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PREFACE.

The stereotype plates of my Treatise on Algebra having be-

come so much worn in the printing of more than 60,000 copies

that it had become necessary to cast them aside, I decided to

improve the opportunity to make a thorough revision of the

work. I therefore solicited criticisms from several college pro-

fessors who had had much experience in the use of this book,

and in reply have received numerous suggestions. The book

has been almost entirely rewritten, nearly every page of it

having been given to the printer in manuscript. The general

plan of the original work has not been materially altered, but

the changes of arrangement and of execution are numerous. In

the former editions, in place of abstruse demonstrations, I some-

times employed numerical illustrations, or deductions from par-

ticular examples. In the present edition such methods have

been discarded, and I have aimed to demonstrate with concise-

ness and elegance every principle which is propounded.

This book therefore aims to exhibit in logical order all those

principles of Algebra which are most important as a prepara-

tion for the subsequent branches of a college course of mathe-

matics. I have retained, with but slight alteration, a feature

which was made prominent in the former editions, that of stating

each problem twice: first as a restricted numerical problem,

and then in a more general form, aiming thereby to lead the

student to cultivate the faculty of generalization. At the same
time I have very much increased the number of examples in-

corporated with each chapter of the book, and at the close have
given a large collection of examples, to which the teacher may
resort whenever occasion may require.

The proofs of the work have all been examined by Prof

H. A. Newton, to whom I am indebted for numerous and im-

portant suofprestions.

541 H21
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ALGEBRA.

CHAPTEE I.

DEFINITIONS AND NOTATION.

/l. Quantity is any thing that can be increased or diminished,

and that can be measured.

A line, a surface, a solid, a weight, etc., are quantities; but

the operations of the mind, such as memory, imagination, judg-

ment, etc., are not quantities.

A quantity is measured by finding how many times it con-

tains some other quantity of the same kind taken as a stand-

ard. The assumed standard is called the unit of measure,

2. Mathematics is the science of quantity, or the science which

treats of the properties and relations of quantities. It employs

a variety of symbols to express the values and relations of

quantities, and the operations to be performed upon these quan-

tities, or upon the numbers which represent these quantities.

3. Mathematics is divided into pure and mixed. Pure math-

ematics comprehends all inquiries into the relations of quan-

tity in the abstract, and without reference to material bodies.

It embraces numerous subdivisions, such as Arithmetic, Al-

gebra, Geometry, etc.

In the mixed mathematics, these abstract principles are ap-

plied to various questions which occur in nature. Thus, in Sur-

veying, the abstract principles of Geometry are applied to the

measurement of land; in Navigation, the same principles are

applied to the determination of a ship's place at sea ; in Optics,

they are employed to investigate the properties of light; and

in Astronomy, to determine the distances of the heavenly

bodies.
A 2



lO ALGEBRA.

^4. Algebra is'tHat.b.ranch of mathematics in which quantities

"aj'C'H^^Ve&ditted b^^ letters, and their relations to each other, as

'well as the operations to be performed upon them, are indi-

cated by signs or symbols. The object of algebraic notation

is to abridge and generalize the reasoning employed in the so-

lution of all questions relating to numbers. Algebra may there-

fore be called a species of Universal Arithmetic.

*5. The symbols employed in Algebra may be divided into

iJiree classes :

1st. Symbols which denote quantities.

2d. Symbols which indicate operations to be performed upon

quantities.

8d. Symbols which indicate the relations subsisting between

different quantities, with respect to their magnitudes, etc.

Symbols which denote Quantities.

6. In order to generalize our reasoning respecting numbers,

we represent them by letters, as a, &, c, or cc, y, z, etc., and these

may represent any numbers whatever. The quantities thus

represented may be either Jcnoivn quantities—that is, quantities

whose values are given ; or unknown quantities—that is, quan-

tities whose values are to be determined.

Known quantities are generally represented by the first let-

ters of the alphabet, as a, 6, c, c?, etc., and unknown quantities by
the last letters of the alphabet, as cc, y, 2, u, etc. This, how-

ever, is not a necessary rule, and is not always observed.

7. Sometimes several quantities are represented by a single

letter, repeated with different accents, ns a', a'\ a'", a"", etc.,

which are read a prime, a second, a third, etc. ; or by a letter

repeated with different subscript figures, as a^, a^, 03, a^, etc.,

which may be read a one sub, a two sub, a three sub, etc.

All these symbols represent different quantities, but the ac-

cents or numerals are emplo3'ed to indicate some important re-

lation between the quantities represented.
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8. Sometimes quantities are represented by the initial letters

of their names. Thus s may represent sum; d, difference or di-

ameier ; r, radius or ratio ; c, circumference ; h, height, etc. All

these letters may be used with accents. Thus, in a problem

relating to two circles, d may represent the diameter of one cir-

cle, and d' the diameter of the other ; c the circumference of

one, and c' the circumference of the other, etc.

-k^ Symbols which indicate Operations.

-§. The sign of addition is an erect cross, +, called plus, and

when placed between two quantities it indicates that the second

is to be added to the first. Thus, 5+ 3 indicates that we must

add 3 to the number 5, in which case the result is 8. We also

make use of the same sign to connect several numbers togeth-

er. Thus, 7+ 5+ 9 indicates that to the number 7 we must

add 5 and also 9, which make 21. So, also, 8+ 5+ 13 + 11 + 1

+ 3+ 10 is equal to 51.

The expression a+ 5 indicates the sum of two numbers, which

we represent by a and h. In the same manner, m+?2+x+^
indicates the sum of the numbers represented by these four let-

ters. If we knew, therefore, the numbers represented by the

letters, we could easily find by arithmetic the value of such ex-

pressions.

/ - 10. The sign of subtraction is a short horizontal line, — , called

minus. When placed between two quantities, it indicates that

the second is to be subtracted from the first. Thus, 8— 5 indi-

cates that the number 5 is to be taken from the number 8,

which leaves a remainder of 3. In like manner, 12— 7 is equal

to 5, etc.

Sometimes we may have several numbers to subtract from a

single one. Thus, 16—5—4 indicates that 5 is to be subtracted

from 16, and this remainder is to be further diminished by 4,

leaving 7 for the result. In the same manner, 50— 1—5— 3—
9— 7 is equal to 25.

The expression a-^h indicates that the number designated by

a is to be diminished by the number designated by h.
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11. The double sign ± is sometimes written before a quan*

tity to indicate that in certain cases it is to be added, and in

others it is to be subtracted. Thus, 6 db c is read h j^l^^ or

minus c, and denotes either the sum or the difference of these

two quantities.

12. The sign of multiplication is an inclined cross, x. When
placed between two quantities, it indicates that the first is to

be multiplied by the second. Thus, 3x5 indicates that 3 is

to be multiplied by 5, making 15. In like manner, axh indi-

cates that a is to be multiplied by h; and axbxc indicates

the continued product of the numbers designated by a, ft, and

c, and so on for any number of quantities.

Multiplication is also frequently indicated by placing a point

between the successive letters. Thus, a.h.c.d signifies the

same thing as axbxcxd.
Generally, however, when numbers are represented by let-

ters, their multiplication is indicated by writing them in suc-

cession without any intervening sign. Thus, abc signifies

the same as axbxc^ or a.b.c.

The notation a.b or ab is seldom employed except when
the numbers are designated by letters. If, for example, we
attempt to represent in this manner the product of the num-
bers 5 and 6, 5.6 might be confounded with 6-^\ and 56

would be read fifty-six, instead of five times six.

The multiplication of numbers may, however, be denoted

by placing a point between them in cases where no ambiguity

can arise from the use of this symbol. Thus, 1.2.3.4.5 is

sometimes used to represent the continued product of the

numbers 1, 2, 3, 4, 5.

X
13. When two or more quantities are multiplied together,

each of them is called a factor. Thus, in the expression 7x5,
7 is a factor, and so is 5. In the product abc there are three

factors, a, b, c.

^ When a quantity is represented by a letter, it is called a

literal factor. When it is represented by a figure or figures, it
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is called a numerical factor. Thus, in the expression 5a5, 5

is a numerical factor, while a and h are literal ^tors.

14. The sign of division is a short horizontal line with a

point above and one below, -:-. When placed between two

quantities, it indicates that the first is to be divided by the

second.

Thus, 24-^6 indicates that 24 is to be divided by 6, making

4. So, also, a^h indicates that a is to be divided by h.

Generally, however, the division of two numbers is indi-

cated by writing the divisor under the dividend, and drawing

a line between them. Thus, 24 h- 6 and a^h are usually writ-

, 24 . a
ten -TT and 7.

15. The products formed by the successive multiplication

of the same number by itself, are called the powers of that

number.

Thus, 2 X 2=4, the second pT5wer or square of 2.

2x2x2 = 8, the third power or cube of 2.

2 X 2 X 2 X 2= 16, the fourth power of 2, etc.

So, also, 3x3 = 9, the second power of 3.

3x3 X 3 = 27, the third power of 3, etc.

Also, axa= aa, the second power of a.

ax a xa=aaa, the third power of a, etc.

In general, any power of a quantity is designated by the

number of equal factors which form the product.

-. \My(A.'^iC -'' '
''"- ^'

^ 16. The sign of involution is a number written above a quan-

tit}'-, at the right hand, to indicate how many times the quan-

tity is to be taken as a factor.

^A root of a quantity is a factor which, multiplied by itself

a certain number of times, will produce the given quantity.

XThe figure which indicates how many times the root or fac-

tor is taken, is called the exponent of the power.

Thus, instead of aa, we write a^, where 2 is the exponent of

the power; instead of aaa, we write a^, where 3 is the expo-
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nent of the power ; instead of aaaaa, we write a®, where 5 is

the exponent of the power, ^^Q-i^rruu^ju - Ir h^' (r\j ^d,<i^ •

When no exponent is writteiiover a quantity, the exponent

1 is always understood. Thus, a^ and a signify the same thing.

Exponents may be attached to figures as well as letters.

Thus the product of 3 by 3 may be written 3^, which equals 9.

3x3x3 " 3^ " 27.

" 3x3x3x3x3 " 3^ " *' 243.

^ 17. The sign of evolutiojUy or the radicaj/ sign^ is the charac-

ter ^/~, When placed over a quantity, it indicates that a root

of that quantity is to be extracted. The name or index of the

required root is the number written above the radical sign.

Thus,

\/9, or simply V9, denotes the square root of 9, which is 3.

v/64 denotes the cube root of 64, which is 4.

VTB denotes the fourth root of 16, which is 2.

So, also,

y/a, or simply Va, denotes the square root of a.

Yet denotes the fourth root of a.

\/a denotes the 92th root of a, where n may represent any

number whatever.

When no index is written over the sign, the index 2 is un-

derstood. Thus, instead of Vab, we usually write Vab.

Symbols ivhich indicate Melaiion.

18. The sign of equality consists of two short horizontal

lines, =. When written between two quantities, it indicates

that they are equal to each other.

Thus, 7+ 6=13 denotes that the sum of 7 and 6 is equal to

13.

In like manner, a=^h+ c denotes that a is equal to the sum
of b and c ; and a+ b= c-'d denotes that the sum of the num-

bers designated by a and ft, is equal to the dillerence of the

numbers designated by o and d.
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19. The sign of inequality is the angle > or <. When
placed between two quantities, it indicates that they are "un-

equal, the opening of the angle being turned toward the greater

number. When the opening is toward the left, it is read great-

er than ; when the opening is toward the right, it is read less

than. Thus, 5>3 denotes that 5 is greater than 3 ;
and 6<11

denotes that 6 is less than 11. So, also, a>5 denotes that a is

greater than h ; and x<C,y-\-z denotes that x is less than the

sum of y and z.

^^20. A parenthesis^ ( ), or a vinculum^ , is employed to

connect several quantities, all of which are to be subjected to

the same operation.

Thus the expression {a-\-h-\-c)xx^ or a-{-b-{-cxx^ indicates

that the sum of a, 5, and c is to be multiplied by x. But

a-\-h-\-cXx denotes that c only is to be multiplied by x.

When the parenthesis is used, the sign of multiplication

is generally omitted.. Thus, (a + Z)-4-c)xx is the same as

{a-\-h-\-c)x.

^21. The sign of ratio consists of two points like the colon :

placed between the quantities compared. Thus the ratio of a

to h is written a : h.

22. The sign ofproportion consists of a combination of the

sign of ratio and the sign of equality, thus, : =
:

; or a com-

bination of eight points, thus, : :: :.

Thus, if a, b, c, d, are four quantities which are proportional

to each other, we say a is to Z> as c is to d; and this is express-

^.d by writing them thus

:

a : b=c:dy

or a:b::c:d.

X
23. The sign of variation is the character od. When written

between two quantities, it denotes that both increase or diminish

together, and in the same ratio. Thus the expression scotv de-

notes that s varies in the same ratio as the product of t and v.
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XJ4. Three dots .*. are sometimes employed to denote there-

fore, or consequently.

A few other symbols aVe employed in Algebra, in addition to

those here enumerated, which will be explained as they occur.

Combination of Algebraic Quantities.

^ 25. Every number written in algebraic language— that is,

'^by aid of algebraic symbols—is called an algebraic quantity, or

an algebraic expression.

Thus, 3a^ is the algebraic expression for three times the

square of the number a.

7a^Z>* is the algebraic expression for seven times the third

power of a, multiplied by the fourth power of b.

^ 26. An algebraic quantity, not composed of parts which are

separated from each other by the sign of addition or subtrac-

tion, is called a monomial, or a quantity of one term, or simply

a term.

Thus, 3a, bbc, and Ixy"^, are monomials.

Positive terms are those which are preceded by the sign plus,

and negative terms are those which are preceded by the sign

minus. When the first term of an algebraic quantity is posi-

tive, the sign is generally omitted. Thus a-{-b—c is the same

as -\-a-\-b—c. The sign of a negative term should never be r

27. The coefficient of a quantity is the number or letter pre-

fixed to it, showing how often the quantity is to be taken, c^' <

Thus, instead of writing a+ a-f-a-f-a-f-a, which represents

5 a's added together, we write 6a, where 5 is the coefficient of

a. In ^{x-\-y), 6 is the coefficient oi x-{-y. When no coeffi-

cient is expressed, 1 is always to be understood. Thus, la and

a denote the same thing.

The coefficient may be a letter as well as a figure. In the ex-

pression nx, n may be considered as the coefficient of x, be-

cause X is to be taken as many times as there are units in n.

If n stands for 5, then nx is 5 times x. When the coefficient
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is a number, it may be called a numerical coefficient ; and when
it is a letter, a literal coefficient.

In 7aa7, 7 may be regarded as the coefficient of ax^ or 7a may
be regarded as the coefficient of x.

28 The coefficient of a positive term shows how many times

the quantity is taken positively^ and the coefficient of a nega-

tive term shows how many times the quantity is taken nega-

tively. Thus, -\-4:X—-\-x-\-x-[-x-\-x;

—4x— —x—x—x—x.

^29. Similar terms are terms composed of the same letters,

affected with the same exponents. The signs and coefficients

may differ, and the terms still be similar.

Thus, 2>ah and lab are similar terms.

Also, ba\ and —Sa^c are similar terms.

X.30. Dissimilar terms are those which have different letters or

exponents.

Thus, axy and axz are dissimilar terms.

Also, Sab"^ and 4a^5 are dissimilar terms.

*31. A polynomial is an algebraic expression consisting of

more than one term; as, a-\-b ; or a-^2b—bc-{-x.

A polynomial consisting of two terms only is usually called

a binomial; and one consisting of three terms only is called a

trinomial. Thus, Sa-\-6b is a binomial; and 6a— Sbc-\-xy is a

trinomial.

y 32. The degree of a term is the number of its literal factors.

ThusJ^ 8a is a term of the first degree.

6ab " second "

6a^bc^
" sixth "

In general, the degree of a term is found by taking the sum
of the exponents of all the letters contained in the term.

Thus the degree of the term bab'^ccP is 1+2 4-1-/- 8, or 7;

that is, this term is of the seventh degree.
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X
33. A polynomial is said to be homogeneous_yi\iQn all its

terms are of the same degree.

Thus, Sa^—4a6 -f 62 is of the second degree, and homogeneous

2a3-f3a2c-4c2c^ " third

But ba^—2ah-\-c is not homogeneous.

34. The reciprocal of a quantity is the quotient arising from

dividing a unit by that quantity.

Thus the reciprocal of 2 is ^ ; the reciprocal of a is ^

35. A function of a quantity is any expression coutainmg

that quantity. Thus,

ax'^-\-h is a function of a?.

ay^-\-cy-\-cl is a function of?/.

ax^—hy^ is a function of x and y.

Exercises in Algebraic Notation.

36. In the following examples the pupil is simply required

to express given relations in algebraic language.

Ex. 1. Give the algebraic expression for the following state-

ment: The second power of a, increased by twice the product

of a and 6, diminished by c, and increased by c?, is equal to

fifteen times x. Ans. a'^-{-2ah—c-\-d=\bx.

Ex. 2. The quotient of three divided by the sum of x and

four, is equal to twice h diminished by eight

Ex. 3. One third of the difference between six times x and

four, is equal to the quotient of five divided by the sum of a

and h.

Ex. 4. Three quarters of x increased by five, is equal to

three sevenths of b diminished by seventeen.

Ex. 5. One ninth of the sum of six times x and five, added

to one third of the sum of twice x and four, is equal to the

product of a, 6, and c.

Ex. 6. The quotient arising from dividing the sum of a and

b by the product of c and (i,is greater than four times the sum
of m, 72, cc, and y.
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37. In the following examples the pupil is required to trans-

late the algebraic symbols into common language.

Ex.1. -T-—

h

h c a-\-b'

Ans. The quotient arising from dividing the sum of a and

X by &, increased by the quotient of x divided by c, is equal to

the quotient of m divided by the sum of a and h.

Ex.2. 7a2+ (i-c)x(cZ+e)=a7+2/-

How should the preceding example be read when the first

parenthesis is omitted?

d +6— c 3 a-}-7

6a—

d

Ex. b. 2a ^fb^—ac— 5(a -f-m+ cc).

\t. . VSb^-^Vi 1
^^•^-

l + 2a ^^^+?

Computation of Nuraerical Values.

" 38. The numerical value of an algebraic expression is the re-

sult obtained when we assign particular values to all the let-

ters, and perform the operations indicated.

Suppose the expression is 20^1).

If we make a= 2 and h— 2>^ the value of this expression will

be 2x2x2x8 = 24.

If we make (7.=4 and ?;= 3, the value of the same expression

will be 2x4x4x3= 96.

The numerical value of a polynomial is not affected by
changing the order of the terms, provided we preserve their re-

spective signs.

The expressions a^-\-2ah-\-h'^^ a"^ -\-h'^ -\-2ab^ and h'^-\-2ab^a'^y

have all the same numerical value.

Find the numerical values of the following expressions, in

which a= Q^ b= 6, c=4, m=8, and n-=2.

Ex.1. a^+Sab-c^ J.n5. 36+ 90-16= 110.

Ex.2. a'x{a+ b)-2abc, Ans. 156.
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Ex. 3. 5- +c«. Ans. 28.
a+ dc

V2ac4-c* ^

Sc.5. V^^^^c+ V2ac-\-c\

Ux.e. 3v^+2aV2a+I+2c.

^07.7. (3v^+2a)V2a+&+2c.

^05.9.

a 6 m— ?i m+n
a2Z)VmH3a6cm4-2

abcm-{-l

Find the numerical values of the following expressions, in

which a=S, Z>=5, c=2, m=4, w=6, and x=9.

jEc. 10. ^^ 5 ^. ^?25. 8.
ox—a^—c

jE'a:. 11. 5a:-7Vx. ^715.24.

Ux. 12. 2a;2 4- V2^H^. -Atw. 175.

'^x. 13. vTo+n-VlO+n. -^^

^ic. 14. 6(m2H-n2)4-4aaj.
'^''

^ic. 15. a*- 4a3+ 7a2- 6a.

Ex. 16. V5Vm+5'v/^+ Vm-f Vx.

Ex. 17.
m—n-\-b m-^2n 2a4-m

Ex. 19.

/
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CHAPTER 11.

ADDITION.

39. Addition^ in Algebra, is the connecting of quantities ta

getlier bj means of their proper signs, and incorporating such

as can be united into one sum.

When the Quantities are similar and have the same Signs.

40. The sum of 8a, 4a, and 5a, is obviously 12a. That is,

3a 4- 4a 4- 5a= 12a.

So, also, ^^a^ --4a, and —5a, make —12a; for the minus

sign before each of the terms shows that they are to be sub-

tracted, not from each other, but from some quantity which is

not here expressed ; and if 2>a^ 4a, and 5a are to be subtracted

successively from the same quantity, it is the same as subtract-

ing at once 12a. Hence we deduce the following

RULE.

Add the coefficients of the several quantities together^ and to their

sum annex the common letter or letters^ prefixing the common sign,

EXAMPLES.

Sa -Sab 2b-\-Sx a-2x'^ 2a -h 2/'

6a -6ab 6b-\-7x 4:a-Bx^ 5a-f2?/2

7a - ab b-{-2x 3a— 5a;2 9a+3y2
a -lab 46+307 7a- x"" 4a+6?/2

16a -17ab
The pupil must continually bear in mind the remark of A^i.

26, that, when no sign is prefixed to a quantity, plus is always

to be understood.

When the Quantities are similar, but have different Signs.

41. The expression 7a — 4a denotes that 4a is to be sub-

tracted from 7a, and the result is obviously 3a. That is,

7a— 4a= 3a.
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The expression 5a— 2((-\-Sa— a denotes that we are to sub-

tract 2a from 5a, add 3a to the remainder, and then subtract a

from the last sum, the result of which operation is 5a. That is,

5a— 2a+8a—a— oa.

It is generally most convenient to take the sum of the posi-

tive quantities, which in the preceding case is 8a; then take

the sum of the negative quantities, which in this case is Sa^,

and we have 8a— 3a, or 5a, the same result as before. Hence

we deduce the following

IIULE.

Add all the i^osilive coefficients together^ and also all those that

are negative; subtract the least of these results from the greater;

to the difference annex the common letter or letters^ and prefix the

sign of the greater sum.

EXAMPLES.

— 2>a 6x+5a?/ lay- 7 -2a^x -6«H2Z/
4- 7a -3.c+2a?/ - ay-{- 8 a^x 2a2-3Z>

+ 8a x—^ay 2ay— 9 -Za^x -5a2-8^
— a 2:r+ ay 8r,7/- 11 na^x 4a2-2/>

4- 11a fox-^lay

WJien some of the Quantities are dissimilar.

42. Dissimilar terms can not be united into one term by ad-

dition.

Thus 2a and Zb neither make ba nor oh. Their sum can

therefore only be indicated by connecting them by their proper

signs, thus, 2a4-3Z/.

In adding together polynomials which contain several groups

of similar quantities, it is most convenient to write thejn in

such a manner that each group of similar quantities may occu

py a column by itself. Ilcncc we deduce the following

RULE.

Write the quantities to he added so that the similar terms may

be arranged in the same column.

Add up each column separately^ and connect the several results

hy /heir projuT signs.
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EXAMPLES.

1. Add 2a+3&4-4c, a-{-2b-{-5c, Sa—b+ 2c, and _a+4&_6r,
Avs. 5a -j- 86+ 5c.

2. Add 2x^/~2xH?/^ Sx-^-f x?/-f 4z/2, a;2_^.^^3^2^ and 4^^

— 2y^—Sxy. Ans. 6x'^—xy-\-6y^.

8. Add 5aV — 2x7j^ 2>ax— 4:xy^ 7xy — 4:ax, aV-{-6xy^ and

2aic— 8x?/. Ans. 6a'^x'^-{-Sxy-\-ax.

4. Add 2a2-3ac+ 3&-cf^, 4:a''-ac+ 2cd-b, 3a'^+ 2ac-'ib

-i-3cd, and a^— 2rtc+5c<i— 26. Ans. lOa^—4ac— 46+ 9cd

5. Add 7w~h37z — 14x, Sa-\-9n — llm, 5x— 4:m-\-Sn, and

1171— 26-772. A7Z5. 3a-26-977'i+ 3l72-9x.

6. Add 2a2x+ 3aa;2 4-a;2, 2aa;-3rt2_4ic2, -2x'^-^3a'^x-5ax'^,

and 3a2_2a2j:+ 2aa:2. ^725. 3a2x— 5x2_|_2r?j:.

7. Add 2a262_ 3(7^:4-57722?/, 277i2?/+ 3a262_2«x, 4ax-377z2^

— 4a^6^, and ax -l-3a262_ 47722?/. Ans. 4:a'^b^.

'S. Add 7a63-12ax2j lSa¥+ ax, Sax''-8ab^, and -12a6^

+9ax2-5. a^ai-b
9. Add 4x24-2ax+l, 3ax-2x2+ 5, 3x2-6ax+4, and 5x2

+ax— 1. J

10. Add 2a3x2-3a2x3-a2x-ax2-f 2ax, 4a2:c3_3a2a;+4a=^x-

-f 2ax2+3ax, and 3a3x2-ax2-a2xH4a2x+ax.^7a^#
11. Add Ma^x - 7a262 + 3a2, 5a262c'2 -f 3a262 + 2a2, 2a262c2

-5a3x-a2, an8 4a262-9a3x-4a2. -^JlX/^I^^ i

'

12. Add ax^'-bx^-^cx^-n, 26xH3cx2-4x+l, 3ax^-46x^

2cx2 4-3, and 2ax^ + 36x3-2cx2H-3.

^.
43. It must be observed that the term addition is used in a

more general sense in Algebra than in Arithmetic. In Arith-

metic, where all quantities are regarded as positive, addition

implies augmentation. The sum of two quantities will there-

fore be numerically greater than either quantity. Thus the

sum of 7 and 5 is 12, wdiich is numerically greater than either

5 or 7.

But in Algebra, the quantities to be added may be either

positive or negative; and by the sum of two quantities we un-

derstand their aggregate, taken with reference to their signs.



24 ALGEBRA.

Thus the sum of 4-7 and —5 is +2, which is numerically less

than either 7 or 5. So, also, the sum of -\-a and —h is a—b.
In this case the algebraic sum is numerically the difference of

the two quantities.

This is one instance among many in which the same terms

are used in a much more general sense in the higher mathe-

matics than they are in Arithmetic.

44. When dissimilar terms have a common literal part, we
may regard the other factors as the coefficient of' the common
letter or letters. The sum of the terms will then be expressed

by inclosing the sum of the coefficients in a parenthesis, and

prefixing it to the common letter or lettera

Thus the sum of acc^, bx^, and cx^ may be written

{a+ b-\-c)x\

EXAMPLES.

1. Add aXj 2bx, and Smx. Ans. {a-\-2b-^Sm)x,

2. Add Saxy^, 2bxy^j and —6axy^, Ans. {2b—2a)xy\

3. Add 2ax+Syj 6ax—y, and x—4:y. Ans. {7a-^l)x^2y.
v4. Add 2x-\-Sxy^ ax-\-bxy^ and bx+Smxy.-^fx-f-^'/iAyf^^^'^^'^J

v5. Add mx-\-ny, Sax—2y, and 4:bx-\-ay.
^

6. Add 4m'/S+3, 2a^x—l, and b^-^y.
7. Add Sax'^-\-2bx—l, 4:bx'^—ax-\-S^ and mx^—nx-{-5.

8. Add 2ax*-{-Sbx^-7, Smx''-nx^+2, and 4cc*-ax3+l.

9. Add amx^-\-bnx'^-{-cXj bmx^—anx'^-\-ax, and cmx^^nas

\-Sbx.

10. Add {a—b)^x and (a4-6— c)ys.
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CHAPTER III.

SUBTRACTION.

46. Subtraction is the operation of finding the difference be-

tween two quantities or sets of quantities. The quantity to be

subtracted is called the subtrahend; the quantity from which

it is to be subtracted is called the minuend; the quantity

which is left after the subtraction is called the remainder.

Let it be required to subtract 8— 3 from 15.

Now 8— 3 is equal to 5; and 5 subtracted from 15 leaves

10. The result, then, must be 10. But, to perform the opera-

tion on the numbers as they were given, we first subtract 8

from 15, and obtain 7. This result is too small by 3, because

the number 8 is larger by 3 than the number which was re-

quired to be subtracted. Therefore, in order to correct this re-

sult, the 3 must be added, and the operation may be expressed

^^^^' 15-8+ 3 = 10.

Again, let it be required to subtract c—d from a—h. It is

plain that, if the part c i^qvq alone to be subtracted, the re-

mainder would be 7a— — c.

But, since the quantity actually proposed to be subtracted is

less than c by c?, too much has been taken away by c?, and there-

fore the true remainder will be greater than a—b—c by c?, and

may hence be expressed thus,

a— b— c-{-d^

where the signs of the last two terms are both contrary to what

they were given in the subtrahend. Hence we perceive that

a quantity is subtracted by simply changing its sign. In prac-

tice it is most convenient to write the quantities so that simi-

lar terms may be found in the same column.
B
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46. Ilence we deduce the following

RULE.

Write the subtrahend under the minuend^ arranging similar

terms in Hie same column.

Conceive the signs of all the terms of the subtrahend to be

changed from •\- to ^^ or from — to + , and then proceed as in

addition.

EXAMPLES.

1. 2. 3. 4. 6.

From l^ax^ bdbx^ 4:abx^ —^ahx^ —Vla^bc

Subtract lax^ Wabx^ —Zahx? —^abx^ ^a^bc

Kemainder Sax^ —6abx^ 7abx^ dabx^ —Iba^bc

6. 1. 8.

From 8a2+46-2ic bx^-Zax^ -\-ll a^ -\-2ab ^-b'^

Subtract ((2+ 7/; -8a; 7x^-8gx^- 2 a'-2ab-\-b''

Remainder 2a2— 3Z>+6cr —^x^-^-bax^+l^ ^ab

9. From 3a4-5Z>— 2c subtract 2a— b. Ans. a+ 66— 2c.

10. From babc-2b-^ subtract ^abc-2b-\-\.

Alls. 2abc—7.

11. From 4a2— 7a-l-3x subtract a'^-\-Sa—2x.

Ans. 3a2— 10a+5x.

12. From a—b-{-2m—x subtract 3a:-f-m—4&+a.

13. From 2x^—x'^y-{-6xy^ subtract x^—2xy"-\-y^.

14. From m-\-n subtract m-^n.

15. From m-\-n-\-x subtract —m—n—x.
16. From Sa^-Sa— 7 subtract -2a2_4a+10.
17. From 77i'*+ 37?^^—4m2— 2;?i+l subtract 7n* — 2m^-{-m^

-3m4-5.
18. From x^-6x^-\-10x^-B subtract x^-^-^x^-lOx^+S.

19. From da^-^ax+2x'^—14^a^x subtract x^ — Wa^x -^ 2a^

—4:aoc

20. From 6abx—4:mn-\-6ax subtract Smn-{-6ax—Sabx.

Subtraction may be proved, as in Arithmetic, by adding the

remainder to the subtrahend. The sum should be equal to

the minuend.
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K
47. It will be perceived that the term subtraction is used in

a more general sense in Algebra than in Arithmetic. In Arith-

metic, where all quantities are regarded as positive, a number

is always diminished hy subtraction. But in Algebra the dif-

ference between two quantities may be numerically greater

than either. Thus the difference between + a and — 6 is

a+ h.

The distinction between positive and negative quantities

may be illustrated by the scale of a thermometer. The de-

grees above zero are considered positive, and those below zero

negative. From five degrees above zero to five degrees below

zero, the numbers stand thus,

+ 5, +4, 4-3, +2, +1, 0, -1, -2, -3, -4, -5.

The difference between a temperature five degrees above

zero and one which is five degrees helow zero, is ten degrees,

which is numerically the sum of the two quantities. Ten is

said to be the algebraic difference between +5 and —5.

48. When dissimilar terms have a common literal part^ the

difference of the terms may be expressed, as in Art. 44, by in-

closing the difference of the coefl&cients in a parenthesis, and

prefixing it to the common letter or letters.

Thus the difference between ax^ and bx^ may be written

(a—b)x'^.

EXAMPLES.

1. Fiom ax^if subtract — Si^y. Ans. {ci-\-Z)x'^y'^,

2. From 2ax-\-Zy subtract bbx—y. Ans. {2a—6b)x-\-4:7/.

8. From mx-^-ny subtract 2>ax—2y.

Ans. {in— Za)x-\-{n-\-2)y,

4. From 4mV^-|-3 subtract 2aVx—l.
5. From 2ax*+ 35x^—7 subtract ^inx^—nx^-{-2.

6. From amx^-^-bnx^ \-cx subtract bmx^—anx^-\-ax,

7. From m-\-am-{-bm subtract am-\-bm-\-cm.

8. From l^Zax^-^-ba^x^^la^x* subtract x^^2>ax^—ba^x\_
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49. Use of the Parenthesis.—If we wish to indicate that one

polynomial is to be subtracted from another, we may inclose it

in a parenthesis, and prefix the sign minus. Thus the expres-

sion , ,
,

.

indicates that the polynomial m—n-\-x is to be subtracted from

the polynomial a—b. Performing the operation indicated, we
^^^® a—b—m+n^x.

The expression a—b-\-(m—n-{-x)

indicates that the polynomial m—7i-\-x is to be added to the

polynomial a— 5, and the result is

a—b-{-m—n~{-x.

Hence we see that a parenthesis preceded by the plus sign

may be removed without changing the signs of the inclosed

terms ; and, conversely, any number of terms, with their prop-

er signs, may be inclosed in a parenthesis, and the plus sign

written before the whole.

^ But if the parenthesis is preceded by the minus sign, the

signs of all the inclosed terms must be changed when the pa-

renthesis is removed ; and, conversely, any number of terms

may be inclosed in a parenthesis, and preceded by the minus

sign, provided the signs of all the inclosed terms are changed.

50. According to the preceding principle, polynomials may-

be written in a variety of forms.

Thus, a—b—c-\-d

is equivalent to a—{b-\-c—d\

or to a—b—{c—d),
or to a+d—{h-^c).

These expressions are all equivalent, the first form being the

simplest.

EXAMPLEa

Keduce the following expressions to their simplest forms.

1. 2a^-6a^b+3ab^^{a^-\-¥-ab''),

Ans, a^-6a^b-\-4ab^-b^
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2. a-\-h-\-c-{a~h)-{b-c). Ans. h^2c.

3. 4a2-^)-(2a-8Z>+l)+ 3a. Ans. 4:a?-\-a-]-2h-l.

4. a+ 25-(3?7i-2a+8x2)^

6. 3a3-2a2-j-a4-l-(2a3-a2-a+5)-(a3_a2-5a-4).

6. a+ h-{2a-'6h)-{pa+ n)-{-Ua-\-2h).

7. Sa^x?/— 55^2?/ -f- "Jcxy"^— Sy^— {a?xy+ Zhx^y— 4(^?/2 -f 9^^).

8. 7aa;2_ lOa^xH lla2ic-5a*

-

{^ax^-\-l2aV-Qa'x-^a^).

V
51. Hence we see tliat when an expression is inclosed in a

parenthesis, the essential sign of a term depends not merely

upon the sign which immediately precedes it, but also upon
the sign preceding the parenthesis.

Thus m-\-{-\-n) is equivalent to m+n,
and m+(— n)

" m—n.
But m— (4-n) " m—n^
and m—{—n) " m-\-n.

•^ The sign immediately preceding n is called the sign of the

quantity ; the sign preceding the parenthesis may be called the

sign of the operation ; while the sign resulting from the opera-

tion is called the essential sign of the term. We perceive that

when the sign of the quantity is the same as the sign of opera-

tion, the essential sign of the term is positive ; but when the

sign of the quantity is different from the sign of operation, the

essential sign of the term is negative.

X
52. Use of Negative Quantities.—The introduction of nega-

tive quantities into Algebra enables us not only to compare

the magnitude^ but also to indicate the relation or quality of the

objects about which we are reasoning. This peculiarity will

be understood from a few examples

:

1st. Gain and Loss in Trade.— Suppose a merchant to gain

in one year a certain sum, and in the following year to lose a

certain sum ; we are required to determine what change has

taken place in his capital. This may be indicated algebraical-

ly by regarding the gains as positive quantities, and the losses

as negative quantities. Thus, suppose a merchant, with a cap-

ital of 10,000 dollars, loses 3000 dollars, afterward gains 1000
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dollars, and then loses again 4000 dollars, the whole may be

expressed algebraically thus,

10,000- 3000+ 1000- 4000,

which reduces to +4000. The + sign of the result indicates

that he has now 4000 dollars remaining in his possession.

Suppose he further gains 500 dollars, and then loses 7000 dol-

lars. The whole may now be expressed thus,

10,000-3000+1000-4000+500-7000,

which reduces to —2500. The — sign of the result indicates

that his losses exceed the sum of all his gains and the property

originally in his possession ; that is, he owes 2500 dollars more

than he can pay.

53. 2d. Motion in Contrary Directions.—Suppose a ship to

sail alternately northward and southward, and we are required

to determine the last position of the ship. This may be indi>

cated algebraically, if we agree to consider motion in one direc-

tion as a positive quantity, and motion in the opposite direction-

as a negative quantity.

Suppose a ship, setting out from the equator, sails north-

ward 50 miles, then southward 30 miles, then northward 10

miles, then southward again 20 miles, and we wish to determ-

ine the last position of the ship. If we call the northerly mo-

tion + , the whole may be expressed algebraically thus,

50-30+ 10-20,

which reduces to + 10. The positive sign of the result indi-

cates that the ship was north of the equator by 10 miles.

Suppose the same ship sails again 40 miles north, then 70

miles south, the whole may be expressed thus,

50-30+10-20+40-70,

which reduces to —20. The negative sign of the result indi-

cates that the ship was now south of the equator by 20 miles.

We have here regarded the northerly motion as + , and the
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southerly motion as — ; but we might with equal propriety

have regarded the northerly motion as — , and the southerly

motion as +. It is, however, indispensable that we adhere to

the same system throughout, and retain the proper sign of the

result, since this sign shows whether the ship was at any time

north or south of the equator.

In the same manner, if we regafd westerly motion as +, we
must regard easterly motion as — , and vice versa; and, gen-

erally, when quantities which are estimated in different direc-

tions enter into the same algebraic expression, those which are

measured in one direction bemg treated as +, those which are

measured in the opposite direction must be regarded as —

.

54. The same principle is applicable to a great variety of

examples in Geography, Astronom}^, etc. Thus, north latitude

is generally indicated by the sign +, and south latitude by the

sign — . West longitude is indicated by the sign +, and east

longitude by the sign —

.

Degrees of a thermometer above zero are indicated by the

sign -h, while degrees below zero are indicated by the sign —

.

A variation of the magnetic needle to the west is indicated

by the sign +, while a variation to the east is indicated by the

sign -.

The date of an event since the birth of Christ is indicated

by the sign -|-
; the date of an event before the birth of Christ,

by the sign — ; and the same distinction is observed in a great

variety of cases which occur in the application of the mathe-

matics to practical problems. In all such cases the positive

and negative signs enable us not merely to compare the mag-

nitude^ but also to indicate the relation of the quantities con-

sidered.
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CHAPTER ly.

. MULTIPLICATION.

56. Multiplication is the operation of repeating one quantity

as many times as there are units in another.

The quantity to be multiplied is called the multiplicand;

and that by which it is to be multiplied is called the multiplier.

56. When several quantities are to be multiplied together,

the result will be the same in whatever order the multiplica-

tion is performed.

In order to demonstrate this principle, let unity be repeated

five times upon a horizontal line, and let there be formed four

such parallel lines, thus,

Then it is plain that the number of units in the table is

equal to the five units of the horizontal line repeated as many
times as there are units in a vertical column ; that is, to the

product of 5 by 4. But this sum is also equal to the four units

of a vertical line repeated as many times as there are units in

a horizontal line ; that is, to the product of 4 by 5. Therefore

the product of 5 by 4 is equal to the product of 4 by 5. For
the same reason, 2x3x4 is equal to 2 x 4 x 3, or 4 x 3 x 2, or

3x4x2, the product in each case being 24. So, also, if a, /^

and c represent any three numbers, we shall have ahc equal tu

hca or cab.

CASE I.

When both ilie factors are monomials.

57. Suppose it is required to multiply 5a by 4Z>. The prod-

uct may be indicated thus, 5a x 41),
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But since the order of the factors may be changed without

affecting the value of the product, the factors of the same kind

may be written together thus,

4 X bah ;

or, simphfying the expression, we have

w Wah.

Hence we see that the coefficient of the product is equal to the

product of the coefficients of the multiplicand and multiplier.

58. The Law of Exponents.^We have seen, in Art. 16, that

when the same letter appears several times as a factor in a

product, this is briefly expressed by means of an exponent.

Thus, aaa is written a^, the number 3 showing that a enters

three times as a factor. Hence, if the same letters are found in

two monomials which are to be multiplied together, the ex-

pression for the product may be abbreviated by adding the

exponents of the same letter. Thus, if we are to multiply a^

by a^, we find a^ equivalent to aaa, and a^ to aa. Therefore

the product will be aaaaa, which may be written a^, a result

which is obtained by adding together 3 and 2, the exponents

of the common letter a. XHence we see that the exponent of

any letter in the product is equal to the sum of the exponents of

this letter in the multiplicand and multiplier.

59. Hence, for the multiplication of monomials, we have the

following
EULE.

Multiply together the coefficients of the two terms for the coeffi-

cient of the product.

Write after this all the letters in the two monomials, giving to

lach letter an exponent equal to the sum of its exponents in the twc

factors.

EXAMPLES.

1. 2. 3. 4.

Multiply Idbc 5a^Pc 9amx*y 6a^h^c*

by 6mn Sah'^c 4:am^xy^ 8a^bc^

Product S6ahcrm ISa^Z^V SQa'^m^xY 48a^Z>V
B2
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5. Multiply 9a^x by la^y.

6. Multiply 12a'b*c' by lla^iV.

^ 7. Multiply a"^ by a**. ^rw. a"^+*».

a Multiply 8a"* by Ga**.

9. Multiply a'" by a'". J-tw. a^.
^

10. Multiply 9a"* by 12a"*.

" 11. Multiply a'^b by aZ)"*. Ans. a'^-^^h'^+K

12. Multiply 6a"*x» by 6a"*cc. ^??5. 30a2"*a:»+i.

13. Multiply 3a2"*ic» by 4a"*a;3« J.n5. 12a3"*a:*^

14. What is the continued product of 6a, 4m^x, and 9a^m^x?

Ans. 180a^m^x^.

15. What is the continued product of 7a^b, ab^, and 4ac^.^

16. What is the continued product of Sa'^cc, 5ab^, and 7abx?

17. What is the continued product of a, ab, abc, abed, and

abcdx
?J

18. What is the continued product of a^, a^h^, o?bc, and

CASE 11.

I

When one or both of the factors are polynomials.

^ 60. Kepresent the sum of the positive terms of any polyno-

mial by a, and the sum of the negative terms by b. Then

a—b will represent any polynomial whatever. In like man-

ner, c—d will represent any other polynomial whatever. It is

required to find the product of a—b by c—d.

In the first place, let us multiply a—b by c. This implies

that the difference of the units in a and b is to be repeated c

times. If 4- a be repeated as many times as there are units in

c, the result will be -\-ac. Also, if —5 be repeated as many

times as there are units in c, the result will be —be, for —6
taken twice is —2b, taken three times is —36, etc.; and if it be

repeated c times, the result will be —cb or —be The entire

operation may be exhibited thus

:

a— b

ac—bc.

Next let us multiply a—b by c—d. When we multiply
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a—h by c, we obtain ac—bc. But a— b was only to De taken

c—d times; therefore, in this first operation, we have repeated

it d times inore than was required. Hence, to have the true

product, we must subtract d times a—b from ac—bc. But d

times a— 6 is equal to ad-bd, which, subtracted from ac—bc^

° ac—bc— ad-\-bd.

If the pupil does not perceive the force of this reasoning, it

will be best to repeat the argument with numbers, thus: Let it

be proposed to multiply 8—5 by 6—2; that is, the quantity

8—5 is to be repeated as many times as there are units in

6—2. If we multiply 8—5 by 6, we obtain 48—80; that is,

we have repeated 8—5 six times. But it was only required to

repeat the multiplicand /oz^r times, or 6—2. We must there-

fore diminish this product by twice 8 — 5, which is 16—10;
and this subtraction is performed by changing the signs of the

subtrahend. Hence we have

48-30-16+ 10,

which is equal to 12. This result is obviously correct; for

8— 5 is equal to 3, and 6— 2 is equal to 4; that is, it was re-

quired to multiply 8 by 4, the result of which is 12, as found

above.

We have thus obtained the following results

:

+ax(+5)=+a5,
-\-ax{—b)=—ab^

—ax{+b)= —ab,

r-ax{—b)=-{-ab,

from which we perceive that when the two factors have like

signs, the product is positive; and when the two factors have un-

like signs, the product is negative.

61. Hence, for the multiplication of polynomials, we have

the following general

RULE.

'^Multiply each term of the multiplir.and by each term of the mul-



Q6 ALGEBRA.

iipltevj and add together all the partial products^ observing thai

like signs require + i'^^ the product, and unlike signs —

.

EXAMPLEa
1. 2.

Multiply 2a+ 36 a^'-^-^ah+W

by 4a— 5Z> a-\-h

Partial (8a2+12a6 a^^-2a%-\- a\?

products ( -\^ah--\m a%-[-2aJ/-\-h^

Result 8aH 2aZ>-1562 a^+Sa^Z^+Sai^+i^
'

w
^ It is immaterial in what order the terms of a polynomial

are arranged, or in what order the letters of a term are ar-

ranged. It is, however, generally most convenient to arrange

the letters of a term alphabetically, and to arrange the terms

of a polynomial in the order of the powers of some common
letter.

3. Multiply a'^—ab+b^ by a+ b. Ans. a^-^b^.

4. Multiply a^—2ab-\-b^ hy a—b.

5. Multiply 3a2-2a+5 by a -4.

6. Multiply a^-ab-^-b'^ by a''+ ab-\-b\ Ans. a*-^a%^-{-b\

7. Multiply 2a2_3a&+4 by a''-\-2ab-S.

8. Multiply a^+ a'^b-]-ah'^-\-b^ by a-b.

9. Multiply a-\-7nb by a-{-nb.

10. Multiply Sa-\-2bx—Sx^ by Sa—2bx+Sx\
11. Multiply together cc— 6, x-{-2, and x-\-S.

12. Multiply together x—S, x—4:, x-\-6, and x—6.
13. Multiply together a'^+ab+b^, a'^—ab+b^, and a^^b\

14. Multiply together a+a;, b-\-x, and c+a-.

16. Multiply a'^-{-a^b-\-a%^-\-ab^-[-b* by a— Z>.

16. Multiply a3-3a2+ 7a-12 by a^+Sa+2.

17. Multiply ir^+ 2a:3+ 8x2+ 2a:+ l by a:2-2a:4-l.

18. Multiply 14:a^x—6a'^bx+x^ by 14a3ic+6a2Z;x— x^.

19. Multiply x^—x^y-\-xy^ by x^—xg^—y^.
' 20. Multiply 8a;2+8xy— 5 by 4x^—7xy-\-9.

62. Degree of a Product.—Since, in the multiplication of two

monomials, every factor of both quantities appears in the prod
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uct; it is "obvious that tbe degree of the product will be equal

to the sum of the degrees of the multiplier and multiplicand.

Hence, also, if two polynomials are homogeneous^ their product

will be homogeneous.

Thus, in the first example of the preceding article, each

term of the multiplicand is of the first degree, and also each

term of the multiplier; hence each term of the product is of

the second degree. For a similar reason, in the second exam-

ple, each term of the product is of the third degree ; and in

the sixth example, each term of the product is of the fourth

degree. This principle will assist us in guarding against er-

rors in the multiplication of polynomials, so far as concerns

the exponents.

.

63. Number of Terms in a Product.—When the product aris-

ing from the multiplication of two polynomials does not admit

of any reduction of similar terms, the whole number of terms

in the product is ecLual to the product of tlie numbers of the

terms in the two polynomials. Thus, if we have five terms in

the multiplicand, and four terms in the multiplier, the whole

number of terms in the product will be 5x4, or 20. In gen-

eral, if there be m terms in the multiplicand, and n terms in

the multiplier, the whole number of terms in the product will

be mxn.

64. Least Number of Terms in a Product.—If the product of

two polynomials contains similar fer-ms, the number of terms

in the product, when reduced, may be much less than mn;
but it is important to observe that among the different terms

of the product there are always two which can not be combined

with any others. These are,

1st. The term arising from the multiplication of the two

terms affected with the highest exponent of the same letter.

2d. The term arising from the multiplication of the two

terms affected with the lowest exponent of the same letter.

For it is evident, from the rule of exponents, that these iwo

partial products must involve the letter in question, the one
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with a higher^ and the other with a lower exponent than any

of the other partial products, and therefore can not be similar

to any of them.-t'Hence the product of two polynomials can never

contain less than two terms.^

y,^ 65. For many purposes it is sufficient merely to indicate the

multiplication of two polynomials, without actually perform-

ing the multiplication. This is effected by inclosing the poly-

nomials in parentheses, and writing them in succession, with

or without the sign x. When the indicated multiplication

has been actually performed, the expression is said to be fa>

panded.^

EXAMPLES.

1. Expand (a+5) (c+rf). Ans. ac-^hc-\-ad-\-bd.

2. Expand 9a-7{h-c).

3. Expand and reduce

14(12^a-6-c)+13(44-a-c)-15(7-a-c).

4. Expand and reduce

28(a-&+c)+24(a+Z>-c)-13(6-a-c).

5. Expand and reduce

24a^66-9(a+i)-f-25a-19(Z>-c)-17(a+5-c).

6. Expand and reduce

53(a_Z>+c)-27(a+5-c)-26(a-6-c).

66. The three following theorems have very important ap-

plications. ,,. '

The square of the sum of two nmaJbrn^s is equal to the square of

the firsts plus twice the product of the first hy the second^ plus Hie

square of the second.

Thus, if we multiply a-\-h

by a-\-h

a'^-f ah

,
ah^V'

we obtain the product \a24-2a64-R

Hence, if we wish to obtain the square of a binomial, we

can, according to this theorem, write out at once the term.«



MULTIPLICATION. 39

of the result, without the necessity of performing an actual

multiplication.

EXAMPLES.

1. (8a4-5)2^ ?^V^^/w-fi''' 6. (oa2 4-7aZ/)2=:ivA7»(;t'irf;^

8. {6a+ Shf= -^^i^O^lr^fo- 8. (2a+-^)2=.^i^vL('. • /

67. T/ie square of the difference of two numbers is equal to iht

square of the first, minus twice the product of the first by the sec-

ond, plus the square of the second.

Thus, if we multiply a—b
by a—b

d^— ah

^ ab^h^

we obtain the product a'^—2ah-\-b'^.

^

EXAMPLES,

1. (2a-^8/>)2= ^>^>l'-//rc.^ ^ 6. {la'-nabY^
2. (5a-4i)2=i6A-X(;^(r-f ^^^ 7. [ld'b''-12abf ^^

4. (6a2^8x)^-=^i^^'*-5fef'-^*'^^''- 9. (2-^)2:= ^rUi ' '

5. {x-\yf=^^^^' 'V- 10. (4-^)2= ;^.| ,

68. Meaning of the sign ±.

Since (a+&)2r=a2-|-2aZ>+Z'',

and (a-bf^a^^2ab+ b\

we may write both formulas in the following abbreviated form,

{a-±bf=o?±2ab+ b'';

which indicates that, if we use the + sign of b in the root, we
must use the + sign of 2ab in the square ; but if we use the

— sign of b in the root, we must use the — sign of 2ah in the

square. By this notation we are enabled to express two dis-

tinct theorems by one formula.
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69. The product of the sum and difference of two nwmherB- is

equal to tJie difference of their squares.

•Thus, if we multiply a-\-h

by a—h
oFTaE
-ah-y^

Are obtain the product a^ —h\

EXAMPLES.

1. (3a4-26) (3ci-25)=
2. (7a5+ x) \lah—x)= ^ /

8. (8aH-7Z>c)(8a-75c)= QHe>^^ - ^<^ fi'
4. (5aH6Z;^)(5a2-663)=: it^n - - "^

5. (4a2+37r2ic)(4a2— 3mx)=:/5'.'?^

6. (3a26+a') (3a2^>-a3)=

7. (m+ 1) (m— 1)=
• 8. (4+i)(4-i)= ,,'^.^^

The pupil should be drilled upon examples like the pre-

ceding until he can produce the results mentally with as great

facility as he could read them if exhibited upon paper, and

without committing the common mistake of making the square

of a+ /^ equal to a^-^J)^^ or the square of a— & equal to a'^—h\

The utility of these theorems will be the more apparent

when they are applied to very complicated expressions. Fre-

quent examples of their application will be seen hereafter.
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DIVISION.

'^ 70. Division is the converse of multiplication. In multipli-

cation we determine the product arising from two given fac-

tors. In division we have the product and one of the factors

given, and we are required to determine the other factor.

The dividend is the product of the di'V.isor and quotient, the

divisor is the given factor, and the quotient is the factor re-

quired to be found. .'
^ ^

When the divisor and dividend are both monomials.
•

71. Since the product of the numbers denoted by a and b is

denoted bj a6, the quotient of ab divided by a is ^ ; that iS",

ab^a=h. Similarly, we have abc-^a=bc, abc-^c=ab, abc-^ab

=c, etc. The division is more commonly denoted thus:

abc 7
aba abc ,

' a ,0 ' c
'

abc abc ^ abc

be ~ ^ ac~ '' ah~
'

So, also, 12m?i divided by 8m gives ^n; for Zm multiplied

by 4?^ makes Vlmn.

72. Rule of Exponents in Division.—Suppose we have a^ to

be divided by a^. We must find a quantity which, multiplied

by a^, will produce a^. We perceive that a^ is such a quanti-

ty ;
for, according to Art. 58, in order to multiply a^ by a2,*we

add the exponents 2 and 8, making 5 ; that is, the exponent 8

of the quotient is found by subtracting 2, the exponent of the

divisor, from 5, the exponent of the dividend.

^Hence, in order to divide one power of any quantity by an-

other power of the same quantity, subtract the exponent of the

divisor from the exponent of the dividend.
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73. Propel' Si^n of the Quotient.—The proper sign to be pre-

fixed to a quotient may be deduced from the principles al-

ready established for multiplication. The product of the di-

visor and quotient must be equal to the dividend. Hence,

because -\-ax{^-h)=-\-ahA (^ah^{-\-h)=i-\-a.

-ax{-^h)=-ahX
^^^^^^^^^

\-ah-r{+h)=-a.
-\-ax{—h)=—ahA j—ab^{—h)=-\-a.

—ax{—b)=-{-abj [-{-ab^{—b)=—a.

Hence, if the dividend and divisor have like signs, the quotient

will be positive ; but if they have unlike signs, the quotient will be

negative,

74. Hence, for dividing one monomial by another, we have

the following

. RULE.

> 1. Divide the coefficient of the dividend by the coefficient of tlie

divisor, for a new coefficient.

2. To this result annex all the letters of the dividend, giving to

each an exponent equal to the excess of its exponent in the dividend

above that in the divisor.

3. If the dividend and divisor have like signs, prefix the plus

sign to the quotient; but if they have unlike signs, prefix the

minu^ sign.

EXAMPLES (

1. Divide 20ax^ by 4cc. Ans. bax\

2. Divide 2ba^xy'^ by —5ay^. Ans. -^ba^xy^.

3. Divide —12ab^x^ by IWx. Ans. —6ab'^x.

4. Divide -77a^b^'c^ by -lla¥c\ Ans. 7a^b^c\

5. Divide 48aWc''d by -Uab'^c.

6. Divide -IdOa^iW by BOa^b'd\

7. Divide -260a''bV by -6abx\
8. Divide 272a^b'c'x^ by -17a''b^cx\ lL>

9. Divide -^2a^b^c hy^2\aPc.

10. Divide -mOa^b'^x by -bObx.
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^5 / 75. Value of me Symbol a^.—The rule given in Art. 72 con-

ducts us in some cases to an expression of the form a°. Le,t

it be required to divide a^ by 0/^ Accordingrtt^.the rule, tte

quotient will be a^-^^ or a°. 'Now every number Is contained

in itself once: lieace the value of the quotient must be unitj;

that is, /.^~" ^^'''^^^^^ "" ^' ^''^>"(^j,.

To demonstrate this principle generally, let a represent any

quantity, and m the exponent of any power whatever. Then, ••

by the rule of divisiou,
, ..^,,;/,,; .«,vJA/>^

But the quotient obtained by dividing any quantify by if-

*

self is unity; that is, a°=l,

or any quantity having a cipher for its exponent is equal to unity.

76. Signification of Negative Exponents.—The rule given in

Art. 72 conducts us in some cases to negative exponents.

ThuSj^et it be required to divide a^ by a^. We are directed

to subtract the exponent of the divisor from the exponent of

the- dividend. We thus obtain

a^~^, or a~\
. a^

But a^ divided by a^ may be written -g ; and, since the

value of a fraction is not altered by dividing both numerator

i and denominator by the same quantity, this expression is

eq„ivalenttoiV;-J^/^-:;:^P^^-^'

Hence a~^ is equivalent to
*^^

^ - - ,-^

So, also, if a^ is to be divided by a^, this i^nay be written

(^_l_ _3
'>

a^~'a'^~

In the same manner, we find

.+ .
." '

that is, any quantity having a negative exponent is equal to the

reciprocal of that quantity with an equal positive exponent.^
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77. Hence any factor may be transferred from the numera-

tor to the denominator of a fraction, or from the denominator

to the numerator, by changing the sign of its exponent.

Thus, ^ may be written a5~\

that is, the denominator of a fraction may be entirely re-

moved, and an inkgral form be given to any fractional ex-

pression.

This use of negative exponents must be understood simply

as a convenient notation, and not as a method of actually de-

stroying the denominator of a fraction.

78. To divide a Polynomial hy a Monomial.—We have seen,

Art. 60, that when a single term is multiplied into a polyno-

mial, the former enters into every term of the latter.

Thus, {a-\-h)m=am-\-hm;

therefore {am+ hmi) -^m^za-^-h.

Hence, to divide a polynomial by a monomisJ, we have the

following

RULE.

Divide each term of the dividend hy the divisor^ and <:onnect the

quotients hy their proper signs.

EXAMPLES.

1. Divide Sx^+Qx^+Sax—Wx by Sx. Ans. a;'4-2r-f ".— 5.

Z Divide Sahc+12ahx—9a^h by Sah. Ans. c4-4x— 3a-

i8. Divide ^OaW+ QOa^h^-17ah by -ah.

k. Divide 16a'^hc—10acx^-{-6ac'^d^ by —6a'^c.

5. Divide 20x^-35x*-15a;3+V5a;2 by -6x\
6. Divide 6«V/-12aV/+15aV?/3 by Sa'^x^.

7. Divide x^+^—x'"+^-^x'^-^^—x'"+* by x".

8. Divide 12aY-16aV+20ay-28aY by -4aV'
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79. To divide one polynomial hy another.

Let it be required to divide

The object of this operation is to find a third polynomial

which, multiplied by the second, will reproduce the first.

It is evident that the dividend is composed of all the partial

products arising from the multiplication of each term of the

divisor by each term of the quotient, these products being

added together and reduced. Hence, if we can discover a

term of the dividend which is derived without reduction from

the multiplication of a term of the divisor by a term of the

quotient, then dividing this term by the corresponding term

of the divisor, we shall be sure to obtain a term of the quo-

tient.

But, from Art. 64, it appears that the term a^, which con-

tains the highest exponent of the letter a, is derived without re-

duction from the multiplication of the two terms of the divisor

and quotient which are affected with the highest exponent of

the same letter. Dividing the term a^ by the term a of the

divisor, we obtain a, which we are sure must be one term of

the quotient sought. Multiplying each term of the divisor by
a, and subtracting this product from the proposed dividend,

the remainder may be regarded as the product of the divisor

oy the remaining terms of the quotient. We shall then ob-

tain another term of the quotient by dividing that term of the

remainder which is affected with the highest exponent of a by
the term a of the divisor, and so on.

Thus we perceive that at each step we are obliged to search

for that term of the dividend which is affected with the high-

est exponent of one of the letters, and divide it by that term of

the divisor which is affected with the highest exponent of the

same letter. We may avoid the necessity of searching for this

term by arranging the terms of the divisor and dividend in

ike order of the powers of one of the letters.

The operation will then proceed as follows:
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a-\-h, the divisor.The arranged dividend is a^-^2ah-\-b'^

a2+ ah a -1-6, the quotient.

ab-\-b^j the first remainder.

ab+ b^

0, remainder.

For convenience of multiplication, the divisor is written on

the right of the dividend, and the quotient under the divisor.

80. ITencc, to divide one polynomial by another, we have

the following

RULE.

1. Arrange both polynomials in the order of the powers of thr

same letter.

2. Divide the first term of the dividend by the first term of the

divisor^ for the first term of the quotient.

8. Multiply the whole divisor by this term, and subtract the

product from the dividend.

4. Divide the first term of the remainder by the first term, of the

divisor
J
for the second term of the quotient.

*
5. Multiply the whole divisor by this term, and subtract tJie

product from the last remainder.

6. Continue the same operation until a remainder isfound equal

to zero^ or one whose first term is not divisible by the fijrst term of

the divisor.

When a remainder is found equal to zero, the division is

said to be exact When a remainder is found whose first

term is not divisible by the first term of the divisor, the exact

division is impossible. In such a case, the last remainder must

be placed over the divisor in tbc form of a fraction, and an-

nexed to the quotient.

EXAMPLES.

1. Divide 2a'^b-^b^-\-2ab'^^-a^ by a^ -^b"- -\- ab. Ans. a-\-h.

2. Divide x^— a^-\-S(t'^x—Bax? by x^a. Ans. a^^2ax-^a\

5. Divide a^-\-x^-^2a^x^ by a'^-^ax-{-x\

A ns. a* -I- a\L+ ax^-\- x\
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4. Divide a^ —16a^x^ -\- 64:X^ by a'^—4:ax-\-^x\

5. Divide a'^-\-Qa^x^—4:a^x-\-x'^—4:ax^ by a'^—2ax+x'^.

Ans. a^^2ax-^x\

^. Divide S2x'+y' by 2a?+y. i'^^^V />-^^^'^L^ :r ., V V'
7. Divide x^+^y+ ^3/*—^V" ^^2/^ "~ 2/^ ^X

'

^^—^•/r^ < • ' ^ ^^
8. Divide ic^+x^+Sx—4^2— 3 by x^—2x—6.
9. Divide a^-^^ by o?-^2o?h^-2aW'-^h\

^C Divide a;H 1-2x3 ^^^ x'^-l-^x.

11. Divide a:;*+ 2/*+a^^y^ by x^-^-y^-^-xy.

12. Divide 12x^-192 by 8x-6.

^ ^ns. 4x3+ 8x2+16x+82.
vl3. Divide ^x^-^^ by 2x2-2^/2.

S^^M. Divide a^ ^Za'^y -Za'^lP--W by a^-Sa^^^+ Sa^^.^a^

\h. Divide x6-6x*+ 9x^-4 by x^-\:
\6. Divide aHa35-8a2Z^2_^19«Z>3_ 15^,4 by o?-^^al-bJ)\

17. Divide x^+ i/^+ Sx?/— 1 by x+?/— 1.

18. Divide a2524-2a5c2—aV—5V by ah-^ac—hc.

19. Divide a^-i^ by a-h,

20. Divide a*-5* by a-J.

81. Hitherto we have supposed the terms of the quotient to

be obtained by dividing that term of the dividend which is

aflPected with the highest exponent of a certain letter. But,

from Art. 64, it appears that the term of the dividend affected

with the lowest exponent of any letter is derived without re-

duction from the multiplication of a term of the divisor by a

term of the quotient. Hence we may obtain a term of the

quotient by dividing the term of the dividend affected with

the lowest exponent of any letter by the term of the divisor

containing the lowest exponent of the same letter; and we
may even operate upon the highest and lowest exponents of a

certain letter alternately in the same example.

82. a^—b^ is always divisible by a—b. From the examples

of Art. 80 we perceive that a^—b^ is divisible by a—b ; and

a*—b* is divisible by a—b. We shall find the same to hold
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true, whatever may be the value of the exponents of the two

letters ; that is, ilie difference of the same powers of any two quart'

titles is always divisible hy (he difference of the qnxintities.

Thus, let us divide a^— h^ by a— h:

7/ a—h, divisor.

-a'h a*, partial quotient.

a'h-h\

The first term of the quotient is «*, and the first remainder

is a*h—h^j which may be written

Now if, after a division has been partially performed, the

remainder is divisible by the divisor, it is obvious that the

dividend is completely divisible by the divisor. But we have

already found thata''— Z;* is divisible by a— b; therefore a^—h^

is also divisible by a—b ; and, in the same manner, it may be

proved that a^—h^ is divisible by a— 6, and so on.

83. To exhibit this reasoning in a more general form, let n
represent any positive whole number whatever, and let us at-

tempt to divide a'^—b^ by a—b. The operation will be as

follows

;

.b»

ba^-'^

a—b, divisor.

a"-^, quotient.

The first remainder is ba'^~^—b\

Dividing a" by a, we have, by the rule of exponents, a"^-'

for the quotient. Multiplying a—b by this quantity, and sub-

tracting the product from the dividend, we have for the first

remainder Z>a"-^— Z>", which may be written

Now, if this remainder is divisible by a—b, it is obvious

chat the dividend is divisible by a—b; that is, if the difference

of the same powers of two quantities is divisible by the difference of

the quantities^ then will the difference of the powers of the next

higher degree be divisible by that difference.

Therefore, since a*—b^ is divisible by a-^b, a^—b'' must be
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divisible hy a—b ; also a^-^W^ and so on for any positive

value of n.

The quotients obtained by dividing the difference of the

same powers of two quantities by the difference of the quan-

tities follow a simple law. Thus,

(a2_52)-f-(a-Z))=a+5.

(a5_65)-f-(a-&)=aHa36+a2Z>24.a^>3+M,

etc. etc. etc.

The exponents of a decrease by unity, while those of h in-

crease by unity, v

84. It may also be proved that the difference of like even pow-

ers of any two quantities is always divisible by the sum of ihc

quantities.

Thus, {o?-b'')^{a-\-b)= a-b.

(a*_ h^) ^\a-\-b)=:a^- a^b+ ab^- b\

la^_l/)^(a+b)= a'-a'b-\-a'b^-a^b^+ ab^-b',

etc. etc. etc.

Also, the sum of like odd powers of any two quantities is always

divisible by the sum of the quantities.

Thus, {a^ 4- 53)^ (a+ Z^)= a2- a5+ b\

la'^b^)^la+ b)= a''-a^b-^a^b^-ab^-\-b\

{a?^b')^(a-^b)= a^-a'b+ a'b^-a^P+ a^b^-ab^'^b%

etc. etc. etc.

The exponents of a and b follow the same law as in Art. 83,

but the signs of the terms are alternately plus and minus.

85. When exact division is impossible.—One polynomial can

not be divided by another polynomial containing a letter which

is not found in the dividend; for it is impossible that one

quantity multiplied by another which contains a certain letter

should give a product not containing that letter.

C
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A monomial is never divisible by a polynomial, because

every polynomial multiplied by another quantity gives a prod-

uct containing at least two terms not susceptible of reduction.

Yet a binomial may be divided by a polynomial containing

^ny number of terms.

Thus, a*— i* is divisible by a^-^a^h-^-ab^-^-h^^ and gives for

quotient a—h.

To resolve a Polynomial into Factors.

86. When a polynomial is capable of being resolved into

factors, the factors can generally be discovered by inspection,

w^ or from the law of formation.

^ ^ li all the terms of a polynomial have a common factor, that

factor is a factor of the polynomial ; and the other factor may
be found by dividing the polynomial by the common factor.

EXAMPLES.

1. Eesolve Zo'l'^ -^2,ah'^ -\-Zah'^c into factors.

Ans. 3a62(a-f 6+c).

2. Eesolve ba'^h'^-^lOaW—ba%'^—ba%'^ into factors.

Ans. ba%\a'-2ah-h''-l),

3. Eesolve M¥c^—\2ab'^c^mx—lSah'^c^y into factors.

Ans. 6ab'^c\a—2mx—Sy),

^ 4. Eesolve 1a^h"^—1a^lP—1a^V^c into factors.

Ys. Eesolve Sa'^hc-\-\2ah'^c—l%a'bc'^ into factors.

^6. Eesolve lOaJj^cmx—bali^cy \-bah'^c into factors.

87. When two terms of a trinomial are perfect squares, and

.t\ie third term is twice the product of their square roots, the

trinomial will be the square of the sum or difference of these

roots, Arts. %^ and 67, and may be resolved into factors ac-

cordingly.

EXAMPLES.

1. Eesolve j^—^ah^y^ into factors. Ans. {a— h) {a— h).

2. Eesolve a'^-\-A:ah-\-4J? into factors,

Ans. (a + 25)(a-}-2i).

3. Eesolve (L'^—^ah+ %^ into factors. -- -)
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Kesolve Oa^— 24a5+ 16&2 into factors. -^C^v-^vV /3-:5'.

Kesolve 25a*— GOa^^^+ 3666 j^to factors.

6. Kesolve 4:mV—4:mn-{-l into factors. -I ^>^-'>v-'>V'''''''''^^"^

7. Eesolve 4:da'b^-16SaW-{-U4:aW into factors. V"—- ^ -*

8. Eesolve 7i^+2n2+7i into three factors. (-/v^S (
''^

"^

"9. Eesolve 16a'^b'^—24:a'^bmx-{-9mV into factors.

10. Eesolve mV-\-2mV-\-mhi^ into three factors.

88. If a binomial consists of two squares connected by the

minus sign, it must be equal to the product of the sum and

difference of the square roots of the two terms, Art. 69, and

may be resolved into factors accordingly.

EXAMPLES.

