2), Art. 74,

$$
\sin C E^{\prime}=\sin A \sin b
$$

From the triangle $B C B^{\prime}$, we have,

$$
\sin C B^{\prime}=\sin B \sin a
$$

Equating these values of $\sin C B^{\prime}$, we have,

$$
\sin A \sin b=\sin B \sin a
$$

from which results the proportion,

$$
\sin a: \sin b:: \sin A: \sin B \cdot \cdot \cdot(1 .)
$$

In like manner, we may deduce,

$$
\begin{aligned}
& \sin \alpha: \sin c:: \sin A: \sin C^{\prime} . \quad . \quad \text { (2.) } \\
& \sin b: \sin c:: \sin B: \sin C . \quad . \quad \text { (3.) }
\end{aligned}
$$

That is, in any spherical triangle, the sines of the side are proportional to the sines of their opposite angles.

IIad the perpendicular fallen on the prolongation of $A B$, the same relation would have been found.
79. Let $A B C$ represent any spherical triangle, and O the centre of the sphere on which it is situated. Draw the radii $O A, O B$, and $O C$; from C draw $C P$ perpendicular to the plane $A O B$; from P, the foot of this perpendicular, draw $P D$ and $P E$ respectively perpendicular to $O A$ and $O B$; join $C D$ and $C E$, these lines will be respectively perpendicular to $O A$ and $O B$ (B. VI., P. VI.), and the angles $C D P$ and $C E P$ will be equal to the angles A and B respec. tively. Draw $D L$ and $P Q$, the one perpendicular, and the other parallel to $O B$. We then have,

$$
O E=\cos a, \quad D C=\sin b, \quad O D=\cos b
$$

We have from the figure,

$$
\begin{equation*}
O E=O L+Q P \tag{1.}
\end{equation*}
$$

In the right-angled triangle $O L D$,

$$
O L=O D \cos D O L=\cos b \cos c
$$

The right-angled triangle $P Q D$ has its sides respectively perpendicular to those of $O L D$; it is, therefore, similar to it, and the angle $Q D P$ is equal to c, and we have,

$$
Q P=P D \sin Q D P=P D \sin c \cdot \cdot \cdot(2 .)
$$

The right-angled triangle $C P D$ gives,

$$
P D=C D \cos C D P=\sin b \cos A
$$

substituting this value in (2), we have,

$$
Q P=\sin b \sin c \cos A ;
$$

and now substituting these values of $O E, O L$, and $Q P$, in (1), we have,

$$
\begin{equation*}
\cos a=\cos b \cos c+\sin b \sin c \cos A \tag{3.}
\end{equation*}
$$

In the same way, we may deduce,

$$
\begin{aligned}
& \cos b=\cos a \cos c+\sin a \sin c \cos B \\
& \cos c=\cos a \cos b+\sin a \sin b \cos C
\end{aligned}
$$

That is, the cosine of either side of a spherical triangle is equal to the rectangle of the cosines of the other two sides plus the rectangle of the sines of these sides into the cosine of their included angle.
80. If we represent the angles of the polar triangle of $A B C^{\prime}$, by $A^{\prime}, \quad B^{\prime}$, and C^{\prime}, and the sides by a^{\prime}, b^{\prime} and c^{\prime}, we have (B. LX., P. VI.),

$$
\begin{array}{ll}
a=180^{\circ}-A^{\prime}, & b=180^{\circ}-B^{\prime}, \\
A=180^{\circ}-a^{\prime}, & B=180^{\circ}-C^{\prime} \\
& b^{\prime},
\end{array} \quad C=180^{\circ}-c^{\prime} .
$$

Substituting these values in Equation (3), of the preceding article, and recollecting that,

$$
\cos \left(180^{\circ}-A^{\prime}\right)=-\cos A^{\prime}, \quad \sin \left(180^{\circ}-B^{\prime}\right)=\sin B^{\prime}, \quad \& \mathrm{c}
$$ we have,

$$
\because \cos A^{\prime}=\cos B^{\prime} \cos C^{\prime}-\sin B^{\prime} \sin C^{\prime} \cos a^{\prime}
$$

or, changing the signs and omitting the primes (since the preceding result is true for any triangle),

$$
\begin{equation*}
\cos A=\sin B \sin C \dot{\cos } a-\cos B \cos C \tag{1.}
\end{equation*}
$$

In the same way, we may deduce,

$$
\begin{aligned}
& \cos B=\sin A \sin C \cos b-\cos A \cos C \\
& \cos C=\sin A \sin B \cos c-\cos A \cos B
\end{aligned}
$$

That is, the cosine of either angle of a spherical triangle is equal to the rectangle of the sines of the other two angles into the cosine of their included side, minus the rectangle of the cosines of these angles.
81. From Equation (3), Art. 79, wo āeduce,

$$
\begin{equation*}
\cos A=\frac{\cos a-\cos b \cos c}{\sin b} \sin c \quad . . . \tag{1.}
\end{equation*}
$$

If we add this equation, member by member, to the nom. ber 1 , and recollect that $1+\cos A$, in the first member, is equal to $2 \cos ^{2} \frac{1}{2} A$ (Art. 66), and reduce, we have,

$$
2 \cos ^{2} \frac{1}{2} A=\frac{\sin b \sin c+\cos a-\cos b \cos c}{\sin h \sin c} ;
$$

or, Formula (©)), Art. 65,

$$
\begin{equation*}
2 \cos ^{2} \frac{1}{2} A=\frac{\cos a-\cos (b+c)}{\sin } \frac{\sin c}{c} \cdot \ldots . \cdot . \cdot \tag{2.}
\end{equation*}
$$

And since, Formula (©), Art. 67,

$$
\cos a-\cos (b+c)=2 \sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(b+c-a)
$$

Equation (2) becomes, after dividing both members by 2 .

$$
\cos ^{2} \frac{1}{2} A=\frac{\sin \frac{1}{2}(a+b+c) \sin \frac{1}{2}(b+c-a)}{\sin b} \frac{\sin c}{} .
$$

If, in this we make,
$\frac{1}{2}(a+b+c)=\frac{1}{2} s ; \quad$ whence,$\quad \frac{1}{2}(b+c-a)==\frac{1}{2} s-a$, and extract the square root of both members, we have,

$$
\begin{equation*}
\cos \frac{1}{2} A=\sqrt{\frac{\sin \frac{1}{2} s \sin \left(\frac{1}{2} s-a\right)}{\sin b \sin c}} \cdot \tag{3.}
\end{equation*}
$$

That is, the cosine of one-lialf of either angle of a spherical triangle, is equal to the square root of the sine of one-half of the sum of the three sides, into the sine of one-half this sum minus the side opposite the angle, divided by the rectangle of the sines of the adjacent sides.

If we subtract Equation (1), of the preceding article, member by member, from the number 1 , and recollect that,

$$
1-\cos A=2 \sin ^{2} \frac{1}{2} A
$$

we find, after reduction,

$$
\begin{equation*}
\sin \frac{1}{2} A=\sqrt{\frac{\sin \left(\frac{1}{2} s-b\right) \sin \left(\frac{1}{2} s-c\right)}{\sin b} \frac{\sin c}{c}} . \tag{4.}
\end{equation*}
$$

Dividing the preceding value of $\sin \frac{1}{2} A$, by $\cos \frac{1}{2} A$, we obtain,

$$
\begin{equation*}
\tan \frac{1}{2} A=\sqrt{\frac{\sin \left(\frac{1}{2} s-b\right) \sin \left(\frac{1}{2} s-c\right)}{\sin \frac{1}{2} s \sin \left(\frac{1}{2} s-a\right)}} \cdot \cdot \tag{5.}
\end{equation*}
$$

82. If the angles and sides of the polar triangle of $A B C$ be represented as in Art. 80, we have,

$$
\begin{gathered}
A=180^{\circ}-a^{\prime}, \quad b=180^{\circ}-B^{\prime}, \quad c=180^{\circ}-C^{\prime} \\
\frac{1}{2} s=270^{\circ}-\frac{1}{2}\left(A^{\prime}+B^{\prime}+C^{\prime}\right), \quad \frac{1}{2} s-a=90^{\circ}-\frac{1}{2}\left(B^{\prime}+C^{\prime}-A^{\prime}\right) .
\end{gathered}
$$

Substituting these values in (3), Art. 81, and reducing by the aid of the formulas in Table III., Art. 63, we find,

$$
\sin \frac{1}{2} a^{\prime}=\sqrt{\frac{\left.-\cos \frac{1}{2}\left(A^{\prime}+B^{\prime}+C^{\prime}\right) \cos \frac{1}{2}^{\prime} B^{\prime}+C^{\prime}-A^{\prime}\right)}{\sin B^{\prime} \sin C^{\prime}}}
$$

Placing
$\frac{1}{2}\left(A^{\prime}+B^{\prime}+C^{\prime}\right)=\frac{1}{2} S ; \quad$ whence,$\quad \frac{1}{2}\left(B^{\prime}+C^{\prime}-A^{\prime}\right)=\frac{1}{2} S-A^{\prime}$.
Substituting and omitting the primes, we have,

$$
\begin{equation*}
\sin \frac{1}{2} \iota \iota=\sqrt{\frac{-\cos \frac{1}{2} S \cos \left(\frac{1}{2} S-A\right)}{\sin B \sin C}} \cdot \cdot \tag{1.}
\end{equation*}
$$

In a similar way, we may deduce from (4), Art. 81.

$$
\begin{equation*}
\cos \frac{1}{2} a=\sqrt{\frac{\cos \left(\frac{1}{2} S-B\right) \cos \left(\frac{1}{2} S-C\right)}{\sin B \sin C}} \cdot . \tag{2.}
\end{equation*}
$$

and thence,

$$
\begin{equation*}
\tan \frac{1}{2} a=\sqrt{\frac{-\cos \frac{1}{2} S \cos \left(\frac{1}{2} S-A\right)}{\cos \left(\frac{1}{2} S-B\right) \cos \left(\frac{1}{2} S-C\right)}} \cdot \cdot \tag{3.}
\end{equation*}
$$

83. From Equation (1), Art. 80, we have,
$\cos A+\cos B \cos C=\sin B \sin C \cos a=\sin C \frac{\sin A}{\sin a} \sin b \cos a ;$
since, from Proportion (1), Art. 7B, we have,

$$
\sin B=\frac{\sin A}{\sin a} \sin b
$$

Also, from Equation (2), Art. 80, we have,
$\cos B+\cos A \cos C=\sin A \sin C \cos b=\sin C \frac{\sin A}{\sin a} \sin a \cos b$

Adding (1) and (2), and dividing by $\sin C$, we obtain,

$$
\begin{equation*}
(\cos A+\cos B) \frac{1+\cos C}{\sin C}=\frac{\sin A}{\sin a} \sin (a+b) \tag{3.}
\end{equation*}
$$

The proportion, $\quad \sin A: \sin B:: \sin a: \sin b$,
taken first by composition, and then by division, gives,

$$
\begin{align*}
& \sin A+\sin B=\frac{\sin A}{\sin a}(\sin a+\sin b) \cdot \ldots \tag{4.}\\
& \sin A-\sin B=\frac{\sin A}{\sin a}(\sin a-\sin b) \cdot \ldots \tag{5.}
\end{align*}
$$

Dividing (4) and (5), in succession, by (3), we obtain,

$$
\begin{align*}
& \frac{\sin A+\sin B}{\cos A+\cos B} \times \frac{\sin C}{1+\cos C}=\frac{\sin a+\sin b}{\sin (a+b)} . \tag{6.}\\
& \frac{\sin A-\sin B}{\cos A+\cos B} \times \frac{\sin C}{1+\cos C}=\frac{\sin a-\sin b}{\sin (a+b)} . \tag{7.}
\end{align*}
$$

But, by Formulas (2) and (4), Art. 67, and Formuia ($y^{\prime \prime}$), Art. 66, Equation (6) becomes,

$$
\begin{equation*}
\tan \frac{1}{2}(A+B)=\cot \frac{1}{2} C \frac{\cos \frac{1}{2}(a-b)}{\cos \frac{1}{2}(a+b)} \tag{8.}
\end{equation*}
$$

and, by the similar Formulas (3) and (5), of Art. 67, Equation (7) becomes,

$$
\begin{equation*}
\tan \frac{1}{2}(A-B)=\cot \frac{1}{2} C \frac{\sin \frac{1}{2}(a-b)}{\sin \frac{1}{2}(a+b)} \tag{9.}
\end{equation*}
$$

- These last two formulas give the proportions known as the first set of Napier's Analogics.

$$
\begin{aligned}
& \cos \frac{1}{2}(a+b): \cos \frac{1}{2}(a-b):: \cot \frac{1}{2} C: \tan \frac{1}{2}(A+B) . \\
& \sin \frac{1}{2}(a+b): \sin \frac{1}{2}(a-b):: \cot \frac{1}{2} C: \tan \frac{1}{2}(A-B) .
\end{aligned}
$$

If in these we substitute the values of a, b, C, A, and B, in terms of the corresponding parts of the polar triange, as expressed in Art. 80, we obtain,
$\cos \frac{1}{2}(A+B): \cos \frac{1}{2}(A-B):: \tan \frac{1}{2} c: \tan \frac{1}{2}(a+b)$. (12.)
$\sin \frac{1}{2}(A+B): \sin \frac{1}{2}(A-B):: \tan \frac{1}{2} c: \tan \frac{1}{2}(a-b)$. (13.) the second set of Napier's Analogies.

In applying logarithms to any of the preceding formulas, they must be made homogeneous, in terms of R, as explained in Art. 30.

SOLUTION OF OBLIQUE-ANGLED SPIIERICAL TRIANGLES.

84. In the solution of oblique-angled triangles six diferent cases may arise : viz., there may be given,
I. Two sides and an angle opposite one of them.
II. Two angles and a side opposite one of them.
III. Two sides and their included angle.
IV. Two angles and their included side.
V. The three sides.
VI. The three angles.

CASE 1.

Given two sides and an angle opposite one of then.
85. The solution, in this case, is commenced by finding the angle opposite the second given side, for which purpose Formula (1), Art. 78, is employed.

As this angle is found by means of its sine, and because the same sine corresponds to two different arcs, there would seem to be two different solutions. To ascertain when there are two solutions, when one solution, and when no solution at all, it becomes necessary to examine the relations which
may exist between the given parts. Two cases may arise, viz., the given angle may be acute, or it may be obtuse.

We shall consider each case separately (B. IX., P. XIX., Gen. Scholium).

First Case. Let A be the given angle, and let a and b be the given sides. Prolong the arcs $A C$ and $A B$ till they meet at A^{\prime}, forming the lune $A A^{\prime}$; and
 from C, draw the are $C B^{\prime}$ perpendicular to $A B A^{\prime}$. From C, as a pole, and with the arc a, describe the arc of a small circle $B B$. If this circle cuts $A B A^{\prime}$, in two points between A^{2} and A^{\prime}, there will be two solutions; for if G be joined with each point of intersection by the arc of a great circle, we shall have two triangles $A B C$, both of which will conform to the conditions of the problem.

If only one point of intersection lies between A and A^{\prime}, or if the small circle is tangent to $A B A^{\prime}$, there will be but one solution.

If there is no point of intersection, or if there are points of intersection which do not lie between A and A^{\prime}, there will be no solution.

From Formula (2), Art. 72, we have,

$$
\sin C B^{\prime}=\sin b \sin A
$$

from which the perpendicular, which will be less than 90°, will be found. Denote its value by p. By inspection of the figure, we find the following relations:

1. When a is greater than p , and at the same time less than both b and $180^{\circ}-\mathrm{b}$, there will be two solutions.
2. When a is greater than p , and intermediate in value between b and $180^{\circ}-\mathrm{b}$; or, when a is equal to p , there will be but one solution.

If $a=b$, and is also less than $180^{\circ}-b$, one of the pmints of intersection will be at A, and there will be but che solution.
3. When a is greater than p , and at the same time greater than both b and $180^{\circ}-\mathrm{b}$; or, when a is less than p , there will be no solution.

Second Case. Adopt the same construction as before. In this case, the perpendicular will be greater than 90°, and greater also than any other are CA, CB, C'A', that can be drawn from C to $A B A^{\prime}$. By a course of reasoning entirely analogous to that in the preceding case, we have the following principles:
4. When a is less than p , and at the same time greater thann both b and $180^{\circ}-\mathrm{b}$, there will be two solutions.
5. When a is less than p , and intermediate ins value between b and $180^{\circ}-\mathrm{b}$; or, when a is equal to p , there will be but one solution.
6. When a is less than p , and at the same time less than both b and $180^{\circ}-\mathrm{b}$; or, when a is greater than P , there will be no solution.

Having found the angle or angles opposite the second side, the solution may be completed by means of Napier's Analogies.

EXAMPLES.

1. Given $a=43^{\circ} 27^{\prime} 36^{\prime \prime}, \quad b=82^{\circ} 58^{\prime} 17^{\prime \prime}, \quad$ and $A=29^{\circ} 32^{\prime} 29^{\prime \prime}$, to find B, C, and c.

We see at a glance, that $a>p$, since p cannor exceed A; we see further, that a is less than both b and $180^{\circ}-b$; hence, from the first condition there will be two solutions.

Applying logarithms to Formula (1), Art. 78, we have,
(a. c.) $\log \sin a+\log \sin b+\log \sin A-10=\log \sin B$;

$$
\text { (a. c.) } \begin{array}{r}
\log \sin a \\
\log \sin b
\end{array} .
$$

$$
\therefore B=45^{\circ} 21^{\prime} 01^{\prime \prime}, \quad \text { and } \overline{B=134^{\circ}} 38^{\prime} 59^{\prime \prime}
$$

From the first of Napier's Analogies (10), Art. 83, we find, (a. c.) $\log \cos \frac{1}{2}(a-b)+\log \cos \frac{1}{2}(a+b)+\log \tan \frac{1}{2}(A+B)-10$ $=\log \cot \frac{1}{2} C$.

Taking the first value of B, we have,

$$
\frac{1}{2}(A+B)=30^{20} 20^{\prime} 45^{\prime \prime} ;
$$

also,

$$
\begin{aligned}
& \frac{1}{b}(a+b)=63^{\circ} 12^{\prime} 56^{\prime \prime} ; \quad \text { and, } \quad \frac{1}{2}(a-b)=19^{\circ} 45^{\prime} 20^{\prime \prime} \text {. } \\
& \text { (a. c.) } \log \cos \frac{1}{2}(a-b) \quad \text { - }\left(10^{\circ} 45^{\prime} 20^{\prime \prime}\right) \cdot 0.026344 \\
& \log \cos \frac{1}{2}(a+b) \cdot\left(63^{\circ} 12^{\prime} 56^{\prime \prime}\right) \cdot 9.653825 \\
& \log \tan \frac{1}{2}(A+B) \cdot\left(37^{\circ} 26^{\prime} 45^{\prime \prime}\right) \cdot 9.884130 \\
& \log \cot \frac{1}{2} C \text {. } \overline{9.564209} \\
& \therefore \frac{1}{2} C=69^{\circ} 51^{\prime} 45^{\prime \prime}, \quad \text { and } C=139^{\circ} 43^{\prime} 30^{\prime \prime} \text {. }
\end{aligned}
$$

The side c may be found by means of Formula (12), Art. 83, or by means of Formula (2), Art. 78.

Applying logarithms to the proportion,

$$
\sin A: \sin C:: \sin a: \sin c \text {, we hare, }
$$

(a. c.) $\log \sin A=\log \sin C+\log \sin a-10=\log \sin c$;
(a. c.) $\log \sin A \quad\left(29^{\circ} 32^{\prime} 29^{\prime \prime}\right) \quad 0.30 \% 10 \%$
$\log \sin C \quad\left(139^{\circ} 43^{\prime} 30^{\prime \prime}\right) \quad 9.810539$
$\log \sin a\left(43^{\circ} 27^{\prime} 36^{\prime \prime}\right) \quad 9.837492$

$$
\log \sin c \overline{9.955138} . \cdot c=115^{\circ} 35^{\prime} 48^{\prime \prime}
$$

We take the greater value of c, because the angle C, being greater than the angle B, requires that the side c should be greater than the side b. By using the second value of B, we may find, in a similar manner,

$$
C=32^{\circ} 20^{\prime} 28^{\prime \prime}, \quad \text { and } \quad c=48^{\circ} 16^{\prime} 18^{\prime \prime}
$$

2. Given $\quad a=97^{\circ} 35^{\prime}, \quad b=27^{\circ} 08^{\prime} 22^{\prime \prime}, \quad$ and $A=40^{\circ} 51^{\prime} 18^{\prime \prime}$, to find B, C, and c.

Ans. $B=17^{\circ} 33^{\prime} 09^{\prime \prime}, C=144^{\circ} 48^{\prime} 10^{\prime \prime},^{r^{\prime}} c=119^{\circ} 08^{\prime} 25^{\prime \prime}$.
3. Given $a=115^{\circ} 20^{\prime} 10^{\prime \prime}, \quad b=57^{\circ} 30^{\prime} 06^{\prime \prime}$, and $A=126^{\circ} 37^{\prime} 30^{\prime \prime}$, to find B, C, and c.

Ans. $B=48^{\circ} 29^{\prime} 48^{\prime \prime}, \quad C=61^{\circ} 40^{\prime} 16^{\prime \prime}, \quad c=82^{\circ} 34^{\prime} 04^{\prime \prime}$.

CASE II.

Given two angles and a side opposite one of them.
86. The solution, in this case, is commenced by finding the side opposite the second given angle, by means of Formula (1), Art. 78. The solution is completed as in Case \mathbf{I}.

Since the second side is found by means of its sine, there may be two solutions. To investigate this case, we pass to the polar triangle, by substituting for each part its supple. mont. In this triangle, there will be given two sides and an angle opposite one; it may therefore be discussed as in the preceding case. When the polar triangle has two sontions, one solution, or no solution, the given triangle will, in like manner, have two solutions, one solution, or no solus ion.

The conditions may be written out from those of the presceding case, by simply changing angles into sides, and the reverse; and greater into less, and the reverse.

Let the given parts be A, B, and a, and let p be an arc computed from the equation,

$$
\sin p=\sin a \sin B
$$

There will be two cases : a may be greater than 90°; or, a may be less than 90°.

In the first case,

1. When A is less than p , and at the same time greater than both \boldsymbol{B} and $180^{\circ}-B$, there will be two solutions.
2. When A is less than p , and intermediate in value between B and $180^{\circ}-B$; or, when A is equal - O , there will be but one solution.
3. When A is less than p , and at the same time less than both B and $180^{\circ}-B$; or, when A is greater than p , there will be no solution.

In the second case,
4. When A is greater than p , and at the same less than both B and $180^{\circ}-B$, there will be two solelions.
5. When A is greater than p , and intermediate in value between B and $180^{\circ}-B$; or, when A is equal to p , there will be but one solution.
6. When A is greater than p , and at the same time greater than both B and $180^{\circ}-B$; or, when A is less thane p , there will be no solution.

EXAMPLES.

1. Given $A=95^{\circ} 16^{\prime}, \quad B=80^{\circ} 42^{\prime} 10^{\prime \prime}, \quad$ and $a=57^{\circ} 38^{\prime}, \quad$ to find $c, \quad b, \quad$ and C.

Computing p, from the formula,

$$
\log \sin p=\log \sin B+\log \sin a-10
$$

we have,

$$
p=56^{\circ} 27^{\prime} 52^{\prime \prime}
$$

The smaller value of p is taken, beoruse a is less than 90°.

Becaușe $A>p$, and intermediate between $80^{\circ} 42^{\prime} 10^{\prime \prime}$ and $99^{\circ} 17^{\prime} 50^{\prime \prime}$, there will, from the fifth condition, be but a single solution.

Applying logarithms to Proportion (1), Art. 78, we have,
(a.c.) $\log \sin A+\log \sin B+\log \sin a-10=\log \sin b$;
(a. c.) $\log \sin A \quad\left(95^{\circ} 16^{\prime}\right) \quad 0.001 \mathrm{S37}$
$\log \sin B \quad\left(80^{\circ} 42^{\prime} 10^{\prime \prime}\right) 9.904257$
$\log \sin a \quad\left(57^{\circ} 38^{\prime}\right) \quad \underline{9.9266^{\prime} 1}$

$$
\log \sin b . . . \quad \underline{9.922765} \cdot b=56^{\circ} 49^{\prime} 57^{\prime \prime}
$$

We take the smaller value of b, for the reason that A, being greater than B, requires that a should be greater than b.

Applying logarithms to Proportion (12), Art. 83, we have,
(i. c.) $\log \cos \frac{1}{2}(A-B)+\log \cos \frac{1}{2}(A+B)+\log \tan \frac{1}{2}(a+b)-10$ $=\log \tan \frac{1}{2} c ;$
we have,
and,

$$
\frac{1}{2}(A+B)=87^{\circ} 59^{\prime} 05^{\prime \prime}, \quad \frac{1}{2}(a+b)=57^{\circ} 13^{\prime} 58^{\prime \prime},
$$

(a. c.) $\log \cos \frac{1}{2}(A-B) \cdot\left(7^{\circ} 16^{\prime} 55^{\prime \prime}\right) \cdot 0.00351 \%$
$\log \cos \frac{1}{2}(A+B) \cdot\left(87^{\circ} 59^{\prime} 05^{\prime \prime}\right) \cdot 8.546124$
$\log \tan \frac{1}{2}(a+b) \cdot\left(57^{\circ} 13^{\prime} 58^{\prime \prime}\right) \cdot \underline{10.191352}$
$\log \tan \frac{1}{2} c$.

$$
\therefore \quad \frac{1}{2} c=3^{\circ} 09^{\prime} 09^{\prime \prime}, \text { and } c=6^{\circ} 18^{\prime} 18^{\prime \prime}
$$

Applying logarithms to the proportion,

$$
\sin a: \sin c:: \sin A: \sin C
$$

we have,
(a. c.) $\log \sin a+\log \sin c+\log \sin A-10=\log \sin C$;
(a. c.) $\log \sin a \quad\left(57^{\circ} 38^{\prime}\right) \quad$ - 0.073329
$\log \sin c \quad\left(6^{\circ} 18^{\prime} 18^{\prime \prime}\right) \cdot 9.040685$
$\log \sin A\left(95^{\circ} 16^{\prime}\right) \quad$ - $\underline{9.998163}$

$$
\log \sin C \overline{\underline{9.1121 \% 7}} \cdot C=7^{\circ} 26^{\prime} 21^{\prime \prime}
$$

The smaller value of C is taken, for the same reason as before.
2. Given $A=50^{\circ} 12^{\prime}, B=58^{\circ} 08^{\prime}$, and $a=62^{\circ} 42^{\prime}$ to find b, c, and C.

$$
b=\left\{\begin{array}{c}
79^{\circ} 12^{\prime} 10^{\prime \prime}, \\
100^{\circ} 47^{\prime} 50^{\prime \prime},
\end{array} \quad c=\left\{\begin{array}{l}
119^{\circ} 03^{\prime} 26^{\prime \prime}, \\
152^{\circ} 14^{\prime} 18^{\prime \prime},
\end{array} \quad C=\left\{\begin{array}{l}
130^{\circ} 54^{\prime} 28^{\prime \prime}, \\
156^{\circ} 15^{\prime} 06^{\prime \prime} .
\end{array}\right.\right.\right.
$$

CASE III.

Given two sides and their inctuded angle.
87. The remaining angles are found by means of Napier's Analogies, and the remaining side, as in the precedirg cases.

EXAMPLES.

1. Given $a=62^{\circ} 38^{\prime}, \quad b=10^{\circ} 13^{\prime} 19^{\prime \prime}$, and $C=150^{\circ} 24^{\prime} 12^{\prime \prime}$, to find c, A, and B.

Applying logarithms to Proportions (10) and (11), Art. 83, we have,
(a. c.) $\log \cos \frac{1}{2}(a+b)+\log \cos \frac{1}{2}(a-b)+\log \cot \frac{1}{2} C-10$

$$
=\log \tan \frac{1}{2}(A+B) ;
$$

(a. c.) $\log \sin (a+b)+\log \sin \frac{1}{2}(a-b)+\log \cot \frac{1}{2} C-10$ $=\log \tan \frac{1}{2}(A-B) ;$
we have,

$$
\begin{aligned}
& \frac{1}{2}(a-b)=26^{\circ} 12^{\prime} 20^{\prime \prime}, \quad \frac{1}{2} C=75^{\circ} 12^{\prime} 06^{\prime \prime}, \\
& \frac{1}{2}(a+b)=36^{\circ} 25^{\prime} 39^{\prime \prime} \text {. } \\
& \text { (a. c.) } \log \cos \frac{1}{2}(a+b) \cdot\left(36^{\circ} 25^{\prime} 39^{\prime \prime}\right) \cdot 0.094415 \\
& \log \cos \frac{1}{2}(a-b) \text { • }\left(26^{\circ} 12^{\prime} 20^{\prime \prime}\right) \text { • } 9.952897 \\
& \log \cot \frac{1}{2} C \text { • . . }\left(\% 5^{\circ} 12^{\prime} 06^{\prime \prime}\right) \text { • } 9.421901 \\
& \log \tan \frac{1}{2}(A+B) \text {. } 9.469213
\end{aligned}
$$

$\therefore \frac{1}{2}(A+B)=16^{\circ} 24^{\prime} 51^{\prime}$
(a. c.) $\log \sin \frac{1}{2}(a+b)$ - $\left(36^{\circ} 25^{\prime} 39^{\prime \prime}\right)$ • 0.226356
$\log \sin \frac{1}{2}(a-b)$ - $\left(26^{\circ} 12^{\prime} 20^{\prime \prime}\right)$ • 9.645022
$\log \cot \frac{1}{2} C$ • • . ($75^{\circ} 12^{\prime} 06^{\prime \prime}$) • 9.421901
$\log \tan \frac{1}{2}(A-B)$. 9.293279
$\therefore \quad \frac{1}{2}(A-B)=11^{\circ} 06^{\prime} 53^{\prime \prime}$.

The greater angle is equal to the half sum plus the half difference, and the less is equal to the half sum minus the half difference. Hence, we have,

$$
A=27^{\circ} 31^{\prime} 44^{\prime \prime}, \quad \text { and } \quad B=5^{\circ} 17^{\prime} 58^{\prime \prime}
$$

Applying logarithms to the Proportion (13), Art. 83, we hare,
(a. c.) $\log \sin \frac{1}{2}(A-B)+\log \sin \frac{1}{2}(A+B)+\log \tan \frac{1}{2}(a-b)-10$ $=\log \tan \frac{1}{2} c ;$
(a. c.) $\log \sin \frac{1}{2}(A-B) \cdot\left(11^{\circ} 06^{\prime} 53^{\prime \prime}\right) \cdot 0.714952$
$\log \sin \frac{1}{2}(A+B) \cdot\left(16^{\circ} 24^{\prime} 51^{\prime \prime}\right) \cdot 9.451139$
$\log \tan \frac{1}{2}(a-b) \cdot\left(26^{\circ} 12^{\prime} .20^{\prime \prime}\right) \cdot \underline{9.692125}$
$\log \tan \frac{1}{8} c$. 9.858216

$$
\therefore \quad \frac{1}{2} c=35^{\circ}=48^{\prime} 33^{\prime \prime}, \quad \text { and } \quad c=71^{\circ} 37^{\prime} 06^{\prime \prime}
$$

2. Given $\quad a=68^{\circ} 46^{\prime} 02^{\prime \prime}, \quad b=37^{\circ} 10^{\prime}, \quad$ and $C=39^{\circ} 23^{\prime} 23^{\prime \prime}$, to find c, A, and B.

Ans. $A=120^{\circ} 59^{\prime} 47^{\prime \prime}, \quad B=33^{\circ} 45^{\prime} 03^{\prime \prime}, \quad c=43^{\circ} 37^{\prime} 38^{\prime \prime}$.
3. Given $\quad a=84^{\circ} 14^{\prime} 29^{\prime \prime}, \quad b=44^{\circ} 13^{\prime} 45^{\prime \prime}, \quad$ and $C=30^{\circ} 45^{\prime} 28^{\prime \prime}$, to find A and B.

Ans. $A=130^{\circ} 05^{\prime} 22^{\prime \prime}, \quad B=32^{\circ} 26^{\prime} 06^{\prime \prime}$.

CASE IV.

Given two angles and their included side.
88. The solution of this case is entirely analogous to Case III.

Applying logarithms to Proportions (12) and (131, Art. 83, and to Proportion (11), Art. 83, we have,

$$
\begin{aligned}
& \text { (a. c.) } \log \cos \frac{1}{2}(A+B)+\log \cos \frac{1}{2}(A-B)+\log \tan \frac{1}{2} c-10 \\
& =\log \tan \frac{1}{2}(a+b) ; \\
& \text { (a. c.) } \log \sin \frac{1}{2}(A+B)+\log \sin \frac{1}{2}(A-B)+\log \tan \frac{1}{2} c-10 \\
& =\log \tan \frac{1}{2}(a-b) \text {; }
\end{aligned}
$$

(a. c.) $\log \sin (a-b)+\log \sin (a+b)+\log \tan \frac{1}{2}(A-B)-10$ $=\log \cot \frac{1}{2} C$.

The application of these formulas are sufficient for the solution of all cases.

EXAMPLES.

1. Given $A=81^{\circ} 38^{\prime} 20^{\prime \prime}, \quad B=70^{\circ} 09^{\prime} 38^{\prime \prime}, \quad$ and $c=59^{\circ} 16^{\prime} 22^{\prime \prime}$, to find $C, \cdot a$, and b.

Ans. $C=64^{\circ} 46^{\prime} 24^{\prime \prime}, \quad a=70^{\circ} 04^{\prime} 17^{\prime \prime}, \quad b=63^{\circ} 21^{\prime} 27^{\prime \prime}$.
2. Given $\quad A=34^{\circ} 15^{\prime} 03^{\prime \prime}, \quad B=42^{\circ} 15^{\prime} 13^{\prime \prime}, \quad$ and $c=76^{\circ} 35^{\prime} 36^{\prime \prime}$, to find C, a, and b.

Ans. $C=121^{\circ} 36^{\prime} 12^{\prime \prime}, \quad a=40^{\circ} 0^{\prime} 10^{\prime \prime}, \quad b=50^{\circ} 10^{\prime} 30^{\prime \prime}$.

CASE \quad.

Given the three sides, to find the remaining parts.
89. The angles may be found by means of Formula (3), Art. 81 ; or, one angle being fonnd by that formula, the other two may be found by means of Napier's Analogies.

EXAMPLES.

1. Given $a=74^{\circ} 23^{\prime}, b=35^{\circ} 46^{\prime} 14^{\prime \prime}$, and $c=100^{\circ} 30^{\prime}$, to find A, E, and C.

Applying logarithms to Formula (3), Art. 81, we have,

$$
\begin{aligned}
& \begin{aligned}
& \log \cos \frac{1}{2} A=10+\frac{1}{2}\left[\log \sin \frac{1}{2} s+\log \sin \left(\frac{1}{2} s-a\right)\right. \\
&\quad+(\text { a. c. }) \log \sin b+(\text { a. c. }) \log \sin c-20] ;
\end{aligned} \\
& \begin{aligned}
& \text { or, } \\
& \text { og } \cos \frac{1}{2} A= \frac{1}{2}\left[\log \sin \frac{1}{2} s\right.
\end{aligned} \quad+\log \sin \left(\frac{1}{2} s-a\right) \\
& \text { we have, } \quad
\end{aligned}
$$

$\frac{1}{2} s=105^{\circ} 24^{\prime} 07^{\prime \prime}, \quad$ and $\quad \frac{1}{2} s-a=31^{\circ} 01^{\prime} 07^{\prime}$.

$$
\begin{aligned}
& \log \sin \frac{1}{2} s \cdot \cdot \\
& \log \sin \left(\frac{1}{2} s-a\right) \cdot\left(105^{\circ} 24^{\prime} 07^{\prime \prime}\right) \cdot \\
& \hline
\end{aligned}\left(31^{\circ} 01^{\prime} 07^{\prime \prime}\right) \cdot 9.984116
$$

(a. c.) $\log \sin b \cdot$ - $\left(35^{\circ} 46^{\prime} 14^{\prime \prime}\right) \cdot 0.233185$
$\begin{aligned} & \text { (a. c.) } \log \sin c \text {. }\left(100^{\circ} 39^{\prime}\right) \\ & \log \cos \frac{1}{2} A \text {. } \frac{0.007546}{19.936921} \\ & 9.968460\end{aligned}$

$$
\therefore \quad \frac{1}{2} A=21^{\circ} 34^{\prime} 23^{\prime \prime}, \quad \text { and } \quad A=43^{\circ} 08^{\prime} 46^{\prime \prime}
$$

Using the same formula as before, and substituting B for $A, \quad b$ for a, and a for b, and recollecting that $\frac{1}{2} s-b=69^{\circ} 37^{\prime} 53^{\prime \prime}, \quad$ we have,

$$
\begin{aligned}
& \log \sin \frac{1}{2} s \cdot-\quad \cdot\left(105^{\circ} 24^{\prime} 07^{\prime \prime}\right) \cdot \\
& \log \sin \left(\frac{1}{2} s-b\right) \cdot \\
& \hline\left(69^{\circ} 37^{\prime} 53^{\prime \prime}\right)
\end{aligned} \cdot 9.941166
$$

(a. c.) $\log \sin a \cdot$ • • . $\left(74^{\circ} 23^{\prime}\right)$ - 0.016336
(a. c.) $\log \sin c \cdot$ • • $\left(100^{\circ} 39^{\prime}\right) \cdot$ • 0.007546
2) 19.979956
$\log \cos \frac{1}{2} B$ - \quad. 9.989978

$$
\therefore \quad \frac{1}{2} B=12^{\circ} 15^{\prime} 43^{\prime \prime}, \quad \text { and } \quad I B=24^{\circ} 31^{\prime} 20^{\prime}
$$

Using the same formula, substituting C for A, c for a, and a for c, recollecting that $\frac{1}{2} s-c=4^{\circ} 45^{\prime} 07^{\prime \prime}$, we have,

$$
\begin{aligned}
& \log \sin \frac{1}{2} s \quad \cdot\left(105^{\circ} 24^{\prime} 07^{\prime \prime}\right) \quad 9.984116 \\
& \log \sin \left(\frac{1}{2} s-c\right)^{\cdot} \cdot\left(4^{\circ} 45^{\prime} 07^{\prime \prime}\right) \cdot 8.918250 \\
& \text { (a. c.) } \log \sin a \cdot \text { • • }\left(74^{\circ} 23^{\prime}\right) \cdot \text { • } 0.016336 \\
& \text { (a. c.) } \log \sin b \cdot \cdot \cdot\left(35^{\circ} 46^{\prime} 14^{\prime \prime}\right) \cdot \cdot \underline{9.233185} \\
& \text { 2) } 19.151887 \\
& \log \cos \frac{1}{2} C \text {. } 9.575943 \\
& \therefore \frac{1}{2} C=67^{\circ} 52^{\prime} 25^{\prime \prime}, \quad \text { and } \quad C=135^{\circ} 44^{\prime} 50^{\prime \prime}
\end{aligned}
$$

2. Given $a=56^{\circ} 40^{\prime}, \quad l=83^{\circ} 13^{\prime}$, and $c=114^{\circ} 30^{\prime}$. Ans. $A=48^{\circ} 31^{\prime} 18^{\prime \prime}, \quad B=62^{\circ} 55^{\prime} 44^{\prime \prime}, C=125^{\circ} 18^{\prime} 56^{\prime \prime}$.

CASE VI.

The three angles being given, to find the sides.
90. The solution in this case is entirely analogous to the preceding one.

Applying logarithms to Formula (2), Art. 82, we have,

$$
\begin{aligned}
& \log \cos \frac{1}{2} a=\frac{1}{2}\left[\log \cos \left(\frac{1}{2} S-B\right)+\log \cos \left(\frac{1}{2} S-C\right)\right. \\
&+ \text { (a. c.) } \log \sin B+\text { (a. c.) } \log \sin C] .
\end{aligned}
$$

In the same manner as before, we change the letters, to suit each case.

examples.

1. Given $A=48^{\circ} 30^{\prime}, B=125^{\circ} 20^{\prime}$, and $C=62^{\circ} 54^{\prime}$. Ans. $\quad a=56^{\circ} 39^{\prime} 30^{\prime \prime}, \quad b=114^{\circ} 29^{\prime} 58^{\prime \prime}, \quad c=83^{\circ} 12^{\prime} 06^{\prime \prime}$
2. Given $A=109^{\circ} 55^{\prime} 42^{\prime \prime}, \quad B=116^{\circ} 38^{\prime} 33^{\prime \prime}, \quad$ and $C=120^{\circ} 43^{\prime} 37^{\prime \prime}$, to find a, b, and c.

$$
\text { Ans. } \quad a=98^{\circ} 21^{\prime} 40^{\prime \prime}, \quad b=109^{\circ} 50^{\prime} 22^{\prime \prime}, \quad c=115^{\circ} 13^{\prime} 28^{\prime \prime} .
$$

MENSURATION.

91. Mensuration is that branch of Mathematics which treats of the measurement of Geometrical Magnitudes.
92. The measurement of a quantity is the operation of finding how many times it contains another quantity of the same kind, taken as a standard. This standard is called the unit of measure.
93. The unit of measure for surfaces is a square, one of whose sides is the linear unit. The unit of measure for volumes is a cube, one of whose edges is the linear unit.

If the linear unit is one foot, the superficial unit is one square foot, and the unit of volume is one cubic foot. If the linear unit is one yard, the superficial unit is one square yard, and the unit of volume is one cubic yard.
94. In Mensuration, the term product of two lines, is used to denote the product obtained by multiplying the number of lincar units in one line by the number of linear units in the other. The term product of three lines, is used to denote the continued product of the number of linear units in each of the three lines.

Thus, when we say that the area of a parallelogram is equal to the product of its base and altitude, we mean that the number of superficial units in the parallelogram is equal to the number of linear units in the base, multiplied by the number of linear units in the altitude. In like manner, the
number of units of volume, in a rectangular parallelopipedon, is equal to the number of superficial units in its base multiplied by the number of linear units in its altitude, and so on.

mensuration of plane figures.

To find the area of a parallelogram.
95. From the principle demonstrated in Book IV., Prop. V., we have the following
RULE.

Multiply the base by the altitude; the product will be the area required.

EXAMPLES.

1. Find the area of a parallelogram, whose base is 12.25 , and whose altitude is 8.5 .

Ans. 104.125.
2. What is the area of a square, whose side is 204.3 feet? Ans. 41738.49 sq . ft.
3. How -many square yards are there in a rectangle whose base is 66.3 feet, and altitude 33.3 feet?

Ans. $245.31 \mathrm{sq} . \mathrm{yd}$.
4. What is the area of a rectangular board, whose length is $12 \frac{1}{2}$ feet, and breadth 9 inches? Ω_{8}^{3} s. ft .
5. What is the number of square yards in a parallelo. gram, whose base is 37 feet, and altitude 5 feet 3 inches? Ans. $21_{1-\frac{2}{2}}^{2}$.

To fiul the area of a plane triangle.
96. First Cuse. When the base and altitude are given.

From the principle demonstrated in Book IV., Prop. VI., we may write the following

Multiply the base by half the altitude; the product will be the area required.

EXAMPLES.

1. Find the area of a triangle, whose base is 625 , and altitude 520 feet. Ans. 162500 sq. ft.
2. Find the area of a triangle, in square yards, whose base is 40 , and altitude 30 fect. Ans. 663.
3. Find the area of a triangle, in square yards, whose base is 49 , and altitude $25 \frac{1}{4}$ feet.

Ars. 68.7361.
Second Case. When two sides and their included angle are given.

Let $A B C$ represent a plane triangle, in which the side $A B=c$, $B C=a$, and the angle B, are given. From A draw $A D$ perpendicular to $\boldsymbol{B C}$; this will be the
 altitude of the triangle. From Formula (1), Art. 37, Plane Trigonometry, we have,

$$
A D=c \sin B
$$

Denoting the area of the triangle by Q, and applying the rule last given, we have,

$$
Q=\frac{a c \sin B}{2} ; \quad \text { or, } \quad 2 Q=a c \sin B .
$$

Substituting for $\sin B, \frac{\sin B}{R}$ (Trig., Art. 30), and applying logarithms, we have,

$$
\log (2 Q)=\log a+\log c+\log \sin B-10 ;
$$

hence, we may write the following
RULE.
Add together the logarithms of the two sides and the ingarithmic sine of their included angle; from this sum subtract 10 ; the remainder will be the logarithm of double the area of the triangle. Find, from the table, the number answering to this logarithm, and divide it by 2 ; the quotient will be the required area.

EXAMPLES.

1. What is the area of a triangle, in which two sides a and b, are respectively equal to 125.81, and 57.65 , and whose included angle C, is $57^{\circ} 25^{\prime}$?

$$
\text { Ans. } 2 Q=6111.4, \quad \text { and } \quad Q=3055.7 \quad \text { Ans. }
$$

2. What is the area of a triangle, whose sides are 30 and 40, and their included angle $28^{\circ} 57^{\prime}$? Ans. 290.427.
3. What is the number of square yards in a triangle, of which the sides are 25 feet and 21.25 feet, and their included angle 45° ?

Ans. 20.8694.

LEMMA.

To find half an angle, when the three sides of a plane tri angle are given.
97. Let $A B C$ be a plane triangle, the angles and sides being denoted as in the figure.

We have (B. IV́., P. XII., XIII.),

$$
\begin{equation*}
a^{2}=b^{2}+c^{2} \mp 2 c . A D \tag{1.}
\end{equation*}
$$

When the angle A is acute, we have (Art. 37),

$$
A D=b \cos A ; \quad \text { when obtuse, } \quad A D^{\prime}=b \cos C A D^{\prime}
$$

But as $C A D^{\prime}$ is the supplement of the obtuse angle A,

$$
\cos C A D^{\prime}=-\cos A, \quad \text { and } \quad A D^{\prime}=-b \cos A
$$

Either of these values, being substituted for $A D$, in (1), gives,

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

whence,

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \cdot \cdot \cdot \cdot \cdot \cdot \cdot(2 .)
$$

If we add 1 to both members, and recollect that $1+\cos A=2 \cos ^{2} \frac{1}{2} A$ (Art. 66), Equation (4), we have,

$$
\begin{aligned}
2 \cos ^{2} \frac{1}{2} A & =\frac{2 b c+b^{2}+c^{2}-a^{2}}{2 b c} \\
& =\frac{(b+c)^{2}-a^{2}}{2 b c}=\frac{(b+c+a)(b+c-a)}{2 b c} ;
\end{aligned}
$$

or,

$$
\begin{equation*}
\cos ^{2} \frac{1}{2} A=\frac{(b+c+a)(b+c-a)}{4 b c} \ldots . \tag{3.}
\end{equation*}
$$

If we put $b+c+a=s$, we have,

$$
\frac{b+c+a}{2}=\frac{1}{2} s, \quad \text { and }, \quad \frac{b+c}{2}-a-\frac{1}{2} s-a ;
$$

Substituting in (3), and extracting the square root,

$$
\begin{equation*}
\cos \frac{1}{2} A=\sqrt{\frac{\frac{1}{2} s\left(\frac{1}{2} s-a\right)}{b c}} \tag{4.}
\end{equation*}
$$

the plus sign, only, being used, since $\frac{1}{2} A<90^{\circ}$; hence,
The cosine of half of either angle of a plane triangle, is equal to the square root of half the sum of the three sides, into half that sum minus the side opposite the angle, divided by the rectangle of the adjacent sides.

By applying logarithms, we have, $\quad \log \cos \frac{1}{2} A=$ $\frac{1}{2}\left[\log \frac{1}{2} s+\log \left(\frac{1}{2} s-a\right)+\right.$ (a. c.) $\log b+$ (a. c.) $\left.\log c\right]$. ((.)

If we subtract both members of Equation (2), from 1, and recollect that $1-\cos A=2 \sin ^{2} \frac{1}{2} A$ (Art. 60.), we have,
$2 \sin ^{2} \frac{1}{2} A=\frac{2 b c-b^{2}-c^{2}+a^{2}}{2 b c}$

$$
\begin{equation*}
=\frac{a^{2}-(b-c)^{2}}{2 b c}=\frac{(a+b-c)(a-b+c)}{2 b c} \tag{5}
\end{equation*}
$$

Placing, as before, $a+b+c=s$, we have,

$$
\frac{a+b-c}{2}=\frac{1}{2} s-c, \quad \text { and }, \quad \frac{a-b+c}{2}=\frac{1}{2} s-b .
$$

Substituting in (5), and reducing, we have,
hence,

$$
\begin{equation*}
\sin \frac{1}{2} A=\sqrt{\frac{\left(\frac{1}{2} s-b\right)\left(\frac{1}{2} s-c\right)}{b c}} . \tag{6.}
\end{equation*}
$$

The sine of half an angle of a plane triangle, is equal to the square root of half the sum of the three sides, minus one of the adjacent sides, into the half sum minus the other adjacent side, divided by the rectangle of the adjacent sides.

Applying logarithms, we have,

$$
\begin{align*}
\log \sin \frac{1}{2} A=\frac{1}{2} & {\left[\log \left(\frac{1}{2} s-b\right)+\log \left(\frac{1}{2} s-c\right)\right.} \\
& +(\text { a.c. }) \log b+(\text { a.c. }) \log c] \tag{3.}
\end{align*}
$$

Third Case. To find the area of a triangle, when the three sides are given.

Let $A B C$ represent a triangle whose sides a, b, and c are given. From the principle demonstrated in the last case, we have,

$$
Q=\frac{1}{2} b c \sin A
$$

But, from Formula (Δ^{\prime}), Trig., Art. 66, we have,
whence,

$$
\begin{aligned}
\sin A & =2 \sin \frac{1}{2} A \cos \frac{1}{2} A \\
Q & =b c \sin \frac{1}{2} A \cos \frac{1}{2} A
\end{aligned}
$$

Substituting for $\sin \frac{1}{2} A$ and $\cos \frac{1}{2} A$, their values, taken from Lemma, and reducing, we have,

$$
Q=\sqrt{\frac{1}{2} s\left(\frac{1}{2} s-a\right)\left(\frac{1}{2} s-b\right)\left(\frac{1}{2} s-c\right)} ;
$$

hence, we may write the following

RULE.

Find half the sum of the three sides, and from it subtract each side separatcly. Find the continued product of the half sum and the three remainders, and extruct its square root; the result will be the arca required.

It is generally more convenient to employ logarithms ; for this purpose, applying logarithms to the last equation, we have, $\log Q=\frac{1}{2}\left[\log \frac{1}{2} s+\log \left(\frac{1}{2} s-a\right)+\log \left(\frac{1}{2} s-b\right)+\log \left(\frac{1}{2} s-c\right)\right]$ hence, we have the following

rule.

Find the half sum and the three remainders as before, then find the half sum of their loyarithms; the number corresponding to the resulting logarithm will be the area required.

EXAMILES.

1. Find the arca of a triangle, whose sides are 20,30 , and 40.

We have, $\frac{1}{2} s=45, \quad \frac{1}{2} s-\alpha=25, \quad \frac{1}{2} s-b=15, \quad \frac{1}{2} s--c=5$ By the first rule,

$$
Q=\sqrt{45 \times 25 \times 15 \times 5}=290.1737 \text { Ans }
$$

By the second rule,

$$
\begin{array}{ccccccccc}
\log \frac{1}{2} \varepsilon & \cdot & \cdot & \cdot & (45) & \cdot & \cdot & \cdot & \cdot \\
\log \left(\frac{1}{2} s-a\right) & \cdot & \cdot & (25) & \cdot & \cdot & \cdot & \cdot & 1.397940 \\
\log \left(\frac{1}{2} s-b\right) & \cdot & \cdot & (15) & & \cdot & \cdot & \cdot & 1.176091 \\
\log \left(\frac{1}{2} 8-c\right) & \cdot & \cdot & (5) & \cdot & \cdot & \cdot & 0.698970 \\
\log Q & \cdot & \cdot & \cdot & \cdot & \cdot & \frac{2}{4.926214} \\
. & Q & =290.463107 & \text { Ans. }
\end{array}
$$

2. How many square yards are there in a triangle, whose sades are 30,40 , and 50 feet? Ans. 663.

To find the area of a trapezoid.
98. From the principle demonstrated in Book IV., Prop. VII., we may write the following
RULE.

