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PREFACE

No bruriwti of pure Mathematics presents more to interest

dJid improve the mind of the mathematical student, than

Analytical Geometry. Uniting the clearness of the geome-

trical reasoning, with the brevity and generality of the al-

gebraic, it not only satisfies the requirements of tho closest

reasoner, but gives continued and increasing pleasure, by

the elegance with which its varied resuks are deduced and

interpreted.

In preparing this treatise the Author has endeavoured

to preserve the true spirit of Analysis, as developed by the

celebrated French mathematician, Biot, in his admirable

Avork on the same subject, while lie has made such chan-

ges, both in the arrangement of the matter and the methods

of demonstration, as he believed would render the whole

more attractive, and easily acquired by any student pos-

sessing a knowledge of the elementary principles of Alge-

bra and Geometry.

In discussing the Conic sections he has preferred to con-

sider the Parabola first, not only for the reason that the pro-

perties of this curve are more simple and more easily de-

duced than those of the others, but because, by this course.

f, 4 4-4 09



IV PREFACE.

he was enabled to treat of the Ellipse and Hyperbola to-

gether, thus avoiding much of the repetition of words, which

necessarily arises from their separate discussion.

Although the treatise has been prepared with special

reference to the wants of the Author's own classes at the

Military Academy, he trusts that it will be found accepta-

ble and useful to all, who are disposed to advance in the

higher branches of Analysis.

Those who desire to make the subject as practical, as

may be, will find in the last article of the work a large num-

ber of examples.

U, S. Military Academy^

West Point, N. Y., July 1, 1851.
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ANALYTICAL GEOMETRY.

PART I

DETERMINATE GEOMETRY.

1. Geometry, in its most general sense, lias for its object, not

only the measurement, but the development of the properties and

relations, of lines, surfaces, and volumes.

This object may be attained, either by operating directly upon

the magnitudes themselves ; or, by representing them and their

parts, by algebraic symbols, and operating upon these representa-

tives by the known methods of Algebra, thus deducing results es-

sentially the same as those which would be obtained by the direct

method. As the reasoning employed is much generalized, and

operations are much abridged by the application of Algebra, the

latter method evidently possesses many advantages over the

former.

This latter method, which is Analytical Geometry, may be de-

fined to be : That branch of Mathematics, in which, the magni-

tudes considered are represented by letters, and the properties and

relations of these onagnitudes made known by the application of tJvs

various rules of Algebra.

Analytical Geometry may be Determintte, or Indeterminate.

2



2 DEIERMINATE GEOMETRY.

De(efrMi?in(e, when it lias for its object the solution of determi-

nate problems, that is, of problems, in which, the given conditions

limit the number, and aflford the means of deducing the values, of

the required parts.

Indeterminate, when it has for its object the discussion of the

general properties of geometrical magnitudes.

2. Geometrical magnitudes may be represented algebraically,

in two ways.

First. The magnitudes may be directly represented by letters

;

j[ a 3 as the line AB, given absolutely, may be re-

presented by the symbol a. Likewise, the

square AC, may be represented by the sym-

bol A ; or better by the symbol a'^, a being

the representative of the side AB. Also, the

rectangle ABO'D' may be represented by tho

symbol B ; or by the product ah, a and 6 be-

ing the representatives of the sides AB and

B C
'

; or, better still, by c^ c representing

the side of a square equivalent to the rectan-

gle. In the same way, a cube would be re-

presented by a^ a being the representative of

and a rectangular parallelopipcdon by ahc or

J?'

B
or*

ah Of **2

one of the edjres

hy(P,

And in general, we thus represent a definite portion of a hne,

whether straight or curved, by a single letter or expression of the

first degree ; a surfjice by the product of two letters or an expres-

sion of the second degree ; and a volume by an expression of the

third degree.

Second. Instead of representing the magnitude directly, the al'

gebraic symbol may represent the number of times, that a given

or assumed unit of measure is contained in the magnitude ; as,

for the line AB, a may represent the number of times that a



DETERMINATE GEOMETRY. 8

known unit of length is contained in it ; and a^ and ah or c", the

number of times that a square whose side is the unit of length, is

contained in* the given square or rectangle ; and a? and ahc^ the

number of cubic units contained in the given cube or parallelopi-

pedon.

Since, in this case, the algebraic symbols represent abstract

numbers, any algebraic expression, thus composed, is called an

abstract expression or equation, to distinguish it from one in which

the direct representatives of the magnitudes enter. Since a line

is always represented by an algebraic expression of the first degree,

such expression is called linear. Also, a linear equation is an

equation of the first degree.

3. From what precedes, it is evident, that any abstract expres-

sion may be changed into one in which the direct representatives

of the magnitudes enter, Z»y substituting, for the representative of

each abstract number, the representative of the magnitude divided

by the representative of the unit ofmeasure. Thus in the expression,

aj = a + 6,

X, a and b representing numbers ; if we substitute for them, their

equals — , — , —, X, A and 13 being the direct representatives
L t L

of the magnitudes, and I that of the unit of measure, w^e have

^ = A.l or X = A + B.
I I ^ I

In the same way, the abstract expression

X =^ ab -{- c,

may be changed into the corresponding one,

^ = A ^ + ^ or XZ = AB + C/.
/ I I ^ I
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It should bo remarked, that every expression of this kind must

be homogeneous, else we should have magnitudes of ditiereut

kinds added or subtracted or equal, which can not be.

4. After having deduced a result, by the application of algebra

to a geometrical proposition, it will be necessary to explain this

result geometrically, that is, to draw a geometrical figure, in lohick

shall be found each of the lines represented in the algehraic expres-

sion^ and the geometrical relation between these lines shall be the

same as that indicated in the expression. lLh.\%\?>CQ\\Q,(\. constructing

the expression.

Examples.

1. Let X — a -^ b.

If a and b are the direct representatives of right lines, x will be

the representative of their sum. To construct it, take the line re-

presented by a, in the dividers, and from any point A, on the

^^___— indefinite line X'X as a point of

"^

beginning, or origin, lay off AB

equal to this distance, then from B lay off BC equal to the line

representee! by b, the line AC = AB + BC will evidently be

represented by x.

Or if a and b represent numbers, lay off from A, a times the

unit of length, then from B, b times the same unit, and, as before,

AC will be the line represented by x.

2. Let X = a — b.

From A lay off AB = a, then from B lay off, towards A, thp

___^^_ distance BC = J

;

ic 6" >L cr -zi X AC = AB - BC

will be the line represented by x.
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If a = h, X will be equal to 0, the point C will evidently

fall on A, and there will be no»line.

If Z> > a, X will be essentially negative, the point C will

fall on the left of A, as at C, and AC, laid off from A to the left,

will be represented by x. Thus, we see an illustration of the

principle taught in Trigonometry, that if lines having 'the positive

siojn are estimated or laid off in one direction, those having: the

negative sign must be estimated in a contrary direction.

3. Let- x=.'±.
c

In this case a; is a fourth proportional to c, a and i, and is thus

constructed. Draw any two right lines

making an angle ; on one, from their

point of intersection, as an origin, lay off

the distances AC = c and AB = a ; JET G 3"

on the second, lay off AD = h
;

join the points G and D, and

through B draw BX parallel to CD ; AX will be the line repre-

sented by x. For, we have

AC : AB : : AD : AX or c : a : : J : AX

whence

AX = f? = z.

4. Let X =z —
de

This may be put under the form

ah c
a; = - X -

d §
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Place _- = <7, and construct g as above, then we have
a

x=?l,

which may be constructed in the same way ; and so with any ex-

pression, in which the number of factors in the numerator is one

greater than in the denominator.

5. Let X = Voft or «' = ah.

In this case, a: is a mean proportional between a and b. To

construct it : On any right line, lay off AB = a ; from B lay

off BC = 6 ; on the sum, AC, describe a

semi-circle, and at the point B erect BX
perpendicular to AC. The jJart BX, in-

cluded between the diameter and circum-

ference, will be the line represented by x.

For from a known property of the circle, we have

BX' = AB X BC or BX = V^ = X,

- T . ^ / abc ^ /ab
C. Let ^ = Vt- = Vy ""

Place — =: g and construct it as in example 3, then we have
d

X = ^/gCy

which may be constructed as above.

7. Let X = Va' + &* or a;« = a« -f J«,
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In tliis case, x is the hypotlienuse of a right angled triangle, the

two sides of which are a and h. Therefore, draw two lines form-

ing, with each other, a right angle : From

the vertex. A, on one, lay oflf AB = a
;

on the other, lay off AC = h
;

join B
and C, the line BC will be represented by

X. For we have

BO^ = AB' + AC' or BC = Va^ + 62 =

8. Let = Va^ — 6*.

From A, in the last figure, lay off AC = h ; then from C as a

centre, and with CB =- a as a radius, describe an arc cutting AB
in B ; the distance, AB, will be represented by x. For

AB = Vbc' - AC' = Va' - h^ = x.

9. Let Va^ + 62 __"

Place a^ + 6* = g^^ and construct g as in exarcple 7 ; then

we have

which may be constructed as above.

10. Let X = Va^ + CLC,

11. Let
ahc -\- g^d

/ •>:

12. Let
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6. Let US now construct tlie roots of tlie four forms of equations

of the second degree. The firsts

x^ + 2a^ = y^,

gives the roots

— a + VZ»2 + a^, — « — s/W" +

From any point, as A, lay off AB :^ & ; at B, erect the per-

pendicular BC = a, then as in

^ example 7

\c

AC = VZ/^ + a2.

Now from C, as an origin, lay off

= AD

CD = a, then

AC - CD = Vi^ + a?- -

will be represented by the first value of x.

From E, layoff EC = a, also CA = Vb^ + a« ; then

- EC - CA = - a - Vb» + a^ = - EA

will be represented by the second value of x.

The given equation may be put under the form

x{x + 2a) = l^,

from which we see that b is a mean proportional between x and

X + 2a, and this relation -will be satisfied by either of the above

lines AD or — EA. First, by substituting AD for a;, we have

AD(AD + 2a) = V^ or AD(AD + DE) = AB',

as it should be, since AB is a tangent, AD + DE — AE, a
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secant, and AD its external part. Second, bv substituting — EA
for X

— EA(- EA + 2a) = 62 ^^ EA x AD = AB*-

The second^

x^ — 2ax = h%

gives the roots

X — a + Vb* + a^ X = a — Vb^ + a\

Construct as before, AC — Vl^ + a'^ ; tlien from C lay off

CE = a, and

AC + CE = Vh-' + a^ + « = AE,

will be represented hy the first value of x.

From D, lay off DC = a ; then from C in a contrary di

rection lay off CA = Vh"^ + a^ and

k

DC - CA = (z - V62 4- a2 = — DA

will be represented by the second value of x.

The given equation may be put under the form

x{x — 2a) = 6^

which will evidently be verified by the substitution of either AE
or - AD.

It should be observed that the values, just constructed, are the

same as those for the first form, with their signs changed. This

should be so, since the first form will become the second by

changing x into — x.

The third

x^ + 2ax =z ^ 69,
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X = V^F^b^

From A as an origin, on the line AA' lay off the distance

— AD = — a ; at D erect the perpendicular DC = h
j

C from C as a centre, with CB = a,

as a radius, describe the arc BB'

cutting the line AA' in B and

V 1 B'
;
join these points with C and

, we shall have DB = Va'* — 6%

— AD + DB=— a+ Va^ - h^ = - AB

- AD — DB = - a - Va2 - 6=* = - AB'

will be the lines represented by the values of x.

The fourth,

x^ — 2aa; = — Z>*,

gives the roots

a — Va^ — h\

From A', as an origin, lay off A'D = a, and make the same

construction as for the third form. We thus have

A'D + DB = a + Va2 - 6« = A'B

A'D - DB' = a - Va2 - h^ = A'B'

for the lines represented by the values of x.

If a = b, both values of x reduce to a = A'D. In this

case, the circle does not cut the line AA', but touches it at the

point D, and the distances BD and B'D become 0. The same
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8U23position, in the third form, reduces both values of x to

— AD.

If a <C^ h, the values of x become imaginary in both forms
;

the circle neither cuts nor touches the line AA', and the imagina-

ry roots admit of no construction.

DETERMINATE PROBLEMS.

6. A thorough knowledge of the preceding principles, will ren-

der the solution of all determinate problems simple and easy.

Problem 1. In a given triangle^ to inscribe a square.

Let ABC be the triangle. Represent its base, AB, by 6, and

its altitude CG by h. Suppose the problem to

be solved, and that ODEF is the required

square, its unknown side DE = EF being

represented by x. Since the side DE is parallel

to AB, we must have

AB : DE

whence

CG : CH

hx = bh — bx

or

and

b : X : : h : h ~

bh

b + h

hence a: is a fourth proportional to 5 + ^, b and h, and may

be constructed as in example 3, Art. (4). Or better thus : Pro*

duce the base AB until BL = h
;

at B and L erect the perpendiculars

BN and LM ; make LM = h and

join M and A ; the part BN cut off

on the first perpendicular will be

represented by x. For, since BN is parallel to LM, we have

AL : AB : : LM : BN or 5 + A : 6 : : A : BN

whence
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BX = hh

Therefore, througli N draw ND parallel to AB ; let fall tho

perpendiculars EF and DO, and the square ODEF will be the re-

quired square.

The value of rr, and the construction of BN, will evidently be

the same for all triangles having the same base and equal alti-

tudes. K all the angles of the triangle are acute, the square will

lie wholly within the triangle as

in the above figure. If there is

one right angle, two sides of the

square will lie upon the sides of the

triande as AD'E'F'. If there is

JL JF o^ B±^" J^ one obtuse angle, part of the square

will He within and part without the triangle, as OT)"E"F''.

V. Problem 2. In a given triangle, to inscribe a rectangle^ the

ratio of whose adjacent sides is known.

Let ABC be the triangle. Let AB = & and CG = 7i,

and let the known ratio of the sides of the rect-

angle be denoted by r. Suppose the problem

to be solved, and that ODEF is the required

rectangle. Denote the unknown side DE, by y,

and DO by x ; then by the given condition,G F 3
we have

:i- = r. .(1).

Since DE is parallel to AB, we have

AB : DE : : CG : CH or I \ y \\h \ h ^' x

whence

hy = Ih — bx.

From this, by substituting the value y = rx, taken from
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equation (1), we deduce

rhx =^ bh — bx or
hh

b + rh

To const*:uct this value of x ; produce tlie base AB until

BL = rh ; through L draw

LM parallel to BC until it

meets CM parallel to AB, in

M
;

join M and A ; at the

point E, let fall EF perpendic-

ular to AB, it will be the re-

quired hne. For, since the triangles AEB and AML are similar,

their bases will be to each other as their altitudes, and we shall have

AL : AB : : MP : EF or b + rh : b \: h : EF

whence

EF = bh

b + rh
z= X

Therefore, through E draw ED parallel to AB, and let fall tha

perpendiculars EF and DO ; ODEF will be the required rectangle.

If r = 1, the sides are equal, the rectangle becomes a square,

and we have th*e same value for EF as in the preceding article.

8. Problem 3. To draw a straight line tangent to two given

circles.

Since the two circles are given, both in extent and position, we

know their radii and the distance between their centres.

Let us denote the radius, CM, of the first circle by r, that of the

second, CM', by r', and the

distance between their cen-

tres, CC, by a, and suppose

that MM' is the required

tangent and denote the dis-

tance CT by X,
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There are two cases :

First ; when the tangent does not ji>ass between the circles.

Since the radii drawn to the points of contact, M and M', must

be perpendicular to the tangent, we have CM parallel to CM', and

hence the proportion

CM : OW : : CT : C'T

whence

or r' w X \ X — a,

r'x = rx — ra and

To construct this value of x : Through the centres C and C, draw

any two parallel radii

^ CN and C'W, on the

same side of CC
;
join

their extremities by the

line NN' and produce

it until it meets CC in

T; CT will be the line

represented by x. For, draw "N'O parallel to CC, we then have

NO : NC : : ON' : CT or r — r' i r : : a : CT

whence

CT = -^_ = X.

r - r"

Therefore, through the point T, draw TM tangent to one of the

circles, it will be tangent to the other.

If r > r', the value of x is positive, and the point, T, will be on

the right of C.

If ?• = r', the two circles are equal, tlie value of x reduces to
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the point T is at an infinite distance, and the tangent is parallel to

CC.

If r < /, the value of x is negative, and the point T is on

the left of C.

If r =: 0, X will be 0, the first circle becomes a point, and

the tangent is drawn from this point to the second circle.

If r' = 0, X will reduce to a, the second circle becomes a

point, and the tangent is drawn from this point to the first circle.

If r = and 0, the value of x reduces to —

,

an indeterminate quantity^ each circle becomes a point, and the

tangent coincides with CC.

' Second ; when the tangent passes between the circles.

In this case as in the other,

the lines CM and CM' are

parallel, hence, the triangles
j ^^ ]

n^
|

^^/

MCT and M'CT are similar,

and we have the proportion

CM : CM' : : CT : CT, or r : r' : : x : a

whence

r'x = ar — rx and x =
r -{• r'

To construct this : Through C and C draw any two parallel

radii, on different sides of CC
;

join their extremities by the y^^ ^VM"
line NN' ; CT will be the line

represented by x. For, through

N', draw N'O parallel to CC,

then we have the proportion

NO : NC : : ON' : CT, or r + r' : r : : a : CT,
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CT = ar.

r + /'

The value of x is positive for all values of r and r' ; reduces to

wlien r = r' ; to when r = ; to a when r' = 0,

and to —, when r and r' are both equal to 0.

9. Problem 4. To construct a rectangle^ Jcriowing its area and

the difference between its adjacent sides.

Let a^ denote the given area, Art. (2), and d the difference be-

tween the sides. Let x denote the least side, then x -\- d will

denote the greatest, and since the rectangle of these two sides must

equal the given area, we have

X {x •\' d) = a^ or x^ + dx

whence

o \/- + 't

If we take the first value

--l+V^' + f
and add d to it, we have for the greatest side

d
X -\- d + \/- + ?

To construct these values : Make AB = a ; at B, erect the

perpendicular BC = — , we shall

have. Example 7, Art. (4),

AC = \/a« + ^.
^ 4
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From AC, take CD = — , and wo have

AD = — — _{-\/^' + — = ^ = the least side.

To AC, add CE = jl, and we have

AE = — ^ v/ a^
-f-

— X -\- d = the greatest side,

and the rectangle AE x AD = a^ will be the required rect-

angle.

If we take the second value

= - -T - V «' +
2 ^4

and add d to it, we have for the greatest side

X + d = A. ^ \/a^ + —.
2 V ' 4

By examining these values, we see, that the expression for the

least side, taken with a negative sign, is the same as that for the

greatest side, in the first case. Also, that the expression for the

greatest side, taken with a negative sign, is the same as that for

the least side, in the first case. Therefore we have, in tliis case,

-— AE, ' for the least side,

— AD, for the greatest side,

the product of which is evidently positive—and equal to

AB* = a\

It should be observed, that it is c nly in an algebraic sense,

that — AE is less than — AD, its numerical value being

evidently the greatest.
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It is also evident, lli.it the two rectangles thus determined are

absolutely equal, or that in reality there is but one rectangle which

will fulfil the required conditions. Why then, it may be asked,

do these conditions lead to an equation of the second degree ? To

this it may be answered, that in Algebra, properly applied, not

only are problems solved in their most general sense, every pos-

sible solution being given by the equation, which is the algebraic

statement of the problem ; but also, whenever the conditions of a

problem, expressed in two independent ways, give rise to the same

equation, this equation must give an answer corresponding to each

mode of expressing the conditions ; that is, must be of the second

degree, and it will thus be impossible to arrive at one solution dis-

connected from the other.

Thus, in the above problem, should we represent the greatest

side by — .r, the least would be represented by — a; — rf,

and their product give

— X {— X — d) = a^ or x^ •]- dx = a«,

the same equation found before ; hence, tHs equation ought not

only to give the least side, as at first proposed, but also another

value of ar, which taken with a negative sign, will represent the

2freatest side of the rectangle.

10. Problem 5. To divide a given straight line into extreme

and mean ratio.

Let AB = a be the given line. It is to be divided into two

parts, such, that the greater shall be a mean proportional between

the whole line and less

part. Denote the greater

part by a*, then a — x

will denote the less part,

and the condition will give

n

= a (rt — a:), or r* + ax = a'*,



^ V *ru

DETEKMINAlti GKOMETRY. 19

whence

+ Va^ +
.J,

.= -|_v'a^-.|

wliicb may be constructed precisely as in the preceding problem,

the first being AD and the second — AD'. AVith A as a

centre, and AD as a radius, describe the arc DF, the line will be

divided in the required ratio at F, AF being the greater part.

The second value of a; = — AD' is numerically greater

than AB. It can then form no part of it, and can not be an

answer to the proposed question. But if we substitute it for x in

tbe first equation, we have

(- AD')* = a [a - (~ AD')] or AD' = a (a + AD')

that is, AD' is a mean proportional between AB and AB -j- AD'.

Since this second value of x is negative, we lay it off to the left of

A, and thus construct the point F', the distance from which to A,

is a mean proportional between its distance from B and the length

of the given hne.

^loreover, we see that the second, as well as the first value of

.r, is a solution of the more general proposition, " Two points, A
and B, being given, to find, on the indefinite line which joins

them, a third point, the distance from which to the first shall be a

mean proportional between its distance from the second and the

distance between the two." To this proposition there are evi-

dently two solutions, F on the right of A being one of the points,

and F' on its left, the other. Thus, the problem at first proposed

being a particular case of a more general one, its solution, in

accordance with the principle laid down in the jDreceding article,

must necessarily draw with it that of the other case, thus giving

rise to an equation of the second degree.

11. Problem 6. Through a given point without a given angle^
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to draio a straight line, cutting the sides of the angle, so that the

sum of the distances from the points of intersection to the vertex^

shall be equal to a given line.

Let YAX be the given angle, and M the given point. Produce

AX to the left, and let the two distances MP' and MP be repre-

-j^ sented by a and b. Denote the given

line by c. Suppose MN to be the re-

^/"^ quired line, and denote the two un-

known distances, AN by x and AO

JC-j2r.

^ ^ "^ by y. Then from the condition of

the problem, we have

AN -f AO = c or a: + y = c... (1).

But since MP is parallel to AO, we have

PN : AN : : PM : AO, or a {- x : x : : b : y;

whence

7j {a + x) - hx (2).

Substituting the value of x, deduced from equation (1), we have

3/ (a + c — y) = 6 (c - ?/)

y {a + c -\- b — tj) — be.

This being an equation of the second degree, its roots may be

deduced and constructed as in Art. (5)» But by examining it, in

its present form, we see that Vbc is the ordinate of a circle

whose diameter is a \- c -f- b, and the corresponding seg-

ments of the diameter, y and a + c + ^ — ?A which leads

to a simple construction of the value of y. Thus : From P',

lay off, on AY, P'B = c ; also BC = a ; on AB describe

the semicircle ALB ; at P' erect the ordinate P'L, it will be
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rejH'eseiited by V 6c, Example

5, Art. (4). Through L draw

LC parallel to AY ; then

through A and C draw the per-

pendicular AA' and CC ; A'C
will be equal to a + c + Z>

;

on this line describe th^ semi-

circle COA' ; the distance from

the point 0, in which it cuts

AY, to A will be represented P /A. A" X
by y. For 00' = P'L, and the segment A'O' = AO,

flls the required condition.

ful-

12. Problem Y. Through a given point, lolthout a given angle,

to draw a straight line, so as to cut off a given area.

Let the given point and angle be, as in the first figure of the

preceding article. Let 7i' represent the given area, and /3 the

given angle. The expression for the measure of the required tri-

angle will be "lOT x AN. From the right angled triangle

OAT, we have

OT = OA sin YAX = y sin /S
;

hence the area will be expressed by

fry sin /3.

Substituting the value of x, taken from equation (2), of the pre-

ceding article, and placing the result equal to A', we have

ay

2 h — y
y sm

which, by reduction, becomes

y« +

h\

2h%Ih^y

a sin j5 a sin /3
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Solving this equation, we obtain

y =
h^ h'

a sm
+

2h%

a^ sin^ /3 a sin jS

To construct these values : Through A draw AA' perpendicu-

lar to AY ; then since the angle

A'PA = ^, we shall have

AA' = AP sin ^ = a sin /S.

Upon AY, in a negative direction,

lay off A13 — h
;

join A' and B,

and at B erect BC perpendicular to

A'B, then

or AC

AB = AA' X AC

a sin |8

Since this expression is negative in the above values of y, we lay

it off from A to D. The radical part of these values may be put

under the form

V 26 + —T—3) —r^
\ a sm py a SI]sin /3

To construct it, we lay off P'S == i ; on SD describe a

semi-c.rcle, the chord DE will be the value of the radical, for

AD = h^

a sin /3
' DS = 26 + AD,

and DE is a mean proportional between them. From D lay off

DO :- DE, and AO will be represented by the first vaUie of y.

From D lay off DO' = DE, and AO' will be represented by

tlie second value of y. Through the points O and C, draw MO
and MO', and either triangle cut off will fulfil the condition of the

problem.
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10. By an examination of the manner in which the preceding

problems have been solved, we may derive the following general

rule for solving determinate problems.

Conceive the iwoblcm to he solved geometrically, and draw a

figure containing the given and required parts, and such other

lines as may he necessary to show the relation hetween them. Re-

present the known lines hy the first, and the unknown hy the last

letters of the alphahet. Consider the geometrical relations existing

hetween these lines, and express them hy equations, taking care to

deduce as many equations as there are unknown quantities. Solve

these equations and construct upon a single figure the values thus

deduced.

By an application of this rule the following problems are readily

solved.

8. Through a given point without the circumference of a circle-,

to draw a straight line intersecting it, so that the chord included

within, shall be equal to a given line.

r 9. To draw a line parallel to the base of a triangle, so as to

di^^de it into two equal parts.

10. To inscribe, in a given triangle, a rectangle whose area is

known.

11. Through two given points, to describe a circle tangent to

a given right line, p

e
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INDETERMINATE GEOMETRY

14. The second branch of Analytical Geometry, wliicli has for

its principal object the analytical investigation of the generjil

properties of lines and surfaces, is much more extended in its ap-

plication, and interesting in its results, than that which we have

just examined. It is called Indeterminate Geometry, from the

fact, that, in the equations used, the unknown quantities admit of

an infinite number of values, or are indeterminate, and are there-

fore called variables ; while from the nature of the problems dis-

cussed in the first branch, they admit of a finite number of values

only, and must be determinate.

OF POINTS IN A GIVEN PLANE.

15. Let AX and AY be two fixed right lines, indefinite in ex-

tent, and M any point of their plane within the angle YAX.

Through this point draw MR and MP parallel respectively to AX
and AY ; then if the distances

MR and MP are given, it is evi-

dent that the position of the point

M, will be known, and may be

constructed, by laying off on the

line AX, beginning at A, AP
= RiSI, drawing PM parallel to

AY ; then on AY, laying off
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AR = PM and drawing RM parallel to AX ; the point of in-

tersection of these parallels will be the required point.

The distances MR and MP are called the rectilineal co-ordinates

of the point. The first, or the distance of the point from AY, is

the abscissa
; and the second, or the distance of the point from

AX, is the ordinate of the point, these distances being measured

on lines parallel respectively, to AX and AY.

The fixed lines, to which the point is thus referred, are ciilled

the axes of co-ordinates, or co-ordinate axes.

Their point of intersection A, from which both abscissa and or-

dinate are estimated, is the orif/in of co-ordinates.

16. The abscissas of points, the position of which is indetermi-

nate, are, in general, denoted by the letter x, and the ordinates by

y, though other letters are sometimes used.

The co-ordinates of points, the position of which is known, are

usually denoted either by the first letters of the alphabet, or by

the symbols x', y', x", y", &c. If we denote the co-ordinates MR
by a, and MP by h, the equations

X = a y = b..... (1),

are called the equations of the point M, and the values of a and h

being known, the point is said to be given, and may be con-

btructed, in the first anyle, YAX, by laying off AP = a and

AR = 6, as in the preceding article.

If, at the same time, w^e consider the point M', having

AP' = AP, and P'M' = PM, it becomes necessary to adopt

some notation, by which the two points may be distinguished

from each other. This notation is at once suggested, by a re-

ference to that which is used in a similar case, for the cosine of an

arc in Trigonometry, and the abscissa AP' is regarded as nef/ative

Thus the equations of a point in the second angle, YAX', are

X = — a y = h.
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If tlie point is below the axis of abscissas, its ordinate, from

analogy to the sine of an arc, is regarded as negative. Thus the

equations of the point M", in the third angle Y'AX', are

X = — c^ 2/= — ^
\

and in like manner, the equations of the point M'", in tlie fourth

angle^ Y'AX, arc

•T = a y = — ^'

Thus it appears, that by assigning proper values and signs to a

and 5, equations (1) may be regarded as the representatives of any

point in the plane of the co-ordinate axes.

If the point is on the axis of X, (the axis of abscissas), its ordi-

nate must be 0, and its equations

X = a y z= 0.

If it is on the axis of Y, its abscissa must be 0, and its equations

a; = y =z h.

By the essential signs of a and ft, in these equations, we ascer-

tain whether the points are on the right or left of the origin, above

or below the axis of X.

[f the point is on both axes at the same time, that is, at the

origin, its equations, or the equations of the origin^ become

X = y = 0.

'. Let x', y\ and x"y y"^ be the co-ordinates of any two

Y points, as M and M', in the plane

/ ^^^ YAX. Join M and M', and draw

/ ^,^£i:rrlir../'i2 MR parallel to AX, then in the tri-

/ / / angle MM'R we have, from Triq^o-

—jf jp—X nometry,

MM' = ^/mR** -f- M^' - 2MR x M'R cos MRM'
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the radius being supposed equal to unity. But

27

MR PP' = x" — x' M'R = v" — /;

hence, denoting MM'by D, the angle "5CAX by ^, and observing

that cos MRM' = — cos /3, we have

D = V(x" — x'Y + {y" — y'f + 2(a;" - x') {y" - y ) cos /3...(l).

If /3 = 90°, cos /3 = 0, and this formula reduces to

(2),D = V{x" - ^0' + {y" - y']

that is, if the axes of co-ordinates are perpendicular to each

other, the distance between two points, in their plane, is equal to the

square root of the sum of the squares of the differences of the ab-

scissas and ordinates of the points.

If one of the points, as M, is at the origin, x' and y' will be 0,

and the last formula reduce to

D = fx"^ +

If^ Let P be a fixed point, PS a fixed right lifte, and M any

point of a plane containing PS. If the length of the line PM, which

we represent by ?', and the ,

angle v, made by this line

^vith the fixed line, are given,

the position of the point will

be fully determined, and may

be constructed, by drawing

through P a line raaliing, with the line PS, the given angle, and

then from the point P, laying off, on this line, the given distance.

By varying the angle v, through all values from to 360°, and

the line r from to infinity, the position of every point of the

plane may be determined.

Tlie point P is called the pole ; the line PM, the radius vector^

and the variables r and v, the polar co-ordiiiates of the point.
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19. By a renew of tlie preceding discussion, we see that the

position of the points have been determined by ascertaining their

situation with reference to certain other fixed points or magnitudes.

In the first, or system of rectilineal co-ordinates^ the points are referred

to two fixed right lines, and the means of reference are two other

right lines, which vary in length, as the position of the point is

changed. In the second, or system ofpolar co-ordinates, the points

are referred to a f.xed point and a fixed right line, and the means

of reference are a variable angle and a variable right line.

Although there are other methods of determining the position

of points, these are the two in most general use. In every system,

it 'should be observed, that the position, thus determined, is not

absolute but relative, as all that thus becomes knoAvn, is the

position of the point with reference to some other points or mag-

nitudes ; and also, that the general name of co-ordinates of a jwint,

is applied to tlie elements, of whatever nature, by means of which

the position of the point is determined.

OF THE RIGHT LINE IN A GIVEN PLANE.

20. Let BM be any right line, in the plane of the co-ordinate

axes AX and AY, and let M be any point of the line, of which

the co-ordinates AP and MP
/Y ^T -^ a^'6 denoted by x and y.

Throuifh the orio-in A, draw

AM' parallel to BM. Re-

present the angle YAX by ^,

and MBX = M'AX by a

;

the angle PM'A = M'AY will

then be represented by (3 — a.

BVom the triangle AM'P, we have the proportion

AP : PM' : : sin PM'A : sin M'AP or : : sin (^ — a) : sin a

or, representing PM' by y'
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X '. y' : : sin (/3 — a) : sin a,

and since AP is to PM' as the abscissa of any other point of the

line AM' is to its corresponding ordinate, this relation will exist

whatever be the position of the point M', on the line AM'. From

this proportion, we deduce

, sin a
y' =

sin (/3 — a)

But ihe ordinate of any point of the line BM, as PM, exceeds the

corresponding ordinate of the line A^', by the constant distance

MM'' = AC. Representing this distance by 6, we have, for every

point of tlie line,

/ I /,
sin a

, T

y =^.y' + 0, or y =z -—^ -X + 6.

sm (p — a)

This equation expresses the relation between the co-ordinates,

X and y, of every point of the line BM, and is called ihe equa-

tion of the line. The co-efficient of ar, in this equation, represents

the ratio of the sines of the angles which the line makes with the

axes of X and Y, and the absolute term, (6), the distance from tlie

origin to the point in which the line cuts the axis of Y.

21. By attributing, in succession, all values to a, between

and 360°, and all possible values to 6, both positive and negative,

the equation

sin a , , f^^
y = -T-.^ r^ + ^ (IX

sm (/3 — a)

may be made to represent every right line in the plane of the co

ordinate axes.

If h is negative^ the line takes the position B'C, and its equation

will be

y T= X — 6.
^ .in (/5 - a)
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If a = 0, the line is parallel to the axis of X, and its equation

reduces to

y = 0.x '\- b,

or

y = 6, X being indeterminate.

If 6 = 0, at the same time, the line coincides with the axis of X

;

lience, the equation of the axis of X, is

2/ = 0, X being indeterminate^

If b is positive, the line is above the axis of X ; if negative, it is

below it.

Solving equation (1) ^vith respect to x, it is put under the form

_ sin (/3 — a) 5 sin (/3 — a) ,^^

sm a sm a

From the triangle BAG, we have

b sin (/3 — a)

sin a : sin (,/3 - a) : : b : AB = ^^ >

that is, the absolute term of equation (2), represents the distance

from the origin to the point in which the line cuts the axis of X.

Representing this by a, the equation becomes

sin (/3 — a)
„. , „

sin a

If in this a = /3, the line is parallel to the axis of Y, and

the equation reduces to

a; = O.y + cr,

or

X = a, y being indeterminate.

If = 0, at the same time, the line coincides with the axis

of Y, and its equation becomes
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X = 0, y helng indeterminate.

If a is positive, the line is on tlie right, if negative, it is on the

left of the axis of Y.

'22. Equation (1), of the preceding article, contains two kinds

of quantities, x and y, which are different for different points of the

line, and are therefore called variables
; and a, /3 and 5, which re-

main the same for the same line, and are called constants. When

the values of these constants are knawn, the line, as Ave have seen,

is fixed in position, or completely determined.

Since the equation contains two variables, we may assign any

value to one, and, by the solution of the equation, deduce the cor-

responding value of the other. These two, taken together, will be

the co-ordinates of a point of the line, which may be constructed

as in Art. (15). By assigning other values, in succession, to one

of the . variables, and deducing the corresponding values of the

second, any number of points may be determined, and the line h(

thus constructed hy points.

Likewise, if either of the co-ordinates of a point of the lino is

known, the other may, at once, be deduced, by substituting the

known value in the equation, and solving it with reference to the

variable w^hose value is required. Thus, we know that the ab-

scissa of that point of the line, which is on the axis of Y, is 0. Sub-

stituting a; = 0, in the equation, we deduce y = h^ which

is the ordinate of liic point in which the line cuts the axis of Y.

If we substitute y = 0, the resulting value of x, will be the

abscissa of the point in which the line cuts the axis of X. This

ordinate and abscissa being laid off respectively on the axes of Y

and X, a right line, drawn through their extremities, will be the

line to which the equation belongs.

23. F.-om the preceding article we see that equation (1) of
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Art. (21) is truly the analytical representative of the right Hne.

And in general, any line, curved as well as straight, may be thus

represented by its equation ; that is, hy an equation which ex-

presses the relation between the co-ordinates of every point of the

line.

Every such equation -will contain two kinds of quantities, viz :

variables and constants. The variables represent the co-ordinates

of the different points of the line, and the constants serve to deter-

mine its position and extent. This is plain from the fact, that the

constants being given, all the points of the line may be construct-

ed, as in Art. (22). We therefore say, that a line is given, when

the form of its equation^ and the constants^ which enter it, are

known.

From the definition of the equation, it follows, that if a iwint is

on a given line, its co-ordinates, when substituted for the variables,

must satisfy the equation of the line.

Also, if a point is not on a given line, its co-ordinates loill 7ioi

"*""""'" ^
24. It will, in general, be found more convenient to take the

co-ordinate axes at right angles to each other ; and they will be so

regarded, unless it is otherwise expressly mentioned. Under this

supposition, /3, in equation (1) of Art. (21), will be 90°,

sin (/3 — 0?) = sin (90° — a) = cos a,

and the equation reduce to

y = !!!!-? X ^ b, or y = tang ^ -f 6,
*

cos a

or denoting tang a by a

* Note.—In Analytical Geometry, R or the radius of the trigonometri-

cal tables, is always regarded as linily, unless it is otherwise mentioned.
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ax + ^^y (1),

in wliioli, it should be remembered, that a represents the tangent

of the angle which the line makes with the axis o^ abscissas, and

h the distance from the origin to the point, in which the line cuts

the axis of ordinates.

If the line passes through the origin, 5 = 0, and the equa-

tion becomes

y = ax.

If the line occupies the position of AM, the angle a being acute,

a ]s positive, and as for all points of the line in the first angle, x is

also positive, the product, ax, is posi-

tive, as it should be, since y must be

positive for all points above AX. For

all points in the third angle, x being

negative, ax is negative, as it should

be, since y must be negative for all

points below AX.

If the line occupies the position

AM' ; as the angle a is estimated from the axis of X, on the right

of the line, around to it, as indicated in the figure ; a is obtuse

and a negative. For all points of the line in the second angle, x

is negative and ax positive. For points in the fourth, x is positive

and ax negative.

25. Every equation of the first degree, between two variables,

will be a particular case of the general form

Aar 4- By + C = 0,

and this, when solved with reference to y, gives

^ B "^ B

an equation of the same nature and form as

3
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y = ax -{• h,

and may therefore be regarded as the equation of a right line, in

which, (the axes of co-ordinates being at right angles,) — —
13

will represent the tangent of the angle which the line makes with

the axis of X, and — — the distance from the origin to the
B

point in which the line cuts the axis of Y.

If the equation be solved with reference to x^ it will appear

under the form

X = a'y H- h'

fin which a' = _ will be the tangent of the angle made with the
a

axis of Y, and V the distance cut off by the line on the axis of X.

Hence, every equation of the first degree, between two variables, re-

presents a right line ; and if it be solved with reference to either

variable, the coefficient of the other will be the tangent of the angle,

which the line makes with the axis of that variable ; and the ab-

solute term will be the distance cut off, by the line, on the axis of

that vai'iable, with reference to which the equation is solved.

26. The manner of constructing a right line, from its equation,

may be illustrated by the following

E.TampIes.

I. Take the equation

21/ - 4x + 3 = 0.

Making rr = 0, wo deduce y = — |, for the ordinate

of the point, in which the line cuts the axis of Y, Art. (22).
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Making y = 0, we deduce a? = |, for the abscissa of the

point, in which the line cuts the axis of

X. Assuming any convenient unit of

length, and laying off AC = — f , and

AB = f, BC will be the hne repre-

sented by the equation.

Or, thus : Solving the equation with

reference to y, we have

y = 2.1;

Laying off the distance AC = — |, and drawing the hne

CB, making, with the axis of X, an angle whose tangent is 2,* it

will be the hne.

Or the line may be constructed by points, thus : Making

a: = 1 we deduce y =

X = 2

&c.

The points, represented by the different sets of co-ordinates thus

determined, may be constructed and the line drawn through them.

2. 3y + 9.r - 1 = 0.

* Note.—An angle whose tangent is a given number ^
may always be constructed thus. Let tang az= -. Lay

d

ujf AB = d and erect the perpendicular BM = c ; draw

AM, the angle MAB will be the required angle. For we

have A d_

tang MAB = IM = £ = tang a.^ AB d!

When tang a is a whole number, as in the example, d = AB = 1

Vif. unit of Icns^th.
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3. 7/ — X — 4 = 0.

4. 2i/ + 3x + 5 = 0.

27. Let y = ax + h

y = a'x + h'

be the equations of two riglit lines. Those values of x and y
which, taken together, will satisfy both of these equations, must be

the co-ordinates of a point on each line, Art. (23). But if we com-

bine the two equations and deduce the values of x and y, we ob-

tain all which can possibly satisfy both equations at the same

time ; these values must then be the co-ordinates of all points

common to the lines.

Placing the second members of the equations equal, we have

ax -{ b = a'x -f 6',

whence

y - b
X =z .

Substituting this value of x, in the first equation, we obtain

/ ab' - a'b
J y = .

a — a'

These values of x and y must be the co-ordinates of a point

common to both lines. And, in general, since the equations of

right hnes are of the first degree, the values resulting from their

combination must be real and give one common point, and only one.

If a = a', the values of x and y, both reduce to infinity

;

the point of intersection is then at an infinite distance, that is, the

lines are parallel.

U b = b\ at the same time, both values become -, or in-

determinate, as they should, since in this case the two lir^fl

coincide and have all their points common.
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It IS evident that the above reasoning will apply to any lines,

straight or curved, and we may therefore give the following rule

for obtaining the points of intersection of any two lines. Combine

the equations of the lines, and deduce the values of the variables.

For each couple of real values there will be a common point. If

the values are all imaginary, there will be no common point.

Find the point of intersection of the two right lines given by

the equations

3w - 2a; + 1

28. Let

be the equations of any two given right

hues, making the angles a and a', respec-

tively, with the axis of X, and the angle

V with each other. By the figure, we

see that

a' = V + a, or V = a' — a.

= 0, 5y + dx = 0.

y ^z ax + b

y =z a'x -{- b' r

y/
and by the trigonometrical formula, for the tangent of the differ-

ence of two angles,

tanc. V = tang a' - tang a

1 + tang a' tang a

and since from the equations of the lines. Art. (24),

a = tang a a' = tang a',

have

tang V = a' — a

I + a'a '

from which, by the substitution of the values of a' and a, given
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by particular equations, the natural tangent of the angle between

two right lines may be found ; and from a table of natural sines,

cosines, <fec., the value of the angle, in degrees, minutes, &c., may

be determined.

