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PART I.

PLANE ANALYTIC GEOMETRY.





PEEFAOE.

Although writing a text-book for the use of beginners

following a short course, the tendenc}* of an author is to

sacrifice the practical value of the treatise to completeness,

generalization, and scientific presentation. I have endeavored

to avoid this error, which renders many works unsuitable for

the class-room, however valuable they may be for reference,

and yet to encourage the habit of generalization. To this

end I have attempted to shun the difficulties involved in

introducing the beginner to the conies, before he is familiar

with their forms, through the discussion of the general equa^

tion ; and at the same time to secure to liim the advantages

of a general analysis of the equation of the second degree.

The teacher will observe the same effort to cultivate the

power of general reasoning, which it is one of the objects

of Analytic Geometry to promote, in the preliminary con-

struction of loci, a process too often left in the form of a

merely mechanical construction of points by substitution in

the equation. In passing from Geometry to Analytic

Geometry, the student should see that, while the field of

operations is extended, the subject matter is essentially the

same ; and that what is fundamentally new is the method,

the lines and surfaces of Geometry being replaced by their

equations. His chief difficulties are

:
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IV PREFACE.

First. A thorough understanding of the device by which

this substitution is effected ; hence considerable attention has

been paid to this simple matter.

Second. The acquisition of an independent use of the

new method as an instrument of researcli ; hence the inser-

tion of problems illustrative of the analytic, as distinguished

from the geometric, method of proof. The function of

numerical examples— that is, of examples consisting of a

mere substitution of numerical values for the general con-

stants— is simply that of testing the student's knowledge of

the nomenclature. The real example in Analytic Geometry

is the application of the method to the discovery of geomet-

rical properties and forms.

The polar system has been freely used. It is not briefly

explained and subsequently abandoned without application

;

nor is it applied redundantly to what has been already

treated by the rectilinear system. It is used as one of two

methods, each of which has its advantages, the selection of

one or the other in any given case being governed by its

adaptability to the demonstration or problem in hand.

The time allotted to the courses in Analytic Geometr}' for

which it is hoped this treatise will be found adapted has

determined the exclusion of certain topics, and has limited

the chapters on Solid Geometry to the elements necessary to

the student in the subsequent study of Analytic Mechanics.

ARTHUR SHERBURNE HARDY.

Hanovtir, N.H., Oct. 6, 1888.
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CHAPTER I.

COORDINATE SYSTEMS,

>>«=:c

SECTION I. —THE POINT.

THE RECTILINEAR SYSTEM.

1. Position of a point in a plane. The usual method of

locating a point on the earth's surface is by its latitude and

longitude, reckoned respectively from the equator and some

assumed meridian. A similar method serves to fix the position

of a point in a plane. Thus: if X'X, F'F, be any two

assumed straight lines intersecting at 0, the position of a point

P^ in their plane, with reference to

these lines, will be known when the

distances mP^, nP^, are known, these

distances being measured parallel to

Y'Y and X'X. If, however, only

the numerical lengths of mP\ nP^^

are known, the point may occupy

any one of four positions, P% P",

P"S P^^. This ambiguity will dis-

appear if we distinguish distances laid off above and below X'X,
parallel to Y' F, as positive and negative, respectively ; and, in

like manner, as positive and negative, respectively, those laid

off to the right and left of Y'Y, parallel to X'X. Hence, the

position of any point in the plane of X'X and Y'Y will be com-

pletely determined with reference to these lines when its distances

from them, measured parallel to them, are given in magnitude

and sign.

p ml

Fig. 1.



- ANALYTIC GEOMETKY.

Defs. The fixed lines X'X, Y'Y, are called the axes of

reference; their intersection, 0, the origin; the distances mP\
vP\ the coordinates of the point P' ; and to distinguish these co-

ordinates, TiP^ is called the abscissa, and mP"^ the ordinate of P\

^0 Construction of a point. Since the coordinates of a point,

when given, fix its position with reference to the axes, and
since (Fig. 1) Om = nP\ On = mP' , to determine the position of
a point whose coordinates are given we have simply to lav off the

given abscissa from O along X'X in the direction indicated by
its sign, and at its extremity on a parallel to Y'Y, the given

ordinate, above or below X'X according as it is positive or

negative. This determination of the position of a point is

called the construction of the j)oint.

(^ The axes of reference are always lettered as in Fig. 1,

and hence are often designated as the axes of X and F, the

former being usually taken horizontal. For brevity they will

frequently be spoken of as X and Y simply-. The abscissa of

a point, being always a distance parallel to the axis of X, is

always represented by the letter x ; and for a like reason the

ordinate is always represented by the letter y ; hereaflfter, there-

fore, these letters will always re})resent distances parallel to

the axes of reference. As indicating the directions in which

abscissas and ordinates are laid off, the axes are also distin-

guished as the axis of abscissas (X'X), and the axis of ordi-

nates {Y'Y). The angles XOY, FOX', X'OF', F'OX, are

known as the first, second, third, and fourth, angles, respectively.

It is evident that so long as the angle XO Y is not zero, it

„ may have any value whatever. When
^p' a right angle, the system of reference

I

is called a rectangular system; other-

Q \r,i ^ wise, an oblique system. As nothing in-

general, is gained b}^ assuming oblique

axes, the axes will hereafter be supposed

Y^ rectangular, unless mention is made to the

Fig. 2. contrary,; the abscissa and ordinate of a

X



THE rOlNT.

point will thus be (Fig. 2) the perpetidkalar distances of the

point from the axes.

/S, Equations of a point. It is now evident that we maj:

designate the position of a point by giving its coordinates in the

form of equations. Thus, a;= 2, ?/ = 3, designate a point in the

first angle, distant 3 units from the axis of X, and 2 units from

the axis of Y. These equations are called the equations of the

point. But it is more usual to adopt the notation (2, 3) to

designate the point, tlie abscissa being always written first.

Examples. 1. What are the signs of the coordinates of all

points in the first angle? In the second? In the third? In

the fourth? Where are all points situated whose ordinates are

zero? Whose ordinates are equal and have the same sign?.

AVhose abscissas are zero? What are the coordinates of the

origin ?

2. Construct the following points: (2,4) ; (3, —2) ; (— 6,

-2) ; (-4, 3) ; (2, 0) ; (0, -2) ; (-2, 0) ; (0, 2) ; (0, 0).

3. Construct the triangle whose vertices are (4, 5), (4, —5),

(— 4, 5). ^What kind of a triangle is it, and what are the

directions of its sides ?

4. The side of a square is a, and its centre is taken as the

origin, the axes being parallel to its sides. What are the coor-

dinates of the vertices? What, when the axes coincide with the

diagonals, the origin being still at the centre?

5. An isosceles triangle, whose base is b and altitude a, has

its base coincident with X. What are the coordinates of its

vertices when the origin is (1) at the centre of the base? (2) at

the left hand extremity of the base ?

6. Construct and name the figures whose vertices are

(1). (a,a), {a,-a), (-a, —a), {-a,a),

(2).. (a, 6), (a, -6), (-a, -6), (-a, &).

(3). (a, 6), (a, -6), (_«, -6), (-a,c),

(4). (a, 6), (c, d), (-e, d), (-/,&).
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6. To find the coordinates of a point which divides the straight

line joining two given points in a given ratio.

Let P', P", be the given points, x', y', and x", y", their

coordinates, and F sl third point {x, ?/), dividing rP" so that

P'F : PF" ::m:n. Then, from similar triangles,

V P"^ - P'R RP Tn.

(1)
P'F m

QF"

ButFB = x-x\FQ= x"-x,FF=y-y',
QP"= y"-y. Substituting these vahies,

y - y m /]

y"-yFig. 3. X"— X

Solving these equations for x and y, we obtain

mx"-\-7ix' my"-{-7iy'

m -{-n
y m (2)

For the middle point of P'P", m = n. Hence the coordinates

of the middle point o^ -. line joining two given points are

2
r— » y

y"-i-y'
(3)

If the line is cut externally, we have from

(1) and Fig. 4,
? ('

x — x' _y — y m

Fig. 4.

whence

x =

x-x'^ y-y"

mx"—7ix' m
J y —

my"— ny'

m — n m (4)

Oblique Axes. The above formulae hold good for oblique axes, since the triangles

remain similar whatever the angle XO Y.

Examples. 1 Find the coordinates of the middle point of

the line joining (5, 3) and (3, 9); also (5, 8) and (— 5, —8).

Ans, (4, 6); (0, 0).
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2. Find the coordinates of the middle points of the sides of

the triangle whose vertices are (6, 2), (8, 4), (10, 12).

Alls. (7, 3); (9, 8); (8, 7).

3. The line joining (
— 2, —3) and (— 4, 5) is trisected.

Find the coordinates of the point of trisection nearest ( — 2, —3).

Ans. I— ,

\ ^ 3

4. The line whose extremities are (2, 4) and (6, —8) is

divided in the ratio 3:2. Find the two points of division fiil-

22 16\ /1 8 4^filling the condition.
Arts.

16\ /18

5 ' 6 J'. \d' 6J^

5. Find the two points on the line joining (2, 4) and (6, 3)

twice as far from (2, 4) as from (6, 3).

Ans. (10,2); ~, —V14 10

3 ' 3

6. The vertices of a triangle are (—4, —3), (6, 1), (4, 11).

Find the coordinates of the points of trisection, farthest from

the vertices, of the lines joining the vertices and the middle

points of the opposite sides. ^^^^ /2 3).

fy. ' To find the distance betiveen two given x>oints.

Let P\ P", be the given points, x', y', and x", if, being their

coordinates.

P'P" by d,

Then P'F" = VP'li' + MF"'; or, representing

d = ^{x"-x'y-[-{y"-y')\ (1)

If one of the points, as P", is at the ori-

gin, its coordinates will be zero. Hence the

distance of any point P' from the origin is

d = -y/x'^+ 2/'^.
(2)

Oblique Axes, In this' case the triangle P'RP" will not be a right triangle.

Let /3 = inclination of the axes. Then

P'P"= y/P'H^ + JiP"^-2 PR . RP" cos P'RP\
or, since P'RP"= 180^ — /3,

Y

Fig: ^

-Lv>

which, when /3= 90'^, reduces to (1), since cos 90°= 0.

y )cos/3, (3)
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Examples. 1. Find the distance between (2, 4) and

(5,8).

As the quantities under the radicnl sign are squares, it is immaterial

whether we substitute (2, 4) for (a,', //') and (5, 8) for {x", y"), or vice

versa. Thus

d = V(2 - 5)-^ + (4 - 8)--^ = V(5-2)^+(8-4)--^ = 5.

2. Find the distances between the foUowhig points : (—2,-4)
and (-5, -8); (7, -1) and (-6, 1); (7, 2) and (-7, -2).

Ans. 5; VTtS ; 2 V53.

3. Find the distance of (6, —8) from the origin. Ans. 10.

4. Find the lengths of the sides of the triangle whose vertices

are (4, 8), (1, 4), (-4, -8). j^^s. 5; 13; 8V5.

5. Find the lengths of the sides of the triangle whose vertices

are (4, 5), (4, -5), (-4, 5). Ans. 10; 2V4l; 8.

THE POLAR SYSTEM.

8. Position of a point in a plane. The position of a point

on the earth's surface is often designated bj' its distance and

direction from some other point; as when A is said to be 25

miles northeast of B. In a similar way the position of a point

in a plane may be designated. Thus : if OA be any assumed

straight line through a fixed point 0,
>P' the position of a point P' in the plane

/\ AOP\ with reference to 0, will be

^ known when the angle AOP' and the

/ distance OP^ are known. The fixed

Fig. 6. line OA is called the Polar Axis ; the

fixed point, 0, the Pole; the angle

AOP and distance OP, the Polar Coordinates, OP being the

radius vector and AOP^ the vectorial angle. The radius vector

will always be represented by the letter r, and the vectorial

angle by the letter 6,
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9. Signs of the polar coordinates. If the vectorial angle be

always laid off above OA (Fig. G) to the left, as in trigonom-

etry, the position of every point in the plane may be desig-

nated without ambiguity, and were this the only consideration

there would be no necessity for any convention as to signs.

But as r and 9 often occur in the course of analytic investiga-

tions with negative as well as positive signs, it is necessarj^ to

adopt some convention for the interpretation of the negative

sign. For this purpose the vectorial angle is regarded positive

when laid off above OA to the left, and negative when laid off

below OA to the right ; while the radius vector is considered

positive when laid off from towards the end of the arc measur-

ing the vectorial angle, and negative when laid off in the oppo-

site direction. Thus (Fig. 6), for the angle AOP\ OP' is the

positive, and OP' the negative, direction of ?\

10. Construction of a point. Since the coordinates r and 0^

when given, fix the position of a point, to determine its position

we have only to lay off the given value of 6 above or below

OA (Fig. 6) according as 6 is positive or negative, and on the

line through and the end of the measuring arc the given

value of r, towards or away from the end of the measuring

arc as the sign of r is positive or negative. This determina-

tion of the position of a point is called the construction of the

point.

11. Equations of a point. It is now evident that we may
designate the position of a point by giving its coordinates in the

form of equations. Thus (Fig. 6), r = 4, ^ = 60°, locate a

point P' distant 4 units from on a line inclined at + 60° to

OA ; while r = — 4, 6= G0°, locate a point P" on the same
line, but on the opposite side of 0. These equations are

called the polar equations of a point; but it is more usual

to adopt the notation (r, $), writing the radius vector first.

Thus, the above points would be (4, G0°) and (—4, 60°),

respectively.
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12. This system of reference is called the Polar System, and

that previously described, whether the axes be oblique or rec-

tangular, the Rectilinear System. It will be observed that in

each system two things serve as the bases of reference ; in the

rectilinear, the axes of X and Y', in the polar, the pole and

polar axis. Also that in each system two quantities are suffi-

cient to refer the point ; in the rectilinear system, the abscissa

and ordinate ; in the polar, the radius vector and vectorial

angle. Again, that while in the rectilinear S3'stem a given point

can have but one set of coordinates, in the polar system it may
have an infinite number of sets. Thus (Fig. 6), P' may be

designated as follows: (4,60"), (-4, -120°), (-4, 240°),

(4, —300°), (4, 420°), etc. This fact, however, gives rise

to no ambiguity in the position of P', for no one set of polar

coordinates can locate more than one point.

The rectilinear and polar systems of reference, together with

a third called the trilinear, are those in most common use.

The two former only will be employed in this treatise.

Examples. 1. Construct the following points: (5, 90°);

(5,*'270°)
; (-3, 120°)

; (-6, -180°).

2. What are the coordinates of the pole? What are all

possible values of 6 for points on the polar axis? '

0^
^ 3. Construct the points (0, 45°) ; f 0, ^ j ; (4, 0°)

; (-4, 0°).

4. Give three sets of polar coordinates locating (10, 90°)

.

5. Construct (8,^); (-8,^); (s,^); (s,-^)-

6. The side of a square is 5V2, its centre at the pole, and

sides parallel and perpendicular to the polar axis. What are

the coordinates of its vertices ?

pif 13. To find the distance betiveen two

/^"^^pi gi'ven points. Let P', P", be the given

/ / points, r', 0', and r", 0'\ their cooia^inates,

/•^
j^

and d the required distance. The*i, from

Fig. 7. the triangle P'OP",
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PP'= ^OP-^Jf OP"'- 2 OP. OP' cos POP",

or d=Vr'' + r"^-2r'r" cos {d"-0'). (1)

If one of the points, as P", is at the origin, d = 0P= r'.

and f 4,—
Examples. 1. Find the distance between the points [3,

-

3

Since cos^= cos (— ^), it is immaterial which of the two given points

is designated as (?', 6') . Thus

d= \/9+l()-24cosOU°= Vl(3 + 9-24 cos (-60°) = Vl3.

Observe, also, that if ^''— ^'>90°, the* cosine will be negative and the last

term positive, as it should be, for then the triangle will be obtuse-angled

at (Fig. 7).

2. Find the distances between the following points : (3, 60°)

and (4, 150°)
; (5, 0°) and (5,-180°) ; f-y/2,-) and (1, 0°)

;

(10, 30°) and (- 10, - 150°)
; (6, 60°) and (0, 0°)

Ans. 5 ; 10 ; 1 ; ; 6.
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4y SECTION II.— THE LINE.

THE RECTILINEAR SYSTEM.

14. Loci and their equations. Every llne^ straight or curved^

may he regarded as generated by the motion of a poiiit. The
kind of line generated will depend upon the law which ^governs

the motion of the generating point. Thus, a circle may be

traced by a moving point, the law which governs its motion

being that it shall always remain at a given distance (the radius)

from a fixed point (the centre). If

the origin be taken at the centre of

the circle, P being any point of the

circle, x, ?y, the coordinates of P, and

0P= jR, the radius, then

0P''= Om'-\-mP',

:c^ +f = E\

is true for every position of P while

generating the circle. This equation

is the algebraic expression .of the law

which governs P's motion, and is called the equation of the circle ;

and, in general, the equation of a, line is the algebraic expression

of the laio which governs the motion of its generating point.

Again, the relation x^ + y^ = Br^ is true for no point within or

without the circle, but is true for ever}- point on the circle ; it

thus expresses the relation between the coordinates of all points

of the circle, and of no other points ; hence, in general, the

equation of a line is the algebraic expression of the relation ivhich

exists between the coordinates of any and every x>oint of the line.

Evidently if a point moves at random, without any governing

law, the line it traces can have no equation ; for the latter is
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the algebraic expression of a law, and when the point moves at

random, none such exists.

