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ADVERTISEMENT.

In again submitting his Work to the notice of the

public, the Author deems it unnecessary to lay before the

reader the reasons which induced him to attempt the per-

formance of it, but at the same time he wishes to present

him with a short account of the plan which has been adopted

in its execution.

The first Chapter, as usual, consists of Definitions and

Introductory Remarks, and implies a previous knowledge of

the terms and fundamental Operations of Common Arithmetic.

Without a competent knowledge of Arithmetic, the progress

of the reader must necessarily be much retarded, and for

want of it the Academical Student is in numberless in-

stances so much discouraged, as soon to be induced to lay

aside the Mathematical pursuits of the University altogether.

On these grounds the acquisition of a Facility in Numerical

Operations is particularly recommended, as, from much ex-

perience, the Author feels confident that in the end the

attainment of great advantages will be secured.

In the second Chapter, the object has been to explain

fully the methods of performing the Arithmetical Operations

upon Integral Algebraical Quantities, or Expressions as they
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are termed, by means of the Signs invented for those pur-

poses, and they have been illustrated and exemplified by

a variety of appropriate examples both original and selected

;

and the latter part of the Chapter points out some of the

uses of Algebraical Characters and Operations in deducing

Theorems respecting Magnitude in general.

The third Chapter treats of the Greatest Common

Measures and Least Common Multiples of Integral Alge-

braical Magnitudes; and it was thought proper to introduce

these subjects in their present place, because at the same

time that they follow immediately from the application of

the Principles and Operations previously explained, they are

essentially necessary in the Reduction and Preparation of

Fractions for the Arithmetical Operations upon them, which

naturally follow in order.

The fourth Chapter exhibits all the Arithmetical Ope-

rations applied to Algebraical Fractions, and concludes with

a few Deductions and Observations respecting the Limits of

niimerical Magnitude algebraically considered.

Ill the fifth Chapter, is developed the Treatment of

Surds or Irrational Quantities, and some Observations have

likewise been made respecting a Class of Algebraical Quan-

tities, usually termed Imaginary or Impossible, which form

a leading feature in some of the higher Applications of the

Science.

The sixth Chapter is a short Treatise on the Solution of

Simple and Quadratic Equations, and of such as are reducible

to those Classes by particular Artifices or otherwise: and it



concludes with a very short Account of some of the Methods

of Elimination or Extermination of unknown Quantities from

Equations, and the Solution of two or more Equations subsist-

ing in connection with each other at the same time.'&

Tlie seventh Chapter gives an Investigation of the Bino-

mial Theorem, as well as a short sketch of the Multinomial

and Exponential Theorems which are deducible from it.

Nothing abstruse has been attempted, and the subjects of

the Chapter, as well as of each of those which precede it,

have been exemplified in a variety of instances.

The subsequent Chapters of the Work comprise the Appli-

cations of Algebra to the Consideration of Ratios, Proportion

and Variation: the common Kinds of Progressions; Variations,

Permutations and Combinations : the different Scales of Nota-

tion, and a short Account of the different Forms and Kinds of

Numbers, the more minute subdivisions of which may be seen

in the Table of contents.

To the whole is appended a collection of miscellaneous

Theorems and Problems for the practice of the student ; and

it is considered that the principles which have been illustrated

and explained in the preceding pages of the work will be

sufficient for the solution of them all.

Cambridge,

December 3, 1830.



Lately published by the same Autlwr^

The elements of PLANE and SPHERICAL

TRIGONOMETRY, Second Edition.

Also in the Press., a new Edition of

The principles of the DIFFERENTIAL and

INTEGRAL CALCULUS.

The theory of EQUATIONS, &c. and the

CALCULUS OF FINITE DIFFERENCES.

<



CONTENTS.

Chap. I.

Article

1

2-r-

Page

Definition op Algebra 1

Symbols and Signs made use of 1

4. Sign, &c. of Addition 2

5. Sign, &c. of Subtraction 3

6. Sign, &c. of Multiplication 3

7- Sign, &c. of Division 4

8. Sign, &c. of Involution 5

9- Sign, &c. of Evolution 5

10—17. Additional Definitions and Illustrations 6"

Chap. II.

18. Addition of Integral Quantities 11

19- Subtraction 14

20. Multiplication I7

21. Division 21

22. Involution 25

23. Evolution 29

3624—44. Numerical and Algebraical Deductions

Chap. III.

45—50. Definition, &c. of Greatest Common Measures 51

51

—

55. Greatest Common Measures of two Quantities 53

56. Greatest Common Measures of three or more Quantities 58

57—^59- Definition, &c. of Least Common Multiples 60

60—62. Least Common Multiples of two Quantities 6

1

63. Least Common Multiples of three or more Quantities .... 62

Chap. IV.

64. Definition, &c. of Algebraical Fractions 63

65—72. Reduction 63

73. Addition 70

74. Subtraction 72



Vlil r ON TENTS.

Aftlde
P^^

75— 78. Multiplication 74-

79—. 82. Division 77

83— 84. Involution 79

85— 86. Evolution 81

87— g6. Miscellaneous Conclusions 83

Chap. V.

97. Definition, &c. of Algebraical Surds 89

98—105. Reduction 89

106. Addition 94

107. Subtraction 96

108— 109. Multiplication 97

110— 111. Division 99

112—lis. Involution 102

114—116. Evolution 104

117 123. Square Roots of Quadratic Surds, &c IO6

1 24— 128. Cube Roots of Quadratic Surds, &c 110

129—136. Transformations of Surds 115

137—142. Imaginary or Impossible Quantities 122

Chap. VI.

143— 149. Statement of the different Kinds of Equations, &c 127

150—151. Solution of Simple Equations, and of such as are

reducible to their form 134

1 52. Solution of Problems dependent upon Simple Equations 141

153—165. Solution of Quadratic Equations, and of such as are

reducible to their form 152

166. Solution of Problems dependent upon Quadratic

Equations 172

167—171- Elimination or Extermination of unknown Quantities 182

172—174. Solution of Simultaneous Equations I9I

175. Solution of Problems dependent upon Simultaneous

Equations 207

176. Proofs of Single and Double Position 219

/, . Chap. VII.

177—182. Method of Intermediate Coefficients «et Z 2

.

183—210. Binomial Theorem and its Applications 229

21 1-^^18. Multinomial Theorem and its Use 258

SllJ-'^^SS. Exponential Theorem and some Deductions from it 265



CONTENTS. IX

Chap. VIII.
Article Page

226—236. Ratio, Arithmetical and Geometrical 269

237—249. Proportion, Arithmetical, Geometricaland Harmonical. 276

250—252. Variation or Proportionality 286

253. Problems with their solutions 291

Chap IX.

254—262. Arithmetical Progression 3^1

263—275. Geometrical Progression 309

276—^287. Harmonical Progression 319

288. Problems with their solutiMis 324

Chap. X.

289—296. Variations and Permutations 335

297—298. Combinations, &c 340

309—313. Continued Products 348

314—315. Homogeneous Products 351

Chap. XI.

316. Different Scales of Notation 352

317—340. Integers 352

341_35] . Fractions 374

352—365. Decimals : 381

366—367. Duodecimals 394

Chap. XII.

S68—373. General Forms of Numbers with Examples of their

Application 398

374—405. Forms and Properties of Prime Numbers including

the Theorems of Fermat, Sir John Wilson, &c 404

406—415. Resolution of Numbers into their Prime Factors, &c. 417

4l6—425. Formation &c. of Polygonal Numbers, comprising the

Piling of Balls and Shells 422

426—438. Formation &c. of Figurate Numbers and their use . 429
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ELEMENTS OF ALGEBRA.

CHAP. I.

DEFINITIONS AND PRELIMINARY OBSERVATIONS.

Article I. Definition I.

Algebra is the Science which treats of the method of re-

presenting magnitudes and their relations to one another in

general terms by means of symbols and signs respectively ; and

by such mode of representation, it comprises all particular cases

of quantities and their connection with each other in general

language, dependent upon the natures of the questions in which

they are involved.

2. Def. 2. The Symbols employed in this science are

the letters of the Alphabet usually distinguished into known
or given, and unknown or required; known quantities are

generally denoted by the former letters o, 6, c, &c. and un-

known by the latter <f, y, as, &c.

Sometimes the capitals A, B, C, &c. and the letters of the

Greek alphabet a, /3, y, kc. are adopted for the same purposes.

When a series of quantities are similarly employed in any

operation, it is not unusual to represent them by the same letter

with different small successive figures suffixed, as a©, o^, a^,

&c. ; or by the same letter with successive numbers of accents,

placed contiguous to it, as a, a", a", &c.

A
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The distinction of using the former letters of the alphabet

for known quantities, and the latter for unknown, though

generally adoptetl, is not universally so, particularly in the

works of the old writers.

3. Def. li. The Signs here made use of are certain

marks or characters invented to denote the common operations

of Addition^ Subtraction^ Multiplication, Division, Involution

and Evolution, which, by reason of the general nature and

form of the quantities under consideration, can only sometimes

be effected, but may always be indicated or expressed.

4. Def. 4. The sign of Addition read plus is +, and

signifies that the quantity to which it is prefixed is supposed

to be combined with the quantity which precedes it by the

operation of addition ; and all quantities to which this sign is

prefixed, as well as such as have no sign expressed, are termed

jHtsitive or affirmative.

Ex. 1. Thus, in the expression a + b, the sign + indicates

that the quantity represented by b is to be added to that repre-

sented by a ; and if numerical values were assigned to these

quantities, this sign would be no longer necessary to indicate

operations which could then be effected, for if a and b were

7 and .'i respectively, a + b would be 12, in which the sign

has disappeared.

Ex. 2. The same observations may be made respecting the

expression a + b + c + &c. in which any number of quantities

is understood to be combined in the same manner; and it is

evident that its value will be the same in whatever order the

letters occur.

Ex. 3. Again, a + a + a indicates that three equal quan-
tities are to be added together, and the result of this operation,

we know, would be three times any one of them, or three

times n.



5. Def. 5. The sign of Subtraction called minus is —
,

and denotes that the quantity which it precedes is understood

to be subtracted in all cases where the sign + would indicate

the operation of addition, and all quantities affected by it are

styled negative.

Ex. 1. Thus, the expression a— h indicates that the quan-

tity represented by h is to be subtracted from that represented

by o, and were the quantities a and h numerically expressed

as before, the value of a — 6 would be 7 — 5 or 2.

Ex. 2. Similar remarks may be applied to such an ex-

pression as a — 64-c — d + &c. in which, by the last article

a, c, &c. are understood to be connected by the operation of

addition, and from their sum 6, d, &c. are supposed to be

subtracted in succession.

Ex. 3. If we take any two expressions, each made up of

several quantities or terms, as a-\-b— c-\- he. and/— g -\- h —
&c. and for the sake of keeping them distinct from one

another inclose each in a Parenthesis, or connect their parts

by a line called a Vinculum, it follows that (o + 6 — c + &c.)

— (/—g+h— &c.), or a + 6 — c + &c. —f—g + h— &c.

implies that the latter of these sets of quantities is to be sub-

tracted from the former, and it is of no consequence in what

order the letters are placed, provided they all retain their pro-

per signs.

All expressions formed by the operations indicated by the

signs + and — are called Compound quantities, the parts being

styled Simple quantities, and every quantity whatever is sup-

posed to have one or other of these signs.

6. Def. 6. The sign of Multiplication read into is x ,

and shews that the quantity which precedes it is to be multi-

plied by that which comes after it.



Ex. 1. Thus, a x h indicates the product of the quantities

a and ft, and if n and b were numerically expressed by

24 and 6, the multiplication might be effected, and the product

would be 24 X G or 144.

Ex. 2. Similarly, a x 6 x c x &c. denotes the continued

product of the several quantities represented by the letters

a, 6, c, &c. each of which is called a Factor, and the product

is said to be of as many Dimensions as the number of such

factors contained in it.

Ex. 3. Again, {a + h—c + &c.) x (f—g + h- &c.)

X {k + I — m + &c.) X &c. represents the continued product

of the compound expressions or factors which it contains, and

it is manifestly immaterial in what order they occur.

In Algebraical as well as in Arithmetical operations the

place of this sign is frequently supplied by a point : thus, a . 6 is

equivalent to « x 6, 2 . 3 to 2 x 3 ; and more generally in the

multiplication of simple Algebraical quantities, both signs are

entirely omitted, as a 6 is supposed to be equivalent to either

ax6orrt.6: so 3 x a and 5 xb x x are written 3 a and 5bx,

and in these quantities 3 and 5 b are styled the Coefficients

of a and x respectively : hence also, the coefficient of a is

understood to be 1.

7- Def. 7. The sign of Division read 6y is -f- or :

,

which placed between two quantities, denotes that the former

of them is intended to be divided by the latter.

Ex. 1. Thus, a-r-b or a : 6, indicates that the quantity

represented by a is to be divided by that represented by 6,

so that, assigning to a and b the numerical values used in the

la.st article, we shall have a-^b equivalent to 24 -h 6 or 4.

Ex.2. In like manner, {a + h — c \- he.) -r-{d— e -\-f— he.)

denotes the result arising from the division of the former of

these compound expressions by the latter.
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This sign is but little used, the same operation being more

generally expressed by placing the dividend over the divisor

with a line between them, after the manner of a fraction : thus

a - a + 6 — c -f &c. . , ,
. ,

- and are equivalent to the expressions used
b d-e+f-kc. ^ ^

in the examples just given.

8. Def. 8. The sign of Involution is a small figure called

an Index or Exponent, placed above the line to the right of

the quantity to which it belongs, and is used merely as an

abbreviation of the repetition of several multiplications.

Ex. 1. Thus, a^ denotes the square of a, and is equivalent

to a X o or a a, that is, to the product arising from the quantity

a being multiplied by itself.

Ex. 2. Similarly, a^ denotes the cube of a, and is equiva-

lent to a X a X a or aaa: and a^ represents a x a x a x a

or aaaa.

Ex. 3. The same holds whatever be the number of opera-

tions, as «" denotes a x a x a x &c. in which the number

of factors is supposed to be w ; and hence a^ will be equivalent

to a.

Ex. 4. After the same manner, the square, cube, &c. of

a -{• b will be represented by (a 4- by, (a + by, &c.

9. Def. p. The sign of Evolution called the Radical

Sign is V^, and denotes that the root expressed by the figure

which accompanies it, is understood to be extracted from the

quantity to which it is prefixed.

Ex. 1. Thus, y/a, which is more generally written ^y/o,

expresses the second or square root of a.
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Ex. 2. Similarly, >^ah represents the third or cube root

of the quantity expressed by the product of a and h.

Ex. 3. Again, ^a { as anA^ a - b express respectively

the fourth and m"* roots of o + a; and a - h.

These q)erations are frequently expressed, as the powers

were in the last article, by means of fractions, as J , J , J , Sec.

-, placed to the right of the same quantities; thus ai, (a6)i,

III

(a -f x)* and (o — 6)" are equivalent to the expressions used

in the three examples of this article.

10. Def. 10. The Reciprocal of a quantity is a fraction

whose numerator is unity, and denominator the quantity pro-

posed, which consequently denotes the number of parts into

which the unit is supposed to be divided.

are the reciprocals of the quantities expressed by a, 6* a?', w"',

(rt + .r), (a,v — by)', &c. which, for the sake of symmetry

with the notation adopted in the last two articles, it is not

unusual to write in the following forms

;

a-\b--x-*f cT"'*, (a + .T)-^ (oa?— fey)
-

•; , &c.

11. Def. 11. The Dimensions of quantities are denoted

by the indices or exponents which belong to them, and when
the sums of such exponents are equal in all the terms of any

expression, that quantity is said to be Homogeneous.

Ex. 1. The quantities denoted by o, (6 + .r)', (c — y)^

specUvely.

j. 1

and (a — .r)- are said to be of 1, 2, 4 and dimensions, re-
m



Ex. 2. So also, cr
- ^, (a - a) " 3

,
(b + v)

~ '" and {c + y)

are accounted to be of the respective dimensions

— 2, — 4 , — w and

12. Def. 12. Quantities are said to be arranged accord-

ing to the dimensions of any letter involved in them, when

the indices of that letter occur in the order of their magni-

tudes either increasing or decreasing.

Ex. 1. The terms of the expression a^ — ax + x^ are

arranged according to decreasing or descending powers of a,

and increasing or ascending powers of oc, but it is generally

said to be arranged according to the dimensions of a.

Ex. 2. Similarly, a?" — ax"~^ -\- hcB^~-— &c. is arranged

according to the dimensions of <r, and at/^ — hy^ -{• cy~^ {• &c.

according to the dimensions of y.

13. Def. 13. One algebraical expression is said to be

greater or less than another according as the letter which

characterises its terms is raised to higher or lower dimensions,

without any regard to the particular values that might be

assigned to the letters involved in it.

Ex. 1. Thus, the expression x^ — ax"-\-a^x — a^ is said

to be greater than x^ + ax + c?^ though values might easily

be given to x and a which would render the contrary to be

the case.

Ex. 2. Similarly, the expression cf*— 'paf^'^ \- qx^ ~ '— &c.

is in the same sense said to be greater than

moT-^ — (m—l)px^-^-}- {m~2)qx^-^— &c.

whether m be positive or negative, integral or fractional.



8

14. In aiidition to the fundamental symbols and terms

of this science above explained, the sign = denotes equality

;

: :: : or : = : expresses proportionality as used in common

Arithmetic; > is equivalent to greater than^ < to less

than; '.' to since or because, and .*. to therefore.

Ex. I. Thus, a.r— b = cy + d implies that the quantities

on each side of the sign = are equal to one another, and the

whole expression is called an Equation.

Ex. 2. Also, a : b :: c : d OT a : b = c : d denotes that

a has to 6, the same ratio or relation which c has to rf, and the

whole expression is styled a Proportion.

Ex. 3. Lastly, •/ a is > 6, .-. 6 < «, is read, because

a is greater than 6, therefore 6 is less than a.

15. All algebraical quantities are in their form either

Integral, as a, 6, o6, ab-cd, (aw + by^, &c.

r, ^. , a ab ab-^cd /ax— bv\^'^
Fractumaly qjj - , — , _ ( ^

) &c.
6 cd ax— by \ca; + ey/

Irrational or Surd, as

r~ K r^^ /ab— cd\i /aae + bv\kVa» V —
» ( -T-) ' I ^) ' &c.

c \ax + by/ \cx— dy/

Impotnble or Imaginary, as

„ /—r a/ ab *"/ ab— cd

r ex +fy

16. In the rudiments of this science, certain additional
tmnt are Rometimes used, which in a great degree explain
thcmelves.
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Thus, instances of

Like Quantities are a, 2a;4a6, 7a6; 5 (a+o?)*", 1 1 (o +*)*"; jScc

Unlike Quantities area, 6; 3<ry, 5yz; 4(a+a?)'", 8(6+.r)*; &c.

Monomials are a, a 6, a6<r, &c.

Binomials are a + 6, a— hx, 5 a + 7 x, &c.

Trinomials axea + b + c, a — bce-{-cx', x^ — px-\-q, &c.

&c &c.

Multinomials are a + 6'i? + c.i?^ + da?^ + &c.

,

a;" — px"-^ + qx""-- — &c. + Qx- — Px + L, &c.

17. We may illustrate the definitions already given by the

following examples, in which a, 6, c, d, e, &c. are supposed

to represent the natural numbers 1, 2, 3, 4, 5, &e.

Thus, a + & + c-d=l+2 + 3-4 = 2:

06 + ac — 6c + cd= 1.2 + 1.3 — 2.3 + 3.4= 2 + 3-6+ 12 = 11:

(a + c) (d-6) = (1+3) (4-2) = 4.2 = 8:

a—b+c 1—2+3 2

6 + d— e
""

2 + 4— 5
~

1

~

a6 + de _ 1.2 +4.5 _ 2 + 20 22

ac + cd ~ 1.3 + 3.4 ~ 3 + 12
~ 15'

{ac + b"f = (1 .3+2^)2 = 72 = 49

:

J(a + 6)(e_c)}^ = {(l+2)(5-3)5^=6^=2l6:

'd-ax** /4-r
r^:)=(E^) =(-;)-'= 81

\1/

B
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^abrd + a* = ^1.2.3.4 + 1 = ^/sl+l = >/25 = 5 :

*^ ""oft+Tr" ~ ^ 1. 2 + 2.3 ~ ^ 8 ~ i'

In each of these instances, the Monomials involved are

connecte<) together by one of the signs + and — ; but it may

be obeerved that these signs do not in any degree affect their

mbaokUe magnitudes, and that the terms positive and negative

are applied to them merely in reference to other quantities,

to which they are to be added, or from which they are to be

ntbtracted, so that in consequence of quantity being in general

increased by the former operation and diminished by the latter,

potitwe and negative magnitudes are sometimes considered to

be respectively greater and less than nothing.



CHAP. II.

On Integral Quantities.

I. ADDITION.

18. Def. The Addition of algebraical quantities is the

combining or incorporating into one expression such quantities

as are like, according to the operations indicated by their re-

spective algebraical signs, and placing those that are unlike

in one line, with their proper signs before them.

Ex. 1. Thus, if we have to add together the like positive

quantities Sax, 4 a a? and 7 ax, it is evident that the sum will

be three times the quantity ax, together with four times that

quantity, and seven times the same quantity ; that is, it will

be 14 times the quantity ax or 14<ax.

The same observations being equally applicable to all such

quantities, we have the following

Rule 1. The sum of any number of like positive alge-

braical quantities is found by taking the sum of their nume-

ral coefficients, and prefixing it to the same quantity.

Ex. 2. To add together the like negative quantities— 2 Ay,

—^ 4 6y and — 6 by, we observe that 2 by taken negatively,

together with 4 by and 6 by taken also negatively, will be the

same as 12 by taken negatively, or the sum of — 2 by, — iiby

and — 6by will he — 12 by, and so on : and hence, as before.
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Rule 2. The sum of any number of like negative quanti-

ties is the sum of the same quantities with the negative sign

placed before it.

Ex. S. In adding together the like positive and negative

quantities 4a.r, — 5 aa*, — 2 a.r and 8 a.v, we have to take

4a.r and Saw positively, that is, we must take 12 aw posi-

tively : also, 5 a.r is to be taken negatively, and 2 ax negatively,

therefore, on the whole, 7 aw is to be taken negatively: and

hence the sum of the quantities above written will be 5 aw:

similarly of other c^ses, and thence,

Rule 3. The sum of any number of like quantities with

the different algebraical signs + and — is obtained by taking

the excess of the sum of those with one of these signs above

the sum of those \vith the other, and by prefixing the sign of

the greater.

Ex.4. The unlike quantities Saw^ — 2 by, 1 ez, &c.

having to one another no assigned numerical relation, do not

admit of being incorporated into one expression, and can there-

fore be added together only by placing them in a line connected

by their respective signs, and Saw — 5 by + 7 ez, &c. is called

their sum : also, as the same holds of all others, we have

RuLK 4. The sum of any number of unlike quantities is

expressed by placing them all in a line one after another,

each retaining its proper sign, which is either expressed or

understood.

Ex. 5. If several quantities as 5 aw, 7 bw, — 8 cw. Sec

have one or more letters common to them all, their sum will

be 5 a.r + 7 bv — 8 ex kc. which according to the principle

of the notation explained in (6) may manifestly be written

(5 a + 7 6 — 8 r &c.) x or 5rt + 7 6— 8c &c. x : and as the same
will hold io all other cases, we have
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Rule 5. When one or more letters are common to several

unlike quantities, their sum will be expressed by affixing the

common letter or letters to the sum of the rest found by

the last Rule, included in a parenthesis, or placed under

a vinculum.

Ex. 6. Let it be required to find the sum of the following

quantities:

5a— 6b + 4c— 4! ax + 3 by— 10 CZ + 2 ax"— 3 by" + 4icsr,

8a— 4>b+ 7 c— 5ax + 8by—l5c%+ 3ax--5hy^ + 7cz^,

11a— 23 6 + 14c— 8ax + 6by— 24>c% + 9ax"— 2by- + 5cz^,

13a— b + 18c— 20ax+ by— 3cz + 8ax"— 4!by'^ + c%":

combining each of these vertical rows of like quantities accord-

ing to Rules 1 and 2, we shall have the whole sum equal to

37 a— 34 6+43 c— 37 ax+ 18 by-- 59. cz + 22 ax" — 14 by"+ 17 cz".

Ex. 7. Let it be required to incorporate into one sum the

following quantities

:

13x*+ 3x^y^±5xy^+10y'^— ax"^ ± 6V— c'a?+ 8 a"*,

— lOip''- x^y^ + 8xy^- 5y^-^7 ax^ + 5b'^x^ + 9c^x— 4<a\

3 x'^ + 8 x-y"^±2 xy^+ 6y^— 6ax^±3b"x-— 2c\v-\- 5a^,

7x*— 4ix"y" + 3xy^— 2y*+ 8ax^ + 4!b^x^ + 20c^x—18 a^;

here, combining the quantities in each of the vertical roAvs

according to Rule 3, and observing that the upper and lower

signs of the third and sixth rows are to be taken together

respectively, we shall have the sum equal to

13 x^+ 6 x"y" hF 4 <r^^ + 9 J/"*+ 8 ax^ + 5 b^x'^+26 c^x — 9 a^

Ex.8. Add together the following quantities

:

2ab"+ 3ac"-- 8ca?-+ 9l)^x — 8hy"—10ky,

5a^ — 4a6^- 7bx'^— b"x— 4-k?/ — 15 hy,

J 4 6^ — 22 ac"— 10 x" +11 A- — hy'-{- 5ky,

19ac-+ 2ab"+ Qx- — 8b'-x-\-2ky"-{- 6hy;



14

here observing that the quantities ab\ a(r are to be taken as

often positively as negatively, the sum of all such terms = 0,

and according to Rules 3, 4 and 5, we shall have the whole sum

equal to

Ex. p. Let it be required to find the sum of the following

quantities

:

7 J?'- 14 (a + 6) X + 13 (a + c) y*,

8a''4- 5 (o + 6) ^ - 5{a'\-h) yS

-25a:« + 8 (a + 6) ^ + 15 (c - o) y%

17 J?'— 21 (a + fe) a? — 10 (6 + d) y'?

here, attending to the Rules above laid down, we have the

required sum equal to

7 JT*— 22 (a+ 6) d? + (28 c- 7a - 15 6 - lOd) y'.

II. SUBTRACTION.

19- Def. The 5'M6/rac<ion of algebraical quantities being

the taking away of one quantity from another, is the reverse

of addition, and consequently those quantities, which are to be

combined with others by the operation of subtraction, must be

supposed to be affected with signs contrary to what they would

have been by the oj)eration of addition.

Ex. I. If from 4 a.r + 2 6j/ we subtract 2 ax + by, the

terms of the expression 2 ax + by must be affected with nega-

tive signs, and then the combination must be performed as in

addition, so that the required difference

= * aX -\- 2 by — 2 ax— by= 2 ax •{- by.

Ex.2. Taking 2az — 0ab from — 8 aar-f 4a6, we must,

from the nature of the operation, add •~2ax +6ab to — Saz
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+ 4a6, and the sum— 10a^+ 10 a6, obtained on this hypo-

thesis, is the difference of the two quantities required.

Ex. 3. In subtracting 2 a- — 4 6c from 6a" -{ 8 6c, it is

manifest that if we take 2 a^ from 6 a- + 8 6c, we take away

too much by the quantity 4 6 c, and therefore the remainder

6 a* + 8 6c will be too small by this quantity: hence, there-

fore, adding 4 6c to this remainder, the true remainder will

manifestly be 4 a* -f 12 6c, which would have been obtained

by changing the signs of 2a'^— 4 6c, and proceeding as in

addition.

Ex. 4. To take 6 a^— 10 ab from 8a^ — 2a6, we observe

that 8a^ = 6a- + 2aS and — 2a6= — 10a6 + 8a6, so that

Sa^— 2ab is equivalent to 6 a^ •\- 2 a^— 10 ab + 8 ab : hence

from this taking away 6 a^— 10 ab, we have 2 a- + 8 a6 for the

remainder, and which is the same as would have been obtained,

by the method pursued in the first two examples.

Similar observations being equally applicable to all other

instances, we thence deduce the following general

Rule 1. Change the signs of all the quantities to be sub-

tracted, or conceive them to be changed, and then combine

them with the others by the operation of addition.

Ex. 5. If from ax^— ba;-+ca!— d^ we wish to subtract

px^ — qx^+rx— Sf we must take px^ from ax^ which gives

ax^—px^^(a—p) x^= —(p— a) x^; — qx^ from — 6a?^, which

gives qx^ — bx^ = {q— b)x^= — (6— q) x"; rx from ex, which

gives ex — rx =:: {c — r) X z= — (r — c) x, and — s from — d,

which gives s — d= — (d— *), as appears from the preceding

examples: hence, therefore, the required difference will be

{a — p) x^ + (q— b) X- •{ (c— r) X -{ (s— d), or — (p — a) x^

— (6 — g) a?'— (r — c) a? — (d— s) : whence we have

Rule 2. Because the signs prefixed to a parenthesis

affect all the quantities included in it, the signs of the quan-
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titie» to be subtracted and inclosed in a parenthesis are

changed or not, according as it is preceded by a negative or

positive sign.

Ex, 6. From 4 o* + 6 a'fe + 8 o'6' + 10 aP + 12 b\ let it

be required to take away 2 a* + 3 o'6 + 5 a%^ + 8 cr 6^ -f 1 1
6*.

Conceiving the signs of the lower line to be changed,

and then combining the two lines together by the rules of

addition, we have the reqvured difference

= 2 a* + 3 a'6 + S a' 6- + 2 a 6' + 6*.

Ex. 7. From 6 a^y + 10 x^y^ + 13 xy^ + 19 yS let 5 x^y

— 2«'jr + 3J?y'— 2y^ be subtracted.

Here, arranging the like quantities one under another, we

have

6 .r'y + 10 j?2y-+ 1 3 j?y^ + 1 9 yS

and oar^y— 2x"if-\- Sa-y^— 2j^^;

and then proceeding as before, we obtain the required re-

mainder = x^y + 12 x^y' + 10 xi^ + 21 y*.

Ex. 8. Let it be required to subtract from the expression

25 (o*— «*)— 23 {ah + ex) — 17a (a? + y) + 3 acy the expression

20 (a' + J?*) + 15 (o6— CJ?) + 13 o (a?— y) + 2 oc.

First arranging the quantities as underneath, we must,

from 25 (a*— .r) — 23 {ah+ ca?) — 17 a (a?+ y) + 3 a c,

take 20(a-+ j')4-15(o6 — cJ7)+ 13a(a?—y)+2ac;

then V «5o'— 20o«= 5a«; — 25 a:' — 20 a?-= — 45a?';— 23fl6
— 15o6= — 38 o6; —23 car +15 car = — 8 cr^ — 17 oa,'— 13 a.i'

= — 30aar; — 17 «V + 13fly= — 4ay and Sac— 2rtc = ac;

wc have the required difference

s5 a'~ 45 .r'— 38 aft — 8 c.r— 30 oa?— 4 ay + a c.
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III. MULTIPLICATION.

20. Def. The Multiplication of algebraical quantities

being an abbreviated method of performing the addition or

subtraction of several quantities of the same kind, will be

effected according to the rules of common arithmetic, or indi-

cated by means of the signs invented to denote that operation,

Ex. 1. If the quantity a be to be multiplied by the

quantity 6, it is implied that the positive quantity a is to be

repeated 6 times, and the result of such operation is written

axb or a .h or a 6, which is also positive.

Ex. 2. If the quantity — a be to be multiplied by the

quantity 6, it is understood that the negative quantity— a is to

be taken h times, and it is manifest that there wUl arise a nega-

tive result denoted by— a x 6 or— a . & or— a 6.

Ex. 3. If we have to multiply a hy — b, since from the

principles of Arithmetic it is immaterial in what order quantities

to be multiplied together occur, we shall have ax—b— —bx o,

= —b.a= —ba= —ab, which is negative.

Ex. 4. The quantity — a being multiplied by the quantity

— 6 implies that— a is to be subtracted b times, and there-

fore that a is to be taken positively b times as appears from the

last article : hence— a x —b gives a positive result + ab.

Ex. 5. In multiplying a + b hy c + d, we observe that

a + 6 is to be taken c times positively and also d times posi-

tively : that is, (a + b) c and (a + b) d are to be taken, or the

product is ac + be -{- ad + bd= ac + ad -{-be + bd.

Ex. 6. If a— 6 be to be multiplied by c - d, it is manifest

that a — b must be taken c times positively, which gives

(a — 6)x« or ac— bc; and d times negatively which gives

C
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(a — 6)x —d or — ad + bd: wherefore the entire result of

the operation will be

ar— bc— ad + bd or ac— ad— he + bd.

Similar considerations in all other cases will lead to the

following

Rule l. The product of two algebraical quantities is

positive or negative according as they have the same or

different signs, and the product of two compound quantities

is equal to the sum of the products of each of their terms.

Ex. 7. If any number of quantities 2 a, 3 6, — 4 c, &c. be

to be multiplied together, we have 2ax 3b= 6ab; .-. 2ax 3b

X — 4c=6o6x —4c= — 24a6c, &c. ; that k, the sign of the

result will manifestly be determined by the Rule above given.

Ex. 8. Let o- be to be multiplied by a'; then we observe

from Def. (8), that a'= a x a and a^= ax ax a; whence we
have the product =^ a- x a^ = {a x a) x (a x a x a) = a x a

X a X a X a = a^i by the same definition.

Ex. 9. Again, to multiply a" by a", we must first observe

that agreeably to the last mentioned definition,

a" = a X a X a X &c. to 7» factors,

and a* = « X o X a X &c. to « factors;

.'. the product a" x a'

— axaxax he. torn factors x o x a x o x &c. to « factors

=:axaxax&c. tom + n factors

«= o**", by definition (8).

Similarly, a" x o" x o' x &c. = o"***-^**-; for we have

just seen that a'' x a* =: o"+", /. it follows that

or X a"* X nP = a"""" x aP = a-"*"*", and so on.
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Rule 2. The product of any number of powers of the

same quantity is equal to that quantity raised to a power

denoted by the sum of their indices.

Ex. 10. To multiply x^ + aar + a'x + a^ by j? + «, we

have {x^ + ace^+ crx + a^) x a? = a?' x cV + aw" x <» + c^x x x

+ o' X a?= J?* + aoE^ + c^x^ + a^x and {x^ + aa^ + a^x + a')

X a= cf a?'' + a^a?" H- fl'a?+ a* : hence, arranging the quantities

according to the dimensions of a?, and taking their sum, we find

a?* + aa?^ + O'a?^ 4- a'a?

oa?^ + (j^x^ + o^a? + a*

.-. the product = a?* + 2 ax^ + 2 a^a;^ + 2 a' a? + a**.

Ex. 11. If it be required to find the product of 3 a?^ — 2a?

y

— t/^ and 2 a?— 4 y, we have as in the last example to multiply

each term of 3x^ — 9.xy— y^ by each term of 2 a? — 4 y, which

operation may be exhibited as under

:

S x^ — ^ xy — y"

2x — 4ty

Qx^ — 4 x'^y — 2 xy^

— 12 x^y + 8 xy' + 4 y^

.'. the product znQx^ — l6x'y + 6xy^ -h ^y^

Ex. 12. Multiply x^ — px'^ + qx —r
by a' —a

a?* — px^ + qx"^ — rx

— ax^ + pax'^ — qax + ra

the product

= d?* — (p + a) x^ + (? + p«) a?- — (r + </a) a? + ra.
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Ex. 13. Multiply a;*-{n- l) o'jt*+ a*

by x^—a^

— a-x* + (n—l) a*ar— a

. : the product = x^ — na^w*+ na*a/"— a^.

Ex.14. Multiply ii?"'— j9a?-" + g'^" -r
by x'* + pa?** + qx'* + r

x^''^px^''-\-qx*'' — r.r?'"

px^'^—p^x*" +pqx^''—prx''*

qx^ —pqx^'* + q^x^'* — qrx"

rx^" —prx^'*+qrxl"—r"

.-. the product = x^''— (p^— Qq)x*'' + (q^— 2 pr)x^"— r-.

Ex. 15. Let it be required to find the continued product

of the three compound expressions, a' +2a6 + 6', a^ — 2ab + 6"

anda*+ 2ab^ + b\

First, multiply a" + 2 ah + 6*

by a-— 2ab + 6^

a-6-+ 2a6' + 6*

then, multiply a*— 2 a'6^+ 6*

by o* + 2o'6«+ 6*

a»-2o'6«+ a*b*

2a^b--ia*b*+2arb^

a*b*-2a'b^+b^

.'. the continued product = a** — 2 a* 6* + 6*.
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IV. DIVISION.

21. Def. The Division of one algebraical quantity by

another is the finding what quantity multiplied by the latter

will produce the former, and it is therefore the reverse of multi-

plication, and will consequently be effected by retracing the

steps, or indicated by means of the notation adopted in

definition (?)•

Ex. 1. Dividing ab by 6, we shall manifestly have a for

the quotient, because b multiplied by a gives ba or ab.

Ex. 2. The quotient arising from the division of a 6 by— 6

is — a, a negative quantity, for the same reason.

Ex. 3. Similarly, the result of the division of— a 6 by

b is— a, which is also negative.

Ex. 4. And the result of the division of— ab by— 6 is a,

which is positive.

Ex. 5. Since (a — b) x {c — d) =^ ac — ad — be + bd, it

follows that the quotient of ac — ad — be -{-bd divided by

a — b is c — d, which may be obtained by the process under-

neath :

a— b) ac — ad— bc + bd (c -d,

ac— be

— ad + bd

— ad + bd

for it is manifest that ae divided by a gives c, and if the

whole of the divisor be multiplied by this quantity and the

product be subtracted, there remains — ad + bd: the same

operation being repeated, the other term— «2 of the quotient

is obtained.



33

By a similar mode of reasoning in all other cases, we shall

obtain

Rule l. The division of one algebraical quantity by

another must be performed as in common arithmetic, and the

quotient will be positive or negative, according as the divisor

and dividend are affected with the same or different signs.

Ex. 6. To divide a* by a-, we must refer to definition (8)

where we find that a* is equivalent to a x a x a x a and

a' to a X a: wherefore, dividing the former of these by the

latter and observing that the multiplication by two factors is

neutralized by the division by the same two, we get the quotient

= a X a or a".

Ex. 7. Again, since o"* is equivalent to a x a x a x &c.

to m factors and a'* to a x a x a x &c. to n factors, it follows

that, when m is greater than w, the quotient of a*" divided by o"

is equivalent to a x a x a x he to in— n factors ; that is,

a" -r- a* is equal to a*""".

From such instances as these we obtain the following

Rule 2. The division of one power of a quantity by
another power of the same quantity is effected by subtracting

the index or exponent of the divisor from that of the dividend.

Ex. 8. Since a"* -f- a" = a"*"", if we suppose m = w, we
obviously have 1 = a"*"" = o°; whence it follows from the

notation adopted in (10), that any quantity whatever raised

to the power denoted by is an expression equivalent to 1.

Ex. 9. To divide 9aHc-~ liable + \5abc" by 3o6,
we observe that 9 a^bc-i- 3 ab= 3ac;— 12 ab^c-i-

3

ab= —^bc^
and \5abc- -^ 3a6 = 5c-; whence the entire quotient will be
3 oc— 4 6c -1-5 c^
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Ex. 10. To divide a'^-\-6ab-\-8b'^ by a + 4 6, we must

arrange the quantities according to the dimensions of one of

the letters involved, and proceed as in common arithmetic:

thus, the arrangement being already according to the dimensions

of a, we have

a-\-4b) a^ + 6ab + 8b- (a +2b,

a~ + 4<ab

2ab+ 8b^

2ofe-|-8 6'

in which we first enquire what is the result of the division of a"

by a, and this being a is placed in the quotient : the divisor

is then multiplied by a, and the product subtracted from the

dividend leaves a remainder 2ab-\-8b-: similarly the quotient

of 2 ab by a is 2 6, and the process being continued, the re-

mainder becomes 0, and thus the division is completed.

Ex. 11. To divide a^ -\- ^ a^ b'^ + 16 b* by ar-2ab-\-4^b\

we arrange the quantities as underneath

:

a^-2ab+ 4>b'')a* + 4a-b'+l6b*(a^ + 2ab-\-4>b%

a^-cta?b 4- 4a262

2a^b +166*

2a'6 - 40^62 ^8a6'

4>a%" -8ab^-\-l6b*

^a-h" -'8ab^+l6b*

where the steps of the operation are effected in the same manner

as in the last example, and the remainder is 0.

Ex. 12. To divide «"'— .r"' by a— tp, we have the operation

as under

:
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n - .t) a" - x" (a"-' + «'""*a> + a"'-' or + &c. + ax"-^ + oT

a""V— a?"

now, it is observable that in the remainder the index of a is

diminished and that of x increased by unity in each step, and

that the sum of the indices in every term always = m ; whence

we shall at length have a^x"^~^— x"* for a remainder : and con-

tinuing the division from this as before, we obtain

a^x'^-^— x"'

ax"' ^ —x"

whence it follows, that if w be any positive whole number
whatever, aT— oT is divisible by a— a? without a remainder,

and the division gives the following m terms

a-^' + dr-*x + &c. + aa?"-2 + a?"*"^ for the quotient.

Ex. 13. Let x^ — 'px°- + qx —r be to be divided by a? — a

;

then as before^ we have

cc— a) x^— px'^ + qx— r (x'^+ (a-p)x+ (a^—pa + q),

a^— ax^

+ (o— ;>) x- — {a' — pa) X

(a-—pa +q')x— r

{a^ -pa + q) X - {a^ - pa^ ^ qa)

a^-pa- + qa-ry
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the steps of the operation being effected as in the preceding

examples, the remainder is a^— pn^ + qa — r, which, it may be

observed, is the same as the dividend with a in the place of ,v.

Ex. 14. If we divide 1 by 1 + .r, we shall have the follow-

ing operation

:

1 + .r) 1 (1 — .T + a?^ — w^ + &c.

1 + *

— a;

.V -x'

x"

w^ + w^

— x^

— w^- w'-

A
wherein we observe that the index of x in the remainder is

always equal to the corresponding number of terms in the

quotient : and it is manifest that by continuing the operation,

the number of terms might be indefinitely increased^ and form

what is called an Infinite Series.

V. INVOLUTION.

22. Def. The Involution of algebraical quantities being

the repetition of one or more multiplications will be effected by

means of the rules already given for that operation, or indicated

according to the notation explained in definition (8).

Ex. 1. The square of ab = ab x ab=:a^b"; the cube of

ab=^ab X ab y. ab= a^b^; the fourth power of ah= ab x ab

X ab X ab=ia%'^; &c.

D
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Ex. ti. The square of — a?y= ( — .vy) ( — wy) = x^y-; the

cube of - .ry = ( - ay) ( - ,vy) ( - a-y) = - .rV ^ the fourth

power of— jry= (— .ry) (— .ry) ( — ^y) ( - xy) = .r"*y^ &c.

Ex. 3. The square of a"= a" y. a-= a^^- = a^-, the cube

of a* zsi a' X a^ y^ a^ = «*+*+* = a^ ; the fourth power of

a* — a' y. a^ xa- X a^=^ o'+*+'+* = o^ and so on.

Ex. 4. The w"* jwwer of .r"* = .r"* x a?" x a?"* x &c. to

n factors = .r"'+~+'"+
*^- '° " »"™» = a?*"" ; the n*" power of- .r~

= ( - .r"*) X (— a"") X ( - a"*) X &c. to oi factors = + .r"",

where the positive or negative sign is to be used according as

n is an even or an odd number.

Ex. 5. The n*" power of x^y=.x^y x x^y x x^y x &c. to

n factors = .r' x x^ x a?* x &c. to n factors x y x y x y x &c.

to w factors

^ ^+2+«+atc. to n terms ^ ^1+1+1+ &c ton terms __ ^5n ^ a.^ —. vfii'y"

From what has been proved above, we derive

Rule l. A simple algebraical quantity is raised to any

power by multiplying the index of each factor by that of the

proposed power : and the result will always be positive when

the index of that power is even, and will have the same sign as

the quantity itself when that index is odd.

Ex. 6. The square, cube, fourth power, &c. of o + .r will

be indicated by (a + a?)', (a + xy, (o + cr)*, &c. but these opera-

tions will l>e effected as under, by actual multiplication, thus

:

the root = n + .r

a + .r

o* -f ax

ax + .r'

the square = a' -f- 2ax + x'

a -{- .T
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.-. the cube = a' + 3 a^x + 3 aa?^ M- aP

a*a? + 3 a^w^ + 3 ax^ + a?*

.-. the fourth power =«*4-4o^d? + 6a'a?' + 4af^ + <i?*,

and so on ; and since each repetition of the multiplication in-

creases the numerical coefficient of the second term by unity,

it follows that the coefficient of the second term is always equal

to the index : and it may be further observed that the indices

of a and x descend and ascend respectively by unity in each

succeeding term, and hence we shall have

(a + a?)"*= a*"+w o*" - * .r + &c.

Whence we immediately deduce

Rule 2. The involution of a compound algebraical

quantity may either be indicated by the proper exponent, or

effected by actual multiplication.

Ex. 7. The square of a = a^; the square of {a + 1)

= (a + 1) X (a + 1) = a^ + 2 a + ij from which it appears that

if the root be increased by 1, the square will be increased by

twice the original root + 1

.

Ex, 8. The cube of a = a^; the cube ofa+1 = («+l)

X {a -^ i) X (a + 1) = a^ + 3 a" + 3 a + 1 : whence it is

manifest that if the root be increased by 1, the cube will

be increased by three times the square of the original root

+ three times the original root + 1. Similarly of higher

powers.
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Ex. 9. To find the successive powers of a+b+c, expressed

by (a + 6 + c)', {a + b + c)^, &c. we proceed by multiplication

as underneath :

the root = a + 6 + c

a + b + c

a' + ah + ac

ab + b* +bc

ac-\-bc + c"

. the square = o^ + fe' + c* + 2 {ab + ac-\-bc)

a +b •\-c

a^ +ab- + ac^ + 2{a^b +a^c +-abc)

a-b + 6»+ 6c« + 2 (o62 + a6c+ 6'c)

a"c + b"c -\- c' + 2 (a6c + ac' + 6c')

.'. the cube

=s a'+ 6^ + c' + 3 {a^b + a^c + ab^ + ac' + b^c + be') + 6 abc,

and so on.

The same results might however have been obtained by

considering fe + c as one quantity, thus

(rt+6 + c)-={o+(6 + c)i-= a-+ 2a(6-|-c) + (64-c)-

= a^ + 2ab + 2ac+b''-+ 2bc+c' = a'^+b'^+ c'^+2(ab+ac+bcy:

{a + b+ cy=\a + (6 + c)p = a^+ 3a*(6 + c) + 3a(6 + c)«

+ {b+ cy= a'+-b'+-c^+3 (a%+ a^c + ab'' + ac' + b'c + be")

+ 6abe: and a similar process may be adopted for higher

indices and more terms.

Ex. 10. To find the square, cube, &c. ofSa— 6 + 3ir + y,
wc may divide it into two parts, thus (2 a — 6) + (3.r+ y),
and then wc shall have
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the root = (2 a — 6) + (3 a- + y)

(2 a — h) + (3 a? + y)

(2a-hY + {2a- b) (3 x + y)

+ (2o-6)(3a?+ j/) + (3ci? + 2/)-

.-. the square = (2 a — 6)' + 2 (2 a— 6) {Sx+y) + (3 a?+ t/)^

= 4 a"— 4a&+6'* + 12aci7 — 6&.r+4ay — 2 6y + 90?'^ + Qxy +y^\

and similarly of thfe cube, fourth j &c. powers ; and we may re-

mark that it is of no consequence which of the quantities are

taken together, and that this method may be extended to any

number of quantities whatever.

VI. EVOLUTION.

23. Def. The Evolution of algebraical quantities is the

reverse of involution, and will therefore be effected by retracing

the steps of that operation, or indicated according to the no-

tation pointed out in definition (9) of the first chapter.

Ex. 1. The square root of a^ is + «, because the square of

either of the quantities -I- a and — a is a^.

Ex. 2. The cube root of — x^y^ is — xy\ since, by the

last article, we have ( — xy-y= — x^y^.

Ex. 3. The rri}^ root of of^ is x, because x raised to the

m^^ power is x y. x x x x &c. to m factors = x^.

Ex. 4. The mP^ root of x^"' is a?", because x'^^'^x^ x x'^

X 0?"* X &c. to n factors, and thence the m*^ root of a?""*—xxx
X 0? X &c. to w factors = x^. Whence we have

Rule 1. The operation of evolution is effected by dividing

the index or indices of the proposed quantity by the number
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denoting the root to be extracted, and the root will have the

same sign as the quantity when this number is odd, and both

signs when it is even.

Ex. 5. Since the square of a + b is a^ + 2ab + Ir, in

order to obtain the square root of a^+2a6 + 6-, we must

consider by what process the quantity a+ 6 can be generally

derived from it.

Now, in the first place, it is readily observed that a

the first term of the root, is the square root of a" the first

term of the square ; and in addition to this there still remains

2a6 + h^ from which b is to be obtained: but 2a6 -}- 6"

= (2 a + 6) 6, and therefore h will be determined by dividing

the first term of the remainder by twice the first terra of the

root, and to complete the operation twice this first term together

with the second must be multiplied by the second, and after

subtraction there is no remainder.

Ex. 6. Because (a + 6 — c)^ = a" + 2 a6 + 6" — 2 ac
— 2 6c+ c*, we shall have the square root of this latter quantity

= a + 6 — c, which may be obtained from it according to the

method pointed out in the last examplej and the operation will

stand as underneath

:

a' + 2 a6+ 6-— 2 ac— 2 6c + c- (a + 6— c,

2a + 6)2o6-f6-

2 o6 + 6"

2o + 2 6— c) — 2 rtr — 2 6f' + c^

— 2ac— 2 6c + c"

wherein the operation as above explained being repeated lead^

t«» both ihc second and third terras of the root.
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The same method extends to all other cases, and thence to

extract the square root of a compound quantity, we have the

following general

Rule 2. Arrange the terms in the order of the magni-

tudes of the indices of some one quantity, or in. the order of

its dimensions : find the square root of the first term, and

subtract its squai'e from the proposed quantity: bring down
the next two terms and find the next term of the root by
dividing this last quantity by twice the first, and affix it with

its proper sign to the divisor: multiply this result by the

said second term of the root : bring down to the remainder as

many terms as may make the number equal to that in

the next completed divisor: and thus continue the process

till the root, or the requisite approximation to it, is ob-

tained.

Ex. 7. Required the square Toot of

4 a* - 12 a^ + 21 or — 18 a + 9-

Here the terms are already arranged so that the indices

of the quantity a descend regularly, and therefore by the

immediate application of the last rule, we have the operation as

under:

4a''— 12 a^ + 21 a^— 18 a-l-9 (2 a^— 3a -f- 3.

4 a''

4 a^— 3a) — 12 a^ + 21 a"

— 12a^+ ^a^

4 a^— 6 o + 3) 12 o^— 18 a + 9

12a2^18a-|.9

Ex. 8. Find the square root of

1 6— 48 .1? + 44 ,r'- — 1 2 a?'' + .^^
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In this case the terms are arranged according to ascending

jx)wcrs of *, and thence, as before, we have

16— 48.r + 44.r*— 12a?' + a?* (4— 6a? + a?'.

16

8 — 6.r)— 48.r + 44.T-

— 48.^'+36.^?-

8 — 12.r + .r*) 8.V-— 12a?' + .r*

8.T-— 12.F' + ar^

Ex. 9- Find the square root of

.r' (.r — 2a) + a^b (6 — 2af) + («" + 2 ab) w".

The arrangement required being here made, we have to

apply the rule to x*— 2aa^ + (a' + 2a6) or— 2a^bw + arb",

or to n*6-— 2a'6a7 + (a- + 206) a?-— 2aa?^+ a?*, as it is a

matter of indifference whether we suppose the indices of a?

to ascend or descend : and taking the former supposition we
have the following operation

;

.T* — Saa?* + (a' + 2a6) a?' - ^arbcc + a^b^ {p^— ax + ab.

X*

2a?^— oa?) — 2aa?' + o*a?*

— 2aa?' + fl"a?*

2a?-— 2a.r + ab) 2abx"— 2a"bx + a-b-

iabx^— Qa^bx + a-b"

Ex. 10. Extract the square root of a?**" + Zaf^y^ — y"".

The quantities here being already properly arranged, we
have the operation as follows:
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,2 m

p8m

2.1?'" + y'") +2a?'"y'" — ^-'"

+ 2ci?'"3/'"+y-'"

and in this case the remainder being —22^"*, it appears that

the proposed quantity is not an exact square, and conse-

quently that its square root cannot be accurately obtained.

Ex. 11. Since (a + hf= a^ -{ 3a^b + Sab" + 6^, we shall

have the cube root of the latter quantity = a + b; and it re-

mains to be determined in what manner it may be deduced

from it.

Now, it is obvious that the first term a of the root is

the cube root of a"' the first term of the proposed quantity

:

hence, taking away a', we have 3a-b +3ab' +b^ left to enable

us to find b: but 3a-b + 3ab^ +P= b(Sa' + 3ab-\-b^)y and
thence it is manifest that b will be obtained by dividing the

first term of the remainder by thrice the square of a; and

to complete the divisor we must add to it three times the

product of the two terms and also the square of the last

:

thus the second term being obtained, the repetition of a

similar process may manifestly be adopted if the quantity

proposed contain more terms.

This example furnishes a rule, which might, if necessary,

be enunciated at length in the same manner as that for the

square root has been, and it is not difficult to perceive that

a similar method may be applied to the extraction of the

fourth, fifth, 8ec. roots of any compound quantity whatever.

Ex. 12. If it be required to find the cube root of

a^ — 3 (a^ + a) + 5a^ — 1,

we first arrange the terms according to the dimensions of a,

and then the operation will stand as underneath

:

E
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a^— 3a^ + 5a^ — 3a — l{a^-a—l,

3a*— 3a^ + a^ —3c^+ 5a^— 3a

— 3a^ + 3a*— a^ t

3a* — 6a^+3a + l) —3a^ + 6a^— 3a—l
^3a*+ 6a^— 3a—l

in which it may be observed that the complete divisors are

formed as in the last example.

Ex. 13. To find the fourth root of

Here, it is evident that the fourth root is the square root

of the square root, and therefore the operation may stand

as follows:

a*x* - 4a'6a7' + 6a*6'.r«- 4a6'A' + 6* (a\v^ - 2a6a? + b%

2a«6V-4o6\r + fc*

Whence a^x* — 2ab,v+ b^ is the square root of the quan-
tity proposed: and repeating the operation, we have

a-oe^ - 2 ab.T + b- (a.v— b.

iaa> -b) — 2afe.r + fc'

— 2abw +fc*

so that a.r — h is the fourth root required.
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Ex, 14. Let it be required to find the sixth root of

a^— Qa^x + 15a*a?^— 20a'a?' + \5a^x^— 6ax^ + x^.

The sixth root being the cube root of the square root,

we shall have

a^ - 6a^^• + 15a\r?^ - 20a'«^ + 15a* a?*- 6oa?^ + oo^

a^ (a'— 3 a^cB + 3ax^— *%

2a^— 3a^x) — 6a^.v+ 15aV

2a^— 6a'^x+ 3ax'^)6a^x'— 20a^x'^-\-15a-w*

6a^x^—18a^x^-\- 9a"x^

2a^-6a!^x + 6ax^-^x^) - 2a^x^+ 6a"x^ -Gaw^+ x^

- 2a^x^+ 6aV-6o<r^ + a?^

.'. a^— 3a^x-\-3ax'^~-x^ is the square root of the proposed

quantity, and of this the cube root is required, therefore,

a^— 3 c?x + 3 a.t?^— x^ {a— a?,

a?

Sa^— S ax + x^) — 3(j?x \-3ax^— x^

— 3a^x + 3ax^— x^

whence the sixth root required is a— x.

A similar process may be adopted in all cases where the

number denoting the root to be extracted is even, and it

will then remain to devise a method by which the odd roots

may be determined.

The following method is general, and exceedingly simple

in its operations.

In the sixth example of (22) we have seen that

(a + x)"" =ar + m a'" 'Kv + &c.
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from which it is obvious that the second terra of the m^^ root

may be obtained by dividing the second term of the proposed

quantity by i}}a"'~\ or by m times the first term raised to the

(w — 1)"' power: and if the whole of the terms in the root

thus obtained be involved, and the result subtracted from the

quantity proposed and the process be repeated, any root of any

compound quantity whatever may be readily obtained.

Ex. 15. To extract the cube root of a^ — S a-b + 3 a"

a'— 3 a^b + 3 a- + 3 ab"+ 3 a — b^ + 3 b'— 3b + 1 (a— b + I.

3 X a-=3a^) — 3a-b

: (a-by==a^-3aH-{-3ab^-b^

3a'^) + 3 a"

.-. (a—b+ ly= a^- 3 a^b + 3 a" + 3 ab^ + 3 a—b^ + Sb"—3 b \-

1

Ex. 16. To extract the fifth root of w^ —10a;*y +4^a;'^y^

— 80a?'y* + 80 xy'^ — 32 j/^, we proceed in a similar way, thus

:

a^ "lOx^y + ^O tv^y- — 80 x-y^ + 80 xy'^ — 32 y^ (x -2y.

5x .v*= 5^*) — 10«*y

{x-2 yY= .V*— I0x*y + 40 .v'y'— 80 .r-y^+ 80 xy^ — 32 y^

MISCELLANEOUS OBSERVATIONS AND DEDUCTIONS.

24. Having, in the preceding pages, endeavoured to

shew how all the fundamental operations of Arithmetic may
be applied to Algebraical quantities, and pointed out how these
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operations may always be indicated, and how they may gene-

rally be effected, we shall, in the remainder of the present

chapter, consider their application in various instances, some

of which involve propositions of the utmost importance to the

student's progress in the more advanced parts of the science

:

and it will readily be perceived how the general relations of

abstract quantities to one another may be discovered by means

^of the letters and symbols explained in the introductory chapter,

and of the operations, the methods of performing which have

been laid down and exemplified in this.

25. Precisely as in algebr^cal quantities may the funda-

mental operations explained in the preceding pages be applied

to numerical magnitudes: thus, we may find the sum and

diff^erence of 584 and 326 by considering that

584 = 500 + 80 +4

326= 300 + 20 +6

.-. the sum =800 + 100 + 10= 910:

and the difference = 200 -1- 60 —2 =258.

Again, to find the product of 351 and 26, we may put

these numbers in the following forms:

351 =300+50 +1

and 26= 20 +6

6000 + 1000 + 20

1800 + 300 + 6

.'. the product = 6000 + 2800 + 320+ 6= 9126.

Whence to divide 9126 by 26, we observe that the dividend

and divisor are equivalent to 6000 + 2800 + 320 -f 6 and 20+6
respectively, and the operation will stand as follows

:
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20 + 6) (>000+ 2800 -f 320 + 6 (300+ 50 + 1

:

6000+ 1800

1000 + 320

1000 + 300

20+6

20 + 6

so that the quotient is 351 as it manifestly ought.

The Involution and Evolution of numerical magnitudes

may be effected by means of similar considerations, but the

importance of these operations in Arithmetic will entitle them

to a more minute discussion.

26. To find the successive powers of any number as 2f),

which is equivalent to 20 + 9, we may proceed by effecting

the successive multiplications as in the preceding pages : tlius,

the root = 20 + 9

20+9

400+ 180

180+ 81

•. the square =400+ 360+ 81 =841;

20+ 9

8000+ 7200 +1620

3600 +3240 + 729

.-. the cube = 8000+ 10800 + 4860 + 729= 24389

:

and so on for succeeding powers ; and the same principle may
manifestly be applied to numbers consisting of any number of

figures whatever.
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27- In example (7) of article (22), it has been observed

that if the root be increased by 1, the square will be increased

by twice the original root + 1> and this may readily be

exemplified numerically : thus,

19= 18 +1
18 +1

324 + 18

18+ 1

.'. the square of 19= 324+ 36+ 1 =36l:

which circumstance will also enable us easily to deduce the

square of any number from that which immediately precedes

it : thus

the square of 51 = 50^+ 2.50+ 1 = 2500+ 100+ 1 = 2601, &c.

Upon the same principle, if the root be diminished by 1,-

the square will be diminished by twice the original root — 1

:

and thus we shall have

24= 25—1

25 — 1

€25 — 25

— 25 + 1

.-. the square of 24 = 625 - 50 + 1 = 625 — (50- 1) = 576,

as may easily be proved to be correct.

From this consideration we are enabled to deduce with

facility the square of any number from that which immediately

succeeds it: thus,

the square of 49= 50- — 2.50 + 1 = 2500— 100 + 1 = 2401.
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28. In the same manner from the result of example (8),

of article (22), the cube of any number may be derived from

the cube of that which immediately precedes it : thus,

the cube of 21 =20'+ 3.20- -}- 3.20 + 1

= 8000 + 1200 + 60 + 1 = 9261

:

and by an extension of the rule analogous to that used in the

latter part of the last article, we have

the cube of 19= 20'— 3.20^ + 3.20— 1

= 8000— 1200 + 60— 1 = 6859.

Similar processes may be adopted for higher powers, and

will in many cases greatly facilitate arithmetical operations.

29. From the second rule of article (23), may be readily

deduced the square root of any numerical magnitude: thus

since 441 = 400 + 40+1, to obtain its square root we have the

following operation

:

400 + 40+1 (20 + 1,

400

40+1)40+1

40+ 1

and .-. the square root of 441 =20 + 1 =21.

Again, to find the square root of 5184, we observe that it

may be put in the form 4900 + 280+ 4, so that the operation

may stand as follows

:

4900 + 280 + 4 (70 + 2,

4900

140 + 2)280+ 4

280 + 4

and therefore the root required is 72.
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30. The same method might be resorted to in all other in-

stances, but it is obvious that some dexterity would be re-i

quired to separate the numbers properly into their component

parts, and this will be superseded by the following consider-

ation.

Since the square of 10 = 100,

the square of 100 = 10000,

the square of 1000 = 1000000,

&c = &c.

it will manifestly follow that the square roots of numbers of

less than three, five, seven, &c. figures must consist of one,

two, three, &c. figures respectively, so that if a point be

placed over each alternate figure beginning at the unit's place,

the number of points over the quantity proposed will denote the

number of figures of which the root consists.

Ex. 1. To extract the square root of 273529.

273529 (523 = the square root ;

25

102) 235

204

1043) 3129

3129

here the points being properly placed and the square next less

than 27 being 25, the first term in the root is 5: to the

remainder 2 the next two figures are then annexed and the

quotient 10 is formed by doubling the first figure 5 of the

root : in 23 the divisor 10 is contained twice, so that the

second figure of the root is 2, which is annexed to the divisor

and the multiplication is then effected : and a repetition of the

same process determines the remaining figure 3 of the root

required.

F
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If we supply the cyphers understood in the operation,

the same tiling may be exhibited as follows

:

273529 (500 + 20 + 3 = 523.

500* = 250000

1000 + 20=1020)23529

20400

1040 + 3 = 1043)3129

3129

Ex. 2. To eiitract the square root of 190968.

190968 (436,

16

83) 309

249

866) 6068

5196

872

from which it is obvious that the quantity proposed is not an

exact square, but exceeds the square of 436 by the remainder

872 : and it may be here observed that this remainder 872 is

greater than the quantity 866 used as the last divisor, though

the root is properly extracted, it being readily seen that the

square of the next superior number 437 would exceed the

quantity proposed by 1.

To find however the limit of the remainder after

extracting the square root of any numerical magnitude, we
observe, as before, that if a number be increased by 1, its

square will be increased by twice the said number + 1 ; whence

it follows that the remainder after any step of the operation
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must be less than twice the corresponding number in the

root + 1.

Thus, in the last example the remainder 872 is evidently

less than 436 x 2 + 1 or 873, and from this we correctly con-

clude that 436 is the number whose square is next less than

190968, the number proposed.

31. Since the product of two quantities contains as many
decimal places as are comprised in the multiplier and multi-

plicand together, it follows that in every quantity considered

as a square, the number of decimal places must be even : and

consequently the number of decimal places being rendered even

if not so already, and the points placed as before directed, the

numbers of points over the whole numbers and decimals proposed

will indicate the corresponding numbers of figures in the whole

numbers and decimals which compose the root.

Ex. To find the square root of 16489.1281.

First, pointing the quantity according to the directions

previously given, we see that the root consists of three whole

numbers and two decimals: thus.

16489.1281 (128.41 = the square root.

1

22)64

44

248) 2089

1984

2564) 10512

10256

25681) 25681

25681
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32. Since the cube of a + 6 = (/^ + 3a^b + Sal)' + b',

we may similarly deduce a method of extracting the cube roots

of numerical magnitudes by considering in what manner a-i-b

may be obtained from this last quantity. Thus,

Ex. 1. To extract the cube root of 13824, we have the

following operation

:

13824(20-1-4 = 24 the cube root,

a^ = 8000 = first subtrahend

also, So- = 1200) 5824 = first remainder

•'• 3 0,^,= 4800

Sab- = 960

b' = 64

5824:5824 = second subtrahend

so that remains: and in this we enquired what was the

greatest cube number next less than 13, omitting the last

three figures of the quantity proposed : thus a is obtained = 20,

and its cube being subtracted from the quantity proposed there

remains 5824: the divisor being then made = 3 a* which in

this case is 1200, we next find that it is contained in the said

remainder four times, so that 6 = 4: we have then to obtain the

next subtrahend which = Sd'b + 3ab^ -r b^ = 5824 in this

instance, and after subtraction there is no remainder, the re-

quired cube root being thus extracted which =20 + 4 or 24.

Ex. 2. To extract the cube root of I86O867, we have

I86O867 (100 + 20 + S = 123 ;

a' = 1000000= first subtrahend

also, 3 a* = 3(X)00) 86O867 = first remainder
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Sal^ = 120000

b' — 8000

728000 = second subtrahend

again, 3a"- = 43200) 13286? = second remainder

.-. 3a'b'= 129600

3ab'^= 3240

6'^ = 27

132867 = third subtrahend,

and then there is no remainder.

Here, omitting six figures towards the right of the number

proposed, we know immediately that a = 100, and there re-

mains after subtraction 86O867 : now the first divisor being

3a-=30000, we obtain 6=20, and the subtrahend 3a'^b+ 3ab^+ b^

is then found = 728000, which leaves 13286? for the second

remainder : again considering a equivalent to « + 6 or 120,

we have the second divisor =80,"^= 43200, which is obviously

contained three times in the said remainder : whence if the

third figure 3 of the root be called 6', we have the third

subtrahend = 3a-b' + 3ab'^ +b'^ = 13286?, after which there

is no remainder left, the root being 123. '

The same mode of proceeding may manifestly be extended

to any number of figures whatever.

33. The operation of extracting the cube root may how-

ever be somewhat abbreviated by the following considerations.

Since the cube of 10 = 1000,

the cube of 100 = 1000000,

the cube of 1000 = 1000000000,

&c = &c.
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it is a necessary consequence that the cube roots of numbers

of less than four, seven, ten, &c. figures wiU consist of one,

two, three, &c. figures respectively; and therefore if a point

be placed over every third figure in the number proposed, be-

ginning at the unit's place, the number of such points will

indicate the number of figures in the root, and then the

cyphers may be suppressed; thus, the operation of the last

example may stand as below

:

1860867 (123 = the cube root,

a^ = 1 = first subtrahend

also, 3 a- = 3) 860 = first remainder

.-. 3o«6 = 6..

Sab- = 12.

b^ = 8

728 = second subtrahend

again, 3 a,- = 432) 132867 = second remainder

. 3o'^fe' = 1296.

.

3a'6'«= 324.

6'" = 27

132867 = third subtrahend.

If the 'number of decimals in any quantity pK)posed be

made a multiple of 3, the same plan in pointing and extract-

ing the root may be employed; and at any step of the

operation, as appears from example (8) of (22), the remainder

must be less than three times the square of the corresponding

quantity in the root together with three times the quantity

itself + 1, if the figures in the root be so far properly

obtained.
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A course analogous to this might be pursued in extract-

ing the higher roots of numbers, but the operation would in

general be so complicated, that recourse is had to other ex-

pedients hereafter to be explained.

34. Let X and y represent any two quantities whatever,

whereof x is the greater and y the less, then will w-'ry and x—y
indicate their sum and difference respectively, as appears from

(4) and (5):

now (a? + y) + (a?— y) = 2 a/, by (18),

and (a? + y)-(a?-y) = 2y, by (19) :

that is, the sum of any two quantities increased by their differ-

ence is equal to twice the greater: and the sum of any two

quantities diminished by their difference is equal to twice the

less.

Hence the greater of two quantities is equal to half their

sum increased by half their difference, and the less is equal to

half their sum diminished by half their difference.

35. Using the same notation, we shall have

(a? + y) X {w— y)=w"— y-, by (20):

that is, the product of the sum and difference of any two quan-

tities is equal to the difference of the squares of the same

quantities.

Hence also, if the difference of the squares of any two

quantities be divided by the sum and difference of the same

quantities, the quotients will be the difference and sum of those

quantities respectively.

36. On the same hypothesis, we have

and (.r^— y') -r- (x— y) z=i x^ -\- xy \- y^, by (21)

:
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whence it appears that if the sum and difference of the cut)es of

any two quantities be divided respectively by the sum and

difference of the quantities themselves, the quotients will be the

sum of the squares of the same quantities diminished or increased

respectively by their product.

Hence also, if the sum of the squares of two quantities,

diminished or increased by their product, be multiplied by the

sum or difference of the same quantities, the product will be

the sum or difference of their cubes.

37. We have seen in example (12) of article (21), that

fl" _ x" is always divisible by a — .v whatever positive whole

number m may be ; wherefore since a™ + .x""* = a" — a?" + 2 a?",

it follows that a"* + j?"* is not so divisible, but there is left

a remainder 2 a?".

Again, if for x we substitute — a?, we shall have to put

jf in the place of af^ when m is even, and — a?" when m is odd,

so that a'"— cr** is generally divisible by a + a? when m is even,

and a"* + a?" is so divisible when m is odd.

Whence also a"* + a?* is not divisible by a + a? when m is

even, nor is a" — a?"* divisible by o + a- when m is odd.

38. Since (js + y)" = or + 2 xy + y",

and {x — y)' = or^ — 9. xy + y', by (22) ;

we observe that the square of the sum or difference of any two

quantities is equal to the sum of the squares of the quantities

themselves increased or diminished by twice their product.

Also, because ( + 2 xy)' = 4 x^y' = 4 x a" x y'-, it is dis-

covered that when any trinomial is a complete square, the

square of the middle term is equal to four times the product

of the extreme terras.

And because the square of every quantity, whether positive

or negative, is positive, it is obvious that .r* — 2 ry + y' is
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positive, and therefore a?* + y" is greater than ^xy: in other

words, the sum of the squares of two unequal magnitudes is

always greater than twice their product.

39. Since {pe -\- yf =. w^ -\- 3 cc^y + 3 ocy^ + y^

= ^3+ 3^3+ Zxy{cB-\-y),

and {pB— yY = x^ — 3x"y + 3xy"— y^

= x^-y^- 3xy{x- y), by (22),

we learn generally, that the cubes of the sum and difference of

any two quantities are respectively equal to the sum and

diiFerence of the cubes of the same quantities, increased and

diminished by three times their product multiplied by their

sum and difference.

And 3 x'^y x 3 xy"^ being equal to 9 x^y^^ it is thus demon-

strated that in every quadrinomial which is a complete cube,

the product of the mean terms is equal to nine times the

product of the extreme terms.

40. If a= .r + y, and both sides be multiplied by one of

the latter quantities as <r, we have

,3.ax = or -\- xy = xy + x

that is, if any quantity be divided into two parts, the pro-

duct of the whole and one of the parts is equal to the product

of the two parts, together with the square of the other part.

41. Again, if a = a? + y, we shall have a^ = x' + 2xy + y^,

.-. or + x" = 2 x'^ -^ 2 xy -\- y'^

= 2x {x -\- y) + y" = 2 ax + y" :

which shews us, that if a quantity be divided into any two

parts, the squares of the whole and of one of the parts, are

together equal to twice the product of the whole and that part,

together with the square of the other part.

G
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4:2. If iJfl be any proposed quantity, and x be one part

of it, then ^e remaining part is 2 a— .r : and it is obvious that

(2 a — x) a: + (a — xy= 2 ax— x--\-d^ — 2ax + x^ = a':

whence we infer that if a quantity be divided into two parts,

the product of the two parts, together with the square of the

excess of half the quantity above the less part is equal to the

square of half the quantity itself.

43. On the same hypothesis as in the last article, we have

x" + (2 ff — x)' = x" + 4-a' — 4>ax + x^

= 4 a^ — 4 a.r + 2 x* = 2 (2 a* — 2 ao? + x')

= 2 (a- + a-— 2 aa? + .t") = 2 a- + 2 (a — a?)-:

whence it results that if a quantity be divided into any two

parts, the squares of the two parts are together double of the

square of half the quantity, and of the square of the excess of

its half above the less part.

44. If we have the equation ax^ — bx + c = d, then

by annexing to both sides the quantity bx — c, the equation

will become

oa?* — bx -\- c + bx — c = d + bx — c:

and observing that — bx + bx and + c — c are both = 0, we

have remaining

ax- = d + bx — Cf

which teaches us that any quantity may be transposed from

one side of an equation to the other, merely by changing its

algebraical sign from + to — , or from — to +

.

In the same manner if ax" — bx + c, be greater or less

than rf, it will follow that

,
a.v^ is greater or less than d + bx — c:^

and similar conclusions will hold good when both sides are

equally affected by the operations of Multiplication, Division.

Involution or Evolution.



CHAP. III.

On the greatest Common Measures, and least Common

Midtiples oftwo or more Algebraical Quantities.

I. COMMON MEASURES. ;

45. Def. a Common Measure of two or more quan-

tities is a common divisor or quantity which divides them;

exactly, without leaving any remainder; and the greatest

common measure is the greatest quantity by wliich they are

so divisible.

Thus, of the quantities 2abd and 9.dwy, the factors 2, d

and 2 d are all common measures, the greatest being mani-

festly 2d: and 2 rf is said to measure 2abd and 2dxy, by
the units in a 6 and xy respectively.

Similarly, of the quantities abed, adey and abdx, a, d

and ad are all common measures; and od is the greatest in

the sense intended in the definition, without reference to the

numerical values that might be assigned to a and d.

46. CoE. 1. The greatest common measure oi ad and

bd is d, which is manifestly also the greatest common measure

of acd and bd: that is, the greatest common measure of two

quantities is the greatest common measure of either of them,:

and the other multiplied or divided by any quantity which is

not a divisor of the first, and which contains no factor common
to them both.

47. CoR. 2. If — d be a common divisor of any number

of quantities, it is obvious that d will also divide them without

remainders; and hence it follows that the greatest common
measure is always a positive quantity.
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48. When the quantities proposed are monomials, the

common measure is readily discovered by inspection, and the

same method is applicable to many other cases of which some

of the following are examples.

Ex. 1. The greatest common measure of 10 ax and 15a?*

is 5 .r, the quotients being respectively 2 a and 3 x.

Ex. 2. The greatest common measure of 8 a'xy^ — \9,hwy-

and 20 cx^y, is 4 a?y, the respective quotients being 2 o^, — 3 hy

and 5 ex.

Ex. 3. The greatest common measure oi or —2ax -\- x"

and ax — x"^ is a — x, for these quantities are equivalent to

(o — x)" and x (a — .t), whereof the greatest common divisor

is a — <r, the quotients being a — x and w respectively.

Ex. 4. The greatest common measure of 3 (a+6)'(c—<r)*

and 5{a + h)" (c— x)^ is manifestly (a + 6)^ (c — a?)*, and the

quotients will be S{a-{-h) and 5(c— a?).

Ex. 5. The greatest common measure of a{x-\-y— z)'^

and 6 (a? + y — ;?)" will evidently be (a? + y — i^)" or

{x-\-y— zY*, according as m is greater or less than w, and

the corresponding quotients will be a{x \-y— zy*
~ " and Z>, or

a and b (j7 + y— sr)""'".

49. In all instances similar to those just given, there can

never exist much difficulty in determining the greatest common
measure, and whenever quantities can be reduced to the above-

mentioned forms, their common measure will in general be

manifest. Thus,

Ex. 1. If it be required to find the greatest common mea-

sure of a^ + a"h — nh"— 6' and a' — a^b— ab' + 6', we have

<//• + a=6 - afe" - 6' = (o^ + a*6) - {ab- + 6')

= a- {a + 6) -6= (a + ft) = {a'-b") {a+ h),'

and a^-a-b - ab"^ + />' = {a^-a"b) - (ab''^ //)

= o- (a -6) -6" (a -/)) = («= -6-) (a-b);
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and since it is clear that a +b and a — b contain no common
factor, the required greatest common measure is a"— 6^.

Ex. 2. Of the tyro quaxitities Sbcz + 5mx% + 30mx + 18bc,

and 4 adz — 7 «»*« + 24arf — 42 ur, we observe that

the former = 3bc (%-\-6) + 5mx {%+ Q)

= (3 6c 4- 5 mx) {% + 6),

and the latter = 4 ad («+ 6) — 7 «r (;jf + 6)

= (4ad— 7vr) (^f + 6) ;

and therefore, as in the last example, the greatest common
measure is ^ + 6.

50. In the generality of instances that occur, it is no easy

matter to decompose the quantities into their factors as in the

examples just given, and indeed in many cases this would be

almost impossible. On this account it will be expedient to

endeavour to devise some method which may be applicable to

all quantities whatever.

51. To investigate a rule forfinding the greatest common
measure of two quantities.

Let a and b be the two quantities whereof a is the greater,

and let 6 be contained p times in a with a remainder c : let c be

contained q times in b with a remainder d, and let d be con-

tained r times in c with no remainder, the operations being

performed as under:

b)a{p

pb

C)b(q

qc

d) c (r

rd

then is d the greatest common measure of a and b.



54.

For, since c— rd = 0, we have v= rd, by (44) :

also b— qc = d, .-. b = d + qc = d + qrd = (l + qr) d:

and '

a—pb= c, .-. a = c-{-pb= rd + p (l + 7r)d= (/j +p7r + r)rf,

from which it appears that d measures a and 6 by the units

in p + pqr + r and 1 + <7r respectively, and is therefore a

common measure.

It is, moreover, the greatest common measure ; for, if not,

let D be the greatest common measure, and let it be contained

m and n times respectively in a and 6, so that

a = mD andftrswD;

.-. c = a—pb=mD — npD=(m — np)D,

and d= b— qc=nD— q (m— np) D = (n — mq + npq) D,

wherefore D measures rf, or a greater quantity measures a less,

which is absurd ; .•. no quantity but d is the greatest common
measure ; and the quotients arising from the division of a and b

by d are p +pqT -^r and 1 +qr respectively.

52. Cor. l. Every common measure of a and h is a

measure of the greatest common measure d.

For, let ^ be any common measure of a and b. so that

a = /xo and 6 = yo

;

.-, c ^= a — pb= iuL^ — vpS = (m — pp) ^1

and d = b — qc = v^ — q (jji— vp) ^ = {v — nq + vpq) 5,

and therefore ^ measures d by the units in v— /xq + vpq.

53. CoE. 2. From the nature of division it is obvious that

each of the remainders r, rf, &c. is less than tliat which imme-

diately precedes it, and consequently that in every case the



division may be continued till the remainder becomes less than

any quantity that can be assigned.

54. Cor. 3. In the demonstration of the proposition, it

appears that if a quantity measure two or more others, it will

also measure any expression formed out of them by the opera-

tions of addition, subtraction and multiplication.

55. From the operation exhibited in (51) we have the fol-

lowing general Rule for finding the greatest common measure

of two quantities.

Arrange both the quantities according to the dimensions

of some letter contained in them ; divide the greater of them

by the less, and the preceding divisor by the last remainder,

and continue the operation till there is no remainder ; then will

the last divisor be the greatest common measure.

Ex. 1. To find the greatest common measure o{a)^+2cV+ l

and x^ + 2x^ + 2x -{- 1, we have by the rule the following

operation

:

w^-\-2x-\-l) x^-{-2x' +2X + 1 {x,

x^ + 2cv""-{- X

a? + 1) a;* + 2 a? + 1 (a? -1-1,

w -\-x

x + 1

whence x-\-l, being the last divisor, is the greatest common
measure, and the quotients are x-\-\ and a?" + a? + 1.

Ex. 2. Find the greatest common measure of

a?* -f a?^ 2/^ + y^ and x^ + 2x^y-{-3 x^-f + 2 xy^ + y*.
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Here

2 a?'y + 2 d?*y- + 2 a?y'';

now this remainder is equivalent to 2 a?y (a?^ + .ry + 2/')>

whereof neither 2 iry nor any factor of it is a common measure,

and therefore by (^G), 2 .ry may be rejected, and the remaining

factor aF + xy -\- y" alone retained

:

again,

.r° -\-a:y-\- y') a?* + w^y-+ y* (/r^— a?y + y',

a?*4-<2?'y -^x'y^

-^y +y*

— a^y —ary*— tvy^

x^y' + wf+y*

a?2y'' + a?y^ + y^

wherefore .r'+ ''y+ y^ ^s the greatest common measure.

Ex. 3. Required the greatest common measure of

80?^— 407-— 2a? + 1 and 12a?^+ 4jr-— 3 j?— I.

In this case, the first term of neither of the quantities is

contained an exact number of times in the other, and since

fractional quotients are excluded in the general proof, if we
multiply the latter by 2, the common measure will not be

altered, as appears from (46), and we have

12a?' + 4a?'— 3 a?—

1

Sa?'— 4a?=— 2.rH-l)24a?^H- 8a?"— 6a7— 2 (3,

24a?^— 12 a?'— 6a?+ 3

20 .t"— 5 ;
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and this remainder is equivalent to 5(4a?'— 1) whereof the

former factor may manifestly be rejected by (46) : theriefore,

8 a?^— 2 a-

— 4 ,r^ + 1

- 4 0?^ + 1

so that 4 .r^— 1 is the greatest common measure.

Ex. 4. To find the greatest common measure of .a?^— 5 a?'

— 2 a? + 10 and .r^ + 5 a?^— 2 a?— 10, we have

a?^ -f 5 a?^— 2 .2?— 10) a?-^— 5 a?^ — 2 a?+ 10 (l

,

a?^+ 5a?^— 2a?-- 10

— 10a?2 + 20= _io(a7^— 2):

again, a?^— 2) jb^ + 5 .r"^ — 2 .r— 10 (a? + 5,

a?*— 2 a?

5.^2—10

5.T-— 10

whence .a?^— 2 is the required common measure.

Ex. 5. To find the greatest common measure of

2a?^_4a?'' + 8a?3— 12a?^+ 6a? and 3a?^ — 3a?*— 6a?'+ 9a?'— S.r,

we observe in the first place, that

2a?^_4a?*+ 8ar^— 12af*+ 6a?= 2a?(a?*— 2a7^-f 4a?^ — 6a? + 3)

and 3a?^ — 3a?*— 6a?^ 4-9 a?^— 3 a?= 3a? (a?*— a?'— 2a?*+ 3 a?— 1):

now, it is obvious that a? is a common measure of the two

quantities, but that 2 and 3 are not; .* it is next required

H
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to find the greatest common measure of the remaining

factors : thus,

J.*— 2jr' + 4.r- — 6.r + 3)a?^— .v^— Zar^ + Sx—l (1,

a?*— 2 a?' + 4.r'— 6a? + 3

J?'— 6x* + 9<J?— *:

4a?'— 5x^— 2 a- + 3

4a?'— 24a?^ + 36 a?— 16

19*'^- 38 a? + 19,

and this= 19 (a?-— 2 a? + 1), whereof 19 may by (46) be rejected :

.-. a'^-2«'+ l)a?^— 6a?'+ 9a?— 4(a?— 4,

ar*- 2«* + d7

— 4a?' + 8a7— 4

— 4a?' + 8a? — 4

whence a-^ — 2 a? + l being the greatest common measure of the

latter factors, the greatest common measure of the proposed

quantities will manifestly be a? (a?^— 2 a?+ 1) or a!^— 2.v''-\-x.

66. To find the greatest common Measure of three or

more quantities.

Let a, 6, c be any three algebraical quantities, and let d be

the greatest common measure of a and fe, then will the greatest

common measure of d and c be the greatest common measure of

a, b and c.

For, since d is the greatest common measure of a and b,

every measure of d is a common measure of a and b ; therefore

every common measure of d and r is a common measure of
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a, b and c, and the greatest common measure of d and c is the

greatest common measure of a, b and c.

In the same manner, whatever be the number of quantities,

their greatest common measure may be determined by a con-

tinuation of the above mentioned process.

Ex. Find the greatest common measure of the three

quantities o' + a^b — ab^ — 6', a^ — 2a^b — ab^ + 2 6' and

a'- Zab^ + 2 6^

In the first place, to find the greatest common measure of

the first two quantities, we have

a?Jra'b-ab''-b'')a'-9.a-b-ab^^<ib^{\,

«'+ a^h~ab^- W

of which the factor — 36 being rejected, we have

0:^ -b"") a^ -^ d'b- ab^-W {a-b,

a'-ab""

a^b-b^

a-b-b'

so that a^ — b^ is the greatest common measure of the first two

quantities, and it remains to find the same of this and the third

;

a-~6^)a3-3«62+ 263(a, .

a?— air

^2 ab^ + 2b^ = —2 b" (a— 6),

which, the former factor being rejected, gives

a -6) c'— 6^ (a 4- 6,

a^— ab

ab-h"

ab — b"
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wherefore a— b is the greatest common measure of the three

quantities proposed, and it is contained in them a^ + 2ab + 6%

a-— ah — 2 b" and o" + a6— 2 b- times respectively.

II. COMMON MULTIPLES.

57- Def. a Common Multiple of two or more quan-

tities is a common dividend or quantity which contains each of

them an exact number of times ; and the least common multiple

is the least quantity which they can each divide without

a remainder.

Thus, 2abc is a common multiple of a 6 and 6c, and abc

is their least common multiple: so also Sabx is the least

common multiple of the quantities 3 a, 3b,v and aba;.

58. CoE. Hence the least common multiple of any number

of quantities, having no common measure except unity, is their

product.

59. The least common multiples of monomials and other

quantities involving common measures that are apparent may
generally be found with ease by inspection, as in the following

instances.

Ex. 1. The least common multiple of a^bc and 2 a6'rf, is

2 a'ircd.

Ex. 2. The least common multiple of aa?y, a-y and

ax + by, is a^w-y + a^bxy".

Ex. 3. The least common multiple of a^ (*'+</)» ab (a?—y)
and a?-— y% is a^6 (o?^ — ^').

Ex. 4. The least common multiple of (a — hf (c + a?)' and
(o - by (c + x), is (a - 6)^ {c+ xy.

