


HANDBOUND
AT THE

UNIVERSITY OF
TORONTO PRESS



Digitized by the Internet Archive

in 2007 with funding from

Microsoft Corporation

http://www.archive.org/details/elementsofalgebrOOdemouoft





f/~M3*ft\

ELEMENTS OF ALGEBRA

PRELIMINARY TO THE DIFFERENTIAL CALCl :

AND FIT FOR THE HIGHER CLASSES OF SCHOOLS IN WHICH

THE PRINCIPLES OF ARITHMETIC ARE TAUGHT.

BY

AUGUSTUS DEMORGAN,
OF TRINITY COLLEGE, CAMBRIDGE,

AND PROFESSOR OF MATHEMATICS IN UNIVERSITY COLLEGE, LONDON.

SECOND EDITION.

H)at a benefit* tijat oncln tfmng is, to fjaue u> mitte tofjcttctJ antt

sbarpcncti, E neatfe not trauell to tteclare, sitf; all men confesse it to be as

graft as mate fee. ISxccpte any mitlesse pcrsone trjinfce i)t mate bee to mise.

Sal Ijc tbat moste fcaretb tfjat, is leaste in "fcaunger of it. fl&Ijereforc to

conclude, 31 sec moare menne to acRnoroletige tfye bencfite of nomber, tljan 3£

tan cspic toillyng to stu*Die, to attaine tfjc bencfites of it. i^tann praise it,

but {clue ttooc greatly practise it : onlesse it bee for trje bulgare practice,

concerning i*Urd;aunttes trat»e. Saijevcin tf;e tJcshe antt impe of gain,

makctl) manp millrmg to sustains some trauell. J"or aitJc of mfjom, £ "DitJ

sctte fortl) tfje firste parte of Arithmetike. "But if ttyei fenetoe bom farre tfjis

scconttc pane, tiooctb excel! tl)c firste parte, tfyci moulD not accoumpte am?

trjme lostc, tfjat were imploieti in it. Yea tfict tooulB not tl)inke any trmu

tocll bcsiotoetJ, till tljci IjatJ gotten soctye babilitie bn it, tfyat it migfjt be tfjeir

aitJe in a I otljcr stuOies."— Robert recorde.

LONDON:
PRINTED FOR TAYLOR AND WALTON,

BOOKSELLERS AND PUBLISHERS TO THE UNIVERSITY OF LONDON,

28 UPPER COWER STREET.

M.DCCC XXXVII.



LONDON

!

PRINTED BY JAMES MOYEB, CASTLE STREET,

LEICESTER SQUARE.



PREFACE

TO THE

FIRST EDITION

In the title-page I have endeavoured to make it clear that

it will be impossible to teach algebra on the usual plan by

means of this work. It is intended only for such students as

have that sort of knowledge of the •principles of arithmetic

which comes by demonstration, and whose reasoning faculties

have therefore already undergone some training.

Algebra, as an art, can be of no use to any one in the

business of life ; certainly not as taught in schools. I appeal

to every man who has been through the school routine

whether this be not the case. Taught as an art it is of little

use in the higher mathematics, as those are made to feel who

attempt to study the differential calculus without knowing

more of its principles than is contained in books of rules.

The science of algebra, independently of any of its uses,

has all the advantages which belong to mathematics in

general as an object of study, and which it is not necessary

to enumerate. Viewed either as a science of quantity, or

as a language of symbols, it may be made of the greatest

service to those who are sufficiently acquainted with arith-

metic, and have sufficient power of comprehension, to enter

fairly upon its difficulties. But if, to meet the argument that

boys cannot learn algebra in its widest form, it be proposed

to evade the real and efficient part of the science, whether by

presenting results only in the form of rules, or by omitting

and taking for granted what should be inserted and proved,
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for the purpose of making it appear that something called

algebra has been learned: I reply, that it is by no means

necessary, except for show, that the word algebra should find

a place in the list of studies of a school ; that, after all, the

only question is, whether what is taught under that name be

worth the learning ; and that if real algebra, such as will be

at once an exercise of reasoning, and a useful preliminary to

subsequent studies, be too difficult, it must be deferred.

Of this I am quite sure, that the student who has no more

knowledge of arithmetic—that is, of the reasoning on which

arithmetical notation and processes are built— than usually

falls to the lot of those who begin algebra at school—that is,

I believe, begin to add positive and negative quantities to-

gether,— will sooner find his way barefoot to Jerusalem than

understand the greater part of this work.' And I may say the

same of every work on algebra, containing reasoning and not

rules, which I have ever seen ;
provided it contained any of

the branches of the subject which are of most usual appli-

cation in the higher parts of mathematics.

The special object to which this work is devoted is the

developement of such parts of algebra as are absolutely

requisite for the study of the differential calculus, the most

important of all its applications. The former science is now

so extensive, that some particular line must be marked out

by every writer of a small treatise. The very great difficulty

of the differential calculus has always been a subject of

complaint; and it has frequently been observed that no

one knows exactly what he is doing in that science until

he has made considerable progress in the mechanism of its

operations. I have long believed the reason of this to be

that the fundamental notions of the differential calculus are

conventionally, and with difficulty, excluded from algebra, in

which I think they ought to occupy an early and prominent

place. 1 have, therefore, without any attention to the agree-

ment by which the theory of limits is never suffered to make
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its Appearance in form until the commencement of the dif-

ferential calculus, introduced limits throughout my work:

and I can certainly assure the student, that, though I have

perhaps thereby increased the difficulty of the subject, the

additional quantity of thought and trouble is but a small

dividend upon that which he would afterwards have had to

encounter, if he had been permitted to defer the considera-

tions alluded to till a later period of his mathematical course.

On those who offer theoretical objections to the introduction

of limits in a work on algebra lies the onus of shewing that

they are not already introduced, even in arithmetic. What

is 1/2, supposing geometry and limits both excluded ?

I have been sparing of examples for practice in the

earlier part of the work, and this because I have always

found that manufactured instances do not resemble the

combinations which actually occur. They are but a sort of

parade exercise, which cannot be made to include the means

of meeting the thousand contingencies of actual service.

The only method of furnishing useful cases is to take some

inverse process, and the verification of literal equations (as

in the seventh and following pages of this work) is the most

obvious. With these the student can furnish himself at

pleasure, the test of correctness being the ultimate agreement

of the two sides, after the value of the unknown quantity

has been substituted.

The only remaining caution which he will need is, not

to proceed too quickly, especially in the earlier part of the

work. He must remember that he is engaged upon a very

difficult subject, and that if he does not find it so, it is, most

probably, because he does not understand what he is about.

Wherever an instance or a process occurs, he should take

others as like them as he can, and assure himself, by the

reasoning in the work, that he has obtained a true result.

It was at first my intention to write a second volume on

the higher parts of the subject. But, considering that of



6 PREFACE.

these there are several distinct branches, it has appeared to

me that the convenience of different classes of students will

be consulted by publishing them in several distinct tracts,

which may afterwards be bound together, if desired.

AUGUSTUS DE MORGAN.
London,

July 3Ut, 1835.

*
#* This Second Edition differs from the first only in

verbal amendments. Since the publication of the first edi-

tion, I have carried on the consideration of the principles of

algebra in two other works. In the first, or Elements of

Trigonometry, besides the consideration of periodic mag-

nitudes in general, I have (Chapter IV.) given a view of

that extension of the meaning of symbols which must ac-

company the complete explanation of the negative square

root. In the second, or Connexion of Number and Mag-

nitude, which is an attempt to explain the Fifth Book of

Euclid, I have entered upon what is in reality the most

difficult part of the application of arithmetic to geometry.

Both of the preceding works may be made supplementary to

the present one, though the latter is altogether independent

of it.

University College, London,

October 16,1837.
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ELEMENTS OF ALGEBRA.

INTRODUCTION.

It is taken for granted that the student who attempts to read this

work has a good knowledge of arithmetic, particularly of common

and decimal fractions. Whoever does not know so much had better

begin by acquiring it, as the shortest road to algebra.*

In arithmetic, we use symbols of number. A symbol is any sign

for a quantity which is not the quantity itself. If a man counted his

sheep by pebbles, the pebbles would be symbols of the sheep. Our

symbols are marks upon paper, of which the meaning of every one is

determined so soon as the meaning of 1 is determined. If we are

speaking of length, we choose a certain length, any we please, and

call it 1 . It may have any other name in common life, for instance,

a foot or a mile, but in arithmetic, when we are numbering by means

of it, it is 1. We now introduce the sign +, and agree that when

we write + between two symbols of quantity, it shall be the symbol

for the quantity made by putting these two quantities together.

Thus, if

1 stand for the length

1+1 stands for the length

1 + 1 is abbreviated into 2, a new and arbitrary \ symbol. Similarly

2 -|- 1 is abbreviated into 3, 3 + 1 into 4, and so on.

* The references in this work are to the articles (not pages) of my
Treatise on Arithmetic, and serve either for the second or third editions.

Arbitrary, that is, any other would have done as well. It is t that

stands for 1 + 1, and not <, 5, CO, or anything else, because certain

Hindoos chose that it should he so. See Penny Cyclopedia, Art.

Arithmetic
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When 1, 2, 3, &c, mean 1 mile, 2 miles, 3 miles, &c., or 1 pint,

2 pints, 3 pints, &c, these are called concrete numbers. But when

we shake off all idea of 1, 2, &c, meaning one, two, &c, of any thing

in particular, as when we say, " six and four make ten," then the

numbers are called abstract numbers. To the latter the learner is first

introduced, in regular treatises on arithmetic, and does not always

learn to distinguish rightly between the two. How many of the

operations of arithmetic can be performed with concrete numbers,

and without speaking of more than one sort of 1 ? Only addition and

subtraction. Miles can be added to miles, or taken from miles.

Multiplication involves a new sort of 1, 2, 3, &c, standing for repe-

titions or times, as they are called. Take 6 miles 5 times. Here are

two kinds of units, 1 mile and 1 time. In multiplication, one of the

units must be a number of repetitions or times, and to talk of multi-

plying 6 feet by 3 feet, would be absurd.* What notion can be

formed of 6 feet taken " 3 feet" times?

But in solving the following question, " If 1 yard cost 5 shillings,

how much will 12 yards cost?" do we not multiply the twelve yards

by the five shillings? Certainly not— the process we go through is the

following : Since each yard costs five shillings, the buyer must put

down 5 shillings as often (as many times) as the seller uses a one-yard

measure; that is, 5 shillings is taken 12 times.

In division, we must have the idea either of repetition or of

partition, that is, of cutting a quantity into a number of equal parts.

" Divide 18 miles by 3 miles," means, find out how many times

3 miles must be repeated to give 18 miles: but " Divide 18 miles

by 3," means, cut 18 miles into three equal parts, and find how many

miles are in each part.

18 miles divided by 3 miles gives 6 ; meaning, that 3 miles must

be repeated six times to give 18 miles.

18 miles divided by 3 gives 6 miles ; meaning, that if 18 miles be

cut into three equal parts, each part is 6 miles. The answer in ab-

stract numbers is the same in both cases; 18 divided by 3 gives 6.

But now we ask, How many times does 12 feet contain 8 feet?

* In old books the following is sometimes found. " What is^.

^99. 19s. 11§</. multiplied by ,£99. 19s. ll%d.V The only intelligible

meaning of this is as follows : If a stock of money is to be increased at

the rate of ,,£99. 19s. llfd. for every £1 in it, how much will that be

when the stock itself is £99. 19s. llfr*. 1 Let the student answer this.
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The answer is, more than once and less than twice; which is not

complete, because we have not n adequate idea of parts of times,

that is, parts of repetitions. In talking of times, we use a figure of

speech which we may liken to a machine which works by starts, each

start doing, say eight feet of work, and which is so contrived that

nothing less than a whole start can be got from it ; either 8 feet or

nothing. It is plain that such a machine cannot execute 12 feet of

work, or any thing between 8 feet and 16 feet. But, let us now sup-

pose the machine to be made to work regularly, at 8 feet a minute.

Let us still continue to call 8 feet a start, then 12 feet must be called

a start and a half. In the same way we say that 12 feet contains

8 feet a time and a half, the notion of half a time being equivalent to

that of repeating not the whole 8, but its half.

When we speak of dividing one fraction by another in arithmetic,

2 5 14 2
this is what is meant; for instance, - divided by - gives — ; or -

3 i \o o

5 14
contains -, — of a time. Let the learner study the following pro-

7 15

positions.

5 2
If - of £l were gained in a day, then - of a pound would be

7 3

gained in -— of a day.

If the signification of 1 be changed, so that what was - is now 1,

i .
2 . 14

then what was - is now —

.

e 2 14
If - of the line A be the line B, then - of the line A is — of the

7 3 15

line B.

The want of a proper corn-prehension of such questions as the

preceding is a great source of difficulty to most beginners in algebra.

If the preceding pages be not readily understood, it is a sign that the

reader is not sufficiently acquainted with arithmetic for his purpose in

reading this work.

The symbols of arithmetic have a determinate connexion; for

instance, 4 is always 2+2 whatever the things mentioned may be,

miles, feet, acres, &c. &c. In algebra, we take symbols for num-

bers which have no determinate connexion. As in arithmetic we

draw conclusions about 1, 2, 3, &c, which are equally true of 1 foot,

2 feet, &.C., 1 minute, 2 minutes, Sec; so in algebra we reason upon
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numbers in general, and draw conclusions which are equally true of

all numbers. This, at least, is one great branch of algebra, and ex-

hibits it in a view most proper for a beginner.

But this is a definition in a few words, and can only be understood

by those who have already studied the subject. No science can be

defined in a few words to one who is ignorant of it. We shall begin

by giving an instance of a general property of numbers and fractions.

Take (8) units,* and the fraction which, taken (8) times, gives a

unit, that is the (8)th part of a unit. Add 1 to both ; this gives 9 and 1-.
8

The first contains the second (8) times. Take i~) of a unit, and the

fraction which taken f -
J

of a time gives a unit, or 1 -. Add 1 to

2 1 /2\
both, this gives 1- and 2-. The first contains the second ( -) of a

3 2 ^3/

time. Try the following, in which it will be found that the blanks

may be filled up with any one number or fraction at pleasure.

Take ( ) units, and the number or fraction which repeated ( )

times gives a unit. Add 1 to both ; then the first result will con-

tain the second ( ) times, or parts of times.

The following are instances which should be tried.

Numberor fraction

; ) which repeated ( )

times gives a unit.

1 added to

the first.

1 added to

the second.

7
1

7
8 J

l

3
3 4 .

4

"S

4

9 *l »j

1

20
20 4 21

1 1 2 2

Number of times

which the third

contains the fourth.

*
20

1

The connexion between the first and second columns is this, that

the number or fraction in the second is 1 divided by the number or

* By putting 8 in brackets, we wish to call attention to the circum-

stance of the numbers in the different brackets being the same.
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fraction in the first; or the number of times or parts of times which

1 contains the first. That is, if we call the number in the first column

" the number,"

then the number in the second column is

1 divided by " the number."

And the coincidence of the first and fifth columns (which constitutes

the thing we notice) may be thus expressed

:

Let one more than " the number" be divided by " 1 more than

the times which 1 contains the number," and the result must be

M the number."

The above must be still further abbreviated for convenience. As

" the number" means any number we please, and as " any number

we please" will be better expressed by any short symbol which we

may choose to make use of, let one of the letters of the alphabet be

employed, say a. Let the addition of a number be denoted by + as

before, and let the division of a number by a number be denoted, as

in arithmetic, by writing the divisor under the dividend with a line

between them. Let = be the sign that what goes before is the same

number as what comes after. Then the preceding property of num-

bers is thus expressed

:

FT* = a

We shall now proceed to lay down the definitions of the first part

of the science.

I. Algebra is the European corruption of an Arabic phrase,

which may be thus written, al jebr e al mokabalah, meaning restor-

ation and reduction. The earliest work on the subject is that of

Diophantus, a Greek of Alexandria, who lived between a.d. 100 and

a.d. 400 ; but when, cannot be well settled, nor whether he invented

the science himself, or borrowed it from some Eastern work. It

was brought among the Mahometans by Mohammed ben Musi

(Mahomet, the son of Moses) between a.d. 800 and a.d. 850, and

was certainly derived by him from the Hindoos. The earliest work

which has yet been found among the latter nation, is called the Vija

Ganita, written in the Sanscrit language, about a.d. 1150. It was

introduced into Italy, from the Arabic work of Mohammed, just

63
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mentioned, about the beginning of the thirteenth* century, by Leo-

nardo Bonacci, called Leonard of Pisa : and into England by a

physician, named Robert Recorde, in a book called the Whetstone

of Witte, published in the reign of Queen Mary, in 1557. From this

work the motto in the title-page is taken.

II. A letter denotes a number, which may be, according to

circumstances, as will hereafter appear, either any number we please

;

or some particular number which is not known, and which, therefore,

has a sign to represent it till it is known ; or some number or fraction

which is known, and is so often used that it becomes worth while to

have an abbreviation for it. Thus the Greek letters n and e always

stand for certain results, which cannot be exactly represented, but

which are nearly 3-1415927 and 2-7182818.

III. The alphabets used are l.The Italic small letters; 2. The

Roman capitals ; 3. The Greek small letters ; 4. The Roman small

letters ; 5. The Greek capitals. They are here placed in the order of

their importance on the subject; and as many may wish to learn

algebra, who do not know Greek, the Greek alphabet is here given,

with the pronunciation of the letters.

A « alpha

B/3 € beta

r y gamma

A 3 delta

E g epsllon

z£? zeta

H n heta

6 theta

I t iota

K x. kappa

A A lambda

M ^ mu

N v nu

3 % xi

omlcron

Tl 7C & Pi

* €
ro

S <r 5 sigma

T r r tau

T v upsllon

®
(f>

phi

x X chi

¥ ^ psi

II a omega

IV. Under the word number is always included whole numbers

* The young reader may need to be told that the thirteenth century

does not mean a.d. 1300 and upwards, but a.d. 1200 and upwards. The

first century is from the beginning of a.d. 1 to the end of a.d. 100 :
the

second from the beginning of a.d. 101 to the end of a.d. 200, and so on.
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and fractions. Thus, 2 J is not called a number in common language,

but in algebra it is called a number; or, if it be necessary to dis-

tinguish it from 2, 3, 4, Sec, it is called a fractional number, while

the latter are called whole numbers.

Under the word number the symbol may be frequently in-

cluded, which means nothing, or the absence of all magnitude or

quantity. If we ask, what number remains when b is taken from a,

and if we afterwards find out that b and a must stand for the same

number, then the answer is, "no number whatever remains, or there

is nothing left." If we say that remains, we make the symbol

an answer to a question beginning, "What number, &c?" which is

equivalent to including under the general word number.

V. The sign + is read plus (Latin for more), means in correct

English* "increased by," and signifies that the second-mentioned

number is to be added to the first. Thus a + b is read a plus b,

and means a increased by b, or the number which is made by adding

b to a.

+ a by itself can only mean a added to nothing, or + a, which

is a itself.

VI. The sign — is read minus (Latin for less), means "dimi-

nished by," and implies that the second number is to be taken away

from the first. Thus a— b is read a minus b, means a diminished by

b, and signifies that b is to be taken away from a.

When a is less than b, the preceding stands for nothing at all, but

a direction to do what cannot be done. Thus 3— 6 is impossible.

We shall hereafter have to investigate what such an answer means,

that is, the problem which gave it being of course impossible, what

sort of absurdity gives rise to the impossibility.

VII. The sign x is rendered by the English word into, and

* Those who have attempted to substitute a short English term

have never been able to find one which does not shock the ear. We
have seen "a add b," and "a more &;" which should be, "To a add

b," or "b more than a." Neither of the last would be convenient,

and "a increased by b" is too long. The same remarks may be made

on "a less 6," and "a take away b," for "a diminished by b:" while

*' a save b," used by our oldest writers, is now too uncommon. There

is no language in which the simplest relations are expressed by the

simplest terms.
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means " is the multiplier of," meaning that the second number is to

be taken as many times, or parts of times, as there are units, or parts

of units, in the first. Thus ax b is read a into b, and means b taken

a times. Thus, \\ x 6 is 6 taken a time and a half, or 9. The

expression ab is called the product of a and b; the two latter are

called factors of the product, and coefficients of each other. x «

and a x must both mean ; for a taken no time, nor part of a time

whatsoever, cannot give any quantity, and nothing, however often

repeated, yields nothing. As this is connected with a mistake always

made by beginners, we shall (to impress the results on his memory)

give two problems* the answer to which is self-evident, and put the

answers in an algebraical form ; desiring the learner,- of course, to

remember that no new information is gained, but only an opportunity

of making certain results occupy a space proportional to their

importance.

There is a number of boxes, none of which contain any thing.

How much do all together contain ?

If a be the number of boxes, then repeated a times, or

a x is 0.

There is a box full of gold, of which no part whatsoever belongs

to A. How much belongs to A ?

Ifp be the number of pounds of gold in the box, then A's part is

X p, or 0.

The reason of the mistake is, that the beginner retains the notion

that "not multiplied" implies " not diminished," and " not changed

at all." But multiplication in the arithmetic of fractions, and in

algebra, means the taking a number of times, or parts of times. A
number not multiplied at all yields no number, for no part of it is

taken; a number which remains the same is multiplied by l,or taken

once. Thus a is 1 x a.

When letters are employed, or numbers and letters together, the

sign x is dropped. Thus ab means b taken a times; 3 a means a taken

3 times. It is only when two numbers are employed that x becomes

necessary. Thus 3x6 must not be written 36, which already stands,

not for 6 + 6 + 6, but for 3 x ten + 6. It is more common to place

points between numbers (thus, 3.6) to signify multiplication. But

* Problem, any question in which something is required to be found.
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as this maybe confounded with 3 + —, the student should always

write the decimal point higher up, thus 3*6.

VIII. The bar between the numerator and denominator of a

fraction is read " by" and this is the word for division. Thus -7

is read " a by b" and means that it is to be found what number of

3
times and parts of times a contains b. Thus "-, or 3 by 2, is 1J,"

SI

means that 3 contains 2 a time, and half a time. That a half is

written -, or u 1 by 2," is consistent, because it is the part of a time

which 1 contains 2. The division of a by 6 will sometimes be

denoted by a-j-6.

a
- (which beginners usually confound with a) has no meaning.

How many times does six contain nothing ? The answer is, that the

question is not rational, a is -, for by a we mean a number of

units and parts of units, so that a itself is the answer to "how many

times, and parts of times, does a contain 1?"

IX. The following are then synonymes for a, which the student

should repeat till he is very familiar with them :

— &c.
1

a X 1
s—— &c.

X. The following abbreviations are used for the connecting words

equals and therefore. By a = b we mean that a and b are the same

numbers : it is read a equals b. By .*. we mean therefore, or then,

or consequently. Thus, a = b and b = c .*. a = c is read a equals

b, and 6 equals c, therefore a equals c.

XI. Every collection of algebraical symbols is called an expression,

and when two expressions are connected by the sign =, the whole is

called an equation.

An identical equation is one in which the two sides must be

always equal, whatever numbers the letters stand for, such as the

equation already described (page iv),

g + 1 = a

a + oX 1 ax 1 X 1

0+a
a— lXfl 1 X«X 1
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which cannot be untrue for any value of a; or is true, whatever

number we may suppose a to stand for.

The following are very obvious identical equations :

a + b = b + a a + l + l=a + 3—l
a + a = 2a a + a + a = 3a

1 ,
l l ,1 ,

l

-a + -a = a -a +-a+-a = a

2a + 3a — a + 4a = 8a + 6a+5a—l\a
The following are not obvious, but will be found to be true in

every case in which they are tried.

1 _1__ 2 + 3a

l+a"*~l-f-2a
~"

" 1 +3a + 2aa

a ax
a ~~

1 + x
~" 1+x

An equation of condition is one which is not always true for every

value of the letters, but only for a certain number of values. Thus

6 + 1=7 and a -3 = 12

cannot be true unless 6 is 6 and a is 15.

Again, a = b + c cannot be true for every value of a, b, and c,

but requires or lays down the condition that a must be the sum of

b and c. When a number may be written for a letter in an equation,

and it remains true, that number is said to satisfy the equation.

Thus, a— 3 = 12 is satisfied by a = 15.

XII. When an algebraical expression is enclosed in brackets, it

signifies that the whole result of that expression stands in the same

relation to surrounding symbols as if it were one letter only. Thus,

a — (b — c)

means that from a we are to take, not b, or c, but b— c, or what is

left after taking c from b. It is not, therefore, the same as a— b— c.

Example. What is a— (b— {c— d}) when a = 20, b = 12,

c = 10, and d = 3. Here c— d is 10— 3, or 7 ; b — (c — d) is

12 — 7, or 5; a— (b— {c— d}) is 20— 5, or 15.

Also, (a + b) (c + d) means that c + d is to be taken a + b times,

and p (q -f- r) that q + r is to be taken p times.

These are the first outlines of algebraical notation. Others will

develope themselves as the work proceeds. We shall now lay down

some very evident characters of the four principal processes.



INTRODUCTION. xi

1. Additions maybe made in any order, without affecting the

result. It is evident that all the following six expressions are the

same :

1+2+3 1+3+2
2+3+1 3+2+1
3+1+2 2+1+3

Also a+b+c+d = b+c+d+a = b + a + d+ c, &c.

2. The order of additions and subtractions may be changed in

any way which will not produce an attempt to subtract the greater

from the less. Thus, if a man lose £20 and gain £50, he has the

same as if he first gained £.50 and then lost £20, with this exception,

that if his property be less than £20, he may do the second but cannot

do* the first. Thus 10— 20 + 50 is impossible; but 10 + 50— 20

is possible. Also 8 — 6 + 10— 11 admits of the following forms :

8- 6 + 10-11 8 + 10-11- 6 10 + 8-11- 6

8 + 10- 6-11 10+ 8- 6-11 10-6+ 8-11;

but does not admit of the following :

10-11+8-6 -11+ 8 + 10- 6 &c.

10-11-6 + 8 - 6-11+ 8 + 10 &c.

Question. What are the conditions necessary to the possibility

of a— 6 + c — d? Answer. That a be greater than (or at least not

less than) 6, and that a— 6 + c be not less than d. We shall here-

after return to this point.

3. Multiplications and divisions may be performed in any order.

For instance, a be means that c is to be taken b times and the result

a times : the rules of arithmetic shew that this is the same as b a c

;

that is, as c taken a times, and the result taken b times; and this

whether the numbers be whole or fractional. The student is supposed

to have demonstrated these rules before he commences algebra.

It is also shewn in arithmetic that division and multiplication

* According to the language of common life a man may lose more

than he has, that is, lose all that he has and incur a debt besides. But

this is always on the tacit supposition that not only what he has, hut

what he may get, is liable for his debts. No such supposition exists in

arithmetic until the meaning of words is altered; 10—20 is, in every

arithmetical interpretation, impossible.
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may be changed in the order of operation; that is, a divided by b and

the quotient multiplied by c, is the same as a multiplied by c and the

product divided by b. Or
a ca

CX 6=T
In fact, owing to the extension of the meaning of words by which

multiplication includes taking parts of times (page iii), every multi-

plication is a division, and every division a multiplication. For

instance, to divide a by six is to take the sixth part of a, or to take

a one sixth of a time, or to multiply a by -. Similarly, to divide a

by - is to ask how many fourths of a unit a contains ; the answer to

which is, four times as many times as a contains units, which

multiplies a by 4.

2 3
Again, to divide 10 by - is to multiply 10 by -. To divide

3 Z

2
10 by - is to find how often 10 contains two-thirds of a unit. NowJ 3

2 1
a unit is made up of - and -, the second of which is half the

3 3

2
first; that 1 contains -, a time and a half. Therefore, 10 contains

two-thirds ten times and ten halves of times, or 15 times. That is, 10

2 1
divided by - is 10 taken once and a half or 10 multiplied by 1-,

3 2

that is, by -.

7 2
Similarly, to divide by - is to multiply by -. How often does 10

contain the half of 7 units ? Twice as often as it contains 7 units ;

10 20 20 2
that is, twice — of a time or —- of a time. But — is - of 10, or 10

7 7 7.7
2

taken - of a time.
7

The learner should practice many different cases of the following

general assertions.

a multiplied into - is a divided by -
9 P

a divided by - is a multiplied into -
q ppa a a

or r- x a = —

-

-— = v- x a
q £ p p

p q
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The first operation to which the beginner must be accustomed is

the conversion of algebraical expressions into numbers, upon different

suppositions as to the value of the letters. For instance, what is

7 when a = - and b = -
a— b 2 5

« + £ = -+- = _ «_& = ___ = _.

_9_
«_+6 10

=== Q

"To

T 1 +flfl o«« , 1 ,
Is ——— = true when a -= 1 - f

1 + a 2 + $a 2

3 3 9 , , , 9 13
aa =

2
x

2
=

5 1 + 00 = 1 + 4 = T

l+«=l+H^ + ««)-0+«)=^+ ^=^
3 3 3 27 1 3

,
1 11

aa"=2 X
2
X 2=Y 2

a =i 2+ 2«=T
/

,
1 \ 27 11 27

aaa -r 12+ -a } = — -7 = —
\ 2 /

But (1 +«a)-r-(l + a)

/ 22

- 12=
10

therefore the above equation is not true in this case.

What is aa + b(a + b) when a = 4 £ = 3 ?

+ 6 = 7 b(a + b) = 3x 7 = 21 aa = 16

aa + a(a + b) = 16 + 21 =37
But the most instructive exercise is the verification of equations

which are asserted to be identical. For instance,

aa — bb aaa-\-bbb

a — b aa-\- bb— ab

Leta = 4 b = 2, then aa = 16 bb = 4. '

aa— bb 16— 4 r «. mr = —s— = (G ) 000 = 64 &&& = 8
a— b 2 v '

aaa + bbb 64 + 8 72
fi

aa-\-bb— ab ~~ 16+4—8 "~
12 "" '

'

2 t
1

Let « = - 6 = -.
3 2
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an — bb _9 4_

~a~=b ~ £_!
3 2

-f = ©
_8_ , _1_ jH_

aaa + bbb 27 " 8 216 /7\
«<*+ &*>—«& ~ l + I— I

=
22. ~ \1f/

9 ~4 3 36

The following is a list of identical equations, which the learner

should verify; first, by giving whole values to the letters, next, by

giving fractional values. It is needless to give instances of each,

because the test of correctness is in the two sides shewing the same

value, no matter what. The only restriction upon the values of the

letters is that no values must be assumed which will produce in the

equation an expression for the subtraction of the greater from the k>ss,

or which will produce in the denominator of a fraction (pages vii, ix).

(a + x + y)(a + x — y) = aa + 2ax + xx—yy

(a + b)(a + b) = aa + 2ab + bb

(a— b)(a—b) = aa — 2ab + bb

(a + b) (a— b) = aa — bb

(mm—nn) (mm—nn)+4mmnn = (mm + nn) (mm+nn)

(a+ b) (a + b) + (a-b) (a—b) = 2aa + 2bb

(a+ b) (a + b)— (a—b) (a—b) = 4ab

(a+b+ c) (a+ b—c) (b + c—a) (c+ a—b)

= 2aabb+2bbcc+2ccaa—aaaa—bbbb—cccc

(a+ b) (a+ b) (a+ b) = aaa+3aab +3abb+ bbb

1 1 3aa + 2 — 6a

a— 1 a—2 aaa + 2a— 3aa

a + b a— b 2aa + 2bb

a— b a+ b
~ aa— bb

aXX\ bx \ C
-<>* + b)(2ax + b) + 4ac--bb

4a

xxxx-—yyyy xxx + xxy + xyy +yyy
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r -\- a X x -+- (« + c ) x + « c

x -\- b xx + (b + c)x-\-bc

The reduction of several terms into one can be performed so as to

produce a more simple term, when all the terms are alike as to letters.

Thus,

3a + 2a = 5a a + la — 4a = 4a

3ab + 2ab = 5ab ^ + 7^ - 4 P- = 4 1-
9 q 9 «/

3.r;r + 2.ra; = 5#.r a ah + 7aab — 3aab = baab

a + \2a — 3a — 6a + 2a—a = 5a

In the last instance, all the additive terms make up 15 a, from which

a is to be subtracted three times, six times, and once, or 10 times in

all; that is, 10a is to be subtracted : and 15a— 10a = 5a.

Similarly a + b— 3a-f46 = 5b — 2 a. For b and 5 b added

give 6b, which is added to a, after which 3 a is subtracted. But,

subtracting 3 a where a had previously been added, is the same as

subtracting 2 a without previously adding a, which gives

a + 5b — 3a = 5b — 2a

Examples.

a + ab — 2ab + 4a + 6a = 11a — ab

2xx + 6x — 4x — xx + c = xx + 2x -f c

3.T-15 + \x -x -7 = 2Ja;-22
x + y + x — y + 3x = 5x

If, upon looking through such an expression as either of the

above, we find the following terms containing the simple product xy

(with their signs)

4- 6xy, —xy, + 4xy, +2xy, —\\xy,—\2xy,
the single term which represents the result of all those containing x y,
is found as follows; the whole number of additions of xy to the

rest of the expression amounts to 12, and there are 24 subtractions of

it in all. Let all the additions, and as many of the subtractions, be

abandoned, there will then remain 12 subtractions uncompensated by

any additions, and — 12 x y must be appended to the rest of the

expression.

When two terms are not exactly the same as to letters and number
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of letters which enter them, no such simplification can take place.

For example, a a -f- a cannot be reduced. It is not* 2 a, nor 2aa, nor

aaa; it is a taken a times added to a taken once, and is therefore a

taken a + 1 times, or (a -f- 1) a. This is also (a -f 1) taken a times,

or a (a + 1), page xi.

Thus a -|- a is algebraically reducible to the single term 2 a, but

aa + a is not so reducible, nor does it admit of any simplification of

form, except that which is contained in the formation of its arith-

metical value, which cannot be found till we know what number a

stands for.

How many times is a contained in a -f- b ? This question admits

of no answer till we know how many times b contains a ; therefore

we can only use the algebraical representation , which has been

chosen to signify the number of times which a + b contains a. But

let the student observe that this is not an answer to the question, but

a method chosen to represent the answer.

How many times is a contained in ma — n a ? Here, though

we cannot completely answer this, till we know what m and n stand

for, yet the algebraical meaning of ma and n a puts our algebraical

answer one step nearer to the arithmetical answer, that is, enables us

to answer otherwise than by directly writing down . For it

is evident that when n times is taken away from m times, the re-

mainder is m— n times; that is, m a — na contains a, m — n times.

This must be taken notice of in all algebraical operations. The

question, "What is 8a + 5 a?" cannot be answered until we know

what a stands for ; but to " What is the most simple algebraical form

of 8a + 5a?" we answer 13a. And by the algebraical operations of

addition, subtraction, multiplication, &c. we mean the methods of

changing algebraical expressions into others which are of more simple

character. For instance, " to add a + b to a—• 6." The following

(a + b) + (a - b)

is the first form of the result, derived from representing the thing to

be done under algebraical symbols. But its most simple form is 2a;

and in the reduction of the preceding expression to 2a, consists what

* These are all mistakes to which the beginner is liable.



INTRODUCTION. Wll

we shall call algebraical addition. We shall now go through m

of these processes.

Addition. We wish to add a -+- b to c -f- e. If to a -f b

add c, giving a + 6 -f c, we have not added enough, because the

quantity to be added is not f, but e more than c. Therefore

a -f- 6 -f- c -f- e is the result, or*

(a + b) + (c + e) a + f+c+V.'.;,'(l)

To add c— e to a -f- £>, we first add c, giving a + b + c. But this

is adding too much, for e should have been taken from c and the

remainder only added. Correct this by taking e from the result,

which gives a -j- b + c — e.

(a + b) + (c— e) = a + & + c — e • • • • (2)

In the results of (1) and (2) further reduction is impracticable.

We shall now try the following.

To add a -\- b to a — b,

(a + J) + (a — b) = a+b+a—b = 2a

To add 3x — a to 2 a— x
9

(3* — a) + (2a — x) = 3x — a + 2a — x = 2x + a

To add ab — b to 2ab + c — 6b.

Am. 2ab + c — 6b + ab — b or 3ab + c— lb

From these, and similar operations, we have the following rule of

addition :

Write + before the first terms of all the expressions but one, and

consider the aggregate of all as one expression. Make the reductions

which similarity of terms (as to letters) will allow.

Examples. a — b + 3c — ab

4ab — b +2a — x

4x + 6a + Clb—7 are to be added.

Answer. 9a — 2 b + 4ab + 3c + 3x — 7

* When we wish to refer to an equation afterwards, we place a

letter or number opposite to it, as is here done.

c 2
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Add. Add. Add.

a — b a-2b a + ma — 4

b-c b-2c 6 — a +2ma
c — d c-2d \2ma-\2- 3a

d— x d— 2x p+ a — I

a — x a — b — c — d—2x I5ma — 2a— 10J +p
The following rule is also derived from (1) and (2) :

An expression in brackets preceded by the sign + will not be

altered in value if the brackets be struck out.

d + (b-\-c — e) = a +b +c — e

Subtraction.—To subtract b + c from a. If we first subtract b,

which gives a — 6, we do not subtract enough, since b should have

been increased by c, and the whole then subtracted. Hence c must

also be subtracted, giving a— b— c, or

a — (b + c) = a— b — c (3)

To subtract b — c from a. If we now subtract b, giving a — 6,

we have subtracted c too much ; or a— b is less than the result

should be by c. Consequently, a— b-\-c is the true result, or

a — (b — c) = a — b+c (4)

The following are instances :

a — (c— a) = a — c + a = 2a— c

a — (a — c) = a — a + c = c

3a + b — (2a — b) = 3a+b — 2a + b = a+2b
a + b — (a — b) = a + b — a + b = 2b

mx — (q — 3mx) = mx — q -\-3mx = 4mx — q~

When an expression in brackets is preceded by the

sign — , the brackets may be struck out, if the signs of all

the terms within the brackets be changed, namely, + into

— and — into +. This is evident from (3) and (4).

As the neglect of this rule is the cause of frequent mistakes, not

only to beginners, but to more advanced students, we have printed it

thus to attract attention. Still further to impress it on the memory

of our younger readers, we beg to inform them that to neglect this
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rule is the same as declaring that all debts are gains, and all property

a loss; that to forgive a debt is to do an injury, and that the more a

man is robbed the richer he grows ; with a thousand other things of

the same kind.

Another proof of the preceding rule is as follows. If we wish

to find

a - (b + c -p - q) (A)

we must remember that if two quantities be equally increased, their

difference remains the same: thus the difference of a+ x and b-\-x

is the same as that of a and b. We are told to diminish a by

b -f c —p — q

which is the same as if we diminished a-\-{p-\-q) by

(b + C-p-q) + (p+q)
or by b+C—p — q + p + q or by O + c

that is, a— (6+c

—

p— g) is the same as

a+p + q — {b + c) or a +p + q — b — c

or a — b — c+p+q (B)

on comparing (A) and (B) the rule is obvious.

The rule for subtraction is as follows

:

Consider the first term of the expression to be subtracted as having

the sign + ; then change every sign, annex the expression thus changed

to the expression which is to be diminished, and make all practicable

reductions, as in addition.

From a + b — c — x + 2z + 3a 6 — 14

Take c— 2a + x + z — 4ab + 2%

Remr
. 3a + b — 2c — 2x+z — 7ab — \6%

From a+c x +y — 3 — a a — b + c — d + e

Take 2c —

a

x — y -f- 3 — a a— 2b + c +d— e

Remr. 2a-c 2y-6 b — 2d + 2e

From a + b + 2c + 3d + 4e — 5f—6g
Take 12a

7 + 4e - 3c + 2a + b -g +f

Remr
. 5c — 9d—6f—5g — a
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What is

a-(b-(c+x)) + (A -(a -2 6))

This, by the rules for expunging brackets, is

a — b + (c + x) + b — (x — 2b)

which, by the same rule, is

a — b +c + x + b — x + 2b or a + c + 2b

Shews that

a — \a. — (a — (a — #))j = .r

a _ J6_(ft _(6_a;))J = 2a-2Z>+a;

Since all the rules for addition and subtraction are independent

of the order in which the terms of the expressions are written, we

shall in future not inquire whether an expression is written in a

possible or impossible form (page xi), but consider the impossible

forms as meaning the same thing as the possible ones. Thus, in

3 — 7 + 8, we shall not regard the subtraction as necessarily to be

performed first, and therefore treat the expression as impossible, but

we shall consider the order of the operations as immaterial, and the

above as 3 + 8—7; and the same for other expressions. We could

not have done this if the rules for addition and subtraction had

required any preliminary inquiry into the possibility of the order of

the terms. If we have to subtract the preceding, say from 12, we

find that the employment of the impossible form, namely

12-(3-7 + 8) = 12-3 + 7-8 = 8

gives the same result as if the possible form had been employed,

as in

12-(3 + 8-7) = 12-3-8 + 7 = 8

Multiplication and DrvisioN.— In the multiplication and

division of algebraical quantities, it must always be borne in mind

that the letters may represent either whole numbers or fractions.

We shall first express the rules which have been found in arithmetic

for the addition, &c. of fractions which have whole numerators and

denominators.

First observe that - (when a and b are whole numbers) is the

answer to all of the following questions, which are in effect the same.
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1. If a unit be divided into b parts, and a of those parts be taken,

how many units or parts of units result !

2. How many units or parts of units are there in the 6th part

of a?

3. How many times, or parts of times, does a contain b ? Thus,

3
-• representing the seventh part of unity repeated three times, is the

answer to the questions, " What is the seventh part of three ?" and

" How many parts of a time does three contain seven V
It is only the method of speaking, or the idiom of our language,

which prevents our explaining in a similar manner the meaning of

fractions which have fractional numerators and denominators. For

instance, if we attempt to explain -7 where a is 2£ and b is - in the

same way as where a is 3 and b is 7, we shall produce a (yet)

unintelligible idiom. Let us suppose some concrete unit, say a

mile of length.

3 3 2h
What is - miles, or - of a What is -^ miles ?

7 ' 7
-J

mile? 4

Cut a mile into 7 equal parts
Cut a mile into

9
e(lual Parts>

and take 3 of them. and take 2£ of them.

The words in italics are unintelligible, and not having a meaning,

may have one given to them.* By altering the manner in which the

first of the two preceding is expressed, without changing the meaning,

we may find a mode of speech which shall not become unintelligible

4
when - is written for 7, and 2£ for 3. As follows :

* The same letter may either stand for a whole number or for a

fraction; and we might find out how to group those idioms which belong

to whole numbers with those belonging to fractions, so as to be able to

pass from one of the first set to the corresponding one of the second.

But it will be more convenient to take' the modes of speaking which

belong to whole numbers, and agree that when fractions are spoken of

they shall be used for the corresponding expressions. We have already

done this in arithmetic in the word multiplication, which originally

means, " taking a thing many times," but which we have also made to

signify " taking a thing a part of a time." Thus we speak of multiplying

by one half.
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Find the length which taken Find the length which taken

7 times gives a mile, and take 4 . ., *5 * - of a time gives a mile, and
that length 3 times. 9

take that length 2£ times.

4 45
The reduced value of 2^ -J- - is — of a mile, or 5f miles, and

the student may easily shew by the rules of arithmetic that this coin-

4
cides with the length, - of which is a mile, repeated 1\ times. And

5$ is also the answer to the question, " How many times and parts of

4
times does 2| contain -?"

It is usual in algebra to make use of modes of speaking with

regard to letters, drawn from our notions of whole numbers ; but as

the letters themselves may stand either for fractions or whole numbers,

these modes of speaking are too confined unless they are understood

to imply the corresponding modes of speaking, with regard to

fractions. For instance, suppose it asked, " What is the value of

one acre if x acres cost y pounds?'' The answer would always be

given as follows:— Divide the number y into x equal parts; then

each of those parts is the number of pounds which an acre costs.

Thus, if 18 acres cost £36, since 2 is the 18th part of 36, £2 is the

price of an acre. But if - of an acre cost £2-, and if we speak of

dividing 2- into - equal parts, we must mean the same as if we
3 2

said "take 2- two times," or divide 2- by - (according to the
3 3 2

arithmetical rule). Now, though it may appear at first sight almost

ridiculous to say that dividing a quantity into — equal parts is the

same thing as taking it 10 times, we must remember, 1st. that we

have done something of the same sort, when we said that dividing

into 10 equal parts, and taking one part, is multiplying by —

;

2d. that we do say this, when we say that if x acres cost y pounds,

the price of one acre is found by dividing y into x equal parts; for

letters may stand either for fractions or whole numbers.

We should recommend the student to solve various simple
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questions in the rule of three, with fractional data* 1st. By imitation

of a question with integral data. 2d. By independent reasoning; as

follows

:

I. If 6 yards cost 7 shillings,

how much do 5 yards cost?

As 6 yards to 5 yards, so are

7x5 5
7 shillings to —- or 5- shil-

2 5
If - of a yard cost - of a

3 7

4
shilling, how much do - of a

yard cost ?

2 4
As - of a yard to - of a

yard so is - of a shilling to

5 4

- or — of a shilling, the

II. If - of a yard costs - of a shilling
3

5 15
2 yards cost - X 3 or —

15 ri 15
1 yard costs — -~ Z or —

J 7 14

a j 15 . 30
4 yards cost — X 4 or —

-

4 , j . 30 . n 10
- of a yard costs — -f- v or —
9

J 7 21

We shall now write all the rules of arithmetic relative to fractions

in an algebraical form, these rules being those with which the student

is already familiar as applied to whole numbers. We shall first

suppose the letters to denote whole numbers.

a ma a
{

c ad -f- be

b mb b ' d ~ bd

,
b ac 4- b

d + - =
c c

a c ad— be

b d " bd

b ac — b

c c

a a — be

b
- c *

i

* Datum. A thing given, that is, a number given as part of a

question, " 2 pints cost 4 shillings, how much, &c. ;" here the data

are 2 pints and 4 shillings.
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a ac a c _ ac

6
XC ""T b

X
d ~~

bd

a a a be

b be ' b a

a c ad a d

b ' d be b c

The learner must make himself acquainted with each of these

equations, which he will easily do if he have the requisite degree of

familiarity with the operations of fractional arithmetic. For example,

in -r X -r = j-j, he will recognise the rule, " To multiply one frac-

tion by another, multiply their numerators for a numerator, and their

denominators for a denominator."

The preceding rules all hold good when the letters stand for frac-

tions. We shall take the demonstration of this in one instance,

namely, ? = —r- Let « °e the fraction - let b be-, and let m be
•" b mb q s

-; where p, q, r, s, x, and y, are whole numbers.
y

p

l
= i= P

/r (By the rule.)

8

x p xp , x r xrmo -=-x- = — mb = - x - = —
y q yq y s ys

ma _ y

q

xyp

s

mb *Z xyqr

But
XypS = fo-^XP*

as 21
xyqr (xy)Xqr qr

ma a ) where a, b, and m, are frac-
or nmb b ) tional.

It is shewn in arithmetic that the order in which multiplications

or divisions are made may be changed without affecting the result,

both in questions of whole numbers and fractions. We need not,

when speaking of both, distinguish between multiplication and

division ; for division by a is multiplication by -. The following

summary should be attended to and repeated on several products.

The expression abed is the product, 1. Of a, b, c, and d, in any
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order; 2. Of ah and <•//; 3. Of //r and W; 4. Of//// and be;

5.01'///»• and //; (i. Of //A// and C ; 7. Of //<// and fr; H. Of A r // and //.

The product of single terms may be expressed by writing the

letters consecutively in any order which may be convenient, and

actually multiplying the numerical coefficients, if any. The sign x
becomes necessary between two numerals only. Thus, 2ab x 4 erf

might be written in the following ways :

2ab4cd 2 x 4abcd Sacbd Sabcd, &c

It is most convenient to write the numerical coefficient first, and

letters of the same sort together, the order of the alphabet being

generally preferred. Thus,

2aab x Sabbc is written 6aaabbbc
1 3\2abxx^abxx = 4Saabbxxx 3abcx-ab = -a abbe
Z 2

When fractions are written side by side of each other, or of single

letters, multiplication is intended to be denoted. Thus,

~a e n a e . . lace
2 T C-. means ZXtXCX-. and is -—r

* J b J bJ
[Though a, a b, a be, &c. are called integral expressions, and

- -, —-, &c. fractions, this refers to their algebraical, not to their
b a b

arithmetical character; for, since letters may stand for fractions, that

which is integral considered algebraically, may be fractional con-

sidered arithmetically, and vice versa
1

. For example, suppose that

a stands for - and b for -, then the algebraically integral expression

a is the arithmetical fraction - ; while the algebraical fraction -, or
* o

:— is the arithmetical whole number 2.
2 " 4

In speaking, therefore, of integral or fractional expressions, we

refer always to their algebraical appearance, not to their arithmetical

values. The latter depend on the particular arithmetical value of the

letters, on which no supposition is made.*]

* The part of algebra which treats of letters considered as repre-

senting whole numbers only, is generally called the theory of numbers.

It is very rarely, if ever, of use in the application of algebra to the

Differential Calculus, and is therefore altogether omitted in this work.

d
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The multiplication of algebraical quantities depends on the rule

which appears in the following equations :

m(a + b) = ma +mb

m(a— b) = ma—mb
First, it is required to take a + b, m times. If a be taken m

times, it is clear that for every time and part of a time which a has

been taken, b or a part of b has been omitted. Consequently, ma is

too little by mb, or ma + mb is the product required.

Secondly, it is required to take a— b, m times. Here, if a be

taken m times, & or a part of b too much has been taken for every

time or part of a time which a has been taken. Consequently, ma
is too much by mb, or ma— mb is the product required.

Hence we may prove the following equation :

m(a + b—c— d) = ma + mb—mc—md
as follows: let a-\-b be called p, and let c + d be called q; then

a + b — c— d is p — q (page xix.), and

mia + b—c—d) = m{p— q) = mp—mq
But mp = ma + mb mq = mc + md

mp—mq = ma +mb— {mc + md)

= ma+mb—mc—md
The following are applications of the preceding rules :

S(a+b) = 3a + 3b S^a-b) = 3±a-3i&
z z z

ab(a— b) = aab—abb 2a(a—aa)*= 2aa—2aaa
3abc(ab— ac+ 4:) = 3aabbc— 3aabcc+ \2abc

2 (I+f)=* + T •€+{)- a.+«-

* The student will observe, that in these examples we do not inquire

whether the expressions are possible or not, but how to apply the rules

when they are possible. For instance, a— a a is impossible when a is

greater than 1, and possible only when a is less than 1. And let it be

observed in proceeding, as a matter of great importance in the sub-

sequent part of the work, that the rules investigated will not serve to

distinguish between possible and impossible expressions.
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40(i-o;) = 20-40* *(§ + &) = \a + ah

a (b , \ aba, - «

/> \« / b a b

a(**+i)«*2L' + ?-*%+?
aC j 1 ac ad ae

a~^l{
c + d '~ e

\ — ~a~+~b
+ ^+6"~ a + 6

Mr»(p + £ + 7 -"^"r)
= Q rs +P rs+pqs-s

In order to multiply a + 6 by c + r/, let us, for a moment, make

p stand for a + b. Then, j? multiplied by c -\- d, is the same as c + d

multiplied by^, which is pc + pd, or

(a + b) (c + d) = (a + b)c + (a + b)d

But (a + b)c = ac + bc, (a+ b)d = ad + bd

.*. (a-f-6) (c + d) = (ac + &c)+(«d+ &6/)

To multiply a+b by c — d, let a + 6 = p, and we have

p(c— d) = /;c

—

pd
y
or

(a + 6) (c— cZ) = (a + b)c— (a + b)d

= (ac + bc)— (ad + bd)

= ac + bc—ad— bd

To multiply a— 6 by c — d, let a — b = p, and we have

p (c — d) =zpc—p dj or

(a-b) (c-d) = (a-b)c-(a-b)d

= (ac—bc)— (ad—bd)

= ac— be—ad + bd

There are two methods of conducting this process, the first of

which is recommended to the learner for the present.

1. To multiply a + b— 2 c by d

—

a — c.

Here a times and c times the multiplicand are to he successively

taken from d times the multiplicand ; that is, a + c times is to be

taken from d times.
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d times the multiplicand = ad+bd— 2cd

... ( a times ditto = aa-\-ab— 2ac
Add <

I c times ditto = ac + bc — 2cc

a + ctiroes ditto = aa-\-ac-\-ab -\-bc— 2ac— 2cc

{Subtract from d times ad+ bd+ 2ac + 2cc—2cd
ditto which gives —aa—ac— ab— be

2. From looking at the preceding instances, it appears that the

rule of multiplication is as follows : Consider the first terms as having

the sign + > multiply every term of the multiplicand by every term of

the multiplier, and put + before the products of terms which have the

same sign, and — before the products of terms which have different

signs. The preceding example is here written in the usual way, with

the proper signs written to every term by the preceding rule.

a + b — 2c

d— a — c

from d *•'•» ad + bd— 2cd'\

from a •••• — aa — ab -\-2ac ^Product required.

from c — ac — bc + 2cc)

Where like terms are found in different lines, so that subsequent

reductions may be made, it is convenient to put like terms under each

other, as in the following example :

Multiply x x— Orx +

1

By x— 4

From x xxx— 2xx-\-x

From 4

— *2xx-\-x ")

A
> Product required.— 4.r 1r-|-8.r— 4 )

xxx— 6.r.r + 9.r— 4 ditto in simplest form.

But the manner of doing this, which (as yet) we recommend, is

the following

:

Multiply Xx—2x+\
By X—4

-p, . . . , . . rt r Subtract second
iTom x times multiplicd xxx—2xx + x ,.

\ line from first,

Take 4 times ditto 4*.»-8* + 4
[ as in thitd lme

XXX— 6xx + 9x— 4 Product required.



>]>[ ( I I ON.

The time instances which follow are of particular importance, and

the learner should be able to write them (and similar ones) at si^lit.

Mult, a+b <t — l> " + f>

By a+b <i— b a— b

To aa + ab From a a— ah From aa + ab

Add ab + bb Take ab— bb Take ab + bb

aa+2ab + bb aa— 2ab + bb aa —bb

[The following definitions may be appropriately introduced here.

A square is a four-sided figure, with sides of equal length, and

with contiguous sides perpendicular to each other.

I i :

I .' i

A cube is a solid figure enclosed by six equal squares; or, a box

of the same length, breadth, and thickness.

A square 4 inches long contains 4x4 squares of one inch long

;

a square of * inches long contains xx squares of one inch long.

There are x rows of square inches, and x squares in each row.

A cube 4 inches long contains 4x4x4 cubes of one inch long

;

a cube x inches long contains x xx cubes of one inch long. There

are x layers of cubic inches, and xx cubic inches in each layer.

Owing to this connexion of xx with the square on a line of x

units, and of xxx with the cube on a line of x units, it has always

been customary to call xx the square of x, and xxx the cube of.r.

But xxx x is called the fourth power of x, xxxxx the fifth power ;

and so on. So that .r itself should be called the first power of r,

xx the second power of x, and xxx the third power of x. But the

words square and cube are so conveniently short that they have

never been abandoned.]

The last mentioned products may be thus stated :

1. (« + b) {a + b) = a a -f 2ab + b b

d%
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or, The square of the sum of two quantities is the sum of their squares,

augmented by twice their product.

2. (a — b)(a — b) = aa — 2ab + bb

or, The square of the difference of two quantities is the sum of their

squares, diminished by twice their product.

3. (a + J) (a _ £) = aa — bb

or, The sum of two quantities, multiplied by their difference, is the

difference of their squares.

Thus let the two quantities be a b and 2 a.

ab x ab = aabb 2a x 2a = 4aa

2{ab x 2a) ±= Aaab

(ab+2a) (ab+2a) — aabb + 4aab + 4aa

(ab— 2a) (ab—2a) = aabb—4aab + 4aa

(ab+2a) {ab— 2a) = aabb—4aa

The following are examples for the student:

Square* of ( a + - ) = ae+2 4
\ ' a/ aa

(a A— ) [a 1 = aa
aJ \ aJ aa

Square of {2 ax ± b) = Aaaxx -±. Aabx -\- bb

{2ax + b) (2ax — b) = 4aa,r.r — 66

Square of (a + b + c) = (a + 6) (a + b) + 2 (a + b)c + c c

= aa + 66 -f cc + 2a6 + 26c + 2ca

(a + 6 + c) (a + 6 — c) = (a + 6) (a + 6) — cc

= aa + 66 — cc + 2a 6

(c + a — 6) (6 + c — a) = (c + a — 6) (c — a — 6)

* By + occurring several times in an equation, two equations are

combined in one. The upper or under sign is to be taken throughout.

Thus,

a± 6 = c + d is either

a + 6 = c — d or a — 6 = c -f- a
7

The student is recommended never to use this double sign himself

;

but as it frequently occurs in books it is here shewn.
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= cc— (a— 6) (rt— /;)

= 2ab-\- cc— an— bb

= 2 ab— (aa-\-bb— cc)

From the last two examples, shew that the product of the four

quantities

a+b + c, a + b—c, b + c—a, c + a— b, is

2aabb + 2bbcc + 2ccaa—aaaa—bbbb— cccc

Shew the preceding by help of the following (which shew also),

Square of (p+q—r) = pp + qq + rr +2pq—2qr—2rp

The following are miscellaneous examples in multiplication, to be

done without paper

:

(a + bx) (a+cx) = aa + abx + acx + bcxx

(x+a) (x+ b) = xx + ax + bx + ab

(x—a) (x—b) = xx—ax—bx + ab

(ar + 1) (ar— 3) = xx-2x-3
(x—1) (x—3) = xx—4x-\-3

(2ar+l)0r—l) = 2xa;-.r-l

The following theorems are given for exercise :

1

.

If a and b be two quantities, of which a is the greater, and if

S be the square of their sum, D the square of their difference, and P
the product of their sura and difference, then

S + D = 2(aa + bb) S— D = 4«6

S + P = 2a(a + b) S-P = 2b(a + b)

D + P = 2a(a-b) P-D = 2b(a-b)

2. If two numbers differ by a unit, the difference of their squares

is their sum; and if two fractions are together equal to a unit

( such as - and -
j their difference is also that of their squares.

3. The sum of the squares of xx—yy and 2xy is the square of

[According to the rule, the square of a— b is the same as the

square of 6— a; for that of the first is a a— 2ub-\-bb
y
and that of

the second bb— 2ab-\-aa
}
which two are the same (see page xi).
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But one of the two, a— b or b— a, must be impossible, except only

when b = a, in which case both are nothing ; for in every other case

either a— b or b— a is an attempt to subtract the greater from the

less. But for the same reason, one of the two, b— a or a— b, must

be possible; therefore aa-\-bb— lab, which is the square of that

possible one, must also be possible. That is, if either of the two,

a or b, exceed the other, aa-\-bb must be greater than 2ab. And

we also see that it does not follow that an algebraical process is intel-

ligible because it gives an intelligible result ; for it appears that the

algebraical rule of multiplication would apply to (3— 7) (3 — 7),

which is absurd, and give the same result as (7— 3) (7— 3), or 16.