1. Eesolve 4:a^—%^ into factors. Ans.{2a+3b){2a—Bb).

2. Eesolve da^b^—Wa^c^ into factors.

8. Eesolve a^x—9ax^ into three factors.

4. Eesolve a*— 6* into three factors.

5. Kesolve a^—W into its factors.

6. Eesolve a^—b^ into four factors.

7. Eesolve 1— ^^V into two factors.

8. Eesolve 4 — ^V into two factors.

89. If the two terms of a binomial are both powers of the

same degree, it may generally be resolved into factors accord-

ing to the principles of Arts. 82-84.

EXAMPLES.

1. Eesolve a^—W into its factors. A7is.{o?-\-ab-\-b'^){a~-b).

2. Eesolve a^-\-b^ into its factors.

8. Eesolve a^—W into four factors.

4. Eesolve a^—^W into its factors.

6. Eesolve 8a^— 1 into its factors.

6. Eesolve 8a^— 86^ into three factors.
.

7. Eesolve 1 + 276^ into its factors.

8. Eesolve 8a^+ 276^ into its factors.

9. Eesolve a^^— h'^^ into five factors.
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V

CHAPTER YL
GREATEST COMMON DIVISOR.—LEAST COMMON MULTIPLE.

'90. A common divisor of two quantities is a quantity which

will divide them both without a remainder. Thus 2ab is a

common divisor of Wh^x and lOd^h^y.

y 91, A prime factor is one that can not be resolved into any

other factors. It is, therefore, divisible only by itself and uni-

ty. Thus the quantity ^a^—^ah is the product of the three

prime factors 2, a, and a—h.

A 92. The greatest common divisor of two quantities is the

greatest quantity which will divide each of them without a

remainder. It is the continued product of all the prime fac-

tors which are common to both. The term greatest here refers

to the degree of a quantity, or of its leading term, and not to its

arithmetical value.

93. When both quantities can be resolved into prime fac-

tors by methods already explained, the greatest common di-

visor may be found by the following

RULE.

Resolve both quantities into their prime factors. The continued

product of all those factors which are common to hothy will he the

greatest common divisor required.

EXAMPLES.

1. Find the greatest common divisor of 4^'^hx and Qah^j^,

Resolving into factors, we have

^a^hx= 2a xja xhxx.
^ah'^x^= 2a xSbxhxxxxxx.

The common factors arc 2a, 6, and x. Ilence the greatest

common divisor is 2abx.



GREATEST COMMON DIVISOR. 53

2. Find the greatest common divisor of 4am^4-45m^ and
Ban+ 3bn,

Kesolving into factors, we have

4:am'^+^bm?=2m x 2w (a 4- 5).

San-\-Sbn=Bn{a-{-b).

Hence a-\-b is the greatest common divisor.

S. Find the greatest common divisor of x^—y^ and x^—y"^.

x^—f={x—y){x^-\-xy-\-y'^y

x^-y^= {x-y){x+y).

Hence x—y is the greatest common divisor.

^ 4. Find the gre^atest common divisor of Sda^bmx'^ and

^2amV, ra^ru/. "^J^^Jp
' 5. Find the greatest common divisor of %a^x—^abx-{-W^x

and ^a}y—W-y. ;/ - -

^ 6. Find the greatest common divisor of dmx'^—Qmx-^-m
and 'dnx^—n, ^,

^

7. Find the greatest coi^mon divisor of 12a2— 36aZ>-|-27^'*

and 8a2-18i2. ^(X - i\r -^

94. When the given quantities can not be resolved into

prime factors by inspection, the greatest common divisor may
be found by applying the following principle

:

The greatest common divisor of two quantities is the same with

the greatest common divisor of the least quantity^ and their remain-

der after division.

To prove this principle, let the greatest of the two quanti-

ties be represented by J., and the least by B. Divide A by
B; let the entire part of the quotient be represented by Q^

and the remainder by R. Then, since the dividend must be

equal to the product of the divisor by the quotient, plus the

remainder, we shall have A^QB-'tR.
Now every number which will divide B will divide QB

;

and every number which will divide R and QB will divide

R-{- QB, or A. That is, every number which is a common
divisor of B and i? is a common divisor of A and B.

Again ; every number which will divide A and B will di-
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vide A and QB; it will also divide A-^QB, or R. That is,

every number which is a common divisor of A and B is also

a common divisor of B and R. Hence the greatest common
divisor of A and B must be the same as the greatest common
divisor ofB and R.

95. To find^ tlien^ the greatest common divisor of two quanti-

ties, we divide the greater by the less; and the remainder,

which is necessarily less than either of the given quantities,

is, by the last article, divisible by the greatest common divisor.

Dividing the preceding divisor by the last remainder, a still

smaller remainder will be found, which is divisible by the great-

est common divisor; and by continuing this process with each

remainder and the preceding divisor, quantities smaller and

smaller are found, which are all divisible by the greatest com-

mon divisor, until at length the greatest common divisor must

be obtained. Ilence we have the following

^
RULE.

Divide the greater quantity hy the less, and the preceding divisor

hy the last remainder, till nothing remains ; the last divisor will he

the greatest common divisor.

When the remainders decrease to unity, the given quanti-

ties have no common divisor greater than unity, and are said

to be incommensurahle, or prime to each other.

EXAMPLES.

1. What is the greatest common divisor of 372 and 246?

872

246

246

246

126

126

120

126, the first remainder.

120, the second remainder.

120

120

6, the third remainder.

20

Here we have continued the operation of division until wo
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obtain for a remainder; the last divisor (6) is the greatest

common divisor. Thus, 246 and 872, being each divided by 6,

give the quotients 41 and 62, and these numbers are prime

with respect to each other; that is, have no common divisor

greater than unity.

2: What is the greatest common divisor of 336 and 720 ?

niM){lx3 Ans. 48.

8. What is the greatest common divisor of 918 and 522 ?

Ans. 18.

96. In applying this rule to polynomials some modification

may become necessary. It may happen that the first term of

the arranged dividend is not divisible by the first term of the

divisor.' This may arise from the presence of a factor in the

divisor which is not found in the dividend, and may therefore

be suppressed. For, since the greatest common divisor of two

quantities is only the product of their common factors, it can

not be affected by a factor of the one quantity which is not

found in the other.

We may therefore suppress in the first polynomial all the

factors common to each of its terms. We do the same with

the second polynomial ; and if any factor suppressed is com-

mon to the two polynomials, we reserve it as one factor of the

common divisor sought.

But if, after this reduction, the first term of the dividend,

when arranged according to the powers of some letter, is not

divisible by the first term of the arranged divisor, we may mul-

tiply the dividend by any monomial factor which ivill render its

first term divisible by the first term of the divisor.

This multiplication will not affect the greatest common di-

visor, because we introduce into the dividend a factor which

belongs only to a part of the terms of the divisor ; for, by sup-

position, every factor common to all the terms has been sup-

97. The preceding principles are embodied in the following

general
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RULE.

1. Arrange the two polynomials according to the powers of some

letter; suppress all the monomial factors of each ; and if any fac-

tor suppressed is common to the two polynomials^ reserve it as one

factor of the common divisor sought.

2. Multiply the first polynomial hy such a monomial factor as

will render its first term divisible hy the first term of the second

polynomial; then divide this result hy the second polynomial^ and

continue the division till the first term of the remainder is of a

lower degree than the first term of the divisor.

3. Take the second polynomial as a dividend^ and the final re-

mainder in the first operation as a divisor^ and proceed as before^

and so on till a remainder is found that will divide the preceding

divisor. This remainder^ multiplied hy the common factors^ if any^

reserved at the beginning^ will give the greatest common divisor.

EXAMPLEa

1. Find the greatest common divisor of x^+4cc^H-5x-f 2 and

a:3+4x2+5a:-f2 X^-\-bx-\-4:

x-l
- cc2+ cc+2

— x^—6x—4:
^[6x^6_

Suppressing the factor 6 inM;nis remainder, we have jc+l

for the next divisor.

x+l
X-\-4:

4x+4
4x+4

Here the division is exact; hence, by the rule, x-\-l is the

greatest common divisor sought

2. Find the greatest common divisor of 6x^—7ax^—20a^x

and 6x^-\'2ax—8a\

Suppressing the factor 2 in the second polynomial, we pro-

ceed thus:
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6x^-7ax''-20a^x

6x^-{-2ax^- 8a^x

8a;2+acc— 4a*

2x-Sa
-dax^-na'x

- 9a^x-12a^

Suppressing the factor — 8a^,

8^2+ ax—4ca^ I 8a;+4a

8x2-|-4ax
I
cc—

a

—Sax— 4:0^

—Sax— 4:0^

Hence Sx-\-4a is the greatest common divisor.

8. Find the greatest common divisor of 4:a^—2a'^—Sa-\-l

and 8a2-2a-l.
We first multiply the greater polynomial by 8, to render

its first term divisible by the first term of the other polyno-

mial.

12a3-6a2-9cx+3
12a^-Sa^-4ta

8a2_2a-l
4a, +2

2a2-5a+3

6a2-15a+ 9

6a^- 4a- 2

-lla+11

Here we multiply the first remainder by 8, to render the

first term divisible by the first term of the divisor. As the

two partial quotients 4a and 2 have no connection, they are

separated by a comma.

Eejecting the factor —11 from the second remainder, we
proceed as follows

:

8a2_2a-l
Sa^-Sa Sa-\-l

a-1
a-1

Hence a— 1 is the greatest common divisor.

V 4. Find the greatest common divisor of a^—Sah-{-2h'^ and

a^-ah-2h\ Ans, a-2b.
02
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5. Find the greatest common divisor of a^—a^b-\-Sab^—Sb^

and a^—5ab-\-4:b\ Ans. a—b.
\\ 6. Find the greatest common divisor of Sx-^— 13a;2-f-232;— 21

and 6x3+a72-44a:+21. Ans. 3a;-7.

PT. Find the greatest common divisor of

x*-7x3 4-8a;2+28x-48 and x^-^x" -\-l^x-\4u
Ans. x—2.

98. To find the greatest common divisor of three quantities.—
Find the greatest common divisor of the first and second, and

then the greatest common divisor of this result and the third

quantity. The last will be the greatest common divisor re-

quired.

EXAMPLES.

1. Find the greatest common divisor of Sahn^, Qb'^m}^ and

12m^x. Ans. Sm^.

2. Find the greatest common divisor of 4x^—21x2+15x4-20,

K— 6x-h8, and x^—x— 12. Aiis. x— 4.

3. Find the greatest common divisor of 6x* 4- x^ — x,

^4x^— 6x2—4x4-3, and 2x^-^x^-\-x—l, Ans. 2x— 1.

^4. Find the greatest common divisorof4x*4-9x^4-2x2—2x— 4,

3x3 4-5x2— x4- 2, and xHx2-x4-2. Ans. x4-2.

LEAST COMMON MULTIPLE.

99. One quantity is a multiple of another when it can be di-

vided by it without a remainder^ Thus bah is a multiple of 5,

also of a and of h \
When one quantity is a multiple of an-

other, the former must be equal to the product of the latter by
some entire factorJ Thus, if a is a multiple of i, then a=vib,

where m is an entire number.

100. A common multiple of two or more quantities is one

which can be divided by each separately without a remainder.

Thus 20a^h'^ is a common multiple of 4a6 and ba^b^

101. The least common multiple of two or more quantities ia

the least quantity that can be divided by each without a re*
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mainderT] Thus 12a2 is the least common multiple of Sa^ and

4a.

102Jjt is obvious that the least common multiple of two or

more quantities must contain all the factors of each of the quan-

tities, and no other factors. Hence, when the given quantities

can be resolved into prime factors, the least common multiple

may be found by the following

RULE.

Resolve each of the quantities into its prime factors ; taJce each

factor the greatest number of times it enters any of the quantities;

multiply together the factors thus obtained^ and the product will he

the least common multiple required.

EXAMPLES.

1. Find the least common multiple of ^x^y and Vlxy"^.

Eesolving into factors, we have

9x'^yz=zSxSxxyj and 12xy'^=Sx2x2xyy.

The factor 3 enters twice in the first quantity, also the fac-

tor 2 enters twice in the second; x twice in the first, and y
twice in the second. Hence the least common multiple is

2 X 2 X 3 X Sxxyyj or SQx'^y^.

2. Find the least common multiple of 4:a%^, 6a%j and lOa^oc^,

We have 4.a'^b^= 2 x 2aahb,

6a'^b=2xSaab,

lOa^x^=2x baaaxx.

Hence the least common multiple is

2 X 2 X 3 X 6aaabbxx, or QOa^V.

8. Find the least common multiple of a''^x—2ahx-\'h'^x and

ii^y^b^y.

Here we have a^x-^2abx-\-b'^x={a—b) {a—b)x,

a^y-b''y^{a-{-b)(a^b)y.

Hence the least common multiple is

(a— b) {a— b)(a-\- b) xy, or a^xy— ab^xy— a%xy+ h^xy.
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'4 Find the least common multiple of 6a%'^j 10aZ>*, and 2abx>

Ans. lOa^b^x,

' 5. Find the least common multiple of ^tol!^^ 4aar^, 5fe, and

Wx\ Alls. QOa^b^x^.

6. Find the least common multiple of a;'— 3cc+2 and x^—1.

Ans, {x+l){x-l){x-2), or x^-2x''^x-\-2.
^ 7. Find the least common multiple of a^x-\-b^x and Sa^— 56^,

Ans. 6x{a-\-b){a—b){a^—ab-^h^l

or 6a'^x—6a^bx-\-5ab^x—5b*x.

103. When the quantities can not be resolved into factors

by any of the preceding methods, the least common multiple

may be found by applying the following principles

:

! If two polynomials have no common divisor, their product

must be their least common multiple ;^ feut if they have a com-

mon divisor, their product must contain the second power of this

common divisor^ Their least common multiple will therefore

be obtained by dividing their product by their greatest com-

mon divisor. Hence, to find the least common multiple of two

quantities, we have the following

RULE.

i Divide the product of the two polynomials by their greatest com-

mon divisor ; or divide one of the polynomials by the greatest com'

mon divisor
J
and multiply the other by tlie quotvent.

EXAMPLES.

1. Find the least common multiple of Gx^ — x — l and

2x2+8ic-2.

The greatest common divisor of the given quantities is 2x—
1. j^ence the least common multiple is

^ (6^'-^-l)y+3^-2)
,, (2..+3._2)(3.+ l).

v' 2. Find the least common multiple of cr^— 1 and x'^-f^— 2.

//\ ^
' ^?^^- (.T'-l)0r4-2>

Y ^ 3. Find the least common multiple of a;^— 9x2-f-23x-15

aiid a5»-8aJ4-7. Ans. (a;3-9a;»+23a;-15)(cc-7).
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104. When there are more than two polynomials^ find the

least common multiple of any two of them ; then find the

least common multipla of this result, and a third polynomial
;

and so on to the last.
'

4. Find the least common multiple of a2+2a— 3, a^—l^ and

a-1. -^ ',._,-... Ans. (a2-l)(a+3).

6. Find the least common multiple of 4:0^ -\-l^ 4a2— 1, and

2a-l. Ans. 16a*-l.
^ 6. Find the least common multiple of a^—a, a^+1, and

a^—1. Ans. a{a^—l).

/ 7. Find the least common multiple of (a:+2a)^, (j^— 2a)^,

and ic^— 4a^. - Ans, (x^— 4a^)^.

hm^h Kh 'm komhn/Jih^ ,
JlfW^
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CHAPTER YII.

FRACTIONS.

105. A fraction is a quotient expressed [^ described in Art

Tybj writing the divisor under the dividend with a line be-

tween them. Thus t is a fraction, and is read a divided by h.

106. Every fraction is composed of two parts: the divisor,

which is called the denominator^ and the dividend, which is

called the numerator,

\
107. An entire quantity is an algebraic expression which has

no fractional part, as a^—^ah.

An entire quantity may be regarded as a fraction whose de-

nominator is unity. Thus, a'^=^.

108. A mixed quantity is an expression which has both en-

tire and fractional parts. Thus a^+ - is a mixed quantity.

109. General Principles of Fractions.— The following princi-

ples form the basis of most of the operations upon fractions

:

\st. In order to multiply a fraction hy any number^ we must

multiply its numerator or divide its denominaim hy that number.

Thus the value of the fraction ~ is h. If we multiply the

numerator by a, we obtain ^ or ah; and if we divide the de-

nominator of the same fraction by a, we obtain also ah; that is,

the original value of the fraction, 6, has been multiplied by a.

2d. In order to divide a fraction hy any number^ ive must divide

its numerator or multiply its denominator hy that number.

Thus the value of the fraction ^ is ab. If we divide the
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numerator by a, we obtain ^, or h ; and if we multiply the de-

nominator of the same fraction by a, we obtain ^, or h ; that

is, the original value of the fraction ah has been divided by a.

TSd The value of a fraction is not changed if we multiply or di-

vide both numerator and denominator hy the same number,

^, ah abm abmx ,

Thus, —= = =b,
' a am amx

110. The proper Sign of a Frojction.—^5]ach term in the numer-

ator and denominator of a fraction has its own particular sign,

and a sign is also written before the dividing line of a fraction.

The relation of these signs to each other is determined by tlie

principles already established for division. The sign prefixed

to the numerator of a fraction affects merely the dividend; the

sign
^

prefixed to the denominator affects merely the divisor ;

but the sign prefixed to the dividing line of a fraction affects

the quotient. ; The latter sign may be called the apparent sign

of the fracti'on, while the real sign of the fraction is the sign

of its numerical value when reduced.

The real sign of a fraction depends not merely upon its a]>

parent sign, but also upon the signs of the numerator and de-

noniinator. From Art. 73, it follows that

ah —ah—= = -}-h,
a —a

, —ah ah .

and =— = —h.
a —a

Also, since a minus sign before the dividing line of a frac-

tion shows that the quotient is to be subtracted, which is done

by changing its sign, it follows that

ah —ah
^

a ~ —a ~ '

J —ah ah ,and — =+5.
a —a

Hence we see that of the three signs belonging to the numer-



64 ALGEBRA.

ator, denominator, and dividing line of a fraction, any two ma^

be changed from -^ to —, or from — to -[-, without affecting the

real sign of the fraction.

111. When the numerator or denominator of a fraction is a

polynomial, it must be observed that by the sign of the numer-

ator is to be understood the sign of the entire numei-ator^ as dis

tinguished from the sign of any one of its terms taken singly,

^, a+ ^+ c . • 1 . X ,
—a—h—c

Thus, — IS equivalent to -\ .

When no sign is prefixed either to the terms of a fraction or

to its dividing line, plus is always to be understood.

Reduction of Fractions.

112. To reduce a Fraction to its Lowest Terms.—A fraction Is

in its lowest terms.when the numerator and denominator con-

tain no common factor; and since the value of a fraction is

not changed if we divide both numerator and denominator

by the same number {Art. 109), we have the following

RULE.

Divide both numerator and denominator by their greatest com

mon divisor.

Or, Cancel all those factors which are common to both numeratoi

and denominator.

EXAMPLES.
a^bc

1. Reduce ^ ^.^ to its lowest terms.

„^ - a^bc cxa^b
Wc have

6a^b^ bb x a^b'

Canceling the common factors a^i, we have

a'^bc _ c

2. Reduce ^ ^ to its lowest terms.
a^c+a^x

^ , cx-Ji-x^ x{c-\-x) X
We have -5—

—

r= 2) . \ =~i'
a^c+ a^x a^(c+ x) a*
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Eeduce 777 p^— to its lowest terras. Ans. --.
lOac—obc be

a
4. Reduce -^ . to its lowest terms. Ans. — >.

5. Keduce -^-^—^r-r-—^ to its lowest terms. Ans. |.

^ 6. Reduce » ? . /> rij-? to its lowest terms. An5. —^•

7. Reduce -5

—

^ , . ,^ to its lowest terms.

8. Reduce .^ 1—^ to its lowest terms. . ^r^> ( ^^^j^/fi

cp2— 16
9. Reduce -^; ^^7: to its lowest terms.

.n ID ^ 80^3-160:2+23:^-6 - T*f-^^^^-^ J
^^- ^'^^""

2x3_nc.2+17x-6 *^ f^pwest terms. ^^:V'.

'V 11. Reduce
2x^~x^-x+2 *^ ^*^ ^^^^^* *®^"^^- '^^hf^

to T> A 2cc3+ 9x24-7x-3 , ., , ^^ ^w •

12. Reduce » -^ . ^ 9—r^—r—r to its lowest terms.
3x^+5x2- 15ic+

4

-

113. To reduce a Fraction to an Entire or Mixed Quantity.—

•

When any term of the numerator is divisible by some term in

the denominator, the division indicated by a fraction may be

at least partially performed. Hence we have the following

RULE.

Divide the numerator hy the denominator^ continuing the opera-

tion as far as possible ; then write the remainder^ if any^ over the

denominator^ and annex the fraction thusformed to the entire part

EXAMPLES.

1. Reduce to an entire quantity. - (90 ^ 'Y^

q]j 2a^ . /(^^
2. Reduce —^ to a mixed quantity. (X ^
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3. Reduce to a mixed quantity. Ans. a+x-\ .

(I—X Cl—X

X^— ti J" 1^

4. Reduce ^ to an entire quantity. rjOtnCA^'t"^
if

"

5. Reduce ^ to a mixed quantity. x!- ^' / '^ ^oc

6. Reduce ^r to a mixed quantity. & ^ ^ 1

7. Reduce ^

—

^
——^— to an entire quantity. - '^

x^—Sx-\-2'^.^^zjijyC-/j ^ "^

0. Reduce 9,^1.10 to an entire quantity.

114. To reduce a Mixed Quantity to the Form of a Fraction.—
This problem is the converse of the last, and we may proceed

:^'m. by the following

RULE.

Multiply the entire part hy the deyiominator of the fraction ; to

the product add the numerator with its proper sign^ and write the

result over the denominator.

EXAMPLES.
q2 ^2 ^2

1. Reduce x-\ to the form of a fraction. Ans. —

.

X X

ax I Cfy

2. Reduce x-\-—;z to the form of a fraction.

Ans.
2.T-7 /^^^TAY

8. Reduce 5h—^—— to the form of a fraction.
6x . d^

4. Reduce 1+ "~ "~
to the form of a fraction. ^J^ -

a cu

cc—

3

6. Reduce 1 + 2x4--^— to the form of a fraction.? ^x -^iJJjiJL
bx ^.^

6. Reduce 7+ ^ ?, to the form of a fraction. ^^_3JZi-.
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A /r>.^ c

4a2_50
7. Eeduce 2a— 7

—

^ ^ to tlie form of a fraction.

8. Reduce (a— 1)^— ^^ to the form of a fraction.

115. 71? reduce Fractions having Different Denominators to

Equivalent Fractions having a Common Denominator:

n c rfh

Suppose it is required to reduce the fractions ^, -7, and — to

a common denominator. Since, by Art 109, both terms of a

fraction may be multiplied by the same quantity without

changing its value, we may multiply both terms of each frac-

tion by the product of the denominators of the other fractions,

and we shall have

a_adn c _hcn , m_hdm
h hdn d hdri n hdn

The resulting fractions have the same value as the proposed

fractions, and they have the common denominator hdn. Hence
we have the following

RULE.

Multiply each numerator into all the denominators^ except its

own^for a new numerator^ and all the denominators together for

the common denominator.

EXAMPLES.

1. Reduce t and to equivalent fractions having a

common denommator. Ans. — , —^—

.

be be

2. Reduce ^, ^,and - to equivalent fractions having a

common denominator.

3 2cc 4:X
8. Reduce -r, -^, and a+-^ to equivalent fractions having

a common denominator.

/



08 ALGEBRA.

4. Reduce ^> -=-i and to equivalent fractions having

a common denominator.

5. Reduce -' —^— > and zr-— to equivalent fractions hay«

ing a common denominator.

116. Fractions may always be reduced to a common denom
inator by the preceding rule ; but if the denominators have any

common factors, it will not be the least common denominator.

The least common denominator of two or more fractions must

be the least common multiple of their denominators.

Suppose it is required to reduce the fractions ^-g and — t6
ox ^x

equivalent fractions having the least common denominator.

The least common multiple of the denominators is 12a::^ Mul-

I2x'^
tiply both terms of the first fraction by -Q-y, or 4, and both

12cc2
terms of the second fraction by -r—, or Sx, and we shall have

8a , 16hx

12^2
'^"d

12^'

which are equivalent to the given fractions, and have the least

common denominator. Hence we deduce the following

RULE.

Find the least common multiple of all the denominators^ and use

Hiis as the common denominator.

Divide this common denominator hy each of the given denomina-

tors separately^ and m^ultiply each numerator hy Hie corresponding

quotient. The products will he the new numerators.

2a bx
6. Reduce ^ry- and 7775-5 to equivalent fractions having the

Sbc Wc^ A4ac X
least common denominator. Ans. -7^ and -^r^'

7. Reduce r and -^—j^ to equivalent fractions having

the least common denonunator. Ans. ^—yt and -^—j^.
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\

8. Eeduce -3, —, and - to equivalent fractions having the

least common denominator.

^o T> J ^« -^^ 11^ J '^(^+ ^) ^ • 1 * i>

9. Keduce 77-j ^77^—, ^777—? and —^^^j to equivalent frac-
87?^ Som 28m 4m ^

tions having the least common denominatorSH^jXy:— //jj^
2 3 2cc—

3

'i;<:'^'>>i^^'!^>n.>'^V/4^.^

^ 10. Eeduce -j ^r -, and -r^—7 to equivalent fraction^
cc 2x—

1

4x^—1 ^
: 2aL<*?^

having the least common denominator.

^^T'W^y^ fliTi?'' Idditid df Fractions.

.7. The denominator of a fraction shows into how manj
parts a unit is to be divided, and the numerator shows how
many of those parts are to be taken. Fractions can only be

added when they are like parts of unity ; that is, when they

have a common denominator. In that case, the numerator of

each fraction will indicate how many times the common frac-

tional unit is repeated in that fraction, and the sum of the nu-

merators will indicate how many times this result is repeated

in the sum of the fractions. Hence we have the following

RULE.

Reduce the fractions to a common denominator ; then add the

numerators together^ and write their sum over the common denomi-

nator.

If there are mixed quantities, we may add the entire and

fractional parts separately.

EXAMPLES.

1. What is the sum of and o ?

Eeducing to a common denominator, the fractions become

Zx , 2x
-g- and -^.

Adding the numerators, we obtain -^.
D

It is plain that three sixths of x and two sixths of x make
five sixths of x.
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2. What is the sum of -r, -, and — ?

.. adn-\-hcn-\-hdm

3. What is the sum of j and r?
a-\-b a—b

4. What is the sum of 5£c, 7r^» and —^— ?

5. What is the sum of 2a, Sa-f— » and a4-pr?

2a , a+2a:, lajc-*^^^

6-' ^^^ ^+-9r

Ans. oa-f -r^.
4o

6. What is the sum of a+cc, , and -^-?
a—x a ^

Atis. a+a:+24--^ .

a4-b —b a^—ax
7. What is the sum of —^ and —^r— ? Ans. a.

o -vm- ^ • xT_ p ^ a—2m J a+2m«
8. What IS the sum oi ^, —j— , and —j— ?

n TtTT. X • xT- r*
^«— ^ -,

na+ Z)„
9. What IS the sum of and — ?

m-fn m-\-n

10. What is the sum of -4^-^-,
^""^

, and -^t:?-?

/-
"11. What is the sum of |4^ a^d ^4^?

/•owu*-*;, .13a-295 7Z>-21a , 9^>-lla,
'^ 12. What IS the sum of -^7 jr-, —-^-7 ^, and — -7 r^?

6(a-Z)) b{a—by 6{a—b)

A71S. 9.

/ 13. What IS the sum of ^ ,
——-, :p-—z—

,

^—^I—
-,1— cc 1 + ic l-l-x^ 1— a;J*

and -1?

Subtraction of Fractions.

118. Fractions can only be subtracted when they are like

parts of unity ; that is, when they have a common denomina-

tor. In that case, the difference of the numerators will indi-

cate how many times the common fractional unit is repeated

in the difference of the fractions. Iloiice we have the following
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RULE.

Reduce the fractions to a common denominator ; then suhtract

i]ie numerator of the subtrahendfrom the numei^ator of the minu-

endj and write the result over the common denominator,

EXAMPLES.

1. From -77- subtract -—

.

o

Eeducing to a common denominator, the fractions become

lOx , 9«

1^ ^^^ 15-

__r , lOx ^x X
Hence we have -^p— ^H — rE?

and it is plain that ten fifteenths of cc, diminished by nine fif-

teenths of X, equals one fifteenth of x,

2. From -=- subtract ^.
7

_ ^ 9a— 4aj , ^ ^ 5a— 3x
3. From —=— subtract ^—

.

It must be remembered that a minus sign before the divid-

ing line of a fraction affects the quotient {Art. Ill); and since

a quantity is subtracted by changing its sign, the result of the

subtraction in this case is

9a—4x 6a— Sx

which fractions may be reduced to a common denominator,

ai>d the like terms united as in addition.

. T^ OX .
^ ^

ax
J,

2acx
4. 1 rom X— subtract ^ . Ans. yr

—

-„.

b—c b~\-c b^—d^

_ _, _ , 2-^7x . ^ bx-^ . S55X-6
5. From 2x-\ 5— subtract x ^rr—. Ans.

o ZL
Ut^UU^zJ^

6. From Sec4-^ subtract x . :
^

JLVc

7. From ^^-r- subtract -tt-. - h

/
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^ ^ 13a-56 . , 7a^2b . 2ba-llb
8. From -. subtract —-^—

.

Ans. ^Ti .

4 V2i

Qa-lb , , , 5a , eUb-lba'-eSb^
^' ^^^"^ 3^326 ^^^'^""' W ^^- —27^^:1186^-^

^ 10. From ^^^ subtract unity.'-^ll^^^'

^ 11. From ^ subtract |^:=|^.
11?/ Ix—by

ax X

12. From —^ subtract -f^.--^ .

Multiplication of Frojctions.

119. Let it be required to multiply ^ by ^.

First let us multiply t by c. According to the first princi-

pie of Art. 109, tbe product must be -r.

But the proposed multiplier was J ; that is, we have used a

multiplier d times too great. "We must therefore divide the

result by d; and, according to the second principle of Art.

109, we obtain
^^ ^ ^^

Hence we have the following

RULE.

Multiply the numerators together for a new numerator^ and the

denominators for a new denominator.

Entire and mixed quantities should first be reduced to frac«

tional forms. Also, if there are any factors common to the nu-

merator and denominator of the product, they should be caa

celed.
EXAMPLES.

X ziX iT^

1. Multiply ^ by -5-. Ans.
2̂T

2. Multiply
I
by g|.
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Multiply })-{ by -.

4. Multiply -^ by -^^. An^. j^-^,.

0. Multiply -^

—

j^ by ——r. Am. -,
—-yr^.

6. Multiply together ^, — , and -^r^.

7. Multiply together — , — , and -^.
Qi C AO

X+ 1 T
X— 1Ynf' I

1 Q^ I

8. Multiply together x^ , and 7. Ans
x^^x

a+ b' '

a^-\-ab'

9. Multiply by ^w?n,

10. Multiply . ^,„ ,^ , ,,„ „^ - -,„ .. by a^^V.
^ -^ (a2Z>V) {d^bh^) iaWc^) -^

11. Multiply together ^^^, ^^^, -^^, and -^.

. 2m^n
Ans. --3-.

12. Multiply together -=^ -S ^—^, and -^^^ {^ *^ ° l{m—n 39(a— 0) 66{x»—y t

13. Multiply
-i
—

=

-^rr- by ^-77-5—./JLX^^ -

^ , ,f . . , , , 3ax a^— ^2 bc-\-bx ^ c—x
14. Multiply together ^, ^,-^,, ^,^^, and ^-^.

, 3x
Ans. -J—.

4y

15. Multiply top^ether -1—^, ^, and 1 + -

—

^ -^ °
1+ 2/ 03+ ^2 1—;X

Ans.
1-^

\ 16 M It' 1
^(q^— ^) ^ a(«+ a^),

^

I)
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V ' 18. Multiply cc^-jr+l by -2+-+ I. Ans. (r^+l+ A

^ 19. Mulfply _^-_^_^-^^ by -^. ^„.. 2.

^20. Multiply ^-,--+1 by J+?+l. ^„. |+J,+l.

120. Multiplication of Quantities affected with Negative Expo-

nents.—Suppose it is required to multiply -3 by —

.

According to the preceding article, the result must be —^.

1 1
^

But, according to Art. 76, -3 may be written a-^ ;
— may be

-i
fl a

written a-^; and -g may be written a-*.

Uence we see that a-^xa-'^=.a-^\

that is, the rule of Art. 58 is general, and applies to negative as

well as positive exponents.

1

a*'

EXAMPLES.

1. Multiply —x-'^ by x~\ Ans. — ic-*, c

2. Multiply a-2 by -a\ ^^
8. Multiply fi-3 by «3. ^•. ;

4. Multiply a-*" by a^ ex

5. Multiply a-"* by a-\ f'

6. Multiply (a-Z>)s by {a-b)-^ '

^^'i

Division of Fractions.

121. If the two fractions have the same denominator, then

the quotient of the fractions will be the same as the quotient

of their numerators. Thus it is plain that | is contained in
-J

as often as 3 is contained in 9. If the two fractions have Tioi

the same denominator, we may perform the division after hav-

ing first reduced them to a common denominator. Let it be

required to divide ? by ^



FRACTIONS. 75

Keducing to a common denominator, we have ^ to be di-

vided by 0. It is now plain that the quotient must be repre-

sented by the division of ad by fee, which gives j- ;

a result which might have been obtained by inverting the

terms of the divisor and multiplying by the resulting frac-

tion ; that is, ^ j

b ' d~ b c~ be'

Hence we have the following

RULE.

Invert the terms of the divisor^ and multiply the dividend by the

resulting fraction.

Entire and mixed quantities should first be reduced to frac-

tional forms.

EXAMPLES.

1. Divide ^ by -q-. Ans. IJ.

2. Divide -j- ^J -^'

3. Divide -^--—^ by
a'^-\-x-^ '^ x-\-a

4. Divide —^ by -^.

6. Divide —3 3- by . Ans.
c^-\~cx-\-x^

7. Divide —^ H

—

~ by -^ ^. ^4725. Unity.
a+o a— fe

'^ a—b a-\-b ^

a

8. Divide 7a''-Sx-\-- by fe^-^.

. 2la%— 9/10:4-3771
J.715.

^j^
.

6o^n—an
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9. Divide loic^^-—- by a; . Ans. = = ^,
be '^ c OCX—5a4-56

10. Divide x^H 7 by 7 — w. ^W5. -7 n—

.

a— 6 "^ a—b ao—am-\-om

82(m+6) ^ 128n(m+6y

12. Divide -^ + - by —^ h-. ^?i5. -,
y^ X '' y^ y X y

^ 13. Divide ^±^+ ? by ^±^- -^. ^r^. Unity.
x+2/ y y ^+y

1 1 x^-i-i
^14. Divide x^^-— 4-2 by x-f-. ^rw. .

x^ -^ X X

a-f 64-c
15. Divide a}-h^-c'^-2bc by

122. Division of Quantities affected with Negative Exponents.—

Suppose it is required to divide -^ by -3. According to the

preceding article, we have

X

But, according to Art 76, -3 may be written a-* ; -3 may be

written a~^ ; and — may be written a-^. Ilence we see that

that is, the rule of Art. 72 is general, and applies to negative as

well as positive exponents.

EXAMPLES.

1. Divide a~* by — a"^. Ans. — a"^, or — i
2. Divide — a^ by a~\ ' ^

a Divide 1 by a-\ T-*^

4. Divide 6rt** bv — 2a-^ 'iO^
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5. Divide h'^-'' by h^, ^
^^

6. Divide 12x-22/-* by -^xy\ -l^ ^
7. Divide {x—y)-"^ by (cc— ?/)-«. (^ "^ .

123. jTAe Reciprocal of a Fraction.—According to the defini-

tion in Art 34, the reciprocal of a quantity is the quotient aris-

ing from dividing a unit by that quantity. Hence the recipro-

cal of ^ is . a ^ h h

a a'

that is, the reciprocal of a fraction is the fraction iiiverted.

Thus the reciprocal of j—— is ; and the reciprocal of
-J

o~\-x a

bTi is b+c.

It is obvious that to divide by any quantity is the same as to

multiply by its reciprocal^ and to multiply by any quantity is the

same as to divide by its reciprocal.

124. How to simplify Fractional Expressions.—The numerator

or denominator of a fraction may be itself a fraction or a mixed

quantity, as -^. In such cases we may regard the quantity

above the line as a dividend, and the quantity below it as a

divisor, and proceed according to Art. 121.

Thus, 2i-|=4x 1=^=31.
The most complex fractions may be simplified by the appli-

cation of similar principles.

EXAMPLES.

1. Simplify the fraction -,

1+1
rr.! . . . , h-\-a a-\-h
This expression is equivalent to —7—:

>

01- to —:;—

X

T) which is equal to r, Ans,
b a-\-b

^ o
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2. Simplify
a—m

a-\-m

Arts.

24
8. Find the value of the fraction ||.

4. Find the value of the fraction

5. Simplify

22a5c

%^mnx
llab

'

3mx

6. Simplify

7. Simplify

8. Simplify

a+h a-h
c+d ^ c-d
a+b a-h'

c-d

a-\-x

' c-^d

a-x •

a—x ' a-\-x

a+x a—x
a—x a-\-x

,2

n wi'-n^

1

n

a

m'-\-n^'

Ans.

Ans.

a-\-m

a—m

Ans. \.

LP

ac—hd
ac-\-bd'

a^-\-x^

2ax
'

h+
d-\-
m Ans.

Ans. m.

adn-\-am

bdn-\-hm,-\-C7C
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r,
CHAPTEK VIII.

EQUATIONS OF THE FIRST DEGREE.

125. An equation is an expression of equality between two

algebraic quantities. Thus 2>x=2ab is an equation denoting

that three times the quantity x is equal to twice the product

of the quantities a and 6.

126. l^hQ first member of the equation is the quantity on the

left side of the sign of equality, and the second memher is the

quantity on the right of the sign of equality. Thus, in the

preceding equation, Zx is the first member, and 2ah the second

member.

127. The two members of an equation are not only equal

numerically, but must have the same essential sign. If, in the

preceding equation, x represents a negative quantity, then the

first member is essentially negative, and the second member
must also be negative ; that is, either a oy h must represent a

negative quantity.

128. Equations are usually composed of certain quantities

which are known^ and others which are unknown. The known
quantities are represented either by numbers, or by the first

letters of the alphabet; the unknown quantities are usually

represented by the last letters of the alphabet.

129. A root of an equation is the value of the unknown
quantity in the equation ; or it is any value which, being sub-

stituted for the unknown quantity, will satisfy the equation.

For example, in the equation

8cc-4=24-cc,

suppose x=l. Substituting 7 for x^ the first member becomes

3x7—4; that is, 21-- 4, or 17; and the second member be-
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comes 24—7
; that is, 17. Hence 7 is a root of the equation,

because when substituted for x the two members are found to

be equal.

130. A numerical equation is one in which all the kno"^'n

^quantities are represented oy figures; as, x^-\-^£-= Zx-\-Vl.

131. A literal equation is one in which the known quantities

are represented by letters, or by letters and figures.

Thus x^-\-adi?-\-hx=m. \ ^^. ^

and x'_3ax^+5Sa;»= 16 [
""'^ ^'^'""^ equafons.

132. The degree of an equation is denoted by the greatest

number of unknown factors occurring in any term.

If the equation involves but one unknown quantity, its de-

gree is denoted by the exponent of the highest power of this

quantity in any term.

If the equation involves more than one unknown quantity,

its degree is denoted by the greatest sum of the exponents of

the unknown quantities in any term.

Thus ax-{-h=cx-\-d is an equation of the^?*5^ degree^ and is

sometimes called a simple equation.

4x2—203=5— x^ r^^^ ^xy—4:X-\-y=4:0 are equations of the

second degree^ and are frequently called quadratic equations,

x^-^ax^=2h and x^-{-^xif-\-y=m are equations of the third

degree^ and are frequently called cubic equations.

So also we have equations of the fourth degree, sometimes

called hi-quadratic equations ; equations of the fifth degree, etc.,

up to the nih. degree.

Thus x'^+ax^-'^—h is an equation of the ?ith degree.

133. To solve an equation is to find the value of the unknown
quantity, or to find a number which, being substituted for the

unknown quantity in the equiation, renders the first member
identical with the second.

The difl[iculty of solving equations depends upon their de-

gree, and the number of unknown quantities they contain.
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134. Axioms.— The various operations which we perform

upon equations, in order to deduce the value of the unknown
quantities, are founded upon the following principles, which

are regarded as self-evident.

"^1. If to two equal quantities the same quantity be added, the

sums will be equal.

2. If from two equal quantities the same quantity be sub-

tracted, the remainders will be equal.

3. If two equal quantities be multiplied by the same quanti-

ty, the products will be equal.

4. If two equal quantities be divided by the same quantity,

the quotients will be equal.

135. Transposition.—Transposition is the process of changing ^fv^-

a term from one member of an equation to the other without 4t/fv«

destroying the equality of the members. ^
Let it be required to solve the equation

x-^az=h. ^j^ ,, ,,[,: . v.r

If from the two equal quantities x-\-a and h we subtract the '

same quantity a, the remainders will be equal, according to the

last article, and we shall have

x-\-a—a= b—a,

or x= h— a.

Let it be required to solve the equation

x—a — h.

If to the two equal quantities x—a and h the same quantity

a be added, the sums will be equal, according to the last arti-

cle, and we have x—a-\-a=h-^aj

or x=h-\-a.

---J 136. Hence we perceive that we may transpose any term of an

equation from one merriber of the equation to the other, provided we

change its sign.

It is also evident that we may change the sign of every term of

an equation without destroying the equality ; for this is, in fact, the

same thing as transposing every term in each member of the

equation.

D2
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EXAMPLES.

In the following examples, transpose the unknown terms to

the first member and the known terms to the second member.

1. 5ir4-12= 8a;+18. Ans. 6x~3a:=18-12.

2. 4x--7=21— 8x. Ans. Ax -\-Sx=21-\-7.

3. 2x-15= -7ic-f30. Ans. 2cc+7a7=304-15.

4. ax-{-bc=m—2x. Ans, ax-\-2x=m—hc,

5. 4:ax—b-\-2c=Sx—2ab^STnx.

Ans. 4:aX'—Sx-\-Smx=b—2c—2ab.

6. 4:ah—ax—2c=hx—Sm. Ans. ax-{-bx=4:ab—2c+3m.

7. ab^cx—2mx=Sax—4:b.
Ans. Sax-\-cx-\-2mx=ab-\-4b.

137. To clear an Equation of Fractions.—Let the equation be

^=b. If we multiply each of the equal quantities - and b by

the same quantity a, the products will be equal by Art. 134,

and we shall have x=ab.

Suppose the equation is —\-j^=m.

If we multiply each of the members of the equation by a, we
shall have .

ax

If we multiply each of the members of this equation by 6,

we shall have bx-\-ax=zabm.

Hence, to clear an equation of fractions, we have the follow-

ing
RULE.

Multiply each member of the equation by all the denominators,

EXAMPLES.

£C cc 3
1. Clear the equation -—-=- of fractions.

Ans. 20x-12a:=45.
3.r 2x 3

2. Clear the equation —^——== of fractions.
^

Ans. 63a;-70a'=45.
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8. Clear tlie equation y—^+^=:6 of fractions.

Ans. 40ic-105a^+28a:=840.

Cf, CP, cc

4. Clear the equation 0+1;+^= 10 of fractions.

138. An equation may always be cleared of fractions by muL
tiplying each member into all the denominators; but some-

times the same result may be attained by a less amount of mul-

tiplication. Thus, in the last example, the equation may be

cleared of fractions by multiplying each term by 12 instead

of 6x4x2, and it is important to avoid all useless multiplica-

tion. In general, an equation may be cleared of fractions by
multiplying each member by the least common multi;ple of all the

denominators.

2x Sx 7
5. Clear the equation "c'+x~To ^^ fractions

The least common multiple of all the denominators is 20.

If we multiply each member of the equation by 20, we obtain

8x+ 15^=14.

The operation is effected by dividing the least common mul-

tiple by each of the denominators, and then multiplying the

corresponding numerator, dropping the denominator.

4:X Sx 8
6. Clear the equation y~~TZ~9T ^^ ^^^^^^^^^'

X— 4: 1
7. Clear the equation Sx——t—=j^ of fractions.

It should be remembered that when a fraction has the mi-

nus sign before it, this indicates that the fraction is to be sub-

tracted^ and the signs of the terms derived from its numerator

must be changed, Art. 118.
^^^ 86c.-3x+12:=l.

^ ^ , . a—x Sx—2h x-{-ab
8. Clear the equation —r r—=—^—

•

Ans. a^—a^x—Sax-^2ah=hx-{-ah\
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139. Solution of Equations.—An equation of the first degree

containing but one unknown quantity may be solved by trans-

forming it in such a manner that the unknown quantity shall

stand alone, constituting one member of an equation
;
the other

member will then denote the value of the unknown quantity.

Let it be required to find the value of x in the equation

4x— 2 bx 3x ^

Clearing of fractions, we have

32x-16+ 25x=80a;+200.

By transposition we obtain

32x+25x-30:r=200+16.

Uniting similar terms, 27£c=216.

Dividing each member by 27, according to Art. 134, we have

To verify this value of a;, substitute it for x in the original

equation, and we shall have

32-2 40 24 ^

or 6+5= 6+ 5;

that is, 11= 11,

an identical equation, which proves that we have found the

correct value of x.
,

140. Hence we deduce the following

RULE.

1. Clear the equation offractions^ and perform all the opera-

tions indicated.

2. IVanspose all the terms containing the unJcnoivn quantity to

one side^ and all the remaining terms to Hie other side of the equa-

tion^ and redujce each member to its most simple form.

8. Divide each member by the coefficient of tJie unknown quan
tity.

There are various artifices which may sometimes be em*
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ployed, by which the labor of solving an equation may be con-

siderably abridged. These artifices can not always be reduced

to general rules. If, however, any reductions can be made be-

fore clearing of fractions, it is generally best to make them ;
and

if the equation contains several denominators, it is often best to

multiply by the simpler denominators first, and then to effect

any reductions which may be possible before getting rid of the

remaining denominators. Sometimes considerable labor may
be saved by simply indicating a multiplication during the first

steps of the reduction, as we can thus more readily detect the

presence of common factors (if there are any), which may be

canceled. The discovery of these artifices will prove one of

the most useful exercises to the pupil.

EXAMPLES.
1. Solve the equation

_ 8x4-1 2:r-f 9
, ,8x ^ =-^+4.

Clearing of fractions,

63x-24cc-3= 14a:H- 63+ 84.

Transposing and reducing,

25x=150.

Dividing by 25, cc=:6.

To verify this result, put 6 in the place of x in the original

equation.

Solve the following equations:

\^. Sax—4:ab= 2ax—6ac.

3. Sx''-10x^Sx-\-x''.

^ aid^+x"^) ax

^ . x-5
,

, 284-03

6. "^=bc+d+l
X X

7. 3a;

H

=^ = 5H t: .

ins . X= 4:b-.6c.

Ans. X--= 9.

Ans. X-.
_d
~c'

Ans. X-=9.

Arts. X—
ab-\
bc + d'

Ans. X-.= 7.
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c 8. 6ax^2b+4:hx=2x-\-bc. Ans. x= ^

ba-\-4:b-2'

"^^ 9. x-\—-—=12 ^—

.

Am, x=5,

11 3x
^-^ i-

^^+U 1
^11. IJx- 4^-3 -12' /

12. 3x—a4-cx=—;t . -4.m. x=- ^ -.da 8a+ 8ac—

3

\^^^ 8x X , 2x . abed
13. c+r=4x+-T. Ans. x=-—-——-—————-,

(f b a 3bd-\-ad—4:abd—2ab

14. {a-{-x){b-{-x)—a{b-\-c)=——\-x^. Am. ^=t-.

15. Ilr3x_4^=5-6x+^. ^
5 o o

3ir-3 , 20-cc 6a:-8 4ic-4 Z
16. 0.--^+4=-2 -^+-g-.

7:c+16 a:+8 x

18.

21 4x-ll~3*

6x-[-7 7a;-13_ 2a-H-4 /j.

9 ^6x+S~~ 3 •

w^.-»7'± zi o ^7/, i
70aZ>— 3ac

19. '^,ab-\-zac—^cx=^ac-\-2ao—6cx. Am. x——^j-r-;—

.

6 5 3 4 o20c

20. 1(.-|)+1(.-|)4(.-|). ^n..=|.

21.
7x4-9 / 1x—\\ _ . J c^ {x 9-) = 7. ^ns. a:=5.

22. -2-+-3-=-4-+ ~6~"'" '^^^

23. l-l'+4-|:=7-|-+10-,4^. ^«.. x=^.
/

3&^*-te-'-9i-^^"-12x -'"••^-432-

24. —7^ \ T-^— i^* Am. ic=ll.
85 6X-101 5
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9x+4 4x-19 6x^S2 llx+13 . .^^
25 —^^H r:;—=—T^ ^1 • Ans. X=100.

5x-48^ 51 17 ol

4 7 87
26 \

= —,—^^ n. ^^^5- ic=l.
a;+2^x+ 8 x'-{-bx-{-^

27. ^ 1 — n ?;. Ans. x=6.
x-2 x-4: x-6 x-S

^o X X a . _ a^{h—a)

29. (x+|)(x-|)+|=(x+5)(a:-8). ^ns. a:=12.

Solution of Problems.

141. A problem in Algebra is a question proposed requiring

us to determine the value of one or more unknown quantities

from given conditions.

142. The solution of a problem is the process of finding the

value of the unknown quantity or quantities that will satisfy

the given conditions.

143. The solution of a problem consists of two parts

:

1st. The statement, which consists in expressing the condi-

tions of the problem algebraically ; that is, in translating the

conditions of the problem from common into algebraic lan-

guage, ov forming the equation.

2d. The solution of the equation.

The second operation has already been explained, but the

first is often more embarrassing to beginners than the second.

Sometimes the conditions of a problem are expressed in a dis-

tinct and formal manner, and sometimes they are only implied,

or are left to be inferred from other conditions. The former

are called explicit conditions, and the latter implicit conditions.

144. It is impossible to give a general rule which will enable
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US to translate every problem into algebraic language, since the

conditions of a problem may be varied indefinitely. The fol-

lowing directions may be found of some service

:

Represent one of the unknown quantities hy some Utter or sym-

bol^ and then from the given conditions find an expression for each

of the other unknown quantities^ if any^ involved in the problem.

Express in algebraic language the relations which subsist between

the unknown quantities and the given quantities; or, by means of

the algebraic signs, indicate the operations necessary to verify the

value of the unknown quantity, if it was already known.

PROBLEMS.

Prob. 1. What number is that, to the double of which if 16

be added, the sum is equal to four times the required number?

Let X represent the number required.

The double of this will be 2x.

This increased by 16 should equal 4x.

Hence, by the conditions, ^x-\-\^—\x.

The problem is now translated into algebraic language, and

it only remains to solve the equation in the usual way.

Transposing, we obtain

16=4a:-2a;=:2cc,

and 8=x,

or x—^.

To verify this number, we have but to double 8, and add

16 to the result ; the sum is 32, which is equal to four times 8,

according to the conditions of the problem.

Prob. 2. What number is that, the double of which exceeds

its half by 6?

Let cc=the number required.

Then, by the conditions,

2x-|=6.

Clearing of fractions, 4ic— a:= 12,

or 3x=12.

ITence ' a:= 4.

To verify this result, double 4, which makes 8, and diminish
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it by the half of 4, or 2 ;
the result is 6, according to the con-

ditions of the problem.

Prob. 3. The sum of two numbers is 8, and their difference

2. What are those numbers?

Let a:=the least number.

Then x-f 2 will be the greater number.

The sum of these is 2a;+2, which is required to equal 8.

Hence we have 2a;+2=:8.

By transposition, 2x=8— 2 = 6,

and x=S, the least number.

Also, x-\-2 = bj the greater number.

Verification. 5+ 3= 8) -,. ^ . ...

p; Q_9 (
accordmg to the conditions.

The following is a generalization of the preceding Problem.

Prob. 4.^ The sum of two numbers is a, and their difference

b. What are those numbers?

Let X represent the least number.

Then x-\-b will represent the greater number.

The sum of these is 2x+5, which is required to equal a.

Hence we have 2x-\-b=a.

By transposition, 2x=a—b,_

or ^=-i^= o~o^ ^^^® ^^^^ number.

Hence x-\-b—-— --\rb—-^-\--^, the greater number.

As these results are independent of any particular value at-

tributed to the letters a and i, it follows that

Half the difference of tiuo quantities^ added to half their sum,

is equal to the greater ; and

Half the difference subtracted from half the sum is equal to the

less.

The expressions f+ l ^^^ f— | ^^^ called /ormt/Zas, because

they may be regarded as comprehending the solution of all

questions of the same kind ; that is, of all problems in which

we have given the sum and difference of two quantities.
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Thus, let a=8 ) . ,, ,. ,

,

7j_o f
^ 1° t^® preceding problem.

Then --|--=—^r—=5, the greater number.

And -—-=—^=3, the less number.

0) S

P O

10; r 6;

12 2;

23 11;

100

100

their difference - 50 ; required the numbers.

1;

5 4;
10 I 4;

Prob. 5. From two towns which are 54 miles distant, two

travelers set out at the same time with an intention of meet-

ing. One of them goes 4 miles and the other 5 miles per hour.

In how many hours will they meet?

Let X represent the required number of hours.

Then 4x will represent the number of miles one traveled,

and bx the number the other traveled; and since they meet,

they must together have traveled the whole distance.

Consequently, 4a:+5x=:54.

Hence 9^=54,

or x=Q.

Proof. In 6 hours, at 4 miles an hour, one would travel 24

miles; the other, at 5 miles an hour, would travel 30 miles.

The sum of 24 and 30 is 54 miles, which is the whole distance.

This Problem may be generalized as follows

:

Prob. 6. From two points which are a miles apart, two bod-

ies move toward each other, the one at the rate of m miles per

hour, the other at the rate of n miles per hour. In how many
hours will they meet?

Let X represent the required number of hours.

Then tux will represent the number of miles one body moves,

and nx the miles the other body moves, and we shall obvious-

ly have mx-\-nx=a.
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__ a
Hence x——;—

.

This is a general formula, comprehending the solution of all

problems of this kind. Thus,

Let the 90 one body
distances ^-^3^. moves

210;

Eequired the time of meeting.

We see that an infinite number of problems may be pro-

posed, all similar to Prob. 5 ; but they are all solved by the

formula of Prob. 6. We also see what is necessary in order

that the answers may be obtained in whole numbers. The given

distance (a) must be exactly divisible by m-\-n.

Prob. 7. A gentleman, meeting three poor persons, divided

60 cents among them ; to the second he gave twice, and to the

third three times as much as to the first. What did he give

to each?

Let a:=the sum given to the first; then 2x=the sum given

to the second, and 3x=the sum given to the third.

Then, by the conditions.

That is, 6x=60,

or 05=10.

Therefore he gave 10, 20, and 80 cents to them respectively.

The learner should verify this, and all the subsequent results.

The same problem generalized:

Prob. 8. Divide the number a into three such parts that the

second may be m times, and the third n times as great as the

first.
. a ma na
Ans.

l+ m-|-?2' l+m+ ?2' l-\-m-\-n

What is necessary in order that the preceding values may
be expressed in whole numbers?

Prob. 9. A bookseller sold 10 books at a certain price, and

afterward 15 more at the same rate. Now at the last sale he
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received 25 dollars more than at the first. What did he re-

ceive for each book? Ans. Five dollars.

The same Problem generalized:

Prob. 10. Find a number such that when multiplied success-

ively by m and by n, the difference of the products shall be a.

,»«-, Ans. .

772— 72.

Prob. 11. A gentleman, dying, bequeathed 1000 dollars to

three servants. A was to have twice as much as B, and B
three times as much as C. What were their respective shares?

Ans. A received $600, B $300, and C $100.

Prob. 12. Divide the number a into three such parts that the

second may be m times as great as the first, and the third n

times as great as the second.

. a ma mna
1 +m+mn' l-\-m-\-mn'' l-\-m-\-mn

Prob. 13. A hogshead which held 120 gallons was filled with

ii mixture of brandy, wine, and water. There were 10 gallons

of wine more than there were of brand)', and as much water as

both wine and brandy. What quantity was there of each?

Ans. Brandy 25 gallons, wine 35, and water 60 gallons.

Prob. 14. Divide the number a into three such parts that the

second shall exceed the first by m, and the third shall be equal

to the sum of the first and second.

. a— 2771 a+ 2771 a

Prob. 15. A penson employed four workmen, to the first of

whom he gave 2 shillings more than to the second ; to the sec-

ond 3 shillings more than to the third ; and to the third 4 shil-

lings more than to the fourth. Their wages amount to 32 sliil-

lings. What did each receive ?

Ans. They received 12, 10, 7, and 3 shillings respectively.
"^ Prob. 16. Divide the number a into four such parts that the

second shall exceed the first by m, the third shall exceed the

second by ??, and the fourth shall exceed the third by p.

Ans. The first, -. ; the second, -r ^

;
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the third, ^ ; the fourth, j -.

Problems which involve several unknown quantities may oft-

en be solved by the use of a single unknown letter. Most of

the preceding examples are of this kind. In general, when we

have given the sum or difference of two quantities, both of them

may be expressed by means of the same letter. For the diffei^

ence of two quantities added to the less must be equal lo the

greater ; and if one of two quantities be subtracted from their

sum, the remainder will be equal to the other.

Prob. 17. At a certain election 86,000 votes were polled,

and the candidate chosen wanted but 8000 of having twice as

many votes as his opponent. How many voted for each ?

Let x=:the number of votes for the unsuccessful candidate;

then 86,000 — x = the number the successful one had, and

86,000-^+8000= 2^. Ans. 18,000 and 28,000.
"^

Prob. 18. Divide the number a into two such parts that one

part increased by h shall be equal to m times the other part.

. ma— h a-\-h

772+ 1 ' m+ 1

Prob. 19. A train of cars, moving at the rate of 20 miles per

hour, had been gone 3 hours, when a second train followed at

the rate of 25 miles per hour. In what time will the second

train overtake the first?

Let x=:the number of hours the second train is in motion,

and cc+8=the time of the first train.

Then 25x=the number of miles traveled by the second train,

and 20(cc+8)=:the miles traveled by the first train.

But at the time of meeting they must both have traveled the

same distance.

Therefore 25cc= 20x+ 60.

B}^ transposition, 5cc=60,

and a: =12.

Proof. In 12 hours, at 25 miles per hour, the second train

goes 800 miles ; and in 15 hours, at 20 miles per hour, the first

train also goes 300 miles; that is, it is overtaken by the sec-

ond train.
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Prob. 20. Two bodies move in the same direction from two
places at a distance of a miles apart ; the one at the rate of n
miles per hour, the other pursuing at the rate of m miles per

hour. When will they meet ?

Ans. In —— hours.m—n
This Problem, it will be seen, is essentially the same as

X prob. 10.

Prob. 21. Divide the number 197 into two such parts that

four times the greater may exceed five times the less by 50.

\ Ans. 82 and 115.

Prob. 22. Divide the number a into two such parts that m
times the greater may exceed n times the less by b.

ma—h na-\-b
Ans.

m-\-n ' m-\-n

When 71=1, this Problem reduces to Problem 18.

When 5=0, this Problem reduces to Problem 24.

Prob. 23. A prize of 2329 dollars was divided between two

persons, A and B, whose shares were in the ratio of 5 to 12.

What was the share of each ?

Beginners almost invariably put x to represent one of the

quantities sought in a problem; but a solution may often be

very much simplified by pursuing a different method. Thus,

in the preceding problem, we may put x to represent one fifth

of A's share. Then bx will be A's share, and 12a; will be B's,

and we shall have the equation

5ic+12jc=2329,

and hence a;=137;
consequently their shares were 685 and 1644 dollars.

V Prob. 24. Divide the number a into two such parts that the

first part may be to the second as m to n.

. ma na
A71S.

vi-\-n^ 7n-{-n

Prob. 25. What number is that whose third part exceeds its

fourth part by 16?

Let 12ic=the number.

Then 4a:-3u;=16.
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or x=zl6.

Therefore tlie number =:= 12 x 16= 192.

Prob. 26. Find a number such that when it is divided suc-

cessively by m and by n, the difference of the quotients shall

be a.

amn
Ans.

71— 711

Prob. 27. A gentleman has just 8 hours at his disposal ; how
far__may he ride in a coach which travels 9 miles an hour, so as

to return home in time, walking back at the rate of 3 miles an

hour ? Ans. ISjuilfiSL

Prob. 28. A gentleman has just a hours at his disposal ; how
far may he ride in a coach which travels m miles an hour, so

as to return home in time, walking back at the rate of n miles

an hour?
, arriTi .,

Atis. miles.

Prob. 29. A gentleman divides a dollar among 12 children,

giving to some 9 cents each, and to the rest 7 cents. How
many were there of each class ?

Prob. 80. Divide the number a into two such parts that if

the first is multiplied by m and the second by n, the sum of

the products shall be b.

. h— na ma—h
Ans. —

Prob. 31. If the sun moves every day 1 degree, and the

moon 13, and the sun is now 60 degrees in advance of the

moon, when will they be in conjunction for the first time, sec-

ond time, and so on?

Prob. 32. If two bodies move in the same direction upon the

circumference of a circle which measures a miles, the one at

the rate of n miles per day, the other pursuing at the rate of m
miles per day, when will they be together for the first time, sec<

end time, etc., supposing them to be h miles apart at starting?

Ans. In --i^i^ ?^±*, etc., days.
m— 7L 7n— n nn—n

It will be seen that this Problem includes Prob. 20.
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Prob. 33. Divide the number 12 into two sucb parts that the

difference of their squares may be 48.

Prob. 34. Divide the number a into two such parts that the

difference of their squares may be 6. , d^—h (j?-\-h

^'^' ~%r ^
"2^-

Prob. 35. The estate of a bankrupt, valued at 21,000 dollars,

is to be divided among three creditors according to their re-

spective claims. The debts due to A and B are as 2 to 3,

while B's claims and C's are in the ratio of 4 to 5. What sum
must each receive?

Prob. 36. Divide the number a into three parts, which shall

be to each other as m : ?i : ^.

. ma na pa

'm-f-w-|-^' m-f-7i-f-^' m-\-n-{-p'

When p=l, Prob. 36 reduces to the same form as Prob. 8.

Prob. 37. A grocer has two kinds of tea, one worth 72 cents

per pound, the other 40 cents. How many pounds of each

must be taken to form a chest of 80 pounds, which shall, be

worth 60 cents?

Ans. 50 pounds at 72 cents, and 30 pounds at 40 cents.

Prob. 38. A grocer has two kinds of tea, one worth a cents

per pound, the other h cents. How many pounds of each must

be taken to form a mixture of n pounds, which shall be worth

c cents? . n(c—h) ,

Ans, —^^

—

j-^ pounds at a cents,

and —^^—7—^ pounds at b cents.
a—b ^

Prob. 89. A can perform a piece of work in 6 days ; B can

perform the same work in 8 days; and C can perform the

same work in 24 days. In what time will they finish it if all

work together?

Prob. 40. A can perform a piece of work in a days, B in 6

days, and Cine days. In what time will they perform it if all

work together? . abc ,°
A71S. —J -y- days.

ab-{-ac-\-bc
"^

Prob. 41. There are three workmen, A, B, and C. A and

B together can perform a piece of work in 27 days; A and G
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together in S6 days; and B and C together in 54 days. In

what time could they finish it if all worked together ?

A and B together can perform -^ of the work in one day.

AandC " A
B and C "

6^
" "

Therefore, adding these three results,

2A+2B+ 2C can perform i^r + -5V 4- "sV in one day,

=: -xV in one day.

Therefore, A, B, and C together can perform ^ of the work

in one day ; that is, they can finish it in 24 days. If we put

X to represent the time in which they would all finish it, then

they would together perform ^ part of the work in one day,

And we should have
i i , i _ 2

Prob. 42. A and B can perform a piece of labor in a days

;

A and C together in b days ; and B and C together in c days.

In what time could they finish it if all work together ?

. 2ahc ,

Ajis. —^ J- days.
ao-{-ac-{-oc

This result, it will be seen, is of the same form as that of

Problem 40.

Prob. 43. A broker has two kinds of change. It takes 20

pieces of the first to make a dollar, and 4 pieces of the second

to make the same. Now a person wishes to have 8 pieces for

a dollar. How many of each kind must the broker give him ?

Prob. 44. A has two kinds of change ; there must be a pieces

of the first to make a dollar, and b pieces of the second to make
the same. Now B wishes to have c pieces for a dollar. How
many pieces of each kind must A give him ?

V
Ans, ——r- of the first kind ;

—^

—

^ of the second.
a— b a— b

Prob. 45. Divide the number 45 into four such parts that

the first increased by 2, the second diminished by 2, the third

multiplied by 2, and the fourth divided by 2, shall all be equal.

In solving examples of this kind, several unknown quantities

are usually introduced, but this practice is worse than super-

E
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fluous. The four parts into which 45 is to be divided maj be

represented thus:

The first =a;-2,

the second =ix-\-2y

the third =f,
the fourth =2x]
for if the first expression be increased by 2, the second dimin-

ished by 2, the third multiplied by 2, and the fourth divided by

2, the result in each case will be x. The sum of the four parte

is 4-^x, which must equal 45.

Hence £c=10.

Therefore the parts are 8, 12, 5, and 20.

Prob. 46. Divide the number a into four such parts that

the first increased by m, the second diminished by m, the third

multiplied by m, and the fourth divided by Tn, shall all be

equal.
. ma ma

,
a m^a

(m+ 1)' ' (m+l)2' ' (m+ l)2' (m+lf
Prob. 47. A merchant maintained himself for three years at

an expense of $500 a year, and each year augmented that

part of his stock which was not thus expended by one third

thereof. At the end of the third year his original stock was

doubled. What was that stock?

Prob. 48. A merchant supported himself for three years at

an expense of a dollars per year, and each year augmented

that part of his stock which was not thus expended by one

third thereof At the end of the third year his original stock

was doubled. What was that stock ?

148a
Ans. -^.

Prob. 49. A father, nged 54 years, has a son aged 9 yeai-s.

In how many years will the age of the father be four times

that of the son ?

Prob. 50. The age of a father is represented by a, the age of

his son by h. In how many years will the age of the father be

n times that of the son ? a-^nh
Ans. Z-,n—

1
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CHAPTER IX.

EQUATIONS OF THE FIRST DEGREE CONTAINING MORE THAN

ONE UNKNOWN QUANTITY.

145. If we have a single equation containing two unknown

quantities, then for every value which we please to ascribe to

one of the unknown quantities, we can determine the corre-

sponding value of the other, and thus find as many pairs of

values as we please which will satisfy the equation. Thus, let

2x-{-4y=l6. (1.)

If y=lj we find x=6] if y=2, we find cc=4, and so on;

and each of these pairs of values, 1 and 6, 2 and 4, etc., sub-

stituted in equation (1), will satisfy it.

Suppose that we have another equation of the same kind,

as, for example, 5a:+83/=19. (2.)

We can also find as many pairs of values as we please which

will satisfy this equation.

But suppose we are required to satisfy both equations with

the same set of values for x and y ; we shall find that there is

only one value of x and one value of y. For, multiply equa-

tion (1) by 3, and equation (2) by 4, Axiom 3, and we have

6x+12^=48, (3.)

20x+12.y=76. (4.)

Subtracting equation (3) from equation (4), Axiom 2, we have

14cc=:28; (5.)

whence a:=2. (6.)

Substituting this value of x in equation (1), we have

4+42/=16; (7.)

whence 2/=3. (8.)

Thus we see that if both equations are to be satisfied, x must

equal 2, and y viust equal 3. Equations thus related arc called

simoltaneous equations
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l^.f^'i * SimuUmeov^ equatums are those which must be satisfied

hf tb^ 'sartie Vakes of the unknown quantities.

When two or more simultaneous equations are given for so-

lution, we must endeavor to deduce from them a single equation

containing only one unknown quantity. We must therefore

make one of the unknown quantities disappear, or, as it is

termed, we must eliminate it.

147. Elimination is the operation of combining two or more

equations in such a manner as to cause one of the unknown
quantities contained in them to disappear.

There are three principal methods of elimination : 1st, by ad-

dition or subtraction ; 2d, by substitution
; 8d, by comparison.

148. Elimination ly Addition or Subtraction.—Let it be pro-

posed to solve the system of equations

5x+43/=35, (1.)

7x-3?/=6. (2.)

Multiplying equation (1) by 8, and equation (2) by 4, we have

15a;+12y=105, (8.)

28x-123/=24. (4.)

Adding (3) and (4), member to member (Axiom 1), we have

48^=129

;

(5.)

whence cc=:3. (6.)

We may now deduce the value of y by substituting the value

of X in one of the original equations. Taking the first for ex-

ample, we have 15 +4^/= 85

;

whence 4y=20,

and y=5.

149. In the same way, an unknown quantity may be elimi-

nated from any two simultaneous equations. This method is

expressed in the following

RULE.

Multiply or divide the equatiojis^ if necessari/, in such a manner

that ouc of the unknown quantities ahall hai^e the same coefficient in
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both. Then subtrdct one equation from :ihe (kite^ if^ihosigvs of

these coefficients are alihe^ or odd them logeit^eri/ihe&igiyixirt

unlike.

In solving the preceding equations, we multiplied both mem-
bers of each by the coefficient of the quantity to be eliminated

in the other equation ; but if the coefficients of the letter to be

eliminated have any common factor, we may accomplish the

same object by the use of smaller multipliers. In such cases,

find the least common multiple of the coefficients of the letter

to be eliminated, and divide this multiple by each coefficient

;

the quotients will be the least multipliers which we can employ.