Ex.5. The least common multiple o(ah + cd, ab— cd
and a-b" -\- cV-, is a*b* - c*d*.
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60. To investigate a rule for finding the least common
Multiple of two quantities.

Let a and b be the two quantities, d their greatest common

measure such that a = pd and b = qd, and m their least com-

mon multiple ; then, since p and q have no common measure

except unity, their least common multiple is pq, by (58): where-

fore pqd will manifestly be the least common multiple oipd and

qd, or of a and b: that is, the least common multiple m of a and

b is pqd = (pd x qd) -f- d = (a x b) -i- dy and the numbers of

times it contains them are (a-r-d) and (b-^d) respectively.

61. CoR. Every common multiple of a and 6 is a multiple

of the least common multiple m.

For, let /u, be any common multiple of a and 6, and if

possible, let w be contained r times in /x with a remainder s,

so that

fi = rm + s; .-. by (44), s = fx — rm:

wherefore since a and 6 measure fi and m, they will also by (54)

measure * which is less than m; that is, m is not the least

common multiple of a and 6, contrary to the supposition : hence

every other common multiple is a multiple of the least common
multiple.

62. The result of the investigation contained in (60) fur-

nishes the following Rule for finding the least common multiple

of any two quantities.

Find the product of the two quantities, divide it by their

greatest common measure, and the result will be the least

common multiple.

Ex. 1. Required the least common multiple of a^ + a'^b

and a- — b'.

The greatest common measure of a^ + a'b and a*— 6"

being a -{-b,. we shall have their least common multiple

= (a' + a- 6) X {a^ - 6^) h- (r + 6) = a= x (a^- b") = a^ - a^b\
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Ex. 2. Find the least common multiple of ir* + jp* + a? + 1

and js^ — x^ + a'— 1.

Here, we have in the first place,

ar' + x^-\-je+l=.T(x'^+l) + (a?'-|-l) = (cP+ l) (.r*+ l),

and J?'— d7* + a?— I=<r(d7* + 1) — (a?* + l) = (.r— 1) (x"' + l);

therefore the least common multiple

= (a? + 1) (a?- 1) (j7* + 1) = (x- - 1) (a?- + l) = o?^ - 1.

63. To Jind the least common Multiple of three or more

quantities.

Let o, 6, c be three proposed quantities, and let m be the

least common multiple of a and 6, then the least common mul-

tiple of m and c is the least common multiple of o, 6 and c.

For, since m is the least common multiple of a and 6, every

multiple of w is a common multiple of a and 6, and every com-

mon multiple of m and c is a common multiple of o, 6 and c

;

whence it follows that the least common multiple of m and c is

the least coinmon multiple of a, 6 and c.

The same kind of reasoning is applicable, whatever be the

number of quantities proposed.

£x. Required the least common multiple of o- + «6,

a* + a- 6' and a* — 6*.

Since a*+ a6 = a (a + 6) and a^ + a*6*= a' (a* 4- 6*),

we have the least common multiple of the first two

= (o + fe) X a- (a'-f 6=) =a'{a-V b) (a^ + 6*):

and since o* - 6*= (a-- 6") (a-+ 6^) = (o + 6) (a- 6) (a= + 6«),

the least common multiple required will obviously be

= o« X (a^- 6=) (o* 4- 6') = a*'- a-6*.
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CHAP. IV.

On Fractional Quantities.

64. Def. An Algebraical Fraction i§ of the same

nature as a fraction in common Arithmetic, and has an

algebraical quantity for its numerator or denominator or both.

Thus,

a a-\-oo 4 5 ® j ^— ^V
2 3 b ar-ic^ b 5a? + 2y

are all algebraical fractions.

I. REDUCTION.

65. To represent an Integral Quantity as a Fraction.

Let a be any integral quantity, then it is obvious that by
taking unity for a denominator, we shall have it equivalent to

- : also, from the nature of fractions it appears that its value

will not be altered by multiplying both the numerator and

denominator by the same quantity, and thence we have

a 2a ad —ad
o = - =— = &c. = —- = -—— = &c.12 d —d

/»/. ^ -,. ad — ad
bb. Cor. 1. Smce —- = o = --, we infer that the

a — d
value of a fraction is not altered by changing the signs of the

numerator and denominator, which is in fact the same thing as

multiplying each of them by— l.
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67- Cob. 2. Conversely, a fraction is sometimes equivalent

to, and may be represented by, an integral quantity. Thus,

ad a^— b' , . a;^ + x^y— .vy" —y^— = a, -z ; rj =a — b and ; -;; = a' — y.
d ' a- + ah + b" (v + y)-

68. To represent a Miwed Quantity as a Fraction.

be be
^ . , ...

Let a + — or a — — be any mixed quantity ; then, since
d d '

by {^5)^ a is equivalent to —-, we shall have ff + — equivalent
CT d

ad be ad + 6c

Ex. 1. To reduce a -\ : to a fractional form, we
4,r

have in the first place a = ;

4.r

(o— a?)'^ _ 4 aa? + (a— a?)* 4 a.r + a' — 2 oa? + x^
.*. a -\-

:
^ — ^ —— .

4 *p At.v 4 a?

a^ + 2 aa? + w" (a + a?)"^

4a? 4a?

-,, , , . , . , 2ab + b"
±iX. 2. In the mixed quantity a + b , we

a + b

shall have

(a -^b) (a + b) a^ + ^ab + b'
a + 6 =

.". the equivalent fraction =

Ex. 3. Again, a +

a+b a+b

a^ + 2ab + b^ — 2ab— b^

a+b a+b

«2+ 6«_a?- _2a6 + a2+ 6^-a?2

26
"

26

I
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(a + 6)'— a?- (a+b + sc) (a-hb— x) . ar + b^^x-— L = and a ;

26 26 26

2a6 — a' — 6^ + a?- ar—{a — hf {x -\- a — b) {x-\-b—a)~
26

~
26 26

*

69- CoE. Conversely, a fraction may sometimes be reduced

1 . p ad + be . . - be
to a mixed quantity, for =— is equivalent to a + —

.

T7 , ri., r .•
a' + 4a6 + 46'.

. ,

iiX. 1. The fraction is equivalent to the

4 6-

mixed quantity a -f 4 6 H , by actual division of the first
a

two terms of the numerator by the denominator.

a"' — 6^ + 0?^

Ex. 2. The fraction by actual division, be-
a + X -^

comes equal to the mixed quantity a'— ax + x" —
a + X

Ex. 3. Similarly, the fraction

(a + b)- — (c - d)' _ a^ + 2 ab + b- - c- + 2 cd— (f

2(ab-^cd) ~ 2(a6 + cd)

_2(ab+ cd) + a^ + b''-c--d' _ ar+ b^— c'-dr-"
2 (flr6 + cd) 2(a6 + crf) '

a mixed quantity.

70. To reduce a Fraction to its lowest Terms.

_. , , -. » .
ad a . ,

Since, by the nature of fractions, -— = - , it is obvious
bd b

that a fraction may be reduced to its lowest terms by dividing

both the numerator and denominator by their greatest common
measure.

I



66

If />, </, ;• bo the quotients obtained in findino- the greatest

U -4- U Q 7* ~4~ 1^

common measure of a and h. then bv (51), -—— will

« o
be the value of- expressed in its lowest terms.

6

Ex. 1. The fraction—j;-^— is reduced to its least terms

y . . .— , by dividing both the numerator and denominator by their

greatest common measure a'.ry.

Ex. 2. The fraction

ar^— h^x X {x + h) {x — h) x(x — b)

{x + by
"^

(x + by ^ x + b
*

the greatest common measure being manifestly x + b.

_ X 1 /. • ^^' + 5ax — 6x'' ^

Ex. 3. In the fraction ——^ —— , the greatest
6a^ + 13 ax + 6.1?-

*

common measure is found by {55) to be 2a + 3 a?, and the

numerator and denominator being divided by it, the value of

, ^ . 1 . . 1 . 3 a — 2 a'

the traction, expressed m its lowest terms, is .^ 3a+2x

Ex. 4. The fraction

30cr* + 40-'^ — 20 x^ + 12 a?- + 6.r

36 x^ + 8 X* + 16 cr^ — 8 .1-^ - 4x

is equivalent to

2x{l5x^+2x^—10x'+ 6x + 3) _ 15x* + 2x^— 10x- + 6x + 3

4<r( 9j?^ + 2c'r'+ 4,^*— 2.z?— l)
"~

2 (9.r^+2.r' + 4.r^ - 2*'— l)'

and the greatest common measure of the last numerator and

the latter factor of the denominator being found by (55) to be

3x + 1, the fraction in its lowest terms is

5 .1'^ - .r« _ 3 d? + 3

6x* - 2a?' + 2j7* + 2* - 2
'

I
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71- To reduce Fractions to others having a common
Denominator.

a c
Let - and - be any two fractions, then, by equal multipli-

cation of their numerators and denominators respectively,

,
a ad . c be

we have - = — and - = —

;

b bd d bd

therefore the proposed fractions are equivalent to

ad J ^c
1 . , 17— and —- which have the common denominator bd:.

bd bd

hence, the same kind of process being applicable whatever be

the number of fractions proposed, we have merely to multiply

every numerator by all the denominators except that which

belongs to it, for a new numerator, and all the denominators

together for a common denominator.

a 3b 5 ccy in.Ex. 1. To reduce —-, — and —- to other fractions with
2b a c

a common denominator, we have

a a X a X c a-c

2b 2b X ax c 2abc

3b 3b X 2b X c 6b'c

a 2b X axe 2 abc

5xy 5ooy X 2b X a lOabwy
and = —; = —

,

c 2b X ax c 2 abc

the resulting fractions having the common denominator 2 abc.

a + ,v a— tV a^' — x^
Ex. 2. 1 o transform , and — 5 so as to

a— X a + X or \-x''

have a common denominator, we obtain

(a + a?) X (a + J?) X (a^ 4- x'^) — a* -\- 2 a^x + 2 a'x- + 2 aaf^ + a?*,

{a — x) X {a — x) X (a^ 4- x^) = a* — 2 a^x + 2 a-x"— 2 ax* + o?^,

(a*— a?^)x (a— x) X (a + .r ) = a^—^a^x^ + a?*,

for the new numerators

:
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also, (« — J.) X (a + i) X (a*+ a.'*) = a* — .r*, is the common

denominator

;

and hence the new equivalent fractions are

a* + 2 a'A- + 2 a'-r' + 2 aa'^+<i** a* — 2 a^x+ 2 a^a?"— 2 aa?'+ a,-*

&nd 5 5
a — 0."

Ex. 3. Reduce the mixed quantities

2aa!-\-.x^ 2 ax
, „ „ o*

.r -i , 2 a and 4 x' — «- +
2 a— a? 2a+a' a^ + 4a?'-

to fractions having a common denominator.

First, we have by article (68),

X +

Sa —

2a— a? 2a— a? 2a— a?

2 ax 4a--|-2oa— 2 aa" 4 a-

4^.»_««4.

2a +x 2a-f-a' 2a-|-.r

a* l6a-^-a*+ a^ l6x*

a"-\-^a^~ a- 4-4^* a^ + 4<i-

then

4 ao? X (2 a + ct) X (a^+4 a?^) s= 8 o*a?+ 4 o^a?* + 32 a' a?' + l6 aa?*,

4 a' X (2 a — a) X (a"+4 a?*) = 8 a*— 4 a* a? + 32 a' a?'— l6 a'\r',

l6af*x (2a— a) x (2a + a?) =64 a*a?*- l6a?%

which are the new numerators:

and (2 a — .i) x (2 a + j) x (a* -f 4 x') = 4 «* + 1 5 a'-x' - 4 x\

which is the common denominator;
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wherefore the new equivalent fractions are

8 a*a,'+ 4>a^a;"+32 a^x^ + 16 aa* 8 a^— 4 a*a?+ 32 a'a?^— 16 a^x^

4a*+15a*a->^ — 4 a?*
'

4a*+ 15a'cv'— 4,t?*

64a^ci?*— I6ci?^
and

4 a^H- 15 a-,x'^ — 4 a?*

72. Coil. If the denominators of the proposed fractions

have a common measure, the fractions may be transformed into

others having a less common denominator than what would

have been determined by the preceding process.

a c
Thus, if the fractions be 7—, and -— , we have immediately

bd de ' ''

a ae c he

bd bde de bde

from which it appears that the least common denominator is

the least common multiple of the proposed denominators, and

the numerators are obtained by multiplying the original nu-

merators by the quotients arising from the division of the least

common multiple by the corresponding denominators.

-^ „ 1
•*'" «

^ ax . -

Ex. Reduce -^ , 5 and -5 to equivalent
a^-{-ax ax— x^ a —x^

fractions having the least common denominator.

By {Q3) we find the least common multiple of a^+o<r,

ax — w^ and a^—x'^, to be ax (o^— a?") or a^x— aa^, which is

also the least common denominator : whence we have likewise

x-xax(a-—x^) .. . 14
^ = x^ (a — x) =z ax — X

%

a (a + x)

a^ X ax {c? - x"y , / , ^ 4,3
^—-^

—

= a^ (a + .3?) = a*+ a^x^
x\a— 0?)

ax X ax («' — a.')

a" ~ tr^
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which are the new numerators : and therefore the new equivalent

fractions required are -^
-, ,
—

_ and — .

a cc— ax^ a^x— ax o a?

—

ax^

II. ADDITION.

73. To Jind the Sum of two Fractions.

a c a
Let 7 and -- be the proposed fractions, and assume r = <r

b d '^ ^ b

and - = y ; whence multiplying both sides by b and d re-
d

spectively, we have a = bx and c = dy:

.'. ad = bdx and be = bdy,

consequently, bdx + bdy^ or bd {x •\-y) = ad + be,

a c ad + bc
and .'. X + y, or ~ + -= ——— :

b d bd

from which it appears that the fractions are reduced to others

having a common denominator, and the required simi is equal

to the sum of the new numerators divided by the common
denominator.

It is also evident that the process must be the same what-

ever be the number of fractions proposed.

a "»'

Ex. 1. Find the sum of and
a-{- X a— w

By reducing these fractions to others having a common
denominator by (71), we have

a ax (rt— ct) dr— ax
a-\-x (a + .r) X (a — a)

~ «^ — x"^
*

, X * X (a -h <r) ax -f- x^
and = "^ —

a — x (a— x) X (a -h if) a'— .t?'

'

, . , dr— ax-\-ax-\rx^ d^-\-x'
the required sum = , s = ~5

2
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Ex. 2. Find the sum of .r — — and x -i
—

.

£c +y x— y

First, ..- ^^ = x'^^xy-2xy ^ x^-xy ^ ^ fx-yy
^ + y '^ + 2/

'" + y \^v + y/

and
2 .ry x'—xy + 2 iry a?^ + a?i/ /x + y_ x^ + xy /x + y\

' x+ y ^— y X— y \x — y/

'

•. the required sum will obviously

=xrjiy.\ + X r^^\=.x \^^ +^\x+y/ \x— yj i^+y x— y)

(^x"^— 2xy+y'^ + x'^+2xy+y'^'i __2x(x^+y^)

t x'—y ) x—y= X

Ex. S. Find the sum of the fractions - , -^ and
X x^—a* x^+ a"

First, a x (x^—a^) x (a?^+ a^)= ax^—a^^
]

ax X X X (a?^+ a*)= a a?*+a^<2?% mew numerators;

a* X X X {x^— a^)=a"x^—a^Xf )

and X X (^r^ — a^) x (<r^ + a') = x^ — a^x^ the common denomi-

nator ; whence the fractions proposed are equivalent to

ax*— a^ ax* + a^x" a^x^— a*x

X — ax X — ax x — ax

and their sum will therefore be

ax* — a^ + ax* + a^x^ + a^x^— a*x~
x^ — a*x

2ax*-\- a^x^ + a^x" — a*x— a^
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Ex. 4. Let the proposed fractions be

1 1

and
4 a-^ (a + J?) 4 a^ (a — .v) 2 a" (or + ^'')

then it is obvious that their sum will be equivalent to

— \^- +'-^^ 4-
'

1_( 2a 1 1

~ ^la^-a;-\ "^
2 0^(0^ + 0?-)

_ 1 C 1 ^ ? _ ^

~ 2a- la--x^ "^
a- + <v^S

~ a^--^^
'

III. SUBTRACTION.

74. To ^Mrf the Difference of two Fractions.

Let the proposed fractions - and •- be assumed equal to
b a

X and y respectively ; then, as before, we shall have

a = b.v, c= dy, and .-. ad= bdx, bc=^bdy:

whence bdx— bdy, or bd(/v— y) = ad — bc,

a c ad— be
and .-. x-y, or - -- =

. ,
:

b d bd

that is, the diflPerence of two fractions is found by first reducing

them to others having a common denominator, and then taking

the difference of the new numerators and placing under it the

common denominator.

Ex. 1. Find the difference of and -.
x— y x-\-y

Her ^-i^ = (x + y)x{x + y) _ x^ + 2xy + y-

x-y (^— y)x(x + y)~ x^— y-
'

and
^~^ = (^— y)^(^— y) _ x--2xy-\-y^

x + y {x-\-y)x{x— y)~ x'^—y"

M-hence the required difference = -5

—

—. .

X- — y*
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Ex. 2. Let —-—-— and -— be the
(a — 6) (a? + a) (a — 6) (a? + 6)

proposed fractions; then their difference is manifestly

_ 1 C a

a— h (a? + a <j? + 6'

a— b\ (a? + a)(a? + 6) )
~

(x + a) (x + b)'

Ex. 3. Required the difference of and .

3a — 2a? 2a — 9t^'

First, (a + x) X (2a — Qx) = 2a^ — Jax— 9a7^

{5a-^2x) X (Sa—2x) = l5a-—l6ax+ 4<r^,

and (3a--2a?) X (2o— 9'»)= 6a^ — 31ax + ISar^y

so that the new equivalent fractions having a common de-

nominator, are

2a^— 7ax— Qx" 15a' — l6a<r4- 4a?^

6a^— 31 oa?+ 18 a?^ 6a^— 31a^+ 18a?«'

and taking the former from the latter, we have the remainder

13a-— 9aa?+13<3?^
~ 6a^ — 31 acV+ 18 cr-

Ex. 4. Find the difference of a? and a
2a + x

First, by (68), x-
x^ 2aa? + 0?^ — ci?"

and a—

2 a + <v 2 a + .V

c^ 2ax + a- — a-

2x + a 2x-\-a

u,—
2^ + a

9 ax

2 a + a?

'

2ax

2a? + a

2oa,'2ax
we shall have the required difference = — -,

K
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C 1 1 ) C 2a +a- 2a - .r )= 2aa! < > =2aa?< ; --r-—;—r>
l2a + a; 2x + aS U^a + 0;) (2a; + a))

2ax(a! — a) 2aa)''- — 2ad
,2

'

(2a + .r) (2cr + a) 2a +5acr + 2a?

IV. MULTIPLICATION.

75. To find the Product of two Fractions.

(I c
Let - and — be the proposed fractions, and as before

b d

assume — = v and - = y, so that a = bic and c=^dy:
b d

.'. by multiplication, we have

a y. c = bx X dy, or ac = bdwyy

,
a c ac a X c

whence wy, or - x ; =—- = :

h d bd h X d

wherefore the product of two fractions is found by multiplying

together their numerators and denominators respectively : and

it is moreover obvious that the same rule holds of any number
of fractions whatever.

ax a^ — <j?'

Ex. 1. The product of . and will be
(a— jey ab

ax X (a^ — x'^) ax X (a — x) x (a + x) x (a + a?) ax + x

(a — xyxab ab x (a— x)x(a — x) b (a — x) ab — bx

by rejecting such factors as are common to the numerator and

denominator.

a'— a?' (a + xY
Ex. 2. The product of —: . and ^ will be^ a^-j-x^ (a—xY
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(a— 0?) X (a*+ ax + a?') (o + a?) X (a 4- -^j

(a + a?) X (o^— aa? + a?*) (a— x)x(a — ai)

_ (a'' + aa? + a?*) x (a + a?) a' 4- Sa'^a?+ 2 aa;''+ »'

(o''_oa? + a?^ X (a— a?) o'— 2a*a?4-2aa?*— a?'*

by rejecting the common factors, and effecting the multipli-

cations.

First,

n «, , . 1 a— a? ax , (a— a?) (a + 3a?)
Ex. 3. Multiply 5 by ^^ — .

'^ "^ a-\-x a^—ar •' a— 3x

a — a; ax (a— xY ax a* — 3ax-\-x'^

a-\-x a^ — x" c^ — x^ c^ — x^ o? — a?'

, . - , a^ — 3ax-\-x'^ (a - a?) (a + 3x)
.'. the required product = ^ 5 x

a ~~ X a "— oX

(o'— 3oa? + a?') X (a + 3a') a^ — 8aa?'^ + 3a?^ . .= ^^ = — , as before.
(a + x") X {a — 3x) or— 9. ax — 3x^

Ex. 4. Multiply - + . by -, + I

.

In this case, we proceed as in integral quantities, and

following the rules already given, shall have the operation

as underneath

:

1 1 • 1. 1 ah
the multiplicand = - + -

X y

a?'
the multiplier = — -f

a?' v'

a"
+

b^

X 6a?*
- +
a a y

ay^
+ y

h'-x b

a? , 6a?^ ay* y
the product =—

\
—5

—

\- 7^ V r^ a a-v o^^ b

I
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ay + bx
The proposed fractions being equivalent to and

,., ^
, their product will also = ^-^

^Vri
^^

»

aft a h xy

which, by performing the multiplication and requisite reduc-

tions, becomes the same as above.

76. CoR. 1. Since the product of — and 6 is equivalent
he

a b ab a
^ ^ ^ , , ...

to — x-= — = - by (70), we see that when a fraction is

fee 1 6c c -^ ^

to be multiplied by an integral quantity, it is the same thing

whether the numerator be multiplied by it, or the denominator

be divided by it.

77- Cor. 2. A compound fraction, as ^ of - , will, from
b a

the nature of fractions, manifestly be equal to the product

of - and -, or —-: and thus a compound fraction may al-
h d bd ^ ^

ways be reduced to a simple one.

78. Cor. 3. Since, by definition (10), the quantities a""'

• 1 111
and a"" are equivalent to — and — respectively, we shall

have
1 1 1

a"' a" «"»+'•

1 a*" 1

again, a'"xa~"=a'"x — = — = , or «'"-"
:

a" a"

and thus we perceive that Rule 2. of .Article (20) is equally

applicable, whether the indices be positive or negative, or

partly positive and partly negative.

\
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V. DIVISION.

79. To find the Quotient of two Fractions.

a c
Taking - and - for the proposed fractions, let us assume

a c
- = ^ and - = y, as before ; .'. a-= hx and c = dy,

a

whence ad =r6d<2? and6c = 6dy;

, 1 T . . 1
hdx ad

.•. by equal division, we have -—— = —

:

•' ^ hdy he

^ . X a c ad a d
that is, - , or - ^ - = -- = - x - :

y d be c

wherefore the quotient of two fractions is found by taking the

product of the dividend and the divisor inverted.

^ _ . . - 2ax— ar^, 2 a—

x

Ex.l. Divide -J—^ by ^^-^.

The quotient will here obviously be

2ax-~x^ 2 a —

X

(2a — x)x (c— ar)*

e^— x^ ' (c— x)- (c — a?) (c^ + c<r +a?^) 2 a—

x

X (e— x) ex — a?- . .—
, by rejecting the factors txnm-

c'^-^ ex -^^ <r^ (? -\- ex •\- x^

mon to both the numerator and denominator.

a^-h"
, / a^-h^ \'

, „
Ex. 2. If we divide -r- —— by I — -5 l , we shall

(a + 2 6)^ ^ \ab + 2 feV

have the quotient = -———7^ -=- I , , ^ , „ I^ {a-^2hy \ab-\-2b^/

_ {a" + b^) (a' - b") 6^(g + 2fef _ b^ (a' + 6")
~

(a + 2 by ^ {a^-by ~ a^-b^ '

by proceeding as above.
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Ex. 3. Divide -^^ + 2 o by ^^ 1.

,v 2 ax

(a — x\- a' — 2 aa* + cP- + 2oa7 a^-\-x
First, ' + 2 a = =

,

X XX
{a + xY «^ + 2 oa? + a?'— 2 ao? a^ -^^ x"

and 1 = =
;

lax 2 ax 2 ax

a- -\-x- a^ + x^ o' + X* 2 ax
the quotient = ; -.

= x —r = 2 a.
* X 2 ax X a +x*

^ ^. . ^ 8 ofe 9x' ^ 4-a 3x
Ex. 4. Divide —- + 2 H by 1 .

9x^ Sab "^ 3x 2b

Here, proceeding as in integral quantities, we have the

operation as follows

:

4a 3x\ Sab 9x /^b 3x
1 -I 5- + 2 H ( 1 = the quotient.

3x 2 6/ 9x' Sab \3x 4a ^

9.^^'

8ab

9 a?-

Sab

In this example the fractions might have been transformed
as in Ex. 4. of (75), and the quotient obtained would after

reduction have been found to be the same.

80. Cor. i. Since it is obvious that the quotient of

tf6 ab h nb 1 ah a

c c I c b be c^



79

we conclude that when a fraction is to be divided by an

integral quantity, it is immaterial whether the numerator be

divided by it, or the denominator be multiplied by it.

81. CoE. 2. A complex fraction as is easily reduced

Q
, -. .-I a c a d ad

to a simple one, tor it manifestly = --^-r=:- x -= — .

h d h c he

82. CoR. S. As in (78), since a""* and a~" are equivalent

to — and — respectively, we have

111 a" 1
«-»» -;-«-« = ; = _ X a« = — = a"""*, or :

or or dr «"• a""-"

also dr^ rt-" = a»» -r- - = «*" X a" = a*""^, or -——-;

so that Rule 2. of Article (21) may be made use of, whether

the indices are positive or negative, or partly both.

VI. INVOLUTION.

83. To find the Powers of a Fraction.

Let - be any proposed fraction, then by (75) we shall have

a a a y. a oP^

thesquare=- x - = ^-^ =
g^;

a a a a x a x a a^
the cube = - x - k - = ~ = tt ; &c.

;

h h b b X b X b h^

1 th a a a .

the m power = - x - x - x Sec. to m factors
b b b

a X a X a X &c. to m factors a"

b X b X b X &c. to m factors h"
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whence we infer that any power of a fraction is found by

multiplying the indices of the numerator and denominator

by that of the proposed power : or, which is the same thing, by
raising both the numerator and denominator to the power

required.

Ex. 1. The square of —is —— ; the cube is —- ;

the fourth power is -tj-, &c. ; the m^ power is + .

Ex. 2. The square of is -^ „ ;
x — y cc'— 2 ,vy -f y^

, . x^ + 6x-y + 12 xy^ + 8 y^
the cube is —z s ^ ; and so on.

a^— Sx^y+ 3xy^— y^

. . , . Oibx
Ex. 3. Find the square, cube, &c. of ax — .

b-\-x

_. , abx abx + ax' — aba ax*
First, we have ax —

b + x b + x b +x''

o«a?* a^x^
.-. the square = — —; the cube = -——- ; &c. = &c.

(b + xy (b-\-xy

Ex. 4. Required the square, cube, &c. of - H— .

a X

Here the root = - + -
a X

X b
— H- —
a X

aP- b
+ -'

a" a

b b-
- +
a X'
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X"" 2 b b''

the square = — + — + -z
a' a x^

X b
- + -
a X

x^ 2bx
a^ a^

bx

+

+

b^

ax

2b'- b^

ax x^

*2 3 6a? 3 6- 6^
•. the cube = -^ + —5- H V —, ; &c.

or a ax a?"*

These are in fact the same as the square, cube, Sec. of

a?' + a6 , T . , ,when expressed in the least terms.
ax

84. Cor. Because a"" is equivalent to— , we shall mani-
as

(1
X OT

1—
j = -^ : also the

—m^ power of a" is equivalent to (a")"™ = —— = -^= a"**

:

whence we conclude that Rule 1. of Article (22) extends to

all cases whether the indices be positive or negative, or partly

both.

VII. EVOLUTION.

85. To find the Roots of a Fraction.

Since by (83) we have seen that f - ) = — , it follows

th i.
«"*

. «
that, by the reverse operation, the m " root of jz^^^ r'
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whence it is evident that any root of a fraction is obtained by

extracting the required root of the numerator and denominator

respectively.
« 12

Ex. 1. Ihe square root of —— — + —j^- = + -^j-'
fcis

--18 ^ y^

6 J2

and the cube root = —r^- = —^ .

Ex. 2. The cube root of - \--^ ^- is - V^^ ^

.

(h— 3cyy b— 3cy

a^ + x^
Ex. 3. Find the square root of h 2a^.

a* + x* ^ _2 _ «* + ^* + 2a-a?^ _ (a' + J7-)=
First, we have 5 \- 2d

a?* a? a?*

therefore the required square root = +
tV

€b 4 fit 46*
Ex. 4. Required the square root of -5— 1 .

The terms being already arranged according to the di-

mensions of a, we have as in integral quantities,

a* 4a 46V« 26
-^ — — H 5

1

= the square root.
6* 3c 9c^ \b 3c

^

a"

2a 2b\ 4a 4 6-

6 ~ ic/
""

3c 9c'

4a 46-

~ 3c 9c^

In this example, we might have reduced the parts of

the quantity proposed to a common denominator, and then
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have extracted the root of the numerator and denominator

separately.

86. CoE. Since a~""' is equivalent to , it is obvious

that the m^^ root of o~""* is — =a~": also, the — m^^ root

of a"*"", which is equivalent to the »»"* root of , or

a""* is a": hence Rule 1. of Article (23) extends to all cases,

whether the indices be positive or negative, or partly both.

87- In Article (69) it has been seen that a fraction may
sometimes be expressed by a mixed quantity, but it frequently

happens that by the operation of division, a fraction may be

expressed by means of a series of integral quantities, or of

other fractions which never terminates ; in other words, that

a fraction may be converted into what is called an infinite

series. This will be best illustrated by Examples.

Ex. 1. Let the proposed fraction be -: then by

actual division we have

1 — 6) a (a + a6 + a6" + &c.

a — ab

ah

ab— ah'

ah-

ab^- ah^

ah\

in which it is obvious that the operation may be continued as

long as we please, so that the entire operation would be endless,

and the quotient an infinite series a + ah -\- ah'^ \- &c.
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Ex. 2. Let be the fraction proposed, then we have
b + c

a a ac a ac ac^

b + c b 6(6 + c) b b^ b\b + c)

a ac ac

b b' b^ b^b + c)

a ac ac ac^ ac

b b'' b^ 6' - b"{b + c)

In these cases, the law according to which the successive

terms are formed is manifest, and a few steps only are ne-

cessary to point it out.

88. In the examples just given, it is usual to write

a a
=z a + ab •\- ab- + &c. in infinitum:1—6

a a ac ac' „ . . „ .

b-\-c b h^ b^
-^

but it may be observed that the symbol = then no longer

denotes arithmetical equality between the quantities on each

side of it, but merely indicates that the former quantity

may be exhibited in the latter form : and in what is called

the expansion or developement of algebraical quantities, the

symbol has generally this particular signification. If, how-

ever, at any step of the operation the remainder be retained,

the symbol keeps its proper signification, and the equation

will be numerically exact, as

a
, ,"

^^^
= a + ab + ab' +1-6 1 -6'

a a ac ac' ac

b + c h 6'- 6'' 6^(6 + 0)
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89. CoK. 1. It having been seen that by an extension of

the meaning of the symbol = we may have

== a + ab + ab^ -f &c. in infinitum:

if we suppose 6 = 1, we shall, on the same supposition, have

a
- = « + « + « + &c. in infinitum^

which is indefinitely great : and hence, according to this ex-

tended signification of the symbol = , if infinite numerical mag-
nitude be denoted by the symbol oo , we shall manifestly have

a <*
T

- = » , .'. — = and X 00 = a.
00

These results may be enunciated generally, in the following

terms

:

A finite quantity divided by zero gives an infinite quotient

:

a finite quantity divided by infinity gives zero for a quotient,

and the product of zero and infinity may be finite.

90. Cor. 2. It moreover sometimes happens, that by assign-

ing a particular value to one of the quantities involved in the

terms of a fraction, the result appears under the indeterminate

form -, from which it is obvious that no definite conclu-

sion can be immediately derived. This peculiarity being the

consequence of some factor involved in the numerator and

denominator becoming equal to 0, may manifestly be removed

by dividing both of them by such factor determined according

to the rule laid down in (^55).

Quantities exhibiting this peculiarity in their forms are

termed Vanishing Fractions.

Ex. 1. Let it be required to find the value of the fraction
4w — a

,r^— a'
in the particular case when x= a.

_, „ . , ,
a^— a^ . .

The fraction here becomes —= r or - , but it is readily
a — a^

discovered that the common factor which occasions this par-
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ticular form is J7 — a, and therefore if the numerator and de-

nominator be both divided by it we shall have the fraction

x^ -\- a.v" + a".r + a^ u i i.
• e ^^= whose value, when x= a, is maniiestly

.r- + ax + a^

_ 4 a' _ 4
^ 3a^ ~ 3

Ex. 2. If in the fraction 5

—

we suppose
12a?^-f-4a?'— 3a'— 1

'^^

x^= ^ or — ^ , the numerator and denominator both become

evanescent, but the fraction being reduced to its lowest terms

2x^1
is whose corresponding values are and 4.
3x+l ^ ^

91. Having now seen the application of all the fundamental

rules of arithmetic to algebraical fractions, we shall conclude

this chapter with a few deductions from the principles which

have been laid down and explained in it.

ac a +bc + d
92. If we have - = - , then will = .

b d a— b c —

d

a c a c
For, since - = - , we have - 4- 1 = - + 1

,

b a b
~

a

, . a + 6 c + rf , a— b c— d
that IS, —-— = —-— and

whence

b d b d

a + fe a~b c-f-rf c — d

b ~ b
^ d ~ d

'

a + 6 6 c + d d a + b c + d

a — b d c— d a — o c — d

Hence also, conversely, if =
,

, we shall have - = - .

a—b c—d b d

a c a™+ b*" c™ + d""
93. Again if ~ = - , then will

b d' a^-b*" c"-.d"



87

(ffl\*" /C\"' Q,"' C*"

6/ "^ \d) '
°^ 6™ ~

rf^' ^^ ^^^*^' ^^ *^^^

last article, -^—— =. -;;;j

—

— : and hence also the converse

is true.

a a b
94. If r- be any fraction whatever^ then will - H

—

b b a

be always greater than 2.

For, since by (22) it is proved that (a — 6)' is always a

positive quantity, whether a be greater or less than 6, we have

a^ — 2a6 + 6- > 0,

and .-. by adding 2ab to both sides, we conclude that

a- + b- > + 2ab > 2ab;

a^ + b^ a b . ^ , . ,

whence or - -{— is greater than 2 : that is, the sum of
ab b a

any quantity (except unity) and its reciprocal is greater than 2.

a b
. 11

95. On the same hypothesis —„+ —is greater than r + - .

b^ a" b a

For, from the last article, a^ + 6^ is > 2 a6,

.-. a'^— ab + b^is> ab;

and multiplying both sides by a + 6, we have

a'+ 6' >a26+a6%

a^ + b^ . a''b-\-ab- a b . 11
whence —^-r- is > ^-^— , or — + — is > - + - .

a^b^ a^b^ b- a^ b a

Similarly, — ^is proved to be greater than .

b a b a

96. If we have an equation, as - = - , and both sides
b a

a c
be multiplied by bd, then - x bd := --l x bd, or ad = be.
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Whence we infer that an equation may be cleared of
Fractiojis by multiplying all its terms by the product of their

denominators, or by their least common multiple.

ft v* h T*

Ex. 1. Clear of fractions the equation s= c.
b+.v a-\-a;

Here, multiplying every term of both sides of the equation

by (6+ .r) (a + a), we have

ax (a + tr) — 6a? (6 -f <r) = c (a + x) (b + a?),

or a^x + a a?' — b"x— bx^ = a 6c+ (« + 6) c a? + c a**,

or (o— 6) X- + (a'— 6') a?= a6c + (a + 6) ex + cx^,

which is cleared of fractions : and by (44) we have further

(a — b — c) .r' -{- \a^—(a + b)c — b^}x = a 6c.

Ex. 2. Let the proposed equation be

a ax ax-
3 + 7i—3 = 0.

a— X a — X a — x

Here the least common multiple of the denominators deter-

mined by (63) isa* + a^,r— ax^ — x*, and multiplying every

term of the equation by this quantity, we have

a* +2 a^x 4- 2 a^x^ + ax^— a^x — a^x^— ax^ -\- a^x^ + 0X^ = 0,

or aa?' +2a'<r' + a'a? + a*= 0,

by arranging the quantities according to the dimensions of x

:

and the equation may be still further simplified by dividing

every term by a, so that there results the equation

x^ + 2 ax"* -f- a^x + a' =: 0.



CHAP. V.

On Irrational or Surd, and Imaginary or Impossible

Quantities.

97- Def. An Irrational or Surd algebraical quantity

is one in which the root indicated or expressed cannot be

exactly extracted, and is generally characterized by means of

the radical sign, or by a fraction as its index.

Thus,

V^, V^Kih^^ 7(a^-6a;)% \/p and -^
hy <^2hy-y"'

are all algebraical surds or irrational quantities : and these,

by an extension of the notation explained in Definition (9)

may be likewise conveniently written in the following forms

;

V*2// i2by-r)^

wherein the numerators of the indices denote the powers to

which the quantities are to be raised, and the denominators the

roots intended to be extracted therefrom.

I. REDUCTION.

98. To represent a Rational Quantity as a Surd.

Let a be any rational quantity ; then since unity may be

considered as its index, we have a » a^ a= o^ *= a"^ «: &c. at a»

;

and these latter may be also written /y/o^, >/a"^, &c., /^y^.

M
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99. Cob. l. Agreeably to the convention made in the

latter part of Definition (10), the quantities >/o^, >y/a^, &c.,

i^/~o^ may be written

«C-)'C-^)Uc-.(^.)--

100. CoR. 2. Hence also the converse is true that a quan-

tity which appears under the form of a surd may really be

a rational quantity. Thus,

r-i s 4 /a'— 3 a' + 3 o — 1

/— A / a^h^x^ abx
^a2-2a + l=o-l, Vt Z ^ = 1

•

101. To represent a Mixed Quantity as a Surd.

Let a i^^b be the proposed quantity which is partly

rational and partly surd; then since a ,^Jh = ab" we have

(a ;/&)'» = (a6^)'" = o'»6,

whence immediately results a ^b = \/a^ = (a'^b)'"

.

Ex. 1. Let <rj/* be the proposed mixed quantity; then

since a?= a?i^^, we shall manifestly have

xyi = xi^'^yi = {x-y)i = >>/^.

Ex. 2. Let the proposed quantity be
x + 1 ./x—\
X—\ "

.T + 1
'

then ance ( | = ( ) and .-. = V/ ( )

,

\x—\) \x—\) .T— 1 ^ \a?_i/'
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we shall have

x—1 ^ x+1 \^—i/ \x+l/ x—l'

102. Cor. Conversely, a surd may frequently be repre-

sented by a mixed quantity, for »/o^ is obviously the same

as a jsjh.

Ex. 1. The surd ^(a + hxYxy is equivalent to the

mixed quantity (a + hxf sf^ — (a' + 2 a6a? + h^a^ ij oay.

Ex. 2. If the surd proposed be ^{a + xyh^, it is obvi-

ously equivalent to (a + <»)v 6S or (a+a?) 6^.

Ex. 3. Let the proposed surd be V/ ^^

—

——^—^ ^

;

h-\-x

mj
x 6K -4* X

then this may manifestly be written ^(cx— x-y"" y
b + X

which is equal to

m J
a + x „^„ /a 4-<r>

(ex — x'Y V :: , or (ex— x-y I 1
^ ^ b+x ^ ^ \b + xj

103. To reduce a Surd to its simplest Form.

Since ^a"*^b is equivalent to

^oTxa'^b = ^ar;/a"b = a^a^b;

it follows that a surd may be reduced to its simplest form by

seeking in the expression aiFected by the radical sign or fractional

index, the greatest factor of which the root expressed can be

extracted, and retaining the rest with the proper index.

Ex. 1. Let the proposed surd be ^27 a^ a?*
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Here ^27 a^oc^ — >sj9a-x^ x Sax = ^9a^^* ,JSax

= 3 ao?* y/Sdx.

Ex, 2. If the surd be ^5ax^— Sh^x^, we shall have

it in its simplest form = ^ x^ x (5 Ocj?— 3 6*) = x^ 5ax—Sb^.

Ex. 3. The surd V/ reduced to its simplest form
a— x

, A /ax' ia— x\ 4 / x* I—

;

r

becomes = V -7-^ zr = V 7 ri Va(a-^')
\a— x) ya — xy ^

^a{a— x).
a— X

104. To reduce Surds to others having a common Index.

Let i^a and >/6, which are equivalent to a™ and b', be

the surds proposed ; then it is manifest that by reducing their

indices — and - to others having a common denominator asm n '^

n mi " ^— and— , these quantities become a"" and ft"", which maymn mn "^

be also written (a")-^ and (6")^, or 11^0" and ^b"*,

having thus the common index .

mn

Ex. 1. Reduce .^raa; and fs^bx" to surds having a com-

mon index.

Here ^ ax ^ arx'^ =» d^x'^ = {a ai^)'^ = j^a^x^,

and ,yb^ = h^x^ = 6^.t?^ = (6«a?')^ = .^ftV,II
so that the new equivalent surds are (a^x^)^ and {b"x^y^ hav-

ing the common index ^ .
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Ex. 2. Let the quantities proposed be a ^a — x and

6 ^a" — 0?- ; then a >J a — .a? = ^ a^ - aV = (o' — a^xf

and h Ja-^ar = ^a'b^-b^x' = (a'6'— fe^^^^i

whence the required surds are

^a^-3a^x + 3a:'x^-a\v^ and ^a*b^ - 2 a^fe^^s + ^e^*.

Ex. 3. The surds a ^x — y and 4. are by (lOl)

s/^ + y

equivalent to {p?x—(v^yf and {
——) respectively; whence

the new surds having the common index ^ will manifestly be

{{a'w - d'yf^ and (——)^ or {a>x" - ^a>xy + «'2/'/
\<2? + yj

and {6*(a? + 2/)-'5*

105. Cor. If the common index be given, the indices of

the proposed surds must manifestly be reduced to fractions

having the same denominator with it.

Ex. If it be required to reduce ^ a^ — x^ and ,^a\-^x'^

to others with the common index ^, we have

Ja'-x''= (a-- x"Y= (a^- x"")^={(«'- ai^]'^

- {a^-^a\v'-\-Qa^x'^-Wx^+x^y, and tJ^^~W={a>+a;')^
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II. ADDITION.

106. To find the Sum of two Surd^.

Let ^d^b and ^bce''" be the two proposed surds ; then,

by reduction to their simplest forms, we have

and >^76^= ^^^^3^=^^;
whence their sum = a ,^/b + x^ /^^/b= (a + x^) ^h.

If the two surds cannot be reduced to others having the

same irrational factor, the addition can be indicated only by

means of the proper sign. Similarly if there be more than two.

Ex. 1. Add together „J~^ax^ and ^x^J^a.

Here ^^Asaar= ^4ti?- x a =^ ^x"sja— 2 a?/^/a,

and 3J7.^/9a= 3d7^9xo= 3a?,,y9 >^/a^=9>t?V"'

.-. the required sum = (2a? + 9-») ^^a = llo? ^a.

Ex. 2. Find the sum of the irrational quantities

3x^2a^x", 8a^2a-x^ and 2ax^2a-x^

Here 3xt^2a^x'= 3x ^ a^ x 2a'x^= Sax t^2a^x*,

8a^2a*a^= 8a ^x^ x 2o'a?*= 8aa? ^2a*a?^

and2ax^2a"x^ = 2ax ^2a^x^-y

whence we shall manifestly have the required sum

= (30tJ7 + 80J? + 2oa?)^2o^r'= ISOcP >y/2a^a?'
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Ex. 3. Required the sum of the fractional surds

V TT' V -i-rand V Tir •

be" ^ bd'

Here \/«5 = \/?^ = v/^ \/?=:^' \/^,^6^ ^6' b ^ b- ^ b b ^ b'

whence the required sum =1— H }--_lA/ —

,

\o c o

/

6

Ex. 4. Required the sum of the surds

In this case we have by reduction,

. /a^x— 2aar + x^ _ . /a'^— 2ax + w^ ,—_ a— x ,-

^ a^ + '2.ax-\-x- ~ a^ + 2ax-^x'^'^ ' ~a + x'^ '

. / a^x + 2ax^ + x^ _ ./a'^ + 2ax + x^ ,— a-{-x .

whence the sum required

—— +
) V^=2 (-^ 2 ) ^.a + a? a —x}^ \(t— .r'/ ^
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III. SUBTRACTION.

• 107. Tojind the Difference of two Surds.

Let t^a^b and H^bx'"' be the surds proposed, then as in

the last article these are equivalent to a^b and w-^b re-

spectively; whence their difference is obviously (a— x^) ^^b.

Also, if they be not reducible so as to have the same irra-

tional factor, their difference can be expressed only by means

of the proper algebraical sign.

Ex. 1. From 9 a t^/bc^ take 5 x ,^orb.

Here 9 a ^bx' = 9 ao? ^b, and 5 x sja-b =: Sax ^b ;

whence the remainder required = (9 aa?— 5 ax) ,sjb= 4 ax ,.^/b.

Ex. 2. Subtract a ^bc' from ^iGa^b^c*.

Here o ^bc-= ac ,J^, and ^l6a*b^c* — 2ac ^b ;

therefore the remainder = (2 ac —ac) ^b — ac a^/T.

_ T^ * /27 a X* , . /ax*
Ex. 3. From V ;— take V —r •^26 ^ 54fc

Here \/!i4^ = 3 «. \7^, andV^ = - V^;^26 ^ 2fe' ^546 3 ^ 26

whence the required remainder = ( Sax — -J \/ — .

V 3/ ^ 26

Ex. 4. The difference of the surds v/"'^ ~ ~ °^"' + ^'

^ fz' + 2a6 + 6«

and \/?^±I^E±Z =, /!i±^ _ ^Jl^\ /T _ ^afeN/fe

a--2a6 + 6- V«-& a + b) '^ * ^ a'-b" '
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IV. MULTIPLICATION.

108. To Jind the Product of two Surds.

Let .^a and v^ be any two surds ; then it is manifest

that their product

If rational quantities be involved in one or both of the

factors, their product must evidently be annexed to the product

of the surds by means of the proper algebraical sign.

Similarly for the continued product of any number of surds

whatever.

Ex. 1. The product of a/«^^ and >/aa?(a^— a?')

= i^ a^cc X ax (a'— w~) =^ a*,v'' {a"— or) = a^x^a^— a'.

Ex. 2. Required the product of a,^w and h^y.

Here a^x = ax^ = ax^^ and b^y = hy^ = 6y^*;

.•. we shall have the product required

4 3^ i 2

= ax^^ X hy^'^ = ah (a?*^)^^ = ah i^/^V^.

Ex. 3. Find the continued product of the three surds

ax f
hy zn— -,

^'^ */
—

-—^ax, —y/by, and ^/ cm.
he ca ^ a

The required product will obviously be

ax hy c^d /— ^t-r- 4,

—

= — X -3 X — Vff'^V^S'V^^
be cd a

1 1 1 ^ 6 1 t 1 1
= xy {axf{hyf{c%f = xyd^-^x^^h^'^y^^c^^ «i2

= xy ^o^feVZ^V.
N
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Ex. 4. Multiply ab-\-c„J^ by a — ^z.

Proceeding as in rational quantities, we have

— ah ^J%*—c mJxyz

.'. the product = a^b + ac ^/xy — ah j^z— cyj

i

xyz.

109. Cor. If in the last article we suppose h=^a, we shall

have the product of ,^/a and >>/o = "^ a"a*^ = '^a"*^"
m+ n i. + L
a "•'» = a"* " : and hence Rule (2) laid down in Article (20),

with respect to the multiplication of different powers of the

same rational quantity, holds good also in the multiplication

of quantities of all kinds, whether the indices be positive or

negative, integral or fractional.

Ex. 1. Multiply ''T' — aJ ^T!y + y by ^,v + ^y.

Here, as in rational quantities, we have

'V — >/a^ + y

n/^ + Vj/

+ -'^ \/y - y n/^ + y \/y

the product = .v ,^Jlc + y *,Jy or a?^ + y^.



Ex. 2. Proceeding as in integral quantities, we have

a^ + a^P' + a^b^ + ab + a'^b'^ + 6^

a^ + aJb^ + a^b^ + aJb + ofe^ + a'^fe;^

'

- o^6"3^ - a'6^ _ a^b - ab^ - a^b^-¥ '

.-. the product = a'— 6^

V. DIVISION.

110. To find the Quotient of two Surds. ' '

'

Taking /^/a and i^/6 for any two surds, we; shall obvi-

ously have the quotient resulting from the division of the

former by the latter

^ _ ^^ ^^ i_

\/^ _ X/^"* _ \A^ _ (^"\""

Tfb ~ r/P ~ ^ 6^ ~ wv

If the surds have rational quantities connected with them,

their quotient must evidently be annexed to that of the surds

by means of the proper algebraical sign.

Ex. 1. The quotient of ,y/a^^ divided by A^bx

Ex. 2. Find the quotient resulting from the division

of ^ax — x^ by ^ c? — oc^-
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First, J'^^^-'^^ia.v-x'i^^ \{ax-xy\^= {x^ia-wf]^,

and

,^/^^~7= {a--ar)^= {{a'-xy\^= {(« +.r)=(a-a?)'J-^;

.-. the required quotient will obviously be

(x^{a — xy \^ Ca?'(o— a?))"^ x'^ {a— xy
{a-\-xy{a-xf) ~ I {a+xf] ~

(o + a?)"^

Ex. 3. What is the quotient arising from the division of

. /hc— bx , . /ad— ax
a V by 6 V li

''

d

The required quotient will obviously be

a . /hc—hx . / d _ ^ i /* (^ "~ '^') ^

6 c ad—ax b ca(d—x)

_ ^/a-b(c— x)d . /ad (c— x)
~* ^ fe^ca(rf-.r) ^ ^ 6c(rf-cT)

'

Ex.4. Divide a^x—s^bx+a^y-y/byhy ^x + ^y.

Here by the process used in rational quantities, we have

a,^ +a»Jy

- ,J~bx- y/by

- y/bx - Jby

»o that the quotient is a — »Jb.
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111. CoE. Since the quotient arising from the division of

\/« by A^b has been shewn to be (~)'""> if we make

ml— /— /a'*\— n-m l_^i

6 = a, we shall have y/ a-i- ^ a = i — l"*" = amn =0™ »,

which shews that Rule (2) of Article (21) holds equally for

surds and rational quantities.

Ex. 1. Let o 4- 6 — c + 2 ,J ab be divided by

,J^ + >sjb — />/c.

Proceeding according to the usual method, we have

\/a + s/^ — \/c) a + 2 <^/ah-{- b — c{ ^/a + ,yA + \/c»

a + y/ab— aJ^c

sj^ + b + >Jac

j^/ab + b — y/bc

s/ac + M,Jbc — c

whence the quotient is ^/a + ^b + yj~c.

Ex. 2. Divide o'— 6' by a"^ + 6^.

Here, according to the rule, we have

(? + 6^) a' - 6' {a^ - a^6^ + a^ 6^ _ 6^ = the quotient,

a^ + c^b^

9 3_ a* ^^ _ j3

- a^b' - a- b'
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3 3

— 6^

a^b^ +
3 9

6"^

— 3

6^- 6'

—
3

6^- 6^

VI. INVOLUTION.

112. To find the Powers of a Surd.

Let ,^/a be any proposed surd; then it is manifest that

its m*^ power — ^ a x ,^/a x ^a x &c. to m factors

= ^a X a X a X &c. to m factors = <^/a^ = a" ; that is,

^a or a* raised to the w* power is a".

Whence any power of a surd is found by multiplying its

index by that of the proposed power as in rational quantities.

Also, if any rational quantity be connected with the surd,

it is obvious that its power must likewise be connected with

that of the surd by the proper algebraical sign.

Ex. 1. The square of ^^/a.r^ is {ax^y
^

"= {ax^y =^ aoc^;

the cube is (00?^)*"'= (a.r^)* = -^oV; &c.

Ex.2. The cube of-^,T=_ = the cube of
'^ '

yfo- ^ya + <r n* (a + .1)*

_ (a'— 0?")^ _ (a -I- a,-)i«" (a— a)-? ^ (a + >t)~t (o_ a?)T

dJ {a + a?)^3- flir (« + cm) a^



103

Ex. 3. The fourth power of -^ /y/ (c +.1?)^ = the fourth

power of— {c-\-ocy = —^{c-\-x)^ = ^ v v^^"^)"*

•.Ex.4. Required the square, cube, he. oi a— h ^x.

Here the root = a — 6a?*

1.

a — 6cP^

— ahx^ + 6^ ti-

the square = ri^ -^ 2abx^ + b"oe;

a — bx^

(f— 2a^bx^ -\-ab^w

the cube = a^ — 3 a^6 a?^ + 3a6^<r— b^x^ ; &c.

113. CoR. Since ^ya raised to the r»* power = a", if

we suppose n=^m we shall have the rn^^ power of ^a= o;

whence it is inferred that the m* power of a surd whose index

is — is obtained by removing the index or radicial sign.
m

Ex. 1. The square of the irrational quantity

^a^-\-bx is (a^ + bxy x (a^ + bxy^= (a^ +. bx)^= a'' \-bx.

5 1 ^ .

Ex. 2. The cube ai a^b^— x^ + 3Xf^ax^ is

a^^ (6^ — x^ + Sa? s/a^) =ss a^fe^— a'.r^ + 3 a^r o/aa?*.
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VII. EVOLUTION.

114. To find the Roots of a Surd.

Let J/fl be any proposed surd ; then since it is clear that

L— — ——

I

H 4c to ni terms — — „^a or «" = a""*
""" = «""» x a""" x a*"" x &c. to ?w

factors, it follows that the tw* root of the proposed surd will

be any one of these factors, or a'"".

Hence any root of a surd is obtained by dividing its index

by the number belonging to the radical sign indicating the

required root, as in rational quantities.

Of rational quantities combined with surds the roots must

be found separately and connected by the proper sign.

Ex. 1. The square root of ^aa?= (oa?)'^ * = (aa?)^; the

cube root = (o<r)"^ " = {aaiy; &c.

Ex. 2. The cube root of - .
-
, which is the same as the

^
^(a + xy^ (ct + cv)'^"^ {a + xy^ J/a + w

cube root of = =—

—

— = ^
^

-

^—

,

6"^ h^"^^ b^ V^

(i 5i a 1

Ex. 3. The fourth root of —^/w^— aa!= — (ar^— ax)T2

oa?i2(a?— a)K a(a?— a)i2 ./x — a
I 5 V ~5 •

5^

Ex. 4. Let it be required to find the square root of

a—^s^a^bx + b^af^.
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Here, proceeding as in integral q\iantities, we have the

following operation

:

i~ 3/— — -

so that the square root is >/a— ,^hx.

115. CoR. By a repetition of the process explained in

the last article, the roots of the roots of surds may be similarly

expressed: thus,

j_ _i_

the m* root of the n^ root of >v/a = the m^ root of o"" = a'""^,

that is, V V -s/a is equivalent to a™^

:

so likewise ^ \/ \/ ,1/a is equivalent to a"'"*"' ; &c.

116. Though it may be impossible to extract the root of

an algebraical surd as it stands, such a modification of it may
frequently be made by the addition and subtraction of the same

quantity, that the extraction may be effected by the ordinary

methods.

Ex. 1. Extract the square root of a^ + 2w ^a^— x*.

Here, adding and subtracting r^, we have the following

operation

:

O
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a' -,v^ + 2af^a"— a" + or {»J a^ - a'* + a?,

o-— x-

2Mja-— x- + iv) + 2x^a^—ar + x"

4- 2a? t^ or— or + .t?"

so that the square root is >>y a"— <r* + .r.

Ex. 2. To extract the cube root of the expression

we have merely to add and subtract a?, so that it becomes

a + x + 3 j^a^— .1?*
{ -y/a + a? + \/a-^x\ + a— a?,

which is manifestly the cube of a^ a + x + ^ a — x, the

required root.

117. The subject of the last article being merely an artifice

must necessarily be precarious, and it still remains to explain

the theory of the extraction of the roots of surds in those cases

wherein the extraction can be effected in a determinate form.

No universal rule can be given, but the following articles will

enable us to find the square and cube roots of binomial quadra-

tic surds, whenever they can be exhibited as surds of the same

description.

118. The product of two quadratic surds not having the

same irrational part, is irrational.

For, if possible, let ^^yx x \/y= m, then squaring both
8 o

' ^ ^ 01 ^ m'X
. - „

Sides we have xy^nnr, and . y= — =—r- ; whence it follows
X X

that \/y — —^Xf or the surds have the same irrational

factor ^ya?, which is contrary to the supposition.
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119- The square root of a rational quantity can neither

be equivalent to the sum or difference of a rational quantity

and a surd, nor to the sum or difference of two or more surds

not having the same irrational factor.

If ,^/a= a?+ A^y) then by squaring both sides, we have

I
— t~ ^— ''''

—

y
o= a? 4:2a?^y-f y; whence + ^y— , or a surd

A, 00

is equivalent to a rational quantity, which is impossible.

Again, if ^Ja^ aJob+ <y/y, we shall have by the same

I— , /— a— w— y
process, a = x + 2^ xy + y, and ••. + \/ xy = ,

which is also absurd.

120. Cor. 1. Hence, in the equation «+ y/b=^a;+ j^y,

we must have a= x, and ,y/ 6 = j^Jy ; for if this were not the

case, the square root of a rational quantity would be partly a

rational quantity and partly a quadratic surd.

121. CoR. 2. It follows, therefore, that if a+ >^y6=ti*+yy/y,

the equation a— j^Jh^x— sj y-> also holds good.

122. To extract the square root of a binomial surd, one

of whose terms is a rational quantity, and the other a quad-

ratic surd.

. Let a + ^h be the proposed binomial surd, and assume

\/a+ is/f>= \/^:t v^5 the algebraical signs of the latter

quantities being the same on both sides

:

.-. a± A^= u±2,,yuv+vz=(u + v)±2j^uv:

hence by (120) we have u + v = a, and 2 y/uv = ^b :

squaring both sides of these two equations, we obtain

M-+ 2 Mt) + u"= o*

and 4w« =b,
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.-.by subtraction and evolution, we find

u" — 2uv + v" = a- — b, and u — v = j^a" — b;

whence, by addition, subtraction, &c. we get

2u= a+ j^a^ -b, 2« =a— >/a-— 6,

^u= s/^JL^H^, and 7^= \/°-^{'''-\

and •• 7^^±7i= >/«+nA^ + \/^^n/?E*:

wherefore, in order that the square root of the proposed surd

may be a binomial surd, one or both of whose terms are qua^

dratic surds, the quantity a^ — h must be a complete square,

and the required root is found.

Ex. 1. Extract the square root of a?— 2 ^x— 1.

By the substitution of x and 2 a^x—\ in the places of a

and /,^/b in the general formula above deduced, the square root

required will be found to be ^<r— 1 — 1 : but to avoid substi-

tutions it is generally most convenient to perform the operation

at length ; thus,

let \/x—^^x—l = ^u-^v^,

so that x—2^x—l=u + v — 2^uv:

.-. u + v = x, and 2 ^uv = 2 ^x—1:

whence we get u^ + 2uv + v"= x"

and 4iuv =4.r— 4,

.-. u' — 2uv + v'^= x-— 4,x + 4, and zi — v=sx— 2:

.: 2M = 2a?— 2, 2v= 2; ,^= ^x—\, >/« = !;

and the required square root =^x— 1 — 1 , as before.
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Ex. 2. Extract the square root of the expression

2 + 2 (1 — a?) >y 1 + 2a?— a?-.

Assume ^2 + 2 (l -.r) ^1+ 2a?— a?^= ^u^ ^v,

.-. u + v-\-2 ij^vi = 2 + 2 (1 — a;') ^1 +2a7— a?*;

whence m + u = 2, and 2 ^mv = 2(1 — 30) ^ \ -^Ix— cc^ .

.'. u^-\-2uv + «^= 4

and 4wt> = 4 (l — 4a?- + 4a?^ — a?^),'

.*. M- — 2mu + «-=l6.T?-— l6a?^ +4a?*, and m— « = 4a?— 2a?^:

.-. we have M=l 4-2^T? — a?% and ,y/w= + >y/l +2a?

—

or,

also u = 1 — 2a?+ a?'"*, and m^v= +(1— a?):

whence the required root

= \/l +2a?— a?-4-l — a-, or a?— 1 — ^1 +2a?— a.'^

Ex. 3. To extract the square root of the numerical surd

28 + 5 x/T2, we proceed exactly as before, and assume

whence m + v = 28, 2 ^/w^ = 5 >y/l2 ; «*- + 2 m u + u" = 784,

and4MU=:300, so that w"— 2m« +v-= 484, and .-. w— v = 22;

.-. as before u = 25, and v = 3, and the required root = 5 + ^3,

Ex. 4. Extract the square root oi^32— yJ^At.

Here, both the terms being surds, it is obvious that the

general method cannot be applied to this quantity as it stands,

and it will therefore be necessary to make it assume the proper

form: thus, we have

^"32 - v^24 = ^STI - -v/sTs = y 8 (2 - -^3) ;
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and proceeding as before with the latter factor, we find its

x/3 —

1

square root to be y=— , and thence the square root re-

quired will manifestly be

= -s/i (v/s - 1) = ^Ts - ^2.

123. Cor. An assumption similar to what has been

adopted in the last article, will frequently enable us to extract

the square root of a surd involving more than two terms : thus,

let V6 +2^ +2^ +2^ = >yw + ^v + ^y^?,

.-. we get

6+2 /y/2+2 ,yj+2 A^6= u+v +w+2 ,,/uv+2^uw+2 a^Vw,

whence we have u + v + w = 6,

2>yMtJ=2>y2, 1 sfuw -<i J'i, 2^VM; = 2,y6;

and squaring both sides of each of these latter equations,

we obtain

MtJ= 2, uw=-^., and um;= 6;

whence, by multiplication, ««"«-«;' = 36, and .-. uviw^%\

uvw 6 uvw 6 uvw 6
,-. u = = - = 1 , V = = - = 2, w = = - = 3,

vw 6 uw 3 uv 2

and since the sum of w, « and w is 6, the required square

root is 1 + ,J^ + »J 3.

124. It may be proved as in (liy), that the cube root

of a rational quantity cannot be equivalent to the sum or

difference of a rational quantity and a surd, nor to the sum
or difference of two or more surds.
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Also, if \/ a + Ayb= iV + ,^yy^ we shall, by involution,

have a + ^s/b—x^ + Sar ,y/y + 3,vy + y ^^y; whence, by (120)>

and ••• a— y/b= x^—3ar^ + 3a!y—y^y= (w—^yy;

wherefore we have \/ o — „Jh= x— i^y: that is,

if '»J a + A^b= a! + y/y, then will \/a— s>Jh= ai— „Jy.

125. To extract the cube root of a binomial surd, one

of whose terms is a rational quantity, and the other a

quadratic surd.

Let V « + v^= '*' + Vy? so that \/ a— ^b=-x— ^^y,
.'. by multiplying together the corresponding members of

these equations, we have

^a^— b= x^ — y, or a^ — 6= (a?* — y)':

let a^— b= c^, a perfect cube, then x'— y= c, or y=x" — c\

but since from the last article a= a?^ + 3try, we have

= 07^+ Sx (a^ — c) = 4a?' — Sex ;

and because x is supposed to be rational, its value may easily

be found by trial, and therefore v a + „J1)
= x + ,^x- —c

will be expressed in terms of a and b.

If a^— b be not a complete cube, the root cannot be

exhibited in the same form as the surd itself, and recourse

must be had to expedients hereafter explained.

Ex. Extract the cube root of the numerical surd

20 ± 14 ^i.

Assume v20 + 14 ^2 = .r + ^y, whence we have
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.,.'i- y= ^ (20 + 14^) (20- 14 .y/s)

= ^400-392= 4/s = 2;

,-. yss.r'^ — 2, and 20= 4ti?'— 6a?, from which w is immediately

found by trial to be 2, and .-. y= 4— 2 = 2;

hence v 20 + 14 ,^y2 = 2 + ,^y¥, the required root.

126. The fourth root of a binomial surd may be deter-

mined by extracting the square root of its square root ; and by

a continuation of the same process, the (2'")*'' root may be

found when it is possible : similarly the sixth root, being the

square root of the cube root, may sometimes be found by the

methods above explained, but for a more general theory of the

subject the reader is referred to the latter part of Chap. vii.

127- Though the value of a surd can never be accu-

rately exhibited in terms of rational quantities, approximations

may be made to its true value to any degree of exactness

required in practice.

Let ^N he the proposed surd, and suppose or to be the

greatest square number contained in N, and h a quantity such

that

N=ar +2ab -\-
b'^

:

then since h is necessarily a proper fraction, 6^ is small when

compared with a" -f 2 ah, so that N=o^ + 2ab nearly ;

N-a-
. h = nearly,

whence ^/N=a + b = a -\ = nearly,^
2ffl 2a -^

which is evidently somewhat greater than the true value

:
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Call this value o', and let // be so assumed that

N= (a - 6')"- = a'«- 2 a'b' + h'\

then as before h'= ;— nearly ;

2a ^

... ^N=a -b =a - ^-^ =—-^ nearly,

which is obviously nearer the true value: and by a con-

tinuation of this process, we shall approximate more and more

nearly to the true value of the surd, till the required degree of

exactness be attained.

A similar result might have been obtained by assuming a"

to represent the square number next greater than N.

Ex. To find the approximate values of »y2, we have

JV=2, a = 1,

whence ^2 = = - nearly,

which is the first approximation and is greater than the true

root:

also, •.• a = ~ . we have
2

/- 4 17
,

v/2 = = — nearly,

the second approximation, which is more nearly the true value;

577
and the third approximation will be found to be — , which

is nearer still; and so on.

128. CoE. Since by (30) the number of figures com-

posing the square of any quantity cannot exceed twice the

number in the quantity itself, it follows that if a contain at

least one figure more than b does, and as many cyphers after

it as there are figures in 6, b^ cannot contain as many figures

P



114

as there are in 2fl, and .". — is necessarily a proper fraction;

2«

may be obtained as far as the unit's place by division only.

Ex. Let it be required to extract the square root of 2.

Proceeding at first in the ordinary method, and then by
division, we have

2.060006 (1.414

1

24) 100

96

281)400

281

2824) 11900

11296

2828) 6040000 (2135

5656

3840

2828

10120

8484

I6S6O

14140

2220,

so that the approximate root is 1.41421S5 &c. the number of
figures, after four places in the root are ascertained, being
doubled by division only.
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Similar methods may with different degrees of accuracy

be made use of in approximating to the values of cubic,

biquadratic, &c. surds.

VIII. TRANSFORMATION.

129. A surd may be converted into a series by a con-

tinuation of the operation indicated to any extent we please,

and it is obvious from (23) that the entire result would consist

of an infinite number of terms: it may also be further re-

marked, that it is seldom possible to discover the law according

to which the successive terms are formed. One example of

this will suffice.

Ex. To convert ^ a~-\-ije'^ into an infinite series.

^/ sc^ x^ w^ 5w^
a- + a? I a H ——- 4- ——^ s — &c.

V 2a 8a3 l6a^ 128a'

2 a/

,8

4a^

s 4 4
X^ X \ X

2a+ 5) o
a 8 a*/ 4a*

A ^i o „4 '

4a^ 8 a" 64 a^

X"^ cT* x^ \ x^ x"^

^^'^ "^ ""
4^

"*"

16^/ 8^ ~ 6W

8a* l6a^

64a^
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5a^

whence we have V^M^ = « + il^" i^+ le?" lii^'"^^*"'

i« mjinitum, where the sign = is used in the sense in which

it has been explained in (88).

A monomial surd as ^o=^ 1 -)- (o — i), a trinomial surd

as ^1 +x + x-= »J \ \-ai{\ + a?), gic. may be expressed after

a similar manner.

130. The operations of Multiplication and Division will

enable us to exhibit any proposed surd in different forms,

without altering its value.

^ ^- ,
, , x/a + a?— ^ff — X

Ex. 1. If we have the surd ^
, . - , andmul-

aJ a-\-x -\-^ a— x

tiply the numerator and denominator by t^a + x— i^a— x,

there will result the equivalent surd

{»J a-\-x— isj a— ai) (y/a+x— ^a— x) 'ia— 'i^o^— x^

2x{^sja +x + ^a— x) (y/a +x— ^a - x)

a— /a' — ,

which, by dividing the terms by 2, becomes = — \

Again, multiplying the numerator and denominator by

^a + X -^ ^ a— X, we find it equivalent to

{»Ja->t-x— y/a— x)(,^a + x+ ^a— x)

i's/fi + -^ + \/a — x) (>ya+x + ^a— x)

2x X

2a + 2 »y a" — x'^ a-\-^a'— x^

Ex. 2. To reduce the fractional surd

x'^ +x^-\'5x" + 5x'^

to its lowest terms, we have merely to divide its numerator and
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denominator by their greatest common measure 1 + a?"*" deter-

mined as in rational quantities : whence the equivalent surd in

the least terms will be .

x^ + Sar^

1 2 <2? 3 tp'

Ex. 3. To reduce —^ , and to

equivalent surds having a common denominator, we observe

that (l + a?) * is the least common multiple of the proposed

denominators found as in rational quantities: whence as in

(72) the new numerators will be (l + a?)*, 2 a? + 2 a?^ and 3 a?^

respectively: and the corresponding new fractions

(1+a?)^ 2a?+2a?- , 3 ar^

and
(l+a7)4' (l+a?)4 (l+xy

In the same manner surds of this description are prepared for

the operations of Addition and Subtraction.

131. By effecting the operation of Involution, and indi-

cating the reverse one of Evolution, surds and mixed quantities

may be transformed into other surds of a more general form.

Ex. 1. By the operation of involution, we have

whence it obviously follows that a^x + >y/l — <» is equivalent

to Vl+2v^a?-a?*.

Ex. 2. Let X — y \- f^2xy— y^ be a proposed mixed

quantity, then we shall have immediately

(.r - y + J^xy - yy-se^ -2xy }- f + 2 (x- y) ^J^xy^f

+ 2a?«/ - j^''= a?2 + 2 {x - y) s/Txy~^%
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in whicli all the terms are under the radical sign : and the

original quantity, which is partly rational and partly surd,

is thus expressed as what is called a general surd.

Ex. 3. Again, by the operations of involution and evo-

lution,

but V"+ \/b + s/a—^

.-. by the substitution of this equivalent quantity in the pre-

ceding expression, we shall have

which, by means of fractional indices, may be written in the
form

{(2a +2 (a- - 6)*)* -j- 2 (a" - 6)*}*.

A similar expression may be deduced for

V^«+ a/6 + ^^- s/b.

132. Since by the nature of the operation indicated, if

1

>/ a or fl

be raised to the m"" power, the result is the rational quantity a,

it is manifest that by transposing all the rational quantities
to the same side, according to the rule laid down in (44), an
equation may be cleared of Surds by the proper involutions
of both its members.
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Ex. 1. To clear of surds the equation a .r = 6 + y/exy we

have ax— b= >Jcx^ and squaring botli sides, we get

ffl-<r' — 2 a6a? + 6* = ca?, which is free from surds.

Ex. 2. If we have ,^2 aa? + j?*+ ^a* + a?* = a — ^r, then

wiU

2aa? + a?^ + x/a^+ ct?' = a^— Saa? + •I'S

and by rejecting a?^ from bDth sides and transposing 2aa7, we
have

,^ a^ + x^ — a- — 4aa?;

whence squaring again we obtain

a^ + x^ = a'^— 8a' a? + l6 a' x^,

which does not involve a surd.

133. From what has been already said, it is evident that

any simple surd being continually multiplied into itself, will at

length give a rational result, and that compound surds will, by

a similar operation, give results still involving irrational quan-

tities.

For every compound surd, however, there exists another

compound surd, which being multiplied into it will give a

rational product: thus, if the surd

be multiplied by the surd

there results the rational quantity

a — 6;

and the following article contains the general investigation of

the multipliers, which will rationalize any surds whatever.
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134. It has been seen that by actual division

x— y

whatever whole number m may represent, the number of terms

being also m; whence it obviously follows that

now if X and y represent any two surds, it is manifest that the

latter side will be a rational quantity, whenever m is assumed

of such a magnitude as to render both a?*" and y" rational,

and the corresponding rationalizing multiplier will be

If the sign of the latter surd be positive, we shall have

{x-\-y){or-^ — or-^y + he. +xy^-'^±'ip-'^) = ar±y'"y

where the upper or lower sign is to be used according as m is

odd or even: wherefore in this case the rationalizing multiplier

will be

and the corresponding rational result **" + jT*-

Ex. 1. Required the surd multiplier which will render

3 3

a^ — b"^ a rational quantity.

Here it is obvious that m = 4, and therefore the multiplier

will be

4.XS 4.X8.4.XI 3xi,4.xS
. .-l-xs

9 3 J. 33 e

or aT + a^b^ + a'^b'^ + b'^;

and the rationalized result is a' — 6'.
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Ex. 2. What is the surd multiplier requisite to make

a* + 6^ a rational quantity?

In this case m evidently = 6, and therefore

a.x5 1 x4 I xl 1x3 1x2 4-X2 1 x3 ,
'xl,-Lx4 ,i X 5

or a"^ _ aH^ + a^b^ - ab + a^b^-b^

is the multiplier sought, and the resulting rational quantity

will be a' — 6*.

135. By means of this theorem a multiplier may be found,

which will render rational any binomial surd whatever, and by
a continuation of a similar process the same effects may be

produced upon surds consisting of three or more terms.

Ex. Let t>Ja-\- >/6+ y^c be the surd proposed, then

we have

= {s/a-\-^f-{J~cf={a-^b-c) + ^J^:
and again {(a+ 6 — c) -^-^ ,,J~ab] [{a -\- b— c) — 2 ,,Jab\

= (a + b— c)- — 4> ab = a^ + 2 ah + b^— 2{a + b)c + c"— 4 ab

= a* 4- 6^ + c^ — 2 {ab + ac-\- be), which is rational.

136. The principles explained in the preceding articles

will manifestly enable us to clear fractional surds of irrational

denominators. ^_

Thus, in the fraction . = . = , if

^dr^ + W+1 — t^w^— x—l

we multiply both the numerator and denominator by the

numerator, the result will be

X- 4- sj x^ — x^ — 2x — 1

cT + 1

Q
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The division of one surd by another may also be simplified

by the same method.

/— t— a-\- aV b
Thus, the quotient ofa+^6 by c— ^d= t=

c— ^d

_(a + xA) (c + >yrf) _ ac +a^ + CA/b + s/bd
,

/- I— 5 — 7>Vi
similarly, the quotient of 5 — 7^/3 by 1+^3= -~

IX. IMAGINARY OR IMPOSSIBLE QUANTITIES.

137- From (22) it appears that every quantity whether

positive or negative when raised to an even power, gives a

positive result, and thence it follows that no even root of a

negative quantity can be either positive or negative : the even

roots of negative quantities can therefore be only indicated or

expressed, and are usually termed Imaginary or Impossible.

Thus, the square root of — a^ being neither + a nor — a,

is written ^ — a-, and is equivalent to

>Jd' x(-l) = ^/a^V - 1 = ± a-v/^*

which is said to involve the imaginary or impossible quantity

Similarly, we shall manifestly have

/ 4 * r~i—7
; */~4 */

V —
'^ = V ® ><(— 0= V « V "^

— ±a^ — 1 = -{-a\/^ — 1;

= ± « \/ - 1 = ± «V -s/"^

;

&c. = &c.
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± a,y^ — 1 = -haV V ~

and it is hence obvious that every quantity of the kind above

described is reducible to the determination of the various roots

of the expression a^ — 1; or in other words, that the reality

or impossibility of all such expressions depends upon the reality

or impossibility of^ — I and its roots.

138. By actual evolution, it is easily proved as in (129) that

y— 1 1 1

^ar—l — w 3 —5 — &c. m infinitum

:

J. OS oOG 10 tXt

whence if <r be supposed = 0, we shall manifestly have

I 111W— 1=0 &EC. m infinitum.^ ./ »

= 0—00 — CO — CO — &c. in infinitum by (89)

:

and since to this expression no definite meaning can be

attached, the value of \/ — I cannot be assigned arithmetically

either accurately or approximately, and on this account may
be termed unassignable with greater propriety than either

imaginary or impossible.

139. All the Arithmetical operations upon what are termed

imaginary quantities will therefore depend upon the treatment

of the symbol ^ — 1, which, due regard being paid to the

manner in which it originated, will obviously be the same as

that required for any irrational quantity. At all events, since

every imaginary quantity is reducible so as to involve the same

imaginary factor a^/ — 1, the only peculiarity that can occur,

must be in their Multiplication and Involution, and this will

very easily be removed by the consideration that the symbol

\/~—l is merely the indication of an operation which cannot

be effected in assignable terms : thus,
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and it is obvious that the operation here indicated by the radical

sign is neutralized by the reverse operation whose index is 2, so

that we have

sT^^ x>y^ = -1,

and not sT"-^ ^ \/^ = -v/(-Ox(-l) = ^/T= ± 1,

as would have been the case, had the operation indicated been

supposed capable of being effected.

Again,

(^/^r= (^/'^lrx y:ri = (-i)x -y^= -n/^1;

Similarly, we shall have

U/^)'"' = {(-y^)'}"*=l"'=l:

(
V^>''"+ '=('s/^)*'" X s/^l = 1 X V^l = x/^l

:

(x/^)'"»-^^=(n/^1)'" X (n/^1)'= 1 X (- 1) = - 1 :

(V^)*'"-^'=(n/~)"" X {^lf=^ 1 X (-V^)=-y=I.

140. Retaining the same views, we shall readily obtain

-y/ - a X ^ — 6 = fja A>J — I X ,.^6 s/ — I

= isjah („y — 1)-= — ,,Jah, which is possible

:

^ —ax Ay-6= 4/a>y-l X ^b,^/^
= >Jo,b{^ — iy— *yab j,^ — lf which is impossible:

= /y/a6 (^ — 1)'= /^(^oft^ — 1= —^ab, which is possible

:

&c = &c

*»/ 2my 7 •mi— 2m J
" 2m.-- 2m/V-ox ^7-6=^a^-lx V^ V -1
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which will manifestly be possible or impossible according as m
is an odd or even number.

141. All the other operations are performed exactly as in

surds; and the observations made in articles (98), 8ec. are all

rendered applicable to the description of quantities just con-

sidered by using the words imaginary or impossible in the

place of irrational or surd.

It is, moreover, clear that ever}' result, arrived at through

the intervention of the symbol ^ — 1 thus employed, must be

correct, because no meaning is attached to it in any one step of

an operation which it does not retain throughout : and we may
observe that the doctrine of imaginary quantities to which it

gives rise is of the utmost importance in Algebra, inasmuch as

it frequently enables us to judge with certainty of the possi-

bility or impossibility of a question proposed, and to establish

in the higher parts of the Science, relations that could not

otherwise be easily discovered.

142. We shall draw the present Chapter to a conclusion

by proving that in the Addition, Subtraction, Multiplication,

Division, Involution, and Evolution when possible, of quan-

tities of the form a + 6 a^ — 1, the results are always of the

form A±B s/~—^-

(l). In Addition:

(a±b^ — l) + (c±d s/^-^) + &c.

= (a + c + &c.) + (6-f-d4-&c.)^^.

(2). In Subtraction:

{a±h s/ — i) — {c±d ,sj~^) = (a-c)±(b— d) »J'^.

(3). In Multiplication:
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(4). In Division:

c±d^ —1

_ (a +6^ — l)(c +d^ — l) __ ac + hd± (be —ad)>J-\
~

(c±d-v/-l)(c+ d^^ri)
~

c* + (f

_ ac + bd be— ad

(5). In Involution:

(a + 6 x/-^)* = «' ± 2a6»/^- 6*= (a'-6-) + 2o6^- l

;

(a + 6 \/--^y= o' ± 3o-6V^ -Sab' + b^^ -i

= (a' - Safe-) + (3a"-6 - 6^) ^"17;

&c = &c

(6). In Evolution:

- V^Z^lJL^ldl? • \/n/«' + 6^ - g
.

—

-
2 ~ 2 V—^J

by (122), which, if a" + 6- be a complete square, will manifestly

be exhibited in the proposed form.

Similarly of the cube, &c. roots, when they can be de-

termined.



CHAP. VI.

On the Solution of Equations involving one unknown quan-

tity. On Elimination^ and the Solution of Equations

involving two or more unknown quantities.

143. It has been observed in article (2), that the quan-

tities employed in the science of Algebra are distinguished

into known or given, and unknown or required, known
quantities being generally denoted by the former letters of

the alphabet o, 6, c, &c. and unknown by the latter w, y, sr,

&c.; this distinction is chiefly confined to Equations of which

we come now to treat, and the Solution of equations is the

expressing the values of the latter in terms of, or by means

of, the former.

' The solutions of equations will be verified, if on sub-

stituting their values for a?, y, %, &c. both sides become

identical: and these quantities, which are termed the Roots

of the equations, or values of the unknown quantities, are

said thus to fulfil or satisfy the conditions which they involve.

Ex. 1. In the equation 4<» + 2 = 3a? + 4, the letter x

denotes the unknown quantity which is combined with the

given numbers 2, 3, and 4 ; and the solution of this equation

will be effected, if we can find such a numerical value of a?

as will render identical its two members 4a? + 2 and 3a? + 4.

A little consideration will, in this instance, shew that the

value of a? must be 2, as this manifestly gives

4x2 + 2 =3x2 + 4, or 10=10;

that is, the number 2 renders the two members of the equation

identical, and therefore satisfies the condition expressed by it

:

and it will appear upon trial that no other number can.
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Ex. 2. If there be proposed the equation

a?^ + 2 == Sx,

where the quantity w and its square are combined with the

known numerical magnitudes 1, 2, 3, it will be possible,

but not without greater difficulty, to assign such values to

a? as will satisfy the condition which it involves : thus,

if cr= l, we have l- + 2 = 3 x 1, or 3 = 3,

which is an identity : again,

if x= 2, we get 2^ + 2 = 3x2, or 6= 6,

which is also an identity ; that is, the numbers 1 and 2 are roots

of this equation: but, besides these two numbers 1 and 2,

no other quantity can be found possessing the same property

of fulfilling the condition expressed by the equation

x" + 2 = 3x.

144. Similar trials might be made in other cases, but it

is obvious that when the terms of the equation are numerous,

and the unknown quantity and its powers and roots are much
involved with those that are known, the mode above adopted

being regulated by no rule, would be entirely incompetent

to effect the solution.

As a first step, therefore, towards the solution of equa-

tions, we shall premise the two following self-evident pro-

positions, namely,

(l). If equal quantities be added to, or subtracted from,

equal quantities, the sums or differences are equal

:

(2). If equal quantities be multiplied by, or divided by,

equal quantities, the products or quotients are equal:

and by means of them shew how such an arrangement of the

terms of an equation may be made, that the unknown quan-

tity and its powers or roots may occupy exclusively one of

the members, while the other is made up of such quantities

as are supposed already known.
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145. By means of Axiom (l) just recited, it has been

proved in (44) that any quantity may be transposed from

either side of an equation to the other, merely by changing

its algebraical sign from + to — , or from — to +

.

Ex. 1. Let the proposed equation be

4a?— 2= 3 a? + 4;

then it is obvious that 4<r — 3a? = 4 + 2, or which is the

same thing, a?= 6, as appears from eflPecting the operations

indicated.

Ex. 2. If the equation proposed be

ax — b = ex + d,

then will ax — ex = d + b = b + d,

which may obviously be written

(a — c) x = b + d;

and this may evidently stand also, if necessary, in the following

form,

(a — c)x — {b + d) = 0.

Ex.3. Given ax^-\-bx— c= dx^ — ex^f; then we shall

have immediately

ax^ + bx — dx^ -f ea? = c — /,

or (a — d) a?^ + (6 + e) a? = c — /;

which may be written also in the form

(a - d) a?- + (6 + e) a? - (c -/) = 0.

Similar steps may be taken, whatever powers of the

unknown quantity are involved; and it is usual to arrange

the terms according to its descending powers, the absolute

or known term occupying exclusively the second side of the

equation, or the last place in the first.

R
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146. If fractional quantities be involved in the terms

of an equation, it has been seen in (96) how, by means of

Axiom 2, the equation may be cleared of fractions by mul-

tiplying all the terms by the least common multiple of their

denominators.

Ex. 1. In the equation

if we multiply all the terms by 15, the least common multiple

of 3 and 5, as determined by (62), we shall obtain

5.r + 90 = 6a? + 4.5,

which does not involve fractional coefficients of the unknown

quantity.

a h
Ex. 2. If = , we shall obviously have

6 — a? o + a?

a(a + ,T)= fe(6— a?), or a-+ aa?=6'— 6a?,

by clearing the equation of fractions; whence by the last

article is obtained

ax-\-hx= h^— a^, or (a + 6) ,ip= fe* — a*,

or (a + 6) a? 4- o-— 6* = 0.

_ ^ 2.r 1— 4a? a?— 1 5a: ^ ,.,
Ex. 3. Let — i— =

-I + — , which
3 4a? 2 6 12

since ^— = , will manifestly be equivalent to

2a? 2 — a? .r — l 5x 7

3 8^ 2~~ "^
"e" 12'

then, if both members be multiplied by 24a? the least common
multiple of the denominators, we obtain

iGx"^ — 6 + 3.T = 19.V- — 12.T + 20.r* + 14a?

;
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.-. I6x^—l2cv^— 20a;" + 3a;+ 12w— 14a'= 6,

or — l6a?^+a?= 6:

whence — 6=l6a?'— a?, or l6d?*— a?=— 6,

or 16x^— 01 + 6 = 0,

which involves the same condition as the proposed equation,

in a form divested of fractional coefficients of the unknown
quantity.

147. If the unknown quantity in an equation appear in

an irrational form, we have seen in (132) how, by an extended

application of Axiom 2, the equation may be cleared of

surds by proper transpositions and involutions of both its

members.

Ex. 1. Let „^X + S —^3w\ then by squaring both

members, we get

X + 3 = Sx,

which is free from surds, and may manifestly be written in

any of the forms

3 = 2a?, 3 — 2a?= 0, or 2a?— 3 = 0.