If a = a',

tang V = °
,
= ;

1 + a'a

hence, in this case, the angle is 0, and the lines are parallel, as

shown in the preceding article.

If 1 + aa' = 0,

. ,7. a' — a
tang V =: = 00,

the angle is 90°, and the two lines are perpendicular to each

other.

To ascertain then, practically, whether two right lines are par-

allel or perpendicular : Solve their equations with reference to

either variable ; if the coefficients of the other variable are equal,

the lines are parallel ; if the product of these coefficients plus

nniiy is equal to 0, they are perpendicular.

Apply this rule to the equations

1. 2y — 4a: + Y = 0, y — 2a; — 3 = 0.

2. 2/ — 3a; + 1 = 0, Gy + 2a; — 5 = 0.

29. Let x' and y' be the co-ordinates of a given point, and

y ^ ax + b (1),

the general equation of a right ^ine, in which a and b are undeter-

mined. If the given point is on the line, its co-ordinates, when

substituted for x and y, must satisfy the equation. Art. (23), and

wo must have

y' = ax' + h,
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an equation expressing the condition that the point, (.t', y'), shall

be on the line. This condition may be introduced into equation

(1) by subtracting it, member from member. We thas obtain

y — y' = a{x — x') (2),

which is the equation of a right line with the condition introduced,

that a given point shall be on it; or, is the equation of a right

line passing through a given point.

a remains undetermined, as it should, since an infinite number

of right lines may be drawn through the given point. If the

abscissa and ordinate of the given point are 2 and 3, the equation

of the line becomes

y — 3 = a(a; — 2).

30. If the line, represented by equation (2) of the preceding

article, be subjected to the condition that it shall be parallel to a

given line, as the one whose equation is,

y = a'x + h,

we must have. Art. (28),

a = a'.

Substituting this known value in equation (2), the line will be

fixed and its equation become

y — y' = a'{x — x').

K the line is required to be perpendicular to the given lino, wa

nust h'ive

1 -f aa' = 0, or a = — —

,

ttf

and the equation becomes
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y' = - i (^ - X').

1. Find the equation of a right I'ne, passing through the point,

r/ — — 2,3/' = 3, and parallel to the line whose equation is

2y — X + 2 = 0.

2. Find the equation of a right line, passing through the same

point and perpendicular to the same line.

31. If the line represented by equation (2), Art. (29), be sub-

jected to the condition, that it shall pass through another point

whose co-ordinates are x" and y", these co-ordinates must satisfy

the equation and give the equation of condition u^ii*- u^ii ^i-*)

y" — y' = a{x" — x'),

from which, the value of a becomes known, and we have

. y" - y'

Substituting this, in equation (2), we obtain

•(1),

for the equation of a right line passing through two given points.

Y .

,

If M and M' are the points, the co«

ordinates of the first being x'^ y\ and

\j^ of the second x", y'\ we have

M'R = y' - 2/', MR = a;" — x\

T Ji B JP' X

tang M'MR = tang M'TX = M!5 = y" "" ^^ = g.^ ° MR x" - ar'
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If y'' = y\ this value of a reduces to

a =
X" — X'

as it should, since the line becomes parallel to the axis of X.

If x" = a/,

y" — y'

as in this case the line is peri)endicular to the axis of X.

If x" = x' and y" = y',

a = - indetermiTmte.

since the two points become one, through which an infinite num-

ber of right lines may be drawn.

1. If the co-ordinates of the points are a;' = 2, 2^' = —- 1

;

x'' = 3, y" = ; equation (1) will become

2/ + 1 = i (.r - 2), "f^
1

which reduces to

y = a; — 3.

2. Find the equation of a right line passing through the two

ix)ints

«' = — !, y' = - 2; x" = A, y" = - 5.

32. In every equation containing but two variables, we may,

as in Art. (22), assign to one a series of values, in succession,

and deduce the corresponding values of the other, and thus con-

struct a series of points, which being joined, will evidently form a

line, which will be represented by the given equation. Hence we
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say, in general, ^hat every equation between two variables^ is tJis

equation of a line^ either straight or curved.

If all values of the first variable give imaginary values for the

second, the line is said to be imaginary.

If there is but a limited number of couples of real values, which

will satisfy the equation, it will represent a point or a limited

number of distinct points.

33. Whenever the relation between the ordinate and abscissa

of a line can be expressed by the ordinary operations of Al-

gebra, that is, by addition, subtraction, multiplication, division,

the formation of powers denoted by constant exponents, or the ex-

traction of roots indicated by constant indices, the line is said to

be Algebraic,

When this relation can not be so expressed, the line is Trans-

cendental.

Algebraic lines only, will be considered in this Treatise. They

are classed into orders, according to the degree vf their equations.

Thus, a line of the first order, is one whose equation is of the first

degree. A line of the second order, one whose equation is of the

<iecond degree, <fec. We have seen. Art. (25), that the right line is

the only line of the first order.

The discussion of the equation of a line consists in classing the

line, determining its form, its limits, its position with respect to

the co-ordinate axes, and the points in which it cuts these axes.

OP THE CIRCLE.

34. Let x' and y' be the co-ordinates of the centre of a circle,

and R its radius, and let x and y be the co-ordinales of any point

of its circumference. The distance from the centre to any point

of the circumference, will then, Art. {11), be denoted by
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V{x - x'Y + (y - 9/y ;

but, from the definition of a circumference, this distance must be

constantly equal to the radius, R ; hence we have

Of

V(x - x'Y + (y - y'Y = R,

(x - x'Y + (y - yy = K« (1)

;

and since this expresses the relation between the co-ordinates of

every point of the circumference, Art. (23), it is the equation of

the circumference, or the equation of the circle ; the word circle

being commonly used for cu'cumference.

The circle will be given, when x\ y', and II are given, Art. (23),

and by attributing different values to these constants, we may

place the centre in any position, and give to the circle any extent.

For those points of the circle which lie oh the axis of X, y = ;

substituting this in equation (1), the corresponding values,

X = x' ±: -v/Ra _ y>2^

will be the abscissas of the points, in which the circle cuts the axis

ofX.

If y' < R, these values will be real, and the circle will in-

tersect the axis, in two points.

If y' = R, the two points will unite, and the circle will be

tangent to the axis of X.

If ?/' > R, the values of x will be imaginary, and there will

be no point of intersection.

Each position of the circle is

shown, in the accompanying figure.

By making x = 0, we deduce

y - 7/ ±: VR^ - x'^,

for the ordinates of the points, in

which the circle intersects the axis
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of y, and these will be real, equal, or imaginary, according as x

less, equal to, or greater than R.

Solving equation (1) with reference to i/, we have

y = y' ±: VW^^^Jx~^^^^~7^,

By assigning values to a:, in succession, we deduce the corres-

ponding values of y, and thus determine as many points of the

curve as we please, Art. (32).

Every value of x, which makes {x — x'Y < R^ will give

two real values of y. For every such value, there will, conse-

quently, be two corresponding points of the curve.

If a: = a;' + R or x' — R, the values of y will be

y' ± ; the two points will unite, and the corresponding ordi-

nate will be tangent to the curve, as SM or S'M'.

If ar > a;' + R or < a;' — R, the values of y will be

imaginary, and there will be no corresponding points of the

curve.

We thus see that the curve is limited, in the direction of the

axis of X, by the two lines, SM and S'M'. In the same way, by

solving the equation with reference to x, we may obtain the limits

in the direction of the axis of Y.

35. If x' and y' are both equal to 0, the centre of the circle

will be at the origin of co-ordinates, and equation (1), of the pre-

ceding article, will reduce to

ar2 -f 2/3 ^ R« (1).

To discuss this equation. Art. (33) ; make y = 0, we thus

obtain

a; = ± R,

which shows, that the curve cuts the axis of X, in the two points,

B and C, at distances, on the right and left of the origin,, each
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equal to R.

Making: x = 0, we obtain

= ± R,

^ ,

I t
1~~c ^1

E
f

i

vvliicli shows that the curve cuts 'the

axis of Y, in the two points D and E.

Solving the equation with reference

to y, we have

y = db VR^ --~^,

from which, we see that every value of x^ positive or negative, and

numerically less than R, gives two real values of y, equal with

contrary signs ; hence, for each of these values there are two cor-

responding points, one above, and the other below the axis of X,

at equal distances from it, and the ordinates of these points, taken

together, form a chord, which is bisected by the axis of X. This

proves that the curve is symmetrical with respect to the axis of X.

If a; = rfc R, y becomes equal to ± 0, which proves that

the corresponding ordinates, produced, are tangent to the curve.

If X is numerically greater than R, either positive or negative,

the values of y are imaginary, and there are no corresponding

points of the curve. The curve is therefore limited in the direction

A the axis of X, by the two tangents at B and C.

In a similar way, it niay be proved, that the curve is symmetri-

cal with respect to the axis of Y, and that its limits are two tan-

irents at D and E.

J^

36. For every point of the curve, as M, in the figure of the

preceding article, we have

7 y2 = R2 - a2 = (R -f x) (R - a:) = CP X PB,

a well known property of the circle.
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37. If y represents the ordinate of any point, as M', without

the circle, in the figure of Art. (35), we have

^' M'P > MP or 2/3 > R2 — x\

For any point, as M", within the circle, we have ' '

'

M"P < MP or y2 < R2 _ ^.a

Hence we deduce the thre3 analytical conditions f

y^ •\- x^ — R* = 0, for a point on the circle^

y y2 + a;2 — R2 > 0,
" " without the circle^

, . y8 -^. a;2 — R2 < 0,
" " loithin the circle.

38. If the origin of co-ordinates is at 0, in the figure of Art

(35), the co-ordinates of the centre wnll be

a;' = R y' = 0,

and the general equation (1), Art. (34), will reduce to

a;2 _|- y2 _ 2Rx = 0, or ?/« = 2Rx — x\

This equation has no absolute term, or term independent of x

and y ; the substitution of a; = and y = 0, will there-

in fore satisfy it, which verifies the fact, that the origin of co-ordinates

/ is on the curve ; and, in general, if the equation of a line has no

absolute term^ the line passes through the migin of co-ordiruites,

OP POINTS IN SPACE.

39. By space is to be understood, that infinite extent, in which

all bodies are situated. As the absolute places of points and mag-

nitudes, in this indefinite space, can not be determined, we have

only to seek their situation, with reference to certain other objecte,

»
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which do not change their position with respect to each other. In

a plane, we have seen that the situation of points and hnes, is thus

determined by a reference to two fixed objects, Art. (19). In

space it is found necessary to refer them to three, the means of

reference, as before, being called the co ordinates.

40. Let XAY, XAZ, and YAZ, be any three fixed planes, in-

definite in extent, intersecting each

other in the Hnes, AX, AY and

AZ ; and let M be any point within

the angle formed by these planes.

Through this point, draw the lines

MP, MP' and MP", respectively

parallel to the hnes, AZ, AY and

AX, terminating in the planes. If

the distances MP, MP' and MP", or

their equals, AR, AR' and AR"
are given, it is evident that the position of the point will be

fully determined, and may be constructed, thus : On AX lay olF

AR" = MP" ; on AY lay oflt AR' = MP' ; through theii

extremities draw the lines R"P and R'P parallel respectively to

AY and AX ; through their point of intersection, P, draw PM
parallel to AZ, and on it lay off the given distance, MP ; the ex-

tremity will be the required point.

The planes X/i.Y, XAZ and YAZ, are called the co-ordinate

planes.

Tlie first is designated as the plane XY ; the second, as XZ

;

and the third, as YZ.

Tlie lines AX, AY and AZ, are the co-ordinate axes.

The first is the axi^ of X, and the distances parallel to it are

denoted by x. The second is the axis of Y, and the distances

parallel to it are denoted by y. The third is the axis of Z, and

the corresponding distances are denoted by z. The point A is the
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origin of co-ordinates, and the distances MP, MP' and MP", are

the rectilineal co-ordinates of the point M.

41. If the distances of a point, from the co-ordinate planes,

Y'AZ, XAZ and XAY, are respectively denoted by a, h and c, we

Lave for this point

X =i a y =^ h z =1 c,

which are the equations of the 2>oint
; and when these equations

are given, the point is said to be given, and may be constructed as

in the j^receding article.

The point M is in the first angle, that is, in the angle to the

right of YZ, in front of XZ, and above XY.

Those points which are on the left of the plane YZ,- are dis-

tinguished from those on the right, by giving the minus sign to x
;

those behind the plane XZ, from those in front, by giving the

minus sign to y ; and those below the plane XY from those above,

by giving the minus sign to z. Thus, for a point in the second

angle, that is, in the angle to the left of YZ, in front of XZ, and

above XY, the equations are

2;=— a y =z h z = c.

For a point in the third angle, which is immediately behind the

i9cond, I

a;= — a ' V '= — ^ z = c.

For a point in the fourth angle, immediately behind the &st,

X =z a y = — h z = c.

For a point in the fifth angle, under the first,

X = a y = & z = -- c.

For a point in tlie sixth angle, under the second,

t
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X = — a y = l> Z = — C.

For a point in the seventh anyle, under the third,

X =^ — a 7j = — h z =1 — c.

For a point in tlie eighth angle, under the fourth,

X ^= a 2/= — ^ z = — c.

If a point is in the plane XY, the value of z for this point is 0,

and the equations of a point, in this plane, are

X = a 9/ = b 0;

and there are similar equations for points in each of the other co

ordinate planes.

If a point is on the axis of X, the values of y and z, for this

point, are both 0, and the equations of a point on this axis are

y = z = 0;

and there are similar equations for points on each of the other co-

ordinate axes.

The equations of the origin of co-ordinates are

X = y 0.

' 42. It is found most convenient, in practice, to take the co-

ordinate planes at right angles to each other, and they are always

considered to be in this position, unless it is otherwise indicated.

Let x\ y\ z', and x'\ y",

2", be the co-ordinates of any

two points in space, as M and

W. Then

x' = AT, y' = TP, z' = MP.

x" = AT', y" = T'P', z" = M'F

Join P and P', and draw
4

/T^
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y MR parallel to PI''. Then from the triangle MRM', right

angled at R, we have

MM' = V^MR* + M'R*.

But, Art. (11),

MR' = PP' = (x" - x'Y + (y" - yy,

and

M'R* = (2" - z'Y;

hence, denoting the distance MM' by D, we obtain

D = V(x" - x'Y + (y" - y'Y + {z" - 0«;

or, the distance between two points, iii space, is equal to the square

root of the sum of the squares of the differences of their co-ordinates.

If one of the points, as M, be placed at the origin, x', y' and z'

become 0, and

43. The position of points, in space, may also be determined

by referring them to any other three

fixed objects. For instance, let A
be a fixed point, and AX a fixed

line in the given plane YAX, and let

M be any point in space. If the dis-

tance AM, and the angles MAP and

PAX are given, the position of the

point is known, and may readily be

constructed.

This method, in which points are referred to a fixed point, a

fixed plane, and a fixed line of the plane, is called the system of
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2X)lar co-ordinates in space
; in which the point A, is the pole,, and

the distance AM, the radius vector. The three variable co-ordi-

nates are, the radius vector, the angle which it makes with the

plane, and the angle which its projection on the plane makes with

the fixed line.

This, and the method of rectilineal co-ordinates, discussed in the

preceding article, form the two principal systems of co-ordinates in

space.

OF THE RIGHT LINE IN SPACE.

44. Let

a2 -f 7

be the equation of a right line, B'C, in the co-ordinate plane XZ,

and

y =^ hz + ^

the equation of B"C', in the plane

YZ. If through each of these

lines, a plane be passed perpen-

dicular to the planes XZ and YZ
respectively, these planes will in-

tersect in a right line, BC, which

will thus be completely determined.

-f a.. •(i:

/jL \yii

The two equations

y =- hz + (3

7jr-~x

•(2),

taken together, may then be regarded as the equations of the right

line in space, and when they are given, the right line will be given,

and may be constructed by points. For, if a value be assigned to

either variable, in these equations, the values of the other two can

at once be deduced, and the three, taken together, will be the co

ordinates of a point of the line. For instance, assume a value foi

z •= RP' ; this, with the corresponding value of x deduced from

0^
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equation (1), will determine a point, P', on the line B'C, through

-X which if a perpendicular, P'M, be drawn to the plane XZ, it will

intersect the given line in a point, M. This same value of z, with

the corresponding value of y, deduced from equation (2), will de-

termine a point, P", on B"C', through which, if a perpendicular

Ihj drav/n to YZ, it will intersect the line, in space, at the same

point, M, since no two points of this line can have the same value

of r.

The two planes passing through the line in space, perpendicular

to the co-ordinate planes, are called the 2^fojectin(jf 2^icLnes of the

line ; and the lines B^C and WC\ in which they intersect the co-

ordinate planes, are the projections of the given line.

• In equation (1), a represents the tangent of the angle which the

projection of the given line, on the plane XZ, makes with the axis

of Z, and 'a' the distance cut from the axis of X, by the same projec-

tion, Art. (25).

In equation (2), b represents the tangent of the angle which the

projection on YZ, makes with the axis of Z, and /3, the distance

cut from the axis of Y.

If we combine equations (1) and (2), and eliminate the variable

x, we deduce

y _ ^ = 1 (r - -«) (3),
a

whichj expressing the relation between y and x for points of the

line, is evidently the equation of its projection on the plane YX.

45. Tlie principle that the constants in the equation of a line,

serve to determine it. Art. (23), may be well illustrated by sup-

posing the four constants in equations (1) and (2) of the preceding

article, to be given in succession. Thus, if a alone is given, the

line is subjected to the single condition, that its projection on the

plane XZ, shall make a given angle with the axis of Z, that is, it

^
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may lie in either one of a sjstem of parallel planes, perpendicular

to XZ, and making, with the axis of Z, an angle, the tangent of

which is a : If a'is now given, the distance cut off on the axis of X

is known, and the line may have any position in one of the before

described planes : If 6 is also given, the other projection must

make a given angle with the axis of Z, that is, the line in this

fixed plane must make an angle with the axis of Z, the tangent of

which is Z», or it may occupy any one of an infinite number of

parallel positions in this plane : If /5 is also given, the line is ab-

solutely fixed.

If o^ and /3 are 0, the line will pass through the origin of co-

ordinates, and its equations become

X = az, y = hz (1).

If in these,

= 0, and h = 0,

the line will coincide ivith the axis of Z, and the equations become

a; = 0, ?/ = 0, 2 indeterminate.

If the value of z be taken from the first of equations (l), and

substituted in the second, we^obtain

1 h
z z=z —X, y = —X,

a a

for the equations of the projections of the right line, passing

through the origin, on the planes ZX and YX. If in these,

-L = and A = 0,
a a

the line will coincide with the axis of X, and the equations of this

axis be

« = 0, y z=i 0^ X indeterminate.
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In a similar way, if the line coincide with the axis of Y, we

have

JL = and — = 0,
b b

and the equations of this axis will be

z = 0, a; = 0, y indeterminate.

46. For the point in which a line pierces the plane XY, z must

be 0. Substituting this value in equations (1) and (2) of Art.

(44), we have

X = ai y = /3

;

hence, a and ^, taken together, are the co-ordinates of the points

in which the right line pierces the plane XY.

In a similar way, the co-ordinates of the points in which the

line pierces the other co-ordinate planes, may be determined.

47. Let

X = az + a. (1), y = bz + (3 (2),

X = a'z + ?. (3), y = b'z -h /3' (4),

be the equations of two right lines. If these lines intersect, or have

a point in common, the co-ordinates of this point must satisfy

the equations at the same time ; or for this point, ar, y and z must

be the same in all of the equations. Hence, if we combine these

equations and find proper values for ar, y and z, they will be the

co-ordinates of the common point. These four equations, contain-

ing but three unknown quantities, can not be satisfied by the same

set of values if they are independent of each other. If the lines

intersect, there must then be such a relation existing between the
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known quantities of the equations, as to make one dependent upon

the other three, and the equation which expresses this relation will

be the equation of condition that the lines shall intersect.

Equating the second members of (1) and (3), we deduce

a — a'

and in a similar way, from (2) and (4),

^' - ^

Placing these values equal to each other, we have

g^ - 0? _ (3' — (3

a — a'
~'

h -- h''

or

(? -"^)(i - h') = (^' - /3)(a - a') (o),

for the equation of condition that the lines shall intersect.

This equation contains eight arbitrary constants, any seven of

which may be assumed at pleasure, and the remaining one thus

determined, so as to cause the lines to intersect.

Substituting the first of the above values of 2 in equation (1),

and the second in equation (2), we find

aac — a'

a

X = _- y =

These values of x and y, with either value of sr, will give a point

of intersection when equation (5) is satisfied.

\i a := a' and h = &', equation (5) is satisfied, and the

values of a;, y and z become infinite. The point of interse3tion ia

then at an infinite distance, that is, the lines are parallel,

a = a' b = b'
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are then the analytical conditions that two right lines, in space,

shall he parallel. But a = a' is the condition that the lines

represented by equations (1) and (3) shall be parallel, Art. (28),

and h = h', the condition that the lines represented by (2)

and (4) shall be parallel. Hence, if two right lines, in space, are

parallel, their projections on the same co-ordinate plane will he

parallel.

If at the same time a' and (3 = (3', the above

values of z, x and y become indeterminate, as they should, since

the two lines then coincide.

48. Since the angle included between two right lines, in space,

is the same as that included between two lines passing through a

common point and parallel respectively

to the first ; let the lines AP and AP'

be drawn through the origin of co-ordi-

nates, parallel to any two given lines,

making with each other an angle de-

noted by V. The equations of AP and

AF will be

X = az. y hz:

X = a'z. = h'z

m which a, h, a' and h', are the same as in the equations of the

given lines. Art. (44), and the included angle is equal to V. De-

note the angles, made by the first line with the axes of X, Y and Z

respectively, by X', Y' and Z', and let ^X", Y'' and Z" represent

the corresponding angles made by the second line.

Take any point, as P, of the first line, and denote its co-ordinates

by x\ y' and z', and its distance, from A, by r', and let x", y" and

z", be the co-ordinates of any point, as P', of the second hue, and

r" its distance from A, and ' let D be the distance PP'. Then

from Trigonometry, we have

CLiAXf

QJ-^L^
/ i/
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2r'r"

OP

D3 - r'2 — r"2 4. 2rV' cos V = (1),

in which, Art. (42),

D« = {x' - x"y + (y' — yo^ + (^'' - ^"Y (2).

But if from P, lines be drawn perpendicular to the axes of X,

Y and Z, respectively, right angled triangles will be formed, from

which we have

x' = r' cos X', y' = r' cos Y', z' — r' cos Z' (3).

In a similar way, we find

x" ?= r" cos X", y" = r" cos Y", z" = r" cos Z".

Substituting these values in equation (2), developing and ar-

ranging, we have

D8=(cos2X'+cos8Y'4-cos2Z>'2+(cos2X"+cos8Y"+cos2Z")r"2

-- 2 (cos X' cos X" + cos Y' cos Y" + cos 7J cos Z") r'r",

and substituting this in equation (1), w^e have

(cos^X'+ cos^Y' +cos8Z'- 1 )r'2+ (cos«X"+ cos^Y"+ cos^Z"- 1 ) r"*

+ 2[cos V-(cosX'cosX" + cosY'cosY"+cosZ'cosZ")>'V" = 0.

Now since the points P and P' were taken at pleasure, and

sijce the angles V, X', X'^, &c., are entirely independent of the

distances r' and r", this equation will be true for any value of r'

and r"
; it is therefore an identical equation, in which the coefficients

of r'2, r"2^ (fee., must be separately equal to ; hence

cos«X'+cos2 Y'+cos«Z'= 1, cos8X"+ cos2Y''-fcos^Z"— l...(4)j
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COS V = COS X' COS X" + COS Y' cos Y" + cos Z' cos Z" (5>

From equations (4), we see that, the sum of the squares of the

cosines of the angles^ which any right line makes with the co-ordi-

nate axes, is equal to unity, or radius square.

From equation (o), we see that, the cosine of the angle formed

by two right lines in space, is equal to the sum of the rectangles of

the cosims of the angles formed hy these lines with the co-ordinate

axes.

49. Since the point P is on the line AP, its co-ordinates x'; y'

and z', must satisfy the equations of AP and give

x' = az', y' = hz'.... (1).

Substituting these values of x' andj^r^m the ecLuation, Art. (42j,

r'» = ic'2 + y'^ + 2'a

and deducing the value of z', we have

2 =
Va^ +*52 + 1

and this value of 2', in equations (1), gives

ar' . hr'

Va^ 4-^,2+1 •/«=» + 6« + 1

Substituting these values of a;', y' and 2', in equations (3), of the

preceding article, we deduce

__, a h
cos X' =

, cos Y' =
-/a* + 62 + 1 -v^a* + i* + i'

1

cos Z' = • / : .

Va^ + ja + 1

In a similar way, we may deduce
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Va'a + ^,'2 + 1 y^^a + j/a 4. i
'

cos Z" = I

Va'2 + 6'« + 1'

Substituting these values in equation (5) of the preceding arti-

cle, we have

cos V = ± "^

-^- (3V
Va2 4. j2 ^ 1 Va'a + 6'^ + 1

giving the double sign as the angle may be acute or obtuse.

If V = 0, cos V = 1, hence

aa' + 66' + 1
1 = •

-r ^
Va-^ + 68+1 Va'^ + 6'3 + 1

Squaring both members, transposing and reducing, we obtain

(a - a'Y + (6 - 6')3 + (ab' - a'6)« = 0,

and since the first member is the sum of three positive terms,

it can not be 0, unless each term is separately equal to 0;

hence

a = a', 6 = 6', ab' = a'6,

conditions deduced in article (47), the third evidently resulting

from the other two.

If V = 90°, cos V = ; hence

aa' + 66' + 1 = 0,

which is the equation of condition that two right lines, in spac6^

shall be perpendicular to each other. This equation being en-

tirely different from, and independent of equation (5), Art. (47),

Bhows that two lines may be perpendicular in space, without in-

tersecting.
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The angle, whicli the line AP makes with the plane XY, is evi-

dently the complement of that which it makes with the axis of Z,

and so with the other co-ordinate planes ; hence if we denote

these angles by U, U' and U", we have

sin U = cos Z', sin U' =: cos y, sin U" = cos X',

or

sin U - ^
sin U' =

b

Va^ + 62 + 1 Va* + 62 + 1

sin U" - — a

Va^ +62+1'

expressions from which the angles, made by a given right line with

the co-ordinate planes, may be determined.

50. Let

X = az -\- "a, y = Z>z + /3,

be the general equations of a right line, in which <x, 6, a, and /3,

are undetermined, and let x', y\ %' be the co-ordinates of a given

point. If the line represented by the above equations passes

through the given point, its co-ordinates must satisfy the equations

and give the equations of condition

x^ = az' \- a, y' = hz' + (3.

If we subtract the last equations, member by member, from the

first, we shall introduce the conditions thus expressed into tlie

first, eliminate o^and /3, and obtain

X- X' = a {z- z') (1), y - y :-_ 6 (:; - z') (2),

which are therefore, the equations of a r'ujht line passing through

a given point in space.

In these equations a and h are still undetermined, as they
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should be, since an infinite number of lines may pass through the

jriveu point.

If the line is required to be parallel to a given line, the equa-

tions of which are

X = a'z + ^, y =z b'z + ^',

a and h will become known, since we must have, Art. (47),

a = a', b = b',

and by the substitution of these values, the hue will be fully de-

termined.

Find the equation of a right line, which shall pass through the

point

x' = 2, 2/' = - 3, z' = 1,

and be parallel to the line of which the equations are

X =^ 2z +3, y = ~ z + 1.

51. If the line, represented by equations (1) and (2) of the

preceding article, be subjected to the additional condition that it

shall pass through the point whose co-ordinates are x", y" and z'\

these co-ordinates must satisfy its equations and give the equations

of condition

x" — x' = o{z" — z% y" — y = b{z" — z%

from which we deduce

x" — x' y" — y'

^ ^ T^rzrzi ' ^ = 2" — ^

'

Substituting these values in the equations (1) and (2), we have



als<

62 INDETERMINATE GEOMETRY.

which are the equations of a right line passing through tivo given

points in space.

Find the equations of a right line which shall pass through the

two points

x' = 2, y' = 0, 2' = 0; x" =: 0, y" = 3, z" = — 1.

52. Curves, in space, may be represented in the same manner

as the right line has been represented in Art. (44). Thus, if

through a curve, cylinders be passed whose elements are perpen-

dicular to the co-ordinate planes, these cylinders will be the pro-

jecting cylinders of the curve, and their intersections with the co-

ordinate planes, the projections of the curve, either two of which

being given, by their equations, the curve may be constructed by

points, ^s in Art. (22).

53. The points of intersection of two curves , in space, may

so be determined as in Art. (47), by combining their equations

But as there will always be four equations, involving but three un

known quantities, proper values for the variables belonging to a

common point, can not be found, unless an equation of condition,

deduced as in that article, by eliminating x and y and equating

the values of z, shall be satisfied.

To illustrate the intersection of two curves, let us take the equa-

tions

22* — 3^: = (1) )

>• 1st curve.

^'^ - 3y = (2) )

2« + 3a;2 — 12a; + 9 = (3)
J
>• 2nd curve.

22 ^ 3j^a __ Qy ^ (4))

If we combine equations (1) and (3), and deduce the values of

«

and 2, we have

• L % ^
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* = 2. = dz Vs

9

These values of x and z

are evidently the co-ordi-

nates of the points M and

M', in which the projections

of the curves on the plane

XZ intersect.

Combining equations (2)and (4), we obtain

y = 1, z = =fc Vs

;

y = 0, 2 = rfc 0,

and these are the co-ordinates of the points, A and N", common to

the projections of the curves on the plane YZ. The second va-

lues of z, in the two cases, being unequal, can not, with the cor-

responding values of x and y, satisfy all four equations at the same

time and therefore do not belong to a point common to the two

curves. The first values of z, viz. z = ± -y/s^ are the same in

both cases and therefore taken with ar = 2, and y = 1, are the co-

ordinates of two points in which the curves intersect, one of these

points being above, and the other the same distance below the

plane XY, at P.

The same result may be otherwise obtained thus : Combine

equations (1) and (3) and eliminate x, thus deducing an equation

involving z. Combine equations (2) and (4) and eliminate y, thus

deducing another equation in z ; and since there can be no com-

mon point unless these equations give equal values for z, it follows

(the second member of both being 0), that for each equal value of

z the first members will have a common divisor of the form z ~ a:

hence, if we seek the greatest common divisor of these first mem-

bers and place it equal to 0, the roots of the resulting equatiou
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will give all the values of z whicli will satisfy both equations.

Those which give real values of x in (1) and (3), and real values

of y in (2) and (4), will correspond to points of intersection. By

applying this process to the above equations we find for the great-

est common divisor z^ — 3, which placed equal to 0, gives

the same values before found.

If only the form of the equations of two curves should be given,

the constants which enter them being arbitrary, x and y may be

eliminated, as above, and then such values may often be assigned

to these constants, as to give the first members of the resulting

equations in z, a common divisor of the first or higher degree,

thus causing the two curves to intersect in one or more points.

^-r^ OF THE PLANE. ^
54. The equation of a surface is an equation which expresses

the relation between the co-ordinates of every point of the sur-

face.

A plane surface may be generated, by moving a straight line,

so as to touch another straight line, and have all of its positions

parallel to its first position. The moving line is called the genera-

trix ; and the line on which it moves, or which directs its motion,

the directrix.

65. Let

y ^' a'x -f h' (1),

be the equation of any right line, DB, in the plane XY, and let

ir = az + a, y = hz \- /3 (2),
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be tlic equations of a right line in space, wliicli is to be moved on

the hue DB, so as to generate a

plane. Since the moving line must

always be parallel to its first po-

sition, a and h will remain the same

in all of its positions, while a and ^
will change, as the line is moved

from one position to another. But

5 and /3 are the oo-ordinates of the

point, in which the line pierces the

co-ordinate plane XY, Art. (46), and since this point must be on

the line DB, the values of a and /3, deduced from equations (2),

must, in all positions of the generatrix, satisfy equation (l), when

substituted for the variables. • The values, thus deduced, are y

CL =^ X — az^ /3 = y — Jr,

and these, substituted for x and y in equation (1), give

y — hz = a'{x — az) -{- h' (3), -^ ^f/^"

which expresses a relation between the co-ordinates of the different

points of the generatrix, in all of its positions ; it is, therefore, the

equation of a plane. If this equation be solved with reference to

z, and the coefficients of x and y be placed equal to c and d, re-

spectively, and the absolute term equal to ^, we have ^^-^

z — ex -^ dy -\- g (4), ^_^^^

a form analogous to that of the right line, Art. (24).

Since this equation contains three variables, either two may be

assumed at pleasure and the corresponding value of the third de-

duced ; the three, taken together,' will be the co-ordinates of a

point of the plane, which may be constructed as in Art. (40), and

as any number of its points may be determined in the same way, the

plane will evidently be given when the constants which enter its

equation are known.

5

4

\
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And, in general, any surface will be given, analytically, Mben fl

the form of its equation and the constants which enter it are

known. ™

b(j. The intersection of a plane with either co-ordinate plane

is called a trace of the plane.

For every point of the plane, which lies in the co-ordinate plane

XZ, y must be equal to 0. Substituting this value for y, in

equation (4) of the preceding article, we obtain

z — ex + (J (1), >,

in which x and y can only belong to points of the plane lying in

the plane XZ. This is then the equation of the trace, BC, on the

plane XZ.

In the same wa}', for all points of the plane, in YZ, x must be

equal to ; Avhence

* = ^y + 9 (2),

is the equation of the trace, DC, on the plane YZ.

By making z = 0, we obtain

ex -\- dy \- g = 0,

for the equation of the trace, BD, on the plane XY.

For all points in the axis of Z, x and y must be equal to 0.

Substituting these values for x and y in equation (4), we find

which is the distance AC, cut off by the plane on the axis of Z.

Tn a similar way, we find the distances cut off on the axes of X
andY

ar = - A = AB, y = _ Z_ = AD.
c d
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If ^ = 0, these distances become 0, the plane will pass

through the origin, and its equation become

z — ex \- dy,

without an absolute term, as it should be, since the co-ordinates of

the origin w^ill then satisfy the equation.

If c = 0, the distance AB becomes infinity, and the plane

is parallel to the axia of 3^, or perpendicular to the co-ordinate

plane YZ, and its equation becomes

z = c?y -f y,

the same as that of the trace on ZY. It should be remarked,

however, that for the plane, x may have any value, or is indeter-

minate, since its coefficient c is ; while for the trace, x must be

equal to 0, as we have seen.

If cZ = 0, the distance AD becomes infinity, and the equa-

tion of the plane perpendicular to XZ,

z =1 ex '\- g, y indeterminate.

In the same way, if equation (3), Art. {oo)^ had been solved

with reference to y or rr, it might be shown that the equation of a

plane perpendicular to XY, would be the same as that of its trace^

z being indeterminate.

h*l. Every equation of the first degree between three variables,

will be a particular case of the general equation

A.r + By + Cr + D = 0,

and this, when solved with reference to z, gives

A B D
« = — —x — —?/ _ —

,

c iy

an equation of the same nature and form as
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z == cx + dt/ -^ g (1),

and will therefore represent a magnitude of the same kind ; tliat

is, every equation of the first degree between three variables is the

equation of a plane, and when solved with reference to z, will ap-

pear under the form (1).

58. Let

X =^ az + ^, y Tn bz {- (3 (1),

be the equations of a right line, and

z — ex + dy -}- g (2),

the equation of a plane. Those values of x, y and z which, when

taken together, will satisfy these three equations at the same time,

must be the co-ordinates of a Point, common to the line and

plane. Therefore, by combining the equations and deducing the

values of ar, y and z, we shall obtain the co-ordinates of the point

in which the line pierces the plane. Substituting the values of x

and y, from equations (1), in equation (2), we find

ac + ^d '\- g,
It ^^ . . »—i—

.
-—

*

1 — ac — fee?

and by the substitution of this value of z in equations (1), we may

deduce the corresponding values of x and y. If

1 — ac — 6i == 0,

tlie values of z, x and y will become infinite, the point in which

the line pierces the plane will be at an infinite distance, and the

line will he parallel to the plane^. The last equation is then the

analytical condition that a right line shall be parallel to a plane

;

or, that a right line, having one point in a plane, shall he wholly

in the plane.
j
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In tlie same way, the points in which any line, in space, pierces

a surface may be found ; since the two equations of the line, with

'the equation of the surface, will always give three equations, by

the combination of which, values of the three variables may be

deduced which will satisfy the equations at the same time. The

number of sets of real values thus found will indicate the num-

* bor of common points.

59. Let

= ex -\- dy 4- <7,

be the equation of a plane, and suppose any straight line to be

drawn perpendicular to the plane. If through the point where

the plane cuts the axis of Z, a line be drawn parallel to the given

line, its equations will be of the form

X =^ az •\- a,

in which a and h are the same as

in the equations of the given line,

Art. (47). Since this second linei

is also perpendicular to the plane,

it must be perpendicular to the

traces, BC and DC, which are two

lines of the plane passing through

its foot. The equations of the

trace BC, Art. {5^)^ Tciay be put

under the form

y — bz { 8,

X •= —z —
c

y = 0.2

,

since the projection of BC, on the plane YZ, coincides with the

axis of Z.

The general equation of condition that the right line shall b«

perpendicular to the trace is. Art. (49),
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1 + aa' + hh' = (1),

in whicli, from the above equationsj^he trace^ we must have

a' = JL 6' = 0.
c

Substituting these values in equation (1), we obtain

1 + -^ = (2), or a = — c
c

for the condition that the line shall be perpendicular to the trace.

In a similar way, for the trace DC, we have

h' = L
d

a' = 0,

and these, in equation (1), give

1 + -^ = (3), or 6 = - (f

.

— c b = — d

are then the analytical conditions that a straight line shall be per-

pendi*^ular to a plane.

Condition (2) proves also that the projection CM is perpen-

dicular to the trace BC, Art. '(28) ; and condition (3) proves that

the projection CM' is perpendicular to DC. Hence, if a right line

is perjtendicular to a plane^ its projections are 2>erpe7idicular to the

traces of the plane^ respectivehj.

60. Let a:', y\ z\ be the co-ordinates of a given point, and

z = cz -\- dy \- g (1),

tlic equation of a given plane. The equations of a right line pass-

ing through the given point will be. Art. (50),

r — y = a(2r - z') y - y' = b{z - z') (2).
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If tbis line is required to be perpendicular to the plane, we

must have, by the preceding article,

a — — c, b = — d.

Substituting these values in equations (1), we have

X - x = - c{z - s'), ,j ^ y' = - d(z - z') (3),

for the equations of a right line passing through a given point

and perpendicular to the plane.

The point, in which this perpendicular pierces the plane, mav
be found, as in Art. (58), by combining equations (3) with equa-

tion (1) ; and the distance between this and the given point, or

the length of the perpendicular, by means of the formula of

Art. (42).

Find the equations of a straight line passing through a point

whose co-ordinates are

X' = - 2, y' = 1, z' = 3,

and perpendicular to the plane whose equation ir>

2x — 37/ + 4z -\- 1 =0.

Find also the point in which the line pierces the plane, and the

length of the perpendicular. ^ .

61. The angle, made by a straight line with a plane, is the same

as the angle included between the line and its projection on the

plane. Therefore, if through any point of the line a perpendicular

be drawn to the plane, this perpendicular, a portion of the line and

its projection on the plane, will form a right angled triangle, of

which the angle at the base will be the angle made by the line

and plane, and the angle at the vertex, its complement.

Denote the first angle by A, and the angle formed by the given

lint5 and the perpendicular by V. Then, the line being repre*
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sented by equations (1) and (2), Art. (44), and tlie plane by

equation (4), Art. (55), the perpendicular will be represented by

equations (o) of the preceding article, and by substituting — c for

a', and -- d for h' in the formula (3), of Art. (49,) we have

cos V == ± 1 — ac — ou — sin A,

Vl + a ' + T^ vT + c2 + d'^

from ^^vhich we determine the sine of A, and thence the angle

itself.

K
1 - ac -- hd == 0,

the angle becomes 0, and the line is parallel to the plane, a con-

dition before determined, Art. (58).

^ 62. Let

z =z ex -{- d9/ + g (1),

z = c'x^- d'y -f 9' (2),

be the equations of two planes. Those values of x, y and z which

will satisfy both of these equations, at the same time, must belong

to points common to the two planes. If then we combine these

equations, ar, y and z in the result can only belong to the line of

intersection ; and if one of the variables, as z, be eliminated, we

have

(, _ c')x -\- {d ~ d')y Jr - 9' = (3),

which must be the equation of the projection of this hne of inter-

section on the plane XY. In the same way, if the equations be

combined and x be eliminated, the result will be the equation of

the projection- of the hne of intersection on the plane YZ. Two

projections being thus determined, the line will be known.

If such a relation exists between c, c', fi and d\ that no values
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of X and y "will satisfy equation (3), the planes can not intersect,

but must be parallel. This can only be the case when c =^ c'

and d = d'^ as we shall then have

^ - y = 0,

which can not be if the planes are different ; hence,

c =^ c'^ d = d\

are the anahjtical conditions that two planes shall he parallel.

By referring to the equations of the traces of these planes, we

f?ee that c ^= c' is the condition that the traces on the plane

ZX shall be parallel, Art. (28), and that d = d' is the con

dition that the traces on the plane ZY shall be parallel ; hence,

if two planes are parallel, their traces are parallel.

If the plane represented by equation (1) is parallel to the co-

ordinate plane XY, its traces on XZ and YZ must be parallel,

respectively, to the axes of X and Y ; hence, by a reference to the

equations of these traces. Art. {^Q)<, we see that

c = 0, c? = 0,

and that equation (1) reduces to

z ^=
(J, X and y indeterminate,

for the equation of a plane parallel to the co-ordinate plane XY.

If ^ = 0, also, we have

« = 0, X and y indeterminate,

for the equation of the co-ordinate plane XY.

If the plane represented by (1) is parallel to the co-ordinate

plane YZ, its traces on XZ and XY must be parallel to the axes

of Z and Y which requires

± = 0, -1=0.
C C
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These values, substituted in equation (1), placed under the fonnIda
X = —z y - ^,

c c c

give

X = — ^ or re = /i, y and z indeterminate,

for the equation of a plane parallel to YZ, and at a distance from

it equal to — — = /i •

c

If ^ = 0, also, we have

a; = y and z indeterminate,

for the equation of the plane YZ ; and similar equations may be

found for a plane parallel to XZ, and for the plane XZ itself.

