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PREFACE.

TiiK Treatise on Algebra, by Bourdon, is a work of sin-

gular excellence and merit. In France, it is one of the

leading text books, and shortly after its publication, had

passed through several editions. It has been translated, in

part, by Professor De Morgan, of the London University,

and it is now^ used in the University of Cambridge.

A translation v^^as made by Lt. Ross, and published in

1831, since which time it has been adopted as a text book

in the Military Academy, the University of the City of New-

York, Union College, Princeton College, Geneva College,

and in Kenyon College, in Ohio.

The original work is a full and complete treatise on the

subject of Algebra, and contains six hundred and seventy

pages octavo. The time which is given to the study of Al-

gebra, even in those seminaries where the course of mathe-

matics is the fullest, is too short to accomplish so voluminous

a work, and hence it has been found necessary either to

modify it, or abandon it altogether.

6^0 a



PREFACE.

The work which is here presented to the public, is au

abridgment of Bourdon ; with such modifications, as expe-

rience in teaching it, and a very careful comparison with

other standard works, have suggested.

It has been the intention to unite in this work, the scien-

tific discussions of the French, with the practical methods of

the English school ; that theory and practice, science and

art, may mutually aid and illusti-ate each other.

Military Academy, March, 1835.
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ALGEBRA

CHAPTER I.

Preliminary Definitions and Remarks,

1. Quantity is a general term embracing every thing which

admits of increase or diminution.

2. Mathematics is the science of quantity.

3. Algebra is that branch of mathematics in which the quanti-

ties considered are represented by letters,and the operations to be

performed upon them are indicated by signs.

4. The sign +, is called flus ; and indicates the addition of two

or more quantities. Thus, 9+5 is read, 9 plus 5, or 9 augmented

by 5.

In like manner, a+& is read, a plus h ; and denotes that the quan-

tity represented by a is to be added to the quantity represented

hyh.

5. The sign —, is called minus ; and indicates that one quantity

is to be subtracted from another. Thus, 9— 5 is read, 9 minus 5,

or 9 diminished by 5.

In like manner, a— &, is read, a minus b, or a diminished by b.

6. The sign x> is called the sign of multiplication; and when

placed between two quantities, it denotes that they are to be multi-

plied together. The multiplication of two quantities is also fre-

quently indicated by simply placing a point between them. Thus,



10 ALGEBRA.

33x25, or 36.25, is read, 36 multiplied by 25, or the product of

36 by 25.

7. The multiplication of quantities,which are represented by let-

ters, is indicated by simply writing them one after the other, without

interposing any sign.

Thus,a6 signifies the same thing as axh, or as a.& ; and ahc

the same as aX^Xc, or as a.h.c. It is plain that the notation

db, or ahc, which is more simple than axh, or aXbXc, cannot be

employed when the quantities are represented by figures. For

example, if it were required to express the product of 5 by 6, and

we were to write 5 6, the notation would confound the product with

the number 56.

8. In the product of several letters, as abc, the single letters, a, b

and c, are called /actor-s of the product. Thus, in the product ab,

there are two factors, a and b ; in the product acd, there are three,

a, c and d

9. There are three signs used to denote division. Thus,

a-^b denotes that a is to be divided by b,

— denotes that a is to be divided by b,

a\b denotes that a is to be divided by b.

r
10. The sign =, is called the sign of equality, and is read, is

equal to. When placed between two quantities, it denotes that they

are equal to each other. Thus, 9—5=4 : that is, 9 minus 5 is

equal to 4 : Also, a-{-b=c, denotes that the sum of the quantities

a and b is equal to c.
"^

11. The sign >, is called the sign of inequality, and is used to

express that one quantity is greater or less than another.

Thus, ayb is read, a greater than b; and a<6 is read, a less

than b ; that is, the opening of the sign is turned towards the greater

quantity.

12. If a quantity is added to itself several times, as a+a+a+a
+a, we ' —orally write it but once, and then nlaco a nnmber before



DEFIMTIONS A>D REMARKS. 11

it to express how many times it is taken. Thus,

a-^a-\-a-\-a-{-a=5a.

The number 5 is called the co-efficieni of a, and denotes that a is

taken 5 times.

Hence, a co-efficient is a number prefixed to a quantity, denotmg

the number of times which the quantity is taken; and it also indi-

cates the number of times plus one, that the quantity is added to

itself. When no co-efRcient is written, the co-efficient 1 is always

understood.

13. If a quantity be multiplied continually by itself, as ax^Xa
XaXfl) we generally express the product by writing the letter

once, and placing a number to the right of, and a little above it : thus,

aX«X«X«Xa=«^
The number 5 is called the exponent of a, and denotes the number

of times which a enters into the product as a factor.

Hence, the exponent of a quantity shows how inany times the

quantity is a factor ; and it also indicates the number of times, phis

one, that the quantity is to be multiplied by itself. When no expo-

nent is written, the exponent 1 is always understood.

14. The product resulting from the multiplication of a quantity

by itself any number of times, is calledthe power of that quantityj

acd the exponent, which always exceeds by onethe number of mul-

tiplications to be made, denotes the degree of the power. Thus, a'

is the fifth power of a. The exponent 5 denotes the degree of the

power ; and the power itself is formed by multiplying a four times

by itself.

15. In order to show the importance of the exponent in algebra,

suppose that we wish to express that a number a is to be multiplied

three times by itself, that this product is to be multiplied three times

by h, and that this new product is to be multiplied twice by c, we

would write simply a^ IP (?.

If, then, we wish to expess that this last result is to be added to

itself six times, or is to be multiplied by 7, we would write, 7a'6V.



12 ALGEBRA.

This gives an idea of the brevity of algebraic language.

16. The root of a quantity, is a quantity which being multiplied

by itself a certain number of times will produce the given quantity.

The sign y/ , is called the radical sign, and when prefixed to

a quantity, indicates that its root is to be extracted. Thus,

Vfl or simply v^a denotes the square root of a.

"^ a denotes the cube root of a.

^ a, denotes the fourth root of a.

The number placed over the radical sign is called the index of the

root. Thus, 2 is the index of the square root, 3 of the cube root,

4 of the fourth root, &c.

17. Every quantity written in algebraic language ; that is, with

the aid of letters and signs, is called an algebraic quantity, or the

algebraic expression of a quantity. Thus,

C is the algebraic expression of three times the

i number a
;

C is the algebraic expression of five times the

( square of a
;

c is the algebraic expression of seven times the

i product of the cube of a by the square of b
;

( is the algebraic expression of the difference be-
3a— 5o <

, „ . ,

( tween three times a and five tunes b
;

^ is the algebraic expression of twice the square

2a^—Sab+4:b^7 of a, diminished by three times the product of «

( by b, augmented by four times the square of b.

18. When an algebraic quantity is not connected with any other

by the sign of addition or subtraction, it is called a monomial, or a

quantity composed of a single term, or simply, a term.

Thus, 3a, 5a-, laW, are monomials, or single terms.

19. An algebraic expression composed of two or more parts,

separated by the sign + or — , is called a polynomial, or quantity

involving two or more terms.
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For example, 3a— 5J and 2a-—2cb-{-'il/ are polynominls.

20. A polynomial composed of two terms, is called a hinomial

;

and a polynomial of three terms is called a trinomial.

21. The numerical value of an algebraic expression, is the number

which would be obtained by giving particular values to the letters

which enter it, and performing the arithmetical operations indicated.

This numerical value evidently depends upon the particular values

attributed to the letters, and will generally vary with them.

For example, the numerical value of 2a^=54 when we make

a=3 ; for, the cube of 3=-27, and 2x27=54.
The numerical value of the same expression is 250 when we

make a=5; for, 53=I25,and 2x125=250.

22. We have said, that the numerical value of an algebraic ex-

pression generally varies with the values of the letters which enter

it : it does not, however, always do so. Thus, in the expression

a— h, so long as a and b increase by the same number, the value

of the expression will not be changed.

For example, make a=7 and S=4 : there results a— Z»=3.

Now make a=7+5=12, and ^=4+5=9, and there results

a— ^=12— 9=3, as before.

23. The numerical value of a polynomial is not affected by

changing the order of its terms, provided the signs of all the terms

be preserved. For example, the polynomial 4a''— 3a-i+5ac'^=

5af'-— 3a''^o+4a^=— 3a-Z'+5ac^+4a^. This is evident, from the

nature of arithmetical addition and subtraction.

24. Of the different terms which compose a polynomial, some

are preceded by the sign +, and the others by the sign — . The

first are called additive terms, the others, suhtractive terma.

The first term of a polynomial is commonly not preceded by any

sign, but then, it is understood to be afTected with the sign +.

25. Each of the literal factors which compose a term is called a

dimension of this term ; and the degree, of a term is the i umber of

2
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these factors or dimensions. Thus,

3a is a term of one dimension, or of the first degree.

hah is a term of two dimensions, or of the second degree.

la^hr=laaabcc is of six dimensions, or of the sixth degree.

In genei-al, the degree, or the number of dimensions of a term, is

estimated by taking the stitn of the exponents of the letters ivhich enter

this term. For example, the term Sa^bcd^ is of the seventh degree,

since the sum of the exponents, 2+1+ 1+3=7.
26, A polynomial is said to be homogeneous, when all its terms

are of the same degree. The polynomial

3a— 2&+C is of the first degree and homogeneous.

— ^ab-\-¥ is of the second degree and homogeneous.

5a^c— 4c''+2c^(Z is of the third degree and homogeneous.

8a^—4aS+c is not homogeneous.

27, A vinculum or bar , or a parenthesis
( ), is used to

express that all the terms of a polynomial are to be considered to-

gether. Thus, a-\-b-\-cxb, or (a+Jxc)xJ denotes that the

trinomial a-\-h-\-c is to be multiplied by b ; also a-{-b-\-cxc+d-{-f

or (a+J+c)x(c+(^+y) denotes that the trinomial a-\-b-\-c is to

be multiplied by the trinomial c-\-d-\-f

When the parenthesis is used, the sign of multiplication is usually

omitted. Thus {a-\-b-\-c)xb is the same as {a-\-b-\-c) b.

The bar is also sometimes placed vertically. Thus,

+a
+^
+ c

is the same as {a-\-b-\-c) x or a+b+cXx

28. The terms of a polynomial which are composed of the same

letters, the same letters in each being affected with like exponents,

are called similar term^.

Thus, in the polynomial lah+ Sab—^taW+oa^l^, the terms lab

and Sab, are similar ; and so also are the terms— 40^^ and 5a'Zr',

the letters and exponents in each being the same. But in the bino-
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mial 8a^b-{-7aP, the terms are not similar ; for, although they are

composed of the same letters, yet the same letters are not affected

with like exponents,

29, When a polynomial contains several shnilar terms it may

often be reduced to a simpler form.

Take the polynomial 4a^Z>— 3a-c+7a^c— 2a-^.

It may be written (Art. 23), 4a"b—2a^b-{-7a^c— 3a'c,

But 4:a^b—2a^b reduces to 2arb, and 7arc—Sac to 4a^c,

Hence, 4a^J

—

Sa'c+ 7ah— 2a'b= 2a^+ Aa^.,

When we have a polynomial with similar terms, of the form

+ 2a'br- 4.a^bc'-\-6a'b(r—8a^bc^+ lla'bc^

Find the sum of the additive and subtractive terms separately, and

take their difference : thus,

Additive terms, Subtractive terms,

+ 2a''b(? - 4a^c^

+ Ga^c" - Qa^b(?

-^\Wb(? Sum -\2a%e'

Sum +19a='Ac2

Hence, the given polynomial reduces to

\^a''bc^-\2d'b(?=7a^b<?.

It may happen that the sum of the subtractive terms exceeds the

sum of the additive terms. In that case, subtract the positive co-

efficient from the negative, and prefix the minus sign to the

remainder.

Thus, in the polynomial, Za%+2a^b—ba%—3a^b, in which the

sum of the additive terms is ba% and the sum of the subtractive

terms —Sa'Z', we say that the polynomial reduces to —Za^b,

For, since — 8a=3 is equal to ~ba%—3a% we shall have,

ba%— Qa^b=hdb— hdrb— 3a%= — 2,cC-b.

Hence, for the reduction of the similar terms of a polynomial we
have the following
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RULE.

I. Form a single addilive term of all the terms preceded by the sign

plus : this is done by adding together the co-efficienis of those terms,

and annexing to their sum the literal part,

II. Form, in the same manner, a single subtractive term,

III. Subtract the less sum from the greater, and prefix to the

result the sign of the greater.

Remark.—It should be observed that the reduction affects only

the co-efficients, and not the exponents.

EXAMPLES.

1. Reduce the polynomial Aa^b—Sa^b— da^b-\-\\a^b to its sim-

plest form. Ans. —2a^b.

2. Reduce the polynomial 7abc'^—abc^— 7abc'—8abc^-\-6abc^ to

its simplest form. A71S, — 2abc^,

3. Reduce the polynomial 9cP— Sac'^+15cP+ 8ca+ 9ac'—24.cP

to its simplest form. Ans, ac^-\-8ca.

The reduction of similar terms is an operation peculiar to algebra.

Such reductions are constantly made in Algebraic Addition, Sub-

traction, Multiplication, and Division,

30. It has been remarked in Definition 3, that the quantities con-

sidered in algebra are represented by letters, and the operations to

be performed upon them, are indicated by signs. The letters and

signs are used to abridge and generalize the reasoning required in the

resolution of questions.

31. There are two kinc^ of questions, viz. theorems and problems.

If it is required to demonstrate the existence of certain properties

relating to quantities, the question is called a theorem ; but if it is

proposed to determine certain quantities from the knowledge of

others, which have with the first known relations, the question is

culled a ptroblem.

The given or known quantities are generally represented by the

first letters of the alphabet, a, h, c, d, &c. and the unknown or re-
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quired quantities by the last letters, x, y, z, &c.

32. The following question will tend to show the utility of the alge-

braic analysis, and to explain the manner in which it abridges and

generalizes the reasoning required in the resolution of questions.

Question.

The sum of two numbers is 67, and their difference 19 ; what are

the two numbers 1

Solution.

We will begin by establishing, with the aid of the conventional

signs, a connexion between the given and unknown numbers of the

question. If the least of the two required numbers was known, we

would have the greater by adding 19 to it. This being the case,

denote the least number by x : the greater may then be designated

by a;+19 : hence their sum is x-\-x-\-l9, or 2.r+19.

But from the enunciation, this sum is to be equal to 67. There-

fore we have the equality or equation

2a:+19=67.

Now, if 2x augmented by 19, gives 67, 2x alone is equal to 67

minus 19, or 2a;=67— 19, or performing the subtraction, 2xz=:48.

Hence x is equal to the half of 48, that is.

The least number being 24, the greater is

x+19=24+ 19^43.

And indeed,we have 43+24=67, and 43—24=19,

Table of the Algebraic Operations.

Let X be the least number.

x+19 will be the greater.

Hence, 2x+19=67,and2a;=67— 19 ; therefore x=Y= 24 and

consequently x+19=24+19=43.
And indeed, 43+24=67,43-24=19.

Another Solution.

Let X represent the greater number,
2=.
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a:— 19 will represent the least.

Hence, 2a;- 19=67, whence 2a;=67+ 19
;

therefore, a;= 5-6= 43

and consequently, a;— 19=43— 19=24.

From this we see how we might, with the aid of algebraic signs,

write down in a very small space, the whole course of reasoning

which it would be necessary to follow in the resolution of a prob-

lem, and which, if written in common language, would often require

several pages.

General Solution of this Problem,

The sum of two numbers is a, their difference is h. What are

the two numbers ?

Let X be the least number,

x-{-h will represent the greater.

Hence,2a'-f i=cf, whence 2x=:a— b,

.1 r. a— b a b
tlierefore, x= =

2 2 2

and consequently, a:+5= \-b=—-\-
2 2 2 2

As the form of these two results is independent of any particular

value attributed to the letters a and b, it follows that, knoioing the

sum and difference of two numbers, we tvill obtain the greater by add-

ing the half difference to the half sum, and the less, by subtracting the

half differencefrom half the suin.

Thus, when the given sum is 237, and the difference 99,

, . 237 99, 237+ 99 336 ,^^
the greater IS

f-— or = =168;
2 2 2 2

, , ,
2.37 99, 138 ^

aiwl the least — or —69,
2 2 2

And indeed, 168+69=237, and 168— 69=99.

From the preceding question we perceive the utility of repre.

sontiog the given quantitioa of a problem by letters. As tho
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arithmetical operations can only be indicated upon these letters,

the result obtained, points out the operations which are to be per-

formed upon the known quantities, in order to obtain the values of

those required by the question.

The expressions —+— and -j- obtained in this prob-

lem, are called formulas, because they may be regarded as com-

prehending the solutions of all questions of the same nature, the

enunciations of which differ only in the numerical values of the

given quantities. Hence, a formula is the algebraic enunciation of

a general rule.

From the preceding explanations, we see that Algebra may be

regarded as a kind of language, composed of a series of signs, by

the aid of which we can follow with more facility the train of ideas

in the course of reasoning,which we are obliged to pursue, either to

demonstrate the existence of a property, or to obtain the solution of

a problem.

ADDITION.

33. Addition, in Algebra, consists in finding the simplest equiva-

lent expression for several algebraic quantities, connected together

by the sign plus or minus. Such equivalent expression is called

their sum.

{3a

The result of the addition is 3a+5^-f-2c

an expression which cannot be reduced to a more simple form.

r Aa"l?

Again, add together the monomials ) 2a'1P

\ lab"'

The result, after reducing (Art. 29), is . . l^d-b"
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Let it be required to find the sum

of the expressions.

3a2_4a5

2ah-bl^

Their sum, after reducing (Art. 29), is . . 5a^— 5a&—4^

35. As a course of reasoning similar to the above would apply to

all polynomials, we deduce for the addition of algebraic quantities

the following general

RULE.

I. Write down the quantities to ie added so that the similar terms

shall fall under each other, and give to each term its proper sign.

II. Reduce the similar terms, and annex to the results, those terms

which cannot he reduced, giving to each term its respective sign.

EXAMPLES.

1. Add together the polynomials, ^a'—2lr—4:al, ba^—lr-{-2ah,

The term Sa^ being similar to ba\ we C S}^^—4ab—2l^

write 8a^ for the result of the reduction
j 5a^-{-2ab— P

of these two terms, at the same time 1 -^3ah—2^—36^
•\

slightly crossing them, as in the first term. (^ 8a^+ ab—blf—Sc'

Passing then to the term — 4a&, which is similar to +2ab and

+ Sab, the three reduce to +ab, which is placed after Sa^ and the

terms crossed like the first term. Passing then to the terms involving

^, we find their sum to be— 5^, after which we write — 3c^

The marks are drawn across the terms, that none of them may
be overlooked and omitted.

Sum.

(2). (3).

7x +3a5+2c 8v/^+ bc-2ahc

-3x —3aJ— 5c — V^— 9ic+6abc

5a; —9aJ— 9c —5vT"+ hc-j- ahc

9x —9a*— 12c 2^^-lbc+ babc
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4. Add together the polynomials da-b+ 6cx-i-9bc\ Icx— Sa'b-^

'^a and —\hcx—U&\'2cC-h.

Arts, "^a —a^b—2cx.

5. Add together the polynomials ^x -\-ax—ab, ab— ^x +ry,

ax-\-xy—^<xb, ^x + V^— a; and xy-\-xy-\-ax.

Am. 2 v/x + 3aa;

—

^ab+^xy— x.

' 6; Add together the polynomials lbaxy+fjbc^-\-^af", ^ap+ ^xy

— V2xay,— bhc^-{- ^liy —?>axy, and -2 ^ay— "^x —Qap.

Ans, ^/^_^/^-^^7.

7. Add together the polynomials 7a'6— 3aic— 8Zrc— 9c'+ca^,

8ak-5a-5+3c3-45-c+cd2 and ^a^b-Sc'+^Wc—ZcP.

Ans. Qd'b -^babc— Z¥c— 14c '+ 2c(?— 3(Z'.

SUBTRACTION.

36. Subtraction, in algebra, consists in finding the simplest ex-

pression for the difTerence between two algebraic quantities.

The result obtained by subtracting 4^ from 5a is expressed

by 5a— 4&.

In like manner, the difference between '{(Cb and Aa^b is expressed

by la^b-A.a^b^2a^b.

Let it be required to subtract from . . .4a
the binomial . . . . . .2b— Sc

In the first place, the result may be written thus, 4a— (2i— 3c)

by placing the quantity to be subtracted within the parenthesis, and

writuig it after the other quantity with the sign— . But the ques-

tion frequently requires the difference to be expressed by a single

polynomial ; and it is in this that algebraic subtraction principally

consists.

To accomplish this object, we will observe, that if a, b, c, were

given numerically, the subtraction indicated by 23— 3c, could be

performed, and we might then substract this result from 4a ; but as
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this subtraction cannot be effected in the actual condition of the

quantities, 2b is subtracted from 4a, which gives 4a— 2i ; but in sub-

tracting the number of units contained in 2b, the number taken

away is too great by the number of units contained in 3c, and the

result is therefore too small by the same quantity ; this result must

therefore be corrected by adding 3c to it. Hence, there results

from the proposed subtraction 4a— 2J+ 3c.

4a

2b-Sc

4a—25+ 3c

Again, from ..... 8a"—2ab

subtract dci'—Aab+Shc— P.

The difference is expressed by 8ar—2ab—(5ar—4:ab+Sbc—lf^)

which is equal to . . . 8a^— 2a5— 5a-— 3ic+ 4a5+i^.

or by reducing, equal to . . . . Sa^-{-2ab—Sbc-\-l^.

The reduction is made by observing, that to subtract 5a^— 4a5

-^Sbc— I^, is to subtract the difference between the sum of the ad-

ditive terms 5a^-{-Bbc, and the sum of the substractive terms 4ai+^.
We can then first subtract 5a^+3bc, which gives 8a^— 2ai— 5a^

— 3bc; and as this result is necessarily too small by 4ab+P, this

last quantity must be added to it, and it becomes 8a^— 2aZi— 5a^

— 3bc+ 4:ab-\-P ; and finally, after reducing, 3a^-\-2ab—3bc+P.

37. Hence, for the subtraction of algebraic quantities, we have the

following general

RULE.

I. Write the quantity to be subtracted under that from lohich it is

to be taken, placing the similar terms, if there are any, under each

other.

II. Change the signs of all the terms of the -polynomial to be sub-

tracted, or conceive them to be changed, and then reduce the polynomial

result to its simplest form.
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From

Take

Remainder

From

Take. .

Remainder

From . .

Take . .

Remainder

^d

6ac— bab+<^

Sac—Sab-\-lc

Sac—8ab-\-c'+'!c.

6ac—5ah-\-c?

Sac+Sab— 1c

Sac— 8ab-\-c^+lc.

_(2).

6\/2«y— \r^-{-s¥

SV2;ry-Vx+x+2U'. byx-Sx'+S+ bb-

(3).

Qyx—S3?-\-U

yx—S + a

(4).

-ba^'—Aa^b+S^c

-2a^+Sa^b-Sl^c

7a^-la^b-\-llI^c.

(5).

4ab- cd+ Sa'

5ab—4:cd+Sa-+5b'

ab+Scd—blr

7. From 8abc— l2Pa+ 5cx—lxy, take Icx—xy— lSb^a.

An^, 8abc-\-Pa— 2cx—6ry.

38. By the rule for subtraction, polynomials may be subjected to

certain transformations.

For example . . 6a^-Sab+2if'-2bc,

becomes . . . 6a''—{Sab—2P+ 2bc).

In like manner . . '!a'-8a'b-Alr'c+6P,

becomes . . . '7a'*-{8a^+APc-6P) ;

or, again, . . . la''-8a^-{4Pc-6by

These transformations consist in decomposing a polynomial into

two parts, separated from each other by the sign — : they are very

useful in algebra,

39. Remark.— From what has been shown in addition and sub-

traction, we deduce the following principles.

1st. In algebra, the words add and sum do not always, as in

arithmetic, convey the idea of augmentation ; for a—b, which

results from the addition of —b to a, is properly speaking, a dif-

ference between the number of units expressed by a, and the num-

ber of units expressed by b. Consequently, this result is less than a.
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To distinguish this sum from an arithmetical sum, it is called tho

algebraic sum.

Thus, the polynomial 2rt~— 3fl-Z»+3//c is an algebraic sum, so

long as it is considered as the result of the union of the monomials

2a^, — Srt^^, -\-2,}rc, with their respective signs ; and, in its frofer ac-

ceptatwn, it is the arithmetical difference between the sum of the

units contained in the additive terms, and the sum of the units con-

tained in the subtractive terms.

It follows from this that an algebraic sum may, in the numericol

applications, be reduced to a negative number, or a number affected

with the sign —

.

2d. The words siiUraction and difference do not always convey

the idea of diminution, for the difference between +a and —b being'

a+ b, exceeds a. This result is an algebraic difference, and can be

put under the form of a— (— Z*).

MULtlPLICATION.

40. Algebraic multiplication has the same object as arithmetical,

viz. to repeat the multiplicand as many times as there are units in

the multiplier.

It is generally proved, in arithmetical treaties, that the product of

two or moi-e numbers is the same, in whatever order the multiplii a-

tion is performed ; we will, therefore, consider this principle de-

monstrated.

This being ndmitted, we v/ill first consider the case in which it is

required to ninltiply one monomial by another.

The expression for the ])roduct of . la^V^ by A,a-b

may at once be written thus . . laVrx^ba^

But this may be simplified by observing that, from the preceding

principles and the signification of algebraic symbols, it can be

written . . . 7x^anaoahbb.

Now, as t!ie co-efficients are particular numbers, nothing prrvonfs

our forming a single number from them by multiplying them

together, which gives 28 for thf* co-efficient of the product. As to
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the letters, the product aaaaa, is equivalent to a-, and the product

hbb, to IP ; therefore, the final result is . . . 2QaW.

Again, let us multiply .... Vla^b'c^ by Qd^JroP.

The product is V2x^aaaaabbbhbhccdd=9QaW(?cP.

41. Hence, for the multiplication of monomials we have the

following

RULE.

I. Multiply the co-efficients together.

II. Write after this product all the letters ivhich are cotnmon to the

multiplicand and multiplier, affecting each letter ivith an exponent

equal to the sum of the two exponents with which this letter is affected

in the two factors.

III. If a letter enters into but one of thefactors, write it in tlw pro-

duct with the exponent with which it is affected in the factor.

The reason for the rule relative to the co-efRcients is evident. But

in order to understand the rule for the exponents, it should be ob-

served, that in general, a quantity a is found as many times a factor

in the product, as it is in both the multiplicand and multiplier. Now

the exponents of the letters denote the number of times they enter as

factors (Art. 13.) ; hence the sum of the two exponents of the same

letter denotes the number of times it is a factor in the required

product.

From the above rule, it follows that,

8a''bc'x'iabd?= bQaWc'cP

2laWdc X 8abc''=16&a'Pc'd

^abcx'!df= 28abcdf.

Multiplv . Sa^b 12 a'x Qxy z a-xy

by .'
. 2b a^ 12 x^y ayH Ixf

6a!^lP 144rtV7/ Sxuy^z' 2a\v'y^

42. We will now proceed to the multiplication of polynomials.

Take the two polynomials a-{-b-}-c, and d+f com.posed entirely of

additive terms ; the product may be presented under the form

(a+ S+ c) (d-{-f). But it is often necessary to form a single

3
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polynomial from this product, and it is in this that the multiplication

oftwo polynomials consists.

Now it is evident, that to multiply . a+b-\-c

by d+f

ad-{-bd-\-cd

+af+bf+cf

ad+bd+cd+a/+bf+ tf.

is the same thing as taking a-\-b-\-c as many times as there are units

in d, then as many times as there are units in^, and adding the two

products together. But to multiply a+ ^-f c by d, is to take each of

the parts of the multiplicand d times and add together the partial

products, which gives ad-\-bd-\-cd. In like manner, to multiply

a-\-b-^c by/, is to take each ofthe parts of the multiplicand,/times,

and add together the partial products.

Hence, (a+ b+c) {d-^f)T=ad-\-bd+cd+af-^bf+cf.

Therefore, in order to multiply together two polynomials com-

posed entirely of additive terms, multiply successively each term of the

multiplicand by each term of the inultiplier, and add together all the

j)roducts.

If the terms are affected with co-efficients and exponents, observe

the rule given for the multiplication of monomials (Art. 41).

For example, multiply

by . . . . . 2a+ 5b

The product, after reducing,

60""+ Qa'b-^2aV'

+ \ba^b+2{)a¥+W

becomes

x+y

. 6a'+23a^*+22a^'+5Z'3

a;'+ xf +lax

ax +bax

+^y+f
x'*+xf+x'y+y'

a3?+axY+ 'id'3?

+ 5ax« +5flxy+35aV

6aa;''+6aarj/«+42aV.
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43. In order to explain the most general case, we will first re-

mark, that if the multiplicand contains additive and subtractive

terms, it may be considered as expressing the difference between the

number of units indicated by the sum of the additive terms, and the

number of units indicated by the sum of the subtractive terms. The

same reasoning applies to the multiplier ; whence it follows, that the

general case may be reduced to the multiplication of two binomials,

such as a— b and c—d', a denoting the sum of the additive terms,

and b the sum of the subtractive terms of the multiplicand, c and d

expressing similar values of the multiplier. We will then show how

the multiplication expressed \)y{a— b)x{c— d) can be effected,

a -b
c -d

ac— bc

—ad+bd

ac—bc —ad-\-bd.

Now, to multiply a—b by c—d, is evidently the same thing as to

take a— b as many times as there are units in c, and then diminish this

product by a—b, taken as many times as there are units in d; or to

multiply a—b by c, and subtract from this product that ofa— J by d.

But to multiply a—bhyc, is to take a—b,c times. Now if we mul-

tiply a by c the product is ac, which is too large by b taken c times

;

therefore cimust be taken from it : hence, the product of a— 5 by c,

is ac— bc. In like manner, the product of a— bhy d, is ad— bd;

and as we have just seen that this last product should be subtract-

ed from the preceding ac—bc, it is necessary to change the signs of

ad—bd, and write it under ac— bc, which (Art. 37), gives

(a— b) (c—d)=ac—bc— ad+bd.

If we suppose a and c each equal to 0, the product will reduce

to +bd.

44. Hence, for the multiplication of one polynomial, by another

we have the following
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EULE.

I. Multiply aU the terms of the multrpllcand, both additive and sub.

tractive, by each additive term of the multiplier, and affect the partial

products with the same signs as those with which the terms of the nnil-

tiplicand are affected ; also midtiply all the tentis of the multiplicand

by each sidHractive term of the multiplier, but affect the partialproducts

with signs'Conirnry to those with which the terms of the multiplicand are

affected. Then reduce the pohnondal result to its simplestforrn.

Take, for an example, the two polynomials :

4a:'— 5a-b— 8ab''-\-2P

and 2a--Sab-4I/'

8a'— lOa'b— WaW+Aa'b''

— V2a'b +lbaW+24:a~b^-Qab''

— 16a''^-+ 20a'Z-H32a b'— 8l/-

8aP-22a'b—lla'l^+A.8a-b-+ 2Qab'— 8lf,

After having arranged the polynomials one under the other, mul-

tiply each term of the first, by the tenn 2a^ of the second ; this gives

the polynomial 8a^—lQa^b— \Qa¥-^AaW, the signs of which are

the same as those of the multiplicand. Passing then to the term

?>ah of the multiplier, multiply each term of the multiplicand by it,

and as it is affected with the sign — , affect each product with a sign

contrary to that of the corresponding term in the multiplicand ; this

gives — 12a*J4-15a^^+24a^5^— 6aJ* for a product, which is written

under the first.

The same operation is also performed with the term AJr, which is

also subtractive; this gives, —\Qa''V--^r20aW+ ^2ab'— 8b\ The

product is then reduced, and we finally obtain, for the most simple

expression of the product,

8a'-22a'b-\laW-^^8a"F+ 2Qa¥-81/.

The rule for the signs, which is the most important to retain, in the

multiplication of two polynomials, may be expressed thus : When two

terms of the multiplicand and multiplier are affected with the sa7ne

sign, the corresponding j)roduct is affected with the sign +, and when
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they are affected ivith contrary signs, the product is affected with the

sign -.

Again, we say in algebraic language, that + multiplied by +,

or — multiplied by — ,
gives + ;

— multiplied by +, or + multi-

plied by — , gives — . But this last enunciation, which does not in

itself offer any reasonable direction, should only be considered as an

abbreviation of the preceding.

This is not the only case in which algebraists, for the sake of

brevity, employ incorrect expressions, but which have the advantage

of fixing the rules in the memory.

EXAMPLES.

1. Multiply V2ax by 3a. Am. dda'x.

2. Multiply U^-2y by 2y. Ans. 8x'y--Af.

3. Multiply 2x4-4^ by 2x—4:y. Ans. AaP- ley.

4. Multiply aP J^x'y^xy'+y^ by x-y. Ans. X^-rf.

5. Multiply x'+xy-itf by ^—xy-\-f.
Ans. x'^-\-x'y=+2/^

6. Multiply '2a=— 3ax+4ar^ by ba^—^ax-2x^.

7. Multiply Zx^—2xy-\-b by 3?+2xy-[3.

8. Multiply 3af'+2a.-/+3/ ^y 2x'-3x'y+5f.
9.

. red.

1.

2a'-5id+cf

-5a2+4M-8c/.

'rod -15a^+37a=M-29aV- 2QU'd?-\-Ubcdf--Srp.

IC 4a^&'-5aWc+8a'bc'-:^aV-labc^

2a&'-Aabc-2bc^ +,6\

r 8aW —lOaWc -^2&aWc'-S4:aWc^

Prod. red. <j - 4a'Pc''-lQa'b''c -{-V2a^ c*+ laWc^

[ +140^5 c^ +14a ^»V- 3rtV —lab c\

45. We will make some important remarks upon algebraic mul-

tiplication.

1st. If the polynomials proposed to be multiplied by each other

are homogeneous, the product of these tuv polynomials icill also be ho.

3*
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mogeneous. This is an evident consequence of the rules relative to the

letters and exponents in the multiplication of monomials. Moreover,

the degree of each term of the product should be equal to the sum of

the degrees of any two terms of the multiplier and multiplicand.

Thus, in example 9, all the terms of the multiplicand being of the

second degree, as well as those of the multiplier, all the terms of the

product are of the fourth degree. In example 10, the multiplicand

being of the fifth degree, and the multiplier of the third, the product

is of the eighth degree. This remark serves to discover any errors

in the calculations with respect to the exponents. Yox example, if

it is found that in one of the terms of a product that should be homo-

geneous, the sum of the exponents is equal to 7, •vi\\\\e in all the others

their sum is 8, there is a manifest error in the addition of the expo-

nents, and the multiplication of the two terms which have formed

this product must be revised.

2d. When, in the multiplication of two polynomials, the product

does not present any similar terms for reduction, the total number of

terms in the product is equal to the product of the number of terms

in the multiplicand, multiplied by the number of tenns in the multi-

plier. This is a consequence of the rule, (Art. 44). Thus, when

there are five terms in the multiplicand, and four in the multiplier,

there are 5x4, or 20, in the product. In general when the multi-

plicand is composed of m terms, and the multiplier of n terms, the

product contains mXn terms.

3d. When some of the terms are similar, the total number of

terms in the product, when reduced, may be much less. But we

will remark, that among the different terms of the product, there are

some that cannot be reduced with any others. These are,*" 1st.

The term produced by the multiplication of the term of the multi-

plicand, affected with the highest exponent of a certain letter, by the

term of the multiplier, affected with the highest exponent of the

same letter. 2d. The term produced by the multiplication of the

terms affected with the lowest exponents of the same letter. For

those two partial products will contain this letter, affected with a
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higher or lower exponent than either of the other partial products,

and consequently cannot be similar to any of them. This remark,

the truth of which is deduced from the rule of the exponents, will

be very useful in division.

46. To finish with what has reference to algebraic multiplication,

we will make known a few results of frequent use m algebra.

1st, Let it be required to form the square or second power of the

binomial, (a-\-b). We have, from known principles,

(a+by=(a-{-b) (a+b)= a''+ 2ab-j-Ir'.

That is, the square of the sum of two quantities is composed of the

square of the first, plus twice the product of the first by the second,

plus the square of the second.

Thus, lo form the square of 5a^-{-8a% we have, from what has

just been said,

{5a'-\-8a'by=25a'-\-80a*b-i-64:aW.

2d. To form the square of a difference, a—b, w'c have

(a-by={a-b) {a-b)=a'-2ab+^

That is, the square of the difference between two quantities is com-

posed of the square of the first, minus twice the product of the first

by the second, plus the square of the second.

Thus, {laW—12aFy^4:9a'b'—168ab'+lUa'IP.

3d. Let it be required to multiply a-j-b by a—b.

We have (a+5)x(a-5)=a2-^
Hence, the sum of two quantities, multiplied by their difference,

gives the difference of their squares for a product.

Thus, {Sa'+7alr) (8a''-7aIr)=64:a^-4:9aW.

We can, by combining these different results, find the products

of certain polynomials more promptly, than by the common process.

For example, multiply 5a^— 4aJ+33^, by ba^—Aab—dP. If we

observe that the first of these two quantities is the sum of the two

quantities ba^—4tab, and Sb% and that the second is the difference of

the same quantities, we find immediately that the product is

{5a^-4aby-{Uy^25a'-^0ab+ 16aW-9bK

47. By reflecting upon the results of multiplication that we have

2
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just obtained, it will be perceived that their composition, or the

manner in which they are formed from the multiplicand and multi-

plier, Is entirely independent of any particular values that may be

attributed to the letters a and h which enter the two factors.

The manner in which an algebraic product is formed from its two

factors, is called the law of this product ; and this law remains al-

ways the same, whatever values may be attributed to the letters

which enter into the two factors.

48. Lastly, a polynomial being given, it may sometimes be de-

composed into factors merely by inspection.

Take for example the polynomial aWc-\-bah^ -^ac.

It is plain that « is a factor of all the terms. Hence, we may
write ahx+oaF +ac—a{1rc-{-fih^ +c).

Take the polynomial 2ba^—Wa/h-\-\baW, it is evident that 5 and

a^ are factors of each of the terms. We may, therefore, put the

polynomial under the form f)a\ba'—Qah-\-ZW).

In the same way Q^a^¥—Iba^W is transformed into

DIVISION.

49. Algebraic division has the same object as arithmetical, viz.

having given a product,and one of its factors,to find the other factor.

We will first consider the case of two monomials.

72a'
The division of 72«'* bv 8rt^ is indicated thus :

8a^

It is required to find a third monomial, which, multiplied by the

second, will produce the first. Now, by the rules for the multipli-

cation of monomials, the required quantity must be such that its co-

efficient multiplied by 8 should give 72 for a product, and that the

exponent of the letter a in this quantity, added to 3, the exponent of

the letter a in the divisor, should give 5, the exponent of a in the divi-

dend. This quantity may, therefore, be obtained by dividing 72 by

8 and subtracting the exponent 3 from the exponent 6,
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which gives ~8a^~^^
*

Tab

for, 7aJx5a'5c=:35a^52c.

50. Hence for the division of monomials we have the following

RULE.

I. Divide the co-efficient of the dividend by the co-efficient of the

divisor.

II. Write in the quotient, after the co-efficient, all the letters common

to the dividend and divisor, and affect each with an exponent equal to

the excess of its exponent in the dividend over that in the divisor.

III. Annex to these, those leUers of the dividend, with their re-

spective exponents, which are not found in the divisor.

From these rules we find,

ASa^'Prd IbOa'b'cd' „„ ,

-Aa-hcd ;-:rr-TTrT7-=5a^4''crf.
I2a¥c ' ZQa'lfd?

1. Divide IQ3? by 8a;. Ans. 2x.

2. Divide I5axf by Say. Ans. bxf.

3. Divide Ma¥x by 12^'^ Ans. labx.

51. It follows from the preceding rule that the division of mono-

mials will be impossible,

1st. When the co-efficients are not divisible by each other.

2d. When the exponents of the same letter are greater in the

divisor than in the dividend.

3d. When the divisor contains one or more letters which are not

found in the dividend.

When either of these three cases, occurs, the quotient remains un-

der the form of a monomial fraction, that is, a monomial expression,

necessarily containing the algebraic sign of division ; but which

may frequently be reduced.

Take for example, 12a^lrcd to be divided by Sa^bc^

Here an entire monomial cannot be obtained for a quotient ; that
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is to say, a monomial which does not contain the sign of division

;

for 12 is not divisible by 8, and moreover, the exponent of c is less

in the dividend than in the divisor ; therefore, the quotient is pre-

, , ,
12a'b^cd

sented under the form ; but this expression can be

reduced, by observing that the factors 4, a^, b and c being common

to the two terms of the fraction, may be suppressed, and we have

—-— for the result.
2c

In general, to reduce a monomial fraction it is necessary

1st. To suppress the greatestfactor common to tlie tivo co-efficienls,

2d. Subtract the less of the two exponents of the same letter,from

the greater, and write the letter affected with this difference, in that

term of the fraction corresponding with the greatest exponent.

3d. Write those letters which are not common, with their respective

exponents, in the term ofthe fraction which contains the^n.

From this new rule, we find,

^.SaWcd'' 4.ad} SlaPc'd SWc
and

also.

SGa^'cMe Sbce Ga'b c'd? 6a'd'

la% 1

Wa^V 2ab

In the last example, as all the factors of the dividend are found in

tlie divisor, the numerator is reduced to rmity ; for it amounts to

dividing both terms of the fraction by the numerator.

52. It often happens, that the exponents of certain letters, are the

same in the dividend and divisor.

For example, divide 24a^Zr, by 8a^/r ; as the letter b is affected

with the same exponent, it should not be contained in the quotient,

2Aa''lr'

and we have —--Tr;-= 3ff. But it is to be remarked, that this re-

suit, Sa, can be put under a form which will preserve the trace of

the letter b, this letter having disappeared in consequence of the

reduction.
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For if we apply, conventionally, the rule for the exponents,

W b-

(Art. 50.), to the expression -^— , it becomes ——b^-'=b'': this

new symbol b", indicates that the letter enters times, as a iactor in

the quotient (Art. 13) ; or, which amounts to the same thing, that it

does not enter it ; but it indicates at the same time, that it was in

the dividend and divisor, and that it has disappeared in consequence

of the operation. This symbol has the advantage ofpreserving the

trace of a quantity which constitutes a part of the question, that it

has been our object to resolve, without changing the value of the

result ; for since b" is equivalent to — , which is, moreover, equiva-

lent to 1, it follows that SaJ^^Sax l= 3a. In like manner,

, „ ^
— Sa^yc"— 5Zr,

3a^b cr

53. As it is important to have clear ideas ofthe origin and significa-

tion of the symbols employed in algebra, we will show that in gene-

ral every quantity a affected with the exponent 0, is equivalent to 1

;

that is, we will have 0"=!.

For this expression arises, as has just been said, from the fact that

a is affected with the same exponent in the divisor and dividend.

To make the case general, let m denote the entire number which

a"*

IS the exponent of a. We shall then have, —;^z=(f. But the

quotient of any quantity divided by itself, is 1. Hence, —=1
;

therefore, we also have «"=!

We observe again, that the symbol a" is only employed conven-

tionally, to preserve in the calculation the trace of a letter which

entered in the enunciation of a question, but which must disappear in-

consequence of a division ; and it is often necessary to preserve this

trace.
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Division of Polynomials.

54. Let it be required to divide 51a'&-+10a^— iSa^Z*— 15J'+ 4aJ^

by 4a^— 5(r4-36^ In order that we may follow the steps of the

operation more easily, we will arrange the quantities thus.

Dividend. Divisor.

10a*-48a^6 +51a-&-+ 4aJ^-15iMl -5a=+4rt*+3^^

+ 10a*- Qa'b - QaW -2 a'+Sab-blr'

- 40a''b+ d7aW-\-^aI?'-15b*
Q^^otient.

— 40a"J+ 32a^^-+24«/;'

2?>aIf-2Qah'-lbb'

2r:>aW—20ab'— 15b*

The object of this operation is, as we have already said (Art. 49),

to find a third polynomial, which, multiplied by the second, shall

produce the first.

It follows from the definition and the rule for the multiplication

of polynomials (Art. 43), that the dividend is the assemblage, after

addition and reduction, of the partial products of each term of the

divisor, multiplied by each term of the quotient sought. Hence, if

we could discover a term in the dividend which was derived, with-

out reduction, from the multiplication of one of the terms of the

divisor, by a term of the quotient, then, by dividing the term of the

dividend by that of the divisor, we would obtain a term of the re-

quired quotient.

Now, from the third remark of Art. 45, the term lOa", affected

with the highest exponent of the letter a, is derived, without reduc-

tion from the two terms of the divisor and quotient, affected with

the highest exponent of the same letter. Hence, by dividijig the

term lOo* by the term —5a\ we will have a term of the required

quotient. But here another difficulty presents itself, viz. to deter-

mine the sign with which the term of the quotient should be affl-cted.

In order that this subject may not impede our progress hereafter,

we will establish a rule for the' signs in division.



DIVISION. 37

Since, in multiplication, the product of two terms having the same

sign is affected with the sign +, and the product of two terms

having contrary signs is affected with the sign — , we may con-

clude,

1st. That when the term of the dividend has the sign +, and

that of the divisor the sign -f, the term of the quotient must have

the sign +.

2d. When the term of the dividend has the sign +, and that of

the divisor the sign — , the term of the quotient must have the

sign — , because it is only the sign — , which, combined with the

sign — , can produce the sign + of the dividend.

3d. When the term of the dividend has the sign — , and that of the

divisor the sign +, the quotient must have the sign —

.

That is, when the two terms of the dividend and divisor have the

same sign, the quotient will be affected with the sign +, and when

they are affected with contrary signs, the quotient will be affected

with the sign — ; again, for the sake of brevity, we say that

+ divided by +, and — divided by —
, give + ;

— divided by +» and + divided by — , give —

.

In the proposed example, 10a* and — 5a^ being affected with

contrary signs, their quotient will have the sign — ; moreover,

I0a\ divided by 5a% gives 2a^ ; hence, —2a- is a term of the re-

quired quotient. After having written it under the divisor, multiply

each term of the divisor by it, and subtract the product,

from the dividend, which is done by writing it below the dividend,

conceiving the signs to be changed, and performing the reduction.

Thus, the result of the first partial operation is

-40a^S+57a-6--f4fl&'- 15Z»*.

This result is composed of the partial products of each term of

the divisor, by all the terms of the quotient which remain to be de-

termined. We may then consider it as a new dividend, and reason
upon it as upon the proposed dividend. We will therefore take in
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this result, the term — 40a'&, affected with the highest exponent of

fl, and divide it by the tenn — 5a^ of the divisor. Now, from the

preceding principles, —40a'*, divided by —5a^ gives -{-8ai for a

new term of the quotient, which is written on the right of the first.

Multiplying each term of the divisor by this term, and writing the

products underneath the second dividend, and making the subtrac-

tion, the result ofthe second operation is

25d'Ir-20aP-15¥;

then dividing 25aW by —5a", we have —5b^ for the third term of

the quotient. Multiplying the divisor by this term, and writing the

terms of the product under the third dividend, and reducing, we ob-

tain for the result. Hence, —2a^ -i-&ab—5b% or Sab— 20^—56"

is the required quotient, which may be verified by multiplying the

divisor by it ; the product should be equal to the dividend.

By reflecting upon the preceding reasoning, it will be perceived,

that, in each partial operation, we divide that term of the dividend

which is affected with the highest exponent of one of the letters, by

that term of the divisor affected with the highest exponent of the

same letter. Now, we avoid the trouble of looking out the term,

by taking care, in the first place, to write the terms of the dividend

and divisor in such a manner that the exponents of the same letter shall

go on diminishingfrom left to right. This is what is called arrung.

ing the dividend and divisor with reference to a certain letter. By

this preparation, the first term on the left of the dividend, and the

first on the left of the divisor, are always the two which must be

divided by each other in order to obtain a term of the quotient ; and

it is the same in all the following operations ; because the partial

quotients, and the products of the divisor by these quotients are

always arranged.

55. Hence, for the division polynomials we have the following

RULE.

I. Arrange the dividend and divisor with reference to a certain letter,

apd then divide the first term on the left ofthe dividend hy the first term
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on the left of the divisor, the result is the first term of the quotient ,•

multiply the divisor by this term, and subtract the 'product from the

dividend.

II. Then divide thefirst term of the remainder hy the first term of

the divisor, which gives the second term of the quotient ; multiply the

divisor by this second term, and subtract the productfrom the result of

thefirst operation. Continue the same process until you obtain Ofor

a resuU ; in which case the division is said to be exact.

When the first term of the arranged dividend is not exactly divisi-

ble by that of the arranged divisor, the complete division is impossi-

ble, that is to say, there is not a polynomial which, multiplied by

the divisor, will produce the dividend. And in general, we will find

that a division is impossible, when the first term of one o£ the partial

dividends is not divisible by the first term of the divisor.

56. Though there is some analogy between arithmetical and

algebraical division, with respect to the manner in which the opera-

tions are disposed and performed, yet there is this essential difference

between them, that in arithmetical division the figures of the quo-

tient are obtained by trial, while in algebraical division the quotient

obtained by dividing the first term of the partial dividend by the

first term of the divisor is always one of the terms of the quotient

sought.

Besides, nothing prevents our commencing the operation at the

right instead of the left, since it might be performed upon the terms

affected with the lowest exponent of the letter, with reference to

which the arrangement has been made. In arithmetical division

the quotient can only be obtained by commencing on the lefl.

Lastly, so independent are the partial operations required by the

process, that after having subtracted the product of the divisor by

the first term found in the quotient, we could obtain another term of

the quotient by dividing by each other the two terms of the new divi-

dend and divisor, affected with the highest exponent of a different

letter from the one first considered. If th^same letter is preserved,

it is because there is no reason for changing it, and because the two
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polynomials are already arranged with reference to it; the first

terms on the left of the dividend and divisor being sufficient to obtain

a term of the quotient ; whereas, if the letter is changed, it would

be necessary to seek again for the highest exponent of this letter.

SECOND EXAMPLE.

Divide . . . 21a;y+25a;y+68ay-40/— 56x'— 18a:Vby
5y''— 8x''— 6xy.

— ^0y'+68xy'+25xy+21xy-18x*y-56x'\\5y''-6xy-8x"-

— 40y^-+48^^+64A-y —8y'+Axy?-3x-y+lx^

1st. rem. 20 a,y—39xy+21a;y
2 xy'— 24x-'^'— 32 xY

2d. rem. — 15a;y +53xy— ISa;^

—Wxy 4-1 8x^3;='

+

24:X*y

35xy- ^2x*y-56x'

35a,y— 42x'^y-56x'

Final remainder 0.

57. Remark.—In performing the division, it is not necessary to

bring down all the terms of the dividend to form the first remainder,

but they may be brought down in succession, as in the example.

As it is important that beginners should render themselves familiar

with the algebraic operations, and acquire the habit of calculating

promptly, we will treat of this last example in a different manner,

at the same time indicating the simplifications which should* be"

introduced.

As in arithmetic, they consist in subtracting each partial product

from the dividend as soon as this product is formed.

— 40j/'

+

68xy'+ 25a''2/'+21^Y— 1 Sx*y— 56a;'
||

5?/'— dxy— 8x^

1st. rem. 20a;/— 39xy+21 a^y — 8j/=+4a,y— 3ar'y+7x'

2d. rem. —iSxy-f- 53 xY— 18x*y

3d. rem. 4 ^^ a;y— 42a;'7/— 56x'

Final rem. 0.
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First, by dividing —40^^ by 5y^, we obtain —8/ for the quotient.

Multiplying 5?/^ by — 8^, we have —40?/*, or by changing the sign,

^-402/^ which destroys the first term of the dividend.

In like manner, —6xyX —^y^ gives +4:8xy* and for the subtrac-

tion — 48a^*, which reduced with -\-68xy\ gives 20xy* for a remain-

der. Again, —Svc'^X— 8^' gives +, and changing sign, — 64a;y,

which reduced with 25x'y^, gives — 39a;y. Hence the result of the

first operation is 20xy*—S9xY followed by those terms of the divi-

dend which have not been reduced with the partial products already

obtained. For the second part of the operation, it is only necessary

to bring down the next term of the dividend, separating this new

dividend from the primitive by a line, and operate upon this new

dividend in the same manner as we operated upon the primitive, and

so on.

THIRD EXAMPLE.

Divide 95a-73a'+56a^-25-59a^ by -2a^+5-Ua-\-la'

56a*— 59a'— 73a'+ 95fl— 25||7a'— 3a'— lla+5

1st. rem. ^-3^5a^+lba'-\-b5a—25 8 a — 5

2d. rem. 0.

EXAMPLES.

1. Divide ISa;" by. 9a;. Ans. 2x.

2. Divide lOx^ by —bx'y. Ans. —2y.

3. Divide —9axy by Qx'^y. Ans. —ay.

4. Divide — 8x^ by —2x. Ans. -|-4r.

5. Divide 10a5+15ac by 5a. Ans. 23-j-3c.

6. Divide 30aa;— 54a; by 6a;. Ans. 5a— 9.

7. Divide \Ox^y—\by''—by by 5t/. Ans. 2x'—dy—l.

8. Divide 13a+3aa?— 17a;'' by 21a.

9. Divide Sa"— 15-t-6a+3J by 3a.

10. Divide a''+2aa;-l-a;'' by a-\-x. Ans. a-\-x.

11. Divide a^— Za^y-\-^ay'^—y'^ by a—y.

Ans. a'— 2ay+w',
4*
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12. Divide 1 by 1— x. Ans. l+x+x^+a;', &c.

13. Divide 6a;'— 96 by 3x— 6. Ans. 2a;'+4x''+8x+16.

14. Divide a'— 5a*x4-10aV— 10aV+5aa;*— «' by a'— 2aa;+x'.

Ans. a^—Za^x+^ax^—x^.

15. Divide 48a;=— 76aa;''— 64a'a;+105a^ by 2a;— 3a.

16. Divide/-3i/V432/V— a;^ by y'—^''x+Zyx''—x\

58. It may happen that one, or both, of the proposed polynomials

contains in two or more temis the same power of the letter with re-

ference to which the arrangement is to be made.

In this case, how should the arrangement be made, and the divi-

sion be effected 1

Divide lla^i-19aJc+ 10a'-15a^c+3aJ^+ 15Jc^-5&^c

by 5a'-f3a&— 5Jc.

In the first place, the two terms lla^J— ISa^'c, can be placed un-

der the form (11&— 15c) a", or Hi I a", by writing the power a'

-15c
1

once, and placing to the left of it, and in the same vertical column,

the quantities by which this power is multiplied ; this polynomial

multiplier is then called the co-efficient of a^.

The second manner of connecting the terms involving the same

power, is preferable to the first, for two reasons. 1st. Because

where there are many terms in the dividend and divisor, it would be

difficult to write all on the same horizontal line. 2d. As the co-ef-

ficient of each power ought to be arranged with reference to a

second letter, we are obliged, if the first term is subtractive, to sub-

ject the term to a modification, which might lead to error, in employ-

ing the first manner. Take, for example, —\blPa^ -\-lhca^— Qc^a'

the modification consists in putting this expression under the form

— {lbb''— 'Jbc+Sc')a' .... (Art. 38).

whereas, by the second, it is written thus : —Ibh"^ a", and by this

+ lie

— ^e

manner we have the advantage of preserving to each term the sign

with which it was at first affected.
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In like manner, —l9abc-{-Sah^ is written : . . -\- Sb^ \ a

-19bc
I

This being understood the operation may be performed in the

following manner.

-15c| -19^1 '2a+b-3c

a—5¥c+l5b(?1st. Rem. 5b

— 15c -9bc

2d. Rem. 0.

First divide 10 a^ by 5a-, the quotient is 2a. Subtracting the

product of the divisor by '2a, we obtain the first remainder. Divi-

ding the part involving a' in this remainder by 5a^, the quotient is

b—3c. Multiplying successively each term of the divisor by b—3c,

and subtracting the product, we have for the result. Hence,

2a 4-^— 3c is the required quotient.

59. Among the different examples of algebraic division, there is

one remarkable for its applications. It is so often met with in the

resolution of questions, that algebraists have mg.de a kind oHheorem

of it.

We have seen (Arj^ 46), that

{a-\-by\a—b) ^a^— J^: hence,

a^-J2
--a-\-b.

a —b
If we divide . . a^—b^ by a—b we have

a^-b-"

a—b

a*—¥

-.a^-\-ab-\-b'^ : also

:a"+a'3+a5^+i=
a —b

by performing the division.

These are results that may be obtained by the ordinary pro

cess of division. Analogy would lead to the conclusion that what-

ever may be the exponents of the letters a and b, the division could

be performed exactly ; but analogy does not always lead to cer-
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tainty. To be certain on this point, denote the exponent by m ; and

proceed to divide a"'—b'" by a— b.

a"'—b'^ \\a—h

1st. Rem. . . . a"^^b—b"'\a'"--^ +
or .... 3(a"*-'-J'»-').

Dividing a" by a the quotient is a"'-\ by the rule for the exponents.

The product of a— 3 by a™-' being subtracted from the dividend, the

first remainder is a'^'i— J", which can be put under the form

b (a"'-^—b'"-^). Now, if «"-'— §'»-'
is divisible by a—b, then will

oT'—b'" also be divisible by a— ^^ ; that is, if the difference of the

similar powers oftwo quantities ofa certain degree, is exactly divisi-

ble by the difference of these quantities, the difference of the powers

of a degree greater by unity, is aJso divisible by it.

But it has already been shown that a*— i* is divisible hy a—b :

hence, a^—b^ is also divisible by a—b. Now, if a^—¥ is divisible

hy a—b, it must follow that a^— b'' is also divisible hy a—b. In the

same way ;t may be shown that the division is possible when the

exponent is 7, 8, 9, &c.

Hence, generally, a*"— J'" is divisible hy a—b.

This proposition may be verified by actually performing the

division, and then multiplying the quotient by the divisor. Thus,

a -b -

But . .

ultiplied by

. a'^-'+a^-^b+a'^-'b-' .

. a - b

_ a^-^h-a'"-^¥ . . . —ab^-'— b'".

equal to . . . a"— *'".

It will be perceived that the partial products a" and — &"• are the

only ones that do not destroy each other in the reduction.

For example, multiplying a""-^b by a, the product is a'"-'3 ; but

by multiplying a"*^' by —b, the product is —a"'-% and this term

destroys the preceding. The other terms cancel in the same way.
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The beginner should reflect upon the first method of demonstrating

the proposition, as it is frequently employed in algebra.

60. We have given (Art. 51. and 55.), the principal circum-

stances by which it may be discovered that the division of monomial

or polynomial quantities is not exact; that is, the case in which

there does not exist a third entire algebraic quantity, which, multi-

plied by the second, will produce the first.

We will add, as to polynomials, that it may often be discovered

by mere inspection that they cannot be divided by each other.