Find half the sum of the parallel sides, and multiply it by the altitude; the product will be the area required.

EXAMPLES.

1. In a trapezoid the parallel sides $\operatorname{are}^{{ }^{+}} 750$ and 1225 , and the perpendicular distance between them is 1540 ; what is the area?

Ans. 1520750.
2. IIow many square feet are contained in a plank, whose length is 12 feet 6 inches, the breadth at the greater end 15 inches, and at the less end 11 inches?

Ans. $13 \frac{13}{24}$.
3. How many square yards are there in a trapezoid, whose parallel sides are 240 feet, 320 feet, and altitude 66 feet? Ans. $2053 \frac{1}{3} \mathrm{sq} . \mathrm{yd}$.

To find the area of any quadrilateral.

99. From what precedes, we deduce the following

RULE.

Join the vertices of two opposite angles by a diagonal; from each of the other vertices let fall perpendiculars upon this diagonal; multiply the diagonal by half of the sum of the perpendiculars, and the product will be the area rcquired.

EXAMPLES.

1. What is the area of the quadrilateral $A B C D$, the diagonal $A C$ being 42 , and the perpendiculars $D g$, $B b$, equal to 18 and 16 feet?

$$
\text { Ans. } 714 \mathrm{sq} . \mathrm{ft} .
$$

2. How many square yards of paving are there in the quadrilateral, whose diagonal is 65 feet, and the two perpendiculars let fall on it 28 and $33 \frac{1}{2}$ feet? Ans. $222 \frac{1}{12}$.

To find the area of any polygon.

100. From what precedes, we have the following

IVULE.

Draw diagonals dividing the proposed polygon into trar pezoids and triangles : then find the areas of these figures separately, and add them together for the area of the whole polygon.

EXAMPLE.

1. Let it be required to determine the area of the polygon $A B C D E$, having five sides.

Let us suppose that we have measured the diagonals and perpendiculars, and found $A C=36.21, \quad E C=39.11, \quad B 3=4$ $D d=7.26, \quad A a=4.18$: required the area. Ans. 296.1292.

To find the area of a regular polygon.

101. Let $A B$, denoted by s, represent one side of a regular polygon, whose centre is C. Draw $C A$ and $C D$, and from C draw $C D$ perpendicular to $A B$. Then will $C D$ be the apothem, and we shall have $A D=B D$.

Denote the number of sides of the polygon by n; then will the angle $A C B$, at the centre, be equal to $\frac{360^{\circ}}{n}$, (B. V., Page 138, D. 2), and the angle $A C D$, which is half of $A C B$, will be equal to $\frac{180^{\circ}}{n}$.

In the right-angled triangle $A D C$, we shall have, Formula (3), Art. 37, Trig.,

$$
C D=\frac{1}{2} s \tan C A D .
$$

But $C A D$, being the complement of $A C D$, we have,

$$
\tan C A D=\cot A C D ;
$$

hence,

$$
C D=\frac{1}{2} s \cot \frac{180^{\circ}}{n},
$$

a formula by means of which the apothem may be computed.
But the area is equal to the perimeter maltiplied by half the apothem (Book V., Prop. VIII.) : hence the following

RULE

Find the apothem, by the preceding formula ; multipiy the perimeter by half the apothem; the product will be the area required.

EXAMPLES.

1. What is the area of a regular hexagon, each of whose sides is 20 ? We have,
$C D=10 \times \cot 30^{\circ} ;$ or, $\quad \log C D=\log 10+\log \cot 30^{\circ}-10$

$$
\begin{array}{llll}
\log \frac{1}{2} s . . & (10) & 1.000000 \\
\log \cot \frac{180^{\circ}}{4} & \left(30^{\circ}\right) & \cdot & 10.238561 \\
\hline
\end{array}
$$

$$
\log C D \quad . \quad . \quad . \quad \underline{1.238561} \quad \therefore C D=17.3205
$$

The perimeter is equal to 120 : hence, denoting the area by Q,

$$
Q=\frac{120 \times 17.3205}{2}=1039.23 \quad \text { Ans. }
$$

2. What is the area of an octagon, one of whose sides is 20? Ans. 1931.36886.

The areas of some of the most important of the regular polygons have been computed by the preceding method, on the supposition that each side is equal to 1 , and the results are given in the following

TABLE.

The areas of similar polygons are to each other as the squares of their homologous sides (Book IV., Prop. XXVII.).

Denoting the area of a regular polygon whose side is s, by Q, and that of a similar polygon whose side is 1 , by T, the tabular area, we have,

$$
Q: T:: s^{2}: 1^{2} ; \quad \therefore \quad Q=T s^{2}
$$

hence, the following rule.
Multiply the corresponding tabular area by the square of the given side; the product will be the area required.

EXAMPLES.

1. What is the area of a regular hexagon, each of whose sides is 20?

We have, $T=2.598$ 3762, and $s^{2}=400$: hence,

$$
Q=2.5980762 \times 400=1039.23048 \quad \text { Ans. }
$$

2. Find the area of a pentagon, whose side is $2 b$. Ans. 1075.298375.
3. Find the area of a decagon, whose side is 20 . Ans. 307'.68352.

I' find the circumference of a circle, when the diameter is given.
102. From the principle demonstrated in Book V., Prop. XVI., we may write the following

RULE.

Multiply the given diameter by 3.1416 ; the product witd be the circumference required.

EXAMPLES.

1. What is the circumference of a circle, whose diameter is 25 ?

Ans. 78.54.
2. If the diameter of the earth is 7921 miles, what is the circumference? Ans. 24884.6136.

To find the diameter of a circle, when the circumference is given.
103. From the preceding case, we may write the following rule.

Divide the given circumference by 3.1416 ; the guoticnt will be the diameter required.

EXAMPLES.

1. What is the diameter of a circle, whose circumference is 11652.1944? Ans. 3709.
2. What is the diameter of a circle, whese circumference is 6850?

Ans. 2180.41

To find the length of an arc containing any number of degrees.
104. The length of an are of 1°, in a circle whose diameter is 1 , is equal to the circumference, or 3.1416 divided by 360 ; that is, it is equal to 0.0087266 : hence, the length of an arc of n degrees, will be, $n \times 0.0037266$. To find the length of an arc containing n degrees, when the diameter is d, we employ the principle demonstrated in Book V., Prop. XIII., C. 2: hence, we may write the following RULE.
Multiply the number of degrees in the are by .0087266, and the product by the diameter of the circle; the result will be the length required.

EXAMPLES.

1. What is the length of an arc of 30 degrees, the diameter being 18 feet?

Ans. 4.712364 ft .
2. What is the length of an arc of $12^{\circ} 10^{\prime}$, or $12 \frac{1}{6}^{\circ}$, the diameter being 20 feet? Ans. 2.123472 ft . To find the area of a circle.
105. From the principle demonstrated in Book V., Prop. XV., we may write the following

RULE.

Multiply the square of the radius by 3.1416 ; the product will be the area required.

EXAMPLES.

1. Find the area of a circle, whose diameter is 10 , and circumference 31.416 .

Ans. 78.54.
2. How many square yards in a circle whose diameter is $3 \frac{1}{2}$ feet? Ans. 1.069016.
3. What is the area of a circle whose circumference is 12 feet?

Ans. 11.4595.

To find the area of a circular sector.
106. From the principle demonstrated in Book V., Prop. XIV., C. 1 and 2, we may write the following

LULE.
I. Mulitiply half the arc by the radius; or,
II. Find the area of the whole circle, by the last ruite; then write the proportion, as 360 is to the number of cleyrecs in the sector, so is the area of the circle to the area of the sector.

EXAMPLES.

1. Find the area of a circular sector, whose are contains 18°, the diameter of the circle being 3 feet. $0.35343 \mathrm{sq} . \mathrm{ft}$.
2. Find the area of a sector, whose arc is 20 feet, the radius being 10 . Ans. 100.
3. Required the area of a sector, whose are is $147^{\circ} 29^{\prime}$, and radius 25 feet. Ans. $804.3986 \mathrm{sq} . \mathrm{ft}$.

To find the area of a circular segment.

107. Let $A B$ represent the chord corresponding to the two segments $A C B$ and $A F B$. Draw $A E$ and $B E$. The segment $A C B$ is equal to the sector $E A C B$, minus the triangle $A E 13$. The segment $A F B$ is equal to the sector $E A F B$, plus the tri-
 angle $A E B$. Hence, we have the following

RULE.

Find the area of the corresponding sector, and also of the triangle formed by the chord of the segment and the two extreme radii of the sector; subtract the latter from the former when the segment is less than a semicircle, and talie their sum when the segment is greater than a semicircle; the result will be the area required.

EXAMPLES.

1. Find the area of a segment, whose chord is 12 and the radius 10 .

Solving the triangle $A E R$, we find the angle $A E 1 ;$ is equal to $73^{\circ} 44^{\prime}$, the area of the sector $E A C B$ equal to 34.35 , and the area of the triangle $A E B$ equal to 48 ; rence, the segment $A C B$ is equal to 16.35 Ans.
2. Find the area of a segment, whose height is 18 , the diameter of the circle being 50 . Ans. 636.4834.
3. Required the area of a segment, whose chord is 16 , the diameter being 20.

Ans. 44.764.

To find the area of a circular ring contained between the circumferences of two concentric circles.
108. Let R and r denote the radii of the two circles, R being greater than r. The area of the outer circle is $R^{2} \times 3.1416$, and that of the inner circle is $r^{2} \times 3.1416$; hence, the area of the ring is equal to $\left(R^{2}-r^{2}\right) \times 3.1416$. Hence, the following

RULE.

Find the difference of the squares of the radii of the two circles, and multiply it by 3.1416 ; the product will be the area required.

EXAMPLES.

1. The diameters of two concentric circles being 10 and 6, required the area of the ring contained between their circumferences.

Ans. 50.2656.
2. What is the area of the ring, when the diameters of the circles are 10 and 20 ?

Ans. 235.62.
mensuration of broken and curved surfaces.
To find the area of the entire surface of a right prism.
109. From the principle demonstrated in Book VII., Prop. I., we may write the following
RULE.

Multiply the perimeter of the base by the altitucle, the product will be the area of the convex surface; to this add the areas of the two bases; the result will be the area required.

EXAMPLES.

1. Find the surface of a cube, the length of each side being 20 feet.

Ans. 2400 sq. ft.
2. Find the whole surface of a triangular prism, whose base is an equilateral triangle, having each of its sides equal to 18 inches, and altitude 20 feet. Ans. 91.949 sq. ft.

To find the area of the entire surface of a right pyramid.
110. From the principle demonstrated in Book VII., Prop. IV., we may write the following

RULE

Multiply the perimeter of the base by half the slant height; the product will be the area of the convex surface; to this add the arca of the base; the result will be the areat required.

EXAMPLES.

1. Find the convex surface of a right triangular pyramil, the slant height being 20 feet, and each side of the base 3 feet.

Ans. 90 sq. ft
2. What is the entire surface of a right pyramid, whose slant height is 15 feet, and the base a pentagon, of which each side is 25 feet?

Ans. 2012.798 sq. ft.

To find the area of the convex surface of a frustum of a right pyramid.
111. From the principle demonstrated in Book VII., Prop. IV., S., we may write the following

> RULE.

Multiply the half sum of the perimeters of the two bases by the slant height; the product will be the area required.

EXAMPLES.

1. How many square feet are there in the convex surface of the frustum of a square pyramid, whose slant height is 10 feet, each side of the lower base 3 feet 4 inches, and each side of the upper base 2 feet 2 inches? Ans. 110 sq . ft.
2. What is the convex surface of the frustum of a heptagonal pyramid, whose slant height is 55 feet, each side of the lower base 8 feet, and each side of the upper base 4 feet?

Ans. 2310 sq. ft.
112. Since a cylinder may be regarded as a prism whose base has an infinite number of sides, and a cone as a pyramid whose base has an infinite number of sides, the rules just given, may be applied to find the areas of the surfaces of right cylinders, cones, and frustums of cones, by simply changing the term perimeter, to circumference.

EXAMPLES.

1. What is the convex surface of a cylinder, the diameter of whose base is 20, and whose altitude 50? Ans. 3141.6
2. What is the entire surface of a cylinder, the altitude being 20 , and diameter of the base 2 feet? 131.9472 sq . ft .
3. Required the convex surface of a cone, whose slant height is 50 feet, and the diameter of its base $8 \frac{1}{2}$ feet. Ans. 667.59 sq. fl.
4. Required the entire surface of a cone, whose slant height is 36, and the diameter of its base 18 feet. Ans. 1272.348 sq. ft.
5. Find the convex surface of the frustum of a cone, the slant height of the frustum being $12 \frac{1}{2}$ feet, and the circumferences of the bases 8.4 feet and 6 feet. Ans. 90 sq. ft.
6. Find the entire surface of the frustum of a cone, the slant height being 16 feet, and the radii of the bases 3 feet, and 2 feet.

Ans. 292.1688 sq. ft.

> To find the area of the surface of a sphere.
113. From the principle demonstrated in Book VIII, Prop. X., C. 1 , we may write the following
R ULE

Find the area of one of its great circles, and multiply it by 4 ; the product will be the area required.

EXAMPLES.

1. What is the area of the surface of a sphere, whose radius is 16 ? 'Ans. 3216.3984.
2. What is the area of the surface of a sphere, whose radius is 27.25 Ans. 9931.3374.

To find the area of a zone.
114. From the principle demonstrated in Book VIII, Prop. X., C. 2, we may write the following

RULE.

Find the circumference of a great circle of the sphere, and multiply it by the altitude of the zone; the product woill be the area required.

EXAMPLES.

1. The diameter of a sphere being 42 inches, what is the area of the surface of a zone whose altitude is 9 inches. Ans. 1187.5248 sq. in.
2. If the diameter of a sphere is $12 \frac{1}{2}$ feet, what will be the surface of a zone whose altitude is 2 feet? $\quad 78.54 \mathrm{sq} . \mathrm{ft}$.

To find the area of a spherical polygon.
115. From the principle demonstrated in Book IX., Prop. XIX., we may write the following

> RULE.

From the sum of the angles of the polygon, subtract 180° taken as many times as the polygon has sides, less two, and divide the remainder by 90°; the quotient will be the spherical excess. Find the area of a great circle of the sphere, and divide it by 2 ; the quotient will be the area of a tri-rectangular triangle. Mrultiply the area of the trirectangular triangle by the spherical excess, and the product will be the area required.

This rule applies to the spberical triangle, as well as to any other spherical polygon.

EXAMPLES.

1. Required the area of a triangle described on a sphere, whose diameter is 30 feet, the angles being $140^{\circ}, 92^{\circ}$, and 68°.

Ans. $471.24 \mathrm{sq} . \mathrm{ft}^{\circ}$
2. What is the area of a polygon of seven sides, de - scribed on a sphere whose diameter is 17 feet, the sum of the angles being 1080° ? Ans. 226.98
3. What is the area of a regular polygon of eight sides, described on a sphere whose diameter is 30 yards, each angle of the polygon being 140° ?

Ans. $157.08 \mathrm{sq} . \mathrm{yds}$.

MENSURATION OF VOLUMES.
To find the volume of a prism.
116. From the principle demonstrated in Book Vl!., Prop. XIV., we may write the following

RULE.

Multiply the area of the base by the altitude; the product will be the volume required.

EXAMPLES.

1. What is the volume of a cube, whose side is 24 inches? Ans. $13824 \mathrm{cu} . \mathrm{in}$.
2. How many cubic feet in a block of marble, of which the length is 3 feet 2 inches, breadth 2 feet 8 inches, and height or thickness 2 feet 6 inches? Ans. $21 \frac{1}{9} \mathrm{cu} . \mathrm{ft}$.
3. Required the volume of a triangular prism, whose height is 10 feet, and the three sides of its triangular base 3,4 , and 5 feet.

Ans. 60.

To find the volume of a pyramid.

117. From the principle demonstrated in Book VII., Prop. XVII., we may write the following

RULE.

Multiply the area of the base by one-third of the altitude ; the product will be the volume required.

EXAMPLES.

1. Required the volume of a square pyramid, each side of its base being 30 , and the altitude $25 . \quad$ Ans. 7500.
2. Find the volume of a triangular pyramid, whose altitude is 30 , and each side of the base 3 feet. $38.9711 \mathrm{cu} . \mathrm{ft}$.
3. What is the volume of a pentagonal pyramid, its altitude leing 12 feet, and each side of its lase 2 feet. Ans. 27.5276 cu . $\mathfrak{\text { ft}}$.
4. What is the volume of an hexagonal pyramid, whose alitude is 6.4 feet, and each side of its base 6 inches ${ }^{2}$ Ans. 1.38564 cu . 位

To fiud the volume of a frustum of a pyramid.
118. From the principle demonstrated in Book VII., Prop., XVIII., C., we may write the following

RULE.

Find the sum of the upper base, the lower base, and a mean proportional between them; multiply the result by onetherd of the altitude ; the product will be the volume required.

EXAMPLES.

1. Find the number of cubic feet in a piece of timber, whose bases are squares, each side of the lower base being 15 inches, and each side of the upper base 6 inches, the altitude being 24 feet.

Ans. 19.5.
2. Required the volume of a pentagonal frustum, whose altitude is 5 feet, each side of the lower base 18 inches, and each side of the upper base 6 inches. Ans. 9.31925 cu . ft.
119. Since cylinders and cones are limiting cases of prisms and pyramids, the three preceding rules are equally appicableto them.

EXAMPLES.

1. Required the volume of a cylinder whose altitule is 12 feet, and the diameter of its base 15 feet.

Ans. $2120.58 \mathrm{cu} . \mathrm{ft}$.
2. Required the volume of a cylinder whose altitude is 20 feet, and the circumference of whose base is 5 feet 6 inches.

Ans. $48.144 \mathrm{cu} . \mathrm{ft}$.
3. Rerquired the volume of a cone whose altitude is 27 feet, and the diameter of the base 10 feet. Ans. $706.86 \mathrm{cu} . \mathrm{ft}$.
4. Required the volume of a cone whose altitude is $10 \frac{1}{2}$ feet, and the circumference of its base 9 feet. Ans. $22.56 \mathrm{cu} . \mathrm{f} . \mathrm{F}$
5. Find the volume of the frustum of a cone, the altitude being 18, the diameter of the lower base 8 , and that of the upper base 4. Ans. 527.7888.
6. What is the volume of the frustum of a cone, the altitude being 25 , the circumference of the lower base 20 , and that of the upper base 10 ? Ans. 404.216.
7. If a cask, which is composed of two equal conic frustums joined together at their larger bases, have its bung diameter 28 inches, the head diameter 20 inches, and the length 40 inches, how many gallons of wine will it contain, there being 231 cubic inches in a gallon? Ans. $79.0 \mathrm{G13}$.

To find the volume of \dot{a} sphere.

120. From the principle demonstrated in Book VIII., Prop. XIV., we may write the following

RULE.

Cube the diameter of the sphere, and multiply the resull by $\frac{1}{6} \pi$, that is, by 0.5236 ; the product will be the volume required.

EXAMPLES.

1. What is the volume of a sphere, whose diameter is 12 ? Ans. 904.78: B
2. What is the volume of the earth, if the mean dian eter be taken equal to 7918.7 miles.

Ans. 259992792083 cu. miles.

To find the volume of a wedge.

121. A Wedge is a volume bounded by a rectangle $A B C D$, called the back, two trapezoids $A B H G, D C H G$, called faces, and two triangies $A D G$, CBII called ends. The bine GH, in which the faces meet, is called the edge. 'The two faces are equally inclined to the back, and so also are the two ends.

There are three cases: 1 st, When the length of the edge is equal to the length of the back; 2 d , When it is less; and 3 d , When it is greater.

In the first case, the wedge is a right prism, whose base is the triangle $A D G$, and altitude $G I I$ or $A B$: hence, its volume is equal to $A D G$ multiplied by $A B$.

In the second case, through I, the middle point of the edge, pass a plane $H C B$ perpendicular to the back and intersecting it in the line $B C$ parallel to $A D$. This plane will divide the wedge into two parts, one of which is represented
 by the figure.

Through G, draw the plane $G N M$ parallel to $I I C B$, and it will divide the part of the wedge represented by the figure into the right triangular prism $G N M-B$, and the quadrangular pyr amid $A D N M-G$. Draw $G P$ perpendicular to $N M$: it will also be perpendicular to the back of the wedge (B. VI., P. XVII.), and hence, will be equal to the altitude of the wedge.

Denote $A B$ by L, the breadth $A D$ by b, the edge $G I I$ by , the altitude by h, and the volume by V; then,

$$
A M=L-l, M B=G H=l, \text { and area } N G M=\frac{1}{2} b h: \text { then }
$$

$$
\text { Prism }=\frac{1}{2} b h l ; \quad \text { Pyramid }=b(L-l) \frac{1}{3} h=\frac{1}{3} b h(L-l), \text { and }
$$

$$
V=\frac{1}{2} b h l+\frac{1}{3} b h(L-l)=\frac{1}{2} b h l+\frac{1}{3} b h L-\frac{1}{3} b h l=\frac{1}{6} b l(l+2 L)
$$

We can find a similar expression for the remaining part of the wedge, and by adding, the factor within the parenthesis becomes the entire length of the edge plus twice the length of the back.

In the third case, l is greater than L, and denotes the altitude of the prism; the volume of each part is equal to the difference of the prism and pyramid, and is of the same furm as before. Hence, the following

Rule.-Adll twice the length of the back to the length of the edlye; multiply the sum by the breadth of the back, und that result by one-sixth of the altitude; the final product will be the volume required.

EXAMPLES.

1. If the back of a wedge is 40 by 20 feet, the edge 35 feet, and the altitude 10 feet, what is the volume?

Ans. $3833.33 \mathrm{cu} . \mathrm{ft}$.
2. What is the volume of a wedge, whose back is 18 feet by 9 , edge 20 feet, and altitude 6 feet?
$504 \mathrm{cu} . \mathrm{it}$.

To find the volume of a prismoid.

122. A Prismoid is a frustum of a wedge.

Let L and B denote the length and breadth of the lower base, l and b the length and breadth of the upper base, M and m the length and breadth of the section equidistant from the bases, and h the altitude of the prismoid.

Through the edges L and l^{\prime},
 let a plane be passed, and it will divide the prismoid into two wedges, having for bases, the bases of the prismoid, and for edges the lines L and l^{\prime}.

The volume of the prismoid, denoted by V, will be equal to the sum of the volumes of the two wedges; hence,

$$
V=\frac{1}{6} B h(l+2 L)+\frac{1}{6} b h(L+2 l) ;
$$

or,

$$
\nabla=\frac{1}{6} h(2 B L+2 b l+B l+b L) ;
$$

which may be written under the form,

$$
\begin{equation*}
V=\frac{1}{6} h[(B L+b l+B l+b L)+B L+b l] . \tag{目}
\end{equation*}
$$

Because the auxiliary section is midway between the bases, we have,

$$
2 M=L+l, \quad \text { and } \quad 2 m=B+b ;
$$

hence,

$$
4 M m=(L+l)(B+b)=B L+B l+b L+b l
$$

Substituting in (Δ), we have,

$$
V=\frac{1}{6} h(B L+b l+4 M m)
$$

But $B L$ is the area of the lower base, or lower section, $b l$ is the area of the upper base, or upper section, and Min is the area of the middle section; hence, the following
RULE.

To find the volume of a prismoid, find the sum of the areas of the extreme sections and four times the middle section ; multiply the result by one-sixth of the distance between the extreme sections; the result will be the volume required.

This rule is used in computing volumes of earth-work in railroad cutting and embankment, and is of very extensive application. It may be shown that the same rule holds for every one of the volumes heretofore discussed in this work. Thus, in a pyramid, we may regard the base as one extreme section, and the vertex (whose area is 0), as the other extreme; their sum is equal to the area of the base. The area of a section midway between between them is equal to one-fourth of the base : hence, four times the middle section is equal to the base. Multiplying the sum of these by onesixth of the altitude, gives the same result as that already found. The application of the rule to the case of cylinders, frustums of cones, spheres, \&c., is left as an excrcise for the student.

EXAMPLES.

1. One of the bases of a rectangular prismoid is 25 feet liy 20, the other 15 feet by 10 , and the altitude 12 feet required the volume. Ans. $3700 \mathrm{cu} . \mathrm{ft}$.
2. What is the volume of a stick of hewn timber, whose ends are 30 inches by 27 , and 24 inches by 18 , its length being 24 feet? Ans. 102 cu . ft.

mensuration of regular polyedions.

123. A Regular Polyedron is a polyedron bounded by equal regular polygons.

The polyedral angles of any regular polyedron are all equal.
124. There are five regular polyedrons (Book VII., Page 208).

To find the diedral angle between the faces of a regular polyedron.
125. Let the vertex of any polyedral angle be taken as the centre of a sphere whose radius is 1: then will this sphere, by its intersections with the faces of the polyedral angle, determine a regular spherical polygon whose sides will be equal to the plane angles that bound the polyedral angle, and whose angles are equal to the diedral angles between the faces.

It only remains to deduce a formula for finding one angle of a regular spherical polygon, when the sides are given.

Let $A B C D E$ represent a regular spherical polygon, and let P be the pole of a small circle passing through its vertices. Suppose P to be connected with each of the vertices by arcs of great circles ; there will thus be formed as many equal isosceles triangles as the polygon has sides, the vertical angle in each being equal to 360° divided by the number of sides. Through P draw $P Q$ per-
 pendicular to $A B$: then will $A Q$ be equal to $B Q$. If we denote the number of sides by n, the angle $A P Q$ will be equal to $\frac{360^{\circ}}{2 n}$, or $\frac{180^{\circ}}{n}$.

In the right-angled spherical triangle $A P Q$, we know the base $A Q$, and the vertical angle $A P Q$; hence, by Napier's rules for circular parts, we have,

$$
\sin \left(90^{\circ}-A P Q\right)=\cos \left(90^{\circ}-P A Q\right) \cos A Q ;
$$

or, by reduction, denoting the side $A B$ by s, and the angle $P A B$, by $\frac{1}{2} A$,

$$
\cos \frac{180^{\circ}}{n}=\sin \frac{1}{2} A \cos \frac{1}{2} s
$$

whence,

$$
\sin \frac{1}{2} A=\frac{\cos \frac{180^{\circ}}{n}}{\cos \frac{1}{2} 8}
$$

EXAMPLES.

In the Tetraedron,

$$
\frac{180^{\circ}}{n}=60^{\circ}, \quad \text { and } \quad \frac{1}{2} s=30^{\circ} \quad \therefore \quad A=70^{\circ} 31^{\prime} 42^{\prime \prime}
$$

In the Hexaedron,

$$
\frac{180^{\circ}}{n}=60^{\circ}, \quad \text { and } \quad \frac{1}{2} s=45^{\circ} . \quad A=90^{\circ} .
$$

In the Octaedron,

$$
\frac{180^{\circ}}{n}=45^{\circ}, \text { and } \quad \frac{1}{2} s=30^{\circ} \quad \therefore A=109^{\circ} 28^{\prime} 18^{\prime \prime}
$$

In the Dodecaedren,

$$
\frac{180^{\circ}}{n}=60^{\circ}, \quad \text { and } \quad \frac{1}{2} s=54^{\circ} \quad \therefore A=110^{\circ} 33^{\prime} 54^{\prime \prime}
$$

In the Icosaedron,

$$
\frac{180^{\circ}}{n}=36^{\circ}, \quad \text { and } \quad \frac{1}{2} s=30^{\circ} . \therefore A=138^{\circ} 11^{\prime} 23^{\prime \prime}
$$

To find the volume of a regular polyedron.

126. If planes be passed through the centre of the polyedron and each of the edges, they will divide the polyedron into as many equal right pyramids as the polyedron has faces. The common vertex of these pyramids will be at the centre of the polyedron, their bases will be the faces of the polyedron, and their lateral faces will bisect the diedral angles of the polyedron. The volume of each pyramid will be equal to its base into one-third of its altitude, and this multiplied by the number of faces, will be the volume of the polyedron.

It only remains to deduce a formula for finding the distance from the centre to one face of the polyedron.

Conceive a perpendicular to be drawn from the centre of the polyedron to one face; the foot of this perpendicular will be the centre of the face. From the foot of this perpendicular, draw a perpendicular to either side of the face in which it lies, and connect the point thus determined with the centre of the polyedron. There will thus be formed a right-angled triangle, whose base is the apothem of the face, whose angle at the base is half the diedral angle of the polyedron, and whose altitude is the required altitude of the pyramid, or in other words, the radius of the inscribed sphere.

Denoting the perpendicular by P, the base by b, and the diedral angle by A, we have Formula (3), Art. 37, Trig.,

$$
l=b \tan \frac{1}{2} A ;
$$

but b is the apothem of one face; if, therefore, we denote the number of sides in that face by n, and the length of rach side by s, we shall have (Art. 101, Mens.),

$$
b=\frac{1}{2} s \cot \frac{180^{\circ}}{n}
$$

whence, by substitution,

$$
P=\frac{1}{2} s \cot \frac{180^{\circ}}{n} \tan \frac{1}{2} A ;
$$

hence, the volume may be computed. The volumes of all the regular polyedrons have been computed on the supposition that their edges are each equal to 1 , and the results are given in the following

TABLE.

From the principles demonstrated in Book VII., we may write the following

RULE.

To find the volume of any regular polyedron, multiply the cube of its edge by the corresponding tabulur volume: the product will be the volume required.

```
EXAMPLEE.
```

1. What is the volume of a tetraedron, whose edge is 15 ? Ans. 397.75.
2. What is the volume of a hexaedron, whose edge is 12 ? Ans. 1728.
3. What is the volume of a octaedron, whose edge is 20 ? Ans. 3771.236.
4. What is the volume of a dodecaedron, whose edge is 25 ?

Ans. 119736.2328.
5. What is the volume of an icosaedron, whose edge ig 20 ?

Ans. 17453.56.

A TABLE

or

LOGARITHMS OF NUMBERS

FROM 1 то 10,000.

N.	Log.	N.	Log.	N.	Log.	N.	Log.
1	0.000000	26	1.414973	51	1.707570	76	1.880814
2	0.301030	27	1.431364	52	1.716003	77	1.886491
3	0.477121	28	1.447158	53	1.724276	78	1.892095
4	0.602060	29	1.462398	54	1.732394	79	1.897627
5	0.698970	30	1-477121	55	$1 \cdot 740363$	80	$1 \cdot 903090$
6	0.778151	31	1.491362	56	$1 \cdot 748188$	81	1.908485
7	0.845098	32	I. 505150	57	$1 \cdot 755875$	82	1.913814
8	0.903090	33	I.518514	58	1.763428	83	1.919078
9	0.954243	34	1.531479	59	$1 \cdot 770852$	84	$1 \cdot 924279$
10	1.000000	35	1.544068	60	1-778151	85	1.929419
11	1.041393	36	1.556303	61	1.785330	86	1.934498
12	1.079181	37	1.568202	62	1-792392	87	1.939519
13	1-113943	38	1.579784	63	I -799341	88	1.944483
14	1.146128	39	1.591065	64	1.806181	89	1.949390
15	1.176091	40	1.602060	65	1.812913	90	$1 \cdot 954243$
16	1-204120	41	1.612784	66	1.819544	91	$1 \cdot 959041$
17	1-230449	42	1.623219	67	1.826075	92	1.963788
18	$1 \cdot 25527^{3}$	43	I. 633468	68	1.832509	93	I. 968483
19	1.278754	44	1.643453	60	1.838849	94	1.973128
20	1.301030	45	1.653213	70	1.845098	95	1-977724
21	1.322219	46	1.662758	71	1.851258	96	1.382271
22	1.342423	47	1.672098	72	1.857333	97	$1 \cdot 986772$
23	1.361728	48	1.681241	73	1.863323	98	$1 \cdot 991226$
24	1.380211	49	1.690196	74	1.869232	99	$1 \cdot 995535$
25	1.397940	50	1.698970	75	1.875061	100	$2 \cdot 000000$

Remark. In the following table, in the nine right hand columns of each page, where the first or leading figures change from 9's to 0 's, points or dots are introduced instead of the 0 's, to catch the eye, and to indicate that from thence the two figures of the Logarithm to be taken from the second column, stand in the next line below.

N.		1	2	3	4	5	6	7	8	9	D.
10	000000	0.434	0868	1301	1734	2166	2598	3029	3461	3891	432
101	4321	4751	5181	5609	60.38	6466	6894	7321	7748	8174	428
102	8600	9026	9451	9876	-300	${ }^{-724}$	1147	1570	1993	$24: 5$	424
103	O12837	3250	3680	4100	4521	4940	5360	5779	6197	6616	419
104	7033	7451	7868	8284	8700	9116	9532	3947	-361	$\bullet 775$	416
105	021189	1603	2016	2428	28ヶ1	3252	3664	4075	4486	4896	412
106	5306	5715	6125	6533	69.42	7350	7757	8164	8571	8978	408
107	-9384	9789	${ }^{\bullet} 195$	-600	1004	1408	1812	2216	2619	3021	40.4
108	033424	3826	4227	4628	5029	5430	5830	6230	6629	7028	400
109	7426	7825	8223	8620	9017	9414	9811	-207	$\bullet 602$	-998	396
110	041393	1787	2182	2.576	2269	3362	3755	4148	45.0	4932	3
111	5323	5714	6105	649^{5}	6885	7275	7664	8053	8442	8830	389
112	9218	9606	9293	- 380	- 766	1153	1538	1924	2309	2694	386
113	-53078	3463	3846	4230	4613	4996	5378	5760	6142	5524	38.2
114	6905	7286	7665	8046	8426	8805	9185	9^{563}	9912	-320	379
115	060698	1075	1452	1829	2206	2582	2958	3333	3709	4083	376
116	4458	4832	5206	5580	5953	6326	6699	7071	7443	7815	37^{2}
117	8186	8557	8928	9298	9668	- 38	-407	${ }^{\bullet} 776$	1145	1514	309
118	071882	2250	2617	2985	3352	3718	4085	4451	4816	5182	366
119	5547	5912	6276	6640	7004	7368	7731	8094	8457	88	363
120	079181	9^{543}	9904	- 266	-626	- 287	1347	1707	2067	2426	360
121	082785	3144	3503	3861	4219	4576	4934	5291	5647	6004	357
122	6360	6716	7071	7426	7781	8136	8490	8845	914.9	9552	355
123	9905	- 258	-611	-963	1315	1667	2018	2370	2721	3071	351
124	093.122	3772	4122	4471	4820	5169	5518	5866	6215	6562	349
125	6010	7257	7604	7951	8298	8644	8790	9335	9681	-0 26	346
126	100371	0715	1059	1403	1747	2091	2434	2777	3119	$34^{4} 2$	343
127	3804	4146	4487	4828	5169	5510	5851	6191	6531	6871	3.40
128	7210	7549	7888	8227	8565	8903	92.11	9579	9915	-253	338
129	110590	0926	1263	1599	1934	2270	2605	2940	3275	3609	335
130	I 3943	4277	4611	4944	5278	5611	59.43	6276	6608	69.40	333
131	7271	7603	7934	8265	8595	8926	9256	9586	9915	245	330
132	120574	-903	1231	1560	1888	2216	2544	2871	3198	3525	328
133	3852	4178	4504	4830	5156	5481	5806	6131	6456	6781	325
134	7105	7429	7753	8076	8399	8722	9045	9368	9690	${ }^{6} 12$	323
135	1303.34	0655	0977	1298	1619	$10^{3} 9$	2260	2580	2900	3219	321
136	3539	3858	4177	4496	4814	5133	5451	5769	6086	6403	318 315
137	6721	7037	7354	7671	7987	8303	8618	8934	92 亿9	9^{564}	3ı5
138	2^{879}	-194	- 508	$\bullet 822$	1136	1450	1763	2076	2389	2702	314
139	143015	3327	3639	3 g 51	4263	4574	4885	5196	5507	5818	311
140	146128	6438	6748	70.58	7.367	7676	7985	8294	8603	911	300
14:	9219	9527	9835	${ }^{-1} 142$	- 449	$\bullet \cdot 56$	1063	1370	1676	19^{92}	307
142	152288	2594	2900	3205	3510	3815	4120	4424	4728	50.32	30's
143	5336	56.40	59.3	62.46	6549	6852	7154	74.5	7759	8061	303
144	8362	8664	8965	9266	9507	9968	-168	- 469	7h9	1068	301
145	161368	1667	1967	2266	2564	2863	3161	3460	3758	4055	299
146	4353	4650	4947	5244	5541	5838	6134	0.430	6726	7022	297
147	7317	7613	7908	820 ?	8497	8792	9086	9380	9674	9768	295
148	173262	0.555	0848	1141	1434	1726	2019	2318	2603	2995	293
149	3186	3478	376c,	4060	4351	4641	4932	5222	5512	5802	291
150	176091	6381	6670	69.59	; 248	7536	7825	$\bigcirc 113$	8401	869	289
151	8977	9264	9552	9839	-126	$\bullet 413$	-692	-985	1272	1558	287
152	181844	2129	2415	2700	2985	3270	3555	3839	4123	4407	285
153	4691	4975	5259	55.42	5825	6108	6391	6674	69.56	7239	283
154	7521	7803	8084	8366	8647	8928	9209	9490	9771	${ }^{20} 51$	281
155	190332	0612	obg^{2}	1171	1451	1730	2010	2239		2846	279
156	3125	3403	3681	3959	4237	4514	4792	5069	5346	5623	278
157 5	5899	6176	6453	6729	7005	7281	7556	7832	8107	8382	276
158	8657	$89^{3} 2$	9206	9481	9755	${ }^{-0} 29$	-303	- 577	-850	1124	274
159	201397	1670	1943	2216	2488	2761	3033	3305	3577	3848	272
N.	o	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	1.
100	204120	4391	4663	4934	5:04	54,5	5746	6016	6286	6556	271
161	6826	7006	7365	7634	7904	8173	8441	8710	8979	9247	265
162	95.5	9783	$\bullet \bullet 51$	-319	- 386	- 5.53	1121	- 388	1654	1921	26,7
163	212188	2454	2720	2986	3252	3518	3783	4049	4314	4579	266
$1{ }^{1} 4$	4844	5109	5373	5638	5002	6166	6430	6694	6957	7221	264
165	7.484	7747	8010	8273	8536	8798	9060	9323	9585	98.46	262
166	220108	0370	0631	0892	1153	1414	1675	1936	2196	2456	261
167	2716	2976	3236	3496	3755	4015	4274	4533	4792	50.51	259
168	5309	5568	5826	6084	63.42	6600	6858	7115	7372	7630	258
169	7887	8144	8400	8657	8913	9170	9426	9682	9938	-193	256
170	230449	0704	0260	1215	1470	1724	1979	2234	2488	2742	254
171	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276	253
172	5528	5781	6033	6285	6537	6759	7041	7292	7544	7795	252
173	8046	8297	8548	8799	9049	9299	9550	9800	${ }^{-9} 5$	-300	250
174	240549	0799	1048	1297	1546	1795	2044	2293	2541	2790	249
175	3038	3286	3534	3782	4030	4277	4525	4772	5019	5266	248
175	5513	5759	6006	6252	6499	6745	6991	7237	7482	7728	246
177	7973	8219	8464	8709	80.54	9198	9443	9687	9932	${ }^{9} 176$	245
178	250420	0664	0908	1151	1395	1638	1881	2125	2368	2610	243
179	2853	3096	3338	3580	3822	4064	4306	4548	4790	5031	242
180	255273	5514	${ }_{5} 755$	5996	6237	6477	6718	6958	7198	7439	241
181	7679	7918	8158	83,8	8637	8877	9116	9355	9594	983.3	239
182	260071	0310	0548	0787	1025	1263	1501 387	1739	1976	2214	238
183	24.51	2688	2925	3162	3399	3636	3873	4109	4346	4582	237
184	4818	5054	5290	5525	5761	5996	6232	6467	6702	6937	235
185	7172	7406	76.11	7875	8110	8344	8578	8812	9046	9279	234
186	9513	9746	9980	${ }^{-213}$	-446	-679	${ }^{-912}$	1144	1377	1009	233
187	271842	2074	2306	2538	2770	3001	3233	3464	3696	3927	232
188	4158	4389	4620	4850	5081	5311	5542	5772	6002	6232	230
189	6462	6692	6921	7151	7380	7609	7838	8067	8296	8525	229
190	278754	8982	9211	9439	9667	9895	${ }^{-123}$	-351	-578	-806	228
191	281033	1261	1488	1715	1942	2169	2306	2622	2849	3075	227
192	3301	3527	3753	3979	4205	4.431	4656	4882	5107	5332	226
193	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
194	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
195	290035	0257	0480	0702	0925	1147	1369	1591	1813	2034	222
196	2256	2478	2699	2920	3141 53	3363	3584	3804	4025	4246	221
197	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
198	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	219
199	8853	9071	9289	9507	9725	9943	${ }^{161}$	-378	${ }^{-5} 55$	$\bullet 813$	218
200	301030	1247	1464	1681	1898	2114	2331	2547	2764	2980	217
201	3196	3412	3628	3844	4059	4275	4491	4706	4921	5136	216
202	5351	5566	5781	5996	6211	$64=5$	6639	6854	7068	7282	215
203	7496	7710	7924	8137	835.	8564	8778	8991	9204	9417	213
204	9630	9843	- ${ }^{\text {a }} 6$	${ }^{-268}$	${ }^{-481}$	${ }^{-593}$	${ }^{-} 906$	1118	1330	1542	212
205	311754	1966	2177	2389	2600	2812	3023	3234	3445	3656	211
206	3867	4078	4289	4499	4710	4920	5130	5340	5551	5760	210
207	5970	6180	6390	6599	6809	7018	7227	7436	7646	7854	209
208	8063	8272	8481	8689	8898	9106	9314	9522	9730	9938	208
20 ?	320146	0354	0562	0769	0977	1184	I391	1598	1805	2012	207
$2: 0$	322219	2426	2633	2839	3046	3252	3458	3665	3871	4077	206
211	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131	205
212 313	6336 8380	6541 8583	6745 8787	6950	7155	7359	7563	7767	7972	8176	20.4
213	330414	8583	8787 0819	8991 1022	9194 1225	9398	9601 1630	9805	-608	${ }^{-211}$	203
214	$\begin{array}{r}330414 \\ 2438 \\ \hline\end{array}$	0617 2640	0819 2842	1022 3044 5	1225 3246	1427 3447	1630 3649	1832 3850	2034	2236 4253	2021
216	4454	4655	4856	5057	5257	5458	5658	5859	6059	0260	201
217	6460	6660	6860	7060	7260	7459	7659	7858	8058	8257	200
218	8456 340444	8656	8855	9054 1039	9253	9451	9650	9849	${ }^{-9} 47$	- 246	199
219	340444	0642	0841	1039	1237	1435	1632	1830	2028	2225	19^{8}
N.	0	1	2	3	4	5.	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
220	342423	2620	2817	3014	3212	3409	3606	3802	3999	4196	9
221	4392	4589	4785	4981	5178	5374	5570	5766	5962	6.57	197
222	6353	6549	6744	6939	7135	7330	7525	7720	7915	8 II 0	195
223	8305	8500	8694	8889	9083	9278	9472	9666	9860	-0.54	194
224	350248	0442	0636	0829	1023	1216	1410	1603	1796	1989	59.3
225	$2: 83$	2375	2568	2761	2954	3147	3339	3532	3724	3916	193
226	4108	4301	4493	4685	48,0	5068	5260	5452	5643	5834	192
227	6026	6217	6408	6599	6790	6981	7172	7363	7554	7744	191
228	7935	8125	8316	8506	8696	8886	9076	9266	9456	96.6	190
229	9835	${ }^{-9} 25$	${ }^{2} 215$	-404	-593	-783	${ }^{\bullet} 972$	1161	1350	1539	189
230	361728	1917	2105	2294	2482	2671	2859	3048	3236	3424	188
231	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	188
232	5488	5675	5862	6049	6236	6423	6610	6796	6983	7169	87
233	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030	186
234	9216	9401	9587	9772	9958	${ }^{-143}$	-323	$\bullet 513$	$\bullet 698$	-883	185
235	371068	1253	1437	1622	1806	1991	2175	2360	2544	2728	184
236	2912	3096	3280	3464	3647	3831	4015	4198	4382	4565	184
237	4748	4932	5115	5298	5481	5664	5846	6029	6212	6394	183
238	6577	6759	6942	7124	7306	7488	7670	7852	8034	8216	182
239	8398	8580	8761	8943	9124	9306	9407	9668	9849	- ${ }^{\text {- }}$ 30	181
240	380211	03\%2	0573	0754	0934	1115	1296	1476	1656	1837	181
241	2017	2197	2377	2557	2737	2917	3097	3277	3456	3636	180
242	3815	3995	4174	4353	4533	4712	4891	5070	5249	5428	179
243	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212	178
244	7390	7568	7746	7923	8101	8279	8456	8634	8811	8989	178
: 45	9166	9343	9520	9698	9875	$\bullet \bullet 51$	-228	-405	- 582	$\bullet 759$	177
246	3,0935	1112	1288	1464	1641	1817	1993	2169	2345	2521	176
247	2697	2873	3048	3224	3400	3575	375	3926	4101	4277	176
248	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	175
249	6199	6374	6548	6722	6896	7071	7245	7419	7592	7766	174
250	397940	8114	8287	8461	8634	8808	8981	9154	9328	9501	173
251	9674	9847	${ }^{-20}$	${ }^{-19} 2$	-365	- 538	${ }^{-711}$	-883	1056	1228	173
252	40140:	1573	1745	1917	2089	2261	2433	2605	2777	2949	172
253	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663	171
254	4834	5005	5176	5346	5517	5688	5858	6029	6199	6370	171
255	6540	6710	6881	7051	7221	7391	7.561	7731	7901	8070	170
256	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	169
257	9933	-102	${ }^{-271}$	-440	-609	${ }^{-} 777$	-946	1114 ${ }^{\text {\% }}$	1283	1451	169
258	411620	1788	1956	2124	2293	2461	2629	2796	2964	3132	168
259	3300	3467	3635	3803	3970	4137	4305	4472	4639	4806	(
260	414973	5140	5307	5474	5641	5808	5974	6141	6308	6474	67
261	6641	6807	6973	7139	7306	7472	7638	7804	7970	8135	166
262	8301	8467	8633	879^{8}	8964	9129	9295	9460	9625	9791	165
263	9956	-121	- 286	-431	$\bullet 616$	-781	${ }^{-245}$	1110	1275	1439	165
264	421604	1788	1933	2097	2261	2426	2590	2754	2918	3082	164
265	3246	3410	3574	3737	3 goI	4065	4228	4392	4555	4718	164
266	4882	5045	5208	5371	5334	5697	5860	6023	6186	6349	163
267	6511	6674	6836	6999	7161	7324	7486	7648	7811	7973	162
268	8135	8297	8459	8621	8783	8944	9106	9268	9429	$95 ¢$	162
269	9752	9914	${ }^{\bullet}{ }^{7} 5$	${ }^{-236}$	-398	-559	${ }^{-720}$	-88ı	1042	1203	151
270	431364	1525	1685	$\underline{1846}$	2007	2167	2328	2488	2649	2809	161
271	2969	3130	3290	3450	3610	3770	3930	4090	4249	4409	150
272	4569	4729	4888	5048	5207	5367	5526	5685	5844	6004	159
213	6163	6322	6481	6640	6798	6957	7116	7275	7433	7592	153
274	7751	7909	8067	8226	8384	8542	8701	8859	9017	9175	158
275	9333	9491	9648	0806	. 9964	-122	$\bullet 279$	$\bullet 437$	-594	$\bullet 752$	158
276	440909	1066	1224	$1{ }^{\circ}$	1538	1695	1852	2009	2166	2323	157
277	2480	26.37	2793	2900	3 r 06	3263	3419	3576	3732	3889	157
278	4045	4201	4357	4013	4.69	4825	4981	5137	5293	5449	156
279	5604	5760	5915	6071	622	6.382	6537	6692	6848	7003	155
N.	-	1	2	3	4	3	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
280	447158	73 r 3	7468	7623	7778	7933	8088	8242	8397	8552	155
281	8706	8861	9015	9170	9324	9478	9633	9787	9941	${ }^{\bullet \bullet} 95$	154
282	450249	0403	0507	2711	0865	1018	1172	1326	1479	1633	154
283	1786	1940	2093	2247	2400	2553	2706	2859	3012	3165	153
284	3318	3471	3624	3777	3930	4082	4235	4387	4540	4692	153
285	4845	4997	5150	5302	5454	5606	5758	5910	6062	6214	152
286	6366	5518	6670	6821	6973	7125	7276	7428	7579	7731	152
287	7882	8033	8184	8336	8487	8638	8789	8940	9091	9242	151
288	9392	9543	9694	9845	9995	-146	-296	$\bullet 447$	$\bullet 597$	${ }^{\bullet} 748$	151
289	460898	1048	1198	1348	1499	1649	1799	1948	2098	2248	15
290	462398	2548	2697	2847	2997	3146	3296	3445	3594	3744	150
291	3893	40.42	4191	4340	4490	4639	4788	4936	5085	5234	149
292	5383	5532	5680	5829	5977	6126	6274	6423	6571	6719	149
293	6868	7016	7164	7312	7460	7608	7756	7904	8052	8200	148
294	83.47	8495	8643	8790	8938	9085	9233	9380	9527	9675	148
295	9822	9969	${ }^{\bullet} 116$	${ }^{-} 263$	- 410	$\bullet 557$	${ }^{\bullet} 704$	-851	${ }^{\bullet} 998$	1145	14
296	471292	1438	1585	1732	1878	2025	2171	2318	2464	2610	146
297	2756	2903	3049	3195	3341	3487	3633	3779	3925	4071	146
298	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526	146
299	5671	5816	5962	6107	6252	6397	6542	6587	6832	6976	145
300	477121	7266	7411	7555	7700	7844	7989	8133	8278	8422	14.5
301	8566	8711	8855	8999	9143	9287	9431	9575	9719	9863	144
302	480007	0151	0294	0438	0582	0725	0869	1012	1156	1299	144
303	1443	1586	1729	1872	2016	2159	2302	2445	2588	2731	143
304	2874	3016	3159	3302	3445	3587	3730	3872	4015	4157	143
30.5	4300	4442	4585	4727	4869	5011	5153	5295	5437	5579	142
306	5721	5863	6005	6147	6289	6430	6572	6-14	6855	6997	142
307	7138	7280	7421	7563	7704	7845	7986	8127	8269	8410	14 I
308	8551	869^{2}	8833	8974	9114	9255	9396	9537	9677	9818	1.11
309	9958	${ }^{\bullet \bullet} 99$	${ }^{-239}$	-380	-520	-661	$\bullet 801$	${ }^{\bullet} 941$	1081	1222	140
310	491362	1502	1642	1782	1922	2062	2201	2341	2481	2621	140
311	2760	2900	3040	3179	3319	3458	3597	3737	3876	4015	139
312	4155	4294	4433	4572	4711	4850	4989	5128	5267	5406	139
313	5544	5683	5822	5960	6099	6238	6376	6515	6653	6791	139
314	6 g 30	7068	7206	7344	7433	7621	7759	7897	8035	8173	138
315	8311	8448	8586	8724	8862	8999	9137	9275	9412	9550	138
316	9687	9824	9962	${ }^{\bullet \bullet} 99$	- 236	- 374	-511	-648	${ }^{\bullet} 785$	${ }^{\bullet} 922$	137
317	501059	1196	1333	1470	1607	1744	1880	2017	2154	2291	137
318	2427	2564	2700	2837	2973	3109	3246	3382	3518	3655	136
319	3791	3927	4063	4199	4335	4471	4607	4743	4878	5014	136
320	505150	5286	5421	5557	5693	5828	5064	6099	6234	6370	136
321	6505	6640	6776	6911	7046	7181	7316	745 I	7586	7721	13
322	7856	7991	8126	8260	8395	8530	8664	8799	8934	9068	135
323	9203	9337	9471	9606	9740	9874	${ }^{-0.9} 9$	-143	$\bullet 277$	$\bullet 411$	134
324	510545	0679	08ı3	0947	1081	1215	1349	1482	1616	1750	134
325	1883	2017	2151	2284	2418	2551	2684	2818	2951	3084	133
326	3218	3351	3484	3617	3750	3883	4016	4149	4282	4414	133
327	4548	4681	4813	4946	5079	5211	5344	5476	5609	5741	133
325	5874	6006	6139	6271	6403	6535	6668	6800	6932	7064	132
329	7196	7328	7460	7592	7724	7855	7987	8119	8251	8382	132
330	518514	8646	8777	8909	9040	9171	9303	9434	9566	9697	131
331	9828	9959	${ }^{\bullet 0} 90$	${ }^{-221}$	-353	- 484	$\bullet 615$	- 745	-876	1007	131
332	${ }_{5} \mathbf{2 1 1 3 8}$	1269	1400	1530	1661	1792	1922	2053	2183	2314	131
333	2444	2.575	2705	2835	2965	3096	3226	3356	3486	3616	130
334	3746	3876	4006	4136	4266	4396	4526	4655	4785	4915	130
335	5045	5174	5304	5434	5563	5603	5822	5951	6081	6210	129
336	6339	6469	6598	6727	6850	6985	7114	7243	7372	7501	129
337	7630	7759	7888	8016	8145	82.74	8402	8531	8660	8788	120
338	8917	9045	9174	9302	9430	9559	9687	9815	9943	${ }^{\bullet 0} 7^{2}$	128
339	530200	0328	0456	0584	0712	0840	0968	1096	1223	1351	128
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	D.
340	531479	1607	173.4	1862	1990	2117	22.5	2372	2500	2627	128
341	2754	2882	3009	3136	3264	3391	3518	3645	3772	3897	127
342	4026	4153	4280	4407	4534	4661	4787	4914	5041	5.67	127
3/3	5294	5421	5547	5674	5800	5927	6053	6180	6306	6432	126
344	6508	5685	6811	6937	7063	7159	7315	7441	7567	7693	126
$34 J$	7819	7945	8071	8197	8322	8448	8574	8699	8825	8951	126
346	9076	9202	9327	9432	9578	9703	9829	9954	${ }^{-9} 79$	-204	125
347	540329	0.455	0580	0705	0830	0955	1080	1205	1330	1454	125
$34{ }^{\circ}$	1579	1704	1829	1953	2078	2203	2327	2452	2576	2701	12.5
349	2825	2550	3074	3199	3323	3447	3571	3696	3820	3944	12.4
350	544068	4192	4316	4440	4564	4688	4812	4936	5060	5183	124
351	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	124
352	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
353	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
354	9003	9126	9249	9371	9494	9610	9739	9861	9984	${ }^{-106}$	123
355	550228	0351	0.473	0595	0717	0840	O962	1084	1206	1328	122
356	1450	1572	169.4	1816	1933	2060	2181	2303	2425	2547	122
357	2668	2790	2911	3033	3155	3276	3398	3519	3640	3762	121
358	3883	4004	4126	4247	4368	4489	4610	4731	4852	4973	121
359	5094	5215	5336	5457	5578	5699	5820	59.4	6061	6182	121
360	556303	6.423	6544	6664	6785	6905	7026	7146	7267	7387	120
351	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589	120
362	8709	8829	8948	9068	9188	9308	9428	9548	9667	9787	120
363	9907	${ }^{-0} 26$	$\bullet 146$	-265	-385	-504	-624	${ }^{9} 743$	-863	-982	119
364	561101	1221	1340	1459	1578	1698	1817	1936	2055	2174	119
365	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	119
366	3.481	3600	3718	3837	3955	4074	4192	43 II	4429	4548	119
367	4666	4784	4903	5021	5139	5257	5376	5.994	5612	5730	118
'68	5848	5966	6084	6202	6320	6.437	6555	6673	6791	6909	118
367	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	118
170	568202	8319	8436	8554	8671	8788°	8905	9023	9140	9257	117
171	9374	9491	9608	9725	9842	9959	-976	${ }^{-19} 3$	-309	$\bullet 426$	117
172	570543	0660	0776	0893	1010	1126	12.43	1359	1476	1592	117
${ }_{7} 73$	1709	1825	19.42	2058	2174	2291	2407	2523	2639	2755	116
374	2372	2988	3104	3220	3336	3402	3568	3684	3800	3915	116
375	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072	116
376	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226	115
377	63.41	6457	6572	6687	6802	6917	7032	7147	7262	7377 8525	115
378	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
379	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	114
380	579784	9898	${ }^{\bullet-1} 12$	${ }^{-126}$	-241	-355	$\stackrel{469}{ }$	$\bullet 583$	-697	-811	114
381	580925	1039	1153	1267	1381	1495	1608	${ }^{1} 722$	1836	19 jo	114
382	2063	2177	2291	2404	2518	2631	2745	2858	2972	3085	114
383	3199	3312	3426	3539	3652	3765	3879	${ }^{3} 9992$	4105	4218 53	113 113
38.4	4331	4444	4557	4670	4783	4896	5009	5122	5235	5348	113
385	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475	113
386	6537	6700	6812	6925	7037	7149	7262	7374	7486	7599	112
387 388	7711	7823	7935	8047	8160	8272	8384	8.96 9615	8608	8720 9838	112
388 389	8832	8944 -661	9056 \bullet_{173} 1	9167 \bullet \bullet	9279 -396	${ }_{9} 9391$	9503 -619	9615 -730	9726 $\bullet 3$	${ }^{9838}$	112
389 390	$59106{ }^{\text {a }}$	-61 1176	178 1287	1384 1399	1510	16%	$1-32$ 18	1843	1955	2066	111
391	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	111
392	3286	3.397	3508	3618	3729	38.40	3950	4061	4171	4282	111
393	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386	110
394	5496	5606	5717	5827	5937	6047	6157	6267	6377	6487 7586	110
395	6597	6707	6817	6927	9037	7146	7256	7366	7476	7586	110 110
396	7695	7805	7914	8024	8134	8243	8353	8462	8372	8681	110 109
397	8791	8900	9009	9)19	9228	9337	94.46	${ }^{9} 9556$	9665	9774	109 198
398 399	9883 600973	9992 1082	0101 1191	1210 1299	$\bullet 319$ 1408	428 1517	.537 1625	1646 1744	1755 1843	1984 1951	109 109
N.	0	1	2	3	4	5	6	7	8	9	D.