This is a defect, the remedy for which we shall afterwards have to

find ; and we see, that so far as we have yet gone, we can never

know that any process is correct which is to lead to the value of an

unknown quantity, until we re-examine the process after the unknown

quantity has been found by it.]

Divisions in algebra we shall for the present divide into two

classes; those which it is obvious how to do, and those which it is

not obvious how to do. For instance, to divide a b by a, that is, to

tell how many times ab contains a, the answer evidently is, that since

a b means the same as ba, or a taken b times, therefore ab must

contain a, b times; or ab divided by a is b. In this case the simplest

rule is as follows : To divide, where there has already been a multi-

plication by the quantity which is made a divisor, suppress all the

symbols of the multiplication.

This will be seen in the following examples :

Dividend. Divisor. Quotient. Dividend. Divisor. Quotient.

ab a b \2aax 6aax 2

abc ab c 1\byz \h 10*

2abx 2x ab aaaa aaa a

aabbx ab abx aaaa aa aa

Qabcc 3abc 2c xyz xyz 1

[One of the most common errors of a beginner is a mistake

between and 1, arising from a confusion of subtraction and division.

This is partly a result of the idiom of our language, as follows. If a

beginner be asked how many times does 7 contain 7, the answer is
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sure to be, no times at all; and in one sense this is correct, for 7 does

not contain 7 a number of times, but one time. But it must always

be understood in algebra that times means time, or times, or parts of

a time, or time and parts of a time, or times and parts of a time.*

Therefore, though

x diminished by x leaves nothing,

x divided by x gives one.]

Closely connected with the preceding is the theorem in fractions

that - and —r are the same. For T multiplied by m gives -r-, and
b nib b o

this divided by m gives —-. But multiplication, followed by division

(multiplier and divisor being the same), leaves any quantity the same

as at first.

From the rule of multiplication it follows, that if any quantity

contain the same letter or letters in every term, it is the obvious result

of multiplying another expression by that letter or the product of

those letters. Thus, ab-j-ac is b-j-c multiplied by a, aab — abc

is a — c multiplied by ab. Hence, to divide an expression by a

letter or a product of' ietters, strike out those letters from every term

of the dividend. But remember to write 1 where all the letters of

any term are thus struck out. For instance, a + ab divided by a

gives 1+6, ac— aac-\-acc divided by ac gives 1

—

a -f- c.

The following are instances, arranged as before:

Dividend. Divisor. Quotient.

2ab-2bc + 4abc 2b a — c + 2ac

aaa — aa + a a aa — a + 1

6ab-3a + 3b 3 2ab — a + b

aab — abb ab a —b
axxy — xxxyy xxy a — xy

* An act of parliament, or any other legal instrument, always speaks

of men under the title "man or men," &c. If this should happen to be

neglected, and a single offender should plead that "men" only were

prohibited from doing as he (one man) had done, it would be called a

" quibble." If the student, after this warning, should ever say that •

contains x no times, it would not only be a quibble, but a very useless

quibble, because nothing is to be got by it.
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In dividing a b by a we might proceed as follows. The result

of the process is the fraction —, which is not changed in value if

both numerator and denominator be divided by a. But this gives -,

which is b.

Such a process is of no use in the preceding case ; but suppose

that ab is to be divided by ac. The complete division is here

•impossible until we know what numbers a, b, and c, stand for. But

— , the symbol of the result, may be reduced to - by the preceding

theorem. The division here is not completed, but reduced to a more

simple division.

2b _ b

2 c
~"

c

aab ab

ax ""
.x

Sammn mn
Qaam 2a

JL s-1
pq ~~

q

3ab __ 3

aab a

2\vww 3vw
2&xw 4x

The division of an expression of several terms by another of one

term may also admit of reductions. For example, xy-j-yz— zx

divided by xyy is

xy yz zx

xyy xyy xyy
1 z z

or -4- — — —
y xy yy

2v — xx + v x

X VV X

a + b + c

abc
- + - + -be ac ab

a + b 1 b

a a a a a

aa + \ 1
:— = a + -

a a

x-\-4y— 32 + 2
, £ _j_ ll _ t 4. -

1

6 6 ' 3 2 ' 3

All that precedes contains the obvious cases of division ; of those,

the answer to which requires further process, the following is an

instance: "How often is x +y contained in xxx -\-yyyV As we

shall not need such a process for some time, we defer it to its proper

place. In some cases, however, the preceding theorems of multi-

plication (page xxix) furnish an answer at once. For instance, we

know that x x •— 9 must contain x 4- 3, x — 3 times.
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Fractions may frequently be reduced to simpler terms l>y in-

spection, of which the following an instances:

Q + ab 1 -f b -\- Oxx 1 +2j
a — a b 1 — b 9xy — 3x 'Sj/ — 1

a — a a 1 — a a a -\- :\ <ib a -f W b

2a+az ~ 2 + z ab + 12a ~~ 6+12
It is frequently necessary to arrange expressions in a different

form, without altering their value, by performing inverse operations

upon tliem with the same data, such as addition followed by sub-

traction, or multiplication followed by division. The four following

methods of writing x exhibit this process.

ax X— -xa
a a

x +a—a x—a + a

Thus a+x = 2a +x— a = (l + '-ja

aa+2ab— c = aa + 2ab + bb— (c + bb)

= (a + b) (a + b)-{c + bb)

m + n = mn[- -\ \ = n(— + 1 ) = mil 4- — )

x = 4- " ^- = r^r (
See Pase v -)

x -,0+*) 7 + 1

The following are instances of those reductions of fractions which

will occur hereafter. The rules with regard to fractions which are

proved in arithmetic are here applied in conjunction with the

algebraical methods of addition, &c. At the head of each section

stands an example without any complicated expressions, containing

the arithmetical process used in those which succeed.

L
a ma
b mb

*+• + \)
xx

__ xx + r
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y — ffCv— 1
) = yy—

y

£ ^+^
*^ y—

1

"5/— 1 a a,r + «a

a— b a-\-b 4

a + 6 aa— bb aa + 2ab + bb ^ a -\-Ab

x— 4 __ 1x— 8 _ 4.r— 16 __ 2ax— 8a

2£ 5 To"
-

" 5a

7jt-~4 __ i(7.r— 4) __ Z\x— 2

10 ~~ i(io)
= T"~

^ + 76 flfe (a+^F) _ b + *

b—a+\ ab(b—«+^) abb— aab + a

,
x ay-\-x x ay— x x x— av

y y y y y y

. 1 x— 1 1 XX— 1

2 _^-1 = 2^ + 2-(j/-l) = y + 3

y+i " y+i #+1
a a a6 aft

a + 6 a + 6 a + 6 a-j-6

, 7 aa — 2a6 4ab + bb
a + o

a + b +

a-\-b a-\-b

a a— 2 a & Qaa-\-bb

a + 6 a -f b

^~l T ^ r
3/—

1

y 3/—

1

a + 6— c ~ &

—

a -\-

c

x x— xy

a— c a— c 3/ 3/

aft + ic-f-ca a&— cc

a-\- b -f-c a -f- 6 + c

a a: ay + bx a x ay— b x

'by by by by

a + b a— b _ (a + b) (g -f fe)— (a— &) (a— ft) _ 4a&

a— b a-\-b
~

(a— b) (a-\-b) ~ aa— bb

1.1 x 4- y- + - = £

a-\-b a cb—ad

c-j-d c cc + cd

£ + 2 = **+ff.y

y * xy

a—

6

a ad— be

c— a
1

c cc —c d



rRODUCTIOW.

*+y *

p - 7 __ ppp + qn

q pp
~ ppq

IV.
a x ax

b y
""

by

a

b
H~

x ay

y bx

,,_ 1 x + 2

7+1 x
T^Ti

- ('

MX*
+ 2) .r+2

-1) .r+1

2ab

a + b '

a— /> 6aab

3 a a a— bb

3ax yv

yy 2x
"

3a*

7)1 2 m 3 b pc

9

8££ ^ 3£j
cce ce

r

an ' 3bn 2a

The student is recommended to make himself well acquainted

with every example given in the preceding list, but no more (see the

Preface); as a better method of obtaining examples will be given.

All that has preceded is purely arithmetical, and the letters may

be considered as mere abbreviations of numbers, and all identical

equations as abbreviations of arithmetical propositions. Thus,

(« + £)(« + b) = aa+2ab + bb

represents the following sentence :— If two numbers be added

together, and if the sum be multiplied by itself, the result is the

same as would arise from multiplying each number by itself, and

adding to the sum of these products twice the product of the

numbers.

An arithmetical problem is one in which numbers are given, and

certain operations; and the question asked is, what number will

result from performing the given operations upon the given numbers.

For instance, what is the fiftieth part of the product of 25 and 300.

An algebraical problem is one in which numbers are either given

or supposed to be given (as will presently be further explained),

and a question is asked of which it is not at once perceptible what

operations will furnish the answer. Such is the following:— The

numbers 3 and 17 are given; what number is that, the double of

which will fall short of 17 by as much as its half exceeds 3? And
the questions asked are the following. 1. Is there any such number?

2. If there be, by what operations on 3 and 17 may it be found ?

3. What is the result of these operations, or the number required.

The answers to which (as the student may afterwards find) will be

e
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that there is such a number, that it is found by taking two-fifths of

the sum of 3 and 17, and that in consequence the number is 8.

If we had contented ourselves with the first two questions, it

would have been unnecessary to have specified that the numbers in

question were 3 and 17, for the same problem might have been

proposed about any other numbers, and the process of solution would

(as may afterwards be shewn) have been the same whatever the

numbers might have been. That is, if the following question had

been asked ;—The numbers a and b are given ; what number is that,

the double of which will fall short of b (the greater), as much as its

2
half exceeds a (the less) ? The answer is - (a -f b) and the veri-

fication is as follows

:

The double of \ (a +b) is \(a + b), or \ a +^b.
5 5 5 5

(4 4 \ 4 4-«+ -b) or b a b
5 5/ 55

or -b— -a; but the half of - (a + b) is - (a + b)
5 5 5 5

which exceeds a by - (a -f b)— a, or - a -f-
- b— a, or - b a,

5 5 5 5 5

2
the same as that by which the double of - (« -f- b) falls short of b.

5

"Which was to be done. Now, observe that the preceding not only

informs us of the general process by which this problem may be

solved, but it also shews in what cases the problem is impossible.

1 4
For the excess or defect above-mentioned turns out to be -b a,

5 5

which is an absurdity, unless -b be greater than (or at least not less

4
than) -a ; that is, unless b be greater than 4a. This was the case

in the first instance where b was 17 and a was 3. If it be not so,

we may pronounce that the problem is impossible ; for instance, let

the student try to find a number or fraction, the double of which

shall fall short of 11 by as much as its half exceeds 3. In this

problem there must be a contradiction ; and when we know there

is one, and set ourselves to find out how it arises, we see it in the

following:— The number sought is presumed to have a half which

exceeds 3 (so that it must be more than 6) and a double which falls
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short of 11 (so that it must be less than />.}). But a number which

dl 6 cannot be less than 5J ; therefore the clauses of the pre-

ceding problem contradict each other.

We see, then, that we may propose a problem which is impossible

or contradictory, or has no solution. But, on the other hand, we

may propose a problem which admits of an innumerable number of

answers. These we will call unlimited problems. And, as in the

case of impossible problems, there are some of which the impossibility

is evident, as '• To find a whole number which shall be the half of

seven ;" and others, in which it requires investigation to discover the

impossibility, as " To divide 10 into two parts, whole or fractional,

of which the product shall be 30 ;" so in the case of unlimited

problems, there are those in which the unlimited nature of the result

shall be evident, and others in which it shall not be so. For instance,

to the question, " To find two odd numbers which added together

shall make an even number?" it is clear that the answer is, "Any
two odd numbers ;" and to the question, " What two numbers are

those of which half the sum added to half the difference shall give

the greater number?" the answer is (but not so evidently), " Any

two numbers." Between these two extremes, we can conceive there

may be problems which admit of 1000 answers, others of 999

answers, &c. &c. down to problems which admit only of one answer.

And even when we find that a problem is impossible, we may yet

think proper to ask, why is it impossible? what are the two parts of

the problem which contradict each other, and by how much ? that is

to say, what sort of change, and quantity of change, in the conditions

of the problem, will render it possible ?

To all these questions, arithmetic gives no means of answering,

and we have therefore to consider algebra as a distinct science, which

proposes objects of which arithmetic knows nothing, and therefore

as we may suppose, uses language, finds methods, and adopts inter-

pretations, of which arithmetic furnishes no examples.

If the student have read* a little of geometry (a science which he

* In England, the geometry studied is that of Euclid, and I hope it

never will be any tther ; were it only for this reason, that so much luis

been written on Euclid, and all the difficulties of geometry have so uni-

formly been considered with reference to the form in which they appeal

in Euclid, that Euclid is a better key to a great quantity of useful

reading than any other.
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should begin to study at the same time as algebra, if not before), he

knows that all the questions of geometry are made for him, that is,

the reasonings, &c. are put together before his eyes, and all he has to

do is to comprehend and agree to one step of the process after another.

This is called synthesis (oWwv?, a putting together), or the synthetical

method, in opposition to analysis (avakvtris, an unloosing, or bringing

asunder), or the analytical method. The latter consists in taking the

problem to pieces, if the phrase may be used, that is, reasoning upon

the whole problem, reducing it to more and more simple terms, and

so coming at last to those considerations which must be put together

to make a solution and to verify it.

We now proceed to establish the principles of algebra analytically;

and instead of laying down new names or new principles, and putting

the science together, we begin from arithmetic, such as we know it,

and leave all additional considerations till the want of them is felt.

We shall thus see one new result spring up after another, until we

find the necessity of speaking a new language, and giving interpreta-

tions to symbols which we did not at first contemplate. How this is

done, and what it leads to, we cannot otherwise explain than by di-

recting the student to proceed to the first chapter.



ELEMENTS OF ALGEBRA.

CHAPTER I.

EQUATIONS OF THE FIRST DEGREE.

We now proceed to the solution of equations of the first degree.*

This term must be explained.

To find the degree of a term generally, count the letters in it.

Thus, abc is of the third degree; aabc is of the fourth; for though

there are only three letters, yet one of them occurs twice. The fol-

lowing are examples

:

Of the first degree, a, b, c, x, z, p, &c.

Of the second degree, a a, bb, ex, be, pz, &c.

Of the third degree, aaa, aab, abb, abc, pac, &c.

and so on.

To find the degree of a term with respect to any letters, count

those letters only. Thus 3aaxxy, of the fifth degree, is of the third

degree with respect to x and y, of the fourth degree with respect to

a and .r, of the second degree with respect to x only, of the first

degree with respect to y only, and so on. A term which does not

contain x at all, is of wo degree with respect to x, or is independent of x.

The degree of an equation with respect to any letter, is the degree

of the highest term with respect to that letter. Thus the equation

xx — zxxx = yz — yyx

is of the third degree with respect to x, of the second with respect to

y, and of the first with respect to z.

* Commonly called simple equations.

B
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The solution of an equation of condition is the following problem :

— Given an equation of condition, containing a letter the value of

which is unknown ; what is that number for which the unknown letter

must stand, in order that the equation may be true ? Are there more

such numbers than one ? if so, how many, and what are they ? Or is

there no such number, that is, is the equation impossible ? and if

so, how is that to be ascertained?

The scope of this will be better seen by some instances, which the

pupil may verify.

The equation

2a?— 1 = 5 a;- 19

is true then, and then only, when x is 6.

The equation

2x- 1 = 5x + 12

cannot be true, whatever x may stand for.

The equation

16a; = 48 + xx

is true when x is 4, and is also true when * is 12 ; but never in any

other case.

The equation

12a: = 48 + xx

is never true for any value of x.

The equation

xxx + Ua; = 6xx + 6

is true when x is 1, when x is 2, and when x is 3 ; and in no other

case.

As an example of verification, let us try the latter equation when

x = 4. Thea
a;a;a; = 64 6xx = 96

11* = 44 6a;a; + 6 = 102

xxx + 11a; = 108

But 108 is not = 102; therefore xxx -f-lltf is not = 6xx + 6,

or x = 4 does not satisfy the equation.

We shall now use the following evident truths :

1. If equal numbers be added to equal numbers, the sums are

equal numbers. That is, if a = b and c = d, then a + c = b + d.

If a = b — c and x = p — q, then a -{- x = (b — c) •+- (p — q) =
b +/>— c— q. If a = .t— y, and b ~ x 4- y, then a + b = (x—y)



I-IHST DEGKI

+ Cr + 3/) = *—.y-H-r-Kv = 2 jr. If a = b -f c, then a -\- v =
b + c + v.

2. If equal numbers be taken from equal numbers, the remainders

are equal numbers. That is, if a = /> and c = d, then «— c = 6— «\

If a =/>— 9 and 6 = />— 2q, then a— 6 = (/>— 9)— (p— 2q) =
p— q —p -f- 29 = <?. If a = z -f-y, then a— ;n = z -\-y— m.

3. If equal numbers be multiplied by equal numbers, the products

are equal numbers. That is, if a = b and c = d,ac = bd. If a =
6 -ft', and 2 = n, then az = n(b -f-c) = nft-p-nc. If d = /— v,

2t/= 2/— 2v.

2 3

Then ^+2|= 2 or *+y =2

3a; +3^ = 6
o

or 3#-f-2a; = 6

4. If equal numbers be divided by equal numbers, the quotients

are equal numbers. That is, if a = b and c = d, then - = -. If

M = n, then -a-, If a = 6— c and » + o = z, then —— =
7 7 r J

p + q

tz£. If 7* = 14, then y = y, or x = 2.

The following abbreviations will be used, on account of the con-

tinual occurrence of the phrases :

(-f)« means, add a to both of the last-mentioned equal quantities,

which gives ....

(—)a .... subtract a from both of the last-mentioned equal

quantities, which gives ....

(x)« .... multiply both the last -mentioned equal quantities

by 0, which gives ....

(-j-)a .... divide both the last-mentioned equal quantities by

a, which gives ....

(+) (—) (x) and (-7-) by themselves I use to denote that the

two last-mentioned sets of equal quantities are to be added. The

following will explain the use of these abbreviations

:

1. a = b—

c

a— b = q + x

( + )c a + c = b ( + )6 a = q + x + b
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2. c— e? = l—m 2 a;-3 = 9

(+)«*+ »» c +m = l + d (+)8 2a; = 12

3. p + q = a—b 11a; + 18 = 100

(--)? ^ = a—b— q (-)18 Ux = 82

4.

-)?—

*

p +q—

z

P

= 3a+4
= 3a-f-4--q + z

5.
X X 27 __ 7x 5x 3

f N10 12# 12,r 324 84.r 60,r 36

or 6x—4x + 8l = 14a;—5x + 9

6. ax = b (a + b)x = c

(-f-)o a? = - (-r-)a-|-6 a; = —r-rx 7 a \ / i a-\-b

7. a—b +2c—3d = x—a + b

b + 3c-2d = 4a;-a-26

( + ) a + 5c—5d = 5a;— 2a—

6

8. 2<2# = b—z
a = £ + #

(+) 2* = S3
We shall now proceed to the solution of equations of the first

degree, containing one unknown quantity, by means of the principles

in pages 2 and 3, and the preceding operations.

1. What value of x will satisfy the equation

3a;-7 = a; + 19

(+)7 3a? = a; + 26

(-)a? 2a; = 26

0)2 x = 13

Verification. If X = 13, 3a;— 7 = 32

a; + 19 = 32

2. 3ar+16 = 10a; + 9

(-)3ar 16 = 7a? + 9

(-)9 7 = 7a;

(+>7 1 = x
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Icnjhution. If mtmlg 3:r+ Hi = 19

10* + 9 = 19

3. 20*- 13 = 102 J -a;

(+)13 20* = 115J—

*

(+> 21* = 1151 = ™

(-)21 ^=2^1 (Ar ' m -

}

- 231 - 5*

Verification. If 9 — 5J, 20x— 13 = 97

102$-a = 97

4. f + f = i_f2^3 4

(x)2
.2* ,r

^3 2

(x)2 g*+lf = 4-*

(x)3 6*+4.r = 12-32

(+)3* 6x+4x + 3x = 12

t is 13* = 12

(+)W
12

X " F3

,r ./. • t/. 12 i
,
i 5 . 5 12 10

Venjicatum. If x = -, - + - or -X is - of -, or -.

And 1 — -risl — iTof— ), or 1 — —-, which is also —

.

4 \4 13/ 13 13

The same equation might be more easily solved by multiplying

both sides by any common multiple of 2, 3, and 4. The least com-

mon multiple is the most advantageous ; why, will appear on trying

a higher one, as follows :

2
+

3
= ~

4

36 is a common multiple of 2, 3, and 4.

/ \oa 36 J? , 36 x oct 36x
( X )36 _ +_ = 36

or \%x + \2x = 36-9*

(+)9* 18* + 12#+ 9j; = 36

B2
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that is 39 X = 36

(-r-)39 x = — , which, reduced to its lowest

terms, is
12

13

Now try 12, the least common multiple of 2, 3, and 4.

X X , X

2
+

3
~~

4

(x) 12
1

-|^ + l|f =12-Iif

or 6x + 4x = 12— 3a;

Proceed as in the last case but one ; and no reduction of the result to

lower terms is necessary.

5. ab+a— b = 1

This equation differs from the preceding in* having two unknown

quantities. The real answer is, that there is an infinite number of

values of a and b, which will satisfy this equation. If we choose a

value of b, we can find the value of a, which, with the chosen value

of b, will satisfy the equation. For instance, I ask, can b be = 12 ?

Substitute 12 for b in the above equation, which then becomes

12a+a-12 = 1

or 13a- 12= 1

( + )12 13a =13
0)13 a = 1

The answer is, b may be 12 provided a be 1. In this case,

ab = 12, and 12 + 1 — 12 = 1.

Without making any particular assumption about the value of b,

let us suppose it given ; in what way must we combine this known b

on the first side with the known unit on the second side, so as to

point out the manner of finding a so soon as a particular value shall

have been assigned to b ?

Resume the equation

:

ab +a—b = 1

( + )b ab + a = 1+&
But ab -|- a is a taken one more than b times; that is, ab +a =



FIRST D] 7

Therefore + b) a = 1+6

(+)TTI a =
r+i,

= ]

The answer, then, is the following: b maybe what we please,

provided a be 1

.

Verification. If a = 1,

ab+a— b = 6 + 1 — 6 = 1.

We have given this instance to shew how soon the operations of

algebra lead to unexpected results. We will now take another

instance.

6. xy = x+y + 1

Knowing the value of y, to find that of x.

(— )# xy—x=y + l

but xy— x is x taken once less than y times, or (y— l)x. Therefore

(y-l)x = y + l

(+)i=l a; = *—

-

Particular case. Let y =. 5, then

_ 5 + 1 __ 6 3
" 5—1 "~ 4

~~
2

Verification.
3 K 15

x+y + \ = 3
, K . 1

3
.

10
,-+5 + 1 = 2 + T +

2 _
2

~~
15

2

General Verification.
y+ l# = -—- xy =y—\ y

y(y+i)
(y-1)

*+'/+i = fzrl+.y+ 1

= y+ * y(y—

O

-

y—

i

J—lj y-1 ^Jf— 1

= (y + i)+y(y-i) + (y-i)
j,-l

_ y + 1 +3y3/—y+37— 1

y-i
__ yy+y _ y(y + i)

y— i
' y—

i

7. Two labourers can separately mow a field in 4 days and 7

days. They begin to work, and on the second day are joined by a

third, who alone could mow the field in 10 days. The third remain-
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with the former two for a certain time, after which he leaves them;

and it is then found that exactly four-fifths of the field have been

mowed. How many days is this altogether?

[This question is introduced to shew how very soon algebraical

symbols may be made to simplify complicated arithmetical reasoning.]

The fractions of the field which the first and second could mow in

a day are - and -. Let x be the whole number of days ; or, that

number being unknown, let x stand for it until it is known. Then

the first man, who does one-fourth in one day, two-fourths in two

days, &c, will in x days do ^-fourths, or the fraction — of the field.

In the same time the second does - ; but the third, who works one

x I
day less, at the rate of one-tenth a day, does . Therefore, all that

is done of the field is

x x x—

1

4
+

7
H

To"

4
But by the question this is -, which gives

o

xx x—

1

4

4
+ 7*^ 10~ ~ 5

The least common multiple of 4, 7, 10, and 5, is 140 (Ar. 103).

( x)i40 ^+22^+^1) - V%*
or 35a?+20ar + 14(ar-l) = 112

or 35x+ 20x+Ux-U = 112

[because 14(.r— 1) = 14^—14]

therefore 69x— 14 =112

(+)14 69a: =126

(H-)69 *=!^ = i?=li?V y
69 23

A
23

Verification.

In 1 day and — of a day, there is mowed by the first - and --
Zi 4 23

of
I»

or ^ of 7' or 7^ of the field
> the second mows -- of - or4 16 4 46 23 7

6 , . 12
23'

Is 4« '
anc* l^e tn ^rd

;
wno works one day less than the others,
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. 19 „ . . , 19 p 1 19 ,

or only — of a day, does in that time —
- of —-, or — , that is

J
23 23 10 230

— of the field. But
400

21 ,
12

,
38 368 4 . ,

46
+

i6
+

4T0 = i60=5' aSreC
l
Uired -

J— 3 .r—

4

__ o x + \

~2i 6!,

~~
5

A common multiple of 2£ and Q\ (not the least, which is 95,

and with which the student should also solve the equation) is 570,

which contains the first 228, and the second 90 times. It is also a

multiple of 5.

(x)570 |5(*_3)-^(*--4)= lff0-2?(«+l)

or 228(*-3)-90(a;-4) = 1710-]14(a? + ])

But 228(.r— 3) = 223*— 684, &c.

Therefore

(228*-684)-(90a;-360) = 1710-(114a;+114)

or 228^-684-90^+ 360 = 1710-114^-114

( + ) 684+114*--360 228#-90a:+ l]4;r

= 1710-114+684-360 or 252x = 1920

(-s-)W 21a? = 160

C-s-)2l
160 -13

* - ST - 7
ST

Verification. If
160

=
"2T

x — 3

2*

97 97

21 21 194 194

2£ 5 105 5X21
2

76

4 21 228 228

| 19 399 19X21
3

X—
6j

x— 3 or—

4

194 228 2546 134

2£ 6| 5X21 19X21 ~~ 5X19X21 "~ 5X21
181

x+i _TT _ i8i

5 ~" 5
~~

' 5x21
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o * + l 134 .

o — = -, the same as before.
5 5X21*

From these cases we may lay down the following rules for the

solution of equations of the first degree.

1 . To clear an equation offractions, multiply both sides by any

common multiple of all the denominators : generally , the least common

multiple is the most convenient.

The following are some useful applications of this principle

:

a c , X 7 j abd cbd , 7

From the preceding equation the student is left to deduce the

following

:

cb , ad ad , bc

d c b a

1 - — i - - _L * - . A 1 -- a

a cb b ad c ad d bc

From the first of the following equations let the student deduce all

the rest.

ab cd cdxy abpq a cdx

xy pq pqb ' cdy y pqb
ab dxy 7 , b ex— = —- abpq = xyed -r- =
c pq r * •' dy apq

2. Any term ofan equation may be removed from one side to the

other if its sign be changed. If this have not already occurred to the

student from the preceding examples, it may be established by the

following

:

Let a + b = c + d—e
(-)b a = c +d—e—b
( + )e a + e = c + d—b
In applying the rule for clearing an equation of fractions, care

must be taken, when the denominator is removed, to remember that

the sign which was placed before the complete fraction now belongs

to the complete numerator, which should, therefore, be placed in

brackets, or the proper rule for addition or subtraction applied at

once. The following example will shew what is meant.

x— a c-\-x j x—

e

z + —T -4- = d
b ab a

(x)ab abx +a(x—a)—(c + x) = abd—b(x—e)
or abx+ (ax—aa)— (c+x) = abd—(bx—be)
or abx +ax—aa—c—x = abd—bx + be
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The mistake to which the beginner is liable is, to write — c -f r

and — l, x — be, instead of — c— X and — bx -\- be.

By the second of the preceding rules,

abx + ax -f- bx — x = abd + aa + c + be

or (ab + a + b — ])x = abd + aa + c + be

, . abd + aa + c + be /1x
(+ ) ab + a + b-l X=

at + fl+t_! CD
Verification.

abd4-aa-\-c4-be
x— a — -—r-'—- '

' — a
ab + a + b—

1

abd 4- aa -\- c -f- be— a(ab + a -f- 6— 1)

«& + « + &— 1

_ abd -\- aa + c -\-be — aab — aa— ab + a

ab + a + b— 1

__ abd -{-

a

— a£

—

aa£4-c4-Z>e

ab -\- a -\- b —

1

a1— a abd-\-a — ab— aab -\- c -\- be ,~\

~b~
~

b(ab + a + b— 1)
W

And by similar processes

+ .r abc-\-ac -f b

ab ab{ab

x— e abd + aa + c— abe— ae-\-e

c + x abc+ ac-\-bc-\-abd-\-aa-\-be ,qv

ab ~~ ab{ab + « + &— !)
^ '

« a(a6 + a + 6 — 1)
( '

Reduce (1) (2) (3) and (4) to a common denominator, which can

be done by multiplying the numerator and denominator of (1) by a b,

of (2) by «, and of (4) by b. Then form

*+*-T
f - £^f

-
or 0)+(2)-(3)

which will be found to be

aabbd-\-aabd-fabbe-\-abe— aab— abd— be— be

ab(ab-\-a-\-b— 1)

aabd + a ad 4- abe -\- ae— aa— ad— c — e

a(ab-\-a-{-b— 1)

the latter of which arises from dividing the numerator and denomi-

nator of the former by b.

By similar processes,

d- X^^ or rf-(4)

will be found to have the same value as (1) + (2) — (3).

The student should not pass the preceding solution until he is

able to repeat the whole on paper without the assistance of the book.
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In the preceding equation, let c and e be each equal to nothing,

which reduces the equation to

. oc— a x 7 x
Z + —r r = d ;

b ab a
the value of x to

abd-\-aa
x ab+a + b—l '

and the value of each side of the equation, as just found, to

aabd-\- aad— a a— ad
a(ab + a + b — 1)

abd+ ad— a— d , .. ... . _
or — i

, , ,
(dividing numerator and denominator by a.)

These the student should find for himself from the equation.

We now look into particular problems to see what explanations

may be necessary. Various unforeseen cases will present themselves ;

and each case will be explained, and a problem will be given for

each, to shew how it may arise.

Anomaly 1 . Let a = 2 b = 3 d = -
6

The equation then becomes

x—2 x 1 x
* + ~3 6 - 6

~~
2

Then x = 2X3X
* + 2X2 = A = i

2X3 + 2 + 3—1 10 2

On attempting to verify the equation, we see that a contradiction

appears ; for x is -, and the operation x — 2, which is therefore im-

possible, appears in the second term. It seems, then, that an equa-

tion may give a rational solution ; and on attempting to verify the

equation by this solution, the latter may befound to be impossible. The

question now is, can such an equation arise from a problem? if so,

is it the problem itself which is absurd, or the way of treating it ?

If the latter, how is the method of solution to be set right?

Problem in illustration. A enters into this bargain with B,

that he is to take B's property and pay his debts, taking his chance

of gain or loss. On examination, it is found that B's property is

(debts allowed for) exactly the same as that of A, with this excep-

tion only, that B is in partnership with another, and he and his

partner have made a similar bargain with C. On examining C's

affairs, he is found to be insolvent by £100. The result of the whole
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is, that this transaction falls short hy £75 of making A '^ pn
,

twice as groat as it was. What u;^ A\ property!

Let x stand for A's original property, which is, therefore, ill

I) and Co., independent of their share in the engagement with C.

From the concluding paragraph we might presume that A is benefited

by the transaction, namely, that the £x of B and his partner is more

than sufficient to cover the loss arising out of their engagement with

C. Let this be so; then x — 100 pounds remains for B and his

partner, of which B's share, namely, £ (.r — 100) is by the bargain

transferred to A, who has, therefore,

,
x—-100

^ 2

This doubles his property all but £75, and is, therefore, the same

thing as 2 or — 75. Therefore,

(x)2 2x + x- 100 = 4* -150
4x-2x-x = 150-100

x = 50

This introduces into the equation the anomaly we are now con-

sidering, for is impossible. It also contradicts the suppo-

sition on which it was obtained, namely, that x is greater than 100.

We cannot, therefore, depend upon this solution. Suppose we try

the other supposition, namely, that .r is not greater than 100. In that

case, B and his partner have to pay £100, of which they can only

make good £x; of the remainder, or 100 — .r, A must, by the

bargain, make good B's part, or \ (100 — x). This he loses by the

transaction ; and having x at first, he has now only

100— x
x —

This doubles his property all but £75, or rather we must now change

this mode of speaking, which may seem to make one part of the

problem disagree with another, and say simply that A's property is

£75 less than twice what he had before. Hence,

100 — x ~
x — = 2* — 75

(x)2 2x -(100-*) = 4x- 150
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°r 2#-100+ :r = 4x- 150

or 2#+#-100 = 4#-150
which is now the same equation as before, and not absurd in its

present form ; for though (since it yields x = 50) x — 100 is absurd,

yet 2x + x — 100 is not so. Hence we see that the effects of the

wrong supposition, which made us write x + \ (x — 100), where

we should have written x — \ (100 — x), disappear in resolving the

equation, and leave the same result as we should have obtained by

proceeding correctly.

The anomaly arises from an error of this sort. If b be greater

than c, we know that

a— (b—c) = a— b + c

but if we have a — b + c, and wish to bracket b and c together, we

cannot do this correctly until we know which is the greater. If it be

b, the preceding is a— (6— c)
;

but if it be c, this should be

«+(c— b).

One or other of the preceding two is absurd, except only when b = c,

which makes them a — and a + 0, or a for both.

From hence we may see, so far as one instance can shew it, that

any mistake which amounts to no more than writing a — (6 — c)

instead of a -f (c— b), as the representative of a— b -f- c, makes no

difference in the final result. We here write, side by side, the solu-

tion of two equations, which only differ as above.

a— x , x— b
, x— a b— x*-—= C+— * +— = C -—

bx— (a— x) — bc + (x— b) bx + (x— a) = bc-(b-x)

bx—a + x = bc+x—b bx+x—a = bc— b + x

The remaining part is common to both.

bx = bc + a— b

be -\-a— b
x =—s—

Anomaly (2). Let

ax + b = cx + d
ax— ex = d—b
(a— c)x = d—b

_ d—b
a— c
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Let it happen that d is less than b, but a greater than c, as in the case

of 3#+4 = 2.r + l

There is then an impossible subtraction in the numerator of the

result; and it is sufficiently evident, on other grounds, that the equa-

tion is impossible ; for if a be greater than c, ax must be greater than

ex ; from which, if b be greater than d,ax-\-b must be greater than

ex + d, and cannot be equal to it. A similar question may now be

proposed to that which arose upon the last anomaly. (See p. 12.)

Problem I. in illustration. In the year 1830, A's age was

50 and B's 35. Give the date at which A is twice as old as B.

This must either be before or after 1830. Try the second case,

and let the required date be 1830 + x.

Then A's age will be 50 + x

. . B's 35 + x

and 50 + a- = 2(35+ a;)

or 50 + ^ = 70 + 2*

2x -x = 50-70
Here we see an impossible subtraction, and it is also evident that

2x + 70 must be greater than x + 50. Now, try a date before 1830 ;

say 1830 — x.

Then A's age was 50 — X

..B's 35 — a;

and 50 - x = 2(35-*)

or 50 - x = 70 - 2x

2x-x = 70-50
or x = 20

An evidently true answer; for in the year 1830— 20, or 1810, A's

age was 30 and B's was 15. Here then we see that an impossible

subtraction may arise from assuming a date to be after a certain epoch

which is in fact before it, or vice versd.

Problem II. A and B have accounts together. The state of

their affairs is this: Give A half as much as will make their dealings

worth £500 to him, and give B £100, and they will then, after settling

their account, have equal sums. How does their account stand ?

The balance is either in B's favour or in A's. Take the latter,

and suppose A ought to receive £x. Then 500 — x will make this

transaction worth £500 to him, because
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x + (500 -x) = 500

Give him \ (500 — x) and he will have (when B pays him)

, 500— x
* + -T~

Now B, when he gets the £100, must pay £r to A, and will

therefore have £(100— x). But they have then equal sums ; therefore,

,
500— x 7Arkx H — = 100 — x

(x)2 2a; + (500-ar) = 200 -2a:
or 2x + 500— a? = 200 - 2x

2x + 2x-x = 200 — 500

or Sx =200-500
which is impossible. Try the other case, and suppose the balance to

be in B's favour, and that he ought to receive £r. Then, to make A
worth £500, his debt to B must be paid, and he must receive £500

besides : that is, he must receive 500 + x. But of this one-half only

is given, or \ (500 -f- x), out of which, when he pays £r to B, he will

have
500+ x

2
— #

Now B gets £100 and also £r from A, and will therefore have

100 -f- x pounds. And, since they have then equal sums,

500+ x , Ar. ,

g X — 100 + X

( x )2 500 + x-2x = 200 + 2x

2x + 2x-x = 500-200
or 3x = 300 and X m 100

Therefore A owes B £100.

Problem III. A traveller proceeds along a road on which, at

various intervals, are found direction-posts variously numbered, point-

ing north or south. As soon as he reaches No. 1, he proceeds in the

direction pointed out by it till he reaches No. 2, and so on. He finds

the first direction-post after he has travelled 16 miles north, and he

finds also that he changes his direction at every post which he meets

after the first ;* that the distance between every two posts is double

* The problem does not say whether he changes his direction at the

first, or not.
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that between the preceding, and that, at the fifth post, he is 86 mile*

north of his first position. What is the arrangement and character of

the posts ?

After travelling 16 miles north he reaches a post, and we are not

told whether he is there directed to go on or turn back. Let us

suppose the former, and that he travels x miles further north before

he reaches the second post. He will then be 16 -\- x miles north of

his first position. At the next post he has to turn back, and proceed

2x miles south. Here two cases arise. If 2x be less than 16 -f- l >

the third post will be north of his first position by 16 + x— 2*

miles; but if 2x be greater than 16 +- x, the third post will be

south of his first position by 2 x — (16+.r) miles. Suppose the

first ; then between the third and fourth post there are 4 x miles,

and he has to go north from the third, therefore he will meet the

fourth post at 16+ a:— 2x + 4x miles north of his first position.

At the fourth post he turns south, and after proceeding 8 a? miles,

meets the fifth post, his position north of his first position being then

16 + x— 2.r-f-4,r— 8x miles. But this by the problem is 86

miles : consequently

\6 +x-2x + 4tx-$x = 86

or 8*— 4a; +2x-x = 16-86

or 5x = 16-86
in which there is an impossible subtraction. Let us now try the other

hypothesis, and suppose that at the first direction-post he has to turn

south, and that he finds the second after proceeding x miles south,

or at 16 — x north of his first position, or x — 16 south, according as

x is less or greater than 16. By the same attention to the expressed

conditions of the problem, we find that

16— x+2x—4x + 8x m 86

8x-4x + 2x-x m 86-16
5x = 70

X wm 14

Consequently the positions of the posts are as follows :

South North

(4)03- (2)W- £0(1) £0(3) (.5)

26 + 2 16 30 86

II

si
c 2
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Under each is marked the number of miles at which it is from his

first position.

If we collect together and look at the correct and incorrect equa-

tions which we have found in the three preceding problems, we shall

have the following :

Problem I.

Incorrect, 50 + a; = 2(35+ x) or x = 50— 70 years after 1830

Correct, 50— x = 2(35— x) or x = 70— 50 .. before..

Problem II.

_
t
500— x

,
, nn 200—500 . . , _ .

Incorrect, \-x = 100— #or3; = whichBowesA
2, o

„ 500 + .r 1AA ,
500—200 A „

Correct, — x = 100 + #or x = - .. A .. B

Problem III.

Incorrect, 16 -f- X— 2x+ Ax— 8a; = 86 orx = milesnorM

Correct, 16— X + 2x— 4x + 8a; = 86 or x= miles south
5

From which, as well as from other instances, the following principle

is clear

:

When the value of x, deduced from an equation, contains an im-

possible subtraction, both the equation and the meaning of x have

been misunderstood, and require alteration.

1. To correct the equation, alter the sign of every term which

contains x once only as a factor.

[The words in italics are inserted to remind the student that we

cannot draw any conclusion from the preceding as to equations

which contain such terms as xx, xxx, &c. All our equations have

been of the first degree]

2. To correct the result, invert the terms of the impossible sub-

traction (that is, change 50— 70 into 70— 50), and let the quality of

the answer be the direct reverse of that which was supposed when the

incorrect equation was obtained. Thus, change years after into years

before ; property into debt; distance measured in one direction into

that exactly opposite ; and so on. Or, whatever alternatives it may

be possible to choose between in assuming x, provided one be the

direct reverse of the other, then, if one alternative produce an impos-

sible subtraction in the value of x, the other. is the one which should

have been chosen.
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An equation generally obliges us to take a more extensive view of

the question than tlie words of the problem will bear, and will fre-

qu< ntly show that the view taken of the problem is not in every part

a consistent whole.

In the preceding questions we have taken care to leave every

possible case open in the statement of the problem : thus we have

said (Problem I.), " Give the date at which A is twice as old as B,"

not " How long will it be before A is twice as old as B?" because

the latter would be tacitly assuming that the event is to come,

whereas it would be found out that the event is past, and the implied

statement is erroneous. We write underneath the correct and incor-

rect mode of enunciating the question.

Correct.

In the year 1830, A's age was

50 and B's 35. Give the date

at which A is twice as old as B.

Answer.

20 years before 1830, or in

1810.

Incorrect.

In the year 1830, A's age was

50 and B's 35. When will A
be twice as old as B ?

Answer.

Never; but A was twice as

old as B 20 years ago.

The chance of an impossible subtraction occurs in both; but in

the first it arises from a question being left open to the student, who

may choose the wrong alternative ; in the second it arises from a

wrong alternative being already tacitly assumed in the problem.

The alternatives presented by a problem may generally be ascer-

tained with ease; but if not, the equation itself is frequently a guide.

Anomaly 3. Let Sx— 10 = 2x— 8

3.r-2:r = 10-8

x = 2

On verifying this equation we find each side to contain an

impossible subtraction, for 3x— 10 is 6— 10, and 2 .r— 8 is 4— 8.

After what has been said on the last case, we need not dwell upon

this ; the problem in the next page will furnish an instance.

Somewhat similar to this is a mistake in the process which may

introduce an impossible subtraction into both numerator and deno->

minator of the answer. If, in solving ax + b = c.r-f-rf, thus,

ax— ex = d— 6 or .r = , we afterwards find a less than c, and
a— c
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d less than b, it is a sign that we ought to have chosen the process

ex — ax = b— 4. This is a mistake in the order of operations only,

and not in the conception of the problem.

Problem. Divide the number 13 into two parts, in such a

manner that three times the first may exceed half the second as much

as the first exceeds 4.

It will be found from the resulting equation, namely,

13— x .

OX — = X— 4

(where x is the first part) that x = 1, and therefore the parts of 13

required should be 1 and 12. But the problem is then impossible,

for three times the first does not exceed half the second. But if the

words "fall short of" be substituted for "exceed" throughout the

problem, the equation becomes

13 — x .

the answer to which is x = 1 as before, and the problem is possible

;

for 3x or 3 falls short of £(13— x) or 6, as much as x or 1 falls

short of 4,

We now ask how it happens than an equation gives a rational

result, by which, when it is tried, the equation itself is proved to be

irrational; and are we to conclude that no answer to an equation

holds good until it has been tried upon the equation, and found to

satisfy it rationally ? Let us examine our first instance. The

equation is

3^-10 = 2^-8
and the answer x = 2, when applied to the equation, gives

6-10 = 4-8
It so happens that the rules for solving an equation give the same

answer to both of the following

:

3#-10 — 2#-8
\0-3x = 8-2*

And the following example will shew how this happens

:

ax—h = cx—d b—ax = d—cx
ax— ex = b— d b— d = ax— ex

X = in both.
a— c

Hence, when an anomaly of the kind treated in this article occurs,
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it is the sign of a misconception of the right way of viewing the

problem, but of a misconception which no way affects the result.

Anomaly 4. If we first solve the equation

ax + b = cx+ d

which gives X = , and if it should happen

(without our observing it during the process) that a=cora — c = 0,

we shall then find an answer of the following form,

d— b

which is unintelligible; because there can be no answer to the ques-

tion, " How often is nothing contained in d— b? " or, at least, if there

be any answer, it is, " Nothing, however often it may be repeated,

yields nothing, and therefore cannot be repeated often enough to

yield d— b." On returning to the equation, we see that the supposi-

tion of a = c gives ax = ex, so that, as far as the equation only is

concerned, it is always true if b = d, and never true if b is unequal

to d. But in giving further explanation of problems which produce

such equations, we shall employ the following principle, the propriety

of which is obvious.

When any supposition (such for instance as making a = c in the

preceding equation), makes the results of ordinary rules unintelligible,

then, instead of making a exactly equal to c, let it be made very

nearly equal to c, and observe the result : afterwards suppose it still

nearer to c, and so on ; the succession of results will inform us whether

any rational interpretation can be put upon the result of supposing

a = c, or not. We shall now try a problem in which the preceding

difficulty will be found to occur.

Problem. There are three trading companies, of 4000, 5000,

and 9000 shares respectively, and all three would, if broken up, pay

the same dividend upon their shares ; but if every shareholder in the

second advanced his company £10 on each share, and every share-

holder of the third advanced £12 in like manner, then the first two

companies together would have the same total assets as the third
;

what is the dividend which each company could now pay ?

Let x pounds per share be that dividend. Then, after the advances

supposed in the problem, the three companies could pay x, jr-f-10, and

t + 12 pounds per share respectively; which, taking their number of

shares into account, supposes them to be in possession of 4000 x,
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5000 (x + 10), and 9000 (x + 12) pounds respectively : between

which the last clause of the problem gives the equation

4000* + 5000(* + 10) = 9000(* + 12)

(-f-)lOOO 4* + 5(*+10) = 9(*+12)
or 9* + 50 = 9* + 108

In which we recognise the anomaly which is the subject of this

article. Nor can we in this case, as in page 18, account for the

impossibility by supposing that we have mistaken the problem, and

that the three societies are at first insolvent, and are in debt upon

each share ; for, if we make this supposition, and let x be the amount

they fail for upon each share, we have already seen (and the student

must make himself sure of the same in this particular case) that the

resulting equation will be

50-9* = 108-9*
which is equally impossible with the former. We shall, therefore,

now try the consequences of a slight change in the conditions, agree-

ably to the preceding principle. For instance, we will suppose the

third society to have only 8999 shares, instead of 9000. The equation

then becomes

4000* + 5000(* + 10) = 8999 (a + 12)

or 4000* + 5000* + 50,000 = 8999*+ 107,988

4000* + 5000*-8999* = 57,988

or x = 57,988

The answer therefore is, that each society could at first pay £57,988

per share. Let us try the effect of a still smaller change, and suppose

the third society to want only the hundredth part of a share of 9000

99
shares, that is, to have 8999— shares. Then we have

4000* + 5000 (* + 10) = 8999^ (* + 12)

4000* + 5000* + 50,000 = 8999^* +8999^ x 12

4000* + 5000*-8999^* = 8999^ x 12-50,000

Jj-i 2^x12-50,000

( x )100 * = 899,999 x 12-5,000,000

* = 5,799,988
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or each society can pay £5,790,988 per share. In the same way, if

999
we take the third society at 8999

j
—— shares, we shall yet have a still

greater answer, and so on. A similar result would be obtained by

increasing the 4000 or 5000 shares of either of the other societies.

Therefore, the answer to the preceding question is, that no number is

great enough to satisfy the conditions of the question; but that if these

conditions be slightly altered, an answer may be found, which answer

is a greater number the slighter the alteration just alluded to. Dis-

missing the problem, which we have only introduced to shew that

such anomalies may arise in the application of algebra, we return to

the consideration of similar equations.

The solution of

ax = bx + c

c
is x = r

a—b

in which, should it happen that a = b, the answer is unintelligible,

being -, and the equation impossible, being

ax = ax -f c

but if a exceed b by any quantity, however small, the equation and

its answer are both rational. Let a exceed b by the fraction of unity

— , then the equation becomes

lb H j x = bx + c

bx H— = bx -f c
X

m

VI
(-)bx — = c (x)m x = mc

The same might be obtained from the preceding answer, for

c c

~ a— b
~"

1

m

To make a exceed 6 by a small quantity, — must be small, that

is, m must be large; and in this way we may get an equation whose

answer shall be as large as we please. For instance, let c be 1 ; and

suppose we want an equation of the preceding form whose answer
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shall be 1,000,000. Let w = -————. Then such equations as7

1,000,000 H

the following have the answer x = 1,000,000.

A number which does not satisfy an equation may, we can easily

conceive, nearly satisfy it. But this word nearly is too indefinite for

our purpose, as we shall now shew. Suppose we have the equation

7 x = 2x + 3, and we try whether x = 1 will satisfy this equation.

It will not ; for the first side is 7 {x being 1), and the second side is

5; that is, the first side, instead of being equal to the second, is

greater by 2. The same result applies, in the same words, to the

equation 7<r = 5,r + 19&3, if we try x = 1000 upon it ; for the first

side becomes 7000, and the second 6988. Shall we then say, x = 1

satisfies the first as nearly as x = 1000 does the second? Is 7 as

near to 5 as 7000 to 6988 ? If we look at the differences only, we

must answer yes ; for

7-5 = 2

7000-6998 = 2

but in the common use of the word near* (to which it will be conve-

nient to keep) it would be said that 7000 is nearer to 6998 than 7 is

to 5. In the first case, the difference is 2 out of 7000; in the second

it is 2 out of 7. Keeping to this meaning of the term, we shall in

future consider ax and ax-\-c as nearer to equality when x is greater

than when it is smaller. And in this sense we say, that when a

problem leads to such an equation as

ax = ax + c

the result is, no number is great enough to be an answer to the

problem ; but the greater any number, the more nearly is it an answer

to the problem.

Tried by the common rules (which, in this case, lead us too far)

the answer to the preceding equation is

c c
X = or -

a— a

* In the making of a bargain, ^6998 would be considered as .the

same price, within a trifle, as J_ 7000 ; but any thing at,/? would be con-

sidered dear as compared with the same at <£b. We might multiply

instances in which the same quantity would be considered small under

some circumstances, and great under others.
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and it is customary to say, that - means an infinite number, and that

the answer is infinitely great. Taken literally, such phrases are un-

meaning, because we know of no number which is infinitely great,

that is, greater than can be counted or measured. But the word

is often used ; and we shall, therefore, adopt it with the following

meaning

:

By saying that - is infinite when q = 0, we are to be understood

as meaning no more than a short way of expressing the following :

—

When q is small, - is great; if q become still smaller, - is still

greater, and so on ; so that - may be made to exceed any given

number, however great, if q be taken sufficiently small. And when

we say the answer to a problem is infinite, we mean that no number

is great enough to satisfy the conditions of the question ; but that

any great number nearly does so, a still greater still more nearly,

and so on ; so that the problem may be answered within any degree

of nearness (short of positive exactness) by taking a sufficiently great

number.

Anomaly 5. The solution of

ax +b = ex + d
d—b

IS X =
a— c

Now, if it should happen that, after the solution of this equation,

it becomes necessary to suppose a equal to c (as in the last case), and

b also equal to d, the answer

d—b .

must be written -
a— c

which has no meaning. On returning to the equation, we no longer

find any necessity to give x one value rather than another ; for, if a

be = c, and b = d, then ax -f- b is equal to c x + d, whatever x may

be. Therefore the answer to the question is, that every possible value

of x satisfies the conditions. We shall apply this in the following

Problem. Is there any number such that a times one less

than the number, added to b times two more than the number, is

exactly c times the number; a, b, and c, being given numbers or

fractions ?

D
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Let x be that number , then

a(x — l) + 6(a? + 2) = ex

ax-— a + bx + 25 = ex

ax + ba- — ex = a --26

(a + b — c)x = a--26

Verification.

* ' = a + b

a — 2b

a + o — c

3b
i is_ c

«(ar— 1) - ac — 3 a b

a-\- b — c

x + 2= 3a ~
a-\-b

-2c

— c
b(x+2) = 3ab— 2bc

a -\- b — c

a(x— 1) + b{x + 2) = oc— 2 6c c

r
i + b C 6

(a— 2 b)

+ 6 —

c

a — 2b

o+6— c

Suppose that a is 8, b is 4, and c is 12, or that the problem is the

following :—What number is that, one less than which multiplied by

8, added to the product of 2 more and 4, is equal to 12 times the

number ? Here we find a—2b = 0, and a+b— c = ; so that the

preceding answer takes the form - : trying this case by itself, to find

out the reason, we have the equation,

8(a--l)+4(a?+2) = \2x

8#_8+4;r + 8 = 12a?

12# = 12a?

which being always true, the answer is, that every number and frac-

tion whatsoever, which is greater than 1, satisfies the conditions of the

problem ; a result corresponding to the interpretation we have already

seen reason to put upon the form -.

We shall now proceed to the solution of some problems, in which

the preceding method and principles will be applied. As instances

will be taken from different parts of natural philosophy, we shall

divide them into sections, and state at the head of each the facts on

which the solution depends.

Examples.— Section I. Specific gravities.— By the specific

gravity of a body is meant the number of times which its weight is
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ofllie weight of an equal bulk of water. Thus, when we say that the

lie gravity of brick is 2, we mean that a mass, say a cubic foot

of brick, weighs twice as much as a cubic foot of water* A cubic

foot of water weighs about 1000 ounces avoirdupois.f

Problem I. One pint of water is added to three pints of milk

(specific gravity 1*03) : what is the specific gravity of the mixture I

If a pint of water weigh m ounces, then one pint of milk w«
i

103 xw ounces, and the whole four pints of the mixture weighs

m + (l-03w) x 3, or m + 3'00m ounces. But four pints of water

weigh 4 m ounces; therefore the specific gravity of the mixture (see

the preceding definition) is

m + 3-09m 4-09

m

4-09 , A^ ror — or —— or I '0225
4/77. 4 777, 4

N.B. Here is an instance of a quantity m introduced for conve-

nience, and which disappears in the process. The question itself is

too simple to require an equation.

Problem II. A number of cubic feet (//?,) of a substance whose

specific gravity is a, is mixed with n cubic feet of another, having the

specific gravity b. What is the specific gravity of the mixture ?

It is plain that the m -\-n cubic feet of mixture will be as heavy

as ma-{-nb cubic feet of water. Therefore the specific gravity re-

, . 7?7 a + n b
quired is .

m + n

Exercise. Try to shew that must lie between a and b.

m 4- 74

Problem III. How much of a specific gravity 2 must be mixed

with 20 cubic feet of specific gravity 10, in order that the specific

gravity of the mixture may be 5 ?

Let x be the number of cubic feet in that quantity. Then the

whole 20 4- * cubic feet of mixture has the same weight as

20 x 10 4- x x 2, or 200 4- 2 x cubic feet of water. Therefore the

.. 200 + 2* .

specific gravity is — , and

2

H*l* = 5 or 200 + 2a; = 5(20+*) /. x = 33J

Generalisation of the preceding. How much of a specific gravity

* Atmospheric air is often taken as the standard of gases. Water is

about 800 times as heavy as air.

t Kasy to recollect, and remarkably near the truth. Let the student

deduce it from Ar. Art. 217'.
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a must be mixed with m cubic feet of a specific gravity b, in order

that the specific gravity of the mixture may be c ?

Let x be the quantity required. Then x cubic feet of specific

gravity a weigh as much as a a- cubic feet of water, and m cubic feet

of specific gravity b as much as bm cubic feet of water. Hence the

whole mJfX cubic feet of mixture weigh as much as bm + ax cubic

feet of water. Hence, as in the particular instance above,

bm + ax ,

m + x
= c bm + ax = c(m + x)

= cm + cx

bm—cm ss ex—ax or (Z>—c)m = (c—a)x
b— c

x = .m
c— a

This is rational when b is greater than c, and c greater than a ; that

is, when b— c and c— a are possible. It is also rational when b— c

and c— a are both impossible; since, in this case, the apparent irra-

tionality arises from our having converted

bm+ax = cm + cx into bm—cm = ex— ax

instead of cm—bm = ax— ex
c j

and the rational answer is x = .m. In this case a is greater
a— c

°

than c, and c greater than b. That is, this problem is rational when

c lies between a and b. If c do not lie between a and b
f
then a

rational problem is formed, as in page 18, by supposing x the direct

reverse of what it was last supposed to be ; that is, by supposing the

vi cubic feet of specific gravity b to allow of the substance of specific

gravity a being subtracted from it, or to be itself a mixture already

containing that substance. That is, solve this problem : How much

of a specific gravity a must be taken from m cubic feet of specific

gravity b, so that the specific gravity of the remainder may be c ?

The answer will be found to be

c— b b— c
X = .m or x = .m

c— a a— c

according as c is greater than both a and b, or less than both. But

here may arise another of the anomalies previously explained. Sup-

pose, for instance, we ask how much of a specific gravity a (= 10)

must be taken from m(= 20) cubic feet of a specific gravity £>(= 6),

in order that the specific gravity of the remainder may be c (= 12).
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(Call this problem A.) Here, though the problem is evidently im-

possible, the answer will be rational, being

and the impossibility is detected, not in the form of the answer, but

on looking at the problem, with which the answer is inconsistent; for

60 cubic feet cannot be taken from 20. The equation from which

this answer results is

120^10r = 12 or 120-10* = 240-12*
20— x

in which, with the answer x = 60, the anomaly 3 explained in p. 19

occurs. On correcting this equation, as done in p. 20, it becomes

10*- 120 = 12*-240 or
10x~ X™ = 12
x—20

which is derived from the following problem :—From how much of

specific gravity «(= 10) must m (= 20) cubic feet of specific gravity

b(=6) be taken, in order that the specific gravity of the remainder

may be c (= 12)? (Call this problem B.)