The above equation, x^ -\-
y"^ =^ Br , being the equation of a

circle whose radius is 7?, the circle is said to be the locus of the

equation; i.e., translating the word locus literally. -JJ>4ytTie~

;place in whinh t,hf> poiril .,
nioyi nor- under the law expressed by

the equation, is always found ; and, in g^lliirill,^/ie locus of an

equation is the path of a x>oint so moving that its coordinates

always fulfil the relation expressed by the equation.

It follows that if a point lies on a locus, the coordinates of

the point must satisfy the equation of the locus. Thus, if the

adius of the above circle be 5, a;- + 7/^ = 25, and the points

'-1^, 4) , (0, — 5) , (—4, — 3) , are al\ points on the circle because

. %eir coordinates satisfy the ecmation ibut (2^ -^S^**^' ^^' ^^^

not on the circle. Hence, to "Usf^lWfl^l^ji^therk^iyk^point lies

on a given locus, substitute its coordin^Win the equatio^ of the

Jocus and see ivhether they satisfv it.

15. Distinctions between Analytic Geometry' feamgtfj^jyid

Algebra. The object of Analytic Geoijififinfi-s^e d^^sklSS^S/tt-
deter^nination of the propefties of 4oei. ^ Its "m^hod consists in^

the substitution of the equation of the locus for the

in the discussion and determination of its propei

oc^ -\-y^ = B^ has been seen to be the equation of

Fig. 8. Putting it under the form

2/2=i?2_^2^ (i2 + a!) {B

we observe that

f- = Fm'-, B-\-x=Ahn.

Hence Pm^=:: A'm.mA, or the squa»e7^HIJftalf-cli0i«^l arfy

diameter of a circle is a mean proportional betw<^fF t^SKeg-
ments iiito which it divides that diametil. This well-tSown
property of the circle might be established^ ^eome^rico%, from
a figure

; it is here established analytically, from the equation
of the circle

;
and the object of Analytic Geometry is thus to

determine the properties of lines, by discussing their equations,
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instead of by reasoning upon the lines tliemselves as in Eucli-

dean Geometry.

Having thus noted the distinction between Analytic Geometry

and Geometry, let us note in what way it differs from Algebra.

Since the coordinates of every point of the circle must satisfy

its equation a? -{- y"^ = Br^ x and y in this equation may have an

infinite number of sets of values, corresponding to the infinite

number of positions occupied b}' the generating point in tracing

the circle. Hence while R is a constant quantit}^ x and y are

variable quantities. They differ thus from all the quantities

of common Algebra, which, whether known or unknown, are

always constants. Observe, also, that while x and y thus admit

of an infinite number of values, they do not admit of any val-

ues, but only of those which satisfy the relation o? -{-y^z= E^o

Again, in Algebra, if only x^-{-y^ = R- were given, x and y being

_unknown but constant quantities whose values were required,

the solution would be impossible ; for this equation would be

satisfied by an infinite number of sets of values of x and y. and

without a second independent equation we could not determine

the particular values required. Furthermore, if the conditions

of the problem were not such as to furnish a second equation,

the problem would remain an indeterminate one. It is in virtue

of this ver}^ indetermination that we are enabled to represent

loci by equations, and, as thus distinguished from Algebra,

Analytic Geometry is sometimes called the Indeterminate

Analysis.

16. Quantities of Analytic Geometry.

g If the centre of the circle were at some

y^
I
\P point C, whose coordinates are in and 72, in-

/
I / j \

stead of at the origin, then, from the right-

I
c}^--.;i?J

angled triangle PCB, CE'+BP'= CP\

\ I \J\

^^' {x-mY + {y-ny==R\

J- X !—L__^ This relation between x and v? beinoj
3x Q N

'

true for all positions of P on the circle,

is the equation of the circle in^ its new
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position with reference to the axes. Now if, in this equation

of the circle, we change i2, we change the magnitude of the

circle ; and if we change m, or n, or both, we change the j)Ositlon

of the circle. Hence the constants in the equation of a locus
]

determine the magnitude and position of the locus. The quan-
/

titles of Analytic Geometry are thus :

First. Variable quantities, as x and y of the preceding equa-

tion, which, being the coordinates of a moving point, vary cm-

tinuously within the limits assigned bN' the equation expressing

their mutual relation. Thus x varies continuously between the

limits x=:.03f, and x= ON, and y between the limits y= QS, -

and y = QT. Since, when y changes, x also changes, and vice

versa, x and y are said to be functions of each other.

Second. Arbitrary constants, as m, n, B, of the above equa-

tion, to which values may be assigned at pleasure, thus locating

an}' circle in any position. They do not, however, change whe7i

x and y change, that is, they are not functions of x and y, and

are thus constants, though arbitrary constants.

Third. Absolute coristants, such as m, n, and i?, would

become in the above equation, if we placed the centre of the

circle at (7, 6) and assumed 5 for its radius; which cannot

change under any circumstances.

17. Construction of loci. It is now evident that two general

classes of problems will arise.

First. Given the law governing the motion of the generating

point (usually given in the form of some property of the locus)

,

to find the equation of the locus.

Second. Given the equation of the locus, to determine the

locus; i.e., its position, form, and properties.

These two fundamental problems form the subject matter of

Analytic Geometry and will be fully illustrated in the sequel.

Their solution involves on the part of the student a thorough

c<5m[)rehension of the relation between a locus and its equation

as defined in Art. 14, and to illustrate this relation the following

examples of the determination of loci from their equations by
points are added.
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Examples. If any value of either variable, assumed at

pleasure, be substituted in the equation of a locus, and the

value of the other variable be found from the equation, the

set of values thus obtained evidentl3' satisfies the equation

;

tliey therefore determine a point of its locus. Hence, to deter-

mine points of the locus of an equation, assume in succession

any number of values for one variable, and find from the equa-

tion the corresponding values of the other. Construct the

points thus obtained and draw a line through them. This line

will be the locus of the equation. This process is called the

construction of the locus. The variable to which values are

assigned is called the independent variable; the other, whose

values are derived from the equation, is called the dependent

valuable. It is evident from the Ature of the process that

either variable may be chosen as the independent variable, and

it is usual to assign values to x and derive those of y. In such

an equation, however, as x = if—2y^-{- 4, it is more convenient

to assign values to y and derive those of ic ; i.e., to make the

variable which is most involved the independent variable. The

illustrations which follow are limited to equations of the first

and second degree.

1. y — X — 4: = 0. Solving the equation for ?/, we have

y = x-\- 4:, and taking x for the independent variable, we obtain

Fig. 10.

x = 0,

x= 1,

x=2,
x = S, 2/=7,

x = -l, 2/=3,

x = -2, y = 2,

x = -3, 2/ = ^
ic = -4, ?/ = 0,

ic = — 5, ?/ = — 1,

etc.

y=4:, locating P',

2/ = 5, locating P",

2/= 6, locating P'",

etc.

Constructing these points, the line MN drawn through them is

the locus of y — x — 4: — 0.
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It will subsequently be shown that loc'iirs of every equa-

tion of the first degree, between x and y, is a straight line.

This being the case, it is necessary to construct but two points

for such equations. Assuming this fact, the student may con-

struct the straight lines represented by the next four equations,

constructing in each case two points ; then verify the construc-

tion by locating a third point.

2. y -\-x—l = 0. Solvuig for y, y = — x -\-l\ in which, for

fl;=:0, 2^=1, locating P',

x= 5, 2/ = — 4, locating P",

a; = — 3, y = 4, locating F"'.

Constructing P', (0, 1), and P", ,

(5, —4), F'P" shoukl pass through

P'", (-3,4).

3. y — x = 0. 4. y-\-x=0.

5. Sy-2x-l = 0. ^-70-.'

6. 2/^=4 a; — 8. Solving for y, we
Assigning values to x, for x = we have ?/ = ±V— 8, which is

imaginary ; moreover y will evidently be imaginary for all values

of a;<2, algebraically. As the ordinates corresponding to all

values of x<2 are imaginary, we conclude that there are no

points of the locus having abscissas less than 2 ; and, in gen-

eral, tchen either of the coordinates obtained from the equation is

imaginary, we conclude there is no

corresponding point of the locus.

Assuming values for a;>2, we
have, for

a; = 2, ?/ = 0, - locating P%
ic = 3, y = ± 2, loc. P" and P",
a; = 4, ?/ = ±2V2, loc. P^^ and P^,

^=5, ?/=±2V3, etc.

E-0, y = ±4,
etc.,

;ry value of a; > 2 locating two points. ^ig- 12.
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The above method of constructing a locus bj- points is a purely

mechanical one. The greater the number of points located, the

more accurate the construction of the locus. A simple inspection

of the equation will, however, often indicate the general form and

pt)sition of the locus. Thus, in the above example, every value

of X gives two values of y numerically equal with opposite

signs, and the locus is therefore made up of pairs of points

equidistant from X'X, or the axis of X is an axis of symmetry;

and, in general, whenever the equation contains the sqxiare only

of either variable^ the other axis is an axis of symmetry. Thus

2/2=9 a; is symmetrical with reference to X; ?/-J-aj^=2 is sym-

metrical with respect to Y', while ar-f-?/2=25, af—y^=4:,

9x^+16x^=144, are symmetrical with respect to both coordi-

nate axes.

Again : since the ordinate of every point on the axis of X is

zero, if the locus has any point on the axis of X it will be

found by making 2/ = ; and for a like reason if it has any

point on the axis of Y, it will be found b}' making cc= ; and,

in general, to find where a locus crosses or touches either axis,

make the other variable zero in its equation. . Thus, in the above

example, to find where the locus of y^= 4x — 8 crosses X, make

2/ = 0, whence a;=2=0P^ Making x = 0, y is imaginary,

showing that the locus does not meet t' "; axis of Y. The dis-

tances from the origin to the points where a locus meets the axes

are called the intercepts of the locus. Thev are distinguished as

the X-intercept and the F-intercept. ? itrs, ^he X-intercept of

2/2=4x-8 is 0P'=2. o

7. 252/^+9x^=225. We obst ^ that the locus is symmet-

rical with respect to both axes. M ,king 2/ = 0, we find x= ±5,

or 0^ and OA^ are the X-intercepts ; making x = 0, 2/= ±3,

or OB and OB^ are the Y-intercepts, Solving the equation in

succession for x and 2/, we have

2/ = ± f V25 — a^, X = ± I V9 — 2/^

From the value of y we see that x cannot be numerically greater

than ±5, otherwise y is imaginary ; hence no point of the curve
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lies to tlie right of A or to the left of xi' ; that is, x=±5 gives

the limits of the curve in the direction of X, and these values

are the roots of the equation obtained by putting the quantity

under the radical sign equal to zero. The reason for this is

plain : y is real when 25 — ic^ is positive, and imaginary when

25 — a^ is negative ; hence the limiting values of y correspond

to 25 — a^ = 0, since in passing through zero 25 — x^ changes

sign. For a like reason, placing 9—y^ = 0, y = ±3 are the

limits of the curve in the direction of Y, And, in general,

whenever the equation of the locus is of the second degree with

respect to one of the variables^ if ive solve it for that variable,

and place the radical equal to zero, the roots of this equation are

Fig. 13.

the limits in the direLv, ' ofjhe other axis. (Thus, in Example
6, the equation is of th second degree with respect to y ; solved

for 2/, the radical placed e- d to zero gives 4a? —8 =0, or x=2.
Beyond this limit the curve' sitends indefinitely in the direction

of X.) We have now de irmined the intercepts, symmetry,
and limits, of the locus, and so have a general knowledge ot

its form and position. Points may now be constructed as

before. Thus, for

x= 3, or —3,

jo; =4, or —4,

y ± y , locating P' , P", P"S and P^%

I/=±h locating 7^^, P'\ pvii^ pvm^
^l-g^
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8. 16y^ ~9x^ = —14:4. Making a; = 0, y is imaginary;

hence the locus does not meet the axis of Y. Making y = 0,

ic = ±4, or OA and OA', the X-intercepts. The curve is

symmetrical with respect to both axes. Solving for x,

x = ±iVy'' + 9;

buty^+9 cannot change sign, or, otherwise, 2/^ + 9 = gives

imaginary values for ?/, hence there are no limits in the direc-

tion of Y, the curve extending indefinitely in that direction.

Solving for y,

y=±i-Vx'-U.

Placing ic^— 16 = 0, the limits in the direction of X are seen to

be + 4 and — 4. Having found the limits, it is always neces-

sary to see whether the locus lies within or without the limits.

In this case x cannot be numerically less than ± 4, and the

curve therefore lies without the limits. Having thus deter-

mined the general features of the locus, we proceed to consti'uct

a few points. For

x=±5, 2/ = ±f,

locating P\ P^, P^^, P^,

x = ±G, ?/=±fV5,

locating P\ P^\ P^'^, P^'^, etc.

A curve of this kind, com-

posed oftwo separate branches,

is said to be discontinuous.Fig. 14.

9. x^-{-y^ — 8x — 4:y—5=0. Making a; = 0, ?/=5, and — 1,

giving the intercepts OB, OB'. For y=0, x=4 ± V2l= 4 ±4.6

nearly, or 8.6 and — .6 for the intercepts OA, OA'. Solving

for X, we have

ic^ — 8 ic = — 2/^ + 4 ?/ + 5,

whence a; = 4± V-2/' + 42/ + 21. 0)

f

5
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Now, every value of y gives two values for x of the form

a; = 4 ±p^ and thus locates two points distant p (the radical)

from a line parallel to Y and 4 units from it. Thus, for 2/= C,

a; = 4 ± 3, locating P^ and P", each distant 3 units from DD\
DD' being parallel to Y and 4 units from it. Solving for y,

we have

f-iy=-x' + Sx+5,

whence 2/ = 2 ± v^a^ + 8a;+9, (2)

from which we see the locus is also symmetrical with respect

to CC, parallel to X and 2 units above it ; and, in general,

whenever the equation, all its terms being transposed to the first

member, is of the form Aoi? -\- Bx -{- etc. with respect to either

variable, if the coefficient of the square be made positive unity,

then half the coefficient of the first power, with its sign changed,

will be the distance from the other axis of a line of symmetry

parallel to that axis. Thus, x^-\-y^^lOy + 4: = is symmetri-

cal with respect to Y, and also with respect to a line parallel

to X and 5 units above it; a^-\-2x-{-y^ — 9y = 0is symmet-

rical with respect to two lines, one parallel to Y at a distance

1 to its left, the other parallel to X at a distance f above it.

To find the limits along X, put the radical in (2) equal to

zero, whence x = d and — 1.

Values of y are imaginary for

a; > 9 or < — 1 , and the locus

lies within these limits. For

the limits along Y, (1) gives

y = 7 and — 3, or no point

of the locus lies above + 7

or below —3. Having now
determined the intercepts,

limits, and symmetry, we
may construct a few points.

For

r

P
5?r— ^'

/
'B T

c' f
0, 1

-<- (J

v uA^B^
n'

Ypxz
—X.

Fig. 15.

a;=4, y = l, or -3, P'", andP'^

or-1, P% andP^S etc.



20 ANALYTIC GEOMETRY.

10. Show that y^ — Qy -\-x^ — 16 = 0, is symmetrical with

respect to Y, and a line parallel to X, 3 units above it ; that its

limits along X are ±5, and along Y, +8 and —2. Determine

its intercepts, and construct.

11. y^— 10 x-{- oif= 0, Determine the lines of symmetry,

intercepts, limits, and construct.

12. .^•^ — 6 ic -{- 9 + 2/^ + 10 ?/ = 0. Lines of symmetry are —5
and 3 from Xand Y, respectively. Limits along X are 8 and —2

;

along F, and —10. Intercepts on Y are —1 and — 9 ; on

X, + 3: Construct.

13. 2/2-2a^ + 12ic-22 = 0. Show that the locus has no

limits in the direction of X, lies wholly outside the limits ± 2

in the direction of Y, has X and a parallel to Y distant + 3

units from it for lines of symmetry, and ±V22 for F-inter-

cepts. Construct.

14. y^=9x. This locus is symmetrical with respect to X,

is without limits along F, has a; = for a limit along X, lying

wholly in the first and fourth angles. Construct. Obsei*ve

that if x = 0, ?/ = 0, and conversely , or the intercepts are zero

on both axes, and hence the locus passes through the origin.

Otherwise, the coordinates of the origin satisfy the equation,

and the origin is therefore a point of the locus. Evidently this

cannot be the case when the equation contains an absolute

term. Hence, in general, whenever the equation of the locus

contains no absolute term, the locus jyasses through the origin.

Thus, a^ + y^— lOy = 0, x'^ — y^-\-3x=0 pass through the

origin

.

10
15. xy = 10. Solving for y, y= — By assigning values

X
to X, and deriving those of y, we ma}* construct the locus by

points. But the student should endeavor in all cases to de-

termine the general features of the locus by an inspection of

its equation. In this instance we observe that there is no

line of symmetry parallel to either axis, as the equation con-

tains the square of neither variable ; also, that y is positive
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when X is positive, and negative when x is negative, and tliere-

fore the curve lies wholly in the first and third angles. Again,

when ic = 0, ?/= gc , and

as X increases y dimin-

ishes, but becomes zero

only when a; = oo . In

the first angle, then,

the locus lies as in the

figure, continually ap-

proaching the axes as

X changes, but touching

neitiier within a finite

distance from the origin.