When these polynomials contain two or more letters, before arrang-

ing them with reference to a particular letter, observe the two

terms of the dividend and divisor, which are affected with the

highest exponent of each of the letters. If for either of these let-

ters, one of the terms with the highest exponent is not divisible by the

other, we may conclude that the total division is impossible. This

remark applies to each of the operations required by the process

for finding the quotient.

Take, for example, 12a^—da-h-\-lab''—Ub\ to be divided by

Aa'— 8ab-{-Sb\

By considering only the letter a, the division would appear pos-

sible ; but regarding the letter b, the division is impossible, since

— llb^ is not divisible by 35\

One polynomial A, carmot be divided by another B containing a

letter which is not found in the dividend ; for it is impossible that a

third quantity, multiplied by B which depends upon a certain letter,

should give a product independent of this letter.

A monomial is never divisible by a polynomial, because every

polynomial multiplied by another, gives a product containing at least

two terms which are not susceptible of reduction.

61. Remark If the letter with reference to which the dividend

is arranged, is not found in the divisor, the divisor is said to be inde-

pendent of that letter ; and in that case the exact division is impos-

sible, unless the divisor mill divide separately the co-efficient of each

term of the dividend.
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For example, if the dividend were Sba'+ 9ba^+12h, arranged

with reference to the letter a, and the divisor 3b, the divisor would

be independent of the letter a ; and it is evident that the exact divi-

sion could not be performed unless the co-efRcient of each term of

the dividend were divisible by 3Z>. The exponents of the leading

letter in the quotient would be the same as in the dividend.

OF ALGEBRAIC FRACTIONS.

62. Algebraic fractions should be considered in the same point of

view as arithmetical fractions, such as f ,
|i, that is, we must con-

ceive that the unit has been divided into as many equal parts as

there are units in the denominator, and that one of these parts is

taken as many times as there are units in the numerator. Hence,

addition, subtraction, multiplication, and division, are performed ac-

cording to the rules established for arithmetical fractions.

It will not, therefore, be necessary to demonstrate those rules,

and in their application we must follow the procedures indicated for

the calculus ofentire algebraic quantities.

63. Every quantity which is not expressed under a fractional

form is called an entire algebraic quantity.

64. An algebraic expression, composed partly of an entire quan-

tity and partly of a fraction, is called a mixed quantity.

65. When a division of monomial or poljniomial quantities cannot

be performed exactly, it is indicated by means of the known sign,

and in this case, the quotient is presented under the form of a frac-

tion, which we have already learned how to simplify (Art. 51).

With respect to polynomial fractions, the following are cases which

are easily reduced.

a^'— b^
Take, for example, the expression -;——^—r—

'
a-— 2ab-{-b'

This fraction can take the form ,

,~ (Art. 46).
(a— by

'
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Suppressing the factor a— h, which is common to the two terms,

we obtain .... • ,a—b
5a^— 10a^b+5ab^

Again, take the expression r-^—3-77
oa — Oft

This expression can be decomposed thus :
—-j- rr

ba(a— b)-
or — —

.

8a\a-b)

Suppressing the common factor, a(a—b,) the result is . .

5(a-b)

8a *

The particular cases examined above, are those in which the two

terms of the fraction can be decomposed into the product of the sum

by the difference of two quantities, and into the square ofthe sum or

difference of two quantities. Practice teaches the manner of per-

forming these decompositions, when they are possible.

But the two terms of the fraction may be more complicated poly-

nomials, and then, their decomposition into factors not being so easy,

we have recourse to the process for finding the greatest common

divisor.

CASE I.

Of the Greatest Common Divisor.

66. The greatest common divisor of two polynomials, is the great-

est polynomial, with reference to the exponents and co-efficients, that

will exactly divide the proposed polynomials.
,

If two polynomials be divided by their greatest common divisor,

the quotients will he prime with resjject to each other ; that is, they

will no longer contain a common factor.

For, let A and B be the given polynomials, D their greatest com-

mon divisor, A' and B' the quotients afler division*. Then

* Note.—When the same letter is used to designate different quantities, as

above, the quantities having a certain connexion with each other, we read A',

B', A prime, B prime, and if we have A", B", we say, A second, B second, &c.
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A B
-^=A' and -^=B'

Or . . . A=A'xD and B=B'xD
now if A' and B' had a common factor d, it would follow that

dxD would be a divisor, common to the two polynomials, and

greater than D, either with respect to the exponents or the co-effi-

cients, which would be contrary to the definition.

Again, since D exactly divides A and B, every factor of D will

have a corresponding factor in both A and B. Hence,

1st. The greater common divisor of two polynomials contains as

factors, all the particular divisors common to the two polynomials, and

does not contain any otherfactors.

67. We will now show that the greatest common divisor of two

polynomials will divide their remainder after division.

Let A and B be two polynomials, D their greatest common divisor,

and suppose A to contain the highest exponent of the letter with re-

ference to which they are arranged. Then,

A B
Yr=A' and —=B' or,

A=A'xD and B=B'xD.
Let us now represent the entire part of the quotient by Q and the

remainder by R, and we shall have

A A'xD R

A'xD=B'xDxQ+R
R

hence, A'=B'xQ+^.

But A' is an entire quantity, hence the quantity to which it is

R
equal is also entire : and since B'Q is entire, it follows, that — is

entire ; that is,D will exactly divide R,

We will now show that if D will exactly divide B and R that it

will also divide A. For, having divided A by B we have
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A=BxQ+R> and by dividing by D, we obtain

A B ^ R

But since we suppose B and R to be divisible by D, and know Q
to be an entire quantity, the second part of the equality is entire

;

hence the first part, to which it is equal, is also entire ; that is, A is

exactly divisible by D. Hence,

2dly . The greatest common divisor of tivo polynomials is the same

as that which exists between the least polynomial and their remainder

after division.

These principles being established, let us suppose that it is re-

quired to find the greatest common divisor between the two poly-

nomials

a^— a'h+ Mh'—U^ and a'— 5rt6+4J^

First Operation.

a'-a'b ^Sai'-Sb'\\a'-bab+ W'

^a'b-ab^-2b' \a+ U
1st. Rem. . . 19ab'-19b'

or . . . 19b%a-b)

Second Operation.

a'-dab+^b' \\a-b

— 4:ab-\-U-
1
rt— 4i

0.

Hence,a— Z» is the greatest common divisor.

We begin by dividing the polynomial of the highest degree by

that of the lowest degree ; the quotient is, as we see in the above

table, a-\-Ab and the remainder is 19ab'^—19b^.

By the second principle, the required common divisor is the same

as that which exists between this remainder and the polynomial

divisor.

But 19ab'^—l9¥ can be put under the form I9b-(a—b). Now
5
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the factor, 19i^ will divide this remainder without dividing

a'— bah+4.h\

hence, by the first principle, this factor cannot enter into the greatest

common divisor ; we may therefore suppress it, and the question

is reduced to finding the greatest common divisor between'

a^— bah+lP and a—h.

Dividing the first of these two polynomials by the second, there is

an exact quotient, a— 4Z>; hence a—b is their greatest common

divisor, and is consequently the greatest common divisor of the two

proposed pohmomials.

Again, take the same example, and arrange the polynomials with

reference to h.

— SJ'-I-SflJ'—a^^+a\ and W-bab-\-a\

First Ojoeration.

lJ/-rl2ah'-4a'b+4:a'
||
4 b''~5ab-\-a'

1st. Rem. — dah'—a''b +4a'
-I2ah"--4:a'b+l6a'

-Sb, -3a

2d. Rem. .

or

-19a^^+ 19a^

19a\-b-{-a).

Second Operation.

4P-^5ab+o'\\ -I +n
—ab +a'

I

— 4tb-{-a

0.

Hence, —b-^a, or n— b, is the greatest common divisor.

Here we meet with a difficulty in dividing the two polymonials,

because the first term of the dividend is not exactly divisible by the

first term of the divisor. But if we observe that the co-efficient 4 of

this last, is not a factor of all the terms of the polynomial

4^^— 5rtZ>-|-a%

and that therefore, by the first principle, 4 cannot form a part of the

greatest common divisor, we can, without afiecting this common
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divisor, introduce this flictor into the dividend. This gives

-123'+ 12aZ<=— 4a"5+4a%

and then the division of the first two terms is possible.

Effecting this division, the quotient is — Sb, and the remainder is

— 3ab^—a'b-i-4:a\

As the exponent of 5 in this remainder is still equal to that of the

divisor, the division may be continued, by multiplying this remainder

by 4, in order to render the division of the first term possible.

This done, the remainder becomes — 12a^^—4a^^+16a^ which

divided by 4.b^— dal)-\-a', gives the quotient —3a, which should

be separated from the first by a comma, having no connexion with it;

and the remainder is . — 19a*J+19a^.

Placing this last remainder under the form 19a-(— 3+a), and sup-

pressing the factor 19rt^, as forming no part of the common divisor,

the question is reduced to finding the greatest common divisor

between 4:P— 5ab-]-a', and •-b-\-a.

Dividing the first of these polynomials by the second, we obtain an

exact quotient, —45+a; hence —b+a, or a— b, is the greatest

common divisor requii'ed.

68. In the above example, as in all those in which the exponent

of the prmcipal letter is greater by unity in the dividend than in the

divisor, we can abridge the operation by multiplying every term of

the dividend by the square of the co-efiicient of the first term of the

divisor. We may easily conceive that, by this means, the first par-

tial quotient obtained will contain the first power of this co-efficient.

Multiplying the divisor by the quotient, and making the reductions

with the dividend thus prepared, the result will still contain the co-

efficient as a factor, and the division can be continued until a re-

mainder is obtained of a lower degree than the divisor, with refe-

rence to the principal letter.

Take the same example as before, viz. —SP+ Sab'^—a^b-i-a^

and 4Z>''— 5rti+rt^ ; and multiply the dividend by the square of

4=16 : and we have
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First Operation.

-m¥+ ^Qab- -IQa'b + 16a=||43=-5aZ>+a^

-12a// — Ad'b 4- 16a°
|
— 126-3a

1st. Rem. . . — IQa'^Z* + lOa^

IQa'-' (-^'+«)

Second Operation.

Alf— bah+a^
\\ —h+a

— ab+a^
I

—^b+a

or

2d- Rem. ... - 0.

Remark 1. When the exponent of the principal letter in the di-

vidend exceeds that of the same letter in the divisor by two, three,

&c. units, multiply the dividend by the third, fourth, &c. power of

the co-efficient of the first term of the divisor. It is easy to see the

reason of this.

2. It might be asked if the suppression of the factors, common to

all the terms of one of the remainders, is absolutely necessary, or

whether the object is merely to render the operations more simple.

Now, it will easily be perceived that the suppression of these factors

is necessary
; for, if the factor 19a^ was not suppressed in the pre-

ceding example, it would be necessary to multiply the whole divi-

dend by this factor, in order to render the first term of the dividend

divisible by the first term of the divisor ; but then, a factor would

be introduced into the dividend which was also contained in the divi-

sor ; and consequently the required greatest common divisor would

be combined with the factor 19a^ which should not form a part of it.

69. For another example, it is proposed to find the greatest com.
mon divisbr between the two polynomials,

a'+^a'b+^a'b'-Qab'+^b' and Aa''b+2ab'-^b\

or simply, 2a''+ab—b\ since the factor 2b can be suppressed, being

a factor of the second polynomial and not of the first.
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First Operation.

8a*+ 24a'J+ 32a^5'- 48a&'+ 1 65*
1

1 'Za^ +ah-lf

+20a='6+36a-'^''-48a5'+ 16F| 4a'+ 10ai+13A='

+ 26a'Z»'— 38a5'+ 16^'*

1st. Rem. . . . -b\aV+-2W

or, . . . —¥{bla-2U).

Second Operation.

Multiply by 2601, the square of 51.

5202a^+2601aZ>-2601^>'|| 51a- 295

5202a^-2958a5 I 102a+ 109&

1st. Rem. . +5559a6- 26015^

5559ai-316lZ''

2d. Rem. ... + 5606^

The exponent of the letter a in the dividend, exceeding that of

the same letter in the divisor by two units, we multiply the whole

dividend by the cube of 2, or 8. This done, we perform three con-

secutive divisions, and obtain for the first principal remainder,

-51a5'+29Z>*.

Suppressing b^ in this remainder, it becomes —51a+295 for a new

divisor, or, changing the signs, which is permitted, 51a— 295: the

new dividend is ^a^-^-ah—h".

Multiplying this dividend by the square of 51, or 2601, then effect-

ing the division, we obtain for the second principal remainder, +5605^

which proves that the two proposed polynomials are prime with re-

spect to each other, that is, they have not a common factor. In fact

it results from the second principle (Art. 67), that the greatest com-

mon divisor must be a factor of the remainder of each operation

;

therefore it should divide the remainder 5605== ; but this remainder

is independent of the principal letter a ; hence, if the two polyno-

mials have a common divisor, it must be independent of a, and will

consequently be found as a factor in the co-efficients of the different

powers of this letter, in each of the proposed polynomials ; but it is

5*
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evident that the co-efficients of these polynomials have not a com-

mon factor.

70. These examples are sufficient to point out the course the be-

ginner is to pursue, in finding the greatest common divisor of two

polynomials, which may be expressed by the following general

RULE.

I. Take the first polynomial and suppress all the mo7iotniaIfactors

common to each of its terms. Do the same with the second polynomial,

and if the factors so suppressed have a common divisor, set it aside as

forming a part of the com7no7i divisor sought.

II. Having done this, prepare the dividend in a such a manner

that itsfirst term shall be divisible by thefirst term of the divisor ; then

perform the division, which gives a remainder of a degree less than

that of the divisor, in which suppress all the factors that are common

to the co-efiicients of the different jfowers of the j^rincipal letter. Then

fake this remainder as a divisor, and the second polyno^nial as a divi-

dend, and cojitinue the operation with these polynomials, in the same

manner as with the p)receding.

III. Continue this series of operations until a remainder is obtained

which will exactly divide the preceding rcTnainder ; this last retnainder

will be the greatest common divisor ; but if a remainder is obtained

which is independent of the principal letter, and which will not divide

the co-efficients of each of the proposed polynomials, it shoics that the

jiroposed polynomials are prime with respect to each other, or that

they have not a common factor.

EXAMPLES,

1. Find the greatest common divisor between the two poly-

nomials.

ah-\-2a-— '&¥ —4bc— ac— c\

and . . 9ac+2a'— 5aJ+4c=+8k— 12^'
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First Operation.

^h a-U^ 2a^-5b a- 125"

— c —Uc + 9c + 8bc

— c^ + 4c^

1st. Remainder 65

10c

a +95"

-125c

- 5 c*

(35— 5c) (2a+35+c).

Second Operation.

2a^-55

+9c

a- 125"

+85c
+4c"

-85

+8c

t-125=

+ 85c

+ 4c"

2a+35+c

s— 45

+4c

0.

Hence, 2fl+ 35+c is the greatest common divisor.

After arranging the two polynomials, the division may be perform-

ed without any preparation, and the first remainder will be,

65
I

a+ 95-

-10c -125c
' - 5c"

To continue the operation, it is necessary to take the second po-

lynomial for a dividend, and this remainder for a divisor, and multi-

ply the new dividend by 65— 10c, or simply 35— 5c, since 2 is a

factor of the first temi of the dividend. But we are not at liberty

to multiply by 35— 5c, if it is a factor of the remainder. There-

fore, before effecting the multiplication, we must see if 35— 5c will

exactly divide the first remainder ; we find that it does, and gives for

a quotient 2a+35+ c : whence it follo\vs that the remainder can be

put under the form

(35-5c)(2a+35+c).
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Now, 3b— 5c is a factor of this remainder, and is not a factor of

the new dividend. For, being independent of the letter a, if it was

a factor of the dividend it would necessarily divide the co- efficient

of this letter in each of the terms, which it does not ; ^ve may there-

fore suppress it without affecting the greatest common divisor.

This suppression is indispensable, for otherwise a new factor would

be introduced into the dividend, and then the two polynomials con-

taining a factor they had not before, the greatest common divisor

would be changed; it would be combined with the factor Sb—5c,

which should not form a part of it.

Suppressing this factor, and effecting the new division, M'e obtain

an exact quotient ; hence

2a+3^+c is the greatest conomon divisor.

Remaek. The rule for the greatest common divisor of two po-

lynomials, may readily be extended to three or more polynomials.

For, having the polynomials A, B, C, D, &c. if we find the greatest

common divisor of A and B, and then the greatest common divisor

of this result and C, the divisor so obtained will evidently be the

greatest common divisor of A, B and C ; and the same process may
be applied to the remaining polynomials.

2. Find the greatest common divisor of x*—l and a^^+o;'.

Ans. l+x"^.

3. Find the greatest common divisor of 4a'— 2a^— 3a+ l and

3a'— 2a— 1. Ans. a— 1.

4. Find the greatest common divisor of a*—x* and a^—a'x—ax''

+x\ Ans. a''—x\

5. Find the greatest common divisor of SGa"- 18a^— 27a^+ 9a'

and 27a-h''-18a'b'— 9a'b\

Ans. 9aXa—l).
6. Find the greatest common divisor of

qnp'+ 2npY—^npcf—2nq'' and 2tnpY—A7np*—mp''q+2mpq\

Ans. p—q.
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7. Find the greatest common divisor of the two polynomials

l5a'+l0a'b-}-4:a'b^-\-6a'b'— 2ab''

12a'b^+38a^b'+16ab*-l0b\

Ans. Sa^+2ab-b\

CASE 11.

71. To reduce a mixed quantity to the form of a fraction.

RULE.

Multiply ilie entire part by tlie dekominator of ihefracUon : then

connect this jJrodiict with the terms of the numerator by the rules for

addition, and under the result place the given denominator.

EXAMPLES.

1. Reduce X-
(a^-x^)

X
to the form of a fraction.

X—
a'-x' x->-{a'-x') 2x

X
. Ans.

XX

2. Reduce X-
2a

to the form of aL fraction.

flX'-X^
Ans. .

2a

2x—

7

3. Reduce 5H

—

— to the form of a fraction
ox

17x-7
Ans. —

.

3x

a;

—

a—

1

4. Reduce 1— to the form of a fraction.

2a-x+l
Ans. .

a

X—

3

5. Reduce l+2x—r— to the form of a fraction.
ox

10x=+4x4-3
^^^- 5^ •
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CASE III.

72. To reduce a fraction to an entire or mixed quantity.

RULE.

Divide the numerator by the denominatorfor the entire part, and

place the remainder, if any, over the denominatorfor the fractional

part.

EXAMPLES.

1. Reduce
ax-\-a^

X
to a mixed quantity.

ax+a"" ft^=a+— Ans.

2. Reouce
ax—x"^

X
to an entire or mixed quantity.

Ans. a—x.

3. Reduce
ah-2a^

b
to a mixed quantity.

2a'
Ans. a——r.

4. Reduce
a^-x'

a—x
to an entire quantity.

Ans. a-\-x

5. Reduce
x'-y'

x—y
to an entire quantity.

Ans, x'+xy+y^.

6. Reduce
10a;=-5x+3

r-; to a mixed quantity.

3
Ans. 2a;- 1+—.

,^K^ CASE IV.

73. To reduce fractions having different denominators to equiva-

lent fractions having a common denominator.
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RULE.

Multiply each numenttor into all the denominators except its oton,

for the new numerators, and all the denominators togetherfor a com-

mon denominator.

EXAMPLES.

a h
1. Reduce — and — to equivalent fractions having a com-

mon denominator.

ay^c^ac
, , , „ . the new numerators.
hxl>=h^ )

and . . hxc=bc the common denominator.

a a-\-b
'

^

to tractions, having a C(

ab+P

2. Reduce -r- and to fractions, having a common de-be ' »

Ans. -r- and
be be

3x 2b
3. Reduce —-, 7;—, and d, to fractions having a common dc-

9cx Aab Gacd
nominator. Ans. ——, —— and ——

.

Qac Qac (\ac

„ ,
3 2a; 2x

4. Reduce —-, — , and a-\ , to fractions having a com-

9a Qax 12a=+24x
mon denommator. Ans. , , and

12a 12a 12a

r r, ^
la' a'+x'

5. Reduce -—, -— and , to fractions having a com-
2 3 a+x °

mon denominator.

3a+3a: 2a^+2a^x 6a=+6a;'
Ans. -——-, ————, and

Qa+ Qx' Qa-\-Gx
'

6a+6.T

CASE V.

74. To add fractional quantities together.
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RULE.

Reduce thefractions, if necessary, to a common denoyninator : then

add the numerators togetJier and place their sum over the common rfe-

nominator.

EXAMPLES.

1. Find the sum of — , —, and -j.

Here, . axdxf=adf'
cxixf—cbf y the new numerators.

exbxd=ebd

And . . bxdxf=idf the common denominator.

adf cbf eld adf+cbf-\-ebd
"'"^"' -w^W^W^ '

bdf
— '^^ '""^-

^ Sx^ ^
^ ^ 2ax

2. To a 7- add b-\ .

b c

2abx—'6cx''
Ans. a+6+-

bcXXX X
3. Add —-, — and — together. Ans. x+—-.

4> o 4 12

^ ^ ,^ x-2 4a;
, ^

iar-14
4. Add —-— and -— together. \ns. —

.

o 1 21

x—2 2a,'—

3

5. Add xH—— to ^x-\ —

.

lOx-lT
Ans. Ax-\-

12

5a;* x-^a
6. It is required to add 4a;, —-— , and —-— together.

2a 2a;
°

5a;^+aa;+a'
Ans. 4a;4—

2aa;

« T • ,, 2.r 7.T , 2a;+l
7. It IS required to add — , —, and — together.

tj 4 u

49a;+12
Ans. 2a;+-

60



OF FRACTIONS. 61

8. It is required to add 4x, — , and 2+— together.

441;+ 90
Atis Ax-\—

45

9. It is required to add 3a:+— and x—— together
2x 8x

together.

23a;
Am. 2x-{—7=—

45

CASE VI.

75. To subtract one fractional quantity from another.

RULE.

I. Reduce the fractions to a common denominator.

II. Subtract the numerator of the fraction to he subtractedf'om the

numerator of the other fraction, and place the difference over tJie coip~

mon denominator.

EXAMPLES.

X *~- Qi 2rt ^— 4^
1. Find the difference of the fractions ^, and —

2b 3c

Here, (x— a)x 3c=:3cx— 3ac
, ,^ ^ ^ the numerators

(2a—4a;)x2J=4a3— 85a;

And, 25 x3c=65c the common denominator.

^cx—Zac 4ab—8bx 3cx—Sac— 4:ab-\-8bx

"^"'^^' —Wc 6br-= eTc
-• '^"^•

12.r 3.r

2. Required the difference of —— and —

3. Required the difference of 5i/ and —

.

39a;
Ans. -3^.

Ans. —-—

,



62

Sx 2x
4. Required the difference of — and —

.

^"^- -63-

5. Requia-ed the difference between —^— and —-.
a

dx-\-ad—bc
Alls.

bd

Sx+a 2x+l
6. Required the difference of —^— and

Ans

bb 8

24a;+8a— lOZ'a;— 355

40^>

X X— a
7. Required the difference of 3a;+— and x .

cx-\-bx—ab
Ans. 2x+-

bc

CASE VII.

76, To multiply fractional quantities together.

RULE.

If the quantities to he multiplied are mixed, reduce them to a frac
tionalform ; then multiply the numerators together for a numerator

and the denominators togetherfor a denominator.

EXAMPLES.

1. Multiply
bx

-y-a-

bx a^+l

a

X

en 3e, . . . • •

a^+bx
X

a

c

1^'
a^c-{-bcx

ad

2. Required
3a;

the product of —

-

and
Sa

~b'

Ans.

9ax
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2a; Sx'
3. Required the product of — and —

.

Ans. -^—

.

5a

2a; 2ab Sac
4. Find the continued product of —, , and ^, .

* a c 2b

Alls. 9ax.

hx a
5. It is required to find the product of b-\-— and —

.

ab-{-bx
Ans.

X

x'^—P x'^+b'
6. Required the product of —r and —y——

.

x'—b-
Ans.

x-}-l x—1
7. Required the product of x-i , and ,

Ans.

b\+bc''

ax"—ax-\-x'^—\

a--\-ab

d^ 0^ y^
8. Required the product of a-\ by

a—x a; -\-x'

Ans.
ax-{-ax'—x^—x*

CASE VIII.

77. To divide one fractional quantity by another.

RULE.

Reduce the mixed quantities, if there are any, to afractionalform

:

then invert the terms of the divisor and multiply thefractions together

as in the last case.

EXAMPLES.

1. Divide .... a——- by —

.

2c g
b _2ac—b

.

^~2^~~2r~
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Hence,
b

.
/ 2ac-b g

" 2c- g- 2c ^f
2acg-

- 2c/
:^. Ans.

2. Let
7x 12— be divided by —

.

O lo
^MS.

91a;

60
*

3. Let
4a-^—-— be divided by 5x.

4x

4. Let —-— be aivided by -—

.

b 6
^ns.

a:+l

4a;
*

5. Let
X x

be divided by -—

.

X— 1 2
^?JS.

2

X-\'

6. Let — be divided by —^. Ans.
bbx

2a
'

7. Let -r—-r be divided by , , .

Serf •' 4(Z
Ans.

x-b
6c'x'

8. Let
..-2te+*'

"'"'"ledby-

Ans.

78. We will add but a single proposition more on the subject of

fractions. It is this.

If the same number be added to each of the terms of a projier fraction,

the newfraction resulting from this addition will be greater than the

first ; but if it be added to the terms of an hwproperfraction, the re-

sulting fraction will be less than the first.

a
Let the fraction be expressed by — , and suppose a<Cb.

Let m represent the number to be added to the terms : the

a-\-m
fraction then becomes .

b-\-m

In order to compare the two fractions, they must be reduced to the

, . , • , •
ab+am

^ , ^ ,
ab+bm

same denominator, which eives -7-—;— for the first, and -^

b^+bm b^'+ bm

for the second.
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Now, the denominators being the same, that fraction will be the

greatest which has the greater numerator. But the two numera-

tors, ah-\-am,, and ai-\-bm, have a common part ab ; and the part bm

of the second is greater than the part a/n of the first, since J>a.

Hence the second fraction is greater than the first.

If the given fraction is improper, or a>5, it is plain that the nu-

merator of the second fraction will be less than that of the first,

once bm would be less than am.

CHAPTER n.

Of Equations of the First Degree.

79. An Equation is the expression of two equal quantities with

the sign of equality placed between them. Thus, x^=a-{-b is an

equation, in which x is equal to the sum of a and b,

80. By the definition, every equation is composed of two parts,

separated from each other by the sign =. The part on the left of

the sign, is called the first member, and the part on the right, is called

the second member ; and each member may be composed of one or

more terms.

81. Every equation may be regarded as the enunciation, in alge-

braic language, of a particular problem. Thus, the equation

a;+a;=: 30, is the algebraic enunciation of the following problem

;

To find a number which, being added to itself, shall give a sum

equal to 20.

Were it required to solve this problem we should first express it

in algebraic language, which would give the equation

x-\- a;=:30.

By adding a; to itself, we have 2a;=:30.

and by dividing by 2, we obtain .... x= 15.

6*
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Hence we see that the solution of a problem by algebra, consists

of two distinct parts.

15^. To express algebraically tlie relation between the known and

uiiknown quantities.

2d. Tofind a value for the unknown quantity, in terms of those

which are known, which substituted in its place in the given equation

vnll satisfy the equation ; that is, render tJie first meinber equal to the

second.

This latter part is called the solution of the equation.

82. An equation is said to be verified, when such a value is sub-

stituted for the unknown quantity as will prove the two members of

the equation to be equal to each other.

83. Equations are divided into different classes. Those which

contain only the first power of the unknown quantity, are called

equations of the first degree. Thus,

ax -\- b =1 cx+d is an equation of the 1st. degree.

2x^—'6x =5 —2a;'' is an equation of the 2d. degree.

4a;'— 5a;''=3x4- 11 is an equation of the 3d. degree.

In general, the degree of an equation is denoted by the greatest

of the exponents with which the unknown quantity is affected.

84. Equations are also distinguished as numerical equations and

literal equations. The first are those which contain numbers only,

with the exception of the unknown quantity, which is always de-

noted by a letter. Thus, 4a;— 3=2a;-f 5, 3a;'— a;=8, are numerical

equations. They are the algebraical translation of problems, in

which the known quantities are particular numbers.

The equations ax—b=:zcx-\-d, ax^-{-bx-=c, are literal equations,

in which the given quantities of the problem are represented by

letters.

85. It frequently occurs in algebra, that the algebraic sign + or

— , which is written, is not the true sign of the term before which

it is placed. Thus, if it were required to subtract —b from a, we

should write
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Here the true sign of the second term of the binomial is pkis, al-

though its algebraic sign, which is written in the first member of the

equation, is — . This minus sign, operating upon the sign of h,

which is also negative, produces a plus sign for b in the result.

The sign which results, after combining the algebraic sign with the

sign of the quantity, is called the essential sign of the term, and is

often different from the algebraic sign.

By considering the nature of an equation, we perceive that it

must possess the three following properties.

1st. The two members are composed of qu antities of the same kind.

2d. The two members are equal to each other.

3d. The essential sign of the two members must be the same.

Equations of the First Degree involving but one unknown

quantity.

86. An axiom is a self-evident proposition. We may here state

the following.

1. If equal quantities be added to both members of an equation,

the equality of the members will not be destroyed.

2. If equal quantities be subtracted from both members of an

equation, the equahty will not be destroyed.

3. If both members of an equation be multiphed by the same

number, the equality will not be destroyed.

4. If both members of an equation be divided by the same num.

bar, the equality will not be destroyed.

87. The transformation of an equation consists in changing its

form without affecting the equality of its members.

The following transformations are of continued use in the resolu-

tion of equations.

First Transformation.

88. When some of the terms of an equation are fractional, to re-

duce the equation to one in which the terms shall be entire. •
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Take the equation,

2x 3 X

First, reduce all the fractions to the same denominator, by the

knowTi rule ; the equation becomes

48a; 54a; 12a;

"72 72""*" 72
~^^

and since we can multiply both inembers by the same number with-

out destroying the equality, we will multiply them by 72, which is

the same as suppressing the denominator 72, in the fractional terms,

and multiplying the entire term by 72 ; the equation then becomes

48x'— 54a;+12a;=792.

or dividing by 6 8a;— 9a;+ 2a;=:132.

89. The last equation could have been found in another manner

by employing the least common multiple of the denominators.

The common multiple of two or more numbers is any number

which they will both divide without a remainder ; and the least

common multiple, is the least number which they will so divide.

The least common multiple will be the pz'oduct of all the numbers,

when, in comparing either with the others, we find no common fac-

tors. But when there are common factors, the least common mul-

tiple will be the product of all the numbers divided by the product

of the common factors.

The least common multiple, when the numbers are small, can

generally be found by inspection. Thus, 24 is the least common

multiple of 4, 6, and 8, and 12 is the least common multiple of

3, 4 and 6.

2a; 3 a;

Take the last equation — —a;+—=11.

We see that 12 is the least common multiple of the denomina-

tors, and if we multiply all the terms of the equation by 12, and

divide by the denominators, we obtain

8a;— 9.r+2x=132.

the same equation as before found.
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90. Hence, to make the denominators disappear from an equation,

we have the following

RULE.

I. Form the least common multiple of all the denominators.

II. Multiply each of the entire terms by this multiple, and each of

the fractional terms hy the quotient of this multiple divided by the de-

nominator of the term thus multiplied, and omit the denominators of

the fractional terms.

EXAMPLES.

1. Clear the equation ~r-\—^—4=3 of its denominators.

Ans. 7x+5x-140=105.

2. Clear the equation -7 —-\-fz=g.

Alls. ad—bc-\-ldf=zbdg.

3.. In the equation

ax 2c^x Abc'^x 5a^ 2c^

b ab a? W a

the least common multiple of the denominators is (V'V ; hence clear-

ing the fractions, we obtain

a''bx-2a%c''x^\aW=M''&x-ha^-^2a'^We—2,aW.

Second Ti'ansformatiun.

91. When the two members of an equation are entire polynomials,

to transpose certain terms from one member to the other.

Take for example the equation .... 5x— 6=84-2x.

If, in the first place we subtract 2a? from

both members, the equality will not be de-

stroyed, aud we have 5a;— 6— 2a;=:8.

Whence we see that the term 2a;, which was additive in the

second member becomes subtractive in the first.
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In the second place if we add 6 to both

members, the equahty will still exist and

we have 5x— 6— 2a;+6=8+6.
Or, since —6 and +6 destroy each other 5a;—2a;=8+6.

Hence the term which was subtractive in the first member, passes

into the second member with the sign of addition.

Again, take the equation ax-\-b=d—cx.

If we add ex to both members

and subtract b from them, the

equation becomes .... ax-\-b-\-cx—b=d—cx+cx—b.

or reducing ax-\-cx=d—b.

Therefore, for the transposition of the terms, we have the

following

RULE.

Any term of an equation may be transposedfrom one member to the

other by changing its sign.

92. We will now apply the preceding principles to the resolution

of the equation,

4a;— n=2,r+5.

by transposing the terms — 3 and 2a; it becomes

4a;— 2a;=54-3

Or reducing . 2x=;8

8
Dividing by 2 . a;=—=4.

Now, if 4 be substituted in the place of x in the first equation, it

becomes

4x4—3=2x4+5
or .... 13=13.

Hence, the value of x is verified by substituting it for the unknown

quantity in the given equation.

For a second example, take the equation

5a; Ax 7 13a;
1 o

12 3 8 6 •
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By making the denominators disappear, we have

lOx— 32j;—312= 21 — 52x

or, by transposing . lOx'— 32a;+52a;= 21 +312
by reducing . . . 300;= 333

333 111
dividing by 30 . . a,'=-—-=:——

—

=11,1.
oO 10

a result which may be verified by substituting it for x in the given

equation.

For a third example let us take the equation

(3a— ic) (a—b)+2ax=4:h{x-[-a).

It is first necessary to perform the multiplications indicated, in or-

der to reduce the two members to two polynomials, and thus be able

to disengage the unknown quantity x, from the known quantities.

Having done that, the equation becomes,

Sa''— ax—2ab-\-bx-\-2ax=z4:bx-\-4:ab.

or by transposing . —cw;+Z'a;+2avr— 4ix =4a5+3ai— 3a'

by reducing . . ax—Sbx =lab— So'

Or, (Art. 48). . . {a-Sb)x=:7ab-Sa^

Dividing both members by a—Zb we find

7a5— 3a^

^= a-3b '

93. Hence, in order to resolve any equation of the first degree,

we have the following general

RULE.

I. If there are any denominators, cause them to disappear, and per-

form, in both members, all the algebraic operations indicated : we thus

obtain an equation the tico members of which are entire polynomials.

II. Tlien transpose all the terms affected with the unknown quantity

into the first member, and all the known terms into the second member.

III. Reduce to a single term all the terms involving x : this term

will be composed of two factors, one of which will be x, and the other

all the multipliers of x, connected with their respective signs.
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IV. Divide both members by the number or polynomial by which the

unknown quantity is multiplied.

EXAMPLES.

1. Given 3a;— 2+24=31 to find X. Ans. x=S.

1

2. Given a;+18= 3a;— 5 to find a;. Ans. a;=ll—

.

3. Given 6— 2a;+10=20— 3a;— 2 to find x. Ans. x=2.

4. Given x+—a;+—a;=ll to find a;. Ans. x=6.
Z o

1 6
5. Given 2a;——a;+l= 5a;— 2 to find x. Ans. x=—,

a
6. Given Saj:+—— S=bx—a to find x.

6-Sa
Atis. X-.

'6a-2b

7. Given —-—1-^=20 — to find a;.

1
Ans. a;=23—

.

4

a;+3 X x—b
8. Given ~^+"§"^'*'"~4~ ^° ^'

Ans. a;=3—

.

lo

ax—b a bx bx—a
9. Given —-—+y=y 3— ^° ^"'^ ^•

3*
Ans. X-

'2a— 2b'

10. Find the value of x in the equation

a—

A

a+o
a*+ Sa^b+'ia''b''—6aP+ 2b*

Ans. x=
2b(2a''+ab—b')
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Of Questions producing Equations of the- First Degree

involving hut a single unknown que

94. It has already been observed (Art. 81), that the sohition of

a problem by algebra, consists of two distinct parts.

1st. To express the conditions of the problem algebraically ;

and

2d. To disengage the unknown from the known quantities.

We have already explained the manner of finding the value of

the unknown quantity, after the question has been stated ; and it

only remains to point out the best methods of enunciating a problem

in the language of algebra.

This part of the algebraic resolution of a problem, cannot, like

the second, be subjected to any well defined rule. Sometimes the

enunciation of the problem furnishes the equation immediately ; and

sometimes it is necessary to discover, from the enunciation, new con-

ditions from which an equation may be formed. The conditions

enunciated are called explicit conditions, and those which are de-

duced from them, implicit conditions.

In almost all cases, however, we ai-e enabled to discover the equa-

tion by applying the following

RULE.

Consider the problem solved ; and then indicate, hj means of alge.

hraic signs, upon the known and unknown quantities, the same course

of reasoning and operations which it ivould he necessary to perform-,

in order to verify the unknown quantity, had it been given.

QUESTIONS.

1. Find a number such, that the sum of one half, one third, and

one fourth of it, augmented by 45, shall be equal to 448.

Let the required number be denoted by . . . x ,

7
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X
Then, one half of it will be denoted by . . . —

.

X
one third of it . . by . . • -^.

o

X
one fourth of it . . by . . . —

.

And by the conditions, —-+—+-^+45=448.
^ o 4

Or by subtracting 45 from both members,XXX_+_+_=403.

B^ clearing the terms of their denominators,we obtain

6a;+4a;+3a;=4836.

or . . 13a;=:4836'.

4836
Hence . 0;=——-=372.

lo

Let this result be verified.

^72 S72 S72-^-+-— +-^-l-45=-186+ 124+ 93+45=448,
2 o 4

2. What number is that whose third part exceeds its fourth, by

16.

Let the required number be represented by x. Then,

-3-^== the third part.

1
the fourth part

And by the question
1 1
-x--.= 16.

or, . 4a;-3a:=192.

a;=192.

Verification.

192 192
-^ T-=64-48=16.
3 4
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3, Divide $1000 between A, B, and C, so that A shall have i72

more than B, and C $100 more than A.

Let . . x= B's share of the $1000.

Then . . x-\- 12= A's share.

And . . x+n2= C's share.

Their sum 3x4-244=1000.

Whence, 3a;= 1000-244=756

or
756

a;=—;—-=$252= B's share.
3

X-}- 72=252+ 72=$324= A's share.

And a;+172=252+ 172=$424= C's share.

Verification.

252+324+424=1000.

4. Out of a cask of wine which had leaked away a third part,

21 gallons were afterwards drawn, and the cask being then gauged,

appeared to be half full : how much did it hold ?

Suppose the cask to have held x gallons.

a;

Then, —= what leaked away.

And —+ 21= all that was taken out of it.

o

x 1
Hence, —+ 21=—a; by the question.

o Z

or 2a;+126=3x-.

or — .-c =— 126.

or X = 126, by changing the signs of both

members, which does not destroy their equahty.

Verification.

126 126
__+21=42+21=63=-^.

5. A fish was caught whose tail weighed 9lb. ; his head weighed
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as much as his tail and half his body, and his body weighed as

much as his head and tail together ; M'hat was the weight of the

fish?

Let . 2 a;= the weight of the body.

Then . 9+a;= weight of the head.

And since the body weighed as much as both head and tail

2a;=9+ 9+a;

or . . 2x—a;=:18 and a;=18.

Veiification.

2a;=:36Z^'= weight of the body.

9+a;=27/3= weight of the head.

9Zi= weight of the tail.

Hence, . 72 lb= weight of the fish.

6. A person engaged a workman for 48 days. For each day

that he laboured he received 24 cents, and for each day that he was

idle, he paid 12 cents for his board. At the end of the 48 days, the

account was settled, when the labourer received 504 cents. Re.

quired the number of working days, and the number of days lie was

idle.

If these two numbers were known, by multiplying them respec-

tively by 24 and 12, then subtractmg the last product from the first,

the result would be 504. Let us indicate these operations by means

of algebraic signs.

Let . . X = the number of working days.

48— a; = the number of idle days.

Then 24X'i-' = the amount earned, and

12(48—x)= the amount paid for his board.

Then 24a;— 12(48— x) =504 what he received,

or 24x-576+ 12x=504.

or 36a;=504+576= 1080

1080
and a;=—^j^=30 the working days.

whence, 48—30=18 the idle days.
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Verification.

Thirty day's labor, at 24 cents a day,

amounts to 30x24=720 cts.

And 18 day's board, at 12 cents a day,

amounts to 18x12=216 cts.

And 720—216=504, the amount received.

This question may be made general, by deno-

ting the whole number ofworking and idle days.

The amount received, for each day he worked,

The amount paid for his board, for each idle

day,

And the balance due the laborer, or the result

of the account,

As before, let the number of working days be

represented .......
The number of idle days will be expressed

Hence, what he earns will be expressed

and the sum to be deducted, on account of his board.

The equation of the problem therefore is,

ax— h(^n—x)^c

whence ax—h n+lx=c
{a-\-h)x=c +^n

c -{-hn

c -\-hn nn-\-ln—c— hn

by n.

by a.

by h.

by c.

by X.

by n—x.

by ax.

by b{n--x).

and consequently,
a +b a-i-b

071—

c

a+b

7. A fox, pursued by a greyhound, has a start of 60 leaps. He
makes 9 leaps while the greyhound makes but 6 ; but three leaps of

the greyhound are equivalent to 7 of the fox. How many leaps

must the greyhound make to overtake the fox ?

From the enunciation, it is evident that the distance to be passed
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over by the greyhound is composed of the 60 leaps which the fox is

in advance, plus the distance that the fox passes over from the mo-

ment when the greyhound starts in pursuit of him. Hence, if we

can find the expression for these two distances, it will be easy to

form the equation of the problem.

Let «=: the number of leaps made by the greyhound before

he overtakes the fox.

Now, since the fox makes 9 leaps while the greyhound makes

9 3
but 6, the fox will make — or — leaps while the greyhound

makes 1 ; and, therefore, while the greyhound makes x leaps, the

3
fox will make —x leaps.

Hence, the distance which the greyhound must pass over, will be

3
expressed by 60-\-—x leaps of the fox.

It might be supposed,that in order to obtam the equation, it would

3
be sufficient to place x equal to 60+-^a;; but in doing so, a

manifest error would be committed ; for the leaps of the greyhound

are greater than those of the fox, and we would then equate hetero-

geneous numbers, that is, numbers referred to different units.

Hence it is necessary to express the leaps of the fox by means of

those of the greyhound, or reciprocally. Now, according to the

enunciation, 3 leaps of the greyhound are equivalent to 7 leaps of

7
the fox, then 1 leap of the greyhound is equivalent to — leaps of

the fox, and consequently a; leaps of the greyhound are equivalent

Ix
to -r- of the fox.

<i

Ix 3
Hence, we have the equation —= 60+—x;

making the denominators disappear 14x=360+ 9a:,

Whence .... 5x=360 and x=72.
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Therefore, the greyhound will make 72 leaps to overtake the fox,

3
and during this time the fox will make 72 X"^ or 108.

Verification.

72x7
The 72 leaps of the greyhound are equivalent to —r—=168

leaps of the fox.

And 60+ 108=168, the leaps which the fox made from the

beginning.

8. A father who had three children, ordered in his will, that his

property should be divided amongst them in the following manner :

the first to have a sum a, plus the nth part of what remained after

subtracting a from the whole estate ; the second, a sum 2a plus the

nth part of what remained after subtracting from it the first part and

2a ; the third, to have a sum 2a plus the nth part of what remain-

ed after subtracting from it the first two parts and 3a. In this man-

ner his property was entirely divided ; required the amount of it.

Let X denote the property of the father. If by means of this

quantity, algebraic expressions can be formed for the three parts,

we may subtract their sum from the whole property x, and the re-

mainder placed equal to zero, will give the equation of the prob-

lem. We will then endeavour to determine successively these

three parts.

Since x denotes the property of the father, x—a is what remains

after having subtracted a from it ; therefore x—a is the first re-

x—a
mainder, and the part which the first child is to have, is a-\ >

or reducing to a common denominator,

a7i-\-x—a
=lst part.

In order to form the 2d part, this first part and 2a must be subtract-

(an-\-x—a)
, .

ed from x : this gives x—2a -, or reducing to a com-
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mon denominator and subtracting,

nx— ^an— x-\-a
2d. remainder.

N ow, the second part is composed of 2a, plus the nih. part of this

nx—^an—x-\-a
remainder; therefore, it is 2a-\ , or reducing to

a common denominator,

2an^-\-nx—^an—x-{-a
—^ =2d. part.

Subtracting the two first parts pkis 3fl, from x, we have

{an+x—a) (2avF-\-nx—^an—x-\-a)

n ir
'

Or, reducing to a common denominator, and performing the opera-

tions indicated,

n^x—Qarv'—^nx-^-^an-^x—a
7. 3d. remainder.

„ , ^ .
n^x—6a7r— 27ix-\-4.a7i-\-x—a

Hence the 3d part is 3a-]

Or, reducing to a common denominator,

tian^-\-n'^x—6an^—2nx-\-4ian-\-x—a
:3d part.

But from the enunciation, the estate of the father is found to be

entirely divided. Hence, the difference between x, and the sum of

the three parts should be equal to zero. This gives the equation

an 4-x— a 2an^+ nx—San—x-\-a

, =0.
2,a')^-\-ivx —%aT?—2nx-\-^:an-\-x—a

by making the denominators disappear, and performing the opera-

tions indicated, we have

n='x— 6a7i3— S/i^'a'+lOan^+Snx—5an—a;+a=0.
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Whence,

_6an'-10«n2+5an-a_a(6n='— 1071^+ 571-1)
^^

iv'—Sn^+ dn— l
~ rv'—Sn^-i-Sn—l

A more simple equation and result may be obtained, by observ-

ing, that the part which goes to the third child is composed of 3a,

plus the 7ith part of what remains, and that the estate is then entirely

exhausted ; that is, the third child has only the sum 3a, and the re-

mainder just mentioned is nothing.

Now the expression for this remainder has been found to be

ri^x—6an^—2nx-\-4:an-\-x—a

n^
•

Placing this equal to zero, and making the denominator disappear,

we have

n^x—6an^—2nx-\-4ia7i-\-x—a^0.

6an^—4:an-{-a a(6n^—4:n-\-l)
Whence x= t,

—-———= ^

—

„ , ,
7r— 2/t+l 7r— 2/1+1

Ve}ificatio7i.

To prove the numerical identity of this expression with the pre-

ceding, it is only necessary to show that the second can be deduced

from the first, by suppressing a factor common to its numerator and

denominator. Now if we apply the rule for finding the greatest

common divisor (Art. 70.), to the two polynomials

a(67i2- 1071^+571-- 1) and v? —Zii'J^^n—X,

it will be seen that ?i— 1 is a common factor, and by dividing the

numerator and denominator of the first expression by this factor,

the result will be the second.

This problem shows the beginner how important it is to seize

upon every circumstance in the enunciation of a question, which

may facilitate the formation of the equation, otherwise he runs the

risk of arriving at results more complicated than the nature of the

the question requires.

The conditions which have served to form successively the ex-
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pressions for the three parts, are the explicit conditions of the pro-

blem ; and the condition which has served to determine the most

simple equation of the problem, is an implicit condition, which a

little attention has sufficed to show, was comprehended in the enun-

elation.

To obtain the values of the three parts, it is only necessary to

substitute for x its value in the three expressions obtained for these

parts.

a(6n2— 471+1) . , ,

Ai)p]y the formula x=-^—^ , ,
to a particular example.

Let a=10000, n=5.

We have

10000(6x25-4x5+ 1) 10000x131 1310000

25-10+ 1 16 16

To verify the enunciation in this case :

= 81875.

81875-10000
The first child should have, lOOOOH r , or 24375.

o

There remains then 81875— 24375, or 57500, to divide between

the other two children.

57500-20000
The second should have, 20000 H z , or 27500.

o

Then there remains 57500— 27500, or 30000, for the third

child. Now 30000 is triple of 10000 ; hence the problem is verified.

We can give a more simple and elegant solution to this problem,

but it is less direct. It also depends upon the remark, that after hav-

ing subtracted 3a and the two first parts from the whole estate, no-

thing remains.

Denote the three remainders mentioned in the enunciation by r,

r', r" . The algebraic expressions for the three parts will be

r r' r"
fl+— , 2«+— , 3a+—

.

n n n

Now, 1st. From the enunciation, it is evident that r"=0.

Therefore the third part is 3a.
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r'

2d. What remains after giving to the second child 2a-]

/ (n—iy
can be represented by r ——r or .

Moreover, this remainder also forms the third part. Therefore

we have

(n— l)r' San
-=Sa; whence /=

n n—

1

3an 2a
Then the second part is 2a-\ --^n=2a-j- -, or convert-^ n—

1

«—

1

2«n+of
ing the whole number into a fraction, and reducing, —

.

r
3d. The remainder, after giving to the first a-] , can be ex-

r (n— l)r
pressed by r or . Now this remainder should form

2an-\-a
the two other parts, or 3a-) —

.

_ (n—l)r 2an-\-a ban— 2a
Therefore, -^ '—=2a+- -

11 n— \ 11—1

ban— 2a n 5an^— 2aii
Hence, r= —X 7

^77-=—-, r-^—

.

And consequently the first part is

5an^—2an ban— 2a
«H 7 T^—-^n=a-\-

{n-lf
"~"^ (n-iy

'

ban— 2a an" -{-San—a

~""^n2-2n+ l
"^ n"—2n+l '

Ther the whole estate is

2an-\-a an" -{-San—

a

Sa+ V+-n—

1

n^—2n+l

Or, by reducing the whole number and fractions to a common

denominator,
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3a(w^—2w+l)+ (2an+a) (n— l)+a7v'+San—a
H^— 27J+ 1

*

Or performing the operations indicated and reducing

6an^— 4an+a _o(6?j='— 4n+l)

7i^-2rt+l ~ (n-lf '

which agrees with the preceding result.

This solution is more complete than the preceding, since we obtain

from it the estate of the father, and the expressions for the three

parts.

9. A father ordered in his will, that the eldest of his children

should have a sum a, out of his estate, plus the «th part of the re-

mainder ; that the second should have a sum 2a, plus the nth part of

what remained after having subtracted from it the first part and 2a
;

that the third should have a sum Sa, plus the nth part of the new re-

mainder—and so on. It is moreover supposed that the children

share equally. Required, the value of the father's estate, the

share of each child, and the number of children.

This problem is remarkable, because the number ofconditions con-

tained in the enunciation is greater than the number of unknown

values required to be found.

Let the estate of the father be represented by x : then will x—a
express what remains after having taken from it the sum a. There-

fo)-e the share ofthe eldest is

x—a an-\-x—a
a-\- or =lst. part.

n n ^

Subtracting the first part, and 2a, from a;, we have

-x—a) nx—
^or,

n

nx—^an— x-\-a
the nth part of which is, . tt

Hence, the share of the second child is

nx— San—x+a 2an^-\-nx—^an—r+a
2a-] , or ^ = 2d part.

(an-{-x—a) nx—San—x-{-a
2a—^^ or,

n n
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In like manner, the other parts might be formed, but as all the

parts should be equal, it suffices to form the equation of the problem,

to equate the two first parts, which gives

an+ a;— a 2an^-\- nx— Ban —x-\-a

n
~

r?
'

whence,

x=an^—2an+a=a{n— If.

Substituting this value of a; in the expression for the first part,

we find

an+an^— 2an -{-a—

a

or reducing.

71

an—a=^a{n— \) ;

and as the parts are equal, by dividing the whole estate by the first

part, we will obtain a quotient that will show the number of child.

an^—2an-\-a
, , , ^

ren; therefore, , or n—l, denotes the number of
an—

a

children.

The father's estate, . . an" —2an-\-a=a{n— lf.

The share of each child, . rt(w— 1).

Whole number of children, . {i^—^)'

It yet remains to be shown, that the other conditions of the pro.

blem are satisfied ; that is, that by giving to the second child, 2a plus

the nth part of what remains ; to the third, 2>a plus the nth part of

what remains, &c., the share of each child is in fact (n— 1)«.

The difference between the estate of the father and the first part

being «(n— 1)^—a(n— 1), the share of the second child will be

a(n-lY-a(n-\)-2a 2a(n-l)+a{n-lf-a{n-\)
2a-\-- ^

, or -^ ^ ^ -,
n n

and reducing

a(n-\)-\-a{n-\y a{n-\) {\+n-l)
or ,

n n

8



or fl(n— 1).

In like manner, the difference between a{n—iy and the two first

parts being, a{n—iy—2a{n—l), the third part will be

a{n-lY-2a{n-l)-2a
Sa-\ ,

n

which being reduced, becomes

a{n-l)+a{n-iy
a(n-l).

In the same way we would obtain for the fourth part

fl(7i_l)2_3rt(,i_l)_4a a(,n—l)+ci(.7i—iy
4a -1 , or , and so on.

71 n

Hence all the conditions of the enunciation are satisfied.

10. What number is that from which, if 5 be subtracted, | of

the remainder will be 40 ? Am. 65.

11. A post is \ in the mud, i in the water, and ten feet above the

water : what is the whole length of the post ?

Ans. 24 feet.

12. After paying I and \ of my money, I had 66 guineas left in

my purse : how many guineas were in it at first ?

Ans. 120.

13. A person was desirous of giving 3 pence a piece to some

beggars, but found he had not money enough in his pocket by 8

pence : he therefore gave them each 2 pence and had 3 pence re-

maining : required the number of beggars. Ans. 11.

14. A person in play lost \ of his money, and then won 3 shil-

lings ; after which he lost \ of what he then had ; and this done,

found that he had but 12 shillings remaining : what had he at first ?

Ans. 205.

15. Two persons, A and B, lay out equal sums of money in trade
;

A gains $126, and B loses $87, and A's money is now double of B's :

what did each lay out ? Ans. $300.

16. A person goes to a tavern with a certain sum of money in his

pocket, where he spends 2 shillings ; he then borrows as much mo-
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ney as he had left, and going to another tavern, he there spends 2

shillings also ; then borrowing again as much money as was left, he

went to a third tavern, where likewise he spent two shillings and

borrowed as much as he had left ; and again spending 2 shillings

at a fourth tavern, he then had nothing remaining. What had he

at first ? -471S. 3*. 9d.

Of Equations of the First Degree involving two or more

unknown quantities.

95. Although several of the questions hitherto resolved, contain-

ed in their enunciation more than one unknown quantity, we have

resolved them by employing but one symbol. The reason of this

is, that we have been able, from the conditions of the enunciation,

to express easily the other unknown quantities by means of this syra-

bo] ; but this is not the case in all problems containing more than

one unknown quantity.

To ascertam how problems of this kind are resolved : first, take

some of those which have been resolved by means of one unknown

quantity.

1. Given the sum a, of two numbers, and their difference h, it is

required to find these numbers.

Let X— the greater, and y the less number.
|

Then by the conditions .... x+y= a.

and .... x—y=h.

By adding (Art. 86. Ax. 1.) . . . 2x=a+i.

By subtracting (Art. 86. Ax. 2.) . . 2y—a—b.

Each of these equations contains but one unknown quantity.

a+b
From the first we obtain . . • x= .

a— b

And from the second .... u=—-—

.
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Verification,

a+i a— b 2a ,
o+ i a— b 2b

-2-+^-=¥= '^' ^"^ "2 ^=Y=^-
For a second example, let us also take a problem that has been

already solved.

2. A person engaged a workman for 48 days. For each day

that he labored he was to receive 24 cents, and for each day that he

was idle he was to pay 12 cents for his board. At the end of the

48 days, the account was settled, when the laborer received 504

cents. Required the number of workmg days and the number of

days he was idle.

Let X — the number of working days.

y = the number of idle days.

71 — the whole number of days = 48.

a = what he received per day for work = 24 cts.

b = what he paid per day for board = 12 cts.

c = what he received at the end of the time = 504.

Then, ax = what he earned,

And by = what he paid for his board.

x-\- y=n.
We have by the question . . . . ,

•' ^
( ax—by:= c.

It has already been shown that the two members of an equation

can be multiplied by the same number, without destroying the equal-

ity ; therefore the two members of the first equation may be multi-

plied by b, the co-efRcient of y in the second, and we have

The equation ..... bx-{-by=bji.

Which, added to the second . . ax— by= c.

Gives ...... ax-\-bx^bn-\-c.

bn-\-c
Whence ...... a;=——;.

a+b

In like manner, multiplying the two members of the first equa-

tion by a, tlie co-efficient of x in the second, it becomes
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From which, subtract the second equation,

And we obtain

Whence

By introducing a symbol to represent each of the unknown quan-

titles in the preceding problem, the solution which has just been

given has the advantage of making known the two required num.

bers, independently of each other.

Elimination.

96. The method which has just been explained of combining two

equations, involving two unknown quantities, and deducing there-

from a single,equation involving but one, may be extended to three,

four, or any number of equations, and is called elimination.

There are three principal methods of elimination

:

1st. By addition and subtraction.

2d. By substitution.

3d. By comparison.

We will consider these methods separately.

Eliminalion hy Addition and Subtraction.

97. Take the two equations . . , ,,

which may be regarded as the algebraic enunciation of a problem

containing two unknown quantities. If, in these equations, one of

the unknown quantities was affected with the same co-efRcient, we

might, by a simple subtraction, form a new equation which would

contain but one unknown quantity, and from which the value of this

unknown quantity could be deduced.

Now, if both members of the first equation be multiplied by 9,

the co-efficient of y m the second, and the two members of the

second by 7, the co-efficient of y in the first, we will obtain

8*
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45a,'+63^=:387,

equations which may be substituted for the two first, and in which

y is affected with the same co-efficient.

Subti'acting, then, the first of these equations from the second,

there results 32a;=96, whence x=3.

Again, if we muhiply both members of the first equation by 11,

the co-efficient of x m the second, and both members of the second

by 5, the co-efficient of x in the first, we will form the two equations

55a;+77?/=473,

o/ic; \
which may be substituted for the two

ODX-\-HtOy— o45, ;

proposed equations, and in which the co-efficients of « are the same.

Subtracting, then, the second of these two equations from the first,

there results 32^=128, whence 2/=4.

Therefore a;=3 and y=,4:, are the values of x and y, which

should verify the enunciation of the question. Indeed we have,

1st. 5x3+7x4=15+28=43;
2d. 11x3+9x4=33+36=69.

The method of elimination, just explained is called the method by

addition and subtraction, because the unknown quantities disappear

by additions and subtractions, after having prepared the equations

in such a manner that one unknown quantity shall have the same

co-efficient in two of them.

Elimination by Substitution.

5a;+7t/=43.
98. Take the same equations . . # , , . „^

( lla;+9j/=69.

Find the value of x in the first equation, which gives

43-7y

Substitute this value of x m the second equation, and we have

43-7y
nX—~+9y=Q9.
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or

or

Hence

And

473-77?/+45j/=345.