Ex. 2. Given the equation 2a-\- Aj2ax-\-x--=2x\

then by (145) ^2ax + x' = 2cT? — 2o;

whence, by equal involution of both members, is obtained

2aa? + a?"= 4,3r — 8aa?+ 4a^

;

.". x^ — 4a?" + 2aa? + 8a<2? = 4a^,

or — 30?'^ + 10aci? = 4a^;

whence, changing the signs of both sides, which is equivalent

to multiplying them by — 1, we have

30?^ — 10aa7= — 4a% or 3.T?"— lOa.r-f 40^^= 0.
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Ex. 3. Let the equation be ^ h — =
I w ) '

a a

then by (146) will x^a + x +ay/a + x=: -^ x

that is, (ff + x)^a + a? = — ^"^

»

6^

or (a + <r)^ = — a?^ ;

.-. cubing both members, we obtain (o+ ^) = 7*^ >

or a*4-4a^a7 + 6a^a?- + 4aa?' + a?*= -T<i?*t
o

whence we have immediately

~x^— x* — 4oa?'— 6a^x'— 4o'a?= a%

or a'd?* — 6*0?'' — 4a6*crr'— 6a^b*x'— ^a^b^x — d*b*= ;

Avhich is arranged according to the dimensions of x, and is free

from irrational quantities.

148. By the proper application of the three propositions

recited and exemplified in the last three articles, every equation

however complicated, may be reduced so as to involve only

integral and positive powers of the unknowni quantity : and if

the coefficient of its highest power be not unity, the equal

division of both the members of the equation by that coefficient

will in all cases reduce it to one or other of the following

forms

:
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(1) a!— p= 0, or w—p:

(2) x^—px + q=:0, or sc^—pw— —q:

(S) x^— px^-\-qw— r = 0, or x^ — p,v^ + qx= r:

&c &c

(m) aT^par-^ + qar-^— kc. ±1= 0, or

aT-par-^ + qar-^-kc. = +1;

wherein the known quantities p, q, ?•, &e. I may be either

positive or negative, integral, fractional or irrational.

The first is styled a simple equation, or equation of the

Jirst order: the second a quadratic equation, or equation of

the second order: the third a cubic equation, or equation of

the third order, &c. and the last an equation of m dimensions,

or an equation of the m^^ order.

149- Equations of the kind we have been describing which

may be either numeral or literal, or partly both, are sometimes

termed algebraical by way of distinguishing them from such

as have their members identical independently of any particular

values of the unknown quantity and which are denominated

analytical ; as for instance /,^a^ + 2ax -\- a^ = a + w, is an

analytical or identical equation, the latter member being merely

the result of the operation indicated in the former.

In the present Chapter our attention will be confined to

the resolution of such equations only as belong to the first two

classes above enumerated, or may be reduced to them by sub-

stitutions or other artifices ; the general Theory of Equations

being reserved for the Second Part of the work.
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I. SIMPLE EQUATIONS.

150. By means of articles (145), (146), (147) and (148),

every equation coming under this head being capable of re-

duction to the form

.27—p= 0, or 'V = p,

it is obvious that its solution is thus effected, and that in each

of the equations a!—p= and x^=p, there is only one root

or value of x which satisfies the proposed condition; so that

every simple equation has one and only one root.

This will amply appear in the treatment of the following

equations, as also in the subsequent problems whose solutions

are dependent upon simple equations.

Ex. 1. Given 4(a?— 3) -1-307+ l =2(a7 + 2), to find the

value of x.

Here by effecting the multiplications indicated, we have

4tif— 12 -1- ScT 4- 1 = 207 + 4

:

therefore, by transposition according to (145), we get

407-1-307 — 2<r= 4 -f 12— 1, or 5o?= 15,

whence dividing both sides by 5, we obtain

15
0?= — =3:

5

that is, 3 is the value sought, which, being substituted in the

place of X, will be found to render both sides of the equation

identical.

X X X X
Ex. 2. Given -H 1 =07— 7, to find the value

2 3 4 5

of 07.

Here by {QS) the least common multiple of 2, 3, 4 and 5

being 60, we shall multiply both sides of the equation by 60

in order to clear it of fractions, and thence we get

30.r + 20.t7 + 1507 - 12.r = 60.r— 420

:
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therefore by transposition

30tt?4-20a?+15a?— 12a?— 60a?= — 420, or — 7a?= — 420;

— 420
whence by equal division x = = 60, the required value,

which will be found to answer the proposed condition.

Ex. 3. Given =
, to find x.

a?— 2 x— 4 CD— 6 w— %

Reducing the terms on each side to a common denominator,

and combining them respectively, we have

(a?_ 4) — (a? - 2) _ (a?— 8) — (a?— 6)

(a?— 2)(a?— 4) (.t? ~ 6) (a?— 8) '

2 2
or —

(a?-2)(a?-4) (a?- 6) (a? - 8)

'

1 1

(a?-2)(a?-4) ~(a?— 6)(a?-8)'

or (a? — 6)(a?— 8) = (a?-2)(a?-4):

that is, a?^— 14a? + 48 =a?^- 6a? + 8,

whence, expunging od" from both sides, we have

40
48 — 8 = 14a7 — 6.r, or 40= 8a?, and .•. a?= — =5.

8

6a?+7 7a? + lS 2a?+ 4 ^ . ,

Ex. 4. Given 1- — =
, to find a?.

9 6a? + 3 3

In the first place, multiplying both sides by 9 the least

common multiple of 9 and 3, we have

21a7 + 39 „
6a? + 7+ —^=6a?+ 12:

2a?+l
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whence, rejecting 6x from both sides and transposing 7, we get

21a? + 39
=5,

2d?+l

and .-. 21a? + 39=5x(2/p+l)= 10a7+ 5:

.-. 21a?--10,r= 5— 39, or 110?= —34,

34 1

and .-. x= = —3—

.

11 11

^ ^. 2x + 8l 13a?— 2 a? 7a? a? + l6
Ex.5. Given ——^ + -=— ^~,

9 17a?— 32 3 12 36

to find a?.

As in the last example, multipl3ang every term by 36, the

least common multiple of 3, 9, 12 and 36, we get

468a?— 72
8a? + 34 hl2a?= 21a?— a?— 16;

17a? -32

whence, by transposition and rejection of such quantities as

are common to both sides, we have

468 a?— 72
50= :

17a?— 32-

clearing this equation of fractions and transposing, we get

50(l7a?— 32) or 850.r— l600= 468a?— 72,

and .-. 382a?= 1528,

from which, by the equal division of both sides by 382, we
obtain

1528
a?= =4.

382

Ex. 6. Given

3ac a^h {9.a-^h)hx 3cai a?

r + -; rr; + —z x^rr- = ~; 1- - , to find a?.

a-\-b {a-^-hf a{a-\-bY b a'
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Here, by transposition, we have

Sac a^b Sex x (2o + 6)6<r

+ 6 {a-\-hy b a a(a + b)"

and reducing the terms on each side to a common denominator,

we get

Sacia + by-^a'b _<3ac(a+ by + b(a-\-bf-(2a + b)b'^]

(a + by ~t ab(a + by

""
I ab(a + by )

.'. by equal division of both sides, we obtain

= — , or a? = the value required.
(a + b) ab a + b

^

Ex. 7. Given ;^a? + 12 = 6— ^/x^ to find a?.

X,Squaring both sides, we get x + 12 = 36 - 12 s/x -\-

whence expunging x which is found in both sides, and trans-

posing,

we have 12 ij^ = 36 — 12 = 24;

,-. ^x=i — =2, and consequently x = (v <»)^ = 2" = 4.

12

Ex. 8. Given ,Jx+ sjx + 3 = -
, , to find x.

\/x + S

Clearing of fractions we get ^/x^ +3x + x-jr 3= 12:

x:

„2.

transposing We have ^x^ + 3x= 9— <

squaring both sides, x' + 3x = 81 — 18x + x

expunging x^ and transposing, we obtain 21 .» = 81,

81 27 6
and .'. x= — — T ^^Z-

21 7 7
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Ex. 9. Given —^= -

.
^ — =0^ to find .r.

^a + ^a— ^ar-ax

Clearing of fractions, we have

\/«- \/«— ^a^— ax — h \/a^-h ^a— ^d^-ax:

.-. by transposition and division, we obtain

(1-6) V«= (l +6) ^a- ^/^-ZT^^

and v^a- ^a"-ax = (^-^) \/a:

squaring both sides and transposing, we get

(\-h\- iab

and repeating the same process, we manifestly obtain

l6a"b" ^ ( i6b- )
and .-. x= a\l— A.(1+6)^'— --^^ (i+tyy

151. Cor. A great variety of Equations, which after re-

duction by the ordinary methods would belong to higher

orders, may be solved by means of the articles above given for

the resolution of simple equations: but it must be observed,

that the solution will in general be incomplete, in consequence

of factors which satisfy the equation by becoming equal to

zero, being rejected from both its members. The following

examples will illustrate this.

Ex. 1. Given ax sj^x^ + cP + adx'^ = hcx^ to find x.

Transposing and dividing every term by x, we have

a ^d^x* -f <i* = 6c — adx:

squaring both sides, we get

a'rf2.i?« + ffl2d^ = 6«r« -2ahcdx + a^rf^.r':
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expunging a* d? ai^, and transposing, we have

P= — ;
7—

2abcd
2abcda} ^h^c^— a^d^, and

and it may be observed that 0, which as a value of x manifestly

satisfies the equation, has not been discovered in the solution.

Ex. 2. Given x— a+^a^+x ^^b^^x^ = 0, to find ar.

By transposition, ^a^ -\-x ^^b'^^x^ = a - x

:

squaring both sides, a^ -\- x 1^ 4!b- + x^ = a^ — 2ax -\- x"

:

expunging a^ and dividing by x, y/ 4-b^ + x^= x— 2a:

squaring both sides, 46^ + a?" = a?^— 4tax + 4a*:

expunging x" and transposing, 4aA'= 4(a^— 6^), whence

we readily obtain

a^-6^
X — :

a

and here it may be remarked that by the division of both sides

by X, one value of x, which obviously satisfies the proposed

condition, has been entirely lost sight of.

Ex. 3. Given

a-1- A^x a — ^

X

+ —i=-

to find X.

By transposition, we have

= \/a,

a + sjx _ .— a— \/^v
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.'. by clearing of fractions, &c. we obtain

a ^/o + x/-^ \/a— ^x=\f^ ija+ ^/Ic-^-w^ ^/a^— a;;

whence A^aia - sja^-x) —^x
\
^a + ^'x— ij o>— ^^^r}

,

that is
/—

/. multiplying by 2 and dividing both sides by the factor

we get J~^ {Ja-^Jx- ^a- ^^ =2 n/^;

.-. a^— a A^a^ — x= 2x, and a^— 2x= a ^a^ — x\

.'. a* — 4>a^x + 4'X^= a^ — a'^Xi whence, 4>x'^ = 3a*x,

and .•. a?= -a-:
4

and in this instance, the value of a? which also satisfies the

equation has been passed over by reason of the equal division

by the factors

V « + A^Jx— V a — mJ~x and x.

Ex. 4. Given *J ,J^-\- a— V\7^—^=V^> *° ^^^ ^•

First, by raising both members of the equation to the fifth

power, we have

x^ ^- a- 5{x^ -^-a)^ (x^ - a)^ + 10(x'^ + a)^ (x'^^ay

- 10(0?"^ + a)'^{x^-.af' + 5 (x^ +0^ (x'^ -a)^ -x^ -\-a = 2a:
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.-. by expunging the quantities common to both sides, and

changing the signs &c. we get

5 (ai^ + ay {x^- ay
{
{x^ + of- (a?"^- a)^]

= 10 (a?"^ + ay {w^- ay
{
(x^ + a)'^- {x^- a)^]

:

whence dividing every term by 5 {x— a^y, we obtain

(x'^ + ay- {x^^ay= 2 (a?- a^
{ (x^+ay - (a?^-afy:

I _L a. JL
but since (a?^ + a) * - (a? ^ — a) ^

= ^ 2 a^ we have

(x'^ -^-ay - (x^ - ay - S(x-a-)^ {(x^ + ay-(x'^ -a)^l

= (2ay, and .-. (x'^ + ay - (x^- ay

= (2 ay + 3(2 ay(x - a^y-.

wherefore by substitution, there arises

(2ay + 3(2ay (x - a^y = 2 (2 a)"^(a?-a')^:

that is, (x — a-y=:—(2ay:

.'. x— a^=i—(2ay= -Asa^ and x=z—3a^.

If X = a^ and .-. >y/a? = + a, it is obvious that the equation

would be satisfied, but we have not met with this value in the

solution above given, in consequence of the equal division of the

terms by the factor 5(x — a^)^ which being put = 0, gives

X = a^.

Problems dependent upon Simple Equations.

152. Whenever a problem involving only one independent

•magnitude to be determined, is proposed to be solved algebrai-

cally, it will be necessary to assume one of the latter letters x, y, z.
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&c. of the alphabet to represent that magnitude, and if need be,

a requisite number of the former letters o, 6, c, &c. to designate

such magnitudes as are considered known or given : then to

endeavour to translate the specified conditions into algebraical

language, the different parts being connected together by means

of the signs explained in Chap. I. according to the circum-

stances under which it is presented for solution: that is,

by proceeding as if the quantity required were already de-

termined, and it were desired to try whether it would answer

the proposed conditions or not: and this being effected, the

result will be an equation, the resolution of which, by means

of the principles above iUustrated, will give the value of

the letter assumed for the required quantity expressed in

terms of such as are supposed known.

As no specific general rules applicable to the infinite va-

riety of problems that may occur, can be laid down, the

reader must be content with such directions upon the subject

as he may be enabled to collect from particular examples.

Ex. 1. Required a number whose fourth part exceeds

its fifth part by 2.

Let a? be taken to represent the number required, then

will - and - be adequate representations of its fourth and
4 5

fifth parts: and the condition being that the former shall

exceed the latter by 2, we shall have

= 2,
4 5

an equation exhibiting the problem algebraically

;

.-. by clearing of fractions we get

5<r — 4a? = 40,

or X = 40, the number sought, which obviously possesses

.^ - . 40 40
the property specified, since , or 10 — 8 =2.
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Ex. 2. Let it be required to divide the number 21 into

two parts, such that ten times one of them may exceed

nine times the other by 1.

Assume x to represent one of the parts required, then

will 21— .2? obviously denote the other part:

also lOo,' and 189 — 9x

will manifestly be adequate representations of ten times the

former and nine times the latter:

whence, connecting these quantities according to the proposed

condition, we shall have

10a? — (189 — 9<r) = 1,

which is therefore the translation of the problem into alge-

braical language exhibited as an equation;

.-. 10a? + 9a?=l +189, or 1907= 190,

whence we have immediately

190
x = — = 10, one of the parts,

19

and .-. 21 — 07= 21 — 10= 11, the other part:

and it is readily seen that the numbers 10 and 11 will fulfil

what is specified in the enunciation of the problem.

Ex. 3. Required two numbers whose sum is 60, and

difference 10.

Here, if a? be assumed to represent the less of the two

numbers, it is clear that the greater will be represented by

07 + 10 : also their sum is equivalent to

07 + 07 + 10, or 2o7 + 10

:

but the problem requiring that this siun should be 60, we

shall obviously have the equation

207+10 = 60:

whence 2o? = 60 — 10 = 50,

and .*. .17 = 25,
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so that the two numbers denoted by a? and .r + 10 are 25

and 35, which manifestly fulfil the conditions.

Ex. 4. Find two magnitudes whose sum shall be l6^,

and quotient 27.

Assuming cc to represent the less of the magnitudes, we

33— 2<2?

shall have the greater = l6^ — <r, or :

whence, by the conditions of the problem, we must have

33— 2a?

2cr
= 27, and .-. 33 — 2cr= 54 a?

;

33
.'. 33 = 56 <r, and .r = — , which is the less magnitude :

the greater magnitude ; and these two quantities will be found

to satisfy the conditions proposed.

Ex. 5. A possesses four times as much property as J9,

and their fortunes together amount to i?10000: what is the

property of each.?

Assume a!= B''s property; then it is obvious that 4 a? will

on this hypothesis represent that of A : hence by the question

we shall have a?-f-4cr, or 5a?= 10000, and .-. a?= 2000:

.-. 5's property = a? =2000) ,., , , „
,, > which together make riS'lOOOO.
As property = 4a?= 8000

)

°

Ex. 6. At an election 1071 votes were tendered, and the

successful candidate came in by a majority of 147 : required

the number of votes in favour of each.

Let a? represent the number of votes of the losing candidate,

then .1? + 147 will denote that of the successful candidate:
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hence by the question x+ (x + 147) = IO71, or 2cP + 147= 1071

:

.-. 2a? = 1071 —147= 924, and ^= 462:

wherefore the numbers were 462 and 609.

Ex. 7. A gentleman wishing to relieve a number of

beggars, finds that if he give them 6c?. a piece, he will have

20d. left, and that he has not enough by 14d. to allow of

his giving them 8d. a piece: required the number of beggars

and the money he possesses.

Let a? = the number of beggars ; then it is obvious,

from the two conditions of the problem, that both

6x + 20 and 8a;— 14

are adequate representations of his money in pence: there-

fore we must manifestly have

8<r— 14 = 6.r-|-20,

and .-. 2x = 34,

34
whence a? = — =17^

2

which denotes the number of beggars:

also the sum of money he had will be either

6a? + 20 or 8a?— 14,

each of which by the substitution of 17 in the place of a? gives

I22d. = 10s. 2d.

Ex. 8. Three persons, J, B, C are possessed of certain

sums of money, such that A and B together have <f 120,

A and C together have .^140, and B and C together <^150

:

what is the sum possessed by each .''

Let a? = A's money ; then, from the nature of the case,

120 — a? = B''s money,

and 140 — ,v = Cs money

:

T
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hence B and C together have

120 — <» + 140— a? = 260— 2a?

;

,-. by the problem, we have 260— 2a?= 150

;

whence 110 = 2i2?, and .. 07= 55;

that is, ^'s money = £55. ;

.-. 5'smoney= 120— 07= 120— 55 = dP65.,

and Cs money = 140— a?= 140— 55= £S5.

Ex. 9. A father's age is triple that of his son, but at the

end of 10 years it will be only double : what is the age of

each ?

Assume a? = the son's age

;

.-. 3a7= the father's age on the same hypothesis:

again, So? + 10 and w + 10 are the respective ages of the father

and son at the end of 10 years

:

hence by the condition of the problem, we have

3a? + 10= 2(d? + 10) = 207+ 20;

.-. a? =10, so that the ages of the father and son represented

by 3a? and a? are 30 and 10 years respectively.

Ex. 10. A and B play together for a stake of 12«. : if ^
win, he will be thrice as rich as B ; but if he lose, he will be

only twice as rich : how much money does each possess at first ?

Let X denote ^'s property at first

;

07+12

3
= 5''s property after losing 12fi. to ^;

, 07-J-12 .r + 48
whence — h 12 = = B fi property at first
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also 0?— 12= ^'s property after losing 128.;

and f- 12 = —-— =Bs property after winning 12s.

:

wherefore we shall have, by the condition of the question,

(X + 84\—
J,

or 307— 36= 2a? +l68;

.-. a? = 168 + 36 = 204*. = ^'s property at first,

- a? + 48 204 + 48 252
and = =— = 84s. = Bs property at nrst.

3 3 3

Ex. 11. An egg-merchant meeting with three customers,

sells to the first of them half of his stock and one egg more : to

the second he disposes of half the remainder and two eggs more:

and to the third half of what he then had left and three eggs

more; and he afterwards discovers that he has parted with his

whole stock : what number of eggs had he at first ?

Let X = number he had first

;

.17

.*. - + 1 = number sold to the first customer,
2 •

'
•

and .-. 1 = number then left

:

2

iV 1

also, + 2 = number sold to the second customer,
4 2

and .-. — 2 = number then remaininff

:

4 2
^

again, 1+3 = number sold to the third customer,
8 4

1? 1

and .-.
'— 1 — 3 =5 0, by the question

:

8 4
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whence .v— 2 — 8 — 24 = 0,

.-. cr= 34, the required number,

which is readily shewn to answer the proposed conditions : for

he sells to the first customer 18 and has then l6 left: to the

second he sells 10 and has afterwards 6 left, which he sells to

the third.

Ex. 12. A person disposes of turkeys at as many shillings

each as the number he has, and returning back Is. finds that

if he had had one more to sell on the same condition and had

returned back 2 s., he would have received 20 «. more from his

bargain : what number did he dispose of .''

Let X= the required number

;

.'.ar— l = the number of shillings received

:

also, on the second hypothesis, it is manifest that

(<r + 1)^ — 2 = the number of shillings he would have received

:

whence by the condition of the problem, we get

(a? + 1)'— 2= a?*— 1 +20, or cr*4-2cr— 1 =,r- + 19;

,'. 2ir = 20, and .r=10, the number sought: and the problem

is very easily verified.

Ex. 13. A gentleman bequeaths his property as follows:

to his eldest child he leaves i?1800., and one sixth of the rest

of his property ; to the second twice that sum and one sixth of

what then remained : to the third three times the same sum and

one sixth of the remainder, and so on : and by tliis arrangement

his property is divided equally among liis children : how many
were there and what was their fortune ?

Let i = the property bequeathed ;

.r— 1800 '^ n . , ,,
.-. 1800 H = 1500 + - = fortune of the eldest,

o b
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and 0?— 1500— - =— 1500 = sum remaining:

again, 3600 + - s4 1500— 3600 S =2750+ —^ = fortune of

the second : whence by the question, we have

w 5x
1500+ - =2750+ -—, and .-. a;= £^5000.,

the property bequeathed

:

t

also, 1500 + - = 1500 + 7500 = ^9000., the fortune ol each

;

6

45000
, , ^ , ., 1

and .-. =5, the number of children: and the correctness
9000

of the solution is capable of very easy proof.

Ex. 14. A pack of p cards is distributed into n heaps, so

that the number of pips on the lowest cards together with the

number of cards laid upon them, is the same given number m
for each heap, and the number of cards then remaining is found

to be r : required the number of pips on all the lowest cards.

Let w= the number of pips on all the lowest cards

;

then, since mn= the number of pips together with the number

of cards laid upon the lowest, we shall have

mn— .r= the number of cards laid upon all the lowest

:

;•. mn— x-\-n= the number of cards in all the heaps

:

whence we shall manifestly have mn— a; + n + r=p,

wad .'. x=mn + n + r'-p = (m+l)n + r—py

the required number.

This trick may be readily performed by means of a common

pack of cards.
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Ex. 15. A and B are possessed of certain sums of money

such that if they gain £a and £h respectively, A will be m
times as rich as B\ but if they gain £c and £d respectively,

A becomes possessed of n times as much as J? : required the

money of each.

Let X= A's money at first

;

x + a

m

x + a

= 5's money after the first gain

:

6 = jB's money at first

:

m

again x + c = A\ money after the second gain,

x + a
and b + d= B''s money after the second gain :

whence we have by the question

/x + a \
x-{-c= n{ b + d)

,

\ m /

or jux + mc= nx-\-na— mn(b — d):

••. (in— n)x = na — mnb-\-'mnd— nic

= m(nd— c) — 9i(mb— a)y

- m{nd — c) — n(mb — a) „ „
and X= =:As money at first

;

m— n

x + a {nd— c) — {mb—a) „,
•*. 0= = Bs money at first.m m— n •'

Before quitting this subject, we will examine some of the

various modifications of the result which depend upon the

relative magnitudes of the quantities m and n..
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(l). If m be greater than w, it is obvious that in order to

satisfy the conditions as enunciated in the problem, we must

have

m(nd— c)^n(mb—a) and (nd — c)>«»6 — a.

(2). If m be less than n, then since

., m(nd — c) — n(mb— a) n(mb — d)— m(nd—c)As money = —^^ -^ = —-^ i c
^m— n n—m

, „ (nd— c) — (mb — a) (mb—a)— (nd—c)
and Bs money = —^^ = -^^ —^^

,m — n n-^m

we must obviously have

n{mb — a)'^m{nd — c) and mb — a^nd— c.

(3). If m = n, it wiU follow from the same mode of

reasoning, that we must have

m(rnd — c)^=m(mb— a) and therefore md— c= mb'- a,

from which there obviously results

md— c^mb—a^ or a— c= m(6 — d); •

nt*
I

, ft (\

and both cc and b assume the indeterminate form -

.

m

In this case, we have

,, {(md—c) — (mb— a\\
As money =m{ ) ,

[
m ~m

J

^, {(md— c^ — imb— aW
Rs money = {- ^-—^^ ^i ;

\ m —m
j

which shew that ^""s original sum is m times as great as JS's,

and the results - indicate that any sums whatever, one of which

is m times as great as the other, will satisfy the proposed con-

ditions, provided that a — c is «i times as great as 6 — d.
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(4). If m be greater than, less than, or equal to n, but

corresponding thereto m(nd — c) and nd— c be not greater

than, less than, or equal to, 7i(rnh—a) and mh— a respectively,

the sums originally possessed by A and B become negative,

and the problem is impossible as it is enunciated : but in

order that the solution may be applicable in the case just

mentioned, the enunciation of the problem must manifestly

stand as follows:

A and B owe certain sums of money, such that if &c.

(5). If the expression for the sum originally possessed

by A were positive and for that by B negative, the enunciation

would be

A and B possess and owe respectively certain sums of

money, such that if &c.

(6). If we change the signs of one or more of the quantities

a, fc, c, d in the solution above given from + to — , we must

obviously change the corresponding word gain into the word

lose, in order that the statement of the problem may be con-

sistent with the result obtained.

II. QUADRATIC EQUATIONS.

153. The equations belonging to this class being by means

of the propositions laid down in the former part of the chapter

reducible generally to the form

a^ —px \-q= or a^ —pai= — q,

and, if the Coefficient of the second term vanish, to the form

a^-\-q= or <r^= —q,

where p and q may be either positive or negative, integral,,

fractional or irrational ; it now only remains to devise general

methods by which the values of ,v may be determined from any

of these equations in terms of the known quantities p and q.
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Equations of tlie forms x^ + q= and w"= —q are termed

pure quadratics, and those of the forms a^—p.v + q= and

a^—px= —q are called adfected quadratics.

Pure Quadratics.

154. In all equations which are reducible to the general

form of pure quadratics

<»- + 7 = or ar= —q,

it is manifest that if the square roots of both sides of the latter

form be extracted, we shall find

x= ± y/^^q.

Consequently every pure quadratic, properly so called, has

two and only two roots, which are equal in magnitude, but

different in algebraical sign.

155. Cor. Hence, therefore, if a and — a denote the- two

roots, we shall obviously have x^ + q = (x — a) {x -\- a) = 0,

which will be satisfied if x — a= and x + a= 0: and thus the

equation may be solved by the decomposition of the former

form into two factors and making each of them equal to zero.

Ex. 1. Given 8 c/— 15 = 185, to find the values o{ x.

By transposition, 8ar^ = 185 + 15 = 200

;

whence a?^= 25, and .-. x= +5, each of which values satisfies

the equation.

This equation, after reduction, is

a?2_ 25 = (a?— 5)(cr + 5) = 0.

Ex. 2. Given -^- ^—— =
^ ^^ , to find the

x^— lx x--{-l[x x^— 73

values of x.

First, by reducing the former fractions, we have

x(x+ 7y-x{x-7)' _ _J__ ^
28 ^ 7 ,

^^4_4p,^2 a?^_73'
^^

x''-4>9 o^ -Ts'

4 I

and dividing both sides by 7, we obtain ^^3^ = ^_^,

U
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whence A>a^ — 292 = x^ — 49,

and .-. a^=S\ or a'= +9:

and both these values will be found to fulfil the condition.

Ex. 3. Given ^x + a = ^x + ^b- + x\ to find the

values of x.

Squaring both sides, we have x + a=x + v 6* + «»*

;

... a = Jb^+x\
whence o* = 6- 4- x", and x- = a- — b";

.-. ^= -\.^a- — b''

both of which may easily be proved to satisfy the equation.

156. All equations reducible to the binomial forms

x^ + q = or x^ = — q,

may be solved by the same method: and the values of x are

expressed by the quantities comprised in i^ —q,, which will

manifestly have the same sign as q when m is odd, and both

signs when m is even.

Ex. 1. Given cr = V'^' + -v/^^-a", to find the value

of a.

Cubing both sides, a' = x^ + ^ x^— a^ ;

squaring both sides, a^ — 2a'.r^ + .r* = ,r^ — re^;

.-. 2a'.r»= 2a^ and a?=» = o»,

whence we have x = ^^Jc^ the only possible value of which

IS a.

Ex. 2. Let —

—

, . ^
=-

, then we have
a'-^a^''-x^'' c

en^ + c ^a^'-x'^" = ha- - b ^a^^-x'":
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'
'• (6 + c) ^a"'-w'"' = (6- c) rtS

whence J/a'*" — c^?^" =( )a':

(5 c\"

b + cJ

and .r^" = a^«- (^—^-)« a=»= a'A 1 -(—V ^

:

7
7

1 — (
~ V

\b + c/
'

Adfected Quadratics.

157- In every equation reducible to the general form of

adfected quadratics w" —px= —7,

/ PY o P^

P
it is obvious that if to both its members, the quantity — or the

Square of half the Coefficient of the second Term be added, the

former side becomes a complete square, and the latter consists

of known quantities, so that

/ ;>\2 P"

therefore by extracting the square roots of both sides, we

obtain

whence
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and the two values
^+vi> "^^

and P~vP'~^^ of a;

2 2

will be found to satisfy the equation proposed.

Hence every equation properly termed an adfected quadratic,

has two and only two roots, which may be found by what is

called completing the Square as above explained.

158. CoR. 1. Since, by actual multiplication,

L-(y+N/p'"^)jL-(p-N/?^
)j

•i. .1.1 i> + >v/i>^ — 4qr p— ^p^— ^q
if we suppose the two values ^5^—

=

and ^'^^

of a? to be denoted by a and h, we shall obviously have

(x— d){x— h) ^= n^—pw -\- q=iO\

and thence we conclude that every quadratic equation as

.1^ — px 4-^ =
is resolvable into two simple equations, since its conditions are

satisfied by making both

0,' — a = and w — b = 0.

,'
.

. , p+s/p' — 4,q p — y/p"^ - 4g
Also, smce a+b = -—^^-^- -\--—^^-^ ^=0,

2 2
^

and a6 = ^i±^5^2El2 ^ ^"^^^"^^
=g:

2 2
^

that is,

— p= - (a + 6) and 7 = ( — a) x ( — 6),

it follows that the coefficients of the second and third term^
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of any quadratic equation, reduced to its proper fomi, are

respectively equal to the sum and product of the roots with

their signs changed.

159. CoR. 2. It follows, therefore, that if the former

member of an equation of two dimensions can be decomposed

into two simple factors, the roots of the quadratic may be found

by the resolution of the two simple equations arising from

equating each of these factors to zero.

160. CoE. 3. If p2_4^ oj, ^p^— 4.q = o, each of the

roots is — and they are equal to one another: but if the

quantity /y/p-— 4^ be either irrational or imaginary, it is

evident that both the roots of the quadratic wUl be either

irrational or imaginary: in other words, if the coefficients of a

quadratic equation be rational, surd and impossible roots al-

ways occur in pairs.

161. Cor. 4. Hence, also, if we wish to resolve any quan-

tity of two dimensions as x"—pco + q into its constituent simple

factors, we have only to find the roots a and 6 of the equation

x^— 'px-\-q= 0,

for then will

s^ —pa}-\-q=z{pB— a){x— h).

Ex. 1. Given x' — 6w-\- 12= 4, to find the values of as.

Here transposing, and then completing the square by adding

to both sides the square of half the coefficient of the second

term, we have

<j?^-6a; +9=— 8+9= 1:

whence extracting the square roots of both sides, we get

x— S—±\
and .-. .z= +1+3= 4 and 2:

and on trial it will be found that both 4 and 2 satisfy the pro-

posed equation.
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Also, after reduction to the form ^r*—6a?+8=0, the equa-

tion is equivalent to (x— 2)(<r— 4) = 0.

Ex. 2. Given <r* + 7J?+2 = lO, to find the values of a?.

By transposition we have x- + Jx = 8;

completing the square, we get x' + 7x + l-) =8 + (-j = — ;

7 9
extracting the square roots, we obtain x -\— = + —

:

9 7
and by transposition x= + =1 and — 8, the two roots.

Hence we have the trinomial x' + 7x— 8 = (x— l)(x + 8).

j —7x—35 = 0, to find the

values of x.

Clearing of fractions, A-al^— a^ + lOa?— 25 — 28a?— 140= 0;

.'. 3a?' — 18<r = l65, and a?-— 6a?= 55:

whence, completing the square, we have

a?^ — 6a? + 9= 64:

.-. extracting the square roots of both sides, we get

x — 3= ±8, and .-. x= +8+3 = 11 and — 5,

which are the required roots.

Ex. 4. Given acx-— bcx + adx = bd, to find the values

of X.

First, dividing every term by oc in order to reduce the

equation to the proper form, we have

, /b d\ bd/b d\ _ bd

\a cJ ac
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hence, completing the square, we then obtain

, /6 d\ 1/6 d\^ bd 1/6 d\2 1/6 d\-
a,^-i U+-(

) =— + ;( ) =;(-+-) :

\a c/ 4i\a c/ ac 4\a c/ 4\a cJ

.'. by extraction of the square roots of both sides, there results

2\a c/ ~2\a cJ

l{b d) la d) b ^ d
and thence x = ±-S-+->4--s } = " ^^^ »

2 (a c) 2 (a c) a c

the two roots, which will both be found to satisfy the equation.

Ex.5. Given V — =—— + —f=> to nnd
x 2 ^x

the values of x.

Squaring both members, we have

4 + ,./x^ + 2x^ X 4

X 4- X

4
expunging — from both sides, and reducing the former,

J X^l +2x = -+2:
4

squaring both sides again, l+2d?=— +a? + 4:

whence x^— l6x= — 48 :

completing the square, .2?^— 1 6a? + 64 = 1 6, wherefore

x—8= +4 and tx?= 12 and 4,

each of which will upon trial be found to satisfy the equation.
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Ex. 6. Given ^lOa? + 11 = 44 — 5^', to find the values

of X.

Squaring both members, 10a? + 11 = 1936— 440a? + 25i'F^;

.. 25a''— 4500?= —1925 by transposition,

and a?"— 18 a?= — 77 :

completing the square, a?^— 18.^+81=— 77 -j-81= 4,

extracting the roots, a?— 9= + 2 ;

.-. a?= +2 + 9 = 11 and 7;

the latter of which alone answers the condition of the equation

:

and the former value of w corresponds to the equation

— ^^10^^ + 11=44— 5<r or /y/lO,2? + 11 =5a?— 44,

because its solution is equally comprised in the operation above

given in consequence of the radical quantity admitting of the

double sign +

.

Ex. 7. Given 2x-\- ^x^— '7 = 5, to find the values of x.

Here we have -y/a?'^— 7 = 5 — 2/r;

.-. by involution, a?"— 7 = 25 — 20a? + 4.r-

:

20 32
whence 3.r^ — 20<r= —32 and x-—~x=. :

3 3

2 20 100 _ 32 100 4

3 9 ~ ~3 9 ~ 9
*

1 . 10 2
.-. by evolution, x = H—

;

•^ 3-3
2 10 S

and x= -\ 1 = 4 and -

:

— 33 3
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but in this instance, it will appear upon trial that neither 4,

8
- nor any other quantity that can be found will satisfy the
3

equation: in fact these two quantities are the roots of the

equation 2a?— ^a?^— 7 = 5, whose solution, by reason of the

double sign of the radical quantity, is comprehended in that

of the one proposed.

Ex. 8, Given x + A^/bx + a^— a, to find the values of <r<

First, f^bx-{-a^= a— x;

.-. hx-\-ar=-a^— 2ax-\-,ir,

and <j?-— (2 a + 6) a;= :

(2a4-&)' (2a + 6)-

wheiice a?*— (2o^-6)-» +
4

2a + fe 2a4-6
••. X — { —

»

2 - 2

2a + 6 2a+ 6 , . ^
and x= •{ 1 =2a + o and 0,— 2 2

which will both be found to fulfil the condition.

This equation, after reduction to a proper form, may be

written

{a?— (2o + 6)}a?=:0;

whence we have immediately

^_(2a + 6) = and x=-0,

or a? = 2 a + 6 and a? = as before

:

but if we had divided both its members by a?, we should have

entirely lost sight of the root 0, which satisfies the equation as

well as 2 a + 6.

Ex. 9- Given

, /x— Sa t— 21 a + 5a' ^ ^ ,^^^_3« /^^ to find X.
^ 3 ^ ^3x-9a

X
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Clearing of fractions,

by transposition, ^^18 a;' — 54 aa? = 27 a + 3a?;

clearing of surds, 18a?^ — 54oa7= 729a-+ l62aa; +9^';

by transposition, 9.r'— 2l6a.r= 729o^;

.•. by division, we get a?^— 24'aa? = 81a*:

.-. completing the square and extracting the square roots, we

obtains?-—24.aa7+ 14.4a-= 225a^, and x — 12a= + 15a;

whence x= + 15a + 12a= 27a and — 3a.

Ex. 10. Given

\/ v =2, to find the values of x.
^ x+l Sx

, 3x x + l

Squaring both sides, we have 2-\ =4;

3x x + 1 ^
by transposition, 1 = o

;

clearing of fractions, 9<J?* + <r' + 2a7 + 1 = I8x" + 18a:;

.-. by transposition and division, a?^+2a?= -:
8

completing the square, a?' + 2a? + 1 = l + - = - :

8 8

whence, extracting the square roots, we obtain

3 3
a? + 1 = +—T=7 , and .-. x= — 1 +

2^/2" ' ' 2^ *

162. If an equation, after the requisite reductions are

made, assume the form

a?'"* — pa?"+ 7= or x^— pa/^zs —q^

where m is either positive or negative, integral or fractional,

it is obvious that the solution may be effected by the same

process.
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For, since(y''-^Y = a?-"'-pa?'«+^, we shall have

whence by evolution, j?"*— -= + \/

-

«.
2 ~ ^ 4 ^

2 - ^ 4> ^ 2
'

and thence .x = \/p±Jp'-H
2

Ex. 1. Given d?^— 6.j?^= 16, to find the values of ,t.

Completing the square, a?^— 6a?^ + 9= 16 + 9 = 25;

extracting the square roots, a?' — 3 = + 5

;

whence ar^= +5 + S=^S and — 2,

and .-. a?= 2, and ^ —'2..

In this example, we have discovered only two roots,

though the equation is of six dimensions ; but since the cube

of each of the quantities 1, — and
2 2

is equal to 1, it follows that the. cube roots of 8 and — 2

will each have three different values:

the former being 2, — 1 +^ —3 and — 1 — >y/ — 3,

and the latter

4/^. "'V"' ^^ and
~'~/~^ 7~g;

all of which are therefore roots of the equation.

Ex.2. Given a?"* — 9a? ~°-}- 20= 0, to find the values of a?.

Completing the square, &c. a;-* — 9^'^-\ = -
;
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o 9 1

extracting the square roots, w"— = + -;

19 1

.-. a?~*= +- + - = 5 and 4: that is — = 5 and 4,— 2 2 x^

and .'. tr= + —7= and + -

,

which are the roots required, and the same as would have been

9 1
found by reducing the equation to the form w^ a?*= .

Ex. 3. Given ^a? + 7^^^= II6, to find the values of x.

JL i JL 1 4 ]i6
Here 7a?^ +a* = II6, and .-. a?^ + -a? =

;

7 7

1 .• 1 4-14-1 3249
completme the square, x* -{ - w -\ =

;^ ^
^

7 196 196

, . 4- 1 57 J- ,29
by evolution, a?* +— = H , .-. a?* =4 and ;

'' 14-14 7

4 ^ J / 29\* 707281
whence a?= 4 = 256, and I 1 = .

V 7 / 2401

If this equation had first been reduced to a rational form,

the same values of a? would have been obtained.

163. Many other equations, which by the ordinary pro-

cesses of reduction would rise to higher dimensions than

what are properly comprised in this class, may be solved

by completing the square, if they can be made to assume

the form

where y involves x or its powers and roots, combined with

quantities that are known : but as no general directions can

be given in addition to what have been already laid down,

the reader must rely upon his own judgment in the choice of

the method which he may adopt.
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Ex. 1. Given or -\- -^ = , to find the
a? ox

values of x.

_. , 1 35 31 35 35/ 1\ 31
First, 0;^ + ^= —X-—-+ ~-= ~(x+ -)-~,wo 3 ox o \ x/ 3

( ,
ly 35 ( I\ 25

.-. by completing the square, considering lx-\— ) =y, we have

/ IV 35/ 1\ /35\^ 25

1 35 5
.-. a?+ =+ —

,

0,' 12 — 12

1 5 35 10 5
and X A— = -\ H = — and -

:

.r - 12 12 3 2

from the former, x + - = —

;

X 3

10 , - 10 25 16
.'. a?" — — X =1 —1 and x x ] =—

,

3 3 9 9

5 4 1

whence x = + -
, and .-. x = 3 and -

:

'

from the latter, x -\— = -

;

X 2

o 5 , 5 25 9
.'. 0?- X = — 1 and x^ x + —: = -;;,

2 2 16 16

5 3 1

whence x = + -, and .•. x = 2 and -:4-4 2

therefore the four values of x which satisfy the equation

proposed arc 3, -, 2 and -.
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Ex. 2. Given 2a?* + >^2a?- + 1 = 11, to find the values

of a?.

Adding 1 to both sides of the equation, we have

(2^7-+!)+ ^2.1?'+ 1 = 12;

.-. considering 2a?' + l as a simple quantity and completing

the square, we get

I 1 4.9

(2a?'+l) + ^2a?=+l + -= -;
4 4,

.-. by evolution, ^2ar + 1 + - = ± -
;

whence ^2cr*+l = 3 and — 4

;

.-. 2a?' -I- 1=9 and 16, 2a^=8 and 15;

" - ± \/if .•, a?'= 4 and — , and a? = +- 2 and _
2

-
2

Ex. 3. Given a?^ — a? -|- 5 ^2x- - 5a? + 6 =

find the values of x.

3x -\-3S
to

Clearing of fractions, transposing and adding 6 to both

sides, we have

(2ar— 5a? + 6) + 10 >y2a?'— 5a? + 6= 39;

whence completing the square as before, we obtain

(2a?^ - 5a? + 6) + 10 ^2a7- — 5a? + 6+ 25 =64

;

.-. by evolution and transposition, >^2a?'— 5a? + 6 = 3 and —13;

and clearing of surds, we find 2a?'^ — 5a? + 6= 9 and I69:

5 3
first, let 2a?^— 5a? + 6 = 9, ••• a?^ .r = -

,

2 2

, 5 25 49

2 16 16'

.'. a?— = 4- - , whence .r= 3 and — :

4 ~4 2
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.0 ^ n „ 5 163
next, let 2.j?*— 5cr + 6=169, ••• x- w=—

;

2 2

^2_5^ 25 __ 1329

2** 16" 16
'

., ^>?= + n/I!?? and .=^±x/^ ;4—4 4

and all these four values of w satisfy the equation.

Ex. 4. Given >y/a + a? + ^ a— x — y/b, to find the

values of x.

Squaring both sides, ^a + <r + 2 ^J a^— x^ + 1^ a— x-= ^h ;

transposing, >/a + a? + ^a — x = „Jh— 2 ^ar'— x^;

squaring both sides again, we get

2a+ 2-v/o2-a?» = 6-4-y6<^a'-a?^ + 4y^^3^;

whence ^a^— /f^— 2 ^6 >y/a'— a^= a ;

completing the square, we have

^/a^— x^— 2 ,^^ a-— x° + b= a + ~
;

.-. by evolution, ^ o^— x^— ,Jh=^ ± y a+ -
;

and ^ c^ — x^ — „Jh + V/ a + -
;

whence a' — a?^= < >y/6 ± V ^^ + -
( >

and .-. x= ± S/ a"- \ ^J~b ± y « + - [ •
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Ex. 5. Given ^/(l +^)' - ^{l-^T = -C/l -A to

find the values of x.

Dividing both members by a^ (l — x)^, we have

2 1

) "" ( ) ~ ^' ^^^^^ ^^ ®f t^^ specified form

:

2 1

/l+a7\S /l+a?\« 1 5

\l-x) ~"
\1 - ci'/

"^4" 4'

and .-. ^i+fy_'-=±V?, or Cl±5\- = i±V£:\1— a?/ 2 2 \1— cr/ 2

.•. by involution, __ \ —W—/_
^ 1-x 2"' '

and thence 2'* + 2"'a?= (l + -^yT)*"— (l ± -y/7)"*^?.

(1 -f--v/5)'»-2*
.*. x=

Ex. 6. Given ^2a? + 7 + ^3x— lS = ^Ix+l, to

find the values of .r.

V—

7

Assume y= 2a? + 7 and .-. 0?= ^^
, whence by sub-

stitution, the equation becomes

^ 2
'^

2

y—-« 3y— 57 7y— 47 , . , ,
•*• y + V ^y ""^^^^^ + ~ =

» by squarmg both

members

;
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^Gy^— U4>y= y + 5, and 5y-— 124y= 25:

124 /62\- /62\- 3969124 /02\- /()2\-

25

62 63 , ,1
.'. V = -\ , and y= ^5 and :

5 - 5
^

5

whence we get a; = = 9 and ;

the lattei* of which^ being merely a root of solution, does not

satisfy the equation.

164. By getting rid of factors common to both the

members of equations as in article (l5l), the solutions of

equations of higher dimensions may frequently be obtained by
the preceding methods; but they will generally be subject to

the imperfection alluded to in the said article.

Ex. 1. Given a?' — 3a? =2, to find the values of cc.

By adding 2 a? to both members, we have

,r^— a7= 2a?-j-2, or a?(a?" - l) = 2(a? + 1):

.'. by dividing both sides by a? 4- 1, we obtain

a?(a?— l) = 2, ora?" — a?= 2:

.'. a?^— a?+ - = - , and x = + - ;

4 4 2 - 2

whence a? = 2 and — 1

:

but in this example there is another root = — 1 , whicli has

been lost sight of in consequence of the division by a' + l, the

proposed equation being equivalent to

(a? + l)(a7+l)(a;-2) = 0,

which is satisfied twice by making a?= — 1.

Y
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Ex. 2. Given = -
, to find the values of ^r.

X— ^ x'^— a- «

Here ax+ a^ x^ — a' = x^ — x^x^— a^ ;

.-. (a -\- x)^ X-— a" = x"^ — ax= x{x — a) ;

whence dividing both sides by ^x — a, we obtain

(a-\-xy^= Xj^x— a, and .-. {a + xy= x^—ax-;

, 1 o 3" ^^
.'. 4a/» +3a\t'= —a, and a?* H ir= ;

4 4

3a ga' 7«"
, 3a a ,

464 64 8 -8^

from which we find a?= -
{ + >,J—1 — 3 1 : and, these values

8

being imaginary, no possible solution has been obtained.

If however we resume the equation at the step where

{a + a?)^x^ - a-= a{x— a),

and put it in the form

{x + ay f^X — a=x a^x — a^x— a,

or \{ai \- ay — X A^X— a\ ^x— a= 0,

it will obviously be satisfied either by making

(x + ay= Xis/x— a

as above, or by putting

„Jx— a— which gives x— a\

and this last is a possible solution which has been entirely passed

over by the step taken in the first part of the operation.
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165. In what has preceded we have always supposed the

equation to be reduced to the form

where p and q may be positive or negative, integral or frac-

tional quantities ; but if in order to avoid fractions, wc allow

the highest power of x to retain its coefficient, so that the

equation is of the form

ax^ -\-bx= Ci

and multiply every term by four times the coefficient of the

first term and add to both sides the square of that of the

second, we shall have

4a'a?' + 4,abx + b'^= 4iac + 6%

the first member of which is obviously a complete square:

hence,. extracting the square roots of both sides, we get

2ac 9,a-c-

2aa! + b= ± ^4ac + 6*:

.-. 2ax= —b+ t^4>ac + b^f

— b+ -v/4ac + 6^

and .'. x= ;

2a

and thus the values of x are determined.

Since the solution above gives

, 2ac <-v. ^ .

— b + ^b^ + 4,ac — ^ b b^
*

- x= = =
,

2a 2a

if we suppose a = 0, or the proposed equation to become

c
bx= c, we find x = - and oo ; the latter of which depends,

b

for its existence, solely on the method of solution.

This is the Hindoo method of solving quadratics, and may

be found in the Beej Gunnit or Beja Ganita, a treatise on Al-

gebra written by Bhasker Acharij a famous mathematician

who lived about the beginning of the thirteenth century.
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Ex. Given loc^— 130?= 2, to find the values of x.

Multiplying all the terms by 4 x 7 or by 28, we have

196a?^— 36407 = 56;

.-. completing the square, 19607- — 364o7 + I69 = 225 :

whence by evolution, 14o7— 13 = + 15;

.-. 14.t? = 28 and —2;

28 1

and .'. x= — =2 and -
;

14 7

which are the same as would have been found by the general

method before given.

Problems dependent upon Quadratic Equations.

166. By proper attention to the observations and direc-

tions contained in (152), problems belonging to this head will

be algebraically exhibited by means of equations of the second

degree, or such as are reducible to that degree by substitutions,

Sec; and it then only remains to apply the rules above laid

down to obtain their solution.

As, however, every equation of the second order admits of

two solutions at least, of which it frequently happens that only

one will answer the conditions of the problem, it may be ob-

served that in the process of reducing the equation, a new con-

dition is sometimes introduced, and a corresponding new value

of the unknown quantity, which did not originally belong to it;

or that the algebraical expression of the equation is more com-

prehensive than the enunciation of the problem, so that it com-

prises other conditions besides those which are peculiar to the

question under consideration; and consequently it will be neces-

sary at last to reject such values of the unknown quantity as

are excluded by the nature of the ca.se.

This will be done in some of the following examples.
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Ex. 1. Find two numbers, one of which is triple the

other, and the sum of whose squares is 90.

Let x=. the less number; .-. 3a? = the greater;

whence a?^ + 9a?^= 90, or 103?*^= 90, by the question:

.-. X- = %

and consequently ^= -f 3 and Sx= +9, the required numbers

:

but if positive numbers be required, 3 and 9 will be those

which fulfil the conditions.

Ex. 2. Divide the number 12 into two parts, so that the

square of one of them may be four times as great as the square

of the other.

Let X = one of the parts; .•. 12 — a? = the other;

.-. .r*^ = 4 (12 — a?)', by the question

;

and .-. a?= + 2 (12 - a?) = + 24 + 2a7,

+ 24
(1 + 2) = + 24, and x=

1+2

whence, making use of the upper signs, we find that the parts

are 8 and 4;

but if the negative signs were retained, the parts would be

24 and — 12 which are both excluded by the nature of the

case.

Ex. 3. Required a number which being multiplied by

the square root of its half, shall give the result 54.

Assume x to represent the number; then by the question,

we shall have

X X \/ - = 54, or x^ = 54 ^2 :
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.•. w^ = 5832 and w — IS the required number,

which may easily be shewn to fulfil the condition.

Ex. 4. Pind a number whose square exceeds it by 6.

Let X represent the required number ; then we shall have

.r'^ — .r = 6,

which is a quadratic equation exhibiting algebraically the

proposed condition

:

.-. .2?- — a?+ - =6 + - = ~;
4 4 4

whence x = + - , and .-. ,r = 3 and — 2 :

2 - 2

and both these values satisfy the condition of the equation,

though, properly speaking, the second is excluded by the enun-

ciation of the problem.

Ex. 5. Divide the number 20 into two parts so that the

product of the whole and one of the parts may be equal to the

square of the other part.

Let 2x = the difference of the two parts ; then since 20=
their sum, we have by (34)

10 + .r = the greater part,

10 — .r = the less part

:

whence, by the question, is obtained the equation,

20(lO-cr) = (lO + .r)^

or 200— 20a7=100 + 20.r + a'":

.-. ,r*+ 4007= 100,

.-. .r'^ + 40.r + 400= 500,

and .-. cr= -20+ /y/500= -20+ 10 ;^:



175

whereof the value - 20 + 10 ^5 will alone be admissible, since

the difference of the parts must obviously be a positive quantity

:

.-. the greater part =10 + ^7= 10,^—10=10(^5—1);

and the less part = 10 — a? = 30— 10 ,^/y= 10 (3 — ,,y5).

From these results it is evident that a number cannot be
divided into two rational parts so as to answer the condition of

the problem.

Ex. 6. Divide the quantity a into two parts so that their

product may be equal to 6*.

Let X denote one of the parts; .-. a— cc will represent the

other

:

whence x{a— w) — 6', by the problem

;

that is, w^ — ax-= —b^;

a^ a^— 4>b^
, a + *Ja-— 4l)'

.-. x^ — ax + — = ; and x = ~
,

4 4 2

and •. a— a?= ^^^
,

and these are the parts required, both of which answer the

proposed condition.

Here it may be remarked that if 46^ be greater than a^, or

a
b be greater than - , the two parts become unassignable or

impossible: and this circumstance shews, as hinted in (141),

that the problem is impossible when the proposed product is

greater than the square of half the given quantity ; and also

that this product is the greatest possible when

46^ = a^ or 6= -
,

2

and therefore each of the required parts is half the quantity

given.
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Ex. 7. Required two numbers whose sum is 11, and the

sum o{ whose squares is 61.

Let a? = one of the numbers; .-. U — .r= the other

:

.-. ar + (11 — 0?)^= 61; that is, 2a;^— 22x + 121=61:

whence we have the following results,

, , 121 1 , 11 1

a?'-lla?= —30, a!^—llx+—~ = ~, and x = + -;44 2 ~ 2

consequently x = 6 and 5,

and .'. 11 — X = 5 and 6:

and the required numbers are 6 and 5, the two roots of the

equation which express the proposed condition.

Ex. 8. Divide a into two parts so that the sum of the

products arising from multiplying each by the square of the

other may be equal to 6'.

Let X = one of the parts; .•. a— x = the other part

:

and the problem expressed algebraically gives the equation

x'^ (a— 0?) -f (a— xYx = 6'

:

whence ax^— x^ + a^x — 2 ax^ -^-x^ = 6', or ax^— c^x = — 6'

;

2 2
, or (t

.-. or— ax -\ =
4 4a 4a

and X= —=-^ :

2a

wherefore the required parts are

a^+ >/«'' — 4a6' J a" + ^a^— 4-ab^

2a 2a

and they will both be unassignable if 4 06^ be greater than a*,

a
or b be greater than jy^ .

V4
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Ex. 9. Given the sum of two magnitudes = 2a and the

sum of their cubes = 26^: to find them.

Let 2w represent the difference of the required magnitudes;

then will the magnitudes themselves be a + x and a — x:

whence, by the question, we have

(a + A')' + (a-.r)^= 26':

that is, 2a^ + 6aa7-= 26':

.-. x-= and w= + v :

3a.
— 3a

and the magnitudes required will be

a+ V and a—\f ,

^ 3a 3a

each of the values of x therefore equally answering the con-

ditions proposed.

In order that these parts may be assignable, it is manifest

that 6 must not be less than a ; and the extreme case in which

the problem will be possible is when b = a, and therefore when

the magnitudes are equal to each other.

Ex. 10. A. farmer purchased a number of oxen for d6'll2.

and observed that if he had had one more for the same money,

each of them would have cost him £2. less : required the num-

ber he purchased and the price of each.

Let X = the number of oxen purchased

;

112
then will = the price of each

:

*'

.'. (/r + 1) X ( 2 1 = 112, by the question

:

that is, .r* { x = 56:

Z
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... a'- + .i- + i = 56+i=~—

•

whence a? + 1 = -\ , and a?= 7 and 8,
- - 2

and it will be found upon trial that the former alone will

answer the condition of the problem: that is, the number of

112
oxen is 7, and therefore the price of each = -;;;;- = £l6.

In this instance the second value of a?, though it does not

satisfy the proposed condition, is nevertheless not without a

significant meaning, as it obviously solves the following pro-

blem :

A farmer purchased a number of oxen for ri£*112., and

observed that if he had had one fewer for the same money,

each of them would have cost him £2. more: required the

number he purchased and the price of each:

so that the algebraical expression above found, comprehending

both these problems, is more general than the enunciation of

either.

Ex. 11. Of a number of bees, after eight ninths and the

square root of half of them had flown away, there were two

remaining: what was the number at first?

Let 2.r' represent the number at first ; then by the question,

we have

l6a'«

9

that is, 2a?*— 9a? =18:

.-. I6a7-— 72 A' + 81 =144 + 81=225:

whence 4a?—9= +15, 4a?= 24 and —6,

and .-. x = 6 and :

2

wherefore, since the former value alone answers the conditions

proposed, we have the required number =2.36= 72.
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Ex. 12. A and B with dispatclies between two towns start

at the same time and meet when A has travelled 30 miles more

than B, and they afterwards reach their destinations in 4 and

9 hours respectively : find the distance between the two town&

and the rates of travelling of A and B.

Let X = distance travelled by B before meeting

;

.-. t^? + 30 = distance travelled by A, and 2a? + 30 = distance

between the towns

:

.-. A and B travel x and ^ + 30 miles in 4 and 9 hours re-

spectively : whence their rates of travelling per hour are - and

00 + 30 , ^

respectively

:

X 8.r + 120
.-. A\ time between the two towns= (2a?+ 30)-i- - =

,

4 X

1 «, . . ^
/a? + 30\ 18a? + :

and jB's time = (2a? + 30) -j- ( )
= 270

9 / .17+ 30

wherefore since B takes 5 hours more than A to perform the

journey, we must have

18a? + 270 8a? + 120

a? + 30
+ 5,

which is the algebraical expression of the problem: hence

by reduction, we get

a?^_48a7= 720, and .-. a? = 60 and —12,

of which the latter is manifestly excluded

.-. the distance between the two towns =

and the rates of travelling of A and B represented by

the distance between the two towns =2 a? + 30= 150 miles;

a?

4

a? + 30
and are 15 and 10 miles an hour respectively.
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Ex. IS. Three persons A, B and C can perform a piece

of work in a certain time : A alone could do it in a hours

more, B alone in 6 hours more, and C alone in twice the

time : how long would it occupy them jointly and singly ?

Let x be .the number of hours they are occupied jointly

;

.-. a?4-o, X + b and 2a? are the respective numbers of hours

in which A, B and C can perform the work singly: hence,

if unity be taken to represent the work,

and
.r + a x-\-h 2.r

will be the parts of it performed by A, B and C in one hour,

and

1

X + a x-\-b
and

are the portions done by them in .r hours: hence, by the

question, we shall have

X

X + a
+ 7

x + b

1

1:

from which by reduction. &c. we find

and the nature of the problem excludes the negative value:

hence the times required are

^W)
' ab a + b

. / /a + b\'^ ab 5a— h . //a + b\* a b 5b—

a
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Ex. 14. It is required to decompose the quantity a into

two factors, whose sum shall be the least possible.

Let the factors be se and - , and assume a? + - = m

:

and 0? =

4 4

m + 1^ vfir— ^a

now, in order that the factors . and 2 may be possible,

it is obvious that m" cannot be less than 4a; and for the

extreme case in which they are possible, we obtain

m t
—

^ = 2 = V «>

so that the required factors are each equal to >^/a.

This result may also be obtained from the following

consideration.

Let one of the factors a?= c >^/a, and .*. the other - = ——

;

X c

whence we have x \— = c kJ a H == (c + - ) */a,
X c \ c/

which will manifestly be greater than 2 >/a, unless c= 1,

as appears from (94).

Ex. 15. Given two magnitudes a and 6, whereof a is

the greater, to find the greatest possible value of which

(x -{-a) (x— b) . .

the expression § admits.
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(x + a) (w-b)
1 •

, ,, 1-

Let ^ -o ~~ = WJ, irom wlncli there is immedi-
.r*

ately deduced by the ordinary process

a— b + A^ {a -{ b)'— iimab
a; =

2(w — 1)

therefore, in order that the values of x may be real, we must

have {a + by equal to or greater than 4tmab, and .-. m equal

(a + b)-
to or less than

4/ab

in the extreme case m — ;— , which gives m—\ =

a— b 4-ab 2ab
whence a? = x

(a-by a-b'

and the corresponding value which the proposed expression

admits of will obviously be -r- •
-^

4>ab

2ab
Also, if for iV we put + c, we shall have

a— b

{x + a){a!-b) _(a + bf (a - bf^"

a^ ~
4>ab , / 2ab .\

'

which shews that 7— is the greatest value required.

III. ELIMINATION OF UNKNOWN QUANTITIES.

167- From what has been already said, it is evident th^t

the value of any one of the symbols concerned in an equation

is entirely dependent upon those of the rest, and it will become
known only when the values of the rest are given or assigned.
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If then, there exist simultaneously two or more equations

established among the same symbols, it is obvious that the

determination of any one of them cannot be effected without

reference to the assignability of the rest; and the operations

before explained will in general enable us to effect, by means

of the relations and connections subsisting among them, such

modifications and changes that one or more of the unknown

quantities shall not be found in the equations which are made
to result. Quantities thus treated are said to be eliminated

or exterminated, and the resulting equations will manifestly

involve fewer unknown magnitudes than are found in the

equations proposed. Hence, if the numbers of equations and

unknown quantities be properly adjusted, it is obvious that the

given equations may all be reduced to one final equation, in

which there is found only one unknown magnitude combined

with coefficients that are supposed known.

This part of Algebra being of a very intricate nature^

and the requisite operations in general exceedingly embarrassing,

it will here be entered upon only so far as is necessary to the

prosecution of the subjects contained in the subsequent articles

of the present chapter.

168. First Method. Any number of equations of this

description being proposed, from which it is required to

eliminate or exterminate one or more unknown quantities,

the most natural and obvious mode of proceeding would be

to endeavour by means of one of them to express the value

of the unknown quantity least involved, in terms of the rest

and known coefficients: and by its substitution in the equa-

tions remaining, it manifestly follows that one of the unknown

quantities will not be found in the equations which thence

arise: so that if the number of equations be sufficient, a

repetition of the same operation will clearly lead to an

equation independent of all the unknown quantities with the

exception of one.

This method will manifestly be very limited in its opera-

tions, in consequence of no general solution of equations of
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higher orders than the second having as yet been investigated

;

but it shall be illustrated by such examples as are of most

frequent occurrence in practice.

Ex. 1. Given the two equations

ax + by= c and dx + ey—f:

then if it be required to eliminate x,

we have from the former ax= c — by,

c^hy
and .-. x=- :

a

wherefore by the substitution of this value of x in the latter,

we get

or {ae— bd)y= af—cdi

an equation involving only the unknown quantity y, the other

unknown quantity x having been thus eliminated.

A similar process would manifestly have eliminated y.

Ex. 2. Given the simultaneous equations .r^ + y^= a" and

X- + bxy -\-y'^ = 0, to eliminate x.

From the former of the proposed equations we have

x^= a- — y^, and .-. x= + ^a^— y

whence, by substitution in the latter, we get

or or + by y/a-— y^= 0;
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.*. by transposing and squaring both sides, we obtain

6y-a^6y + a*=:0,

which is the final equation involving only y.

Also, since x and y are involved in precisely the same

manner, the final equation in terms of w would be

6^0?* ^ a%^x^ + a* = 0.

Ex. 3. Let there be proposed the three following equa-

tions ;

ax-\-hy-\-c% — d,

ex^fy^-g%= h,

kx-\- ly + m%= n:

then from the first of these we have

d— by — ex
a;= ;

a

whence, by substitution in the second and third, we obtain

(d— by— cz\

f ) +fy+g^^h,

^ ^ /d — by— cz

.

and k { ) + ly + m%= n;
, /a — oy— cz\

wherefore, by clearing of fractions, there immediately result

(af—be)y + (ag—ce)z= ah— de,

and (al — bk)y + {am— ck)%= an— dk:

thus have we eliminated the unknown quantity x, and the

preceding examples shew us how, by means of these two

equations, either y or z may be then exterminated, and

a final equation involving only one of them be obtained.

Similarly of more equations.

A A
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l69. Second Method. It is obvious, that the elimination

of an unknown quantity may be effected by instituting an

equality between its values determined from different equations,

since its exclusion from both members of the resulting equa-

tions will necessarily ensure its extermination altogether.

This method will be illustrated by the following examples,

but possesses the same defect as the last.

Ex. 1. Let ax + by = c and d.v + ey =/, as before : then,

from these equations, Ave obtain

c-by , f-ey
X= and X= -—-—

:

a d

whence, in consequence of the simultaneous existence of the

equations, we shall manifestly have

c— hy _f—ey
a d

and .-. cd— bdy= af—aey,

or (ae— 6d)^ = af— cd, which does not involve <r.

Ex. 2. Given the two equations x' — axy = by and

j/^ — xy = c", to eliminate x.

ary^ a"y" + 4-by
From the first, x-— ayx +

and .•. x=

4 4

ay+ \f ary' + 4>by

y — c
also, from the second, x— :

y

ay±^a-y--\-^by y--c°
,-. we must have =

;

2 y

whence, by reduction, is easily deduced

(a - 1) J/* + 61/=' - (a - 2)cV- c' = 0,

an equation involving only y and known quantities.
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Ex. 3. From the three simultaneous equations,

kx + ly -\-mz= n,

we immediately obtain the following expressions for x, viz.

;

d— hy— cz
iV — ,

h-fy--gz

n — ly— mz
"=—i

—

wherefore this method gives us the two equations

d-hy-cz _ h -fy -gz

- d— by— cz n — ly — mz
and =

;

a k

which, by reduction, lead respectively to the equations,

(af—be)y+ (ag— ce)z= ah — de,

and {al— bk)y + (am — ck)z= an— dk;

so that X has been eliminated : and, by pursuing the steps of

the last examples, we may get rid of either y or %, and thus

obtain an equation involving only one of the symbols z and y.

170. Third Method. Another method of elimination, not

essentially different from the two preceding, still remains to be

explained : and this is by multiplying or dividing the members

of the equations proposed by such quantities as will render the

coefficients of one or more of the unknown quantities in two or

more of them equal to one another, and then taking their sum

or difference as the case may require.

The following examples of this method will be sufficient

for a full explanation of it.
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Ex. 1. Given the equations ax-^hy=:d and ex —fy =^;
then if the members of the first equation be multiplied by /,

and those of the second by 6, we have

and hex — hfy— hg ;

.*. by addition, (a/+ be)x = bg+ df, so that y is eliminated

:

again, multiplying the terms of the first equation by e and

those of the second by a, we get

aex + bey=:de,

and aex— afy = ag;

.'. by subtraction, (af+be)y= de— ag, which does not in-

volve X.

-r, _. - . ^—a(y—bY^
Ex. 2. Given the two equations = — — and

X y*

x— c (y— d)" ,. . ,= ——3-^ , to eliminate x and y.
X y

^ \^ n « 26 6*
From the nrst, 1 =1 h „,

X y y
a 2b b-

" ^~ y
y*"

, ^ J c 2d cP
nrom the second, 1 =1 1--5>

•» y y

c 2d (^
and .-. - = ^:

•1^ y y

multiplying the first of these by d and the second by 6, we have

ad 2bd b^d

X y
2 '

y

he 2bd d^b

X y r
*
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.*. by subtraction, is obtained

ad— he hc^— h'd bd{d— b)

X y^ ~ y^ '

X y^
, . , . 1

or —;—— = —-r-,——y by inverting both sides:
ad— he hd{d— h) ^ ^

again, multiplying the first by d^ and the second by 6", we get

adr 2hdr h^d^"

X y r

h'^c 2h^d b^dr—. = _

X y r

whence, by subtraction, as before, we have

ad^-h^c _2(bd"~h-d) _2bd(d-h)
X y y '

wherefore, multiplying together the corresponding members of

these two resulting equations, we arrive at

x a6^-h^c _ y^ 2hd{d-b)

ad— he X hd{d— h)

atf-h-c
or —-

—

-~=2y,
ad— be

which involves only the unknown magnitude y :

, a^-h^c ad^-h^c 2hd(d-h)
also, X —;—r— = ^^ x2y= 4,hd(d—b),

X ad— he y
% /7

ad — he 1
, , , . ,

°^ T~^—rr^*= TT373

—

IS. > ^"^^" contains only x.
{ad^— Wcy ^hd{d—b) ^
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Ex. 3. Given the three simultaneously existent equations

:

.v + y + ss = a,

xyz=^ c',

to eliminate any two of the symbols as y and z.

Multiplying the first by a?', we get

<r' + x^y + oc'z = aa?"

:

and multiplying the second by .r, we obtain

x^y -t x^z -^ xyz = h'x

:

whence, taking the latter of these results from the former, wc

have

x^ —'Xyz = ax^— b"Xf

to which if we add the third, there arises

,r'= ax- — h^x + c^,

and .•. x^— ax'-\-h-x— c^ = is the final equation involving

only the unknown quantity x.

171. The three methods of elimination above explained

and exemplified, are those most commonly resorted to in practice,

and by judicious combinations of them, many other modes will

suggest themselves in the consideration of particular instances.

To eliminate one and two unknown quantities, it has

appeared in the preceding examples, that two and three in-

dependent equations respectively are necessary and sufficient;

and it evidently follows from an extension of the views whicli

have been taken of particular cases, that by means of n equa-

tions independent of one another, any w— 1 of the unknown

quantities involved in them may be made to disappear from the

equation which finally results.
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If one or more of the equations be derivable from the others,

these will obviously answer no purpose which is not equally

answered without them; and thus, in general, n independent

equations will be requisite at the same time that they are

sufficient for the extermination of n — 1 unknown quantities.

The general theory of elimination being of far too difficult

a nature to admit of its introduction into an elementary treatise

like the present, for further information upon the subject the

reader is referred to the article Elimination in the second

volume of Bonnycastle's Algebra, to the Algebra of Euler,
to the Theorie generate des Equations Algebriques of Bezout
and to the Author''s Theory of Equations.

Equations involving two or more unknown Quantities.

172. It has been shewn in some of the preceding articles,

that, by means of a proper number of equations, all the unknown

quantities except one involved in them may be eliminated ; and

it is further manifest that the final equation involving that one

may always be reduced to one of the forms specified in (148)

:

and when the equation thus resulting is of the first or second

order, or capable of reduction to either of those orders by sub-

stitutions or otherwise, the application of the methods already

investigated and exemplified will lead immediately to its solu-

tion : and one or more of the unknown quantities being thus

discovered, the rest may be determined by substitution in the

expressions representing their values.

From the want of a general solution of equations containing

only one unknown magnitude, the solution of equations con-

taining more than one must necessarily be very limited, and it

will be sufficiently illustrated by the following examples.

Ex. 1. Given 7a? + 10y= 41 and 13a?— 11?/ =17, to find

the values of x and y.
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41 — lOw
From the first equation we find w= ; whence, by

the substitution of this value for x in the second equation,

according to (l68), we obtain

/41— 10y\
13( --^)-llt/= 17,')-!.,=

and .*. 533 — 207y= 119, by reduction:

whence we have

414
207y= 414 and .-, «= =2:^ ^207

41— lOy 41—20 21
whereiore x= = = — = 3

:

7 11
and the values 3 and 2 of x and y will be found to satisfy

simultaneously both the proposed equations.

Ex. 2. Given

a? + 2 y— OB , 2v— 3a?
h ^ =2a? — 8 and -^^ }-2y= 3a? + 4,

7 4 3
^

to find the values of x and y.

By reduction, the proposed equations become

59x — ly — 232 and 3a; —2y=— 3:

59X - 232
.•• the former gives y =

and the latter gives y=

7

3x+ 3

2

whence, according to (169), we have

59a?— 232 _Sx + 3

7 i~'
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485
.«. 97<»= 485 and a?= =5:

97

also, from the latter reduced equation, which is the simpler of

the two, we find

_ Sai + S _ 15 + 3 _ 18

and by trial we may easily be assured that 5 and 9 answer the

conditions.

Ex. 3. Given the two simultaneous equations

:

7a? +1
8w — 3y=l9 +

and 3x— 5y=l8 —

8

13y-3

11

to find the values of a? and y.

Clearing the equations of fractions, Sec. we have

19ai—8y= 5l and 11.17 — 14^ = 67:

.-. multiplying these equations by 11 and 19 respectively, ac-

cording to (170), we get from the first, 209a?— 88^ = 56l,

and from the second, 209a?— 266^/= 1273;

.'. by subtracting the latter of these from the former, we find

712
178y= —712 and .•. j^= = — 4:

178

whence 19a?= 51 + 8^= 51 — 32= 19 and .*. a?= — =1:

and the required values of a? and y are therefore 1 and — 4.

Ex. 4. Given aP + a!y= 66 and or — y^ = 11, to find the

values of a? and y.

Bb
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From the first equation, ^= (
) >

.*. by substitution in the second, x — ( j =11;

.-. 4356— lS2a?°+r*= a?*— lla?^:

whence 121 a?^ = 4356,

,-. a^ = 36 and .t = + 6

:

therefore j/^ = a;^ - 11 = 36 - ll = 25,

and y = + 5.

Ex.5. Given a?* + y^ = 34 and ^-— a?y=:10, to find the

values of x and y.

From the first equation, y' = 34 — a?*,

, .r* — 20 a?'' +100

ar

and /r*— 27a?^ = — 50

:

whence .r* — 27a?'H = , and .•. or = H ;

4 4 2 •" 2

.•, ar^ = 25 and 2, and consequently a?= +5 and + mJ^:

wherefore y= = + 3 and + 4 ^^/g.

Ex. 6. Given a? + 2y + 3;? = 14, 2a: - 3y + 4«= 8 and

3ir + 4y— 5jy= — 4, to find the values of ,r, y and x.

From the first equation, .t= 14— 2y— Ss*,

from .he second, ..= i±i»:l^.
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and from the third, a?= :

3

whence we shall manifestly have the two equations

8 + 3y— 4!%
li,-2y— 3z=

and 14— 2y— 3»=

2

4 — 4y 4-5»

3

and these involve only two unknown quantities y and z

:

again, these equations by reduction become

7y + 2« = 20

and y + 7« = 23

:

hence, multiplying the latter by 7, we obtain

7y + 49ar=l6l,

also, from the former, 7y + 2is = 20;

141
.-. by subtraction, we get 47^=141 and .*. «= =3:

.'. 2^= 23 — 7sf = 23— 21=2,

and .37=14— 2y— 3^=14— 4— 9=1;

and the numbers 1, 2 and 3 will be found simultaneously to

satisfy the three equations proposed.

Ex. 7- Given

a;^-{-y^ + z^=:a\ j/^— 2a?«= fe' and ca; + d%= e',

to find the values of a?, y and z.

e'-dz 2 /e'-dz\"
From the last equation, /»= , ••• <*? =i I :

9 * 2

and from the second, y^sfi^ +2tr;5f= 6^+ — :
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.-. by the substitution of these values of x" and y^ in the first

equation, we get

c c

whence by reduction

and .'. z^ +
c—d (p-~^)

o c— d
and « . , . ,c—d ~ c—d

e
.*. 117=:

whence «=
c—

a

«-d« e* d|-e'±c>v/a'-6'
"~

c c\ c— d J

ce^-de^+ de^ + cd^ar-b^
c{c— d)

e^ + d A^ a^— b"

c— d

.-. y- = 6^ + 2<r«

\ie'' + dja''-b^)(-e''±c^a''-b'')]
= 6« + 2<

(c-d)^

6^(c -I- d)2 - 2 (g- + 6^)cd-2e- {e" + {c + d)Ja" - b^

{c-df
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and thence

±Jh-ic + df^2{a^^h^)cd-^^{e''+{c-Vd)Ja^-.hH
y- ^3d

•

Ex.8. Given aw -^ hy — a^, fea?— a» = 6% cx-^du — c^

and dy— c%= d*, to find the values of a?, y, z and u.

From the first equation, abx + b'^y= a^b,

and from the second, abx— a^z= ah^

\

.'. by subtraction, b^y-\-a^zz::zab{a— h):

and .'. by multiplication, b^dy + a^dz= abd(ji~'h),

also, from the fourth, Vdy— b^cz= b^cP;

.-. by subtraction, (a^d+b^c)z= bd{a^— ab— bd),

_ - bd(a^— ab— bd)
and thence z— 5-— :

a^d + ¥c

again, from the second equation,

- „ abd(a^— ab — bd)
bw= b^-\-az= b^+ ^

, , ,„ ^

a^d + b'c

bia'd+b^c-abd^)

and thence x—

a^d + b"c

a^d + b^c— abd"

a'd + b^c

bcd{a^ — ab-bd)
also, from the fourth, dy= ar-{-cz= ar-\ „ , , ,«

' ^
a''d-\-b c

_ d(a^d^ + a^bc-ab''c)

a'd+ b^c
'

, ,
a^d^ + a^bc— ab^c

and thence «= ^-z—r^ •^ a^d + b-c
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c(a^d + b^c— abd-)

a^d-\-b^c

_ acd (ac -j-bd- a^) - 6V(6- c)

a^d + l^c
'

and .'. u= ^^ ^ -:
(a^d + l^c)d

and thus the four unknown quantities are determined.

And similarly of more unknown quantities.

173. In the great variety of equations that are met with

involving two or more unknown quantities, the ordinary pro-

cesses of elimination may frequently be dispensed with, and

recourse be had to artifices which will in most cases greatly

abridge the labour of solution. The discovery of such artifices

must, however, be left to the student's ingenuity, though it

may be observed that they usually depend upon the funda-

mental rules of addition, subtraction, &c. &c.

The following examples will exhibit some of them.

Ex. 1. Given a^-^if=52 and a?y= 24, to find the values

of x and y.

From the first, a;^ '\- 1^= 52

;

from the second, 2iry= 48;

.'. by addition, a?*-H2a?y + ^"=100,

and by subtraction, .r^— 2 a?y + j^ = 4

:

.*. by evolution we get x + y=: +10,

and x— yss + 2

:

whence, by addition and subtraction again, wc obtain

2x= +12, 2y= +8,

and .'. a? = + 6 and y = + 4.
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Ex.2. Given x^-^wy^a^ and xp— y^^b^, to find the

values of .a? and y-

From the 1st, J7(a?—y)= o*;

from the 2nd, y{x— y)=sb^;

whence, by division, we obtain - = — , or«=— a?-

y b" cr

.'. by substitution, we have cc^ ^a?= a^,
a

or (a'-62)-p2= a^

whence <r= +

b^ W
and.-.3.= -,.= ±-^=_.

Ex. 3. Given ^^ = .^—^and — - ^=—3^, to
y so .v~+ y- y^ i^ y^

find the values of x and y.

From the first equation, x^— y^^=. acy (<» + y),

and from the second, x^— y'^— x"{x— y):

.'. we shall have xy{x-^y)=.x^{x— y);

whence y(x + y)=x(x— y),

and .'. 2xy = x^— y~:

now (x^ — y^) {x^ +y^)=^y(^ + y)i

.-. 2xy{x" + y^)=:xy(x + y),

whence x^-^-y^^ :
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but (a!'-y-){x- + y-)—x(,v-y),

whence (<r + y)^ = 2a?°,

and .-. a! +y= +0! ^J^

:

here, for the sake of conciseness, we shall use only the positive

sign, and then we have

y— {s/^—l)ai, and thence ?/^ = (3 - 2 >y/2) .r^

:

therefore, since a?^ + y^= ,

we
._ a:

have (4— 2 V2)a?2=—F^

from which we get oc = —j=
>s/2(4-2^) 4(v'2-l)'

and thence y = (^v/i^— !)<»= —^^-p= = -.

4(V2-l) 4

Ex. 4. Given

a?Vy*=l+2a?y + 3a?2y2 and w^ +f= Zxf-{-^f^a;-\- i,

to find the values of x and y.

From the first we have oc^— 9.a^'i^ + y* = i +2a?2/ + a;^y^

and .-.by evolution, .r^ — y^= i + a?y

:

from the second we have x^— 2«y^ + y' = 2y^ + a?+ 1

,

that is, {x -y) (j?^ + ocy-y"^) = 2 j^ + ^+ 1

:

.*. substituting for x"— y^ its value 1 -^-xy, we get

{x~y) (1 + 2a'j^) = 22/* + ci + 1,
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and .-. 2y (a?- — a?y— y)=sy + 1

:

but since oo^ —xy=y'^-\-\,

••• 22/(y'-j/+l)=y + l,

and .-. y(l+22/*) = l +2y', whence y= l;

also, since a?^ - y'^= 1 +<ry, we have a?^-l=a?+l,

and .-. ar— 1=1 or a?= 2.

Other values might have been found by retaining the

double sign, in addition to which many quantities which

would satisfy the equations have been passed over by the

several equal divisions of the members.

^. x— ^x-— y^ , X ./l+x
Ex. 5. Given . = a? and - = v —— » to

w + Jx^-f y ^ i+y

find the values of x and y.

From the first equation, a? (l — a?) = (1 -|- a?) yy/a?^ — y^

:

and from the second, x-— y"=y'^x— x^y,

.-. x-\-y=— xy and y = ;— ;

^ {l+xY (1+a?)-

whence, by substitution, we get

X (1 — a?) = (1 +a?)—— ^2x + x'' = X ^2x + x^;

.'. l—x= j^2x-\-x'^i

and 1— 2a?+a?^ = 2a?+ a?'^;

1
.. X = - :

4

Cc
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X 1

1+0? 5

and to this solution the same remarks may be applied as

to the last.

Ex. 6. Given a? + >Jsy^ — 11 + 20? = 7 + 2y — y^ and

»jsy — a? + 7 = , to find the values of x and y.
a?-j/

From the first, y--\-x^l -\- >^S-f-^-Zx—U^^y^

.'. 2y- + 2a?— 14 + 2-^/3y-+2a?— ll=4y;

••• (3y* + 2a?— ll)+2^32/* + 2a?-ll=y' + 4y + 3;

.*. completing the square and extracting the square roots, &c.

we get

^3y2+2.r-ll=:j/+l,

and .-. St/'+Sa?— 11 =y'4-2y4-l,

from which <r= 6 + y — y*^

:

hence >>/ 3y— a? + 7 = y + 1,

a? + y
and .'. « + 1 = :

a?-y

wherefore xy= y'^ \-2y^ and a? = y4-2:

.'. equating the two values of x, we have

y + 2=6+y-y«,

.-. y' = 4 and y= 2,

and .'. a; = y + 2 = 4.

Ex.7. Given x'^'^y^'^ and 2/''^''= 'i?% to find the

values of x and y.
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From the first, a?=y'+*', and from the second, a?=y ""
:

4m x+y

whence we have y*"*"" = y »»
,

_ oD + y 4im
and .*. =

,m ^ + y

whence (a? + y)*= 4m*, and .*. a!+y= +2m;

.'. using the positive sign, we have x — y"^ = y*>

•. y^ + y= 2»»;

1 8m + l

wherefore y + y + - =
,

4 4

and .*. y = ^^^^ ;

4WI + 1 + v^8w + l

^
2

If the negative sign had been retained, then since

^=-2,

we shall have a? = -x

,

whence a? + y = — 2m becomes — + y = — 2w,
y

and .'. y^4-2my + l=:0 or y^-f2my=— 1,

neither of which have we as yet learned to solve.

Ex.8. Given bz + cy= a, a% + cx= b and ay + 607=: c,

to find the values of x^ y and %.
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Multiplying the first equation by a, the second by b

and the third by c, we have

ab% + bcje= b-,

acy + bca!= c^;

.-. by addition, 2abs; + 2acy +2bcx= a" + b" + c^:

but 2abz + 2acy =2a*, from the first

;

.•• by subtraction, 2 bcw = 6" + c* •— a^

b" + c"— a"
and .'. X =

26c

. ., ,
a^+ c'— b~ . a^ + b-— c'

sirailarlv v = and z =
' ^ 2ac 2ab

174. From what has been said in (171), it manifestly

follows that the values of the unknown quantities may be

expressed in terms of the known magnitudes, when the

numbers of unknown quantities and equations involving

them are equal; in other words, that n equations are ne-

cessary and sufficient for the determination of n unknown

quantities.

When n+m equations are proposed to determine the values

of only n quantities supposed unknown, any m of these equations

may clearly be dispensed with, as they will be unnecessary if

they lead to the same results as the rest, and point out some

inconsistency in the proposed equations if they do not.

If the number of equations be only n— m, and the values

of n quantities be required, it follows from the article above

referred to, that, after elimination, the final equation will involve

n—(n—m — l) or 7»4- 1 unknown quantities, whose values can

therefore be exhibited only in terms of one another and the

known coefficients : these cases constitute what is called the
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Indeterminate Analysis, which will be treated of in the

second part of the work.

To illustrate what was said in the former part of this

article, we will introduce the following examples which are

capable of solution by means of the principles already ex-

plained.

Ex. 1. Given the n following equations: viz.

a^x^ + Oo-Tg + a^x^ + &c. + a^o?,= 0,

K^i + h'^2 + ^3^3 + &c- + *»^»= 0,

CicVi + c„.Vr + c^w.^ + 8ec. + c„a?„= 0,

Sec

and k^x^'^ + koX^"" + k^x^"* + 8ec. + k^x^ = K;

to find the values of the n unknown quantities

"^1 » ^o} <J?3 » &C. X^

.

Here it is obvious that, by means of the n—l former

equations, each of the unknown quantities .r^, x^, &c. x^j

may be expressed in terms of the remaining one a?j, as has

been done in some of the preceding examples ; let therefore

X^ — l^Xy, X^= l^X^, &C. = 8eC., ^n— ^n^i'^

then by the substitution of these values in the last equation,

we obtain

fci w^"^+ kJ^'^Xi"' + k, Vo^i'" + &c. + kj^^^x,"" = K,

whence x^ = \/
k. + kj^+k^l^+kc + kj-'

from which may be immediately derived the values of the

remaining quantities .r„, a-j, &c. x^.
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Ex. 2. Given the n equations following: viz.

Oj cc^ + OgOJo + CgA-g + 8ec. + a^x^= A,

b^x^ + ^2-^2 + ^a-^s + 8ec. + b„x^= B,

C^Xi + C^X^ + C3X3 + &c. + c„x^= C,

&c

to find the n unknown quantities <2?j, x„, x^, &c. x"^.

Multiplying the members of the first, second, third, &c.

equations by the quantities 1, p, q, &c. respectively, we shall

have

a^a?, 4- 02 "^2 + 03<3?3 + &c. + ««<»„= A,

qc^x^-\- qc^x^ + qc^x^-^hc.^- qc^x^^qC,

&c

••. by the addition of these quantities in vertical rows, we get

(Oi+j)6i + gCi + &c.)a?i + {a„-^ph„-\-qc2-\-hc.)x^

+ (^3 + P^3 + (1^3 + &c.) .r, + &c. + (a„ + p6„ -H qc^+ &c.) a7„

= ^ + ^jB + q-C + Sec.

now if the coeflicients of a'j, x.^, &c. <r„, in this equation be

each assumed =0, we shall have

_ A -\-pB + qC + hc.

where the values of j9, q, &c. may evidently be determined

by means of the n—l equations,

tto + 62P + ^29+ &c. = 0,

«3 + ^3? + C37 + &c. = 0,

&c
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as pointed out in the last example: and similarly of the

rest of the unknown quantities cc^, x^, 8ec. w^.