A line to which a curve

thus continually ap-

proaches^ hut does not

touch within a finite

distance is called an asymptote. In the third angle, x being

negative and decreasing algebraically, y increases algebraically,

becoming zero, however, only when aj = — oo. The axes are

thus asymptotes to both branches. Constructing a few points,

we have, for

x=±l, y= ±10, P',P'\

a;=±2, y=±5, F'", P'^,

a; =±5, y=±2, P\ P'\

a;= ±10, y= ±1, P'''\ P^'"S

Fig 16.

etc.

THE POLAR SYSTEM.

'•{

18. Polar equations of loci. We have seen that the equa-

tion of a locus is the algebraic expression of the law governing

the motion of the point which traces the locus, and that the

quantities in terms oi^ which this law is expressed are the coor-

dinates of the moving point and certain constants. Nothing in

this statement restricts us to the use of any particular system of



22 ANALYTIC GEOMETRY.

coordinates. Thus, if the law which controls the moving point

is that it shall always remain at a given

distance from a given point, the line

traced will be a circle. C being the

fixed point and CP= R the radius or

constant distance, if we assume OA as

the polar axis, and the pole at a

distance from C equal to the radius,

0P= r and A0P=6 will be the polar

coordinates of P the moving point ; and since OPB will be a

right angle for every position of P while tracing the circle.

Fig. 17.

OP
OB

= cos BOP, or r=2R cos (9

is true for every position of P on the circle, but is true for no

point within or without the circle. It is therefore the expression

of the relation existing between the coordinates of any and

every point of the circle, and is therefore the polar equation of

the circle. And, conversely, the circle is the path of a point so

moving that its polar coordinates satisfy the above equation

;

hence the circle is the locus of the equation.

19. Construction of polar equations. In a polar equation,

the variables which correspond to x and y of the rectilinear sys-

tem are r and 6, and by assuming values for one and deriving

the corresponding values of the other from the equation, we
may construct as many points of the locus as we desire. It is

obviously convenient to make B, the vectorial angle, the inde-

pendent variable, and derive the values of r.

Examples. 1. r=5. This equation is independent of ^,

that is, r — b = a constant, for all values of 0. It is then evi-

dently the equation of a circle whose radius is 5, the pole being

at the centre. We have seen (Art. 14) that the corresponding

rectangular equation of the circle is x^ + 2/^ == P'. The student

will observe the comparative simplicity of the polar form r = 7?,

and will thus see that in many cases it might be preferable to



THE LINE. 23

use the polar rather than the rectangular equation of a locus

because of its simpler form.

2. r = 10 cos ^. As in the case of rectangular equations, the

student should endeavor to obtain a general idea of the form

and position of the locus from its equation, rather than to con-

struct the locus mechanically by points. In the present case

we see that when ^ = 0°, cos has its greatest value, and there-

fore also r ; that as 6 increases, cos 0, and therefore also, r,

diminishes, becoming zero when = 90°. That as increases

from 90° to 180°, r is negative and increasing numerically,

becoming — 10 when 6 = 180°, the same numerical value which

it had for^ = 0°. Constructing a few points, we Imve, for

= p°,

0= 30°,

r=10,

r = 5V3,

-PS |90° pni

^->/Sv\\ \pi
0= G0°,

0= 90°,

^=120°,

7'= 5,

r = 0,

r = -5.

0,

^=150°, r = -5V3, p^ pTv^S>fr

(9=180°, r = -10. Fig. 18.

As when ^ = 0° the radius vector coincides with the polar axis,

P' is constructed by making OP' = 10. Laying off AOP'' = 30°,

and OP'' = 5V3, P" is (5Vs, 30°) . 6 = 90°, gives r = 0, and

locates the pole. P'^ and P^ are constructed in the same way,

but the values of r when > 90° being negative are laid off

away from the end of the measuring arc. If 6 increases from
180° to 360°, the values of r are repeated (numerically), so that

the entire locus is traced for values of 6 from 0° to 180°. As
OP' = 10, and r = 10 cos is true for all- positions of P, OP"P',

OP"^PS etc., is always a right angle, and the locus is therefore

a circle whose radius is 5.

The above loci, and those of Art. 17, are constructed simply

to familiarize the student with the meaning of the terms loci of
equations^ and, conversely, equations of loci. A clear concep-

tion of these terms, and of a coordinate system as a device for
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representing lines by equations^ is fundamental to the subject.

In Chapter II we shall begin the systematic study of loci by

means of their equations, commencing with the simplest, namely,

the straight line.

20. General notation. Any equation of a locus referred to a

rectilinear system of axes may be represented b}- the equation

/(a;, y) = 0, read ' function x and y = 0,' this being a general

form for what the equation of the locus becomes when all its

terms are transferred to the first member. In such an equation,

X and y are said to be implicit functions of each other. If the

equation of the locus is solved for one of the variables, as ?/, the

corresponding general form will bey=/(.T), read ' ?/ a function

of ic.' In such an equation, the way in which y depends upon x

being fully indicated by the solution of the equation, y is said

to be an explicit function of x. The primary object of Algebra

is the transformation of implicit into explicit functions, and

f{x^ y) =0 may be written y =f(x) whenever the former can

be solved for y.

Similarly /(?', 0) = 0, and r =f(0)^ are general forms for the

equation of any locus referred to a polar system.
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SECTION III.

RELATION BETWEEN THE RECTILINEAR AND POLAR
SYSTEMS.

21. Transformation of coordinates. It is evident that the

coordinates of a point and the form of the equation of a locus

will depend upon the system of reference chosen and its posi-

tion. Thus, the coordinates of P (Fig. 19) referred to the oblique

system X^OyYi are Oimj and ?7iiP; referred to the rectangular

system XOF, they are Om and mP'^ while if the polar system

O-iA is employed they are O2P and AOoP. Again, we have seen

that the equation of a circle referred to rectangular axes through

the centre (Fig. 20) is a;^ + 2/^ = W^ (Art. 14) , but if it is referred

to the system X^O^Yi its equation is (xj — m)^ + (2/1
— ny = R^

Y

^mg. 20.

(Art. 16), the subscripts being used to distinguish the coordi-

nates of the two systems. Again, in Art. 18, we found the

polar equation of a circle to be ?' = 2P cos 6 when the pole was

on the circle and a diameter was taken for the polar axis
;

while the polar equation, when the pole was at the centre, was

found in Art. 19, Ex. 1, to be ?-= 72.

It is thus clear that the form of the equation of any locus will

vary with the system of reference chosen, and, from the above



26 AKALYTIC GEOMETRY.

illustrations, that one form may be simpler than another. It is

therefore desirable to be able to pass from one system to another.

This passage from one system of reference to another is called

Transformation of coordinates.

As this transformation is of frequent use, it is important that

the student should thoroughly understand its object and nature.

The problem may be thus stated : Having given the equation of

a locus referred to one system of reference (as the equation of

the circle (iCi—m)-+ (2/1— w)- = E^ referred to the axes XiOi Yy) ,

to find its equation when referred to any other system (as the

parallel system XOY, to which when the same circle is referred

its equation is x^-{-y' = E^). The object of this transformation

is to obtain a simpler equation of the same locus ; the metJiod

will consist in finding values for the coordinates x^^ y^, in terms

of the coordinates x and y, and substituting these values in the

given equation ; the resulting equation will then be a relation

between the new coordinates, and therefore the equation of the

locus referred to the new axes.

In the same way, having given the equation of a locus in

terms of x and. 2/, we pass to the polar equation of the same

locus by substituting for x and y their values in terms of r and 6
;

th(* resulting equation will then be independent of x and ?/, and,

being a relation between r and true for all points of the locus,

is its polar equation. The problem thus reduces to

:

The coordinates of any point P loith respect to one system oj

reference being laioivn, to find its coordinates zvith respect to any

other system.

The system to which the transformation is made is called the

new system ; that from which we pass, the primitive system.

The three following cases will be considered

:

{A) . To pass from any rectilinear system to any other recti-

linear system.

(JB). To pass from any rectilinear system to any polar

system.

(C). To pass from any polar system to an}- rectilinear

system.
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22. Formulce for passing from any rectilinear system to

another.

Let XOY be the primitive system, ^ being the inclination of

the axes, and P any point whose primitive coordinates are

Om — X, mP=y. Let XiOiTi be the new system, its position

being given by the coordi- .^ ,y
nates of its origin , OA = Xq,

AOi = ?/o, and the angles y, yi,

which its axes make with the

primitive axis of X, the coor-

dinates of P referred to the , -^ a ,„

new system being Oimi = Xi J^^ /\ i

and miP= yi. Draw OiB and

m^C parallel to OX, and m^D
parallel to Y. Then Fig. 21.

Om = OA-\- 0,D + miO.

But Om = X, OA — Xq, OiD : OiiUi : : sin OimJ) : sin OiDmi,

whence ^

Oimi sin OimiD _ x^^ sin (^ — y)

sin OiDmi
~~

sin fi

and mi (7 :miP:: sin miPC : sin m^CP^

0,D = 1

whence

Substituting these values,

sm /?

iC — Xll

a;i sin (/? - y) -f y^ sin (^ - yQ ^

sin y8

Again, 7?iP= ^ Oj + ^^^^i + CP.

But mP= ?/, AO^ — 2/0, />mi : 0{i)\ : : sin Z^OiJJij'sin OiDmi,

whence
cCi sin y
sm /?
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CP : m^P : : sin CmHiP : sin miOP,

CP^ Vi sm yi

y = yo +

28

and

whence v.^ — . ^
sm yS

Substituting these values,

Xi sin y + 2/1 sin yj

sin/3

Hence

,
a;^sin(^-y)+yisin(^-y0

.
a?isiny+yisinyi ,.s

are the required formulae.

The following special cases may arise

:

First. To pass from any system to a parallel one.

In this case (Fig. 22) y = 0, yi = /8, and the general formulae

(1) become
a; = 0-0 + 0^1, y = yo + yu (2)

which are independent of /3 and apply to all parallel axes,

oblique or rectangular.

Second. To pass from rectangular to oblique axes.

In this case (Fig. 23) yS=90° ; and since sin (90°-^) = cos A,

sin (90° — y), and sin(90° — yi), become cos y and cos yi, or

the general formulae become

a; = a^o 4- a^i cos y + 2/1 cos yi, ?/ = 2/0 + ^1 sin y + y^ sin y^. (3)
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Third. To pass from one rectangular system to another.

In this case (Fig. 24) p = 90°, y^ = 90° + y ; and since

sin (90° + ^) =cos^,

sinyi = sin (90° + y) = cosy,

sin(/3 — y) =cosy,

sin(^-yi) =sin(90°-90°-y) =sin-y= -siny,

and the general formulae become

x = Xo-{- 0^1 cosy — ?/isiny, ?/ = 2/o + a^isiny + 2/iCOSy. (4)

niA
Fig. 25.

Fourth. To pass from oblique to rectangular axes.

In this case (Fig. 25) yi = 90° + y ; and hence

sin (/? - yO = sin [^ - (90° 4- y)] = sin ~ [90° - (/? - y)]
= - sin [90° _ (^ - y) ] = _ COS (;8 - y)

,

and the general formulae become

a^isin (^ - y) - vicos (^ - y)

sin^

aJi sin y + ?/i cosy

sin/3

X = X^)-^

y = yo +
(5)

The student will observe tliat the special formulae, like the

general ones, may be deduced directly from the accompanying

figures.
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If the new origin coincides with the primitive origin, Xq and

2/0 in the above formulae become zero. Hence,

To pass from one oblique set to another^

^ ^ a?! sin (^ - y) + Vi sin {fS- yQ
^

a;, sin y + y, sin yi ,gx

sinjS
^

siufS ^ ^

To pass from a rectangular to an oblique set,

a; = iCj cos y + 2/i cos yi, ?/ = ajj sin y -f- 7/1 sin yi. (7)

To pass from one rectangular set to another,

x = Xi cos y — 2/1 sin y, 2/ = ^ sin y + 2/i cos y. (8)

To j^ciss from an oblique to a rectangular set,

^ ^ Xi sin(/3 - y) - y^ cos(^ - y)
^

a^^ sin y + y, cos y .^.

sin/?
^

sin 13
^ ^

The student will observe that none of the above formulae

involve higher powers of the new than of the primitive coor-

dinates, and therefore that when these values of x and y are

substituted in any equation, the transformed equation will

alwa3's be of the same degree with respect to the variables as

the primitive equation ; that is, the transformation from one

rectilinear system to another affects the form but not the degree

of th^ equation.

POLAR TRANSFORMATIONS.

23. Formulce for passing from any rectilinear system to any

polar system. Should the primitive system be oblique, we may
first pass to a rectangular system with the same origin by equa-

tions (9) of Art. 22 ; the problem then consists in passing from

an}^ rectangular to any polar system.

Let XOY be the primitive system, and P any point whose

coordinates are x = Om, y = mP. Let Oi be the pole, its coor-

dinates being OA = Xq, AOi = y^, and let the polar axis make

an angle a with the primitive axis of X. Then OjP=r, and
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6 = -^gOiP, or AiOiP, according as the polar axis lies above

or below OiXj, drawn parallel to OX, i.e. according as a is posi-

tive or negative. Hence, in general,

X,0,P=e±a. Now Om=0^+Oii),
in which

Om = X, OA = Xq,

O^D = OiPcos DOiP= r cos (^ ± a).

Hence x = XQ + rcos{0± a) ;^

similarly,

2/ = 2/o + ''sin(<9±a).^

Ki) o^i

If the polar axis is parallel to the axis 0/ X, a = 0, and the

general formulae become

x = Xo-^rcosO, y = yo-{-rs\nO. (2)

If the pole coincides with the origin, a^o = 2/0 = 0? and

a; = rcos (^ ±a), y = rs\n.{d ±a). (3)

If the pole is at the origin and the polar axis coincident with

X, a = 0, iCo = 2/0 = 0, and

a; = rcos^, y^rsinO. (4)

24. Formidce for passing from any polar system to any

rectilinear system.

From Equations (1) of Art. 23,

x — XQ = r cos (^ ± a)
, y -'yQZ=r sin (^ ± a)

.

Squaring, and adding, and substituting the resulting value

of r, we have, since sin^J. + cos^A =1,

cos(^±a) =

r=V{x-x^y + {y-y,y,

X ~~* Xfi'^O

^(^x-x,r-\-(y-y,y
i>

sin (^ ± a) = y - 2/0

V{x-x,y-\-{y-y,y J

(1)
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Iftlie, polar axis is parallel to X, a = 0, and

r = -V{x — Xoy+{y-yoy, cosO
^~^"

sin^:

Vix-x^y+iy-yoY

y - ?/o

V(a;-a;o)^+(?/-2/o)^

If the new origin is at the pole, XQ = yQ=0, and

x

(2)

r = Va^ + 2/', cos (0 ± a) = sm(0±a)= '^

.(3)

7/* ^7ie neiy origin is at the ])ole and the neio axis ofX coincides

with the polar axis, a = 0, ic^ = yo = 0, and

r = V^H^', cos^ = . sin^ = ^— . (4)
Vx'^+ ?/" "Vx^+ y^

By means of Equations (4) we may pass from any polar

system to a rectangular system with the origin at the pole and

axis of X coincident with the polar axis ; then, by Equations

(3) of Art. 22, to any oblique system.

Examples. 1. Transform ?/ — a; — 4 = (Ex. 1, Art. 17) to

a new set of parallel axes, the new origin being at (0, 4)

.

The formulas for passing from any rectiUnear system to any parallel

one being x = Xq+ x^, y = y^^ y^, in which Xq= 0, and ?/o= 4, the values

of the primitive coordinates in terms of the new are, in this case, x = x^,

y = 4:-{. y^. Substituting these values in the given equation, we have

y^ — x\ = for the transformed equation. As the subscripts are only used

to distinguish the two sets es, they may be omitted after the

transformation is effecte' 'o Fig. 10, Art. 17, the student

will see that the new origin i. he locus, and that there-

fore the transformed equation should have no absolute term.

2. Transform y + x—l = (Ex. 2, Art. 17) to a new set of

parallel axes, the new origin being at (1, 0). Ans. y -{-x = 0,

3. Transform 3?/ — 2a; + 4 = to parallel axes, the new

origin being (—4, — 7)

.

Ans. 3?/— 2 a; — 9 = 0.

4. Transform ?/2 = 4.t— 8 (Ex. 6, Art. 17) to parallel axes,

the new origin being at (2, 0), that is, at F\ Fig. 12.

Ans, y^ = Ax.
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5. Transform y'^=4:X — 8 to anew set of rectangular axes

with the same origin, the new axis of X making an angle of

— 90° with the primitive axis of X.

The formula) are x = x^ cos 7 — ijy sin 7, y = Xj^ sin 7+^1 cos 7, in which

7 = — 90°. They become, then, x = yi, y = — x^. Substituting and

omitting subscripts, a:^ = 4 ^ — 8.

6. Transform x" + y^ -8x- Ay - 6 = (Ex. 9, Art. 17)

to a new set of parallel axes, the new^ origin being at (4, 2),

that is, at 0^ (Fig. 15)

.

A71S. x^ + y^=2o,

7. Transform xy= 10 (Ex. 15, Art. 17) to rectangular axes

with the same origin, the new axis of X making an angle of

45° with the primitive axis of X.

The formulae are a: = Tj cos 7 — i/^ sin 7, y = x^ sin 7 + 3/1 cos 7, in which

7 = 45° and they become x = V^ (x^ — yi'), y='^h (^1 + ^i)- Substituting

these in xy = 10, and omitting subscripts, x^ — y"^ — 20.