Whether the answer x = 60 is to be called possible or impossible

depends upon the answer to the following question. Was problem

B within our meaning or not when problem A was proposed ? that is,

did we mean to take the one of the two, A and B, which should turn

out to be rational; stating A, because we supposed it, before examina-

tion, to be that one ? or did we mean to confine ourselves within the

limits of the literal meaning of A? Because, in the first case, the

answer is, that we have chosen the wrong alternative, that the other

should have been chosen, and that the answer is jt = 60; in the

second case, the answer is that the problem is impossible.*

Problem IV.— The specific gravities of gold and silver are

19J and 10.}; a goldsmith offers a mass of \ of a cubic foot which

* I have here stated this purposely, because the matter of convention

is more obvious in this problem than in that of page 16, where there is

an even chance of our choosing the wrong alternative at first. The
problem before us will appear strained, simply because the alternatives

of north and south of a post come more frequently into practice than

those of taking a known from an unknown, and an unknown from a

known, mixture. I state this because some writers on algebra seem
to imply, by making this sort of extension rest only on the most obvious
and usual examples, that they wish the student to consider it as not

ventional, but necessarv.

d 2
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he asserts to be gold, and which is found to weigh 260 pounds.

Can it be all gold? if not, may it have been adulterated with silver?

and, in that case, in what proportion were silver and gold mixed?

Since a cubic foot of water weighs 1000 ounces, and gold is 19£

times as heavy as water, a cubic foot of gold weighs 19,250 ounces,

and i of a cubic foot weighs 4812| ounces, or 300 pounds 12£ ounces.

Therefore the mass cannot be all gold. Again, a cubic foot of silver

weighs 10,500 ounces, and £ of a cubic foot weighs 164 pounds

1 ounce. Therefore the mass is heavier than its bulk of silver, and

lighter than its bulk of gold, and consequently may be a mixture of

the two. In this case, let .r be the quantity of gold, x being a fraction

of a cubic foot; then £— x is the remainder of silver, and 19250 x is

the number of ounces the gold weighs, and 10500 (£— x) the same

for the silver. But the whole weight is 260 pounds, or 4160 ounces

;

therefore

19250 a: + 10500 (J -a?) = 4160

1535 307 3 . 12 ^ 1

8750 = 1750=17 nearl* °r

17 °f 4

.*. about 12 parts out of 17 are gold, and the rest silver.

This is a case of the celebrated problem first solved by Archi-

medes,* and maybe generalised as follows:— In what proportions

must substances of specific gravities a and b be mixed, so that the

specific gravity of the whole may be c? To one cubic foot of the

first let there be x cubic feet of the second, to produce the mixture

required. Then the 1 cubic foot of the first, weighing a cubic feet of

water, and x cubic feet of the second, weighing bx cubic feet of

water, the whole l-\-x cubic feet weigh a-\-bx cubic feet of water.

But since its specific gravity is to be c, it weighs c(l + x) cubic feet

of water; therefore,

a + bx = c(l + x), or x = ~ZTh

to which the remarks in pages 28 and 29 apply.

Examples. Section II. The Lever. Generally speaking, a bar,

when suspended by any point in it, will only rest in one position,

namely, hanging downwards ; but if properly loaded with weights, it

may be made to rest in any position, and is then said to be a lever in

equilibrium, that is, evenly balanced. The rules are, 1. Treat the

* See the Penny Cyclopedia, vol. ii. p. 277.
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wt tight of the bar itself as if it were all collected in its midddle point.

,11 the number of pounds* in any weight, multiplied by the

number of J\ et by which it is removed from the point of suspension,

the moment of that weight ; then a bar will be in equilibrium when

the sum of the moments of the weights on one side of the pivot is the

same as that of the weights on the other side. If the bar be not

suspended by its middle point, the weight of the bar itself must be

taken into account as if it were all collected in the middle point.

If the sum of the moments on one side be not equal to that on the

other, the side which has the greater sum will preponderate.

PROBLEM 1. A bar 18 feet long, weighing 40 pounds, has

weights of 12 and 20 pounds at the two ends. Where must the pivot

be placed, so that the bar may rest upon it?

A C D B
( i 1 1

12 lb. 40 lb. 20 lb.

Let the weight of the bar (40 lbs.) be collected at the middle

point C. Then AC = CB = 9 feet. We do not know on which

side of C to place the pivot, which may produce an incorrectness in

the equation similar to that in Anomaly 1. page 12. This, however,

will not affect the result. Let the pivot be at D between B and C ;

that is, let 12 lb. at A and 40 lb. at C balance 20 lb. at B. Let

AD= x feet. Then CD = (.r— 9) feet, DB= (18— .r) feet. The

moments of the weights are 12.r, 40 (r— 9) and 20(18

—

x) ; and by

the preceding principle,

12*+40(*-9) = 20(18-*), or * = 10;

therefore the pivot is 1 foot to the right of the middle point, and the

problem has been rightly interpreted, because x— 9 and 18— x, tried

by the result, are both possible. If we had imagined D to be on the

left of C, and AD =x as before, we should have supposed the weights

at C and B conspiring to balance that at A, and DB=1 8

—

x as before,

but CD= 9— x instead of x— 9. The equation would have been

12* = 40(9-*) + 20(18-*)

or 12* - 40(9-*) = 20(18-*) or * = 10

* Any other units may be substituted for pounds and feet; but care

must be taken to use the same units throughout the whole of each

problem.
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differing from the first in having

-40(9-a:) instead of + 40(a;-9).

The solution x = 10, would have shewn us the Anomaly 1, page 12.

To generalise this problem, let the length of the bar be I, its

weight* W, the weights at the left and right extremities P and Q.

Then let AD=x, which gives (supposing the pivot right of C),

CD =x— \l, DB = /

—

x. The equation becomes

Par+W(ar— JZ) = Q(Z — a?)

W/ + 2Q/ W+2Q I
whence x — 2P+2Q+2W - P + Q +w x

2

Exercise. Prove from the value of .r just found that x is greater

than, equal to, or less than, £ /, according as Q is greater than, equal

to, or less than P.

The preceding problem contains the principle of the steelyard.

Problem II. If a bar 20 feet long, weighing 6 pounds, be sup-

ported at 9 feet from the left extremity, how must we place upon it

weights of 16 and 17 pounds, 7 feet apart, so that the whole may be

balanced (the 16 lbs. being supposed on the left)?

16 lb. 6 lb. 17 lb.

A E DC !T~ B

Let C be the middle point, D the pivot, and E and F the places

of the weights. Then AD = 9 feet, BD = 11 feet, AC =10 feet,

EF= 7 feet, DC =1 foot. LetAE= .r; then ED= 9— x
f
DF=

AF—AD=AE + EF—AD=a- + 7— 9 = x— 2. The system

therefore consists in

16 lb. at dist. 9— x from pivot; moment 16 (9— x\

which balances

6 lb. at dist. 1 foot from pivot ; moment 6 X 1 or 6

17 lb. at dist. x— 2 feet from pivot; moment 17 (a?— 2).

Hence 16(9-x) = 6 + 17(a:-2) x = 5& feet.

The equation has been rightly formed, for 9— x and x— 2 are

both possible. If we had supposed E and F to fall on the same

side of D, the resulting equation would have been

* That is, W is the number of pounds, or other unit, in its weight,

and / the number of feet, or other unit, in its length.
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16(9—*) +17(2—x) = 6

or 16(9-*) — 6— 17(2-*) ^ = 5^ feet:

from which the same value of x is obtained, but 2— x is impossible.

Even if we had made the evidently impossible supposition that E and

F are both on the same side of D as C (amounting to supposing that

the weights at E, F, and C are counterbalanced by no weight at all

on the opposite side), the equation which results, treated by ordinary

rules, would present no direct sign of impossibility until we came to

compare the result with the equation. In this case,

I 1 1
1 3 \

A D C E F 13

ifAE= j-,wehaveDC=l,DE=x—9, DF=(j- 9)+ 7=j— 2;

and the moments of the weights at C, E, and F, are therefore 6,

16 (a'— 9) and 17(x— 2). To trace the effect of the preceding

supposition, namely, that there is no weight on the left side of the

pivot D, we must see what will follow from supposing

6+16(ar-9)+17(ar-2) =
as if such an equation were possible. This gives

G + 16a; — 144 +17 .r — 34 =
33*-172 = 33a; = 172 x mm 5&

the same as before. But the preceding equation is impossible, since

the addition of three quantities must give more than nothing. At the

same time, we see that *— 9 is also impossible.

We must here make a remark similar to that in page 14. The

equation

X — (c — b) = 0, or X + b — C =
is possible, since it merely indicates that x=zc— b. But the equation

x + (b - c) =
is impossible. Nevertheless, when b is greater than c, x-\-(b— c) is

the same thing as x-\-b — c; and by attempting this conversion

when b is less than c, we might be led to the impossible form

x + (b- c) = 0,

where we should have adopted the rational form

x -(c-b) = 0.

From this we conclude, that if we meet with

x +p = 0,
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it is a sign that, in forming the quantity p, we have inverted the order

of the terms in a subtraction; that is, we have supposed p was b— c

when it should have been c— b. Let us call the latter q; then if

we had proceeded correctly, we should have had

x — q = 0, or x = q.

The problem in page 32, generalised, is as follows. A bar / feet

in length, weighing W pounds, is supported at a feet from its left

extremity. How must we place P and Q pounds (P being on the

left) m feet asunder, so that the bar may be balanced ? The equation is

T>(a-x) = W(ll-a) + Q(x + m-a)

X ~
P + Q

Exercise. Supposing the bar to be continued to the left of A
and the right of B, bat the continuation on either side to have no weight,

explain, as in page 33, the case where W=20 pounds, /=50 feet,

a= 5 feet, P= 4 pounds, Q= 7 pounds, ;/i= 10 feet.

Examples. Section III. Miscellaneous. Problem I.—A straight

lir.e AB, 10 inches long (oonunued bom ways), i a cut by £s pcbt

C at 7 inches to the right of A. Where must the point D be placed,

so that AC may bear the same proportion* to CB which AD bears

to DB?
,

, ,

_.
1

—
A C B D

Here AC =7 inches, CB = 3 inches. The point D must be

either between A and B, or to the right of B, or to the left of A. Or

there may be (for any thing we have shewn to the contrary), more

than one such point; for instance, one such point to the right of A,

and another to the left. But if we consider the conditions of the

problem, it will appear impossible that D can lie any where but to

the right of B. For, suppose D to be placed between A and B, say

between C and B; then, according to the problem, AD (greater than

7 inches) contains BD (less than 3 inches), the same times and parts

of a time which AC (7 inches) contains BC (3 inches). This, the

* To those who have never used this term mathematically (see

Art. 177, 178), we may state, that a bears to b the same proportion

which c bears to d, when the fraction r is the same as -.
b a
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consideration will shew, cannot I" n (this

let the student explain), D cannot lie between A end C. Neittu

I) lie on the left of A; for tin m, of A I > and DB, AD the less must

contain DH the greater, us AC (7 inches) contains CB (3 inches),

limes, which is also impossible. Let us then suppose D on

the right of H, and let AD=.r inches; then BD= .r— 10 inches.

By the problem, x bears to x— 10 the same proportion as 7 bears

to 3 ; that is,

x 7

r— 10 3
(x)3(*-10) 3x = 70-10)

35
which gives x = — = 17£ inches.

m

If we had supposed the point D to lie between A and B (say

between C and B), then AD being x, DB would have been 10— i

.

and the equation would have been

x 7— = -
» vvbich gives x = 7;

10

—

x 6

that is, D coincides with C. This is a case which we have not put

among what we have called anomalies, because the result, though not

expected, is intelligible without further explanation. It implies, that

if we would place D between A and B, so that AD should be to

DB in the same proportion as AC to CB, D must occupy the

same place as C. But if we suppose D to lie on the left of A,

and let x stand for AD, we have DB = 10+^, and the equation

becomes

= 1 or 3x-lx = 70,
10 +.r 3'

which presents the anomaly in pages 14 . . 19. This shews that we

have measured .r or AD in the wrong direction, and that if it had

been made to fall to the right of A, the equation would have been

lx— 3x = 70, or X as 17J inches,

which we have found before.

Now let the problem be altered so that C shall stand in the middle

between A and B. For instance, let AB =12 inches, and AC =
inches. Is there a point D, not coinciding with C, such that AD
bears to D B the same proportion at AC to CB 1 Certainly not ; for

AC contains CB once exactly, but if D be placed right of B or left

of A, AD is greater or less than DB. But if a point be placed at a



36 EQUATIONS OF THE

great distance from A or B on either side, AD contains DB very

nearly once (see p. 24) ; and by removing D to a sufficient distance,

A D may be made to contain D as nearly* once as we please. We
might therefore expect, if we attempt to find D in this case by an

equation, such an anomaly as that in page 21, explained in page 24.

If possible, let the point D, on the right of B, satisfy the conditions

of this problem. Let AD = .r. Then DB=.r—12 and AC = 6,

C B = 6. Therefore the equation of the problem is

= - = 1 or x = X — 12 (See page 21.)x—\2 6

The generalisation of the preceding problem, in supposing AB=cr,

AC =6, and AD=j, and placing D on the right of B, gives the

equation

,r b
or x =

x—a a— b 26— a

In order to meet all the cases which may occur in the application

of algebra, we will now take a problem in which the answer will go

beyond the notion which was formed when the problem was proposed,

not because the thing proposed to be done is impossible, but because

the answer is not within the limits of what is usually necessary or

convenient. For instance, in ordinary arithmetic, a figure placed on

the right of another means that it is to be multiplied by ten before

adding it to the other. Thus 24 is 2 X 104-4. We do not commonly

use fractions in the same way : thus 2£ 4 never stands for 2| X 10+4,

or 29 ; but it might do so if we pleased ; similarly 3^ 1\ might stand

for 3|x 10+2 1, or 34£. We now propose the following

Problem II. What is that number, consisting of two digits the

sum of which is 10, and which is doubled by inverting the digits ?

We see that 91 is not double of 19, nor 82 of 28, nor 73 of 37,

nor 64 of 46. Therefore, with the restrictions on the decimal system

usually adhered to in practice, the problem is impossible. What sort

of answer then are we to expect if we reduce the problem to an

equation ? Let x and y be the digits in question : then

X+y = 10, or y = 10— X.

* For instance, place D on the right at a thousand times the distance

of B from A. Then A D is to D B as 1001 to 1000, or in the proportion

of 1 + to 1, which is very nearly the proportion of 1 to 1.
1000
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The number formed by placing the digit x before t/, is lOx-f y

(just as 24 is 2 X 10 + 4, 58 is 5 X 10 + 8, Sec.); and when the

digits are reversed, the number is IO3/ + .r (just as 42 is 4x10 + 2,

85 is 8 X 1 -f 5, 8cc). By the problem, the second is double of the

first j that is,

lOy+x = 2(\0x+y\ or 20x + 2y.

Therefore 10?/— 2*/ = 20x— x, or Sy = 19a\

But y = 10— a;, or 8(10— x) = 19#;

therefore, x = ^ = 2 ^» V = ]°-* = 7 ^»

The answer therefore is, that if it be understood that none but the

usual single digits shall be placed in the columns of units and tens,

the problem is impossible ; but that, if the method of writing numbers

be extended, so that a fraction placed before a fraction shall be con-

sidered as meaning 10 times as much as when it stands alone, then

the problem is possible, and the direct and inverted numbers are,

2^ 7l „* 7*225.
27 27 27 27

Here 2^ 7^- means 2% x 10 + 7^ and is 36^|
27 27 27 T 27 27

7±. 2™ means 1 ±- X 10 -f- 2^| and is 73^
27 27 27 27 27

the second of which is double of the first.

We may then lay down the following : When a problem has a

fractional answer, that answer can only be used on the supposition

that any usual method of combining whole numbers, which is neces-

sary in forming the equation, shall also be applied to fractions.

This principle, when introduced into common life, often induces

us to suppose fractional parts of things which, in the strict and ori-

ginal meaning of the terms, have no fractional parts. Thus there is,

properly speaking, no such thing as half a horse : there may be half

the body of a horse (as to bulk or weight), half the power of a horse

(which is but the half of a certain pressure), or there may be a horse

of half the size, half the power, &c. of another horse—that is, we may

halve any quality of a horse which can be represented by numbers ;

but not the complete idea which we attach to the word, because it

contains notions which have no reference to number or quantity.

£
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Nevertheless, we do not speak absurdly when we talk of a steam

engine of the power of 20| horses, because it is there only the horses'

power that we speak of, which can be numbered in pounds of weight;

or of wolves eating half a horse, because we then speak only of a

weight of flesh. Thus the problem—A horse can draw two tons;

certain horses drew 5 tons, how many were there ?— is absurd in the

strictest sense, but not so if we confine ourselves to the only quality

of a horse which is concerned in the problem, namely, power of

drawing : and we may either say, there was 2\ times as much power

as a horse possesses, or the power of 2\ horses. The same remarks

would apply to the following : The reckoning came to £5, and the

share of each person is £2, how many persons were there?— which

cannot be solved in the strictest meaning of the words, but in which

we may say that the whole reckoning is 2£ as much as that of one

person, or that of 1\ persons.*

Problem III. There are two pieces of cloth of a and a' yards in

length. The owner sells the same number of yards of both sorts at

b and b' shillings per yard. If the remainders were then sold, of the

first at c shillings a yard, of the second at d shillings a yard, the total

prices of the two pieces would be the same. What number of yards

was first sold of each ?

N.B. To avoid using too many letters, it is usual to employ the

same letter with one or more accents,f to signify different numbers

which have some common point of meaning. Thus a and a' are the

lengths of two pieces of cloth, b and b' the prices per yard of the first

pieces taken from each, and c and c' the prices per yard of the

remainders. But a and a! differ as much in meaning as to the num-

bers they may stand for, as a and b ; either may stand for any number

named.

Let x be the number of yards first cut off from each piece ; then

the remainders are a — x and a'— x yards. The sums received for

the first are therefore b x and b' x shillings ; for the remainders,

c(a— x) and c' {a'— x) shillings. Consequently, by the conditions of

the question,

* So when we say that the yearly mortality of a country is 1 out of

40| persons, we mean 2 out of 81.

t The symbol a' may be read a accented, a", a twice accented, and so

on. But a dash, a two dash, &c. are shorter, though not quite so correct

in grammar.
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bx + c(a— x) = b'x + c'{d— x)

bx +ac—cx = b'x + dc'—c'x

bx—cx+c'x—b'x = dc'— ac

(2> + c — b'— c)x = a'c'—ac

x =
b + J— b'— c

Suppose we try to apply this to the following case : Let the num-

ber of yards be 60 and 80; let the prices of the number of yards

taken from each at first be 10 and 9 shillings a yard; and let the

prices of the remainders be 4 and 3 shillings a yard. We have then

a = 60 a' = 80 b = 10 b' = 9 c = 4 c' = 3

a'c'— ac _ 80x3 — 60x4
=
b+c'— b'— c

~~
10 + 3—9—4 "~

an anomaly already discussed in page 25. We have there seen that

it implies that any value of x will solve the equation, and this we

shall find to be the case in the present instance. For if we return to

the equation, we find it becomes

10*+4(60-x) = 9*+3(80-x)
or 10x+240 -4a; = 9x + 240-3;r
or 6x + 240 = 6* + 240

which is true for all values of x. Hence the answer is, that in this

particular case the total prices of the two pieces are the same whatever

number of yards be first cut off.

Let us now try another case. Let the pieces be 60 and 80 yards,

as in the preceding; but let the first pieces cut off be sold at 5 and

4 shillings a yard, and the second at 2 and 3 shillings a yard; then

a = 60 a' =80 b = 5 V = 4 c = 2 c'=3
a'c'— ac _ 80X3 — 60X2 __ 120 _ ^X ~~

b + c'— b'— c
""

5 + 3—4— 2 ~" ~2~ —
the number of yards cut from both is 60 ; that is, the whole of the first

piece is taken, and 60 yards of the second, which are sold at 5 and

4 shillings a yard (giving 300 and 240 shillings). Then the re-

mainder of the second (we need not mention the remainder of the

first, which being nothing, brings nothing), 20 yards, sold at 3 shillings

a yard, brings 60 shillings. The produce of the first is 300, of the

second 240 + 60 shillings, both the same, as the problem requires.
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The third case we will take is as follows : Let the pieces be 60

and 80 yards ; let the pieces cut off be sold for 7 and 3 shillings a

yard, and the remainders for 5 and 2 shillings a yard,

a = 60 a' = 80 b = 7 V = 3 c = 5 c' = 2

_ 80X2— 60X5 __ 160—300
X = =

7+ 2— 3— 5 ~~
1

and contains an impossible subtraction. From the conclusions in

page 18, we must suppose some wrong alternative has been employed

in choosing x. But, on looking at the problem, no such thing

appears; x yards are to be first sold of each. But the problems in

page 18 were purposely* put in a form in which the alternatives were

obvious ; how then are we to widen the expressions used in stating

this problem so that the problem, as we have given it, may be only

one case out of two or more ? Remember that we alter no number,

but only the quality of the result. The seller begins with 60 and 80

yards of the two cloths in his possession, and ends with none of

either, having in his pocket the same receipts from both pieces. Our

problem says he first sells a certain number of yards from both, and

the answer upon this supposition shews the problem to be impossible.

We have been previously directed in such cases to alter the quality of

the result; let us do this, and suppose he begins by buying the same

quantity of both. We must preserve the condition that he begins

with 60 yards of the first, and ends with none ; therefore, if he begin

by buying 10 yards more, he must sell the whole 70. If so, he also

buys 10 yards more of the second sort, and sells the whole 90. But

as we are to alter none of the numbers, but only change their names,

if he buy more he buys at 7 (6) and 3 (&') shillings a yard ; and

when he gets rid of all he has (not all he has left, for that belongs to

one particular alternative), he sells at 5 and 2 shillings a yard.

Therefore the wider problem, of which the one proposed is one of the

alternatives, is as follows

:

* We may here remark that the extension of a problem appears

natural or not according to the idiom of the language in which it is

expressed. Thus, comparing together the case here given, and that in

page 19, the former appears forced, because we have no very common
word to denote either buying or selling as the case may he ; the latter

appears natural, because the words " give the date," implying asking for

a time, either before or after a given epoch, are perfectly consistent with
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Kntended Problem.

There are two pieces of cloth

a and a yards in length. The

owner concludes a bargain re-

specting the same number of

yards of both sorts at b and b'

shillings per yard. If his stock

of both were then sold, of the

first at c shillings a yard, of the

second at c' shillings a yard,

the total results of the transac-

tions in each sort ofcloth would

be the same.

Case first proposed.

There are two pieces of cloth

a and a' yards in length. The

owner sells the same number of

yards of both sorts at b and b'

shillings per yard. If the re-

mainders were then sold, of the

first at c shillings a yard, of the

second at c' shillings a yard, the

total prices of the two pieces

would be the same.

The case first proposed leads, as before, to the equation

c(a— x) + bx = c'(d—x)+b'x

or X =
b+c'— b'-

but the general case leads to this equation only when the owner is the

seller in the bargain mentioned. If he be the buyer, he first pays bx

and b'x for what he buys of each sort, and then sells the stocks a-\-x

and a! -f- x at c and c' shillings per yard. Therefore c(a -\- x) — bx

is the balance in his favour from the first, and c'(a'+ jr)— b'x from

the second. The equation is

c(a + x)— bx = c'(d + x)— b'x

ac— a'd
X =

b + c'— b'— c

the idiom of our language. But if we translated these two problems into

a language, in which there was a word in common use, such as trafficking,

to denote either buying or selling, aud in which there was no usual way

of asking for a date, without implying either before or after some other

date, then the present extension would appear natural, and the one in

page 19 forced.

The equations of algebra of course take no cognisance of such differ-

ences of idiom, which is generally considered one of the great advantages

of the science, though some regard it as a defect. The student must

decide this point for himself, when he has had sufficient experience of

the advantages and disadvantages arising from such extensions.

e2
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which differs from the former, consistently with the rules in page 18,

by an alteration of the sign of every term which contains x, and an

inversion of the subtraction a'c'— ac in the result. When

a = 60 a' =80 6 = 7 V =3 c = 5 c' = 2

we have already tried the alternative of supposing the owner to be

seller in the first transaction, and have found an impossible subtrac-

tion 160— 300 in the result. If we now try the second alternative,

and suppose him to be buyer, we shall get the rational answer

300—160 or 140; which will be found to satisfy the problem. We
might enter upon various other cases of the same question, but we

shall leave them for the present to the student, and state a problem

which is in all respects analogous to the preceding, and presents

similar alternatives in a different form. The equations of the two

problems will be the same.

Problem IV. The paper is a map of a country, of which AB is

a level frontier. All the roads rise from left to right, and fall from

right to left, and all the miles mentioned are meant to be measured

perpendicularly to the frontier on a level with it. CD is a parallel

to the frontier (whether right or left of it is not stated), and T and

V are towns on, above, or below (as the case may be), the line BD
perpendicular to the frontier. P and Q are two frontier towns;

R and S two towns, on, above, or below the points R and S, according

to the position of C D. The roads rise or sink, as the case may be,

a number of inches per mile for every level mile from the frontier,

as follows :

From P to R b inches per mile.

From Q to S ft' inches per mile.

From R to V c inches per mile.

From S to T c' inches per mile.

Now T and V are on the same level, BV is a level miles, and BT
a' of the same. Required the distance BD and its direction.

Ai

*F=====ag£

CK IV.:--
:i^.

^ 1^-
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We have given this as an exercise, and shall merely point out the

resulting equations on all the different suppositions. In all of them

• stands for BD in miles.

1. If D lie to the left of B,

either c(a+x) — bx = c'(a' + x) — bx 1 according as TV is

or bx— c(a + x) = bx — c'(a'+x) ) above or below PQ.

2. If D lie between B and T (as in the figure),

c(a—x)+bx = c'(a'— x) -f b'x.

3. If D lie between T and V,

bx— c(x— a) = b'x + c'(d— x) when a' is greater than a,

or bx + c(a— x) = bx— c'(x -~ a) when a is greater than a'.

In the figure a is greater than a'.

4. When D lies to the right both of T and V,

bx— c(x— a) = b'x—c'(x—d)

or c(x—a)—bxz=c'(x—d) — b'x

the first when TV is above, the second when TV is below, the level

of P Q. Only one of these seven equations can be altogether true

;

and as only the alternative in the set marked 3 is directly given in

the conditions of the problem, six equations may need examination.

But after the explanation of the anomalies (1), (2), and (3), any one

of the six equations may be made to give the true answer. The

anomaly (4) will be found to arise when b +c/=6'+c, and (5) when

in addition to this, a'c'=.ac.

The student may make this problem an illustration of every case

which we have found to arise.

Before proceeding to other forms of equations, we shall now,

having found impossible subtractions arise in the solutions of problems,

and having seen the method of interpreting them, proceed to the

investigation of rules, by which the interpretation may be deferred to

any stage we please of the processes, and by which the symbols of

impossibility may be used as if they were real numbers, without

creating error.
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CHAPTER II.

ON THE SYMBOLS OF ALGEBRA, AS DISTINGUISHED FROM

THOSE OF ARITHMETIC.

Symbols such as 50— 70 (page 15), 200— 500 (page 16), have

received the name of negative quantities. This expression is not a

correct one, because 50— 70 is not a quantity, but the contradiction

which arises out of writing down directions to do that which is

impossible to be done. But we have seen, pages 14.. 19, that

50— 70, when it is the answer to a problem, implies 20 things of

some sort, as much as 70— 50, but 20 things of a nature directly

the contrary of the things first supposed; so that in forming the

correct equations, these things diminish that which they increased in

the incorrect one, and increase that which they diminished.

Conceive a problem consisting of various steps, such as would

arise from joining two or more problems together, in such a way that

the result of the first must be known before we can proceed with the

second. If we solve the first problem, and find by an impossible

result that we have chosen a wrong alternative, we should first retrace

our steps, set the matter right, and when we have obtained an

intelligible result, proceed to the second problem. But, we may ask,

are there no rules by which this may be avoided, and by which we

may continue the process, as if the result obtained had been rational ?

To try this question, we must examine the consequences of proceeding

with the symbols of impossible subtraction, to see what will come of

applying those processes which have been demonstrated to be true of

absolute numbers.

If we look at a problem which presents alternatives, we shall see

that not only will the answers be of different kinds, according as one

or other alternative is the true one, but the methods in which the

unknown answer (x) must be treated, in order to form the correct

equation, are different in the two different cases. Thus, in page 15,

Problem I., when x was years after 1830, the processes into which x

entered were 50+* and 35+x; but when x was years before 1830,
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these processes were 50— x and 35— at. And this brings us to

define what we mean by different problems as distinguished from

different altcrnntives of the same problem.

This distinction has been already tacitly laid down ; for, when we

came to an impossible subtraction a— b, we always looked for that

modification of the problem, which, not. changing absolute numbers,

but only the sense in which they were taken, would have given b— a

as the answer. Or when we came to Anomaly I., page 12, in which

not the answer, but the verification of it, was impossible, we chose

that modification which, without altering absolute numbers, inverted

the impossible subtractions in the equation. Hence, without per-

ceiving it, we have been led to make use of the following definition,

[in which, however, it must be recollected, that we have obtained it

entirely from equations of the first degree, and that it must therefore

be considered as limited to such equations, and possibly capable of

extension for equations of higher orders.] It is convenient to con-

sider those problems only as different alternatives of the same problem,

in which, l.the absolute numbers employed are the same; 2. the

equations only differ in haviug inverted terms with different signs

100— x .

' '

'

. a-—100 .

'

. .

(such as — —— instead of -\ — m page 13), or else in
Z z

having the signs of the unknown quantity altered throughout (as

50— x= 2(35— x) instead of 50 + x= 2 (35 + x) in page 15) ;

3. the answers are either the same in both, or else only differ in the

inversion of a subtraction (such as 70—50 instead of 50—70, in p. 15).

We might propose a problem appearing to have alternatives, but

which, in this view, is two different problems combined together.

For instance, A has £60, and is to receive the absolute balance that

appears in B's books, whether for or against B ; but C, who has

£200, is to take B's property, and pay his debts. After doing this

it is found that C's property is three times that of A. What is the

absolute balance for or against B ?

If B have x pounds, the equation is

3(60 + x) = 200 + # or x = 10

If B owe .r pounds, the equation is

3(60 + x) = 200-tf or x = 5

We have here two different equations not reducible one to the

other by any of the changes allowed in the preceding definition ; and
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therefore, so far as the preceding is considered as reducible to equa-

tions of the first degree, the two cases are distinct problems.

The step we now make is to apply the rules of algebra to the

symbols of impossible subtractions, and afterwards to proceed cor-

rectly with the inverted subtractions, that we may see, by comparing

the results, whether the errors committed may be corrected or not by

simple and general rules. And since we know that such a subtraction

as 3— 7 will, when set right, be 7— 3 or 4, let us denote it for the

present by 4, in which the bar written above 4 is not* a sign of sub-

traction, but a warning that we are using the inverted form 3— 7

instead of 7— 3. Thus we might say, that 10—14 should also be

denoted by 4 ; but here we must stop until we have some further

assurance upon this point; for we cannot as yet reason upon such

symbols as 3— 7 and 10—14, since they represent no quantity

imaginable, and we have not yet deduced rules. All we can do is

to go to the source from whence they came, and see whether, by the

same means which gave 3— 7, we might have got 10— 14 in its

place.

Suppose a problem, wrongly expressed or understood, gives

2x— jt= 50— 70 (as in page 15). If we take the correct equation

50— j?= 2 (35— #), we may add any quantity to both sides. Say

we add a to both sides, which gives

(50 + a) -a = (70+a)-2x

the solution of which is

2x-x = (70 + a)-(50 + a) = 20

If we had taken the incorrect form 50+#= 2 (35 +#), and added

a to both sides, we should, by what we suppose to be strict reasoning,

till the result undeceives us, arrive at the conclusion x= (5Q-\-a)

— (70+ a). And this is what we want to ascertain, namely, that

just as in the rational form of an equation, we may by previous legiti-

mate alterations obtain the answer in the form 70— 50, 71 — 51,

72— 52, &c: so, in the irrational form, we may, by the same sort

of process, obtain 51— 71, 52— 72, &c, instead of 50— 70. And

we will not say, that 51— 71 is equal to 50— 70, because our

* The sign of subtraction is a bar written before the quantity to be

subtracted. The present is not a sign of subtraction any more than the

bar between the numerator and denominator of a fraction.
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notion of equal (as far as we have yet gone) applies only to mag-

nitude, number, bulk, &c. &c.; but because any equation which

gives 50 — 70, might also have been made to give 51 — 71, &c, we

will call these equivalent to 50— 70, meaning by the word equivalent,

that the first may stand in the place of the second, or be substituted

for it, without producing any error when we come to correct the

result, or any set of operations for which correct substitutes cannot

be found. Thus, then, we say, that — 1,1 — 2, 2 — 3, &c, are all

equivalent, and may be represented by T ; a — (a + b) and (a +z) —
(a -+- c -f- z) are equivalent, and are represented by c; the rule always

being ;—invert the subtraction, and place a bar over the result.

Thus, if we obtain such an equation as

x + a + b =
which is the form most obviously impossible of all, we shall, by

rules only, obtain the expression

x = - (a + b)

which we signify by (a + b)

In considering equations of the first degree, we may confine our-

selves to the rational form x—a = 0, and the irrational form x+a= 0.

For to these all others can be reduced. For instance (page 5)

equation 4 is reduced to

12 n
*-T3-=°

and the first equation of Prob. I., in page 15, is reduced to

x + 20 =
We now find equivalent forms for

_ - __ _ _ _ a
a + b a— b axb -=•

b

The first will arise from such an equation as the following :

x + (p + a) —p +(q + b) = q

from which, if we solve it before observing that it is impossible, we

have

x — p — (p + a) +q — (q + b) = a+b
But the same rules of solution will also give

x =p+q — (p + q + a +b) = (a + b)
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In which the bar over a+ b signifies that we have attempted to

subtract from a quantity another which is greater than itself by

a + b. Or we have

a + b is equivalent to (a + b)

Similarly the equation

x+(p + a) —p + q = (q + b)

gives x = p— (p + a)— (q— (q + b)) = a—

b

following rules only. But this equation is not always impossible,

for it is equivalent to

x+p +a—p + q = q+ b

or X+ a = b which gives X = b— a

Therefore, a—b is correctly b— a when b is greater than a; when

b is less than a, it is (a— b). We may also give the equivalent form

b+ a, which follows from the attempt to solve correctly.

x + (p + a)—p = &

in the form x = b+ (p— (p + a)\

We have as yet obtained no such expressions as

~T a
ab or —

b

but we shall now shew that these, arise from inattention to the equa-

tion, not to the problem. That is, we shall deduce ab and ab,

— and r, or similar forms, from the same equation, whether that

b °

equation be true or false.

If p be greater than q, and c greater than d, the multiplication of

the rational expressions^— q and c— d, and the attempt at multipli-

cation of the irrational expressions q
—p and d— c, give the same

result, as follows

:

p-q q-p
c—d d—c

pc—qc qd—pd
pd—qd qc—pc

Subtract pc—qc—pd+qd qd—pd—qc+pc
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which are the same in every thing but the order of their terms.

Consequently, the equation

x + qc + pd = pc -f- qd
might, by inattention, be thus solved

x = pc +qd— qc — pd = (^— p)(t/— c)

where the latter should have been

X = (p -q)(c-d)
whence, if p — q be a and c — d be b, the expression ub may be

obtained instead of the quantity a b.

We have already seen, in page 19, how it may happen that — is

b

introduced in the place of -. Let p be greater than q, and c greater

than d ; then

ex -f- q = dx + p
correctly solved, gives

(c-d)x = p-q x =
d̂

incorrectly solved, gives

{d-c)x = q-p x = 9^
whence, if p— q be a, and d— c be b, — is equivalent to -

b b

We have thus determined either equivalent forms or corrections,

in all the cases which arise from the equation, considered without

reference to the problem from which it was derived. We shall

now consider both, taking as a basis what we have ascertained by

examples, namely, that the misconception which produces a instead

of a, also causes us to add where we should subtract, and subtract

where we should add, in forming our equations.

Suppose we have obtained a as the result of an equation, and

that the next step (if all before had been correct) would have been to

add a to c, or to find c + a.

Correction and Process. The true result is a, but the same mis-

conception by which a was produced, has made us suppose this

quantity was to be added where it was in reality to be subtracted,

and vice versa (pages 15-18); therefore the next step corrected is

c — a or c + a is equivalent to c— a.
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Trial of the incorrect Process, a is the representative of z—(z+a),

and c -f-a (applying rules only) is c 4- z— {z + «), or c + z— z— a,

or c— a, which has been shewn to be correct.

Similarly, where c — a occurs, we know that the true answer is a,

but that the misconception which produced a leads us to suppose it

should be subtracted where it" should be added ; therefore c + a is

the true result. The incorrect process gives c— (z— (2+ a)), or

c — z + (z + a), or c— z + z + a, or c + a. We have, then, these

two rules:

C -\- a is equivalent to C — a

c — a c +a
By similar reasoning (p— a) x (q —1) is equivalent to (p + a)

(q-\-b). The incorrect process gives pq— qa—pb-\-ab. If we con-

sider a and b as resulting from the misunderstanding of a problem, we

must take some such problem as a guide. Let it be the following :

A and B have respectively 4 and 5 pounds. One of them loses a

bet to the other, after which the product of the number of pounds

belonging to each is 18. Which lost, and how much?

If we suppose A lost x pounds, the equation evidently is

(4-x)(5+x) = 18

But if we suppose A gained ,r pounds, the equation will be

(4 + *)(5-a0 = 18

First Alternative.

4 — x

5+x

20 — 5x

Ax — xx

Second Alternative.

4 + x

5—x

20 + 5*

4x -f xx

Subtract 20 -f- x — xx

20 -4-iP— xx s 18

xx — x = 2

Add 20 — ;r — xx

20 — .r — xx =z\Q

x x + x = 2

From this we see, that in this instance (and trial proves the same

in others of the same kind) the correct equations belonging to different

alternatives have different signs in the terms which are multiplied by

x only once (or contain the first power of a:), or (page 1) are of the

first degree with respect to x ; but that the terms which contain xx, or



I U BOLfl 01 I LG i BRA. ~>\

.ire of the second degree with respect to x, have not different

And the same may be proved of terms containing the product ot Mo
unknown quantities S and y, which are not the same; for instance,

in the equations

(4-*)<£+y) = 18

tod (4 + x) (5 -y) = 18

If we take a term such as a be, we shall rind that, on cor-

rection, the sign preceding it must be changed ; that in such a term

as a b c </, the preceding sign is not changed : the rule being,

change the sign where there is an odd number of factors to be

corrected. It is indifferent whether the factors to be corrected be in

the numerator or denominator : if, for example, we take — , we
c

may, by deducing - instead of x from the equation which gave <•,

\ 1

find — instead of~, as follows. Suppose the equation which

gives c to be

2x + (c + z) = x + z :

this, following only rules, may be finally represented either by

2x — X = Z — (c -f z) or X = C

or by x — 2x or (1 — 2) X = C+ Z— Z = C

that is, (T)# = C (-i-)cx — = -

Tracing the consequences of this result, we find that the uncorrected

form J_ is equivalent to — . Hence the term — is equivalent to

a b x — > or > which contains all the uncorrected factors in the
c c

numerator.

If we now resume (p — «) {q — 6), of which the continuation of

the incorrect process is pq —p b —qa + a b, we must conclude, that,

in the terms of the first degree with respect to a and 6, the signs

must be altered ; but that in the term a b the sign preceding it mim

not be altered ; so that the correction gives

pq+pb+qa+ab
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But this is the same as would have arisen if the process had been

corrected one step earlier, as in page 50 ; that is, if (p +a) (g -f b)

had been written at once for (p— a) (g— &).

It is not necessary to go through all the individual cases that

might arise. We have found in all that the common rules of algebra

may be applied without error to the expressions of impossible sub-

tractions ; that is to say, the correction may be deferred as long as we
please without introducing error, provided that, when at last the cor-

rection is made, the following rule be observed :— In correcting any

term, change the symbols of impossible subtraction by substituting

the absolute number resulting from the real subtraction [thus, put

3 for 3, or (z+ 3)— z for z— (z+3)]; change the sign preceding all

such terms as require an odd number of such corrections ; keep the

sign of such as require an even number. Repeat this as often as

may be necessary. If the final result be then rational, the problem

has been rightly understood, and the mistakes have arisen from

inattention to the processes which come between the statement and

the result ; but if the result after correction be still an impossible

subtraction, then the problem has been misunderstood if there be

alternatives in it, or is itself a wrong alternative of some more general

statement.

As an example, let the final result of a set of operations be

abc4-dd ab
J 1 — C6

ac— a ca

Let it be then discovered that a, b, and e, are not rational expres-

sions, and let them be found to be made, a by attempting to subtract

a number from 1 less than itself, b by attempting to subtract a

number from 3 less than itself, and e by attempting to subtract a

number from 5 less than itself. That is, let a, b, and e, be represented

by T, 3, and 5. Let c and d, which are rational, be 2 and 6. Then,

the preceding expression, before correction, is

1X3X6+2X2 Tx3
__ ^ g

T X 6-2 6 X 2

the first stage in the correction of which is

18+ 4 +± + 30— 6— 2 ' 12
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but, — 6— 2 (page 47) is signified by 8; and the necessary correc-

tion, according to the preceding rule, gives

L + 30 - £ or 27J

which is the result which would have been obtained, had each

correction been made in its proper place.

But the preceding form a is not made use of by algebraical

writers, and is introduced here not to remain permanently, but to

avoid using the sign of subtraction, to appearance at least, in two

different senses. If we follow rules, without observing where they

lead us, we should obtain processes of the following sort

:

3-8 = 3-(3+5) = 3-3-5 = 0-5

and, as in + 5, it is not necessary to the meaning to retain 0,

we might, by imitation, write —5. This is what we have hitherto

written 5. And we shall find, in all the intelligible properties of the

sign — , a close similarity between —5 (properly placed in an ex-

pression) and the legitimate rules by which it is treated, and 5, an

uncorrected misconception, with the rules for obtaining a correct result.

In fact, if we apply rules to + and — as they are applied when

the quantities concerned are rational, we find no distinction between

a and —a, though we have made one until we could establish the

points of similarity. For instance, b— a when corrected is b -\- a.

And b— {z— a), when z is greater than a, gives b— z-\-a ; so that «,

rationally used with two negative signs before it, gives -\-a in the

result. Apply this rule to b— (

—

a) and it gives b+a; so that

b— a is corrected by the application of no other rule than considering

a as — a, and applying the rules which, in the Introduction, are

shewn to apply in possible subtractions. The same will be found in

every other case yet stated.

In further illustration, let a= b— c, let c=d— x, let xsy

—

v,

and let v=t— z. We have, then,

« = &-(rf-.r) = b-(d-(y-v))

= l>-{d-(v-(t-z))\ (A)

*,— {rf—(y—*+*)}

= b— j</-3,-H--;j = b—d+y— t + z

F 2
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On looking at this result, we see that z is preceded by + ; in the

expression (A) it is four times under the negative sign, t is preceded

by — , and is under three negative signs, y is preceded by -f-, having

been under two negative signs. Consequently, those terms are nega-

tive which are under an odd number of negative signs ; and positive,

which are under an even number.

Now, let us suppose that we have obtained from an equation an

incorrect value — a, denoted by a, as before. Let the result of

some succeeding process lead to — a, which we will denote by

a. A third process leads to — a, which we denote by a, and so on.

At every step, therefore, a new misconception has been introduced :

but, as we shall proceed to shew, the repetition of the error any even

number of times does not shew itself in the result. The first irra-

tional answer must arise from the attempt to determine x from an

equation, which reduces itself to x + a= 0. Let a new process be

then entered upon to determine y, and let it lead to y -f- x= 0. The

equations which we should have got by proceeding correctly are

x—a= and y— .r= 0, which lead to y = a. But this is the same

as we should get from the incorrect equations ,r-f-a= 0, y-\-x= 0,

by rules only. For, subtracting the first from the second, we have

y— a= 0, or y= a. Again, proceeding to find z, suppose we get

s -\-y= 0. From the correct equations in the first column

x—a = x + a =
y—x = y+x =
z—y = z +y =

we get z= a; not so now from the incorrect equations (observe that

their number is odd). For, from rules only, by adding the first to

the third we get z-\-x+y+a= 0, from which, subtracting the second,

we find ^ 4- «= . And thus we might proceed with more equations.

Now, observe that the first equation gives x= Q— a or a, the second

y = — x or — a or a, the third £= —y or — a or a, and

so on. Hence, from the preceding, any even number of errors of

this kind corrects itself, any odd number requires correction.

We now return to the expression

6-{rf-J>—(*^*))j =b-d+y-t + z

which is rational when t is greater than z, y greater than t— z, &cc.
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We have already applied mere qptrafWM to irrational cases to see

what would come of them ; we now apply direct reasoning knowingly

to an irrational case, with the same intention. Not that any new step

is now made ; for in applying operations, we always tacitly employ

the reasoning by which the rule of operation was demonstrated. It

is only allowable to write an instance of a— (b— c) — a— 6-j-c in

cases where we can return to the demonstration (see the Introduction),

and make that demonstration apply to the particular case in hand.

We place the example of too general reasoning in brackets.

[Since the preceding equation is generally true, it is true when

/=0, j/= 0, d=0, and 6= 0. But the preceding equation, omitting

the term wherever it occurs, because neither increases nor dimi-

nishes the value of an expression, becomes

therefore z is not altered by being preceded by four negative signs,

and the same may be proved of any even number ]

But the preceding reasoning is obviously incorrect, if seriously

meant as a proof, and not as an experiment ; for the equation

a— (6— e)= a— 6-f-c is tacitly applied to the case where 6= 0.

We will go over the general proof, which ought to apply to the

particular case, putting the two together.

Particular Application.

(Not admissible as reasoning in

General Proof.

(True when b is greater than c.)

b— c is to be taken from a.

If from a we take away b, giving

a— by we have too little, be-

cause only a part of b should

have been taken away, namely,

as much as is left after it has

been lessened by c. Therefore,

c too much has been taken

away, and the true result is

a— 6 + c.

any case.)

— c is to be taken from a.

If from a we take away 0, giving

a— 0, we have too little, be-

cause only a part of should

have been taken away, namely,

as much as is left after it has

been lessened by c. Therefore,

c too much has been taken away,

and the result is a— -f-c (that

is, a-f-c).

The application of the reasoning needs no comment. Nothing

has been taken away from a quantity, and yet it has been too much

diminished— only a part of nothing should have been taken away,
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and nothing should have been previously lessened. We will now

subjoin the version we give of the equation a— (

—

c)= a-\-c, derived

from the preceding part of this chapter.

We have examined particular cases, and have always found that

— c is the result of a mistake of one particular sort, namely, that

the quantity represented by c is of the opposite nature to what we

supposed it to be. And we have also found by examination, that as

to addition and subtraction, all the operations have been inverted ;

we have added where we should have subtracted, and subtracted

where we should have added ; to which additional misapprehension

we should have remained subject, had we not come to the irrational

expression — c. Therefore, instead of a— (0— c), we remember

that — c should be c— or c, and in a— (0— c) the first — is also

the result of misconception, and should be +. Therefore a— (— c)

is correctly written (not is equal to) a-\-c. Thirdly, we have found

by examination, that if we continue any series of processes with the

effects of the misconception uncorrected, we shall not introduce any

errors but those which may be corrected, at any period we please, by

the use of one simple rule, namely, apply no other rules except those

which have been deduced in the case of rational expressions.

It was found out that the rules of algebra might be applied with-

out error to symbols of impossible subtraction, before the cause* of

so singular a circumstance was satisfactorily explained. The conse-

quence was, that many such reasonings as those in page 55 were

universally received, and a language adopted in consequence which,

as long as words have their usual meaning, is absurd.

But, at the same time, every one must see that words are them-

* I am far from asserting that the view I have taken will be easy, or

that it is the only one which might have been given as satisfactory to

those who can understand it. But I think that the matter of it, inde-

pendent of the method of stating it, must be considered at least of incon-

trovertible logical soundness. I am aware that many will think the

connexion of —(—a) and + a to be more necessary than I have attempted

to shew it to be; and in the higher view of the subject, which no

beginner could understand, it may be so; but I think the exclusion of

false analogies (to which the student is very subject in this part of the

science) of more importance than the establishment of true ones. It will

be easier for the pupil hereafter to acquire new ideas of relation, than to

get rid of any he now acquires.
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selves symbols of our own making, over which there is unbounded

control consistently with reason, provided only that what we mean by

every word be distinctly known, so that we shall not draw conclusions

from one meaning of a word, and then apply those conclusions to

other meanings.*

We have made some additions to common arithmetic, and have

found uses for symbols which were never contemplated in that science.

It is sufficient that we have demonstrated the uses of these symbols;

it now remains to find words by which to express the operations we

shall employ.

There are two ways of proceeding.

1. Whenever we want to signify an operation which is not wholly

arithmetical, we may invent a new term. This would load the

science with difficult words, which, after all, would only have the

effect of banishing the arithmetical words, and substituting others in

their places ; for we cannot know whether we are proceeding with or

without the misconceptions explained in this chapter, until the end of

the process. We should therefore be obliged always to use the newly

invented terms, to the exclusion of the others.

2. We may alter the meaning of the words already in use by

extending them ; that is, allowing them to mean what they already

stand for, and more. In common language we are already well used

to something like this, and, whenever we want a word to express one

object, are in the habit of using one which belongs to another object

having some resemblance to, or connexion with, the one we are to

name. By this means, there is a word in the English language which

stands for a receptacle, a seat, a small room, a small house, a plant,

and a blow. But this is forming names by resemblance only, not by

extension. W7

e might instance the latter in the words arm, mark,

plain, &c. ; but it is to the sciences only that we must look for examples

* As an illustration of our meaning : The word square, in algebra

(as we shall see when we come to it), is made to mean a number multiplied

by itself; in geometry, it means a well-known species of four-cornered

figure. How this word came to have two meanings so different, the

student will see if ever he studies the history of algebra, and will guess

when he comes to apply algebra to geometry. But in the mean time,

nothing that is proved of the square in algebra is to be therefore taken

for granted of the square in geometry. The same word with two different

meanings is the same as two different words.
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of intentional extension, correctly managed. We take one out of the

numerous instances which natural history affords. It is found con-

venient to divide all animals into classes, comprising in each class

those which have certain common arrangements of teeth or other

members. One particular class of animals contains the cat, which is

the best known of its class. Instead of inventing a new word to

signify this class, containing the cat, lion, tiger, panther, &c, they are

all called cats, and each has a particular additional name to distinguish

it. Thus, the common cat isfells catus, the lion is felis leo, the tiger

isfells tigris, the panther isfelis pardus, &c. Observe that what is here

done is, to make the word felis (Latin for cat) mean less than in

common discourse, and imply not the common animal, or any animal

which agrees in all respects with it, but any animal which agrees with

it only in those arrangements which are considered the distinguishing

marks of the class. Consequently, by limiting the ideas which the

word is meant to imply, the number of objects which come under it

is extended. And no mistake could arise by this means when one

zoologist speaks or writes to another ; though a third person, not

acquainted with their meaning, might think they believed that a cat

could run off with and devour a man.

Similarly, in algebra, we have terms which are well understood in

arithmetic, and processes which we find carry us beyond the object of

arithmetic, which is absolute number. But, both in the processes of

algebra, and in those of arithmetic, there are resemblances which will

make it convenient to classify together those which follow the same

rules; and, in giving the names to classes, we shall, as previously

described, limit the definition of the arithmetical terms so as to name

the whole class by the arithmetical name. And when we speak of

the process of arithmetic to which we have been accustomed, we shall

prefix the word arithmetical. Thus, by arithmetical addition, we

mean the simple increase of one absolute number by another. But

this will be, as we shall see, only one case of algebraical addition, or,

as we shall call it, addition. And, once for all, observe that infuture

every term has its extended or general algebraic meaning, except when

the word arithmetical is prefixed.

We shall now proceed to the limitations of the notions contained

in the terms, or the extensions of the cases which come under them,

whichever it may be called.

1. Quantity is applied in arithmetic to any number or fraction.
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In algebra, it is any symbol* which results from the rules of calcula-

tion. W* line the first effects of this in the following proposition.

(}ti<intitics (as far as we have yet gone) arc cit/u r positive or m

the. Arithmetical quantities are all positive.

The latter part requires this remark, that + 6 is more than the

symbol of G ; it is the symbol of one particular way of obtaining 6,

namely, -f 6, or adding 6 where there was nothing. But 3 -j- 3 is

not identical with + 6 in the operations indicated, but only in the

result obtained; just as (a + x)(«

—

x) and a a— xx, which are not

the same operations, always give the same results.

Positive and negative quantities are of diametrically opposite signi-

fications; if + a be a gain of £«, — a is a loss of the same ; if + a be

a loss of £a, — a is a gain of the same ; if -f a be length measured

northward, — a is the same length measured southward ; ond so on.

This distinction has been sufficiently dwelt upon in a different

form. If we suppose a gain, and the answer to our supposition

(derived from a rational equation) is that the gain is a, then we were

right in our supposition; but if the answer be — a, then we were

wrong in the supposition, and we ought to have supposed a loss of

£«. The extension here made consists in making the symbol of an

error stand for the correction of that error. On this we must remark,

that the extension avoids confusion only because there is but one way

of making the wrong supposition right. If — a might indicate mis-

takes of more than one kind, it would be wrong to let — a stand for

the correction of one species, when the problem might oblige us to

choose another.

The application of algebra to geometry immediately suggests this

sort of extension. Let A be a point, in a straight line indefinitely

extended both ways; measure AB to the right of A, and from B

i 1 1 1

C A C B

* A symbol is any thing which can be placed before the mind as a

representation of any other thing. The term quantity is not applied

according to its original meaning, even in arithmetic. This 2 is not a

quantity (unless it be of printer's ink), but a symbol, which denotes that a

certain quantity, represented by 1, has been taken twice. Thus, 3 — 5

is a rational symbol, but not a symbol of arithmetical quantity, because

it proposes operations which contradict the arithmetical meaning of 3, —

,

and 5.
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measure B C to the left of B. If A B be greater than B C, the proper

description of the position of C is " at a distance AB— BC on the

right of A." But if BC be greater than AB, and we still say the

same of C, we are warned of some mistake by the impossible subtrac-

tion, and we see immediately that the proper designation of C's

position is " at a distance BC — A B on the left of C."

In conversation and writing, figurative extensions are so common

that they have sometimes been appealed to as a justification of the

processes we have been investigating. In strict propriety, there is a

repetition of ideas in the phrase " to gain a gain," and contradiction

in " to lose a gain," in which the word " to lose " is used in the

common sense of " not to get." But the most obvious analogy is in

the words " to gain a loss," which is an ironical term applied to one

who loses where he thought he should gain. And when we say,

u darkness went away," instead of" light came," we make a mistake*

in a matter of fact which bears a close analogy to that which we have

considered.

In the application of mathematics to physics, we are liable to the

error of imagining that a phenomenon may arise from matter being

added to other matter, when in fact it arises from matter being taken

away, and vice versa. This has happened in several instances, of

which we will cite two of the most remarkable.

1. If glass be rubbed against leather in dry weather, both sub-

stances acquire power to attract small pieces of matter, which power

is called electrical attraction, or electricity. It was at first supposed

that friction made the leather communicate some fluid to the glass, so

that the glass had more than its natural share, and the leather less.

* These phrases are not introduced as illustrations or confirmations,

but precisely the reverse. They are an impediment, because the student

may by them be led to imagine that he sees reason in the use of the

negative sign, independently of the proof given that it is merely a con-

venient method in correction of unavoidable misconceptions. To warn

him that he has not (from this work at least) any evidence of the pro-

priety of negative quantities, other than that which he gets from observing

what will come of using them, is the object of this note. If a meaning

is to be given to a term, which in its original use it will not bear, the

more repugnant the phrases employed are to common ideas, the better in

one respect ; because the less the student can find any thing like them in

his mother tongue, the more likely will he be to fasten upon them the

explanation which they are meant to bear, and no other.



OX TBB SYMBOLS Of k&GSBBA. 61

Consequently, the glass was said to be pmMvtfy* ;,n(* tne lealner

Mgttiivehfi electrified ; and the phaaOBUM of the latter were supposed

to be caused by the subtraction ofsomething from it. But succeeding

experiments shewed it to be much more likely that the friction of the

two substances separated a compound fluid, substance, agent, or

whatever it may be called, into two distinct component parts, having

this quality, that when united in their natural proportions they attract

nothing, but that either, when separated from the other, shews it by

attraction. These were called the vitreous and resinous electricities,

because friction gave the first to glass, and the second to resin (as was

found). But many still retained the old names of positive and

negative electricity ; and this produced no inconvenience, because

what we may call the mathematical phenomena of electricity remained

the same on both theories, it being exactly the same in calculating

effects, whether we suppose the cause of the effect to be removed, or a

sufficient quantity ofsomething which destroys the effect to be added.

2. In burning a candle in a close vessel of air, it was observed

that the air soon became incapable of allowing the process of burning

to continue, and that the air produced was not fit to breathe. That

an alteration had taken place was then certain ; and it was supposed

that the burning candle gave out a fluid which mixed with the air.

This fluid was called phlogiston (thing which makes flame). There-

fore the effect of burning on air was supposed to be the addition of

phlogiston. But it was afterwards discovered that in fact something

is taken from the air when a body burns, which something is oxygen,

found by other means to be a part of the mixture called air. Hence,

the effect of burning is the subtraction of oxygen. And if any chemi-

cal calculation made on the theory of phlogiston were required to be

set right, it might be done on the supposition that + a of phlogiston

is — a of oxygen, with the rules laid down in this chapter.

2. Addition and Subtraction. The first term means the forming

two expressions into one, retaining the proper signs; the second,

forming two expressions into one by altering the sign of the one

which is said to be subtracted. The following examples will shew

that arithmetical addition and subtraction are particular cases of the

term.

3 + (5-2) or 3 + (0 + 5-2) = 3+5-2
8-(5-2) or 8-(0+5-2) = 8-5 + 2
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But addition and subtraction include such as the following:

-3 + (-5) is -3 — 5 or -8
-3-(-5) is -3+5 or + 2

3. Equal. Any two algebraical expressions, of which the one

may be substituted for the other without error, are called equal,

and = is written between them. This, as before, includes arith-

metical equality; for 5 + 3, which is arithmetically equal to 8, may

be substituted for 8. But the algebraical term also applies to 3— 7

and 10— 14, page 46, to a + (—6) and a— 6, and so on ; and the

term will afterwards apply to still wider cases. For instance, we

shall come to a species of misconception, which will give

1 — 1+1 — 1 +1 — 1 + &c. continued for ever,

where the true result is \. This will be thus represented :

\ = 1 — 1+1 — 1+ &c. ad infinitum.

4. Greater and less; increase and decrease. The extension of

the words addition and subtraction requires also the extension of

these. The symbols of arithmetic are,

1 2 3 4 5, &c.

and intermediate fractions ; and the greater of any two is that which

comes on the right. The numerical symbols of algebra are,

Arithmetical.