Ex. 3. Let there be given the n following equations

:

®l^l*2 + ^l"^! "^ ^1^2 + <^1 = 0,

«2^2*3+ ^2-^2 + <^2'^3+ «^2= ^J

«3'»3'^4+ ^3^3+ 03-^4+ '^a
= 0,

&c

««*«^1+ &»^n + Cn^X+<= ;

to find the values of the n unknown quantities

iPj, a?g, a?3, &c. i2?„.

From the first equation we obtain

a^x^ + Cj

wherefore, if we substitute this value of x^ in the second

equation, we shall be enabled to find x^ in terms of x^:

and continuing this process, we shall at length find w in

the form

Ax^ + B
'Cx~+1)

and this being substituted in the last equation gives

AxJ^ + Bx, , Ax, + B
"" C., +D + ''•'C^^:TD + ''"'^' + '''•= •''

a quadratic, from which a?i may be determined; and thence

each of the remaining quantities a?g, x^, kc. x„ will become

known.

Problems dependent v/pon simultaneous Equations.

175, A proper number of the letters x, y, ar, 8ec. being

assumed to represent the magnitudes that are required, and the
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problem being translated into algebraical language, according-

to the directions given and exemplified in (152), the number of

independent equations thence arising will be equal to the num-

ber of unknown quantities, if the problem be determinate in its

nature; and consequently, by the application of the methods of

resolving such equations just given, we shall readily arrive at

known values for these quantities, and thereby at the solution

of the problem.

Ex. 1. Divide the number 9 into two parts so that five

times the greater may exceed six times the less by 1

.

Let .r and y represent the two parts, whereof .r is the

greater and y the less: then we have the equations

j? + y= 9 and 5a? — 6y=l,

which express the conditions of the problem algebraically

:

also, from the former of these, x= Q— y; wherefore, by substi-

tution in the latter we get

45-lly = l;

.-. iiy = 44- and .'. y = 4;

.-. ,r= 9— 1^= 9 — 4= 5:

so that the parts required are 5 and 4.

Ex. 2. In a certain employment nine men and seven

women receive together £3. lis. 2rf. for their wages, and it is

found that seven men receive 19«. 8d. more than five women

:

required the wages of each.

Let X and y represent the wages of each man and woman
respectively in pence: then, by the question, we have

90? + 7y= £S. Us. Sid. = 854d,

and 7.^-5^= 19«. 8d.=236d:

- » 8.54— 7y
from the former, cc =

,
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2S6 + 5y
and from the latter w = ;

7

whence we have

854 — 7y _ 236 +5y
9 7

and .-. 5978 — 49y =2124 + 45y;

.-. 94^= 3854,

and y=4ld. = 3«. 5rf, each woman's pay;

854— 7V 854 — 287 567 ^ ,
and .-. x= = = —63a. = 58. 3d,

9 9 9

the pay of each man.

Ex. 3. Seven times the greater of two numbers and five

times the less make 282, and three times the square of the

former exceeds seven times the square of the latter by 1700:

find them.

Assuming x and y to denote the required numbers, we

shall evidently have 7x + 5y=:282 and 3<J7^ — 7y' = 1700:

, - 282 — 7c'P - - , . . .

now from the first, y=
;:

, and .*. by substitution m
5

the second we have

3x' (282 — 7^)' = 1700,
25

from which, by reduction, there results

2680?-- 27636^7= -599168;

whence a?= 31;

282-217 65
and .'. y= = — = 13:^55

that is, the required numbers are 31 and 13,

Dd
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Ex. 4. A tradesman in purchasing a piece of stuff, finds

that if he had bought a yards more at h pence a yard less,

he would have paid the same sum: but if he had bought

c yards more at d pence a yard less, his payment would have

been e pence less : required the number of yards and the price

per yard.

Let X = the number of yards,

and ^ = the price per yard

;

then cry = the price in pence:

also, (a? + a) (y — 6) = wy, by the question

;

.-. ay— hx= ah:

again, (<r + c){y— d) = xy— e, by the question

;

.-. cy — dx=^cd— e:

from the former, acy—bcx = abc:

from the latter, a cy— adx= acd^ ae;

.'. by subtraction, {ad — bc)x= abc— acd-{-ae,

- a{bc— cd+e) . , , ^
and x= ;—

;

, the number of yards;
ad— be

ab + bx , b(bc — cd-{-e)
.-. y= =6 +

ad— be

b(ad— ed + e)

ad — be
, the price per yard.

In order that this solution may accord with the enunciation

of the problem, it is obvious that bc — ed + e and ad— cd + e

must both be positive or both negative according as ad is

greater or less than be.

a b
If, however, it happen that _ = - , then must we have

c d

also be— cd + e= and ad—cd + e= 0, so that x and y assume

the intermediate form .
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but in this case our equations become

be be- .be
and ey a?= e, since a =—

:

a a a

.•. acy— bcx=^abe,

and aey — bca)-=bc^-'ae,

the former members of which being identical independently of any

particular values of the unknown quantities, the latter must be

so likewise, so that the number of independent equations is

insufficient for the solution.

Ex. 5. Required two magnitudes whose sum is a, and the

sum of whose fourth powers is 6*.

Let w and y represent the two magnitudes : then we have

ai-\-y= a and x^ +y'^— b*, by the problem :

from the first, w^ + 4a?' j/+ 6<2?^2/^+ 4a?y^ + y^ = a*,

from the second, a?* +y* = 6*;

.: wy(2x- + 3xy + 2y^) = —-— :

2

but since al^ + 2a!y + y^ = a^,

we have 2w^ + 3wy + 2y^= 2a"— a!y;

.'. by substitution and reduction, we obtain

af'f—^a'xy-^a— ,

whence xy — a^± \

also, x^-\-2xy-\-y^-= a^.

./a'+b"
and 4tPy =4a +* V —Z

—
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and J? — y= + V — 3a' + 4V '

whence we immediately obtain

a? =

_ x/ „_ . A*+^''

and v = :^
2

which will always satisfy the proposed equations, but can be

expressed in possible terms only when the lower signs of the

quantity under the vinculum are used, or when

. xA'+^

This will also be manifest from the circumstance that a?' + y'

must in such cases be a positive quantity.

Ex. 6. To find two magnitudes whose product is a, and

the difference of their squares 2b.

Taking .r and y to denote the magnitudes required, we

have

xy= a and .r*— j^= 26:

now J?-— y'= 26 and .-. 2^ — 1 xy=2a^ — 1;

.-. by addition and subtraction, arise the equations,

a^ + 2»y — \ a-y — y- = 2ft + 2a^ — 1,

x-— 2^ — l.ry — y- = 2h — 2a y/ — 1 :
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whence by evolution, we obtain

x + yy/ — I = s/^h-\-'2a^ — 1

^— Vs/ — ^ = s/^b— ^a^y -1;

and from these equations, there result

1

and y=
2-v/-l

\\/2b + 2a^ — 1 - \/2b— 2a^ — l]

These values of x and y which may easily be proved to satisfy

the equations above given, have no signification in their present

form, and the method of solution will be entirely useless unless

we can get rid of the imaginary symbol \/ — 1, and prove them

to be real. This might be done by effecting the operations

indicated by the radical signs; but real results may be other-

wise obtained, for

fv/sft" — 1 + s/2b — 2a*^ — lX . ^V 26 + 2aV — 1 + V 26 —2«V — 1
^

y l\/2b-\-2aJ~^\-\/2b-2aJ^O

y Ub^A>J¥+^} _b+ Ja^ + b'

which combined with the equation xy = a, gives immediately

a^= b+ ^ar + b^ and .-. x= ± sTb+^jW^b^

;

a a

^' s/h+^a' + b^

.Ex. 7. To find two quantities whose product shall be a;

and the difference of their cubes equal to m times the cube

of their difference.
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Let d? + y and oo — y denote the two quantities : then by

the problem, we have

(.r + y) X (j; - y) = a",

and {x-\-yy—{x— yy = Sm'i^'.

that is, x^ — y"= o^)

and 6j?'y + 2y'= 8my^:

.•. 3x" -\-y" = 4:my':

also Sx^ — Sy'^=zSa--

.-. by subtraction, 4!y- = 4<my^— 3a°,

.'. 4(m— l)2/^= 3a^ and y=±V '

7»— 1

o 2 o 3a* a" ( 4-m—l ')

whence x^ssa +y =a--\— = —< -—

V

^ 4(m — 1) 4 ^ m-1 )

and a?

a . /4-m

2 w—

1

and the quantities required are

and.-J,= -fe^^^^^b^n.

Ex. 8. Required two magnitudes whose product is equal

to the difference of their squares, and the sum of whose squares

is equal to the difference of their cubes.

Let w and xy represent the two magnitudes

:

then x'y = .r'y" — .r' or y= y^—ij

and A'y' + X-= x^y^ — x^ or y" + i— xy^ — x

:
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from the first equation, y- — y=\, we find immediately

_ 1± \/5
^-

2

and from the second, we have

y'+l y + 2 , , . .

a?= -— =
, by substitution,

y'-l 2y ' -^

111 2= - + -=- +
y 2 i±yi

_ i± v/5 + 4 5 +^
2(1+^5) 2(1 + ^)

wherefore the required magnitudes are

07= 5± n/5 1 ^
1± y/5 2

and a7y=^V'5x(^^^)=^<N/5±5):

and from these results it is obvious that no rational magnitudes

whatever possess the specified property.

Ex. 9. To find two numbers whose sum, product and the

sum of whose squares are equal to each other.

Let X and y represent the required numbers, then will

x + y=za)y,

and xy=zx^ +y-:

y
from the first, x =

and from the second, x = y±y\/-^
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whence there arises the equation

1 __1±n/-3

2 1 + V^-3

l±V-3 2

2/-1 2

which results, though they satisfy the algebraical expressions,

point out at the same time the impossibility of finding two

numbers which will answer the conditions of the problem.

Ex. 10. Seven ducks and eight teal cost 27*. 4-d., eight

ducks and five widgeons 22s. 8rf., and nine teal and seven

widgeons 24*. 4d.: required the price of each duck, teal and

widgeon.

If <r, y and x be assumed to represent the prices in pence

of a duck, teal and widgeon respectively, we shall have

7^ + 8y= 328,

8a? + 5jjr= 272,

9y + 7iJf= 292;

.-. from the first, SGx + 64y= 2624, by multiplying by 8,

and from the second, 56a?+ 35^ = 19O4, by multiplying by 7;

••. by subtraction, 64y — .9.5^= 720:

also, from the third, 45y -^^ S5z=^ 1460, by multiplying by 5;

.-. by addition, 109y= 2180,

2180
, , . ^ , ,

.*. V = = 20rf., the price of each teal;
* 109

*^
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328 — 8w 328—160 l68 , . , , ,

.-. x= = = =24d., of each duck ;

7 7 7

- 272-80; 272-192 80
^_, ^ , .,

and z= = = — =loa., oi each widgeon.
5 5 5

^

Ex. 11. A and B together can perform a piece of work

(a) in 8 days, A and C together in 9 days, and B and C to-

gether in 10 days: how many days will it take each person

alone to perform the work?

Let a?, y and z stand for the parts of the work performed

by A, B and C respectively in one day: then, by the question,

8a? + 8y= a,

10y + 10z = a;

a a a
.-. ai+y—", x + %=- and y + z= —

:

^8 9 ^10
a a a

whence y— z= = —

,

^
8 9 72

a
also, y + z— —

,

' ^ 10

41a - 31a
.-, y= , and z= :

^ 720 720

a 4>9a
and a?= y — ——

:

8 720

49 720 _ 3^ 1

hence A can perform the work in a-=—^^~ "7^ ""
^^Iq

"*y^'
720 49 49

- days and 23—
41

^ 31

23 7

similarly 5 and C can do it in 17— days and 23— days re-

spectively.

Ee
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From the solution, it is evident that the results are entirely

independent of the magnitude of the whole work.

Ex. 12. To find three magnitudes, when the quotients

arising from dividing the products of every two by the one

remaining are a, b and c.

Let <r, y and z denote the magnitudes required : then the

conditions of the question give

a^y wz
, ,

yz— = a, — =6 and "—- =c:
z y a?

from the first and second, we get

wy .vz „ i—r
ab=. -^ X — =x- and .'. .r= + v ""»

z y

from the first and third, we obtain

ac= — X — =y and .-. y= ± >,Jac;
z X

and from the second and third, we find

xz y^ a , n~bc= — X — =sf and .-. z= + i^ be.

y ^

Ex. 13. Three persons A^ B and C possess certain sums of

money, such that if A receive half of the sums of B and C he

will then have £a'. if B receive one third of the sums of A and

C he will then have £b: and if C receive one fourth of the

sums of A and B he will then be possessed oi £c: required the

sum originally possessed by each.

Let <r, y and z denote the required sums; then by the con-

ditions of the problem, we have

y + z
x-\ =ff, or 2.rH-y + ar= 2cr,
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y H =6, or 3y + x + %= Sb^

37 + y
%-\ =c, or 4>z + x-\-y=:4>c:

subtracting the second equation from the first, we obtain

w — 2y= 2a— 3b;

subtracting the third equation from four times the first, we get

7.v + 3y= Sa— 4,c:

whence we have now the equations

x— 2yz=2a — 3b,

and 7x + 3y= 8a— ifc:

from the former of these, 7x — 14y = 14a— 21 6,

and from the latter, 7iv + 3y— 8a — 4-c;

.'. by subtraction, 17y = 21 6 — 4c— 6a

216— 4c — 6a
and y =

whence a? = 2a— 36 + 2y=

and z= 2a— 2x— y =

17

22a— 96— 8c

17

20c— 36— 4a

17

176. We shall conclude this Chapter with the investi-

gation and exemplification of the Arithmetical rules of Single

and Double Position^ which, in some cases, are made to

supersede the use of Algebra.
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(l.) In Single Position are considered those questions

wherein the result of the operations upon the unkno\\Ti quan-

tity is always some multiple, part, or parts of the quantity

itself, and the applicability of the rule is entirely decided

by this circumstance.

Let X he a number required which is to undergo such

operations that the result is a ; also, let s be a supposed

number which, by the same operations, gives a result h:

then by the nature of the case we have

X s a
- = — , and .*. X = — «,ah b

which enunciated at length is the rule.

Ex. Find a number which being increased by its fourth

and seventh parts become 3^.

Suppose the number to be 24 ; then its fourth and seventh

parts are 6 and 3|, so that the whole sum proposed becomes

24 + 6 + 3| or SSf,

whereas it ought to have been 32 : hence, according to the

expression just investigated, we have the required number

39 273 7= —5- X 24 = X 24 = - X 24= 28,
33|' 234 6

which obviously answers the condition of the question.

(2.) In Double Position the result is no longer a certain

multiple, part, or parts of the quantity itself, but involves

further the addition or subtraction of some given magnitude,

and the rule will be useless unless this is the case.

Let X represent the number sought to satisfy the condition

ax + b =^ c,

where a, b and c are known magnitudes; and suppose * and
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8 when substituted for x not to fulfil the condition, but to

give the errors e and e', both in excess ; then we have

as + 6= c-t-e and as' + 6= c + e';

.-. a{s— x) = e and a{s—3B) = e:

. s — X e
whence -, = -

,

s — w ' e

es'— e's es — es
and .'. X = — -y- or = —-. ,

e — e e —e

which expressed in words is the rule.

If the errors be both in defect, the result is the same;

but if one of the errors be in excess and the other in defect,

1 1-11 -,.11 es' + es
the result will manitestly be a? = —

.

Ex. 1. What number is that which being divided by 9

and the quotient diminished by 3, three times the remainder

shall be 30?

Let 144 be the number s; then will the result of the

operation expressed in the question

/144 \

9
*

so that the first error e= 39 — 30= 9:

again, let 126 be the number /; then will the result, as before,

126

~9

so that the second error e =33— 30= 3:

es' — e's 9.126— 3.144

/126 \

the number required =
e—e ' 9-3

1134— 432 702= — = — = 117,
6 6

'

which on trial will be found to fulfil the condition.
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Ex. 2. A and B have both the same income ; A saves

one-fifth of his, but 5, by spending £50. a year more than

Ay at the end of four years finds himself £lOQ. in debt:

what is the annual receipt and expenditure of each?

Suppose £l50. to be the income of each

;

then £30.s=sum saved by A, and .-. ^120. = sum spent by him:

.-. <£*120. + £50. = jPlTO. = annual expenditure of B :

whence we have (170 — 150) x 4 = ^£'80. =the debt incurred by

B in four years: and therefore the first error is 100—80= 20

in defect

:

again, let .£^100. be the income of each

:

then £20. =sum saved by Ay and .'. ,£*80. = sum spent by him

:

.-. ^80. + ^50. = ^130. = annual expenditure of B

:

.-. as before, (130— 100) x 4= de*120. = the debt incurred by

B in four years: consequently the second error is 120—100= 20

in excess:

, ... ^ ,
20.100 + 20.150 ^

whence we have the income of each= = dPl25 :

20 + 20

.'. ^'s annual expenditure =125 (125) = dfi'lOO:

and jB's annual expenditure = 100 + 50 = =£'150.

For an extensive collection of examples connected with

the subjects of this Chapter, the reader is referred to Bland's

Algebraical Problems.



CHAP. VII.

On the Method of Indeterminate Coefficients. On the Bi-

nomial Theorem. On the Multinomial Theorem. On the

Exponential Theorem.

I. Indeteeminate Coefficients.

177- Def. The method of Indeterminate Coefficients

is a process by which the Expansion or Developement of

algebraical expressions may be eiFected, by assuming for

them a series of powers of one of the letters involved, com-

bined with coefficients whose values are afterwards to be as-

signed in terms of the rest; and it is of most extensive

utility, as will appear from the applications of it that occur

in the subsequent pages.

178. If the equation

A + Bx+ Cx^ + Dx^ + &c. = a 4- 6^7 + cx^ + dx^ + &c.,

wherein both members are continued at pleasure, hold good

for all values that can possibly be assigned to cP, then will

the coefficients of the same powers of x in both members

be equal to one another

:

that is, ^ = a, B= b, C= c, D= d, &c. = &c.

For, since, independently of any particular value of x^

J+Bx + Cx- + Dx^ -I- &c. = a + 6a? + ca?^ + da?3 + &c.

assume a?= 0, and .-. A= a: wherefore there then remains

Bx + Cx'^ + Dx^ + &c. = hx + cx'^ + dx^+ &c.

or B +Cx +i>a?- + &c. = 6 -\-cx +dar' + &Gi

assume .r= 0, and ,\ B = b:
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and by a continuation of this mode of reasoning it may

manifestly be demonstrated that

C= c, D= d, 8ec. = &c.

The truth of this proposition is further manifest from the

circumstance, that if we transpose all the terms of the second

side of the equation, we shall have

(A-a)+ (B-b) X + (C-c) .v"- + (D-d) .v' + &c. = 0,

which, if the coefficients A — a, B— b, C— c, D— d, &c. of

the different powers of x were finite, could be satisfied only

by the roots of the equation, and thus the generality essential

to the expression would be entirely destroyed.

179. Cor. 1. If the equation

A H- Bx = a + hx,

hold good for two particular values of ,i', then will

A = a and B = b.

For, let a and /3 be the two values of <r, so that

A +Ba = a + ba and A + B(i= a + b(i;

.-. by subtraction, B (a — (i) = b (a— f^),

whence B= b, and therefore A = a.

Similarly, if ^ + Bx-{-Cx" = a-}-bx + cx^, be true for

three particular values of x, then will A = a, B= b and C= c:

and so on for any number of terms and correspondent values

of X : and this will manifestly lead to the conclusion in the

last article.

180. CoR. 2. If ^ + Bx + Cx- + Dx^ + &c. = 0, the

values of a, 6, c, d, &c. being each = 0, we shall have likewise

^ = 0, 5 = 0, C = 0, Z) = 0, &c.
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181. By means of the principles just explained, the

operations of division and evolution may be generally effected:

integral quantities may be resolved into factors ; and fractions,

whose denominators consist of more factors than one, may be

decomposed into others of a more simple description. This

will appear by the following examples.

Ex. 1. To divide a + .r by 1 —boff, let us assume

^"^,^ =A + Bx-t Cv- + Z>a?3 4- &c.;
1 — feci?

.-. multiplying both sides by 1 — 6<r, we shall have

a-\-x= A + Bx +Cx" +Dx^ +&c.

-Abx-Bbar'-Cbx^-hc.

= A + {B-Ab)x-i-(C-Bb)x'-]-{D- Cb) x^ + &c.

whence, equating the coefficients of the same powers of x in

both members, we have

A=a;

B-Ab = l, .-. B=l+Ab = l+ab;

C-Bb= 0, .'. C=^Bb = (l+ab)b;

D-Cb=0, .-. D=Cb = (l+ab)b'';

&c.

so that

a + x

l — bx
— = a + (l+ab)x + (l+ab) bx- + (1 + ab) b^x^+ &c.

which is the same as obtainable by actual division.

Ex. 2. Let it be required to find the expansion of

a + bx

a + l^x + yx-

Ff
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Assume -—-=—; =A + Bx + Cx- + Dx^ + Ex* + &c.
a-\-px-\-yx^

.: a-\'bx= Aa+Bax + Cax^ +Dax^-\-Eax* +kc.

+ ^^0? + 5/3a?« + C/3a?3 + D/S-T* + &c.

+ Ayar + Byx^+ Cyx* +&c.

= Aa-^ {Ba + A(i) x + (Ca -\-Bfi+ Ay) x'

+ (Da + C^-{-By)x^ + {Ea^-D(i + Cy) x" + &c.

whence, equating the corresponding coefficients as before, we
have

Aa = a, .'. ^ = -

;

a

a a a

Ca^B(i + Ay= 0, ... C=-^^±^
a

ab^ — aOr— aay= z ; &c.
o'

and it is obvious from the form of the coefficients of x, that

any one of the succeeding quantities D, £, &c. may be found

by multiplying the two immediately preceding it by and
a

'y
respectively, and properly connecting the results : whence

a

we shall have

a + bx a ab— a(i abfi— aff'— aay „

-^ ; -„ = - + 2 X + X- + &C.
a+px-\-yx- a a a'

which, by means of the preceding remark, may be continued at

pleasure.
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Ex. 3. To extract the square root of 1 + *^

Assume -^ 1 + a?^= ^ -f- 5* + Ca?^ -f Dx'^ + Ex*-+ &c.

.-. 1 + cr^ = ^2 + ABx+ ACx""+ ADx^ -\- AEx*+ &c.

+ ABx + B\v'' + 5C.t?-' + fiZJa?*+ Sec.

+ ACx^-{'BCx'+ CKv^ +&C.

+ JZ)^H5Z>a?*+ &c.

-\-AEx^+ kc.

+ &C.

equating the corresponding coefficients, we get

A^ = l, or A = l;

2AB = 0, or 5 = 0;

1-B' I

2AC+ B^z=l, or C:
2^ 2'

13 /^

2AD-\-2BC= 0, or D= =0;
A

2AE +2BD + C-=:0, or E=--^^J-^ = -t;
2A 8

&c

whence ^ 1 -f o?^= 1 + - a?^ a?^ — &c.

:

^ 2 8

and it may be observed that had we known the form of the

expansion beforehand, the odd powers of x might have been

omitted in the assumption without altering the result.

Ex.4. Let x^= Ax(x+l){x+2) + Bx(x-\-l) + Cx + D

= Ax^ + (SA + B)x'' + (2A i- B -i- C)x + D

i
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then from (178) we shall have A = l;

3A-\-B= 0, OT B=—3A=—3;

2A + B + C= 0,

,'• C= —2A —B=— 2 + 3 = 1,

and D= 0:

whence x^ may be expressed, by factors, in the following form,

a!{x + l)(x + 2) — 3w(x + 1) +x.

2a— X 2a— X A B
Ex. 5. Assume -r r or = V

a"— or (a-\-x){a— x) a + x a—x

A(a— x) + B(a + x)

a^ — X'

_ (A + B)a-{A-B)x

.-. 2a-x= {A + B)a—(A-B)x;

whence by (178), we have A + B = 2 and A — B=l;

. 3 , „ 1
.'. A=^ - and B = -

;

2 2

, „ . 2a-x . _ _ 3 1
'. the traction — is decomposed into — 1-

a^— x^
'^

2{a-\-x) 2{a-x)

Ex. 6. Let it be required to decompose the fraction

- into three others with simple factors for their
a^ — aP' — 2x

denominators.

First, x^— x^— 2x= x{x*— X— 2) = x{x + \){x— 2),

as will readily appear by (l6l) :
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1 A B
assuming .-. -g —_ = ——- + — +

X —or ~ ^x x-\-\ X x — 2

_ (A + B+C)x--{2A + B-C)a!-2B
(d7 + l)af(a?— 2)

we shall, in consequence of the identity of the denominators,

have

l = (A + B + C)x^-(2A + B-C)x-2B:

.'. 25= -1 and 5= - -:
2

also, 2A + B-C = and A + B + C= 0y

.: 2A — C= - and A + C= -;
2 2

whence we obtain A= -- and C= -
:

3 6

1 111
" x^— x^ — 2x 3(x+l) 2x 6(a7— 2)'

which is readily proved to be an identical equation.

182. This principle may be rendered still more general,

and may be extended to indeterminate indices as well as in-

determinate coefficients, so that if we have for every value

of X,

Ax" + Bx^ + Cxy + &c.= A'x<^ + B!a^' + C\ii^' + &c.

a similar process will lead to the conclusions that

a^d, i8
=

i3', 7 = 7, &c.; A = A, B= B!, C=C\ &c.

II. The Binomial Theorem.

183. Def. The Binomial Theorem is a general Alge-

braical Formula, by means of which any power or root of a

quantity consisting of two terms may be expressed by a series
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of simple quantities ; and in one of its most general forms may
be written

(a + a.')"'

m(m—l) - „ m(m—l)(m—2) , ,

1.2 1.2.3

(tV\ **

1 + -
)

I 1 \a/ 1.2 \aj 1.2.3 \a/ )

where the quantities a, ^r and m may be either positive or

negative, integral or fractional.

We shall divide the proof of this theorem into the two

following propositions:

(1) To determine the law of the formation of the indices,

and the coefficient of the second term:

(2) To investigate the law of the formation of the succeed-

ing coefficients

:

and for the sake of simplicity, the binomial shall be represented

by 1 + 1? and its index by m.

184. To determine the coefficient of the second term of

the evpartsioti of any power or root of 1 +v, and the law of
the formation of the indices of v.

First, let the index be a positive whole number p ; then

since by actual division

{l-\-v) - 1

= 1 + (1 + r) + (1 + v)- + &c. to p terms,

we shall have

(1 +«)"=!+« + « j(i+r) + (i + r)«-}-&c. to (p-l) termsj

= l-\-pv-\-Bv^ + Cv^-j- &c..
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since the first term of each of the binomials within the brackets,

when expanded, is obviously = l : that is, the coefficient of the

second term is the index p and the indices of v manifestly ascend

regularly. This appears also from Ex. 6. of Art. 22.

Secondly, let the index be fractional and equal to - , and

assume

p

(l+vy =l+Av+kc.; .'. {l+vy= (l+Av + hc.y:

wherefore, by the first case, we shall have

1+pv + kc. =1 +qAv + &c.

pwhence qA=p and .-. ^=-, and the indices of v must
9

obviously ascend regularly :

- P

Thirdly, let the index be any negative quantity either whole

or fractional, represented by — r, then we have (l +v)~^

1

z=l—rv + &c.,
(1 +vy l+rv + &c.

by actual division ; and it is clear that the indices of v will

ascend regularly ; therefore in this case also we shall have

(1 +«)-'•= 1 — rv + Bv^ + Cv^ + &c.

Hence, whether the index m be positive or negative, inte-

gral or fractional, the coefficient of the second term is m and

the indices of v ascend regularly, so that we may in every case

assume

(l+v)"' = l+mv + Bv^ + Cv^+ kc.

185. To determine the law of the formation of the co~

efficients of the powers of v in the expansion of (l + v)"*.
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Let (1 + «)'" =1 +mv+ Bvr + C«' + &c. (a)

and for v put y + %', then we shall have

{\ +y ^ zY = \ +m{y + z) + B{y + zf ^- C {y +%f -Vhc.

= 1 + wy + J? 2/- + Cy^ + &c.

-irm%-\-2Byz-\-SCy^z + hc.

+ C»' +&C.

+ &C.

again, by separating it into factors, we obviously have

C / z \1"'' / z \"^

(l+2, + ^)'"=|(l+2/)(^l+—
j^

=(l+yr(^l+-~'j

= (^^yr\^^n.{^^) ^ B{^)\ C(^)\ ^o.\

by (a),

= (1 + 1/)"* + w(l + y)"*-' 2f + 5(1 +y)'"-2af« + C(l + y)'»-3ar5

+ &C.

= 1+ my + 5y- + Cy^ + &c.

+ TOSf \l +(m—l)y +B'y- +Cy^ +kc.\

+ Bz^l+{m-2)y + B"y^ +C"y' + kc,\

+ Csf' 51 + im-3)y + B'"y' + C'"y' + kc.\

H-8ec

(fi, C, &c. becoming B'^ C, &c. ^', C", &c. when the index

w becomes w — 1 , »» — 2, &c. respectively)

f
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= l+my+ Bf + Cy'+ hc.

-\-m%-\-m{m—\)yz-{-mB^if-ss-\-hc.

(7)

+ C z^+ hc.

+ &C.

now, the series (j3) and ('y) being identical, by equating tlie

corresponding coefficients we shall obtain the following results

:

viz.

25= m(»»— 1),

>»(w»— 1)B=

•.also, 5^ =

1.2

(m— l)(m— 2)

1;2

3C=^ir="^"-^)5"-^),

.. c=

likewise, C =

1 .2

to(w— 1)(»»— 2)

1 .2.3
*

(m— 1) (m — 2) (m— 3)

similarly, 4.Z)=wC=

. . 1>=

1.2.3

wi (wi— 1) (w - 2) (m - 3)

1 .2.3

»»(m — l)(m— 2)(r»— 3)

1.2.3.4
'

and the process may obviously be continued as far as we please

:

whence we have

m(m—\) „ m{m—l){m— 2)
(l+«r =l+m«+ _L__^^,2^_JL___^L_ dt,3

m(m-l)(m-2)(m-3) ,,

^ ^^^
1.2.3.4

Gg
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186. Cor. l. Hence, by separating a + x into the factors

a and 1 + - , and then substituting - in the place of u, we

obtain

' l\a/ 1.2 \a/ 1.2.3 \a/ *

»»» I .,.. ^m

1 .2 1.2.3

where the quantities a, x and m may be positive or negative,

integral or fractional, or indeed irrational.

Ifm and x be both positive, We shall have

1.2

If m be positive and <r negative, we shall obtain

mCm—l) „ „
(a— 0?)'" = «'"— ?»o*"-^r^ ^^ ^a'"-V-&c.

'^

1.2

If m be negative and x positive, we shall find

^ ^
1.2

1 mx m(m+ i)x"— U i 1 C. foe
or a"»+' 1.2.a'"+'

If m and x be both negative, we shall get

^ '
1.2

1 mx m{m + l)x"
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Also, if the index be fractional and equal to + -
, then~ 7

wiU

q 1.2.9^ —

and

~
q l.2.q^

I87. Cor. 2. If ^j, ^25 -^3» &c. be assumed to represent

the first, second, third, &c. terms of the expansion, we may
exhibit the theorem in another form.

,-i„ .

m(m--l)
For, (a+wy= «"»+ wa'" " \v + —^——^ a*"

"
'o?'^ + &c.

1.2

^ X (m — l)..v (m— 2) ^ 0?

a 2 a 3 a

by means of which, any term may easily be derived from that

what immediately precedes it.

188. To Jind the n"* term, or the general term of the.

expansion of (1+v)".

This may be determined by induction : for we have seen in

article (185) that

the first term = 1,

the second term = w«,

, . , m(m-~ 1) ,
the third term = —^^ «^,

ot(wi— 1)(»»— 2)
the fourth term = —^^

^^^^ » >
&c.;
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whence, observing the connection subsisting among the nu-

meral magnitudes, we shall obviously have

th m(m—l)(m— 2).kc.(m-n + 2) „ ,

the n*^ term = —^ — ^ ^^ i««-^:
1.2.3.kc.(n-l)

and the theorem, with its general term, may therefore be

written

, .. m(m— 1) 2 m(w— l)(w-2)
, „

(1 +v)*=l+wv+ —^ -v^+ —^ -v^ + kc.
1.2 1.2.3

/» (w? — 1 )( Wi— 2) . &c. (7«— 7i -f 2)
+ — —/ , ,

:L^i,«-i+&c.:
r.2.3.&c.(w-l)

and hence we shall have also the more general form

(o 4- 0?)™

m(m—l) „ „= a"* + w a"* - \v H ^ a'"-^ar + &c.
1.2

TO(w-l)(m-2).&c.(TO—w+ 2) „ ,^, „ , „

1.2.3.&c.(n- 1)

189- Cor. 1. If the index m be a positive whole niunber

and we suppose

m—w + 2 = 0, or w= w»-|-2,

the Ti"* and each succeeding term, involving zero as a factor,

becomes = 0, and consequently the series terminates after

the (w— l)* or (w + 1^* term: that is, the expansion of a

binomial whose index is the positive integer m contains m +

1

terms, and the number of terms of the expansion wiU there-

fore be even or odd according as the index is odd or even.

Also, if m be either fractional or negative, it is manifest

that no one of the factors of the 7i*'* term can ever become= ;

and consequently that the expansion will consist of a number
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of terms indefinitely continued, so that the sign = which

connects (l + «)*" and its developement, must then be in-

terpreted in the sense attached to it in (88).

190. CoE. 2. If the index m be an even number, and

therefore the number of terms be odd, the expansion of

(1 + «)"* will have its middle term equal to

1.3.5.&c.(ot-1)^ '^

1.2.3.&c.im ^ ^

For, the middle term, which is the (^m + 1)''*, is obviously

1.2.3.kc.^m

and this, by multiplying the numerator and denominator by

1 .2.3. &c. ^ m, becomes

_ 1.2.3.kc.^m{^m + l).kc.(m— 2){m-l)m f

(l.2.3.&clm)2'"'''

_ \l.3.5.hc.(m— l)\ X |2.4.6.&c.wj |~
(l.2.3.&c.iw)-

m

_ \l.3.5.kc.{m—l)\ X 5l.2.3.&c.lmj2^ f

(l.2.3.&c.im)^

1.3.5.&c.(w— 1) ^ ^^= ^ -(2vy.
1.2.3.kc.^m

191. CoE. 3. If the index m be an odd number, and con-

sequently the number of terms of the expansion of (l +«)'" be

even, there will obviously be two middle terms, the I
——I

j from the beginning, which are therefore equal to
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m-l

1 .2 . 3 . &c 1 (m-l)
*'

m(m-l){m-2).kc.^ (m + l) ^
1 . 2 . 3 . &c. 1 (w -M) ^ '

and these may, as in the last corollary, be made to assume

respectively, the forms

l.S.S.kc.m '5=1 "^ri , 1 . 3 . 5 . &c. w m^i n^
2 2 « 2 and =— -2 ^ v ^ .

1.2.3.&c.i(7»—
1) 1.2.3.&e. J(w— 1)

192. If the index be a positive whole number, all the

coefficients of the expansion of (l + v)" will be integral

quantities.

For, if the index m=p-\- n—\, where p is necessarily

a positive whole number, we shall, by reversing the order

of the factors, have the w"* or general term

_ (p + 1) (p + 2) (;? + 8) . &c. (p + »- 1)
""

1 .2.3.&C. (w— 1)

but it is obvious that

(P + 1) ( j^ + 2) (P+ g) • &c. (p +n- 1)

1 .2.3.&C. (w— 1)

^ ( ^ p } $
(p+l)(p + 2)(p + 3).&c.(p+^-2) j

\ W— iy( 1 .2.3. &C.(w — 2) S

_ (p + l)(p + 2)(j3 + 3).&C. (p + n-2)~
1 . 2 . 3 . &c. (w— 2)

p (p + l)(p + 2).&C. (p + »t-2)

1 . 2 . 3 . &c. (n - 1

)
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similarly, we shall have the expression

1.2.3.&C. (w-i)

_ p(p+l){p + 2). &C. (p + 71—3)

1 . 2 . 3 . &c. (»— 2)

(p-l)(p-'^)(p-3).kc.(p + n-3)
1 . 2 . 3 . &e. (w— 1)

&c. = &c

whence we infer that the general term will be integral for any

value of w, provided it be so for the next inferior value and

also when each of the factors of the numerator is diminished

by any number less than p: but since the latter term at

length becomes

(w—l).&c. 3.2.1

1 . 2 . 3 . &c. (w — 1)

= 1,

it manifestly follows that if the expression be integral for any

one value of w, it will necessarily be so for the next superior

value : and the coefficient of the second term, being the index,

is a whole number, therefore the coefficient of the third term
|

is integral; therefore that of the fourth is a whole number, *

and so on : that is, the expression

(P + (P + ^) (P + 3) . kc. (p + n-1)
'

1.2.3.&C. (w— 1)

'
*

or its equivalent

m(m~l) (m — 2) . &c. (m— n + 2)

1 .2.3.&C. (»— 1)
'

is integral for every positive integral value of m, independently

of the value of n which must be integral ; and consequently all

the coefficients of the expanded binomial are whole numbers.
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193. On the same hypothesis, the coefficient of any term

of the expansion reckoned from the end, is the same as the

coefficient of the corresponding term reckoned from the be-

ginning.

Since, by (189), the whole number of terms of the ex-

pansion is m + 1, it is evident that the n* term from the

end is the \(m + I) - (n— 1)\^^ or (w-w + 2)* from the

beginning : and therefore the coefficient of the n*^ term from

the end is the coefficient of the (m — n + 2)* term from the

beginning : that is, the coefficient of the n^ term from the end

m(m—l) (m— 2) . &c. n
~

1 .2.3. &c. (m— w + 1)

m(m—l) (m— 2) . &c. (w— n + 2) (m— n+l). &c. n~
1 .2.3.&C. (w— I) w.&c. (wt— w + l)

m{m— 1) (m— 2) . &c. {m— n + 2)"
1 .2.3 . &c. (tj— 1)

which, as appears from (l88), is also the coefficient of the n*^

term from the beginning : whence it follows, that if the index

be a positive whole number, the corrosponding coefficients from

the beginning and end are the same.

194. To find expressions for the sums of the terms

in the odd and even places of the expansion of (1 + v)™.

Since, by giving successively to t) a positive and negative

sign, we have

m(m—\) - w(m— l)(m— 2) ,

' 1.2 1 .2.3

and

m(m—\) „ m(m—l)(m — 2) .

^ ^ 1.2 1.2.3
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.'. by addition and division by 2, we obtain

1.2 1.2.3.4 ^

which is manifestly the sum of the terms in the odd places

from the beginning:

and by subtraction and division by 2, we get

^^ — = mv + --^ — ^ «3 + &,c.
2 1.2.3

which is obviously the sum of the terms in the even places,

195. Cor. i. If in the expressions above deduced v be

made =1, we shall have

the sum of the coefficients of the terms in the odd places

2"
m — l

= the sum of the coefficients of the terms in the even places:

and hence it also follows that the sum of all the coefficients of

any expanded binomial, whose index is w, is equal to

2x2'"-^ = 2'".
\

i

This corollary is also evident from the expansions,

m(m—\) m(m — l)(m— 2)
2'»=(n-iy«=i + w + —^——^ + —^^ -^^—^+&c.

^ ^ 1.2 1.2.3

and

m(m—l) m(m—l)(m— 2)

^ ^ 1.2 1.2.3

196. Cor. 2. Hence we may find also the sum of the

series arising from multiplying the coefficients by the suc-

cessive natural numbers l, 2, 3, 4, &c.

Hh
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m (w — 1) in (m— l) (m— 2)
-j_ 4, -f"For, l+2m + 8 ^^ o
+4 ^^^

+&C.

w»(»»— 1) m(w— l)(m— 2)= 1 + w» + —^^ ^ + —^^
^-- + &c.

1.2 1.2.3

m(m—l) w(m— l)(m — 2)
+ m + 2~ ^- + 3— — - + &c.:

1.2 1.2.3

now the former of these series manifestly =(1 + 1)*" = 2'",

(w— l)(m— 2) „ J

and the latter = w {l + (w— 1) + ^-^— + &c.

J

= r»(l + l)'""^ = w2"'-^:

wherefore the proposed sum =2'" + m2'"-*= (m + 2)2'"-\

Similarly, it may be demonstrated that

m(m— 1) m (m — I) (m— 2)
l_2m + 3—^ ^ -4— ^-^ + &C. =0.

1.2 1.2.3

197- I'o Jind the greatest term of the expansion of

(1 -f v)"", and also the greatest coefficient.

Let N and N^ represent the n^^ and {n + l)'*' terms

respectively; then we shall have from (I88)

m (m— 1) (w--2) . &c. (w — n + 2)
iV^ =—^^

'— ^—,—^^^ u"-*, and
1.2.3.&C. (n— 1)

_ W (W— 1) (W— 2) . &C. (W — W + 2) (7W - w + 1)

^
1.2.3.&C. (w-l)w

,
iVi (w—w+l)r

whence -r = :X n
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npw, if, for any value of w, we have Ni less than A^, it will

manifestly be so for every succeeding value of n: wherefore

if the n*^ term be the greatest, we must have

(m— n+l)v— less than 1

:

. {m — n+l)v is less than w;

{m + l) V is less than n (v + 1),

whence n is greater than (m + 1)
v + 1

that is, the greatest term is that whose place is denoted by the

whole number which is next greater than (m+l)
v + 1

Also, if V be assumed =1, so that the terms become

equal to their corresponding coefficients, we shall have n
equal to the whole number next greater than

m+l m 1
or — + - :

2 2 2

that is, the greatest coefficient is that whose place is expressed

bv — + 1, if w be an even whole number: and when m is

2

an odd integral quantity, the two greatest coefficients are equal

to each other by (193), and the place of the former will mani-

m + 1

festly be denoted by .

198. CoK. 1. If the index be negative, it is manifest that

—- will also be negative, and consequently in this case we must

(m — n + l)v ^ . . . , ,1

have ^ ^— less than — 1 ; whence n is greater than
n
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V
(w + l) ; and this, by assuming v = 1, becomes indefinitely

t) — 1

great, or in other words, the succeeding coefficients increase

continually.

Also, since n must be a positive whole number, the first

V
term will be the greatest, should the expression {m + 1)

be negative.

199. CoE. 2. We have seen in article (197) that

N^ (m— n + l)i'

N
V /m + 1 \

and in order to obtain the greatest and least values of this

expression, we must make n= 1 and tj = co , which proves

N
the extreme values of-—i to be mv and —v, so that the de-N
velopement of (l + u)*" is intermediate to the magnitudes

1 +mv + m'v^ + m^ v^ + &c.

and 1 — v + v'— v^ •\- &c.

each of these series being continued to w + 1 terms, when m is

a positive whole number, and to infinity when it is not.

Hence also, the series after n terms is of intermediate

magnitude to the two series

Nv{ Ij+iVrM ij ^NvH~-~--\\ +&C.

and - Nv + Nv^ - Nv^ + &c.

200. The sum of the squares of the coefficients of the

expansion o/ (1 + v)" is equal to the coefficient of the middle

term of the expansion of (l +v)-"'.
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Let (1 + «)'»=! + Av-{-Bv'^ + &c. + Bv"'-' + Av'"-^ + «"',

the coeificients being the same from the beginning and end,
.'. we have

(1 +vf'^={l + Av + Bv- + kc. + Bv'"'- + Av"*-^ + v'"}

X {v"'-{-Av"'-^ + Bv"'-" + hc. + Bv'' + Av + l}

= v"* + Av"'+' + Bv"'-^- + kc.

+ Av"'-^ + A^v"' +^firj"'+i + &c.

+ Bv'^-- + ABvT-^ + ^'v*" + &c.

H-&C

now, the expansion of (1+u)^'" containing 2m + 1 terms,

it is obvious that its (m-f-1)'^ term will be equal to the

sum of the terms of this latter expression involving «'", which is

whence we have the coefficient of the middle term of the ex-

pansion of (l + v)""^ equal to the sum of the squares of the

coeflScients of the expansion of (l + «)"*.

201. CoE. Since the coefficient of the (m + 1)* term of

V^T^ uj — -

1 .2.3 . &c. m 5

we have

1^ + m=+
j

m(m—
1.2"5 + &c. =

2m(2im--1)(2w— 2). &c (m + 1)

1.2. 3 . &c. r»

1.3..

1

5 . &c

2.3

(2m—

&c. m
1)— 2'" = 1 2.3 &c. 2m

(1 .2.3 .&c.m)^'

202. To find the sum of the products of every two con-

tiguous coefficients of the expansion of {\-\- v)"".
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Assume

(l+t,)'» = l +Av + 5U- + &.C. + Bv"'-- + Av'"-'-\-v"',

the coefficients from the beginning and end being the same,

as appears from (193) : hence, reversing the order of the terms,

we sliall have

(1 +r)'»= i5'" + ^«'"-' + 5t?'"-- + &c. + 5r- + ^y + l

:

whence multiplying the members of these two equations re-

spectively together, we shall manifestly have in the expansion

of (l +«)""* the coefficient of v*""^ equal to

2 {l.J + A.B + B.C + dac.};

but the coefficient of 'u™"^ in the expansion of (l-j-tj)"'" will

by (188) be equal to

2m(2m— 1) (2/» — 2) . &c. (m+2)

1 .2.3.&C. (to— 1)

and from these there will obviously result

. . « ^ ^ « 1 C2w.(2w— l)(2?n — 2).&c. (w + 2))
I.A+A.B+B.C+Slc.=^^] 5^ -^^^—

—

/ ^^ '-[.

^l 1 .2.3.&.C. (m— 1) )

Similarly, may be found the sum of the products of the

first and third, second and fourth, &c. coefficients of (l+r)'":

and so on.

203. As an extension of the principle made use of in

the last three articles, were we to assume

(1+ v)^= 1 + Pi V

+

Pay + p^v^ + &c. + p^^J^

(i + vy=i + Q,v + Qy + qy + &c. + q^v\

{i+vy = i+ R^v + R„y- + Ry-\-Sic.+Ry,

&c

and (1 + t,)p+9+'^+*^- = 1 + S^v + S„y + Sy + &c.'
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since (1+ «)" + « + ' + *<=• =(l + c)''x {l+vy X (l+vyxkc.

we should, by effecting the multiplications of the latter mem-
bers of these equations, and equating the coefficients of the

same powers of v in the equivalent expressions, be enabled

to ascertain, were it of any utility, the existence of some
curious connections and relations subsisting among the indices

p, q, r, &c.

Thus, we should have the coefficient of the n^^ term of

(l+«)^ + « = the coefficient of v"'^ in the product which

arises from multiplying together the two expansions

p(p—l) „ ^ p(p—l)(p— 2).kc.(p— n+2)

1.2 1 .2.3.&C. (w— 1)

-}-&c. and

q(q—l) c „ a(o— l)(g'— 2).&c.(flr— w+ 2) ,

^
1.2 1.2.3.&C. (w-1)

+ &C.

204. We have seen in a preceding article that (l — «)""*

m(m-\-\) c «J (m + 1) (w + 2) „= 14-»»tJ+—^^ -'o^-\--^ -^ ^«^ + &c.;
1.2 1.2.3

and by means of this formula, the expansion of (a + a?)™ may
be made to assume various different forms.

Thus, since =
, we shall have

a cc

1

(a + xy = = aHl )^^ / x Y ^ a + xJ

\ a + x/

= o'»h+w( ) + —^^ ^ (
)* \a + x/ 1.2 \a + x/

(_^-y+&c.s.
\a+x/

+

m(m + l) (m + 2)

1.2.3
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a + 0.' 1

Similarly, since =
, we shall have

X a
1

a + X

^
( \a + x) 1.2 \a + xj )

, ^a + X 1

Again, because =
, we readily obtain

2 a? a — X '

a +x

(a + x)"'=(2x)"'(l— ^^^\
\ a + xj

- «. ( /a— x\ ni(m + l) /a— x\- )

( \a + x/ 1.2 \a+x/ )

a + X
Similarly, from = , is deduced

2a a— x
1 +

ai- X

and the greatest terms, or those after which the series begin to

converge, may be determined as in article (197).

205. The use of the Theorem investigated in the preceding

pages will now be evinced by its application to a few examples.

Ex. 1. Required the fifth power o{2x + 3y.

Here {2x ±3yy = {2xy <1 ± —i , and by substituting in

3y
the formula of the expansion of ( 1 + v)"', the quantities + —

2x

and 5, in the places of v and m respectively, we get

^ - ^'
I
- \2.r/ 1.2 \2.T/
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_^
5(5-])(5-2) /W ^ 5(5~l)(5-2)(5-3) /3y\

*

- 1.2.3 \2a7/ 1.2.3.4 1,20?/

5(5— 1) (5-2) (5 — 3) {5 — 4>) /3y

1.2.3.4.5

2

C-!)]

= 32^^ + 240a?*y + 720a?' y*' + 1080a?-y' + SlOayy* ± 243y*.

Ex. 2. Required the square root of a + a? in an infinite

series.

/ JL 1 / a!\^
Here *y a + 0? = (a + o?)'^ = a^ I 1 + -

J
, and putting

X 1— and - in the places of v and m as before, we shall, after per-

forming the requisite reductions, have

^J a-\-x

4. 1 cc 1.1 X' 1.1.3 a?^ 1.1.3.5 a?*= a^+ + +&C.
^4-1 o2 il-2 «3 4-1.2.3 . 4. 1.2.3.4

^ a? x^ a^ 5 a?*

= a^+--^ ^ + ^ ^+&c.
2a* 8a* iSa"^ 128a"^

a'
Ex. 3. Let it be required to convert m a senes.

(1-a.^)^

1 j_

In this case, = (l — a?")
~ % so that if for « and m

(\-x"Y

there be substituted — x^ and respectively, we shall have,

after reduction,

a^ , aV- Qa^x"" fi.llaV 6.11.l6aV
= a^ + 1- + —- + -r^rr-TT-^ +«*^-

2,-^ u 5.10 5.10.15 5.10.15.20

\

ii
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Ex. 4. If we assume (a -f ^/b)"' = x + y/y, then will

= a?'» + ma.'»-Vy+ ^^^^^^^-'y + &c.;
1.2

whence equating the rational and surd quantities on both sides

respectively, we shall have

^ ,
m(m—l) ,„ „ m(m—l)(m—2)(m—3) « 4 „ . „

1.2
^

1.2..3.

4

^

/-
, /— m(m—l)(m— 2) _ ^ /— „

i— • . f— m(m—l)
.-. a- ^=ar-mx''-^ ^-^r— ^-x'^-^-y-hc.

which is manifestly = (a?— >,Jyy^y

and .-. (a— ,^)'^=a?— ,yy.

Here it is understood that ^^yfe and ^y involve the same

irrational factor ; and in the same manner, if „Ja and ,^/6 in-

volve the same irrational factors as \/x and ^^/y respectively,

and (
va + f^Jhy = t>Jx -\-

,^Jy, where m is an odd number,

then will {»/a - s/^Y= >s/x— s/v-

Ex. 5. By the application of the general formula, we have

(a + 6^37)-

- 1 ^. I w(m — 1) „ , t „
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a-'+ ma^-^feyHl-^i^^Zilam-eftS^

= a'"— m(w»— 1)

1 .2

a'-^^fe^ + Sic.

&c

, / „_i. m(m--l)(m— 2) , \ ,

similarly, we shall have (a— b ^ — i)

a"* ^ or- 2 6= 4- &c.
1 .2

~( ^--
1.2.3

^a-^fe^ + fec^y—

I

whence, by addition and subtraction, we obtain

(a + 6 sT—^y + (a - 6 \/^)'"

_ C ^ w(wi — 1) ^_^ ^~^
/ r~2— "*"

^^" V ' ^^^^ ^^ possible

:

_o
jj

and (a + 6,yrri)'»_(a_6^_l)'»

1 .2.3 3
^ '

I ml, m(m— \) (m— 'i)

which is impossible.

206. The Binomial Theorem may be advantageously em-

ployed in extracting the roots of numerical magnitudes where

an approximation only is necessary, and the ordinary process

Avould be exceedingly tedious.

Ex. 1. To extract the square root of 10 in a series.
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The square root of 10 = »y9^\ = 3 V 1+ -

y

I 2\9/ 2.4 Vp/ 2.8 \9/ )

= 3-\ H &c.
2.3 2 . 4 . 27 2 . 8 . 243

Ex. 2. Required the fifth root of 260.

Here 260= 243 + 1 7 = 3^ + 1 7 : and therefore if a = 3^ and

x = 17, we shall have

4/260 = (a + wy^

4. C 1 /a\ 1 . 4 /x\'^ 1.4.9 /^\^ 7

I 5\a/ 2.5- \a/ 2.3.5^ \a/ )

now, of the quantities between the brackets,

the first term = 1 =J;
A ^

the second term = -^ = . 0139918=B ;

5a

2Bx
the third term =— = . 0003915 = C ;

5a

SC-v
the fourth term = = . 0000164 =D ;

5a

&c

.-. by substituting these values in the expression above, we have

4/2^ = 3 {1.0136159 &c.j =3.0408477 &c.

Ex. 3. Let it be required to find the power expressed by

- , of the fraction -—

.

2* 6
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,-!-

Here we have (-r) = ( 1 + -)

9/5\ 9-7 /5\ 9.7.5 /5\' 9.7.5.3 /5\* „

wherein by (197) the place of the greatest term is denoted by

V
the whole number next greater than (m + 1) , which in^ ^ v + l

this instance

11

5

6

2 5

b + V

.-. the third term is here the greatest, and it is readily seen that

4375
the fourth term which is , is less than the third term

1152

175
which is : in other words, the series begins to converge

after the third term.

If it were proposed to find the expansion of the quantity

\6/

the place of the greatest term would by (198) be expressed by

the whole number next greater than

(m+1)
v—1 5

16-'

• =175;

I

or the 18th term is the greatest, and may be found immediately

by means of (188).
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So, likewise in the developement of the fraction

¥'-'"

the determining quantity being 17|, the 18th term will be the

greatest as above.

In order that the terms of the series may decrease with

sufficient rapidity, it will sometimes be necessary so to trans-

form the surd, that the latter term of the quantity affected

by the index may be a small proper fraction,

207. Without, however, exhibiting the required roots in

series, an useful practical approximation to the higher roots

of numerical quantities may be easily deduced from the same

theorem.

Let a be an approximate value of the m^ root of N, such

that /^N=a + Wy x being a very small quantity:

.-. N=ia'\-xY— or -^-mar-^x + ^V^~ \yn-^ar^hc.
1 .

2

N-oT
whence N—aJ" =^ma"*~ x nearly, and .-. x=

ma"

but N—dr= \mdr'-^+ -^ -aT-'xJx, nearly,

z=,}mar-^+ — ^ U, nearly

:

2a(N-ar)
x=

(w+l)a'" + (wi-l)iV*

and .-. ^N=a + x



= a +
2a{N-a"')

(m+l)a'» + (»»-l)iV

(»»+l)iSr+(w — l)a'

(m—l)N+(m-\-l)a"
X a, nearly,

which is a nearer approximation to the true root : let this be

called o', and by a repetition of the same process, we shall find

:yN=
(m+l)N+(m- l)a''»

(m—l)N+{m + l)a'
X a', nearly,

which is still nearer to the true value: and so on, to any

required degree of exactness.

208. Cor. If N=a"'±b, we shall have by substitution

2ab
;/N=a±

= a +

(m + 1) a"' -f (w»- 1) («"•± 6)

2mar±(m-l)b'

as a first approximation : and if this approximate value be

called a and we assume again N=a"'±b\ then will

;/N=a'±
2ab'

27»a""+(m-l)6'

which is a second and nearer approximation, and so on.

Ex. If m = 2, then wiU either of the quantities

2ab
and a +

be a first approximation to the square root of iV or a +b:

if m=:3, we shall similarly have

a or a +
2ab

6a'+ 26'
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for a first approximation to the cube root of N or a^ ±b: and

so on.

209- To extract, when possible, the m* root ofa binomial,

one or both of whose terms are possible quadratic surds.

Let the proposed quadratic surd be ,^/a + -y/6 wherein

tt^a is greater than ->/6, and let n, u and v be such that

'• s/i'Ja — y/b)xsJn= >Ju—^, by Ex.4, of (205):

whence by multiplication we have ,^{a — b) y. n = u— v:

let now n be assumed of such a magnitude that

{a-b)n=p^,

whence we shall have u— v=p:

again, i^(^'^+ ^~by x w + «7(n/o - Jbf x n

= (v/« + >A)- 4- (sA - sA)'

= 2(«-|.o),

which is obviously an integral quantity : wherefore if q and r

be approximate values of

\/iAya + <s/by X n and \/(^a— ,^)-xn,

such that one of them is greater, and the other less than the

true value, we shall have

u4-v= ;

2

also, M — r =/;,
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and from these we find u = g+^ + ^^

4

q + r— 2p

4

and .-. >7>A+v/6 =>^+^

"=
2"^7;;"5\/9 + »• + 2p + V'? + »•- 2p}

,

whenever the root can be so exhibited.

Similarly, from what has been proved above, we get

Ex. 1. Let it be required to extract the cube root of

9 + 4 ^.
Here a— 6 = 81 — 80= 1, and .-. w= l and « — «=!:

again, ^i^~^ + Jbyxn=:6 + ^,

and '^{J^-Jhyxn=:\'-h

u u. • ^ 6+J+l-^ 7
whence we obtain u + v=: = -

:

2 2

7
and from the two equations w +t>= - and «*— u = 1, are readily

2

deduced m = - and « = -

;

4 4

and .-. ^9 + 4^5= ^,
which equation may easily be verified.

Kk
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Ex. 2. To extract the fifth root of 4.1 + 29 ^2, we have

a— 6 = (29>y2)--(41)«=i, whence n = l and .-. m-v = 1:

also, ^7(29^2"-!- 41)2= ^3363 + 2378^= 5 + 5,

and ^7(29y2-4l)2i= ^^S63^^2378~^^ 1 _ ^

:

wherefore 2(m + u) = 5 + ^ + 1— ^=-6 and ^^ + u = 3:

.'. from the two equations u + v = 3 and m — v = l, we have

unmediately <y/M= >>y2 and „^^=i, so that

^41 +29 /2= 's/2 + ]> the required root.

210. The expansions of trinomials, quadrinomials, &c.

may also be obtained by means of the Binomial Theorem, by

considering two or more of their terms as one : thus

(a + 6 + c)"' = Ja + (6 + c)}"" = a" + ma'"-' (6 + c)

m(m— 1) „ ,. -

1.2

(a + 6 + c + rf)"" == {(a + 6) + (c + d) j"* = (a + ft)"

+ m{a + b)'^-'(c + d) +
^^^

-

"^^
(a + 6)'»-2(c + d)2 + &c.;

and so on, in each of which the developements indicated must

be effected, and the terms collected and arranged according to

the dimensions of one of the letters involved : this will, of

course, be very tedious and it may be superseded by the

foUowing theorem.

III. The Multinomial Theorem.

211. The Multinomial Theorem is a formula for ex-

panding or developing any power or root of an Algebraical

quantity consisting of more than two terms.
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In order to investigate this theorem, we shall premise the

following proposition.

212. In the expansion of (a+b+c+ &c.)", to find the

coefficient of the literal product a" b^ c^ he.

For 6 + c + rf + &c. put h\ and let m= a + j3'; then in the

expansion of (a + &')"*, one of the terms will be

w(m-l)(m-2).&c.(m-/3^+l) __ _ a " o'*

1 . 2 . 3 . &c. m
(1 . 2 . 3 . &c. a) (1 . 2 . 3 . &c. /3')

77a«6'«',

by multiplying both the numerator and denominator by

1 .2.3.&C. a;

again, for b' put 6 + c and let ^' = (i + y'; then in the ex-

pansion of (6 -f c)^) it follows as before that one of the terms

will be

1.2.3.&C./3-
^,^.^

(1 . 2 . 3 . &c. /3) (1 . 2 . 3 . &c. 7)
'

wherein a + /3 + 7' = r» ; and by combining this with the former,

we have one of the terms of the expansion of (a -f 6 H- c')"*

1 . 2 . 3 . &c. m
(1 . 2 . 3 . &c. a) (1 . 2 . 3 . &c. /3) (1 . 2 . 3 . &c. 7')

a'^h^c'y':

and proceeding as above and substituting c + d' for c and 7 + ^
for 7', &c. we shall obtain the general term of (a + 6 +<?+&€.)"*

1.2.3. &c. m
(1.2.3.&C. a) (1.2.3. &C./3) (l .2.3 . &c. 7) &c.

a'^lficy he.

wherein the values of a, /3, 7, &c. are obviously subject to the

condition that a + /3 + 7 + &c. = m.
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213. Cor. 1. By assigning to each of the quantities a, /3,

'y, &c. in its turn all possible integral values which the equation

of condition, a + /3 + 7 + &c. =w, admits of, all the terms

of the expansion of {a + b + c + Sic.)"" may be obtained.

214. Cor. 2. If j3 + 7 + ^ + &c. = ^, then we shall have

a=m— (l)i
and the general term becomes

m(w— 1) (/w— 2).&c. (w -0 + 1) „ ^,0 jxo
^^——4^^ ^-

\
II L a"'-'P6^c>d*&c.,

(1.2.3. &c. fi) (1 .2.3 . &c. 7) (1 .2.3 . &c. ^) &c.

by expunging from the numerator and denominator the com-

mon factor 1.2.3. &c. a or 1.2.3. &c. (m— (p).

215. To jind the terms of the expansion of

(a + bx + cx^ + &c. + IxP)"*;
,

or which is the same thing, to investigate the Multinomial

Theorem.

We have already demonstrated that the general term of

the expansion of (a + 6 + c + Sjc.)*" is

1.2.3.&C. w - „_^ fl*o*'c'y &C
(1 . 2 . 3 . &c. a) (1 . 2 . 3 . &c. /3) (1 . 2 . 3 . &c. 7) &c.

'

subject to the condition that a + /3 + 7 + 8ec. = m :

wherefore if we substitute bx, ca?^, &c., in the places of 6, c,

&c. we shall have the general term of the expansion of

{a + hx + cx'^+ &c. + IxPy

1.2.3.&C. w
(l.2.3.&c.a) (1.2.3.&C./3) (1 .2.3.&C. 7) &c.

1.2.3.&C.W

a"fe^.rfic>ir*y&c.

(l.2.3.&c.a)(l.2.3.&c./3)(l.2.3.&c.7)&c.
rt«6^cv&c.a^+=y + *"-;
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and all the terms, in which the index of x is /J + S^+Scc,
may be derived from this by giving to a, /3, 7, &c., all

the different positive integral values of which they are ca-

pable, consistently with the limitation that

a + /3 + 7 + &c. =m :

and if /3 + 27 + &c. be assumed = w,

the two equations of condition become

a + ^ + 7 + &c. = 7»

and fi + 2y + 3^ + hc. = n.

216. Cor. If /3 + 7 + ^ + &c. = </), the whole coefficient

of x'*. will be obtained by forming all the possible rational literal

products and corresponding coefficients, the conditions being that

i3 + 7 + ^ + &c. =

and )3 + 27 + 3^4-&c. = w.

Ex. Required the coefficient of x" in the expansion of

a^b^c^x^+^y-.

The general term in this instance is

1.2.3.&C. w.

(I.2.3.&C. a)(l.2.3.8EC./3)(l.2.3.&c.7)

and here a= b= c=l:

also since a + /3 + 7 = /» and y3 + 27= w,

we shall easily find a=m— n + <y and /3= w— 27,

so that it will now be sufficient to assign all possible positive

integral values to 7 in the general term which in this case

becomes

1.2.3.&c.m
_^^__^_^____-^_—____^__—^——^——^—^——^^______ p"

.

{1.2.3. &c.(m— w + 7)j {l.2.S.&c.(w-27)} JI.2.3.&C.7J



and from this we may obtain each term of the coefficients

of af^ in succession, by giving to y all possible positive integral

values beginning with 0.

Let A, B, C, D, &c. represent the successive terms of

the coefficient of a?": then

if 7 = 0,

1 .2.3.&C. m
we have J =

then B —

\l.2.S.kc.(m-n)] {l.2.3.kc.n\

m{m — l)(m— 2) . kc.{m— n + 1)

1.2. 3. ken

if 7 = 1,

1 .2.S.kc. m
{l.2.3.kc. (m— n-\-l)\ {l.2.3.kc.(n— 2)\{l\

m(m — l)(m— 2) .kc. {m — n + 2) (m — n + l){m— n).kc. 3.2.1

{1.2.3. kc.(m — n + l)\ {l.2.3 .kc.(n— 2)] \l]

m(m—l)(m— 2) . kc.{m— n + 2)

{1.2.3. &c. (n— 2)\ {l\
*

if 7 = 2, then

1.2.3. &c. m
C =

{1.2.3. &C. (w— 71 + 2)1 {1.2.3.&C. (n—
4)J {1.2

J

m(m— 1)(?»— 2) . &c.(m — w + 3)

{1.2.3. &c. (w— 4)5 {l.2j

by reduction as above

:

if 7 = 3,
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. »»(»»— 1) (w» — 2) &c. (/» — /» + 4)
then D =—?— —;

xr^r-t s— »

{1.2.3. &c. (n-6)} jl. 2.3}

by a similar process: and so of succeeding numbers; and

hence the law of the formation of the rest of the terms is

manifest, and thus the coefficient required is obtained.

217. Ex. If n be made equal to the numbers 1, 2, 3, 4, &c.

in order, the successive terms of the expansion of (l + -J?+ x^)r^

beginning with the first term that involves x will be obtained.

Thus, if ^j, jBj, Cj, &c., X, ^2, Cj, &c., and so on,

denote the corresponding values of A, B, C, &c., we shall

have

if n= l, Ai = m, 5^ = 0, &c.;

,„ ^ w(m— 1)
if w= 2, ^2 = —— , B2 = m, C^ — 0, &c.;

if w= S, ^, =—^^

—

—^ -, B, = —^ ^,C3= 0,&c.;^ 1.2.3 ^ 1.2^
f»(TO-l)(m-2)(m-3)

II n = 4, -4. = ,* 1.2.3.4

„ w(w*— 1) (w»— 2) ^ w(»»— 1) _

1.2 1.2

m (w --
1) (m— 2) (w— 3) (/w— 4)

It 71= 5, A.z=. ,
'

^ 1.2.3.4.5

w(w-l)(«i-2)(TO-3) ^ _ w(m-l)(m-2)
/>- — —

—

J C5— , u^ — u,

^ 1.2.3 1.2

&c.;

and so on, for succeeding values of n :
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.-. the expansion of (1 +cV-\-.v")"\ which is represented by

l + (A,-\-B, + Ci + &c.) X + (A,-[-B, + Co+ &c.) .i?2

+ (A,-\-B,+ C,-\-&iC.) w' + {A,+B,+ C + Sac.) x'

+ (A^ + ^5 + C5 + &c.) a/^ + &c.

will be

1 +m a? +
m (w— 1)

1.2

m

a;--{-

+

m(»w— 1) (w— 2)

1 .2.3

m(m— 1)

1.2

+

+ ^* + &c.

?»(m— 1) (m— 2) (m— 3)

TTi. 3

wi (m— 1) (»»— 2)

+ r^

w(w— 1)

TTi

m{m—l) (m — 2) (w — 3) (m— 4)

1 .2.3.4.5

m(?» — 1) (w— 2) (w — 3)

1.2.3

m{m— 1) (m— 2)

rr2

and the law, according to which the succeeding terms will be

formed, is manifest.

218. If a^ + «! a? + a„ .r' + a^a!^ + &c. + a^ x^ be the pro-

posed multinomial, the theorem for its expansion may, by the

method of indeterminate coefficients, be exhibited in the

following form :
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{ug + a, a? + ©2 *' + «3 A'^ + &c. + a a?")"

Sflf,

+ (2w— 1)02^1

w

3 On

—
- + &c.,

4- On

= ao"' + mOj#o "—f-(2w— 0)a2 4

+ (4w»— 0) 04 ^0

4- (3m— 1)03^1

+ (2m— 2)a2#2

+ (iw— 3) «! ^3

where #„, #,, t„, #g, &c. are the terms of the expansion in which

the indices of a? are 0, 1,2, 3, &c.

IV. The Exponential Theorem.

219. If in the expansion of (l + «)"* the terms be arranged

according to the powers of the exponent m, instead of those of v

as was done in the Binomial Theorem, the formula thence arising

is called the Exponential Theorem.

220. Since by (185) we have seen that

m(m—\) „ m(m—\)(m— 2) . „

^ 1.2 1.2.3

if we suppose v — a— 1 and w= a?, we shall obviously have

a"=l+ j(a-l)-l(a-l)2 + l(a-l)^-&c.;.r

+ Baf- + Cx^ + Dx^ + &c. (a)

where B, C, D, &c. consist of a - 1 and its powers, and are

therefore independent of x

:

Ll
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let therefore the expression (« - l ) - ^ (o - 1
)' + ^ (a — 1)^ - &c.

be assumed= A :

so that a'^= 1 + ^.r + Bar + C.r"' + Dx* + &c.

.-. a"^= //"^ X a' = 1 + ^ .r + Bx" + Cr' + Dx* + &c.

4- ^.T+ ^-cr=+ ^5.r' 4- ACx* + &c.

+ 5^-- -\-AB.v^+B-x^ +&C.

+ Z)ar* +&C.

+ &c.

=l+2Ax+ {2B+A-)x"- + (2C+2AB)x^+(2D+2AC+B"')x*+kc.

but by (a) we shall have also

a'^=l+A (2cr) + fi(2a?)- + C(2a?)' + D(2a7)* + &c.

= 1+2Ax +2'Bx- +2^Cx^ +2*Dx^ +&C.

:

whence equating the coefficients of the same powers of x in

these two expressions for a-'", we obtain

2"B= 2B + A',

2^C==2C +2AB,

2*D = 2D + 2AC + B-,

wherefore a^ = 1 + Ax -\ 1 4- 1- &c.

:

1.2 1.2..'? 1.2.3.4

and thus the law of the coefficients of the powers of x is dis-

covered, the quantity A being equivalent to the series (a— 1)

— ^(a — 1)- + i(a — 1)^— &c. continued to x terms, if x be

a positive integral quantity, and to infinity, if it be fractional

or negative.

1.2

1.2.3

D-
^'

and so on
1.2.3.4'

A'x- A'x' A\v*
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It may here be observed, that in the latter cases this is

merely an analytical value of a*, the sign = being used in

the sense explained in (88).

221. Cor. 1. By substituting in both sides of the equation

above deduced — x in the place of a?, we shall have

A^a^^ A'ai^ A\v*
a"^=l — ^a?+ 1 &€.;

1.2 1.2.3 1.2.3.4

and therefore by addition and subtraction, there result

a* + a-*=2 jl+ 1 +&c.|,
* 1.2 1 .2.3.4 *

ji 0?* A* x^
and a" -a-'-'-^Aw h + + —^ , , , +&c.J.

* 1.2.3 1.2.3.4.5 '

222. Cob. 2. If in the place of a? we put mx, then

since the value of A is not altered, we have

rn^A^'x^ m^A^x^ „

a""= l +mAx-^ 1 +&C.
1.2 1.2.3

j2 a?" A^ x^
and .-. (1 + Ja; + y-^ + ^-^ + &c.)- =

m^ A^ x^ m^A^x^

223. Cor. 3. U B= (b-l) -^(b-lf + ^(b- ly-kc,
we shall in the same manner have

6^= 1 + 5a? + + + &c.
1.2 1.2.3

and continuing the same kind of notation, we obtain

I

C-v" C^r^
c"= 1 + Cx H -1 + &c. and so on

;

1.2 1.2.3



whence we immediately obtain

* 1.2 1,2.3 * * 1.2 1.2.3 *

{l + Ca? + 1 + &c.i &c. = (ahc hcY
* 1.2 1.2.3 * ^

= 1 + P.r + + + &c.
1.2 1.2.3

where the quantity denoted by P is equivalent to

{ahc &c.-l)-i(o6c &c.-l)- + l(o6c &e.-l)='-&c.

and if a= 6= c= &c., the number of factors being m, we shall

have

' 1.2 1.2.3 *

= 1+Pj?H h h&c.
1.2 1.2.3

the quantity denoted by P being then equivalent to

(o'»-i)_i(a"'-l)"-+ i(a'»-lf-&c.

Hence, combining this corollary with the preceding one,

there will be obtained the following analytical result

:

w;(a-l)-l(a-l)«+ J(a-l)'-&c.|

= (a«_ 1) _ i(a'" - 1)H J(fl'"- 1)' - &c.

224. Cor. 4. If we suppose A = \, the corresponding

value of a may ])c found.

For let e be the required value of a which will render

-4 = 1, .•. wc shall obviously have
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1.2 1.2.31.2.3.4^

from which, if ,v be assumed =1, there immediately residts

1 1 1e=l + l + + + +&C.
1.2 1.2.3 1.2.3.4

= 2.71828 &e. by adding together the first ten terms:

also, if m «''= 1 4- Ax H 1 + &c.,
1.2 1.2.3

we put — in the place of a?, we shall have

a'* = 1 + 1 + + 1 + 8ec. = e

:

1.2 1.2.3 1.2.3.4

so that the connection subsisting between the quantities a and

e is universally expressed by the equation

a = e or a = e ,

where ^ = (a— 1) — -|(o — l)^ + ^(a— l)'— &c. in infinitum.

Hence also from this article it appears that

(e— 1) - i(e - 1)^ + J(e— l)^ - &c. in infinitum— I.

225. By what has been proved, we shall be enabled to

1 H ) when m is indefinitely increased.

_ / ajx'" /x\ m(m—l)/x\^

m{m-l){m-2) /x\'
^ ^^

1.2.3 \m/
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= l+a?+ X-+ .r^ + &c.
1.2 1 .2.3

.2?' 07*

= 1 + a? + —
f- 4- &c. when m is indefinitely great,

1.2 1.2.3 J & '

as appears from (89)

:

(00
1 4- —

) = e^5

which, when a? is assumed = 1, gives the numerical result

X

(l-\ ) =2.71828 &c.



CHAP. VIII.

On Ratio, Propm-tion and Variation.

I. Ratio.

226. Def. Ratio is the relation which subsists between
two quantities of the same kind with respect to magnitude, and
is two-fold, Arithmetical and Geometrical.

Thus, if a and h be any two quantities whatever of the

same kind, their arithmetical ratio will be obtained by determin-

ing how much the former exceeds the latter, and is denoted by
a — 6 ; and their geometrical ratio will be had by considering

what multiple, part, or parts the former is of the latter, and is

a
represented by « : 6, which is equivalent to the fraction -

.

The former of these views of the subject presents no pro-

positions which are not obvious, and we shall on that account

confine our attention to the latter.

In the algebraical expression a : 6, the former quantity a

is called the Antecedent, and the latter b the Consequent of

the ratio : also, the ratio a : 6 is said to be a ratio of Equality

when a= b, and to be of Greater or Less Inequality according

as a is greater or less than h.

227. CoR. 1. Hence two ratios may be compared to-

gether : for the ratio a : b is greater than, equal to, or less

than the ratio c : d, according as the fraction - is greater than,

c . . J.
ad

equal to, or less than the fraction - : that is, according as -—
^ d oa

I
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he
is greater than, equal to, or less than —-, and therefore ac-

hd

cording as ad is greater than, equal to, or less than he.

228. CoE. 2. If the antecedents be equal, it is obvious

that the ratio which has the less consequent is the greater ; and

if the consequents be equal, that the ratio is the greater which

has the greater antecedent.

Ex. Which is the greater of the ratios; a — x: a-\-x and

a"— a?*: a--\-x^?

Here, according to article (226) the former ratio is ex-
2 "

fl , 'jn fj~ ^^ rp-

pressed by and the latter by -3 -7: :^ '' a-k-x -^o' + a?*

a— x {a— x) {a" -\- x") a? — x^— ax{a— x)
now

a-^x {a->rx) {a^ + x) {a+ x) (or + x^)

- a' — X (a- — x')(a + x) a^— x^ + ax(a— x)
and — :; = — f^

= ^—-—-
;

a- + X' (a- -\- X-) (a + x) (a + x) (a- + x-)

and since the numerator of the latter fraction is greater than

that of the former, it follows that the ratio, a^— x-: a"-\-x^, is

greater than the ratio, a— x: a-\-x.

229. A ratio of greater inequality is diminished^ and of

less inequality increased, by adding the same quantify to

both its terms.

Let a : 6 be a ratio of inequality, and to each of its terms

let the quantity x be added, so that it becomes a + x: b + x;

then the ratio a : 6 is greater or less than the ratio a + x: b+x,

,. « . a + x
accordmg as - is greater or less than : that is, by (71),

O "J" w
ah + ax . ah + bx

according 'as -— is greater or less than —— •

^ b(b + x)
" h(b+x)
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First, suppose a greater than 6,

, ah-\-ax . , ah-\-bx
then r-r; IS greater than — ,

h{h + w) ^ ft(6+a?)

and therefore

the ratio a : 6 is greater than the ratio a + <r : b-\-x:

that is, a ratio of greater inequality is diminished by adding

the same quantity to both its terms.

Secondly, let a be less than 6;

, Ml ab + ax .- , , , , ab + bx
then will -— manifestly be less than — ,

b(b + x) ^ b(b+x)'

and therefore the ratio a : 6 is less than the ratio a + x : b + x:

that is, a ratio of less inequality is increased by adding the

same quantity to each term.

230. A ratio of greater inequality is increased^ and of
less inequality diminished, by subtracting the same quantity

from each term.

First, let a + x be greater than b + x, and therefore a

greater than 6; then by the last article

a : 6 is greater than a + x : b + x;

that is, a ratio of greater inequality is increased by subtracting

the same quantity from each term.

Secondly, suppose a+x less than b + x, and therefore a

less than 6; then, as before,

a : b is less than a + x : b + x;

or a ratio of less inequality is diminished by subtracting the

same quantity from both its terms.

Mm
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231. Def. If the antecedents of two or more ratios be

multiplied together for a new antecedent, and their consequents

together for a new consequent, the resulting ratio is said to be

compounded of the others, and is "Sometimes termed their Sum'.

thus, if a : 6, c : d, e : /, &c. be any ratios, the ratio arising

from their composition, or their sum is a c e &c. : h df &c.

232. Cor. l. If c= h, e= df &c., or the antecedent of the

succeeding ratio be always the consequent of the preceding one,

the compound ratio becomes a b d &c. x : h d f &c. y, which

is equivalent to

ahdhc.x a—

—

= -^ =a : y,
b dfkc. y y

or, the ratio of the first antecedent to the last consequent.

233. CoK. 2. If the ratio a : 6 be compounded Avith the

ratio ,r : y, there results the ratio

ax : by or
by'

which is therefore greater or less than the ratio

a : or -
,

b

according as x is greater or less than y

:

likewise, if a?= y, the ratio is not altered, in other words the

ratio a : b is equal to the ratio ax : bxy as appears also from

(226).

234. CoR. 3. If each of the ratios c : d, e : /, Sec be

equal to the ratio a : 6, and there be m such ratios, it is

obvious that the compound ratio will be

aaa &c. to m factors : hbb &c. to m factors, or a"* : b"*:

and if m be assumed equal to 1, 2, .3, &c. in succession, the
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resulting ratio is styled the simple, duplicate^ triplicate, &c.

ratio of a : 6, and sometimes its single, double, treble, &c.

By an extension of this kind of notation and nomenclature,

JL _L -L •

the ratios a'^ : 6*, a"* : 6^, &e. are termed the sub-duplicate,

sub-triplicate, &c. ratio of a : b, and in some cases, the half,

third, &c. of it.

The ratio a" : b^ is called the sesquiplicate ratio of a : 6.

235. CoR. 4. Hence the indices,

2, 3, &c. m;

1 1 o 1
- -, -, &c.—
2 3 m

have received the names of the Measures of the Ratios

a^ : b", a^ : b\ &c. a"' : 6";

J. -L -L J. i L

a"" : 6% a^ : 6% &c. a"" : fe",

respectively.

236. If the difference between the antecedent and conse-

quent of a ratio be small compared to either of them, useful

practical approximations to the ratios just alluded to, may be

readily obtained.

Thus, if a + a? : a be a proposed ratio wherein x is very

small compared to a, we shall have (a + w)"' : a"*

= 1 + TOl -
I
nearly, = nearly, =a+wi<» : a nearly:

\a/ a
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also, we shall similarly have

aA—
+ -A^ ({- )

+&c. = l + _(-)nearly,= nearly,
\ .9. .rrr \a/ m\a/ a

= a •] <r : a nearly.
m

Hence, in cases of this kind, the ratios of the squares and

square roots are respectively found by doubling and halving

the difference.

Ex. We have therefore (1002)= : (1000)^=1004 : 1000

nearly, and ^1002 : ^1000= 1001 : 1000 nearly, the dif-

ference of these and the true values being in each case a

very small fraction.

II. Proportion.

237. Def. Proportion is the relation of equality ex-

pressed between two or more ratios, and is either Arithmetical

or Geometrical.

Thus, if a — 6 and c — d be two ratios considered arith-

metically, a— b = c— d is termed an arithmetical proportion.

d c
So also if o : 6 and c : d, or - and - be two geometrical

d

ratios, the equality

a : 6 = c : d,

(which is usually written, a : b :: c : d, and read, as a is to 6 so

is c to d)

a c
or - = -

h d

is styled a geometrical proportion.
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As before, we shall here consider only the latter kind of

proportion ; and in this, a and d are called the Ewtremes and 6

and c the Means.

238. CoR. 1 . If a, b, c and d, taken in order be in geo-

metrical proportion, we shall then have

a : o=i c : rfor - = -;
h d

.'. ~ X bd= -xbdy or ad— be:
b d

that is, the product of the extremes is equal to the product of

the means.

This property enables us to convert a proportion into an

equation, and the converse will manifestly be true; for,

if ad — be,

ad be a c

bd bd b d

and .-. a : b :: c : dy

in which the factors of one member of the equation form the

extremes, and those of the other the means.

239. CoK. 2. Hence if three quantities a, 6, c be in what

is called continued proportion so that

a : b = b : e,

we shall have

a c = 6",

or the product of the extremes is equal to the square of the

mean, and conversely.

240. Cor. 3. From the equation ad= hcy we have

be ad <*^ j j ^^
a = — , = — ^ e = -r and d — — ;

d c
'

b a

and thus if any three terms in a proportion be given, the re-

maining one is found.
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This corollary comprises the proof of what is called the

Single Rule of Three in Arithmetic.

241. From what has been already said, it appears that

the doctrine of proportion is merely the determination of the

relations of fractions, whose numerators are the antecedents and

denominators the consequents of the ratios which constitute

them : therefore of the four quantities a, 6, c, d which form a

proportion, there may be made various other arrangements and

modifications in which proportionality will still be preserved.

Of these the most useful are the following

:

a c a h c h ah
(1). Since 7 = ^, •7X- = jX "^ ^'^" = j'ha h c a c c d

whence a : c :: b : d. (Alternando).

a c a c h d
(2). Smce - = 5, .-. l-^7=l-^j» OT - = -;
^ ^

b d h d a c

whence b : a :: d : c. (Invertendo).

.. ^. a c a c a + h c + d
(S). Smce-=-, .-. - + ! = -+!, or— =_;

whence a +b : b :: c + d : d. (Componendo).

a c « , ^ ,
«— ^ c—d

whence a— b:b::c— d:d. {Dividendo).

_. a — b c—d a c a— b c— d
(5). Smce —— = —-- and r = -, .'. =

;

b a a a c

whence a— b.a::c— d:c. (Convertendo).
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(6). Since ——- = —— and = , .-. — _L_-

whence a + 6:o — 6::c + d!:ic— rf. (Componendo and Dividendo).

/rr\ c- ^ ^ , ma nc .

(7). since - = - , .-. we have —- = —
-

, whence we
o a mo nd

obtain ma : mb :: nc : nd, where m and n may be either in-

tegral or fractional.

. . ^. a c ma mc .

(8). Since r = -, we get —- = —-; whence we have
b d nb nd

ma : nb :: mc : nd, in which m and n may be either integral

or fractional.

m ,jn

(9). Smce j = 5, we have
(^-

j =(^- j , or ^ =a c

whence a"" : b"" :: c"" : d^, wherein m may be integral or

fractional.

I

242. CoE. If a, b, c, d be proportionals, we have seen in

(5) that

a— b a
a — b:a::c— d:Cy or = - :

c— d c

wherefore, if a be the greatest term and consequently d the

least, by (238), we shall have

a — 6 > c — rf,

also, b + d = b + d: whence by addition, we have

a + d > 6 + c

:

or the greatest and the least together are greater than the

other two together.
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243. Similar considerations readily lead to the determin-

^ ation of the relations subsisting between different proportions,

as will appear by the following instances.

(l). I{ a : b :: c : d and c : d :: e : /, be two pro-

portions, then since

a c c e

a e
we have - = -

;

b f
whence a : b :: e : f;

and similar conclusions may be drawn if there be more pro-

portions similarly connected.

(2). If a : b :: c : d and e : b :: f : d, then we have

a c , e /

a+e c +f
6 ^ ~d~''

which differently expressed becomes

a±e : b :: c ±f : d.

(3). If a, 6, c; d, e, /, be two sets of magnitudes,

such that

a : b •.: d : e

{

then since

and b : c :: e : /;

ad .be
- = - and - = -

,

be c f

a b d e ad
vX- = -x-, or- = -;beef c /
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whence a : c :: d : f;

and similarly of more.

(4). If any number of magnitudes a, 6, c, d, e,/, &c. be
so circumstanced that a : b :: c : d :: e : f :: &c., then since

a a a c a e

l^h' h'^d' h"f'
^'•

we shall have ab= ba, ad= bcy afz=zbe, &c.

.-. ab + ad-{-af+hc.=ba + bc + be + Sic.

or a(6+ d4-/+&c.) = 6(a + c + e + &c.),

- a a + c + e + kc.
and .'. - =

:

b b + d +f+ kc.

whence a : b :: a + c+e4-&c. : 6+ d+/-t-8EC.:

similarly, a : b :: a — c + c— &c. : 6— d+/— &c.;

and the converse of each manifestly holds good.

(5). If we have quantities in continued proportion so that

a : b :: b : c :: c : d :: &c.

then by a process similar to the last, there will result

a : b :: a-\-b +c-\-kc. : fe+ c + d + Scc; and conversely.

(6). From the two proportions

a : b :: c : d

and e : f :: g : hy

a c e g
weget -=- and -=-;

Nn
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ae cs . , . ,. .

wlierefore —- = — , by multiplication ;

bf dh

whence ae : bf :: eg : dh:

that is, the products which arise from multiplying together

the corresponding terms of the proportions are proportional

:

and it is obvious that the same holds good whatever number of

proportions be supposed.