8. Transform a;^ + ?/- = 25 to a polar system, the pole being

at (—5, 0), and the polar axis coincident with X.

The formulae are x-=Xq-\-t cos 6, y = y^ + r sin 6, which for Xq = — b,

y^ = 0, become x— — ^ -{ r cos G, y — r sin d. Substituting these in

3.2 _j_ y2 _ 25, we obtain r = 10 cos d.

9. Transform (a^ + y'^y —a^(x^ — y-) to polar coordinates, the

pole being at the origin and the polar axis cohicident with X.

A)is. ?^ = a^cos2^.

10. Transform the followinfj^ equations, the origin and the

pole being coincident, as also tlie' axi?^v -^X and the polar axis.

r = 20 cos 0: xy = a^, . 2 . " * oa a 2 2 a^
' ^ Ans. x^ 4- ir — 20x- =0 ; r^ = •

-^ '

sin2^

11. Having the distance between two given points in a rec-

tangular system, d = V(a;" — ic')^ + (fi^^fy (Art. 7), to find

the polar formula for the distance, when the pole is at the origin

and the polar axis coincident with X.

Substituting x' = r' cos 6', y' = r' sin d\ x" — r^' cos 0", y" = r" sin d",

d= V(r" cos e" — r' cos B')'^ + (r" sin 6" — /-^ sin d'Y

= V?"-(cos"-2<?"+sin-0") + r'^(c()s20'+sin''^^')—2r'r '(cos 0"cos 0'H-sin0"sine')

= Vr'Hr"=^-2 rh-i' cos {d"^ti'),
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which is the formula of Art. 13, which was there derived directly from the

figure.

12. Under the same conditions find the polar coordinates of

the point midway between two given points, haviDg given its

x' + x" y' +y"
rectangular coordinates

2

^^^^
r^cos6''H-y'^^cos(9^^ r'smO' + r" smO"

2
'

2
*

13. The distance between two points referred to a rectangu-

lar system is d= V(a;" — x'y -{- {y" — y'y. Find the distance

for an oblique system with the same origin, the new axis of X
being coincident with the primitive axis of X, and the new axis

of Y making an angle /S with it.

The formulae are a; = .Tj cosy 4-?/j cosy,, ?/ = ic^siny + 7/iSinyi,

which for y = 0, y^ = /?, become .t = a-^ + ?/iCOs^, ?/ = ?/iSin^.

Substituting these values, and dropping the subscripts,

d=V(x" -{-y"cos/3-x'-y'(:ospy-j-{y"sm/3-y'smpy

= ^[(x" - x') + (y" - y') cos/Sf + [{y" - y') sin^]^

= V {x" - x'y + (2/" -y'y + '2 {x" - x') {y" - y') cosyS,

a result already obtained in Art. 7.



CHAPTER II.

EQUATION OF THE FIRST DEaREE. THE
STRAiaHT LINE.

3>*iC

SECTION IV.—THE RECTILINEAR SYSTEM.

EQUATIONS OP THE STRAIGHT LINE.

25. Every equation of the first degree between two variables

is the equation of a straight line.

Every such equation may be put under the forru

Ax-\-By-{-C^O, (1)

in which A and 5 are the collected coefficients of x and y, and

is the sura of the absolute terms.

Let F, P", P'", be three points on

the locus of this equation, whose

abscissas in order of magnitude

are x\ x'\ a;'". Then, from (1),

their ordinates y\ ?/'', y"\ will also

be in order of magnitude. As
these three points are on the locus,

their coordinates must satisfy its

equation; hence

Ax'+By'+C=0, Ax"+By"+C=0, Ax'"+By"'-\- C=0;

whence, by subtraction,

A{x"- x') + B(y"-y') = 0, ^ (x'"- x') +B{y"'-y') = 0.

Fig. 27.
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Equating the values of A,

y"'-y' y"-y\
x"-x'

(2)

Let P'Q be drawn parallel to OX. Then, from (2),

F'Q P'e'

Hence the triangles F"'QP', P"IiP', are similar, and P" is on

the straight line P'P"'. In the same manner it may be shown

that every other point of the locus is on the same straight line

P'P'". The locus is therefore a straight line.

The expression " the line Ax + By + C— " will frequently

be used for brevity, meaning "the line whose equation is

Ax + By + C=0.''
"

Oblique Axes. The above demonstration depends only upon the similarity of the

triangles and is therefore equally true for an oblique system.

26. Common forms of the equation of a straight line. There

are three common ways of determining the position of a straight

line MN with reference to the axes. First, by its intercepts

OR, OQ; second, by its F-intercept

OQ, and the angle XBQ which

the line makes with the axis of X
(always measured, as in Trigonom-

etry, fi'om OX to the left) ; third,

by the length of the perpendicular

OD let fall from the origin on the

line, and the angle XOD which

this perpendicular makes with the

axis of X. In each case the posi-

tion of the line is evidently com-

pletely determined. We are now
to find the equation of the line

Fig. 28.

when given in each of these three different wavs.

First. Let P be any point of the line, x, y, its coordinates,

and 0-K = a. OQ =?>, the given intercepts. Then
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QO: OB:: PL: LB, or b:a::y:a — x,

whence hx-\-ay= ab, or, dividing by ab,

Second. Draw OS parallel to 3f^, and let tan XBQ = m.

Then LP =SP-jSL. But

SP=OQ = b, '

SL = tiinSOL.OL = tan OBP . OL = -tanXBQ . 0L= - mx.

Hence y = mx-\-b. (2)

The tangent of the angle which the line makes with the axis

of X is called the slope.

Third. Draw JD/r parallel to MN, and PT parallel to OD.

Let^QD = a and OD =p. Then 0K+ TP= OD. But

0K=: 0Lco3L0K=xcosa, TP= LP sin TLP= y sina.

Hence a; cos a + 2/ sin a = 2^. (3)

All these equations are, as they should be, of the first degree

(Art. 25).

Other forms of the equation of a straight line might be found

by assuming other constants to fix its position, and such forms

will be given later. The reason for employing more than one is

that one form is often mcfre convenient than another for the

solution of certain problems. Equation (1) is called the intercept,

Equation (2) the slope, and Equation (3) the normal form, while

the general equation Ax+ By + C— is called the general form.

The student will observe that Art. 25 is an illustration of the

general problem : Given the equation, to determine the locus
;

while this article illustrates the inverse problem : Given the law

of the moving point (straight line) and the position of the locus

(by the constants), to determine its equation. In the latter

case, the problem always consists in finding a relation between

x and y true for every point of the locus, and expressing this

relation in the form of an equation. Wliencver we have sue-
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ceeded in establishing this eqiu'tion, we have the equation of the

locus, whatever the constants involved.

Oblique Axes. Whatever Uie angle XOY {Fig. 23), the triangles QOR and PLR
are similar; hence the intercept form applies without change to oblique axes.

For the slope form we have, as before, LP—SP—SL, in which LP^y, SP=h\ but

SL : LO : : sin SOL : sin LSO. Let a>= XOF= the inclination of the axes, and A= XRQ,
the angle made hy MN with X. Then

SL : a; :: sin A : sin (A — to)

,

whence SL= xsmK
^ ^^^ ^^^^ equation he-

fiin (w— A)

comes y= ^^- x + b. This may be written
sin (w — A)

in the form y = inx + 6, understanding that

when the axes are oblique. If
sin A

Fig. 29.

sin (w — A)

(o = 90°, sin (o) — A) = cos A, and m = tan A, as

in (2).

For the normal form, EOD being a, as before,

let DOQ = ^. Then

0D== 0K+ TP= x cosa + y cos^=p.

When XOr= 90"^, DOQ is the complement of

XOD, that is of a, cos ^ = sin a, and the equation
reduces to (3)

y
27. Derivation of the common forms from the general form.

Since the equation of every straight line is of the general form

Ax-{-By -\- C=^^ it must evidently be possible to derive the

common forms from the general form, and to express the par-

ticular constants a, 6, m^ p, cosa, sina, in terms of the general

constants A, J5, C.

First. The intercept form. Assuming ^a;-hi^i!/ + (7=0,

transposing C to the second member, and dividing the equation

by —C, i.e., making the second member positive unity, we have

X y

A B
which is the required intercept form, the intercepts being

C . C

Second. The slojje form. Solving the general form for y,

we have
y B B
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A O
which is the required slope form, in which ?7i = — - , 6 =
as before.

Third. The normal form. This form requires that the

second member (|)) should be positive, as no convention has

been made for the signs of a distance except as that distance is

laid off on the axes ; and also that the sum of the squares of the

coefficients of x and y should be positive unity, since

cos^a + sin^a= 1.

Let M be the factor which will transform the general to the

normal form. It must fulfil the' condition {RAy -{-{RBy = l.

Hence B = — - Introducing this factor and transposing

V^P + i^^

(7, we have
Ax , By _ -C

yjA'-\-B' VA' + B' VA' + B'

in which
A . B -C

cos a = — , SHI a — — , p =
VA' + B'- ^A' + B' -VA' + B'

To make the second member (p) positive, of the two signs of

V^^ + B' we must evidently take the opposite one of C.

28. In the preceding article we have found the values of a, b,

m, p, cos a, and sin a, in terms of A, B, and C. But it is

unnecessary for the student to burden his memory with these

relations. Thus, suppose we have giv(Mi the straight line

3a; — iy +10 = 0, and its intercepts are required ; we have only

to put the equation in the intercept form, i.e., transpose the abso-

lute term to the second .member and then divide by —10, giving

i_o ' _li)
'

and the intercepts are seen to be a = — y , h = i^. A still

simpler wa}- of determining the intercepts is to make y and x

successively zero (Art. 17, Ex. G) . Thus, for x = 0, y= b— i£-
;
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and for 2/=0, x = a = — ^^-. Again, suppose the slope is

required. We then put the equation under the slope form by

solving it for y, obtaining

and the slope is seen to be m = f , the F-intercept being b = -LQ^,

as before. Finally, if the distance of the line from the origin

(p) is required, we put the equation under the normal form b}'

dividing it by ^A'-{-B^ = 5, transposing the absolute term to

the second member and changing the signs throughout to make
the second member positive, thus obtaining

the distance from the origin to the line being 2, and a lying

between 90° and 180° since its cosine is negative and sine posi-

tive. The exact value of a w^ould be found from the tables,

being the angle whose cosine is — |, or sine is f .

29. Discussion of the common forms.

First. The interceptform. This form is

X ,
V ^ . T . , C , C- + ^ = 1 , ni which a = , 6 =

a b ' A B
If a and b are both positive^ the line occupies the position

M^N^ (Fig. 30), both intercepts being laid off in the positive

directions of the axes. If a and b are both negative^ the line

occupies the position -M"A^", both intercepts being laid off in

the negative directions of the axes. In like manner when a is

positive and b negative, the line lies as does i}/"'A^"^, and when

a is negative and b positive^ as does J^P'^N^^ . We observe,

also, that when C and jB, as also C and A, of the general form

have like signs, the intercepts are negative, and when they

have unlike signs the intercepts are positive. If a = 00, the

equation becomes y = b, and since y is b for all values of x,

that is, since the equation is independent of x, y = b is the

equation of a parallel to X at a distance b from it, above or

below according as b is positive or negative. Notice that wlien
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a = 00, -4 = 0, and the general form is independent of x. Sim-

ilarly, if b=: oo, we have x = a, the equation of a parallel to 1",

its position to the right or left of Y depending upon the sign

of a ; in this case ^ = 0, and the general form is independent

of y. If a = 0, the Hne passes through the origin, therefore

b is also zero. In this case the intercept form is inapplicable

because there are no intercepts, but we see from the values of

a and b that (7=0, and the general form becomes Ax -\-B}/=0,

as it should, since when a locus passes through the origin its

equation has no absolute term (Art. 17, Ex. 14).

Second. TJie slope form. This form is

A C
y = 7nx + b. in which m = , b=

If m is positive, the line makes an acute angle with X and

cuts Y sibo\e or below the origin according as b is positive or

negative. If m is negative, the line makes an obtuse angle

with X. We thus have

JfiriJVrni^

y = — mx + 6,

2/ = — wa; — 6,

y = mx — 6,

y = mx 4- b,

If m — 0, the line is parallel

to X, and y = bm its equation,

as already seen. Ifm = oo,

the line must be parallel to F,

since the angle whose tangent

is 00 is 90°. The equation

then becomes y = ccx -\-b. To
interpret this form, we observe that, as the line is parallel to

'

T, b must also be go , and hence in m = , b =
B

c
the con-

ditions m = 00, 6 = 00, will both be fulfilled when B — 0. The

general form then becomes Ax+C. 0, or a; =
A

a, as

before. If b = 0, we have y = mx, or Ax -\-By==0, as before,
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the line passing through the origin. The form y = mx is the

most convenient for lines passing through the origin, the value

of m fixing the inclination of the line to X.

Third. Tlie normal form. This form is

iKCOSa -\-ys\i\a =2^1
in which

A . B C
COSa =— , Sma =— , p

VA' + B' -VA' + B' ^/A'+B'

the sign of -VA^ + B' being such as to make p positive. IJ

both COSa and sina are positive^ a lies between 0° and 90°

(IfW). If both are negative, a lies between 180" and 270°

(Jf"^^) . IfCOSa is positive and sin a is negative, a lies between
270° and 3G0° (Jlf"^^"^), and if cosa is negative and sina posi-

tive, between 90° and 180° {]\P^N^^), Ifp = 0, the line passes

through the origin, and its inclination is known when sina and

COSa are known, its equation taking the form x cosa + y sina = 0,

or
^^

4-
^^ =0, or Ax-{-By=0, as before.

VA' + B' VA' + B'

If a=0° or 180°, sina=0, and the equation becomes

COSa V-^' + J^"^ ^i ^ '

as before, the line being parallel to Y. If a — 90° or 270°,

cosa=0, and y = -^=b, in like manner, the line being
sni a

parallel to X.

Oblique Axes. The intercept form being the same, the discussion above given
applies equally to oblique axes.

The slope form is y= .

^/"^ x + b (Art. 26). Since sin A is always positive, the

sign of the coefHcient of x depends upon that of sin(w — A), and will be positive or nega-

tive as a)> or <A. Hence 2/= ± -

—

^^^— x±b represents four lines situPted, relative
sin(&) — A)

to the axes, as y = ± mx ± 6 in the case of rectangular axes.

The discussion of the normal form a:co8a + ?/co8/3 = ^ (Art. 26) is similar to the

above, the equation taking the forms a?= —?— , y = —^, when the line is parallel to the
cosa cosjS '

axes, i.e., when |3 = 90° and a =90'=', respectively.
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30. To construct a straight line^ having given its equation.

If the equation is given in one of tlie three common forms, we

may construct the line by means of the given constants. For

example,

^ + ? = 1. (1)
3 4

(2)

(3)

Fig. 31.

make OD =y

,

are the intercept, slope, and normal forms, respectively, of

4a; -f 32/ — 12 = 0. From the first, make OB = 3, OQ = 4, and

QB is the line. From the second, make

OQ = 4 and draw QR, making an angle

with X, whose tangent is —
f. This

angle may be constructed without the

tables by making QiV=3, JSrP' = i,

these lines being parallel to the axes,

laying off QJV to the right or left of Q,

as the angle is acute or obtuse, i.e., as

m is plus or minus. From the third lay

off XOD = angle whose cosine is |^ (or sine |)

and draw QR perpendicular to OD.

Since the line is a straight line, it may evidently be con-

structed by constructing any two of its points. Thus, for

a; = -3, ?/ = 8, (P'), and for x=6, 2/ = -4, (P"). But the

points most easily constructed are those in which the line

crosses the axes. Thus, in any of the above forms, for a;= 0,

2/ = 4, (Q), and for y=0, x=S, (R). Hence, practically,

whatever the form in which the equation is given, to construct a

straight line from its equation, construct its intersections with the

axes.

Obliquk Axes. To construct the line, make x and y in Buccession equal to zero, and
determine the intercepts.

Examples. 1. Construct the line whose equation is x—y=2.
Making y = 0, we have a: = 2, the intercept on X; making t=:0, we

have ?/ = — 2, the intercept on Y. A line through the points thus found

is the required line.
*



44 ANALYTIC GEOMETRY.

^ 2. Construct the following lines : ?/ — 2.T-t-6 = 0; x + y =7

;

3y-\-x-d = 0; 3x-{- oy + lo = 0.

3. Construct the line y -j-2x— 0.

Since this equation has no absolute term tlie line passes through the

origin. In such a case construct any second point; thus x=l gives

y = — 2. Then join (1, —2) with the origin.

4. Construct the lines y = x\ y = — x; 2y — Sx = 0,

5. What angle does y + Sx—7 = make with X ?

Putting the equation under the slope form, y = — Sx +7, and the angle

is the angle whose tangent is — 3.

6. What is the distance of6aj+82/ + ll = from the origin?

Dividing by — VA-^ + B^ = — 10, we have —'ix— iy = |-^, and /; = ^i =
the required distance.

7. Find the intercepts, slope, distance from the origin, and

angle made by the perpendicular from the origin on the line

with X, of the line 2x-\-7y — d = 0.

Making a: = 0, y = b= ^ ; making y = 0, x = a = ^. Solving for y,

y .fc= — jX-^ f , ,-. ill - —
f.

The normal form is

1 ^ =
, .*. p = , and o = sin i

VES V53 \/63 V53 \/53

8. Find a, 6, m, p, and a in the following lines :

32/-4a; + 25 = 0; 7x — y = 0; y-^x-S = 0.