—4 —3 — 2 —1 +1 +2 +3 +4 &c.

in which the addition proceeds throughout as in the arithmetical

series by the (here algebraical) addition of +1. For

-4 + 1 = -3 -1+1 =
-3+1 = -2 + 1 = +1
-2 + 1 = -1 +1+1 = +2

Let the definition of greater and less remain the same on both

sides of the line; namely, that of any two quantities, the one which

falls on the right is the greater. Thus —1 is called greater than

— 2, +2 is greater than — 1, and so on.

Hence, with the extended meaning of the words, we have the

following proposition :
*

* This is the proposition which has startled so many beginners, and

not without reason, considering that they have frequently been intro-

duced to it without any warning that greater and less have not their
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All positive quantities are greater- than nothing; all

quantities are less than nothing. Of' two positive quantities, that is the

greater which is arithmetically the greater ; of two negative quant i( us,

that is the greater which is arithmetically the less.

The extended terms increase and, decrease will follow greater and

less. Quantity is increased when it is made greater, and decreased

when it is made less. But the word smaller is always allowed to

retain its arithmetical meaning, without extension.

N.B. We have now separated increase from addition, &c.

Addition of . . {jgft} quantity cause, {™

}

Subtracts of {>«} quantity cause, {?™}
The following propositions are also true :

The greater the quantity added, the greater is the result.

For example

:

— 7 is greater than — 10

3+(-7) 3 + C-10)
for we see that —4 — 7

Similarly, the less the quantity subtracted, the greater is the result.

From 3 subtract — 8, the result is +11; subtract less than — 8,

say — 12, the result is + 15, greater than +11. From — 4 subtract

7, the result is — 11 ; subtract less than 7, say — 3, and the result is

— 4— (— 3), or — 1 ,
greater than —11. And it will be found that

all such theorems relative to addition or subtraction as are true of

arithmetical, will also be true of algebraical, quantities ; which is the

particular advantage of our new definition. For instance, remark the

following t

If a be greater than b, a— b is positive ; if a be less than b, a— t

is negative. Thus

-3- (-4) = +1 -3-(-2) = -1
The signs of greater and less are > and < . Thus,

For a is greater than 6, write a > b.

For a is less than b, write a < 6.

The angle is turned towards the greater quantity. In the sign of

equality = there is no angle towards either quantity.

arithmetical meaning, except when arithmetical quantities are mentioned.

Those who object to it in its present shape, will of course object to the

zoological supposition in page 58.
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5. Multiplication and Division. These rules are, so far as the nu-

merical quantities are concerned, the same as in arithmetic. The rule

of signs, as we have seen, is, like signs produce +, unlike signs —

.

+ab is both +ax +b and — a x — 6

—«J is both —ax +b and +«X —6

+ 7 is both --— and —

-

b -f-6 — b

a .
— a , 4-a— t is both -— and —

-

o +b — b

The terms greater and less cannot always be applied to pro-

ducts as in arithmetic. For instance, 3>2, 5>4, and therefore,

3 x 5 > 2 x 4 ; but from 3 > — 2, —- 3 > — 4, it does not follow

that 3x— 3>— 2X— 4, or — 9>8, but the contrary —-9<8.
But it is seldom necessary to deduce the algebraical magnitude of a

product from that of its factors ; we therefore leave to the student the

collection of the different cases.

6. Proportion. Four quantities are said to be proportional when

the first divided by the second is equal to the third divided by the

fourth. This definition is the same in words as the definition of

proportion in arithmetic, but the words quantity, divided fry, and equal,

have their extended signification. The words greater and less cannot

always be applied as in arithmetic. Thus being ——- we have

3: — 4:: — 6:8, where 3 is greater than — 4, but — 6 is less

than 8.

We shall now apply our definitions to a problem, and shall choose

the cases already noticed in page 45, as being two different problems

when only equations of the first degree are to be used.

A has £60, and is to receive the absolute balance that appears in

B's books, whether for or against B ; but C, who has £200, is to take

B's property and pay his debts. After doing this it is found that C's

property is 3 times that of A. What is the absolute balance for or

against B ?

Let x be this balance, positive or negative according as it is for or

against B ; then A has 60± x, the positive sign being used* when x

* For A's property is to be increased on either supposition j hence, if

the balance be + 3, he must have 60 + ( + 3) ; if it be —3, he must have

60-(-3).
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is positive, the negative when * is negative. But C has 200 + I

J

therefore,

3(60±*) = 200 + x

or ±3ar == 20 -f x

This contains two equations, one for the positive, one for the negative

sign. But from it follows that

±3*x±3* = (20 + *) (20 + x)

in which the hrst side is + 9xx in both cases, for — 3.r x — 3r

and +3.rx + 3 x, are the same, namely, + 9 xx. Therefore,

+ 9xx = 400 + 40# + a;a;

or 8*ar-40j-400 =
(-^)8 xx— 5x— 50 =

When we come to the solution of equations of the second degree,

we shall find that this equation can be true only for two values of x ;

either x = W, or x = — 5. That is, the balance is either £ 10 for B,

or £5 against him ; which are the solutions already found in page 45.

That either 10 or —5 will satisfy the preceding, may be shewn as

follows :

x = 10 x = -5
xx = 100 xx = 25

-5x = -50 -5* = +25
-50 = -50 -50 = -50

xx—5x— 50 = xx—bx— 50 =
Since the extensions of algebra have been so laid down that the

rules for managing algebraical quantities when they are not arith-

metical are the same as those which must be employed when they

are arithmetical, it follows that the arithmetical case of a problem may

be taken as a guide ; for, to say that certain operations follow the same

rules as in arithmetic, or that we must proceed as if the operation was

arithmetical, is only the same thing in different words.

Up to page 56 we have considered the symbols of algebra, which

are not arithmetical, as results of misconception, and have called the

rules by which they are treated corrections. In page 59, &c, by pro-

perly laying down definitions, these same symbols are recognised and

expected, so that the term erroneous no longer applies to them. The

student should not immediately give over the first method ofcon-

c 2



66 ON THE SYMBOLS OF ALGEBRA.

sidering them, but should frequently, while employed upon the rules

(pages 49, &c.), make himself sure that he understands the con-

nexion of the preceding method with those rules; and in future we

may accordingly employ both methods, it being always understood

that when the first is used, the extensions required by the second are

dropped for the moment.

The following examples of the use of the rules are added for

practice. Such symbols as a and — a nre used indiscriminately, it

being remembered that they mean the same thing in practice, but are

referred to two different methods of considering the subject in theory.

8x4-3= 10| 8x4 + 3 = -lo| or 10?
o So

6+4-12=: 2 (-6) + (-8) + (-13) = -27

ab-\-cd cd— ab (— a)x(

—

b)xc abc

m — d d

a-^l
XC ~ b-a C a+(-b)

ab—ba = a(— b) + b(— a) = -2ab

abc = abc = abc = ab c = —abc
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CHAPTER III.

EQUATIONS OF THE FIRST DEGREE WITH MORE THAN 0*1

IN KNOWN QUANTITY.

Let there be such an equation as

x+y = 12

resulting from a problem which involves two unknown quantities,

x and y. Such a one is the following

:

h 1 r~

A C B
Problem. A is a given point in a straight line, and B and C

are two other points. From A to half-way between B and C it is six

feet. What are the distances of B and C from A?

Let us take as our principal case that in which B and C are both

on the same side of A. Let AB = x feet, AC = y feet; then

BC = x— y, and from B to half-way between B and C the distance

is |(.r

—

y) ; whence from A to the same middle point the distance is

X \X — y) which is therefore = 6

(x)2 2x—(x-y) = 12 or x+y = 12

Here the problem is what is called indeterminate, that is, ad-

mitting of an infinite number of solutions. All that is laid down

relative to .r and y is found to do no more than require that their sum

shall be 12, which can be satisfied in an infinite number of ways; for

all the following cases are solutions, and others might be made at

pleasure.

X = 1 y = 11
1

X ~~
2 r-»}

x = 2 y = io — «J y= 9?

x = 3 y = 9 * = 3f
Q 3

Ice. Ice &C. &c.



X = -1 y- +13 x = 15

x = -2 y = +14 * = 16

*--ii y=+i3i * - I 2?5

&c. &C. &c.
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Again, when either x or y is taken negatively, we have solutions

such as the following :

y=-3
y = -4

3y —
&c.

the first column corresponding, with the explanations before given at

pages 14-19, to the case in which B only is at the left of A; and the

second to the case in which C only lies to the left of A. Thus, if B
be 1 foot to the left of A, and C 13 feet to the right, the middle point

between C and B is at 6 feet distance from A to the right. Observe

that we cannot in this equation of the first degree, x-\-y = 12,

include the cases in which the middle point falls to the left of A;

for since this quantity 6, given in the problem, has been treated

throughout as an arithmelical (or algebraical positive, see page 59)

quantity, the equation formed from it cannot include those cases of

the problem in which the corresponding line is so measured that its

symbol ought to be negative.*

From the preceding and similar cases, we deduce the following

principles

:

1. One equation between two unknown quantities admits of an

infinite number of solutions; either of the unknown quantities may

be what we please, and the equation can be satisfied by giving a

proper value to the other.

2. A problem which gives rise to such an equation is indetermi-

nate, or admitting of an indefinite number of solutions.

Let us now suppose two equations, each containing the same two

unknown quantities. For instance,

x + y = 12 Sx-2y = 31

* On reading the problem again, therefore, we perceive either that

we have not sufficiently defined it, by omitting to state whether the six

feet is to the right or the left of A, or else that there are two problems

involved in it, as in page 45, or that these two must be represented in

one equation of the second degree, as in page 64. For the student who
is disposed to try to represent the two cases in one equation, we give the

result, namely,

xx + yy + 2xy = 144.
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the first (cousi.lcivd by tettf) bat ID infinite number of solutions ; so

also has the second. As follows :

Solutions of the Solutions of the

first equation. second equation.

X =10 y = 2 * - 10 y m ~|

»-l€{ y=li in 1 J

a: = 10- V = -
2 ./ 4

a; = 11 y = 1 o: = 1 1 y = 1

n 1 3 , ,i n

&c. Sec. &c. &c.

We have taken the same set of values for x in both ; and we find

the corresponding values of y different, generally speaking, but the

same in one particular case : that is, we find a set of values * as 11,

y = 1, which satisfies both equations. The question now is, among

all the infinite number of sets of values which satisfy one or the other

equation, how many are there which satisfy both ? There is only one,

as we shall find from the following process of solution.

If x-\-y = 12, it follows that x = 12

—

y. Substitute this value

of j in the second equation (which may be done, since the solutions of

the second which we wish to obtain are only those which are also solu-

tions of the first), and we find 3(12—y)— 2y = 31, or 36— by = 31,

or y = 1. It appears then, that the supposition of both equations

being true at once consists with no other value of y except 1 , or

(since x+y = 12) of x except 11.

Let the equations proposed be

ax+by — c px + qy = r

where a, b, c, p, q> and r, are certain known quantities.

First Method. Obtain a value of one of the unknown quantities

from one equation and substitute it in the other. The resulting equa-

tion will then have only one unknown quantity.

From the first equation,

r— by

a

which value substituted in the second gives

pc— pby in-— cp

a 1J J u u— bp
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To obtain x, find y from the first equation, and repeat the process,

which gives

c— ax qc — qax cq — br
V = —h

—y px + J- j3— »f, Star -2 -.
o J b aq— bp

Or substitute the value of y first obtained in the previous expression

for x ; thus,

* = Ĉ h,
bv = bar-hep

a y aq— bp

C—bv ss
ca 9— c bp— (bar~~bcp) __ caq — bar

"
aq— bp aq— bp

a(cq—br) c — by C q — br
aq— bp a " aq— bp'

Verification. If X = fiZL^' and y =
ar~ cP

aq— bp 1 * a q— bp

ucq— abr abr— bep

aq— bp aq— bp

acq— bep c(aq~—bp) _
aq — bp aq— bp

ax + by = ac(i- a
L

br
+

«br-bcp
* aq— bp aq— bp

px+qy m ai=4e + -r-p. = ,r ?J aq— bp aq— bp

Second Method. Multiply both the equations in such a way that

the terms which contain the same unknown quantities may have the

same co-efficient ; then add or subtract the two results, whichever

will cause the similar terms to disappear. Generally, the shortest

method is : Multiply each equation by the co-efficient which the

quantity not wanted has in the other equation.

To find y.

ax + by as c ( x )p pax+pby ±= pc
px+ qy = 7* (x)a pax + qay = ar

(— :

) aqy—bpy = ar—cp
/ . \ p- ar—cp
(-r).,-ip y = ẐTp

To find x.

ax + by = c (x)q aqx + bqy = qc

px + qy = r (x)b bpx + bqy — br

(-—
) aqx— bpx = cq—br

( • \ 7— cu — * r
{-r)aq— bp X = r-1 r aq— bp
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Third Method. Obtain a value of one of the unknown quantitifs

from each of the equations, and equate the values so obtained.

_ , „ c — n x c — by
v rom the first equation y = x = —

— 7."From the second equation y = — x =

c — or r — p.r

c — by r— ay
- =—— y =u p

** a (j — bp

Let the student now repeat all the three processes with the fol-

lowing equations (see page 38).

£'-

P

cq-br
aq — bp

ar —cp

ax + by = c
\

x " ab'—ba
i j, , § which give <
ax + by = c \ ac — ca

(!•) Zx-2y = 14 (x)2 6x-4y =28

2x+3y = 100 (x)3 6x + 9y = 300

(-) 13y = 272 *-*>H
(x)3 9x-6y = 42 (x)2 4;r+6y as 200

( + ) 13a; = 242 «.-.18±

('2.) .T+y = a a:—y s= /;

(+) 2x = «+6 o+6
* =—

(-) 2y = a-b «—

4

(3.) px+y — 1 j-py = 2

The first is px+y = I

The second, ( X )p px—ppy = 2/>

(— ) y+ppy = 1—2;? y =
1-2;,

l+PP
p + 2
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(4.) 3*-7 = 4 + (x + y) or 2x-y = 11

2y + 79 = 5ar or 5a;-2y = 79

The first, (x)5 10#—5y = 55

The second, (x)2 10*r—4y = 158

(-) y = 103

From the first, x = H^ = 57

(5.) 3# + 4t/ - 13 \x + by = 10

(x)4 \2x + \6y = 52 (x)3 \2x+\by = 30

(-) # = 52-30 = 22

(x)5 15a? + 20y = 65 (x)4 16a? + 20y = 40

(-) x == 40-65 = —25
the problem producing these equations must therefore be treated as

before described.

tj •
ClX + by = C cq— br ar— cpHaving given J x = — — y = — -£
px + qy = r uq—bp* aq— bp

we may find the following

:

C ax— by = C _ cq— br _ cp— ar
)

\px—qy=r aq— bp " "" aq— bp^

aX-by = C cq + br
X =

qy—px = r aq— bp V
_ ar -j-cpl

On looking at the two first sets of equations, we see that they

differ in this, that -\-by and + qy in the first are replaced by — by

and — qy in the second. But we know that ax— by is the corrected

form of ax + by (see page 46, &c), and px— qy of px + qy; and

since we have proved that the corrections may be deferred to any

stage of the process, it follows that we may take the solutions of

dX'+ by = C _ cq— br _ ar— cp

px+qy = r aq—bp a q— bp

and conclude, that the corrected solutions will be the true result of

the corrected equations. This if done will give results as above; for

the value of x, corrected by the rules in page 52, gives

—cq+br br— cq~ cq— br -M— or Z or J. _ (Page 64).— aq+bp bp— aq uq— bp v a
'
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Or as

ax + by + cz

ax + by+cz, &c.

ax + by + cz, &c.

and a similar process must be followed for y.* In this way, any

results derived from an expression such as ax + by + cz, may be

made to furnish the corresponding results which would have been

derived from ax — by— cz, cz + by—ax, or any other variation

which is only in sign. We write underneath the different cases which

may arise, and the manner of referring them to the one which is

chosen as the representative of all.

The ollowing May be considered as

ax + by—cz ax+ by + cz

ax—by—cz ax + by+cz
by—ax—cz ax + by + cz

&c. he. &c.

Any other case may be taken as the representative of the whole :

thus, if it were ax— by— cz, then ax + by + cz must be considered

as ax— by— cz, &c.

Problem,f On the intersection of straight lines.

Principle. It is proved in geometry, that if any angle BOA (for

simplicity, we use a right angle) be drawn, and a straight line AB
cutting the sides which contain it in A and B, and if from P, any

point between A and B\ parallels be drawn, PN to OA, and PM
to OB, and if OA, OB, PM, and PN be measured in inches, or

teuths of inches, or any other convenient unit (provided it be the

same for all) ; then (PM meaning, not the line itself, but the number

of units in it) the product of PM and OA, added to the product of

PN and OB, will be equal to the product of OA and OB, or

PMxOA +PNxOB = OAxOB

* Attend here to the remarks in the Preface, on the necessity of

working more examples than are given in the book.

t If the beginner have no knowledge of the most common terms of

geometry, he must either acquire it, or omit this problem altogether.

% From this supposition we start; we shall afterwards make use of
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Let there be two such lines, A B and A'B' (draw a large figure

and insert A'B'), cutting one another in the angle B OA in P ; having

given OA, OB, OA', and OB', required the value of PM and PN.

Let OA = 10 units OA' = 7 units

OB = 8 .. 0B = 15 ..

PN = X units

PM = y ..

Then, because P is on the line AB (preceding principle),

OAxPM+OBxPN = OAxOB or lOy+8* = 80

Again, because P is also on A'B' (similar reason),

OA'xPM+OB'xPN = OA'xOB' or 7y + I5x = 105

Here then are two equations which y and x must satisfy. Solving

them by either of the preceding methods, we have

X oi PN is 5— units; w or PM is 3— units.
47 u 47

General Case. Let OA = a units OA' = a units.

OB = b .. 0B'= V ..

PN = X units

PM=y ..

The equations to be solved, which are followed by the solution at

length, as at page 70, will then be

ay + bx = ab

a'y + b'x = all

aa'y+ a'bx = adb ab'y-\-bb'x = abb'

aa'y + ab'x = a all a'by + bb'x = dbb'

(a'b-ab')x = aa'(b-V) (a'b-ab')y = bb'(a'-a)

i
b — b' , , , a'— a

x — aa-n rr y — bb—n -r,

ab — ab & ab— ab

the preceding theory of algebraical symbols to extend our results to the

case where P is not between A and B. All words in italics point out

what is peculiar to the first case.
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Verification*

ay + bx = abV-±^ + aba -r
a! b — a b'

f a'b'—ab' a'b — a'b'X0/0
\a'b-ab' + a'b-ab')

r a'b—ab' ,= a ° zm T/ = ab
ab — ab

dy + b'x = dbb'J±> + adb' 4~ b
'

a'b— ab' a'b—ab'

iii f a'b — ab ab — ab'\
~ a0

\a'b — ab'
+

a'b— ab')

a'b — ab' ,,,— ab -77 rj = a b
ab —ab

In the preceding figure are four lines, AB, CD, EF, and Gil,

cutting the axes* in as many different ways as is possible, that is, no

two intersecting both OA and OB on the same side of O. There

are therefore, six points of intersection (as in the figure), and the

perpendiculars drawn from them to the axes O A and O B are

inserted ; but no letters are put to them, it being understood that P is

* Axes, the principal Hues O A and O B containing the angle first

mentioned, and lengthened in both directions.
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the point of intersection under consideration,* while PM and PN
are the perpendiculars, as in the first figure.

Let the distances at which the four lines cut the axes be as

follows, in numbers of the unit chosen :

OA = 3 OC = 8 OE = 4 OG = 2

OB = 6 OD = 3 OF = 2 OH = 4

Let us first take the intersection ofAB and CD. Place the point

P at this intersection, and let P M =3/ and P N = x, as in the first

figure. Then, because P is on the line A B, we have, from the prin-

ciple stated at the outset,

3y + 6x = 18

But on looking at the line C D, we observe, 1 . That the principle

does not apply directly to it, because C D is not contained in the

angle BOA, but in the contiguous angle BOC. 2. That O C (in

length 8 units) is not measured in the direction OA, but in the

contrary direction. If, therefore, we write 8 instead of 8, and with

this form the same equation as we should have formed if O C had

been measured towards A, we shall then, by correcting the equation

as in page 66, obtain another equation with which to proceed .f That

is, because the point P is on C D, we have

8y+3x = 8x3 or (page 66) _8y + 3.r = 24 = -24
or 8y—3x = 24

[For, since 3 x— 83/ = — 24 denotes that Qy exceeds 3.r by 24,

this may be written 83/ — 3x = 24.]

Solving the two equations thus obtained, namely,

3^ + 6* = 18] {*= 1
T-9

> we get {

8y-3* = 24j [y = 3i

which, with the succeeding results, may be verified by measurement,

as well as from the equations.

* Let the student draw this figure on a large scale in ink, and mark

the letters belonging to the point under consideration in pencil, to be

rubbed out on passing to a new point.

t We cannot refer to any single page here. This principle is the

total result of Chapter II.



FIRST PI 77

To apply the same method to every case, we must distinguish

all the lines OA, OB, &c. by the negative sign, which do not fall in

the directions of OA or O B. That is,

OA = 3 OC = 8 OE = 4 OG = 2

OB = 6 OD=3 OF = 2 OH = 4

Proceeding with these as in the last case, we have as follows

:

Intersection of Equations. Corrected equations.

i.AB-ndCD{ 33f + 6* =1J 3* + 6*= 18
}

(8^+3* = 24 8y-3* = 24 )

2. ABandEF _ . _ _
*

V

[±y+ 2x =4x2 4y+2x= -8 )

3.ABa„dGHi 3y +^ = 18
. ^t«--- M

}

(2y + 4x = 2x4 2y-4#= -8
)

4.CDandEFJ 8>3l = 21 8y-3* = 24 )

l4z/ + 2.r =4x2 4^ + 2* = -8 )

5.CDandGHi^ +3a: = 2
"

i %-3*=24 1

I 2y +4.r = 2x4 2y-4:r = -8 J

6.EFandGHi 5
^/+^ ==ix '5 *J+**~-«)

t 2y+4a;=2x4 2y-4x = -8
)

These corrected equations are some of them not arithmetically

true ; for instance, 4^+2 x= — 8. But remember that they are made

on the supposition that PM(y) and PN (x) are measured in such a

direction that P falls within the angle AOB; which may not be the

case. We may, however, apply the rules in page 70 to their solution •

of which we shall give one case (the second) complete, as follows :

3?/ + 6x = 18

4y +2x = -8

Multiply the second equation by 3.

\2y + 6x = -8x3 or 12y + 6.r=-24

Subtract this from the first, which gives

u 2
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(3-12)y = 18- (-24) = 18 + 24 = 42

^ "~
3 — 12 ~ —9

~"
9

=:
3

From the first equation,

_ 18-33/ 18-3 (-41) = 18+14 _ -1

6 6 6 ~ 3

On placing the point P at the intersection of AB and EF, we

see that PM (y) 1S measured in a contrary direction to the one

supposed, and PN (x) in the same direction, as would be pre-

sumed from the negative sign of the first, and the positive sign of

the second.

Proceeding in the same way, we have the following values of .r

and y in the six cases :

Intersection of, Value of .r (PN). Value of 3/ (PMV

1. AB and CD 1-| 3^

2. AB and EF 65 -r4|

3. AB and GH 2l 1

4. C D and E F

2

-5 5 6

7 7

5. CD and GH 4-i 4-?-
J 3 13

6. EFandGH \ -2!
5 5

[Remember that in such an expression as — 1£, the — refers to

the whole ; that is, it is — (1 +£) or —1—|, not — 1 + £.]

Upon examining the six lines by a well-constructed figure, it will

appear that whenever an answer is negative, it is measured in a

direction contrary to that which was supposed in the principle at

the beginning.

The corrections might have been deferred to the end of the process,

in the following manner :

The equations (see page 74)

ay -\-bx = ab a!y + b'x = all

/ b— V ,7/ «'—

«

give x = aa 77 77 V — bo—. 7,
ab—a V * ab—ab
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Take the two following sets (the second being case 6),

a</ + bx = ab 4y + 2x = 4x2
a

1

1) + b'x = a'U 2y +4x = 2x4
which agree if

„ = 4 6 = 2 «'=2 6'= 4

Substitute these values in the expressions for x and y, which give,

g = 4x2x 'r*. _=(-8)x- 2 + 4

2X2—4X4 —4—16

= (-B)x(^) = - = i

3/ = 2xix 27 4
_ _ = 8x—i=-2*

2X2—4X4 20 5

the same as before. We leave this problem, and proceed.

We have shewn, page 67, that one equation between two unknown

quantities admits of an infinite number of solutions; and that a second

equation must be given by the problem, or it is not reducible to a

single answer. But this second equation must be independent of the

first, that is, must not be one of those which can be reduced to the

first. For instance, .r-|-y=12 admits of an infinite number of

solutions; and if the second equation be either of the following,

2.r+2y = 24 3# + 3?/ = 36
\
x +\v '= 6

3*-18 = 18-3y 2x+y = 24-y, &c.

the same infinite number of solutions will still exist; for if x-\-y = 12,

all the equations just given must be true. That is, instead of giving

two equations, we have only given the same equation in two different

forms.

Now, we have already found (page 25), that in one case the index

of an infinite number of results was the appearance of the result in the

form -. We proceed to see whether this will be the case here.

J
Aax-{-bij = c

|\px + qy = r )

en— br ar— cp
then x = — r- V = r-

a q— bp J aq— bp

To try a case in which the second equation is dependent on the

first, suppose

p = ma q = mb r = mc
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in which case the second equation becomes

max+mby = mc (-f-)w ax + by = c

the same as the first. Substitute the above values of p, q, and r, in

the values of x and ?/, which gives

cmb— bmc amc— cma£ — — _ fj
— —

-

amb— bma * amb— bma

in which the same anomaly appears as in page 25, and with the same

interpretation.

If there be three unknown quantities, by reasoning similar to that

in page 67, we may shew that there must be as many as three inde-

pendent equations, or else the problem admits an infinite number of

solutions. We will shew in one instance the method of proceeding.

Let

2x +4y-3z = 10 (1)

5x-3y+2z = 20 (2)

3x +2y+5z = 50 (3)

Multiply both sides of (1) by 2, and of (2) by 3, in the results of-

both of which z will have the same coefficient.

Equ. (I)x2 4x +§y-6z = 20

Equ.(2) x 3 I5x-9y+6z = 60

( + ) 19j?-y = 80 (4)

Repeat a similar process with equations (2) and (3).

Equ. (2) x 5 25a;- 15y + 10 z = 100

Equ.(3)x2 6x+ 4y+\0z = 100

(-) \9x-19y =0
(-r-)19 x—y = or x = y (5)

Two equations are thus found (4) and (5), containing x and y
only, not z. These solved, give

40 40

Substitute these values in either of the three given equations, the

second, for example. Then

K 40 40
, n OA 505x T" 3x T + 2z = 20 Z = T
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There is an artifice* which is useful when one only of the three

unknown quantities in required. Suppose, for example, that in tin

preceding equations only the value of z is wanted. Take two new

quantities, m and n, not yet known, but afterwards to be determined

in any manner that may be convenient. f Since the two sides of an

equation may be multiplied by any quantity, multiply (2) by m
f
and

(3) by n, and add the results to (1). This will give

(2+5m + 3w)a; + (4—3m+2n)y

+ (2m+5w-3),2r=10 +20m + 50w..(A)

Since m and n may be taken at pleasure, and since the value of

z only is wanted, let m and n be such that

2+5m+3n = or 5m + 3n = —2
4-3m+2rc = or 3m-2w = 4

then m and n must be the solutions of the preceding equations, which

give m = — , n = . But in (A) the terms which contain x and

y disappear, being multiplied by 0. Therefore,

(2m+5n—3)z -- 10 + 20»2 + 50rc

z = 10+20,» + 50,. 10+20*^ + 50(-fg)
2m+5»-3 2x JL +5 (_!)_3

(Multiply numerator and denominator of this fraction by 19, and

reduce it),

_ 10X19 + 20X8— 50X26 ___ —950 __ 950 __ 50

2X8— 5X26— 3X19
==

—171
=" 171

"~~
9

Anomalies. A problem may give rise to two equations which are

absolutely incompatible with each other, such as the following

:

x+y = 12 x+y = 13

or it may happen, that if there be three unknown quantities and three

equations, one of the latter may be impossible if both the others be

true, though it be not inconsistent with either of the others singly.

For instance, take

x—y = 10 y— z = 11 x—z = 12

• An artifice is a name given to any process by which either the

principle or practice of any method is shortened, either generally, or in

any particular case.

t Such quantities are usually called arbitrary.
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The 1st and 2d are true if x = 20 y = 10 z = — 1

Thelstand3d .... # = 20 y = 10 * = 8

The 2d and 3d .... # = 20 y = 19 * = 8

But no values of #,3/, and 2 can satisfy all three together, as will be

evident by adding the first two. For if a:—3^ = 10, and y— z = 11,

then

(x — y) + (y — z) = 21 or x — Z = 21

which is inconsistent with the third equation.

It is left to the student to examine the general solution in page

70, and to shew that when the two equations become incompatible,

the values of x and y take the form discussed in page 21, namely,

that of a fraction which has for its denominator. It might also be

shewn, that the problems which give rise to incompatible equations

admit of an interpretation similar to that already derived from results

of the form - in the page last quoted.

It will be found, that two equations such as are treated in this

chapter will in no case become inconsistent except when they can be

so reduced as to have their first sides identical, and their second sides

different ; such as

2x+ 3y = 10 2x+ 3y m 12

The subtraction of the first from the second would give = 2,

an absurdity of the same character as ax =: ax -j-c (page 23), from

which the form - was first derived,
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CHAPTER IV.

ON EXPONENTS, AND ON THE CONTINUITY OF ALGEBRAIC

EXPRESSIONS.

The continual occurrence of the multiplication of the same quantity

two, three, or more times by itself, has rendered some abbreviations

necessary, which we proceed to explain.

x multiplied by X, or XX, is called the second power of jr.

XX X, or XXX, - the third power of x.

XXX X, or XXXX, the fourth power of jr.

and so on. Or, n xes* multiplied together give what is called the

71th power of x. The second and third powers are usually called the

square and cube. Thus xx is called the square of x, and is read

r square; and xxx is called the cube of x, and is read x cube : and

a number multiplied by itself is said to be squared; multiplied twice

by itself, it is said to be cubed, &c.

By an extension, x itself is called the first power of x.

The abbreviated representation of a power is as follows : over the

tetter raised to any power, on the right, place the number of times the

letter is seen in that power. Thus,

xx is written X9,

xxx x3

T* t* V* T* />*
<*

%Kj *Aj %Aj %Aj •••••••• ^

and so on. Here 2, 3, 4, &c. are called exponents of x. Similarly,

(a + b)x(a + b) is written {a + b)°~

(a + b)x(a + b)x(a + b) (a + b)3

and so on. The following results may now be easily found

:

• The beginner's common mistake is, that x multiplied n times by x is

the nth pmcer. This is not correct ; x multiplied once by x (n) is the

second power ; x multiplied n times by i is the (» + l)th power.



84 ON EXPONENTS..

X X X = X2 X2 X X = X3 X3 X X = X4
, &C.

(a + #)
2 = a2 +2ax+x2

(a— xf = a2— 2ax+x2

(a + x)(a— x) = a2—

#

2

(a2+ a#-l-#2)0— x) = a3—

x

3

(a + b)3 = a3 + 3a2b+ 3ab2+ b3

(a -ft)3 = a3-3a2
Z> + 3aft2-ft3

To multiply together any two powers of the same letter, let the

exponent of the product be the sum of the exponents of the factors.

Thus, to multiply x3 and x4
,

X3
is XXX

By the extension previously made of calling x the first power of .r,

and considering it as having the exponent 1, or as being x l

, this rule

includes the case where x itself is one of the factors. Thus,

X7 XX = X8
or X7 X X1

sss X7+1 = X8

Examples. X4 X X10 = X14 X2 X xlb == x17

x x x2 x x3 x x* = x10 a6 xa6 == a 12

3ab2 x4a2 b = r2«3
ft
3 2abxab = 2a2

fc

a2 b3 c<Pf3 xab*ce7f3 = a3 b7 c2 ei3f6

the latter term, written at full length, would be

aaabbbbbbbcceeeeeeeeeeeeeffffff

- To divide a power by another power of a less exponent, subtract the

exponent of the divisorfrom that of the dividend. For instance, what

is x10 divided by x3
1 Since 10 is 7 + 3, or since x 10 = x7 x x3

(_^) j3 _ = x7 or xx0~3
. Similarly, x3

-f- x (or x x

) = a:
2
; xX2 +-xn

= x* or x; xu -r- x9 = r5

; xa+b ~ x" =xb
; arb2c3 -±- abc = abcu

.

Anomaly 1. If we apply this rule to the division of xa by xb , we

have xa -r- & = tf
a-5

. If it should be afterwards found that a = b,

the preceding result becomes x°-a or jr°, a symbol which as yet has

no meaning. We return, therefore, to the original operation, which

is, to divide xa by xb where b = a, or, which is the same thing, to

divide x° by x°. The answer is evidently 1.
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Now why, instead of 1, the rational answer, did we obtain x°,

which has no meaning? Because we applied the preceding rule to a

case which does not fall under it. That rule was, " to divide a

power by another power of a less exponent," &c, and was derived

from the preceding rule of multiplication, which rule of multiplication

did not apply to any cases except where both factors were powers

of*, and, consequently, where the exponent of the product was greater

than the exponent of either factor; that is, where x° is the product,

and xb one of the factors, that rule does not apply unless b be less

than a.

When we come to this symbol (.i°) we must do one of two things,

either, 1. Consider .r° as shewing that a rule has been used in a case

to which it does not apply, strike it out, and write 1 in its place
;

or, 2. Let x° (which as yet has no meaning) stand for 1 ; in which

case the rule does apply, and gives the true result. Therefore, we

lay down the following definition.

By any letter with the exponent 0, such as a , we mean 1 ; or every

quantity raised to the power whose exponent is 0, is 1.

Anomaly 2. If we apply the equation xa -f- xb = x°~ b to a case

in which b is greater than a, say b = a + 6, the mere rule gives

3? -i- #°+6 = #«-(a+6) == x"6

a result which has no meaning. The reason is as before ; a rule has

been applied to a case to which it was not meant to apply. To find

the rational result, remember that x°+6 = xa x x6
; and

xa xa 1

xa+G xa x xs x6

the last result being obtained by dividing both numerator and deno-

minator of the preceding fraction by jra . The following are similar

instances ; in the first column is the rational process, in the second

the (yet) improper extension of the rule :

-
4
= ^-4 = X- 1

X3

.r
3

. r

_ 1

"~
X

.r
2

1

xKx6 ~~
X6

a 17 1

xn .X3 ~ X3

; = x2' 8 = x-
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To make the rule applicable, we must agree that

X -l

(which as yet have no meaning) shall stand for

11 a t
-, —-z, and —
x x6 x 3

that is, instead of x~ l being the sign that the result is to be abandoned,

and l-7-.r written in its place, we agree that x~ l shall mean the

same as \-^-x. And we are at liberty to give x- 1 any meaning we

please, because as yet it is without meaning. We lay down, therefore,

the following definition :

A letter with a negative exponent means unity divided by the same

letter with the same numerical exponent taken positively ; or,

x~a means —
x°

Our two rules for multiplication and division will now be found

to be universal. The following are instances, arranged as before

:

_!' • _L—1 .£!_ JUL — '

x3
' x8 x3

1 x3

.r*x

1^. 4— .1
1 = 1 — 1

p—3_i_#—

8

===iy— 3— (— 8) ^^-3+8^:^*

x-t-r-x* = ar-3-4 = -

r-7

We have now added to our first definition of an exponent in such

a way that two fundamental rules remain true in all cases where the

exponents are any whole numbers, positive or negative. These rules

are,

But we have no meaning for a number or letter with a fractional

exponent, such as

x* x* x% a?2i a:'
61

&c.

Instead of waiting until some improper extension of the preceding

rules shall force us to the consideration of the manner in which it will

be most convenient to give meaning to the preceding symbols, we

shall endeavour to anticipate this step. And first we shall ask what

should *• mean, in order that the preceding rule may apply to it?

In this case, since |+J = 1, we must so interpret x* that

X* X X* = X* +
* = X1 or x
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consequently, *' is that quantity which, multiplied by itself,

Of is what is ailed in arithmetic the syntax root of x. Similarly,

since &+£ + £ = 1> we must so interpret x* that

x*xx* xx* = ar
+
*
+
' = x 1

or x

that is, x^ must be the cube root of x. By a root of x we mean the

inverse term to power; that is, if m is the third power of n, n is called

the third root of m. As follows :

Name of n.

Square root of m
Cube root of m
Fourth root of m
Fifth root of m

Equation implied in the fore-

going name.

nn = m
nnn = m

nnnn = m
n n nnn = m

&c.

Thus, 4096 is a number which has exact square, cube, fourth, and

sixth, and twelfth roots.

Its square root is 64 because 64 X 64 = 4096

Its cube root is 16 16x16x16 = 4096

Its fourth root is 8.... 8x8x8x8 = 4096

Its sixth root is 4 .... 4x4x4x4x4x4 = 4096

. lf , . f 2X2X2X2X2X2] ^,
Its twelfth root is 2 { >= 4096

(.X2X2X2X2X2X2J

These results should, if the preceding interpretation can be relied

on be thus expressed :

64 = (4096)* 8 = (4096)*

16 = (4096)^ 4 = (4096)^

2 = (4096)"k

But, according to the notation best known in arithmetic, they would*

be thus expressed :

* V is derived from the letter r, the initial of radix, or root. This

symbol is now generally used for the square root, which, in ninety-nine

out of a hundred of the applications of algebra, is the highest root which
will occur.
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64 = ^4096 8 = Vi096

16 = Vi096~ 4 = V4096

2 = V4096

Proceeding with the interpretation of the fractional exponents,

x* ought to signify the cube root of x2
; for, if the preceding rules are

to remain true, we must have

^X^X^ = #l + l + f = X2

and, by the same sort of reasoning, we may conclude that x» should

stand for the rath root of xm . But here we may shew that we cannot

decide upon the propriety of the preceding interpretation without

some further acquaintance with the connexion between roots and

powers. For instance,

3?h or x*+i ought to be x2 X X* or x2V

x

But 2 \ is |; therefore,

X
2
* ought to be x% or Vx*

Consequently, x2 Vx ought to be V

x

5

where, by " ought to be," we mean that if it be not so, we cannot,*

under the preceding interpretation, apply the common rules of arith-

metic to our assumed fractional exponents. Again, since | + £ = jj,

a;2 x x^ or Vx X Vx ought to be x* or VH?

but as yet we have neither proved that

x2 Vx = Va? or that Vx x Vx = Vx*

For the purpose of shewing that the conjectural interpretation as

yet given leads to no erroneous results, we premise the following

arithmetical theorems.

Theorem I. If a be greater than b
f
than a2

is greater than 62
,

a3 than b3, &c. For aa is then the result of a multiplication in which

more than b is taken more times than there are units in b ; therefore

a a is greater than b b : in a3 or a2«, more than b2 is taken more times

* The student must remember that we are perfectly free to make a.
*

and x'i mean different things, if we only take care not to confound the

two. But it would be inconvenient that 2| should any where have a

meaning different from that off.
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than there are units in />, and so on. By changing the order in which

the letter! are named, the theorem may be differently worded, thus

:

if h be less than a, then ba is less than a2
, &c.

Theorem II. If a be greater than 6, a~ l
is less than 6"" 1

, a~ a
is

Im than 6~ a
. For if c be greater than b, - is less than - ; and since,

in that case, a2 is greater than b2, therefore —^ is less than 7-,, and

so on. Similarly, if a be less than b, a~ x
is greater than b~\ &c.

Theorem III. If a be equal to b, then aa is equal to b2, a
3 to 63

,

and so on. This is evident from page 3.

Theorem IV. If a be equal to 6, the square root of a is equal to

the square root of 6, the cube root of a to the cube root of b, and

so on. Let m and n be, for example, the fifth roots of a and b (which

last are equal), then a and b are the fifth powers of m and n; ifn
were the greater of the two, its fifth power a (Theorem I.) would be

greater than b, which is not the case. Similarly, if n were the

greater of the two, b would be greater than a ; therefore m must be

equal to n. In the same way any other case may be proved.

Theorem V. If a be greater than b, the square root of a is

greater than the square root of 6, &c. (We put the preceding argu-

ment* in different words). Since a is the square of its square root,

and b the same ; if the square root of a were equal to the square root

of b (by Theorem III.), the square of the first (or «) would be equal

to the square of the second (or 6), which is not the case. If the

square root of a were less than the square root of b (by Theorem I.),

the square of the first (or a) would be less than the square root of the

second (or b); which is not the case. The only remaining possibility

is, that when a is greater than 6, then the square root of a is greater

than the square root of b. Similarly, if a be less than b, the square

root of a is less than the square root of b : and so on.

Theorem VI. An arithmetical quantity has but one arithmetical

square, cube, or any other root. For suppose a, if possible, to have

two different cube roots, m and n ; one of these two is the greater, let

it be m. Then (Theorem I.) the cube of m (or a) is greater than the

cube of n (also a) ; but the last two assertions are contradictory,

therefore a cannot have two different cube roots, Sec.

* The nature of the argument is supposed to be well understood from
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All whole numbers have not whole square roots, or cube roots

;

and the higher the order of the root, the fewer are the whole numbers

lying under any given limit which have a root of the kind. The

following table will illustrate this.

Square
root.

Numt

Cube
Root.

>ers which h

Fourth
Root.

ive a whole

Fifth
Root.

Sixth
Root.

Value of
the Root.

1 1 1 1 1 1

4 8 16 32 64 2

9 27 81 243 729 3

16 64 256 1024 4096 4

25 125 625 3125 15625 5

36 216 1296 7776 46656 6

49 343 2401 16807 117649 7

64 512 4096 32768 262144 8

81 729 6561 59049 531441 9

100 1000 10000 100000 1000000 10

&c. &c. &c. &c. &c. &c.

A number which has not a whole root has not an exact fractional

root. At present we shall only enunciate the following proposition,

without proving it, leaving the student to try if he can produce any

instance to the contrary.

No power or root of afraction* can be a whole number.

Consequently, all those problems of arithmetic or algebra are

misconceptions, which require the extraction of any root of a number,

unless that number be one of those specified in the preceding table

(continued ad infinitum) as having J%uch a root. But though we may

not look for the exact solution of such problems, we shall shew that

solutions may be found which are as nearly true answers as we

please ; that is, we shall prove the following theorem.

Though there is nofraction whose nth power is exactly any given

whole numberj we may assign a fraction whose nth power shall differ

4 64
* That is, of a real fraction ; -, — , &c. are whole numbers in a

fractional form. It is not necessary to prove this strictly here ; because,

were it not true, what follows would not be incorrect, but only useless.
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from that vhole number hi/ less than any quantity 7iamed, say OQV\

,

or '0000001, or any other small fraction.

N.D. With the most convenient method of finding such a fraction

we have here nothing to do, but only with the proof that it can h«:

found. This is shewn in arithmetic as to the square and cube root

only at most. We must enter into the proof of this at some length,

and shall lay down the following Lemmas.*

Lemma 1. The powers of 2 are formed by one addition: thus,

2+2 = 2* 22 + 22 =23 23 +23 =24

or generally, 2"+ 2" = 2n X 2 = 2"+ 1

Lemma 2. The powers of a fraction are formed by forming the

powers of the numerator and denominator : thus,

(rt\3 a a a aaa a3

b)
=

b
X

b
X b~~bbb~b3

'

Lemma 3. Ifp be less than q

Then ap is less than aq

If p be less than q

and a b

ap is less than bq

Lemma 4. If v be less than unity its powers decrease con-

tinually. For instance, if v be one half, its square (£ x £) is one half

of one half, which is less than v; its cube is one half of one fourth,

which is less than v2
; and so on.

Lemma 5. If one of the positive terms of an expression be

increased the expression itself is increased, &c. Thus a — b is

increased by increasing a, and decreased by decreasing a; but it is

decreased by increasing b, and increased by decreasing b.

Lemma 6. If v be less than 1, then

(l+vf is less than 1+3 v or 1 -f- (4— l)l7

(1+v)3 l+7v or l+(8— l)i7

(1+v)4 l+15t> or l+(16-l)t>

or (I + vy is less than 1 + (2
n— l)i?

Firstly, (1 -\-v)2 or (1 +u) (1 -f v) is 1 +2v+v2
, which, since

(Lemma 4) v is greater than v2
, is (Lemma 5) increased by writing

* A Lemma is a proposition which is only used as subservient to the

proof of another proposition.
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v for t;
2

. But it then becomes 1 + 2v + tf or 1+3 v. Therefore

l + 2v+v2
is less than 1 + 3 v; that is, (l+ v)2

is less than 1 + 3 v.

Again, (1 -j- v)2 is less than 1 +3#
(Lemma 3) (1 +»)8 (1 +v) (1 +3i?)(l + i>)

or (1+v)3 l+4u + 3^2

Still more, then, (Lemmas 4 and 5 as before) is (1 + v)3 less than

1 +4v + 3v, or 1 + 7v.

Again, (1 +#)3 is less than \ + 7#

Therefore (1+z?)4 (l+7t?)(l+tf)

or l+8y + 7«2

Still more is
( 1 + y)

4 less than 1 -j. 8 y _j_ 7 1?

or ]+15y

We might thus proceed through any number of steps, but the

following is a species of proof which embraces all. Suppose that

one of the preceding is true, say that containing the wth power ; that

is, let

(l+v)n be less than 1+(2W— l)v

Then (Lem. 3)(1 + v)n(l + v) is less than {l +(2n- l)y}(l + v)

which product may be found as follows :

l + (2» — 1)«

1 + v

1 + '(2» — l)v

v + (2" — l)va

Add 1 +2n v +(2n — l)v2

or (1 + *0
n+1

is less than 1 + 2nV + (fc»-l)t>*

Still more (Lemmas 4 and 5) is it 1

(2n-\)v
less than 3

or l + (2" + 2n-l)y
or (Lemma 1) 1 + (2

n+1— l)v

We have proved, then, that

if (1 + v)
n

be less than 1 + (2
M— 1 ) v

it follows that (1 + v)n+1 is less than 1 + (2
W+1— l)v

Or in the series of propositions contained in this lemma, each one
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must be true if the preceding be true. But the first has been proved,

therefore all have been proved.

Lemma 7. If x be greater than a, then

(x + a)2 is less than x* +3ax or z2
-f(4— \)ax

(x + af x3 + 7ax2 or ar> + (8— l)ax2

(x + a)* x*+\5ax3 or ^4 + (16— \)axz

or (x + a)n is less than xn + (2
n— 1 ) a of

1 -i

Because x is greater than a, - is less than 1 ; therefore,

(Lemma 6),

(l +
liy is less than 1 + (2

n—l)-

But ] + - = —U /. (Lemma 2) ( 1 + - ) = v '

x x x ' \ x/ x»

Therefore,
(1±^!1 is less than 1 + (2

n — 1)-
xn v yx

Multiply both sides by xn (Lemma 3), which gives

( + a)n is less than xn + (2
n— 1 )—

or xn + (Zn— I) ax*1
" 1

We proceed to shew the proposition in pages 90 and 91 in a par-

ticular case. Say the number is 10, the power mentioned is the cube.

Can a fraction be found whose cube shall be within, say -0001 of 10?

Since (2)
3 = 8, and (3)

3 = 27, 2 is too small and 3 too great.

Examine the cubes of the following fractions falling between 2 and 3

;

2-1, 22, 2-3, &c. We have (2-1)3 = 9-261, and (2-2)
3 == 10'648

;

whence 2*1 is too small, and 22 too great. Examine the fractions

2-11, 2-12, 2-13, &c. lying between 2-1 and 2-2. We find,

(2-15)3 = 9-938375 (2-16)3 = 10-077696

Therefore 2*15 is too small, and 216 too great.

Proceeding in this way, we shall find,

(2-154)3
less than 10 (2'155)3 greater than 10

(2-1544)3
.. 10 (2-1545)3 •• 10

(2-15443)3 .. 10 (2-15444)3
.. 10

&.C. &c.
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The only question now is, shall we thus arrive at two fractions,

one having a cube less than 10, and the other greater, but both cubes

so near to 10 as not to differ from it by -0001 ? Observe that in the

preceding list,

2*2 exceeds 2*1 by only '1

2-16 .. 2-15 .. -01

2-155 .. 2-154 .. -001

2-1545 .. 2-1544 .. -0001

&c. &c. &c.

and from Lemma 7, if a be less than x.

(x + a)* is less than X3 + 7ax2

or (o;+ a)3—X3
is less than lax2

Let x be the lower of one of the preceding sets effractions; then,

since xz
is less thau 10, x must be less than 3, and its square less

than 9. Therefore, lax2 must be less than 7a X 9, or than 63a.

Still more, then, will (,r + a)3— x3 (which is less than 7 ax2
), be less

than 63 a. Let x -\-a be the higher of the fractions in the set spoken

of; then a, the difference, will at some one step become -0000001,

consequently, 63a will become -0000063, which is less than -00001.

Therefore x may be so found that

X3
is less than 10 (x + '000000 1)

3
is greater than 10

and (a; + -0000001)3-a;3
is less than '00001.

But 10, which lies between the two cubes, will differ from either

of the cubes by less than they differ from each other ; therefore, either

fraction has a cube within the required degree of nearness to 10.

The fractions required would be found to be 2- 1544346 and

2*1544347. In a similar way any other case might be treated.

Hence, the following language is used. Instead of saying that 10

has no cube root, but that fractions may be found having cubes as

near to 10 as we please, those fractions are called approximations* to

the cube root of 10, as if there were such a thing as v 10. Thus,

2-154 is an approximation to v 10? but not so near an approximation

as 2*1544346; instead of saying that (2-154)3
is nearly equal to 10,

but not so nearly equal to 10 as (2-1544346)3
.

* Approximare, to bring near to.
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The student will now understand the sense in which Wl DM the

following words :

Even/ number and fraction has a root of ever 1/ <»</, /•, either exact

or approximate.

When we shall have proved that in all cases s/ a xVo = >/«*,

what do we mean by this equation in the case where a = 10, and

therefore as = 100000 ? We mean that we can obtain two fractions

of which the square and cube are within any degree of nearness

(say -0001) of 10, which we call approximate values of >/l0 and

n/io, and that, on multiplying these two fractions together, we find a

product which, being raised to the sixth power, gives a result within

the same degree of nearness to 105
, or is an approximate value of

v 10''. We shall anticipate the proof of both propositions, as one

specimen of the method of passing from the strict to the approximative

proposition will serve for all.

Let a be a number which has both a square and a cube root

(such as 64, or — ). Let x be the square root, and y the cube root.

Then

3* = a therefore (x2
)
3 = a3 or x2 .x2 .x2 = a3 or x6 = a3

y3 -3 a therefore (t/3 )
2 = a2

or if .y
3 = a2

or y
6 — cr

.-. x6
y
6 = a3 a2

or (xy)6 = a5

for j
6

//
6

is xxxxxxyyyyyy, in which the multiplications may be

performed in the order

xy.xy.xy.xy.xy.xy giving {xyf
' Consequently, xy is the sixth root of a5

; but x is the square root of a,

and y the cube root, that is,

xy = V

a

5 or Va x ^ a = ^a 5

Now, suppose a to be a number which has neither square or cube

root, such as 10. We can find fractions x and y, such that x2 and y
3

shall be as near as we please to a. Say that .r
2 = a+p and

y
3 = a-\-q where'/) and q may be as small* as we please. We will

begin by supposing/? and q smaller than a. Hence (Lemma 7),

* As small as we -please does not mean that we can choose them

exactly, but that, name any fraction we may, however small, they may
be made (we need not inquire how much) smaller.
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(a+pY is less than a 3 + 7pa*

(a + qf a* + 3qa
But (tf

2
)
3

or a6 = (a+p)3
(?/

3
)
2 or ?/

6 = (a + #)
2

therefore,

tf
6

is less than a3 + 7pa2

?/
6 a2 + 3^

(Lemma 3) a?y& (a3 + 7pa2
) (a2 + 3qa)

or (#y)
6

is less than a5 + (7p + 3q)aAs + 21pq

a

3

But since jt
2 (being «+p) is greater than a, x6

is greater than a3
;

and since t/
3 (being a + q) is greater than a, y5

is greater than a2 ;

hence ^j/
6 or (xy)6

is greater than a3
.

a

2 or a5 . Hence,

(xyf lies between a5
and «5

-f (7p + 3q)a4 + 21pq a3

and therefore does not differ from a5 by so much as

(7p + 3q)a4, -f-2lpqa3

Now, since p and q may be as small as we please, Ip + 3 q and

21pq may be as small as we please, and, therefore (however great* a4

and a3 may be), may be so taken that the preceding expression shall

be as small as we please. That is, (xyf may be made as near an

approximation as we please to a5, or xy is an approximate sixth root

of a5
.

The preceding demonstration is not frequently given in books on

algebra, but the result is assumed in what is called the law of con-

tinuity. This term we shall proceed to explain, as it involves con-

siderations which will be useful to the student; but as it may be

omitted without breaking the series of results, we inclose it in

brackets, and also the heading of the pages which contain it.

[The word continuous is synonymous with gradual or without sudden

changes. For instance^ suppose a large square, with two of its oppo-

site sides running north and south. A person who walks round this

square will make a quarter-face at each comer, that is, will at once

proceed east or west where before he was moving north or south,

and vice versa, without moving in any of the intermediate directions.

* The product run, if n be given, and to as small as we please, may
be made as small as we please ; only the greater n is, the smaller must to

be taken, in order to give the product the required degree of smallness.
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In this case lie changes his direction discontinuous!!/. If the figure

had had eight sides he would still have made discontinuous oKl

of direction, but each change of less amount; still less would tin-

changes have been if the figure had had sixteen sides, and so on.

But if he walk round a circle, or other oval curve, there is no

discontinuous change of direction. If a geometrical* point move

round a geometrical circle, there is no conceivable direction in

which it will not be moving at some point or other of its course;

and between every two points, it will move in every direction

intermediate to the directions which it has at those two points.

The preceding illustration is drawn from geometry, in which

continuous change is supposed ; and there is nothing repugnant

to our ideas in the supposition, but the contrary, at least, when we

imagine lines to be created by the motion of a point. But in the

application of arithmetic, and eventually of algebra, to geometry, we

have this question to ask, Can all geometrical magnitudes be repre-

sented arithmetically? For instance, suppose B to start from A,

and to move in a straight line till it is 100 feet from A, can we, by

means of feet and fractions of feet, represent the distance to which

B has moved from A, in every one of the infinite number of points

which B passes through ?

It is clear that between one foot and two feet we can interpose the

fractions 1*1, 1-2, 1-3, &c. feet; between 1-1 and 1-2 feet we can

interpose 1-11, 1-12, 1-13, &c. feet; between I'll and 1*12 we can

* Geometrical, formed with the accuracy which the reason suppose*

in geometrical figures.
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interpose 1*111, 1*112, 1-113, &c. feet; and so on for ever* But

assigning B any geometrical position between 1 and 2 feet distance

from A, we cannot be prepared to say that we shall thus come at last

to a foot and a fraction of a foot, which will exactly represent that

position. And we shall now proceed to shew one position, at least,

assignable geometrically, but not arithmetically.

O fl£ o> IB Qi

<2 «2 £ <22 <2J o
i-c ©I Pi rj< io «y

-H 1 1 1

1^
It is shewn in geometry! how to assign (by geometrical construc-

tion, not arithmetically) a position to B, in which the square described

on AB shall be twice as great as the square described on 1 foot (as

in the figure). We now proceed to inquire whether the line AB
has, in such a case, any assignable arithmetical magnitude (a foot

being represented by 1). If so, since every fraction of a foot can

be reduced to a fraction with a whole numerator and denominator

(Ar. 114,121), letABbe - feet, where m and n are whole numbers.

That is, let AB be formed by dividing one or more feet each into n

equal parts, and putting together m of those parts. Let this nth part

of a foot be called for convenience a " subdivision;" then a foot

contains n subdivisions, and AB contains m subdivisions. Then,

from Ar. 234, it appears that the square on the foot contains n X n

of the squares described on a subdivision, and the square on AB
contains m x m of the same. Hence, since the square on AB is

double of the square on one foot, we must have

mm = 2nn

We now proceed to shew that this equation is not possible under

the stipulation that m and n are whole numbers. Because n is a

* The student must not imagine this phrase, or its corresponding

Latin ad infinitum, to mean more than as long as we please, or as far as

we please. ^_
t Euclid, book ii. last proposition. Hy ^KtU-j *-V

-j—i /L ^^j * &~* '
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whole number, nn is a whole number, and 2nn is twice a whole

number, and therefore an even number; but mm equals twice nn,

therefore mm is even. Therefore m is even, for an odd number

multiplied by itself gives an odd number. But if in be even, its half

is a whole number; let that half be m'
t
then m = 2 m'. Substitute

this value of m in the equation, which gives

2m'x2ni = 2nn 4m'm' = 2nn or 2m'm' = n?i

which last equation nn = 2m'm' may be used in a manner precisely

similar, to shew that n must be an even number. Let its half be

n' (a whole number), then n = 2n', and substitution gives

2n' x 2n = 2nim 4n'n' = 2m'm' or 2n'n' = m'm

which proves as before that iV is even. In this way we shew that in

order that the equation mm = 2nn may be true (m and n being

whole numbers), we must have

m (m! or half of m) (m" or half of m') &c.

n (ri or half of ri) (n" or half of ri) &c.

all even whole numbers for ever. But this cannot be; for if any

number be halved, if its half be halved, and so on, we shall at last

come to a fraction less than 1 . Consequently, the equation mm-=.2nn

cannot be true of any whole numbers, and therefore A B cannot be

represented by any fraction —

.

The preceding equation (if it could exist) would give

mm n M m A r» .
m= I or — x — = 2 or XX = 2 where x = —

nn n n n

and we have seen (page 94) that we can admit the equation xx =.2

only in this sense, that, naming any fraction, however small, we can

find a value for x, which shall give xx differing from 2 by less than

that fraction. That is, instead of satisfying the equation

xx-2 =
we can only satisfy the equation

XX— 2 = a quantity arithmetically less than ( )

where we may fill up the blank with any fraction we please, however

small.