In the same manner, we should have by division,

a e eg af ch

b f d h be dg

, . , . a b c d
which gives -:-::- : -.

^ e f g h

The former of these processes is called the Compounding

of proportions, and contains the proof of The Double Rule

of Three in Arithmetic.

244. Most of the results contained in articles (241) and

(243) are of great practical utility, and are frequently enun-

ciated at length so as to assume the fomi of rules.

245. If three magnitudes a, 6, c be in continued pro-

portion so that

a : 6 :: 6 : c,

, a b
then — = -

;

c

a a b a a a"
whence -=7X -=rx r=i2'c b c b b b*

.'. a : c :: a* : 6*,

or the first has to the third the duplicate ratio of what it

has to the second.
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Again, in four magnitudes whose relation is such that

a : b :: h : c :: c : d,

, a b c
we nave - = -=:-:bedaabcaaaa^

'' d^ b
""

c ^ d^ b
"^

b ^ b " b''

whence a : d :: a^ : b^;

and so on, whatever be the number of magnitudes similarly

circumstanced.

The two results here obtained constitute the geometrical

definitions of duplicate and triplicate ratio.

246. When the four magnitudes a, 6, c and d are pro-

portional so that a : 6 :: c : rf, we have seen that

ma mc
nb nd

wherefore, if ma be greater than, equal to, or less than n6,

it follows that mc will also be greater than, equal to, or

less than nd.

Hence, of the terms of a proportion, there being taken

any equimultiples whatever of the first and third, and any

equimultiples whatever of the second and fourth, if the

multiple of the first be greater than the multiple of the

second, the multiple of the third will be greater than the

multiple of the fourth ; if equal, equal ; and if less, less.

Also, conversely, if a, b, c, d be four magnitudes so cir-

cumstanced that wa is always greater than, equal to, or less

than nb, according as mc is greater than, equal to, or less

than nd, then will a, h, c and d, taken in order, be the

terms of a proportion

:

;h terms: then, sincefor if not, let a, &, c and e be

a : b :: c : e, we have

ma mc
:^

nb ne
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whatever be the values of w and n : therefore, if ma be

greater than, equal to, or less than nb, it will follow that

mc is greater than, equal to, or less than ne: but the same

having been asserted of nd, we shall have

ne — ndy and .*. e = d:

whence a : b :: c : d, or the magnitudes o, b, c and d are

the terms of a proportion.

Similarly, if what has been enunciated above do not

obtain in the magnitudes a, 6, c and d, it may be made to

appear that they cannot in order form the terms of a pro-

portion.

247. The Algebraical characteristic of proportionality

proved in the last article, is manifestly applicable to all

kinds of magnitudes whatever; and it is found to agree

with the Geometrical definition of proportion laid do\vn by

Euclid in the fifth, &c. definitions of the fifth book of

the Elements.

Number being a discrete, and extension a continuous

magnitude, it is obvious that the parts of number will

be more distinct, and on that account more easily as-

signable than the parts of extension; and this may be sur-

mised to be the reason why, as a test of geometrical propor-

tionality, recourse has been had to the use of multiples, instead

of aliquot parts, which have been adopted as the basis of

the algebraical and arithmetical views of the subject.

248. Taking the three quantities o, 6, c, we have seen

that an Arithmetical proportion subsists among them when

a a — b
a— b= b — c, and .•. 1 or - =

;

a b— c

so that a : a :: a— b : b— c:

also, if they be in Geometrical proportion, their relation is

such that

a b a— b b— c a a — b
- = -, and .-. = —— , or - =

;DC abb b — c i
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so that a : b :: a~b : b — c:

and it is observable, that in these two proportions the con-

sequents of the first ratios are a and b respectively : whence

it manifestly follows, that if c become the consequent of the

said ratio, we shall have a proportion diflPerent from them
both, namely,

a : c :: a— b : b — c:

and this, from certain properties which it possesses, is called

a Harmonical proportion.

249. Cor. By means of these three proportions the

values of the Arithmetic, Geometric and Harmonic means

between the two quantities a and c may immediately be

found. Thus,

, . , . a-\-c
the arithmetic mean = ;

the geometric mean = \/ac ;

, , . ^ac
the harmonic mean = -

a->r c

a + c , ^— 2ac

+
and since —— : Jac :: Jac :

-—

-

2 ^ ^ a+c

\

it appears that the three means taken in this order form a

geometrical proportion

:

also since by (22), (a — cy is always positive and therefore

greater than 0, we have

a^ + 2ac + c^ > 4oc;

whence > kJOC ;

2 ^

or the first mean is greater than the second, and the second

therefore greater than the third.
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III. Variation.

250. Def. a quantity is said to vary as one or more

others, when it is so dependent upon them, that every change

which they undergo, produces a corresponding and proportional

change in its magnitude ; and it is consequently connected with

them by some multiplier, either integral or fractional, which

remains the same during the whole of any operation in which

they are concerned.

The different kinds of Variation are distinguished as

follows, the symbol co expressing this connection.

(l). If A=pB, A varies directly as By or A co B

:

. p . 1

(2). \i A= —y A varies inversely as B, or A cc —:

(3). If A =pBC, A varies as B and C jointly, or A as BC :

(4). li A=p— , A varies as B directly and C inversely

y

or J oc — : &c.

and the same may be extended to more magnitudes.

It is obvious that the variation here intended is merely an

abbreviation of the doctrine of proportion before explained : for

if we have the proportion

A : B :: a : b,

then will A= ~B, in which - may be represented by the in-

variable quantity p above used : so of others.

251. The doctrine of equations, as laid down in the pre-

ceding pages, will lead immediately to all the consequences

which the view of variation above adopted presents.
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(1). //" Aoo B and Boo C, then will Aoo C.

For, if A-pB and5= 7C;

we shall have ^=jpfi=j09C; that is, AosC.

Hence also, if ^ co - and Bos C,B

then A= ^ and B= qC;

whence we have A= — = — -. or Aco —. .

B q C C

(2). //"Aoo - and Bco -, then will Aoo C.

For, if ^ = ^ and 5= ^;

we have ^ = -- = - C; that is, Aco C:
B q

and in the same manner whatever be the number of magnitudes,

when each varies inversely as the following, the first varies

directly or inversely as the last, according as the number of

intermediate magnitudes is odd or even.

(3). //• A 00 C and B oo C, then will A + B oo C and

.yABooC.

For, if A=pC and B= qC;

then A ±B={p±q) C, and .'. A ±Bo: C:

also, AB=pqC\ and .-. ^AB= >/^C, or ^/ABoo C:

and similar conclusions may be drawn whatever be the number

of quantities concerned.
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A B
(4). If Aco By then will APoo BP, and — oo — , where

P may be either variable or invariable.

A B
For, if J=pB, we have AP=pBP and — =p— ; whence

A "^ B
it follows that APco BP and -5 » -^•

Hence also, A'^ = p"*B"', and therefore ^"•coB"*, where

m may be either integral or fractional.

A A
(5). If A CO BC, ^Aen wiW B co — and Coo —

.

C B

For, if we take A—pBC, then will

^ \ A A
^ ^ \ A AB i= " — 00 —, and C = - —<x>--.

p C C* p B B

Hence also, if A be invariable and equal to q, then

^ = - —or CO - , and C = - — or co —

.

p C C' p B B

(6). If AcoB and CcoD, Me« «oi« ACaBD and

A B— 00 —CD
For, if A=pBa.ndC= qD; .-. AC =pqBD, or ACcQ BD\

A p B A B
also, — =: " — , or — 00 — .

' C q D' CD
Similar results will be obtained whatever be the number

of quantities employed.

(7). 7/* A CO B when C is invariabley and A 00 C when
B is invariable, then will A a BC, when both B and C are

variable.

For, we may have A=ipCB and A=:qBC; whence

A^=pq{BCf, or Aos BC
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and similarly whatever be the number of latter magnitudes as

fi, C, D, &c.

(8). From the proportion A : B :: C : Dy we have

^~ D
and .'. A oo BC, when D is given

;

A CO — , when C is given ;

and ^ 00 — , when B and C are given.

252. In discussing the subjects of the present Chapter,

it has been supposed that all the quantities concerned are

some multiples, part or parts of one another, and that their

relations to each other may therefore be expressed by means

of whole numbers : in fact, they have been supposed to have

at least unity for their common measure, or, in other words,

to be commensurable.

Thus, if the ratio a : h were 2:1, which may be also

expressed sym6oZicaZ/y by 2,^2 : ^2 or a^S : ^2, such

a ratio, being commensurable, is the subject of the operations

and observations contained in the preceding articles.

Should, however, the ratio a : b be ^J '^ '. 1, then, since

by (128) we have seen that ^2 = 1.4142135 &c. in infinitum^

it foUows that

j^ : 1 = 14 : 10, nearly;

= 141 : 100, more nearly;

= 1414 : 1000, still more nearly

;

= &c

and as this may be continued in infinitum^ it is manifest

that the proposed ratio can never be exactly expressed by

Oo
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any number of the parts of an unit, be they ever so small-

This ratio is therefore incommensurable, though limits may
be found and expressed, between which it shall always consist,

and by which it may be exhibited to any degree of exactness

required.

Hence then, it follows, that the algebraical definition and

criterion of proportionality for commensurable magnitudes,

will not be sufficient for our idea of proportionality subsist-

ing among incommensurable quantities. A characteristic of

proportionality has indeed been established in (246), which

relates equally to commensurable and incommensurable mag-

nitudes: but since the values of incommensurable quantities

may by (127) be exhibited to any required degree of accuracy,

it may thence be readily shewn that the doctrines of ratio and

proportion hold good, whatever be the nature of the quantities

among which they are instituted.

For, let a and h be incommensurable magnitudes, which

admit of no common measure whatever, and suppose b=:nx

and a to lie between ma? and (w + 1) a? : then is the ratio

a m ^ m + l a m 1
- > _ but < ; or < -

,on n b n n

which by the diminution of x may obviously be made less

than any quantity that can be assigned : and therefore what-

ever is proved of the ratio m : n in this case, holds also

of the ratio a : b.

Again, if - and - represent two incommensurable ratios,

which can both be proved to lie between — and —

,

n n
whatever be the magnitudes of m and w, we shall have

rt r 1

b d w

'
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and therefore, by reasoning as before, - = -;
b a

or the incommensurable ratio a : 6 is equal to the incommen-

surable ratio c : d; and thus proportionality is established

among the incommensurable magnitudes o, 6, c and d.

Without, however, endeavouring to obtain their approxi-

mate values, we may easily shew how incommensurable ratios

may be compared with each other : thus, if the ratios be

^"s : ^2 and ^3 : ^;

we have the former =— = — = ^-j =1— j ,

, ,
"

3"^ 3^ /27\"^
and the latter = — = — = 1 — I ;i « \2*i/

from which we immediately conclude that the former ratio is

greater than the latter.

253. Subjoined are a few problems together with their

solutions, wherein the principles explained in this chapter are

called into use.

(1). To find two magnitudes having the ratio of w : w,

so that if the given quantity a be added to each, the sums

shall have the ratio of p : q.

Let mx and nx, having the proposed ratio, denote the

required quantities

:

then will = - by the question

:

nx + a q

(p-q)a
whence x = •

mq — np
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and the magnitudes sought will be respectively

(p — q)ma (p— q)na
and .

mq — np mq — np

(2). Required two numbers in the ratio of 4 : 5, from

which, if two other required numbers in the ratio of 6 : 7

be respectively subtracted, the remainders shall be in the

ratio of 2 : 3, and their sum equal to 20.

Let 4a? and 5w be the first two numbers:

6y and ly, the other two:

4,^— 6y 2
, , -

then = -
, and 9a?— 13 « = 20, by the question:

5w— 7y 3

whence are easily found ^= 4 and tF= 8, so that the first

two numbers are 32 and 40, and the other two 24 and 28.

(3). Given two magnitudes a and b, to find two other

equal magnitudes, so that the ratio of the sums of each two

may be equal to the ratio of their products respectively.

Let ,v and x represent the required magnitudes; then

by the question we have

a + b ab

2a; x^
'

2a6
I /. 1 -1

whence w = =: each of the magnitudes sought, as may

easily be verified.

Similarly, if three or more magnitudes be proposed.

(4). To divide each of the quantities a, b and c into two

parts, so that the ratio of the second part of a to the first

part of b may be m : 1 : that of the second part of 6 to

the first part of c may be n : 1 : and that of the second

part of c to the first part of a may be jt> : 1.
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Let X be the first part of a, and therefore a — x the

second part

:

a—x m I

•'• 'Z~Z 7~~e~i — T > ^"^ t^6 first part of b = — (a— x):
first part oi 6 1 ^ m

whence the second part of 6 = 6 (a— a):m

b (a— x)

.'.
t; r— = -, and the first part of c= - ^6 (a—x)]:
first part oi c 1 n m '

wherefore the second part of c= c— "lb (a— x)\:
w * m '

.

c ib (a— x)\

.'. = - , by the question

:

X 1

,
a— mb-^mnc

whence x =
,

1 + mnp

and the respective parts of a, b and c may therefore easily

be found.

A similar method may obviously be pursued whatever be

the number of magnitudes and ratios proposed.

(5). Divide the quantity a into two parts, so that their

difference may be to their sum as their product to the difference

of their squares.

Let X and y denote the parts required ; then we have by

the question

X + y = a,

and x— y : x-\-y :: xy : a^— y":

whence, by multiplying together the extremes and means re-

spectively^ we obtain the equation

{x— y){x'^— y-) = {x-\-y)xy\

wherefore (x— y)'=:xy and (2 <»— o)*= a? (a — •»)

:
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from which we readily find

(6). Decompose the quantity a* into two factors, so that

the sum of their cubes may be to the difference of their cubes

as w : 1.

Assuming x and y to represent the factors required, we have

xy^ar,

and x^-ry^ : x^— y^ :: m : 1, by the question;

whence 2x^ : 2y^ :: m+\ : w— 1, by (6) of Art. (241),

and w^ : y' :: m + 1 : m — 1, by (7)

therefore, multiplying extremes and means, we find

a'
(m —l)x^= (m+l)y^ = {m + l) — :

x"

A /m+l . /m—1
.-. 0!= +aY and y = + a v •

m—

1

m+1

(7). A waterman rows a given distance a and back again

in b hours, and finds that he can row c miles with the tide

for d miles against it : required the rate of the tide and the

times of rowing down and up the stream.

Let X = the number of hours he rows with the tide,

then will b— x = the time he rows against it

:

also. X : 1 " a
a

X
s= rate per hour with the tide :

and b--X : 1 a
a

b— x
= rate per hour against it

:

whence
a

X

a
c : d, by the question

:

b— x
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bd
and .-. a? = = the time with the tide

:

c + d

and b—x=s = the time against the tide

:

bd a(c+d)
now a-. -— = —-—— = the rate down the stream = the

c + d bd

jate of rowing + the rate of the tide

:

, be a{c }- d)
also, a -. -— = =r the rate up the stream = the

c + d be
'^

rate of rowing — the rate of the tide

:

,
a(c + d) a (c + d)

whence ——

^

1- ^ = twice the rate of the tide;
bd be

therefore the rate of the tide = —^^ -.
%bcd

(8). If from a cask of wine containing a gallons, b gallons

be drawn off and the vessel filled up with water, and this be

repeated n times successively, find the quantity of wine then

remaining.

Let «!, a„, O3, &c. a^j denote the quantities of wine re-

maining after the operation has been repeated once, twice,

thrice, &c., n times respectively: then it is obvious that

a : fflj :: a : a — 6:

jbut since the strength of the mixture, and therefore the wine in

it, manifestly decreases at every operation in the ratio of

a : a — b, we have

flj : a„ :: a : a — b,

Og : a^ :: a : a — 6,

&c.

a : a
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whence, by the composition of these equal ratios, is obtained

a : a„ :: a" : (a — 6)",

and therefore
a-bV* (a -by

" V a / a"-'

(9). If a men can reap a rectangular field of wheat, whose

length and breadth are b and c chains respectively, in a certain

time, what number of men will it require to reap one d chains

long and e chains broad in the same time ?

Here it is manifest that the numbers of men will be in the

same ratio as the extents of the fields : and the fields £U*e

obviously in the ratio compounded of those of their respective

lengths and breadths, that is, in the ratio of 6c : de:

whence if x denote the number of men required, we shall have

be : de :: a : w,

wherefore a; = —— = the number of men required-
be

This is an illustration of the Rule of Three Direct^ the

efPect produced in a certain time being directly proportional

to the number of agents employed.

(10). If a person make a journey of a miles in 6 days,

when a day is c hours in length, in how many days can he

perform the same when the days are d hours long ?

Let X represent the number of days required ; then it is

manifest that the lengths of his journies will be in the ratio

compovmded of those of the numbers and lengths of the days

:

wherefore in this case we have

a : a .: b c : doc or bc=^da;,

be
whence we obtain r = — , which is therefore the fourth term of

d

the proportion
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This illustrates the Rule of Three Inverse^ the numbers of

days being inversely proportional to their lengths.

(10). If a horses eat up h bushels of oats in c days:

how many horses will eat up d bushels in e days ?

Let w be taken to denote the required number; then it is

clear from (7) of Art. (251) that the quantity of oats eaten will

vary as the numbers of horses and days conjointly : whence

h : d :: ac : eXy

and therefore a?= -— = the number of horses required.
he

b c
Here - : ~ :: a : x, which being put in the form following^

b : c :: a

d : e :: w

exemplifies the application of what is usually called the

Double Rule of Three.

(11). A^ B and C hold a pasture in common, for which

they pay P£. per annum: A puts into it a oxen form months;

^, h oxen for n months, and C, c oxen for p months : required

the share of the rent contributed by each.

The contributions of A^ B and C will obviously be to each

other as the quantities ma, nb and pc respectively; and it

therefore remains to divide P£. into three parts having to

each other the same ratios ; whence if x represent ^'s share of

the rent, we have

nbx ^ r%i ^.ma : nb :: X : =:Bs share,
ma

pcx .

and ma : pc :: x : = Cs share:
ma
Pp

k
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nhx pcx „ , ,
.-. x-\ H -— = ", by the question;

ma ma

whence w= P£. = J s share

;

ma + nb+pc

^bx nb „_, ™ ,= Pdtr. = 5 s share

;

ma ma-]-nb+pc

- pcx pc „- ^ ,

and ~— = i-- P£. = Cs share.
ma ma-\-nb +pc

This is the investigation of the rule in an instance of what

is called Double Fellowship or Fellowship with Time:

and if m=n=py or the time be the same for each, we find

J's share = P£.;
a + b + c

B's share = ; P£.;
a + b + c

and Cs share = -, P£.:
a + b + c

which is an example, wherein is deduced the rule for Single

Fellowship or Fellowship without Tim£.

(l2). A mixture is made of albs, of tea at m shillings

per lb., 6 lbs. at n shillings, and clbs. at p shillings: what will

be its price per lb. .'*

Let X denote the price required; then since the price of the

whole varies as the number of lbs. and the price per lb. con-

jointly, we shall have

ma +nb-\-pc= the sum of the prices of the ingredients

:

and (a-}-b + c)x = the price of the mixture:
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whence by the question, we must have

{a + b-\-c)x =z ma + nb + pc,

. ma + nb-\-pc
and .-. a? = ^—

.

a + b + c

In this manner is investigated the arithmetical rule of Alli-

gation Medial, or the method of finding the rate or quality of

the composition from the rates or qualities of the ingredients.

(13). If a oxen in m weeks eat b acres of grass, and c oxen

eat d acres in n weeks, how many oxen will eat e acres in p
weeks, the grass being supposed to grow uniformly .''

Put a? for the number of oxen sought

:

let a = the grass upon an acre at first,

and /3 = the increase of grass upon an acre in a week

:

.'. a + m(i= the grass on an acre in m weeks:

a + n/3 = n ;

a + pfi= p :

.'. b(a + m(3) = the grass on 6 acres in m weeks

;

d(a+ n/3) = d n ;

e(a+ p^) = e p :

now it is manifest that the quantity of grass consumed will,

ccBteris paribus, vary as the number of oxen : therefore we shall

have

6(a + w/3) : d(a + nl^) :: a : c,

and

fe(a + OTj3) : e{a-\- p^) •: a : w:

from the former, we find

(ad — bc)a
bc(a + niQ) = ad(a + n3), and .-. 3= —r

;;:^ '^ mbc— nad
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and from the latter we obtain

__ ae{a +p(i) ae

p(ad—bc)

mbc— nad

m(ad— 6c)
a + ct

mbc— nad

ae C mbc — nad -\-pad— pbc )

b Imbc— nad + mad— mbc)

ae Um — p)bc— (n—p)ad

bdl

(m — n)ad

m— p)bc —{n—p)ad
m —n

(m — p\ce /n— p\ae
m — nj d \m — n/b

from which may be deduced the following practical formula

:

X C Of

(;„ -n)-:^ {m ^p)-^ - («- p) T •

e a



CHAP. IX.

On Arithmetical, Geometrical and Harmonical

Progression.

I. Arithmetical Proguession.

254. Def. An Arithmetical Progression is a series of

three or more quantities in continued arithmetical proportion,

its characteristic property therefore being, that every term

exceeds or falls short of that which immediately precedes it by

the same Common Difference.

Thus, a, 2a, Sa, Sec; a, a + 6, a + 26, &c.; a, a — 2x,

a— 4a?, &c., are all arithmetical progressions, the two former

increasing by the common differences a and 6 respectively, and

the last decreasing by the common difference 2 a?; in the first

two instances the common difference is positive, and in the last

it is negative.

255. CoE. Hence the terms of an arithmetical progression

taken at equal intervals are also in arithmetical progression.

256. Given the first term and the commmi difference of

an arithmetical progression, to find the n"* term and the

sum of n terms.

Let a be the first term, d the common difference, / the n"*

term and S the sum of n terms

:

then will a, a + d, a + 2d, a+3d, &c. be the series:

and since the first term does not involve rf, but the second does,

it is evident that (n—l)d will be the multiple of d found in the

n^^ term, and thence we shall have

/ = a-f (w— l)rf.

k
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Again, S = a + {a -\- d) + (a + 2d) + &ic. to w terms

= a + (a + d) + (a + 2d) + &c. + (/ - 2d) + (Z— d) + /

;

and reversing the order of the terms, we have also

^= /+(Z-d) + (^-2d)+&c. + (o + 2d)+ (a + d) + a;

.-. by adding together the corresponding terms, we obtain

2*^= («+ /) + (« + /) + (a +Z)+&c. to n terms

= (a + Z) n

:

7Z 72/ fl

.'. *S'=(a + - = {a + a + (n—l)d\ - = J2a + (n— l)d| - .

If d be negative, or the series a decreasing one, we shall have

S= {2a— (n- l)d] -
;

and it is obvious that the sum of the series may vanish either

by making w= ; or by assuming 2a— (w— l)d = 0, which gives

2a+ d 2a

Ex. 1. To find the n^ term and the sum of n terms of

the series of odd numbers, 1, 3, 5, 7, &c.

Generally, / = a + (w — l)d, and S = \2a-\-(n -l)d]~:

and here a=l, d = 2; whence by substitution, we get

/= 1 + (w— l)2 = 2w— 1,

and ,y={2+ (w-l)2J-=»^:

that is, the n*^ of the odd natural numbers beginning with

unity is expressed by 2n— 1, and the sum of the first n of

thera by n".
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Ex. 2. To find the n*^ term and the sum of w terms of
the series of even numbers, 2, 4, 6, 8, &c.

Here a = 2 and d = 2; wherefore, as before, we obtain

^ = 2-f (n- 1)2 = 2«,

and S—{4> + (n-l)2\^=n(n+l):

or, the 71* even natural number is 2», and the sum of the first

n such numbers is n (n + 1).

Ex. 3. Required the w* term and the sum of n terms of
the series (b + xf, b^ + x; (6— a?)*, &c.

Here a= (6 + .r)- and d= —2bx; whence we have '

/ = (6 + ,r)-— (w — 1) 2 fed?

= 6' + a?-— (2n— 4) 6a?:

and *S'= {2{b + xy--{n-l)2bx\^

= {(6 + a?)-— (w— l)6a?}w

= {b--(n-3)bx + a}'']n

= n(b^ + w^) — n{n — S)b30.

257- Cor. In the two fundamental equations

:

1 = a + {n—l)d,

and S= |2 a + (w— 1) d} -
,

if any three of the quantities involved be given, the remaining

one may be found by the solution of the equations with respect

to it; and from the two equations combined, it will not be

difficult to arrive at the following results

:
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(1). a =l-in^l)d=~^l=-- ^ Jn n Z

(2). /= ff + (w— i)d= a=--\-- —
n n 2

d A. / a dr= 1- V ar— ad-\ \-2Sd.
2
—

4

(3). d= ^ ^ ^

w—

1

w(w — 1) w(w — 1) 2S— a — l

I- a 2S 1 « » /a^ a 1 2*5'

(4). . = l + ^=_^=--_±V^--^ + -+-^

I ./p I I 2S1

^2"^d-^d*'rf'4~d

(5). »y=—^^ ^=7iaH ^ '— =.nl ^^ —

l + a /* - a-
1

2 2d

Ex. Let a = 7, d = 2 and .9=40, then from (4) of this

article, we have

n = - —
p ± /v/9 + 40 = 4 and —10,

of which the latter is excluded by the nature of the case (l66) :

and the series corresponding to the first is

7, 9, 11, 13.
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Here it may be remarked that, though in the ordinary

acceptation of the tertns the latter value of n is excluded,

there is still a series corresponding to it : for if n be negative,

we have

S= {— 2a+ {n-\-\)d\ -

= w(7i— 6) in this case;

therefore the term which begins the series will obviously be its

sum when w = 1 ; that is, the term beginning the series is — 5,

and the series itself will therefore be

-5,-3,-1, 1,3,5,7,9, 11,13,

which clearly answers the specified conditions : and generally,

corresponding to a negative value of w, the first term becomes

d— a, and the series will then be

d— a, 2d — a, 3d— a, &c.

258. If the two extremes and the nvmher of terms he

given, the series may he found.

I— a , . , .

For, since l= a + (n—l)d, we have d= , which is

n—\

the common difference ; and therefore the series is

(n-2)a+ Z (w-3)a+2Z ^ 2a+ (n-S)l a+(»-2)/
a, -, ; J &c., ,

—-—-— , I"

' n—l n — 1 n— 1 n—1

259. CoK. Hence m arithmetic means or intermediate

terms may be inserted between a and /.

For, since the number of terms exceeds the number of

means by 2, we have n=m + 2, and .'. n — l=m + l; whence

the m means are

ma + l (m-l)a + 2l 2a + (m—l)l a + ml
, , &c., — ,

•

m+1 m + 1 m + 1 m+1

Ex. Find two arithmetic means between — 3 and 3,

k
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Here a= — 3, l= S and m= 2, which give the means equal

-2.3 + 3 -—1.3 + 2.3
to = — 1 and — = 1

;

2+1 2+1

and —3, — 1, 1 and 3 are evidently in arithmetical progression.

260. If the magnitudes of any two terms whose places

are known, be given, the series may be determined.

For, let P and Q represent the p^^ and q^^ terms respectively,

and the rest be as before : then we have by (256),

F= a + {p^l)d, and Q= a + (7— l)rf;

P-Q
whence P—Q={p— q)d, and .-. d=

p-q

,. a=P-ip-l)d=P- (^yp-Q)

_^
Qip-l)-P(q-l)

,

p-q

therefore the first term and common difference being found, the

series becomes known.

Also, the »* term =a+ {n — l)d

Q{p-n)-P(q-n)
p-q

n
and the sum of « terms= ^2a + (»— l)d^ -

-S
Q(2p-w— 1) — P(27—n— 1)) n

P-^ V.

261. To find the sums of the powers of the terms of
an arithmetical progression.
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Let the terms of the series be a, 6, c, &e. k, /, and the
common difference d as before: also let ^y^ S^, S3, &c. ^„_„
denote the sums of the l"*, a*"*, 3"*, &c., (w- 1)* powers, of the
terms

: then we have by the binomial theorem

1.2

1 .2

&c

1 .2

and (l + dy'*-r= ml'^-'d+ ^i^Hi^ r-2d« + &c.

;

.'. by the addition of these lines in vertical rows, we obtain

I . 2

whence is immediately deduced

mS^_,d=

m(m—l) _ ,„ m(m—l)(m—2)
^ ^ 1.2 "* ^ 1.2.3 "* '

and .'. S„,.i =

md V 7 « .J 2 V j\ J m-3j
2.3

md 1.2 1.2.3

262. CoR. Hence, making m equal to the numbers 1,

__ 2, 3, &c. in order, we derive the following formulas:
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S,=^' ^ =n:

^ 2d 1.2 <
^ ' 1.2

^ {a^ndf-a'' ^ d ^ dT-

8^= — J 2,^, 2.1 A^o
3d M.2 "1.2.3

= {6a- + 6(n—l)ad+(7i — l)(2n—l)dr] -
2.3

(a+wd)" — a* ^ d ^ dr « <^
,S'3= ^ S^y^ 3. 2,^1 3.2.1aS'o

4d M.2 '1.2.3 "1.2.3.4'

n
= \24.a^+ 36{n-l)a-d+ U{n~lX2n-l)ad"-+ 6n{n-iy<P\

&c

If for m — 1 we substitute 7W in both members, the general

formula becomes somewhat more convenient for practice

:

„ (a+ndr'^'-a"^' „ d
^ . ^ ^r .

(m + l)d " ^1.2 '^ ^ "• -1.2.3

Ex. Let a = 1 = d, or the progression become the series

of natural numbers 1, 2, 3, &c. n; then the formulae above

found, give

^„= ,i = l"+2° + 3° + &c. + n°:

n(n + l)

S, = —^^ = 1 + 2 + 3 + &c. + w :
^

1 .2

7i(n + l)(2w + 1) o , -

>S',=
^ ^'^ =l' + 2' + 3'^ + &c.+«':* 1.2.3

&C
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From these examples we conclude that the sum of the series

l'+2=» + 3'4-&c. +w^

is equal to the square of the sum of the series

1 + 2 + 3 + &c, -j- w.

II. Geometrical Progression.

263. Def. a Geometrical Progression is a series of three

or more magnitudes in continued geometrical proportion, and it

is characterized by the circumstance of every term having to

that which immediately precedes it, the same Common Ratio,

which may be either integral, fractional or irrational.

„ a" a^
Thus, a, 2a, 4a, &c.; a, ah, ah-, &c. ; ax, — , —, , &c. ; oo,

X or

- '
, — , he. are geometrical progressions, of which the ratios

y y"-

are 2, 6, — and = respectively.
.»^ y^ X

264. . Cor. Hence it follows that the terms of a geometrical

progression taken at equal intervals are likewise in geometrical

progression.

265. In a geometrical progression, given the jirst term

and the common ratio, to Jind the n* term and the sum of n

term^.

Let a be the first term, r the common ratio, I the n* term

and S the sum of n terms

:

then will the series itself be a, ar, ar'^, ar", &c.

;

and since r is not found in the first term and its index increases

by unity in each term from the second, we shall obviously have

l-ar''-'.

V
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Also, S= a + ar + ar" + &c. + ar"
"

" + ar''
'

^

= a + r(a + ar + &c. + ar""^ + ar"~-)

= a-\-r{S- ar''-^) = a-\-rS— ar''\

.: {r-l)S=a{r^-l), and ^= a (^^-^V

If the ratio be a negative quantity — r, we shall have

~
);

and the upper or lower sign is to be used in each of these

formulae according as n is odd or even.

Ex. 1. Required the n^^ term and the sum of n terms of

the geometric series, 1, 2, 4, S, 8ec.

(r" — 1\
J

; and here a= 1,

r = 2, .-. the n^ term= 2" ~ ^, and the sum of n terms = 2*— 1

.

Ex, 2. Find the w* term and the sum of n terms of

the progression, c —x; c + oc, , &c.
c— x

In this case a= c' — or and r =

•. l= ar"-' = (c^-x-)

c — x^ c — x

{c-\-x){c— x) c-\-x

{c-xy-^ (c-d?)"-' (c-xy--

1

— 1

/r"— 1\ ,„ „ (c— xy
also, S=a^^J—^) = {c'-x"•))^-—^

\{c - x)

c + J? U — (c— «i?)*) c + x i(c— xy— l)
s=- ^ ^^

J., or = <~ > .

{c-xy--\\-{c-x) y {c-xy--X{c-x) -\S
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Ex. 3. To find the n'^ term and the sum of n terms of
the series,

J_ _ V^ +
^ -^ +&C.

Here o= —— , and r= - V -, .-. r«-^ =
n-l

±irr;

whence we obtain 1= ^ ——- = + — = + \/
a?2

in which the upper or lower sign must manifestly be used
according as n is odd or even

:

also, .S'=

n

1

^/^
I

6"^

I
^^ 1

s/ X

1 +
62

a?2

6^
1 + —

1

n n

'

a?2 + 62

n

a?2 a?"^ + 6-^

wherein the upper or lower sign is applicable according as n
is odd or even.

266. CoE. By means of the two expressions,

l^ai/^-^y and S — al
~

j,

above investigated, we arrive immediately at the following

results

:
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(2). l=ar''-^=- ~ = S .

-'/I s-a a-S

a{r"—l) rl— a_l(r^-l) _ /»-i — an-i

(4). S= ""V^ ~ r"-'(r-l)~T±. X*

The values of n cannot be exhibited in terms of the rest

without the aid of logarithms; but in addition to these, we

may easily deduce also the following formulae

:

i^-(-)r+ 1=0;
\a/ a

and (8-0)0^-^ =(S- 1)1"-^:

from the two former of which r may be found in terms of the

rest involved with it, by the solutions of equations of n di-

mensions.

267- If the number of terms and the two extremes be

known, the series may be determined.

For, retaining the notation hitherto used, we have

l^ar*"-', and .-. r = (-^ ,

the common ratio: whence the series will be

i
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268. Cob. If m be the number of geometric means be-

tween a and I, we have n—l=in + l: and therefore the means

themselves are

1 1 1 1

(a"'l)"*+', (a^-^/^y+S &c., (a°r-»)-'+S (al")'"^'.

Ex. Insert three geometric means between 1 and l6.

In this instance a= 1, /= l6, and w= 3; whence the com-

mon ratio = A^lS= 2, and therefore the means are 2, 4, 8, so

that 1, 2, 4, 8, 1 6 are in geometrical progression.

269. Given the magnitudes of any two terms whose

places are known, to Jind the series.

Let the p^^ and q^ terms be P and Q respectively ; then by

(265) we shall have P = arP-\ and Q= ar^-^i

1

P /P\P-^
whence — = r''~7, and .-. r = l — ) , the common ratio:

Q \ y /

p-i

also, a = -^, = P (I)
= (-p^j , the first term

:

wherefore the first term and the common ratio being deter-

mined, the series becomes known.

1

/QP-^sp-q
The 71* term = (

—
::^ ) ; and the sum of n terms

pp-<i _ QP-^l /pq-^y-p\Qi-P — P9-p\/Qp-^\p-'/ pp-i - Qp-i\ _ /p^-^y-p} Q^-p

270. It has been seen in the preceding pages that

Rk
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and from this we infer that no term, wlierein n is finite, can

ever become = : if, however, the ratio be a proper fraction

represented by — , we shall have
R

n.

1 =

which, by continually increasing w, may obviously be made
less than any assignable quantity: hence, in this case, the sum
of the series will evidently admit of a limit beyond which it

can never pass; or, in other words, what is usually termed the

sum of the series continued in infinitum may be finite, and

will be represented by

1— 1

R

wherein n is indefinitely great : that is, denoting this limit, or

the sum of the series continued in infinitum by 2, we shall

have

— a a a
2 =

1 1 1 _ r

^~^ ^~R

Ex. To find the limit of the sum of the geometrical series,111 1
e+ ^ 5 + &c.

3 3.2 3.2^ 3.2^

continued in infinitum.

Generally, 2 = , and here «= - , and r = ;

whence we obtain 2 =

1

3 2 2

1+-
6 + 3 9
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271. Cor. From the equation 2 = , above estar

Wished, we have immediately

2—

a

a =t (1 — r) 2, and r =
2

and thus, of the three quantities a, r and 2, each has been

expressed in terms of the two others.

Ex. 1. In a geometrical series continued in infinitum, it

is required to find the limit of the ratio when any term is

greater than the sum of all the succeeding terms.

Let the series be a, ar, ar^, ar^, kc. ar^~^, ar"^, &c.:

then since the condition expressed must hold throughout, we

must have

ttr""^ >ar" + ar^*'^^ + ar^*^"^^ + &c. in infinitum:

> ar" ^ 1 + '• + '•^ + &c. in infinitum] :

>
1 — r

whence it is manifest that 1—r > r, and .•• r< -:
2

that is, any infinite geometrical progression, whose ratio is less

than - , will have any one term greater than the sum of all that

foUow it.

Hence also, if the ratio r = ^, or the infinite series be

a a a a a

22' 2' 2"-^ 2"

every term will be equal to the sum of those which suc-

ceed it.
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Ex. 2. There are two infinite geometrical progressions,

each beginning from 1, whose sums are c^ and (r„; it is re-

quired to prove that the sum of the series formed by multiplying

together their corresponding terms, is
*

o-j + O-g— 1

Let r^ and Vo be the common ratios of the two progressions

;

.-, o-j = 1 + »"i + V + &c. in i?i/initum — , (l),
1 — r

o-„ = 1 -\-r„-\-r„" + &c. in infinitum = , (2)

:

1 — r„

and the sum of the series resulting from the multiplication of

the corresponding terms of these two will manifestly be

1 + (^i^'s) + (^1^2)'+ ^^- *^ infinitum

1 (Ti O",

1 — r^ r„ (y^+Cn — l'

by substituting for r^ and r„ their values determined from (l)

and (2) respectively.

Ex. 3. The expansion of (l + cc)r is of intermediate

magnitude to and , whenever mw and x are both
l—mx \ -i-w

proper fractions.

For, it has been proved in (199) that the series

1 + m X -\- m" X' -T m^ x^ + &c. in infinitum

is greater than the expansion of (l + a?)"', and the series

1 — 0? + a?^ — <r' -f &c. in infinitum

less than the same quantity

:

'

i

but by (270) the sums of these infinite series being
^

and
1 — mx \ -\- X
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respectively, it follows that the expansion of (l + a)'' is, in this

case, intermediate in magnitude to

- and
1 — m.v 1 + a?

Hence also, the expansion of (i 4-,r)"* differs from
1 —mx

by a quantity less than or
v^ + O^

l—mof 1+0? (1— w»a?)(l +j?)

272. Tofind the sum of a series of quantities in geome-
trical progression having their coefficients in arithmetical

progression.

Let the proposed series of magnitudes be

«, (a + 6)r, (a + 2 6)r% {a + 3h)r\ &c. {« + (w- l)6j r""',

and assume

«+(a+6)r+&c.+ 5a + (w-2)6}r''-'+ {a + (w- l)6jr»-^= ^,

.-. ar-\-{a+h)T^-{-kc.+ {a+{n-2)h\r''-^->r\a-^{7i-l)h]r^=rS',

.-. by subtraction, we obtain

a + 6r + 6r' + &c. + 6r"-^- fa + (w- l)6}r«= - (r- 1).S',

a- {a-^ {n-l)h]r'' \-hr(^—-^\= -(r-\) S:

(r" ~ ^ — 1 \
i

or

whence *S' =
r- 1

_{a + {n-\)h\r''— a hr{i^-^— i)
""

r—

1

(r— 1)'

273. CoR. If the ratio of the geometrical progression

be a proper fraction, and the number of terms be supposed

indefinitely great, we shall have, corresponding thereto,
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y— a—{a— b)r

Ex. Required the sums of the series 1 -{-2x-\-3ar + kc.

to n terms, and in infitiitum.

Let l+2a?+ 3a?- + &c. + (w-l)ci'"-2-f.wa;'*-^ = »S';

.-. a!-\-2of + &CC. + (n— 2)x''-^ + (71— l)w"-^ + na;''= x S:

whence 1 + cZ? + .v^ + ^cc. + x'"^ — nx'*= S (l - x),

noo"' .7?"—

1

and .-. S= —:
x—1 (*•—!)

which, when x is a proper fraction and the series is indefinite,

gives

(1-^r

274. To find the sum of a series of fractions^ whose

numerators are in arithmetical, and denominators in geome-

trical, progression.

Let us assume the required sum,

a a-\-h a + 2b a + (n— 2)b a-{-(n— l)b

r + -7- + -7-+^^'+ ^i^^i

—

-^—-^i
—

a ^ a-\-b a+(n-Q)b a + {n-l)b 1

6 6 b a + (n— l)b r—

1

r r T
whence a + - + — + &c. + -^iry ^ = « •

6(r«-i— 1) 'a + {n—l)b r— 1 „

ra a + {n-l)b 6(r"-^-l)
and thence aS= ;^zrr? :rr + «-^/ TTs

•
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275. Cor. Wherefore, if r be greater than 1 and the

number of terms be indefinitely increased, we shall obtain

2= ''''

r—l

Ex. Let it be required to find the sums of the series

1 1 1
l.--{-2. — -\-3. — + &c. to n terms and in infinitum.

A* J* A

, ,
.111 1 n 1 „

whence, by subtraction, - + -^ +^ + &c.+ -- —— — -S:
•> J

2 2^ 2^ 2" 2" + ^ 2

1 n 1

s^ 2" 2"+^ 2

1
n^^

and if n be supposed to become indefinitely great, we find

2 = 2.

III. Haemonical Progression.

276. Def. An Harmonical Progression is a series of

magnitudes in continued harmonical proportion ; or such that

if any three consecutive terms be taken, the first is to the third,

as the diiference between the first and second is to the difference

between the second and third, as appears from the definition

expressed in (248).

Thus, if a, 6, c, d, &c. be the consecutive terms of an

harmonical progression, we shall have

a : c :: a — b : 6 — c;

h : d :: b — c ' c — di &c.;
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and the characteristic property of this series is contained in the

following article.

277- ^^^ reciprocals of the terms of an harmonical pro-

gression are in arithmetical progression.

As above, let cr, 6, c, d, e, &e. be the terms of the series

;

then a : c :: a — h : b— c,

and .-. by (238), ab — ac= ac—hc;

at ac ac be
wherefore =

,abc abc abc abc

1111
c b b a

. ., , 1 1 1 1 1 1 1 1
similarly = -; j = j '> &c.:accbedac

1 . . , . ,11111 - . ,

whence it is obvious that -, -, -, -, -, &:c. form an arith-
a b c a e

metical progression.

278. Cou. 1. From the last article it appears that the

terms of an harmonical progression, taken at equal distances,

are also in harmonical progression.

279. Cor. 2. If cc and y be any two adjacent terms of the

harmonical series a, 6, c, d, &c. .r, y, &c., then will

1111 a — b x — y--- = ,or —— =
;

b a y cc ab wy

.•. ab : xy :: a— 6 : x — y:

or the product of the first two terms is to the product of any

two adjacent terms, as the difference between the first two is to

the difference between the other two.
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280. Given the first two terms of an harmonic'al pro-

gression, tofind the n''* term.

Let a and h be the first two terms, I the w*** term required

:

then it is obvious that - is the w*** term of an arithmetical pro-

gression, the first two terms of which are - and - , and there-
a b

fore we have the common difference = - — - = :

h a ah

.:. by (256), '-=!. + (n-l){a-i)Jn-X)a-(n-^)b^^
la ah ah

ah
* * if —

{n—l)a—(n—2)b

The sum of n terms of an harmonical progression cannot

be exhibited generally in finite terms.

281. CoE. 1. Making n equal to the numbers 1, 2, 3, 4,

&c. in succession, we shall have the corresponding terms of the

ah ah
senes equivalent to a, 6, , r , &c.^ 2a-b 3a-2h

The series may also be continued backwards by a similar

formula.

Ex. If the first two terms be 4 and 3, find the series.

Here we have a= 4, and h= 3; and the formula above

gives

12 12
the n term =

(«— 1)4 — (w-2)3 n+ '.

12 12

whence the harmonical series is 4, 3, — , 2, — , &c.

Ss
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282. Cor. 2. From the formula above investigated,

_ ®^
~ (»— l)a— (w — 2)6'

we derive immediately the following results

:

(n— 2)bl , (n—l)al
,

ab + (a— 2b)l
a = ——r , b = — and n = -; 7-7 .

{n— l)l-b (n— 2)l + a (a— b)l

283. If the two extremes and the number of terms be

known f the intervening terms may be found.

For, d the common difference of the reciprocals of the terms

is easily found = ;— ; whence the arithmetical pro-
•^ {ti-l)al

gression will be

1 o+ (w — 2)Z 2a-\-(n — 3)l (n— 3)a-\-2l (n-2)a+ l 1

a' {n—l)al ' (n — l)al '
' (n—l)al ' (n—l)al 'l

and consequently the reciprocals of these, or the harmonical

series, will be

(n—l)al {n—l)al (n — l)al (n—l)al
' a + (n—2)l' 2a + {n— 3)l'

''
(n— 3)a+ 2Z' (w — 2)a + l'

284. Cor. From this proposition m harmonical means

between a and / may easily be found.

For, since w =m -f 2, we have w — 1 —m + 1; and there-

fore the m harmonical means are

(m + l)al (m+l)al (m + l)al (m+l)al

a + ml ' 2a + (m— 1)1* (w— l)a+ 2/' ma + l

Ex. Insert two harmonic means between 3 and 12.

Here = 3, Z = 12 and w = 2; whence the means will be

3.3.12
, 3.3.12= 4, and = b":

3 + 2.12 2.3 + 1.12
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and it is easily seen that 3, 4, 6 and 12 are in harmonical

progression.

285. Given the magnitudes of any two terms in known
situations, to Jind the harmonical progression.

Let P and Q represent the p* and g"* terms; then, as

in (260), if d be the common difference of the reciprocals of the

terms, and a the reciprocal of the first term, we shall have

1 1—=a + (p-l)rf, and — = a + (q—l)d:

,11 (P- Q)
whence ——— = (|>— 9) d, and .. d=— ^

P Q ''^ '' ' (p-q)PQ'

^_^1 (p-l)(P-Q)
^
{p-l)P-(q-l)Q

P (p-q)PQ (p-g)PQ

so that both the first term and the common difference of their

reciprocals being found, the terms of the series themselves

become known.

286. Though the sum of a series of quantities in har-

monical progression cannot be generally determined, there are

some cases in which a good approximation may be found.

r^, . 1 . 1 1 1

Thus, m the senes -, , , &c. where-
a + b a + 2b a + 3b

in b is very small compared with a, we have by (236),

a-\-2b=-——^, a4-3b = -—^, &c. nearly;

therefore an approximate value of the sum of the harmonical

series, 11 1 o

-I
1 1- &c. to n terms, is

a + b a-^-^b a + 3b
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I a a-
+ ; TZh + 7 ; + &c. to n terms,

a+ b {a + bf (a + by

{a + br-a"
which = - ,

—

~ .

b(a + by

From the preceding operation, it appears that quantities in

arithmetical progression whose differences are very small com-

pared to themselves, may approximately be considered to be in

geometrical progression.

287- If three equidistant terms of an harmonica! progres-

sion be
;:

-—
, - ,

, we have
a + {n—l)a a a—{n—l)d

1 1 2a
+a-{n—l)d a + (n-l)d a^-(»i— l)^d-

2 .

which is manifestly greater than - : that is, the sum of any

two terms of an harmonical series is greater than twice the

intermediate mean term ; and it is evident that this excess

is the greater as they are more remote from it.

Whence we shall obviously have the sum of 7i terms of

the series greater than n times the middle term ; and therefore

by the continued increase of n, the sum of every harmonical

series may be made greater than any quantity that can be

assigned.

Hence the sum of the reciprocals of the natural numbers, or1111 . , . . ^ .-+-+-H 1- &c. contmued m infinitum,12 3 4
^ '

is indefinitely great.

288. The propositions proved, and formulae investigated

in this Chapter, will be further illustrated and applied in the

following set of miscellaneous theorems and problems.
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(1). If 100 stones be placed in a right line, exactly a yard

asunder, the first being one yard from a basket, what distance will

a person go who gathers them up singly, returning with each to

the basket ?

Since he goes 2 yards for the first stone, 4 for the second,

6 for the third, &c. and 200 for the last, from the basket and
back again : the distances travelled form an arithmetical pro-

gression whose first term = 2, last term = 200, and number
of terms = 100:

Tt

.: the whole space =z (a + l) - = (2+ 200) 50

= 10100 yards = 5 miles 1300 yards.

(2). Of four quantities in arithmetical progression, the

sum of the squares of the extremes — a^, and the sum of

the squares of the means = 6^ : find them.

Here x — 3y, x —y^ ^ + y and x + Sy, which are in arith-

metical progression, having the common difference 2y, may
represent the quantities required: therefore by the question,

we have

{x— Syf + ix + Syy^a^, or 25?^ + 18/= a*:

{x— yY + {x+ y)" = 6", or 2x^ + 2y^= b^ :

whence l6y^= a —b^ and y = +
4

n^ — h- Qh
and .-. 2x' = b' —2y =b" —, ,„ a^-b- 9b'-a'

8

.= +^^
and the quantities required are

Jgi;'-a^^3^a^-b^ ^ Qb-'-a^ -Ja'-b*
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4 4

(3). Given four magnitudes a, 6, c and d, to find another

which being added to each of them, the squares of the sums

shall be in arithmetical progression.

Let a? be the required magnitude ; then by the question

(rt + wy - (6 + a;)- = (c + xf - (d + x)%

which eives immediately a* = —
;^ ^ 2{a-h-c + d)

the required magnitudes, which are easily proved to be in

arithmetical progression, will be

(a _ 6)2 + (o - c)- - (a- d)' {b - a)- + (6 - df - (6 - cf

2{a— b— c + d) 2(a— b— c + d)

(c-a)- + (c-dY-(c-bY (d-by- + (d-cy-(d-ay
and

2(a— b— c + d) 2{a— b— c + d)

Similarly, when the cubes are in arithmetical progression.

(4). To find four magnitudes in arithmetical progression,

the product of the means being a', and that of the extremes 6*.

Let 2x denote the sums of the means; then will their

semi-difference = >y/a?' — a'

:

.-. the means are x +^x^— o"^ and .r— ^a?' — a',

and thence the extremes are a? + 3^x^— or and .r— 3^ a?' — a'

;

.-. x^ — 9(x^ — a")= b^, by the question

;

from which x^ = '

, and a = + 1 \/ '

:
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therefore by substitution, we shall readily find that

the means are - y/ X ^ _ W ^

2 ^ 2 ^2

and 1 \/?^!n' _ 1 \/^^\
2 '^ 2 2 '^ 2

and the extremes are - y h " V >

1 /ga^-b" _ 3 A /aj2^
and

2

(5). Given the sum of w terms of an arithmetical progres-

sion = *, and the sum of their squares = aS*; to find the series.

First, let n be odd and the terms of the series be expressed

by a?, oe + y, iV + Sy, &c. ; then we have

n.v= s, and .•. a?= —

:

n

also, nx^-{-2y'{l-\-2'^ + 3^ + kc. to ^(n-l) terms j = Ay:

but by (261), l^+2-+3^+&c. to^(n- l) terms = V^~V^(^+U ,

s^
_

(n-l)n(n+l) , . 2^/3{nS-^
.'. \- y =Si and y = + - V s :

w 1.3.4 ^ ^ -w'^ w'-l

and thus the series is found.

Again, let n be even and the terms of the required series

be denoted by

<*' + y> <^±3y, op±5y, &e.;
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then we have w«? = s and .•. a?=— , as before:
n

also, wa?-+ 2y- j 1^ + 3« + 52 _|. ^c. to 1 n terras j
= S:

(n—\)n{n+ \)
but by (261), 1= + 3- + 5-+ 8ec. to J w terms =

1 .2.3

5=
.
(n-l)w(w + l) „ „ - 1 , /sCwAy-O

7i 1.3 n n —\

whence the series is found.

(6). Find three magnitudes in geometrical progression

whose continued product is a^, and the sum of their cubes 6'.

Let <r, xy and xy" be the quantities required

:

then x^y^ = a^ and x^ + x^y^ -f ^^V^ = &' •

a^
also, from the first of these, «^ = -—

:

x^

by substitution in the second, we obtain

,3 _ ii\ ^3
6

o?' + a^ + —, = 6% and a?^ + (a^-W) x^+ a^ = 0:
x^

whence x may be found by completing the square, and thence y,

and the quantities sought.

(7). Of four magnitudes in geometrical progression, given

the sum of the two least = a and that of the two greatest = 6

;

to find them.

Let X denote the first, and y the third magnitude:

then ft — X = the second, and b — y = the fourth

:

,'. X : a — x :: y : b— y.
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or hx— xy^=ay-^xy^ whence bx= ay:

also <»y= (a — wY

:

whence we have ^ =(«-.)', and V'- = —«
a a

.'. X = —j= -= and y =
js/a + ^l ^a + ^b'

wherefore a— x= —j=^—pr and h—y= .
-— —p-

.

>^a+^b xja+^b

(8). Find six magnitudes in geometrical progression, whose

sum shall be a, and the sum of the two extremes shall be 6.

Let X be the first term, and y the common ratio

:

then x+ xy + xy^+ xy^ + xy'^ + xy^ = a,

and X + xy^= 6, by the question :

that is, -^ =a and a? {y^ + i) = 6

:

y-\

b

y'+l y-1

6_ J
^ = «, and 6(y' + y^ + l) = a{y^ -y^ + y- -y+ l)

:

(a-b)(y' + y- + l) = ay(y+l):

whence y'+ I -^^ = + y \/,-(^ + ' ^

and by the solution of this quadratic equation y may be de-

termined, and then x from the equation x = -ttt •

y +1
Tx
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(9). To find five quantities in geometrical progression,

when the sura of the even terms = 2o, and the sum of the

odd terras =26.

Taking x for the third or mean term, we have immediately

the square of half the difference of the even terms = or — x^:

.-. the even terms are a -j- As/ar— x' and a — yj a^ — x',

A .1.
(a+ ^a'-x-y {a- ^a'-x'f

and the extremes and — — :

X X

4 tt'— 2 a?*

whence the sum of the extremes = —
,

X

and the sum of the odd terms = :

X

.•• by the question, =26;

from which a? = — 6 + ^6' + 4a', and thus the terms may be

found.

(10). To find four magnitudes in geometrical progression,

having given the sum of the means =2 a, and the sum of the

extremes =26.

Let X denote the product of the means which is equal to

the product of the extremes

:

then the semi-difference of the means = ,^ a^— x;

.-. the means are a+ ^a'— a? and a— ^d'— x;

and the extremes are — — and
{a+ ^a--xf {a-Ja'-xy
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whence, by the question, is obtained

Sa^— Gaw 4o'
=2o, and .-. .r?= :

(v 3a + 6

and thus the quantities required are found.

(11). Given the sum of four quantities in geometrical

progression =4a, and the sum of their squares =l66^: to find

them.

Let the sum of the means = 2 a?,

.'. the sum of the extremes = 4 a — Sa?:

then the semi-difference of the means = x \/ , by the last

:

a + x

.•. the means are a? I 1 + V/ ) and a? ( 1 — v |

,

\ ^ a + x/ \ a + x/

a+w / > /a— w\^ , a 4- a? / . /a— w\^
the extremes

I 1 +V I
and ( 1 — V I

•

whence we have, by the second condition of the question,

^"
(2a*-a?2) = l66%

a +x

from which x =
a

and thus the quantities are discovered.

(12). To find four quantities in harmonical progression,

so that their sum may = a, and the sum of .their reciprocals

= 6.
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1 1 1 ,1 , . ,

Let , , and which are in har-
,v— Sy x— y of + y a! + 3y

monical progression, represent the quantities sought

:

1111
then 1 1 1 = a,

x— 3y <v— y ^ + y x + Sy

and x — 3y-\-x — y-itx-\-y-\-x-\-3y=^b:

from the second a? = - ; and .*. from the first bj substitution,

we obtain

,0/j=ag-9S^)(J-3,'),

from which y may be found by the solution of a quadratic.

b C6«
~ < 1(

2 /8

(13). A gives to B as many counters as he has already,

and B returns to A as many as he had then kept, and they

afterwards find their numbers to be a and h respectively : what

number had each at first .'*

Let x denote ^'s original number,

then a + h— x will be 5's number at first

;

.-. X— {a -\- h — x) = '2x — {a + 6) = the number A had left after

his present to B, and a-Tb— x-\-a-\-h—x= '2{a-\-h — x)=^ B''s

number then

:

.-. 2x- (a +b)-{-2x—(a + b) = 4,x— 2(a+ b) = the number J
had after jB's present

:

whence 4x— 2(a + b) = a, by the question :

3a + 2b a + 2b
.'. x= anda + 6— ii?= ,

4 4

which are the representatives of the original numbers.
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Now if the same steps be repeated a second time, it is

obvious that we have merely to substitute in the places of a

3a + 2b , a + 2b
and 6, the quantities and respectively;

/. 1 ... • . 1 1 11a +106
and thus we nnd A s original number =

B'e

16

5a + 6b

16

also, for a third time, we must substitute

lla + 106 5a + 6b . ^ -

and — in the places of o and b respectively

;

430 + 426
and then we have A's number at first =

B's

64,
'

21 a + 226

64,

so again, for a fourth time, we get

171 a + 1706
A'i original number =

256

85a + 866 .

J5s =
; and so on:

256

but in the numerators of the original numbers of A, we observe

that the coefficients 3, 11, 43, 171, &c. of a are so connected

that each of them is less by unity than four times that which

immediately precedes it, and that the coefficients of 6 are the

doubles of the numbers 1, 5, 21, 85, &c. : also,

3 = 4^-1, 1 = 1,

11=4=^—4-1, 5 = 4^ + 1,

43= 4^— 42— 4—1, 21=4^ + 4+1,

171=4*-4-^-4'^-4- 1; 85 = 4^ + 4*^ + 4 + 1;

&c
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whence we are led by analogy to conclude generally that for n
such processes as are mentioned in the question,

2.4" 4- 1

the coefficient of a = 4"— (4""
^ + 4""- + &c. + 1) = ,

and that of 6= 2(4"-^ + 4"-^ + &c. + l)= ^-^L^—l-.
'

3

from which we determine the original numbers of A and B
to be respectively

2 .
4" + 1 2 (4" — 1)

a + -1 i h,
3.4* 3.4"

4»_1 4" + 2.
and a-\ 6.

3.4" 3.4"

These results may be verified by induction; for, in the

two original numbers represented by

3a + 26 , aH-26
and ,

4 4

if we substitute these latter expressions for a and 6, we shall

in the original number of A have

,, at ' . c 3(2.4"+ I) +2 (4" -1) 2.4" + ' + l

the coemcient oi a— ^: — ,

S.4« 3.4"

^i .hat of 6=
«(^'-')+^(^- + ^) = i(ir:ipl)

,

3.4* 3.4"

therefore having performed the specified operation n-\-\ times,

2.4"+^ -h'l 2(4"+' -1)
the original number of A= ——.— a + —

-;— 6,° 3.4" + * 3.4" + ^

4'« +i_l 4" + ^ + 2
and the original number of B= —-j- « H zrrr ^ i^ 3.4*+^ 3.4" + *

as they ought to be.



CHAP. X.

On Variations, Permutations and Combinations.

\

I. Variations and Permutations.

289. Def. The Variations and Permutations of any

number of quantities or things are the different orders which

can be formed out of them with regard to position, when a

certain number of them and the whole are respectively taken

at a time.

Thus, of the three things represented by a, 6 and c, the

variations formed by taking one at a time are

a, 6, c

:

and, when taken two and two together, the variations are

a6, ba, ac, ca, be, cb:

whereas, the permutations formed by taking them all together

will be

abc, acb, bac, bca, cab, cba.

Without attending to the distinction above noticed, it is

customary to make use of the terms, Permutations, Variations,

Alternations and Changes, promiscuously, whether the whole

or part be taken at a time : but we shall at present adhere to

the definition just laid down.

290. Before investigating the formulae peculiar to this

subject, we shall endeavour to point out how the different

variations of any number of things may be practicaUy exhibited,

and how the number of them may be obtained.
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If we have the m things a, 6, c, d, &c, /, it is evident that

the variations of them taken one at a time are

a, 6, c, d, &c, I;

the number of which is therefore m.

Of the m—1 things b, c, d, &c, /, it is manifest that there

will be m — 1 variations taken one at a time : wherefore if a be

placed before each of these, we shall have the variations

a 6, ac, ady Sec, al;

two being taken at a time, in which a stands first and whose

number is therefore m—1: this may be written

a (6 + c + d 4- &c, + ;

and we shall similarly have m—1 variations in which each of

the quantities 6, c, d, &c, / stands first, represented by

h(a + c + d+ kc.+l),

c(a+ 6 + d+ &c. + 0,

d(o+ fc + c+&c. + /)5

&c

l(a + b + c-\-kc.-^k):

wherefore, upon the whole, there are w(m— l) variations of the

m quantities taken two together.

Again, of the m—1 things b, c, d, &c, I, there may be

formed, by taking two together, (m— l)(m — 2) variations, as

appears above, and which may be represented by

6(c+ d+ &c.+/),

c(6+ d+ &c.+Z),

d(6 + c+ &c.-f 0,

&c

/(6+ C+ &C.+A):
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wherefore if a be placed before each of these, we shall ob-

viously have the (wi— l)(w— 2) variations

ab {c \- d-\- he. \- 1),

ac(6+ d+ &c.-}-0,

ad(6+ c+ &c. + 0'

&c

al{h-\-c-\-hc.+k):

formed by taking three of the quantities together, where a
stands first ; and the same being true of 6, c, d, &c. /, it

follows that the total number of variations formed by taking

three of the quantities at a time will be m(m — l){m — 2).

By pursuing the same mode of reasoning we shall be

enabled easily to exhibit the variations arising from taking

four, five, &c. quantities at a time, and whose numbers may be

similarly proved to be

m{m—\) (m— 2) (»»— 3),

ln{m — l){m— 2) {m - 3) (m— 4), &c.

respectively.

The results already obtained, united with the method of

induction, would lead immediately to the number of vari-

ations formed by taking any number of the quantities together;

but the formula for that purpose will be more conveniently

deduced in the following proposition.

291. To find the number of Variations that can he

formed out of m different things, when r of them are always

taken together.

Let V^ be the number of variations ofm things a, 6, c, 8ec.

taken r together

;

r^_i m—l r—l

F^_„ m— 2 r-2

&c &c &c. . .

,

Uu
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then, if to each of the variations of m — 1 things, as b, c, &c.

formed bv taking r — 1 at a time, one of the things as a be

prefixed, we shall manifestly have V^_i variations of m things

taken r together, in which a stands first : and similarly of

6, c, &c.; therefore, upon the whole, there will be m V^_^

variations of m things taken r together: that is,

and by a similar mode of reasoning we shall manifestly have

n_, = (m-l)T;_,;

r_,= (m-2)F,_3; &c.

and so on; until we arrive at V^ which is manifestly the number

of variations of in— r-{-l things taken one at a time, and is

therefore = wj— r + 1 : whence we have

F, = TO (m— 1) (m — 2) . Sec (m-r + 1).

This is sometimes termed the number of Variations

without Repetitions of the r^ class.

292. Ex. Let r be taken equal to the numbers 1, 2, 3,

&c. in order ; then we shall have

V, = m,

V^=m(m- 1),

F3 = m(m— 1) (m— 2), &c.

293. CoR. 1. Hence of a given number of things, the

greater the number taken, the greater will be the number of

variations formed.

Ex. Let there be six things given ; then by the formulae

above investigated, we shall have

V,=6, r„ = 6.5 = 30, F5 = 6.5.4 = 120,

F^ = 6 . 5 . 4 . 3 = 360, F5 = 6.5.4.3.2 = 720.
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294. CoE. 2. If r be supposed = w, or all the quantities

be taken each time, we shall have

the number of Permutations = w (r» — 1) (m — 2) . &c. 3.2.1

= 1 .2.3.&C. (m— 2) (wi- l)m.

Ex. Required the number 6f changes which may be rung

upon seven bells, taken all together.

Here, it is obvious that the number required is the same

as the number of different permutations formed out of seven

tjiings, and therefore

= 1x2x3x4x5x6x7 = 5040.

295. In article (290) it has been seen that the number of

quantities within the brackets, in each case, does not comprise

-the one Avhich is placed contiguously without it : in other words,

that one thing has in each case been subtracted from the whole.

If then instead of the operation of subtraction, that of addition

be employed, we shall have corresponding thereto the following

expressions

:

a (a 4- 6 + c + 8ec. + I + a),

b (a + b + c + kc. + I + b),

c (a + b + c + &c. + I + c),

&c

I {a + b + c + kc. -\- I + I);

wherein, if the operations indicated be effected, there will

obviously be m{m + l) products:

again, on the same principle, if to these we annex each of

the letters in succession, we get

aa{a + b + C'{- &c. + Z -f- a + a),

ab {a + b + c -\- kc. + I + b + a),

ac (a + b + c -{• kc. + I + c + a),

&c

a I {a + b + c + kc. + I -h i + a);

and so on

:
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and it is manifest that the number of quantities thus formed

will be m (m + l) (m + 2): wherefore similar steps will lead to

the number of such quantities formed when the operation has

been repeated any number of times.

296- The aggregate of the quantities constructed as in

the last article, is styled the number of Variations ivith

Repetitions, of the first, second, third, &c. orders ; and the

general formula may be investigated as follows.

Let W^ denote the number of such variations, each com-

prising r simple quantities ; then it is obvious, from the nature

of the case and from what has been said above, that

W^ =(/»+ r-l)Tr_,;

similarly, TF^_ ^ = (m+ ^ — 2) W^_o^

TF.._2 = (m + r-3)TF_3,

&c

and it is readily seen that W^ = m : whence we obtain

W^ — {m + r— l)(w + r — 2)(w+r— 3).&c. (w + 2)(m + l)TO

= w (w» + 1) (w + 2) . &c. (m + r — 2) (w + r — l),

which is therefore the number of variations with repetitions of

the r^ class.

Ex. If there be five quantities, the number of variations

with repetitions of the second class = 5 . 6 = 30 : the number

of the third class = 5 . 6 . 7 = 210 : and these results may easily

be verified.

II. Combinations.

297- Def. The Combinations of any number of quanti-

ties or things are the different collections that can be formed

out of them, by taking a certain number at a time, without

regard to the order in which they are arranged.
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Thus, of o, 6, c, there will be three quantities o, 6, c,

formed by taking one at a time; three combinations a&, ac, he,

formed by taking two at a time ; and one combination abc,

made by taking all the three together.

298. To find the number of Combinations that can be

formed out ofm things by always taking r of them together.

Let C , be the number of combinations that can be formed

out of m things taken r together; V^ the corresponding number

of variations : then since every combination of r things taken

all together, admits of 1.2.3. &c. r permutations by (294), we

shall have 1.2.3. &c. r times the number of combinations

equal to the corresponding number of variations : that is

(1.2.3.&C. 7-)C^ = m(7»-l)(w— 2).&c. (w— r + 1), by (291);

m(m— l)(m— 2). &c. (w— r-f-l)
whence C, =

1 . 2 . 3 . &c. r

This is sometimes called the number of Combinations

without Repetitions of the r^ class.

299. Ex. If we make r equal to the natural numbers

1.2.3. &c. m in order, we shall obtain

Ci= m;

m(m — l)
Co =

1 .2

m(m-.l)(m-2)
^^

^ 1.2.3

w(m-l) (w-2).&c. 3.2.1
C = ^^ ~ = 1«

"*
1 . 2 . 3 . &c. w

300. Coil. 1. From the last article it appears that the

numbers of combinations of m things formed by taking one.
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two, three, &c., r together respectively, are the coefficients of

the second, third, fourth, &c., (r + 1)"" terms of the expansion

of the binomial (l + a?)'" : and consequently the sum of all the

combinations that can be formed, by taking 1, 2, S, &c., m of

the quantities together, will be equal to the sum of all the

coefficients of the expansion of (1 + x)"* diminished by the

first; that is, to 2"*— 1, as appears from (195).

Also, since the coefficient of the first term of the expansion

of (l + x)"* is here wanting, it is manifest from (l95) that the

total number of odd combinations which can be formed out of m
things is greater by unity than the total number of even.

Ex. 1. Out of seven things proposed, we shall therefore

have

Ci = 7, C2 = 21, C3 = 35, C4= 35, C5= 21, C6= 7 and C-j^l-

Ex. 2. Required the number of all the combinations that

can be formed out of five things represented by a, 6, c, c?, e.

Here we have m = 5 ; and therefore the number required

= 2^— 1=32 — 1=31

:

and if the quantities taken singly be excluded, the number

= 31—5=26.

301. Coa, 2. Hence, also, the number of combinations of
m things formed by taking r at a time will be the greatest

when the (r + l)'*" term of the expansion of (l + x)'" is the

greatest: that is, by (197), when r + 1 is the whole number
equal to, or next greater than J(w4-l), and therefore when
r is that which is equal to, or next greater than ^{m—l).

Ex. Of five things, how many must be taken at a

time, that the number of combinations may be the greatest

possible }
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If r be the number taken, r must be the whole number

which is equal to, or next greater than or
"".

or 2

:

*
2 2

therefore, when either two or three are taken together, the

number of combinations amounts to 10, and is greater than

when any other number is taken.

302. CoR. 3. If in the formula deduced in (298) we sub-

stitute m — r in the place of r, we shall, retaining the same
kind of notation, have

_ w(w— 1) (w— 2).&c. (r + 1)

"""
~

1 .2.3.8EC. (m— r)

_ m(m—l). &c. (w— r + 1) (»»— r) . &c. (r + 1)~
1 .2. 3. Sec r.(r+ 1). &c. (w— r)

m (m— 1) (m— 2) . kc. (m— r + l)

1 . 2 . 3 . 8ec. r
= C„

by rejecting from the numerator and denominator such factors

as are common to both.

The combinations belonging to the respective sets denoted

by Cr and C„,_,, are said to be Supplementary to each other.

Ex. In the first example of (300) where m = 7, we have

seen that

C, = Cfi, C, = Cs and C, = C,.

303. CoR. 4. If C^ denote the number of combinations

with repetitions, then, from (296), we have

(1 . 2 . 3 . &c. r) C^ = TO (wi + 1) (m + 2) . &c. {m+r~l):

m (m + 1) (wi + 2) . &c. (m + r - 1)
wherefore C, = „ •

1 . 2 . 3 . &c. r
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304. To find the number of different Permutations that

can he formed out of m things taken all together, when p
of them are of one sort, q of another, Sj-c.

Retaining the notation of (294), let us take P to be the

number of permutations required of the m things, whereof

p are a'^s, q are 6"'s, &c. : then it is obvious, that if we supposed

each of the a's, fe's, 8ec. to be changed into a different letter,

the whole number of permutations would be

P(l . 2.3. &c.p) (1.2.3. &c. g).&c.:

but the whole number of permutations =1.2.3. &c. m, by (294),

1 . 2 . 3 . &c. m
whence P =

(1 . 2 . 3 . &c. p) (1 . 2 . 3 . &c, g) . &c.

Ex. 1. Required the number of different permutations that

can be formed out of the letters aabbe, taken all together.

Here are two a's, two fe's and one c, so that the required

number

_ 1.2.3.4.5 __

^-(1.2)(1.2)-'""

which may easily be written down at length, and the result

verified.

Ex. 2. Required the number of different permutations

that can be formed out of the letters of the word indifference.

Here the whole number of letters w = 12 ; and there are

two Ts orj3= 2, two w's org = 2, two /'s or r= 2, and three

e''s or 5 = 3:

1.2.3.4.5.6.7.8.9.10.11.12
whence we have P=

(...) (,.,) (,.,) (,.,.3)
=99^9200.

Ex. 3. Find the number of different permutations that

can be formed out of «"*"'' ft' when written at length.
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Here there are m quantities, and a and 6 being repeated

m^r and r times respectively, we have the required number

1 . 2 . 3 . &c. w
{1.2.3.&C. (m — r)j J1.2.3.&C. r}

_ (m— r + l)(m — r + 2).kc.m~
1 . 2 . 3 . &c. r

_ «i(m — l). &c.(w»— r + 2)(to— r + 1)

~ ^
1 . 2 . 3 . 8ec. r

'

by rejecting from the numerator and denominator the factors

common to both.

305. CoR. In the formula investigated, in (304) where

1 . 2 . 3 . &c. m
P =

(1 . 2 . 3 . &c. J9) (1 . 2 . 3 . Scctj-) . &c.
*

it is manifest, that if p represent the number of h\, q the

number of a's, &c. the value of the expression on the latter

side still remains the same.

The quantities thus found are sometimes denominated

Complementary to those which would be formed on the other

hypothesis, their number being obviously the same.

306. To Jind the numbers of Combinations and VariO"

tions that can be formed out of a certain number of things

taken a given number together, when some are of one sort,

some of another, <§-e.

To avoid complication in the expressions, let us take a

particular number of things, as aaaabbbccd, which may

be written a%^(?d, and suppose five of them to be taken at

a time : then the forms of the different combinations which can

be made by always taking five of them together are

Xx
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now, of the first form are a* 6, a*c, a^d\

of the second are a'' 6", a'c^, b^a^, b^'c";

of the third are a^bc, ai^bd, a^cdy Pac, b^ad, b^cd;

of the fourth are a*6^c, a"b°d^ a^e-b, a-c"d, b-c"d:

therefore the number of combinations required is evidently 18

:

and similarly of other cases.

Hence, if the number of Variations that can be made out

of each of the forms a^/3, a^/3^ a^i^y and a'^'y be found,

and multiplied by the number of combinations belonging to

that form, the sum of the results will manifestly be the total

number of Variations.

307- To Jind the number of Combinations that can be

formed out of r sets of things consisting of different numbers,

by taking one out of each set for every such Combination.

Let Oi, 6i, Cj, dj, &c., Cg, fcg, Cj, d^, &c., a^, b^, Cg, d^. Sec,

Or' Ki ^ri ^li Sec, represent the different sets of things con-

sisting of the different numbers Wj, m„, Wj, &c. m^: then, since

every thing in the first set may be combined with every one in

the second, the whole number of combinations of two things

will manifestly be m^m^.

Again, since with each of these combinations, every thing

in the third set may be separately combined, we shall obviously

have the number of combinations of three things, taken one out

of each set, =m^m2m^: and so on.

Whence by a continuation of this process, we shall mani-

festly find the whole number of combinations that can be

formed out of the r sets, by always taking one out of each

set, to be m^ m^ he. m^; which will therefore be so many
combinations of things always taken r together.

This may be illustrated as follows.
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Connecting the things in the first, second, third, &c. sets

together respectively, by means of the sign +, as under:

«i+^+Ci + &c., a^ + b^ + c^ + kc, a^ + bj + Cs + kc; &c.

by multiplication of the first of these by the second, we obtain

«2«i + «2*i + "a^'i + &c. + b^a^ + b^bj^ + b^c^ + &c.

4- Cgfli + Cg6j + c^Ci + 8ec.

which are the combinations by two and two, formed by always

taking one out of each of the two sets.

Again, multiplying this result by Og 4-63 + C3 + &c., we
find the product to be

a^a^Uj^ +030261 + a^a„c-^^ -^ he. +036201 + 036361 + O362C1 + &C.

+ a^c^tty + a^cj)^ + a^CnC^ + 8ec. + b^a^a^ + he.

which obviously contains all the combinations similarly formed,

by always selecting one out of each of the three sets : and so on.

Ex. There are four sets of things consisting of three,

four, five and six individuals respectively; what number of

different collections can there be made by always taking one

out of each set.''

In this instance Wi = 3, ^2 = 4, ^3 = 5 and m^= 6i

whence the required number =3.4.5.6= 360.

308. CoR. If there be the same number of things in each

set, we have

m^= m^= m^ = he. = m/t

and therefore the required number of combinations =m''i.

The quantity m'' will manifestly be the number of terms

in the result . arising from the continued multiplication of r

polynomials, each consisting of m terms.
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Ex. How many combinations of three numbers can there

be obtained by throwing three dice ?

Each die having six faces, the question is to determine how-

many combinations of three things can be formed out of three

sets, each consisting of six individual things, by always taking

one out of each set

:

.-. jWj = 6, W2=6 and mj=6;

whence the number required =6x 6 x 6 = 21 6.

Of the subjects discussed in this chapter, the applications,

hitherto given, have been what may perhaps be termed curious

rather than useful : the following instances will, however,

evince the practical utility of some of them.

309. Let it be required to determine the continued pro-

duct of the m simple factors x + a, a? + 6, ^+c, &c., x + 1.

Here we have (w + a) (x + b) = a/^ + {a -^-b) a? + ab

:

{x + a)(x + b)(x + c) = x^ + (a + b + c)x^+ {ab+ac+bc) x+abc :

(x + a)(x + b)(x + c){x -\- d) =x* + (a + b + c + d)x^

•+(ab+ac+ad+bc+bd+cd)x^+ {abc+abd^a€d+bcd)x + abed :

and so on: and by an inductive process it may readily be

shewn, that if the same kind of form be assumed to represent

the continued product of m — l factors, it will likewise hold

good for that of m factors.

Wherefore, in the product required, it is obvious that the

first term will be x^: the second term will be .r""*, having

for its coefficient the sum of the combinations of the m quan-

tities a, 6, c &c., /, taken 07ie at a time, and whose number

is therefore m: the third term will be •r*"**, having its co-

efficient equal to the sum of the combinations of tlie m quan-

tities a, 6, c Sic, /, taken ftvo together, the number of which
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...... mCm— I) - - , ,h
will thereiore be : and so on : and the n term

1.2

will be af"~"'^^) with a coefficient equal to the sum of the com-

binations of the said m quantities, formed by taking n— 1 at

a time, the number of which will therefore be

m(m—l) (m— 2) . &c. {m — n + 2)

1 .2 . 3.8ec. (n— J)

'

and the last term will be the continued product of the m
quantities a, b, c. Sic. Z, and equal to abc . &c. I.

310. Cor. Let the m quantities a, 6, c, &c. ^ be all equal

to one another and to o, and then we shall manifestly have

(a?+ oY"= x"' + max"'-^+ —^ ^ o'a?"»- =+ &c.,
^ ^ 1.2

.

which is the Binomial Theorem in the case where the index is

a positive whole number.

311. Were it required to ascertain the nature and form

of the continued product

(a7j + aJ {x„ + Og) (^3 + «$) • &c- to m factors,

we should readily observe, that every term of the result must

necessarily consist of m factors, and therefore all the terms must

be homogeneous.

Also, when w — 1 of the .i?'s are found in any term, one

of the a's must be involved with them : when »»— 2 of the a?'s

are involved, two of the . a's will also be found there, and

so on : in other words, the aPs and a's may be considered

complementary to each other, the number of both together

being in every term equal to m.

Now, from the formula investigated in article (304),

1.2.3. &c. m
P=

(1 . 2 . 3 . &c. p) (1 . 2 . 3 . &c. 7) . &c.

'
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the number of terms which are made up of (to— 1) ai's and

one a, will be

1 . 2 . 3 . &c. m
\l .2.3.&c.(m-l)j }lj

~^'

the number of terms involving {m— 2) afs and two a's, will be

1.2.3. &c. m m (m— l)

jl.2.3. &c. (m— 2)\ jl .2}
~ TTi

the number of terms involving {m — 3) ai's and three a*'s, will be

1.2.3.kc. m m(m-l)(m — 2)

{l .2.3. &c. (»i— 3)} jl .2.3} 1.2.3
'

and so on

:

and thus the total number of terms will be expressed by

l+m+ -^ ^ + -^^ — + &c.;
1.2 1.2.3

which, as appears from (195), is also equivalent to 2'".

312. CoK. 1. If it be required to find the nature and

number of the terms of the continued product ofm multinomial

factors, we shall observe that the terms, as before, will all

be homogeneous; and the sum of the indices in every term

being m, the magnitudes and number of such terms will be

determined in the same manner from the expression

1.2.3. &c./»
~ {1.2. S.kc. p)(l .2.3. kc.q) {1,2.3. kc.r). &c.

'

the values of p, g, r, &c. being always such that

p + q + r-\- kc.=m.

313. CoR. 2. Hence also is readily deduced the Polynomial

or Multinomial Theorem, which has been so fullv considered

in (211) and some of the subsequent articles.
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314. The proposition explained in (295), and the formula

investigated in (303), will readily lead to the determination

of the number of the Homogeneous Products of different

dimensions which can be formed out of the m different quan-

tities o, 6, c, &c. I.

For, since we have seen in (303), that

m (w 4- 1) (/»+ 2) . &c. (w + r— 1

)

C =
1 . 2 . 3 . &c. r

if r be supposed to be equal to 1, 2, 3, 4, &c. in succession,

we shall find

Ci= w, Lo= ——

,

r»(TO + l)(TO-f-2) m(w> + l)(7»+ 2)(wi + 3)
C,= , C4=— ) &c.

' 1.2.3 1.2.3.4

315. Cor. From the last article, by making m equal to

2, 3, 4, &c. in succession, we learn that the number of terms

in the developement of {a + hy

2 . 3 . 4 . &c. (r + 1)= i i =r+l:
1 . 2 . 3 . &c. r

the number in the developement of {a-^h + cj

_ 3 . 4 . 5 . &c. (r + 2) _ (r + 1) (r + 2)

"
1 . 2 . 3 . &c. r iTi

'

the number in the developement of {a + h + c + dy

_ 4.5.6.&:c. (r-i-3) _ (r + l) (r + 2) (^ + 3)

~
1 . 2 . 3 . &c. r 1.2.3

and so on.



CHAP. XL

On the different Scales of Notation and the mode ofper-

forming Arithmetical operations in them, ^c.

316. Def. Notation is the method of representing or

expressing abstract numerical magnitudes; and it is divided into

different Scales dependent upon the numbers and magnitudes

of the figures employed.

I. Integers.

317. If T he any whole number^ and a^,, aj, a^, &c., a^ be

integral quantities less than r, every number whatever may

be represented in the following form:

N=a„ r*" + o„_i r"-' + a^.gr"*-' + &c. + ffg r- + d r + a^,

or

For, let N be divided by the greatest power of r contained

in it as r™, and let the quotient be a„ and the remainder Ni ;

then we shall have

N=^a^r^ + N,:

again, let Ni be divided by the greatest power of r con-

tained in it as r"~^, and let the quotient and remainder be

respectively a„_^ and N^', therefore, as before, we have

' N, = a^.,r'»-' + N,;

whence N = a^ r*" + N^

and so on

:
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and thus continuing the operation till the remainder becomes

less than r, we shall evidently arrive at last at the form

which, by reversing the order of the terms, may also be written

iV=a„ + o,r + a2r^ + &c. + a^.2r'"-"+ a^_,r"'-Vo„r":

and because in each succeeding operation of division the

greatest possible power of r is taken, it follows that each

of the quantities Oq, Oj, 03, &c, o^_2j ««-!> ®m ^^ less than r.

The quantity r is called the Radix or Base of the scale of

notation, and the quantities Aq) «i> <^2> &c, o^_2, a„_i, a^ are

termed the Digits belonging to that scale.

Hence any number consisting of p figures or digits may
be represented in the form

JV= ap_irP-^ + ay_2 r^"'^ + &c. + Ogr' + «i r + Oq:

and the greatest and least numbers, consisting of p digits, will

therefore be

(r- l)rP-^ + (r— l)rP-" + kc. + (r — l)r + (r— 1)

and rP ~ ^ respectively, or rP— 1 and rP ~ *.

318. CoE. 1. If the order of the digits composing the

number N be inverted, and the corresponding number be JV*,

then we shall have the following formulae

:

AT= a„r»' + oi r»»-i + 02 r'"-'' + &c. + o„_2 r^ + a„_i r + o„;

whence, subtracting the latter from the former, we obtain

iV-iSr = a,(r«-l) + a^_,r(r«-"--l)+a^-er«(r— *-l)+&c.

which is universally divisible by r— 1 ; and will be divisible by

both r— 1 and r + 1 whenever ni is an even number.

Yy
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319. Cor. 2. Since, in dividing by r, the remainder may

be any quantity less than r, it follows that the digits in a

system whose base is r are 0, 1, 2, 3, &c., r— 1 ; and conse-

quently the number of digits cannot be either greater or less

than the radix of the system.

320. CoR. 3. By assigning different values to r, the num-

ber N will be expressed in different scales : thus,

if r= 2, the scale is termed the Binary;

r= 3, Ternary;

r= 4, Quaternary;

r= 5, Quinary;

r= 6, Senary;

&c &c

r=10, Denary;

r=ll, Undenary;

r=l2^ Duodenary;

&c 8ec

321. CoR. 4. Whence we shall have the following digits

or figures to be used in the respective scales, including the

auxiliary digit denominated zero:

In the binary, 0, 1

;

In the ternary, 0, 1, 2;

In the quaternary, 0, 1, 2, 3;

In the quinary, 0, 1, 2, 3, 4;

In the senary, 0, 1, 2, 3, 4, 5;

&c

In the denary, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9;

In the undenary, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,^;

In the duodenary, 0, 1,2, 3, 4, 5, 6, 7, 8, 9, f, u;

&c



355

in the last two of which the letters t and u are supposed to re-

present the numbers ten and eleven, because we have no simple

numerical symbol to answer that purpose.

Ex. In the binary scale, 101 = 1.2' + 0.2 + 1.

In the senary scale, 453 = 4/ .6r + 5 .6 + 3.

In the denary scale, 2079= 2 .
10'' + . 10' + 7 . 10 + 9.

In the duodenary scale, 3807 = 3 . 12' + 8 . 12' + . 12 + 7.

From these examples it appears that in the expression of a

number, every digit, in addition to its original value, possesses

also a local value which depends upon the radix of tlie scale to

which it belongs, and the digits are sometimes styled so many
units of the first, second, third, &c. orders, dependent upon

the situations which they respectively occupy.

Thus, in the second instance, the digit 4 represents 4.6^;

the digit 5 denotes 5 . 6 and the digit 3 retains its real value

:

so also 2079 in the denary scale denotes 2000, 70 and 9, the

values of the figures 2 and 7 depending entirely upon their

locality.

We shall suppose all numbers proposed to belong to the

denary scale, unless the contrary be expressed.

322. CoR. 5. From the nature of the scales, as above ex-

plained, it is evident that all numbers represented in them may
be transformed to the denary or common scale, by merely per-

forming the operations indicated.

Ex. 1. The number 234 in the quinary scale is equivalent to

2 .
5- + 3 . 5 + 4

= 50 + 15 + 4 = 69,

in the denary, or common scale : this may be written

(234)5= (69),o:
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also, 6254 in the septenary scale is equivalent to

6. 7^ + 2. 7= + 5. 7 + 4

= 2058 + 98 + 35 + 4 = 2195,

in the denary scale: that is, (6254)^= (2195)i(,:

again, 9 1 507 in the undenary scale is equivalent to

9. 11*+ 10. 11^ + 5 . 11- + 0. 11 +7

= 131769 + 13310 + 605 + + 7 = 145691,

in the denary scale: or (9^507),i= (145691) 10; and so on.