9. The intercepts of a line are 6,3; write 'its equation.

Ans. 07 + 2?/ — 6 = 0.

10. A line makes an angle of 45° with X, and cuts Fat — 2

from the origin ; write its equation. Ans. y = x—2,

11. The distance of a line from the origin is 6, and the per-

pendicular upon it from the origin makes an angle of G0° with

X; write the equation of the line. Ans. \/3y -}-x=: 12.

12. Same as Ex. 11, when the angle is 120°.

13. Write the equations of parallels to X, one 4 above, and

one 10 below it.
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14. Write the equations of the sides and diagonals of a

square whose side is 10, the sides being parallel to the axes

and the centre at the origin.

15. What are the equations of the axes?

Since x = a is a parallel to Y at a distance = a, if a = the line coin-

cides with Y. Hence x = is the equation of Y. Similarly ^ = is the

equation of X.

16. Determine which of the points (2, 3), (1, —3),

(—2,7), (— 3^11) are on the line 2?/ + 7a;— 1 = 0.

17. Find the length of the portion of the line 4 a; + 3 2/= 24

included between the axes. Ans. 10.

18. The line y = mx passes through (x', y')i^nd the value

of m.

31. Equation of a straight line passing through a given point.

Let {x', y') be the given point. Since the required line is a

straight line, its equa:tion will be of the form (1) AxA-By+ C=0,
and since it passes through the point {x', ?/'), we have

Ax' -{-By'+0=0. Subtracting this from (1),

A{x-x')+B(y-y')=0, r.y-y'=-^{x-x'). But -^=m.

Hence y — y' = m(x — x')
, (2) e>

being a relation between x and y in terms of the given constants

x\ ?/', is the required equation.

An infinite number of lines may be drawn through a given

point ; hence the line is not determined unless its slope m is also

given. Thus, the line through (1, —4), making an angle of

45° with X, is ?/ -h 4 = 1 (a; — 1) , or y — x—5.
Oblique Axes. The above equation applies to oblique axes, understanding that

sin Am = - .

*

sin (w — A)

32. Equation of a straight line passiyig through two given

points.

Let {x', y') ,
(x'\ y") be the given points. The required
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equation will be of the form (1) Ax-\-By+C=0, since the

line is a straight line, and must be satisfied for the co-

ordinates of the given points; hence (2) Ax' -\- By' + C—0,
{3) Ax"+By"+C=0. Subtracting (2) from (1), and (3)

from (2), we have

A{x-x')-]-B(y-y') = 0, A(x'-x") + B {y'-y")=0.

Transposing, and dividing,

! 2'-2/'=|eJ!(^-»'), ^ (4)

' which is a relation between x and y in terms of the given

constants, and hence the equation required, the coefficient of a;,

y ~y
^ being the slope (Art. 27). Thus the Hne passing

/J.' ^"

through (1, 2) and (-3, 4) is 2/- 2 = ?^^ (a;-l), or
1 + 3

2y -^-x — b — O. It is immaterial w^hich point is designated

as {x',y'). Thus, y - ^ = _^ ~_^^ (a; + 3) , or 2y + x-b^0,
as before.

Oblique Axes. Nothing in the above reasoning being dependent upon the inclina-

tion of the axes, the equation is the same if tlie axes are oblique, only the coeflicient

y ~y
is then the ratio of the sines of the angles which the line makes with A' and Y.

x' ~x"

Examples. 1. Write the equation of a line through (2, 4)

haying the slope 5. Ans. ?/ — 5a;-f-6 = 0.

2. Write the equation of a line through (2, 3) and (1, —2).

In place of using Eq. (4), Art. 32, as tliere illustrated, it is quite as

expeditious to determine the constants of any one of the three common
forms directly. Thus, the form ij = mx + h, satisfied in succession for the

two points gives

3 = 2 ?« + ft, and —2 = m^h.

Subtracting, we obtain m — 5. Substituting tliis value of m in either of

the above, we find i = — 7. Hence »/ = 5 .c — 7.

3. Find the equations of the sides of the triangle whose

vertices are (4, 8), (I, 4), (-4, -8).

A71S. 3?/-4aj-8 = 0; 5?/ - 12a;— 8 •=
, 2r'- 2aj= 0.

\.^
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4. Find the equations of the meclials of the triangle of Ex. 3.

Ans. ny-20x-8 = 0; y-4x = 0; 13?/- 28aj- 8 = 0.

5. Write the equation of a line through (2, 5) and the origin.

We may use the equation of a line through two points, making one of

the points (0, 0) ; or tlie slope form i/ = mx (since b = 0), which, satisfied

for (2, 5), gives m = ^, and therefore y = -| x.

6. Write the equations of the following lines

:

(1) through (— 7, 1), making an angle 45° with X.

(2) through (2, -1), and (-3, 4).

(3) through (— 1, —7), and the origin.

(4) through (-6, -3), parallel to X.

(5) through (-1, 2), parallel to T.

Ans. y — x — 8 = \ y -^x — l = •, y=7x', y = — 3;x = —l,

PLANE ANGLES.

33. To find the cu^gle included hetweeyi tioo given straight lines.

The slope form is best adapted to this problem.

Let y = mx -{-b^ y = m'x + b', be the two given lines ; m and.

7?i' are the tangents of the angles Xi^P=A, and XQP = \'.

Then, if c = tan MPQ = tany, from Trig-

onometry we have

tan \' — tan X
tany=

1 + tan A tanV
m' — m r> /i\or c =

:;

-• y .:- : .
x^ (1)

1 + wm' ^

/
Thus the tangent of the angle between Fig. 32.

4 — 2 ^
y—4tx-\-l and ?/=2a; — 1 is c = = -, -and the angle may

1 -f- 8 9

be found from a table of natural tangents. It is immaterial

whether we substitute 4 for m' and 2 for m, or vice versa; in

2 — 4 2
the latter case c = =

, the difference in sis^n being due1+89 =. »

to the fact that the tangents of the supplementary angles MPQ
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and QPS which the lines make with each other are numerically

equal with opposite signs. We thus obtain the acute or obtuse

angle, according as the sign of the result is positive or negative.

34. To find the equation of a straight line making a given

angle with a given line.

Let y — mx-^h be the given line, y = m'x-{-b' the required

line, and c = tangent of the given angle. Then in the relation

c = , c and m are known. Solving for m', "we have
1 + mm'

m'=—-— • Hence the required equation is

1 — mc

y = —^—x + b'. (1)
1— mc

Since an infinite number of straight lines may be drawn

making a given angle with a given line, b' is undetermined.

We are then at liberty to impose another condition upon the

line, as that it shall pass through a given point. The equation

of a line through a given point is y —y' = m' (x — x') , in which

m' may have any value (Art. 31). Substituting the value

found above, .

2/-y=^!L+£(x-a;') (2)
1 — mc

is the equation ofa straight line passing through a given point and

making a given angle ivith a given line. Thus, the line through

(2,4), making an angle 45° with ?/= 2 ic— 4,

is2/-4=?±i(a;-2), or y = -ox + 10.

Constructing, MJSf is the given line

/M" y = 2x — 4:; P' the given point (2,4);

\Ch^ and P'Q the line y = -?>x-\-\^. The

\-J student will observe that P'll makes

ir an angle 135° with MN^ the angle be-

-f\ X ^"& measured, as always, from the line

' ^ to the left ; and that, therefore, to

obtain the equation of P'R we should

Fig. 33. make c = tan 135° = — 1.
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35. Conditions that two lines shall he parallel^ or perpendicu-

lar^ to each other.

First. If two lines are parallel^ their included angle is zero.

Hence (Art. 33) c= ;
= 0, or 7n = m'^ that is, two lines

^ 1+mm'
a?'e parallel tvhenever, their equations being solved for y, the

coefficients of x are equal. This follows obviously from the fact

that parallel lines make equal angles with X, and hence the

tangents of these angles, m^m\ must be equal. Thus,

2/=2a; + 4,2/ = 2aj — 7,2/ — 2fl;=0, are all parallels.

Cor. TJie equation of a line passing through a given point

(ic', y') parallel to a given line y — mx + 6, is (Art. 31)

y — y' = m {x — x'). (1)

Second. If the lines are perpendicular to eadh other, their

included angle is 90°, and hence c = —— = oo,
1 + mm'

or l+mm' = 0, .-. m'=
;m

that is, two lines are perpendicular to each other whenever, their

equations being solved for y, the coefficients of x are negative recip-

rocals of each other. Thus,

^=-|a; + 4, 2/=-|a;-6, 2/ + |aj = 0,

are all perpendicular to y= f ic + 7.

Cor. The equation of a line passing through a given point

{x\ y') perpendicular to a given lirie y = mx + b

is y — y'= (^x — x'). (2)

The equations m = m', ra' = , are not the equations of
m

lines, for they contain no variables. Since they involve only

constants (which serve to fix the position of the lines in ques-

tion) , they express conditions imposed upon the position of the

lines. Such equations are called equations of condition.
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E:^AMPLES. 1. Find the angles between the lines 2/
= —a? + 2,

yz=zSx + 7; y = ^x-l, y = ^x + A; y = 2x — S, y=2x+7;
yz=^x-3, ?/ = -2a?+9; 3?/ + 4a;+l = 0, 2y + x + 5 = 0.

Ans. c=2; c = -^; 0°; 90°; c = i.

2. Write the equation of a line making an angle whose tangent

is 3 with y = — Sx-\-4:. Ans. y = b.

3. Write the equations of lines making angles of 45° and 135°

with 22/-a; + 3 = 0. Ans. y = 3x-hb', y = -\x-{-h,

4. Write the equation of a line through (—3, 7) making an

angle whose tangent is V3 with 2?/ — ic4-l = 0.

Ans. (2- V3)2/- (1 + 2V3).T-17 + V3 = 0^

5. Write the equations of two parallels to 2/ = |^ .^• + 7 ; also

to 3 2/ + 7 a; = 0.

6. Write the equation of a parallel to 3?/ — 4a;=2 through

(1,2). Ans. 3?/ — 4a;-2 = 0.

7. Write the equations of two perpendiculars to

y— — ia?+ 4 ; also to ?/ — re + 4 = 0.

8. Write the equation of a line through (7, — 1) perpen-

dicular to 2/ = — 4a; 4- 1 ; also through (7, — 1) perpendicular to

32/-2a; = 0. Ans. 42/--a; + 11 = ; 22/ + 3a;- 19 = 0.

9. AYrite the equations of lines through (1, 3) making angles

of 0°, 90°, and 45° with X. Ans. 2/ = 3 ; a; = 1
;
y-x~2 = 0.

10. Write the equation of a line through (5, 3) parallel to

the line whose intercepts are 3, 2. Ans. 32/ + 2a/' — 19 = 0.

11. Write the equation of a line through (2,3) perpendicular

to the line joining (2,1) with (—2,5). Ans. y = x-\-l,

12. The vertices of a triangle are (— 1 ,— 1 ) , (— 3 , 5) , ( 7, 1 1 )

.

Write the equations of its altitudes.

Ans. 32/ -a; -26 = 0; 32/4-5a; + 8 = 0; 32/ + 2a;- 9 = 0.
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13. Write the equations of the perpendiculars erected at the

middle points of the sides of the triangle of Ex. 12.

Ans. Sy — x-8 = 0; 3^/ + 5a; — 34 = ; 3?/ + 2a; - 21= 0.

14. Prove that Ax -\-By -{- C=0 is perpendicular to

A'x-\-B'y-{-C' = 0\t AA' + BB' = 0.

15. Prove that Ax -{- By -i- C= is parallel to

A'x+B'y+C'±=0 itAB'-A'B = 0,

16 Prove that the angle between Ax -\- By -}- C=0 and

A'B — AB'
A'x 4- B'v + C = is given by the relation tan y =— .•

17. Write the equation of a straight line perpendicular to

Ax -{-By +(7=0 and making an intercept a on the axis of X,

18. Write the equation of a line perpendicular to y = mx -f b

and at a distance d from the origin.

19. Write the equation of a line parallel to y = mx-\-b and

at a distance d from the origin.

20. Prove that if the equations of two straight lines differ

only in their absolute terms, the lines are parallel.

.x"> INTERSECTIONS.

36. Intersection of loci. The' point of intersection of two

straight lines is the point common to both. But if a point lies

on a given straight line, its coordinates must satisfy the equa-

tion of the line ; hence the coordinates of the point of intersection

must satisfy the equations of each line. Conversely, to find the

point of intersection of two straight lines, combine their equations

andfind the set ofvalues ofthe coordinates tvhich satisfies them both.

The above reasoning is obviously entirely general. Whatever

the loci under consideration, if the}' have a common point, or

points, the coordinates of these points must satisfy both equa-

tions. Hence, in general, to find the intersections of any two

loci, combine their equations. \
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Since the number of sets of values of x and y^ obtained by

making the equations simultaneous, is equal to the product of

the numbers indicating the degrees of the equations, this prod-

uct also indicates the possible number of intersections. If, for

example, the equations are of the second degree, their loci may
intersect in four points, but no more ; and as some of the val-

ues of X and y thus obtained may be imaginary, the number of

real intersections may be less than four. And, in general, the

greatest possible number of intersections of two loci whose equa-

tions are of the ^th and gth degrees, respectively, will be pg,
and the number of real intersections will be the number of sets

of coordinates, satisfying both equations, in which x and y are

both real.

Since all equations of straight lines are of the first degree,

but one set of values of x and y can be found satisfying any two

such equations, or two straight lines can intersect in but one

point. If two straight lines are parallel, they cannot intersect,

and the combination of their equations will give an impossible

result. Thus, x-\-y = ^ and x +y=l are parallels. Com-
bining, we obtain 3 = 0. Hence non-intersectioyi is shown by

the occurrence of impossible or imaginary results. Otherwise,

equating the values of £c, 0y = 3, or y = |=oo, showing that

the lines intersect only at an infinite distance.

Examples. Find the intersection of the following lines :

1. 2?/-3a;-7 = 0, and 2?/+a;-10 = 0. Ans, (f,-V-)-

2. a; + 22/-5 = 0, and2a; + 2/-7 = 0. Ans. (3,1).

3. 2/-a; + l = 0, and?/4-aj + l = 0. Ans. (0,-1).

4. e^cc + G?/— 1 = 0, and a;-}-?/ = 4.

5. a; + 2/=0, and ic— ?/ = 0.

6. Find the vertices of the triangle whose sides are

5?/ — 12a;-8 = 0, 3y — 4a; — 8 = 0, y — 2x = 0,

Ans. (1,4), (-4, -8), (4,8).
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7. Showthat2/ + 3a; — 1==0, y -\-2x + 7 = 0, y — x+Si = 0,

meet in a point.

8. Show that the medials of the triangle of Ex. 4, Art. 32,

meet in a point.

9. Show that the altitudes of the triangle of Ex. 12, Art. 35,

meet in a point.

10. Show that the perpendiculars erected at the middle

points of the sides of the triangle of Ex. 13, Art. 35, meet in a

point.

Examples on the intersection of curves are reserved until

the student is familiar with the equations of the curves ; but he

will observe that the process is the same, whatever the degree

of the equations or the system of reference : to find tlie intersec-

tions of any lines, combine their equations. ,

37. Lines through the intersection of loci.

Let (1) Ax + By + C=0, {2) A^x + B^y + C = Q, be the

equations of any two straight lines, and h any arbitrary con-

stant ; then is (3) Ax -\- By -\- C -\- k {Ax -{-B^y + O) = the

equation of a straight line through their intersection. For the

values of x and y which satisfy (1) and (2), evidently satisfy

(3) also, hence (3) passes through the point of intersection of

(1) and (2). Moreover (3) is of the first degree, hence the

equation of a straight line.

Note. This reasoning is entirely independent of the form and the

degree of the equations. Hence if a — O, $ — 0,be the equations of any two

loci, a and )8 representing any functions of x and ij, and k be any arbitrary

passes through all their points of intersection.

So long as Ic is arbitrary, (3) will represent any straight line

through the intersection of (1) and (2), and as k may have

any value, it may be determiued so that (3) shall fulfil any

reasonable condition. Thus

:
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First. To find the equation of a straight line passing through

the intersection of two given straight lines and also through a

given point. Let (1) and (2) be the two given lines and {x\y')

tlie given point. Then (3) is a straight line through their inter-

section. Since this line is to pass through {x\y'), we have

Ax' + By'+C+ k {A'x' + B'y' + C) = 0, in which everything

is known but k. Determining k from this equation and substi-

tuting its value in (3), we have the required equation.

Second. Tofind the equation of a straight line passing through

the intersection of two given straight lines, and parallel {or per-

pendicular) to a given line^ Let (1) and (2) be the given lines

and y = mx + h the line to which (3) is to be parallel (or per-

pendicular). Solve (3) for y and place the coefficient of x

equal to m ( or )
; from this equation determine k and sub-

stitute its value in (3) . The resulting equation will be the line

required.

Examples. Write the equations of the following lines :

1. Through the intersection of

a;-|-22/ — 5 = and y — 3a;-f 8 = 0,

and the point (6, 4).

Substituting a: = 6, .y = 4, in :r -f 2 y — 5 + ^-
(3/ — 3 .r + 8) = 0, we find

k = f. Hence the required line is 1/ — x + 2 = 0.

2. Through the intersection of

2a; + 2/— 7 = and x + 2y — 5 = 0,

parallel to 6 a; — 3 2/ + 5 = 0.