This is sufficient for all practical purposes ; because no applica-

tion of algebra which has any reference to the purposes of life can



100 [law of continuity.]

require a degree of accuracy beyond the limits of our sight, when

assisted by the most accurate means of measurement. If we take the

least possible visible line to be that of a ten thousandth of an inch,

it will certainly be sufficiently near the truth to solve the equation

XX—2 = arithmetically less than one millionth of an inch,

in cases where perfect exactness demands that XX— 2 =
The solution which nearly satisfies such an equation as xx—2 =0

may be either too small or too great ; that is, xx may be a little less

or a little greater than 2. See page 94, where sets of solutions of

both kinds are given for the equation xxx—10 = 0. Hence, though

x or v 10 has no existence, yet, since we can find two fractions, say

a and ft, as near to one another as we please, of which the first is

too small (or aaa less than 10) and the second too great (or bbb

greater than 10) ; and since we can carry this process to any degree

of accuracy short of positive exactness, it is usual to make use of

such forms of speech as the following : 10 has a cube root, but that

cube root is an incommensurable * quantity, not expressible by any

number or fraction, except approximately ; that is, we can find a
3 /

fraction as near as we please to v 10.

But still the following question remains : though we can, quam

proxime,f solve the equation xx— 2 = 0, may there not be processes

to which it may be necessary to subject that approximate solution,

and may not those processes have this property, that any error, how-

ever small, in the quantity to which they are applied, creates an error

which cannot be diminished beyond a certain extent, however small

the original error may be ? For instance, when the student comes to

know what is meant by the logarithm of a number (for our present

purposes it suffices to say, that it is the result of a complicated

process), he might happen to meet with a problem the answer to

which is " the logarithm of x, where x is to be found from the

equation xx— 2=0." Which of the two following propositions

will he take? one of them must be true.

1. "In taking the logarithm o(x, the error committed in finding

* Having no common measure with 1 ; not expressible by adding

together any of the subdivisions of 1

.

t A Latin phrase frequently applied to this subject, and therefore

introduced here. Translate it, as near as we please.
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x may be made so small, that the error in the logarithm shall be less

than any fraction named."

2. " If an error committed in finding a number be ever so small,

the error of the logarithm must be greater than (some given fraction,

say) 001."

To this no answer can be given except the following caution :

Whenever any new process is introduced, or any new expression,

it must be proved, and not assumed, that problems involving that process

admit e/'quam proximo, if not of exact, solutions.

The student should now apply himself to prove this of the pro-

cesses already described. We will take one case at length.

Let the result of a problem be —
;

—
r c+e

where an error, which we are at liberty to suppose as small as we

please, has been committed in determining, say b and e. Or (which

is a way of speaking more consistent with what has preceded), let

b and e be involved in some equations (such as bb— 2 = 0,

eee— 3 = 0) which only admit quam proxime solutions. Let b' and

b" be approximate values of b, the first too small, the second too

great; let e' and e" be approximate values of e. Then the substitution

of the approximate values of the preceding expression gives

a -f- b' . a + b"——-/ and —-

—

Tl
c + e c +-e

To compare these expressions, subtract the second from the first,

which gives

a+b' _ a + b" _ (a C + ae" + cb' + 6V')— (ac + ae' + cb" + e'b")

c+ e' c + e"
"

ec -\- C e' + ce"~+e'e"

_ a (e"— e')— c(b"—b') + jb'e"— e'b")

cc + (e' + e")c + e'e"

And since, page 94, e" may be brought as near to e' as we please, and

b" to b', it follows that e" — e' and b" — b' may be made as small as

we please ; whence a{e" — e') and c{b"— b') may be made as small

please, page 96, note. And so may b'e" — e'b", for it will be

found to be the same as

b'(e"-e')-e'(b"-b')

Hence the numerator of the preceding fraction can be made as sn, ill

as we please, because each of its terms can be made as small as we

k 2
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please. But since e" is always greater than e', the denominator is

(page 91, Lemma 5) always greater than

cc + (e +e')c +ee'

Here then is a fraction of which the numerator can be made as

small as we please, but not the denominator; consequently, the

fraction can be made as small as we please. That is, the fractions

a + V
and

a + 6"
different values attributed to

a + b

c + e' c + e'"
"

~
c + e

can be brought as near as we please, or be made to differ as little as

we please. Here, by the same extension of language as before, the

last mentioned fraction is said to have a definite value, to which we

approximate by substituting approximate values of b and e.

The law of continuity which is assumed to exist in algebraical

expressions, and which must be proved by the student in a sufficient

number of particular cases, consists in the following theorem :

Particular Case.

P = x + x*

p = fl-fa2

General Theorem.

Let there be an algebraical

expression P, which contains x,

and let the substitution of a

instead of x give to that ex-

pression the value p.

Let the substitution of a -f m
instead of x give to the expres-

sion P the value q.

Then if a and a-\-m may be

made as nearly equal as we

please; that is, if m may be

made as small as we please, it

will always follow that p and q

may be made to differ as little

as we please.

The only question about which any doubt can arise, as regards

expressions hitherto obtained, relates to the values, real or approxi-

mate, as the case may be, of \Zx, v x, &c. If m can be made as

small as we please, can the approximate values of s/ a and va + wi

be made as near as we please ? To answer this question, we must

premise a theorem which will also be useful in many other places.

q = (a -j- m) + (a + m)*

= «-f-a
2+(l+2a)w-fm2

= p + (l-f-2a)m+w 2

From the last,

q — p = ( 1 -f- 2 a) m -J- ;;t
2

each term of which, if m may

be made as small as we please,

may be made as small as we

please.
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It is U follows :

m (.,— //)(>•+//)

x3-if = (.«.—//)(./• + .,•//+#'-')

% '— if = (x—y) (.i-
3 + afy + a; //- + y»)

«"-y = (.f-i/)(.^-
1 + .t-"-

2
7/ + .... -Hr/^+y1-1

)

Multiplication will make any one of these obvious; for instance,

x3 +x2y+xy2 +y3

x — y

x* + x3
y + x2y~ -f- .ry

3

— x3y— x2

y
2—xy3—y*

x* + + + -#4

(Observe that in this, the first multiplication which has been given

at length since Chapter II., we have employed the second of the

methods in the Introduction, and shall do so in future.)

If we examine the series of expressions

x-\-y, x°+xy+y2
, x3 +x2y + xy2 +y3

, &c.

we shall see that each of them may be made by multiplying the pre-

ceding by y, and adding a new power of x. Thus,

x2 + xy+y°- = x2 +y(x-\-y)

atP+afiy+xyt+y* = x3 +y(x2 +xy+y2
) &c.

So that, if we call* these expressions P,, Pa, P3 , Sec.(we shall seldom

use large letters except as the abbreviations of other expressions), we

have

P 2 = x*+y¥ l9 P3 = x3 +yVo, P4 = a;
4 +yP3 , &c.

or generally P„ = X*
1 +yPn -i

But we shall also find that the same expressions may be made by

multiplying by x, and adding powers of y, as follows :

x2 + xy+y2 = y~ + x(x+y)
x3 + x2y+xy2 +y* = y

3 + x(x°- + xy +y2
) &c.

* The figures underwritten must not bo confounded with exponents.

They are used as the accents in page 38, and are read P one, P tuo,

P three, &c.
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or P 2
= y* +xV x P3 = y

3 + xVo P4 = y*+xVz &c

or generally, Pn = y
n +xFn_ l ^

The theorem we are now upon may be thus expressed :

xn-yn = (x—y)¥n -\

and it may be proved as follows :

Particular Case.

P
4 =y-hrP3

) = *4-/-Gr-3/)P,
x*—

y

4=(x—y)P
3

General Theorem.

Pn = ^+i/PM_i

Pn =yn+xFn_ l

(_) = X"-yn-(x-y)Vn-l
xn—yn=(x—y)Pn-i

Let us now examine v 10 and vlO+ra, where m may be made

as small as we please. Let y and x be approximate values of the

first and second, so that (pages 94, 95),

Xs = (10 -f- m) f v *» where v and w may be made

y
3 = 10 + w \ as small as we please.

x* —y3 = m + v — w
Or

(X —y) (#2 _|_ jr,^ _j_ yJ) __ »j -L. W _ My

m -f v—w
x — v=-

x*+ xy+y*

M

Now x and y are both greater than 2, since 23 = 8 (less than 10) :

therefore the denominator of the preceding fraction must be greater

than 12, while the numerator can be made as small as we please.

Hence the fraction (which is = x—y) can be made as small as we

please, or x and y as nearly equal as we please. But x and y are the

approximate values of VlO+m and v 10.

The student may try to prove the following theorem :

x*-y* = (x + y) (x-y)

x* — y* = (x + y) (x3 — x*y + x y* — y3
)

x6 — y
6 = (x + y) (x5— x*y + x3

y
2 — x*y3 + xy* — y

5
)

&c. &c.

x3 +y3 = (x+y) (x^ — xy+y2
)

x5 + y
5 = (x + y) (x* — x3y + x^y* — xy 3 + y

4
)

&c. &c.

We shall now proceed with the general theory of exponents.]
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To raise a power of x to any power, multiply nil of tin

two powers togi (her for on exponent ; for instance,

{X3 )* = x3 * A = x12
for (a 3

)

4 = x\x\x3.x3 = x3*3* 3* 3

In a similar manner,

(.T
2
)
12 = X24

(X*f = X 18 {x")b = X" b

(Xa+b )
a ~b = .r"

3" 63 /^a-6\a+6 __ -ya'-b2

(.r»«)
n = (*")" = *mn

A power of a product is fA€ product of the powers of the factors.

Thus,

(abcy = abc.abc.abc = aaabbbece = a 3 b3
c
3

(ab°c3f = «4
(6

2
)

4
(c

3
)
4 = a4 68 c12

^in cpy _ (a
f*y(?jny(

cpy = amr b
nr

c
pr

r ) = -it ;

for the first is 7X7X7, or 7-7-7, which is the second (page 91).
b bub

A root of a root is that root whose index is the product of the

indices of the first mentioned roots. Thus, the fourth root of the cube

(third) root is the twelfth root. To prove this, let the fourth root of

the third root of x be called y. Then,

Vvx = y /. i/x = 1/ x = {iff = /2

or y = v X, but y is also \ v X

We have shewn, page 89, that x can have but one arithmetical

cube root, or twelfth root; and that the cube root can have but one

arithmetical fourth root. Hence the above process is conclusive ; it

shews that a fourth root of a cube root of x is a twelfth root of x

;

and there is but one arithmetical root of each kind. But when we

come to consider all the algebraical symbols which are roots of j-,

both those which have arithmetical meaning and those which have

not, the student must remember that the preceding does not prove

that every fourth root of every third root of x is a twelfth root of jr.

This may be the case, but it is not yet proved.

In a similar way it may be proved that

y y/ x = \/x ; v \/x = %/x = \ \/x

\/\/i = a
V'x = \lv*\ \fv~* - V*
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The root of a product is found by multiplying together the roots of

thefactors. Thus,

\/a be = \/a x \/b x \/~c (A)

for these two have the same fourth power, namely, abc. For by

definition (page 87),

\\/abc) = abc
and by page 105,

(XTa x Vb x V'c)
1 = (VaT x 0/6)

4
x GA)

4 = a x b x c

That is, each side of the equation (A) is a fourth root of abc. But

abc has but one arithmetical fourth root; consequently, each side of

(A) must be that root ; and therefore the two sides are equal.

Similarly it may be proved that

s/abc = \/a x s/b x \/c \/a

b

2 = \/a x s/b* = bs/

a

sAW = v/^xv/^xv/? 4

v/32 = \/T6xv/2 = 2^/2

The same rule may be applied to division. Thus, <J - = —"
;

for both of these will be found to have the same cube, namely, -.

If a power ofxbe raised, and a root of that power extracted, the

result is not altered if the order of the operations be changed. That is,

V3? is the same as ! Vx

\

To prove this, observe that (page 105),

y/jP* = %/xXXX = \/xX\/xX\/xXs/x = }\/^j
4

Similarly, 5/? = ($/x)
b

; y/tf = (^/i)
3

In the expression Vi 6
, if a and b be both multiplied or divided by

the same number, the value of the expression is not altered. That is,

For it has been shewn that

"V^*

=

yvvw6
which is \f\/(^f = v^b

because V6?T = &

Similarly, V* = V* m V^ = V?
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To extnei a root ofa powert
divide the exponent of the power by

the index of the root, if Unit division be possible without fraci

Thus, Vx1* = .j-T = j

3
. For x 12 = 3

)<; therefore V*3= x3
. Simi-

larly,W = x2
, s/x*°-= .r

10
; and so on.

When the exponent of the power is not divisible by the index of

the root, as in the case ofv.r7
, we have (at least as yet) no alge-

braical mode of operation by which to reduce \/

x

1 to any form in

which the sign V does not appear.* It only remains, therefore,

to find what number or fraction * stands for, and then f to calculate

v x1 or x7 V.r by the rules of arithmetic.

The only question that remains is about a mode of representing

V\r7
; and this question we have anticipated in page 86, where we

have found that it would be highly convenient in one respect to let

»*, j4, &c. stand for s/x-> v x, &c. But we stopped our course there,

because we had no direct reason to know that all the complicated

relations of roots might be obtained from that notation, without the

necessity of applying rules tofractional exponents differentfrom those

which are applied to common fractions, or of treating the fractional

exponents by rules differentfrom those which apply to whole exponents.

We write in opposite columns instances of the rules which we have

proved in the case of whole exponents, and those about which we

* We may proceed as follows. Since x7 = a 6.x, we have s/' x7 =
\/.i6 x x = Vx6 x s/ x = x2 v.i ; in which, however, the symbol \/

still remains.

t There is a certain distinction to be drawn between the processes of

algebra and those of arithmetic. We cannot be properly said to find

results in algebra, but only to put them into the form in which they can

be most easily found by arithmetic. For instance, " What is the sum of

a and b V Of this question a + b is not properly a solution, but a repre-

sentation, and the proper answer to the question must be deferred till

we know what numbers a and b stand for. But in the question, " what is

the sum of 8 a and 5 a 1" we can go one step further ; for though 8 a + 5 a

is an algebraical representation, it is not the most simple one which the

language of the science admits. The latter is 13 a; but we are still

without the answer until we know what a stands for. When we come

to the step at which we must pass to arithmetic to get any nearer the

answer, we shall therefore say we have arrived at the ultimate algebraical

form. Thus a + 6 is an ultimate form; 8a + 5a is not. Again >/a7
, or

at most a2 'v x, is an ultimate form ; "J x Vi is not.
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wish to inquire as to fractional exponents ; the question being, are

the theorems in the second column true, upon the supposition that

k
x n represents

afixx* = ^+4 = x10

O6
)
2 = xQ * 2 = a;

12

%/x~& = x" = a;
2

x»xxk =xt + h = xV

{x
Ay=x* ° = ar?

In the first place we observe that we come by the extension from

the last rule in the same way as by others. We have found that when

b is divisible by «, xa is a correct representation of \/.r 6
. But when

b

b is not divisible by a, xa has no meaning. We give it a meaning

;

that is, we say, let it still represent Vj*, whatever that may be. We
now proceed to investigate the rules which this new symbol requires.

The first column is the general case, the second a particular case.

The references ( ) are to the pages in which the rules are contained.

m p

What is X n XXq~1

X means

(106) which =
p

X q means

(106) which =

Therefore x n X x q

= W x' V*ni

(106) =z
nqSzmq X Xn P

(84) = n
l/xmq + n P

Which is represented by
mq + np

X " q

But
m
1 + np = ? + p-
nq n q

Therefore x 11 X XH —X
™,p
vn q

What is X$>:*«?

x* means y&
(106) which == ¥*
& means V x

(106) which ==
6

v/^

Therefore X* X X*

=1/:7*x %/7*

(106) = \/x* x x3

(84) -v X7

Which is represented by

7 2 1
But ^ = 3+2

Therefore a? X ar*=^ + i
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The next rule will be more briefly deduced, and without

references.

What is «*-*-** 1

Thisisv/^ + v/^
n
t/&*+*{/*»

ny/xmq-np

mq—np

or X »«

w<9— np m p
But

ny n g

m p m p

Therefore Xn ~ & = Xn q

What is U"")"5 '

This means \ [\/xm
J

P

or (106) VVW
or (105) V!
or

But

mp

xnq

mp m p

nq n q

xnJ q=xn q

What is X* -T- X* •

This is \/^ * \/*

or \/.r4 ~ v^
or

or

or

But

X/1F+

x*

i— £ __i
6 ""3 2

Therefore x% -r- ar*= #5

What is (a?Q? ?

This means \ jx/^
5
*

or (106)

or (105)

or

But

XTS

_8___4 2

15 ~5 X
3

Therefore (.r$)3=a?i x
3

The last process contains the answer to both the third and fourth

inquiries in page 108.

By looking at page 86, and remembering that the fundamental

rules there used have now been proved to be applicable to fractional

exponents, the meaning of, and rules relating to, negative fractional

exponents may be established. Thus,

X~~* stands for —- or r-r^z and also for 1/ (l\

We shall now proceed to inquire how many algebraical roots

there may be, and of what kind, in the case of the square, cube, and

L
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fourth roots. To go further would be difficult for the beginner at

present.

First, as to the square root. It is evident that +1 and — 1 are

both square roots of +1, and +a and — a both square roots of

-\-aa. For

— lx —1 = +1 -ax —a = +aa
+ lx +1 = +1 +«x +« = +aa

The question now is, can there be more than two square roots

to +1 ? Let x be any square root of +1, then xx must (by the

definition of the term square root) = 1, or xx— 1 = 0. But

xx— 1 — (*+f)(r-~l); therefore (x 4-1) (*— 1) = 0. Therefore,*

either x 4-1 on— 1 is =0. To x+l =0, the only answer is

x = — 1 ; to x— 1 = 0, the only answer is x = +1 ; therefore -J-l

and — 1 are the only square roots of 1. The same process may be

applied to xx = aa, or {x— a)(x-\-a) = 0.

Therefore a negative quantity can have no square root which is

either a positive or a negative quantity ; for either of these, multiplied

by itself, is a positive quantity. We will not therefore say that s/—

1

is no " quantity," because we have agreed to give that name to every

symbol which results from the rules of calculation. But n/—

1

(whenever it occurs) will be what — 1 was in page 47, the evidence

of some misconception of a problem, for which the problem must

be examined, and altered, extended, or abandoned, as may be found

necessary. But if we look at the steps by which we established the

meaning of—1, we shall find them to be as follows :f

1. We met with such combinations of symbols as 3— 4, &c.

proposing operations which contradicted the meaning which the

symbols 3, —, 4, then had.

2. We examined the problems which gave rise to such combina-

tions, and found out how to make the correction without repeating

the process ; so ascertaining what was to be understood by such

expressions as 3— 4, &c. that we could either predict their appear-

ance, or explain them when they appeared.

3. We examined what would arise from applying common rules

* When a product ab = 0, either a or b = 0, for if both have a value,

the product, by common rules, has a value.

f The student may make his understanding what immediately follows

a test of his having understood all that precedes.
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to 3— 4, fee, and what would be the effect of deferring the correction

of the misconception till any later stage of the process.

4. From all that preceded, we extended the meaning of the terms

commonly used, and in such a manner, that what were till then simply

the results of misconception, became recognised symbols with a definite

meaning, and used with demonstrated rules, not differing in practice

from those with which they were used in their limited signification.

5. And we found that in all cases in which the result produced

was simply arithmetical (that is, consistent and intelligible when the

terms had their limited significations), that no error was left in the

result by the unintelligible character (with the limited meanings) of

the preceding steps ; but that the result was the same as it would have

been if we had retraced our steps and made each step arithmetical.

Thus we observed that +, which before a number, 3, means

addition, before — 3 is equivalent to a direction to annex — 3 to the

preceding part of the expression ; and that though we could not dis-

pense with the extended meaning of + and — in -f-(— 6)— (+ 4),

yet that +6 + 3 admitted of arithmetical interpretation, even though

it were the result of several of the more extended forms of operation.

From this we are at liberty to conjecture, that a further extension

of the meaning of + and — might, by precisely the same train of

operations, give a rational method of using and interpreting */— 1,

v — 2, &c, which at present are wholly unmeaning and contradic-

tory. We say conjecture, because it by no means follows that a

method of the success of which we have only one instance, will be

universally applicable. Such a method has been given, but it is not

our intention to explain it here. We shall simply shew that a field

has been left in which the explanation may be looked for.

P

C" A C B C
If we suppose a person to set out from A, and stop at B, stopping

first at some other point, and always keeping in the line A B or its

continuation ; and if we suppose distance measured towards the right

to be positive, and towards the left negative, we can by our rules

ascertain the distance +AB through which he goes altogether from

his first position, as follows :
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l.Ifhestopat C ( + AC) +(+CB) = +AB
2. If he stop at C ( +AC) + (— C'B) = +AB
3. Ifhestopat C" (- AC") + ( + C"B) = +AB
Now observe that if he should leave the line AB or its con-

tinuation, if, for instance, he should go through AP, PB, we have no

symbols so connected with AP, &c. that (let H simply denote that

some yet uninvented symbol is to be in its place)

ir(irAP)iKirPB) = +ab
Therefore we find that in the application of algebra we may yet

have new symbols to employ, and we also fall upon unexplained

symbols such as s/— 1, &c. May not such extensions be made as

will make */— 1, &c , with an extended use of + and — , supply the

place of the yet-to-be-invented symbols ? This is for the student of

this work a point for conjecture only, but it will make the following

course advisable.

1. Apply the rules of algebra to such expressions as v — 1, &c.

merely to see what will come of using them, without placing any

confidence in the results, or at least more than the experience of a

great number shall render unavoidable.

2. Whenever, in the course of a process, it appears that such

expressions as V— 1, &c. have disappeared, examine the result and

6ee whether it is true.

We now pass to the cube root. Let x be any one of the cube

roots of 1. Then,r3=l or a-
3—1=0 a:

3—1 =(.r— l)(^
2+^+l) =0

(see page 103, and make y = 1) ;

therefore either #—1=0 or x2 +X+\ =
The first gives xsl, and 1 is evidently a cube root of 1 . The second

cannot be solved till the student has read the next chapter; but its

solutions (for it has two) both contain the yet unexplained symbol

V

—

a. They are

—1 + N/ZT3 — 1— v/IT3— and
2 2

and we shall shew of the first of these (leaving the second to the

student), 1. That it does satisfy the equation x2-\-x+l, if common

rules be considered as applicable to s/— 3; 2. That it is a cube

root of 1, on the same supposition.
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Tf - -l + >/=3
2 _ (-1)»+2(-1)(\/=3) + (n/^3)«

It X — - x —
4

1_ 2 >/I^3 + (— 3) __ — 2— 2n/^3 _ -l-V^
~~4~

4
==

2

Therefore

x2 -f-a;+l = - +—^ + 1 =—— + 1 =

, . -I-n/^3 —l + N/^Ii
Again .r

3 = X* X X = X -z

_ (~1)a~(^^3)a

__ l-(-3) _ 4 = ]

4 4 " 4

T t
_i_^ZT5 —i + vzr^^ P = % q = 2

Then the three cube roots of aaa or a3 must be a, pa, and ^w.

For first aX ax a = a3
.

paxpax pa = p
3 a5 = a 3 because p3 = 1

qaxqaxqa = <7
3«3 = a3 because q

3 = 1

and the same might be deduced from the equation x3— a3= 0, so

soon as we know how to solve x2 + ax + a2 = 0.

Let x be one of the fourth roots of 1. Then we have .r
4 = 1, or

xA— 1 = ; that is,

(X2__1)(X2 + 1) = and either x2— \ = or x* + l ==

the solutions of x2— 1 = are —1 and +1, as before; and the solu-

tions of a:
2+l =0 are either x= +\/— l or x = —V— 1. There-

fore 1 has four fourth roots, +1, — 1, + V— 1, and — \/—1. This

will be found true upon the application ofcommon rules; for instance,

(>/=n> = (V=i) 3
. v=r= ->/zr. v=i=

-(x/Z^)a= «(_l) == i

The only use which we can logically make of such expressions as

s/— x, previous to any further inquiry, is the following : Let a, b, c,

and d, be positive or negative quantities. Then

a + b\/— X = c -t-d VZJ
L 2
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cannot be true unless a= c and b =d. For suppose a= c± e, that

is, is different from c, then ,

c±e + hV~x = c +dV^c vCT5"=±i
d— 6

that is, v

—

j is a positive or negative quantity, which is absurd.

Consequently (± e) -f- (d—b) cannot be a common algebraical quan-

tity. Now if e = 0, and d is not equal to b, we have s/—x =
-r- (d— b) = 0, which is not true ; if e be finite and d= b, we have

v

—

x = zhe-f-0, which does not agree with page 25, since no

quantity multiplied by itself is negative because it is great, or nearer

to negative the greater the quantity becomes. The only supposition

remaining is that e = and d— 6 = 0, that is, a = c and d = b;

and the only form at which we have here arrived for s/— x is

-. But this simply indicates that the equation from which it is

derived is always true ; which is the case (so far as such an equation

can yet be said to be true at all), when a = c and b = d. Observe

that we do not lay much stress on the preceding; it only proves that

the equation cannot be true unless a = c and b = d; but it may be

matter of dispute as yet whether the above is true if a = c and b= d.

For we may as yet reasonably refuse our assent even to the equation

x = .r unless x represent magnitude of some sort; we may say that

ideas are contained in the meaning of the sign = which do not apply

except to magnitudes. But if any one should say this, we refer him

to the extended definition of =, page 62, though the beginner must

recollect that he never will comprehend the force of that definition as

applied to n/—x, &c. until he has more experience of such symbols.

But there are algebraical quantities analogous to the preceding to

which we must now direct attention. They are such as */3, >A,

V'2, &c. which cannot be exactly found, but only approximately,

pages 92, &c. We say that

a + b VT
6 = c + dX/3

cannot be true (if a, b, c, and d be numbers or fractions) unless a = c

and b = d. The same reasoning applies, word for word, substituting

V3 for \/

—

x, the absurdity deduced being that we cannot have

1/3 = -^
d— b

where d, b, e, are whole numbers or fractions.
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In ;i similar way it may be proved that if all the letters stand for

(k'liuite numbers or fractions, and (r and y not being square numbers

or fractions)

a + b V~x = c + d Vlj (A)

Then a must = e, and therefore b s/xz=zd*Jy. For if not, let

a =c±e; substitute, and (— ) c

± e + b Vx — dVy
Square both sides, which gives

(± ef + 2(± e)bVx + (b Vx)2 = (d Vy)*

or et ±2ebV~x + Wx = d*y

/— (1? V -

[) X— £
therefore Vx = *

, n—r-
±2<

that is, *Jx\ which cannot be expressed in a definite fraction, is so

expressed, which is absurd. The only way of making the equation

A possible is, therefore, by making a = c and b n/'x =. d s/y.

This principle may, in certain cases, be applied to the extraction

of the square roots of such quantities as4+2v3, 21-f-4 v5, &c.

Take such a quantity, say 2 + n/7, and square it.

(2 + VlJ = 22 + 2 x 21/7 + (V^)2

= 4 + 4V/
7 + 7 = H + 4V

/
7

Now, suppose such a quantity as 11-J-4V7 to be given; how

are we to find out, 1. That it has a square root of the same form ;*

2. That that square root is 2 + s/l ? As follows : if 11 4- 4 s/l have

a square root of the same form, let it be x 4- \A/, so that

V 1 1 -h 4 Vl sa X 4- Vy (square both sides)

11+4 Vl = x* + 2xVy + (Vyf
= x2 + y + 2x Vy

Hence x° + y = 11 and 2xVy = ^Vl
Therefore (_) x°~ — 2x Vy 4- y = 1 1 — 4 Vl

• Observe that there is uo essential difference of form between

ll + 4\/7 and x+ Vj/, for l\/7 = \/(4) 2 x 7 =n/TT^j whence 11 + 4^7
= llWTliT
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but the first side is the square of*— V*
y, or

0—Vyf = H—41/7 that is, x-Vy = s/\\-Wl
But x+V^y = t/\\+W1

Multiply the last two equations together, which gives

(x+VyXx-Vy) = \/ll +4^^11-41/7

or a;
2-3/=V/(ll+4V

/

7)(ll-4l/7)= V121 -112 = 3

Butx*+y= 11

( + ) 2a;2 =14 a;
2 = 7 a; = Vl

(-) 2y = 8 y =4 V^ = 2

Therefore v \\ +W7 or jt + Vy is s/7 +2, as we saw in the

method by which 11 -f-4v 7 was obtained.

We shall apply the same process to the formation of v a + b>/c.

Let this be x -\- s/y.

Then a + jt/c = (a; + 1/y)
2

= x2 + y + 2xVy

Therefore a — x2
-f- ?/ and b^c = 2xVy

Therefore a _ £ V^ = a;
2 + 3/

- 2a; Vy = (a;- V7^)
2

or x — 1/?/ = Va — ft 1/c

But x + Vy = \/« + 6 1/c

(x) a;
2-y = \/(/*- bV~c){a + 6 V7) = Vtf-Wc

But a;
2 + 7/ = a

( + ) 2a;2 = a + Vcfi—lfic

x = \/\ a + \Va*— 52 c

(-) 2y = a—Vcfi—lfic

V~y - v/i o - I V«2- ^c

a;+Vy = v/ia + il/tt2-&2c+\/|a-^l/ft
2^K

and this is the square root of a -f ftV c.
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Vm/uation. Let J a + J ^fl
2-AJ c be called ^

Let Jfl— l^d2— b~c be called 7

jt^ = (}a)«-.(l •««-&« c)
8 - l«*-i(a*-.ft 8 c)

= Ja2-Ja- + li2 C = |j*C; therefore VjJ^ = i**^
According to the preceding theorem,

= (V^)+2V^V^+ (V^) 2 = p +2Vfq + q

But .P + ? = J« + J« = a iVpq = JV^c

Therefore />-f<7 + 2 *Jpq is a + &">/c; which shews the preceding

theorem to be true.

This theorem is of little practical value, but is very good exercise

in the use of such expressions as b n/c, &c. It is a simplification

only when aa— b2 c has a real square root; otherwise, it is the reverse,

for a square root of a square root occurs only once in ^ a + b n/c, but

twice in the value found for it. Thus it simplifies the first of the

succeeding expressions, but not the second, though both are equally

true.

s/ 13 +2^30 = VTO + V3

\/] 3 + 2V3T = \Aj>+jl/46 +\/y- 11/45

Anomaly. Apply the preceding result to a case in which b2 c is

greater than a2 , or a2— ba
c a negative quantity. For example, to

2 + \/8 (a = 2 6 = 1 c = 8),

v/2 + 1/8 = */l + jl/Z4 + ^/l-J^n .... (A)

Is the square root of 2 -f- \/8, therefore, of the same unexplained

character as *s/— I, &c? Certainly not: for it may be found quum

proxbne, by the rules of arithmetic, lying somewhere between the

square roots of 2 + V4 and 2 + *s/9> or between the square roots of

4 and 5.

Are we then to conclude that the expression (A) is in reality

arithmetical ? On this we must observe, that a really arithmetical

expression may, by rules only, be made to appear impossible. For

instance,
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x + y = (a; + cV/3T) + (y- c vtIT)

To investigate the expression (A) further, extract the square root

of each term by the rule.

Let a = lb=lc= — 4

\/l + J \/^4 = V/i+|l/2 + \/i--il/2

The second sides of the two preceding equations still contain the

square root of a negative quantity ; because, since 1 is less than

V2, 4 is less than £ s/%, or \— \ s/% is negative. Add the two last

:

v/l + iV^^ + v/l-Jt/Hi = 2a/i+J1/^
But this is only the quantity with which we started in another form

;

for it is

^(l+J^) or v/2+ 2V"2 or \/2 + l/4x2
We have, then, by following an applicable rule, simply committed

the inadvertence corresponding to the intentional alteration made in

x+y above; and v 2 + \/8, or generally v a + 6\/c, if a3 be less

than 62 c, cannot be expressed in a result of the form

\/p + Vq + Vp— V~q

unless q be a negative quantity.

The extraction of v a + bs/ c is of greater difficulty and less use.

We shall, therefore, omit it.

Exercises. Verify the following theorems :

1. The three algebraical cube roots of — 1, are — 1 and the

solutions of the equation a-
2— x + 1 =0, which are \ + \V— 3 and

2. The four algebraical fourth roots of — 1 are

11/2(1 + ^31) J1/2(1-VZI)
ji/2(-]+i/ZT) iv^C-i-i/^T)

3. The eight eighth roots of 1 are

±1, ±V^1, ±11/2(1+^31), ±JV/2(1-V^I)
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ilic reason why this set includes all the values of >/— 1 ?

Having given a quantity which contains radical* terms of the

second degree (that is, square roots) to find a multiplier such that

the products shall be free from radicals.

1. A simple radical term, such as v 3» Here v 3 is the multi-

plier, or a*s/3j where a is rational;]- for v 3 X a v 3 = 3a, which is

rational.

2. A binomial, one or both terms of which are radical, such as

<n/3 + n/2. Since (a-\-b)(a— b) = «2— b
2
, if a and 6 are simple

radical terms, a*

—

b2
is rational; therefore a— b is the multiplier for

a -\- by and vice versa. For instance, v 3 + v 2 multiplied by

n/3— \/2 gives 3—2, or 1; 2\/3— £n/7 multiplied by 2 n/ 3 + £ V

7

gives 4 X 3— i X 7, or 10^.

3. A trinomial, containing two or three radical terms; such as

\/3 + n/5— n/7 or \/a -f>/6 + n/ c. Multiply by */ a + */b— >/
~c,

which gives (*Sa + >/ft)
2 — (\/c)2 or a -f- 2 Vaft 4- 6— c or

a+b — c + 2>/«6. Multiply now by a + 6 — c— 2 "/a 6; which

gives (a + 6— r)2— (2va6) or (a 4/- 6— c)8— 4 a b. Therefore

the multiplier required is the product of v c + v ft — \/c and

a + b + c— 1*/~ab.

( t/3 + 1/6- V/7)(l/3 + 1/5 + 1/7) = 1+2V15
(14-2V/T5)(1-21/I5) = 1-60 = -59

It will seldom or never be requisite to consider more than three

terms.

The preceding can be applied to find the value of a fraction which

has radicals in the denominator. Thus to find 1t(v3 +l) instead

of extracting the root of three and forming the denominator, multiply

both numerator and denominator by v 3— 1, which gives

-TZ n/^- 1 = ^3-1 _ fv^
v/3 + l

'" (\/3+l)(V3-l) ~ 3-1 -5^ K ° L

the second side of the equation is evidently the more easily found :

• Radix, Latin for root ; radical quantities, those which contain roots.

t Rational, a term used in algebra, meaning, free from radicals ; for

instance, a common number or fraction. Thus 2 is rational, and also V4,

though in a radical form. But V 2 is irrational.
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x/6+ s/r=(V6+s/r)(N/6+^5)= 6 + ^42 + V30 + V35
V6—n/5 (V6—V5)(V6+V5)

The only case of higher roots which is worth consideration is

where there is a simple radical term, such as v 8, aV b. The mul-

tiplier in the first case is (V8~)
4
, or 8* for 8* X 8

5= 8*= 8. Thus

the following results are obtained :

V? V2.V3.V3 VT8 V3 V48

VI " V3.V3.V3
==

3
; V2 2

1 1_ n-l 1_ n-1

Va a" an Xb n an b n

or
V£" L ! ?Lzi b

bn bn Xb n

n— 1 u;—

1

q n r~^T 2 2 V9 V64
I L qr V3V4 12

The following miscellaneous examples on all the matters con-

tained in this chapter should be carefully verified.

axb~ l x a~3x^= a~ 2 b"^ = —r
a2 6*

a7-f-a~5 = a12 = a7 xa5 = 1-t-gt 12

am x5n = bn-r-a-m = am -r-b-n = l~«-m Z>-
n

y/aVa7a = a* l/(« V (a ^a)) = a»

m2—

m

m

3 —3 3 2 _1 1 19 _14 14— p^g *r*xp*q *r3 = p
uq urTi

y/a2 ^c = s/a*b*.bc = abWc = -^
V&c

\/a4
Z>
8
c
13 = l/tflficv.a&c = aW&X/alFc

Jb*c* = a 1+U2+ic4+3 = abz^ahh*
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y/fl = a* \/7? = a6 (never used, but might be, why?)

\/l60 =Vl(JX 10=4>/To; Vl60 = V8X20 =2V2U

>/3332 =14\/l7 V3348 = 3V 124 V32 = 2V2

/3~_ >/21 1 /«"= ^^ _ _f_V 7 7" "~
n/21 » £ "

£ n/ZT6

a : Vab :: Va& : b cS \ cS w a"^ : a""*

^I+^i
"'

^ 2 "~ ^ v'a—Vol ""
\/a(l— 6)

/—— . k
/=- "r(

^

tt + * — ^a — x )va+x+Vtf—

x

2x\ /

*/a+x + >>/a— ^ _ 2« + 2n/« 2—^ _ a /^ i

-v/a+jT— x/a— x 2a:
"***"*"'?

x/d'— x2 = a V 1 — -5 = *V -o — 1 = s/axy - — -v * a2 » x-
^ * x a

v/aTaT= \/«V * + 7
= v/-*V " + 1 = y/axy - + -

1 /T. ^
/^~~

ft /I 4^7 / 68— 4 « c

y/2ax-a? = a?V 2-- 1 = y/xs/2a^x = aJ 2- --
t* x T a a*

a + 6n/— 1 ax -f 6j/-H (7>.r— aj/)v/—

1

(i+N/~i) = \/rr(i-v/ri) ^^7 = >/?V3T

^—
a =^V3T v/-4 X v/^3 = - v/F>
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a+b = Q + b
z
)(J -ah* +Jb* -ah1 + tf)

(a
f

+^ + l)

2

= ^ + 2a + 3a
§
+2a^ + l

\a J = a \ab c ) = a b c

[N.B. It is usual to call quantities of the forms a*J— 1 or n/— a2
,

«+ v — 6, or a -J- v W — l, impossible quantities. This they are

at present, as not having received any interpretation ; in the same

manner 10— 14 was impossible in Chapter I. But, considering

that they will in due time (if the student proceed so far) receive

their interpretation, though not in this work, we shall call them

purely symbolical. All the phrases of algebra are symbolical

;

but all which contain a letter or numeral, which we have yet met

with, have an interpretation connected with numbers, making them

representatives of magnitude. But v — 1 has received no such in-

terpretation ; it is therefore a pure symbol, as much so as -f- or —

,

or more so, inasmuch as yet it indicates neither magnitude nor

operation. Hence, in performing operations with pure symbols, we

can be guided only by experience, or where that fails, we have new

conventions to make. Since it is understood that such symbols will

finally be rejected altogether, unless an interpretation present itself

which brings them under the dominion of common rules, these rules

only should be applied to them. The only case wjiich requires

notice is that of forming the symbol which is to represent v

—

ax

s/— b. This, by common rules, may be either v

—

a x — b or

Va6, or V« x *S— 1 multiplied by s/b X ^— 1 or */al X — 1

that is — s/ ub. For reasons hereafter to appear, let the student

always take the latter, that is, let

V^fl x V~b be — Va~b not + Va~b\

Having two symbols to indicate the nth root of a, namely,

V« and a~< , we shall employ the first in the simple arithmetical

sense, and the second to denote any one of the algebraical roots,

that is, any one we please, unless some particular root be specified.
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Tlius s/ A is 2, without any reference to si^n ; but (4)* may be either

-f- 2 or — 2. Thus Va is the cube root found in arithmetic, while

, J • ., 3/- — l+>/Il3s/- —1—V^Ifv-
(«)

3
is either N/ M ,

~ V a, or V a
2 *

(a)i stands for W, —Va, s/— \-\/a, and — n/— 1 Vo
Similarly d -f-

/>* has two values, namely, either a+v 6 or a—vi-

Hence n/Z (when 6 is positive) always stands for a positive

arithmetical quantity. Suppose we wish to represent merely the

numerical value of b, without reference to its sign ; we may abbre-

viate the following sentence : " the number contained in 6, taken

positively, whether b be positive or negative," by */b*, which* is

the same thing. Thus b = ±\///2 according as b is positive or

negative.

We shall now proceed to the general consideration of expressions

of the second degree.

* I have seen a± i, or what is here signified by a + (a2)i, denoted

by a -t-v a 2, in which the ambiguity of sign was referred tov . But

this was only in one place, and though the want of some express

stipulation as to the distinction between radical signs and fractional

exponents, has led to some variety of usage, I think the conventions in

the text will best agree with the majority of writers. At least, though

I do not pretend to have made any research expressly on this point,

ztVu is very familiar to my eye, and it a* not at all so.
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CHAPTER V.

GENERAL THEORY OF EXPRESSIONS OF THE FIRST AND
SECOND DEGREES J INCLUDING THE NUMERICAL SOLU-

TION OF EQUATIONS OF THE SECOND DEGREE.

The view taken in the First Chapter of equations of the first degree

simply amounted to their numerical solution; that is, having given

two expressions not higher than the first degree with respect to x,

required that value of x which will make the two expressions equal.

We there saw that all equations of the first degree could be reduced

to others of the form ax = b; thus, in page 3, we reduced

1 + 1 = 1-5 ,0 13*= 12

It is most convenient to bring all the terms of an equation on one

side ; thus ax— 6 = is in a more convenient form for investigation

than ax = b. In this manner the whole theory of equations is

considered as involving two fundamental inquiries. The first is;

—

Having given an algebraical expression which contains x, required

that value, or those values of x, which make the expression vanish , that

is, become equal to 0.

We here (in compliance with common custom) use the term root,

in a manner different from its use in the last chapter. Every value

of x which makes an expression containing x equal to 0, or, as the

phrase is, makes it vanish, is called* a root of that expression. Thus,

* This might be considered an extension of the former meaning, as

follows. Let root have the meaning above assigned, then the square

root of 3 (of last chapter) is the root (as here defined) of a;
2—3, the cube

root of 3 is the root of x3— 3 ; and so on. But we do not make this as

an extension, because there is no corresponding extension for the

correlative term power. And we must confess, that we use this new

meaning of the term root with some repugnance, in spite of its shortness

and convenience. Would not the nullijier do as well ? If we were

inventing algebraical terms anew, we should certainly say that 7 is the

nullijier of 2i— 14, and that the latter is nullified when x = 7. But it

is not advisable to introduce words or sybmols which the student will

not afterwards see in the best writers on the applications of mathematics.
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in page -', am used language which we may now modify as followl !

"The root of 2.r— 1— 5.r + 19 is 6;" "the roots of 16.r— i
2— 48

I and 13 ;" " the roots ofr>— G.ra + 11 j— G are 1,2, and 3."

The second fundamental inquiry is as follows:

—

Having given

an algebraical txprtuion which contains x, what values ofx make that

i r/irtssiun po it ire, what values makt it in gutive, what values male it

purely aymboUcal (See page 122)? We shall proceed to answer these

questions for expressions of the first degree. We first make the

following remarks.

1. As we wish the student to keep in mind that we consider

various values ofx, and the consequences deduced from them as to

the sign of the expression, we shall (whenever we may think it

necessary) use some modification of this latter to denote the root.

Thus, instead of saying that 2x— 14 vanishes when .r = 7, or that

g = 7 is the root, we shall call the root x/, the second root, if there

be one, x
//y

and so on.

2. We shall always suppose that the co-efficients, a, 6, &c. in such

expressions as ax -\-b, ax2+ bx -f r, &c. are either positive or negative

algebraical quantities; unless the contrary be specially mentioned.

Thus, we shall treat of cases where a is 1, 2, — 1, — Jv3, &c. but

never, without special mention, of the case where a is V— 1, or

1 -j- v — 3, &c. But we make no such limitation with respect to x.

3. We shall suppose the student to be familiar with the use of

the transformations in page 73 ; for instance, that he can make ax -f-6

coincide with 2x— 3 by writing the latter as 2x-f(— 3), and sup-

posing a = 2, b = — 3.

The general form of the expression of the first degree containing

.r is a x + b. For instance

x—5 x—2
,

. x 5 x
, 2

-hichis (i-i + l)* -(§-!)
which coincides with a r -\- b, by supposing

The root of ax-\-b is readily found ; for let

ax +b = 0, then x = call this xr

m 2
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When ax+ b vanishes, it may be written ax^b, and x
t
denotes

. From s, s± we get a x, = — b or b = — ax.. Write
a ' a '

this value instead of b in «,r -f- 6, which then becomes ax — ax,

or a (x— x
f
). Consequently we have this theorem. If' x, be the

root ofax -\- by then

ax +b = a(x— x) for all values of x.

The last is not an equation of condition (See introduction) but an

identical equation. It implies that the two sides are absolutely the

same, but in different forms: indeed it may be thus immediately

traced from ax -f- b without any alteration except of form,

ax -f b = a{x + -J = a ix —
{ )[ = a (x '~ x)

because it has been laid down that s. stands for .
' a

The preceding will seem an unnecessary repetition, but, on

coming to expressions of the second degree, the reason of it will

be seen.

Exercise. Point out, by inspection, the roots of the following

expressions Sx + J, —4 a; — 3, \x—%
h —3 —I

reduced 1 _3 ,4
roots 6

altered ex-

pressions 3{*-(-i)}. -*M-D}. K-3
Theorem. The expression ax -+- b is of the same sign as a, when x

is greater than the rooty and of a different sign from a when x is

less than the root.

For, a x + b is a(x— x
t); if x be greater than x

ft
&— x

t
is positive,

(page 63), and a X positive quantity, retains the sign of a (page

64) ; but if x be less than x
t
, x— x, is negative, and a x negative

quantity changes the sign of a.

Examples. 3^ + 7- is positive for every value ofx greater than

: for instance for —- : this we shall try. If x• = — -
6 8 o
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.Sx + - = -3 x — - + - = + - — - =

The same is negative for every value of x less than ; for example,

for x = . For then
5

Q , 1 « 1113 1

3x + - = 3x--+- = --- = --.

Similarly — Ax— 3 is negative (that is, the same as — 4) for every

3
value of x greater than , and positive for every value of x less

than — -: but -x— -is positive for every value of x greater than -;
4 2 3 3

4
and negative for every value of x less than -.

This is sufficient to render our notions of expressions of the first

degree consistent with what we are now going to lay down concerning

those of the second.

Lemma 1. Jf x-\-y = p-\-q, and xy = pq, then x is = one of

the two, p or q, and y is = the other.

Square the first equation, and from the result subtract the second

Imultiplied by 4, as follows,

x* + 2xy + y* = p* + 2pq + q*

4:xy = 4pq

(— ) x2 — 2xy + y* = p*—2pq+ q
2

The square root of the first side is either of the two, x—y or y—x;

tKat of the second p— q or q
—p. Extract the square root, which

gives therefore one of the four following equations :

x—y = p— q •••• (1) y— x = p— q .... (2)

x—y = q-p .... (3) y-x = q-p .... (4)

But a +y =p-\-q; which last combined with the four preceding,

separately, gives as follows

:

with (1) or (4) X = p y = q | which was to

witli (2) or (3) X = q y = p I be shewn.

(This lemma will certainly seem most superfluous to the student :

but he must recollect that though, " if x = p or </, and y = q or />, it

is most evident that x +y = p + q, and xy =p q," yet that the con-

verse, namely, that " if .r -f- y =p+q and xy =pq, then x cannot
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be any thing but p or q, and y cannot be airy thing but q or p," is not

equally evident. Thus if

x2—2ox = ¥-2ab
it is most evident that x = b satisfies this equation, but by no means

evident that nothing but x = b satisfies it. In fact x = 2 a— b will

be also found to satisfy it.)

Lemma 2. The product of two expressions of the first degree

[say ax + b and a'x+b'] cannot be always equal to the product of

any other two expressions of the first degree [say cx-j-e and c'x -f- e'J

unless the two latter be made from the two former by multiplying

and dividing by a quantity independent ofx [that is, unless ax + b =
m (cx + e) and a'x-j-b'ss- (c'x + e') where m is independent

of x]. For

(ax + b)(dx + b') = aa'x2 + (ab' +db)x + bb' • ••• (A)

(ex + e)(c'x + e) = cc'

x

2 + (c e' + c'e)x+ ee' (B)

If possible, let these two developements* be always equal, what-

ever value is given to x. That is, let

px2 + qx + r = p'x2 + q'x+ r'

where p stands for aa', p' for cc', &c. (This is merely for abbreviation.)

Now, these two cannot be always equal unless they are absolutely

identical, that is, unless p = p' q = q' and r = r' . This we prove

as follows :—If the two sides of the preceding equation be always

equal, they are equal when .r = 1, and also when x = 2, and also

when x = 3. Let t
t

t
2

t
3f be the values of the first side of the

equation when .r is successively made 1, 2, and 3. Then the other

sides will have the same values, according to our supposition ;

that is,

when x = 1 p+q+r as 11 p +q +r' — t 1

when x = 2 4p + 2q + r = t2 4p' + 2q' + r = t2

when x = 3 9p+3q + r = t3 9p +3q +r' = rf3

Now, apply the first set of equations to find p, q, and r, supposing

* Developement, any expression formed by giving another expression

a more expanded form.

•f These are distinct quantities ; for the like abbreviation see

page 103.
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t
t

t
3
and t3

known, as is done in page 80. Then apply the second

set to find p', 9', and r'. It is clear that, from the perfect likeness of

the equations, j>, </, and r, are found by exactly the same operations

on the same quantities which give //, q'
f
and r\ Consequently, the

results will be the same, or we shall have p = p' </=</' r = r'.

As an exercise, we give the three results of the first set, which are

;) = ',-^+'.
q =

",-».-«,
r = ti _ Zh +

.

iti

[The following proof is more simple; but it involves the suppo-

sition of a letter being made equal to 0, which we do not wish to use

till after the discussion in a succeeding chapter.

If px" + qx -I- r = p'x2 + q'x + r' always,

it is true, among other cases, when x = 0; but it then is reduced to

0+0 + r = + + r' or r = r'

Therefore px2 + qx + r = p'x2 + qx + r always

(-)r px2 + qx = p'x2 +q'x

(-r-)x px +q = p'x +q
This must also be true when x = 0, or

+ q = + q that is q = q

Therefore px + q = p'x + q (-)q px = p'x or p = p']

It has been proved, then, that the expressions (A) and (B), in

page 128, cannot be always equal, whatever x may be, unless

ad = cc, ab' + db = ce +cV, and bb' = ee'

Divide the second and third by the first, which gives

ah' a' b ce' e'e

aa! ad cc' cc" au cc"

b' b e' e b' b e e

a a d c a a c c

whence, by Lemma 1, either -. = •-„ - = -, or - = -, and- = -.
a' c" a c a' c a J

Suppose the first.

But o + i=fl(a: + -) = a (x + -)

cx+e a. .= a. = -(cjr + e)
c c

v '
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Similarly dx + b' = -r(c'x+e)

-n, . do' i a a! , ., a a' 1
But since —, = 1 or - x —r = 1, if - = m. -r = —

cc c c c 7 c m

Therefore ax + b = m(cx+e)

dx + V = - (c'x + e')

If the second assumption be taken, let the student shew that a similar

result will be obtained.

To proceed with the numerical solution of equations of the second

degree, we shall take the most simple algebraical form, ax2 -\-bx +r,

to which any other expression of the second degree may be reduced

(page 125). Thus —lx2+2x— 3 agrees with it, if a= — }2 b = 2

c = — 3.

Definition. An expression is said to be a perfect square with

respect to x, when its square root can be extracted in a form which

does not shew x under the sign n/ . Thus, as may be found by

trial, _J
VaxQ+2dlx+a3 = Va{x-\-a)

V'a'2x+2ax* + x3 = V~x(a+x)

Hence a

x

7 + 2 a? x -\-

a

3
is a perfect square with respect to x, but

not with respect to a; while a2 x -\- 2ax2
-\-x3 is a perfect square

with respect to a, but not with respect to x. Observe, that if

px2
-f qx -\-r be a perfect square with respect to x, it remains so

after multiplication by any quantity which does not contain x, for if

px2 +qx + r = (gx + h)2

then mpx* + mqx + mr = JV^ (gx + h)\
2

Lemma. The condition which implies that px2 -\-qx+ r is a

perfect square with respect to x, is g
2 = Apr.

Let us suppose that gx + h is the square root of px2 ^ yx + r

(no other form can be, as may be proved by trial). Then

(gx + h)* = px2 +qx + r

or g
2 x2 + 2ghx + h* = px2 + qx+r (always)

Therefore (page 128)

g*=p, 2gh = q, h* = r
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Here, thee, are three equations to determine two (yet) undeter-

mined quantities g ami//. If the product of the 8rSt and third bf

multiplied by 4, and if the second be squared, we have

4//
2

//
2 = Apr and (2(fhf or A y

2 Jr = ry
2

Therefore </
3 = 4/>r, which condition must be satisfied, if the three

equations between g and h are to be true.

The preceding equations give g = v p, h = vy, or v px -fvy
is (if </

2 = 4/)r) the square root of px^ + qx -j-r.

Some ambiguity may here arise from V/; and v ^, as (from

page 110) g* = p gives g either +vyj or — v/>, and similarly /t

is either + s/ q or — v^.

But here observe, that the equation q
2 — Apr was obtained

(partly) by transforming 2gh at q into 4g2A2 = q'2 . But the latter

might also have been obtained in the same way from '2g A = —
q, in

which — q is written in place ofy; consequently, the same equation

implies that both the following are perfect squares, px2 + qv + r

and px2— qx-\-r. And if we take the two values of g and A, and

combine them in every possible way in the expression gx-\- h, we

shall have the four following expressions :

—

Vpx 4- Vr — Vpx + Vr

Vpx — Vr — Vpx — Vr

each of which is either a square root of /) t
2+ </ r-j-r or ofpx2—qx-\-r.

But, returning to the untransformed equation 2gA = q, which belongs

to the former expression only, as 2gA = — q does to the latter,

(both being represented in 4g 2 A 2 =9 2
) we see that all the four

values of gx-\-h cannot be square roots of px2 -\-qx -f-r, but only

those in which g and A have such signs, that the product gh may

have the same sign as q. For instance, if q be positive, g and A

are either both positive or both negative; because gh must in that

case be positive : if q be negative, either g is positive and A negative,

or g negative and A positive.

Thus, if q be positive, and q
2 = 4pr, the square roots of

px*+qx-\-r are vpx + Vr, and — ^/px— >/r; if q be negative

the roots of px2 — q x -f- r are s/px — >/r and — */px -\-*/ r.

These agree with page 110, where it appears that the two square

roots of a quantity differ only in sign ; for
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—Vpx — Vr = — {Vp x + Vr)

—Vpx + Vr = —(Vpx—Vr)
Examples. 3 .r

2 + 2 # -f- 1 is not a square, because (2)
2
, or 4, is

not equal to 4 (3 X 1), or 12; but 2x2— 12.T + 18 is a square,

because (— 12)
2
, or 144, is = 4 x (2 X 18), or 144. Its square root

is either v 2x—v 18 (q is negative) or —V^2^+n/18.

The principal use of the preceding theorem is to complete a

square, as it is called ; that is, to supply either of the terms px2
,
qx,

or r, by means of the other two. For instance, to make 2,r2 -4-3.r

a complete square. Here p = 2, q = 3, r is not given. But that

the above may be a square we must have q
2= Apr, that is 9 = 8r,

9 9
or r = -, and we find that 2.r2+ 3x -f-

- is a complete square, its

roots being

3 _ 3
either V2x + ^= or -l/fc^^.

<?
2

Generally, if q
2 = Apr, r = -^-, so that px2

-\-q x is made a complete

square by the addition of

(co-efficient of x)*

4 (co-efficient of X2
)

b2

Thus, ax2+ bx-4--- is a perfect square, and so is 4a2 x2+4abx+b2
,

the roots of the latter being + (2 ax + b).

We now proceed to distinguish the peculiarities of different forms

of the expression

ax2 + bx + c

If b2 = 4«r, we have seen that the expression is a complete square.

We shall then look separately at the cases in which b
2

is greater

than 4ac, and in which b
2

is less than 4ac.

1. Let b2 be greater than 4«c, or let*

fa = 4ac + e2 or 4ac = &2— e"2 I

j

* Why 4 a c + e2 rather than 4a c + el Because we wish to signify

that 4a c is really increased. In 4ac + e we do not know whether there

is increase or decrease, till we know whether e is positive or negative

(page 63). But e
2 is positive, whether e be positive or negative (purely

symbolical quantities being out of the question). Hence the form of a

square is a convenient method by which the student may hear in mind

that a quantity is positive.
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„ , 4«a
.r
a+4r//M-f4«c 4 «a

.r
a+ 4 fl /> .r -f /,

a—e*
Now ax* + bx + c = ^—. : = -——

Aa 4a

_ (2ax + b)*— e3 __ (2a j + b + e)(2ax + 6— e)

4a 4 a

or, we have this theorem :

If e - = b°— \ac or e = VW^Aac

ax2 +bx + c = — (2ax + b + e)(2ax + & — e)

the two being identically equal.

2. Let 6a= 4ac, then a.r
a+&.r + c is a perfect square, and so

is AcPx* -\-4abx + Aac, which is 4aaxa + 4a6x + ^a J and

fl , , 4aax2+ 4a6x-f-69 (2a* + 6)
a

Aa 4a

3. Let b2 be less than 4ac, that is, let

b2 =4ac— e* or 4ac = £2 +e2

. , 4a»x2+4a&x + 4ac Aa2x2 -\-Aabx -f- 6a+ e*
fll! + &# + C = =I—

:

- = —
Aa Aa

_ (lax + b)2 + e
2

~~
4a

Previously to proceeding further, we shall apply the preceding

expressions to particular cases.

1 . Let the expression be 3 x2— 7x + 4. Here a = 3, b = — 7,

c = 4. And b2= 49, 4 ac = 48, whence b2 is greater than 4ac, and

b2—4ac = 1 . This is e2 ; therefore e = +1, or —1 . Let e = +

1

Q^ 7 r ,4 - (6*-7+ l)(6g-7-l) _ (6g-6)(6*-8)
"^

4X3 12

= 6(^-1) xjQx-4) =
(
^. 1)(3^ -4)

as may easily be verified by multiplication. Let the student shew

that the supposition of e = — 1 gives the same result.

3jt— 4

x— 1

3x2— Ax

— 3jt + 4

3*'— 7x +4
Now, we ask, what are the roots of this expression, or the values

of x which make it vanish. A product becomes = if either of its
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factors becomes = ; that is, let x— 1=0, or, let 3 .r— 4 = 0,

and in the first case

3x*~ lx + 4 = x (3 - 4) = :

in the second, 3xz— lx 4- 4 = (- — l) X =

But if .r— 1=0, «r = 1 , and if 3 x— 4 = 0, x= r, therefore 1
9

4
and - are the values of x which make 3x2— 7.r+4 vanish, or its

roots (page 124).

We now inquire what values of x will make

3#2— 7# + 4 or its equal (x — l)(3ar — 4)

positive or negative. It appears that x— 1 is positive when x is

4
greater than 1, and 3x— 4 when x is greater than -; while the first

3

is negative when x is less than 1, and the second when x is less

than -, (page 126).

Value of x.

Less than 1

( Greater than 1

/ less than -
V 3

4
Greater than -

Sign of x— 1.

+

Sign of 3^—4.