Ex. 2. Required the radix of the scale in which 425 is

equivalent to two hundred and fifteen.

If r denote the quantity required, we shall have

4r- + 2r + 5 = 215,

or r^ + lr= 52l:

whence, by the solution of the quadratic, we find the values of

r to be 7 and — 7^, the latter of which is excluded by the

nature of the question: wherefore 7 is the required radix, as

may easily be proved to be correct.

323. Given the radix of the scale, to find the digits re-

presenting any proposed number in that scale.

Let

-^^=«m»•"'+«m-l»•'""' + ««-2»•'"'' + &c. + a2r- + a,r+«^,

in which a^, o„_i, a„_2> &c, Ogj "u % are the di^ts re-

quired to be found, the magnitude of r being supposed

known

:

then, if we divide both sides of this equation by r, the quotient

will be a^
r*"

" ^ + a^_i r"*
"

' + a„_2 r"'" ^ + &c. + ag r + a„ with

a remainder a^, which is the first digit on the right hand

:
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again, repeating the same operation with this result, the quoti-

ent is obviously o^r^"'^ + a^-i r^''^- a„_2r*~*+ &c. + Oj,

with a remainder aj, the second digit from the right hand ; and

so on : from which it appears that the digits beginning at the

right hand are the remainders after the successive divisions of

the number by the radix of the scale proposed.

Ex. Express the common number 75432 in the senary

and duodenary scales.

In the former case r= 6 and in the latter r= 12; wherefore

we have the two following operations;

(1). 6 ) 75432 (2). 12 ) 75432

6 ) 12572 = Ojj, 12 ) 6286 = a^,

6 ) 2095 2 = ai, 12 ) 523 t=a^^

6 ) 349 1=02, 12 ) 43 7 = a,25

6 ) 58 1=03, 12 ) 3 7 = 03,

6)9 4= 04, 3= 04;

6 ) 1 3 = a5,

1 = ae

;

whence the common number 75432 is represented in the senary

scale by 1341120, and in the duodenary by 377^0: that is,

(75432),o= (1341120)6 and (75432)1^= (377 ^0)12:

and it may be observed generally, that the greater the radix of

the scale proposed, the less will be the number or magnitude of

the digits required to express a given number.
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These results are easily verified; for, by performing the

operations implied in the respective scales, we have

1. 6^+ 3. 6^ + 4. 6^ + 1. 6"" +1.6^ + 2. 6 + = 75432

;

and 3 .
12'* + 7 . 12' + 7 . 12- + 10 . 12 + = 75432.

324. CoR. Hence, to transform a number from a scale

whose radix is r to another whose radix is r', we have merely

to express it in the common or denary scale by (322), and

thence to find its expression in the scale whose radix is r by

the last article.

Ex. Convert 3256 from a scale whose radix or local value

is 7j to one whose local value is 12.

First, 3256 in the septenary scale is equivalent to

3. 7^ + 2. 7^ + 5. 7 + 6= 1168 in the denary:

then, by (323), we have

12 ) 1168

12 ) 97 4= a„,

12 ) 8 1=«„

8 = «„ ;

wherefore 3256 in the septenary scale, when expressed in the

duodenary scale, becomes 814, which may easily be verified.

325. Every number whatever is composed of some

number of the terms of the geometrical series^ 1, 2, 2-, 2^, Sec,

indefinitely continued.

For, in the binary scale of notation, we shall manifestly

have

iV=«„2'» + a„,_,2"'-^ + a„_2 2»-= + &c. +f/2 2= + ff,2 + cr.„,

where iVmay be any number whatever, and a*,,,, ^,„_i, ^'„,_2j &<".,

^2j "u Oq are each less than 2, and must therefore be cither or 1

;
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that is, none of the terms of the progression are taken more

than once, and consequently all numbers may be composed out

of the sums of them by assigning proper values to m.

Ex. Express 37 by means of the terms of the series

1, 2, 2-, 2', &c.

First, to transform 37 into the binary scale, we have

2) 37

2) 18 1 = flTo

2)9 = a„

2)4 1 = CTo'

2) 2 = 03,

) 1 = a^

2)0 1 = 05

;

therefore, 37 in the common scale is equivalent to 100101 in the

binary scale which is expressed by 2^ + 2* + 1.

326. Cob. If the number of terms of the series be limited

and represented by w, then the greatest number that can be

expressed by it will manifestly be its sum, or

1 _[. 2 ^ 2^ + &c. to n terms = 2" — 1.

327- Every number whatever may he formed by the sums

and differences of some of the terms of the geometrical pro-

gression 1, 3, 3-, 3', &c. indefinitely extended.

For, by representing any number in the ternary scale of

notation, we have

N=a^3"' + a^_,3"''^ + a^_„3'^'" + kc. + a^S- + a^3 + a^,

in which each of the coefficients o,„, a^n-p «m-2> Sic, Og, a^, Oo

being less than 3, must manifestly be 2, 1 or 0.
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If every one of the coefficients be either 1 or 0, the pro-

position is evident : but if one or more of them be 2, so that

iV=2 .
3"* + 2 .

3"*-^ + 2 .
3"*-^ + &c. + 2 . 3' + 2 . 3 + 2,

then 2.3'" =(3 — 1)3'" =3'"+^— 3'";

2.3'"-^ = (3— 1)3'""^= 3"* —3'""^;

2 . S*"-^ = (3 — 1)
3'"-'^= 3'"-^ - 3*"-^;

&c

2.3'^= (3— l)3- = 3'— 3*;

2.3 =(3—1)3 =3"- — 3;

2 =(3— I) =3—1:

whence, by substitution, we obtain

Ar=3"*+^-l:

and a similar method of proceeding will answer in all other cases.

Ex. Let it be required to express 206 by means of the

sums and differences of the terms of the geometrical progression

1, 3, 3-, 3\ &c.

First, to transform 206 from the denary to the ternary

scale of notation, we have

3) 206

3) 68 2 =a„

3) 22 2 = o^,

3 ) 7 1 = Ooj

3 ) 2 1=0,,

2 = a.

;

I
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therefore 206 expressed in the scale whose radix is 3, becomes

21122 = 2 .
3* + 1 .

3^ + 1 . S'' + 2 . 3 + 2

= 3*— 3* + 3' + 3- + 3= — 3 + 3 — 1

= 3^ — 3* + 3^ + 2 .
3'— 1 = 3^— 3* + 2 . 3'— 3*— 1

= 35 _ 3* + 3* _ 33 _ 32 _ 1 _ 35 _ ^33 ^ 32 _,_ j^^

which, by (322), may easily be proved to be correct.

328. Cor. Hence the greatest number that can be ex-

pressed by n terms of this series will obviously be their sum,

which = - (3"— 1); though numbers less than this may require

all the terms in the series.

Ex. Let us take the number 700, which is easily proved,

as in the last article, to be equal to (3^ + 1) — (3' + 3), so that

terms as far as the seventh have been employed, although 700

is much less than - (3'^— 1) or 1093.
2

^

329. Similar considerations will, in some instances, enable

us to obtain analogous results in the other scales.

Thus, 51 in the denary scale will be represented by 303 jn

the quaternary, which

= 3. 4" + 0.4 + 3

= (4— 1)4* + (4—1)

= 4' — 4- + 4 — 1

= (4' + 4) - (4- + 1).

330. To 'perform the Arithmetical operations of Addition,

Subtraction^ 8^c. in a Scale of Notation whose Radix is r.

From what has been already said respecting the different

scales of notation, and from the nature of the proposed opera-

tions, it is obvious that the processes will be similar to those

Zz
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used in the common scale, with this difference only, that r must

liere be used in the cases wherein the number 10 would be ap-

plied, did the numbers proposed belong to the common scale.

This will, however, be best illustrated by examples.

Ex. 1 . Find the sum and difference of the numbers 45324502

and 25405534 in the senary scale.

First, arranging them as in the common scale, we have

45324502

25405534

therefore the sum = 115134440,

obtained by adding the numbers in vertical lines, as in common
arithmetic, and carrying 1 for every 6 contained in the results

and putting down the excesses above it

:

again, 45324502

25405534

therefore the difference = 15514524,

which is found by subtraction, where we always borrow 6 when
the digit in the lower line exceeds that in the upper, and add

1 to the next digit in the lower line for it.

Ex. 2. Required the product of 2483 and 589 in the un-

denary scale.

Here, the multiplicand = 2483

the multiplier = 589

11985

18502

11184

therefore the product = 13122^5,

and this is found by proceeding as in ordinary multiplication,

by carrying 1 at every 11, the letter t here denoting 10.
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Ex. 3. To divide 1184323 by 589 in the duodenary scale,

we have

589) 1184323 (2483 = the quotient;

u56

22t3

ItuO

3u32

39tO

1523

1523

and here t and u represent 10 and 11, and the operation is

conducted with reference to 12, as it is ordinarily done with

respect to 10.

Ex. 4. Involution and Evolution are performed in a man-

ner precisely similar ; thus, in the senary scale,

(2405)2 _ (2405) X (2405) = 1 1 122441

,

as in example (2).

Again, to extract the square root of 11122441 in the same

scale, we have, after pointing as in common arithmetic,

11122441 (2405 = the square root.

4

44) 312

304

5205) 42441

42441
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331 . Coil. If iV= a„,r"' + a,„ _ ,r"'
"

' + &c. + a,r + %,
and both members of the equation be multiplied by r", we

shall ,have

Nr"= a^r"' + " + a^ _ j r™ + » " ^ + &c. + «i r" + ^ + a^r",

so that each of the last w digits is zero : in other Avords, a

number may be multiplied by any power of the radix by

affixing to it as many zeros as there are units in its index:

and conversely.

332. Given the numbevs of digits in two numbers, to

jind the numbers of digits in their Sum and Difference.

Let p and 7 be the numbers of digits composing N and N'
respectively, whereof p is greater than q\ then, by (317), we
shall have

and N'=bo + byr + b^r" + &c. + 6<,_2r?"^ + 6,_ir9~^

:

whence, by addition and subtraction, we obtain

N± N'= (fflo + 60) + («! ± 61) r + (tta± 62) r-+ &c.

which will therefore generally comprise p digits.

If q — p — l, then since a^_i + 6,_i may be equal to, or

greater than r, the expression {a^^ + b^_l) r^ ~ ^ + a^ _ ^ r?
~ *

may become equal to c^r^ ^\-ap_^rP~^ or (Cp_i + a^_i)r^~^

from which it is evident, that if c^.j + a^.j be equal to, or

greater than r, the last term will become of the form d r^,

and thus the sum N+N' may contain p-{-l digits.

Similar reasoning may be applied, when the lower sign is

used, to shew that the difference N—N" may contain only

p — l digits; and the same holds good in both cases when (j = p-
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Ex. 1. Let iV= 14263056 and N' -5036425. in the sep-

tenary scale ; then p= 8 and g = 7

:

also, JV+iV'= 2233251 4, which contains eight digits

;

and N—N'= 6223331, which contains seven digits.

Ex. 2. Suppose N= u23576 and N' = 93895 in the duo-

denary scale; .-. p= 6 and q = 5:

also, N + N'= uu724iu, containing seven digits ;

and N— N'= t4iu8tl, containing six digits.

Similarly, if there be several numbers N, N\ N'\ &c.

333. Given the number of digits contained in each of

two numbers, to Jind the number of digits constituting their

Product.

As in the last article, let N and N' consist of p and q
digits respectively ; then we shall have

N = a^^r^^ + ap_2r^^ -h &c. -}- air -h a^, and

N' = 6,_ir'-^ + 6,^r«-^ + &c. + ^r + 6o

:

whence, multiplying these quantities together, we obtain

from which we infer, by (317), that the product NN' must

always consist of p \- q—\ digits at least.

Also, since each of the digits is necessaiily less than r,

the product of any two of them must always be less than r"^,

but may be greater than r, and thence it follows that

NN' must be less than rP+ ?, but may be greater than r'' + 9'~^

:

that is, the product NN' consists of fewer digits than p-\- q-\- \,

or, in other words, cannot comprise more digits than p -\- q.
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Ex. 1 . Let N = 83875 ) in the nonary scale, where p= 5

N'= 864^ and q = 3;

366832

555803

744764

.-. NN'= 81523362, which consists of eight digits.

Ex. 2. If the numbers be expressed in the undenary scale,

and iV=123^, iV" = 23^4; then, we have

N = 123^

N' = 23^4

4947

11161

3708

2479

AW= 2955157,

in which the number of digits = 7 = 4 + 4 — 1.

334. CoE. If the three numbers N, N' and N" consist

of p, q and * digits respectively : then, since NN' comprises

p + q— 1 or p + q digits, it is obvious that

NN'N" will comprise either (p + q—l)+s — iy

(/) + 9— 1) + 6', or p-\-q + s digits :

that is, NN'N" may consist of p + q + s— 2,

p +q +s—1i or p + q + s digits

:

and the same kind of reasoning may be extended to the product

of any number of quantities whatever.
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335. Given the number of digits comprised in each of
two numbers, to find the number of digits in their Quotient.

Let N and N' denote the two numbers, consisting of

p and q digits respectively, whereof N is the greater; and

let Q be the quotient arising from the division, so that

~=Q or N=QN':

then, since N consists of p digits, it is obvious that QN'
must contain the same number: let Q contain a? digits, then

by (333) the number of digits in QN' cannot be

> q + x nor < q + x—l :

whence it follows, that p cannot be

> q + w nor < q + x—l

:

from which inequalities we conclude that .r, or the number

of digits m the quotient —7, cannot be

< p— q nor > p — q+1.

Ex. In the quinary scale, let iS7"= 20101 and N' = 213;

then we have

213) 20101 (42 = the quotient

;

1412

431

431

and the number of digits in the quotient is 2 = 5 — 3.

336. Given the number of digits constituting any num-
ber, to find the number of digits in its Square, Cube, ^c.

Let the number iV consist of p digits in any scale of

notation ; then it is manifest that the number of digits in N^
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or .V X A"^ cannot be

< p + p—l or 2p— 1, nor >p+p or 2p,

as appears from {333).

Again, the number of digits in N^ or Nx Nx N may,

by (334), be p +p+p — 2f or p+p+p—l^ or p +p+p:

that is, the cube of N may comprise

Sp — 2, 3p — l or 3p digits :

and a continuation of the same process will prove that the

number of digits in N'^ may be

4p — 3, 4j9— 2, 4-p—l or 4p,: &c.;

and generally that in N*^ it must be one of the quantities

mp - (m — 1), mp— {m — 2), mp — (m — 3), &c., mp.

Ex. Supposing N= 1354 in the senary scale, we shall have

iVT*= (1354)2= 2425204,

which has 7= 2.4—1 digits:

AT' = (1354)'= 4315231544,

which comprises 10= 3.4—2 digits; and so on.

337- Given the oiumber of digits forming any number,

to find the number of digits in its Square Roof, Cube Root,

Let the number N consist of p digits: and suppose its

square root or j,^N to comprise a? digits; then it is manifest

from the last article, that N cannot consist of

fewer than 2<r — 1, nor of more than 2 a; digits:

that is, p cannot be < 2a?— 1 nor >2.r:

.1 ^ P+ ^ P
and thence .r cannot be > nor < —

.
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Again, if we suppose ^iV to consist of y digits, it will

follow that N must have 3y~2, 3y—l or 3y digits: that

is, we must have p = 3y— % <p= 3y—\ or p= 3y, from
which are readily deduced

p+2 p+1 p

and so on, for higher roots.

Ex. Let N= 13^221 in the octenary scale: then, by the

ordinary process, we find

y/N= y/l32221 = 327,

which comprises 3 = ^ of 6 digits.

338. Cor. From this proposition are deduced the rules

for pointing in the extraction of the square, cube, &c. roots

of numbers.

Thus, if a number consist of p digits, it has been seen in

(337) that its square root will comprise ^ p digits if p be even,

and ^ (/> + digits if p be odd : whence, if a point be placed

over every alternate figure, beginning with the units^ place,

the number of points will obviously be the same as the number

of digits in the root.

Again, from (337) it appears that the cube root will have

^p, ^ (i> + 1) or i (p + 2) digits, according as p is a multiple

of 3, or leaves the remainders 2 and 1 when divided by it

:

and hence in this case, the points placed over every third digit,

beginning with that in the place of units, will indicate the

number of digits in the corresponding root; and the same

mode of proceeding will shew, that, in extracting the m}^ root,

the number of points obtained by placing one over every m*
figure, beginning with the units, will be that of the digits

in the root.

3A
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339. Giveti a number written in any scale of notatio7i,

tofind the remainder arising from its division by any number

either greater or less than the base of the system.

Let r be the radix of the scale of notation, a„, a„_i, &c.,

ff„ a^ the digits; then we have

N=a^r'"' + a„._, r"*-' + &c. + a^r" ^ a^r + a^\

also, since r= r — d + rf, the number N may be represented

in the following form

:

N^a^{{r-d)^d]'- + a^_,\{r-d)+d\^-' + hc.

\-a^\{r— d) + d\"-\-a^\{r-d)-\-d] + a^,

from which, if the expansions be effected, we shall manifestly

obtain

' N=a^ + Oj d + a2 <^ + &c. + «„_. d'""^ + a^-i <^'""' + a,nd"* + P^

where P involves r — d and its powers combined with the

indices m, m— 1, »»— 2, &c. and the powers of d as factors:

wherefore, if A'^ be divided by r— d, it will obviously leave

the same remainder as would be obtained by dividing

a^ + aid + aadr + kc.-^ a„_2 d'"-- + a^_, d"'-' + a„d'" by r-d.

Consequently, if the remainder be when N is divided by
r^d, there will likewise be no remainder when this last quan-

tity is divided by it; or, in other words, the quantity

«o+ «i <^ + «2 (^- + &c. + a„._2 d"'-- + a„_i d'"
"

^ + o,„ d""

will be a multiple of r— d.

34)0. Cor. If the algebraical sign of d be changed, we
shall have

N=a^-~aid + aadr— SiC.±a^_^d'^-' + a„_idr-^±a,„d'" + P,
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where P is made up of r + rf and its powers together with

combinations of w, m— 1, w— 2, &c. and the powers of d, and

the upper or lower sign is used according as m is even or odd

:

whence, in this case, N when divided by r + rf, will leave

the same remainder as the expression

aj, - a, d+ flg d*- &c. + a^_^ d*"-^ + a„_, d'""^ ± a„ d""

leaves, when divided by the same quantity.

Ex. 1. If we suppose d—l, then from {S39) we shall have

iV= ffg + aj + aa + &c. + a^_^ + a„_
i + «„ + P;

from which it appears that when N is divided by r— 1 , it leaves

the same remainder as when the sum of its digits is divided by

r— 1 ; and consequently whenever iV is a multiple of r— 1, the

sum of the digits which compose it will also be a multiple of

the same quantity.

In the denary or common scale of notation wherein

r=10, we have r— 1 = 10 — 1=9: and consequently any

common number and the sum of its digits when divided by

9, leave the same remainder.

Hence, also, if from any number the sum of its digits be

subtracted, the remainder will be divisible by 9.

Ex. 2. The instance last given furnishes us with a demon-

stration of the proofs of arithmetical multiplication, &c. by

Casting out the Nines.

Let A the multiplicand contain p nines with a remainder a,

and B the multiplier contain q nines with a remainder /3

;

then A = 9p + a,

and B= 9q-\-fi;

.-. JB = 8lpq + 9qa-i-9p(^ + a(i

= 9\9pq -\-qa + p(i\ -¥ afi:
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whence it is obvious that AB, or the sum of the digits in AB,

divided by 9 leaves the same remainder as aj3, or the sum of its

digits divided by 9 leaves: hence the rule as exemplified below.

To midtiply 27354 by 2687, we have

J = 27354, . •• a= 3,

B= 2687, . ••
i3
= 5;

191478

218832

164124

54708

.-. ^J5 = 73500198, and xi/3=15:

and it is easily seen that the remainders arising from the division

of the sums of the digits in AB and a/3, are both 6; from

which it is inferred that the operation is correctly performed

:

and it can be erroneous only by some multiple of 9, or in the

placing of its different parts.

By assigning different values to r, a similar method of

proof is applicable in the other scales.

Ex. 3. If in the corollary to the proposition we make

d=l, then will

-^ = «0- <^l + «2- ^^- ± "m-2 + «m- 1 ± «m + P^

where P is divisible by r + 1 ; and from this it appears that the

divisions of the two quantities

JVand %-a^ + a^-hc.±a„_^ + a^_^±a^hyr + l,

leave the same remainder.

Hence, also, if the difference between the sums of the

digits in the odd and even places respectively of any number

be divisible by r + 1, the number itself Avill be divisible by

the same quantity.
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Wherefore, likewise, if the sum of the digits in the odd

places be subtracted from, and the sum of those in the even

places be added to, any number, the result will be a multiple

of r + 1.

In the common scale of notation all these properties belong

to 10+1 or 11, and from them might be derived a mode of

proof similar to that explained in the last example.

Ex. 4. Let d = 2 ; then by the proposition, we have

wherein P is a multiple of r — 2

:

wherefore if the two quantities

N and o„ + a, 2 + a„ 2" + &c. + a^.^ 2'"-' + o„_, 2"*-' + a„. 2%

be both divided by r— 2, the remainders will in all cases be

equal.

In the common scale, where r= 10, we shall evidently have

J\r divisible by 8 when aQ + 2a^ + 4>a„ is so divisible, since the

succeeding terms are all multiples of 2^ or 8.

Ex. 5. If d= — 2, the general formula of the corollary gives

JV= a„ - a, 2 + as 2-- &c. + a^^ 2"-^ + a^, 2"-^ ± «^ 2"» + P,

the last term being a multiple of r + 2 : and from this we con-

clude that in the common scale, if the digits beginning from

the place of units, be successively multiplied by 1, 2, 2'^, 2^, &c.

and the difference of the odd and even terms be divisible by

12, the number itself is divisible by 12.

Ex. 6. Let d= 3; then, by means of (339), we get

iV= a„ + ai 3 + fla 3^ + &c. + o^.^ 3"""' + «„._, S"'"* + a^ 3" + P,

and in this case P is a multiple of r — 3

:
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wherefore in the denary scale of notation the number N will be

divisible by 7 when

ff„ + a, 3 + flg 3'+ &c. + a„_2 3"-' + «„_, 3"-' + a^ 3"

is divisible by 7, and the contrary.

Ex. 7. If we make d= 3, the corollary gives

iY= Oo- cr, 3 + 02 3* - &c. + a„._2
3'""" + a^_^ 3™-^ ± «„ 3"*+ P;

from which we draw the same conclusions respecting the series

1, 3, 3°, 3^5 &c. and the number 13, as were deduced respecting

the series 1, 2, 2^, 2^, &c. and the number 12, in the last example.

By assigning to d as used in articles (339) and (340), the

values 4, 5, 6, &c. in succession, a variety of results common

to all the scales may readily be deduced, and then applied to

the numbers in common use by making r=10.

II. Fkactions.

341. Def. The fundamental principles of Numeration

already explained, shewing that the local value of every digit

increases r fold as we advance towards the left hand, if the

radix of the scale be r, it will follow that if the digits be taken

in the contrary order, their local values must decrease in

the same proportion. Hence therefore the local value of each

of the digits in succession to the right of the units place be-

comes r times less than that of the one which immediately

precedes it.

If therefore we have the general algebraical formula,

N= a,j^r^ + &LC. + a^r- + a^r + a^r° + a_^r~ ^ + a_„r~- + kc,

it is obvious that the quantities to the left of a^, r° comprising

units of orders superior to the first, will be whole numbers,

whilst those, on the right of the same terra, being of local values
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inferior to the first, designate so many fractions : and in a quan-

tity consisting of both it is usual to separate the integral

part from that which is fractional by means of a point.

Thus, in the ternary scale, we shall have

120.21 = 1 .3- + 2. 3' + 0.3" + 2. 3"* + 1 .S"'^

= 1. 3- + 2. 3^ + 0. 3"+-+1:
3^ S"

again, in the septenary scale, we have, in the same manner,

52. 3406= 5. 7^ + 2. 7° + 3. 7-^ + 4,. 7 "- + 0.7"' + 6. 7"*

_ 3 4 6= 5.7^ + 2.7°+^ + ;^+- + ^:

so likewise, in the denary or common scale,

2. 71828 =2. 10® + 7. 10-^ + 1-10 -^ + 8.10-
3 + 2. 10- '' + 8. 10-*

7 18 2 8

in which each of the digits has manifestly an absolute value

as well as one dependent upon the situation in which it is

placed.

342.. Cor. Hence, in order to multiply or divide a quan-

tity by any power of the radix, we have only to remove the

separating point to the right or left as many places as there

are units contained in its index, since by such a step the

denomination of every digit is increased or diminished in the

proposed ratio.

343. To express a fraction of the kind just explained,

by means of a Vulgar Fraction.
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Let iV=a_ir-^-fa_2r---fa_3r-^-}-&c.4-a _,„?•-'",

be the proposed fraction of the kind considered : then, express-

ing each term as a vulgar fraction, we have

iV^=-^ + -^ + -^+&c.+
r r r' r

by reducing the individual terms to a common denominator

:

and from this we conclude that any quantity consisting of m
digits to the right of the separating point, may be repre-

sented by a vulgar fraction whose numerator is the said

collection of digits considered integral, and denominator the

f»*^ power of the radix, or unity followed by m zeros.

Ex. In the senary scale of notation, we shall have

5 3 2 4
•''^*=6+? + 6; + 6'

_ 5.6^-}-3.6--f-2.6-f-4-
^4

5324

10000

If the base of the system be 11, we shall have likewise

10 7 10 9

n'^i?"*"i?'^i?"''r?

_ 107^9 _ 107^9
"~

11^ ~ 100000

344. CoR. 1. Heijce it follows conversely that in any

scale of notation a fraction with unity followed by m zeros for

its denominator, may be expressed in the form of a whole

number, by placing a point in the numerator so that it may

have m digits on its right hand.
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(7Q8 \
) = (.00798)1,, &C.

100000/n ^
^"

345. Cor. 2. In the addition and subtraction of fractions

expressed after the manner of whole numbers, it is manifest

that in order to have the same denominations of units combined

together, the points in all the quantities concerned must be in

the same vertical line, and then the operation may be efiFected

as in integral quantities : but some additional considerations

will be necessary to estimate properly the results of the opera-

tions of multiplication and division.

Let P and Q contain p and q digits to the right of the

separating point respectively ; then may these quantities be

P Q
represented as vulgar fractions by — and —

:

P Q PQ
whence their product = — x —

- = -r—-

,

^
'jrP t" /•/' + ?

which has therefore p-^q digits to the right of the separating

point

:

1 u • . ^ P Q \q)
also their quotient =- ^ - = -^^ ,

which has therefore p — q digits to the right of the said dis-

tinguishing mark. Similar processes may be adopted in their

involution and evolution.

346. Cor. 3. To convert to the form of a whole number,

a vulgar fraction whose denominator is not unity followed by

a number of zeros, the same principle combined with the or-

dinary operation of division will suffice.

3B
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Thus, in the scale whose radix is 7, we have

=\( ) = i(.54) = .l6:
300 ^ VlOO/ ^

so, likewise in the nonary scale, we shall find

258 1= (258.00) == .45 : &c ;

527 527

whence we infer that any fraction whatever may be represented

after the manner of whole numbers, by affixing to the nume-

rator as many cyphers as may be necessary, and then effecting

the division of this result by the denominator.

The zeros may be affixed to the numerator as it stands ; or,

when the division has been effected as far as the place of units,

the remainder being then less than the divisor, if we affix a

cypher to it, we reduce it to units of the next inferior order,

and this will also be the denomination of the figure then ob-

tained for the quotient ; and so on.

347- Cor, 4. Should the division made in the manner

above prescribed never terminate, but the terms continually re-

produce one another in the same order, the quotient is termed

periodical, the figures which recur being styled its Period : and

the quantity is denominated a simple or mixed periodical frac-

tion according as the period commences at the first digit on the

right of the separating point, or afterwards.

Thus, in the scale whose radix is 5, we have

J = ^(1.000000 8ec.) = .131313 &c.

which is a simple periodical quantity : and in the denary scale,

we have

101 1 ,= — (10.10000 &c.) =.91818 &c.
110 11

^

which is a mixed periodical fraction.
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348. Every periodical quantity may be expressed exactly

by means of a Vulgar Fraction.

First, taking a simple periodical quantity where each

period consists of q digits in a scale whose radix is r, let

us assume

I.= .QQQ &c. ;

.-. by (342), ri'2=Q.QQQ &c.,

whence, by equal subtraction, we obtain

(r^-l)2 = Qand .-S-^^-:

next let the quantity be mixedly periodical, in which P and

Q consist of |) and q digits respectively : and then let us make

'S.^.PQQQ &c;

.-. rP+9'2 = PQ.QQQ &c., and rP-2 = P.QQQ &c :

whence, taking the difference of these two expressions, we find

PQ-P
(jP + q-rP) '2 =PQ-P and 2=

rP(r9-.i)

349- If the radix of the scale be given^ the digits express-

ing any proposed fraction in that scale may be found.

As before, taking the general formula for fractional quan-

tities, we have

iV=:a_ir-^4-a_2r-- + o_3r-^ + &c. + a_^r-'"

=—- 4- A + &c. H :

r r' r"

and from this it is required to determine the digits

ct„i, a.^^_-, <i_3j &c., a_^:
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«_2 "-s ^-m
now r A'=rt_i + 1- —rr + &c. + ——,

:

T T

&C

which results demonstrate that the first, second, third, &c.

digits, reckoned from the separating point, are the integers in

the products which arise from multiplying the fractional parts

of iV^, rN, T^Ni &c, successively by r.

Ex. 1. Let it be required to express .015625 in the octe-

nary scale.

Here we have N= .015625';

8A^= 0.125000, .-. a_i = 0,

8"iV= 1 .000000, .-. a_2= i;

hence .015625 in the denary scale is equivalent to .01 in the

octenary; and this may easily be verified, for, in the octenary

scale we have Oil
.01=-+—=— =• 015625.

8 8- 64

Ex. 2. Transform 14.125 from the denary to the duode-

nary scale of notation.

First, for the integral part, we have as in (323),

12 ) 14

12 ) 1 2 = a^,

1 = aj

;

.-. 14 denary = 12 duodenary:
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again, for the part which is fractional,

.125

12

we have

1.500, .-. a_^ =

12

6.000, .-. o_2= 6;

whence the required duodenary expression will be 12.16, the

correctness of which may be shewn as before.

350. Cor. Hence any fraction or mixed quantity may be
transformed from a scale whose radix is r, to another whose

radix is /, by first expressing it in the denary scale, and then

transforming the result into the scale whose radix is /.

3-51. We shall now proceed more particularly to apply

the principles laid down in the preceding pages to what are

termed Decimal Fractions or Decimals, and Duodenary Arith-

metic or Duodecimals : to the former by investigating the rules

by which all the operations upon them are performed, and to

the latter by exhibiting the solutions of such instances as are

most frequently met with in practice.

III. Decimals.

352. Def. In the denary scale of notation we have seen

that any number N may be expressed by

0^10"'+ a^-i 10"-'+ a„_. lO'^-H &e. + tto 10- + a, lO' + a^io",

whenever it is an integral quantity ; and in this the local value

of each digit increases in a tenfold proportion from the place of

units: wherefore if we continue the terms of this formula to the

right from the same place, so that we have

iV=o^lO"'-|-a„_ilO'"-i4 &c. +a, lO' + ff^loVrt-ilO-'

+ a_2l0-- + &c.,
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it is obvious that

o„ lO^+o^.j 10"'-^ + &c. + Ci 10'-{-a^ lO"

representing whole numbers, the remaining part of the ex-

pression

fl_, 10-^ + a_2 lO-^-h&c. or -^ + -^ + &c.
^ ^

10 10-

will be Decimal Fractions, so called because the denominators

are all powers of 10 ; and the local value of every digit towards

the right hand manifestly decreases in a tenfold ratio.

Thus, if the integral and fractional parts of the expression

be, as before, separated by a point, and a_,, a_2, «_3, &c. be

taken to represent the digits 1, 2, 3, &c., we shall have

a , a .-, a
-J

10
+ -^' + ~ + &c. = .123 &c.

;

10* 10-*

wherein it is evident that 1 denotes one tenth, 2 two hundredths,

3 three thousandths, &c. of an unit, the local value of each digit

being one tenth part of that which immediately precedes it.

353. Cor. Hence, decimal fractions, which are expressed

as whole numbers with a point placed to their left hand, are

in reality equivalent to vulgar fractions having 10 and its

powers for denominators, so that if P be a magnitude consisting

oi p decimal places, its value expressed as a vulgar fraction is

P
10^'

_, 1 5 15 4 7 47
Thus, .15= — + =

; .047 = +
10 100 100 100 1000 1000

2 6 3026
3 . 026= 3 + i

= ;

100 1000 1000

2 8 28
. 280= — + = = . 28, &c.

10 100 100
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It appears, therefore, that placed after a decimal fraction

does not alter its value ; but placed before it, diminishes the

value of each digit tenfold.

354. The reduction of decimals to common denominators,
being equivalent to that of the fractions which represent them,
will manifestly be effected by making the numbers of digits to

the right of the decimal point the same in each : thus,

7 5 875 8750
8. 75= 8 + — + —= = -^,

10 100 100 1000

2 7 3 6273
6.273 = 6 + — + + = ;

10 100 1000 1000

8750 6273
.'. 8.75 and 6.273 so reduced, are equivalent to and ;^

1000 1000

which, by indicating the denominators by points, become 8 . 750

and 6.273 respectively.

In this manner, decimals are prepared for the operations

of addition and subtraction.

Ex. 1. Required the sum and difference of 73.5083 and

29 . 327386.

Here 73.508300 also 73.508300

and 29.327386 and 29-327386

the sum = 102 . 835686, and the difference = 44 . 180914

:

and the following rule is universal

:

Place the digits in such a manner that those of the same

denomination may all be in a vertical line, and take the sum or

difference as in whole numbers, the decimal point in the result

being placed immediately under those in the quantities pro-

posed.
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Ex. 2. What is the product of . 287 and . 305?

, , 287 , 305
Here we have . 287 = and . 305 =

1000 1000

, . - 287 X 305 87535
.-. their product = = = . 087535:^

1000000 1000000

which has obviously as many places of decimals as are contained

in both the multiplicand and multiplier together.

Ex, 3. Let us suppose . P and . Q to contain p and q
decimals respectively; then, as has been shewn in {S5S),

P Q.P= — and .Q= —

:

10? 10?

.'. the product =. P x . Q= — x
IQP 10? 10? + ?

from which may be immediately deduced the general conclusion,

that the multiplication of decimals is performed as in whole

numbers, and that the product comprises as many decimal

places as are found in both the multiplicand and multiplier.

Ex. 4. To find the product of two mixed quantities as

7 . 854 and 23 . 82, we have, however, no occasion to suppose

them reduced to their corresponding vulgar fractions: for since

the values of the digits in the units'* place are always absolute

values and not affected by their situation, the denominations

of the results arising from multiplying by the digits in other

situations, may be decided by them: thus,

the multiplicand = 7 . 854

the multiplier = 23 . 82

157 .08

23 562

6 2832

. 15708

the product =187. 08228 ; and in this operation the
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multiplication by 3, which is in the units' place, is supposed to

be first performed, and the other lines begin successively one

or more places to the left or right of this, according as they

are the results of multiplications by whole numbers or fractions.

Ex. 5. To divide 4.104 by 3.42, we have in vulgar

fractions

4104 , 342
4. 104 = and 3 . 42 =—

;

1000 100

, . 4104 342 4104 100
.*. the quotient = : = X —

1000 100 1000 342

1 410400 1200
= X = =12'

1000 342 1000

and here having affixed to the dividend as many cyphers as we

please, and performed the division as in integral quantities, we

observe that the number of decimal places in the quotient is

equal to the excess of the number in the dividend above that

in the divisor.

Ex. 6. Generally, let the dividend . P and divisor . Q
contain p and q decimal places respectively ; then we have

P QP= — and .Q = -^
lOP 10?

the quotient

P Q P 10^ P 1 P= -^ =— X — = — X , or — X 10?-',
lOP ' 10? 10? Q Q 10P-? Q

according as p is greater or less than q :

first, let p be greater than q ; then we see that after the di-

vision is effected as in whole numbers, the quotient must

comprise p — q decimal places;

next, let p be less than q, and it is then evident that

we must affix to the quotient obtained as before, a number

of cyphers =?— p, and the result will be whole numbers.

3C
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Ex. 7. If . P represent a quantity consisting of p deci-

mals, which is to be raised to any power, then since . P=—-

,

we have

P^
the square of . P=—— , which has 2p decimals

;

the cube of .P=—-, 3p ,

and so on : and conversely, every quantity considered to be

the square, cube, &c. of a decimal, must comprise a number

of decimal places equal to some multiple of 2, 3, &c. respec-

tively ; and the numbers of decimal places in the roots will

obviously be one half, one third, &c. of the numbers in the

quantities proposed.

355. Cor. If we have two or more quantities, as J/ and A^,

containing m and 91 decimals respectively, and m' and n of

such decimals only be taken into consideration, we may easily

find the errors which will be occasioned in each of the ope-

rations by such a mode of proceeding.

Thus, by expressing the quantities proposed by means of

M
vulgar fractions, the true values of M and N will be

N .
'

and — respectively : and if M' and N' denote the first m'
10" ^ ^

and n digits of M and N respectively, we shall have the

approximate values equivalent to

M' ^ N'
, and ;

10"" lO"'

M N
.-. the true sum = + —

,

10'" 10«

M' N'
and the approximate sum = —~ H -.

:
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M N M' ^'

10" lO"
"" 10^ ~ 10'*'

whence the error = 1

similar steps may be taken whatever number of quantities

be added together ; and, in the ease of subtraction, they will

not be different.

Again, the true product = ^ ,
10"

M'N'
IQWI'+ m/'

whence the error

MN M'N'

and the approximate product =

10"*+" lO"*'

Alsoj the true quotient = — -,

M'
and the approximate quotient = —^, _ ^, ;

the quantities m and m being considered respectively greater

than n and n':

wherefore the error

M M' 1 { M M'i
10"- "iV

M' _ 1 ^ M M'I

io'"'~"'iV'
~ 10'"'""' )io"'~'*~'"'+"'iNr'~ JV' \

Similarly, for the operations of Involution and Evolution

upon either of the quantities M and N.

356. Def. Circulating or Recurring decimals are those

wherein the same figure or set of figures is indejinitely

repeated: the quantity repeated is styled a simple or com-

pound Repefend, according as it consists of one, or two or

more figures, as .333 &c., .232323 &c., .135135 8ec., and it

is sometimes distinguished by means of a simple point or dot;

thus, .3 &c., .23 &c., .135 &c., are equivalent to the quantities

above written.
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Any finite decimal may be considered as a recurring one

having for its repetend.

If the decimal consist of a part which does not recur, it is

called a mixed circulating decimal.

357- CoR. Circulating or recurring decimals are therefore

equivalent to quantities forming indefinitely extended geometri-

cal progressions, having either — , or some powers of it, for

their common ratios : thus, in the instances above given,

3 3 3
.333 &c. = — + —z H ; + &c. in infinitum :

10 10* 10'
-^

23 23 23
. . „ .

.232323 &c. = —^ + . + —^ + kc. tn infinitum

:

10^ 10* 10^
-^

135 135 135
, „ . . ^ .,

.135135135 &c, = —- H « H „ + 8ec. m infinitum:
10' 10^ 10^

'^

and their treatment will consequently be reduced to the ma-

nagement of the sums of such geometrical series, as found by

article (270) in a preceding Chapter.

358. To express the value of a recurring decimal by

means of a Vulgar Fraction.

Here it is obvious that we have merely to find the sum
of the infinitely continued geometrical series, which is equiva-

lent to the proposed recurring decimal, by means of the formula

n.

2 =
l — r

and the method adopted in the following examples manifestly

amounts to the same thing.

Ex. 1. To find the value of .999 &c. in infinitum.

Assume 2 = .9999 &c. in infinitum;

.-. 102= 9-9999 &c. in infinitum:

.'. 102— 2 or 92= 9, and .-. 2=1, the value required.
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Ex. 2. Required the value of .2525 &c. in infinitum.

Let 2= .2525&c.; .'. 100 S= 25.2525 &c.:

25
whence by subtraction, we have 992= 25, and .-. 2 = —

:

99
which may be verified by actual division.

Ex. 3. What is the value of .PPP &c. in infinitum,

where P contains p digits ?

If ^ = .PPP &c., then will 10^ 2= P.PPP &c.;

P
.-. (10^-1)2 = P, and 2 =

10?'—

1

that is, the equivalent fraction has the repetend of the pro-

posed quantity for its numerator, and as many 9's as there

are figures in it, for its denominator.

P . .....
Conversely, — is convertible into a circulating deci-

mal, wherein p digits recur.

359. If the decimal contain other figures prefixed to those

which recur, its value may be expressed fractionally by an

extension of the same process.

Ex. 1. What is the value of .1666 &c. in infinitum f

Assume 2= .l666 &c. in infinitum:

then 100 2= 16.666 &c. and 102 = 1.666 &c.;

^ 15 1

wherefore 90 2= 15, and thence 2 = — = ^.
90 6

Ex. 2. Let the decimal proposed be .7485353 &c.;

then 10^2= 74853.5353 &C.,

and 10^2= 748.5353 &c.;

74105 14821
99000 2 = 74105, and 2 =

99000 19800
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Ex. 3. Generally, if the decimal be .PQQQ &c. wherein

P and Q contain p and q digits respectively

;

let ^ = .PQQQ &c.;

.-. lOP+i^E^PQ.QQQkc. and l0^2= P.QQQ&c.;

.-. (loP +9-ioP)^ =PQ-P,

PQ-P PQ-P
and 2 =

IQP-^g—loP 10P(10?-1)'

which is a general theorem, wherein P denotes the number that

does not recur, and PQ the non-recurring and recurring parts

together.

PQ — P
Hence, conversely, a fraction, of the form ——z ,

•'' '
10^(10'^' — 1)

will be convertible into a mixed circulating decimal, wherein

p and q are the numbers of digits in the non-recurring and

recurring parts respectively.

360. The last two articles and the examples appended

to them, enable us to express the values of all recurring

decimals in fractional forms; and the addition, subtraction,

&c. of such quantities will be effected by the performance of

the same operations upon their fractional representatives.

Ex. 1. Required the sum, difference, product and quotient

of the circulating decimals .999 &c. and .1666 &c.

1 7
Here, the sum= .999 &c. + .1666 &c. = 1 + - = - = I.1666 &c.:

6

1 5
the difference= .999 &c. — .1666 &c. = l — - = - = .8333 8ec. :

6 6

the product= .999 &c. x .1666 gjc. = 1 x - = - = .1666 &c.:
6 6

the quotient= .999 &c. -r- .1666 &c. = 1 -r - = 6 = 6.000 &c.
6
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Ex. 2. What are the square, cube, &c. of .333 &c. ?

3 1
Here, by (358), we have .333 &c. = - = - :

9 3

.'. the square= I - ) =-=.111 &c.

;

the cube = ( - ) = —= .037037 &c.:
\3/ 27

the fourth power= .012345679012345679 &c. ; and so on.

Ex. 3. Required the square root of .02777 &c.

By (359), we have .02777 &c. = — ; and therefore the re-
36

quired root = - =.1666 Sec: and similarly of other roots.

361. Every vulgar fraction in its lowest terms may be

converted into a recurring decimal, except it be of the form

a

2P59'

For, the fraction being in its lowest terms, and the only

factors of 10 and its powers being 2 and 5 and their powers,

it is obvious that if cyphers be affixed to the numerator, the

result of the division by the denominator can never terminate,

unless that denominator be composed of powers of one or both

of the numbers 2 and 5 : or, in other words, unless the fraction

be of the form

a

2P5?*

a
362. CoE. 1. Hence every fraction of the form -—- may

be expressed by a terminating decimal ; and it will consist of a

number of decimal places equal to the greater of the quantities

p and q.
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^ ., ,
o a5-^ a5P-9 a5P-l

For, if p be > a, —-— = —„- = ——— = ——-— , which
2^59 2P 2P5P 10^

therefore comprises p decimal places

:

a a2-P a2l-P a2^-P
and It p he < q,

——- = = ——-— = -— , which^ ^ 2P59 51 2?5? 10?

therefore consists of q decimals.

23 23
Ex. Thus, — = -5— = 1.15, which has two decimal

20 2-. 5

1 43 1 43
places; and — = ^ = .572 , comprising three places of

decimals.

363. CoE. 2. Every fraction in its lowest terms, whose

denominator is not of the form 2^5?, being convertible into

a recurring decimal, the number of the figures which recur

will always be less than its denominator.

For, in performing the division by the denominator, it is

evident that the remainder at every step must be less than the

divisor ; and, therefore, that one or more of the remainders will

recur before a number of digits has been obtained for the

quotient equal to the number of units in the divisor.

2
Ex. Thus, - = .666 &c., where the repetend consists of

one digit:

5
also, - = .714'285714285 &c., in which the repetend consists

of six figures.

a
364. CoE. 3. Since, by (362), —— may always be ex-

pressed by a terminating decimal of p or q places, according

as p is greater or less than 7, it follows that, if a and h have

a
no common measure greater than 1, the fraction will
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be convertible into a mixed circulating decimal, in which the

greater of the indices p and q will be the number of decimals

in the part which does not recur.

7 . 7 '

Ex. The fraction — , which is equivalent to s ,

180 ^ 2*. 5.9'

converted into a decimal, becomes .03888 &c.; wherein the

number of digits that do not recur is obviously 2.

365. CoR. 4. On the same hypothesis, the product of

a , c ac5P-l+''-'
and = ,

2P59b Z'B'd hdlOP^'
'

which will give a mixed quotient obviously containing p-\-r deci-

ac
mals that do not recur, if p + r be greater than ^ + s, and —- be

a fraction in its lowest terms ; and the contrary.

Again, their quotient = — —^— , which, on a smular

hypothesis, will produce a mixed quantity wherein there are

p — r decimals that do not recur : and so on, of their powers.

3 13
Ex. Let the fractions be and , which are equiva-

280 1100
^

3 13
lent to — and x— respectively: then their product

2^5.7 2-. 5". 11
r J

39
is , which expressed decimally becomes

308000 ^ ''

.00012662337662337 &c.;

wherein 5 = 3 + 2 of the decimals do not recur: and their

. 165
quotient is — = .9065

lo2

non-recurring decimals.

.165 • •

quotient is = .9065934065934 Stc, compnsing 1 = 3 — 2
lo2

3D
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IV. Duodecimals.

366. Def. In the Duodenary or Duodecimal scale of

notation whereof the radix is 12, the local values of figures

increase in a twelvefold proportion from the units'' place towards

the left hand, and decrease in the same proportion from that

place towards the right, analogously to what has been said

respecting whole numbers and fractions in the common or

decimal scale : and there belong to it twelve different digits,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t, u,

the letters t and u as before denoting 10 and 11 respectively.

In the same manner, therefore, as we regard the number 10

in the common scale of notation, the number 12 must be referred

to in this : or, in other words, we must carry one at every

twelve^ and borrow twelve instead of ten, &c., whenever the

operations require it.

This will be best illustrated by the examples to which the

scale is usually applied.

Ex. 1. Find the sum and difference of 75 feet 8 inches

7 parts, and 34 feet 10 inches and 4 parts.

First, we observe that, feet, inches, parts, seconds, &c.

being in order connected by the invariable factor 12, they may
all, except the first, be considered to be expressed in the duo-

denary scale of notation; and we must therefore transform the

common numbers 75 and 34 into the same scale : thus,

12) 75 12) 34

12)6 3 = ffo, 12)2 / = 6o.

6= ff,; 2 = 6,

;

whence the two proposed quantities expressed duodecimally,

are 63.87 and 2/.<4, the points separating the whole numbers

from the fractions, as in decimals ;
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.-. the sum = 6".'J.87 +2/.<4 = 92.6m;

but, since here 92 = 9. 12 + 2 = 1 10, the required sum expressed

in feet, inches and parts, is 110 feet 6 inches and 11 parts.

Again, their difference =63.87 — 2^.^4= 34.^3, which, in

like manner = 40 feet 10 inches and 3 parts.

Ex. 2. Required the product of 9 feet 8 inches 7 parts,

and 3 feet 10 inches.

Here the multiplicand = 9.87

and the multiplier= 3.t

snt

2519

.-. the product = 31.2^#= 37 feet 2 inches 10 parts

and 10 seconds, since 31 duodenary = 37 in the common scale.

Similarly of the involution of quantities of the same

denominations.

Ex. 3. Divide 402 feet 5 inches and 2 parts by 25 feet

5 inches.

First, 402 feet 5 inches 2 parts = 296 . 52 duodenary

:

and 25 feet 5 inches = 21. 5

whence 21.5) 296.52 (13.^ = 15 feet 10 inches.

215

815

643

1922

1922

Ex. 4. Required the square root of 763 feet 1 inch 8 parts

and 3 seconds.
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First, 763 feet 1 inch 8 parts 3 seconds expressed in the

duodenary scale, becomes 537-183; wherefore, pointing as in

common numbers according to (338), we have

537.1830 (23.76 = 27 feet 7 inches and 6 parts.

4

43) 137

109

467) 2^8

27^1

4726) 23730

23730

If the linear dimensions of rectangles and squares, of rectan-

gular parallelepipeds and cubes &c. be expressed in feet, inches,

parts, &c., their superficial and solid contents may be found

by processes similar to what have been adopted in these ex-

amples and conversely.

367. With respect to the advantages and disadvantages

of the various scales of notation which originate by assigning

diiferent values to r, it may be remarked, that it would ob-

viously be desirable in point of practical convenience to select

one wherein the number of figures expressing any given nu-

merical magnitude, might be confined within limits not very

extensive. This would further prevent excessive prolixity in

the execution of the arithmetical operations: and, by practice,

it soon becomes equally easy to perform these operations in

any scale, provided its radix be not a very large number.

As by (362) all terminating decimals in the common scale

are comprehended in the form ; *8o, in the senary scale,
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for instance, all such quantities would be comprised in the

form : but, within given limits, there are evidently

more multiples of 3 and its powers than there are of 5 and

its powers, and therefore the senary scale would appear to

possess an advantage over the denary, at least in the ex-

pression of fractional quantities. Similar remarks will be

applicable to the duodenary scale of notation.

The selection of the scale in common use was therefore

probably not made from a comparison of its merits with

those of other systems, but from some accidental circumstance,

which is now generally supposed to have been that of com-

putation among mankind having been first conducted by means

of the fingers of both hands; and hence the name of Digits

has been given to the figures in common use.

For a short account of this subject, as also of the nota-

tions of the Greeks and Hebrews, the reader is referred to

the article Notation in Barlow's Mathematical and Philo-

sophical Dictionary.



CHAP. XII.

On the different Forms and Kinds of Numbers, and the So-

lution of certain Arithmetical Problems dependent upon
some of their simple Properties.

I. General Forms of Numbers.

368. Def. General Forms of Numbers are certain

Algebraical formulae, which, by assigning successive values

to one or more of the letters contained in them, produce in

order all numbers whatsoever.

369. IfMbe assumed to represent any number whatever,

then may every whole number, however small or great, be ex-

pressed by one or other of the terms of the series

Mm, Mm+ l, Mm+ 2, Mm + 3, &c., Mm+(M-l),

by assigning a proper value to m.

For, every number whatsoever must either be exactly

divisible by M, or must leave for a remainder one or other of

the numbers

1, 2, 3, &c., (ilf-1);

and therefore if a proper value be given to m, it manifestly

follows that every whole number will be comprised in the

above mentioned series.

The quantity M which characterises any particular set of

forms, is termed the Modulus, and its magnitude may be

assumed at pleasure.

370. Cor. 1. If we give to M, the values 1, 2, S, &c. in

succession, we shall have the following corresponding general

formulae

:
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Modulus. General Forms of Numbers.

1 w;

2 2m, 2wi + l;

3 3m, 3m + l, 3m+2;

4 4m, 4m+l, 4m + 2, 4m + 3;

&c. &c

and in each of these sets if m be made equal to 0, 1 , 2, 3, &c.

in order, we shall obtain all numbers whatever.

Thus, to the modulus 4,

if m=0, we get 0, 1, 2, 3;

if m = l, 4,5,6,7;

if m= 2, 8, 9, 10, 11;

&c

and similarly of the other forms : and it may be observed that

the number of different forms belonging to any modulus will

always be equal to the number of units in that modulus.

371- CoR. 2. Hence if we vnsh to express any given

number N by means of the given modulus M, we have only to

divide the former by the latter and to note the quotient m and

the remainder J?, for then we shall manifestly have

N=Mm + R.

Ex. Represent 257 by means of the moduli 6, 11 and 13.

First, 6 ) 257 11 ) 257 13 ) 257

42 5, 23 4, 19 10;

whence we have 257= 6 . 42 + 5 = 11 . 23 + 4= 13 . 19 + 10.
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372. CoE. 3. The number of forms, belonging to any

given modulus, may frequently be exhibited in an abbre^dated

shape by the change of an algebraical sign.

Thus, to the modulus 3, we have for all numbers whatever

the three following forms

Sm, 3m + 1 and 3wi + 2 ;

but since 3m + 2= 3 (w + 1) — 1 = 3m' — 1, if m' = m + 1, it is

obvious that all numbers are comprised in the forms

3m and 3ot4:1.

Again, to the modulus 5, we have the five forms

Bm, 5m + lf 5m + 2y 5m + 3 and 5m + 4,

which are likewise comprehended in the forms

5m, 5m ±1 and 5m + 2.

And generally, to the modulus M, the forms similarly be-

come Mm, Mm+l, Mm ±2, Mm + 3, &c.

373. Before we proceed further, we will illustrate the use

of these forms by applying them to the demonstration of a

few arithmetical theorems.

Ex. 1. The product of any two consecutive numbers is

even.

For, to the modulus 2, any two consecutive numbers may
be expressed by 2m and 2m + 1

:

.'. the product =2m(2m + l)=2(2m-4:m),

which is divisible by 2, and therefore is an even number.

Hence, also, the continued product of any collection of

consecutive numbers is even.

Ex. 2. The product of any two odd numbers is odd, and

that of any two even numbers is even.
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For, to the modulus 2, any two odd numbers N and N'
may be expressed by 2m + I and 2m' + 1:

.-. NN' = (2m±l){2m' ±1)

= 4imm' ±2{m + m') + l

= 2 \2mm' ±m±m'\ + li

which is of the form 2m + 1, and therefore odd :

again, to the same modulus, any two even numbers N and N'

may be represented by 2w and 2 m' :

.-. NN'=:2m'x2m= 2(2mm'),

which is obviously of the form 2w, and therefore even.

Hence, the continued product of any number of odd num-

bers is odd, and that of any number of even numbers is even

;

and the continued product of any number of odd and even

numbers together is even.

Also, any power whatever of an odd number is odd, and

of an even number even.

Ex. 3. The product of any three consecutive numbers is

divisible by 1.2.3 or 6.

For, every number may be expressed by one or other of

the quantities 3m, 3m + I and 3m + 2, m being indeterminate

:

first, let iVi= 3m, .-. N^=^3m + 1 and JV^3 = 3m + 2 :

and since, by the first example, N^ N^ has been proved to be di-

visible by 2, it follows that Ni N^ N^ is divisible by 1 . 2 . 3 or 6:

secondly, let iV^ = 3»* + 1, .-. JVg = 3m + 2 and N3 = 3m + 3

=3(m+l); whence iV^ iSTj being divisible by 2, we shall ob-

viously have N^ N^ N^ divisible by 1 . 2 . 3 or 6

:

3E



402

lastly, let N^ = 3m + 2, .-. N„ = 3tn + 3 = 3(m + 1) and

JVj= 3(m+l) + l; wherefore if m be odd, m + 1 is even, and

.-. N^ is divisible by 1.2.3: but if m be even, both N^ and N^
are divisible by 2, so that in each case the product N^ N„ JVg is

divisible by 1 . 2 . 3 or 6.

By a similar mode of proceeding it may be proved that

Ni No iVg N^ is divisible by 1 . 2 . 3 . 4 or 24 ; and generally that

N^ JVg N^ N^ &c. N^ is divisible by 1 . 2 . 3 . 4. &c. r.

From this we may conclude that all the coefficients of the

expansion of (l + on)"* are integral quantities, when m is an

integer, as has been proved in (192).

Ex, 4. If N be any odd number, then will (N'+3)(N*+ 7)

be divisible by 32.

For, if iV^=2m+l, we shall readily have (N-+3){N'+ 7)

= (4m- + 4m + 4)(4m- + 4w + 8) = l6(m^+m+ l)(m- + m + 2),

which is manifestly a multiple of 32, since the last factor

m- + m + 2, or m(m + l)-\-2, by Ex. 1, is always even.

Ex. 5. Every square number is of one of the forms 5m
or 5m + 1.

For, every number N is of one of the forms 5m, 5m ±1
and 5m + 2

;

. •. N^= (5my= 25 »»'= 5 (5 m'), which is of the form 5m :

or J\r2= (5m +l)^ = 25m^+ 10m + 1=5(5W- + 2m) + 1,

which is of the form 5m + l

;

or Ar-=(5m + 2)'= 25m- + 20m + 4= 5(5m' + 4m+ l) — 1,

which is of the form 5fn — l.

Ex. 6. The difference of the squares of any two odd

numbers is divisible by 8.
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For, if N and N' represent any two odd numbers ; then,

to the modulus 2, we may have

N=2m + 1 and N'= 2m + I:

wherefore N^ - N'^={2m-\-iy- (2m +1)'

= 4 (»»'— wi'* +m— m)

= 4,\m{m+l)-m'(m +l)\ ;

and the quantity within the brackets being, by Ex, 1, divisible

by 2, it follows that N^ — N'" is divisible by 8.

Ex. 7- IfNbe any number not divisible by 3, and p any

even number whatever, then will 'N^ + 2 be a multiple of 3.

For, every number not divisible by 3 is comprehended in

the formulae

N=3m±l:

.'. since p is even, we have by the binomial theorem

NP= {3m)P±p(3m)P-' + ?^^^^(3m)P-^±kc. + l;

.'. NP-\-2- {3m)P ±p{3m)P

'

' + ^^^~ ^ {3m)P--

±

&c. + 3,

which is obviously a multiple of 3.

Ex. 8. Every number and its cube when divided by 6

leave the same remainder.

For, to the modulus 6, every number is comprised in the

forms

6w, 6m+l, 6m±2, 6m±3:

of which the cubes are

(6my, (6my ± 3 (Gmf + 3 (6m) ± 1

,

(6my±6(6my' + 12 (6m) ± 8, (6m)' ±9(6my + 27 (6m) + 27;
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and when divided by 6, they leave the remainders

0, +1, +2 and +3,

respectively : in other words, all cube numbers, with regard to

the modulus 6, are of the same forms as their roots.

As in Example 5, it is easily proved that all cube numbers

are of the forms 4m and 4w4:l, or "tm and 7wi + l, or 9w
and 9»j + 1 : that every fourth power is of one of the forms

5m and 5w + 1 ; and that every fifthjpower terminates with

the same digit as its root, or that the fifth powers of all

numbers, with respect to the modulus 10, are of the same

forms as the numbers themselves.

II. Forms and Properties of Prime Numbers.

374. Def. Prime Numbers are those Avhich have no

divisors except unity and themselves, and therefore cannot be

divided into any number of equal integral parts greater than

unity ; and they are thus distinguished from numbers that are

com,posite.

Thus, 2, 3, 5, 7, n, 13, 17, ig, &c. are prime numbers.

375. Every prime number greater than 2, is of one of the

form^ 4m + 1.

For, to the modulus 4, every number may be expressed by

4m, 4m +1 or 4m + 2,

whereof the first and last being divisible by 2, cannot contain

any prime number greater than 2, and consequently every prime

number must be comprised in one of the remaining forms

4m + 1.
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Ex. Prime numbers of the form 4m+1 are 1,5, 13, 17* &c.;

and of the form 4?»— 1 are 3, 7, H, 19, &c.

376. CoR. Precisely in the same manner, to the mo-

dulus 6, it may be proved that every prime number greater

than 3 is of one of the forms 6m + 1 : and similar formulae, but

not of equal simplicity, may be deduced when other moduli are

adopted.

377- The formulae 4m + 1 and Qm + 1, which are capable

of expressing all prime numbers whatever by assigning proper

values to m, will, it is manifest from trial, comprise at the same

time other numbers which are not so ; and in fact, it is easily

demonstrable that no algebraical formula whatever can express

prime numbers only.

For, since, by {S69)y every number may be expressed by

the formula

wherein M may be any whole number whatever; if we sup-

pose that when x= m, there is obtained the prime number N^,

so that

Ni=Mm + R,

then, when x =m + nNi, we should, taking N^ to denote the

corresponding value of iV, have

N„= M{m-\-nNi) + R=zMm + MnN^ + R

= Ni-\- MnN, =^ (1 + Mn) JVi,

which is a composite number: hence, since x may represent

any whole number whatever, and such a value may always

be given to it as renders N a composite number, it follows

that there can exist no formula which contains prime numbers

exclusively.
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378. The number ofprime numbers is indefinitely great.

For, if possible, let there be a limited number of primes A'^i,

iV^2» &c-» -^w whereof N,^ is the greatest ; then it is evident that

their continued product

NiN„. kc.N„

is divisible by each of them : and consequently that

Nr N,. &c. N„ + 1

is not divisible by any one of them : wherefore, this number

must either be a prime number itself, or be divisible by one

which is greater than N^^; therefore, in neither case, is iV,, the

greatest prime number; or, in other words, both the number

and magnitudes of prime numbers are indefinitely great.

379. To determine whether any proposed number is a

prime or not.

If a number N be not a prime, it is evident that we may
have

N=ab:

now, if 6 = a, then N — a" and a^JN = a, or N is divisible

again, if 6 < a, it is obvious that 6 is < a^N^ and therefore N
is divisible by a quantity less than a^N:

also, if 6 > a, it is equally manifest that a is < ^JN; whence,

as before, N is divisible by a quantity less than »^N: and it

evidently follows that these conclusions will not hold good,

unless the number can be resolved into two or more factors:

in other words, we have obtained a criterion which will enable

us to ascertain whether a number is prime, which is the cir-

cumstance of its not being capable of division, by any number

either equal to or less than its square root.
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380. In the preceding articles of this section, we have

been considering the forms, &c., of numbers which are absolutely

prime, and it now remains to explain in what circumstances

two or more numbers may be relatively so.

Def. Two or more numbers are .said to be prime to one

another, when they have no integral common measure greater

than unity; as, for instance, 9 and l6 are prime to each other,

though neither of them considered by itself is a prime number

;

and the same may be said of 12, 25 and 49; &c.

381 . If the 'product ab he divisible by c, and h and c be

prime to each other, then will c be a divisor of a.

For, since 6 and c are prime to each other, their common
measure determined by the ordinary process must be 1 : that is,

we may have the following operation, 6 being greater than c

:

c)b(p

pc

d) c (q

qd

e) d (r

re

l)e(e

e

.'. we have b=cp + d, c = dq + e and d= er+l:

whence ab==acp + ad, ac — adq-\-ae and ad=aer-\-a:

•. ab— acp = ad, ac— adq = ae and ad— aer = a:

thus, since ab is divisible by c, we shall have ad so divisible;

.-. ac — adq or ae will be divisible by c; and thence ad—aer.
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or a, has c for a divisor : and a similar proof will be applicable

when h is less than c.

382. CoR. From this proposition, it is manifest that if c

be prime to 6 and greater than o, the product a 6 is not divisible

bye.

383. If two numbers he prime to each other^ they are

the least quantities that can express their ratio.

A a
For, if possible, suppose — = -

, where a and b are respec-
B b

bA
tively less than A and B: then will a = -— , and therefore B is

B
a divisor oi bA: but since, by the hypothesis, A and B are

prime to each other, we must have B for a divisor of h ; which

is absurd, because 6 is less than B :

A
whence it follows that the fraction — is irreducible and cannot

B
be expressed in simpler terms.

384. CoE. Hence, therefore, if we have the irreducible

A a
fraction — equal to the reducible fraction - , the terms of theB h

latter will be equimultiples of those of the former.

For, if d be the greatest common measure of a and 6 so

that a= da' and b= db\

we shall have - = — = — :

b b' B

but, by the last article, a' = A and b'=B; .'. a = dA and

b= dB, or a and b are equimultiples of A and B.

385. If two numbers be prime to each other, their sum
or difference is prime to each of them.



409

Let a and b represent the two numbers ; and, if possible,

suppose a and a + 6 to have the common measure d, such that

a—pd and a±b= qd: .-. +b= (q— p)d;

whence a and b have the common measure d, which is contrary

to the hypothesis : similarly of 6 and a ±b.

386. CoR. Hence, by a similar process, it may be made
to appear that a + b and a — b are either prime to one another,

or have the common measure 2.

387- If one number be prime to each of two others^ it is

also prime to their product.

Let the number a be prime to each of the numbers 6 and c ;

and, if possible, let a=pd and bc= qd: then since 6 and c are

prime to a or p d, they are each prime to d : also, since

b q
bc = qd, we have - = -

,

d c

and therefore, by (384), c is a multiple of d; that is, a and c

have a common measure d, which is absurd ; therefore a is

prime to ba.

388. CoR. 1. If a number a be prime to each of the

numbers 6, c, d, &c;, it will also be prime to their continued

product.

For, since a is prime to b and c, it is prime to their

product 6c; also, since a is prime to 6c and d, it is prime to

their product 6c d; and so on.

389. GoR. 2. If we suppose 6= c=:d= Sec, we shall

conclude that when a is prime to 6, it is also prime to 6*, 6%

&c., 6'": or, in other words, that if - be a fraction in its lowest
a

b" b^ 6"*

terms, — , — , &c., — are also fractions in their lowest terras.

a a a
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390. CoK. 3. If a, by c, &c. be each of them prime to a,

b', c , &c. ; then, by (388), a h c he. is prime to each of the

quantities a', 6', c', &c. and therefore to their product a'b'c &c.,

by the same article.

Also, if a= 6= c= &c. and a =h' = c=kc., then will

0-, a^, a*, &c. be prime to a'*^, a'^, a'^ &c, respectively; and if

«
. . . -3 a ( '^V

-7 be an irreducible fraction, the same may be said of I
~

) >

I— j , &c., ( — I > and also of -7^,, &c.

391. The investigation of the forms and properties of

prime numbers formerly engaged much of the attention of

mathematicians, but their researches have not been attended

with any very satisfactory results. It is quite foreign to the

object of the present performance to enter upon the specula-

tions of Feemat, Euler and others, respecting this subject,

and we shall therefore merely introduce one or two properties

to give the reader some idea of the nature of the discoveries

which they made.

392. If A represent any number whatever, and a, b, c,

&c. denote all the numbers less than 2A which are prime to it,

then will every prime number greater than the prime factors

of K be comprised in one or other of the forms

4Am + a, 4Am + b, 4Am + c, &c.

For, any number when divided by 4^, must necessarily

leave for a remainder one or other of the quantities

0> ±1» ±2, ±3, &c. 2^, as appears from (372):

whence, omitting all such remainders as are not prime to 4- A,
and retaining the rest as a, 6, c, &c., we shall manifestly have

all prime numbers greater than the prime factors of A com-

prised in the forms

^Am + a, ^Am + b, 4-Am + c, &c.
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Ex. If A = l, then a= l, 6= 0, &c. and all prime num-
bers are contained in the forms 4m + 1

;

if -4 = 2, then a=l, b= 3, and c= 0, &c.

;

whence all prime numbers greater than 2 are comprehended

in the forms 8m +1 and 8m+ 3: and so on.

393. If a and b be any two numbers prime to each other

^

each of the quantities b, 2b, 3b, Sec, (a— l)b, when divided

by a, leaves a different positive remainder.

For, if possible, let the two terms mb and nb have the

same remainder, so that

mb=:Ma + R and nb — Na + R:

then will (m—n)b= (M — N)a,

11/. ,*^ »T ('"--'*) ^ • 1

and therefore M—N= , an integral quantity:

but, since m— n is less than a and b is prime to it, therefore,

by (382), the latter member of this equation cannot be integral,

and consequently no two terms can have the same positive

remainder.

394. CoE. Since there are a — 1 different remainders each

less than a, it is obvious that these remainders include all the

numbers 1, 2, 3, &c., (a— 1).

395. If m be a prime number, the coefficient of every

term of the expansion o/ (1 + x)"", except the first and last,

is divisible by m.

For, the coefficient of the n^^ term of the expansion has

been proved in (l88) to be

m (to— l) (m — 2) . &c. (to — w+ 2)

1 .2.3.8ec. (w- 1)
'
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and it has been shewn in (192), that all the coefficients are

whole numbers when the index is such; therefore, since m
is not divisible by any of the factors of the denominator,

it follows that

(m—1) (m-2).&c. {m — n + 2)

1.2.3.&C. (w-1)

must, of itself, be a whole number ; and consequently the co-

efficient of every term, except the first and last, which do not

involve m, must be divisible by m without a remainder : but

the same conclusions do not follow when m is composite.

396. If m be a prime number^ and N be not divisible

by m, then will N™~^ — l be divisible by m.

For, by the last article, we have seen that

(1 + d?)'"— (1 + cT*") is divisible by m, whenever a? is integral

;

therefore, assuming 1 4- <r= iV, we shall have

N"* — 1 — (iV— 1)*" divisible by m, which suppose =.mQ^^

so that N"'-N=(N-l)"'-(N-l)+mQ^;

similarly, (N- !)"»- (iV— 1) = (iV-2)'» - (iV-2) +mQ„j,

(JV-2)"'- {N- 2) = {N- 3)"*- (iV- 3)+mQ3;

&c

and continuing this process, we obviously at length arrive at

l"'-l = {N-N)"'-iN-N)-\-mQ„, or = wQ„;

whence, by addition, iV*" - iV=m
{ Qj + Q2+ Q3 + &c. + Q„ .

^ |

,

and is therefore divisible by m.

but N"'—N being = N(N"'''^ — 1), whereof N is prime to m,

it remains only that N"'~^ — 1 is divisible by w.
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397- Cou. 1. Since N'^—N is divisible by m, it manifestly

follows that JV"', when divided by m, leaves the same remainder

as N divided by m leaves.

398. Cor. 2. Because all the numbers 1, 2, 3, 4, 8ec., wi— 1,

are prime to m, each of them when substituted for N will

iV"'"-^—

1

render the expression =n, a whole number: and
m

since «i—l is necessarily even, there will evidently be m—

1

values of iV^ comprised between the magnitudes — ^w and ^wi,

which answer the same condition ; or N may be any one of the

quantities

+ 1, ±2, +3, +4, &c., +l(m-l).

399. Cor. 3. Having proved that is a wholem
number, as w, we shall obviously have iV*""^ of the form

mn-\-l; and consequently every power of N whose exponent

increased by 1 is a prime number, will be of the form mn
or mn + ly according as N is or is not divisible by m.

Thus, iV^ is of the form 3w or 3n + l:

N^ 5^ or 5n + l:

N^ 7n ov 7»+l:

iV^° Un or llw + 1:

&c

400. GoR. 4. Since »i— l is an even number, we shall have

N"'-'^ - 1 = [N^^"^^^ + 1]
{N*""-'>-i5,

one of the latter factors of which must manifestly be divisible

by w, and consequently
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that is, every power of N, the double of whose exponent

increased by 1 becomes a prime number, is of the form mn
or mw + l, according as N is divisible by m or not.

Thus, N^ is of the form 5n or 5ti±l

N^ 7n or 7n±l

N^ lln or llw+1

N^ 13n or 13n±l

&c

The discovery of the singular Theorem demonstrated in

(396), is due to M. Peter Fermat, a celebrated French

mathematician, who was born in the year 159O: and the no

less remarkable one which follows was invented by Sir John
Wilson, who proceeded to the degree of Bachelor of Arts

in 1761, and subsequently became Fellow of St. Peter's College,

Cambridge, and one of the Judges of his Majesty''s Court of

Common Pleas : and its demonstration may most readily be

effected by means of a formula which is not very easily de-

duced from the principles of common Algebra.

401. If m be a prime number, then will the continued

product 1 .2 . 3 . &c. (m — 1), when augmented by I, be di-

visible by m.

By means of the Differential Calculus, or the Calculus

of Finite Differences, it is easily demonstrated that

n ^ . n(n—l)
1.2.3.&C. n^n" (n-l)" +— ^(w— 2V*-&c.

I

^
1.2 ^

^

to n terms, whatever whole number n may be

:

whence, if n be assumed = w — l , we shall have

1 . 2 . 3 . 8ec. (w- 1) = (m - 1)"*-^ - ^^ (m - 2)"* "

'

(m- l) (m — 2) ,+ 1 ^_1 d (^ _ a)"*-! _ Sje. to w - 1 terras

:

1.2
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but, since m is prime to each of the quantities w — 1, 7» — 2,

m— 3, &c., we obtain from Fermafs theorem, the following

results

:

&c
.

, ^ o o / ^ w— 1 (m—l)(m— 2)
.-. 1.2.3.&C. (w— l) = l +^^ ^ -&c.

1 1.2

(r^
*^— 1 ^ (w— 1) (m—2)tom-l terms +m{Qi Q„+^ ^ -Q,-kcA:

1
- 1.2 3 >

but, since »n— 1 is necessarily an even number, we shall have

m— 1 (m—l)(m — 2)
1 1 he. to wi — 1 terms

1 1.2

= (l-l)'»-^-l=-l:

.-. 1.2.3.&c.(m-l)=m5Q, ^-^2 + ^^

(\
^Q3-&c.}-l;

whence

1.2.3.&c.(m-l) +l=m{Qi ^3+^^ -Q3-&C.},

which is obviously divisible by m, as appears from (192).

402. Cor. 1. Since m— 1 is an even number, the con-

tinued product 1.2.3. &c. (m— 1) is equivalent to

r 2 3 s

l{m—l) 2(w~2) 3(w— 3).&c. {J(m— 1)}";

ided by w, manifestly leav

± {1.2.3.&C. J(«i— 1)}*,

which, when divided by w, manifestly leaves the same re-

mainder as
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wherein the upper or lower sign is applicable, according as

^(m—l) is even or odd, or according as m is of the form

4w + 1 or 4m— 1: consequently, in the former case we shall

have

jl . 2 . 3 . &c. 1 (m - l)p + 1, divisible by w;

and in the latter

{l .2.3. &c. l(w- l)j-— 1, divisible by m.

403. CoR. 2. By means of the former of these results,

it appears that every prime number of the form 4w -r 1 will

divide the sum of two squares without a remainder.

404. CoR. 3. Since, in the latter of the expressions de-

duced above, we have

{1.2.3. &c. -^(w— l)p-l

= 51.2.3.&C. I(wi-l) + l5 51.2.3.&C. I(m-l)-l5,

it manifestly follows, that when w is a prime number of the

form 4w — 1, it will divide one or other of these factors.

.-^ ^ „ 1.2.3.&C. (w-l) + l .

405. CoR. 4. Because ^^ , is an m-
m

tegral quantity, whenever m is a prime number, we shall

also have

1 .2.(m — 2).3.kc.(m — 3)(m—l) + l

m
1.2*.3.&c.(m-3)(m— 1) —

1

. ,
and .*. ^^ — , an mtegral quantity .

m
. 1.2-.3^&c.(m-4)(w.-l)^-l

similarly, , &c. may be proved

to be integral.

Sir J. Wilson's theorem furnishes a criterion for deciding

whether a proposed number be prime or not, but the magnitude

to which the continued product soon rises, renders it of much

less practical utility than the one given in (379).

t
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III. Resolution of Numbers into their Prime
Factors.

406. If any number N be divisible by the prime numbers

2, 3, 5, &c.. Pi q, r, &c. times respectively in succession, it is

obvious that N=2PSir/ &c. ; and if the primes be represented

by ff, 6, c, &c., we shall have the more general formula

N=a)Phlc' &c.

407- If a number he reducible to the form N = a''b''c' &c.,

where a, b, c, &c. are prime numbers, it will have (p + l)

(q+ l) (r+ 1) &c. different divisors.

For iV^ is manifestly divisible by every term of each of the

series

1, a, a^, a\ &c., o^ ; 1,6, b", 6% &c., 6? ; 1, c, c", c', &c., c*" ; 8zc.

which are j9 + l,7+l, r+1, &c. respectively in number

:

therefore it is divisible by every combination of the terms of

these series or by every term of their product ; and, by (307),

the number of terms in this product being

(p + i)(q+l){r + l)kc.,

it follows that the number of divisors of N is expressed by the

same quantity.

It is also obvious, from the manner in which they are

formed, that all the terms in this product are different from

each other.

Ex. To find the number of divisors of 252.

First, 2)252 3)63 7)7

2) 126 3) 21 1

63 7

sG
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therefore, 252 resolved into its prime factors= 2". 3*. 7 ; whence

the number of its divisors, itself being considered one of them,

is

(2 + 1) (2 + 1) (1 + 1) = 18.

408. Coa. 1. Conversely, to find a number having a

given number n of divisors, resolve it into the factors cT, y, z,

&c. : then, if we assume

xy^kc. = {p-\-l) (7+1) (r + 1) &c.,

the number required will be expressed by

a^b^c" &c. or a'-^ bV'^ c^-' kc:

and it will obviously be the least when a, 6, c, &c. are equi-

valent to 2, 3, .5, &.C. and the indices are taken in the order of

their magnitudes, beginning with the greatest.

Ex. Required a number having 15 divisors.

Here, 15= 3 . 5 = a?y ; whence the number will be expressed

generally by a'b* ; and if a = 2 and 6= 3, the number 324 has

exactly 1 5 divisors, itself being considered one.

409. CoK. 2. Hence we may find a multiplier which will

render any number a complete rw*'' power.

For, if N=a^b^(f &c. be any proposed number, let the

required multiplier be P^a^b^c^ &c., so that

JVri>= a''+'6?+5'c'"+' &c.

may be a perfect m*^ power : then it is evident that each of the

indices p + <v, q-\-y, r-f-^, &c. must either be equal to m or

to some multiples of it, as am, fim, <ym. Sec. ; whence we

have

x= am—pi y = (im— q, z = ym — r^ &c.,

and therefore P= a«'»-p6fi«"-9c>""~'' &c.: and the least number

which will answer the purpose, will correspond to the least

values of a, /3, 7, &c. which render the indices positive.

Ex. Required a multiplier which will render 63 a perfect

cube.
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Here, 63 = 3 . 21 =3 . 3. 7; whence the required multiplier

= 3.7^ and the complete cube = 3^ 7^= 2l'= 926l.

410. Cor. 3. The sum of all the divisors of N will

manifestly be equal to the sum of all the terms in the con-
tinued product

il+a + a' + kc.+a^) (1+ fe+ ft^+ gcc. + 6<^)

(l+c + c'^ + hc + c") &c.

=(^)(^)(S) &c.

411. Cor. 4. The number of divisors of any number is

odd or even according as it is a square or not.

As before, if N^aPb^c" &c., the number of different

divisors will be

(p + l) (7+1) (r+l)&c.;

but if iV be a square number, it is obvious that the indices

jt>, g, r, &c. are all even numbers, and therefore the continued

product (p + 1) (q + l) (r + 1) &c. must necessarily be odd :

when iV^ is not a square, one at least of the indices p, q, r, &c.

must be an odd number, and therefore the continued product

(p -f- 1) (9 + 1) C** + 1) &c. will in this case be even.

Hence, the converse is also true.

412. Cob. 5. Hence, the number of different ways into

which N^aPlfid &c. can be resolved into two factors, will be

because every divisor has another corresponding to it, such

that their product =iV: and if N be not a square, this will

be an integer, since then the continued product is even ; should,

however, iV be a square, and therefore, the continued product

be odd, the number of different ways will be

iK/>+l)(7 + l) 0'-Hl)&c. + lJ,
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because then two factors are equal, and have been reckoned as

only one.

413. Cor. 6. If the number of different ways in which

N may be resolved into two factors prime to each other be

required, it is evident that if ?« be the number of the primes «,

b, c, 8ec. employed, we have only to make p = q~r:=kc. to

m terms = 1, and the required number corresponding will be

= 4 1(1 + 1) (I -r 1) (1 + 1) &c. to 7n factors} =2'"-'.

414. If ^ = a^h'^c^ &c., then ivill the number of integers

less than N, and prime to it, he expressed by

(a-l)(6-l)(c-l)&c. aV-^W-'e-^ &c.;

First, if we suppose (/ = r = &c. =0, and .-. N=aP, we

shall manifestly have the a^ whole numbers 1, 2, 3, 4, &c, aP,

not greater than N: and in this sferies it is obvious that every

a'** term is a multiple of a, and therefore not prime to A^, the

number of such terms as a, 2a, 3a, 4a, &c., aP~^ a, evidently

being aP~^

:

whence, of these the number which are not multiples of a is

=af-a/'-^ = {a-l)aP-' =N(^^y

Next, let r = &c. = 0, or N=aPb^; then it is evident

that the aP~^ multiples of a comprised in the numbers

1, 2, S, 4, &c., aP, being combined with each of the terms

1, b, 6^ &c., 69, will, by (307), give aP-^b^ numbers less

than N divisible by a: similarly, we shall have aPb^~^

numbers less than N divisible by 6, and aP~^bi~^ divisible

by ab; and it is manifest that these latter aP~^W~^ numbers

are likewise included in the two former sets : whence it follows

that there are less than N
aP-Hi — aP-^hi'^ z=(h-l)aP-^hl-^ numbers divisible by a

only, and
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aPbt -^ — ai'-'W-^ = {a-\)aV-'b'i-' numbers divisible by 6

only:

therefore the number of numbers less than N which involve

neither a, h nor ah, will evidently be

= aPbl— {h - \) aP-^h'i-^— {a- \) aP-^hi-^ — ai'-' bt-^

= (ab-a-b + l)aP-'bi-^

= (a-l)(6-l)a/'-^6?-' =iVr(^)(~);

and the same mode of reasoning, when N=^aPb'i(f &c., will

lead to the conclusion, that the number of integers, unity

included, less than N and prime to it, is expressed by

(«- i)(6-l)(p-l)&c. aP-'bl-^d'-^hc;

or

415. Cor. Hence, in (392), the number of forms of prime

numbers to any given modulus may be determined.

For, let ^A be the modulus used; then it is manifest

that the number of forms will be equal to the number of

integers that are less than 2 A and prime to it

:

now, if 2^ = aPWif &c., we have just seen that the number

of integers less than ^A and prime to it

which, therefore, expresses the number of forms of prime num-

bers to the given modulus 4J.

From this it appears, that the numbers having the least

numbers of integers less than and prime to their halves, may be

most advantageously employed as the moduli for forms ex-

pressive of prime numbers.

Ex. 1. Required the number of numbers less than 30 which

are prime to it.
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Here. 30 = 2.3 .5; therefore the number required will be

= sol 1 ( ) ( ) = 8 ; and the numbers are

1, 7, 11, 13, 17, 19, 23, 29.

Ex. 2. Required the number of forms for prime numbers

when the modulus is 20.

Here 10= 2.5; whence we obtain the number required

and the forms themselves will be

20m + 1, 20^ + 3, 20m ±7 and 207w4:9.

IV. Formation &c. of Polygonal Numbers.

416. Def. Polygonal Numbers are the sums of any

numbers of terras of certain arithmetical series in each of which

the first term is unity ; and they are distinguished into orders

dependent upon the common difference.

417. If the common differences of the arithmetical series

be 0, 1, 2, 3, 4, &c. we shall have, by means of the expression,

S = {2a + (w— 1) d\ -,

the general terms of the corresponding orders of polygonal

numbers equal to

n^ -\-n .2«' + 0w 3n^ ^n 4>n^ —2n
2 2 2 2

and the numbers themselves will be found by giving to n the

values, 1, 2, 3, &c. in succession.

418. Cor. l. Hence, if, for the sake of uniformity of sys-

tem, we designate a scries of units by the name of the first
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order, we shall have the following list of polygonal numbers,

in the orders to which they belong

:

Units, 1, 1,

Lineal Numbers, 1 , 2,

Triagonal Numbers,... 1, 3,

Quadragonal Numbers, 1, 4,

1, 1, 1, 1, &c.;

3, 4, 5, 6, &c.

;

6, 10, 15, 21, &c.

;

9, 16, 25, 36, &c.;

Pentagonal Numbers,

&c

1, 5, 12, 22, S5, 51, &c.;

and in this arrangement, if r be the denomination of the order,

the common difference of the corresponding arithmetic series

will be r — 2, and we shall obviously have the n^^ or general

term of the polygonal numbers of the r^^ order equal to

(r — 2) w^ — (r— 4) w

from which the polygonal numbers belonging to all the orders

may be derived, by assigning the requisite value to r.

Thus, the r-gonal numbers are l, r, 3r — 3, 6r — 8,

lOr— 15, i5r— 24i, &c.

419. CoR. 2. Numbers thus formed are termed polygonal,

from the circumstance of their capability of being represented by

the figures whose names they bear, the sides of the polygons

corresponding to the values of n in the formula above given.

Thus, if a dot be taken to represent each of the units in n,

we may arrange these dots, when the values of n are 1, 2, 3,

&c., in the following order

:

1. Points, &c.

2. Lines, &c.

3. Trigons,

4. Squares,

&c

&c.

&c.
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whiclj are perhaps fanciful representations from which their

names may have been derived, rather than arrangements having

any connection with the origin of the numbers themselves.

420. Cor. 3. If iV, denote any triagonal or triangular

number expressed generally by , we shall obviously

have

82^3 + 1=4 (n- + n) + l

= 4w' \-4>n-{-l— (2n + 1)-

;

that is, every triagonal number multiplied by 8 and increased

by 1, becomes a quadragonal or square number.

Again, if r= 6, we have the n*^ term in the series of hexa-

gonal numbers

4w' — 2'/i (2n— 1) 2w~
2

~
2

'

which is manifestly the (2n — ly^ term in the series of triagonal

numbers : and similarly in other instances.

421. Cor. 4. If the magnitude P,. of a polygonal num-
ber of the r"* order be given, its place in that order, or what is

usually termed its Root, may be found by the solution of the

quadratic equation

(r— 2) 7i^ — (r — 4) w

from which is obtained

r-i + ^8 (r-2) P +(r-4)-

2.(r— 2)

Ex. Required the place of .51 in the series of pentagonal

numbers.

In this instance, the denomination r of the order being 5,

we have

1+^8.3.51 + 1 1 + ^1225
n = ^^^ = -^ = ;

2.3 6

that is, 51 is the sixth in the order of pentagonal numbers.
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422. Tojind the sum of n terms of the t^ order of poly-
gonal numbers.