\%.	\bigcirc		2	3	4	5	6	7	8		D.
400	602060	2169	2277	2386	2.494	2603	2711	2819	29	3036	108
401	3144	3253	3361	3469	3577	3686	3794	3 g 02	4010	4118	108
402	4.226	4336	44.12	450	4658	4766	4874	49^{82}	5089	5197	108
¢03	5305	$5: 13$	5521	50́28	5736	5844	5951	6059	6166	6274	108
404	6381	6489	6596	6704	6811	-919	7026	7133	7241	7348	10
405	745	7562	7669	7777	7884	7991	8098	8205	8312	8419	107
\%6	8526	8633	8740	8847	8954	9061	9167	${ }^{9} 274$	9381	9488	10
¢07	9594	9701	9808	9914	-021	${ }^{1} 28$	${ }^{+} 234$	-341	-447	- 504	107
¢0と	610600	0767	0873	0979	1086	1492	1298	1405	1511	1617	106
409	1723	1829	1936	2042	14	2254	2360	2466	2572	2678	100
4:0	1t 12784	2890	2996	$3{ }_{102}$	3207	3313	3419	3525	3630	3736	106
411	3842	3947	4053	4159	4264	4370	$44^{\text {j }}$	4581	4686	4792	106
412	4897	5003		5213	5319	5424	5529	5634	5740	5845	105
413	5050	6055	6160	6265	6370	6476	6581	6686	6790	6895	105
414	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943	105
415	3048	8153	8257	8362	8466	8571	8676	8780	8884	8989	105
416	9093	9198	9302	9406	9511	9615	9719	9824	9928	-032	104
417	620130	0240	0344	0.448	0052	06j6	0760	0864	c968	1072	104
413	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110	10 A
419	2214	23.8	2421	2525	2528	${ }_{27}{ }^{32}$	2835	2939	3042	3146	04
420	623249	3353	3456	3559	3663	3766	3869	3973	4076	4179	, 3
421	4232	4385	4488	$4{ }^{5} 91$	4695	4798	4901	5004	5107	5210	o3
422	$53{ }_{12}$	5415	5518	5621	5724	5827	5929	6032	6135	6238	-3
423	63.40	644^{3}	6546	6648	6751	6853	6956	7058	7161	7263	o3
424	7366	7468	7571	7673	$777{ }^{5}$	7878	79 \%o	8082	8185	8287	102
425	8389	8 锶	8593	8695	8797	8goo	9002	9104	9206	9308	102
426	9410	9512	9613	9715	9817	9919	${ }^{6}{ }_{2}{ }^{1}$	${ }^{\text {- }} 123$	${ }^{\circ} 224$	-326	102
427	630.42	0530	${ }^{0} 631$	0733	0835	og36	1038	1139	1241	1342	102
428	1444	1545	1647	1743	1849	1951	2052	2153	2255	2356	101
429	2457	2559	2660	2761	2842	2963	3064	3165	32	3367	101
430	633468	3569	3670	3771	3872	3973	4074	4175	4876	4376	100
431	447	4578	4679	4779	4880		5081	5182	5283	5383	100
432	5484	5584	5685	5785	5886	5986	6097	6187	6287	6388	100
433	6488	6588	66	6789	6889	6939	7089	7189	7290	7300	100
434	7490	759°	7690	7790	7890	7990	8090	8190	8290	8389	9
435	8489	8589	8689	8789	8888			9183			9
436	-94866	${ }^{9586}$	${ }_{0680}^{9680}$	9785	9885 0879	9934 0978	0084	${ }^{-183}$	- 2828	$\begin{array}{r}\text { - } 382 \\ 1375 \\ \hline\end{array}$	99
437	640481	${ }_{1573}^{0581}$	0680 1672	0779 1771	0879 1871	0978 1970		1177 2168	1276 2267	1375 2366	99
439	2465	2563	2662	2761	2860	2959	3058	3156	325	3354	9
440	643453	3551	3650	3749	3847	3946	4044	4143	4242	4340	8
44	4.439	4537	4636	47.34	4832	49.31	5029	5127	5226	5324	98
44^{2}	5.422	5521	5619	5717	5315	$5 \mathrm{Fr}^{3}$	6011	6110	6208	6306	8
44^{3}	6404	6.502	6600	6698	${ }^{6} 779^{6}$	694	6992	7089	7187	7285	98
444	7383	7481 8458	85799	7676	7774 8750 87	7872 8848		9043	8165 9140	9237	8
446	9335	9432	9530	9627	9724	9821		${ }_{60}{ }^{16}$	${ }_{-113}$	${ }_{9} 910$	97
447	650308	0405	$0{ }^{0} 02$	- ${ }^{\text {g }} 9$	${ }^{0696}$	0793	0800	0987	1084	1181	97
44^{3}	1278	1375	1472	1569	1660	1762	1859	1953	2053	2150	97
44)	2246	2343	2440	25	2633	2730	2826	2923	3019	3116	97
45	653213	33	3405	3502	3598	3695	3791	3888	3984	4080	
451	4177	${ }_{52}{ }^{2} 7^{3}$	4369	4465	4502	4658	4754	4850	4946	5042	96
452	5138	5235	5331	5427	5523	56.19	5715	5810	5 ob	6002	96
453	6098	6194	6290	6336	6482	6577	6673	6769	6864	6960	6
454	7056	7152	7247	7343		7534	7629	7725	7820	7916	\%
455	8011 8065	8107	8202	8298 9250	8393 9346	8488	8584	8679	8774 9726	8970 9821	
$4{ }^{4} 46$	8965	${ }^{9060}$	${ }_{9} 9106$	${ }^{9250}$	${ }^{9346}$	${ }^{9411}$	${ }_{4} 9536$	${ }^{9} 9631$	9726 0676	${ }^{9821}$	${ }^{95}$
458	060865	0960	1055	1150	1245	1339	1434	:529	1623	1718	95
459	1813	1907	2002	2096	2191	2285	2380	2475	2569	2663	95
N.	-	1	2	3	4	5	6	7	8	9	D.

8 a table of log-hitinas from 1 to 10,000

N.	-	1		3	4	5	6	7	8	9	D.
460	6627:3	2852	294,	3041	3,35	3230	3324	3418	3512	3607	,
461	3701	3795	3889	3983	407	${ }_{4172}^{4172}$	4266	4360	4454	45	96
44^{42}	4642	${ }^{4736} 5$	1830	${ }_{5862} 4$	${ }^{5018}$	112 6050	5206 6143	${ }^{5299}$	5393 6331	34.47	\%
463	5581 6518	${ }_{5012}$	${ }_{67} 5709$	5792	595	6030 6986	7079	7173	${ }^{2} 36$		84
465	7453	7546	7640	7733	7826	7920	8013	8106	8199	と29?	${ }^{3} 3$
466	8386	8479	8572	8665	8759	8852	8945	9038	${ }_{8060}^{9131}$	${ }_{9153}^{2224}$	$9 ?$
467	${ }^{9317}$	${ }^{9} 910$	${ }_{0431}^{9503}$	${ }^{9} 959$	${ }^{9689} 0$	${ }^{97} 9710$	${ }^{9802}$	${ }^{3095}$	0988	1080	${ }_{9} 9$
469	${ }^{1173}$	1265	13	1451	1543	1636	1728	1821	1913	2005	93
470	672098	2190	2283	2375	2467	2560	${ }^{2652}$	2744	${ }^{2836}$	288	98
471	3021	3113	3205	3297	3390	3432	3574	3660	3758		92
4_{47}^{47}	${ }_{4812}^{391}$	4034	${ }^{4125}$	${ }_{4}^{4218} 5$	${ }_{5228}^{4310}$	$\frac{4402}{5320}$	4494	${ }_{5503}^{4586}$	${ }_{5}^{4577}$	4769 5687	${ }_{9}^{92}$
474	${ }^{5} 778$	5870	5962	6053	6145	6236	6328	6419	6511	6602	$9{ }^{3}$
47^{5}	6694	6785	6976	6968	7059	7151	7242	7333	7424	- 5	91
476	760	86609	77×9	7881 8791	7972 8882	${ }_{8973}$	${ }^{8154}$	${ }^{8255}$:
${ }_{47}^{477}$		9519	9610	9700	9791	988	9973	${ }^{9} 93$	0.54	${ }^{2} 25$	91
479	680336	0420	00^{2}	0607	0698	$0_{7} 89$	-879	0970	1060	1351	91
480	681241	1332	1122	1513	1603	1693	1784	1874	1964	2055	go
481 482	3047	2235 3137	${ }_{3227}^{2320}$	${ }_{2317}^{2416}$	${ }^{2} 2006$	${ }^{2596}$	${ }_{3587}^{2680}$	2777	${ }_{3}^{256}$	2957 3857	${ }_{90}$
483	304	4037	427	4217	4307	4396		${ }^{4577}$	5563	4550	90
484	48	4933		5114 6010	32046	5294 6189	5333 6279	5473 6368	5563	${ }_{6547}$	${ }_{8}^{8}$
480	6742	6726	6815	6904	6994	7083	${ }_{7172}$	${ }^{2} 5$	${ }_{7}{ }^{351}$	7440	69
487 488	${ }_{8420}^{7529}$	7618 8509	7707	7795 8057	${ }^{7806}$	787 8865	${ }^{8004} 8$	-	8212 9131	8331 9220	89
489	${ }_{9} 309$	$9^{3} 98$	948	$9{ }^{5} 75$	9664	${ }_{9753}$	${ }_{9} 841$	9930	-	${ }^{1} 107$	80
490	69011^{6}	0285	0373	${ }^{0} 462$	${ }^{\circ} 550$	${ }^{0639}$	0728	${ }^{0} 816$	0095	${ }_{0}^{093} 18$	${ }^{89}$
${ }_{492}^{49}$	1081 1965	1170 2033	${ }_{12142}^{1238}$	1347 230 230	$1 \begin{aligned} & 1435 \\ & 23 \\ & 1\end{aligned}$	- 154			1789	77	析
49^{3}	${ }_{28} 8$	22^{35}	3023	1	3199	3287	337^{5}	3463	3551	3639	88
49	3727 4605	3815 4693	3903 4781	3991 4563		${ }_{5}^{4156}$	4234 5131 1	4342	43130 5307	4317 5394	8
44^{49}	${ }_{5432}$	${ }^{4659}$	5657	5744	${ }^{4932}$	${ }^{50419}$	6007		5382	6269	
497	6356	6444	${ }^{6531}$	6618	${ }^{6700}$	${ }^{6} 70{ }^{6}$		${ }^{6968}$	7055	7142	${ }^{7} 7$
4	7229 810.	7317 8185 8	${ }_{827} 704$	7362	${ }_{849} 77$	8535	8622	${ }_{8} 789$	${ }_{8} 7996$	${ }_{8883}^{814}$	8
500	${ }^{59} 9$	${ }_{9}^{9057}$	${ }_{6} 91$	${ }_{20}^{2331}$	9317	${ }^{9} 9.41$	${ }_{6}^{9} 9.91$	${ }_{9}^{9} 974$	${ }_{6} 9664$	${ }_{9617}^{9751}$	67 87 87
	90070	9924	${ }^{20871}$	${ }^{0} 963$	1050	.271 1136	${ }_{1222}$	-	${ }^{531}{ }^{5}$	-17	86
503	1568	1634	1741	${ }_{1827}^{187}$	${ }^{1971}$, 896	2086			${ }_{3205}^{234}$	86
504	2431	${ }_{3377}^{2517}$	${ }_{36}^{2003}$	${ }^{2689}$	${ }_{3}^{2775}$	${ }^{28121}$	29,47	${ }^{3039} 3$	3119 3979	4065	86
	4151	4236	${ }_{4322}$	4403	4494	4579	4655	$4{ }^{4} 51$	4837	${ }^{4922}$	86
	5008	5094	${ }_{5179}^{5179}$	${ }^{5265}$	5330 6206	5	${ }^{5522}$	${ }^{5607}$	${ }^{5693}$	5777^{3} 6632	86
508 509	${ }^{5364} 6$	5949	6888	6120 6974	${ }_{7}^{6205}$	${ }^{6291}$	${ }^{7239}$	${ }_{7315}^{646}$	${ }_{7} 6500$	7485	85
510		7653					8081	8:66	8251	8336	85
511	${ }^{4} 812$	8506 355	8591	${ }^{8076}$	${ }^{8761}$	${ }_{98964}^{884}$	$8{ }^{8} 311$	${ }_{9863}^{9015}$	9918	${ }_{6033}^{9185}$	85
513	[${ }^{9270}$	${ }^{9202}$	${ }_{0297}^{9440}$	${ }_{0}^{9324}$	${ }_{0}^{6009}$	${ }^{0} 9694$	${ }_{0} 9717$	${ }^{0} 710$		-379	85
5	0963	1048	1133	1217	1301	1385	1470	1534	1639		84 84 84
S5:5	1807 2650	1892	1976 2818		${ }_{2986}^{2144}$	2229 3070	${ }_{3154}^{2215}$	${ }_{323}^{2397}$	${ }_{332}^{248}$	236	84
517	3491	3575	3359	3742	3826	${ }^{3} 910$	3994	4078	45	${ }_{\text {L2 }}^{4246}$	
51	4330 510	4414 525	${ }_{5337}^{44}$	4581 5418	${ }_{5}^{4650}$	4749 5586	${ }_{5669}^{4833}$	${ }_{57}^{49} 5$	5000 5836	${ }^{5084}$	848
9						5			8		D.

N.	0	1	2	3	4	5	6	7	8	9	D.
520	716003	6087	5170	6254	6337	6421	6504	6588	6671	6754	83
521	6838	6921	7004	7088	7171	7254	7338	7421	750.4	7587	93
522	7671	7754	7837	7920	8003	8086	8169	8253	8336	8419	83
523	8502	8585	8668	8751	8834	8917	9000	9083	9165	9243	83
524	9331	9414	9497	9580	9663	9745	9828	9911	9994	${ }^{60} 77$	83
525	720159	0242	0325	0407	0490	0573	0655	0738	0821	э903	83
526	0986	1063	1151	1233	1316	1398	1481	1563	1646	1728	8_{2}
527	1811	1893	1975	2058	2140	2222	2305	2387	2469	2552	82
528	2634	2716	2798	2831	2963	3045	3127	3209	3291	3374	82
529	3456	3538	3620	3702	3784	3866	39.48	4030	4112	4194	82
530	724276	4358	4440	4522	4604	4685	4767	4849	4931	5013	82
531	5095	5176	5258	5340	5422	5503	5585	5667	5748	5830	82 82
532	5912	5993	6075	6156	6238	6320	6401	6483	6564	6646	82
533	6727	6809	6890	6972	7053	7134	7216	7297	7379	7460	81
534	7541	7623	7704	7785	7866	7948	8029	8110	8191	8273	81
535	8354	8435	8516	8597	8678	8759	8841	8922	9003	9084	81
536	9165	9246	9327	9408	9489	9570	9651	97^{32}	9813	9893	81
537 538	91674 730782	- 085	0.36 0944	${ }^{+217}$	-298	-378	$\bullet 459$	${ }^{-} 540$	-621	${ }^{-7} 02$	81
538 539	730782	0863	0944	1024	1105	1186	1266	1347	1428	1508	81
539	1589	1669	1750	1830	1911	1991	2072	2152	2233	2313	81
540	732394	2474	2555	2635	2715	2796	2876	2956	3037	3117	80
541	3197	3278	3353	3438	3518	3598	3679	3759	3839	3919	80
542	3999	4079	4160	4240	4320	4400	4480	4560	4640	4720	80
543	4000	4880	4960	5040	5120	5200	5279	5359	5439	5519	80
544	5599	5679	5759	5838	5918	5998	6073	6157	6237	6317	80
5.45	6397	6476	6556	6635	6715	6795	6874	6954	7034	7113	80
546	7193	7272	7352	7431	7511	7590	7670	7749	7829	7908	79
5.47	7987	8067	8146	8225	8305	8384	8463	8543	8622	8701	79
548	8781	8860	8939	9018	9097	9177	9256	9335	9414	9493	79
549	9572	9651	9731	9810	9889	9968	$\bullet 47$	${ }^{\bullet} 126$	${ }^{-205}$	$\bullet 284$	79
550	740363	0442	0521	0600	-0́78	0757	0836	0915	0994	1073	79
551	1152	1230	1309	1388	1467	1546	1624	1703	1782	1860	79
552	1939	2018	2096	2175	2254	2332	2411	2489	2568	18647	79 79
553 554	2725 3510	2804 3588	2882 3667	2961	3039	3118	3196	3275	3353	3431	78
534 555	4510	4388	3667 4449	3745 4528	3823	3902	3980	4058	4136	4215	78
556	5075	5153	5231	45309	45006	4684 5465	4762 5543	4840	4919 5609	4997	78
557	5855	5033	6011	6089	6167	6245	6323	6401	6479	5777 6505	8
558	6634	6712	6790	6868	6945	7023	7101	7179	7256	7334	78
559	7412	7489	7507	764°	7722	7800	7878	$79^{5} 5$	8033	8110	78
560	748188	8266	8343	8421	849^{3}	8576	8653	8731	88o8	8885	
561	8963	9040	9118	$919{ }^{5}$	9272	9350	9427	9504	9582	9659	77 77
562	-9736	9814	9891	9968	${ }^{-9} 45$	${ }_{1} 123$	-200	${ }^{-} 277$	-354	-431	77
563	7 ว0ว̄08	0586	0663	0740	0817	0894	0971	1048	1125	1202	77
564 565	1279	1356	1433 2202	1510	1587	1664	1741	1818	1895	1972	77
556	2048	2125 2803	2202 2970	2279	2356	2433	2509	2586	2663	2740	77
567	3583	3600	3736	3813	3123	3200	3277	3353	3430	3506	77
568	4348	4425	$4 J 01$	4578	4654	3966 4730	4042 4807	4119	4195	4272 5036	77
569	5112	5ı89	5265	5341	5.417	5404	5570	5646	4960 5722	5799	70
570	753875	5951	6027	6103	6180	6256	5332	6408	6484	6560	76
571	6636	6712	6788	6864	6940	7016	7092	7168	7244	7320	76
572	7396	7.472	7548	7624	7700	7775	7851	7927	8003	8079	76
573	8155	8230	830ヶ	8382	8458	8533	8609	8685	8761	8836	76
574	8912	8988	9063	9139	921.4	9290	9366	9441	9517	9592	76
575 576	9668	9743	9819	9894	9970	- 45	${ }^{-121}$	${ }^{1} 196$	${ }^{\bullet} 272$	-347	75
576 577	760422 1176	0498	0173 1326	0649 1402	0724	0799	0875	0950	1025	1101	75
578	1928	2003	2078	12153	1477 228	1502 2303	1627 2378	1702	1778 2529	1853	75
579	2679	2754	2829	2904	2978	3053	3128	3203	3278	3353	75
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	9	13.
580	763428	3503	3578	3653	3727	3802	3877	3وJ̃2	4027	4101	75
581	4176	4251	4326	4400	4475	4550	462.4	4699	4774	4848	75
582	4923	4998	5072	5147	- 5221	5296	5370	5445	5520	5594	73
583	5669	5743	5818	5892	5956	6041	6115	6190	6264	6338	74
584	6413	6487	6562	6636	6710	6785	6859	6933	7007	7082	74
585	7156	7230	7304	7379	7453	7527	7601	7675	7749	7823	75
586	7848	7972	8046	81 20	8194	8268	8342	8416	8490	8564	74
587	8638	8712	8786	8860	8934	9008	9082	9156	9230	9303	74
588	9377	9451	9525	9599	9673	9746	9820	9894	9968	${ }^{\bullet} 42$	74
589	77015	0189	0263	0336	$0{ }_{0}$	0484	0557	0631	0705	0778	74
590	770852	0926	0999	1073	1146	1220	1293	1367	1440	1514	74
591	1587	1661	1734	1803	1881	1955	2028	2102	2175	2248	73
592	2322	2395	2468	25.12	2615	2688	2762	2835	2908	2981	73
593	3055	3128	3201	3274	3348	3421	3494	3567	3040	3713	73
594	3786	3860	3933	4006	4079	4152	4225	4298	4371	4444	73
595	4517	4590	4663	4736	4809	4882	4955	5028	5100	5173	73
596	5246	5319	5392	5465	5538	5610	5683	5756	5829	5902	73
597	5974	6047	6120	6 I 93	6265	6333	6411	6483	6556	6629	73
598	6701	6774	6846	6919	6992	7064	7137	7209	7282	7354	73
599	7427	7499	7572	7644	7717	7789	7862	7934	8006	8079	72
600	778151	8224	8296	8368	8441	8513	8585	8658	8730	8802	72
601	8874	8947	9019	9091	9163	9236	9308	9380	9452	9524	72
602	9596	9669	9741	9813	9885	9957	${ }^{-9} 29$	$\bullet 101$	${ }^{1} 173$	${ }^{2} 245$	72
603	780317	o389	0461	0533	0605	0677	0749	0821	0893	0965	72
604	1037	${ }_{1} 109$	1181	1253	1324	1396	1463	1540	1612	1684	72
605	1755	1827	1899	1971	2042	2114	2186	2258	2329	2401	72
606	2473	2544	2616	2688	2759	2831	2902	2974	3046	3117	72
607	3189	3260	3332	3403	3475	3546	3618	3689	3761	3832	1
608	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546	71
609	4617	4689	4760	4831	49^{02}	4974.	50.45	5116	5187	5259	71
610	785330	5401	5472	5543	5615	5686	5757	5828	5899	5970	71
611	6041	6112	6183	6254	6325	6396	6467	6538	6609	6680	71
612	6751	6822	6893	6964	7035	7106	7177	7248	7319	7390	71
613	7460	7531	7602	7673	774	7815	7885	7956	8027	8098	71
614	8168	8239	8310	8381	8451	8522	8593	8663	8734	8804	71
615	8875	8946	9016	9087	9157	9228	9299	9369	9440	9510	71
616	9581	9651	9722	9792	9863	9933	${ }^{-0004}$	${ }^{-1} 74^{4}$	${ }^{\circ} 144$	-215	70
617	790285	0356	0426	0496	0567	0637	0709	0778	0848	0918	70
618	0,988	10J๊9	1129	1199	1269	1340	1410	1480	1550	1620	70
619	1691	1761	1831	1901	1971	2041	2111	2181	2252	2322	70
620	792392	2462	2532	2602	$267{ }^{2}$	2742	2812	2882	2952	3022	70
621	3092	3162	3231	3301	3371	3441	3511	3581	3651	3721	70
622	3790	3860	3930	4000	4070	4139	4209	4279	43 年	4418	70
623	4188	4558	4627	4697	4767	4836	4906	4976	50.43	5115	70
624	5185	5254	5324	5393	5463	5532	5602	5672	5741	5811	70
625	5880	5949	6019	6088	6158	6227	6297	6366	6436	6505	6
626	6574	6644	6713	6782	6852	6921	6990	7060	7129	7198	69
627	7268	7337	7406	7475	7545	7614	7683	7752	7821	7890	69
628	7960	8029	8098	8167	8236	8305	8374	8443	8513	8582	69
629	8651	8720	8789	8858	8927	8996	9065	9134	9203	9272	69
630	799341	9409	9478	9547	9616	9685	9754	9823	${ }_{9}{ }^{\text {S92 }}$	9961	69
631	800029	oog ${ }^{3}$	0167	0236	0305	0373	0442	0511	0580	0648	69
632	0717	0786	0854	0923	0992	1061	1129	119^{8}	1266	1335	69
633	1404	1472	1541	1609	1678	1747	1815	1884	1952	2021	69
634	2089	2158	2226	2295	2363	2432	2500	2568	2037	2705	69
635	2774	28.42	2910	2979	3047	3116	3184	3252	3321	3389	68
636	3.457	3525	3594	3662	37.30	3798	3867	3935	4003	4071	68
637	4139	4208	4276	4344	4412	4480	45.48	4616	4685	4753	68
638	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
639	5501	5569	5637	5705	5773	5841	5908	5976	6044	6112	68
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6		8	9	D.
640	806180	6248	6316	6384	6451	6519	6587	6655	6723	6790	68
541	6858	6926	6994	706 :	7129	7197	7264	7332	7400	7467	68
842	7535	7603	7670	7738	7806	7873	7941	8008	8076	8143	68
643	8211	8279	8346	8414	8481	8549	8616	8684	8751	8818	67
644	8886	3,53	9021	9088	9156	9223	9290	9358	9425	9492	67
645	9560	9627	9694	9762	9829	9890	9964	$\bullet^{\bullet} 31$	${ }^{\bullet \bullet} 98$	-165	67
6.46	810233	0300	0367	0434	0501	0569	0036	0703	0770	2837	67
647	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
648	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	67
649	2245	2312	2379	2445	2512	2579	2046	2713	2780	2847	67
650	312913	2980	3047	3114	3181	3247	3314	3381	3448	3514	7
651	3581	3648	3714	3781	3848	3914	3081	4048	4114	4181	67
652	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	67
653	4913	4980	5046	5113	5179	5246	53, 2	5378	5445	5511	66
554	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	66
655	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
656	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	66
657	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	66
658	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
659	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
660	819544	9610	9676	9741	9807	9873	9939	-0.4	$\bullet{ }^{\bullet} 70$	-136	66
661	820201	0267	0333	-399	0464	0530		0661	0727	0792	66
662	0858	og24	-989	1055	1120	1186	1251	1317	1382	1448	66
663	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	65
664	2168	2233	2299	2364	2430	2495	2560	2625	2691	2756	63
565	2822	2887	2952	3018	3083	3148	3213	3279	3344	3.409	65
666	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061	65
567	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
568	4775	4841	4906	4971	5036	5101	5166	5231	5296	5361	65
669	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	65
670	826075	6140	6204	6269	6334	6399	6464	6528	6593	6658	65
671	6723	6787	6852	6917	6081	7046	7111	7175	7240	7305	65
572	7369	7434	7499	7563	7628	7692	7757	7821	7886	79^{51}	65
673	80:5	8080	8144	8209	8273	8338	8402	8467	8531	8595	64
674	8660	8724	8789	8853	8918	8982	9046	9111	9175	9239	64
675	9304	9368	9432	9497	9561	9625	9690	9754	9818	9882	64
676	9947	${ }^{\bullet}{ }^{\text {I }} 1$	${ }^{\bullet 0} 75$	-139	${ }^{\bullet} 204$	${ }^{-} 268$	-3.32	-396	$\bullet 460$	- 525	64
677	830509	0653	0717	0781	0845	-209	0973	1037	1102	1166	64
678	1230	1294	1358	1422	1486	1550	1614	1678	1742	1806	64
679	1870	1934	1998	2062	2126	2189	2253	2317	2381	2445	d
680	832509	2573	2637	2700	${ }_{2} 764$	2828	2892	2950	3020	3083	64
681	3147	3211	3275	3338	3.402	3456	3530	3503	3657	3721	64
682	3784	3848	3912	3975	4039	4103	4166	4230	4294	4357	64
683	4421	4484	4348	4611	4675	$47^{3} 9$	4802	4866	4929	4993	64
684	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627	63
685	5691	5754	5817	5881	59.44	6007	6071	6134	6197	6201	63
686	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894	63
687	6057	7020	7083	7146	7210	7273	7336	7399	7462	7525	63
688	7588	7652	7715	7778	7841	7904	7967	8030	8093	8156	63
689	8219	8282	8345	8408	8471	8534	8597	8660	8723	8786	63
690	838849	8912	8975	9038	9101	9164	9227	9289	9352	9415	63
691	9478	9541	$99^{0} 0{ }^{4}$	9667	9729	9792	9855	9918	9981	$\bullet{ }^{\bullet} 43$	63
692	840106	0169	0232	0294	0357	0420	0482	0545	0608	5671	53
69^{3}	0733	079 ${ }^{6}$	0859	0921	og84	10.46	1109	1172	1234	1297	63
694	1359	1422	1485	1547	1610	1672	1735	1797	1860	1922	63
695	1980	2047	2110	2172	2235	2297	2360	2422	2484	2547	62
696	2609	2672	2734	2796	2859	2921	2983	30.46	3108	3170	62
697	3233	3295	3.357	3420	3.82	3544	3606	3669	3731	3793	62
698	3855	3 c 18	3980 *	4042	4104	4166	4229	4291	4353	4415	62
699	4477	4539	4601	464 4	4726	4788	4850	4912	4974	5036	62
N.	0	1	3	3	4	5	6	7	8	9	D.

	0			3	4	5	6	7			
700	845098	5160	5222	5284	5346	5408	5470	5532	94	56	
70	5718	5780	5842		5966	6028	6090	${ }_{6151}$	213	6275	
70	6337	6.399	6461	6523	6585	6646	6708	6770	832	6.194	
703	69	7017	7079	7141	7202	7264	7326	7358	7449	7511	
704	7573	7634	$7{ }^{696}$	7758	7819	7881	$79{ }^{3}$	8004	8066	8128	
705	8184 8805 10	8251 8866	8312 8928	8374 889	8435	8497	8559	8620	8682	8743	
70	8805 $9: 19$	8866	8928 9342	8989 9604	9051	9112	9174	9235	9297	9358	
70 70	${ }_{8 j 0033}^{9!19}$	9481 0095	9342	9604 0217	9665	9726	9788	9849	9211	72	
709	646	0707	0769			40	1014	0462	0324 1136		
710	851258	1320	81	1442	o3	64	625	1686			
711	1870	1931	1992	053	2114	2175	2236	2297	2358	2419	
71	2480	2541	2602	2663	2724	2735	2846	2907	2968	3029	6
713	3090	3150	3211	3272	3333	3394	3455	3516	3577	3637	61
71	3698	3759	820	3881	39.11	4002	4063	4124	4185	4245	
15	4306	4367	28	4488	4549	4610	4670	4731	4792	4852	
716	4913	4974	2034	5095	5156	5216	5277	5337	539^{8}	5459	61
717	5519	55	5640	5701	5761	5822	5882	5943	6003	6064	
718	6124	6185	25^{5}	6306	6366	6427	6487	6548	6608	6668	
719	6729	6789		6910	6970	7031	7091	7152	7212	272	
720	857332	7393	7453	7513		7634	7694	7755	7815	7875	60
721	7935	799^{5}	8056	8116	8176	8236	8297	8357	8417	8477	
722	853	8597	865	8718	877^{8}	8838	8898	8958	9018	9078	
723	9138	9198	925	$9^{3} 18$	9379	9439	9499	9559	9619		60
724	860338	9799	98	9918	9978	-•38	$\bullet^{\bullet} 08$	$\bullet 158$	\cdot_{218}	-278	60
726	-237	-099 ${ }^{6}$	1056	1116	11	1236	1295	0757 1355	0817 1415		
727	1534	1594	1654	1714	177^{3}	1833	1893	$12^{5} 2$	12	2072	
728	2131	2191	2251	2310	2370	2430	2489	2549	2608	2668	o
729	2728	2787	2847	2906	2966	3025		3144	320	3263	6
730	863323	3382	3442	1	3561	3620	3680	3739	3799	58	59
731	3917	3977	4036	4096	4155	4214	\%	4333		4452	
732	1511	4570	4630	4689	4748	4808	4867	4926	4985	5045	
	5104	5163 5755	5222	5282	5341	5400	5459	5519	5578	5637	
7	6287	6346	$640{ }^{\circ}$	6465	032	6292	6042		6760		
736	687	6937	699	7055	7114	717.3	7232	7291	7350	7409	
73	7467	7526	7885	7644			7821		7939		
738	8056	8115	81	8233	8292	8350	8409	8468	8527	8586	
7^{3}	86	87			8879	8938	899?	9056	9114	9173	
740	869232	9290		9408	9466	9525	9584	9642	9701	9760	59
741	9818	98	99^{35}	9994	$\bullet 953$	${ }^{111}$	${ }^{-170}$	${ }^{-228}$	${ }^{287}$	-345	
742	870404	0462	0321	0579	0638	0696	0755	${ }_{0}^{0813}$	${ }^{08}{ }^{7} 2$	\bigcirc	
743	O	1047	1106	1164	1223	1281	1339	1398	1456	1515	
744	1573	1631	1690	1748	1806	1865	1923	1981	20.40	2098	58
745	2156	22.5	2273	2331	2389	2448	2506	2564	2622	2681	58
746	2739	2797	2855	2913	${ }^{2} 972$	30.30	3088	3146	3204	3262	58
747	3321	3379	3437	3495	3553	3611	3669	272.7	3785	3844	58
748	3902	3960	+018	4076	4134	4192	4250	430	4366	4424	58
749	4482	4540	4398	465	4714	4772	483	4888	4945	5003	58
750	875061			5235	5293	535		5466	5524	5582	58
$75:$	5640	5698	5756	58.3	5871	${ }^{2} 29$	5987	6045	6102	6.60	58
752	6218	6276	6333	6391	6449	6507	6564	6622	6680	6737	58
753	6795	6853	6910	6968	7026	7093	7141	7199	7256	7314	58
754	7371	7429	7487	7544	7602	7659	7717	7174	7832	7889	58
${ }_{7}^{755}$	7947 8522	8004	8062	8119	8177	8234	8882	88349	8407	8464	
		9153	9211	9268	9325	9383	9440	9497	9555	9612	
758	9669	9726		9841	9893	9936	${ }^{-9} 13$	$\bullet{ }^{\circ} 70$	${ }^{1} 127$	-185	57
759	880242	0299	0356	0413	0471	o328	0585	$06 \not 2$	0699	0756	7
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	n	!	2	3	4	5	6	7	3	9	D.
760	880814	0871	0928	og85	1042	1099	1156	1213	1271	1328	7
761	1385	1442	1499	1556	1613	16 c	1727	1784	1841	1898	7
762	1255	2012	2069	2126	2183	2240	2297	2354	2411	2468	57
703	2325	2581	2638	2695	2752	2809	2866	2923	2980	3037	$5-$
764	30,3	3150	3207	3264	3321	3377	3434	34¢̨ 1	3348	3605	57
765	3 3́6ı $^{\text {a }}$	3718	3775	3832	3888	3245	4002	4059	4115	4172	57
766	4229	4285	4342	4399	4455	4512	4569	4625	4682	47^{39}	57
\% 67	4795	4852	4909	4965	5022	5078	5135	$5: 92$	5248	5305	57
768	5361	5418	5474	5031	5587	5644	5700	5757	5813	5870	57
769	5926	5983	6039	6096	6152	6209	6265	6321	6378	6434	56
7:	836421	6547	660.4	6660	6716	6773	6829	6885	6942	6998	56
771	7054	7111	7167	7223	7280	7336	7392	7449	7505	7561	56
772	7617	7674	7730	7786	7842	7898	7955	8011	8067	8123	56
77.	8179	8236	8292	8348	8404	8460	8516	8573	8629	8685	56
774	8741	8797	8853	8909	8265	9021	9077	9134	9190	9246	56
775	9302	9358	9414	9470	7526	9582	9638	9694	9750	9806	56
770	$9{ }^{96} 6$	9918	9974	- 30	-e86	$\bullet 141$	-197	${ }^{-253}$	-309	-365	56
777	Y00'21	0477	0533	0589	0645	0700	0756	0812	0868	0924	56
778	$00^{2} 80$	1035	1091	1147	1203	1259	1314	1370	1426	1482	56
779	1537	1593	16.49	1705	1760	1816	1872	1928	1983	2039	56
780	\&22:05	2150	2206	2262	2317	2373	2429	2484	2540	2595	56
781	2,51	2707	2762	2318	2873	2929	2985	3040	3096	3151	56
782	6207	3262	3.318	3373	3429	3.484	3310	3595	3651	3706	56
783	2762	3817	3873	3928	3984	4039	4094	4150	4205	4261	55
784	\$316	4371	4427	4482	4538	4593	4648	4704	4759	4814	55
785	4870	4925	4980	5036	5091	5146	5201	5257	5312	5367	55
785	5423	5478	5533	5588	5644	5629	5754	5809	5864	5920	55
787	5975	6030	6085	6140	6195	6251	6306	6361	6416	6471	55
783	6526	6581	6636	6692	6747	68022	6857	6912	6967	7022	55
789	7077	7132	7187	$72{ }^{2}$	7297	7352	7407	7462	7517	7572	55
790	397627	7682	7737	7792	7847	7902	7957	8012	8067	8122	55
191	8176	$823 i$	8286	8341	8396	8451	8506	8561	8615	8670	55
192	8725	8780	8835	8890	8944	8999	9054	9109	9164	9218	55
193	9273	9328	9383	9.437	9492	9547	9602	9 95j6	9711	9766	55
194	9821	9875	9930	9985	- 39	${ }^{-9} 94$	${ }^{-149}$	-203	${ }^{\bullet} 258$	$\bullet 312$	55
195	900367	0422	0.476	oJ31	0586	0640	-695	0749	0804	0859	55
196	0913	0968	1022	1077	1131	1186	1240	1295	1349	1404	55
197	1458	1513	1567	1622	1676	1731	1785	1840	1894	1948	54
198	2003	2057	211?	2166	2221	2275	2329	2384	2438	2402	54
199	2547	26 cl	2655	2710	2764	2818	2873	2927	2981	3036	54
800	90.3090	3144	3199	3253	3307	3361	3416	3470	3524	3578	54
801	3633	3687	3741	3795	3849	3904	3958	4012	4066	4120	54
802	4174	4229	4283	4337	4391	4445	4499	4503	4607	4661	54
803	4716	4770	4824	4878	4932	4986	50.40	5094	5148	5202	54
804	5256	5310	5364	5418	5472	5326	5580	5634	5688	5742	54
Soj	5796	5850	5904	5958	6012	6066	6119	6173	6227	6281	54
8.36	6335	6389	6443	6497	6551	6604	6658	6712	6766	6820	54
837	6874	6927	6981	7035	7089	7143	7196	7250	7304	7358	54
808	7411	7465	7519	7573	7626	768 c	7734	7787	7841	7805	54
809	7949	8002	8056	8110	8163	8217	8270	8324	8378	8431	,
810	908485	8539	8592	8646	8699	8753	8807	8860	8914	8967	5.4
811	9021!	9074	9128	9181	9235	9289	9342	9396	9449	9503	54
812	9556	9610	9663	9716	9770	9823	0877	9930	9984	$\bullet 37$	53
813	910001	0144	0197	0251	0304	0358	0411	0464	0518	0571	53
814	ot24	0678	0731	0784	0838	0891	0944	0998	1051	1104	53
815	1158	1211	1264	1317	1371	1424	1477	1530	1584	1637	53
816	1690	1743	1797	1850	1903	1936	2009	2063	2116	2169	53
817 818	2222	2275	2328	2381	2435	2488	2541	2594	2647	2700	53 53
818 819	2753	2306	2859	2913	2,66	3019	3072	3125	3178	3231	53 53
819	3284	3337	3390	344^{3}	3496	3549	3602	3655	3708	3761	53
N.	0	1	2	3	4	5	6	7	8	9	D.

IV.	0	1	2	3	4	5	6	7	8	9	
820	913814	3867	3920	3973	4026	4079	4132	4184	4237	4290	53
821	43.43	4306	449	4002	4555	4608	4660	4713	4760	4519	5
882	4872	4925	4977	5030	5083	5136	5189	5.211	5294	5347	53
823	5400	5453	5005	5558	5611	5664	5716	5769	5822	5875	53
882	5927	5980	6033	6085	6138	6191	62.43	6296	6349	6401	-2
825 826	6454	6507	6559	6612	6664	6717	6770	6822	6875	5927	3
826	6980 7506	7033	7085	7138	7190	7243	7295	7348	7400	7453	53
8827	803 c	8	7011	8	7716 8240	7768 8203	7820 8345	7873	7925 8450	7978 802	53
829	8355	8607	8659	8712	8764	8816	8869	8921	8973	9026	32 58 5
830	919078	9130	9183	9235	9287	93.40	9392	9444	9496	9549	52
831	9601	9653	9706	9753	9810	9862	9914	9967	${ }^{\circ} 19$	-9.71	52
832	920123	0176	0228	0280	0332	0384	0436	0489	0541	-5.93	52
833	0645	0697	0749	0801	0853	-906.	-958	1010	1062	1114	5
834	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	52
835	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154	5
836	2206	2258	2310	2362	2414	2456	2518	2570	2622	2674	52
837	725	2777	2329	2881	2933	22^{85}	3037	3089	3140	3192	52
838	3244	3296	3348	3399	3451	3) 3	3555	3607	3658	3710	52
839	3762	3814	3865	3917	3969	4021	4072	4124	4176	4228	52
840	924279	4331	4383	4434	4486	4538	4589	4641	4693	4744	52
841	4796	4848	$4{ }^{4} 99$	4951	5003	5054	5106	5157	5209	5201	52
842	5312	5364	5415	5.467	5518	5570	5621	5673	5725	5776	52
843	58.28	5879	5931	5982	6034	6085	6137	6188	6240	6291	5p
844	6342	6394	5445	6497	6548	6600	6651	6702	6754	6805	\% 18
845	6857	6908	6959	7011	7062	7114	7165	7215	7268	$7{ }^{3} 19$	5.
846	7370	7422	7473	7524	7576	7627	7678	7730	7781	7832	53
847	7883	7935	7986	8037	8088	8140	2191	82.42	8293	8345	51
848	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857	51.
849	8908	8959	9010	9061	9112	9163	9215	9266	9317	9368	51
850	929419	9470	9521	$957{ }^{2}$	9623	9674	9725	9776	$9{ }^{82} 27$	9879	5r
851	9930	9981	${ }^{0} 0032$	-083	${ }^{1} 134$	${ }^{1} 185$	${ }_{*} 236$	-287	$\bullet 338$	$\bullet 388$	51
852	930440	0491	oó ${ }^{\text {a }}$	-59 ${ }^{2}$	0643	0694	0745	0796	0847	-898	51
853	$\bigcirc 949$	1000	1051	1102	1153	1204	1254	1305	1336	1407	5.
85.4	1453	1509	1560	1610	1661	1712	1763	1814	1865	1915	5.
855	1966	2017	2068	2118	2169	2220	2271	2322	2372	2423	51
856	2474	2524	2575	2626	2677	2727	${ }^{27} 78$	2829	2879	29.30	51
857	2981	3031	$30{ }^{\text {3 }} 2$	3,33	3183	3234	3285	3335	3386	3437	51
858	3487	3538	3589	3039	3690	3740	3791	3841	3892	3943	51
859	3993	4044	4094	414°	$419{ }^{5}$	4246	4296	4347	4397	4448	58
860	934498	4549	4599	4650	4700	4751	4801	4852	4902	4953	50
861	5003	5054	${ }_{5104}^{56}$	5154	${ }_{5} 505$	5255	5306	5356	${ }^{5} 406$	5457	50
$8{ }^{8} 2$	5607	5058	5608	5658	5709	5759	5809	5860	5910	5960	50.
50.3	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	50
864	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	50
865	7016	7066	7117	7167	7217	7267	7317	7367	7418	7468	50
865	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969	50
867	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	50
868	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	50
869	9020	9079	9120	91-0	9220	9270	9320	9369	9419	9469	5
870	939519	9569	9619	9069	9719	9769	9819	9869	9918	9968	50
871	940018	0068	0118	0168	0218	0267	0317	-367	0417	0467	
872	0516	0566	0616	0666	0716	0765	0815	0865	-9,15	-964	50
873	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	50
874	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	50
875	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	50
876	2504	2554	2603	2653	${ }^{2702}$	${ }^{2} 752$	2801	${ }_{3}^{2851}$	2901	2950	50
877	3000	3049	3099	3148	3198	3247	3297	3346	3396	3.445	49
878 879	3495 3989	3544 4038	3593 4088	3643 4137	3692 4186	3742 4236	3791 4285	3841	3890 4384	3939 4.33	49
5.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	1	2	3	4	5	6	7	8	,	D.
880	944483	4532	4581	4631	4680	4729	4779	4828	4877	4927	49
881	4976	5025	5074	5124	5173	5222	5272	5321	5370	5419	49
882	5.469	5518	5567	5616	5665	5715	5764	5813	5862	5712	49
883	5061	6010	6059	6108	6157	6207	6256	63031	635.4	6403	49
884	6752	6501	6551	6600	66.49	6693	6747	6796	6845	639.1	49
885	6943	6992	70.41	7090	7140	7189	7238	7257	7336	7385	49
886	7434	7483	7532	7581	7630	7679	7728	7777	7826	7875	49
887	7924	7973	8022	8070	8119	8168	8217	8266	8315	8364	49
888	84 4 3	8462	8511	8560	8609	8657	8706	8755	8804	88.3	49
839	8902	8951	8999	9048	9097	9146	9195	9244	9292	9341	49
890	949390	9439	9488	9536	9585	9634	9683	9731	9780	9829	49
851	-9578	9926	9975	${ }^{30} 24$	-0.73	${ }^{\circ} 121$	${ }^{\circ} \mathrm{I} 70$	${ }^{-1} 19$	${ }^{2} 267$	-316	49
892	950365	0.154	0462	0511	0560	0608	0657	0706	0,54	-S03	49
893	0851	0900	09㣙	0997	1046	1095	1143	1192	1240	1289	49
894	1338	1386	1435	1483	1532	1580	1629	1677	1726	$177{ }^{\circ}$	49
895	1823	1872	1920	1969	2017	2066	2114	2163	2211	2260	48
896	2308	2356	2405	2453	2502	2550	2599	2647	26.56	2744	48
897	2792	2841	2889	2933	2996	3034	3083	3131	31×2	3228	48
898	3276	3325	3373	3421	3 亿70	3518	3566	3615	3663	3711	48
899	3760	3808	3856	3905	$39^{5} 3$	4001	40.49	4098	4146	4194	4^{8}
900	954243	4291	4339	4387	4435	4484	4532	4580	4628	4677	48
901	4725	4773	4821	486	4918	4966	5014	5062	5110	51.58	48
902	5207	5255	5303	53i 1	5399	5447	5495	5543	55.92	56.10	48
903	5688	5736	5781	5832	5830	5928	5976	6024	6072	6120	48
905	6168	6216	6265	6313	6361	6409	6457	6505	655.3	6601	48
905	6049	6697	6745	6793	6840	6888	6936	6984	7032	7080	48
906	7128	7176	7224	7272	7320	7368	7416	7464	7512	7559	48
907	7007	7655	7703	7751	7799	7847	7894	79.2	7990	8033	48
908	8086	8134	8181	8229	8277	8325	8373	8421	8408	8516	48
909	8564	8612	8659	8707	8755	8803	8850	8898	89.46	8994	48
910	950.41	9089	9137	9185	9232	9280	9328	9375	9423	9471	48
911	9518	9566	9614	9661	9709	9757	9804	9852	9900	9947	48
912	9995	${ }^{0} 0^{4} 2$	${ }^{\bullet 0} 90$	${ }^{\bullet} 138$	${ }^{\bullet} 185$	${ }^{\bullet} 233$	${ }^{-2} 50$	-328	-376	${ }_{-423}$	48
913	900471	0518	0566	0613	0661	0709	0756	0804	0851	0899	48
914	0946	0994	10.41	1089	1136	1184	12.31	1279	1326	1374	47
915	1421	1469	1516	1503	1611	1658	1706	1753	1801	1848	47
916	1895	19.43	1990	2038	2085	2132	2180	2227	2275	2322	47
917	2369	2417	2464	2511	2559	2606	2653	2701	2748	2795	47
918	2843	2890	2937	2985	3032	3079	3126	3174	3221	3208	17
919	3316	3363	3410	3457	3504	3552	3599	3646	3693	3741	47
920	963788	3835	3882	3929	3977	4024	4071	4118	4165	4212	47
921	4260	4307	4354	4401	4448	44^{4}	4542	4590	4637	4684	47
922	4731	4778	4825	4872	4919	4966	5013	5061	5108	5155	47
923	5202	5249	5296	5343	5390	5437	5484	5531	5578	5625	47
924	5672	5719	5766	5813	5860	5007	5954	6001	6048	6095	47
925	6142	518	6236	6233	6329	6376	6423	6470	6517	6564	47
926	6611	6658	6705	6752	6799	68.45	6892	6939	6986	7033	47
	7080	7127	7173	7220	7267	7314	7351	7408	7404	7501	47
9^{28}	7548	7595	76.42	7688	7735	7782	7829	7875	7922	7969	47
929	8016	8062	8109	8156	8203	8249	8296	8343	8390	8436	47
930	968483	8530	8576	8623	8670	8716	8763	8810	8856	8003	47
921	8950	8996	90.33	9090	9136	9183	9222	9276	9323	9369	47
932	9416	9463	9509	9556	9602	9649	9695	9742	9789	9832	47
933	9882	9928	9975	${ }^{00} 21$	-068	${ }^{-114}$	${ }^{-161}$	${ }^{-207}$	-254	-3oc	47
934	970347	0393	04.0	0996	0533	0579	0626	0672	0719	0760	46
935	3812	08.38	0904	09^{51}	0997	1044	1090	1137	1183	1229	46
936	1276	1322	1369	1415	1461	1508	15.54	1601	1647	162^{3}	46
937	1749	1786	1832	1879	1925	1971	2018	2064	2110	2157	46
938	2203	2249	2295	23.42	2398	2434	2481	2527	2573	2619	46
9.9	2066	2712	2758	3804	2851	2897	2943	2989	3035	3082	46
N.	0	1	2	3	4	5	6	7	8	9	D.