+

Sign of the product

(#—l)(3x— 4)

+

It appears, then, that the preceding expression is always positive,

4
except when x lies between the roots 1 and -. In this manner we

1

3
have determined the following points with regard to 3x2— 7x-\-4:

4 4
it is -f- when x is greater than - ; when x =-; — when x is less

o 3

4
than -, and greater than 1 ; when x is 1 ; + when x is less than

3

1. Follow a similar process with the following expressions.

2*2 + 3# + l = (ar+l)(2a? + l)

3x*+4x-7 = (ar-l)(3a? + 7)

-2tf2 +6*a;-4 = (2— ar)(2ar — 2)

Hitherto we have chosen expressions containing no irrational

results : let us now try 3,r
2+ 5

x

— 1. Here we have a = 3, b = 5,

c= — 1; b2 or 25 is greater (page 62) than 4ac or — 12, and
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/>•— \„c = 37 = i
3

; tlierefore e= ± >/37. Let c be + »/37, then,

page 133, _ __

,„ ,
(2X 3.f + .

r
> + n/37) (2 X 3.r + .5- n/37)

Hence the roots of the expression, which call x
t
and xn are

n/37+5 -s/37—

5

'6 "6
= -1-8471271 = '1804604 very nearly.

It will be found, as before, that the preceding expression is never

negative, except when .r lies between x, and xn .

2. Let us take 3x2— 6.r + 3. Here b2 or (—6)
s

is equal to

4«e, or 4x3x3. Hence the expression is a perfect square, and

we have (page 131)

3x2-6x+3 = (V3*_ VT
£f = 3(*-l)2

This expression vanishes only when v3j — v3 vanishes, or

when x = 1 . But, because there are two equal factors, each of

which is »J Zx — s/ 3, and to preserve analogy with the preceding

case, it is said to have two roots, which are equal. Thus this ex-

pression has two roots, each = 1.

This expression is never negative, for (x— l)
2

is positive in all

cases. We can only make it negative by giving a purely symbolical

value to .r : for example, 1+v — 1. Then (x— l)
2 (by rules only,

see page 122) will be — 1.

3. In no case hitherto taken has b2 been less than 4 a c. Now

try 2 j2— .r-f-4. Here a= 2, b=— 1, c= 4; and b2 is 1, Aac

is 32, greater than b2
. Here, as in page 133, let 4ac— b2 = e

2
,

which is therefore 31.

Hence, page 133, we have

.
4 _ (2X2*-1)2 + 31 __ (4*-l)2 + 31AT-S+4M 4X2

""
8

Tins expression has no positive or negative root, for (4x— l)
2 being

always positive, so long as .r is positive or negative, must increase

31, and, therefore, (4j— 1 )
a
-{- 3 1 can never =0, but is always

positive. We see, then, that 2x2—x+± is always positive, for every

positive or negative value of x. The least value of the expression
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under this limitation is — , for the least value of (4*— 1)2 is found

by making 4x—1 = 0, or x =-. Consequently, the above expression

has the following property : its least value is -!-, found by making8'

x = - ; for every other value of x it is greater.

The following cases may also be tried by the student.

x* + x + l = \{(2x+ l)* + 3
]

x*-x+l = l|(2ar-l)2 + 3 }

-2x*+2x-5 = _i{(4a;-2)2 + 36}

We can give the preceding expressions purely symbolical roots;

for instance, to make 2x2— .r-f-4 = 0, let us make

(4#-l)2 + 31 = (4x-l)* = -31

4X-1 = + V^5\ or 4a;-l = -l/33l
Call the roots derived from these x. and x.,

x.
l+\/_31

X.. = 1—V—31

4 "4
which will be found to be roots, by rules only, as in page 122.

We shall now take the more general cases.

1. axa+ bx+ c = 0, where bq—4ac = e2 (page 132)

and ax* + bx+ c = — (2ax + b + e)(2ax + b— e)

The expression ax2 -\-bx + c contains eight different forms, as

follows, which we shall distinguish by the eight letters A, B, C, D,

A', B', C, D'.

Sign of a.

((A) 2#2 + 5# + l +
j(A')-2*2-5a;-l -
C(B) 2#2-5# +

1

+
{(B')-2*2 +5x-l
C(C) 2*2 + 5ar-l

l(C)-2x*-5x + l

\(D) 2x'2-5x-l
\(D')-2x2+5x+l

Sign of 6.

+

+

+

+

Sign of c.

-
I

-
I

; !

1 !
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iiall tirst consider that which is common to all the forms;

ind then the peculiarities of each.

The roots of a x3+ b x + c are found by solving the following

((iiiations (call r, and x
/t

their roots)

2ax + b— <? = 2ax + b + e =
—6—e

e =

X
t
mt -

-fc + e

2«

t V&2- 4ac, therefore

X
2—Aac

a?., =

a; =

2a

b—s/fi—Am
la " 2a

And, page 126, the expression 2ax-\-b— e is the same as 2a(x— x,)

and 2ax + b — e as 2a{x— x„). This may also be shewn again,

thus,

2ax+b-e = 2a(x+
h

-=f)
= 2«(*-=|±£) = 2a (*-*)

2«i+H< = 2a
(
ar + i7) = 2fl

(
a?"" :

-|F
f
)
* 2|I(*— *«)

.'. ax2 -\-bx + c = ——

—

- = a(x — x)(x — x„)

Hence, when the two roots of an expression of the second degree

are known, and the coefficient of its first term, the expression itself

is known. For instance, what is the expression whose roots are 2

and — -, and the coefficient of whose first term is 4? By the pre-

ceding formula, this expression must be

4(x-2)(*-(-!)) or 40-2)0+ i) or4x*-6x-4
If we develope the preceding expression, we find

a(x — x)(x — x
t) = ax2— a{x, + x

t
)x + ax

t
xn

which is identical with ax*-\- b x + c; therefore, page 128, we

have

b = — a (x, + #„) or x
t

-\- x
tl
=

•s
a

c = ax,x„ or x.x.. = -

Sum of the roots =
a

Coefficient of .r

Coefficient of x2

_, , e . Term independent of a:

Product of the roots = =—=-?- =-3

—

Coefficient of x2

N 2
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When a = 1, or the expression is .r
2
-f- bx -f- c, we have

Sum of the roots = — h Product of the roots = c

Verify this theorem on all the preceding examples.

We shall denote the preceding forms by placing the signs of

the terms in brackets : thus A will be denoted by (+ -f -f), A' by

( ), &c. This first case, in which b*— 4ac is positive, in-

cludes all possible varieties of

(++-) (— +) (+— ) (- + +)

for in all these, a and c have different signs; ac is negative, and,

therefore, 62—4ac is positive and greater than b2 . Here then, 62—Aac

is positive without reference to the numerical value of a, b, and c.

This same case may or may not include the following,

(+ + +) ( ) (+-+) (- + -)

in all of which ac is positive and therefore the sign of b2— lac

depends upon the simple arithmetical magnitudes of b2 and ac.

We shall now examine the cases which have roots ; and re-

mark that either of the expressions in any one pair may be reduced

to the other, by simple change of sign. Thus — x2— x + 1 =
— {x2 -\-x— 1) or ( 1-) becomes (+ H

) by entire change of

signs only. And, since, when A = 0, then — A = 0, the expressions

in the first of the following columns have roots similar to the corre-

sponding expressions in the second, in every circumstance which

depends only upon the signs of the terms.

(+ + +)

(+-+)
( )

(- + -)
(++-)
(+—

)

(— +)
(- + +)

I. Expressions (+ + +) ( ) ; roots not necessarily existing
;

and b*— lac less than b2
. The roots of this expression (when it

has them) are both negative. For, since bu— 4ac is less than 62
,

s/b2— Aac is less than n/ b2 , or, page 123, the numerical value of b.

Therefore — b + vt'

—

4ac and — b— *J b*— 4«c have* the same

sign as — &, or a contrary sign to b. But the roots are

— b + s/b2— \ac —b—\/b2—4ac
2a 2a

* For instance, both values of —3Hh2 must be negative; —3±6
has one positive and one negative value.



both of winch, i •. <, because b and g

have t in both* and the DvjMratM li ofi coatfary sign

to, and the denominator of ; n.l b.

II. E >H h) ( h — ); roots in- iy exist-

ing; and bQ— 1 hi b'
1

. J{y ;i piocess exactly similar tl

preceding, remembering that a and b have now different signs, we

prove that both the roots, when they exist, are positive.

III. Eij»cssions (-f- d ) ( -f-); roots always e\

/,«— 4, /( greater than 6*. These two expressions have one positive

and one negative root, the negative root being numerically the gr>

For in this case,* since sj' b'
1— 4ac is numerically greater than b,

— b 4- s/

b

2— 4a c and — b— s/ 1?— 4 a c have different signs; namely,

the first is -|-, and the second — . Therefore,

__/, + s/tf—Aac (which is +)
agrees in sign with a and b.

— b— n/68— 4ac (which is —

)

2a
differs in sign from a and b.

If a and b be positive, the second (which is then —) is numeri-

cally the greater (by the preceding note) : if a and b be negative, the

first (which is then — ) is numerically the greater. Therefore in both

cases the negative root is numerically the greater.

IV. Expressions (d ) ( 1

—

\-) ; roots always existing;

b*— 4ac greater than b*. Here, by reasoning precisely similar, it

may be proved that there must be one positive and one negative root;

but that the positive root is numerically the greater. Observe that

a and b have here different signs.

In all these cases we have also the following theorem. The

expression ax7
-{- bx -\-c, when it has different roots, never differs in

sign from a, except when the value ofx lies between that of the roots.

(Read page 134 over again, with attention.) For we have

ax2 + bx-\-C always = a(x— X
t
)(x— X

lt)

One of the two roots x
/
and xn must be the gieater; let it be xr

Then, if x be greater than x
Jf

it is greater than xu ; and x— x
t
and

• Remember that in p + q it is the sign of that which is numerically

the greater, which determines the sign of the expression; and that in

p±q that one, either p + q or p— q, is numerically the greater, in which

both terms +p and ±q have the same sign.



140 EXPRESSIONS OF THE

' — x
lt

are both positive. Therefore a(x— x,)(x— xn) has the same

sign as a. Let x be less than .r,, but greater than x
tl
(that is, let x lie

between the two roots'), then x — x
t

is negative, x— xn is positive

;

in id u{x— x,)(x— x
/t) differs in sign from a. Let x be less than x

t/ ,

then it is less than x
t

; and a:— x
f
and x— x

tl
are both negative;

therefore a(x— x)(x— x„) has the same sign as a. A recapitulation

of these three cases gives the theorem in question.

2. ax2 + bx-^c as where b2 = 4ac or b2—4ac =
This case requires that a and c should have the same sign, because

Aac must be positive.

Here ax2 + bx + c = ——

-

Aa

The two equal roots are derived from

2ax + b = or x, = x„ = — —
which are positive when b and a differ in sign, that is, in (-\ 1-)

and ( 1 ) ; and negative when b and a agree in sign, that is in

(_j_ _|_ -| ) and ( ). The other cases are entirely excluded,

since a and c must have the same sign.

The expression ax* + bx+c being always a square (a positive

<jn:intity) divided by 4«, always has the same sign as a; observe that

.r cannot now lie between the roots.

3. axz + bx + c = 4ac— b2 = e* (page 133)

Here a and c must have the same sign, because Aac is positive,

being £
2 H-e

a
, the sum of two positive quantities.

(Page 133) ax2 + bx + c = ^ j
(2ax + b)2 + e2

j

and being a positive quantity divided by Aa, always has the same

sign as a.

The purely symbolical roots (see page 136) are derived from the

equation.

(2ax + b)2 + e2 = or (2ax + b)2 = e2 x -1

or* 2ax + b = ±eV~^\ = ± V\ac-b2V~\

* Observe that ;>
2 = q

Q or ± p -±_q, gives only two distinct forms
;

for +p «« +g and —p = —5 are the same, as also are +p = — g and

-p - + f

.
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• 2a

These roots, using rules only, will be found to satisfy the equation,

and also the tquatiOM

b c
X

, + X„
= x,x„ = -

but we cannot at present make an extension of the theorem in

page 139, because we can attach no notion of greater or less to x,

and j
;/

.

The numerical solution of equations of the second degree is

Usually performed by a process instead of a formula, each case by

itself, as follows:

Let 2#2-7;r+3 —
(—)8 2*2-7x = -3

(+)2 **-l* = -l
7 /7\ 2 /7\ 2 3 25

Complete* the square, *2 — -*+
^-J

=
^-J

_1 = _
7 5

Extract the root, x = ± -
4 4

7 5 Q 7 5 .

x = 4 + 4
or 3

;
or * = 4-4 or £

But we should, by all means, desire the student to commit the

following theorem to memory :

U ax2 + bx + c =
__ b + \/&8— 4«c — I— \/62— 4«c

X = either — or
2a 2a

Examples. 1. What are the solutions of

px* + q
qx = qx^—l/x+p*

or (
J
p-</)*2

+(;/-r-<f).r—p 3 =
Here a = j>— y h — p2

-\-(f c = —p3

The roots are the two values of the expression

— (P* + 9
a
)± >/(> -r- g

8
)
2— 4 (/?— y) (^7^)

* See page 132, where it appears that i7 + bx + - is a perfect square,

namely, that of * + -.
I
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. (p
2 + q

2f = p
4 + %pa

q
2 + q

4

— 4(p — q) (—

p

3
) = 4p4 — 4^3

7

Therefore the roots are contained in

2(/>— ?)

2. Let ax2 — abx = b*x— b3

ax*-{ab + b*)x + b5 =
The roots are contained in

2a

(ab + b*y-±abz = a2 62 + 2ab3 + 64 - 4a&3

= a*b*-2ab3 +b4>= (ab-b*f

Therefore the roots are contained in

ab + b*±<iab— b2)

2a

_ . ab + b2+ab— b3 lab ,
But 1 = = b one root,

2a 2a

ab + b
2—ab + b* 26* b* . .

! !— eb — = — the other root.
2a 2a a

Verification, b + ? = ±tl m _ -(«»+*>
;

]a a a I

j3 63 f

(page 137.)

b X - = -
a a J

The student should now proceed as follows :

1. To form examples of numerical equations;— choose two roots

and a coefficient for the first term, and construct the expression which

should have those roots, as in page 137; then find the roots of the

resulting expression by the preceding formula, which should be, of

course, the roots first chosen. Afterwards take any expressions at

hazard ; find their roots, and verify them by actual substitution.

2. To construct literal expressions which shall afford solutions of

more interest than those taken at hazard, choose any expression which

is identically = 0, in which one letter has no higher power than the

second ; such as

ab2—abc+ abc—ab2 =
write x instead of b in such places as will create an expression, of
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winch it COUld n"t hi known at Inst light that .1 Q vanish hy

r = l>. For insUuloo, nippOM

ax*— «bc + ac.r— fi//.i: =
one of the roots of this should be b. Find the roots by the formula.

<>i take the following method : Choose any two simple expres-

one of which only has a denominator; such as — and p. Then
J n

the roots of

nx*—-(m-fnp)x+mp =

should be - and p. For instance, take b and . Then

m = \—ab n = a p = b

m + np = 1 — a b + a b = 1 ; mp = b— ab2

Therefore the roots of

ax^— x + b— ab* =

should be X. = b and #..=

Anomaly. In the expression a x* -f- b x + c = let a = 0. It

Q
then becomes bx -f-c = 0, giving x = — -. But if we examine the

roots of a x2
-{- b x -\- c = upon the supposition that a = 0, we find

— b+\/b2— Aac '

£ , rtC x
: assumes the form - (page 25.)

2 a ^ 6 '

— b— \/b2— 4ac . . —2b
,

_. .

assumes the form (page 21.)
2 a ^ & J

Are we then to say, in conformity to the pages cited, that one root

is infinites
and the other what we please? Apparently not, in the pre-

sent case; we must therefore examine it further. Instead of supposing

a = 0, let us (page 21), suppose it as small as may hereafter be neces-

The Lemma which we here lay down will be useful iu every

part of algebra.

Lemma. The expression vV-f-v, may, by supposing v suffi-

ciently small, be made to differ from b by as small a quantity as we

please: and, moreover, the same expression may, under the same

v
circumstances, be made to differ from b -\—-

t
not only by as small a

quantity as we please, but by as small a fraction of v as we please.
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[In explanation, s/l + v, however small v may be taken, exceeds

1 by something near the half of v ; but s/\-\-v may be made to differ

from 1 + I v by less than the ten-millionth part of v, if necessary.]

The first part of this lemma is evident enough : the second we

prove as follows:

V*

4 62

Therefore b + ^r — V&s + v =

But the last-mentioned fraction has a denominator, which, when

v is diminished, approaches continually to b + */b2 or 2b. Let it

be called 2 b + w, where, by making v as small as may be necessary,

we can make w as small as we please. Then will

b + £r-Vb* + v =
26 462 (2&+w) 4b'\2b+w)

XV

v /
that is, b + —7 differs from v b'*+v by a certain fraction of v, namely,

v
—ttt,—r x of v. But since v can be made as small as we please,
4 62 (2 6 + w) r

and thence w (see what comes before), that is, since 4b*(2b -\-w) can

be brought as near as we please to 4£>
2x2 6 or 863

, the fraction of v,

by which b -f-
—- differs from s/

b

2
-\- v, may be thus represented :

v (a quantity as small as we please)

8 b3 (a given quantity) + a quantity as small as we please

and may therefore be made as small as we please.

Precisely the same sort of demonstration may be given of the

following ; namely, that b —— may be made to differ from \/&2— v

by as small a fraction of v as we please.
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Wc shall now proceed to apply this theorem to the consid*

of the roots

_ b 4- s/tf— Aac . — b— n//;
3— 4«c

1—

_

and
2 a 2 a

on the supposition that a may be as small as we please. Hence,

c being a given quantity, 4a c may be as small as we please; and if

v = 4ac (by the last lemma)

•s/b*— 4«c may be made to differ from 6 — —7- by' as small a

fraction of 4 ac as we please.

Let, therefore, n/63— 4ac = b — p x 4a c, in which we

may make p (with a) as small as we please.

Then the roots are

— />-j- b —7 4pac
and

and

4 a c— b— b + -^-j- + 4pac

2a

-\-2pc

2a

2ac— 2b -\ 7 \-4pac

2a

Now, diminish a more and more, in which case p is diminished

in the same way. The first root continually approximates to — 7-,

2b
and the second to the form . But the first is the root derived

from the earlier view of the equation a x2
-f- b x + c = in the

case where a = 0, namely, bx + c = 0, which gives x = — -7.

The second is yet unexplained.

Problem in Illustration, a, b} c, and e, are four numbers,

the last three of which are increased by a certain number, and the

first by m times that number. The results are then found to be

proportionals. What is the number ?

Let x stand for the number. Then mx-\-a, x-\-bf x-\-c and x-\-e

are proportionals.

mx+a x + c ,
, \/ , x / tw . \

or ---r-7- =— or (mx + a)(x + e) = (x + b)(x+c)

Perform these multiplications, and reduce the result to an equa-

tion of the form P = 0, which gives

(m— \)x2 +(me+a—b— c)x + ae— be =
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The values of x are contained in

— (me-\-a— b— c)+ v(me + fl— 6— c)
2— A(m— \){ae— be)

2(m— 1)

and therefore, generally speaking, there are two solutions of the pro-

blem. But if m = 1, that is, if x must be so chosen that x-\-a
t
x -\-b,

x -f- c, and x + d are proportionals, the case we wish to consider

arises : for m— 1=0; the equation is reduced to

(e + a — b — c)x + ae — be =
which gives only one root; and one of the roots just given takes the

form
— 2 (e + a—b— c)

The interpretation of this form in page 25 was, that any very great

number would nearly satisfy the conditions of the problem, a still

greater number still more nearly, and so on. Now, the question

becomes, will x -f- «, x + b, x + c, x + e, approach more and more

nearly to proportionals as x is increased ; that is, will

,
= ——— approach to truth in that case ?

X —J— X ~f~ c

Divide both numerator and denominator of both fractions by .r

;

a c
1 + - *+-

x x
this gives r- = — which may be made as near the truth as we

1+- 1+-
x x

please, by taking x sufficiently great ; for, by so doing, -, -, -, and -,XXX X

may be made as small as we please, and the preceding equatio

brought as near to - = - as we please.

Hence it appears, that when a problem which, generally speaking,

has two solutions, has a particular case in which there is only one, we

may say that there is another solution corresponding to an infinite

value of the unknown quantity, in the sense explained in page 25.

But, though we see a confirmation of the interpretation put upon

in page 25, we also see that --, which is the form of the other

root, does not admit the interpretation of page 25, namely, that any

value of x will satisfy the equation ; but it indicates that the rational

root is — j. We shall return to this point in the next chapter.
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The case of a = presents new circumstances | let us now sup-

pose onlyc = 0. We have then a 1*+ Ox = 0, or x(ax -f- /;) = 0;

winch is satisfied eitlu -r by J = or by 0« -f A = 0. That is, the

roots are and . This would also appear from the general ex-

pressions for the roots.

Similarly, if b = 0, we have oj2+ c = 0.

#2 = — - x = -f V — - or — V—

-

a v a v a

which pair consists of a positive and negative quantity when c and a

have different signs, and is purely symbolical when c and a have similar

signs. This also would follow directly from the general expressions.

We choose one from among many instances of the use to which

the preceding theory may be put. Suppose we know the sum of two

quantities (s), and their product (p). Required expressions involving

nothing but this sum and product, which shall give the sum of the

squares, or cubes, or fourth powers, &c. of the two quantities.

By page 138, these two quantities are the roots of the expression

xq— sx+p = Q (x)xti #"+2— sxn+1 +pxn =
Represent the roots by x

t
and xn \ we have then

x
n+2 -sxn+ l +pxn

t
=

n+2 «+2 / n+1 n+l\ / n n\ „

(+) x, +xj -s{x/ +x„ ) +p{xj
+xj =

Let the sum of the nth powers of x
/
and xu be called An ; the

preceding then becomes

An+2 — sAn+1 + pAn =
or An+2 = SAw+ i

— pAn

Now A =^°+x;= 1 + 1 = 2 (page 85)

A 1
= x, + xu

= s

Therefore, by the preceding equation,

A 2=sA!—pA = sz—2p
A 3= sAo—pA 1=s(s"—2p)—ps = s3—3ps
A4
= sA3

-PA„=s(ss-3ps)- p(s?-2p) = s*-4ps* + 2p"

and so on.
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There are many equations which may be solved by the assistance

of the preceding theory : the reason being, that though they are not

strictly of the second degree with respect to the unknown quantity,

they are so with respect to some expression containing it. For in-

stance, we wish to find the values of x which satisfy,

x*-Zx + \ = 2- V>-3#+l
In order to clear this equation of the radical sign, we should proceed

as follows.

V#2—3# + l = l + 3#— x*; square both sides,

^L-Sff-fl = l + 6x+7x2—6x3 + x*

or x4-6x3 + 6x°~ + 9x =
an equation of the fourth degree, for which no method of solution

has preceded. But, on looking at the original equation, we see

immediately that it is of the form v2= 2

—

v ; for if s/x2— 3.r + 1

be v, then x2— 3x +1 is v2 . Let v = s/x2— 3x+l, then

l?
2 +?; _2 = v = 1 or —2

First, let v as 1

Vx*— 3# + l = 1 or x2— 3x +1 = 1 /. a; is or 3

Next, let v = — 2

l/*2 -3a;+l = -2 a;
2- 3a; +1=4 x = 3±^*x

Therefore the preceding equation is satisfied by the following

values of x;

3 3 + n/2T 3— \Z21

2 2

Again, suppose 2.r6— 3 = x5
. Here x6 is (x3

)
2

; let v = x3
, and

the equation becomes 2v2— 3 = v, the roots of which are — 1 and -|

.

Hence, x*= — 1 or x3= -§-; that is, any values, real or purely sym-

bolical, ofV— l and VI are roots of 2x6— 3 = .r
3

.

We shall close this chapter with some instances of the process

of clearing an equation of the radical sign. Let it be the following

V~x + Vx~T\ + VT+2 = 2

1/J+ Vx~T\ =2- t/J+2
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Square both sides

a; + 2V^l/7+T+ .r+1 = 4-4VT+2 + x + 2

or 2 V#(x + 1) + 4l/* + 2 = 5-o;

Square both sides again,

§*(* +1)+16V*(o?+l)V^+¥+ie(*+d> -26-10* +*1

or 16l/*(x + ])(* + 2) = - (7 + 30* + 3*«)

Square botli sides again,

256*(*+l)(* + 2) = (7+30*+ 3x*y

which contains no radical sign, and may be developed.

The following are more simple instances, which we leave to

the student.

The equation Vx + 5 + V* — 3 = 4

gives x — 4 =
The equation Vx +fl + V* + ft = c

gives 4c2* + 4aft — (c2— a— ft)
2 =

But we must observe that

(x + a)* + (* + ft)* = c (see page 123).

gives the same result as the last, and admits of the four following

forms :

Vx + a + Vx + ft = c

Vx +a — V x + ft = c

— Vx+a + Vx + b =* c

— l/tf + a — Vx + ft =
The value of x above obtained, namely

(C
2— a— 6)

2— 4a6

4 c
2

will only satisfy one of these. Consequently, when we obtain one

of the preceding equations, we cannot be sure but that the problem

has been misunderstood and requires an extension of form which

will give another of the preceding.

We give the following as exercises :

1. Shew that a + - cannot be numerically less than 2. Prove

this by shewing that the roots of a + - = 2 —p are purely symbolical

o 2
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when p lies between 4 and 0. It may also be shewn from (a— l)2

being always positive.

2. Shew that a2+ b
2 must be greater than 2a b.

3. Prove that if a -f- = s.
a

a*+ \ = s2-2 a3 + -
3
= s

3-3s a4+

-

4 = s
4-4s2 + 2

a2 a3 a

4. If x, and ag be the roots of the expression ax2 + bx -f- c, then

will

a? -s = ± V&*_4ac S = ^Zl_a_c ± _Ll/^_4ac
' •

* a #,, 2ac 2ac

g, *„ ._ b*— la c
_L _L b

xu x
i

ac x
i,

x
,

" "~ c

5. In the expression ax2+ 6^ + c, supposing it previously known

that one root exceeds the other by m, find the roots without the

assistance of the formula. Do the same on the supposition that one

root is n times the other.
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CHAPTER VI.

ON LIMITS AND VARIABLE QUANTITIES.

We have already had occasion to observe the effects of particular

suppositions, which make what in other cases are intelligible quan-

tities, assume the forms -, -, a , &c. To these we shall now add the

form itself, as requiring investigation on account of the circum-

stances under which we may have to use it; for since we have found

it convenient to reduce every equation to the form P = 0, we might,

without proper caution, be led to such inferences as the following

:

If ab = and ac = 0, then ab = ac or b = c. [We* shall give

a striking instance of this, as follows: If.r— 2 = 0, it follows that

x2— 4 = 0, and that *

—

2x = 0. Are we then to equate x2— 4

and X*— 2x, and proceed in any manner, previously explained,

with the results ? If we do so, since x2— 4 = {x — 2) (x -\- 2)

and x2— 2x = x(x— 2), we have

(x-2)(x + 2) = (x-2)x O) (x-2) x + 2 = x

But x-2 = .-. x = 2 or 4 = 2

an absurd result, which indicates some absurdity in the process. The

suspicious step is the division of both sides of an equation by x— 2,

which is 0. If we go through the preceding process without the con-

cealment of which takes place by making the supposition x— 2 =
and then using x— 2 instead of 0, we shall find a most evident

fallacy, amounting to the following :

«x0 = 6x0 = ,\ axO = bxO (t)0c=6
that is, we have used as a quantity, have asserted = 0, and have

divided by 0. Returning now to the principle in page 21, we shall

suppose x— 2 instead of being = 0, to be very small, and shall put in

* All that comes between the brackets [ ] is vaguely stated j the

object being nothing more than to shew the student how liable he is to

error in using such terms as nothing, small, great, nearly equal, &c.
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opposite columns the two analogous processes, each containing its

own error.

Let ar-2 =
a;
2-4 =

and x*-2x =

x*—2x = a?
2—4

or x(x— 2) = (ar—2) (a: + 2)

-r-(jy— 2) a; = a: + 2

But «?—2 = a; = 2

2 = 4

Let a:—2 be as small as we please

.*. X2— 4 may be as small as

we please

and a:
2— 2 a; may be as small as

we please

/. a;
2—2a; and a;

2—4 may be

as nearly equal as we please

and the same of x(x— 2) and

(x-2)(x + 2)

(-7-)(x—2), then x and a;+ 2

may be as nearly equal as

we please.

But X may be as near to 2 as we

please; therefore 2 and 4

may be as nearly equal as

we please.

In the second column there is an error, whichever of the senses

in page 24 is put upon the word equal. If we call quantities nearly

equal whose difference is small, then we do not know that because

x2— 2x and #2— 4 are nearly equal, they will still be so after divi-

sion by x— 2. For if x— 2 were, for instance, , then divi-J * ' 1000

sion by x— 2 is multiplication by 1000, or the difference between the

quotients x and # + 2 is 1000 times the difference of x*— Ax and

x*— 4. And the less x— 2 is, the greater is the real multiplication

to which division by x— 2 is equivalent. If it be said that the quo-

tients x and x-\-2 do not differ by a larger proportion of themselves

than x*— 2x and x*— 4, and that, agreeably to the sense preferred in

page 24, a is as nearly equal to 6, as c is to d, when the differences

of the first two and of the last two are in the same proportion as

a and c: the answer is, that xu— 2x and x*— 4 must not then be

called nearly equal, because they are small, and because their differ-

ence is therefore small ; for both may be small, and, nevertheless,

one may be many times the other. An elephant and a gnat are both

small fractions, if the whole earth be called 1, but they are not

nearly equal in any sense.
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From the above we gather, that, calling a and l> w.-irly equal when

they only differ by a small fraction of either, we are not at liberty to

say that two small quantities are therefore (because they are small)

nearly equal.]

There are two obvious tests of the absolute equality of a and b:

a— b = and 7=1.
b

We lay down the following definition. Approach towards equality

is measured not by the diminution of the difference, but by the approach

of the quotient towards 1. Thus 3 is not more nearly equal to 2 than

20 to 25 because 3 — 2 is less than 25 — 20 ; but 3 is not so nearly

equal to 2 as 25 is to 20, because

- exceeds 1 by - — exceeds 1 by - ( less than -

)

2 ' 2 20 J
4 \ 2/

See page 24, for an anticipation of this use of the words "nearly

equal," and what precedes in [ ] for reasons..

Theorem. The value of a fraction depends entirely on the

relative, not on the absolute, value of the terms. The following ex-

amples will shew that this is contained in the theorem —- = -.r mb b

1. Find a fraction whose numerator is 583, and which is as

11
1

A 583
small as . Answer

1000 583000

dt

be a million.

2. Find two fractions, a and b, each less than , so that - may

Answer a = b =
2000 2000,000,000

Here j = 1000,000
b

'
a 1000,000

3. Find two fractions, a and b, each less than 2, so that j- may

be = m.

Answer. Take any two numbers, p and q (only let p be less than

2 q) }
and let

a= p- b=-P-
q mq

Exercises. (All the letters are positive) p is not so nearly

equal to p -f- q as p -j- m is to p -j- q -f m. If a be more nearly equal

to 6 than c is to e, then a 4- c is not so nearly equal to b + e as a is
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to b, but more nearly equal than c is to e. Again, mx is as nearly

equal to nx as my is to ny.

We must now say something upon definite and indefinite terms.

A word is called definite when there can be no question as to

whether it is proper or not to use it in any particular case which may

be proposed. A word is called indefinite when it may be matter of

opinion as to whether it is proper or not to use it in any proposed

case. Thus, equal is a definite term. No two opinions can exist

upon the answer to the question " Is 4 + 4 equal to 9 ?" But great

is an indefinite term. "Is 1000 a great number ?" The answer

to this is, there is no way of answering the question in any case

upon which all must agree. We give some examples of each sort.

Definite — equal, exact, larger, nearer, smaller, greater, less,

largest, smallest, &c. as large as, as much as, as great as, &c, quite.

Indefinite— near, small, large, great, much, nearly, hardly, &c.

large enough, small enough, &c.

With indefinite terms we can have nothing to do, unless by

addition to their meaning, so as to give them a signification which

will allow us to use them without presenting as mathematical theorems

propositions which contain matters of opinion. We shall take the

terms near, small, and great as instances. Observe that the term

smaller is not to be considered as altered in the same manner as

less in page 62. It keeps its arithmetical meaning. " If x be

small, 7+x is nearly equal to 7?" This is a proposition in which

all will agree : and the reason is that " small" and " near" have a

connexion which is independent of what fraction the speaker may

choose to think entitled to the term "small." AB maybe a line

which one may call small, and another not small ; but all will agree

that in the meaning of the words, " small" and "near "is implied

" If AB be small, A is near to B." But if we come to ask—

What fraction is small, is it ——, tt-tt, &c. ?— The answer must

depend on circumstances. We reject, therefore, the terms small and

near in their common meaning. But the preceding proposition can

be put in a form which will never render it necessary to inquire

what is small or near. " If x may be as small as we please, then

7 + x may be made as near as we please to 7 ;" or, " Let me make

x as small as I please, and I can make 7 + x as near to 7 as you

please ; or, " Name any fraction you please, and let it be such a
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one as you choose to call small, I do not ask why: then, if I

make r as small as 1 please, I can make 7-f-j differ from 7 by I

fraction less than the one named l>y you ;" and so on.

Having rejected the terms small, great, and near, in their common

signification, we shall revive them for our own use in algebra, simply

as convenient abbreviations of " as small as we please," u as great

as we please," " as near as we please," or, " as small as may be

necessary," u as great as " &c. &c. In this sense we have various

demonstrable and definite propositions. For instance, " if x be small,

- is great;" that is, if we may make x as small as we please, we

may make - as great as we please.

When, under certain circumstances, or by certain suppositions, we

can make A as near as we please to P {A being a quantity which

changes its value as we alter our suppositions, and P a fixed quantity,

which does not change when we alter our suppositions) then P is called

the limit of A. A quantity which we are supposing as great as we

please is said to increase without limit ; one which we are supposing

as small as we please, is said to decrease without limit. The follow-

ing theorems will be evidently true.

If x decrease without limit, the limit of a+x is a; if x diminish

without limit, then - increases without limit; if x approach without

limit towards b, then the limit of a -f- x is a -f b.

The first and third may appear but a complicated method of

saying that if x= 0, a+x = a; and if x= b, a-\-x = a-\-b, which

are perfectly intelligible. But, u if x as - = - " has no intel-

ligible meaning ; in fact, in page 25, we have already anticipated

the construction we here put upon that proposition.

One object of this chapter is, to put interpretations upon those

forms which would otherwise offer difficulties; such as 0, -, -, and
0'

(had we not otherwise found a rational interpretation) a°. But we

still have the forms

0° 0= Q° kc

all of which might occur, if we stumbled upon such expressions as
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(»_„)'- {x -a)- (_L)~" &c.

without observing (what might happen) that x = a.

In all these cases, that is, when we get a form which is not a

direct representation of quantity, we shall not ask " What is the value

of that form ?" or in any way enter into the question whether it is

demonstrable that it has a value or not. But the question we shall

always ask is this :
" As we approach the supposition which gives the

unintelligible form, to what value does the expression which gives

the unintelligible form approach ?" For instance,

x 2— a2
when x = a = -

x— a

But if we examine what sort of change of value takes place in the

above fraction when x approaches towards «, we find that value to

approach towards 2 a, as will be afterwards shewn. And it will be

found that we have the following proposition :
" If x may be made

as near as we please to a. then can be made as near as we
x— a

x2— a*
please to 2 a," or, " If x approach without limit to a, then

approaches without limit to 2 a."

Shall we then say that

^.2 a2

when x = a = - = 2a or - = 2a (inthiscase)?
x— a

Whether it will be proper to say so, in the common meaning of all

the terms, we leave to the student. But we shall not, in this work,

use such a form, except as an abbreviation of one of the preceding

propositions.

It is usual to make the symbol cc stand for -
; and this is called

infinity. From what has preceded, and page 25, we shall regard

.r = oc as an abbreviation of the following: " Let x increase without

limit."

Again, "let x = 0," it will often be most safe to regard as an

abbreviation of " let x diminish without limit." We shall hereafter

return to this. But in equations of the form P—Q = 0, where P and

Q are certainly finite quantities, this alteration will not be necessary.

Theorem I. If A and B be two expressions which are always

equal, so long as they preserve an intelligible form, then the limits

of A and B are also equal.
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To take a cast , mppoM thai wbeo I increases without limit, A
lias the limit P, and II has tin: limit <i ; then 1* must = Q. To

prove this, suppose that

A = P + a B = Q + ft

then, by increasing x without limit, a and b are diminished without

limit. For, if not, and if a had the limit a, then the limit of A or

P-fa would be P-f-«. But it is P; therefore a has not a limit,

but diminishes without limit.

But because A = B we have P + a = Q -f- b. If P be not = Q
it is greater or less. If possible, let P be greater than Q, and let

P = Q + It. Then, since P and Q are quantities not containing x,

It is the same, and P, Q, and It, do not change when x changes.

We have then

Q + R + a = Q + b or U = b — a

Here, then, is the following absurdity: R (a fixed quantity) is always

equal to b— a, which can be made as small as we please by in-

creasing x, because b and a diminish without limit as x is increased

without limit. Therefore P = Q -f- R is absurd. In a similar way

it may be proved that P = Q— It is absurd. Therefore P = Q.

Theorem II. When x diminishes without limit, the way of

finding the limit of an expression is to make x = 0, provided, 1st, all

the results be intelligible; 2d, that the number of operations be not

unlimited.

For instance, it is clear enough that 1 + 2 x -f- 3 x2
, when x dimi-

nishes without limit, has the limit 1 + -f or 1. And, perhaps, the

student may think it clear that the limit of

1 + x + x~ + X3 + X4 + &c - continued for ever

is 1 + + o + + + &c

or 1, when x diminishes without limit. But here we must make him

observe, that when we take .r small, though each of the terms x, x-, x3
,

ar*, &c, may be small, yet their number is unlimited. And though

we know that when a certain number of terms is added together, each

of which may be made as small as we please, that their sum can be

made as small as we please, yet we do not know the same of an un-

limited number of terms.

Theorem III. When x increases without limit, it is clear that

such expressions as

p
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a + bx, a + bx + CXz
, &c. increase without limit:

and that a + -, a + - H „, &c. have the limit a.
X XX*

But the easiest way, in general, to examine expressions, will be to

remember that when x increases without limit, - decreases without

limit.

Let, then, v = - or x = - : substitute this value of x, and, if
* * v

possible, reduce the expression to a form in which its limit will be

evident when v diminishes without limit, that is, when x increases

without limit.

.r-4-1
For instance, what is the limit of in such a case.

3x—2

i ;
+i 6+*> i+.

Let X = -
v 3 3— 2

1

V we->>
When v diminishes without limit, the preceding has the limit -.

j

Let the student now prove the following cases, which we express

in the abbreviated form.

a

x

2 -\- b x + c ax*-\-bx-\-c a
If X = (X —

,

= <x —a-- x~ = "

axz -\- bx + c ^

Theorem IV. If a be greater than 1, the terms of the series,

a, a9, a3, a
4
, &c, increase without limit; or (abbreviated) a

w= oc

For a? = a+tf—a = a + a{a — \)

or q becomes a2 by adding « (a — 1)

Similarly a2 becomes a3 by adding a2 (a— 1)

Generally an becomes an+l by adding an (a— 1)

But because a is greater than 1, a— 1 is positive, and the addition

of a (a— 1) is therefore arithmetical increase. And a2
is greater than

a; therefore a2(«— 1) is greater than a(a— 1), or the third power of a

exceeds the second by more than the second exceeds the first. Simi-

larly, the fourth exceeds the third by more than the third exceeds the

second ; and so on. But if to a the same quantity be added as many
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times as we please, the result may be made as great as we please ;

still more if the MUM number of additions be made, with greater

<iu;intity each time than the last. Whence follows the theorem.

Theorem V. If b be less than 1, the terms of the series 6, b3, b
3

,

l>\ &c. decrease without limit, or (abbreviated) b
K =0.

Let b = -, then bn =— . But because b is less than 1, a or T is
a a11 b

greater than 1 ; therefore an may be made (Theorem IV.) as great as

we please. Hence, — or bn may be made as small as we please.

9 1
Find out the first of the powers of—— which is less than rr^T^rrr 100 1000000.

Ans. The sixth.

It is hardly necessary to notice, that if a = 1 the terms of the

series a, a2
, a3

, &c. neither increase nor decrease.

Theorem VI. If x be positive, and less than 1, the series of

terms

(1 + 0^ (l + X+ X*) (l +a; + a;2 + a,3) &c

increases, but not without limit. The limit is ; that is, no term
1— x

of the preceding, how many powers soever it may contain, can be as

great as —— , but may come as near to it as we please. The abbre-

viation is as follows :

-!- = 1 +# + #2+ #3+ t# ,

# +a;
«

1— x

more generally written

r— = 1 + X + X2
-\- Xz + &c. ad infinitum.

As this series is a most important part of the groundwork of all

that follows, we shall try to establish the proposition from the method

of its formation. We remark that when x is positive, the terms 1,

1 -|- x, 1 + x + x2
, Sec. evidently increase ; and that each term is

formed by multiplying the preceding by x, and then adding 1. Thus,

l + x+x* is 1 + ^(1 + ^), and l + .r-f-x
2+jr3

is 1 + x (1 + x -f *
2
),

and so on. IfA stand for any term, and B for the next; then

B = 1 +A*
Now, B is greater than A ; therefore, adding 1 more than com-

pensates the diminution which A undergoes by being multiplied by .i
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(Remember that x is less than 1). But A* = A-f Ax— A = A—
(1

—

x)A; or multiplication into x diminishes A by (1

—

x)A. This

the addition of 1 more than compensates; that is, 1 is greater than

(1

—

x)A. Divide both of these by 1

—

x; and is greater

than A. But A is any term we please of 1, 1 -\- x, 1 -{- x -{- x2
, kc.

;

therefore every one of these, how far soever we go, is less than .1—x
Now we have to prove that, though we cannot find A as great as

, we can come as near to this as we please. Remember that the
1

—

x r

way of forming the next term is always, " Multiply by x and add 1."

Let A differ from by p ; so that
1

—

x '
*

1 xA = », the next term isl+Aa: = l+ px
1

—

x 1 ' 1

—

x r

1

—

x -\-

x

1 .= vx = VX : the next term is
1 — x r 1

—

x r

x 1
] A nx~ or px2

; the next term is
1—x r 1—x *

1

z pxs
: and so on.

1

—

x r '

1

Hence we can find a term which differs from ——- by pxn, where

n is as great as we please. But p is a given quantity, and xn

(Theorem V.) diminishes without limit when n increases without

limit; thereforepxn may be made as small as we please, or—- pxn

as near to as we please. But, by continuing the preceding terms

from A, we shall at last come to — p xn . Therefore, by con-

tinuing the terms, we come as near to r^^- as we please.

We shall now try to find whether (x being less than 1),

1— X + X2— X3+ J4— &c. continued ad infinitum,

has a limit; or what is the nature of the increase or decrease ofl,

1— x, 1

—

x + x2, &c. Here we see alternate increase and decrease :

but still under a simple law. To find the next term, multiply the

last term by x, and take the result from 1 . Thus,
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1 -.r + .?- = l-x(\ —a;)

1 —X + x':— x3 = 1 — a:(l — a: -f x°) and so on.

Or if A and I J be two consecutive terms,

B = 1 — Ax or 1 + A - A(l + x)

That is B = A + 1-A(l +x) /,

then the next term C = B -f- 1 — B(l + x) &c. &c.

But the results alternately increase and decrease ; that is, suppose

B greater than A, then C is less than B. Or, suppose 1 greater than

"X 1
A (1 -f s)u then 1 is less than B (1 + x) : or is greater than A,

and ——— is less than B. So that the results are alternately less

and greater than -L-

Thus we have

1
.

1 is greater than
1

1 + x

l-x is less than
1

1+ X

1 _ x + x
"

&c.

is greater than

&c. &c.

1

1+*

Now, since xn diminishes without limit as n is increased, we can

take n so great that two consecutive terms

l—x+x2— &c. ±xn~ 1

and 1—x+ x*— &c. ±xn' 1 +x"

shall differ by a quantity as small as we please (for they differ by

+ xtl
). But we have just proved that one of these terms is greater

than and the other less. And they differ less from any quan-
1 -\-x

tity which falls between them, than they do from each other ; con-

sequently, either may be (if n be taken sufficiently great) as near to

1 .

as we please.
1 + x

These two results we express as follows :

= 1 + X + X2
-f- X3 + &c. ad infinitum.1—x

1

p2

= 1 — x -f- X2— X3
-{- &c. ad infinitum.
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and is called the sum of the first infinite series, meaning, the

limit towards which we may come as near as we please by continual

addition of the terms 1, x, x2
, x3

, &c.

We shall proceed with this subject in chapter VIII.

Theorem VII. If the numerator and denominator of a fraction

diminish without limit, the limit of that fraction may be nothing,

finite or infinite : that is, the fraction may diminish without limit,

may have a finite limit, or may increase without limit. Neither of

these suppositions is inconsistent with the unlimited diminution of

both the numerator and denominator.

Take the three fractions

x2— a2 x2— a2 {x—a) 2

(x— a) 2 x— a x2—1a2

By supposing x = a, all the three assume the form -. By sup-

posing x to approach as near as may be necessary to a, we may

diminish the numerators and denominators without limit. The reason

of this is, that x— a is a factor of every numerator and every deno-

minator, and x— a diminishes without limit as x approaches to a.

For the three fractions are

(x— a) (x + a) (x— a) (x + a) (x— a) (x— a)

(x— a)(x— a) (*— a) (x— a)(x-\-a)

Divide both terms of each fraction by x— a, which gives

x -f a x— a
X +a —

—

x— a x -\- a

Which are always severally equal to the first, except where x = a, on

which we give no opinion (see page 156). But as x approaches

towards a, the first is

A quantity whose limit is 2a

A quantity which diminishes without limit,

and therefore increases without limit. The second is

A quantity whose limit is 2a,

and therefore approaches without limit to 2 a. The third is

A quantity which diminishes without limit

A quantity whose limit is 2 a,

and therefore diminishes without limit. Consequently, when we see
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a fraction under circumstances in which the numerator and denomi-

nator diminish without limit, we have no right to draw any conclusion

as to the value towards whieh that fraction is tending, but must

examine the fraction itself to see whether it diminishes or increases

without limit, or whether it tends towards a finite limit.

Theorkm VIII. The same caution is necessary as to a frac-

tion whose terms increase without limit, or which approaches the

OC A
form — . For let -r be a fraction whose terms increase without

(X B
limit. We know that

i

A __ g^

B " I
A

and when A and B increase without limit, — and — diminish with-
in. I

»

out limit. Therefore the same circumstances which make -^ approach

the form —, make the same fraction (in a different form) approach

to -. Whence the last theorem applies.

Theorem IX. The same caution applies to the value of a pro-

duct, in which one of the terras diminishes without limit, while the

other increases without limit. Let AB be such a product, which ap-

proaches the form x GC : that is, while A diminishes without limit,

B increases without limit. We know that

AB=i
B

and when B increases without limit, — diminishes without limit.

Hence, as in the last case, AB, under a different form, approaches to

the form -.

Thus we see that the three forms

cc A

are so connected, that any expression which gives one, may be made

to give either of the others.

We now take the form a , considered, not in the absolute and

defined sense of page 85, but as the representative of

The limit of a* when x diminishes without limit.
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If x = -, then when x diminishes without limit, y increases

without limit. Let y be a whole number, then

l

ax = dy = %/a

Firstly, if a be greater than 1 , all its roots are greater than 1 (for

all the powers of less than 1 are less than 1). Let

y/a = l+v or a = (l+vy

Now, y can be taken so great that v shall be less than any fraction

we may name, however small. For, if not, say it is impossible that y
should be so ..great as to make v less than k. Then, v being always

greater than k, whatever may be the value of y, l-\-v is always

greater than 1 + k. But, Theorem IV., y may be taken so great that

(l+/c)y shall exceed any quantity we may name, and shall there-

fore exceed a. Still more, then, will (1 -f- v)
y exceed a (p is greater

than k). But (1 -\-v)y equals a : here then is a contradiction. Con-

sequently, the supposition that v can never be made less than a given

fraction k is not true : that is, v can be made less than any given

fraction, or 1 + v can be brought as near to 1 as we please. But

l-\-v = v a, therefore, ify increase without limit, we see that

l

%/a or av or ax has the limit ]

Or «°= 1 where is used in the sense given in page 156.

Secondly, let a be less that 1, whence - is greater than 1. By

y /T
the last case «y - can be brought as near to 1 as we please; but

this is 1-7-Va, therefore Va can be brought as near to 1 as we

please.

Theorem X. In any rational* integral expression with respect

to x, if x may be increased without limit, the term which has the

highest power of x may be made to contain the sum of all the rest

times without limit. That is, in the expression

ax3 +bx2 + CX + e
t

for example,

let a be any given quantity, however small, and 6, c, and e, any given

* Look at the beginning of the next chapter.
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• ju unities, however gTMfct, y.t | unv !.« t ikon so great th;a

shall contain bx'2 + c x + fl M nmny times as we please.

The number of times and parts of a time which ax 3 contains

b x2
-f- c x + c is expressed by the fraction

a.r3
OJT*-f- ,r

2 " r

(>v--j-cx-\-e {bx* + cx + e)-r-x* /_l c
_j__£_

x x2

c c
Let —|

5 = P. Then, by increasing x without limit, p is
x x3

diminished without limit, and will, if x be taken sufficiently great,

ax
become less than 1. That is, ax 3 contains b x2 4- c x + e, -r—

—

b + p
ax _ ax a

times, or more than -j—— times. But r—— or j——- x ^ increases
o -f-1 o +1 b +1

without limit, when x increases without limit. The same then does

the number of times which ax3 contains 6x2+ cx + e.

For example, how great must x be, in order that we may be

certain that the millionth part of x3 contains 1000x2+ 500 x +1000

more than a hundred thousand times ?

one millionth of x3 one millionth of x

1000 x2 + 500x+ 1000
=

500 1000

x x2

Now, if x be 1000 or more, 1 5- is less than 1 . There-
x x*

fore, in this case, the preceding fraction is greater than one millionth

of x— 1001, or than

x

1001000,000

If we take x = 1001000,000X100,000 or 100100,000,000,000,

the preceding fraction becomes 100,000. Hence, the millionth part

of x3 is greater than 100,000 times (1000

x

2+ 500x +1000). We
do not say that this is the least value of x which will answer the

conditions, but that this, or any thing greater, will do so.

Theorem XI. In any integral and rational expression with

respect to x, if x may be diminished without limit, the terra con-

taining the lowest power of x may be made to contain the rest of

the expression as many times as we please. For instance, in

—— x + 1000 x,* +100 x3 we may take x so small that x shall

contain 1000

x

2 + 100

x

3
as many times as we please: or in
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ax3 -\-bx2 -\-cx-\-e, x maybe taken so small that e (or ear , which

is the term containing the lowest power* of x) shall contain

ax3 -\-bx2 -\-cx as often as we please. This last is evident in this

particular case, because e remains the same when x diminishes with-

out limit, and a

x

3
-f- b

x

2
-f- c'x diminishes without limit. Therefore,

the second may become less than any given fraction of the first.

Now, take a case in which there is no power of x so low as x° ; such

as ax3
-\- bx2 -\-cx. Here * may be taken so small that ex shall

contain ax3 -\-bx2 as many times as we please. For the number of

times and parts of times which ex contains ax3 -\-bx2
is

ex c fixed quantity

ax3 -\-bx2 ax2 -\-bx one which diminishes without limit

which latter increases without limit when x is diminished without

limit.

Hence it follows, that when x increases without limit, x2
f
x3

, x
4
,

&c. not only increase without limit, but each of them increases without

limit with respect to the preceding ; by which is meant that x3 in-

creases so much faster than x2
> that x3 will come at last to contain x2

as many times as we please. Similarly, when x diminishes without

limit, we find that x2
, x3

, x*, &c. not only diminish without limit, but

each of them diminishes without limit with respect to the preceding

;

by which is meant that x3 diminishes so much faster than x2
, that x3

will come at last to be as small a fraction of x2 as we please. These

notions are sometimes abbreviated into the following phrases, which

it must be remembered are not intelligible, except as abbreviations.

Abbreviated Phrases.

1. Of two infinitely great

quantities, one may be infinitely

greater than the other.

Rational Meaning.

1. Of two quantities which

increase without limit, one may

increase so much faster than

the other, as not only to increase

without limit absolutely speak-

ing, but to increase without

limit in the number of times

which it contains the other.

* The algebraical series of whole powers of a; is

.... x~3 x~2 x~* x° xl x2 x3

answering to

— —- - 1 x x2 x3 (see page 85.)
X3 X2 X \ r o /
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2. Of two infinitely snmll 2. Of two quanritiei which

quantities, one may be infinitely diminish without limit, on-

less than the other, diminish so much faster than

the other, as not only to dimi-

nish without limit absolutely

speaking, but to diminish with-

out limit in the fraction which

it is of the other.

Let the student now try if he can explain the following Proiw.i m.

P

D

If A and B move together towards the line CD, and if A move

in such a way that AQ is 4, of an inch when B Q is £ an inch
;

that AQ is £ of an inch when BQ is £ of an inch ; or generally that

AQ is i
2 inches* when BQ is j inches: and if a microscope be

placed over the figure which grows in magnifying power as A moves

towards Q, in such a way that the increase of magnifying power just

compensates the real diminution ofAQ, so that A Q always appears

of the same length ; then B, instead of appearing to move toward Q,

will appear to move away from Q.

* It is usual to say x inches, when x is less than 1, or when x inches

is really a fraction of an inch ; in which case .t of an inch would be more

agreeable to analogy. Returning to the consideration discussed in the

note to page 40, it will be useful to observe that the idiom of our

language makes the connexion between multiplication by 4 and multi-

plication by £, less obvious than it might have been. We only say 4 of

before an article or pronoun, " four of the men," " four of them." But

we always say, " one fourth of six," " one fourth of an inch." If it had

been idiomatic to say " four of six," or " a four of sixes," for 24 ; and

" four of nil inch " for " four inches," the propriety of extending the

term multiplication to fractions would have been much more obvious.
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CHAPTER VII.

CLASSIFICATION OF ALGEBRAICAL EXPRESSIONS AND

CONSEQUENCES. RULE OF DIVISION.

Previously to commencing this subject, we shall make a classi-

fication of the expressions we have obtained. All the terms in use

are usually relative to some particular letter ; in what follows we

shall suppose this letter to be x. We shall proceed to explain the

following table.

Functions.

Common Algebraical.

Rational. Irrational.

Integral. Frac-

*
* tional.

Integral.

Monomial.

Binomial,

Trinomial,

Quadrinomial,

&c.

Frac-

tional.

Monomial,

Binomial,

Trinomial,

Quadrinomial,

&c.

Transcendental.

Exponential,

Logarithmic,

Circular,

Inverse Circular,

&c.

Any expression which contains x in any way is called a function

of<r: thus a-\-x, a-\-bx2
, &c. are functions of x; they are also

functions of a and b, but may be considered only with regard to x.

All expressions which contain only a finite number of such ex-

pressions as are treated in the preceding part of this work, are called

common algebraic* functions, except only where x is an exponent.

Thns */a-^-x2
, ax3

-\-b, &c. are common algebraic functions, but

ax is not. And we do not know whether 1 -J- «r + «r
2
-+- &c. ad in-

finitum (page 159) is a common algebraic function of x or not, until

we have found that it is the same as 1-^(1— x). All other functions

of x are called transcendental functions; such are ax and all functions

containing it; such will be (when we come to define them) the

* Usually, algebraic functions ; but transcendental functions are

certainly also algebraic, that is, considered in algebra.
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logarithm of x, the sine and cosine of x in trigonometry, and many

others. A function which contain! "' is called ;m exponet

function of x, one which contains a logarithm, a logarithmic func-

tion, &c.

Common algebraical functions are divided into rational, which

contain only whole powers of .r, as a+x2
, ax~ 2 -\-b, &c. ; and irra-

tional, which contain roots or fractional powers of x, as ax*-\-b,

s/u1 + x*, &c.

Rational and irrational functions of x are both divided into

integral, which contain x only in numerators, as

x2
, a -f- s/x

X -\— and
a + b 9

and fractional, which contain x in denominators,

a 4- x . v,r — vy
and^ + *3 c+VJ

Integral functions are divided into monomials, which contain only

one power of x, as x3
, ax2

, s/bx, (a + b)x*; binomials, which con-

tain two distinct powers of x (x° included) as a + bx or ax° + bx,

«3 +vj, mx2 -\-nx3
, &c; trinomials, containing three distinct

powers
; quadrinomials containing four, &c. The two latter terms

are little used : all expressions of more than one term are called

polynomials.

Integral and rational functions are divided into those of the first,

second, third, &c. degrees, according to the exponent of the highest

power which is found in them. Thus

a + bx is a rational integral function of x, of the first degree.

a + bx + cx* of the second degree.

&c. &c.

The term a, if written ax°, is of no degree with respect to x.

rp. a -f-
V b log c + a2c*

The expression! — ^j=±
W + VB

* The letter principally considered is an exponent,

f The meaning of log. c, or logarithm of c, will be afterwards

explained.
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is a rational integral trinomial function of a

.... rational fractional W2

.... irrational integral b

.... irrational fractional n

.... exponential X

.... logarithmic C

Rational and integral functions are generally arranged, so that

the powers of x may rise or fall continually in going from left to

right. Thus, ax + b— ex2 is never so written, but either

— cx2 + ax+ b or b + ax—cx2

in the first case it is said to be arranged in descending, in the second

in ascending, powers of a\

Thus a— bx3 + cx—x5—x3

should be a -{-ex— (b + \)x3—x5

or — x5— (b+1)x3 -\-cx+ a

The most important class of functions is the rational and integral,

containing those which appear rational and integral, but of which it

cannot be known whether they are algebraical or transcendental,

owing to their containing an infinite number of terms. Such are

the forms

a + bx+cx2 + +pxn~ 1 +qxn

where a, b, c are not functions of x, and n is a whole number ; and

d + bx + CX2 +ex3 + + &c. ad infinitum.

The reduction of expressions to such forms is one of the principal

branches of the subject. We shall call the first generally a polynomial,

the second an infinite series.

Definitions. In multiplication of polynomials, the several pro-

ducts formed in the process may be called subordinate products. Thus,

in multiplying a-\-x by b-\-x, the subordinate products are a b, ax,

bx, and .r
2

. A term of a polynomial is all that contains any one

power of x; thus, the preceding product ab -\-ax -\-bx -\-x
2

is not

said to be of four terms, but of three, namely, ab, (a + °) x> arjd x*-

Theorem. In the product of two polynomials, there must be at

least two terms, which are subordinate products, and not formed by

two or more subordinate products.