150. Elimination by Substitution.—Take the same equations

as before: 5x-h4y=35, (1.)

7x-32/=6. (2.)

Finding from (1) the value of y in terms of x, we have

.=?^. (3.)

Substituting this value of y in (3), we have

Ix
J

= 6.

Clearing of fractions,

28ic-105+ 15x=24;

whence x=3.

Substituting this value of x in (3), we have

The method thus exemplified is expressed in the following

RULE.

Find an expression for the value of one of the unknown quan-

tities in one of the equations ; then substitute this valuje for iliat

quantity in the other equation.

151. Elimination by Comparison.—Take the same equations

as before: 5x4-42/=35, (1.)

7x-Sy=6. (2.)
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, . iPejoiye froirt eftcK equation an expression for y in terms of a^

^.iSd-WeWe " 35—5x
2/=-^f—

,

(3.)

and 2/=—^. (4.)

Placing these two values equal to each other, we have

7a;-6_ 35-5a;

3 ~ 4 •

Clearing of fractions,

28ir-24=:.105-16x;

whence 43aj=129,

and £c=3.

Substituting this value of x in (3),

The method thus exemplified is expressed in the following

RULE.

Find an expression for the value of the same unknown quantity

in each of the equations^ andform a new equation by placing these

values equal to each othe7\

In the solution of simultaneous equations, either of the pre-

ceding methods can be used, as may be most convenient, and

each method has its advantages in particular cases. General-

ly, however, the last two methods give rise to fractional expres-

sions, which occasion inconvenience in practice, while the first

method is not liable to this objection. When the coefficient of

one of the unknown quantities in one of the equations is equal

to unity, this inconvenience does not occur, and the method

^by substitution may be preferable ; the first will, however, com-

imonly be found most convenient

EXAMPLES.

1. Given
j a ^n~^A \^^ ^"^ *^^ values of x and y,

Ans. ic=8; y=4.
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1+1=7
2. Given <J V to find x and y.

3"^2~
J

Am. (r=6; y=12.

( ^\8,=31
' 8. Given < , ,- V to find x and y.^- "i, n^ ' ?,

y+^+10x=192 1

^

4 Given i
^

> to find a: and y,

5. Given < ^ > to find cc and y.

^"f",.— ^ K^ . be— ad be—ad^ y ' Ans. x=—j • y= .

no—ma rac—na

6. Given
| g^J^/^'l^^ |

to find x and y.

\
^' ^^^^^

1 Sx+SylsS 1
'^ ^^^ ^ "^^ 2/. ^^

J fl 1

r\ \ 8. Given I V to find cc and y,y 11= n\ . 2 2
\ y X J Ans. x= ; y=-

m-\-n^ ^ m—n

C\ 9. Given < > to find x and v-

1 12^±97_ (

^

115?/-17~ J Ans. x=2^', y=Z\.

x-\-a , « \
-L^-\-y^b=2a

I

] L, 10. Given
<J

, > to find x and y.

x-{-a+^-= l+na
j

^725. x=na—a; y—a-^h.
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^

^11. Given {i^Z\6y=-S^^ 1
^^ ^^^ ^ ^^^ y-

12. Given ^^^_^ ^^
V to find a: and 3.

5y 4:y-l9_x 20-2y

13. Given <
^ ^ o . 01

f 13 _ ^ )

.. r- Ja^+23/+3- 4:^-52/4-6/
14. Given < „ -. q Mo find x and y.

( 6x—by+4:~Sx-\-2y+l ]

Ans. x=7
]
y=S,

{nr — ?y^— (j. 1

^ , [• to find a; and y.x—y=o )
^

Ar^.x=^^; 2,^__.

jy^+2^ 4+12
16. Given <j

^
> to find x and y.

^725. a:=2; y=7.

4x-Sy-7_Sx 2y 6 j

5 ~10 15 6 /to find X
'^

I

^_^2/ -t_y-^
I

^
I

-^
\

^"^^ y-
17. Given

y
8 "^2 20 15

"^6"^
10

Ans. x=S; y=2.
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Equations of the First Degree containing more than Two
Unknown Quantities.

152. If we have three simultaneous equations containing

three unknown quantities, we may, by the preceding methods,

reduce two of the equations to one containing only two of the

unknown quantities; then reduce the third equation and either

of the former two to one containing the same two unknown
quantities ; and from the two equations thus obtained, the un-

known quantities which they involve may be found. The
third quantity may then be found by substituting these values

in either of the proposed equations.

Take the system of equations

2x+3y-f42;=16, (1.)

^x+2y-bz= 8, (2.)

5;r-6z/-f32= 6. (3.)

Multiplying (1) by 3, and (2) by 2, we have

6a; 4-%-f 122=^48, (4.)

6a;+4^-102=16. (5.)

Subtracting (5) from (4), 5z/+22z=32. (6.)

Multiplying (1) by 5, and (3) by 2, we have

10:c+15?/-f20z=80, (7.)

10x-12z/-h62r=12. (8.)

Subtracting (8) from (7), 27^ -|- 142= 68. (9.)

Multiplying (6) by 27, and (9) by 5, we have

135z/+5942=864. (10.)

135y+70z= 340. (11.)

Subtracting (11) from (10), 5242=624

;

whence 2=1.

Substituting this value of z in (6),

5y+22=32;
whence 2/ =2.

Substituting the values of y and 2 in (1),

2x4-64-4=16;
whence x=3.

E2
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153. Hence, to solve three equations containing three un
known quantities, we have the following

RULE.

From the three equations deduce two containing only two un»

known quantities ; then from ifiese tvjo deduce one containing onl§

one unknown quantity.

154. If we hadybwr simultaneous equations containing four

unknown quantities, we might, by the methods already ex-

plained, eliminate one of the unknown quantities. We should

thus obtain three equations between three unknown quanti-

ties, which might be solved according to Art. 152. So, also,

if we had/ve equations containing five unknown quantities,

we might, by the same process, reduce them to four equations

containing four unknown quantities, then to three, and so on.

By following the same method, we might resolve a system of

any number of equations of the first degree. Hence, if we have

m equations containing m unknown quantities, we proceed by

the following

RULE.

\st. Combine successively any one of the equations with each of

the others^ so as to eliminate the same unknown quantity; there

will result m—1 new equations^ containing m—1 unknown quan-

tities.

2d. Combine any one of these new equations with the others^ so as

to eliminate a second unknoiun quantity ; thei^e tuill result m— 2

equations^ containing m—2 unknown quantities.

Sd. Continue this series of operations until there residts a single

equation containing but one unknown quantity^ from ivhich the

value of this unknoiun quantity is easily deduced.

4:th. Substitute this valuefor its equal in one of the equations con-

iaining two unknown quantities, and thus find the value ofa second

unhwwn quantity \ substitute these values in an equation contain-

ing three unknown quantities^ and find the value of a third; and

so on, till the values of all are determined.

Either of the unknown quantities may be selected as the one
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W

to be first eliminated. It is, however, generally best to begin

with that which has the smallest coefficients ; and if each of

the unknown quantities is not contained in all the proposed

equations, it is generally best to begin with that which is found

in the least number of equations. Sometimes a solution may
be very much abridged by the use of peculiar artifices, for

which no general rules can be given.

EXAMPLES.

Solve the following groups of simultaneous equations

:

(2x+^y-Sz= 22\ [x=S.

^I. <4:X-2y-\-5z=ls[ Ans, \y=7.

[x-\-y=za\

~-2. } x-\-z=bl

( y-\-z=c )

Note. Take the sum of the three preceding equations.

/ x-{-y+z=:29\

Y S. ] ^+2y+8z=:62V Ans,

ilxA-iy+iz=10)

(
x+^y-^^z=S2\

(ix-\-iy+h^=12)

{ x-\-y-z=lS20\
I— 5. -^ x—y+z= 654 V Ans. <

ir 3.987.

2/ =654.

2= 821.

6.

7.

x—y-^z= 6

8ix-4|z/+5^2=t:82

10^;z;-9|2/+ll2=71

Ans. }y:=:6S0.

{z=94:5.
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— 8. ^

X y

1+1=5
X z

-

\.y ^ J

-+ ^a
X y z

1-1+1.5
X y z

-

. ~H-^i=' ,

r 12 7^

2a;+ 3?/ 8a;+4z

30 37

z3x+4;^ ' 5?/+a

222 8

[,63/4-9z 2x4-3 y

c2x+by-1z=-2^^
11. \ 6x-y-\-Sz= 227

L 7x4-6y4-^= 297

X y 2z ^^

}

4'^6'^3 76

2+ 8"+5- ^^

^4-^4-^=248 J

7a;-2z4-8w=17
4:y—2z-\-v=ll

5y—Sx-^2u= 8

47/_8?^4-2y= 9

8«4-8w=33

^n^.

X:

y=

Z=

2

a—b+c
2

2

J.7W. -

a:;=

2/^

2r=

2

2

-4/15.

{S
ic=13.

24.

62.

-Arw.

x= 12.

y= 30.

2= 168.

Lv= 60.

J.7W.

a:=2,

z = S,
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— 14.

x-\-y-{-z-\-u+ v=26
x-{-y+ z+t-{-v=27
x-{-y-\-t-{-u-^v=:2S

x-{-z+i-^u+v^29
y-\-z+t-]-u-\-v=30

Note. Take the sum of these six equations.

Am.

x=S.
y=4u
z=6.

t=7.

v=8.

,3 V

Problems involving Equations of the First Degree with several

Unknown Quantities.

Prob. 1. Find two numbers such that if the first be added

to four times the second, the sum is 29 ; and if the second be

added to six times the first, the sum is %Q.

Prob. 2. If A's money were increased by ZQ shillings, he

would have three times as much as B ; but if B's money were

diminished by 5 shillings, he would have half as much as A.

Find the sum possessed by each.

Prob. 3. A pound of tea and three pounds of sugar cost six

shillings ; but if sugar were to rise 50 per cent, and tea 10 per

cent., they would cost seven shillings. Find the price of tea

and sugar. Ans. Tea, 55. per pound ; Sugar, 4 pence.

"iProb. 4. What fraction is that to the numerator of which if

4 be added the value is one half; but if 7 be added to the de-

nominator, its value is one fifth ? Ans. t^.
^ Prob. 5. A certain sum of money, put ont at simple interest,

amounts in 8 months to $1488, and in 15 months it amounts

to $1530. What is the sum and rate per cent. ?

Prob. 6. A sum of money put out at simple interest amounts

in m months to a dollars, and in n months to h dollars. Re-

quired the sum and rate per cent.

h—a
Ans. The sum is

;
the rate is 1200 x -

n—m ' na—mb'
Prob. 7. Tlvcre is a number consisting of two digits, the sec-

ond of which is greater than the first ; and if the number be

divided by the sum of its digits, the quotient is 4 ; but if the

digits be inverted, and that number be divided by a number
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greater by two than the diflference of the digits, the quotient is

14. Required the number.

Let X represent the left-hand digit, and y the right-hand

digit.

Then, since x stands in the place of tens, the number will

be represented by \^x-^y.

Hence, by the first condition,

lOo^-hy^^.
x-\-y

'

by the second condition,

y-x-^r'l'

Whence a:=4, ?/=8, and the required number is 48.
*^ Prob. 8. A boy expends thirty pence in apples and pears,

buying his apples at 4 and his pears at 6 for a penny, and aft-

erward accommodates his friend with half his apples and one

third of his pears for 13 pence. How many did he buy of

each?

Prob. 9. A father leaves a sum of money to be divided

among his children as follows: the first is to receive $300 and
the sixth part of the remainder ; the second, $600 and the

sixth part of the remainder; and, generally, each succeeding

one receives $300 more than the one immediately preceding,

together with the sixth part of what remains. At last it is

found that all the children receive the same sum. What was

the fortune left, and the number of children ?

Ans. The fortune was $7500, and the number of children 5.

Prob. 10. A sum of money is to be divided among several

persons as follows: the first receives a dollars, together with

the nth part of the remainder; the second, 2a, together with the

nth part of the remainder; and each succeeding one a dollars

more than the preceding, together with the n\\\ part of the re-

mainder ; and it is found at last that all have received the same
Bum. What was the amount divided, and the number of per-

sons? Ans. The amount was a(?i— 1)*;

the number of persons =?? — 1.

Prob. 11. A wine-dealer has two kinds of wine. If ho mixes
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9 quarts of the poorer with 7 quarts of the better, he can sell

the mixture at 65 cents per quart ; but if he mixes 3 quarts of

the poorer with 5 quarts of the better, he can sell the mixture

at 58 cents per quart. What was the cost of a quart of each

kind of wine?

Ans. 48 cents for the poorer, and 64 for the better.

Prob. 12. A person owes a certain sum to two creditors. At
one time he pays them $530, giving to one four elevenths of

the sum which is due, and to the other $30 more than one

sixth of his debt to him. At a second time he pays them $420,

giving to the first three sevenths of what remains due to him,

and to the other one third of what remains due to him. What
were the debts?

Prob. 13. If A and B together can perform a piece of work

in 12 days, A and C together in 15 days, and B and C in 20

days, how many days will it take each person to perform the

same work alone?

This problem is readily solved by first finding in what time

they could finish it if all worked together.

Prob. 14. If A and B together can perform a piece of work

in a days, A and C together in b days, and B and C in c days,

how many days will it take each person to perform the same

work alone? ^ , ^ ,

. . . 2aoc T ^ . 2aoc ,

Ans. A in ——^ 7 days* 13 m —.—-, days;
ac-^bc—ab "^ ab-{-bc—ac "^

^ . 2abc ,

C in -1 7- days.
ab-\-ac—bc

Prob. 15. A merchant has two casks, each containing a cer-

tain quantity of wine. In order to have an equal quantity in

each, he pours out of the first cask into the second as much as

the second contained at first; then he pours from the second

into the first as much as was left in the first ; and then again

from the first into the second as much as was left in the second,

when there are found to be a gallons in each cask. How manj
gallons did each cask contain at first ?

, 11a -, 5a
Ans, -TT— and —

.
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Prob. 16. A laborer is engaged for a days on condition that

he receives p pence for every day he works, and pays q pence

for every day he is idle. At the end of the time he receives a

pence. How many days did he work, and how many was he

idle?

Ans, He worked —^— days, and was idle -^ days.
p+ q

-^

p+ q ^

Prob. 17. A certain number consisting of two digits contains

the sum of its digits four times, and their product three times.

What is the number?

Prob. 18. A father says to his two sons, of whom one was

four years older than the other. In two years my age will be

double the sum of your ages ; but 6 years ago my age was 6

times the sum of your ages. How old was the father and each

of the sons ?

Ans. The father was 42, one son 11, and the other 7 years old.

Prob. 19. It is required to divide the number 96 into three

parts such that if we divide the first by the second the quo-

tient shall be 2, with 8 for a remainder ; but if we divide the

second by the third, the quotient shall be 4, with 5 for a re-

mainder. What are the three parts? Ans. 61, 29, and 6.

Prob. 20. Each of seven baskets contains a certain number
of apples. I transfer from the first basket to each of the other

six as many apples as it previously contained ; I next trans-

fer from the second basket to each of the other six as many
apples as it previously contained, and so on to the last basket,

when it appeared that each basket contained the same number
of apples, viz., 128. How many apples did each basket contain

before the distribution?

Ans. The first 449, the second 225, the third 113, the fourth

67 the fifth 29, the sixth 16, and the seventh 8 apples.

155. When we have only one equation containing more than

one unknown quantity, we can generally solve the equation in

an infinite number of ways. For example, if a problem involv-

ing two unknown quantities {x and y) leads to the singh equa-

tion ax-{-by=Cj
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we may ascribe any value we please to ic, and then determine

the corresponding value of y. Such a problem is called inde-

terminate. An indeterminate problem is one which admits of an

indefinite number of solutions.

156. If we had two equations containing three unknown quan-

tities, we could, in the first place, eliminate one of the unknown

quantities by means of the proposed equations, and thus obtain

one equation containing two unknown quantities, which would

be satisfied by an infinite number of systems of values. There-

fore, in order that a problem may be determinate^ its enuncia-

tion must contain as many different conditions as there are un-

known quantities, and each of these conditions must be express-

ed by an independent equation.

157. Equations are said to be independent when they express

conditions essentially different^ and dependent when they express

the same conditions under different forms.

Thus
]
Q^ _in [ ^^® independent equations.

But lo^ cf^-|j.[ ^^® ^^^ independent, because the one

may be deduced from the other.

158. If, on the contrary, the number of independent equa-

tions exceeds the number of unknown quantities, these equa-

tions will be contradictory.

For example, let it be required to find two numbers such that

their sum shall be 8, their difference 2, and their product 20.

From these conditions we derive the following equations

:

a:+2/=8,

x-y=2,
xy=z20.

From the first two equations we find

x=b and 2/=3.

Hence the third condition, which requires that their product

ehall be equal to 20, can not he fidjilled.
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CHAPTER X.

DISCUSSION OF PROBLEMS INVOLVING SIMPLE EQUATIONS.—

INEQUALITIES.

159. To discuss a 'problem or an equation is to determine the

values which the unknown quantities assume for particular hy-

potheses made upon the values of the given quantities, and to

interpret the peculiar results obtained. We have seen that if

the sum of two numbers is represented by a, and their differ-

ence by &, the greater number will be expressed by —5—, and

the less by —^. Here a and h may have any values whatever,

and still these formulas will always hold true. It frequently

happens that, by attributing different values to the letters which

represent known quantities, the values of the unknown quanti-

ties assume peculiar forms, which deserve consideration.

160. We may obtain jive species of values for the unknown
quantity in a problem of the first degree

:

Ist. Positive values.

2d. Negative values. ^
3d. Values of the form of zero, or -r.

A '^
4th. Values of the form of -r-.

5th. Values of the form of ^.

We will consider these five cases in succession.

161. 1st. Positive valves are generally answers to problems in

the sense in which they are proposed. Nevertheless, all posi-

tive values will not always satisfy the enunciation of a prob-

lem. For example, a problem may require an answer in whoU
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numbers^ in which case a fractional value of the unknown quan-

tity is inadmissible. Thus, in Prob. 17, page 93, it is implied

that the value of cc must be a whole number, although this con-

dition is not expressed in the equations. We might change

the data of the problem, so as to obtain a fractional value of

cc, which would indicate an impossibility in the problem pro-

posed. Problem 43, page 97, is of the same kind ; also Prob,

7, page 109.

If the value obtained for the unknown quantity, even when
positive, does not satisfy all the conditions of the problem, the

problem is impossible in the form proposed.

162. 2d. Negative values.

Let it be proposed to find a number which, added to the

number 5, gives for a sum the number a. Let x denote the re-

quired number; then, by the conditions of the problem,

h-{-x=a;

whence x= a—b.

This formula will give the value of x corresponding to any

assigned values of a and b.

For example, if a=7 and 5=4>

then tc=7—4= 3,

a result which satisfies the conditions.

But suppose that a=6 and 6=8,
then x=5—8=—B.
We thus obtain for x a negative value. How is it to be in-

terpreted ?

By referring to the problem, we see that it now reads thus

:

What number must be added to 8 in order that the sum may
be 5? It is obvious that if the word added and the word sum
are to retain their arithmetical meanings, the proposed problem

is impossible. Nevertheless, if in the equation 8 4- a; = 5 we
substitute for -fee its value —3, it becomes

8-3 = 5,

an identical equation; that is, 8 diminished by 3 is equal to 5,

or 5 may be regarded as the algebraic sum of 8 and —3.
The negative result, x=—3, indicates that the problem, in a
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strictly arithmetical sense, is impossible ; but, taking this value

of X with a contrary sign, we see that it satisfies the enunciation

when modified as follows: What number must be svhtrax^ted

from 8 in order that the difference may be 6 ? The second

enunciation differs from the first only in this, that we put sub-

iract for add, and difference for sum.

If we wish to solve this new equation directly, we shall have

whence x=S—5, or 3.

163. For another example, take Problem 50, page 98. The
age of the father being represented by a, and that of the son

by 5, then will represent the number of years before the

age of the father will be n times that of the son.

Thus, suppose a=54, 6=9, and ?2=4;

^,
54-86 18 ^

then x=—^—=—= 6.
o o

This value of x satisfies the conditions understood arithmet-

ically ; for if the father was 54 years old, and the son 9 years,

then in 6 years more the age of the father will be 60 and the

son 15 ; and we see that 60 is 4 times 15.

But suppose a =45, 6=15, and 7i=4;

^, 45-60 -15 ^
then x=—-—=——-=— 5.

o o

Here again we obtain a negative result How are we to in-

terpret it ?

By referring to the problem, we see that the age of the son

is already more than one fourth that of the father, so that the

time required is already past by five years. The problem, if

taken in a strictly arithmetical meaning, is impossible. But

let us modify the enunciation as follows:

The age of the father is 45 years ; the son's age is 15 years;

how many years since the age of the father was four times that

of his son ?
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The equation corresponding to this new enunciation is

whence 60—4:x=4^5—x; and a: ==5,

a result which satisfies the modified problem taken in its arith-

metical sense.

From this discussion we derive the following general prin-

ciples :

l5^. A negative resultfoundfor the unknown quantity in a proh

lem of the first degree indicates that the problem is imjpossiblej if

understood in its strict arithmetical sense.

2d. TJiis negative value, taken with a contrary sign, may he re-

garded as the answer to a problem whose enunciation only differs

from that of the proposed problem in this, that certain quantities

which were added should have been subtracted, and vice versa.

164. In what case would the value of the unknown quantity?

in Prob. 20, page 94, be negative? Ans. When ri>m.

Thus, let m= 20, n= 26, and a= 60 miles;

To interpret this result, observe that it is impossible that the

second train, which moves the slowest, should overtake the first.

At the time of starting, the distance between them was 60 miles,

and each subsequent hour the distance increases. If, however,

we suppose the two trains to have been moving uniformly along

an endless road, it is obvious that at someformer time they must

have been together.

This negative result indicates that the problem is impossible

if understood in its strict arithmetical sense. But if the prob-

lem had been stated thus

:

Two trains of cars, 60 miles apart, are moving in the same
direction, the forward one 25 miles per hour, the other 20.

How long since they were together ?

The problem would have furnished the equation

25ic=20:r+ 60;

whenoe a:=-fl2.
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If we wish to include both of these cases in the same enun-

ciation, the question should be, Required the time of Hmr heiiig

together^iQdivmg it uncertain whether the time ^2^ past orfuture^

EXAMPLES.

1. What number is that whose fourth part exceeds its third;

part by 16? Ans. -192.

How should the enunciation be modified in order that the

result may be positive?

2. The sum of two numbers is 2, and their difference 8.

What are those numbers? Ans. —3 and +5.
How should the enunciation be modified in order that both

results may be positive ?

3. What fraction is that from the numerator of which if 4

be subtracted the value is one half, but if 7 be subtracted

from the denominator its value is one fifth ? , —^

. .

^'^^
How should the enunciation be modified in order that the

problem may be possible in its arithmetical sense?

4. Find two numbers whose difference is 6, such that four

times the less may exceed five times the greater by 12.

Ans. -42 and -36.

Change the enunciation of the problem so that these num-
bers, taken with the contrary sign, may be the answers to the

modified problem.

165. 8d. We may obtain for the unknown quantity valms of

the form of zero, or -7.

In what case would the value of the unknown quantity in

Prob. 20, page 94, become zero, and what would this value

signify ?

Ans. This value becomes zero when a = 0, which signifies

that the two trains are together at the outset.

In what case would the value of the unknown quantity in

Prob. 50, page 98, become zero, and what would this value

signify ?
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Ans. When a=nb, which signifies that the age of the father

is now n times that of the son.

In what case would the values of the unknown quantities in

Prob. 88, page 96, become zero, and what would these values

signify ?

When a problem gives zero for the value of the unknown
quantity, this value is sometimes applicable to the problem,

and sometimes it indicates an impossibility in the proposed

question.

166. 4th. We may obtain for the unknown quantity values

of the form of -^.

In what case does the value of the unknown quantity in

Prob. 20, page 94, reduce to -^, and how shall we interpret

this result? Ans. When m = n.

On referring to the enunciation of the problem, we see that

it is absolutely impossible to satisfy it ; that is, there can be no

point of meeting ; for the two trains, being separated by the dis-

tance a,. and moving equally fast, will always continue at the

same distance from each other. The result ^ may then be re-

garded as indicating an impossibility.

The symbol q is sometimes employed to represent infinity^

and for the following reason

:

If the denominator of a fraction is made to diminish^ while

the numerator remains unchanged, the value of the fraction

must increase.

For example, let m— 72= 0.01

;

then x=-^=4; = 100a.m—n .01

Let m-n= 0.0001]

then a:=-^=-^= 10,000«.m^n .0001

Hence, if the difference in the rates of motion is not zero, the
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two trains must meet, and the time will become greater and

greater as this difference is diminished. If, then, we suppose

this difference to be less than any assignable quantity^ the time

represented by will be greater than any assignable quantity,
7Yi-^n

Ilence we infer that every expression of the form j found

for the unknown quantity indicates the impossibility of satis-

fying the problem, at least in Jiriiie numbers.

In what case would the value of the unknown quantity in

Prob. 10, page 92, reduce to the form ^r? and how shall wc in-

terpret this result?

167. The symbol 0, called zero, is sometimes used to denote

the absence of value, and sometimes to denote a quantity less

than any assignable value.

The symbol oo , called infinity, is used to denote a quantify

greater than any assignable value. A line produced beyond any

assignable limit is said to be of infinite length ; and time ex-

tended beyond any assignable limit is called infinite duration.

We have seen that when the denominator of the fraction

—3- becomes less than any assignable quantity, the value of

the fraction becomes greater than auy assignable quantity.

Hence we conclude that ^= co\

that is, a finite quantity divided by tero is an expression for in-

finity.

Also, if the denominator of a fraction be made to increase

while the numerator remains unchanged, the value of the frac-

tion must diminish; and when the denominator becomes greater

than any assignable quantity, the value of the fraction must be-

come less than any assignable quantity. Hence we conclude that

ci

00

that is, a finite quantity divided by infiriiiy is an expression fyr

zero
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168. 5th. We may obtain for the unknown quantity values

of the form of ^.

In what case does the value of the unknown quantity in

Prob. 20, page 94, reduce to ^, and how shall we interpret this

lesult? ^?75. When a= 0, and m— n.

To interpret this result, let us recur to the enunciation, and

observe that, since a is zero, both trains start from the same

point; and since they both travel at the same rate, they will

always remain together ; and, therefore, the required point of

meeting will be any where in the road traveled over. The

problem, then, is entirely indeterminate^ or admits of an infinite

number of solutions ; and the expression ^ may represent any

finite quantity.

We infer, therefore, that an expression of the form of q found

for the unknown quantity generally indicates that it may have

any value whatever. In some cases, however, this value is

subject to limitations.

In what case would the values of the unknown quantities

in Prob. 44, page 97, reduce to ^, and how would they satisfy

the conditions of the problem? Ans. When a=b=c,

"which indicates that the coins are all of the same value. B
might therefore be paid in either kind of coin ; but there is a

"limitation, viz., that the value of the coins must be one dollar.

In what case do the values of the unknown quantities in

Prob. 38, page 96, reduce to -, and how shall we interpret

his result?

169. The expression ^ may be conceived to result from a

fraction whose numerator and denominator both diminish si-

multaneously, but in such a manner as to preserve the same
relative value. If both numerator and denominator of a frac-

tion are divided by the same quantity, its value remains un-
F
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changed. Hence, if j represent any fraction, we may conceive

both numerator and denominator to be divided by 10, 100,

1000, etc., until each becomes less than any assignable quanti-

ty, or 0. The fraction then reduces to the form of
J=^,

but the

ralue of the fraction has throughout remained unchanged.

For example, we may suppose the numerator to represent

the circumference of a circle, and the denominator to represent

its diameter. The value of the fraction in this case is known
to be 3.1416. If now we suppose the circle to diminish until

it becomes a mere point, the circumference and diameter both

become zero, but the value of the fraction has throughout re-

mained the same. Hence, in this case, we have

5= 3.1416.

Again, suppose the numerator to represent the area of a cir-

cle, and the denominator the area of the circumscribed square;

then the value of the fraction becomes .7854. But this value

remains unchanged, although the circle may be supposed to

diminish until it becomes a mere point Hence, in this case,

^° '^"^^
g=.7854.

Hence we conclude that the symbol ^ may represent any

finite quantity.

So, also, we may conceive both numerator and denominator

of a fraction to be multiplied by 10, 100, 1000, etc., until each

becomes greater than any assignable quantity; the fraction

then reduces to the form of ^. Hence we conclude that the

00 ^
symbol — may also rej^resent any finite quantity,

INEQUALITIES.

170. An inequality is an expression denoting that one quan-

tity is greater or less than another. Thus Zx> 2ah denotes

that three times the quantity x is greater than twice the prod«

act of the quantities a and h.
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171. In treating of inequalities, the terms greater and less

must be understood in their algebraic sense ; that is, a negative

quantity standing alone is regarded as less than zero ; and of

two negative quantities, that which is numerically the greatest

is considered as the least; for if from the same number we sub-

tract successively numbers larger and larger, the remainders

must continually diminish. Take any number, 5 for example,

and from it subtract successively 1, 2, 8, 4, 5, 6, 7, 8, 9, etc.,

we obtain

5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9, etc.,

or, reducing, we have

4, 3, 2, 1, 0, -1, -2, -8, -4, etc.

Hence we see that —1 should be regarded as less than zero;

—2 less than —1; —3 less than —2, etc.

172. Two inequalities are said to subsist in the same sense

when the greater quantity stands at the left in both, or at the

right in both ; and in a contrary sense when the greater quanti-

ty stands at the right in one and at the left in the other. Thus
9>7 and 7>6, or 5<8 and 3<4, are inequalities which sub-

sist in the same sense; but the inequalities 10>6 and 3<7
subsist in a contrary sense.

173. Properties of Inequalities.— 1st. If the same quantity he

added to or subtracted from each memher of ayi inequality, the re

suiting inequality will always subsist in the same sense.

Thus, 8 > 3.

Adding 5 to each member, we have

8-f-5>8+ 5,

and subtracting 5 from each member, we have

8-5 > 3-5.
Again, take the inequality

-3<-2.
Adding 6 to each member, we have

^3-h6<-2 + 6, or 3<4;
and subtracting 6 from each member,

_3-6<-2-6, or -9<-a
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174. Hence we conclude that we may transpose a term from

one member of an inequality to the other, provided we changa

its sign.

Thus, suppose ct'^h''>W-^2a'.

Adding 2a2 to each member of the inequality, it becomes

Subtracting U^ from each member, we have

a2+2a2>3Z.2_^2^

or 3a2>262.

(

175. 2d. Ifwe add together the corresponding members of two or

more inequalities which subsist in the same sense^ the residiing in-

equality will always subsist in the same sense.

Thus, b>4:

4>2
7>3

Adding, we obtain 16> 9.

176. 8d. If one inequality be subtractedfrom another which sufh

sists in the same sense^ the result will not always be an inequality

subsisting in the same sense.

Take the two inequalities 4<7
and 2<3 '

Subtracting, we have 4—2<7— 3, or 2<4,

where the result is an inequality subsisting in the same sense.

But take 9<10
and 6< 8

Subtracting, we have 9— 6> 10— 8, or 3>2,

where the result is an inequality subsisting in the contrary sense.

We should therefore avoid as much as possible the use of

this transformation, or, when we employ it, determine in what

sense the resulting inequality subsists.

177. 4th. Ifive multiply or divide each member ofan inequality

by the same positive quantity, the resulting inequality ivill subsist

in the same sense.
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Thus, if a<b,

then maKmbj

and m m
Also, if —a>— 5,

then — may—mb.

and
a b

125

Hence an inequality may be cleared of fractions. Thus, sup-

pose we have a^—h^ &—d'^

Multiplying each member by 6ac?, it becomes

3a(a2-52)>2cZ(c2-cZ2).

178. 5th. If loe multiply or divide each member of an inequality

by tJie same negative number^ the resulting inequality will subsist

in the coyitrary sense.

Take, for example, 8>7.
Multiplying each member by —3, we have the opposite in-

equality —24<-21.
So, also, 15>12.

Dividing each member by — 3, we have

-5<-4.
Therefore, if we multiply or divide the two members of an

inequality by an algebraic quantity, it is necessary to ascertain

whether the multiplier or divisor is negative, for in this case

the resulting inequality subsists in a contrary sense.

179. 6th. Ifthe signs of all the terms of an inequality be changed,

the sign of inequality must be reversed.

For to change all the signs is equivalent to multiplying each

member of the inequality by —1.

180. Reduction of Inequalities.—The principles now establish-

ed enable us to reduce an inequality so that the unknown quan-

tity may stand alone as one member of the inequality. The
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other member will then denote one limit of the unknown

quantity.

EXAMPLES.

1. Find a limit of x in the inequality

7 5cc 95 ^

Multiplying each member by 12, we have

U-15x<96-24:x.

Transposing, 9a;<81.

Dividing, x<9.

2. 2x4-f-8<6. Ans. x<6
o

8. 8a^-2>^-t Ans.x>'^
2 5

/y> rv* rf* /y» /y»

^-
2+3+4+6+ 12 -^>^-

^ cc cc— 3 ^ 4cc+l . .

5. 7j
^-^^<^ E—

•

-47W. cc>4.
o 15 5

^+4a;-8>8
6. Given <( k i k

/" ^o find the limits of x,

6a:+5^^<18
. (a;>2.

Ans. \U<3.

7. A man, being asked how many dollars he gave for his

watch, replied, If you multiply the price by 4, and to the prod-

uct add 60, the sum will exceed 256; but if you multiply the

price by 8, and from the product subtract 40, the remainder

•will be less than 118. Eequired the price of the watch.

8. What number is that whose half and third part added

together are less than 105 ; but its half diminished by its fifth

part is greater than %Z ?

9. The double of a number diminished by 6 is greater than

22, and triple the number diminished by 6 is less than double

the number increased by 10. Required the number.
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CHAPTER XI.

INVOLUTION.

181. A power of a quantity is the product obtained by tak-

ing that quantity any number of times as a factor.

Thus the first power of 3 is 8

;

the second power of 3 is 3 X 8, or 9

;

the fourth power of 3 is 8x3x8x8, or 81, etc.

Involution is the process of raising a quantity to any power.

182. A power is indicated by means of an exponent. The
exponent is a number or letter written a little above a quantity

to the right, and shows how many times that quantity is taken

as a factor.

Thus the first power of a is a\ where the exponent is 1,

which, however, is commonly omitted.

The second power of a is a x a, or a^, where the exponent 2

denotes that a is taken twice as a factor to produce the power

aa.

The third power of a is axaxa^ or a^, where the exponent

3 denotes that a is taken three times as a factor to produce the

power aaa.

The fourth power of a is axaxaxa^ or a*.

Also the 72th power of a is axaxaxa^ etc., or a repeated

as a factor n times, and is written a".

The second power is commonly called the square^ and the

third power the cube.

183. Exponents may be applied to polynomials as well as

to monomials.

Thus {a-\-h-\-cY is the same as

(a+2>+c)x(a+64-c)x(rt+ Z)+ c),

or the third power of the entire expression a'\-h~\-c.
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Powers of Monomials.

184. Let it' be required to find the third power or cube of

According to the rule for multiplication, we have

{2d'b''f=2aW X 2aW x 2aW= 2 x 2 x2a^a^aWb^b^=.8a^b\

In a similar manner any monomial may be raised to any

power.

Hence, to raise a monomial to any power, we have the fol-

lowing
RULE.

Baise the numerical coefficient to the required power^ and multi-

ply the exponent of each of the letters by the exponent of the re-

quired power,

185. Sign of the Power.—With respect to the signs, it is ob-

vious from the rules for multiplication that if the given mono*

mial be positive, all of its powers are positive ; but if the mo-

nomial be negative, its square is positive, its cube negative, its

fourth power positive, and so on.

Thus —ax—a=-{-a^^
—ax —ax —a=—a^j

—ax—ax—ax—a=-\-a*,
—ax —ax —ax —ax —a=—a^, etc.

In general, any even power of a negative quantity is positive^

and every odd power negative ; but all powers of a positive quaU'

iity are positive.

EXAMPLES.

1. Find the square of IWbcd'^. Ans. \21a%''cH\

2. Find the square of —ISx^yz^. ^

8. Find the cube of 1ab'^x\

4. Find the cube of —Sxy'^z^.

5. Find the fourth power of 4aiV.

6. Find the fourth power of —baWx.
7. Find the fifth power of 2aWx\

8. Find the fifth power of -SaZ^V.

9. Find the sixth power of Zab^x^,
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^ lOPFind the sixth power of -1d?h^x'', U "( ^

11. Find the seventh power of 2a^x^y,

12. Find the mth power of abV. cC'

186. Powers of Fractions.—Let it be required to find the

third power of %^. "l

6c

From the rule for the multiplication of fractions, we have

/2ahy_2ah^ 2ab^ 2a^_8a^
\Sc )

~ Sc ^ Sc ^ 3c ~27c^'

In a similar manner any fraction may be raised to any

power. Hence, to raise a fraction to any power, we have the

following
RULE.

Baise both numerator and deno7ninator to the required power.

EXAMPLES.

X.^j.' . ,. r.Sab-'c^ . 9a25V
^Otl. i^md the square of -=—5. Ans. ,^ ., , .

Jj 2. 1^ md the square of—j^—

.

A71S.

H 3. Find the cube of Z:|^
omn

4:bc
'

'

IQh^c^'
^

ax
^^ 4. Find the cube of

5. Find the fourth power of i^. .JiAi^'

6. Find the fourth power of - ^-^. M£^\^

7. Find the fifth power of - ^^'. _ ..A5^£-^IiC:l

8. Find the fifth power of ^^^' —^ ^

9. Find the sixth power of - 5^!^. > ^"i^tki^ 2mn^ -~-
F 2 ^-

"
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187. Negative Exponents.—The rule of Art. 184, for raising

a monomial to any power, holds true when the exponents of any

of the letters are negative, and also when the exponent of the re-

quired power is negative.

Let it be required to find the square of a'^. This expres-

sion may be written -3, which, raised to the second power, be-

1
"

comes -g, or a~®, the same result as would be obtained by

multiplying the exponent —3 by 2.

Also, let it be required to find that power of 2am^ whose

exponent is —3.

The expression {2am'^)~^ may be written -^—^, which

1
equals

3 g
. Transferring the factors to the numerator, we

A a m
have 2~^a'^%"®, or \a-hn~^.

EXAMPLES.

Find the value of each of the following expressions.

1. {Za'h-y. Ans. Mh-\
2. {1a-%''c-''xf. Ans. AQa-'h^c-^x^.

3. (3a52x-V-2)-2. Ans. la-^-^xY^
4. (—4a^x~y)~^ Ans. -^~*x^y~*.

5. {-6ab-'x-^y. ^juiioJ^yC'^
6. (-3a^x-V)-3. _-^,e;L-'o^^r'

7. {ia-'bx-*)-\ ^^ l'*lr''

8. {^Za-nh-xy. ±IL^Z<'*'
9. (-4a-3i2x-r*. ^\Xi,^^.o.

10. (-2a5-Vic-*y)*. -i^^ ^ C < r

188. Powers of Polynomials.—A polynomial may be raised

to any power by the process of continued multiplication. If

the quantity be multiplied by itself, the product will be the

second power; if the second power be multiplied by the orig-

inal quantity, the product will be the third power, and so on.

Hence we have the following
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RULE. %J^iL^^^-^^
Midi^-^^^-qiia/)^^^ h^-4(sdf-^'mMl-tt has-been^ iaken tos a factor

as many times as there are units in the exponent of the required

jpower.

EXAMPLES.

1. Find the square of 2a+852. Ans. ^a^ ^VlalP'-^-W

,

2. Find the square of a-\-m—n.

3. Find the cube of 1a^-^Za-\.

4. Find the cube of a-{-\.

6. Find the cube of a^lh-\-Zx.

6. Find the fourth power of a—h.

7. Find the fourth power of 2«— 85.

8. Find the fourth power of (]?-\-}?.

9. Find the fifth power of a—h.

10. Find the square of "^. Ans. ^rfl^^tK^ ay— OX a^y^—zaoxy -\-oV

11. Find the cube of ?^±5?.

12. Find the cube of

m—n
a^-h

a-W

189. Square of a Polynomial.—We have seen, Art. QQ^ that

the square of a binomial may be formed without the labor of

actual multiplication. The same principle- may be extended

to polynomials of any number of terms. By actual multipli-

cation, we find the square of a+J+c to be

a2-|-52_^c2-f2a&+2acH-2&c;

that is, the square of a trinomial consists of the square of each

term
J
together with twice the product of all the terms multiplied to-

gether two and two.

In the same manner we find the square of a4-5+ c+c? to be

a2 4.i3_|_c2_|.(^2_^_2a&4-2ac-f2ac?+25c+2M+2cc^;

that is, the square of any polynomial consists of the square of each

term, together with twice the sum of the products of all the terms

multiplied together two and two.
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EXAMPLES.

1. Find the square of a-\-h-\-c-\-d-{-x,

2. Find the square of a—h-\-c.

3. Find the square of 1+ 2a; +3x2.

4. Find the square of 1— a:+ir2_x^ /

5. Find the square of a— 2h-\-Sab—m.

6. Find the square of l— Sx-\-Sx'^—x^.

7. Find the square of a— 2?>+3c— 4c?.

In Chapter XVITI. will be given a method by which any

power of a binomial may be obtained without the labor of

multiplication.

i
r ^
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CHAPTEK XII

EVOLUTION.

190. A root of a quantity is one of the equal factors which,

multiplied together, will produce that quantity.

If a quantity be resolved into two equal factors, one of them

is called the square root.

If a quantity be resolved into three equal factors, one of

them is called the cube root.

If a quantity be resolved into four equal factors, one of

them is called the fourth root., and so on.

191. Evolution is the process of extracting any root of a

given quantity.

Evolution is indicated by the radical sign ^f.
Thus, -y/a denotes the square root of a.

Ya denotes the cube root of a.

yH denotes the nth root of a.

192. Surds.—When a root of an algebraic quantity which

is required can not be exactly obtained, it is called an irration-

al or surd quantity.

Thus, v/o^ is called a surd. VS is also a surd, because the

square root of 3 can not be expressed in numbers with perfect

exactness.

A rational quantity is one which can be expressed in finite

terms, and without any radical sign ; as, a, ba^^ etc.

193. An imaginary root is one which can not be extracted

on account of the sign of the given quantity. Thus the square

root of —4 is impossible, because no quantity raised to an even

power can produce a negative result.

A root which is not imaginary is said to be real.
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Roots of Monomials.

194. According to Art. 184, in order to raise a monomial to

any power, we raise the numerical coefficient to the required

power, and multiply the exponent of each of the letters by the

exponent of the power required. Hence, conversely, to ex-

tract any root of a monomial, we extract the root of the nu-

merical coefficient, and divide the exponent of each letter by
the index of the required root

Thus the cube root of 64a^6^ is 4a^6.

195. Sign of the Root.—We have seen. Art. 186, that all pow«

ers of a positive quantity are positive ; but the even powers

of a negative quantity are positive, while the odd powers are

negative.

Thus +a, when raised to different powers in succession,

will give j^a, +a\ H-a^, +a*, +«', +< +a\ etc.

and —a, in like manner, will give

—a, H-a^, — a^, -|-«*j — o^^ +tt^, — a^, etc.

Hence it appears that if the root to be extracted be express-

ed by an odd number, the sign of the root will be the same as

the sign of the proposed quantity. Thus, \/—a^— _a; and

If the root to be extracted be expressed by an even number,

and the quantity proposed be positive^ the root may be either

positive or negative. Thus, y/o}= ±a.

If the root proposed to be extracted be expressed by an even

number, and the sign of the proposed quantity be negative, the

root can not be extracted, because no quantity raised to an

even power can produce a negative result.

196. Hence, to extract any root of a monomial, we have the

following

RULE.

\st. Extract the required root of the numei^ical coefficient.

2d. Divide the exponent of each literal factor hy the index of Oie

required root.
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Sd. Every even root of a positive quantity must have the double

sign ± , and every odd root of any quantity must have the same

sign as that quantity.

From Art. 186, it is obvious that to extract any root of a

fraction, we must divide the root of the numerator by the root

of the denominator. Thus,

3 /o^ « T 3 / ~c? a

EXAMPLES.

1. Find the square root of 64a^Z)*. Ans. :i^8a^b\

2. Find the square root of WQa'^b^c^x^. Ans. ±14:ab'^c^x*.

3. Find the square root of 226a^H^x^

4. Find the cube root of GAa^^b^x^. Ans. 4:ahV.

5. Find the cube root of —12ba^x^y^. Ans. —bax^y'^.

6. Find the cube root of -343a^^V2.

7. Find the fourth root of 81a*^>l Ans. ±Zab\
8. Find the fourth root of 256a*Z>iVl

9. Find the fifth root of -32a^Z>^V^ Ans. -2abV.

10. -bind the square root oi ^ ^ ^ ,
. Ans. ±-—r-^.

Y 11. Find the square root of fff^'f' i^JLjL

12. Fmd the cube root of ^-^r-s- -4^- fi—5.

bm'^x^ zmx^

13. Find the cube root of —
216cV

• ~
~'^^f

14. Find the fourth root of -ktt^-^- , r
81^V^ '^^V'^

15. Find the square root of 64a-2Z>-*x*. Ans. ±.'8a-^)-'^x\

16. Find the cube root of ^hVla-^-'^x^.

17. Find the fourth root of 256a-'^5-V.
18. Find the fifth root of •^Z1a-^%-^H\ Ans. -2a-^b-^x
19. Find the square root of {a— byx^. Ans. dr:{a—'b)x^

20. Find the cube root of {a-^bylx-^yf.
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Square Root of Polynomials.

197. In order to discover a rule for extracting the square

root of a polynomial, let us consider the square of a+Z>, which

is a^-\-2ah-{-h'^. If we arrange the terms of the square accord-

ing to the dimensions of one^etter, a, the first term will be the

square of the first term of the root; and since, in the present

case, the first term of the square is a^, the first term of the root

must be a.

Having found the first term of the root, we must consider

the rest of the square, namely, 2db-\-h'^^ to see how we can de-

rive from it the second term of the root. Now this remainder

may be put under the form {2a-\-h)h; whence it appears that

we shall find the second term of the root if we divide the re-

mainder by 2a-\-h. The first part of this divisor, 2a, is double

of the first term already determined ; the second part, 5, is yet

unknown, and it is necessary at present to leave its place empty.

Nevertheless, we may commence the division, employing only

the term 2a ; but as soon as the quotient is found, which in

the present case is 5, we must put it in the vacant place, and

thus render the divisor complete.

The whole process, therefore, may be represented as fol-

lows:

a2-f2a&+&2(a+6
a2

2a+h)2ab-{-h''

2ah-\-h''

If the square contained additional terms, we might continue

the process in a similar manner. We may represent the first

two terms of the root, a+Z;, by a single letter, m, and the re-

maining terms by c. The square of m+c will be m'^-\-2mc-\-c\

The square of the first two terms has already been subtracted

from the given polynomial. If we divide the remainder by
2m as a partial divisor, we shall obtain c, which we place in

the root, and also at the right of 2m, to complete the divisor.

We then multiply the complete divisor by c, and subtract the
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product from the dividend, and thus we continue until all the

terms of the root have been obtained.

198. Hence we derive the following

RULE.

1st. Arrange the terms according to the powers of some one let-

ter ; take the square root of the first term for the first term of the

required root, and subtract its square from the given polynomial,

2d. Divide the first term of the remainder by twice the root al-

ready found, and annex the residt both to the root and the divisor.

Multiply the divisor thus completed by the last term of the root, and

subtract the product from the last remainder.

3d. Double the entire root already found for a second divisor.

Divide the first term of the last remainder by the first term of the

second divisor for the third term of the root, and annex the result

both to the root and to the second divisor, and proceed as before

until all the terms of the root have been obtained.

If the given polynomial be an exact square, we shall at last

find a remainder equal to zero.

EXAMPLES.

1. Extract the square root of a^—2a^x-\-3aV—^ax^ -{-x^

a*

—

2a^x+ 2>aV— 2ax^+ x*
( a^

—

ax+ x^

2a'^-ax) -2a^x-{-SaV
— 2a^x-\- c^x?

2a^-2ax+x')2aV-2ax^-\-x'-

2a^x^-2ax^^-x*'

For verification, multiply the root a^^ax-\-x^ by itself, and

we shall obtain the original polynomial.

2. Extract the square root of a^-^2ab-\-2ac^b'^^2bc-^c^,

3. Extract the square root of

10x^-10a;3-12a^H5x-2+ 9cc6-2a;+l.

4. Extract the square root of

8ax=»+4a2a;2_|.4ic*+ 16Z>2ic2-hl6Z>*-hl6a52x.

Ans. 2x'^-^2ax+4.b\



138 ALGEBRA.

5. Extract the square root of

-\I>a'b''+ a«- 6a'b- 20a'b^ +b^-^ Ida'^b'- 6ab\

""6. Extract the square root of Sa^/^-ha*— 4a^6+4Z;*.

^7. Extract the square root of 4:X^-\-12x^-\-5x^—6x-\-l.

Am. 2x2 4-3ic-l.

— 8. Extract the square root of

4x*- 12aa?+ Iba^x^-^^o^x -h 16a*.

Ans. 2^2— 3aa:+4a2.

9. Extract the square root of

25x*- 30ax3

+

^^a?x''- 24:a^x+ 1 6a*.

Ans. 5x^— 3ax+4a*'*.

x^ 4
10. Extract the square root of x'^—x^-\--j-\-4:X—2-\- -^.

^ X

Ans. x^—^-\—

.

2 X

199. When a Trinomial is a Perfect Square.—The square of

a-\-b is a^-\-2ab-{-b'^^ and the square of a— b is a^— 2aZ>4-&^.

Hence the square root of a'^±2ab-\-b'^ is a±b; that is, a trino-

mial is a perfect square when two of its terms are squares, and

the third is the double product of the roots of these squares.

Whenever, therefore, we meet with a quantity of this de-

scription, we may know that its square root is a binomial ; and

the root may be found by extracting the roots of the two terms

which are complete squares, and connecting them by the sigp

of the other term.

EXAMPT>ES.

1. Find the square root of 4a2^12a/;+ 9/>2. Ans, 2a+ Sb.

2. Find the square root of 9a^—24ab-\-16b\

3. Find the square root of 9a*- 30^/'/^+ 25o2Z,^

4. Find the square root of 4a2-f 14aZ>+16Z>2, i/j^ossible.

No algebraic binomial can be a iperfvci square^ for the square

of a monomial is a monomial, and the square of a binomial

necessarily consists of three distinct terms.



EVOLUTION. 139

Square Root of Numbers.

200. The preceding rule is applicable to the extraction of

the square root of numbers; for every number may be re-

garded as an algebraic polynomial, or as composed of a cer-

tain number of units, tens, hundreds, etc. Thus

529 is equivalent to 500+ 20+ 9;

also, 841 " 800+40+ 1.

If, then, 841 is the square of a number composed of tens

and units, it must contain the square of the tens^ plus twice the

product of the tens by the units, plus the square of the units. But

these three terms are blended together in 841, and hence arises

the peculiar difficulty in determining its root. The following

principles will, however, enable us to separate these terms,

and thus detect the root.

201. 1st. For every two figures of the square there will he one

figure in the root, and also on([for any odd figure.\ Thus

the square of 1 is 1

10 " 1,00

100 " 1,00,00
" 1000 " 1,00,00,00

the square
u

of 1

9

is 1

81
u

u 999 u
9§.01

99,8?),01'

The smallest number consisting of two figures is 10, and its

square is the smallest number of three figures. The smallest

number of three figures is 100, and its square is the smallest

number of five figures, and so on. Therefore the square root

of every number composed of one or two figures will contain

one figure ; the square root of every number composed of three

or four figures will contain two figures ; of a number from five

to six figures will contain three figures, and so on.

Hence, if we divide the number into periods of two figures,

commencing at the units' place, the number of periods will

indicate the number of figures in the square root.

202. 2c?. Tlie first figure of the root will be the square root of

ilce greatest square number contained in the first period on the left.
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For the square of tens can give no significant figure in tbe

first right hand period, the square of hundreds can give no fig-

ure in the first two periods on the right, and the square of

the highest figure in the root can give no figure except in the

first period on the left.

Let it be required to extract the square root of 5329.

This number contains two

periods, indicating that there 53,29 (70+ 3, the root

will be two places in the 49 00

root. Let a+ h denote the 140-f3)~429
root, where a is the value of 4 29

the figure in the tens' place,

and h of that in the units' place. Then a must be the great-

est multiple of 10, which has its square less than 5300 ; this is

found to be 70. Subtract a^, that is the square of 70, from

the given number, and the remainder is 429, which must be

equal to {2a-\-h)h. Divide this remainder bj 2a, that is by

140, and the quotient is 3, which is the value of h. Com-
pleting the divisor, we have 2a + J = 143; whence (2a-|-i)Z),

that is 143 X 3, or 429, is the quantity to be subtracted ; and

as there is now no remainder, we conclude that 70+3, or 73,

is the required square root.

For the sake of brevity, the ciphers may be omitted, pro-

vided we retain the proper local values of the figures.

If the root consists of three places of figures, let a represent

the hundreds, and h the tens; then, having obtained a and h as

before, let the hundreds and tens together be considered as a

new value of a, and find a new value of h for the units.

Kequired the square root of 568516.

Having found 75, the square root of 56,85,16(754

ohe greatest square number contained in 49

the first two periods, we bring down the 145) 785

last period, and have 6016 for a new div- 725

idend. We then take 2a, or 150, for a 1504) 6016

partial divisor, whence we obtain i=4 6016

for the last figure of the root. The en-

tire root is therefore 754.
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203. Hence, for the extraction of the square root of num-

bers, we derive the following

RULE.

1st. /Separate the given number into periods of two figures each^

beginning from the units'' place.

2d. Find the greatest number luhose square is contained in the

left-hand period ; this is the first figure of the required root. Sub-

tract its square from the first period^ and to the remainder bring

down the second period for a dividend.

3o?. Double the root already found for a divisor^ and find how

mavy times it is contained in the dividend^ exclusive of its right-

hand figure ; annex the 7'esult both to the root a7id the divisor.

4:th. Multiply the divisor thus increased by the last figure of the

root^ subtract the product from the dividend^ and to the remainder

bring down the next period for a new dividend.

6th. Double the whole root now found for a new divisor^ and

proceed as before^ continuing the operation until all the periods are

brought down.

In applying the preceding rule, it may happen that the prod-

uct of the complete divisor by. the last figure of the root is

greater than the dividend. This indicates that the last figure

of the root was taken too large, and this happens because the

divisor is at first incomplete—that is, is too small. In such a

case, we must diminish the last figure of the root by unity until

we obtain a product which is not greater than the dividend.

EXAMPLES.

1. What is the square root of 294849 ? Ans. 543.

2. What is the square root of 840889 ?

3. What is the square root of 1142761 ?

4. What is the square root of 32239684?

5. What is the square root of 72777961 ?

6. What is the square root of 3518743761?

204. Square Root of Fractions.—We have seen that the

root of a fraction is equal to the root of its numerator di-
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vided by the root of its denominator Hence the square root

The number 5.29 may be written -—
-:, and its square root

oo 1 OfiCOA
is — , or 2.3. So, also, 18.6624 may be written , and

432
its square root is ---

, or 4.32. That is, the square root of a

decimal fraction, or of a whole number followed by a decimal

fraction, may be found in the same manner as that of a whole

number, if we divide it into periods commencing with the deci-

mal point.

In the extraction of the square root of an integer, if there is

still a remainder after we have obtained the units' figure of the

root, it indicates that the proposed number has not an exact

square root. We may, if we please, proceed with the approxi-

mation to any desired extent by supposing a decimal point at

the end of the proposed number, and annexing any even num-

ber of ciphers, and continuing the operation. We thus obtain

a decimal part to be added to the integral part already found.

So, also, if a decimal number has no exact square root, we
may annex ciphers and proceed with the approximation to

any desired extent.

EXAMPLES.

1. What IS the square root of ^r^^-^ c Ans. ^^.
Aovv bo

2. What is the square root of ^^^^,,,, ?^ 1^0569

8. What is the square root of
"

67551961

4. What is the square root of 9.878449 ?

6. What is the square root of 58.614336 ?

6. What is the square root of .558009 ?

7. What is the square root of .03478225 ?

Find the square roots of the following numbers to five deci

mal places.
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8. Of 2. Ans. 1.41421. 11. Of 4|

9. Of 10. Arts. 8.16227. 12. Of tV.

0. Of 9.1. 13. Of A

143

Cube Boot of a Polynomial.

205. We already know that the cube of a-{-h is a^+ 8a^5

\-2>ah'^-\-h^. If, then, the cuhe ^nqyq given, and we were re

q^uired to find its root^ it might be done by the following

method.

When the terms are arranged according to the powers of

one letter, a, we at once know, from the first term, a^, that

a must be one term of the root. If, then, we subtract its

cube from the proposed polynomial, we obtain the remainder

dto^h + ^aW ')- ^^, which must furnish the second term of the root.

Now this remainder may be put under the form

(3a2+3aZ^+ ^/2)Z,;

whence it appears that we shall find the second term of the

root if we divide the remainder by Za'^-\-^ah-\-h'^. But, as this

second term is supposed to be unknown, the divisor can not be

completed. Nevertheless, we know the first term, Sa^, that is

thrice the square of the first term already found, and by means

of this we can find the other part, h; viz., by dividing the first

term of the remainder by Sa^. We then complete the divisor

by adding to it ^ab-^-h^. If this complete divisor be multi-

plied by 6, it will give the last three terms of the power.

Let it be required to find the cube root of 8a^+36a2^-l-54aZ^2

+ 276^.

8aH36a2Z>+54a&2_|_27Z'3(2a+3&

8a3

36fl^Z>+ 54q/>H27^^^

Having found the first term of the root, 2a, and subtracted

its cube, we divide the first term of the remainder, 36a2Z>, by

three times the square of 2a, that is 12a^, and we obtain ^b

for the second term of the root. We then complete the divi-

sor by adding to it three times the product of the two terms of
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the root, which is 18a5, together with the square of the last

term 3^, which is 96^ Multiplying then the complete divisoi

by 3^, and subtracting the product from the last remainder,

nothing is left. Hence the required cube root is 2a-{-Sb.

This result may be easily verified by multiplication.

206. If the root contains three terms, as a4-6+ c, we may

^ut a-\-b= m. Then
{a-^h-\-cy= (m+cy=m^-{-Sm'^c-{-Smc'^-\-c^.

If we proceed as in the last example, we shall find a-\-h, and

we subtract its cube from the given polynomial. There will

then remain 3m'^c-\'Smc^-\-c^, which may be written

(3m2+ 3mc+c2)c.

We perceive that Sm^ will be the new trial divisor to obtain

c. We then complete the divisor by adding to it Smc-\-c^.

Let it be required to find the cube root of Sa^—S6ha^-\-

66h^a'- QBb^a^+ SSb'a"- %'a+ b\

8a«- 366a''+ 666=a*- Q^h^a" + 336*a'- 96*a+ h\2a}- 36a+ 6'

8ae

1 2a*- 1 86a'+ 96V ) - 3660^+ 666='a*- Q'Sb^a"

-366a»+546V-276'a'

''"*"^^^"'t'66V-963a+ 6* )
126V-3663a3+336*a^-96^«+6«

126V-366V+336«a''-96^a+ 6«

The first term of the root is 2a2, and subtracting its cube, the

first term of the remainder is — 36/>a*, which, divided by 3

times the square of 2a^, gives —2>ba for the second term of the

root. Complete the divisor as in the last example, and multi-

ply it by —Bba. Subtracting the product from the last remain-

der, the first term of the second remainder is 12b'^a^.

To form the new trial divisor, we take three times the square

of the part of the root already found, viz., 2o^—Zba. Divide

the first term of the remainder by 12«*, and we obtain b"^ for the

last term of the root. We now complete the divisor by add-

ing to it three times the product of the third term by the sum

of the first two terms, and also the square of the last term.

Multiplying the divisor thus completed by i^, we find the prod-
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uct equal to the last remainder. Hence tlie required cube root

207. Hence, for extracting the cube root of a polynomial, we

derive the following

RULE.

1st. Arrange the terms according to the powers of some one let-

ter ; take the cube root of tJie first term^ and subtract the cube from

the given polynomial.

2o?. Divide the first term of the remainder by three times the

sqxiare of the root alreadyfound ; the quotient will be the second

term of the root.

Sd. Complete the divisor by adding to it three times the product

of the two terms of Uie root and the square of the second term.

4tth. Multiply the divisor thus increased by the last term of the

rootj and subtract the productfrom the last remainder.

6th. Take three times the square of the part of the root already

foundfor a new trial divisor, and proceed by division to find an-

other term of the root.

6th. Complete the divisor by adding to it three times the product

of the last term by the sum of the first tivo terms, and also the square

of the last term, with which proceed as before till the entire root has

been obtained.

We may dispense with forming the complete divisor accord-

ing to the rule if each time that we find a new term of the

root we raise the entire root already found to the third power,

and subtract the cube from the given polynomial.

EXAMPLES.

"1. What is the cube root of a^-6a^-\-15a^—20a^-]-16a'^-

6a+ l? Ans. a2-2a+ l.

2. What is the cube root of 6:^^-40x3+ ^^ + 9 6a:-64?
Ans.

8. What is the cube root of 18;r*+ 86ccH24ic+8+82xH
x^-\-6x'^7 Ans.

4. What is the cube root o^b'+ b^-bP-l + Sb?

An^.
G
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' 6. What is the cube root of 8x^ -S6a^-\- 66x^- GSx^ -\- 33x2

^

9x+l?
^ 6. What is the cube root of 8x^+^Saa^-\-60a^a^—80a^a^—

90a'x''^108a'x-27a^?

7. What is the cube root of 8ic^-36ax*+102aV—171aV
f204aV- 144^^0;+ 64a« ?

(7z^Z>e i^ooi of Numbers,

208. The preceding rule is applicable to the extraction of

the cube root of numbers ; but a difficulty in applying it arises

from the fact that the terms of the powers are all blended to-

gether in the given number. They may, however, be separated

by attending to the following principles

:

1st. For every three figures of the cube there will be one figure in

the root, and also onefor any additionalfigure or figures. Thus,

the cube of 1 is 1
" 9 " 729
" 99 " 970,299

" 999 " 997,002,999

the cube of 1 is 1

10 "
1,000

100 " 1,000,000
" 1000 " 1,000,000,000

Hence we see that the cube root of a number consisting of

from one to three figures will contain one figure ; the cube root

of a number consisting of from four to six figures will contain

two figures; of a number from seven to nine figures will con-

tain three figures, and so on.

Hence, if we divide the number into periods of three figures,

commencing at units' place, the number of periods will indi-

cate the number of figures in the cube root

209. 2c?. The first figure of the root will be the cube root of the

greatest cube number contained in the first period on die left.

For the cube of tens can give no significant figure in the first

right-hand period ; the cube of hundreds can give no figure in

the first two periods on the right ; and the cube of the high-

est figure in the root can give no figures except in the first

period on the left.

Let it be required to extract the cube root of 438976.

This number contains two periods, indicating that there will
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be two places in 438,976 ( 70 f 6, the root,

the root. Let a be 343,000
.1 1 e ^\. 70»x3= 14700-————

•

the value of the 70x6x3=: 1260 95976

figure in the tens' 6^=
?? 95976

place, and 6 of that
complete divisor, 15996

in the units' place. Then a must be the greatest multiple of

10 which has its cube less than 438000 ; that is, a must be TO.

Subtract the cube of 70 from the given number, and the re-

mainder is 95976. This remainder corresponds to Zc^h-\-Za}?'

-f 5^, which may be written

Divide this remainder by Zd?-^ that is, by 14700, and the quo-

tient is 6, which is the value of h. Complete the divisor by

adding to it Zah^ or 1260, and IP-^ or 36. The complete divisor

is thus found to be 15996, which, multiplied by 6, gives 95976.

Subtracting, the remainder is zero, and we conclude that 70+ 6,

or 76, is the required cube root.

For the sake of brevity the ciphers may be omitted, provided

"we retain the proper local values of the figures.

If the root consists of more than two places of figures, the

method will be substantially the same.

Let it be required to extract the cube root of 279,726,264.

279,726,264(654 .
^^^^ found 65, the cube root of

' ' ^ the greatest cube contained in the first

^-*-^ two periods, we bring down the last

period, and have 5101264 for a new
dividend. We then take three times

the square of the root already found,

or 12675, for a partial divisor, whence

we obtain 4 for the last figure of the

root. We then complete the divisor

by adding to it three times the product of 4 by 65, and the

square of 4, regard being paid to the proper local values of the

figures. The complete divisor is thus found to be 1275316,

which, multiplied by 4, gives 5101264. Hence 654 is the rC'

quired cube root.

108
90
25

11725

63726

58625
12675

780
16

1275316

5101 264

5101 264
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210. Hence, for the extraction of the cube root of numbers^

we derive the following

RULE.

l5^. Separate the given number into periods of three figures each,

"beginning at the units^ place.

2d. Find the greatest cube contained in the left-hand period; its

cube root is the first figure of the required root. Subtract the cube

from the first period, and to the remainder bring down the second

periodfor a dividend.

3d Talce three hundred times the square of the root alreadyfound

for a trial divisor; find how many times it is contained in tlie

dividend, and write the quotientfor the secondfigure of the root.

4:ih. Complete the divisor by adding to it thirty times the product

of the two figures of the root, and the square of the secondfigure.

bth. Midtiply the divisor thu^ increased by the last figure of the

root; subtract the productfrom the dividend, and to the remainder

bring down the next periodfor a new dividend.

6ih. Take three hundred times the square of the whole root now

foundfor a new trial divisor, and by division obtain anotherfigure

of Hie root.

7th. Complete the divisor by adding to it thirty times the product

of the last figure by the former figures, and also the square of iJie

last figure, with ivhich proceed as before, continuing the operation

until all the p)eriods are brought down.

It will be observed that three times the square of the tens,

when their local value is regarded, is the same as three hund-

red times the square of this digit, not regarding its local value.

In applying the preceding rule, it may happen that the prod-

uct of the complete divisor by the last figure of the root is

greater than the dividend. This indicates that the last figure

of the root was taken too large, and this happens because the

divisor is at first incomplete, that is, too small. In such a case

we must diminish the last figure of the root by unity, until we
obtain a product which is not greater than the dividend.

EXAMPLES.

V •
1. Find the cube root of 163667323. Ans. 547-
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2. Find the cube root of 89651821. Ans 341.

^ S. Find the cube root of 4019679. Ans. 159.

-4. Find the cube root of 12^895213625.

-5. Find the cube root of 188.05'6,925752.

-6. Find the cube root of 759299,343g67.

211. Cube Boot of Fractions.—The cube root of a fraction is

.5qual to the root of its numerator divided bj the root of its de-

nominator. Hence the cube root of -rrrw ^s tV
The number 12.167 may be written -t-V^tV^? ^^^ its cube root

is fl", or 2.3. That is, the cube root of a decimal fraction, or

of a whole number followed by a decimal fraction, may be

found in the same manner as that of a whole number, if we
divide it into periods commencing with the decimal point.

In the extraction of the cube root of an integer, if there is

still a remainder after we have obtained the units' figure of the

root, it indicates that the proposed number has not an exact

cube root. We may, if we please, proceed with the approxi-

mation to any desired extent, by supposing a decimal point at

the end of the proposed number, and annexing any number

of periods of three ciphers each, and continuing the operation.

We thus obtain a decimal part to be added to the integral part

already found.

So, also, if a decimal number has no exact cube root, we may
annex ciphers, and proceed with the approximation to any de-

sired extent
EXAMPLES.

1. Find the cube root of ttVA- ^'tis. ^%
2. Find the cube root of 14^. ^ Ans, 2f

.

8. Find the cube root of 18.312058.

4. Find the cube root of 1892.819053.

5. Find the cube root of .001879080904.

Find the cube roots of the following numbers to 5 decimal

places

:

6. 15.25. Ans. 2.47984.

7. 8.7. Ans. 1.54668.

8. 100.1. ^n5. 4.64314.

a 4. Ans. 1.58740.

10. 11.

11. i
12. f.
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CHAPTER XIII.

RADICAL QUANTITIES.

212. A radical quantity is an indicated root of a quantity:

as y^, y/a, etc. Radical quantities may be either surd or ra-

tional.

Radical quantities are divided into degrees^ the degree being

denoted by the index of the root. Thus, V3 is a radical of the

second degree ; 1^5 is a radical of the third degree, etc.

213. The coefficient of a radical is the number or letter pre-

fixed to it, showing how often the radical is to be taken. Thus,

in the expression 2 -y/^j 2 is the coefficient of the radical.

Similar radicals are those which have the same index and

the same quantity under the radical sign. Thus, Sy/a and 5/5
are similar radicals. Also TVh and lOv/6 are similar radicals.

214. Use offractional Exponents.—We have seen. Art. 196,

that in order to extract any root of a monomial, we must di-

vide the exponent of each literal factor by the index of the re-

quired root Thus the square root of a'^ is a^, and in the same

manner the square root of a^ may be written a^, that of a* will
6 1

be a^, and that of a, or a\ is a . Whence we see that

a is equivalent to y a,

a^ " ^/a\

<? " Vo^, etc.

So, also, the cube root of c^ may be written or ; the cube
4 1

root of a* is a^ ; and the cube root of a, or a\ is a . W hence

we see that



RADICAL QUANTITIES. 151

a is equivalent to v/a,

»

a^ " Va', etc.

in the same manner, cr is equivalent to v^a,

6

That is, ^^e numerator of a fractional exponent denotes the power^

and the denominator the root to he extracted.