— d2y=— l28.

y=4.
43-28

This method, called the method by substitution, consists in finding

the value of one of the unknown quantities m one of the equations,

as if the other unknown quantities were already determined, and in

substituting this value in the other equations; in this way new equa-

tions are formed, which contain one unknown quantity less than the

given equations, and upon which we operate as upon the proposed

equations.

Elimination by Comparison.

5x+72/=43

llx+9y=e9.

Finding the value of a; in the first equation, we have

43 -7z/

99. Take the same equations

have

And finding the value of a; in the second, we obtain

69— 9y

Let these two values of x be placed equal to each other, and we

43— 7y_ 69- 9y
~ IT

Or, .

Or, .

Hence,

And,

473-771/= 345-45?/

-d2y= -128.

y= 4

69-36

11

This method of elimination is called the method by comparison,

and consists in finding the value ofthe same unknown quantity in all

the equations, placing them equal to each other, two and two, which
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necessarily gives a new set of equations, containing one unknown

quantity less than the other, upon which we operate as upon the

proposed equations.

But there is an inconvenience in the two last methods, which the

method by addition and subtraction is not subject to, viz. : they pro-

duce new equations, containing denominators, which it is afterwards

necessary to make disappear. The metliod by substitution is, how-

ever, advantageously employed whenever the co-efficient of one of

the unknown quantities is equal to unity in one of the equations, be-

cause then the inconvenience ofwhich we have just spoken does not

occur. We shall sometimes have occasion to employ it, but gene-

rally, the method by addition and subtraction is preferable. It more-

over presents this advantage, viz. : when the co-efficients are not

too great, we can perform the addition or subtraction at the same

time with the multiplication which is necessary to render the co-ef-

ficients equal to each other.

100. Let us now consider the case of three equations involving

three unknown quantities.

{5a;-6j/+42=15.

7x-{-4^y—Sz=19.

2x+ ?/+6s=46.

To eliminate 2 b)' means of the first two equations, multiply the

first by 3 and the second by 4, then since the co-efficients of z have

contrary signs, add the two results together : this gives a new

equation ...... 43a;— 2]/= 121
"

Multiplying the second equation by 2, a fac-

tor of the co-efficient of s; in the third equation,

and adding them together, we have . . 16x-\-9y= 84

The question is then reduced to finding the values of x and y,

which will satisfy these new equations.

Now, if the first be multiplied by 9, the second by 2, and the re-

sults be added together, we find

419a;=rl257, whence x=3.
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We might, by means of the two equations involving x and y, de-

termiiie y in the same way we have determined x ; but the value of

y may be determined more simply, by observing that the last of

these two equations becomes, by substituting for x its value found

above,

84-48
48+9?/=84 whence y= ——=4.

In the same manner the first of the three proposed equations, be-

comes, by substituting the values of x and y,

24
15—24+4^=15, whence z—~=6.

101. Hence, if there are m equations involving a like number of

unknown quantities, the unknown quantities may be eliminated by

the following

RULE.

I. To eliminate one of the unknown quantities, comhine any one of

the equations with each of the m— 1 others ; there will thu^ he obtain-

ed m— 1 new equations containing m— 1 unknown quantities.

II. Eliminate another unknown quantity hy combining one of these

new equations with the m— 2 others ; this will give m— 2 equations

containing m— 2 unknoion quantities.

III. Continue this series of operations until a single equation con.

taining but one unknown quantify is obtained,from which the value of

this unknoion quantity is easily found. Then hy going back through

the series of equations which have been obtained, the values of the

other unknoion quantities may be successively determined.

102. It often happens that each of the proposed equatiotis does

not contain all the unknown quantities. In this case, with a little

address, the elimination is very quickly performed.

Take the four equations involving four unknown quantities :

2x-Zy+2z=\Z\ . . (1) 4i/+2sr=14 . . (3).

^u-2x=Zo\ . . (2) 5i/+3M=32 . . (4).



By inspecting these equations, we see that the ehmination of % in

the two equations, (1) and (3), will give an equation involving .r and

y ; and if we eliminate u in the equations (2) and (4), we will ob-

tain a second equation, involving x and ?/. These two last unknown

quantities may therefore be easily determined. In the first place,

the elimination of z in (1) and (3) gives . . 7^—2x=l
That of M in (2) and (4), gives . . . 20j/+6a;=38

Multiplying the first of these equations by 3,

and adding

Whence

Substituting this value in 7?/— 2x=l, we find

Substituting for x its value in equation (2),

it becomes 4m—6=30, whence

And substituting for y its value in equation

(3), there results ......

41t/=41

y= 1

x= 3

EXAMPLES. yy

1. Given 2a;+3?/=16, and 2>x—2y=\\ to find the values of

a; and y. Ans. a;=5, 3/=2.

2. Given
'2x 3i/ 9 3x 2j/ 61

5 + 4 ~20 ^"^
4 + 5 = 120 ^° ^^ ^^'^ ''^^"''

of X and y.
1 1Ans. x^—,

y=Y-

3. Given
X y
y+7?/=99, and Y+7a;=51, to find the values of

X and y. Ans. xz=zl, y=\A.

4. Given ^-..=-^-,8, .a t''+:-B=v+-.
to find the values of x and y. Ans, x—%^, ?/=40.

' ^+ y+ z=29^

5. Given
x-\- 2*/+ 32=62

1 , ^ , ,

< > to find X, y and z.

Am. x=Q, y=9, z=12.
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6. Gi

7. Given <'

2x+ Ay— 3z=22

4a;— 2y-\- 5z= 18

6a;+ 7y— 2=63

"+Y^+T^=3"^

T^'+T^+-5-^=^''^

to find a.', y and t.

iln5. a;=3, y='!, 2=4.

> to find X, y and z.

T^+T^+^ 12

2z+ 3w=17^

x=12, y=20, 5=30.

> to find X, y, z, u, and I.

Ix-

Ay— 2z+ <=11

8. Given <f .5^— 3.c- 2u— 8

4?/— 3if+ 2/ = 9

3z+ 8u=33^

^ns. a;=2, ]/=4, z=3, u=3, t=l.

103. In all the preceding reasoning, we liave supposed the num-

ber of equations equal to the number of symbols employed to de-

note the unknown quantities. This must be the case in every pro-

blem involving two or more unknown quantities, in order that it may
be determinate ; that is, in order that it may not admit of an infi-

nite number of solutions.

Suppose, for example, that a problem involving two unknown

quantities, a; and y, leads to the single equation, 5a;—3^=12 ; we

deduce from it a;= r— . Now, by
o

mak

2/=l, 2, 3, 4, 5,

there results,

18 21 24 27
^-^' y -5-' T'

"5"-ITi -r-j -r-, 6, (Sjc

and every system of values.
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18\ 21\
(y=l,x=S); (y=2,x=-); (y=3, x=-) ; 6^c.

substituted for x and y in the equation, will satisfy it equally well.

If we had two equations involvuig three unknown quantities, we

could in the first place eliminate one of the unknown quantities by

means of the proposed equations, and thus obtain an equation, which,

contaming two unkno\vTi quantities, would be satisfied by an infinite

number of systems of values taken for these unkno^vn quantities.

Therefore, in order that aproUem may he determined, its enunciation

must contain at least as many different conditions as there are unknown

quantities, and these conditions must he such, thai each of them may

be expressed by an independent equation ; that is, an equation not

produced by any combination of the others of the system.

If, on the contrary, the number of independent equations exceeds

the number of unknown quantities involved in them, the conditions

which they express cannot be fulfilled.

For example, let it be required to fijid two numbers such that

their sum shall be 100, their difference 80, and their product 700.

The equations expressing these conditions are,

x+y=\QO
x—y= 80

and a;x«/='700.

Now, the first two equations determine the values of x and y, viz.

x=90 and 3/=10. The product of the two numbers is therefore

known, and equal to 900. Hence the third condition cannot be ful-

filled.

Had the product been placed equal to 900, all the conditions

would have been satisfied, in which case, however, the third would

not have been an independent equation, since the condition expressed

by it, is unplied in the other two.

QUESTIONS.

1. What fraction is that, to the numerator of which, if 1 be add.
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1

ed, its value will be — , but if one be added to its denominator, its

1

value will be -;-. ^ -,„+*-;«*

Let the fraction be represented by — . ,

^ a;+l 1 . X 1

Then, by the question =y ^^^ ^TZY^T*

Whence Sx-{-S=y, and 4:X=y-\-l.

Therefore, by subtracting, a;— 3= 1 or x= 4.

Hence, 12+3=?/: therefore y=l5.

2. A market woman bought a certain number of eggs at 2 for a

penny, and as many others, at 3 for a penny, and having sold them

again altogether, at the rate of 5 for 2d, found that she had lost

4(Z : how many eggs had she ?

= the whole number of eggs.

= the number of eggs of each sort.

= the cost of the first sort.

= the cost of the second sort.

4«
2x : — the amount for which the eggs were

o

1 1 4x
Hence,by the question —>r+—a;—— =4.

Therefore . . 15a;+10.T;-24.i-=120.

Or, . . x= 120 the number of eggs of

each sort.

3. A person possessed a capital of 30,000 dollars for which he

drew a certain interest ; but he owed the sum of 20,000 dollars, for

which he paid a certain interest. The intei-est that he received ex-

ceeded that which he paid by 800 dollars. Another person pos.

9

Let 2x--

Then X-.

Then will
1

And
1

3^^

But 5 : 2 : :

sold.
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sessed 35,000 dollars, for which he received interest at the second

of the above rates, but he owed 24,000 dollars, for which he paid

interest at the first of the above rates. The interest that he re-

ceived exceeded that which he paid by 310 dollars. Required, the

two rates of interest.

Let X and y denote the two rates of interest : that is, the interest

of Si00 for the given time.

To obtain the interest of $30,000 at the first rate denoted by x,

we form the proportion

30,000a;
100 : a; : : 30,000 : : —vw^ or 300a;.

And for the interest $20,000, the rate being y.

20,000y
100 : 3/ : : 20,000 : : -JT^ or 200y.

But from the enunciation, the difference between these two in-

terests is equal to 800 dollars.

We have, then, for the first equation of the problem,

300x-200(/=800.

By writing algebraically the second condition of the problem, we

obtain the other equation,

350?/-240x=310.

Both members of the first equation being divisible by 100, and

those of the second by 10, we may put the following, in place of

them :

Sx—2y=8, S5y—24x=3l.

To eliminate x, multiply the first equation by 8, and then add it

to the second ; there results

l9y—95, whence i/=5.

Substituting for y, in the first equation, its value, this equation

becomes

3a;— 10=8, whence a;=6.

Therefore, the first rate is 6 per cent., and the second 5.
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Verification.

$30,000, placed at 6 per cent., gives 300x6, = 81800.

$20,000, do. 5 do. 200x5, = 81000.

And we have 1800— 1000=800.

The second condition can be verified in the same manner.

4. There are three ingots composed of different metals mixed

together. A pound of the first contains 7 ounces of silver, 3 ounces

of copper, and 6 of pewter. A pound of the second contains 12

ounces of silver, 3 ounces of copper, and 1 of pewter. A pound

of the third contains 4 ounces of silver, 7 ounces of copper, and 5

of pewter. It is required to find how much it will take of each of

the three ingots to form a fourth, which shall contain in a pound, 8

ounces of silver, 3| of copper, and 4| of pewter.

Let X, y and z represent the number of ounces which it is neces-

sary to take from the three ingots respectively, in order to form a

pound of the required ingot. Since there are 7 ounces of silver in

a pound, or 16 ounces, of the first ingot, it follows that one ounce

of it contains -^^ of an ounce of silver, and consequently in a num.

7x
ber of ounces denoted by x, there is — ounces of silver. In the

12^ Az
same manner we would find that ——- and —-, express the num.

lb 16 '^

ber of- ounces of silver taken from the second and third, to form

the fourth ; but from the enunciation, one pound of this fourth ingot

contains 8 ounces of silver. We have, then, for the first equation

7a; \2y Ax

16 16 16^

or, making the denominators disappear. . 7x-f 12?/+4z=128

As respects the copper, we should find . . 3a'+ 3^+7?= 60

and with reference to the pewter . . . Qx-\- ?/4-52= 68

As the co-efficients of y in these three equations, are the most

simple, it is most convenient to eliminate this unknown quantity first.
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JMultiplyiiig the second equation by 4, and subtracting the first

equation from the product, we have . . . 5ic+24z=112

Multiplying the third equation by 3, aiid

subtracting the second from the product . . 15a;+ 82=144

Multiplying this last equation by 3, and subtracting the preced-

ing one from the product, we obtain 40a;=320, whence x=8.

Substitute this value for x m the equation 15x+82=rl44 ; it be-

comes

120+ 82=144, whence z=3.

Lastly, the two values x=8, «=3, being substituted in the equa-

tion 6a;+2/+52=68, give 48+?/+15=68, whence 2/=5.

Therefore in order to form a pound of the fourth ingot, we must

take 8 ounces of the first, 5 ounces of the second, and 3 of the

third.

Verification.

If there be 7 ounces of silver in 16 ounces of the first ingot, in

8 ounces of it, there should be a number of ounces of silver ex-

pressed by —r^'

12x5 , 4X3
In like manner ——— and —r^- will express the quantity

lb lb

of silver contained in 5 ounces of the second ingot, and 3 ounces of

the third.

7x8 12x5 4x3 128 ^
^ ^

Now, we have -r^-i r^ 1—r^=-rz-=8; therefore, a
16 16 16 lb

pound of the fourth ingot contains 8 ounces of silver, as required by

the enunciation. The same conditions may be verified relative to

the copper and pewter.

5. What two numbers are those, whose difference is 7, and sum

33? Ans. 13 and 20.

6. To divide the number 75 into two such parts, that three times

the greater may exceed seven times the less by 15.

Ans, 54 and 21.
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7. In a mixture of wine and cider, i of the whole plus 25 gal-

lons was wine, and i part minus 5 gallons was cider ; how many

gallons were there of each ?

Ans. 85 of wine, and 35 of cider.

8. A bill of £120 was paid in guineas and moidores, and the

number of pieces of both sorts that were used was just 100 ; if the

guinea be estimated at 21*. and the moidore at 27 s. how many

were there of each ? Ans. 50 of each.

9. Two travellers set out at the same time from London and

York, whose distance apart is 150 miles ; one of them goes 8 miles

a^day, and the other 7 ; in what time will they meet ?

Ans. In 10 days.

10. At a certain election, 375 persons voted for two candidates,

and the candidate chosen had a majority of 91 ; how many voted

for each ? Ans. 283 for one, and 142 for the other.

11. A's age is double of B's, and B's is triple of C's, and the sum

of all their ages is 140 ; what is the age of each 1

Ans. A's=84, B's=42, andC's=zl4.

12. A person bought a chaise, horse, and harness, for £60 ; the

horse came to twice the price of the harness, and the chaise to twice

the price of the horse and harness ; what did he give for each ?

j'£13. 6s. 8d. for the horse.

Ans. J £ 6. 135. M. for the harness.

(^
£40. for the chaise.

13. Two persons, A and B, have both the same income : A saves

i of his yearly, but B, by spending £50 per annum more than A,

at the end of 4 years finds himself £100 in debt ; what is their

income? Ans. £125.

14. A person has two horses, and a saddle worth £50 ; nolv if

the saddle be put on- the back of the first horse, it will make his

value double that of the second ; but if it be put on the back of the

second, it will make his value triple that of the first ; what is the

value of each horse ?

Ans. One £30, and the other £40.



102 ^' ALGEBRA.

15. To divide the number 36 into three such parts that \ of the

first, i of the second, and J of the third, may be all equal to each

otlier. -' '- '
: Ans. 8, 12, and 16.

16. A footman agreed to serve his master for £8 a year and a

livery, but was turned away at the end of 7 months, and received

only £2. 135. 4d. and his livery; what was its value? ^ '^

"
"

Ans. £4. 165.

17. To divide the number 90 into four such parts, that if the first

be increased by 2, the second diminished by 2, the third multiplied^

by 2, and the fourth divided by 2, the sum, difference, product, and

quotient so obtained, will be all equal to each other.

Ans. The parts are 18, 22, 10, and 40.

18. The hour and minute hands of a clock are exactly together

at 12 o'clock ; when are they next together?

Ans. 111. b-^jViin.

19. A man and his wife usually drank out a cask of beer in 12

days ; but when the man was from home, it lasted the woman 30

da3-s ; how many days would the man alone be in drinking it ?

Ans. 20 days.

20. If A and B together can perform a piece of work in 8 days,

A and C together in 9 days, and B and C in 10 days : how many days

would it take each person to perform the same work alone ?

Ans. A 14f|- days, B 17|f, and C 23/,-.

21. A laborer can do a certain work expressed by a, in a time

expressed by J ; a second laborei', the work c in a time d ; a third,

the work e, in a time/. It is required to find the time it would take

the three laborers, working together, to perform the work g.

•
An5. <^-

^^jj^j^^fj^i^^'

Application.

a=21 ; J=4 ]
c=35 ; d=6

|
e=40 ; /=12 ]

^=191 ;

r,^' X will be found equal to 12.

22^ If 32 pounds of sea water contain 1 pound of salt, how
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much fresh water must be added to these 32 pounds, in order that

the quantity of salt contained in 32 pounds of the new mixtui-e

shall be reduced to 2 ounces, or | of a pound ?

Ans. 22A lb.

23. A number is expressed by three figures ; the sum of these

figures is 11 ; the figure in the place of units is double that in the

place of hundreds ; and when 297 is added to this number, the sum

obtamed is expressed by the figures of this number reversed. What

is the number ? Ans. 326

24. A person who possessed 100,000 dollars, placed the greater

part of it out at 5 per cent, interest, and the other part at 4 per

cent. The interest which he received for the whole amounted to

4640 dollars. Required, the two parts.

^ .^4:^/;,^^^^^'^ ^^ .
, ^^^^ 64,000 and 36,000.

25. A person possessed a certain capital, which he placed out at

a certain interest. Another person who possessed 10,000 dollars

more than the first, and who put out his capital 1 per cent, more

advantageously than he did, had an income greater by 800 dollars.

A third person who possessed 15,000 dollars more than the first,

and who put out his capital 2 per cent, more advantageously than

he did, had an income greater by 1500 dollars. Required, the capi-

tals of the three persons, and the three rates of interest.

Sums at interest, ^30,000, $40,000, $45,000.

Rates of interest, 4 5 6 per cent.

26. A banker has two kinds of money ; it takes a pieces of the

first to make a crown, and b of the second to make the same sum.

Some one offers him a crown for c pieces. How many of each kind

must the banker give him ?

, , . , a(c—h)
, , . , i(a—c)

Ans. Istkmd, -^—r^ ; 2d kind, -^ =-^.

a—b a—b
27. Find what each of three persons A, B, C, are worth, know-

ing; 1st, that what A is worth added to Z times what B and C are

worth is equal top ; 2d, that what B is worth added to m times what
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A and C are worth is equal to q ; 3d, that what C is worth added to

n times what A and B are worth is equal to r.

This question can be resolved in a very simple manner, by intro-

ducing an auxiliary unknown quantity into the calculus. This un-

known quantity is equal to what A, B and C are worth.

28. Find the values of the estates of six persons, A, B, C, D, E,

F, from the following conditions : 1st. The sum of the estates of A
and B is equal to a ; that of C and D is equal to I ; and that of E and

F is equal to c. 2d. The estate of A is worth m times that of C ;

the estate of D is worth n times that of E, and the estate of F is

worth p times that of B.

This problem may be resolved by means of a single equation,

involving but one unknown quantity.

Theory of Negative Quantities. Explanation of the terms,

Nothing and Infinity.

104. The algebraic signs are an abbreviated language. They

point out in the shortest and clearest manner the operations to be

performed on the quantities with which they are connected.

Having once fixed the particular operation indicated by a parti-

cular sign, it is obvious that that operation should always be perform-

ed on every quantity before which the sign is placed. Indeed, the

principles of algebra are all established upon the supposition, that

each particular sign which is employed always means the same

thing ; and that whatever it requires is strictly performed. Thus,

if the sign of a quantity is +, we understand that the quantity is to

be added ; if it is —, we understand that it is to be subtracted.

For example, if we have —4, we understand that this 4 is to be

subtracted from some other number, or that it is the result of a sub-

traction in which the number to be subtracted was the greatest.

If it were required to subtract 20 from 16, the subtraction could

not be made by the rules of arithmetic, since 16 does not contain
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20 ; nor indeed can it be entirely performed by Algebra. We
write the numbers for subtraction thus,

16—20=16-16—4= -4.

By decomposing —20 into —16 and —4, the —16 will cancel

the +16, and leave —4 for a remainder.

We thus indicate that the quantity to be subtracted exceeds the

quantity from which it is to be taken, by 4.

To show the necessity of giving to this remainder its proper sign,

let us suppose that the difference of 16— 20 is to be added to 10.

The numbers would then be wi-itten

16-20=- 4

+ 10 =+ 10

26-20=+ 6

105. If the sum of the negative quantities in the first member of

the equation, exceeds the sum of the positive quantities, the second

member of the equation will be negative, and the verification of the

equation will show it to be so.

For example, if a—b=c,
and we make a=15 and i=18, c will be =—3. Now the essen-

tial sign of c is different from its algebraic sign in the equation.

This arises from the circumstance, that the equation a—b=c ex-

presses generally, the difference between a and h, without indicating

which of them is the greater. When, therefore, we attribute par-

ticular values to a and h, the sign of c, as well as its value, becomes

known.

We will illustrate these remarks t^ a few examples.

1. To find a number which, added to the number I, gives for a

sum the number a.

Let a;= the required number.

Then, by the condition a?+J=a, whence x=a— b.

This expression, orformula, will give the algebraic value of x in

all the particular cases of this problem.

For example, let rt=47, i=29, then x=47—29=18.
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- Agaiii, let fl=:24, l=Sl ; then will x=24— 31=— 7.

This value obtained for x, is called a negative solution. How is

it to be interpreted ?

Considered arithmetically, the problem with these values of a and

b, is impossible, since the number b is already greater than 24. Con-

sidered algebraically, however, it is not so ; for we have found the

value of a; to be —7, and this number added, in the algebraic sense,

to 31, gives 24 for the algebraic sum, and therefore satisfies both

the equation and enunciation.

2. A father has lived a number a of years, his son a number of

years expressed by h. Find in how many years the age of the

son will be one fourth the age of the father.

Let x=i the required number of years.

Then a-\-x= the age of the father
^ ,

. at the end of the requir-
and b-\-x= the age of the son '

ed time.

a-\-x a—^b
Hence, by the question ——=Z»+a^ ; whence x=—-—

.

54-36 18
Suppose a=54, and b—9 : then x=———=——G.
The father having lived 54 years, and the son 9, in 6 years the

father will have lived 60 years, and his son 15 ; now 15 is the

fourth of 60 ; hence, a;=6 satisfies the enunciation.

45-60
Let us now suppose a=45, and h=zl5 : then x=^—-—=-5.

If we substitute this valueof x in the equation of condition, we

obtain

45-5
=15-5

4

or 10=10.

Hence,— 5 substituted for x verifies the equation, and therefore

is the true answer.

Now, the positive result which has been obtained, shows that the



EQUATIONS OF THE FIRST DEGREE. 107

age of the father will be four times that of the son at the expiration

of 6 years from the time when their ages were considered ; while

the negative result indicates that the age of the father was four times

that of his son, 5 years previous to the time when their ages were

compared.

The question, taken in its most general or algebraic sense, de-

mands the time, at which the age of the father was four times that

of the son. In stating it, we supposed that the age of the father

was to be augmented ; and so it was, by the first supposition. But

the conditions imposed by the second supposition, required the age

of the father to be diminished, and the algebraic result confoi-med

to this condition by appearing with a negative sign. If we wished

the result, under the second supposition, to have a positive sign, we

might alter the enunciation by demanding hoio many years since the

age of the father ivasfour times that of his son.

If x= the number of years, we shall have

a—x 4&—

a

———b—x: hence x=—r
.

If a=45 and 5=15, x will be equal to 5.

Reasoning from analogy, we establish the following general

principles.

1st. Every negative value found for the unknown quantity in a

problem of the first degree, will, when taken vnth its proper sign, verify

the equationfrom which it was derived.

2d. That this negative value, taken with its proper sign, will also

satisfy the enunciation of the problem, understood in its algebraic

serise.

3d. If the emmciation is to be understood in its arithmetical sense,

in which the quantities referred to are always supposed to be positive,

then this value, considered without reference to its sign, may be con.

spidered as the answer to a problem, of which ike enunciation only dif.

fersfrom that of the proposed problem in this, that certain quantities

which were additive, have become subtractive, and reciprocally.
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106. Take for example the problem of the labourer (Page. 88).

Supposing that the labourer receives a sum c, we have the

equations.
'' ^-''

x+ y=n ) In^c om—c
whence x- —r-, 3/=-

ax—by=c ) a-{-b a+b

But ifwe suppose that the labourer, instead of receiving, owes a

an c, the equations will then bo

a;4- y=n
^

C "x+ y=n,

iy—ax=c )
'

( ax—by= — c.

By changing the signs of the second equation.

Now it is visible that we can obtain immediately the values of x

and y, which correspond to the preceding values, by merely chang-

ing the sign of c in each of those values ; this gives

bn—c a7i-{-c

'^~
a+ b ' ^~ a+ f'

To prove this rigorously, let us denote —chyd;
\ x-{- y=n

The equations then become j _ and they only differ

from those of the first enunciation by having d in the place of c.

We would, therefore, necessarily find

bn-\-d an—d
'^~ a+b ' ^~ a-\-b

*

And by substituting — c for d, we have

bn-\-(— c) an—(— c)

""^ a+b '
^=' a+b '

or by applying the rules of Art. 85,

bn—

c

an+c
''- a+b ' ^^ a+b '

The results, which agree to both enunciations, may be compre-

bended in the same formula, by writing

bndzc anrpc
y=-

a+b ' " a+b



EQUATIONS OF THE FIRST DEGREE. 100

The double sign ± is read phis or minus, the superior signs cor-

respond to the case in which the labourer received, and the inferior

signs to the case in which he owed a sum c. These formulas com-

prehend the case in which, in a settlement between the labourer and

his employer, their accounts balance. This supposes c=0, which

gives

in an

107. When a problem has been resolved generally, that is, by

representing the given quantities by letters, it may be required to

determine what the values of the unknown quantities become, when

particular suppositions are made upon the given quantities. The

determination of these values, and the interpretation of the peculiar

results obtained, form what is called the discussion of the problem.

The discussion of the following question presents nearly all the

circumstances which are met with in problems of the first degree.

108. Two couriers are travelling along the same right line and

in the same direction from R' towards R. The number of miles

travelled by one of them per hour is expressed by m, and the

number of miles travelled by the other per hour, is expressed by n.

Now, at a given time, say 12 o'clock, the distance between them is

equal to a number of miles expressed by a : required the time when

they will be together.

R' A B R.

At 12 o'clock suppose the forward courier to be at B, the other

at A, and R to be the point at which they will be together.

Then, AB=rt, their distance apart at 12 o'clock.

Let . . t= the number of hours which must elapse, before

they come together.

And . a;= the distance BR, which is to be passed over by

the forward courier.

Then, since the rate per hour, multiplied by the number of hours,

will give the distance passed over by each, we have,

10
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iX»i = a+x=AR.
iXn — X =BR.

Hence by subtractmg, t{in—n) — a

Thereforfe, . . / = .m—n

Now so long as m>n, i will be positive, and the problem will be

solved ill the arithmetical sense of the enunciation. For, if niyn

the" courier from A will travel faster than the courier from B, and

will therefore be continually gaining on him : the interval which

separates them will diminish more and more, until it becomes 0, and

then the couriers will be found upon the same point of the line.

In this case,the time i, which elapses, must be added to 12 o'clock,

to obtain the time when they are together.

But, if we suppose ni<n, then m—n will be negative, and the

value of t will be negative. How is this result to be interpreted ?

It is easily explained from the nature of the question, which, con-

sidered in its most general sense, demands the time when the

couriers are together.

Now, under the second supposition, the courier which is in ad-

vance, travels the fastest, and therefore will continue to separate

himself from the other courier. At 12 o'clock the distance between

them was equal to a : after 12 o'clock it is greater than a, and as

the rate of travel has not been changed, it follows that previous to

12 o'clock the distance must have been less than a. At a certain

hour, therefore, before 12 the distance between them must have been

equal to nothing, or the couriers were together at some point R'.

The precise hour is found by subtracting the value of t from 12

o'clock.

This example, therefore, conforms to the general principle, that,

if the conditions of a problem are such as to render the unknown

quantity essentially negative, it will appear in the result uith the

minus sign, whenever it has been regarded as positive in the enun-

ciation.
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If we wish to find the distances AR,and BR passed over by the

two couriers before coming together, we may take the equation

a

~m— n

and multiply both members by the rates of travel respectively : this

will give
ma

AR=m{= and
711— 71

71a
BR=n/= .

711— 71

ma
Also, . . AK'=—7}it=

7ia

and . . BR' :^ — nt= .

771—

n

from which we see that the two distances AR, BR, will both be

positive when estimated towards the right, and that AR', BR,' will

both be negative when estimated in the contrary' direction.

109. To explain the terms nothing and infinity, let us consider

the equation

a

711— ?i

'

If in this equation we make m=7i, then m— n=0, and the value

of t will reduce to

a
'=¥•

In order to interpret this new result, let us go back to the enun-

ciation, and it will be perceived that it is absolutely impossible to

satisfy it for any finite value for t ; for whatever time we allow to

the two couriers they can never come together, since being once se-

parated by an interval a, and travelling equally fast, this interval

will always be preserved.

Hence, the result, — may be regarded as a sign of impossi-

bility for any finite value of t.
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Nevertheless, algebraists consider the result

a
'=¥'

as forming a species of value, to which they have given the name

of inJinHe valve, for this reason :

When the difference m— n, without being absolutely nothing, is

supposed to be very small, the result

a

IS ver}^ great.

Take, for example, ??«— n=0,01.

^ a a
Then i= =——-=100a;

7n~n 0,01

Again, take ?«— ?i=r 0,001, and we have

In short, if the difference between the rates is not zero, the cou-

riers will come together at some point of the line, and the time will

become greater and greater as this difference is diminished.

Hence, if the difference between the rates is less than any assigna.

hie number, the time expressed by

•a a

m— n '

iiill he greater than any assignable or finite number. Therefore,

for brevity, we say when m— n=0, the result

a
~ m— n

becomes equal to infinity, which we designate by the character oo.

Again, as the value of a fraction increases as its numerator be-

A
comes greater with reference to its denominator, the expression —-,

A being any finite number, is a proper symbol to represent an infi.

nife quantity ; that is, a quantity greater than any assignable quan-

tity.
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A quantity less than any given quantity may be expressed by —
;

for a fraction diminishes as its denominator becomes greater with

reference to its numerator. Hence, and — are synonymous

symbols, and so are — and ao .

We have been thus particular in explaining these ideas of infini-

ty, because there are some questions of such a nature, that infinity

may be considered as the true answer to the enunciation.

In the case, just considered, where m—n it will be perceived that

there is not, properly speaking, any solution infinite and determinate

numbers ; but the value of the unknown quantity is found to be

infinite.

110. If, in addition to the hypothesis m=n, we suppose that a=0,

we have

To interpret this result, let us reconsider the enunciation, where

it will be perceived, that if the two couriers travel equally fast, and

are once at the same point, they ought always to be together, and

consequently the required point is any point whatever of the line

travelled over. Therefore, the expression -— is in this case, the

symbol of an indeterminate quantity.

If the couriers do not travel equally fast, that is, if m>, or m<Cn,

and a=0, then will f=0.

Indeed, it is evident, that if the couriers travel at different rates,

and are together at 12 o'clock, they can never be together after-

wards.

The preceding suppositions are the only ones that lead to remark-

able results ; and they are sufficient to show to beginners the man-

ner in which the results of algebra answer to all the circumstances

of the enunciation of a problem.

10*
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111. We will add another example to show, that the expression

— expresses, generally, an indeterminate quantity.

1—x
Take the expression, .

1-a;

Now, if we perform the division the quotient will be 1 ; and ifwe
make x= 1, there will result

1 -x_ _

Let us next take the expression
1-x '

If we. perform the division, the quotient will be 1+x; then

making x=l, the expression becomes

1-a,^

1—x
1—x'

In like manner • — =-—=3 when a;=l.1— a;

l-x" '

and .... _ —-—=n when x=l. (See Art. 59).

all of which goes to show that — is the symbol of an indetermi-

nate quantity.

112. We will add another example showing the value of the ex-

Take the equation ax=h, involving one unknown quantity, whence

b

1st. If, for a particular supposition made with reference to the

given quantities of the question, we have a=0, there results

h_
X- ^.

Now in this case the equation becomes Ox^=^> and evidently
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cannot be satisfied by any finite value of x. We will however remark

b

that, as the equation can be put under the form —=0, if we sub-

b
stitute for x, numbers greater and greater, — will ditTer less and

less from 0, and the equation will become more and more exact ; so

b
that, we may take a value for x so great that — will be less than

b
any assignable quantity, or —=0.

It is in consequence of this that algebraists say, that infinity satis-

fies the equation in this case ; and there are some questions for

which this kind of result forms a true solution ; at least, it is certain

that the equation does not admit of a solution m finite numbers, and

this is all that we wish to prove.

2d. If we have a—Q, b=0, at the same time, the value of x

takes the fonn x=-7r-

In this case, the equation becomes Oxa;=0, and everyfinite num-

ber, positive or negative, substituted for x, will satisfy the equation.

Therefore iJie equation, or the probkm of which it is the algebraic

translation, is indeterminate.

113. It should be observed, that the expression —, does not al-

ways indicate an indetcrmination, it frequently indicates only the exist,

ence of a commonfactor to the two terms of the fraction, which fac-

tor becomes nothing, m consequence of a particular hypothesis.

For example, suppose that we find for the solution of a problem,

x=-^—:r7r. If, in this formula, a is made equal to b, there results
ci?—b^

x=-.

But it will be observed, that a^—¥ can be put under the form

{a-b) {a^'+ab+b^), (Art. 59), and that a^-J^ is equal to {a-b)
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(a+b), therefore the vakie of ;^ becomes

_{a-b) (a^+aZ.-l-i2)
'"-'-

{a-b) (a+ b) •

Now, if we suppress the common factor (a— b), before making

the supposition a=J, the value of x becomes a;= —. ,
'^ a-\-b

3rt2 3a
which reduces to a;=—-—, or x=--, when a^Z*.

2a 2

For another example, take the expression

a2_J2 _ (a+ b) (a-h)

{a-by~ (a-b) {a-b}'

Making a=b, we find ^^='7r> because the factor (a— b) is com-

mon to the two terms ; but if we first suppress this factor, there re-

a+b
1 .

, 1 ,
2«

: 5-5 which reduces to x=-—,
a—b

From this we conclude, that the symbol — someUmes indicates

the existence of a common factor to the two terms of the fraction

which reduces to this form. Therefore, before pronouncing upon

the true value of the fraction, it is necessary to ascertain whether

the two terms do not contain a common factor. If they do not, we

conclude that the equation is really indeterminate. If they do con-

tain one, suppress it, and then make the particular hypothesis ; this

will give the true value of the fraction, which will assume one of

A A
the three forms -^, —

-, --, in which case, the equation is determi-
JD

note, impossible in finite numbers, or indeterminate.

This observation is very useful in the discussion of problems.

Of Inequalities.

114. In the discussion of problems, we have often occasion to

suppose several inequalities, and to perform transformations upon

them, analogous to those executed upon equalities. We are often
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obliged to do this, when, in discussing a problem, we wish to esta-

blish the necessary relations between the given quantities, in order

that the problem may be susceptible of a direct, or at least a real

solution, and to fix, with the aid of these relations, the limits between

which the particular values of certain given quantities must be

found, in order that the enunciation may fulfil a particular condition.

Now, although the principles established for equations are in general

applicable to inequalities, there are nevertheless some exceptions, of

which it is necessary to speak, in order to put the beginner upon his

guard against some errors that he might commit, in making use of

the sign of inequality. These exceptions arise from the introduction

of negative expressions into the calculus, as quantities.

In order that we may be clearly understood, we will take exar

pies of the different transformations that inequalities may be subject-

ed to, taking care to point out the exceptions to which these trans-

formations are liable.

115. Two inequalities are said to subsist in the same sense, when

the greater quantity stands at the left in both, or at the right in

both ; and m a contrary sense, when the greater quantity stands at

the right in one, and at the left in the other.

Thus, 25>20 and 18>10, or 6<8 and 7<9,

ai'e inequalities which subsist in the same sense ; and the inequalities

15>13 and 12<14, subsist in a contrary sense.

1. If we add the same quantity to loth members of an inequality,

or subtract the same quantity from both members, the resulting in-

equality will subsist in the same sense.

Thus, take 8>6 ; by adding 5, we still have 8+5>6+ 5

and 8—5>6— 5.

When the two members of an equality are both negative, that

one is the least, algebraically considered, which contains the great-

est number of units. Thus, —25< — 20 ; and if 30 be added to

both members,- we have 5<10. This must be understood entirely

in an algebraic sense, and arises from the convention before esta-
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blished, to consider all quantities preceded by the minus sign, as

subtractive.

The principle first enunciated, serves to transpose certain terms

from one member of the inequality to the other. Take, for ex-

ample, the inequality a^+ h''y2b-— 2a^ ; there will result from it

a^+2a-y2h--P, or 3a2>2^.

2. If two inequalities subsist in the same sense, and tee add them

member to member, the resulting inequality will also subsist in the same

sense.

Thus, from ayb,cyd,eyf, there results a-\-c-{-eyb-\-d-\-f

But this is not always the case, when ice subtract, memberfrom mem- ,

her, two inequalities established in the same sense.

Let there be the two inequalities 4<7 and 2<3, we have

4-2 or 2<7-3 or 4.

But if we have the inequalities 9<10 and 6<8, by subtracting

we have 9—6 or 3>10— 8 or 2.

We should then avoid this transformation as much as possible, or

if we employ it, determine in what sense the resulting inequality

exists.

3. If the two members of an inequality be multiplied by a positive

number, the resulting inequality will exist in the same sense.

Thus, from a<ib, we deduce 3a<3J; and from —a-C—k
—3a< — 33.

This principle serves to make the denominators disappear.

From the inequality ——.—>

—

, we deduce, by multiply.

ing by 6ad,

M{a^-V)y2d{c''-d-).

The same principle is true for division.

But when the two members of an inequality are multiplied or di-

vided hy a negative number, the inequality subsists in a contrary

seme.

Take, for example, 8>7; multiplying by -3, we have

-24<-21.
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8 8 7
In like manner, 8>7 gives ——, or ——<—^-— 3 3 3

Therefore, when the two members of an inequality are multipli-

ed or divided by a number expressed algebraically, it is necessary

to ascertain whether the multiplier or divisor is negative ; for, in

that case, the inequality would exist in a contrary sense.

4. It is not permitted to change the signs of the two members of an

inequality unless we eslahlish the resulting inequality in a contrary

sense ; for this transformation is evidently the same as multiplying

the two members by —1.

5. Both memlers of an inequality between positive numbers can be

squared, and the inequality loill exist in the same sense.

Thus from 5>3, we deduce 25>9; from a+3>c, we find

6. Whe7i both members of the inequality are not positive, we cannot

tell before the operation is performed, in which sense the resulting in-

equality will exist.

For example, —2<3 gives (— 2)- or 4<9; but —3>—

5

gives, on the contrary, (— 3)^ or 9<(— 5)- or 25.

We must then, before squaring, ascertam whether the two mem-

bers can be considered as positive numbers.

EXAMPLES.

1. Find the limit of the value of x in the expression

5a;— 6>1.9. Ans. x>5.

2. Find the limit of the value of x in the expression

14
3x+—a;-30>10 Ans. x>4.

3. Find the limit of the value of x in the expression

1 1 a; 13 17

T'^-Y'^+"2+'2">Y- ^'^' ^>^-

4. Find the limit of the value of a; in the inequalities
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ax a?—^bx—ab^—.

Ix y
-^-axArab<r-.

5. The double of a number diminished by 5 is greater than 25,

and triple the number diminished by 7, is less than double the num-

ber increased by 13. Required a number which shall satisfy the

conditions.

By the question, we have

2a;— 5>25.

3x—7<2x+ 13.

Resolving these inequalities, we have a;>15 and a;< 20. Any

number, therefore, either entire or fractional, comprised between 15

and 20, will satisfy the conditions.

6. A boy being asked how many apples he had in his basket, re-

plied, that the sum of 3 times the number plus half the number, di-

minished by 5 is greater than 16 ; and twice the number diminished

by one third of the number, plus 2 is less than 22. Required the

number which he had.

Ans. 7, 8, 9, 10, or 11.

CHAPTER III.

Extraction of the Square Root of Numbers. Forma-

tion of the Square and Extraction of the Square

Root of Algebraic Quantities. Calculus of Radi-

cals of the Second Degree. Equations of the Se-

cond Degree.

116. The square or second power of a number, is the product

which arises from multiplying that number by itself once : for ex-

ample, 49 is the square of 7, and 144 is the square of 12.
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The square root of a number is a second number of such a value,

that, when multiplied by itself once the product is equal to the given

number. Thus, 7 is the square root of 49, and 12 the square root

of 144: for 7x^= 49, and 12x12= 144.

The square of a number, either entire or fractional, is easily

found, being always obtained by multiplying this number by itself

once. The extraction of the square root of a number, is however,

attended with some difficulty, and requires particular explanation.

The first ten numbers are,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

and their squares,

. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

and reciprocally, the numbers of the first line are tlie square roots

of the corresponding numbers of the second. We may also remark

that, the square of a number expressed by a sihgle figure, will contain

nofigure of a higher denomination than tens.

The numbers of the last line 1, 4, 9, 16, &c., and all other num-

bers which can be produced by the multiplication of a number by

itself, are called perfect squares.

It is obvious, that there are but nine perfect squares among all the

numbers which can be expressed by one or two figures : the

square roots of all other numbers expressed by one or two figures

will be found between two whole numbers differing from each other

by unity. Thus, 55 which is comprised between 49 and 64, has for

its square root a number between 7 and 8. Also, 91 which is

comprised between 81 and 100, has for its square root a number

between 9 and 10.

Every number may be regarded as made up of a certain number

of tens and a certain number of units. Thus 64 is made up of 6

tens and 4 units, and may be expressed under the form 60+4=64.

Now, if we represent the tens by a and the units by b, we shall

have a-\-b = 64

and (a+&)2=(64f

or . . . a-+ 2ai+Z>2 =4096.

11
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Which proves that the square of a number composed of tens and

units contains, the square of the tens plus twice the product of the tens

by the units, plus the square of the units.

117. If now, we make the units 1, 2, 3, 4, &c., tens, by annex-

ing to each figure a cipher, we shall have,

10, 20, 30, 40, 50, 60, 70, 80, 90, 100

and for their squares,

100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100, 10000.

from which we see that the square of one ten is 100, the square of

two tens 400 ; and generally, that the square of tens will contain no

figure of a less denoininaiion than hundreds, nor of a higher name

than thousands.

Example I—To extract the square root of 6084.

Since this number is composed of more than two

places of figures its roots will contain more than one. 60.84

But since it is less than 10000, which is the square

of 100, the root will contain but two figures : that is, units and tens.

Now, the square of the tens must be found in the two left hand

figures which we will separate from the other two by a point.

These parts, of two figures each, are called periods. The part 60

is comprised between the two squares 49 and 64, of which the roots

are 7 and 8 : hence, 7 is the figure of the tens sought ; and the re-

quired root is composed of 7 tens and a certain number of units.

The figure 7 being found, we

write it on the right of the given 60.84
|

78

number, from which we separate it 49 I

by a vertical line : then we subtract 7x2= 14.8 I 118.4

its square 49 from 60, which leaves I 118 4

a remainder of 11, to which we

bi'ing down the two next figures 84.

The result of this operation 1184, contains twice the product of the

tens by the units plus the square of (he units. But since tens multi-

plied by units cannot give a product of a less name than tens, it fol-
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lows that the last figure 4 can form no part of the double product of

the tens by the units : this double product is therefore found in the

part 118, which we separate from the units' place 4 by a point.

Now if we double the tens, which gives 14, and then divide 118

by 14, the quotient 8 is the figure of the tmits, or a figure greater

than the units. This quotient figure can never be too small, since

the part 118 will be at least equal to twice the product of the tens

by the units : but it may be too large ; for the 118 besides the dou-

ble product of the tens by the units, may likewise contain tens aris-

ing from the square of the units. To ascertain if the quotient 8

expresses the units, we write the 8 to the right of the 14, which gives

148, and then we multiply 148 by 8. Thus, we evidently form,

1st, the square of the units : and 2d, the double product of the tens

by the units. This multiplication being effected, gives for a product

1184, a number equal to the result of the first operation. Having

subtracted the product, we find the remainder equal to : hence 78

is the root required.

Indeed, in the operations, we have merely subtracted from the

given number 6084, 1st, the square of 7 tens or 70 ; 2d, twice the

product of 70 by 8 ; and Sd, the square of 8 : that is, the three

parts which enter into the composition of the square of 70+ 8 or

78 ; and since the result of the subtraction is 0, it follows that 78

is the square root of 6084.

Ex. 2. To extract the square root of 841.

We first separate the number into

periods, as in the last example. In the 8.41 I 29

second period, which contains the square 4 |

of the tens, there is but one figuz-e. The 2x2=4.9 144.1

greatest square contained in 8 is 4, the I 44 1

root of which is 2 : hence 2 is the fi-

gure of the tens in the required root.

Subtracting its square 4 from 8, and bringing down 41, we obtain

for a result 441.
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If now, as in the last example, we separate the last figure 1 from

the others by a pohit, and divide 44 by 4, which is double the tens,

the quotient figure will be the units, or a figure greater than the

units. Here the quotient is 11 ; but it is plain that it ought not to

exceed 9, for if it could, the figure of the tens already found would

be too small. Let us then try 9. Placing 9 in the root, and also

on the right of the 4, and multiplying 49 by 9, we obtain for a pro-

duct 441 : hence, 29 is the square root of 841.

Remark. The quotient figure 11, first found, was too large be-

cause the dividend 44 contained, besides the double product of the

tens by the units, 8 tens arising from the square of the units. When
the dividend is considerably augmented, by tens arising from the

square of the units, the quotient figure will be too large.

Ex. 3. To extract the square root of 431649.

Since the given number exceeds 10,000 its root will be greater

than 100 ; that is, it will contain more than two places of figures.

But we may still regard the root as composed of tens and units, for

every number may be expressed in tens and units. For example,

the number 6758 is equal to 675 tens and 8 units, equal to 6750+ 8.

Now, we know that the square of the tens of the required root

can make no part of the two right

hand figures 49, which therefore, we 43.16.49
|
657

separate from the others by a point,

and the remaining figures 4316 con-

tain the square of the tens of the re-

quired root. But since 4316 exceeds

100 the tens of the required root will

contain more than one figure : hence

4316 must be separated into two

parts, of which the right hand period 16 will contain no part of the

square of that figure of the root, which is of the highest name, and

for a similar reason we should separate again if the part to the left

contained more than two figures.

43.16.49

12.5

36

71.6

5 62 5

130.7 9 14.9

9 14 9
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Since 36 is the greatest square contained in 43, the first figure of

the root is 6. We then subtract its square 36 from 43, and to the

remainder 7 bring down the next period 16. Now, since the last

figure 6 of the result 716, contains no part of the double product of

the first figure of the tens by the second, it follows, that the second

figure of the root will be obtained by dividing 71 by 12,double the

first figure of the tens. This gives 5 for a quotient, which we place

in the root, and at the right of the divisor 12. Then subtract the

product of 125 by 5 from 716, and to the remainder bruig down the

next period, and the result 9149 will contam twice the product of the

tens of the root multiplied by the units, plus the square of the units.

If this result be then divided by twice 65, that is, by double the tens

of the root, (which may always be found by adding the last figure

of the divisor to itself), the quotient will be the units of the root.

Hence, for the extraction of the square root of numbers, we have

the following

RULE.

I. Separate the given number into periods of two figures each be-

ginning at the right hand,—the period on the left will often contain but

onefigure.

II. Find the greatest square in thefirst period on the left, and place

its root on the right after the manner of a quotient in division. Sub-

tract the square of the rootfrom the first period, and to the remainder

bring down the second periodfor a dividend.

III. Double the root already found and place it on the leftfor a di-

visor. Seek how many times the divisor is contained in the dividend,

exclusive of the right hand figure, and place the figure hi the root and

also at the right of the divisor.

IV. Multiply the divisor, thus augmented, by the lastfigure of the

root, and subtract the productfrom the dividend, and to the remainder

bring doion the next periodfor a new dividend.

V. Double the whole root already found, for a new divisor, and

continue the operation as before, until all the periods are brought doicn.

11*
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1st. Remark. If, after all the periods are brought down, there is

no remainder, the proposed number is a perfect square. But if

there is a remainder, you have only found the root of the greatest

perfect square coutauied m the given number, or the entire part of

the root sought.

For example, if it were required to extract the square root of 665,

we should find 25 for the entire part of the root and a remainder of

40, which shows that 665 is not a perfect square. But is the square

of 25 the greatest perfect square contained in 665 ? that is, is 25 the

entire part of the root ? To prove this, we will first show that, the

difference between the squares of two conseciUive numlers, is equal to

twice the less numher augmented hy unity.

Let . . . a = the less number,

and . . . a+ 1 = the greater.

Then . . (a+l)2=a''+2a+l

and . . . {af=a-

Their difference is . = 2a+l as enunciated.

Hence, the entire part of the root cannot be augmented, unless

the remainder exceed twice the root found, plus unity.

But 25X 2+1=51> 40 the remauider : therefore, 25 is the en-

tire part of the root.

2d. Remark. The number of figures m the root will always be

equal to the number of periods into which the given number is

separated.

EXAMPLES.

1. To find the square root of 7225.

2. To find the square root of 17689.

3. To find the square root of 994009.

4. To find the square root of 85678973.

5. To find the square root of 67812675.

118. The square root of a number which is not a perfect square,

is called incommensuraljle or irrational, because its exact root can-
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not be found in terms of the numerical unit. Thus, V^ Vs,

V77 are incommensurable numbers. They are also sometimes

called surds.

In order to prove that the root of an imperfect power cannot be

expressed by exact parts of unity, we must first show that.

Every numher P, lohich loill exactly divide the product A xB of two

numbers, and which is prime with one of them, will divide the other.

Let us suppose that P will not divide A, and that A is greater

than P. Apply to A and P the process for finding the greatest com-

mon divisor, and designate the quotients which arise by Q, Q', Q" . . .

and the remainders R, R', R" . . . respectively. If the division be

continued sufficiently far, we shall obtain a remainder equal to unity,

for the remainder cannot be 0, since by hypothesis A and P are prime

with each other. Hence we shall have the following equations.

A=P Q +R
P =R Q' +R'

R=iR'Q"+R"
R'=R"Q"'+R"'

Multiplying the first of these equations by B, and dividing by P,

we have

AB ^ BR—=BQ+—.
AB . , . r.

But, by hypothesis, „ is an entire number, and since B and

Q are entire numbers, the product BQ is an entire number. Hence

BR
it follows that „ is an entire number.

If we multiply the second of the above equations by B, and

divide by P, we have

BRQ' BR'
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RR
But we have already shown that is an entire number ;

B^Q'
•

• . mu- . • ,
BR'

hence —5— is an entire number. 1 his being the case, -r^—

must also be an entire number. If the operation be continued until

Bxl
the number which multiplies B becomes 1, we shall have —-—
equal to an entire number, which proves that P will divide B.

In the operations above we have supposed A>P, but if P>A we

should first divide P by A.

Hence, if a number P xvill exactly divide the product of iico num.-

hers, and is prime with one of them, it loill divide the other.

We will now show that the root of an imperfect power cannot be

expressed by a fractional number.

Let c be an imperfect square. Then if its exact root can be ex-

pressed by a fractional number, we shall have

/— «

or . • . . ^^="17 by squaring both members.

But if c is not a perfect power, its root will not be a whole num-

ber, hence -7- will at least be an irreducible fraction, or a and b

will be prime to each other. But if a is not divisible hj b, axo- ox

c? will not be divisible by b, from what has been shown above
;

neither then can c^ be divisible by ¥. Smce to divide by ¥ is but

a^
to divide cP twice by b. Hence, -j^ is an irreducible fraction,

and therefore cannot be equal to the entire number c : therefore, we

.— a
cannot assume v c—-j, or the root of an miperfect power can-

not be expressed by a fractional number that is rational.
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Extraction of the square root of Fractions.

119. Since the square or second power of a fraction is obtained

by squaring the numerator and denominator separately, it follows

that the square root of a fraction will be equal to the square root

of the numerator divided by the square root of the denominator.

a^ a
For exainple, the square root of 7^ is equal to -r- '• ^or

a a

b'^b b'

But if neither the numerator nor the denominator is a perfect

square, the root of the fraction cannot be exactly found. We can

however, easily find the exact root to within less than one of the

equal parts of the fraction.

To effect this, multiply both terms of the fraction by the denomina-

tor, which makes the denominator a perfect square without altering the

value of the fraction. Then extract the square root of the perfect

square nearest the value of the numerator, and place the root of the

denominator under it; thisfraction will be the approximate root.

3
Thus, if it be required to extract the square root of — , wemul-

15
tiply both terms by 5, which gives — : the square nearest 15 is

4
16 : hence — is the required root, and is exact to within less

o

1

than —

.

5

120. We may, by a similar method, determine approximatively

the roots of whole numbers which are not perfect squares. Let it

be required, for example, to determine the square root of an entire

number a, nearer than the fraction — : that is to say, to find a



130 ALGEBRA.

number which shall differ from the exact root of a, by a quantity

less than —

.

n

It may be observed that a=:—j-. If we designate by r the

entire part of the root of air, the number an^ will then be compris-

ed between r^ and. {r+Vf\ and —— will be comprised between

'
-"^—j-^

; and consequently the true root of a is com-and

prised between the root of -^ and 5-— ; that is, between
' ir n^

— and . Hence — will represent the square root of a
n n n

within less than the fraction — . Hence to obtain the root

:

n

Multiply the given number hij the square of the denominator of the

fraction which determines the degree of approximation : then extract

the square root of the product to the nearest unit, and divide this root

by the denominator of the fraction.

Suppose, for example, it were required to extract the square root

1

of 59, to within less than —

.

Let us repeat on this example, the demonstration which has just

been made.

59x(12f
The number 59 can be put under the form ——-^—, or by

8496
multipliying by (12)2, —-. But the root of 8496 to the near-

8496
est unit, is 92 : hence it follows that —-r^ or 59, is comprised be-

tween 7—^ and )—^. Then, the square root of 59 is itself

( 12

)

( Iz)
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92 93
comprised between — and — : that is to say, the true root

92
,

1

differs from — by a fraction less than —

.

12 I'*

92 93 8464 8649
Indeed the squares of — and — are ^

and , num.

8496
bers which comprise or 59.

{i-'i)

2. To find the VTT to within less than t-t.
15

, 1

3. To find the V223 to within less than ' —

.

4
Ans. 3—.

15

37
Ans. 14-—.

40

121. The manner of determining the approximate root in deci-

mals, is a consequence of the preceding rule.

. . 1 1
To obtain the square root of an entire number within —

,

r-T-r-r, «Sjc.—it is neccssary according to the preceding rule to mul-

tiply the proposed number by (10)^ (100)^ (1000)^ . . . or, which

is the same thing, add to the riglit of the number, two, four, six, ^c.

ciphers : then extract the root of the product to the nearest unit, and

divide this root hy 10, 100, 1000, &c., which is effected hy pointing off

one, two, three, <f-c., decimal placesfrojn the right hand.

Example 1. To extract the square root of 7 to within ~T7r7r'

Having added four ciphers to the 7.00.00 I 2,64

right hand of 7, it becomes 70000, 4 I

whose root extracted to the nearest 46 I 300

unit is 264, which being divided by I 276

100 gives 2,64 for the answer, which 524 I 2400

.,.
, ^

1 I 2096
IS true to within less than -r—--. —rr-, „ •

100 304 Rem
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2. Find the ^29 to within -j—r-

3. Find the V 227 to within -—

-

A71S. 5,38.

1

lOOOO"'

Ans. 15,0665.

Remark. The number of ciphers to be annexed to the whole

number, is always double the number of decimal places required to

be found in the root.

122. The manner of extracting the square root of decimal frac-

tions is deduced immediately from the preceding article.

Let us take for example the number 3,425. This fraction is

3425 ^
equivalent to tt^^- Now 1000 is not a perfect square, but the

denominator may be made such without altering the value of the

34250
fraction, by multiplying both the terms by 10 ; this gives

34250
or -^. Then extracting the square root of 34250 to the

185
i 185 ; hence

1

nearest unit, we find 185 ; hence or 1,85 is the required

root to within

If greater exactness be required, it will be necessary to add to

the number 3,4250 so many ciphers as shall make the periods of

decimals equal to the number of decimal places to be found in the

root. Hence, to extract the square root of a decimal fraction :

Annex ciphers to the proposed numler until the decimal places shall

he even, and equal to double the number ofpilaces required in the root.

Then extract tlie root to the nearest unit, and point offfrom the right

hand the required number of decimal places

Ex. 1. Find the V 3271,4707 to within ,01.

Ans. 57,19.
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2. Find the V 31,027 to within ,01.

Ans. 5,57.

3. Find the Vo,01001 to within ,00001.

Ans. 0,10004.

123. Finally, if it be required to find the square root of a vulgar

fraction in terms of decimals : Change the vulgarfraction into a de-

cimal and continue the division until the number of decimal places is

double the number of places required in the root. Then extract the

root of the decimal by the last rule.

11
Ex. 1. Extract the square root of — to within ,001. This

number, reduced to decimals, is 0,785714 to within 0,000001
;

but the root of 0,785714 to the nearest unit, is ,886 : hence 0,886 is

the root of —
• to within ,001.

14

* / 13
2. Find the 'V 2 -— to within 0,0001.

15

Ans. 1,6931.

Extraction of the Square Root of Algebraic Quantities.

124. We will first consider the case of a monomial ; and in order

to discover the process, see how the square of the monomial is

formed.

By the rule for the multiplication of monomials (Art. 41.), we
have

{ba''}Pcy=hd'WcXMWc= Iha^Wc^
;

that is, in order to square a monomial, it is necessary to square its

co-efflcient, and double each of the exponents of the different letters.

Hence, to find the root of the square of a monomial, it is necessary,

1st. To extract the square root of the co-efcient, 2d. To take the

half of each of the exponents.

Thus, V6Wb*^8a''l^ ', for 8a^'^^'«^'='^>2_64a«J*.

12



134

In like manner,

-v/625a^*V=25a&*c", for {25ah'cy=62ba^h\

From the preceding rule, it follows, that, when a monomial is a

perfect square, its numerical co-efficient is a perfect square, and all

its exponents even nunibers. Thus, 25a^Z>^ is a perfect square, but

98a&* is not a perfect square, because 98 is not a perfect square, and

a is affected with an uneven exponent.