N.	0	I	?	3	4	5	6	7	8	9	
940	973128	3174	3220	3266	3313	3359	3405	3451	3497	35.43	46
941	3590	3636	3682	3728	3774	3820	3866	3913	3959	4005	46
9.12	4031	4097	4143	4189	4235	4281	4327	4374	4420	4466	46
943	4512	4558	460.4	4650	4696	4742	4788	4834	4880	4926	46
944	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	40
9.45	5452	5478	5524	5570	5616	5662	5707	5753	5799	5845	40
946	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	46
947	6350	$63{ }^{2} 6$	6442	6488	6533	6579	6625	6671	6717	6763	40
948	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	4
949	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	40
90	977724	7769	7815	7861	7906	7952	7998	8043	8089	8135	46
951	8181	8226	8272	8317	8363	8409	8454	8 300	8546	8591	40
952	8637	8683	8728	8774	8819	88065	8911	8956	9002	9047	40
953	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	46
954	9548	9594	9639	9685	9730	9776	9821	9867	9912	9958	46
955	980003	0049	0094	0140	O185	0231	0276	0322	0367	0412	45
956	0408	-5503	0544	-0594	06.40	0685	0730	0776	0821	0867	45
957	-912:	0950	1003	1048	1093	1139	1184	1229	1275	1320	45
9.58	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	45
959	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
960	98271	2316	2362	2407	2452	2497	2543	2588	2633	2678	45
961	2723	2769	2814	2859	2904	29.49	2994	3040	3085	3130	45
962	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	45
953	3626	3671	3716	3762	3807	3852	3897	3942	3987	4032	45
964	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	45
765	4527	4502	4617	4662	4707	$47^{5} 2$	4797	4842	4887	4932	45
966	4977	5022	5067	5112	5157	5202	52.47	5292	5337	5382	45
367	5426	5471	55.6	5561	5606	5651	5696	5741	5786	5830	45
968	5875	5920	5965	6010	6055	6100	6144	6189	6234	6279	45
969	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727	45
970	986772	6817	6861	6906	6951	6996	70.40	7085	7130	7175	45
971	7219	7264	7309	7353	7398	7443	7488	7532	7577	7622	45
972	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	45
973	8113	8157	8202	8247	8291	8336	8381	8425	8470	8514	45
974	8559	8604	8648	8693	8737	8782	88.26	8871	8916	8960	45
975	9005	90.49	9094	9138	9183	9227	9272	9316	9361	9405	45
976	9450	9494	9539	9583	9628	9672	9717	9761	9806	9850	44
977	9895	9939	9983	${ }^{\bullet \bullet} 28$	${ }^{\bullet 0} 72$	${ }^{+117}$	-161	-206	-250	-204	44
978	970339	0383	0428	0472	0516	0561	0605	$0650{ }^{2}$	0694	0738	44
979	0783	0827	0871	-916	0,60	1004	10.49	1093	1137	1182	44
980	99:226	1270	1315	1359	1403	1448	1492	1536	1580	1625	44
981	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	44
982	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	44
983	2554	2598	2642	2686	2730	2774	2819	2863	2907	22^{51}	44
984	2995	3039	3083	3127	3172	3216	3260	3304	3348	33,2	44
985	3436	3480	3524	3568	36ı3	3657	3701	3745	3789	3833	4.1
936	3877	3 g 21	3965	4009	4053	4097	4141	4185	4229	4273	44
987	4317	4361	4405	4449	449^{3}	4537	4581	4625	4069	4713.	44
988	4757	4801	4845	4889	4033	4977	5021	5065	5108	5152	44
389	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	44
990	995035	5679	5723.	5767	5811	5854	5898	59.2	5986	6030	44
991	6074	6117	6161	6205	62.49	6293	6337	6380	6424	6.468	44
992	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	44
973	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	44
994	7386	7430	7474	7517	7561	7605	76.8	7692	7736	7779	44
995	7823	7867	7910	7954	7998	80.41	8085	8129 856	8172	8216	44
996	8259	8303	8347	8390	8434	8477	8521	8564	8608	8652	4.4
	8605	8739	8782	8826	8869	8913	8956	9000	9043	9087	4.4
998	9131	9174	92.18	9261	9305	9348	9392	9435	9479	9522	44
999	9565	9609	9652	9696	9739	9783	$0^{8} 826$	9870	9913	9957	43
N.	0	1	2	3	4	5	6	7	8	9	D.

A TABLI

of

LOGARITHMIC

SINES AND TANGENTS

FOR EVEBY

DEGREE AND MINUTE

OF THE QUADRANT.

Remark. The minutes in the left-hand column of each page, increasing downwards, belong to the degrees at the top; and those increasing upwards, in the right-hand column, belong to tho degrees beluw.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0.	0.000000		10.00		0.000000		Infinite.	60
1	6.463726	$5017 \cdot 17$	00000	. 00	6.463726	5017-17	13.536274	50
${ }_{2}^{2}$	764756	2934.85	oo	- 00	764756	2934.83	235244	58
3	940847	2032.31	ооо	-00	940847	2082.31	- 059153	57
4	7.065786 162606	1615.17 1310.68	-00000	-00	7.065786 162696	1615.17	12.034214 837304	56 55
6	162696 241877	1312.68 115.75	9-999999	. 00	16289 24187	1115.78	857304 758122	5
	308824	866.53	999999	-01	308825	996.53	691175	53
ε	366816	352.54	999999	-01	366817	852.54	633183	52
9	417968	762.63	999992	- 01	417970	762.63	582030	51
10	463725	689.88	997998	- 01	463727	689.88	536273	50
11	7.505118	529.81	9-999998	-01	7.505120	629.81	12.424880	49
12	542906 57768	579.36	999997	-01	542909	579.33	457091	48
13	577668	$536 \cdot 41$	999997	-01	577672	536.42	422328	47
14	609853	499.38	999996	-01	609857	499.39	390143	46
15	639^{816}	$467 \cdot 14$	999996	-01	639820	$467 \cdot 15$	360180	45
16	667845	438.81	999995	- 01	667849	438.82	332151	44
17	694173	413.72	999995	-01	694179	413.73	305821	43
18	718997	391.35	999994	-01	719004	391.36	280297	42
19	742477	371.27	999993	-01	742484	371.28 351.36	257516 235230	4
20	764754	$353 \cdot 15$	999993	-01	764761	351.36	235239	40
21	$7 \cdot 785943$	$336 \cdot 72$	9.999992 ${ }^{2}$	-01	7-785951	336.73	12.214049	39
22	806146	321.75	999791	-01	806155	$321 \cdot 76$	193845	38
23	825451	308.05	$99990{ }^{\circ}$	-01	825460	308.06	174540	37
24	843934	285.47	999980	-02	843944	295.49	156056	36
25	861662	283.88	99998	. 02	861674	283.90	138326	35
26	$8786{ }^{5}$	273.17	99998	. 02	878708	$273 \cdot 18$	121292	34
27	895085	263.23	999987	-02	895099	$263 \cdot 25$	104901	33
28	910879	253.98	99998	. 02	910894	254.01	${ }^{689} 106$	32
29	926119	245.38	999985	. 02	926134	245.40	073865	31
30	940842	237.33	997983	. 02	940858	$237 \cdot 35$	059142	30
31	$7 \cdot 955082$	229.80	9-999982	. 02	$7 \cdot 955100$	229.81	12.044900	
32	968870	222.73	999981	. 02	968889	222.75	031111	28
33	982233	216.08	999980	. 02	982253	216.10	017747	27
34	$99^{51} 18$	209.81	999979	-02	995219	209.83	004781	26
35	8.007787	203.00	999977	-02	8.007809	203.92	$11 \cdot 992191$	25
36	020021	198.31	999976	-02	020045	198.33		24
37	031919	123.02	999975	$\stackrel{02}{-02}$	031945	183.05	968055	23
38	043501 054781	188.01 183.25	999973	.02	043527 054809	$188 ; 03$ 183.27	956473	22 21
39 40	054781 065776	178.72	$999997{ }^{1}$. 02	0658	178.74	934194	20
41	8.076500	174.41	9.979969	- 02	8.076531	174.44	11.923460	19
42	086965	170.31	999968	. 02	086997	170.34	913003	
43	097183	166.39	999966	- 02	097217	166.42	902783	17
44	107167	162.65	999964	-03	107202	162.68	892797	16
45	116926	159.08	- 999963	-03	116063	159.10	983037	15
46	126471	155.66	999961	-03	126510	155.68	87.3490	14
47	135810	152.38	999959	-03	135851	152.41	864149	13
48	144953	149.24	999958	-03	144096	149.27	855004	12
49	153907	146.22 143.33	99935	-03	153052	146.27 143.36		$1:$
50	162681	143.33	999954	-03	162727	143.36	837273	10
51	8.171280	140.54	9-999952	-03	8. 171328	140.57	$11 \cdot 828672$	q
52	179713	137.86	999950	-03	179763	137.90	820237	8
53	187985	135.29	999948	-03	188036	135.32	811964	7
54	196102	132.80	999946	-03	196156	132.84	803844	6
55	204070	130.41	999944	-03	204126	130.44	795874	5
56	211805	128.10	$9999{ }^{2}$. 04	211953	128.14	788047	4
${ }^{5} 7$	219581	125.87	999940	-04	219641	125.90 +23.76	780359	3
58 50	227134 23455	123.72 121.64	999938	-04	227195 234621	123.76 121.68	772803 765379	$\stackrel{2}{1}$
60	241855	119.63	999934	-	241921	119.67	758079	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotrng.	
0	8:241855	119.63	9.999934	-04	3.241921	119.69	$117^{580} 79$	60
1	249033	117.68	999932	-04	249102 2505	117.72	7 7,089	5
2	256094	115.80	999929	-04	256165	115.84	$\checkmark 143835$	58
3	263042	113.98	999927	-04	263115	114.02	736885	57
4	269881	112.21	999925	-04	269956	112.25	730044	56
5	$27.66: 4$	110.50	999922	. 04	276691	110.54	723301	55
6	28.3243	108.83	999920	. 04	283323	108.87	716677	5.4
$?$	230973	107.21	999918	- 04	289855	107.26	710144	53
	296207 302546	105.65 104.13	999915	.04 .04 .04	296292	105.70 104.18	703708	52
10	308794	104.13 102.66	9999910	$\begin{array}{r}\cdot 04 \\ \cdot 04 \\ \hline 04 \\ \hline\end{array}$	302634 308884	$104 \cdot 18$ 102.70	697360 691116	5
11	8.314904	101.22	9.999907	. 04	8.315046	101. 26	1.684954	49
12	321027	99.82	999905	- 04	32.122	99.87	678878	48
13	327016	98.47	999902	-04	327114	98.51	672886	47
14	332924	$97 \cdot 14$	999899	-05	333025	$97 \cdot 19$	666975	46
15	338753	95.86	999897	. 05	338856	95.90	661144	45
16	344504	94.60	999894	- 05	344610	94.65	655390	44
17	355.181	93.38	$9998{ }^{8} 1$. 05	350289	93.43	649711	43
18	355783	$92 \cdot 19$	999888	- 05	355895	92.24	644105	42
19	361315	91.03	999885	- 05	361430	91.08	638570	41
20	366777	89.90	999882	. 05	366895	89.95	633105	40
21	8.372171	88.80	9.990879	-05	8.372292	88.85	11.627708	39
22	377499	87.72	999876	-05	377622	87.77	622378	38
23	382762	86.67	999873	-05	382889	$86 \cdot 72$	617111	37
24	387962	85.64	999870	. 05	388002	$85 \cdot 70$	611908	36
25	393101	84.64	999867	.05	393234	$84 \cdot 70$	606756	35
26	398179	83.66	999864	-05	398315	83.71	601635	34
27	403199	82.71	99986	-05	403338	82.76	596662	33
28	408161	81.77 80.87	999858	.05 .05	408304	81.82 80.91	591696	32
29	413068	80.87 ,	999854	. 05	413213	80.91	586787	31
30	417919	$79 \cdot 96$	999851	. 06	418068	80.02	581932	30
31	8.422717	$70^{\circ} 09$	9.9998 18	. 06	8.422869		11.577131	29
32	427452	78.23	999844	-06	427618	78.30	572382	28
33	432156	77.40	9998 is	. 06	432.315	77.45	567685	27
34	436800	$76 \cdot 57$	999838	. 06	436962	76.63	563038	26
35	441394	75.77	999834	. 06	441560	75.83	558440	25
36	445941	74.99	99933.	. 06	446110	75.05	553880	24
37 38	450440	74.22	$9998{ }^{82}$	- 26	450613	74.28	549387	23
	45	73.46 72.73	999823	. 06	455070 450481	73.52	544830	22
40	463665	72.00	9999816	. 06	463849	72.06	536151	20
41	8.467985	71.29	9.999812	. 06	$8 \cdot 46817{ }^{2}$	71.35	11.531828	
42	472263	70.60	999809	. 06	472454	70.66	527546	18
43	476498	69.91	999805	-06	476693	69.98	523307	17
44	480693		999801	-06	$48089{ }^{2}$	69.31 68.65	519108	
45	484848 488063	68.59 67.04	999797	. 07	485030	68.65 68.01	514950 510830	15
47	493040	67.94 67.31	999793	-. 07	489170 493250	68.01 67.38	506750	13
48	$4970{ }^{8}$	66.69	999786	. 07	49729^{3}	66.76	502707	12
49	501080	66.08	799782	. 07	50129^{3}	$66 \cdot 15$	498702	11
50	505045	65.48	999778	. 07	505267	65.55	494733	10
51	8.508974	64.89	9-999774	. 07	8.509200	64.96	11.400800	
52	512367	64.31	999769	. 07	51309	64.39	486902	8
53	516726 52055	$63 \cdot 75$ 63.19	999765	-07	516961	63.82 63.26	483039	7
54 55	520551 524343	63.19 62.64	999761	. 07	520790 524586	63.26 62.72	479210 475414	6
56	528102	62.11	999753	. 07	528349	62.18	471651	4
57	531828	61.58	999748	. 07	532080	61.65	467920	3
58	535523	61.06	999744	-0;	535779	61.13	461221	2
5 g	539186	60.55	999740	. 07	53.3447	60.62	400553	1
60	542819	60	999735	. 07	543084	60	456916	0
	Cosine	D.	Sine		Cotang.	n.	Tang	

M.	Sire	D.	Cosine	D.	Tang	D.	Cotrang.	
0	8.542819	60.04	9.999735	. 07	8.543084	6c. 12	11.456916	60
1	546422	59.55	99973 I	. 07	546691	59.62	453309	59
2	549995	59.06	999726	. 07	550268	$59 \cdot 14$	449732	58
3	553539	58.58	999722	. 08	553817	58.66	$44 ¢ 183$	57
4	557054	58.11	999717	. 08	557336	58.19	442664	56
5	560540	57.65	999713	-08	560828	57.73	439172	55
6	563999	57.19	999708	-08	564291	57.27	435709	54
8	567431 570836	56.74 56.30	999704	. 08	567727	56.82	432273	53
9	574214	55.87	999699	.08	571157 57420	56.38 55.95	428863 425480	52 51
10	577566	55.44	999689	.08	577877	55.52	422123	50
11	8.580892	55.02	9.999685	. 08	8.581208	55.10	11.418792	49
12	584193	54.60	999680	.08	584514	54.68	415486	48
13	557469	54.19	999675	. 08	587795	54.27	412205	47
14	590721	53.79	999670	.08	591051	53.87	408979	46
15	${ }_{5}^{59} 9948$	53.39	999665	.08	594283	53.47	405717	45
16	597152	53.00	999660	.08	59749^{2}	53.08	402508	44
17	600332	52.61	999655	.08	600677	$52 \cdot 70$	399323	43
18	603489	52.23	999650	.08	603839	52.32	396161	2
19	606623	51.86	999645	.09	606978	51.94	393022	41
20	609734	51.49	999640	.09	610094	51.58	389906	40
21	8.612823	$51 \cdot 12$	9.999635	.09	8.613189	51.21	11.386811	39
22	615801	50.76	999629	.09	616262	50.85	383738	38
23	618937	50.41	999624	-09	619313	50.50	380687	${ }_{3}^{3}$
24	621962	50.06	999619	-09	622343	$50 \cdot 15$	377657	36
25	624965	$49 \cdot 72$	999614	-09	625352	49.81	374648	35
26	627948	49.38	999608	-09	628340	$49 \cdot 47$	371660	34
27	630911	49.04	999603	-09	631308	$49 \cdot 13$	368692	33
28	633854	$48 \cdot 71$	999597	.09	634256	48.80	365744	32
${ }_{2}^{29}$	636776	48.39	999592	.09	637184	48.48	362816	31
30	639680	48.06	999586	-09	640093	$48 \cdot 16$	359907	30
31	8.642563	47.75	9-999581	. 09	8.6422^{82}	47.84	11.357018	29
32	645428	47.43	999575	.09	645853	47.53	354147	28
33	648274	47.12	999570	. 09	648704	47.22	351296	27
34	651102	46.82	999564	.09	651537	46.91	348463	25
35	653911	$46 \cdot 52$	999558	-10	654352	46.61	345648	25
36	656702	$46 \cdot 22$	999553	- 10	657149	$46 \cdot 31$	342851	24
37	659475	45.92	999547	- 10	659928	46.02	340072	23
38	662230	45.63	999541	- 10	662689	455	337311	22
39	664968	45.35	999535	-10	665433	45.44	334567	21
40	969	45.06	999529	-10	668160	26	331840	20
41	8.670393	44.79	9.999524	- 10	8.670870	44.88	11.329130	
42	673080	44.51	999518	- 10	673563	44.61	326437	14
43	675751	44.24	999512	- 10	676239	44.34	323761	17
44	678405	43.97	999506	$\cdot 10$	678900	44.17	321100	16
45	${ }_{681043} 683665$	$43 \cdot 70$	999500	$\cdot 10$	68154	43.80	318456	15
46	683665	$43 \cdot 44$	99948	$\cdot 10$	684172	43.54	315828	14
48	688272 688863	43.18 42.02	999487	-10	680331	43.28	310619	13
49	691438	42.67	999475	- 10	691963	42.77	$3 \mathrm{ncos3} 7$,
50	693998	42.42	999469	- 10	694529	42.52	305471	10
51	8.696543	42.17	9.999463	11	8.697081	42.28	11.302919	
52	699073	41.92	999456	$\cdot 11$	699617	42.03	300383	8
53	701589	41.68	999450	$\cdot 11$	702139	41.79	297861	7
54	704090	41.44	999443	$\cdot 11$	704646	41.55	295354	6
55	706577	41.21	999437	-11	707140	41.32 41.08	292860	5
56 57	709049 711507 7	40.97 $40 \cdot 74$	999431 999424	\cdots	709618 712083	41.08 40.85	290382 287917	4
58	713052	40.51	999418	$\cdot 11$	714534	40.62	285465	2
59	716383	40.20	999411	- 11	716972	$40 \cdot 40$	283028	1
60	718800	40.06	999404	$\cdot 11$	719396	$40 \cdot 17$	280604	-
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	'Tang.	D.	Cotang.	
0	8.718800	40.06	9.999104	$\cdot 11$	8.719396	$40 \cdot 17$	11.280604	60
1	721204	39.84	999398	- II	721806	$39 \cdot 95$	278194	59
2	723595	39.62	999391	- 11	724204	39.74	275796	58
3	725972	39.41	999384	-11	726588	39.52	273412	57
4	728337	39.19	999378	$\cdot 11$	728959	39.30	271041	5\%
5	730688	38.98	999771	$\cdot 11$	731317 733663	39.07 38.8	268683	5
7	735354	38.57	999357	$\cdot 12$	735996	38.68	264004	53
8	737667	38.36	999350		738317	38.48	261683	52
9	739969	38.16	999343	$\cdot 12$	740626	38.27	259374	51
10	742259	37.96	999336	$\cdot 12$	742922	38.07	257078	20
11	8.744536	37.76	9.999329	$\cdot 12$	8.745207	37.87	1:-254703	49
12	746802	37.56	999322	$\cdot 12$	747479	37.68	252521	48
13	749055	37.37	999315	- 12	749740	$37 \cdot 49$	250260	47
14	751297	$37 \cdot 17$	999308	$\cdot 12$	751989	37.29	248 cri	46
15	753528	36.98	949301	$\cdot 12$	754227	$37 \cdot 10$	245773	45
16	755747	$36 \cdot 79$	999294	$\cdot 12$	756453	$36 \cdot 92$	2.43547	44
17	757955	$36 \cdot 61$	999286	$\cdot 12$	758668	$36 \cdot 73$	241332	43
18	760151	$36 \cdot 42$	999279	12	760872	36.55	239128	42
19	762337	36. 24	999272	$\cdot 12$	763065	$36 \cdot 36$	236035	41
20	764511	36.06	999265	$\cdot 12$	765246	36.18	234754	40
21	8.766675	35.88	9.999257	$\cdot 12$	8.767417	36.00	11. 232583	39
22	768828	35.70	999250	$\cdot 13$	769578	35.83	230422	
23	770970	35.53	999242	$\cdot 13$	771727	35.65	228273	37
24	773101	35.35	999235	$\cdot 13$	773866	35.48	220134	35
25	775223	35.18	999227	$\cdot 13$	775993	35.31	224005	35
26	7773.33	35.01	999220	$\cdot \mathrm{I} 3$	778114	35.14	221886	34
27	$77943{ }^{\prime}$	34.84	999212	$\cdot 13$	780222	34.87	219778	33
28	781524	34.67	999205	$\cdot 13$	782320	34.80	217580	32
29	783605	34.51	999197	$\cdot 13$	784408	34.64	215592	31
30	785675	34.31	999189	$\cdot 13$	786486	34.47	213514	30
31	$8 \cdot 787736$	34.18	9.999^{181}	$\cdot 13$	$8 \cdot 788554$	34.31	11.211446	29
32	789787	34.02	999174	$\cdot 13$	790613	34.15	209387	28
33	791828	33.86	999166	$\cdot 13$	792662	33.99	207338	27
34	793859	33.70	999158	$\cdot 13$	794701	33.83	205299	25
35	795881	33.54	999^{150}	$\cdot 13$	796731	33.68	203269	2.5
36	797894	33.39	999142	$\cdot 13$	798752	33.52	201248	24
37 38			999134	$\cdot{ }^{13}$	800763	33.37	199237	23
38	801892	3.3 .08	999126	. 13	802765	33.22	197235	22
39	803876	32.93	999118	$\cdot 13$	804758	33.07	195242	21
40	805852	32.78	999110	13	806742	32.92	193258	
41	8.807819	32.63	$9 \cdot 999102$	$\cdot 13$	8.808717	32.78	11.191283	
42	809777	32.49	999094	-14	810683	32.62	189317	18
43	811726 8.3667	32.34	999036	$\cdot 14$	812647	32.48	187359	17
44	813667	$32 \cdot 19$	999077	$\cdot 14$	814589	32.33	185411	
45	$8 \mathrm{8r} 5599$	32.05	999069	$\stackrel{-14}{-14}$	816529 818461	32.19	183471	15
46	817522 819436 8	31.91 31.77	999061 999053	-14	818461 820384 8	32.05 31.91	181539 179615	14
48	821343	31.63	999044	4	822298	31.77	177702	12
49	823240	31.49	999036	I4	824205	31.63	175795	11
50	825130	31.35	999027	$\cdot 14$	826103	31.50	173807	10
51	8.827011	31.22	9.999019	$\cdot 14$	8.827992	31.36	11.172008	
5	828884	31.08	999010	-14	829874	31.23	170126	8
53	830749	30.05	999002	$\cdot 14$	${ }_{8}^{831748}$	3 l . 10		7
54 55	832607 834456	30.82 30.60	998993	$\begin{array}{r}\cdot 14 \\ \cdot 14 \\ \hline 14\end{array}$	833613	$3 n \cdot 06$ 30.83 0.	166.387 164520 1620	6 5
56	836297	30.56	${ }_{99} 99976$	-14	${ }_{837321}$	30.70	162679	4
57	838130	3 O .43	99^{8967}	- 15	839163	30.57	160837	3
58	830956	30.30	998058	- 15	840998	30.45	159002	2
59	8.41774	$30 \cdot 17$	$99^{89} 90$	$\cdot 15$	842825	30.32	157175	1
60	843585	30.00	998941	$\cdot 15$	844644	$30 \cdot 19$	155356	\bigcirc
	Cosine	D.	Sine		Cotang.	ग.	Trag.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	8.843585	30.05	7.9989 .11	. 15	8.844644	$30 \cdot 19$	11.155356	60
1	845387	29.92	998932	-15	846455	30.07	153545	59
,	847183	29.80	$99^{8} 923$	- I5	848260	29.95	151740	58
3	848971	29.67	998914	-15	850057	29.82	149943	57
4	850751	29.55	99905	. 15	851846	29.70	148154	56
5	852525	29.43	998896	-15	853628	29.58	14637^{2}	55
5	$8: 4291$	29.31	998887	- 15	855403	$29 \cdot 46$	144597	5
7	8 8,0049	$29 \cdot 19$	998878	- 15	857171	29.35	142829	53
8	857801	29.07	998869	- 15	858932	$29 \cdot 23$	141068	53
9	859546	28.96	998860	-15	860686	29.11	139314	51
10	861283	28.84	998851	- 15	862433	29.00	137567	5 c
11	8.863014	$28 \cdot 73$	9.998841	. 15	8.864173	28.88	II 1 135827	49
12	864738	28.61	998832	- 15	865906	28.77	1134094	48
13	866455	28.50	998823	- 16	867632	28.66	132368	47
14	863165	$28 \cdot 39$	998813	- 16	869351	28.54	130649	46
15	869868	$28 \cdot 28$	998804	- 16	871064	28.43	128936	45
16	871565	$28 \cdot 17$	998795	- 16	872770	$28 \cdot 32$	127230	44
17	873255	28.06	998785	- 16	874469	28.21	12553 I	43
18	874938	27.95	998776	. 16	876162	28.11	123838	42
19	876615	27.86	998766	- 16	877849	28.00	122151	41
20	878285	$27 \cdot 73$	998757	. 16	879529	$27 \cdot 89$	120471	40
21	8.879949	27.63	$9 \cdot 998747$. 16	8.881202	27.79	$11 \cdot 118798$	39
22	881607	27.52	998738	-16	882869	27.68	11731	33
23	883258	27.42	998728	- 16	884530	27.58	115470	37
24	884903	$27 \cdot 31$	998718	-16	886185	27.47	113815	36
25	886542	27.21	998708	- 16	887833	27.37	112167	35
26	888174	27-11	998699	- 16	889476	27.27	110524	34
27	889801	27.00	998689	- 16	891112	$27 \cdot 17$	108888	33
28	891421	26.90	998679	-16	892742	27.07	107258	32
29	893035	26.80	998669	-17	894366	26.97	105634	31
30	894643	$26 \cdot 70$	998659	-17	895984	26.87	104016	30
-31	$3 \cdot 896246$	26.60	$9 \cdot 998649$	- 17	8.897596	26.77	11.102404	29
32	807842	26.51	998639	- 17	899203	26.67	100797	28
33	899432	26.41	998829	-17	900803	26.58	og9197	27
34	901017	26.31	998619	- 17	902398	26.48	097602	26
35 36	902596	$26 \cdot 22$	998609	-17	903987	$26 \cdot 38$	096013	25
36	904169	$26 \cdot 12$	998509	-17	905570	$26 \cdot 29$	094430	24
37 39	905736	26.03	998589	- 17	907147	$26 \cdot 20$,	O92853	23
38	907297	25.93	998578	17	908719	$26 \cdot 10^{-r}$	$0 \mathrm{O}_{1281}$	22
39	908853	25.84	998568	- 17	910285	26.01	089715	21
40	910404	$25 \cdot 75$	998558	- 17	911846	25.92	088154	20
41	$8 \cdot 911949$	25.66	9.998548	-17	8.913401	25.83	11.086599	19
42	913488	25.56	998537	- 17	914951	25.74	085049	18
43	915022	25.47	998527	- 17	916495	25.65	083505	17
44	916550	25.38	998516	-18	918034	25.56	081966	16
45	918073	25.29	998506	- 18	919568	25.47	080432	15
46	919591	25.20	998405	-18	921096	25.38	078904	14
47	921103	$25 \cdot 12$	998485	- 18	922619	25.30	077381	13
48	922610	25.03	998474	-18	924136	25.21	075864	12
4.	924112	24.94	998464	-18	925649	25.12	074351	11
50	925609	24.86	998453	-18	927156	25.03	072844	10
51	8.927100	24.77	$9 \cdot 998442$. 18	8-928658	24.03	11.0713 .42	
52	928587	24.69	998431	-18	930155	24.86	069845	8
53	930068	24.60	99^{8421}	- 18	931647	24.78	o68.353	7
54	931544	24.52	998410	- 18	933134	24.70	066866	6
55	933015	24.43	998399	- 18	934616	24.61	065384	5
56	934481	24.35	998388	- 18	936093	24.53	063907	4
57	935942	24.27	998377	- 18	937505	24.45	062435	3
58	937398	24.19	998366	- 18	939032	24.37	o60968	2
59	9.38850	24.11	998355	- 18	940404	24.30	o50 506	1
60	940296	24.03	998344	- 18	94195\%	24.21	058048	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

L.	Sine	I).	Cosine	D.	Tang.	D.	Cotang.	
0	$8 \cdot 94025$	$24 \cdot 03$	9.9983.44	-19	$8 \cdot 941952$	24.21	11.058048	60
1	94.138	23.94	998333	-19	943:404	24.13	-56506	59
2	943174	23.87	998322	-19	944852	24.05	055148	58
3	944606	22.79	998311	-19	946295	23.97	053705	57
4	946034	23.71	998300	-19	947734	23.90	05̃2266	56
5	947406	$23 \cdot 6$?	998289	-19	949168	23.82	-50832	55
6	9.48874	2.3 .55	998277	-19	950597	23.74	349403	54
7	950287	23.48	998265	-19	952021	23.66	047979	53
8	951596	23.40	998255	-19	953441	23.6 c	046559	5:
9	95\%'100	23.32	998243	-19	954856	23.51	045144	51
10	954499	23.25	998232	-19	956267	23.44	043733	50
11	8955894	$23 \cdot 17$	$9 \cdot 998220$	-19	$8 \cdot 957674$	23.37	11.042326	49
12	957284	23.10	998209	-19	959075	23.29	040925	48
13	7^{58670}	23.02	998197	-19	960473	$23 \cdot 23$	03925	41
14	960052	22.95	99^{8186}	-19	961866	$23 \cdot 14$	035134	45
15	961429	22.88	99^{8174}	- 19	963255	23.07	-36745	45
16	962801	22.80	99^{8163}	-19	964639	23.00	-35361	44
17	964170	22.73	998151	-19	966019	22.93	n 333981	43
18	965534	22.66	99^{8139}	- 20	967394	22.86	032606	42
19	966893	22.59	998128	- 20	968766	22.79	0312.34	41
20	968249	22.52	$99^{\text {S116 }}$	- 20	970133	$22 \cdot 71$	029867	40
21	3.069600	22.44	9.998104	- 20	3.971426	22.65	11.028504	39
22	970947	22.38	$9980{ }^{2}$	- 20	972855	22.57	027145	38
23	972289	22.31	998080	20	974209	22.51	025791	37
24	973628	22.24	998068	- 20	975560	22.44	024440	36
25	974962	22.17	998056	- 20	976906	22.37	02309.4	35
26	276293	22.10	998044	- 20	978248	22.3a	021752	34
27	977619	22.03	998032	- 20	979586	22.23	020414	33
28	97894	21.97	998020	- 20	980921	$22 \cdot 17$	019079	32
${ }_{3}^{29}$	980259	21.80	998008	- 20	982251	$22 \cdot 10$	017749	31
30	981573	21.83	997996	- 20	983577	22.04	016423	30
31	$3 \cdot 982883$	21.77	9.997985	- 20	3.984899	$2 \mathrm{I} \cdot 97$	2.015101	
32	984189	21.70	$99797{ }^{2}$	- 20	986217	21.91	013783	28
33	985491	21.63	997959	$\cdot 20$	987532	$2 \mathrm{I} \cdot 84$	012468	27
34	986789	21.57	997947	- 20	988842	21.78	011153	26
35	988083	21.50	997935	-21	990149	21.71	009851	25
36	989374	21.44	997922	-21	991451	21.65	003549	24
37	990660	21.38	997910	-21	992750	21.58	007250	23
38	991943	21.31	997897	-21	99.4045	$2 \mathrm{I} \cdot 52$	005955	22
39	993222	21.25	997885	-21	995337	21-46	004663	21
40	994497	21.19	$9978{ }^{8} 2$	- 21	996624	21.40	003376	20
41	8.995768	21.12	9.997860	- 21	8.997908	21.34	$11 \cdot 002092$	19
42	997036	21.06	997847	- 2	999188	21.27	000812	18
43	998299	21.00	997835	- 21	$9 \cdot 000465$	21.21	10.999535	17
44	999560	20.94	997822	-21	001738	21-15	998262	16
45	9.000816	20.87	997809	21	003007	21.09	996993	15
46	00206r	20.82	997797	- 21	004272	$21 \cdot 03$	995728	14
47	003318	20.76	997784	- 21	005534	20.97	994466	13
48	c04563	20.70	997771	- 2	006792	20.91	993208	12
49	on5805	20.64	997758	- 21	008047	20.80	991953	11
50	007044	20.58	997745	- 21	009298	20.80	990702	10
51	9.008278	20.52	9.9977^{32}	- 21	9.010546	$20 \cdot 74$	Ic. 989454	
52 53	009510	20.46	997719	- 21	011790	20.68	988210	8
53	010737	$20 \cdot 40$	997706	- 21	013031	20.62	986969	7
54	-11962	20.34	997693	- 22	014268	20.56	985732	6
55 56	013182 014400	$20 \cdot 29$ 20.23	997680	- 22	015502	20.51	984498	5
57	O14400	$20 \cdot 23$ $20 \cdot 17$	997667 997654	- 22	016732	$20 \cdot 45$ 20.40	983268	4
58	016824	$20 \cdot 12$	997754	- 22	-19183	20.33	980817	2
59.	O18031	20.06	997628	- 22	020403	$20 \cdot 28$	979597	1
60	019235	20.00	997614	- 22	021620	$20 \cdot 23$	978380	0
	Cosine	D.	Sine		Cotang.	D.	Tang:	M.

M.	Sine	D.	Cusine	D.	Tang.	D.	Cotarg.	
0	9.019?35	20.00	9.997614	- 22	9.021620	$20 \cdot 23$	10.978380	(x)
1	020435	$19 \cdot 0^{5}$	997601	-22	022834	20.17	977166	50
2	021632	19.89	997588	-22	024044	20.11	975056	58
3	022825	19.84	997574	- 22	025251	20.06	9747 i9	E\%
4	024016	19.78	997561	-22	026455	20.00	973545	56
5	025203	$19 \cdot 73$	997547	- 22	027655	19.95	972345	55
6	026386	19.67	99753.4	-23	028852	19.90	971148	54
7	027567	19.62	997520	- 23	030046	19.85	9700954	53
8	028744	19.57	997507	- 23	031237	19.79	96876.3	52
9	029918	19.51	99749^{3}	-23	032425	19.74	967575	51
10	031089	19.47	997480	- 23	033609	19.69	966391	50
11	9.032257	19.41	9.997466	- 23	9.034791	19.64	10.965209	49
12	033421	19.36	997452	. 23	035969	19.58	964031	48
13	034582	19.30	997432	. 23	037144	19.53	962856	47
14	035741	19.25	997425	- 23	038316	19.48	961684	46
15	036896	19.20	997411	. 23	039485	19.43	960515	45
16	038048	19.15	997397	- 23	040651	19.38	959349	44
17	039197	19.10	997383	. 23	041813	19.33	958187	43
18	040.342	19.05	907369	- 23	042973	19.28	957027	42
19	041485	18.99	997355	- 23	044130	19.23	905870	41
20	042625	18.94	997341	. 23	045284	19.18	954716	40
21	9.043762	18.89	9.997327	- 24	9.046434	19.13	10.953566	39
22	044895	18.84	997313	- 2.4	047582	19.08	952418	38
23	046026	$18 \cdot 79$	697292	- 24	043727	19.03	951273	37
24	047154	$18 \cdot 75$	997285	- 24	049869	$18 \cdot 98$	950131	36
25	048279	$18 \cdot 70$	997271	- 24	051008	$18 \cdot 93$	948992	35
26	049,400	18.65	997257	- 24	052144	18.89	947856	34
27	050519	18.60	997242	- 24	053277	18.84	946723	33
28	051635	18.55	997228	- 24	054407	$18 \cdot 79$	945593	32
29	052749	18.50	997214	- 24	055535	$18 \cdot 74$	944465	3 I
30	053859	18.45	997199	- 24	056659	18.70	943341	30
31	9.054966	18.41	9.997185	- 24	9.057781	18.65	10.942219	29
32	056071	18.36	997170	- 24	058900	18.69	941100	28
33	057172	$18 \cdot 31$	997156	- 24	060016	18.55	939984	27
34	058271	18.27	997141	- 24	061130	18.51	938870	26
35	059367	18.22	997127	- 24	062240	$18 \cdot 46$	937760	25
36	060460	$18 \cdot 17$	997112	- 24	063348	18.42	936652	24
37	061551	$18 \cdot 13$	997098	- 24	064453	18.37	935547	23
38	062639	18.08	997083	- 25	065556	18.33	934444	22
39	063724	18.04	997068	- 25	066655	18.28	933345	21
40	064806	$17 \cdot 99$	997053	. 25	067752	$18 \cdot 24$	932248	20
41	$9 \cdot 065885$	$17 \cdot 94$	9.997039	- 25	9.068846	$18 \cdot 19$	10.931154	19
42	066962	$17 \cdot 90$	997024	- 25	069938	$18 \cdot 15$	930062	18
43	068036	17.86	997009	- 25	071027	18.16	928973	17
44	069107	17.81	996994	- 25	072113	18.06	927887	16
45	070176	$17 \cdot 77$	996979	- 25	073197	18.05	926803	15
46	071242	$17 \cdot 72$	996964	- 25	074278	17.97	925722	14
47	072306	17.68	996949	- 25	075356	$17 \cdot{ }^{3}$	924644	13
48	073366	$17 \cdot 63$	996934	- 25	076432	17.8 S	923568	12
49	074424	17.59	996919	- 25	077505	17.84	922495	11
50	075480	17.55	996904	- 25	078576	$17 \cdot 80$	921424	10
51	$9 \cdot 076533$	17.50	$9 \cdot 996889$	- 25	$9 \cdot 079644$	$17 \cdot 76$	10.920356	
52	077583	$17 \cdot 46$	996874	- 25	080710	$17 \cdot 72$	919290	8
53	07863 I	$17 \cdot 42$	996858	- 25	081773	17.67	918227	7
54	079676	$17 \cdot 38$	996843	- 25	o82833	1763	917167	6
55	080719	17.33	996828	- 25	083891	1759	916109	5
56	081759	$17 \cdot 29$	996812	- 26	084947	1755	915053	4
57 58	082797	$17 \cdot 25$	996797	- 26	0806000	17.51	914000	3
58	083833	$17 \cdot 21$	996782	- 2 F ,	087050	17.47	912950	2
59	084864	$17 \cdot 17$	996766	- 26	088098	17.43	911902	1
60	085894	17.13	996751	. 26	089:44	17.38	910856	0
	Cosine	$1)$.	Sine		Cotang.	D.	Tang.	3.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9085894	17.13	9.996751	- 26	9.089144	17.38	10.910856	60
1	086922	17.09	996735	- 26	090187	$17 \cdot 34$	909813	59
2	087947	17.04	996720	- 26	091228	17.30	908772	58
3	088970	17.00	996704	- 26	092266	$17 \cdot 27$	907734	57
4	089990	1696	996688	- 26	-93302	$17 \cdot 22$	906693	56
5	0.91008	16.92	99667^{3}	- 26	094336	$17 \cdot 19$	905664	55
6	092024	16.88	996657	- 26	-95367	$17 \cdot 15$	90.4633	54
7	093037	16.84	996641	- 26	og6395	$17 \cdot 11$	903605	53
8	094047	16.80	996625	- 26	097422	17.07	902578	52
9	095056	$16 \cdot 76$	996610	- 26	098446	17.03	901554	51
10	096062	16.73	996594	- 26	099468	16.99	900532	50
11	9.097065	16.68	$9 \cdot 996578$	- 27	9.100. 187	16.95	10.899513	49
12	098066	16.65	996562	- 27	101504	16.91	898496	48
13	099065	16.61	996546	- 27	102519	16.87	897481	47
14	100062	16.57	996530	- 27	103532	16.84	896468	46
15	101056	$16 \cdot 53$	996514	- 27	104542	16.80	895458	45
16	102048	16.49	996498	- 27	105550	16.76	894450	44
17	103037	$16 \cdot 45$	996482	- 27	106556	16.72	893444	43
18	k04025	16.41	996465	- 27	107559	16.69	892441	42
19	105010	16.38	996449	- 27	108560	16.65	891440	41
20	105992	$16 \cdot 34$	996433	- 27	109559	16.61	8904.41	40
21	9-106973	16.30	9.996417	- 27	9.110556	16.58	10.889444	39
22	107951	16.27	996400	- 27	111551	16.54	888449	38
23	108927	$16 \cdot 23$	996384	- 27	112543	16.50	887457	37
24	109701	$16 \cdot 19$	996368	- 27.	113533	$16 \cdot 46$	886.467	36
25	110373	$16 \cdot 16$	996351	- 27	114521	16.43	885479	35
26	111842	$16 \cdot 12$	996335	- 27	115507	16.39	884493	34
27	112809	16.08	996318	- 27	116491	16.36	883509	33
28	113774	16.05	996302	- 28	117472	16.32	882528	32
28 3	114737	16.01	996285	- 28	118452	$16 \cdot 29$	88.548	31
30	115698	15.97	996269	- 28	119429	$16 \cdot 25$	880571	30
31	9.116656	15.94	$9 \cdot 996252$	- 28	9-120404	$16 \cdot 22$	10.879596	28
32	117613	15.90	996235	- 28	121377	$16 \cdot 18$	878623	28
33	118567	15.87	996219	- 28	1223.48	$16 \cdot 15$	877652	27
34	119519	15.83	996202	- 28	123317	16.11	876683	25
35	120469	15.80	996185	- 28	124284	16.07	875716	25
36	121417	$15 \cdot 76$	996168	- 28	1252.49	16.04	874751	24
37	122362	15.73	996151	- 28	126211	16.01	E? 3780	23
38	123.306	15.69	996134	- 28	127172	15.97	$8 \cdot 208$	22
39	124248	15.66	996117	- 28	128130	15.94	871870	21
10	125187	15.62	996100	- 28	129087	15.91	870913	20
41	9.126125	15.59	$9 \cdot 996083$	- 29	9.130041	15.87	10.8699 .59	19
42	127060	15.56	996066	- 29	130994	15.84	869006	18
43	127993	15.52	996049	- 29	131944	15.81	368056	17
44	128825	15.49	996032	- 29	132×83	15.77	867107	16
45	129854	15.45	996015	- 29	133839	15.74	866161	15
46	130781	15.42	995998	- 29	134784	15.71	86521 '6	14
47	131706	15.39	99590	- 29	135726	15.67	864274	13
48	132630	15.35	995063	- 29	136667	15.64	863333	12
4	133551	15.32	9959.6	- 29	137605	15.61	862395	11
50	134470	15.29	995928	- 29	138542	15.58	861458	10
51	9.135387	$15 \cdot 25$	$9 \cdot 995911$	- 29	9.139476	15.55	10.860524	
52 52	136303	15.22	995894	- 29	140409	15.51	85 g 5 l	8
53	137216	15.19	995876	- 29	141340	15.48	858660	7
54 55	138128	15.16	99.5859	- 29	142269	15.45	857731	6
55	139037	15.12	995841	- 29	143196	15.42	856804	5
56	139944	15.09	99.5823	- 29	144121	15.39	855879	4
57 58	140850	15.00	995806	-29	145044	15.35	8.54956	3
58 50	141754	15.03 15.00	995788	- 29	145966	15.32 15.29	854034 853115	2
59 60	142655 143555	15.00 14.96	995771 995753	-29 -29	146885	15.29 15.26	853115 852197	1
	Cusine	D.	Sine		Cotang.	D.	Taug	M.

M.	Sine	D.	Cosine	D.	Timg.	D.	Colang.	
0	9-1 13555	$14 \cdot 96$	9995753	- 30	9.147803	$15 \cdot 26$	16 852107	∞
1	144453	$14 \cdot 93$	9995735	-30	9 148718	$15 \cdot 23$	1685107 851282	5
2	145349	14.90	995717	-30	149632	15.20	850368	58
3	146243	14.87	995699	-30	150544	15.17	849456	57
4	147136	14.84	99.5681	-30	151454	15.14	848546	56
5	148026	14.81	995664	- 30	152363	15.11	847637	55
6	148915	14.78	995646	-30	153269	15.08	846731	5.4
3	149802	$14 \cdot 75$	995628	-30	154174	15.05	845826	53
8	150686	14.72	995610	-30	15507%	15.02	$84492{ }^{3}$	52
9	151569	14.69	995591	-30	155978	14.99	844022	51
10	152451	14.66	995573	-30	156877	14.96	843123	50
11	9.15333o	14.63	$9 \cdot 995555$	- 30	9.157775	$14 \cdot 93$	10.842225	
12	154208	14.60	995537	. 30	158671	14.90	10.84222 841329	48
13	155083	14.57	995519	-30	159565	14.87	840435	47
14	155057	14.54	995501	-3i	160457	14.84	839543	46
15	156830	14.51	995.482	-31	161347	14.81	838653	45
16	157700	14.48	905464	-31	162236	14.79	837764	44
17	158569	14.45	995446	-31	163123	14.76	836877	43
18	159435	14.42	995427	-31	164008	14.73	835992	42
19	160301	14.39	995409	$\cdot 31$	164892	14.70	835108	41
20	161164	14.36	995390	-31	165774	14.67	834226	40
21	9-162025	14.33	9.995372	.31	9.166654	14.64	10.833346	39
22	162885	14.30	995353	-31	167532	14.61	832468	38
23	163743	14.27	995334	.31	168409	14.58	831591	37
24	164600	14.24	995316	$\cdot 31$	169284	14.55	830716	36
25	165454	$14 \cdot 22$	995297	.31	170157	14.53	829843	35
25	166307	$14 \cdot 19$	995278	-31	171029	14.50	828971	34
27	167159	14.16	995260	-31	171899	14.47	828101	33
28	168008	$14 \cdot 13$	995241	-32	172767	14.44	827233	32
29	168856	$14 \cdot 10$	995222	.32	173634	$14 \cdot 42$	826365	31
30	169702	14.07	995203	. 32	174499	14.39	825501	30
3 I	9-170547	14.05	9:995184	- 32	9.175362	14.36	10.824538	20
32	171389	14.02	995165	- 32	176224	14.33	823776	29
33	172230	13.99	995146	- 32	177084	14.31	822916	27
34	173070	13.96	995127	. 32	177942	14.28	822058	26
35	173908	13.94	995108	- 32	178799	14.25	821201	25
36	174744	13.91	995089	- 32	179655	14.23	820345	2.4
37	175578	13.88	995070	- 32	180508	14.20	810.192	23
38	176411	13.86	995051	- 32	181360	14.17	818640	22
39	177242	13.83	995032	. 32	182211	14.15	817789	21
40	178072	13.80	995013	- 32	183059	$14 \cdot 12$	$8: 6941$	20
41	9.1780,00	13.77	9.994993	. 32	9.183907	14.09	10.816003	19
42	179726	13.74	994974	. 32	184752	14.07	815248	18
43	180551	13.72	994955	- 32	185597	14.04	814403	17
44	181374	13.69	994935	. 32	186439	14.02	813561	16
45	182196	13.65	994916	33	187280	13.99	81.2720	15
46	183016	13.64	99.4896	. 33	188120	13.96	811880	14
47	18.3834	13.61	994877	. 33	1889.58	$13 \cdot 93$	811042	13
48	184651	13.59	994857	. 33	189794	13.91	810205	12
49	185466	13.56	994838	. 33	190629	13.89	809.371	11
50	186280	13.53	994818	. 33	191462	13.86	808538	10
51	9.187092.	13.51	9.794798	. 33	9.192294	13.84	10.807706	
52	187903	13.48	994779	. 33	193124	13.81	806876	3
53	188712	13.46	994759	. 33	193953	13.79	806047	7
54	189519	13.43	994739	. 33	194780	13.76	805220	5
55	190325	13.41	994719	. 33	195606	13.74	804394	5
56	191130	13.38	994700	. 33	196430	13.71	803570	4
57	191933	13.36 13.33	994680	. 33	197253	13.69	802747	3
58	192734	13.33	994660	.33 .33 .	198074	13.66 13.64	801926	2
59	193534	13.30	994640	. 33	198894	13.64	801106	1
60	194332	13.28	994620	$\cdot 33$	199713	13.61	800287	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.194332	13.28	9.994620	$\cdot 33$	9.199713	13.61	10.800287	${ }^{6}$
1	195129	13.26	994600	. 33	200529	13.59	$79947!$	59
2	$19^{5} 925$	13.23	994580	.33	201345	13.56	798655	58
3	19675	13.21	994560	34	202159	13.54	797841	57
4	197511	13.18	994540	$\cdot 34$	202971	13.52	7970×1	56
5	198302	$13 \cdot 16$	994519	-34	203782	13.49	796218	55
6	199091	13.13	994499	. 34	204592	13.47	795408	54
7	19979	13.11	994479	$\cdot 34$	205400	13.45	794600	53
8	200666	13.08	994459	-34	206207	13.42	793793	52
9	201451	13.06	994438	. 34	207013	13.40 13.38	792987	51
10	202234	13.04	994418	. 34	207817	13.38	792183	50
11	9.203017	13.01	9.994397	. 34	9. 208619	13.35	10.791381	49
12	203797	12.99	994377	. 34	209120	13.33	770580	48
13	204577	12.96	094357	-34	210220	13.31	789780	47
14	205354	12.94	994336	-34	211018	13.28	7889^{82}	46
15	206131	12.92	994316	-34	211815	13.26	788185	45
16	206906	12.89	994295	. 34	212611	13.24	787382	44
17	207679	12.87	99427^{4}	. 35	213405	13.21	786595	43
18	208452	12.85	994254	. 35	214198	$13 \cdot 19$	785802	42
19	209222	12.82	994233	. 35	214999	$13 \cdot 17$	785011	41
20	209992	12.80	994212	. 35	215780	$13 \cdot 15$	784220	40
21	9-210760	12.78	9.994191	. 35	9.216568	13.12	10.783432	39
22 23	2115.26	12.75	994171	- 35	217350	13.10	78264	38
23	2:29¢\%	12.73	994150	. 35	218142	13.08	781858	37
24	213055	12.71	994129	. 35	218926	13.05	781074	36
25	21.3818	12.68	994108	. 35	219710	13.03	780290	35
26	214579 215338	12.66	994087	- 35	220492	13.01	779508	34
27	215338	12.64	994066	- 35	221272	12.99	778723	33
28	216097	12.61	99404^{5}	-35	222052	12.97	7779.48	32
${ }^{29}$	216854	12.59	994024	. 35	222830	12.94	777170	31
30	217609	12.57	994003	. 35	223606	12.92	776394	30
31	9. 218363	12.55	9.993981	. 35	9.224382	12.96	$10 \cdot 775618$	29
32	219116	12.53	993960	. 35	225156	12.88	774844	28
33	219868	12.50	993939	. 35	225929	12.86	774071	27
$3{ }^{3} 4$	220618	12.48	993918	. 35	2206700	12.84	773300	26
35	221367	12.46	993896	. 36	227471	12.81	772529	25
36	22215	12.44	993875	. 36	228239	12.79	771761	24
37 38 38	222861	12.42	99385.4	. 36	229007	12.77	77099.3	23
39	223606 22439	12.39 12.37	993832	. 36	$22977{ }^{3}$	12.75	770227	22
40	225092	12.35	993789	. 36	231302	12.75 12.71	769461 768698	21
41	9.225833	12.33	9.993768	. 36	9. 232065	12.69	10.767935	19
42	226573	12.31	993746	. 36	232826	12.67	767174	18
43	227311	12.28	993725	. 36	233586	12.65	766414	17
44	228048	12.26	993703	. 36	234345	12.62	765655	16
45	228784	12.24	99.3681	. 36	235103	12.60	764897	15
46	229518	12.22	993660	. 36	235859	12.58	764141	14
47	230252	12.20	993638	. 36	236614	12.56	763386	13
48	230984	12.18	99^{3616}	. 36	237368	12.54	762632	12
. 49	231714	12.16	99^{3594}	. 37	238120	12.52	761880	11
50	232444	12.14	993572	. 37	238872	1250	761:28	10
51	9. 233172	12.12	$9 \cdot 993550$. 37	9.239622	12.48	$1: \cdot 760378$	
52	233899	12.09	993528	. 37	240371	12.46	$7596=9$	8
53	$23462{ }^{2}$	12.07	993506	-37	24118	12.44	758882	7
54	235349	12.05	993484	$\cdot 37$	241865	12.42	758135	6
56	${ }_{236795}$	12.03 12.01	993462 993440	- 37	242610 24335	12.40 12.38	757390 75646	4
57	237515	11.99	99^{3418}	. 37	244097	12.36	755903	3
58	238235	11.97	993396	. 37	244839	12.34	755161	2
59	238953	11.95	993374	. 37	2:45579	12.32	754421	1
60	2396:\%	$11 \cdot 93$	993351	.37	2.46319	12.30	753681	o
	Cosine	1.	ine		:ang	D.		