Let it be required to extract the cube root of -^. This quan-

tity, Art. 187, is equivalent to a~^. Now, to extract the cube

root of a~*, we must divide its exponent by 3, which gives us
-* 1 1

a ^. But the cube root of -^ may also be represented by —

Hence

So, also,

a^
1 .— IS

a^

equivalent to

4

1 .

equivalent to a-*
a^

1
1

a*

u
1

a »,

1 m

a"

Thus we see that the principle of Art. 77, that a factor may
be transferred from the numerator to the denominator of a frac-

tion, or from the denominator to the numerator by changing

the sign of its exponent, is applicable also to fractional exponents.

We may therefore entirely reject the radical signs hitherto

employed, and substitute for them fractional exponents, and

many of the difficulties which occur in the reduction of radical

quantities are thus made to disappear.
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To reduce a Radical to its simplest Form.

215. A radical is in its simplest form when it has under the

radical sign no factor which is a perfect power corresponding

to the degree of the radical.

Kadical quantities may frequently be simplified by the ap-

plication of the following principle: Jthe nth root of the product

of two or morefactors is equal to the p7vduct of the nth roots ofl/iose

factors ;[ or, in algebraic language,

V^=VaxVb.
For each of these expressions, raised to the nth power, will

give the same quantity.

Thus, the ?2th power of \/ab is ah.

And the nth power ofVaxVb is ("/«)" X (V^)*, or ah.

Hence, since the same powers of the quantities y^ and

Va X Vh are equal, the quantities themselves must be equal.

Let it be required to reduce ViSo^ to its simplest form.

This expression may be put under the form VlQo^x VSa.

But VlQaV is equal to 4aa:.

Hence VJSo^

=

4:ax VSa.

Hence, to reduce a radical to its simplest form, we have the

following

RULE.
r
Resolve the quantity under the radical sign into two factors^ one

of which is the greatest perfect powefi" corresponding in degree to tJie

radical. Extract the required root of this factor^ and prefix it to

the otherfactor^ which must he left under the sign.

EXAMPLES.

Eeduce the following radicals to their simplest forms.

1. Vl25a^ Ans. 5a Vda.

2. Vm^\ Am. 7iV2i

8. V295^.
•

4. iVSOakP.

5. "/98a^^.
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6. ^J^baW&x. - iYd'l?^^~,

7. v/^64a2/^^ic". - "friui^''

9. V>±a^63^-2. .jij^^^.

10. V48a^6V. -fifi'^//:. <^6..o

11. Vl92?6^.-tT7r75W^
12. ^y^la'Wx. "^V^VJaV"
13. Vrt'-a^a;.

J.rzs. 2aZ)2\/7a^

Ans. Zahyiac^.

Ans. ^ah^cS/^ac^,
i^~ . .

-

216. When the quantity under the radical sign is Vi fraction^

it is often convenient to multiply both its terms by such a

quantity as will make the denominator a perfect power of the

degree indicated. Then, after simplifying, the factor remain-

ing under the radical sign will be entire.

14. SVf.

15. #V;+6V3i.
,16. V81+2-v/|.

17. ^/U+^^f^-.

18. |.V|+3V|.

19. IS-v/A+SVA-

Ans. 3V|=3Vil=|.VT0.
Ans. -11/2+ 31/14.

^715. 4 a/34-1 Vis.

Ans. 4 V5+^-v/5.

^W5. |V'304-^V14.

^ns. iy'154-f ViO.

20. a/Uals/l. ^725. ^-^ah.

21- (-^)\^- Ans, ^Jd'-V\

- '!^ Ans. Y^abc.
b

23. 21/44-314. Ans. v/4-f v/9.

24. 2l/2|+ 7l/7||. Ans. |i/9+2^\/l8.

217. The following principle can frequently be employed in

simplifying radicals

:

TJie mnih root of any quantity is equal to the mth root of the nth

root of thai quantity. That is,

G 2
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For, if we raise each expression to the mth power, it becomes y/S

Thus, the fourth root= the square root of the square root,

the sixth root =the square root of the cube root, or

the cube root of the square root

the eighth root= the square root of the fourth root, or

the fourth root of the square root,

the ninth root =the cube root of the cube root.

Hence, when the index of a root is the product of two or more

factors^ we may obtain the root required hy extracting in succession

the roots denoted hy those factors.

Ex. 1. Let it be required to extract the sixth root of 64.

The square root of 64 is 8, and the cube root of 8 is 2. Hence
the sixth root of 64 is 2.

Ex. 2. Extract the eighth root of 256. Ans. 2.

-Ex. 3. Find the fourth root of 1874161. Ans. 37.

-"Ex. 4. Find the sixth root of 148085889. Ans. 23.

"Ex. 5. Find the ninth root of 887420489. Ans. 9.

Ex. 6. Find the eighth root of ^^89,0,6^5. Ans. 15.

218. When the index of a root is the product of two or more
factors, and one of the roots can be extracted, while the other

can not, a radical may he simplified hy extracting one of the roots.

Thus, v/9=V3.
Keduce the following radicals to their simplest forms

:

Ex. 1. V&. Ans. y%i.
Ex.2. VzWh''.

Ex. 8. V^.
Ex.4. \/25a*62c«.

6 p.Ex.5.
^25a2

6462-

Ex.6. \/^. Ans.^\^
^ m^n^ m'n V ^^v

'
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To introduce a Factor under the Radical Sign,

219. The square root of the square of a is obviously a, and

the cube root of the cube of a is a, etc. That is,

a=^\/a:^=Vo^=:\/a^^ etc.

Whence, also, ay/h=y^ x\/T>= y/o^.

Hence, to introduce a factor under the radical sign, we have

the following

RULE.

liaise the factor to a 'power denoted hy the index of the required

root, and write it as afactor under the radical sign.

EXAMPLES.

1. Reduce ax^ to a radical of the second degree.

^ Ans. Vcl'^x*,

2. Reduce 2d^hx to a radical of the third degree.

Ans. VSM^.
8. Reduce 5+ 6 to a radical of the second degree.

Ans. V25-\-10b-\-h\

Transform the following radicals by introducing the coe£&>

cients as factors under the radical sign

:

4 eVSi. Ans^ VT26.

5. 4-v/i+3i-v/8. Ans. -\/2 + V98.

6. ay -^aiy —. Ans. 2Vab.

8. 2l/2+ 7v/5. Ans. VU+VmE.
9. 7^v/7j|. Ans. l^^:^

To change the Index of a Radical.

220. From Art. 219, it follows that

v/a= \/a^=V^=V«*, etc.;

V^= v/^= Va' = Va\ etc.

;

V^=Va^=Va'=r< etc.
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Hence we see that the index of any radical may he multiplied

hy any number, provided we raise the quantity under the radical

sign to a power whose exponent is the same number ; or the index

of any radical may be divided by any number, provided we extract

that root of the quantity under the radical sign whose index is die

same number.

If, instead of the radical sign, we employ fractional expo-

nents, we shall have
12 3 4

a^ =0^=za^=0^ , etc.

12 3 4

0^ =aj^=a^z^a^, etc.

Hence we see that we may multiply or divide both terms of a

fractional exponent by the same number, without changing tJie

value of Hie expression.

EXAMPLES.

Yerify the following equations

:

1. v^+v/g+Vi^v/i+v/e+VIe.

8. 2V^i?^^2ab^T^ = 2^/7^.

4. 2V^^ = 2'/a3-3a26+3a62_63.

5. 8 V^x^- l^x'y+ 6x2/2_ y3 ^ 3 V2^^.

To reduce Radicals to a Common Index,

221. Let it be required to reduce Va and Va to equivalent

radicals having a common index. Substituting for the radical

signs fractional exponents, the given quantities are

1 1

a^ and a^.

Reducing the exponents to a common denominator, the ex

pressions are a 2

a^ and a^,

or Va^ and Va^,
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which are of the same value as the given quantities, and have

a common index 6. Hence we derive the following

RULE.

Reditce the fractional exponents to a common denominator^ raise

each quantity to the power denoted hy the numerator of its new ex-

ponentj and take the root denoted hy the common denominator,

EXAMPLES.
11 1

1. Eeduce a , a^, and a^ to a common index.

Ans. a^ a^ and a^.

2. Reduce a , a ,
and b to a common index.

Ans. ar^ a^ ^ and h^.11 1

8. Reduce 2^, 8^, and 5^ to a common index.

Ans. V6i, 'v^, and 'v/l25.12 3

4. Reduce 3^, 2^, and 2^ to a common index.

Ans. 'v/729, "v/256, and "v/512.
1 _i 1

5. Reduce a^, a*^, and a" to a common index.

mn 2>i 2ni

An^. a^^j a^^j and a^^,

6. Reduce v/8, V5, and '/7 to a common index.

7. Reduce V2aZ), \/8a6^, and v/5a^ to a common index.

8. Reduce Va-\-b, \/~a—h^ and S/a^—W- to a common index.

To add Radical Quantities together.

222. "When the radical quantities are similar^ the common
radical part may be regarded as the unit^ and the coefficient

shows how many times this unit is repeated. The sum of the

coefficients of the given radicals will then denote how many
times this unit is to be repeated in the required sum.

If the radicals are not similar they can not be added, because

they have no common unit. In such a case, the addition can
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only be indicated by the algebraic sign. Kadicals which are

apparently dissimilar may become similar when reduced to

their simplest forms. Hence we have the following

RULE.

Reduce each radical to its simplestform. If the resulting radi-

cals are similar^ add their coefficients^ and to their sum annex Hie

common radical. If they are dissimilar^ connect them by the sign

of addition,

EXAMPLES.

1. Find the sum of V27, ViS, and Vlb. Ans. 12 VI.

2. Find the sum of 4Vli7, 3 V75, and VT92.

Ans. 61 \^.

8. Find the sum of V72, Vl28, and V 162. Ans. 23 V2.

4. Find the sum of VT80, Vi05, and V320. Ans. 23 V5.

5. Find the sum of 3^1, 2 V^, and 4VA. Ans. VTO.

6. Find the sum of V^500, Vl08, and v/256. Ans. 12 '/i.

7. Find the sum of ^40, 1/135, and v/320. Ans. 91^5.

8. Find the sum of 2 V|, V60, Vl5, and V|.

Ans. 4|Vl5.

9. Find the sum of Vi5?, ^/SO?, and VbaFc.

Ans. {a-\-*Jc)y/bc,

10. Find the sum of Vl8^ + ^/W^.
Ans. {^a%-^bab)V2ab,

ll.Bnd,l..™ofV^,V/g%nav/g.

12. Find the sum of V-^a^ V^oab^, and 5i Vah.

Ans.{2a-\-10h)Vd),
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To find the Difference of Radical Quantities.

223. When the radicals are similar, it is evident that the

Bubtraction may be performed in the same manner as addition,

except that the signs in the subtrahend are to be changed.

Hence we have the following

RULE.

Reduce each radical to its simplest fi)rm. If the resulting radi-

cals are similar^ find the difference of the coefficients^ and to the re-

sult annex the common radical part. If they are dissimilar, thfi

subtraction can only be indicated.

EXAMPLES.

1. From V58 take Vll2. Ans. 4i/7.

2. From 5 V26 take 3 Vi5. Ans. VE,

8. From 2\/50 take VI8. Ans. 7^2.

4. From VSOaFx take V20a^\

6. From 2^72^ take Vl62a\

6. From VT92 take ^24. Ans. 2v/3.

7. From 2^320 take 8\/40.

8. From V^^ take \/ -^. Ans. {Sa-1)\/ -^.

To multiply Radical Quantities together.

224. We have found, Art. 215, that Va multiplied by Vb is

equal to Vctb.

Hence, V2xVS= V6.

If the radicals have coefficients, the product of the coeffi'

cients may be taken separately.

Thus, aVxxbVy=axbxVxxVy=ahVxy;
also, 8^/8x5\/2= 15Vl6=:60.

If the radicals have not a common index, they must first be
reduced to a common index. Hence we have the following
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RULE.

Ifnecessary^ reduce the given radicals to a common index. Mul-

tiply the coefficients togetherfor a new coeffijcient ; also multiply the

quantities under the radical signs together^ and place this product

under the common radical sign. Then reduce the result to its sim-

plest form.

EXAMPLES.

Find the value of the following expressions

:

. 1. 3V'8x2\/6. Ans. 24V^.

2. 6V8x3V5. Ans. SOVTO.

3. V2 X v/3. Ans. Vn.
4 5VS X 7Vl X V2. Ans. 140.

5. c^/axdVa. Ans. acd.

6. iV^xbVl. Ans. 70 V^.

7. kVlx-^VVJ.

8. iv/l8x5\/20.

9. i/ix7l/6xiv/5. Aris.lV^.

225. We have seen, Art 58, that the exponent of any letter in

a product is equal to the sum of the exponents of this letter in the

multiplicand and multiplier. That is, a'"xa''=a'"+'', where m
and n are supposed to be positive whole numbers.

When one or both of the exponents are negative^ we must

take the algebraic sum of the exponents. For, suppose n is

negative. Then
1 a"*

a"* X a""= a"* X —, by Art. 76, =—— a*^"*.

The same relation holds true when m and n are fractional

;

p r p^r

that is, a^xaf=a^ '.

For a« X a}=Va^ x Va% Art. 214,=V^^ X Va'^', Art. 220,

=7^3^m¥, Art.224,=a «* =a^ \

Hence we conclude that the exponent of any letter in a product

is equal to Hie algebraic sum of Hie exponents of this letter in ihi
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multiplicand and multiplier^ whether the exponents are positive or

negative^ integral orfractional.

EXAMPLES.

1. Multiply 5a* by 3a* Ans. Iba^.

2. Multiply 21a* by 3a^ Ans. 63a^.

8. Multiply 3x*2/* by 4ccV
1T7

4. Find the product of a^, a , a , and a

6. Find the product of a^, a , a^, and a^^.

Multiplication of Polynomial Radicals.

226. By combining the preceding rules with that for the

multiplication of polynomials, Art. 61, we may multiply togeth*

er radical expressions consisting of any number of terms.

Ex. 1. Let it be required to multiply

a*+2a*-a*by a*-3a*+2.

a*+2a*-a*

a*^3a*+2
5 3

a'^+2a -a^

-3a -6a*+3a*

4-2a*+4a*-2a*

T ^ k3 I ^73 O^ia — a —6a -{-7a —2a^ Ans.

Ex. 2. Multiply 3+ V5 by 2- VB. ^7i5. 1- VB.

Ex. 3. Multiply 7+2^6 by 9-6Ve. Ans. 3-17 V'6.

Ex. 4. Multiply 9+ 2^10 by 9-2 VlO. Ans. 41.

Ex. 5. Multiply 3 V45-7\/5 by Vi|+2\/9i. ^ns. 34.

Ex. 6. Multiply cVa+ cZ/^ by cVa—dVb.

Ex. 7. Multiply a^-aHa'^-a'+a^-«+«^-l by a^+1

-4ri5. ac^—hd"^.

-Iby a'^+l

Ans. a'^— 1.
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To divide one Radical Quantity hy another.

227. The division of radical quantities depends upon the fol

lowing principle

:

The quotient of the nth roots of two quantities is eqval to the nth

root of their quotient ; or,

Va_n fa

for the nth power of each of these expressions is ^, Art. 186.

Let it be required to divide 4:a'^V6by by 2aV3b.

;^=7r-\/-77f=2aV2v, Ans,

Hence we have the following

EULE.

If necessary, reduce the given radicals to a common index. Di-

vide the coefficient of the dividend by that of the divisor for a new

coefficient ; also the quantity under the radical sign in the dividend

hy that in the divisor, and place this quotient under the common

radical sign. Then redux:e the result to its simplestform.

EXAMPLES.

1. Divide 8VT08 by 2V6. Am. 12 V2.

2. Divide 8 \/612 by 4 V2. Ans. 8 Vi
3. Divide 6 VU by 3 V2. Ans. 6.

4. Divide 4v/72 by 2\/l8.

5. Divide 4V6a^?/ by 2VSy.

\ i '^

^ 6. Divide 16{a^b)'^ by S{acy.

7. Divide 4 \/l2 by 2 \/3. Am. 2 V^.
8. Divide VOi by 2. Ans. \/2.

9. Divide VMc by Vcib'^c^. Ans. \ j-^-

228. We have seen, Art. 72, that the exponent of any letter in
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a quotient is equal to the difference between the exponents of this let-

ter in the divisor and dividend.

The same relation holds true whether the exponents are posi-

tive or negative^ integral or fractional , that is, universally,

p r p r

a~^^a'=a^"\

For the quotient must be a quantity which, multiplied by
the divisor, shall produce the dividend ; and, according to Art.

225, the exponent of any letter in a product is in all cases

equal to the algebraic sum of the exponents of this letter in

the multiplicand and multiplier. Hence this relation must

hold true universally in division.

EXAMPLES.

1. Divide {abf by {ah)^. Ans. {ahf,

2. Divide a^ by a*.

8. Divide ^Vab by 2 Voh. Ans. 2 Vd).

4. Divide ^m\a-h)^ by Zm{a-h^, Ans. 2>m{a-h)'^.1111 42
5. Divide a^lr by o^li^. Ans. a^F^.

6. Divide 4* by 2*. Ans, 4-^
V2

Division of Polynomial Radicals.

229. By combining the preceding rules with that for the di-

vision of polynomials, Art. 80, we may divide one radical ex-

pression by another containing any number of terms.

Ex. 1. Let it be required to divide d^—a^—a'^ -j- a^ by a^— 1.

a^-a^-a^+a^

a^-a^ a^—a* Ans,

-a* 4- a*

:.2. Divide 8a-5 by 2a*-Z>*

Ans. ^a^+2ah^-\-h^.
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Ex.3. Divide a-41a'^-120 by a^+4a^+ 5.

Ans. a^—4a ^ -hlla^—24

Ex. 4. Divide a^+Ub^ by a*+4i*.

u4ns. a^-4:ah^'\-16hi.

Ex. 5. Divide cc"^— ccz/^+a:;'^!/— ?/^ by x^— y^.

Ans. x-\-y.

To involve a Radical Quantity to any power.

230. Let it be required to raise a^ to the nth power.Ill l_|_i 1.

The square of a"* is a'^xa'''=a'" '"''=a''\

1 1111 11 ?i

The cube of a^ is a^xa'"'xa'^=a'^ '"' "'=«"*.

l 1 1 i 1+i+Ietc »
The wth power of a"* is a"* x a*" x a'", etc., =:a"' "^ "^^ "=a''\

Hence, to involve a radical quantity to any power, we have

the following

RULE.

Multiply the fractional exponent of the quantity hy the exponent

of the required power. If the radical has a coefficient^ let this be in-

volved separately ; then reduce the result to its simplestform.

If the quantity is under the radical sign, it is generally most

convenient to substitute for this sign the equivalent fractional

exponent; but if we choose to retain the radical sign, we must

raise the quantity under it to the required power.

EXAMPLES.
1 4

1. Required the fourth power of fa^. Ans. ^^^.

2. Required the cube of f-ZS. Ans. f v^.

3. Required the square of 3 V%.

4. Required the cube of 17 V2T.

5. Required the fourth power of \VQ. Ans. ^.

6. Required the fourth power of 2 V3a*6.

Ans. 16a2v/9«^.

7. Required the fourth power of ahVab. Ans. a^b^.
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A71S. a''-\-2ab-\-h\

8. Kequired the sixth power of (a+5)*

9. Kequired the. value of V(51y x VCHf- ^ns. -gV-

10. Kequired the value of ViM^^VJ^^^'-
Ans. {2ahf,

To Extract any Root of a Radical Quantity.

231. A root of a quantity is a factor which, multiplied by
itself a certain number of times, will produce the given quanti-

1 n

ty. But we have seen that the ?ith power of a"" is a*". There-
n ^

fore the nth root of a^ is a'"\ Hence we derive the following

EULE.

Divide the fractional exponent of the quantity by the index of the

required root. Jf the radical has a coefficient^ extract its root sep-

arately if possible; otherwise introduce it under the radical sign.

Then reduce the result to its simplest form.

If the quantity is under the radical sign, and we choose to

retain the sign, we must, if possible, extract the required root

of the quantityunder the radical sign ; otherwise we must mul-

tiply the index of the radical by the index of the required root.

EXAMPLES.

1. Find the square root of 9(3)^

2. Find the cube root of ^V2.

3. Find the square root of 10^.

4. Find the cube root of -i^a^.

5. Find the fourth root of ff-a^.

6. Find the cube root of yVs^^^A ^^

7. Find the cube root of ^\/|.

8. Find the square root of 3 Vb. Ans. VT35.

9. Find the fourth root of J v/|. Ans. ^1/12.

Ans. 3 v/3.

Ans.^V^.

in
Ans. xfi.
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Operations on Imaginary Quantities,

232. It has been shown, Art 195, that an even root of a neg-

ative quantity is impossible. Thus, V— 4, V— 9, V— 5a are

algebraic symbols representing operations which it is impossi-

ble to execute ; for the square of every quantity, whether posi-

tive or negative, is necessarily positive. Quantities of this na*

ture are called imaginary or impossible quantities. Neverthe-

less, such expressions do frequently occur, and it is necessary

to establish proper rules for operating upon them,

233. The square root of a negative quantity may always he rep-

resented hy the square root of a positive quantity multiplied by the

square root of —1.

Thus, V'^=V4:X -1 =2V^,
-/i:3=: V3 X -1= V3V^l,

V^^z=z\/ax —l = VaV— l.

The factor V— 1 is called the imaginary factor, and the other

factor is called its coefficient.

234. When several imaginary factors are to be multiplied

together, it is best to resolve each of them into two factors, of

which one is the square root of a positive quantity, and the

other V— 1. We can then multiply together the coefficients

of the imaginary factor by methods already explained. It

only remains to deduce a rule for multiplying the imaginary

factor into itself; that is, for raising the imaginary factor to a

power whose exponent is equal to the number of factors.

The first power of V— l is V— 1.

The second power, by the definition of square root, is —1.

The third power is the product of the first and second pow-

ers, or —1 X V— 1 = — V— l.

The fourth power is the square of the second, or +1.

The fifth is the product of the first and fourth ; that is, it is

the same as the first; the sixth is the same as the second, and
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so on ; so that all the powers of V— 1 form a repeating cycle

of the following terms

:

~"
/^, +1.+ -1, -1,

EXAMPLES.

1. Multiply V^ by V— 4.

2. Multiply l-\-V^ by 1-V^.
3. Multiply Vl8 by V^.
4 Multiply 5 +2-/^ by 2-i/^.

5. Multiply aV^ by cV—d.

6. Multiply 1-^^^ by itself

7. Multiply 2Vl~V^ by 4^3-2

6, Ajis.

Ans. 2.

Ans. -^2V^.

8. Multiply a+Vb-

Ans. 14-8V-I5.

1 by a— v^-/^. Ans. a^+h.

9. Multiply aV-aW by V-M\
10. Multiply V3^4-V^ by VZ:^— yCl,.

11. Multiply i/3l7+V^^39 by V-119-V^=T83.
^?25. 2%/7.

235. Division of Imaginary Quantities.^—The quotient of one

imaginary term divided by another is easily found by resolv-

ing both terms into factors, as in the preceding article.

Ex. 1. Let it be required to divide V~^ah by V— a.

V—ab VahV^ nr .— = V 6, Ans*
V— a yay —

1

Ex. 2. Divide l^^^ by cV^.

Ex. 3. Divide unity by V— 1.

Ex. 4. Divide a by hV^.
Ex. 5. Divide a byVa-/^.

Ans. ^.
c

Ans. — V— 1.
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Ex.6. Divide V_12 + V-6+ ^-9 by V-S.

Ex. 7. Divide 2V8--/^^30 by -V^,
Am. V6+4V^.

To find Multipliers which shall cause Surds to become BationaL

236. 1st. When the surd is a monomial

The quantity Va is rendered rational by multiplying it by

Va.
1 1

For ^aX\^=a^xa^=a.
1 9

So, also, a^ is rendered rational by multiplying it by a^.

1 •
. . .

^ 1
Also, a^ is rendered rational by multiplying it by a^; and a"

by multiplying it by a ~«.

Hence we deduce the following

RULE.

Multiply the surd by the same quantity having such an exponent

as^ when added to the exponent of the given surdj shall make unit?/.

237. 2d., When the surd is a binomial

If the binomial contains only the square root, multiply the

given binomial by the same terms connected by the opposite sign^

and it will give a rational product.

Thus the expression Va-^Vb multiplied by Va— V^ gives

for a product a—b.

Also the expression Va+Vb multiplied by \/a—Vi gives

for a product Va—Vb, which may be rendered rational by

multiplying it by Va-^Vb.

In general, V« =*= yi may be rendered rational by success-

ive multiplications whenever m and n denote any power of 2.

When m and n are not powers of 2, the binomial may still be

rendered rational by multiplication, but the process becomes

more complicated.

Ex. 1. Find a multiplier which shall render V'b+VS ration-

al, and determine the product.
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Ex. 2. Find a multiplier which shall render VS— Vx ration-

al, and determine the product.

Ex. 3. Find multipliers which shall render VS—V^ ration-

al, and determine the product.

238. 3d. When the surd is a trinomial

When a trinomial surd contains only radicals of the second

degree, we may reduce it to a binomial surd by multiplying it

by the same expression, with the sign of one of the terms

changed. Thus, Va-^Vb-^Vc multiplied by Va-\-Vb—Vc

gives for a product a-\-b—c-{-2Vabj which may be put under

the form of m-{-2Vab.

Ex.1. Find multipliers that shall make V6-\-VS—V2 ra-

tional, and determine the product.

Ex. 2. Find multipliers that shall make 1 -}- V2 -\- VB ration-

al, and determine the product.

To transform a Fraction whose Denominator is a Surd in such

a Manner that the Denominator shall be Rational.

239. If we have a radical expression of the form
a Vb-\-Vc

or -7= y=, it may be transformed into an equivalent expres-

sion in which the denominator is rational by multiplying both

terms of the fraction by v^i V~c. Hence the

RULE.

Multiply both numerator and denominator by a factor which

will render the denominator rational.

EXAMPLES.

Reduce the following fractions to equivalent fractions having
a rational denominator

:

1
2

A 2V3
1. —7=. Ans. —r—

.

V3 • _ ^

9 1
A V5+V2

^. -7= 7=. Arts. .

V5-V2 3
H
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3 ^^
^'

3>V2-

. 3\/24-2
^7Z5.

^
—

.

a-Vb
a+Vb

•

6. ,_ ^- .

VS + V2+1
Ans. 2+-/2-V6.

6. %

7. ^
V6.

8 ^2 Am. V2.

^ l +a+Vl-a»
l4-a-Vl-a2

l + Vl-a^
a

240. The utility of the preceding transformations will be seen

if we attempt to compute the numerical value of a fractional

surd.

Ex. 1. Let it be required to find the square root of ^ ; that is,

Vs
to find the value of the fraction ——

.

^^
V2-1

Making the denominator rational, we have ' „ , and the

value of the fraction is found to be 0.6546.

7V6
Ex. 2. Compute the value of the fraction

Ex. 3. Compute the value of the fraction

Vn-\-Vs
A71S. 3.1003.

V6
V7-\-VB
Ans. 0.5595.

Vs
Ex. 4. Compute the value of the fraction —— ;= ;=>

^ 2V84-3\/6-7\/2

Ans. 0.7025.
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9+ 2VT0
Ex. 5. Compute the value of the fraction

9-2 VIO"

Ans. 5.7278.

Square Boot of a Binomial Surd,

241. A binomial surd is a binomial, one or both of whose

terms are surds, as 2+ VS and Vb— V2.

A quadratic surd is the square root of an imperfect square.

If we square the binomial surd 2+'v/8, we shall obtain

7+ 4^/3. Hence the square root of 7+4V3 is 2-\-V3] that

is, a binomial surd of the form a± Vb may sometimes be a perfect

square.

242. The method of extracting the square root of an expres-

sion of the form a±.Vb is founded upon the following princi-

ples:

1st. The sum or difference of two quadratic surds can not be

equal to a rational quantity.

Let Va and Vb denote two surd quantities, and, if possible,

suppose
V-a^Vb=c,

where c denotes a rational quantity. By transposing Vb and

squaring both members, we obtain

2c

The second member of the equation contains only rational

quantities, while Vb was supposed to be irrational; that is, we
have an irrational quantity equal to a rational one, which is

impossible. Hence the sum or difference of two quadratic

surds can not be equal to a rational quantity.

243. 2d. In any equation which involves both rational quanti-

ties and quadratic swxis, the rational parts in the two members are

equal^ and also the irrational parts.

Suppose we have

x-^-Vy^a-'tVh,
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Then, if x be not equal to a, suppose it to be equal to a+m;

60 that m=Vb—Vy;
that is, a rational quantity is equal to the difference of two

quadratic surds, which, by the last article, is impossible. There-

fore x=a, and consequently Vy=Vb.

244. To find an expression for the square root of a±: Vh.

Let us assume Va-f V^= V^+ Vy. (1.)

By squaring, a-\-Vb=x-\-2Vxy-{-y, (2.)

By Art. 243, a=x+y, (3.)

and Vh=2Vxy. (4.)

Subtracting (4) from (3), we have

a—Vh=x—2Vxy-\-y. (5.)

By evolution, Va-Vb= v^- v^. (6.)

Multiplying (1) by (6), we have

V^^~h=x—y. (7.)

Adding (3) and (7), a+V^^h^^x, (8.)

Hence, ic= ^
. (9.)

Subtracting (7) from (3),

a-^ftf-b
y=—2

•
^^^'^

It is obvious from these equations that x and y will be ra-

tional when a^—b is a perfect square. If a^— b be not a perfect

square, the values of Vx and Vy will be complex surds.

Hence, to obtain the square root of a binomial surd, we pro-

ceed as follows

:

Let a represent the rational part, and Vb the radical part,

and find the values of x and y in equations (9) and (10). Then,

if the binomial is of the form a-f v^, its square root will be

Vx-[-Vy. If the binomial is of the form a—Vby its square

root will be Vx— Vy.
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EXAMPLES.

1. Kequired the square root of 4-+-2'\/3.

Here a=4 and ^^h=l^/Z\ or 5=12.

4-|-vT6iri2
Hence aj= ^ — *^»

4_V16-12 ,

y^ 2 =^-

Hence Vx+ Vy= -/S 4- 1, ^^5.

Verification. The square of -v/S+ l is 3-|-2V34-l=4+2V3.

2. Eequired the square root of 114-6V2.

Here a=ll and V^=6V2; or 5= 72,

cc=9 and 2/=2.

3. Required the square root of 11— 2 V30. Ans. VQ—VE.

4. Required the square root of 2+ ^3. Ans. V^+V^.

5. Required the square root of 7+ 2VT0. Ans. V6-\-V2.

6. Required the square root of 18+ 8 VS.

Ans. VIO+ 2V2.

245. This method is applicable even when the binomial con

tains imaginary quantities.

7. Required the square root of 14-4V— 3.

Here a=l and V5=4V— 3.

Hence 5=—48 and a^— 5=49.

Therefore £c=4 and y=—S.

The required square root is therefore 2 + '/— 3, J.n5.

8. Required the square root of — ^+-iV— 3.

9. Required the square root of 2^—1 or 0+2V^^.
^n5. i+-/iri.
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10. Eequired the value of the expression

V6-I-2-V/5- V6-2\/5.

IL Eequired the value of the expression

V4+3-v/i:20"+ V4-3V^^. Ans. 6.

12. Eequired the square root of —3+V— 16.

^725. 1+ 2 \/^^.

13. Eequired the square root of 8 V— 1-

Ans. 2+2-/^.

Simple Equations containing Radical Quantities.

246. When the unknown quantity is aifected by the radical

sign, we must first render the terms containing the unknown
quantity rational. This may generally be done by successive

involutions. For this purpose we first free the equation from

fractions. If there is but one radical expression, we bring that

to stand alone on one side of the equation, and involve both

members to a power denoted by the index of the radical.

Ex. 1. Given x-{-Vx'^-Sx-{-60= 12 to find x.

Transposing x and squaring each member, we have

a;2-3x+60=144-24a;+ic2;

whence x=4:.

Ex.2. Given Vx-\-Va-\-x= = to find x.

IT-S-v/S ^^^- ^=i'
Ex.3. Given n """^ ^^ ^^^ ^-

Ex 4. Given V^x^—7x—6=9-2x to find x.

247. If the equation contains two radical expressions com-

bined with other terms which are rational, it is generally best

to bring one of the radicals to stand alone on one side of the

equation before involution. One of the radicals will thus be

made to disappear, and, by repeating the operation, the remain-

ing radical may be exterminated.

Ex.6. Given Va;+19-h Va;+10= 9 to find x.
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By transposition, Vx-\-19— 9—Vx-{-10.

Squaring, ir4-19=:91+ic-18Vx+10.

Transposing and reducing,

Squaring, cc+ 1 = 16

;

whence x= 6.

Ex. 6. Given V36-\-x=lS+Vx to find x.

SEx. 7. Given Vx-{-4:ab= 2b-{-Vx to find x.

-^Ex. 8. Given x- Va^^xVb^+x^—a^-i-a to find x.

248. When an equation contains a fraction involving radical

quantities in both numerator and denominator, it is sometimes

best to render the denominator rational by Art. 239 ; but the

best method can only be determined by trial.

Ex. 9. Given
Vj+V^^ 3 ^^ ^^^ ^^

Multiply both terms of the first fraction by Vx-\- Vx—S^

and we have {Vx-[-V^^f_ 3

x-{x-3) ~ic-3'

or {V^-{-Vx^y ^
cc-3

Extracting the square root,

Vx-hVx—S^-

Clearing of fractions,

Vx^-Sx-\-x—S=S]

whence x=4, Ans.

\/ T? 1A n- V9CC4-13+V9^ 1Q . n AW Ex.10. Given
,

;==13 to find x.^ V9x+13-\/9^

Ex. 11. Given '\/ax-{-b='\/cx-\-d to find x.

Ex. 12. Given — Z =^ to find oc

3+5'v^^+24



176 ALGEBRA.

Ex. 13. Given ^^^ r.:l +|(V^~l) to find x.

Ans. x=S.

- fn -finrl o'

Vx-\-Sn Vx-{-n
Ex. 14. Given —

—

=

—

:J to find x.

Ans. X:
( mn y
\m—n)

'

Ex.15. Given (V^-6) (v^4-25)=(5+ 3v^-) (v^+3) to

find X. Ans. x=9.

^ Ex. 16. Given V2x-3n=BVn--V2x to find x.

Ans. x=2n,

Ex.17. Given -—= =—^ to find x.

Vx+2 Vx+^0

Ex. 18. Given —=—=—;= to find x.

•n ^^ ^. 6x—9 ^ V6x—S ^ ,

Ex.19. Given --= 1= — to find x.

-v/6^+3 2

Ex.20. Given V^a+x=2Vb+x— Vx to find x.

_(a-by
Am, X— „ ,

,

2a—

o
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CHAPTER XIY.

EQUATIONS OF THE SECOND DEGREE.

249. An equation of the second degree^ or a quadratic equation

with one unknown quantity, is one in which the highest power

of the unknown quantity is a square.

250. Every equation of the second degree containing but

one unknown quantity can be reduced to three terms ; one con-

taining the second power of the unknown quantity, another the

first power^ and the third a known quantity ; that is, it can be

reduced to the form _
,

x^-{-px=q.

Suppose we have the equation

^+^+^+18|=(»+3) («.-!).

Clearing of fractions and expanding, we have

9cc2-f7cc-6+4x-8+ 164=12a;2+24^-36.

Transposing and uniting similar terms, we have

Dividing by the coefficient of cc^, that is, by —3, we have

ccHy^=62,

which is of the form above given, p in this case being equal to

^, and q being equal to 62.

251. In order to reduce a quadratic equation to three terms^ we
must first clear it of fractions, and perform all the operations

indicated. We then transpose all the terms which contain the

unknown quantity to the first member of tne equation, and the

known quantities to the second member ; unite similar terms,

and divide each term of the resulting equation by the coeffi-

cient of x\ H 2
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252. An equation of the form x^-^px=q is called a completi

equation of the second degree, because it contains each class of

terms of which the general equation is susceptible.

253. The coefficient of the first power of the unknown quan-

tity may reduce to zero, in which case the equation is said to

be incomplete.

An incomplete equation of the second degree, when reduced,

contains but two terms : one containing the square of the un-

known quantity, and the other a known term.

Incomplete Equations of the Second Degree.

254. An incomplete equation of the second degree may be

reduced to the form d^=.q.

Extracting the square root of each member, we have

If g- be a positive number, either integral or fractional, we
can extract its square root, either exactly or approximately, by
the rules of Chap. XII. Hence, to solve an incomplete equa-

tion of the second degree, we have the

RULE.

Reduce the equatioji to the form x^=q, and extract the square

root of each member of the equation.

255. Since the square of both -fm and —m is -|-77i^, the

square of -^Vq and that of —Vq are both -\-q. Hence the

above equation is susceptible of two solutions, or has two roots;

that is, there are two quantities, which, when substituted for x

in the original equation, will render the two members identical.

These are + Vq and — Vq.

Hence, Every incomplete equation of the second degree has two

roots^ equal in numerical value, hut with opposite signs.

EXAMPLEa

Find the values of x in each of the following equations

:

1. 4:X^-7 = Sx^-\-9. Ans. x=zt4.
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Show that each of these values will satisfy the equation.

2. cc2_17==130-2x2. Ans.x=±:7.

±Va6
4. x'^-\-ab=6x\ Ans. x=—^—

.

2^2 . . a
6. x-k-Va^ + x^^ ,—^=. Ans. x=±——.

Va^+x"" V3
6. ax'^—oc=hx^—Sc-{-d.

^- a~'^+12~24~^ + 24-

8. 12a6+a:2=4a2 4-9^'.

9. ii_^^3-^.
10. X+\/x'^— 17=

,
^. ^715. X=db44.

Vcc2-17

a:;+ a cc-a 2(a2 4-l)
11. 1

;
=^

/l , \/1 V ^^^- ^=±1.
cc— a ic+ a (l+ a)(l— a)

12. T^= l' J.7Z5. a;=±3.

X

Note. Clearing of fractions and transposing, we find in eacli

member of this equation a binomial factor, which being cancel*

ed, the equation is easily solved.

PROBLEMS.

Prob. 1. What two numbers are those whose sum is to the

greater as 10 to 7, and whose sum, multiplied by the less, pro-

duces 270?

, Let 10a:j:= their sum. ^

Then 7x= the greater number,

and 3x= the less.

Whence 80^2= 270,

and cc2= 9;

therefore x=±S,
and the numbers are ±21 and ±9.
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Prob. 2. What two numbers arc those whose sum is to the

greater as m to w, and whose sum, multiplied by the less, is

equal to a f

Arts. ^J-^—- and dbv^
^ m{m—n) v

[m—n)
m

Prob. 3. What number is that, the third part of whose

square being subtracted from 20, leaves a remainder equal

to 8?

Prob. 4. What number is that, the mth part of whose square

being subtracted from a, leaves a remainder equal to h f

Ans. ±Vin{a—b).

12 3
Prob. 5. Find three numbers in the ratio of ^, q, and -j, the

sum of whose squares is 724.

Prob. 6. Find three numbers in the ratio of m, n, and p, the

sum of whose squares is equal to a,

Ans.

I cum?' I CLTV^ I dtp'

Prob. 7. Divide the number 49 into two such parts that the

quotient of the greater divided by the less may be to the quo-

tient of the less divided by the greater as | to ^.

Ans. 21 and 28.

Note. In solving this Problem, it is necessary to assume a

principle employed in Arithmetic, viz.. If four quantities are

proportional, the product of the extremes is equal to the product of

the means.

Thus, if a:h\\c : c?,

then ad=bc.

Prob. 8. Bivide the number a into two such parts that the

quotient of the greater divided by the less may be to the quo-

tient of the less divided by the greater as m to n.

. aVm , aVn
A71S. —=z = and

Vm 4- Vn Vm -\- Vn
Prob. 9. There are two square grass-plats, a side of one of
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which is 10 yards longer than a side of the other, and their

areas are as 25 to 9. What are the lengths of the sides ?

Prob. 10. There are two squares whose areas are as m to n,

and a side of one exceeds a side of the other by a. What are

the lengths of the sides ?

. aVm T aVn
Ans. —7=z ~ and

V
Vm— Vn Vm— Vn

Prob. 11. Two travelers, A and B, set out to meet each other,

A leaving Hartford at the same time that B left New York.

On meeting, it appeared that A had traveled 18 miles more

than B, and that A could have gone B's journey in 15| hours,

but B would have been 28 hours in performing A's journey.

What was the distance between Hartford and New York ?

Ans, 126 miles.

Prob. 12. From two places at an unknown distance, two

bodies, A and B, move toward each other, A going a miles more

than B. A would have described B's distance in n hours, and

B would have described A's distance in m hours. What was

the distance of the two places from each other ?

-y/m-^-Vn
Ans. ax—prr —.

ym— yn
Prob. 13. A vintner draws a certain quantity of wine out of

a full vessel that holds 256 gallons, and then, filling the vessel

with water, draws off the same quantity of liquor as before,

and so on for four draughts, when there were only 81 gallons

of pure wine left. How much wine did he draw each time ?

Ans. 64, 48, ^Q, and 27 gallons.

Note. Suppose - part is drawn each time.

Then 256 ———^^ remains after the first draught.

Similarly, —^—- remains after the second draught, and

so on.

Hence
^^^(--^^^

=81.
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Prob. 14. A number a is diminished by the nth part of it-

self, this remainder is diminished by the nth part of itself, and

so on to the fourth remainder, which is equal to h. Required

the value of n.

Ans. —=—-^.
Va-Vb

Prob. 15. Two workmen, A and B, were engaged to work
for a certain number of days at different rates. At the end of

the time. A, who had played 4 of those days, received 75 shil-

lings, but B, who had played 7 of those days, received only

48 shillings. Now had B only played 4 days and A played 7

days, they would have received the same sum. For how
many days were they engaged? Ans. 19 days.

Prob. 16. A person employed two laborers, allowing them

different wages. At the end of a certain number of days, the

first, who had played a days, received m shillings, and the

second, who had played h days, received n shillings. Now if

the second had played a days, and the other h days, they would

both have received the same sum. For how many days were

they engaged?

hVm—aVn ,

Ans. —-= ^=- days.

Complete Equations of the Second Degree.

256. In order to solve a complete equation of the second de-

gree, let the equation be reduced to the form

If we can by any transformation render the first member of

this equation the perfect square of a binomial, we can reduce

the equation to one of the first degree by extracting its square

root.

Now we know that the square of a binomial, T+a, or ar*4-

2ax-|-^/'*, is composed of the square of the first term, plus twice

the product of the first term by the second, plus the square of

the second term.

Hence, considering x^-\-px as the first two terms of the
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square of a binomial, and consequently px as being twice the

product of the first term of the binomial by the second, it is

evident that the second term of this binomial must be ^.

257. In order, therefore, that the expression x^-\-px- may be

rendered a perfect square, we must add to it the square of this

V
second term ^ ; and in order that the equality of the two mem-

bers may not be destroyed, we must add the same quantity to

the second member of the equation. We shall then have

Taking the square root of each member, we have

whence, by transposition, xz= _^rby ^+^.

Thus the equation has two roots: one corresponding to the

plus sign of the radical, and the other to the minus sign. These

two roots are

258. Hence, for solving a complete equation of the second

degree, we have the following

RULE.

1st. Reduce the given equation to theform ofx?-\-px=q.

2d. Add to each member of the equation the square of half the co-

^cient of the first power of x.

8d. Extract the square root ofhoth members^ and the equation

will he reduced to one of the first degree^ which may he solved in the

usual manner.

259. When the equation has been reduced to the form x^^
px=q, its two roots will be equal to half the coefficient of the sec-
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ond term, taken with a contrary sign, plus or minus the square

root of the second member, increased by the square ofhalf the coeffi-

cient of the second term.

Ex. 1. Let it be required to solve the equation

a;2-10ic=-16.

Completing the square by adding to each member the square

of half the coefficient of the second term, we have

a;2_i0x+25=26-16=9.
Extracting the root, a:—5= ±3.

Whence x=6±S= 8 or 2, ^n5.

To verify these values of x, substitute them in the original

equation, and we shall have

82_i0x8=64-80=-16.
Also, 22-10x2= 4-20= -16.

Ex. 2. Solve the equation 2aj2_|_3^_20= 70.

Ans. x= -f 6 or —9.

Ex. 3. Solve the equation Sx'^—Sx-{-6=6l.

Eeducing, x'^—x=—^.
Completing the square, x'^—x-{-^=\—^=-^.

Hence x=^±i=-| or
-J, An^,

Second Method of completing the Square,

260. The preceding method of completing the square is al-

ways applicable ; nevertheless, it sometimes gives rise to incon-

venient fractions. In such cases the following method may be

preferred. Let the equation be reduced to the form

ax'^-\-bx=^c,

in which a and b are whole numbers, and prime to each other,

but c may be either entire or fractional.

Multiply each member of this equation by 4a, and it becomes

4:a^x'^-[-4:abx=4:ac.

Adding h^ to each member, we have

4:aV+ 4:abxi-b^= 4ac

+

b^,

where the first member is a complete square, and its terms are

entire.

Extracting the square root, we have

2ax-^d=±:V4:ac+b\
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Transposing 5, and dividing by 2a,

_ -5db V4ac+6'^
""-

2^ '

which is the same result as would be obtained by the former

rule ; but by this method we have avoided the introduction of

fractions in completing the square.

If h is an even number, - will be an entire number ; and it

would have been sufficient to multiply each member by a, and

add J to each member. Hence we have the following

RULE.

1st. Reduce the equation to the form ax^-{-hx=c, where a and b

are prime to each other.

2d. ^ b is an odd number^ multiply the equation by four times

the coefficient ofx^^ and add to each member the square of the coeffi-

cient of X.

3d. If b is an even number, multiply the equation by the coeffi-

cient of x^^ and add to each member the square of half the coefficient

ofx.

Ex. 4. Solve the equation Gx^—13x=— 6.

Multiplying by 4x6, and adding 13^ to each member, we
have 144x2-312x+169=rl69-144=25.

Extracting the root, 12x— 13= ± 5.

Whence 12x^18 or 8,

and x—% or f.

Ex. 5. Solve the equation llOa:^—21cc=— 1.

Multiplying by 440, and adding 21^ to each member, we have

48400x2-9240^+441= 1.

Extracting the root, 220x- 21= ± 1.

Whence x=^ ot -^.

Ex. 6. Solve the equation 7x2~3x=160.
Ans. x=5 or —?;2..

261. Modification of the preceding Method.—The preceding

method sometimes gives rise to numbers which are unneces-
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sarily large. When the equation has been reduced to the form

ax'^-\-bx—c, it is sufficient to multiply it by any number which

will render the first term a perfect square. Let the resulting

equation be

mV-\-nx=:q.

The first member will become a complete square by the ad-

dition of (h— ) ) ^^^ t^® equation will then be

This method is expressed in the following

RULE.

Having reduced the equation to the form ax^-\-hx=Cj multiply

the equation by any quantity {the least possible) which will render

the first term a perfect square. Divide the coefficient of x in this

new equation by twice the square root of the coefficient of a?^ and
add the square of this residt to both members.

Ex.7. Solve the equation 8ic2 4-9:r=99.

^9\2 8249
16x2+18a;+Q'

16

4 4'

cc=3 or — -— , Ans.
o

Ex. 8. Solve the equation 16a:^-15:c=34.

16.-15x+(^)' 2401

64

403=8 or — -r,4'

x=z or — tt;, Ans,

Ex.9. Solve the equation 12x^-=2l-{-^,

, Solve the following equations:

4 Ex. 10. ia;2_^aj+ 20^=421. Ans. x=7 or -6^.
Ex. 11. cc2-x-40= 170. Ans. x=l6 or -14.

Ex.12. 3a:2 4-2a:-9= 76.
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Ex.13. Ja;2—Jx4-7f=8.

This equation reduces to x^—15^0;=— 46.

Ans. a;=llf or 4.

Ex.15. 1?_I^=^:=2. Ana. x=^ or Q.

Ex.16. ^0-^-^=0.
cc cc+l cc+2

Ex.17. a;2_xV3=x-^V3.
, 1/3+ 3 a/3-1
^n^. a:=

—

-— or—^—

.

Ex.18. ^ -=— ^. J.725. a:=5 or 1.x—2 X—4: 3

Ex.19. —;
1 = -. Ans. x—a or —2a.

a+ic X 2

Ex. 20. x'^—(a-\-b)x-{-ab=0. Ans. x—a or &.

Ex.21. (3x-25)(7a;+ 29)=:0. Ans. x^%\ oy -^\.

^ __ 3.T-2
,

2x-5 10
,

13 1
^^- 22- 2^35+3^-2=¥ ^^^- ^=¥ "^ f

Ex.23. (ic-l)(a;-2)+(a;-2)(x-4)=6(2a:-5).

J.725. a?=8 or ^.

„ ^. 170 170 51
, .12Ex.24. ~— -. Ans. x—^ or —If.

CI o^ a^+ aa:: -I- x^ .
a^—ax-\-x^ ah

hjx. 25. h-
a-\-x a—x Sa—4:h-\-x'

Ans. x=—Sa or 3a—r-.
6

Equations which may be solved like Quadratics.

262. There are many equations of a higher degree than the

second, which may be solved by methods similar to those em-

ployed for quadratics. To this class belong all equations which

contain only (wo powers of the unknoivn quantity^ and in which
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the greater exponent is double the less. Such equations are of the

where n may be either integral •or fractional.

For if we assume y=a;**, then y^—x^^ and this equation

becomes ^2_|_py_^

.

whence £c'*=?/=—^iy 5'+^.

Extracting the nth root of each member, we have

Ex.1. Solve the equation cc*-13a;2=-36.

Assuming ^=y^ the above becomes

2/2-13?/= -36;
whence y=9 or 4.

But, since x^=y^ x=±.Vy.

Therefore a:= ± V9 or ± Vi.

Thus X has four values, viz., +3, —3, +2, —2.

To verify these values:

1st value, (4-3)*-13(+3)^=-36, i. e., 81-117=-36.
2d value, (-3)*- 13(-3)2=-36, i.e., 81-117= -36.

3d value, (+2)^-13(+ 2)2= -36, i.e., 16- 52= -36.

4th value, (-2)*-13(-2)2= -36,* i.e., 16- 52= -36.

Ex. 2. Solve the equation cr^- 35^3=—216.
Assuming x^=y^ the above becomes

2/'-352/=-216;

whence 2/= 27 or 8.

Hence x= \/^=3 or 2.

This equation has four other roots which can not be de-

termined by this process.

Ex. 3. Solve the equation a;H-4v^=21.

Assuming Vx=y^ we have

2/^+43/=21;
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whence y=S or —7.

Therefore cc=:9 or 49.

Although the square toot of 9 is generally ambiguous, and

may be either -f 3 or —8, still, in verifying the preceding val-

ues, -y/i can not be taken equal to —8, because 9 was obtained

by multiplying-+ 8 by itself For a like reason, -y^ can not

be taken equal to + 7. A similar remark is applicable to sev-

eral of the following examples.

263. The same method of solution may often be extended

to equations in which any algebraic expression occurs with two

exponents^ one of which is double the other.

Ex.4. Solve the equation {x'^xf-2^{x''-^x)=-V10,

Assuming x^-\-x=y^ this equation becomes

2/^-262/= -120;

whence y=20 or 6.

We have now the two equations,

cc^ -1-03=20, and x'^-\-x=%

the first of which gives 03= —5 or +4,

and the second gives cc= — 8 or +2.

Thus the equation has four roots,

-5, +4, -8, +2,

and any one of these four values will satisfy the given equa
tion.

Ex.5. Solve the equation Vic+12+ \/a3+12= 6.

We find ic+12= 16 or 81.

Hence cc=:4 or 69.

^ Ex.6. Solve the equation 2x^^y/2x^-\-l= ll,

This equation may be written

2a^2-|-l+ V2x2-fl= 12.

Hence '2x^+ 1 = ^ or 16;

therefore ic=4-2, -2, +V7|, -Vl\.
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264. Equations of the Fourth Degree.—An equation of the

fourth degree may often be reduced to an equation contain-

ing the first and second powers of some compound quantity,

with known coefficients, in the following manner* Transpose

all the terms to the first member; then extract the square

root to two terms, and see if the remainder (with or without^

the absolute term) is a multiple of the root already obtained.*

Ex.7. Solve the equation ir*-12xH44a;2-.48x=9009.

We may proceed as follows

:

x*-12a;34.44a;2-48cc-9009=0(x2-6a;

- 12^:3+ 36x2

8x2-48x-9009,

or 8(x2-6a:)-9009.

Hence the given equation may be expressed as follows;

(x2-6x)24-8(a:2-6a;)= 9009.

Ans. x=l% or -7, or 3±3V-10.

Ex.8. Solve the equation ic*— 2x^+3;=132.

Ans. x=4: or —3, or ^±^'v/_43.

Ex.9. Solve the equation x*-\-4:a^= 12.

Ans. x= ± V2 or ± V— 6.

Ex. 10. Solve the equation a;®— 83^^=513.

*Ans. x=S or — v/l9.
6 3

Ex.11. Solve the equation x'^-\-x'^=766.

Ans. a:=243 or -v/28*.

Ex.12. Solve the equation Jcc^—ia^= — A-

Ans. x=i\/2.

Ex.13. Solve the equation 2x^+307^=2.

Ans. x=\ or —8.

Ex. 14. Solve the equation ^a?—i-v^=22^.
Ans. 37=49 or -^.

Ex.15. Solve the equation Vl0-{-x-Vl0-^x=2.
Ans. x=6 or —9.
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Ex. 16. Solve the equation a;^-l- 20x^-10= 59.

Ans. x=V^ or v/^=23.

Ex. 17. Solve the equation Sx^''-2x''-\-S= ll.

Ans, x= v/2 or V—^'

Ex.18. Solve the equation Vl+x—x'^—2{l-{-x—x'^)= i.

Am. x=^±iV^ or -^i^VII.

Ex.19. Solve the equation V^4-Vx=20.
Ans. x=:256 or 625.

Ex.20. Solve the equation x'^—^x^+ 7x'^-Qx=18.

Ans. x=3 or —1, or liV— 5.

Ex.21. Solve the equation x'^-\-6x-^4:=5Vx^-}-6x-{'28.

Ans. x—4: or —9, or —^±^V—ol,

Ex. 22. Solve the equation x'^+B=2Vx^-2x-\-2+ 2x.

An^. x—1.

Ex.23. Solve the equation {x-{-Vxy-{x-{-Vxf =20692,

Ans. ic= 9 or 16?

Ex. 24. Solve the equation ic+ V25-|-cc=157.

Ans. cc=l44 or 171.

Ex.25. Solve the equation Vx—l=x—l.
Ans. x=l or 2.

265. We have seen that every equation of the second de-

gree has two roots; that is, there are two quantities which,

when substituted for x in the original equation, will render

the two members identical. In like manner, we shall find

that every equation of the third degree has th7'ee roots^ an equa-

tion of the fourth degree has four roots, and, in general, an

equation of the mth degree has m roots.

Before determining the degree of an equation, it should be

freed from fractions, from negative exponents, and from the

radical signs which affect its unknown quantities. Several of

the preceding examples are thus found to furnish equations
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of the fourth degree, while others furnish equations of the

second degree.

The above method of solving the equation x'^^-\-px^—q will

not always give us all of the roots, and we must have recourse

to different processes to discover the remaining roots. The

subject will be more fully treated in Chapter XXI.

Problems producing Equations of iJie Second Degree.

Prob. 1. It is required to find two numbers such that their

difference shall be 8 and their product 240.

Let ir=:the least number.

Then will a:+8= the greater.

And by the question, x{x-^8)=x^-\-8x=2'^0.

Therefore cc=12, the less number,

cc -1-8=20, the greater.

Proof. 20—12 = 8, the first condition.

20x12 = 240, the second condition.

Prob. 2. The Keceiving Keservoir at Yorkville is a rectan-

gle, 60 rods longer than it is broad, and its area is 5500 square

rods. Eequired its length and breadth.

Prob. 3. What two numbers are those whose difference is

2a, and product hf .

Ans. a±ya^-\-o, and —a±Va^+b.

Prob. 4. It is required to divide the number 60 into two

such parts that their product shall be 864.

Let ic=one of the parts.

Then will 60— a?= the other part

And by the question, x{60—x)-—60x—x^=S64:.

The parts are 36 and 24, Ans.

Prob. 5. In a parcel which contains 52 coins of silver and

copper, each silver coin is worth as many cents as there are

copper coins, and each copper coin is worth as many cents as

there are silver coins, and the whole are worth two dollars.

How many are there of each ?

Prob. 6. What two numbers are those whose sum is 2a and

Vroduct b? Ans. a-\-VaF—b and a-Va^—b.
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Prob. 7. There is a number consisting of two digits whose

sum is 10, and the sum of their squares is 58. Kequired the

number.

Let ic=:the first digit.

Then will 10—cc=the second digit.

And a;2_|_(io_^)2^2a^2_20a7+100=58;

that is, ic2_iQ^^_2i^
a;2-10a^+25= 4,

ic=5±2 = 7 or 3.

Hence the number is 73 or 37.

The two values of x are the required digits whose sum is

10. It will be observed that we put x to represent the first

digit, whereas we find it may equal the second as well as the

first. The reason is, that we have here imposed a condition

which does not enter into the equation. If x represent either

of the required digits, then 10— a? will represent the other^ and

hence the values of x found by solving the equation should

give both digits. Beginners are very apt thus, in the state-

ment of a problem, to impose conditions which do not appear

in the equation.

The preceding example, and all others of the same class,

may be solved without completing the square. Thus,

Let X represent the half difierence of the two digits.

Then, according to the principle on page 89, h-\-x will rep-

resent the greater of the two digits, and 5— a? the less.

The square of 5+07 is 25+ 10a:+ a?^,

5-07 " 25-1007+ 00" .

The sum is 50 +207^, which, according to

the problem, =58.

Hence 207^= 8,

or a?^= 4,

and X =±2.
Therefore, 5 4- a? =7, the greater digit,

and 5—0? =3, the less digit.

Prob. 8. Find two numbers such that the product of their

sum and difference may be 5, and the product of the sum of

their squares and the difference of their squares may be 65.
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Prob. 9. Find two numbers such that the product of theii

sum and difference may be a, and the product of the sum of

their squares and the difference of their squares may be ma.

Ans.^;^l111— a

Prob. 10. A laborer dug two trenches, whose united length

was 26 yards, for 356 shillings, and the digging of each of

them cost as many shillings per yard as there were yards in

its length. What was the length of each ?

A71S. 10, or 16 yards.

Prob. 11. What two numbers are those whose sum is 2a,

and the sum of their squares is 2h?

Ans. a+Vb—d^, and a—Vb—a\
Prob. 12. A farmer bought a number of sheep for 80 dollars,

and if he had bought four more for the same money, he would

have paid one dollar less for each. How many did he buy ?

Let X represent the number of sheep.

80
Then will — be the price of each.

80
And 2 would be the price of each if he had bought four

more for the same money.

But by the question we have

80^ 80 ^

X ~X+ 4:

Solving this equation, we obtain a:: =16, Ans.

Prob. 13. A person bought a number of articles for a dol-

lars. If he had bought 26 more for the same money, he would

have paid c dollars less for each. How many did he buy ?

Ans. -6±^M±^

Prob. 14. It is required to find three numbers such that the

product of the first and second may be 15, the product of the

first and third 21, and the sum of the squares ofthe second and

third 74. Ans. 8, 5, and 7.
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Prob. 15. It is required to find three numbers such that the

product of the first and second may be a, the product of the

first and third Z>, and the sum of the squares of the second and

third c.

/o^j^^ / c
, /

A71S. v ; aSj ——^^ ; o\/

-

Prob. 16. The sum of two numbers is 16, and the sum of

their cubes 1072. What are the numbers? Ans. 7 and 9.

Prob. 17. The sum of two numbers is 2a, and the sum of

their cubes is 2b. What are the numbers ?

Ans.a+ \/^ ^ and «— v/'
3a V 3a

•

Prob. 18. Two magnets, whose powers of attraction are as

4 to 9, are placed at a distance of 20 inches from each other.

It is required to find, on the line which joins their centres, the

point where a needle would be equally attracted by both, ad-

mitting that the intensity of magnetic attraction varies inverse-

ly as the square of the distance.

. j 8 inches from the weakest magnet,

I or —40 inches from the weakest magnet

Prob. 19. Two magnets, whose powers are as m to t?, are

placed at a distance of a feet from each other. It is required

to find, on the line which joins their centres, the point which

is equally attracted by both.

The distance from the magnet m is —^:=

Ans

The distance from the magnet n is

VmdzVn

Prob. 20. A set out from C toward D, and traveled 6 miles

an hour. After he had gone 45 miles, B set out from D to-

ward C, and went every hour -^V of the entire distance ; and

after he had traveled as many hours as he went miles in one

hour, he met A. Eequired the distance between the places

and D, Ans. Either 100 miles, or 180 miles.
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Prob. 21. A set out from C toward D, and traveled a miles

per hour. After he had gone h miles, B set out from D toward

C, and went every hour ^th of the entire distance ,• and after

he had traveled as many hours as he went miles in one hour,

he met A. Kequired the distance between the places C and D.

^-"(^-vTW^-
Prob. 22. By selling my horse for 24 dollars, I lose as much

per cent, as the horse cost me. What was the first cost of the

horse? Ans. 40 or 60 dollars.

Prob. 23. A fruit-dealer receives an order to buy 18 melons

provided they can be bought at 18 cents a piece ; but if they

should be dearer or cheaper than 18 cents, he is to buy as

many less or more than 18 as each costs more or less than 18

cents. He paid in all $3.15. How many melons did he buy?
Ans. Either 15 or 21.

Prob. 24. A line of given length (a) is bisected and pro-

duced ; find the length of the produced part, so that the rect-

angle contained by half the line, and the line made up of the

half and the produced part, may be equal to the square on the

produced part.

Ans.^{l + Vb),

Equations of the Second Degree containing Two Unknown
Quantities.

266. An equation containing two unknown quantities is

said to be of the second degree when the highest sum of the expo-

nents of the unknown quaiitities in any term is two. Thus

0^2+2/2= 13, (1.)

and . x-\-xy+y=ll, (2.)

are equations of the second degree.

267. The solution of two equations of the second degree

containing two unknown quantities generally involves the so-

lution of an equation of the fourth degree containing one un-
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known quantity. Thus, from equation (2), we find

Substituting this value for y in equation (1) and reducing,

we have

an equation which can not be solved by the preceding methods.

Yet there are particular cases in which simultaneous equations

of a degree higher than the first may be solved by the rules for

quadratic equations. The following are the principal cases of

this kind

:

268. l5^. When one of the equations is of the first degree and the

other of the second,—We find an expression for the value of one

of the unknown quantities in the former equation, and substi-

tute this value for its equal in the other equation.

Ex. 1. Given \
^'+ S^^-2/'=23 )

^^ ^^^ ^ ^^^

From the second equation we find

Substituting this value for x in the first equation, we have

49-28?/ 4-%'^+21?/-6y2_2/2^23,

which may be solved in the usual manner.

Ans.
\

^

Ex. 2. Given
{ ^""'XZ^^yCf^ \

to find x and y.

|?/=3 or -Y=
[ 10x-{-y_ \

Ex. 3. Given \ 3 ~^^
[• to find x and y.

(92/-9a;=18i
. (cc=2 or —\,

(2/=4 or |.

For equations of this class there are in general two sets of

values of x and y.
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269. 2c?. When both of the equations are of the second degree^

and homogeneous.—Substitute for one of the unknown quanti-

ties the product of the other bj a third unknown quantity.

Ex. 4. Given
j 9 Z_i [

*^ ^^^ ^ ^^^ V-

If we assume x^vy^ we shall have
12

y2y2 _^ yy2_ -[^^ whencc 2/2

Therefore
v'^-\-v v—2'

From which we obtain v= 8or3.

Substituting either of these values in one of the preceding

expressions for 2/^ we shall obtain the values of ?/; and since

x=vyj we may easily obtain the values of x.

o

x=±S or ±-—

.

Ans.i
^

il—±\ or =t-T=.
V6

Ex. 5. Given \ ^'^^^"' J^ \ to find aj and y.

Assuming x=vy^ we find ^=2; ^^
"o"-

a:=±7 or ±--.

Ans.<

y= ±4 or ±—p'

Ex. 6. Given
{'^JiXtS'" 1

^ ^^^ ^ -^ V'

Assuming x=vy^ we find v=- or —

.

a:= ±1 or ±
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For equations of this class there are in general four sets of

values of x and y. It should be borne in mind that to any

one of the four values of x there corresponds only one of the

four values of y. Thus, when x in the 6th example is +1, y
must be -4-8, and can not be one of the other three values

given above.

270. Sd When the unknown quantities entei' each equation sym-

metrically.—Substitute for the unknown quantities the sum and

difference of two other quantities, or the sum and product of

two other quantities.

Ex. 7. Given I y x >• to find x and y.

{ x+y=12 )

Let us assume x=z-\-v,

y= z-'V.

Then x-\-y=2z= 12 or z= 6.

That is, X—6+ V and y=Q—v.
But from the first equation we find

x^-\-y^= 18xy.

Substituting the preceding values of ic and y in this equation,

and reducing, we have

432+36?;2=648-18i;2,

whence v=±2.
Therefore cc= 4 or 8, and 3/=8 or 4.

Ex. 8. Given \ ^ r to find x and ?/.

x=S or 5.

y=^5 or 3.

Ex. 9. Given ] f .

^ 7 non C t^ ^^^ ^ 3,nd y.
ix^y+xy^= SSO) ^

5 or 6.

'=6 or 5.

Ans.
I

Ans. }

271. 4:th. When the same algebraic expression is involved to

different powers^ it is sometimes best to regard this expression

as the unknown quantity.
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Ex.10. Given \ ^ ^^^
-« o > tofindxandy.

The first equation may be written

(x+2/)'4-2(x+i/)= 120.

Regarding x-\-y as a single quantity, we find its value to be

either 10 or -12.

Proceeding now as in Art. 268, we find

x=Q or 9, or — QifVS;
y=4 or 1, or —SiVS.

Ex. 11. Given \ ^V^J^-ft \ to find x and y.

Regarding xy as the unknown quantity, its value from the

first equation is found to be either

8 or -12.

j
x=2 or 4, or 3± V2T.

(y=4 or 2, or 3=fV21.
/^ 4x_85 \

Ex. 12. Given Xy"^ 3/

~~
9 >• to find ic and y,

( a;-2/=2 )

Regarding - as the unknown quantity, we find its value to
if

be either 5 17

[2/=3or-T^.
For several of these examples there are other roots, some

of which can not be obtained by the processes heretofore ex-

plained. The roots of two simultaneous equations are some-

times infinite, as in the equations a?^— a?y=:8, and 3:^—^^= 12,

since two quantities that are infinitely great may difier by a

finite quantity.

Solve the following groups of simultaneous equations

:

x^^2xy-f^\\ . (a:=±-v/|.

-4-^— 1 ) ( —

"

Ex. 13.
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U+2/4-V^=14:f (2/=2 or 8.

cc=6 or 30.

30 or 6.

[xy 18 )

Ex 17 i(^^+2/^)^¥=468) . \x
^^'^^'

\ {x^.y)xy=^0 \ ^""''Xy

x=2,
3.

Ex.18.
I rn\\ ^n..i^=^*^^*^-

Ex.19. \ ^ ^ [ ^^-{^=64 018.

Ex. 20. ^ 1.15 5- Arts,
j

cc=l or 4
3/=4 or 1.

(r=±2.
Ex.21, o

,
i^iy ^ns.

I

x—y=S ) \y=^ or —5.

4-ccy +2/*= 931
[

. j x= ±5 or ±3
Ex.23. T:^^^~:r Ans

Ex. 24.

a;2+a:?/+2/2=:49 j
* (^=±3 or ±5

((7+a;)(6+2/)-80) ^^ p-l or 3.

( x-^y=6 )
' \y-4: or 2.

JVbiJtf. Put 7+07=2!, 6-\-y=v,

PROBLEMS.

1. Divide tlie number 100 into two such parts that the sum
of their square roots may be 14. Ans. 64 and 36.

2. Divide the number a into two such parts that the sum
of their square roots may be b. ,

Ans. 2^2'^2a—b\

8. The sum of two numbers is 8, and the sum of their fourth

powers is 706. What are the numbers ? Ans. 3 and 5.

12
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4. The sum of two numbers is 2a, and the sum of their

fourth powers is 2b. What are the numbers?

Ans, a ± V—Sa^±VSa*-{-b.

5. The sum of two numbers is 6, and the suni of their fifth

powers is 1056. What are the numbers? Ans. 2 and 4.

6. The sum of two numbers is 2a, and the sum of their fifth

powers is b. What are the numbers ?

10a 5

7. What two numbers are those whose product is 120 ; and
if the greater be increased by 8 and the less by 6, the product

of the two numbers thus obtained shall be 800 ?

Ans. 12 and 10, or 16 and 7.5.

8. What two numbers are those whose product is a; and

if the greater be increased by b and the less by c, the product

of the two numbers thus obtained shall be df

m . /m^ ah
Ans. 7r±\/-: ,

and2^4 c r?? /m^ ah

VT-7'

where m =

2 V 4 c

d—a—bc
c

9. Find two numbers such that their sum, their product,

and the difference of their squares may be all equal to one

another.

4„. 1+4 and 1+4
that is, 2.618, and 1.618, nearly.

10. Divide the number 100 into two such parts that their

product may be equal to the difference of their squares.

Ans. 88.197, and 61.803.

11. Divide the number a into two such parts that thcii

product may be equal to the difference of their squares.

. Sa±ay^ , —a::^aV6
Am. ?j and ^r .



EQUATIONS OF THE SECOND DEGREE. 203

12. The sum of two numbers is a, and the sum of their re-

ciprocals is h. Eequired the numbers.

An. l^vfTl

General Properties of Equations of the Second Degree.

272. Every equation of the second degree containing hut one

unknown quantity has two roots, and only two.

We have seen, Art. 250, that every equation of the second

degree containing but one unknown quantity can be reduced

to the form x^-{-px=q. We have also found, Art. 257, that

this equation has two roots, viz.,

^=-f+\/^+|-, and _|_y/^+|-.