The preceding method of finding the intersection of two planes

is applicable to any surfaces whatever. Thus : Combine the equa-

tions of the surfaces, and eliminate one of the variables, the result

will be the equation of the projection of the intersection on the

plane of the other two variables. Combine the equations again

and eliminate another variable, the result will be the equation of

the projection on another plane, and the intersection will be thus

determined.

Find the intersection of the two planes whose equations are

2x — 3y + 2r = 0,

a; + 2y — 3^ -f 1 = 0.

63. If through any point, within the angle included by two

planes, a line be drawn perpendicular to each plane, the angle in-

cluded by one of these lines and the prolongation of the other,

will be equal to the angle included by the planes. Let the equa-
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tions of the planes be the same as in the preceding article^ then

the equations of the perpendiculars will be, Art. (60),

a; — a;' = — c (s — z'\ y — y' ^ — d {z — z'),

a: — ar* = — c' (z — 2'), y — y' z= — d' (z — z%

If we denote the angle which these lines make, by A, and then

substitute — c and — c' for a and a\ and — d and — d' for b

and b', in formula (3), Art. (49), we have

A ^ 1 + cc' + dd' ,,,cos A = ± — (1),

Vl + c2 + d* Vl + c'* 4- d'^

from which we deduce the value of cos A, and thence of A itself,

which will express tlie number of degrees, &c., contained in the

angle of the planes.

If the two planes are parallel, we have A = 0, cos A = 1.

By substituting this value of cos A, clearing of denominators, &c.,

as in Art. (49), we may deduce the same equations of condition as

in the preceding article.

If the two planes are perpendicular to each other, we must havo

A = 90°, cos A = 0, which requires

1 + cc' + dd' = 0,

the equation of condition that two planes shall be perpendicular to

each other.

If the first plane coincides with the plane X'^ we have, from

the preceding article,

c — d = 0,

and cos A reduces to

cosX'' = ^

Vl 4- c'3 f d'»
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for the cosine of the angle made by tlie second plane with the

co-ordinate plane XY.

Kthe same plane coincides with the plane YZ, we tiave

i = 0, ^ = 0,
C C

and tkese values substituted in equation (1), first placing it under

the form,

_ 4- c' -^ d'

cos A =
/l , d^ ,

V^ + 1 + - -v/l + c'« + c^'

reduce it to

cos Y" =
Vl + c'a -f c/'«

for the cosine of the angle made by the second plane with the

plane YZ.

If the plane coincides with XZ, we have

i = 0, i = 0,
d d

and equation (1) may be reduced to

d'
cos Z" =

Vl + c2 + d'»

In the same way, if the second plane be made to coincide, in

succession, with each co-ordinate plane, we may deduce for the

angles X', Y' and Z', made by the first plane with the co-ordinate

planes

cos X' = —z==^==^ 1 cos Y' r= —
,

Vl + c" + d* -y/i + c3 + d^
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d
COS Z' =

Vl + C* -f rf2

If both members of these three equations be squared and the

results added, member to member, we find

cos^X' + cos^Y' + cos^Z' = 1.

If the values of cos X' and cos X'' be multiplied togethe?, also

cos Y' and cos Y", cos Z' and cos Z" and the three products

added, we obtain

cos X' cos X" + cos Y' cos Y" + cos Z' cos Z" = cos A,

an expression for the cosine of the angle formed by two planes, in

terms of the cosines of the angles made by the planes with the

co-ordinate planes.

64. Let ir', ?/', z', be the co-ordinates of a given point, and

z = ex -{• dy '\- g (1),

the general equation of a plane, in which c, d and g are arbitrary

constants. If the given point is in this plane its co-ordinates must

satisfy the equation and give the equation of condition,

z' = ex' -f dy' + g.

Subtracting this equation, member by member, from (1), we in-

troduce the condition into that equation and obtain,

z ^ z' = c[x — x') -t- d{y — y'),

for the equation of a plane passing through a given point, in

which c and d are still arbitrary.

Go. If the plane, reprcK'iited by equation (1) of the preceding
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article, be required to contain the three given pointt x\ y\ z\ x'\

y", s", and x'", y'"^ z"\ these co-ordinates, when substituted in

succession for the variables, must satisfy the equation and give

the three equations of condition,

%' = ex' + dy' + ^,

z" = ex'' + dy" + <7,

z'" = ex'" + dy'" + ff.

From these three equations, the values of the three constants c,

d and ff may be determined, and substituted in equation (1).

The result will be the equation of a plane passing through three

given points.

Find the equation of a plane passing through the three points,

X' = 1, y' = 0, z' = - d;

x" = 2, y" = 1, z" = 1]

x'" = 0, y'" = 2, z'" = 0.

v' v^

\ ^*
TRANSFORMATION OF CO-ORDINATES.

^ 66. In developing and discussing the properties of lines and

surfaces, it is often of great advantage to change the reference of

their points from one system of co-ordinate axes or planes to ano-

ther. The system from which the change is made is called the

primitive system ; the one to which it is made is the new system ;

and changing the reference of points, from one system of co-ordi-

nate axes or planes to another, is called the transformation of co-

if a line or surface be given by its equation, and it be required

to change the reference of its points to a new system of co-ordinate

axes or planes ; it is only necessary to deduce values for the primi-

tive co-ordinates in terms of the new, and to substitute these values
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for the variables in the given equation. The result, expressing a

relation between the new co-ordinates of the points, will of course

be the equation of the line referred to the new system.

From the nature of this operation, it is evident that no change

whatever takes place, either in the nature or extent of the line or

surface.

f67. Let AX and AY be any set of co-ordinate axes, and AX'

and AY' any other set having the same origin. Denote the angle

included between AX and AY by /3,

and let a and a^ denote the angles

made by AX' and AY', respectively,

with AX, Let AP = x and

MP = y be the co-ordinates of any

point, as M, when referred to the first

set, and let AP' = x' and

MP' = y' be the co-ordinates of the same point referred to the

second set. Through P' draw P'R parallel to AX and P'S paral-

lel to AY.

In the triangle ASP', the angle

AP'S = P'AY = ^ — a, sin ASF_=jin^YAX = sin^,_

and since the sides are as the sines of their opposite angles, we

have the two proportions,

AS : AP' : : sin (/3 - a) : sin ASF or sin /S,
"^

P'S : AP' : : sin oT : sin /3

whence

AS — ^' ^^^^ (^ "~ ^ P'S — ^'^^^ ^

sin ^
'

Bin /}

In the triangle P'RM,
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y' FMR = YAY' = /3 -^', MP'R = Y'AX = a!

^ ^

MRP' = P'SA,

id we liave the proportions

PR : FM : : sin (/3 - a') : sin /S,

MR> : P'M : : sin ? : sin /3

;

whence

P'R = y' ^^^ ^^ "" ^')

sin jS

We have also

AP = AS + P%

MR =
sin /3

MP =. P'S + MR.

Substituting, in these equations, the vahies above deduced, we

have

X =

y =

x' sin (/3 — 'a) + y' sin (/3

sin /3

rr' sin a + y' sin a'

sin /3

in which the values of the primitive co-ordinates are expressed in

terms of the new and constants ; and these are the formulas, for

passing from any system of rectilineal co-ordinates to another

having the same origin.

Tf the new origin is different from the primitive, at A', for in-

stance, it is evident that we have

¥ simply to add to the above values,

a' and &', the co-ordinates of the new

origin referred to the primitive sys-

tem. We thus obtain

a; = a'
-I-

x' sin (]S — a) -f y' sin (/3 — a')

sin /3

f
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x' sin a + y' sin a'V +
sin /5

generalformulas for 2^oissingfrom one system of rectilineal co-ordi-

nates to any other, in the same plane.

If the new axes of co-ordinates are required to be parallel to

tlie primitive, we have

CH a = 0, a^ = /3, sin a = 0, sin a' = sin /3,

and the above formulas reduce to

X = a' -{- x', y = h' + y> (2),

formulas for passingfrom any set of co-ordinate axes to a parallel

set, in the same plane.

If the primitive axes are perpendicular to each other, we have

^13 = 90°, sin /3 = 1, sin (/3 — a) = cos a,

sin ((3 — a') = cos a',

and formulas (1), reduce to

X = a' }• x' cos a, -\- y' cos a'

(3).

y = h' + ^' sin a + y' sin a'

formulasfor passingfrom a system of rectangular co-ordinate axes

to an oblique system, in the same plane.

If the primitive axes are perpendicular to each other, and also

the new, we have

/3 = 90°, sin (3 = 1, a' = 90° -f a, sin a' = cos a,

sin {(3 — a) = cos a, sin (/3 — a') = sin(— a)= — sin a,

and formulas (1) reduce to M\k
X = a' + a;' cos a — y' sin a /V

w,
y =z h' ^ x' sm a, -\- y' cos a

6
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formulas for passing from a srjstem of rectangular co-ordinate axes

to another system^ also rectangular^ in the same plane. H

If the new axes, only, are perpendicular to each other, we have \

V-
a' = 90° + a, sin a' = cos a, cos a' = — sin a, K

and formulas (1) reduce to

(/3 - «

sin ^
X = a' ^ ^^^inj^- a) - y' cos (^ - a)

.(5),

7, .
a:' sin a + y' cos a

y = 5' 4- Z_^^
sm p

formulas /or passing from a system of oblique co-ordinate axes to a

rectangular system, in the same plane.

If the new origin be the same as the primitive, a' and h' in each

of the above formulas will be equal to 0.

68. We may illustrate the use of the formulas of the preceding

article by the following

Examples.

1. Let

x^ + y"" -= R' (1),

be the equation of a circle referred to its centre and rectangular

co-ordinate axes. Art. (35), and let it be proposed to change the

reference to a parallel set having the origin at the point C.

27 The co-ordinates of the new origin will

be

a' = — R, h' = 0,
B

and these values, in formulas (2), reduce

them to
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X = — R + x', y = y'.

Substituting these last values for x and y in equation (1), and

reducing, we obtain

2/'2 = 2Kx' - x"^,

an equation before found in Art. (38).

2. Let

y z= ax + h (2),

be the equation of the right line A'B, referred to the rectangular

axes AX and AY, and let it be proposed

to find the equation of the same line X^

referred to the axes A'X' and A'Y', also

at right angles, the axis of X' making

an angle of 45° with the axis of X and

having the new origin at A', the point -^ -^

where the given line cuts the axis of Y. The general formulas to

be used in this case are formulas (4), in which

^ a' = 0,
6'' = 6, sin a = cos a.

These values reduce the formulas to

X = i^x' — y') cos a, y = 6 + (a:' + y') cos a,

and substituting these values for x and y, in equation (2), we have

h -\- {x' + y') cos a = a(x' — y') cos a + &,

or reducing,

y' = X .

a + 1

€9. Let AX and AY be a set of rectangular co-ordinate axes,
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and M any point referred to tliera

by the co-ordinates AR = a*, and

MR = y\ and let P be the pole, and

PS the fixed Hne, to which the point is

referred by the radius vector PM = r

and the angle MPS = v, Art. (18).

SPT = a.

In the right angled triangle, MTP, we have

PT = r cos {y + a), MT = /• sin (y -f- a).

Substituting the above values in the equations

AR = AO + PT, MR = OP 4- MT,

we have

X = a' •\- r cos (v -f a), ^^
= ^' + '' sin (v + a) (1),

which are general formulas, for passing from a system of rect-

angular co-ordinates to a system of polar co-ordinateSj in the same

plane.

The fixed line is generally taken parallel to the axis of X, in

J^ which case a = 0, and formulas (1) reduce to

X =^ a' -{• r cos v, y = Z»' + »* sin v (2).

* If the pole is at the origin, we have a' = 0, h' = 0.

From the second of equations (1), we deduce

sin (v + a)

in which, if y > ^', y — h' is positive, the point M is above

^ the line PT, and sin (v + a) also positive ; hence, the value of

r will be essentially positive.
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y If y <i h', y — h' is negative, the point M is below FT,

sin {v -f- a) also negative, and the value of r positive.

The value of the radius vector is therefore always positive.

Hence, if in discussing the equation of a line referred to a fixed

point and fixed right line, usually called the polar equation of the

line, a negative value of the radius vector is found, it must be re-

jected, as there can be no corresponding point. a
70. To illustrate the principles of the preceding article, let it

be proposed to determine and discuss the polar equation of the

circle. Its equation referred to the y
rectangular axes AX and AY, is

X? -f f R2. .(1).

Suppose the fixed line PS, fi-om

which the angle v is estimated, is

parallel to the axis of X, we must

then use formulas (2). Squaring the values of x and y, we have

x^ = a'^ -j- 2a'r cos v -\- r^ cos** i',

y« = 6'2 4- 26V sin v -{- r^ sin** v.

Substituting these values in equation (1), recollecting that

sin* v -f cos* V = 1,

and reducing, we obtain

r* -f 2{a' cos V + b' sin v)r + a'* + 6'« — R« = (2),

for the general polar equation of the circle.

By attributing particular values to a' and b\ the pole may be

pl^ed at any point in the plane of the circle.

TpJQJie pole be placed at C, we must have
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a' = — R, 1/ =z 0,

and these, in equation (2), give

r^ — 2R cos vr = 0.
^

This equation gives two values of r,

r = 0, r = 2R cos V.

These two values of r represent the distances from the pole to

the points in which the radius vector, making any angle v, cuts

the circle. Since the pole is on the curve, one of these values

is necessarily 0, whatever be the angle v. The second may then

represent any radius vector as CM.

If in this second value v = 0, we have cos v = 1, and

r = 2R = CB,

which gives the point B. As v in-

creases, cos V will remain positive until

V = 90°, in which case cos v = 0,

r becomes 0, and the radius vector

takes the position CM' tangent to the circle at C. As v increases

beyond 90°, its cosine becomes negative, the value of r is negative

and gives no point of the curve, until v becomes equal to 270°,

when cos V = and r = 0, taking the position CM'".

As V increases beyond 270°, its cosine is positive, r is positive and

gives
j
oints of the curve until v = 360°, when we again have

r = CB.

From this we see that as v increases from to 90°, we obtain

all the points in the semi-circumference BDC, that no points of

the curve are on the left of the line M'M'", and that as v increases

trom 270° to 360°, we obtain all the points in the other semi-

circumference.

The second value of r is readily verified, since in the right

angled triangle CMB, we have
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CM = CB COS BCM or r = 2R cos r.

If the pole is placed at B, we have

a' = R, 6' = 0,

and equation (2) gives the two values

r = 0, r = — 2R cos v.

The second value of r will be negative for all valu( ? of v less

than 90° or greater than 270°, and positive for all values from

90° to 270°.

Tf the pole is placed at the centre, we have

a' == 0, V = 0,

and equation (2) reduces to

r = R,

V being indeterminate^ since its coefficient is equal to 0.

71. By reflecting upon the discussion contained in the three

preceding articles, we see that two classes of propositions may

arise in the transformation of co-ordinates.

First; when it is proposed to change the reference from a

given set of co-ordinate axes to another set, the exact position of

which is known. In this case the constants which enter the values

of the primitive co-ordinates are given.

Second ; wh.en it is proposed to change from a given set to ano-

ther, the position of whicli is to be determined, so that the result-

ing equation shall assume a certain form, or the new set fulfil

certain conditions. In this case, the constants above referred to

are arbitrary, and by assigning values to them, as many reasona-

ble conditions may be introduced as there are such constants, and

the position of the new co-ordinate axes thus determined.
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72. Let AX, AY and AZ, be three co-ordinate axes at right

angles to each other, and AX',

AY' and AZ', three oblique axes

having the same origin. De-

note the angles made by the

new axis AX' with the three

primitive axes of X, Y and Z,

respectively, by X, Y and Z,

those made by the axis AY'

with the same, by X', Y' and Z',

and those made by AZ', by X", Y" and Z".

Let M be any point, in space, referred to the primitive planes

by the co-ordinates x, y and z. Through this point draw the line

MP parallel to AZ', until it pierces the new plane X'Y', in the

point P ; through this last point, draw PR parallel to AY', until it

intersects the new axis of X', in R ; then

AR PR = y', MP = z'.

are the co-ordinates of the point M referred to the oblique co-ordi-

nate planes. Through the points M, P and R, pass planes paral-

lel to the plane XY, intersecting the axis of Z in M', P' and R'.

AM' is equal to z, and the lines AR, RP and PM, are the hypothe-

nuses of right angled triangles, the bases of which are AR', RR"
and PP", and the angles at the bases, Z, Z' and Z". From these

triangles we have

AR' = AR cos Z, RR" = RP cos Z', PP" = MP cos Z"

Substituting these values for their equals in the equation

AM' = AR' + R'P' + P'M',

and for AM', AR, RP and MP, their values, ve have,

2 = rr' cos Z -f- y' cos Z' -\- z cos Z".
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In a similar way, by drawing lines through the point M respec-

tively parallel to the new axes of X' and Y', we may deduce

a; = a;' cos X + y' cos X' + z' cos X'',

y = ic' cos Y + y' cos Y' + 2' cos Y".

These three equations taken together express the values of the

primitive co-ordinates in terms of the new, and are the formulas

for changing the reference of points from a set of co-ordinate

planes at right angles, to another set oblique to each other, having

the same origin.

If the origin be also changed to a point whose co-ordinates are

a, h and c, these formulas become

a; = a -f a;' cos X + y' cos X' -j- ^' cos X",

y = 6 -f- a:' cos Y + y cos Y' + z' cos Y", (1).

z = c + ic' cos Z + y' COS Z' -f z' cos Z",

In these formulas there are twelve constants ; but since the

angles X, Y, Z, &c., made by each of the new axes with the prim-

itive, must fulfil the condition expressed in equation (4), Art. (48),

thus forming three equations of condition, we can, by means of

these constants, introduce only nine independent conditions.

If the new axes are also perpendicular to each other, we shall

have the cosines of the angles, included between each set of two,

equal to 0. Placing the expressions for these cosines. Art. (48),

each equal to 0, we have three more equations of condition exist-

ing between the arbitrary constants.

If the new axes are parallel to the primitive, we have

X = 0, Y' = 0, Z" = 0,

and each of the other angles equal to 90°, hence the above formu-

las reduce to

a; = a + a;', y = 6 + y', « = c + 2'
(2), ^

+
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wliich are the formulas for passingfrom a set of planes at right

angles, to a parallel set.

13. Let M be any point, in space, referred to the three

rectangular co-ordinate planes, by

the co-ordinates

AR = X, AR' = y, MP = r,

and to the fixed plane XY, the line

AX and the point A, by the polar

co-ordinates. Art. (43),

AM = r, MAP = V, RAP = u.

The right angled triangles ARP and MPA, give

AR = AP cos u, RP = AP sin w,

MP = r sin v, AP — r cos v.

Substituting the value of AP, the first three equations give

X ^:^ r cos V cos u, y =z r cos v sin w, z = r sin v (1),

which areformulas for passing from a system of rectangular co-

ordinates to a system of polar co-ordinates, in space.

From the last of the above equations, we have

sin V

and since z and the sin v will always have the same sign, the radius

vector will always be positive.

The equations of the radius vector in any one of its positions,

will be of the form. Art. (45),

X = az, y = ^^ (2),

whence
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a f. h^t

Substituting tlie values of a;, y and «, taken from form alas (1),

we have

a = cot V cos w, ft = cot V sin w,

and these, in equations (2), give

a; = cot V cos uz^ y = cot v sin wr,

which will be given, when v and u are known.

A
OF THE CYLINDER.

74. A cylindrical surface or cylinder^ may be generated by

moving a straight line, so as to touch a given curve and have all

of its positions parallel to its first position.

The moving line is called the generatrix ; and the given curve

the directrix of the cylinder.

The different positions of the generatrix are called elements of

the surface.

The curve of intersection of the cylinder, by any plalie, may be

regarded as the base of the cylinder ; and when the elements are

perpendicular to the base, the surface is a right cylinder.

75. If the directrix of the cylinder is a plane curve, its plane

may be taken for the co-ordinate plane KY, and its equation may

be represented, generally, by

/(^,y) = (1), ^
which is read, a function of x and y equal to zero ; the first mem-

ber being a symbol to indicate an expression containing x, y and
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constants ; or that x and y are so connected that one can not vary

without the other.

Let

az + a, hz + /3,

be the equations of a right Hne which is to be moved so as to gen-

erate the surface. Since the different positions of this generatrix

are parallel, a and h remain constant, while, as the line is moved

from one position to another, a

and /3 must change. But a and

^ are the co-ordinates of the point

in which the generatrix pierces

the plane XY, Art. (46), and

since this point must be on the

directrix CD, the values of a and

ft when substituted for x and y, must satisfy equation (1). These

values are

a = a; — az, (3 = y — bz,

and when substituted in equation (1), give

f(x — az, y — hz) = 0,

an equation expressing the relation between the co-ordinates of

ihe different points of the generatrix in all of its positions. It is,

therefore, the general equation of a cylinder, of which the directrix

may be regarded as the base.

In order then, to obtain the particular equation of a cylinder,

whose directrix is given, we have simply to substitute, for x and y

in the equation of the directrix, the expressions

az. y — ^-.

76. If the directrix is a circle, whose equation is

x^ ^ y^ = R«,
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the origin being at the centre, we have, by making the substitu-

tions above referred to,

(^ « azy + (y - hzY = R« (1),

the equation of an oblique cylinder with a circular base.

If this cylinder be intersected by a plane parallel to XY, the

equation of which, Art. (62), is

z z=z
g^ X and y indeterminate,

we have, by combining the equations. Art. (62),

{x - agY + (y -- hyf = W,

for the projection of the curve of intersection on XY. But this is

evidently the equation of a circle, whose radius is R, Art. (34),

and therefore equal to the base. But since this intersection is

parallel to the plane XY, its projection is evidently equal to the

line itself. We therefore conclude, that if a cylinder, with a cir^

cular base, be intersected by a plane parallel to the base, the inter-

section will be a circle equal to the base.

If a and h are equal to 0, the generatrix becomes parallel to the

axis of Z, or perpendicular to the base, the cylinder becomes right,

and equation (1) reduces to

^^ + y^ == R2,

the same as the equation of the base, z being indeterminate.

OF THE CONE.

lt£. V, «r^

VV. A conical surface^ or cone, may be generated by moving a

straight line, so as, continually, to pass through a fixed point and

touch a given curve.

f*-
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I'he fixed poi ot is the vertex of the cone, and the parts of th«

surface separated by the vertex are

called nappes.

The intersection of the cone by any

plane may be regarded as its base.

If the rectilinear elements all make

the same angle with a right line ^f
passing tli rough the vertex, the cone .

is a right cone, and the right line is /

its axis.

18. If the directrix of the cone is a plane curve, its plane may

be taken as the co-ordinate plane XY, and its equation be repre-

sented as in article (75), by

A^,y) .(1).

If x', y' and z' are the co-ordinates of the fixed point, or vertex,

the equations of the generatrix will be. Art. (50),

x — x' = a{z — z'), y — y' z= h[z ^ z'). (2),

in which a and b change as the generatrix is moved from one

position to another. These equations may be put under the form,

X = az -\- (x' — az'\

m which the absolute terms,

x' — az',

y = 6z + (y' - bz%

y' - bz\ >6yS^^

are the co-ordinates of the point, in which the line pierces the

plane XY, Art. (46), and since this point is on the directrix, what-

ever be the position of the generatrix, these values, when substi-

tuted for X and y in equation (1), must satisfy it, and give

/(^' - az\ y' - bz') = D.
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Substituting in this equation, the values of a and 6, in terms of

z, y and «, deduced from equations (2),

X — x' 7 y — y'
a = -, b = 1 ^

z — z' z — z'

we have after reduction,

/ff^i^^f, 2^1ZL4f^=0 (3),
\ Z — Z Z — Z' J

an equation expressing the relation between ar, y and z, for all

positions of the generatrix. It is, therefore, the general eqiudion of

a cone, of which the directrix may be regarded as the base.

In order then to obtain the particular equation of a cone, whose

directrix is given, we have simply to substitute for x and y, in the

equation of the directrix, the expressions,

x'z — z'ar y'z — z'y
_

,

-_ .

z — z' z -^ z

7 9. If the directrix is a circle, whose equation is

a:« + 2/» = R2,

we have, by making the substitutions above referred to,

/x'% — z'x\^ fy'z — z'y\^ _ R^

or

{x'% - z'xY + (y'2 — xhjf = R2 (r - Z'Y (1),

for the equation of an oblique cone with a circular base.

If this cone be intersected by a plane parallel to XY, the equa-

tion of which. Art. (62), is
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: z =
ffy X and y indeterminate,

we have, by combining the equations,

{^'9 - ^'xf + {y'g - z'yY = R^ (.7 - z%

for the projection of the curve of intersection on XY. By di-

viding both members by 2;'*, this equation may be put under the

form

(a - .)% (^ _ ,j . 5!

which is the equation of a circle, the co-ordinates of whose centre

are — and — , and the radius, the square root of the second
z' z'

member. Art. (34). This projection being equal to the curve itself,

we conclude, that if a cone, with a circular base, be intersected by

a plane parallel to the base, the intersection will he a circle. The

radius of this circle will decrease as g increases, until g = z',

when the radius becomes and the equation takes the form

{x' - xy + {y' - yf = 0,

which can only be satisfied. Art. (49), by making

X = x\ y = y',

and the circle becomes a point.

80. If

X' = 0, y = 0, z' = A,

the vertex of the cone is on the axis of Z, at a distance, from the

origin, represented by h ; the cone becomes right, and equation

(1), of the preceding article, becomes
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{x^ + y') h^ = ^' {z - h)\

(^* + y«)^^ = (z - hy

d1

.(1).

\
/ ^'\

/j"-^" "I^^^A
o^' ^^A/V iK -X

If the angle, made by the elements of the cone with the plane

of the base, be denoted by v, we have in the right angled triangle

VAB',

tangAB'V^^, or tanjr V =
R

and equation (1) becomes

{x^ + y*) tangS v = {z — hy (2),

for the equation of a right cone with a circular base.

yi

8 1 . Through the axis of Y, in the figure of the preceding article,

let a plane be passed intersecting the cone. This plane being per-

pendicular to the plane XZ, its equation will be the same as that of

its trace on XZ, y being indeterminate, Art. (56). Let the angle,.

7

i

\ «. f^ ^ ^
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which this plane makes with XY, be denoted by ?/, the equation

of its trace, AR, will be, Art. (24),

The equations of the curve of intersection of the plane and cone

may now be found, as in article (62). But as the different curves,

obtained by changing the position of the cutting plane, form a

class possessing very remarkable properties, the discussion of which

is much simplified by referring the intersection to lines in its own

plane, the latter method is chosen.

Let us then take the right lines AX' and AY, as a new system

of rectangular co-ordinate axes, and let us estimate the positive

values of x' from A to X', and the positive values of y' from A
to Y.

Let M be any point of the curve of intersection. Its co-ordi-

nates, referred to the primitive planes, are

a: = AP, y = MR, z = RP,

and referred to the new axes, AX' and AY,

- x' = AR, y' = MR.

Fi-ora the right angled triangle APR, we have

AP = AR cos u, RP = AR sin w,

or

X =: — x' COS Uy X = — x' sin u.

We have also

1/ = !/

If these values of x, y and z be substituted in equation (2) of

the preceding article, the result expressing a relation between x'^

and y' for points common to the plane and cone only, wjll be the

equation of the intersection. Making the substitution, we obJain

(x'^ cos' u -{• y'^) tang'^ v = (— a;' sin u — A)*,
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or performing the operation indicated in the second member, and

transposing,

l/"^ tang'* V = x''^ sin* u — x'^ cos; u tang^ v -\- 2x'h sin ii + A*,

or recollecting that

sin** u = cos^u tang* w, '-<^*-*^

and omittinoj the dashes of the variables,

//* tang* V = x^ cos* u (tang* u — tang* v) -1- 2xk sin t« + /a*...(1),

for tlie equation of ike line of intersection of a plane and right cone

with a circular base.

In this equation, h may now be regarded as the distance from

the vertex of the cone to the point in which the plane cuts the

C-«-a^

82. If in the above equation, v remaining the same^ all values

be assigned to u from to 90°, and all values to A, from to in-

tinity, it will represent, in succession, every line which it is possi-

ble to cut, from a given right cone with a circular base, by a plane.

There are three distinct cases.

First, when

^S or tang u

In this case, the cutting plane makes the same angle with the

base that the elements do, or is parallel to \ I /

one of the elements, and since
^'"'

tang* u = tang* v, /

the coefficient of a:* becomes 0, the equation />'^''"'/"
v^--.

reduces to (LJi-S.-±-j— --

y* tang* v = 2xh sin u + A*,

and the curve represented by it is called a Parabola.
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If in this equation, A = 0, the cutting plane passes tlirough

the vertex, and the equation reduces to

y^ tang* v = 0,

which can only be satisfied by making

y = 0,

which, since x is indeterminate, is the equation of the axis of X,

Art. (21). A right line is there/ore regarded as a particular case

of the parabola.

Second, when

u <C Vj or tang u < tang v.

In this case, the cutting plane makes a less angle with the base

than the elements do, or is parallel to none of the elements, see

figure of Art. (80) ; and since,

tang' u < tang' v,

the coefficient of x^ is essentially negative and the curve represent-

ed by the equation is called an Ellipse.

If in this case w = 0, the cutting plane is parallel to the

base,

cos 2« = 1, sin «« = 0, tang ?« = 0,

and the equation reduces to

y^ tang=» u = — a;» tang' v -f A*, ^
or dividing by tang' v and transposing

A'
2/' + a;' =

tang* V

which is the equation of a circle, Art. (35).

If A = 0, u being still less than v, the plane passes through

the vertex, and the equation reduces to
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y* tang' v = a;' cos* u (tang'* u — tang* v),

•101^

the first member of which is essentially positive and the second

negative ; it can therefore be satisfied for no values of x and y,

except

:c = 0, y = 0,

which are the equations of the oi-igin of co-ordinates, Art. (16).

A circle and point are therefore regarded as particular cases of the

ellipse.

:^ Third^ when

u y V, or tang u > tang v.

In this case, the cutting plane makes a greater angle with the

base than the elements do, or is parallel to two of the elements,

viz. those cut from the cone by passing a

plane through the vertex parallel to the

cutting plane, and since

tang* u > tang* v,

the coefficient of x^ is essentially positive,

and the curve represented by the equation

is called an Hyperbola.

If in this case, ^ = 0, the equation

reduces to

y* tang2 V = x"^ cos' w (tang' u — tang' v),

both members of which are essentially positive. Dividing by
tang* V, and placing

= >*,

we obtain

cos' u (tang* u — tang' v)

tang* V

y* = r«x«, y = ± r:p,
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wliicli, evidently, represents two right lines intersecting at the ori-

gin of co-ordinates, Art. (24), the equations of which are

1/ = \- rx, y = — rx.

Two right lines, tvhich intersect, are therefore regarded as a par*

ticular case of the hyperbola.

83. Resuming equation (1), Art. (81), dividing by tang* v,

and denoting the co-efficient of x^ by r*, as above, we have

y* — r^x* -\- 2x -i- (1).
tang*v . tang* v

Now let us transfer the reference of the points of the curve to a

set of parallel co-ordinate axes, having their origin at D, the point

in which the curve is cut by the axis of X, [see figure of Art.

(80)]. Formulas (2), of Art. (67), become for this case,

X ~ a + x', y = y\

a representing the distance — AD, and 6'being equal to 0.

Substituting these values in equation (1), we have

/'2 _ r2.
,o , « /A sin w

. 3 \
;'2 ^ 2 ( \- r^a \

\^tang* V J

9 „ . rt
A sin M .

h^

tang* V tang* v

The origin of co-ordinates being on the curve, the absolute

tcnn

, - 2/i sin u A* -u

tang* V tang* v

Note. It should be observed, that by placing the absolute term

tar sr^ v tang^ v
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must be equal to 0, Art. (38), and the equation, after omitting

the dashes and placing

^ sin w , „

tang'* V

reduces to

ya _ ,.2^8 ^ 22)x (2),

a general equation, which may represent either of the above

named curves ; the parabola when r* = 0, ike ellipse when

r* < 0, and the hyperbola when 7-^ >• 0.

OF THE PARABOLA.

84. If ?"* = 0, equation (2) of the preceding article, be-

comes

2/' = 22)X (1).

This equation being of the second degree, the line represented

by it is of the second order. Art. (33), and 2^9 being the only con-

W3 have an equation of the second degree, and therefore two values of a,

which will fulfil the required condition. Solving the equation, substitu-

ting the value of r^ and reducing, we find

_ h (tang u + tang v)
~ cos u(ta.ng^u — tang^i;)

In the parabola, u being equal to v, the fiirst value reduces to _ , and the

second, to infinity, but by striking out the common factor,

tang u — tang v, the first value becomes finite and negative, as it should

be to give the point D.

In the ellipse, the first value is negative, the other positive, the negative

value being used.

In the hyperbola, both values are negative, the one which is numeri-

cally the least being used.



104 INDETERMINATE GEOMETRY.

slant, the line is given when 2pis given, Art. (23). This con*

slant is called the parameter of the parabola, and since from equa*

lion (1), AYO may deduce the proportion

X \ y '.', y : 2p,

we say, the parameter is a third proportional to the abscissa and or-

dinate of any point of the curve.

85. If equation (1), of the preceding article, be solved with

reference to y, we have

y = zt V2px,

For every positive value of x, there will be two corresponding

real values of y ; hence, the curve is con-

tinuous and extends from the orig*in. A,

to infinity, in the direction of the positive

abscissas ; and since these values of y are

equal with contrary signs, it follows that

for each assumed abscissa, as AP, there

will be two corresponding points of the

curve, one above and the other below the

axis of X, at equal distances, and the two values of y taken to-

gether will form a chord, as MM', which will be bisected by the

axis of X ; hence, the curve is symmetrical with regard to the axis

ofX.

The line AX is called the axis of the parabola, and the point A,

in which it intersects the curve, is called the vertex ; and, in

general, any straight line, which bisects a system of chords perpeU'

dicular to it, is an axis of the curve in which the chords are di*awn.

If X = 0, we have

y = d= 0,

which proves that the curve is tangent to the axis of Y, at the

origin, Art. (34).

A
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If X is negative, the values of y are imaginary ; lionce, there ia

no point of the curve on the left of the axis of Y,

If y = 0, we have

a; = 0,

and the curve cuts the axis of X in one point only, at the origin.

86. The curve may be constructed by points from its equation

as in Art. (22). This is done geometrically, thus : Let AX and

AY be two co-ordinate axes at right

angles. Lay off from the origin in

the direction of the negative ab-

scissas AP' = 2^, and take any

positive abscissa, as AP ; on the

line PP' as a diameter, describe a

circle, and from the points in which

it intersects the axis of Y, draw

lines parallel to the axis of X until they intersect the perpendicular

erected to AX, at P. The points of intersection, M and M', will

be points of the curve. For, from a known property of the circle,

we have

JT^
/

/ ^,
\
\

X

Jlf'"^

AD* = AF X AP Pi\r or yg = 2j?a?.^

^'
8V. If a point whose co-ordinates are x and y, is on the curve,

we must have the condition. Art. (23),

2]px, or |2 — ^px — 0.

If the point is without the curve, since its ordinate will be

greater than the corresponding ordinate of the curve, we must have

y« > 2par, or 2px > 0.
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If the point is within the curve,

y2 < 2px, or y« - 2pa; < 0.

88. If in equation (1), Art. (84), we make a; = ^ , wo

have

y' = v\ T^ 2y = 2p.

Hence, if a point, as F, be taken on the axis of the parabola, at

a distance from the vertex equal to one

-:^>' fourth of the parameter, the double ordinate,

or the chord, perpendicular to the axis at thit

point, will he equal to the parameter of tht

^—^ curve.

If F be the point and M any point of

the curve, the right angled triangle FPM
will give

FM = "Vfp' + PM',

or, since

FP = AP - AF = a; _ PM = y,

we have

FM = \/(— I- + y^

Of squaring x — IL, and substituting for y^ its value 2/>ar,

FM -Vz* ^ px + SL = X + ^
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If from the vertex A, we lay off AB

perpendicular to tlie axis, we sliall have

^-, and draw BG
2

MC = BP BA + AP = ar 4- ^ = FM.
2

Hence, the distance from any point of the curve to the line BC,

is equal to the distance from the same point to the point F.

This remarkable property enables us to define a parabola to be

a curve, such, that each of its points is at the same distance from a

given point and a given straight line.

The given point, F, is called the focus, the given line BC, the

directrix, and a straight line drawn through the focus perpendicu-

lar to the directrix, is the axis of the parabola.

This property, also, gives another simple method of constructing

the curve by points, when the directrix

and focus are given. Let BC be the di-

rectrix and F the focus. Through F

draw FB perpendicular to BC, it will be

ttie axis. At any point of the axis, as

P, erect a perpendicular ; with the focus

F as a centre, and radius BP, describe

arcs cutting the perpendicular in M and

M' ; these will be points of the curve, since

^
jy ^ .£'

['
^^i^

FM BP = MC.

The curve may also be constructed by a continuous movement.

Place one side DC, of a right angled tri-

angular rule DCE, against the directrix

;

fasten one end of a string equal in length

to the other side EC, at the point E, and

the other end at the focus
;
press a pencil

against the string and rule, and as the rule

is moved along the directrix, the point of

the pencil will describe the parabola ; for

we always have



108 INDETERMINATE GEOMETRY.

FM = MC.

^
89. Let x\ y' and a;", y" be the co-ordinates of any two point*-

of the parabola. Since these are points of the curve, their co-ordi-

nates will satisfy its equation and give the two conditions, Art. (23),

y Ipx', = 2px'

from which, omitting the common multipHer 2p, we obtain the

proportion

y'2 : y"2 :: x' : x'\

that is, the squares of the ordinates of any two points of the curve

are proportional to the corresponding abscissas.

90. Let ic", "y" be the co-ordinates of any point, as M, on the

curve, and through this point conceive any straight line to be'

drawn ; its equation will be of the form, Art. (29),

y - y" = d{x — x"). .(1),

in which d is undetermined. Since the given point is on the

curve, we must have the condition

y"2 = 2px".

we have

or

/« —

(y + y"){y

Subtracting this, member by mem-

ber, from the equation

y* = 2px,

= 2p{x — x"\

y") = 2p{x - x"\

which ig the equation of the parabola, with the condition mtro-

duced that the given point shall be on the curve. Combining this
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with equation (1), by substituting the value of y — y", taken

from (1), we obtain

(y + y") d{x - X") = 2p{x - x'%

or

t(y + y")d - 2p]{x - X") = (2),

m which x and y must represent all the points common to the

right line and curve, Art. (27). This equation being of the^second

degree, there are two such j)oints, and only two ; and the equa-

tion may be satisfied by placing the factors separately equal to

0. Placing

X — x" — 0, we have x = x"^

and this value in (1) gives y = y". The values thus obtained

are the co-ordinates of the given point, which is one of the points

common to the two lines. By placing the other factor equal to 0,

we have

(y -I- y")d ~ 2\ = 0... (3),

in which y must be the ordinate of the second point of intersection,

M'. If now, the right line be revolved about the point M, so as to

cause the point M' to approach M, y in equation (3), becomes

nearer and nearer equal to y", and finally, when the two points co-

incide, we shall have y = y", the line will be tangent to the

curve, and equation (3) reduce to

2y"d = 2jL>, whence d =z ±-

,

y"

which is the value d must have when the assumed line becomes a

tangent. Substituting this value of d in (1), we have

y - /' = L.(x - x'%
y"

or
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yy" — y"^ — px - px",

which by the substitution of 2^;^" for y"^. becomes

yy" = 2A^ + ^") (4),

for the equation of a tangent line to the parabola at a given point.

91. If we multiply both members of the last equation by 2,

and subtract the result, member by member, from the equation

y"2 = 2px",

we have

/"« — 2yy" = 2px,

H^'

adding y^ to both members,

y"« - 2yy" -{- y» = y^ — 2px,

or

{y" — yY = y^ - 2px,

The first member being a perfect square, is positive for all

values of y except y = y"
;

y* — 2px,

is therefore positive for all values of y and x^ except y = y",

X — x"y. when it will be ; hence, since x and y are the gener-

al co-ordinates of the tangent, all points of the tangent^ except the

point of contact, are without the curve, Art. (87).

92. If in equation (4), Art. (90), we make y = 0, we find
A.

y\ 2^^^^^^^^^ = j9 (a; -f x'% or a; = — a:",

V for the distance AT, to the point in

which the- tan

hence, we have

Yl = TA + AP
^ which the- tangent cuts the axis

;
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The distance PT is called the suhtangent, which, in general, is

the distance from, the foot of the ordinate of the point of contact^ to

the point in which the tangent cuts the axis, to which the ordinate

is drawn ; and in the parabola, is equal to double the abscissa of

the point of contact.

This property gives a simple method of drawing a tangent to a

|»arabola at a given point. Let M be the point. From the vertex

lay off, on the axis Avithout the parabola, a distance AT, equal to

the abscissa of the given point ; draw a right line from the ex-

tremity of this distance to the point of contact, it will be the re-

quired tangent. ^

93. If the point M be joined with the focus F, we have,

Art. (88),

FM = X" + I. rf

But since AT

we also have

= x^\ and AF=-^, -i^. t f—

L

'

2 5'
-p-^V^ \

Yl = x" + ^

;

o

hence, FM = FT, the triangle TFM is isosceles, and the angle

FMT = FTM.

Hence, if a right line be drawn from the focus of a parabola to

the point of contact of a tangent, this line will maJce an angle with

the tangent equal to that tohich the tangent makes with the axis.

This property enables us to make the following constructions.

First. To draw a tangent to the parabola at a given point.

Draw a right hne from the point, as M, to the focus ; with this

line as a radius and the focus as a centre, describe an arc cutting
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the axis, without the curve, in a point, as T ; draw a right line

from this to the given point, it will be the required tangent, as the

triangle MFT will be isosceles.

Or otherwise, thus. Draw a right line through the given point

perpendicular to the directrix
;
join the point C, in which it inter-

sects the directrix, with the focus,

and through the given point draw

a right line perpendicular to this

last line, it will be the tangent.

For, since MF = MC, the tri-

angle CMF is isosceles and there-

fore the angle FMT = CMT

;

GMT = MTF; hence,

FMT = MTF.