We have2a: + y-7 + ^(^ + 22/-5)=rO. Solving for 3/,

l-\-2k l + 2k

Solving the parallel for y, ?/ = 2 a: + |. Hence — "^ =2. .'.k = — f,

and the required Hne is2x — y — 6 = 0. 1 + 2A:

3. Through the intersection of

2a; + 2/
— 7 = and y — x — l = 0,

perpendicular to Sx + Sy—1 = 0.. Ans. y — x—l = 0.
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4. Through the intersection of

y — x — l = and y — 2x-\-l = 0^

parallel to y = Ax-\-7, Ans. y = 4:X — 5,

5. Through the intersection of

y z=Sx -{- 14: and y = x-{-G,

making an angle of 45° with y = 2x. Ans. y = --Sx— 10.

6. The line y — mx + h passes through the intersection of

y = m'x -}- &' with y = m'^x + 6". Find the value of m.

DISTANCES BETWEEN POINTS AND LINES, AND
ANGLE-BISECTORS.

38. To find the distance of a given point from ct given straight

line.

Let a^cos a + ?/ sina=^ be the given line and {x\ y^) the

given point. Through the given point, P', draw ST parallel

to the given line MN. The perpendiculars OQ, OR^ from the

origin on these lines, coincide ; therefore a is the same for both

(Art. 26), and the equations of the parallels will differ only

in the lengths of the perpendiculars. Hence, if OR=p\ the

equation oi ST will be

X cos a + 2/ sin a = p\

and since P is on ST^

x' cos a + 2/' sin a = p\

Now DP' = QR is the difference be-

tween p' and p, hence the required dis-

tance is

D = x' cos a-\-y' sin a —p.

But this is simply what the equation

of the given line becomes when p is

transposed to the first member and x\ y\ substituted for a;, y.

Hence, to find the distance of a given point from a given line,

Fig. 34.
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put the equation of the given line under the normal form, trans*

pose the absolute term to the first member, and substitute the co-

ordinates of the given point. Since to put Ax -{-By -{- =0
under the normal form we divide by V^^ + JB^, we have

-VA' + B'

As only the distance DP' is required, it is not necessary to

attend to the sign of ^A^-\-B^. If, however, we follow the

general rule of signs for putting the general under the normal

C
form (Art. 27), the last term of (1), — , will always he

^A'-{-B'
negative, since, when transposed, it must equal -\-p. Now if

we make a;' and y' zero, (1) will be the distance of the origin

O
from the line =—z==l ; hence the orio;in is always con-

sidered as being on the negative side of the line. Whenever,

then, for any given point, (1) is negative, the point is on the

same side of the line as the origin. Thus, suppose the equation

ofMN is2a; + 2/— 2=0. Dividing by V5, the normal form is

2ic v 2—= + -^ = =0. Substituting the coordinates of P', (|, f),
V5 V5 V5

D=hA±i^=.^ = DP<.
Vo Vo

This being positive, P' is on the opposite side of the line from

the origin. But, substituting the coordinates of P", (— f, 2),

This being negative, P" is on the same side of the line as the

origin.

"Were the axes oblique, the equation of the given line being a? cos a + 1/ cos /3 —jy =
(Art. 26), as the reasoning above is independent of /3, a;'co8 a + y'coB^—p would be the

required distance.

39. The distance from a given point to a given line may also

be found as follows : Write the equation of a line through the
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given point perpendicular to the given line ; find the intersection

of the perpendicular a\id the given line ; then find the distance

from the given point to' this intersection by the formula

(2 = V(a/-' — x"y-\-(y' — y"y. Thus, to find the distance from

(8, 1) to 3ic — 42/4-5 = 0; the perpendicular through (8, 1)

to 3a; — 42/ + 5 = is y —1 = — ^ (x —8) ; combining this with

3a; — 42/ + 5 = 0, we have for the point of intersection (5, 5).

Hence d = V(8-5)2-f- (1-5)2=5. This method is usually

less expeditious than that of Art. 38.

Examples. Determine the length of the perpendicular from

the point to the line in the following cases, ascertaining in each

case whether the point and the origin are on the same or

opposite sides of the line.

1. 3a; + 42/-2 = 0, (2, 7).

Ans. ^- ;. on the opposite side fjom the origin.

2. 3a;-42/ + 5 = 0, (8, 1).

Ans. 5 ; on the side of the origin.

3. 4a;-32/-G = 0, (1, -1).

Ans. i
; on the opposite side from the origin.

4. 3x + iy + 2 = 0, (2,4).

Ans. ^~ ; on the side of the origin.

5. 2/-2a;+l=0, (-1, -3). Ans. 0.

6. Find the lengths of the altitudes of the triangle whose sides

are 4a;- 32/ + 8 = 0, 12a;- 5?/ + 8 = 0, 2x — y = 0.

Ans. The vertices are (1, 4), (— 4, —8), (4, 8), and the

altitudes A_, 16 16^

V5 5' 13

7. Find the length of the altitudes, of the triangle whose

vertices are (1,2), (—2,0), (6, —1).
. 19 19 19
Ans. , :,

/
Vl3 V65 V34
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8. Find the area of the triangle whose vertices are (2, 3),

(-1,4), (6,5).
^-

The line through (—1, 4) and (0, 5) is x — 7 3/ + 29 = ; its normal form

is -=:^ +.-^ — = 0. The distance of (2, 3) from this side is =^.
V50 \/50 \/60 _ \/50

The length of the line joining (— 1, 4) with (6, 5) is \/50. Hence the

area = if-l^X V50'\ = 5.
" VV50 /

9. Find the area of the triangte whose sides are 2x-^y—l= 0^

?/ — a;— 1 = 0, x-\-2y— b = 0.

Ans. The vertices are (3, 1), (2, 3), (1, 2), and area f.

10. Find the distance between the parallels 2/= 2 a; — 6,

y = 2ic + 8.

The line y = 2x — Q crosses Y at (0, — 6) ; the distance of this point

from y = 2 .r + 8 is — 14

V5*

11. Find the distance between the parallels

yz= 3a;, 2/ = 3a;— 10. Ans. VTO.

40. To find the equation of a line bisecting the angle between

two given lines.

Let a; cos a +2/ sin a —p = 0, (1)

a;cosa' + ?/ sina'— p' = 0, (2)

be the two given lines. Then

{x cos a' -f 2/ sin a' — i>') + A; (a; cos a + 2/ sin a —p) = (3)

is a straight line through their intersection. Now the quantities

in the parentheses are the distances

of any point (a;, y) from the lines (2)

and (1) (Art. 38).
' Thus, if MN,

M'JSf'^ be the lines given by (1) and

(2), then (3) is the equation of some

line VP through their intersection V,

and the parentheses are the distances

PD', PD, of any of its points from

j,.g 35
M'N and M^T. Now if A; = -l,
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PD^ = PD from (3), and (3) will be the equation of the line

bisecting the angle MVN\ When a point P is on the

same side of a line as the origin, we have seen that the

perpendicular PD is negative (Art. 38). For the angle

MVN\ P is on the same side of both lines that the origin is,

and hence both perpendiculars must be negative, that is, have

the same sign, or 'k= — \. For the angle iV'FA^, Q is on

the same side of one line that the origin is, but on the opposite

side from the origin in the case of the other line ; one perpen-

dicular must therefore be negative, and the other positive, that

is, have opposite signs, or A;=l. Hence, to bisect the angle

between tioo given lines, put their equations under the normal

form, and subtract or add them according as the origin does or

does not lie ivithin the angle to be bisected.

Examples. 1. Find the bisector of the angle between

12a; + 5 2/
— 2 = and 3a; — 4?/+ 7 = 0, in which the origin

lies. Ans. 99a; — 27?/ + 81 = 0.

2. Find the bisectors of the angles between 2a; + ?/ + 8 = 0,

a;-{-22/-3 = 0. Ans. 3a; + 32/ + 5 = 0; a;-^ll=0.

3. Find the bisectors of the angles between 2a;-f^ + 8 = 0,

and 2/ = 0. ji^s. 2 aj + (1 ± \/l)y +8 = 0.

4. Write the equations of the bisectors of the angles between

the axes y = 0, .t = 0. Ans. y ±x — 0.

5. Of what line would Eq. (3), Art. 40, be the equation if

fe=2? if ^• = w?

7
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SECTION v.— THE POLAR SYSTEM.

41. Derivation of polar from rectangular equations. When
the pole is taken at the origin and the polar axis is coincident

with the axis of X, any rectangular equation of a straight line

may be transformed into the corresponding polar equation (that

is, the polar equation expressed in terais of the same constants)

by means of the relations x = r cos 0, y = r sin 6 (Art. 23).

The simplest and most useful of tlie polar equations is the

normal form.

42. Normal polar equation of the straight line. The normal

rectangular form being x cos a-\-y sin a=p^ substituting a;=r cos

and 2/ = rsin^5 we have r(cos^ cosa-f-sin^sina)=^7, whence

»•= ^ r- (1)
V

COS {0--a)

r — P
Discussion. ></? ^ = 0°, r = f—r = —— = OQ, locatinar^ -^

'
cos (— a) cos a ^' ^

the point Q where MN crosses the polar axis. If = a,

Pr= Kb— Pi giving the point D. If 0'>a and increasing,

6— a is increasing, cos(^ — a) decreases, and hence r increases

till = a + 90°, when cos(^ — a) = cos 90° = and r = oo , as it

should be, since r is then parallel

to MH and must be produced

infinitely to meet the line. When
0>a + 90% ^-a>90% and r is

negative, showing that it must be

produced backwards, or away from

the end of the measuring arc, to

meet MN, and remains negative
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till ^ = a 4- 270°, or ^ — a = 270°, when r = oo again, and is par-

allel to MN, For 6 = 360°, r = ^—r = -^ = OQ. The
cos (—a) COS a

entire line is traced for values of 6 between 0° and 180°, for

p p
which latter value of ^, r = tt^ttb : = = OQ.

.

COS(180 — a) cos a

If MN is perpendicular to the polar axis and lies on the right

P
of the pole, a = 0°, and the equation becomes r= ^j i^ ^^^

the left of the pole, a = 180°, and the equation becomes

P P -P
r =

cos {0 - 180°) cos - (180° - 0) cos

P
Hence 7* = ± ^ is the equation of all perpendiculars to the

polar axis^ the negative sign applying to those which lie on the

left of the pole.

If the line is parallel to the polar axis and above it, a = 90°,

and the equation becomes

^ cos ((9 - 90°) ~ cos - (90° - 0) sin '

if below the polar axis, a = 270°, and

P P Pr=
cos (^-270°) cos -(270°-^) sin ^

PHencer=± —.—- is the equation of all parallels to the polar axis,

the negative sign applying to those which lie below the pole.

If the line passes through the pole, i) = 0, and r = 0, except

when = 90° -|- a, in which case r = -
; that is, r is zero for all

values of except when the radius vector coincides with the line,

when r may evidently have any value.

Examples. 1. Write the polar equation of a line whose dis-

tance from the pole is 5, the perpendicular being inclmed 45° to
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the polar axis. Find the intercept on the axis, and the values

of 6 for which r is infinite.

5 -
^^^^•^=

Tn—T^x'' 5V2; 135°; 315°.
cos(^ — 4o) ' '

2. Write the polar equations of lines for which p = 2, a= 60°
;

^ = 10, a = 120°
; and find their intercepts.

2 «
3. Construct r = : —

; r =
cos(^-30°) cos (^-60°)

4. Construct r= ± : r = ±
cos sin

5. Write the polar equations of the sides of a square whose

centre is at the pole and side 10, one side being parallel to the

axis.

3 5
6. Find the rectangular equations of r = ; r=

cos 9 sin

9
7. Find the rectangular equation of r =^ ^

cos (19 -45°)

Ans. x + y — dV2 = 0.

8. Find the polar equation ot3x — 4:y-{-l = 0.

If the normal form is required, ——^^-i— = 0, whence /> = |, and

o= cos"' (— f), which may be found from the tables. Then substitute p and a

in r= -2 -. If the normal form is not specified, substituting directly
cos (e — a) -

"^

the values of a: = r cos 6 and y = r sin 6, we have r—
4 sin — 3 cos

9. Find the polar equation of 7j = 3 x-\-2.

2
Ans. r =

sin ^ — 3 cos

V
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SECTION VI.—APPLICATIONS.

43. Recapitulation. The foregoing formulae and equations

relating to points and straight lines constitute the elementary

tools, as it were, of analytic research on the properties of recti-

linear figures. The student must remember that it is not the

object of Analytic Geometry to produce these equations and

formulae, but to investigate the properties of loci by means of

them. While, therefore, familiarity with these expressions is

indispensable, a mastery of analytic geometry implies a knowl-

edge of their use in the discovery of geometrical truths ; that is,

the mastery of a method of research. The more important of

these expressions are here collected as a review exercise. The
student should memorize them, and be able to explain the

meaning of all the quantities involved. Thus, x = ^ "^^
,

y = ^ , are the equations of a point midway between two

given points, in which x, y, are the coordinates of the required

middle point, and x\ y\ a;", y'\ the coordinates of the given

points.

aJ = ^^^', y = ^^±^'. Equation (3), Art. 6.

d =V (a;"- a;')'+ {y"-y'y. "

d = Vr'2+ r"'^- 2 rV" cos (6"- 6')

.

"

x= Xq-^x,, y = yo + yi.
"

a;=r cos^, 2/ = r sin^, "

Ax + By-\-C=0.
*

"

^
. y

a b

y = mx-\-b, '*

(1), 7.

(1), 13.

(2), 22.

(4), •23.

(I)' 25.

(1), 26.

(2), 26.
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X COS a-\-y sma=p. Equation (3) , Art. 26.

31.

x'—x'

c=^^- " (1),

y-y' = ^i±^(x-x'). "
(2),

1 — mc
/ 1m = m , m = -•

y-2/' = m(a;-a;'). " (1),

y-y' = --{x-x'). " (2),
m

j^^ Ax'+By'+C^
,, .^.

xcosa'-\-y sina'—p'± {xcosa-\-y sma—p)= 0.

p
COS {0 — a)

(1),

32.

33.

34.

35.

35.

35.

38.

40.

42.

PROPERTIES OP RECTILINEAR PIGURES.
'

44. 1. The diagonals of a square are perpendicular to each

other.

Take two adjacent sides for the axes. Then, if a = side, the

vertices are (0, 0), (a, 0), (a, a), (0, a), and the equations

of the diagonals are y = x, y = — x-\-a, in which m =
^

(Art. 35).
^^

2. The line joining the middle points of two sides of a triangle

is parallel to the third side.

Take the third side for the axis of X, and the origin at its

left-hand extremity. Then (0, 0), (a, 0), (&, c) are the ver-

tices, (-, -), [

"^
, I),

the middle points, and y = -\B, the
\^^ ZJ \ Z ZJ z

line joining them.
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3. The diagonals of a parallelogram bisect each other,
*

With the axes as in the figure, let the

side OB = a, the altitude mD = b, and

Oni = c. Then the coordinates of C are

(a + c, 5) , and the middle point of OC is

^ The coordinates of B are
^ ^/ Fig. 37.

(a, 0), of D, (c, 6), and of the middle

point of i)^,(^,
I

4. T/ie straight lines joining the middle points of the opposite

sides of any quadrilateral bisect each other.

Let (0, 0), (a, 0), (b, c), {d, e) be the vertices 0, 5, C7, D,
in order. Then the middle point of each line is

fa-hb±d c±e\

5. Prove that the middle point of the line joining the middle

points of the diagonals of any quadrilateral is the point of inter^

section of the lines of Ex. 4.-

6. The lines joining the middle points of the adjacent sides

of (£parallelogram form a parallelogram.

With the notation of Ex. 3, the sloi^e of the lines joining the

middle pointsk. of DC and -BC, DO and OB, is ; hence
^

these lines are parallel.
c — a

7. The middle point of the hypothenuse of any right-angled

triangle is equally distant from the vertices.

Take the axes coincident with the sides.

8. Prove that if A, B, (7, be squares on the sides of a right-

angled triangle ORQ, and OT is perpendicular to BQ, then BS,
QP, and OT meet in a point. With the axes as in the figure,

let c = OQ, d = 07?, the sides. Then the coordinates of S
and B are (c, — c), (—c?, 0), and the equation of SB is
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cd

c + d

c + d
Similarly the equation of QP is

|._1-=1, andy== — —^— X — c. The equation of RQ is -

d -. —d — c

of OT, perpendicular to it, y — -x. Substituting this value of
c

y in the equations of RS and QP, the values of x are found to

be the same ; hence OT intersects them both at the same point.

Fig. 38.

9. The altitudes of a triangle meet in a point.

Take the axes as in the figure, and let ^4^ = c,* C being given

as (x', y') . Then the altitude through G is

(1)

The equation of BC h y — y'= —^— (x — x') , and that of the

altitude through A is

(2)

X = X'.

x'—c

y
X'

X.

y

The equation of AC is ?/ = ^a;, and of the altitude through

^ is
^

y = --(x-c). (3)

Combining (2) and (3) to find their intersection, we obtain

x = x\ which satisfies (1). Hence (1), (2), and (3) meet in

a point.
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10. The perpendiculars erected at the middle points of the

sides of a triangle meet in a point.

The equation of AC {Y\g. 39) is y = y^^x, and that of the

perpendicular to AG through B' is

The equation of BC is y — y'=:J— (x — a;') , and that of
X — c

the perpendicular to BC through A' is

The perpendicular to AB at C is

aj = ^. (3)

/»

Combining (1) and (2) , eliminating y, we have a? = — Hence

(1) and (2) intersect on (3).