This equation can not have more than two roots ; for, if pos-

sible, suppose it to have three roots, and represent these roots

by x', x'\ and x'^\ Then, since a root of an equation is such

a number as, substituted for the unknown quantity, will satisfy

the equation, we must have

x'^+px'=:q, (1)
x"''^px"^q, (2.)

x"'''-\-px"'^q. (3.)

Subtracting (2) from (1), we have

x"'-x"''^p{x'-x'')^(^.

Dividing by x'—x" , we have

(cc'+cc")+^=0. (4.)

In the same manner, we find

{x'-\-x"')\p=.^. (5.)

Subtracting (5) from (4), we have

that is, the third supposed root is identical with the second

;

hence there can not be three different roots to a quadratic

equation.

273. The algebraic sum of the two roots is equal to the coeffi-

cient of the second term of the equation taken with the contrary sign.
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If we add together tlie two values of x in the general equa-

tion, the radical parts having opposite signs disappear, and we
obtain ^ _ :2 — _~2~2~ ^'

Thus, in the equation cc^—10x=— 16, the two roots are 8

and 2, whose sum is + 10, the coefficient of x taken with the

contrary sign.

If the two roots are equal numerically, but have opposite

signs, their sum is zero, and the second term of the equation

vanishes. Thus the two roots of the equation x^=lQ are -f4:

and —4, whose sum is zero. This equation may be written

ic2+0x=16.

274. The product of the two roots is equal to the second member

of the equation taken with the contrary sign.

If we multiply together the two values of x (observing that

the product of the sum and difference of two quantities is

equal to the difference of their squares), we obtain

Thus, in the equation cc^— 10x=:— 16, the product of the

two roots 8 and 2 is +16, which is equal to the second mem-

ber of the equation taken with the contrary sign.

275. The last two principles enable ns to form an equation

whose roots shall be any given quantities.

Ex. 1. Find the equation whose roots are 3 and 6.

According to Art. 273, the coefficient of the second term of

the equation must be — 8 ; and, according to Art. 274, the sec-

ond member of the equation must be —15. Hence the equa-

tion is a;2—8a:=— 15.

Ex. 2. Find the equation whose roots are —4 and —7.

Ex. 3. Find the equation whose roots are 5 and —9.

Ex.4. Find the equation whose roots are —6 and 4-11.

Ex. 5. Find the equation whose roots are 1 and -^2.

Ex. 6. Find the equation whose roots are —^ and + J.

Ex. 7. Find the equation whose roots arc —-J and +i.
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Ex. 8. Find the equation whose roots are 1 ± \/5.

Ex. 9. Find the equation whose roots are 1 ± V^^.

276. Every equation of the second degree whose roots are a and

bjinay be reduced to the form (a:— a)(cc— 6)=0.

Take the general equation

x'^-\-px=q,

and write it x^-\-px—q—0.

Then, by Art. 273, p=-{a-j-b)]

and by Art. 274, ^= — «^-

Hence, by substitution,

x'^—{a-\-b)x-{-ab=0]

or, resolving into factors,

{x-a){x-h)=0.

Thus the equation cc^— 10a:=— 16, whose roots are 8 and 2,

may be resolved into the factors cc— 8= and a:— 2 = 0.

It is also obvious that if a is a root of an equation of the

second degree, the equation must be divisible by x—a. Thus

the preceding equation is divisible by a;— 8, giving the quo-

tient x—2,
Ex. 1. The roots of the equation x^-{-6x-\-8= are —2 and

—4. Eesolve the first member into its factors.

Ex. 2.' The roots of the equation cc2_j_6a;—27= are -f3

and —9. Resolve the first member into its factors.

Ex. 3. The roots of the equation cc^— 2a:— 24= are +6
and —4. Resolve the first member into its factors.

Ex.4, Resolve the equation a;2-f 73x4-780= into simple

factors. A71S. {x-\-60) {x+ 13)= 0.

Ex.5. Resolve the equation a;'^—88a:+ 1612= into simple

factors, Ans.{x—62){x-26)=0.

Ex. 6. Resolve the equation 20-^+3:— 6= into simple fac-

tors. Ans. 2{x+2){x-^)=0.
Ex.7. Resolve the equation 3a:2— 10a:— 25 = into simple

factors. A ns. 3 (a:— 5) ^x+ f)= 0.
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Discussion of the General Equation of the Second Degree.

277. In the general equation of the second degree x'^-\-px=q.

the coefficient of x^ as well as the absolute term, may be either

positive or negative. We may therefore have the four fol-

lowing forms:

First form.

Second form,

Third form,

Fourth form.

x^-^-pxrzzq.

x^—px— q.

x^-\-px=—q,

x^—px——q.

From these equations we obtain

—f-v?-?-

We will now consider what conditions will render these

roots positive or negative, equal or Unequal, real or imaginary.

278. Positive and negative roots.

Since X~^^ ^^ greater than ^,

s/
P I ^ ^.,^4. T 4. 41 P~-f 5' must be greater than ^.

For the same reason, y 4: —9. niust be less than ^.

Therefore, in the first and second forms, the sign of the roota

will correspond to the sign of the radicals; but in the third

and fourth forms the sign of the roots will correspond to the

sign of the rational parts. Hence, in the first form^ one root is

positive and the other negative^ and the negative root is numerical-

ly the greatest; as in the equation x^-\-x=zQ^ whose roots are

-4-2 and -3.
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In the second form one root is positive and the other negative^

and the positive root is numerically the greatest^ as in the equa-

tion x^—x=Q^ whose roots are —2 and +3.

In the third form both roots are negative, as in the equation

x2+5x— — 6, whose roots are —2 and —3.

In the fourth form both roots are positive, as in the equatioq.

0-2—5x=— 6, whose roots are +2 and +3.

279. Equal and unequal roots.

In the first and secondforms the tiuo roots are always unequal;

but in the third and fourth forms, when q is numerically equal

to ^, the radical part of both values of x becomes zero, and

the two roots are then said to be equal. In this case

the third form gives x=-

and the fourth form gives

the third form gives x= — ~±{)= — ^,

Thus, in the equation a:^+6x=— 9, the two roots are —3
and —3. We say that in this case the equation has two

roots, because it is the product of the two factors a:: 4-3 =
and a:-h3= 0.

So, also, in the equation x^—^x=^^^, the two roots are +3
and +3.

280. Ileal and imaginary roots.

nrp>

Since ^, being a square, is positive for all real values of ^,

it follows that the expression ^^rq can only be rendered neg-

ative by the sign of q ; that is, the quantity under the radical

sign can only be negative when q is negative and numerically
092

greater than !—. Hence, in the first ayid second forms, both roots

are always real; but in the third and fourth forms both roots are

imaginary when q is numerically greater than ^.
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Thus, in the equation x^-\-4:X=—6^ the two roots are

and in the equation x'^—4:x=—6, the two roots are

+2±i/:i2.

It will be observed that when one of the roots is imaginary,

the other is imaginary also.

281. Imaginary roots indicate impossible conditions in the pro-

posed question which furnished the equation.

The demonstration of this principle depends upon the fol-

lowing proposition : the greatest product which can he obtained

by dividing a number into two parts and multiplying them iogetJi'

er is the square of half that number.

Let p represent the given number, and c? the difference of

the parts. ,

Then, from page 89, ^+ -= the greater part,

and f ~ 2~ *^^ ^^^ ^^^*

and A~~~I~ *^® product of the parts.

Now, since ^ is a given quantity, it is plain that the prod-

uct will be the greatest possible when c?=0; that is, the great-

est product is the square of |-, half the given number.

For example, let 10 be the number to be divided.

We have 10= 1+ 9; and 9x1= 9.

10= 2+ 8; and 8x2 = 16.

10=3+ 7; and 7x3=21.
10=4+ 6; and 6x4= 24.

10=5+5; and 5x5= 25.

Thus we see that the smaller the difference of the two parts,

the greater is their product; and this product is greatest when

the two parts are equal.

Now, in the equation x^-~px——q^ p is the sum of the two

roots, and q is their product. Therefore q can never be great-

er than -v-4
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Ifj then, any problem furnislies an equation in which q is

negative, and numerically greater than ^, we infer that the

conditions of the question are incompatible with each other.

Suppose it is required to divide 6 into two parts such that

their product shall be 10.

Let X represent one of the parts, and 6—x the other part

Then, by the conditions,

(c(6-cc)= 10;

whence cc^— 6cc= — 10,

and cc=3±V— 1.

The imaginary value of x indicates that it is impossible to

find two numbers whose sum is 6 and product 10. From the

preceding proposition, it appears that 9 is the greatest product

which can be obtained by dividing 6 into two parts and multi-

plying them together.

Discussion of Particular Prohlems,

282. In discussing particular problems which involve equa-

tions of the second degree, we meet with all the different cases

which are presented by equations of the first degree, and some

peculiarities besides. All the different cases enumerated in

Chapter X. are presented by Prob. 19, page 195, when we
make different suppositions upon the values of a, m, and n;

but we need not dwell upon them.

The peculiarities exhibited by equations of the second de-

gree are double values of x, and imaginary values.

283. Double Values of the Unhnown Quantity.—We have seen

that every equation of the second degree has two roots. Some-

times both of these values are applicable to the problem which

furnishes the equation. Thus, in Prob. 20, page 195, we obtain

either 100 or 180 miles for the distance between the places

and D.
C E D
I L^ —

i

Let E represent the position of A when B sets out on hia
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journey. Then, if- we suppose CD equals 100 miles, ED will

equal 65 miles, of which A will travel 80 miles (being 6 miles

an hour for 5 hours), and B will travel 25 miles (being 5 miles

an hour for 5 hours).

If we suppose CD equals 180 miles, ED will equal 135 miles,

of which A will travel 54 miles (being 6 miles an hour for 9

hours), and B will travel 81 miles (being 9 miles an hour for

9 hours).

This problem, therefore, admits of two positive answers, both

equally applicable to the question. Problems 22 and 28, page

196, are of the same kind.

In Problem 18, page 195, one of the values of x is positive

and the other negative.

C A C B

» Let the weaker magnet be placed at A, and the stronger at

B ; then C will represent the position of a needle equally at-

tracted by both magnets. According to the first value, the

distance AC= 8 inches, and CB= 12 inches. Now, at the dis-

tance of 8 inches, the attraction of the weaker magnet will be

4
represented by ^ ; and at the distance of 12 inches, the at-

9
traction of the other magnet will be represented by z-92) and
these two powers are equal ; for

4__9_
32" 122"

But there is another point, »C', which equally satisfies the

conditions of the question ; and this point is 40 inches to the

left of A, and therefore 60 inches to the left of B ; for

402 "602*

284. Imaginary Values of the Unknown Quantity.—We have

seen that an imaginary root indicates impossible conditions in

the proposed question which furnished the equation. In sev-

eral of the preceding problems the values of x become imag-

inary in particular cases.
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When will the values of x in Prob. 6, page 192, be imag-

inary ? Alls. When h > o?.

What is the impossibility involved in this supposition?

Ans. It is impossible that the product of two numbers can

be greater than the square of half their sum.

When will the values of x in Prob. 11, page 194, be imag-

inary ? Ans. When a?>b; or {2af > 4J).

What is the impossibility involved in this supposition?

Ans. The square of the sura of two numbers can not be

greater than twice the sum of their squares.

When will the values of x in Prob. 17, page 195, be imag-

inary ? Ans. When a^>h; or {2af > 85.

What is the impossibility of this supposition ?

Ans. The cube of the sum of two numbers can not be great-

er than four times the sum of their cubes.

When will the values of x in Prob. 4, page 180, be imag-

inary, and what is the impossibility of this supposition ?

285. Geometrical Construction of Equations of the Second De-

gree.—The roots of an equation of the second degree may be

represented by a simple geometrical figure. This may be done

for each of the four forms

:

First form.—The first form gives for x the two values

^=-f+V4H' and x^-^-\/^q.

Draw the line AB, and make it equal to y^. From B draw

^ .^ BC perpendicular to AB, and make it equal

to ^. Join A and C ; then AC will repre-

sent the value of\J^-\-q. For AC^^

AB2+BC2 (Geom., Prop. 11, Bk. lY.).

With C as a centre, and CB as a radius, describe a circle

cutting AC in D, and AC produced in E. For the first value

of x the radical is positive, and is set off from A toward C

;

then — ^ is set off from C to D ; and AD. estimated from A
to D, represents the first value of cc.

\
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For the second value of x we begin at E, and set off EC

equal to —^ ; we then set off the minus radical from C to A
j

and EA, estimated from E to A, represents the second value

of X.

JSecond form.—The second form gives for x the two values

The first value of x is represented by AE estimated from A
to E. The second value is +DC— CA, the latter being esti-

mated from C to A. Hence the second value is represented

by DA estimated from D to A.

Third form.—The third form gives for x the two values

Draw an indefinite line FA, and from any point, as A, set

off a distance AB=— ^. We set off its

, value to the left, because ^ is negative.

IP D- -'E A At B draw BC perpendicular to FA, and

make it equal to ^/~q. With C as a centre, and a radius equal

to ^, describe an arc of a circle cutting FA in D and E. Now

the value of Vx"^ "^^ ^® ^-^ ^^ ^^- "^^^ ^^* ^^^^ ^^

X will be represented by —AB+BE, which is equal to —AE.
The second will be represented by —AB—BD, which is equal

to —AD; so that both of the roots are negative, and are esti-

mated in the same direction, from A toward the left.

Fourth form.—The fourth form gives for x the two values

Construct the radical part of the value of a; as in the last

case. Then, since ^ is positive, we set off its value AB from
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Q A toward the right. To AB we add BD,
/ which gives AD for the first value of x;

/ , and from AB we subtract BE, which leaves

^^- ...'^ -^ AE for the second value of x. Both val-

ues are positive, and are estimated in the

same direction, from A toward the right.

Equal Roots.—If the radius CE be taken equal to CB, that

is, if Vq is equal to -^j the arc described with the centre C will

be tangent to AF, the two points D and E will unite, and the

two values of x become equal to each other. In this case the

radical part of the value of x becomes zero.

Imaginary Roots.—If the radius of the circle described with

the centre C be taken less than CB, it will not

/ meet the line AF. In this case q is nnmerical-

ly greater than ^, and the radical part of the
V

value of X is imaginary.
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CHAPTER XV.

RATIO AND PROPORTION.

286. Ratio is the relation whicli one quantity bears to an-

other with respect to magnitude. Ratio is denoted by two

points like the colon (
: )

placed between the quantities com-

pared. Thus the ratio of a to 6 is written a : 6.

The first quantity is called the antecedent of the ratio, and

the second the corisequent. The two quantities compared are

called the terms of the ratio, and together they form a couplet

The quantities compared may be polynomials; nevertheless,

each quantity is called one term of the ratio.

287. A ratio is measured by the fraction whose numerator

is the antecedent and whose denominator is the consequent of

the ratio. Thus the ratio of a to 6 is measured by 7.

288. A compound ratio is the ratio arising from multiplying

together the corresponding terms of two or more simple ratios.

Thus the ratio of a to & compounded with the ratio of c to 0?

becomes ac to bd.

The ratio compounded of the ratios 3 to 5 and 7 to 9 is

21 to 45.

289. The duplicate ratio of two quantities is the ratio of

their squares. Thus the duplicate ratio of 2 to 3 is 4 to 9

;

the duplicate ratio of a to & is a^ to h^.

290. The triplicate ratio of two quantities is the ratio of their

cubes. Thus the triplicate ratio of a to 6 is a^ to h^.

291. If the terms of a ratio arc both multiplied or both divided
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hy the same quantity^ the value of the ratio remains unchanged.

The ratio of a to & is represented by the fraction 7, and the

value of a fraction is not changed if we multiply or divide

both numerator and denominator by the same quantity. Thus

, a_ma

OT a\h—ma'.mh=z-:-.
n n

PROPORTION.

292. Proportion is an equality of ratios. Thus, if a, h^ c, d
are four quantities such that a when divided by h gives the

same quotient as c when divided by c?, these four quantities

are called proportionals. This proportion may be written thus,

a : 6 : : c : c?,

or a:b=c.dj

or ^--

In either case the proportion is read a is to b as c is to d.

293. The terms of a proportion are the four quantities which

are compared. The first and fourth terms are called the ex-

tremes^ the second and third the means. The first term is called

ihQ first antecedent^ the second term the^r^^ consequent^ the third

term the second antecedent^ and the fourth term the second con-

sequent.

294. When the first of a series of quantities has the same
ratio to the second that the second has to the third, or the

third to the fourth, and so on, these quantities are said to be in

continued proportion^ and any one of them is a mean propor-

tional between the two adjacent ones. Thus, if

a : b i\b : c y, c : d :\ d : e^

then a, 5, c, c?, and e are in continued proportion, and 5 is a

mean proportional between a and c, c is a mean proportional

between b and c?, and so on.
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296. Alternaiion is when antecedent is compared with ante-

cedent and consequent with consequent. Thus, if

a:b:: c : dj

then, by alternation, a:c::b:d. See Art. 801.

296. Inversion is when antecedents are made consequents,

and consequents are made antecedents. Thus, if

a:b :: c: dj

then, inversely, b: a::d: c. See Art. 802.

297. Composition is when the sum of antecedent and conse-

quent is compared with either antecedent or consequent.

Thus, if a b:: c: dj

then, by composition, a-\-b: a:: c-\-d: c,

and a-\-b:b::c-\-d:d. See Art. 304.

298. Division is when the difference of antecedent and con-

sequent is compared with either antecedent or consequent

Thus, if a:b::c:dj

then, by division, a—b a:: c—d : c,

and a—b :b:: c—d : d. See Art. 805.

299. Iffour quantities are in proportion, the product of the ex-

tremes is equal to the product of the means.

Let a:b::c:d.

Then
I
=

J,
Art. 292.

Multiplying each of these equals by 5c?, we have ad=bc,

300. Conversely, if the product of two quantities is equal to the

product of two other quantities^ the first two may be made Vie ex-

tremes^ and the other two the means of a proportion.

Let ad=bc.

Dividing each of these equals by bd, we have

q_ c

b~d'
or a:b::c:d, Art. 292.
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EXAMPLES.

1. Given the first three terms of a proportion, 24, 15, and

40, to find the fourth term.

2. Given the first three terms of a proportion, Sab^, A^aW^

and 9a^5, to find the fourth term.

3. Given the last three terms of a proportion, 4a^5^, 2>aW^

and 2a% to find the first term.

4. Given the first, second, and fourth terms of a proportion,

6/, 7x2^^, and 21x^?/, to find the third term.

5. Given the first, third, and fourth terms of a proportion,

a-j-J, a^—b^j and {a— bf^ to find the second term.

Which of the following proportions are correct, and which

are incorrect?

6. 3a+46:9a+8J::a-26:8a-45.
7. da^-^W : 16a'-25ab+8b^ ::16a^+26ah-\-8b^: 25a''-16b^,

8. a^->rb^ : a'+b^ :: a^-b^ : a-b,

9. a^-\-b^ : a+b:: a'-a^b-^-aW-a^b^-i-a^-b' : a^-b\

301. Iffour quantities are in proportion^ they will be in pro-

portion when taken alternately.

Let a:b::c:d;

then
a_c
h~d'

Multiplying by 6, ^ = ^-

Dividing by c, ^ = ^,

or a:c:'.h'.d.

302. If four quantities are in proportion^ ifiey will be in pro-

portion when taken inversely.

Let a:b::c:d;

then 1 = ^.

Divide unity by each of these equal quantities, and we hare

b^d
a c'

OT b: a:: d: c.

K
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303. Ratios that are equal to the same ratio are equal to each

other.

If a:h::m:n, (1.)

and c:d::m:n, (2.)

then a:b::c:cL

a _m
From proportion (1),

From proportion (2), ^ = ""
c m

Hence
a _c

or a:h\:c:d.

304. If four quantities are proportimial^ they wiU be propor-

tional by composition.

Let a:b::c:d;

^x.
a c

then T = J-
b d

Add unity to each of these equals, and we have

b^ d^"-'

. ^ . a+5 c-\-d
that IS, -r = -^»

or a-\-b:b:: c-\-d: d.

305. If four quantities are proportional^ they will he propor-

iional by division.

Let a:b::c:d;

then -j = ^.

Subtract unity from each of these equals, and we have

b ^-d ^'

,, , . a—h c—d
that 18, -r =

-d-'

or a— b -.b:: c—d: d.
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306. If four quantities are proportional^ the sum of the first

and second is to their difference^ as the sum of the third and fourth

is to their difference.

Let a:b::c:d.

By composition, Art. 804,

a-\-b:b:: c-{-d: d.

By alternation, Art. 301,

a-{-b : c-j-c?:: b: d.

Also by division, Art. 805,

a — b :b:: c—d: d;

by alternation, a—b:c—d::b:d.

By equality of ratios. Art. 808,

a-\-b: c-{-d:: a—b: c—d,

or a-\-b: a—b:'.c-{-d\ c—d.

307. Iffour quantities are in proportion^ any equimultiples of

the first couplet will be proportional to any equimultiples of the

second couplet.

Let a:b::c: d;

then T = ^•
b d

Multiply both terms of the first fraction by m, and both

terms of the second fraction by n, and we have

ma _ nc

mb ~ nd''

or ma :mb:: nc: nd,

308. Iffour quantities are in proportion, any equimultiples of

the antecedents will be proportional to any equimultiples of the con-

sequents.

Let a:b::c:d;

then a _ c

b~d'
Multiply each of these equals by m, and we have

ma _ mc
~F~~d'
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Divide each of these equals by w,

ma _ mc
nb nd*

or ma :nb:: mc: nd.

309. If any number of quantities are proportional, any one an-

tecedent is to its consequent as the sum of all the antecedents is to

the sum of all the consequents.

Let a:b :: c: d :: e:f;

then, since a:b::c:dj

ad= bc; (1.)

and, since a:b::e:f

af=be; (2.)

also ab = ba. (3.)

Adding (1), (2), and (3),

ab-{-ad-\-af= ba-{-bc-\-be;

that is, a {b-\-d-{-f) = b{a-\-c+e).

Hence, ^r^. 300, a:b:: a-{-c+e:b-\-d+f

310. If there are two sets of proportional quantiAies^ the prod-

ucts of the corresponding terms will be proporti(mt>L

Let a'.bwc'.d,

and e:f::g'.h;

then Qje\bf'.\cg\dk,

*-i a c

and -c — T-

Multiplying together these equal quantities, we have

ae _cg
bf~dh:

or ae:bf::cg:dh.

311. Iffour quantities are in proportion^ like powers or roots

pf these quantities will also be iri proportion.
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Let a:b: :c:d;

then
a c

Eaising each of these equals to the nth power,

''dJ^'

we obtain

that is, a" : h^ : : c"" : c?".

In the same manner, we find

1 1 1. 1

: c» : dn.

312. If three quantities are in continued proportion^ the product

of the extremes is equal to the square of the mean.

If a:h::b: Cj

then, bj Art. 299, ac=bb=h\

313. If three quantities are in continued proportion, the first is

to the third in the duplicate ratio of the first to the second.

Let a:b::b: c ;

then i = i
c

Multiply each of these equals by y, and we have

a a a b

that is,

or

314. Iffour quantities are in continued proportion, the first ia

to the fourth in the triplicate ratio of the first to the second.

Let a:b::b: c:: c: d;

then 1 = 1 (1.)

and 1 = '-
(2.)

V'^b' b c'

a a^

c
~62'

a

:

c

:

: a^ : b\

h~ d'

a _a
h~b'

1 a a ,-

.

also ^ = T. (3.)
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Multiplying together (1), (2), and (3), we have

a? _ dbc __ a

nence a:d::a^:b\

VARIATION.

315. Proportions are often expressed in an abridged form.
Thus, if A and B represent two sums of money put out for

one year at the same rate of interest, then

A : B : : interest ofA : interest of B.

This is briefly expressed by saying that the interest varies as

the principal. A peculiar character ( a) is used to denote this

relation. Thus interest a principal

denotes that the interest varies as the principal.

316. One quantity is said to vary directly as another when
the two quantities increase or decrease together in the same

ratio. Thus, in the above example, A varies directly as the

interest of A. In such a case, either quantity is equal to the

other multiplied by some constant number.

Thus, if the interest varies as the principal, then the interest

equals the product of the principal by some constant number,

which is the rate of interest.

If A a B, then A = mB.

If the space (S) described by a falling body varies as the

square of the time (T), then

S = mT2,

where m represents a constant multiplier.

317. One quantity may vary directly as the product of sev-

eral others.

Thus, if a body moves with uniform velocity, the space de-

scribed is measured by the product of the time by the velocity.

If we put S to represent the space described, T the time of

motion, and V the uniform velocity, then we shall have

S a T X V.
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Also the area of a rectangalar figure varies as the product

of its length and breadth.

The weight of a stick of timber varies as the product of its

length X its breadth x its depth x its density.

318. One quantity is said to vary inversely as another when
the first varies as the reciprocal of the second. Thus, if the

area of a triangle be invariable, the altitude varies inversely as

the base.

If the product of two quantities is constant, then one varies

inversely as the other.

In uniform motion the space described is measured by the

product of the time by the velocity ; that is,

SaTxY;
S

whence '^ ^ v*

If the space be supposed to remain constant, then

Ta —'

that is, the time required to travel a given distance varies in-

versely as the velocity.

Conversely^ if one quantity varies inversely as another, the

product of the two quantities is constant

Thus, if T a ^,

then the product of T by Y is equal to a constant quantity.

319. One quantity is said to vary directly as a second^ and
inversely as a third^ when it varies as the product of the second

by the reciprocal of the third. Thus, according to the New-
tonian law of gravitation, the attraction (G) of any heavenly

body varies directly as the quantity of matter (Q), and inverse-

ly as the square of the distance (D).

That is, ^^%
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EXAMPLES.

* — fi
'

\
^^ ^"^ ^ ^^^ y*

Since x+?/: ic:: 5 : 3,

bj division, -4r^. 805, y : x ::2 :S.

2x
Hence 3?/=:2cc, and y=-^.

Substituting this value of y in the second equation, we ob-

tain 2^2

Therefore x = ± 8,

and 2/ =±2.

2. Given
j

^3 ~_V^ '

[ to find x and y.

From the first equation, Art. 306,

2x : 2y : : 4 : 2

;

whence x = 2?/.

Substituting this value of x in the second equation, we find

?/=2, and cc=4.

3. Given -^
^ ^ ^^ ^ ^J

V to find a; and y,
{ xy—K>o )

''

By Art 311, cc+y : x—y : : 8 : 1.

By ^r^. 306, 2aj : 2^/ : : 9 : 7.

Hence x = -^.

Substituting this value of x in the second equation, we find

?/=±7, and ir=±9.

(a;='_2/3:(x-y)3::61:l) , . , ,

4. Given i ^ ^ ^^^ }• to find x and y,
{ a:?/=320 )

From the first equation, by division. Art. 805,

Zxy{x^y)\{x-yY:'.m'.l,

Hence 960 : {x--yf : : 60 : 1,

or 16 ; {x-yf : : 1 : 1.
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Therefore x—y=±4:.

Hence x^—2xy-^y^= 16,

and 4xy=12S0.

By addition, x^-h2xy+y^=12m.

Hence x+y=dtS6.

Therefore cc=: ±20 or ±16,

and 2/=±16or±20.

( X -— TJ ' X 1/— Xl/ ' '
I ' 2 I

5. Given \ ^ • ^ 2
*

'
'

r to find x and y.

. i x=4: or 2.
Ans. {

:2 or 4.

6. Given -j

"^ — i to find x and y.
Vy—x-\- ya—x : ya—x : : 5 : 2 )

4a

7. Given ic+ V^ : x—Vx :: SVx-{-6 : 2Vx to find x.

Ans. x=9 or 4.

8. What number is that to which if 1, 5, and 13 be severally

added, the first sum shall be to the second as the second to the

third? Ans.S.

9. What number is that to which if a, b, and c be severally

added, the first sum shall be to the second as the second to the

third? . h'^—ac
Ans.

a— 2h^-c

10. What two numbers are as 2 to 3, to each of which if 4

be added, the sums will be as 6 to 7?

y 11. What two numbers are as m to n^ to each of which if a

be added, the sums will be as p to 5- .^

Ans.
^-^(>^-y)

.
(in{p-q)

^mq—np ' mq— np
'

12. What two numbers are those whose difierence, sum, and

product are as the numbers 2, 3, and 5 respectively ?

Ans. 2 and 10.

K2
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13. What two numbers are those whose difference, sum, and

product are as the numbers m, n, and p ?

Arts, —— and ——.
n-\-m n—m

14. Find two numbers, the greater of which shall be to the

less as their sum to 42, and as their difference to 6.

Arts. 32 and 24.

15. Find two numbers, the greater of which shall be to the

less as their sum to a and their difference to h.

Ans. g±^, and ^*
2{a—b) 2

16. There are two numbers which are in the ratio of 3 to 2,

the difference of whose fourth powers is to the sum of their

cubes as 26 to 7. Kequired the numbers. Ans. 6 and 4.

17. What two numbers are in the ratio of m to tz, the differ-

ence of whose fourth powers is to the sum of their cubes as

V ^ Q^ 3,3 3.3
Ans, —^ X—

7

i, and -^ x—^ ..

q m*— n^' q rn^— ii*

18. Two circular metallic plates, each an inch thick, whose

diameters are 6 and 8 inches respectively, are melted and form-

ed into a single circular plate 1 inch thick. Find its diameter,

admitting that the area of a circle varies as the square of its

diameter.

19. Find the radius of a sphere whose volume is equal to

the sum of the volumes of three spheres whose radii are 3, 4,

and 5 inches, admitting that the volume of a sphere varies as

the cube of its radius.

20. Find the radius of a sphere whose volume is equal to

the sum of the volumes of three spheres whose radii are r, r',

and r".
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CHAPTER XYI
PROGRESSIONS.

ARITHMETICAL PROGRESSION.

3^0. An arithmetical progression is a series of quantities which

increase or decrease by a common difference. Thus the fol-

lowing series are in arithmetical progression

:

1, 8, 5, 7, 9, . .

.

20, 17, 14, 11, 8, . .

.

a, a-\-dj a-^2dj a+ 3c?, . .

.

a, a—d, a— 2d, a— So?, . .

.

In the first example the common difference is -f2, and the

series forms an increasing arithmetical progression ; in the sec-

ond example the common difference is —3, and the series forms

a decreasing arithmetical progression. In the third example the

common difference is 4-c/, and in the fourth example it is —d.

321. In an arithmetical progression having a finite number

of terms, there are five quantities to be considered, viz., the first

term, the last term, the number of terms, the common differ-

ence, and the sum of the terms. When any three of them are

given, the other two may be found. We will denote

, the first term by a,

the last term by ?,

the number of terms by n,

the common difference by cf,

and the sum of the terms by s.

The first term and the last term are called the extremesj and

all the other terms are called arithmetical means.

322. In an arithmetical progression the last term is equal to the

first term plus the product of the common difference hy the number

of terms less one.
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Let the terms of the series be represented bj
a, a-fo?, a+ 2dj a-\-Sdj aH-4(i, etc.

Since the coefficient of c? in the second term is 1, in the third

term 2, in the fourth term 3, and so on, the nth term of the

series will be

a-\-{n—l)dj

or l=a-\-{n—l)dj

in which d is positive or negative according as the series is an

increasing or a decreasing one.

323. The sum of any number of terms in arithmetical progres'

sion is equal to one half the sum of the two extremes multiplied by

the number of terms.

The term preceding the last will be l—d^ the term preceding

that Z— 2(i, and so on. If the terms of the series be written in

the reverse order, the sura will be the same as when written in

the direct order. Hence we have

5=a-h(a-f cZ)-}-(a+2c^)-f (a4-3cZ)4- .... +?,

s=l J^ll-d)^{l -2d)^{l -%d)+ +a.

Adding these equations term by term, we have

2s={a^-l)+ {a^T)+ {a-\-l)+ 4-(a+0-

Here a+Z is taken n times; hence

25=.?2(a4-Z),

or 5=:-(a+ 0-

324. Tn an arithmetical p^'^^ogression the sum of the extremes is

equal to the sum of any tivo terms equidistantfrom the extremes.

This principle follows from the preceding demonstration.

It may also be shown independently as follows

:

The mth term from the beginning is a-\-{m— V)d.

The mth term from the end is l—{m—\)d.

And the sum of these terms is a+ Z.

325. To insert any number of arithmetical means between two

given terms.

The whole number of terms in the series consists of the two
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extremes and all the intermediate terms. If, then, m repre-

sents the number of means, m+ 2 will be the whole number

of terms.

Substituting m4-2 for n in the formula, Art. 322, we have

Z=a+ (m-f l)c?,

the common difference,or d=w+ 1

whence the required means are easily obtained by addition.

326. The two equations

contain five quantities, a, Z, w, c?, 5, of which any three being

given, the other two can be found. We may therefore have

ten different cases, each requiring the determination of two dif-

ferent formulae. These formulae are exhibited in the following

table, and should be verified by the student.

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Given,

a, C?, W,

?, d, n,

a, Z, ??,

a, ??, 5,

72, C?, 5,

Z, 72, 5,

a, cZ, Z,

a, ?, 5,

a, £?, 5,

Ij d, 5,

Re-
quired.

a, s,

cZ, 5,

dj,

a, I

a,d,

72,5,

72, C?,

/ =ra+ (72— l)cZ;

a= Z— (^— l)c?;

Z —

a

771:1'

2.s-2a?2

n(72-l)'

s (77-iyi

72 2

25 ,
arr Z;

72

I— a
, ^

Formulae.

5=-J?2[2a+ 0?-iy].

5zz=^72[2Z-(72-l)6Z].

s=^2(a+ Z).

, 25
I = a.

n

, _s {n-V)d
^ -^+"~2~-

cZ=
27iZ-25

72(72—1)*

72=

d

25

a+ Z'

_ (Z+q)(Z— g-t-f?)

^
~

2(^

c?=
2s-a-l'

Z, 72, /^-i.f±V 2c/.+Ca-^c^)» ;

,^^-2a±V(2a-cf)'+ 8^.

2c«
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EXAMPLES.

1. The first term of an arithmetical progression is 2, and the

common difference is 4 ; what is the 10th term ?

Ans. 38.

2. The first term is 40, and the common difierence —3 ; what

is the 10th term?

3. The first term is 1, and the common difference f ; what

is the 10th term?

4. The first term is 1, and the oemmon difference —J; what

is the 10th term ?

5. The first term is 5, the common difference is 10, and the

number of terms is 60 ;
what is their sum ?

Alts. 18000.

6. The first term is 116, the common difference is —4, and

the number of terms is 25 ; what is their sum ?

7. The first term is 1, the common difference is f, and the

number of terms is 12 ; what is their sum ?

8. The first term is 1%, the common difference is — | ; and

the number of terms is 10 ; what is their sum ?

9. Required the number of terms of a progression whose sum
is 442, whose first term is 2, and common difference 8.

Am. 17.

10. Required the first term of a progression whose sum is

99, whose last term is 19, and common difference 2.

11. The sum of a progression is 1465, the first term 5, and

the last term 92 ; what is the common difference?

12. Required the sum of 101 terms of the series

1, 3, 5, 7, 9, etc. Aiis. 10201.

13. Find the nth term of the series

1, 3, 5, 7, 9, etc. Ans. 27i-l.

14. Find the sum of n terms of the series

1, 3, 5, 7, 9, etc. Aiis. n\

15. Find the sum of n terms of the series of numbers

1, 2, 3, 4, 5, etc.

n(M-l)
Ans. Q *^
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16. Find the sum of n terms of the series

2, 4, 6, 8, etc. Arts. n(n+l).

17. Find 6 arithmetical means between 1 and 50.

18. Find 7 arithmetical means between -J and 8.

19. A body falls 16 feet during the first second, and in each,

succeeding second 82 feet more than in the one immediately

preceding ; if it continue falling for 20 seconds, how many feet

will it pass over in the last second, and how many in the whole

time?
Ans. 624 feet in the last second, and

6400 feet in the whole time.

20. One hundred stones being placed on the ground in a

straight line at the distance of two yards from each other, how
far will a person travel who shall bring them one by one to a

basket which is placed two yards from the first stone ?

Ans. 20200 yards.

PROBLEMS.

327. When of the five quantities a, Z, ??, c?, s, no three are

directly given, it may be necessary to represent the series by

the use of two unknown quantities. The form of the series

which will be found most convenient will depend upon the

conditions of the problem. If x denote the first term and y
the common difference, then

a?, a?-j-?/, a: +2?/, a? +3?/, etc.,

will represent a series in arithmetical progression.

It will, however, generally be found most convenient to rep-

resent the series in such a manner that the common difference

may disappear in taking the sum of the terms. Thus a pro-

gression of three terms may be represented by

one of four terms by x—Sy, x—y, x-\-y, x-]-Sy;

one of five terms by x—2y^ ^—Vi ^i ^+2/? ^+ 2i/.

Prob. 1. A number consisting of three digits which are in

arithmetical progression, being divided by the sum of its digits,

gives a quotient 26 ; and if 198 be added to itj the digits will

be inverted ; required the number. Ans. 284.
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Prob. 2. Find three numbers in arithmetical progression the

sum of whose squares shall be 1232, and the square of the

mean greater than the product of the two extremes by 16.

Ans. 16, 20, and 24.

Prob. 3. Find three numbers in arithmetical progression the

sum of whose squares shall be a, and the square of the mean

greater than the product of the two extremes by b.

/a-2b rr /a-2b
,

/a-2b ,,

Ans. V—g Vb; V —3-5 ^^^ V—3- + ^^-

Prob. 4. Find four numbers in arithmetical progression

whose sum is 28, and continued product 685.

Ans. 1, 5, 9, 13.

Prob. 5. A sets out for a certain place, and travels 1 mile

the first day, 2 the second, 3 the third, and so on. In five days

afterward B sets out, and travels 12 miles a day. How long

will A travel before he is overtaken by B ?

Ans. 8 or 15 days.

This is another example of an equation of the second de-

gree, in which the two roots are both positive. The following

diagram exhibits the daily progress of each traveler. The di-

visions above the horizontal line represent the distances trav-

eled each day by A ; those below the line the distances trav-

eled by B.

A. 12345 6 7 8 9 10 11 12 13 14 15
I NI I I I I I I I I I I I

I

\ \ T \ \ i i \ i \ I

B. 123456789 10

It is readily seen from the figure that A is in advance of B
until the end of his 8th day, when B overtakes and passes him.

After the 12th day, A gains upon B, and passes him on the

15th day, after which he is continually gaining upon B, and

could not be again overtaken.

Prob. 6. A goes 1 mile the first day, 2 the second, and so

on. B starts a days later, and travels b miles per day. How
long will A travel before he is overtaken by B ?

. 2b^\±V{2b-lf-^ab .

Ans, — ^ — days.
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In what case would B never overtake A ?

(25-1)2
Am. When a > ^

—

^, •

.

oo

For instance, in the preceding example, if B had started one

day later, he could never have overtaken A.

Prob. 7. A traveler set out from a certain place and went 1

mile the first day, 8 the second, 5 the third, and so on. After

he had been gone three days, a second traveler sets out, and

goes 12 miles the first day, 13 the second, and so on. After

how many days will they be together ?

Ans. In 2 or 9 days.

Let the student illustrate this example by a diagram like the

preceding.

Prob. 8. A and B, 165 miles distant from each other, set out

with a design to meet. A travels 1 mile the first day, 2 the

second, 3 the third, and so on. B travels 20 miles the first

day, 18 the second, 16 the third, and so on. In how many
days will they meet ? Ans. 10 or 33 days.

GEOMETRICAL PROGRESSION.

328. J. geometrical progression is a series of quantities each of

which is equal to the product of the preceding one hy a constant

factor.

The constant factor is called the ratio of the series.

329. When the first term is positive, and the ratio greater

than unity, the series forms an increasing geometrical progres-

sion, as

2, 4, 8, 16, 32, etc.,

in which the ratio is 2.

When the ratio is less than unity, the series forms a decreas-

ing geometrical progression, as

81, 27, 9, 3, etc.,

in which the ratio is
-J.

330. In a geometrical progression having a finite number
of terms, there are five quantities to be considered, viz., the first
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term, tlie last term, the number of terms, the ratio, and the sum
of the terms. When any three of these are given, the other

two may be found. We will denote

the first term by a,

the last term by i,

the number of terms by w,

the ratio by r,

and the sum of the terms by s.

The first term and the last term are called the extremes^ and

all the other terms are called geometrical means.

331. In a geometrical progression^ the hst term is equal to the

product of the first term by that power of the ratio whose exponent

is one less than the number of terms.

According to the definition, the second term is equal to the

first multiplied by r, that is, it is equal to ar ; the third term

is equal to the second multiplied by r, that is, it is equal to

wr^'^ the fourth term is equal to the third multiplied by r, that

is, it is equal to ar^ ; and so on. Hence the nth term of the

series will be equal to ar^"^ ; hence we shall have

l=ar'^-^.

332. To find the sum of any number of terms in geometrical

progression, multiply the last term by the ratio^ subtract the first

term^ and divide the remainder by the ratio less one.

From the definition, we have

s=a-\-ar-\-ar^-\- , . . . -l-ar^-^H-ar'*-^

Multiplying this equation by r, we have

rs=ar-{-ar^-^ .... -f ar^-^+a^""^-!- «^**-

Subtracting the first equation from the second, member from

member, we have rs—s=ar^—a.

ar^— a
Hence s= r—

;

r—

1

or, substituting the value of I already found, we have

rl—a
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If we had subtracted the second equation from the first, we
should have found

a—rl

which is the most convenient formula when r is less than

unity, and the series is, therefore, a decreasing one.

333. To find the sum of a decreasing geometrical series

when the number of terms is infinite, divide the first term hy

unity diminished hy the ratio.

The sum of the terms of a decreasing series may be repre-

sented by the formula

a—rl

Now, in a decreasing series, each term is less than the pre-

ceding, and the greater the number of terms, the smaller will

be the last term of the series. If the number of terms be in-

finite, the last term of the series will be less than any assigna-

ble number, and rl may be neglected in comparison with a.

In this case the formula reduces to

1-r

334. To find any number ofgeometrical means between two given

terms.

In order to solve this problem, it is necessary to know the

ratio. If m represent the number of means, 772+ 2 will be the

whole number of terms. Hence, putting m-{-2 for n in the

formula, Art. 331, we have

l=ar'^+^]

1

/Am+l
whence we obtain ^—

W

That is, to find the ratio, divide the last term by the first term,

and extract the root which is denoted hy the number of means plus

one. Having found the ratio, the required means may be ob-

tained by continued multiplication.
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335. The two equations

l=ar^-\ s:
ar'^—a

contain five quantities, a, I, n, r, 5, of which any three being

given, the other two can be found. We may therefore have

ten different cases, each requiring the determination of two quan-

tities, thus giving rise to twenty different formulae. The first

four of the following cases are readily solved. The fifth and

sixth cases involve the solution of equations of a higher degree

than the second. When n is not large, the value of the un-

known quantity can generally be found by a few trials. The
four remaining cases, when n is the quantity sought, involve

the solution of an exponential equation. See Art. 416. These

different cases are all exhibited in the following table for con-

venient reference.

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Given.

a,r, n,

a, Z, ?i,

a, w, 5,

Z, ri,5,

a, Z, 5,

a,r,s,

I, r, 5,

Re-
quired.

Z, 5,

a, I,

r,?,

r, n,

Z, 71,

I =ar'^-'^ s =-

Formulse.

ar'^—a

a= _Z_^
y.n-1'

(r-Vys

s =
r-1

Ir^'—l

»n— 1*

p-l_^n-l

7*1—1 ^n-\
t — a

ar'^—rs=a—s; ?(5— Z)'»-^= a(5— a)*»-\

a(5-a)"-i=rZ(5-Z)»»-i
;
(5-Z)?-"-5?'"-i= -Z.

5 = Ir—a

s—

a

^37'

ioff. Z— losf. a

log. ?'
4-1.

log. Z— log. a

log. (.9-a)-log. (.9-Z)
+ 1.

a-\.{r-l)s
^ ^^ log. [a-f-(/'-l>-]-log. a

r ' log. r

a=Zr— (r— l)s,- n:
log. Z— log. [Zr—(r— !).-?]

log. r
+ 1.
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EXAMPLES.

1. Find the 12th term of the series 1, 3, 9, 27, etc.

We have 7=ar«-i= 3^^= 177147, Ans.

2. Given the first term 2, the ratio 3, and the number of

terms 10 ; to find the last term. Ans. 39366.

3. Find the sum of 14 terms of the series 1, 2, 4, 8, 16, etc.

5=^^^^=2^^-1= 16383, Ans.
r— 1

4. Find the sum of 12 terms of the series 1, 3, 9, 27, etc.

Ans. 265,720.

5. Given the first term 1, the last term 512, and the sum of

the terms 1023 ; to find the ratio.

6. Given the last term 2048, the number of terms 12, and

the ratio 2 ; to find the first term.

7. Find the sum of 6 terms of the series 6, 4f, 3f, etc.

Ans. 19|i|.

8. Find the sum of 15 terms of the series 8, 4, 2, 1, etc.

Ans. lo-jj^jT^-g^.

9. Find three geometrical means between 2 and 162.

10. Find two geometrical means between 4 and 256.

11. Find three geometrical means between a and b.

Ans. Va^b, \/ab, Vab^.

12. Find the value of 1+J-|-J+-|-+, etc., to infinity.

=-

—

T=2, Ans.
1-r 1-i

13. Find the value of l4--J+-^4--2V+, ^^c, to infinity.

Ans.
I".

14. Find the value ofl+i+-iV4-A+, etc., to infinity,

15. Find the ratio of an infinite progression whose first term^

is 1, and the sum of the series |-. Ans. ^.

16. Find the first term of an infinite progression whose ratio

is tVj and the sum f

.

Ans. f.

17. Find the first term of an infinite progression of which

the ratio is -, and the sum
7l' 71— 1'

18. Find the value of the series 34-2-}-|+, etc., to infinity
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19. Find the value of the series 3^+l + f+, etc., to infinity.

20. A gentleman, being asked to dispose of his horse, said

he would sell him on condition of receiving one cent for the

first nail in his shoes, two cents for the second, and so on,

doubling the price of every nail to 82, the number of nails in

his four shoes. What would the horse cost at that rate ?

Ans. $42,949,672.95.

PROBLEMS.

Prob. 1. Find three numbers in geometrical progression such

that their sum shall be 21, and the sum of their squares 189.

Denote the first term by x and the ratio by y ; then

X -{• xy ^ xy^ =21, (1.)

x''-\-xhf-{-xY= 189. (2.)

Transposing xy in Eq. (1), squaring, and reducing, we have

x^ -hxy+xY

=

441- 42a;?/. (8.)

Comparing (2) and (8), xy=6j or ir=-.

Substituting this value of x in Eq. (1), and reducing, we have

Whence y=2 or ^, and x=3 or 12.

The terms are therefore 3, 6, and 12, or 12, 6, and 3.

Prob. 2. Find four numbers in geometrical progression such

that the sum of the first and second shall be 15, and the sum
of the third and fourth 60.

By the conditions, x-\-xy=zl5, (1.)

xy''-\-xy^= 60. (2.)

Multiplying Eq. (1) by 3/^, we have

xy^ -h xy^= 16y'^= 60.

Therefore 2/^= 4, and y= ± 2.

Also £c±2a;=15;

therefore x=6 or —15.

Taking the first value of x and the corresponding value of

y, we obtain the series 5, 10, 20, and 40.

Taking the second value of x and the corresponding value

oft/, we obtain the series —15, 4-80, —60, and 4-120;
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which numbers also perfectly satisfy the problem understood

algebraically. If, however, it is required that the terms of the

progression be positive, the last value of x would be inapplica-

ble to the problem, though satisfying the algebraic equation.

Several of the following problems also have two solutions, if

we admit negative values.

Prob. 3. Find three numbers in geometrical progression such

that their sum shall be 210, and the last shall exceed the first

by 90. Ans. 30, 60, and 120.

Prob. 4. Find three numbers in geometrical progression such

that their sum shall be 42, and the sum of the first and last

shall be 34. Ans. 2, 8, and 32.

Prob. 5. Find three numbers in geometrical progression such

that their continued product may be 64, and the sum of their

cubes 584. Ans. 2, 4, and 8.

Prob. 6. Find four numbers in geometrical progression such

that the difference between the first and second may be 4, and

the difference between the third and fourth 36.

Ans. 2, 6, 18, and 54.

Prob. 7. Find four numbers in geometrical progression such

that the sum of the first and third may be a, and the sum of

the second and fourth may be h.

Ans. -:——rr, — 77,, -^ r^, aUQ

Prob. 8. Find four numbers in geometrical progression such

that the fourth shall exceed the second by 24, and the sum of

the extremes shall be to the sum of the means as 7 to 3.

Ans. 1, 3, 9, and 27.

Prob. 9. The sum of $700 was divided among four persons,

whose shares were in geometrical progression, and the differ-

ence between the greatest and least was to the difference be-

tween the means as 37 to 12. What were their respective

shares ? Ans. 108, 144, 192, and 256.

Prob. 10. Find six numbers in geometrical progression such

that their sum shall be 1365, and the sum of the third and

fourth shall be 80. Ans. 1, 4, 16, 64, 256, and 1024.
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CHAPTER XYII.

CONTINUED FRACTIONS.—PERMUTATIONS AND COMBINATIONS.^

336. A continued fraction is one whose numerator is unity,

and its denominator an integer plus a fraction, whose numera-

tor is likewise unity, and its denominator an integer plus a

fraction, and so on.

The general form of a continued fraction is

1

a-fl

b+1
c+1

d-\-j etc.

When the number of terms a, h, c, etc., \s> finite^ the continued

fraction is said to be terminating ; such a continued fraction

may be reduced to an ordinary fraction by performing the op-

erations indicated.

337. To convert any given fraction into a continuedfraction.

Let - be the given fraction ; divide m by n; let A be the
n

quotient, and^ the remainder: thus,

nun
P

Divide nhjp; let a be the quotient, and q the remainder:

thus,

^
. ? .1—=a4---=aH—

.

P P P
?

Similarly, £=6+^=^+^?
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and so on, so that we have'

:=A+1
'J

m
n

a+ 1

&+ , etc.

We see, then, that to convert a given fraction into a contin-

ued fraction, we proceed as if we were finding the greatest com-

mon divisor of the numerator and denominator; and we must,

therefore, at last arrive at a point where the remainder is zero,

and the operation terminates ; hence every rational fraction can

he converted into a terminating continued fraction.

Ex. 1. Transform -g-jy into a continued fraction.

1
Ans.

3 + 1

22+ 1

1+i.
Ex. 2. Transform -144 '^^'^^ a continued fraction.

1
Ans.

1+ 1

1 + 1

1+1^.
Ex. 3. Transform ^|4 i^^to a continued fraction.

1
Ans.

2+ 1

1+ 1

2+ 1

-L-r-g-T*

Ex. 4. Transform |44- i^^^o a continued fraction.

Ex. 5. Transform f|-^ into a continued fraction.

Ex. 6. Transform \^ into a continued fraction.

338. To find the value of a terminating continuedfra/^tion,

Ex. 1. Find the value of the continued fraction

1

2+ 1

3 + i-

Beginning with the last fraction, we have
L
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3+i=J#.

Hence
1 _4
3+i~"-

Therefore
2+3+i=-

and
1

a+i-^'^"*-
Ex.2. Find the value of the continued fraction

1

3+1
2+1

4+^
Ex.8. Find the value of the continued fraction

2+ 1

3+ 1

2+1
2+i

Ex.4. Find the value of the continued fraction

1

1+ 1
^

2+1
1+ 1

1 + 1

l+^Sj.

339. To find the value of an infinite continued fraetion.

Let the fraction be
1

a+1
i+ 1

c+, etc.

An approximate value of this fraction is obtained by omit-

ting all its terms be3'^ond any assumed fraction, and obtaining

the value of the resulting fraction, as in the previous article.
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Thus we obtain

1st approximate value, -

;

2d approximate value, a+ 1 = ;

b

3d approximate value, a-\-l , ^

{ab-\-l)c+a'

4th approximate value, ^ ^

iab-{-l)cd+ad-{-ab+ lj etc.

340. The fractions formed by taking one, two, three, etc.,

of the quotients of the continued fraction are called converging

fractions, or convergents.

The convergents, taken in order, are alternately less and great-

er than the continued fraction.

The first convergent - is too great, because th& denominator
a ,

a is too small ; the second convergent , is too small, be-

cause a-f T is too great, and so on.

341. When a fraction has been transformed into a continued

fraction, its approximate value may be found by taking a few

of the first terms of the continued fraction.

Thus an approximate value of -^^r ^s -J, which is the first

term of its continued fraction.

By taking two terms, we obtain f^, which is a nearer ap-

proximation ; and three terms would give a still more accu-

rate value.

Ex. 1. Find approximate values of the fraction iW^ .

AnS. f, -g-, -y-f.

Ex. 2. Find approximate values of the fraction |44-

Ex. 3. Find approximate values of the fraction H^.
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342. By the preceding method we are enabled to discover

the approximate value of a fraction expressed in large num-

bers, and this principle has some important applications, par-

ticularly in Astronomy.

Ex. 4. The ratio of the circumference of a circle to its diam^

ter is 3.1415926. Find approximate values for this ratio.

AnQ 22 333 35S

Ex. 5. The length of the tropical year is 365d 5A. 48m. 48&

Find approximate values for the ratio of bh. 48m. 48^. to 24

hours.

Ans. J, "5^, ^, yVt-

Ex. 6. In 87969 years the earth makes 277287 conjunctions

with Mercury. Find approximate values for the ratio of 87969

to 277287.
ArtQ X fi 7 13 33
JlllS.

-J, Yy^, Tj-g, ^fTj TIFT-

Ex. 7. In 57551 years the earth makes 36000 conjunctions

with Yenus. Find approximate values for the i:atio of 57551

to 36000.
i 11 o 8 235

Ex. 8. In 295306 years the moon makes 3652422 synodical

revolutions. Find an approximate value for the ratio of 295306

to 3652422. Ans. ^.
Ex. 9. One French metre is equal to 3.2809 English feet.

Find approximate values for the ratio of a metre to a foot.

Ex. 10. One French kilogramme is equal to 2.2046 pounds

avoirdupois. Find approximate values for the ratio of a kilo-

gramme to a pound.

Ex. 11. One French litre is equal to 0.2201 English gallons.

Find approximate values for the ratio of a litre to a gallon.

PERMUTATIONS AND COMBINATIONS.

343. The different orders in which things can be arranged

are called their perrmdations. In forming permutations, all of

the things or a part only may be taken at a time.

Thus the permutations of the three letters a, Z>, c, taken all

together, are

ahc, acb. hac. hca, cab, cha.
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The permutations of the same letters taken two at a time are

ahj aCj ha^ be, ca, cb.

The permutations of the same letters taken one at a time are

a, 5, e.

344. Tlie number ofpermutations ofn things taken m at a time

is equal to the continued piroduct of the natural series of numbers

from n down to 7i— m-\-l,

Suppose the things to be n letters, a^b, c, d

The number of permutations of n letters, taken singly or

one at a time, is evidently equal to the number of letters, or

to n.

If we wish to form all the permutations of n letters taken

two at a time, we must write after each letter each of the

71—1 remaining letters. We shall thus obtain 7z(n— 1) permu-

tations.

If we wish to form all the permutations of n letters taken

three at a time, we must write after each of the permutations

of n letters taken two at a time each of the n— 2 remaining let-

ters. We shall thus obtain n{n—l){n— 2) permutations.

In the same manner we shall find that the number of permu-

tations of n letters taken four at a time is

n{n-l){n-2){n-S).

Hence we may conclude that the number of permutations

of n letters taken m at a time is

n{n-l){n-2)(n-S) (n-m+ 1).

345. The number ofpermutations of n things taken all together

is equal to the continued product of the natural series of ^lumbers

from 1 to n.

If we suppose that each permutation comprehends all the n

letters; that is, if m=:?2, the preceding formula becomes

n{n-l){n-2) 8x2x1;
or, inverting the order of the factors,

1.2.3.4 (n-V)n,

which expresses the number of permutations of ri things taken

all together.
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For the sake of brevity, 1.2.3.4.... {n—l)n is often de-

noted by \n; that is, \n denotes the product of the natural num-
bers from 1 to 71 inclusive.

346. The combinations of things are the different collections

which can be formed out of them without regarding the orc^er

in which the things are placed.

Thus the three letters a, b, c, taken all together, form but one
combination, abc.

Taken two and two, they form three combinations, ab, ac, be.

347. 77ie numher of combinations ofn things^ taken m at a timCj

is equal to the continued product of the natural series of numbers

from n down to n—m-\-l divided by the continued product of the

natural series of numbersfrom 1 to m.

The number of combinations of n letters taken separately,

or one at a time, is evidently n.

The number of combinations of n lett,ers taken two at a

time IS \ .

For the number of permutations of n letters taken two at a

time is n{n— l\ and there are two permutations (ai, ba) corre-

sponding to one combination of two letters ; therefore the num-

ber of combinations will be found by dividing the number of

permutations by 2.

The number of combinations of n letters taken three at a

. n(n-l)(n-2)
time IS —i^— ^\ ^.

For the number of permutations of 7i letters taken three at

a time is n{n— l){n— 2\ and there are 1.2.3 permutations for

one combination of these letters ; therefore the number of com-

binations will be found by dividing the number of permuta-

tions by 1.2.3.

In the same manner we shall find the number of combina-

tions ofn letters taken m at a time to be

y?(?i-l)(n-2) .... (?i—m+1)
1X3 m
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EXAMPLES.

1. How many different permutations may be formed of 8

letters taken 5 at a time ? Ans. 8.7.6.5.4= 6720.

2. How many different permutations may be formed of the

26 letters of the alphabet taken 4 at a time ?

Ans. 858800.

3. How many different permutations may be formed of 12

letters taken 6 at a time ? Ans. 665280.

4. How many different permutations may be formed of 8

things taken all together?

^725.1.2.8.4.5.6.7.8=40320.

5. How many different permutations may be made of the

letters in the word Roma taken all together ?

6. How many different permutations may be made of the

letters in the word virtue taken all together?

7. What is the number of different arrangements which can

be formed of 12 persons at a dinner-table ?

Ans. 479001600.

8. How many different combinations may be formed of 6

letters taken 3 at a time ?

Ans. = 20.
L.Jj.O

9. How many different combinations may be formed of 8

letters taken 4 at a time ? Ans. 70.

10. How many different combinations may be formed of 10

letters taken 6 at a time ? Ans. 210.

11. A telegraph has m arms, and each arm is capable of 72

distinct positions; find the total number of signals which can

be made with the telegraph.

12. How many different numbers can be formed with the

digits 1, 2, 3, 4, 5, 6, 7, 8, 9, each of these digits occurring once,

and only once, in each number ?
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CHAPTER XYIII.

BINOMIAL THEOREM.

348. The binomial theorem, or binomialformula^ is a formula

discovered by Newton, by means of which we may obtain any

power of a binomial x+a, without obtaining the preceding

powers.

349. By actual multiplication, we find the successive powers

of ic-f a to be as follows:

{x -\-ay=x^-{-2ax-\- a^,

{x+af =x^+ Sax^-^ Sa'^x+ a^,

{x+ ay= a;*+ 4:ax^+ Qa^x"^ -^4:a^x+ a*,

{x-{-a.y=x^-\-6ax''+10aV+ 10a^x'-\-5a*x-\-a^.

The powers of x— a, found in the same manner, are as fol-

lows:

{x— ay=x^— 2ax+ a'^,

(a?— a)^— a;^— 3ax2 4- 8a^a?— a^,

{x--ay=x*—4:ax^-\-6aV—4:a^x-\-a*,

{x-ay=x^-6ax^+10a''x^-10a^x^+6a''x-~a\

On comparing the powers of x-\-a with those of x—a, we
perceive that they only differ in the signs of certain terms. In

the powers of cc+a, all the terms are positive. In the powers

of x—a, the terms containing the odd powers of a have the sign

minus, while the terms containing the even powers have the

sign plus. The reason of this is obvious; for, since —a is the

only negative term of the root, the terms of the power can only

be rendered negative by a. A term which contains the factor

—a an even number of times will therefore be positive; if it

contain it an odd number of times it must be negative. Hence

it appears that it is only necessary to seek for a method of ob-

taining the powers of ir+a, for those will become the powers

of a:— a by simply changing the signs of the alternate terms.
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350, Law of the Exponents.—The exponents of cc and of a in

the different powers follow a simple law. In the first term of

each power, x is raised to the required power of the binomial

;

and in the following terms the exponents of cc continually de-

crease by unity to zero, while the exponents of a increase by
unity from zero up to the required power of the binomial.

351. Law of the Coefficients.—The coefficient of the first term

is unity ; that of the second term is the exponent of the power

;

and the coefficients of terms equidistant from the extremes are

equal to each other ; but after the first two terms it is not ob-

vious how to obtain the coefficients of the fourth and higher

powers.

In order to discover the law of the coefficients, we will form

the product of several binomial factors whose second terms are

all different; thus,

{x-{-a){x^h)= x^-\-a x-\-ah.

{x^a){x-\-h){x-^c).

(x-\-a){x-^h){x-\-c){x-{'d).

•.x^-{-a x^-^-ah

-\-ac

-\-hc

x-^abc.

x*+ a x'+ab x'^-\-ahc

\-h -\-ac -\-ahd

4-c + hc -^acd

^d -\-ad

-^hd

-i-cd

+ hcd

x-\-ohccL

In each of these products the exponent of cc in the first term

fs equal to the number of binomial factors, and in the follow-

ng terms continually decreases by one. The coefficient of the

first term is unity ; the coefficient of the second term is the sum of

the second terms of the binomial factors ; the coefficient of the third

term is the sum of all their products taken two and two, and so on.

T7ie last term, is the product of the second terms of the binomial

factors.
L 2
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352 We will now prove that if the laws offormatwn jusi

stated are truefor any power^ they will also hold truefor theforma-

tion of the next higher power.

Suppose that we have found the product of m binomials

x-\-a^ x+bj .... x-\-k. Let Pj denote the sum of the second

terms of the binomials, Pg the sum of the different products of

these second terms taken two and two, P3 the sum of their

products taken three and three, and so on ; and let Fm denote

the product of all these second terms. The product of the

given binomials will then be

x'"-\-F^x'^-'^+ 'P^x'^-^-]-F^x^-^ 4-Pm.

Multiplying this polynomial by a new binomial, x-\-l, we ot)*

tain the following product:

^+HPi
+ 1

.m-l_,_p^

+ ZP + ^P,n-l

X

+ ^Pr

+ P2

+ ^P,

The law of the exponents of x remains the same. The co-

efficient of the first term is still equal to unity, and that of the

second term is the sum of the second terms of the -m + l bino-

mials. The coefficient of the third term consists of the sum
of the products of the second terms of the m binomial factors

taken two and two, increased by the sum of the same second

terms multiplied by Z, which is equivalent to the sum of the

products of the second terms of the m+1 binomials taken two

and two. The coefficient of the fourth term consists of the sum
of the products of the second terms of the m factors of the first

product taken three and three, increased by the sum of the

products of their second terms taken two and two multiplied

by ?, which is equivalent to the sum of the products of the sec-

ond terms of the m-f-l binomials taken three and three, and

so on. The last term is equal to the product of the second

terms of the m binomial factors multiplied by I, which is equiv-

alent to the product of the second terms of the m-f 1 binomials.

Hence tlic law which was supposed true for m factors is true

for m+ l factors; and therefore, since it has been verified for

two factors, it is true for three; being true for three fiictors, it

is also true for four, and so on ; therefore the law is general.
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353. Powers of a Binomial.—If now, in the preceding bino-

mial factors, we suppose the second terms to be all equal to a,

the product of these binomials will become the mth power of

x-\-a.

The coefficient of the second term of the product becomes

equal to a multiplied by the number of factors ; that is, it is

equal to ma.

The coefficient of the third term reduces to a^ repeated as

many times as there are different combinations of m letters

m^iifYi 1^
taken two and two ; that is, to —\r-^—-a^.

The coefficient of the fourth term reduces to a^ repeated as

many times as there are different combinations of m letters

1 • m(m—l){m—2) „ ,

taken three and three; that is —^—Too ^^
)
^^^ ^^ o^*

The last term will be a^.

Hence the m\h power of a?H-a may be expressed as follows:

{x+ay = x"^ H-max^-^+^Yo" '

1.2

/ ^3^m-3
1.2:3

m(m—l)(m— 2) , ^ „
. ,

354. We perceive that if the coefficient of any term he multi-

plied hy the exponent ofx in that term^ and the product he divided

hy the exponent of a in that term increased hy unity^ it will give the

coefficient of the succeeding term.

Forming thus the seventh power of cc+a, we obtain

(ir+ay=a^^+ 7a:rH21aV4-35a3xH35aV+21aV+7a«a;+a^
We have thus deduced

Sir Isaac Newton^s Binomial Theorem.

355. In any power of a binomial jr+ a, the exponent ofx hegins,

tn the first term with the exponent of the povjer, and in the follow-

ing terms continually decreases hy one. Tlie exponent of a com

mences with one in the second term of the power^ and continually

increases hy one.

The coefficient of the first term is one^ that of the second is the ex
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jponent of the power ; and if the coefficient of any term he muUi-

plied hy the exponent ofx in that term^ and divided by the exponent

of a increased hy one^ it will give the coefficient of the succeeding term.

356. The coefficient of the nth term from the beginning is equal

to the coefficient of the nth term from the end.

If we change the places of cc and a, we shall have, by the law

of formation,

(a

+

xY=a^+ mxa'"'-^+^^^^7^ x^a-^-^+

m(wi— l)(m— 2) „ o

L.A.O

The second member of this equation is the same as the sec-

ond member of the equation in Art. 353, but taken in a reverse

order. Comparing the two, we see that the coefficient of the

second term from the beginning is equal to the coefficient of

the second term from the end ; the coefficient of the third from

the beginning is equal to that of the third from the end, and

so on. Hence, in forming any power of a binomial, it is only

necessary to compute the coefficients for half the terms ; we
then repeat the same numbers in a reverse order.

357. The mth power of x-\-a contains m-\-\ terms. This ap-

pears from the law of formation of the powers of a binomial

developed in Art. 352. Thus the fourth power of x-\-a con-

tains five terms ; the sixth power contains seven terms, etc.

358. The sum of the coefficients of the terms in the nth power of

x-\-a is equal to the nth power of 2.

For, suppose x—\ and a= l, then each term of the formula

without the coefficients reduces to unity, and the sum of the

terms is simply the sum of the coefficients. In this case

(x-fa)"^ becomes (1 + 1)"*, or 2^^.

Thus the coefficients of the

second power are 1 + 24-1= 4=2',

third " 1-1-3 + 34.1= 8= 2^

fourth *' 1+4+ 6+ 4+ 1 = 16= 2^ eta
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359. To obtain the development of (x— a)^, it is sufficient to

change -\-a into —a in the development of (a:+ a)™. In con-

sequence of this substitution, the terms which contain the odd

powers of a will have the minus sign, while the signs of the re-

maining terms will be unchanged. We shall therefore have

J- • iu

m(m—l)(m— 2) ,
^

-^ 2 3
^^'^"*~H

EXAMPLES.

1. Find the sixth power of a+ b.

The terms without the coefficients are

a^, a% a'b^, a^W, a^h\ ab', W.

The coefficients are

1 (K ^^ 15x4 20x3 15x2 6x1
'

' 2 ' 3 ' 4 '~"6~'~6~'

that is, 1, 6, 15, 20, 15, 6, 1.

Prefixing the coefficients, we obtain

(a+ bf= «« _^ Qw>b+ 15«^52+20aW -f 15a=Z.*+ Qah^J^h^.

2. Find the ninth power of a—b.
The terms without the coefficients are

a^, a%, cCb^ a'h^, a'b\ a'b\ a%\ o}b\ ab\ b\

The coefficients are

9x^ 36x7 84x6 126x5 126x4 84x3 36x2 9x1
'

' 2 ' 3 ' 4 ' 5 '~6 '~T~'"~8~'~9~^
that is,

1,9, 36, 84, 126, 126, 84, 36, 9, 1.

Prefixing the coefficients, we obtain

ia^bY:=a^-^cH-\-ZMb''-^Ma%^+12Qa'b'-12^a'b''+ ^4:a%-

It should be remembered that it is only necessary to com-
pute the coefficients of AaZ/*the terms independently.

3. Find the seventh power of a— x.

4. Find the third term of {a-^-bf^.

5. Find the forty-ninth term of {a~-xf\
6. Find the middle term of (a + a:)^o.
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360. A Binomial with Coefficients.—If the terms of the given

binomial have coefficients or exponents, we maj^ obtain any

power of it by means of the binomial formula. For this pur-

pose, each term must be raised to its proper power denoted by

the exponents in the binomial formula.

7. Find the fourth power of 2x-\-^a.

For convenience, let us substitute y for 2x and h for 8a.

Then {y-\- hf= ?/*

+

^^h+ ^y'^h' -f ^yh' 4- h\

Kestoring the values of y and 6,

the first term will be (2x)*=16ic*,

the second term will be 4(2cc)^x3a= 96a;^a,

the third term will be %{2xf x {2>af= 2lhx''a\

the fourth term will be 4,{2x)x{%af=2lQxa^,

the fifth term will be (3a)*=81a*.

Therefore (2x+ 3a)*= 1 6x* + 96a;3a+ 2IG^r^aH 216ira3+81o^

It is recommended to write the three factors of each term in

a vertical column, and then perform the multiplication as indi-

cated below

:

Coefficients, 1+4 +6 +4+1
Powers of 2cc, 16a:*+ ^x^ + ^tx^ + 2x -\- \

Powers of 3a, 1 + 3a + Oa'^ + 27a^ +81a*

(2a;+3a)*=T6^*+96a:3a+216a:'^a2+2I6a:a3+8Ta*.