Second. To draw a tangent from a point without the curve, as

N. Join the point with the focus ; with this distance as a radius,

and the given point as a centre, describe an arc cutting the direc-

trix in the points C and 0'
; through these points, draw lines par-

allel to the axis, cutting the curve in the points M and M'
;
join

these points with the given point and we shall have the tangents

NM and NM'. For, sine*

MF = MC, and NF = NC,

the line NM has two of its points equally distant from the points

F and C, is therefore perpendicular to FC at its middle point and

bisects the angle FMC.

Let the co-ordinates of the given point N, be denoted by x' and

y'. Since this point is on the tangent, we must have the equation

of condition. Art. (23),

y'y" = p{x' -f X") (1),

and since the point of contact is on the parabola, we also have the

equation of condition,

y"^ = 2px".
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In these equations x" and y" are unknown, and since .one is of

the first and the other of the second degree, their combination

will give an equation of the second degree, and there will be two

values of x" and two corresponding of y".

Combining these equations by substituting the value

x" = 1—,
2p

m the first, we obtain

y/2 _ 2y'y" = - 2px' (2),

from which we deduce the two values

7j" = y' dcz vi/2~ir~22^

The values of y" will evidently be real, when

y'^ — 2px' > 0,

that is, when the given point is without the curve, Ai-t. (87), and

there will be two tangents, as appears by the geometrical construction.

The values of y" will be equal when the point is on the curve

and there will be but one tangent.

They will be imaginary when the point is within the curve and

there will be no tangent.
"

The corresponding values of x" being found, each set of co-or-

dinates may be substituted, in succession, in equation (4), Art. (90),

and the equations of the two tangents thus determined.

Third. To draw a tangent parallel to a given line as SR. Pro-

duce the line until it intersects the axis at S, with the focus as a

centre, and the distance FS as a ra-

dius describe an arc cutting the

given line in R, join this point with

the focus, the point M, in which the

last line intersects the curve will be

the point of contact, through which

draw MT parallel to the given line,

8
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it will be the required tangent. For, since MT is parallel to RS,

and FS = FR, we have

FM = FT.

94. Since the triangle FMT is isosceles, the line FD, drawn per-

pendicular to the base MT, will pass

through its middle point; and since

AT = AP, Art. (92), the line AD
also passes through the middle point

of MT : Ilence, iffrom the focus of a

2mrahola, a right line be drawn perpen-

dicular to any tangent^ it icill intersect this tangent, on the tangent

at the vertex ; and conversely.

Since the triangle FDT is right angled at D, we have

FD* == AF X FT, ^

and since AF is constant and FT = FM ; the square • of the

perpendicular FD, will vary as the first power of the distance from

the focus to the point of contact.

95. If in equation (1), Art. (93),

y'y" =z p [x' + x"). .(1),

we regard x" and y'' as variables, it will be the equation of a right

line, Art. (25) ; and since both

values of x" and y" deduced

from equation (2), Art. (93),

must satisfy this equation, the

line represented by it will pass

through both points of contact,

and will therefore be the inde-

finite chord which joins these
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points. If any point as O, be taken upon this chord, its co-ordinates,

which we will denote by c and c7, when substituted for x" and y"

will satisfy the equation and give the condition

y'd = p(x' + c) (2).

Now it is evident, that every set of values for x' and y' which

will satisfy this equation, will give a point from which, if two

tangents be drawn to the parabola and the points of contact be

joined by a chord, this chord will pass through the point O.

Hence, if y' and x' be regarded as variables in this equation, it

will represent a right Hne every point of which will fulfil the above

condition.

This line is called the polar line of the point 0, which is called

the pole.

If through the point O, a line be drawn parallel to the axis AX,

the ordinate of the point in which it intersects the curve will be

equal to d, and the equation of a tangent to the parabola, at this

point, will be. Art. (90),
«

yd — p{x + x"),

and this tangent is evidently parallel to the line represented by

equation (2), that is to the polar hne. Art. (28),

If the line OA' be further produced till it intersects the polar

line in N, the ordinate of this point will be d, which substituted

for y' in equation (1), will give

y'>d = p {x' 4- x"),

for the equation of the chord corresponding to this poiiXt N, and

this is parallel both to the polar line and tangent.

Tliese properties give the following constructions :

1. The pole being given, to construct the corresponding polar

line.

Through the pole draw a line parallel to the axis of the para-

bola ; at the point in which this intersects the curve, draw a
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tangent ; through the pole draw a chord parallel to this tangent,

and at its extremity draw another tangent ; through the point in

which this intersects the line first drawn, draw a line parallel to thft

chord, it will be the polar line.

2. The polar line being given, to construct the pole.

Draw a tangent parallel to the polar line ; through the point

of contact draw a line parallel to the axis ; from the point in which

this intersects the polar line, draw another tangent ; through the

point of contact thus determined, draw a chord parallel to the

polar line, it will intersect the line parallel to the axis in the re-

quired pole.

'/S' 96. If the focus be taken as the pole, the co-ordinates of which

are

d = 0, c z= ^.
2

equation (2) of the preceding article reduces to

0= p{x' + -|-), or X' = ^ ^,

y' heing indeterminate^ which is the equation of the directrix, Art.

(21). The directrix is then the polar line of the focus. Hence, if-

any chord he drawn through the focus of a parabola and two tan-

gents he drawn at its' extremities^ these tangents will intersect on the

directrix. - A

97. If in the general equation of a right line passing through

a given point. Art. (29), we substitute for x' and y', the co-ordi-

nates of the focus, we shall have

> y = a{x-L.) (1),
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for the equation of any chord passing through the focus. Com-

bining this with the equation of the parabola, y"^ = 2px^ by

substituting the vahie a; = jL
, we have

2p

a{yl-l.\ or y^-^Pl^pK

Denoting the two roots of this equation by y' and y", we have

from a well known principle of Ali^ebra,, «/ " / r-

y'y" = - i^\

and if d and d' denote the tangents of the angles made with the

-jZ axis, by two tangents drawn at the extremities of this chord, we

have, Art (90),

whence.

d=P., d'-^l.',
y' y"

dd' = ^,

or substituting for y'y" the above value,

dd' — — 1, or dd' '\- 1 =z 0.

Hence, Art. (28), if at the extremities of a chord passing through

the focus of a parabola^ tioo tangents he drawn^ they will he perpen-

dicular to each other, and intersect on the directrix, Art. (96).

And conversely, if ttoo tangents to the parahola areperpendicular

to each other, the chord joining their points of contact wiU pass

through the focus. For, let S'M and

S'M" be the two tangents. If the

chord MM" does not pass through the

focus ; through the focus and the point

M, draw MM' ; at M' draw the tangent

M'S. From what precedes, it must

be perpendicular to MS' ; hence, SM'
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and S'M'' must be parallel. But since the tangent of the angia

which a tangent to the parabola makes with the axis is J^ , Art.
y"

(90), no two tangents can be parallel, for no two points have equal

ordinates. It is then absurd to 'suppose that MM'' does not pass

through F.

98. Through the point of contact of a tangent, let anj other

straight line be drawn, its equation will be of the form. Art. (29),

y - y" = d'{x - X") (1).

If this line is perpendicular to the tangent, we must have, Art

(28),

dd' + 1 = 0, or d' =

But,

lence

Art. (90),

d

d>

y"

Substituting this in equation (1), we have

y - y" = - '^{x - X") (2),

P

for the equation of a straight line perpendicular to the tangent at

the point of contact. This line is called a normal.

If we make y = 0, in equation (2), we have

- y" = - yl{x _ x"),

P

or

X — X" = Py
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ill whicli, X is the distance AR from the origin to the point in

which the normal intersects the axis, and

a: — a;" = AR - AP = PR = IX

The distance PR, from the foot of the

ordinate of the point of contact, to the

point in which the normal cuts the axis, is

called the subnormal. Hence, the subnor-

mal in the parabola is constant and equal to half the parameter of

the curve.

This property enables us to construct a tangent at a given point.

Draw the ordinate of the point ; from its foot lay off a distance

equal to one half the parameter
;
join the extremity of this dis-

tance with the given point, through which draw a perpendicular

to the last line, it will be the required tangent.

OF THE PARABOLA REFERRED TO OBLiaUE CO-ORDINATE

AXES.

99. It was observed in Art. (71), that two classes of proposi-

tions might arise in the transformation of co-ordinates. As an ex-

ample of the second class, let it now be proposed to ascertain if

there are any other co-ordinate axes, to which if the parabola be

referred, its equation will be of the same form as when referred, to

its axis and the tangent at its vertex.

For this purpose, let us take the general formulas (3), Art. (67),

X = a -{- x' cos a -^ y' cos a',

y = 6 -{- a:' sin a -|- y' sin a',

and substitute the values of x and y in the ec nation

r 'Zpx. .(X).

We thus obtain
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b^ + 2bx' sin a -f- x'^ sin* a -{- 26?/' sin a' + 2a;'y' sin a sin a,'

+J^!?-Sin^ a' = 2pa + 2/>x'' cos a + 2p7/' cos a',

or transposing, arranging and omitting tlie dashes of tlie variables,

2/2 sin* a' + ^* sin* a + 2x]( sin a sin a'

+ 2(6 sin a' — p cos a')?/ + 6* — 2pa = 2[pcoa a —6 sin a)x...(2),

which is the equation of the parabola referred to any oblique axes.

In order that this equation shall be of the same form as equation

(1), the absolute term, in the first member, and the terms contain-

ing a;*, xy, and y, must disappear, ^Yhich requires that

6* — 2pa = (3);

sin* a = (4);

sin a sin a' = (5) ;

6 sin a' — ^ cos a' = (6).

These equations contain four arbitrary constants, it is therefore

possible to assign such values to the constants as to satisfy the four

equations, and thus reduce equation (2) to the proposed form.

Equation (3) is the equation of condition that the new origin

shall be on the curve, Art. (87).

Equation (4) can only be satisfied by a = 0, or =1 80°
;

hence the new axis ofX must he parallel to the axis of the curve.

Equation (5) is satisfied by sin a = 0, without introducing

any new condition.

Equation (6) can be put under the form

sin cl' .

f p= tans: a'
^

cos a b

and therefore, Art. (90), expresses the condition that the new axis

^ofY shall be tangent to the curve.
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Since we have thus far introduced but three independent con-

ditions, and since a, b and a' are still undetermined, we may assign

a value at pleasure to either of them, whence the other two will

become known, and an injiniie number of sets of co-ordinate axes

be thus determined, which will fulfil the required condition,

each of which will be subjected to the three conditions expressed

by equations (3), (4) and (6).

Substituting the above conditions in equation (2), and observing

that, since sin a = 0, cos a = 1, we have

N. 2/2 sin^ cc' = 2px, or y^ = —^ x
;/-^ sin^ a'

or, denoting the coefficient of x by 2p'

y^ = 2p'^ (V),

an equation of the same form as (1).

100. Solving the last equation with reference to y, we find

y = =fc V2p%

and we see, as in Art. (85), that every positive value of x, gives

two real values of ?/, equal with contrary

signs, and that these two values taken to-

gether form a chord, as MM', parallel to

the axis of Y, which chord is bisected by

the axis of X, at P. The hne A'X is

therefore called a diameter of the parabola;

and, in general, any straight line ivliich bi-

sects a system ofparallel chords is a diameter, of the curve in which

the chords are drawn. The points in which a diameter intersects

the curve are called the vertices of the diameter.

Since condition (4) of the preceding article requires the new

axis of X to be parallel to the axis of the curve, it follows that all

the diameters of the parabola are parallel to each other.



122 INDETERMINATE GEOMETRT.

Since condition (G) requires the new axis of Y to be tangent to

the curve at the origin, it also follows that each diameter bisects a

system of chords parallel to the tangent at its vertex.

If the parabola is given, traced upon paper, a diameter may be

found by drawing any two parallel chords as MM' and bisecting

them by a straight line as PP ; this line will be a diameter.

Draw any two chords perpendicular to this diameter and bisect

them by a straight line, this will be

the axis. Art. (85). At the vertex

of the first diameter, A', draw a line

parallel to the chords which it bi-

sects, it will be a tangent to the

curve. At the vertex. A, of the

parabola, draw a line perpendicular

to the axis, it will also be a tangent.

At the point D, where these tangents intersect, draw a perpendi-

cular to the first, it will intersect the axis in the focus F, Art. (94).

The property, that each diameter bisects a system of chords

parallel to a tangent at its vertex, suggests the following construc-

tion for drawing a tangent parallel to a given line, as BC. Draw

two chords parallel to the given line ; bisect them by a straight

line PP, and at the point A', where this intersects the curve, draw

a line parallel to the given line, it will be the required tangent.

101. The coefiicient 2/ in equation (7), Art. (99), is called the

parameter of the diameter A'X, and, as in Art. (84), is a third

proportional to any ordinate and its corresponding abscissa.

If we represent the distance FA' by r, and recollect that the

angle FA'D = FTD is denoted

by a', Art. (99), we shall have in

the right angled triangle FI^A'

FD = rsina'.

or
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FD* = r2siii«a'.

But we also have, Art. (94).

FD* = FA X FA', or FD' = •? r.

2

I Equating these two values of FD*, we have

r* sin'^ a' =: -L r
; whence sin^ aJ z=. —.

2 2r

Substituting this value of sin'* a', in the expression, Art. (99),

sin* a'

it reduces to

2^ = 4r

that is, </ie ^parameter of any diameter of the parabola, is equal to

four times the distancefrom the vertex of the diameter to the focus.

102. Let a;" and y" be the co-ordinates of any point of the

parabola referred to the diameter A'X J
and the tangent A'Y. The equation of

a right Hne passing through this point

will be

y — y" =. d{x — x'%

in which d will represent the ratio of the

sines of the angles which the line makes with the co-ordinate

axes, Art. (20).

By a process identical with that pursued in Art. (90), we can

find the value of d, when the line becomes a tangent, and thus de-

duce the equation of the .angent,
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yy" = p'{x + x").

By making y = 0, we find

X = — x" = A'T;

hence as in Art. (92), the subtangent PT, is equal to twice the ah-

scissa of the point of contact. And a tangent may be drawn at a

given point by drawing the ordinate MP, of the point, parallel to

the axis A'Y, laying off the distance A'T equal to the abscissa

A'P, and joining the extremity of this distance with the given

point

103. Let AM be an arc of a parabola, in which inscribe any

polygon, as AM' MP. At the points M, M', &c., draw the

tangents MT, M'T', &c.

Through the middle points

of the chords MM', &c.,

draw the diameters RS,

2'A^p' jB' jp R"S', &c., and draw the

ordinates MP, M'P', &c. It is evident that for each chord there

will be a trapezoid, as MM'P'P, within the parabola, and a corres-

ponding triangle, as OTT', without.

Since the points of contact M and M', when referred to the di-

ameter RS and tangent line at its vertex, have the same ab&cds&a

3[R, the subtangent will be the same for each. Art. (102), and the

two tangents MO and M'O will intersect the diameter VS, at the

same point ; hence the altitude of the triangle OTT' will be

equal to the line RR', drawn through the middle points of the two

inclined sides of the trapezoid P'M'MP ; and since,

AP AT, and AP AT',

we have

PF T£'

'^u. fouqj^ in
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hence, the area of the trapezoid, which is measured by

RR' X PP',

is double the area of the triangle, which is measured by

IrR' X TT';
2

and so for each trapezoid and corresponding triangle, and the sum

of all the interior trapezoids will be double the sum of the corres-

ponding triangles.

If now, the number of sides of the polygon be increased indefi-

nitely, the sum of the trapezoids will be the same as the curvilin-

ear area AM'MP, and the sum of the triangles the same as the

exterior area TMM'A ; hence the first area is double the second.

But the sum of these ]bwo areas is equal to the area of the triangle

MTP, therefore

AM'MP = hlTF.
3

But since TP = 2AP, we have

triangle MTP = rectangle ALMP.

Therefore, the area of a portion of the parabola is equal to Uco

thirds of the rectangle described on the ordinate and abscissa of the

extreme point. ^
OF THE POLAR EaUATION OF THE PARABOLA.

104. Let us resume the equation

2/2 = 2px,

and substitute for y and x, their values taken from the formulai

(2) of Art. (69) ;

a; = a' -f- r cos y, y = 6' -}- r sin v.
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We thus obtain

h'^ + 2 h'r sin v •\- r^ sin' v — 2p[a' -\- r cos v),

or transposing and arranging,

r* sin« V + 2 (6' sin V — ^ cos v) r + h'^ — 2pa' = (1),

whicli is the general 2>olar equation of the parabola^ Art. (69).

By assigning particular values to a' and 6', the pole may be

placed at any point in the plane of the curve.

First. If it be required that the pole shall be on the curve, we

must have. Art. (87),

6'2 — 2pa' = 0,

and equation (1) reduces to

\r sin* V + 2(6' sin v — p cos v)\r = 0,

which may be satisfied by placing r = 0, or

r sin* V + 2(6' sin v — p cos v) = (2).

Since the pole is on the curve, as at P, it is evident, that one

value of ?*_^hould. be 0, whatever be the

value of V ; and that the other value, de-

duced from equation (2), should, as v is

changed, give the distance of each point of

the curve from the pole P.

If the point M is moved along the curve

until it coincides with P, the second value

of r will become 0, and equation (2) will reduce to

b' sin V — p cos v = 0,

or

sm V

cos V
tanjr V z=
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as it should, Art. (90), since the radius vector will now coincide,

in direction, with the tangent PT.

Second. If the pole be placed at the focus, we must have

a' = Z., 6' = 0,

and these values, in equation (1), give

r' sin* V — 2p cos vr — p* =. 0,

and after transposing jp* and dividing by sin' v,

2p cos V
, _

sin^ V sin' v

Solving this equation, we have

or

p cos "0
y^ A I V^ V^ cos* V— —r-^ ± V -T-^— H —^ »

p cos "0 . A>* (sin'' V \- cos^ v) p cos v dr jp

sin* V ^
sin^ v sin* v

since sin* v + cos* v = 1.

As the cos V inu<5t be less than radius or unity, we have

/) cos V < p^

and the second value of r is always negative^ and must therefore,

be rejected. Art. (09). The first value may be placed under the

form

p (cos V + 1)
r = ;_ ,

sm' V

and since
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sin* V = 1 — COS* V = [l -{ COS v) (l — cos v),

it may be still furtlier reduced to

•(3),r = P
1 — COS V

which is positive for all values of v.

If V = 0, cos V = Ij and the value of r becomes

and the radius vector takes the direction AX, and gives that 2)oint

of the curve which is at an infinite distance.

li V = 90°, cos V = 0, and the value

of 7' becomes

~^.^

r = p = FM.

If V = 180°, cos v = — 1, and

= Z. = FA.
2

Thus by varying v from to 360°, all the points of the para-

bola may be determined.

If we wish to estimate the variable angle from the Hne FA, to

the right, instead of in the usual way, from the hne FX to the

left, we have simply to change v into 180° — -y', in which

case cos V = — cos v', and the value of r, equation (3), be-

comes

1 + cos v'

in which v' = 0, gives r = j^, and v' = 180°, gives
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OF THE ELLIPSE AND HYPERBOLA.

105. We have seen, Art. (83), that the equation

y% _ ,.2^2 ^ 2i;a', or if = 1]px + r'^jc^ (1),

represents the elHj^se when ?•- is negative, and the h3'perbola when

it is positive.

This equation being of the second degree, the ellipse and hyper-

bola are both lines of the second order, Art. (33).

If in the equation, we make x = 0, we find

y = ± 0;

iience the axis of Y is tangent to each curve, at the origin of co^

ordinates, Art. (34).

If we make ?/ = 0, we have

2px + r2^2 = 0, or x{2p -f r'^x) = 0,

\^hich may be satisfied by making

X = 0,

or

2p -f r^x = ; whence x = 2;>.

hence each of the curves intersects the axis of X in two points,

one at the origin, and the other at a distance from it equal to

__ 2p

Now let us transfer the origin of co-ordinates, to a point on the

axis of X, at a distance — — , equal to half the distance from
y.2

the origin to the second point in which the curve cuts the axis

;

the new axes being parallel to the primit' re. In formulas (2), of

Art. (67), we must then have

9
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o' = _ 4, 6- = 0,

and tlie formulas become

^' y = y-

Substituting these values of a; and y in equation (1), we have

or reducing and omitting the dashes,

yi ^ ,,2^8 __ fi (2).

If in this we make y = 0, we have

^^ = ^! (3), or a: == ± 4;

hence, each curve now intersects the axis of X in two points, one

on the right and the other on the left of the origin, at equal dis-

tances from it.

If X = 0, we have

7/a = - il (4), or y = db \/- ^,
V y.2

and these values of y will be ronl for the ellipse, and imaginary for

the hyperbola ; hence, the ellipse intersects the axis of Y in two

points, at equal distances from the origin, one above and the other

below the axis of X ; and the hyperbola does not intersect the axis

of Y.

Giving to r* its negative sign for the ellipse, expressions (3) and

(4) will be essentially positive, and we may write
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from which, by deducing the values of 2^^ and equating them, wo

have

aV =. ~ r26«, or r« = — ^;

and substituting this in either of the above equations, we find

b* b-»

p^ = —. or p =—.
a* a

By the substitution of these values of r* and p"* in equation (2),

and reducing, we have the equation of the ellipse,

ahf + 6«jc« == «»6* {e).

For the hyperbola — — is essentially negative, we must

then place it equal to — 6*, while the expression for a' will remain

unchanged. If then, in the above equation, we simply change 6^

into — l)^, we obtain the eqtiation of the hyperbola,

a'if _ 6%« = _ a%^ (A).

Furthermore, it is evident from the preceding discussion, that

any expression containing 5, belonging to the ellipse, will become

the corresponding one for the hyperbola, by changing 6* int^

— t*, or b into b V— 1.

^ n
106. Solving equation (e) with reference to y, we have

"'
= 5^"' - ^'^' ^ = =*= T v^"^^^ (1),
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« X

in which every value of x numerically less than a, whether positive

or negative, gives two real values of y equal with contrary signs :

Ilence, C being the origin, CX and

CY the axes of co-ordinates, and

CB and CA each numerically equal

to a, the curve is continuous be-

tween the points A and B; and

since each set of the equal values

of 2/ forms a chord as MM', which

is bisected by the axis of X, the curve is symmetrical with respect

to the line AB.

X = + a or — a, gives

2/ = db 0;

hence the ordinates at the points A and B, when produced, are

tangent to the curve. And as every value of x numerically greater

than a, positive or negative, gives imaginary values for y, there

are no points of the curve without the tangents at A and B.

y = gives

a: = =h a = CB or CA

;

and since the line AB bisects a system of chords perpendicular to

it, it is an axis of the curve, Art. (85), and A and B are its vertices.

X = gives

y = ± 6 = CD or CD'.

Any number of other points of the curve may be constructed

by assigning values to x in equation (l), deducing and ccnstruct-

ing the coiTcsponding values of y, and the curve in form and po-

sition will be as in the last figure.

If equation (e) be solved with reference to .-r, we have

^ = =t
^ V6« - 2/S
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from which it may be shown as above, that the curvo is symme-

trical with respect to the axis of Y, and does not extend beyond

the tangents at D and D', and that the line DD' is an axis of the

curve.

The definite portion of the line AB, included within the ellipse!,

is called the transverse axis, and the portion DD', the conjugate

axis ; the transverse axis being the longest of the two.

The point C, in which the axes intersect, is the centre of the

ellipse.

The vertices of the transverse axis are also called the vertices of

the curve.

Equation (e) is called the equation of the ellipse referred to ii&

centre and axes ; in which a represents the semi-transverse, and h

the semi-conjugate axis.

107. If we solve equation {h), Art. (105), with reference to y,

we have

y' = ^ (^' - «% Vl

in which every value of x numerically less than a, positive or

negative, gives imaginary values

of y : Hence, C being the ori-

gin, CX and CY the axes of co-

ordinates, and CA and CB each

numerically equal to a, there-

are no points of the curve be-

tween A and B.

ic = -f a or — cr, gives

y = ± 0;

hence, the ordinates at the points A and B, when produced, are

tangent to the curve. Every value of x greater than «, positive or
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negative, gives two real values of y equal with contrary signs
;

hence, the curve is continuous and extends to infinity in both di-

rections beyond the points A and B, and is symmetrical with re-

spect to the axis of X.

y = gives

a; = db a = CA or CB,

and since the line BA produced, bisects a system of chords perpen-

dicular to it, it is an axis, and the definite portion BA = 2a,

included between the points A and B, is called the transverse axis

of the curve, the points A and B being its vertices or the vertices

of the curve.

X = gives

,f = - b\ y = rt J V - 1;

hence, the curve does not intersect the axis of Y.

A sufficient number of other points being constructed from the

equation, the curve may be drawn as in the figure, the two

branches being equal, since values of x which are numerically

equal with contrary signs, as CP and CP' give the same values

for y.

If equation (A) be solved with reference to ar, we have

^ = ^l Vy^ + 6«,

in wh-<. h every value of y gives two' real values of x, equal with

contraiy signs ; hence, the line CY is an axis of the curve. This

line, as seen above, does not cut the hyperbola, but if we lay off on

it from C, distances above and below each equal to 6, the portion

DD' = 26 is called the conjugate axis^ the point C being the

centre of the hyperbola.

Equation (/?) is called the equation of the hyperbola referred to

its centre and axes, in which a and b represent the semi-axes.
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108. If in equations (e) and (A), and, in general, in the equa-

tion of any curve, we change x into y

and y into x, the effect is to change the

linO' which at first is regarded as the

axis of X, into the axis of Y and the

converse ; or if the curve is symmetri-

cal with respect to the axes, to revolve

it 90° about the origin. Thus if the

equation

represents the elHpse as indicated by the full line, the equation

a2.T2 + b^y^ = a262,

will represent it as indicated by the broken line.

109. If a point is on the ellipse, its co-ordinates must satisfy

the equation of the ellipse. Art. (23), and we must have

a^y^ + ¥x^ - a^^ = 0.

If the point is without the ellipse, y will be greater than the cor-

.esponding ordinate of the ellipse, Art. (37), and we have

oV* 4- h^x^ —„a%^ > 0.

If it is within the ellipse

110. The corresponding conditions for the hyperbola, by

changing, in the above, b^ into — 5', Art. (105), will be

a^yi _ b^x^ + a^* > 0.

aV« - b^x^ + a^b* < 0.
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111. If a = 6, tlie axes of the ellipse are equal, and equa-

tion {e) becomes *

2,2 + a;2 =: a2,

which is the equation of a circle, the radius of which is equal to

either semi-axis. Art. (35).

1]2. Under the same supposition, equation {ji) becomes

y2 _ a;2 — _ ^2,

and the curve is called an equilateral hyperbola.

113. If through the centre of an ellipse any right line be

WiT drawn, its equation referred to the

axes CX and CY, will be

y = d'x (1,)

^ in which d' represents the tangent

of the angle which the line makes

with CX, Art. (24).

Combining this with equation (e), by substituting for y^ its yalue

rf'*a:', we obtain

whence, for the abscissas of the points of intersection. Art. (27),

we have

= w; a%^

and by the substitution of this in equation (1),

y = d= a' \/ .

^ d'^a^ -f-
&»
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Since these values of x and y are real for every value of d', it

follows that whatever be the position of the line CM, it will inter-

sect the ellipse in two points; and since the co-ordinates of these

points are equal with contrary signs, they will be on opposite sides

of the origin, and at equal distances from it, as at M and M'.

Hence, every straight line passing through the centre of an ellipse

and terminated by the curve is bisected at the centre.

114. If in the above expressions we put — b^ for &*, the cor-

responding values for the hyperbola are

which are real, whenever

C?'2a2 - 62 < 0, or d' <^,

that is, whenever d'^ either positive or negative, is numerically less

than — , the line will cut the hyperbola in two points and be bi

sected at the centre. If

d' =

the values are both infinite, and the points of intersection are at

an infinite distance from C. If

d- > 1,

the values are imaginary, and the

line will not intersect the curve.

Hence, if at the point A, we erect

the perpendiculars AE and AE',

each equal to 6, and draw the

lines CE and CE', these lines will

just limit the curve, since
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tang ACE = d' .= — .= L
*' CA a

115. If we multiply both members of the expression p z= —
,

a

Art. (105), by 2, we have

2i> = —

,

a

which as in the parabola, Art. (84), is called the parameter, and

gives the proportion

a : b :: 2b : 2p, or 2a : 2h : : 26 : 2p.

Hence, the parameter of the ellipse or kype^'bol^i is a third pro-

portional to the ti'ansverse and conjugate axes.

116. If in equation (e), we substitute for y the expression _,
a

we find

a;2 = a« — b% or x = dz Va^ — b^\

and conversely, if either of these values be substituted for x, we

shall find

2/ = ± —

;

a

from which we see, that there are two points on the transverse

axis of the ellipse, at which, if an ordinate be drawn, it will be

equal to one half the parameter of the curve ; hence, the double

ordinate^ or the chord perpendicular to the transverse axis, at each

of ihtse points, is equal to the parameter of the curve.



INDETERMINATE GEOMETRY. 139

These points are called the foci of the ellipse, and may be con-

structed thus : With either extremity of

the conjugate axis as a centre, and the

semi-transverse axis as a radius, describe an

arc, the points in which this arc cuts the

transverse axis will be the foci. For in

the right angled triangle DCF or DCF', we have, Ait. (4),

CF* = CF'3 = a* - 6^ CF = CF' = ± V^ h\

117. For the hyperbola, the values of ar, in the preceding

article, become

= rfc Va^ + h\ .(1),

either of which substituted in equation (A), will give

y = do —y

and the points determined on the transverse axis, by laying off the

above values of x arc the foci of the hyperbola, and may be con-

structed thus : At either vertex of

the hyperbola erect a perpendicu-

lar equal to h
;
join its extremity

with the centre ; with the last hno

CE, as a radius, and with the

point C as a centre, describe an arc ; the points in which this arc

outs the transverse axis produced, will be the foci. For we have

CF* = GE' = a' -\- h\ CF = CF = d= Va2 + b\

1̂18. The distance from the centre to either focua of the ellipse,
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divided by the semi-transverse axis, is called the eccentricity of the

curve, the expression for which is

If a = 6, this reduces to ; hence, the excentricity of a circle

is nothing, and the foci are at the centi'e.

119. The expression for the eccentricity of an hyperbola, is

OL.

which, when a — b, Art. (112), reduces to a/2.*

120. If wo denote the distance CF by c, and the distance from
^ any point of the ellipse, as M, to the focus

F, by r, the general expression for the

^ square of this distance will be, Art. (IV),

in which

^^,

CT ^ 3f

(^ - ^'Y + (y - '/)'»

y = 0;

whence

FM* = 7'« =t (ar — cf 4 y\

and this, by the substitution of the values

* Note.—As the eccentricitj of the ellipse is always less tiinn l,aiil

that of the hyperbola greater than 1, it follows that the eccentricity <;,

the parabola is equal to 1.



INDETERMINATE GEOMETRY. 141

becomes

^» = a;2 — lex + a8 — -lx\

or

r* = -
a^ - 2ca^x + c^x^.^^9^- f^^sC ik

and extracting^lie square root,

a^ — ex ex /^s
r -.= _— ^ ^ a (1),

Using tlie plus sign -of the root only, as we require merely tlie ei-

jiression for the length of FM.

Since CF' = — c; if in the above expression (1), we put

— c for c, we shall evidently obtain the distance F'M, which we

denote bv r' ; hence,

'^ = <^ + - (2).
a

Adding equations (1) and (2), member to member, we have

r ~\- r' = 2a
;

hence, the sum of the distances from any point of the curve to the

two foci is cq?ial to the transverse axisi

This remarkable property enables us to define an ellipse to be, a

curve such, that the sum of the distances, from any point to two fixed

jwiuts, is always equal to a yiven line.

It also gives the following construction, of the curve by points,

the foci and transverse axis being given. \;,£

I>ivide the transverse axis into any two

parts, the point of division being between / ^^.-^^ \ \
the two foci, as at E; wiili oiui part EB ^ F' M J<! B
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as a radius, and one focus F, as a centre, describe an arc ; with the

other part AE, as a radius, and the other focus as a centre, describe

a second arc ; the points of intersection of these arcs will be points

of the ellipse. For we have

FM + F'M = EB + AE = 2a.

The curve may also be constructed by a continuous movement,

thus : Take a thread, in length equal to the transverse axis, and

fasten an end at each focus
;
press a pencil against the thread so

as to draw it tight ; the point of the pencil as it is moved around

will describe the ellipse ; for the sum of the distances, fjom this

point to the foci, is always the same and equal to the transverse

axis.

^^A(C^ 121. If F and F' are the foci of the hyperbola, and the dis-

7 ^ tances FM and F'M be denoted by r and r', we may deduce ex-

pressions for them from ex-

pressions (1) and (2) of the

preceding article, by chang-

-M^ x_j^__j__ ing ly^ into —- 6*, the only

effect of which will be ta

make c = yo^-i- V^ in-

k

stead of Va^--^, and

as for all points of the curve x must be greater than a. Art. (lOV),

— must also be greater than a, and the expression for the nu-

3
m^rical value of FM = r will be

r^ - - « ^(3).
a

The form of the expression for r' will remain unchanged ; hence,

r' = -~ -f- « W.
, a
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Subtracting the first of these from the second, we have

r' — r = 2a;

hence, the difference of the distances from amj point of tlie curve to

(he iioofoci, is equal to the transverse axis ; and the hyperbola may

be defined to be, a curve such, that the difference of the distances

from- any point to two fixed points is equal to a given line.

The curve may be constructed by points thus : With one focus

F' as a centre, and any radius F'E, greater than the distance to

the farther vertex, describe an arc ; with the other focus and a

radius FM, equal to the first radius minus the transverse axis, de-

scribe another arc ; the points of intersection will be points of the

curve. For, we have

F'M — FM = 2a.

It may also be constructed by a continuous movement. Take a

rule of sufficient length as F'L, and fasten one end at the focus

F' ; at the other end of the rule fasten one end of a string shorter

than the rule by the transverse axis ; fasten the other end of the

string at the other focus, F
;
press a pencil against the string and

rule ; as the rule revolves about the focus F', the point of the

pencil will describe the branch AM. For, we have

PL -• 2a =-- FM + ML,

or

henco

F'L — ML - FM = 2rt

F'M — FM = 2a,

By placing the end of the rule at F, the other branch may be

described.
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122. By a reference to equations (1) and (2), Art. (120), it is

seen that the distancefrom any point of the curve to either focus is

expressed rationally in terms of its abscissa.

This remarkable property of the foci is possessed by no other

points in the plane of the curve. For, if there is any other point,

let its co-ordinates be x' and y'
; x and y denoting the co-ordinates

of any point of the curve. The square of the distance from x, y,

to x', y'. Art. (IV), is

I)^ = {x - x'Y + {y - y'Y,

or squaring x — x' and y — y', and substituting for y its

vahie

a

we have

1>2 = — ^x^ — 2xx' + x'^ + b^=P 2y'A W^2 _ ^2 , ^/a
a^ 'a T y •

It is evident that the value for D can not be rational, in terms

of X, unless the term containing the radical disappears. But this

can not be unless y' j= 0, that is, the required point must be

on the axis of X. Substituting this value for y', D'^, after changing

the order of the terms, becomes

D2 = {h^ -f x'^) - 2xx' +
'''' ~ ^' x\

a^

Now no value of x' can make this expression a perfect square

unless it makes the first and last terms perfect squares, and twice

the square root of their product equal to the middle term, that is,

we must have

i« -f x'^ = m«, ^^Lziilir* r= n\ — 2xx' = 2mn,
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vi^ and n^ being two perfect squares. From the last expression

we havft

!.« —

in which, substituting the value of n^ taken from the second, we

have

wi^ = aVa
aa _ 63

Substituting this in the first, we have

5« + x'^ =
a2 - 6»

'

which can be satisfied for no values of x', except

X' = ± Va^ - b% ^\ \ ^
j

the abscissas of the two foci.

In a similar way it may be shown, that the foci of the hyperbola

and parabola alone possess the above named property.

H
123. If in equation (//-) we substitute h for y, w^e deduce

a;2 = 2a2, x = a V^',

therefore, the abscissa of that point of the hyperbola, whose ordi-

nate is equal to the semi-conjugate axis, is equal to the diagonal

of a square, the side of which is

the semi-transverse axis. Hence,

the curve and transverse axis

being given, the conjugate axis

may be constructed thus : At the

vertex A, erect a perpendicular AR = a
;
join the extremity,

10

I \^
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with the centre ; with C as a centre, and CR as a radius, describe

an arc cutting the transverse axis in 0, at which erect the ordinate

OM ; it will be equal to the semi-conjugate axis. For we have

CO = CR = CA V2 = aV2,

124. If the values

a a'

Art. (106), be substituted in^eg^uation (1) of the same articlet.

giving to r**, first the negative and then the positive sign, we ob-

tain the two equations

y« = ^{2ax - x^) (1),

y^ =^^^ (2a^ 4- ^'') (2),

which are the equations of the ellipse and hyperbola referred to

the axis and principal vertex A. See figures of Arts. (106), (10*7).

125. Let a;', ?/', and x'\ y", be the co-ordinates of any two

pomis of the ellipse. These co-ordinates, when substituted for x

and y in equation (e), must satisfy it, Art. (23), and .give the two

equations of condition

or

y« = -^(a« - x'^) (1), y"' = ^{«* - ^"y
a* a*

Dividing the first by the second, member by member, we have
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^

y!% _ «« — x'^ _ (a + x'){a — x')

y^ ~
a2 — x"'^

~
(a 4- x")(a — x")

'

whence, we deduce the proportion

y'« : y"3 : : (a + a;')(a — x') : (a + x"){a - ar"

But

a -f a/ = AP, a — a;' = PB, J> '

a + a;" = AP', a — x" = PT>.

•i 1

^
T^Tj2

Therefore

MP* : M'P'' : : AP X PB : AP' x P'B

;

that is, the squares of the ordinates of any two points of the ellipse

are to each other as the rectangles of the segments into which they

divide the transverse axis.

For the circle, a = b, and equation (l) reduces to, Art. (36),

7/'2 = a2 -. a:'« = (a -f x')(a — x').

126. By using equation (?i) and pursuing the same method as

in the preceding article, we shall find for the hyperbola

y'« : y"» : : {x' + a){x' -a) : (x" + a){x" a\

or

MP' M'F : AP X BP : AP' x BP',

that is, the squares of the ordi-

nates of any two points of the

hyjyerhola, are to each other as the

rectangles, of the distances from

the foot of each ordinate to the

vertices of the curve.

A i £
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121. If With tlie centre of the eUipse as a centre, and CA = a

- ' 'r-'.^^[' as a radius, a ch'cle be described, its equa-

tion, Art. (Ill), may be put under the

form

Y2 = rt* •(1),

^ in which Y represents the ordinate of any

point of the circle, as MT. From equation (e) we have

y' = ^K x^). •(2),

in which, if x have the same value as in equation (1), y will rcpre«

sent the ordinate MP, of the eHipse. Dividing equation (2) by

(1), member by member, we have

Y8

whence

Y : 7/ : : a : b,

that is, if a circle be described on the transverse axis of an ellipse,

any ordinate of the circle will hs to the corresponding ordinate of the

ellipse as the semi-transverse to the semi-conjiujate axis.

If with C as a centre, and CD = h as a radius, a circle bo

described, its equation may be put under the form

J2 _ y^ (3),

in which X represents the abscissa of any point of the circle aa

RN'. If we obtain tlie value of x^ from equation (e) and divide

by equation (3), we may deduce the proportion

\ '. X '. '. h \ a,

that is, if a circle be described on the conjugate axis of an ellipse,
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any abscissa of the circle will be to the corresponding abscissa of the

ellipse as the semi-conjugate to the semi-transverse axis.

From the first of the above proportions, it appears that the or-

dinate of any point of the circle described on the transverse axis,

is greater than the corresponding ordinate of the ellipse ; hence,

all the points of this circle are ^Yithout the ellipse, except the ver-

tices A and B.

From the second proportion, it also appears that every point of

the circle described on the conjugate axis is within the ellipse, ex-

cept the vertices D and D'.

We also conclude, that of all straight lines, passing through the

centre, and terminating in the ellij^se, the transverse axis is tlie

longest, and the conjugate the shortest.

Upon the above properties, the following constructions of the

ellipse depend.

First. On each of the axes as a diameter, describe a circle ; at

any point of the transverse axis, as P,

erect a perpendicular and produce it, till

it meets the outer circle in M'
;
join this

point with the centre by the line M'C

;

from the point R, where this line meets

the inner circle, draw a line parallel to the transverse axis, the

[K)int in which it meets the perpendicular will be a point of the

ellipse. For, we have

M'P : MP : : M'C : RC : : a : 6.

Second. Take a rule MO, in length equal to the semi-transvetse

axis ; from the extremity M, lay oflF MS
equal to the semi-conjugate axis ; move

the rule so that the extremity O and

the point of division S shall remain, the

first on the conjugate and the second on

the transverse axis ; the point of a pen-

cil at M, will describe the ellipse. For, draw OP' parallel to CB,

/"'
-—'~yvf

/^— -77WA

r //' "^

A. CA
J^' i'
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dutil it meets the produced ordinate MP in P'
;
join M'C, then

the two equal right angled triangles M'CP and MOP' give

MP' = M'P,

and the similar triangles MPS and MP'O give

MP : MP :: MO : MS ;: a : h.

128. Let x"^ y", be the co-ordinates of any point of the ellipse,

as M, and through this point conceive any straight line to be

^j. 2J
drawn ; its equation will

be of the form

y-y" = d{x - x")...{l\

in which d is undetermined. Since the given point is on the

curve, its co-ordinates must satisfy equation (c), and give the con-

dition

Subtracting this, member by member, from equation (c), we

have

w
,/.'(y 4- y/)(y — y") + h\x + x"){x — x") = 0.

Combining this with equation (1), by substituting the value of

V — y" taken from equation (1), we obtain

[rfa«(y + y") + h\x -f x")\{x — x") = 0,

in which x and y are the co-ordinates of all the points common to

tlio right line and curve. This equation being of the second de-

S^veo, there are two such points, and only two. These points may
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be determined by placing the factors, separately, equal to 0.

Placins:

X — x'\X — x" = 0, we have

which in equation (1), gives

y = y",

and these values evidently belong to the given point M. Placing

the other factor equal to 0, we have

da\y 4- y") + h\x + x") = (2),

in which x and y must be the co-ordinates of the second point of

intersection M'.