Since, by (418), the general term of the polygonal series

_ (r-2)n'-(r--4)n ^ (r-2) (n^--w)-f-2»

2
~

2

(r^ 2\

we shall manifestly have the sum of n terms of the said series

= {l.2 + 2.3+ 3.4+&c. + (n-l)nj j^^(
+ 1+2+ 3 + &C. + W:

but 1 .2= 1' +1,

2.3= 2' + 2,

3. 4= 3- + 3,

&c

(n— 1) w= (n— l)* + n— 1:

.-. 1 .2 + 2 .3 + 3 .4 + &c. + (w—l) w

= 1- + 2« + 3' + &C. + (7j_ 1)2 + 1 + 2 + 3 + &c. + (w- 1)

(w— l)w(2w— 1) (n— l)n , ,= -5^ ^—5^ L + ^^ i_ by (262),
1.2.3 2 ' -^ V >»>

(n— l)w(w+ l)
,

w(w + l)= :i^ i \-J-J-: also 1+2 + 3+&C.+W = ^ ^
;

o , Z

wherefore the sum of the polygonal series becomes

(w— 1) w (w + l) (r— 2) n{n-\-l)=
i2.3 2

_n{n + l) C(w- 1) (r— 2)4-3"

Ex. Let r be taken equal to 2, 3, 4, 5, 6, &c. in succes-

sion, and denoting the sums of the corresponding orders by

*^e' *^3j '^4> *^5? '^6> &c. we obtain

3H
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' '
~~

1.2.3

_ m(w + 1)(1w + 2)
o. — — ;'

1 .2.3

n(n+l)(2n + l)
04=3 —

1.2.3

n (n + l)(3n + 0)
S,=

1 .2.3

n (n+l)(4M— 1)
Sg=^ ; &c.

1 .2.3

423. The last article furnishes us with the means of ascer-

taining the number of Balls., Shot or Shells forming any

regular Pile.

Whenever a pile of balls is complete, it will manifestly

finish with a single ball, the number of horizontal courses

being the same as the number of balls in one side of the lowest

course : consequently, the numbers of balls constituting all such

piles, will be represented by the sums of the series of tri-

angular, square, &c. numbers, whose number of terms is equal

to the number contained in each side of its base.

Ex. 1. Find the number of shot in a finished triangular

pile, the number in one side of the base being 40.

Generally, for triangular numbers, we have

s,-
1.2. 3

»

and in this instance n -= 40:

. \ the number of shot in the pile=
40. 41 .42

1 .2. 3

11480.
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Ex. 2. Required the number of shells contained in a

square pile, whose side consists of 20.

TT 1 ^ X 1 r, n (n -\- 1) (2n + 1) ...
Here, by (422), we have S^= ^ ^

^
^, which

when n is made equal to 20, gives the required number

20.21 .41

1 .2.3
= 2870.

424. Con. 1. To find the number of shot in a broken pile

of the kind above described, we have merely to compute the

numbers which would be contained in the entire pile, were it

finished, and in the part which is wanting; and then to take

their difierence.

Ex. What number of shot is contained in five courses

of an unfinished pentagonal pile, when each side of the lowest

course consists of 12 .''

Since, by (422), Ss= ~ -, we have the number in

12 . 12 . 13
the whole pile = —'- '-— = 936 : also, the number which*^

1.2

would be contained in the part wanting will obviously be found

7.7.8
by making w = 12 — 5 = 7, and therefore = -^

—

— =196:

therefore the number in the broken pile =936— 196= 740.

425. CoR. 2. It is sometimes the practice to pile balls in

horizontal courses forming rectangles, which consequently finish

in a single row at the top : and it is manifest that the num-

ber of courses will, in such cases, be equal to the number of

balls in the breadth of the lowest, whilst the number in the

finishing row will exceed by 1 the difference of the number^

in the length and breadth of the base. The formula? above

referred to will not enable us to determine the numbers of

balls in such piles, but we may readily deduce one which

will answer that purpose.
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Let p and q represent the numbers in the length and

breadth of the lowest course, n the number of courses one

upon another: then will

p — l, q-'^'-, p— 2, q— 2; &c., p — n+1, q— n + 1,

be the numbers in the lengths and breadths of the second,

third, &c., n^^ courses: and the entire number of shot in

this pile will obviously be represented by

pq + (p-l)(q -l) + (p '-2){q -2)+ kc. + (p -n + l){q-n-hl)

=pq +pq~ (p+q) + l-+pq — 2(p + q)-\-2--^kc.

+pq-{n-l) (p^q) + (n-iy

^npq- jl +2 + 3 + &C. ^{n-l)]{p-\-q)

+ 1^ + 2- + 3- + &c. + (jl- 1)"

=npq—^-^(p-,q) +
;.,.3

= -j^pq-2(n-l)(p + q)+^ y
^

^^/ x^ .X (n-l)(w+l))
= -^(2p-n+l)(2q-n+ l) + ^

'-f
^^ ;

which enunciated at length is the common practical rule.

If n = q, or the pile be a finished one, we shall have

the number in the uppermost row=jp— ^ + 1; and the total

number in the pile

=|J(.p
,^,)(.-^o+

^^-'^^^-^"
;

and this, when q=Pi becomes

4 C^ ' 3 ) 1 .2.3
'

the number in a completed square pile, as shewn before.
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V. FOEMATION &C. OF FiGUEATE NUMBERS.

426. Def. Figurate Numbers are those, whose 7*"* or

general terms are comprised in the formula

n(n-\-l) (n + 2) (w + 3) &c. (n + r)

1 . 2 . 3 . 4 . &c. (r + 1)
'

and they are distinguished into the first, second, third, &c.
orders by assigning to r the values 1, 2, 3, &c. respectively.

427. Cor. 1. Hence, corresponding to the values 1, 2, 3,

4, &c. of r, we have, by making n equal to 1 , 2, 3, 4, &c. in

succession, the following orders of figurate numbers

:

First order; 1, 3, 6, 10, &c..

Second order; 1, 4, 10, 20, &c.,

71 (n + 1)

1.-2 '

n(n + l) (n + 2)

Third order; 1, 5, 15, 35, Sec,

1.2.3

n(n+l) (n + 2) (n + 3)

Fourth order; 1, 6, 21, 56, &c.,

&c ,

1.2.3.4

n(n + l)(n + 2) (n \-3)(n + 4)

1.2.3.4.5

and it is obvious that by similar substitutions for w, the r*

order will be

r + 2 (r + 2) (r + 3) (r + 2 ) (r+ 3) (r + 4)
1, , , , oCC,

1 1.2 1.2.3

(r + 2) (r + 3) (r + 4) &c. (r + n)

1 .2 .3 . &c. (w— 1)

"

428. CoK. 2. By the formula from which they are gene-

rated, it appears that the general terms of figurate numbers

of the first, second, third, &c. orders, are the co-efficients of the

w* terms of the expansions of (l +^)"+', (l +.i?)'*"^% (l +^y^^^

&c., respectively.
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429. // the (n + l)"* term of the r** order ofjigurate

numbers be multiplied by n, the product is equal to (r + 2)

times the n*'* term of the (r + i)''* order.

For, n times the (w + l)* term of the r* order

_ (n + 1) (?i + 2)(n + 3) &c. (n + r+1)~
1 . 2 . 3 . 4 . &c. (r + 1)

_ n(n + l) (w+2) (w + 3) &c. (w+r+1)
~ ^^ ~^

^
1 . 2 . 3 . 4 . &c. (r 4- 2)

= (r + 2) times the n^ term of the (r + l)*^ order.

430. CoK. From this article it appears that the n^^ term

71/

of the (r + lY^ order of fieurate numbers = times the
^ ' * r+2

(n + l)'** term of the r**^ order, and thus the terms of any order

may be determined from those of the order which immediately

precedes it.

431. If the n'^ term of the r'^ order ofJigurate numbers

he added to the (n + l)* term of the (r — l)'** order, the sum
will be the (n + l)* term of the r* order.

For, the n^^ terra of the r**" order + the (n + l)* term of

the (r—iy* order

_ w(n + l)(w + 2)&c.(7i + r) {n + l) (w + 2)(w + 3) &c. {n + r)

~
1 .2.3. 8ec. (r + 1) 1 . 2 . 3 . &c. r

{n + \) {n + 2) {n -f 3) &c. (?» + r) C 7i

>+l"^^31 . 2 . 3 . Sec. r

_ {n 4- 1) (n + 2) (n + 3) &c. (n + r) (w + r + 1)~
1 . 2 . 3 . &c. r. (r + 1)

'

which is obviously the (w + 1 f^ term of the r"" order.

432. Cor. l. By this proposition is immediately dis-

covered the law of the formation of the terras of any order by
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uieans of the terms of the preceding order; for, if to the n"*

term of any order there be added the (ii +1)"* term of the

next inferior order, the sum will be the (n + 1)"* term of that

order : and this will be found to obtain in the orders as stated

in (427).

433. CoE. 2. Also, since the first term in every order is

1, it follows that the second term of any order is equal to the

sum of the first two terms of the next inferior order : the third

term to the first three terms of the preceding order, and gene-

rally the n^ term of any order is equal to the sura of the first

n terms of the order which immediately precedes it. This will

readily be observed to be true by reference to the numbers

given in (427).

434. To Jind the sum of n terms of the r* order ofjigu-

rate numbers.

By reversing the latter part of the last article, we have the

sum of n terms of the r* order equal to the nH'^ term of the

(r + I)" order = «(" + (" + a) S''- (» + ^ + ')
.

^ ^
1 . 2 . 3 . &c. (r + 2)

Ex. If we make r equal to 1, 2, 3, &c. in succession, and

denote the corresponding sums by S^, S^, S^, &c. we obtain

n (n + 1) (n + ^)
^1 — 1.2.3

?

s,=
n(n + 1) (n-^ 2)(n + 3).

1.2.3 .4
»

s,=
n(n+l) (n + 2) (n + 3) (n + 4)

1 .2 3.4 .5

8ec...
•>

435. Since the figurate numbers of different orders are

composed of the sums of series of polygonal numbers, they may

be conceived to form pyramids in the same manner as a series

of polygons each less than the other, but of the same number
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of sides when applied to one another would form a pyramid,

and on that account it was formerly usual to term them
Pyramidal numbers of different orders.

436. The connection subsisting between figurate num-
bers and the expansions of binomials alluded to in (428),

induced the earlier mathematicians to pay considerable atten-

tion to the laws of their formation, by means of which they

obtained the expansion of one power from that which imme-

diately precedes it, the sets of numbers

1, 1, 1, 1, 1, 1, &c.;

1, 2, 3, 4, 5, 6, &c.;

1, 3, 6, 10, 15, 21, &c.;

1, 4, 10, 20, S5, 56, &c.;

1, 5, 15, 35, 70, 126, &c.;

1, 6, 21, 56, 126, 252, &c.;

&c....

whether read horizontally or vertically being termed Binomial

Columns.

Instead of the law of their generation being deduced from

their general forms as was first done by Legendre, the forms

of figurative numbers Avere then determined from the con-

sideration of the manner in which they were produced, which

added greatly to the difficulty of the subject; and in this

point of view it was treated by Fermat and others ; but the

demonstration of the Binomial Theorem in its present shape

has now rendered these numbers matters of curiosity rather

than of use.

For much important information upon the subjects briefly

treated of in this Chapter, the reader is referred to the Essai

sur la Theorie des Nombres par A. M. Legendee, and to

Barlow's Elementary Investigation of the Theory of Num-
bers.



APPENDIX.

EXAMPLES FOR PRACTICE

CHAP. I

When the symbols a, 6, c, rf, e, &c. are assumed as the

Algebraical representatives of the natural numbers 1, 2, 3, 4,

5, &c. it is required to prove that

1. 2a + 3b-4>c + 7d= 24>.

2. 5ab + 7bd-8ac+l5cd= 222.

3. (I2a-6)(25a — 3c)(30a— 5d) = l600.

4. a- + 6-— (c + rf)--r3e- — e/=l.

^ 2d- — e' Sad — 5b 7
5. — + = 1 - .

de 2 20

6. ^2{a- + ab-tb-) + 3{2c— d)-— be= 4>.

7- >^10a^ + 7«-& -a6"+ 3a^c + 6d- + rf^ = 5.

8. In Algebra, the quantities concerned are denoted by

the letters of the alphabet and the operations performed upon

them by signs invented for the purpose.

9. When the signs + and — are placed before any

quantities, which are therefore sometimes termed additive and

subtractive, they may be considered to express the qualities

or affections of the said quantities.

10. If a, b and ,v be taken to denote the numbers 21, 17

and 4, the expression, " the excess of 21 above 17 is 4", may be

symbolized by a — 6 = <r.

3l
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CHAP. II.

I. ADDITION.

1. The Algebraical Sum of \2a + 5c + 17rf + 136, 8a +
12&+15d + 8c, llc + 15a + 236 + 10d and 4rf + 3a + 206 + 18c

is 38a + 686 + 42c + 46(/.

2. Of 15a + 146-}-13c+17c?+18, 3a + 126 + 17c + 20rf

+ 14, and 18a+286 + 4e + 24d + 44 is S6a + 546+ 34c + 6ld

+ 76.

3. Of rt6 + 4a.r + 3ci/+ 2e«, 14oa'4-20c« + 19a6 + 8cy

and 13cy + 21e.??-f 15acr+ 24a6 is 44a6 4-33air+ 24cy+ 43esr.

4. Of a + 6 + c, + 6 — c, a-{-c— h and 6+ c — a is 2a

+ 26 + 2c = 2(a + 64-c).

5. Of 5a + 36— 4c, 2a-56+ 6c + 2d, a— 46 — 2c + 3e

and 7a + 46— 3c — 6e is 15a— 26— 3c + 2d- 3e.

6. Of 3a^ + 2a6 4-46", 5a^— 8a6 + 66=, — 4a= + 5a6 — 6%

18a-—20a6— 196^^ and 140*— 3a6 + 206" is 36a-—24a6 + 106\

7. Of 40?^- 5aa?= + 6a'j?— 5a^, 3a?^ +4aa?^ + 2o-a' + 6a',

— 1711?^ + 19aa7=— 15a-d? 4-8a', 13aa?= — 27a-a? + 18a^ and 12.r'

+ 3a=.r - 20a' is 2a?^ + 31 aaP^ — 31 a" a? + 7a^

8. Of 5.ry-7e;:r+ 18aa?— 146y, 3a?y—5cd+ 11 e^+14e^,

13acr?4-20eg'— 35cd+ 18 and 25^??/ — 15eg- + 96y — 12a<r is

SSxy + lez-\-\9aa!- 56y-40cd + l6e^+18.

9. Of 10a^6— 12a^6c— 156'c*+ 10, — 4a=6 + 8a''6c

—

106= c* — 4, — 3a=6— 3a'6c + 206^c'*— 3 and 2a'6+ l2a'6c +
56= c* + 2 is 5a'^6 + 5a'6c + 5 = 5(a-6 + a^6c + 1).

10. Of 13(a +c)a?'— 14y- + 20, 15y^ — 20acC + I6 + 5.vy,

10 + 4(a— c)a?- + 4y=— 10a<r and — 17a.r= — 9ca'= — 18cri/+ 10y=

is 15y=— 30a<r— ]3cTj/ + 46.
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11. Of aco'" + bai" - c.vP+ rfa'^ - 6a.>"'+ ax" - dx'' - e.r»,

(e + /) X'" + (6 + c) a'P + x'/ and (c - a) .r"* + Aa?P - (rf + e) afl is

((. + e +/- ft) .r"' + (o + 6) cP" + (ft- d + A) a?P + (1 - 2e) .r».

12. Of (2a + 6)a?' + 4 (3c+ rf) a?y-7(ar+6(/)y, {^a-Sh)

X- + 4(3</— c)cri/— 4(ac 4 Sbd)y^ (a + 4ft)a>' + 4(2rf— 4c) a?t/

— 8 (3ac + 4ft</)2/ and (3a— 26)0?- + 4(4rf— 3c) '.ly— 8 (4ar

+ 5bd)y is lOaa?^ + 4(l0rf -5c).ry- (67ox- + 9lftd)f/.

13. Of (2a-3ft)aj? + (5a-3c).ry-(4o + 5)6y, {5a-

26 + c)aa,>— (8a + 3ft-2c)ft2/+ {3a — 2h)xy^ (2a— 5).Ty +
(4ft-3a + 7c)aa,' — (6ft— 4a + 20)ft?/ and — (4c— 3a — 9ft)fty

+ (6 — 4a— 8c)aa? + (a + 3c).ry is (11a- 26 — 5).ry— (5a

—

2c— 25) by.

II. SUBTRACTION.

1. The Algebraical Excess of 60*^+ 12 aft+ 196' +c- above

4a^ + Baft + 136- is 2a- + 4a6 + 6ft'^ + c-.

2. Of lla^ + 12a6 + 46^ + 7ac + 9c^ above 7a' + 19a6 +

56^ + 13ac + 2c^ is 4a- — 7a6— 6^ — 6ac + Ic^.

3. Of 5a' + 4aft— 3ac + ftc— 3c- above Sar -^-Sab -^^ 3bc

— 20^ is 2 a^ — Sac + ab — 2bc — c".

4. Of 12cr + 6fl — 46— 12c-7e — 5/ above 2.i'— 3a + 46

— 5c + 6d— 7e is lOa? + 9a-8ft— 7c— 6d — 5/

5. Of 28aa?'— l6a-<i- + 25a^a? - 13a* above 18aa?'

+

20a^a7-— 24a^A' — 70** is lOaci?'' — 36a-a?- + 49a\T? — 6a*.

6. Of 8 a-xy — 5b x"y+ 17cxy" — 9y^ above a^xy+Sbx^y—

IScxy- + 20y^ is 7a-a,'?/ — 8 6a?^y + 30ca?y^— 29y^

7. Of 2 a.x'*— (ft + ac) x^ -i-(a-\-c) x" —{b + d) x above

ax^ — acx^ + ax^ — bx is ax* - 6.1?"' + cx^ — dx.

8. Of ax^— bx--{- ex — d above .r'— pjr" + qx — r is

(a— 1 ) .v^ —(b-p) x" + (c - 7) '^ - (^^ - ')•

i
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9. Of V29a^— 11 a (a- + b') + 10 (b -f- c) ax - 86^ above

5-ia^— 27a (a- + 6^) + 14(6 +c)at2?— 136^ is 75a^-M6a(a- + 6*)

— 4 {b^-c) a.v-\-5b^.

10. Of (a= + be) or - (a« - c') fto- + (ae + fg) xy +

7 (a*—

5

6*) above 6 ca?"— (a-— b")bx—(cd —fg) xy— 35 6* is

a-.r- — (6-— c^) b.v-{-(ae + cd) xy + 7 a*.

11. Of (2a?- -4- Say) y- + (125c- — (f) xy — 4cd (y" — x")

— 25 cd above (a?" — ay) y- — 25 (o*— 5 c") a-^/ + \3cd {x" — y"^)

+ 50 ce is (x" 4- 4 ay) y' + (25 a^— d") xy — 9cd {x^ — y') —
25c (d + 2e).

12. Of 2a? (x-+ax+a^)-3y (y--by+b'') +4>z (s^-C^)

above a? (a?-— aa? -fa^) + 2y {y' -{- by -\- b") — 3z (c" — z'') is

a* (.r* + 3ax + a")—y (5y- — by + 5b') + % (ss^— c').

III. MULTIPLICATION.

1. The Algebraical Product of ax'y^ by bxy is abx^y^.

2. Of wi.r- hy ~nxy^ is — m7ix^y^ and of— aca? by —2ayz

is 2a'cxyz.

3. Of a" + aa? + a?^ by ir'y"' is arx'y" + ax^y' + a?*y- and of

a?'— a?y H- y^ by — a-fe- is — a'b'x" + a'b'xy — a'b'y".

4. Of 3cr + 2y by 2.^ + 3y is 6a?- + 13.ry 4- Gy'.

5. Of 3a6 + 46- by 2ab— 3b' is 6«-6-— a6^— 126^

6. Of 27.r^ -{-9^v"y + 3.ry- + y^ by 3a? — iy is 81 x^ - y*.

7. Of a^- 2a'6 + 4a-6-- 8a6''H- 166^ by a + 26 is

o.^ + 326^.

8. Of ,i'''_.i'»2y= + .rY-.^V + <^-y-.v'" bv .r' + /r if-
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9. Of a'- 2x^y + 4.1-f/'- 8.ry='+ \()i/ by x' - 2j/- is

1 0. Of a?' + x'^y + xy-T y^ by x ± y is a;* - /

.

11. Of cx" \-2xy-\- 3t/« by .t?" - 2 .ry + y^ is a:* - 4.ry'+ S^/^

12. Of o3 + 2a-6 + 3a&^ + 46^ by a'^-^ab-Sh^ is a*

^ 4a3Z>2-8o'6^- 17fl7/- 126'.

13. Of 14a='c— Qa-hc + c" by 14a^c + Garhc '- c' is ICjQa^c-

^S6aUy'c^+l2a"bc^-c\

14. Of a?'' + 2.1'^ + StP- + 2a? -fl by ct"— 2 j? + 1 is cr°— ga-^

+ 1.

15. Of — 63^ aft^ — a^6 + ff' by —^b--3ah-\-Sa" is

16. Of 2a^-3a^b— 5a-b- by aJ^— 2a"b + 3ab'^ is 2a"

-7a^6-f7a^6- + a*6'- 150^6*.

17. Of x^ + 2 a.r' + 2 a\r + a"* by x^ — 2aa?-+ Sa^.v — a^ is

18. Of a^ + a'6 + a^6^ + a'b^ + ab" + 6^ by a" - a% + ab^

-b^ is a!'-\-a%--a'b^-b\

19. Of .r" + ttcV + & by x- — ax-\-c is .t?"* + (ft f c— a") x^

— (6~ c)aci? + ft'^-

20. Of a^b + a'' + a^b--a''b + a'^b- by -a'-orb"-a'b

+ «= 6 is (1 - 6=) b'^a^— (4 _ 6 + 7r) ft-a*^ - (1+ 6^) a\

21. Of (6-c)a3 + (6^-6-c + 6c--c^)a-+3a by 6 + c

is (6--c') a^ + (b' - c') a= + 3 (6 + c) a.

22. Of a'"-^ + ft"'-* by a» + ^ + ft" + * is «"<-« + a'^ + ^ft"*"^ +
«"'-*ft« + Vft"'+".

23. Of a- + ft- + c' — ff 6— rtc — ft^.- by a + ft + c is rt^ + 6'

-fc^-afirfto.
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24. Of a,'- + (a + ft) ci' + (a^ + ^z /; -}- e) by .r— a is .v^+ 6a^

"

+ cv — a^— a^b — ac.

25. Of a — (« + 6) .r + (o + b + c) x"— {a + h + c-^d) x^

+ {a-i-b + c + d-\- 6)0!* by l+j; is « — 6.r + co?- — rfci?' -1-e.r''

+ (a + 6 + c + d + e) 0?^.

26. The continued product of 1 + .r, 1 + .v* and 1 — .r

+ x^— x^ is 1 — .r^.

27. Of a-H-ff6 + />-, a3_„e^_,_^3 ^^^d a-b is a^-a'6

28. Of J7 + a, 0? — 6 and a? 4- c is .v^ + (o— ft + c) <r"— {ab

— ac-\-bc).x— aftc.

29. Of .T — 4, A' + 4, .r + 3 and x — 3 is .r^ — 25a?- + 144.

30. Of a + ft, a— ft, a' + ab+b- and a' — ab + b' is

6 16
a — 6 .

31 . Of fl + ft + c, « 4- ft — c, « + e — ft and ft + c — « is

2 (0-6- + a^c- + b'c") — «'' — ft* — c"*.

32. Of a + ft+t; — rf, a + ft + rf-c, a + c + f/-ft and

ft + c + rf— a is Srtftcd + 2(a-6" + rt'c- + a^d" + ft^c- + 6-</-

33. Of a? + a, .r + ft, a' + c and x+ d is ct"* + (a + 6 + c + c?)

.p' + (aft + ac + od + 6c + ftd + cd) <2?' + {abc + aftd + acd + bed)

X -{-abed.

34. Of a? + 4, X + 10, J? - 7, 0? — 9 and a? + 2 is x^— 125ar^

+ 30040? + 5040.

35. Of 0? + 8, a- — 8, 0? + 5, .r — 5, .r + 3 and x - 3 is o,*^

— 98 .17*+ 2401 .T?=— 1 4400.
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IV. DIVISION.

1. The Algebraical Quotient of 2a*6 — fia'r + i-nhc bv 2 a

is ab — 3ac-{-2bc.

2. Of 5x^y^ — 4!0a'a}"y^-\-25a*a:y by — 5a;y is — x^y"

rf Sa'xy— 50^.

3. Of a?"'-a^r'"-*4.6,r"*---c.r''by a^isa?"-"-aa''"-''-'

4. Of 8a' — 2606 + 156= by 4a — 36 is 2a — 5b.

5. Of .T^ 4- 6a?" + 9^7 + 4 by a? + 4 is a?- + 2 j? + l

.

6. Of a' -a- 6' -12 6^ by a= + 36"- is a--46^

7. Of X*— Sly* by a? - 3y is a?' + 3w^y + 9a?y^ + 27y''.

8. Of a?^- 3a? — 2 by a?*^— 2a?+l is a? + 2.

9. Of a?^ - 5a?' — a? + 14 by a?=— 3a?— 7 is a?— 2.

10. Of 63?^— l6a?-2/ + 6a?y= + 4i/^ by 3a?-— 2a?y— y- is

2 a?— 4<y.

11. Of X* — 9x" — 6xy—y^ by a?= + 3a? + y is a" — 3x — y.

12. Of X* — 6x^'y + 9x^y-— 4y* by x"— 3xy + 2y- is a?' -

Sxy— 2y".

13. Of 12a* — 26a^6— 8a^6-+10a6='-86'' by 3a'— 2ah

+ 6^ is 4a--6a6 — 86".

14. Of a?^ + y^ by x + y is x'* ^ x^y + x'y"- + xy^ -\-y\

15. Of a'" + "-a"'6« + a''6'"-6'"+" by a'" + 6'" is a"-6".

16. Of a^-a^b^ + a^b^ + b" by a=-a6 + 6- is a^ + a-6

+ a 6" -f
6

'.

17. Of a^ + a%"- + a*6* + a-6' + 6' by a* + a^6 + arh'

+ ab^ + b^ is a^ - a-^6 H- a^b^ - ab^ + b\
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18. Of a.v'^ -a'.V + :('" — (r.r'"-'- h\ .v - a is a.v--\-a-.v

+ r"'-^ + «.r"'"-.

19. Of 3a^ + 8a6 + 4&- + IQac -f 86r + .Sr- by a + '2/>

-f 3c is 3a+26 + c.

20. Of .r'^ + i/ -\-s:'^ - 3xyz by .r" + y- + ^-— a;y

—

,vx—yz

is a? + ^ + 2r.

21. Of a^-b^ by a'^-Sa'fe + 2a/r -6' is a^ + 2a-h

+ 2ab- + b\

22. Of 1 - 5.t? + 10,r' — lOci'^ + S-J?"*— a-' by 1 - S^r + S.r"

— ,v^ is 1 — 2a.' + .x'^.

23. Of ,v^ -nax"+7ia"x—a' by c^-a is .T-— (n-l)

rt.r + a".

24. Of r/^ + {a-~l)x--}-{a-l)a)'+ (a-\) -r^ - .r'^ by

a — w is a + a? + .T"+ '^'^ + -^ •

25. Of 1 - 9./ - S.r^ by l + 2.r + j?' is l - 2,r + 3.r- - 4,r'

26. Of 1 + .1" - 17 .t^** + l^J'??^ by 1 — 2.r + .r- is 1 + S/v + Sx"

+ 7cr* + 9x^+ 1 1 A'^ + ISo)^ + 15cT'.

27. Of x^ - 2aa?- + (a- - a& - /r) ^t + "'b + ab"" by .r"

— {a— b)a— ab is x — a — b.

28. Of a+ (a+6)A'+(a + 6+ c)a'- + (a + 6 + c).r' + (6+c)

.r* + Ccr^ by a + bx -\- ex" is 1 + .r + x" + a?'.

29. Of x^ — bx'^-\-cx^ — cx'''-\-bx-\ by .r— 1 is .r'' —

(6_ 1)^.' -(h-c-l) .r- (6- 1) .x^-l- 1.

30. Of «V6'* + c'-2(a26- + a-c- + 6'c=) by rtV2a6

+ 6--C- is a- — 2ab + b^ — c^.

31. Of a^ + // + c* 4- <^* - 2 (a''6- + arc" + a^d" + b'C'

+ b''d- + c"d'^)-8abcd by o- + 6--c"-d* + 2 («t + rrf) is

a- + b- — c- -d" — 2 (n b + r d).
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32. Of aHo*6«-2aV-a»6*+oV-6'^-26V--6-c''
by ar-h--c^ is a* +2o«6« + 6*-a«c» + 6*c'.

33. Of 3a6a?^-(2o2 + 662)a;V(a»6 + 9a6» + 4a6).r'-
(6a26 + 2a62 + 36c).r2+(3a262 + 2ac)a?-a6c by 36.r«-2a*
+ a6 is oa?^— 26.r^ + 3a6<J7— r.

34. Of 9a

-66

by 3a

— 26

.r'^ + 2a

-56

-176

+ 12a6

- 9a^

- 4>b''

.r + 2a

— 1

x*+ 8a a?'+20a6 a?-+6a6 .r+2o

+ 32ab -10 a- —4 a- -1
-166' -156- +4a
-12a"- + 8a -86
- 56 - 46

- 3 - 1

IS 3a;^— 3a

+ 26

+ 1

a?"*— 2a

+ 36

a?+l.

35. Oi x'*~px^^-qx-— rx-\-s hy w — a is cc'^ + (a— p) ,t"

-^ (a^ — pa + q) w + a^ — pa^ + qa—r, with a remainder a*

—pa^ + qa'— ra-\-s.

36. Of 1 by 1—207 + a?- is l-\-2cc + 3a}^ + ^af^+ &ic. in

infinitum.

37. Of 1-0} by l+x-ar is 1 -2^ + 3a?^— 5cr' + &c.

in infinitum.

V. INVOLUTION.

1. The square, cube, and fourth power of 4- ay are l6a^y^,

64ia^y^ and 256a*y^.

2. Of —Sab^x^y* the square is 9,5a^b*aPy^ and the cube

is -125a36^^?^yl2

3. The w* power of xyPsfl is af^y^P %^i and of -aa^''^'

is ±a'^ ai"'''
y"^*.

4. The square of a+ 2 .^ is a^ + 4aa? + 4a?- and of x"^ — by

is a?* — 2bx^y + 6-^".

3K
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5. Of a.r+6-./ is a-.v'+2a6-a?^+6V and of x'—^x + 4.

is w^ - 4-a^ + 12x'— l6w + 16.

6. Of a?-— a? + l is x'^— 2ar^+3x- — 2x + l and of a?*

— a'^+ l is x^— 2x^ + x* + 2x^— 2x- + 1.

7- Of 3a-b + 5c-{-d is 9«^ - 6a6 + 30ac + 6ad + 6" —
10bc — Qbd+ 25c^ + 10cd+ d\

8. Of a + 6.1' +ca?- + d.r*= a- + 2a6a'+ (2ac^-6-)a?- +
2 (ad + 6c)-r^ + (26d + c")x^ -\-2cdx^ + drx^.

9. Of (a + b)x-(a-b)y is (a + 6)V-2(a2 - 6')a?j/

+

{a-bfy" or (o^+2a6+6^)ar— 2(0^ — 6-)a?y+(a--2a6+6-)y-.

10. The cube of x"'-\-y' is a-^ + 3a?^y' + Sx^y* + y.^ or x^

11. Of a?=-aa? + a^ is a?^-3aa?^+ 6aV-7o'.»' + 6aV
— 3a^x-{-a^.

12. Of 207* + ^ax - 3c? is 8.r^ +480.1?^ + 60 a- a?*— 80 a^* a?'

— 90a*a?- + 108 a*a? — 27 a^

13. Of l+a? + a?* + a?' is 1+ 3a: + 6a?^ + lO^r^ + 12.rV
I2a?* + 10a?* + 6x^+ 3a?* + a?^

14. The fourth power of 1 + a? is 1 + 4a? + &x^ + 4a?' + a?*.

15. Of a-\-b-c is a* + 6^ + c^+4(a'6- a'c+ a6'— ac'

— 6^c -bc')-\-6 (a- b" + a^c' + 6-c«) - 12 (a^bc + ab'c- abc").

1 6. The fifth power of ax — by is (aa? — 6y)^ x (ax— by)"

= (o^^•'— 3a-bx"y + 3ab^xy-— b^y^) x (a'a?°— 2abwy + fc'^y") =
a^a-' — 5a*bx^y + \0 a^ b' x^y"— 10 a" b^x^y^ + 5ab*xy^ — 6^y^

VI. EVOLUTION.

1 . The square root of x^y*z^ is ± a?yV and of ^x"'"y*''i!^P

is +2j7"y-"2fX

2. The cube root of a^b"^ is ob" and of -SaV^^.r" is

— 2ab'x^.
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3. The fourth root of l6a*,v* i$ ±2ajff and of 8\x*y^-

is +3x1/^.

4. The fifth root of 32a^a?'°j/" is 2aa?V and the sixth

root of 729a?^3/^*>jr-^ is +3a?y^»\

5. The square root of x* + 2a"w''^ + u* is a?" + o' and of

a"aP— 2abxy' + b'^y^ is ax— htf.

6. Of a?* — 2a?^ + 3cr'-2iP+ 1 is .r^— <»+! or -a?' +
vt— 1.

7. Of 4.2?^— 12c/y + 29.rV— 30^?'^ + 25a?-y* is 9a?^—

8. Of 4a*- 12 0^6 + 250^6* -24a63+ 166* is 2a^-3a6

+ 462.

9. Of 9a?2y*— 12-2?^y^ + 34<r''y- — 20a?*y+ 25a?^ is 3^y*—
2a;22/+5a?^

10. Of 9— 24a?— 68^7^ + 1120?' + 196a?* is 3— 4a? — 14a?'

or 14a?^ + 4a? — 3.

11. Of 4a?-y*— 12cr^y' + 17a?*y2— 12.t?*2/ + 4a?^ is 2a?y*-

3,r^«/ + 2a?^

12. Of 00" — 2aa? + a^ + 2xy— 2ay + y"^ is w ^a + y or

o— a?— y.

13. Of a^-4>a^b + 8ab^-t4>b* is a--2a6-26^ or 26'

+ 2ab— a-.

14. Of 1— 2cT? + 3a?^— 4a7' + 3a,'*-2a?^+a?^ is 1 — a?4-a?*

— a?"' or iX?'— a?'^ + a?— 1

.

15. Of 9w^ - 12a?^ + 10a?* - 10a?' + 5.r'- 2a? + 1 is Sx^

— 2a?^ + a?— 1 or 1 — a? + 2a?^— 3a?'.

16. Of l6(a^ + l)-24a(a^ + l)+41a- is 4a--3a + 4.

17. Of 25a^- 30a^a? + 9a*«J'^+ 10aV-6aV + a7* is 5a^

— 3a^x + x^.
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18. Of 36.1?' - 12 (a- 26) or" + («« - 4o6 + 46") a?« is 6a?*

— (a— 26).r or (a— 2b)w— 6x'^.

19. Of a^'»a?'» + * + 10ca'"»-'a?-« + ' - 6a'^-^^w» + '^ +
25c2o='"-''cr-'*+* — 30ca'"-^r" + ^ + 9a= is a'"a?"+^ + 500"*-=

x^ + - — 3a.

20. Of aV6* + c* + 2(a«6--aV-6V) is o^+t'-c"

or c" — (a^ + 6-).

21. Of a^+b^ + c^+d^-2(a'b^-a^c^ + a^d^+b^c^-b^d^

+ c'cf) is a^_6^+ c'-(f.

22. Of (j?2— 2ati? + o*)(a?' + 2oa7 + o') is (j?— a)(a? + a)

or ,v — a .

23. The cube root of aP± 9ar + 27x + 27 is x±3.

24. Of a^+ 6a*— 40a^ + 96a— 64 is a'^+2a-^.

25. Of 8a?^+48ca?^+60c-d7'— 80c'a?=»— 90c*j?- + 108c*j;

— 27c* is 2a?' + 4ca?— 3c-.

26. Of a^ + 6^- c^' + 3 {arb - a-c+ a6*+ ac'- b"c + 6c-)

— 6o6c is o +6 — c.

27. Of (a+6)''»a?^+6ca^(a + 6)*'»a?*+12c'a'''(o + 6)'"a?=

+ 8c^a^^ is (a + 6)="'a-- + 2caP.

28. Of a'V(o^-f3a' + 3a + l)(a^ — 3a-+ 3a — l)=j7y

(a + 1) (a— 1) = o'a?y— <ry.

29. The fourth root of a*'" + 4a^'»+" +602"' + =" + 4a''» + 5''

+ 0*" is ar±a'* or a* (l + o" " »•) or a''(a'"-''+ l).

30. The fifth root of a^x^ - 5a'a?*y + 10a' a?'^-- lOa^x^y^

\-5axy^— y^ is aw— y.

31. The sixth root of w^ — 12a>^ + 60a?* - i60ct' + 240a?=

— 192ir+ 64 is a? — 2 or 2— a?.
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Miscellaneous Theorems and Problems.

1. Prove that (a + 6)« c* + (a- 6)« c'= 2 (a« + 6') c«.

2. (a' + d")hc 4- {Jr + c^)ad= {ac + 6d) (a6 + cd).

3. 2(a?' + y'^ + «') = C^ + y)' + («J?-y)' + 2«f* and 2(a?« +

r + 2«f') = (a? + yy- + (a?-y)^ + (2«)'.

4. a^-2x'=2{a±ief-{a±ZwY and a^-5a?'=5(a + 2a?)'

5. (a^+ c&^) (a?* + cy") = {ax± hcyf + c{ay + half.

6. (a' + 6' + c*) {x" + y") = (a^ + hyf + (ay- 6a?)' + c^d?*

7. (a2 + 62 + c2 + d2) {c^^f) = {aw + 6^)^ + (c^ + dy)^

+ {ay— hxf + {cy— dxf.

8. (a2 + 62)(c2+ d")(<r« + y^)= {(«c+6d)a?+(ad-6c)yP

+ \{ac + hd)y—{ad—hc)xY'

9. a?2-(a^ + l)y'= (a^ + l)(a?±«y)'-{«a?+(fl' + l)y5'

and {a'-\-\)x--y'-={{a^-tl)x±ayY-{a^+ \){aw±yf.

10. (a + 36)'-2(a + 26)^ + (a + 6)'= 26'' and (a + 46)'

-3(a + 36)* + 3(a + 26)'-(a + 6)^ = 66^

11. 2a(a-6-c + d)+6'+ c^-«'-rf'= (a-*)' + («-c)'

-(a-d)^

12. {a + h^cf- {a' + fe'+ c') = a(6 + c) + 6(a + c)+
c(a + 6).

13. (a+6+c)^= («+6)^+ (a+c)^ + {h+cf- (a''+6Hc^).

14. (a + 6+c)2 + (a + 6-c)'+ (a + c-6)'+ (6 + c-a)'

15. (a + 64.c)3 + (a-6-c)' + (6-a-c)'H-(c-a-6)'

= 24o6c.
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16. (a+6+c)'= (a+6y+(ff +cy+(6 + cr-(a'+6^ + c»)

+ 6abc.

17. {a+b+cY— (a^+b^-\-c^)= 3(a + b + c)(ab + ac + bc)

— Sabc.

18. (a + b+c+dy-= (a + by + (a + cy + (a-{-d)' + (b + cf

+ (b + dy + (c-{-dy-o(^a' + b' + c'-^d').

19. 2 (a + b + c + ay+ a] + b^ + (^ + d'= {a-\-b {- cf +
(a-rb + d)''+{a + c+d)- + (b+ c + d)\

20. (a + b-\-c-dy + (a + b + d-cy -{- (a+ c -{- d-by

+ {b + c-{-d— ay=:4-(a" + b-+c- + dr).

21. (a+b + c +d)^=^a^+(2a-{-b)b+ J2 (a + 6) + c} c

+ {2(o+6 + c)+ <iJd.

22. {a + b + c + dy= a^+ (3a^ + 3ab + i^)b + \3(a+ by

+ 3 (a-^b) c + (f] c }- \3(a + b + cy + 3(a + b + c) d+ d^] d.

23. (a-6+c)x(a+6-c) = o--(6-c)-= a--6*+26c-c*

and (a— 6+ c— d) x (a + 6— c— d) = (a — d)-— (6 — c)- =
o*— 6'— c' + d'-Sod + Sfec.

24. 4 a' 6-- (o' + 6' - c=)^= (a + b + c){a+b-c)(a+c~b)

(6+ c-a).

25. 4(ad+6c)'-(a2-6--c-+ d') = (a+6+c-d)(« + 6

+ d— c)(a + c + d— 6)(6 + c + d— a).

26. (ax + by-{-czy-\-{ay—ba!y + {ax — c.r)- + (6»— cy)-

= (a^ + 6' + cO(a?2 + y'+ «').

27. (aw + 6a? + cy + d;?f)^ + (a.t?— 6m + car — dy)^+ {ay —

bz — cu -\- dxy + {az + by — ex — duy = (a' + 6^ + c*+ d^)

(„Vcr"-+ y^ + ;r^).

28. {au— bt) {ay— bx) + {bv — cu) {bz— cy)+ {ct — av)

{ex — az) = (a* + 6* + c*) (^.r + tiy + vs^) — {at -f 6m + cv)

{ax + by + cz).
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29. (aa'+ 6y+c»+ &c.)«= (a + 6+ o + &c.)(aa;2 + 6y* +
c«2 + &c.) — ah {x -^yf — ac {x— zf -bc{y— «)*— &c.

30. x^^-l = ix''-l)(x-' + l){x*-\-l){x^+l) anda;'*-!

= (.X-- 1) (.r^+ 1) (.^•' + 1) C^''+ 1).(^'' + 1 ).

31. a?'»- 1 -Ha?- l=.T'"-^ + d;«-2 + Sic. +37+1, the num-

ber of terms being m.

32. x"* + 1 is divisible by a? + 1 when m is odd, and

0?"* — 1 is divisible by a? + 1 when m is even.

33. x"*"^— 1 is divisible by each of the quantities j?'"— 1

,

,t"— 1 and 0?^— 1: find the last term and number of terms

in each case.

34. a"'n_f^mn jg divisible by oT-h'^: find the first and

second terms, and the last and last but one, and the number

of terms.

35. If a be greater than 6, prove that a'"— h^ is less

than ma'"~^(a— 6) and greater than mh"'~^{a— h).

36. Shew that x- + y~ can never be less than 2xy.

37. Prove that x^ + y^ is never less than x'^y + xy'.

38. Shew that a 6c is greater than (a + b— c)(a + c— b)

(6 4. p — a), unless all the quantities are equal.

39. Whether is a^ + a*6^ + a^b'^ + 6^ greater or less than

{a' + b'f?

40. If a^= a^ + b^ and y-= c' + d^, shew whether xy

is greater or less than ac + bd and ad + be.

41

.

Shew that the quotient oi a'"b-ab'"-a"'c+ a c"' +

b^c—bc"" by {a-b)(a-c) is a""^ {b-c) + a'"-^b- -c") +

&c. + a (jr--- c'"-^) + (fe"*
-

' - c'"- ').
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42. If unity be divided into any two parts, the sums

formed by adding each part to the square of the other are

equal.

43. If the number 2 be divided into any two parts,

the difference of their squares is always equal to twice the

difference of the parts themselves.

CHAP. III.

I. COMMON MEASURES.

1. The greatest common measure of aar^a^x and a^ar

+ ahx is ax.

2. Of a^.r^ — 2a-<j?^ + aa?* and a^x^-\-a^x^-{-a"x'^ is ax-.

3. Of l^x'— lxy and lOax— Bay is ^x— y.

4. Of ac + hd-\- ad-\-hc and a/+2 6.^? + 2aa? + 6/ is

+ 6.

5. Of ^ax-\-5hx— 6x^ and \9,ayz-{-\5hy% — \Sxy%h

40+ 56— 6.37.

6. Of a?^-5«^ + 7a? — 3 and a?* + a?— 12 is x — S.

7. Of .r^ — 3a? + 2 and a?' + 4a?'^— 5 is x — \.

8. Of <2?^+ l and ct?^+ TOa?^+ wa7 + 1 is d?+ l.

9. Of a?"*- 1 and a?' + 3a7^ — 4 is x—l.

10. Of a?'^ — 8ci?*+ 21.r— 18 and 3a?^— l6,r^+21a7 is .r-3.

11. Of 7a?-— 12a?+ 5 and 2x^ + x"— Sx + 5 is a? - 1.

12. Of a?' — 3a?" — 10a? + 24 and 2 aa?'— 10 aa?* + 8 aa? is

a? — 4.

13. Of a?^— 4a?* + 9a?- 10 and .i?^ + 2 a?= — 3 a? + 20 is

a?' — 2 a? + 5.
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14. Of a?' — 3.r'+ Sa'— 2 and .r^ — 4j?*+ 6x— 4 is x— 'i.

15. Of 0?=*— 3a' + 7.v— 21 and 2a?*+ 19j?' + 35 isaj' + T-

16. Of a'-4a'6 + 4a6*-6' and 2a--6a6 + 46« is

« — 6.

17. Of 2a7^-8d7*y + l6a?y«-l6y' and 8af*- 4 J7j/- 24y*

is 2 a?— 4y.

18. Of ,»' — Sa'a? — 2 a' and a?* — a a?^ + o' a? *- 10 o* is

* — 2a.

19. Of 4a--5o6 + 6' and Sa'-3a'fe + o6«-6» is a -6.

20. Of a?'-19ar+30 and a?'— 2a?*— 7a7 + 14 is a?— 2.

21. Of 2a' + 3a*a?— 9a.r'^ and 6a^a?— 17a-a?= + 14aa?^

— Sx^ is 2 a— Sx.

22. Of 9a?^— 3a?y— 6a? + 2y and 6a?*— 4a?'— Sa?y'^-2y-

is 3a?— 2.

23. Of a?*- 4a?'+ 8 a?*- 16a? + 16 and a?*- 6a?' + lSa?'— ^

12a? +4 is a?'^ — 4a? + 4.

24. Of 450^6 + 30*6'— 9a&'+ 66* and 54a'6-246' is

9a6 + 66^.

25. Of 48a?' + 8.T?*+ 31a7+ 15 and 24a7V22a?*+ 17a? + 5

is 12a? + 5.

26. Of x^ + x'^y— oj^y^-y^ and a?*- a?' y- a?' y* + y' is

a?"'-2/^

27. Of a?^+ a'a?^+ a*"+ a' and .r^- a*a?-— aa?* + a* is

x-' + aK

28. Of 3a?'— (3c + d + 3)a?2+(3c + d)a? and 2a?=-(2a

+ 6 + 2)a? + 2a + 6 is a?— 1.

29. Of a^ + ia + l)ay + y' and a"- a" {y" - y)
-

'f^
is

a'+ a'y-bay + y'

3L



450

30. Of ^* — A'^ + J? — 1 and a?* — 2 a' + 3 a?- - 2 o^' + 1 is

ar— x+l.

31. Of a'-4o6' + 36* and a*-a^b-ab^+ b^ is (a-6)».

32. Of 3x^— 10a?' + 15a? — 8 and x* — 2.r^ +1 is a?° —
2.i;' + l.

33. Of 15.r*-9.r^ + 47a?=-21d7 + 28 and 20.^*— 12.r^ +
l6ir*- 15.r'4-l4a?-— 15a?+ 4 is 5a''— 3.r + 4.

34. Of .r* + aa?'— 9a-a?^+ llo'a?— 4a* and .t?* — a.r^ —
3o-a?'+ 5a'<r— 20"* is (x— ay.

35. Of 4a*-4a268 + 4a63-6'* and 6a*+4o'6-9a'6'-

3o6' + 26* is 2ar + 2ab — b".

36. Of .v^-bx*~b\v-{-b' and a?*-6a?'-ft=.r= + 6'cr is

(a?-6)(a?'-6=).

37. Of a?*-^'* and .r* + 2a?'y 4-2.T?^j/^+ 2.rt^ + y* is x^

38. Of a-+ 6= + c' + 2(a6 + «c + 6c) and a-b''-c--

2bc is a + fc + c.

39. Of a- — 3a6 + ac+26*— 26c and a- + 6-— c= + 26c

is a— b-tc.

40. Of o' + 6*-c*+2o'6 + 2a-6^+ 2a6^ + 2a6cr and

a* + 6* + c'-2a'6'-2a-c'-26*c' is a"-+ 2a6 + 6--r-.

41. Of .r*-a-a?'+aV-2a*a?+a^ and a?^+2aV -2rt*a?'

+ 2a^.r— a^ is .v^+ ax^ + a^x - a*.

42. Of 3a?'— (4a + 26)a?4-a* + 2a6 and a?'— (2o+ 6)a?*

+ {a-{-2b)ax— a^b is x— a.

43. Of .T'-2a(a-6).z- + (a= + 6^(a-6)cr-a'6« and

a?* — (a_6),r' + (a — 6)6-.r-6* is a?* — (a — 6) a? + 6*.
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44. Of 6a'^— 4a-*— lla,"^— .3a?- — 3a?- 1 and 4a,'* + 2.v* —
18** + 3cl'— 5 is 2a?^— 4..r' + a?— 1.

45. Of 15a* + lOa'6 + 4o«6« + 6a6'-36* and 6a»+ 19a«6

+ 8o6*-56' is3a'+ 2o6-6«.

46. Of a?^ + 4a?*-3d7*-l6j?' + lij?« + i2a?-9 and 6a?*

+

20*'"— 12a?'— 48a?* + 22a? + 12 is .r' + a?'^ - 5a? + 3.

47. Of a?5-6a?4-2a'a?^ + o'a?« + (a + 2fc)a'6a7 - 2a^6-

and a?* - (a* + 6*^) a?' + a* 6^ is a?'— (a + 6) a? + a ft.

48. Of aft + 2a*-362-46c-oc-c^ and 9ac + 2a*-

5a6 + 4c^+ 86c- 126* is 2a + 26 + c.

49. Of e--^ a?^ + e2x_ _j,3 _ 1 ^^^J gSx ,^8 ^ g^r ^.« _ e^x_ 2 g r

+ .v"— 1 is (a?+l)(e^ + l).

50. Of 6a?^ + 4a?^y, 2aa?'— 86a?V and 4ca?* + 12da?*y

is 2 a?'.

51. Of a^ + 5o^a?+7a** + 3a?^ a^+ 3a"a; — aa}-—3a^ and

a^-f-tt^-*' — 5aa?* + 3a?' is a-\-3a!.

52. Of a?*- a.x^ + (6- l)a?* + aa?- 6, a?*- ft.t?* + (a- Oa,'^

+ 6a?- a and a?"* — (a— l)a?3— (a — 6)a?*4- (6 — l)a?— 1 is a?+l.

- II. COMMON MULTIPLES.

1. The least common multiple of awy and a(A'y— y') is

ax^y— axy^.

2. Of ah-\-ad and ah — ad is ab^ — ad'.

3. Of .r'+l and (a?+l)Ms ct?'' + a,'' + a?+l.

4. Of a,>'— 7A'^ + l6a?— 12 and 3a,'^— 14a?^ + lO'a,- is 3.??*

— 29a,'*+ 104a?' - l64a,'*+ 96a;.

5. Of 12.J7- — 17«.r + 6«- and 9,r- + 6'o.r - s.r is 36a?^

— 3rta?" — 50a^d? + 24fl.^.
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6. Of a3 4.2a'6_a6'-263 and a^-2a-b-ab- + 2b^ is

7. Of x^— aa^y-\-a!^y^—aw'i^ and oc^-~ axy \- xy — ay^

is a?^— (a— 1) a-^y— (a— l)a?^y' — (o — l).r"2/^ — aa-y*.

8. Of x^ {ax^ +a^a^ + a^x^ -{-a^w + a^ and a?^— aa^^^-

oV-a^^p^+a^a?— a^ is x^— a^.

9. Of a'- 3 a^ft+ 4a' 6^ - Sah^ -i^ 6* and a' + a^6 + aft^ +
fe* is a^ -a^b-a'b'+ 2aPb^—a"b* - ab^ + b^.

10. Of a?*— (a^ 4- b^)a^-^(^b^ and .r* - (a + 6)*a7' + 2 (a+6)

a&a^-a^ft' is a?^+(a + 6)>t?''-(a^+a6+62)^*-(fl,+6)(a*+6^

a;'+ (a^ + fl & + 6') afeaT^ + (a + 6) a^^'x- a^b\

11. Of a?, aa? and a + 3? is a^x + ax^.

12. Of o'-6«, (a-6)* and a^ +b^ is a'-Sa^fe + a^fe'-

a'6'-2a6*+ 6^

13. Of a^-ax+a^, a'+ax+a^, a^-x^ and<r'+.r^ is a^-x^.

CHAP. IV.

MISCELLANEOUS EXAMPLES.

xy' (a + y) axy^ + xy^ axy+ xy"^

'"^
cry + tr ay+y" a + y

2.
a — 6

3.
a?*— ^r- „/x^—l\

f,
. „, aV— 6=— = X- { -^ ) =a?^ + a:* + .r\'

and — = a-x^ + a6a? + 6*.

rt.r—

n

fr — ax a' -\- or , (a— ,r)- «'
4. « + .rH = and 2a— x-if- L = _

•T .T a? X
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(f!^^V«^ and (a-.)« + (^l±^Y = '-^^^^^

6. 1

a-+ 62_c« c'-(a-6)-
and ft'

2a6 2a6

4c'

-(^^^7

7- 1 +

and 1

2(a6 + cd) ~ 2(a6+cd) '

a2 + 62_c«-d« (c + dy-(a-by

8.

2(aft + cd) 2(a6 + cd)

~l 2{ab + cd) )

_ i(a + by-{c-dy\ {(c+df-(a-by\
4(a6 + cdy

(a + b + c — d) {a + b + d - c) (a + c + d— b) (b + c + d - a)

4>{ab + cdy

4atr (a + ^y 4a/r (a— a?)*

9. a-x + = — , a + x-- -
a — w a— cV a + .T a + x

10. {a-ay +
6a-a!+2x^ (a + wy . .. 6a'a?+ 2a?*

-I , (o+a?)
a— x a-\- X

2 ^ and a- — 6aa?+ 17J?- 7—;

—

z-c,
— = ,—;—rj.

11.
a^+^^ . ,. 2..^

«^-^=a'_aa.+.r«--—aHa.i?+<» +
a — x a—x a+x

2.r"'

12. = a — <T?-l and =x + a-\

a-i-x a + x x — a x—a
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a — '« a^— x or — or

a^— a-^ a'-x^ a--or a^-x'^

oe^a x—a

x'+
A-'+ a"

15. ; =a?_o+p + ^ ^
,

i- ^-

<*'+ « X + a x—a

a
, f V o a^ — »a^+ «a — 1= a?^ + (a— jt>)a? + o^— i)a+jt>H ^-—

—

.

i« — 1X"

x" — a"

,(m—2)n„n_l+ a*'"-^'"^"-' +
0?" — a"

Tw a^ + 2a64-6' a + 6 , a^ — 2ab-\-b' a — b
I/-

:^—r:;^
= r and ;

—

= ——

-

a' — b' a — b a—b a + b

- a' + 0?' a"— ax + x'^ a^ — x^ a* + ax+ x"^
lo. ; = and -z = .

{a+x) a-\-x {a—xy a — x

{a-bf{c-^xY _ (a-bf(c + x) g"6^ + cV
(a'- b"") (c' + x^)

~
(a + 6) (c" - cx+x-") ' a^'b^- c'x-

a'b" — abcx + c^x^ ac + ad+ bc +bd c-\-d= ; and —; —. = --.

ab — cx ae + af-\-be + bf e+f

x'^+ (a^b)x— ab x + a 6a^— 6a^y + 2aif— 2y^

x'^ - (a + b) X + ab ~ X — a^ I2a^—15ay + 3y^

6a^+2y'^ - x^ + 5bx* — b^x^— 5b^x x- + 5bx
and —J ;—5—-— rr- = r- •

12a— 3y x^-Sbx^— b-x— Sb^ x + 3b

40* — 4>a'^b^ + 4«6' — // 2a^ — 2ab + b"

20.

21
6aV4a''6-9a«6--3a6^ + 26* 3a^^ab-2h''
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a*+6- + c^ + 2a6— 2ac — 26c a + 6—

c

a^ — 6*— c^ + 26c ~ a— h + c'

a^ — acx + (ac— b^ + bc)a^ — bcx"^ a — bx

a^ 4- a6a? + {ac — c* + 6c) .r^ 4- c^-t^ o + c.t

a2(6»-c2)-a6(2 6^+6c-c^)+6Hfe+c) _ a{b-c)-b'

a'{b+cf-ab{2}^-^Sbc-\-(^-\-h\b+c)
~ a{b+c)-b

a + x ^ a— w ^ (a-^xY , («— «^)'

25. and are equal to —r ^ ^"^^ ""a—IT
a— .r o + tr or— of a — .ir

26. 1+ ^, 2 + ^ ^ and , \ -^
x + y 2xy !'oy\x— y)

4,x^y — 4!a^i^ x*-\-2x^y — 2xy^— y*

are equal to
^^^^^_^^,

__^^_,—

2 a?* + 2x^y + I2a^f + 14ciy + 23/*

23.

24. 2*

and
2xy(a^-i^)

a + 6 a—

6

, a + 6 a-b
27 — 1 = a and = 0.
'^'-

9 ^ 2 2 2

28.

1 2 , w w^
and — + —-—- = — w.

_i a*"*—

1

a"*— 1 a-"*-!

^r y X bcx -\- acy -i- abz
^'

o
"^ 6"^

c a6c

a
and - +

30. ^^ ^ +

h c a + bx^— cx^m

(.r + af x^ 2a^ - ax^ -3a^x -2a?

X — a x — 9.a x^— 3ax + 2a'-

{x + af x^ __ a(.-g'-3o.r-2«')

^"^ x-a "J^^a" J^-Sax-^2a^



31.
1 -f.i?

^. + r

and

456

1 — 07

1—w + x"

1 — x

i 4 '

1 + a?' + .^'

2a?='

32.

and

33.

1+a'

1+07 + 0?^ l-a; + x^ l+a?*-|-a?*'

o 6 a^ + b' a b
+

a-{-b a — b a^— b- a— b a + b

a b ac — bc a c

a + c b + c (a + c){b + c) b + c a + c

1

+
x—1

iC—1 x'- + X + 1

1 a?-f 1

and

2a?''— a? + 2

a7^-l

3iv

x+1 X' x + l

34. +
x + l 2(2cr^+^'» + 2)

and

x-Vl x- + \ (a? + l)(a.'' + l)'

3 a? + 1 _ 2 (a?-— a? + 1)

a7 + l «?-+!
~"

(c^7 + l)(a7-+ 1)*

35.
2 a? 2a? 2 (a — 6) a?

a?^+6 x''-\-a (.a?^ + o)(a?^ + 6)''

and
2 a,' 2a? 4a?'' + 2(a+6).r

x'^-\-a x"-rb (a?' + a)(.r^ + fe)

a- + W a — b 2 (a" — a6 + b")
36. ^; ;^ +

a + 6 a'— 6'

a' + 6^ a_6 2(a2 + a6-6-2)
and 2 + -^ — = :;

— .

a^ — b' a + b a- — b-

37.

and

2a--

a-

2a +
— a

1

+
a

a

1

=
3 a''-

a'

2a4-l

— a
>

2a-- 20 +
— a

1 — a = a—\ = 1 —
1

a" a — 1 a a
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1 2a? + 1 2a'— 1 _•»?* + 2/1?' -f 3a?- + 3

6a?«-22«+18 1

39.
1 2 3

+ - +
oe—i x— 2 x— 3 a?'— 6^?*+ 11a?— 6* (a?— l)'

2 3 3.1?'^ — 4.0? + 2 2 1 1

+ 7 7T7>+ r=—7 TTF-, — +
(.0?— 1)'' a?—

1

(a?— l) .r a + x a—

a

12a- , 1 1 1

and —z r + tt: 7 +
a?(o2-i)^ 4(1 +a?) 4(l~a?) 2(l+a^ 1-a?**Ill 1
40.

I 1

a,' + 1 a? + 2 (.T + 2)* a?' + 5a?' + 8a? + 4
' a?

'

1 —m

1 l+a?2 3 1 1 1 — 5a?

l+a? a?(l~a?^)' (1 +a?)2 i+a? 1 - a? (l— a7)(l+a?)
«*

41. +
b--2ab (a-b)b^ {a-bfx^

+
x->ra ,v + b (x + by (a? 4- a) C^ + 6)

1

42. i- '
2 a?

+
a? (a?+l) 07+ 1 l+a? + a?' a?(l +a?)'^(l+a?+a?')

43.
1 2

+
1 4a7- + a?—

1

, 1

and

+

3a?— 1 ' a?— 1 a? Sa?'— 4a?^ + a? a?—

2

1 a?'— 6a?' + 4a? —

1

44.

x+i a!—3 (a7 + l)'^ .r*— 3a?3-3a?- + 7a? + 6'

61 2 — a?

+ and
3(1+^7) 3(1— a? + a?^ 1+a?^ l+a? 1

+
16 2a?-+ 21a? + 13

2a?
45. 1 rr +

1 + 2.1? 1 — 2a;' 4.r'' - 5.r'+ 1

,4 „2 „2
2 a?'* a'— oe^. 1 3

and r^ +

+
5 6 3a?- + 5a? + 3

(1 +2a?)*
""

l+2a?
""

(l+a?)'(l +2a?)-*

3M



46ft

^- b ad— be a-^bx , 2a?'^ + a?+l I

w. - -\- ———T-r=—r- and —z h
d d(c + da) c + dx

7 1

+
1

2(1 — /r)'-

— :t,4(1—0?) 4(1+ J?) a?' (1 - a?-) (l — J?)

.^ a (ad — 6c)cr a— bx ,1 1 1

^7- - + ^S rV = r- and - +— +
c c(c— dx) c— dx X I -\- X i — x

.r*— 28a?—

2

2 14
+ — +1— 2.V (l— 2.T?)- .r(a? + l)(j?— 2)(2.T- 1)'

1 6(x—l) 2(.r— 1) 6(j?— 1) 3(x—l)

1 + ."i? a?-

12

x--\-2 (.r-+l)" .r + 1

1 3
— and - +

j?=(d?+l)(.t?2-f 2)(cr-+l)- X {x-lf 4(.r-l)

1 5 .r' + 0,'- + 2

:(a?+l)2 4(a?+l) .T^— 2<r'+d?

49.
1 2 +<r

+ and h3(1— a,') 3(l+a?+a7*) \—x^ x—l (.r+l)-

9 8(a?-— a?+l) 2(a? + l) 8

50.

a?+l

1

a^ a?^ + l .r' + a?'— a?*— .r''

1 1 ^ a b a c_ ^ and —A 4- - + —
x-6 x— 5 x^— llx + 30 h a c a

b c _ (a + b + c)(ab-{-ac + bc)

c abc

_ a +6 a— 6 2 (a'— 6a?)
,

«*

51. 1 = —5 ^— and
a-^x o —

«

a — X

b'^— iab

(a— b)- (x + a)

x'

(o-6)'(a? + 6) (a-b)(x + by (a?+ o) (.r + 6)'

'

62. — + ^ ^ = j 4— and (a-6)
a+ a? o— a? ar — x' a —x-

I I
? isp ' ?- (°-^)'

((.r+a)- (x+ hY) (x + a x + b) {x + ay{x + b)"
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53. (a^b)\~l L_^-(a-6)5 " + —l—]
^ ^ q^ + b w + aS ^ ^Uv + aY^ (af+ b/i

(a-hy.v
,

C 1 1 )~7—',

—
W7 Er8> /-2a6^ ^ + fa^b)

(Of + ay (a; + by (x + a co+ b) ^ '

To + ?_ («-6)3,.«

Or + ay {x + by\ {x + a)' (.p + by
and

a^(o-36)

j? + a

h\b-Sa)

x + b

54.

^Ux + ay ^ (x + 6)«5 {x + o)« (a? + by

+

55. -

(a— b)(a— c)(x + a) (a- b)(b— o){x+ b)

1 1

(a — c){b— c)(x + c)
~ {x -i- a) (x + b)(x -{€)'

a b
+

{a— b)(a'-c)(w + a) (a^b)(b-^c)(x + h)

c X

{a — c)(b— c) {x + c) (.17 + o) (<r 4- 6) (a? + c)

56.
{a— b){a — c){x + a) {a~b){b— c)(x + b)

c X'
+

(a— c)(6— c)(a? + c) (.2? + a) (a? + 6) (a? + c)

a ex ac , 5aa? xy + y^ 5ax + 5ay

bx a bd bey x' — xy bcx— bcy

58.
0- + 007 + 07'

rt'— a-<r + oo?^— x^

a^— ax + x^ a^ + a'x" + x^

a •\- X a — X

a?2_9a? + 20 .r'- 1307 + 42 07-— 1107 + 28
and :; :: X

07'— 607 X —5x X

a + b a— b o- + 2a6 + 6' d- (a + b)d
59. rx 7=h . ^ X —-r= jo_6 + 6 cd — a- a + b c — d

A-ax o"— 07^ 6c+ 6o7 4ao? + 4o?

and —:— X -^;:^ ^ X
36y c' — 07* d^ — ax 3cy — 3xff
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a^ — b' x"— y' a^ , , , ,
60. X f- X = (a + 6) or and

.r+y a— h oa— y

C ax ') i ax ) a^ — ar a*Ja+ [ X <a —} X-;; -„ =-j „.
( a— 0?) ( a + a;) a- + .r a + a,-

61 i
° * M " * }a^(a+2b)-b^(b-2a)

(a-b a+b] la-b~ a+b)
~

(a'— b-y
*

62. (- + -\x(-^ + -,)
\x^ 2a?y 3/ / \ ^r^ 5xy y*/

_3a'^ IQa^b 21a"b'^ 9ab^ b*

~
.v^ lOoi^y 5x^y^ lOxy^ y^'

63. 5l5«-«A2_7a-nV6a-*6'5 x {Sa-^ft^-Sa-^fe*}

= 120a-'6*- 101 a-'^6« + 69a-^ 6^ -18o-*6*'*.

64. {l3a-^6 + lOa'-262-4a63}x56fl-362-186'-7aVj

= 78rt-^6'— 174a-^6^-295a-=6^ + 2a6^+28a*6l

65. (f + ?)(? + *) + (f_?)(f-*)=!^ + ?^,
\a 07/ \b y) \a xj \b y) ab xy

, /<r a\ /y b\ fx a\ (ii b\ 2bx 2ay
and (-+-)(| + -)_( )(|_„)= + -^.

\o a?/ \o y/ \a a;/ \o y/ ay bx

66. /f_?)(| + *) + (i+f)(?-5)=^S'_!f.*,
\a x/\b y/ \a x/\b y/ ab xy

/x «\/J/ ^\ /^ ^\(y b\^9.bx 2ay

\a x) \b y) \a ^ x) \b y) ay bx

a b a ax ex ad Sa^x ab 6ax^

c ' c b^ by ' dy be 26^ ' 4.r 6*

_ 2a(l-.rY
.
il-x)(l-\-xy _2ay'{l-x)

cy r c

a + b a— b a + b a'— b" a —b
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a + b a" — 2b" a-~b' x^-^-xy a-* — y* x

a-^2b^ ' a-b ~a*-46*' x — y ' {x— yf a?* + y"

and
Sax + X-

a — x"

X 3a + x

a— x ar-^ax-\-x^

( „ ^a-x — Sax^^-x^) ( , ^a'x -\-3ax^-\-x^)
70. <a^ > -^ i« +

i
I a+x ) ( a—x )

72.
a* 4c^d* 14c^d* 49

g-

6^= TJ + 2a*b'

73. (a+a7)'(a-2/)-'^(a+a?)-'(a-y)-''=(a+.ma-y)-

74. {_2a-V+17a~V-5a?''-24a*a?«j -i-(2a-V-3a.r')

= —a-^aj^' + Ta" aj'^ + Sa'a?

' \- Sy) 272^ \« cr/ o" cr' Va a?/

, fx y\' ^' ?/" 3/^\l(!^+5

77. |((a-'«f )"}'= «'""^' = 1((«"")"TT'

and |((.'»r)T =
^^"'""'^ = K^""'"^'")"'^

•
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78. The square root of~ ~ = 4- ( r^ )

,

h-{w-\-yy — \bx + byj

a"(a— x)^ a{a— wY ^ a^— 2ab + b'^ a— b
°^ r. ,a6 = ± (^ .A3 '

of
(cT— y) 0^— 2/)^ a?''+ 4aa- + 4a* a.'-+ 2o

79. Of -;5+- + 2 =-±- andof--—+— = -.
Ir a-— b—a x^ 3b gb" x 3b

80. Of -(--2) +'(- -2) + — +! = --! + -.
a\a J x\x J a a w

^- a* c" 6c-/, 2\ / 1\ a* be c

o' a a- \ a/ \ b/ b a a'

«Q nf
^•^'' ^^^

.
^^^ ^^2/ ^ 9y' 2x 3y

03. UI i — + H -—„ = —-—5H .

49^ 7y 7 2.r loo?* 7y 4a?

4a^ 2a^ 5a^ 3a 9 _ 2a^ a 3

84. The cube root of —-—^ =
„ = —^~

.

27c3y-^" 3cy--" 3cx^

a^c^x^ 3a^cx^ 3abx* b^x^ acx" bx
85. Of —-g ;— -i

— = —-—
.

b^ b c c^ b c

«fi Of
"'^' ^ ^«'py' 3a' y- ggc'y" 6gc*y^ 3 a^y

c^y^ 3ac^y* 3a"c^y^ ay c^y^

d^ d- d b^c d

„ , Sa^b-x-" 3a%x-'^ a^x-^ ^-.r-'

87. Of 6' +—-^+ —3-+—-e- =6 +
2c^ . 4c' 8c° 2c«

a^b^^c^ a^b^c
88. The 4* root of . ^^,4,12 16 « . ^^,.3 4

and of

a* (ao? + 0?") ~ "* ' a (rt cr + a;-) ~ ^ a (co; — .f") ' ax{c— x)"

b\cx-x-)-^ ^ b"{cx- x^) - -
^

b' (ax + x^)
^

b''(a + x)
'
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89. The5-rootof^::!^^ei:^° = -^^^i^
32c^d-" 2oc(2+a?)''

90. The m^ root of

c'/d'-'

"^- ——- =~i~i"i—7,
-\—;+ &c. in infinitum.

92. ^=, + ^' + *J^±i) + ^i(f±i) + 8,e.m
X — b X x" a^

a—x a a—h a—b „ «— *,.„
^^- M^ = 6 ^a>+-^a>^--^^x^ + kc.tn

infinitum.

93.

infinitum.

94. If X- = ^ :!——^-1

—

i— , prove that
ab— cd

ya^+.b^-x\^
~

\ 2ab /

_ (a-^b + c+d)(a + b — c— d){a + c- b— d)(b + c—a— d)

4>{ab — cdf
'

95. What is the integer value of <r, when ^{x + 2) + ^x
is less than ^ (<r— 4) + 3 and greater than ^ (<J^ + 1) + ;|

•'' «t?= 5.

CHAP. V.

MISCELLANEOUS EXAMPLES.

, —— f / 8 A /l6a* „

I. 2oa7=^4aV=V8aV=V -33-^3=V -TT= &C'
^' ^ a X OB

4>x . n^ // 64^ „

Sy« ^ 9y'«' STy'^
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3. av — by=/^ 0*0!^— 2abwy 4- b'^y"

= ^a^x^— Sa^bx-y + Sab'^xy" — b^y^ = &c.

4. >y/aVy^= ± O'^'y', y/9a*{a-xy = 3a{a-x)

and ij/64a^(.r"—//^ 4a(^^-yT
STft^" 36

^^^ . y (gg;

-

xy{2cx + x-)Y ^ (a-x){^c-\-x)
^ x\by-ff y-{h-yf '

6- 2 V - = >,y2a, asj~ax=- *Ja^x, feeV t- = ^abc,

and (a + a?) ^ a— x = ^/(a + x) (a^— a?*).

a + a? a —X

V and (a-J7) V "i ;= V ——

•

a— x a —X' a + x

(^v-l)V^^=^{x^-l)ix-l), (x+l)-y==^
x—l

// x+ l , , ,
1

= V 7—Txi
and (.r - 1)

(x-iy
= \7l^

7(^'-i)= ("^+0

9. O^ +OV ^:j:Y=x/(.r+i)(a;^_i)

and (a + .) ^/«!±Z= \/E±?)^±S
a -cr^ '^ a-x

10. ^ a"xy= a,,Jlcy and ^^V^ix— yfr^b^ (.r- y)'.
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11. >J~^y^-= a:x^y, Ja\a^- w'') ^ a"^a"^ x"

and ^a\a?-aar') = a^a^-ax''.

12. ^Sa^x + 6ahx + 3b^x=(a + b) j,jTw^

and ^4a^a? + l^a^x'' + ISaa?'* + 4.r* = (a + .r) ^4^.

and >/ a^ - 6 a" a?- — 8 ao?'— 3/»*= (a + a?)^a— 3 j7.

14. Aja^x^—Sab^x -2b^z=(ax + b) ^ax— 2b,

a„d\/.»-(?fi:i) = (.-i)7^.

15. V 2a + a^x=( a^^/ir,
a? \.i7 / ^

and v 3a+3ax— ax" = (l—x)\/''.
X X

and \/(?^) _ (^ - 1) = ^Hi7^.

1AT A /sa^x^ Bci^x^ ax ,—;

, . / Sa* 32a' 2a 3

and V 3 H ;i
= — sJ ^ + 4<!F.

18. \/?

27a? 27<J? 3^7

^y + 2a^y + ay a + l

x^—xy X (x - y)
A/ayJx— y),

and ^ ^-+f <-;-"'> = ^V(^-
{x^ — ax)y wy

3N



466

19. ^a-\v-^a-°-a:'' + cL? = ^—|^ ^^,

and
<r — tV a?-— 1 a? + ^

20. (?)* and (-')' = \/4. and v/^.

21. {a+ hf and (a-6f = ^a^ + 3a*fe + 3a6- + 6=^ and

^ a°— 2ab + b'.

22. J~^^^ and ^a^ + a?^ = ^/T^^i^V+i^V^
and ^^yo'^T^a^^N^.

23. {ax-yY, (a + fe.r)^ and ^/ff^-.r^^ ^a*x^y\

^"^Ts^^fe^^Ts^feV + fe^^ and ^a''-2o-a^- + a?\

24. S^+5y/^= S^x, ^a^b-{-»J~aW = {a-\-h),J^h

and ^48a*a? + „yi7aV+ .yT2p= (4a'^ + 3aa7+ 2c'p")>,y3^.

25. 3a^o^ + 5^l6a'»6= 23a*Ayfe,

3 /—4

—

3 / 1 , X 5/

;^ a a? + *^ ax= {a -^ w)^ ax

and X^ 12a^x + 2a^ 27 x^ -\- 3 >y/48 o^ .r^= 20oa? ^^3^.

«/. 4 /to^ 4 /63a7' . /a 3x \ ,
26. V — +V Vll2aa?= (« + 4)^7aa?.

X a ^ \x a / ^

27. ^ 18 a^ b^+^ 50a^b^=(3a^b+ 5 ah) ,y2ab, ^l6a^x+

^4-arx + 3 ^a^x"^ + a^ 128a?* = (2a + 4a?) ^2a? + 5o ,,y^.

28. 7^'y-3^y= i^y, J lSa'b-2a ,j2b = a JTb

3/—-r A /86 22a 3,—
and Siy^/ 3afb^a V — = a/ 36.
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29. xA5^~v^80^+V5^=(a-a?).y5^, i/a^*'^

- ^a^xY + !i/ ax^f= (a?x - a'ai'^y + wy^) \J~^ and

26 ^ 26 ^ '^ ^ 26 ^ 36*

8l6c^ ^ 246* \6 3c 26/ ^ 36

/-—— 26 /—F—

;

o A /^ / .o 2a-6a? 3a?*\ ,
—

h^Ja^x - — VV^' + 3^-V - = ( «* + — ) v/aa?-^ c a\ c o/

31. 3<

32.

= (Sa^o? + 4aa?^ — 2a?*)^a— x.

^a?6 y y36 '^Sa? ^15

and
^/ 1c?x j^/ 4>ax^ 2ax

~ ^ "062" ^ 36 ~ 36
'

a t f—o (a -2a6)(a—a) ,-

33. —^a-xy.{a-2h)^a'-ax- — Va,
26 26

and 7 jjaxx{b— x)\ -r- = ? •

•6
^ ^63

34. {a +^b + b)i^^j'b)==aja-hs/b,
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and (s/^+ \/^y + \/y) ^ i\/'^— \/~^ + \/y)

= ^ -h \/^y + y-

35. (a +^-d)x {a —^b) = a" — ad— b + d^b

and (2a— 3a„J~d) x (3c— 2cA^) = 6ac(l-\-d) — 13ac,^.

36. (>v/« + xA) X (-v/a-^A) =«-^

and {aj^Jlo-^ b ,sjy) x (a^ x— b >/y^) = a^x — b-y.

37- {a'-\-^)x(b +^) = ab + a>^ +b^ + ^xy

and („ya + 6<^y^) x {^a — b ^/^') = a — b^ IJx^.

38. (a .y^ - 6^) X (c .v/^ + d^ y)

= ac ,^/lc-\-{ad— bc) ,^Jley--bd,,,Jy and (a + b^x)

X (6 + a4/^)=a6(l + -^) + («- + &=) >jy a?.

39. (\/?.V9.G\/i-N/^) =^^,

ad" b" / c 6^ \
,

40. ^a-s/b-^x^a+\/b-^=\/a'^-b+ ^/l.

41. {y/7i+ ^~b+^c)x{^+^-^)x(^-\-^
—^) X

(
v^6 + \/c— ^a) = —a' — b"— c' + 2(ab + ac-\-bc).

I
— b ax + b /a\-5- /^v\^ a'— or

42. Va.r+ -^^=--=, (-) -(-) = —

^

>/aa? ^aa? Na-/ \a/ a^ax

and
a + 6

6-

+

and Ctlf)^ - (t^f=
\a— xf \a + x/

8ax(a^ + x")

{a + x) (a^— X')
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is/a—or ts/a^— ar

t

i^aat + hx

At;- . / ; T (6 + 2ca?)-
45. 4ic,^a + 6a?+ca?2 —

46.

4ac— 6^

^a + bx+cx^ ^a + bx+cw*

1 2a

a— ^a^— x' a +^ <j?— x" •»'

and _ -=== = —^ €?— a?'.

a— ^a^— x^ a + ^a^— x^ x^

+
(l-.y5)ar-4 _ 2(a?' + 6a?--8) ,

(1—^5) a? 4-2 a?''— 2^7^-40? + 4

(l+x/T).r—

4

(1— ^y5)a7— 4 _ 2a?-^/5(a?^-2)

'-(l+V5)a7 + 2 ,r^-(i_^5)a? + 2 a?*-2a?'-4a?+ 4

1 1

48. +

= 2

^Z^ + s/b^+As/c ^a + ^Jb—^
1 1

{a— b— c)s/a+ {b— a-c)^~b+ {c— a— b)^—'2,J~abc

49.

a^ + 6" + c^— 2 (a6 + ac + be)

1 1

1 1

+ —p-
s/a + \/^-^^ ^/6 + V^-x/o
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_ Ua— b—c)«s/a- (b—a-c),^+ {c — a—h)^ c + 2sj ahc{
-! a^ + 6- + c-— 2(06 + ac + 6c) 3

50. (>/^+v^6+v/c-yd)x(v^«+ -v/fe-V^ + x/d)

— a •\-h — c— d-\- 2^/^ + 2 >^cd.

51. {(-v/«+ \A)'^'-\/«^} X K\/«-n/^)'^-nA^)

=i{a — h)ar— 2axj>J~b + ah and {ab — {y/^ — y/yY\

52. (a' + 6^/6)x(a"--6y6) = a^-6^ (^«+>7^)

and (a + >^y6^) x (a — >/6) x (a^+ ^/b) = a* — b.

53. (a« + a^6 + 6^)x(a-^6)=:a^-6,

and (^ a
-\- ^ b) X {,>ya -\- ,,y~ab + ^)

xi,y^-^b + ^'b)x{^-^)=a-b.

54. (^^ +a?^y"^+/) X (.r-^-2/"^) =*^-/,
« I i s JL 1

and {x^ — x^y^ +y^) x (.r^ + y^ =a; + y.

3 3 13 13
55. (a^ — aai^ -^drw^— x^) x {d^ -f- a?^) = a^— .r' and

{a' + a'a?" +o"^a?'^ + ax^ + a* a?^ + a?^) x (a'^-a?^) =a' - x\

56. Cr"^+2^"^) X {x~^ -^y~^)=x^y'^ + 2 + w"^y^,

J I — > -JL
and (<r+ <J? y^ + y) X (.r"^ H-a? ^y "* +y~*)

= a-y-^ +2a?'^y~'^ + 3 + 2*"^^"^ + d?-'y.
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57.
M^x^— a^ — ^ y^— a^ •» + y

58.

, \/ ax^ -^hw-\-c— ^ay^ + by+c
x-y

a{x + y)-\-h

Mjax'^-\-hx-\-c+ isjay^ + hy-^c

ho a ^ 2 ^ h

and 4a7 ^^/a -r- - isjax = — t^/ax*
28

3

^ ^ 11
59. llx 1^ a^ — ax-=rx^^ a^x — ax^= j^,

X yjX

and —^ a?— x^ -j- - ^a^ — a^x=—- iJcF+ax^ ar-

^, a JVax c ^fhy ad // aa?«

and 2 \/? H-V ? = a-.-^^ • '

X y y a?

62. (a-6 + c + 2>/ac)-7-(>/a-xA + N/^)

and (a-6)-=-(7«-7^) =^^ +^*+f
^^•

63. («^6-a6^c)^(a^+ ax/&^) = «&-^\/^^' ^'^'^
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V y s/y s/^"^ ^ V"^^

= -^ r-^s/y and(- + -—^+-)

/ a"- ,- a?" \ a- .- .r^

-^ I -7=^ —a^x-] -^ I = —^ + c ^a? + —T- •

65. (a?"^ + 2xy^ + 2x^y + y^) -r {w^ ¥ y^) = x -{ x^y^ {- y,

and (a?"^ - x'y^ + x^y- xy'^ + x^y""- y^) -f- {x" + xy^ y"")

= x'^— y'^.

66. (fl - 2 a'^.r"^ + x^) ^{a^-2a^x'^ + x^)

= a'^ + 2a^a?^ + a?^ and (a~ -2aJb'^ +2a~b'^— b'^)

-f- (a^- a'^b^ + b^ = a'^- b^.

67. (a"^-o«6""^-o^6 + b^)^{dJ - 6"^ =a«- 6,

and (aJx"^+a"^x'^+aJy~'^+a~^y'^+x'^y"^+x"^y'^+3)

68. The square of ^ax^=i ^ ax ; the cube ^x'^is/ a\

the fourth power = x^^ arx^ ; &c.

69. The square of - „j2ax = \ —^ , the fifth power

_ 2a7 ^/^^
and the sixth power = 4 a?-

ar ' a ' a

70. The square of (a + x) ^y/ a*— a?*= (a + a?)""" j^a— x^

) 3 s

and the cube of (a — .T)(aa7

—

x")^= x^ (a — x)"^

.
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71. The square of 2 ^a + 3 ^x = 4a + 9x + 12 >J a.v,

and the cube o^^ w - ^Ja= x— Sa^ x^ -k- Sax^— a >J~a.

72. The squares of a + ^x^-a' and ^l+a?- ^^l-a?

are a?" + 2 a y/x^— a*^ and 2-2 ^ l — a?*.

73. Of x/l-a? + *- + ^H-a?-a?"and,^a-^o'-a;

±Vo + x/«''-'^are2+2^1-a?^+ 2a?='-a?%nd2(a+^yA')-

74. Of a +2^^+6 = a2 + 6a6 + 6' + 4 (a + 6) ^Z^,

and o{ a^x-^ + a^x-i=^-+2\/7^+\/^
X ^ \x/ ^ X

75. Thecubeof^-^=a?-j/-S,,y^(^^_^y)

and of (a + x)^ + (a + a?) t= ^^ '- l 3 ;^^—!

—

I—J—

C

^ (a + a?) ^ -*

76. The cubeofaa?^- hy^-aC'x'^-Sa%xy^+ Sah'^x^y-Wy^\

and the 4th power of a' + 6"^ = a^ + 4a^fr'^ + 6a6^ + 4a"^6*' + h.

77. The cube of \/- - \7? = f!ll^ - 3 (a'- a),a X ax

, , /.A /« 4 /<3? o^
. a?^ /a a?\

the 4th power ofV ~+ V -=—o + ^ + 4(-+ -) + 6.
a;' a a?'' a"* \x a/

78. The square roots of a^h ,J^, x^ arb' and (a + 6)

sJa^-\-a'hf are a^h^x, s/^ ^^ah and ^a(a + 6)*.

.— 2 a ^ ^/ Q , // Caa?— a?")^

79. The cube roots of a v^ a, —V "^ and ^ ^
,

^

Ja,i-) andV-^7—are ^ ' V 3 y

3
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80. The fourth root of

^ax + x^ ^{a^-wy _ (« - xf (a + xf*

X
~

±
x^

and the fifth root of

^x-y + xy^ {x + yf

81. The squai-e roots of a" — 4>a,^/h-\-^h and ax'-[-by'^

— ^xy^ab, are a — 2 y/b and Xj^ a— y^b.

82. Of 4-a"—12a >^b+9b + l2 — 18a-^ ^b + ga * and

X y /x y\ ,~ 5 I-

-J + "5 - (- + ^) V'S + -, are 2a-3 ^b + 3a-' and
y a? \y ,v/^2
X I y

y ^2 X

83. Of —r rrr- + -~3 IS —r TT and of
9a5 5 a* 6* 256^ 3«i 56*

5

12.r« 9
5

9 .9? 6

25 5 5

^ i,** \()x^ 2Sx^ 12.r« 9 . I ya?" „
\6x^ + -^- + —J- + —^ ^ -J ^^ ^"^ + -r- + -

y^ 3,8
2^

j,3 / ^

84. Ofi +
41a 3-^Sn

16
yja + a- and 4a" + 6.r — y^

+ 2 sj'^c^hx— bxy'^ are 1 -f .^/a + aand ^^a^— y^±^bx.