In the latter case, the quantity is introduced into the calculus by

affecting it with the sign V , and it is written thus, VdSah*.

Quantities of this^ kind are called radical quantities, or irrational

qvMntities, or simply radicals of the second degree.

125. These expressions may sometimes be simplified, upon the

principle that, the square root of the product of two or more factors is

equal to the product of the square roots of thesefactors ; or, in alge-

braic language, Vabcd . . . = y/a. y/h. \/c. ^/d. . . .

To demonstrate this principle, we will observe, that from the de-

finition of the square root, we have

( Valcd . . . .f=abcd ....

Again,

(v/aX v/^X v/cX W . . f=(%/«)'x(%/Jfx(v/c;)'x( W)' • • •

=zal)cd ....

Hence, since the squares of Vabcd . . . ., and,

-v/a. s/b. -v/c. \/d. . . ., are equal, the quantities themselves are

equal.

This being the case, the above expression, V98ab*, can be put

under the form VA9b'x2a= V^9^X V2a. Now Vio^may

be reduced to IP ; hence VoSab^z^lb^ V2a.

In like manner,

V^So^ZiVd^ V9a-lr'c''x5bd= Sabc V5bd,

Vse4:aWc''= VTUa^b^><Mc=l2aif^c^ Vdbc.

The quantity which stands without the radical sign is called the
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co.efficient of the radical. Thus, m. the expressions W V^a,

2aic Vbbd, I2a¥c^ VqIc, the quantities Itf^, 3ahc, I2alr^c^, are

called co-efficients of the radicals.

In general, to simplify an irrational monomial, separate it into

two parts, of lohich one shall contain all tlie factors that are perfect

squares, and the other the remaining ones : then take the roots of the

perfect squares and place them before the radical sign, under which,

leave those factors which are not perfect squares.

EXAMPLES.

1. To reduce Vlbd^bc to its simplest form.

2. To reduce V\2Q¥aH" to its simplest foi-m.

3. To reduce v 32a^i^c to its simplest form.

4. To reduce V^bQa^b'^c^ to its simplest form.

5. To reduce Vl024a''^V to its simplest form.

6. To reduce Vl'lQa'Wc'^d to its simplest form.

126. Since like signs in both the factors give a plus sign in the

product, the square of —a, as well as that of +«, will be a^

:

hence the root of a- is either +a or —a. Also, the square root

of 25a^Z>^ is either +baV^ or —ha¥. Whence we may conclude,

that if a monomial is positive, its square root may be affected either

with the sign + or — ; thus, VdcF^±2a", for +3a2 or —Za^,

squared, gives 9a*. The double sign ± with which the root is

affected is read plus or minus.

If the proposed monomial were negative, it would be impossible

to extract its root, since it has just been shown that the square of

every quantity, whether positive or negative, is essentially positive.

Therefore, V— 9, V— 4a^ V—Sa% are algebraic symbols

which indicate operations that cannot be performed. They are

called imaginary quantities, or rather imaginary expressions, and are

frequently met with in the resolution of equations of the second
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degree. These symbols can, however, by extending the rules, be

simplified in the same manner as those irrational expressions which

indicate operations that cannot be performed. Thus, V— 9 may be

reduced to (Art. 125.)

Vox V^7or,3 V-l; V-Aa^^ VlaFx V-l= 2a \/^

127. Let us now examine the law of formation for the square of

any polynomial whatever ; for, from this law, a rule is to be de-

duced for extracting the square root.

It has already been shown that the square of a binomial (a+ b)

is equal to a^-\-2ah+P (Art. 46.).

Now to form the square of a trinomial a-{-b-{-c, denote a+3 by

the single letter s, and we have

(a+J+c)^=(5+c)-=:^+25c+c2.

Bui s^^(a+bY^a^+ 2ab+Ir' ; and 2sc=2{a+b)c=2ac-]-2bc.

Hence (a+b+cy=a"+2ab+ I^+2ac+2bc+c^
;

that is, tJie square of a trinomial is composed of the sum of the squares

of its three terms, and twice the products of these terms multiplied

together two and two.

If we take a polynomial of four or more terms, and square it, we

shall find the same law offormation. We may, therefore, suppose

the law to be proved for the square of a polynomial of m terms
;

and it then only remains to be shown that it will be true for a poly-

nomial of m+1 terms.

Take the polynomial {a-\-b+c . . . +?), having m terms, and

denote their sum by s\ then the polynomial (a-\-b-{-c . . . +i+k)

having ??i+ l terms, will be denoted by (*+/t).

Now, {s-{-kf=^+2sk-]-k~, or by substituting for s.

{s-\-kf=(a+b-{-c . . . +iy+2{a+b+c . . .-?-i)k+k''.

But by hypothesis, the first part of this expression is composed

of the squares of all the terms of the first polynomial and the double
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products of these terms taken two and two ; the second part contains

the double products of all the terms of the first polynomial by the

additional term Tc ; and the third part is the square of this term.

Therefore, the law of composition, announced above, is true for the

new polynomial. But it has been proved to be true for a trinomial

;

hence it is true for a polynomial containing four terms ; being true

iovfour, it is necessarily true for^t-e, and so on. Therefore it is

general. This law can be enunciated in another manner : viz.

The square of any polynomial contains the square of tJiefrtt term,

plus twice the product of thefirst hy the second, plus the square of the

second ; plus twice the product of tfie first two terms ly the third, plus

the square of the third ; plus twice the product of the first three terms

by the fourth, plus the sqiuire of thefourth ; and so on.

This enunciation which is evidently comprehended in the first,

shows more clearly the process for extracting the square root of a

polynomial.

From this law,

(^a+i+cf=a'^+2ab-\-lr+2{a-^h)c+c^

{a+b+c+df=d'+2ab-{-lr'+2{a+ b)c+ c''+2{a+b+c)d+d^.

128. We will now proceed to extract the square root of a poly-

nomial.

Let the proposed polynomial be designated by N, and its root,

which we wUl suppose is determined, by R ; conceive, also, that

these two polynomials are arranged with reference to one of the

letters which they contain, a, for example.

Now it is plain that the first term of the root R may be found by

extracting the root of the first term of the polynomial N ; and that

the second term of the root may be found by dividing the second

term of the polynomial N, by twice the first term of the root R.

If now we form the square of the binomial thus found, and sub-

tract it from N, the first term of the remainder will be twice the

product of the first term of R by the third term : hence, if this first

12*
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term be divided by double the first term of R, the quotient will be

the third term of R.

In order to obtain the fourth term of R, form the double products

of the first and second terms, by the third, plus the square of the

third ; then subtract all these products from the remainder before

found, and the first term of the result will be twice the product of

the first term of the root by the 4th : hence, if it be divided by

double the first term, the quotient will be the fourth term. In the

same manner the next and subsequent terms may be found. Hence,

for the extraction of the square root of a polynomial we have the

following

RULE.

I. Arrange the polynomial with reference to one of its letters and

extract the square root of the first term : this will give the first term

of the root.

II. Divide the second term of the polynomial by double thefirst

term, of ilie root, and tlie quotient will be the second term of the root.

III. Thenform the square of the two terms of the rootfound, and

subtract itfrom thefirst polynomial, and then divide the first term of

the remainder by double the first term of the root, and the quotient

vnll he the third term.

IV. Form the double products of thefirst and second terms, by the

third, plus the square of the third ; then subtract all these products

from the last remaiJider, and divide thefirst term of the result by dou-

ble tJie first term of the root, and the quotient toill be the fourth term.

Then proceed in the same manner to find the other terms.

EXAMPLES.

1. Extract the square root of the polynomial

49a^Ir'-24:aP+25a''-S0a''b+ 16b*.

First arrange it with reference to the letter a.
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25a*-S0a'b-{-A9a^--24aP+16b* 5a'— Sab+4,P

25a*— 30a^5+ Qa^^ lOa^

4:0a-b'-24.aP+16M 1st. Rem.

^0aW-24aP+ 16¥

. . . 2cl. Rem.

After having arranged the polynomial with reference to a, extract

the square root of SSa", this gives 5a^, which is placed to the right

of the polynomial; then divide the second term, —SOa% by the

double of 5a^, or lOa^; the quotient is —3ab, and is placed to the

right of 5a^. Hence, the first two terms of the root are 5a^—3ab.

Squaring this binomial, it becomes 25a*~30a^i+9a^Z^, which, sub-

tracted from the proposed polynomial, gives a remainder, of which

the first term is AOaW. Dividing this first term by lOa^ (the double

of 5a^), the quotient is +4^- ; this is the third term of the root, and

is written on the right of the first two terms. Forming the double

product of 5a^—3ab by 4J^, and the square of 45^, we find the poly-

nomial 40a^^— 24aZ'^+16Z>*, which, subtracted from the first re-

mainder, gives 0. Therefore 5a^—Sab-i-4P is the required root.

2. Find the square root of

a*+ 'ia\v+ ea^r"+ 4fl.r^

+

x*.

3. Find the square root of

a*-2a='a,'+3aV-2aar'+«*.

4. Find the square root of

Ax^+ l2x^+5x*-2x^+7x^-2x+l.

5. Find the square root of

9a*-12a'b+28a'P-16aP+16b*.

6. Find the square root of

25a*J2_ 40a^52c+760=^^0^- 48aJ2c='+ 36J^c*- 30a*3c+ 24a33c^

-36a25c='+9aV.

189. We will conclude this subject with the following remarks.

1st. A binomial can never be a perfect square, smce we know

that the square of the most simple polynomial, viz. a binomial, con-
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tains three distinct parts, Mhich cannot experience any reduction

amongst themselves. Thus, the expression ar-\-¥ is not a perfect

square ; it wants the term ±2a5 in order that it should be the square

of aztil).

2d. In order that a trinomial, when arranged, may be a perfect

square, its two extreme terms must be squares, and the middle term

must be the double product of the square roots of the two others.

Therefore, to obtain the square root of a trinomial when it is a per-

fect square ; Extract the roots of the two exireme terms, and give

these roots the same or contrary signs, according as the middle term

is positive or negative. To verify it, see if the double product of the

two roots gives the middle term of the trinomial. Thus,

9a^— 48a*Z»2+64a^^* is a perfect square,

suice •v/9a^=3aS and V6^a^^=^—8aP,

and also 2 x 3a=X — Sai^= — 48a'*^'^ the middle term.

But 4a-+ 14aZ'+ 9Z»^ is not a perfect square : for although 4a^

and +9^"^ are the squares of 2a and 3J, yet 2x2«X 3<5> is not equal

to l^ab.

3d. In the series of operations required in a general problem,

when the first term of one of the remainders is not exactly divisi-

ble by twice the first term of the root, we may conclude that the

proposed polynomial is not a perfect square. This is an evident

consequence of the course of reasoning, by which we have arrived

at the general rule for extracting the square root.

4th. When the polynomial is not a perfect square, it may be sim-

phfied (See Art. ^25.).

Take, for example, the expression V a^^+4rt^i^+4ai^.

The quantity under the radical is not a perfect square ; but it can

be put under the form al{a^-\-4tab+4:P). Now, the factor between

the parenthesis is evidently the square of a-\-2b, whence we may

conclude that,

Va='&+4a^Z^+4ai*= {a+2b) Vab.
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Of the Calculus of Radicals of the Second Degree.

130. A radical quantity is the indicated root of an imperfect

power.

The extraction of the square root gives rise to such expressions

as va , 3 V 6 , 7 V 2 , which are called irrational quantities, or

radicals of the second degree. We will now establish rules for per-

forming the four fundamental operations on these expressions.

131. Two radicals of the second degree are similar, when the

quantities under the radical sign are the same in both. Thus,

zVh and 5c V~T are similar radicals ; and so also are 9 V 2

and 7 VT.

Addition and Subtraction.

132. In order to add or subtract similar radicals, add or subtract

their co-efficients, then prefix the siwi or difference to the common

radical.

Thus, . . . 3a VT+5c A/T=(3a+5c) VT.

And . . . 3a VT-5c VT=(3a-5c)'/T.

In like manner, 7 V2a+S V2a=(l-{-S) V2a—10 V2a.

And ... 7'/2^-3-v/2^=(7-3) V^= 4^2^.

Two radicals, which do not appear to be similar at first sight,

may become so by simplification (Art. 125).

For example,

V^8aP-{-l? VT5^=U V2a+ 5b V3a=9b Vs^,

and 2 -/is— 3 a/5^6 -/s"— 3 a/5^3 VsT

When the radicals are not similar, the addition or subtraction can

only be indicated. Thus, in order to add 3 Vb to 5 Va7 we write

5Va+2Vb7
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Multiplication.

133. To multiply one radical by another, multiply the two quan-

tities under the radical sign together, and place the common radical

over the product.

Thus, Vax Vh= "v/o^; this is the principle of Art. 125, taken in

an inverse order.

When there are co-efficients, we Jirst multiply them together, and

write the product before the radical. Thus,

3 Vbab'x^ V20a =12 Vl00a''b'=120a Vb7

2a V^ x3a VTc=6a^ y/Vc" =6a^c.

2a VaF+¥x—^a Va-+^= — 6a=(a^+^).

Division.

134. To divide one radical by another, divide one of the quantu

ties under the radical sign hy the other and place the common radical

over the quotient.

V a

vf
Thus, -

^ — N/ -j- ; for the squares of these two expres-

a
sions are equal to the same quantity — ; hence the expressions

themselves must be equal. When there are co.efficients, write their

quotient as a co-ejicient of the radical.

For example,

— 5a / h
baVh^2hVc=~s/-

2b

\2ac Vohc^^c a/2^=3«V-—-=3a V^c.
2o

135. There arc two transformations of frequent use in finding the

numerical values of radicals.
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The first consists in passing the co-efficient of a radical under the

sign. Take, for example, the expression 3a V 56 ; it is equiva-

lent to V 9a- X V^ib, or V Qa?.bb — V 4:5a% by applymg

the rule for the multiplication of two radicals ; therefore, to pass

the co-efficient of a radical under the sign, it is only necessary to

square it.

The principal use of this transformation, is to find a number

which shall differ from the proposed radical, by a quantity less than

unity. Take, for example, the expression 6 VlS; as 13 is not a

perfect square, we can only obtain an approximate value for its root.

This root is equal to 3, plus a certain fraction ; this being multiplied

by 6, gives 18, plus the product of the fraction by 6 ; and the en-

tire part of this result, obtained in this way, cannot be greater than

18. The only method of obtaining the entire part exactly, is to put

6 Vl3 under the form Vg-xIS = VS6xl2= V 468.

Now 468 has 21 for the entire part of its square root ; hence, 6 VTs
is equal to 21, plus a fraction.

In the same way, we find that 12 ^7=31, plus a fraction.

136. The object of the second transformation is to convert the

« « . .

denominators of such expressions as —;—— , — , into rational
P+ Vq V— Vq

quantities, a and p bemg any numbers whatever, and q not a per.

feet square. Expressions of this kind are often met with in the

resolution of equations of the second degree.

Now this object is accomplished by multiplying the two terms of

the fraction by p— y/q, when the denominator is ^+ y/q, and by

i>+ \/?j when the denominator is _p— ^q. For multiplying in this

manner, and recollecting that the sum of two quantities, multiphed

by their difference, is equal to the difference of their squares, we

have

a o-iV— \fq) (i{p— Vq)_ ap—a Vq

P+Vq~{p+Vq){p-Vq)'~ f-q ~ f-q
'



.»

«»— ^»r. *J^-«^ ^-

-- — If— I. frbcsiHL ^

If*-

aoa tae -rstOK ic

,'5,11-,'^, T^'S-T^'IS
-.':— ^'?

-i Ifev 4i= '• ^3lS^r=^l^'L »xiai Mi,

7^*5 sue—rrjLl i4^
^4l
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3+2 v/7
: 2,123, exact, to within 0,001.

5x/12-6V5

Remark. Expressions of this kind might be calculated by ap-

proximating to the value of each of the radicals which enter the

numerator and denominator. But as the value of the denominator

would not be exact, we could not form a precise idea of the degree

of approximation which would be obtained, whereas by the method

just indicated, the denominator becomes rational, and we always

know to what degree the approximation is made.

The principles for the extraction of the square root of particular

numbers and of algebraic quantities, being established, we will pro-

ceed to the resolution of problems of the second degree.

Examples in the Calculus of Radicals.

1. Reduce V 125 to its most simple terms.

Ans. 5 V~b.

v/^2. Reduce v —rr- to its most simple terms.
147 ^

5 /—
Ans. ^ v 6 .

3. Reduce V QSa^x to its most simple terms.

Ans, la V2Jc.

4. Reduce V{x^—a-s(?) to its most simple terms.

5. Required the sum of Vl^ and V 128 .

Ans. 14 V~2.

6. Required the sum of V^ and V 147 .

Ans. 10 VY
. /T . /27

7. Required the sum of \/ — and \^ —

.

50

19 /_
Ans. -VT.

13



8. Required the sum of 2 "v/ arb and 3 V^^bx'^.

9. Required the sum of 9 V 243 and 10 V 363.

10. Required the difference of \/ — and S/ ^.

4 ,_
A71S. T^ V 15.

45

11. Required the product of 5 V 8 and 3 V 5 .

Arts. 30 VlO.

2 /~1 3 /^
12. Required the product of -^r-W -^ and —r\/ 777.00 4 10

Ans. — -/35.
40

13. Divide 6 Vlo by 3 V~b. Ans. 2 VT.

Of Equations of the Second Degree.

137. When the enunciation of a problem leads to an equation of

the form ax^=b, in which the unknown quantity is multiplied by

itself, the equation is said to be of the second degree, and the princi-

ples established in the two preceding chapters are not sufficient for

the resolution of it ; but since by dividing the two members by a, it

b
becomes x^=—, we see that the question is reduced to finding the

b
square root of —

.

a

138. Equations of the second degree are of two kinds, viz. equa-

tions involving two terms, or incomplete equations, and equations in-

volving three terms, or co?iipIete equations.

The first are those which contain only terms involving the square

of the unknown quantity, and known terms ; such are the equa-

tions,

1 5 7 299
3,^=5; -^-3+--.---.-+—.
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These are called equations involving two terms because they may-

be reduced to the form aaP—b, by means of the two general trans-

formations (Art. 90 & 91). For, let us consider the second equa-

tion, which is the most complicated ; by clearing the fractions it be-

comes

8x2_72+ 10a^=7-24r'+299,

or transposing and reducing

42x^=378.

Equations involving three terms, or complete equations, are those

which contain the square, and also the first power of the unknown

quantity, together with a known term ; such are the equations

5 13 2 , 273
5x2-7x=34

; y^-Y''»''+^=Q-y^'-^ +-12~'

They can always be reduced to the form a3r+hx=c, by the two

transformations already cited.

Of Equations involving two terms.

139. There is no difficuhy in the resolution of the equation

b
ax?=h. We deduce from it ar=— , whence x-.' V^-

When — is a particular number, either entire or fractional,

we can obtain the square root of it exactly, or by approxmiation.

If — is algebraic, we apply the rules established for algebraic

quantities.

But as the square of +m or —m, is +m^, it follows that

|dtv/ —j is equal to — . Therefore, x is susceptible of two

values, viz. a;=+Y/— , and x= —\/ — . For, substituting

either of these values in the equation aa^= J, it becomes
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ax(+\/-)=h,ovax~=b,

I /* \^ *
and . . . flXf —\/ — ) —h or ax

—

=b.

For another example take the equation 4a;^—7=3a;^+9 ; by-

transposing, it becomes, a;^=rl6, whence a;=± vl6=±4.
Again, take the equation

1 5 7 299

We have already seen (Art. 138.), that this equation reduces to

378
42a;^=378, and dividing by 42, x^r=——=9; hence a;=±3.

Lastly, from the equation Z3?=h ; we find

.= ±V/-|-=±|\/15.

As 15 is not a perfect square, the values of x can only be deter-

mined by approximation

OJ complete Equations of the Second Degree.

140. In order to resolve the general equation

we begin by dividing both numbers by the co-efficient of i^, which

gives,

x^4-—X——, or o(f+x>x=q
a a

b ^ c

by makmg —=p and —=?•

Now, if we could make the first member aP+px the square of a

binomial, the equation might be reduced to one of the first degree,

by simply extracting the square root. By comparing this member

with the square of the binomial (x+a), that is, with x^+Sax+a-,

It is plam that x^+px is composed of the square of a first term x,
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plus the double product of this first term x by a second, which must

P P r P P^ 1.

be ^, since px=2^x', therefore, if the square of — or —, be

added to x'^+px, the first member of the equation will become the

square of a;+^ ; but in order that the equality may not be destroy.

ed — must be added to the second member.
4

By this transformation, the equation x^+px=q becomes

p^ p^

Whence by extracting the square root

The double sign ± is placed here, because either

+ V ?+-7-> or —V $+"r' squared gives 5+—.

p
Transposing — , we obtain

I-±n/«+^'«+ '4

From this we derive, for the resolution of complete equations of

the second degree, the following general

RULE.

After reducing the equation to theform x^-{-^x=<i, add the square

of half of the co-efficient of x, or of the second term, to loth man-

bers ; then extract the square root of both members, giving the double

sign db to the second member ; then find the value of x from the re.

suiting equation.

This formula for the value of x may be thus enunciated.

The value of the unknown quantity is equal to half the co-efficient

13*
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of X, taken with a contrary sign, plus or minus the square root of the

known term increased hy the square of half the co-efficient of x.

Take, for an example, the equation

5 13 2 273

Clearing the fractions, we have

10a;2-6a;+9=96-8x- 12x^+273,

or, transposing and reducing,

22ar'+2x=360,

and dividing both members by 22,

2 _ 360
'''''+22'''"'22'-

Add (—] to both members, and the equation becomes

2 / 1 x2 360 / 1 \2

'^+22''+ (22/ ""^2~+l22/ '

whence, by extracting the square root,

1 ^ /360 Tr>
^+22==^'^-22-+y'

Therefore,

^=-22^^-22-+ (22)'

which agrees ^vith the enunciation given above for the double value

of a;.

It remains to perform the numerical operations. In the first

360 / 1 \^

place, 00 "^(oo) "''ust be reduced to a single number, having
2* \Zii

(22)^ for its denominator.

360 /I v2_360x22+ l_792I
^°^^' ^2~^ (22/ ~ (22)2 -(2^ 5

extracting the square root of 7921, we find it to be 89 ; therefore,

^ 22 ^V22/ 22
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1 . 89
Consequently, X-~~22 22'

Separating the t\v0 values, we have

1

'"=-22-
89 88

"^22~22~'

1

"=-22
89 45

22~-ll'
Therefore, one of the two values which will satisfy the proposed

equaticJn, is a positive whole number, and the other a negative frac-

tion.

For another example, take the equation

which reduces to

ar.
37 57

~~6'

37 /37s
If we add the square of —, or (—j to both members, it be-

comes

37 /37\2 57 /37\2

whence, by extracting the square root

37 ^ / 57 737^2

Consequently,

37^ . / 57 /37x2

In order to reduce l—j —— to a single number, wo will ob-

serve, that

(12)2=12x12=6x24;

therefore, it is only necessary to multiply 57 by 24, then 37 by itself,

and divide the difference of the two products by (12)*. Now,

37x37=1369; 57x24=1368;
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therefore,

/37\2 57_ 1

\12/ '~"6"~(12)''*

1

the square root of which i

12

37 1
Hence, ^=j;^±j^, or

37 1 _38_19
'l2"^12~12~'6"'

37 1 _36_
'l2'~12~"l2~

This example is remarkable, as both of the values are positive,

and answer directly to the enunciation of the question, of which

the proposed equation is the algebraic translation.

Let us now take the literal equation

4a=^— 2a;2+2aa;=:18aJ— 18&2.

By transposing, changing the signs, and dividuig by 2, it becomes

whence, completing the square,

ar'-ax+—=— Oah+dl/'.

extracting the square root,

2 4

9a2 3a
Now, the square root of — 9ab+9P, is evidently, -^— 3o.

Therefore,

a ,
/3a \ ( 0.'= 2a— db,

x=—±{—-Sb), or
,
„,

2 \ 2 / ( x=— a+2b.

These two values will be positive at the same time, if 2a>3i,

and dbya, that is if the numerical value of b is greater than

a 2a
-77 and less than —

.

Jo
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EXAMPLES,

x=2
a:^—7x+10=0 .... values .

1 ^ 4 ^ i x= 7,12 } to within

3 '5 ^
( a;=-5,73 ) 0,01.-

3. Given a,-^—8a;+10=19, to find a-. Ans. x=9. '

4. Given a;^—a;—40=170, to find a;. Ans. a;r=15.

5. Given Sa'^+Sa-— 9=76, to find «. Ans. x=5.

6. Given ix^—i.r+7f=8, to find a\ Ans. a?=li.

7. Given a^-{-P—2bx+x^=—^ to find x.
n

Ans. x=-^—(b7iziz Va'nv'+b^m^-a'lA.
n-'—iir \ I

QUESTIONS.

1. Find a number such, that twice its square, increased by three

times this number, shall give 65.

Let a: be the unknown number, the equation of the problem will be

2a^+3a^=65,

whence.

Therefore,

3 23 3 23 13
a;=——+—=5, and x=— —= ——

.

4 4 4 4 2

Both these values satisfy the question in its algebraic

For, 2x(5)='+3x5=2x25+ 15=:65.

/ 13x2 13 109 39 130
and 2(--) +3x-y=—-y-^~=65.
But, if we wish to restrict the enunciation to its arithmetical

sense, we will first observe, that when k is replaced by —a?, in the
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equation 2x^+3a-'=65, the sign of the second term 3x only, is chang-

ed, because {—xy=x^.

3 23
Therefore, instead of obtaining x=—T^X' ^^ would find

3 2S 13
x=—±—, or x=—- and a;=— 5, values which only differ from

the preceding by their signs. Hence, we may say that the nega-

13
tive solution ——, considered independently of its sign, satisfies

this new enunciation, viz. : To find a number such, that twice its

square, diminished hy three times this numler, shall give 65. In fact,

we have

/13v2 13 169 39

2. A certain person purchased a number of yards of cloth for

240 cents. If he had received 3 yards less of the same cloth, for

the same sum, it would have cost him 4 cents more per yard. How
many yards did he purchase ?

Let x= the number of yards purchased.

240
Then will express the price per yard.

If, for 240 cents, he had received 3 yards less, that is x—

3

yards, the price per yard, in this hypothesis, would have been repre-

240
sented by -. But, by the enunciation this last cost would ex-

X— o

ceed the first, by 4 cents. Therefore, we have the equation

240 240 _
x-Z ^"^^^

whence, by reducing a,^— 3a;=180,

3 . ./''d _ 3±27
x=—±V -r+i80=-

2 ' 4 ' 2

therefore

a'=15, and x= — 12.
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The value a;=15 satisfies the enunciation ; for, 15 yards for 240

240
cents, gives , , or 16 cents for the price of one yard, and 12

yards for 240 cents, gives 20 cents for the price of one yard,

which exceeds 16 by 4.

As to the second solution, we can form a new enunciation, with

which it will agree. For, go back to the equation, and change x

into —X, it becomes,

240 240 240 240 _

an equation which may be considered the algebraic translation of

this problem, viz. : A certain person 'purchased a numler of yards

of cloth for 240 cents : if he had paid the same sumfor 3 yards

more, it would have cost Mm 4 cents less per yard. How many

yards did he purchase ? Ans. «=12, and a:= — 15.

Remark. Hence the principles of (Arts. 104 and 105.) are

confirmed for two problems of the second degree, as they were for

all problems of the first degree.

3. A merchant discounted two notes, one of $8776, payable in

nine months, the other of $7488, payable in eight months. He

paid $1200 more for the first than the second. At what rate of

interest did he discount them ?

To simplify the operation, denote the interest of $100 for one

month by x, or the annual interest by 12x ; 9x and 8a; are the in-

terests for 9 and 8 months. Hence 100+9a;, and 100+8a;, repre-

sent what the capital of $100 will be at the end of 9 and 8 months.

Therefore, to determine the present values of the notes for $8776,

and $7488, make the two proportions,

100+ 9x : 100 : : 8776

100+ 8x : 100 : : 7488

877600

100+ 9X

748800

100+ 8X
'

and the fourth terms of these proportions will express what the mer-
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chant paid for each note. Hence, we have the equation

877600 748800
1200;

100+ 9a; lOO+So;

or, observing that the two members are divisible by 400,

2194 1872

100+ 9a; 100+ 8a;

Clearing the fraction, and reducing, it becomes,

216a'2+4396x==2200;

whence

2198/2200 (2198)2
^ OTA '216 ^ 216 (216)2

Reducmg the two terms under the radical to the same denomi-

nator.

—2198± V 5306404
ar—

—

216

or multiplying by 12,

-2198d=V 5306404
12.= .

To obtain the value of 12a; to within 0,01, we have only to ex-

tract the square root of 5306404 to within 0,1, since it is afterwards

to be divided by 18.

This root is 2303,5 ; hence

-2198±2303,5
12a;=

18

and consequently.

12a;=
105,5

18
.-:.5,86,

and

12x—

-

-4501,5
= -250,08

18

The positive value, 12a;=5,86, therefore represents the rate of

interest sought.
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As to the negative solution, it can only be regarded as connected

with the first by an equation of the second degree. By going back

to the equation, and changing x into —x, we could with some trou-^

ble, translate the new equation into an enunciation analogous to that

of the proposed problem.

4. A man bought a horse, which he sold after some time for 24

dollars. At this sale, he loses as much per cent, upon the price of

his purchase, as the horse cost him. What did he pay for the

horse ?

Let X denote the number of dollars that he paid for the

horse, a:— 24 will express the loss he sustained. But as he

X
lost X per cent, by the sale, he must have lost -^^ upon each

ar

dollar, and upon x dollars he loses a sum denoted by -y-^- ; we

have then the equation

J?^=a;— 24, whence 0,-2—1000;= -2400.

and a;=50± V2500-2400=50±10.

Therefore,

= 60 and a;=40.

Both of these values satisfy the question.

For, in the first place, suppose the man gave $60 for the horse

and sold him for 24, he loses 36. Again, from the. enunciation, he

60 60x60
should lose 60 per cent, of 60, that is, -—- of 60, or

,

which reduces to 36 ; therefore 60 satisfies the enunciation.

If he paid $40 for the horse, he loses 16 by the sale ; for, he

40
should lose 40 per cent, of 40, or 40 X ,^.. > which reduces to 16

;

therefore 40 verifies the enunciation.

5. A grazier bought as many sheep as cost him £60, and after

14
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reserving fifteen out of the number, he sold the remamder for £54,

and gained 2s a head on those he sold : how many did he buy ?

Alls. 75.

6. A merchant bought cloth for which he paid £33 155, which

he sold again at £2 8s per piece, and gained by the bargain as

much as one piece cost him : how many pieces did he buy ?

Ans. 15.

7. What number is that, which, being divided by the product of

its digits, the quotient is 3 ; and if 18 be added to it. the digits will

be iirverted ? Ans. 24.

8. To find a number such that if you subtract it from 10, and

multiply the remainder by the number itself, the product shall be 21.

Ans. 7 or 3.

9. Two persons, A and B, departed from different places at the

same time, and travelled towards each other. On meeting, it ap-

peared that A had travelled 18 miles more than B ; and that A
could have gone B's journey in 15f days, but B would have been

28 days in performing A's journey. How far did each travel ?

> - jr ^^^
,

( A 72 miles.

^
( B 54 miles.

Discussion of the General Equation of the Second Degree.

141. As yet Ave have only resolved problems of the second de-

gree, in which the known quantities were expressed by particular

numbers. To be able to resolve general problems, and interpret

all of the results obtained, by attributing particular values to the

given quantities, it is necessary to resume the general equation of

the second degree, and to examine the circumstances which result

from every possible hypothesis made upon its co-efficients. This is

the object of the discussion of the equation of the second degree.

142. A root of an equation of the second degree, is such a num.

ber as being substituted for the unknown quantity, will satisfy the

equation.
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It has been shown (Art. 138), that every equation of the second

degree can be reduced to the form

x'+px^q .... (1),

p and q being numerical or algebraic quantities, whole numbers

or fractions, and their signs plus or minus.

- If, in order to render the first member a perfect square, we add

— to both members, the equation becomes

ir jr

(.+1)^=,+ 4̂*

Whatever may be the value of the number expressed by q+~ri

its root can be denoted by m, and the equation becomes

(x+^) =m\ or {x+^) -«r=0.

But as the first member of this equation is the difference between

two squares, it can be put under the form

{x+^-m).(x+^+ii^=Q ; . . . (2).

in which the first member is the product of two factors, and the

second is 0. Now we can render the product equal to 0, and con-

sequently satisfy the equation (2), in two different ways : viz.

P 'P
By supposing x-{-——m=0, whence x=—^+'>n.

%

P , P
or supposing x+—4-m=0, whence x=——— m.

At *

Or substituting for m its value.
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Now, either of these values, being substituted for x in its cor-

responding factor of equation (2) will satisfy that equation ; and as

equation (1) will always be satisfied when the derived equation (2)
is satisfied, it follows, that either value will satisfy equation (1).

Hence we conclude,

1st. That every equation of the second degree has two roots, and
only two.

.2d. That every equation of the second degree may he decomposed

into two binomial factors of the first degree with respect to x, having
X for a common term, and the two roots, taken with their signs

changed, for the second terms.

For example, the equation o?+^x—2S= being resolved gives

.T=4 and a;= — 7 ; either of which values will satisfy the equation.

We also have

(a;_4) (x+ 7) =.x^+ 3.r-28.

143. If we designate the two roots by x' and x", we have

.=_f+^;7? and .=-lL^V^,
by adding the roots we obtain

^''+""=
2 — - 4

and by multiplying them together, we have

4-('4)=-*-
Hence, 1st. The algebraic sum of the two roots is equal to the co.

efficient of the second term of the equation, taken ivith a contrary

sign. 2d. The product of the two roots is equal to the second mem-
ber of the equation, taken also with a contrary sign.
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Remake. The preceding properties suppose that the equatiou

has been reduced to the form c(r-{-px=q ; that is, 1st. That every

term of the equation has been divided by the co-efficient of x^.

2d. That all the terms involving x have been transposed and ar-

ranged in the first member, and x^ made positive.

144. There are four forms, under which the equation of the se-

cond degree may be written.

x^-\-px= q (1)

a^—px = q (2)

s^+px = —q (3)

3?—px= — q (4).

In which we suppose p and q to be positive.

These equations being resolved, give,

=-f-v/ .4 (1)

=+f-v ,4 (2)

=-f-^-4 (3)

-+^±V- •?+T (*)•

In order that the value of x, in these equations, may be found,

cither exactly or approximatively, it is necessary that the quantity

under the radical sign be positive (Art. 126).

f .

Now, — being necessarily positive, whatever may be the sign

of ^, it follows, that in \he first and second forms all the values of

x will be real. They will be determined exactly, when the quan-

tity ?+-T- is a perfect square, and approximatively when it is

not so.

In the first form, ihe first value of x, that is, the one arising from

14*
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taking the plus value of the radical, is always positive ; for the

radical S/ q+—, being numerically greater than — , the ex-

pression ——iir\/ q+— is necessarily of the same sign tis

that of the radical. For the same reason, the second value is es-

sentially negative, since it must have the same sign as that with

which the radical is affected : but each root, taken with its proper

sign,will satisfy the equation. The positive value will, in general,

alone satisfy the problem understood in its arithmetical sense ; the

negative value, answering to a similar problem, differing from the

first only in this ; that a certain quantity which is regarded as ad-

ditive in the one, is subtractive in the other, and the reverse.

In the second form, the first value of x is also positive, and the

second negative, the positive value being the greater.

In the third and fourth forms, the values of x will be imaginary

when

5'>—, and reaZ when 2'<--t--

. / ^ p
And since v —?+-t- is less than —, it follows that the

real values of x will both be negative in the third form, and both

positive in the fourth.

145. The same general consequences which have just been re-

marked, would follow from the two properties of an equation of the

second degree demonstrated in (Art. 143). The properties are :

TJie algehraic sum of the roots is equal to the co-efficient of the se-

cond term, taken with a contrary sign, and their product is equal to

the second member, taken also with a contrary sign.

For, in the first two forms, q being positive in the second mem-

ber, it follows that the product of the two roots is negative : hence,

they have contrary signs. But in the third and fourth forms q being
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negative in the second member, it follows that the product of the

two roots will be positive : hence, they will have like signs, viz. both

negative in the third form, where p is positive, and both positive in

the fourth form where p is negative.

Moreover, since the sum of the roots is affected with a sign con-

trary to that of the co-efficient p ; it follows, that, the negative root

will be the greatest in the firstform, and the least in the second.

146. We will now show that, when in the third and fourth forms,

p^
we have ?>"^» the conditions of the question will be incompa-

tible with each other, and therefore, the values of x ought to be

imaginary.

Before showing this it will be necessary to establish a proposition

on which it depends : viz.

If a given number be decomposed into two parts and those parts

multiplied together, the product will be the greatest possible when

the parts are equal.

Let p be the number to be decomposed, and d the difference of

the parts. Then

p d
-^+—= the greater part (Art, 32).

p d
and ———= the less part.

their product (Art. 46).

rf d^
and ^_ =P,

4 4

Now it is plain that P will increase as d diminishes, and that it

will be the greatest possible when d=0 : that is,

p p p^-^X—=— is the greatest product.

147. Now, since in the equation

a^

—

px=— q

p is the sum of the roots, and q their product, it follows that q can
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never be greater than — . The conditions of the equation there-

fore fix a limit to the vakie of q, and if we make ?>^5 we express

by the equation a condition which cannot be fulfilled, and, this con-

tradiction is made apparent by the values of x becoming imaginary.

Hence we may conclude that,

The value of the unknown quantity loill always he imaginary when

the conditions of tlie question are incompatible with each other.

Remark. Since the roots of the equation, in the first and second

forms, have contrary signs, the condition that their sum shall be

equal to a given number p, does not fix a limit to their product

:

hence, in those two forms the roots are never imaginary.

148. We will conclude this discussion by the following remarks.

1st. If in the third and fourth forms, we suppose q=-ri the ra-

dical part of the two values of x becomes 0, and both of these

p
values reduce to x= ——•.the two roots are then said to le equal.

p^
In fact, by substituting -— for q in the equation, it becomes

P'
x^-\-px— ——, whence

P^ I P\^
a^+pa;+—=0, or \x+-^) =0.

In this case, the first member is i\ie product of two equalfactors.

Hence we may also say, that the roots of the equation are equal,

since in this case the two factors being placed equal to zero, give

the same value for x.

2d. If, in the general equation, x^-^px=q, we suppose q^O,

P P
the two values of x reduce to x=—^+~, or x=0, and to

2 2

P P
x=-—-Y, or x=-p.
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In fact, the equation is then of the form !x^-{-px=0, or x{x+p)= 0,

which can be satisfied either by supposing x=0, or x-\-p—0,

whence x= —p : that is, one of the roots is 0, and the other the

co-efficient of x taken with a contrary sign.

3d. If in the general equation oc^+px=q, we suppose p=0,
there will result x"=q, whence x=± y/q ; that is, in this case tlie

Lwo values of x are equal, and have contrary signs, real in the first

and secondforms, and imaginary in the third and fourth.

The equation then belongs to the class of equations involving two

terms, treated of in (Art. 139).

4th. Suppose we have at the same time p=0, ^'=0 ; the equa-

tion reduces to x?— Q, and gives two values of x, equal to 0.

149. There remains a singular case to be examined, which is often

met with in the resolution of problems of the second degree.

To discuss it, take the equation ax^-\-hx=c. This equation

gives

'=
2-a

•

Suppose now, that from a particular hypothesis made upon the

given quantities of the question, we have a=0 ; the expression for

X becomes

-i±:b
I

"""¥'

-Q-' ^^^'"^"
1 __2b

" 0'

The second value is presented under the form of infinity, and

may be considered as an answer when the proposed questions will

admit of answers in infinite numbers.

As to the first — , we must endeavour to interpret it.

By multiplying the numerator and denominator of the 2d mem-

ber of the equation

-b+ Vlr'+ iac -b- V¥T^c
'=

2-a ^^ 2a
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we obtain

h2—(^p^Aac) — 4ac

2a{-i— Vl^'+^ac 2a{—b— V¥+lac

-2c

Vb"-{-^ac

c

by dividing by 2a,

— by making a=0.

Hence we see that the indetermination arises from a common fac-

tor in the numerator and denominator.

If we had at the same time a=0, b—0, c=0, the proposed

equation would be altogether indeterminate.

This is the only case of indetermination that the equation of the

second degree presents.

We are now going to apply the principles of this general discus-

sion to a problem which will give rise to most of the circumstances

which are commonly met with in problems of the second degree.

Problem of the Lights.

C" A C B a
150. Find upon the line which joins two lights, A and B, of dif-

ferent intensities, the point which is equally illuminated ; admitting

the following principle of physics, viz. : The intensity of the same

light at two different distances, is in the inverse ratio of the squares

of these distances.

Let the distance AB between the two lights be expressed by a
;

the intensity of the light A, at the units distance, by b ; that of the

light B, at the same distance, by c. Let C be the required point,

and make AC=ix, whence BC:=a—x.

From the principle of physics, the intensity of A, at the zmity

of distance, being b, its intensity at the distances 2, 3, 4, &:c., is

b b b
—5 —> — , &c., hence at the distance x it will be expressed by
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h
-5-. In like manner, the intensity of B at the distance a—x, is

c
7 —

; but, by the enunciation, these two intensities are equal
(a— a;)-

'
' -^ ^1

to each other, therefore we have the equation

I c

x^ (a—xy

Whence, by developing and reducing,

(h— c)xr— 2aix= —a^h.

This equation gives

ab ^ / d'W ceh

h-c ^ {i-cf b-c

or reducing,

a(h± Vhc)

b—c

This expression may be simplified by observing, 1st. that ~b± Vbc

can be put under the form y/b. y/b±z ^b. v/c, or //>( v/^± ^c) ;

2d. that b—c={^bf—{'^cy={y/b+^c).{^b—^c.) There-

fore, by first considering the superior sign of the above expression,

we have

a^b{s/b+Vc) cisfb

""^
( Vb+ v/c).( Vb- v/c)

" Vb- Vc
'

In like manner we obtain for the second value,

a Vb( Vb— v/f ) _ a^b
'"'"'( Vb+ n/c).( Vb- Vc) ~ Vb+ Vc

'

Hence, we have

aVb^ f a Vc
1st . . . X--

2d . . . X-.

Vb-\- Vc^ I from which
j

' Vb+ Vc'

aVb
I

we obtain
|

—aVc
Vb-Vcj [ Vb-Vc

1st. Suppose that Z>>c.
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The first value of x, is then positive and less than

a, because —-, is a proper fraction ; thus this value gives

for the required point, a point C, situated between the points A and

B. We see moreover, that the point is nearer to B than A ; for

since J>c, we have s/h+ ^h or 2 v/3>( VJ+ v/c) ; whence

->— and consequently, ^"o"'

ought to be the case, since the intensity of A was supposed to be

greater than that of B.

The corresponding value of a—x, , is also positive,

a
and less than — , as may easily be shown.

a\/h
. ,

The second value of x, ——, -, is also positive, but greater
\/o— vc

than a : because —-, r>l- Hence this second value gives a
y/O— \/C

second point C, situated upon the prolongation of AB, and to the

right of the two lights. We may in fact conceive that the I'wo lights,

exerting their influence in every direction, should have upon the

prolongation of AB, another point equally illuminated ; but this

point must be nearest that light whose intensity is the least.

We can easily explain, why these two values are connected by

the same equation. If, instead of taking AC for the unknown quan-

tity X, we had taken AC, there would have resulted BC'=x—a ;

b c

and the equation -^^^-r-^:^- Now, as {x—ay is identical with

{a—xy, the new equation is the same as that already established,

which consequently should have given AC as well as AC.

And since every equation is but the algebraic enunciation of a

problem, it follows that, when Ihe same equation enunciates several

problems, it ought by its different roots to solve them all.



EQUATIONS OF THE SECOND DEGREE. 169

When the unknown quantity x represents the liiie AC, the

second value of a— x, — —, is negative, as it should be, since
y/l)— y/C

we have a;>a ; but by changing the signs in the equation

— ay/c as/c
It becomes a;—a=

—

~ —
; and this value of

x—a represents the positive value of BC

.

2d. Let 3<c.

a s/h
The first value of x, —-r-—— is always positive, but less than

v/o+ vc
a— , since we have

( v/i+ v/c)>( v/Z»+ ^l) or than 2 ^l.

The corresponding value of a—x, or — — is positive, and
y/0-\- y/c

greater than —

.

Therefore in this hypothesis, the point C, situated between A
and B, must be nearer A than B.

rri 1 1 r "-^^ —as/l)
.

i he second value of x, — — or — —, is essentially ne-

gative. To interpret it, let us take for the unknown quantity the

distance AC", and let us represent this distance by a;, and at the

same time consider, as we have a right to do, x as essentially ne-

gative. Then the general expression for BC" being a— x, if

we regard x as essenticdly negative, the true numerical value of

a—x is expressed by a+x. Hence as before, the equation or

algebraic expression will bebe b
or

x^ {a-xf a-2 (a+xf
in the first of which equations x is essentially negative.

This equation ought to give a negative value for x, and a posi-

tive value for BC"=a-\-x. Indeeed, since the intensity of the light

B is greater than that of A, the second required point ought to be

15
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nearer A than B. The algebraic value for BC", which is

— a Vc a Vc

\/h — Vc~ Vc — Vb~

3d. Let h=c.

positive.

a
The first two values of a; and a—x reduce to —, which gives

the middle of AB for the first required point. This result agrees

with the hypothesis.

The two other values reduce to —-— , or infinity ; that is, the

second required point is situated at a distance from the two points

A and B, greater than any assignable quantity. This result

agrees perfectly with the present hypothesis, because, by supposing

the difference b—c to be extremely small, without being absolutely

nothing, the second point must be at a very great distance from the

a^/b
lights ; this is indicated by the expression — —, the denomi-

nator of which is extremely small with respect to the numerator.

And if we finally suppose Z»=c, or y/b— ^/c=0, the required point

cannot exist for a finite distance, or is situated at an infinite distance.

We will observe, that in the case of b=c, if we should consider

the values before they were simplified, viz.

a(b+-ybc) a(b— y/bc)
x=- - , and X— Jb~c b—c

aVb
the first, which corresponds to a;—

—

-, —
, would become

2ab a s/b
—r-, and the second, which corresponds to —; — , would be-

come — . But — would be obtained in consequence of the exist-

ence of a common factor, yjb— -/c, between the two terms of the

value of X (see Art. 113).
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Let l=:c, and a= 0.

The first system of values for x and a—x, reduces to 0, and the

second to — . This last symbol is that of indeiermination ; for,

resuming the equation of the problem, {b—c)xP—'iabx=—a?l, it

reduces, in the present hypothesis to O.or— 0.a;=0, which maybe

satisfied by giving x any value whatever. In fact, since the two

lights have the same intensity, and are placed at the same point,

they ought to illuminate equally each point of the line A B.

The solution 0, given by the first system, is one of those solutions

in infinite numbers, of which we have spoken.

Finally, suppose a=0, and h and c, unequal

Each of the two systems reduces to 0, which proves that there is

but one point in this case equally illuminated, and that is the point

in which the two lights are placed.

In this case, the equation reduces to {h—c)s^—0, and gives the

two equal values, a;=0, a;=0.

The preceding discussion presents another example of the pre-

cision with which algebra responds to all the circumstances of the

enunciation of a problem.

Of Equations of the Second Degree, involving two or more

unknown quantities,

151. A complete theory of this subject cannot be given here, be-

cause the resolution of two equations of the second degree involv-

ing two unknown quantities, in general depends upon the solution of

an equation of the fourth degree involving one unknown quantity

;

but we will propose some questions, which depend only upon the

solution of an equation of the second degi-ee involving one unknown

quantity.

1. Find two numbers such that the sum of their products by the

respective numbers a and l, may be equal to 2^, ansl that their

product may be equal to p.
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Let X and y be the required numbers, we have the equations,

ax-\-hy^2s.

xy=p.

2s—ax
h rom the first y——--— ; whence, by substituting in the se-

cond, and reducing,

aa^—2sx=z—hp.

Therefore,

- a'=

and consequently.

1
,— V s^— abp,

a ^

This problem is susceptible of two direct solutions, because S IS

evidently > Vs^~abj), but in order that they may be real, it is

necessary that ^> or ^abp.

Let a=5=l ; the values of x, and y, reduce to

x=s±: Vs^—p and y—szp Vs^—p

Whence we see, that the two values of x are equal to those of y,

taken in an inverse order ; which shows, that if «+ Vs^—p repre-

sents the value of a;, s— Vs^—p will represent the corresponding

value of y, and reciprocally.

This circumstance is accounted for, by observing, that in this par-

ticular case the equations reduce to <
' and then the

question is reduced to, finding two numbers of which the sum is 2s,

and their product p, or in other words, to divide a number 2s, into

two such parts, that their product may be equal to a given number p.

2. Find four numbers in proportion, knowing the sum 2s of their

extremes, the sum 2s' of the means, and the sum 4c^ of their squares.

Let u, X, y, z, denote the four terms of the proportion ; the cqua-

tions of the problem will be
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u+z=2s
x+y=2s'

uz=xy

At first sight, it may appear difficult to find the values of the un-

known quantities, but with the aid of an unknown auxiliary they are

easily determined.

Let p be the unknown product of the extremes or means, we

have

1st. The equations

c u+z=2s,
, . , . ( «=*+ V s^-p,

\ which give , \ ,

I
uz=p, °

i z=s-V s'-p.

2d. The equations

ix+y=2s', .
tx=s'+Vs'^-p,

\ which give
\ ,

\ ^=P, iy=s'-Vs'^-p.

Hence, we see that the determination of the four unknown quan-

tities depends only upon that of the product p.

Now, by substituting these values of u, x, y, z in the last of the

equations of the problem, it becomes

+ (s'- V7^^py=^c'

;

or, developing and reducing,

452^45'2_4^_4c . hence p=s^+s"^—c''.

Substituting this value for p, in the expressions for u, x, y, z, we

find

, u=s-\- V c'-s"', ( x=s'-\- V c'-s',

\ z=s- V c^-T^, \ y=s'— V c^-s^-

These four numbers evidently form a proportion ;
for we have

15*
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Tliis problem sliows how much the mtroduction of an unknown

auxiliary facilitates the determination of the principal unknown quan-

tities. There are other problems of the same kind, which lead to

equations of a degree superior to the second, and yet they may be

resolved by the aid of equations of the first and second degrees, by

introducing unknown auxiliaries.

152. We will now consider the case in which a problem leads to

two equations of the second degree, involving two unknown quan-

tities.

An equation involving two unknown quantities is said to be of the

second degree, when it contains a term in which the sum of the expo-

nents of the two unknown quantities is equal to 2. Thus,

S3r'—Ax+f—xy—5y+Q=0, 7xt/— 4x+3/=0,

are equations of the second degree.

Hence, every general equation of the second degree, involving

two unknown quantities, is of the form

ay"+ bxy+ cx^+ dy+fx+g=0,

a, h, c, . . . representing known quantities, either numerical or al-

gebraic.

Take the two equations

af+bxy+cx''-\-dy+fx+g=0,

aY+i'xy-{-c'a^-\-d'y-\-f'x-\-g'=0.

Arranging them with reference to x, they become

c x/'+{by+f )x+af+dy+g =0,
c'oir'+ {h'y+f')x-{-ay-{-d'y+g'z=0.

Now, if the co-cfficients of x^ in the two equations were the same,

wc could, by subtracting one equation from the other, obtain an

equation of the first degree in x, which could be substituted for one

of the proposed equations ; from this equation, the value of x could

be found in terms of y, and by substituting this value in one of the

proposed equations, we would obtain an equation involving only the

unknown quantity y.
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By multiplying the first equation by c', and the second by c, they

become

ccV+(5?/+/)c'a;+(a/+cZy+g)c'=0,

cc'a^+ {h'y-{-f')c x+(ay+d't/+^')c =0,

and these equations, in which the co-efficients of x^ are the same,

may take the place of the preceding.

Subtracting one from the othei', we have

\{hc'— cb')y-\-fc'— cf''\x-\-{ac'— ca')'f -\-{dc'— cd')y-\-gc'— eg'=0,

which gives

{ca'— ac')y^-\-{cd'—dc')y-\-cg'—gc'~
{hc'—cb')y+fc'-cf'

This expression for x, substituted in one of the proposed equa-

tions, will give a final equation, involving y.

But without effecting this substitution, which would lead to a very

complicated result, it is easy to perceive that the equation involving

y will be of the fourth degree ; for the numerator of the expres-

sion for X being of the form my^-\-ny-\-p, its square, or the expres-

sion for x^, is of the fourth degree. Now this square forms one of

the parts of the result of the substitution.

Therefore, in general, the resolution of two equations of the se-

cond degree, involving two unknown quantities, depends upon that of

an equation of the fourth degree, involving one unknown quantity.

153. There is a class of equations of the fourth degree, that can

be resolved in the same way as equations of the second degree ;

these are equations of the form x'^-\-poc^-\-q=.0. They are called

trinomial equations, because they contain but three kinds of terms
;

viz. terms involving a;*, those involving x^, and terms entirely known.

In order to resolve the equation x'^-\-px^-{-q=Q, suppose a^=y»

we have

Pa./ V^
f^Vy^i=^^ whence 3/=-y±V —^.^-^^

But the equation ar^=y, gives a;=± s/y.
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Hence, x=±V -^±\/_^+^.
We perceive that the unknown quantity has four values, since

each of the signs + and — , which affect the first radical, can be

combined successively with each of the signs which affect the se-

cond
;

but these values taken two and two are equal, and have contra,

ry signs.

Take for example the equation a;*— 25a;^=: — 144
;

by supposing s^—y, it becomes ?/^— 25^/= — 144
;

whence ^=16, y^Q.
Substituting these values in the equation x^=y there will result

1st. 3?=IQ, whence a;=:±4; 2d. a^—g^ whence a;=±3.
Therefore the four values are +4, —4, +3 and —3.
Again, take the equation a;^— 7x^=8. Supposing s?=y, the

equation becomes /— 7^=8; whence y=Q, y= — l.

Therefore, 1st. !c^=8, whence a;=±2^/2; 2d. ar^=-l;
whence x=± v/— 1 ; the two last values of x are imaginary.

Let there be the algebraic equation x'^—(2ic-\-4a'')x^=—lr'c';

taking x^=y, the equation becomes f—{2ie-\-4:a^)y=—i^c'';

from which we deduce y= U + 2a2±2a VlT^^T^,

And consequently x=±\y be ^2a'^±2a^/lc + a^.

154. Every equation of the form y^''+py''+q=0, in which the

exponent of the unknown quantity in one term is double that of the

other, may be solved by the rules for equations of the second degree.

For, put y"=x, then f"=3?, and y^"
-{-fy^ \-q=x'^ ^'px-{-q=^.

Hence

Or

And

a; = - -^4.

r = - --!•

=V -i-^-^4-
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Extraction of the Square Root of Binomials of the form

a ± VT^

155. The resolution of trinomial equations of the fourth degree,

gives rise to a new species of algebraic operation : viz. the extrac-

tion of the square root of a quantity of the form ad= Vb, a and h

being numerical or algebraic quantities.

By squaring the expression 3± Vs, we have

(3zfc Vy)2=9±6 VT+5=14±6 Vb~:

hence, reciprocally \/ 14±6 V 5 =3± V 5.

In like manner, ( v/7± ^/ll)2=7±2^/7x \/ll + ll

= 18±2^/77.

Hence reciprocally V18±2 V77= n/7± v/11.

Whence we see that an expression of the form v a=fc \/h, may

sometimes be reduced to the form a'± y/h' or -/a'db V^' ; and

when this transformation is possible, it is advantageous to effect it,

since in this case we have only to extract two simple square roots,

whereas the expression Vai \/b requires the extraction of the

square root of the square root.

156. If we let p and q denote two indeterminate quantities, we

can always attribute to them such values as to satisfy the equations

Va+Vh:=p+q (1).

Va— y/b=p—q (2).

These equations, being multiplied together, give

Va'-b^p^-q' (3).

Now, if p and q are irrational monomials involving only single ra-

dicals of thesecond degree, orif one is rational and the other irration-

al, it follows that p'^ and q^ will be rational ; in which case, p^— q",

or its value, Va'—b, is necessarily a rational quantity, or a?—h is

a perfect square.
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When this is the case, the transformation can always be effected.

For, take o?—b, a perfect square, and suppose Va^—l=c', the

equation (3) becomes

Moreover, the equations (1) and (2) being squared, give

f+q^+2fq=a+ ^/&,

p^J^q^— 2pq=a—^/h^,

whence, by adding member to member,

f+f=^ (4)

;

but y^—f=c (5).

Hence, by adding these last equations, and subtracting the se-

cond from the first, we obtain

25'2=a-c;

and consequently

p=±'

q^±.'

2 '

2
'

~2

f+ C

or

Therefore,

Va-\-Vb, or p+g-^riV —^db'

V a— \/b, or p—q—±:\/ —

^"+v*=±(V-i-+V—

)

/ /* /o+c . /a— c\

a— c

~2~'

'a—c

2 '

. . (6\

. . (7).

These two formulas can be verified ; for by squaring both mem-

bers of the first, it becomes

a-\-c a— c . / a^—c^ .— —

-

a+ v/i--^+-^-+2V —^—=:a+ Va'-c' ;

but the relation Va^—h— c, gives c^z=a^—b.
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Hence, a+ Vi=a+ Va''—a^+b=a-{- -Jh.

The second formula can be verified in the same manner.

157. Remark. As the accuracy of the formulas (6) and (7) is

proved, whatever may be the quantity c, or Va^—h, it follows,

that when this quantity is not a perfect square, we may still replace

the expressions Va+ y/b and Va— \/h, by the second inembers

of the equalities (6) and (7) ; but then we would not simplify the

expression, since the quantities p and q would be of the same form

as the proposed expression.

We would not, therefore, in general, use this transformation,

unless c?—!) is a perfect square.

EXAMPLES

158. Take the numerical expression 94+42 v'5, which reduces

to 94+ V8820. We have

a=94, 5=8820,

whence c= \/'cf—b= V'8836— 8820=4,

a rational quantity ; therefore the formula (6) is applicable to this

It becomes

/ /. /94+4
•+''/94+42 v/5=± (V ^^^

01-, reducing, =^( V^+ ^45) ;

therefore, v/94T42V5= ±(7+3 v/5).

In fact, (7+ 3 v/5)-=49+ 45+ 42 v/5=94+42 v/5.

Again, take the expression

S/ np+2m^—2m Vnp+m^;

we have a=np-\-2)H^, b—'lm^{np-\-m^),

whence a^—i=7i^p^,

and c or Va'— 3=7ip;



180 ALGEBRA.

therefore the formula (7) is applicable. It gives for the required

root

or, reducing, ±( V np-\-7n^—m).