If now the right line be revolved about the point M, until the

point M' coincides with M, the secant line will become a tangent

;

X and y, in equation (2), will become equal to x" and y", and the

equation reduce to

2dahj" + 26V = ; whence d = — lf_ .ay

Substituting this value of c? in equation (1), we have

h^x"
y - y" = — (^ - x'% '

ahj"

which, since ahj"^ + ¥x"^ = a%^, reduces to

ahjy" + h'^xx" — a%^ (3),

for the equation of a tangent liney to the ellipse at a given ])oint.

If a = 6, the above equation reduces to

yy" + xx" = «S

for the tangent line to the circle whose radius is cu



152 INDETERMINATE GEOMETRY.

129. If we multiply both members of equation (3), preceding

article, by 2, and subtract the result, member by member, from

the equation

we have

ahj"^ — 2ahjy" + h'^z"^ — 2h^xx" — — a%^.

Adding a^y^ + h-x"^, to both members, we have

a\y" — 7jY + h''{x" — xY = a^y"^ -f h^x^ — a"b\

The first member is the sum of two perfect squares, hence

aV + ^"^^"^ — (^^f -

is positive for all values of x and y, except x = x" and

y = y"'

All points of the tangent^ except the point of contact, are there-

fore without the ellipse, Art. (109).

130. If in equation (3), Art. (128), we make y = 0, we

find

a: = ^ = CT, -ii
X"

^
for the distance from C, to

the point in which the tangent cuts the transverse axis. If from

this we subtract the distance CP = x", we have

CT — CP = PT = ^^ x" = ^ ^,

which is the subtangent. Art. (92). Tliis expression for the sub-

tangent, being independent of the conjugate axis, will be the same

for all ellipses having the same transverse axis, and the points of

contact in the same perpendicular to this axis. Hence, if it be
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required to draw a tangent to an ellipse at a given point as M : On

the transverse axis describe a circle ; through the given point draw

a perpendicular to the axis and produce it until it meets the circle

at M' ; at this point draw a tangent to the circle, and connect the

point T, in which this tangent cuts the axis produced, with the

given point ; this line will be the required tangent.

In a similar way, we may find the distance cut off by the tan-

gent on the conjugate axis produced, and the expression for the

subtangent on this axis.

h
'131. If in equation (S), Art. (128j, Ave change 5* into — b% it

becomes

ahjy"

for the equation of a tangent to the hyperbola at a given point.

X^'^ = CT (1),

132. If in the last equation we make y = 0, we find

N J"

and subtracting this from ^

CP = x"^ we have

CP _ CT = PT = x'''^ - a^

\

for the subtangent of the hyperbola.

133. Let MT be a tangent at any point M, of the ellipse, the

co-ordinates of this point being x" j,,

and y"\ draw the lines MF and

MF' to the foci. In Art. (120), we /

have found /
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MF' - a + ^"^'^ MF = o - cr"
>

a a

or

MF='^'+'^", MP = "'-, cxf'

,

hence

MF' ; MF : : a« 4- c^' : «' — ex!' (i).

If to the expression CT = ^, Art. (130), we add CF' = c,

and from it subtract CF = c, we have

, * * — ,

Jt" x"

hence

F'T : FT : : a« + ex" : a^ - c:r",

and since the last terms of this proportion are the same as (1),

F'T : FT : : MF' : MF.

Through F draw FO parallel to MF', then

F'T : FT : : MF' : FO

;

hence FO = FM, and the angle

FMO = FOM = F'MT'.

Therefore, iffrom the point of contact of a tangent to an ellipse^

two lines he drawn to the foci^ these lines, will make equal angles

with the tangent.

Tliis property enables us to make the following constructions.

First. To draw a tangent to an ellipse at a given point.

Join tlie point wth the foci
;
produce the line F'M, drawn to one
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focus, until it is equal to tlie trans-

verse axis; join its extremity B',

with tlie other focus; through the

given point draw a line perpendicu- ^—jH?

lar to the last line ; it will be the tangent. For,

F'M + MB' = 2a = F'M + MF,

hence MB' = MF, the triangle MFB' is isosceles, and the

angle

B'MT = F'MN = FMT.

"^^ Second, To draw a tangent to an ellipse from a point without

the curve.

AVith either focus F', as a centre, and radius equal to the trans-

verse axis, describe an arc ; with the given point N, as a centre,

and radius equal to the distance to the other focus, describe ano-

ther arc
;
join their point of intersection B', with the first focus

;

the point M, in which this line intersects the ellipse, will be the

point of contact, which being joined with the given point will

o-ive the tanofent. For

NF = NB' and MF = Mp'

;

hence the line NM, having two points at equal distances from F

and B', is perpendicular to FB' at its middle point and bisects the

angle FMB'. Since the two arcs above described intersect in two

points, there will be ^wo tangents.

Let the co-ordinates of the given point be x' and y'. Since it

is on the tangent, we must have the condition. Art. (23),

a^y'yit 4. lix'x" — a%^ (2),

and since the point of contact is on the ellipse, we also have

aY'2 + &V'2 = a%^ (3).

The combination of these equations will give two values ofz"
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and two corresponding of y'\ Art. (93), which will be of the form

y" = 7n zt n VaY^ + b^x'^ — a%'\

and these values will be real, equal, or imaginary as the given

point is without, on, or within the ellipse. Art. (109), In the first

case there will be two tangents, in the second but one, and in the

third none.

134, Let MT be a tangent to the hyperbola at any point,

and MF' andMF lines drawn

to the foci. In Art. (121),

we have found

MF r=

MF =

ex" + a«

a

ex" — a«

If to c = CF' = CF, we add the expression CT = _,
x"

Art. (132), and then subtract it, we shall have

F'T = ex" + a^
FT .-=

ex" — a*

Ileuce, as in the preceding article, we deduce

F'T : FT : : MF' : MF,

/ that is, the tangent MT divides the base of the triangle MF'F into

\
two segments proportional to the adjacent sides, it therefore bi-

( sects the angle F'MF, at the vertex. Therefore, iffrom the 2^oint

of contact of a tangent to an hyperbola, two lines be draiim to the

foeiy these lines will make equal angles inth the tangent.

This property enables us to make the following constructions.
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I'irst. To draw a tangent to an hyperbola at a given point.

Join the point M, with the

foci ; with the point as a

centre and the distance to

the nearest focus as a radius,

describe an arc cuttinrr the ^

hne drawn to the farthest /

focus in A'
;
join this point with the first focus and through the

given point draw a hne perpendicuhir to this last hne ; it will be

the tangent. For the triangle MFA' is isosceles ; hence, the per-

pendicular MT bisects the angle F'MF.

Second. To draw a tangent to an hyperbola from a point with-

out the curve.

The construction and explanation of this are the same as for the

ellipse.

If, as in the ellipse, the co-ordinates of the given point be de-

noted by x' and ?/', we shall have for the hyperbola the two equa-

tions of condition

h^x'x" = - ^2^2

the combination of which, will give two values of x" and y", which

will 1tre-of4he form

y" = 7,1 dr n ^a^y<^ — b'-x'^ -f a^^,

and there will be two tangents, one, or none, as the given point w
without, on, or within the hyperbola.

/ ' inor

135. The general form of the equation of a straight line pass-

ing through the point B is. Art. ^--^^
(29),

y — y' = c(x — x'),
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in which, for this particular case, we must have

y' = 0, x' = a,

which gives for the equation of BM,

y — c{x -^ a).

For the equation of the right line passing through A, for which

y = 0, X = — a,

we have

y = C (a; 4- a).

Combining these equations by multiplication, we have

y* = cc' (x* — a*),

which must be satisfied by x and y, the co-ordinates of the point

of intersection of the two lines, Art. (27). If this point is on

the ellipse, x and ?/ must also satisfy the equation of the ellipse,

and we must have

y* = % (a« _ ^=) = _ ^ (X' - J).
a* a* f

Equating these values of y*, and omitting the common factor

x* — a*, we have

<^'' = T (1).
a*

for the equation of condition that the lines shall intersect on the

ellipse.

The Hnes when subjected to this condition are called supple^

mentary chords ; and, in general, supplementary chords of a ctirve

are straight lines dro,wnfrom the extremiVus of a diameter and in-

tersecting on the curve.

Since cand c' are indeterminate in the above equation of condi-
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tion, an infinite number of supplementary chords can be drawn,

and if any value be assigned to either c or c', the other becomes

known and the position of the corresponding chord will be de-

termined.

If c = 0, (/ will be 00 ; or if c' = 0, c = oo ; that

is, if either chord coincides with the transverse axis, the other will

be perpendicular to it.

If either c or c' is positive, the other must be negative ; that is,

if one chord makes an acute angle with the transverse axis, the

other will make an obtuse, and the reverse.

If a = b, the condition (1) reduces to

cc' = — 1, or cc' + 1 = ;

hence, Art. (28), the supplementary chords of a circle are perpen-

dicular to each other.

The expression for the tangent of the angle AMB is, Art. (28),

yr C — c'
tang V z:

1 + cc'

But since c is the tangent of the obtuse angle MBX, it is essen-

tially negative and may be placed = — c". Substituting this,

and also cc' = — —, the above expression becomes

tang V = - (^" ^ ^')

1 _
/̂i8

which is essentially negative for all values of c and c ; hence the

supplementary chords, drawn from the extremities of the trans-

verse axis of an erii[.se, make an obtuse angle with each other.

As the angle V is obtuse, it will be the greatest when its tan-

gent is numerically the least ; and since the denominator of the

above expression is constant, it will be the least when the numera-
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tor is tlie least. But tlie product of d and c" being constant, their

sum c" + C, will be the least when the factors are equal,*

that is, when

c" = c', or — c = c',

in which case, the angles are supplements of each other and the

chords are drawn to the extremity of the conjugate axis D, making

theande DAC = DEC.

136. If we put ~ 6^ for W' in condition (1) of the preceding

article, we obtain

cd = —,

for the equation of condition for supplementary chords drawn from

the extremities of the transverse axis of the hyperbola.

As in the ellipse, an infinite number of chords may be drawn,

and if either c or c' is positive or negative, the other must have

the same sign ; that is, both angles are at the same time acute, or

both obtuse.

If a = b, the above equation becomes

*

then

NOTE.-—To prove this, let s represent their sum and d their differenco,

£ + 1 = the greater, f. _ ^ = the less,

and

fl _ ^ = the product = P.

or

4 ^4'

from which we see that s^ or s will be the least when d = 0, or the two

factors are equal.
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or

hence, in the equilateral hyperbola the two angles are complements

of each other.

The expression for the tangent of the angle BMA, is

tang V =
1 + cc'

which is essentially positive,

since c is always gi'eater than

c' ; hence, the supplementary chords make an acute angle with

each other, and this angle increases as c increases, until the chord

AM becomes perpendicular to the transverse axis at the vertex A,

when the angle is the greatest possible and equal to 90°.

137. If a right line be drawn through the centre of the ellipse,

its equation will be jv-^

and if it pass through the point of ^|

contact of a tangent, we shall have

the condition

y" = d'x", or d' = 1-.
X"

ci^

Multipljdng this, member by member, by the expression for d,

Art, (128,) we have

dd' = b*
.(1),

the same expression as that found in Art. (135) for cc' ; hence

11
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rr.' = dd\

in which, if c =z d, c' will be equal to c?', and if c' = d',

c = d.

Therefore, if one of the supplementary chords of an ellipse is

parallel to a tangent^ the other will he parallel to a line joining the

point of contact and the centre^ and the converse.

Upon this property the following constructions depend.

First. To draw a tangent to an eUipse at a given point. From

tJie point, draw a line, MC, to the centre ; from one extremity of

the transverse axis draw a chord, AO, parallel to this line ; draw

the supplement BO, of this chord, and at the given point, draw a

line parallel to this supplement, it will be the required tangent.

Second. To draw a tangent to the ellipse parallel to a given

line.

From one extremity of the transverse axis, draw a chord, BO,

parallel to the given line NS ; draw the supplement of this

chord AO
;

parallel to which draw a line, CM, through the

centre ; at the points in which this line intersects the curve, draw

lines parallel to the given line, they will be the required tangents.

138. By changing h"^ into — 6^, in the expression for c?, Art.

(128), it becomes the tangent of the angle made with the transverse

axis by a tangent to the

hyperbola, and by using

this ex'pression with the

equation of condition

y" = d'x",

we have a similar discussion, and deduce the same properties of

supplementary chords, and the same constructions for tangent lines

as in the ellipse, as indicated in the figure.

It will evidently be impossible to draw a tangent to the hyper
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bola parallel to a given line, when the diameter to be drawn par-

allel to the second chord, does not intersect the curve.

^^
139. If in the equation

aYy" + h^-e'x" = a^'i. .(1),

Art. (133), x" and y" be regarded as variables, it will be the

equation of a right line ; and since both values of x" and y" de-

duced from equations (2) and (3), Art. (133), must satisfy this

equation, the right line must pass through both points of contact,

or will be the indefinite chord which joins them^

If any point, as O, be taken upon this chord, its co-ordinates,

which we denote by c and d, will satisfy equation (1), and give the

condition

a^d + b^x'c = a%^ (2).

Every set of values for x' and y' which will satisfr this

equation, will give a point

from which, if two tangents

be drawn to the eUipse, the

chords joining the points of

contact will pass through the

^ point O^ Hence, if y' and x'

be regarded as variables in

this equation, it will represent a right line, every point of which

will fulfil the above condition.

As in Art. (95), this line is the polar line of the pole 0.

If through the point and the centre, a right line be drawn,

its equation will be

X,
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If this equation be combined with the equation of the ellipwi^

(e), Art (105), we find for the co-ordinates of the point M,

abc ahd

Substituting these for x" and y'' in the equation of the tangent

line, (3), Art. (128), we have for the equation of the tangent at

the point M,

a»c?y + b^cx = ab Va^d^ -f- b^c^,

which is evidently parallel to the polar line, represented by eqna*

tion (2).

If the line OC be produced until it intersects the polar line NN'

in N ; for this point we shall have

^ — ^ and
***^' — —

"/ "" T a^'
~~ M

hence, the chord which joins the points of contact, M' and B,

of two tangents drawn from N, in this case represented by equa-

tion (1), will also be parallel to the polar line.

These properties give the following constructions.

Mrst. The pole being given, to construct the corresponding

polar line.

Through the pole and centre, draw the line (XJ ; at the point

M, in which it intersects the curve, draw a tangent ; through the

pole draw a chord parallel to this tangent ; at either point, as M',

in which this chord intersects the curve, draw a second tangent

;

through the point N, in which this intersects the Hne CO produced,

draw a line parallel to the first tangent, it will be the required

polar line.

Second. The polar line being given, to construct the correspond-

ing pole.

Draw a tangent parallel to the polar line
;
join the point of con-

tact M, with the centre, and produce this line until it meets the
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polar line in N ; through this point draw a second tangent NM',

and through the point of contact, M', draw a choriii. M'O, parallel

to the polar line ; the point in which it intersects the line MC will

be the pole.

It should be remarked, that if the given line cuts the ellipse,

this construction will fail, as the point N will lie within

the ellipse and no tangent can be drawn from it.

When the ellipse becomes a circle, the line CM becomes per

pendicular to the tangent at M and also to the polar line, and tlic

above constructions are much simplified.

Thus, to construct the polar line :

Through the given pole draw a line to

the centre ; draw a second line perpen-

dicular to this, at the pole ; at either

point in which this perpendicular inter-

sects the circle draw a tangent ; through

the point N, in which this tangent intersects the line drawn to the

centre, draw a line perpendicular to the last line ; it will be the

polar line.

To construct the pole : Through the centre draw a line perpen-

dicular to the polar line ; from the point in which it intersects it,

draw a tangent ; from the point of contact draw a perpendicular to

the first line ; the point in which it intersects it will be the pole.

140. The equations of the preceding article become the corres-

ponding equations of the hyperbola, by changing h^ into — h\

and it will be readily seen that the properties of the polar line and

the constructions are precisely the same as for the ellipse.

When it is impossible to draw a tangent to the hyperbola par-

allel to a given line. Art. (138), the construction will fail.

141. The equation of any straight line passing through the

point of contact of a tangent to an ellipse, will be of the form
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y - y/ = d\x - X") (1).

If this line is perpendicular to the tangent, we must have, Ai-t.

(28),

dd' -{- \ ^ 0, or c?' = — J-.

But, Art. (128),

whence

d '-= - h*x^

and equation (l) beconiies

aV"
y -y" - wtM - ^"> (2),5V

for the equation of a normal to the ellipse^ x\rt. (98).

K we make y = 0, in equation (2), we deduce

L
X" -^ X

h^x"

C R P B in which x is the distance CR,

and

or

X" — a; = CP — CR = RP = thesuhnormal.

If a =i b, equation (2) becomes

y - y" = yl(x - ar")

x"

yx" — 2/";c r= 0.
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As there is no absolute term to this equation, the normal to the

circle passes through the centre, Art. (38).

142. On the transverse axis of the ellipse let a semi-circle be

described, and within this semi-circle let us inscribe any pqlygon,

AN'NB. From the vertices of this poly- J^,

gon draw ordinates to the transverse axis,

and join the points in which they inter-

sect the ellipse, thus forming a polygon

AM'MB, of the same number of sides.

if the ordinates of the points N, N', <fec., be denoted by Y, Y',

&c., and the corresponding ordinates of M, M', by y, y', &c., the

abscissas being x, a;', <fec., we shall have, Art. (12*7),

C I* Pr n

whence

Y : y : : a : J, Y' : y' : : a : 5

;

Y + Y' : y -f y' : : a : 6.

The area of the trapezoid PNN'P', forming a part of the poly*

ffon in the circle, will be

odl

and the area of the corresponding trapezoid, PMM'P',

These expressions being equi-multiples of Y + Y' and

y + y', are to each other as

Y 4- Y' : y + y', or as a i h.

In the same way, it may be proved that any trapezoid in the
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circle is to the corresponding one in the ellipse as a is to 5 ; hence,

the sum of all in the circle, or the polygon, AN'NB, will be to the

sum of all in the eUipse, or the corresponding polygon AM'MB, as a

is to 5 ; and this will be true, whatever be the number of the sides.

If now the number of sides be indefinitely increased, the areas

of the polygons will become equal to the areas of the circle and

ellipse respectively, and we shall have the first is to the second as a

is to 6 ; or denoting the area of the circle by S, and that of the

elHpse by s, we shall have

S : s : : fl : 6

;

whence s = — S,
a

and substituting for S its value -n-a^,

s = <aft,

or the area of an ellipse is equal to the rectangle upon its semi-axes

multiplied hy the ratio of the diameter to the circuviference of a

circle.

The above expression may be put under the form

that is, the area of the ellipse is a mean proportional between the

areas of the two circles described, one upon the transverse, and the

other upon the conjugate axis.

OP CONJUGATE DIAMETERS OP THE ELLIPSE AND

HYPERBOLA.

143. Let it now be proposed to ascertain if there are any other

co-ordinate axes, having their origin at the centre, to which, if the

ellipse and hyperbola be referred, their equations will have the

same form as when referred to their centres and axes, Arts. (106)
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and (lOY). For this purpose let us take formulas (3), Art. (67),

and substitute the values of x and y in equation {e)^ we thus obtain

a\x"^ sin2 a + 2a;y sin a sin a' + y 2 sin^ a')

+ h\x'^ cos'^ a + 2a;'y' cos a cos a! + y'^ cos* a') = a*6«,

or arranging and omitting the dashes of the variables,

(ov^sin^a' + S* cos* aV + (a=^ sin^ a + 6* cos* a>«

4- 2(c2 sin a sin a' + ^* cos a cos aJ^xy = a%^ .(1),

which is the equation of the ellipse referred to any set of oblique

axes, having the origin at the centre. This equation will be of the

same form* as equation (e), if the term containing xy be made to

disappear, which requires that

a* sin a sin aJ + 6' cos a cos otf = (2).

llie substitution of this condition in equation (1), reduces it to

^a'sin* a' + 6*cos«a')y2 + (a* sin* a + 6* cos* a)x^ = a*Z»*...(3).

Making y and x, in succession, each equal to 0, we find

v "'•
CB',

a* sin* a + 6* cos* a

, = ± J "'*'
: = CD',

^ a* sin* a' + i* cos* a'

both of which values are real for all values of a and u' ; hence, the

curve cuts each axis of co-ordinates

in two points, on different sides of

the centre, and at equal distances.

If we place these distances re- v:^^

spectively equal to a' and b', we

have
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a^ sin- a 4- ^'^ cos^ a

from which

J/2 ^

a* sin* CL -\-h^ cos^ a
a2ja

a^ sin2 a' + h^ cos* a'

a« sin* a.' + i* cos* a' = — ,

Substituting these values for the coefficients of x^ and y^ in

equation (3), and striking out the common factor a*6*, we have

6'* ^ = 1, or a'V + ^^'^^ = a'*^"* (e%

an equation of precisely the same form as equation (e), and which

if solved as in Art. (106), will give for each value of a; < a\

two values of y equal with contrary signs, and these taken to-

gether will form a chord mm', which is bisected by the axis of X
;

hence, this axis is a diameter of the

ellipse. Art. (100). By solving equa-

tion (e') with reference to ar, it may

also be proved that the axis of Y is a

diameter and bisects a system of chords

parallel to the axis of X. These di-

ameters are called conjugate diameters;

and in general, two diameters are conjugate^ when each bisects a

system of chords parallel to the other.

If in equation (e') we make a; = d: a', we deduce

± 0;

hence, the ordinates at A' and B', produced, are tangent to the

curve, Art. (34).

li y = zt 5',

.u = =t 0.
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Hence, the tangent, at the vertex of either diameter, is parallel

to its conjugate, or, to the chords which the diameter bisects.

Equation [e') is called the equation of the ellipse referred to its

centre and conjugate diameters, in which a' and 6' are the semi-

conjugate diameters.

I 144. Since, whenever a and a' have such values as to satisfy

^.-aquation (2^ of the preceding article, the axes of co-ordinates be*

, come conjugate diameters, that equation is called, the equation of

I condition for conjugate diameters, in which a and a' are the angles

r formed by these diameters respectively, with the transverse axis.

V-. Dividing by cos a cos a', and recollecting that

/ sm a , sin a' , .= tang a, = tang a',

cos a cos a'

wo may put the equation under the form

tang a tang a' = — — (1).

Since a and a' are indeterminate in this equation, it follows that

there is an infinite number of conjugate diameters, and if a partic-

ular value be assigned to a or a' the corresponding value of the

other will be determined and the position of the diameters known.

If a = 0, tang a = 0, and equation (1) gives

tang a' = 00

,

a' = 90°.

If a' = 0, tang a' = 0, whence

tang a = 00
,

a = 90°.

Hence, if either diameter coincides with the transverse axis the

other will coincide with the conjugate. Also, if either a or a' is

90° the other will be ; that is, if either diameter coincides with

the conjugate axis, the other will coincide with the transverse

;

and the axes are conjugate diameters.
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145. If any conjugate diameters, except the axes, are at right

angles, we must have, Art. (28),

tang a tang a' = — 1
;

flko (Art. 144),

tang a tang a =
j.

both of which cannot be satisfied by any vahies of a and a', ex-

cept a = 0, and a' = 90°, or a = 90^, and a' = ; in

which case, as seen above, the diameters coincide with the axes:

hence, the axes are the onbj conjugate diameters at right angles.

Vi a =. b^ both equations become the same, and may be satis-

fied by any value of a with the corresponding deduced vahie of

a' ; hence, in a circle, any two conjugate diameters are at right

angles.

146. By comparing equation (l). Art. (144), with equation

(1), Art. (135), we see that

cc' = tans: a tanoj a'

;

hence, if c = tang a,

c' = tang a',

and the reverse ; that is, if one of tico s^ipplementary chords is

parallel to a diameter, the other will b" parallel to its conjugate.

147. If in equation (1) of Art (144), we put — 6« for ^,

we iiave



INDETERMINATE GEOMETRY, 173

tang a tang a' =
a"

(1).

which is ike equation of condition for conjugate diameters in ike

hyperbola^ and admits of the same discussion, and gives precisely

the same results for the hyperbola, as were deduced above for the

eUipse.

If a = b, we have

tanjx a
tanof a'

= cot a'

. hence, in the equilateral hyperbola, the conjugate diameters fonn

^
angles with the transverse axis, which are complements of each

other.

r 148. If in equation (3), Art. (143), we put — b^ for 6«, it

becomes

(a^sin^a' — b^cos^a')y^ + (a«sin»a — b^cos^a)x^ = — a^b^...{l),

and making y and », in succession, each equal to 0, we find

J n^!^!
^ a» sin« a — 6* cos'* a

^'-^Vr,
- aVj»

a* sin** a' — 6* cos' a'

The reality of these values will depend upon the sign of the de-

nominator under the radical sign. K that of the first is negative,

X will be real. In this case

^: a* sin« a — 6« cos« a < 0,
cos' a

< — » tang a < -
;

n* rr

hence, from equation (1) of the preceding article, we have
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^ tang a' >
cos* a;

>
6*

a* sin* aJ — IP- cos* a' > 0,

and the denominator, under the second radical sign, is positive,

and the value of y imaginary.

In the same way, it may be shown that if y is real, x must be

imaginary. Therefore, if one of the conjugate diameters of the

hyperbola cuts the curve the other will not, and the converse.

If then, we regard the above value of x as real, we may place it

equal to a', and the imaginary value of y equal to 6' V •— 1,

whence

r/« — - rt*6*

a' sin*-a — IP cos* a
i'*

-- a*6*

a* sin* a' — 6* cos* a''

from which, deducing the values of the denominators, and substi-

tuting in equation (1), we have

?^ - ^ = - 1
6'* a'*

or a'*i/* — 6'*a;* = — a'*6'2 {h%

for the equation of the hyperbola referred to its centre and conju-

gate diameters, in which, a' and V are the semi-conjugate diame-

ters.

This equation is of the same form as equation (A), Art. (107),

and from it we may prove

as in Art. (143), that each

diameter bisects a system of

chords parallel to its conju-

gate, or parallel to the tan-

gent at its vertices, if it have

vertices. If a second hy-

perbola be described upon

DE as a transverse axis,

having BA for its conjugate, it is said to be conjugate to the first
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hyperbola ; that is, two hyperholas are conjugate when the transverse

axis of one is the conjugate of the other, and the reverse.

Tlie equation of the conjugate hyperbola, obtained by changing

X into y, Art. (108), and a into b, in equation (A), is

a-g2 - h^x^ = a^b^. K
149. The parameter of any diameter of either tiie ellipse or

hyperbola, is a third proportional to the diameter and its conju-

gate, the conjugate being the mean. Thus, for the parameter of

2a' = B'A'

o7/8

2a' : 2b' : : 2b' : 2p ; whence 2p =.-

a'

2&*
The parameter of the transverse axis, — , is also the para-

a

meter of the curve, Art. (115).

For the parameter of the conjugate axis, we have

2a«
^

b

150. As equations {e') and (^'), Arts. (143), (148), are pre-

cisely the same as equations {e) and (A), except that a' and b' en-

ter instead of a and 6, it follows that any algebraic expression de-

duced from the latter, will become the corresponding expression

for the former, by changing a into a' and b into b'. Thus the pro-

portions of Arts. (125), (126), become

y'« : y"^ : : {a' + x'){a' — x') : (a' + x"){a> — x"),

y'* : y"* : : (x' + a')(x' - a') : (x" + a'){x'' - a') \

the first of which shows that, the squares of the ordinates drawn tj

mny diameter of an ellipse, are to each other «« the rectangle of the
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segments into which the diameter is divided ; and tlie second that,

the squares of the ordinates drawn to any diameter of an hyperbola,

which intersects the curve, are to each other as the rectangles of the

distances from the foot of each ordinate, to the vertices of the di-

ameter.

These properties enable us to construct either curve, having

given tvro conjugate diameters and the

angle formed by them. Thus, let A'B'

and D'E' be two such diameters. Re-

volve D'E' until it becomes perpen-

dicular to A'B' ; on the two as axes,

describe an ellipse (or hyperbola), in

which draw any number of ordinates mp, ni'p', &c. ; then revolve

these until they become parallel to the primitive position of D'E',

their extremities will be points of the curve.

151. The equations of the tangent. Arts. (128), (131), become,

•when referred to conjugate diameters,

a"»yy" - h'Hx" = - a'«6'«,

the first for the ellipse, and the second for the hyperbola.

152. The equations of condition for supplementary chords,

Arts. (135), (136), when drawn from the extremities of a diameter

2a', become

cc' = — — , for the ellipse (1),
a'*

cc' = —
, for the hyperbola,

a'*

in which, since the axes of co-ordinates are oblique, c and c' r©
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present tlie ratio of the sines of the angles which the chords make

with the axes, Art. (20).

153. Likewise, equation (1), Art. (13V), will belong to a di-

ameter and tangent at its vertex, when referred to conjugate di-

ameters, if w^e change a into a' and I and Z>', and regard d and d'

as the ratio of the sines, &c. ; thus.

dd' = h"'

Comparing this with equation (1) of the preceding article,

have

we

cc' dd'

and the same for the hyperbola. Hence, if c = c?, c' = d'

and the converse. Therefore, in either curve, if a chord, drawn

from the extremity of a diameter, is parallel to a tangent, its sup-

plement will be parallel to the diameter passing through the point,

of contact, and the converse. Also, if one of two supplementary

chords is parallel to a diameter, the other will be parallel to its

conjugate : or, a set of supplementary chords may always be drawn

from the extremities of any diameter parallel to a set of conjugate

diaftieters.

154. The properties, of supplementary chords, diameters, and

tnngents, discussed in the preceding article, give the following

constructions.

First If either the ellipse or hyperbola is traced upon paper

;

draw any two parallel chords, nn and ^ _^
n'n', and bisect them by a straight

line, this will be a diameter. Art. (100).

If two diameters be thus constructed,

their intersection will be the centre of

the curve.

12

Jd^^^ V
\^Vb-

><^.
^<^

cy
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Second. On any diameter, A'B', found as above, describe a

semi-circle and draw two chords from the point M, in which it in-

tersects the curve to the extremities of the diameter ; these chords

will be supplementary and perpendicular to each other ; draw two

diameters parallel to these and they will be the axes.

And, in general, to construct a set of conjugate diameters

making a given angle with each other. Upon any diameter de-

scribe an arc capable of containing the given angle ; from the

point in which it cuts the curve, draw two chords to the extremi-

ties of the diameter ; through the centre draw two diameters par-

allel to these chords ; they will be the required diameters.

Third. If one diameter, as D'E'', is given, and it be required to

construct its conjugate.

From the extremity of any

diameter draw a chord Rm,

parallel to the given di-

ameter; draw the supple-

ment, Om, of this chord

;

through the centre draw a

diameter CA' parallel to

this supplement, it will be

the one required.

Fourth. To draw a tangent at a given point, as A'. Join this

point with the centre ; through the extremity 0, of any diameter,

draw a chord parallel to CA' ; draw the supplement of this chord,

Rm
;

parallel to which, draw a line through the given point ; il

will be the required tangent.

Fifth. To draw a tangent pnrallo] to a given line, as L. Make

the same construction as in Art. (137), using any diameter as OR,

instead of the transverse axis. Or thus : draw any two chords

mR, 7/i'R', parallel to the given Hne ; bisect them by a straight

line ; the points A' and B', in which this intersects the curve will

be the points of contact, through either of which draw a line par

allel to the given line, it will be the required tangent. /
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155. Let CB' and CD' be any two semi-conjugate diameters

of the ellipse. On the transverse axis AB,

describe a semi-circle ; through the points i»^

B' and D' draw two ordinates and produce /^"^

^

ihem to M and M' ; draw the radii CM
and CM', and denote the angles MCB "^ ^' ^ ^ ^

and M'CB by /3 and /3'. The right angled triangles CPB' and

0PM, give

^ tang a : tang /3 : : PB' : PM \\ h \ a,

Art. (127) ; hence

tang a = _ tang /3.

a

Also, the triangles OP'D' and OP'M', since the angles at the

I bases are supplements of a' and /3', give

tang oJ zz= - tang /3'.

a

Multiplying these equations, member by member, we have

tang a tang a' =r _ tang /3 tang /3' = — —
,

a* ' a«

Art. (144) ; hence

tang /3 tang /8' = — 1,

and the two radii CM and CM' are perpendicular to each other.

Art. (28) ; therefore

Q' = 90° -f /3, sin /3' = cos /?, cos /3' = - sin /?•

150. From the triangles CPB' and CPM, we ha\e
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CP = a' COS a, CP = a cos /?,

PB' = a' sin a, PM = a sin jS

;

whence, from the first two,

a' COS a = a cos ^ (1),

and from the second

al sin a : a sin ^ : : PB' : PM : : 6 : ft^

a* sin a = h sin /3 (2).

In the same way, the triangles CP'D' and CP'M' give

b' cos a' = a cos (3' = — asin^ (3),

h' sin a' — h sin /3' = 6 cos ^ (4),

after substituting for cos /3' and sin ^' their vakies, as deduced in

the preceding article.

Multiplying equations (1) and (4), member by member, and

then, (2) and (3), and subtracting the latter product from the

former, we have

«'6'(sin a' cos a — sin a cos a') = ah(cos^ /3 -f ^i-* A^ f

or

a'h' sin(a' ~ a) = ah (o).

Squaring both members of (1) and (3) and adding, we have

a'2cos«a + 7/*cos«a' = a»

tn the same way, from (2) and (4) we obtain

a'2 sin^ a -f 6'^ sin^ a' = 6^.

Adding the last two equations, member by member,

a'2 + h'^ = a« 4- ^ (6).
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157. If we unite equation (1) of Art. (144), with (5) and (6)

of the preceding article, we have

tang a tang a' = — —

a'h' sin (a' — a) = a5

a'a + j/2 == ^2 .|. 2,2.

.(1),

•(2),

three equations containing six quantities, either three of which be-

ing given, the others may be determined.

If the angle ol' — a, made by the conjugate diameters with

each other, is given equal to w, we have

a' — a = w. tang a' = tang (w + «)»

and this value in equation (1), will give an equation from which

tang a may be found, and thus both a and a', become known.

Let us resume equation (2),

a'b' sin (a' — a) = ah. •(2),

and at the vertices of any two conjugate diameters A'B' and D'E',

draw tangents forming a parallelo-

gram. Also at the vertices of the

axes, draw tangents forming a rect-

angle. From the right angled tri-

angle D'RC, we have

D'R= D'CsinD'CR =ft'sin(a'-a)

;

hence, the first member of equation (2) is equal to CB' x D'R,

or the area of the parallelogram CQ, v^hile the second member is

equal to CB x CD, or the area of the rectangle CS. If these

equals be multiplied by 4, we have four times the parallelogram

CQ, or the parallelogram QQ', equal to four times the rectangle

CS, or the rectangle SS' ; that is, the parallelogram constructed
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upon, any two conjugate diameters qfihe elltpsey is equivalent to thU

rectangle upon the axes.

Multiplying both members of equation (3), by 4, we have

4a^2 + 46'2 = 4a2 + Ah\

But

4a'« = (2a')S 46'^ = (26')* Ac;

hence, the sum of the squares upon any two conjugate diameters of

the ellipse^ is equal to the sum of the squares upon the axes.

M
158. If in equations (1), (2) and (3), of the preceding article,

we change 6* into — b^ and b'^ into ~ b'% we have, for the

hjrperbola,

''
(1).

(2),

(3),

from which either three of the quatitities may be determined when

the others are known.

If a' — a = w, is given, a and a' may be determined as in

the pi-eceding article.

The perpendicular D'R is equal to

D'C sin D'CR = b' sin (a' - a)

;

, .A, 1-^
*"fe

a«"
^

a'b' sin K — «) = ab

a"^ __ j'« =; a» b^

X

y/

/^ ^^M
hence, the first member of

equation (2) is equal to

CA' X D'R, or the area

of the parallelogram CQ
;

while the second member

is equal to the rectangle

CS. Multiplying these

equals by 4, we obtain the
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parallelogram amstructed upon any two conjugate diameters of iha

Injperlola equivalent to the rectangle upon the axes.

From equation (3), vre have

4a'2 __ 4^/2 = 4a2 — 45«,

that is, /Ae difference of the squares of any two conjugate diameters

of the hyperbola^ is equal to the difference of the squares of the axes.

159. If the conjugate diameters of an elHpse are equal to each

other, the two expressions for a'^ and 6'^, Art. (143), must be

equal, which requires that

a^ sin* a -{- i* cos* a = a* sin* a' -{- 6* cos* a',

and every set of values of a and a' which will satisfy this equation,

provided they at the same time satisfy equation (1), Art. (144), will

give the position of a set of equal conjugate diameters.

Substituting in the above equjition

sin* a = 1 — cos* a, sin* a'= 1 — cos* a',

it becomes

(a* - ?»*)cos*a = (a* — 5*) cos* a' (1),

which, unless a = b, can only be satisfied by making

cos* a = cos* a', or cos a = dc cos a'.

The first value cos a = cos a' gives a = a' ; hence the

two diameters coincide and are not conjugate.

The second value cos a = — cos a', satisfies equation (1),

Art. (144), and requires the angles to be supplements of each

other, or

a' + a r= 180°;

hence, Art. (135), the diameters must be parallel to the supple-

mentary chords drawn from the extremities of the transverse to
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the extremity of the conjugate axis. They will therefore make a

gi-eater angle with each other than any other set of conjugate

diameters.

If a = b, equation (1), will be satisfied for every set of

values of a and a' ; hence, in the circle, the conjugate diameters

are equal to each other.

When a' = 6', equation [e'). Art. (143), becomes

a'V + a'^c^ = a'\ or y^ + x^ = a'\

for the ellipse referred to its equal conjugate diameters.

160. By an examination of equation (3), Art. (158), it will be

seen that a' can not be equal to 6', unless a = 6 ; that is, in

the hyperbola, there are no equal conjugate diameters, except

when the hyperbola is equilateral, in which case each diameter is

equal to its conjugate.

OF THE HYPERBOLA REFERRED TO ITS ASYMPTOTES.
t

161. If in equation (1) of Art. (143), Ave put - i^ for ja^
it

becomes

(a'sin^a' — ft^cos^a^y* + (a^sin^a — V^ q,o'&^ a)x^

+ 2(a'*sinasina' — ^''cosacosa' )a;?/= — a^l)^ (1),

for the equation of the hyperbola referred to any set of oblique

axes having their origin at the centre. We may assign such values

to the arbitrary constants a and a', in this equation, as to cause the

coefficients of y^ and x^ to be 0, and thus have

a«sin«a' — Z»^cos2a^= 0, a^%\\\^cL — h^cos,^a = (2),

whence by dividing the first by a"^ cos*^ a', and the second by
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a* cos* a, aud recollectino: that
sm' = tang'^, we deduce

tang a' = ± -, tang a = ±

But it is evident that we can not use tang a' = tang a, as

in such case, the two new axes of co-ordinates would coincide. lij

therefore, we take

we must take

tang a' = -
,

a

tang a = —

and the reverse.

These values may be readily constructed, thus : At the vertei

A, erect a perpendicular

to BA, on which lay oft'

the distances AL and

AL', each equal to h and

draw the lines CL and

CL', these will be the

new axes of co-ordinates.

For the right angled tri-

angles CAL and CAL'

give

tang ACL = tang ACL' = _ = tang a'.

But the tangent of ACL', taken with a contrary sign, is equal to

the tangent of 360° - ACL', and also equal to —- = tang a;
a

hence
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360° - ACL' = a,

and CLMs the new axis of X, and CL the new axis of Y, the

angles a and a' being as marked on the figure.

Since

CL = Va8 + K
the right angled triangle ACL gives

sm a' — , cos a' =
a

Va« + J8 Va« + 6«

and since

sin a' = — sin a, cos a' -= cos a,

we also have

- h
sin a — cos a = .

a

Substituting these values, together with conditions (2), in equa«

lion (1), we have

{ — I ary = — a'2 ( -^ :^ — —;;—;—^^ ]X7/ = — a^b^,

whence

a* + b^ ,ov
a^y = —^—

,

or xy = m, (3),

, . . . a* + b^
placing m for

Solving this equation, we have

m
X
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in which, as a? increases, y diminishes ; when x becomes infinite y

becomes ; and as y can be negative for no positive value of a:, it

follows that the axis of X, or the line CL', continually approaches

the curve and touches it at an infinite distance without cutting it.

By solving the equation with reference to a?, it may be proved that

the line CL enjoys, the same property. These two lines are called

asymptotes of the hyperbola ; and in general, an asymptote of a

curve is a line^ which continually approaches the curve and becomes

tangent to it at an infinite distance.

By an inspection of the figure, it is readily seen that the

asymptotes of the hyperbola are the diagonals of the rectangle

described on the axes.

Equation (3) is called the equation of the hyperbola referred to

its centre and asymptotes.

If the hyperbola is equilateral, a' = 45°, tang a' = 1,

the angle LCL' = 90°, and the asymptotes are perpendicular

to each other.

^

162. If we take the expression. Art. (132),

X = CT,

and make x" = a, the least value it can have for points of the

curve. Art. (10*7), wo

shall obtain

CT = a = CA,

which is the greatest

value of CT. As x" in-

creases, CT diminishes

until x" =z CO, when

CT = 0, its least value,

and the tangent coincides with the asymptote ; hence all tangents
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drawn to the hyperbola intersect the transverse axis between the

centre and the vertex of that branch to which they are drawn
;

and the asymptotes are the limits of all tangents.

^ 163. If we multiply both members of equation (3), Art. (161),

by sin 2a', the sine of the angle LCL' included by the asymptotes,

we have

xi/ sin 2a' = m sin 2a'.

The second member of this equation is constant, and the first

for any point of the curve, as M, is

CP X PMsinMPw = CP X Un,

which is the area of the parallelogram CPMR. Hence, the areas

of all parallelograms de-

scribed on the abscissas

and ordinates of points of

the curve, referred to the

asymptotes, are equal, each

being measured by the

expression m sin 2a'.

If the point M is placed

at the vertex A, the par-

allelogram becomes the rhombus AOCO', each of its sides

being

- CL = _ -v/a2 + b\

Thk rhombus, described on the abscissa and ordinate of the

vertex, is called the power of the hyperbola, is equivalent to the

parallelogram described on the abscissa and ordinate of any point

of the curve, and as is readily seen from the figure, is one eighth of

the rectangle described on the axes.
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In the equilateral hyperbola

2a' = 90°, sin 2a' = 1,

and the power becomes a square, the area of which is m,

164. Let x" y" denote the co-ordinates of any point, as M,

of the hyperbola. The equation of a

right line passing through this point, will

be of the form

y - y" = d{x - x«) (1).