8. Find the fifth power of 2aa:-3&.

Coefficients, 1+5 +10 +10 +5+1
Powers of 2ax, 32a5.T*+ 16a*x* + Sn'ar' + 4a»x» + 2ax -f 1

Powers of -36, 1 - 36 +96' - 276» + 81 6« -2436'

(2ax- 36)*= 32a»x»- 240a*a:*6 + 720a='a:='6»- 1080a=a:»6»+ 8 10ax6*- 2436*.

9. Find the fourth power of 2a:+5rt^.

Ans. 1 6x* + 1 mx'^a'+ GOOx^a*+ 1000a;a«+ 6250^.

10. Find the fourth power of 7?-\-4:y'^.

11. Find the sixth power of a^+3aft.

Ans. a^«+-18a^^Z>+ 135a'*/;2 4.540ai2i3

+ 1215a^oZ>*+ 1458a«^H 729a«Z)«

12. Find the seventh power of 2a— 3/^.

Ans. 128a' - 1344a«/;+ mASa'V^- 15120a*Z»3

+ 22680a3Z>*-20412a^^H10206a^.«-21876l

13. Find the fifth power oiha^^^xhj.
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14. Find the sixth power of o?x-\-hy'^.

15. Find the fifth power of ax—1.

16. Find the fifth term of{a^-by^.

17. Find the fifth term of {Sx^-4:y^y,

18. Find the sixth power of 5— ^.

Powers and Boots of Polynomials.

361 If it is required to raise a polynomial to any power, we
riiay, by substituting other letters, reduce it to the form of a

binomial. We obtain the power of this binomial by the gen-

eral formula ; then, restoring the original letters, and perform-

ing the operations indicated, we obtain the required power of

the proposed polynomial.

Ex. 1. Let it be required to raise a+5+c to the third power.

If we put &-fc=m, we shall have

{a-\-b+ cy=:{a-\- my= a^+ Sa'^m+ Sam"^+ m^,

or a^ + Sa%b -\.c)-{-Sa{h-\- cf+ {h+ cy.

Developing the powers of the binomial b-\-c, and performing

the operations indicated, we obtain

(a _j_ 5 4- c)3 :zr a^+ Sa^Z)+ Sa^c+ 80^2+ 6a6c+ 3ac2+ 53 4. 3^;2c

+ 36c2+cl

Ex. 2. Find the fifth power of x-\-a-{-b.

Ex. 3. Find the fourth power of a'^—ab-\-b'^.

Ans. a^-4:a'b+ 10a'b'^-Ua'b^-{-l9a'h*

-16a:'b'-{-10a'^b'-4:ab'' + b\

Ex. 4. Find the fifth power of l-\-2x-^Sx^

Ex. 5. Find the sixth power of a-^b+c.

A71S. a«+6a^6+6«5c+15a*Z>2 4_ SOa^Z'c+lSa^c^-f 20a3J3

+ eOa^b^c 4- eOa^bc'' -f 20q-V + 15a2^* + QOa'^b^c +
90a262c2+ 60a2Z>c3 +16aV+ 6ab'-\- SOab'c+ 60ab^c^

4- eOab^c^+ SOabc*+ Qac'+ 6«+ 6b'c+ 16b'c^+ 20^^03

+ 15Z^V+ 66cHc'.

362. The binomial theorem will inform us how to extract

any root of a polynomial We know "that the mth power of
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x-\-a is x^ -\- max"^~'^ -}- other terms. The first term of the root

is, therefore, the mth root of the first term of the polynomial.

Also the second term of the root may be found by dividing the

second term of the polynomial by mx^~^ ; that is, the first term

of the root raised to the next inferior power, and multiplied

by the exponent of the given power. Hence, for extracting

iny root of a polynomial, we have the following

RULE.

Arrange the terms according to the poivers of one of the letters^

and take the mth root of the first term for the first term of the re-

quired root.

Subtract the mth power of this term of the root from the given

polynomial, and divide the first term of the remainder hy m times

the (m— l) power of this root ; the quotient will he the second term

of the root.

Subtract the mth power of the terms alreadyfoundfrom the given

2)olynomial, and, using the same divisor, proceed in like mannei' to

find the remaining terms of the root.

Ex. 1. Find the fourth root of

16a*-96a3a;4-216a2x2-216aa:3_^3l3^,

16a*-96rt3x+216a2^2_216acc3+81x*(2a-3x

16a*____
82a3)__-96tt^

16a*-96a3a;+216a2x2-216ax3^31a^,

Here we take the fourth root of 16a*, which is 2a, for the

first term of the required root, subtract its fourth power, and

bring down the first term of the remainder, — 96a^a;. For a

divisor, we raise the first term of the root to the third power

and multiply it by 4, making 82a^. Dividing, we obtain — 3.t

for the second term of the root. The quantity 2a— Sx, being

raised to the fourth power, is found to be equal to the proposed

polynomial.

Ex. 2. Find the fifth root of

80x3^32a;5_80a;*-40a;2 f lOx-1.
Ans. 2a:—

L
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Ex. 8. Find the fourth root of

Ans. 8x2-2x-2.

363. To extract any Boot of a Number.—The preceding meth-

od may be applied to the extraction of any root of a number.

Let n be the index of the root, n being any whole number.

For a reason similar to that given for the square and cube roots,

we must first divide the number into periods of n figures each,

beginning at the right. The left-hand period may contain less

than n figures. Then the first figure of the required root will

be the nth root of the greatest nth. power contained in the first

period on the left. If we subtract the ?2th power of this root

from the given number, and divide the remainder by n times

the (n— l)th power of the first figure, regarding its local value,

the quotient will be the second figure of the root, or possibly

a figure too large. The result may be tested by raising the

whole root now found to the nth. power ; and if there are other

figures they may be found in the same manner.

Tn the extraction of the nth root of an integer, if there is

still a remainder after we have obtained the units' figure of the

root, it indicates that the proposed number has not an exact nth

root. We may, if we please, proceed with the approximation

to any desired extent by annexing any number of periods of

n ciphers each, and continuing the operation. We thus ob-

tain a decimal part to be added to the integral part already

found.

So, also, if a decimal number has no exact nth root, we may
annex ciphers, and proceed with the approximation to any de-

sired extent, dividing the number into periods commencing

with the decimal point.

Ex, 1. Find the fifth root of 33554432.

335.54432(32

243

5.3*=r405) 925

32^= 33554432.

Ex. 2. Find the fifth root of 4984209207.
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Ex. 3. Find the fifth root of 10.

Ex. 4. Find the fifth root off. Ans. .922.

364. When the index of the required root is composed of

two factors^ we may obtain the root required by the successive

extraction of simpler roots, Art. 217. For the mnXh root of

any number is equal to the mih. root of the nth root of that

number.

Thus we may obtain the fourth root by extracting the square

root of the square root.

We may obtain the sixth root by extracting the cube root

of the square root, or the square root of the cube root. It is,

however, best to extract the roots of the lowest degrees first,

because the operation is less laborious.

We may obtain the eighth root by extracting the square root

three times successively. We may obtain the 7ii7ith root by ex-

tracting the cube root twice successively.

Ex. 1. Find the fourth root of

Qa'^b^ -f. a*- 4:a%- 4:ah^+ b\

Ex. 2. Find the sixth root of

6a'b+ Iba'b''+ a^

+

20a^b^+ Ida'^b* -{-b^-h 6ah\

Ex. 3. Find the eighth root of

1024x'^-hl792xy+256a;«+1120a:y+1792icy4-448x3y*

+ ?/«-t-112xy-hl6x/.
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CHAPTER XIX.

SERIES.

365. A series is a succession of terms each of which is de-

rived from one or more of the preceding ones by a fixed law.

This law is called the law of the series. The number of terms

of the series is generally unlimited. Arithmetical and geomet-

rical progressions afford examples of series.

366. A converging series is one in which the sum of the first

n terms can not numerically exceed some finite quantity, how-

ever great n may be.

Thus, 1, ^, J, I", -^, etc., is a converging series.

367. A diverging series is one in which n can be taken so

large that the sum of the first n terms is numerically greater

than any finite quantity.

Thus, 1, 2, 3, 4, 5, 6, etc., is a diverging series.

368. When a certain number of terms are given, and the

law of the series is known, we may find any term of the series,

or the sum of any number of terms. This may generally be

done by the method of differences.

369. To find the several orders of differences fiyr any series:

Subtract the first term from the second, the second from the

third, the third from the fourth, etc. ; we shall thus form a new
series, which is called the ^irs^ order of differences.

Subtract the first term of this new series from the second, the

second from the third, etc. ; we shall thus form a third series,

called the second order of differences.

Proceed in like manner for the third, fourth, etc., orders of

differences, and so on till they terminate, or are carried as far

as may be thought necessary.
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Ex. 1. Find the several orders of differences of the series ol

square numbers 1, 4, 9, 16, etc.

Squares.

1

4

9

16

25

letDifC 2d Diflf.

3

5
2

7
2

9
2

2

SdDifi:

Ex. 2. Find the several orders of differences of the series of

cube numbers 1, 8, 27, etc.

Cubes,

1

8

27

64

125

216

1st DiflF. 2d Diflf. SdDiff:

7
12

19
18

6

87
24

6

61
80

6

91
S6

6

4th DiA

Ex. 8. Find the several orders of differences of the series of

fourth powers 1, 16, 81, 256, 625, 1296, etc.

Ex. 4, Find the several orders of differences of the series of

fifth powers 1, 82, 248, 1024, 8125, 7776, 16807, etc.

Ex. 5. Find the several orders of differences of the series of

numbers 1, 8, 6, 10, 15, 21, etc.

370. To find the nth term of any series:

Let a, 5, c, c?, e, etc., represent the proposed series. If we
subtract each term from the next succeeding one, we shall ob-

tain the first order of differences ; if we subtract each term of

this new series from the succeeding term, we shall obtain the

second order of differences, and so on, as exhibited in the fol-

lowing table

:

Scries. l8t Diff.

a

h
h-a
c-b

c

d
d-c
e-d

e

2d DiflTerences.

C— 2Z>+a

d-2c+h
e—2d-\-c

3d Order of Differences.

d-Sc-^Sb-

e-3d-\-Sc-

4th Order of DiffereDccs.

c—4c?+6c—4/;+a
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Let D; D'', D''', D'''', etc., represent the first terms of the

several orders of differences. Then we shall have

D^=b—aj whence ^=: a +D'.

I)''=c-2b+a, " c=a-]-2J)'-\-D'\

W=zd-Sc+Sb-a, '' d^a+SD'-\~SJ)''-]-W.

etc., etc.

The coefficients of the value of c, the third term of the pro-

posed series, are 1, 2, 1, which are the coefficients of the second

power of a binomial ; the coefficients of the value of d, the

fourth term, are 1, 3, 3, 1, which are the coefficients of the third

power of a binomial, and so on. Hence we infer that the co-

efficients of the 7ith term of the series are the coefficients of the

(n— l)th power of a binomial. If we denote the nth term of

the series by Tn, we shall have

Z 2t.o

+ , etc.

Ex. 1. Find the 12th term of the series 2, 6, 12, 20, 80, etc.

The first order of differences, 4, 6, 8, 10, etc.

" second order of differences, 2, 2, 2, etc.

" third order of differences, 0, 0.

Here D'= 4, J)"^% and D^'^=:0. Also a= 2 and n^Vh.

Hence Tj2=2+ llD^+ 55D''= 24-44-hll0= 156, Ans,

Ex. 2. Find the twentieth term of the series

1, 3, 6, 10, 15, 21, etc.

Here D'= 2, D''= l, a=rl, and w= 20.

Therefore T2o-:l+ 19D'-fl71D'^= l +38+ 171=210, ^tw?. :

Ex. 3. Find the thirteenth term of the series

1, 5, 14, 30, 55, 91, etc.

Ex. 4. Find the fifteenth term of the series

1, 4, 9, 16, 25, 36, etc.

Ex. 5. Find the twentieth term of the series

1, 8, 27, 64, 125, etc.

Ex. 6. Find the nth term of the series 1, 3, 6, 10, 15, 21, etc.

. 7?(n+ l)
Arts. -^^—'-,
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Ex. 7. Find the nth term of the series 1, 4, 10, 20, 35, etc.

Anc.
^(^+^)(^+2)

^

6

Ex. 8. Find the nth term of the series 1, 6, 15, 35, 70, 126, eta

371. To find the sum ofn terms of any series:

Let us assume the series

0, a, a+6, a+Z>-|-c, a-\-h-\-c-\-d^ etc. (1.)

Subtracting each term from the next succeeding, we obtain

the first order of differences,

a, &, c, c?, etc. (2.)

Kow it is clear that the sum of n terms of the series (2) is

equal to the (nH-l)th term of series (1); and the nth order of

differences in series (2) is the (?2 4-l)th order in series (1). If,

then, we denote the sum ofn terms of series (2) by S, which is

the same as the (n+ l)th term of (1), we may obtain the value

of S from the formula of the preceding article by substituting

for a,

n-|-l for n,

a for D;
D' for D", etc.

Hence

S_„a+—2—D + -g-g D +
^^^-^ D , etc.

When any one of the successive orders of differences be-

comes zero, this formula gives the exact sum of the terms.

When no order of differences becomes zero, the formula may
still give approximate results, which will, in general, be nearer

the truth the greater the number of terms employed.

EXAMPLES.

1. Find the sum of 15 terms of the series

1, 3, 6, 10, 15, 21, etc.

Here a=l, T>'=% D''= l, D'''=0.

Therefore 8=15+ 15.14+5.7.13= 680, Am,
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2. Find the sum of 20 terms of the series

1, 4, 10, 20, 35, etc.

8. Find the sum of n terms of the series

1, 2, 3, 4, 5, 6, etc.

Ans.
^(^+^1

4. Find the sum of n terms of the series

1\ 2^ 32, 42, 52, etc.

^^,,
^(^+ I)(2n4l)

^

6

6. Find the sum of n terms of the series

1^ 23, 3^ 4^ 5=*, etc.

Ans. fc^.
4

6. Find the sum of n terras of the series

1, 3, 6, 10, 15, etc.

. n(72+l)(n+2)

7. Find the sum of n terms of the series

1.2, 2.3, 3.4, 4.5, 5.6, etc.

. ?i(n+l)(n+2)
Ans. ———(r^——k

o

8. Find the sum of n terms of the series

1, 4, 10, 20, 35, etc.

n(72+ l)(;7 + 2)(n+3)
^'''' 2X4 •

Interpolatwn.

372. Interpolation is the process by which, when we have
given a certain number of terms of a series, we compute inter-

mediate terms which conform to the law of the series.

Interpolation may, in most cases, be effected by the use of

the formula of Art. 370. If in this formula we substitute n-\-l

for n, we shall have

T„+.=a+nD-+^(!^D"+"("-^iy-^) D'-'+, etc.,

which expresses the value of that term of the series which has

n terms before it When n is a fraction less than unity^ ^n-\-i
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stands for a term between the first and second of the given

terms. When n is greater than 1 and less than 2, the inter-

mediate term will lie between the second and third of the given

terms, and so on. In general, the preceding formula will give

the value of such intermediate terms.

EXAMPLES.

1. Given the cube root of 60 equal to 3.914868,
" " " 61 " 3.936497,
" " " 62 " 3.957891,
" " " 63 " 3.979057,
« " " 64 " 4.000000,

to find the cube root of 60.25.

Here D'= +.021629, D''= -.000235, D"'== +.000007, etc

a= 3.914868, and n= .25.

Substituting the value of n in the formula, we have

T„+i=a+iD'-^D''+^D--, etc.

The value of the 1st term is +3.914868,
u u 2d " + .005407,
u u

3(J
u + .000022,

u u 4tii » + .000000.

Ilence the cube root of 60.25 is
15.920297.

2. Find the cube root of 60.5. Alls. 3.925712.

3. Find the cube root of 60.75. ^725. 3.931112.

4. Find the cube root of 60.6. Arts. 3.927874.

5. Find the cube root of 60.33. Alls. 3.922031.

6. Given the square root of 30 equal to 5.477226,

» " " 31 " 5.567764,

" " " 32 " 5.656854,

" " " 33 " 5.744563,

*' " " 34 " 5.830952,

to find the square root of 30.3 Ans. 5.504544,

7. Find the square root of 30.4. Ans. 5.513619.

8. Find the square root of 30.5. Ans. 5.522681.

9. Find the square root of 30.6. -^725. 5.531727.

10. Find the square root of 30.8. Ans. 5.549775.
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Development of Algebraic Expressions into Series,

373. An irreducible fraction may be converted into an in-

finite series by dividing the numerator by the denominator, ac-

cording to the usual method of division.

Ex. 1. Expand ^—- into an infinite series.
J.—x

1—a;)l (l + a;+a;2+x3-l-^*4-, etc.

\— x

X
X--x^

x"

x'--x'

x^

x'--X*

Hence z=zl-]-x-\-x'^-{-x^-\-x^-{-x^-{-. etc., to infinity.
1—x "^

Suppose x—^, we shall then have

J^= J^=2::::l+i+ i+i+A+ ,
CtC.

Suppose cc=J, we shall then have

Y^=Y^=-|=l+i+i+A+A+, etc.

Ex. 2. Convert :; into an infinite series.
l-\-x

Ans. l—x+x'^—x^-\-x'^— x^-{-j etCc

Suppose x— i^ we shall then have

^-x=l-l-i+i-i+TV-A+, etc.

Ex. 3. Convert into an infinite series.
a+x

rp ry" /y>3 ^4
Ans. 1 \--—3+-^— 7 etc.

a a^ a^ a*

Ex. 4. Convert into an infinite series.
a—x

rp rp£i rp"^ rrA

Ans. l+-+-;+^4-—. + ,
etc.

jyi"
a o? cr a*
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1 4-cc
Ex. 5. Convert —^— into an infinite series.

1—x

Ex. 6. Convert —i— into an infinite series,
a—

x

Ans. 14-— H—2-+^-+-r+) 6*^
a a^ a^ or

Ex. 7. Convert ~ into an infinite seriea
X—x-^-x?

Ans. I4-X— cc^—x*4-cc®+cc'— , etc.

Ans. l—x^—x^-\-x^-\-x^—x^—^ etc.

1— a?

Ex. 8. Convert :; r into an infinite series.
l—x-\-x^

Ex. 9. Convert = 5 into an infinite series.
1—x—x^
Ans, l+2x-f3a;2+5a;^+8a;*H-13a:^-f-, etc

374. An algebraic expression whicli is not a perfect square

may be developed into an infinite series by extracting its square

root according to the method of Art. 198.

Ex. 1. Develop the square root of 1 4- a: into an infinite series.

1 . (^ ,x x^ x^ 5a;*
,l+x(^l+2-g+jg-j28+.etc

1

»-l)
'
,

-+4

^«-a -f
X^ a;3 ic*

4""8 "^64

^«-f4)
x^ cc*

8 64

a? cc* cc* x^

8*^16 64 "^256

5.T* x^ x^

64 ' 64 256'
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Hence the square root of 1 +x is equal to

l+2-«
+16-128 + ''^-

Suppose x=lj we shall have

-v/2=l+i-i+yV-TlH+, etc.

Ex. 2. Develop the square root of ct^+x into an infinite seriea

Ans. a^-- -— +_—^-——_+ etc.

Ex. 8. Develop the square root of a* + cc into an infinite series.

Ex. 4. Develop the square root of a^—x into an infinite seriea

Ex.5. Develop the square root of a^-\-x^ into an infinite

series.

Method of Undetermined Coefficients,

375. One of the most useful methods of deviiloping algebraic

expressions into series is the method of undetermined coefficients.

It consists in assuming the required development in the form

of a series with unknown coefficients, and afterward finding the

value of these coefficients. This method is founded upon the

properties of identical equations.

376. An identical equation is one in which the two members
are identical, or may be reduced to identity by performing the

operations indicated in them. As
ax-\-h=ax+h^

tt2.-x^

ax

a—X

a

l-\-x 1+x

377. It follows from the definition that an identical equation

is satisfied hy each and every value which may he assigned to a let-

ter which it contains^ provided that value is the same in both

members of the equation.

Every identical equation containing but one unknown quan-

tity can be reduced to the form of

A + Bx4-Cx2+Dx3 + , etc.= A' + B'cc + C'iK2^DV + , etc.
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378. If an equation of theform
K-\-^^x^-^J?^\-, etc. = A' + B'a:+ C':r2 + , etc.,

must he satisfied for each and every value given to Xj tJien the co-

efficients of the like powers of x in the two members are equal each

to each.

For, since this equation must be satisfied for every value of

£c, it must be satisfied when x=0. But upon this supposition

all the terms vanish except two, and we have

A=A'.
Suppressing these two equal terms, we have

Bx+ Ca;2 + , etc. = B'a:+ C 'it^ + , etc.

Dividing each term by re, we obtain

B + Ca:+ ,
etc.r=:B'+Cx+ , etc.

Since this equation must be satisfied for every value of x, it

must be satisfied when x=0. But upon this supposition

B= B'.

In the same manner w€ can prove that

D=D', etc.

379. Wlienever we have an equation of theform
M -f Nrr -f- P^2+ Q.r' -+- , etc. = 0,

which is true for every value of x^ all the coefficients ofx are equal

to zero.

For, if we transpose all the terms of the equation in the last

article to the left-hand member, we shall have

A-A' +(B-B>H-(C-COx2+ (D-D')a;3 4-,etc.=0.

But it has been shown that A= A', B= B', etc.; whence
A- A'= 0, B-B'= 0, etc. If we substitute M for A -A', and

N for B— B', etc., the equation will be

M+Nx+ Pa:2-f Qa:3+ ,
etc.=0.

whence M=:0, ]Sr= 0, P= 0, etc.

Ex. 1. Expand the fraction -—-- into an infinite seriea
1— &x

It is plain that this development is possible, for we may divide

the numerator by the denominator, as explained in Art 373.

Let us, then, assume the identical equation
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l±^=A+Bx+Cx^-{-J)x'-{-Ex'+ , etc.,
i.— oX

where the coefficients A, B, C, D are supposed to be independ-

ent ofx, but dependent on the known terms of the fraction.

In order to obtain the values of these coefficients, let us clear

this equation of fractions, and we shall have

l+2x=A+ (B-3A):r+(C-3B)x2+(D-8C)xH
(E-8D)cc*+, etc.

Now, since this is supposed to be an identical equation, the

coefficients of the like powers of x in the two members are

equal each to each.

Therefore A= l.

B-3A= 2, whence B=5;
C-3B=0, '' C= 15;

D-3C=0, " D=45;
E_3D=0, " E= 135, etc.

Substituting these values of the coefficients in the assumed

series, we obtain

l^:^=l+ 6x-\-16x''-\-4:5x^-{-lS6x'-^, etc.,
l— 6x

where the coefficient of each term after the second is three

times the coefficient of the preceding term.

380. The method thus exemplified is expressed in the fol-

lowing

RULE.

Assume the proposed expression equal to a series of the form
A+ Ba^-f Ca:;^4-, etc. ; clear the equation offractions^ or raise it to

its joroper power^ and place the coefficients of the like powers ofx in

the two members equal each to each. Then findfrom these equa-

tions the values of A, B, C, etc., and substitute these values in the

assumed development.

Ex. 2. Expand the fraction -— into an infinite seriea
l— 2x-j-x^

Assume -—— -= A-i[-'Bx-^Cx'^-^'Dx^+Ex'^+, etc.
J. — ^iX -p X

Clearing of fractions, we have
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l= A4-(B-2A)x4-(C-2B-fA)x2+(D-2C+ B)a:*

+(E_2D+ C)a;H, etc.

Therefore we must have

A=l,
B-2A=0, whence B= 2A=:.2;

C-2B+A = 0, " C=2B-A= 3;
D-2C+B= 0, " D:=2C-B=4;
E_2D+C= 0, " E=2D-C=5, etc.

Therefore ^-—^-__^=l+2^+3x2+4^3+ 5x*H-, etc.

Ex. 3. Expand the fraction ^
"^ ^

, into an infinite1— cc— cc^

Ans. l + Sx-{-4x'-{-7x^-{-llx'-\-lSa^+29x^-{-, etc.,

where the coefficient of each term is equal to the sum of the

coefficients of the two preceding terms.

1—x
Ex. 4. Expand ^j

—

— into an infinite series.

Ans. l+x-\-5x^-\-lSx^+4:lx*+121x^-^, etc.

What is the law of the coefficients in this series?

series.

Ex. 5. Expand Vl—x into an infinite series.

ty /yi2 ry^S P^/Y»4 ^O^
Ans. l_-_-______-, etc.

1—X
Ex. 6. Expand ..

^
into an infinite series.

X ~j~X -J"X

Ans. l—2x-\-ocy^-\-x^—2x'^-\-x^+x^—, eta

Ex. 7. Expand Va^—x^ into an infinite series.

381. Proper Form of the assumed Series.-^ln applying the

method of undetermined coefficients to develop algebraic ex-

pressions into series, we should determine what power of the

variable will be contained in the first term of the development,

and assume a corresponding series of terms. Generally the

first term of the development is constant, or contains cc°; but

the first term of the series may contain x with any exponent

either positive or negative. If the assumed development com-

mences with a power of cc lower than is necessary, no error will
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result, for the coefficients of the redundant terms will reduce

to zero. But if the assumed development commences with a

power of X higher than it should, the fact will be indicated by

an absurdity in one of the resulting equations.

The form of the series which should be adopted in each case

may be determined by putting a;= 0, and observing the nature

of the result. If in this case the proposed expression becomes

equal to a finite quantity, the first term of the series will not

contain x. If the expression reduces to zero, the first term will

A
contain x; and if the expression reduces to the form —, then

the first term of the development must contain x with a nega-

tive exponent.

Let it be required to develop ^ ^"^o a series.

Assume -=K-\-'Bx-\-Qx'^-\-T)x^-[-, etc.
6x—x'^

Clearing of fractions, we have

l=3Aaj-l-(3B— A)x2+, etc.,

whence, according to Art. 378, we obtain 1=^0, which is ab-

surd, and shows that the assumed form is not applicable in the

present case.

Let us, however, assume

r= Aa?-i-hB4-Ca7+B:i;H, etc.
6x— x^ '

Clearing of fractions, we have

l=^K+{2>']^-A)x-^r{^o-^)x^^-{^J)-Q)x'+,e\JQ.

Therefore 3A=:1, whence A=r-|-;

3B-A= 0, '' B=|;
3C-B=z:0, '' C- 1

TT»
3D-C=0, " D=A-

Substituting these values, we find

1 _^~^ x^ X ^'
, X
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To Resolve a Fraction into Simpler Fractions.

382. When the denominator of a fraction can be resolved

into factors, the principles now developed enable us to resolve

the fraction itself into two or more simpler fractions^ having these

factors for denominators. In such a case, the given fraction is

the sum of the partial fractions.

g^ ][2
Ex. 1. Kesolve the fraction -^—^ into partial fractions.

We perceive that x^—5x+6= (cc— 2)(cc— 3).

. 5x-12 A B
Assume -5—

=

-= rr4-
x^—bx+io x—2 0^-3'

in which the values of A and B are to be determined.

Clearing of fractions, we have

5x-12= (A+ B):r-(3A4-2B).

By the principle of Art. 378, A+ B=5,
and 3A+2B= 12.

From which we obtain A =2 and B= 3.

Substituting in the assumed equation, we have

bx-12 _ 2 3

x^-bx-\-(6~x-2 x—Z'

Ex. 2. Eesolve —^

—

j into partial fractions.
sc — i

Ans,
07+1 iC—

1

6x— 19
Ex. 3. Eesolve —z—^ ^^ into partial fractions.

Ans. ;r--|-

a:—3*

Zx'^—1
Ex. 4. Kesolve —3 into partial fractions.

Xr ^—30

Ans. ~—r-{- r+ -.
X+l X—1 X

Ex. 6. Resolve -, r^-^—^^r^-^ —
• into partial fractions.

\X— L) \X— Zj [X— Oj

A 1 2,3
Ans. --fx—l x—2 x— 3*
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Ex. 6. Eesolve
5^2+2^-1

(x4-l)(x-l)(2x+l)

Ans.

into partial fractions.

02+1 X— 1 2.T+r

Ex. 7. Eesolve -:;

—

^ ^ . . . into partial fractions.
1-5x2+4^*

Ans.
l+x 1

+
16

1+2^ ' l-2x'

Reversion of Series.

383. TJie reversion of a series is the finding the value of the

unknown quantity contained in an infinite series by means of

another series involving the powers of some other quantity.

This may be accomplished by the method of undetermined

coefficients in a mode similar to that employed in Art. 879.

Ex. 1. Given the series tj^x-^-x'^-^qi?-^-^ etc., to find the value

of cc in terms of y.

Assume a:;= A?/+B?/2+ C?/^+D^*+ . etc.

Find, by involution, the values of x^^ x^, x\ and a:^, carrying

each result only to the term containing y^. Then, substituting

these values for x^ x^^ x^^ etc., in the given equation, we shall have

2/*+E 2/'+, etc.

4-2AD
+ 2BC
+ 3A2C

+ 8AB2
4-4A3B

-f A^
Since thia is an identical equation, we place the coefficients

of the like powers of y in the two members equal to each other,

and we obtain

A=+l, B=-l, C=+l, D=-l, E=r+1, etc.

Hence we have x—y—y'^-\-y^—y'^-\-y^~^ etc., Ans.

nr'2 /ytO qA

Ex. 2. Given the series y—x—— -\--——+ ,
etc., to find the

^ 4: O

y-Ay+B f+C jr'+D

+A' +2AB +2AC
+A' +B^

+3A'B
+A*

value of X in terms of y. yl ^,3 y\
Ans. a;=2/+|-+|-+|+ ,

M?
etc.
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Ex. 3. Given the series 2/=^?— -n+'q—x+'H'— j ^^-j to find

the value of x in terms of y.

Ans. .=2,+|V|L+^+^^+, eta

Ex. 4. Given the series y—x-{-x^+x^-{-x''-]-x^-{-j etc., to find

the value of x in terms of y.

Alls. x=y—y^-{-2y^—5y'' + 14:7/—, etc.

Ex. 5. Given the series y=x+Sx^-{-5x^-\-7x*-\-9x^-\-j eta, to

find the value of a; in terms of?/.

Ans. x=y-d7f-{-lSy'-67y*-\-SSlf-, etc.

384. When the sum of a series is known, we may sometimes

obtain the approximate value of the unknown quantity by re-

verting the series.

Ex.1. Given ix-\-^^-\-^-\-^x'^-\-^s^x^-^, etc.=i, to

find the value of x.

If we call s the sum of the series, and proceed as in the last

article, we shall have

£C=:25-52-f|s3-is*+ -|s^-, etc.

Substituting the value of 5, we find

^=i—A+uV—-m+irATr— J etc., or a?=0.446354 nearly.

Ex. 2. Given 2a:+3x3H-4x*+5xH, etc.=^, to find the value

^^^-
,

5 353 195^ 1525^

or a;=i-T-^4-Tiw-i«Vri44-, etc. =0.2300 nearly.

<yi3 /v»5 rpi

Ex. 3. Given ;c——+——— + , etc. = |-, to find the value of x.
o o 7

. S\ 28'
,

17.S''
. ,

'

.^n..cr=5+-+-+_+,etc.,

or a?=i+-ffV+7A7+ 6sloo5+ ,
etc. = .34625 nearly.

E

of cc,

X^ <y»3 /^4 /v«"

Ex. 4. Given a7+—+-^+-j4-v- + , etc.=^, to find the value

5"^ S^ 5* s' S^
Ans. x=.-2 + g-24+j20-720+ '

'='°-

or a?=T— -yV+TTTT— iftooo + 375^000 — iifl5^oooo +> etc.,

or a;= 0.1812692 nearly.
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Binomial Theorem.

385. In Art. 853 the binomial theorem was demonstrated

for the case in which m is a positive whole number. By means
of the method of undetermined coefficients we can prove that

this formula is true, whether m is positive or negative^ entire or

fractional. The demonstration of this theorem depends upon
the following proposition

:

Qn Jn
386. The value of —. when a=b, is in all ca^es na^~^.

-^ a—h ' ' '

whether n is positive or negative^ integral orfractional.

First. It was shown in Art. 83 that when ti is a positive

whole number, a^—lf^ is exactly divisible by a— Z>, and the

quotient is a"-i-f-a"-2Z>-f a"-3^2_^ 4-^>«-i. The number of

terms in this quotient is equal to n; for h is contained in all the

terms except the first, and the exponents of b are 1, 2, 8, etc.,

to 71—1, so that the number of terms containing h is ti— 1, and
the whole number of terms is equal to n. Now, when a=h^
each term of the above quotient becomes a"-^, and, since there

are n terms in the quotient, this quotient reduces to na^-^.

Second. Suppose n to be a positive frax:tion^ or n=—, where

p and q are positive whole numbers.

1 P

Let a'^=Xj whence a^—x^^ and a—x'i,

\ V.

Also, let ^^=2/, whence h'i—y'P^ and h—y[i.

Then, substituting, we have

a^^ln ^a'i— hi _xP—yP_ x—y
a—h a—h x'^—yi x'i—y'i

x—y
But^ and q are positive integers ; therefore, when a=5, and,

consequently, x=:y^ according to case first, the numerator of

the last fraction becomes pxP-'^^ and the denominator becomes
qxfi-^

; that is, the fraction reduces to

^ or —xP-1.
qx9 1

'
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1

Substituting for x its value a*?, the fraction reduces to

--a 3 or — a^ , or na)^~^.

q ' q
'

Third. Suppose n to be negative^ and either integral or frac-

tional ; or let n=—m. Then we shall have

a"— /;»_a-^— J-»'^_a"^ h^_ 1 lf»'—a^_ 1 a'^—b^

a—h ~ a—b ~ a—b ~ a"'b"''' a— b ~'~d"'b"'' a—b'
Now, when a=^bj the first factor of the last expression re-

duces to —2^^,
or — a-2"*, and the second factor (bj one of the

preceding cases) reduces to ma'^-~'^. Hence the expression be-

comes — a~^^xma'^-'^j or — ma~'^~\ or 7?a"~^.

387. It is required to obtain a generalformula expressing the

value of{x-\-ay^j whether m be positive or negative, integral or

fractional.

JSrowa:+a=a:/l4--); therefore (a:4-«)"''^ic"'(l4--) •

/ r?\"*

If then we obtain the development of (1+-1 , we have

only to multiply it by x^ to obtain that of (a;+a)"*.

Let -=z; then, to develop (l+ 2y^ assume

{l+zy=A-\-Bz+Cz-'-\-Dz^-\-, etc., (1.)

in which A, B, C, D, etc., are coefficients independent of z, and

we are to determine their values.

Now this equation must be true for any value of z; it must

therefore be true when 2= 0,' in which case A= l.

Substituting this value of A in Eq. (1), it becomes

(H.2)'«=:l + Bz4-C22+ D22+ ,
etc. (2.)

Since Eq. (2) is to be true for all values of z, let z=n ; then

(2) becomes

(l4.n)«^^l4.Bn+ Cn2+ D?iH, eta (3.)

Subtracting (3) from (2), member from member, we have

(l-}-2)m_(l4.^)m^I3(2-?0+ C(22-n2)-l-D(23-n3)+ , CtC. (4)
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Dividing the first member of (4) by (1 + 2;)— (1 + ?i), and the

second by its equal z—7i, we have

(^+-)':-(|+"r=B+cg=^%Dg:^%, etc. (5.)
(I + 2)— (1 + n) z—n z—71 '

But when z=n^ or l-{-z—l-\-7ij the first member of equation

(5) becomes m{l-\- z)^-'^.

2;2 /y^2

Also, =:z-{-7i, when s=:n, becomes 2z.
z— 71

Z — 71

:=z^-\-zn-\- 71^^ when z=zn^ becomes 82^, etc.

I

z—71

These values substituted in (5) give

m (1 -f zf'-^=B+ 2C2;+ 3D22 4. 4E23+ , etc. (6.

)

Multiplying both members of Eq. (6) by 1 + 2, we have

m(l + 2)^=B-f(2C+B>+(8D+ 2C>2+(4E+ 3D>3+ ,etc. (7.)

If we multiply Eq. (2) by m, we have

7n{l-{-zy—m-{- 7nQz+ mOz^+ 7iiJ)z^+ , etc. (8.)

The first members of Eq. (7) and (8) are equal; hence their

second members are also equal, and we have

m -\-mB2+ 7nQz'^+ 7iiDz'^ -\-
,
etc.=

B-f (2C+B)z+(3D + 2C)s2+ (4E-f8D)2;3+, etc. (9.)

This equation is an identical equation ; that is, it is true for

all values of z. Therefore the coefiicients of the like powers

of 2; in the two members are equal each to each, and we have

B^m.

2C+B=772B, whence Q =J"'^''^~~^^ •

2i .0

Substituting these values in (2), we have

(l-^z)m^l^mz +-^~ 4^+
2 8

'^'
^- '^

If in this equation we restore the value of e, which is ^, we

have
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and multiplying both members by x^^ we obtain

?n(m— l)(m— 2)

{^\-aY=x^-\-mx'^-^a^'^—^ ^a;'"-V +

2 3
^ 3a3 + ,etc., (11.)

which is the general formula for the development of any bino-

mial (x-f-a)"*, whatever be the values of x and a, and whether

m be positive or negative, integral or fractional ; and this for-

mula is known as the Binomial Theorem of Sir Isaac Newton.

388. When the Series is Finite.—The preceding development

is a series of an infinite number of terms ; but when m is a pos-

itive integer, the series will terminate at the (??z + l)th term,

and all the succeeding terms will become zero. For the second

term of Eq. (11) contains the factor tw, the third term the factor

m— 1, the fourth term the factor m— 2, and the (r/2 + 2)d term

contains the factor m—m^ or 0, which reduces that term to 0;

and since all the succeeding terms also contain the same factor,

they also become 0. There will therefore remain only m-\-l

terms.

When m is not a positive integer, it is evident that no one

of the factors m, m— 1, m— 2, m— 3, etc., can be equal to 0,

so that in that case the development will be an infinite series.

389. Expansion of Binomials with negative integral Exponents

This is effected by substitution in formula (11).

Ex. 1. Expand r or (a + 6)-^ into an infinite series,
^ a + h ^ '

In (11) let m=--l, and we find

the coefficient of the second term is —1,

" " third " is
"^^""^

^-H,

" " fourth " is±l-^^=-l,
o

" " fifth " is -1:1^^= 4-1, etc.
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Hence we have

{a+ h)-^= a-'^-a-%-{-a-%''-a-%''-{-, etc.,

1 1 h h-" h'
o^ —n:= ^+~^—i+' ^^^-j

a+0 a a^ a^ a^

which is an infinite series, and the law of the series is obvious.

We might have obtained the same result by the ordinary meth

od of division.

Ex. 2. Expand -——p- or (a +5)-^ into an infinite series.

Ans. a-2_2a-25H-8a-462_4^-5/^3_|_ 5^-6^4 __^ etc.^

1 2h 8^2 4^3 5^4
or -^—gH—^

3-H—g--5 etc.,
a^ a"* a* a^ w"

where the law of the series is obvious.

Ex. 3. Expand j or (a—h)-'^ into an infinite series.

Ans. a-^ -{a-%-\-aT%'^-{-a-^h^ + , etc.

Ex. 4. Expand -, r— or (a—h)-'^ into nn infinite series.

Ex. 5. Expand (a4-^)~^ into an infinite series.

Ans. a-^-Za-^h^Qa-^'^-lOa-^lP^lba-'^h^-, etc.

Ex. 6. Expand {a—h)-^ into an infinite series.

7l7?s. a-^-{-4:a-^b-\-10a~%^-\-20a-'^b^+ S5a-^h^^, etc.

Ex. 7. Expand {l-\-2x)~^ into an infinite series.

Ans. 1- 10a;+ 60x2 -280a^3+, g^c.

390. Expansion ofBinomials with positive FractionalExponents,

Ex. 1. Expand Va+6 or (a+ Z))^ into an infinite series.

Eepresent the coefficients of the different terms by A, B, Q
D, etc. ; then

A= +1,

D=:CX

E=Dx^--H^^f^, etc.

2 ~ 2.4'

7? -2
^2.4.6'3 ~

n-3 1.3.5

4 2.4.6.8'
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Hence we have

+ , etc.

The factors which form the coefficients are kept distinct, in

order to show more clearly the law of the series. The numer-

ators of the coefficients contain the series of odd numbers, 1, 8,

5, 7, etc., while the denominators contain the even numbers,

2, 4, 6, 8, etc.

Ex. 2. Expand {x—dy into an infinite series.

Ex. 3. Expand {a^-\-xY into an infinite series.

^.,. ,+___.+______+ , etc.

^^
""^'la 2.4a^"^2.4.6a^~2.4.6.8a^"^'^^-

Ex. 4. Expand (« + &)* into an infinite series.

^""^
i^-^3-a-0^^-^ 876:9^- 8.6.9. 12a- -^-^^^i

Ex. 5. Expand {a^—h^y into an infinite series.

. j-1 i^ 2^' 2.5/>^ , )

Ex. 6. Expand {a-^-xy into an infinite series.

Ex. 7. Expand {a—hy into an infinite series.

, ij-, ^^ 3/>2 8.7Z^3 3.7. IIM , )
Ans,a

|l-4^-j:y-.-4:8n2^-4.8.12.16a*-''*"'f

Ex. 8. Expand (1—x)^ into an infinite series.

6 6.10 6.10.15 6.10.15.20 '

891. Expansion of Binomials with negative Fractional Eocpo

nents.

Ex. 1. Expand j or {a+h) ^ into an infinite series.
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The terms without the coefficients are

a"* a~h, a'h'^, a~h^, a"V, etc.

Kepresent the coefficients by A, B, C, D, etc. ; then

A= +1,
B= n =-i,

T. r^
^^-2 1.3.5

„ „ "-3
,
1.3.5.7 ,

Hence we obtain

/ i7\~2 ~2 -*- ~Y7 I
1-^ "Y/o 1-0.5 -5^70 ,

1.0.0.7 --IT/
(a+i) =a -^a i+ ^y^a

^^^-gTO" * +2X6:8''
^

— , etc.

_ 1 j & 8Z>^ 3.5Z;3 8.5.75^ )

~
^/7t\ 2a^2Aa^ 2.4.6a^~^2.4. 6.8a* ' )

Ex. 2. Expand (a^— a:)""^ into an infinite series.

, 1 X l.Sx^ 1.8.5:r3 l,8.5.7x*

a 2«^ 2.4a^ 2.4.6a^ 2.4.6.8fr

Ex. 8. Expand
,

into an infinite series.

Va;Ma*

^'''' xV 2x^'^2Ax' 2.4.6a;«^2.4.6.8x-«"'^*'''j

Ex.4. Expand {a+x) ^ into an infinite series.

-1 1-4 1.4-1^ 1.4.7 -1/-
, 1.4.7.10 -ij3

Ex. 6. Expand (a^— a:^) ^ into an infinite series.

. 1 {. x^
^
1.5.T*

,
1.5.9X-6

, ^ )

^^^- 7^ 1^+4^+0^+4:8:12^+' ^'^-j

Ex. 6. Expand (1 + cc) ^ into an infinite series.

, , X 6^2 6.11^3 6.11. lar^
Ans. 1—^+;p—jT^— K -,,. -,^-

4-
^ -,,, T- .>.> —> etc.

5 5.10 5.10.15 ^.10.1o.2U '
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392. Extraction of any Root of a Surd Number.—The approx-

imate value of a surd root may be found by the binomial

theorem by dividing the number into two parts, and consider-

ing it as a binomial.

Ex. 1. Find the square root of 10.

Vl0=-v/9Tl=(9+ l)*

If, in Ex. 3, Art. 890, we make a^= ^ and x=l^ we shall have

/r-TT q ^ 1
. 3 3.5 3.5.7

^ 2.3 2.4.3=' 2.4.6.3* 2.4.6.8.3' 2.4.6.8.10.3" '

®'*^'

The value of the first term is 8.0000000
" " second " + .1666667
" " third " - .0046296
" " fourth " + .0002572
" " fifth " - .0000179
" " sixth " 4- .0000014
" " seventh " - .0000001

Their sum is 3.1622777,

which is the square root of 10 correct to seven decimal places.

Ex. 2. Find the square root of 99.

V99=Vl00-l=(100-lf.
Substituting in Ex. 3, Art. 890, we have

The value of the first term is 10.0000000
" " second " - .0500000
" " third " - .0001250
" '' fourth " - .0000006

Their sum is 9.9498744,

which is the square root of 99 correct to seven decimal places.

393. The method here exemplified for finding the nth root

of any number is expressed in the following

RULE.

Find^ hy trial, the nearest integral root (a), and divide the given

number into two 2^arts, one ofzohich is (he 7ifh poiver of {a). Chn-
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sid^r these two parts as the terms of a binomial^ and develop it into

a series by the binomial theorem.

Ex. 8. Find the cube root of 9 to seven decimal places.

,
pi 2 2.5 2.5.8
"^8.22 3. 6. 2^ "^8. 6. 9. 2« 8.6.9.12.2^^"^'^^^*'

= 2.0800838.

Ex. 4. Find tlie cube root of 81 to seven decimal places.

A qli_L^_ 2.4^
,

2.5.4^ 2.5.8.4^
,

1

1 "^3.27"8.6.272"^3.6.9.273~3.6.9.12.27*'^' ')

= 8.1413806.

Ex. 5. Find the fifth root of 30 to seven decimal places.

. 2 2 2.4 2.4.9

6.16 5.10.16^ 5.10. 15. 16^ ' '

= 1.9748506.
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CHAPTER XX.

LOGARITHMS.

394. The logarithm of a number is the exponent of the power
to which a constant number must be raised in order to be equal

to the proposed number. The constant number is called the

base of the system.

Thus, if a denote any positive number except unity, and

o?=m^ then 2 is the exponent of the power to which a must

be raised to equal m; that is, 2 is the logarithm of m in the

system whose base is a. If a^—m, then x is the logarithm of

9n in the system whose base is a.

395. If we suppose a to remain constant while m assumes in

succession every value from zero to infinity, the corresponding

values of X will constitute a system of logarithms.

Since an indefinite number of different values may be attrib-

uted to a, it follows that there may he an indefinite number of sys-

tems of logarithms. Only two systems, however, have come into

general use, viz., that system whose base is 10, called Briggs's

system, or the common system of logarithms ; and that system

whose base is 2.718+ , called the Naperian system, or hyperbolic

system of logarithms.

Properties of Logarithms in general,

396. TJie logarithm of the product of two or more numbers is

equal to the sum of the logarithms of those nurnbei's.

Let a denote the base of the system ; also, let m and n be

any two numbers, and x and y tHeir logarithms. Then, by the

definition of logarithms, we have

a*=?7i, (1.)

ay=^n, (2.)

Multiplying together equations (1) and (2) member by mem-
ber, we have a^'^y=.vin.
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Therefore, according to the definition of logarithms, a: -4-?/ is

the logarithm of mn^ since it is the exponent of that power of

the base which is equal to mn.

For convenience, we will use log. to denote logarithm, and

we have
x-\-y— \og. mn=log. m+log. n.

Hence we see that if it is required to multiply two or more

numbers together, we have only to take their logarithms from

a table and add them together; then find the number corre-

sponding to the resulting logarithm, and it will be the product

required.

397. The logarithm of the quotient of two numbers is equal to

the logarithm of the dividend diminished by that of the divisor.

If we divide Eq. (1) by Eq. (2), member by member, we shall

have a^-y=z—.
n

Therefore, according to the definition, x—y is the logarithm

of —, since it is the exponent of that power of the base a which

an „,
IS equal to —. That is,^ n

x—y=z\og. {—\=\og, m— log. n.

Hence we see that if we wish to divide one number by an-

other, we have only to take their logarithms from the table and

subtract the logarithm of the divisor from that of the dividend

;

then find the number corresponding to the resulting logarithm,

and it will be the quotient required.

398. The logaritlim of any power of a number is equal to the

logarithm of that number multiplied by the exponent of the power.

If we raise both members of Eq. (1) to any power denoted

byp, we have aP^= mP.

Therefore, according to the definition, ^ce is the logarithm of

mP, since it is the exponent of that power of the base which ia

equal to m^. That is,

px=i\og. (mP)=p log. m.
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Therefore, to involve a given number to any power, we

multiply the logarithm of the number by the exponent of the

power; the product is the logarithm of the required power.

399. The logarithm of any root of a number is equal to the log-

arithm of that number divided by the index of the root.

If we extract the rth root of both members of Eq. (1), we

shall have a^=.\fm.

X .

Therefore, according to the definition, - is the logarithm of

Vm, That is

X , r/— log. m
-=log. vm= ^
r r

Therefore, to extract any root of a number, we divide the

logarithm of the number by the index of the root ; the quotient

is the logarithm of the required root.

400. The following examples will show the application of

the preceding principles

:

Ex. 1. log. {abcd)—\o^. a+log. Z)+log. c+log. d.

Ex. 2. log. f—-j=log. a-hlog. &4-log. c— log. c?— log. e,

Ex. 8. log. {aH'^cP)=.m log. a-\-n log. b-\-p log. c.

—^j=m log. a-\-n log. b—p log. c.

Ex. 5. log. Vob=^([og. a+log. b).

Ex. 6. log.y '-^=i[log. a+2 log. 5+4 log. c-5 log. d\.

Ex. 7. log. (a3 v/^)=log. {a^) =^ log. a.

Ex. 8. \og.{a^—x'^)=\og,{{a-\-x){a—x)] =log. Ca+x)+log.Ca-x>

Ex. 9. log. Va^-x''=i log. (a+x)+i log. {a-x).

Ex. 10. log. (^|^)=i log. 3+i log. 4-i log. 6^:^ log. 2.
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401. In all systems of logarithms^ the logarithm of unity is zero.

For in the equation a^—n^

if we make 92= 1, the corresponding value of x will be 0, since

a"= 1, Art. 75 ;
that is, log. 1 := 0.

402. In all systems of logarithms^ the logarithm of the base is

unity.

For a^=a;
that is, log. a= l.

Common Logarithms.

403. Since the base of the common system of logarithms is

10, all numbers in this system are to be regarded diS powers of

10. Thus, since

10" =1, we have log. 1 =
101= 10,

" log. 10= 1;

102=100, " log. 100= 2:

10^= 1000, '' log. 1000= 3, etc.

From this it appears that in Briggs's system the logarithm

of any number between 1 and 10 is some number between

and 1 ; that is, it is a fraction less than unity, and is generally

expressed as a decimal. The logarithm of any number between

10 and 100 is some number between 1 and 2 ; that is, it is equal

to 1 plus a decimal. The logarithm of any number between

100 and 1000 is some number between 2 and 8 ; that is, it is

equal to 2 plus a decimal ; and so on.

404. The same principle may be extended to fractions by
means of negative exponents. Thus, since

10-i=tV or 0.1, we have log. 0.1 = -^1

10-2=^ or 0.01,
"

log. 0.01= -2
10-3=.nroTr or 0.001, " log. 0.001 = -3
10-^=Toi(nr or 0.0001, " log. 0.0001 = -4, etc.

Hence it appears that the logarithm of every number be-

tween 1 and 0.1 is some number between and —1, or may be

represented by —1 plus a decimal. The logarithm of every

number between 0.1 and 0.01 is some number between —1 and
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— 2, or may be represented by —2 jpliis a decimal. The loga-

rithm of every number between 0.01 and 0.001 is some number

between —2 and —3, or may be represented by —3 j^^t^ a

decimal, and so on.

405. Hence we see that the logarithms of most numbers must

consist of two parts, an integral part and a decimal part. The
former part is called the characteristic or index of the logarithm.

The characteristic may always be determined by the following

RULE.

The characteristic of the logarithm of any number is equal to

the number of places hj which the first significant figure of that

number is removedfrom the unit''s place, and is positive when this

figure is to the left, negative when it is to the right, and zei'o when

it is in the unit's p)lax^e.

Thus the characteristic of the logarithm of 397 is +2, and

that of 5673 is +3, while the characteristic of the logarithm

of 0.0046 is -3.

406. The same decimal part is common to the logarithms of

all numbers composed of the same significant figures.

For, since the logarithm of 10 is 1, it follows from Art. 397

that if a number be divided by 10, its logarithm will be dimin-

ished by 1, the decimal part remaining unchanged. Thus, if

we denote the decimal part of the logarithm of 3456 by m, we
shall have

log. 3456 =3+ ^^.

log. 345.6= 2+ 972.

log. 34.56= l-fm.

log. 3.456 =0-fm.

log. .3456= -1 + m.

log. .03456= -2+ m.

log. .003456= -3+ m.

log. .0003456= --4+m.

liable of Logarithms.

407. The table on pages 290, 291, contains the decimal part

of the common logarithm of the series of natural numbers from

100 to 999, carried to four decimal places. Since these num-

bers are all decimals, the decimal point is omitted, and the char-

acteristic is to be supplied according to the rule in Art. 405.
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408. To find the logarithm of any number consisting of not

more thayi three figures.—Look on one of tbe pages of the ta-

ble, along the left-hand column marked Ko., for the two left-

hand figures, and the third figure at the head of one of the

other columns. Opposite to the first two figures, and in the

column under the third figure, will be found the decimal part

cf its logarithm. To this must be prefixed the characteristic,

according to the rule in Art. 405. Thus

the logarithm of 847 is 2.5403

;

871 is 2.9400.

The logarithm of 63, or 63.0, is 1.7993

;

"
5, or 5.00, is 0.6990;

" 0.235 is 1.3711.

The minus sign is here placed over the characteristic, to show

that that alone is negative, while the decimal part of the loga-

rithm is positive.

409. To find the logarithm of any number containing more

than three figures.—By inspecting the table, we shall find that

writhin certain limits the differences of logarithms are propor-

tional to the difi*erences of their corresponding numbers. Thus

the logarithm of 216 is 2.8345

;

217 is 2.3865;

218 is 2.3385.

Here the difference between the successive logarithms, called

the tabular difference^ is constantly 20, corresponding to a differ-

ence of unity in the natural numbers. If, then, we suppose the

logarithms to increase at the same rate as their corresponding

numbers (as they do nearly), a difference of 0.1 in the numbers
should correspond to a difference of 2 in the logarithms; a dif-

ference of 0.2 in the numbers should correspond to a differ-

ence of 4 in the logarithms, etc. Hence
the logarithm of 216.1 must be 2.8347;

216.2 " 2.8849, etc.

In order to facilitate the computation, there is given, on the

right margin of each page, the proportional part for the fourth

figure of the natural number, corresponding to tabular differ-

N
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1

k 2 3 4 5 6 7 8 9
1

lO 0000 0043 0086 0128 0x70 0212 0253 0294 o334 0374
II o4i4 0453 0492 o53i 0569 0607 o645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 xoo4 io38 1072 X X06

i3 1139 1173 1206 1239 1271 i3o3 i335 1367 x399 i43o

i4 i46i 1492 i523 i553 1 584 i6x4 1 644 1673 1703 1732

i5 I76I 1790 1818 1847 1875 1903 193X 1959 1987 20l4

i6 2o4l 2068 2095 2122 2i48 2175 2201 2227 2253 2279
I? 23o4 233o 2355 238o 24o5 243o 2455 2480 25o4 2529
i8 2553 2577 2601 2625 2648 2672 2695 27x8 2742 2765

^9 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3oio 3o32 3o54 3075 3096 3ix8 3x39 3i6o 3x8i 320X

21 3222 3243 3263 3284 33o4 3324 3345 3365 3385 34o4
22 3424 3444 3464 3483 35o2 3522 3541 356o 3579 3598
23 3617 3636 3655 3674 3692 37x1 3729 3747 3766 3784
24 38o2 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4oi4 4o3i 4o48 4o65 4082 4099 4ii6 4x33
26 4i5o 4i66 4i83 4200 42x6 4232 4249 4265 428X 4298
27 43i4 433o 4346 4362 4378 4393 4409 4425 4440 4456

28 4472 4487 45o2 45x8 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
3o 4771 4786 4800 48x4 4829 4843 4857 4871 4886 4900
3i 4914 4928 4942 4955 4969 4983 4997 5oxx 5o24 5o38
32 5o5i 5o65 5079 5092 5io5 5xx9 5x32 5x45 5x59 5x72
33 5i85 5198 52II 5224 5237J5250 5263 5276 5289 53o2
34 53i5 5328 5340 5353 5366 5378 5391 54o3 54x6 5428
35 5441 5453 5465 5478 5490 55o2 55x4 5527 5539 555x
36 5563 5575 5587. 5599 56xx 5623 5635 5647 5658 5670

37 5682 5694 5705 157x7 5729 5740 5752 5763 5775 5786
38 5798 5809 5821,5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933; 5944 5955 5966 5977 5988 5999 6010
4o 6021 6o3i 6042 ^6o53 6064 6075 6o85 6096 6x07 6x17
4i 6128 6i38 61496160 6x70 6x80 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 63o4 63x4 6325
43 6335 6345 6355 6365 6375 6385 6395 64o5 64x5 6425
44 6435 6444 6454 6464 6474 6484 6493 65o3 65x3 6522
45 6532 6542 655i 656i 6571 658o 6590 6599 6609 66x8

46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 68o3
48 6812 6821 683o 68,^; 6848 6857 6866 6875 6884 6893
49 6902 691

1

6920 6928 6937 6946 6955 6964 6972 6981
5o 6990 6998 7007 7016 7024 7033 7042 7o5o 7059 7067
•5

1

7076 7084 7093 710X 71 10 7118 7126 7x35 7143 7i52
52 7160 7168 7177 7x85 7x93 7202 7210 72x8 7226 7235
53 7243 725

1

7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396

PROPOETlOrfAL

43 42 41 4o

4 4 4 4

9 8 8 8

i3 i3 X2 12

17 17 16 x6

22 2X 21 20

26 25 25 24
3o 29 29 28

34 34 33 32

39 38 37 36

38 37 36 35 34

4 4 4 4 3

8 7 7 7 7
IX XX X X X X xo

x5 x5 i4 i4 i4

19 19 18 x8 17
23 22 22 21 20

27 26 25 25 24
3o 3o 29 28

f27
34 33 32 32 3i

33 32 3x 3o 29

3 3 3 3 3

7 6 6 6 6

10 10 9 9 9
i3 i3 12 12 12

17 16 16 i5 i5

20 19 19 18 17
23 22 22 21 20
26 26 25 24 23

So 29 28 27 26

28 27 26 25 24

3 3 3 3 2

6 5 5 5 5

8 8 8 8 7
X I IX 10 10 10

i4 i4 i3 i3 12

n 16 x6 i5 i4

20 '9 18 18. 17
22 22 21 20 19

a5 24 23 J 22 ja



TABLE OF COMMON LOGARITHMS. %n

No.

55

56

57
58

59
60
61

62
63

64
65

66

67
68

69
70

71

72

82

83

84
85

86

87
88

89
90

91

92

93

94
95

96

97
98

99

74o4

7482
7559
7634

7709
7782
7853

7924
7993

8062

8129
8195
8261
8325
8388
845

1

85i3
8573

8633

8692
8751
8808
8865
8921

8976
903

1

9085

9i38

9191
9243

9294
9345
9395
9445

9494
9542

9590
9638
9685
9731

9777
9823
9868
9912
9956

7412

7490
7566
7642

7716

7789
7860

7931
8000

8069
8i36
8202

8267
833i

8395
8457
85i9

8579

8639

8756
88 1

4

8871

8927
8982
9o36

9090

9143
9196
9248

9299
9350
9400
945o

9499
9547

9595
9643
9689
9736
9782
9827
9872

9917
9961

7419
7497
7574
7649
7723

7796
7868

7938
8007

8075
8142
8209
8274
8338
84oi
8463
8525
8585

8645

8704
8762
8820

8876
8932

8987
9042
9096

9149
9201
9253
93o4

9355
94o5

9455
95o4
q552

9600

9647
9694
9741
9786
9832

9877
9921
9965

7427
75o5

7582

7657
7731
7803

7875

7945
8oi4

8082

8149
8215
8280
8344
8407
8470
853i

8591

4

7435
75i3

7589
7664
7738
7810
7882

7952
8021

865i

8710
8768
8825
8882

8938

8993
9047
9101

9154
9206
9258

9309
9360
9410
9460
9509
9557

9605
9652

9699
9745
9791
9836
9881

9926

9969

8089
8i56
8222

8287
835i
84i4

8476
8537
8597

8657
8716

8774
883i

8887
8943
8998
9053
9106

9159
9212
9263
93i5
9365
94i5

9465
95i3
9562

9609
9657
9703
9750
9795
9841
9886
9930

9974

7443
7520

7597
7672

7745
7818

7889
7959
8028

8096
8162
8228

8293
8357
8420
8482
8543
86o3

8663

8722

8779
8837
8893

9004
9o58

91 12

745i

7528

7604

7679
7752
7825

7896
7966
8o35

7459
7536
7612
7686

7760
7832

7903

7973
8o4i

8169
8235

8299
8363
8426
8488
8549
8609

8669
8727
8785
8842

9165
9217
9269
9320

9370
9420
9469
95i8

9566

961/,'

9661

9708
9754
9800
9845
9890
9934

9978

8954
9009
9063
9117

9170
9222

9274
9325

9375
9425

9474
9523

9571

9619
9666
9713

9759
9805
9850

9894
993g
9983

8109
8176
8241
83o6
8370
8432

8494
8555
86i5

8675
8733

8791
8848

8904
8960
9015

9069

9175
9227

9279
9330
9380
9430

9479
9528

9576

9624
9671

9717
9763
9809
9854

9899
9943
9987

7466
7543
7619
7694
7767
7839
7910
7980
8o48

8116
8182
8248
83i2

8376
8439
85oo
856i
8621

8681

8739
8797
8854
8910
8965
9020

9074
9128

9180
9232
9284
9335
9385
9435
9484
9533
9581

9628

9675
9722
9768
9814
9859
9903
9948
9991

7474
755i

7627
7701

7774
7846

7917
7987
8o55

8122

8189
8254
83i9
8382

8445
85o6
8567
8627

8686

8745
8802

8859
8915

8971
9025

9079
9133

9186
9238

9289
9340
9390
9440
9489
9538
9686

9633
9680

9727
9773
9818
9863
9908
9952
99Q6

PROPORTIONAL PARTS

23 22 21 20 19

2 2 2 2 2

5 4 4 4 4

7 7 6 6

9 9 8 8 8

12 u 11 10 10

i4 i3 i3 12 II

16 i5 i5 i4 i3

18 18 17 16 i5

21 20 19 18 17

18 17 16 i5 i4

2 2 2 2 I

4 3 3 3 3

5 5 5 5 4

7 7 6 6 6

9 9 8 8 7
11 10 10 9 8
i3 12 II 11 10

i4 i4 i3 12 1

1

16 i5 i4 i4 i3

i3 12 II 10 9

I I I 1 I

3 2 2 2 2

4 4 3 3 3

5 5 4 4 4

7 6 6 5 5

8 7 7 6 5

9 8 8 7 6

10 10 9 b 7

12 II 10 9 8

8 7 6 5 4

I I I I

2 I I I I

2 2 2 2 I

3 3 2 2 2

4 4 ? 3 2

5 4 4 3 2

6 5 4 4 3

6 6 5 4 3

7
'6 5 S 4



292 ALGEBRA.

ences from 43 to 4. Thus, on page 291, near the top, we see

that when the tabular difference is 20, the corrections for .1,

.2, .3, etc., are 2, 4, 6, etc.

It is obvious that the correction for a figure in the fifth place

of the natural number must be one tenth of the correction for

the same figure if it stood in the fourth place. Such a correc-

tion would, however, generally be inappreciable in logarithms

which extend only to four decimal places.

EXAMPLES.

Find the logarithm of 4576. Ans. SM05.
« " 18.78. Ans. 1.1892.

,

" " 1.682. ^725.0.2258.
" " .08211. ^725.2^.5066.
" " .4735. Ans. 1.6753.
" " 15988. Ans. 4.2086.

The logarithms here given are only approximate. We can

obtain the exact logarithm of very few numbers ; but by taking

a sufficient number of decimals we can approach as nearly as

we please to the true logarithm.

410. To find the natural number corresponding to any loga-

rithm.—Look in the table for the decimal part of the loga-

rithm, neglecting the characteristic; and if the decimal is ex-

actly found, the first two figures of the corresponding natural

number will be found opposite to it in the column headed No.,

and the third figure will be found at the top of the page. This

number must be made to correspond with the characteristic by
pointing off decimals or annexing ciphers. Thus

the natural number belonging to the logarithm 8.8692 is 2340;
" " " '' 1.5878 is 84.5.

If the decimal part of the logarithm is not exactly contained

in the table, look for the neareM less logarithm, and take out

the three figures of the corresponding natural number as be-

fore. The additional figure or figures may be obtained by

means of the proportional parts on the margin of the page.

Find the number corresponding to the logarithm 8.8685.
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The next less logarithm in the table is .8674, and the three

corresponding figures of the natural number are 288. Their

logarithm is less than the one proposed by 11, and the tabular

difference is 18. By referring to the margin of page 291, we
find that, with a difference of 18, the figure corresponding to

the proportional part 11 is 6. Hence, since the characteristic

of the proposed logarithm is 8, the required natural number is

'2836.

EXAMPLES.

1. Find the number corresponding to the logarithm 2.5886.

Ans. 845.6.

2. Find the number corresponding to the logarithm 0.2845.

Ans. 1.716.

8. Find the number corresponding to the logarithm 1.9946.

Ans. 98.76.

4. Find the number corresponding to the logarithm 1.6478.

Ans. 0.4444.

411. Multiplication hy Logarithms.—According to Art. 896,

to find the product of two numbers we have the following

RULE.

Add the logarithms of thefactors ; the sum will he the logarithm

of the product.

The word sum is here to be understood in its algebraic sense.

The decimal part of a logarithm is invariably positive ; but the

characteristic may be either positive or negative.

Ex. 1. Find the product of 57.98 by 8.12.

The logarithm of 57.98 is 1.7688.
" 8.12 is 0.4942.

The log. of the product 180.9 is 2.2575.

Ex. 2. Find the product of 0.00568 by 172.5.

The logarithm of 0.00568 is '8.7505.

172.5 is 2.2868.

The log. of the product 0.971 is L9878.

Ex. 3. Find the product of 54.82 by 6.548.

Ex. 4. Find the product of 8.854 by 0.5761.
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412. Division hy Logarithms.—According to Art. 397, to find

the quotient of two numbers we have the following

RULE.

From the logarithm of the dividend subtract the logarithm of

the divisor ; the difference will he the logarithm of the quotient.

The word difference is here to be understood in its algebraic

sense ; the decimal part of the logarithm being invariably pos-

itive, while the characteristic may be either positive or nega-

tive.

Ex. 1. Find the quotient of 888.7 divided by 42.24.

The logarithm of 888.7 is 2.9488.
" 42.24 is 1.6257 .

The quotient is 21.04, whose log. is 1.8231.

Ex. 2. Find the quotient of 0.8692 divided by 42.32.

The logarithm of 0.8692 is T.9891.

42.32 is 1.6265 .

The quotient is 0.02054, whose log. is 2^3126.

Ex. 8. Find the quotient of 880.7 divided by 18.75.

Ex. 4. Find the quotient of 24.93 divided by .0785.

413. Involution hy Logarithms.— According to Art. 398, to

involve a number to any power we have the following

RULE.

Multiply the logarithm of the number hy the exponent of the

poiver required.

It should be remembered that what is carried from the deci-

mal part of the logarithm is positive, whether the characteris-

tic be positive or negative.

Ex. 1. Find the fifth power of 2.846.

The logarithm of 2.846 is 0.4542.

5

The fifth power is 186.65, whose log. is 2.2710.

Ex. 2. Find the cube of .07654.
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The logarithm of .07654 is 2^8839.

3

The cube is 0.0004484, whose log. is 46517.

Ex. 3. Find the 20th power of 1.06.

Ex. 4. Find the seventh power of 0.8952.

414. Evolution hy Logarithms.— According to Art. 399, to

extract any root of a number we have the following

RULE.

Divide tlie logarithm of the number hy tlie index of the root re-

quired.

Ex. 1. Find the cube root of 482.4.

The logarithm of 482.4 is 2.6834.

Dividing by 3, we have 0.8945, which corresponds to 7.848,

which is therefore the root required.

Ex. 2. Find the 100th root of 365. Ans. 1.061.

When the characteristic of the logarithm is negative, and is

not divisible by the given divisor, we may increase the charac-

teristic by any number which will make it exactly divisible,

provided we prefix an equal positive number to the decimal

part of the logarithm.

Ex. 3. Find the seventh root of 0.005846.

The logarithm of 0.005846 is 3".7669, which may be written

7+4.7669.

Dividing by 7, we have 1.6810, which is the logarithm o^

.4797, which is therefore the root required.

Ex. 4. Find the 10th root of 0.007815.

415. Proportion by Logarithms.—The fourth term of a pro-

portion is found by multiplying together the second and third

terms and dividing by the first. Hence, to find the fourth term

of a proportion by logarithms, we have the following
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RULE.

Add the logarithms of the second and third terms, andfrom iheij

sum subtract the logarithm of the first term,.

Ex. 1. Find a fourth proportional to 72.34, 2.519, and 857.6.

Ans. 12.45.

Ex. 2. Find a fourth proportional to 43.17, 275, and 5.762.

Ex. 8. Find a fourth proportional to 5.745, 781.2, and 54.27.

Exponential Equations.

416. An exponential equation is one in which the unknown

quantity occurs as an exponent. Thus,

is an exponential equation, from which, when a and h are

known, the value of x may be found. If a ==2 and 5= 8, the

equation becomes 2^=8,

in which the value of a; is evidently 3, since 2^==8.

If a=16 and h=2, the equation becomes

16^=2,

in which the value of a? is evidently J, since 16* =2.

417. Solution hy Logarithms.—When h is not an exact power
or root of a, the equation is most readily solved by means of

logarithms. Taking the logarithm of each member of the

equation a* =5, we have
X log. a=log. h,

whence x= ,

^'
.

log. a

Ex. 1. Solve the equation 3=^=20.

log. 20 1.3010 ^^^^

Ex. 2. Solve the equation 5^=12.