In fact, ( Vnp+7n^—my=np+2m^—2}n V np+n?.

For another example, take the expression

V 16+ 30 V^T+Vie-so V~^,
and reduce it to its simplest terms. By applying the preceding

formulas, we find

V 16+ 30 a/-1= 5+3V-1, 1/16-30^-1 =5-3^31^

Hence, V 16+ 30 '/^+ \/ 16-30 -v/^= 10.

This last example shows, better than any of the others, the utili-

ty of the general problem ; because it proves that imaginary ex-

pressions combined together, may produce real, and even rational

results.

\/28+ 10 VT=5+ VT; V 1+4 V-3=:2+ V -S,

\/ bc+ 2b V bc-W+\/ hc-2b V hc-lF^^2b;

\/ab+^c^-d?+2 Viabc^-ab(P= Vab+ VAit-'^.

Examples of Equations of the Second Degree, which either

involve Radicals, or tivo unknown quantities.

2a^
1. Given x-\- V a~+3r ——== to find x.

Va^-\-y?

X Vc^x^+a'+x'=2d'

X 'y/a^-\-a?=a^—3? by transposing.
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henco

or

a!'a^+x*=a*— 2a^x^+x\ by squaring,

2a\^=xK

2. Given

x=dz'

\/^^j^b'^-S/^-¥=h to find X.

J+^=v/^_^+,, by transposing.

^+^=^-^+2* .h'+ h\

hence

hence

V=2b\/ -^-y.

ar'=-
4a^

hence a;=±-
2a

J VT

3. Given 1 =-r to find a?.

a,' X

Ans. a;=3± V2ab— b^.

4. Given
««/

VT

and

:48

:24

> to find X and ?/.

Dividing the first equation by the second, we have

IG
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V-
V y =2, or t/=4.

4a;
Whence from the second equation =4 V~x=24,

to fino X.

G. Given x + -X^-^-y = 19 )

and x^+ xy+f^13S\
to find a: and y.

Dividbg the second equation by the first, we have

X— Vxy-\-y= 7

but ... x-\- Vxy+y=l9

hence .... 2a:+2!/=26 by addition,

or .... a;+ ?/=13

and .... Vxy-\-13= 19 by substituting in the 1st eq.

or .... Vxy= 6

and .... xy=:26

From 2d equation, x^+xy-{-y'^=123

and from the last Sxy =108

Subtracting . . oi^—2xy+y^— 25

Hence x—y=zt: 5

But x-\-y= 13

Hence . . x=9 or 4; and «/=4 or 9.

7. Gi
a— V cr

1+ -/a^-x^
:i, to find X.

Ans. x=±-
2a VT
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8. Given =- to find x.

V X — Vx—a *'~^

a(l±nY
Ans. —

l±2w

^. V a-\-x V a— x . /~x
9. Given —^H ;z^=V ^ to find x.

V X V X ^

Ans. x=±2Vab-¥.

10. Given
j ^,3^^^^^i2^ |

to find x and y.

( a;z=2 or 1
Ans. {

' y=l or 2.

11. Given j , „ 2, , - _„_ to find a; and y.

( x=ll or 5
Ans. \ ^ ,,

( y=b or 11.

a+a;+ V2aa;+x2
12. Given =h, to find x.

a-\-x

±«(lq= V2b-b'')
Ans. x= y —

\

V25-^'2

13. Given ^
^ to find a; and y

i xy=z 6 >
^

( x=3 or 2 or —3± VY
Ans. { ,—

{ y=2 or 3 or -3ip VT.
14. Given the sum of two numbers equal to a, and the sum of

their cubes equal to c, to find the numbers

„ , ,. . ( X +7/ =a
By the conditions { „

( ar+ 2/-'=c.

Putting x=s-\-z, and y=s—z, we have a=25,

C r'=«='+3^«+352='+r»

Hence, by addition, x^-]-y^=2s^ -\-6sz^=c
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Whence 2^=—r and z=±\/ —
,

^ . / c-2s'
,

. /T^T"
or a;=:5±V —g^— 5 »nd ?/=5;pV —g^^—

,

Or by putting for s its value,

c

-|-v/(-3r^)=|-N/-
4c— G^

a // 4 \ « /4c— «^

and ^=_:p^(____j=._:p^___.

QUESTIONS.

1. There are two numbers whose difference is 15, and half their

product is equal to the cube of the lesser number. What are those

numbers? Ans. 3 and 18.

2. What two numbers are those whose sum, multiplied by the

greater, is equal to 77 ; and whose difference, multiplied by the

lesser, is equal to 12 ?

Ans. 4 and 7, or | s/2 and y ^/2.

3. To divide 100 mto two such parts, that the sum of their square

roots may be 14. A7is. 64 and 36.

4. It is required to divide the number 24 into two such parts, that

their product may be equal to 35 times their difference.

A71S. 10 and 14.

5. The sum of two numbers is 8, and the sum of their cubes is

152. What are the numbers ? Ans. 3 and 5.

6. The sum of two numbers is 7, and the sum of their 4th powers

is 641. What are the numbers? A71S. 2 and 5.

7. The sum of two numbers is 6, and the sum of their 5th pow-

ers is 1056. What are the numbers? A71S. 2 and 4.

8. Two merchants each sold the same kind of stuff; the second

sold 3 yards more of it than the first, and together, they receive 35
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crowns. The first said to the second, I would have received 24

crowns for your stuff; the other replied, and I would have received

121 crowns for yours. How many yards did each of them sell ?

( 1st merchant a;=15 x=5
}

^"^-
i 2d . . . y=18

°^- y=s\'

9. A widow possessed 13,000 dollars, which she divided into two

parts, and placed them at interest, in such a manner, that the incomes

from them were equal. If she had put out the first portion at the

same rate as the second, she would have drawn for this part 360

dollars interest, and if she had placed the second out at the same

rate as the first, she would have drawn for it 490 dollars interest.

What were the two rates of interest ?

Ans. 7 and 6 per cent.

CHAPTER IV.

Formation of Powers, and Extraction of Roots of

any degree whatever.

159. The resolution of equations of the second degree supposes

the process for extracting the square root to be known ; in like man-

ner the resolution of equations of the third, fourth, &c. degree, re-

quires that we should know how to extract the third, fourth, d;c.

root of any numerical or algebraic quantity.

It will be the principal object of this chapter to explain the rais-

ing of powers, the extraction of roots, and the calculus of radicals.

Although any power of a number can be obtained from the rules

of multiplication, yet this power is subjected to a certain law of com-

position which it is absolutely necessary to know, in order to dedtice

the rootfrom the poioer. Now, the law of composition of the square

of a numerical or algebraic quantity, is deduced from the expression

for the square of a binomial (Art. 117) ; so likewise, the law

16*
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t)f 'a power 'df any degree, is deduced from the same power of

a binomial. We will therefore determine the development of any

power of a binomial.

160. By multiplying the binomial x-\-a into itself several times

the following results are obtauied
;

(x+a)=x+a,

{x+ay=x'^+2ax+a^,

{x+af=x^+3a3r'+Sa''x+a^

(a;+ a)*= a*+ 4aa;'+6aV+ 4a='a;+ «*,

(a;+a)5 =0,-5

+

5ax'+ 1OaV+lOaV+ 5a*a;

+

a'

By inspecting these developments it is easy to discover a law ac-

cording to which the exponents of x and a decrease and increase in

the successive terms; it is not, however, so easy to discover

a law for the co-efficients. Newton discovered one, by means of

which, any power of a binomial can be formed, without first obtain-

ing all of the inferior powers. He did not however explain the

course of reasoning which led him to the discovery of it ; but the

existence of this law has since been demonstrated in a rigorous

manner. Of all the known demonstrations of it, the most elemen-

tary is that which is founded upon the theory of comhinations. How-

ever, as it is rather complicated, we will, in order to simplify the ex-

position of it, begin by resolving some problems relative to combi-

nations, from which it will be easy to deduce the formula for the hi-

nomial, or the development of any power of a binomial.

Theory of Permutations and Comhinations.

161. Let It be proposed to determine the whole number of ways

in which several letters, a, b, c, d, &c. can be written one after the

other. The results corresponding to each change in the position of

any one of these letters, are called permutations.

Thus, the two letters a and b furnish the two permutations ab

and ba.
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In like manner, the three letters a, b, c, furnish

six permutations.

' abc

acb

cab

bac

bca

^ cba

Permutations, are the results obtained by writing a certain number

of letters one after the other, in every possible order, in such a man.

ner that all the letters shall enter into each result, and each letter

enter but once.

Problem 1. To determine the number of -permutations of which

n letters are susceptible.

In the first place, two letters a and b evidently ( ab

give two permutations. ( ba

Therefore, the number of permutations of two letters is 1 X 2«

Take the three letters a, h, and c. Reserve r c

either of the letters, as c, and permute the other two, < ab

giving o , \ ba

Now, the third letter c may be placed before ab,

between a and b, and at the right of ab ; and the

same for ba : that is, in one of the first permutations

the reserved letter c may have three different places,

giving three 'permutations. Now, as the same may
be shown for each of the first permutations, it fol-

lows that the whole number of permutations of three

letters will be expressed by 1x2x3.

If now, a fourth letter d be introduced, it can have four places in

each of the six permutations of three letters : hence all the per-

mutations of four letters will be expressed by 1x2x3x4.
In general, let there be n letters a, b, c, &c. and suppose the total

number of permutations of n— 1 letters to be known; and let Q
denote that number. Now, in each of the n— 1 permutations the

reserved letter may have n places, giving n permutations : hence,

cab

acb

abc

cba

bca

bac
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when it is so placed in all of them, the number of permutations will

be expressed by Qxn.

Let n=2. Q will then denote the number of permutations that

can be made with a single letter; hence Q=l, and in this particu-

lar case we have QX n~ 1x2.

Let 7i='6. Q will then express the number of permutations of

3— 1 or 2 letters, and is equal to 1x2. Therefore Qx^ is equal

to 1x2x3.

Let 71=4:. Q hi this case denotes the number of permutations

of 3 letters, and is equal to 1x2x3. Hence, Qxn becomes

1X2x3x4, and similarly when there are more letters.

162. Suppose we have a number m, of letters a, I, c, d, &c., if

they are written one after the other, 2 and 2, 3 and 3, 4 and 4 . . .

in every possible order, in such a manner, however, that the num.

bar of letters in each result may be less than the number of given

letters, we may demand the whole number of results thus obtamed.

These results are called arrange7nenls.

Thus ah, ac, ad, . . . ba, he, hd, . . . ca, ch, cd, . . . are arrange-

t)ie7its of 7)1 letters taken 2 and 2, or in sets 6f 2 each.

In like manner, ahc, ahd, . , . hac, bad, . . . ach, acd, . . . are ar-

rangemeTits taken in sets of 3.

Arrangements, are the results obtained by writing a number m of

letters one after the other in every possible order, in sets of 2 and

2, 3 and 3, 4 and 4 . . . n and n ; m being >n : that is, the num-

ber of letters in each set being less than the whole number of letters

considered. However, ifwe suppose n=?n, the arrangeme7its taken

n and n, will become simple per7nutations.

Problem 2. Having give 71 a number m of letters a, b,'C, d . . .,

to determine the total 7iumber of arra7igements that may be for7ned of

them by taki7ig them n at a time ; m being supposed greater than n.

Let it be proposed, in the first place, to arrange the three letters

a, h, and c in sets of two each.
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First, arrange the letters in sets of one each, in which r a

case we say there are two letters reserved : the reserved } b

letters for either arrangement, being those which do not ( c

enter it.

ah
Now, to any one of the letters, as a, annex, in suc-

cession, the reserved letters b and c : to the second ar-

rangement b, annex the reserved letters a and c ; and

to the third arrangement c, annex the reserved letters a

and b : this gives

Hence, we see, that the arrangements of three letters taken two in

a set, loill be equal to the arrangements of the same number of letters

taken one in a set, multiplied by the number of reserved letters.

Let it be required to form the arrangement of four letters,

a, b, c, and d, taken 3 in a set.

First, arrange the four letters two in a set : there will r ab

then be two reserved letters. Take one of the sets and

write after it, in succession, each of the reserved letters :

we shall thus form as many sets of three letters each as

there are reserved letters ; these sets differing from each

other by at least the last letter. Take another of the

first arrangements, and annex in succession the reserved

letters ; we shall again form as many different arrange-

ments, as there are reserved letters. Do the same for

all of the first arrangements, and it is plain, that the whole

number of arrangements which will be formed, of four

letters, taken 3 and 3, will be equal to the arrangements of

the same letters, taken two in a set, multiplied by the num-

ber of reserved letters.

In order to resolve this question in a general manner, suppose the

total number of arrangements of the m letters taken n— 1 in a set

to be known, and denote this number by P.

Take any one of these arrangements, and annex to it each of

the reserved letters, of which the rumber is m—{n—\), or

ba

ac

ca

ad

da

be

cb

hd

dh

cd

L dc
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?M— n+ l ; it is evident, that we shall thus form a number m—n+1
of arrangements of n letters, differing from each other by the last let-

ter. Now take another of the arrangements of w— 1 letters, and an-

nex to it each of the m—n+l letters which do not make a part of

it; we again obtain a number m—n-\-\ of arrangements of n let-

ters, differing from each other, and from those obtained as above, at

least in the disposition of one of the n— 1 first letters. Now, as

we naay in the same manner take all the P arrangements of

the m letters, taken n—\ in a set, and annex to them successively

the m— n+ 1 other letters, it follows that the total number of ar-

rangements of m letters taken n in a set, is expressed by

P{in-n-\-\).

To apply this to the particular cases of the number of arrange-

ments of m letters taken 2 and 2, 3 and 3, 4 and 4, make n=2,

whence w—n+l=wi— 1; P will in this case express the total num-

ber of arrangements, taken 2—1 and 2—1, or 1 and 1, and is con-

sequently equal to m ; therefore the formula becomes m{m—\).

Let n= 3, whence m— n+l=m— 2; P will then express the

number of arrangements taken 2 and 2, and is equal to m{m—\)
;

therefore the formula becomes m{m—\) (m— 2).

Again, take 7i=4, whence m—n+l=m— 3 ; P will express the

number of arrangements taken, 3 and 3, or is equal to

7«(?H— 1) (m— 2)

:

therefore the formula becomes

m{jn— \) (/n— 2) (?h— 3).

Remark. From the manner in which the particular cases have

been djeduced from the general formula, we may conclude that it

reduces to

m{ni—\) (ot— 2) (wi— 3) .... (m— «+ l)
;

that is, it is composed of the product of the n consecutive numbers

comprised between m and rn— n+ 1, inclusively.
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From this formula, that of the preceding Art. can easily be de-

duced, viz. the development of the value of Qx^-
For, we see that the arrangements become permutations when the

number of letters composing each arrangement is supposed equal

to the total number of letters considered.

Therefore, to pass from the total number of arrangements of m
letters, taken n and n, to the number of permutations of n letters,

it is only necessary to make m=?i in the above development, which

gives

n(n-l) (n-2) («-3) 1.

By reversing the order of the factors, observing that the last is

1, the next to the last 2, which is preceded by 3 . . ., it becomes

1, 2, 3, 4 (^-2) {n-l)n,

for the development of Q X ^^'

This is nothing more than the series of natural numbers compris-

ed between 1 and n, inclusively.

163. When the letters are disposed, as in the arrangements, 2

and 2, 3 and 3, 4 and 4, &c., it may be required that no two of the

results, thus formed, shall be composed of the same letters, in which

case the products of the letters will be different ; and we may then

demand the whole number of results thus obtained. In this case,

the results are called combinations.

Thus, ai, ac, be, . . . ad, bd, . . . are combinations of the letters

taken 2 and 2.

In like manner, abc, abd, . . . acd, bed . . . are combinations of

the letters taken 3 and 3.

Combinations, are arrangements in which any two will differfrom

each other by at least one of the letters lohich enter them.

Hence, there is an essential difference in the signification of the

words, permutations, arrangements, and combinations.

Problem 3. To determine the total number of different combina-

tions that can be formed of m letters, taken n in a set.

Let X denote the total number of arrangements that can bo

formed of m letters, taken n and n : F the number of permutations
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of n letters ; and Z the total number of different coinUnations taken

« and 11.

It is evident, that all the possible arrangements ofm letters, taken

w at a time, can be obtained, by subjecting the n letters of each of

the Z combinations, to all the permutations of which these letters

are susceptible. Now a single combination of n letters gives, by

hypothesis Y permutations ; therefore Z combinations will give

YxZ . . . arrangements, taken n and n ; and as X denotes the

total number of arrangements, it follows that the three quantities

X
X, Y, and Z, give the relations X= YxZ; whence Z=^.

But we have (Art. 162), X=P(m-n+l)
and (Art. 161), Y=Qxn.

P(m—n+ l) P m—n+\
Therefore, Z=^—-: '=—X

.

QXn Q n

Since P expresses the total number of arrangements, taken n—

1

and^i— 1, and Q the number of permutations of w— 1 letters, it

P
follows that — expresses the number of different combinations

of m letters taken n— 1 and n— 1.

To apply this to the particular case of combinations of m letters

taken 2 and 2, 3 and 3, 4 and 4 . . .

P
Make n=2, in which case — expresses the number of com-

binations of the letters taken 2—1 and 2—1 or 1 and 1, and is

equal to m ; the above formula becomes

m— \ m{m—\)
mx-

2 1.2

P
Let n=S, — will express thcvnumber of combinations taken

7w(m— 1)
2 and 2, and is equal to ——— ; and the formula becomes

m{m—l) (m—2)

1.2.3
•
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In like manner, we would find the number of combinations of

letters taken 4 and 4, to
??i(m— 1) (m—2) (m— 3)

1.2.3.4
; and in ge-

neral, the number of combinations of m letters taken n and n, is ex-

pressed by

m(m—l) {m— 2) (m—S) . . . (m— n+ 1)

1.2.3.4 . . . {n-l)7n '

which is the development of the expression

P{m—7i+l)

Qxn~'

Demonstration of the Binomial Theorem.

164. In order to discover more easily the law for the develop-

ment of the mth power of the binomial x-}-a, we will observe the

law of the product of several binomial factors x+a, x-\-bf x+c,

x-\-d . . . oi^ which the first term is the same in each, and the se-

cond terms different.

X + a

X + b

1st. product

2d.

3d.

x^ + a

+ i

X -\- c

x' + a

+ h

+ c

X -{ d

X + ab

X? + ab

+ ac

+ be

X + abc

a

+ b

+ c

+ d

x^ + (lb

+ ac

4- ad

+ be

+ bd

+ cd

17

x^ + abc

+ ahd

+ acd

+ bed

X + c-bcd
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From these products, obtained by the common rule for algebraic

multiplication, we discover tlie following laws :

1st. With respect to the exponents ; the exponent of x, in the first

term, is equal to the number of binomial factors employed. In the

following terms, this exponent diminishes by unity to the last term,

where it is 0.

2d. With respect to the co-efRcients of the different powers of a;;

that of the first term is unity ; the co-efficient of the second term is

equal to the sum of the second terms of the binomials ; the co-effi-

cient of the third term is equal to the sum of the products of the

different second terms taken two and two ; the co-efficient of the

fourth term is equal to the sum of their different products taken

three and three. Reasoning from analogy, we may conclude that

the co-efficient of the term which has n terms before it, is equal to

the sum of the different products of the m second terms of the bi-

nomials taken 71 and n. The last term is equal to the continued pro-

duct of the second terms of the binomials.

In order to be certain that this law of composition is general, sup-

pose that it has been proved to be true for a number m of binomials ;

let us see if it be true when a new factor is introduced into the pro-

duct.

For this purpose, suppose

a?--hAa;-"-*+Bx'"-2+ar"'-^ . . . +Ma;—"+i+N-r"'-'^-f . . . +U,

to be the product of ?« binomial fectors, Nx"—" representing the

term 'which has n terms before it, and Ma;"'-"+^ that which immedi-

diately precedes.

Let x+K be the new factor, the product when arranged according

to the powers of x, will be

+kI +ak1 +bkI +mkI +UK.

From which we perceive that the law of the exponents is evident-

ly the same.

With respect to the co-efficients, 1st. That of the first term is
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ttnity. 2d. A+K, or the co-efficient of x'", is also the sum of the

second terms of'the m+1 binomials.

3d. B is by hypothesis the sum of the difTerent products of the

second terms of the m binomials, and A.K expresses the sum of the

products of each of the second terms of the' m first binomials, by

the new second term K ; therefore B-^-AK is tJie sum of the dif-

fevent products of the second terms of the m+1 binomials, taJcen two

and two.

In general, sinceN expresses the sum of the products of the se-

cond terms of the m first binomials, taken n and n ; and as 3IK re-

presents the sum of the products of these second terms, taken n—

1

and n— 1, multiplied by the new second term K, it follows that

N-\-]MK, or the co-efficient of the term which has n terms before

it, is equal to the sum of the difierenl products of the second terms

of the m+1 binomials, taken n and n. The last term is equal to

the contmued product of the m+1 second terms.

Therefore, the law of composition, supposed true for a number

m of binomial factors, is also true for a number denoted by m+ 1.

It is therefore general.

Let us suppose, that in the product resulting from the multiplica-

tion of the m binomial factors, x-\-a, x-\-b, x-\-c, x-\-d ... we make

a=b=c=d . . ., the indicated expression of this product, {x-\-a)

(.T+&) (x+c), will be changed into (x+a)"'. With respect to its de-

velopment, the co-efficients being a+5+c+ <Z. . ., fl5+ac+acJ+. . .,

abc-\-abd-\-acd . . ., the co-efficient of x'""', or a+ Z»+c+(Z . . .,

becomes a-{-a-\-a-}-a-{- . . ., that is, a taken as many times as there

are letters a, b, c . . ., and is therefore equal to 7na. The co-effi-

cient of x'""^^ or ab-{-ac-{-ad-\- . . ., reduces to a^-{-a"-\-a^ . . ., or

to a^ taken as many times as we can form different combinations with

m—

1

m letters, taken two and two, or to m .
——

—

a^. (Art. 163).

The co-efHcient of x'""^ reduces to the product of a^, multiplied
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by the number of different combinations of m letters, taken 3 and

_ m— 1 7?i— 2
3» or to 771 .

—— -a", &c.

In general, if the term, which has 7i terms before it, is denoted by
JSx'"-'", the co-efficient, which in the hypothesis of the second terms

being different, is equal to the sum of their products, taken n and
n, reduces, when all of the terms are supposed equal, to a" multi-

plied by the number of different combinations that can be made
with m letters, taken n and 7U Therefore

P(m~n+1)

QXn
From which we have the formula

N=-^^ --^a". (Art. 163).

(x-f a)'"=a;"'-fwa.r'^-^+m .
——a^^-'^s

m— 1 m—2 P(m—7i+ l)

165. By inspecting the different terms of this development, a

si77iple law will be perceived, by means of which the co-efficient of

any term is formed from the co-efficient of the preceding term.

The co-efficie7it of any ter7n is formed ly multiply'mg the co-effi.

dent of the preceding term hy the exponent of x in that term, a7id di-

vidi7ig the product by the 7iimiber of ter77is which precede the required

ter7n.

o . 1 1 , P(m— ?^+ l)
For, take the general term -^-— ^aV'-" . This is called

the general term, because by making n=2, 3, 4 . . ., all of the

others can be deduced from it. The term which immediately pre-

P P
cedes it, is evidently —a"-^a;'"-''+^ since — expresses the num-

ber of combinations of m letters taken n—1 and n—1. Here we

see that the co-efficient J^Zl!! 1 [^ equ^l to the co-efficientVXn
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P
-^ which precedes it, multiplied by m—n-\-\, the exponent of « in

that term, and divided by n, the number of terms preceding the re-

quired term. This law serves to develop a particular power, v/ith-

out our being obliged to have recourse to the general formula.

For example, let it be required to develop {x-\-ay. From this

law we have,

After having formed the first two terms from the terms of the

general formula x"^ +maaf''''^ -\- . . ., multiply 6, the co-efficient of

the second term, by 5, the exponent of x in this term, then divide

the product by 2, which gives 15 for the co-efficient of the third

term- To obtain that of the fourth, multiply 15 by 4, the exponent

of X' in the third term, and divide the product by 3, the number of

terms which precede the fourth, this gives 20 ; and the co- efficients

of the other terms are found in the same way.

In like manner we find

(a;+ay»=a;^''+ 10aa;''+ 45rtV+ 120a^a;^+210aV,

+252aV+ 210a«x''+120aV+45aV+10a^a;+f/.".

166. It frequently occurs that the terms of the binomial are af-

fected with co-efficients and exponents, as in the following example.

Let it be required to raise the binomial 3a^c— '2bd to the 4th

power.

Placing Sarc—x and —2bd=y, we have

(x+j^)*= a;*+ 4ar'w

+

6x^f+ ^xy"^+i/ .

Substituting for x and y their values, we have

{?>cPc-2hciy={2(v'cy+A{Za^cf{-2bd)-\-Q{3cv'cf{-2hdf+
4(.3a2c) {-2hdf+{-2bd)\

or, by performing the operations indicated

{3c^c-'2My^Q\a^c*-2lQa<'6'bd+ '2lQa*c'lrd"-QQarchH\

+ lQbhl\

The terms of the development are alternately plus and minus, as

they should be, since the second term is —

.

17*
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167. The powers of any polynomial may easily be found by the

binomial theorem.

For example, raise a+Zi+c to the third power.

First, put .... Z'+ c=d.

Then (a+b+cf={a+df=a'+da^d+Sa(P+d^.
Or, by substituting for the value of d,

{a+b+cy=a'+Sa^+Zab^+P
Sa^'c+ Si'^c +eahc

+ 2ac^+Sbc''

+ c\

This expression is composed of the cubes of the three terms, plus

three times the square of each term by the first powers of tlie two

others, plus six times the product of all three terms. It is easily

proved that this law is true for any polynomial.

To apply the preceding formula to the development of the cube

of a trinomial, in which the terms are affected with co-efficients and

exponents, designate each term by a single letter, then replace the let.

ters introduced, by their values, and perform the operations indicated.

From this rule, we will find that

(2a2-4a5+3Z^f=8a«-48a'J+132a^J^-208a='53

+ 1 QSa'b"_ 1 OSaJs

+

21b\

The fourth, fifth, &c. powers of any polynomial can be develop,

ed in a similar manner.

Consequences of the Binomial Formula.

168. First. The expression (x+a)'" being such, that x may

be substituted for a, and a for x, without altermg its value, it fol-

lows that the same thing can be done in the development of it

;

therefore, if this development contains a term of the form Ka"a;'"^'',

it must have another equal to Kx^a"^'" or Ka"'"""a;''. These two

terms of the development are evidently at equal distances from the

two extremes ; for the number of terms which precede any term,

being indicated by the exponent of a in that term, it follows that
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the term K^''^;'""" has n terms before it ; and that the term Ka"'~"oif'

has m—n terms before it, and consequently n terms after it, since

the whole number of terms is denoted by m+ 1.

Therefore, in the development of any poiver of a hinomiul, the co-

efficients at equal distances from the two extremes are equal to each

other.

Remark. In the terms Ka^T""-", Krt™-"af , the first co-efficient ex-

presses the number of different combinations that can be formed with

m letters taken n and n ; and the second, the number which can be

formed when taken m—n and ?n—n; we may therefore conclude

that, the number of different combinations ofm letters taken n and n,

is equal to the number of combinations of m letters taken m—n and

m—n.
For example, twelve letters combined 5 and 5, give the same

number of combinations as these twelve letters taken 12— 5 and

12— 5, or 7 and 7. Five letters combined 2 and 2, give the same

number of combinations as five letters combined 5—2 and 5—2, or

3 and 3.

169- Second. If in the general formula,

m—

1

{x-\-aY^x''' -{-max'"~^ -\-m—-— a^a;'"""^+, &c.

we suppose x=l, 0=1, it becomes

m— \ 711—1 m — 2
(1 + 1)- or 2'"=l+m+m—^—+7n-—— . ~^—+, &c.

That is, the sum of the co-efficients of the different terms of the

formulafor the binomial, is equal to the mth power of 2.

Thus, in the particular case

(x+ a)5= 0,-5+ ^ax"+ 1 OaV+ 1 Oa^'ar

+

ba'x+a\

the sum of the co-efficients 1+5+10+ 104-5+1 is equal to 2^ or

32. In the 10th power developed, the sum of the co-efficients is

equal to 2" or 1024.

170. Third. In a series of numbers decreasing by unity, of which
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the first term is m and the last m—p, m and p being entire numbers,

the continued product of all these numbers is divisible by the con-

tinued product of all the natural numbers from 1 to ^+1 inclu-

sively.

Thnt i«
»<^^-l) {m-2) (m-3) . . . {m-p)

.

That IS, 1.2 ^ 3 ^ ^ __ (^^^^)
IS a whole num.

ber. For, from what has been said in (Art. 16-3), this expression

represents the number of different combinations that can be formed

of m letters taken p+1 and p+1. Now this number of combina-

tions is, from its nature, an entire number ; therefore the above ex-

pression is necessarily a whole number.

Of the Extraction of the Roots of jJarticular numbers.

171. The third power or cube of a number, is the product arising

from multiplying this number by itself twice ; and the thirds or cube

root, is a number which, being raised to the third power, will produce

the proposed number.

The ten first numbers being

1, 2, 3, 4, &, 6, 7, 8, 9, 10.

their cubes are 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000.

Reciprocally, the numbers of the first line are the cube roots of

the numbers of the second.

By mspecting these lines, we perceive that there are but nine

perfect cubes among numbers expressed by one, two, or three figures

;

each of the other numbers has for its cube root a whole number, plus

a fraction which cannot be expressed exactly by means of unity, as

may be shown, by a course of reasoning entirely similar to that

pursued in the latter part of (Art. 118).

172. The difference between the cubes of two consecutive num-

bers increases, when the numbers are increased.

Let a and a+1, be two consecutive whole numbers ; we have

(rt+ lf=a^+ 3a'+ 3a+ l;

whence {a-\-lf-a''^'^a'+^a+\.
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That is, the difference between the cubes of tioo consecutive whole

numbers, is equal to three times the square of the least number, plus

three times this number, plus 1.

Thus, the difference between the cube of 90 and the cube of 89,

is equal to 3(89)2+3x89+ 1= 24031.

173. In order to extract the cube root of an entire number, we

will observe, that when the figures expressing the number do not

exceed three, its root is obtained by merely inspecting the cubes of the

first nine numbers. Thus, the cube root of 125 is 5 ; the cube root

of 72 is 4 plus a fraction, or is within one of 4 ; the cube root of

841 is within one of 9, since 841 falls between 729, or the cube of

9, and 1000, or the cube of 10.

When the number is expressed by more than three figures, the

process will be as follows. Let the proposed number be 103823.

103.823 47

64 8

1
398.23

. 48 47
48 47

384 329
192 188

2304 2209
48 47

18432 15463
9216 8836

110592 103823

This number being comprised between 1,000, which is the cube

of 10, and 1,000,000, which is the cube of 100, its root will be ex-

pressed by two figures, or by tens and units. Denoting the tens by

a, and the units by b, we have (Art. 160),

{a-^bf=:a?+ 2,a?b+ 2a¥-\-V\

Whence it follows, that the cube of a number composed of tens

and units, is equal to the cube of the tens, plus three times the product
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of the square of the tens ly the units, plus three times the product of

the tens by the square of the units, plus the cube of the units.

This being the case, the cube of the tens, giving at least, thou-

sands, the last three figures to the right cannot form a part of it : the

cube of the tens must therefore be found in the part 103 which is

separated from the last three figures by a point. Now the root of

the greatest cube contained in 103 being 4, this is the number of

tens in the required root ; for 103823 is evidently comprised be-

tween (40)=* or 64,000, and (50)=* or 125,000 ; hence the required

root is composed of 4 tens, plus a certain number of units less than

ten.

Having found the number of tens, subtract its cube 64 from 103
;

there remains 39, and bringing down the part 823, we have 39823,

which contains three times the square of the tens by the units, plus

the two parts before mentioned. Now, as the square of a number

of tens gives at least hundreds, it follows that three times the square

of the tens by the units, must be found in the part 398, to the left of

23, which is separated from it by a point. Therefore, dividing 398

by three times the square of the tens, which is 48, the quotient 8

will be the unit of the root, or something greater, since 398 hun-

dreds is composed of three times the square of the tens by the units,

together with the two other parts. We may ascertain whether the

figure 8 is too great, by forming the three parts which enter into

39823, by means of the figure 8 and the number of tens 4 ; but it

is much easier to cube 48, as has been done in the above table. Now
the cube of 48 is 110592, which is greater than 103823 ; therefore

8 is too great. By cubing 47 we obtain 103823 ; hence the pro-

posed number is a perfect cube, and 47 is the cube root of it.

Remark. The units figures could not be first obtained ; because

the cube of the units might give tens, and even hundreds, and the

tens and hundreds would be confounded with those which arise from

other parts of the cube.
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Affain, extract the cube root of 47954

47.954 36

27

363^X3==27 1

209 37

36 37

47954 216 259
46656 108 111

1298 1296 1369
36 37

7776 9583
3888 4107

46656 50653

The number 47954 being below 1,000,000, its root contains only

two figures, viz. tens and units. The cube of the tens is found m
47 thousands, and we can prove, as in the preceding example, that

3, the root of the greatest cube contained in 47, expresses the tens.

Subtracting the cube of 3 or 27, from 47, there remains 20 ; bring-

ing down to the right of this remainder the figure 9 from the part

954, the number 209 hundreds, is composed of three times the

square of the tens by the units, plus the number arising from the

other two parts. Therefore, by forming three times the square of

the tens, 3, which is 27, and dividing 209 by it, the quotient 7 will

be the units of the root, or something greater. Cubing 37, we have

50653, which is greater than 47954 ; then cubing 36, we obtain

46656, which subtracted from 47954, gives 1298 for a remainder.

Hence the proposed number is not a perfect cube ; but 36 is its

root to within unity. In fact, the difference between the proposed

number and the cube of 36, is, as we have just seen, 1298, which

is less than 3(36)^+3x36+ 1, for in verifying the result we have

obtained 3888 for three times the square of 36.

174. Again, take for another example, the number, 43725658

containing more than 6 figures.
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3^X3=

35^X3= 3675
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43.725.658 352

27

1
167 35 352

35 352

43 725 175 704
42 875 105

1225

1760

8506 1056

35 123904

43725658 6125 352

43614208 3675 247808

111450 42875 619520
371712

43614208

Now the required root contains more than one figure, and may
be considered as composed of units and tens only, the tens being

expressed by one or more figures.

Since the cube of the tens gives at least thousands, it must be

found in the part which is to the lefl; of the last three figures 658.

I say now that if we extract the root of the greatest cube contain-

ed in the part 43725, considered with reference to its absolute value,

we shall obtain the whole number of tens of the root ; for let a be

the root of 43725, to within unity, that is, such that 43725 shall be

comprised between a^ and (a+ 1)^ ; then will 43725000 be compre-

hended between a?X 1000 and (a+l)^x 1000 ; and as these two last

numbers differ from each other by more than 1000, it follows that

the proposed number itself, 43725658, is comprised between a^x 1000

and (a 4-1)^X1 000 ; therefore the required root is comprised be-

tween that of a^x 1000, and (a+ l)^X 1000, that is, between ax 10

and (a+l)xlO- It is therefore composed of a tens, plus a certain

number of units less than ten.

The question is then reduced to extracting the cube root of 43725

;

but this number having more than three figures, its root will con-
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tain more than one, that is, it will contain tens and units. To ob-

tain the tens, point off the last three figures, 725, and extract the

root of the greatest cube contained in 43.

The greatest cube contained in 43 is 27, the root of which is 3 ;

this figure will then express the tens of the root of 43725, or the

figure in the place of hundreds in the total root. Subtracting the

cube of 3, or 27, from 43, we obtain 16 for a remainder, to the right

of which bring down the first figure 7, of the second period 725,

which gives 167.

Taking three times the square of the tens, 3, which is 27, and

dividing 167 by it, the quotient 6 is the unit figure of the root of

43725, or something greater. It is easily seen that this number is

in fact too great ; we must therefore try 5. The cube of 35 is

42875, which, subtracted from 43725, gives 850 for a remainder,

which IS evidently less than 3 x (35)^+3x35+ 1. Therefore, 35

is the root of the greatest cube contained in 43725 ; hence it is the

number of tens in the required root.

To obtain the units, bring down to the right of the remainder 850,

the first figure, 6, of the last period, 658, which gives 8506 ; then

take 3 times the square of the tens, 35, which is 3675, and divide

8506 by it ; the quotient is 2, which we try by cubing 352 : tiiis

gives 43614208, which is less than the proposed number, and sub-

tracting it from this number, we obtain 111450 for a remainder.

Therefore 352 is the cube root of 43725658, to within unity.

Hence, for the extraction of the cube root we have the following

RULE.

I. Separate the given number into periods of three figures each, he.

ginning at the right hand : the left hand period will often contain less

than three places of figures.

II. Seek the greatest cube in the first period, at the left, and set its

root on the right, after the manner of a quotient in division. Subtract

the cube of thisfigure of the rootfrom the first period, and to the re-

18
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mainder bring down the first figure of the next period, and call this

number the dividend.

III. Take three times the square of the root justfoundfor a divi.

sor, and see haw often it is contained in the dividend, and place the

quotientfor a secondfigure of the root. Then cube the figures of the

root thusfound, and if their cube be greater thajUhefirst two periods

of the given number, diminish the last figure ; bulif it be less, subtract

itfrom the first tioo periods, and to the reinainder bring down the first

figure of the next period,for a new dividend.

IV. Take three times the square of the whole rootfor a new divi-

sor, and seek how often it is contained in the new dividend : the quo-

tient will be the third figure of the root. Cube the whole root and

subtract the result from the three first periods of the given number,

and proceed in a similar wayfor all the periods.

Remark. If any of the remainders are equal to, or exceed,

three times the square of the root obtained plus three times this root,

plus one, the last figure of the root is too small and must be aug-

mented by at least unity (Art. 172).

EXAMPLES,

1. V48228544=364.

2. V27054036008= 3002.

3. V483249=78, with a remainder 8697;

4. '/91632508641= 4508, with a remainder 20644129 •

5. V32977340218432=:: 32068.

To extract the n"" root of a ivhole number.

175. In order to generalize the process for the extraction of roots,

we will denote the proposed number by N, and the degree of the

root to be extracted by n. If the number of figures in iV, does not

exceed n, the root will be expressed by a single figure, and is ob-

tained immediately by forming the n"' power of each of the whole
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numbers comprised between 1 and 10 ; for the n"' power of 9 is the

largest perfect power which can be expressed by n figures.

When N contains more than n figures, there will be more than

one figure in the root, which may then be considered as composed

of tens and units. Designating the tens by a, and the units by b,

we have (Art. 166),

n—\
iV=(a+ Z»)''=a''+ na''-V>'+n—~a"-2^2+, &,c. ;

that is, the proposed number contains the n*'' power of the tens, plus

n times the product of the n— 1 power of the tens by the units, plus a

series of other parts which it is not necessary to consider.

Now, as the »"' power of the tens cannot give units of an order

inferior to unity followed by n ciphers, the last n figures on the right,

cannot make a part of it. They must then be pointed off, and the

root of the greatest n"" power contained in the figures on the left

should be extracted ; this root will be the tens of the required root.

If this part on the left should contain more than n figures, the n

figures on the right of it, must be separated from the rest, and the

root of the greatest n"" power contained in the part on the left ex-

tracted, and so on. Hence the following

RULE.

I. Divide the number N into periods of x\ figures each, beginning

at the right hand ; extract the root of the greatest n"' power contained

ill the left hand period, and subtract tJie n"" poioer of thisfigurefrom

the left hand period.

[I. Bring down to the right of the remainder corresponding to the

first period, the first figure of the second period, and call this number

the dividend.

III. For?n the n— 1 power of thefirstfigure of the root, multiply it

by n, and see how often the product is contained in the dividend : the

quotient will be the secondfigure of the root, or something greater.

IV. liaise the number thusformed to the n'** power, then subtract

this resultfrom the two first periods, and to the new remainder bring

down the first figwe of the third period : then divide the number thus
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formed by n times the n— 1 power of the two figures of the root al-

ready found, and continue this operation until all the periods are

brought down.

EXAMPLES.

Extract the 4th root of 531441.

53.1441
I
27

2^= 16

4X2^=32
I

371

(27)"= 531441.

We first divide off, from the right hand, the period of four figures,

and then find the greatest fourth root contained in 53, the first

period to the left, which is 2. We next subtract the 4th power of

2, which is 16, from 53, and to the remainder 37 we bring down the

first figure of the next period. We then divide 371 by 4 times the

cube of 2, which would give 8 for a quotient ; but by raising 28 to

the 4th power, we discover that 8 is too large, then trying 7 we find

the exact root to be 27.

176. Remark. When the degree of the root to be extracted is a

multiple of two or more numbers, as 4, 6, . . . ., the root can he oh-

tuined by extracting the roots of more simple degrees, successively.

To explain this, we will remark that,

and that in general (a'")''=a'"xa'"Xa'"Xa"' • • •
=«""" (Art. 13).

Hence, the n'*" power of the m"" power of a number, is equal to the

mn"" power of this number.

Reciprocally, the mn"' root of a number is equal to the n"" root of

the m"' root of this number, or algebraically

"'V~a=V V a =V Va^

For, let . . . Vv«=«'> raising both membei-s to the n'* power

there will result . . . V^=«'" ; for from the definition of a root, we

have ( Vir)''=K.
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Again, by raising both members to the m"' power, we obtain

a= (a'")'" =:«""". Extracting the /»«'" root of both members, "'!ya=a'
;

but we already have V'^a=a' ; hence ";/«= V'^a.

In a similar manner we might find v a= \/ Va.

By this method we find that

V256 =\/ V 256 =r 'V/16= 4 ;

V 2985984 = \/ ^ 2985984 = Vl728=

V 1771561 =V V 1771561 =11 ;

V 1679616 = Vl296= '

Remark. Although the successive roots may be extracted in

any order whatever, it is better to extract the roots of the lowest

degree first, for then the extraction of the roots of the higher de-

grees, which is a more complicated operation, is effected upon num.

bers containing fewer figures than the proposed number.

Extraction of Roots by approximation.

177. When it is required to -extract the n"" root of a number

which is not a perfect power, the method of (Art. 175), will give

only the entire part of the root, or the root to within unity. As to

the fraction which is to be added, in order to complete the root, it

cannot be obtained exactly, but we can approximate as near as we

please to the required root.

Let it be required to extract the n"' root of the whole number a,

to within a fraction — ; that is, so near it, that the error shall be
P

1

less than —

.

P
(ly^pT

We M'ill observe that a can be put under the form . If
p"

18*
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axp"we denote the root of ap" to within unity, by r, the number
P"

or a, will be comprehended between — and —
; there-

fore the Va will be comprised between the two numbers,

r r+1 r— and . Hence — is the required root, to within the
p p P

fraction —

.

P
Hence, to extract the root of a whole number to within a fraction

—, multiply the number by p" ; extract the n"" root of the product to

within unity, and divide the result by p.

178. Again, suppose it is required to extract the n"" root of the

fraction -r-.

Multiply each term of the fraction by

a ab"-^
b"-^ ; It becomes -7-= , .

b ft"

Let r denote the n"" root of aft"-', to within unity;

or —, will be comprised between -j- and ———
Therefore, after having made the denominator of thefraction a per-

fect power of the n'*" degree, extract the n^^ root of the numerator, to

within unity, and divide ilie result by the root of the new denominator.

When a greater degree of exactness is required than that indi-

cated by -^, extract the root of aS"-' to within any fraction — ;
•' b p

and designate this root by — . Now, since — is the root of the&
P P

1 /
numerator to within — , it follows, that -7- is the true root of

p' bp

1
the fraction to within -r-.

bp
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179. Suppose it is required to extract the cube root of 15, to

within — . We have 15xl2'=15x 1728=25920. Now the

cube root of 25920, to within unity, is 29 ; hence the required root

29 5
'^ 1^

''
'l2-

I
•

Again, extract the cube root of 47, to within —

.

We have 47x20^=47x8000=376000. Now the cube root

,— 72 12
of 376000, to within unity, is 72; hence 3/47=—=3—, to

1
withm -.

Fmd the value of V25 to within 0,001.

To do this, multiply 25 by the cube of 1000, or by 1000000000,

which gives 25000000000. Now, the cube root of this number, is

2920 ; hence V25=2,920 to within 0,001.

In general, in order to extract the cube root of a whole number to

within a given decimalfraction, annex three times as many ciphers to

the number, as there are decimal places in the required root ; extract

the cube root of the number thusformed to within unity, and point off

from the right of this root the required number of decimals.

180. We will now explain the method of extracting the cube root

of a decimalfraction. Suppose it is required to extract the cube

root of 3,1415.

As the denominator 10000, of this fraction, is not a perfect cube,

it is necessary to make it one, by multiplying it by 100, which

amounts to annexing two ciphers to the proposed decimal, and we have

3,141500. Extract the cube root of 3141500, that is, of the num-

ber considered independent of the comma, to within unity ; this

gives 146. Then divide by 100, or VlOOOOOO, and we find

V3,1415=l,46 to within 0,01.
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Hence, to extract the cube root of a decimal number, we have

the following

RULE

Annex ciphers to the decimal part, if necessary, until it can be

divided into exact periods of three figures each, ohserving that the

number of periods must be made equal to the number of decimal

places required in the root. Then, extract the root as in entire num.

bers, and pioint off as many places for decimals as there are periods

in the decimal part of the number.

To extract the cube root of a vulgar fraction to within a given

decimal fraction, the most simple method is to reduce the proposed

fraction to a decimalfraction, continuing the operation until the num.

ber of decimal places is equal to three times tlie number required

in the root. The question is then reduced to extracting the cube

root of a decimal fraction.

181. Suppose it is required to find the sixth root of 23, to

within 0,01.

Applying the rule of Art. 177 to this example, we multiply 23

by 100% or annex twelve ciphers to 23, extract the sixth root of the

number thus formed to within unity, and divide this root by 100, or

point off two decimals on the right.

In this way we will find that V23r=l,68, to within 0,01.

EXAMPLES.

1. Find the V473 to within J^. Ans. 7^.

2. Find the V79 to within ,0001. Ans. 4,2908.

3. Find the Vl3 to within ,01. Ans. 1,53.

4. Find the V3,00415 to within ,0001. Ans. 1,4429.

5. Find the VOjOOlOl to within ,01. Ans. 0,10.

to within ,001. Ans. 0,824.
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Formation of Powers and Extraction of Roots of A/gebraic

Quantities. Calculus of Radicals.

We will first consider monomials.

182. Let it be required to form the fifth power of 2a^^. We
have

i^o'l/f == 2a?¥X 'ia?!)"X 2a^Z^x 2a^¥ X 2a^^^

from which it follows, 1st. That the co-efficient 2 must be multi-

plied by itself four times, or raised to the fifth power. 2d. That

each of the exponents of the letters must be added to itself four

times, or multiplied by 5.

Hence, (2a='Zr')5=2^a^ ^ ^P>^^='^2a^^b^''.

In like manner, {Sa''U'cf=&'.a'>^W>^''c''=bl2a^h^c'.

Therefore, in order to raise a monomial to a given power, raise

the co-efficient to this poioer, and multiply the eoqionent of each of the

letters by the exponent of the power.

Hence, reciprocally, to extract any root of a monomial, 1st.

Extract the root of the co-efficient. 2d. Divide the exponent of each

letter hy the index of the root.

V64a^^= 4a='<5c2 ; Vl6a«^''V= ^a'^Pc.

From this rule, we perceive, that in order that a monomial may

be a perfect power of the degree of the root to be extracted, 1st.

its co-efficient must be a perfect power ; and 2d. the exponent of

each letter must be divisible by the index of the root to be extracted.

It will be shown hereafter, how the expression for the root of a

quantity which is not a perfect power is reduced to its simplest

terms.

183. Hitherto, we have paid no attention to the sign with

which the monomial may be affected ; but if we observe, that what-

ever may be the sign of a monomial, its square is always positive,

and that every power of an even degree, 2n, can be considered as

the n** power of the square, that is, a^'=(o^)", it will follow that,
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every power of a quantity, of an even degree, whether positive or

negative, is essentially positive.

Thus, {±2aWcy= + lGaWc\

Again, as a power of an uneven degree, 2nH-l, is the product

of a power of an even degree, 2», by the first power, it follows

that, every power of an uneven degree cf a monomial, is affected with

the same sign as the monomial.

Hence, (+4a2^)='=+64rtW
; {^-^a^bf^-QW^P.

From this it is evident, 1st. That when the degree of the root of

a monomial is uneven, the root .will be affected with the same sign

as the quantity.

Therefore,

V+8a^= + 2« ; V-Sa^^- 2a ; V-32a"6== - 2a^^.

2d. When the degree of the root is even, and the monomial a

positive quantity, the root is affected either with + or —

.

Thus, V81a^=±3aZ'='; V64^^=±2a^

3d. When the degree of the root is even, and the monomial nega-

tive, the root is impossible ; for, there is no quantity which, raised to

a power of an isven degree, can give a negative result. Therefore,

V— a, V— b, V— c, are symbols of operations which it is

impossible to execute. They are, like V—a, V—h, imagina-

ry expressions (Art. 126).

184. In order to develop {a+y-{-z\^, we will place y-\-z=u, and

we have

(a +«)='= a^*+ Sa^M+ 3a?i^+M^

or by replacing u by its value, y+z

{a+y+zf=.a^+Za\y+z)+ 2a{y+zf+{yJrzf,

or performing the operations indicated

{a+y+zf=a'+2,a^y-\-Za\+ ^af+Qayz-\-Zaz'^+f-\-^fz-{-

Syz'^+z^.

When the polynomial is composed of more than three terms, as
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a-\-y-\-z-\-x . . . . p, let, as before, u= the sum of all the terms after

the first. Then, a+w will be equal to the given polynomial, and

From which we see, that by cubing a polynomial, we obtain the

cube of the first term, plus three times ike square of thefirst term

multiplied hy each of the remaining terms, plus other terms.

It often happens that u contains a, as in the polynomial a^-\-ax-\-b,

where u=zax+i. But since we suppose the polynomial arranged

with reference to a, it follows that a will have a less exponent in u

than in the first term.

In this case also, the co-efficient of u, multiplied by the first term

of u, will be irreducible with the remaining terms of the develop,

ment, because that product will mvolve a to a higher power than

the other terms : and when a does not enter u, the product of that

co-efficient by all the terms of w, will be irreducible with all the

other terms of the development.

185. As to the extraction of roots of polynomials, we will first

explain the method for the cube root ; it will afterwards be easy to

generalize.

Let N be the polynomial, and R its cube root. Conceive the two

polynomials to be arranged with reference to some letter, a, for ex-

ample. It results from the law of composition of the cube of a po-

lynomial (Art. 184), that the cube of R contains two parts, which

cannot be reduced with the others ; these are, the cube of the first

term, and three times the square of the first term by the second.

Hence, the cube root of that term of N which contains a, affect-

ed with the highest exponent, will be the first term of R : and the

second term of jR will be found by dividing the second term of N
by three times the square of the first term of R.

If then, we form the cube of the two terms of the root already

found, and subtract it from N, and divide the first term of the re-

mainder by 3 times the square of the first term of R, the quotient

will be the third term of the root. Therefore, having arranged

the terms of N, we have the following
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RULE.

I. Extract the cube root of the first term.

II. Divide the second term of N by three times the sqiuire of the

first term of R : the quotient will be the second term of R.

III. Havingfound the two first terms of R,form the cube of the

binomial and subtract itfrom N ; after which, divide the first term of

the remainder by three times the square of the first terin of R : the

quotient will be the third term of R.

IV. Cube the three terms of the rootfound, and subtract the cube

from N ; then divide the first term of the remainder by the divisor

already used : the quotient will be the fourth term of the root, and the

remaining terms, if there are any, may befound in a similar manner.

EXAMPLES.

1. Extract the cube root of a;«— Gx^+lSx*— 20xHl5a:*— Gx+ 1.

(sr'-2xf=x^-ex^+ 12x*- Sa;^ 3^^

1st Rem. .
~.

'. '. 3.r*— 12x3+, &c.

(r'-2x+lf=x''-6x'+ 15a'-20x^-{-15x^—6x+l.

In this example, we first extract the cube root of x', which gives

x^, for the first term of the root. Squaring a^, and multiplying by

3, we obtain the divisor 3a;'* : this is contained in the second term

— 6x^, —2x times. Then cubing the root, and subtracting, we find

that the first term of the remainder 3x*, contains the divisor once.

Cubing the whole root, we find the cube equal to the given polyno-

mial.

Remark. The rule for the extraction of the cube root is easily

extended to a root with a higher index. For,

Let a+i-j-c-j- . . f, be any polynomial.

Let s= the sum of all the terms after the first.

Then a+s= the given polynomial : and

(a+5)"= a"+ na'' *5+ other terms-
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That is, the n"" poiver of a polynomial, is equal to the n"' pouter of

thefirst ter7n, plus n times the first term raised to the power n— 1,

multiplied hy each of the remaining terms ; + other terms of the de-

velopment.

Hence, we see, that the rule for the cube root will become the

rule for the n"" root, by first extracting the n'^ root of the first term,

taking for a divisor n times this root raised to the n^l power, and

raising the partial roots to the ?i"' power, instead of to the cube.

2. Extract the 4th root of

lQa*-QQa''x^2\Qa'x'-2\Gax'+ Qla\

(2a-3a;)''= 16a''-96a^x'+216aV-216ca;='+81a''l32a3=4x(2a)3

We first extract the 4th root of 16a*, which is 2a. We then

raise 2a to the third power, and multiply by 4, the index of the root

:

this gives the divisor 32a^. This divisor is contained in the second

term — 96a^a;, — 3a; times, which is the second term of the root.

Raising the whole root to the 4th power, we find the power equal to

the given polynomial.

3. Find the cube root of

a;6+ 6a;5—40a^+ 96a;- 64.

4. Find the cube root of

Ibx^-Qx+x^-Qx"-203^+ 10x^+ 1.

5. Find the 5th root of

320^*- SOx*+ 80.r^- 40a;2+ 1 Ox- 1

.

Calculus of Radicals.

186. When it is required to extract a certain root of a monomial

or polynomial which is not a perfect power, it can only be indicated

by writing the proposed quantity after the sign V, and placing over

this sign the number which denotes the degree of the root to be ex-

tracted. This number is called the index of the root, or of the radical.

A radical expression may be reduced to its simplest terms, by

19
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observing that, the n"" root of a product is equal to the product of the

n^^ roots of its differentfactors.

Or, in algebraic terms :

Vabcd=:i/aXV^X V^X V^.

For, raising both members to the n"" power, we have for the first,

( V abed) ^ahcd . . ., and for the second,

(V«X7&X Vcx7^---)"=(^«)'"-(V^)"-(Vc)''.(yrf)"...=a^c<i.

Therefore, since the n"' powers of these quantities are equal, the

quantities themselves must be equal.

Let us take the expi-ession V54a*i^c^ which cannot be replaced

by a rational monomial, since 54 is not a perfect cube, and the ex-

ponents of a and c are not divisible by 3 : but we can put it under

the form

V54fl^6^c^= V-ilaV. V2ac^=3ab V2ac^

In like manner,

V8^= 2 VaF; V48a^«=:2aPc VSac-
;

Vl92a'bc'-= V64aV-x VSab=^2ac'' VSab.

In the expressions, Sab 'V2a?, 2 Va% 2ah^c VSac^, the quanti-

ties placed before the radical, are called co-efficients of the radical.

187. The rule of (Art. 125) gives rise to another kind of simpli-

fication.

Take, for example, the radical expression, V4a^ ; from this rule

we have, V4a^=\/ Vio^ and as the quantity affected with the

radical of the second degree v/, is a perfect square, its root can be

extracted, hence

V4^= \^.
In like manner,

Ja^'/r* ^^V^Qa'lr' ='V y36«^6'' =



CALCULUS OF RADICALS. 219

In general, Va"="'v/^a"=: Va ; that is, when the index of a

radical is multiplied by any number ii, and the quantity under the

the radical sign is an exact n"' power, ive can, without changing the

value of the radical, divide its index by n, and extract the n"" root of

the quantity under the sign.

This proposition is the inverse of another, not less important, viz.

ive can multiply the index of a radical Iry any number, provided we

raise the quantity under the sign to a power of which this number

denotes the degree.

Thus, Va^^'Va". For, a is the same thing as 'Va"; hence,

y a— V ^a"=z Va".

This last principle serves to reduce two or more radicals to the

same index.

For example, let it be required to reduce the two radicals v 2a

and V{a+b) to the same index.

By multiplying the index of the first by 4, the index of the se-

cond, and raising the quantity 2a to the fourth power ; then multi-

plying the index of the second by 3, the index of the first, and

cubing a+b, the values of the radicals will not be changed, and

the expressions will become

V2^='V'2V='VT6^; V{a+b)='V(a+by.

188. Hence to reduce radicals to a common index we have the

following

RULE.

Multiply the index of each radical by the product of the indices of

all the other radicals, and raise the quantity under each radical sign

to a power denoted by this product.

This rule, which is analogous to that given for the reduction of

fractions to a common denominator, is susceptible of some modifi-

cations.
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For example, reduce the radicals Wa, Wbh, Wa--\-P, to the

same index.

As the numbers 4, 6, 8, have common factors, and 24 is the most

simple multiple of the three numbers, it is only necessary to multi-

ply the first by 6, the second by 4, and the third by 3, and to raise

the quantities under each radical sign to the 6th, 4th, and 3d pow-

ers respectively, which gives

In applying the above rules to numerical examples, beginners

very often make mistakes similar to the following, viz. : In reduc-

ing the radicals \/2 and -v/3 to a common index, after having mul-

tiplied the index of the first (3), by that of the second (2), and the

index of the second by that of the first, then, instead of multiplying

the exponent of the quantity under the first sign by 2, and the expo-

nent of that under the second by 3, they often multiply the quantity

under the first sign by 2, and the quantity under the second by 3.

Thus, they would have

'->/¥= ''-v/2^='^/l; and V3=V3^=:V'9:
Whereas, they should have, by the foregoing rule,

''^r2=W~{2f='^r^, and V^ = '\^J^=V^.

Reduce V2, %/4, W\, to the same index.

Addition and Subtraction of Radicals.

189. Two radicals are similar, when they have the same index,

and the same quantity, under the sign. Thus, 3 -^/ab and 7 Vah,

are similar radicals, as also 3a- V^^j and 9c^ %/P.

Therefore, to add or subtract similar radicals, add or subtract

their co-efficients, and prefix the sum or difference to the common

radical.

Thus, 2,Wb+)lWb=bWb, ^Wb-2Wb=Wb,
3aVbdz2cVb=(3adz2c)Vb.
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Sometimes when two radicals are dissimilar, they can be reduced

to similar radicals by Arts. 186 and 187. For example,

W8a'b+l6a''-Vb'+2aP=2aVb+2^-b VM^«~
=.{2a-b)Vb+2^;

3V4^+2 V2^=3 V2^+2 V2a=5 V2^.