M.	Sine.	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.239670	$11 \cdot 93$	9.993351	$\cdot 37$	9-246319	12.30	10.753681	60
1	240386	11.91	993329	$\cdot 37$	247057	12.28	10.7536813	50
2	241101	11.89	993307	$\cdot 37$	247794	12.26	72206	58
3	241814	11.87	993285	. 37	248530	12.24	751470	57
4	242526	11.85 11.83	973262	.37	249264	12.22	750736	56
5	243237	11.83 11.81	993240	$\cdot 37$	249998	$12 \cdot 20$	750002	55
6	243947	11.81	993217	. 38	250730	12.18	7492 90	54
	244656	11.79	993195	- 38	251461	12.17	748539	5.3
8	245363	11.77	993172	- 38	252191	12.15	747809	52
9	246069	11.75	49.3149	. 38	252920	12.13	747080	51
10	246775	$11 \cdot 73$	993127	. 38	253648	12.11	746352	50
11	9247478	11.71	9.903104	. 38	9.254374	12.09	10.745626	
12	248181	11.69	993081	38	255100	12.07	10.744900 744	48
13	248883	11.67	993059	. 38	255824	12.05	744176	47
14	249583	11.65	993036	- 38	25654	12.03	743453	46
13	250282	11.63	993013	- 38	257269	12.01	742731	45
16	250980	11.61	992990	- 38	257990	12.00	742010	44
17	251677	11.59	992967	- 38	258710	11.98	741290	43
18	25.5373	11.58	992944	- 38	259.429	11.96	740571	42
19	253067	11.56	992921	- 38	260146	11.94	739854	41
20	253761	11.54	992898	. 38	260863	11.92	739137	4 4
21	9.254453	11.52	$9 \cdot 992875$. 38	$9 \cdot 261578$	11.80	10.738422	3.
22	255144	11.50	992852	. 38	262292	11.89	737708	33
23	255834	11.48	992829	-39	263005	11.87	736995	37
24	256523	11.46	992806	- 39	263717	11.85	736283	36
25	257211	11.44	992783	- 39	264428	11.83	735572	35
26	257898	11.42	992759	-39	265138	11.81	734862	34
27	258583	11.41	992736	-39	265847	11.79	734153	33
28	259268	11.39	992713	-39	266555	11.78	733445	32
29	259951	11.37	992690	$\cdot 39$	267261	11.76	732739	31
30	260633	11.35	992666	-39	267967	11.74	732033	30
31	9.261314	11.33	9.992643	-39	9-26867s	11.72	10.731329	29
32	261994	11.31	992619	-39	269375	11.70	730625	28
33	26267^{3}	11.30	992596	$\cdot 39$	270077	11.69	729923	27
34	263351	11.28	992572	-39	270779	11.67	729221	26
35	264027	11.26	992549	-39	271479	11.65	728521	25
36	264703	11.24	992525	-39	272178	11.64	727822	24
37	265377	11.22	992501	-39	272876	11.62	727124	23
38	266051	11.20	992478	- 40	27357^{3}	11.60	726427	22
39	266723	$11 \cdot 19$	992454	40	274269	11.58	725731	21
40	267395	11.17	992430	-40	274964	11.57	725036	20
41	9. 268065	11.15	9.99?406	- 40	9.275658	11.55	$10 \cdot 724342$	19
42	268734	11.13	992382	- 40	276351	11.53	723649	18
43	269402	11.11	992359	- 40	277043	11.51	722957	17
44	270069	11.10	992335	- 40	277734	11.50	722266	16
45	270735	11.08	9923 IJ	- 40	278424	11.48	721576	15
46	271400	11.06	992287	. 40	279113	11.47	720887	14
47	272064	11.05	992263	- 40	279801	11.45	720159	13
48	272726	11.03	9922.19	- 40	280488	11.43	710512	12
49	273388	11.01	992214	- 40	281174	11.41	718826	11
50	274049	10.99	992190	- 40	281858	11.40	718142	10
51	9.274708	10.98	9.992166	- 40	9. 282542	11.38		
52	275367	10.96	992142	- 40	283225	11.36	716775	8
53	276024	10.94	992117	411	283907	11.35	716093	7
54 55	276681	$10 \cdot 92$	991093	-41	284588	11.33	715412	6
55 56	277337	10.91	992009	-41	285268	11.31	714732	5
56	277991	$10 \cdot 89$	992044	41	285947	11.30	714053	4
56 58	278644	10.87	992020	$\cdot 41$	286624	11.28	713376	3
59	279297 279948	10.86 10.84	991996 991971	41 .41	287301	11.26 11.25	712699	2
60	280599	10.82	991947	. 41	288652	11.23	711348	0
	Cosine	D.	Sine		Cotang.	I).	Tang.	M.

M.	Sine	D.	Cosine	D.	'Tang.	D.	Cotang.	
0	9.280599	${ }^{10.82}$	9.991947	41	9.298652	11.23	10711348	60
1	281248	10.81	991922	$\cdot 41$	289326	11.22	710674	59
3	281897	10.79	991897	$\stackrel{41}{4}$	289999	11.20 11.18	710001	58
3	292544	10.77	9) 1873	$\cdot 41$	290671	H. 18	$70{ }^{3} 29$	57
4	283190 293836	10.76	9911848 991823	. 41	2913.12 202013	11.17 11.15 1.15	703658	509
6	293836 284480	10.74 10.72	991799	-41	292682	11.14	707318	54
7	285124	10.71	991774	-42	293350	11.12	706650	53
8	285766	10.69	991749	$\cdot 42$	294017	11.11	705933	52
9	286408	10.67	991724	$\cdot 42$	294684	11.09	705316	51
10	287048	10.66	991699	-42	295349	11.07	70465.	50
11	-. 287687	10.64	9.991674	$\cdot 42$	9.296013	11.06	10.703087	49
12	289326	10.63	991649	$\cdot 42$	296677	11.04	703323	48
13	288964	$10.0{ }^{1}$	991624	$\cdot 42$	297339	11.03	702661	47
14	289600	10.50	991599	-42	299001	11.0	701999	46
15	290236	10.58	991574	$\cdot 42$	298662	11.00	701338	45
16	290870	10.56	991549	$\cdot 42$	299322	10.98	700678	44
17	291504	10.54	991524	- 42	299980	. 0.96	700020	43
18	292137	10.53	991498	${ }^{4} 42$	300638	$10 \cdot 95$	699362	42
19	292768	10.51	99147^{3}	- 42	301225	$10 \cdot 93$	698705 698049	418
20	293399	10.50	991448	$\cdot 42$	301951	10.92	698049	40
21	9.294029	10.48	9.991422	$\cdot 42$	9.302607	10.90	10.69739^{3}	39
22	294658	10. 46	991397	$\cdot 42$	303261	10.89	696739	
23	295286	10.45	991372	$\cdot 43$	303214	10.87	696036	37
24	295913	10.43	991346	$\cdot 43$	304567	10.85	695433	36
25	295539	10.42	991321	$\cdot 43$	305218	10.84 10.83	69477^{82} 694131	35 34
26	297164	10.40	991295	$\cdot .43$	305869 306519	10.83 10.81	694131	334
27 28 28	297788 298412	10.39 10.37	991270 991244	$\cdot \cdot 43$	306519 307168	10.81 10.80	693832 69285	32
29	299034	10.36	991218	$\cdot 43$	307815	10.78	692185	31
30	299655	10.34	991193	$\cdot 43$	308463	10.77	691537	30
31	9.300276	10.32	$9 \cdot 991167$	$\cdot 43$	9.309109	10.75	10.690891	29
32	300895	10.31	991141	$\cdot 43$	309754	$10 \cdot 74$	690246	28
33	301514	10.29	991115	$\cdot 43$	310398	10.73	6×9602	27
34	302132	10.28	991090	.43 .43	311012 31685 3	10.71 10.70	688938 688315	
35 36 36	302748 303364 303	10.26 10.25	991064 991038	$\stackrel{43}{ } \cdot 4$	311685 312327 3129	10.70 10.68	688315 68767	25 24
37	303364 303979	10.25 10.23	991012	. 43	312957	10.67	687033	23
38	304993	10.22	990986	. 43	313608	10.65	686392	22
39	305207	to. 20	9909to	. 43	314247	10.64	685753	21
40	305819	10.19	990934	-44	314885	10.62	685115	20
41	9.306430	10.17	9.990908	-44	9.315523	10.61	10.684477	19
42	307041	10.16	990882	-44	316159	10.60	683841	18
43	307650	$10 \cdot 14$	990855	-44	316793	10.58	683205	
45	308259 308367	10.13 10.11	990829 990803	- 44	317430 318064	10.57 10.55	682570 681936	
45	308867 30947 3	$10 \cdot 11$ 10.10	990803 990777	.44 .44	318064 318697	10.55 10.54	681936 691303	15
46	309474 310095 3100	10.10 10.08	990777 990750	-44	318697 319329	10.54 10.53	681303 680671	143
48	310685	10.07	990724	-44	319261	10.51	680039	:2
49	311289	10.05	990697	-44	320592	10.50	679408	11
50	311893	10.04	990671	$\cdot 44$	321222	10.48	678778	10
51	9.312495	10.03	9.990644	-44	9.321851	10.47	10.678149	
52	313097	10.01	990618	-44	322479	10.45	677521	8
53	313698	10.00	99059	44	323106	10.44	676894	7
54	314297	$9 \cdot 98$	990565	$\cdot 44$	323733	10.43	676267	6
55	314897	$9 \cdot 97$	990538	-44	324358	10.41	675642	5
56	315495	$9 \cdot 96$	990511	. 45	324983	10.40 10.30	675017 6.14393	4
57 59	31609^{2} 316639	9.94 9.93	990495	$\cdot 45$	325607 326231	10.39 10.37	67439 673769	3
59	317294	$9 \cdot 91$	990431	- 45	326853	10.36	673147	1
60	317879	$9 \cdot 90$	$9904) 4$	$\cdot 45$	327475	10.35	672525	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline *. \& Sine \& D. \& Cosiate \& D. \& Tang. \& D. \& \multicolumn{2}{|l|}{Cotang.}

\hline \checkmark \& 9.317879 \& 9.90 \& 9.990404 \& $\cdot 45$ \& 9.327474 \& 10.35 \& 10.672526 \& 60

\hline 1 \& 318473 \& 9.88 \& 990378 \& 45 \& 328095 \& 10.33 \& 671905 \& 50

\hline , \& 319066 \& 9.87 \& 990351 \& -45 \& 328775 \& 10.32 \& 671285 \& 58

\hline 3 \& 319658 \& 9.86 \& 990324 \& -45 \& 329334 \& 10.30 \& 670666 \& 57

\hline $\stackrel{4}{5}$ \& 3202 何 \& 9.84 \& 990297 \& -45 \& 329953 \& 10.29 \& 670047 \& 56

\hline 5 \& 320840 \& 9.83 \& 990270 \& -45 \& 330570 \& 10.28 \& 669430 \& 55

\hline 6 \& 321430 \& 9.82 \& 990243 \& -45 \& 331187 \& 10.26 \& 668813 \& 54

\hline 8 \& 322019 \& $9 \cdot 80$ \& 990215 \& 45 \& $33180{ }^{3}$ \& 10.25 \& 668197 \& 53

\hline 8 \& 322607 \& 9.79 \& 990188 \& 45 \& 332418 \& 10.24 \& 667592 \& 52

\hline 9 \& 323194 \& 9.77 \& 990161 \& 45 \& 333033 \& 10.23 \& 666067 \& 51

\hline 10 \& 323780 \& $9 \cdot 76$ \& 990134 \& - 45 \& 333646 \& 10. \& 666354 \& 50

\hline 11 \& 9324366 \& $9 \cdot 75$ \& 9.990107 \& - 46 \& 9.334259 \& 10.20 \& 10.665741 \& 49

\hline 12 \& 32.4050 \& $9 \cdot 73$ \& 990079 \& - 46 \& 334871 \& 10.19 \& 665129 \& 48

\hline 13 \& 325534 \& $9 \cdot 72$ \& 990052 \& - 46 \& 335482 \& 10.17 \& 664518 \& 47

\hline 14 \& 326117 \& 9.70 \& 990025 \& $\stackrel{46}{ }$ \& 336003 \& 10.16 \& 663907 \& 46

\hline 15 \& 326700 \& 9.69 \& 989997 \& $\cdots 6$ \& 336702 \& $10 \cdot 15$ \& ${ }_{66329} 8$ \& 45

\hline 16 \& 327281 \& 9.68 \& 989970 \& - 46 \& 337311 \& 10.13 \& 662689 \& 44

\hline 17 \& 327882 \& 9.66 \& 989942 \& - 46 \& 337919 \& 10.12 \& 662081 \& 43

\hline 18 \& 328442 \& 9.65 \& 989915 \& - 46 \& 338527 \& 10.11 \& 661473 \& 42

\hline 19 \& 329021 \& 9.64 \& 989887 \& -46 \& 339133 \& 10.10 \& 660867 \& 41

\hline 20 \& 329 ग̧9 \& 9.62 \& 989860 \& $\cdot 46$ \& 339739 \& 10.08 \& 660261 \& 40

\hline 21 \& 9.330176 \& $9 \cdot 61$ \& 9.989832 \& - 46 \& 9.3.40344 \& 10.07 \& 10.659656 \& 39

\hline 22 \& 330753 \& $9 \cdot 60$ \& 989804 \& - 46 \& 340948 \& \& 659052 \& 38

\hline 23 \& 33:329 \& 9.58 \& 989777. \& - 46 \& 341552 \& 10.04 \& 658448 \& 37

\hline 24 \& 331993 \& 9.57 \& $9{ }^{89} 9749^{\circ}$ \& - 47 \& 3 32155 \& 10.03 \& 657845 \& 36

\hline 25 \& 33247^{8} \& 9.56 \& 989721 \& 47 \& 342757 \& 10.02 \& 657243 \& 35

\hline 26 \& 333001 \& 9.54 \& 989693 \& -47 \& 3.43358 \& 10.00 \& 656642 \& 34

\hline 27 \& 333625 \& 9.53 \& 989665 \& -47 \& 343958 \& $9 \cdot 9$ \& $6560{ }^{2} 2$ \& 33

\hline 28 \& 3.34195 \& $9 \cdot 52$ \& 989637 \& -47 \& 344558 \& $9 \cdot 98$ \& 655442 \& 32

\hline 29 \& 334766 \& 9.50 \& 989609 \& - 47 \& 345157 \& 9.97 \& 654843
654245 \& 31

\hline 30 \& 335337 \& $9 \cdot 49$ \& 989582 \& - 47 \& 345755 \& $9 \cdot 96$ \& 654245 \& 30

\hline 31 \& 9.335906 \& $9 \cdot 48$ \& 9.989553 \& 47 \& 9.346353 \& $9 \cdot 94$ \& 10.653647 \& 29

\hline 32 \& 33647^{5} \& 9.46 \& 989525 \& - 47 \& \& $9 \cdot 93$ \& \& 28

\hline 33 \& 337043 \& 9.45 \& 989497 \& -47 \& 347545 \& $9 \cdot 92$ \& 65245 \& 27

\hline 34 \& 337610 \& $9 \cdot 44$ \& 989409 \& -47 \& 348141 \& $9 \cdot 91$ \& 651859 \& 26

\hline 35 \& 338176 \& $9 \cdot 43$ \& 989441 \& -47 \& 3.48735 \& 9.88 \& \& 25

\hline 36 \& 338742 \& $9 \cdot 41$ \& \& -47 \& 3.49329 \& 9.88 \& 650671
650078 \& 24
23

\hline 37
38 \& 339306
339871
3 \& 9.40
0.39 \& 989384
98956 \& $\begin{array}{r}-47 \\ \hline\end{array}$ \& 3.9922
350514 \& 9.87
9.86 \& 650078
649486 \& 23
22

\hline 38
39 \& 339871
340434
3 \& 9.39
9.39 \& 989356
98928 \& -47 \& 350514
351106 \& 9.86
9.85 \& 649
6488
689 \& 22
21

\hline 40 \& 340996 \& 9.36 \& 989300 \& - 47 \& 351697 \& 9.83 \& 648303 \& 20

\hline 41 \& 9.341558 \& 9.35 \& 9.989271 \& 44 \& 9.352287 \& 9.82 \& 10.647713 \& 19

\hline 42 \& 342119 \& 9.34 \& $9^{89} 943$ \& -47 \& 352876 \& 9.81 \& 647124 \& 18

\hline 43 \& 342579 \& $9 \cdot 32$ \& $9{ }^{9} 9214$ \& -47 \& 353465 \& $9 \cdot 80$ \& 646535 \& 17

\hline 44 \& 343239 \& $9 \cdot 31$ \& 989186 \& -47 \& 354053 \& $9 \cdot 79$ \& 645977 \& 10

\hline 45 \& 343797 \& 9.30 \& 989157 \& - 47 \& 354640 \& $9 \cdot 77$ \& 6453 \% \& 15

\hline 46 \& 344355 \& $9 \cdot 29$ \& \& 48 \& \& \& \&

\hline 47 \& 3.4912
34516 \& 9.27
0.26 \& ${ }^{989100}$ \& .48
.48 \& 355813
356308 \& $9 \cdot 75$
9.74 \& 644187
643602 \& 13
12

\hline 48
49 \& 345469
3.65024
3 \& 9.26
9.25 \& 989071
980042 \& -48 \& 356398
356982 \& $9 \cdot 74$
9.73 \& 643602
643018 \& 12

\hline 49
50 \& 346024
346579 \& $9 \cdot 25$
9.24 \& 989042
989014 \& -48 \& 3562^{82}
35766 \& 9.71
$9 \cdot 71$ \& 642434 \& 10

\hline 51 \& 2.347134 \& $9 \cdot 22$ \& 9.988985 \& -48 \& 9.358149 \& 9.70 \& 10641851 \& 8

\hline 52 \& 347687 \& $9 \cdot 21$ \& 988956 \& 48 \& 358731 \& 9.69 \& 641269 \&

\hline 53 \& 3482.16 \& $9 \cdot 20$ \& \& \& \& \& \& 7

\hline 54
55 \& 348792
3493

3 \& 9.19
9.17 \& 9888,8
98869 \& -48 \& 359993
360474 \& 9.67
9.66 \& 640107
630516 \& 6
5

\hline 55
56 \& 3.49343
349893 \& $9 \cdot 17$
$9 \cdot 16$ \& 988869
98840 \& - 48 \& 360474
36.053 \& 9.66
9.65 \& 630326
63894 \& 4

\hline 57 \& 350443 \& $9 \cdot 15$ \& 988811 \& - 49 \& 361632 \& 9.63 \& 638368 \& 3

\hline 58 \& 350992 \& $9 \cdot 14$ \& 988782 \& -49 \& 362210 \& 9.62 \& 637790 \& 2

\hline 59 \& 351540 \& 9.13 \& 988753 \& -49 \& 362787 \& 9.61 \& 637213 \& ,

\hline 60 \& 3520:88 \& $9 \cdot 11$ \& 988724 \& $\cdot 49$ \& 36336.4 \& $9 \cdot 60$ \& 636636 \& 3

\hline \& Cobine \& D. \& Sine \& \& Cutang. \& D. \& Treg. \& M.

\hline
\end{tabular}

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.352088	9-11	9.988724	-49	9.363364	$9 \cdot 60$	10.630036	60
1	9352635	$9 \cdot 10$	988695	. 49	363940	$9 \cdot 59$	630060	50
?	3j3181	9.09	988666	-49	364515	$9 \cdot 518$	635485	58
3	353726	9.08	988636	-49	365090	9.57	634910	57
4	354271	9.07	988607	-49	365661	9.55	634336	56
5	354815	9.05	988578	-49	366237	$9 \cdot 54$	6.33763	55
6	355358	9.04	988548	-49	366810	9.53	6.33190	54
8	355 gor	9.03	983519	-49	367332	9.53	632518	5.3
8	356443	9.02	988489	-49	367953	9.51	6.320 .47	52
9	3569^{84}	$9 \cdot 01$	988460	$\cdot 40$	368524	9.50	631476	51
10	357524	8.99	988430	. 49	369094	9.49	630906	50
$1 i$	$9 \cdot 358064$	$8 \cdot 9^{9}$	9.988401	- 49	$9 \cdot 369663$	$9 \cdot 49$	10.630337	49
12	358603	$8 \cdot 97$	989371	- 49	- 370232	$9 \cdot 46$	629768	48
13	359141	$8 \cdot 96$	$9883{ }^{42}$	- 49	370799	$9 \cdot 45$	629201	47
14	350678	$8 \cdot 95$	988312	- 50	371367	9.44	623633	46
15	360215	$8 \cdot 93$	988282	. 50	371933	9.43	628067	45
16	360752	$8 \cdot 92$	988252	. 50	372.499	$9 \cdot 42$	627501	44
17	361287	$8 \cdot 91$	988223	- 50	373064	9.41	626936	43
18	361822	$8 \cdot 90$	988193	- 50	373629	$9 \cdot 40$	626371	42
19	362356	$8 \cdot 80$	988163	. 50	374193	$9 \cdot 39$	625807	41
20	362889	8.88	983133	. 50	374756	9.38	625244	40
21	9.363 ${ }^{\text {2 }}$ 22	8.87	9.988103	- 50	9.375319	$9 \cdot 37$	10.624681	39
22	363954	8.85	$9{ }^{29} 073$	- 50	375881	9.35	624119	38
23	354485	8.81	983043	. 50	376442	9.34	623558	37
24 25	365016	8.83	988013	. 50	377003	9.33	622997	36
25	3555.66	8.82	937983	. 50	377563	$9 \cdot 32$	622437	35
26	366075	8.81	937953	. 50	378122	$9 \cdot 31$	621878	34
27 28 28	366604	$8 \cdot 80$	997922	. 50	378681	$9 \cdot 30$	621319	33
29	367131	8.79	987892	. 50	379239	$9 \cdot 29$	620761	32
29 3 c	367659 368185	8.77	987862	. 50	379797	$9 \cdot 28$	620203	31
	368185	$8 \cdot 76$	987832	. 51	380354	$9 \cdot 27$	619646	30
31	$9 \cdot 368711$	$8 \cdot 75$	9.987801	. 51	9.380910	$9 \cdot 26$	10.619090	29
32 33	369236	8.74	987771	. 51	381466	$9 \cdot 25$	618534	28
33 34	369761	$8 \cdot \mathrm{c} 73$	987740	. 51	382020	$9 \cdot 24$	617280	27
34 35	370285	$8 \cdot 72$	957710	. 5 I	382575	$9 \cdot 23$	617425	26
36	370808	$8 \cdot 71$	987679	. 51	383129	$9 \cdot 22$	616871	25
37	371852		9976.49	- 51	383682	$9 \cdot 21$	616318	24
38	372373	8.67	99758	.51 .51 .51	384234	$9 \cdot 20$	615760	23
39	372994	8.66	987557	. 51	385337	$9 \cdot 18$	515214	22
40	373414	8.65	987526	. 51	385888	9.18 9.17	614112	21 20
41	9 373933	8.64	9.987496	. 51	9.386438	$9 \cdot 15$	10.613562	
42	374452	8.63	987465	. 51	386987	$9 \cdot 14$	6,3013	18
43	374970	8.62	987434	. 51	397536	9.13	61246	17
44	375487	$8 \cdot 61$	987403	. 52	388084	$9 \cdot 12$	611916	16
45	376003	8.60	987372	. 52	38863 I	9.11	611369	15
46	376519	8.59	987341	. 52	389178	$9 \cdot 10$	610822	14
47	3770.35	8.58	987310	. 52	389724	9.09	610276	13
48	377549	8.57	997279	.52	390270	9.08	609730	12
49	378063	3.56	997248	. 52	390815	9.08 9.07	609185	12
50	378577	8.54	987217	. 52	391360	9.06	608640	10
51	9.379089	8.53	$9 \cdot 987186$. 52	9.391903	9.05	10.608007	
52 53	379601	8.52	987155	. 52	- 392417	$9 \cdot 04$	607553	8
53	380113	8.51	987124	. 52	$3922^{8} 9$	9.03	607011	7
54	380624	8.50	987092	. 52	39.3531	$9 \cdot 02$	606.469	6
55 56	381134 391643	8.49 8.48	987061	${ }^{5} 5$	39.4073	9.01	605027	5
5	381643 392152	8.48 8.47	987030	$\cdot 52$	394614	$9 \cdot 60$	605386	4
58	382661	8.47 8.46	936993	. 52	395154	8.99	601846	3
59	383168	8.45		-52	395694	8.98	604306	2
60	383675	8.45 8.44	9886904	$\begin{array}{r}.52 \\ .52 \\ \hline\end{array}$	396233 396771	8.97 8.96	603767 603229	1
	Cosine	I).	Sine		Cotang.	D.	'rang.	MA.

M.	Sine	D.	Cusine		Tal	D.	Corang.	
0	9.383675	$8 \cdot 44$	9.986904	. 52	-. 396771	8.96	10.603229	(6)
1	384182	$8 \cdot 43$	956873	. 53	397309	8.96	Fio2691	53
${ }_{3}^{2}$	384687	$8 \cdot 42$	996841	. 53	397846	8.95	602154	53
3	385192	$8 \cdot 41$	956809	. 53	399383	$8 \cdot 94$	501517	59
4	385697	$8 \cdot 40$	986778	53	398919	$8 \cdot 93$	$6010{ }^{6} 1$	50
5	386201	8.39	996746	. 53	39945	$8 \cdot 92$	600545	5.5
6	386704	8.38	996714	. 53	399290	8.91	600010	54
7	387207	8.37	986683	. 53	400524	$8.9{ }^{\circ}$	599.476	53
8	387709	8.36	986651	. 53	401058	8.89	598942	52
9	388210	$8 \cdot 35$	936619	. 53	401591	8.88	598400	51
18	388711	3.34	786587	. 53	402124	8.87	597876	50
11	9.389211	8.33	9.986555	. 53	9. 402656	8.86	10. 5973.44	49
12	389711	$8 \cdot 32$	996523	. 53	403187	8.85	596813	48
13	390210	$8 \cdot 31$	986491	. 53	$40^{3} 718$	8.84	596282	47
14	390708	8.30	986499	. 53	404249	8.83	595751	46
15	391206	$8 \cdot 28$	986127	. 53	404778	${ }^{8.82}$	595222	45
16	391703	8.27	986395	. 53	405.308	8.81	59.4692	44
17	392199	$8 \cdot 26$	986363	. 54	405836	8.80	594164	43
18 19	392695 393191	8.25 8.24	986331 986299	. 54	406364 40682	8.79 8.78	593636 593108	42
20	393685	$8 \cdot 23$	986266	. 54	407419	$8 \cdot 77$	592581	40
21	9.394179	$8 \cdot 22$	9.956234	. 54	9.407945	$8 \cdot 76$	10.592055	39
22	394673	$8 \cdot 21$	986202	. 54	408471	$8 \cdot 75$	591529	38
23	395166	$8 \cdot 20$	986169	. 54	408997	$8 \cdot 74$	591003	37
24	395658	$8 \cdot 19$	986137	. 54	400^{521}	8. 74	590.179	36
25	336750	$8 \cdot 18$	986104	. 54	410045	$8 \cdot{ }^{3}$	58995	35
25	396641	$8 \cdot 17$	986072	. 54	410569	$8 \cdot 72$	5894.31	34
27	${ }_{3} 97132$	$8 \cdot 17$	986039	. 54	411092	$8 \cdot 71$	588908	33
28	397621	$8 \cdot 16$	986007	. 54	411615	8.70	588385	32
29	398111	$8 \cdot 15$	985974	. 54	412137	8.69	587863	3ı
30	398600	. 14	9859.42	. 54	412658	8.68	587342	30
31	9.399088	$8 \cdot 13$	9.985009	. 55	9.413179	8.67	10.586821	
32	39957^{5}	$8 \cdot 12$	985876	. 55	413699	8.66	586301	28
33	400062	$8 \cdot 11$	985843	. 55	414219	8.65	585781	27
34	400549	$8 \cdot 10$	985811	. 55	414738	8.64	585262	26
35	401035	8.00	985778	. 55	415257	8.64	584743	25
36	401520	8.08	985745	. 55	415775	8.63	584225	24
37	402005	8.07	985712	. 55	416293	8.62	583707	23
38	402489	8.06	985679	. 55	416810	8.61	583190	21
39	40297^{2}	8.05	985646	. 55	417326	8.60	582674	21
40	40.3455	8.04	985613	. 55	417842	8.59	582158	20
41	9.4039 38	8.03	9.985580	. 55	9.418358	8.58	12. 581642	
42	404420	8.02	985547	. 55	418873	8.57	581127	18
43	404901	$8 \cdot 01$	985514	. 55	419387	8.56	580613	17
45	405332	8.00	985480	. 55	419901	8.55 8.55	580099	16
45	405862	$7 \cdot 99$	985447	- 55	420415	8.55	579785	15
46	406341	$7 \cdot 98$	985414	- 56	420927	8.54		1
47	406820	$7 \cdot 97$	985380	- 56	421440	8.53	578503	3
48	407299 40777	7.96 7.95	985347 98314	. 56	421952 422463	8.52 8.51	578048 57753	12
49 50	407777 408254	7.95 7.94	985280 985	$\stackrel{.}{ } .56$	422463 422974	8.51	57753 577026	11
51	9.408731	$7 \cdot 94$	9.985247	. $5 t$	9.423484	$8 \cdot 49$	10.576515	
52	409207	$7 \cdot 93$	${ }^{985213}$		423993	8.48	576007	8
53	409682	$7 \cdot 92$	985180	. 56	424503	$8 \cdot 48$	575497	7
54	410157	$7 \cdot 91$	985146	. 56	425011	$8 \cdot 47$	574989	6
55	410632	$7 \cdot 90$	985113		425519	8.46	574488	5
56	411106	7.89	985079	. 56	426027	8.45	573973	4
57 58	411579	7.88	985045	. 56	4265.3	8.44	573466	3
58	412052	$\% 87$	985011	. 56	427041	8.43	572959	2
39	412.524	7.86	984978	$\cdot 56$	427547	8.43	! 372453	1
©	412996	7.85	98.944	. 50	428052	$8 \cdot 42$	571948	0
	Cosine	D.	Sine		Cutang.	D.	Tang	M.

M.	Sine	D.	Cosine	9.	Tang.	D.	Cotalig.	
0	$9 \cdot 412096$	7.85	$9 \cdot 98.4944$.57	9.428052	$8 \cdot 42$	10.571948	60
1	413.467	7.84	98.4910	. 57	428557	$8 \cdot 41$	571443	59
2	41.3938	7.83	984876	$\cdot 57$	429062	$8 \cdot 40$	570938	58
3	41.4408	7.83	934842	. 57	429566	8.39	570434	57
4	414878	7.82	994808	. 57	430070	8.38	569930	56
5	415347	7.81	944774	. 57	430573	8.38	569427	55
6	415815	$7 \cdot 80$	994740	$\cdot 57$	431075	8.37	568925	54
8	416283	$7 \cdot 79$	994706	$\cdot 57$	431577	$8 \cdot 36$	568423	53
8	416751	7-78	994672	$\cdot 57$	432079	$8 \cdot 35$	567921	52
9	41721 ?	$7 \cdot 77$	944637	$\cdot 57$	432.580	8.34	567420	51
10	417684	7-76	93.4603	$\cdot 57$	433080	$8 \cdot 33$	566920	50
11	9.418 .50	$7 \cdot 75$	$9 \cdot 984569$. 57	9.433580	8.32	10.566420	49
12	418615	$7 \cdot 74$	944535	. 57	434090	8.32	565920	43
13	419079	$7 \cdot 73$	994500	$\cdot 57$	434579	3.31	565421	47
14	419544	$7 \cdot 73$	$9^{984} 466$. 57	432078	8.30	564922	46
15 16	420007	$7 \cdot 72$ 7.71	984.332	- 58	435576	$8 \cdot 29$	564424	45
16 17	420.470	$7 \cdot 71$	984397	. 58	436073	$8 \cdot 23$	563927	44
18	42093	$7 \cdot 70$	98.363	. 58	436570	$8 \cdot 28$	563430	43
14	421857	7.68	984294	. 58	437067 437563	8.27 8.26	562933 562437	42
20	422318	$7 \cdot 67$	984259	. 58	438059	$8 \cdot 25$	5619	40
21	9.422778	7.67	9.084224	. 58	9.438554	$8 \cdot 24$	10.561446	39
22	423238	7.66	984190	. 58	439048	$8 \cdot 23$	560952	33
23	423697	7.65	98.1505	. 58	439053	$8 \cdot 23$	560457	37
24	424156	$7 \cdot 64$	984120	. 58	440036	$8 \cdot 22$	53996.4	36
25	424615	$7 \cdot 63$	98.085	. 58	440529	$8 \cdot 21$	559471	35
26	425073	7.62	984050	. 58	411022	$8 \cdot 20$	$55 \% 978$	34
27 28	425530	7.61	994015	- 58	441514	$8 \cdot 19$	558486	3.3
28 29	425987	$7 \cdot 60$	993981	- 58	42006	$8 \cdot 19$	557994	32
30	426443 426399	$7 \cdot 60$ 7.59	9839.6 983911	- 58	442.97	$8 \cdot 18$	557503	31
31	9.427354	$7 \cdot 58$	9.983875	. 58		8.16		
32	427809	7.57	983840	. 59	$9 \cdot 4.4379$ 4.43068	8.16	- 55631	29
33	429263	$7 \cdot 56$	9938505	.59 .59	44.4458	8.16 8.15	556032 555342	28
34	428717	7.55	983770	. 59	44497	$8 \cdot 14$	555053	27 26
35	429170	7.54	993735	. 59	445435	$8 \cdot 13$	554565	25
36	429623	$7 \cdot 53$	933700	. 59	44592	$8 \cdot 12$	55.4077	24
37 38	430075	$7 \cdot 52$	983664	. 59	446 ¢11	$8 \cdot 12$	553589	23
38 39	430527	$7 \cdot 52$	933629	$\cdot 59$	4.69898	$8 \cdot 11$	553102	22
40	430978 431429	$7 \cdot 51$	993594	- 59	447384	$8 \cdot 10$	$5526: 6$	21
41				- 5	4.47870	$8 \cdot 09$	552130	20
42	$9 \cdot 431879$	$7 \cdot 49$	9.983523	- 59	9.4.48356	$8 \cdot 09$	10.5516 .44	19
43	432778	7.49	983407	-59	44884	$8 \cdot 08$	5.1379	18
44	433226	$7 \cdot 47$	983416	. 59	4.4926	8.07 8.06	550674 550190	17
45	433675	$7 \cdot 46$	983381	. 59	45029.4	8-06	5.49706	15
46	431122	$7 \cdot 45$	983345	- 59	450777	$8 \cdot 05$	549223	14
47	434569	$7 \cdot 44$	993309	- 59	451260	8-04	547740	13
48	43.5016	$7 \cdot 44$	983273	-60	451743	$8 \cdot 03$	5482.57	12
49	435462	$7 \cdot 43$	993238	-60	452225	$8 \cdot 02$	547775	$1 i$
50	435908	$7 \cdot 42$	933202	-60	452706	$8 \cdot 02$	$54720{ }^{\prime}$	10
	9.436353	741	9.983166	-60	9.453187	8.01	10.5.4681.3	
52 53	43679^{9}	740	983130	. 60	4.453669	3.00	10.546332	8
53 54	437242	7.40	933094	. 60	45418	$7 \cdot 99$	545852	7
54 55	137686 438129	7.39 7.38	933038	-60	456628	7.99	54.3772	6
5	438129 438572	7.38 7.37	993022	-60	45.5107	$7 \cdot 93$	544893	5
57	439014	7.36	9882950	. 60	456064	7.97 7.96	5141414 54336	4
58	439456	$7 \cdot 36$	982914	. 60	$45^{5} \% 542$	$7 \cdot 96$	543458	3
59	439897	7.35	982.378	. 60	457019	7.95	5 \% $420^{\text {Y/ }}$	1
60	440338	7.34	9828.12	. 60	457496	$7 \cdot 94$	5.42504	0
	Cosine	D.	Sine		Cotang.	D.	Tang.	M.

M.	Sine	D.	Cesine	U.	Tacg.	D.	Cotring.	
0	9-440338	7.34	$9 \cdot 982842$	-60	$9 \cdot 457496$	$7 \cdot 94$	10.542504	to
1	440778	$7 \cdot 3$	982805	-60	457973	$7 \cdot 93$	542027	59
2	441218	$7 \cdot 32$	982769	.61	458449	$7 \cdot 93$	541551	58
3	441658	7.31	982733	-61	458925	$7 \cdot 92$	541075	5
4	442006	$7 \cdot 31$	982696	-61	450400	$7 \cdot 91$	540600	36
5	442535	$7 \cdot 30$	982660	-61	459875	$7 \cdot 90$	540125	50
6	442073	$7 \cdot 29$	982624	-61	460349	9.90	539651	54
7	443410	$7 \cdot 28$	982587	-6I	460823	7.89	53917	53
8	443847	$7 \cdot 27$	982551	-61	461297	7.88	533703	52
9	414284	$7 \cdot 27$	982514	-61	461770	7.88	538230	51
10	444720	7-26	982477	-61	462242	7.87	537758	50
11	9•445155	7.25	9.982441	-61	9.462714	$7 \cdot 86$	10.537286	49
12	445590	$7 \cdot 24$	992404	.61	463186	7.85	536814	48
13	446025	7.23	982.367	-61	463658	7.85	536342	47
14	446459	$7 \cdot 23$	982331	-61	464129	7.84	535871	46
15	446893	$7 \cdot 22$	982294	-61	464599	7.83	535.401	45
16	447326	7.21	982257	. 61	465069	$7 \cdot 83$	534931	44
17	447759	$7 \cdot 20$	982220	- 62	465539	7.82	534461	43
18	448191	$7 \cdot 20$	982183	- 62	466008	$7 \cdot 81$	533292	42
19	448623	$7 \cdot 19$	982146	. 62	:65476	$7 \cdot 80$	533524	41
20	449054	7-18	982109	. 62	460́945	$7 \cdot 80$	533055	40
21	9.449485	$7 \cdot 17$	9.982072	. 62	9.467413	$7 \cdot 79$	10.532587	39
22	449015	7-16	932035	-62	467880	$7 \cdot 78$	532120	38
23	450345	7-16	981998	-62	468347	$7 \cdot 78$	531653	37
24	450775	7-15	981961	-62	468814	$7 \cdot 77$	531186	36
25	451204	7.14	981924	- 62	469280	$7 \cdot 76$	530720	35
26	451632	7-13	981886	- 62	4697.46	$7 \cdot 75$	530254	34
27	452060	713	9818.49	- 62	470211	$7 \cdot 75$	529789	33
28	452488	7.12	99_{1812}	- 62	470676	$7 \cdot 74$	529324	$? 4$
29	452015	$7 \cdot 11$	981774	-62	471141	$7 \cdot 73$	528859	3.
30	453312	$7 \cdot 10$	981737	. 62	471605	$7 \cdot 73$	528393	30
31	$9 \cdot 453768$	$7 \cdot 10$	9.981699	- 63	9.472068	$7 \cdot 72$	10.527932	29
32	45 年194	7.09	981662	-63	472532	$7 \cdot 71$	527468	25
33	454619	7.08	981625	-63	472925	$7 \cdot 71$	527005	27
34	455044	7.07	951587	-63	473407	$7 \cdot 70$	526543	25
35	455469	7.07	981549	. 63	473919	7.69	526081	25
36	455895	7.06	98.512	-63	474381	7.69	525019	24
3 3	456316	7.05	981474	. 63	4748.42	7.68	525158	23
38	456739	7.04	991436	. 63	475303	$7 \cdot 67$	524697	22
39	457162	$7 \cdot 04$	981399	- 63	475763	$7 \cdot 67$	524237	21
40	457584	$7 \cdot 03$	981361	. 63	476223	$7 \cdot 66$	523777	20
41	9.458006	7.02	9.981323	. 63	9.476683	7.65	10.523317	
42	458427	7.01	981285	. 63	477142	$7 \cdot 65$	522858	18
43	45888	$7 \cdot 01$	981247	- 63	477601	$7 \cdot 64$	522399	17
44	450268	7.00	981209	. 63	478059	$7 \cdot 63$	521941	16
45	459688	6.99	981171	. 63	478517	7.63	521483	15
46	460108	$6 \cdot 98$	981133	. 64	478975	$7 \cdot 62$	521025	14
$4{ }^{\circ}$	46055	$6 \cdot 98$	981095	-6.4	479432	$7 \cdot 61$	520508	:3
48	460946	$6 \cdot 97$	981057	-64	479889	$7 \cdot 61$	520111	12
49	461364	$6 \cdot 96$	981019	-64	480345	$7 \cdot 60$	519655	11
50	461782	$6 \cdot 95$	980981	. 64	480801	$7 \cdot 59$	519199	10
51	$9 \cdot 462199$	$6 \cdot 95$	9.9809 .12	. 64	9.481257	$7 \cdot 59$	Ic. 518743	8
52	462616	$6 \cdot 94$	98090.4	. 64	481712	7.58	518288	8
53	463032	$5 \cdot 93$	950866	. 64	482167	$7 \cdot 57$	517833	7
54	463448	$6 \cdot 93$	950827	. 64	482621	7.57	517379	6
55	463864	$6 \cdot 92$	980789	. 64	483075	$7 \cdot 56$	516925	5
56	464279	$6 \cdot 91$	980750	. 64	483529	$7 \cdot 55$	516471	4
57 58	464694	$6 \cdot 90$	980712	. 64	483982	7.55	516018	3
58	465108	$6 \cdot 90$	980673	. 64	484435	$\bigcirc \cdot 54$	51505	2
59 60	465522 465935	6.89 6.88	980053	. 64	484887 485339	7.53 7.53	51J1: 514iti	0
	Casine	D.	Sine		Cotang.	D.	Tatce	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	$9 \cdot 465935$	6.88	$9 \cdot 980596$. 64	$9 \cdot 485339$	7.55	10.514661	60
1	466348	$5 \cdot 88$	980505	. 64	485791	$7 \cdot 52$	514209	59
2	466761	$6 \cdot 87$	980519	. 65	486242	$7 \cdot 51$	513758	58
3	467173	6.86	780480	. 65	486693	$7 \cdot 51$	5.3307	57
4	467585	6.85	$9804{ }^{9} 2$. 65	487143	$7 \cdot 50$	512857	56
5	467996	6.85	980403	. 65	487503	$7 \cdot 49$	512,407	55
E	468407	0.84	9^{803644}	. 65	488043	$7 \cdot 49$	511957	54
8	468817	6.83	$9^{30.325}$. 65	488492	$7 \cdot 48$	$5115: 38$	53
8	469227	6.83	990286	. 65	4889ヶ!	$7 \cdot 47$	511059	52
9	469637	$6 \cdot 81$	980247	. 65	489390	7.47	510610	51
10	470046	$6 \cdot 81$	980208	-65	489338	7.46	510162	50
11	9.470455	$6 \cdot 81$	9.980169	. 65	9.490286	$7 \cdot 46$	10.509714	49
12	470863	$6 \cdot 8$	$9^{801.30}$. 65	490733	7.45	500267	48
13	471271	$5 \cdot 79$	980091	. 65	491180	7.44	508820	47
14	471679	$6 \cdot 78$	980052	. 65	491627	7.44	508373	46
15	472086	$6 \cdot 78$	980012	. 65	492073	$7 \cdot 43$	507927	45
16	472492	$6 \cdot 77$	979973	. 65	492519	7.43	507481	44
17	472898	$6 \cdot 76$	979934	. 66	492965	$7 \cdot 42$	507035	43
18	473304	$6 \cdot 76$	979895	. 66	493410	$7 \cdot 41$	506590	42
19	473710	$6 \cdot 75$	979855	. 66	493854	$7 \cdot 40$	506146	41
20	474115	$6 \cdot 74$	979816	. 66	494299	$7 \cdot 40$	505701	40
21	9.474519	$6 \cdot 74$	9.979776	. 66	9.494743	$7 \cdot 40$	10.505257	39
22	474923	$6 \cdot 73$	979737	. 66	495186	7.39	504814	38
23	475327	$6 \cdot 72$	979697	. 66	495330	7.38	504370	37
24	475730	$6 \cdot 72$	979658	. 66	496073	7.37	503927	36
25	476133	$6 \cdot 71$	979618	. 66	496515	7.37	503485	35
26	476536	$6 \cdot 70$	979579	. 66	496957	$7 \cdot 36$	503043	34
27	476938	6.69	979539	. 66	497399	$7 \cdot 36$	502601	33
28	477340.	6.69	979429	. 66	497841	$7 \cdot 35$	502159	32
29	$47774{ }^{\circ}$	$6 \cdot 68$	979459	. 66	498282	7.34	501718	31
30	478142	$6 \cdot 67$	979420	. 66	498722	$7 \cdot 34$	501278	30
31	9.478542	6.67	9.979380	. 66	9.499163	$7 \cdot 33$	$10 \cdot 500837$	29
32 32	478942	6.66	979340	. 66	499603	$7 \cdot 33$	500397	28
33	479342	6.65	979300	. 67	500042	7.32	499958	27
34 35	479741	6.65	979260	. 67	500481	7.31	499519	26
35 35	480140	6.64 6.63	979220	. 67	500920	$7 \cdot 31$	49909	25
35	480539	6.63	979180	.67	501359	730	4986 亿1	24
3 38	4800.37	6.63 6.62	979140	-67	501797	$7 \cdot 30$	49^{8203}	23
39	481334	6.62	979100	. 67	502235	$7 \cdot 29$	497765	22
40	481731	6.61	979009	- 67	502672	$7 \cdot 28$	497328	21
	48		979019	$\cdot 67$	503109	$7 \cdot 28$	496891	20
41	9.482525	6.60	9.978979	. 67	$9 \cdot 503546$	$7 \cdot 27$	10.496454	19
42	482921	$6 \cdot 59$	$978{ }^{8} 38$. 67	503982	7.27	496018	18
43	483316	$6 \cdot 59$	978898	. 67	504418	$7 \cdot 26$	495582	17
44	483712	$6 \cdot 58$	978858	. 67	504854	$7 \cdot 25$	495146	16
45	484107	$6 \cdot 57$	978817	. 67	505028	$7 \cdot 25$	494711	15
46	484501	6.57	978777	. 67	505724	$7 \cdot 24$	491276	14
47	484995	$6 \cdot 56$	978736	. 67	506159	7.24	493841	13
48	485289	6.55	978696	. 68	506503	$7 \cdot 23$	493407	12
49	485682	6.55	978655	. 68	507027	$7 \cdot 22$	492973	13
50	486075	6.54	978615	. 68	507460	$7 \cdot 22$	492540	10
51	9-486:467	6.53	9.978574	. 68	9.507893	7.21	10.492107	
52	486860	6.53	978533	. 68	508326	$7 \cdot 21$	491674	8
53	487251	6.52	97849^{3}	. 68	503759	$7 \cdot 20$	491241	
54 55	487643	$6 \cdot 51$	978452	. 68	509191	$7 \cdot 19$	490800	6
55	488034.	6.51	978411	. 68	509622	$7 \cdot 19$	490378	5
56	488424	6.50	978370	. 68	510054	$7 \cdot 18$	4899.6	4
56 58 58	488814	6.50	978329	. 68	510485	$7 \cdot 18$	489515	3
58 5	489204	6.49	978288	. 68	510916	$7 \cdot 17$	489084	2
59	489503	6.48	978247	. 68	511346	7.16	4888.54	1
60	4899\%2	6.48	978206	. 68	511776	7-16	488224	0
	Crasine	D.	Sine	D.	Cotang.	D.	'Taıg.	M.