Suppose we multiply a x + b x* + c-x* and px* + qx5
. It is plain
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that no other subordinate product can contain so high a powc i

X 7 -i"\ or eq ,r
H
, nor so low a power of j as axxpx*, or (

because, in these, both exponents are the highest in their expressions,

or the lowest. Consequently, these must be terms of the product,

which is, in fact,

apx5 +(aq + bp)x6+ (bq + cj^x1 + cqx*

having four terms, two of which are the simple subordinate products

already noticed.

Algebraical division differs from arithmetical in this, that in the

latter we wish to ascertain whether a whole number P can be made

by taking another whole number Q a whole number of times; in the

former we inquire whether a polynomial function Dfx, P, can be made

by multiplying another polynomial Q by any third polynomial. For

instance, to divide S^+l by 2x+l, is the following: To reduce

8x* + 1

if possible, to a simple polynomial. The way of treating this

question will also give that of treating any other.

If possible, let 8x3
-f-l be made by multiplying 2x + l by

a 4-6x -r-cx
2
-f-ex

3
-|- &c. Now, firstly, this latter expression cannot

go higher than ex* ; for, if it did, say to ex3
, we should have, by the

last theorem, ea,3x2i or 2ex4 in the product. But that product is

8^+1 , in which x4 does not appear; consequently, ex3 and higher

terms are not in the polynomial required, which is therefore of the

form a + bx -f ex
2

. We have then, if our question be possible,

8^+ 1 = (2x + l)(cx* + bx + a)

We have proved that 2xxcx2 must be a term* of this product; but

it can only be 8 x3
, therefore 2 x x c xa= 8 x3

, or c x2= 8 x3
-f-2 x= 4 x2

.

Consequently, 8 x3 + 1 = ^2 x + 1 ) (4 x
2+ 6 x + a)

= (2x +1) 4 x2 + (2x +1) (bx + a)

8x3 +l— (2x+l)4x8 or —4x2 -
T-l = (2x + l) (6x + a)

of the latter product, 2xx6.r must be a term; but it can only be

— 4

x

2
, therefore bx = — 4

x

2
-r- 2 x = — 2 x, or

-4ar+l = (2*+l)(—2a?+a)

= — 2a?(2* + l) + (2ar+l)a

-4x2 + l + 2;r(2a; + l) r (2x + 1) = (2x +l)a

* This being a subordinate product, which cannot be altered or

destroyed by any other subordinate product.
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This last equation is made identical by «= 1 ; therefore 4 or
2—2^+1

is the polynomial by which 2jt+ 1 being multiplied, the product is

8j^-{-1 : as will be found by trial.

The steps of the preceding process may be arranged after the

manner of division in arithmetic ; the only difference being, that in-

stead of finding a new term in the quotient by trial of the left hand

figures of the divisor and dividend, it is found by dividing the left

hand term of the dividend or remainder by that in the divisor. As
follows, in which the same question is solved in the two different

arrangements.

2x + l)8x3 + l(4x*-2x+] l+2a;)l+8*s(l-2ar + 4a;
t

Sx3+ 4x2 l+2.r

-4z2 + ] _2.r + 8o;3

-4x2-2x -2x-4x°~

2#+l 4^2 + 8.z3

2#H-1 4a;2 +8*3

Great care must be taken to preserve the same order of arrange-

ment throughout, either in ascending or descending powers of x.

The following is the general theory of this process:

First, it is evident that the sum, difference, and product of rational

polynomials, are rational polynomials. Let P and Q be two rational

polynomials, from which it is desired to obtain V in such a way that

P = QV. Here P is the dividend, Q the divisor, and V the quotient

to be found. Assume any convenient polynomial or monomial A,

multiply it by Q, and subtract the product from P, which gives

P— AQ. Call this R, so that

P-AQ = R (1)

Assume any other polynomial A' ; repeat the process with R (instead

of P) and Q. Call the result R'.

R-AQ = R' (2)

Assume a third polynomial A", and let

R'_A"Q = R" (3)
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The object is to simplify Uie remainder at every step, so as to

reduce it at last to a form in which we may see one of these two

things ; either how to find a new polynomial which shall reduce the

next remainder to 0, or that this is impossible. Suppose, first, that

new polynomial or monomial A'" can be found, which will reduce the

remainder to 0.

R'-A'Q = (4)

We have, then, from the different equations

P = AQ + H = AQ + A'Q + R/= AQ + A'Q4-A"Q + R'

= AQ + A'Q + A"Q+A,"Q = Q(A + A'+ A"+A'")

so that A -4- A'4- A"+ A"' is the polynomial required. Suppose that

instead of (4), we have

R'-A'Q = R"

and suppose it to be evidently useless to attempt to continue the

process further. We have then

P = AQ + A'Q + A"Q + A"Q + R"

(+)Q |= A + A'+A"+A" + |I

, , . , , V a more simple
x= rational polynomial + < . . ,

r
Pr J

I fraction than
£

x5+ 1

Example. To reduce —=-; to a more simple form
x2

-f 2 x r

P = a;
5 +i Q = .z

2 +2,r

5 + KA = -£ =

x*+2x* = AQ
*2 +2a;)a;5 +i(A = ^ = x3

-2.z4 +l = R, A' = =4^ = -2^
X2

-2*4-4.r3 = A'Q

4jj»+1 = R', A" = ±£= 4*
X*

4x3 +8x2 = A'Q

-8*2 + l=R", A'
// =-?^=-8

-8a;2- IGx = A'Q

\6x+l = R
Q2
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It is useless to carry the process further, and we have

**+1 = *»-2* + 4*-8 +
Wx + l

&+2x ' x2+2x

From the preceding, we may deduce the following theorem, which

is useful in many parts of mathematics.

If P and Q be two rational polynomials of which P is of the

p
higher degree (or dimension, as it is frequently called), then -^

Vat
TT

can be reduced to the form G + -^- where G and H are rational

polynomials, and H of at least one dimension less than Q.

Exercise. If, in the preceding process, the remainders be

severally multiplied by B, B', B", &c. before using them, then

L — a 4- — *L A"' R'"

Q ' B ' BB' T BB'B" T BB'B"Q

The preceding process may be used in an infinite number of

different ways ; for though it is only convenient to employ it as in

the preceding example, yet in the reasoning P, Q, A, A', &c. may be

any quantities whatsoever. As in the following example,

P = 1 Q = \+x

1 + x) 1 (let A = x

x+x*

l — x — x*= R, let A'= &
X*+X3

l— x — 2x*-

P 1
, 9 ,

\—x— 2x2— x3= X + X2 +Q 1 +x 1 + x

But this would in most cases amount to no more than an arbitrary

method of adding or substracting fractions. When, however, the

process of dividing the left-hand term of the remainder by that of the

divisor is followed, the result will generally be a symmetrical, and

often a useful, developement. For instance, we thus obtain

= 1 — x + x2— x3 +x*—1+x 1+x
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ar+ 1 x tfl
+

x3 x*
+

x*'x + 1

= i + 2a; + 3x2 +4a:3 + '

1— 2.r +*3 ....
! _ 2 .r -h .i

a

By this method we can tell whether either of the preceding series

of terms continued without limit will approach a limit or not. For

instance, we see that

l+X+x2 +x3+ +*» (A)

1 **+l
becomes when is added to it. If then x be less than 1,

1

—

x 1

—

x

since xn+ l diminishes without limit (page 159) when n is increased

without limit, the sum of the terms in (A) continually approaches to

as was shewn in page 160.

Let us, for the present, denote by (P) that P is a rational poly-

nomial ; and by (P) + (Q) = (P -f Q), that P and Q are rational

polynomials, whence their sum is a rational polynomial. We have

then, always,

(P) + (Q) = (P + Q), (P)-(Q) = (P-Q),

(P) X (Q) = (P Q) ; and ^ = (-|) in certain cases.

Every polynomial which divides (P) without remainder is called

a factor of P; thus x*— 1 =(.r + l)(jr— 1) and x-\-l and x—

1

are factors of *— 1. It is evident, from page 1 71,

1. That no polynomial can have a factor of a higher dimension

than its own dimension.

2. That if the polynomial be of m dimensions, and one of its

two factors of p dimensions, the remaining factor must be of m—p
dimensions.

Thus in

x4— 1 = O— l)0r3 -M- + :r + l)

= (^-l)(x2 +l)

the polynomial being of the fourth degree, its factors are in one case

of theirs* and third (1 +3 = 4), and in the other of the second and

seco?id (2+2 = 4).

In what follows we speak only of rational polynomials, and by

rational division we mean that the preceding process leaves no
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remainder. The following theorems are evident consequences of

what goes before.

1. Rational division is impossible unless the dividend be at least

as high in degree as the divisor.

2. Where the dividend is higher than the divisor, and rational

division is still impossible, the remainder is of a lower degree than

either the divisor or dividend.

3. If the dividend be of the 7wth and the divisor of the rath degree,

the quotient is of the (m— n)th, and the remainder not higher than

of the (n— l)th degree. (For so long as the remainder is as high or

higher than the divisor, the process can be continued).

4. The dividend being P, the divisor Q, the quotient* A, and the

remainder R, then

P=AQ+R or ! = A+|
5. Every quantity which rationally divides M and N rationally

divides their sum, difference, and product. Let Z be the divisor

;

then

M = (A) *=(B) H+*= (A + B)
z

* = (A-B) %£ = ABZ = (ABZ)
z v~ rs z

6. Every divisor of P and Q (in 4.) divides R, and every divisor

of Q and R divides P, &c. so that no two of the three has any

rational divisor which the third has not. For instance, let Z divide

P and Q rationally, then

Y is rationaI or = (D Y = (y)

Ax(|) = (V
Q
) —* (l)-(

A
xQ) = (y~^)

= f =
J

; but this is -^-, which is therefore rational, or Z

also rationally divides R. By similar reasoning the other cases

follow.

7. The highest common divisor of P and Q is therefore the

highest common divisor of Q and R.

* Not strictly a quotient, unless the remainder be nothing. It is what

comes in the quotient-part of the process in trying this point.
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8. If one factor of I product be not divisible by r, then those

powers of x, and those only, which rationally divide the other All

will rationally divide the product. For instance, in (xA
-f a) (r3

-f- 6 x
2
),

since the lowest term is 6 ax3
, and since no power of .r higher than

that in the lowest term will rationally divide an expression, it follows

that ,i'
2

is the highest power of .r which rationally divides the product.

Hut .i
2 is the highest which rationally divides x3 -f-6.r

3
.

9. If an expression be rationally divisible by a power of r, the

quotient is divisible by every divisor of the first, which is itself

indivisible by any power of sr. For example, x3— x divided by x

gives .r
3— 1, .r— 1 is a divisor of the first, and, therefore (were it not

known otherwise), is a divisor of the second.

To prove this theorem, let x3 P (for example) be an expression,

which is divisible, say by * + 1 ; that is, let

£^ = (A) *»(P) = (A)(*+1)

consequently (8.), (A) is divisible by x3
;

or A — (B) that is (A) = X3 (B)

Therefore, x3 (P) = x3 (B) (x + 1)

(P)= (B)(*+l) or JL =(B)

that is, P (as well as ,r
3 P) is divisible by x + 1, and the same may be

shewn of any other divisor of a:
3 P.

The method of finding the highest common divisor of two rational

polynomials is now exactly similar to that of finding the greatest

common measure of two whole numbers in arithmetic. For example,

required the highest common divisor of x6— x and 3x8— 3x*. First

separate the monomial factors ; that is, put the expressions in the form

xix5— 1) and 3x*(x*— 1)

Neglect the monomial factors for the present, and proceed to find the

highest common divisor of

0^-1 = P and x4-l = Q
x*-\)x5-l(x

Rem. x— l)x4— l(x3 + x~ + x + *[

Rem.
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By (7.) the highest divisor of or
5— 1 and x*— 1 is also that of

x*— 1 and x—1; and, since x— 1 divides the former, and also is

the highest divisor of itself, it is the highest divisor common to the

two, and, therefore, the highest divisor of .r
5— 1 and x4—l. The

original expressions have also the divisor x; consequently,*^— 1) is

their highest common divisor.

Any power of x may be thrown out of a remainder by division,

from theorem 9. For instance, in finding the highest common divisor

of 1

—

x3 and 1

—

x5
; the first remainder is x 3— x5 or *3 (1

—

x2
)

;

but 1

—

x2 has all the divisors of x3— x5
, except those which are

powers of x. But 1 — x5 and 1— x3 are neither divisible by a power

of x ; consequently, 1 —

*

2 contains all their common divisors, as well

as x3— x5
, and the former may be used for the latter in any division.

The divisor may be taken any number of times which may be

convenient, before using it as a new dividend. For instance, in

finding the greatest common measure of x2— 2x + 1 and x5— 1, the

first remainder is 2a:2— x— 1; before dividing by this,* it will be

convenient to multiply x2— 2x-}-l by 2, and no new common divisor

will thus be introduced. The whole process in the latter case may be

as follows, which, though not the shortest possible, will illustrate the

methods to be applied to more complicated cases.

:

2_2.r+ l).r
3— l{x

x3— 2x2 -\-x

-4* + 2(l

-x— 1

-x—
-2x

1(2 x

2j2-x--1)2*2-
2x2 -

Divide by —-3
-3*4-3

x— l)2x2-

2x*-

+1

X —-1

-1

Therefore x— 1 is the highest common divisor.

* The division might be carried one step further before using the

remainder; but either method answers equally well.
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CHAPTER VIII.

ON SERIES AND INDET1 UMIN Ml. COEFFICIENTS.

We have already seen (page 160) that the sum of the terms (r being

less than 1)

1 + X + x 1 + Xs + x* + & c-

how far soever it may be carried, never can exceed or come up to

1~(1 — .r). This expression is called an infinite series, and the

fraction l-f-(l — r) which (page 150) might be called the limit of

the sum, is called the sum.

Definition. By the sum of an infinite series is meant the limit

towards which we approximate by continually adding more and

more of its terms.

A convergent series is one in which such a limit exists, that is,

in which we cannot attain a number as great as we please by summing

its terms : a divergent series is one in which there is no limit to the

quantity which may be attained by summing its terms. The follow-

ing series are divergent, and all but the last, evidently so.

1+1 + 1+1+ &c. 1+2 + 3+4+ &c.

1+2 + 4 + 8+ &c. l + \ + \ + \+ &c *

In an infinite series, we must know the connexion which exists

between each term and the next, otherwise we cannot reason upon it.

For, as we cannot write down all the terms, it is only from knowing

the connexion between successive terms that we can be said to know

of what series we are speaking. So that an infinite series with no

law of connexion existing between its terms, has no existence for the

purposes of reasoning.

The student might perhaps imagine that the law is immediately

perceptible when the first four or five terms are given, and an obvious

connexion exists between them. For instance, he would suppose

that the following series

1 + 1 + 1 + 1 + 1+1+1+1+1+ &c.

* See Arithmetic, article 197.



180 ON SERIES AND

if it be to be continued according to a law actually existing among

the given terms, must be a succession of units added together. But

this is not the case ; the preceding series might be continued in an

infinite number of different ways, each different method following

a law which actually exists among the given terms as they stand.

For instance, the preceding series might be thus continued :

9th term. 10th. 11th. 12th. 13th. 14th. 15th. 16th.

1 1 2 3 4 5 7 10 &c.

the law of which is, that the (n + l)th exceeds the nt\\ by the tens

figure of the sum of the first n terms, which requires that the terms

should remain equal until their sum has a figure in the second

column. The following series of terms have laws which we leave

to the reader to detect.

7 16 22 26 32 36 42 adinfin.

5 10 9 10 9 JO 9 adinfin.

5 10 11 15 21 30 39 43 52 61 70

79 85 94 103 109 109 109 adinfin.

If we attempt to deduce general propositions from a few par-

ticular cases, as, for instance, the law of a series from that of a few

of its terms, we are liable to error. All that can be derived from

observing a few cases is a strong presumption, high probability, or

great likelihood, that the law observed is always true. But that

which is beforehand very likely, does not always turn out, on ex-

amination, to be true : as in the following instance. Take the series

of numbers 1,2, 3, 4, 5, &c. multiply each by the next higher, and

add 41 to the product, as follows :

1x2 + 41=43 5x6 + 41=71
2x3 + 41=47 6x7+41=83
3x4 + 41=53 7x8 + 41=97
4x5+41=61 8x9+41 = 113, &c.

On examining the series of results

43, 47, 53, 61, 71, 83, 97, 113, &c .

we see that all of them seem to be prime* numbers, and hence we

* A prime number is one which does not admit of any divisor except

1, and itself. The series of prime numbers is

1, 2, 3, 5, 7, 11, 13, 17, 19, &c.
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have a very strong reason for presuming that this will continue to be

ise, that is, we suspect the following to be true: if x be any

whole number, .r(.r + 1) + 41 is a prime number. And on conti-

nuing the series, we actually find prime numbers, and nothing but

prime numbers, up to 39 X 40 + 41 or 1601. But, nevertheless, the

next term, or 40 X 41 +41, is evidently not a prime number; for it

is (40 + 1)41, or 41 X 41.

To avoid the continual necessity of expressing the law of a series,

we always mean, in future, that, where a simple law appears among

the few terms which are written down, that law is to be the law of the

series, unless some other law be mentioned. Thus 1 +x + jt
2+ &c.

implies that the succeeding terms are .r
3+ x 4 + jr

5 + &c.

Definition. The general term of a series is the algebraical

expression for the nth term, as will be better understood from the

following cases.

First few terms. nth, or general term.

1 + 1 + 1 + 1 + &c. 1

1+2+3+4+&C. n

2+3+4+5+ &c. n + 1

+ 1 + 2+ 3+ Sec. *— 1

1 +4+ 9 + 16+ &c. rc
2

4 + 9 + 16 + 25+ &c. (rc + 1)
2

x+x* + x3 + x*+ &c. xn

1 + x + ar + x3 + &c. *"-i

gm+£«H-l+ £i»+S+ £*t+8+ &c. xm+n-l

, X X2
,
X3

_ xn~l

x 2 r3 xn ~ 1

In the last series, the first term is not included in the general

#1-1 i
term, as given. For if n ss 1, the general term becomes or -,

which is not true. Properly speaking, the general term is n factors

of the following product

:

-, X X X X
lx

T
x

i
x
5
X 4

Theorem. The series a + b + c + c +/+ &c. is the same as

the following

:

R
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I a ba c b a e c b a f

The student will have no difficulty in proving this. Let the ratio*

of each term to the preceding term be denoted by the capital letter of

the numerator.

h
- = B £ = C i-E -^=F&c.
a b c e

Then a + b + c + e +/+ &c. is

«{l+B + CB + ECB + FECB + &c.j (1)

If every one of the ratios, B, C, E, F, &c, be less than some

given quantity, say P, then

a(l+B) is less than«(l+P)

«(1 + B + CB) «(1 + P + PP)
&c. &c.

or the sum of any number of terms of (1) is less than that of the same

number of terms of

fl(l+P + P2+ P3 +&c.) (2)

If, then, P itself be less than unity, (1) must be a convergent

series ; for no number of terms of 1 + P + P2 + &c. can then exceed

1 -J- (1 — P), consequently, no number of terms of (2) can exceed

a -r- (1 — P) ; still less can any number of terms of (1) exceed the

same, because the terms of (1) are severally less than those of (2).

Consequently, a series is always convergent when the ratio of

any term to the preceding term is less than some quantity, which is

itself less than unity. It is sufficient that this should happen after

some certain number of terms : for, say that the first hundred terms

are increasing terms, yet if no summation of terms after the hundredth

will give a result exceeding, say 50, and if the sum of the first

hundred terms be, say 1000, then no summation whatever will give a

result exceeding 1050, or the series is on the whole convergent, or,

properly speaking, begins to converge after the hundredth term.

a
* r is the algebraical synonyme for what is called in Euclid " the

ratio of a to b," and the geometrical term, which is a highly convenient

one, is frequently adopted.
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Example. 1 + 1 + i + ± + J^ + &c .

is convergent. For here we have

»_i i=i i-i ^ = i &o.
a b 2 c 3 e 4

so that each ratio after the second is less than -, which is less than
2'

unity.

[As the limit of this series is an important number in algebra, we

shall proceed to find it as far as 10 decimal places, using eleven

places to insure the accuracy of the 10th. Let the terms be called

a
lt a

a, &c, then we haveii 1 * 1
ca t = J a2 = I a$ = -a2 cr4 = jOj «5 = ^4 &c -

a t
= 1 1-00000000000

a2 = 1 1-00000000000

fl3 = -a2 0-50000000000

G4 = ~n
3 -16666666667

3

as = iff4 -04166666667

tf6 = ia
5 -00833333333

«7
= i«

6 -00138888889

ae =-a7
-00019841270

a9 =-aQ
-00002480159

a 10
= ~a9

-00000275573.

au= —a1Q
-00000027557

ai2= J_ fln -00000002505

«13
= -lfl12 « -00000000209

a 14= —

a

13 -00000000016
1 o

a 15= ^-au -ooooooooooi

271828182846
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This is correct to the last place ; in fact, the sum of the series

lies between

2-71828182845

and 2-71828182846

but nearer to the latter. The letter c (and sometimes e) is used to

denote the limit of this sum ; or we say that

g = 1 + 1 + 1 + -L-+ &c. (= 2'71828182846very nearly.)

The above series is said to converge rapidly..]

Theorem. The series a -f- b -f- c + &c. is always divergent, when-

b c
ever its terms are so related that -, -, &c, are all greater than unity,

or continue so from and after a given term.

As the demonstration of this theorem is very like that of the last,

we leave it to the student.

Theorem. The series a— b -f- c— e -f- &c. is convergent when-

ever the terms decrease without limit ; that is, when a is greater than

by b greater than c, &c, and when some term or other of the series

must be less than any fraction we may name.

Let a, b, c, 6, &c. be a series of decreasing terms, as in the

theorem, then

(a-b) + (b-c) + (c— e)+ &c.

must be a converging series, for the sum of the first two terms is

a— c, of the first three, a— c, and so on. Now, since a, b, c, e ....

decrease without limit, a— c, a— e, &c. is a series of increasing terms

which has the limit a. Consequently, the series made by taking

only alternate terms of the preceding, must have a limit less than a.

But that series is

a — 5 + c — e-f-&c.

whence the theorem is proved.

Hence we know that

is convergent, with a limit less than 1.

Theorem. If any given quantity P be greater than any one of

the series of ratios

t£ri>| &c .

a b c e f
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then the series

a + bx + ex2 +ex*+fx* +gx5+ &c (A)

is convergent whenever x is less than —

.

For, since the preceding series is

1 +-X+ T .-.X" + -.
7 .-X3 + &c>aba c b a J

/> c
and since P is greater than -, -, &C, the preceding series will be

b c
increased by writing P instead of -, t-, &c. But it then becomes

a[l+P.r + P2
:r
2+P3

a:
3 + &c . }

or a{l+(P;r) + (Ptf)2 + (P.r)3 + &c.|

which (page 159) is convergent if P* be less than 1, or j less

than — . Still more is the original series convergent under the same

circumstances, because its terms are severally less than those of the

last series.

If P be greater than any one of the ratios after some given ratio,

the series converges from and after the term which gives that ratio,

whenever P^r is less than 1. Suppose, for instance, that the thou-

sandth and following terms of the series (A) are

A aP* + B a;
1000 + Cxim + &c.

A x™> {l +x^II^ **'}

Then, by the preceding reasoning, if P be greater than any of the

R P i

ratios —, — , Sec. the preceding series converges if x be less than —

.

A. xj it

For instance, take

1 +2# + 3a;2 +4a?3
-r- &c.

2 3 4 5.
1234 &C '

2 is greater than any of these ratios after the first; consequently,

this series converges from the second term if x be less, than -. The

hundredth and following terms are

1 00^ + 101 a-
100 + 102a;101 + &c.

B 2
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101 102 103
ratios — &c.

100 101 102

of which —— is greater than any except the first. Consequently,

this series converges from the hundredth term, if x be less than

101 100 _. ., . . , , . .

1 -f-
——

• or —— . Similarly it may be shewn that this series is con-

vergent whenever .r is less than 1, though the term at which con-

vergency begins may be made as distant as we please, by making

x sufficiently near to 1.

As a second example, take

, X2 X3 X4

!
1 1 1

ratios 1 - - - &c.
2 3 4

Since these ratios continually diminish, and without limit, a point

of the series will come, after which they will all be less than any

given fraction m, however small it may be. But if m may be made

as small as we please, — may be made as great as we please.

Therefore this series is convergent for every value of x, however

great; though the greater x is taken the more distant will be the

term at which convergency begins.

As a third example, take

l+2a;+2.3a;2 + 2.3.4^3 +&c.

ratios 2, 3, 4, 5, &c .

and as these ratios increase without limit, there is no quantity which

is greater than them all. Consequently, no value can be assigned to

x for which this series must necessarily be convergent. The following

theorem may easily be proved in the same manner as the last.

b c
Theorem. If P be less than any one of the ratios - 7 , &c.

:

a b

then the series

a -f bx + cx" -f &c.

must be divergent for every value of x greater than —

.

In this way the series in the last example may be shewn to

diverge from the second term for every value of x greater than -,
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from the third for every value greater than -, and so on; so that

than is no fraction so small that the series shall not diverge from and

after some term by giving x that value.

[Such necessarily divergent series never will be found in practice :

they are introduced here as a warning against applying to all series

general conclusions drawn from series which may be made con-

vergent.]

In future, unless the contrary be speciully mentioned, in speaking <f

the scries a-f-bx-f-cx3 -|- &c., we only mean to speak of series which

may be made convergent. We suppose all the terms positive.

Theorem. Every series of the form a + b x -f- ex
2 + &c. has this

property, that x may be taken so small, that any one term shall

contain the aggregate of all the following terms as often as we please.

For instance, by taking x sufficiently small, we may make ex7

more than ten thousand times ex3
-\-fx* + &c. Let x

y
be the greatest

value of x which makes e -\-fx-\- &c. convergent, and let the sum in

that case be S. Then, for every value of x less than xv e -\-fx -f &c.

is less than S. Now, ex2 contains ex3 -\-fx
A
-j- &c.

or
ex3

-j-fx
4+ &c

.

ex -\-fx
2 + &c

.

x (e -\-fx -|- &c .)

times or parts of times. Take x less than xv so that S is greater

than e-\-fx-\- &cc, or

c c ex2

less than
xS x(e +/* + &<;.) ex3 +/.r4 + &c.

Now, c and S being fixed quantities, x may be taken so small

that c -J- xS shall be as great as we please; and still more

ex2
-r- (ex3

-\-fx
4 + &c), which is greater than c -7- jS. Whence

the theorem is proved.

Example. How small must x be taken, so that we may be sure

the fourth term of

l+2z +3x2 + 4;z3 + 5#4+ &c.

contains the sum of all that follow 1000 times at least.

The whole of the series after the fourth term may be written thus

:

6**{l + §*+ £.!**+ &c.} (A)

and - is greater than any of the succeeding ratios; consequently, we
o

increase the preceding by altering it to
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(see page 182.) We have then to take x, so that

5x4

(B)

4 a;
3

is greater than 1000

( X ) 1

a J
, 1— -z£ must be greater than 250 X 5x or 1250#,

which is certainly true if 1— 2x be greater than 1250 a:, or 1 greater

than 1252.r, or —- greater than x. In this case 4.r3 is greater than

1000 times (B); still more then is it greater than 1000 times (A).

Theorem. If the two series

« + «xa;+«2^
2 + &c. and b + b1x + b2x2 + &c.

be always equal for every finite value of x
f
then it must follow that

a = b , flj = bv a
2
= b

2 , &c. or the series are identically the same.

Let these series be called a -}- A and b -}- B, in which, by what

has just been proved, we can make A and B less than the mth parts

of a and b . If possible, let a and b be different numbers, and let

a = b + 1. Then, since the series are always equal, we have

a + A = b + B or 6 + £ + A = b + B; that is, t = B— A. But

because a and b are fixed quantities, their difference is the same;

and we have t, a fixed quantity, equal to the difference of two quan-

tities, each of which may be made as small as we please, which is

absurd. Hence a = b -\-t cannot be; and by the same reasoning,

a =z b — t cannot be; therefore a = b . Take away these equal

terms from the two equal series, and divide the equal remainders by

x, which gives

a1 + a<ix + a3x
2 + &c. always equal to &i-f^ + ^3^2+ &c.

from which the same species of proof gives a
1
= 6, ; repeat the process

of subtracting equal terms and dividing by x, and the repetition of

the proof gives a2 = b2 ; and so on. Hence, if one or more terms be

wanting in either series, the same must be wanting in the other; for

instance, if a— x be always equal to a -\-a
1
x -\-a2x

2 + &c, we must

have a = a ,
— 1 = a lf = ff2 , = a3 , &c.

[The preceding process amounts simply to shewing that we may
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BMkc x = in a series, and take the ordinary algebraical con-

sequences, in the same manner as if the expression were finite in

its number of terms. For instance, if a
Q + a

x
x + &c. be always

= l> + />,x + &c., ivc have proved that the consequence of making

x = 0, namely, o = 6 , is true. But, as we have sufficiently seen,

it is not safe to say that when x = 0, P = Q, except in cases where

we may say that by making x sufficiently small (or near to nothing),

P may be brought as near to Q as we please. The difficulty which

we have avoided is as follows : In the series 1 + 2.r + 2.3.r3 + &c.

we have seen that, take x as small as we may, the sum of the terms

can be made as great as we please. Are we, then, entitled to say,

that when x = 0, the preceding becomes 1+0+04- &c. or 1 ? If

the number of terms were finite, there could be no doubt of the pro-

priety of answering in the affirmative; but when the number of terms

is infinite, nothing that has preceded will enable us to give an answer.

The student will remember that we have confined the demonstration

entirely to series which admit of being made convergent.

It is usual to prove the preceding* by saying, that when the two

series are always equal, they are equal when x = 0, and consequently

a = 6 , and so on. This is avoided in the present case ; and we

may say that we have proved the following theorem. If two series

(which can be made convergent) are always equal when x is finite,

then they are also equal when x = 0.]

* On this point the student, when he is more advanced, may consult

Professor Woodhouse, Analytical Calculations, &c. Preface, p. viii. note.

It is there objected that to make x = and thence to deduce a
Q
= & , is

the same as arbitrarily making a
Q
= b

Q
. This I conceive to be not the

true point of difficulty. All mathematical consequences are necessarily

contained in the hypotheses from which they spring : so that to invent

any hypothesis is necessarily to invent all its consequences, some of

which may be so near as to appear nothing more than the hypothesis

itself, others so little perceptible as not to seem necessary attendants of

the hypothesis. The real objection to the proof on which this note is

written, I conceive, is this, that having frequently found the passage

from x as a symbol of magnitude, to x as the symbol not of magnitude

but of the absence of all magnitude, to be attended with consequenoes

which require a special examination, it is not allowable to enter upon any

new ground, without either establishing the accordance of the conse-

quences of x = 0, with those of x = some magnitude, or distinguishing

and explaining the discrepancy, if any.
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The following are a few instances of the method by which we can

obtain the limits of the sums of many series. First, let us take

P = l+ x + x* + x3 +x4+ &c.

in which we wish to determine a finite algebraical expression for P.

It is plain that

1 + x+x2 + bead inf. = 1 + x\l + x + x*+ &c. ad inf.]

that is, P = 1+xV or P = —

L

7 1

—

x

a result previously ascertained. Now, let us take

P = l+2# + 3#2 + 4a;3 + &c.

1 = 2+ 3#+4a;2
-f 5a* + &c.

X

?_i _P = l+ x+ x2+ a:3+ &c. =-i

whence P< 1 !• = ; h - = ~
-z

Ix J 1— x x x 1 —

or P = —

—

Next, let P = l+3x + bx*+ 7x5 + &c.

3+5x + 7x* + 9x3 + &c.
x

P—

1

P = 2 + 2# + 2a;2 +2a;3 + &c. =
x 1

—

x

whence P m—

y

3

Next, let P = l+4x + 9x2+ 16x3+ &c.

1 = 4 +9x + \6x* + 25x*+ &c
x

P—

1

P = 3 + 5x + 7x*+9x3 + &c.

,-. (^-P^ + l = l+3* + 5** + &c. = ^4|
whence P =

(I-*)3

The same method might be applied to finding a more simple

algebraical expression for the sum of any finite number of terms of

the preceding series. For example, let
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M-lV = l+2.r+3.r'J
-f + ("— 1 )#"-* + n*

—
- = 2 + 3*+4;r2 + + nxn ' 2

r
P = l +a?+a.2 + +^-2_ W:rn-

(page 103) = — nap' 1 = v

„

J -
1 — X 1 — X

p _ w ,r
n+ 1— (w + l)xw + 1-

(T=^~
The student may endeavour to prove the following:

The inquiry which we have most frequently to make is the in-

verse of the preceding; not, having given the series to rind its sum,

but, having given an expression, to find the series of which it is the

sum, or to develope it in powers of some one of the letters contained

in it. Let us suppose, for example, that we want a series of powers

of .r with coefficients, &c. which shall be, in all cases in which it is

convergent, equal to (1 + x) -f- (1

—

x)9
. Suppose the series to

be a -f-a,.r -f- 02^
3 + &c -> so lnat we have

1 4-.r

V 1 x)

Multiply both sides by (1 — x)* or 1— Ix + x*

l+x = r« + «i oc + ao x*+a3 o? + &c. "1

<j
—2a x—2alx*— 2aox3— &c. ?

[ + a xz+ci! x3 + &c. J

= do + idi—2a )x + (a2— 2a1 +a )x*+ Sec.

The two sides of this equation being equal for every value of x,

the theorem in page 188 gives

fl =l fll _2tf =^ or fli = 3

tf2
— 2a 1 -\-a = or 08 = 5

er3
— 2o2 + fli = or a3 = 7

&c. &c.

So that the series is 1 -f 3 x + 5

x

2
-f- &c. as already determined.

The first term of the preceding might have been found imme-

diately : for, since we have proved that the results of x = may be
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employed, and since (1 -\-x) -f- (1— x)* becomes 1, and the series

is reduced to a , when x = 0, we have « = 1

.

We shall now ask what is (1

—

x4
) -r- {1— x) expanded in a

series of powers of x. The first term is 1, found as in the last

entence; let us suppose

-J ^4 = 1 -\- aix+ aQX2 + a3x3 +a4X*+ &c.
1 X

1—

#

4 = l + 0i#+tt2#2
-r-«3#3+ «4^4+ a5 a;

5 + &c.

— x— ciix2—

a

2x3— a3#
4— fl4 a;

4 + &c.

As there is no first power of x on the first side, we must have

Oj—1=0, or a
x
= 1. Similarly, a2—^=0, or a^=a{==\ ; a

3
—

a

2
= 0,

a
3
= l. But the coefficient of a:

4 on the first side being — 1, we must

have a
4
—

o

3
= — 1, ora

4
— 1 = — 1, that is, «4

= 0; again, a
s
—

«

4=0,
or a

s
= 0, a

6
— a

5
= 0, or o6 = 0, and so on. Hence the series is

l+x + x*+x3+0xx4+0xx5 + &c.

that is 1 +#4-tf2 + tf
3

as might be found by simple division, or from page 103. Thus, we

see that when we assume an infinite series to represent a quantity

which is in fact a finite expression, the method of determining the

coefficients of the series will shew the coefficient for every term of

the series which does not exist in the finite expression.

Again, to develope 1 -f- (1 + x2
) assume

Y^—k — a + ai% + G2%~ + a3 X3 + &c.

the preceding process will give

a = 1 G2 + «o = or an — — 1 o4 +do = or «4 = 1

a x = «3 + fli = or «3 = a5 + a3
= or a5

=
so that the series is

1 +0 X x— x2 + X X* + X4 +0 X X5
&c.

or 1— X*-\-x*— x6 + &c.

If it happen that, by the preceding process, an equation is

produced of which the two sides cannot be made identical by any

suppositions as to the value of the coefficients, it is a sign that the

expression cannot be developed in a series of the form proposed.

If we try to develope 1 -f- (1 -f x)x by assuming
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we shall find

1 = « :r + (tf 1 + fl )a;2 -{-(a2 + «i)#
3 + &c.

the two sides of which cannot on any supposition be made to agree

;

for there is no term independent of x on the second side which may

be made = 1 . In fact, we should find

1

1+*
= 1— x + x2—

x

5 + &c.

so that the fraction proposed cannot be developed entirely in whole

and positive powers of x, without the introduction of a negative^

power (in this case *"-*).

The following are given as exercises:

1. If P = a + axX+aoXl + &c. then

p

p
ftj^j

= « + («i— a )x + (a2— al +a )x'2 + kc.

-
2
= 1—x + x3— x*+ sfi—

x

7 + &c1+j+j-
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CHAPTER IX.

ON THE MEANING OF EQUALITY IN ALGEBRA, AS DISTIN-

GUISHED FROM ITS MEANING IN ARITHMETIC.

In page 62, among the extensions of terms, we notified that the word

equal was to be considered as applicable to any two expressions of

which one could be substituted for the other without error. Hitherto

we have only applied this extension to the case of definite algebraical

quantities, either positive or negative : the numerical value of the

quantity determining its magnitude, the sign determining only which

of two opposite relations is intended to be expressed. We now pro-

ceed to consider the word equal, or its sign =, not in a sense wider

than any which the definition will bear, but wider than any in which

we have yet had occasion to use it.

Two expressions are said to be equal when one can be substituted

for the other without error. The whole force of this definition lies

in the answer to the question, What is error ? The answer is, any

thing which leads to contradictory results, or which may in any

legitimate way be made to lead to contradictory results.

Results are contradictory when, both being intelligible, or capable

of interpretation, the two do not agree ; but they are not necessarily

contradictory merely because one or both are unintelligible, for where

the meaning of any part of an assertion is unknown, we cannot say

whether it be true or false. For instance, in page 23, the expression

c c
x = - was no contradiction of any thing which had preceded, for -

had no meaning. Having ascertained this, our object was to give

it a meaning which should not contradict any thing deducible from

preceding principles.

We have shewn that if x be less than unity, the summation of

1 -\- x -\-
x*

-\- &c. will continually give results nearer to , which

however can never be absolutely reached by that process. Hence

we used the sign = in the equation
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= l+X+X* +X*+ &c. ad infinitum.

Arithmetically speaking, we can make the preceding as nearly

true as we please, by taking a sufficient number of terras from the

second side. Algebraically speaking, the above may be considered

as absolutely true ; but it must be remembered that this is only on

a supposition which is arithmetically impossible, namely, that all the

terms on the second side, expressed and implied, shall be considered

as included. For instance, we know that the multiplication of the

first side by 1

—

x2 gives l+.r; the multiplication of the second

side by the same gives

(l+X+X2 +X3 + X* + x5 + &c. adinf.

\
— X2— X3—X4—X5— &c. ad inf.

or 1 +# + + + +0+ &c . adinf.

in which we can prove, if necessary, that every succeeding term

shall be 0; not by actually looking at every term, which is im-

possible, but by a deduction from what we know to be the law of

the series. Similarly, we shew that xm xx n = xm+n ; not by

looking at every case, which is impossible, but by what we know of

the meaning of xm .

If we proceed arithmetically, taking any number of terms, how-

ever great, say as far as xn, we then have

(l+x+x° + .... +^- 1 + a^
l)x(l— X«)

= (l+x + x2+ x3+ .... +xn~l + xn

I -.tf-x3- ^ afl- 1-xn^xn+1-xn+2

= l+x— a^+1— xn+2

in which, since x is less than 1, n can be taken so great that xn+ 1

and xn+* shall be as small as we please. Here is algebraical equa-

lity which can be made arithmetical equality, quam proximl.

Let us now suppose that x is greater than 1 ; say x = 2 ; the

series

1 + X+ X2 +X3 + &c. ad infinitum

is then, arithmetically speaking, infinite, since there is no limit to

the magnitude we may obtain by summing 1 +2 + 4 + 8+ &c.

Should we then assert algebraical equality between - and the pre-
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ceding series? We have no right to do so from pages 21, &c. for

a,

though it was there shewn how to make it clear that - is above all

arithmetical numeration, the converse does not therefore follow, that

whatever is above arithmetical numeration is properly represented

by -. What, then, is the proper algebraical representative of the

preceding series? If it have one, let us call it P; then, since the

series itself is the same as

1 + x\\ + X +X2 + &c. ad infinitum^

P cannot be used for the above unless 1 + .rP may be substituted

for P. Or we must have

P = \-\-xV which gives P =
1— x

the same result as when x is less than unity. And we may shew,

in the same way as in the last page, that any algebraical operation

performed either upon , or upon 1 -j- x -f- x
2 + &cc. gives but

one result : indeed, since there is in algebraical multiplication no

stipulation that the quantities employed must be positive, the process

there employed is equally applicable in the case where x is greater

than 1. But in this case we cannot obtain (as in last page) any

approach to arithmetical equality, but the direct reverse ; for a,n+ 1

and xn+2 increase, instead of decreasing, as n increases.

The method of expanding algebraical quantities in pages 191, &c.

does not require that x shall lie within the limits of convergency :

but the process is equally conclusive in all cases. To expand ,

for instance, we ask what expression of the form « -f-a 1
,r + &c.

will be the same as . All we know of the latter lies in its
\-\-x

definition, that, multiplied by 1 -f-,r, it gives 1. The series 1

—

x +
x2—

x

3+ &c. has this property, independently of the value of x.

We shall now ascertain, 1st, that so far as instances can shew it,

we may prove that this general use of the sign = will not lead to

inconsistent results : 2d, that we are not obliged to depend upon

such a species of proof, but that the result is one which necessarily

follows from the nature of our primary assumptions.
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To try the first, let us assume that, in all cases,

r-i- = 1—X + X*~-

X

3 + X* + &C. adinf.
1 -\- x

We have then, if x as 1,

I = 1—1+1—1+1— &c adinf.
m

a result which is in no sense the expression of an arithmetical

equality ; for the above series continued to an even number of terms

must be 0, and to an odd number of terms, 1. We shall now try

whether alternate addition and subtraction of a quantity to and from

itself, ad infinitum, will or will not, when treated algebraically, give

the half of the quantity in question , Let us suppose

P = \+X +X2 + X* + &c .

— P = — 1— # — X2— &c.

+ P = +1 + x + &c.

-P = - 1 - &c.

.-. P-P+ P-&c. = 1 +(a;-l)+a;2 -,r+l-r-&c.

_ x+ x2+ x3 + &c . l— l+l — &c
x + l

+
x + \

(A)

But P = ,andx+.r3 +;r3+&c. = x(l+x+x2+kc.)=—-;
1

—

x ' 1— ,r

if, therefore, the preceding process be algebraically equivalent to

halving and ifl — 1+1— 1+ &c. may be changed into -, we
1 -- X 2,

have the following equation :

2 \—x tf+l"1"
2 x + l

1 1 £ 1 1

2 1 — x
~~ 1—*a + 2 x + l

which will be found to be true.

The above contains the algebraical artifice of writing the series (A)

in the form

] +X + X*+X3 + &c.

— 1—x—x~— &c.

&c. &c.

s 2
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instead of

}-\-x+ x* + x3 + &c.

— 1—x—

x

2—

x

3 + &c.

&c. &c.

or (1 — 1 -f- 1 -H &c.) + (x—x +x+ &c.)+&c.

But it is to be observed, that we do not say that every algebraical

use of = will produce arithmetical equalities, but only that when-

ever an algebraical use of = does produce an arithmetical equation,

we shall find that equation to be arithmetically true : an assertion as

yet uncontradicted.

We now proceed to the second point.

We have previously so constructed the meaning of the funda-

mental symbols of algebra, that algebra, in certain cases, coincides

entirely with arithmetic; and, more than this, the rules which follow

from the definitions are so constructed, that when the result only

is arithmetical, and preceded by algebraical steps, the alterations

necessary to make these steps arithmetical, produce no alteration ip

the result. This being the case at the outset, and it being shewn that

the number of steps through which we pass by algebraical process

does not affect the preceding statement, we then know, 1st, that all

arithmetical results so deduced may be depended upon, as much as if

they were arithmetically deduced ; 2d, that all results which are not

explicable arithmetically, are such as are perfectly consistent with the

definitions laid down ; and, if not always arithmetically true, cannot

produce a result which shall be arithmetical and false.

The reason why we have appealed to instances is, that the pre-

ceding argument, being general and abstruse, will not be thoroughly

understood by the student until he has a degree of exact compre-

hension of the words employed, which can only be gained by

familiarity with the use of algebraical language. There are also

principles of reasoning,* independent of algebra, which are difficult,

* Remember that mathematical reasoning means reasoning applied to

mathematics, and is not a different kind of reasoning from any other.

The art of reasoning is exercised by mathematics, not taught by it ; nor is

the mathematician obliged to use one single principle which 13 not

employed in every other branch of reasoning. In fact, an opposite of

this is the case; there are principles in other branches of reasoning which

are not employed in most branches of mathematics. Those who are not
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;ii)il which the beginner will therefore not conquer by algebra alone.

Such is the following : that if assertions which are not inconsistent

with each other are rationally and logically used, the conclusions

cannot be inconsistent with each other. But though this, in its full

extent, be a very difficult proposition for a beginner to understand , the

difficulty is not an algebraical one.

We have said, or at least implied, that when an arithmetical

result is produced, the steps by which it was produced, if not already

arithmetical, may be made so. Under arithmetical equality we in-

clude not only the absolute notion of equality which we recognise in

4 + 5 =9, but what we have called the quam proxime equality,*

which we see in

—
t

or 2 = 1 + 1 + 1+ i + &c. adinf.

Let us now suppose that a is less than i , but that we may sup-

pose it as near to 1 as we please. Also, let x be less than 1 (which

aware of this talk of mathematical demonstration as if it were distinct

from all other kinds.

But this is not the case ; mathematical demonstration is, so far as it

goes, the same thing as any other demonstration ; the superior safety of

mathematics lying, not in the method of arguing, but in the reasoner

knowing more exactly what he is talking about than is usual in other

discussions. The mathematical sciences are concerned in whatever can be

counted or measured ; and whoever talks of mathematical demonstration,

as applied to any thing else, either means merely logical or certain

demonstration, or does not know what he is talking about.

The opponents of mathematics are, of all men, those who pay this

undue respect to mathematical reasoning; which they invariably do, by

asserting as a discovery and a triumph, that those who are only mathe-

maticians frequently reason ill on other subjects. We recommend the

student to believe this whenever he meets with it, and to act accordingly

;

for it is an important truth, though not either a great or recent discovery

—

having been, in point of fact, ascertained immediately after the fall by our

common ancestor, who, having till then been nothing but a gardener,

must have found himself but an indifferent tailor.

* We are not here stepping even beyond the bounds of ordinary

arithmetic. For V 10, V 11, &c. have no other but a quam proximt

existence ; we can find fractions which, multiplied by themselves, shall

be as near as we please to 10 : we can sum 1, —, — , &c. until we comer ' 2 4
as near as we please to 2.
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is necessary to the arithmetical existence of the final equation), and

we have

1 (1)—- = ] — a + a2— a3 + &c.

arithmetically— = 1 + x + x* + x3 + &c.
J (2)

— a — ax— ax2 — &c.

+ a2 + a2
;z + &c.

— «3 — &c.

= 1 — (a — x) + (a;
2— ax + «2

) — &c. supposing a > a:

«-{-•* «
2— #2

,
«3+ #3

o= —
; &c.

a-j-x a-\-x a-\-x

a—a2
-{-a3— &c, x + x2 + #3+ &c *

a-\-x a + x

a \ x 1

l-f-a'a-f-,r 1— •r'a-j-tf

So long as we suppose a less than 1 (no matter how little), the

preceding process is arithmetical; but the moment we suppose a = 1,

the equation (1) loses all arithmetical character. But still, the last

equation reduces itself to the one given in page 197.

We have chosen a very simple case, but we might, with operations

of sufficient length, and by various artifices, reduce any algebraical

equality to an arithmetical one. But methods of doing this, at once

short and general, cannot yet be understood by the student.

Let x be first supposed positive; let it then become 0, and after-

wards negative. The following and similar tables may then be

made.

Sign of X + —

Sign of - + a —
x

x3 + -

I +
X*

x* + +

I + «• +
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These, and other instances, give the following principle !

fihen x changesfrom a to 1>, patting through all intcnni <luil< iahu>,

the sign of it function of x change from potUht to negative, or vice

versa, the point at which the change takes place is marked by its value

being either nothing or infinite; but the converse is not true, that a

function always changes its sign when its value becomes nothing or

infinite.

The infinite here spoken of is the form - ; but, as we have seen,

all methods of obtaining an arithmetical infinite (we should rather

say all arithmetical methods of increasing number without limit), are

not properly represented by -. If we take the equation

^-L = 1 + x + X* +#3 + &c . ad inf.

we see that when x is greater than 1, the second side is, arithmetically

speaking, only an indication of a method of obtaining number with-

out limit, while the first side is negative. There is then a change of

sign when s passes, say from - to 2, and the change takes place when

x = 1, giving,

1 = 1+1 + 1+1 + &c.

-I = 1+2 + 4 + 8 + &C.

We therefore see that a divergent series may be the algebraical

representative of a negative quantity : but the series

1 = 1 +2x + 3x2 +4x3 + &c.-xy

which is divergent when x is greater than 1, gives a positive result in

all cases. From this we see that when an equality specified is purely

algebraical, we are not at liberty to compare magyiitudes by any arith-

metical comparison, if infinite series be in question. For instance,

if a be greater than a', b greater than b', &c, we may say that

a + b + &c. is greater than a'-j- b'+ &c. : 1st, so long as the number

of both is finite; 2d, if a, b, &c. be so related that a + b+ &c. can

never exceed a given limit. But we may not draw this conclusion
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whan a+ b -f- &c. increases without limit ; nor may we say that the

algebraical representative of 1 + 2 + 4 + &c. is greater than that of

There is no liability to trangress this rule, because the quantity

in question must cease to be the object of arithmetic before the

reasoning upon it can fail. Let it then be observed, that with regard

to divergent series, we admit no results of comparison except those

which are derivedfrom their equivalent finite algebraical expressions.
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CHAPTER X.

ON THE NOTATION OF FUNCTIONS.

U i have already defined what is meant by a function of x (see

page 168): the present chapter is intended to exemplify the method

of denoting a function, either for abbreviation, or because we wish to

allot a specific symbol to some unknown function.

When we have to consider an expression, such as x2 -\-ax, only

with reference to the manner in which it contains x, that is, to reason

upon properties which depend upon the manner in which x enters,

and the value of x, and not upon the manner of containing a, or its

value, we call the expression a function of x, and denote it by a

letter placed before x, in the manner of a coefficient. But to avoid

confounding this functional symbol with that of a coefficient, certain

letters are set apart always to denote functional symbols, and never

coefficients. These letters will be, in the present work, F, J\ 0, 41
-

Thus, by Fx,fx, <px, -^x, we mean simply functions of x, given or

not, as the case may be. By ¥<px we mean the same function of <px

which ¥x is of x: for instance, if Fx = x + x'
2
, ¥<}>x is <px + (<pxy.

Examples. Let <px = 1-fx2 Fx = 1— x"

Ycpx = l-(l+a;2
)
2 = -2x*-x*

<pYx = l+(l-a;2
)
2 = 2-2^+a-4

Let <px = a? then <p{\ + x) = (1 +x)a <p{2x) — (2x)a

<p(a) = aa <pb = ba &c.

A functional equation is an equation which is necessarily true of

a function or functions for every value of the letter which it contains.

Thus, if <px = ax, we have <p(bx) = abx = b x $x, or

<p(bx) = b$x

is always true when <px means ax.

Thus the following equations may be deduced :

If <px = xa $xx<py = <p(xy)

<px = a* pxxpy = <p(x+y)
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px = ax + b
**-** = *-=2
<f>X— 02 X— z

<px — ax <px + <py = <p(x+y)

We can often, from a functional equation, deduce the algebraical

form which will satisfy it : for instance, if we know that <p (xy)=xx $y,

supposing this always true, it is true when y = 1, which gives

<p(x) = x X 0(1)- But 0(1) is an independent quantity, made by

writing 1 instead of x in $(x). Let us call it c : it only remains to

ascertain whether any value of c will satisfy the equation. Let

<px = ex; then <p(xy) = cxy, and xx$y = xxcy = cxy; whence

<p(xy) = xipy for all values of c, and 0,r being ex, 0(1) is c X 1

or c, as was supposed. Similarly, if

<p(xy) = (?xY, by making X = 1 we have

py = { f (!) }

y = c* ?* = c*

and 0.(1)= c1 =c, as was supposed. This, with the following theorem,

will be sufficient for the investigations connected with functions which

we shall need in this work.

We have seen that if <$>x = <f we have $xx<py = 0Or +#)> Dut

we do not know whether there may not be other functions of x which

have the same property. We shall now, however, prove this con-

verse, namely, that the equation <px x §y = ${x-\-y) can De satisfied

by no other function of x, except those of the form c
x

.

Let us suppose $ x t0 De a function of such a character that

whatever may be the values of x and y, the equation

<pxx<py = <p(x+y) (A)

is true. For y write a -j- b, which gives

pxx<p(a + b) = <p(x + a + b)

But equation (A), as described, gives <j>(a + b) = <pax<l>b, whence

<pxx <pax <pb = <p(x + a + b)

For either letter, a, for instance, write c + e, which gives

<pxx<p(c+ e)x<pb = <p(x + c + e + b)

but p(c + e) = <pcx<pe

whence <px x <pc x <pe x <pb = <p(x +c+e + b)
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and so on : that is, if there be n quantities of any value whatsoever,

namely, o,, av </
3 <hi-i, fl»j we have

<pax x<pa<i-- Xffln-iX9fl„ = f(ai + c2+ •• -fa„-i + a„)

Let these n quantities be all equal to each other and to a, which

gives

§<pax<pax x (pax (pal __
(2) f

a +^+ + a + a\

) there being n factors.
J

^ tnere being n terms. /

or (<pa)
n = (pin a)

where n is any whole number.*

Similarly, if we had supposed m quantities each equal to b, we

should have had

(<pb)
m = <p(mb)

Now, m and n being whole numbers, let us suppose mb = na,

which gives f

<p(mb) = <p{na) or (p b)
m = (<pa)

n

n
ence

m<pb = (<pa)
m but b = — «, wh

/ \ n

or the equation <t>(pa) = (^a)p is true when js is a whole number,

or a commensurable fraction (page 98).

In the original equation (A), let x = and y = 0, whence

j: -j- z/ = 0. Let ^(O) be called c; we have then cxc= c, or c = 1.

Then let 3/ = — j, or 1 +3/ = 0, which gives

<pxx<p(-x) = p(0) = 1 or p(— ar) = —

;

which being true for every value of .r, is true if for .r we write pa, p
being a whole number or commensurable fraction. This gives

* We cannot conceive a fraction of the preceding process. (See

page 37).

t Similar operations performed upon equal quantities must give

equal results.
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or the equation

<p(pa) = {(pa)p

js true if p be a negative whole number or commensurable fraction.

Hence, as in page 204, by making a = 1, we determine

<p(p) = cp

where (provided p be commensurable) c may be any quantity

whatever.

The preceding equation will also be true when p is an incom-

mensurable quantity, such as V2, v 4, &c. ; but the method by

which we shall treat the consequences of this equation will render a

proof unnecessary.

Exercise. Shew that the equation

<p(x+y) + <p(x-y) = 2<pxx<py

is satisfied by

<px = l(a» + a-)

for every value of a : and also that

<p(x+y) = ?x + <py

can have no other solution than

(tx = ax
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CHAPTER XI.

ON THE BINOMIAL THEOREM*

The binomial theorem is a name given to the method of expanding

(a-f-6)" into a series (finite or infinite as the case may be) of powers

of a and b, n being either whole or fractional, positive or negative

commensurable or incommensurable.

The preceding case may be reduced to that of expanding (l+.r)"

in a series of powers of x : for

Let *"=-, and (\-\-x)n is the function to be expanded.

As this theorem is of particular importance, we shall give two

investigations of it: the first analytical, inquiring what is the series

which is equivalent to (1 + x)n
; the second synthetical, shewing that

the series so found is the one required.

If it be possible, let (1 -\-x)n be a series of whole powers of a1 of

the form

(1 -f x)
n = a + a±x -f- a-jX* + a 3x

3 + fee.

in which a , av &c. are functions of n and not of x.

an />"

Lemma. Whatever may be the value of n, the limit of -,
a— /<

to which it approaches as b is made more and more nearly equal

to a, is nan ~ l
.

[When a = b, observe that this fraction takes the form -,

page 162.]

First, let n be a whole number. Then, page 103,

a-Z^!l = an- l +an-n
~b + an-sb*+ .... +abn - Q + bn

-
i

a— b

as b and a approach to equality, the limit of the second side is

an-l +an-2a + an-3a2+ .... +flan-2 + ft
»-l
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or an
- 1 +a"- 1 + an

~ l + •••• +an' 1 +aM " 1

or wc""1

[That there are n terms in the preceding is evident from this, that

there is a term for every power of b from 1 to n— 1, both inclusive,

and one term independent of 6.]

Secondly, let n be a fraction -, where p and q are whole numbers.

We have then

a*— bn o?— b*~ (a 9 ) _ \b* )
a— b a— b / |_y / L\'

— ,— fl p />p

a—b,

now, as a approaches to ft, a, approaches to b„ and as p and 9 are

whole numbers, the limits of the numerator and denominator of the

preceding are pa/"-1 and qa*— 1
; whence the limit of the fraction i

P— 1 n _ rt/ -V-9 « —

—

x
_ .l^- 1 ~ £„*>-* «, £f ^Y~* ~ IWor - a; * or -1 a" I or - a

qa?- 1 ' q"' q\ / q

Thirdly, let n be negative, and let the corresponding positive

quantity be p, so that n=—p. Then

1 1

a n—bn

a— b

a~p— b~P aP W 1

a— b a— b ~aPbP'

1 aP—bP
aPbP

X
a— b

bP— aP

a—b

as a approaches towards 6, the limit of the first factor is or
aPaP

— a—*P, and that of the second (p being positive) is, as already

proved, paP~ l
. Hence the limit of the preceding product is

— a~*P xpaP- 1 or —pa~P- 1
, which, since n= —p, is ««"-'.

We now resume the assumed series

(1 + x)n = a + a xx + ciox* + a5x3
-f- &c .
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Let y be a quantity which may be made as near to x as we

please ; the above series being supposed true for all values of i, we

may put y in the place of x, which gives

(1 + y)
n =a + fl,y + ctoif + fee.

(1 + x)» - (1 + y)
n = a x{x -y)+ aoXx2 - f) + Bus.