When the radicals are dissimilar, and irreducible, they can only

be added or subtracted by means of the signs + or —

.

Multiplication and Division.

190. We will first suppose that the radicals have a common

index.

Let it be required to multiply or divide Va by V^. We have

Vax Vb= Vab, and Va -^ Vb=\/-r.

For by raising Va . "Vb and 'Vab to the n"" power, we obtain

the same result ab ; hence the two expressions are equal.

r/ffl 1 " /^ . , , . . «
In Uke manner, —r and \/ - raised to the n''' power give -^:

iy ^ .

hence these two expressions are equal. Therefore we have the

following

RULE.

Multiply or divide the quantities tinder the sign by each other, and

give to the product, or quotient, the common radical sign. If they

have co-efficients, first multiply or divide them separately.

Thus,

2aV _Z_x-3aV ^ T ^ =-6a^V ^ j^-.
c a ca

or, reducing to its simplest terms,

Qa^a^+ V)

19*
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3fl VSafx^i V4aF^=6ai VS2a*c=l2a''bV2'c

V
\/^

aW+b' _ ' /Qb{aW+ h^) _^^l /g!±jl

Sb

When the radicals have not a common index, they should be re-

duced to one.

For example, 3aVbx5b''V^c=ldabx'Vsb^'

EXAJtfPLES,

1. Multiply \/2X -V3 by V yX'^-w
Alls. 'ViT

2. Multiply 2 Vis by sVTo

An*. 6V337500.

5 /T . /y
3. Multiply 4V Y by 2V -j-

': / 27
^-- ^v ,5,.

2 'v/ 3 V -v/ 4
4. Reduce = to its lowest terms.

x*-v/TxV3

^715. 4'V288.

/V J- X2V 3
5. Reduce \/ ^ ^z to its lowest terms.

^ 4V2 X -/s

6. Multiply VT, VT, and 'V^ to ether.

An*. 'V648000.
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7. Multiply V -r-, 'v 17 and 'V6 together.
3' " 2

Ans. V ^.

8. Multiply (4V-^+5\Ai) by (V Y+2V y)

9. Divide yV Y by ( -/T+sVy)

43 13 ^-
y+Y v42.

^n.. 1

10. Divide 1 by *VT+V3 .

*V^-*V~^+W^-V"^
Ans.

a—b

11. Divide *V~a"+ *-v/X by W a —*V1)'

.

a-\-h-\-2 V^+2Va^+2*Va^
-4ns.

a-b

Formation of Powers, and Extraction of Roots.

191. By raising V« to the n"" power, we have

(Va)''=V«XV«XV« • • • ='Va",

by the rule just given for the multiplication of radicals. Hence,

for raising a radical to any power, we have the following

RULE.

Raise the quantity under the sign to the given power, and affect

the result with the radical sign, having the primitive index. If it

has a co.efficient, first raise it to the given pozver.

Thus, (*V^f= V{^ay=Vl6a«= 2aV^;
(3V2^)5=35.V(2^'=243V32^5=:486aV4^
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When the index of the radical is a multiple of the power, the re-

sult can be reduced.

For, *-\/2a='\/ V2a (Art. 176) : hence, to square *V2a, we

have only to omit the first radical, which gives ( V2a) = V2a.

Again, to square Wsb, we have V 3b=\/ VsZ* • hence

Consequently, when the itidex of the radical is divisible by the ex-

ponent of the power, perform this division, leaving the quantity under

the radical unchanged.

To extract the root of a radical, multiply the index of the radical

by the index of the root to be extracted, leaving the quantity under the

sign unchanged.

Thus, V *V3^="V^; S/^VTc^WVc.

This rule is nothing more than the principle of Art. 176, enun-

dated in an inverse order.

When the quantity under the radical is a perfect power, of the

degree of either of the roots to be extracted, the result can be re-

duced.

Thus, \/ VSa^ bemg equal to \/ VSo^ it reduces to V2a.

In like manner, \/W^^s/ Vdc^^^VSa.

It is evident that y'l^a— V ya ; because both expressions are

equal to "'ya~(Art. 176).

192. The rules just demonstrated for the calculus of radicals,

principally depend upon the fact that the ji"* root of the product of

several factors is equal to the product of the n"" roots of these fac-

tors ; and the demonstration of this principle depends upon this :

When the powers, of the same degree, of two expressions are equal,
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the expressions are also equal. Now this last proposition, which is

true for absolute numbers, is not always true for algebraic expres-

sions.

To prove this, we will show that the same number can have

more titan one square root, cuie root, fourth root, ^c.

For, denote the general expression of the square root of a by x,

and the arithmetical value of it by ^ ; we have the equation x^=a,

or xi^z=p^, whence x=zkp. Hence we see that the square of p,

which is the root of a, will give a, whether its sign be + or —

.

In the second place, let x be the general expression of the cube

root of a, and p the numerical value of this root ; we have the

equation

x^=a, or x^^p^.

This equation is satisfied by making x=p.

Observing that the equation cc^=^p^ can be put under the form

sP—p^=0, and that the expression x^—p^ is divisible by x—p, (Art.

59), which gives the exact quotient, x^-^-px+p^, the above equation

can be transformed into

(x—p) (x^ -{-px-{-p^)^0.

Now, every value of x which will satisfy this equation will satis-

fy the first equation. But this equation can be verified by suppos-

ing x—p^O, whence x=p ; or by supposuig

x^+px+p'^—O,

from which last we have

x=--±-V-3, or x:=p[ j.

Hence, the cube foot of a, admits of three different algebraic va-

lues, viz.

P> P{ 2
J'

^""^ P\ 2 /•

Again, resolve the equation x'^^p*, in which p denotes the arith-

metical value of \/a. This equation can be put under the form

x*—p''=0. Now this expression reduces to (a^—p^) (a^+P^)*
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Hence the equation reduces to (a^—p^) {xr'-\-p^)=0, and can

be satisfied by supposing x^—p^—0, whence x=±p ; or by suppos-

ing a^-{-p-=0, whence x=± V —p'^—dzp V—1.
We therefore obtain four different algebraic expressions for the

fourth root of a.

For another example, resolve the equation .... x^z=p^,

which can be put under the form :x^—p^=0.

Nowa;®—2>^ reduces to {s(P—p^) (aP-\-p^),

therefore the equation becomes .... (x^—p^) {xP+p^)=0.

But x^—p^—0, gives

/-1± V~^3.
x=p, and x=pl ; I.

And if in the equation x^+p^= 0, we make p~—p', it becomes

aP—p'^—0 from which we deduce a;=|)', and

-=P( ^ );

or, subslituthig for p' its value, —p,

/-1± a/^x=—p and x——pl
J.

Therefore the value of x, in the equation a;"—^"=0, and conse-

quently the 6th root of a, admits of six values, p, ap, a'p, —p,
— a]), —a'p, by making

-=
2- , a'= .

We may then conclude from analogy, that x in every equation of

the form x'^—a—O, or a^'"—^"=0, is susceptible of mdifferent va-

lues, that is, the m"" root of a number admits of m different alge.

braic values.

193. If in the preceding equations and the results corresponding

to them, we suppose as a particular case a=l, whence p=l, we
shall obtain the second, third, fourth, &c. roots of unity. Thus

+ 1 and —1 are the two square roots of unity, because the equation

ar*— 1= 0, gives a:=zhl.
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^ ,., -l+V-3 -1— VT
In like manner +1, , , are the three

cube roots of unity, or the roots of a;^— 1=0. And

+ 1,-1, + V— 1, — V— 1, are the four fourth roots of unity,

or the roots of x*— 1= 0,

194. It results from the preceding analysis, that the rules for the

calculus of radicals, which are exact when applied to absolute num-

bers, are susceptible of some modifications, when applied to expres-

sions or symbols which are purely algeiraic ; these modifications are

more particularly necessary when applied to imaginary expressions,

and are a consequence of what has been said in (Art. 192).

For example, the product of V —ahy V —a, by the rule of

(Art. 190), would be

Now, Va" is equal to ±a (Art. 192) ; there is, then, apparent-

ly, an uncertainty as to the sign with which a should be affected.

Nevertheless, the true answer is —a ; for, in order to square -y/m,

it is only necessary to suppress the radical ; but the V — « X V'— a

reduces to ( V — «} , and is therefore equal to —a.

Again, let it be required to form the product V —a x v/ —h,

by the rule of (Art. 190), we shall have

V —a X V—b— V+ab.

Now, Vab=±p (Art. 192), p being the arithmetical value of

the square root of ah ; but I say that the true result should be —p
or — yob, so long as both the radicals V—a and V—b are con.

sidered to be affected with the sign +.

For, V—a— y/a. V^l and V^F^ y/b. V^

;

hence

-/^x V^= va. V-ix V^-bx V^r= V~^h{ V^lf
= Vabx—l=— Vab.
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Upon this principle we find the different powers of v— 1 to be,

as follows :

V-i= V^-i^ {V^^Y=-i,

and (a/3I)4^( V^)^(-v/^)2=-lX-l= + l•

Again, let it be proposed to determine the product of V— a by

the V—h which, from the rule, will be V +ah, and consequently

will give the four values (Art. 192).

+ Vo^, .

-

Wab, + Wab. V -I, — Wab. V^T.
To determine the true product, observe that

But V^^Tx *V^i^{V^y=(v V~^J = V^T^

hence V— a .*V^^=iWab. V—1.
We will apply the preceding calculus to the verification of the

expression , considered as a root of the equation

a;3_l= 0, that is, as the cube root of 1 (Art, 192).

From the formula {a+by=a''+ ^a''b+ Sab''+P,

we have

(_i)3+3(-i)^ V-3+3(-i).( V^y+i V-ny
8

—I+SV^—3x— 3— 3 V^-3 = 1.

i_ V-s
The second value,

manner.

may be verified in the same

Theory of Exponents.

195. In extracting the n"' root of a quantity a", we have seen

that when m is a multiple of n, we should divide the exponent m by
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11 the index uf the ruuL j but whon tti Is not divisible by n, in which

case the root cannot be extracted algebraically, it has been agreed

to indicate this operation by indicating the division of the two ex.

ponents.

Hence, "V a"'=a~, from a convention founded upon the rulefor

the exponents, in tlie extraction of the roots of monomials. In such

expressions, the numerator indicates the power to which the quantity

is to he raised, and the denominator, the root to be extracted.

2 7

Therefore, ya^'z^a^
; V«'— «*•

In like manner, suppose it is required to divide a"" by a". We
know that the exponent of the divisor should be subtracted from the

a'"

exponent of the dividend, when m>w, which gives —z=a"' ".

But when ?ra<n, in wliich case the division cannot be effected alge-

braically, it has been agreed to subtract the exponent of the divisor

from that of the dividend. Let p be the absolute difference between

n and m ; then will n^m+p, whence -^^=a-? ; but -^p

reduces to — ; hence «^=^-

Therefore, the expression a-P is the symbol of a division which it

has been impossible to perform ; and its true value is the quotient

represented by unity divided by the letter a, affected with the ex-

ponent p, taken positively. Thus,

a-^ a^

The notation of fractional exponents has the advantage of giving

an entire form to fractional expressions.

From the combination of the extraction of a root, and an impos-

sible division, there results another notation, viz. negative fractional

esvonents.

20
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In extracting the /*'* root of — , we have first —=a~", hence
a" a""

" / 1 n /
_™

\/ —= Va "'=a " , by substituting a fractional exponent for

the radical sign.

Hence, a", wp, a ", are conventional expressions,founded wp.

on preceding rules, and equivalent to "Va"", —, \/ —

.

We may therefore substitute the second for the first, or recipro-

cally.

As aP is called a to the p power, when ^ is a positive whole num-

ber, so by analogy, a~, a-^, a~ % are called a to the — power, a to
n ^

the -p power, a to the —— power, which has induced algebra-

ists to generalize the ^woIA power; but it would, perhaps, be more

accurate to say, a, exponent ~, exponent -p, exponent -—
n

using the word power only when we wish to designate the product
of a number multiplied by itself two or more times.

1
1Smce a~P and — are equivalent expressions, also a^ and .

^ a~''
'

we conclude that any factor may he transferredfrom the numerator

to the denominator, or from the denominator to the numerator, hy

changing the sign of its exponent.

Multiplication of Quantities affected with any Exponents.

3 2

196. In order to multiply a^ by a^, it is only necessary to add

the two exponents, and we have

3 2. 3.2 ia.

For, by (Art. 195), a*= «/«'
; a^= V«^

3 2

hence. a^ va^ — s/flSv 3/«2
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or, performing the multiplication by the rule of (Art. 190),

3 2 la

a * =^^, J=Va';

Again, multiplying a * by a® , we have

for,

Hghcg

"-*xa*=yix v^=V;^x v;r.=V^"= 'vr=<.^^

In general, multiplying a " by a ' ; we have

a " X«' =a " * =a "»
.

Therefore, in order to multiply two monomials affected with any

exponents whatever, add together the exponents of the same letter

;

this rule is the same as that given in (Art. 41), for quantities affect-

ed with entire exponents.

From this rule we will find that

a -JL 2 ^ i_i J. _2
a*b ^c-^xa'b^c'^a^ b'c ^

;

and 3a-2#x2a'^^>^c2=6a"'^*5«c^

Division.

197. To divide one monomial by another when both are affected

with any exponent whatever, follow the rule given in Art. 50 for

quantities affected with entire and positive exponents ; that is, sub.

tract the exponents of the letters in the divisor from the exponents oj

the same letters in the dividend.

For, the exponent of each letter in the quotient must be such,

that added to that of the same letter in the divisor, the sum shall

be equal to the exponent of the letter the dividend ; hence the ex-

ponent in the quotient is equal to the difference between the expo-

nent in the dividend and that in the divisor
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EXAMPLES.

3 i. 3_4 __1_
/7*_l./75— «* 5—^ 20 .

2 3 _1 7 _9_ _

Formation of Powers.

198. To form the n"' power of a monomial, affected with any-

exponent whatever, observe the rule given in Art. 182, viz. multi.

ply the exponent of each letter by the exponent m of the power ; for,

to raise a quantity to the m"' power, is the same thing as to multi-

ply it by itself m— 1 times; therefore, by the rule for multiplica-

tion, the exponent of each letter must be added to itself m—1 times,

or multiplied by ?n<

^ / sXs 15/2X3 6

Thus, \a*} =a*
;

{a"") =a^= a^
;

(-XsXe -0-9 /_s\i2 _10
2a ^b*) =64a '^^ .

[^^ <^) =a .

Extraction of Roots.

189. To extract the n"" root of a monomial, follow the rule given

in Art. 182, viz. divide the exponent of each letter by the index of

the root.

For, the exponent of each letter in the result should be such,

that multiplied by n, the index of the root to be extracted, there

will be produced the exponent with which the letter is affected in

the proposed monomial ; therefore, the exponents in the result must

be respectively equal to the quotients arising from the division of

the exponents in the proposed monomial, by n, the index of the

root.

Thus,

V.
3 _a 1-3

a'b =a'b ^



THEORY OF EXPONENTS. 233

The last three rules have been easily deduced from the rule for

multiplication ; but we might give a direct demonstration for them,

by going back to the origin of quantities affected with fractional

and negative exponents.

We will terminate this subject by an operation which contains

implicitly the demonstration of the two preceding rules.

Let it be required to raise a" to the —— power;

We say ihat,

For, by going back to the origin of these notations, we find that

The advantage derived from the use of exponents consists prin-

cipally in this : The operations performed upon expressions of this

kind require no other rules than those established for the calculus

of quantities affected with entire exponents. Besides, this calculus

is reduced to simple operations upon fractions, with which we are

already familiar.

200. Remark. In the resolution of certain questions, we shall

be led to consider quantities affected with incommensurable expo,

nents. Now, it would seem that the rules just established for com-

mensurable exponents, ought to be demonstrated for the case in

which the exponents are incommensurable ; but we will observe,

that an incommensurable, such as V 3 , Vll, is by its nature com-

posed of an entire part, and a fraction which cannot be expressed

exactly, but to which it is possible to approximate as near as we

please, so that we may always conceive the incommensurable to be

replaced by an exact fraction, which only differs from it by a quan-

20*
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tity less than any given quantity ; and in applying the rules to the

symbol which designates the incommensurable, it is necessary to un-

derstand that we apply it to the exact fraction which represents it

approximatively.

EXAMPLES.

iveduce —

—

to its simplest terms.
2 V *

\ 2V2(3)2 J

Ans. 4V 3 .

Reduce ^ ^^ ' y to its sii-nplest terms

:V2(3)'

1

Am
384

^A ar+ V3i \
^

( 2v/2.(f)^ )

Reduce \/ .<
^-' — V to its simplest terms.

Ans. \/y(-^VT+V'2l).

Demonsti'ation of the Binomial Theorem in the case of any

Exponent whatever.

201. Since the rules for the calculus of entire and positive expo-

nents may be extended to the case of any exponent whatever, it is

natural to suppose that the binomial formula, which serves to deve-

lop the m"' power of a binomial when m is entire and positive, will

also effect this when m is any exponent whatever. In fact, analysts

have discovered that this is the case, and they have deduced im-

portant consequences from it, both for the extraction of roots by dp-

j)roximation, and the development of algebraic expressions into series.

The following is a modification of Euler's demonstration.

We will remark, in the first place, that the bmomial x+a can

be put under the form x(l-\— ) ; whence there results
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{x+ay"=x-^(l+-^^ =a;'"(l+2)% by making —=z.

Therefore, if the formula

m— 1 „ 711— I m— 2
{l+2)"'=l+m2+m—-—s?-\-m.—~—

.—g—s^+,&c. (A)

is proved to be correct for any value of ?/?, we may consider the

formula.

711—1
(x-\-a)'"=x'"+7nax^~^+vi .

———a^x'^~^

7)1— 1 7)1— 2
+m .
—-—

.
—^—a'x^-'+, &c. (B)

exact for any value of m. For, by substituting — for z in the

formula (A)^ and multiplying by a;", we obtain

(x+ay=x'"{l+m—+7)i .—J— .—+, &c.],

from which, by performing the operations mdicated, we obtain the

formula (B).

Now, when m is a whole number, we have

m— 1 „ 7)1—1 7)1—2
(l+zf^l+mz+m. Z^+ 7)l.—-—.—^—2'+ , &c.

P
But, if m is a fraction —, we do not know from what algebraic

expression the development

7)1-1 7)1—1 7)1— 2
l+7)iz+7)i——

—

z-+7)i.—-— .—-—2^.^, &c. ... is derived.

Denoting this unknown expression by y, we have the equation

7)1-1
„ TO—

1

7)1— 2
y==l+niz+7)i.—^—z-+))i.—^—.—^—r^+, &c (1).

and it is now required to prove that y=(l+z)"'.

If m' is another fractional exponent, we shall have in like manner,

m'— 1 „ 7)i'— l 7)i'—2
3/'=l+m'2+OT' . -^—z^+m' .-—— .

———r^+,&c. . . (2).
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Multiplying the equations (1) and (2), member by member, we

shall have for the first member of the result yy'. As to the second,

it would be very difficult to obtain its true form, by the common
rule for the multiplication of polynomials ; but by observing that

theform of a product does not depend upon the particular values of

the letters which enter into its two factors (Art. 47), we see that the

above product will be of the same form as in the case where m and

m' are positive whole numbers. Now in this case we have

\^mz+m .—^—z2+ . . . ={l+zY,

Ij^rn'z+m'

.

^—z'+ • • • ={l+zY',

m—\

m!— \

whence

l+mz+7n.—-—2^+ . . . j{\+m'z+m'

.

—-—z'+ j

m+m'— \= {l+zY+^'=lJf.{m+m')z+ {ra+m') z^+ ;

Therefore this form is true in the case in which m and m' are any

quantities whatever, and we have

m+m'— 1
yy'=l + {m+m')z+{m-^m') ^ . 5r+ (3);

Let m" be a third positive fractional exponent, we shall have

m"— \
y' =l+ni"z+m" ^— 5^^+ • • •

Multiplying the two last equations member by member, we have

, „ , m-\-7n'+m"—1
yyy =l-^{m+7n' +m")z-\-{m+m' +m") z-+

V
Suppose the fractional exponent m=— . Take as many exponents

m, m', m", m'", &c. as there are units in q ; we shall have, by mak-

ing r equal to the sum of the exponents wi+m'+?«"+OT"'+ . • •

yy 3/ y"=i +r2+/-
. -^^H^ • —^ • ~3~^+ • • • (4)-
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And by supposing m—m'=m"—7n"' ... in which case

r=m+m+?n+??i+ . . . =^m<i,

the equation (4) becomes

mq— 1 mq— 1 mq— 2
y^=l+mq.z-{-mq.— z^+m^. -—

.

3—2^+ • • •

PNow we have by hypothesis, m=—, or mq=p
;

but p is a whole number, therefore the second member of this equa-

tion is the development of (l+z)^, which gives ?/'=(l4-z)'', whence

p_

t/=:(l+2)« =(l+z)'" ; consequently

m being any positive fraction.

To demonstrate this formula, for the case in which m is a negative

fraction or whole number, it is only necessary to suppose, m'=^ — m,

in the equation (3) obtained from the equations (1) and (2), for

when m+m'—Q, the equation (3) reduces to yy'=^\; whence

1

But since m is negative by hypothesis, m' or —m, must be posi-

tive, and we have

y'={\+zY', hence y=-^^^^—^={\+z)^'={l+zY,

and consequently

m—\
{\-\-zY=\+mz+m——-.z^+ ... or

-m'-l
,

(_m'-l)(-m'-2)
(1-f2)-™'=!— m's— ??t' z^—m

1 ^ ^
"* +' ^^'
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Ajjplications of the Binomial Theorem.

202. If in the formula

/ a m—\ a^ m— 1

1 i

we make m—— , it becomes {x-\-ay

{x+ar=

m-2
3

1 l__
J_lain a^ 1 n n

or, reducing,

2n—

1

(1 a 1 71— 1 a- 1 «—

1

71
' X n ' 2n ' sP n ' 2n 3?i s?

3?j-

The fifth term can be found by multiplying the fourth by
4n

a
and by — , then changing the sign of the result, and so on.

203. Remark. When the terms of a series go on decreasing in

value, the series is called a decreasing or converging series ; and

when they go on increasing in value, it is called a diverging series.

In a converging series the greater number of terms we take in

the series, the nearer will we approximate to the true value of the

proposed series. When the terms of the series are alternately

positive and negative, we can, by taking a given number of terms,

determine the degree of approximation.

For, let a— b+ c— d-j-e—f-\- . . ., &c. be, a decreasing series
;

b, c,d . . . being positive quantities, and let x denote the number

represented by this series.

The numerical value of x is contained bt^tween any two consecu-

tive sums of the terms of the series. For take any two consecutive

sums,

a—h+c—d+e—f, and a—h+c—d+e—f-i-g.
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In the first, the terms which follow /, are g—h, + k—l4- -

but silica the series is decreasing, the paTiial differences g—h,

k—l are positive numbers ; therefore, in order to obtain the

complete value of x, a certain positive number must be added to the

sum a— h-\-c—d-{-e—f. Hence we have

a—h-{-c—d-\-e—f<:^x.

In the second series, the terms which follow -\-g are —h-\-k,

—l-\-m .... Now, the partial differences —h-\-k, —l-\-ni . . .,

are negative ; therefore, in order to obtain the sum of the series, a

negative quantity must be added to

a—h+c—d+e—f+g,

or, in other words, it is necessary to diminish it. Consequently

a—h-{-c—d-[-e—f-{-gyx.

Therefore, x is comprehended between these two sums.

The difference between these two sums is equal to g. But since

X is comprised between them, their difference g must be greater than

the difference between x and either of them ; hence, the error com-

mitted hy taking a certain number of terms, a—b+c—d+e— f, for

the value of x, is numerically less than the following term.

206. The binomial formula also serves to develop algebraic ex-

pressions into series.

Take for example, the expression , we have

1

1— z ^
'

In the binomial formula, make 7n=— 1, ic=l, and a= — z, it be.

comes

-1-1 -1-2-1.—-.—-.(-Z)3-...
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or. performing the operations, and ohsftrving that each term is com-

posed of an even numbor of factors affected with the sign —

,

1
(1_Z)-'=Y—^=1+2+ 2"+ ^^

1 «^+Z^+

The same result will be obtained by applying the rule for divi-

sion (Art. 55).

1
I

1-2

1st. remainder . +s I l-{-z+2^+z^+z*+ . . .

2d +z'

3d +z^

4th +2"

+ . . .

2
Again, take the expression tt"t5"» or 2(1—2)-^.

We have ^(1-*)' -3

-3—1 —3—1 —3-2
2[l-3.(-2)-3.-^-.(-.)^-3.-^—.—^.(-2)^-.]

or 2(l-s)-'='=2(l+ 32+622+ 102^+ 15s*+
)

To develop the expression V22— z^ which reduces to

'•v/2t(l— ^)'', we first find

11 5 ^

^~V36'^~1848"^

hence V 2.-.^^ V22(l-lz-^2=-g^.^-, 6.c.)

EXAMPLES.

1. To find the value of 7—-,tj, or its equal {a+hy'' in an m-

finite series.
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2. To find the value of , in an infinite series.
r+x

x^ x^ a:*

Ans. r—x-\ -+-tj ^c.

3. Required the square root of —^—5- in an infinite series.

x^ X* x^

4. Required the cube root of -7-5-—^-;- in an infinite series.

1 7 2*2 5a;* 40a,'« \

Method of Indeterminate Co-efficients. Recurring Series

207. Algebraists have invented another method of developing

algebraic expressions into series, which is in general, more simple

than those we have just considered, and more extensive in its appli-

cations, as it can be applied to algebraic expressions of any nature

whatever.

Before considering this method, it will be necessary to explain

what is meant by the term function.

Let a=:b+c. In this equation, a, h and c, mutually depend on

each other for their values. For,

a=i-\-c, b=a—c, and c=a—b.

The quantity a is said to be a function of h and c, i a. function of

a and c, and c a function of a and b. And generally, wJien one

quantity depends on othersfor its value, it is said to be a function of

those quantities on which it depends

In order to give some idea of this method of development, we will

a
suppose it is required to develop the expression

, _
into a se-

ries arranged according to the ascending powers of x. It is plain

21
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a
that the expression can be developed ; for ——r— reduces to

fl(a'+S'x)~* ; and by applying the binomial formula to it, we should

evidently obtain a series of terms arranged according to the ascend-

ing powers of x. We may therefore assume

the co-efficients A, B, C, D, . . . being functions of a, a', V , but in-

dependent of a;, it is required to determine these co-efRcients, which

are called indeterminate co-efficients.

For this purpose, multiply both members of the equation (1) by

by a'-\-h'x; arranging the i-esult with reference to the powers of

X, and transposing a, it becomes

Aa'+Ba' I x+Ca' I x^'+Da' I x^^Ea' I x^+ . . . (2).
^-

i -a+Ab' 1 -{-Bb'
I

+Cb' I
+Db'

Now if the values of A, B, C, D, . . . were determined, the

equation (1) would be satisfied by any value given to x ; this must

therefore be the case also in the equation (2).

But by supposing x—0, this equation becomes,

= Aa'— a;

Whence A=—r;
a

a
A being equal to —;-, when x—0, this must be the value of it when

a; is any quantity whatever, since A is independent of a; by hypothe-

sis ; therefore whatever may be the value of x, the equation (2)

reduces to

( Ba'
I

x-\-Ca'
I

x^-\-Da' I a;^+ ; or, dividing by x,

^^
i +Ab'

I
+Bb'

I +Cb'\

_ ( Ba' \ -\-Ca'
I

X -{-Da' I x^-ir (3).
^~

I +Ah' I +Bb' I +Ch'\

This equation being also satisfied by any value for x, by making

a;=:0, it becomes Ba' -\- Ab' =^0

.
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Ah' a V aV
Whence B^ —, or £=-—X—=--7^-

As this must be the value of B whatever may be that of .r, we

will suppress the first term Ba'+AV of the equation (3), which

this value of B makes equal to zero, and divide by a; ; it thus be-

comes

Ca'+Da! I x-\-Ea' I o^-{- . . .

-{-Bb'+ Cb' I +Db'

Making x=0, there results

Ca'+Bb'= 0.

Bb' I ab'\ V ab''

X-r=-Whence C— ;— , or C— — I y^
a \ a~

In the same way we should find

Da'+ Ch'=0,

Cb' ^ aV^ V ab'^
Whence Z?= ;—, or Z?=—pr-X —-r= rr- ; and so on.

It is easily perceived that any co-efficient is formed from that

b'

which precedes it, by multiplying by ;-; therefore we have,

a a aV ab'^ ab'^ ab'^

—mr-^—r 7oX-\—7^^ tt^^-^
—7^^'*—

• • •

a+bx a a- a^ a* a^

208. By reflecting upon the preceding reasoning, we perceive,

that the fundamental principle of the method of indeterminate co-

efficients, depends upon this, viz., when an equation of the form

Q=M-\-Nx+Px^-\-Q3?-\- . . . (M, N,P,Q,... being independent

of x), is verified by any value of x whatever, each of the co-efficients

must necessarily be equal to 0.

For since these co-efficients ai'e independent of x, when they are

determined by any particular hypothesis made with respect to x,

the values must answer for any value of x whatever. Now, mak-

ing x=0, we find M=0, and dividing the equation by x, it reduces

to

0=N+Px+Qx'+ . . .
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making x=0 in this equation, it becomes N=0, and dividing the

equation by a:, it reduces to 0=P+Qa;+ . . . and so on. Hence we

have

31=0, N=0, P=0, Q=0 . . .
;

in this manner we obtain as many equations as there are co-effi-

cients to be determined.

This principle may be enunciated in another mamier, viz.

When an equation of theform

a+hx-\-cx'^-\-do^-\- . . . z=a' -\-b'x-\-c3?-\-(jl!x^-\- . . .

is satisfied by any value given to x, the terms involving the same

powers in the two members are respectively equal ; for, by trans-

posmg all the terms into the second member, the equation will take

the form 0=M+Pa;+Qa;-+ . . . , whence

a— a=:0, b'—h=0, c'—c=0 . . . .
,

and consequently,

dr^a, h' ^=h, c'^=L, d'=^d . . . .,

Every equation in which the terms are arranged with reference

to a certain letter, and which is satisfied by any value which can be

given to this letter, is called an identical equation, in order to distin-

guish it from a common equation, that is, -an equation which can only

be satisfied by giving particular values to this letter.

209. The method of indeterminate co-efficients requires that we

should know the form of the development, with reference to the ex-

ponents of X. The development is generally supposed to be ar-

ranged according to the ascending powers of x, commencing with

the power x" ; sometimes, however, this form is not exact ; in this

case, the calculus detects the error in the supposition.

1

For example, develop the expression -g^^-i"-

Suppose that ^^_^^
=:A+Bx+Cx^+D^+ . . . .,

whence, by clearing the fraction, and arranging the terms,
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.-a\ -b\ -c\
whence (Art. 208),

— 1= 0, 3^1=0, 2B-A=0
Now the first equation, —1=0, is absurd, and indicates that the

above form is not a suitable one for the expression
g^^_^^ ;

but

11,
if we put this expression under the form — X g3^» ^"^^ suppose

that

—X^=—{A+Bx+ ar^+DxP+ ),
X 3—x x^

it will become, after the reductions are made,

3^+35
I

x+SC
I

af+SD I aP-{- . . .,

0-
I _i_A \ -B\ -C

which gives the equations

3A— 1=0, 2B-A=0, ^C-B=0 . . .,1111
whence A=-, B^-, C=-, D=- ...

Therefore,

-3:^^=t(t+t^'+27'^+8I'^ + • • •)'

=\--'+^-''+^-+^-'+ • • •

'

that is, the development contains a term affected with a negative

exponent.

Reciwring Series.

210. The development of algebraic fractions by the method of

indeterminate co-efficients, gives rise to certain series, called recur-

ring series.

A recurring series is the development of a rational fraction invoU.

ing X, made according to a fixed law, and containing the ascending

potcers of x in its different terms.

21*
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It has been shown in Art. 207, that the development of the ex.

pression is the series —r-
aV ah'

-3?+ . . ., in
a'+ b'x a a' a-

which each term is formed by multiplying that which precedes it

by -X.
a

This property is not peculiar to the proposed fraction ; it belongs

to all rational algebraic fractions, and it consists in this, viz. : Every

rationalfraction involving x, may he developed into a series of tenns,

each of which is equal to the algehraic sum of the products which

arisefrom multiplying certain terms of a particular expression, hy

certain of the preceding terms of the series.

The particular expression, from which any term of the series

may be found, when the preceding terms are known, is called the

scale of the series ; and that from which the co-efRcient may be

formed, the scale of the co-efficients.

. h'

In the preceding series, the scale is yx, and the series is call-

h'

ed a recurring series of the first order, and —

-

co-efficients.

a-\-ha
Let it be required to develop

a+h.

is the scale of the

mto a series.

Assume

a' -\-h'x-\-c'OiF

=A+Bx-\-Cx^+Dx''+Ex''+ . . .

a' -\-h'x-\-c'xF

Clearing the fraction and transposing, we have

0=
Aa'+Ba' x+ Ca' x'+Da' x^+Ea'

-a+Ah' +Bh' -\-Ch' ^Bh'

-b -{-Ac' -{-Be' ^Cc'

a;^+

which gives the equations

Aa!- a=0, or A=^-^
a

Ba'-{-Ah'- h :0, or B=—7A+-r
a' a!
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h' d
Ca'+5^'+^c'=rO, or C= r^ r^' a a

h' d
Da'+ Ch'-^Bd=0, or D= j^—rB

a a

V d
Ea'+Db'+ Cd=0, or E= jD jC.

Whence we perceive that the two first co-efficients are not ob-

tained by any law ; but commencing at the third, each co-efficient

is formed by multiplying the two which precede it respectively by

h' d
r and ——7, viz. that which immediately precedes the requir-

a a

y d
ed co-efficient by j, that which precedes it two terms by 7,

and taking the algebraic sum of the products. Hence,

(-^-4)

is the scale of the co-efficients.

From this law of the formation of the co-efficients, it follows that

the third term of the series, Cx^ is equal to

V d

a a

V d
or rxB.x i-xr.A.

a a

In like manner, we have for D^P

V d
jC:,? jB^

a! a

V d
or 7^ • Cx^— —rX^ . Bx.

a a

Hence, each term of the required series, commencing at the

third, is obtained by multiplying the two terms which precede, re-

spectively by
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V d
-X -x^,
a a!

and taking the sum of the products : hence, this last expression is

the scale of the series.

211. Recurring series are divided into orders, and the order is

estimated by the number of terms contained in the scale.

. a
.

Thus, the expression gives a recurring series of^ thefrst

V
order, the scale of which is -x.

a

.
a-\-bx

The expression
, y—]

—

7~2 will give a recurring series of the
a -\-o iC-pC X

second order, of which the scale will be

/ h' c' \

\ a' a! I

The series obtained in the preceding Art. is of the second order.

In general, an expression of the form

a-\-l)x-\-cdc^-\- . . . kx^-'*-

a'+^»'x+cV+ . . . &V
gives a recurnng series of the n"" order, the scale of which is

V(0 c k \
yX, tSc" . . . -X").

a a a /

Remakk. It is here supposed that the degree of x in the numera-

tor is less than it is in the denominator. If it was not, it would first

be necessary to perform the division, arranging the quantities with

reference to x, which would give an entire quotient, plus a fraction

similar to the above.

_ . , . l—x—Sa^-\-4:X^+x*
Thus, in the expression

^_^^^_^^^,_^,
•

a;4+4ar'-3ic2-a?+l ) —x^+S.'c'—5x+2

+lx^—8x^+x ) —x—7
+ 13.t--34a,+ 15.
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Performing the division, we find the quotient to be —x—1, plus

the fraction.

13.i^__34a:+15 Ib-Mx+ lZt?
-, or

_a;3+3x^-5x+ 2
' 2—bx+Zx^

CHAPTER V.

Of Progressions^ Continued Fractions^ and

Logarithms.

212. This chapter is naturally connected with the last, as it ex-

plains the properties of two kinds of series, and also presents an ap-

plication of the theory of exponents. It moreover completes that

part of algebra which is absolutely necessary for the study of

Trigonometry, and the Application of Algebra to Geometry.

Progressions by Differences.

213. A progression ly differences, or an Arithmetical progression,

is a series m which the successive terms continually increase or de-

crease by a constant quantity, which is called the common difference

of the progression.

Thus, in the two series

1, 4, 7, 10, 13, 16, 19, 22, 25. . . .

60, 56, 52, 48, 44, 40, 36, 32, 28. . . .

The first is called an increasing progression, of which' the com-

mon difference is 3, and the second a decreasing progression, of

which the common difference is 4.

214. If there are four quantities a, h, c, d, in arithmetical pro-

gression, a is said to be to h, as c to d : and a and c are called ante,

cedents, and b and d consequents.
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In general, let a, b, c, d, e,f, . . . designate the terms of a pro-

gression by differences ; it has been agreed to write them thus :

a.b .c . d. e .f. g . h . i . k. . , ,

This series is read, a is to b, as b is to c, as c is to d, as d is to e,

ifec. or a is to b, is to c, is to d, is to e, &c. This is a series of con-

tinued equi-differences, in which each term is at the same time a con-

sequent and antecedent, with the exception of the first term, which

is only an antecedent, and the last, which is only a consequent.

215. Let r represent the common difference of the progression,

which we will consider as increasing. In the case of a decreasing

progression, it will only be necessary to change r into —r, in the re-

suits.

From the definition of the progression, it evidently follows that

b—a-\-r, c=b-\-r=^a+2r, d=c-\-r=a+3r :

and in general, any term of the series is equal to, thefirst plus as

many times the common difference as there are preceding terms.

Thus, let I be any term, and n the number which marks the place

of it, the expression for this general term, is

l^a+ {n—l)r.

That is, the last term is equal to thefirst term, plus ike product of

the common difference by the number of terms less one.

If we suppose n successively equal to 1, 2, 3, 4, &c. we shall ob-

tain the first, second, third, fourth, &c. term of the progression.

The formula Z=a+(n—l)r, serves to find any term whatever,

without our being obliged to determine all those which precede it.

Thus, by making n=50, we find the 50"* term of the progres-

sion,

1.4.7.10.13.16.19.... Z=l+49x3= 148. ~

216. If the progression were a decreasing one, we should have

Z=a— (n— l)r.

That is, in a decreasing arithmetical progression, the last term is
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equal to thefirst term minus the product of the common difference hy

the number of terms less one.

217. A progression by differences being given, it is proposed to

prove that, the sum of any two terms, taken at equal distancesfrom

the two extremes, is equal to the sum of the two extremes.

Let a.h .c .d.e.f . . . . i.k.l, be the proposed progression,

and n the number of terms.

We will first observe that, if x denotes a term which has p terms

before it, and y a term which has p terms after it, we have, from

what has been said, ir=a+px^>

and y=l—pxr;
whence, by addition, x-\-y=a-{-l.

which demonstrates the proposition.

This being the case, write the progression below itself, but in an

inverse order, viz.

a.h .c.d.e .f . . . . i.k.l.

I .k .i c.b .a.

Calling S the sum of the terms of the first progression, 2S will

be the sum of the terms in both progressions, and we shall have

2S={a+ l)+ {b+k)+ {c+i) . . . +{i+c)+ (k+ b)+ (l+a);

or, since the number of the parts a-\~l, b-\-k, c-{-i is equal

to n,

2S=ia+l)n, or sJ-^^-^^

That is, the sum of a progression by differences, is equal to half

the sum of the two extremes, multiplied by the number of terms.

If in this formula we substitute for I its value, a+ (n— l)r, we

obtain

[2a+ (n-l)r]n .S= ,

but the first expression is the most useful.

{a+l)n
218. The formulas Z=a4-(n— l)r, S=—-—, contain five
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quantities, a, r, n, I and S, and consequently give rise to the follow-

ing general problem, viz. : Any three of these jive quantities being

given, to determine the other two.

There will, therefore, be as many different cases as there can be

formed combinations of five letters taken three in a set : that is,

5_1 5-2
5.——.-^-=10. (Art. 163).

2 o

Of these cases we shall consider only the most important.

We already know the value of S in terms of a, n and r.

From the formula l=a+{n—l)r, we find

a=l—{n—l)r.

That is, the first term of an increasing arithmetical progression is

equal to the last term, minus the product of the common difference by

the number of terms less one.

From the same formula, we also find,

l-a

That is, in any arithmetical progression, the common difference is

equal to the difference between the two extremes divided by the number

of terms less one.

219. The last principle affords a solution to the following ques-

tion.

Tofind a number m of arithmetical means bettveen tioo given mun-

hers a and b.

To resolve this question, it is first necessary to find the common

difference. Now we may regard a as the first term of an arith.

metical progression, b as the last tei-m, and the required means as

intermediate terms. The number of terms of this progression will

be expressed by ??i+2.

Now, by substituting in the above formula, b for /, and wi+2

h—a b—a .

for n, it becomes r= —r> or ^= TT" 5
that is, the com.

wt+2—

1

wi+1

mon difference of the required progression is obtained by dividing
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the difference between the given numbers a and b, by one more

than the required number of means.

Having obtained the common difference, form the second term of

the progression, or the Jirst arithmetical mean, by adding r, or

:r-> to the first term a. The second mean is obtained by aug.
m+ 1

menting the first by r, &c.

For example, let it be required to find 12 arithmetical means be-

77-12 65
tween 12 and 77. We have r=———=—=5, which gives the

lo xO

progression 12 . 17 . 22 . 27 ... 72 . 77.

220. Remark. If the same number of arithmetical means are

inserted" between all of the terms, taken two and two, these terms,

and the arithmetical means united, will form but one and the same

progression.

For, let a . b . c . d . e ./ . . . . he the proposed progression, and

m the number of means to be inserted between a and b, b and c,

c and d . . .

From what has -just -been said, the common difference of each

b—a c—b d—c
partial progression will be expressed by —, -,

. . . .,*^ ^ ° r ^ m+ 1' m+1 7n+ l

which are equal to each other, since a, b, c . . . are in progression

:

therefore, the common difference is the same in each of the partial

progressions ; and since the last term of the first, forms the^r*^ term of

the second, <Sic. we may conclude that all of these partial progres-

sions form a single progression.

EXAMPLES.

1. Find the sum of the first fifty terms of the progression

2.9. 16 . 23 . . .

For the 50th term we have Z=2+49x 7= 345.

Hence 6^=(2-f-345)Xy= 347x25=8675.
50

22



254 ALGEBRA.

2. Find the 100th term of the series 2 . 9 . 16 . 23 . . .

Arts. 695.

3. Find the sum of 100 terms of the series 1.3.5.7.9...
Ans. 10000.

4. The greatest term is 70, the common difference 3, a'nd the

number of terms 21, what is the least term and the sum of the

series ? Ans. Least term 10 : sum of series 840.

5. The first term of a decreasing arithmetical progression is 10,

the common difference —-, and the number of terms 21 : required

the sum of the series. Ans. 140.

6. In a progression by differences, having given the common dif-

ference 6, the last term 185, and the sum of the terms 2945, find

the first term, and the number of terms.

A71S. First term =5, number of terms 31.

7. Find 9 arithmetical means between each antecedent and con-

sequent of the progression 2.5.8.11.14. . .

Ans. Ratio, or r= 0,3.

8. Find the number of men contained in a triangular battalion,

the first rank contaming 1 man, the second 2, the third 3, and so

on to the n"*, which contains n. In other words, find the expression

for the sum of the natural numbers 1, 2, 3 . . ., from 1 to n, inclu-

n(n+l)
sively. Ans. S= —

.

9. Find the sum of the n first terms of the progression of uneven

numbers 1, 3, 5, 7, 9 . . . Ans. S=n'.

10. One hundred stones being placed on the ground, in a straight

line, at the distance of 2 yards from each other : how far will a per-

son travel, who shall bring them one by one to a basket, placed at

2 yards from the first stone ?

Ans. 11 miles, 840 yards.
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Geometrical Progression, or Progressions hy Quotients.

221. A Geometrical progression, or progression by quotients, is a

series of terms, each of which is equal to the product of that which

precedes it, by a constant number, which number is called the ratio

of the progression ; thus in the two series :

3, 6, 12, 24, 48, 96 . . .

64, 16, 4, 1, |, ]^ . . .

each term of the first contains that which precedes it twice, or is

equal to double that which precedes it ; and each term of the second

is contained in that which precedes it' four times, or is afourth of

that which precedes it ; they are then progressions by quotients, of

which the ratio is 2 for the first, and — for tlie second.

Let a, b, c, d, e,f . . . be numbers in a progression by quotients,

they are written thus ; a:b:c:d:eif:g..., and it is enun-

ciated in the same manner as a progression by differences ; however

it is necessary to make the distinction that one is a series of equal

differences, and the other a series of equal quotients or ratios, in which

each term is at the same time an antecedent and a consequent, ex-

cept the first, which is only an antecedent, and the last, which is only

a consequent.

222. Let q denote the ratio of the progression a : b : c : d . . .,

q being >1 when the progression is increasing, and $'<1 when it is

decreasing : we deduce from the definition, the following equalities.

b=aq, c=bq=aq^, d=cq—aq^, e=dq=aq* . , .

and in general, any term 7i, that is, one which has n— 1 terms be-

fore it, is expressed by aq"''^.

Let I be this term ; we have the formula l=aq''~^, by means of

which we can obtain the value of any term without being obliged

to find the values of all those which precede it. That is, the last

term of a geometrical progression is equal to the first term mvitiplied



by the ratio raised to a "power whose exponent is one less than the

number of terms.

For example, the 8* term of the progression 2": 6^ 18 : 5C . .,

is equal to 2x3^=2x2187=4374.
In like manner, the 12* term of the progression . ^ . . .,

64 : 16 : 4 : 1 :
— ... is equal to

64(-i)"=!l=l=_^.
V4/ 4" 4» 65536

223. We will now proceed to determine the sum of n terms of

the progression a : b : c : d : e :f: . . ..:i:k:ly I denoting the

n"" term.

We have the equations (Art. 222),

b=aq, c=hq, d=cq, e=dq, . . . k=iq, l=kq;

and by adding them all together, member to member, we deduce

b+c+d+e+ . . . +k+ I={a+ h+c+d+ . . . +i-{-k)q;

or, representing the required sum by S,

S.-ra= {8-l)q=Sq-]q, or Sq-S=lq-a',

Iq— a
whence S= —]

q-l

That is, to obtain the sum of a certain number of terms of a pro-

gression by quotients, inultijyly the last term by the ratio, subtract the

first term from this product, and divide the remainder by the ratio di.

vtinisJied by unity.

When the progression is decreasing, we have 5<1 and Z<a

;

a— lq

the above formula is then written under the form S=^——

,

in order that the two terms of the fraction may be positive.

By substituting o?"'* for I in the two expressions for S, they be-

agi"

—

a ^ a— aq"

oome, S= r— , and 6=-^; .

5-1 l~q
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EXAMPLES.

1. Find the first eight terms of the progression

2 : 6 : 18 : 54 : 162 . . . : 2x3"' or 4374

^ Iq-a 13122-2S=^——= =6560.
q—1 2

2. Find the sum of the first twelve terms of the progression

1 /1\" 1
64 : 16 : 4 : 1 : — : . . . : 64|

(I)-'-4 V 4 / ' 65536

'

1 1 1
64

—

7r:rr—X^ 256-
„ a—lq 65536 4 65536 65535
S=

, „ = s
= ^ =85+

3 3 196608

T
We perceive that the principal difficulty consists in obtaining the

numerical value of the last term, a tedious operation, even when

the number of terms is not very great.

3. What debt may be discharged in a year, or twelve months,

by paying $1 the first month, ^2 the second month, $4 the third

month, and so on, each succeeding payment being double the last

;

and what will be the last payment ?

Ans. Debt, $4095 : last payment, #2048.

224. Remark. If, in the formula S= —, we suppose

5-— 1, it becomes S=—.

This result, which is sometimes a symbol of indetermination, is

also often a consequence of the existence of a common factor

(Art. 113), which becomes nothing by making a particular hypo-

thesis respecting the given question. This, in fact, is the case in

the present question ; for the expression ^"—1 is divisible by q—1,

(Art. 59), and gives the quotient

5-1 +^--"+^"-3+ ... +5+1;.
22*
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hence the value of S takes the form

<S=a^"-'+a?"-^+C5"-^+ . . . +aq-\-a.

Now, making 5=1, we have S=a+a-[-a+ . . . +a=na.

We can obtain the same result by going back to the proposed

progression, a : b : c,: . •-• -l, which,-in the particular case of j=l,

reduces to a : a : a : . . . : a, the sum of which series is equal

to na.

.

The result —
, given by the formula, may be regarded as indi-

cating that the series is characterized by some particular property.

In fact, the progression, being entirely composed of equal terms, is

no more a progression by quotients than it is a progression by diffe-

rences. Therefore, in seeking for the sum of a certain number of

aiq"— !)
the terms, there is no reason for using the formula S= •-—

,

{a.+l)n,.
in preference to the formula S=—-—, which gives the sum in

the progression by differences.

Of Progressions having an infinite number of terms.

225. Let there be the decreasing progression a:b:c:d e :f:

.

. .,

a— aq"
containing an. indefinite number o£ terms. The formula S=— ,

which represents the sum of n of its terms, can be put under the

a aq"
form *S=- .

1-q 1-q

Now, since the progression is decreasing, 5' is a fraction ; and q''

is also a fraction, which diminishes as 71 increases. Therefore the

greater the number of terms we take, the more will Xq"

diminish, and consequently, the more will the partial sum of these

terms approximate to an equality with the first part of S, that is, to
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. Finally, when n is taken greater than any given number,

a
or n = 00, then -

—

^X<r will be less than any given number,

a
or will become equal to ; and the expression will repre-

sent the true value of the sum of all the terms of the series.

Whence we may conclude, that the expression for the sum of the

terms of a decreasing progression, in which dhe number of terms is

infinite, is

This is, properly speaking, the limit to which ihe partial sum^ ap-

proach, by taking a greater number of terms in the progression.

a
The difference between these sums and can become as

\-q
small 6is we please, and will only become nothing when the number

of terms taken is infinite.

EXAMPLES.

1. Find the sum of

1111
We have for the expression of the sum of the terms

a 1 3

3

The error committed by taking this expression for the value of

the sum of the n first terms, is expressed by

1-j'^ 2\3/'

First take n=5 ; it becomes

\ 3 / 2.3* 162
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When n=6, we find

3 / 1 v<'_ 1 1 _ 1

TxY/ ~ 162 • ~3~ 486
•

3
Whence we see that the error committed, when — is taken for

the sum of a certain number of terms, is less in proportion as this

number is greater.

A-gain take the progression

11111
^ '"2''T'¥=16-32- '^'^

We have S=- = =2.

226. The expression 8=- , can be obtained directly from

the progression a : h : c : d : e if : g : . . ^

For, take the equations b=aq, c=bq, d=cq, e=dq of

which the number is indefinite, and add them together, member to

member ; we have

h-{-c+d-{-e+ . . . ={a+b+c+d-^ •••)?•

Now, the first member is evidently the proposed series, diminish-

ed by the first term a ; it is therefore expressed by S— a ; the se-

cond member is q multiplied by the entire series, since there is no

last term, or rather this last term is nothing ; hence the expression

for this member is qS, and the above equality becomes S—a=qS,

a
whence S=- .

1-q
a

In fact, by developing into a series by the rule for divi-

sion, we shall find the result to be rt-[-^?+f'?^+^?^+ • • •> which

is nothing more than the proposed series, having b, c, d . . . replaced

by their values in functions of a.
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a
227. When the series is increasing, the expression cannot

be considered as Or limit of the partial sums ; because, the sum of a

a aq"
given number of terms being S=t———j-^, (Art. 225), the

second part augments numerically, in proportion to the in-

crease of n ; hence the greater the number of terms teken, the

a
more the expression of their sum will differ numerically from ——

.

a
The formula S=:j is, in this case, merely the algebraic ex-

pression which, by its development, gives the series-

a+aq+aq'^+aq^ . . .

There is another circumstance presents itself here, which appears

very singular at first sight. Since is the fraction which

generates the above series, we should have

j—=a+ aq+aq''-{-aq^+aq^-{- . . .

Now, by making a=l, q— 2, this equality becomes

y—g. or -l^l+2.+4+8+ 16+32+ . . .

an equation of which the first member is negative whilst the second

is positive, and greater in proportion to the value of q.

To interpret this result, we will observe that, when in the equa-

tion =:a+aq-{-aq''-\-aq^-{- . . ., we stop at a certain term of

the series, it is necessary to complete the quotient in order that the

equality may subsist. Thus, in stopping, for example, at the fourth

term, aq^.
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a

+ aq

+ 0^^

1-q
Ist remainder

2d.

aq*
a+aq+aq^+aq^+j—

3d. + aq'

4th. + aq'

aq^
It is necessary to add the fractional expression to the quo-

lient, which gives rigorously,

a aq*——=a+aq+aq^+aq=+YZ:^'

If in this exact equation we make a=l, q=2, it becomes

16
-1= 1+2+4+8+—Y=l+2+ 4+8-16,

which verifies itself.

In general, when an expression involving x, designated by

/(x), which is called a function of x, is developed into a series

of the foiTn a-]-ix-\-ca^-\-dx^-{- , we have not rigorously

f(x)=a-\-bx-{-cx^-{-dx^-}- . . ., unless we conceive that, in stopping

at a certain term in the second member, the series is completed by a

certain expression involving x.

When, in particular applications, the series is decrea,s«?^ (Art. 203 j,

the expression which serves to complete it may be obtamed as near

as we please, by prolongmg the series ; but the contrary is the case

when the series is increasing, for then it must not be neglected.

This is thereason why increasmg series cannot be used for approxi-

mating to the value of numbers. It is for this reason, also, that

algebraists have called those series which go on diminishing from

term to term, converging series, and those in which the terms go on

increasing, diverging series. In the first, the greater the number

of terms taken, the nearer the sum approximates numerically to the

expression of which this series is the development ; whilst in the

others, the more terms we take, the more their sum differs from the

numerical value of this expression.
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228. The consideration of the five quantities a, q, n, I and S,

Iq—a
which enter in the two formulas l=aq''-^, S= — (Arts. 222 &

223), gives rise to ten problems, as in the progression by differences

(Art. 218). Of these cases, we shall consider here, as we did

there, only the most important. We will first find the values of S

and q in terms of a, I and n.

I
"-' / Z

The first formula gives q"^^=— , whence q= \/ — . Substi-

tuting this value in the second formula, the value of S will be ob-

tained.

"^^ / I

The expression q= \/ — furnishes the means for resolving the

following question, viz.

Tofind m mean proportionals between two given numbers a and

b ; that is, to find a number m of means, which will form with a

and b, considered as extremes, a progression by quotients.

For this purpose, it is only necessary to know the ratio ; now the

required number of means being m, the total number of terms is

equal to m+ 2. Moreover, we have Z=&, therefore the value of q
"+' /Z»

becomes 9= \/ — ; that is, we must divide one of the given

numbers (b) by the other (a), then extract that root of the quotient

wJwse index is one more than the required number of means.

Hence, the progression is

"'+1 / ])
"•+! /Jr ">+! /P

a -.a \/---a V ^ : « s/^ : . . . b.

Thus, to insert six mean proportionals between the numbers 3

' / 384 7 /
and 384, we make ?tt=6, whence q=K/ ———= y 128 = 2

;

whence we deduce the progression

3 : 6 : 12 : 24 : 48 : 90 : 192 : 384.

Remark. When the same number of mean proportionals are in-
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serted between all the terms of a progression by quotients, taken two

and two, all the progressions thusformed will constitute a single pro-

gression.

229. Of the ten principal problems that may be proposed in

progressions, /our are susceptible of being easily resolved. The

following are the enunciations, with the formulas relating to them.

1st. a, q, n, being given, to find I and S.

l^a "-»• S-
^^""^ ^ "^^"^-^^

2d. a, n, I, being given, to find q and S.

3d. q, n, I, being given, to find a and -S*.

4th. q, n, S, being given to find a and I.

S{q-1) Sq'^-\q-l)
, I-

r-i ' 9"-i

Two other problems depend upon the resolution of equations of

a degree superior to the second ; they are those in which the un-

known quantities are supposed to be a and q, or I and q.

For, from the second formula we deduce

a—lq— Sq+S;

Whence, by substituting this value of a in the first l=aq"'^,

l^{lq-Sq+S)q'-\

or, (S-l)q-'-Sq''~'+l=^0.

an equation of the 7i"' degree.

In like manner, in determining I and q,we should obtain the equa-

tion aq"—Sq+S—a=0.

230. Finally, the other four problems lead to the resolution of



CONTINUED FRACTIONS 265

equations of a peculiar nature ; they are those in which n and one

of the other four quantities are unknown.

From the second formula it is easy to obtain the value of one of

the quantities a, q, I, and S, in functions of the other three ; hence

the problem is reduced to finding n by means of the formula

Iq
Now this equality becomes 5-"=—, an equation of the form

a'^=^b, a and b being known quantities. Equations of this kind are

called exponential equations, to distinguish them from those previous,

ly considered, in which the unknown quantity is raised to a power

denoted by a known number.

Before, however, we can solve the exponential equation a*=i,

we must understand the elementary properties of Continued Frac-

tions, which are now to be explained.

Of Continued Fractions.

65
231. Having given a fraction of the form , in which the

terms are large, and prime with respect to each other, we are una-

ble to discover its precise value, either by inspection or by any mode

of reduction yet explained. The manner of approximating to the

value of such a fraction gives rise to a series of numbers, which

taken together, form what is called a contimiedfraction.

65
232. If we take, for example, the fraction , and divide both

its terms by the numerator 65, the value of the fraction will not be

changed, and we shall have

65 _ 1

149 ~ 149'

65

65 1

or effecting the division, T4q"~"2~Xiq

23



19
Now, if we neglect the fractional part — of the denominator,

bo

we shall obtain — for the approximate value of the given fraction.

But this value would be too large, since the denominator used was

too small.

19
If, on the contrary, mstead of neglecting the part — , we were

bo

-to replace it by 1, the approximate value would be —, which must
o

be too small, since the denominator 3 is too large. Hence

65 1 65 1

U9-<-2- ""^ lA9>r

therefore the value of the fraction is comprised between — and —

.

If we wish a nearer approximation, it is only necessary to ope-

19 J. , . . . 65
rr as we did on the given fraction -—tt:
65 ° 149

we obtain

19 1

65 3 + 8

19'

hence
65 1

149 2+ 1

3+8
19'

8
If now, we neglect the part — , the denominator 3 will be less

than the true denominator, and — will be larger than the number
3

which ought to be added to 2 ; hence, 1 divided by 2+— will be
o

less than the value of the fraction : that is, if we reject the frac
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tional part after the second reduction, we shall have

65 3

149 "^T*

If we wish to approximate still nearer to the value of the given

fraction, we find

8 1

19 2+£^
T»

and by substituting this value, we have

65 _ 1

149 ~ 2+1
3+ 1

2+3
T
3

Now, if we neglect the fractional part — , after the third reduc-
o

tion, we see that 2 will be less than the real denominator ; hence

— will be larger than the number to be added to 3 : that is,

1 73+—=— is too large ; hence

1 2
is too small, and

T
2 16

2+y=y is too small ; therefore

1 7

16~16 is too large, and hence

T
65 7

149 ^16"

Now, as the same train of reasoning may be pursued for the re-

ductions which follow, and as all the results are independent of par-
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ticular numbers, it follows that, if we stop at an odd reduction, and

neglect thefractional part, the result will he too great ; but if we stop

at an even reduction, and neglect the fractional part, the result xcill

be too small.