3.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	$9 \cdot 489982$	6.48	9.9782 c 6	. 68	9.511776	7-16	10.488224	60
1	490371	$6 \cdot 48$	97^{8165}	- 68	512206	$7 \cdot 16$	487794	59
2	490759	$6 \cdot 47$	97^{8124}	- 68	512635	$7 \cdot 15$	487365	58
3	491147	$6 \cdot 46$	978083	-69	513064	7-14	486036	57
4	491535	$6 \cdot 46$	978042	-69	513493	7-14	\$86507	55
5	491922	$6 \cdot 45$	978001	-69	513921	7.13	486079	55
6	492308	$6 \cdot 44$	9779 \%	- 69	514349	7-13	485651	54
d	492695	$6 \cdot 44$	977918	-69	514777	7-12	485223	53
8	493081	$6 \cdot 43$	977877	- 69	515204	7-12	484796	52
9	493466	$6 \cdot 42$	977835	-69	515631	$7 \cdot 11$	484369	51
10	493851	$6 \cdot 42$	977794	-69	516057	7-10	483943	50
11	9.494236	$6 \cdot 41$	9.977752	-69	9.516484	7-10	10.483516	49
12	494621	$6 \cdot 41$	977711	. 69	516910	7.09	483090	48
13	495005	$6 \cdot 40$	977669	- 69	517335	7.09	482665	47
14	49,388	$6 \cdot 39$	977628	-69	517761	7.08	482239	46
15	495772	6. 39	977586	-69	518185	7.08	481815	45
16	496154	$6 \cdot 38$	977544	- 70	518610	7.07	481300	44
17	496537	$6 \cdot 37$	977503	- 70	519034	7.06	480266	43
18	496919	6.37	977461	$\cdot 70$	519458	7.06	480542	42
19	497301	$6 \cdot 36$	977419	-70	519882	7.05	480118	41
20	497682	6.36	977377	- 70	520305	7.05	479695	40
21	9.498064	$6 \cdot 35$	9.977335	-70	9.520728	7.04	10.479272	39
22	408444	$6 \cdot 34$	97722^{3}	- 70	521151	$7 \cdot 03$	478849	38
23	498825	$6 \cdot 34$	977251	- 70	521573	$7 \cdot 03$	478427	37
24	499204	$6 \cdot 3.3$	977209	- 70	521995	7.03	478005	36
25	499584	$6 \cdot 32$	977167	- 70	522417	7.02	477583	35
26	499963	$6 \cdot 32$	977125	- 70	522838	7.02	477162	3.4
27	500342	$6 \cdot 31$	977083	- 70	523259	7.01	4767.41	33
28	500721	$6 \cdot 31$	977041	- 70	52.3680	7.01	476320	32
29	501099	6.30	976999	-70	524100	7.00	475900	3 J
30	501476	$6 \cdot 29$	9769.97	- 70	52.4520	6.99	475480	30
31	9.501854	$6 \cdot 29$	9.976914	-70	$9 \cdot 524939$	6.99	10.475061	29
32	502231	6.28	976872	$\cdot 71$	525359	6.98	474641	28
33	502607	$6 \cdot 28$	976830	$\cdot 71$	525778	$6 \cdot 98$	474222	27
34	502984	$6 \cdot 27$	976787	$\cdot 71$	526197	6.97	473803	26
35	503360	6.26	976745	$\cdot 71$	526615	6.97	473385	25
36	503735	$6 \cdot 26$	976702	$\cdot 71$	527033	$6 \cdot 96$	472967	24
$37]$	504110	$6 \cdot 25$	976660	$\cdot 71$	527451	$6 \cdot 06$	472549	2.3
38	504485	6.25	976617	$\cdot 71$	527868	$6 \cdot 95$	472132	22
39	504860	$6 \cdot 24$	976574	$\cdot \% 1$	528285	$6 \cdot 95$	471715	21
40	505234	$6 \cdot 23$	976532	$\cdot 71$	528702	6.94	471298	20
41	$9 \cdot 505608$	6.23	9.976489	$\cdot 71$	9.529119	$6 \cdot 93$	10.470881	19
42	505981	$6 \cdot 22$	976446	$\cdot 71$	529.33	$6 \cdot 93$	470465	18
43	506354	$6 \cdot 22$	976404	$\cdot 71$	529950	$6 \cdot 93$	470050	17
44	506727	$6 \cdot 21$	976361	$\cdot 71$	5.30 .366	6.92	469634	16
45	507099	$6 \cdot 20$	676318	$\cdot 71$	530781	6.91	469219	15
46	507471	$6 \cdot 20$	976275	$\cdot 71$	531196	6.91	468804	14
47	507843	$6 \cdot 19$	976232	$\cdot 72$	531611	6.90	468389	1.3
48	508214	$6 \cdot 19$	976189	- 72	532025	6.90	$46797{ }^{5}$	12
45	508585	6.18	976146	$\cdot 72$	532439	6.89	467561	11
50	508956	6.18	976103	$\cdot 72$	532853	6.89	467147	10
51	9.509326	6.17	9.976060	$\cdot 72$	9.533266		10.466734	
52	509696	$6 \cdot 16$	976017	$\cdot 72$	533679	6.88	466321	8
53	510065	5.16	975074	- 72	53.4092	6.87	465908	7
54 55	510434	6.15 6.15	975930	-72	534504	6.87 6.86	46.5496	5
55	510803	$6 \cdot 15$	975887	-72	534916	6.86 5.86	465084	5
56	511172	$6 \cdot 14$	975844	-72	535328	5.86	464672	4
57 58	511540 511907	6.13 6.13	975800	.72 $\cdot 72$	535739 53650	6.85 6.85	464261 463850	3
58 59	511907 512275	$6 \cdot 13$ 6.12	975757 975714	.72 $\cdot 72$.72	536150 536561	6.85 6.84	463850 463430	2
6	512275 $512 t \leq 2$	$6 \cdot 12$ 6.12	975714 975670	$\cdot 72$ $\cdot 72$ $\cdot 72$	536972	6.84 6.84	463028	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	1.	Cosino	U.	Tang.	D.	Cotang.	
0	9.5126 .42	$6 \cdot 12$	9.975670	$\cdot 73$	9.536972	6.84	10.463028	60
1	513009	6.1 1	975527	$\cdot{ }^{7}$	537382	6.83	462618	59
2	513375	$6 \cdot 11$	975583	$\cdot 73$	537792	6.83	462208	58
3	513741	5.10	975539	$\cdot 73$	538202	$6 \cdot 82$	461798	57
4	514107	5.09	975 9q6	$\cdot 73$	538611	$6 \cdot 82$	461389	56
5	514472	6.09	975 \% ${ }^{\text {2 }}$	$\cdot{ }^{73}$	539020	6:81	460950	55
6	514837	5.08	975403	$\cdot 73$	539429	6.81	460371	54
7	515202	6.08	975365	$\cdot 73$	539837	6.80	460163	53
8	515566	6.07	975321	$\cdot{ }^{73}$	540245	$6 \cdot 80$	450750	52
9	515930	6.07	975277	$\cdot{ }^{73}$	540653	$6 \cdot 79$	459347	51
10	516294	6.06	975233	$\cdot 73$	541061	$6 \cdot 79$	458939	50
11	9.516657	6.05	9.975189	$\cdot 73$	9.541468	$6 \cdot 78$	10.458532	49
12	517020	6.05	975145	$\cdot 73$	541875	$6 \cdot 78$	458125	48
13	517382	6.04	975101	$\cdot 73$	5.22881	$6 \cdot 77$	457719	47
14	517745	6.0.4	975057	- 73	542688	$6 \cdot 77$	457312	46
15	518107	6.03	975013	$\cdot 73$	543094	$6 \cdot 76$	456906	45
16	518468	6.03	974969	$\cdot 74$	543492	$6 \cdot 76$	456501	44
17	518829	6.02	974925	$\cdot 74$	543905	$6 \cdot 75$	436095	43
18	519190	6.01	974880	- 74	544310	$6 \cdot 75$	455690	42
19	510951	6.01	974836	- 74	544715	$6 \cdot 74$	455285	41
20	519911	6.00	974792	- 74	545119	$6 \cdot 74$	454881	40
21	9.520271	$6 \cdot 00$	9.974748	$\cdot 74$	\%. 545524	$6 \cdot 73$	10.454476	39
22	520631	$5 \cdot 99$	974703	$\cdot 74$	545928	$6 \cdot 73$	454072	38
23	520990	$5 \cdot 99$	974659	- 74	546331	$6 \cdot 72$	453669	37
24	521349	598	974614	$\cdot 74$	546735	$6 \cdot 72$	453265	36
25	521707	$5 \cdot 98$	974 ¢ 70	- 74	547138	$6 \cdot 71$	452862	35
26	522066	$5 \cdot 97$	974525	$\cdot 74$	547540	$6 \cdot 71$	452460	34
27	522.424	$5 \cdot 96$	974481	- 74	547943	$6 \cdot 70$	452057	33
28	522731	$5 \cdot 96$	974436	- 74	548345	$6 \cdot 70$	451655	32
29	523138	$5 \cdot 95$	974391	- 74	548747	$6 \cdot 69$	451253	31
30	523495	5.95	974347	$\cdot 75$	549149	6.59	450851	30
31	9.523852	$5 \cdot 94$	9.974302	-75	9.549550	6.68	10.450450	29
32	524208	$5 \cdot 94$	974257	-75	549951	6.68	450049	28
33	524564	$5 \cdot 93$	974212	- 75	550352	6.67	449648	27
34	524920	$5 \cdot 93$	974167	- 75	550752	6.67	449243	26
35	52.5275	$5 \cdot 92$	974122	$\cdot 75$	551152	6.65	448848	25
36	525630	$5 \cdot 91$	974077	- 75	55.552	6.66	448448	24
37	525984	$5 \cdot 91$	974032	- 75	551952	6.65	4480.48	23
38	526339	5.90	973987	- 75	552351	6.65	447649	22
39	526693	$5 \cdot 90$	973912	$\cdot 75$	552750	6.65	447250	21
40	527046	5.89	973897	$\cdot 75$	553149	6.64	446851	20
41	9.527400	$5 \cdot 89$	$9 \cdot 973852$	$\cdot 75$	9.553548	6.64	10.446452	19
42	527753	5.88	973807	$\cdot 75$	5530 46	6.63	446054	18
43	528105	5.88	973761	$\cdot 75$	554344	5.63	445656	17
44	528458	5.87	9737,16	$\cdot 76$	554741	$6 \cdot 62$	445259	16
45	528810	5.87	973671	- 76	555139	6.62	444861	15
46	529161	5.86	973625	- 76	555536	6.61	444464	14
47	529513	5.86	973580	- 76	555033	6.61	444067	13
48	529864	5.85	973535	- 76	556329	6.60	443671	12
49	530215	5.85	973489	-76	556725	6.60	443275	11
50	53oد゙65	j.84	973444	76	557121	6.59	442879	10
51	9.530915	5.84	9.973398	- 76	$9 \cdot 557517$	6.59	10.412483	
52	531265	5.83	9733.32	-76	557913	6.59	442087	8
53	531614	5.82	973307	- 76	558308	6.58	441692	7
54 55	531863	5.82	973261	-76	558702	6.58	4 412.98	6
55	532312	5.81	973215	- 76	5.59097	6.57	$4402^{\circ} 3$	5
56	532661	$5 \cdot 81$	973169	-76	559491	6.57	440209	4
57 58	533009	5.80 5.80	973124	-76	559585	6.56	440115	3
58	533357	5.80	973078	-76	560279	6.56	439721	2
59	533704	$5 \cdot 79$	973032	$\cdot 77$	560673	6.55	439327	1
Co	$5 \div 4052$	$5 \cdot 78$	972986	$\cdot 77$	56.066	6.55	438934	0
	Cosing	D.	Sine	1.	Cotang.	D.	Tang.	M.

If.	Sine	$1)$.	Cosine	D.	'amg.	D.	Cotang.	
0	9.534052	$5 \cdot 78$	9.972996	$\cdot 77$	9.561066	6.55	10.438934	
1	-534399	$5 \cdot 77$	972940	$\cdot 77$	561459	-6.54	438541	59
2	$53474{ }^{5}$	5.77	972894	$\cdot 77$	56185 I	6.54	438149	58
3	535092	$5 \cdot 77$	772848	- 77	562244	6.53	437756	${ }^{5} 7$
4	535438	$5 \cdot 76$	972802	$\cdot 77$	562636	6.53	437354	50
5	535783	$5 \cdot 76$	972755	$\cdot 77$	563023	6.53	436972	55
6	536129	$5 \cdot 75$	972709	$\cdot 77$	563419	6.52	4 J 501	$5!$
7	536474	$5 \cdot 74$	972663	$\cdot 77$	563811	6.52	436189	5.
8	536818	$5 \cdot 74$	972617	$\cdot 77$	564202	6.51	435798	$5: 1$
g	537163	$5 \cdot 73$	972570	$\cdot 77$	564592	6.51	435108	5
. 0	537507	$5 \cdot 73$	972524	$\cdot 77$	564983	.50	435017	54
11	$9 \cdot 537851$	$5 \cdot 72$	9.972478	$\cdot 77$	9. 565373	6.50	10.434627	48
12	538194	$5 \cdot 72$	972431	. 78	565763	$6 \cdot 49$	434237	48
13	538538	$5 \cdot 71$	972385	$\cdot 78$	566153	6.49	4338.47	$4{ }^{\circ}$
14	538880	$5 \cdot 71$	972338	$\cdot 78$	5665.12	6.49	433458	45
15	539223	$5 \cdot 70$	972291	. 78	566932	$6 \cdot 48$ 6.48	433068	45
16	539565	5.70 5.69	972245 972108	.78	567320 567700	6.48 6.47	432690	$4{ }_{4}^{4}$
17 18	539907 54024	5.69 5.69	972198 972151	.78 .78	567709 56809	6.47 6.47	432291 431902	43
18 19	540249 54059	5.69 5.68	972101 972105	- 78	569486	6.47 6.46	431514	42
20	540931	5.68	972058	$\cdot 78$	569873	$6 \cdot 46$	431127	40
21	9.54127	5.67	9.972011	$\cdot 78$	9.56926ı	$6 \cdot 45$	10.430739	39
22	541613	5.67	971964	$\cdot 78$	569648	$6 \cdot 45$	430352	38
23	541953	5.66	971917	$\cdot 78$	570035	$6 \cdot 45$	429965	37
24	542203	5.66	971870	$\cdot 78$	570422	6.44	42973	36 35
25	542632	5.65	971823	.78 .78	570809	6.44	429191	35 34
26	542971	5.65	971776	$\cdot 78$	571195	6.43	$42880{ }^{\prime}$	34
27	543310	5.64	971729 971682	$\cdot 79$	571581 571967	6.43 6.42	428419 428033	32
28	543649 543987	5.64 5.63	971682 971635	.79 .79	571967 572352	6.42 6.42	4274	3:
29 30	$\begin{aligned} & 543987 \\ & 544325 \end{aligned}$	5.63 5.63	971635 971588	$\cdot 79$ $\cdot 79$	57235 572738	6.42 6.42	427648 427262	30
31	9.544663	5.62	9.971540	$\cdot 79$	9.573123	6.41	10.426877	28
32	545000	5.62	971493	$\cdot 79$	573507	6.41	426.493	28
33	545338	$5 \cdot 61$	971446	- 79	573892	6.40	426108	${ }^{27}$
34	545674	$5 \cdot 61$	971398	$\cdot 79$	574276	$6 \cdot 40$	425724	
35	546011	5.60	971351	-79	574660	6.39 6.39	425340	25 24
36	546347	5.60	971303	-79	575044 575427	6.39 6.39,	424950	24 23
37 38	546683 547019	5.59 5.59	971256 971208	$\cdot 79$ $\cdot 79$	575427 570810	$6 \cdot 39$, 6.388	42478	23 22
39	547354	5.58	971161	-79	576193	6.38	423807	21
40	547689	5.58	971113	$\cdot 79$	576576	37	423424	20
41	9.548024	5.57	9.971066	. 80	9.576958	6.37	10.423041	9
42	548359	5.57	971018	. 80	577341	6.36	422659	18
43	548693	5.56	970970	. 80	577723	6.36	422277	17
44	549027	5.56	970922	. 80	${ }_{5} 78104$	6.36	421896	16
45	549360	$5 \cdot 55$	970874	. 80	578486	6.35	421514	15
46	549603	$5 \cdot 55$	970827	.80	578867	6.35 6.34	421133	14
47	550026	5.54	970779	.80	579248 579620	6.34 6.34	420752	12
48	550359 5.50692	5.54 5.53	970731 970883	.80	579029 580009	6.34 6.34	419991	${ }^{2}$
5	551024	5.53	970635	. 80	580389	6.33	419611	10
51	9.551356	5.52	9.970586	. 80	9.580769	6.33	419231	8
52	${ }_{651687}$	5.52	970538	. 80	581 149	6.32	418851	8
53	552018	5.52	970490	. 80	581528	$6 \cdot 32$	418472	7
54	552349	5.51	97044^{2}	. 80	581907	6.32	418093	
55	552680	5.51	970394	-80	582286	$6 \cdot 31$	417714	5
56	553010	5.50	970345	.81	582665	6.31 6.30	4178	${ }_{3}$
57 58 5	553341 553670	5.50 5.49	970297	.81	583:22	6.30 6.30	410578	2
5	554000	5.49	970200	.81	583800	6.29	416200	1
$6 \times$	554329	$5 \cdot 48$	970152	.81	584177	$6 \cdot 29$	$41{ }^{1} \mathrm{j} 823$	0
	Cosine	D.	Sine	J.	Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosize	D.	Tang.	1.	Cotang.	
0	9.554329	$5 \cdot 48$	$9.97015{ }^{\text {2 }}$.81	9.584177	$6 \cdot 29$	10.415823	60
1	-554658	5.48	970103	-81	584355	$6 \cdot 29$	415445	59
2	- 554987	$5 \cdot 47$	970055	. 81	584932	$6 \cdot 28$	413068	58
3	5553.5	5.47	970006	. 81	585309	$6 \cdot 28$	414691	57
\pm	555643	5.46	969957	. 81	585686	$6 \cdot 27$	414314	55
5	555971	5.46	969909	-81	586062	$6 \cdot 27$	413938	55
t	556299	5.45	969860	-81	586.339	6.27	413561	54
7	556626	$5 \cdot 45$	969811	-81	586815	$6 \cdot 26$	413185	57
8	556953	5.44	969762	-8!	587190	$6 \cdot 26$	42810	52
9	557280	5.44	969714	. 81	587566	$6 \cdot 25$	412434	51
10	537606	5.43	969665	.81	587941	6.25	412059	50
11	9.557932	5.43	9.969616	. 82	9.58836	$6 \cdot 25$	10.411684	49
12	558258	$5 \cdot 43$	969507	- 82	588691	$6 \cdot 24$	41.309	48
13	558583	5.42	969518	- 82	589066	$5 \cdot 24$	410934	47
14	558909	$5 \cdot 42$	969469	. 82	589440	$6 \cdot 23$	410560	46
15	559234	5.41	969420	-82	589814	$6 \cdot 23$	410186	45
16	559558	$5 \cdot 41$	969370	. 82	5 got 88	$6 \cdot 23$	409812	44
17	559883	5.40	906321	. 82	590562	$6 \cdot 22$	409438	43
18	560207	5.40	969272	. 82	5 gog 35	$6 \cdot 22$	409065	42
19	560531	5.39	969223	. 82	591308	$6 \cdot 22$	408692	41
20	560855	5.39	969173	. 82	59168I	$6 \cdot 21$	408319	40
21	9.561178	5.38	9.969124	.$^{8} 8$	8.592054	$6 \cdot 21$	10.407946	33
22	561501	5.38	969075	. 82	592426	$6 \cdot 20$	- 407574	38
23	561824	5.37	969025	- 82	592798	$6 \cdot 20$	407202	37
24	562146	5.37	968976	- 82	593170	$6 \cdot 19$	406829	36
25	562468	5.36	968926	-83	593542	$6 \cdot 19$	406458	35
26	562790	$5 \cdot 36$	968877	. 83	593914	$6 \cdot 18$	406086	3.4
27	563112	5.36	968827	-83	594285	$6 \cdot 18$	405715	33
28	563433	$5 \cdot 35$	968777	- 83	594656	$6 \cdot 18$	405344	32
39	563755	5.35	968728	. 83	595027	$6 \cdot 17$	404973	31
30	564075	5.34	968678	. 83	595398	$6 \cdot 17$	404602	30
31	9.564396	5.34	9.968628	. 83	9.595768	$6 \cdot 17$	10.404232	29
32	564716	$5 \cdot 33$	068578	. 83	596138	$6 \cdot 16$	403862	28
33	'665036	5.33	968538	. 83	596508	$6 \cdot 16$	403 ¢92	27
34	分 5356	$5 \cdot 32$	968479	83	596378	$6 \cdot 16$	403122	26
35	515076	5.32	968429	. 83	597247	$6 \cdot 15$	402753	25
35	565995	$5 \cdot 3 \mathrm{I}$	968379	. 83	597616	$6 \cdot 15$	402334	24
37 38 3	565314	$5 \cdot 31$	968329	. 83	597985	6.15	402015	23
38	565632	$5 \cdot 31$	968278	. 83	$\bigcirc 98354$	$6 \cdot 14$	401646	22
39	$560 y^{\text {gis }}$	5.30	968228	. 84	538722	$6 \cdot 14$	401278	21
40	567269	5.30	968178	. 84	5 Cg 9 I	$6 \cdot 13$	400909	20
41	9.567587	$5 \cdot 29$	9.968128	. 84	9.599459	$6 \cdot 13$	$10 \cdot 400541$	19
42	567904	$5 \cdot 29$	968078	. 84	599827	$6 \cdot 13$	400173	18
43	568222	5.28	968027	. 84	600194	6-12	399806	17
44	568539	$5 \cdot 28$	967977	. 84	600562	$6 \cdot 12$	399438	16
45	568856	$5 \cdot 28$	967927	. 84	600929	6. 11	399071	15
46		$5 \cdot 27$	967870	. 84	601296	$6 \cdot 11$	398704	14
47	510488	$5 \cdot 27$	967826	. 84	601662	$6 \cdot 11$	328338	13
49	509904 570120	$5 \cdot 26$ $5 \cdot 26$	967775	.84	(122029 602305	$6 \cdot 10$ 6.10	397971	12
50	570435	5.25	967674	. 84	602761	$6 \cdot 10$	39760 3972	10
51	9. 570751	$5 \cdot 25$	9.967624	. 84	9.603127	6.09	10 396873	
32	571066	$5 \cdot 24$	967503	. 84	603493	$6 \cdot 09$	396507	8
33	571330	5.24	967522	. 85	603858	6.09	396142	7
54 55	571695	$5 \cdot 23$	967471	. 85	604223	$6 \cdot 08$	305777	6
55 56	572009 57232	$5 \cdot 23$	967421	.85	60.5588	6.08	395412	5
5	572323 572636	$5 \cdot 23$	967370	. 85	604953	6.07	397047	4
58	572636	$5 \cdot 22$	967319	. 85	605317	6.07	394683	3
59	572950 573263	$5 \cdot 22$ $5 \cdot 21$	967268	. 85	605682 606046	6.07 6.06	394318	2
(0)	573575	$5 \cdot 21$	967166	. 85	606410	6.06	393590	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tan:	M.

M.	Sin6	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.573575	5.21	9.967166	. 85	9.606410	6.06	10.393593	(0)
:	573888	$5 \cdot 20$	967115	. 85	606773	6.06	393227	sf
2	574200	$5 \cdot 20$	967064	. 85	607137	6.05	392863	58
3	574512	$5 \cdot 19$	967013	. 85	607500	6.05	392500	$5 \cdot$
${ }_{5}^{4}$	574824	$5 \cdot 19$	966961	. 85	607863	$6 \cdot 04$	392137	56
5	575136	$5 \cdot 19$	966910	. 85	608225	6.04	391775	55
	575447	$5 \cdot 18$	966859	. 85	608538	6.04	391412	54
ε	575758	5.18	966808	. 85	608950	6.03	391000	53
ε	576069	$5 \cdot 17$	966756	. 86	609312	6.03	$3 \mathrm{Cr}, 688$	52
9		5.17 5.16	966705	. 86	609674	6.03	3 OO 25	51
10	576689	$5 \cdot 16$	966653	. 86	610036	6.	389964	50
11	9.576999	5.16	9966602	. 86	7.610397	6.02	$10 \cdot 389603$	48
12	577309	$5 \cdot 16$	966550	. 86	610759	$6 \cdot 02$	38.241	48
13	577618	$5 \cdot 15$	966499	. 86	611120	$6 \cdot 01$	388880	47
14	577927	$5 \cdot 15$	966447	. 86	611480	6.01	388520	-is
15	578236	$5 \cdot 14$	9663395	. 86	611841	6.	388159	45
16	578545	$5 \cdot 14$	966344	. 86	612201	6.00	387799	44
17	578853	5.13	966292	. 86	612561	$6 \cdot 00$	387439	43
18	579162	$5 \cdot 13$	966240	. 86	612921	$6 \cdot 00$	387079	42
19	579470	$5 \cdot 13$	966188	. 86	613281	5.99	386719	41
20	579777	$5 \cdot 12$	966136	. 86	613641	5.99	386359	40
21	9.530085	$5 \cdot 12$	9.966085	. 87	9.614000	$5 \cdot 98$	10. 386000	39
22	580392	5.11	966033	. 87	614359	$5 \cdot 98$	385641	39
23	580699	5.11	$9^{659} 9^{81}$. 87	614718	$5 \cdot 9^{8}$	385282	37
24	58ı005	5.11	965028	. 87	615077	$5 \cdot 97$	394923	36
25	581312	$5 \cdot 10$	965876	. 87	615435	5.97	384565	35
26	581618	$5 \cdot 10$	965824	. 87	61579^{3}	$5 \cdot 97$	334207	34
27	581924	5.09	${ }_{9} 65772$. 87	6,6:51	$5 \cdot 96$	383849	33
28	582222	5.09	965720	. 87	616509	5.96	383491	32
29	582535	5.09	965668	. 87	616867	5.96	383133	31
30	5828 亿0	5.08	965615	. 87	617224	$5 \cdot 95$	382776	30
31	- $5.5831 \leqslant 5$	5.08	9.965563	. 87	9.617582	5.95	10.382418	29
32	5834.59	5.07	965511	. 87	617939	$5 \cdot{ }^{5}$	332061	28
33	583754	5.07	965458	. 87	6_{1829}	5.94	381705	27
34	584058	5.06	965406	. 87	618652	5.94	381348	26
35	584361	5.06	965353	. 88	619008	5.94	$38099{ }^{2}$	25
36	584665	5.06	965301	. 98	619364	$5 \cdot{ }^{3}$	380636	24
37	584968	5.05	965248	. 88	619721	5.63	380279	23
38	585272	5.05	965195	. 88	620076	$5 \cdot{ }^{3}$	379924	22
39	555574	5.04	965143	. 88	620432	$5 \cdot 92$	379568	21
40	585877	5.04	965090	. 88	620787	$5 \cdot 92$	379213	20
41	9.586179	5.03	9.965037	. 88	9.621142	$5 \cdot 92$	rc. 378858	
42	586482	$5 \cdot 03$	964984	. 88	621497	$5 \cdot 91$	378503	18
43	586783	5.03	9649^{31}	. 88	621852	5.91	378148	17
45	587085	5.02	964879	. 88	622207	5.90	37779^{3}	
45	587336 587688	5.02 5.01	964826 964773	. 88	622561	5.90 5.00	377439 377085	15
46	587688 58708	5.01	96477^{3}	. 88	622915 623260	5.90 5.89	377083 376731	14 13
47	587989 588289 58	$5 \cdot 01$ 5.01	964719 96466	. 88	623269 623623	5.89	376377	12
49	588590	$5 \cdot 00$	964613	. 89	${ }_{6} 23976$	5.89	376024	${ }^{11}$
50	588890	$5 \cdot 00$	964560	. 89	624330	5.88	375670	10
51	9.589190	4.99	9.964507	. 89	9.624683	5.88	10.375317	
52	589489	4.99	964454	-89	625036	5.88	374964	
53	589789	4.99	964400	-89	625388	5.87 5.87	374612	3
54 55	590038 50038 0	4.98 4.98	964347	.89		5.87 5.87	374259	5
55 56	590387 590686	4.98 4.97	964294 964240	.89 .89	626093 626445	5.87 5.86	373907	5
5	590984	4.97	964187	. 89	626797	5.86	373203	3
58	591282	4.97	964133	. 89	627149	5.86	372851	2
59	591580	4.96	96408 c	.89	627501	5.85	372199	1
6 C	591878	4.96	964026	. 89	627852	5	372148	0
	Cosine			D.	Cotang.	D	Taug	M.

(67 degrees.)

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.591878	$4 \cdot 96$	9.964026	- 89	9.627852	5.85	10.372148	to
1	59.2176	$4 \cdot 95$	963972	. 89	628203	5.85	371797	59
2	592473	$4 \cdot 95$	963919	. 89	628554	5.85	371446	58
3	592770	$4 \cdot 95$	963865	-90	628905	5.84	371095	57
4	593067	4.94	963811	-90	629255	5.84	370745	56
5	593363	$4 \cdot 94$	963757	- 90	629606	5.83	370394	55
6	593659	$4 \cdot 93$	963704	-90	629956	5.83	3700.44	5
7	503955	$4 \cdot 93$	963650	- 90	630306	5.83	$369 t 94$	5.3
8	594251	$4 \cdot 93$	963596	-90	630656	5.83	36 g 344	52
9	54,4547	$4 \cdot 92$	963542	-90	631005	5.82	368995	51
10	594842	$4 \cdot 92$	963488	$\cdot 90$	631355	5.82	368645	50.
11	$9 \cdot 595137$	$4 \cdot 91$	9.96343:	-90	9.631704	$5 \cdot 82$	$10 \cdot 368296$	49
12	595432	$4 \cdot 91$	963379.	- 90	632053	$5 \cdot 81$	367947	48
13	595727	$4 \cdot 91$	$96332{ }^{\circ}$	-90	632401	$5 \cdot 81$	367599	47
14	596021	$4 \cdot 90$	963271	- 90	6327 jo	$5 \cdot 81$	367250	46
15	596315	$4 \cdot 90$	963217	$\cdot 90$	633098	$5 \cdot 80$	366902	45
:6	596609	$4 \cdot 89$	963163	$\cdot 90$	633447	5.80	366553	44
17	596903	4.89	963108	-91	633795	$5 \cdot 80$	366205	43
18	597196	4.89	963054	$\cdot 91$	634143	$5 \cdot 79$	365857	42
19	597490	4.88	962999	-91	634490	$5 \cdot 79$	365510	41
20	597783	$4 \cdot 88$	962945	$\cdot 91$	634838	$5 \cdot 79$	365162	40
21	9.598075	$4 \cdot 87$	9.962890	. 91	9.635185	$5 \cdot 78$	10.364815	39
22	598368	4.87	962836	.91	635532	$5 \cdot 78$	364468	38
23	598660	4.87	962781	$\cdot 91$	635879	$5 \cdot 78$	264121	37
24	598952	4.86	962727	.91	636226	$5 \cdot 77$	363774	36
25	599244	$4 \cdot 86$	962672	$\cdot 91$	636572	$5 \cdot 77$	363428	35
26	599536	4.85	962617	$\cdot 91$	6369 I?	$5 \cdot 77$	363081	3.4
27	599327	$4 \cdot 85$	962562	. 91	637205	$5 \cdot 77$	362735	33
28	600118	4.85	962508	-91	637611	$5 \cdot 76$	362389	32
${ }^{2} 9$	600409	4.84	962453	$\cdot 91$	637956	$5 \cdot 76$	362044	31
30	600700	$4 \cdot 84$	¢ 62398	$\cdot 92$	638302	$5 \cdot 76$	361698	30
31	9.600990	4.84	9.962343	-92	9.638647	$5 \cdot 75$	10.361353	29
32 33	601280	4.83	962288	-92	638992	$5 \cdot 75$	361008	28
33	601570	4.83	962233	-92	639337	$5 \cdot 75$	360663	27
34	601860	4.82	962178	$\cdot 92$	639682	$5 \cdot 74$	360318	26
35	602150	4.82	962123	-92	640027	$5 \cdot 74$	359973	25
36	602439	4.82	962067	$\cdot 92$	640371	$5 \cdot 74$	359629	24
37 3	602728	$4 \cdot 81$	962012	-92	640716	$5 \cdot 73$	359284	23
38	603017	$4 \cdot 81$	961957	-92	641060	$5 \cdot 73$ $5 \cdot 73$	3589 亿0	22
39	603305	4.81	961902	-92	641404	$5 \cdot 73$	358596	21
40	60359.4	$4 \cdot 80$	961846	-92	641747	$5 \cdot 72$	3582 53	20
11	9.603882	4.80	$9 \cdot 961791$	-92	9.642091	$5 \cdot 72$	10.357909	19
42	604170	$4 \cdot 79$	961735	$\cdot 92$	642434	$5 \cdot 72$	357566	18
43	60.1457	$4 \cdot 79$	961680	-92	642777	$5 \cdot 72$	357223	17
44	60.4745	4.79	961624	-93	643120	$5 \cdot 71$	356880	16
45	605032	$4 \cdot 78$	961569	-93	6.43463	$5 \cdot 71$	356537	15
46	605319	$4 \cdot 78$	961513	-93	643806	$5 \cdot 71$	356194	14
47	6050606	4.78	961458	$\cdot{ }^{-93}$	644148	$5 \cdot 70$	355852	13
48	605892	4.77	961402	$\cdot 93$	614490	$5 \cdot 70$	355510	12
49 50	606179 606469	4.77	961346	-93	644832	$5 \cdot 70$	355168	11
50	606465	$4 \cdot 76$	961290	-93	645174	5.69	354826	10
51	c 606751	$4 \cdot 76$	$9 \cdot 961235$	-93	9.045516	5.69	10.354484	
	6070.36	$4 \cdot 76$	961179	$\cdot 93$	645857	5.69	354143	8
53	607322	$4 \cdot 75$	961123	-93	646199	5.69	353801	6
54 55	607607	$4 \cdot 75$	961067	-93	646540	5.68 5.68	353460	6
56	607892 608177	4.74 4.74	961011	$\cdot 93$ $\cdot 93$	646881 647222	5.68 5.68	353119	5
57	608461	$4 \cdot 74$ 4.74	9609.35	-93	647222 647562	5.68 5.67	352778 352438	4
58	608745	$4 \cdot 73$	960843	. 94	647903	5.67	352097	2
59	609929	$4 \cdot 73$	960786	$\cdot 94$	648243	5.67	351977	1
60	609.313	$4 \cdot 73$	960730	-94	6.48583	5.66	351417	0
	Cosing	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	D.	C'ssine	I.	Tang.	1.	Cotang.	
0	9.609313	4.73	9-960730	-94	9.648583	5.66	10.351417	60
1	609597	$4 \cdot 72$	960674	-94	648923	5.66	351077	59
3	609880	$4 \cdot 72$	960618	-94	6.99263	5.66	350737	58
3	610164	$4 \cdot 72$	950.561	-94	649602	5.66	350.398	57
4	610447	$4 \cdot 71$	9 9,0505	-94	649942	5.65	350058	56
5	610729	4.71	960448	-94	650281	5.65	349719	55
6	611012	$4 \cdot 70$	9 9,0392	-94	650620	5.65	349380	54
7	611294	$4 \cdot 70$	960335	-94	650950	5.64	349041	53
ε	611576	4.70	950279	-94	651297	5.64	348703	53
	611858	4.69	960222	-94	651036	5.64	348364	5
10	612140	$4 \cdot 69$	960165	- 24	651974	5.63	348026	50
11	9.612421	$4 \cdot 69$	9.960109	. 95	9.652312	5.63	10.347688	49
12	612702	4.68	960052	. 95	652650	5.63	347350	48
13	612983	4.68	9.59995	-95	6522^{88}	5.63	3.47012	47
14	613264	4.67	959938	. 95	653326	5.62	346674	46
15	613545	4.67	959882	. 95	653663	5.62	346337	45
16	613825	4.67	959825	-95	654000	5.62	346000	44
17	614105	4.65	959768	-95	654337	5.61	345663	43
18	61.4385	4.66	959711	-95	654674	5.61	34.5326	42
19	614665	4.66	959654	-95	655011	5.61	344989	41
20	614944	4.65	959596	-95	655348	5.61	344652	40
21	9.615223	$4 \cdot 65$	9.9.59539	. 95	9.655684	5.60	10.344316	39
22	615502	4.65	959482	-95	656020	5.60	343980	36
23	615731	4.04	959425	- 95	656356	5.60	343644	3;
24	616060	$4 \cdot 64$	959368	-95	656692	5.59	343308	3
25	615338	$4 \cdot 64$	959310	-96	657028	5.59	342972	$3!$
26	616616	$4 \cdot 63$	959253	-96	657364	5.59	342636	34
27	616894	$4 \cdot 63$	959195	-96	657699	5.59	342301	33
28	617172	4.62	959138	- 96	658034	5.58	341966	32
7^{7}	617450	4.62	950081	- 96	658369	5.58	341631	31
30	617727	4.62	959023	-96	658704	5.58	341296	36
31	9.618004	$4 \cdot 61$	9758965	-96	9.659039	5.58	10.340961	29
32	618281	$4 \cdot 61$	958908	. 96	659373	5.57	340627	28
33	618558	4.61	958450	- 96	659708	5.57	3.0202	27
34	6,18834	$4 \cdot 60$	958792	-96	$6600{ }^{\text {¢ } 2}$	5.57	339958	26
35	619110	$4 \cdot 60$	958734	-96	660376	5.57	339624	25
36	619386	4.60	958677	- 96	660710	5.56	$339^{2} 2^{\circ}$	24
37 38	619662	$4 \cdot 59$	958619	-96	661043	5.56	338957	23
39	619938	$4 \cdot 59$	958561	-96	661377	5.56	338023	2:
38 40	620213 620488	4.59 4.58	958503	.97 .97	661710 662043	5.55 5.55	338290 337957	21 20
41	9.620763	$4 \cdot 58$	9.958387	-97	9.662375	5.55	10.337624	19
42	621038	$4 \cdot 57$	958329	- 97	662709	5.54	337291	18
43	621313	$4 \cdot 57$	958271	- 97	663042	5.54	336058	17
64	621587	$4 \cdot 57$	958213	-97	663375	5.54	336625	16
65	621861	4.56	958154	- 97	663707	5.54	336293	15
-46	622135	4.56	958096	- 97	664039	5.53	335961	14
47	622409	4.56	958038	- 97	664371	5.53	335629	13
4e	622682	$4 \cdot 55$	957979	- 97	664703	5.53	335297	12
49	622956	$4 \cdot 55$	957921	-97	665035	5.53	33.4965	11
50	623229	4.55	957863	- 97	665366	5.52	334634	10
31	9.623502	4.54	$9 \cdot 957804$	- 97		5.52	10.334303	
'21	623774	$4 \cdot 54$	957746	- 98	666029	5.52	333471	8
53	634047	$4 \cdot 54$	957687	- 98	666360	$5 \cdot 51$	333640	7
54	624319	4.53	957628	- 93	666691	5.51	333309	6
55	624591	$4 \cdot 53$	957570	-99	667021	$5 \cdot 51$	332979	5
56	624863	4.53	957511	-98	667352	5.51	332648	4
57 58	625135	$4 \cdot 52$	957452	- 98	667682	$5 \cdot 50$	332318	3
58	625406	$4 \cdot 52$	957393	-98	668013	$5 \cdot 50$	331997	2
59	625677	$4 \cdot 52$	957335	-98	668343	$5 \cdot 50$	331657	1
to	675348	$4 \cdot 51$	957276	- 98	668672	$5 \cdot 50$	331328	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	'Timgr.	D.	Cotang.	
0	9.625948	4.51	9.9572;5	- 98	9.668073	5.50	10.331327	60
1	626219	$4 \cdot 51$	957217	-98	669002	5.49	3.30998	59
2	626490	$4 \cdot 51$	9.57158	-98	6ry 3.32	5.49	330668	58
3	626760	$4 \cdot 50$	957099	-98	609661	$5 \cdot 49$	330.339	57
4	627030	$4 \cdot 50$	957040	-98	669991	5.48	330009	56
5	627300	4.50	956981	-98	670320	5.48	329680	55
6	627570	$4 \cdot 49$	956921	-99	670649	$5 \cdot 48$	329.351	54
7	627840	4.49	956862	- 99	670977	5.48	329023	53
8	628109	4.49	956803	-99	671306	$5 \cdot 47$	328694	5.
3	628378	$4 \cdot 48$	956744	-99	671634	5.47	329366	51
10	628647	$4 \cdot 48$	956684	-99	67:963	5.47	328037	50
11	75_{28916}	4.47	9.956625	-99	9.672291	5.47	10.327709	49
$1:$	623185	4.47	9.96566	-99	672619	$5 \cdot 46$	327.391	48
17	onquj?	4.47	956506	-99	672917	5.46	327053	47
14	629191	4.46	956447	-99	67327.1	5.46	326726	46
15	625989	$4 \cdot 46$	956387	-99	673602	$5 \cdot 46$	326.398	45
16	$63025:$	$4 \cdot 46$	956.327	-99	67.3929	5.45	326071	44
17	630524	$4 \cdot 46$	956268	-99	674277	$5 \cdot 45$	325743	43
18	630722	4.45	956208	1.00	674584	$5 \cdot 45$	325416	42
19	6.310 .99	4.45	956148	$1 \cdot 00$	674910	$5 \cdot 44$	325090	41
20	631326	$4 \cdot 45$	956089	1.00	675237	5.44	324763	40
21	9.531593	4.44	9.956029	1.00	9.675564	5.44	10.324436	39
22	63185	$4 \cdot 44$	955969	1.00	675890	$5 \cdot 44$	324110	38
23	632125	4.44	955909	1.00	676216	$5 \cdot 43$	323784	37
24	632392	$4 \cdot 43$	955849	1.00	6765.43	5.43	323457	36
25	632658	$4 \cdot 43$	955789	1.00	676869	5.43	$323: 31$	35
26	632923	$4 \cdot 43$	955729	1.00	677194	5.43	322806	34
27	633189	4.42	955659	I $\cdot 00$	677520	$5 \cdot 42$	322480	33
28	633:54	4.42	955609	1.00	677846	$5 \cdot 42$	322154	32
29	633719	$4 \cdot 42$	9555.48	1.00	678171	5.42	321829	3I
30	633994	4.41	955488	1.00	678496	$5 \cdot 42$	321504	30
31	9.631249	$4 \cdot 41$	9.955428	1.01	9.678821	5.41	10.321179	29
32	634514	$4 \cdot 40$	955368	1.01	679146	$5 \cdot 41$	320854	28
33	634778	$4 \cdot 40$	955307	1.01	679471	$5 \cdot 41$	320529	27
34	635042	4.40	955247	1.01	679795	5.41	320205	26
35	635306	$4 \cdot 39$	955186	1.01	680120	5.40	319880	25
36	635570	$4 \cdot 39$	955126	1.01	680444	5.40	319556	24
37	635834	$4 \cdot 39$	955065	1.01	680768	5.40	310232	23
38	63 óog 7	4.38	955005	1.01	681092	5.40	318908	22
39	636360	4.38	954944	1.01	681416	5.39	318584	21
40	636623	$4 \cdot 38$	954883	1.01	681740	5.39	318260	20
41	9.636886	$4 \cdot 37$	$9 \cdot 954823$	1.01	9.682063	5.39	10.317937	19
42	637148	4.37	954762	1.01	9682387	5.39	- 317613	18
43	637411	$4 \cdot 37$	954701	1.01	682710	5.38	317290	17
44	637673	$4 \cdot 37$	954640	1.01	683033	5.38	316967	16
45	637935	$4 \cdot 36$	954579	1.01	683356	5.38	316644	15
46	638197	$4 \cdot 36$	954518	1.02	683679	5.38	316321	14
47	638458	$4 \cdot 36$	954457	1.02	68.4001	5.37	315999	13
48	638720	$4 \cdot 35$	954396	1.02	684324	$5 \cdot 37$	3.5676	12
49	638981	$4 \cdot 35$	954335	1.02	684646	5.37	315.354	11
50	639242	4.35	954274	1.02	684968	5.37	315032	10
51	9.63, 503	$4 \cdot 34$	9.954213	1.02	9.685290	5.36	10.314710	
52	639764	$4 \cdot 34$	95 9515	1.02	9 685612	5.36	314388	8
53	640024	$4 \cdot 34$	954090	1.02	685934	5.36	314066	7
54	640284	4.33	954029	1.02	686255	5.36	313745	6
55	640544	4.33	953968	1.02	686577	5.35	313423	5
56	640804	4.33	953006	1.02	686898	5.35	313102	4
57	641064	4.32	953945	1.02	687219	5.35	312781	3
58	641324	1.32	93.3783	1.02	687540	5.35	312460	2
59	641584	:.32	953722	$1 \cdot 13$	687961	5.34	312.39	1
60	641842	1.31	953660	I - 3	688182	5.34	3ıixi8	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	II.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
-	9.641842	$4 \cdot 31$	9.953660	1.03	9.688182	5.34	10.311818	60
1	642101	$4 \cdot 31$	95359	1.03	688502	$5 \cdot 34$	311498	59
2	642360	4.31	953337	1.03	688823	5.34	311177	58
3	642618	4.30	953475	1.03	689143	5.33	310857	57
5	642877	4.30	953413	1.03	689463	$5 \cdot 33$	310537	50
5	643135	4.30	953332	1.03	689783	5.33	310217	50
6	64332^{2}	4.30	${ }_{9} 93290$	1.03	690103	5.33	309897	58
8	64365 c	$4 \cdot 29$	953228	1.03	690423	5.33	309577	53
8	643909	4.29	953166	1.03	690742	5.32	302258	5.
9	644165	4.29	953104	1.03	691062	$5 \cdot 32$	308938	51
10	644	$4 \cdot 28$	$9^{53} 3042$	1.03	691381	5.32	308619	50
11	9.644680	$4 \cdot 28$	9.952980	. 04	9.691700	5.31	10.308300	49
12	644936	$4 \cdot 28$	952918	1.04	692019	$5 \cdot 31$	307981	48
13	645103	4.27	952855	1.04	692338	5.31	307662	47
14	645450	$4 \cdot 27$	952793	1.04	692656	5.31	307344	46
15	645706	$4 \cdot 27$	$9{ }^{\text {jo }} 2731$	1.04	692975	$5 \cdot 31$	307025	45
16	645962	$4 \cdot 26$	$00^{5} 266$	1.04	693293	5.30	306707	44
17	646218	$4 \cdot 26$	952606	1.04	693612	5.30	306388	43
18	646474	$4 \cdot 26$	952544	. 04	693930	5.30	306070	42
19	646729	$4 \cdot 25$	952.481	1.04	694248	5.30	305752	41
20	646984	$4 \cdot 25$	952419	1.04	69.4566	$5 \cdot 29$	305434	40
21	9.6472 .40	$4 \cdot 25$	9.952356	. 04	9.694883	5.29	1c. 305117	39
22	647494	4.24	95229	1.04	695201	$5 \cdot 29$	304799	39
23	647749	$4 \cdot 24$	9.2231	1.04	695518	5.29	304482	37
24	648004	$4 \cdot 24$	952168	1.05	695836	$5 \cdot 29$	304164	36
25	648258	$4 \cdot 24$	952106	1.05	696153	$5 \cdot 28$	303847	35
26	648512	$4 \cdot 23$	952043	1.05	696470	$5 \cdot 28$	303530	34
27	648766	$4 \cdot 23$	951980	1.05	696787	$5 \cdot 28$	$3032: 3$	33
28	6.49020	$4 \cdot 23$	951917	1.05	697103	$5 \cdot 28$	302807	32
29	649274	$4 \cdot 22$	951854	1.05	697420	$5 \cdot 27$	302500	31
30	649527	4.22	951791	1.05	697736	$5 \cdot 27$	302264	30
31	9.649781	22	9.951728	1.05	9.698053	5.27	10.301947	
32	650034	$4 \cdot 22$	951665	1.05	698362	5.27	301631	23
33	650287	4.21	951602	1.05	698685	5.26	301315	27
34	650539	$4 \cdot 21$	951539	1.05	690001	5.26	30099	25
35	650792	$4 \cdot 21$	951476	1.05 1.05 1.06	609316	5.26 5.26	300684 300368	25
36	651044	$4 \cdot 20$	951412	1.05	699632	5.26 5.26	300.368 300053	${ }_{2}^{24}$
37 38	651297 651549	4.20 4.20	951349 951286	1.06 1.06	699947 700263	5.26. $5 \cdot 25$	300053 20097	23 22 22
39	651800	$4 \cdot 19$	${ }_{9}^{51222}$	1.06	700578	$5 \cdot 25$	299422	21
40	652052	$4 \cdot 19$	951159	1.06	7 C .803	$5 \cdot 25$	299107	20
41	9.652304	$4 \cdot 19$	9.951096	1.06	9.701208	$5 \cdot 24$	-0. 2089792	19
42	652555	$4 \cdot 18$	951032	1.06	701523	$5 \cdot 24$	298477	19
43	652806	4.18	950068	1.06	701837	5.24	208163	17
44	653057	$4 \cdot 18$	9 90005	1.06	702152	$5 \cdot 24$	297848	16
45	653308	4.18	950841	1.06	702466	$5 \cdot 24$	29753	15
46	653558	$4 \cdot 17$	950778	1.06	702780	$5 \cdot 23$	297220	14
47	653808	4.17	950714	1.06	703095	$5 \cdot 23$	206 gos	13
48	654059	$4 \cdot 17$	$9{ }^{\text {906 }} 650$	1.06	703408	$5 \cdot 23$	2 , org	12
${ }_{5}^{49}$	6543109	$4 \cdot 16$	950586	1.06	703723	5.23	296277	:1
50	654535	$4 \cdot 16$	950522	1.07	704036	5.22	295064	10
51	9.654808	$4 \cdot 16$	9.950458	1.07	$9 \cdot 704350$	$5 \cdot 22$	10.295650	
32	655058	$4 \cdot 16$	950384	1.07	704663	5.22	295337	8
53	655307	$4 \cdot 15$	950330	1.07	704977	$5 \cdot 22$	295023	
54	655556	$4 \cdot 15$	950266	1.07	705029	5.22	294710	5
55	655805	$4 \cdot 15$	750202	1.07	705063		294307	5
56	656054	4.14	950138	1.07	7051916	$5 \cdot 21$ 5.21	294084	4
57 58	${ }_{6}^{656302}$	$4 \cdot 14$	950074	1.07 1.07 1.07	706:28	5.21 5.21	$\begin{array}{r}293772 \\ 0.345 \\ \hline\end{array}$	3
59	${ }_{6}^{656} 799$	4.14 4.13	9.959045	1.07 1.07	706854	$5 \cdot 21$	293146	1
60	657047	$4 \cdot 13$	949881	1.07	707166	$5 \cdot 20$	292834	-
	ine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D	Tang.	D.	Cotang.	
o	9.657047	$4 \cdot 13$	9.94988ı	1.07	9.707166	$5 \cdot 20$	10. 292834	60
1	${ }^{6} 657295$	$4 \cdot 13$	9.949816	1.07	9.707478	$5 \cdot 20$	292522	${ }_{5}^{50}$
2	657542	$4 \cdot 12$	949752	1.07	707790	$5 \cdot 20$	292210	58
3	657790	$4 \cdot 12$	949688	1.08	708102	$5 \cdot 20$	291898	57
4	658037	$4 \cdot 12$	949623	1.08	708414	$5 \cdot 19$	291586	56
5	658284	$4 \cdot 12$	949508	1.08	708726	$5 \cdot 19$	291274	55
6	${ }_{658531}$	4.11	949494	$1 \cdot 08$	709037	$5 \cdot 19$	290963	54
7	658778	$4 \cdot 11$	949429	1.08	709349	5.19	290631	53
8	659025	$4 \cdot 11$	949364	I. 08	709660	5.19 5.18	290340	52
	659271	$4 \cdot 10$	949300	$1 \cdot 03$	709971	$5 \cdot 18$	290029	51 50
Ic	$63951 \sim$	$4 \cdot 10$	949235	.08	710282	$5 \cdot 18$	289718	50
11	9.659763	$4 \cdot 10$	9.949170	I. 08	9.710593	5.18	10.289407	49
12	660039	4.09	949105	$1 \cdot 08$	710904	5.18	289096	48
13	460255	$4 \cdot 09$	949040	1.08	711215	5.18	288785	47
14	660501	$4 \cdot 09$	948975	1.08	711525	5.17	28847^{5}	46
15	660746	$4 \cdot 09$	948910	$1 \cdot 08$	711836	$5 \cdot 17$	288164	45
16	660991	$4 \cdot 08$	948845	1.08	712146	$5 \cdot 17$	287854	44
17	661236	$4 \cdot 08$	948780	1.09	712456	5.17	287544	43
18	661481	$4 \cdot 08$	948715	1.09	712766	5.16	287234	42
19	661726	$4 \cdot 07$	948650	1.09	713076	$5 \cdot 16$	286924	41
20	661970	$4 \cdot 07$	948584	1.09	713386	5.16	286614	40
21	9.662214	$4 \cdot 07$	9.448519	1.09	9.713696	5.16	10.286304	39
22	602459	$4 \cdot 07$	948454	1.09	714005	5.16	285995	
23	662703	$4 \cdot 0$	948388	1.09	714314	5.15	285686	37
24	662946	$4 \cdot 06$	948323	I.09	714624	$5 \cdot 15$	${ }^{2853} 76$	36
25	663190	$4 \cdot 06$	948257	1.09	714933	$5 \cdot 15$	285067	35
26	663433	$4 \cdot 05$	948192	1.09	715242	5.15	284758	34
27	663677	$4 \cdot 03$	948126	1.09	715551	5.14	284449	33
28	663920	$4 \cdot 05$	9:48060	1.09	715860	5.14	284140	32
29	604163	$4 \cdot 05$	947995	$1 \cdot 10$	716168	5.14	283832	3.
30	664406	$4 \cdot 04$	947929	$1 \cdot 10$	716477	5.14	283523	30
31	9.664648	4.04	3.947863	$1 \cdot 10$	9.716785	5.14	10.283215	29
32 33 32	664591	$4 \cdot 04$	947797	I. IC	71709.3	5.13	282907	28
33	665133	$4 \cdot 3$	947731	10	717401	5.13	282399	27
34 35	665375	$4 \cdot 03$	947665	10	717709	5.13	282291	26
35	665617	$4 \cdot 03$	947600	$1 \cdot 10$	718017	5.13	281983	25
36	665859	$4 \cdot 02$	947533	10	718325	5.13	281670	24
37	686100	$4 \cdot 02$	947467	1.10	718633	5.12	281367	23
38	656332	$4 \cdot 02$	947401	$1 \cdot 10$	718940	5.12	281060	22
39	666583	$4 \cdot 02$	947335	1-10	719248	5.12	280752	21
40	8624	$4 \cdot \mathrm{OI}$	947269	1. 10	719 955	5.12	280445	20
41	9.667065	$4 \cdot 01$	9.947203	$1 \cdot 10$	$9 \cdot 719862$	$5 \cdot 12$	-0.280ı38	19
42	667305	$4 \cdot 01$	947130	$1 \cdot 11$	7^{20169}	5.11	279831	18
43	667546	4.01	947070	$1 \cdot 11$	726476	5.11	279524	17
44	667786	$4 \cdot 0$	945004	I•11	720783	5.11	279217	16
45	663027	$4 \cdot 00$	946037	$1 \cdot 11$	721089	5.11	278911	15
46	668257	$4 \cdot 00$	946871	1-15	721396	5.11	278604	14
47	668506	$3 \cdot 99$	946804	$1 \cdot 11$	721702	5.10	278298	13
48	668746	${ }^{3} 3.99$	946738	1.11	722009	510	277991	12
49	668986	$3 \cdot 99$	946671	$1 \cdot 11$	722315	5.10	277685	11
50	669225	3.99	946604	1.11	722621	$5 \cdot 10$	277379	10
51	7.66i; 664	3.98	9.946538	1.11	9.722927	5.10	10.277073	8
52 53	669703 60992	3.98 3.98 3	94647	1.11	723232 72358 7238	5.09 5.09	276768	8
53	609942	$3 \cdot 98$	946404	1.11	723538	5.09	276462 276156	ל
5.5 55	670181 670419	3.97 3.97 3	946337 946270	1.11 $1 \cdot 12$	723844 $7241 / 9$	3.09 5.09	276156 $27585!$ 27	5
56	670658	397	$9462 n 3$	1.12	724.54	5.09	275546	4
57	670896	$3 \cdot 97$	946136	1.12	724759	5.08	275241	3
58	67113.4	3.96	945069	$1 \cdot 12$	725005	5.08	274935	2
${ }_{6}^{56}$	671372 676609	3.96 3.96	946002 04593		725369 725674	5.08 5.08	274631 274326	\pm
	Cosina	D.	Sine	D.	Cotarig.	D.	Tang.	M.