1 1

.

The medials of a triangle meet in a point.

The middle points A', B', C (Fig. 39), are

(^i>(j.i>(i.«>
and the equations of the medials are

^=;^,-'^^^'' W
2' = ^7±^ (*-«). BB; (2)

Combining (2) and (3), we find they intersect in /'^-i^, ^\

and these values satisfy (1) ; hence (1), (2), and (3) meet in

a point.
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12. To find the general analytic condition that three straight

lines may meet in a point.

Let (1) y = m'x+b', (2) y = m"x-\-b", (3) y = m"'x-{'b'"

be the three lines. The intersection of (1) and (2) is

_ j)"-b' _ m'b"-b'm"

m'—m" m'— m"

But these must satisfy (3) ; hence

m'b"-m"b'-^m"'b'- m'6"'+ m"6"'- m'"6"= 0.

13. Shoiv that

ny-20x-8 = 0, y-4x = 0, 13?/- 28a;- 8 = 0,

m^eet in a point.

14. To find an expression for the area of a triangle in terms

of the coordinates of its vertices.

Let {x\y'), {x",y"), {x"\y"'),he the vertices. The equation

of a line through the first two is y—y'=^—^(x — x'), or
x'—x"

(y"~ y')^-\- (x'— x") y + y'x"— y"x'= 0. Hence the perpen-

dicular distance from this side to (x'", y'") is

(y^>_ y') x'^'^ {x'-x'') y'"+y^x"- y"x'

^(^y'-y>iy^(^x'-X"y

But the denominator of this expression is the distance between

(ic', y') and (ic", y"). Hence the area

=
-J
base X altitude =

-J- lx'{y"'-y") +x"(y'-7j"') + a;'" (?/"-?/')J.

15. Find the area of the triangle whose vertices are (2, 3),

(-1,4), (6, 5).

16. Find the equation of a straight line passing through a

given point and dividing the line joining two given points in

a given ratio.
y'—y"

Substitute in y — y'= •^.—% {x — a;') for a;", ?/", the values of
X —X
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X and y in Equation (2), Art. 6, and for aj', y', the coordinates

h, A;, of the given point, and we have

^
m(a;"-/i) + n(a;'-7i)

^ ^'

17. T/ie bisectors of the interior cmgles of a triangle meet in a

point.

Let the equations of the sides of the triangle be

ajcosa' +?/sina' —p' =0, (1)

acosa" +2/ sina'"' — jp" = 0, (2)

X cosa"'+2/ sina'"—p"'= 0, (3)

and let the origin be within the trianojle. Then the oriofin lies

within each of the three angles to be bisected, and the equations

of the bisectors (Art. 40) are

ajcos'a' 4~^-<*Mi^' —p^ — {x cosa^+>-y sina^^— p^^) =0, (4)

ajcostt" 4-y sina" — p^' — (a? cosa'^+tr^Wi^i?'") =0, (5)

a;cosa"'+?/sTna"'— ^:»"'— (iccosa' +y^ma^ —!>') =0. (6)

But values of x and y which satisfy an}- two of these equations

also satisfy the third ; hence these three lines meet in a point. ^
18. The bisectors of any tivo exterior angles of a triangle and

of the third interior angle meet iii a point.

The bisector of the exterior angle of (1) and (2), Ex. 17,

is a + /? = 0, and of (2) and (3) is ^ + y = 0, and the bisector

of the interior angle of (1) and (3) is a — y = 0. Subtracting

the second of these equations from the first, we have the third.

19. Tlie bisectors of the angles between the bisectors of perpen-

diculars are the perpendiculars themselves.

Let y = mx-\-b, y = x + b', be the perpendiculars. Their

normal forms are
^^^

y — mx — b _^ my + x — mb' _ ^

Vl+m^
'

Vl+w?
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and their bisectors are y — mx — b± (my -f- ^ —mh') = 0. The

normal forms of these latter are

(1 + m) y + (1 - m) a; - (mb'+ &) ^ q
V(r4-m)2 + (l -my

(1 — m) y — ( 1 4- m) a; + {mb'— &) _ n

V(l+m)=^ + (l -m)2

and their bisectors are

{l-\-m)y-\-(l — m)x — (mb'-{- b)

±[_{l-m)y-(l+m)x + (mb'- 5)] = 0,

or y — mx — 6 = 0, and my + a; — m6'= 0, which are the given

perpendiculars.

20. To find the condition that the three points- {x\ y'),

(«", y), (a;'", 2/'")? shall be collinear, i.e., lie on the same

straight line.

21. Prove that the line which divides two sides of a triangle

proportionally is parallel to the third side.



CHAPTER III.

EQUATION OF TEE SECOND DEGREE.
THE CONIC SECTIONS.

SECTION VII. — COMMON EQUATIONS OF THE
CONIC SECTIONS.

45. The Conic Sections. It has been shown in the previous

chapter tliat every complete equation of the j^rs^ degree between

X and y, Ax + By -\- C=0, and the various forms wliich such

an equation may assume owing to a change in the vahies or

signs of the arbitrary constants A, B, C, is the equation of a

straight line. In the present chapter it will be shown that

every equation of the second degree between x and y,

Af'-^Bxy+Cx^ + Dy + Ex + F^O, and the various forms

it may assume when different values and signs are given to

the arbitrary constants A^ B^ O, Z>, E^ F, represents some

one of a fai..ily of loci called the Conic Sections. These loci,

which for brevity may be designated Conies, are so named
because every section of tlie surface of a right cone with a

circular base by a plane is one of this family.

They may all be traced by a point so moving that the ratio

of its distances from a fixed point and a fixed straight line re-

mains constant^ the particular locus traced depending upon the

value of this constant. Since all the loci of this famil}^ may
thus be generated by a point moving under a single law, it will

evidently be possible to express this law in a single equation,

and to derive the particular cases froq^ this general equation
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by assigning the corresponding value to the ratio. The proof

of the foregoing statements and the discussion of the general

equation is, however, greatly facilitated by a knowledge of the

forms and elementary properties of these loci ; we shall therefore

first determine their equations separately from some of their

properties with a view to the discovery of their forms, reserving

the discussion of the general equation until the student has

thus become familiar with the various loci which it represents.

THE CIRCLE.

46. Defs. The path of a point so moving that its distance

from a fixed point remains constant is a circle. The constant

distance is the radius, the fixed point the centre.

47. General equation of the circle.

Let (m, n) be the centre (7, B the radius, and P any point of

the circle. From the right-angled triangle

PCM, CP' = CM' + MP\
or (y-ny + {x-mY = R\ (1)

which is the required equation. Hence,

to write the equation of any circle tvhose

position and radius are Jcnoivn, substitute

the given values of m, n, and R^ in the

above equation. Thus, the equation of

the circle whose radius is 6 and centre is

(6, -2), is (2/+ 2)2+(a;-6)2=36, ov f-^x" + Ay-l'2x+i=0.
By assigning different values to m and ?i, we may derive the

equation of a circle in any position from

the general equation (1). Two of these

derived equations are of frequent use and

should be memorized. First : when the

centre is at the oriHn, in which case

Fig. 40

m = 0, n = 0, and (1) becomes

y' + x' = R\ (2)

Fig. 41.
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called the central equation of the circle. Second : when the

origin is at the left-hand extremity of any diameter assumed

as the axis of X, in which case m = B,

n = 0, and (1) becomes

y'=2Mx-a^. (3)

Thus, the central equation of the circle

whose radius is 6 is

f^x'=SQ, \ J
and when referred as in Fig. 42,

^"^ ^
The a,bove forms may be obtained directly from the correspond-

ing figures. The student will observe that, by transposition,

either (2) or (3) shows that PM"^ — AM.MA}^ a well-known \
property of the circle from which these equations might have

been established. .

48. Tlie equation of every circle is some form of the equation

fj^x" +py + Ex + i^= 0. (1)
'

Expanding the general equation of the circle

{y-ny^-{x-my=R\ (2)

we have y- -\- oi? — 2 ny — 2mx + m^ + n^ — J?^ = 0, (3)

which is of the same form as (1). The first two terms of (3)

are independent of m, w, and R^ so that no change in the^

position or magnitude of the circle can affect these terms

^

Every equation of a circle, therefore, will contain the squares of

X and y with equal coefficients and like signs. The remaining

terms will vary with the radius and position of the circle. Thus

E = 0, when m = 0, and y^ + x^-^ Dy + i^= 0, is the equation

of alt circles whose centres are on F; i) = 0, when n = 0, and
y"^ + x^ -\- Ex -\-F = applies to all circles whose centres are

on X; if both m and n are zero, than E = 0, D=0, and we
have the central form y^ -\-x- = R-, the centre being at the origin

;

if the origin is on the curve, then the equation can have no

\\
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absolute term, or F= 0, and (1) becomes ?/^ + a^ + Dy -f Ex =0 ;

if /), E^ and F are all zero, we have y- -{-3? = 0, which is true

only foric = 0, y=0, the origin, the circle becoming a point;

this may be regarded as the limiting case of the central form

as the radius diminishes indefinitely.

49. Conversely, every equation of the form

fj^x'+Dy + Ex + F=0, (1)

which is not impossible, is the equation pf a circle, >,( C^^^^t/AjL^UiH/^^^L

Adding to both members of (1) the squares of half the co-

efficients of aj and ?/, we obtain .-/'.>'" '

4 4 4 4

or {y + ^^+(x+^=\{D-'-+E'-lF), (2)

which is of the same form as

{y-ny+{x-my=^R\ (3)

and in which, therefore,

-| = «, -~ = m, \{r^+ir—iF) = R'. (4)

If D'+E^>4:F, then E- is positive, R is real, and the equa-

/ F Ty\
tion represents a circle whose centre is ( , — — ), and whose

radius is ^ ^1)'+E'-4.F. If D^^ E'=4.F, then B'- is zero,

and the equation becomes (y-\— ]+(x-\— )=0, which is

satisfied only for x = — —, 2/= — —, or the circle becomes a
z z

point, namely, the centre, which may be regarded as- a circle

whose radius is zero. If Z>2-|-^<4 F, then R- is negative, R
is imaginary, and the equation is impossible since the sum of

two squares cannot be negative. We have thus three cases, in

which R is real, zero, or Imaginary, and for brevity and



COMMON EQUATIONS OF CONIC SECTIONS. 75

uniformity of expression we may say that every equation of the

form y--\-ir-{-Dy -\-Ex-\-F=0 is the equation of a circle^ real

or imaginary.

The equation ay'^-\-ax^-\-dy -\-ex -\-f=0 may be reduced to

the form of (1), and is therefore the most general form which

the equation of a circle can assume.

50. To determine the centre and radius of a circle whose

equation is given.

When the equation is given in the form {y—ny-\- {x—my=Br^
the centre (m, n) and radius R may, of course, be determined

by inspection. If given in the form y'^-\-^+ Dy + Ex + F=0,
we may put it under the above form b}^ adding to both members

the squares of half the coefficients of x and y, as in Art. 49.

Otherwise, by equations (4), Art. 49, the coordinates of the

centime are half the coefficients ofx and y with their signs changed,

and the radius R = \-\/D^-\-E'-—^F. Thus, given

y2+a;^-42/+2a;+ l= 0, m = -l, 7i = 2, 7^=1- Vl6+4-4= ^.

51. The equations of concentric circles differ only in their

absolute terms.

Since the values of ml = i and nf = ^i are inde-
27 V 2^

pendent of F, and R = ^VD'-{- F^—4tF, if in the equation

of any circle F changes, D and E remaining the same, the

circle retains its position but changes its size. Hence circles

are concentric whose equations differ only in their absolute terms.

Examples. 1. Write the equation of the circle whose radius

is 7 and centre at (0, 8).

Ans. (2/-8)2-f (a;-0)« = 49, or y^+aP-Uy +15=0.

2. Write the equations of the following circles:

Centre at (— 1, —4), radius 2;

Centre at (0, 0), radius 9;

Centre at (5, 0), radius 5;

Centre at (—5, 5), radius 5.
,

/
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3. Write the equation of a circle whose centre is (6, 8),

passing through the origin.

4. Which of the following equations are those of circles?

af+2y^+Sx—4:y-i-7= 0;t x--\-y--\-xy -j-x-}-y —1= }

x'-f+x-2y + 4.= 0;

x^-Sy'+x-Sy^O;
a^+2y-4:x-l= 0;

2x^+2y^-+4:xSy-{-7= 0;

5. Write the equations of a circle whose radius is 6 when

(1) both axes are tangent to the circle; (2) when X'X is a

tangent and Y' Y passes through the centre (two cases)

.

6. Determine the position and radius of t he following circles

y^-^x^-8y + 4:X-6= 0, Ans. (-2, 4), 5.

y2^a^^l0y-Ax-7= 0/ Ans. (2, -5), 6.

/+ x^+lOy 4-4a; -20= 0. Ans. (-2, -5), 7.

y^+x^—2y+Qx=0. Ans. (-3, 1), VlO.

y2^x''+3y-7x-l-=0. Ans. (h -|).4.

2,24. 3^4.42/ _2a; + 5= 0. Ans. (1, -2),0.

362/-+36aj2-242/-36x-131 == 0. Ans. (i,i),2.
y2^a^^yJ^X-l=0. Ans. (-4. -i),iVG.
y'+x'+y + x+l=0. A71S. (-4, -4),iV-2
y^+x'-y-x+i= 0. Ans. (i,i),lV-14.

7. Write the equation of the circle whose centre is at the

origin, and which touches the line Sx — iy +25= 0,

Putting the equation of the line under the normal form,

3 a: , 4?/ -

which must equal R. Hence y'^-\- x^ = 25.

8. Write the equation of the circle whose centre is (0, 0),

and which touches the line Sx + y —C)= 0.

9. Write the equation of the circle whose centre is (2, 3),

and which touches Sx-\-4:y -\-12= 0.
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10. Prove that the sum of the equations of any number of

circles is the equation of a circle.

11. Prove that if the equation of a straight line -be added to

the equation of a circle, the sum is the equation of a circle.

52. Polar equation of the circle.

The general equation of the circle being {y—nf-]r{'X—mf= W^,

let the pole be taken at the origin and the polar ax:is coincident

with X. Then, if r\ 6' (Fig. 43), are the polar coordinates of

the centre C, and ?', 0, those of any point P, from the formulae

for transformation, Eq. (4), Art. 23, we have a; = rcos^,

y = r sinO, m = r' cos 0', n = r' sin 6\ which being substituted

in the above equation, there results, after reduction,

7-2-2n-' cos {6-6') =B'- r'\ (1)

Fig. 43. Fig. 44.

From this equation we may derive that of the circle in any

given position by assigning the proper values to r' and 6'.

Thus, if the centre is at the pole, r'= 0, and (1) becomes

r = R, (2)

which is true for all values of 6, (See Ex. 1, Art. 19.) If

the pole is on the curve, and the polar axis a diameter, ^'=0,

r'=E, and (1) becomes
r=21{cos6, (3)

which, being true for all positions of P (Fig. 44), shows that

OPA\ or the angle inscribed in a semi-circle^ is a right angle.

(See Ex. 2, Art. 19.)
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Discussion of Equation (1). Solving the equation for r, we have

r=r' coB(9-0')± ^m-r'^»in^d-d'),

which gives two values of r for every value of 6, locating two points P and P^, so long

as ^2>r'2 8in2(e— «'), or Jl>r' Bm{0 — e'). If Ji<r' Biu(6-9'), r is imaginary. If

Ii= r' sm{B — 9'), r has but one value ; in this case the two points P and Pj coincide,

the secant OP becoming the tangent OP', or OP", and r=r' co8(0 — 0') = OP' = OP".
Since this relation is true only when the triangles' OCP' and OCP" are right triangles,

we see that the radius is perpendicular to the tangent at the point of contact ; this also

appears from the condition 11= r' 6m{0 — 6'), which must be fulfilled when r has but a

single value, this condition being CP' = OCsinCOP', or CP" = OC sin COP".

Examples. 1. Write tha polar equation of the circle whose

radius is 10, the pole being on the circle and the polar axis a

diameter. Discuss the equation, showing that the entire circle

is traced for values- of 6 from 0° to 180°.

2. Construct the circles whose equations are ?' = 8cos^,

r = — 8cos^.
.

'

.

3. Derive the polar form r= 2jRcos^ from the correspond-

ing rectangular form 2/^ = 2 Mx — or^.

THE ELLIPSE.

53. Defs. The path of a point so moving that the sum of its

distances from tivo fixed points is constant is called an ellipse.

The' two fixed points are called the foci, the point midway
between them the centre, and the lines joining any point of

the ellipse with the foci the focal radii.

54. Central equation of the ellipse.

Let F, F' be the foci, the centre and origin, the axis of X
being coincident with FF', P any point of the ellipse, FF'= 2 c,

and 2a the constant sum. Then FP-\-F'F=2a, But

FF= VFM[+ FJ^ Vl^+cy+J\
F'F= Vi^'3/'+ MF^= -y,/(^x-cY+y',

Hence V(x' + cY-\- ?/'+ V(a; - cy+ 2/'= 2a.

Transposing the second term to the second member, and squaring,

{x + c)2-f 2/2 = 4a2- 4aV (x - c/-f f-+{x - 0/+ y\

or ex -^ a~~ — a ^/{x — c)^+ y\
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Squaring again,

ay+(a2-c2)a£s^a2(a2-c2). (1)

Discussion of the Equation. Since only the squares of

the variables enter the equation, the ellipse is symmetrical with

respect to both axes. Making y=0^ the X-intercepts are ± a.