Ex. 3. Solve the equation f-j =|.

Ex. 4. Solve the equation 10*= 7.

Ex. 5. Solve the equation 12""= 3.

3

Ex. 6. Solve the equation 12^=7o
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Compound Interest.

418. Interest is money paid for the use of money. When the

interest, as soon as it becomes due, is added to the principal, and

interest is charged upon the whole, it is called comj)ound interest

419. To find the amount of a given sum in any time at com-

pound interest. It is evident that $1.00 at 5 per cent, interest

becomes at the end of the year a principal of $1.05 ;
and, since

the amount at the end of each year must be proportioned to

the principal at the beginning of the year, the amount at the

end of two years will be given by the proportion

1.00: 1.05:: 1.05: (1.05)2.

The sum (1.05)^ must now be considered as the principal,

and the amount at the end of three years will be given by the

proportion

1.00: 1.05:: (1.05)2 :(1.05)^

In the same manner, we find that the amount of $1.00 for

n years at 5 per cent, compound interest is (1.05)".

For the same reason, the amount for n years at 6 per cent, is

(1.06)^ It is also evident that the amount of P dollars for a

given time must be P times the amount of one dollar.

Hence, if we put

P to represent the principal,

r the interest of one dollar for one year,

n the number of years for which interest is taken.

A the amount of the given principal for n years,

we shall have A=P (1 + r)".

This equation contains four quantities. A, P, w, r, any three

of which being given, the fourth may be found. The compu-

tation is most readily performed by means of logarithms. Tak-

ing the logarithms of both members of the preceding equation

and reducing, we find

log. A =: log. V-\~nx log. ( 1 + r),

log. P =:log. A—nxlog. (1+r),

, /-,
, X

log. A— log. P
log. (1+ r)=-^ 2—

.

n

^^ log. A-log. P
log.(l+ r) •

N >
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Ex. 1. How mucli would 500 dollars amount to in five years

at 6 per cent, compound interest ?

The log. of 1.06 is 0.0253

5

0.1265

The log. of 500 is 2.6990

The amount is $669.10, whose log. is 2.8255.

Ex. 2. What principal at 6 per cent, compound interest will

amount to 500 dollars in seven years? Ans. $332.60.

Ex. 3. At what rate per cent, must 500 dollars be put out at

compound interest so that it may amount to $680.30 in seven

years ? Aiis. 4^ per cent.

Ex. 4. In what time will 500 dollars amount to 900 dollars

at 6 per cent, compound interest? Ans. lOyy years.

Ex. 5. How much would 400 dollars amount to in nine years

at 5 per cent, compound interest ?

Ex. 6. What principal at 5 per cent, compound interest will

amount to 400 dollars in eight years?

Ex. 7. At what rate per cent, must 400 dollars be put out

at compound interest so that it may amount to $620.70 in nine

years ?

Ex. 8. In what time will a sum of money double at 6 per

cent, compound interest?

Ex. 9. In what time will a sum of money double at 5 per

cent, compound interest?

Annuities.

420. An annuity is a sum of money stipulated to be paid an-

nually, and to continue for a given number of years, for life,

or forever.

421. To find the amount of an annuity left unpaidfor any num.'

her of years^ allowing compound interest.

Let a denote the annuity, n the number of years, r the in-

terest of one dollar for one year, and A the required amount.

The amount due at the end of the first year is a.

At the end of the second year the amount of the first an-
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nuity is a(l-f-r), and a second payment becomes due; hence

the whole sum due at the end of the second year is a-\-a{l-{-r).

At the end of the third year a third payment a becomes due,

together with the interest on a-^-a{l-\-r)] hence the whole sum
due at the end of the third year is a+a(lH-r)4-a(l+r)2, or

a{l + {l-i-r)-\-{l-\-ry}, and so on.

Hence the amount due at the end of n years is

G[l-f(l + r)+ (l + r)H(l+r)^-h.... +(l+ r)"-M.

These terms form a geometrical progression in which the ratio

is 1+7*. Hence, by Art. 332, the sum of the series is

422. To find the present value of an annuity^ io continue for a

certain number ofyears^ allowing compound interest.

The present value of the annuity must be such a sum as,

if put out to interest for n years at the rate r, would amount
to the same as the amount of the annuity at the end of that

period.

If P denote the present value of the annuity, then the amount
of the annuity will be P(l+r)", which must be equal to

a,^——<- .

r

Therefore
p^a/l|r)"-l.

r (1+7-)"

Ex. 1. How much will an annuity of 500 dollars amount, to

in 15 years at four per cent, compound interest?

(1+r)^ =1.7987

(l+r)"-l= .7987, whose log. is 19024

the log. of .04 is 2".6021

L3003
the log, of 500 is 2.6990

The amount is $9983, whose log. is 3.9993.

Ex. 2. What is the present value of an annuity of 500 dol-



800 ALGEBRA.

lars to continue for 20 years, interest being allowed at the rate

of four per cent, per annum ?

(l+ r)« =2.188

(l+r)^- 1= 1.188, whose log. is 0.0748

the log. of (1+r)" is 0.8400

r.7348

-=12500, whose log. is 4.0969

The present value is $6787, whose log. is 3.8817.

Ex. 8. How much will an annuity of 600 dollars amount to

in 12 years at three per cent, compound interest ?

Ex. 4. What is the present value of an annuity of 600 dollars

to continue for 12 years at three per cent, compound interest ?

Ex. 5. In what time will an annuity of 500 dollars amount

to 5000 dollars at 4 per cent, compound interest?

Ans. In 8| years.

Increase of Population,

423. The natural increase of population in a country is some
times computed in the same way as compound interest. Know-
ing the population at two different dates, we compute the 7'ate

of increase by Art. 419, and from this we may compute the pop-

ulation at any future time on the supposition of a uniform rate

of increase. Such computations, however, are not very reliable,

for in some countries the population is stationary, and in others

it is decreasing.

Ex. 1. The number of the inhabitants of the United States

in 1790 was 3,980,000, and in 1860 it was 31,445,000. What
was the average increase for every ten years ?

Alls. 344 per cent.

Ex. 2. Suppose the rate of increase to remain the same for

the next ten years, what would be the number of inhabitants

in 1870? ^725.42,830,000.

Ex. 3. At the same rate, in what time would the number in

1860 be doubled ? Aiis. 23J years.

Ex. 4. At the same rate, in what time would the number in

1860 be tripled?
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To find the Logarithm of any given Number.

424. Ifm and n denote any two numbers, and x and y their

logarithms, then "^
will be the logarithm of Vmn. For, ac-

cording to Art. 396, a^^y=mn^ and, taking the square root of

each member, we have a ^ —\mn. Therefore, ^
is the

logarithm of -v/mn, since it is the exponent of that power of

the base which is equal to ^/'mrl.

Now, in Briggs's system, the logarithm of 10 is 1, of 100 is

2, etc. Hence the logarithm of VlOx 100 is
;
that is, the

logarithm of 31.6228 is 1.5.

1+ 1.5
So, also, the logarithm of VlO x 31.6228 is —^r-^ ; that is,

the logarithm of 17.7828 is 1.25, and so on for any number of

logarithms.

In this manner were the first logarithmic tables computed

;

but more expeditious methods have since been discovered. It

is found more convenient to express the logarithm of a number

in the form of a series,

425. Logarithms computed hy Series.—The computation of log-

arithms by series requires the solution of the equation

a^=n^

in which a is the base of the system, n any number, and x is

the logarithm of that number. In order that a and n may be

expanded into a series by the binomial theorem, we will con-

vert them into binomials, and assume a=l-\-h and n=l-\-m

;

then we shall have

where x is the logarithm of 1+m, to the base 1 + Z), or a.

Involving each member to a power denoted by y, we have

{X'\-h)^={l-\-m)y.

Expanding both members by the binomial theorem, we have
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i+^y6+
'^y("|-i)

6.+^y(^y-iK^y-2) fc3+, etc.=

l+ym+^JS^,a'+y(y-^)(V-^) ,n^+ , etc.

Canceling unity from both members and dividing bj y, we

have

,(i+^j3+M^)j3^_ etc.)=

This equation is true for all values of y; it will therefore be

true when y=0. Upon this supposition, the equation becomes

^(^-2 + 3-' etc.)=m

—

-+-— , etc.,

m-—+—-,etc.

whence x

=

log. {l-\-m)=
^2
—13

•

If we put M=

—

^-j^, ,

^-2 + 3-' ^^-

the last equation becomes

x=log. n=log. (l+ m)=M(w—y+-p— , etc.). (1.)

We have thus obtained an expression for the logarithm of

the number 1+m or n. This expression consists of two fac-

tors, viz., the quantity M, which is constant, since it depends

simply upon the base of the system ; and the quantity within

the parenthesis, which depends upon the proposed number.

The constant factor M is called the modulus of the system,

426. To determine the Base of Napier''s System.—In Napier's

system of logarithms the modulus is assumed equal to unity.

From this condition the base may be determined. Equation

(1), Art. 425, in this case becomes

m^ , m^ m*ic=m-y+-g— -^4-, etc.
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Eeverting this series, Art. 883, Ex. 3, we obtain
r.4:

2 ' 2.3 ' 2.3.4

But, by hypothesis, a^=n=l-{-m ; therefore

If X be taken equal to unity, we have

"=2+1+0+2x4+' '*°-

By taking nine terms of this series, we find

a=2.718282,

which is the base of Napier's system.

427. The logarithm of a number in any system is equal to the

modulus of that system multiplied by the Naperian logarithm of the

number.

If we designate Naperian logarithms by Nap. log., and log-

arithms in any other system by log., then, since the modulus

of Napier's system is unity, we have

log. (H-m)=:M(m-y4-g— , etc.),

Nap.log.(l +7n)=m—— +-g— , etc.

Hence log. (1 + m)=M x Nap. log. (1 +m ),

or M^ log.(l+ ^)
Nap. log. (1 + to)'

where 1+m may designate any number whatever.

428. To render the Logarithmic Series converging.—The for-

mula of Art. 425,

log. (l+ ,7i)=M(m^y H-— ^, etc.), (1.)

can not be employed for the computation of logarithms when
m is greater than unity, because the series does not converge.

This series may, however, be transformed into a converging

series in the following manner

:
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Substitute —m for m, and we shall have

log. (l_m)=M(-m-|^-^'-, etc.). (2.)

Subtracting Eq. (2) from Eq. (1), observing that log. (l-|-mj

~log. (1—m)= log. , we shall have
^ 1—

m

1°& r:^^2M(m+-+_+, etc.).

Now, since this is true for every value of ta^ put

1 , 1+m ^+1m= - -, whence —^ ,

22^+ 1 1—m p '

and the preceding series, by substitution, becomes

log. P±}:=^oe.ip+^)-^^g.p=m(^^^+J^^,+^^^,+, etc.):

429. This series converges rapidly, and may be employed

for the computation of logarithms in the Naperian or the com-

mon systems. It is only necessary to compute the logarithms

of prime numbers directly, since the logarithm of any other

number may be obtained by adding the logarithms of its sev-

eral factors. Making ^= 1, 2, 4, 6, etc., successively, we obtain

the following

Naperian or Hyperbolic Logarithms,

log.3^1og.2 +2(i4-3^+^+^+....) =1.098612

log. 4= 2 log. 2 =1.386294

log.5=log.4+ 2(i+gl34-^4-y^+....) =1.609438

log. 6=log. 3+log. 2 =1.791759

log.7=log.6+2(J^+^+g^+^+....) = 1.945910

log. 8=3 log. 2 =2.079442

log. 9= 2 log. 3 =2.197225

log. 10=log. 5+log. 2 =2.302585

etc., etc., etc.
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430. To construct a Table of Common Logaritlims.—In order

to compute logarithms of the common system, we must first

determine the value of the modulus. In Art. 427, we found

11^ log, (l + m)

Nap. log. (l+m)*

If l-|-m=a, the base of the system, then log. a=l, and we
have

^=w-A—

;

JNap. log. a

that is, the modulus of any system is the reciprocal of the Naperian

logarithm of the base of the system.

The base of the common system is 10, whose ISTaperian log-

arithm is 2.302585. Hence

which is the modulus of the common system.

We can now compute the common logarithms by multiply-

ing the corresponding Naperian logarithms by .434294, Art.

427. In this manner was the table on pages 290-1 computed.

431. Results.—The base of Briggs's system is 10.

Napier's '' 2.71828.

The modulus of Briggs's system is 0.43429.
" Napier's '' 1.

Since, in Briggs's system, all numbers are to be regarded as

powers of 10, we have
100.301^2,

100.602^4^ etc.

In Napier's system, all numbers are to be regarded as powers

Df 2.71828. Thus,

2.7180.693^2,

2.7181.098,^3^

2.718^-3^=:4, etc.
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CHAPTER XXI.

GENERAL THEORY OF EQUATIONS.

432. A cubic equation with one unknown quantity is an

equation in which the highest power of this quantity is of the

third degree, as, for example, x^—Qx'^-{Sx—lb=0. All equa-

tions of the third degree with one unknown quantity may be

reduced to the form

x^-\-ax'^-\-hx-\-c=0.

A biquadratic equation with one unknown quantity is an

equation in which the highest power of this quantity is of the

fourth degree, as, for example, x"^— 6x^+ 7x'^+ 5a:;— 4 =i 0. Every

equation of the fourth degree with one unknown quantity may
be reduced to the form

x^-^ax^-^bx^-]-cx+ d=0.
The general form of an equation of the fifth degree with one

unknown quantity is

x^+ ax*+ hx^-^cx^+ dx-{-ez=zO]

and the general form of an equation of the ?2th degree with one

unknown quantity is

ci:"+ Aa;~-i+ Bx«-2+Ccc"-H .... +Tx+Yz±.0, (1.)

This equation will be frequently referred to hereafter by the

name of the general equation of the nth degree, or simply a3

Equation (1).

An equation not given in this form may be reduced to it by

transposing all the terms to the first member, arranging them

according to the descending powers of the unknown quantity,

and dividing by the coefiicient of the first term. In this equa-

tion n is a positive whole number, but the coefficients A, B, C,

etc., may be either positive or negative, entire or fractional,

rational or irrational, real or imaginary. The term V may be

regarded as the coefficient of a;°, and is called the absolute terra

of the equation.

It is obvious that if we could solve this equation we should
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have the solutioQ of every equation that could be proposed.

Unfortunately, no general solution has ever been discovered

;

yet many important properties are known which enable us to

solve any numerical equation.

433. Any expression, either numerical or algebraic, real or

imaginary, which, being substituted for x in Equation (1), will

satisfy it, that is, make the two members equal, is called a root

of the equation.

It is assumed that Eq. (1) has at least one root ; for, since the

first member is equal to zero, it will be so for some value of

•T, either real or imaginary, and this value of x is by definition

a root.

434. If a IS a root of the general equation of the nth degree, its

first member can he exactly divided hy x—a.
For we may divide the first member by x—a, according to

the usual rule for division, and continue the operation until a

remainder is found which does not contain x. Let Q denote

the quotient, and E the remainder, if there be one. Then we

shall have

£c«+Acc"-i4-Bx"-24-.... +Tic+Y= Q(a:-a)+ K. (2.)

Now, if a is a root of the proposed equation, it will reducQ

the first member of (2) to 0; it will also reduce Q(a?— a) to 0;

hence K is also equal to 0. But, by hypothesis, E does nol

contain x; it is therefore equal to 0, whatever value be attrib-

uted to X, and, consequently, the first member is exactly di

visible by x—a.

435. If the first member of the general equation of the nth de

gree is exactly divisible by x— a, then a is a root of the equation.

For suppose the division performed, and let Q denote the

quotient; then we shall have

a;"+Aa;«-i+ Ba;"-2+.... -\'Tx-\-Y= Q,{x-a).

If, in this equation, we make x=a, the second member re^

duces to 0; consequently the first member reduces to 0; and,

therefore, a is a root of the equation.
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EXAMPLES.

1. Prove that 1 is a root of the equation

x3_6x2+ llx-6=:0.

The first member is divisible hyx—l, and gives a:^—5x+ 6 =0.

2. Prove that 2 is a root of the equation

x^-x-Q=0.
The first member is divisible by cc— 2, and gives ic2+2ic+ 3=0,

8. Prove that 2 is a root of the equation

cc3_llcc2+86x-36=:0.

4. Prove that 4 is a root of the equation

a;3 4-a?2_34:c+56=:0.

5. Prove that — 1 is a root of the equation

x*-38cc3+210x2+538x+289=0.
6. Prove that —5 is a root of the equation

a,5+ 6a:*-10a73-112a;2_207x-110= 0.

7. Prove that 3 is a root of the equation

436. Every equation of the nth degree containing hut one un-

known quantity has n roots and no more.

Since the equation has at least one root, denote that root by
a; then will the first member be divisible by cc— a, and the quo-

tient will be of the form

and the given equation may be written under the form
(cc-a)(x«-i4- A'a;"-2+ .... ^T'x^Y')=0. (3.)

Now equation (3) may be satisfied by supposing either of its

factors equal to zero. If the second factor equals zero, we
shall have

£c"-i+ A'a:«-2-f B'a;«-3 4- .... +T'cc+Y'=0. (4.)

Kow equation (4) has at least one root ; denote that root by
b; then will the first member be divisible hy x—b, and equation

(4) can be written under the form

(x-Z))Gx^-2 4. A''^«-3+ .... +T'x+Y'')=0,
which reduces Eq. (3) to the form of

(:P_a)(cc-5)(a;"-H A^'x^-s^. .... T''a:+ Y'0=O.
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Bj continuing this process, it may be shown that the first

member will ultimately be resolved into n binomial factors of

the form x—a^ x—b, x—c^ etc. Hence equation (1) may b^.

written under the form

(x-a){x-b){x-c){x-d).. . . {x-k){x-l)= 0. (5.)

This equation may be satisfied by any one of the n values,

x=za, x=b, x=c, etc., and, consequently, these values are the

roots of the equation.

The equation has no more than n roots, because if we ascribe

to X a value which is not one of the n values a, J, c, etc., this

value will not cause any one of the factors of Eq. (6) to be zero,

and the product of several factors can not be zero when neither

of the factors is zero.

If both members of Eq. (5) be divided by either of the fac-

tors x—a, x—b^ etc., it will be reduced to an equation of the

next inferior degree ; and if we can depress any equation to a

quadratic, its roots can be determined by methods already ex-

plained.

Ex. 1. One root of the equation

x3+3a;2_16x 4-12 =
is 1 ; what are the other roots?

Ex. 2. Two roots of the equation

a:*-10cc3-|-35a:2_50T+24=0

are 1 and 3 ; what are the other roots?

Ex. 3. Two roots of the equation

x*-12x^+4Sx^-6Sx-\-15=0

are 3 and 5 ; what are the other roots ? Ans. 2± V^.
Ex. 4. Two roots of the equation

4x^- 14^3-5xH 31cc+ 6=
are 2 and 3 ; what are the other roots ? — 8 ± VE

Ans. ,

4
Ex. 5. Two roots of the equation

x^-6x^+24:x-16=0

are 2 and —2 ; what are the other roots? Ans. 8± V6.

437. The n roots of an equation of the 72th degree are not

necessarily all different from each other. Any number, and, in-
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deed^ all ofthem^ may he equal. When we say that an equation

of the nth degree has n roots, we simply mean that its first

member can be resolved into n binomial factors, equal or un-

equal, and each factor contains one root.

Thus the equation x^—Qx^-\-12x—^=0 can be resolved into

the factors (a;-2)(x-2)(x-2)=:0, or (x- 2)3= 0; whence it

appears that the three roots of this equation are 2, 2, 2. But,

in general, the several roots of an equation differ from each

other numerically.

The equation x^=^ has apparently but one root, viz., 2, but

by the method of the preceding article we can discover two

other roots. Dividing x^— 8 by cc— 2, we obtain a:2-f-2x+4=0.

Solving this equation, we find x= —1± V— 3. Thus, the three

roots of the equation x^=^ are

2; -i+ vz:!; -l-V^s.
The student should verify the last two values by actual mul-

tiplication.

Ex. 1. Find the four roots of the equation cc*— 81=0.

Ex. 2. Find the six roots of the equation cc^— 64=0.

438. The coefficient of the second term in the equation of the nth

degree is equal to the algebraic sum of the roots with their signs

changed.

The coefficient of the third term is equal to the algebraic sum of

the products of all the roots, taken in sets of two.

The coefficient of the fourth term is equal to the algebraic sum of

the products of all the roots, taken in sets of three, with their signs

changed.

The last term is equal to the continued product of all the roots

with their signs changed.

Let a,b,c,d, I, represent the roots of an equation of the

nth degree. This equation will accordingly contain the factors

x—a, x^b, etc. ; that is, we shall have

{x-a){x-b){x—c){x-d) (x-l)z^O.

If we perform the multiplication as in Art. 351, we shall

have
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c"—

a

a:"
-i+ aZ)

^n--'^—abc

-h \-ac — abd

— c -{ad — acd

-d + bd -bed

etc.

etc.

etc.

X'
n-3 4-.... ±:{abcd,.., l)=0',

which results are seen to conform to the laws above stated. By
the method employed in Art. 352 it may be proved that if these

laws hold true for the product of ?i binomial factors, they will

also hold true for the product of 72+1 binomial factors. But

we have found by actual multiplication that these laws are true

for the product of four factors, hence they are true for the

product of five factors. Being true for five, they must be true

for six, and so on for any number of factors.

It will be perceived that these properties include those of

quadratic equations mentioned on pages 203-5.

If the roots are all negative, the signs of all the terms of the

equation will be positive, because all the signs of the factors

of which the equation is composed are positive.

If the roots are all positive, the signs of the terms will bo

alternately positive and negative.

If the sum of the positive roots is numerically equal to the

sum of the negative roots, their algebraic sum will be zero

;

consequently the coefficient of the second term of the equation

will be zero, and that term will disappear from the equation.

Conversely, if the second term of the equation is wanting, the

sum of the positive roots is numerically equal to the sum of

the negative roots.

Ex. 1. Form the equation whose roots are 1, 2, and 3.

For this purpose we must multiply together the factors

'rr— 1, a;— 2, x—S^ and we obtain x^— 6x^-{-llx—6= 0.

This example conforms to the rules above given for the co

efficients. Thus the coefficient of the second term is equal to

the sum of all the roots, 1 + 2 + 3, with their signs changed.

The coefficient of the third term is the sum of the products

of the roots taken two and two; tlins,

Ix2 + lx3+ 2x3=zll.
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The last term is the product of all the roots, 1x2x3, with

their signs changed.

Ex. 2. Form the equation whose roots are 2, 3, 5, and —6.

Ans. x^-ix^-29x'+lbQx-lS0=0.
Show how these coefficients conform to the laws above given.

Ex. 3. Form the equation whose roots are

1, 1, 1, -1, and -2.

Ex. 4. Form the equation whose roots are

1, 3, 5, -2, -4, and -6.

Ans. x^+ 3x'-4.lx*-87x^-\-4.00x^+444:X-720=0.

Ex. 6. Form the equation whose roots are

l±V^ and 2±V~^.
Ex. 6. Form the equation whose roots are

l±-v/3i and2±'/3.

439. Since the last term is the continued product of all the

roots of an equation, it must be exactly divisible by each of them.

For example, take the equation x^—x—6= 0. Its roots must

all be divisors of the last term, 6; hence, if the equation has a

rational root, it must be one of the numbers 1, 2, 3, or 6, either

positive or negative ; and, by trial, we can easily ascertain

whether either of these numbers will satisfy the equation. We
thus find that +2 is one of the roots, and, by the method of

Art. 436, we find the remaining roots to be —1± V--2.
If the last term of an equation vanishes, as in the example

x*-\-2x^+ Sx'^+ 6x=0, the equation is divisible by x— 0, and

consequently is one of its roots. If the last two terms van-

ish, then two of its roots are equal to zero.

440. If the coefficients of an equation are whole numbers, and
the coefficient of its first term unity, the equation can not have a

root which is a rational fraction.

Suppose, if possible, that y is a root of the general equation

of the nth degree, where ^ represents a rational fraction ex-

pressed in its lowest terms. Substitute this value for x in the

given equation, and we have



GENERAL THEORY OF EQUATIONS. 813

.

i7.+
A^,Tn+Bj^,+ .... +T-+V=0.

Multiplying each term by b''-\ and transposing, we obtain

Now, by supposition, a, Z), A, B, C, etc., are whole numbers

;

hence the right-hand member of the equation is a whole num-
ber.

But, by hypothesis, | is an irreducible fraction ; that is, a

and b contain no common factor. Consequently, a" and b will

contain no common factor; that is, ^ is a fraction in its low-

est terms. Hence the supposition that the irreducible fraction

T is a root of the equation leads to this absurdity, that an irre-

ducible fraction is equal to a whole number.

This proposition only asserts that every commensurahle root

must be an integer. The roots can not be of the form of f, y,

|, etc. The equation may have other roots which are incom-

mensurable or imaginary, as 2ztVS, 1± V— 2.

441. Any equation having fractional coefficients can be trans-'

formed into another which has all its coefficients integers^ and the

coefficient of its first term unity.

Eeduce the equation to the form

Air"+ Ba?"-HCcc"-2+ -(-Tcc-fY=0,

in which A, B, C, etc., are all integers, either positive or neg-

ative.

Substitute for x the value x~~-.
A'

and the equation becomes

r Br-^ Cyn-2 ,T^,y^..

which, multiplied by A*^-^, becomes

2/"+ B?/^-^ + AC?/"-2+ + A"-2T?/+ A"-lVr:rO.
O
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in which the coefficients are all integers, and that of the first

term unity.

The substitution of ^ for x is not always the one which leads

to the most simple result ; but when A contains two or more

equal factors, each factor need scarcely ever be repeated more

than once.

Ex. 1. Transform the equation oc?—9-+^^—u~^ ^"^^ ^^"

other whose coefficients, are integers, and that of the first term

unity.

Clearing of fractions, we have

86:c3-54cc2 4-45^^-8=0.

Substituting ^ for cc, the transformed equation is

or 2/^-92/24-45?/-48=0.

Transform the following equations into others whose coeffi-

cients are integers, and that of the first term unity.

Ex.2. icH2x2+|-^=0. ^rz5. y3_^12?/2+97/-24=0.

Ex.3. icH^'-^+2= 0. ^715.2/3+23/2-93/4-432=0.

Ex.4. x3 4-2ia;24-1-1=0.

Ex.5. a;*-4ia:2 4-8aj4-2TV=0.

14^2 10
Ex.6. a;3_i^+7^_i!^^0.

442. If in any complete equation involving hut one unhnoum
quantity the signs of the alternate terms he changed^ the signs of all

the roots will he changed.

Take the general equation of the nih. degree,

ir"-f Ax"-HBcc"-3 4-Ca;"-8 4- =0. (1.)

in which the signs may follow each other in any order whatever.
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If we change the signs of the alternate terms, we shall have

x^- Acc^-i 4- Bx^-2_ Qx"-^+ =0. (2
.)

or, changing the sign of every term of the last equation,

-a?'^+ Aa:"-i-Bx"-2+ Ca?^'~^- =0. (3.)

Now, substituting +a for x in equation (1) will give the

same result as substituting —a in equation (2), if n be an even

number; or substituting —a in equation (3), if n be an odd

number. If, then, a is a root of equation (1), —a will be a root

of equation (2), and, of course, a root of equation (3), which is

identical with it.

Hence we see that the positive roots may be changed into

negative roots, and the reverse, by simply changing the signs

of the alternate terms ; so that the finding the real roots of any

equation is reduced to finding positive roots only.

This rule assumes that the proposed equation is complete;

that is, that it has all the terms which can occur in an equation

of its degree. If the equation be incomplete, we must intro-

duce any missing term with zero for its coefficient.

Ex. 1. The roots of the equation x^— 2x^—bx-\-Q—0 are 1,

3, and —2 ; what are the roots of the equation

a;3-|-2a;2_5cc-6=0?

Ex. 2. The roots of the equation cc^— Ga^^-j-Hx— 6= are 1,

2, and 3 ; what are the roots of the equation

Ex.3. The roots of the equation x'^— Qx^-^-bx^+lx—lO^O

are —1, +5, 1+ V— 1, and 1— V— 1; what are the roots of

the equation cc*+ 60;^+ Sa;^- 2ic- 10= ?

443. If an equation whose coefficients are all real contains im-

aginary roots^ the number of these roots must he even.

If an equation whose coefficients are all real has a root of

the form a+Z/V— 1, then will a—hV— 1 be also a root of the

equation. For, let a-^-hV— 1 be substituted for x in the equa-

tion, the result will consist of a series of terms, of which those

involving only the powers of a and the even powers oihV—1
will be real, and those which involve the odd powers o^hV -^1

will be imaginary.
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If we denote the sura of the real terms by P, and the sum

of the imaginary terms by QV— 1, the equation becomes

P+QV^^-O.
But, according to Art. 243, this equation can only be true

when we have separately P= and Q= 0.

If we substitute a—bV— 1 for x in the proposed equation,

the result will differ from the preceding only in the signs of

the odd powers ofb\/—l^so that the result will be P—QV— 1.

But we have found that P= and Q=0; hence P— Q\/— 1=0.

Therefore a—hV— 1, when substituted for x, satisfies the equa-

tion, and, consequently, it is a root of the equation.

It may be proved in a similar manner that if an equation

"whose coefficients are all raiional,has a root of the form a+ Vb^

then will a— Vb be also a root of the equation.

Ex.1. One root of the equation x^—2x-\-4:= is l-f--/— 1;

what are the other roots?

Ex. 2. One root of the equation a;^ — a;^ — 7a; + 15 = is

2+ V— 1 ; what are the other roots?

Ex. 3. One root of the equation a:^ — a:^ -f 3a: -4- 6 = is

1 + 2-1/— 1 ; what are the other roots?

Ex. 4. One root of the equation x* — 4a;^ + 4x — 1 = is

2+ \/3 ; what are the other roots?

Ex. 5. Two roots of the equation

cc8-|-2a:6+4a;^+4a;*-8a;2-16a^-32=0

are — 1+ -/— 1 and 1— V— 3; what are the other six roots?

444. Any equation involving but one unknown quantity may be

transformed into another whose roots differ from Hiose of Hie pro-

posed equation by any given quantity.

Let it be required to transform the general equation of the

nth degree into another whose roots shall be less than those of

the proposed equation by a constant difference h.

Assume y=x—h^ whence x= y-\-h.

Substituting y-^h for x in the proposed equation, we have

(y-f /0"+ A(7/-f /0"-HB(z/-h/0"-H .... +V=0.
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Developing the different powers of y-[-h by the binomial

formula, and arranging according to the powers of y, we have

y-^+ ,etc.l

J

+A 4.(7i-l)AA +i(7,_l)(7i_2)A^2

+B +(n-2)B//

+ C

which equation satisfies the proposed condition, since y is less

than X by h. If we assume y=x-\-h, or x— y—h^ we shall ob-

tain in the same manner an equation whose roots are greater

than those of the given equation by h.

Ex. 1. Find the equation whose roots are greater by 1 than

those of the equation x^ -\-Zx'^ —4:X-\-l = 0.

We must here substitute y—1 in place of a:.

Ans. y^~-7y-\-7= 0.

Ex. 2. Find the equation whose roots are less by 1 than those

of the equation x^— 2x'^-\-Sx—4:=0.

Ans. ?/^+?/2+ 2?/— 2 = 0.

Ex. 3. Find the equation whose roots are greater by 3 than

those of the equation x*-\-9x^-\-12x'^— 14:X=0.

Ans. 2/4_3^3-15?/2+ 49?/-12 = 0.

Ex. 4. Find the equation whose roots are less by 2 than those

of the equation 5a:;*— 12x^+ 3x^4- 4a:— 5= 0.

Ans. 5/+282/3+51?/2+32?/-l=0.
Ex. 5. Find the equation whose roots are greater by 2 than

those of the equation a;^ 1Ox*+ 42:cH 86a:2-f 70a:+12= 0.

A71S. y^+ 2y^^6y^-10y-{-8= 0.

445. Any complete equation may he transformed into anothel

wliose second term is wanting.

Since h in the preceding article may be assumed of any

value, we may put nh-\-A— 0^ which will cause the second term

of the general development to disappear. Hence 7i— _— , and

A ^^

x—y . Hence, to transform an equation into another which
n

wants the second term, substitute for the unknown quantity a new
unknown quantity minus the coefficient of the second term divided

hy the highest exponent of the unknown quantity.
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Ex. 1. Transform the equation x^—6x'^ + 8x — 2 = into an-

other whose second term is wanting.

Futx=:7jJf-2. Ans. y^—4y— 2 = 0.

Ex.2. Transform the equation x'^—16x^—6x-]-lb= into

another whose second term is wanting.

Put x=y+4:. Ans. y'-96y^-618y-777= 0.

Ex. 3. Transform the equation

0.-^+ locc*+ 12a;'- 20ir2 4- 14a;- 25 =:

into another whose second term is wanting.

Ans. 2/^-78?/3+412?/2-7o7?/+401=0.

Ex.4. Transform the equation x"^— 8x^-^6= into another

whose second term is wanting.

According to Art. 438, when the second term of an equation

is wanting, the sum of the positive roots is numerically equal

to the sum of the negative roots.

446. I/two numbers^ substitutedfor tha unknown quantity in an
equation, give results with contrary signs, there must be at least one

real root included between those numbers.

Let us denote the real roots of the general equation of the

nth degree by a, b, c, etc., and suppose them arranged in the

order of their magnitude, a being algebraically the smallest,

that is, nearest to — a ; b the next smallest, and so on. The
equation may be written under the following form,

{x—a){x—b){x—c){x—d) =0.

Now let us suppose x to increase from — a toward -f- a

,

assuming, in succession, every possible value. As long as x is

less than a, every factor of the above expression will be nega-

tive, and the entire product will be positive or negative accord-

ing as the number of factors is even or odd. When x becomes

equal to a, the whole product becomes equal to 0. But if a; be

greater than a and less than 5, the factor x—a will be positive,

while all the other factors will be negative. Hence, when x
changes from a value less than a to a value greater than a and

less than b, the sign of the whole product changes from -^ to —
or from — to +. When x becomes equal to 6, the product

again becomes zero; and as x increases from b to c, the factor
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jc— 5 becomes positive, and the sign of the product changes

again from — to -f or from -f- to — ; and, in general, the prod-

uct changes its sign as often as the value of x passes over a real

root of the equation.

Hence, if two numbers substituted for x in an equation give

results with contrary signs, there must be some intermediate

number which reduces the first member to 0, and this number

is a root of the equation.

If the two numbers which give results with contrary signs

differ from each other only by unity, it is plain that we have

found the integral 'pari of a root.

If two numbers, substituted for x in an equation, give results

with like signs, then between these numbers there will either

be no root, or some even number of roots. The last case may
include imaginary roots.

For if a-hZ;V— 1 be a root of the equation, then willa— J-v/—

1

be also a root. Now
{x-a-h^^^){x-a-^l^^-i)^{x-ay-^}P^,

a result which is alwaj^s positive ; that is, the quadratic factor

corresponding to a pair of imaginary roots of an equation whose

coefficients are real, is always positive.

Ex. 1. Find the first figure of one of the roots of the equa-

tion x^-^-x^+x— 100=0.

"When a:=4, the first member of the equation reduces to

— 16; and when x=:b^ it reduces to -|-55. Hence there must

be a root between 4 and 5 ; that is, 4 is the first figure of one

of the roots.

Ex. 2. Find the first figure of one of the roots of the equa-

tion a;3-6x2+9a:-10=0.

Ex. 3. Find the first figure of each of the roots of the equa-

tion a;3—4x2-6x+8:=0.

447. In a series of terms, two successive signs constitute a

permanence when the signs are alike, and a variation when they

are unlike. Thus, in the equation x^—^x^—bx+Q^O^ the signs

of the first two terms constitute a variation, the signs of the

second and third constitute a permanence, and those of the

third and fourth also a variation.
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Descartes's Rule of Signs.

448. Every equation must have as many variations of sign as

it has positive rooiSj and as many permanences of sign as it has

negative roots.

According to Art. 436, the first member of the general equa-

tion of the nth degree may be regarded as the product of ?i bi-

nomial factors of the form x—a,x—b, etc. The above theorem

will then be demonstrated if we prove that the multiplication

of a polynomial by a new factor, x—a^ corresponding to a pos-

itive root, will introduce at least one variation^ and that the mul-

tiplication by a factor, ic+a, will introduce at least one perma*

nence.

Suppose, for example, that the signs of the terms in the

original polynomial are +H 1 1 f-, and we have

to multiply the polynomial by a binomial in which the signs

of the terms are -\— . If we write down simply the signs

which occur in the process and in the result, we have

+ + -

+ -
+ -- + --- +

+ + - + -

- + + + -

- + -

--f

-

+ + -
+±-±± + - + -±-1--

We perceive that the signs in the upper line of the partial

products must all be the same as in the given polynomial ; but

those in the lower line are all coritrary to those of the given

polynomial, and advanced one term toward the right. When
the corresponding terms of the two partial products have dif-

ferent signs, the sign of that term in the result will depend

upon the relative magnitude of the two terms, and may be

either + or — . Such terms have been indicated by the double

sign ± ;
and it will be observed that the permanences in the

given polynomial are changed into signs of ambiguity. Hence,

take the ambiguous sign as you will, the permanences in the

final product are not increased by the introduction of the posi-

tive root 4- a, but the number of signs is increased hy oiie, and
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therefore the number of variations must be increased by one.

Hence each factor corresponding to a positive root must intro-

duce at least one new variation^ so that there must be as many
variations as there are positive roots.

lu the same manner we may prove that the multiplication

by a factor, ic+ a, corresponding to a negative root, must intro-

duce at least one hqv^ permanence ; so that there must be as

many permanences as there are negative roots.

If all the roots of an equation are real^ the number of posi-

tive roots is equal to the number of variations, and the number
of negative roots is equal to the number of permanences. If

the equation is incomplete, we must supply the place of any

deficient term with ±0 before applying the preceding rule.

Ex.1. The equation x^— Zx^—bx^^lbx'^+4:X—12= has

five real roots ; how many of them are positive ?

Ex.2. The equation a;*-Sa;^- 15x2+49^^-12= has four

real roots; how many of them are negative?

Ex. 3. The equation

a^6 _|„ 3x-5_ 41x*- 87^3+ 400x2+ 444:r- 720=
has six real roots; how many of them are positive?

Derived Polynomials.

449. If we take the general equation of the wth degree, and
substitute y-\-h in place of a?, it becomes

(?/4-A)«+A(?/+//)'^-i + B(7/+7z)«-24-.... +V= 0.

Developing the powers of the binomial ?/+ A, and arranging

in the order of the powers of A, we have

yn _|_,^^n-l

fB?/«-2+(72_2)B?/"-3

+ T2/

+Y
+T

A+ 72(n— 1)?/"-2

J^{n-V){n-2)k7f-^

+ (n-2)(n^3)B?/^-4

.7/2

172+-

The part of this development which is independent of h is

of the same form as the original polynomial, and we will des
O 2
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ignate it bj X. We will denote the coefficient of h bj X^, the

coefficient of—^ bj Xg, etc. The preceding development may

then be written

X4-X,A+X,^+X3^+.... +/.n

450. The polynomials X^, Xg, etc., are called derived poly-

nomials^ or simply derivatives. X^ is called the first derivative

of X, Xg the second derivative^ and so on. X is called the prim-

itive polynomial. Each derived polynomial is deduced from the

preceding hy multiplying each term hy the exponent of the leading

letter in that term^ and then diminishing the exponent of the lead-

ing letter hy unity.

Ex. 1. What are the successive derivatives of

rlst. Sic^-Ux+a
Ans. \ 2d. Qx-l^.

{ 8d. 6.

Ex. 2. What are the successive derivatives of

a;4_8a:34-14a?H4cc-8?

Ex. 3. What are the successive derivatives of

a;5+8a;*+2a:3_3x2-2a:-2?

Ex. 4. What is the first derivative of

ic'^+Aa^^-i +Bx^-H +Tx4-V?

Equal Roots.

451. We have seen, Art. 436, that if a, 5, c, etc., are the roots

of the general equation of the nih. degree, the equation may be

written

^= {x--.a){x-h){cc-c). .

.

. {x-lc){x-l)^0.

When the equation has two roots equal to a, there will be

two factors equal to x—a; that is, the first member will be di-

visible \>y'{x—aY\ when there are three roots equal to «, the

first member will be divisible by (cc— a)^; and if there are n

roots equal to a, the first member will contain the factor (x—a)".

The first derivative will contain the factor n{x^aY"^\ that is,
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x—a occurs (n— 1) times as a factor in tlie first derivative.

The greatest common divisor of the primitive polynomial, and

its first derivative, must therefore contain the factor x—a, re-

peated once less than in the primitive polynomial.

Hence, to determine whether an equation has equal roots, we

have the following

RULE.

Find the greatest common divisor between the given polynomial

and its first derivative. If there is no common divisor the equation

has no equal roots. If there is a common divisor
^
place this equal

to zero^ and solve the resulting equation.

Ex. 1. Find the equal roots of the equation

The first derivative is Sx'^—16x-\-21.

The greatest common divisor between this and the given

polynomial is a:;— 3.

Hence the equation has two roots, each equal to 3.

Ex. 2. Find the equal roots of the equation

x^-lSx''-\-66x-76=0.

Ans. Two roots equal to 6.

Ex. 3. Find the equal roots of the equation

a;3_7x2+ 16:r-12= 0.

A72S. Two roots equal to 2.

Ex. 4. Find the equal roots of the equation

x'-6x^—8x-S=^0.
Ans. Three roots equal to — 1.

Ex. 5. Find the equal roots of the equation

x^-Sx^-^dx-\-27= 0.

Ex. 6. Find the equal roots of the equation

x'-\-8x^ -{-20x4-16=0.

Sturm^s Theorem.

452. The object of Sturm^s theorem is to determine the number
of the real roots of an equation, and likewise the situation of

these roots, or their initial figures when the roots are irrational

According to Art. 446, if we suppose x to assume in succes-

sion every possible value from — oc to + a, and determine the
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number of times that the first member of the equation changes

its sign, we shall have the number of real roots, and, conse«

quently, the number of imaginary roots in the equation, since

the real and imaginary roots are together equal in number to

the degree of the equation. Sturm's theorem enables us easily

to determine the number of such changes of sign.

453. Sturm's Functions.—Let the first member of the general

equation of the Tith degree, after having been freed from its

equal roots, be denoted by X, and let its first derivative be de-

noted by Xj. We now apply to X and X^ the process of find-

ing their greatest common divisor, with this modification, that

we change the sign of each remainder before taking it as a di-

visor; that is, divide X by Xj, and denote the remainder with

its sign changed by E; also, divide Xj by E, and denote the

remainder with its sign changed by E^, and so on to E„, which

will be a numerical remainder independent of a;, since, by hy-

pothesis, the equation X=0 has no equal roots.

We thus obtain the series of quantities

X, Xj, E, Ep Eg, .... E„,

each of which is of a lower degree with respect to x than the

preceding; and the last is altogether independent of a:, that is,

does not contain x.

We now substitute for x in the above functions any two

numbers, p and q, of which p is less than q. The substitution

ofp will give results either positive or negative. If we only

take account of the signs of the results, we shall obtain a cer-

tain number of variations and a certain number of perma-

nences.

The substitution o^ q for x will give a second series of signs,

presenting a certain number of variations and permanences.

The following, then, is the Theorem of Sturm.

454. If in the series offunctions X, X^ E, E^, .... E,„ ive

substitute in place of x any two numbers^ p and q, eithei' positive

or negative, and note the signs of Hie residts, the difference beitvcen

the number of variations of sign when x=p and when x=q is equal
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to the number of real roots of the equation X= comprised between

p and q.

Let Q, Qj, Q2, . . . . Qn, denote the quotients in the success-

ive divisions. Now, since the dividend is equal to the product

of the divisor and quotient plus the remainder, or ininus the

remainder with its sign changed, we must have the following

aquations

:

X=X,Q-R, (1.)

X,= RQ, -R„ (2.)

R:=R,Q,-R„ (3.)

From these equations we deduce the following conclusions:

455. If in the series offunctions X, Xj, R, etc., any number be

substitutedfor x, two consecutive functions can not reduce to zero at

the same time.

For, if possible, suppose X^^O and R=:0; then, by Eq. (2),

we shall have R^^O. x\lso, since R=:0 and R^= 0, by Eq. (3)

we must have R^^O; and from the next equation R3— 0, and

so on to the last equation, which will give R„=0, which is im-

possible, since it was shown that this final remainder is inde-

pendent of cc, and must therefore remain unchanged for every

value of cc.

456. When^ by the substitution of any number for cr, any one of

these functions becomes zero^ the tivo adjacent functions 'must have

contrary signs for the same value of x.

For, suppose R^ in Eq. (3) becomes equal to zero, then this

equation will reduce to R=: — Rg; that is, R and Rg have con-

trary signs.

457. If a is a root of the equation X= 0, the signs ofK and X,

will constitute a variation for a value ofx which is a little less than

a, and a permanence for a value of x which is a little greater than a.

Let h denote a positive quantity as small as we please, and

let us substitute a-\-h for x in the equation X=:0. According
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to Art. 449, the development will be of the form

X+Xj/i-|-X27r+ other terms involving higher powers of A.

Now, if a is a root of the proposed equation, it must reduce

the polynomial X to zero, and the development becomes

X^/i-l-Xg-^-f-other terms involving higher powers of /i,

or A(X,+ X,|+, etc.).

Also, if we substitute a 4-^ for x in the first derived polyno-

mial, the development will be of the form

Xj + Xg/i+ other terms involving higher powers of ^.

Now a value may be assigned to h so small that the first

term of each of these developments shall be greater than the

sum of all the subsequent terms. For if A be made indefinitely

small, then will Xg/t be indefinitely small in comparison with

Xj, which is finite; and, since the following terms contain

higher powers of h than the first, each will be indefinitely small

in comparison with the preceding term ; and, since the number

of terms is finite, the first term must be greater than the sum
of the subsequent terms. Hence, when li is taken indefinitely

small, the sum of the terms of the two developments must have

the same sign as their first terms,

Xj/i and Xj.

"When h is positive, these terms must both have the same

sign; and when li is negative, they must have contrary signs;

that is, the signs of the two functions X and X^ constitute a

variation when x= a—h^ and a permanence when x=a-\-h.

458. Demonstration of Sturm''s Tlieorem.—Suppose all the real

roots of the equations

X=0, Xi=:0, R=0, R,=0, etc.,

to be arranged in a series in the order of magnitude, beginning

with the least Let p be less than the least of these roots, and

let it increase continually until it becomes equal to q^ which we
suppose to be greater than the greatest of these roots. Now,
so long as p is less than any of the roots, no change of sign will
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occur from the substitution ofp for x in any of these functions,

Art. 446. But suppose j9 to pass from a number a little small-

er to a number a little greater than a root of the equation X=0,
the sign of X will be changed from + to — or from — to +,
Art. 446. The signs ofX and X^ constitute a variation before

the change, and a permanence after the change. Art. 457; that

is, there is a variation lost or changed into a permanence.

Again, while ^ increases from a number a little smaller to a

number a little greater than another root of the equation X=0,
a second variation will be changed into a permanence, and so

on for the other roots of the given equation.

But when jp arrives at a root of any of the other functions

Xj, E, Rj, its substitution for x reduces that polynomial to

zero, and neither the preceding nor succeeding functions can

vanish for the same value of cc, Art. 455 ; and these two adja-

cent functions have contrary signs, Art. 456. Hence the en-

tire number of variations of sign is not aff* cted by the vanish-

ing of any function intermediate between X and R^, for the

three adjacent functions must reduce to +0— or — + .

Here is one variation, and there will also be one variation

if we supply the place of the with either + or — ; thus,

4-=fc— or — ±+.
Thus we have proved that during all the changes of ^,

Sturm's functions never lose a variation except when 'p passes

through a root of the equation X= 0, and they never gain a

variation. Hence the number of variations lost while x in-

creases from ^ to g is equal to the number of the roots of the

equation X==0, which lie between -p and q^.

Now, since all the real roots must be comprised within the

limits — a and + a , if we substitute these values for x in the

series of functions X, X^, etc., the number of variations lost

will indicate the whole number of real roots. A third suppo-

sition that x— ^ will show how many of these roots are posi-

tive and how many negative ; and if we wish to determine

smaller limits of the roots, we must try other numbers. It is

generally best in the first instance to make trial of such num-
bers as are most convenient in computation, as 1, 2, 10, etc.
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EXAMPLES.

1. Find the number and situation of the real roots of the

equation x^—3cc^—4x+18=
Here we have ^=x^—Sx'^—4:X+lS, and X^^Sx^— Ga?— 4.

Dividing X bj Xj, we find for a remainder — 14x+35. Re-

jecting the factor 7, and changing the sign of the result, we
have R=2x— 5. Multiplying X^ by 4, and dividing by R, we

find for a remainder — 1. Changing the sign, we have R^= -|- 1.

Hence we have

X=x^-Sx''-4:X+lS,

X,= Sx^-Qx-4:,

R=2x-5,
R,= + l.

If we substitute — oc for cc in the polynomial X, the sign of

the result is — ; if we substitute — a for cc in the polynomial

Xj, the sign of the result is + ; if we substitute — oc for cc in

the expression 2a:— 5, the sign of the result is — ; and R^, being

independent of cc, will remain + for every value of ic, so that,

by supposing x=— oc, we obtain the series of signs

- + - +.

Proceeding in the same manner for other assumed values of

a?, we shall obtain the following results

:

,s8iinied Values of ar. Resulting Signs. Variations.

— OC - + - + givirig 3 variations.

-3 — + - + (( 3

-2 • + + — 4-
(( 2

H- + ti 2

1 + + n 2

2 + + tl 2

2i + il
1

3 + + + + ((

+ 0C + + + + ((

We perceive that no change of sign in either function occurs

by the substitution for x of any number less than —8 ; but, in

passing from —3 to —2, the function X changes its sign from

— to +, by which one variation is lost. In passing from 2
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to 2^, the function X again changes its sign, and a second va-

riation of sign is lost. Also, in passing from 2-J to 3, the func-

tion X again changes its sign, and a third variation is lost; and

there are no further changes of sign arising from the substitu-

tion of any number between 3 and + a.

Hence the given equation has 3 real roots ; one situated be-

tween —2 and —3, one between 2 and 2^, and a third between

2-J and 3. The initial figures of the roots are therefore —2,

+ 2, and +2.

There are three clmnges of sign of the primitive function,

two of the first derived function, and one of the second derived

function ; but no variation is lost by the change of sign of

either of the derived functions; while every change of sign of

the primitive function occasions a loss of one variation.

2. Find the number and situation of the real roots of the

equation x^—6x^^8x—l= 0.

Here we have

X=x^-5x^+8x-l,
X^= Sx^-10x-\-8,

E=2x-31,
Ri=-2295.

When x= — oc, the signs are —|

,
giving 2 variations,

x=+<x, " + + + -, " 1

Hence this equation has but one real root, and, consequent!}^,

must have two imaginary roots. Moreover, it is easily proved

that the real root lies between and +1.
3. Find the number and situation of the real roots of the

equation ic*— 2x3— 7a:2 4-10x+ 10= 0.

Here we have

X=x*-2x3-7x2+ 10x+10,

Xj=4x^-6x2-14^-f 10, or 2x^-Sx''—7x-\-6,

R= 17x2-23^-45,
R^= 152x-305,
R2= +524535.

When x= — Gc, the signs are H ) f-, giving 4 variations,

X=+OC, " ^-|_4-4_+^ U Q U

Hence the four roots of this equation are real.
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Substituting different values for x, we find that

when a;= — 3, the signs are H 1 h, givi

x=-2,
X=—lj
x= 0,

^= + 1,

x=+2,

x=.^^,

ng 4 variations,

3

3

2

2

2

1

- + + - + ,

- + + -+,
+ + + ,

+ +,
+ + ,

-0- + +,
+ + + + +,

Hence this equation has one negative root between —2 and

—3, one negative root between and —1, one positive root

between 2 and 2-|-, and another positive root between 2^ and 3.

4. Find the number and situation of the real roots of the

equation cc^—7x+7= 0.

Ans. Three; viz., one between —3 and, —4, one be-

tween 1 and 1-J^,
and the other between 1J and 2.

5. Find the number and situation of the real roots of the

equation 2a;*—20x+19= 0.

Ans. Two; viz., one between 1 and 1|^, the other

between 1^ and 2.

C. Find the number and situation of the real roots of the

equation xH2:r;*4-3a?H4a;2-f5x—20= 0.

Ans. One, situated between 1 and 2.

7. Find the number and situation of the real roots of the

equation a:^ 3^2+ 5a:—178= 0.

Ans. One, situated between 4 and 5.

8. Find the number and situation of the real roots of the

equation cc*— 12a:2+ 12a:—3= 0.

Ans. Four; viz., one between —3 and —4, one be-

tween and J, one between
-J-
and 1, and the

other between 2 and 3.

9. Find the number and situation of the real roots of the

equation x'^—%x^-\-l'^x^-\-'^x—S= 0.

Ans. Four; viz., one between —1 and 0, one between

and +1, one between 2 and 3, and the other

between 5 and 6.
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Solution of Simultaneous Equations of any Degree,

459. One of the most general methods for the elimination

of unknown quantities from a system of equations, depends

upon the principle of the greatest common divisor.

Suppose we have two equations involving x and y. We
first transpose all the terms to one member, so that the equa-

tions will be of the form

A= 0, B^O.
We arrange the terms in the order of the powers of x^ and

we will suppose that the polynomial B is not of a higher de-

gree than A. We divide A by B, as in the method of finding

the greatest common divisor, Art. 95, and continue the opera-

tion as far as possible without introducing fractional quotients

having x in the denominator. Let Q represent the quotient,

and R the remainder ; we shall then have

A=BQ+ R.

But, since A and B are each equal to zero, it follows that R
must be equal to zero. If, then, there are certain values of x

and y which render A and B equal to zero, these values should

be the roots of the equations

B= 0, R=0.
We now divide B by R, and continue the operation as far as

possible without introducing fractional quotients having x in

the denominator. Let R' denote the remainder after this divi-

sion. For the same reason as before, R^ must equal zero, and

we thus obtain the two equations

Rzz:0, R'=:0,

whose roots must satisfy the equations A= 0, B= 0. If we con-

tinue to divide each remainder by the succeeding, and suppose

that each remainder is of a lower degree with respect to x than

the divisor, we shall at last obtain a remainder which does

not contain x. Let R^^ denote this remainder. The equation

R'^= will furnish the values of y, and the equation R'= will

furnish the corresponding values of cc.

If we have three equations involving three unknown quan-

tities, we commence by reducing them to two equations with
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two unknown quantities, and subsequently to a single final

equation by a process similar to that above explained.

{Qi^±.ip- 13 —
J- 'S—

o'

Divide the first polynomial by the second, as follows

:

ir2+2/2_13 x-^y—b
-y+ 5

-(y-5)a;-f f-\Z
—{y—b)x— 3/^4-10^-25

2z/2— lOy+12, the remainder.

This remainder must be equal to zero ; that is,

23/2-10^+ 12:^0,

whence 2/=2 or 3.

When 2/=2, a;=3;

3/=3, x=2.

Ex. 2. Solve the equations ]
^

. ^o~~-,o~a^ (xy-\-xy^—l2 — 0.

Multiply the first polynomial by 3/, to make its first term di-

visible, and proceed as follows

:

0:3/(1 +3/3)- 18?/

xy{l+f)-12{l-y^y'^
ooy{l+y)-l2

^—y+y
12— 3O3/+I23/2, the remainder.

Hence 12 -30?/+ 122/2= 0;

therefore 3/— 2 or ^.

When 3/= 2, x=2,

2/=^, cc=16.

Ex. 3. Solve the equations \
a^y-^^'-J-a'3/+rr-6= 0,

[^ X y —X -\-x— o — u.

The first remainder is 3?/- 3, which, being placed equal to

0, gives 3/= l, whence x—Z.

Ex. 4. Solve the equations

x3_3cc23/+a:(33/2-3/+l)-3/3+ 3/2-23/=0,

x^—2xy +3/2— 3/=0.

The remainder after the first division is x—2y, and afler the

second division y^—y- Hence we conclude

a:— 23/=0, and y'^—y= 0.
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Whence we have ^=1 or 0,

x= 2 or 0.

Ex.5. Solve the equations
i o ;/ , -,n ,

o
, / a

The remainder after the first division is

a7(12^-12)-122/-f-12.

Hence we have 12(?/— l)(a?— 1)= 0, which equation may be

satisfied by supposing ?/— 1= or ^—1 = 0.

When 37=1, 2/=— 1 or 0,

y=lj x= 2 or 3.

Ex.6. Solve the equations {,3+2x/+2/-5^+2io.
The first division gives a remainder a;(2/— 2)+?/^— 4, whence

we have

0/-2)(a;+2/+2)=O;

and we may have either

2/-2 = 0, or cc4-2/+2 = 0.

If we divide the first member of the second equation by

x-{-y-^2^ we obtain the remainder y^—5y-{-6^ which also equals

zero; whence y=2 or 3.

When y= 2, x= —4 or 0,

2/=3, a;=-5.
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CHAPTER XXII.

SOLUTION OF NUMERICAL EQUATIONS OF HIGHER DEGREES.

461. Equations of the third and fourth degrees can some«

times be solved by direct methods ; but these methods are com-

plicated, and are of limited application. No general solution

of an equation higher than the fourth degree has yet been dis-

covered. To obtain the roots of numerical equations of degrees

higher than the second, we must generally employ tentative

methods, or methods which involve approximation.

462. Commensurable Boots of an Equation.—Any equation

having fractional coefficients can be transformed into another

which has all its coefficients integers, and the coefficient of its

first term unity. Art. 441, and such an equation can not have

a root which is a rational fraction. Art. 440 ; that is, every com-

mensurable root of this equation must be an integer. Every

integral root of this equation is a divisor of the last term, Art.

489. Hence, to find the commensurable roots of an equation,

we need only make trial of the integral divisors of the last term.

463. 'Method offinding the Roots,—In order to discover a con-

venient method of finding the roots, we will form the equation

whose roots are 2, 8, 4, and 5. This equation, Art 486, may
be expressed thus,

(x-2)(a:-8)(x-4)(2:-5)= 0.

If we perform the multiplication here indicated, we shall ob-

tain a;*-14x3+ 71a:2-154a:+120= 0.

We know that this equation is divisible by rr— 5, and we

will perform the operation by an abridged method. Since the

coefficients of the quotient depend simply upon the coefficients

of the divisor and dividend, and not upon the literal parts of

the terms, we may obtain the coefficients of the quotient by op-

erating upon the coefficients of the divisor and dividend by the
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usual method. To the coefficients thus found the proper let-

ters may afterward be annexed. The operation may then be

exhibited as follows

:

A B C D
1-14+71--154+120
1- 5

- 9+ 71

- 9+45
+ 26--154

+26--130
-- 24+120
-- 24+ 120.

1—5, divisor,

1-9+ 26-24, quotient.

Supplying the powers of x, we obtain for a quotient

cc3-9a;2+26ic-24:=0.

In applying this method of division, care should be taken to

arrange the terms in the order of the powers of x ; and if the

series of powers of x in the dividend is incomplete, we must

supply the place of the deficient term by a cipher.

The preceding operation may be still further abridged by

performing the successive subtractions mentally, and simply

writing the results. Represent the root 5 by r, and the coeffi-

cients of the given equation by A, B, C, D, . . . . Y.

We first multiply —r by A, and subtract the product from

B; the remainder, —9, we multiply by — r, and subtract the

product from C; the remainder, +26, we multiply by — r, and

subtract the product from D ; the remainder, —24, we multi-

ply by — r, and, subtracting from Y, nothing remains. If we
take the root r with a positive sign, we may substitute in the

above process addition for subtraction ; and if we set down only

the successive remainders, the work will be as follows

:

A B C D Y r

1-14+71-154+120(5
1- 9+26- 24,

and the rule will be

Multiply A hy r, and add the product to B ; set down the sum,

multiply it by r, and add the product to C ; set down the sum, mul-
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tiply it by r, and add the product to D, and so on. Thefinal jjrod

net should be equal to the last term V, taken vdth a contrary sign.

The coefficients above obtained are the coefficients of a cubic

equation whose roots are 2, 8, and 4. The polynomial may
therefore be divided by x— 4, and the operation will be as

follows

:

1-9+26-24(4
1-5+ 6.

These, again, are the coefficients of a quadratic equation

whose roots are 2 and 8. Dividing again by a;— 8, we have

1-5+ 6(8
1-2,

which are the coefficients of the binomial factor x— 2.

These three operations of division may be exhibited together

as follows

:

1-14+71-154+120
1_ 9+26- 24
1- 5+ 6

1- 2

5, first divisor.

4, second divisor.

8, third divisor.

464. How to find all the Integral Roots.—The method here ex-

plained will enable us to find all the integral roots of an equa-

tion. For this purpose, we make trial of different numbers in

succession, all of which must be divisors of the last term of the

equation. If any division leaves a remainder, we reject this di-

visor ; if the division leaves no remainder, the divisor employed

is a root of the equation. Thus, by a few trials, all the integral

roots may be easily found.

The labor will often be diminished by first finding positive

and negative limits of the roots, for no number need be tried

which does not fall within these limits.

Ex. 2. Find the seven roots of the equation

cc"^+ a:®- 14cc^- 14x*+ 49a:3+ 49j;2_ 35^_ 36_ 0^

We take the coefficients separately, as in the last example,

and try in succession all the divisors of ^^^ both positive and

negative, rejecting such as leave a remainder. The operation

is as follows:
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I4.l_i4_i44.49-f49-36-36
l_|.2_12-26+23+ 72+ 36

14.4_ 4-34-45-18
14-74.174_174. 6

1 + 6+ 11-f 6

1+5-h 6

1 + 3

Hence the seven roots are

1, 2, 3, -1, -1, -

1, first divisor.

2, second divisor.

3, third divisor.

— 1, fourth divisor.

— 1, fifth divisor.

—2, sixth divisor.

—3, seventh divisor.

2,-3.

Ex. 3. Find the six roots of the equation

a;6 4. 5ic5- 8 la;*- 85x3+ 964x2 4- 780ic- 1584=0.

1584 1.

4.

6.

- 2.

- 3.

-IL

14- 5-81- 85+ 964+ 780

14. 6-75-160+804+1584
1+ 10-35-300-896
1+16+ 61+ 66

1+ 14+33
1+ 11

The six roots, therefore, are

1, 4, 6, -2, -3, -11.

Ex. 4. Find the five roots of the equation

ic*+6x*-10x3-112x2-207x-110=a

H.6_10-112-207-110 -1.

14.5_15_ 97-110 -2.

14.3_21_ 55 -5.

1-2-11
Three of the roots, therefore, are

-1, -2, -5.

The two remainining roots may be found by the ordinary

method of quadratic equations. Supplying the letters to the

last coefficients, we have

x2-2x-ll= 0.

Hence x-l±V\2.
Ex. 6. Find the four roots of the equation

ic*_12a73+47x2-72x+36=0.

Ans. 1, 2, 3, and 6.

"Ex- 6. Find the four roots of the equation

a;*+ 2x'—7x2-8x+12=0.
P
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Ex. , Find the four roots of the equation

cc*_ 55x2 -SOx-l-604=0.

Ex. 8. Find the four roots of the equation

ic*- 25x2+60^-36= 0.

Ex. 9. Find the four roots of the equation

Ex. 10. Find the live roots of the equation

465. Incommensurable Boots.—If a high numerical equation

is found to contain no commensurable roots, or, if after remov-

ing the commensurable roots, the depressed equation is still

of a higher degree than the second, we must proceed by ap-

proximation to find the incommensurable roots. Different

methods may be employed for this purpose ; but the following

method, which is substantially the same as published by Horner

in 1819, is generally to be preferred.

Find, by Sturm's Theorem, or by trial, Art. 446, the integral

part of a root, and transform the given equation into another

whose roots shall be less than those of the preceding by the

number just found, Art. 444. Find, by Art. 446, the first fig-

ure of the root of this equation, which will be the first decimal

figure of the root of the original equation. Transform the last

equation into another whose roots shall be less than those of

the preceding by the figure last found. Find, as before, the

first figure of the root of this equation, which will be the sec-

ond decimal figure of the root of the original equation. By
proceeding in this manner from one transformation to another,

we may discover the successive figures of the root, and may
carry the approximation to any degree of accuracy required.

Ex. 1. Find an approximate root of the equation

a:3+ 3x2+5x=178.
We have found, page 330, that this equation has but one real

root, and that it lies between 4 and 5. The first figure of the

root therefore is 4. Transform this equation into another whose

roots shall be less tlian those of the proposed equation by 4,

which is done by substituting y-i-4 for x. We thus obtain
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The first figure of the root of this equation is .5. Transform

the last equation into another whose roots shall be less by .5,

which is done by substituting 2+ .5 for y. We thus obtain

2^16.5^2+ 92.752=3.625.

The first figure of the root of this equation is .03. Transform

the last equation into another whose roots shall be less by .03,

which is done by substituting v-f .03 for z. We thus obtain

v3+ 16.59?;2+93.7427v= .827623.

The first figure of the root of this equation is .008. Trans-

form the last equation into another whose roots shall be less

by .008, and thus proceed for any number of figures required.

466. How the Operation may he abridged.—This method would

be very tedious if we were obliged to deduce the successive

equations from each other by the ordinary method of substitu-

tion; but they may be derived from each other by a simple

law. Thus, let

Ax3 4-Bcc24.Ca;=V (1.)

be any cubic equation, and let the first figure of its root be de-

noted by ?', the second by r\ the third by /', and so on.

If we substitute r for x in equation (1), we shall have

Ar^-f Br^-t-Cr^Y, nearly.

Y
Whence r^^^—^^ r-^. (2.)

C+ B?'+A?-2 ^ ^

If we put y for the sum of all the figures of the root except

the first, we shall have x=r-\-y ; and, substituting this value

for X in equation (1), we obtain

ArH 3Ar2^+3Ar^^4-A2/^
)

+ Br2+2Br2/ +B2/2 V =Y;
+ Cr +Gy )

or, arranging according to the powders of?/, we have

A2/3 4-(B4-3Ar)?/2+ (C+ 2Br+3Ar2)2/=:Y^Cr-Br2-Ar3.
Let us put B' for the coefficient of ^/^ C^ for the coefficient of

?/, and Y^ for the right member of the equation, and we have

At/^+By+CV^W. (3.)

This equation is of the same form as equation (1); and, pro-

ceeding in the same manner, we shall find
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^'=C'+BV+A/2» (4.)

where r' is the first figure of the root of equation (3), or the

second figure of the root of equation (1).

Putting 2 for the sum of all the remaining figures, we have

y=zr' -\-z; and, substituting this value in equation (3), we shall

obtain a new equation of the same form, which may be written

Az^^Wz'^Q^z^M"', (5.)

and in the same manner we may proceed with the remaining

figures.

Equation (2) furnishes the value of the first figure of the root

;

equation (4) the second figure, and similar equations would fur-

nish the remaining figures. Each of these expressions involves

the unknown quantity which is sought, and might therefore

appear to be useless in practice. When, however, the root has

been found to several decimal places, the value of the terms

Br and Ar^ will be very small compared with C, and r will be

Y
very nearly equal to —. We may therefore employ C as an

approximate divisor, which will probably furnish a new figure

of the root. Thus, in the last example, all the figures of the

root after the first are found by division.

46 --77 =.6,

3.62 -92.75= .03,

.827 -93.74 =.008.

If we multiply the first coefiicient A by r, the first figure

of the root, and add the product to the second coefficient, we

shall have

B + Ar. (6.)

If we multiply expression (6) by r, and add the product to

the third coefficient, we shall have

C+Br-fAr^. (7.)

If we multiply expression (7) by r, and subtract the product

from V, we shall have

V-Cr-B7'2-Ar3,
which is the quantity represented by V in equation (3).
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If we multiply the first coefficient A by r, and add the prod-

uct to expression (6), we shall have

B4-2Ar. (8.)

If we multiply expression (8) by r, and add the product to

expression (7), we shall have

C+ 2Br+3Ar2,

which is the coefficient of y in equation (3).

If we multiply the first coefficient A by r, and add the prod-

uct to expression (8), we shall have

B4-3Ar,

which is the coefficient ofy^ in equation (3).

We have thus obtained the coefficients of the first transformed

equation ; and, by operating in the same manner upon these

coefficients, we shall obtain the coefficients of the second trans-

formed equation, and so on ; and the successive figures of the

root are indicated by dividing V by C, V by C, Y" by Q", etc.

467. The results of the preceding discussion are expressed

in the following

RULE.

Represent the coefficients of the different terms hy A, B, C, and

the right-hand member of the equation hy Y. Having found r, the

first figure of the root^ multiply A hy r, and add the product to B.

Set doivn the sum under B ; multiply this sum by r, and add the

product to C. Set down the sum under C ; multiply it by r, and

subtract the productfrom Y; the remainder will be the FIRST DIV-

IDEND.

Again^ multiply A by r, and add the product to the last number

under B. Multiply this sum by r, and add the product to the last

number under C ; this result ivill be the FIRST TRIAL DIVISOR.

Again, multiply A by r, and add the product to the last number

under B.

Find the second figure of the root by dividing the first dividend

by the first trial divisor, and proceed with this second figure pre-

cisely as was done with the first figure, carefully regarding the local

value of the figures.

The second figure of the root obtained by division will fre-
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qently furnish a result too large to be subtracted from the re-

mainder V^, in which case we must assume a different figure.

After the second figure of the root has been obtained, there will

seldom be any further uncertainty of this kind.

It may happen that one of the trial divisors becomes zero.

In this case equation (2) becomes

V /v
whence r^=— or r—y ^-^

that is, the next figure of the root will be indicated by dividing

the last dividend by the last number under B, and extracting

the square root of the quotient.