Making two more reductions, in the last example, we have,

65 _ 1

149 ""2 +1
3+ 1

2+ 1

2+ 1

1+2.
2.

233. Let us take, as a general case, the continued fraction

1

h+i

c+ l

f d+l

/+r&c.

Hence we see, that a continued fraction hasfor its mimerator the

unit 1, andfor its denominator a whole number, plus a fraction which

has I for its numerator andfor its denominator a ivhole number plus

afraction, and so on.

234. The fractions

1 1 1

a' a + 1 a+ 1

T' b+1

c, &c.

are called approximatingfractions, because each affords, in succes-

sion, a nearer value of the given fraction.

1 1 1

The fractions —, -7-, — , &c. are called integral fractions,
a c

<=. .

When the continued fraction can be exactly expressed by a vulgar
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fraction, as in the numerical examples already given, the integral frac-

1 1 1
tions —, — , — , &c. will ternninate, and we shall obtain an expres-

sion for the exact value of the given fraction by taking them all.

235. We will now explain the manner in which any approximat-

ing fraction may be found from those which precede it.

1 1

a

1

1

a
1st. app. fraction.

h
2d. app. fraction

ic+1
(nhA.'WrJ-,

- 3d. app. fraction.

b + l_

c

By examining the third approximating fraction, we see, that its

numerator is formed by multiplying the numerator of the preceding

fraction by the denominator of the third integral fraction, and add-

ing to the product the numerator of the first approximating frac-

tion : and that the denominator is formed by multiplying the deno-

minator of the last fraction by the denominator of the third integral

fraction, and adding to the product the denominator of the first ap-

proximating fraction.

We should infer, from analogy, that this law of formation is ge-

P Q R
neral. But to prove it rigorously, let — , — , — , be the three

1^ ii K
approximating fractions for which the law is already established.

Since c is the denominator of the last integral fraction, we have

from what has already been proved

R Qc+P
R'~ Q'c+P'

'

1
action •

23*

Let us now add a new integral fraction — to those already re-
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o

duced, and suppose — to express the 4th approximating fraction.
S'

-,., ivill . . ,,

R' ^'

R S
It is plain that jp will becoi:'r -7 by simply substituting for c.

c^

—

—: hence,
a

Q{c+^)+P
S _ ^V^ d/^^ _{Q c+P)d+Q _ Rd-\-Q

^'~Q'(c+-)+P~
(^'^+^')rf+Q' ~ K'd+Q'

Hence we see that the fourth approximating fraction is deduced

from the two immediately preceding it, in the same way that the

third was deduced from the first and second ; and as any fraction

may be deduced from the two immediately preceded in a similar

manner, we conclude, that, the numerator of the n"" approximating

fraction isformed by multiplying the numerator of the precedingfrac-

tion by the denominator of the n"" integralfraction, and adding to the

product the numerator of the n— 2 fraction ; and the denominator is

formed according to the same law,from the two preceding denomina-

tors.

236. If we take the difference between any two of the consecu.

tive approximating fractions, we shall find, after reducing them to a

common denominator, that the difference of their numerators will be

equal to ±1 ; and the denominator of this difference will be the

product of the denominators of the fractions.

1 h
Taking, for example, the consecutive fractions —, and —5

,

we have,

1 h ab-\-\—db +1

And

a ab-\-\ a{ab+l) a(a*+l)'

h hc+\ -1

06+ 1 (a*+l)c-fa (ai-|-l)((ai-f l)c+a)'
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m P Q Ji
To prove this property in a general manner, let pT' Tv' "p^' ^^

three consecutive approximating fractions. Then

P Q PQ'-P'Q

But

P' Q' P'Q'

Q R R'Q-RQ'
Q' R' Q'R'

But R=Qc-irP and R'=Q'c+P' (Art. 235).

Substituting these values in the last equation, we have

Q R' R'Q
or reducing

Q 22 P'Q-PQ!

p Q
P' Q'

Q R'

Q' R'

Q' R' R'Q'

From which we see that the numerator of the difference

is equal, with a contrary sign, to that of the difference

That is, the difference hettoeen the nmnerators of any tivo consecutive

approximating fractions, when reduced to a common denominator, is

the same with a contrary sign, as that which exists between the last

numerator and the numerator of the fraction immediatelyfollowing.

But we have already seen that the difference of the numerators

of the 1st and 2d fractions is equal to +1 ; also that the difference

between the numerators of the 2d and 3d fractions is equal to — 1
;

hence the difference between the numerators of the 3d and 4th is

equal to +1 ; and so on for the following fractions.

Since the odd approximating fractions are all greater than the

true value of the continued fraction, and the even ones all less (Art.

232), it follows, that when a fraction of an even order is subtracted

from one of an odd order, the difference should have a plus sign
;

and on the contrary, it ought to have a minus sign, when one of

an odd order is subtracted from one of an even.
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237. It has already been shown (Art. 232), that each of the ap^

proximating fractions corresponding to the odd numbers, exceeds the

true value of the continued fraction ; while each of those corres-

ponding to the even numbers is less than it. Hence, the difference

between any two consecutive fractions is greater than the difference

between either of them and the true value of the continued frac-

tion. Therefore, stopping at the n"' fraction, the result will be true

to within 1 divided by the denominator of the n"" fraction, multipli-

ed by the denominator of the fraction which follows. Thus, if Q
and R are the denominators of consecutive fractions, and we stop

at the fraction whose denominator is Q', the result will be true to

within ^QTgT* But since a, b, c, d, &:c. are entire numbers, the de-

nominator R' will be greater than Q', and we shall have

1 1

hence, if the result be true to within yp^ it will certainly be true

to within less than the larger quantity

1

that is, the approximate result which is ohtained, is true to within

unity divided by the square of the denoniinator of the last approxi-

mating fraction that is employed.

829
If we take the fraction ^,„ we have

347

829 _ 1

"347""^"*"
2+ 1

T+i

1+2

3+J_
19*

Here we have in the quotient the whole number 2, which may
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either be set aside and added to the fractional part after its value

shall have been found, or we may place 1 under it for a denomina-

tor and treat it as an approximating fraction.

Of Exponential Quantities.

Resolution of the Equation a'^=b

238. The object of this question is, to find the exponent of the

power to which it is necessary to raise a given number a, in order

to produce another given number b.

Suppose it is required to resolve the equation 2^=64. By rais-

ing 2 to its different powers, we find that 2^=64
; hence x=6 will

satisfy the conditions of the equation.

Again, let there be the equation 3-^=: 243. The solution is x=5.

In fact, so long as the second member Z* is a perfect power of the

given number a, x will be an entire number which may be obtained

by raising a to its successive powers, commencing at the first.

Suppose it were required to resolve the equation 2^=6. By
making x—'2, and .'c=3, we find 2^=4 and 2^=8 : from which we

perceive that x has a value comprised between 2 and 3.

Suppose then, that a;=2-|

—

y, in which case x'>l.

Substituting this value in the proposed equation, it becomes,

_i_ _i_ J. 3
2^"*'^'=6 or 2^x2 ^'=6; hence 2^'=—,

or (— ) =2, by changing the members, and raising both to the

x' power.

To determine a;', make successively x'=^l and 2; we find

/ 3 \' 3 /3 v^ 9
I— j =— less than 2, and (—j =—,. which is greater than 2

;

therefore x' is comprised between 1 and 2.

1

Suppose x'=l-\-j;, inwhicha:>l.
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By substituting this value in the equation (—1 =2

/3\,4.-L 3 /3\-l

/ 4 \ --" 3

^-g-j =-2 by reducing.

The two hypotheses x"=l and x"=2, give — which is less than
o

3 /4\^ 16 7 3—, and (— 1 =—=1+— which is greater than — ; therefore

x" is comprised between 1 and 2.

Let x"=l-\ ;;—, there will result
X

/4\,+-L 3 4 /4\-i- 3

/9\^"' 4
, .

whence I—j =— by reducmg.

Making successively x"'=l, 2, 3, we find for the two last hypo.

/9\2 81 17 1 ,

theses ^—j =—=1+—, which is <l+y, and

(9
\^ 729 217 1— ) =——-==1+———, which is >1+— : therefore x'" is com-

8 / 512 512 o

prised between 2 and 3.

Let x"'=2-\-—, the equation involving x'" becomes

2+-
/ y \ :r'V 4 81 / 9 \ xiv 4

Kq) ^IT'^^eiU) ="3

/ 256 \ x'v 9
and consequently ( g.o )

~~q'

Operating upon this exponential equation in the same manner

as upon the preceding equations, we shall find two entire num.
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bera k and &+1, between which a;'' will be comprised. Making

0^=44—-, xv can be determined in the same manner as x^^, and
x^

so on.

Making the necessary substitutions in the equations

x=2+i a^'=l+^, a."=l+4r' ^'"=2-f^
we obtain the value of x under the ibrm of a continued fraction

1

x=2+
J-

Hence we find the first three approximating fractions to be.

L L 1.
1 ' 2 ' 5"'

and the fourth is equal to

3x24-1 7 ^,

-5^m:2-=12
(^^^- 235),

which is the value of the fractional part to within

(12f
""'

"lii"
(^'^- 2^^)-

Therefore ^=2+72=^7^ to within -rrr, and if a greater de-

gree of exactness is required, we must take a greater number of

integral fractions.

EXAMPLES.

3» = 15 X = 2,46 to within 0,01.

10* = 3 X = 0,477 0,001.

2
5' = — x=- 0,25 0,01.
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Theory of Logarithms.

239. If we suppose a to preserve the same value in the equation

and y to be replaced by all possible positive numbers, it is plain that

X will undergo changes corresponding to those made in y. Now,

by the method explained in the last Article, we can determine for

each value of y, the corresponding value of x, either exactly or ap-

proximatively.

First suppose ay.t

Making in succession x =0, 1, 2, 3, 4, 5 , . . . &c.

there will result y=a'=l, a, a', a', a*, a*, . . . &c.

hence, every value of y greater than unity, is produced by the pow'

ers of a, the exponents of which are positive nuvibers, entire orfrac-

tional ; and the values of y increase with x.

Make now x =0, —1, —2, —3, —4, —5, . . . &;c.11111
there will result y=a'=l, —, —;, —^, —,, —r, . . . &c.

a a' a^ a* a*

hence, every value of y less than unity, is produced by the powers of

a, of which the exponents are negative ; and the value of y dimin'

ishes as the value of x increases negatively.

Suppose a<l or equal to the properfraction —

.

Making x=0, 1, 2, 3, 4, . . . &c.

/Ix" 1111
wefina. . . y=[-^) =h -7, ^., ^, ^, • • • &c.

Making x=0, -1, -2, -3, -4,

/ 1 \°

we obtain . . y=(—j =1, a', a'^ a'^ a'\ . . . 6cc.

That is, in the hypothesis a<l, all numbers are formed with
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the different powers of «, in the inverse order of that in which they,

are formed when we suppose a>l.

Hence, every possible positive number can beformed with any con-

stant positive number whatever, by raising it to suitable powers.

Remark. The number a must always be differentfrom unity,

because all the powers of 1 are equal to 1.

240. By conceiving that a table has been formed, containing in

one column, every entire number, and in another, the exponents of

the powers to which it is necessary to raise an invariable number, to

form all these numbers, an idea will be had of a table of logarithms.

Hence,

The logarithm of a number, is the exponent of the potver to which

it is necessary to raise a certain invariable number, in order to pro-

duce the first number.

Any number, except 1, may be taken for the invariable number
;

but when once chosen, it must remain the same for the formation of

all numbers, and it is called the base of the system of logarithms.

Whatever the base of the system may be, its logarithm is unity,

and the logarithm of 1 is 0.

For, let a be the base : then

1st, we have a^=a, whence log a=l. '

2d, «"=!, whence log 1=0.

The word logarithm is commonly denoted by the first three letters

log, or simply by the first letter Z.

We will now show some of the advantages of tables of logarithms

in making numerical calculations.

Multiplication and Division.

241. Let a be the base of a system of logarithms, and suppose

the table to be calculated. Let it be required to multiply together

a series of numbers by means of their logarithms. Denote the numw

bers by y, y', y", y'" . . . &;c., and their corresponding logarithms

24
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by X, sf, x", x'", &c. Then by definition (Art. 240), we have

a'=y, a"=y', a"'=3/", a""=y[" . . . &c.

Multiplying these equations together, member by member, and

applying the rule for the exponents, we have

^r+x'+^//+x'//
, , , =y y'y'y'" or

x-\-x' +x" -\-x"' . . . =log?/+ log 3/'+ logi/"+ log 3/'"
. . .

= log. yy'y"y"',

that is, the sum of the logarithms of any number of factors is equal

to the logarithm of the product of thosefactors.

242. Suppose it were required to divide one number by another.

Let y and y' denote the numbers, and x and x' their logarithms.

We have the equations

a"'— 2/ and a'''=y'
;

y
hence by division a'-^'=-—

,

y

y
or x—x'=:i log y— log y'= log -;-,

that is, the difference between the logarithm of the dividend and the

logarithm of the divisor, is equal to the logarithm of the quotient.

Consequences of these properties. A multiplication can be per-

formed by taking the logarithms of the two factors from the tables,

and adding them together ; this will give the logarithm of the pro-

duct. Then finding this new logarithm in the tables, and taking

the number which cortesponds to it, we shall obtain the required pro-

duct. Therefore, by a simple addition, wefind the result of a 7nid-

tiplication.

In like manner, when one number is to be divided by another,

subtract the logarithm of the divisor from that of the dividend, then

find the number corresponding to this difterence ; this will be the

required quotient. Therefore, by a simple subtraction, we obtain the

quotient of a division.
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Formation of Powers and Extraction of Roots.

243. Let it be required to raise a number y to any power de-

Ttl

noted by — . If a denotes the base of the system, and x the loga-

rithm of y, we shall have

a'=y or y=a',

m
whence, raising both members to the power —

,

y'^=a^\

— m m
Therefore, logy"—— . x=— .log?/,

that is, if the logarithm of any number he multiplied by the exponent,

of the power to which the number is to be raised, the product will be

equal to the logarithm of that power.

As a particular case, take n=l ; there will result »z. log y=:

log 3/"' ; an equation which is susceptible of the above enunciation.

244. Suppose, in the first equation, m=l ; there will result

1
log y= log y"z= log V

that is, the logarithm of any root of a number is obtained by divid-

ing the logarithm of the number by the index of the root.

Consequence. To form any power of a number, take the loga-

rithm of this number from the tables, multiply it by the exponent

of the power ; then the number corresponding to this product will

be the required power.

In like manner, to extract the root of a number, divide the loga-

rithm of the proposed number by the index of the root, then the

number corresponding to the quotient will be the required root.

Therefore, by a simple multiplication, we can raise a quantity to a

power, and extract its root by a simple division.
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245. The properties just demonstrated are independent of any

system of logarithms ; but the consequences which have been de-

duced from them, that is, the use that may be made of them in nu-

merical calculations, supposes the construction of a table, contain-

ing all the numbers in one column, and the logarithms of these num.

bers in another, calculated from a given base. Now, in calculating

this table, it is necessary, in considering the equation a'=y, to make

y pass through all possible states of magnitude, and determine the

value of a; corresponding to each of the values of ?/, by the method

of Art. 238.

The tables in common use, are those of which the base is 10

and their construction is reduced to the resolution of the equation

10*=?/. Making in this equation, y successively equal to the series

of natural numbers, 1, 2, 3, 4, 5, 6, 7 . . ., we have to resolve the

equations

10^=1, 10^=2, 10^=3, 10^=4 . . .

We will moreover observe, that it is only necessary to calculate

directly, by the method of Art. 238, the logarithms of the pi'ime

numbers 1, 2, 3, 5, 7, 11, 13, 17 ... ; for as all the other entire

numbers result from the multiplication of these factors, their loga-

rithms may be obtained by the addition of the logarithms of the

prime numbers (Art. 241).

Thus, since 6 can be decomposed into 2x3, we have

log 6= log 2+ log 3
;

in like manner, 24=2='x3 ; hence log 24=3 log 2+ log 3.

Again, 360=23 xS^'X 5 ; hence

log 360=3 log 2+2 log 3+ log 5.

It is only necessary to place the logarithms of the entire num.

bers in the tables ; for, by the property of division (Art. 242), we

obtain the logarithm of a fraction by subtracting the logarithm of

the divisor from that of the dividend.
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246. Resuming the equation 10''=y, if we make

x=0, 1, 2, 3, 4, 5, .. . n-1, n.

we have

y=l, 10, 100, 1000, 10000, 100000, . . 10-', 10".

And making

x=0, -1, -2, -3, -4, -5, . . . -(n-1), — n.

we have

V 1 ^ 1 1

100 ' 1000'

1 1 1

10"-"

1

y-^^ 10' 10000' 100000'
•

'

10"
•

From which we see that, the logarithm of a whole numher will 3e«

come the logarithm of a corresponding decimal by changing its sign

from plus to minus.

247. Resume the equation a''=y, in which we will first suppose

a>l.

Then, if we make y= 1 we shall have

a''=l.

If we make 2/<l we shall have

1
a-'=y or ~=r/<l.

If now, y diminishes x will increase, and when y becomes 0, we

have a-'''=-j=0 or a''= ao (Art. 112) ; but no finite power of a

is infinite, hence x = cd : and therefore, the logarithm of in a sys-

tern of ivhich the base is greater than unity, is an infinite number and

negative.

248. Again take the equation a^'^y, and suppose the base a<l.

Then making, as before, 3/=l, we have a''=l.

If we make y less than 1 we shall have

a'=y<\.

Now, if we diminish y, x will increase ; for smce a<l its powers

will diminish as the exponent x increases, and when 3f=0, a; must

24*
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be infinite, for no finite power of a fraction is 0. Hence, the loga-

rithm of ill a system of which the base is less than unity, is an in-

finite number, and positive.

Logarithmic and Exponential Series.

349. The method of resolving the equation a''=h, explained in

Art. 238, is sufficient to give an idea of the construction of loga-

rithmic tables ; but this method is very laborious when we wish to

approximate very near the value of x. Analysts have discovered

much more expeditious methods for constructing new tables, or for

verifying those already calculated. These methods consist in the

development of logarithms into series.

Taking again the equation a^'^y, it is proposed to develop the

logarithm of y into a series involving the powers of y, and co-effi-

cients independent of y.

It is evident, that the same number y will have a different loga-

rithm in different systems ; hence the log y, will depend for its

value, 1st. on the value of y ; and 2dly, on a, the base of the sys-

tem of logarithms. Hence the development must contain y, or some

quantity dependent on it, and some quantity dependent on the base a.

To find the form of this development, we will assume

log y=A+By+Cy^+Dy''+, &c.,

in which A, B, C, &c. are independent of y, and dependent on the

base a.

Now, if we make 2/=0, the log y becomes infinite, and is either

negative or positive according as the base a is greater or less than

unity (Arts. 247 & 248). But the second member under this sup-

position, reduces to A, a finite number : hence the development can-

not be made under that form.

Again, assume

log y=Ay+Bf+Cf+Dy'+, &c.

If we make 3/=0, we have

log y=± (X =0,
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which is absurd, and hence the development cannot be made under

the last form. Hence we conclude that, the logarithm of a number

cannot be developed in the powers of that number.

Let us now place for y, l-\-y, and we shall have

log {l+y)=Ay+Bf+Cf+Df+ &c (1),

making y=-0, the equation is reduced to log 1=0, which does not

present any absurdity.

In order to determine the co-efficients A, B, C . . ., we will fol-

low the process of Art. 207. Substituting z for y, the equation

becomes

log {l+z)=zAz+Bz^+Cz=+Dz*+ . . , (2).

Subtracting the equation (2) from (1), we obtain

\og{l+y)-\og(l+z)=A{y-z)+Biy'-z')+ C(f-^)-\-

.

. . (3).

The second member of this equation is divisible by y—z ; we will

see, if we can by any artifice, put the first under such a form that it

shall also be divisible by y—z.

We have, log (l+y)- log (1+^)= log^=:log(l+|^)
;

y—

2

but since can be regarded as a single number u, we can de-
1+ z

° °

velop log (l+«), or log f 1-f- ), in the same manner as

log (l+y), which gives

o«(>+f=^)=-^H-.(f^)Vc.(f=i)V...

Substituting this development for log (1+7/)— log(l+2) in the

equation (3), and dividing both members by y—z, it becomes

=A+B{y+z)+ C{y'+yz-\-z')+ . . .

Since this equation, like the preceding, must be verified by all
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values of y and *, make y=s, and there will result

^-p^=^+2%+3C/+4Z>y'+5£2/*+ . . .

Whence, clearing the fraction, and transposing

0=^+25
I

2/+3C
I

f+AD
I

f+^E
I

i/*+ . . .

Putting the co-efficients of the different powers of y equal to

zero, we obtain the series of equations

A-A=Q, 2B+A=0, 3C+25=0, 4Z>+3C=0 . . .

;

whence

A 25 A SC AB=-^, C=-
2 3 ~ 3' ~ 4 ~ 4

A=A,

The law of the series is evident ; the co-efficient of the n"^ term

A
IS equal to qz—, according as n is even or odd ; hence we shall ob-

tain for the development of log (\-\-y),

A A . A
2^log {\^y)=Ay-—f^—f-—t

=^(^-Y+-3-T+-5----) (^)-

If we substitute —y for y, we shall have

log(l-2/)=A(-r/-^-^-?^+&c.) (5).

Hence, although the logarithm of a number cannot be developed

in the powers of that number, yet it may be developed in the powers

of a number greater or less by unity.

By the above method of development, the co-efficients B, C, D,

E, &c. have all been determined in functions of A ; but the rela-

tion between A and the base of the system is yet undetermined.

The number A is called the modulus of the system of logarithms

in which the log (1+y), or log (1—y), is taken. Hence,
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The modulus of a system of logarithns depends for its value on

the base, and if a certainfunction of any number be multiplied by it,

the product will be the logarithm, of that number augmented by unity.

250. If we take the logarithm of 1 +^ in a new system, and de-

note it by l'{\-^y), we shall have

'•(i+J')='i'(i'-y+T-T+T- *=•) <«>

in which A' is the modulus of the new system.

If we suppose y to have the same value as in equation (4), we

shall have

\\\+y):\{\+y)::A' :A,

for, since the series in the second members are the same they may

be omitted. Therefore,

The logarithms of the same number, taken in two different systems,

are to each other as the moduli of those systems.

1f)\. If we make the modulus A'—\, the system of logarithms

which results is called the Naperian System. This was the first

system known, and was invented by Baron Napier, a Scotch Ma-

thematician.

With this modification the proportion above becomes

V{l+y):\{l+y):'. 1 : A

or A.V{l+y)=\{l+y).

Hence we see that, the Naperian logarithm of any number, muL

tiplied by the modulus of another system, will givefor a product the

logarithm of the same number in that system.

252, Again, A .\'{\-^ij)=\{\-\-y) gives

That is, tlie logarithm of any number divided by the modulus of the

system, is equal to the Naperian logarithm of the same number.



253. If we take the Naperian logarithm and make y=l, equa-

tion (6) becomes

1111
a series which does not converge rapidly, and in which it would be

necessary to take a great number of terms for a near approxima-

tion. In general, this series will not serve for determining the loga-

rithms of entire numbers, since for every number greater than 2

we should obtain a series in which the terms would go on increasing

continually.

The following are the principal transformations for converting the

above series into converging series, for the purpose of obtaining the

logarithms of entire numbers, which are the only logarithms placed

in the tables.

First Transformation.

Taking the Naperian logarithm in equation (6), making y=—

,

and observing that

r(l4-—)=!'(! +^)—l'2^» it becomes

l'(l+.)-l'z=i-^+^-^+ &c. (7).

This series becomes more converging as z increases ; besides thfef

first member of this equation expresses the difference between two

consecutive logarithms.

Making z=l, 2, 3, 4, 5, &c, we have

1111
1111
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1111M-r3=---+^j_—+ . .

.

,.6-l-4=l-i-+-! L..
4 32^ 192 1024

The first series will give the logarithm of 2 ; the second series

will give the logarithm of 3 by means of the logarithm of 2 ; the

third, the logarithm of 4, in functions of the logarithm of 3 . . . &c.

The degree of approximation can be estimated, since the series are

composed of terms alternately positive and negative (Art. 203).

Second Transformation.

A much more converging series is obtained in the following man-

ner.

In the series

x" aP X*
r(i+.)=.--+---+...

substitute —x for a; ; and it becomes

ar" 3P X*
!'(!-)= ~ 2 3 4 '••

Subtracting the second series from the first, observing that

1+x
r(l4-x)—r(l— a;)=r- , we obtain

This series will not converge very rapidly unless a; is a very

small fraction, in which case, will be greater than unity, but

will differ very little from it.

l-\-x 1
Take =1H , 2 being an entire number

:

1

—

X z *

we have (14-x)z=(l—a;)(j;+l): whence x-.

22+1
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Hence the preceding series becomes l'(l+'— ) or

Vi,+i^-n=i{^+^- + g(^+ . .

.)

This series also gives the difference between two consecutive

logarithms, but it converges much more rapidly than the series (7).

Making successively 2=1, 2, 3, 4, 5 . . ., we find

/I 1 1 1 \

r3--r2=2(i-+3i^3+^+y^+
• • •)'

Let 2=100 ; there will result

noi=noo+2(-^+^-+^+ . .
.)

;

whence we see, that knowing the logarithm of 100, the first term

of the series is sufficient for obtaining that of 101 to seven places

of decimals.

The Naperian logarithm of 10 may be deduced from the third and

fourth of the above equations, by simply adding the logarithm of 2

to that of 5 (Art. 241). This number has been calculated with

great exactness, and is 2,302585093.

There are formulas more converging than the above, which serve

to obtain logarithms in functions of others already known, but the

preceding are sufficient to give an idea of the facility with which

tables may be constructed. We may now suppose the Naperian

logarithms of all numbers to be known.
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254. We have already observed that the base of the common

system of logarithms is 10 (Art. 245). We will now find ita

modulus.

\'{l+y) : \{l+y) : : 1 : A (Art. 250).

If we make y=9, we shall have

no : no : : 1 : ^.

But the 1'10= 2,302585093 . . . and 110= 1 (Art. 245); hence

A= ———=0,434294482 the modulus of the common sys-
2,302585093 '

''

tern.

If now, we multiply the Naperian logarithms before found, by

this modulus, we shall obtain a table of common logarithms

(Art. 251).

255. All that now remains to be done is to find the base of the

Napeiian system. If we designate that base by e, we shall have

(Art. 250),

I'e : le : : 1 : 0,434294482.

But 1V= 1 (Art. 240): hence

1 : 1 e : : 1 : 0,434294482,

or 16=0,434294482.

But as we have already explained the method of calculating the

common tables, we may use them to find the number whose loga-

rithm is 0,434294482, which we shall find to be 2,718281828 :

hence

6=2,718281828.

We see from the last equation but one that, the modulas of the

common system is equal to the common logarithm of the Naperian

base.

25
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CHAPTER VI.

General Theory of Equations.

256. The most celebrated analysts have tried to resolve equa-

tions of any degree whatever, but hitherto their efforts have been

unsuccessful with respect to equations of a higher degree than the

fourth. However, their investigations on this subject have conduct-

ed them to some properties common to equations of every degree,

which they have since used, either to resolve certain classes of

equations, or to reduce the resolution of a given equation to that of

one more simple. In this chapter it is proposed to make known

these properties, and their use in facilitating the resolution of equa-

tions.

257. The development of the properties relating to equations of

every degree, leads to the consideration of polynomials of a parti-

cular nature, and entirely different from those considered in the first

chapter. These are, expressions of the form

Ax"'-fBx''""'+ac'"-=+ . . . +Tt+ U,

in which m is a positive whole number ; but the co-efficients

A, B, C, . . . T, U, denote any quantities whatever, that is, entire

bv fractional quantities, commensurable or incommensurable. Now,

in algebraic division, as explained in Chapter I, the object was this,

viz. : £iven two polynomials entire, with reference to all the letters

and particular numbers involved in them, tojind a third polynomial

of the same kind, ichich, mulliplied by the second, would produce t'lc

first.

But when we have two polynomials,

Ax'"+ B.r"-'+Cx'"-='+ . . . +Tx+ U,

AV+B'o.-'-'+C'a;'' =+ . . . +T'a'+U
,

which are necessarily entire only with respect to x, and in which

the co-efficicnts A, B, C . . ., A', R', C . . ., may be any quantities
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whatever, it may be proposed to find a third polynomial, of the samo

tbrm and nature as the two preceding, W«cA mtdtiplied hythcsecondy

will re-produce thefirst.

The process for effecting this division is analogous to that for

common division ; but there is this difference, viz. : In this last, the

first term of each partial dividend must be exactly divisible by the

first term of the divisor ; whereas, in the new kind of division, we

divide the first term of each partial dividend, that is, the part affect-

ed with the highest power of the principal letter, by the first term of

the divisor, whether the co-efficient of the corresponding partial

quotient is entire or fractional ; and the operation is continued until

a quotient is obtained, which, multiplied by the divisor, will cancel the

last partial dividend, in which case the division is said to be exact

;

or, until a remainder is obtained, of a degree less than that of the

divisor, with reference to the principal letter, in which case the di-

vision is considered impossible, since by continuing the operation,

quotients would be obtained containing the principal letter affected

with negative exponents, or this same letter in the denominator of

them, which would be contrary to the nature of the question, which

requires that the quotient should be of the same form as the pro-

posed polynomials.

258. To distinguish polynomials which are entire with reference

to a letter, x for example, but the co-efficients of which are any

quantities whatever, from ordinary polynomials, that is, from poly,

nomials which are entire with reference to all the letters and parti,

cular numbers involved in them, it has been agreed to call the first

entire functions of x, and the second, rational and entire polynO'

mials.

General Properties of Equations.

259. Every complete equation of the ?«"' degree, m being a po-

sitive whole number, may, by the transposition of terms, and by

the division of both members by the co-efficient of af", be put under

the form
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3r-\-?x^-'+Qx'^-^+ . . . +Ta;+U=0;

P, Q, R . . . T, U, being co-efficients taken in the most general al-

gebraic sense.

Any expression, whatever the nature of it may be, that is, numeri-

cal or algebraic, real or imaginary, which, substituted in place of x

in the equation, renders Usfirst member equal to 0, is called a root of

this equation.

260. As every equation may be considered as the algebraic trans-

lation of the relations which exist between the given and unknown

quantities of a problem, we are naturally led to this principle, viz.

EVERY EauATiON hos at least one root. Indeed, the conditions of

the enunciation may be incompatible, but then we must suppose

that we shall be warned of it by some symbol of absurdity, such as a

formula, containing as a necessary operation, the extraction of an

even root of a negative quantity
;
yet there will still exist an ex-

pression which, substituted for x in the equation, will satisfy it. We
will admit this principle, which we shall have occasion to verify here-

after for most equations.

The following proposition may be regarded as the fundamental

property of the theory of equations.

First Property.

261. If a is a root of the equation

x'"+Pa;"-'+Qx"'--+ . . . Tx+ U= 0,

the first member of it is divisible by x—a ; and reciprocally, if a

factor of theform x—a, will divide the first member of the proposed

equation, a is a root of it.

For, perform the division, and see what takes place when the ope-

ration is continued until the exponent of x, in the first term of the

dividend, becomes 0.
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This operation is of thu nature of that spoken of in Art. 257,

since a, P, Q, . . . are any quantities whatever.

+ p| +pl +Pg +Va^~'

+ Pa

4-T

By reflecting a little upon the manner in which the partial quo-

tients are obtained, we shall first discover from analogy, and after-

wards by a method employed several times (Arts. 59 & 127), a law

offormation for the co-efficients of these quotients ; and we may

conclude, 1st. that there will be m partial quotients, 2d. that the co-

efficient of the m"' quotient, that is of x°, must be

a->+ Pa'"-=^+Qa'"-='+ . . . +T,

T being the co-efficient of the last term but one of the proposed

equation.

Hence, by multiplying the divisor by this quotient, and reducing

it with the dividend, we obtain for a remainder

a-+Pa--«+Qa"-2+ • • • +Ta+ U.

Now, by hypothesis a is a root of the equation ; hence, this re-

mainder is nothing, since it is nothing more than the result of the sub-

stitution of a for X in the equation ; therefore the divisio7i is exact.

Reciprocally, ifx— a is an exact divisor of a;""+ Pa;'^-~'+ . . ., the

remainder a"'+Pa'"^*+ . . . will be nothing ; therefore (Art. 259),

a is a root of the equation.

262. From this it results that, in order to discover whether a bi-

nomial of the form x—a is an exact divisor of a polynomial involv-

25*
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ing X, it will be sufficient to see it' the result of the substitution of a

for X, is equal to 0.

To ascertain whether a is a root of a polynomial involving x,

which is placed equal to 0, it wii! be sufficient to try the division of

it by x—a. If it is exact, we may be certain that a is a root of the

equation.

263. Remark. By inspecting the quotient of the division in Art.

261, we perceive the following law for the co-efficients : Each co.

efficient is obtained hy multiplying that which precedes it by the root

a, and adding to the product that co. efficient of the proposed equation

which occupies the same rank as that which we wish to obtain in the

quotient.

Thus, the co-efficient of the 3d term, a^+Pa+Q, is equal to

(a-fP)a+Q, or to the product of the preceding co-efficient a+P,

by the root a, augmented by the co-efficient Q. of the 3d term of the

proposed equation.

The co-efficient of the 4th term is

(a2+ Pa+Q)a-f-R, or a'+Pa^+Qa+ R.

This law should be remembered.

Second Propei'ty.

264. Every equation involving hut one unknown quantity, has as

many roots as there are units in the exponent of its degree, and no

more.

Let the proposed equation be

a;"'+ Px'''-''+Qa;'-2-|- . . . -fTa;+U= 0.

Since every equation has at least one root (Art. 260), if we de

note that root by a, the first member will be divisible by x—a, and

we shall have the identical equation

a;'"+Px" '+ . . . ={:r-a) (-r" ^+?'x^--+ ...)... (1).

But by supposing

a- »4-PV 2-f ... =0,

we olitaiti :i!i tiiiation whiih has at least oiic root.
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Denote this root by b, we have (Art. 261),

a,.— i+ I^'x^-^^- . . . =(x-*) (x"'--+ P"a;'"-^+ . . .).

Substituting the 2d member for its vtUue, in equation (1), and we

have,

x"'+Pa;--«+ . . . =(x-a) {x-l) {x^ s+P'V^^^ ...)... (2).

Reasoning upon the polynomial sf^ -\-V"'ic'^~^ -\- ... as upon the

preceding polynomial, we have

a;"'-HP"x'"^'+ . . • ={x-c) (a;---+ P"'a;'"-''+ . . .),

and by substitution

a;"+Px—'+ . . . ={x-a) (x-b) (x-c) (x-=*+ ...)... (3).

Observe that for each indicated factor of the first degree with

reference to x, the degree of x in the polynomial is diminished by

unity ; therefore, after m—2 factors of the first degree have been

divided out, the exponent of x will be reduced to m— (wi— 2), or 2

;

that is, we shall obtain a polynomial of the second degree with refe-

rence to X, which can be decomposed into the product of two factors

of the first degree, (x—k) (x—l) (Art. 142). Now, as the m—'2

factors of the first degree have already been indicated, it follows

that we have the identical equation,

x-^+Px—>+ . • . =(x-a) (x-b) (x-c) . . . (x-k) (x-l).

From which we see, that the Jirst member of the proposed equU'

Hon is decomposed into m factors of the first degree.

As there is a root corresponding to each divisor of the first de.

gree (Art. 261), it follows that the m factors of the first degree

X— a, x—b, X— c . . ,, give the m roots a, b, c . . . for the proposed

equation.

Hence, the equation can have no other roots than a, b, c . . . k, I,

since if it had a root «, different from a, b, c . . . 1, it would follow

that it would have a divisor x— a, different from x—a, x—b,

x—c . . . X— /, which is impossible.

Finally, every equation of the m"" degree has m roots, and can

have no more.
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265. There are some equations in which the number of roots la

apparently less than the number of units in the exponent of their

degree. They are those in which the first member is the product

of equal factors, such as the equation

{x-ay{x-bf{x-cy{x-dy^Q,

which has hut/our different roots, although it is of the 10th degree.

It is evident that no quantity a, different from a, b, c, d, can veri-

fy it ; for if it had this root a, the first member would be divisible

by x—cc, which is impossible.

But this is no reason why the proposed equation should not have

ten roots, /our of which are equal to a, three equal to b, two equal

to c, and one equal to d.

266. Consequence of the second property.

The first member of every equation of the m"" degree, havmg m

divisors of tjie first degree, of the form

x—a, x—b, x—c, . .
". x—k, x—l,

if we multiply these divisors together, two and two, three and

three . . ., we shall obtain as many divisors of the second, third, &c.,

degree with reference to x, as we can form different combinations of

m quantities, taken two and two, three and three, &c. Now the

number of these combinations is expressed by

m—\ 7n— 2
m.-^-,m.-^... (Art. 163).

Thus, the proposed equation has m .
—-— divisors of the se-

7,n— 1 7)1— 2 ,. . ^ , , . , 1 1

cond degree, m .
—-— .—^— divisors of the third degree, and

80 on.

Composition of Equations.

267. If in the identical equation

x"+Pi'"-»+ . . . =(x— a) (x—b) (x—c) . . . (x—l),

we perform the multiplication of four factors, we have
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x'-a aP+ab x'-abc x-\-abcd \

-b +ac -abd

— c i-ad — acd

-d + bc -bed

+ bd
i

+cd )

=0.

If we perform the multiplication of the m factors of the second

member, and compare the terms of tlie two members, we shall find

the following relations between the co-efficients P, Q, R, . . . T, U,

and the roots a, b, c, . . . k, /, of the proposed equation, viz.

-a-b-c . . . -k-l=^P, or a+ b+c+ . . . +A-+/=-P;
ab-\-ac-\- . . . +^'/=Q

—abc—abd . . . — zX-Z=R, or abc-\-abd -{-ikl^—K
;

±abcd . . . kl^\], or abed . . . /:/=±U.

The double sign has been placed in the last relation, because the

product —ax—bx—c ... X—l will he plus or minus according

as the degree of the equation is even or odd.

Hence, 1st. The algebraic sum of the roots, taken with contrary

signs, is equal to the co-efficient of the second term ; or, the alge-

braic sum of the roots themselves, is equal to the co-efficiciit of the

second term taken with a contrary sign.

2d7 The sum of the products of the roots taken two and two,

with their respective signs, is equal to tlie co-efficient of the third

term.

The sum of the products of the roots taken three and three with

their signs changed, is equal to the co-efficient of the fourth term ; or

the co-efficient of the fourth term, taken with a contrary sign, is

equal to the sum of the products of the roots taken tliree and three;

and so on.

Finally, the product of all the roots, is equal to the last term
;

that is., the product of all the roots, taken with their respective signs,
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is equal to the last term of the equation, taken with its sign, ichen

the equation is of an even degree, and with a contrary sign, when the

equation is of an odd degree. If one of the roots is equal to 0, the

absolute term will be 0.

The properties demonstrated (Art. 142), with respect to equations

of the second degree, are only particular cases of the above. The
last term, taken with its sign, is equal to the product of the roots

themselves, because the equation is of an even degree.

Remarks on the Greatest Common Divisor.

268. The properties of the greatest common divisor of two poly-

nomials, were explained in Arts. 66 & 67. We shall here offer a

kw remarks to serve as a guide in determining it.

Let A be a rational and entire polynomial, supposed to be

arranged with reference to one of the letters involved in it, a, for

example.

If this polynomial is not absolutely prime, that is, if it can be de-

composed into rational and entire factors, it may be regarded as the

product of three principal factors, viz.

1st. Of a monomial factor A,, common to all the terms of A.

This factor is composed of the greatest common divisor of all the

numerical co-efficients, multiplied by the product of the literal fac

tors which are common to all the terms.

2d. Of a polynomial factor A^, independent of o, which is com-

mon to all the co-efficients of the different powers of a, in the ar-

ranged polynomial.

3d. Of a polynomial factor A3, depending upon a, and in which

the co-efficients of the different powers of a are prime with each

other ; so that we shall have

Azz^AjXA^xAg.

Sometimes one or both of the factors A,, A^ reduce to unity,

but this is the general form of rational and entire polynomials. It
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follows from this, that when there is a greatest common divisor of

two polynomials A and B, we shall have

D=D,.D,.D3;

D, denoting the greatest monomial common factor, D^ the greatest

polynomial factor independent of a, and D3 the greatest polynomial

factor depending upon this letter.

In order to obtain D ^, find the monomial factor Aj common to all

the terms of A. This factor is in general composed of literal fac-

tors, which are found by inspecting the terms, and of a numerical

co-efficient, obtained by finding the greatest common divisor of the

numerical co-efficients in A.

In the same way, find the monomial B, common to all the terms of

B; then determine the greatestfactor Dj common to Aj a?uZB,.

This factor Dj, is set aside, as forming the first part of the re-

quired common divisor. Thefactors A, and Bj are also suppressed

in the proposed polynomials, and the question is reduced to finding

the greatest common divisor of two new polynomials A' ani B'

which do not contain a common monomial factor. It is then to be

understood that the process developed below, is to be applied to

these two polynomials.

269. Several circumstances may occur as regards the number

of letters that may be contained in A' and B'.

\st. When A' and B' contain but one letter a.

When A' and B' are arranged with reference to a, the coetli-

cients will necessarily be frime with each other; therefore in this

case, we shall only have to seek for the greatest common factor de-

pending upon a, viz. D3.

In order to obtain it, we must first prepare the polynomial of the

highest degree, so that its first term may be exactly divisible by

the first term of the divisor. This preparation consists in midtiply.

ing the whole dividend by the co-efficient of the first term of the divi-

sor, or by afactor of this co-efficienl, or by a certain pmver of it, in
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order that we may be able to execute several operations, without

any new preparations (Art. 68).

The division is then performed, continuing the operation until a

remainder is obtained of a lower degree than the divisor.

If there is a factor common to all the co-efficients of the remainder,

it must be suppressed, as it cannot form a part of the required divi-

sor ; after which, we operate with the second polynomial, and this

remainder, in the same way we did with the polynomials A' and B'

.

Continue this series of operations until a remainder is obtained

which will exactly divide the preceding remainder, this remainder

will be the greatest common divisor D^ of A' and B' ; and D, XD3
will express the greatest common divisor of A and B ; or, continue

the operation until a remainder is obtained independent of a, that is,

a numerical remainder, in which case, the two polynomials, A' and

B' will be prime with each other.

2d. When A' and B' contain two letters a andh.

After having arranged the polynomials with reference to a, we

first find the polynomial factor \\\\\c\\ is independent of a, if there

is one.

To do this, we determine the greatest common divisor A, of all

the co-efficients of the different powers of a in the polynomial A'.

This common divisor is obtained by applying the rule for finding

the greatest common divisor of several polynomials, as well as the

rule for the last case, since these co-efficients contain only one let-

ter b. In the same way we determine tlie greatest common divisor B,

of all the co-efficients ofB'. Then comparing A^ and B^,wcset

aside their greatest common divisor D2, as forming a part of the re-

quired greatest common divisor ; and we also suppress the factors

A 2 and B2, in A' and B'; which produces two new polynomials A"

(md B", the co-efficients of which are prime ivith each other, and to

which we may consequently apply the rule for the first case.

Care must ahoays he talen to ascertain, in each remainder, whether
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the co-efficients of the different powers of the letter a, do not contain a

common factor, which jiiust be suppressed, as not forming a part of

the common divisor. We have already seen that the suppression

of these factors is absolutely necessary (Art. 68).

We shall in this way obtain the common divisor D2, of A" and B",

and D, xDg XD3J for the greatest common divisor of the polyno-

mials A and B.

Remark. In applying the rule for the first case to A'' and B",

we could ascertain when these two polynomials were prime with

each other, from this circumstance, viz : a remainder would he oh.

tained which would he either numerical, or a function ofh, hut inde-

pendent of a. The greatest common divisor of A and B would then

beD^XD^.

3d. When A' and B' contain three letters, a, b, c.

After arranging the two polynomials with reference to a, we de-

termine the greatest common divisor independent of a, which is done

by applying to the co-efficients of the different powers of a, in both

polynomials, the process for the second case, since these polyno-

mial co-efficients contain but two letters, i and c.

The independent polynomial D^ being thus obtained, and the fac-

tor Ag and B^, which have given it, being suppressed in A' and B',

there will result two polynomials A" and B", having their co-effi-

cients j?nme with each other, and to which the rules for the preced-

ing cases may be applied, and so on.

EXAMPLES.

1. Let there be the two polynomials

aW—c''d--a-c'+ c\ and 4a'd—2ac'+ 2c^—4acd.

The second contains a monomial factor 2. Suppressing it, and

arranging the polynomials with reference to d, we have

{a''-c^)d''-a-c''+ c*, and {2a^-2ac)d-ac''+c^.
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It is first necesssLTy to ascertain whether there is a common divi-

sor independent of d.

By considering the co-efficients a^—c^, and —a'c'+c*, of the

first polynomial, it will be seen that —a-c'^+c* can be put under the

form —c^{a-— c^) ; hence a^—c^ is a common factor of the co-effi-

cients of the first polynomial. In like manner, the co-efficients of

the second, 2a=— 2ac, and —ac^+c^, can be reduced to 2a(a—c),

and —(^{a—c); therefore a—c is a common factor of these co-

efficients.

Comparing the two factors a'^—c'^ and a—c, as this last will di-

vide the first, it follows that a—c is a common factor of the propos-

ed polynomials, and it is that part of their greatest common divisor

which is independent of d.

Suppressing a^— c^ in the first polynomial, and a-c in the second,

we obtain the two polynomials d'^—c^ and 2ad— c^, to which the or-

dinary process must be applied.

d=-c^ \2ad-c^

ia"d-— 4:a-c- 2ad+ c^

+ 2ac-d—4.a-c^

— 4a-c^ +c*.

Expkination. After having multiplied the dividend by 4a^, and

performed two consecutive divisions, we obtain a remainder

— 4aV+cS independent of the letter d ; hence the two polynomials

d=— c*, and 2ad—c^, are prime with each other. Therefore the

greatest common divisor of the proposed polynomials is a— c.

Again, taking the same example, and arranging with reference

to a, it becomes, after suppressing the factor 2 in the second poly-

nomial,

{d''-c')a'-c=d--\-c\ and 2(/a='-(2aZ+ c=)a+ c'.

It is easily perceived, that the co-efficient of the different powers

of a in the second polynomial are prime with each other. In the

first polynomial, the co-efficient — c'd^+c*, of the second term, or
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<jf a*, becomes — c^((Z^— c^) ; whence tP—c^ is a common factor of

the two co-efficients, and since it is not a factor of the second poly,

nomial, it may be suppressed in the first, as not forming a part of

the common divisor.

By suppressing this factor, and taking the second polynomial for

a dividend and the first for a divisor, (in order to avoid preparation),

we have

1st. 2da'— 2cd\a-\-c^ \\a^—c-

- cA I 2d~'

Rem. . . — 2crf|«+2dc2

or, a—c,

by suppressing the common factor {— 2cd—c^)
;

2d. a2_^2||Q_^

+ac—
c^l a+c

Explanation. After having performed the first division, a re-

mainder is obtained which contains —2cd—c^, as a factor of its

two co-efficients ; for 2dc'^+c^=— c{— 2cd—c^). This factor be-

ing suppressed, the remainder is reduced to a— c, which will exact-

ly divide a^—c'^.

Hence a—c is the required greatest common divisor.

270. There is a remarkable case, in which, the greatest common
divisor may be obtained more easily than by the general method

;

it is when one of the two polynomials contains a Utter whicJi is not

contained in the other.

In this case, as it is evident that the greatest common divisor is

independent of this letter, it follows that, by arranging the polyno-

mial which contains it, with reference to this letter, the required

common divisor will be the same as thai which exists between the co.

efficients of the different powers of the principal letter and the second

polynomial, which, by hypothesis, is independent of it.
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By this method, we are led to determine the greatest common

divisor between three or more polynomials ; but they will be more

simple than the proposed polynomials. It often happens, that some

of the co-efficients of the arranged polynomial are monomials, or,

that we may discover by simple inspection that they are prime with

each other ; and, in this case, w,e are certain that the proposed po-

lynomials are prime with each other.

Thus, in the example of Art. 269, treated by the first method,

after having suppressed the common factor a— c, which gives the

results,

d?— c- and 2ad— (t,

we know immediately that these two polynomials are prime with

each other ; for, since the letter a is contained in the second and

not in the first, it follows from what has just been said, that the com-

mon divisor must divide the co-efficients 2d and — c^, which is evi-

dently impossible ; hence, &c.

2. We will apply this last principle to the two polynomials

and ^adq—^lfg-^-l^ad—lfgq.

Since q is the only letter common to the two polynomials, which,

moreover, do not contain any common monomial factors, we can ar-

range them with reference to this letter, and follow the ordinary

rule. But as h is found in the first polynomial and not in the second,

if we arrange the first with reference to h, which gives

(3c(7-K18c)5+ 30mj3+ 5/Hp9',

the required greatest common divisor will be the same as that which

exists between the second polynomial and the two co-efficients

3c5'-fl8c and 'A^m'p-\-bm'pq,

Now the first of these co-efficients can be put under tlie form

3c(«j'+ 6), and the other becomes 5772^(5' -f-G) ; hence ^+ 6 is a com-

mon factor of these co-efficients. It will therefore be sufficient to

ascertain whether 7+ 6, which is a prune divisor, is a factor of the

second polynomial.
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Arranging this polynomial with reference to q, it becomes

(4atZ-7/g)5-42/g+24ad
;

as the second part 2\ad—^2fg is equal to Q{^ad—lfg), it follows

that this polynomial is divisible by q+Q, and gives the quotient

4ad—'7fg. Therefore 5+6 is the greatest common divisor of the

proposed polynomials.

271. Remark. It may be ascertamed that q+Q is an exact di-

visor of the polynomial (4:ad—7fg)q-{-24:ad—A2fg, by a method

derived from the property proved in Art. 261.

Make 5'+6=:0 or q^ — Q in this polynomial ; it becomes

(4ad-lfg)x-G+24:ad—42fg,

which reduces to ; hence 5' 4-6 is a divisor of this polynomial.

This method may be advantageously employed in nearly all the

applications of the process. It consists in this, viz. after obtaming

a remainder of the first degree with reference to a, when a is the

principal letter, 7nake this remainder equal to 0, and deduce tJie value

of afrom this equation.

If this value, substituted in the remainder of the 2d degree, de.

stroys it, then the remainder of the 1st degree, simplified Art. 68,

is a common divisor. If the remainder of the 2d degree does not

reduce to by this substitution, we may conclude that there is no

common divisor depending upon the principal letter.

Farther, having obtained a remainder of the 2d degree with

reference to a, it is not necessary to continue the operation any

farther. For,

Decompose this polynomial into tico factors of the 1st degree,

which is done by placing it- equal to 0, and resolving the resulting

equation of the second degree.

When each of the values of a thus obtained, substituted in the

remainder of the 3d degree, destroys it, it is a proof that the remain-

der of the 2d degree, simpUjiedi, is a common divisor ; when only

erne of the values destroys the remainder of the 3d degree, the com-

26*
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mon divisor is the factor of the 1st degree with respect to a, which

corresponds to this value.

Finally, when neither of these values destroys the remainder of

the 3d degree, we may conclude that there is not a common divisor

depending upon the letter a.

It is here supposed that the two factors of the 1st degree with

reference to a, are rational, otherwise it would be more simple to

perform the division of the remainder of the 3d degree by that of

the second, and when this last division cannot be performed exactly,

we may be certain that there is no rational common divisor, for if

there was one, it could only be of the first degree with respect to

a, and should be found in the remainder of the second degree, which

is contrary to hypothesis.

3. Find the, greatest common divisor of the two polynomials

6x5- 4r*— 1 lar*— Sar*— 3x-

1

and 4x^+ 20;'— 18x2+ 3x _ 5

A71S. 2x'—4x^+1- 1.

4. Find the greatest common divisor of the polynomials

20x0— 12x^4- 16x*—15x^+ 14a.-2— 15x+ 4.

and 15x*- 9x^+47r'-21x +28.

A71S. 5x2— 3x+4.

5. Find the greatest common divisor of the two polynomials

5a'Ir+2aW+ ca^-Sa'b*+ bca

and a'+ 5a'd—a''b''+5a-M.

Ans. a'-^-ab.

Transformation of EquatioJis.

The transformation of an equation consists in changing ita

form without affecting the equality of its members. The object of

a transformation, is to change an equation from one form to another

that is more easily resolved.
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First Trai^sformation.

To make the second term disappearfrom an equation.

272. The difficulty of resolving an equation generally dimi-

nishes with the number of terms involving the unknown quan-

tity ; thus, the equation 3^=p, gives immediately a;=db V?,

whilst the complete equation x^+p.r4-9=0, requires preparation

before it can be resolved.

Now, any equation being given, it can always be transformed

into another, in which the second term is wanting.

For, let there be the general equation

x"'+Pj;'^-'+ Qa;"*'=+ . . . +Tx+U=0.
Suppose x=M+x', u being unknown, and x' an indeterminate quan-

tity ; by substituting u-\-x' for x, we obtain

(«4-a;T+P("+^T"'+Q(«+^K"^+ • • • • +T(w+x')+U=0 ;

developing by the binomial formula, and arranging according to the

decreasing powers of u, we have

V=o.

Since a/ is entirely arbitrary, we may dispose of it in such a way

P
that we shall have mx'+P=0 ; whence x'= . Substituting this

m
value of x' in the last equation, we shall obtam an equation of the

foiTTi,

«'"+Q'm'"-=+R'u'"-'+ . . . +T'u-fU'=0.

in which the second term is wanting.

If this equation was resolved, we could obtain the values of a;

m-1
r+mx'|t<"-i +m.—^x'* u"""-}- . . . +x"»

+P +{m-l)Px'

+Q
+ Px""-^

+Qx'"-2

+ . . .

+Tx'

+u
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corresponding to those ofj^, by substituting each of the values of m

p
in the equation a;=M+a;', or x=:M .

m
Whence we may deduce the following general rule :

In order to make the second term of an equation disappear, sub-

stitutefor the unknown quantity a new unknown quantity, united with

the co.efficient of the second term, taken with a contrary sign, and di-

vided by the exponent of the degree of the equation.

Let us apply the preceding rule to the equation x--{'px=q. If

we take x=rM——, it becomes (u——\ +_p^i_i--\— ^. or, by

performingthe operations^ and reducing, u-—— z=q, this equation

V?gives u=±\/ x+?' consequently we obtain for the two corres.

ponding values of a-,

273. Instead of making the second term disappear, an equation

may be required, which shall be deprived of its third, fourth, &c.
term

; this can be obtained by placing the co-efficient of m'"-^

W^^ . . . equal to 0. For example, to make the third term disap.

pear, we make in the above transformed equation

m-\
m -—x'^+{m-l)Vx'+Q.=0;

.

from which we obtain two values for x', which substituted in the

transformed equation reduces it to the form

w'"+P'm"-»+R'u"-='+ . . . T'j/+U'=0.

Beyond the third term it will be necessary to resolve equations

of a degree superior to the second, to obtain the value of x: thus to

cause the last term to disappear, it will be necessary to resolve the

equation
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x'"+Px""-'+ . . . TaZ+U^O,

which is nothing more than what the proposed equation becomes

when ar' is substituted for x.

P
It may happen that the value x'= which makes the second

m
term disappear, causes also the disappearance of the third or some

other term. For example, in order that the second and third terms

may disappear at the same time, it is necessary that the equation

P
X = should agree with.

m ^—x'2+('n-l)Pa;'+Q=0.

P
.

Now if in this last equation, we replace x' by it becomes

2

therefore, whenever this relation exists between the co-efficients P

and Q, the disappearance of the second term involves that of the

third.

Rejnarks upon the preceding Transformation. Formation of

derived Polynomials^

274. The relation x^=u-\-x', of which we have made use in the

two preceding articles, indicates that the roots of the transformed

equations are equal to those of the proposed, diminished or increased

by a certain quantity. Sometimes this quantity is introduced in

the calculus, as an indeterminate quantity, the value of which is

afterwards fixed in such a manner as to satisfy a given condition

;

sometimes it is a particular number of a given value, which expresses

a constant difference between the roots of a primitive equation and

those of another equation which we wish to form.

In short, the transformation which consists in substituting u-\-x'

for X, in an equation, is of very frequent use in the theory of equa-
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tions. Now there is a very simple method of obtaining, in practice,

the transformation which resuhs from this substitution.

To show this we shall invert the order of the terms in u-\-x', that

is, for X substitute x'-{-u in the equation

a;-+Pa;m-i_|.Qx'"-2_^Rx'"-+ . . . Ta.'+U= 0;

it becomes, by developing and arranging according to the ascending

powers of u,

+Px""-i+(?n-l)Px""

+Qx''^^-\-{m—2)Qx"'

m—

1

m— 2
+ (m-l)—-—Px'"'-^

«2+ . , . jr=o

+ . . . + .

+Ta;' +T
+U

If we observe how the co-efficients of the different powers of u

are composed, we shall see that the co-efficient of ii" is nothing more

than what the first member of the proposed equation becomes when

x' is substituted in place of x ; we shall hereafter denote it by X'.

The co-efficient of v} is formed by means of the preceding, or

X', by multiplying each of the terms of X' by the exponent of x'

in this term, and then diminishing this exponent by unity ; we shall

call this co-efficient Y'.

The co-efficient of u^ is formed from Y' by multiplying each of

the terms of Y' by the exponent of x' in this term, dividing the pro-

duct by 2, and then diminishing the exponent by unity. By calling

Z'
this co-efficient it is evident that Z' is formed from Y' in the

same manner that Y' is formed from X'.

In general, the co-efficient of any term in the above transformed

equation, is formed from the preceding one, by multiplying each of
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its terms by the exponent of x' in this term, dividing the product by

the number of co-efficients preceding the one required, and then di-

minishing the exponents of a/ by unity.

Z' V
This law, by wliich the co-efficients X', Y', — , —-— are deriv-

ed from each other, is evidently entirely similar to that which

regulates the different terms of the formula for the binomial

(Art. 165).

The expressions Y', Z', V, W . . . are called derived polyno.

mials of X', because Z' is deduced or derived from Y', as Y' is de-

rived from X' : V is derived from Z', as Z' is derived from Y', and

so on. Y' is called the jirsi derived 'polynomial, Z' the second, SfC.