越	$\operatorname{Sin} 8$	D.	Cosine	1.	Tang.	D.	Cotung	
$\stackrel{*}{*}$	9.671609	$3 \cdot 96$	9.945935	1.12	9.725674	5.08	10.274326	Oes
1	671847	$3 \cdot 95$	945868	1.	725979	5.08	274021	59
2	672084	$3 \cdot 95$	945800	1.12	726284	5.07	273756	58
3	672321	$3 \cdot 95$	945733	1.12	726588	5.07	273412	57
4	672558	3.95	945666	1.12	726892	5.07	273108	5
5	672795	$3 \cdot 94$	945598	$1 \cdot 12$	727197	5.07	272803	5 5
t	673032	3.94	945531	$1 \cdot 12$	727501	5.07	272499	54
3	673268	3.94	945464	$1 \cdot 13$	727805	5.06	272195	53
8	673505	$3 \cdot 94$	945396	$1 \cdot 13$	728109	$5 \cdot 06$	271891	52
9	673741	$3 \cdot 93$	945328	$1 \cdot 13$	728412	5.06	271588	51
10	673977	3.93	945261	1.13	728716	$5 \cdot \infty$	271284	50
11	9.674213	$3 \cdot 93$	9.945ı93	$1 \cdot 13$	$9 \cdot 729020$	5.06	$10.270 \% 90$	49
12	674448	$3 \cdot 92$	945125	1.13	729323	5.05	270677	48
13	674684	$3 \cdot 92$	945058	$1 \cdot 13$	729626	$5 \cdot 05$	270374	47
14	674919	$3 \cdot 92$	944990	1.13	729929	5.05	270071	46
15	675155	$3 \cdot 92$	944922	1.13	730233	$5 \cdot 05$	269767	45
16	675390	391	944854	1.13	730535	5.05	26965	44
17	675624	$3 \cdot 91$	944786	1-13	730838	$5 \cdot 04$	269162	43
18	675859	$3 \cdot 91$	94478	$1 \cdot 13$	731141	504	268859	42
19	676094	3.91	944650	1.13	731444	5.04	268556	41
20	676328	3.90	941582	1.14	731746	5.04	268254	40
21	9.676562	3.90	$9 \cdot 914514$	$1 \cdot 14$	77320.48	5.04	$10 \cdot 267952$	39
22	676796	3.90	9.44446	$1 \cdot 14$	732351	$5 \cdot 03$	2676.49	38
23	677030	3.90	944377	$1 \cdot 14$	732653	5.03	267347	37
24	677264	3.89	944309	1.14	732955	5.03	267045	36
25	677498	3.89	944241	1.14	733257	$5 \cdot 03$	26674.3	35
26	677731	3.89	941172	$1 \cdot 14$	733558	5.03	266542	3/2
27	677964	3.88	944104	1.14	733860	5.02	266140	33
28	678197	3.88	944036	1.14	734162	5.02	265838	32
29	678430	3.88	943967	1.14	73.4463	5.02	265537	31
30	678653	3.88	943899	$1 \cdot 14$	734764	5.02	265236	30
31	9.678895	3.87	9.943830	1.14	9.735066	5.02	10.26493.4	29
32	679128	3.87	943761	$1 \cdot 14$	735367	5.02	26.4633	28
33	679.60	3.87	943693	$1 \cdot 15$	735668	5.01	26.4332	27
34	67959	3.87	943624	$1 \cdot 15$	735969	5.01	264031	26
35	679824	3.85	943555	1.15	736269	5.01	$26373:$	25
36	680055	3.86	943486	1.15	736570	5.01	263 ! 30	24
37	680288	3.86	943.117	$1 \cdot 15$	736871	5.01	263129	23
38	650519	3.85	943319	1.15	737171	5.00	262829	22
30	680750	3.85	943279	$1 \cdot 15$	737471	5.00	262529	21
40	680982	3.85	943210	1.15	737771	5.00	262229	20
41	9.681213	3.85	9.943141	1.15	$9 \cdot 738071$	5.00	10.261929	19
42	681443	3.84	943072	1.15	738371	5.00	261629	18
43	681674	3.84	943003	1.15	738671	$4 \cdot 99$	26:339	17
44	681905	3.84	942934	1.15	738971	$4 \cdot 99$	261029	16
45	682135	3.84	9.42864	1. 15	739271	$4 \cdot 99$	260729	15
46	682365	3.83	$9: 12795$	1.16	739570	$4 \cdot 99$	260.30	14
	682595	3.83	942726	1.16	739870	$4 \cdot 99$	260130	13
48	68.825	3.83	942 '956	$1 \cdot 16$	740169	$4 \cdot 99$	259831	2
19	683055	3.83	942587	$1 \cdot 16$	740468	4.98	259532	11
50	683284	3.82	G42517	1.16	740767	$4 \cdot 98$	259233	10
5	9.683514	3.82	9.942448	$1 \cdot 16$	9.741066	4.98	$13 \cdot 258934$)
52	683743	3.82	942378	1.16	741365	$4 \cdot 98$	258635	8
52	683972	3.82	942308	1.16	741664	$4 \cdot 98$	258336	7
54	684201	3.81	942239	1.16	741962	$4 \cdot 97$	258038	5
55	684430	3.81	942169	1. 56	742261	4.97	257739	5
56	684658	3.81	942099	1.16	742559	$4 \cdot 97$	257441	4
57	684887	3.80	942029	$1 \cdot 16$	742853	4.97	257142	3
58	685115	3.80	941959	1.16	743156	4.97	256844	2
59	685343	3.80	941889	1.17	743454	4.97	256546	1
60	685571	3.80	941819	1.17	743752	$4 \cdot 96$	256248	0
	Cosina	D.	Sine	D.	Cotang	D.	Tang.	M.

M.	Eine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.685571	$3 \cdot 80$	9.941819	$1 \cdot 17$	$9 \cdot 743752$	$4 \cdot 96$	10. 256248	60
1	685799	$3 \cdot 79$	911749	$1 \cdot 17$	744050	$4 \cdot 96$	255950	59
2	686027	$3 \cdot 79$	941679	$1 \cdot 17$	744348	$4 \cdot 96$	2556.12	58
3	68625.4	$3 \cdot 79$	941609	$1 \cdot 17$	744645	$4 \cdot 96$	255? 35	57
4	686.482	$3 \cdot 79$	941539	$1 \cdot 17$	744943	$4 \cdot 96$	255057	53
5	¢86709	$3 \cdot 78$	941460	$1 \cdot 17$	7452.40	$4 \cdot 96$	254760	55
t	636936	$3 \cdot 78$	941398	$1 \cdot 17$	745538	$4 \cdot 95$	234462	54
$\overline{7}$	687163	$3 \cdot 78$	9 9:1328	1.17	745835	$4 \cdot 95$	254165	53
8	687389	$3 \cdot 78$	941258	$1 \cdot 17$	746132	$4 \cdot 95$	253968	52
9	687616	3.77	941187	$1 \cdot 17$	746429	$4 \cdot 95$	253571	51
10	687843	3.77	941117	$1 \cdot 17$	746726	$4 \cdot 95$	253274	50
11	9.688069	$3 \cdot 77$	9.941046	1.18	$9 \cdot 747023$	$4 \cdot 94$	10.252977	49
12	688.295	3.77	940975	1.18	747319	$4 \cdot 94$	2.52681	48
13	688521	$3 \cdot 76$	940905	1.18	747616	$4 \cdot 94$	2.52334	47
14	688747	3.76	9.90834	1.18	747913	$4 \cdot 94$	252087	46
15	688972	$3 \cdot 76$	940763	1.18	748209	$4 \cdot 94$	251791	45
16	689198	$3 \cdot 76$	940693	1.18	748505	$4 \cdot 93$	251.495	44
17	689423	$3 \cdot 75$	9 ¢0622	I. 18	748801	$4 \cdot 93$	251199	43
18	689648	$3 \cdot 75$	94053 I	$1 \cdot 18$	749097	$4 \cdot 93$	250903	42
19	689873	3.75	940480	1.18	749393	$4 \cdot 93$	250607	41
20	690098	3.75	9.40409	I-18	749689	$4 \cdot 93$	250311	40
21	$9 \cdot 690323$	$3 \cdot 74$	9.940338	$1 \cdot 18$	$9 \cdot 749985$	$4 \cdot 93$	$10 \cdot 250015$	39
22	690548	$3 \cdot 74$	96\%267	1.18	750281	$4 \cdot 92$	249719	38
23	690772	3.74	940196	$1 \cdot 18$	750576	$4 \cdot 92$	249 ¢2.4	37
24	690996	$3 \cdot 74$	9 ¢0125	$1 \cdot 19$	750872	$4 \cdot 92$	249129	36
25	691220	$3 \cdot 73$	940054	1-19	751167	$4 \cdot 0^{2}$	248833	35
26	691444	$3 \cdot 73$	939982	$1 \cdot 19$	751462	$4 \cdot 92$	248538	34
27	691668	3.73	939911	$1 \cdot 19$	751757	$4 \cdot 92$	248243	33
28	$6918 y 2$	$3 \cdot 73$	939840	1.19	752052	$4 \cdot 91$	2479.48	32
29	692115	$3 \cdot 72$	939768	$1 \cdot 19$	752347	$4 \cdot 91$	247653	31
30	692339	$3 \cdot 72$	939697	$1 \cdot 19$	752642	$4 \cdot 91$	247358	30
31	9.692562	$3 \cdot 72$	$9 \cdot 939525$	$1 \cdot 19$	9.752937	4.91	10.247063	29
32	692785	3.71	939554	$1 \cdot 19$	753231	4.91	246769	28
33	693008	3.71	939482	$1 \cdot 19$	753526	$4 \cdot 91$	246474	27
34	693231	$3 \cdot 71$	939 110	1-19	753820	$4 \cdot 90$	246180	26
35	693453	$3 \cdot 71$	939339	$1 \cdot 19$	75.411^{5}	4.90	245885	25
36	693676	$3 \cdot 70$	939267	1.20	754409	4.90	245591	24
37 38	693898	$3 \cdot 70$	939195	$1 \cdot 20$	754703	4.90	2.45297	23
38	694120	$3 \cdot 70$	939123	$1 \cdot 20$	754997	4.90	245003	22
39	694342	3.70	939052	$1 \cdot 20$	755291	4.90	241709	21
40	694564	3.69	93 g ¢o	1.20	755585	$4 \cdot 89$	24415	20
41	$9 \cdot 694786$	3.69	9.938909	1.20	9.755S78	4.89	10.244122	19
42	695007	3.69	938836	$1 \cdot 20$	756172	4.89	243823	8
43	695229	3.69	0357%	: $\cdot 20$	756465	4.59	243535	17
44	695450	3.68	938 ¢́s!	1-20	756759	4.89	2432午	16
45	695671	3.68	938614	$1 \cdot 20$	7570.52	4.89	2429 ¢	15
46	695892	3.68	938547	$1 \cdot 20$	7.5735	4.83	$2 ¢ 2655$	14
47	696113	3.68	938475	1-20	7377638	4.88	242362	13
43	690334	3.67	9.38402	$1 \cdot 21$	7.5931	4.88	$2 ¢ 2069$	12
4	696554	3.67	938330	1.21	753224	4.88	241776	1
Lc	696775	3.67	938258	I. 21	758517	4.88	211493	10
5.	$9 \cdot 696995$	3.67	9.938:85	1.21	9.758810	4.88		9
52 53	697215	3.66	938113	1.21	759102	4.87	240998	8
53 54	697435	3.66	938040	$1 \cdot 21$	759395	4.87	240605	7
54 .55	697654	3.66	937567	1.21	739687	4.87	240313	6
55 56	57974 $69 \% 091$	3.66 3.65	937895	1.21	759979	4.87	240221	5
57	698313	3.65	937749	1.21	760272	4.8	239728 2.3946	3
58	698532	3.65	937676	1.21	760556	4.86	23914	2
39	698751	3.65	937604	1.21	761148	4.86	238:52	1
60	69.9970	3.64	937531	1.21	761439	4.86	238561	0
	Cosine	D.	Sine	D.	Cotang.	1).	Tang.	1.

M.	Sme	D.	usine	D.	Tang.	D.	Cotang.	
0	9.658970	3.64	9.937531	1.2I	9.761439	4.86	10.238561	50
1	599189	3.64	937458	$1 \cdot 22$	761731	4.86	238269	59
2	699407	3.64	937385	1.22	762023	4.86	237977	58
3	697626	3.64	937312	1.	762314	4.86	23;686	57
4	699844	3.63	937238	$1 \cdot 2 \cdot 2$	762606	4.85	237394	56
5	700062	3.63	937165	$1 \cdot 22$	762897	4.85	$23710:$	55
6	700280	3.63	937092	$1 \cdot$	763.88	4.85	236812	54
7	700498	3.63	937019	$1 \cdot 22$	763479	4.85	236521	53
8	700716	3.63	9.36946	$1 \cdot 22$	763770	4.85	236230	52
9	700933	3.62	936872	1.22	764061	4.85	235930	51
10	701151	3.62	936799	1. 22	764352	$4 \cdot 84$	235648	50
11	9.701368	3.62	$9 \cdot 936725$	1.22	$\bigcirc 764643$	$4 \cdot 84$	10. 235357	49
12	701585	3.62	936652	$1 \cdot 23$	764933	4.84	235067	48
13	701802	$3 \cdot 61$	936578	$1 \cdot 23$	765224	$4 \cdot 84$	234776	47
14	702019	3.61	9305505	$1 \cdot 23$	765514	$4 \cdot 84$	234486	46
15	702235	$3 \cdot 1$	936 亿31	1. 23	76.5805	$4 \cdot 84$	$23 \leq 195$	45
16	702452	3.61	936357	$1 \cdot 23$	766095	4.84	233905	44
17	702669	$3 \cdot 00$	9.35284	$1 \cdot 23$	766.385	4.83	233615	43
18	;02835	3.00	936210	1.23	766675	$4 \cdot 83$	233325	42
19	703101	3.60	936136	$1 \cdot 23$	766965	4.83	233035	41
20	70.3317	3.60	936062	I-23	767255	$4 \cdot 83$	232745	40
21	$9 \cdot 703533$	3.59	$9 \cdot 935988$	1.23	$9 \cdot 767545$	4.83	10.232455	39
22	703749	3.59	935914	$1 \cdot 23$	767834	4.83	232166	38
23	703964	3.59	935840	$1 \cdot 23$	768124	4.82	231876	37
24	704179	3.59	935766	1.24	768413	$4 \cdot 82$	231587	36
25	704395	3.59	935692	1.24	768703	4.82	231297	35
26	704610	3.58	935618	1.24	768992	4.82	231008	34
27	704^{925}	3.58	935543	1.24	769281	$4 \cdot 82$	230719	33
28	705040	3.58	935469	I. 24	769570	4.82	230430	32
29	705254	3.58	935395	1.24	769860	$4 \cdot 81$	230140	31
30	705469	3.57	935320	$1 \cdot 24$	770148	$4 \cdot 81$	220852	30
31	$9 \cdot 705683$	3.57	$9 \cdot 935246$	$1 \cdot 24$	9.770437	4.81	10. 229563	29
32 32	705898	3.57	935171	$1 \cdot 2.4$	7770726	$4 \cdot 81$	229274	28
33	706112	3.57 3.56	935097	$1 \cdot 24$	771015	$4 \cdot 81$	228985	27
34	706326	3.56	935022	I. 24	771303	$4 \cdot 81$	228697	26
35	706539	3.56	9349.48	1.24	771592	$4 \cdot 81$	228.403	25
36	706753	3.56	934873	$1 \cdot 24$	771880	$4 \cdot 89$	228120	24
37 38	706967	3.56	934798	1.25	772168	4.80	227832	23
38	707180	3.55	934723	1. 25	772457	$4 \cdot 80$	227543	22
39	70739^{3}	3.55	934649	$1 \cdot 25$	772745	$4 \cdot 80$	227255	21
40	707606	3.55	934574	$1 \cdot 25$	773033	$4 \cdot 80$	226967	20
4 I	9.707819	3.55	9.934i99	1-25	$9 \cdot 773321$	$4 \cdot 80$	10.226679	19
42	708032	3.54	934424	1.25	7773608	$4 \cdot 79$	226392	18
43	708245	3.54	934349	1.25	773896	$4 \cdot 79$	226104	17
44	708458	3.54	93.1274	1.25	774184	$4 \cdot 79$	225816	16
45	708670	3.54	934199	1.25	77447	$4 \cdot 79$	225529	15
46	708882	3.53 3.53	934123	1.25	774759	$4 \cdot 79$	225241	18
47	709094	3.53	934048	$1 \cdot 25$	775046	$4 \cdot 79$	224954	13
48	709306	3.53	933973	1.25	775333	$4 \cdot 75$	224667	12
49	709518	3.53	933898	1.26	775621	$4 \cdot 78$	224379	11
50	709730	3.53	933822	$1 \cdot 26$	775908	$4 \cdot 78$	224092	10
51	9700241	3.52	$9 \cdot 933747$	$1 \cdot 26$	9.:76195	$4 \cdot 78$	10. 223805	
52	710153	3.52	9.33671	1.26	9 :776482	$4 \cdot 78$	223518	8
53	710364	3.52	933596	I. 26	776769	$4 \cdot 78$	223231	7
54 55	710575	3.52 3.51	933520	1.26 1.26	777055	$4 \cdot 78$	222945	6 5
55 56	710786	3.51	933445	$1 \cdot 26$	777312	$4 \cdot 78$	222658	5
56 57	710997	3.51 3.51 3.51	933369 933293	1.26 1.26	777628	$4 \cdot 77$ 4.77	222372	4
57 58	711208	3.51 3.51	933293 933217	1.26 1.26	777915	$4 \cdot 77$ 4.77	222085	2
59	711629	$3 \cdot 50$	933141	1.26	778487	$4 \cdot 77$	221512	1
60	711839	$3 \cdot 50$	933066	1.26	778774	$4 \cdot 77$	221226	0
	Dosing	D.	Sine	D.	ctang	D	Tang.	1.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
9	9.711839	$3 \cdot 50$	$9 \cdot 933066$	1.26	9.778774	$4 \cdot 77$	10.22122t	60
1	712050	3. jo	932990	1.27	779060	$4 \cdot 77$	220940	j
2	712260	$3 \cdot 50$	932914	1.27	779346	$4 \cdot 76$	220654	58
3	712469	$3 \cdot 49$	932838	1.27	7796.32	$4 \cdot 76$	220368	57
4	712679	$3 \cdot 49$	932762	1.27	779918	$4 \cdot 76$	220092	56
5	712889	3.49	932685	1.27	780203	$4 \cdot 76$	219797	55
0	713098	3.49	9.32609	$1 \cdot 27$	780499	4.76	$2195: 1$	54
7	713348	$3 \cdot 49$	Q 32533	1.27	780775	$4 \cdot 76$	219225	53
8	13517	$3 \cdot 48$	032457	1.27	791060	$4 \cdot 76$	218940	52
9	$71372 t$	$3 \cdot 48$	9.32380	1.27	781316	$4 \cdot 75$	218654	51
10	713935	3.48	9.32304	1.27	781631	$4 \cdot 75$	218360	50
11	9.714144	$3 \cdot 48$	9.932228	1.27	9.781916	$4 \cdot 75$	10.21808	49
12	714352	3.47	93.151	1. 27	78.2201	$4 \cdot 75$	217799	48
13	714561	$3 \cdot 47$	932075	$1 \cdot 25$	782186	$4 \cdot 75$	217514	47
14	714769	3.47	931998	1.28	782771	$4 \cdot 75$	217229	46
15	714978	3.47	931921	1.28	783056	$4 \cdot 75$	216944	45
16	715186	$3 \cdot 47$	931845	$1 \cdot 28$	7833 ¢	$4 \cdot 75$	216659	44
17	715391	$3 \cdot 46$	931768	$1 \cdot 28$	78.3626	$4 \cdot 74$	21637.4	43
18	715602	$3 \cdot 46$	931691	1.28	783910	$4 \cdot 74$	216090	42
19	715809	$3 \cdot 46$	931614	1-28	78.119^{5}	$4 \cdot 74$	215805	41
20	716017	$3 \cdot 46$	931537	I $\cdot 28$	784479	$4 \cdot 74$	215502	40
21	$9 \cdot 716224$	$3 \cdot 45$	9.931460	$1 \cdot 28$	9.784764	$4 \cdot 74$	10.2152 .36	39
22	716432	3.45	931383	1.28	78.5018	$4 \cdot 74$	214052	38
23	716639	$3 \cdot 45$	931306	$1 \cdot 28$	78.53 .32	$4 \cdot 73$	214668	37
24	716846	$3 \cdot 45$	931229	$1 \cdot 29$	785616	$4 \cdot 73$	214394	36
25	717053	3.45	931152	$1 \cdot 29$	785900	$4 \cdot 73$	214100	35
26	-772.59	$3 \cdot 44$	9.31075	$1 \cdot 29$	786184	$4 \cdot 73$	213916	34
27	$\bigcirc 17466$	$3 \cdot 44$	9.30998	$1 \cdot 29$	786468	$4 \cdot 73$	213532	33
28	717673	$3 \cdot 44$	9.30921	$1 \cdot 29$	786752	$4 \cdot 73$	21.3248	32
29	717879	$3 \cdot 44$	930843	1.29	7870.36	$4 \cdot 73$	212964	31
30	718085	$3 \cdot 43$	930766	1.29	787319	$4 \cdot 72$	212681	30
31	9.718291	$3 \cdot 43$	$9 \cdot 930688$	I-29	$9 \cdot 7876 \pm 3$	$4 \cdot 72$	10.212397	29
32	718497	$3 \cdot 43$	930611	$1 \cdot 29$	787886	$4 \cdot 72$	212114	23
33	718703	$3 \cdot 43$	9305.33	1.29	788170	$4 \cdot 72$	211830	27
34	718909	$3 \cdot 43$	9.30456	1.29	788453	$4 \cdot 72$	211547	26
35	719114	$3 \cdot 42$	9.30378	1.29	788736	$4 \cdot 72$	211264	25
36	719320	3.42	930300	1.30	789019	$4 \cdot 72$	210991	24
37 38	719525	$3 \cdot 42$	930223	1.30	789302	$4 \cdot 71$	210693	23
38	719730	$3 \cdot 12$	930145	1.30	789785	$4 \cdot 71$	210415	22
39	719935	$3 \cdot 41$	930067	1.30	789868	$4 \cdot 71$	210132	21
40	720140	$3 \cdot 41$	929999	1.30	790151	$4 \cdot 71$	209849	20
41	9.720345	$3 \cdot 41$	$9 \cdot 920911$	1.30	9.790433	$4 \cdot 71$	$10 \cdot 209567$	19
42	720549	3.41	929833	1.30	790716	$4 \cdot 71$	209284	19
43	720754	3.40	929755	1.30	790999	$4 \cdot 71$	209001	17
44	720958	3.40	929677	1.30	791281	$4 \cdot 71$	208719	16
45	721162	$3 \cdot 40$	929599	1.30	791563	$4 \cdot 70$	208437	15
46	721366	3.40	920521	1.30	791846	4.70	208154	14
47	721570	$3 \cdot 40$	929442	1.30	792128	$4 \cdot 70$	207872	13
48	721774	$3 \cdot 39$	929364	$1 \cdot 31$	792410	$4 \cdot 70$	207507	12
49	721978	$3 \cdot 39$	929286	1.31	792692	$4 \cdot 70$	207308	11
50	722181	3.39	929207	$1 \cdot 31$	792974	$4 \cdot 70$	207026	10
51	9.722385	3.39	9-929129	1.31	$9 \cdot 7932.56$	$4 \cdot 70$	10206744	
52	722.588	3.39	929050	1.31	793538	4.69	206462	8
53	722791	3.38	929972	1.31	79.3819	4.69	206181	7
54	722994	3.35	${ }_{72} \mathrm{RR}_{8} 93$	1.31	79 1101	$4 \cdot 69$	205899	6
55	723197	3.38	928815	1.31	994383	4.69	205617	5
56	723400	3.38	928736	1.31	794664	$4 \cdot 69$	20.5335	4
57	72.3603	3.37	928657	1.31	793915	$4 \cdot 69$	205055	3
58	72.3805	3.37	928578	1.31	795227	$4 \cdot 69$	204773	2
59	724007	3.37	928499	1.31	795503	4.68	204.492	1
60	724210	3.37	928420	1.31	$79^{5} 7^{8} 9$	$4 \cdot 68$	204211	0
	Cosine	D.	Sine	D.	Cotane	D.	Tang.	M.

M．	Sine	D．	Cosine	D．	Tang．	1.	Cotang．	
0	3724210	3.37	9928420	1.32	$9 \cdot 795789$	4.68	10．204211	60
1	724412	3.37	928342	1.32	796070	$4 \cdot 68$	203930	59
2	724614	$3 \cdot 36$	928263	1.32	796351	4.68	203640	58
3	724816	3.36	928183	1.32	796632	4.68	203368	57
4	$7250: 7$	$3 \cdot 36$	928104	1.32	796913	4.68	203087	56
5	325219	$3 \cdot 36$	928025	1.32	797194	$4 \cdot 68$	202806	55
6	725420	$3 \cdot 35$	9279.46	1.32	797475	4.68	202525	54
7	725622	$3 \cdot 35$	927867	1.32	797755	$4 \cdot 68$	2022.45	53
8	925823	3.35	927787	1.32	798036	$4 \cdot 67$	201964	${ }_{5}^{5} 2$
9	726024	3.35	927708	I． 32	798316	$4 \cdot 67$	201684	51
10	726225	3.35	927629	1.32	798596	4.67	201404	50
11	9.726 .42 t	3.34	9.927549	1.32	9．798877	$4 \cdot 67$	10.201123	$4 \hat{4}$
12	$726 \leq 26$	$3 \cdot 34$	92747°	1.33	799157	4.67	200843	48
13	726827	3.34	927390	1.33	799437	$4 \cdot 67$	200563	47
14	727027	$3 \cdot 34$	927310	1.33	799717	$4 \cdot 67$	200283	46
15	727228	3．3．4	927231	I． 33	799997	$4 \cdot 66$	200003	45
16	727428	$3 \cdot 3.3$	927151	1.33	800277	$4 \cdot 66$	199723	44
17	727528	$3 \cdot 33$	927071	1.33	800557	$4 \cdot 66$	199443	43
18	727828	3． 33	920991	1.33	800836	$4 \cdot 66$	199164	42
19	728027	3.33	926911	1.33	801116	$4 \cdot 66$	198884	41
20	728227	3.33	926831	I． 33	801396	$4 \cdot 66$	19860.4	40
21	$9 \quad 128427$	$3 \cdot 32$	9926751	1.33	9.801675	$4 \cdot 66$	10．198325	3 c
22	728626	$3 \cdot 32$	926671	I． 33	801955	$4 \cdot 66$	1980.5	38
23	728825	$3 \cdot 32$	926591	1.33	802234	4.65	197766	37
24	729024	$3 \cdot 32$	926511	1.34	8 8ั5513	4.65	197487	36
25	729223	3．31	926431	1.34	802792	$4 \cdot 05$	197208	35
26	729422	3．31	926351	1.34	803072	$4 \cdot 65$	196928	34
27	129621	$3 \cdot 31$	926270	1.34	803351	4.65	196649	33
28	129820	$3 \cdot 31$	926190	1.34	803630	4.65	196370	32
29	730018	$3 \cdot 30$	926110	1.34	803908	4.65	196092	31
30	730216	3.30	926029	I． 34	804187	$4 \cdot 65$	195813	30
31	$\cdots 730415$	3.30	9.925449	1． 3^{4}	$9 \cdot 804466$	$4 \cdot 64$	10．195534	
32	730613	$3 \cdot 30$	925868	1.34	804745	$4 \cdot 64$	19.5255	28
33	730811	$3 \cdot 30$	925788	1.34	805023	$4 \cdot 64$	19.4977	27
34	731009	$3 \cdot 29$	925707	1.34	$\bigcirc 05302$	4.64	19469^{8}	26
35	731206	3.29	925626	1.34	805580	4.64	19.4420	25
36	731404	$3 \cdot 29$	925545	1.35	805859	$4 \cdot 64$	194141	24
37	731602	$3 \cdot 29$	925465	1.35	806137	$4 \cdot 64^{\prime \prime}$	193863	23
38	731799	$3 \cdot 29$	925384	1.35	806415	$4 \cdot 63$	193585	22
39	731996	$3 \cdot 28$	9253 o 3	1.35	806693	$4 \cdot 63$	193307	21
40	732193	3－28	925222	1.35	806971	$4 \cdot 63$	193029	20
41	$9 \cdot 732390$	3－28	9.925141	1． 35	$9 \cdot 807249$	$4 \cdot 63$	10．192751	19
42	732587	3．28	925060	1．35	807527	$4 \cdot 63$	192473	： 8
43	732784	3．28	924979	1．35	807805	$4 \cdot 63$	：y：195	17
44	732980	$3 \cdot 27$	924897	1．35	808083	$4 \cdot 63$	10：917	16
45	733177	$3 \cdot 27$	924816	1.35 1.36	809361	4.63	101639	15
46	733373	$3 \cdot 27$	924735	I． 36	808638	$4 \cdot 62$	191362	14
47	733356	$3 \cdot 27$ $3 \cdot 27$	924654	1.36 1.36	808916	4.62	191084	13
48	733765	$3 \cdot 27$	924572	1．36	809193	4.62	190907	：2
49	733961	$3 \cdot 26$	92 亿年1	1.36	809471	$4 \cdot 62$	190529	11
50	．734157	$3 \cdot 26$	92.4409	I． 36	809748	$4 \cdot 62$	1902．）．	10
51	9．734353	$3 \cdot 20$	9－92ヶ328	I． 36	9.810025	$4 \cdot 62$		
53	734549	$3 \cdot 26$	924246	1． 36	810302	4.62	189698	8
53	734744	$3 \cdot 25$	924164	1.36	810580	$4 \cdot 62$	189 ¢20	7
$5 . i$	$73 \% 39$	$3 \cdot 25$	924083	1． 36	810857	462	189143	5
55	735135	$3 \cdot 25$	92 亿001	I． 36	811134	4.61	188866	5
56	7305.56	3． 25	023919	：．36	811410	4.61	188500	4
57 58	$73^{3.555}$	3.25	923837	1.36	8110037	$4 \cdot 61$	188313	3
58 50	735719	3.24 $3 \cdot 24$	923755 $9236-3$	1.37 1.37	811964 812241	4.61 4.61	188036	2
60	736109	3.24	923591	1.37	812517	4.61	187483	0
	Cosine	D．	Sine	！．	Cotang．	D．	Tang．	M．

M.	Sine	D.	Cosina	D.	Tang.	D.	Cotang.	
0	9.736109	$3 \cdot 24$	9.923591	1.37	9.812517	4.61	$10 \quad 187482$	60
1	736303	$3 \cdot 24$	923509	1.37	812791	$4 \cdot 61$	187206	59
2	736.158	$3 \cdot 24$	923427	1.37	813070	4.61	186930	58
3	736602	$3 \cdot 23$	923345	I. 37	813347	4.60	186653	57
4	736886	$3 \cdot 23$	923263	1.37	813623	4.60	186377	56
5	737080	$3 \cdot 23$	923181	1.37	8.3899	4.60	186101	55
6	737274	$3 \cdot 23$	923098	1.37	814175	$4 \cdot 60$	185825	54
7	737467	$3 \cdot 23$	923016	1.37	814.452	4.60	1855.48	53
8	737661	$3 \cdot 22$	922933	1.37	814728	4.60	185272	52
9	7.37855	$3 \cdot 22$	922851	1.37	815004	4.60	184996	51
10	733048	$3 \cdot 22$	922768	1.38	815279	$4 \cdot 60$	184721	50
11	9.738241	$3 \cdot 22$	9.922686	1.38	$9 \cdot 815555$	$4 \cdot 59$	10.184445	49
12	738434	$3 \cdot 22$	922503	1.38	815831	$4 \cdot 59$	184169	48
13	738627	$8 \cdot 21$	922520	1.38	816107	4.59	183893	47
14	738820	$3 \cdot 21$	922438	1.38	815382	4.59	183618	46
15	73 gor 3	$3 \cdot 21$	922355	I. 38	816658	4.59	183342	45
16	739206	$3 \cdot 21$	$92227{ }^{2}$	1.38	816933	$4 \cdot 59$	183007	44
17	7.39398	3.21	922189	1.38	817209	4.59	182791	43
18	73950	$3 \cdot 20$	922106	1.38	817484	$4 \cdot 59$	182516	42
19	739783	$3 \cdot 20$	922023	1.38	817759	4.59	182241	41
to	739975	$3 \cdot 20$	921940	1.38	818035	4.58	181965	40
21	$9 \cdot 740167$	$3 \cdot 20$	9.921857	1.39	9.818310	$4 \cdot 58$	10.181690	39
22	740359	$3 \cdot 20$	921774	1.39	818585	4.58	181415	38
23	740550	$3 \cdot 19$	921691	1.39	818860	4.58	181140	37
24	740742	$3 \cdot 19$	921607	1.39	819135	4.58	180865	36
25	740034	$3 \cdot 19$	921524	1.39	819410	4.58	180590	35
26	741125	$3 \cdot 19$	921441	1.37	819684	4.58	180310	34
27	741316	$3 \cdot 19$ 3	921357	1.39	819959	4.58	1800.11	33
28	741508	3.18 3.18	921274	1.39	820234 882050	4.58	179766	32
29	741699	$3 \cdot 18$	921190	1.39	820508	4.57	179492	31
30	741889	3.18	921107	1.39	820783	4.57	179217	30
3 I	9-742080	3.18	9.921023	1.39	9.821057	4.57	10.178943	
32	742271	3.18	920939	1.40	821332	4.57	178668	28
33	742462	$3 \cdot 17$	920856	1.40	821606	4.57	178394	27
34	742652	3.17	920772	1.40	821880	4.57	178120	26
35	742842	3.17 3.17	920688	1.40	822154	4.57	177846	25
36	7.43033	$3 \cdot 17$	920604	1.40	822429	4.57	177571	24
37	743223	$3 \cdot 17$	920520	1.40	822703	4.57	177297	23
38	743413	$3 \cdot 16$	920.436	1.40	822977	4.56	177023	22
39	743602	3.16 3.16	920352	1.40	823250	$4 \cdot 56$	176750	21
40	743792	$3 \cdot 16$	920268	1.40	823524	4.56	176476	20
41	$9 \cdot 743982$	3.16	9.920184	1.40	9.823798	4.56	10.176202	
42	744171	3.16 3.15	920092	1.40	88.1072	4.56	175928	18
43	744361	3.15	920015	1.40	82.345	4.56	1750655	17
44	744550	3.15 3.15	919931	1.41	824019	4.56	175381	16
45	747^{739}	3.15	919846	1.41	8248,3	$4 \cdot 56$	175107	15
46	744928	3.15 3.15	919762	1.41	825166	4.56	17483.4	14
47	745117 745306	3.15 3.14	919677	1.41	825439	4.55	174501	13
49	745306	3.14	919593	1.41	825713	$4 \cdot 55$	174287	12
49	74.5494	3.14	919508	1.41	825936	4.55	174014	11
50	745683	$3 \cdot 14$	919424	1.41	826259	6.55	173741	10
51	$9 \cdot 745871$	3.14	9.919339	1.41	9.826532	4.55	10.173468	
52	746059	3.14	919254	1.41	826805	4.55	173195	8
53	746248	3.13	919169	1.41	827078	4.55	172922	7
54	746436	$4 \cdot 13$	919085	1.41	827351	$4 \cdot 5{ }^{\circ}$	172649	5
55	746624	$3 \cdot 13$	919000	1.41	827624	4.50	172376	5
56	746812	3.13 3.13	918915	1.42	827897	4.54	172103	4
56 58	746999	$3 \cdot 13$	918830	1.42	828170	$4 \cdot 54$	171830	3
58 59	747187	3.12 3.12	918745	1.42 1.42	828442	4.54	171558	2
58 60	747374 747562	$3 \cdot 12$ $3 \cdot 12$	918659 918574	1.42 1.42	828715 828987	4.54 4.54	171285 171013	0
	Cosine	$1)$.	Sine	D.	Cotsing.	D.	Tang.	M.

A1.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9747562	$3 \cdot 12$	9.918574	$1 \cdot 42$	9.828987	$4 \cdot 54$	10171013	60
1	747749	$3 \cdot 12$	918489	1.42	829260	$4 \cdot 54$	170740	59
$\stackrel{2}{2}$	747936	$3 \cdot 12$	918404	1.42	829532	4.54	170468	58
Σ	748123	$3 \cdot 11$	918318	1.42	829807	4.54	170195	5
4	748310	$3 \cdot 11$	918233	1.42	830077	$4 \cdot 54$	169923	30
5	748497	3.11	918147	1.42	830349	$4 \cdot 53$	169651	55
6	748683	3.11	918062	1.42	830621	$4 \cdot 53$	169379	54
7	748870	$3 \cdot 11$	917976	1.43	830893	4.53	169107	53
8	749056	$3 \cdot 10$	917891	1.43	831165	4.53	168835	52
9	749243	$3 \cdot 10$	917805	1.43	831437	4.53	168563	3_{1}
10	749429	3.10	917719	1.43	831709	$4 \cdot 53$	168291	50
11	9.749615	$3 \cdot 10$	9.917634	1.43	9.831981	4.53	10.168019	49
12	749^{801}	$3 \cdot 10$	917548	1.43	832253	$4 \cdot 53$	167747	48
13	749987	3.09	917462	1.43	832525	4.53	167475	47
14	750172	3.09	917376	1.43	832796	4.53	167204	46
15	750358	3.09	917290	1.43	833068	4.52	166932	45
16	750343	3.09	917204	1.43	833339	$4 \cdot 52$	166001	44
17	750729	3.00	917118	1.44	833611	$4 \cdot 52$	166389	43
18	750914	3.08	917032	1.44	833882	4.52	166118	42
19	751099	3.08	916946	1.44	834154	$4 \cdot 52$	165846	41
20	751284	3.08	916859	1.44	834425	$4 \cdot 52$	165575	40
21	9.751469	3.08	9.916773	1.44	9.834696	4.52	10.165304	39
22	75.654	3.08	916687	1.44	834967	$4 \cdot 52$	165033	38
23	$\square 51839$	3.08	916600	1.44	835238	$4 \cdot 52$	164762	37
24	752023	3.07	916514	1.4.4	835509	$4 \cdot 52$	164491	36
25	752208	3.07	916427	1.44	835780	4.51	164220	35
26	752392	3.07	916341	1.44	836051	$4 \cdot 51$	1639 年	34
27	752576	3.07	916254	1.44	836322	$4 \cdot 51$	16367%	33
28	752760	3.07	916167	1.45	836593	$4 \cdot 51$	163.407	32
29	752944	3.06	916081	1.45	836864	$4 \cdot 51$	163136	31
30	753128	3.06	915994	1.45	837134	$4 \cdot 51$	162866	30
31 31	9.753312	3.06	$9 \cdot 915907$	1.45	9.837405		$10 \cdot 162595$	
32 32	753495	3.06	915820	1.45	837675	$4 \cdot 51$	162325	28
33	753679	3.06	915733	1.45	837946	$4 \cdot 51$	162054	27
34	753862	3.05	915646	1.45	8.38216	4.51	161784	26
35	754046	3.05	915559	I. 45	838487	4.50	161513	25
36	754229	3.05	915472	1.45	838757	人.50,	161243	24
37	754412	3.05	915385	1.45	839027	4.50	160973	23
38	754595	3.05	915297	1.45	839297	$4 \cdot 50$	160703	22
39	75477^{8}	3.04	915210	1.45	839568	$4 \cdot 50$	160432	21
40	754960	3.04	915123	1.46	839838	$4 \cdot 50$	160162	20
41	9.755143	3.04	9.915035	1.46	$9 \cdot 840108$	4.50	10.15989^{2}	19
42	755326	3.04	914948	1.46	840378	4.50	159622	18
43	755508	3.04	914860	1.46	840647	$4 \cdot 50$	159353	17
44	755690	3.04	914773	1.46	840917	4.49	159083	16
45	755872	3.03	914685	1.46	8 81187	4.49	158813	15
46	756054	3.03	914598	I. 46	841457	$4 \cdot 49$	158543	14
47	756236	3.03	914510	1.46	841726	4.49	158274	12
48	756418	3.03	914422	1.46	841996	$4 \cdot 49$	158004	12
49	756600	$3 \cdot 03$	914334	1.46	842266	$4 \cdot 49$	157734	11
50	756782	3.02	914246	1.47	842535	$4 \cdot 49$	157455	10
	$9 \cdot 756963$	3.02	9.914158	1.47	9.842805	$4 \cdot 49$	10.157195	
52	757144	3.02	914070	1.47	843074	4.49	156926	8
53	757326	3.02	913982	1.47	843343	449	156657	7
54 54	757507	3.02	713894	1.47	843612	4.49	156388	6
55	757688	3.01	G13006	1.47	843882	4.48	156118	5
56	757869	3.01	913718	$1 \cdot 9$	844151	$4 \cdot 48$	155849	4
57 58 58	758050	3.01	O13630	1-4 ${ }^{1}$	844420	4.48	155580	3
58	758220	3.01	913341	$1 \cdot 47$	844689	4.48	155311	2
59 60	758411	3.01	913453	$1 \cdot 47$	844958	$4 \cdot 48$	155042	1
60	758591	3.01	913365	1.47	845227	$4 \cdot 48$	154773	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	3.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.758591	3.01	9.913365	1.47	9.845227	4.48	10.1547\% 3	60
1	75877^{2}	3.00	913276	: 47	845496	4.48	154504	59
2	758952	3.00	913187	1.48	845764	$4 \cdot 48$	15.236	58
3	759132	3.00	913099	1.48	846033	$4 \cdot 48$	153967	57
4	759312	3.00	913010	1.48	846302	$4 \cdot 48$	153698	56
5	759492	3.00	912922	1.48	846570	4.47	153430	55
6	759672	$2 \cdot 99$	912333	1.48	846839	447	153161	54
7	759852	2.99	912741	1.48	847107	4.47	152893	53
8	760031	$2 \cdot 99$	912655	1.48	847376	4.47	152624	52
9	760211	$2 \cdot 99$	912566	1.48	847646	4.47	152356	51
10	760300	$2 \cdot 99$	912477	1.48	847913	4.47	152087	50
11	¢ 7760569	$2 \cdot 98$	9.912388	1.48	9.848181	4.47	10.151819	49
12	760748	$2 \cdot 98$	912299	1.49	848449	$4 \cdot 47$	151551	48
13	760927	$2 \cdot 98$	912210	1.49	8.48717	4.47	151283	47
14	761106	$2 \cdot 98$	912121	1.49	849950	4.47	151014	46
15	761285	$2 \cdot 98$	912031	1.49	849254	$4 \cdot 47$	150746	45
16	761464	$2 \cdot 98$	9119ı2	1.49	840522	4.47	150478	44
17	761642	2.97	911853	1.49	849790	$4 \cdot 46$	150210	43
18	761821	$2 \cdot 97$	911763	1.49	8.50038	$4 \cdot 46$	149912	42
19	761999	2.97	911674	1.49	850325	$4 \cdot 46$	149675	41
20	762177	2.97	911584	1.49	850593	$4 \cdot 46$	149407	40
21	9.762356	$2 \cdot 97$	9.911495	1.49	9.850861	4.46	10.149139	39
22	762534	2.96	911405	1.49	851129	4.46	148871	38
23	762712	$2 \cdot 96$	9113:5	1.50	851396	$4 \cdot 46$	148604	37
24	762889	$2 \cdot 96$	911226	1.50	851664	$4 \cdot 46$	148336	36
25	763067	$2 \cdot .96$	911136	1.50	851931	$4 \cdot 46$	148069	35
26	763245	2.96	911046	1.50	852199	$4 \cdot 46$	147801	34
27	763.422	$2 \cdot 96$	910936	1.50	852466	$4 \cdot 46$	147'334	33
28	763 ¢́oo	$2 \cdot 95$	910866	1.50	852733	$4 \cdot 45$	147267	32
29	763777	$2 \cdot 95$	910775	1.50	853001	4.45	1.46979	31
30	763954	2.95	910686	1.50	853268	4.45	145732	30
31	$9 \cdot 764131$	2.95	9.910596	1.50	9.853535	4.45	10.146465	29
32	-764308	$2 \cdot 95$	910506	1.50	853902	4.45	146198	28
33	764485	$2 \cdot 94$	910415	1.50	85.4059	4.45	145931	27
34 35	764662	2.94	910325	1.51	854336	4.45	145664	25
35	764838	2.94	910235	1.5!	854603	4.45	145397	25
36	765015	2.94	910144	1.5ı	854870	4.45	145130	24
37	765191	$2 \cdot 94$	910054	1.51	855137	$4 \cdot 45$	144863	23
38	765367	2.94	909963	1.51	85.404	$4 \cdot 45$	144596	22
39	765544	$2 \cdot 93$	$909>73$	1.51	855671	4.44	144329	21
40	7650720	2.93	939782	1.51	855938	4.44	144062	20
41	$9 \cdot 765896$	$2 \cdot 93$	9.909691	1.51	9.856204	4.44	10.143796	19
42	766072	2.93	939601	1.51	856.471	$4 \cdot 44$	143529	18
43	766247	$2 \cdot 93$	909510	1.51	856737	4.44	143263	17
44	766423	2.G3	909419	1.51	857004	4.44	142996	16
45	7655098	2.92	909323	1.52	857270	4.44	1.427 .30	15
46	756774	$2 \cdot 92$	909237	1.52	857537	$4 \cdot 44$	142463	14
47	7669 ¢9	$2 \cdot 92$	709146	1.52	857803	4.44	142197	13
46	767124	2.92	909055	1.52	858069	4.44	141931	12
絡	767300	$2 \cdot 92$	90496	1.52	838336	$4 \cdot 44$	141654	11
5 C	76:475	$2 \cdot 91$	708873	1.52	858602	$4 \cdot 43$	141398	10
51	9767649	$2 \cdot 91$	9.908781	1.52	9.858868	$4 \cdot 43$	10.141132	
52	. 767824	2.91	909690	1.52	-859134	4.43	140866	8
53	7017999	2.91	908599	1.52	859100	$4 \cdot 43$	140600	7
54	768173	2.91	908507	152	859666	$4 \cdot 43$	140334	5
55	7683 \%	2.9c	908416	1.53	859932	$4 \cdot 43$	140068	5
56	768522	$2 \cdot 90$	908324	1.53	860198	4.43	139802	4
59	768697	$2 \cdot 90$	908233	1.53	860464	4.43	139536	3
58	768871	$2 \cdot 90$	908141	1.53 1.53 1.53	860730	4.43	139270	2
59 60	769045	2.90 2.90	$9080{ }^{\text {¢ }} 9$	1.53 1.53	86099 861261	4.43 4.43	139005 138739	1
6	769219	$2 \cdot 90$	907958	1.53	861261	4.43	138739	c
	Corine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sive	D.	Cosine	D.	Ting.	D.	Catang.	
0	9.769219	2.90	9.907958	1.53	9.3t 1251	4.43	10 138739	60
1	769393	2.89	907866	1.53	301527	$4 \cdot 43$:38473	59
3	769566	2.89	907774	1.53	861792	$4 \cdot 42$	1382c8	58
3	769740	2.89	907682	1.53	862058	4.42	137942	57
${ }_{5}^{4}$	769913	2.89	907590	1.53	862333	$4 \cdot 42$	137677	56
5	770087	2.89	90749^{8}	1.53	862589	4.42	137411	55
6	770260	2.88	907406	I. 53	862854	$4 \cdot 42$	137146	54
?	770433	2.88 2.88	907314	1.54 1.54	863119	$4 \cdot 42$	136881	$5{ }^{51}$
8	770806	2.88 2.88	907222 907129	1.54 1.54	863385	4.47 4.4	136615 136350	52 51
10	770952	2.88	907037	1.54	863915	4.4	136085	50
11	9•771125	2.88	-.906945	1.54	9.864180	4.11	10.135820	49
12	771298	2.87	906852	1.54	864445	4.42	135555	48
13	771470	2.87	906760	1.54	864710	442	135290	47
14	771643	2.87 2.87	906667	1.54 1.54	864975	4.41	135025	45
15 16	771815 771997	2.87 2.87	906575 906482	1.54 1.54 1	865240 865505	4.41 4.41	134700 137405	45
17	772159	2.87 2.87	906389	1.55	855770	4.45	134230	43
18	772331	2.86	906296	1.55	866035	4.41	133955	42
19	772503	2.86	906204	1.55	866300	4.41	133700	41
20	772675	2.86	906111	1.55	866564	$4 \cdot 41$	133436	40
21	9.772847	2.86	9.906018	1.55	9.866829	4.41	-.133171	39
22	773018	2.86	905025	1.55	867094	44	132906	38
23	773190	2.86	905832	1.55 1.55	867358	4.41	132642	37
24	773361	2.85	905739	1.55	867623	4.41	132377	36
25	773533	2.85	905645	1.55	867887	4.41	132113	35
26	773704	2.85	905552	1.55	868152	4.40	131848	34
27	773975	2.85	905459	1.55	868416	4.40	131584	33
28	774046	2.85	905366	1.56	868580	$4 \cdot 40$	131320	32
29	774217	2.85	905272	1.56	858945	4.40	131055	31
30	774388	2.84	905179	1.56	869209	4.40	130794	30
31	9•774558	2.84	9-905085	1.56	9.869473	4.40	10.130527	29
32	774729	2.84	904992	1.56	869737	4.40	130263	28
33	77489	2.84	904898	1.56	876001	4.40	129999	27
34	775070	2.84	904804	1.56	8 8, 2625	4.40	12975	26
35	775240	2.84	904711	1.56	$8 \% 0529$	4.40	129471	25
36	775410	2.83 2.83	904617 005523	1.56 1.56 1.50	370793 871057	4.49	129207	24 24
37 38	775880 775750	2.83 2.83	904523 904429	1.56 1.57	871057 871321	4.40 4.40	128943	23 22
39	775920	2.83 2.83	90.335	1.57	871585	$4 \cdot 40$	12845	21
40	776090	2.83	904241	1.57	871849	4.39	128151	20
41	9.776259	2.83	9.904147	1.57	$9 \cdot 872112$	4.39	10.127888	19
42		2.82					127624	18
43	776599	2.82	903959	1.5-	872640	4.39	127360	17
44	776768	2.82	903864	1.57	872903	4.39	127097	16
45	776037	2.82	903770		873167	4.39	126833	15
46	777106	2.82	903676	1.57	873430	4.39	126570	14
47	777275	2.81	903581	1.57	873624	4.39	126306	13
48	77744	2.81	903437	1.57	873957	$4 \cdot 39$	126043	12
69	777613	2.81	903392	1.59	874220	$4 \cdot 39$	125780	11
5 c	777781	2.81	903298	1.58	374484	4.39	125516	10
51	¢.777950	2.81	9.903203	1.58	9. 874747	$4 \cdot 39$	10.125253	
52	778119	2.81 2.81	903108	1.58	875010	4.39	124990	8
53 54 54	778287 778455	2.80 2.80	903014 902919	1.58 $\mathbf{1} 58$	875273 875536	4.38 4.38	124727 124464	7
55	77862.4	2.80 2.80	902824	-. 58	875800	4.38 4.38	124404	5
56	778792	2.80	902729	1.58	876063	4.38	123937	4
57	778960	2.80	902634	1.58	876326	4.38	123674	3
58	779128	2.80	902539	1.59	$\bigcirc 76589$	$4 \cdot 38$	123411	2
$\stackrel{3}{6}$	779295	2.79	902444	1.59	876851	4.38	123149	,
60	779463	$2 \cdot 79$	902349	1.59	877114	4.38	122886	0
	Casino	D.	Sine	D.	Cotung.	D.	Tang.	M.