The entire operation for finding a root of the equation

may be exhibited as follows

:

ABC Y r

1 +3 +5 =178 (4.5888=a;.

4 28 132

7 88 46= 1st dividend.

_4 44 42.875

11 77= 1st divisor. 8.625= 2d dividend.

4 7.75 2.797377

15.5 84.75 .827628 = 8d dividend.

.5 8.00 .751003872

16.0 92.75= 2d divisor. .076619128 =4th dividend

.5 .4959 - -^

16.53 98.2459

3 .4968

16.56 98.7427= 8d divisor.

3_ .132784

16.598 98.875484

8 .182848

16.606 94.008382 =4th divisor.

Having found one root, we may depress the equation

a:3 + 8a:2-f-5a:-178=
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to a quadratic by dividing it by cc— 4.5388. We thus obtain

a72+ 7.5388x+39.2173:=0,

where x is evidently imaginary, because q is negative and

greater than ^. See Art. 280.

After thus obtaining the root to five or six decimal places,

several more figures will be correctly obtained by simply di-

viding the last dividend by the last divisor.

Ex. 2. Find all the roots of the equation

x3+ llx2-102cc=-181.
The first figure of one of the roots we readily find to be 8.

We then proceed, according to the Rule, to obtain the root to

four decimal places, after which two more will be obtained

correctly by division.

A B C Y r

1 + 11 - 102 -181 (3.21312 =:c.

3 42 .180

14 --60 — 1 = 1st dividend.

3 51 -.992

17 —9 = 1st divisor. — .008 = 2d dividend.

3 4.04 -.006789

20.2 -4.96 -.001261 = 8d dividend.

2 4.08 -.001217408

20.4 -0.88 = 2d divisor. -.000048697= 4th divide

2 .2061

20.61 -.6739

1 .2062

20.62 -.4677 = 3d divisor.

1 .061899

20.683; -.405801

8, .061908

20.636 -.848893 = 4th divisor.

The two remaining roots may be found in the same way, or

by depressing the original equation to a quadratic. Those

roots are,

3.22952

-17.44265.
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When a power of x is wanting in the proposed equation, we
must supply its place with a cipher.

Ex. 3. Find all the roots of the cubic equation

cc^—7a:=— 7.

The work of the following example is exhibited in an ab-

breviated form. Thus, when we multiply A by r, and add the

product to B, we set down simply this resuli. We do the same

in the next column, thus dispensing with half the number of

lines employed in the preceding example. Moreover, we may
omit the ciphers on the left of the successive dividends, if we
pay proper attention to the local value of the figures. Thus

it will be seen that in the operation for finding each successive

figure of the root, the decimals under B increase one place,

those under G increase two places, and those under V increase

three places.

1+ ^-7 =-7 (1.356895867=0:.

1 -6 -6
2 —4=lst div'r. —1= 1st dividend.

3.3 -3.01 - .903

3.6 -1.93= 2d div'r. -97= 2d dividend.

3.95 -1.7325 86625

4.00 ..1.5325= 3d div'r. 10875= 3d dividend.

4.056 -1.508164 9048984

4.062 -1.483792=4th div'r. 1326016= 4th dividend.

4.0688 -1.48053696 1184429568

4.0696 -1.47728128= 5th div. 141586432 = 5th div'd.

4.07049 -1.4769149359 132922344231

4.07058 -1,4765485837= 6th div. 8664087769= 6th div'd

Having proceeded thus far, four more figures of the root,

5867, are found by dividing the sixth dividend by the sixth di-

visor.

We may find the two remaining roots by the same process;

or, after having obtained one root, we may depress the equation

£c3-7a;+7=
to a quadratic equation by dividing by rr— 1.356895867, and

we shall obtain

»» 4- 1.356895867aj-5.158833606= 0.
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Solving this equation, we obtain

x:= -.678447983+ V5.619126204.
/ ~ 8.048917,

Hence the three roots are < 1.356896,

( 1.692021.

Ex. 4. Find a root of the equation 2^^+ Sx^ == 850.

2+3 +0 =850 (7.0502562208

17 119 883

81 SB6= 1st divisor. 17= 1st dividend.

45.10 838.2550 16.912750

45.20 840.5150= 2d divisor. 87250=2d dividend.

45.3004 840.52406008 68104812016

45.3008 340.53312024= 3d div. 19145187984= 3d div'd.

45.30130 340.5353853050 17026769265250

45.30140 840.5376503750= 4th d. 2118418718750=4th div.

Dividing the fourth dividend by the fourth divisor, we ob-

tain the figures 62208, which make the root correct to the

tenth decimal place.

The two remaining values of x may be easily shown to be

imaginary.

When a negative root is to be found, we change the signs

of the alternate terms of the equation. Art 442, and proceed

as for a positive root.

Ex. 5. Find a root of the equation 6x^—6x'^-\-Sx=—85,

Changing the signs of the alternate terms, it becomes

5x3+ 6x2+ 8x=+85.
5+6 +3 +85 (2.16189.

16 85 70

26 87= 1st divisor. 15= 1st dividend.

86.5 90.65 9.065

37.0 94.85= 2d divisor. 5.935= 2d dividend.

87.80 96.6180 5.797080

88.10 98.9040= 3d divisor. 137920= 8d dividend.

88.405 98.942405 98942405

88.410 98.980815= 4th divisor. 38977595= 4th div'd.

88.4165 98.99233995 29697701985

38.4180 99.00886585= 5th div'r. 9279893015 =5th div'd.

P 2
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Hence one root of the equation

5x3— 6x2+3x=—85

is -2.16139.

The same method is applicable to the extraction of the cube

root of numbers.

Ex. 6. Let it be required to extract the cube root of 9 ; in

Dther words, it is required to find a root of the equation

a^= 9.

1+0 +0 =9 (2.0800838.

2 4 8

4 12= 1st divisor. 1= 1st dividend.

6.08 12.4864 .998912

6.16 12.9792= 2d divisor. 1088=2d dividend.

6.24008 12.9796992064 1038375936512

6.24016 12.9801984192= 3dd. 49624063488= 3d div.

6.240243 12.980217139929 38940651419787

6.240246 12.980235860667=4thd.l0683412068213=4thd.

Ex. 7. Find all the roots of the equation

^3_i5^2_^53a,_50= 0.

Ex. 8. Find all the roots of the equation

a;3+ 9x2H- 24x4-17 = 0.

(
1.02804.

Ans. } 6.57653.

( 7.39543.

(
-1.12061.

Ans. } -3.34730.

( -4.53209.

Ex. 9. Extract the cube root of 48228544.
Ans. 364.

Ex. 10. There are two numbers whose difference is 2, nnd

whose product, multiplied bj their sum, makes 100. What
are those numbers?

Ex. 11. Find two numbers whose difference is 6, and such

that their sum, multiplied by the difference of their cubes, may
produce 5000.

Ex. 12. There are two numbers whose difference is 4: and
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the product of this difference, by the sum of their cubes, is

8400. What are the numbers ?

Ex. 13. Several persons form a partnership, and establish a

certain capital, to which each contributes ten times as many

dollars as there are persons in company. They gain 6 plus

the number of partners per cent, and the whole profit is $392.

How many partners were there ?

Ex. 14. There is a number consisting of three digits such

that the sum of the first and second is 9 ; the sum of the first

and third is 12 ; and if the product of the three digits be in-

creased by 38 times the first digit, the sum will be 336. Ee-

quired the number.
i 636,

Ans. \ or 725,

( or 814.

Ex. 15. A company of merchants have a common stock of

$4775, and each contributes to it twenty-five times as many
dollars as there are partners, with which they gain as much
per cent, as there are partners. Now, on dividing the profit,

it is found, after each has received six times as many dollars

as there are persons in the company, that there still remains

$126. Kequired the number of merchants.

Ans. 7, 8, or 9.

EQUATIONS OF THE FOURTH AND HIGHER DEGREES.

468. It may be easily shown that the method here employed

for cubic equations is applicable to equations of every degree.

For the fourth degree we shall have one more column of prod-

ucts, but the operations are all conducted in the same manner,

as will be seen from the following example.

Ex. 1. Find the four roots of the equation

a;4_8cc3-fl4ic2+4a:r=8.

By Sturm's Theorem, we have found that these roots are all

real ; three positive, and one negative.

We then proceed as follows

:
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+ 4 =8 (5.2360679.

- 1 -5
+ 44= 1st divisor. 13= 1st dividend.

53.288 10.6576

63.072=2d div'r. 2.3424= 2d dividend.

64.626747 1.93880241

66.193068=:3d div. .40359759= 3d div'd.

66.509117736 .399054706416

66.825633024=4th d. 4542883584=4th d

1-8 +14
-3 ^ 1

+2 4- 9

7 44

12.2 46.44

12.4 48.92

12.6 61.44

12.83 51.8249

12.86 52.2107

12.89 52.5974

12.926 52.674956

12.932 52.752548

and by division we obtain the four figures 0679.

,
The other three roots may be found in the same manner.

.7320508,

Hence the four roots are
.7639320,

2.7320508,

5.2360679.

Ex. 2. Find a root of the equation

We have found, by Sturm's Theorem, that this equation haa

a real root between 1 and 2.

"We then proceed as follows

:

t+2 +3 +4 +6 +20 (1.125789. 4

8 6 10 15 16

4 10 20 35=l8t divisor. 6=l8t dividend.

5 16 36 38.7171 3.87171

6 21 37.171 42.6585= 2d divisor. 1.12829= 2d dividend.

7.1 21.71

22.43

39.414 43.5027

41.730 44.3566

2016 .87005 44032

7.2 2080, 3d div'r. 25823 66968, 3d div'd.

7.8 23.16

23.90

42.211

42.695

008 44.6731

032 44.7902

44750626 .22286 5723763126

7.4 83203126, 4th d. 3536 9873046876, 4th d.

7.6 2 24.05 04 43.182 080

7.5 4 24.20 12 43.304 790125

7.5 6 24.36 24 43.427 690500

7.5 8 24.60 40

7.G 06 24.54 2025

7.6 10 24.68 0076

Dividing the fourth dividend by the fourth divisor, we ob-

tain the figures 789.
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When we wish to obtain a root correct to a limited numbei

of places, we may save much of the labor of the operation by

cutting off all figures beyond a certain decimal. Thus if, in the

example above, we cut off all beyond five decimal places in the

successive dividends, and all beyond four decimal places in the

divisors, it will not affect the first six decimal places in the root

Ex. 3. Find the roots of the equation a;*— 12a:;^+ 12x=:3.
'
-3.907878,

Ex.4. Find the roots of the equation

Ans.

-58.

+ .443277,

+ .606018,

+2.858088.

r +0.58579,

Ans. -I

+ 3.35425,

+ 3.41421,

+ 8.64575.

Ex.5.

Ex.6.

Find the roots of the equation

x'-20x'+150x'-620x^-^S06x=4:07.

+ 0.934685,

+ 3.308424,

AnsA +3.824325,

+4.879508,

+ 7.053058.

Eequired the fourth root of 18339659776.

Ans. 368.

Ex. 7. Eequired the fifth root of 26286674882643.

Ans. 483.

Ex. 8. There is a number consisting of four digits such that

the sum of the first and second is 9 ; the sum of the first and

third is 10 ; the sum of the first and fourth is 11 ; and if the

product of the four digits be increased by 36 times the product

of the first and third, the sum will be equal to 3024 diminished

by 800 times the first digit. Eequired the number.

6345,

Ans.
or 7234,

or 8123,

or 9012.
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469. NewtoviS Method of Approximation,

Let £c^+Bx^+Ca;=V be an equation to be solved. Find,

by trial, a number, r, nearly equal to the root sought, and let

r-\-h denote the exact value of the root, so that h is a small

fraction which is to be determined. Substitute r-\-h for x in

the given equation, and there will result a new equation con-

taining only h and known quantities. Now, since h is sup-

posed to be a small fraction, h?' and h^ will be small compared

with h; and if we reject the terms which contain the second

and third powers of 7i, we shall have, approximately,

r^-f-Br^+Cr-Y
-3r2-2Br-C''

This correction applied to the assumed root gives a closer

approximation to the value of x. Eepeat the operation with

this corrected value of r, and a second correction will be ob-

tained which will give a nearer value of the root ; and, by suc-

cessive repetitions, the value of the root may be obtained to

any required degree of accuracy.

The value of h may, however, be found more briefly by ob-

serving that the numerator is the first member of the equation

after V has been transposed and x changed to r; and the de-

nominator is the first derived function of the numerator with a

negative sign, Art. 460.

EXAMPLES.

1. Find a root of the equation a:^+2x2+8a:=:60.

For the numerator of the value of 1^ we have

r34-2r2+8r-60.

^^^^^ ^= -3r^-4r-3
'

We find, by trial, that x is nearly equal to 3. If we substi»

tute 3 for r, we shall have

Hence x—2.^ nearly. If we substitute this new value of r,

we shall find the value of /i to be 4-.00228.



NUMERICAL EQUATIONS OF HIGHER DEGREES. 851

Hence tc=2.90228. If we repeat the operation with this

last value of r, we shall find the value of A to be +.0000034.

Hence cc=: 2.9022834.

2. Find a root of the equation 0:^—60:=10.

r^_6r-10
Here ;,^_____.

Assume r=2, and we obtain

;i=-^, or-0.14.

Hence x=1.86 nearly. If we assume 7'=:1.86, we shall find

the value of A to be —.021.

Hence cc=: 1.839 nearly. If we assume r= 1.839, we shall

find the value of 7i to be +.00001266.

Therefore cc= 1.83901266.

8. Find a root of the equation ic^— 9a:^=10.

Ans. a- =8.4494897.

4. Find a root of the equation x^+ 9x^-{-4:x=z80.

Ans. a.-= 2.4721359.

470. Approximation hy Double Position.—Find, by trial, two

numbers, r and r\ as near as possible to the true value of x

;

substitute them successively for x in the given equation, and

let E and E' represent the errors which result from these sub-

stitutions. We assume that the errors of the results are pro-

portional to the errors of the assumed numbers. This suppo-

sition is not entirely correct ; but if we employ numbers near

to the true values, the error of this supposition is generally not

very great, and the error becomes less and less the further we
carry the approximation. We have then

¥^:W '.'.x-r:x-r'.

Whence, Art. 305, ^-W :r'-rw^-.x^r;
that is, As the difference of the errors is to the difference of the two

assumed numbers^ so is either error to the correction required in the

coiTesponding assumed number.

This correction, being added to the assumed number when

it is too small, or subtracted when too great, will give a near

approximation to the true root. This result, and some other
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number, may now be used as new values of r and r' for obtain

ing a still nearer approximation, and so on.

It is generally most convenient to assume two numbers which
differ only by unity in the last figure on the right, or one of

the values of r already used, together with the approximate
root, may be employed for the two assumed numbers.

This method of approximation is applicable to many equa-

tions which can not be solved by either of the preceding

methods.

EXAMPLES.

1. Find one root of the equation cc^+cc^+x— 100=0.
When 4 and 5 are substituted for x in this equation, the re-

sults are —16 and +55.
Hence 55+16:5-4:: 16:.22.

Therefore a:;=4.22 nearly.

We now assume the two values 4.2 and 4.3, and, substi-

tuting them for x in the given equation, we obtain the results

-4.072 and +2.297.

Hence 4.072+ 2.297: 4.3-4.2 :: 2.297: .036.

Therefore ir=:4.264 nearly.

Assuming again the two values 4.264 and 4.265, and sub-

stituting them for cc, we obtain the results —.027552 and

+.036535.

Hence .064087 : .001 : : .027552 : .0004299.

Therefore ir=4.2644299 very nearly.

2. Find one root of the equation a;3+2x2— 23a:— 70=0.
Ans. x=5.13458.

8. Find one root of the equation ic*—3a:^—75ic— 10000=0.
Ans, x= 10.2610.

4. Find one root of the equation

ic^+3a;*+2a?3-3x2-2x-2=0.

Am. a;=1.059109.

471. Hie different Roots of Unity.—The equation a:**=a would

appear to have but one root, that is, x=\/a; but, by Art. 436,

it must have n roots; that is, the i)th roof of a must have ?? dif-

ferent values. Unity must therefore have two square roots,



NUMEKICAL EQUATIONS OF HIGHER DEGREES. 353

three cube roots, four fourth roots, five fifth roots, six sixth

roots, and so on.

Ex. 1. Find the two roots of the equation x'^=l.

Extracting the square root, we find x—-^l or —1.

Ex. 2. Find the three roots of the equation x^=il.

Since one root of this equation is cc=l, the proposed equa-

tion must be divisible hj x—l; and dividing, we obtain

X'^-^X-]-l=zO,

Now the roots of this equation are

Hence the required roots are

+ 1, i(_l+ V^), and ^(-1- VTIS),

which are the cube roots of unity ; and these results may be

easily verified.

Ex. 3. Find the four roots of the equation cc*=l.

The square root of this equation is

x^=-{-lj or =—1.
Hence the required roots are

+1, -1, +V13, -vin:.-

Ex. 4. Find the five roots of the equation x^=l.

Since one root of this equation is on=l, the proposed equa-

tion must be divisible by x—1 ; and dividing, we obtain

x^-\-x^-hx^-{-x-\-l= 0.

Dividing again by cc^, we have

x^+x-^l-\--+\= 0. (1.)X X

Now put v=x-\-- (2.)X

whence v^:=x^-\-2-\--
X2'

which, being substituted in equation (1), gives

This equation, solved by the usual method, gives
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Now equation (2) gives

0(^—VX=—\.
Whence x=-i[v+ yv^— 4], and x=^\y^vv'^—^'\y

from which, by substituting the value of v, we obtain

and =i[-V5-l±V-10+2V6].
Hence the fifth roots of unity are

1.

j[Vo-l +y-10-2V5].

i[\/5-l-V-10-2V6].

j[_V5-l +V-10+ 2V5j.

J [_V5-1- 7-10+2 vs].

Ex, 5. Find the six roots of the equation x^= l.

These are found by taking the square roots of the cube roota

Hence we have

+1, -1, 4±iV=:3, -iiiV'^s.
Ex. 6. Find the four roots of the equation cc*=— 1, or

a^*+ l = 0.

The first member may be made a complete square by adding

2x2; that-is, cc*+ 2a;2+ l=2ic2,

whence x^-^l = ±xV2.
By transposition and completing the square,

a;2±a;V2+i=-i.
Hence x±iV2= ±iV'^;

that is, x=iV2±iV^^,
or -i\/2±iVir2.

These four values, together with the four values found in

Ex. 3, are the eight roots of the equation

x^= l.
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EXAMPLES FOR PRACTICE.

EQUATIONS OF THE FIRST DEGREE WITH ONE UNKNOWN
QUANTITY.

Ex.l. Given 12i+3x-6-y-:^-5f, to find the value

ofx. Ans. x=139f.

Ex.2. Given a{2x+l%-10a)= h{x-\-7b), to find the value

of X. Ans. X—6a— 7b.

Ex. 3. Given 2 =—=1 =-:-» to find the value of x.
7 14 '

X X
Ex. 4. Given m-\--=n—p—T, to find the value of x.

a ^

A71S. X-.

Ans. x— 4:^.

ue of X.

{n—p—m)ah
a-{-b

Ex.5. Given ^^ 20-=-s6 24 40''"^"^

the value of cc. Ans. xz=Q.

a^— b'^

Ex. 6. Given a^+ c^b+ ab'^ ^b'^— , to find the value of x,
X

Ans. x— a—b.

Ex. 7. Given f-^[ -''L^±^=.2b+-, to find the value
a\a—b) a^ a

of cc. Ans. x—a—b.

Ex. 8. Given -=—TTi+i 5-=— l^j to find the value of ic.

o lU 4 o

Ans. a;= 661.

find the va"

of X. Ans. x=S-^.

Sa-6

Ex.9. Given ll^x=—-x-\-66^—5x—9i^ to find the value
o

Ex. 10. Given 5= -, to find the value of x.
X X

Ans. X:
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772 (CL— 0C\

Ex. 11. Given c=a-{—^^ -, to find the value of x.
Sa+x '

Ans.
^=°("^-3'^+3a)

c—a4-^

Ex. 12. Given —^ ^^—~ ~Z2' *^ ^^^ *^® value ot'x,

Ans. x=}^.

Ex.13. Given {m—x){n—x)= {p-\-x)(x—q), to find the val-

ue of X.

An.. x= '""+^g
7n-^n-{-p— q

fir— 22
Ex.14. Given 8x-28=(4:X+2iy, ,7 , to find the value

^dx-f-14:

of cc. Ajis. x=7.
DC cfx

Ex. 15. Given x=a-\—7+4-, to find the value of x.
a de

Ans. ^=fe|±Mf.
<k—cf

Ex. 16. Given -_l__-|-3a&=0, to find the value of x.
a c

. ac(l— 3ai)
Ans. x=z—^^ J—^.c—ad

Ex. 17. Given (8-3ir)2+(4-4a;)2=(9-5x)2, to find the val-

ue of X. Ajis. Xz=^.

Ex.18. Given ^^^|^+
^77,^9^

=^^, to find the value

of x. Ans. a;=17.

Ex.19. Given ^t^_^±5^=||_-|aj, to find the value

of a:. Ans. x=7.

Ex.20. Given ^-^-^_^=-.^j_^^_-^,tofindthe

value of X. Ans. x=^.
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PROBLEMS IITVOLVING EQUATIONS OF THE FIRST DEGREE WITH
ONE UNKNOWN QUANTITY.

Prob. 1. Said an old miser, For 60 years I have saved 200

dollars annually ; and for many years, each of my four sons has

saved annually the same sum, viz., the oldest for 27 years past,

the second since 24 years, the third since 19, and the fourth

since 16 years. How long since the savings of the four sons

amounted in the aggregate to as much as those of the father ?

Ans. 12 years.

Prob. 2. From four towns. A, B, C, D, lying along the same

road, four persons start in the stage-coach for the same place,

E. The distance from A to B is 19 miles, from B to C 3 miles,

and from C to D 5 miles. It subsequently appeared that the

person who started from A paid as much fare as the three oth-

er persons together; and the fare per mile was the same for

each. It is required to determine the distance from D to E.

A72S. 7 miles.

Prob. 3. Five towns. A, B, C, D, E, are situated along the

same highway. The distance from A to B is 37 miles, from B
to D 34, and from D to E 14 miles. A merchant at C, situ-

ated between A and D, receives at one time 8 tons of goods

from A, and 6 tons from B. At another time he receives 11

tons from D, and 9 from E, and in the latter case he paid the

same amount for freight as in the former, the rate of transporta-

tion being the same in both cases. It is required to compute

the distance from B to C. Ans. 15 miles.

Prob. 4. If 20 quarts of water flow into a reservoir every 3

minutes, after a certain time it will still lack 40 quarts of being

full. But if 52 quarts flow into it every 5 minutes during the

same period, 72 quarts of water will have overflown. What is

the capacity of the reservoir, and how many quarts of water

must flow into it every minute in order that it may be just filled

in the time before mentioned ?

Ans. The capacity of the reservoir is 240 quarts, and

8 quarts must flow into it every minute.

Prob. 5. A mason, by working 10 hours daily, could com-
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plete in a week as much over 888 cubic feet of wall as at pres-

ent he completes less than 888 cubic feet, working only 8^
hours daily. How many cubic feet of wall does he now com-

plete weekly? yirz5. 816 cubic feet.

Prob. 6. After a certain time I have $670 to pay, and 4^
months later I have $980 to pay. I settle both bills at once,

at 4f per cent, discount, for $1594.41. When did the first sum
become due? Ans. After 5f months.

Prob. 7. A merchant gains 8 per cent, when he sells a hogs-

head of oil at 36 dollars. How much per cent, does he gain or

lose when he sells a hogshead at 32 dollars?

A^is. He loses 4 per cent.

Prob. 8. A merchant loses 2^ per cent, when he sells a bag

of coffee for 39 dollars. How much per cent, does he gain or

lose when he sells a bag of coffee for 41J dollars ?

Ans. He gains 3f per cent.

Prob. 9. A merchant owes $2007, to be paid after 5 months,

$3395 after 7 months, and $6740 after 13 months. When
should the entire sum of $12,142 be paid, so that neither party

may sustain any loss? Ans. After 10 months.

Prob. 10. A merchant has three sums of money to pay, viz.,

$1013 after 34 months, $431 four months later, and the third

sum still four months later. How large is the third sum, sup-

posing he could pay the three bills together in 6^ months with-

out loss or gain ? Ans. $428.

Prob. 11. A merchant has two kinds of tobacco ; the one cost

40 cents per pound, the other 24 cents. He wishes to mix the

two kinds "together, so that he may sell it at 34 cents per pound

without loss or gain. How much must he take of each sort in

order to have 64 pounds of the mixture?

Ans. 40 pounds of the better sort, and 24 pounds of

the poorer.

Prob. 12. A vinegar dealer wishes to dilute his vinegar with

water. At present he sells his vinegar at 6 dollars per hogs-

head (120 quarts). How much water must he add to 29^

hogsheads in order to be able to sell the mixture at 4 cents per

quart? Ans. 7f hogsheads.
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Prob. 13. A metallic compound consists of 4 parts copper

and 3 parts silver. How much copper must be added to 94^

pounds of the compound, in order that the proportions may be

7 parts of copper to 2 parts of silver ? Ans. 87J pounds.

Prob. 14. In 255 pounds of spirit of wine, water and pure al-

cohol are combined by weight in the ratio of 2 to 3. How
much water must be extracted by distillation, in order that the

ratio of the water to the alcohol may be 3 to 17 by weight?

Ans. 75 pounds.

Prob. 15. It is required to diminish each of the factors of the

two -unequal products, 52 x 45 and 66 x 37, by the same num-

ber, so that the new products may be equal to each other.

What is that number? Ans. 17.

Prob. 16. The square of a certain number is 1188 greater than

the square of a number smaller by 6 than the former. "What

is that number? Ans. 102.

Prob. 17. I have a certain number of dollars in my posses-

sion, which I undertook to arrange in the form of a square, and

found that I wanted 25 dollars to complete the square ; but if

I diminish each side of the square by 2, there remain 31 dollars

over. How many dollars have I? Ans. 200.

Prob. 18. A vine-tiller has a rectangular garden, whose

length is to its breadth as 7 to 5, which he wishes to plant with

vines. If he sets the plants at a certain uniform distance from

each other, he finds that he has 2832 plants remaining. But

if he places them nearer together, so as to make 14 more on

each longer side, and 10 more on each shorter side, he has only

172 plants remaining. How many plants has he ?

Ans. 14,172.

Prob. 19. In the composition of a certain quantity of gun-

powder, the nitre was ten pounds more than two thirds of the

whole ; the sulphur was four and a half pounds less than one

sixth of the whole ; and the charcoal was two pounds less than

one seventh of the nitre. How many pounds of gunpowder

were there? Ans. 69 pounds.

Prob. 20. There are three numbers in the ratio of 3, 4, and

5. Five times the first number, together with four times the



360 ALGEBRA.

Becond number, and three times the third number, make 690.

What are the three numbers ?

Ans. 45, 60, and 75.

Prob. 21. Divide the number 165 into five such parts that

the first increased by one, the second increased by two, the

third diminished by three, the fourth multiplied by four. and the

fifth divided by five, may all be equal.

Ans. 19, 18, 23, 5, and 100.

Prob. 22. A criminal, having escaped from prison, traveled

ten hours before his escape was known. He was then pur-

sued^ so as to be gained upon three miles an hour. After his

pursuers had traveled eight hours, they met an express going

at the same rate as themselves, who met the criminal two hours

and twenty-four minutes before. In what time from the com-

mencement of the pursuit will they overtake him ?

Ans. 20 hours.

Prob. 23. There is a wagon with a mechanical contrivance

by which the difference of the number of revolutions of the

wheels on a journey is noted. The circumference of the fore

wheel is a feet, and of the hind wheel b feet. What is the dis-

tance gone over when the fore wheel has made n revolutions

more than the hind wheel ?

Ans. ^ feet.
o—a

Prob. 24. A cistern can be filled by four pipes; by the first

in a hours, by the second in b hours, by the third in c hours,

and by the fourth in d hours. In what time will the cistern be

filled when the four pipes are opened at once ?

. abed ,

abc-}-abd-\-acd-\-bcd

EQUATIONS OF THE FIRST DEGREE WITH SEVERAL UNKNOWN
QUANTITIES.

Ex.l.
5 b

?-^=21
2 4

Ans. i o^
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Ex.2. .
2 3

^=11

'

[3 + 4

Ex.3. <
2+3~

^+2^= 1

>

Ex.4. <

.-5=61^

>

Ex.5. ] 2-f^ 1 1(2. 6,+l)}

1 a:=42/ )

861

( llx—5y_Sx-\-y )

Ex.6. \ 22 ~~32"i
(8x-6y=l )

Ex.7.

Ex.8.

Ex.9.

Ex. 10.

L8a"^66~

cc 3/ 1 1

a+ 6 a— Z) a4-6

a; _^ y _ 1

^a-{-b a—b a—b

Soc—6y2x+y"~2~~+^-~5~

x—2y_x y

"~F~~2"^8

=4 4aj ^r7+8x 8cc-6?/

10 2ic-8 " 5

1%+9 oi_L^.V+'^ 8.7/4-5^

L^^^*+"2 Tf^]
Q

Ans.
y= 6.

^^^^- {.^12.'

Ans.
-j

CC=:65.

y::=66.

X= 4:.

Ans. { ^

Ans.

Ans.

Ans.

x=7.
y=lh

x=Sa.iXz='6Q

(2/=-2k

x=

y=

Ans.

a

a—b
b

a+b'

x=12.

1^= 6.

Ans. \ '
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Ex. 11.

a h

X z
-+ -:
a c

c

{6x—6i/+4:z= 15\
Ex.12. hx-{-4:y-Sz=19l

(2ic+ 2/+62=46)

fx=.21-4y
]

Ex.13,
i

2=9-^ j^

U=64-7i.J

(
37+ ?/+ 2= 5

Ex.14, -j Sx- 6y-\-7z=:75

(9;r-llz+ 10=0

Ex.15. }7x+2i/-Sz=2 i

(4:cH-3?/- 2= 7 )

[ x—2y+Sz=6 \

Ex.16. hx+ S2j-4:Z:=^20[

isx-2y+ 6z=2Q)

Ex. 17. ^

r 7x-3?/=i-
42-7?/ = 1

Ex. 18.

Il2-7?^= 1

[l9x-3w=l^

(Su-2y=2
]

2x+ 3?/=39 !

5ir-7z=ll
j

1 42/ +32 =41

J

r2x-3y+22=13

Fx IQ J
43/+22=14

E^-19-i4r.-2c.=30

[5y+ 3u=32

(x=2a,

Ans. <y=2b.

i z=2c.

(x=S.
Ans. <y— 4:.

(2= 6.

Ans.
\ 2/=4f.

(2=7|.

Ans.

A71S.

Ans.

Ans.

Ans.

x=6.
y=-6.
(2=5.

{x= l.

Ans. <y— 2.

(2=3.

[x=S.

2/=4.

z=2.

x=4.
y=9.
2= 16.

w=25.

rr=12

y=5.
2= 7.

w=4.

a;=3.

2= 5.

u=9.
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r 11^4.21?/ =105] fx=SO.

^^' ^^' i b^z+^u =741 r
^'''-

!
2=42.

[7|w +8A^=835j U=72.
|^3x_4?/+32J+3t;-6u= lll ["0:= 2.

I

3:r-5?/+ 2z-4M=ll j
I y^ 1.

Ex.21. \ 10?/-324-3w-2?;=2 V Ans,\ z= 3.

52+4if4-2?;-2x=3 j
w=-l.

^6i^-3y+4x-2y=6 J Lu=-2.

PROBLEMS INVOLVING EQUATIONS OF THE FIRST DEGREE WITH

SEVERAL UNKNOWN QUANTITIES.

Prob. 1. Two sams of money, which were put out at inter-

est, the one at 5 per cent, the other at 4^ per cent, yielded in

one year $284.40 interest If the former sura had been put out

at 4J per cent., and the latter at 5 per cent., they would have

yielded $4.50 less interest What were the two sums of money?

Ans. One was $3420, the other $2520.

Prob. 2. There is a number consisting of two digits; the

number is equal to three times the sum of its digits, and if it be

multiplied by three, the result will be equal to the square of the

sum of its digits. Find the number. Ans. 27.

Prob. 3. A merchant sold two bales of goods for the sum of

$987-1, the first at a loss of 8f per cent, the second at a loss of

llj per cent. If he had sold the first at a loss of 11J per cent,

and the second at a loss of 8f per cent., he would have received

the sum of $992f. How much did each bale cost?

Ans. The first $455, the second $645.

Prob. 4. Two messengers, A and B, from two towns distant

57-| miles from each other, set out to meet each other. If A
starts 5f hours earlier than B, they will meet in 6|- hours after

B starts ; but ifB starts 5f hours earlier than A, they will meet

in 5-| hours after A starts. How many miles does each travel

in an hour? Ans. A 3 miles, and B 37- miles.

Prob. 5. A jeweler has two masses of gold of different de-

grees of fineness. If he mixes 10 ounces of the one with 5

ounces of the other, he obtains gold 11 carats fine; but if he
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mixes 7i ounces of the former with 1^ ounces of the latter, he

obtains a mixture 10 carats fine. What was the fineness of

each mass? Ans. The one 9 carats, the other 15 carats.

Prob. 6. A farmer has a certain number of oxen, and proven-

der for a certain number of days. If he sells 75 oxen, his prov-

ender will last 20 days longer ; but if he buys 100 more oxen,

his provender will be exhausted 15 days sooner. How many
oxen has he, and how many days will the provender last ?

Ans. 800 oxen, and the provender will last 60 days.

Prob. 7. A certain number oflaborers remove a pile of stones

in 6 hours from one place to another. If there had been 2 more
laborers, and if each laborer had each time carried 4 pounds

more, the pile would have been removed in 5 hours ; but if there

had been 3 less laborers, and if each laborer had each time car-

ried 5 pounds less, it would have required 8 hours to remove

the pile. How many laborers were there, and how much did

each carry at one time?

Ans. There were 18 laborers, and each carried 50 pounds.

Prob. 8. A heavy wagon requires a certain time to travel

from A to B. A second wagon, which every 4 hours travels 5

miles less than the first, requires 4 hours more than the first to

go from A to B. A third wagon, which every 3 hours travels

8f miles more than the second, requires 7 hours less than the

second to make the same journey. How far is A from B, and

what time does each wagon require to travel this distance ?

Ans. From A to B is 60 miles; the first wagon
requires 12 hours, the second 16, and the third

9 hours.

Prob. 9. I have two equal sums to pay, one after 9, and the

other after 15 months. If I settle them both at once, at the

same rate of discount, I must pay for the first sum $1208, and

for the second $1160. How much was each sum, and at what

per cent was the discount reckoned ?

Ans. $1280, and the discount was 7i per cent.

Prob. 10. A small square lies with one angle in the angle of a

larger square. The excess of the side of the larger square above

that of the smaller is 118 feet; the excess of the square itself
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is 26,432 square feet. What are the contents of each of the

two squares ?

Ans. The one 29,241, the other 2809 square feet.

Prob. 11. It is required to find two numbers whose sum, dif-

ference, and product are in the ratio of the numbers 5, 1, and 18.

Ans. 9 and 6.

Prob. 12. Two numbers are in the ratio of 7 to 3, and their

difference is to their product as 1 to 21. What are the num-

bers? ^7^5. 28 and 12.

Prob. 13. Three towns, A, B, and C, lie at the angles of a

triangle. From A by B to C is 164 miles ; from B by C to A
is 194 miles ; and from C by A to B is 178 miles. How far

are A, B, and C from each other ?

Ans. From A to B 74 miles, from B to C 90, and from

C to A 104 miles.

Prob. 14. A railway train, after traveling for one hour, meets

with an accident which delays it one hour, after which it pro-

ceeds at three fifths of its former rate, and arrives at the termi-

nus three hours behind time; had the accident occurred 50

miles further on, the train would have arrived 1 hour and 20

minutes sooner. Eequired the length of the line.

Ans. 100 miles ; original rate 25 miles per hour.

Prob. 15. A railway train, running from New York to Al-

bany, meets on the way with an accident, which causes it to

diminish its speed to -th of what it was before, and it is in con-

Bequence a hours late. If the accident had happened b miles

nearer Albany, the train would have been c hours late. Find

the rate of the train before the accident occurred.

Ans. ~ '- miles per hour.
a—c ^

Prob. 16. Three boys are playing with marbles. Said A to

B, Give me 5 marbles, and I shall have twice as many as you

will have left. Said B to C, Give me 13 marbles, and I shall

have three times as many as you will have left Said C to A,

Give me 3 marbles, and I shall have six times as many as you

will have left. How many marbles had each boy ?

Ans. A had 7, B 11, and C 21 marbles.
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Prob. 17. It is required to divide the number 232 into three

parts such that, if to the first we add half the sum of the oth-

er two, to the second we add one third the sum of the other

two, and to the third we add one fourth the sum of the other

two, the three results thus obtained shall be equal. What are

the parts ?

Ans. The first 40, the second 88, and the third 104

Prob. 18. Four towns. A, B, C, and D, are situated at the

angles of a quadrilateral figure. When I travel from A by B
and C to D, I pay $6.10 passage-money; when I travel from

A by D and C to B, I pay $5.50. From A by B to C, I pay

the same as from A by D to C ; but from B by A to D, I pay

40 cents less than from B by C to D. What are the distances

of the four towns from each other, supposing I paid in each case

10 cents per mile ?

Ans. From A to B 21, from B to C 17, from C to D
23, and from D to A 15 miles.

Prob. 19. Four players. A, B, C, and D, play four games at

cards. At the first game A, B, and C win, and each of them

doubles his money ; at the second game A, B, and D win, each

of them doubling the money he had at the commencement of

that game; at the third game A, C, and D win; and at the

fourth game B, C, and D win ; and at each game each winner

won as much money as he had at the commencement of that

game. They now count their money, and find that each has

$64. How much had each before commencing play ?

Ans. A had $20, B had $36, C had $68, and D had $132.

Prob. 20. A and B start together from the foot of a mountain

to go to the summit A would reach the summit half an hour

before B, but, missing his way, goes a mile and back again need-

lessly, during which he walks at twice his former pace, and

reaches the top six minutes before B. C starts twenty minutes

after A and B, and, walking at the rate of two and one seventh

miles per hour, arrives at the summit ten minutes after B.

Find the rates of walking of A and B, and the distance from

the foot to the summit of the mountain.

Ans. 2i, 2 ; distance 5 miles.
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Prob. 21. Find three numbers such that if six be subtracted

from the first and second, the remainders will be in the ratio

of 2 : 3 ;
if thirty be added to the first and third, the sums will

be in the ratio of 3 : 4 ; but if ten be subtracted from the sec-

ond and third, the remainders will be as 4 : 5.

Ans. 30, 42, 50.

Prob. 22. A and B engage to reap a field of wheat in twelve

days. The times in which thej^ could severally reap an acre

are as 2:3. After some days, finding themselves unable to

finish it in the stipulated time, they call in C to help them,

whose rate of working was such that, if he had wrought with

them from the beginning, it would have been finished in nine

days. Also, the times in which he could have reaped the field

with A alone, and with B alone, are in the ratio of 7 : 8. When
was C called in ? Ans. After six days.

EQUATIONS OF THE SECOND DEGREE WITH ONE UNKNOWN
QUANTITY.

A.—INCOMPLETE EQUATIONS OF THE SECOND DEGREE.

Ex. 1. Given —

H

o~— o? ^^ ^^^ *^® values of x.

Ans. a?= ±14.

Ex.2. Given \/4+49-\/^~49= 7, to find the values

of X. Ans. a?= ±y.
CP \i T ^

Ex.3. Given -H

—

—-x-\—, to find the values of a?.

5 X 2 a?

Ans. X— d= VlO.
a^^a

Ex.4. Given x-\- -yja-^x^—— , to find the values of a?.

2-v/a+ ^2

Ans. x=±\{a— V).

—^+m2-3=:w+ l—Y —2— 2, to find the

values of cc. Ans. x=dzm.

Ex.6. Given y^+29-\/^-34= 7, to find the val

ues of X. Ans. a:= ±4
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Ex. 7. Given
,

-=—-, to find the val
1_VT3^ l + Vl-x'^ a;2'

ues of X. Ans. x=±i.
Ex.8. Given 27(7 -x)2-43= 77-3 (7-ir)2, ^^ g^^j ^^^g ^^^j.

ues of X.

Hemark. Put l—x=y; first find the value of ^, and thence the value of x.

Ans. x—b or 9.

Q^ "y/(i'^ f'^

Ex. 9. Given
'^

—6, to find the values of x,
a-^-Va^—x^

A ^2aV^
^725. X—±-z r-

1 +

Ex. 10. Given -—zz
,

=
, to find the values of ic.

Vx—Vx—a ^—

«

Ex.11. Given—;^-H 7^—=\/y, to find the values of a:.

Vx Vx ^0

A7is.x= ±2Vah—U^.

Ex. 12. Given .
=

, ,
to find the values of a;

1 + Vl +x 1— VI— a:

Ans. cc^rfc-Jv/S.

B.—COMPLETE EQUATIONS OF THE SECOND DEGREE.

Ex. 13. Given 657a;=5801^+8x2, to find the values of a:.

Ans. 03=561 or 12f.

Ex. 14. Given (7ir)2—7x=l, to find the values of a-.

Ans. a;=0.2311477 or -0.0882905.

Ex. 15. Given 12a;^=21+Ja:, to find the values of x.

Ans. x=l^ or — l-i^.

Ex. 16. Given 57a:-18a:2-f 145=0, to find the values of a::

Ans. a:=4|- or —If.
fir 1 4

Ex.17. Given 2^(a;4-l)-^(2a;2+a;-l)=^(a:+l), to find

the values of x. Ans. a;= — 1 or 4.
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Ex. 18. Given
^~

^ ^^^-—=-^ to find the values of x.
X— 12 x—Q 6

Ans.x=24: or ^.

Ex. 19. Given -\—^—= -—, to find the values of x.
X— 4: x-\-4: 3'

Ans. x= 8 or —8.

4 5 12
Ex. 20. Given -H pr= ^, to find tlie values of x.

x-\-l x+2 x-\-d

Ans. x=S or — f.

Ex.21. Given
^-^-^^j-25=2to=193' '° ^""^ '^^ ^"'-

aes of X. A71S. x=8 or — 2y4-g-.

Ex. 22. Given ^ ~^ + ^
""»

=7:? to find the values of ic.

3x—6 2x— 3 2

J.n5. (r=:-J or 1.

Ex. 23. Given ^^.E±g^^(^+/\ to find the values of x.
x—1 x—1 x—6

A71S. x=l or — T".

Ex.24 Given (7-4V3)x2+(2- V3)^=2, to find the val-

ues of ic. Ans. x=2-\-VS, or -2(2+ V3).

'Yx 21 vx
Ex. 25. Given ;;zH

—— =21, to find the values of as

21-Vx V^
Ans. 07=49 or 196.

Ex.26. Given \/x+Vx=20, to find the values of x.

Ans. cc=(+4)*=256 or(-5)*= 625.

Ex.27. Given = =

—

HtH— ? to find the values of x.
a-^o-{-x a X

Ans. x= —a or —b.

Ex. 28. Given -^ = j. to find the values of x.
o-{-x a-\-x a—o

Ans.
,^^V-Ha-i)-ia+i\

Ex. 29. Given =J, to find the values of oj

Ans.x=^<^'^2^^^X

Q2
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Ex. 80. Given x''—4:X^+ 7x'^—6x=18, to find the values of ai

by a quadratic equation. Ans. x — S or —1, or IdbV— 5.

PROBLEMS INVOLVING EQUATIONS OF THE SECOND DEGREE
WITH ONE UNKNOWN QUANTITY.

Prob. 1. It is required to find three numbers which are in the

ratio of
-J, |-, and J, and the sum of whose squares is 10,309.

Ans. 78, 52, 39.

Prob. 2. A gentleman buys a certain number of pounds of

salt, four times as much sugar, and eight times as much coffee,

and for each pound of the three articles he paid as many cents

as he bought pounds of that article. For the whole be paid

$3.24. How many pounds of coffee did he buy?
Ans. 16 pounds.

Prob. 3. A rectangular garden was 37 feet broad and 259 feet

long. Its breadth was increased by a certain number of feet,

and its length diminished by seven times that number, by which

means its area was diminished 63 square feet. By how many
feet was the breadth increased ? Ans. 3 feet.

Prob. 4. Find that number whose square added to its cube

is nine times the next higher number. Ans. 3.

Prob. 5. A sets out from New York to Chicago, and B at the

same time from Chicago to New York, and they travel uniform-

ly ; A reaches Chicago 16 hours, and B reaches New York 36

hours after they have met on the road. Find in what time

each has performed the journey.

Ans. A 40 hours, B 60 hours.

Prob. 6. A square vineyard, in which the vines are set in

squares so as to be uniformly four feet apart, is to be replanted

so that the vines may be uniformly 3J feet apart. Supposing

8640 more vines are required for this change, what must be the

length of each side of the vineyard? Ans. 672 feet

Prob. 7. A glass mirror, 33 inches high and 22 inches wide,

is to be set in a frame of uniform breadth, such that the surface

of the frame shall be just equal to that of the glass. What
must be the breadth of the frame? Ans. 5^ inches.

Prob. 8. Required the solution of the preceding problem, if
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we represent the height of the mirror by a and its breadth by 6,

and it is required that the surface of the frame shall be ^ timea

that of the mirror.

^/{a+ ISf+ ^ahp- (a+ Z*)

4

Prob. 9. Sixty pounds of a certain quality of sugar cost $2.40

less than sixty pounds of another quality. If I buy sugar of

each quality to the amount of $5.04, 1 obtain of the first kind

8 pounds more than of the second. What was the price of a

pound of each kind ?

Arts, One 14 cents, the other 18 cents.

Prob. 10. A gentleman bought a horse for a certain sum.

He afterward sold him for $144, and gained as much per cent,

as the horse cost him. How much did he pay for the horse?

Ans. 80 dollars.

Prob. 11. A merchant buys a certain number of barrels of

flour for $216. At another time he expended the same sum of

money for flour, but obtained three barrels less, the price of

flour having risen one dollar per barrel. How many barrels

did he buy in the first case? Ans. 27 barrels.

Prob. 12. A and B contribute together $3400 in trade, A for

12 and B for 16 months. In the distribution, A received $2070,

capital and profits, and B received $1920. What was each one's

capital? Ans. A contributed $1800, and B $1600.

Prob. 13. Supposing the mass of the earth to be 80 times that

of the moon, their distance 240,000 miles, and the force of at-

traction to vary directly as the quantity of matter, and inverse-

ly as the square of the distance, at what point between them

will a third body be equally attracted by the earth and moon ?

Ans. 24,134 miles from the moon.

Prob. 14. A wall was completed in h\ days by two masons,

one of whom commenced work \\ days later than the other.

In order to complete the wall alone, the first would have re-

quired 3 days less than the second. In how many days could

each alone complete the wall ?

Ans. The first in 8, the second in 11 days.

Prob. 15. A courier goes from a place, A, to a place, B, in
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14 hours. At the same time, another courier starts for B from

a place 10 miles further distant, and expects to reach B at the

same time with the first, by gaining half an hour in every 20

miles. What is the distance from A to B ? Ans. 70 miles.

Prob. 16. From two towns, A and B, which are 104 miles

distant from each other, two wagons start at the same time,

and meet after 10^ hours. One requires for every 8 miles a

quarter of an hour more than the other. How much time does

each require to travel one mile ?

Ans. The one -3^, the other -^ of an hour.

Prob. 17. Two messengers start at the same time from two

towns, A and B, the first toward B, the other toward A, and,

upon meeting, it appeared that the first had traveled 12 miles

more than the second ; also, that if each should continue on at

his former rate, the first would arrive at B in 9 hours, and the

latter at A in 16 hours. What is the distance from A to B ?

Ans. 84 miles.

Prob. 18. Two messengers start from the two towns, A and

B, to travel toward each other, but one started two hours ear-

lier than the other. They meet each other 2-^ hours after the

starting of the second messenger, and they reach the towns A
and B at the same instant. In how many hours did each mes-

senger perform the journey ?

Ans. The one in 7, the other in 5 hours.

Prob. 19. Two travelers start from two towns, A and B,

whose distance from each other is 910 miles, and travel uni-

formly toward each other. If the first starts 56 hours before

the second, they will meet halfway between A and B. If both

start at the same instant, at the end of 20 hours they will still

be 550 miles from each other. How many hours docs each

traveler require to accomplish the distance from A to B ?

Ans. One 182 hours, the other 70 hours.

Prob. 20. A grocer has a cask containing 20 gallons of bran-

dy, from which he draws off a certain quantity into another

cask of equal size, and, having filled the last with water, the

first cask was filled with the mixture. It now appears that if

6| gallons of the mixture arc drawn ofi'from the first into the
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second cask, there will be equal quantities of brandy in eack

Eequired the quantity of brandy first drawn off.

Ans. 10 gallons.

Prob. 21. Two merchants sold the same kind of cloth. The
second sold three yards more of it than the first, and together

they received $35. The first said to the second, I should have

received $2-1 for your cloth ; the other replied, I should have

received $12J for yours. How many yards did each of them

sell?

Ans. The first merchant 5 or 15 yards, the second

merchant 8 or 18 yards.

Prob. 22. A and B traveled on the same road, and at the

same rate, from Cumberland to Baltimore. At the 50th mile-

stone from Baltimore A overtook a drove of geese, which were

proceeding at the rate of three miles in two hours, and two

hours afterward met a wagon, which was moving at the rate

of nine miles in four hours. B overtook the same drove of

geese at the 45th milestone, and met the same wagon 40 min-

utes before he came to the 31st milestone. Where was B when
A reached Baltimore? Ans. 25 miles from Baltimore.

EQUATIONS OF THE SECOND DEGREE WITH SEVERAL UNKNOWN
QUANTITIES.

Ex.1. Given {lSxf-^2y^= 177,) to find the values of x
(22/)2-13x-2= 3, f and y.

Ans. X— ±lj y= ±2.

Ex. 2. Given x^-\-y'^: x^—y^ : : 25 : 7, ) to find the values of

xy=4:8j ) X and y.

Ans. x=±S, y=^6.
Ex. 3. Given 2(^:4-4)2- 5{y-7f= 75, ) to find the values

7{x-\-^y+ 16{y-7y= 107o, ) of x and 7j.

Hemark. Put x-\-4:=z, and y— l—v. First determine z and v, and thence x

andy.

Ans. X— +6 or —14, y— Vl or 2.

Ex.4. Given {x-^y^-lx^ - 49, ) to find the values of a

3^*+4(x+2/)'= 372, i and y.

Ans. cc=±4, 2/= ±5, or d=13.
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11 _ 14 V to find the values of x and y
x^y ~45' ^

Ex.6. Given - + ?^=9,
[ , . , ,, , , ,

y X > to nnd the values of x and y.

Ex.5. Given 2^+ 3?/=37,

^ns. a;=5 or 4j^^, 3/=: 9 or -y^^.

a7+y =6, )

Arts. x=4: or 2, y=2 or 4.

Ex.7. Given cc2 4- 2/2= 10000, )
^ ^ ^ .u i f a.^ , > to nnd the values of x and it

X +y =z 124, )

^

^715. £c=96 or 28, 3/=28 or 96.

Ex. 8. Given 12 : x : : 3/ : 3, ) ^ ^ , , , ^ ,

^ j: M. to find the values of a: and ir.

Va2 4-V?/=:5, )

J.775. a;=9 or 4, ?/=4 or 9.

Ex.9. Given (3xH- 4?/) (7a: -2?/)+ 3^+4?/ =^44, ) to find the

(3x+4?/)(7x— 2?/)— 7aj+22/=30, ) values of x

and y. Ans. cc=l or 1^^, y—2 ox —iV-

Ex.10. Given —x'^-\-^xy—^y'^.-\-4^x~l2y= 4,) to find the

a;2_2xy f 3?/2—4x+5?/ =53, f values of x

and y. Ans. ic= ll or — 7-|-, 2/=3 or — 3^.

Ex. 11. Given 2 (a::^+ y"^) {x-\-y) = 15xy, ) to find the values

4:{x*—y'^)(x'^—y^)=4:6x'^y'^j
j of a: and?/.

Ans. x=2 or 1, y=l or 2.

Ex.12. Given {x^—y^){x-^y) = 16a7y, | to find the values

{x*-y*){x^—y^)=UOxYy ] of x and y.

Ans. x=9 or 8, y=S or 9.

Ex. 13. Given J? (cc+ 2/+ 2)= 27, ) ^ , ,

^(^+y4.,)=:18, i
to find the values of x, y,

.(a:+ ^+ .)= 36,)
^"^ ^-

J.725. a:= 3, y=:2, z=4.

Ex.14, Given a:y=z,
"^

> to find the values of a:, ?/, z, and v.
2/2=v,

yv= bXj^

Ans. x=—=, y=Vi, z=Va, v=ViiVi-
yb
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Ex.15. Given x?/2= 105,^

xzv=189,

yzv=S16j

to find the values of x, y, ;?,

and V.

A71S. x=S, y=6j z=7j v=9.

to find the values of x

and y.

Ex.16. Given x2+-^+2/2=84,

^ +-+y =14,

Ans. x—4:, y=2 or 8.

Ex. 17. Given Vy— Va—x = Vy—x, 1 to find the val-

2Vy^-{-2V^^^=^6Va—x,j uesofxandy.

Ans. x—^a, y—^
Ex. 18. Given x^ \-x%P'=ay.

) ^ ^ -. ,i ^ n ^

-X 7 M- to find the values of ic and y.
X y-\- y —ox^

)

Ans. cc=V Ti V=V r-

Ex.19. (jiiYQn^j6Vx+6Vy-\-Vx^-Vy= 10, f
to find the

\/^+ vy =275, )
values of x

and y.

Remark. Put z^=^x-\-Vy. Then, from Eq. 1, z= -y/l>', that is, -v/x+ V^=^5.

Next put '^x—^-\-v, and y^ — i~^- Substituting these values in Eq. 2, we

find v^=\^ or v=±.^.

. ^
^

_13±5V;^
Ans. 0?— 9 or 4, or

^^

~.

y=4 or 9, or
13zp5V-5J

Several of the following examples have imaginary or incom-
mensurable roots "which are not here given.

Ex.20. Given {x^^y-')xy= n090, ) to find the values of a!

x-\-y — 18, f and y.

Ans. x=7 or 11, ?/=ll or 7.

Ex, 21. Given 5{x^+y^)+ 4:xy =:S66, ) to find the values of

x'^+y^-i-x-{ry=^ 62,) ic and y.

Ans. x=4: or f>, ?/— 6 or 4.
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Ex.22. Given {x'-^y^)xy=SOO,) to find the values of a?

£c*+y* =337,

)

and y.

Ans. x= ±4, y= ±3.
Ex. 23. Given {x^-{-y^){x^+y^)=^65, ) to find the values of

x-\-y = 5, f X and y.

Ans. x=:S or 2, y=2 or 3.

Ex.24. Given ^!±^^±^^14
32+ 2/

= 18,

to find the values of* x
and y.

x—y
Ans. a;=:12, 2/= 6.

Ex.25. Given (a;2-a:?/+2/'0(^H2/^) = 91, ) to find the

{x'^—xy-\-y'^){x'^-\-xy-{-y'^)= lZ2>, ) values of x
and ?/. J.72S. x — ±^ or ±2, 3/= ±2 or ±3.

Ex. 26. Given {x-\-y)xy = 30, ) to find the values of x

(cc2-f 2/2)cc22/2=468,

)

and y.

Ans. x=2 or 3, y— S or 2.

Ex.27. Given £c— 2/4- V^^^:——-, to find the values

A71S. x= ±5, y= ±4.

Ex.28. Given {x-^yY-{-x-{-y=SO, ) to find the values of ic

x—y= 1, f and y.

Remark. Multiply Eq. 1 by x-\-y, and we have

(x+y)*+(x-ft/)»= 30(x+y).

Add to each member 9(a:+y)=4-25, and the square root of each member of the

equation may be extracted.

Ans. x=2, y—1.
Ex.29. Given (x -\-y){xy +1)= 18x?/ ) to find the val

(x2-t-2/2)(x2?/2-f l)=208a;2?/2 ) ues of x and y.

Remark. Divide Eq. 1 by xy, and Eq. 2 by x^y^ and we have

^ +y +\ +\ = '«•

Put x-\--=z. and vH

—

=v.
X y

Then 2+v= 18, and 2»+ u»=212.

Whence 2=14 or 4, and w=4 or 14 ; and hence x and y are easily found.

^725. a;= 2±'/3, y=7±4\/3.
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PROBLEMS INVOLVING EQUATIONS OF THE SECOND DEGREE
WITH SEVERAL UNKNOWN QUANTITIES.

Prob. 1. If I increase the numerator of a certain fraction by

2, and diminish the denominator by 2, 1 obtain the reciprocal

of the first fraction ; also, if I diminish the numerator by 2, and

increase the denominator by 2, the resulting fraction, increased

by 1^^, is equal to the reciprocal of the first fraction. What
is the fraction ? Ans. ^.

Prob. 2. It is required to divide the number 102 into three

parts, such that the product of the first and third shall be equal

to 102 times the second part, and the third part shall be IJ
times the first.

Ans. The first part is 34, the second 17, and the third 51.

Prob. 3. A certain number consists of two digits. If I in-

vert the digits, and multiply this new number by the first, I ob-

tain for a product 5092 ; but if I divide the first digit by the

second, I obtain 1 for a quotient with 1 for a remainder. What
is the number? Ans. 76.

Prob. 4. The fore wheel of a carriage makes 165 more rev-

olutions than the hind wheel in going 5775 feet ; but if the

circumference of each wheel be increased 2J feet, the fore

wheel will make only 112 revolutions more than the hind

wheel in the same space. Kequired the circumference of each

wheel.

Ans. The fore wheel 10 feet, the hind wheel 14 feet.

Prob. 5. A piece of cloth, by being wet in water, shrinks one

eighth in its length and one sixteenth in its breadth. If the

perimeter of the piece is diminished 4J feet, and the surface 5J
square feet, by wetting, what were the length and breadth of

the piece?

Ans. 16 feet long and 2 feet wide.

Prob. 6. A certain number of laborers in 8 hours transport a

pile of stones from one place to another. If there were 8 more
laborers, and if each carried each time 5 pounds less, the pile

would be removed in 7 hours; but if there were 8 less labor-

ers, and if each carried each time 11 pounds more, it would re-
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quire 9 hours to remove the pile. IIow many laborers were

there employed, and how many pounds did each carry ?

Arts. 28 laborers, and each carried 45 pounds ; or 36

laborers, and each carried 77 pounds.

Prob. 7. A certain capital yields yearly $123J interest; a

second capital, $700 larger, and loaned at i per cent, less, yields

yearly $lli more interest than the first. How large was the

first capital, and at what per cent, was it loaned?

Ans. The capital was $3800, loaned at 3J per cent

Prob. 8. A person bought a number of $20 railway shares

when they were at a certain rate per cent, discount for $1500

;

and afterward, when they were at the same rate per cent, pre-

mium, sold them all but 60 for $1000. How many did he buy,

and what did he give for each of them ?

Ans. 100 shares at $15 each.

Prob. 9. A rectangular lot is 119 feet long and 19 feet broad.

How much must be added to the breadth, and how much taken

from the length, in order that the perimeter may be increased

by 24 feet, and the contents of the lot remain the same?

Ans. The length must be diminished 102 feet, and the

breadth increased 114 feet.

Prob. 10. There are two numbers such that their sum and

product together amount to 47 ; also, the sum of their squares

exceeds the sum of the numbers themselves by 62. What are

the numbers?
Ans. 5 and 7.

Prob. 11. The sum of two numbers is a, and the sum of their

reciprocals is h. Ecquired the numbers.

Ans.
2 V 4 /;•

Prob. 12. A and B engage to reap a field for $24 ; and as A
alone could reap it in nine days, they promise to complete it in

five days. They found, however, that they were obliged to

call in C to assist them for the last two days, in consequence

of which B received one dollar less than he otherwise would

have done. In what time could B or C alone reap the field?

Ans. B in 15 and C in 18 days.
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Prob. 13. The sum of the cubes ot two numbers is 85, and

the sum of their ninth powers is 20,195. Kequired the numbera

Ans. 2 and 3.

Prob. 14. There are two numbers whose product is 300 ; and

the difference of their cubes is thirty-seven times the cube oi

their difference. What are the numbers?

A71S. 20 and 15.

Prob. 15. A merchant had $26,000, which he divided into two

parts, and placed them at interest in such a manner that the in-

comes from them were equal. If he had put out the first por-

tion at the same rate as the second, he would have drawn for

this part $720 interest ; and if he had placed the second out at

the same rate as the first, he would have drawn for it $980 in-

terest. What were the two rates of interest?

Ans. 6 per cent, for the larger sum, and 7 for the smaller.

Prob. 16. A miner bought two cubical masses of ore for $820.

Each of them cost as many dollars per cubic foot as there were

feet in a side of the other ; and the base of the greater contain-

ed a square yard more than the base of the less. What was

the price of each ? Aiis. 500 and 320 dollars.

Prob. 17. A gentleman bought a rectangular lot of land at

the rate of ten dollars for every foot in the perimeter. If the

same quantity had been in a square form, and he had bought it

at the same rate, it would have cost him $330 less; but if he

had bought a square piece of the same perimeter, he w^ould have

had 12J rods more. What were the dimensions of the lot ?

Ans. 9 by 16 rods.

Prob. 18. A and B put out at interest sums amounting to

$2400. A's rate of interest was one per cent, more than B's;

his yearly interest was five sixths of B's; and at the end often

years his principal and simple interest amounted to five sev-

enths of B's. What sum was put at interest by each, and at

what rate?

Ans. A $960 at 5 per cent, B $1440 at 4 per cent.

Prob. 19. A person bought a quantity of cloth of two sorts

for $63. For every yard of the best piece he gave as many
dollars as he had yards in all ; and for every yard of the poor-
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er, as many dollars as there were yards of the better piece more
thau of the poorer. Also, the whole cost of the best piece was
six times that of the poorer. How many yards had he of each ?

Ans. 6 yards of the better and 3 of the poorer.

Prob. 20. A commences a piece of work alone, and labors

for two thirds of the time that B would have required to perr

form the entire work. B then completes the job. Had both

labored together, it would have been completed two days soon-

er, and A would have performed only half what he left for B.

Eequired the time in which they would have performed the

work separately.

Remark. Suppose A would have performed the work in z days, and B in y days.

A labors -^ days, and performs -^ part of the work.
o ox

B performs 1—^=—jr—^ part of the work.
ox OX

Sx-2y . „ , , -—-—^XM=time B labored.
6x

3xu-2y^- 2v , , .—^—^+-;^=wnole time consumed.
ox O

-+-=part both did in one day= -.
X y ^ ' xy

—7^= the days of work if both labored together,
x+y

x+y 3x .3'

Also, - X -±-=T, of —-5-^-
X x-\ry 2 3x

Ans, A in 6 days and B in 3 days.
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PEOGRESSIONS.

Ex. 1. What is the sum of the natural series of numbers

1,2, 8, etc., up to 1000?
Ans. 600,500.

Ex. 2. What is the sum of an arithmetical progression whose

first term is 6, the last term 2833, and the number of terms 38?

Ans. 53,941.

Ex. 3. What is the first term and the sum of the terms of an

arithmetical progression, when the last term is 24, the common
difference

-f,
and the number of terms 22 ?

A71S. First term 9, and sum of terms 368.

Ex. 4. Kequired the number and the sum of the terms of an

arithmetical progression, when the first term is —f , the com-

mon difference —|, and the last term —2If.

Ans. Number of terms 25, and sum of terms —281J.

Ex. 5. The first term of an arithmetical progression is 5, the

last term 23, and the sum of the terms 392. What is the com-

mon difference and the number of terms ?

Ans. Common difference |, and number of terms 28.

Ex. 6. Between 7 and 13 it is required to interpolate 8. terras

which shall form an arithmetical progression.

Ans. 7f, 8i 9, 9|, 10^ 11, llf, 12^.

Ex. 7. In an arithmetical progression, the sum of the 19th,

the 43d, and the 57th terms is 827; the sum of the 27th, the

58th, the 69th, and the 73d terms is 1581. What is the first

terra and the common difference ?

Ans. The first term is 5, and the common difference 7

Ex. 8. In boring an artesian well 500 feet deep, $3.24 is paid

for the first foot, and 5 cents more for each subsequent foot.

How much was paid for the last foot, and how much for the

whole well ?

Ans. For the last foot $28.19, and for the entire well

$7857J.

Ex. 9. According to natural philosophy, a body falling in a

vacuum describes in the first second of its fall 16tV feet, and
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in each succeeding second 32 J-
feet more than in the second

immediately preceding. If a body has fallen 20 seconds, how-

many feet will it fall in the last second, and how many in the

whole time?

Ans. 627J feet in the last second, and 6433J- feet in

the whole time.

Ex. 10. Divide unity into four parts in arithmetical progres-

sion, of which the sum of the cubes shall be iV-
Arxt 12 3 4

Ex. 11. A ship, with a crew of 175 men, set sail with a sup-

ply of water sufficient to last to the end of the voyage ; but in

30 days the scurvy made its appearance, and carried off three

men every' day ; and at the same time a storm arose which

protracted the voyage three weeks. They were, however,,

just enabled to arrive in port without any diminution in each

man's daily allowance of water. Eequired the time of the

passage, and the number of men alive when the vessel reached

the harbor.

Ans. The voyage lasted 79 days, and the number of

men alive was 28.

Remark. Put a:=:days the voyage was expected to last.

a;+ 21=days the voyage lasted.

a:-l-21—30=x—9=the days after 30.

On the 31st day the number of men was 172, etc.

Last term =172-3(a:-10).
X—

9

Sum of 8eries=(344-3(x-10))x-^.

Then (344-3x-i-30)^= 175(a:-30).

Whence a:=58. Also, x-|-21=79 days the voyage lasted.

Ex. 12. The number of deaths in a besieged garrison amount-

ed to 6 daily ; and, allowing for this diminution, their stock of

provisions was sufficient to last 8 days. But on the evening

of the sixth day 100 men were killed in a sally, and afterward

the mortality increased to 10 daily. Supposing the stock of

provisions unconsumed at the end of the sixth day to support 6

men for 61 days, it is required to find how long it would sup-
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port the garrison, and the number of men alive when the pro-

visions were exhausted.

Ans. The provisions last 6 days, and 26 men survive.

Remark. Put a:—number of men at first.

a:—42=number expected at end of 8 days.

2^-42

2

2a:-30

8=8j:— 168 = number of days' provisions.

X6=6a:— 90=days' provisions exhausted at end of 6th day.
2

2x— 78 =366 =the remainder.

Whence a:=222.

222— 136=86=number of men after the sally.

Put y=number of days the pi'ovisions lasted afterward.

172-10(^-1)

2
^

Ex. 13. The first term of a geometrical progression is 1, the

ratio 2, and the number of terms 13. What is the last term

and the sum of the terms ?

Ans. The last term is 4096, and the sum of the terms

8191.

Ex. 14. The first term of a geometrical progression is 7, the

ratio 3, and the number of terms 11. What is the last term

and the sum of the terms ?

Ans. The last term is 413,343, and the sum of the

terms 620,011.

Ex. 15. The sum of the terms of a geometrical progression

is 411,771, the ratio 7, and the number of terms 7. Eequired

the first and last terms.

Ans. First term 3, and last terra 352,947.

Ex. 16. Between 1 and |- it is required to interpolate 11

terms forming a continued geometrical progression. What are

the terms?

Ans. 0.9439, 0.8909, 0.8409, 0.7937, 0.7492, 0.7071,

0.6674, 0.6300, 0.5946, 0.5612, 0.5297.

Ex. 17. What will $1200 amount to in 36 years at 4 per

cent, compound interest? Ans. $4924.70.

Ex. 18. A farmer sowed a peck of wheat, and used the whole

crop for seed the following year; the produce of the second

year he used for seed the third year, and so on. If in the 10th
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year the crop was 1,048,576 pecks, by how many times must the

seed have increased each harvest, supposing the increase to

have been always the same? Ans. Four times.

Ex. 19. There are three numbers in geometrical progression,

the difference of whose differences is six, and their sum is forty-

two. Kequired the numbers. Ans. 6, 12, and 24.

Ex. 20. There are three numbers in geometrical progression^

the greatest of which exceeds the least by 24 ; and the differ-

ence of the squares of the greatest and the least is to the sum
of the squares of all the three numbers as 5 : 7. What are the

numbers? Ans. 8, 16, and 32.

Ex. 21. There are three numbers in geometrical progression

whose continued product is 216, and the sum of their cubes is

1971. Kequired the numbers. Ans. 3, 6, and 12.

Ex. 22. There are four numbers in geometrical progression

whose sum is 350 ; and the difference between the extremes is

to the difference of the means as 37 : 12. What are the num-

bers? ^n5. 54, 72,96, 128.

Ex. 23. There are four numbers, the first three of which are

in geometrical progression, and the last three in arithmetical

progression ; the sum of the first and last is 14, and that of the

second and third 12 ; find the numbers.

Ans. 2, 4, 8, 12 ; or — , -|, -, ^.

Ex. 24. Three numbers whose sum is 15 arc in arithmetical

progression ; if 1, 4, and 19 be added to them respectively, they

are in geometrical progression. Determine the numbers.

Ans. 2, 5, 8.

THE END.



^4- iJ^)( ^€^C^\

ai^y--







14 DAY USE
RETURN TO DESK FROM WHICH BORROWED

This book is due on the last date stamped below, or
on the date to which renewed.

Renewed books are subject to immediate recall.

7 DAY USE DURING
SUMMER SESSIONS

Cu^w. IL K<V rvj 1 1 1

General Library
LD 21-50m-8,'r)7 University of California
(.C8481sl0)476 Berkeley



I
-

'-'

-t 6 -7 '•