Divide both sides by x— y, or (1 -\-x) — (1 +y).

0+*) — (i+jO - *—</ x—y
which two sides being always equal, the limits to which they

approach, as x and y approach to equality (in which case 1 -\-x and

1+y approach to equality), are equal ; or

w(l + x)n ~ l =a 1 + 2a2x + 3a3x* + fee.

Multiply both sides by 1 + x.

n{\ + x)n = a1 + 2aox -f 3a3.r
2
-f 4tf4:r* + &».

+ a^ + 2a2x
2 + 3a3a;

3 + &c .

But

n (1 + #)
n = rca + nttia; + 7ia2#

2 + raa3x3 + &c .

therefore, page 188,

a x — na , 2a2 + a y = na x or a2
= ^- a x =n^~

3a3 + 2ci2 = na<i or #3= ——

a

2 = ra.—
n— 2 _«— 1 n — 2

~~3~

4a4 + dfl3 = «c3 or a4 = -^—

a

3= w— — «

from which, by substitution and observing that a is a factor of all the

terms, we have

(l +*)»= O0 (l +„* + K
n-ZiL^+M"-=^^V+&c.)

In which aQ is not yet determined. To determine it, we must first see

whether the preceding series is ever convergent.

But previously, we must observe that what we have proved is

not, properly speaking, the truth of the above equation, but only that,

if(\+x)n can always be expanded in a series of u-hole powers qfx,

the preceding series is the one. For we, have assumed that (1 +.r)n
is

fl + fl
1
J+fljra + &c, when, for any thing we know to the contrary,

it might be a series of fractional, or negative, or mixed powers which

t2
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should have been chosen. Whenever, in our previous investigations,

we have made an impossible supposition, we have always been

warned of it at the end of the process by the appearance of some new

and unexplained anomaly. As we have not,' before this one, made

any assumption of the form of an expansion other than we had either

reason or experience to justify, and as we have neither for the one we

have actually made, we know neither whether we are right, nor what

is the index of our being wrong. It may be that the appearance of

an always-divergent series would follow from a mistake, if there be

any. We therefore examine the preceding series.

The ratios of the several terms to those immediately preceding are

n—

1

n—

2

n—

3

nx ~o~x '1
x x *°-

the general form of which is

(p-|-2)term n— p

(/?+ !) term p-\-l

First, we observe, that if n be a positive whole number, the series is

finite : for the (n + 2)th term will contain n— n or as a factor, and

so will all the following terms. We therefore take the case where

n is fractional or negative. When p has passed n, the preceding ratio

will be always negative, shewing that the terms become alternately

positive and negative ; for that the ratio of two quantities is negative

indicates that they differ in sign. Neglect the sign of the preceding,

and make it positive. This we may do, as our object is to see

whether the series can be made convergent, which a series of terms

alternately positive and negative always can be, if the correspond-

ing series of positive terms can be made convergent. We have

then

p— n px nx x nx

P + i
x °r T+7 ~" T+J

or
<

1
~" T+p

P

as we take higher and higher terms, the second term of the preceding

diminishes without limit, and the first has the limit x. Consequently,

if x be less than 1, the ratio above mentioned will, after a certain

number of terms, become less than unity, and will afterwards ap-

proximate continually to the limit x. That is, the series obtained is

always convergent when x is less than 1

.

This being the case, we may, page 189, use the result of making
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g = 0, which gives (1)"= « . If n be a whole number, a = 1 ; but

1 ~ i

if n be a fraction, as - we have (l)':=<i a=(lJ»)' =(1)7
, or «„ may

be any 9th root of 1 ; see page 113. if we choose the arithmetical

root, we find a = 1 ; and this series is (if the doubtful assumption be

true) the arithmetical nth power of 1 + x, when x is less than 1 , or

the algebraical equivalent of (1 + x)n in all cases.

We shall now shew that the series is correct whenever n is a

whole number. Suppose it correct for any one whole number,

say m. Then (a being 1),

(1 + *)"'= \ + mx + in
7-^x*+m^ 7?-^x3 + &c.

2 2 o

Multiply both sides by 1 -f- x.

(l+ x)™+i = l+ mx + m^x2 + m
T^ T?=lx3 + fee.

2 2 <j

+ x + m #2 +/w^=- a?+ &c.

i . / , n . ( ™— 1 , \ o . ( m— 1 m—2 ,
m—1\ , ,= l+(m+l)x+{m-^-+m)x*+[m—

r~
+W~2~/^ + &c "

m—

1

(m— 1 , ,\ m-\-\ , n m
But m—--+m = m\——-+ \)=m——- = (m + l)-

m—\m—

2

m—

1

m—\(m—2 . n \ , ,
...mm—

1

whence

(l+^r+l = l+(7W ^-l)a; + (m + l)|^r2 4-(w+])|^=-
1^ + &c .

which, if we now write n for m +1, or n— 1 for m, becomes the same

series, or follows the same law as

(]+xY=l+nx + n
7^x* + n.

n-ln-2
x3 + &c.

Hence, if this expression be true for any one whole value of n,

it is true for the next. But it is true when n = 1 ; for

(l+arV= 1 + l.r + l.1=1^+1.1=1.1=?^+ &c.

therefore it is true when n = 2 ; but it is therefore true when n == 3,

and so on, ad infinitum.

If we consider (l + .r)n as a function of n, and call it <pn, we

see that

m
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(1 + x)n x (1 + x)m = (1 + x)n+m

or <pn x <pm = <p(n +m)
but when n is a whole number (\-\-x)n is the series in question;

therefore, calling the above series <pn, we have, when n is a whole

number,

<pn x <p m = 9 (?z 4- m)
or

X \\+mx + m—^—x2+m —- — *3 4- &c.J

= 1 4- (in 4- n) * + (m+n) x*+(m+n) x3+ &c.

This may be verified to any extent we please, by actual multipli-

cation ; for the two first series multiplied together give

1 4- (m + ri)x + In.—

-

—\-nm +m—- jx2

,
/ n—In—2 . n— 1 , m—1 , m—\m—2\ ~

»
_ n— 1 , m— 1 ri*— n 4- 2 n m 4- m2—m
But n. —— + nm 4- m .

—— =
2

T n
2 2

=
2

= (» + »*) -

n— 1 n—2 n—

1

m— 1 . m.— 1 m—

2

n. —- -

—

\-n—-—m+ nm—-—f- vn-
2 3 ' 2 2 2 3

n3—3ri*+2n+ 3n2m— 3nm + 3nr«2- 3«w 4-m3-— 3m2 4- 2m
~~2™X~3

(n+ra)3- 3(w 4 m)2+ 2(w + w) , s n+ m—l n+w—

2

= (rc + m) .—-

—

2X3

and so on. We now lay down the following principle: When an

algebraical multiplication, or other operation, such as has hitherto

been defined, can be proved to produce a certain result in cases where

the letters standfor whole numbers, then the same result must be true

when the letters standfor fractions, or incommensurable numbers, and

also when they are negative. For we have never yet had occasion to

distinguish results into those which are true for whole numbers, and

those which are not true for whole numbers ; but all processes have
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been, as stated in the introduction, true whether the letters are whole

numbers or fractions. There has been no such thing in any process

as a term of an equation, which exists when a letter stands for a

whole number, but does not exist when it stands for a fraction. If,

therefore, <pmx<f>n will give 0(m-}-n) by the common process of

multiplication when m and n are whole numbers, that same process

will also give <p{m-\-n) when m and n are fractions, and also when

they are one or both negative : consequently, the series

1 + nx+ n-^-xz+ &c.

has this property, that, considered as a function of n, and called <f>n,

it satisfies

pnxpm = <p(m + n)

in all cases. But in page 205, it has been proved that any solution

of the preceding equation must be <pn= c
n where c = 0(1), and 0(1)

we find to be

1 + lar-f 1^1 X*+ &c. or \ + x

therefore <pn is in all cases (1 +^)n
, which is the theorem in question.*

* Every proof which has ever been given of this theorem has been

contested ; that is, no one has ever disputed the truth of the theorem

itself, but only the method of establishing it. And the general practice

is, for each proposer of a new proof to be very much astonished at the

want of logic of his predecessors. The proof given in the text is a

combination of two proofs, the first part, making use of limits, given

(according to Lacroix) in the Phil. Trans, for 1796 ; the second, the

well-known proof of Euler. The objection to the first part lies in the

assumption of a series of whole powers ; to the second, in its being

synthetical, that is, not finding what (l+a)n is, but only proving that a

certain given series is the same as (l + x)n. But each part of this proof

answers the objection made to the other part; in the first part analysis

is employed, but only so as to give strong grounds of conjecture that

l + nx+ &c. is the required series; in the second part this conjectural

(not arbitrarily chosen) series is absolutely shewn to be that required.

The proof of Euler may be condensed into the following, of which the

several assertions are proved in the text.

1. If 1+**+».—!-«*+ &c. be called <pn, then p(l) is l+i, and

<pny.<pm is found to be <p(n + m).

2. If <pnY.<pm = <f>(n + m) then <pn must be {<p(l)}
n

3. Therefore, l + ni+ &c. is (l +x)n

In 1827, Messrs. Swinburne and Tylecote published their demon-
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To use the preceding series, the readiest way is to form the

several factors n, ———

,

, &c. previously to proceeding further;

for instance, let n = $, or let it be vl+ij which is to be expanded.

— 1
n ~~ 1 — -1 U~2 - I

n~3 - 5
*r^ = i + i, + (i)(-D^ +

2

a)(-i)(-D^

+ G)(-i)(-i)(-§W -
= 1+1*-^+ 1*3-^4 + &C.

If r> = — 1,

* n— 1 _ , n—2 _ , n—

3

-. „

(l+o;)-1 or ji- = l4-(-.l)a;+(-l)(-])^

+ (-l)(_l)(_l)*3 + &c.

= 1—X+X2— X3 + &C.
as has been proved before.

stration of this theorem, the last original one with which I am acquainted.

It is much too laborious and difficult for a beginner, but is as unobjec-

tionable in point of logic as I conceive the one given in the text to be.

Their general objections to the theory of limits are not, I conceive, to

its logical soundness, but to its applicability in algebra ; it being more

frequently than not a sort of convention that limits shall not be introduced

into algebra. But, until \/l0 is explained in arithmetic without limits,

I shall hold that limits are, and always have been, introduced into

algebra. Nay, until the symbol is well explained in all its uses, with-

out limits, the same may be said. With regard to the objections made

by the above-named gentlemen to Euler's proof, in their page 35, they

evidently hang upon the assumption of a finite number of terms of

the series, which is not Euler's supposition, and which he therefore

" keeps out of sight," not " dexterously shuffles out of the way,"

for it does not come in the way, any more than lines which meet come

in the way when we are expressly talking of parallel lines. After

quoting the last-mentioned phrase, it is but fair to those gentlemen to

state, that, judging by the general tenor of their work, it is not to be

presumed that they meant to accuse Euler of intentional deceit, which

the phrase " dexterous shuffling " generally means, and which, therefore,

was not the proper phrase to use.
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If /* = 5,

-I « n-2
T"~ z ~3~

, n—3 1 n—

4

1 n— 5
(

>

"T" "~2 ~~5~ ™ 5 ~~T~ '

'1+5*+/ 5\x2 +/
x2

5U3 +
/

5
I

*4 +
I

5
'
x> +

I
5(

x2 x2 x2
xl xl xl

|*li xl) xj
xj

1x0/

x2

= l+5x+ \0x*+ 10x3+5x44-^+0+0+ &c.

It is usual to prove the binomial theorem in the case of a

whole exponent, as follows: Multiply x + a by x-\-b, which gives

x* -\- {a -\- b) x -\- ab, and this again by x -f- c, which gives

xz +{a + b+ c)x2+(ab + bc-\- ca)x+abc

From which it appears, that if there be n quantities, a
x
a2 o„,

and if the sum of all be called P
x
, the sum of the products of every

two, P2 &c, that is, if ,

Pi = X + «2 + «3 +
P2 = a 1 «2 + a2 fl3 + «i«3+

P3 = a 1 asa3 4-a 1 a3a4 +

p_l =
( product of all

( except

»fain

"i i
+

{product of all

except

f all -)

a2 J

Pn = product of all

;

it follows that

(j+a,)(* + «
a) .. (*+«„) =x» + P,^n - 1 + P

a
^-2 + .. + P»-1#+ P|

The number of terms in P, is 7* ; in P
3
as many as there are

n i
combinations of 2 out of n quantities, or (Ar. 210) n .

—— ; in P3

as many as there are combinations of 3 out of n quantities, or

n ; and so on. Hence, if a
l
aa &c. be all supposed

equal to each other and to a, we have
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Px = a + a + a + = na

z

P3 I Si Si n 1 n 2 ,

3 = a3 + a3 + a3 + .... = n— — a3

(^
containing w factors. J 2

In which, if we suppose x = 1, we have

(l+a)n = l+na + n
T^a2 + &c.

See Ar. 211, for the reason why the coefficients are the same,

whether we begin from the one end or the other of the series, as will

also appear in the following cases.

(l+a;)8 = l+2#+ x*

Q+x)3 = l + 3#+ 3x*+ xs

(l+^)4 = l+4#+ 6x2 + 4x3+ x41

(l+x)5 = 1+5:t+10.z2+ 10:e3+ 5x*+ x5

(l+a;)6 = l+6x+ l5x2+20x3+\5x4+ 6x5+x6

In order to find (1

—

x)n , change the sign of x in the series; that

is, write — x for x, leave x2 unaltered ; write — x3
for x3

t
and so on

;

which gives

(1—X )
n = I— nx + n?-^ x2—kc.

We may write the general series in the following way when n is

a whole number, where Pn signifies the product of all whole numbers

between 1 and w, both inclusive.

which shews the similarity of the coefficients above alluded to.

We give the following as exercises :

1. When n is a whole number,

on 1., n—

1

.
n— \ n— 2 . c2n = 1 +n +n-j- + n— — + &c.

n i , n—

1

n— 1 n— 2 B
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2»- 1 =l-f7i—

—

\-n— ; \- kc.
2 2 3 4^

2. (a+i)" = a»-|-nan- 1 6 + n^!-a»-2 6
5 + &c.

3

3. If n be a whole number

(•+:)'- *+?

+

2

(* + i)
2"= **+ ^ +2« (**»-*+ ^_)

ending with »»(2—D-(»—2) • • • (» +»),
5 1.2 . 3 N

|« + i)
2^ 1 = X>n+l + I

2w+1 +(2w + l)(^-l +^J + ....

,. ., (2«+l)(2n) .... + 2)/ . 1\
ending Wlth

1 .2 3 .... (» + l) \* + J
. (1 + j)» +(1— j)» -, . «— 1 o . n—In—2 n— 3 4 ,

.

2
nX + n~2~H X + &C -

5. The student may provide himself with examples and verifi-

cations in the following way : choose any exponent n, whole or

fractional, positive or negative, and expand (l + .r)" and (14-.r)"+ 1

by means of the theorem ; then multiply the first series so found

by l+.r, which should give the second series.

6. an = bn + n{a— b)bn
' l -\-n^-{a— bfbr-2 + &c.

The following cases will afterwards require particular notice :

(, . lV,r
, . 1 . n.r-11 nx—lnx—2l . .

\} + n)
=1 + n 'r

n
+^-2-^ +^-2—-l—

n

3+&C -

l

„ .
1 n.r— 1 1

•r— n
Eut nx- = x nx—-— x -= x——

n 2 n3 2

l 2

nx — \nx—2 1
x— n

x
n „nx— , = x — =— &c. &c. whence

2 3 n3 2 3

u
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1 12

In the preceding let <r = 1, which gives

,i ,1,8(l\n *

—

? 1 1—-

But (page 105), (l + $* =
j

(l + ^f I

or the first series is the .rth power of the second, and

(1+1+ —^-+&c.y = \ +x + x±-2_ + &c.

If w = 0, (1 +x)n = 1, or (1 + x)n — 1 = 0, or the fraction

(1 4- x)n 1
assumes the form -. We now ask whether this frac-

n

tion has a limit when n is diminished without limit (page 162).

From the general theorem,

and when n is diminished without limit, the limit of the second side is

*+(=r)- + CrX^W(^KtV + **

X2
,

X3 X*

That is,

As n diminishes without limit, "|

(l + *)»—

1

. ^ ^ x*
approaches without ? x — + — — + &c.

n

limit to

zn \
If x = £— 1, then the limit of (n diminishing without

limit) is

{Z-\)-\(z-\y+\(z-\y- &c.

Of this series we know no property as yet, except that it is

convergent when x or z— 1 is less than 1, or z less than 2. We
shall proceed to examine the expression from which it is derived.

If in it we write zm for z, we have
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z"" 1 — 1 zm **— 1
or m

n

Let m be a fixed quantity and let n diminish without limit : then

tn n also diminishes without limit. Now, if <pn have the limit N
when n diminishes without limit, <p(?n7i) must have the same limit.

The only difference is, that (say m = 6) for any very small value of n,

<p(6n) will not have come so near to its limit as <pn. For the nature

of the limit being, that, by taking n sufficiently small, we may make

<pn within any given fraction (say /c, which may be as small as we

please) of N, we may, by taking the sixth part of the requisite value

for 7j, make <p(6n) within the same degree of nearness to N. Hence

the limits of the two,

2n — 1 , zmn— 1
and

are the same. But if the first be called -J,z, the second is — yp (zm )

;

and we have

limit of 4»2f = limit of — *Lzm

= -—limit of *Lzmm T

or

*_l_I (z _l)e+ &c . =-L(^_l_ l(z--l)»+ fcc.)

a property of the series which will serve to verify succeeding

investigations.

We have not yet included in our results the case in which the

exponent is incommensurable, such as

but since we look upon n/2 as the limit to which we approach nearer

and nearer in the series (obtained from arithmetical extraction in this

case),

1 1-4 1-41 1414 1-4142 &c .

we must regard (1-fx)^2
as the limit to which we approach by

taking the successive expressions

14 141 1414

l + # (l + #) 10 (1-f.r)1^ (l + tf)
1™ &c.

so that, whatever approximation k may be used for v^2 or the limit

for which this symbol stands, then
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l + kx+k^±x*+ Sec.

is the corresponding approximation to (l+ x)* 2
. When the series

is convergent, it is evident that if each term be found, say within its

thousandth part, the sum of the whole series is found within its

thousandth part. Suppose k and A; + m to be two approximations to

n/£, as in page 101, the first too small, the second too great, and

suppose we compare the p\h terms of the corresponding approxi-

mations to (\+xy 2
, or

ft fe=»;. . *=2±&* and (h+ m)*±f=l .... *±J^±V
the ratio of which is

k + m k+m—

1

k+m— p-f-2

k ' k—l k—p + 2

Since m can be made as small as we please, it is evident that

each of these factors can be made as near to unity as we please, and,

consequently, their product can be brought as near to unity as we

please. That is, for any given number of terms, the terms of the two

approximations may be made as nearly equal as we please. Now,

suppose x less than 1, so that (page 210), both approximations are

convergent. Hence so many terms (say q terms) may be taken that

the limit of the sum of the remainder shall be as small as we please

:

and as m may be taken so small that all the q terms of one approxi-

mation shall be within, say their millionth parts, of those of the other

approximation, it follows that we may reduce the two approximations

to the following form :

A remainder less

than the millionth
a + b + c+ +z

I of the preceding

I sum.

r A remainder less

~/li \i^/1i/3\l i~/ii \l J
than the millionth«(l+«) + 6(1 + 0)+ .. +*(i + -)+

j
of [he preced

.

ng

I sum.

where « /3 u are severally less than one millionth. Let

a-\-b-\-c-\- .... +Z (which we may call the approximation to the

first approximation) be called P; aa + bp>-\- .... -f za is less than

one millionth of P, and the first approximation complete is
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1

p + \ p (X is less than one millionth)

and the second

P(1+V)+YP(1+V) (V and Y do. do.)

the difference of which is

PV+P(Y-X) + PYV
which is less than three millionths of P; because V, Y—X and Y V

are severally less than one millionth of P. But the limit (1 + x)^*

must lie between these approximations, and therefore does not differ

from P by so much as the approximations differ from each other,

that is, by three millionths of P.

It is not possible to shew, by the preceding method, the same

result in the case where x is greater than 1, or the series divergent:

but it must be remembered that in this case algebraical equality only

is asserted, not arithmetical equality : and all that is said is, that

1 + Vl2;r+l/2^—

*

2 + &c.

may be substituted without error for (l + x)^2
; so that the proof of

this case falls within the general proof, as deduced from the principle

in page 212. What is done in the preceding process shews the

approximation to arithmetical equality, when the series is convergent.

The same arguments might be applied to any other case, with any

other degree of approximation. We now proceed to develope some

further consequences of the binomial theorem.
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CHAPTER XII.

EXPONENTIAL AND LOGARITHMIC SERIES.

An algebraic symbol may have different names, according to the

relation in which it stands to different symbols, or combinations of

symbols. Thus in a b, a, with respect to b, is called a coefficient

;

with respect to a b, it is called a factor. Similarly, in ah , b, with

respect to a, is called an exponent ; with respect to ab , it is called a

logarithm,* and a in reference to b is called the base of the logarithm.

Thus, in 34
, 4 is the logarithm of 34 or 81, to the base 3; in

a v
, x is the logarithm of ax to the base a. This we shall denote by

4 = log
3
81 and x = loga ax : the letters log being an abbreviation of

logarithm, and the underwritten figure being the base.

Examples. ]03 = 1000 3 = log10 l000

If a 1 = y x = \ogay
If ^ = l-z q = log^]-*)

To construct a system of logarithms to a given base, say 10, we

must solve the series of equations

10* = 1 10* = 2 10* = 3 10* = 4 &c .

and find the value of x in each. This can, generally speaking, only

be done by approximation : that is, the logarithm is generally incom-

mensurable with the unit. By saying, then, that logI0
2 =-30103, we

mean that

10- 30103 = 2 very nearly, or
10000

^/l030103 = 2 nearly,

and that a fraction k can be found such that 10* shall be as near to 2

as we please, to which fraction "30103 is an approximation.

[In all the following theorems one base is supposed, namely, a.]

Theorem I. Whatever the base may be, the logarithm of 1 is 0.

This is evidently another way of expressing a°=l, and may be

written loga 1=0.

* From Xoyuv fydftos, the number of the ratios, an idea derived from

an old method of constructing logarithms, which cannot be here explained.
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TiiiniuM U. 77/, logarithm of the base itself is 1. This is

contained in a 1 = a, and is expressed thus : log« a = 1

Theorem III. The logarithms of y and - are of different signs,

but equal numerical value. For if y = a* ,or x=z log
ffl y, we have

- = a-1 ox —x = loga-; that is, log«- = — \o%ay.

Theorem IV. If a be the base, and a number or fraction lie

between am and an , the logarithm of that number or fraction lies

between m and n.

For if a*, the number, lie between am and un ; then x, the

logarithm, lies between m and n (see page 89).

1

Base 10. Base -.
2

Number Logarithm

between between

Number
between

Logarithm
has its , .

between

1 and 10 and 1 1 and -
2

and 1

10 and 100 1 and 2
1

2

, 1
and -

4
1 and 2

100 and 1000 2 and 3
1

4
and! 2 and 3

&c. &c. &c. &c.

1 and
1

To
and —1 1 and 2 and —

1

1 .— and
10

i

Too
— 1 and —

2

2 and 4 — 1 and —

2

1 ,—- and
100

i

1000
—2 and —3 4 and 8 —2 and —3

&c. &c. &c. &c.

Theorem V. The logarithm of a product is equal to the sum of

the logarithms of the factors. Let a be the base, and p, q, and r, the

logarithms of P, Q, and It. Then

P = a p Q = a? .R = ar

PQR = ap+«+r or log(PQR) =3p+q+r = logP + logQ + logR

Theorem VI. The logarithm of a ratio, quotient, or fraction, is

the difference of the logarithms of the antecedent and consequent,

dividend and divisor, or numerator and denominator.
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P P
For — as a*-« or log ^- = p— q = log P— log Q

Theorem VII. The logarithm qfPm is found by multiplying the

logarithm of P by ra ; that is, if P = aP, Pm = amP, or log Pn» =
mp = m log P.

Theorem VIII. A negative number has no arithmetical logarithm :

nor is a system of logarithms with a negative base within the limits

of algebra as hitherto considered. This is rather a definition than a

theorem,* and it amounts to this : on account of certain anomalies,

of which the explanation cannot yet be understood by the student,

we are obliged to defer the consideration of the logarithms of

negative quantities, and all logarithms of positive quantities, except

only those which have arithmetical meaning. For the equation

ax = b has not been proved to have only one solution, though it has

only one arithmetical solution.

Theorem IX. The logarithm ofO is infinite ; by which we mean

that as y diminishes without limit, its logarithm (being always

negative on one side or other of 1), increases numerically without

limit. To diminish (-) without limit, x must undergo numerical

increase without limit, and be positive : to diminish 2* without

limit, x must also undergo numerical increase without limit, being

negative. Hence (page 156) the meaning of the proposition stated
;

and it must be observed that the symbol oc has either sign in

algebra, which may be explained as follows. Ify = -, then y and x

must have the same sign : if x diminish without limit, it approaches

a form (0) in which it has no sign, being the limiting boundary

between positive and negative quantity. Consequently y, which

increases without limit, approaches a similar boundary ; for since y

has the same sign as -, if there be any form of x in which either sign

may be supposed, the same may be supposed for y. But such a

comprehension of this point as can be derived from frequent instances

must be reserved until the student has seen more examples of the

application of algebra to geometry.

* Being usually considered as a theorem, we have stated it as such.
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The following examples will illustrate the preceding theorems.

xx 1 = x log x -f log 1 = log a: (log 1 = 0)

x l = x 1 x log x = log X

\oga ax = log a;-f-log a = loga a; + l

\ogxVy = log x+log?/* == \ogx + -\ogy
2

Xt/3
logW = log x* 3

los'y- log2?- 21og /7

= — log a:— 3 logy -I- log/?— \ogq

We shall now proceed to the series connected with logarithms.

In page 218, we have proved the following theorem for all values

of n and x,

In which both series, being forms of (l + -J > will (page 210) be

convergent whenever - is less than 1, or n greater than 1. Now,
n

let n increase without limit, in which case the limit of

l + l + -^ +V^+&c. isl + l + i + J-
3
+ &c.

and that of

1 + x + -^ + ~T- "T
5 + &c ' is l +x+ % + O + &c '

But 1 -f- 1 -J-
—

-f- &c. has been calculated approximately in page

183, found to be 271828182 , and called e. Therefore,

(page 183),

+ &C

Consequently, if i be the base, the number which has the logarithm x

x*
is l + x + - + &c. Hence a system of logarithms, having c for

the base, being arrived at in the course of investigation, has been
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called the natural system of logarithms ; it is also called the Naperian*

system of logarithms, and the hyperbolic^ system of logarithms.

And here let it be remembered, that in algebraical analysis, the

letters log, by themselves, imply the logarithm to the base e, any excep-

tion being always specially mentioned.

The preceding equation being always true, we have

£ = 1 +kx + _-+__ + &c.

But ekx is (e*)*; and if we take A; to be the logarithm (base e) of a,

we have t
k = a, and

(**)* or a* = 1 +(loga)X+^£ + &J&* + &,

From which we find that will, if x be diminished without
x

limit, have the limit log a.

But (page 218) we have already found the series for this limit;

whence

log a = (a-1)- I (a- 1)2 + 1 (a- 1)3- &c.

or, if a = 1 + b, we have

log(l+5) = J-|
S

+ f-&c (1)

Substitute — b for b, and we have

log(l-6) = -J-|
2

_?-&c (2)

Subtract (2) from (1) £log (1+ 6)— log(l— b) =log (j^)]

l°g (S) = 2Wr+!
5

+ -}.... (3)

1 + b 1+X . . 1
let j- = which gives b = -—

—

1—6 x 2.T+1

* John Napier, commonly called Lord Napier, though not a peer,

or otherwise entitled to the appellation of lord than in the way in which

many landed proprietors are lords (of manors), was born in 15.50, at his

lordship of Merchiston, near Edinburgh, and died in 1617. He published

the invention of logarithms (his method also leading him to the natural

system) in 1614.

t So called from a supposed analogy with the curve called the

hyperbola, but which analogy belongs equally to all systems of logarithms.
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log |±j = log i±i = log (1+ a:) -log*

The last series gives

, = Ilog2= gg + |£+l£ +&c.}

* = 2 1°S 3 = log 2+2 {i + |X + 1 -L +&c.}

< = 3 log4 = log3 +2{i + I± + 1 jJ- 4- kc}

• = 4.1og5 = log
4+2{I + IjL +1^ + *..}

Thus the logarithms of whole numbers may be successively cal-

culared with tolerable readiness, as the first example (which contains

the least convergent series), here given at length to ten places (that is

to eleven for the sake of accuracy), will shew.

1

3
= •33333333333

1

I

1

33
= •01234567901

1

5

1

3 5
= •00082304527

i

7

1

37" = •00006532105

1

9

1

39
= •00000564503

1

11

1

3"
= •00000051318

1

K3

1

313
= •00000004825

i

T7i

1

313
= •00000000465

i

77

1

3T7
= •00000000046

i

19

1

3T9
= •00000000005

•34657359028

2

log 2 = -69314718056 very nearly.



log 6 = 1-79175947

log 7 = 1-94591015

log 8 = 2-07944154

log 9 = 2-19722458
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By this means the logarithm of 3 may be found from that of 2,

that of 4 from that of 3, and so up to any given whole number. It

would be desirable,* as an exercise of arithmetic, that the student

should calculate them up to 10 inclusive; the results of which (to

eight places) would be as follows

:

log 1 = 0-00000000

log 2 = 0-69314718

log 3 = 1-09861229

log 4 = 1*38629436

log 5 = 1-60943791 log 10 = 2-30258509

But the series need be employed only for prime numbers, and the

first tables of logarithms were thus constructed, as follows. Suppose

the logarithm of 59 to be required, or of 58+1. Now 58 is 2x29,
both factors being prime numbers; if, then, we have the logarithms

of 2 and 29, we have that of 58 from the equation

log 58 = log 2 + log 29

and that of 59 from

log 59 = log58+2{
l-fr +

i
(T
l
?
+ &o.}

Beginning, then, with log 2, we have the following:

log 2 = a given series log 6 = log 3 + log 2

log 3 = log 2 -4- a given series log 7 = log 6 + a given series

log 4 = 2 log 2 log 8 = 3 log 2

log 5 = log 4 4- a given series log 9 = 2 log 3

log 10 = log 2 + log 5 ; and so on.

* Halley (Phil. Trans. 1695) thus expresses himself, after having

described the preceding method. " If the curiosity of any gentleman

that has leisure, would prompt him to undertake to do the logarithms of

all prime numbers under a hundred thousand to twenty-five or thirty

places of figures, I dare assure him that the facility of this method will

invite him thereto ; nor can any thing more easy be desired." Without

insisting upon any thing that would take up so much of a gentleman's

leisure as the preceding, I should strongly recommend the student

always to work one example of every moderately convergent series

which occurs.
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In page 219, we proved independently that

*_]_i(^_l)< + &c. =-L(-»_l_l(2»_])*+ &c.)

which is, as we now see, the same thing as

log* -—log*"

and in it we also find further elucidation of the equation,

limit of H^i = Z - 1 - \{z— I)2 + &c. = log*.

The diminution of m without limit, or the supposing of m to be a

smaller and smaller fraction, implies the extraction of higher and

higher roots of z. By extracting a sufficiently high root of z, we can

bring zm as near to 1 as we please, or make zm— 1 as small as we

please; that is (page 187) zm— 1 may be made as nearly equal to

the sum of the whole series as we please. It was from this principle,

by continual extraction of the square root of z, that logarithms were

once calculated, by means of the formula

log* = (z
140787"8356328- l) X 140737488355328

very nearly,* the number named being 247
, equivalent to 47 extractions

of the square root.

The logarithm of any whole number being found, as in the last

page, that of a fraction can then be found by the subtraction of the

logarithm of the denominator from that of the numerator.

We also notice the following result : when x is a large number,

logO + 1) = logJ?+
27£i

nearly (PaSe 227)«

The rest of this subject will be reserved for the next chapter,

on the practical use of logarithms in shortening arithmetical com-

putations. We now proceed with some uses of the preceding series.

Lemma. If/(x) be such a function of x, that/(j-f^) can be

expanded in a series of the form

A + A Iy + A8y
8 + &c.

• Halley, in the memoir already cited. Each square root was ex-

tracted to 14 places.

x
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where A , Av &c. are functions of x only, then

treated by common rules, will always represent a quantity, either

positive or negative, that is, all purely symbolical or impossible*

quantities disappear ; while, on the other hand,

will be of the form (possible quantity) x >/—

1

Write the value of f(x -\- y) and afterwards that of f(x — y)f

made by changing the sign of y;

f(x-y) == Ao-A^+Ag^-As^H- &c >

from which we find,

A* + y) +/(*-y) = 2Ao + 2A2y+ 2A4 7/
4

-f- &c.

/(* + y) -f(*- y) = 2 A,y + 2A3 ?/
3 + 2 A5 ?/

5+ &c .

for x write a, whence A , A,, &c. become functions of a only ; for

y write b v — 1, that is, suppose

y = b V~-\ y5 = #»l/ZT

?/3 = _j2 X 51/^1 = -^v'ZT y = -&7i/~i

?/
4 = _j3t/3Tx ft 1/^1 7/

8 = b6 &C.

= _Z,4 X _ 1= £4

whence

f(a +bV^)+f(a-b\/'^T) = 2A --2A2b*+2A4 b*- &c.

which is a possible quantity : and

f(a + j v/=T) -f(a-bVd) = 2 A 2 ft l/3"l -2

A

3 6
sV3T+ &c.

= |2A1 6-2A3 6
3+ &c.| V

/3T
which is (a possible quantity) x V— 1.

* We shall now begin to make use of this common phrase : to the

student it must mean " impossible till further explained." See page 110.
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1 1 2a

/+ jv
/
=ri)"_(«_z,v/3Ty =

As the preceding theorem is true for all values of a, it is true

when a = ; that is, for

/(si^ri) +/(_ivcri) and/(6v^ri)-/(-6^—

Examples. Let n be a positive whole number.

f -+- 2 6" when 7* is evenly even.*

(/3^ITl)n -j-(-5V^ri)n = J when n is odd.

[_— 2 6" when n is oddly even.\

f when n is even.

(51/ZTiy1— (— J V^l)n = J26»n/^1 when nisi, 5,9, &c.

I — 26n n/— 1 when n is 3, 7,

11, &c.

If we apply the same process to e"
—1

and e~* ~
, we find

;

,^ +t-*^I T, xt ^
2 2^2.3.4 2.3.4.5.6^ W

^ ,/=!_.-»•=! x3 _ ^= *--A; + —V-.-&C. ....(B)
2»/~i 2.3 ' 2.3.4

We have left the use of the symbol s/— 1, in this work, to be

justified by experience only (see page 111); we have now an oppor-

• Divisible by 4 ; 4, 8, 12, &c. are evenly even,

f Divisible by 2, but not by 4 ; as 2, 6, 10, &c.
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tunity of examining the result of a long series of deduction, with a

view of ascertaining how far we shall produce consistent results.

The algebraical sign of equality is placed between the two sides of

the preceding equations ; the question is, Will any relations we may
discover to exist between the two first sides also exist between the

two second sides ?

Let = be called <px

and 7= be called ^l>x
2V—

1

we have then

(psf = - *Ei i ±1

«,*)» = !

~ 2t
_1 4

+e

w+wtf = -—j— = * = i

tozf-wxy = 6

if = ? (2x)

*>**+* =
'

^t=t -!+<*»)

of which three relations, namely,

(<pxf+ (^x)* = 1 (<px)*-WxY = <p(2x)

2<pxx-^x = -v}/(2#)

it is asked, are they true of the second sides of (A) and (B) ?

The multiplication of a series by itself will be found to amount to

using the following rule : square each term, and multiply all that

follow by twice that term. Thus, the square of the series in (A) is

x* r<5

1 — *a + — - h &c.^3.4 3.4.5.6^

+ »'- 2^74 + &C -

+ &c.
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that of the scries in (B) is

x***~\ +r^m- &c -

+ -7T-1T ~ *•
2 3 .3 5

— &c.

The first square increased by the second is

= i+{ o } -•{ } +**.

The first diminished by the second is

T
l3.4 T 2" T 3J l3.4.5.6 T 2.3.4 T 3.4.5 T 2'3*J

= i_2a + J2fL _ _(!£_ + to.
2 ^2.3.4 2.3.4.5.6 T

The third relation may be similarly verified by multiplication.

The following results may also be proved in the same way both of

the first and second sides of equations (A) and (B)

<p(x+y) = <px<py— ^x-^y ^(x+y) = >±x<py + <px^y

<P(*—y) = <px<py +^x^y ^(x-y) = ^x<py— <px-±y

Let £
T 'vA-T

be called p, and let— be called xx, then (equations
<j> x

A and B)

1 P— \ 4>x p
2— 1 J 7

,

—

5- = -1— = ya; or . , . = v — i ya;
V-l p + l fix

*> p>+l *

| -\-->/ 1 yj
whence p

2 = ^- and, page 226,
1—V— l xx

logp* = 2 {•=! %x + i(i/3T X jr
)

3

+ &cj

= 2V^n{xaP-|(x*)Vi(X *)-acc.}

But ^2 = £
2x^T

or ]ogp2 = %x y/
rZ\

%
therefore

* = **- 3 Gc *)

3

+ \{x x
) - &c -

x2
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The series A and B are always convergent, as may be proved by

the test in page 1 85 ; but the convergency may be made to begin at

any term, however distant, by making x sufficiently great. Thus, if

x were 1000, the first series would not begin to converge before

the term

2.3.4.5 263.264

but, notwithstanding the magnitude of the first terms of the series

(which it must be remembered, are alternately added and subtracted)

the actual value of tpx and $x can never exceed 1 ; for if either were

arithmetically greater than 1 (positive or negative), the equation

(0 x)
2

-f- tyx)
2= 1 could not be true.

In trigonometry, the properties of the preceding series are con-

nected with geometry in the following way. Let a circle be drawn

;

and from A let the point B set out until it has described an arc equal

in length to x times the radius OA, going round the circle again if

necessary. Draw BD perpendicular to CA; then it will be proved

that BD is the fraction ^x of OA, and OD the fraction <px of OA.

Exercise 1 . By means of the equation

1 4-x
,- = x, prove the equation

2. Prove the following,

."^as <px+\f-l ^X

e
-x^Zi = 9X_V~\^X

(px+ V/3i^ a;)
w = <p(mx) + V^l^(mx)
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CHAPTER XIII.

ON THE USE OF LOGARITHMS IN FACILITATING

COMPUTATIONS.

The natural system oflogarithms, already explained, has this defect

as an instrument of calculation, that there is no method of finding

the logarithm of a fraction more simple than subtracting the loga-

rithm of the denominator from that of the numerator. For instance,

the logarithm of *3 can not be more shortly found than by taking

log 3 — log 10 or 1-09861229 — 2*30258509 n — 1*20397280

We proceed to find another system in which there shall be some

more obvious connexion between the logarithm of 3 and those of

•3, -03, &c.

The fundamental definition of loga x gives

log,

x = a
»x

a = i

I

r
loga x

We have then x = a
log„X JogfcX=

But b —
log«6
a

log*
.*. x = a

i b logi x

Similarly x
log«<= a

'logc b logfc X

log„<= a
?log. C loge b log* X

which last result may be also thus verified :

log* e log* c loge b log6 x 5 lo
S<* « 1 lo&« c 1°&« b lo*?4 x

a = \a J

log, C loge b logft X loge 6 log* X l0g6 X= e =c = b = x

Now, there is but one arithmetical exponent which applied to a

will give x; for, if possible, let there be two, p and y, and let

aPz= x, ai = j, whence aP= ai, and aP—*7=1 ; therefore/)— y =0,
or p = q, that is,/) and q do not differ, as was supposed. Hence,

since

loga X loga b logi X

x = a = a , we have
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l0ga X = \0ga b logb X = \oga C \ogc b logb X &C.

these results may be remembered by means of the identical equations

x xb x x b c

a b a a b c a

giving the following theorem : the series of equations

a a c a e c __ a f e c

b cb e c b f e c b

remains true, iffor each fraction be substituted the logarithm of its

numerator to the denominator as a base.

As an example, by means of

- - = - we remember that \ogb a loga b = loga a = 1

or loga b = -:°a
log* a

We also have

lOD. r _ ,0^ *

or; to convert a given system of logarithms having the base a, into

another which shall have the base b, divide every logarithm given by

the given logarithm of b.

Seeing that in practice it is convenient to reduce all fractions to

decimal fractions, the base chosen should be one in which the

logarithms of 10, 100, &c. are whole numbers, that is, it should be

10. For in that case we have

log 10 = 1, log 1 00 = 2, log 1000 = 3, &c.

And if we call p the logarithm of any number, say 25, we have

log 2-5 = log25-log 10 = p-\
log -25 = log25-log 100=^-2
log -025 = Iog25-logl000 = p—3 &c.

log 250 = log25+log 10 = p + 1

log2500 = log25 + log 100 = p + 2 &c .

So that, when the base is ten, any alteration of the place of the

decimal point in the number requires only the addition or sub-

traction of a whole number from the logarithm.
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The system of logarithms to the base 10 is deduced from the

natural system by the following equation,

log10 .Z =
fefo = 5^555 = ***' * -4342944819

This system of logarithms is called the common, tabular, decimal,

or Brigg's system, and *43429 .... is called its modulus, and gene-

rally l-i-log,a, or logat is called the modulus of the system whose

base is a.

All the logarithms in the remainder of this chapter are common
logarithms.

The following are examples of the arrangements of some tables

of logarithms, for the purpose of explaining how to find the logarithms

of given numbers, or vice vcrsd.

1. Lalande*

Nomb.

1080

1081

1082

1083

1084

&c.

2. Sherwin, Hutton, Babbage.f

Logarit. D Nomb. Logarit. D
3.03342

41
1110 3.04532

39
3.03383

40

40

1111 3.04571
39

40
3.03423 1112 3.04610

3.03463 1113 3.04650

3.03503
40

1114 3.04689
39

&c. &c. &c. &c. &c.

Num. 1 2 3 4 5 6 7 8 9 DifT.

5150 7118072
8157J8241

8325 8410 8494 8578 8663 8747 8831 84

l 8915 9000 9084 9168 9253 9337 9421 9506 9590 9674
i

8
17

2 9759 9843 9927 0011 0096 0180 0264 0349 0433 0517
3
4

25
34

3 7120601 0686 0770 0854 0939 1023 1107 1191 1276 1360
12
5(1

5y
67
7S

4 1444 1528 1613 1697 1781 1865 1950 2034 2118 2202
/

H

i

8cc. &c. &c. &c. &c. See. &c. &c. &c. &c. &c.

* Tables de Logarithmes, &c. par J6rome de la Lande, Edition sttr£-

otype, par Firmin Didot: Paris, chez Firmin Didot, &c. Rue Jacob,

No. 24, 1805 (tirage de 1831). This work is sufficient for most pur-

poses, but those who order it should remember to insist on having one of

the later tirages.

t All these works are well known in this country. The first (an old

work) is frequently to be found with second-hand booksellers. The last

two can be obtained in the usual way from any bookseller.
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A logarithm usually consists of a whole number, followed by a

decimal fraction, both or either of which may be negative : but in

most tables nothing is put down but positive decimal fractions. We
proceed to shew how this arrangement includes all cases.

1. Take a negative logarithm, such as — 3*16804, which is

— 3 — -16804, or — 4 + (1 —"16804), or —4 + -83196. This is

usually written 483196, in which the negative sign over the four

means that that figure only is negative. [According to analogy, 13

would mean — 10 + 3, or — 7 ; 136 would mean 106— 30, or 76.]

Thus, every negative logarithm may be so converted as to have a

positive decimal part.

2. When the number corresponding to the decimal part is known,

that corresponding to the whole can be immediately found by the

following table,

or logl0-3 = -3log

log

loS To

1000

1

100
or log 10-2 = -2

loglO" 1 = -1

log 10

log 100

or loglO1 = 1

or logl02 = 2

log 1000 or logl03 = 3

&c.

Thus, the number to -30103 is 2 very nearly; that is, -30103

= log 2 : therefore, 1-30103 =log 10 + log2 = log 20, V30103 =
1 2

log— + log 2 = log— = log -2, and so on.

IfD simply stand for a decimal fraction less than unity, we have

(page 223) the following table

:

The log. of a No. Must lie And must there- Instances of

lying between between fore be of the form such numbers

1 , 1

iooo
an

100
—3 and —2 -3-fD •0013, -0098

i5o
and & —2 and —1 — 2 + D •014, -0738

To
and

*
—1 and -1 +D •103, '4296

1 and 10 and 1 + D 2-56, 7-99

10 and 100 1 and 2 1 +D 11-03, 4596

100 and 1000 2 and 3 2+D 159, 159*108

&c. &c. &c. &c.
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Dtfnudon. The whole part of a common logarithm, whrthtr

positive or negative, is called the char.. logarithm.

The decimal part is called tin- i/ia/tf issa.* We now give some

theorems which obviously follow fiom what precedes.

1. No alteration in the place of the decimal point (in which is

included the annexation of ciphers to a whole number) alters the

tnuntissa of the logarithm, but only the characUi

2. When the decimal point of the number is preceded by signi-

ficant figures, the characteristic of the logarithm is ,md a

unit less than the number of these figures. Thus, the logarithm of

1234567 is 4 + mantissa ; that of 6*9 is -4- mantissa.

3. When the decimal point of the number is not preceded In-

significant figures, the characteristic of its logarithm is negutive, and

a unit more than the number of ciphers which precedes the first

significant figure. Thus the logarithm of -00083 is — 4
-f mantissa,

that of -83 is — I -{-mantissa.

Lalande's table first mentioned gives the characteristic, on the

supposition that the number mentioned is a whole number; thus, the

logarithm of 1081 (as given in the preceding specimen) is 3*03383.

But, to take the logarithm of 1081 from this table, the mantissa

•03383 is all that must be taken, and the characteristic applied.

Thus, the logarithm of 1-081 is 0-03383, and, from the rule laid

down, we have the following table :

log 1081000 = 6-03383 log 1-081 = 0-03383

log 108100 = 5-03383 log -1081 = 1~03383

log 10810 = 403383 log -01081 = 203383

log 1081 = 303383 log -001081 = 3-03383

log 108-1 = 203383 log -0001081 = 403383

log 10-81 =1-03383 log -00001081 = 5-03383

The second table gives the logarithms of numbers of five places

of figures. From the first table we might have found the logarithms

of 5153 and 5154, or (the difference being only in the characteristic)

of 51530 and 51540; from the second specimen we can find the

• This word is now seldom used, though there is not another single

word which means the same thing.
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logarithms of 51531, 51532, .... 51539, intermediate to the two

numbers just cited.

Now we must observe, that when a figure is changed in a

number, the first figure which changes in the logarithm will be nearer

to or further from the left hand, according to the figure changed in the

number. This amounts to saying that the smaller (in proportion to

the whole) the change of the number, the smaller the change in the

logarithm, and is shewn by the following theorem. Since (pages 227,

237) the common logarithm of 1-f x is (M = -43429 . . . .)

log(l+tf) = log*+2M (-L- +2*+l ' 3 (2X+1)3
+ &c)

the greater x is, the less the addition to log x by which log (x +1) is

formed. The following instances will illustrate this, in which the

figure undergoing change is marked with an accent. The columns

succeeding shew, 1st. By how much of itself the number is changed ;

2d. By how much of a unit the logarithm is changed (nearly),

logl' 00000000

Proportion to

the whole of the

change in the

Number.

1

Absolute

change

in the

Logarithm.

1

log 2' = 03010300 3

log 10'

log 11'

= 1-0000000

1-0413927

1

10

1

25

log 100'

log 101'

2-0000000

2-0043214

1

100

1

250

log 1000'

log 1001'

3-0000000

3-0004341

1

1000

1

2500

log 10000'

—
4-0000000

4-0000434

1

10000

1

log 10001' 25000

log 100000' 6 0000000

60000043

1 1

log 100001' 100000 250000

Hence, roughly speaking, the absolute change in the mantissa of

the logarithm is something less than one half of the relative change

in the number. Let the student try to ascertain this from the series

given above. Thus, if a number increase by its thousandth part,
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the incratM in the Logarithm is Lesi man tlic absolute fraction ,

ami so on. Hence we can ascertain with sufficient precision to li<»w

many places of logarithmic figures it will be necessary to carry any

table. Let us suppose, for instance, our table is to give every

number of five places, from 10000 to 99999. At the end of the

table the relative increase of the number is about , the
100000

absolute increase of the logarithm is therefore about , or° 250000'

•000004. Consequently six places of logarithmic figures are abso-

lutely necessary. With less than six places distinction would be

lost; for instance,

log 99846 = $-9993307

log 99847 = $-9993350

which only differ in the sixth place. In the first part of the table,

where the relative increase is little more than , the absolute
1 0000

increase of the logarithm is nearly -00004, or five places only would

be sufficient. But the tables must, for reasons of practical con-

venience, be of the same number of figures throughout, and, therefore,

must be at least of six places of figures.

In the second specimen, Jive places of figures in the number are

accompanied by seven places of figures in the logarithms. But, as

the three first places of the logarithm continue the same for some

time, even in the most changeable part of the table, they are placed

by themselves in the first column, at the point where a change takes

place : which saves much room, but is subject to this inconvenience,

that as a change in the third figure of the logarithm will seldom take

place exactly at the beginning of a line, the new third figure cannot

be shewn till after it has really made its first appearance. The fol-

lowing instances, taken out of the second specimen, will shew both

the arrangement of the tables and this new difficulty, better than ny

verbal explanation.
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Number. Mant. of the log. Number. Mant. of the log,

51520 •711 9759 51526 •712 0264*

51521 •711 9843 51527 •712 0349*

51522 •711 9927 51528 •712 0433*

51523 •712 0011* 51529 •712 0517*

51524 •712 0096* 51530 •712 0601

51525 •712 0180* 51531 •712 0686

In this list it will be observed that each logarithm differs from

the preceding either by -0000083, 0000084, or -0000085. In fact,

the whole difference between the logarithms of 51520 and 51520 +10
is -0000842, giving for each increase of a unit an average increase

of -0000084. We have then, at and near 51520, the following

equations

:

log (51520+1) = log 51 520+ -0000084

log (51520 +2) = log 51520 + -0000084 x 2

or, if h be not greater than 10,

log (51520 + h) = log 51520 + -0000084 x h (A)

or, for a small part of the tables, the logarithms of numbers increasing

by a unit increase in arithmetical progression very nearly. Now
(M being -43429 pages 226 and 237),

Com .log (l^) = Me-i(^+ IG)- &c.)

= M - very nearly, when - is small (page 187)

or log (a; + h) = logx + M-, very nearly,

an equation of the same form as (A) ; whence it follows that (A),

which is nearly true when h is 10, is even still more nearly true

when A is a fraction of a unit. Hence we have

In this case x = 51520 and — or '-^^ = -0000084
x 51520

* In all these, the first three figures of the mantissa must be looked

for below. There are various devices in different tables for reminding

the reader of this, which we need not explain, as they are evident on

inspection.
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Iog61250i- lo f -0000084 x I

iog51250-36 = log51520 + -0000084 x

The column marked Diff. (for difference) is meant to expedite

the multiplication which the last equation shews will become neces-

Mtry when the logarithm of six or seven places is sought. It consists

of the tenths of 84 to the nearest whole number : thus,

one tenth of 84 is 8'4, nearest whole number 8

two tenths 16*8, 17

three 252, 25

and so on. The hundredths of 84 may be got by striking off one

figure from the corresponding tenths (adding 1 where the figure

struck out is 5 or upwards), thus,

one hundredth of 84 is about *8, nearest whole number 1

two hundredths 1*7, 2

three 2'5, 3

and so on. Hence by inspection of the column of differences we can

immediately determine the tenths or hundredths of the difference in

question. And now let us determine the logarithm of 51*53946 from

the second specimen in page 237.

The mantissa is the same as that of the logarithm of 51539*46 and

log (51 539 +'46) = log51539 +'0000084 x -46

= log 51539 4-0000084(^ + 4)
but

•°°00084
(to

+
-4) = •°000001

C-3
x 84 +4 x 84

)

(from the table) = '0000001 (34 + 5)

But multiplying a whole number by -1, -01, -001, &c. is the

same as removing its unit's place to the first, second, third, &c. place

of decimals : from which we have

Mantissa of log 51539 from the table = -7121360

Addition on account of the 4 which follows the 9 = 34

Ditto on account of the 6 which follows the 4 = 5

Sum -7121399
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This sum is the mantissa of the logarithm of 51539*46, which has

the same mantissa as that of 51*53946; therefore, taking the proper

characteristic for the last, we have

logSl-53946 = 1-7121399

The following are other instances derived from the same rule, and

falling within the limits of the specimen.

log -5152748? log 5- 150008?

log -51527 T- 71 20349 log 5-1500 7118072

4 34 00

8 7 8 7

log -5152748 1-7120390 log 5- 150008 07118079

log 5152768000 log -00005154899

log 5 152 700000 9-7120349 log 000051548 57122118

6 50 9 76

8 7 9 8

log 5152768000 9-7120406 log -00005154899 5-7122202

The inverse of this question is done as follows : Suppose it

required to find from the table the number corresponding to the

logarithm 1-7118366. Rejecting the characteristic we look in the

table for the mantissa which is nearest to 7118366 (but below it).

This we find to be 7118325, which is the logarithm of 51503; so

that the number required is (as to its significant figures) within a

unit of 51503. Let it be 51503 4- h, then we know that h is to be so

taken* that

log (51503 +h) = 4-7118366

But (page 242),

log (51503 + h) = log 51503 + -0000084 X h very nearly.

= 4-71 18325 + -0000084 x h

* We neglect the characteristic, or rather we make our logarithm

4*7118366. But an alteration of the characteristic is only an alteration

of the place of the decimal point.
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whence

__ 47118366— 4-7118325 __ '0000041 _ A\_

-0000084 ~ -0000084 ~~
84

Now, from the table of differences we see that

34 is ± of 84 nearly,

f 76 is ^ of 84, or

[ 7 is JL of 84 nearly;

so that 34 4-7 or 41 is — A of 84: that is, — = -48 =/*:
10 100 84

whence 51503 -f h = 51503-48 and

4-7118366 is the log of 51503-84

T-71 18366 -5150384

But the readiest method of putting this into practice is by making

an inverse process to the method of rinding a logarithm. We take an

instance from another part of the table.

What is the logarithm of 217483*6 ?

log 21748 (*) 53374193

3 60

6 (t) 12

log 217483-6 is 5-3374265

What is the number whose logarithm is 5*3374265?

•3374265

Nearest log in table, belonging to N« 21748 -3374193

Difference 72

Nearest N° in table of Diff. belonging

to N° 3 60

120
Annex a cipher, because a figure was struck

off, and therefore a figure (we do not

know what) must be annexed. (See

subsequent remark). Opposite to this

we find 6.

* Observe that we put in the right characteristic at once,

f Here, as before, we look opposite to six, and find 120, from which

we strike off one figure.

Y 2
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Therefore the number to the logarithm required is (making six

places before the decimal point, on account of the characteristic 5)

217483-6.

The student will better understand, by forming a number of

logarithms and inverting each process : I . Why a figure must be

annexed to the last difference, which comes after the table of differ-

ences has been used once. 2. Why that figure cannot be known.

3. Why is most likely to be right. The above 12 might have been

the result of any tabular difference between 115 and 125, the mean

number of which is 120. The following are examples of the process,

without explanation :

What are the numbers to the logarithms 2-1183214 and

1-9648317?

•9648317

•964829813131

1183214

1182978

236

232

40

33

Ans. -01313171

92221

19

J9

Ans. 92-22140

The only unusual circumstance with which the student will now

meet is in the multiplication and division of such quantities as 2*9.

To multiply this by 5, carry to the uegative term according to the

common algebraical rule of addition. Thus, five times 9 are 45, set

down 5, and carry 4; five times — 2 are — 10, and 4 are — 6. The

answer then is 6-5. Or

5 (-9-2) = 4-5-10 = 4-10 + -5 = 6-5

To divide 2-9 by 5, make the negative term divisible by 5, and

correct the expression by a corresponding addition. Thus, 29 is

5 + 3-9, and

2-9

5 = T +
39

/
= 1+ -78 = 1-78

The following are further instances :
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1 117

8 10

6)21-68 5)6-170

4 613 .. 2-834

The following is an example of the use of logarithms in multipli-

cation and division, &c. What is the result of -.5729578 multiplied

by 2062648, and the product divided by 7853982, after which the

tenth root of the ninth power is taken ? or what is

9

f -5729578 X 2062648 \
10

I 7853982 J

log -5729578 1-7581226

log 20-62648 1-3144251

Add 1-0725477

log 7853982 6 8950899

Subtract 6-1774578

9

10)53-5971202

6-7597120

57505 -7597056

64

8 60

40

5 38

Answer -000005750585

The student should furnish himself with examples for practice by

verifying such equations, for instance, as a (« -4- />) = c^-j-ab, where

a and b may be any given numbers. The logarithms of a and a -{- />

being added together, and a(a -4-6) thus found, a2 and fib should be

separately found ; and if the whole be correct, the sum of the two

last will be equal to the first.
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The following equations may be thus used :

(a + b){a—b) = a2- b*

V^b = Vax Vb
tn mm

(ab)" = a" x b

"

Nothing but practice will enable the student to work correctly

with logarithms, and most treatises on that subject contain detailed

examples of all the cases which arise in practice.

THE END.

LONDON

:

I'klNTED BY JAMES MOYES, CASTLE STREET,

LEICESTER SQUARE.



ADIKNDA BT CORRIGENDA.

Page viii, line 9, The mistake alluded to is the saying that a multiplied

hy nothing is a.

x, ... 11, omit the word always.

xii, ... 16, for that 1 contains, read that is, 1 contains.

xx, ... 7, for shews, read shew.

3, ... 4 from the end, for added, read added, &c.

21, ... 8 from the end, to on each share, add which he holds.

24, ... 11,12, and 14, for 1988 and 6988, read 1998 and 6998.

35, ... 4, for as, read as often as.

36, ... 20, for right, read left.

47, ••• 9, for (a + 6), read (a + c).

60, ... 6, for C, read A.

89, ... 13 from the end, for square root, read square.

103, Though the student omit what is said on the law of

continuity, he should not omit either this page, or

what immediately relates to it in the next.

109, ... 4, for s/~7\ read V**,

109, ... 10, for J, read o$~K
131, ... 7, for q, read r, in both places.

131, ... 9 and 11, for q, read r.

144, ... 7 from the end, for b + j-, read b + -^.
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