(53 degrees.)

M.	Sino	D.	Cosine	J.	Tang.	D.	Cotang.	
0	9-779463	2-79	9.902349	1.59	9.877114	4.38	10.122886	60
1	779631	2.79	902253	I. 59	877377	$4 \cdot 38$	122623	59
	779798	2.79	902158	1.59	877640	$4 \cdot 38$	122360	58
3	779966	$2 \cdot 79$	902063	1.59	877903	4.38	122007	57
4	780133	2.79	901967	1. 59	878165	4.38	121835	56
5	780300	2.78	901872	1.59	878428	4.38	121572	55
6	780467	2.78	901776	1.59	878691	$4 \cdot 38$	121309	54
7	780634	2.78	901681	1.59	878953	$4 \cdot 37$	121047	53
8	780801	$2 \cdot 78$	901585	1.59	879216	4.37	120784	52
9	780068	2.78	901490	1.59	879478	$4 \cdot 37$	120522	51
10	781134	$2 \cdot 78$	901394	1.60	879741	$4 \cdot 37$	120259	50
11	$9 \cdot 781301$	2.77	9.901298	1.60	9.880003	$4 \cdot 37$	$10 \cdot 119997$	49
12	781468	2.77	901202	1.60	880265	$4 \cdot 37$	119735	48
13	781634	2.77	901106	1.60	880528	$4 \cdot 37$	119472	47
14	781800	$2 \cdot 77$	901010	1.60	880790	$4 \cdot 37$	119210	46
15	781966	$2 \cdot 77$	900914	1.60	881052	4.37	118948	45
16	782132	2.77	900818	1.60	88.314	$4 \cdot 37$	118686	44
17	782298	2.76	900722	1.60	88.576	4.37	118424	43
18	782464	$2 \cdot 76$	900626	1.60	881839	$4 \cdot 37$	118161	42
19	782630	$2 \cdot 76$	900529	1.60	882:n1	$4 \cdot 37$	117899	41
20	782796	$2 \cdot 76$	900433	1.61	882363	$4 \cdot 36$	117637	40
21	$9 \cdot 782961$	2.76	9.900337	1.61	9.882625	$4 \cdot 36$	10.117375	39
22	783127	2.76	900240	1.61	882887	$4 \cdot 36$	117113	38
23	783292	$2 \cdot 75$	900144	1.65	883148	$4 \cdot 36$	116852	37
24	783458	$2 \cdot 75$	900047	1.61	883410	$4 \cdot 36$	116590	36
25	783623	2.75	899951	1.61	883672	$4 \cdot 36$	116328	35
26	783788	$2 \cdot 75$	899854	1.61	883934	4.36	116066	34
27	783953	2.75	899757	1.61	884196	$4 \cdot 36$	115804	33
28	784118	$2 \cdot 75$	899660	1.61	884457	$4 \cdot 36$	115543	32
29	784282	2.74	899564	1.61	884719	$4 \cdot 36$	115281	31
30	784447	$2 \cdot 74$	899467	1.62	884980	$4 \cdot 36$	115020	30
31	$9 \cdot 784612$	$2 \cdot 74$	9.899370	1.62	9.885242	$4 \cdot 36$	10.114758	29
32	784776	2.74	899273	1.62	885503	$4 \cdot 36$	114497	28
33	784941	2.74	899176	1.62	885765	$4 \cdot 36$	114235	27
34	785105	2.74	899078	1.62	886026	$4 \cdot 36$	113974	26
35 36	785269	2.73	898981	1.62	886288	$4 \cdot 36$	113712	25
36	785433	2.73	898884	1.62	886519	$4 \cdot 35$	113451	24
37 38	785597	$2 \cdot 73$	898787	1.62	8868 ı0	$4 \cdot 35$	113190	23
38	785761	$2 \cdot 73$	898689	1.62	887072	$4 \cdot 35$	112928	22
37	785925	$2 \cdot 73$	898592	1.62	887333	$4 \cdot 35$	112667	21
40	786089	$2 \cdot 73$	898494	1.63	887594	$4 \cdot 35$	112406	20
41	$9 \cdot 786252$	2.72	9.898397	1.63	$9 \cdot 887855$	$4 \cdot 35$	10.112145	19
42	786416	2.72	898299	1.63	888116	$4 \cdot 35$	111884	18
43	786579	$2 \cdot 72$	898204	1.63	888377	$4 \cdot 35$	111623	17
44°	786742	$2 \cdot 7{ }^{2}$	898104	1.63	888639	$4 \cdot 35$	111361	16
45	785906	$2 \cdot 72$	898006	. 63	888900	4.35	111100	15
46	787069	$2 \cdot 72$	897908	1.63	889160	$4 \cdot 35$	110840	14
47	787232	2.71	897810	1.63	88942 I	$4 \cdot 35$	110579	13
48	787395	$2 \cdot 71$	897712	1.63	889682	$4 \cdot 35$	110318	12
49	$78{ }^{\circ} 5507$	$2 \cdot 71$	897614	1.63	889943	$4 \cdot 35$	110057	11
30	787720	$2 \cdot 71$	897516	1.63	890204	$4 \cdot 34$	109796	10
51	$9 \cdot 787^{883}$	$2 \cdot 71$	9.897418	1. 64	$9 \cdot 890465$	4.34	10.109535	
52 53	78.3045	2.71	8897320	1.64	890725	4.34	109275	8
53	788208	$2 \cdot 71$	897222	1.64	890986	4.34	109014	7
54 55	788370	2.70	897123	1.64	891247	$4 \cdot 34$	108753	6
55	788532	$2 \cdot 70$	897025	1.64	891507	$4 \cdot 34$	108493	5
56	788694	$2 \cdot 70$	896926	1.64	891768	$4 \cdot 34$	108232	4
56 58	788856	2.70 2.70	896828	1.64	892028	$4 \cdot 34$	107972	3
58 59	789018 789180	$2 \cdot 70$ 2.70	896729 896631	1.64 1.64	892289	4.34 4.34	107711	1
59 60	789180 789342	2.70 2.69	896631 896532	1.64 1.64	892549 892810	4.34 4.34	107451	0
	Cosine	D.	Sine	D.	Cotang.	D.	'lang.	I.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.789342	2.69	9.896532	1.64	9.892810	$4 \cdot 34$	10.107190	co
1	789504	2.69	896433	1.65	893070	$4 \cdot 34$	106930	59
,	789665	2.69	896335	I. 65	893331	$4 \cdot 34$	106669	58
3	789827	2.69	896236	1.65	89351	4.34	106409	57
4	789988	2.69	896137	1. 65	893851	4.34	1061.49	50
5	790149	2.69	896038	I. 65	894111	4.34	105889	55
c	790310	2.68	895939	1.65	894371	4.34	105629	54
7	790471	2.68	895840	1.65	894632.	$4 \cdot 33$	105368	53
8	790632	2.68	895741	1.65	894892	$4 \cdot 33$	105108	52
9	790793	2.68	895641	1.65	895152	4.33	104848	51
10	790954	2.68	895542	1.65	895412	$4 \cdot 33$	104588	50
11	9.791115	2.68	9.895443	1.66	9.895672	$4 \cdot 33$	10.104328	49
12	791275	$2 \cdot 67$	895343	1.66	895932	$4 \cdot 33$	104068	48
13	791436	2.67	895244	1.66	896192	$4 \cdot 33$	103808	47
14	791596	2.67	895145	I. 66	896452	$4 \cdot 33$	103548	46
15	791757	2.67	895045	1.66	896712	$4 \cdot 33$	103288	45
16	791917	2.67	894945	1.66	896971	$4 \cdot 33$	- 103029	44
17	792077	2.67	894846	1.66	897231	$4 \cdot 33$	102769	43
18	792237	2.66	894746	1:66	89741	$4 \cdot 33$	102509	42
19	792397	2.66	894646	1.66	897751	$4 \cdot 33$	102249	41
20	792507	2.66	894546	1.66	898010	$4 \cdot 33$	10199°	40
21	$9 \cdot 792716$	2.66	9.894446	1.67	9.898270	$4 \cdot 33$	$10 \cdot 101730$	39
22	792876	2.66	894346	1.67	898530	$4 \cdot 33$	101470	38
23	793035	2.66	894246	: 67	898789	$4 \cdot 33$	101211	37
24	793195	2.65	894146	1.67	899049	$4 \cdot 32$	100951	36
25	793354	2.65	894046	1. 67	899308	$4 \cdot 32$	$1006{ }^{2} 2$	35
26	793514	2.65	$89^{3} 946$	1.67	899568	$4 \cdot 32$	100432	34
27	793673	2.65	8938.16	1.67	899827	$4 \cdot 32$	100:73	33
28	793832	2.65	893745	1.67	900086	$4 \cdot 32$	099114	32
29	793991	2.65	893645	1.67	900346	$4 \cdot 32$	099654	31 30
30	794150	2.64	893544	1.67	900605	$4 \cdot 32$	099395	30
31	9-794308	2.64	$9 \cdot 893444$	1.68	$9 \cdot 900864$	$4 \cdot 32$	10.096,136	
32	794407	2.64	893343	1.68	901124	$4 \cdot 32$	093876	28
33	794626	2.64	893243	1.68	901383	$4 \cdot 32$	098617	27
34	794784	2.64	89^{3142}	1.68	901642	$4 \cdot 32$	098358	26
35	794942	2.64	893041	1.68	901901	$4 \cdot 32$	098099	25
36	795101	2.64	892940	1.68	902160	$4 \cdot 32$	097840	24
37	795259	2.63	892839	1.68	902419	$4.32 x^{\prime}$	097581	23
38	795417	2.63	892739	1.68	902679	$4 \cdot 32$	097321	22
39	795575	2.63	892638	1.68	-902933	$4 \cdot 32$	097062	21
40	795733	2.63	892536	1.68	903197	$4 \cdot 31$	096803	20
41	9.795891	2.63	9.892435	1.69	9.903.455	$4 \cdot 31$	$10 \cdot 096545$	19
42	$7960 \div 9$	2.63	892334	1.69	903714	$4 \cdot 3 \mathrm{I}$	096286	18
43	796206	2.63	892233	1.69	903973	$4 \cdot 31$	096027	17
44	796364	2.62	892132	1.69	904232	$4 \cdot 31$	095768 -	16
45	796521	2.62	872030	1.69	904491	$4 \cdot 31$	095509	15
46	796679	2.62	891929	1.69	904750	$4 \cdot 31$	095250	14
47	796836	2.62	891827	1.69	905008	$4 \cdot 31$	09.1992	12
48	79699^{3}	2.62	891726	1.69	905267	$4 \cdot 3 \mathrm{I}$	094733	12
49	797150	2.61	891624	1.69	905526	$4 \cdot 31$	094474	11
50	797307	2.61	891523	$1 \cdot 70$	905784	$4 \cdot 31$	094216	10
51	$5 \cdot 797464$	2.61	9.891421	$1 \cdot 70$	$9 \cdot 706043$	$4 \cdot 31$	$10 \cdot 093957$	8
52	797621	2.61	891319	1.70	- 906302	$4 \cdot 31$	093698	8
53	797777	$2 \cdot 61$	891217	$1 \cdot 70$	906560	4.31	093440	6
54	797934	2.61	891115	$1 \cdot 70$	9068ı9	$4 \cdot 31$	093181	6
55	798091	2.61	891013	$1 \cdot 70$	907077	4.31	092923	4
56	793247	2.61	890911	$1 \cdot 70$	907336	4.31 4.31	092664	4
57	798403	2.60 2.60	890809 800707	1.70 1.70	907524 907802	4.31 4.31	092400	2
58 59	798560	2.60 2.60	890707 890605	1.70 1.70	908111	4.30	091889	1
60	798872	2.50	890503	1.70	908369	4.30	091631	0
	sine		ne	D.	Cotang.	D.	Tang	M.

M.	Sine	D.	Cosine	D.	'rang.	D.	Cotang.	
0	9-798872	2.60	9.890503	$1 \cdot 70$	9:908369	4.30	16.091631	60
1	799 C 28	2.60	890400	1.71	908628	$4 \cdot 30$	OG13-2	59
2	799184	2.60	890298	1.71	908886	$4 \cdot 30$	091114	58
3	799332	2.59	890195	$1 \cdot 71$	909144	$4 \cdot 30$	090856	57
4	79949^{5}	2.59	890093	$1 \cdot 71$	909402	$4 \cdot 30$	-goう̄9	56
5	799631	2.59	889990	1.71	909600	$4 \cdot 30$	Ogo340	55
t	799806	2.59	889888	1.71	909918	4.30	090082	54
7	799962	2.59	889785	1.71	910177	$4 \cdot 30$	O $8,4,3_{2} 3$	53
8	800117	2.59	889682	$1 \cdot 71$	910435	$4 \cdot 30$	289565	52
9	800272	2.58	889579	$1 \cdot 71$	910693	4.30	089307	51
10	800427	2.58	889477	$1 \cdot 71$	910951	$4 \cdot 30$	089049	50
11	9.800582	2.58	$9.880,374$	$1 \cdot 72$	9.911209	$4 \cdot 30$	IC.088791	49
12	800737	2.58	889271	$1 \cdot 72$	911467	$4 \cdot 30$	088533	48
13	800892	2.58	889168	$1 \cdot 72$	911724	$4 \cdot 30$	088276	47
14	801047	2.58	889064	$1 \cdot 72$	911982	$4 \cdot 30$	088018	46
15	801201	2.58	888961	$1 \cdot 72$	912240	4.30	087760	45
16	801356	2.57	888858	1.72	912.498	$4 \cdot 30$	087 0202	44
	Sul5il	2.57	888755	1.72	912756	$4 \cdot 36$	087244	43
18	801665	2.57	888651	1.72	913014	$4 \cdot 29$	086986	42
19	801819	2.57	888548	$1 \cdot 72$	913271	$4 \cdot 29$	086729	41
20	801973	2.57	888444	1.73	913529	$4 \cdot 29$	086471	40
21	9.802128	2.57	9.888341	$1 \cdot 73$	9.913787	4.29	10.086213	39
22	802282	2.56	888237	$1 \cdot 73$	914044	$4 \cdot 29$	085956	38
23	802436	2.56	888134	$1 \cdot 73$	914302	$4 \cdot 29$	085698	37
24	802589	2.56	888030	$1 \cdot 73$	914560	$4 \cdot 29$	085440	35
25	802743	2.56	887926	$1 \cdot 73$	914817	$4 \cdot 29$	085183	35
26	802897	2.56	887822	1.73	915075	$4 \cdot 29$	084925	34
27	803050	2.56	887718	$1 \cdot 73$	915332	$4 \cdot 29$	084668	33
28	803204	2.56	887614	1.73	915590	$4 \cdot 29$	084410	32
${ }_{3}^{29}$	803357	2.55	887510	1.73	915847	$4 \cdot 29$	084153	31
30	803511	2.55	887406	1.74	916104	$4 \cdot 29$	083896	30
31	9.803664	2.55	9.887302	$1 \cdot 74$	9.916362	$4 \cdot 29$	10.083638	29
32	803817	2.55	887198	1.74	916619	4.29	083381	28
33	803970	2.55	887093	1.74	916877	4.29	-83123	27
34	80ヶ123	2.55	886989	1.74	917134	$4 \cdot 29$	082866	26
35	80.4276	2.54	886885	1.74	917391	$4 \cdot 29$	082609	25
36	80.4428	2.54	886780	1.74	9176.48	4.29	082352	24
3 3 3	$80 \div 581$	2.54	886676	1.74	917905	$4 \cdot 29$	-82095	23
38	804734	2.54	886571	1.74	918163	$4 \cdot 28$	081837	22
39	804886	2.54	886406	$1 \cdot 74$	918420	$4 \cdot 28$	081580	21
40	805039	2.54	886362	$1 \cdot 7^{5}$	918677	$4 \cdot 28$	081323	20
41	9.805191	2.54	¢. 888257	$1 \cdot 75$	9.918934	$4 \cdot 28$	10.081066	
42	805343	2.53	886152	$1 \cdot 75$	919191	4.28	080809	18
43	805495	2.53	886047	$1 \cdot 75$	919448	4.28	080552	17
44	805647	2.53	885942	1.75	919705	4.28	080295	15
45	805799	2.53	885837	1.75	919962	4.28	080038	15
46	305051	2.53	885732	$1 \cdot 75$	920219	$4 \cdot 28$	0797^{81}	14
47	806102	2.53	885627	1.75	920476	$4 \cdot 28$	079.524	13
48	806254 806606	2.53	885522	1.75	920733.	$4 \cdot 28$	079267	12
49	806406	2.52	88541 t	1.75	920990	$4 \cdot 28$	079010	11
50	806557	2.52	885311	1.70	921247	$4 \cdot 28$	078753	10
51	9.806709	2.52	9.885205	$1 \cdot 76$	9.921503	$4 \cdot 28$	10.078497	
52	806860	2.52	885100	1.76	921760	$4 \cdot 28$	078240	8
53	807011	2.52	884994	$1 \cdot 76$	922017	$4 \cdot 28$	077983	
54 55 5	807163	2.52	884889	1.76	922274	$4 \cdot 28$	077726	6
55 56	807314 807465	2.52 2.51	884783	1.76	922530	4.28	077470	5
57	807465 807615	2.51 2.51	884677 884572	1.76 1.76	922787	$4 \cdot 28$	077213	4
58	807766	2.51 2.51	88472 884466	1.76 1.76	923044 923300	$4 \cdot 28$ 4.28	076956 076700	3
50	807917	$2 \cdot 51$	884360	$1 \cdot 76$	923557	$4 \cdot 27$	076443	:
60	808067	$2 \cdot 51$	884254	1.77	923813	4.27	076187	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.8080	2.51	9.884254	$1 \cdot 77$	9.923813	$4 \cdot 27$	10076187	60
1	808218	2.51	884148	$1 \cdot 77$	924070	$4 \cdot 27$	075930	59
2	808368	2.51	88.4042	1.77	724327	4.27	075673	58
3	808519	2.50	883936	1.77	92458	4.27	075417	57
4	808669	2.50	883829	1.77	924840	$4 \cdot 27$	075160	56
5	808817	2.50	883723	$1 \cdot 77$	925096	4.27	074904	55
6	808969	2.50	883617	$1 \cdot 77$	925352	4.27	074648	54
\%	809119	2.50	883510	$1 \cdot 77$	925609	$4 \cdot 27$	074381	53
8	809269	2.50	883404	$1 \cdot 77$	925865	4.27	074135	52
9	809 ¢19	2.49	883297	1.78	926122	4.27 4.27	073878	51
10	809569	2.49	883191	$1 \cdot 78$	926378	$4 \cdot 27$	073621	50
11	9.8c. 718	2.49	9.883084	$1 \cdot 78$	9.926634	$4 \cdot 27$	10.073366	49
12	8.9868	2.49	882977	1.78	926890	$4 \cdot 27$	073110	
13	810017	2.49	882871	1.78	927147	$4 \cdot 27$	072853	47
14	810167	2.49	882764	$1 \cdot 78$	927403	4.27	072597	46
15	810316	2.48	883657	$1 \cdot 78$	927659	4.27	072341	45
16	810465	2.48	882550	1.78	927915	4.27	072085	44
17	810614	2.48	882443	$1 \cdot 78$	928171	4.27	071829	43
18	810763	$2 \cdot 48$	882336	$1 \cdot 79$	928427	$4 \cdot 27$	07157	42
19	8 r 0912	$2 \cdot 48$	882229	$1 \cdot 79$	928683	$4 \cdot 27$	071317	41
20	811061	$2 \cdot 48$	882121	$1 \cdot 79$	928940	$4 \cdot 27$	071066	40
21	9.8112	2.48	9.8820	1•79	9.9291	4.27	10.070804	30
22	811358	2.47	881907	I•79	929452	$4 \cdot 27$		
23	811507	2.47	881799	$1 \cdot 79$	929708	4.27	07022^{2}	${ }^{3} 7$
24	811655	2.47	881692	$1 \cdot 79$	929964	$4 \cdot 26$	070036	36
25	811804	2.47	88.584	$1 \cdot 79$	930220	4.26	06978	
26	S11952	2.47	881477	$1 \cdot 79$	930475	$4 \cdot 26$ 4.26	069525	34 33
27 28 8	812100 812248 812	2.47 2.47	881369 881261	1.79 1.80	930731 930987	4.26 4.26	-69269	33 32
28 29	812248 812396 81	2.47 2.46	881261 88153	1.80 1.80	931243	4.26 4.26	06875	32 31 3
30	812544	2.46	881046	1.80	931499	$4 \cdot 26$	06850	30
31	9.812692	2.46	9.880	80	9.931755	$4 \cdot 26$	10.068245	
32	812840	2.46	88083	1.80	932010	$4 \cdot 26$	067990	28
33	812988	2.46	880722	1.80	932266	$4 \cdot 26$	067734	27
34	813135	2.46	880613	1.80	932522	4.26	67478	26
35	813283	2.46	88050	80	932778	$4 \cdot 26$		
36	813430	2.45	880397	1.80 1.81 1.81	${ }_{9} 9332830$	4:26 4.26	066967	
37 38 3	813578 813725 813	2.45 2.45	880289 880180	$\mathbf{1} .81$ $\mathbf{1} .8 \mathbf{1}$ 1	${ }_{9} 9332845$	4.26 4.26	06671	22
38 39	813725 813872	2.45 2.45	880180 880072 8	1.81 1.81 1.81	933800	4.26 4.26	066200	21
40	814019	2. 45	879963	.81	934056	$4 \cdot 26$	065944	20
41	9.814166	2.45	4.878855	1.81	9.934311	$4 \cdot 26$	10.065689	
42	814313	2.45	879745	1.81	934567	$4 \cdot 26$	065433	18
43	814460	2.44	$87 \% 637$	1.81	934823	$4 \cdot 26$	065177	17
44	814607	2.44	879529	1.81	935078	4.26 4.26	064922	
45	814753	2.44	879420	1.81	93535	4.26 4.26	064607	
46	814900	2.44						13
48	815046 815123	2.44 2.44	879202 879093	1.82 1.82	935844 936100	4.26 4.26	064 063900	12
48	81510^{3} 815330 81545	2.44 2.44	879003 878984	1.82 1.82	936100	4.26 4.26	${ }_{0} 063645$	11
49 50 50	815339 815435	2.44 2.43	878884 87875	. $\cdot 82$	9366	4.26	063390	10
51	9.815631	2.43	9.878766	1.82	- 0.036866	4.25	10.063134	
52	${ }^{815778}$	2.43	878656	1.82	937121	4.25	062879	
53	815924	2.43	878547	1.82	937376	4.25	062624	6
54	816069	2.43	878438	1.82 1.82 1.82	937932	4.25 4.25	622368	5
55	816215	2.43	878328		93.88			
56	816361	$2 \cdot 43$	878219 87819	1.83 1.83 1.83	938142	4.25 4.25	061858 061602	4
57	816507 816652	2.42 2.42	878109 877999	1.83 1.83	938380	4.25 4.25	061602 061347	2
	816679 81679	2.42 2.42	87789 87780	1.83	938908	[.2:	$06109{ }^{0}$	
60	816943	2.42	877780	1.8	939163	4.2:		
	osine	D	Sine	D.	Cotang.	D.	Tang	M.

M.	Sine	D.	Cosine	D.	'Tang.	1).	Cotang.	
0	9.816943	2.42	9.377780	. 83	9.939163	4.25	10.060837	60
1	817088	2.42	877670	1.83	939.418	$4 \cdot 25$	O6u's 2	59
	817233	2.42	877560	1.83	939673	$4 \cdot 25$	060327	58
3	817379	2.42	$8774{ }^{\circ} 0$	1.83	9.39928	$4 \cdot 25$	060072	57
4	817524	2.41	877340	1.83	940183	$4 \cdot 25$	059817	56
5	817668	2.41	877230	1.84	940438	$4 \cdot 25$	- 59562	55
6	817813	2.41	877120	1.84	940694	$4 \cdot 25$	059306	54
7	817958	$2 \cdot 4$.	877010	1.84	0409 49	$4 \cdot 25$	-jัgojı	53
8	818103	2.41	876899	1.84	941204	$4 \cdot 25$	058796	52
9	818247	2.41	876789	1.84	941458	$4 \cdot 25$	058542	31
10	818392	2.41	876678	1.84	941714	$4 \cdot 25$	-508236	50
11	9.818536	2.40	9.876568	1.84	9.941968	$4 \cdot 25$	10.058032	49
12	818681	2.40	876457	1.84	942223	425	057777	48
13	818325	2.40	876347	I. 84	942478	4.25	057522	47
14	818969	2.40	876236	1.85	942733	$4 \cdot 25$	057267	46
15	819113	2.40	876125	1.85	942988	$4 \cdot 25$	057012	45
16	819257	2.40	876014	1.85	943243	$4 \cdot 25$	030757	44
17	819401	2.40	875904	1.85	943498	$4 \cdot 25$	056502	43
18	819545	2.39	875793	1.85	943752	$4 \cdot 25$	056248	42
19	81968	2.39	875682	1.85	944007	$4 \cdot 25$	0.55993	41
20	8198.32	2.39	875571	1.85	914262	$4 \cdot 85$	055738	40
21	9.819976	2.39	9.875459	1.85	9.944517	$4 \cdot 25$	10.055483	39
22	820120	2.39	875348	1.85	944771	4.24	055229	38
23	820263	2.39	875237	1.85	945026	4.24	054974	37
24	820406	2.39	875126	1.86	945281	$4 \cdot 24$	054719	36
25	820550	2.38	875014	1.86	945535	$4 \cdot 24$	0.54465	35
26	820693	2.38	874903	1.86	945790	$4 \cdot 24$	054210	34
27	820836	2.38	874791	1.86	946045	$4 \cdot 24$	053955	33
28	820979	2.38	874680	1.86	- 946299	$4 \cdot 24$	0.53701	32
29	921122	2.38	874568	1.86	946554	$4 \cdot 24$	053416	31
30	821265	2.38	874456	1.86	9.46808	$4 \cdot 24$	053192	30
31	9.821407	2.38	9.874344	1.86	$9 \cdot 947063$	4.2.4	10.052537	29
32	821500	2.38	874232	1.87	947318	$4 \cdot 24$	052682	28
33	821693	2.37	874121	1.87	947572	$4 \cdot 24$	052428	27
34	821835	2.37	874009	1.87	947826	$4 \cdot 24$	052174	26
35	821977	2.37	873896	1.87	918081	$4 \cdot 24$	051919	25
36	822120	2.37	873784	1.87	948336	$4 \cdot 24$	051664	24
37	822262	2.37	873672	1.87	948590	$4 \cdot 24$	051410	23
38	822404	2.37	873560	1.87	948844	$4 \cdot 24$	051156	22
39	822546	2.37	873448	1.87	9.49099	4.24	ojogoı	21
40	822688	2.36	873335	1.87	949353	$4 \cdot 24$	050647	20
41	9.822830	2.36	9.873223	1.87	9.949607	$4 \cdot 24$	$10 \cdot 050393$	19
42	822972	2.36	873110	1.88	949862	$4 \cdot 24$	050138	18
43	82.3114	2.36	872998	1.88	950116	$4 \cdot 24$	049884	17
44	823255	2.36	872885	1.88	950370	$4 \cdot 24$	049630	16
45	82.3397	2.36	87277^{2}	1.88	950625	$4 \cdot 24$	0.19375	15
46	823539	2.36	872659	1.88	950879	$4 \cdot 24$	0.49121	$1 i$
47	823680	2.35	872547	1.88	951133	$4 \cdot 24$	0.48867	13
48	823821	2.35	872434	1.88	951388	$4 \cdot 24$	0.88612	12
49	823963	2.35	872321	1.88	95.1642	$4 \cdot 24$	0.48358	11
50	824104	2.35	872208	1.88	951896	4.24	048104	10
51	$9 \cdot 824245$	2.35	$9 \cdot 872095$	1.89	9.952150	$4 \cdot 24$	10.047850	
52	824386	2.35	871981	1.89	952405	$4 \cdot 24$	047505	8
53	824527	2.35	871868	1.89	92.2659	$4 \cdot 24$	047341	7
54 55	824668	2.34	871755	1.89	9502913	$4 \cdot 24$	047087	6
55	824808	2.34	871641	1.89	953167	$4 \cdot 23$	046833	5
56	82.4949	2.34	871528	1.89	933121	$4 \cdot 23$	046579	4
5	82.5090	2.34	871414	1.89	953675	4.23	0.6325	3
58	825230	2.34	871301	1.80	953929	$4 \cdot 23$	046071	2
59	825371	$2 \cdot 34$	871187	$1.8 y$	95183	$4 \cdot 23$	045817	1
60	825511	2.34	871073	1.90	954437	$4 \cdot 33$	04.5563	6
	Cosine	D.	Sine	D.	Cotang.	D.	T.ing.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.825511	2.34	$9 \cdot 871073$	1.90	9.954437	$4 \cdot 23$	1 $1 \cdot 0.045563$	60
1	825651	2.33	870960	1.30	954691	$4 \cdot 23$	045309	59
2	825791	2.33	870846	1.90	754945	$4 \cdot 23$	0.50055	58
3	525931	2.33	870732	1.90	955200	$4 \cdot 23$	044800	57
4	826071	2.33	870618	1.90	955454	$4 \cdot 23$	044546	55
5	826211	2.33	870504	1.90	955707	$4 \cdot 2$?	044293	55
6	826351	2.33	870390	$1 \cdot 90$	955961	$4 \cdot 23$	044039	54
7	826491	2.33	870276	1.90	950215	$4 \cdot 23$	043785	53
8	826631	2.33	870161	1.90	956469	$4 \cdot 23$	043531	52
9	$820 \sim 7$	2.32	8700.47	1.91	956723	$4 \cdot 23$	0.43277	51
10	826910	2.32	869933	1.91	956977	$4 \cdot 23$	0.43023	50
11	G.827049	2.32	$9 \cdot 869818$	$1 \cdot 91$	$9 \cdot 957231$	$4 \cdot 23$	10.042769	49
12	82718	2.32	809704	1.91	957485	$4 \cdot 23$	0.2515	48
13	827328	2.32	869589	1.91	957739	$4 \cdot 23$	0.42261	47
13	827467	2.32	869474	1.91	957993	$4 \cdot 23$	042007	46
15	827606	2.32	869.360	1.91	958246	$4 \cdot 23$	- 041754	45
16	827745	2.32	869245	1.91	958500	$4 \cdot 23$	041500	44
17	827884	$2 \cdot 31$	869130	1.91	958754	$4 \cdot 23$	041246	43
18	828023	2.31	$86 ¢ 9015$	1.92	959008	$4 \cdot 23$	0 - 0992	42
19	828162	$2 \cdot 31$	868900	1.92	959262	$4 \cdot 23$	040738	41
20	8283 oI	2.31	868785	1.92	959516	$4 \cdot 23$	040484	40
21	9.828430	$2 \cdot 31$	9.868670	1.92	$9 \cdot 959769$	$4 \cdot 23$	10.040231	39
22	828578	$2 \cdot 31$	868555	1.92	960023	$4 \cdot 23$	o39977	38
23	828716	2.31	868440	1.92	960277	$4 \cdot 23$	-39723	37
24	828855	2.30	868324	$1 \cdot 92$	960531	$4 \cdot 23$	-39409	30
25	828993	2.30	868209	1.92	960784	$4 \cdot 23$	- 39216	35
26	829131	2.30	868093	$1 \cdot 92$	961038	$4 \cdot 23$	o38962	34
27	829269	2.30	867978	$1 \cdot 93$	961291	$4 \cdot 23$	- 0.38702	33
28	829407	2.30	867862	$1 \cdot 93$	961545	$4 \cdot 23$	0.38455	32
29	829545	2.30	867747	1.93	961799	$4 \cdot 23$	038201	31
30	829683	2.30	867631	$1 \cdot 93$	962052	$4 \cdot 23$	037948	30
31	9.829821	2.29	9.867515	1.93	$9 \cdot 962306$	$4 \cdot 23$	10.037694	29
32	829959	2.29	867399	$1 \cdot 93$	962560	$4 \cdot 23$	037440	28
33	830097	$2 \cdot 29$	867233	1.93	962813	$4 \cdot 23$	037187	27
34	830234	2.29	867167	1.93	963067	$4 \cdot 23$	-369.33	26
35	830372	2:29	867051	1.93	963320	$4 \cdot 2.3$	-36680	25
36	830509	2.29	8669.35	1.94	963574	$4 \cdot 23$	-36426	24
37	830646	2.29	866819	1.94	963827	$4 \cdot 23$	036173	23
38	830784	2.29	866703	1.94	964081	$4 \cdot 23$	-35919	22
39	830921	2.28	866586	1.94	96.43 .35	$4 \cdot 23$	035665	21
40	831058	2.28	866 亿70	1.94	964588	$4 \cdot 22$	o35412	20
41	9.831195	2.28	9.866353	1.94	9.964842	$4 \cdot 22$	10.035158	19
42	831332	$2 \cdot 28$	866237	1.94	965095	$4 \cdot 22$	-34905	18
43	831469	2.28	866120	1.94	9653.49	$4 \cdot 22$	034651	17
44	831606	2.28	866004	1.95	965602	$4 \cdot 22$	034398	16
45	831742	$2 \cdot 28$	865887	1.95	965855	4.22	034145	15
46	831879	$2 \cdot 28$	865770	1.95	966105	$4 \cdot 22$	o33889	14
47	832015	2.27	865653	1.95	966362	$4 \cdot 22$	-336.38	13
48	832152	2.27	86.5536	1.95	966616	$4 \cdot 22$	033384	12
49	832288	2.27	865419	1.95	966869	$4 \cdot 22$	033131	11
50	832425	$2 \cdot 27$	865302	1.95	967123	$4 \cdot 22$	032877	10
51	9.832561	$2 \cdot 27$	9.865185		-967376	$4 \cdot 22$		
52	-832697	2.27	865068	1.95	967629	$4 \cdot 22$	032371	8
53	832833	2.27	8649 ¢0	1.95	967883	$4 \cdot 22$	0.32117	7
54	832969	$2 \cdot 26$	864833	1.96	968136	$4 \cdot 22$	031864	6 5
55	833105	$2 \cdot 26$	864716	1.96	968389	$4 \cdot 22$	031611	5
56	833241	2.26	864598	$1 \cdot 96$	968643	$4 \cdot 22$	031357	4 3
57	833377	$2 \cdot 26$	864481	1.96	968896	$4 \cdot 22$	031104	3
58	833512	$2 \cdot 26$	864363	1.96	969149	$4 \cdot 22$	030851	2
59	833648	2.26	864245	1.96 1.96	969403	4.22 4.22	030597 0.30344	0
60	833783	$2 \cdot 26$	864127	1.96	969656	$4 \cdot 22$	0, 30344	0
	Cosine	D.	Sine	D.	Cotang.	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.833783	2.26	\$. 864127	1.96	9969656	$4 \cdot 22$	10.030344	50
1	833919	$2 \cdot 25$	864010	$1 \cdot 96$	969909	$4 \cdot 22$	030091	5
,	834054	$2 \cdot 25$	863892	1.97	970162	$4 \cdot 22$	029838	58
3	834189	$2 \cdot 25$	863774	1.97	970416	$4 \cdot 22$	029584	57
4	834325	$2 \cdot 25$	863656	1.97	970669	$4 \cdot 22$	029331	56
5	834460	$2 \cdot 25$	863538	1.97	970922	4.2\%	029078	55
6	83.4595	$2 \cdot 25$	86.3 亿19	1.97	971175	$4 \cdot 22$	028825	54
8	83.4730	$2 \cdot 25$	86.3301	1.97	971429	$4 \cdot 22$	028571	53
8	834865	$2 \cdot 25$	863183	1.97	971682	$4 \cdot 22$	028318	52
9	834999	$2 \cdot 24$	863054	1.97	971935	$4 \cdot 22$	02806 ',	51
10	835134	$2 \cdot 24$	862946	1.98	972188	$4 \cdot 22$	027812	50
11	9.835269	$2 \cdot 24$	9.862827	1.98	9.972441	$4 \cdot 22$	10.027559	49
12	835403	$2 \cdot 2.4$	862709	$1 \cdot 98$	972694	$4 \cdot 22$	c27306	48
13	8355.38	$2 \cdot 24$	862590	$1 \cdot 98$	972948	$4 \cdot 22$	$\bigcirc 27052$	47
14	835672	2.24	862471	1.98	973201	$4 \cdot 22$	426799	46
15	835807	$2 \cdot 24$	862353	1. 98	973454	$4 \cdot 22$	026546	45
16	835941	$2 \cdot 24$	862234	1.98	973707	$4 \cdot 22$	026293	44
17	836075	$2 \cdot 23$	862115	I. 98	97.3960	$4 \cdot 22$	026040	43
18	836209	2.23	861996	$1 \cdot 98$	974213	$4 \cdot 22$	025787	42
19	836343	$2 \cdot 23$	86.877	1.98	974466	$4 \cdot 22$	025534	41
20	836477	$2 \cdot 23$	861758	1.99	974719	$4 \cdot 22$	025281	40
21	9.836611	$2 \cdot 23$	9:861638	$1 \cdot 99$	9.974973	$4 \cdot 22$	10.025027	39
22	8.36745	$2 \cdot 23$	861519	$1 \cdot 99$	975226	$4 \cdot 22$	024774	38
23	836878	$2 \cdot 23$	861400	I. 99	975479	$4 \cdot 22$	024521	37
24	837012	$2 \cdot 22$	861280	$1 \cdot 99$	975732	6.22	024268	36
25	837146	$2 \cdot 2$	861161	1.99	975985	$4 \cdot 22$	024015	35
26	837279	$2 \cdot 22$	861041	1.99	976238	$4 \cdot 22$	023762	34
27	837412	$2 \cdot 22$	8600^{22}	1.99	976491	$4 \cdot 22$	023509	33
28	8375.46	$2 \cdot 22$	860802	1.99	976744	$4 \cdot 22$	023256	32
29	837679	$2 \cdot 22$	860682	2.00	976997	$4 \cdot 22$	023003	31
30	837812	$2 \cdot 22$	860562	$2 \cdot 00$	977250	4.22	022750	30
3 I	9.837945	$2 \cdot 22$	9.860442	$2 \cdot 00$	9.977503	$4 \cdot 22$	10.022.497	29
32	838078	2.21	860322	2.0	977756	$4 \cdot 22$	02224	28
33	838211	$2 \cdot 21$	860202	$2 \cdot 00$	978009	$4 \cdot 22$	021991	27
34 35	838344	$2 \cdot 21$	860082	$2 \cdot 00$	978262	4.22	021738	26
35 36	838477	2.21	859962	$2 \cdot 0$	978515	$4 \cdot 22$	021485	25
36	838610	$2 \cdot 21$	859842	$2 \cdot 00$	978768	4.22	021232	24
3	838742 838875	2.21	859721	$2 \cdot \mathrm{OI}$	979021	$4 \cdot 22$	220979	23
3	838875	2.21	859601	$2 \cdot \mathrm{OI}$	979274	$4 \cdot 22$	020726	22
39	839007	$2 \cdot 21$	859480	2.01	979527	$4 \cdot 22$	020473	21
40	839140	$2 \cdot 20$	859360	2.01	979780	$4 \cdot 22$	020220	20
41	9.839272	$2 \cdot 20$	$9 \cdot 859239$	$2 \cdot 01$	9.980033	$4 \cdot 22$	10.019967	19
42	839404 83	$2 \cdot 20$	859119	$2 \cdot 0$	980286	$4 \cdot 22$	019714	18
43	839536	$2 \cdot 20$	858998	2.01	980538	$4 \cdot 22$	019462	17
44	83966	$2 \cdot 20$	858877	$2 \cdot \mathrm{OI}$	980791	4.21	019209	16
45	839800	$2 \cdot 20$	858756	$2 \cdot 02$	981044	$4 \cdot 21$	ol 8956	15
46	839932	2.20 2.19	858635	2.02	981297	4.21	018703	14
47	840064	$2 \cdot 19$	858514	2.02	98.550	$4 \cdot 21$	018450	13
48	840196	$2 \cdot 19$	858393	2.02	981803	$4 \cdot 21$	01819%	12
49	840328	$2 \cdot 19$	858272	2.02	982056	$4 \cdot 21$	017944	15
50	840459	$2 \cdot 19$	858151	2.02	982300	$4 \cdot 21$	017691	10
51	9.840591	$2 \cdot 19$	9.858029	$2 \cdot 02$	9.982502	$4 \cdot 21$	10.017438	n
52	840722	$2 \cdot 19$	857908	$2 \cdot 02$	982814	4:21	017186	8
53	840854.	$2 \cdot 19$	857786	2.02	983067	$4 \cdot 21$	016933	7
54	810985	$2 \cdot 19$	857665	$2 \cdot 03$	983320	$4 \cdot 21$	016680	6.
55	841116	$2 \cdot 18$	857543	$2 \cdot 03$	983573	$4 \cdot 21$	016427	5
56	841247 84378	2.18 2.18	857422 857	2.03	983826	$4 \cdot 21$	016174	4
58	841378 841509	2.18 2.18	857.300 857178	2.03 2.03	984079 984331	$4 \cdot 21$ 4.21	015921 0.5660	3
59	84640	$2 \cdot 18$	857056	2.03	9 9¢5584	$4 \cdot 21$	015416	1
60	841771	$2 \cdot 18$	856934	2.03	984837	$4 \cdot 21$	015163	0
	Cosine	D.	Sine	D.	Cotang	D.	Tang.	M.

M.	Sine	D.	Cosine	D.	Tang.	D.	Cotang.	
0	9.841771	2.18	9.856934	2.03	$9 \cdot 984837$	$4 \cdot 21$	10.015163	60
1	841902	2.18	856812	2.03	085090	$4 \cdot 21$	014910	50
2	842033	$2 \cdot 18$	856690	2.04	9853.43	4.21	014657	58
3	842163	$2 \cdot 17$	856568	2.04	985596	4.21	014404	57
4	842294	2.17	856446	2.04	985848	$4 \cdot 21$	014152	56
5	842424	2.17	856323	2.04	986101	$4 \cdot 21$	-13899	5.
6	842555	$2 \cdot 17$	656201	2.04	986354	$4 \cdot 21$	-13646	54
7	842685	2.17	85607^{8}	2.04	986607	$4 \cdot 21$	-13393	53
8	842815	2.17	855956	2.04	986860	$4 \cdot 21$	013140	52
9	842946	2.17	855833	2.04	987112	$4 \cdot 21$	012888	51
10	843076	$2 \cdot 17$	855711	2.05	987365	$4 \cdot 21$	012635	50
11	9.843206	2.16	9.855588	2.05	$9 \cdot 987618$	$4 \cdot 21$	10.012382	49
12	843336	2.16	855465	2.05	987871	$4 \cdot 21$	-12129	48
13	843466	$2 \cdot 16$	855342	2.c5	988123	$4 \cdot 21$	011877	47
14	843595	$2 \cdot 16$.	855219	2.05	988376	$4 \cdot 21$	011624	46
15	843725	2.16	855096	2.05	988629	4.21 '	-011371	45
16	843855	$2 \cdot 16$	854973	2.05	988882	4.21	011118	44
17	843984	$2 \cdot 16$	854850	2.05	489134	$4 \cdot 21$	010866	43
18	844114	$2 \cdot 15$	854727	2.06	989387	$4 \cdot 21$	010613	42
19	844243	$2 \cdot 15$	854603	2.06	989640	$4 \cdot 21$	-10360	41
20	844372	$2 \cdot 15$	854480	2.06	- 989893	$4 \cdot 21$	010107	40
21	9.844502	$2 \cdot 15$	9.854356	2.06	9.990145	$4 \cdot 21$	10.009855	39
22	844631	. $2 \cdot 15$	854233	2.06	990398	$4 \cdot 21$	009602	38
23	844760	$2 \cdot 15$	854109	2.06	990651	4.21	009349	37
24	844889	$2 \cdot 15$	853986	2.06	990903	$4 \cdot 21$	009097	36
25	845018	$2 \cdot 15$	853862	2.06	991156	4.21	008844	35
26	845147	$2 \cdot 15$	853738	2.06	991409	$4 \cdot 21$	00851	34
27	845276	$2 \cdot 14$	853614	2.07	991662	$4 \cdot 21$	008338	33
28	845405	$2 \cdot 14$	853490	2.07	991914	$4 \cdot 21$	008086	32
29	845533	$2 \cdot 14$	853366	2.07	992167	$4 \cdot 21$	0078.33	31
30	845662	$2 \cdot 14$	853242	2.07	992420	$4 \cdot 21$	007580	30
31	9.845790	$2 \cdot 14$	9.853118	2.07	9-992672	$4 \cdot 21$	10.007328	29
32	845919	$2 \cdot 14$	- 852994	2.07	992925	$4 \cdot 21$	007073	28
33	846047	$2 \cdot 14$	852869	2.07	993178	$4 \cdot 21$	006822	27
34	846175	$2 \cdot 14$	852745	2.07	993430	4. 21	006570	26
35	846304	$2 \cdot 14$	852620	2.07	993683	$4 \cdot 21$	006317	25
36	846432	$2 \cdot 13$	852496	2.08	993936	$4 \cdot 21$	006064	24
37	846560	$2 \cdot 13$	852371	2.08	994189	$4 \cdot 21$	005811	23
38	846688	$2 \cdot 13$	852247	2.08	994441	$4 \cdot 21$	005559	22
39	846810	$2 \cdot 13$	852122	2.08	994694	$4 \cdot 21$	005306	21
40	846944	2.13	851997	$2 \cdot 08$	994947	$4 \cdot 21$	005053	20
41	9.847071	$2 \cdot 13$	9.851872	2.08	9.995199	$4 \cdot 21$	10.004801	19
42	847199	$2 \cdot 13$	851747	2.08	995452	$4 \cdot 21$	004548	18
43	847327	$2 \cdot 13$	851622	2.08	995705	$4 \cdot 21$	004295	17
44	847454	$2 \cdot 12$	851497.	2.09	995957	$4 \cdot 21$	004043	16
45	847582	$2 \cdot 12$	851372	2.09	- 996210	$4 \cdot 21$	003790	15
45	847709	$2 \cdot 12$	851246	2.09	- 996463	$4 \cdot 21$	003537	14
47	847836	$2 \cdot 12$	851121	$2 \cdot 09$	996715	$4 \cdot 21$	003285	13
48	847964	$2 \cdot 12$	850996	2.09	996968	$4 \cdot 21$	003032	12
49	848091	$2 \cdot 12$	850870	$2 \cdot 09$	997221	$4 \cdot 21$	002779	11
50	848218	$2 \cdot 12$	650745	2.09	997473	-4.21	002527	10
51	9.848345	$2 \cdot 12$	9.850619	$2 \cdot 09$	9•997726	$4 \cdot 21$	10.002274	
52	848472	2.	850493	$2 \cdot 10$	997979	$4 \cdot 21$	002021	8
53	8.48599	$2 \cdot 11$	850368	$2 \cdot 10$	998231	$4 \cdot 21$	001769	7
54	848726	$2 \cdot 11$	850242	$2 \cdot 10$	998484	$4 \cdot 21$	001516	6
55	848852	$2 \cdot 11$	850116	$2 \cdot 10$	998737	$4 \cdot 21$	001263	4
56	848979	$2 \cdot 11$	849990	2.10	99^{8989}	$4 \cdot 21$	001011	4 3
57	849106	2.11	849864	$2 \cdot 10$ 2.10	999242	4.21 4.21	000758	3
58 59	849232 849350	2.11	849738 849611	$2 \cdot 10$ $2 \cdot 10$	999495	$4 \cdot 21$ 4.21	000505	2
59 60	849359 849485	$2 \cdot 11$ $2 \cdot 11$	849611 849485	$2 \cdot 10$ $2 \cdot 10$	999748 10.000000	$4 \cdot 21$ 4.21	10.0000000	1
	Cosin θ	D.	Sine	D.	Cotang.	D.	Tang.	M.

$14 \mathrm{nA}{ }^{\prime \prime}$

RETURN Aatronomy/Mathematics/Statistics Library		
TO \rightarrow 100 Evans Hall	642-3381	
1	2	3
4	5	6

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

DUE AS STAMPED BELOW		
JAN 11199	4	
RECEM/	n 3 Y	
FEB 6	建	
CIRCulatio	N DEPT.	
AJE 2 21994	-	
		\because

U．C．BERKELEY LIBRARIES

Cロヨフ265913

ع

[^0]: Columbia Collega,
 Nbw Yobe, April, 1862.

[^1]: * Univ. Algebra, Arts. 72, 73. Bourdon, Art. 71.

[^2]: * The angles may be found by Formula (且) or (8), Lemma. Pagea 109, and 110, Mensuration.