Recollect that X' is what the first member of the proposed equa-

tion becomes, when x' is substituted for x.

The co-efficient of the first term of the proposed equation has

been supposed equal to unity ; when this is not the case, the law of

formation for the co-efiicients of the transformed equations is entirely

the same, and the co-efficient of u'" is equal to that of x".

275. To show the use of this law in practice, let it be required

to make the co-efficient of the second term of the following equa-

tion disappear.

X*— 12x3+ 170,-— 9x+7= 0.

12
According to the rule of Art. 272, take x=u+— , or x=3+tt,

which will give a transformed equation of the 4th degree, and of

the form

Z' V

and the operation is reduced to finding the values of

Z' V
Y' V _^' ^' 2' 8.3-



Y' = - 123;

Z' = — 37 ;

V
2.3

= 0.

31S AXOEBRA.

Now it follows from the preceding law, that

.

X' = (3)*-12.(3)='+ 17.(3)2-9.(3y+ 7, OT X'=-110
Y' ^4.(3)='-36.(3f+ 34.(3)'-9, or .

Z'— =6.(3)2-36.(3)»+ 17, or ....

^=4.(3y-12

Therefore the transformed equation becomes

m4_37j^2_^23m- 110= 0.

Again, transform the equation

4x3_5a'2+7x-9=0

into another, the roots of which exceed the roots of the proposed

equation by unity-

Take m=:x+1 ; there will result x— — l+u, which gives the

transformed equation

Z'
X'+Y'u+--m2+4u'=0.

X' = 4. (-If- 5.(-l)^+7.(-iy-9, or

Y' =12.(-l)-^-10.(-iy+.7

Z'
-=12.(-1)'- 5

V
¥72='

X' = --25;

Y' ; 29^

Z'

o = --17;

v
.3
= /i.

Therefore the transformed equation becomes

4u^-17u2+ 29ti— 25r=0.

The following examples mny serve the student for exercises ;

Make the second term vanish from the following equations.

1st. x*— 10x^+7ar'+4x— 9=0.

Ans, u^-33u='-118jr-152u-73=0.

2d. Sar'+15x=+ 25x— 3= 0.

152
Ans. 2u^ r—=0.
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Transform the equation So;"— ISa^^+ Ta--^— 8a;— 9= into another,

the roots of which shall be less than the roots of the proposed by

1

the fraction —

.

o

65 102
Ans. 2u'-9u^-^u^—^i 9""=^'

We shall frequently have occasion for the law of formation of

derived polynomials.

276. These polynomials have the following remarkable proper-

ties.

Let X or .t^+Pa^^'-^+Qx^-^ . . . =0, be the proposed equation,

and a, b, c, I, its m roots, we shall then have (Art. 244),

a;'"4-Pa;'"-»+ . . . ={x—a) (x—b) (x—c) . . . (x—l).

Substituting a;'+M (or to avoid the accents), x+u in the place of

X ; it becomes,

(a;+t«)'"+P(a;+i<)™-^+ . . . ={x-^u—a) {x-\-u— b) . . . ;

or changing the order of the terms in the second member, and re-

garding x—a, x—b, . . . each as a single quantity,

(a;+u)'"+P(a;+M)"'-^ . . . ={u+x-a) (u+x-b) . . . (u+x-b).

Now, by performing the operations indicated in the two members,

we shall, by the preceding Article, obtain for the first membei-,

Z
X-\-Yu+—-u^+ . . . M'"

;

X being the first member of the proposed equation, and Y, Z . . .

the derived polynomials of this member.

With respect to the second member, it follows from Art. 247,

1st. That the part involving u°, or the last term, is equal to the

product (x— a) (x—b) . . . (x—l) of the factors of the proposed

equation
;

2d. The co-efficient of u is equal to the sum of the products of

these m factors taken rn—l and m—1.
27
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Sd. The co-efficient of u~ is equal to the sum of the products of

these m factors taken m—2 and m— 2 ; and so on.

Moreover, the two members of the last equation are identical

;

therefore, the co-efficieuts of the same powers are equal. Hence

X={x-a) {x-b) {x-c) . . . (.r-/),

which was already known. Hence also, Y, or the first derived po.

lynomial, is equal to the sum of the products of the m factors of ih^

first degree in the proposed equation, taken m— 1 and m— 1; or

equal to the sum of all the quotients that can be obtained by dividing

X by each of the m factors of the first degree in the proposed equa-

tion ; that is,

,, X X X X
Y=

i
1 + . . . .

X— a X— b x—c X—

/

Z— or the second derived polynomial, divided by 2, is equal to the

sum of the products of the m factors of the proposed equation taken

m— 2 and m— 2, or equal to the sum of the quotients that can be

obtained by dividing X by each of the factors of the second degree ;

that is,

Z_ X X X
2 (x—a) {x—b) (a:— a) (x—c) {x-k) {x—l)

'

and so on.

Second Transformation.

To make the denominators disappear from an equation.

277. Having given an equation, we can always transform it into

another of which the roots will be equal to a given multiple or sub-

mult'iple of those of the proposed equation.

Take the equation

.r^'+ Px-" •+Qa;"' -+ . . . Ta;+U= 0,

and denote by y the unknown quantity of a new equation, of which



TRANSFORMATION OF EQUATIONS. 315

the roots are K times greater than those of the proposed equation.

y
If we take 2/= Kx, there will result x=-^ ; whence, substituting

and multiplying every term by K"', we have

r+PKr-'+QKV"2+RKV"-'+ . . . +TK-»y+UK'"=0.

an equation of which the co-efficients are equal to those of the pro-

posed equation multiplied respectively by K", K*, K^ K^ K*, &c.

This transformation is principally used to make the denominators

disappearfrom an equation, when the co-efficient of the first term is

unity.

To fix the ideas, take the equation of the 4''' degree

a c e g

if in this equation we make a'=—
, y being a new unknown and K

an indeterminate quantity, it becomes

, aK cK- eK^* ^K^

Now, there may be two cases,

1st. Where the denominators h, d, f h, are prime with each

other ; in this hypothesis, as K is altogether arbitrary, take K=bdfh,

the product of the denominators, the equation will then become

y^+adfh . y^'+ clrdf-h'' . y'^+ePdf-h^ . y+gb^dfVv'^O,

an equation the co-efficients of which are entire, and that of its first

term unity.

yWe have besides, the equation a;—
, ,^., , to determine the values
bdjh

of X corresponding to those of y.

2d. When the denominators contain common factors, we shall

evidently render the co-efficients entire by taking for K the small-

est multiple of all the denominators. But we can simplify this

still more, by observing, that it is reduced to determining K ir



316 ALGEBRA.

such a manner that K*, K^, K^ . . . shall contain the prime fac-

tors which compose b, d,f, h, raised to powers at least equal to tl)Ose

which are found in the denominators.

Thus, let the equation

^ 5 5 7 13

' -¥'^'+12'^'-l50-'^'-9000='-

y
Take a;=— , it becomes

5k 5fr 7P ISk'

^—6-^'+^2-^'-l50-^-9000=^-

First make A:=9000, which is a multiple of all the other deno-

minators, it is clear that the co-efficients become whole numbers.

But if we decompose 6, 12, iSO and 9000 into their factors, we

find

6=2X3, 12=2^x3, 150=2x3x5^ 9000=2='x32x55

;

and by simply making A:=2x3x5, the product of the different sim-

ple factors, we obtain

^-=22x3"X5^ P=2='x3='^X5^ ifc*=2*x3'x5S

whence we see that the values of k, P, P, k*, contain the prime

factors of 2, 3, 5, raised to powers at least equal to those which

enter in 6, 12, 150 and 9000.

Hence the hypothesis k—2x^X^ is sufficient to make the

denominators disappear. Substituting this value, the equation

becomes

5.2.3.5 ^
5.2-..3='.52

^
7.2^3^.5== 13.2'».3^5^

^'~~2r3T^ ^"2^:3 ^' 2X5^^~ 2^3='.5=' ^^'

which reduces to

?/4_5_5^3^5 3 52^2_7 22.3-.5?/- 13.2.3^5=0
;

or ?/^-25?/^+ 875y'-1260?/-1170= 0.

Hence, we perceive the necessity of taking k as small a number

as possible : otherwise, we should obtain a transformed equation,

having its co-cfficients very great, as may be seen by reducing
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the transformed equation resulting from the suppo.Miioii L~9000 in

the preceding equation.

whence

EXAMPLES.

7 11 25 y

y^-Uf+ lly—15=

13 21 32 43 1 y

y

whence

^5_65^4^1590^_3Q720/-928800]/+ 972000=0.

278. The preceding transformations are those most frequently

used ; there are others very useful, of which we shall speak as they

present themselves ; they are too simple to be treated of separately.

In general, the problem of the transformation of equations should

be considered as an application of the problem of elimination be-

tween two equations of any degree whatevei', involving two un-

known quantities. In fact, an equation being given, suppose that

we wiih to transform it into another, of which the roots have, with

those of the proposed equation, a determined relation.

Denote the proposed equation by F(a;)= 0, (enunciated function

of ic equal to zero), and the algebraic expression of the relation

which should exist between a; and the new unknown quantity y, by

F' {x,y)~Q ; the question is reduced to fiivling, by means of these

two equations, a new equation involving y, which will be the re-

quired equation. When the unknown quantity x is only of the first

degree in F'(.r, .v)
= 0, the transformed equation is easily obtained,

but if it is raised to the second, third . . . power, we must have re-

course to the methods of elimination.

27*
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Elimination.

279. To eliminate between two equations of any degree what-

ever, involving two unknown quantities, is to obtain, by a series of

operations, performed on these equations, a single equation which

contains hit one of the unknown quantities, and which gives all the

values of this unknown quantity that will, taken in connection with

the corresponding values of the other unknown quantity, satisfy at

the same time both the given equations.

This new equation, which is a function of one of the unknown

quantities, is called thefinal equation, and the values of the unknown

quantity found from this equation, are called compatible values.

Of all the known methods of elimination, the method of the com-

mon divisor, is, in general, the most expeditious ; it is the method

which we are going to develop.

Let Y{x, 2/)
= and F'(.r, ?/)= be any two equations whatever,

or, more simply,

A=0, B= 0.

Suppose the final equation involving y obtained, and let us try to

discover some property of the roots of this equation, which may

serve to determine it.

Let y—a be one of the compatible values of i/ ; it is clear, that

since this value satisfies the two equatio.ns, at the same time as a

certain value of x, it is such, that by substituting it in both of the

equations, which will then contain only x, the equations will admit of

at least one common value of x ; and to this common value there

will necessarily be a corresponding common divisor involving x.

Art. 262. This common divisor will be of the first, or a higher

degree with respect to x, according as the particular value of y=a

corresponds to one or more values of x.

Reciprocally, every value of y, ivhich, substituted in the two equa-

tions, gives a common divisor involving x, is necessarily a compatible

value, because it then evidently satisfies the two equations at the
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same time with the value or values of x found from this common di-

visor when put equal to 0.

280. We will remark, that, before the suhiitution, the first mem-

bers of the equations cannot, in general, have a common divisor, which

is a function of one or both of the unknown quantities.

In fact, let us suppose for a moment that the equations A= 0,

B=:0, are of the form

A'xD=0, B'xD=0.

D being a function of x and y.

Making separately D= 0, we obtain a single equation involving

two unknown quantities, which can be satisfied with an infinite num.

her of systems of values. Moreover, every system which renders

D equal to 0, would at the same time cause A'D, B'D to vanish, and

would consequently satisfy the equations A= 0, B= 0.

Thus, the hypothesis of a common divisor of the two polynomials

A and B, containing x and y, would bring with it as a consequence

that the proposed equations were indeterminate. Therefore, if there

exists a common divisor, involving x and y, of the two polynomials

A and B, the proposed equations will be indeterminate, that is, they

may be satisfied by an infinite number of systems of values of x

and y. Then there are no data to determine b. final equation in y,

since the number of values of y is infinite.

If the two polynomials A and B were of the form A'xD, B'xD,

D being a function of x only, we might conceive the equation D=0
resolved with reference to x, which would give one or more values

for this unknown. Each of these values substituted in A'xD=0
and B' xD=0, at the same time with any arbitrary value of 3,', would

verify these two equations, since D must be nothing, in consequence

of the substitution of the value of x. Therefore, in this case, the

proposed equations would admit of o.finite numher of values for x,

but of an infinite number of values for y ; then there could not exist

a final equation in y.

Hence, when the equations A= 0, B= 0, arc determinate, that is,
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when they only admit of a limited number of systems of values for

X and y, their first members cannot have &. function of these unknown

quantitiesfor a common divisor, unless a particular substitution has

been made for one of them.

2S1. From this it is easy to deduce a process for obtaining the

fnal equation involving y.

Since the characteristic property of every compatible value of

y is, that being substituted in the first members of the two equations,

it gives them a commou divisor involving x, which they had not be-

fore, (unless the equations are indeterminate, which is contrary to

the supposition), it follows, that if to the two proposed polynomials,

arranged with reference to x, we apply the process for the greatest

common divisor, we generally shall not find one; but, by continuing

the operation properly, we shall arrive at a remainder independent

of X, and which is a function of y, which, placed equal to 0, will

give the required fnal equation ; for every value of y found from

this equation, reduces to nothing the last remainder of the operation

for finding the common divisor ; it is, then, such, that substituted in

the preceding remainder, it will render this remainder a common di-

visor of the first members A and B. Therefore, each of the roots

of the equation thus formed is a compatible value of y.

282. AdmUting that the final equation may be completely re-

solved, which would give all the compatible values, it would after-

wards be necessary to obtain the corresponding values of x. Now
it is evident that it would be suthcieiit for this, to substitute the dif-

ferent values of y in the remainder preceding the last, put the ])oly-

nomial involving x which results from it equal to 0, and find fiom it

the values of a;; for these polynomials are nothing more than the

divisors involving x, which become common to A and B.

But as the final equation is generally of a degree superior to the

second, we cannot here explain the methods of finding the values of

y. Indeed, our design was principally to show that, two equations

of any degree being given, we can, without supposing the resolution
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of any equation, arrive at another equation, containing only one of

the unhnoion quantities which enter into the proposed equations.

Of Equal Roots.

283. An equation is said to contain equal roots, when its first

member contains equal factors. When this is the case, the derived

polynomial, which is the sum of the products of the m fectors taken

m— 1 andm— 1 (Art. 276), contains a factor in its different parts,

which is two or more times a factor of the proposed equation.

Hence, there must he a common divisor between the first member of

the proposed equation and its first derived polynomial.

It remains to ascertain the manner in which this common divisor

is composed of the equal factors.

284. Having given an equation, it is required to discover whether

it has equal roots, and to determine these roots if possible.

Let X denote the first member of the equation

.r"'-+Pa;"'-»+Q.r"'--+ . . . +Tx+U= 0,

and suppose that it contains n factors equal to x—a, n' factors equal

to x— b, n" factors equal to x— c . . ., and contains also the simple

factors X—p, x— q, x— r . • . ; so that we may have

X= (a;— i7)"(.r— Z')"'(a;— c)"" . . . {x—p) {x—q) (x—r) . . .

With respect to Y, or the derived polynomial of X, we have

seen (Art. 276), that it is the sum of the quotients obtained by divid-

ing X by each of the m factors of the first degree in the proposed

equation. Now. since X contains n factors equal to x—a, we shall

X
have n partial quotients equal to ; the same reasoning applies

to each of the general factors, x—b, x— c. . . . Moreover we can

form but one quotient equal toXXX
x—p' x—q' x—r

Therefore, Y is necessarily of the form
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nX n'X n"X XXX
Y= + -+ 4- . . . + + + + . .

.

x—a x—b x—c x—p x—q x—r

From this composition of the polynomial Y, it is plain that

(a;-a)"-», {x-b)'"-\ (x-c)""-* . . .

are factors common to all its terms ; hence the product

(x-a)''-'x(a;-i)"'-»X(a;— c)""-'
. . .

is a common divisor of Y ; moreover, it is evident that this product

will also divide X, it is therefore a common divisor of X and Y ; and

it is their greatest common divisor. For, the prime factors of X
are x— a, x— b, x— c . . . and x—p, x— q, x— r . . . ; now x—p,

x—q, x—r, cannot divide Y, since some one of them will be want-

ing in each of the parts of Y, while it will be a factor of all the

other parts.

Hence, the greatest common divisor of X and Y is

D= (a;-fl)"-'(a'-Z') ' '(.r-c) ""i
. . . ;

that is, the greatest co}nmon divisor is composed of the product of those

factors which enter two or more times in the proposed equation, each

raised to a power less hy unity than in the given equation.

285. From the above we deduce the following method :

To discover whether an equation X= contains any equal roots,

form Y or the derived j^olynomial of X ; then seek for the greatest

common divisor between X mid Y ; if one cannot be obtained, the

equation has no equal roots, or equal factors.

If we find a common divisor D, and it is of the first degree, or of

the form x—h, make x—h=0, whence x=h ; we may then conclude,

that the equation has two roots equal to h, and has but one species of

equal roots, from which it may be freed by dividing X by {x—hy.

If D is of the second d(-gi-ee with reference to .r, resolve the equa.

Hon I)=;0; there may b<:! two cases; the two roots will be equal,

or they will be unequal. 1st. When we find 'D={x—liY, the equa.

Hon has three reots equal to h, and has but one species of equal roots,

from which it can be freed by dividing X by (x— hf ; 2d, when D
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is of the form (x—h) (x—h'), the proposed equation has two roots

equal to h, and two equal to h', from which it may be freed by divi.

ding X by {x-hf{x-li'f, or by D=^.

Suppose now that D is of any degree whatever; it is necessary,

in order to know the species of equal roots, and the number of roots

of each species, to resolve completely the equation D=:0 ; and every

simple root of D will be twice a root of the proposed equation ; every

double root ofD will be three times a root of the proposed equation ;

and so on.

EXAMPLES.

1. Determine whether the equation

2x*-12x'^+ 19.r--6x+9=0

contains equal roots.

We have (Art. 274), for the derived polynomial

Sx^— 36a;"-f38a;— 6.

Now, seeking for the greatest common divisor of these polyno-

mials, we find D=a'— 3=0, whence a;=3 ; hence the proposed

equation has two roots equal to 3.

Dividing its first memb(;r by (x— 3)^, we obtain

1 ,

2x^+ 1=^0; whence x—±~ V— 2.

Thus the equation is completely resolved, and its roots are

3, 3, + TT ^^- 2 and - — V- 2.

2. For a second example take a,-^— 2x''+ 3x^— 7.i;--f-8.r— 3=0 ;

the first derived polynomial is Sa;*— 8x^+ 9x^—1 4a;+8,

and the common divisor r'— 2x-\-\, or (x— 1)^,

hence the proposed equation has three roots equal to 1.

Dividing its first member by {x—lf or by 3?—^3?-\-^x—l, the

quotient is
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1± V-
x^-]-x-]-3— ; whence x--

2

tlius the equation is completely resolved.

3. For a third example, take the equation

.r^+ 5x«+ 6x'— 6a;''— 1 5a;^— 3x2+8x+ 4= ;

the derived polynomial is

7a;«+ 30x5^ 30^,4_ 243,3_ 45^^_6x+ 8
;

and the common divisor is

x^+ Sx'+ar'—3x— 2.^

The equation x^+ Sar'+x^—3x—2=0 cannot be resolved directly,

but by applying the method of equal roots to it, that is, by seeking

for a common divisor between its first member and its derived poly-

nomial, 4x''+9x^+2x— 3, we find a common divisor, x+1 ; which

proves that the square of x+1 is a factor of x*+ 3x^+x2— 3x— 2,

and the cube of x+1, a factor of the first member of the proposed

equation.

Dividing xH3x''+x=— 3x— 2 by (x+l)^ or ar+2x+ l, we have

a'+x— 2, which placed equal to zero, gives the two roots x^l,

x=— 2, or the two factors x— 1 and x+2. Hence we have

x'+3x3+x2-3x-2=(x+ l)=(x-l) (x+2).

Therefore the first member of the proposed equation is equal to

{x-\-iy{x-l)%x+2f;

or the proposed equation has three roots equal to— 1, two equal

to +1, and two equal to —2.

Take the examples,

1st. x^-7x''+ 10x5+22x^-43r''-35x'2+48x+36=0,

(a;_2)2(a;-3)-(x+ l)='=0.

2d. x^-3x«+ 9x'-19x''+ 27x^-33.i-+ 27,r-9= 0,

(x-l)%i-+ 3f=0.

286. When, in the application of the above method, we obtain
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an equation D=0, of a degree superior to the second, since this

equation nnay itself be subjected to the method, we are often able

to decompose D into its factors, and in this way to find the different

species of equal roots contained in the equation X=0, and the num.

ber of roots of each species. As to the simple roots of X= 0, we

begin by freeing this equation from the equal factors contained in

it, and the resulting equation, X'=0, will make known the simple

roots.

CHAPTER VII.

Resolution of Numerical Equations, involving one or

more Unknown Quantities.

297. The principles established in the preceding chapter, are ap-

plicable to all equations, whether their co-efficients are numerical

or algebraic, and these principles should be regarded as the ele-

ments which have been employed in the resolution of equations of

the higher degrees.

It has been said already, that analysts have hitherto been able to

resolve only the general equations of the third and fourth degree.

Thp formulas they have obtained for the values of the unknown

quantities are so complicated and inconvenient, when they can be

applied, (which is not always possible), that the problem of the re-

solution of algebraic equations, of any degree whatever, may be

regarded as more curious than useful. Therefore, analysts have

principally directed their researches to the resolution of numerical

equations, that is, to those which arise from the algebraic translation

of a problem in which the given quantities are particular numbers

;

and methods have been found, by means of which we can always

determine the roots of a numerical equation of any given degree.

It is proposed to develop these methods in this chapter.

28
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To render the reasoning general, we will represent the proposed

equation by

m which P, Q . . . denote particular numbers, real, positive, or ne-

gative.

First Principle.

288. When two numbers p and q, substituted in the place of x in

a numerical equation, give two results, affected with contrary signs,

the proposed equation contains a real root, comprehended between these

two numbers

Let the proposed equation be

a;"'+Px'"-'+Qx'"-2+ ^ _ ^ Ta;+U=0.

The first member will, in general, contain both positive and ne-

gative terms ; denote the sum of the positive terms by A, and the

sum of the negative terms by B, the equation will then take the

form

A-B=0.

Suppose p<^q, and that p substituted for x gives a negative result,

and q a positive result.

Since the first member becomes negative by the substitution of;?,

and positive by the substitution of q, it follows that we have in the

first case A<B, and in the second A>B. Now it results from the

nature of the quantities A and B, that they both increase as x in-

creases, since they contain only positive numbers, and positive and

entire powers of x ; therefore, by making x augment by insensible

degrees, from p to q, the quantities A and B will also increase by in-

sensible degrees. Now smce A, by hypothesis, from being less than

B, afterwards becomes greater than it, A must necessarily have a

more rapid increment than B, which insensibly destroys the excess

that li liad over A, and finally produces an excess of A over B.

From this, we conceive that in the passage from A<B to A>B,
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there must be an intermediate value for which A becomes equal to

B, and the value which produces this result is a root of the equa-

tion, since it verifies A—B=0, or the proposed equation. Hence,

the proposition is proved.

In the preceding demonstration, p and q have been supposed to

be positive numbers ; but the proposition is not less true, whatever

may be the signs with which p and q are affected. For we will re-

mark, in the first place, that the above reasoning applies equally to

the case in which one of the numbers p and q, p for example, is ;

that is, it could be proved, in this case, that there was at least one

real root between and q.

Let both p and q be negative, and represent them by —p' and

-q'.

If, in the equation

x^'+Pa;'"-'+Qa;'"-»+ . . . Ta;+U=0,

we change x into —y, which gives the transformation

(_3/)".+p(_y)-»+Q(_y)-2+ . . . T(-t/)+U= 0,

it is evident that substituting —p' and —q' in the proposed equation,

amounts to the same thing as substituting p' and q' in the transfor-

mation, for the results of these substitutions are in both cases

(-p')'"+P(-p')'"-^+Q(-p')"-^+ . . . T(-p')+U,

and (_5')'"+P(-j'r-^+Q(-?'r '+ • • •
T(-?')+U ;

Now, since |> and q, or —p' and —q', substituted in the proposed equa-

tion, give results with contrary signs, it follows that the numbers p'

and q, substituted in the transformation, also give results with con-

trary signs ; therefore, by the first part of the proposition, there is

at least one real root of the transformation contained between p'

and q'
; and in consequence of the relation x= —y, there is at least

one value of x comprehended between —p' and —q', or p and q.

This demonstration applies to cases in which ^=0 or ^=0.

Lastly, suppose jj po«<ive and q negative or equal to —q': by

making x=0 in the equation^ the first member will reduce to its
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last term, which is necessarily affected with a sign contrary to that

of p, or that of —q'; whence we may conclude that there is a root

comprehended between and p, or between and —q', and conse-

quently between;? and —q.

Second Principle.

289. When two numbers, substituted in place of x, in an equa-

tion, give results affected with contrary signs, we may conclude that

there is at least one real root comprehended between them, but we

are not certain that there are no more, and there may be any odd

number of roots comprised between them. We therefore enunciate

the second principle thus.

When an uneven numler (27t+ l) of the real roots of an equation,

are comprehended hetwccn tioo numbers, the results obtained by sub-

stituting these numbersfor x, are affected with contrary signs, and if

they comprehend, an even number 2n, the results obtained by their sub-

stitution are necessarily affected ivilh the same sign.

To make this proposition as clear as possible, denote those roots

of the proposed equation, Xr=0, which are supposed to be compre-

hended between p and q, by a, b, c, . . ., and by Y, the product

of the factors of the first degree, with reference to^x, correspond-

ing both to those real roots which are not comprised between tlieni

and to the imaginary roots ; the signs of p and q being arbitrary.

The first member, X, can be put under the form

^x-a){x-b){x-c). .. xY.

Now substitute in X, or the preceding product, p and q in place of

X ; we shall obtain tlie two results

^p.a)(p-b)(p-c)... xY',

^q-a){q-b){q-c). . . xY",

Y' and Y" representing what Y becomes, when we replace x by p
and q ; these two quantities are necessarily affected with the same

sign, for if they were not, by the first principle Y=0 would give at
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least one real root comprised between p and q, which is contrary to

the hypothesis.

To determine the signs of the above results more easily, divide

the first by the second, we obtain

(p-«) (P-^) (P-c) . . . xY'

(?--a) {q --b){q~c) . . . XY"

which can be written thus

;

1--a q-

b p—c
0 q—c

Y'
•••

Y"

Now, since the roots a, b, c, . . . are comprised t

we have

.>.
, b, c, d . . •>

but
<

, b, e, d.. • 5

whence we deduce

P--a, p-b, p-c, . . .>o,

and 1--a, q--b, q— c, . .>
hence, since p—a and q— a are affected with contrary signs, as well

Q.sp—b and q—b,p— c and q—c . . ., the partial quotients

p-a p-b p-c
^

q— a'' q— b' q—c'

Y'
are all negative ; moreover - is essentially positive, since Y'

and Y" are affected with the same sign ; therefore the product

p—a p—b p— c Y'
X^—tX X • . . -^r^,q—a q—b q—c l"

will be negative, when the number of roots, a, b, c . . ., compre-

bended between p and q, is uneven, and positive when the number is

even.

28*
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Consequently, the two results (p—a) (p—b) (p— c) . . . xY',

and (q—a) (q—b)(<l—c) . . . xY", will have contrary or the same

signs, according as the number of roots comprised between p and q

is uneven or even.

Limits of the real Roots of Equations.

290. The different methods for resolving numerical equations,

consist generally in substituting particular numbers in the proposed

equation, in order to discover if these numbers verify it, or whether

there are roots comprised between these numbers. But by reflect-

mg a little upon the composition of the first member, the first term

being positive, and affected with the highest power of x, which is

greater with respect to that of the inferior degree in proportion to

the value of x, we are sensible that there are certain numbers,

above which it would be useless to substitute, because all of these

numbers would give positive results.

291. Every number which exceeds the greatest of the positive

roots of an equation, is called a superior limit of the positive roots.

From this definition, it follows that the limit is susceptible of an

infinite number of values; for when a number is found to exceed

the greatest positive root, every number greater than this, is, for a

still stronger reason, a superior limit. But it may be proposed to

determine the simplest possible limit. Now we are sure of having

one of the limits, when we obtain a number, ivhich, substituted i7i

fldce of X renders the first metnber positive, and which, at the same

time, is such, that every greater nuviber will also give a positive

result.

We will determine such a number.

292. Before resolving this question, we will propose a more sim-

pie one. viz.

To determine a number, which, substituted in place of x in an

equation, will render the first term x" greater than the arithmetical

sum of all the others.



LI3IITS OF ROOTS OF EQUATIONS. 331

Suppose that all the terms of the equation are negative,except the

first, so that

af^^^jf-i-Qir-'- . . . _Tx-U=0.

It is required to find a aiumber for x which will render

a;"'>Px'"-»+Q'"-='+ . . . +Ta;+U.

Let k denote the greatest co-efficient, and substitute it in place of

the co-efficients ; the inequality will become

It is evident that every number substituted for x which will satisfy

this condition, will for a stronger reason, satisfy the preceding. Now,

dividing this inequality by x"", it becomes

k k k k k

k
Makmg x=k, the second member becomes—, or 1 plus a series

of positive fractions ; then the number k will not satisfy the ine-

quality ; but by supposing x=^k+\, we obtain for the second mem-

ber the series effractions

k k k k k

i+l+(A:+l)2+ {k+lf + • • • +(i-4-ir-^+ {k+ir '

which, considered in an inverse order, is an increasing geometrical

]^

progression, the first term of which is
. t\„. > the ratio ^+1, and

k
the last term , , ; hence the expression for the sum of all the

terms is, (Art. 223),

^-^'^""-Wir „,,
k+i-i {k+iy

rhich Ls evidently less than unity.
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Any number ^k-\~l, put in place of x, will render the sum ofthe

k k
fractions f—t+ . • • still less. Therefore,

X ar

The greatest co-efficient of the equation plus unity, or any greater

number, being substitutedfor x, will render the first term x"* greater

than the arithmetical sum of all the others.

Ordinary limit of the Positive Roots.

293. The number obtained above may be considered a prime

limit, since this number, or any greater number, rendering the first

term superior to the sum of all the others, the results of the sub-

stitution of these numbers for x must be constantly positive ; but

this limit is commonly much too great, because, in general, the

equation contains several positive terms. We will, therefore, seek

for a limit suitable for all equations.

Let a;"*"" denote the power of x, corresponding to the first nega-

tive term which follows x", and we will consider the most uniavour-

able case, viz. that in which all of the succeeding terms are nega-

tive, and affected with the greatest of the negative co-efficients in

the equation.

Let S be this co-efficient, and try to satisfy the condition

a;">Sa-"'-''+Sx'"-"-i+ . . . Sx+S ;

or, dividing both members of this inequality by nf,

S_ S _S_ _S_ S_

Now by supposing x''=S or x= "V^, the second member be-

S
comes -^, or 1, plus a series of positive fractions ; but by making

x= VS+ 1, or (supposing, for simplicity, VS= S', whence 8= 8'"),

a:=S'+ l, the second member becomes

-+ ... , ..„.,+
(S'+ l)-. ' (S'+ l)"-^*^ • • •

' (S'+ ir-^ (S'+ l)'
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. . y s"
which is a ^ogression by quotients, —^,—-— being the first term,

S'"
S'+ l the ratio, and -7^7—r-— the last term. Hence the expres-

(b +1)"

sion for the sum of all these fractions is

S'-
^

S'"

(S'+ l)"*^^'+ ^^~
(S'+ l)"* S'--* S'"-»

S'+ l-l (S'+ l)"-' (S'+ lf

which is evidently less than 1.

Moreover, every number >S'+ 1 or \^S-\-l, will, when substi-

S S
tuted for x, render the sum of the fractions 1 Tr4- • • • • still

smaller, since the numerators remaining the same, the denominator

will increase. Hence VS+ 1, and any greater number, will ren-

der the first term x" greater than the arithmetical sum of all the

negative terms of the equation, and will consequently give a posi-

tive result for the first member.

Therefore Vs+ l, or wiity increased by that root of the greatest

negative co-ejicient icJiose index is the number of terms which precede

the first negative term, is a superior limit of the positive roots of the

equation.

Make 7i=l, in which case the first negative term is the second

term of the equation ; the limit becomes VS+ 1, or S+ 1 ; that is,

the greatest negative co-efficient plus unity.

Let 71= 2, then the two first terms are positive, or the term x"~'

is wanting in the equation ; the limit is then V^S+ l.

When 71= 3 the limit is ^VS+ l . . .

Find the superior limits for the positive roots in the following ex-

amples :

c4—5x'+ 37.r'- 3^+39=0; VS+ l='V~S'-\-l= 6
;

a^+Tx*- 12x2- 49ar'+52x- 13=0 . Vs4.1= V49+l= 8 ;
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Vs+i=)^-
ft?^^

a;^+ llx=_25x-67=0; VS+ 1=^;)^+ 1 or

„ A— 11
3x3— 2ar'-lla:+4=0; VS+1=— +1 or 5.

o

Newton's methodfor determining the smallest limit in entire

numbers.

294. Let X=0, be the proposed equation ; if in this equation we

make x=x'+u, x' being indeterminate, we shall obtain (Art. 274),

X'+Y'u+yu-> . . . +w"=0. (1)

Conceive, that after successive trials we have determined a number

Z'
for X, which, substituted in X', Y', — . . ., renders all these co-effi-

cients positive at the same time ; this number will be greater than

the greatest positive root of the equation X=0.
For, the co-efficients of the equation (1) being all positive, no

positive number can verify it ; therefore all of the real values of u

must be negative; but from the equation a'=x'+if, we have xi^=x—x'
;

and in order that the values of it corresponding to each of the values

of X and x' (already determined) may be negative, it is absolutely

necessary that the greatest positive value of x should be less than

the value of x'.

EXAMPLE.

x^-Sx'-ex^— 19x4-7=0.

As x' is indeterminate, the letter x may be retained in the forma-

tion of the derived polynomials, and we have

X ^x^-Sr'—6x2-19x-|r7,

Y =:4r'-15r'-12x-19,

Z_ =6x2-15x-6,

V
=4x— 6.

2.3
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The question is, as stated above, reduced to finding the smallest

number which, substituted in place of a>, will render all of these po-

lynomials positive^

It is plain that 2 and every number >2, will render the polyno-

mial of the first degree positive.

But 2, substituted in the polynomial of the second degree, gives a

negative result; and 3, or any number >3, gives a positive result.

Now 3 and 4, substituted in the polynomial of the third degree,

give a negative result ; but 5 and any greater number, give a posi-

tive result.

Lastly, 5 substituted in X, gives a negative result, and so does 6
;

for the three first terms x*— 5a;^— 6x^ are equivalent to the expres-

sion 3^(x—5)— 6aP, which is reduced to when x=6 ; but x=7 evi-

dently gives a positive result. Hence 7 is a superior limit of the

positive roots of tJie proposed equation ; and since it has been shown

that 6 gives a negative result, it follows that there is at least one

real root between 6 and 7.

Applying this method to the equation

a;5_3x''-8x''— 25x2+ 43;- 39=0,

the superior limit will be found to be 6.

We should find 7, for the superior limit of the positive roots of

the equation

xs_5x*- 1.3x^+ 17x2-69=0.

This method is scarcely ever used, except in finding incommen-

surable roots.

295. It remains to determine the superior limit of the negative

roots, and the inferior limits of the positive and negative roots.

Hereafter we shall designate the superior limit of the positive roots

of an equation by the letter L.

1st. If in the equation X=0, we make x=—y, which gives the

transformed equation Y=0, it is clear that the positive roots of this

new equation, taken with the sign — , will give the negative roots of
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the proposed equation ; therefore, determining, by the known me-

thods, the superior limit L' of the positive roots of the equation Y=0,
we shall have — L' for the superior limit (numerically) of the nega-

tive roots of the proposed equation.

2d. If in the equation X= 0, we make j;=— , which gives the

equation Y=0, it follows from the relation x=— that the greatest

positive values of y correspond to the smallest of x ; hence, desig-

nating the superior limit of the positive roots of the equation Y=0

by L", we shall have
^ „ for the inferior limit of the positive rods

of the proposed equation,

1
3d. Finally, if we replace x, in the proposed equation, by ,

and find the superior limit L"' of the transformed equation Y= 0,

—:jr-;77- will be the inferior limit (numerically) of the negative roots

of the proposed equation.

296. Every equation in which there are no variations in the .

that is, in which all the terms are positive, must have all of its real

roots negative ; for every positive number substituted for x will ren-

der the first member essentially positive.

Every complete equation, having its terms alternately positive and

negative, must have its real roots all positive ; for every negative

number substituted for x in the proposed equation, would render all

the terms positive, if the equation was of an even degree, and all of

them negative if it was of an odd degree. Hence the sum would

not be equal to zero in either case.

This is also true for every incomplete equation, in which there

results, by sulstituting — y for x, an equation having all of its terms

affected with the same sign.
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Consequences deduced from the preceding Principles.

First.

297. Every equation of an odd degree, the co-efficients of which

are real, has at least one real root affected with a sign contrary to

thai of its last term.

For, let a;'"+Pa;'"-'+ . . . Ta;±U=0, be the proposed equation;

and first consider the case in which the last term is negative.

By making .t=0 the first member becomes — U. But by giving

a value to x equal to the greatest negative co-efficient plus unity, or

(K-f-1), the first term .r™ will become greater than the arithmetical

sum of all the others (Art. 292), the result of this substitution will

therefore be positive ; hence, there is at least one real root compre-

hended between and K+ 1, which root is positive, and consequently

affected with a sign contrary to that of the last term.

Suppose now that the last term is positive.

Making .r=0, we obtain +U for the result; but by putting

— (K+ 1) in place of a;, we shall obtain a negative result, since the

first term becomes negative by this substitution ; hence the equa-

tion has at least one real root comprehended between and

— (K+1), which is negative, or affected toith a sign contrary to that

of the last term.

Second.

298. Every equation of an even degree, involving only real co.

efficients ofwhich the last term is negative, has at least two real roots,

one positive and the other negative. For, let —U be the last term ;

making x'=0, there results — U. Now substitute either K+ 1, or

— (K+ 1), K being the greatest negative co-efficient of the equa-

tion : as ?n is an even number, the first term x'^ will remain positive
;

besides, by these substitutions, it becomes greater than the sum of

all the others ; therefore the results obtained by these substitutions

are both positive, or affected with a sign contrary to that given by

the hypothesis x=0 ; hence the equation has at least tioo real ro-^'v

20
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one comprehended between and K-j-l, or positive, and the other

between and — (K+ 1), or negative.

Third.

299. If an equation, involving only real co-efficients, contains

imaginary roots, the number of these roots must he even.

For, conceive that the first member has been divided by all the

simple factors corresponding to the real roots ; the co-efficients of the

quotient will be real (261) ; and the equation must also he of an even

degree; for if it was uneven, by placing it equal to zero, we should

obtain an equation that would contain at least one real root, which,

from the nature of the equation, it cannot have.

Remark. 300. There is a property of the above polynomial quo-

tient which belongs exclusively to equations containing only imagi-

nary roots ; viz. every such equation ahvays remains positive for any

real value substituted for x.

For, if it could become negative, since we could also obtabi a posi-

tive result, by substituting K+ 1 or the greatest negative co-efficient

plus unity for x, it would follow that this polynomial placed equal

to zero, would have at least one real root comprehended between

K-fl and the number which would give a negative result.

It also follows, that the last term of this polynomial must be posi.

live, otherwise a;=0 would give a negative result.

Fout^th.

301. When the last term of an equation is positive, the number of

its real positive roots is even ; and when it is negative this number is

uneven.

For, first suppose that the last term is +U, or positive. Since

by making a;=0, there will result +11, and by making a;=K+ l,

the result will also be positive, it follows that and K+ 1 give two

results affected with the same sign, and consequently (289), the

numbor of real roots, (if any), comprehended between them, is even.
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When the last term is — U, then and K+l give two results

affected with contrary signs, and consequently comprehend either a

single real root, or an odd number of them.

The reciprocal of this proposition is evident.

Descartes^ Rule.

302. An equation of any degree whatever cannot have a greater

number of positive roots than there are variations in the signs of Us

terms, nor a greater number of negative roots than there are perma-

nences of these signs.

In the equation x—a=0, there is one variation, that is a change

of sign in passing along the terms, and one positive root, x=a. And

in the equation x+b=0, there is one permanence, and one negative

root, x=—b.
Ifthese equations be multiplied together, there will result an equa-

tion of the second degree,

x^— a
I

x— ab

If fl is less than b, the equation will be of the first form (Art. 144)

;

and if a>J the equation will be of the second form : that is

a<i gives xr'-{-px—q=0 and

a>i x^—px—q=

In either case, there is one variation, and one permanence, and

since in either form, one root is positive and one negative, it follows

that there are as many positive roots as there are variations, and

as many negative roots as there are permanences.

The proposition would evidently be demonstrated in a general

manner, if it were shown that the multiplication of the first member

by a factor x— fl,corresponding to a positive root, would introduce at

least one variation, and that the multiplication by a factor x-\-a,

would introduce at least one permanence.

:0.
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Let there be the equation

af'±Ax'^»±Bx'"-2±Ca;""-3± . . . ±Ta:±U=0,

in which the signs succeed each other in any manner whatever ; by

niiiltiplying it by x—a, we have

-a
I

ipAa
I

zpBa
|

z^Ta
\
q=Ua

The co-efficients which form the first horizontal line of this pro-

duct, are those of the proposed equation, taken with the same sign
;

and the co-efficients of the second line are formed from those of the

first, multiplied by a, taken with contrary signs, and advanced one

rank towards the right.

Now, so long as each co-efficient of the upper line is greater than

the corresponding one in the lower, it will determine the sign of the

total co-efficient ; hence, in this case there will be, from the first

term to that preceding the last, inclusively, the same variations and

the same perm.anences as in the proposed equation ; but the last

term zpUa having a sign contrary to that which immediately pre-

cedes it, there must be one or more variations than in the proposed

equation.

When a co-efficient in the lower line is affected with a sign con-

trary to the one corresponding to it in the upper, and is also greater

than this last, there is a change from a permanence of sign to a

variation; for the sign of the term in which this happens, being the

same as that of the inferior co-efficient, must be contrary to that of

the preceding term, which has been supposed to be the same as that

of its superior co-efficicnt. Hence, each time we descend from the

upper to the lower line, in order to determine the sign, there is a

variation which is not found in the proposed equation ; and if, after

passing into the lower line, we continue in it throughout, we shall find

for the remaining terms the samevariatipns and the same perma-

nences as in the proposed equation, sil^ce tKe co-efficients of this line

are all affected with signs contrary to those of the primitive co-effi-

cients. This supposition would therefore give us one variation for
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each positive root. But ifwe ascend from the lower to the upper

line, there may be either a variation or a permanence. But even

by supposing that this passage produces permanences in all cases,

since the last term zpUa forms a part of the lower line, it will be

necessary to go once more from the upper line to the lower, than

from the lower to the upper. Hence the new equation must have at

least one more variation than the proposed ; and it will be the same

for each positive root introduced into it.

It may be demonstrated, in an analogous manner, that the multi-

plication by afactor x-\-a, corresponding to a negative root, would

introduce one permanence more. Hence, in any equation the num-

ber of positive roots cannot be greater than the number of varia-

tions of sign, nor the number of negative roots greater than the

number of permanences.

303. Consequence. When the roots of an equation are all real,

the number ofpositive roots is equal to the number of variations, and

the number of negative roots is equal to the number ofpermanences.

For, let m denote the degree of the equation, n the number of

variations of the signs, p the number of permanences ; we shall have

m=n-[-p. Moreover, let n' denote the number of positive roots,

and p' the number of negative roots, we shall have m=n'+p';

whence

n-{-p=.n' -\-p

or, n—n'=p'—p.

Now, we have just seen that n' cannot be >n, and p' cannot be >_p ;

therefore we must have n'=n, and p'=p.

Remark. 304. When an equation wants some of its terms, we

can often discover the presence of imaginary roots, by means of the

above rule.

For example, take the equation

oi?-\-px-{-q=0,

p and q being essentially positive ; introducing the term which is

29*
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wanting, by affecting it with the co-efficient ±0, it becomes

By considering only the superior signs we should only obtain per-

manences, whereas the inferior sign would give two variations.

This proves that the equation has some imaginary roots ; for ifthey

were all three real, it would be necessary by virtue of the superior

sign, that they should be all negative, and, by virtue of the inferior

sign, that two of them should be positive and one negative, which

are contradictory results.

We can conclude nothing from an equation of the form

x^—px-\-q=zO
;

for introducing the term ±0.3^, it becomes

x^=tO . x^—px+q=0,

which contains one permanence and two variations, whether we take

the superior or inferior sign. Therefore this equation may have its

three roots real, viz. two positive and one negative ; or, two of its

roots may be imaginary and one negative, since its last term is ne-

gative (Art. 301).

Of the Commensurable Roots of Numerical

Equations.

305. Every equation in which the co-efficients are whole num-

bers, that of the first term being unity, can only have whole num-

bers for its commensurable roots.

For, let there be the equation

a;-+Pa;"-i+Qa;"—̂ + . . . +T.r+U= ;

in which P, Q . . . T, U, are whole numbers, and suppose that it

a
could have a commensurable fraction -j- for a root. Substituting

this fraction for x, the equation becomes
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whence, multiplying the whole equation by Z*""', and transposing,

^=_Pa--i_Qa—^'5-
. . . -Tai'^-'-Vb'^-' ;

o

but the second member of this equation is composed of a series of

entire numbers, whilst the first is essentially fractional, for a and b

being prime with each other, a" and b will also be prime with each

other (Art. 118), hence this equality cannot exist ; for, an irreduci-

ble fraction cannot be equal to a whole number.

Therefore it is impossible for any commensurable fraction to sa-

tisfy the equation. Now it has been shown (Art. 277), that an

equation containing rational, but fractional co-efficients, can be

transformed into another in which the co-efficients are whole num-

bers, that of the first term being unity. Hence the research of the

commensurable roots, entire or fractional, can alicays be reduced to

that of the entire roots.

306. This being the case, take the general equation

^m_^Pa;m-i+Qa;—2+ . . . +R,^''+Sr'+Ta;+U=0,

and let a denote any entire number, positive or negative, which will

verify it.

Since a is a root, we shall have the equation

a'"+Pa"-»+ . . . +Ra='+Sa^+Ta+U=0 . . • (1)

;

replacing a by all the entire positive and negative numbers between

1 and the limit +L, and between —1 and — L', those which verify

the above equality will be the roots of the equation. But these

trials being long and troublesome, we will deduce from equation (1),

other conditions equivalent to this, and easier verified.

Transposing all the terms except the last, and dividing by a, the

equation (1) becomes

—=-a"-^-Pa"-2_ . . . _Ra2_Srt-T . . . (2)

;

a

now, the second member of this equation is an entire number, hence
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— must be an entire number ; therefore the entire roots of the equa-

tion are comprised among the divisors of the last term.

Transposing —T in the equation (2) and dividing by a, and ma-

U
king |-T=T'; it becomes

T'— =-a"'-2-Pa"'-3 . . . -Ra-S . . . (3)

;

T'
the second member of this equation being an entire number, —

U'
or, the quotient of the division of \-T by a, is an entire numler.

Transposing the term — S and dividing by a, it becomes, by sup-

T'
posing f-S=S',

?-=_a-3_Pam-4_ , . . _R . . . (4),
a

S'

the second member of this equation being an entire number, —
T'

or, the quotient of the division of \-^ by a, is an entire number.

By continuing to transpose the terms of the second member into

the first, we shall, after m— 1 transformations, obtain an equation of

Q'
the form —=—a— P,

a

Then, transposing the term — P, dividing by a, and making

Q' F P'
[-P=P'» we shall find —=-1, or [-1=0.

a a a

This equation, which is only a transformation of the equation (1),

is the last condition which it is requisite and necessary that the en-

tire number a should satisfy, in order that it may be known to be a

root.

From the preceding conditions we may conclude that, in order
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that an entire number a, positive or negative, may be a root of the

proposed equation, it is necessary

That the quotient of the last term, divided by a, should be an en-

tire number

;

Adding to this quotient the co-efficient of .r', taken with its sign,

the quotient of this sum divided by a, must be entire ;

Adding the co-efficient of x^ to this quotient, the quotient of this

new sum by a, must be entire; and so on.

Finally, adding the co-efficient of the second term, or of a;"""', to

the preceding quotient, the quotient of this sum divided by a, 7nust be

entire and eqiud to —1 • or, the result of the addition of unity, or the

co-efficient of x"\ to the preceding quotient, must be equal to 0.

Every number which will satisfy these conditions will be a root,

and those which do not satisfy them should be rejected.

All the entire roots may be determined at the same time, as fol-

lows.

After having determined all the divisors of the last term, tcrite

those which are comprehended between the limits +L and — L' upon

the same horizontal line ; then underneath these divisors write the quo-

tients of the last term by each of them.

Add the co-efficient of x' to each of these quotients, and write the

sums underneath the quotients ichich correspond to them ; then divide

these siuns by each of the divisors, and write the quotients underneath

the corresponding sums ; taking care to reject the fractional quo-

tients and the divisors which produce them ; and so on.

When there are terms wanting in the proposed equation, their

co-efficients, which are to be regarded as equal to 0, must be taken

into consideration.

x*—a.'^—13x=+ 16a:—48=0.

The superior limit of the positive roots of this equation is 13-f 1

or 14 (Art. 293). The co-efficient 48 is not considered, since the
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two last terms can be put under the form 16(x— 3) ; hence when

a;>3 this part is essentially positive.

The superior limit of the negative roots is —(1+ V48), or —8

(Art. 295).

Therefore, the divisors are 1, 2, 3, 4, 6, 8, 12 ; moreover, neither

-f 1, nor —1, will satisfy the equation, because the co-efficient —48

is itself greater than the sum of all the others ; we should therefore

try only the positive divisors from 2 to 12, and the negative divisors

from —2 to —6 inclubi -ely.

By observing the rule given above, we have

12, 8, 6, 4, 3, 2, — 2, - 3, - 4, - 6

- 4, - 6, -8, -12, -16, -24, +24, + 16, + 12, + 8

+ 12, + 10, +8, + 4, 0, - 8, + 40, + 32, + 28, + 24

+ 1, .., + 1, 0, - 4, -20, .., - 7, - 4

-12, ••J -12, -13, -17, -33, .., -20, — 17

- 1, .., - 3, .., .., .., ••> + 5, ..

- 2, - 4,

— 1,

-, • •> ••' ••' + 4,

— 1,

••

The Jirst line contains the divisors, the second contains the quo-

tients of the division of the last term —48, by each of the divisors.

The third line contains these quotients augmented by the co-efficient

+ 16, and the fourth the quotients of these sums by each of the di-

visors ; this second condition excludes the divisors +8, +6, and —3.

The fifth is the preceding line of quotients, augmented by the co-

efficient — 13, and the sixth is the quotients of these sums by each

of the divisors ; this third condition excludes the divisors 3, 2, —2
and —6.

Finally, the seventh is the third line of quotients, augmented by

the co-efficient —1, and the eighth is the quotients of these sums by

each of the divisors. The divisors +4 and — 4 are the only ones

which give —1 ; hence +4 and —4 are the only entire roots of

the equation.

In fact, if we divide a;*—r"- 13ar'+16x— 48, by the product
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(«— 4) (x+4), or x'—ie, the quotient will be x^—x+S, which

placed equal to zero, gives

therefore, the four roots are

EXAMPLES.

1st. X'*— 5a;='+25a;— 21= 0.

2d. 15a:^-19a;''+6af'+15ic2— 19a;+6=0.

3d. 9x<'+30x5+22x*+10af'+17ar'—20a;+4=0.

Of Real and Incommensurable Roots.

307. When an equation has been freed from all the divisors of

the first degree which correspond to its commensurable roots, the

resulting equation contains the incommensurable roots of the pro-

posed equation, either real or imaginary.

The true form of the real incommensurable roots of an equation

will remain unknown, so long as there is not a general method for

resolving equations of the higher degrees. AUhough this problem

has not been resolved, yet there are methods for approximating as

near as we please to the numerical values of these roots.

We shall here consider only the case in which tlie difference be-

tween any two roots of the proposed equation is greater than unity,

omitting as too difficult for an elementary treatise, the cases in which

this difference is less than unity.

We will also suppose, in what follows, that we have obtained the

narrowest limits 4-L and — L', by Newton's method (Art. 294).

308. Each of the incommensurable roots being necessarily com-

posed of an entire part and a part less than unity, we shall first deter-

mme the entire part of each root.
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For this purpose, it is necessary to substitute, in the equation, for

X, the series of natural numbers 0, 1, 2, 3 . . . and — 1, — 2, — 3 . . .,

comprised between 4-L and — L'. Since there must be a real root

between two numbers, which, by their substitution produce results

affected with different signs (Art. 288), it follows that each pair of

consecutive numbers giving results affected with contrary signs, toill

comprehend a real root, and but one, since by hypothesis the difference

between any two of the roots is greater than unity. The entire

part of the root will be the smallest of the two numbers substituted.

There are two cases which may occur; viz. by these diffei'ent

substitutions there may be as many changes of sign as there are

units in the degree of the equation ; in which case we may con-

clude that all the roots are real. Or, the number of changes of the

sign will be less than the degree of the equation, and, in this case,

it will have as many real roots as there are changes of sign ; the

other roots will be imaginary. In both cases, this method makes

known the entire part of each of the real roots.

It now remains to determine the part which is less than unity.

Newton's Method of Approximation.

809. In order that this method may be more easily comprehend-

ed, we shall take the equation

a;3_5a;-3=0 . . . (1).

The superior limits of the positive and negative roots being -f-3

and —2, we make

x=— 2, —1, 0, 1, 2, 3;

whence a;=— 2 the result is —1,

x=-\ ... +1,

x= . . . -3,

a:= 1 . . — "7,

x= 1 . . . -5,

x= 3 . . . +9.
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As tliere are three changes of sign, it follows that the three roots

of the equation are real ; viz. ojie positive contained between 2 and

3, two negative, one of which is contained between and —1, the

other between —1 and —2.

We shall first consider the positive value between 2 and 3.

The required root being between 2 and 3, we will try to contract

these limits, by taking the mean 2i, or 2,5, and substituting it in

the equation a;^—5x— 3=0 ; the result of which is +0,125. Now
2 has already given —5 for a result, therefore the root is between

2 and 2,5.

We will now consider another number, between 2 and 2,5 ; but

as, from the results given from 2 and 2,5, it is to be presumed that

the root is nearer 2,5 than 2, suppose x=2,4 ; we shall obtain

— 1,176; whereas 2,5 has given +0,125. Therefore the root is

between 2,4 and 2,5.

By contmuing to take the means, we should be able to contract

the two limits of the roots more and more. But when we have

once obtained, as in the above case, the value of x to at least 0,1,

we may approximate nearer in another way, and it is in this that

Newtoti's method principally consists.

In the equation a;^— 5a'— 3= 0, make a;=2,4+M.

There will result (Art. 274), the transformation

Z'
X'+Y'it+—w2+u^=0;

in which X' =(2,4)^— 5(2,4)-3= — 1,176,

Y' =3(2,4)2-5=12,28,

Z'—
-= 3(2,4)= 7,2.

The equation involving u, being of the third degree, cannot be

resolved directly, but by transposing all the terms except Y'm, and

dividing both members by Y', it can be put under the form

X' Z' 1

"=-y^-2:y"'-y^"^-

30
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This being the case, since one of the three roots of this equation

must be less than —, from the relation ic=2,4+M, the correspond-

ing values of u^ and v? are less than and . Moreover,

the inspection of the numerical values of Y' and Z', proves that

Z'
is <1 ; therefore the value of u only differing numerically

X' Z' 1

from —^, by the quantity v?+~u^, (which most frequently

1 \ X'
. .

is less than
J,

is expressed by ——to withm 1,01.

As, in this example,

X' +1,176 1176

12,28 12280
:0,09

there will result «=0,09, to within , and consequently

1

a:= 2,4 4- 0,09= 2,49, to within ——

.

In fact, 2,49 substituted in the first member of the proposed equa-

tion, gives —0,011751
;

whilst 2,250 gives +0,125.

To obtain a new approximation, make a;=2,49+w' in the pro-

posed equation, and we have

X"+Y'V+—«'H«'^=0;

in which X"= (2,49f-5(2,49)-3=-0,011751,

¥"=3(249)2-5=13,6003,

?-= 3(2,49)= 7,47.
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But the equation involving u' may be written thus :

,
X." Z" ,^ 1 ,3

And since one of the values of u' must be less than^^, the

1 1

corresponding values of u'^, M'^ are less than j^^qq-' ioqqooo
'

X" 1

hence — ^^7,
will represent the value of m' to within———.

Since we have

X" 0,011751 11751 ^^^^^=— =z = 0,0008 . . .,

Y" 13,6003 13600300 '

it follows that m'= 0,0008, to within , and consequently

a;=2,49+0,0008=2,4908, to within
10000

Again, by supposing a;= 2,4908 +m", we could obtain a value of

1
X to within

100000000

Each operation commonly gives the root to twice as many places

of decimals as the previous operation.

310. Generally, let;? andjp+1 be two numbers between which

one of the roots of the equation X=0 is comprised.

First determine the value of this root to loithin — , by substituting

a series of numbers comprised between p and p+1, until two

numbers are obtained which do not differ from each other by more

than -.
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Then, calling x' the value of x obtained to within — suppose

x=ix'-\-u in the equation X= ;

which gives

Z'
X'+Y'W+—M^

. . . +M'»=:0:

whicJi can he put under theform

X', Y' Z' . . . being easily calculated. (Art. 309).

Since the sum of the terms, which follow —:^, in the second mem-

ber of this equation is, commonly, less than , they can be

neglected, and calculating —^7 to within , we add the result to

x', which gives a new value x" approximating to within of the

exact value.

To obtain a 3d approximation, we suppose x=x"-\-u' in the pro-

posed equation, which gives

Z"
X'+Y'V+ym'^+ . . .m''"=0;

X" Z" ,, 1
whence rt = — :r—,

—

——-u'^— . . .
_-—«''*.

Z" 1
Neglecting the terms — --tttjm'-— . . .

——,%''" which are suppo-

sed to be less than 0,0001, we calculate the value of — t?7,j continuing
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the operation to the place of decimals, and add the result to

1

x" ; this gives a third approximation x'", exact to within — •

Repeat this series of operations for each of the positive roots.

As for the negative roots, they are found m the same way as the

positive roots, by changing x into —x in the proposed equation,

which then becomes,

_a;3_|_5_^,_3_0^ or x^—5x+S=0

in which the positive roots taken with a negative sign, are the nega-

tive roots of the proposed equation. These roots are .

a;= — 1,8342 and ic— = 0,6566

to within 0,0001.

.\^
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