The equation of the hyperbola being

^y — ^n (2),

the condition that the point M shall be

on the curve, will be

x"y" = m.

Subtracting this from equation (2), we have

Combining this with equation (1), by substituting the value of

7/ taken from (1), we obtain

i/"(x - x") + dx{x — X") = 0, or {x — x"){y" + dx) = 0.

Placing the two factors of the last equation, separately, equal to

0, we obtain for all the common points, Art. (128,)

X ^ x" = or =t = a:",

y" + cZ:r = or ' = - T '(3).
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The first value of x is evidently the abscissa of the point M, the

second must then be that of M'.

Now if the line MM' be revolved about M until the point

M' coincides with M, it will become a tangent, and the value of x

in equation (3) will become x", whence we have

x"

This value, in equation (1), gives

y - y" = _ ^ (^ -. x'%

for tlie equation of the tangent^ referred to the asymptotes.

• If in this equation we make y = 0, we have

^ X — x" = x" = PT,

that is, the suhtangent/is equal to the abscissa of the j)oint of contact.

And, since PT = CP, we have MT = MS ; that is, the

part of the tangent included between the asymptotes is bisected at

the point of contact.

If in equation (1) we make y = 0, we find

a; _ a;" = - ^ = CT' _ CP = PT',
d

the same value found in equation (3) for the abscissa of M' ; hence

A PT' = MT',

and the two triangles MPT' and M'P'T", having their angles also

equal, are equal, and MT' = M'T" ; that is, if any straight

line be drawn cutting the hy2)erbola, the parts included between the

curve and asymptotes will be equal.

This property enables us to construct the hyperbola by points

A-hen a single point and the asymptotes are given. Through th«
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point, as M, draw any right line ; from the point in which it cuts

one of the asymptotes, lay off the distance T"M', equal to the dis-

tance MT', from the given point to that in which it cuts tlie other

asymptote ; the extremity of this distance will be a point of the

curve.

165. If a tangent TS be drawn at any point, M, of the hyper

bola, and the half tangent

MT be denoted by /, the

half diameter MC by a',

and the perpendicular Mn
be drawn, the two right

angled triangles MnC and

MnT will irive

fi = (x ^ VnY + Mn.

Subtracting and reducing, we have

- i^ 4.rPrt.

But the right angled triangle MPw, in which the angle

MPn = 2 a', gives

hence

Vn =: y cos 2 a',

<« = 4^y cos 2a^ = 4;?^ cos 2 a'.

The second member of this equation is constant, and will there-

fore be the same for any position of the point M. If this point be

placed at the vertex A, the half diameter will be CA =: a, and

the half tangent AL == h ; hence



192 INDETERMINATE GEOMETRY.

a^ — i« = im cos 2a'

;

whence

a'2 — /2 ^ a2 - 5«.

But, Art. (158), we have

a'2 - 6'« = a« - J«,

therefore, we must have

t — b' or n = 26';

that is, if a tangent he drawn at any point of the hyperbola^ the part

intercepted between the asymptotes will be equal to the conjugate of

the diameter passing through the point of contact.

Since the line E'D' is equal and parallel to TS = QO, it

follows that the figure QOST is a parallelogram, and that the ver-

tices of any parallelogram described on a set of conjugate diameters,

will lie on the asymptotes.

up THE POLAR EQUATIONS OF THE ELLIPSE AND

HYPERBOLA.

166. If in equation (e). Art. (105), we substitute the values of

X and y from formulas (2) of Art. (69),

a; = a' -f r cos v, y z=z b' \- r sin v,

we shall obtain after reduction

(a« sin* V + Z»« cos** v)r^ + 2{a%' smv -{- bH' cos v)r

+ a%'^ + 6V2 - a%^ = (1),

for the general polar equation of the ellipse.

By changing b^ into — i^, this will become the general polaf

equation of the hyperbola.
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By assigning particular values to a' and h', in the alove equa"-

lion, the pole may be placed at any point in the plane of the

curve.

First. If the pole is on the curve, we must have, Art. (109),

a^'i 4- 5V2 — a%^ = 0,

and the equation reduces to

[{a^sm^v+ b^co&^v)r + 2{a^' smv + ^V cos v)jr
— 0,

which may be satisfied by placing r == 0, or

(a^sin^y + h^ cos^v)r + 2(a'^^»' sinv + &V cost;) = (2).

The pole being on the curve, one value of r is necessarily equal

to 0, and the other deduced from equation (2), will, for each value

of V, give the distance from the pole to the second point, in which

the radius vector cuts the curve, Art. (VO).

If this second value of r becomes 0, the radius vector will he-

come tangent to the curve, and equation (2) will reduce to

a?b' sin v -f h^a' cos v = 0,

or

sin V . h^a'= tang V = — ,

cos V a^b'

as it should be. Art. (128).

Fur the hyperbola, we shall have the same discussion and re-

sult, except that — b^ takes the place of 6*.

Second. If the pole be placed at the centre, we have

a' = 0, b' = 0,

which reduces equation (1) to •

(a^ sin« V -\- b^ cos" v)r^ — a«6« = ;

whence
13
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r = ± J .

"'^^
(..).

* a^ sin^ V + 6* cos* v

The second value of r is negative for all values of v, and there-

fore gives no point of the curve, Art. (69).

The first value is positive for all values of v^ and as v varies

from to 360°, will give all points of the curve.

^ ^ If V = 0, sin V = 0, cos v = 1,

1^' and r reduces to

A. C p I" B r = a = CB.

If V = 90°, sin v = 1, cos V = 0, and

r = h =CD.

If in the first value of r, (3), we put for sin* v its value

j<_ 1 — cos* r, divide both terms ofthe fraction under the radical

viC^ iv\ sign by a*, and then place

a^ -- l^ »= e*,

e representing the eccentricity of the ellipse, Art. (118), we shall

obtain

h
r = .

Vl — c* cos* V

For the hyperbola, equation (3), becomes

= ±\/ -^
;

^ a* sin* V — &* cos* v

the second value of which is negative for all values of v.

The first value is positive but imaginary, unless the denomina^

tor is negative which requires

a* sin* V — t* cos* u < 0, or tang v < ± - .

a
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If v = 0, we have,

08 above

r = a = CA.

As V increases from 0,

:^ the denominator will be

negative until

a' sin** V = b^ cos'* v, tang i» = _

,

a

when the value of r will be infinite, in which case v = LCA,

and the radius vector coincides Avith the asymptote CL, Art. (161).

As V increases beyond this value, a^ sin^ v becomes greater than

b* cos* V, and r will be imaginary until

tangv = — _,
a

m which case v = ACL" and the radius vector coincides

with CL".

When V = 180°, we have

r z= a = CB,

and as v still increases, we shall continue to have real values for r

until it coincides with CL'", when tang v again becomes equal to

- , and from this point the values of r will be imaginary until the
a

radius vector coincides with CL', when they again become real and

continue so to v = SQO°.

The first value of r thus gives all the points in both branches

of the hyperbola.

By a process similar to that pursued in the ellipse, the first value

of r may be reduced to

V e« cos« V — 1
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in wliich e represents the eccentricity of the hyperbola, Art.

Third, ii the pole be placed at the right hand focus, for which

((W. Ill) a' = Va^ ~ b^' = c, h' = 0,

equation (1), becomes \f
(^

(a* sin* V + 62 cos* v)r^ + 26«c cos vr — h^ — 0. "-

If for sin* v we put its value 1 — cos* v, and for a* — 6*

its value c*, this equation reduces to

-l?) (a* — c* cos* vV* 4- 26*ccosvr = 6*,

from which

— 6*C COS V ^ ^
'* ~

a* - c* cos* v ^ ^/_a*
6* 6'c* cos* V

— c*cos* V (a* — c* cos* vY

or reducing

— 6*ccosi; =fc aJ* =h a5* — 6*c cos v
^ : r~.

= r »

a* — c* cos* v (a -h c cos v) (a — c cos v
)

whence, the two values

a -f c cos V « — c cos V

Since for the ellipse

c = Va* — 6* < a and cos v < 1,

the second value of r is always negative and must therefore bo

rejected.

As V varies from to 360°, the first value of r will bo positive,

and give all points of the ellipse.

For the hyperbola, expressions (4) and (5) become

r = -^^ (6), t = —^^- (r).

Q, •\- c COS V a — c cos v
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The first value of r will be positive whenever the denominator

is negative. But this can not be unless cos v is negative and nu-

merically grcAter than _ . Every value of v, beginning with 0,
c

will then make r negative until

a a
cos V = — - = — —

,

when the radius vector will be parallel to the asymptote CL", Art.

(161)^ and r will be infinite. As v now increases, cos v will in-

crease numerically until v = 180°, when cos v = — 1,

and

5*

c — a

which is positive, and gives the vertex B. As v increases from

this point, cos v will di- ;^ \
minish numerically and

r will be positive until

we again have

cos V =z — _

,

c

when r = CO , and

the radius vector becomes parallel to the asymptote CL'". All

values of v not included within these limits will make the first

value of r negative and give no points of the curve. Thus, it ap -

pears that this value of r gives all the points in the left hand
branch of the hyperbola, and no others.

The second value of r will be positive, when the denominator is

positive. Commencing with v = cos r = 1, we have

r = 6«
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which is negative. As v increases, cos v diminishes, and r will re*

main negative until a = c cos v, when

a
cos V = _ =

Va3 + h^

r reduces to infinity, and the radius vector takes the position FR,

parallel to the asymptote CL. As v increases from this point, r

will be positive imtil it takes the position FR' parallel to CL'.

When v = 90°, cos v = and

= ^ = FM. C^^ "0r
a

When V — 180°, cos v = -— 1, and

r =z = FA.
a -\- c

The second value of r, therefore, gives all the points in the right

hand branch, and no others.

If in expressions (4), (6) and (7), we put — c for c, the pole, in

each case, will be placed at the left hand focus.

If the eccentricity of an ellipse be denoted by e, we have, Art.

(118),

e z= »2 _ ^ _ a^ - *a

a a" a*

from which, we deduce

c = ae, h^ = a%l - e^) (8).

Substituting these values in expression (4), we find

a(l - e«)

\ -\r e cos V
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which expresses the value of r in terms of the eccentricity of th«

ellipse.

For the hyperbola, Art. (119), we have

c = ae, - 68 = a\\ — e») (9).

These values in expressions (6) and (V), give

^ ^ a(l ~ e^)
^

^. ^ _ «(! - e^)
^

1 + e cos i; 1 — e cos v

in terms of the eccentricity of the hyperbola.

From equations (8) and (9) we deduce the numerical value

a{\ -.«) = ?; ^fW"'%

hence, the numerator of each of the above values of r is equal tc i*^*^
one half the parameter of the curve, Art. (149) ; as is also the case "

|

in the parabola. Art. (104). ^^^
DISCUSSION OF THE GENERAL EQUATION OF THE ., j

SECOND DEGREE.
CrtizL

167. Every equation of the second degree between two varia- /x/^l.^

bles, must be a particular case of the most general form
"

ay* + hxi/ + cx^ -^ dij + ex + f = (1),

which, by assigning particular values to the constants a, b, c, &c.,

may be made to represent every line of the second order. Art. (33).

Although there are six terms in the above equation, and ap-

parently six arbitrary constants, yet it must be observed that both

members of the equation may be divided by the coefficient of either

term, as a, thus reducing it to the form

y« + b'xT/ + c'x^ + d'y + e'a; + / = 0,
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in which there are but five constants, and to which we can assign

but five arbitrary conditions.

In order then to estimate the number of arbitrary constants in

any gener^il equation, or equation given in form only, we divide

l)y the coefficient of one of the terms, and then count the

number of different coefficients remaining. This will indicate the

number of arbitrary conditions which the given equation may be

made to fulfil.

In commencing the discussion of equation (l), we may regard

the axes of co-ordinates,to which the line represented by it is re-

ferred, as at right angles ; for if they were oblique, a change of

reference might be made by means of formulas (5), Art. (67), and

a new equation of precisely the same form would evidently result.

168. By solving equation (1), of the preceding article, with

reference to y, we obtain

y =
hx -]- d \

2a 2a
V(6«-4«c)a;3-f. 2{bd~-2ae)x+d^-4:af...{\\

from which we may readily construct the line by points as in Art.

(22). Each value of x which will make the quantity under the

radical sign positive, will give two real values for y, and coiTespond

to two points of the curve. These points may be constructed by

laying off from A as an origin, the assumed value of a:, as AP ; at

P erect the perpendicular PM, on which lay off

PR = - hx \- d

2a

from R lay off RM' in the

positive direction of the or-

dinates, and RM in the ne-

gative, each equal to the

second part of the value of
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y ; PM' will be represented by the first, and PM by the second

value of y, and M' and M will be the corresponding points of the

curve.

Since the point R is midway between the two points M and M',

it follows that the chord MM' is bisected at R. But since the

points R, r, (fee, are constructed by laying off the different values

of the expression

hx -f d

it follows that they must all lie on the right line whose equation is

hx -\- d hx d
y — — !—

,
or y z= -^ — — —

.

:

2rt 2a 2a

hence, this line will bisect all chords drawn parallel to the axis of

Y ; it is therefore a diameter of the curve, Art. (100), and may at

once be constructed by laying off AA' = — — , and through
2a

A', drawing the line A'R, making with AX an angle whose tan-

gent is — _ , Art. (26).
2a

Hence, if an equation of the second degree he solved with reference

to y, the first member placed equal to that part of the second, which

does not contain the radical, will give the equation of a diameter bi-

secting chords parallel to the axis ofY.

If the equation be solved with reference to x, a similar dis-

cussion will show that, the first memher, placed equal to that 2^ctrt

of the second which does not contain the radical, will give the equor

Hon of a diameter bisecting chords parallel to the axis ofX.

169. If in equation (1) of the preceding article, we place

bd — 2ae = m, d* — ^af = n,

\i becomes
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y = _ ^±±J: rt —V(b' - 4ac)x' + 2mx + n (1).

Let us now change the reference of the points of the curve to

a new set of axes, of which the diameter A'X' is the new axis of

abscissas ; the new axis of ordinates being parallel to the prim-

itive axis of Y. In the formulas (3), Art. (6*7), we must then

have

d' =. 90<=*, cos a' = 0, sin a' = 1, tang a = — —

,

and the formulas become

a' + X' cos a, y = &' + «' sin a + y'.

Substituting these values in (1), and observing that since the

new axis of X is a diameter bisecting chords parallel to the new

axis of Y, each value of x' in the new equation must give two

values of y equal with contrary signs, and therefore in the re-

sulting value of y', the part independent of the radical must dis-

appeai", we have

± — V (6- — 4ac) {a'-^x' cos a)^4- 2m (a' -f «' cos a) •+-
»,
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or squaring, clearing of deuonainators and developing,

4aV" = (^' — ^ctc) cosVa;'^ + 2 cos a [(6* — 4ac) a' + mjx' +
(b' - 4ac) a" + 2wia' + w (2).

Since a', in this equation, is arbitrary, we may give it such a

value as to make

(h'-iac)a' + m = 0, or a' = __-^ . . . . (3),

in which case equation (2), after transposing the first term of the

second member to the first, becomes

iay - {b' — 4ac) cos^oa;'* = (6« — iac) a'' + 2ma' +n (4)

If i* — 4ac is negative ; the essential sign of the second

term of the first member will be positive. If the second member

is also positive, the equation s^'ill be of the same form as equation

(e'), Art. (143), and will therefore represent an ellipse referred to

its centre and conjugate diameters.

If the second member is negative, the equation will indicate

that the sum of two positive quantities is negative, and can be

satisfied by no values of x' and y'. The line represented by it ia

then said to be imaginary, ard an imaginary ellipse is a particular

case of the ellipse.

If the second member of the equation is 0, it will indicate that
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the sum of two positive quantities is equal to 0, and can be satis-

fied by no values, except

/ =0, x' = 0,

which, Art. (16), are the equations of a pointy also a particulaf*

case of the ellipse.

If 6 = and a = c, we have

. tang a = 0, cos a = 1,

and equation (4) will reduce to the form

which is the equation of a circle, Art. (35), another particular

COM of the ellipse.

If h^ — 4.ac is positive, and the second member negative,

equation (4) will be of the same form as equation (/i'), Art. (148).

If the second member is positive, the signs of all the terms may

be changed and it will still be of the same form, x' having the

place of y, and y' the place of a;, Art. (108). In either case, it

will therefore represent an hyperbola referred to its centre and

conjugate diameters.

If the second member is 0, the equation may be solved with

reference to y"^, and will take the form

y'2 - rV^^ or y' = ± r'x\

representing two right lines which intersect; a particular case

of the hyperbola.

If 6 = and a = — c, the equation takes the form

y" -x''= - R^

the equation of an equilateral hyperbola. Art. (112); another

particular case of the hyi^erhola.

If 52 _ ^^g _ Q^ ^jjQ expression (3) will be infinite, and the

value of a' impossible; but under this supposition equation (2) re

duces to



INDETEKMINATE GEOMETUV. 205

4ay = ^m cos ckx' + 2/?ia' + ^ (6),

in which we can assiiju to a' such a vahie as to makeo

Ima' + n = 0, or a' = --— (6) ;2m

and equation (5) reduces to

. o /o « /o 2m cos a
4a''y -^ = 2;?i cos ax' or v = --5— x'

which is the equation of a parabola referred to a diameter and

tangent at its vertex. (Equa. 7, Art. 99.)

If m = 0, expression (6) will be infinite, and the vakie of a'

impossible ; but in this case equation (5) becomes

4aV'.= w, or y' = dt 1-^n,
2a '

x' being indeterminate^ and will represent tivo right lines parallel

to the axis of X', when n is positive ; one right line which coincides

with the axis of X' when ti = 0, Art. (21) ; and two imagi-

ry right lines when n is negative. These are particular cases of

• ^ the parabola

^>/)r no-^J^ 170. The above discussion evidently depends upon the fact

that the given equation contains the second power of y, or that a

is not 0.

If a = and c is not, the equation may be solved with re-

ference to ar, and the same results deduced in precisely the same

manner.
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If a = and c = 0, and b is not, the general equa*

tion takes the form

bx7j + dy + ex -\- f =z (1).

Let us now, by the aid of the general formulas, Art. (67),

X = a' -\- x'j 2/ = 6' -f y',

change the origin of co-ordinates, without changing the direction

of the axes. "VVe thus obtain

bx'7/' + {a'b + dy/ + {b'b + e)x' + a'b'b + I'd -ha'e+f =0....(2).

In this equation we have two arbitrary constants, a' and 6', and

may therefore assign such values to them as to give

a'b + d = b'b + e = 0,

,
d jf e

a _ ~ ^, "" "" T*

Substituting these values in equation (2), it reduces to

b^,/ _ I + / = 0, or .y = it^,

which, since the axes of co-ordinates are at right angles to each

othei, is the equation of an equilateral hyperbola referred to its

centre and asymptotes. Art. (161). Equation (1) then represents

the same hyperbola, referred to two right lines parallel to its

asymptotes.

If a = 0, 6 = 0, c = 0, the equation ceases to be an

equation of the second degree.

From the previous discussion, we conclude, that every equation

of the second degree between two variables represents one of the conic

sections, that is, either a jyarabola, an ellipse or hyperbola, or one of

their particular cases.
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A parabola when h^ — 4ac = 0.

An ellipse when i* — 4ac < 0.

An hyperbola when b^ — 4ac > 0.

TJte parabola when 6* — 4ow = 0.

IVI. Under this supposition, the value of y, equation (1), Art.

(169), reduces to

hx { d ^ 1 ,

y
= ^^ =^ ^^2,n^ + « -O)-

Every value of a?, wliich will make the quantity under the radi-

cal sign positive, will give two real values of y and two correspond-

ing points of the curve.

The value of a?, which makes this quantity 0, will give two equal

values of y, the two corresponding points unite, and the ordinate

produced is tangent to the curve, Art. (35).

Every value of rr, which makes the quantity under the radical

sign negative, gives imaginary values for y and no points of the

curve.

If we place

2mx 4- n = 0, we have x — — —

,

which is the only \ iilue of x that will reduce the quantity under

the radical sign to 0. Denoting this value by a;', the value of y

may be written

bx + d , 1
,

y = —Trjr
"^ 5^V2m{.^ - X') (2),

•inoe

2mx 4- w = 277i (.r + ^).
^

2m!
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Now, if m is positive ; whether x' be positive or negative, every

vahie of x y- x' will give two real and unequal values for y ;

X ^= x' will give two equal values
; and every value of a; < a;'

will give imaginary values. Hence, the curve extends indefinitely

in the direction of a; positive, is tangent to the ordinate PV, which

corresponds to the abscissa x'^ and has no points on the left of this

ordinate, as indicated by the full line in the figure.

If m is negative
J
every value of x ^ x' will give imaginary

values for y; x = x' will give equal values, and x < x'

will give two real and un-

equal values. Hence, the

curve is limited in the di-

rection of X positive by the

produced ordinate PV, and

extends indefinitely in the

direction of x negative, as in-

dicated by the dotted line in

the figure. Hence, in order

to obtain the limit of the

curve in the direction of the axis of abscissas, we solve its equation

with reference to y, place the quantity under the radical sign equal

to 0, and deduce the value of .r, this value will he the abscissa of the

limit, lay it off and through its extremity draw a line parallel to the

axis of Y, it will be the limit ; and this limit will be tangent to the

curve at the vertex of that diameter which bisects the chords par-

allel to the axis of Y.

K the coefficient of x under the radical sign is positive, the curve

will lie entirely on the right of this limit ; if negative, on the left.

By solving the equation with reference to a*, we may, in a similar

way, construct the limit in the direction of the axis of Y.

If m = 0, the value of y, equation (1), becomes

hx \- d

2a 2a
Vuy

or
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hx d yn hx d yn
tf z= — — — — + — , y = — — — — — — 1

2a 2a 2a 2a 2a 2a

the equations of two parallel straight lines, Art. (28), when n is

positive ; which reduce to (me straight line, when 9i = ; and

to two imagina.ry parallels, when n is negative, as seen in Art.

(169). Hence, an equation of a parabola being solved with re-

ference to either variable, if the quantity under the radical sign

is a positive constant, the equation will represent two parallel

straight lines.

If this quantity is 0, or the radical disappears, the equation will,

represent one straight line. If this quantity is a negative constant,

the equation will represent two imaginary parallels.

It may be remarked, that in the first case, the line whose equa-

tion is

hx \' d

bisects all chords, terminated in the two Hnes and parallel to the

axis of Y, and therefore strictly fulfils the condition of a diameter,

Art. (100).

In the second case, the line represented by the equation is the

diameter itself.

In the third case, the diameter may be constructed while the

lines do not exist.

172. By solving the equation with reference to ar, we find for

the equation of the diameter which bisects all chords parallel to

th<jaxisofX, Art. (168),

x= ^^JLAl; whence y = « ?ff _ 1
;

2c '

^
6 6'

but since 6' — 4ac = 0, we have

14
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^ _ 2c

2a
~ y

Jience the coefficient of x in the above equation is equal to the co-

efficient of X in the equation

hx d

2a 2a'

and the two diameters represented by these equations are paral-

lel, Art. (28).

173. By an application of the foregoing principles we are ena

bled to represent on paper, a parabola whose equation is given,

without taking the trouble to determine many of its points.

First, find the points in which the curve cuts the axes of co-

ordinates, Art. (2j^) ; then solve the equation with reference to

each variable in succession, and construct the diameters which bi-

sect the chords parallel to the axes, Arts. (168), (26) ; then con-

struct the limits of the curve in the direction of both axes, Art,

(lYl) ; and draw a curve tangent to these hmits at the points at

which they intersect the diameters and through the points first de-

termined, taking care to make it symmetrical with respect to both

of the diameters.

Examples.

First, when m is not 0.

1. y2 - 2x?/ + .f2 — y -}- 2^ - 1 = (1).

By comparing this with the general equation. Art. (167), w^

Bee that

o = 1, d = ..- 2, f - 1, 6« - 4ac = 4 - 4 = ;
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henco, the curve is a parabola.

Making y = 0, we obtain

a;* + 2:r— 1 = 0; x = — 1 ±: V^.

Assuming any line as a unit of measure and laying off

AB = - 1 + V 2, K V^
pC

AB' = - 1 - V^
//
Vl

^?

we have the points in

which the curve cuts

,/^ /

// /
the axis of X. Making //
X = 0, we find

/

' = \ *v/f

and may thus determine the points C and C in which the curve

cuts the axis of Y.

Solving the given equation, first with reference to y, and then

with reference to ar, we have

y
2a; + 1 1

2 2

a; = y— Id:-/ — y4-2

V - 4a; + 6 (2),

(3).

The equations of the diameters are

2a; + 1
« = y - 1,

Nvhich represent the lines DV and D'V.

Placing the quantities under the radical signs (2) and (3), equal

to 0, we deduce

for the first, ..5.
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for the second, y = 2.

Laying off AP = _ and drawing the line PV, it must be
4

tangent to the curve at V, and since the coefficient of x under the

radical sign is — 4, the curve will lie on the left of this tangent.

Laying off AR = 2, and drawing the line RV, it will be

the limit in the direction of the axis of Y, and the curve will be

represented as in the figure.

2. y^ — Ixy •\' x^ \- y — 2x = 0.

3. y2 + 2a!y + a:2 — 2y — 1 = 0.

4. y« — Ixy + a;2 — 22/ — 1x = 0.

5. y^ 4- 2a:y -^ x^ + 2y = 0.

y' ^xy \' x^ \- X

Second^ when m = and n positive.

1. y« — "Ixy -f .i;« — 2y + 2a: — 1 = 0,

2. 2/3 _ 2ary + a;* — 1 = 0.

3. y8 + 4.ry + 4ar'» + 4 = 0.

/
Thii'd^ when m = 0, ri = 0.

1. y^ — Ixy + a;** + 2y — 2a; 4- 1 = 0.

2. y« — Axy -f 4.r2 = 0.

Fourth, when m = 0, am? w negative.

1. y'* + 2ary + .'<;« + 1=0.

2. 2/« + y + 1 = 0.
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] 14. If it is required to construct the curve with accuracy ; we

may first solve its equation with reference to ?/, construct the

diameter and determine the hmit as in Art. (1*71). This limit is

tangent to the curve at the point in which it intersects the diame-

ter. Solve the equation with reference to x, construct the diame-

ter and determine the limit in the direction of the axis of Y. This

is also tangent to the curve at the point in which it intersects the

diameter. Since these tangents are parallel to the co-ordinate

axes respectively, they are perpendicular to each other and inter-

sect on the directrix, Art. (9*7). Through their point of intersec-

tion draw a line perpendicular to either diameter, it will be the

directrix, Art. (100). Join the two points of tangency by a chord,

this will pass through the focus. Art. (97). With either point of

tangency as a centre, and the distance to the directrix as a radius,

describe an arc, it will cut the chord in the focus, Art. (88).

Through the focus draw a perpendicular to the directrix, it will be

the axis, and the curve may then be constructed as in Art. (88).

To illustrate, let us recur to example (1) in case first, of the pre-

cedinor article. Ha\dn2:

determined the limits PV
and RV, through their

point of intersection S,

draw SO perpendicular

to DV, it is the direc-

trix
;
join the points V

and V ; with V'E de-

scribe the arc EF cuttinorW in F, F is the focus through which the axis may be drawn

parallel to DV.

2%e ellipse when b^ — iac is negative.

175. The value of y, equation (1), Art. (168), may be put un-

der the form
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^
2a "^ 2aV ^

^\^ ^ h'i ~ Aac ^ b^^4acj

Those values of x^ which will reduce the radical to 0, and give

equal values of y, will evidently be obtained, by placing

^, + 2"^ + __» = 0.
b^ — 4ac 6* — 4a€

Solving this equation, and denoting the least value of x by x'

and the other by x", the value of y, may be put under the form

y = — ^^_JJlA
-i-

JL
V(^,2

_ 4ac)(x - x'){x - x") (1).

These roots x' and ir" may be real and unequal, real and equal,

or imaginary.

When real and unequal. For every value of a; > x" the

factors x — x" and rK — a;' will both be positive, their pro-

duct also positive, and the quantity under the radical sign nega-

tive. The corresponding values of y will therefore be imaginary,

and there will be no corresponding points of the curve.

For X = rr", the quantity under the radical sign is 0, the

two vMues of y equal, and the ordinate produced is tangent to the

curve fvt tlie vertex of the diameter whose equation is, Art. (168),

hx \' d
^

2a

For every value of a; < x" and > ar', the two factors x — x*^

and x— x' will have contrary signs, their product will be negative,

and tlio quantity under the radical sign positive, and there will be

two corresponding real values of y and two points of the curve.

For X = a;', the quantity under the radical sign again bo-

comLS 0, and the ordinate will be tangent to the curve at the other

vertex of the diameter.
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For every value of a; < x'^ the factors x — x" and x — x'

m\\ be negative, their product positive, and the values of y imagi-

nary.

Therefore, if two distances AP and AP', represented by x' and

and x"^ be laid off on the axis of X, and through their extremities

two lines be drawn parallel to the axis of Y, these lines will be

tangent to the curve, and no point

of the curve can lie without them.

Hence, to obtain the limits of the

curve in the direction of the axis of

abscissas ; we solve the equation

with reference to y, place the quan-

tity under the radical sign equal to

0, and deduce the roots of the equation, these ivill he the abscissas of

the limits ; lay off these abscissas, and through their extremities

draw lines parallel to the axis of ordinates, they will be the required

limits. These limits will be tangent to the ellipse at the vertices

of the diameter which bisects all chords parallel to the axis of Y.

By solving the equation with respect to x, we may obtain, in a

similar way, the limits in the direction of the axis of Y.

If the roots x' and x" are equal, we have

{x - x'){x - x") = (a: - x'Y,

and the value of y reduces to

hx \- d , X — x' ,

y = r ± — ^/h^ - 4ac,
2a 2rt

which will evidently be imaginary for every value of x except

X = x\ and this gives for the corresponding value of y, denoted

byy',

/= - Ix' 4- d

2a



9.16 INDETEVMINATE GEOMETRY.

K

y' and x' are then the co-ordinates of a single point, to "whicli the

ellipse in this case reduces, Art. (168).

If the roots x' and x" are imaginary, the product {x — x')

(x — x") will be positive for all values of a; * ; hence, every

value of a:, in equation (l), will give imaginaiy values for y, and

there can be no points of the curve, which is said in this case to he

\ a^jMmaginary, Art. (1G8).

5^ 1*76. An equation of an ellipse being given, the curve may be

well represented by following the rule laid down in Art. (1'73).

Exam,ples.

First, when x' and x" are real and unequal.

y« _ 2xy + 2a:« -h 2y — ar — 0,

in which l/^ — 4ac = 4 — 8

and

y — X — I ±: V— x'^ — X -\- \,

x' = K?" = - 1 _ \/5,
2 >' 4

* Note.—To prove this, we have only to recollect that imaginary roots

always enter an equation in pairs, and must be particular cases of the

general form

X =i ajr h^— 1,

(he factors corresponding to which are

.r — (a -f h^— 1) and

their product being

z2 — 2ax + a'2 + A2 _ X — of Ac- V^

,

_(a-i/HT).

which is evidently positive for all values of .r, since it is th-? sum of two

perfect squares.
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X" = AF = - i + V-.

2. y« — 2x7j + 2x^ — 2y — 2x = 0.

3. y^ + 2xy + 2x'^ — 2:c = 0.

4. 2y« — 22:y + 3^2 ^ 2y + re — 1 =

Second^ when x' and x" are real and equal.

1. 2/8 — 2xy + 2^2 — 4;r + 4 = 0.

2.
ya + a;2 _ 2^ + 1 = 0.

Third, when x' and x" are imaginary.

1. 2/2 ^ a;y ^ ^2 _}. a; ^ y _j. 1 = 0.

2. y* + a;* + 2a; + 2 = 0.

217

17Y. In order to construct the curve accurately ; we solve the

equation with reference to y, con- r

struct the diameter and determine

the abscissas of the limits as in

Art. (l7o). Substituting these in

either the equation of the curve or

diameter, we find for the ordinates

of the vertices V and Q,

,
hx' \' d

y' = - y" = hx" + d

2a '

'
2a.

Substituting these in expression (2), Art. (17), we have

^ 4a2
^

2a

Since this diameter bisects chords parallel to the axis of Y, ita
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conjuQ:ate will be V'Q', passing through the centre C and parallel

to AY, Art. (143). If we denote the abscissa of the point C bj

z, and substitute it in equation (1), Art. (iVo), we have for the

corresponding values of y, P"V' and P"Q',

bz + d ^ 1
,

y = ^^ ± -V(6^ - 4.ac){z - x'){z -

The difference of these two values is the length of V'Q' ; hence,

^'Q' =7 -Vlh^ - 4.ac){z - x'){z - x'%

or substituting for z its value, which is evidently

x' + cc"

we have

V'Q' = '^-^^iac - lA
2a

The length and position of these two conjugate diameters being

now known, the curve may be constructed as in Art. (150).

The angle V'CQ, made by the conjugate diameters, may be

readily measured, since the tangent of the angle CDP", in any

position of the diameter, will have the same numerical value as

tang a, and therefore be equal to — — taken with a positive
2a

gign ; whence, by a reference to a table of natural sines, &c^ CDP''

becomes known, and since

V'CV = 90° - CDP",

we have

V'CQ = 180° - V'CV = 90° + CDP".

The two conjugate diameters and the angle made by tliem
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being thus known, the curve may be constructed as in Art. (150),

or the axes as well as the angles a and a' may be determined

from equations (1), (2), and (3), Art. (157).

The Hyperbola when h^ — 4ac is positive.

178. Let us resume the value of y, equation (1), Art. (175),

hx + d , 1 . L
y = ^^ ^ ^V(6« - 4ac)(x - x'){x - X") (1),

in which, we must remember that x' and x" are the values of x

obtained by placing the quantity under the radical sign, in the

general value of y, equal to zero, and that they will be real and

unequal^ real and equal, or imaginary.

When real and uneqiial. For every value of ar > x", the

factors X — x" and x — x' will both be positive, and the

quantity under the radical sign positive. The corresponding

values of y will therefore be real and unequal, and there will be

two corresponding points of the curve.

For x = x" the quantity under the radical sign is zero, and

the corresponding ordinate produced will be tangent to the curve

at the vertex of that diameter which bisects chords parallel to the

axis of Y, Art. (168).

For every value oi x <^ x" and > x', the two factors

will have contrary signs, their product will be negative, and the

corresponding values of y imaginary, and there will be no corres-

ponding points of the curve.

For X = x\ the corresponding ordinate produced, again be-

comes tangent to the curve at the other vertex of the above di-

ameter.

For every value of a; < x\ the factors will both be negative,

their product positive, and the corresponding values of y real.

Therefore, if two distances AF and AP', represented by x' and

x'\ be laid off on the a\is of X, and through their extremities two
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lines be drawn parallel to

the axis of Y, these lines

"vvill be tangent to the curve,

no point of the curve wil)

lie between them, and the

curve will extend to infinity

in both directions without

them. Hence, we obtain

the limits of the hyperbola in the direction of either axis of co-ordi-

nates in the same way as described in Art. (Ho).

If the roots x' and x" are equals the value of y, equation (1),

as in the corresponding case in the ellipse, Art. (1*75), reduces to

hx + d

2a

X — X'

2a
^/h^ _ 4ac,

which will evidently be real for every value of x. This equation

then represents two right lines lohich intersect, and to which the

hyperbola in this case reduces.

If the roots x' and x" are imaginary, the product [x — x')

{x — x") will be positive for all values of x\ [see note, Art.

(175)], hence every value in equation (1), will give real values

for ?/, and two corresponding points

of the curve, and there will be no

limits in the direction of .the axis of

X, as was to be expected, since the

abscissas of these limits x' and x"

are imaginary. It also follows, that

the diameter which bisects chords

parallel to the axis of Y, has no

vertices, or does not intersect the curve, which must be as repro-

senied in the figure.

179. An equation of an hyperbola being given, the curve may

be well represented by following the rule laid down in Art. (1 73).
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Examples.

First, when x' and x" are real and uneqv.al.

I. 2/2 — 2xy — a;8 4- 2 = 0.

iu which

J3_4ac = 4 — 4xlX —

1

= 4+4 = 8,

ftud

y =z X dt. V2a;2 — 2.

2. ?/« _ ar* + 2a; — 2?/ + 1= 0. /

3. ?/« -\- xij — 2x^ + ic = 0.

4. if — 2xy — a;2 — 2?/ + 2a; + 3 = 0.

Second, when x' and x" are real and equal.

1 2/' — 2a;8 + 2y + 1 = 0.

2. 2/8 — a;« = 0.

3. y'^ -\- xy — 2x^ + Zx — 1 = 0.

Third, when x' and x" are imaginary.

1. y^ — 2xy ^ x^ — 2 = 0.

2. 3/2 + 2a-?/ — a;« + 2a; 4- 2y — 1 = 0.

3. 2/2 _ 2a;y — a;' — 2a; — 2 = 0.

180. llie curve may also be constructed accurately, by first

determining the length and position of two conjugate diameters,

precisely as in Art. (1*77). The expressions for these diameters
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will be the same as those determined for the ellipse. For ihe.

distance cut off by the curve on the one which bisects chords

parallel to the axis of Y, we have

/p/ 2;"

2a

and on its conjugate

2a
•v/4ac — h"^,

the first of which will be real, and the second imaginary, when x'

and x" are real, and the reverse when x' and x" are imaginary.

In this case, the angle VCD [see figures in Art. (IV8)], inclu-

ded between the two conjugate diameters, is always equal to

90° — CDA. But we know that tang CDA is numerically equal

to tan or a = — We therefore have^
2a

tang VCD = cot a,

from which the angle may at once he found, and then the curve

be constructed as in Art. (150), or the axes, together with a and

a', may be found from equations (1), (2) and (3) of Art. (158).

OF CENTRES AND DIAMETERS.

• 181. The centre of a curve is a point, through which, if any

straight line he drawn, terminating in the curve, it will he bisected

at this point.

It follows from this definition, that for each point, as M, of a

curve which has a centre, there will be another corresponding

point, as M', on the oi)posite side of the centre and at the same

distance from it. If therefore the origin of co-ordinates be placed

at the centre, the co-ordinates of these two points will be equal
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with contrary signs ; that is, if the

co-ordinates of one point are + «'

and + y'l those of the other will he

— x' and — y', and the equation

of the curve must be satisfied by

the substitution of each of these

sots of co-ordinates. But, this can

not be the case, unless all the

terms of the equation containing the variables are of an even de-

gree ; for if some are of an odd degree, the signs of these terms

will be different when — x' and — y' are substituted, from what

they are when -f x' and -f y' are substituted, while those of an

even degree will remain the same. It is evident then, that the

equation can not be satisfied, in both cases.

In order then to ascertain whether a given curve has a centre,

we fii*st examine its equation and see if all its terms are of an even

degree with respect to the variables. If they are, the origin of

co-ordinates is a centre. If they are not, we substitute for the va-

riables their values taken from the formulas (2), Art. (67), and see

if such values can be assigned to the arbitrary constants a' and h'

as will cause all the terms of an odd degree to disappear. If so,

the curve will have a centre at the new origin, and the values of

a' and b' will be its co-ordinates when referred to the primitive

system. If no real and finite values can be thus assigned, the

curve will have no centre.

182. To apply the above principles to lines of the second or-

der, we resume the general equation

ay^ -I- hxy \- cx"^ -^ dy -^ ex \- f = 0,

and substitute for a; and y their values taken from tho formulas

of Art (67).

T = a' -f x\ y - h' -\- y'.
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WB tlius obtain, after reducing, and denoting the sum of all the

terms independent of tlie variables hjf.

ay'^ + bx'y'+ cx'^ + ('2ah'+ ba'+d)i/'-\-{2ca'-}-bb'+e)x'-\-f'= 0.

Tlfe terms of this equation will all be of an even degree, if

2ab' + ba' -\- d = 0, 2ca' + bb' + e = 0,

which give for a' and Z>', the values

JK , 2ae — bd ,, 2cd — be

ft'-* — 4ac b^ — 4ac

These will be real and finite when b^ — 4:ac is not zero, from

which we conclude that there is always a single centre for each

dlipse and hyperbola.

When &* — 4ac = 0, and the numerators are not zero,

the above values reduce to infinity ; from which we conclude that,

in general, the centre of the parabola is at an infinite distance, or

that the parabola has no centre.

If 6* — 4ac = and 2ae — bd = 0^ we must also

have

^ 2cd — be = 0,

2ae
for by substituting in this the value of c? = —- , taken from the

b

last expression, it becomes

4ace , » (iac — b^)e ^
be z= Oj or i^ L- = ;

hence, in this case the two values of a' and 5' both become - , or

indeterminate ; from which we conclude that there is an infinite

number of centres, which was plainly to be anticipated, as in this

case the parabola reduces to two parallel right hues, Art. (171),
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and any point of the diameter midway between them will fulfil the

condition of a centre.

183. A diameter of a curve is any straight line which bisects a

system ofparallel chords drawn in the curve, Art. (100).
*

In lines of the second order, if the axis of X be a diameter and

the axis of Y be placed parallel to the chords which this diameter

bisects, it is evident that the equation of the curve, when referred

to these axes, must be of such a form as to give for each single

value of Xy two values of y, equal

with contrary signs. Thus if AX
be a diameter, taken as the axis of

X, and x\Y be parallel to the chords

which AX bisects, then for each

value of X as Ap, the two corres-

ponding values of y, pm and pm', must be equal with contrary

signs. This can not be the case as long as the equation of the

curve contains any term with the first power of y. The reverse

is also true ; for if the equation contain no term with the first

power cf y, for each value of x there will be two equal values of y
^vith contrary signs, and these two values taken together will form

a chord bisected by the axis of X. This axis will therefore be a

diameter.

The same reasoning will show that if the axis of Y be a di-

ameter and the axis of X parallel to the chords which it bisects,

the equation of the curve can contain no term with the first power

of a;.

184. Let us now take the general equation of the second de-

gree. Art. (ICY), and see if by any change of the position of the

axes of co-ordinates, we can make either of these axes a diameter.

For this purpose, let us substitute for x and y, their values taken

15
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from formulas (3), Art. (67). The new equation, leaving out the

dashes of the variables, will be of the form,

^y* + V^y + **^* \- qy •\- rx •\- s = 0^

in which

m — {a tang^ a' + 6 tang a' + c) cos» a' (1).

?z = (a tang* a + ^ tang a + c) cos* a (2).