85. Of ffi-fft + c + 2Ayac4-6c and « + ft+ c+ 2 j^a6

+ s/ac + s/bc\ are ^ n-\-h + ^c and ^/cr+ 'v/^ + \/^-

86. Of a + 6 + c + rf + 2^tfrf-f 6d4-crf and a + 6 + c

+ d + 2 ^ac + 6c + <?rf + 6rf are ^ff + 6 + c + >y/rf and

^a + b + ^c + r/.
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87- The cube roots of ax— 3 ^^ ax* + 3 ^a*x^ - of and

3 / J ^. — 1

. /a^ + 3a— oA V —. ' ^re <Jax — x and ^a+\ — —7=-

•

^ a a^
^ ^ a

88. The fourth roots of a^ + b- — 4>j^ab{a + b) +6ab

and 2x^-^x'^^8 + 6x->^2-4>x^2 + U are ^ a - ^b

and X^2 — \'

89. The square roots of 2a + 2 >^ a" — x" and aa? +

oa^ax -«- are ^a + ,!• + ^a - <r and ^aa?— a" + o.

90. Of — + - Ja'-x' and— + V -^ ^*^ 42^ 0? ex c

ah X /^o, a^b-
and — + v ?-•

0? V a^
are - -{

2 2 .1? c

are

X" t, / on ^^^

91. Of a^-ax+'- +2V a^«— 2a-.i?-+ -—
4 *

mt
I ' /~r~ ^"Z Hi-2r~

and V «'" + V «"6 + 2V«""' ft»

W a^-2ax+ -+^/a^and«"»*" + o2'•»62^
" 4

92. Of 2a^+ 2>^a'^— x^ and a + a?+ v'2a.r +a;', are

f— ^ ./2a + x .foo

J d' ^-
x'

-V J a' - 00- and V —^— + V^ g"

93. Of 3 ±2^ and 4 + 2 >^yi, are ^2 + 1 and ^~S±\.

9i Of7±4V3 and 11+6^2, are2±v'^and3 + V2.

95. Of 32±10>y/?, 28±5-v/T2 and 36 + 10^11,

are 5±>Jl, 5± V^ and 5+^/ll.
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96. Of 5 + ^24, 87 ± 12 ^42 and 12 + 2 V ^5,

are Jl± J~i, 3 ->/ 7 ± 2^ ^ and sl~^± ^/7.

97. Of 2+ J\ 4 ± 2 ^2 and 3| ± J\%

98. Of >yT8± 4, v^27± 2^/6 and 4/^/3 + 6,

are ^± ^l, ^n±>^ and^ ± ^.

99. Of 3^5 + 2>yTo, 3^^6 +4^ and 5v^ +2^,

are ^20+ ^, ^24+^ and ^32 + ^^2.

100. Of 14 + 4 ,72-2^/5 + 4-^10

and 9-2^3 +2^-2^15,

are 1+2^2-^5 and l-V^+Ayil

101. Of 14+ V32-v/48 + x/80-N/^ + \/'i0-^60

and 11 -2^2+2^3 -2-v/5-2^6 + 2>y7o-2V'l5,

are 2 + V^ - \/^ + sT^ ^"^ ^ " N^^+ V^" V^'

102. The cube roots of 10 + 6^3 and 38 + 17 >>/5,

are 1 +^ and 2 + ^5.

103. The fourth roots of 17 + 12-^/2 and 14 +8^,
Js±l

are 1 + sT- ^"<^

75
104. Prove the truth of the following expressions;

, X or or 5x
^l+.r=l + ± — +&^ — — 2 8 16 128

~" &c.

ruv"I fl/ «t. U, .) .1,

^ - -2a 8a^ - l6a^ 128a'-
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l±a,' = li- + + &c.
3 9 ~ 81 243 -

_P

^a^±,v^z=a± —5 -. + „ +&C.
3ar 9a* - 81 a" 243a^*

-

a") =«"«=(«"")
, (a~~') =a"^^ = (a^')

106. l[a~') \ =a^ = |(a») J

= !(«"") S'=i(a"")i ' and l(a^)i ' = a'^

= l(a"^)"'f = l(<.-?T=l(a-"=)-'r'\

J- i + i -L
107. («?'"• + .r"")'"" = .r'" » j.r'"-" + a?"-'"!"'" and

108. \/i±^_\/^=4v/i±5 + \/iEf^,

and (l+a?) ^^1+207 -^^— i =x\^l+2w + ~.^.^=i .

L ^+2x) i Vl+2cr3

109. (1+ cr + a?^) V 1 + ,r" 1+ ^ )

^^i+cT- 1 + 0? 5

110. ^/2x—^3a and ^ax ->r ^^Jhy are equal to

\/2ci'+3a-2>/6aa,' and \/ ax+ by + 'Sy/ a^bx'^y+3 ^ ab'^xif.
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111.
(
v/'^- 1) s/x + Jlc = \/(.v - 1) (.V - ^Tv)

and Vr-2 + .^ = V ^—7-^^
•

112. ^3 + ,^y5^and v^~" V^> ^''^ equivalent to

x/8+3^45 + 3^75 and >y6+l2V^-8^'8-8^2.

113. If f>J {a + w)" + 6" + ^(a — a?)' + 6'"' = 2 c, prove

that (a- - C-) (a?- - c") = b'c-, and if V(a+^)N^
X ^ (a— x)^ -j-

y-= a", prove that (.x^ + y-)- = 2 a- (<r- — y")

.

114. L_=- and - , are equi-
V + ^ ,v^—\ a +w - ^2aa; + or

valent to w —^ x" — l and a + .r + >j2ax + or.

-- 9.^ ah 2ax
AA«>- -T7= rr= ^'^'^ "T7^^ 37^ J 3,re equivalent to

5^T25-^75+>y45- ^Vl\JVh
and 5 4/ 49 + >y 35 + ^^ 25 j 2 a .r.

lib. 7= —
- and —-j= -= ;=, are equi-

l + x/s + V^ V2 + V'^-\/'^

valent to {2 + ^2 — ^6) .v and {2^+3^+^30)y.

mJ a, tu a
117. — —^ and 3.-^—

W^"* ^^^ equivalent to

n^rsjah ,J aar—^ axy+ ijay'

a— 6 * + y

118. „. = and y :!!5/_^—^'^^^j arc equivalent

to \A-x/^ ^„^i
\7«±ii?v^.



479

119.
a'' —a a — a'^ a — a: _ -^ a + y/x

5- a-^ yJax-\-x y/a—^rar + a' a' +

and

120. = 2 ^5 + ^20 +^ 10, and
-s^o

= --v/5(8 4-6^+4^9)-v/lO(6 + 4-^4-3^).

121. J -ah= sjVh ^"^^ s/'^J'b -v/^ 1

= >/-« V*= V*^ n/ - ^ and V - ^ = V - s/^

122. o^J~:-b'-vcJ~^\-yf^'

= a + (6 + c— d) *J~^\, and (-v - a) ^-l + ftc y ^

123. 2^-4 + 3,y^ + 5^-l6= 33.y^^,

and 4>y^+3^-32-19->/-24-6>v/ -3-4^-27

124. ^ —abx ^ —bc= —bA^ac,

and a^ — .vxb^—y= - ab ^fxy.

125. (a + v/"^) X (o - x/^^6) = a' + 6,

and (a + >/^^) x (« - V^^) = 2«'-

126. {Jar-b" + 6 >/^^) x (^a'-b- _ 6 ^^ - l) = a',

and (7^iV6^ + c7^) X (^^^M^- c7^) = rr + 6* + r'.
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1 27- (2 -^^ ) X (3 + ^ - j) = 1 1 - yj^^,

and (v^2 - 3 v^^^) X (^^7- .J^-3) = s/^i - 3 ^Ts

-(3^35 + ^6)^^^.

128. (2,i?+ l--^/^)x(2a? + l+>/-3)x(2?-l)= 4(a,>^-l),

and (.r- 1 - ^^^) x{x-l+^ -2) x (.r-2 +^^) x

(.r-2 —^ — 3)=a?* - 6a?' + 18a?- -26^ + 21.

129. {.V + a) X (x-a) X {.v-l (I + J^3)\

X i.^-^(i-V^3);xS.T? + ^(i+y^3)S

and (.r— a >^ — 1) x (.r + a >/ — l) x

,{a? + ^(Vi + 7^l)}x5.r + ^(v/3"-y^)i

130.
a + b yj —I a — hsj — I /a- — lr

JL _[_
^ — <? I

— 1 _ /a- — b'\

and

a — h,J —1 a + h^
a + b*^ — 1 ct — 6>*y— 1 ^ab^—\

131.

a _ 6 ,^/^l a + 6 ,^ — 1 a" + 6'

a+ fe-s/ — 1 ,
a —b^ — 1 _ 2(ga? + 6y)

-=-- +
.T-+y-

a+b^ — 1 a—b^ — i a' + 6*
^ X — ^- =and

132. a mJ —^ -^ \/ — a-b= —^, and

\ab+ .ry— (ay - b;c) a^ ~l\ -r-(fl+.r^ _i)=6—y^ _ i.
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133. (x/^ + x/^+yZ^)4.^Zl=2+yi+73,
and

134. l-v^iri=_^/—1, -a'^aJ^rx=a,jrZ\^

and ^/n JlFZTi ^ JYZTx= >v/l+a?.

135. (a-f ^ - .r'^)2= a--a?2 + 2oa;->/^,

and (a + ^ -xy =^a^ - 3ax''±{Sa:'w- a^«) V^^-

136. (a? + >J~~i ^ 1 - .r«)2= 2.r" - 1 +2a? ^/^^,
and (3a'-2a^/3I+^T:i)°-

= 9a* - 12a^„/^ — 2a*(2— 3 .y^) + 4a^i -2.

137. Va'-6V2a6yirr=a + 6,y^rT,

and s/l-\-3a^ -I - Sar— a^ .,^/~^ = l +a ^^l.

138. \/4a6 + 2(a*-6'^).,/^l = a + 6 + (a-ft)v^'^l,

and V-
'2c^

1 = ;;(1 + V-1)-
a

139. \/a\v*-a^b^-a^^-2a^bx''^ -(a + h)

= a-x^— aby/ — (a + b), and

^ c- a c c a

140. \/si±i2j -5 = 6± J -5,

and n/24^^7-"^-7 = ^ + *'v/--^-

141. >^-5H->v/^=i + V^-2»

and -s^ -28 + 16^^-2 = 2 4- y^.
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142. \/a-{-b^ -I + ^a-b,y~^l

= \r2a + Vj^^^T^, and ^ar" + b^ ± x/^ ^/^-^

= s/~^+ b'±2y^ 62 ^ (^2 _ 62)^2Z7*.

^-V~l ^ ''6 + 6^-31- b^-'^

and
a — b J./ — I b" — 2ab^ —

1

a^ + 6-

144.

H-V-2 1+2^31 5
=-'o-V-o,

and
21

= 3 + 2^-3.3-2^-3

145. If (a + 6y - 1)^= .r + y v^^l» Jt is required to

prove that (a — h^ — i)^= ^v— y >/^^.

146. Reduce -v/^, l + ^TIl and S^^+S^IH
to the form a ± (i^ — \.

CHAP. VI.

I. SIMPLE EQUATIONS.

1. In 7^7— 3 = 5a?+ 13, ^7= 8.

2. In 3a? + 5 = 1007—16, x= S.

3. In 1507 — 24= 20 + -, .r= 3.
3

. _ W CO CO

4. In a? H = 7, 07= 12.
2 3 4

„ _ 0? 507 + 4 437—

9

2
5. In =

, 07 = -
,

2 3 3 3
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7. In —-+___+ =16^ ^^,3

o. in —
1 -s cc= 8.

4 12 6

t

9. In —— + = 16-
5w + t

x= 7.

10. In _- + =20
, a?=18.

2 3 2

11. In
-r— 7 3^7—5 125

11
+— =2a?-17, d7 = 8.

' 5,r— 7 3a?— 2 a?—

5

67
12. In —— = ^__

13. In '^±l_iiZf = !^-^
.

oi

20

83

+ 3|, J?= 7.

14. In .r = 5-
4

a?+lO a?3*54'
Tc J 9X + 7 / a;— 2\
15. In -^ (^a. —

j = 36, .r= 9-

-.. _ 3a? + 7 2ar — 7 , a?—

4

16. In '
"^

14
+ 2j= , .T= 35-

21 4

-w T 2a? +1 402 — Sof 471— 6a?
17. In =9 , *=72.

29 12 2 '

18. In
4.a?— 21 , 7a?— 28 - 9— 7a?

+ 7|+ — =a' + 3| — , a?= 7.

10 Tn
-^-'^ ^-^"^

^' ~^ " T3

5a?-
10 — 3a?

4

39
, a- = 11.
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3a; a; .

4 2
20. In +19 = A' , .r= 24.

8 11

_- , 5a? — 1 3a? — 2 lla?— 3 13a? — 15
21. In 23 4- ——

H

8a^—

2

11

ar= 9-

12

_„ ^ 17-3a? 2a?+I 29-ll<r
22. In — — -—i— = , a? = 4.U
„„ , 3a7— 1 5a?+l

, 2a?- 11 7a7— 13 IKr + T
23. In 1 =

12 18

499-

1

3 J?

- 14, a?=19.

15a?— 23 261— 11a? 137 — Sa? 95.T — 22
24. In 25 H ::::

~ \-

29

-4^—- , .^ = 17.

37 43 59

25. In . 15.r + . 2 — .875.17 + . 375 = . 0625.r—l, a?= 2.

26. In —I = -
, a? = -

.

a? 2 a? 3a? 3 2

^*» -r
6<v+13 3a? + 5 2a?

27. In = — , a?= 20.
15 5a?-25 5

28. In

29. In

2a?+8i 13a?— 2 w 7x a?+l6

9

41— 35 a?

105

6a?-7^
.

17.r— 32 3 12 36
, a?= 4.

7-2a?2

14 (.r- 1)

l+3a? 2a?—

J

~21 6
a?= 4.

T "- -1 .
l + l6a? , 12ff— 8a?

,

30. In l+ 2x-\--^ =4^ 2
, ,r=il

13— 2<r 24

25 — ia? l6.r + 4i
31. In

~"
^ + „ " / = 5 +

23

32. In

a? + 1 3a? + 2

3 — 2.t? 5 — 2.r

a? + l

4.t'— 2

» a?— 3 3

l_.2cr 7--2.r 7_l6.T + 4.T?-'

'

8
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33. In ^a; + 9 = 14-x/*> a?=l6.

34. In (-v/^+28)(^+6)=(^+38)(>y/^+4), a?=4.

^ 259— 10a?
35. In aJx— ^ =—7=

, a? = 25.

V^ + 4

36. In X + ^2aw + x^= a, .t?= - .

4

37. In \/4 + ,^/a?*— a?- = a?— 2, a?= 25.

38. In aa? + 6^ = a^ + 6a?, a?= a + 6.

39- In 6a? + 2a?— a= 3a?+2c, a?=
a + 2c

6-1

^ 5(a?— a) 2a?— 36 .

*

, ^..
40. In -^^ ^ = 10a+ll6, .p= 25o + 246.

6 5

3a?— a a? + 26 7a? a 8b'^—4>ac+abc
41. In 4 = , a?= 7-7 ;

—

he c 4' 12(26- c)

hw d a cw ad
42. In =r-T' •^'=^•

a e 6 a oc

arc ac
43. In (a + a?)(6 + a?)-a(6 + c)= — +a?^ ^=y-

a- -6=
44. In ^a + a?= !y a?^ + 5 a.r + 6% a?= —

^

d-6
45. In y/aic + b= A^cx + d, a?= _^

46. In
aa?^ + «•*

= aa? + 6'

^«'-
''^="1^ 62<

47. In ^a + d — \/_-^ = ^20 + a?,

a + a?

'l —2^a— 'n —2^a-a\ ,-

2aJ~b

b~
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49. In ,,y + T^—= >/ '•• ' = *(«- 0-

^00 ^x

50. In V - + fe- V --6=V^' '^=Ia^T7''

51. In aJ a + x= yj b + ^x\ x=

52. In ^^\- >^nr+x=

53. In ^x+ a + ^/v—a =

na

^/a + x

h

x-'t-a

46* + c*

(«-fc)'

46

a? = fl.

2»—

1

2 a'— 2a6 + 6-

' ~ 2(6— a)

^-s/'-W54. In —T= +

55. In va + ^.r + %/« — v^' = >/^'

8o^+ 15a^6+6a6^-6"

4 9

276

56. In ^s/Jx + Sa" - ^ \/^ — 3a^ = V -^'

4(6 -o)'

Problems.

1. What number is that to which if its third and fourth

parts be added, the sum will exceed its sixth part by 17-''

The required number is 12.

2. What number is that from which if 50 be subtracted,

the remainder will be equal to its half together with its fourth

and sixth parts ? The number required is 600.

3. Find a number which when multiplied by 4 becomes

as much above 30 as it is now below it. The number is 12.
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4. Two persons at u distance of 240 leagues, set out
to meet each other, and travel at the rates of 7 and 8 leagues
a day respectively : when and where will they meet ?

They wiU meet at the end of i6 days, having travelled
112 and 128 leagues respectively.

5. A labourer was engaged for 36 days upon the condi-
tion that for every day he worked he was to receive half a
crown, and for every day he was absent, to forfeit eightcen-
pence: and at the end of his time he received £2. IHs.: how
many days did he work, and how many was he absent ?

He worked 28 days and was absent 8 days.

6. A is three times as rich as 5, and if B give him
£50, A becomes four times as rich as B : required the pro-

perty of each. A\ property is i?750. and B\ is £250.

7- A possesses <£'600. and B <£'480; what sum must A
receive of B that he may become twice as rich as B?

He must receive i?120.

8. A''s money exceeds ^'s and Cs by .£'240. and £320.

respectively, and that of B and C together is £600: required

the sum possessed by each.

A has £580, B has ^340, and C has £260.

9. A, B and C together possess i?600; A, B and D
together <£*720 ; A, C and D together £900 ; and B, C and D
together d£'l020; what is the sum possessed by each ?

A has £60, B has ^^180, C has £360, and D has i?480.

10. A and B together possess £l50, and C has £50.

more than D: also A has twice as much as C, and B thrice

as much as D: required the money of each.

A has .£'120, B has ^30, C has £60, and D has ^^10.

11. A merchant after allowing £l600. for his annual y
expenditure, increases his property every year by a fourth

part, and at the end of two years is £9fiO0. richer than at

first : what property does he begin with .''

His original property is £^24000.

.'. i/>(

—

ILoo = cc-^'c/:^ «-/- e<i»-^ ^ /"C ^^g^at,w-

SJ- — 1600 ^ I^So - /^ ^ya^a •, a :k. s J'4000

4^^ ; 2Aooa
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12. From a sum of money is first taken away i;20.

more than its half: from the remainder £30. more than its

third part, and from what then remained ^40. more than its

fourth part, and afterwards nothing remains: what is the

sum? The sum is ^290.

13. Find two magnitudes whose sum is s and difference d.

mi .54-d ,,, . s— d
1 he greater is and the less is .^2 2

14. A has m times as much money as B: also, if they

receive £a. and £b. respectively, A will have n times as

much as B : what sum of money has each ?

^ , mnh — ma ^ , „ , nb— a
A has X and B has x.m—n m—n

15. Given the sum of two quantities = a, and the sum of

m times the former and n times the latter = 6, to find them.

h — na ma— b
The former = and the latter = .

m—n m—n

16. Three magnitudes ^, J?, C are such that the sum
of A and B is c, that of A and C is 6, and that of B and C
is a : find them.

. b+c—a a+c—b , „ a+b—c
A = , B = and C — .

17. Divide a given quantity a into two parts so that the

sum of their quotients by m and n respectively may = b.

^ . m(a— nb)
, , , , n(mb— a)

One part is and the other is .

m—n m—n

18. Divide a given magnitude a into three parts, so that

the second may be m times, and the third n times, as great

as the first.

_, a ma , na
Ine parts are , and

!+»» + « 1+w + w l+w + w
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19. Find two magnitudes whose diflTercnce is a and the
difference of whose squares is 6".

rp.. ^.,.
6' + a'

, b"— a"
Ine quantities are and

2a 2a

20. Divide the number a into four parts, so that the
first being increased by 6, the second diminished by h, the

third multiplied by 6, and the fourth divided by />, the re-

sults may all be equal. The parts are

ab ah a
^ ab^

7 — ^» T,—rrr. + "» 7 it:; and(i+by (i+hy (i+hy ""
(i+ft)**

21. Two pipes fill a cistern in m and n hours respectively

:

in what time will they fill it together ?

rr.1 . , . . mil
,ine required time is hours.

m-tn

22. Find the time in which three persons can jointly per-

form a piece of work, when they can separately do it in w;, ii

and p days. The required time is days.
mn + mp + np

23. Find two quantities whereof the former being in-

creased by a becomes m times as great as the latter, and the

latter being increased by b becomes n times as great as the

a + mb na + b
former. The quantities are and .

mn—1 mn—l

24. Divide £a. among three persons, so that the first

may have m times as much as the second, and the third n

times as much as the first and second together.

The first has — £, the second —- — £,

na J,
and the third X.

»-l-r

25. A and B can perform a piece of work in m days,

A and C in w days, and B and C in p days : in what times

can they accomplish it individually and collectively?
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A can do it in
mp + np — mn

days, B in
2mnp

mn Vnp— mp
days,

Cin
2mnp

, ^ J ^ 1 ^ . 2mnp
days; and yl, B and C m days.

mn+mp—np mn+mp +np

II. QUADRATIC EQUATIONS.

1. In 11a?-— 44 = 5a?^ + 10, A'= 3 and -3.

2. In (cV + 2)^ = 4a? + 5, a?= 1 and — 1.

3. In
0?^— 12 a?^—

4

, a? = 6 and — 6.

4. In a?v6-l-^ = l +'^^ <*^ = i and — i.

5. In ^<i?-a= Va?+ >v/6^ + a7% a?= + ^ a^—b'^

6. In-+-^^^ = 0?= + >v/2a6-6'.
a? a?

7. In

8. In

a— \/a~—aP' a+^ a"—aj

2 2
+

* + \/2 — a?- ic— ,>J'2
— x

1 a , /-—===—, a?= ±-|a-^3.
' -9 .2 ^<: a -v

= a?, a?= + n/^^

9
T »ja"-'rw^+a} h a(b— c)

^a'^ + x^-x c 2^ he

10. In
o + a7+ /^2ax + aijl+iy

. =6, a?= + —
j-^—

+ x— ^2aw + a!^ 2y/b

11. In
ax + 1 + ^a'x^-l

aw + 1 — \/ cro^ — 1

12. i„
v/^"^^- n/*^

h"ai

b^^a-b"

^^ / a^(c-dr--b''(^Td)^
- ^ 2(c- + d^)

13. In a?'^ + 20= 12a?, a? = 1 and 2.
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14,

15.

16.

17-

la.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

In a?" — 14= 13a?, a* = 14 and — 1.

In a?^ + 2a?— 35= 0, a? = 5 and — 7.

In 5.17^— 24 a?= 5, a? = 5 and— 5.

In ga?— 5a?*= 2i, a?.= l| and
f^.

In |a?* — |.r =9, ^= 6 and — 4j.

In
4a?

5 — x

20 — 4a? = 15, a?= 4 and — l|.

In 2a? = 4+ -
J <»= 3 and —1.

a?

a?^ —

8

Ina?--^—^ =2, a?= 2andl.

In

In

I
= — , a?= 2 and — S.

a? +

1

a? 6

a? + 4 2a?— 3 59 ^ , _67—I = — , a? = 4 and — 2gj.

x— S a? + 4 8

a? + 7 x + 5 47 ^j«22
In . = _-

, a? = 6 and — 947-
^ a?+ll a?+12 306'

x—i a? + 3 a? + 2 ,

In^ + -=2 -, a?= 5andO.
37+1 x— 3 a?— 2

8a?5a? + 36 3
T

\
I ^

10a?— 81 25 5w—
., a?= 14| and|.

In
3x a?—

1

a? + 2 6

24

= x — 9, a?= 10 and — li

In a?
H—^— =3a? — 4, a?= 5 and — 2.

a?— 1

In y/I^3 X ^3a? + 7 = 12, a? = 3 and -6|.

In 2^ + —7= =5, a?= 4 and J.

In -^^^ =a7— 8, a? = 9 and 4.

Va? + 2

In 3v^ll2-8a?=19 + x/3^7, a-= 6andll^
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41

33. In \/x' + ^.r* + 22cT* + S'ix = a? + 2, .i- = + ^.
34. In (9+5v'^)j?'= + (l5+7>/3)a?+ 6 = 0,

a? = 2 — A^S and 3 — »J^.

35. In 2.r' + V^^N^ = .r'-9, *= + \/^ ^ ^'
~

.2

36. In 'V 4^T + 9 = 4a;^ _ V 4cT'3' + 5, .t = + 8.

37. In ,1?"— (a + 6)a? + a6 = 0, a? = and 6.

_ V^38. In a,v^~ 2a »ybx= bx- — ab, a?=
Va -f- \/b

39. In ^ a-\-X'\-^X— . , <r= =--^^^ <—.
/y/a + a? 10

40. InffV + (l+6)a,y6'+a^6a-=|a^y6+ (o+6)(l+t)!a;,

a + 6
and

1+6

41. In .r" — 2b ,^ a"— ax + x" =i ax — b^

,

a, t. / „ fl"

x= - + V b^ + 2ab-\ .

2
~

4

42. In 2(a?— a)^a' — a?- + a"+ 6-= 2a.r,

a ± Ja'-b" ± >s/b- + 2aJa^-b*x= —
,

2

43. In
A^a- + ax + x"— >/«-— ax+ x^ a

^ a- + ax + x" + y/a' — ax-^x' 6'

46 ~ \ 46 /

44. In (o^"' + l)(a7i-l)== 2(.r + l), x= (a-'^±i)-.

I 3 3 m+H 1

45. In a-6-<r''~ — 4a^ 6=* a? *""' = (a — 6)'.r^,
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46. Ina.^'-i^^^(-p?+^-) = 0,

1— . apg

*/• *" 1 =
, /»=— .

a w a -A -^rQm—\ — e»»—

1

t/

48. Ina7^-2a?*+2a7->yd?=6, a?=l,4andl( + ^-ll-5).

49. In ai^ (.r +4) + 2d7(a?+4) = 2 - (j7+4), .t = - 2 ± Jl.

50. Ina.«+ ~_2a.-- =3, 0^= 2,3 and ^i±^^^.

51. In ij'lc = —

=

, a7=si6, 1 and "^
.

'>^-«-»-

^a?—

2

2 /-^jx-f/^t

52. In^^l±f= = -Vi^_^^^^v^i^„,„^
i+v/i^^^^ i--yi-a?' 2

53. In ^a + x + >Ja— x = —^, x=z±2^6a— SQ.

\/6

54. In .,*^_2..3».+^«. = „ ,^^v/
l + V3 +2Vi^

r^

55. In cr^Co?— 2)'+5a?2(a?— 2) = 2(J7— 1), .r= + ^3-1.

2 —
56. In (.r— 4)^ + 2(^7— 4)= 1, 07= 2 and 2 + ^3.

^ <J7- A' —12
,

57. In — = — , a? = + 4 and +2.
4 .r''— 18

- -

58. In 2,r^-a?2=l, x=l and
^"^—^.

4

59. In 37+l=-l=r, cr=l and -^±\/-l
x/.r 2

60. In .F-3
o+*\/'i^ ._ 7±\/^3 ^ -i+^yn



494

/ .- 01. In .r- = 1^, .t'=-^and ^
3x "

-" 3

.V

62
^ .r 24 + 7v/a- , _i5+ /_3i
In - = ^^^^^— , ct? = 9, 4 and ^=^-^^^

a? +

1

Problems.

1. Find two numbers, one of which is ^ ths of the other,

so that the difference of their squares may be the square of l6.

The numbers are + 20 and + 12.

2. What two magnitudes are those whose product is a

and quotient 6 .''

The magnitudes are + ^ab and + \/ - .

3. To find two numbers whose difference is 8 and product

128.

The numbers are + 8 and + l6.

4. Determine two magnitudes whose difference is g, and

the sum of whose squares is (|)".

The magnitudes are + ^ and + ^.

5. It is required to find two magnitudes whose difference

is 6, such that if a^ be divided by each of them, the difference

of the quotients shall be c.

The magnitudes are

-bc+ J4>a-bc + b''c^ J bc+ J^a^bc + b^c"
=_5^ and —=—5^

.

2c 2c

6. Find three magnitudes, the products of each two of

which are p, q and r respectively.

The magnitudes are + V ~ , + V/^ and + V/ — .

r - q
^ ^ p

7- Find two numbers each of which together with six

times its reciprocal shall be equal to .'5.

The numbers required are 2 and 3.
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8. The reckoning of a party at a tavern was £3. 12«.

;

but in consequence of two of them having no money, each of the

rest paid 6d. more than he otherwise should have done: required

their number. The number is 18.

9- Divide 120 into two parts so that the sum of the quo-

tients arising from dividing each by the other may be 2^.

The parts required are 50 and 70.

10. Divide the given magnitude a into two parts so that

the product of the whole and one of the parts shall be equal to

the square of the other part.

The parts are ^«{\/5-l} and ^a|3 — ^5|.

11. To find two magnitudes whose product is or and the

sum of whose squares is b".

The magnitudes are

yAWZE^ and + \/^£^^.
2

~
2

12. Find two magnitudes such that the first together with

twice the second may be 23, and the sum of their squares 130.

The quantities are 9 and 7, or \ and f.

13. Given the sum and difference of the squares of two

magnitudes equal to a" and b- respectively, to find them.

The magnitudes are + v ^"" "•" V •

14. Divide the given quantity a into two parts that the

sum of their square roots may be b.

a+ ^2ab-b- a+ ^2ab— b'^

The parts are ~ ^ and .

15. To find two magnitudes whose sum is a and the sum

of whose cubes is 6^-
_j|

a ./&' a« ,a_ /b' a"

The magnitudes are - ± \/ — - - and - + V — - -.
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16. Given a the product of two magnitudes, and h the

difference of the products arising from multiplying them by c

and d respectively : to find them.

™ . , + ></6'+4acd+ 6 - ± .JV+4acd-b
The magnitudes are

~ and ^^^ .

17. Given the sum of two quantities =a and the sum of

their fourth powers =b'*; to find them.

The quantities are

a+ \/ — 3o' + ^8(a*' + 6*) a 4- V - 3 a' + -v/8(o''+ 6*)

2 2

18. Find three magnitudes, when the product of the first

and second is a, the product of the first and third is 6, and the

sum of the squares of the second and third is c.

The magnitudes are

±\/^l±l, +«v/^and±6v/
a- + 62 • -- ^

a''+ b''

19. It is required to divide each of the numbers 11 and

17 into two parts, so that the product of the first parts of each

may be 45, and of the second 48.

The parts of 11 are 5 and 6, and those of 17 are 9 and 8.

20. Divide each of the numbers 21 and 30 into two parts,

so that the first part of 21 may be three times as great as the

first part of 30, and that the sum of the squares of the remain-

ing parts may be 585.

The parts of 21 are 18 and 3, and those of 30 are 6 and 24.

21. To divide each of the numbers 19 and 29 into two

parts, so that the difference of the squares of the first parts of

each may be 72, and the difference of the squares of the remain-

ing parts 180.

The parts of 1 9 are 7 and 12, and those of 29 are 11 and 18.

22. To divide each of two magnitudes a and 6 into two

parts, that m times one part of a may be equal to n times one

part of h, and that the product of the remaining parts may be c'.
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The parts of a are
'^^"^^'^t J i^na-nhy +^mnc^

2m

J ma— nb+ ^ (ma— nb)" + 4,mnc*
and ^—-^^ i__I :

2m

and those of b are
ma-\-nb± ^(ma — nby-\-4mnc*

and

2n

— ma+nb+ s/{ma— nbY-^^mnc^
2n

23. A and B start from two places C and Z> at the same
time, A from C intending to pass through Z), and B from D
travelling the same way : when A overtakes B it is found that

they had together travelled 30 miles; that A had passed through

D four hours before, and that B was nine hours journey from C:

find the distance between C and 2>, and the rates of travelling

of A and B.

The distance between C and Z) is 6 miles, and the rates of

travelling of A and B are 3 and 2 miles per hour.

24. It is required to divide each of the three numbers 17,

23 and 38 into two parts, so that the product of one part of 17

and one part of 23 may be &Z ; the product of the other part of

17 and one part of 38 may be 180, and the product of the re-

maining parts of 23 and 38 may be 280.

The parts of 17 are 7 and 10, those of 23 are 9 and 14, and

those of 38 are 18 and 20.

III. SIMULTANEOUS EQUATIONS.

1. In <r + 2/= 9 and 3a? + 5y=:35, x— 5^ y= 4.

2. In 2.r + 3y=18 and 3a?— 2y=l, a?= 3, y= 4.

3. In 2cr— 9f/= ll and Sa?— 12^=15, a?=l, y——\.

4. In Sx-Ty= l and lla? + 5y = 87, a? = 7, y = 2.

5. In 9,r — 4y = 8 and 13.r + 7y=101» .t = 4, j/ = 7.

3R
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D. In a?—

^

=5 and 4y- =3, w— 5, y=2.
4 ^

7. In -—^ =8 and ~ y=ll, a? = 6, y= 8.

8. In 2cr— '^ =4 and 3yH =9, .r= 2, j/ = 3.

9. In 2a? + .4y= 1 .2 and 3.4.1?— .02y = .01, a?= .02,

y = 2.9.

2x— y V + 3 w-o:
10. In ^ -|-3a' = 2« — 6 and ^^-— + ^^ =2a?— 8,

7
^

5 6

a?= 6, y= 12.

11. In ,^o(4a?+5y)=a?-j^ and 5(2^-y)+29=j, .r=?, y=5-

-» T a?— 6v+ l a' — 3 , a?— 5« + 8
12. In 2y ^-L- = and ^-^ =

Scc—\Sy
a? =11, y= 2.

13. In ^=2 and = ^^
, ^=13, «=3.

5 3 5 '
^

14. i^
4a? + 2y ^g ^^"^^

and
Sy^Q ^ ^^' + ^y

11 4 3 6

+ 5, a? = 3, y=5.

r 5a!—6y , 5<T? + 6v 3a7 — 2«/
15. In ^ + 3a?= 4« — 2 and ^

13
^ 64

= 2y-2, a?= 6, y= 5.

,- _ a? — 2 10 — a? y — 10 , 2y4-4 2a?+y
16. In = and -^

a? +13= —-— , a?= 7, y= 10.
4

17. In (a? + 5)(y + 7) = (^ + l)(y — 9) + 112 and2.r+10
= 3y+l, a?= 3, y= 5.

151 — 16a! 9xy— 110
18. In 3a?-

6.r' + 130— 24y-

2-r— 4y + 3

4y-l

.r = 9, y = 2.

3y-4
and 3a? + 6y +

1
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19 In
^-^-2!/+ 3 _ 18-a? + 5y ^^ _y _^ _ 7

3 7 4 5 7^^"

and(2.-2, + 15)(|-f+l) = (y-2.+ 15)(f~? + !),

.r= 18, y= 24.

90 In
^"^"^y

+ 1 +
"y-^Q = 4.c-3y+5 45-a;

3
"*

8 7 5

4>a!— 2 55x + 7ly+l
and 45 =

, a? = 5, «= 6.
3 18

^

^ 21. In h ^ = — and + =—

,

1— y 1— a? 13 1+y 1— a? 13

cr= l or 1^, y= ^ or 1.

22. In >s/y— »J a—x— ^Jy— x and 2 >/y— <r =

3is/a — a!y x= ^a, y=|a.

, 4a?— 8v + 5 lOa?^— IStr— 14a?v + 2a? .

23. In ^-— = ^^ ^-^— + 2 and
2 5a7 + 3y + 3

2^6+w =3^6-yy a?= 3,.y= 2.

24. In 3a? + 1 .ya?y'+9a?*y=:(a?-3)y and 18a?-2y=a?y,

a?= 4, y= 12.

^ 25. In a7-+<»y+y^= 52 anda^y— a7'= 8, a?= +2, y= +6.

- 26. In a?^ -2a7y—y^=31 and 2,»'+2a?y-y's=101, a7= + 10,

y=±3.

27. In y2+ y + 17a?= 54 and ^a?2 + 2y*+ a? = 8, .r = 2

or 2g, y= ±4 or ±g.

28. In 2(a?-y) = ll and wy= 20, x=:8, y= 2^.

29. In a?*+2^* = 97 and x+y^S, a7= 2, y = 3.32 i i

30. In a?2 + y^ = Sa? and a?^ +y3 = cr, a;= 4 or 1, y=8,

31. In ^/5^7^ + 5x/y+ ^/y = 10-^/^ and a?"^+ y"^

= 275, .t = 9 or 4, y = 4 or 9.
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32. In ci-4-10ii?+y=119— 2(.j? + 5)^y and a? + 2y=13,
.77 = 5 or 8^, y= 4 or 2^.

33. In y— yi=l6— x and 28 — y — x+4fxij a?= 4, y=l6.

X y . Q 1

34. In a!— y=i2 and — - = i^, a'= 5 or j, y = 3 or — l^.
y X ^

I 2a?4-v/v l6
35. In 2a> + y = 26 — 7V2'2? + 2/4-4 and ^^ =

—

2x—>sjy ^^

H ^=^» '^ = 2 or —10, 2^= 1 or 25.

2A'+ vy
36. In ^x -\- ,^y=6 and a? + y = 20, cT=i6 or 4,

j/= 4 or 16.

37- In a? +2/+^ a?y= 28 and a?* 4- y' + a?y = 336, cr=
± i6, y= ±4.

38. In -i(a?« + y-) =^(a? + «/) and a?y= 8, a?= 4 or 2

or ^( — 4 + 2,^-14), j/= 2 or 4 or ^(-4 + 2 -^ - 14).

. 39. I„-^-? = fi^ancif-?i±i' = -^ ..=
a+ya:' 18 y x x

±2, 2/= ±1.

40. In a;^— y^ = 19 and a;— y = l, cr=3 or — 2, y=2 or— 3.

41. In a''+y^=189 and x^y+xy^=\SO, <r=4 or 5, y=5 or 4.

42. In ci'*— a?- + y* — y°= 84 and a''^ + .r-y- + y-= 49,

.r=±3or ±4J\/-14±6^ + \/ - 14 + 6>^/7i

,

2/=+2 or ±4{>/-14±6-y7-\/-14 + 6>y7!.

43. In .r + y=6 and a?^ + y* = 1056, a- = 4 or 2 or 3 +

V-19' 2/ = 2 or 4 or 3 + ^^-19.

44. In a?'^+ y*=:85 and a?^+y^=ll, a=+27 or ±
2 ^y y= 32 or 59049.

45. In y/y-^y— x = ^20~'X and q\/ ^—^=S,
20 — X

x=l6 or 40, y= 25 or -5.
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.t'= 4, y= 25.

47. In \/^+ \/^=-?L +1 and .7^+.^/^
= 78, a?= 81 or 16, y=l6 or 81.

48. In\/^+^==?!!v/^.„d
Jx^^w-y— i

—j=
/ =y + l, a? = 4 or ^, y= 2 or —1.

49. In — +f „ J^ =r^=r =-^1 and W= y^x-ly

cr=li, y= +2.

50 In
^ + \/^'-y'

.1 J^-x/^'-y" J / . xov. in
. „ ;.

=45 . and ar(,r+ «)

= 52-^<2?Vcry + 4, a?= +5, y= +4.

51. In^±2^±44= = -(«' + 2/)and(^» + y)H^-y
a^+y—\/^'—y ^y

= Za!(ar^ + y)-\-506, a?= 5 or —45, y= 3 or -2g.

9v^^+y 9v^fTy^8 and-^^^^

l</IEy = \ ..= +4ior +3|, y=±3ior ±4|.
4> X 9

~

.17
• y 2y ^ d?' y 4,yy

= ll|, a?=l6, 2/= 64.

1 . 1 „ J?' 2jr

54. In 5y+ ^a?2-15y- 14 = - a?- -36 and g^ + y

= V- +- - ^, .r=12 or ^95, y= 2 or -ij.
^ 3t/ 4 2
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55. In .. +V^W = ^5\/^ + \/^^\

56. In 3x— w^\ar^'-2y + 8 = 2— y and

3554

247 4 ^x+y 2j7 31 901

57. Inx^y — 4! = 4!X^y— ^y^ and a?§— 3=*Jyi(a7i -yi),

j?=l, 3/ = 4.

58. In 2a (y— 36)=6 (2a— .r) and ay=bx, 'T = |a> y = l^-

ac+6- a6 —

c

59. In a?+ay= o and oj?— 6« = c, <r= --—r»^=—5—r-

„^ , 1 1 , 1 1 o 2
oO. In - + -=»» and —s + -5 = n% a?= ^ ^?

2

y =

61. In a(3a— a?) = 6(6 +y) and aj7 + 26y = c, a: =

26-— 6a* + c 3a-— 6" +

c

5 y =3a 36

62. In (a*- 6«) (3a? + 5y) = (4a - 6) 2 06 and a'a?
ab*c

a+b

+ (a + b + c)by= b^x+ (a + 2b)ab, x—
abab

a— b^ a + b

I

3 /

—

2
—

63. In bx= cy and x''—y^ = d, <r = c\/ =,
6'

c»-6'

64. In <r(6c — a?y)=:y(d7y — ac) and xy^ay + bx— xy)

abc(x + y— c), x= ± y/acj y= ± \/bc.
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^ 65. In !iD^y= a{x— y) and j?' + y'= 6%

X— + y=±
(a-l)6

a? =

V2(«'+l)

66. In (a?-y)(a?'-y«)= a' and (a? + y) (.r' + y") = 6',

67. In w'-f^a^ and (a? + y + &)'+ (a?-y + 6)'=c',

68. In a! + y = wy and a?+ y+ ,T^+y' = o>

y= i(l ± \Aa+T- n/4o- 6 + 6 ^4^r+T).

^ X y X ^ y w y
69. In - + I =1 - - and i + - =1 + ^ ,ah c a c

abc(ac + ab— bc)
y=

abc(ac— ab — be)

70. In a?-ay + a-sf— a=» = 0, j?— 6y + 6'« - 6''= and

j._cy+c^^_c' = 0, x= abc, y = ab+ac+bc, z = a+b+c.

71. In a? + y + « = 14, a?^ 4- y- + «f* = 8* and a?ijf = y',

57 = 2, y= 4, « = 8.

72. In xy= a(x + y)y xz= b(x + x) and yaf=:c(y + »),

2a6c 2a6c 2a6c
a?= y=ac+bc-ab^ ab + bc— ac

%=
ab-\-ac— 6c

73. In a?(y + 2?)=o% y (a; + iJ?) = 6' and «(a?+ y) = c-,

(

2(a'-6VO

/(c2_a2 + 6^^)(c^-6-^ + a-)

^=±\/
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74. In a:yx=a-(a;+y)f xyz=b^(y+ss) and xy%=c°{a + z)j

^ ^ / 2 (g* 6" + b-c-— g'c-)

y-±abc V (ae62^a«c^_6^cO(a'6'^ + 6V-a^c*)'

_ / oja^b^ + a'c'-b^c^)

(a^o +t> c — a-c-)(o-c- + a c — a o')

75. In dr(A'+y+«)=o', y(,z'+y+») = 6-, and «(a?+t/+^)

a" 6"

<fc
Z= +—7=-.- ^a' + b' + c''

76. In xy= a, xz=zb, xu=zc and xyzu= d,

4 /abc 4 /ad . /6d 4 /cd

a be ac ab

77- In u-^ax + a^y + a^is + a^= 0^

u+ba! + b-y+ b^z + 6'' = 0,

«* + c<r + c"y + c^» + c^ = 0,

M + do? + (Py + (Pz + d** = 0,

u = abcdi x=—abc — abd— acd — bcd, y=iab-\-ac-\-ad

+ &c+ 6d + cd, z=— a— b— c — d.

78. Given w+.r4-y+^ = '^' ^'^ + ^V + ^~ + '^y + -^^

+ yir = 6-, 7^a?y + w<rsf + My^+ <ry;?= c^ and uxyz = d*^ to

eliminate <r, y and ^.

The final equation is u'^ — ait^-\-b^u'^ — c^u + d^ =0.

79. In the m equations,

.rj + a?3 + a?4 + &c. + .r^ = Cj,

^1 + -^3 + -^4 + &c. + a',„= flj,

a?! + a?2 + *4 + &c. + a,',„= O3,

&c

•r, + .r,, + .r, + &c. + .r„, _, = »,„

;
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1
t

*»^^^iri"*'^2 + ^3 + «4 + &c+«„.-(w»-£)a,i,

*-=^^n5"i + ''3 + «4 + &c. + a^-(m-2)a,j,

1

'3= i;^n5«i + «'-: + «4 + &c. + fl„.-(w-2)a3J,

&c

1
(

•'"'^^
i^'ZT 5"i + «2 + «3 + &c. + a„,_, -(m-2) «„. j

.

80. If ^= ax + a^a?! + a.^, F= 6a? + 6,.r, + 6^ and

Z= ca}i-c^a!i-\-Co, and also cf^ + 6F+cZ = and a,A'+
b,Y+c,Z= 0; then will A^' + F" + Z'

_ \a„(bci — b^c) + b^ia^c — ac^) -\- C2{abi - a,6)|-

(ficj — b^c)'+ (a^c— ac^y + (a6i — Oi^)*

Problems.

1. The sum of two numbers is 17, and the product of one

of them and its excess above the other is 55 : find them.

The numbers are 11 and 6.

2. Divide the given magnitude a into two parts, so that

the sum of their squares may be equal to m times their product.

The parts are

a^^m+ 2 ± >y/m— 2^ a^^m + 2 + ,^m— 2

I As/m+2 } 2( ^m+ 2

3. Find a fraction such that if its numerator be increased

and denominator be diminished by 1, the result is j; but if its

numerator be diminished and denominator be increased by 1,

the result is i. The fraction is ^.

4. Find two numbers whose product is 48, and the differ-

ence of whose squares is 28. The numbers are 6 and 8.

5. Given the difference of two quantities = a, and the

difference between the sum of their squares and their product

= 6", to find them.

3S
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The quantities are ^(^^b'^-3a^-\-a) and |(-^46--3a*-a).

6. What two magnitudes are those whose siim, quotient

and difference of their squares, are equal to each other ?

The magnitudes are K^ + x/^) and ^a^^.

»/" 7' Find two magnitudes so that their product, the differ-

ence of their squares and the quotient of their cubes, may all

be equal to one another.

The magnitudes are K^ + n/^) ^^^ K^+vO*
8. There are two magnitudes whose product is equal to

the difference of their squares, and the sum of their squares is

also equal to the difference of their cubes : find them.

The magnitudes are ^^/s and j(5 + v ^)-

9. A and B possess together a£, and it is found that

after having spent an m^^ and w*** part respectively, they have

equal sums remaining : required the property of each.

. , m(n—l)a ^ , ^ , 7i(m—l)a _
J has ^^ ^ £ and B has —^^ — £.

^mn—m— n 2mn—m — n

10. The product of two magnitudes together with four

times their sum is 5l|, and the sum of their squares diminished

by four times their sum is 4j^: it is required to find them.

The magnitudes are 3^ and 5\.

11. Find two numbers whose sum added to the sum of

their squares is equal to 62, and whose difference subtracted

from the difference of their squares gives 40.

The numbers are 7 and 2.

12. Required two numbers whose sum multiplied by the

sum of their squares is 272, and whose difference multiplied by

the difference of their squares is 32. The numbers are 5 and 3.

13. Find two quantities, such that if one of them be

increased by a and h and the other by c and rf, the products

of the corresponding . sums shall exceed the product of the

quantities themselves by e* and p.
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The quantities are

af-he^-^ah{c-d) , de" -cf-cd(a-b)— '- and ^^ -.
ad— be nd — bc

14. Divide each of the numbers 21 and 35 into two parts,

so that the difference of the squares of the first parts may be 57

and that of the second parts 40?. They are 8 and 13, and

11 and 24.

15. Find two numbers such that the sum of their squares

multiplied by the less and divided by the greater is 83 j, and

the difference of their squares multiplied by the greater and

divided by the less is 1920. The numbers are 20 and 4.

16. Find two quantities when the difference of their

cube roots is «, and the cube root of their difference is 6.

The magnitudes are

(^ 12a 2) l^ 12a 23

17. Find two numbers whose sum is 5, such that the

product of the sums of their squares and cubes may be 455.

The numbers are 3 and 2.

18. Find three magnitudes, the sums of each two of

which are a, b and c.

The magnitudes are i(a + 6-c), ^{a + c-b) and ^^(b + c-a).

19. Find three magnitudes whose products taken two

and two together are a% b^ and c*.

ab ac be
The magnitudes are + — , + — and + — •

20. ^'s money together with twice that of B and C

amounts to 1050£; B's together with thrice that of A and

C to 1400£, and CTs together with four times that of A and B

to l650£ : required the money of each.

A has 150<£, B has 200i: and C has 250£.

21. Required four magnitudes whose products taken three

and three together are a', 6^ c* and d\
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abc ahd acd , bed
The maffmtudes are —-- , —5- , —r- and ——

.

dr c b^ a'

22. There are four numbers such that if each be multiplied

by their sum, the products are 252, 504, 396 and 144 : it is re-

quired to find them. The numbers are 7, 14, 11 and 4.

23. Find four quantities such that the first with half of

the rest, the second with a third of the rest, the third with a

fourth of the rest, and the fourth with a fifth of the rest, may
each be equal to a. The quantities are ^a, ^a, ^a and ^a.

24. The sirni of four numbers is 52 : the sum of the pro-

ducts of the first and second and third and fourth is 360 : of the

first and third and second and fourth 315 : and of the first and

fourth and second and third 280 : it is required to find them.

The numbers are 21, 14, 11 and 6.

25. Ofm quantities the continued products of every m—

1

being a, b, c, d, &c. it is required to find them.

The quantities are
1 1 1

(abcdkc.)'^-^ (abed key- ^ (abed kc.)'^-^
, , , &c.abc

26. Given the sum of two numbers = s and their product

=jt), find the sums of their squares, cubes, &c.

The sum of their squares = 5- — 2p.

The sum of their cubes = «'— sps.

The sum of their fourth powers = s^ — 4ps^ + 2p'.

The sum of their fifth powers = s^— 5ps^ + 5p-s.

CHAP. VII.

MISCELLANEOUS EXAMPLES.

1

.

Prove, by the method of indeterminate coefficients, that

= 1 + 2.r + 3.r^ + 5ar^ + 8a?* + 13a?* + &c.
1 — a?— ar

2 _i. J.

2. -, = 1 + 3a,' + 5.i" + 7x^ -H 9-r^ + 1 1 .T?^ + &c.
(1-cr)-
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a— .2? V a/ 2a' \ aj

8. cr« = {w + 1) (a? + 2) - 3 (a? + 1) + 1, and ar'= (.r + 1)

{* + 2)(cr+ S)-6(<j?+l)(a? + 2) + 7(a? + l)-l.

9. a?^ = .r+ 3^(a?-l)+a7(<r-l)(a?-2), and a?*= a? + 7 a?

(a?- 1) + 6a?(a?- l)(a?-2) + a?(a?- l)(a?-2)(a?-3).

10. 4a?2= i + (2a7-l)(2a?+ l), and l6a?^= l + I0(2a? - 1)

(2a?+l) + (2a?— 3)(2a?-l)(2a?+ l)(2a7+ 3).

11. (a?4-a)2= (o_ 1)2+ (2a_ 3)(a? + 1) + (.r + 1) Or+2),

and a?(.r^ + 2)'=9a7+ 9(a?— I)a?(a7+ l) + (.r-2)(a?-l).r(a?+l)

<a? + 2).

12.
,.^-^'C^ + O ^ C^-i)^^

^^d.3 ^ -H^+i)(^ + ^)

1.2 1.2 1 .2.3

4>{ob—1)od{x-\-1) (a?— 2)(a?— l)a?

1 .2.3 1.2.3

13.
1 1 I

(a?+l)(a7+3) (a7+l)(a7+2) Cr+ l)(a?+2)(.r+S)'

a? 1 3

(a?+l)(a? + 2)(^' + 3) (a? + l)(a7 + 2) (.r + l)(a? + 2)(a? + 3)

2 1

14.
1 <r' + «T + 1

, and
X Or + 2) X a? + 2

'

./(a?'' + l)^

1 .r— 1

+
a?' a?2 X {x- + 1)2 cr^ +

1
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and

0? -f c
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a-{-c h + c

(/c-a){x-b) (a-b)(.v-a) (a-6)(a'-6)
o o to

= 1 +
(a?— a) (a? - 6) (a— 6) (.r— «) (a— 6) (a?— 6)

16.
{x— a){w— b)

= .r + a + 6 +

-, and
(a— b){x- b) (a;— a) (a? - 6)

(a— 6) (a?— a)

3 a--b-' , a'-b'

a^-b*
+ r +

a— b

b'

a— b

n
a — b (a— b)(x — a) (a — b){x— b)

1 1

(a?— a) (a?— 6) (a? — c) (a— 6) (o— c) (a?— a)

+
1

+
1

, and
2x/-l

(6— a) (6— c) (a' - 6) " {c— a){c— b) {x— c)
'

l-4x+5x^

'^^--1^— +

18.

li-(2 + V-i).^; {i-(2--v/-i)'^r

7^ +
(a--+ a')(.r-ft)- (a' + &-)(^-^)' (a- + 6')''(.r-6)

2 a-bx— a^ (a^— b')

(a^ + by{x"-^a-)
'

ax^ + (ix + y _ao^ + /3a + 7 aa(a+2b) + (ib—y

{x-ay{x + b)~ {a+b){x-ay (a + 6)' (a?— a)=

ab"--(ib + y a6"-/36 + 7
**"

(a + 6)^ (a?- a)
~

(a + 6)'(a? + 6)
"

(o + a?)'" a'"
20. +

a" ' a?

1.2.3.8ec.7» 1.2.3.&C.WI 1. J1.2.3.&C. (7« — 1)5

a'"-'x'^
+ ;—^-r^^—; ttt + &c.

1.2.}l.2.3.&c.(m — 2)j

21. {a-{'x)'"= {a'^ + W'") +max{a"*-'+af"-^) +
m(»»— l)

1.2

n n^ A d. ni(m—l)(m — 2),„^ ^ .

a-.c-(a"*-* + x"'-^) +—^^ — a^x'^ia'"-^ + x"*-^) + &c.

+

1.2.3

m(7»— l)(w— 2)&c. (Jw+ 1)

1.2.3. &c.i^m
a^X', when »i is even.
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22. (« + ar' = (a'» + a^) + ma.i?(a— « + .r— ^) + '^^^^^

_
m(m— l)(m— 2)&c.l(m + S) !!;:! 2^

""
;—i.2.3.&c.i(™-.)—«^»^(« + «).

when m is odd.

23. Shew that the n* and (» + !)* coefficients of the

expansion of (a + .r)"* are together equal to the (71 + 1
)"' co-

efficient of the expansion of (a + a?)'"+*.

24. If S be the sum of the odd terms of the expansion

of the binomial (a + .r)"*, and « the sum of the even terms

:

then will S--s~:={a^-wY-

25. Prove that four times the product of the sums of

the odd and even terms of the expansion of the binomial

(a + 0?)"* is equivalent to (a + a?)*"" — (a— a?)'"*.

26. If the coefficients of the expansion of (a— .r)"* l>e

multiplied by a, a + b, a + 2b, 8ec. in order, the result = :

required a proof.

j^ 27. If the coefficients of the expansion of (a — a?)"" he .Y73

multiplied by 1", 2", 3", &c. in order, the result =0, if m
be greater thap n: required a proof.

28. If the terms of the expansion of (a + a?)"* be mul-

tiplied by 0, a?, 2 a?, 3<r, Sec. in order, find the value of the

resulting series.

29. If aS* be the sum of all the coefficients of the ex-

pansion of (a +a?)^'", and C the coefficient of the middle term,

it is required to prove that

{l.3.5.&c.(2m-l)}AS'={2.4.6.&c.2wJC

30. If ^0' ^1' ^2' ^3» &e. be the coefficients of the

terms of the expansion of (l + x)"*, prove that

2w (2m— 1) &c. (m— 1)

A^Ao + ^,^3 + AoA^ + &c. A„,..A^ =
j.2.3.&c.(m + 2) '
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31. In the expansion of (a + oe)*", prove that the (n + 2)*''

term will exceed the (n+ l)"* term so long as (wi— w)a? is

greater than (w + 1) «.

32. Given the n^^ and (n + 2)"" terms of an expanded

binomial (l + .r)"', to find the index m.

33. If K and L be any two consecutive coefficients of

the expansion of (1 + «)"*, prove that the coefficients after L,

mL-K , mL~K (m-l)L-2K „
q|>p T T -i 1 Xrg

(7n+ 2)K+L' {m+2)K+L {m-\-3)K+2L'

_ ,17 1 3 or
34. Ja-\-a; = ^a\l+ ^— H r^ ; r-^^ ^ ' -^ a + a; 2 . 4 (a + j?)-

1.3.5 w^
,

+ 2-7176 (^T^'+^'-i-

35. (l±fy=,+„(ifL) + '!^(!!L±l)(^y
\l_a?/ ^ Vi+aV 1.2 Vl+a-/

7w(m + l)(w + 2) / 207 V o

1.2.3 \l+w/

36. (i±gfr^,+^(^)+ "-C'^- )(^Y-V 1-1-07/ \l+207/ 1.2 \l+2d7/

m(m + l)(m + 2) / 07

Y ^ g^^
1.2.3 \l+207/

37. The cube roots of 7 + 5 ^2 and 11 .^/i + 3 -^27,

are y/¥+l and ^2+ \/3 respectively.

38. If iV be the w* term of the expansion of (l + 07)*",

prove that the series after the first n terms is represented by

\ n / \ n / \ n + 1/

,. ,/ »»+l\/ m+l\/ m+l\ „

\ n / \ n+1/ \ n+2/

39. In the expansion of (a + 6 + c + rf+ &c•)^ find the

whole coefficient of a 6' c d.
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40. Find the coefficient of i" in the expansion of

{l—x + a/^y, and thence find its developement to six tennn.

41 . The coefficient of the middle term of the expansion of

w(m— 1) TO(m— l)(f» — 2)(m— 3)

1.2 (1 . 2)«

m (wi— 1 ) (m — 2) (m— 3) (m— 4) (m— 5)

(1.2.3)''
+ —^^

., ^ .x8
^-^^ + Ste-

rn (m — 1) (m — 2) 8ec. (m — 2r + 1)
H ; ; -^ 1- &C.

(l.2.3.&c.r)-

42. In the expansion of a', shew that if any term be less

than that which immediately precedes it, the same will hold

good of all subsequent terms ; and find the greatest term.

CHAP. VIII.

MISCELLANEOUS EXAMPLES.

1. Prove that the ratio ofa + 26 : a+6is greater than

the ratio of a 4- 3 6 : a + 26.

2. Which of the ratios or + y' : x + y a.nd .r' + y* : a?*+ y",

is the greater ? Answer x^ + y^ : x' + y".

3. Of the ratios l + a? : 1 +2.t and (1 + x)'" : (1 + ^x)",

which is the greater ? Answer 1+x : 1+2^7.

4. Express the ratio 4a^— 3a^a?-4a,r°-+ 3a?' : 3a'-2a^r

— 3aa?'^ + 2a?^ in its lowest terms. Answer 4a — 3a? :
3a — 2.T.

5. What quantity must be added to each of the terms

ad— be

of the ratio a : 6, that it may become c : d? Answer -^-7^ •

6. What is the ratio arising from the composition of the

ratios a + x : 6, a^'-x- : a' and ft :
a-x?

Answer (a+xY : a:

7. Of the ratios 0- + 6' :
«* - 6' and rt- + 2afe + 6-

:
o«

-2a 6 + 6^"? Answer (a" -{- b') (a -\- b) : (a -6)*.

3T



«. Of a'-' + l : .r'--l, .rVl : v* - 1 and (a--I)^(.I'*— 1) :

,2?* 4- 1 ? Answer ./ — l : r* + 1

.

9. If a series of quantities increase or decrease by the

same common difference, the ratio between any two equidistant

terms decreases or increases.

10. If a : 6 :: c : rf, it is required to prove that

a + mb : b :: c + md : d and a : ma + b :: c : mc + d.

11. Also, a" — b- : ab :: c" — d" : cd and ma + nb : pa +
qb :: mc-\^nd : pc + qd.

12. If a+b : c + d :: c — d : a — b, then will a + c :

b + d :: b — d : a — c.

13. l{ a : b :: c : d :: e : /, shew that a : b :: ma ± nc

+ qe : mb^nd + qf.

14. If a : b :: c : d :: e : f, then will a—e : b—f :: c : d,

and a + mc— e : b-rmd — f :: a : b.

15. If X be to y in the duplicate ratio of a to 6, and a be

to 6 in the subduplicate ratio of a + a? : a— y, then will 2.?^ : a

:: x-y : y.

16. A garrison of 1000 men was victualled for 30 days:

after 10 days it was reinforced and then the provisions were

exhausted in 5 days : required the number of men in the rein-

forcement. Answer 3000.

17. If 248 men can dig a trench 230 yards long, 3 wide

and 2 deep in 5 days of 11 hours each : in how many days of 9

hours each can 24 men dig a trench 420 yards long, 5 wide and

3 deep.? Answer 288|^.

18. A and B travelled on the same road and at the same

rate from H to L: at the 50'*^ mile stone from L, A over-

took a drove of geese, which were proceeding at the rate of

3 miles in 2 hours ; and 2 hours afterwards met a stage wasrgon,

which was moving at the rate of 9 miles in 4 hours. B over-

took the same drove of geese at the 4.")*'* mile stone, and met

the same stage waggon exactly 40 minutes before he came

to the 31** mile stone. Where was B when A reached L ?

Answer 2.5 miles from L.
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«

19. The arithmetic mean between two numbers exceeds
the geometric by 13, and the geometric exceeds the harmonic
by 12 : what are the numbers? Answer 10+ and 234.

20. Of the arithmetic, geometric and harmonic means Ik>-

tween two quantities, given any two, to find the (juantities.

21. If the arithmetic mean between a and 6 be twice as

great as the geometric mean, prove that - = 5^

22. If the arithmetic mean between a and h lx> /// times

. , . , a ^m + ^m—l
the harmonic, then - = — — -

.

'> /^ 7» — ^m— 1

23. If the geometric mean between a and h be m times

, , . , n m-\-^ m-—\
the harmonic, then - = , .

24. If a and 6 be nearly equal to each other, prove that

the arithmetic, geometric and harmonic means between them

are nearly equal.

25. If y be the harmonic mean between .r and z, and .r

and z be respectively the arithmetic and geometric mean be-

tween a and o, then - = -;

—

7~p= « .— „ •

26. If ^x+m ^y : ^os-m^/y :: l^x+mli^x-y :

^x-m^x-y, then will \-j= n_^

27. If J CO -B and B co C, then will A :cmB±nC.

28. If J cc jB and when ^=wi, 5 = n; then Wv4=w5.

29. If a -i- 6 03 a— 6, prove that o^+ b' co aft, and a'+fr*

ooa6(a + 6) or <X) ab{a — V).

30. If z consist of two parts one of which co a- and the

other X y ; also when a?=y, then af = 2w.r, and when .r= -y,

then z = 2n.T: express z in terms of r and y.
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31. Compare the ratio m^ + n" : 2mn with the ratio m : w,

both when m is greater and less than n.

32. Prove that the ratio a (l j : (l--— ) is

nearly a — 2c +3c.v : 1, if ~ be very small compared to unity.

33. The ratio a' (l — a?) + 6^ : iv^ is nearly equal to the

ratio (o^+ 6^)(i —a?) «'+''*
: x^, when x is small compared to l.

JL A
(l + itV 4" (l — tp)

^

34. Shew that .. — : 1 is nearly equgl
l+.r + ^yi+a?

to 1 — 1^7 : 1 or 1 : 1 +|'^> when x is very small compared to

1. What is the value of the ratio when x is very large .f*

35. Compare the ratios
.^J^.

— \ : ^ 2 and >/3 — 1 : >/3;

also, ^7 : 2 >^~3 and ^6- ^5 : ^^/s - ^7-

CHAP. TX.

MISCELLANEOUS EXAMPLES.

1. The 10*'' term of 2 + 5 + 8 + Sec. is 29, and the sum
of 10 terms is 155.

2. The l.S* term of 3+9 + 15 + &C. is 75, and the sum

of 13 terms is 507.

3. The lOO*'' term of l + 9 + 17 + &c. is 793, and the sum

of 100 terms is 39700.

4. The 24''' term of 7 + 5 + 3 + &c. is - 39, and the sum
of 24 terms is —384.

5. The 20* term of 4-3 - 10— 17 -&c. is —129, and

the sum of 20 terms is — 1250.

6. The 12"" term of l+|+2+|+&c. is 6i, and the

sum of 12 terms is 45.

7. The 16*" term of 15+1* + f +&c. is 10, and the sum

of 16 terms is 200.
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8. The 6'*" term of | + f, + J^ + &c. is -i, and the sum
of 6* terms is 1.

9. The n'^ term of i + 5 + * + &c. is i n -
J , and the sum

of n terms is ^w + j/i".

10. The w'^ term of ^ + i-i-&c. is ^-i«, an.l thr

sum of n terms is gw— |w'.

11. The nr term of + + + &c. is 0,n n n
and the sum of n terms is ^(n- 1).

12. The first term isn^ —n+l and the common difference

is 2: prove that the sum of n terms is w', and thence shew
that 1^=1, 2^=3+5, 3^= 7+9+11, 4'= 13+15 + 17 + 19, &c.

-„ _, , a — b 3a — 26 ^ n
IS. Frove that H — + &c. to n terms =

a+b a+6 a+6
\na-^(n + l)b\.

14. The sum of the first two terms of an arithmetical

progression is 4, and the 5* term is 9 : find the series.

Answer 1, 3, 5, 7, 9, &c.

15. The first term of an arithmetical progression is a,

and the n}^ term is equal to m times the common difference:

. . m-n+2 m—n+3
nnd the series. Answer a, o, a, &c.w— n+1 m—M+I

16. The first two terms of an arithmetical progression

being together =18 and the next three terms = 12 : how

many terms must be taken to make 28 .'' Answer 4.

17- The sum of an arithmetical series is 1455, the first

term 5 and the number of terms 30: what is the common

difference.'' Answer 3.

18. The latter half of 2/1 terms of any arithmetical series

is equal to half the sum of 3w terms of the same series.

19. The difference between the sums of m and n terms

of an arithmetical progression : the sum of w + n terms ::

m — n : w + w.
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20. If ^j, So and S^ be the sums of 7i terms of three

arithmetical progressions, of which 1 is the first term and

the respective common differences 1,2 and 3: then Si + S-^—2Sa-

21. The sum of n terms of an increasing arithmetical

progression, whose common difference is equal to the least

term, is the sum of n -{• 1 magnitudes, each of which is

half the greatest term.

22. The sum of an even number of terms of an arith-

metical progression, whose common difference is equal to the

least term, will be four times the sum of half that number

of terms diminished by half the last term.

23. There are p arithmetic progressions, each beginning

from 1, and the common differences are 1, 2, 3, &c. p: shew

that the sum of their n}^ terms = ^\{fi—l)p- + (n + l)p^^.

24. iS*!, So, S^i &c. Sp are the sums of p arithmetical

progressions, each continued to n terms: the first terms are

1, 2, 3, &c. and the common differences 1, 3, 5, &c.: then is

S, + So + S, + &c. + Sp= ^np {np -f 1).

25. Prove that 1, 3, 5, 7, &c. is the only arithmetical

progression beginning with 1, in which the sum of the first

half of any even number of terms has to the sum of the

second half the same constant ratio ; and find that ratio.

26. Insert four arithmetic means between 193 and 443,

and three between 117 and 477-

Answer 243, 293, 343, 393 and 207, 297, 387.

27- Find four arithmetic means between 2 and — 18,

and five between \ and — |

.

Answer —2, -6, —10, -14 and |, g, 0, -J, —\.

28. The sum of m arithmetic means between 1 and 19 :

the sura of the first w — 2 of them :: 5 : 3; find the number.

Answer 8.

29. There are m arithmetic means between 1 and 31,

and the 7^*
: (w — 1)* :: .5 : 9; find the number of raean.s.

Answer 14.
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30. In an arithmetical progression, if the (;> + v)"' term

=w, and the (p—qY^ term =w : then the p^^ term =^ (w + n),

and the o* term =m~(m —ii)— .

2q

31. The sum of n terms of the series 3. 5 +5. 7 + 7.9+ &C.

is-|(4.w3 + 18n^ + 23w)»

32. The sum of n terms of 1 .2.3 +2.3.4 + 3. 1..5 + &c.

is i{n(n + l)(w + 2)(n + 3) j

.

33. The sum of n terms of l'.2 + 2-.3 + 3". 4 + &c. is

34. Prove that Ai.A^ + A^.A^-\-kc.-{-A„_i.A^ may al-

ways be expressed in finite terms, when A^, A„j J3, &c. are in

arithmetical progression.

So. If aS'„, Ay^ + j, <S'„ + 2, &c. denote the sums of w, n + 1,

n + 2, &c. terms of an arithmetical progression whose first term

is a and common difference d, prove that »S'„+5'^ + , + 5'„+9+&c.

a d
to n terms =n{Sn-l) h w(w-l)(7w-2)——

.

36. The w'*" term of l+-3 + 9 + 27-f-&c. is 3""', and the

sum of n terms is 1(3"— 1).

37. The w"* term of 1 - 2 + 2' - 2^ + &c. is + 2" " \ and

the sum of n terms is -^(l +2").
3""-

38. The n'^ term of i + -J + f + &c. is ^;;—j , and the

/3" — 2"\

sum of n terms is 3^ ( an-\ )'

39. The w'^ term of 3| + 2^ + U + &c. is (f)"-', and

the sum of n terms is \ ( 4 j
•

2«- 1

40. The w* term of i - r, + s- &«• ^s ± ^T^JTH '
an^ 'h*"

. ,
/3" + 2"\

sum of n terms is 25 ( g„_i j
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.th - 1

the sum of n terms is

41. Tlie ;/" term of —^ + 1 + —^ + &c. is —j=^, and

1

the sum of n terms is —-=_

42. The n* term of | _ ^f + i _ &c. is. + (|)'<"+", and

5»UTT)
^

5t +215 •

43. The sum of 100 + 40 -f 16 + &c. in infinitum is l66|.

44. The sum of 1 + 1 + g + &c. in infinitum is 3.

45. The sum of i — | + ^ — &c. in infinitum is ^.

46. Of <r*— 6,r+ —7= — &c. in infinitum is -^—-.
^a; -^

a?* + 6

47. Of ^ + —-=^ -
T2
- &c- «w m/. is ^=

.

48. If y = V« - A' + -7- + ,-

1 y y' y* y^
required to prove that - = - ^ ^ h—^ + —

49- Given the sum, and the sum of the squares of the

terms of a geometrical progression, to exhibit it.

50. In any geometrical progression, the sums of every n
successive terms are in geometrical progression : find the sum of

m such sums, and shew that the result is the same as that for

the sum of mn terms of the first series.

51. In every geometrical progression consisting of an odd

number of terms, the sum of the squares of the terms is equal

to the sum of all the terms multiplied by the excess of the odd

terms above the even.

52. If *i and s„ denote the sums of w and 2w terms of a

geometrical progression : express the first term and the common
ratio in terms of Sj, «, and n.
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53. In an ascending geometric series, the sum of the first

and last terms is always greater than the sum of any other

two terms equally distant from the extremes.

54. In any geometrical progression of an even number of

terms, prove that the sum of the odd terms is to the sum of the

even terms as 1 : r.

55. The sum of a series of quantities in geometrical pnv

gression, is equal to the sum of all the terms except the last

multiplied by the common ratio.

56. If S be the sum of n terms of a geometrical progression

whose first term is s^, common ratio r and number of terms n :

also, if «o» «3j «4» &c. be the sums of the first two, three, four,

&c. terms: then will

{S+ 8,) + {S+ s,) + (5 + s,) -f &c.

r- I
^ r—\

57. If S,, So, ^3, &c. S„ be the sums of n geometrical

progressions whose first terms are a, 2o, 3 a, &c. na; n the

number of terms, and r the common ratio in each : then will

n(n+l) /r"-l\
S, + S, + S,-\-kc.-{-S, = -^-^[j—^)a.

58. Insert three geometric means between 39 and 3159,

and also three between 37 and 2997-

Answer 117, 351 and 1053: 111, 333 and 999-

59. Find three geometric means between 5 and ^^ ,
and four

between | and 512. Answer 1, h and I, : 2, 8, 32 and^ 128.

60. In a geometrical progression, if the (p + qf^tenn

= m, and the {p-qr = n, then will the i>* term =7mn, and

p_

the q^^ term = m I — ) •

61. If a and I be the first and «* terms of a decreasing

geometrical progression, it is required to prove that ^^
^ J-/

2=—T^
A- /

/ 3V
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62. If Si represent the sum of an infinite geometrical

progression whose first term is a and ratio r, S„ the sum of the

squares, S^ the sum of the cubes, &c. of the terms : then will111 . . ^ .
1 r— H 1 1- &c. in mnnitttm = —^^ :z:^ .

S^-S. S,- -^ a+l a + r

63. If A^i, Soi S3, Sac. S„ be the sums of n geometrical

progressions continued in injinitum, the first term of each being.111^1 ,

1 and the common ratios — , — , -r, &c. — : prove that
,.1 y.- j.^ j.n

111 1 r"— l— + — + 7r+S:c. + -— =w-
S, S, S, S„ r"(r-l)

64. Let iS*!, iS'2, S^, &c. denote the sums of an infinite

number of infinite decreasing geometrical progressions whose

first terms are a, a", o', &c., and common ratios r, 2r, 3r, &c.

:

1 1 1 a (1 - r) — 1

65. If S={x-y)+ (^ - ^\ + &c. to n terms, and 2
\ X or/

denote the sum of the same series in infinitum : then will

S : 1 :: X'^-y"" : x"".

66. The sums of two infinite geometrical series are S and

S 4
S', .so that -— = - : of the former the first two terms are

S' 9

40 and 35, and of the latter the second term is 46^: find both

the series. Answer a = 40, r=
l and a' = 50, r'=^.

67- Insert four harmonic means between 2 and 12.

Answer 2?, 3, 4 and 6.

68. The sum of three terms of an harmonic series is 1
,^,

and the first term is 5: find the series. Answer ^, 5, \, &c.

69. There are four numbers, the first three of which

are in arithmetical progression, and the last three in harmonical

:

it is required to prove that the products of the extremes and

means are equal.
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70. If S and S' be the sums of two infinite series whose

first terms are 1 and common ratios r and r : then are S, S\
r and r in harmonical progression.

71- Continue both ways the harmonical progression 2, .'J, (i.

The series is &c. 1^, li, 2, 3, 6, od, -6, ~3, -2, &c.

72. If quantities be in geometrical progression, their dif-

ferences are in the same geometrical progression.

73- If «> b, c, d, &c. be in geometrical progression ; then

will ——r^ , 75 s , -i—V2 , &c. be in geometrical progression.

a* — b~ — C" c —a
Find also their sum.

74. If a, 6 and c be in geometrical progression, then

^2+ 52+ c-= (a 4- 6 + c) (a - 6 + c), and therefore > (a - 6 + c)*.

75. Also, a- + 6^ + c^ -(a-b + cf = 2b(a-b + c),

3(««4.62^c2)_(„^.5^.c)2= 2(a + 6 + c)(a-264-c) and

3(a-6 + c)2-(a2+ 6'+ c') = 2(a-6H-c)(a-26 + c).

76. If a, 6, c and d be in geometrical progression, then

y,i\l{a + Sb + 3c + d)bc=(b + cy,Ha- + b- + c^ + d')-{a + b

+ c4-d)-= (a-6)V(c-d)'+ 2(a-d)"- and (a + 6+ c + rf)-

77. Also, 2(a2 + 6- + c^ + d"-)-(« + fr + ^ + <^)' = (''"^)'

+ (c-dy--2ib + cy and a« + 6' + c-+ (r- + (a + 6 + c + rf)

(6+c) : (a+ b + c+ dy-ia^+b' + c^+d^) :: a+6 + - + rf

: 2(6 + c).

78 If a, 6, c, d and e be in geometrical progression,

then is 2(a + c + e)>3(6 + d), c(a + 2c+ e)^{b + dy and

{a + 3b + 3c + d)(b-c) = {a^b-c+d)(b + c).

79. The n* term of 2 + 6 + 14 + 30+ &c. is 2''-'-2,

and the sum of n terms is 2"^^- (2w + 4).

80. The «* term of 4 + 10 + 28 + 82 + &c. is 3" + 1, and

the sum of n terms is \3"+' + n-l.

81. The w* term of 3 + 6 + 1 1 + 20 + &c. is 2" + «, and

the sum of n terms is 2" + ^ + i
(w'+w- *)•
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82. Compare the values of the respective infinite series

1 + 2x+ 3.V- + 4.r^ + &c. and 1 - 2a; + 3w^— 4x' + &c.

Answer (l+j?)" : {l—xy.

CHAP. X.

MISCELLANEOUS EXAMPLES.

1. The number of variations two together : the number

three together :: 1 : 5 ; required the number of things.

Answer 7-

2. The number of things : the number of variations three

together :: l : 20; what is that number.? Answer 6.

3. The number of combinations of m things taken four

together : the number taken two together :: 15 : 2; find the

value of w. Answer 12.

4. Find the number of different triangles into which a

polygon of m sides may be divided by joining the angular

points. Answer ^m(w— I)(w— 2).

5. There is a certain number of things of which the

variations taken eight together is 80, and taken ten together

is 960 : how many must be taken away from the original number,

that of the remaining things taken two together the combina-

tions may be 15? Answer 6.

6. If the number of variations of a certain number of

things taken three together be six times as great as the number

of combinations of the same things taken four together : how

many things are there? Answer 7.

7. How many days can five persons be placed in different

positions about a table at dinner? Answer 120.

8. How many different numbers can be made out of the

figures 1220005555 ? Answer 126OO.

9. How many different numbers can be formed by taking

five digits out of the ten which compose tlic conmion scale of

notation ? Answer .30240.
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10. How many combinations can be made of two letters

out of the twenty-six letters of the alphabet ? Answer 325.

11. Find the whole number of permutations and c(»mbi-

nations that can be made out of the four letters a, b, r, d when

they are taken by two*'s, three''s and by fours. Answer .H40.

12. How many words can be made with five letters of

the alphabet, admitting that a number of consonants alone will

not make a word ? Answer 51004.80.

13. How many different numbers can be made out of 1

unit, 2 twos, 3 threes, 4 fours and 5 fives, taken .'5 at a time .'

Answer 2111.

14. How many changes are there in throwing five dice.-*

Answer 7776.

15. How many changes are there contained in the permu-

tations of abcdefg which begin with one of the letters?

Answer 720.

16. How many do they contain beginning with o6, with

abc and with abed? Answer 120, 24 and 6.

17. How many deals may a person play at the game of

whist without having the same hand twice ?

Answer 635013559600.

18. The number of variations of m things taken r to-

gether : the number taken r- 1 together :: 10 : 1, and the cor-

responding numbers of combinations are as 5 : 3; find the

values of m and r. Answer m=15 and r= 6.

19. If p„, P3, 8ec. p^ represent the numbers ofpermutations

that can be formed out of m things taken 2, 3, &c. m together

respectively, and P^p^Ps &c. p^^ then will

i'=l>3;>,«-l!(i'3-P2)(P4-P3)(P5-P4)&C.0>„_.-p,.-,)f.
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CHAP. XL
MISCELLANEOUS EXAMPLES.

1. Traksform 30420 from the quinary to the denary

scale of notation. Answer 1985.

2. Express 4567 in a system of notation whose base is 12

;

and what number in the denary scale is equal to 5432 in the

senary ? Answer 2787 and 1244.

3. Transform 1828 from the denary scale to the scales

whose local values are 11 and 13. Answer 1412 and tt8.

4. Transform 1756 and 345 from the common to the duo-

denary scale, and then find their product.

Answer 1024, 249 and 252710.

5. What is the quotient of 14332216 by 6541 in a scale of

which the radix is 7 ? Answer 1456.

6. Find the quotient of 29^96580 by 2^^9 in the duode-

nary scale. Answer u7tS.

7. What is the square root of 13233010 in a system of

notation whose base is 4.'* Answer 2302.

8. Transform 4321 from the quinary to the senary scale

of notation. Answer 2414.

9. The number 2577 expressed in a particular scale of

notation is 40302 : find the radix. Answer 5.

10. What is the radix of the scale of notation wherein a

number which is double of 145 will be expressed by the same

digits.'' Answer 15.

11. Determine the weights which must be selected out of

the series 1, 2, 4, 8, &c. pounds in order to weigh 159 pounds.

Answer 1, 2, 4, 8, 16, 128.

12. What number of the weights of 1,3, 3", 3^ &c. pounds

must be selected to weigh 304 pounds ?

Answer 3^, 3*, s', 1 and 3^, 3.
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13. Any number consisting of tliree figures is divisible by
7, if the first and third figures be the same, and the sum of the
first and second a multiple of seven.

14. Any number of four places is divisible by 7, if the
first and last digits be the same, and the digit in the place of
hundreds be double that in the place of tens.

15. If the number expressed by the last n digits of a
number be divisible by 2", the number itself is divisible by 2".

16. In any system of notation whose local value is a, in

any multiple of a- l, the sum of the digits is either equal lo
a — \ or to some multiple of it.

17- Every number in which the digit recurs an even

number of times, is divisible by 11.

18. Any number consisting of an even number of places,

in a system whose radix is r, is divisible by r + 1 , if the corres-

ponding digits from each end be the same.

19. The square of any number of digits less than ten,

each of which is unity, will when reckoned from either end,

form the same arithmetic series whose common difference is

unity and greatest term the number of digits in the root.

20. If any number a multiple of 11 and a number con-

sisting of the same digits in an inverted order be each divided

by 11, the sums of the digits in the two quotients are equal.

21. If the sum of the odd digits in a number be 1 1 m + e

and of the even llw + e, this number being divided succes-

sively by 11 and 9 leaves the same remainder as w-7t-f<? when

divided by 9.

22. What is the value of .71333 &c. in infinitum ?

Answer ||.

23. Required the value of .3p 3p 3p &c. in infnitum

3p
where p contains i(w — l) digits. Answer

J^i(iiTirZ~i

'
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24. Find the value of .2534534 &c. in hifinitum when the

radix is 6'. Answer ^.

25. What is the product of .34.021 by 1.23 when the

radix is 5 .' Answer 104.00133.

26. The length and breadth of a floor are 27 feet 10

inches and 14 feet 6 inches : what is its area }

Answer 403 feet 7 inches.

27. Find the quotient of 1532 feet 9J inches by 81 feet

9 inches. Answer 18 feet 9 inches.

28. The area of a rectangle is 29 feet 4 parts and its

breadth is 2 feet 3 inches 6 parts : what is its length .''

Answer 12 feet 8 inches.

29. The length and breadth of the base of a rectangular

parallelepiped are 9 feet 6 inches and 4 feet 7 inches : what is

its height when the solid content is 152 feet 4 inches 9 parts.'*

Answer 3 feet 6 inches.

30. The content of a cube is 14 feet 1 inch 4 parts 5 thirds

:

what is the length of its side .'' Answer 2 feet 5 inches.

31. There is a number consisting of three digits in geo-

metrical progression ; the number is to the sum of its digits ::

124 : 7; and if 594 be added to it, the digits will be inverted:

what is it
.'' Answer 248.

32. Prove that the sum of all the numbers of n places

which can be formed with the n digits a, 6, c, &c. : the sum of

all the numbers of n places which can be formed with the n
digits jt>, 7, r, &c. of the same scale :: « + ft+c+&c. : p-\-q+r-\-

&c.

CHAP. XII.

MISCELLANEOUS EXAMPLES.

1. If w be a whole number, prove that /i"'-i-5w is divi-

sible by ().

2. If w be any whole number, then will ;/(?/— i) (/r— 4)

be divisible by 120.
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3. If n be any odd number, then n^— n will be a multi-

ple of 12.

4. If w be an even number, then will n(n* + 20) be
divisible by 48.

5. The square of every odd number diminished by l is

divisible by 8.

6. If from the cube of any even number be subtracted

four times the number itself, the remainder will be divisible

by 48.

7- If w be greater than 3, prove that the cube root of n
will be greater than the fourth root of w + i.

8. The square of every number, except 3 and its mul-

tiples, is of the form 3m + I.

9. If a^-b^ be divisible by 3, then will (a + kf- (6 + k)'

be also divisible by 3.

10. If when any numbers Oj, a„, a,, &c. are divided by n,

the remainders be r^, r^, r^, &c. respectively: then will r^ r, r,

&c. be the remainder in the division of a^ a^ a, &c. by n.

11. If an odd and even square number be added together

and the sum be also a square number, the even square is a

multiple of l6.

12. If * be the sum of any two numbers, p their product

and q their quotient, then will

pz=8^ \q— 2q- + 3q^— 4-0* + &c. in infinitum |

.

13. Supposing the sum of 51 cards in a common pack to

be 10m + a, prove the value of the last card to be 10— a, the

court cards reckoning for 10, and the ace, deuce &c. for 1,2, &c.

respectively : find also the value of m.

14. The square of every prime number greater than 2,3

diminished by 1, is divisible by 24.

15. If 5 be subtracted from the sum of any two consecu-

tive numbers each prime to 3, the remainder will be divisible

by 36.
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16. The difference of the squares of any two prime num-

bers, of which the greater exceeds 5, is divisible by 24.

17. The sum of any number of prime numbers in arith-

metical progression is a composite number.

18. If we divide a, c^, a', &c. by a prime number p, we

shall obtain a remainder 1 before we have taken p terms : also,

after this remainder, the remainders recur.

19. If a be a prime number and h any other number

prime to o, shew that if 6", (26)", (36)-, &c. {l(a— 1)6^ be

divided by o, they will each leave a different positive remainder.

20. If m be a prime number, and a and h be integers not

divisible by tw, then will a"*~^ — 6'""^ be a multiple of m.

21. Every prime number of the form 4m + 1 is the sum
of two squares.

22. Find the number of divisors of 2l60, and also their

sum. Answer 40 and 7440.

23. What number multiplied by 48 will make it a com-

plete fourth power ? Answer 27.

24. If a and 6 be prime numbers, the number of numbers

prime to a 6 and less than 06 is equal to (a — 1) (6— 1), unity

being considered one of them.

25. Prove that the sum of any two consecutive triangular

numbers is a square number.

26. Shew that the ratio between a triangular and square

number of the same root approaches to 1 : 2, as that root is

increased.

27. Prove that the sum of n terms of the series 1^ + 3*

+ 5^ + 7^ + &c. is an hexagonal number whose root is w'.

&
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