-p = (2a tangatanga'+6(tanga4-tanga')+ 2c)cosacosa'...(3),

q = [(2ab' + ba' + d) tang a' + (2ca' + bb' + e)] cos a'... (4).

r = [(2ab' + ba' + d) tang a + (2ca' + bb' + e)] cos a...(o).

K now the axis of X is a diameter, and the axis of Y parallel to

the chords which it bisects, we know from the preceding article,

that wc must have

^ = 0, g = 0.

We have then to assign such values to the arbitrary quantities

a, a', a' and &', as will satisfy the equations

2a tang a tang a' + 6(tang a \- tang a') + 2c = ..(0),

(2a6' + ba' + d) tang a' -f 2ca' + W + e = (7),

and whatever the curve is, this can in general be done ; for any

value assigned to a in equation (6), taken with the corresponding

deduced value of a', will of coui-se satisfy this equation. Tang a'

being thus fixed, equation (7) can only be satisfied by means of

values attributed to a' and b'. But any value of a' taken with the

corresponding deduced value of b' will satisfy this equation.

In the same way it may be shown that if the axis of Y is a di-

ameter, and the axis of X parallel to the chords which it bisects

we must have

p = 0, »• = 0,

and that these equations can always be satisfied-
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If both of the axes of co-ordinates are diameters, at the same

time, and each parallel to the chords which the other bisects, wo

must have

^ = 0, !7 = 0, r = 0.

We have seen above, that it is always possible to satisfy the

equation p = 0, (6), by assigning at pleasure a value to

either a or a', and deducing the corresponding value of the other.

These two angles being determined, a proper direction is given to

the new axes of co-ordinates, while the new origin is yet to be fixed,

so that we may have at the same time

<? = 0, r = 0;

tliat is

{^laV 4- ^«' + ^) tang a' + (2ca' + W + e) = 0,

(2a&' + ^a' + d) tang a + (2ca' + hV + e) = 0.

These equations being the same, except that tang a in one,

occupies the place of tang a! in the other, it is evident they can

not both be satisfied, at the same time, unless we have the terms

separately equal to 0, that is,

2a5' 4- ha' + (Z = 0, 2m' + 66' -f e = 0,

which ffive for a' and V the values&•

, 1(i£ — hd J, 2cd — be
a' = — ,

6' =
68 — 4ac 6« — 4ac

We recognise these values as the co-ordinates of the centre of

the curve, Art. (182), and therefore conclude that the new origin

must be at the centre, and that the new axes are conjugate di-

ameters. Art. (143), And since the above values are finite only

for the ellipse and hyperbola, and infinite for the parabola, we con-

elude that both of the co-ordinate axes maybe diameters at the same

time in the ellipse and hyperbola^ but not in the parabola.
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And since there are an infinite number of values of a and a

which will fulfil the above conditions, we conclude that m ike ellipse

and hyperbola, there is an mfinite nuniber of conjugate diameters.

We have seen above that equation jo = 0, being satisfied,

the axis of X will be a diameter, if we also have

q =^ Q.

If in this equation (7) we regard a' and h' as variables, it will

be the equation of a straight line, and any values of a' and h'

which are the coordinates of a point on this line will satisfy the

equation, Art. (23) ; hence, the new origin may be any where on

this line. But this new origin must he on the new axis of X, and

may he any where on this axis, (now a dianfieter of the curve).

Hence

must be the equation of this new axis of X, or diameter, referred

to the primitive axes, a' and h' being the variables.

If the axis of Y be made a diameter, similar reasoning will show

that r = will be the equation of this diameter.

Tlie fact that g' = is the equation of a diameter, leads io

two important conclusions.

First. Since by assigning all possible values to a^ this equation

may be made to represent all possible diameters, and since the co-

ordinates of the centre, Art. (182), when substituted for a' and h\

in this equation^ must satisfy it, as they were obtained by placing

2a5' + Co' -f <? = 0, 2cflr' -f 5*^ + e = 0,

we conclude that every diameter passes through the centre.

Second. If any straight line be dra\vn through the centre, and

the origin of co-ordinates be placed at the centre, and the right

line be taken as the axis of X, the values of a' and h' will satisfy

the equation g' = ; and the position of the line being given,

a is known, and the corresponding value of a', deduced fro<n the
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equation }) — 0, will satisfy it also and give a proper direction

to the axis of Y. Both of these equations being thus satisfied, we

conclude that the right line is a diameter ; hence, every right line

passing through the centre is a diameter.

185. We have seen in the preceding article, that both axes of

co-ordinates can not be diameters in the parabola, but that the axis

of X will be a diameter and the axis of Y parallel to the chords

which it bisects, when

/? = 0, »? = 0,

and as the equation when referred to these axes is still the equation

of the parabola, we must have. Art. (1G9),

p* — 4m» = 0,

and since j9 = 0, — 4»m must equal 0, But m can not

be 0, for if it were, the equation referred to the new axes would

reduce to

nx^ -f ra; + « = 0,

which is the equation of no curve ; hence, we must have « = 0,

and the equation will reduce to

my* + rx -\- s = Q.

Hence, in the parabola 72 = is a condition consequent

upon ^ = and q =z Q.

This fact may be verified thus : Since in the parabola all di-

ameters are parallel, and make with the axis of X an angle whose

tangent is — — , Art. (1*72), and since the new axis of X is

2a

a diameter, we have

tanor a = — —

.

^
2a
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Substituting this value in equation (2), Art. (184), we have

n _ «/;2 h^ __ ^*
, _ 62 — 4ac _ ^

cos^ a 4a "^ 2a 4:a 4a

If the axis of Y is a diameter, it may be proved, in the same

way, that we must have m = 0, and that the equation of the

parabola will take the form

nx* 4- gry + s = 0.

It may be further remarked, that any value whatever being as-

sumed either for tan(/ a or tang aJ and substituted in equation

(6), will, for the parabola, give — — for the value of the other.
2a

Also, if — — be substituted in the same equation for tang a
2a

or tang a', the corresponding value of the other will be - , or in-

determinate. This is evidently a consequence of the parallelism

of the diameters of the parabola.

\r

/
OF LOCI.

186. The term locus, in Analytical Geometry is applied to the

line or surface, in which are to be found all of the positions

of a po'nt or line, which changes its position in accordance with

some determinate law.

Thus, if a point is moved in a plane, so that it shall always be

at the same distance froi^ a fixed point, the locus of the point will

be the circumference of a circle.

Also, a plane tangent to a surface at a given point, is the locus

of all right lines drawn tangent to lines of the surface at thia

point.
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187. Tlie determination of the loci of points, which are moved

in a given plane subject to certain conditions, gives rise to a great

variety of interesting problems, several of which it is proposed to

solve and discuss in detail, for the purpose of indicating to the stu-

dent the general method to be pursued in the solution of all.

It should be remarked, that pains should be taken to select the

best position for the co-ordinate axes in each problem, as its solu-

tion may be thus much simplified.

188. Problem 1st. To determine the locus of a point, which

in any of its positions is at equal distances

from a fixed point and fixed right line.

Let F be the given point and BC the

given right line. Through F draw FB per-

pendicular to BC and denote the known

distance FB by p. At the middle point of

FB erect AY perpendicular to it and take

AX and AY as the co-ordinate axes. Let

M be any position of the moving point, the co-ordinates of which

are AP = x, and PM = y. By the conditions of the prob-

lem, we must have

But

MF = MC.

MF VMP' + FP' = yy' + (. - l)\

and

MC = BP = BA -f AP = ar -f- |»

henoe
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V y^ ^ {x - I) = X +1
Z 2i

Squaring both members and reducing, we obtain

y2 = 2^.r,

an equation expressing the relation between x and y for all posi

tions of the point M. It is therefore the equation of the locus,

which is a parabola, Art. (88).

189. Problem 2nd. To find the locus of a point moving in

such a way, that the sum of its distances from two given points

shall always be equal to a given line.

Let F and F' be the two given points, and 2c the distance be-

tween them. Let 2a represent the given line.

At C, the middle point of FF', erect the perpendicular CD and

take CF and CD as the co-ordinate axes.

Let M be any position of the point and

denote its co-ordinates by x and y, and

denote by r and r' the distances from the

point to F and F'.

The right angled triangle FMP gives

FM' = MP* + FP*,

or, since CF = c,

r3 = 2/8 ^ (^ _ cy.

In the same way the right angled triangle F'MP, gives

r" = y^ ^ [x \- c)«.

Adding these two equations, member by member, we have

r2 + r'2 = 2(y« + x^ \' c^) (1),

tnd subtracting them.
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r'« — r3 = 4cx, or (r'+ r*) (t-"— r^) = 4c2r (2).

But by the condition of the problem,

r' + r = 2a (3).

Substituting this in equation (2), we have

2cx
r ~ r =

Combining this with (3), we deduce

,
ex

r' = a + _,
a

ex
r = a — —

a
.(4).

Squaring these values and substituting in (1), we obtain

a^ + = y2 + a;2 + c^

or

a8^2 ^ (^a _ ^2) ^i ^ a^ (^a _ c«),

or putting 6* for a^ — c',

the same as equation (e). Art. (105), and the locus is an ellipse.

190. Problem Sd. To find the locus of any point of a given-

right line, which is moved so that its extremities shall be con-

stantly in two other right lines, at right angles to each other.

Let AX and AY be the two right lines at right angles, and M
any point of the given line CB. Denote the y
distance BM by a, and MC by b. Take AX
and AY as the co-ordinate axes and let

AP = X, PM = ij.

Since MP is parallel to AB, we have
»

PC : MC :: AP : BM,
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Vb^ — y^ : h : : x : o

;

^2.^:2 = a%'^ — aV^ or a^y* + h^x* — a«6«,

which is evidently the equation of an ellipse whose semi-transverse

axis is BM and semi-conjugate MC.

191. Problem Uh. To find the locus of the centres of all cir-

cles which pass through a given point and are tangent to a given

right line.

Let M be the given point, and BX the given line. Through M,

draw MA perpendicular to BX, and

let AX and AM be the axes of co-

ordinates. Denote the ordinate

MA by J9,
the ab.-cissa of this point

ii P -^ X. / will be 0. Let C be the centre of

one of the circles and denote its co-ordinates by x' and y'. The

equation of this circle. Art. (34), will be

{x - x'Y -f (y - y'Y = R«.

But since it passes through the point M, the co-ordinates of this

point will satisfy the equation, and give

^'2 ^ (p - y'Y = R2,

and since the circle is tangent to BX, we have R = y' ; hence

x'^ + {p - y'Y = y'^

ar'« — '2p7j' = — p\
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which expresses the relation between x' and y' for any position of

the circle, it is therefore the equation of the locus.

If the origin be now transferred to V midway between M and

A the formulas (2) of Art. (67) become

aj' ^- :r. y' = y + I>

the substitution of which gives

rca = 2^9?/,

the equation of a parabola of which M is the focus and BX the

directrix, and this is evidently another method of enunciating and

solving problem 1st, Art. (188).

192. Problem hih. To find the locus of the intersection of

right lines, drawn from the extremities of the transverse axis of a

given ellipse, to the extremities of chords of the ellipse perpendic-

ular to the transverse axis.

Let ABD be the given ellipse and DD' any chord perpendicular

toAB. Through D and D'

draw the lines AD and BD',

it is required to find the locus

of M, their point of intersec-

tion. Let the equation of the

given ellipse be

and denote the co-ordinates of the point D by x' and y'. Tlte

equation of condition that this point shall be on the ellipse will be

a*y'% + fcV8 = a«6«, or
J2

y'^ = -,{<^' - ^') (1).
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The equation of the right line AD, passing through the two

points A and D, Art. (31), will be

= ^1_(^ + a) (2),

and of the line D'B, ^ -^—
,

— v' I / '''

y = -^-^{x-a) (3). :t
x* — a 2)

Multiplying these equations, member by member, we have

in which y and x are the co-ordinates of the point of intersection,

for the two particular Hues AD and D'B. If y' and x' be elimi-

nated from this equation, it is evident that y and x will belong to

no particular lines, but will be the co-ordinates of the point of in-

tersection of all the lines w^iich fulfil the required condition ; and

the resulting equation will be the equation of the required locus.

Substituting the value of y'^ taken from equation (1) in equation

(4), it reduces to

a

which is the equation of an hyperbola having the same axes as the

given ellipse, Art. (105).

This method of determining loci, by combining two equations

belonging to particular lines, so as to eliminate the arbitrary con-

stants which serve to determine the position of the lines, thus de-

ducing an equation independent of these constants, and therefore

belonging to all lines which fulfil the required condition, is of fre-

quent use.

193. Problem 6th. If from the extremity of a diameter of a circle
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any straight line, as AR, be draAvn until it

intersects the tangent BR at the other ex-

tremity, and the distance AM be laid off

equal to NR, it is required to find the

locus of M. Let A be the origin, and

AB and AY the co-ordinate axes. Let

AB = 2a, AP = a-, PM = y. Then

drawing NP' parallel to MP, we have

AP : PM AF : P'N.

Also, since AM = NR, AP = P'B,

P'N = VP'B X AP' = Vj(2a

The above proportion then becomes

X : y : : 2a — a: : ^/x{^a — x)
;

whence

1/^ = -: or y

x).

2a ^ 2a — X

for the equation of the locus. The equation being of the third

degree, the line is of the third order. Art. (33).

All negative values of x give imaginary values for y.

X =: gives y .= dz 0.

Each positive valne of a; < 2a gives two real values of ?/,

equal with contrary signs.

a: = 2a gives y ::= rt: co

.

All positive values of a; > 2a give imaginary values for y,

and the curve is as indicated in the figure, the line BR being an

asymptote. Art. (161). It is called the Cissoid of Diodes,

194. Tlie following ^.Toblems may be solved by puisuing

methods similar to those indicated in the preceding articles.
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7. To find the locus of a point moving in sucL a way, that tht

difference of its distances from two given points shall always be

equal to a given line.

8. Given the line AB and the two lines

DB and AD', to find the locus of M moving

so that MP shall be a mean proportional

li between PC and PD. CLJ^-*^^/

9. Given the base of a triangle and the difference of the angles

at the base, to find the locus of the vertex.
{J,,!U^^

' •^^Lt^.^^jUv^

10. Given the base of a triangle, to find the locus of the vertex

when one anofle at the base is double of the other. ' • . --t-'

11. To find the locus of the point of inter-

section of a tangent to an ellipse, with a per-

pendicular let fall upon it from either focus.

12. Given the semi-circle ASB, to find the

locus of the point M, so that we may always

have *"}''( J '''. f^ O^^^r'^sJi^ ,

AP : PS : : AB : PM.

13. Given the indefinite right line AB,

the point C, and the perpendicular CD, to

find the locus of M so that we may «ilways

have MR = AD.

(i,0^/y^Q)^^J>^ L &^

OP SURFACES OP REVOLUTION.

195. A surface of revolution, is a surface which may he gene-

rated hy revolving a line about a right line as an axis.

By revolving, is to be understood, moving the line in such a

manner, that each point of it will generate the circumference of n
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circle whose centre is in the axis, and whose plane is perpendicular

to the axis. The moving line is called the generatrix.

From the definition it follows, that every plane perpendicular

to the axis will cut a circle from the surface.

Every plane passed through the axis will cut from the surface

a meridian curve, or line, and if this be revolved about the axis it

will generate the surface.

196. In order to obtain the general equation of a surfoce of

revolution, Art. (54), let us take the axis of the surface for the axis

of Z, and the co-ordinate planes at right angles. The general

equation of the generatrix will then be. Art. (52),

=c = /W, !/ = /W (1),

and let r denote the distance of any point of this line from the axis.

Since, from the nature of the surface, this point in its revolution

must describe a circle whose centre is in the axis of Z, and whose

plane is perpendicular to this axis, that is parallel to the plane XY,

we must have in every position of the point,

a:* -f y« = r^ (2),

and since this point is on the generatrix, the values of x and y

taken from equations (1), must fulfil the condition ' expressed by

equation (2), and give

W)' +W)' = »•••

Equating these two values of r^, we have

.r« + ,,' ='filf +'f\zf (3),

an equation expressing the relation between the co-ordinates of the

point in all of its positions. It is therefore the equation of the

stirface, in which /(z) and /'(z), are the values of x and y ob-

tained by solving the equations of the generatrix.
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197. To illustrate, let us find the equation of a surface gene-

rated by revolving a right line ahoui an axis not in the same plane

with it.

The axis of revolution being taken as the axis of Z, we may-

take for the equations of the generatrix, Art. (44),

X = az + a, y =z hz + ^,

from which, w^e have

f(z) = az + a, f(z) =. bz + (3.

Substituting these in equation (3), it becomes

x^ + 7/^ = [az + ciy + (bz + /3)2.

If the axis of X be assumed perpendicular to the generatrix and

intersecting it, the projection of the generatrix on the plane XZ
will be parallel to the axis of Z, and its projection on the plane YZ

will pass through the origin of co-ordinates ; hence, Art. (45), we

have

a = 0, /3 = 0,

and the above equation becomes

a;3 + y2 _ bH^ = a2 (1).

If we intersect this surface by a plane parallel to XY, the equa-

tion of which, Art. (62), is

z = Cy X and y indeterminate,

we shall obtain, Art. (62),

x'i -\- y^ = bh^ + a',

for the equation of the projection of the intersection on the plane

XY, which represents a circle whose radius is Vb^c^ -\- a^

Art. (35) ; and this circle will be real, whatever be the value of c
;

and the smallest possible when c = 0, in which case the cut-
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(ing plane is the plane XY, Art. (62). And since this projecticn

is equal to the intereection itself, we sec that every intersection by

a plane perpendicular to the axis will be a circle, as we know ifc

should be, from the definition of the surface.

If we make y = in equation (1), we have

^2^2 = a2, or 62^2 j2 = „ a«,

for the intersection by the plane XZ, Art. (62).

If we make x = 0, we have for the intersection by the

plane YZ,

hH^ - 2/2 = - a«,

and these are evidently the equations of two equal hyperbolas, the

conjugate axis of each lying on the axis of Z, Art. (105). And

since the surface may be generated by revolving either of these

meridian curves about the axis, it is called a hyperholoid of revolu-

tion of one nappe. Of one nappe, since, as is readily seen, it forms

one uninterrupted surface.

198. If the generatrix is in the plane with the axis of revolution,

this plane may be taken for the plane XZ, and as before, the axis

of revolution for the axis of Z, in Avhicli case the equations of the

generatrix will be. Art. (52),

^ = A^\ y == f'{^) = 0,

and equation (3) of Art. (196) will reduce to

x^ + y^ = fizj' (1),

in which /(::) is the value of x deduced from the equation of the

generatrjc.

xU' Examples.

1. ITie equation of a right line in the plane XZ, and passiuo-

16
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through a point on the axis of Z, whose co-ordinates are x* = 0,

z' = c, will be, Art. (29), y ^y' -»-

;i y

from which we have

' j\z) = a(z - c).

This substituted in equation (1), gives

iC« -f y« = a«(2 — c)«,

for the equation of the cone generated by revolving the right line

about the axis of Z. This equation may be put under the form

(*« + y«)i. = (z - of,
a*

or denoting the angle made by the generatrix with the base by v^

we have

_ r= tangv;
a

whence

{x^ + 2/2) tang« v = (z - c)\

the same equation as that deduced in Art. (80).

2. If the axis of a parabola in the plane XZ, coincide with the

Axis of Z, and its vertex be at the origin of co-ordinates, its equa-

tion will be, Art. (84),

V— ^ x^ = 2p«,

from which we have

f{z) = V2fz, f{^ = 2pz,

which substituted in equation (1), gives
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X* -\- y^ = 2pz,
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for the equation of the surface generated by revolving a parabola

about its axis ; called a paraboloid of revolution.

3. If the transverse axis of an ellipse, in the plane XZ, lies on

the axis of Z, and its centre is at the origin of co-ordinates, its

equation will be, Art. (105),

a«x2 + i^^a = a8j2^

whence

t*

x^ = -,(«« - .») =f{z)\

and this in equation (1), gives

X* J^ y"^ = - (a* _ 22), or a\x'^ + y^) + hH^ = a«6«...(2),

a*

for the equation of a surface generated by revolving an ellipse

about its transverse axis.

If the conjugate axis of the ellipse lies on the axis of Z, the equa-

tion will be,

a«2« -f h^x^ = a%^, whence ^* = ^ (^^^ ~ ^'^) ^ /= '

and the equation of the surface

h\x^ + 7/) + a'^z^ = a%^ (3).

These surfaces are called ellipsoids of revolution ; or spheroids.

The first is tlie prolate^ and the second the oblate spheroid.

If in either of equations (2) and (3) we make a = 6, the

ellipse becomes a circle, and the equation reduces to

x'^ -f y« + 2« = a«,

for the equation of a sphere.

4. If in equations (2) and (3) we change 6* into — &', we have
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and

Ihe firet represents the surface generated by revolving an hyper-

bola about its transverse axis, or hyperholoid of revolution of two

nappes. Of two nappes, since it consists of two distinct parts, one

being generated by one branch of the hyperbola, and the other by

the other branch.

The second represents the surface generated by revolving the

hyperbola about its conjugate axis. Its equation, after dividing

by ^V^comes

of the same form as equation (1), Art. (197). From which we see

that this surface may not only be generated by revolving an hyper-

bola about its conjugate axis, but also by revolving a right lino

about another, not in the same plane with it.

OF SURFACES OF THE SECOND ORDER.

199. Surfaces, like lines. Art. (33), are classed into orders ac-

cording to the degree of their equations.

"We have seen, Art. (57), that the plane is the only surface of

the first order.

Tlic equation of every surface of the second order must be a

particular case of the most general equation of the second degree

between three variables,

mx^ + 'i^y^ + P^'^ + m'xy -^ n'xz + p'yz

-4- m"ar -f n"?j -f p"z + I = (1),

which, for the same reason as th^t given in Art. (167), may be
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considered as referred to a system of co-ordinate planes at right

angles.

Points of the surfaces may be determined as in Art. (oo), by

assigning values to x and y, and deducing the corresponding values

of z ; but the nature of the surface will, in general, be best ascer-

tained by intei-secting it by planes and discussing the cur\^s of in-

tersection thus obtained.

200. If we combine the above equation, with the equation of a

plane having any position, Art. (55), and then refer the line of in-

tersection to co-ordinate axes in its own plane, the resulting equa-

tion will be of the second degree. For one of the equations being

of the first, and the other of the second degree, the result of their

combination will necessarily be of the second degree. We there-

fore conclude, that the line of intersection of any surface of the

second order by a plane, is a line of the second order^ or one of the

conic sections^ Art. (IVO).

201. In the surface represented by the general equation of

Art. (199), conceive a system of parallel chords to be drawn. The

equations of one of these chords will be of the form. Art. (44),

X = az J(- a, rj =z hz •\- /3 (1),

and these equations may be made to represent any chord of the

system, by giving proper values to a and /3, a and h remaining un-

changed. If equations (1) be combined with the general equation

(1), Art. (199), and x and y be eliminated, a result will be ob-

tained of the form

2;« + 1% + 1 = 0,
r r

in which the two values of r will be the ordinates of the points in
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M^hicli the chord pierces the surface. If x\ y' and z' denote the

co-ordinates of the middle point of this chord, since z' will equal

the half sum of the two values of 2, we shall have

, _ s

or putting for s and r their values, as found by the actual combi-

nation of the equations,

2' _ _ «(2y^«+ m'h -\-n') + ^{2nh -f m'a +p') + m"a+ n"h +p"
~

2{ma^ + nh'^ + p -\- tn'ab -f- n'a -f p'b)

8ince the point (a;', y'^ z') is on the chord, we also have

x' — at' + a, y' = hz' + /8.

If now these three equations be combined, so as to eliminate a

and /3 ; x'^ y' and z' will belong to the middle point of no particu-

lar chord, and the resulting equation will therefore represent the

locus of the middle points of all the chords of the system, Art.

(192).

Combining the equations, by substituting for a and ^, in the

first, their values taken from the last, we obtain after reduction,

, _ (2ma-^m'h + n')x' + (2r?ft + m'a-\- p')y' \-m"a -f- n"b-\-p'~
2jL> -f- n'a -}- p'b

which is ihe equation of a plane^ Art. (5*7). We therefore con

elude, thai every system of parallel chords of the surface may be

bisecti J by a plane.

In order that this plane shall be perpendicular to the chorda

which it bisects, we must have the two conditions. Art. (59),

_ 2ma 4- m'b -f n' t __ 2nb + m'a + p^

2p H- n'a + p'b 2p + n'a -h p^b
'

and tliese equations can always be satisfied by at least one set of

real \ alues for a and b ; for if they be combined and either a or 6
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eliminated, there will result an equation of the third degree,

containing the other, which must have at least one real root, and

may have three. Hence, in evenj surface of the se:.ond order, there,

is at least one plane which is perpendicular to the system of chords

which it bisects.

^ 202. Let such plane be taken as the co-ordinate plane XY,

the axis of Z being perpendicular to it, that is, parallel to the

chords. This plane will intersect the surface in a line of the second

order, Art. (200), the axis of which may be determined as in Art.

(100) or (154). Let this axis be taken as the axis of X and a

line, perpendicular to it in the plane XY, as the axis of Y, and

suppose the surface to be referred to this new system of co-ordi-

nate planes.

Since the plane XY bisects a system of chords parallel to the

axis of Z, the equation of the surface must be of such a form, that

for every value of x and y, it must give two equal values of z with

contrary signs. It can therefore contain no terra involving the

first power of s. Art. (183). We must then have in the general

equation of Art. (199),

n' = 0, y = 0, p" = (1).

And since the axis of X bisects all chords in tlie plane XY, par-

allel to the axis of Y, the equation of the surface must also be of

such a form that for all values of x, (z being equal to 0), there must

be two equal values of y with contrary signs. The equation can

then contain no term involving the firat power of y. We must

therefore have, in addition to the above equations (1),

m' = 0, n'' = 0,

and the general equation (1), Art. (199) must reduce to the form

mx^ + ny^ 4- pz- -f m''x -\- I = (3);
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and as the above transformations are always possible, tbis equation

may be made to represent all surfaces of tbe second order by as-

signing proper values to the constants which enter it.

203. To discuss the above equation more fully, let us first

transfer the origin of co-ordinates to a point on the axis of X, at a

distance from the primitive origin represented by the arbitrary

quantity a', the axes remaiinng parallel to the primitive. ITie

formulas of Art. (72) become

X = a' -\- x', y — y\ 2 = 2'.

Substituting in the above equation, we obtain

mx'"^ + ny'"^ + 'pz'^ + (2ma' + m") x' + ma'^ + m'V + Z = 0...(1 ).

Since a' is arbitrary, we may assign to it such a value as to mate

2ma' + m" = 0, or a' = — —

,

2m

in which case the equation, after denoting the absolute term by }

and omitting the dashes of the variables, reduces to

mx^ + ny^ + 'pz^ + ^' = (2).

If m = 0, this transformation will in general be impossible,

as we shall then have

a' = — — = 00 (3).

In this case we may assign to a! such a value as will make

m"a^ 4- ? =0, or a' = — —

,

m"

and equation (1) will reduce to

ny« + j»z« •!- m"x = (4).
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If, however, we have at the same time m" = 0, this trans-

formation will be impossible. But in this case, equation (1) will at

once reduce to

ny^ + V^^ + Z = 0, X indeterminate (o),

which is evidently the equation of a right cyhnder with an ellipti-

cal or hyperbolic base, according as n and p have the same or con-

trary signs, Art. (IVO), the axis of the cyhnder coinciding with the

axis of X. Moreover, in this case equation (3) gives

a' = — indeterminate.

and any point of the axis of X will fulfil the required condition.

If m = 0, w = 0, equation (3), Art. (202), reduces to

pz^ -f ^''x + ^ = 0, y indeterminate.

If m = 0, p =. 0, it reduces to

ny^ + m"x -f- Z = 0, z indeterminate
;

both of which are equations of right cylinders with parabolic bases,

the elements of the first being parallel to the axis of Y, and those

of the second parallel to the axis of Z, Art. (V6).

If m" = also, in the last two equations, the first will give

2 = ± \/ — _
,

X and y indeterminate^
V p

which represents two planes parallel to the plane XY, Art. (C2);

which are real when I and p have contrary signs ; become one

when Z = ; and are imaginary when I and p have the same

sign ; and are particular cases of the cylinder^ analogous to the

particular cases of the parabola discussed in Art. (I7l).

In the same way it may be proved, that the second equatioii

will represent two planes parallel to the plane XZ.
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If 7?i = 0, ?^ r= 0, i> = 0, the equation ceases to be

one of the second degree.

From this discussion, we see that all surfaces of the second order

vnW belong to one of the three classes represented by the following

equations.

First, mx^ -f ny" + pz^ -{- I = 0.

Second, ny^ + pz^ + m"x — 0.

ny^ + pz^ + I = 0''

TJiird, pz^ + m"x + I z=

ny^ + 'ni"x +1 = 0^

>•
.

204. The centre of a surface is a point, through which if any

straight line be drawn terminating in the surface, it will be bisected

at this point.

If the origin of co-ordinates be placed at the centre, it is erident

that for every point on one side of this origin, there must also be

another in a directly opposite direction, at the same distance, and

having the same co-ordinates with a contrary sign. Hence, the

equation of the surface must be of such a form, that it will not

change, when for + a?, + y and + z, — ^, — y

and — z are substituted ; that is, all of its terms must be of an

even degree with respect to the variables.

In order then to ascertain whether a given surface has a centre
;

we see if all the terms of its equation are of an even degree, if so,

the origin of co-ordinates is a centre ; if they are not, we then see

if the origin of co-ordinates can be so placed as to make all the

terms of the transformed equation, of an even degree. If this is

possible, the surface will have a centre, which will be at the new

origin. If it is not possible, the surface will have no centre.

205, By applying the above principles to surffices of the second
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order, >ve see that all of the first class have centres. That none of

the second have centres. That the cyhnders represented by the

first equation of the third class have an infinite number of centres,

each point of the axis fulfilling the required condition. That those

represented by the second and third equations have no centres.

206. Any plane which bisects a system of parallel, chords of a

surface, is called a diametral plane ; and if the chords are perpen-

dicular to the plane, it is a principal diametral plane, or simply a

principal plane.

Two diametral planes intersect in a diameter common to the two

curves cut from the surface by these planes, and this intersection

is also a diameter of the surface ; and two principal planes intersect

in an axis of the surface.

A diametral plane may be constructed, by drawing three par-

allel chords of the surface, not in the same plane, and bisecting

them by a plane. By constructing two planes in this way, we de-

termine a diameter, and the middle point of this diameter will

evidently be the centre.

207. The co-ordinate planes being at right angles to each other,

we see that each of them, in surfaces of the second order of the

first class, is a principal plane. For, if equation (2), Art. (203), be

solved with reference to either variable, we shall have two equal

values with contrary signs, and these two values taken together,

will form a chord, perpendicular to the co-ordinate plane of the

other two variables, and bisected by it.

From this, it also follows that the axes of co-ordinates are axes

of the surface. Art. (206).

In the second class, equation (4), Art. (203), the co-ordinate

planes ZX and YX, are also principal planes, and the axis of X is

an axis of the surface.
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In the cylinders represented by the first equation of the third

class, the planes ZX and YX are principal planes, and the axis of

X is the axis of the cylinder.

In the cylinders represented by the second, the plane XY is the

only principal plane, and there is no axis.

^ In those represented by the third, the plane ZX is the only

.A\j)rincipal plane, and there is no axis.

DISCUSSION OF THE VARIETIES OF SURFACES OF THE
SECOND ORDER.

208. All the varieties of the first class of surfaces of the second

order, or those which have a single centre, may be obtained by

making in their equation, Art. (203).

First, w, n and p all positive, I being negative or positive.

Second. Either two positive and the other negative, I being

positive.

Third. One positive and the other two negative, I being posi-

tive.

For if all are negative, the signs of both members of the equa-

tion may be changed, giving the first case.

If two are negative, the other positive and I negative, the signs

may be changed, giving the second case.

If one is negative, the others positive, and I negative, the signs

may be changed, giving the third case.

First, in, n and p positive, I negative or positive.

209. Supposing I to be negative, the equation of the first class,

Art. (203), may be put under the form

mx^ + 717/^ -f pz^ = I (1).

Let us intersect this surface by planes parallel, respectively, t^
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the co-ordinate planes ZY, ZX and XY. The equations of the

cutting planes, Art. (62), will be

X — h, y = k, z = 9.

Combining these with the equation of the surface, Art. (62), we

obtain

mx^ \- 2^^^ = I — nk"^', (2),

for the equations of the projections of the several intersections on

the co-ordinate planes ; and since the curves are parallel to the

]ilanes on which they are projected, the projections are equal to

the curves themselves.

Each of these equations represents an elhpse, Art. (169), and

these ellipses will be real when the second members of the equa-

tions are positive, or

h < ±\/l, k < ±\/L, a < ±\/i.

If

h=.±:JL, l-=±:Jl, ff=dz\/L,

the above equations reduce to

?iy' -f pz^ = 0, mx^ -f- pz^ = 0, mx'^ -f ny"^ = 0,

and the first members of each being the sum of two positive quan-

tities, they can only be satisfied by making

y=:0, z=0; ar = 0, z = 0; a: = 0, y=.0,

which are the equations of points
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If

>±\fL, k>±^/l, Jy±^Jl,

the second members of the above equations (2) will be negative.

and they can be satisfied by no values of the variables, and the

ellipses will be imaginary, that is, the planes will not intersect the

surface.

If

;t = 0, /7 = 0,

equations (2), become

pz^ = I, mx^ + ^^y^ ^,

which are the equations of the principal sections, and each of these

sections is evidently larger than any other made by a parallel

plane.

From this discussion we conclude that if the surface, represented

by equation (1), be intersected by a

system of planes parallel, respectively,

to the co-ordinate planes, the curves

of intersection will all he ellipses^ and

these ellipses will diminish as the dis-

tance of the cutting plane from the

centre, on either side, is increased, un-

til they reduce to points ; after which there will be no intersection

and no points of the surface. The surfjace is then limited in all

directions, as in the figure, and is called an UUijJsoid.

Ifw^emake y = 0, z = in equation (1), we have

mz'^ = /, or CB or CA.

In A similar way we find
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JL = CE or CE', =t\/- = CD or CD'.

Placing the expressions for these semi-axes, respectively equa'

to a, h and c, we have

^ m ^ n ^ p

whence

and substituting these in equation (1), we obtain

•^ 4- 2^ 4- !!. = 1

or

an equation for the ellipsoid, referred to its centre and axes, analo-

gous to equation (e), Art. (105).

'^ 210. If m = w, equation (1) of the preceding article may

be put under the form

.. + ,« = LZU!!! = 7(i)^
771

which is the equation of a surface of revolution, the axis of Z being

the axis of revolution. Art. (198). But since m = w, we have

a = b or CA = CE, and the surface is generated by re-

volving the ellipse "PDA about its conjugate axis, and is the oblate

$pheroid, Art. (198).

Likewise if 7i = p, equation (1), becomes

„ . „ I — mx^ TTx*
y« + z^ = = f{x)
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which is the equation of the prolate spheroid.

If m =^ n =^ p, we obtain

X'' + y^ -\- Z' := —

,

m

which is the equation of the sphere^ Art. (198).

If Z = 0, equation (1) becomes

mx^ + mj^ + pz^ = 0,

which, since the first member is the sum of three positive quanti-

ties, can only be satisfied by making

^ = 0, 3/ = 0, 2=0,

which are the equations of a pointy Art. (41).

If I is positive, equation (2), Art. (203), takes the form

mx^ 4- nif + pz"^ z=z — l^

which can be satisfied for no values of x^ y and z, and therefore re-

presents no surface, or an imaginary surface.

From this discussion we see that the particular cases of the El-

lipsoid are, the ellipsoid of revolution, the sphere, the point, and

the imaginary surface.

Second^ m and n positive^ p> negative and I positive.

211. In this case equation (2), Art. (203), takes the form

mx^ + mf -^ pz"^ = — I (1).

Intersecting the surface by planes as in Art. (209), we have, for

the equations of the projections of the curves of intersection,

ny"^ — pz^ = — I — mh^\

mx^ — pz'^ = — I - nJc^ ; (2)

mx^ -if ny"^ = — I + pg\

Rach of thi- first two of these equations represents an hyperbo-
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la, whose transverse axis coincides with the axis of Z, Art. (105).

and which increases in length, indefinitely a& h and k increase.

The third equation rej^resents an ellipse, Art. (105), which i?

real when

P9'' > I, or 9> ± v/^.

and which increases as g increases,

when

This ellipse becomes a point

vr I,

V p

and imaginary, or there is no curve, when

pf- < I,

•(3),

. < ±\/i.

If A = 0, k = 0, g = 0, Art. (62), equations (2),

become

mj' pz^ - I mx^ J)Z^
— — l^ mX^ 4- 727/3 = — i^

which are the equations of the principal sections.

The first two represent hyperbolas, whose transverse axes are less

than those of any of the parallel hyperbolas. The third equation can

be satisfied by no values of x and y,

from which it appears that the plane

XY does not intersect the surface.

From this discussion, we conclude,

that if the surface represented by

equation (1) be intersected by a sys-

tem of planes, parallel respectively to

the co-ordinate planes, the sections

parallel to ZX and ZY, will be hy-

perbolas having their transverse axes

parallel to the axis of Z, while the

sections parallel to XY, will be ellip-

17
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ses when at a greater distance from the origin, above or below,

than the value of ^ in equation (3). Hence, the surface extends

to infinity in all directions from the centre, and consists of two

distinct and equal parts or nappes, as in the figure. It is therefore

called, an Hyperholoid of hoo nappes.

If we make y = 0, « = 0, in equation (1), we have

/111

which is imaginary, and the surface does not cut the axis of X.

In a similar way, we find

ny^ = - Z, y = ±\/EI,
* n

and

m^ = I z = ±\/L = CA or CB.V
p

Placing

^ m ' -' \ n

we have
\

"^ = -?' ** = J?* -i.
and these in equation (1), give

X^ 7/« *«

c« h^ a?
1,

ct

a%*x^ + a^Y - ^^c^^* = - a^m
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for the equation of the hyperboloicl of two nappes, referred to its

centre and axes.

212. If rri = n, equation (1) of the preceding article may-

be put under the form

.« + y. = - Lzlf. = fi7)\m

which is the equation of a surface of revolution, Art. (198), evi-

dently generated by revolving the hyperbola abouK its transverse

axis BA, or the hyperholoid of revolution of two nappes.

Tf / = 0, equation (1) reduces to

mx^ + ny"^ — pz^ — 0.

If this surface be intersected by any plane parallel to XY, we

have for the projection of the intersection

which is the equation of an ellipse always real, whether g be posi-

tive or negative. If g = 0, we have

mx^ -f ny^ = 0,

which can only be satisfied by

y = 0, X = 0,

which are the equations of a point. If we make first a: = 0,

and then y = 0, we obtain for the intersections by the co-or-

dinate planes YZ and XZ, the equations

nys — pz^ = 0, mx^ — pz^ = 0,

or

y = ±: zsjl, X ^ dt zyl
^ n ^ m

each of which evidently represents two right lines passing through

.
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the origin, Art. (109), and tlie surface can only be a cone havimj

its vertex at the origin.

The j^articular cases of the Hyperboloid of two nappes are, there-

fore, the hyperboloid of revolution of two nappes^ and the cone.

Third, m positive, n and p negative, I positive.

213. In this case, equation (2), Art (203), takes the form

mx* — wy* — pz* = — I (1).

Intersecting by planes, as in Art. (209), we obtain

ny^ -r p^^ = I -\~ mh^.

mx^ — pz- = — I + wF (2).

mx^ — ny^ =z — I -\- pg^.

The first of these equations represents an ellipse, which is

always real, and increases as h increases in either direction, from

the origin.

The second represents an hyperbola, whose transverse axis coin-

cides with the axis of Z when the second member is negative, or

wF < I, and Jc < dt\/L,

and with the axis of X, when

k > ±:sA,
^ n

The third is also the equation of an hyperbola, whose transvers*

axis coincides with the axis of Y, when

P
v^.

and with the axis of X, when
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If in the last two of equations (2), we make

^ n ^ p

we have

mx^ — pz"^ 0,

mx^ — ny^ = 0, rr = =b
' an

each of which represents two right lines.

If A = 0, ;& 0, g = 0, equations (2) become

ny* + 'P^'^
= ^, wi.r* — pz^ = — Z,

.2 mf = - ?,

for the equations of the principal sections.

The first represents an ellipse, which is smaller than any par-

allel section, and is called the ellipse of the gorge. The other two

represent hyperbolas. We therefore conclude that, if the surface

be intersected by planes parallel

respectively to the co-ordinate

planes, the sections parallel to ZX
and YX are hyperbolas; while

those parallel to YZ are ellipses,

always real, whatever be their dis-

tances on either side of the centre.

The surface then extends to infinity

in all directions from the centre,

without being separated into two

parts. It is called an hyperholoid of one nappe.

K we make y = 0, 2=0, in equation (1), we have
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^ m

which is imaginary. In a similar way, we find

CD =\/i, CA =\/l,

both of which are real. Placing

^ m ^ n ^ p

we deduce

I I I

c* 0* a*

and these in equation (1), give

for the equation of the hyperboloid of one nappe, referred to its

centre and axes.

214. If n = ^, equation (1) of the preceding article may

be written

y. + z« = L+^ = f(7)\
n

which is the equation of a surface of revolution, Art. (198), evi-

dently generated by revolving the hyperbola about its conjugate

axis, or the hyperboloid of revolution of one nappe.

If / = 0, equation (1) reduces to

mx^ — ny^ — pz^ = 0,

which may be shown, as in Art. (212), to be the equation of a

cone h;iving its vertex at the origin.
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The particular cases of the Hyperboloid of one nappe are, there-

fore, the Jujperholoid of revolution of one nappe^ and the cone.

215. All the varieties of the second class of surfaces of the

second order, or those which have no centre, may be obtained by

making in equation (4), Art. (203)

:

Mrst. n and p positive, m" being positive or negative :

Second, n positive and p negative, m" being positive or nega-

tive.

For, if n and p are negative, the signs of both members of the

equation may be changed giving the first case.

If n is negative and p positive, the signs may be changed

giving the second case.

^ First, n and p positive, m" positive or negative.

216. If m" is negative, equation (4), Art. (203), may be put

under the form

ny^ + J52;'
= 'm"x (1).

Intersecting the surface as in Art. (209), we have for the pro-

jections of the several curves on the co-ordinate planes,

ay"* + pz^ = m"h, pz^ = ')n"x —nJc^, ny^ = m"x — pg^.

The first represents an ellipse, which is real as long as A is pos-

itive, and increases indefinitely as A is increased, becomes a point

when A, = 0, and is imaginary for all negative values of h.

The other two represent parabolas, the axes of which coincide

with the axis of X, Art. (84). And since the parameters of these

parabolas are, respectively, — and — , whatever be the
J) n
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values of k and ^, it follows that all the parallel sections are equal

to each other.

By making A = 0, ;[: = 0, ^ = 0, we have for the

principal sections

ny^ + P^"" = 0, pz^ = m"x,

Ihe first represents a point, the origin of co-ordinates, and each

of the others a parabola, having its vertex at the origin.

From this it appears that the surface extends to infinity in the

positive direction of the axis of X,

but does not extend at all to the

left of the origin ; that the inter-

sections by one system of planes are

ellipses, and by the other two, para-

bolas. It is therefore called an

elliptical paraboloid.

If m" is positive, equation (4), Art. (203), takes the form

ny* -h P^^ = — m"x,

in which, if we change x into — x, we shall have equation (1).

But the only effect of this change is to estimate the abscissas from

A to the left. The equation will then represent the same surface

revolved 1 80° about the axis of Y.

21*7. If n = p, equation (1) of the preceding article may

be written

y3 + s8 = — X = /r

which is the equation of a paraboloid of revolution^ generated by

revolving the parabola about its axis, and this is the only particular

case of the elliptical paraboloid.



INDETERMINATE GEOMETRY. 265

Second, n positive and p negative, m" positive or negative.

218. It will only be necessary to discuss the case where m" is

negative ; for, if m" is positive, it may be shown, as in Art. (2 1 6),

that the equation will represent 'the same surface revolved 180°

about the axis of Y.

This being the case, equation (4), Art. (203), takes the form

mf — pz^ = m"x (1).

Intersecting the surface, as in Art. (216), we have

ny^ — pz^ = w"A...(2), ^?x* = — m"x -j- ?iP, ny^ = m"x -[ pg\

The first is the equation of an hyperbola always real, and having

its transverse axis on the axis of Y when h is positive, and on the

axis of Z when h is negative. Art. (105). The other two are the

equations of parabolas, the first extending indefinitely in the di-

rection of the negative abscissas, and the second in the direction

of the positive abscissas, Art. (171).

By making ^ = 0, ^ = 0, g = 0, we have for the

principal sections

»y* — pz^ = (3), pz^ = -- m"Xy ny^ = m"x.

The first may be put under the form

ny^ == pz'', or y = do z ^/i.

which represents two right lines passing through the origin. The

other two represent parabolas each equal to those cut out by the

corresponding parallel planes.

From this, it appears that the surface is unlimited in dii direc-

tions ; that the sections by one system of planes are hyperbolas,

and by the other two, parabolas. It is therefore called a hyperbolic

paraboloid.

It has no particular case.
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We h.'ive seen above that the plane YZ intersects the surface

in two right lines represented by

equation (3), and that any plane par-

allel to YZ, intersects the surface

in an hyperbola, the projection of

which is represented by equation

(2). If we denote the ordinate of

any point of one of these right lines

^y y'l to distinguish it from the

ordinate of a point of the curve corresponding to the same value

of Zj we shall have

Wy'2 _ pz^ = 0.

Subtracting this equation, member by member, from equation

(2), we have

til/i __ „y/2 m"h whence y — y
m"h

n{y + y')

Now as « is increased, y and y' are both increased, and y — y'

becomes smaller and smaller, and when y and y' become infinite,

y — y' becomes 0, or the two points coincide ; that is, the right

line continually approaches the curve and touches it at an infinite

distance, or is an asymptote, Art. (161). Hence, the two right lines

represented by equation (3), will be the asymptotes of the pro-

jections of the hyperbolas cut out by the planes parallel to YZ.

Or, if two planes be passed through these hues and the axis of X,

the plane which cuts from the surface an hyperbola, will cut from

these planes, lines which will be the asymptotes of the hyperbola.

Of THE INTERSECTION OF SURFACES OF THE SECOND

ORDER BY PLANES.

219. It has been proved, Art. (200), that every intersection of

a surface of the second order, by a plane, is a line of the second
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order. The discussion of the nature of these sections, except when

they are parallel to one of the co-ordinate planes, is much simpli-

fied by referring them to axes at right angles, in their own planes.

For the purpose of this discussion, let us resume the general

equation, Art. (202),

mx^ -f ny^ + pz^ + m"x + r= 0. (1),

in which the origin is at some point A, on the line AX, this being

the intersection of

two principal planes.

Art. (206). Let any

plane be passed in-

tersecting the surface,

and let A'X' be its

trace on the plane

XY, making an angle

/3 with the axis of X,

and let ^ denote the

angle made by this

plane with the plane

XY.

For any point of the curve of intersection, as M, we shall then

have

AP', y PF, z = MP.

Let this point be now referred to the two axes A'X' and A'Y',

at right angles to each other and in the plane of the curve.

Through P draw PN perpendicular to A'X', and PO parallel to

AX ; also draw NS perpendicular to AX. Join M and N, then

the angle MNP = &. Denote the distances

AA' by a', A'N by a:',

ftnd we shall have

MN by y\

X = a' + A'^ + OP, = NS - NO.



/^ 268 INDETERMINATE GEOMETRY.

^' The right angled triangles MPN, A'SN, and PON, give

z = y' sin ^, NP = y' cos ^, A'S = x' cos ft

NS = x' sin iS, NO = NP cos ft PO = NP sin /8.

Substituting these values in the preceding equations, we obtain

z = a' + X' cos ^ -\- y' cos 6 sin /3, y =: x' sin ^ — y' cos & cos /3.

If these values, with the value, z = y' sin ^, be substituted

in equation (1), the result can only belong to points common to

the plane and surface, and will therefore represent the line of in-

tersection. Making the substitution and reducing, we obtain

(wcos« (3 + n sin2 f3)x'^ + [cos«'J(m^i?ftfVcos8 ^) -f i? sin^ &] y'^

+ ^m —71) sin ^ cos ^ cos ^ a;'y'-|- cos (3(2ma'+ m")x'

+ cos ^ sin ^{2a'm + m")y'-i-ma'^+ m"a'+ I = 0...(2).

By assigning proper values to a', we may always cause the

plane to intersect the surface, and by assigning proper values to

jS and d, we may cause the above equation to represent the several

varieties of lines of the second order.

220. For instance, let it be required that the intersection shall

be a right line or lines.

If it is possible to cut a right line from the surface by a plane in

any position, the same right line may be cut out by a plane per-

pendicular to the plane XY. For it is only necessary that the cut-

ting plane should occupy the position of the plane which projects

the line on the co-ordinate plane XY. We may therefo'^e regard

6 in the above equation as equal to 90°, which gives

cos 6 = 0, sin ^ = 1,

and see if it is possible to give such values to a' and /?, as will

make ths equation represent one or more right lines.
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221 For those surfaces which have a centre, we may also re-

gard m" = 0, Art. (203). Substituting this value with the

above, for cos & and sin ^, in equation (2), Art. (219), and omit-

ting the dashes of x and y, it reduces to
'

(m cos'* (3 -\- n sin^ (3)x'^ + pij^ + 2a'm cos ^x + ma'^ + / = 0.

Solving this with reference to y, we have

p= dz\/— i[(7?icos2/3+7isin2/3)a;2+2ma'cos^a;+La'«+Zj..(jlt)

In order that this represent one or more real right lines, it is

necessary that — _ shall be positive, and that the factor within

the parenthesis shall be a perfect square, Art. (1^8), which re-

quires

P < (2),

and

{771 cos2 (3 + nsm^(3){ma'^ + I) = m^a'^ cos^ (3 (3).

Deducing the value of a' from the last condition, we obtain

«'= ±\/-
l{m cos* (3 + n sin* ,8)

77171 sin-"

.(4).

Since p is positive in the ellipsoid, Art. (209), condition (2) can

not be fulfilled ; whence the conclusion, that no right line can he

cutfrom this surface.

Since m, ti and / are posilive in the hyperboloid of two nappes,

Art. (211), the value of a' will be imaginary for all values of ^.

Condition (3) can not then be fulfilled, and no right line can be cut

from this surface.

Since m and I are positive and n and p negative in the hyper-

boloid of one nappe, Art. (213), condition (2) will be fulfilled, and

the values of a' will U r^al for all values of /S which give
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n sin* ^ < m cos'* /3, or
n

and equation (1) will then represent two real right hnes which in* >

tersect, Art. (1*78). Hence, an infinite number of right lines may

be cut from the surface of the hyperboloid of one nappe by planes.

222. If we take the value of Vma'^ -\- I from condition

(3) of the preceding article, and substitute it in equation (1), ex-

tract the square root of the factor within the parenthesis, and sub-

stitute in the result the value of a', from equation (4), we shall

obtain

cos /3 /ml\

sin (3 ^ pnj
y = =^|

, :\/mcos^jg -f r^sin«;8 +

which may be put under the form

y = if^Xcot^^ + n + cotpJ^) (1),

and will represent the two right lines cut out by any plane

making the angle ^ with the plane XZ. By changing (3 into ^',

we shall obtain at once

the equations of two other

lines cut out by another

plane. TSe lines cut out

by two different planes are

"x i^ot parallel ; for the cut-

ting planes, which are also

their projecting planes, are

not parallel. Neither can

they intersect, for if they

intersect at all, it must be in the perpendicular to the plane XY,

at the point P ; and if we substitute AT for x in the equation of
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the first set of lines, and A"P for x in the equation of the second

set, we must obtain the same value for y in each case. But de-

noting the distance PO by c?, we have

A'P = -A-
,

A"P = ^

4

sin /8 sin^'

and these values being substituted for a?, each in equation (1), will

give values which are unequal.

223. For those surfaces which have no centre, we may regard

m and / as equal to 0, Art. (203). Substituting these values with

cos d = 0, sin ^ = 1, in equation (2), Art. (219), and omit-

ting the dashes of the variables x and y, it reduces to

n sin* ^x^ + py* + m" cos ^x -f m"a' = 0.

Solving this with reference to y, we have

y = ±\/ (7isin«/3a;« + m" cos f:ix 4- m"a') (1),

In order that this shall represent one or more real right lines,

we must have, as in Art. (221),

V < (2),

and

m"2 cos^ ^ = 4?i sin* ^ m'^a' (3) ;

whence

m" cos« /?
a' =

4» sin* (3

In the elliptical paraboloid, n and p are both positive, Art

(216), condition (2) can not be fulfilled, and no right line can he

cut from the surface,.



272 INDETERMINATE GEOMETRY.

In tlie hyperbolic paraboloid, n is positive and p negative, Art.

(218) ; condition (2) is fulfilled, the value of a' will be real, and

fulfil condition (3) for all values of ^ ; and an infinite number of

right lines may be cut from this surface by planes. Substituting

the value of a' in equation (1), and extracting the square root of

the quantity within the parenthesis, we obtain

, V n / . r^ ,
m" cos

y = d: —= (
sm px +

- p\-/__ ^ \^
2 n sin [3J

which will represent the two right lines cut out by any plane

making the angle (3 with the plane XZ. By changing /3 into ^',

we shall obtain the equations of two other right lines cut out by

another plane.

It may be proved, as in the preceding article, that the lines cut

out by two different planes are not parallel, and do not intersect.

224. The preceding discussion of the rectilineal sections of sur-

faces of the second order, enables us to classify these surfaces as

they are classed in Descriptive Geometry. This classification is :

1. Plane surfaces, which may be generated by a right line

moving along another right line and parallel to its first position.

2. Single curved surfaces, which may be generated by a right

line, moving so that its consecutive positions shall be in the same

plane.

3. Double curved surfaces, which can only be generated b}'-

curves.

4. Warped surfaces, which may be generated by a right line,

moving so that its consecutive positions shall not be in the same

plane.

The cylindrical and conical surfaces are singU curved, as the con-

secutive elements of the first are parallel. Art. (74), and those of

the second intersect, Art. (77) ; that is, are in the same plane.
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'I'lie ellipsoid, hyperboloid of two na|)pes, and elliptical parabo-

loid, are double curved ; since no right line can be cut from them,

Arts. (221), (223) ; that is, no right line can be so placed as to lie

wholly in either surface.

The hyperboloid of one nappe, and hyperbolic paraboloid, are

warped ; since the right lines cut from the surfaces by consecutive

planes are not parallel, neither do they intersect. Arts. (222), (223),

and therefore can not lie in the same plane.

225. If it be required that the intersection represented by

equation (2), Art. (219), shall be a circle, it is necessary that the

coefficient of x'y' be equal to 0, and that the coefficients of x'^ and

y'* be equal to each other. Art. (169). This requires

2(7^1 — n) sin /3 cos (3 cos & = (1),

m cos* 13+ n sin* [3 = cos'* &{7n sin^ /3 +nco&' 13) + p sin^ & (2).

The condition (1), (m and n being in general unequal), may oe

satisfied by making either

sin /3 = 0, cos /5 = 0, cos Q = 0.

Sin ^ = substituted in condition (2), gives

m — n cos" & -\- p sin* ^ = m(sin* & -f- cos* ^),

since sin* & + cos* ^ = 1. From this we deduce

m tang* d {- ?n = n {- p tang* 6,

or

tang^ = ±\/IZ^. (3).

In a similar way we find

CCS 13 — 0, tang ^ = ^V- — Ws
^ p — n

18
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COS /? = 0, tang/3 =r iV"^ i^)'
p

In the first case, the cutting plane is parallel to the axis of X
;

in the second, parallel to the axis of Y ; and in the third, parallel

to the axis of Z.

It may be remarked that if any position of the cutting plane be

found to give a circle, every parallel plane intereecting the smfac-e

will also give a circle. For if the angles ^ and & remain the

same, a' may be changed at pleasure, without affecting the equality

of the coefficients of x'^ and y''^.

226. In the ellipsoid, in which 7Ji, n and p are positive, Art.

(209), in order that the first set of values of tang &, (equation

(3), preceding article), may be real, we must have

?i > m > p, or ^; >• m > n.

In order that the second set may be real, we must have

^ > 7i > wi, or m > 7i > p.

In order that the values of tang (3 may be real, we must have

w > ^ > m, or ^ > i^ > ^•

It is evident that no two of these conditions can be fulfilled at

the same time.

If either of the first is fulfilled, we

shall have, [sec c::i-,rcssions for a, h.

and c, Art. (209)],

CE>CB>CD, or CE < CB <CD.

Hence, the mean axis of the sur

face lies on the axis of X, to which the cutting plane is parallel.

If either of the second is fulfilled, we shall have
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CB > CE > CD or CB < CE < CD,

and for eitlier of the third

CB > CD > CE, or CB < CD < CE.

Hence, a cutting plane passed parallel to the mean axis of the

surface may have two positions, such that the sections shall be

circles, these positions being determined by the two proper values

of tang & or tang /3 ; and in no other position can the section

be a circle.

If m = n. both sets of values of tang ^ become 0, and

tang /3 becomes imaginary. Hence the two cutting planes unite

in one, parallel to XY, or perpendicular to the axis of Z ; as should

be the case, since the surface becomes an ellipsoid of revolution,

its axis lying on the axis of Z, Art. (210).

If n = p, the first set of values of tang & become imaginary,

while the second and those of tang /3 become infinite, and the

cutting plane is perpendicular to the axis of X, Art. (210).

If 7)1 = n = p, the values of tang & and tang ^ become -
,

indeterminate, and every position of the cutting plane gives a

circle, as it should, since the suiface becomes a sphere.

227. 1)1 the hyperholoid of tivo napjjes, in which wi and n are

positive and p negative, the values of Art. (225), after giving to

the letters their proper signs, become

lang5 = ±\/~ -, tangd = ±
m -\- p ^ p \' n

^ n -{- p

ITie values of tang (3 are imaginary.
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/O -^ -2^

If m <^ n. the first set of values of tanor

second imaginary,

reverse is the case.

we have c > &
;

is real, and the

If m > n, the

But, if m < w,

and if w > n^

we have c < 6, Art. (211). Hence,

in this surface, the cutting plane

must be parallel to the longest of

the two axes which do not intersect

the surface.

If m = n^ the values of tang fi

become 0, and the cutting planes

unite in one perpendicular to the axis

of Z ; as they should, since in this

case, we have the hyp^rboloid of revolution of two nappes,

Art. (212).

Since the above values of tang & do not depend upon /, they

will remain the same when Z = 0, Art. (212), that is, in a

cone with an elliptical base, it is always possible to pass planes in

two different directions so as to cut circles. These are called suh-

contrary sections. If one of them be regarded as the base of the

cone, the other will be sub-contrary to the base ; that is, in a scalene

cone with a circular base, i^ is ahoays possible to pass a system of

planes not parallel to the base, which shall cut out circles.

If the cone is a right cone with a circular base, it is a surface

of revolution, and the sub-contrary sections unite in one, perpen-

dicular to the axis or parallel to the base.

228. In the hypcrholoid of one nappe, in which m is positive,

n and p negative, we hare

tans ^
71 + Tfl

, tang 6 == ±V- n + m
m + p n P

tang (3 = V „ _
m
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The fii-st are imaginary.

If n <C p, the second will be real and the third imaginary,

and the reverse when n "^ p.

\i n <C Pi we have

6 = CD > a = CA,

and if n > p, we have

CD < CA.

Hence, the cutting plane is par-

allel to the greatest of the two axes

which pierce the surface.

If n = p^ the above real values of tang ^ and tang /5

become infinite and the two planes unite in one, perpendicular to

the axis of X, Art. (214). When the surface becomes a cone, the

discussion is similar to that in the preceding article.

229. In the elli2)tical paraboloid, in which m = 0, n and

f positive, the values of tang & and tang ^ become

tans: & = dt

tang ^ :

tang 4
V in /Mp — n

^ n — V

The first are imaginaiy. If n <^ p, the second are real and

the third imaginary. If ^ > JP, the reverse will be the case.

Hence, the cutting plane must be parallel to the greater axes of

the elliptical sections. Art. (216).

If n = p, the above real values become infinite and the cut-

ting planes unite in one perpendicular to the axis of X, Art. (217).

230. In jthe hyperbolic paraboloid, in which w = 0, n

positive and p negative, we have
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tang 4 = iv/-, tang^ = ±\/ !i-I,
^ p ^ p -{- n

tang/5 = ±\/ :^.

The second and third are imaginary, and the first real, and the

position of the cutting plane will be given by the equations

*

sin /3 = 0, tang & = dc v/

•

But these values with the value 7n = 0, substituted in con-

dition (2), Art. (225), make the coefficients of x'^ and y'^ both

equal to 0, and equation (2) of Art. (219), takes the form

ex + / = 0, y indeterminate

y

which represents a right line.

Since any plane parallel to either of the planes determined by

the above values of sin /3 and tang & will also cut a right line

from the surface, we see that there are two different systems of

right line elements, each of which is parallel to a given plane.

Wc conclude, also, that no circle can he cut from the hyperbolic

pa^raholoid.

231. The intersection of any two surfaces of the second order

may !•<; found as in Art. (62) ; but as their equations are of the

fiecond degree, the result of their combination, so as to eliminate

one of the variables, will be of the fourth degree ; hence, in gene-

ral, tlie projections of the lines of intersection will be lines of the

fourth order, the discussion of which will be complicated and of

little interest.

If, however, it is known that two such surfaces intersect in a line

of the second order, it will, in general, be found that they will also
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intersect in another line of the second order ; that is, if one sur-

face enters the other in a line of the second order, it will leave it in a

line of the same order.

To prDve this, let us take the most general equations of the two

surfaces,

mx^ 4- ^f^ + pz^ + m'xij + n'xz + i^'y^

+ m"x-\- n"y + p"z + / = (1),

qx^ + rf/^ 4- sz^ -}- q'xi/ -\- r'xz -\- s'yz

+ q>'x + r"y + s"z + l' = (2),

and let the plane of the curve in which it is known the two sur-

faces intersect be taken as the plane XY.

If we make z = 0, in each of the above equations, we shall

have

7nx* -f- nf-^ + jn'xy -{- m"x -f- ?^"y + ^ = (3)

;

qx'' + ry2 -f q'xy -{- q"x + r"y + Z' = (4);

each of which must rej^resent the known curve of intereection of

the surfaces. These equations must then be the same, which can

only be the case when the corresponding coefficients are equal, or

when those of the first equation are equal to those of the second

multiplied by a constant factor, as k. If we now multiply equation

(2) by h and subtract from equation (1), we obtain

/ (p ^ ks)z^ + [n' - kr')xz + {p' — ks')yz + {p" - ks")z = 0,

which equation must be satisfied for all values of x, y and 2, be-

longing to points common to the two surfaces. Since ^ is a com-

mon factor, it may be satisfied by placing

z = 0,

or

(^ _ ks)z + {n' - kr')x + {p' - ks')y + (p" — ks'') = 0,
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z = evidently belongs to tte plane XY, in which the known

line of intersection lies. The other is the equation of a plane, Art.

(57), which by its combination with either (1) or (2), will give

another hne common to both surfaces, and this line must, of course,

be one of the second order, Art. (200).

232. Let x", y" and z" be the co-ordinates of a given point on

a surface of the second order. These when substituted for the

variables in the general equation

mx^ + ny'^ + %)Z^ \- m"x + I = (1),

must satisfy it, and give the equation of condition

mx"» + ny"^ + pz"^ + m"x" + I = (2).

Subtracting this, member by member, from equation (1), and

factoring the terms, we have

m{x — x")[x 4- x") + '^(y — y'0{y + y")

-{- p(z - z"){z + z") -\-m"{x-x") = (3),

which is the equation of the surface, with the condition. introduced,

that the point x", y", z" shall be on the surface.

/ The equations of any right line passing through the given point,

are

(x - x") = a(z - z"), y ^ y" = b{z - z") (4).

If these equations be combined with equation (3), we shall obtain

[z — z")[ma(x + x") + nh{y + y") -\-p[z + z") + m"d\ = (6),

in which a*, y and z must denote the co-ordinates of all points com-

mon to the line and surface, Art. (58). Since this is an equation

of the second degree, there are but two such points
; and these may

be determined by placing the factors of (5) separately equal to 0.
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z — z" = 0, gives z = 2", y = y", x = x'\,

wliich evidently belong to the given point. Placing

ma{x + x") + nh{y + y'<) -\- ]i{z + z") + m"a = (6),

a;, y and 2^ in this must represent the co-ordinates of the second

point in which the line pierces the surface.

If now any plane be passed through this right line, it will cut

from the surface a line which will contain both of the points ; and

if the second point be moved along this line until it coincides with

the first, the right line will become tangent to the line cut from the

surface, and the values of ic, y and z in equation (6), will become

equal to x'\ y" and z". Substituting these values in equation

(6), it becomes

2max" + 2nby" + "Ipz" + m."a = (7),

an equation wliich shows the relation that must exist between a

and h, in order that the right line represented by equations (4) may

be tangent to a line of the surface at the given point ; and since a

and h in this equation are indeterminate, it follows that an infinite

number of right lines may be drawn, each tangent to a line of the

surface at the given point.

If now in equation (7), we substitute for a and h their values

taken from equations (4), we obtain

{2m.x" + m"){x — x") + '^mf'ijy — y") 4- 2pz"{z — z") — 0,

or, since from equation (2),

— 2mx"^ — 2ny"^ — Iitz"^ = 'lm"x" -f 2/,

we have finally,

2mx''x + 2?2y'V + 2;V« + tn'\x + x") + 2Z = (8),

an equation which expresses the relation between ar, y and z for all

points of the tangent line in all of its positions. The surfoce repre-

sented by it, is then the locus of all right lines drawn tangent to
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lines of the surface, at the given point, or point of contact. This

equation being of the first degree between three variables, is the

equation of a plane. This plane is said to be tangent to the sur-

face, at the given point ; and in general, a plane is tangent to a

surface, when it has at least one point in common with it, through

which if any plane he passed, the sections made in the surface and

plane will he tangent to each other.

For those surfaces which have a centre, the origin of co-ordinates

being placed at this centre, we have m" = 0, Aii. (203), and

equation (8) reduces to

mxx" -f- nyy" -f P^^" + I = (9).

If m = n = j9, equation (9) becomes ^

xx" -f yy" 4- zz" z= — — — R^,
m

for the equation of a tangent plane to a sphere, Art. (210).

For those surfaces which have no centre, m = 0, 1 = 0,

Art. (203), and equation (8) reduces to

2nyy" + 2pzz" + m"(x 4- x") = 0.

233. Let x', y' and z' be the co-ordinates of a fixed point

without a surface of the second order. If it be required that the

tangent plane to the suiface shall pass through this point, its co-

ordinates must satisfy equation (8), of the preceding article, and

give the equation of condition

2mx"x' + 2ny"y' + 2pz"z' -f m"{x' -f x") + 21 = 0... (1).

In this equation x", y" and z" are unknown, but since the point

which they represent must lie on the surface, we must also

have the condition

mx"^ + ni/"^ 4- ;;z"=« -f- m"x" + I = (2),
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and these two equations are all the moans which we have of de-

termining the values of x"^ y" and z"
; and since we thus have

three unknown quantities, and but two equations, it follows that

the unknown quantities are indeterminate. Hence we conclude

that, in general, an infinite number of planes can be drawn from a

point without a surface of the second order tangent to the surface.

If straight lines be drawn, from the different points of contact of

these planes, to the fixed point, they will evidently form a cone

which will be tangent to the surface, in the hue formed by joining

the points of contact. But since the co-ordinates of these points

must all satisfy equation (1), w^hen substituted for x"^ y" and z'',

the points must lie in the plane which will be represented by this

equation when x"^ y" and z" are regarded as variables. This curve

of contact must then be a plane curve, and since it lies on the sur-

face at the same time, it must he a line of the second order, Art.

(200). We therefore conclude that, in general, the line of contact

of a tangent cone and surface of the second order, is a line of the

second order. And the same will be true of a tangent cylinder, in-

asmuch, as the cone becomes a cylinder, when its vertex is re-

moved to an infinite distance.

234. If it be required that the tangent plane pass through a

second given point x'", y'", %'", without the surface, or contain

the right line joining these two points, we shall also have the equa-

tion of condition

^lmx"x"' + 2wy'y" + 2joz'V -f m"{x"' + x") + 2/ = 0,

and this united with equations (1) and (2) of the preceding article,

will give three equations involving three unknown quantities, and

since two of these equations are of the first, and the other of the

second degree, there will in general be two sets of values for x!\

y" and z". Hence we conclude .hat, in general, two planes ma?
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be passed through a right hne tangent to a surface of the second

order, and only two.

235. A right line, or a plane, is normal to a surface when it is

perpendicular to a tangent plane, at the point of contact.

There evidently can be but one normal line to a surface at a

given point ; but, since every plane containing a normal will be

perpendicular to the tangent plane, there will be an infinite num-

ber of normal planes.

236. The equations of a normal line, to a surface of the second

order, will be of the form, Art. (50),

X ^ x" = a{x — z'% y -. y" =^ h(z — z") (1),

in which it is necessary to determine the values of a and b on con-

dition that the line shall be perpendicular to the tangent plane

represented by equation (8), Art. (232). The equations of con-

dition. Art. (59),

a = — c, b = - d.

give

2mx" -f m"

2pz"
'

pz"

and thest?, m equations (1), give

. ,»_2-" + -"(, ,.), y - n ny''
. v" — '

{

2pz" pz"

for the equations of a normal line to any surface of the second

order.

By supposing m" = 0, we shall have the particular equa-

tions for those surfaces which have a centre
; and by ma]<ini:^

m = 0, we have them for those surfaces which have no centre.
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If n = 2^} equation (2) reduces to

7JZ" -. 7/"z = 0,

which, having no absolute term, shows that the projection of the

normal on the plane YZ passes through the origin of co-ordinates

;

Iience the normal intersects the axis of X. But when n = p^

the surface becomes one of revolution, the axis of X being the axis

of revolution, Arts. (210), (214), (21V). We therefore conclude

that all the normals to a surface of revolution of the second order

intei'sect the axis of revolution ; and that the meridian plane, pass-

ing through the point of contact of a tangent plane, is a normal

plane : Or, a tangent i^lctne to a surface of revolution of the second

order is perpendicular to the meridian plane passing through tke

point of contact.

PRACTICAL EXAMPLES.

237. Although examples have been occasionally given, in iin-

mediatc connection with the articles which (hey are intended to

illustrate, it is believed to be advantageous to add, in thi'^ place, a

number of others, a portion of which the teacher may give out

with each lesson ; or may defer them until the subject has been

completed, when their solution will serve as a general review of

the principles of the course.

Each example should be carefully constructed, on the black

board, in proper proportion, a unit of convenient length being first

assumed ; or, when it can be done, should be accurately drawn on

paper, with mathematical instruments. By this exercise, the

principles of the subject will be strongly impressed upon the

mind of the pupil, while, at the same time, a good test of his

knowledge will be afforded to his teacher.

The axes of co-ordinates are supposed to be at right angles, un-

less otherwise mentioned.
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The teacher may multiply the examples to an unlimited extent,

by simply substituting, for the numbers used, any others which

may occur to him.

1. Construct the points whose equations are, Art. (16),

.r = 2, y = — 1
;

.r = — 1, 2/ = 4
;

.T = — 3, y= — 2; a: = 3, ?/=~5.

2. Find the expressions for the distances between the points,

whose equations are, Art. (lY),

X' =1, y = 3; X" = 0, y" = - 2;

«' = - 3, y = 4; a;" = 2, y" = — 1.

3. Construct the points whose polar equations are. Art. (18),

V = 20®, r = 5; v = 190° r = 2.

4. Construct the right lines whose equations are. Art. (26),

2y — 3x + 1 = 0; 3y — a; = 0.

5. Find the pcint of intersection of the right lines, whose equa

tions are as in the last example, Art. (2*7).

6. Find the expression for the tangent of the angle, included

by the same lines, Art. (28).

Y. Ascertain if the lines represented by the equations

2y — 5a; - 1 = 0, y = 3.i- — 2,

are parallel, or perpendicular to each other, Art. (28).

8. Find the equation of a right line, passing through the point

ar' = 2, y' = — 4, and parallel to the line whose equation

is, Art. (30),

3y + 2a; - 1 = 0.
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9. Find the equation of the right hue passing through the

same point and perpendicular to the same hne, Art. (30) ; also,

the length of the perpendicular, Art. (l*/).

10. Find the equition of a right line passing through the two

points,

«' = 3, y = ^. 4; X'' = - 2, y" = - 1.

11. Find and discuis the equation of a circle, the co-ordinates

of whose centre are a;' = 3, y' == -— 2 ; and whose radius

is 3, Art. (34).

Also, when the co-ordinates of the centre are a: = — 2,

y' = ; and the radius 4.

12. Find the intersection of the last circle with the right line

whose equation is. Art. (27),

y = - ^x - \,

13. Ascertain if the point a; = 1, y = — 2, is on,

without, or within the circle whose equation is. Art. (37),

a:8 -f ?/8 = 9.

14. Find the equation of a circle which shall pass through the

point a; = 3, ?/ = — 2 ; the origin being at the centre.

Also of one passing through the point a; = 4, y = 2, the

origin being at the left hand extrsmity of the diameter, Art. (38)

15. Construct tlio points, in space, Art. (40)

;

x= 1, y'= 2, 2 = 3;

ar-= - 2, y'= 3, z"= - 4.

16. Find the expression for the distance between the two points

given in last example. Art. (42).

17. Construct the point whose polf-^r co-ordinates are, Art (43),
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u = 35°, V = 70°, r = 4.

18. Construct the right line, in space, whose equations are,

Art. (44),

a; = 2z + 3, y = - z + 2,

ar.d find the equation of its third projection.

19. Find the point of intersection of the two Jines, in space,

whose equations are. Art. (47),

a: = - 2z + 3, y = z - 2
;

.r = 32 —. 1, oy = — lOz -f 2.

20. Find the expression for the cosine of the angle included

between the lines given in the last example, Art. (49).

21. Ascertain if the lines whose equations are,

a; = 2z + 1, 2/ = 3z + 4

;

a: = — 2z + 3, y = z — 2]

are parallel, or perpendicular, Art. (49).

22. Find the equations of a right line which shall pass through

the point x' = — 3, if = 2, z' = — 1, and be par-

allel to the line whose equations are. Art. (49),

a: = — 3z — 1, y = 42 + 3.

23. Find the equations of a right line which shall pass through

the same point and be perpendicular to the same line, as in the

last example. Art. (49).

24. Find the equations of a right line which shall pass through

the two points. Art. (51),

^=-1, 2/' = 2, z'=:0; x"=3, y" = 0, 2" = 2.
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25. Find the intersection of tlie two lines whose equations are,

Art. (53),

0:2 4- s* — 5 — 0, 2+^—3 = 0;

ar — 3z + 5 = 0, z^ -{- Ay^ — Sy = 0.

26. Find the equation of a plane whose directrix is represent-

ed by

4y — 32r + 1 = 0,

the projections of thp generatrix making angles with the axis of Z,

whose tangents are 2 and — 3, Art (55).

27. Find the equations of the traces of the plane represented by

2z — Sy + a; + 4 = 0,

and the points in which it cuts the co-ordinate axes, Art. (56).

28. Find the point in which the right line, whose equations are

a; — 2z + 2 -= 0, 2?/ -f 3r — 1 = 0,

pierces the plane given in the last example. Art. (58).

29. Ascertain if the same line and plane are perpendicular to

each other. Art. (59).

30. Find the equations of a right hne passing through the

point a;' = 1, y' = — 3, z' = 0, and perpendicular to

the plane represented by

' Sx - 4y + z — I — 0;

also the point in which the line piercos the plane, and the length

of the perpendicular, Art. (60).

31. Find the expression for the sine of the angle inacle by

the line whose equations are

19
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X = Sz + 5, y = - r -f 1,

with the plane given in the last example, Art. (61).

32. Find the intersection of the two planes whose equations

are, Art. (62),

3x — 51/ -h z =z 0, X — t/'-3z-\-l = 0.

Also, the expression for the cosine of the angle included by the

«ame planes; Art. (63).

33. Find the equation of a plane passing through the origin

of co-ordinates, and the two points, Art. (65),

;r' = - 1, // = 2, 2' = 3
;

x" = 0, y" = — 2, z'' = -. 1

34. Tlie equation of a circle being

^* + y* = 9;

•find its equation referred to a system of co-ordinate axes, making

an angle of 45° with each other, the new axis of X being parallel

to the primitive, and the new origin being at the upper extremity

of the vertical diameter, Art. (67).

35. Find the general equation of the circle referred to any set

of oblique co-ordinate axes, Art. (67).

36. Find the general polar equation of the right line. Art. (69).

37. Find the equation of a cylinder, the equation of the rli

rectrix being, Art. (75),

y% — 2x — a:«,

and the elements being parallel to the line,

05 = 2s + 4, y = - 8r 4- 1.
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38. Find tlie intersection of the cylinder of the preceding ex-

ample by the plane whose equation is, Art. (G2),

3a; — 2y — 32; + 2 = 0.

39. Find the general equation of a cylinder, with an elliptical

base, the origin of co-ordinates being at the centre of the base,

Art. (15).

40. Find the equation of a cone, the co-ordinates of the vertex

being x' — 1, y' = 2, 2' = — 3, and the equation of

the directrix, Art. (V7),

?/« = Gx.

41. Find the intersection of the same cone by the plane whose

equation is, Art. (62),

X + 21/ ~ Sz = 0.

42. Find the equation of a right cone, the equation of the di-

rectrix being

x^ + ,/ = 9,
^ (J

he altitude being 5, Art. (77).

43. Intersect the same cone by a plane passing through the

axis of Y and making an angle of 45° with the base, and find the

equation of the intersection in its own plane, Art. (81).

44. Find the general equation of a cone with a hyperbolic base,

the origin of co-ordinates being at the centre of the base, Art. (77).

45. Construct the parabolas whose equations are, Arts. (85),

(86),

yi = 4x; y« = - 3a:; .r« = 9y.

40. Ascertain whether the point a;' = — 3, y' = 3, i«
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without, on, or within each of the parabolas given in the preceding

example. Art. (87).

47. Find the equation of a parabola which shall pass through

the point x' = 3, y' — 5, Art. (29).

48. Find the intersection of the circle and parabola whoso

equations are, Art. (27),

a;« + y« = 6, y^ — 2x,

49. Find the equation of a tangent to the parabola y^ = — 2.i,

at the point y' = 4, x' = — 8, Art. (90).

Find also the equation of a normal at the same point. Art. (98).

50. Find the equation of a tangent to the parabola y* =: 4.r,

and parallel to the right line whose equation is, x\rts. (30), (OO).

2y = 3x + 5.

51. Find the equations of the two tangents to the parabola

represented by y^ = 6.r, which shall pass through the point

X' = 1, y' = 4, Art. (93).

52. Find the equation of the polar line to the point c = 2,

rf = 1, for the parabola represented by y' = 3.r, Art. (95).

53. The equation of the polar line to the same parabola beinor

y == .-r + 2,

find the co-ordinates of the polo, Art. (95),

54. The equation of a parabola being y^ = 4.r, find its

equation when referred to a diameter and tangent at its vertex,

the tangent making an angle of 45° with the axis, Art. (99).

55. Determine the- axes, and construct the ellipses, whose

equations are. Art. (106),
'

2y« -f 3^« = 4- 4y^ + a.'2 = 9.
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56. Determine the axes and construct tlie hyperbolas, whose

equations are, Art. (10 7),

2/2 — 3a;2 = — 5; 2?/8 — 4a;« = 4.

57. Ascertain whether the point x' =2, y' = 3, is

without, on, or within each of the curves given in the last two ex-

amples, Arts. (109), (110).

58. Find the equation of an ellipse which shall pass through

the point x' = 3, y' = 2, the origin of co-ordinates being at

the centre, and the semi-transverse axis equal to 4, Art. (125).

59. Find the equation of an hyperbola which shall pasy

through the point a;' = — 3, y' = — 2, the origin being

at the centre, and the semi-conjugate axis equal to 2, Art. (126).

60. 'Find the intersection of the ellipse and parabola, whose

equations are. Art. (27),

2y2 4. 43.2 — 8, ys == _ 5^^

61. Find the intersection of the ellipse and hyperbola, whose

equations are, Art. (27),

37/2 ^ ^.a — 3^ 23/2 _ 3a;S = - 6.

62. Find the equations of a tangent and normal, to the ellipse

represented by

4y2 4- a;« = 9,

at the point x" = 1 ;
y" = '/2, Art. (128).

63. Find the equations of a tangent and normal to the hyper-

bola

4!/2 — 2x^ — — 8,

at the point .r" = Vs, y" = V2, Arts. (131), (30).
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64. Find the eqimticn of a tangent to tlie ellipse

4y« + 9.r« = 36,

and making the angle 45° with the axis, Arts. (30), (128).

05. Find the equations of the two tangents to the ellipse re-

J^resented by

4y2 4- 3x^ = 12,

which shall pass through the point x = 1, y = 4, Art. (133).

66. Find the equations of the two tangents to the hyperbola

represented by

y2 — 3.r8 = — 5,

which shall pass through the point x' = 2, y' = 3, Art. (134).

67. The equations of an ellipse and its polar line being

42/2 + 2a;2 = 8
; y = 2x -\- 6,

find the co-ordinates of the pole, Art. (139).

68. The equation of an hyperbola being

3y3 _ 2x^ r= — 6,

find tlie equation of the polar line of the pole c = 4, d = 0^

Art. (140).

69. Construct an ellipse, the two conjugate diameters of which

are 6 and 4, making an angle of 120°
; also an hyperbola having

the same conjugate diameters, Art. (150).

10. Find the position and length of the equal conjugate di

ainetera of the ellipse, whose equation is, Art. (159),

4y2 4- Sx^ = 12.

Yl. Construct the asymptotes of the hyperbola,
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4y« — 2a:« = — 8,

and find its equation when referred to them. Art. (161).

72. Construct the hyperbola whose equation is, Art. (170),

2X1/ -\- Sij + X — 1 = 0,

T3. For examples illustrating the discussion of the general

equation of the second degree between two variables, see Arts.

(173), (176), (179).

74. Ascertain if the line represented by the equation

y* ^ x^ — 2x — 3 = Oj

has a centre, and determine its co-ordinates. Art. (181).

75. For examples relating to loci, see Art. (194).

76. Find the equation of the surface generated by revolving

the right line whose equations are

4x = 3s -f 2, 2y = — « + 6,

about the axis of Z, Art. (196).

77. Find the equation of the paraboloid of revolution generated

by the parabola represented by, Art. (198),

y2 = _ 3x.

78. Find the equations of the spheroids, generated by tlw

ellipse represented by

4y« 4- a:2 = 4.

79. Find the equations of the hyperboloids, generated by the

hyperbola represented by

92/8 _ 4a:« = — 3C.
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80. Find the equation of the surface generated by revolving

the parabola represented by

about the axis of Y.

81. Find the equations of the surfaces generated by revolving

the lines represented by

2/« = i, f = 2x\
X

nbout the axis of Y.

Also the surface generated by revolving the first hne about the

axis of X.

82. Find the position of the planes which will make circular

sections, Art. (226), in the ellipsoid whose equation is

2x^ 4- 3y2 + 4z» = 1.

83. Find the position of the planes which will make circular

sections, Arts. (227), (228), in the hyperboloids whose equations

are

x« + 2?/2 — 2* = — 3 ; 4a:« — y* - 32« = — 2.

84. Find the position of the planes which will make circular

sections, Art. (229), in the paraboloid whose equation is

2y« + 32« _ 4^ = 0.

85. P'ind the equation of a tangent plane, Art (232), to the

ellipsoid, whose equation is

4x' 4- 2y« -f «• = 10,

at the point whose co-ordinates are x" = 1, y" = — 1,

j" = 2.
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Also the equation of a normal line, Art. (230), at the same

point.

80. Find the equations of the tangent planes, Art. (232), and

normal lines Art. (230), to the hyperboloids whose equations are

2;r8 -f y2 _ ovi ^ _ X8
;

l]x^ — 2y^ — z^ = — 1 •,

at the point of the first, represented by x" = 2, ;y" = — l

,

z" = 3 ; and at the point of the second, represented by

x' = 2, y" = - 3 ;
::" = 1.

87. Find the equations of the tangent planes. Art. (232), and

normal lines. Art. (236), to the paraboloids whose equations are

2.?/« -f 32« = 4x
;

4//2 — z^ — 5x
;

at the jwint of the first, represented by x" = o, y" = 2,

z" = L- 2 ; and at the point of the second, represented by

jt' =^, y" = - 3, z" = - 4.
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