Take OA=OA'=a, then ^^'=-2a=the constant sum, and

as the sum of two sides of a triangle is greater than the third

side, FF+FF'=2a> FF'=2c^ or A and A' are without the

Fig. 45.

foci. Making x = 0, the F-intercepts are ± Vtr— c\ which are

real, since a > c, and locate the points B, B\ Solving the

equation for y/,

y=± -V(a^-c2)(a2-a;2),

which is imaginary if a; > a numerically, and therefore the curve

lies wholly within the limits A and A' along X. Solving for x,

which is imaginary if

±a

f

>FS'
> 1, or y> Va"— c^ numerically, or

the curve lies wholly ivithin the limits B and B' along Y. The
form of the ellipse is best observed by the following mechani-

cal construction: Take a string whose length is AA'= 2a, fix

its extremities at F and F\ place a pencil point against the
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string, keeping the string stretched ; as the pencil is moved it

will trace the ellipse, for in all its positions FP-\- PF'= 2a.

55. Defs. AA' is called the transverse axis of the ellipse,

BB' the conjugate axis, A and A' the vertices, FA andi^^' (or

FA and FA') the focal distances, the double ordinate through

either focus, as GG', the parameter, and the distance from the

focus to the centre divided by the semi-transverse axis
f
——

|

\A0J
the eccentricity. As referred to an origin at its centre and

axes of reference coincident with those of the ellipse, Eq. (1),

Art. 54, is called the central equation of the ellipse.
,

56. Common form of the central equation. Representing the

F
centricity by e, we have e = —

tuted in Eq. (1), Art. 54, gives

I f+{l-e'')o?=a\l^e'), (1)

another form of the central equation, in terms of the eccen-

tricity. Representing the conjugate axis BB by 26, 2h—'
2Va^— c^ .-. a^— 0^=62^ which substituted in Eq. (1), Art.

54, gives
ay4-&V=a^6S (2)

the equation of the ellipse in terms of the semi-axes, and called

the common form of the central equation.

Cor. 1 . Since e = - and a^c^ the eccentricity of the ellipse is

always less than unity.

CoR. 2. Since c^=a^-b\ e = -= ^^'~ ^\ the eccentricity

in terms of the semi-axes.
^ ^

c
CoR. 3. Since e = -, c = ae^ the distance of either focus from

the centre.

Note. The student will observe that the form of the ellipse will vary with a, b, c,

and e, and therefore that the constants in the equation of a locus may serve to determine
its form as well as its magnitude and position (Art. 16).
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57. Length of the focal radii.

P being any point of the ellipse (Fig. 45)

,

FF'-=FM'+MP^= (ae-^xy+y' (Art. 56, Cor. 3)

= (ae + xy+ (a^- af) (1 - e") (Art. 56, Eq. 1)

= a^ + 2 aex -\-e^x^= (a + exy
;

or FP =a-\-€x.

But FP-{-F'P=2a, .-, F'P=2a-(a + ex) = a--' ex.

Hence, the focal radii to any poiiit whose abscissa is x are a ± ex,

58. Polar equation of the ellipse.

Let the pole be taken at the left-hand focus, and the polar

axis coincident with the transverse axis. We shall obtain the

equation directly from the figure, this being easier than to

transform the central equation. From the triangle FPF\ P
being any point of the curve,

F'P^ = FP"" + FF^"" --2FP.FF' cos F'FP.

But FP=r, F'FP= 6*, FF'=2ae, and F^P ==2a-FP=2a-r,
Making these substitutions, we obtain

r = a(l-e^)
(1)

1 — e cos B

Discussion of the Equation. When
(9=0°, r = a(l+e) = i<M';

when 6 = 180°, r = a(l— e) = FA ; hence the focal distances are

a(l ±e).
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When 6 =: 90°, r = a(l -e^) = a
a^- e 6^

a- ~a^

hence the parameter GG' = 2a (l-e2),or
2 b'

a

When = F'FB = COS" FB'
^ae

= cos —

5

r
r =

a{\

1- ae^ '
.

r

,'. r = a=FB. This is also evident from the right-angled tri-

angle FOB, in which FO = c, OB = 6, and therefore

FB = -Vc' + b' = a,

since a^ — c^ = b^. Hence tJie distance from either focus to the

extremity of the conjugate axis is equal to the semi-transverse axis.

Therefore, to find the foci when the axes are given, with the

extremity of the conjugate axis as a centre and the semi-trans-

verse axis as a radius describe an arc; it will cut the ti'ansverse

axis in the foci.

Representing the parameter GG' = 2a (1 — e') hy 2p, the

polar equation (1) may be written

P.- •
(2)

1 - e cos ^ ^ ^ .

V

59. The ratio. The ellipse can be traced by a point so mov-

ing that the ratio of its distances from a fixed point and a fixed

straight line is constant.

From the polar equation r = r 7,, we have
1 — e cos ^

r =^-|-er cos^, ^

or FP=p + eFM (Fig. 46). Take FS> such that FS = -^ or

p = eFS, and draw DD' perpendicular to FS. Then

FF= e {FS + FM) = eSM= ePQ,

PQ being parallel to MS. But e is a constant * hence -— is a

constant. ^

The fixed line DD' is called the Directrix.
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Cor. 1. The ratio is equal to the eccentricity and is always

less than unity.

A W
Cor. 2. Since J. is a point of the curve, —— = e,

...^^ = ^==£(lzL^(Art. 58).
e e

T? ^u ^'^ AiQ! ^'^ a(l-\-e) TTFor the same reason ——- = e, .-. A'/b = = —^^—'—^. Hence,
A'/S e e

the distances from the vertices to the directrix are —^

—

^—1 ,

CoR. 3. FS = FA + AS=a{l-e)+ ^^^~^^
==

^'^'^~^'^
,

the distance from the focus to the directrix.

Cor. 4. OS = 0F+ FS=^ae-^ ^(^"^'^ = -, the distance

from the centre to the directrix.

60. Geometrical construction of the ellipse when the ratio is

given.

k
Lete = -, in which A;<s, be the given ratio. Take SF=s,

s

draw GG' perpendicular to SF, and make FG = FG' = 7c.

Draw SG and SG', and between these lines produced' draw any

parallel to GG', as N'L'. With ^ as a centre and M'JSf^ as a

radius describe an arc cutting the parallel in P' and P" ; these

are points of the ellipse. To prove that P' is a point of the

ellipse, draw DD' perpendicular to SF through S, and P'Q'

parallel to FJS, Then, from similar triangles,

N'M''.M'S::GF'.FS\

but N'M' = FP\ M'S = P'Q' ;

hence FP' : P'Q' ::GF: FjS,

FP' GF
or ' = = e,

PQ' FJS

In the same way any number of points may be constructed.
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Tt is evident from the construction that SG and SG' can have

but one point each in common with the curve ; for this reason

Fig. 47.

they are called the focal tangents, and since GFKFS, their

k
included angle is less than 90°. So long as e = - remains the

s

same, the distance SF, taken to represent s, simply determines

the scale to which the ellipse is constructed, the angle between

the focal tangents remaining the same. But if e varies, the

angle GSG' will vary, and the ellipse will change in shape as

well as in size.

A W
Cor. 1. Since J. is a point of the curve —— =se. But

A.S

AS
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Similarly A'F=A'K'. Heuce, to find the focal tangents when

the axes are given, first determine the focus (Art. 58) F; then

msike AK=AF and A'K' = A'F; ATf will be the focal tan-

gent, and its intersection with the axis produced {jS) sl point of

the directrix.

Cor. 2. From Geometry,

OE = i(^/r+ A'K') = i{AF-{- FA') = a.

Hence FB= OE = a, as already shown.

CoR. 3. Since the curve is symmetrical with respect to its

axes, and OF = 0F\ there is another directrix on the right of

the centre at the same distance from it as DD',

61. TJie circle is a particular case of the ellipse.

Making a==b in the equation of the ellipse a^y^ + 6^a^ = a^6',

we have y^ + xr = a^, which is the central equation of the circle

whose radius is a (Eq. (2), Art. 47).

-y/a^ _ 52
CoR. 1. When a = b, e = = 0; hence the eccen-

tricity of the circle is zero. ^

CoR. 2. When a.= &, (^ = a~ — b^ = ; hence the foci of the

circle are at the centre.

CoR. 3. Since, for the circle, e = 0, - = the distance from
e

the centre to the directrix = co ; hence the directnx of the circle

is at infinity arid the focal tangents parallel,
^

V
62. Varieties of the ellipse.

Every equation of the form

^2/2+6V+i^=0, (1)

which is not impossible, is the central equation of an ellipse, if A
and C have like signs and neither is zero.

First. Let F be negative. Then Ay'^-{- (7a^ = F. If this is

the central equation of an ellipse, it is reducible to the form
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a^y^+b^x^ = a-b^, in which the absolute term is the product of

the coefficients of the squares of x and y. Let M be the factor

which renders RA . RC= RF. Then R = —--- Introducing
-pi rp jni2 AC

this factor, (1) becomes —y^ + -—x"^ = —— , which is the required
C A Ayj

Vim Pjm

— , 6 =A/— are the semi-

axes. It A — G, the axes become equal, and the ellipse becomes

a circle, which we have seen is a particular case of an ellipse.

Second. If i^= 0, (1) becomes Ay^-{- Cx^ = 0, which is true

only for a; = 0, y==0, and the ellipse becomes a point, which,

as the limiting case of a circle, may also be considered a variety

of the ellipse.

Third. If F is positive, (1) becomes Ay^+ Cx^ = — ^, which

is impossible, as the first member is the sum of two squares. In

this case 2/=\/ z ? which is imaginary for all values of

a;, as are also the semi-axes \i—— and \j——
\ ^ A

I
There are tlien four varieties of the ellqjse^ in which the axes

I are real and unequal, real and equal, zero, or imMginary ; and

we may say that every equation of the form Ay--\-Cxr-\-F=0,

in which A and C have like signs, is the equation ofan ellipse, real

or imaginary, according as F is negative or positive.

Examples. 1 . What are the axes of the ellipse 9y^+ 6x^=20?
J? 'If)

Multiplying by the factor B =—- = ^, the equation becomes

i_0 3^2^. 2^o^2 ^ 2i)^o^ which is in the form a'^i/^ + b'^x^=a'^h\

and we see by inspection that the axes are 2 V^ and 2V^. Otherwise,

since the equation is the central equation, the semi-axes are the intercepts,

and we may find them directly by making x= 0, .\ y = b=iV^, and

2. Find the axes, eccentricity, and parameter of 3 2/^+2 0?^= 18.

Ans. a = 3; 6=V6; e =— ; 2p = 4.

V3
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3. Find the axes, focal distances, and distance of the direc-

trix from the centre of 6 7/+ 3 a.-^ = 108.

Ans. a=(j; 6 = 3V2; 3V2(V2±1); 6V2.

4. Write the equation of tlie ellipse whose axes are 18 and 10.

A71S. 8l2/'+25«2 = 2025.

5. Write the equation of the ellipse whose eccentricity is f
and transverse axis 10. Ans, 9?/^+ 5 a;- = 125. ^

6. The conjugate axis of an ellipse is 4 and its lesser focal !

distance 1. Find its eccentricity and equation.

Ans. f; 252/'+16a.-2=100.

7. Construct geometrically the ellipse in the following cases :

/(a) e = |. Observe the size is undetermined.

(b) e = |- ; distance from focus to directrix =10.

8. The eccentricity of an ellipse being —-, what is the angle

between the focal tangents ?
^*^ Ans. 60°.

9. Find the focal distances, conjugate axis, parameter, and
90

position of the directrix, of the ellipse'?' =^ ^
16-9cos(9

Ans. 4, If ; fV7 ; i I ^Hi ^I'^m centre.

10. Write the polar equation of the ellipse whose axes are 18

and 8. . 16
Ans. r

9-V65cos(9

THE HYPERBOLA. v

63. Defs. The path of a point so moving that the difference

of its distances from tico fixed points is constant is called an

hyperbola. The two fixed points are called the foci, the point

midway between them the centre, and the lines joining any

point of the hyperbola with the foci the focal radii.

64. Central equation of the hyperbola.

Let F, F\ be the foci, the centre and origin, the axis of X
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being coincident with FF\ P any point of the hyperbola,

FF^ = 2 c, and 2 a the constant difference. Then FP—F'P= 2 a.

But FP= ^FM' + MP' =V {x -\-cy-\- y%

i^'P= Vi^'jr'+ MP^ = V(a; - 0)2+ y\

Hence V(^+^F+?- V(a;- c)^^?/^ = 2 a.

Transposing the second term to the second member, and

squarmg,
^^_^^>^2_^^2^ 4^2.^4^ V(^^=^^^)M^+(a;-c)^+2/^

or cx — a?=a^{x — c)^+ 2/^.

Squaring again,

aY+{o?-<^)^ = a\a}-(^), (1)

Discussion of the equation. Since only the squares of the

variables enter the equation, the hyperbola is symmetrical with

respect to both axes. Making y = 0, the X-intercepts are ± a.

Take OA=OA'=a., then AA'=:2a, the constant difference,

and as the difference between two sides of a triangle is less than

the third side, PF- PF' =:2a <FF' = 2c, or A and A' are

between the foci. Making cc = 0, the Y-intercepts are ± Va^— c^,

and are imaginary, as a < c ; hence the curve does not cross the

axis of Y. Solving the equation for 2/,

1

which, since a^— c^ is negative, is imaginary for all values of

x<a numerically, and the curve lies wholly without the limits A
and A' along X, extending to ± od. Solving for x,

=.±a^ f
a^-e'

which is real for all values of y since a?— & is negative, or tlie

curve has no limits in the direction of T. The form of the hyper-

bola is best observed by the following mechanical construction :

take a ruler of any length FT, fixing one extremity at F^ and a

string F'PI, shorter than the ruler by AA' = 2 a, one of whose
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ends is attached to the farther extremity / of the ruler, the

other at the focus F' . Press the string against the ruler by a

pencil, as at P, keeping the string stretched, the ruler turning

Fig. 48.

about its fixed end F. As the pencil moves it will trace the

hyperbola, for in all its positions FFI= F'PI+ 2 a ; or, sub-

tracting FI from each number,

FF=F'F-h2a, FF-F'F=2a.

65. Defs. AA' is called the transverse axis of the hyper-

bola, A and A' the vertices, FA and FA' (or FA' and F'A) the

focal distances, the double ordinate through either focus, as

GG', the parameter, and the distance from the focus to the

centre divided by the semi-transverse axis ( ], the eccentric-

ity. Equation (1), Art. 64, is called the central equation of

the hyperbola. , Z'

66. Common form of the central equation. The hyperbola

does not cross the axis of F, and does not therefore determine

by its intercepts a conjugate axis, as in the case of the ellipse.

Its equation, however, will assume a form similar to that of the

ellipse if we represent the numerical value of Va^ — c^ by 5,

laying off OB = OB'= b (Fig. 48) for a conjugate axis. We thus
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have a^— c^ = — h^^ minus because a < c, and e = -, .'. c = ae,

e being the eccentricity.

Substituting c = ae in Eq. (1), Art. 64, we have

/>

or, since €"> a, and therefore e = - >1,
a

I

2/=-(e'-l)ar'=-a»(e=-l), (1)

the central equation in terms of the eccentricity. Substituting

a^— c^ = — b^, in the same equation, we obtain

a',f-b'x' = -a^b^, (2)

the common form of the central equation of the hyperbola.

Note. The student will observe that Equations (1) and (2) differ from the corre-

sponding equations of the ellipse (Art. 56) only iii the value of e and the sign ofb-; also,

that while a?=0, in Eq. (2), gives ?/=± V— ^> ^^ imaginary quantity (as it shoul3,

be, since the curve does not cross Y), its numerical value is the semi-conjugate axis, as

in the case of the ellipse.

CoK. 1. Since e = -, and c^ a<, the eccentricity of the hyper-
a

bola is always greater than unity.

\ Cor. 2. Since a^— (? = — W^ e = - = i— , the eccentricity

' in terms of the semi-axes,

c
CoR. 3. Since e = -, c = ae = Va'^+6'=^5 (Fig. 48), or

a

the distance from the focus to the centre is the distance from either

vertex to the extremity of the conjugate axis. Hence, to find the

foci when the axes are given^ ivith as a centre and AB as a

radius, describe an arc; it will cut the transverse^ axis in the foci,

67. Length of the focal radii. P being any point of the

hyperbola (Fig. 48)

,

FP' = FM' + MP' = (ae + xy+ f- (Art. ^^, Cor. 3)

^(^ae-\'xy+{x'-a^){e''-l) (Art. 66, Eq. (1))

=e^a^+2aea; + a^ = (ex + a)^

;

or FP=^ex-\-a.
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But F'P=FP— 2a = ex + a — 2a = ex — a.

Hence tJie focal radii to any point whose abscissa is x are ex ± a,

68. Polar equation of the hyperbola.

Let the pole be taken at the left-hand focus, and the polar

axis coincident with the transverse axis. From the triangle

FPF', P being any point of the curve,

^fp2 =i<^p2_|. FF^'^-2FP, FF' cosF'FP.

But FP=r, F'FP= 0, FF'= 2ae, Siud F'P=FP— 2 a=r-2 a.

Making tliese substitutions, we obtain

e cos 6^—1
(1)

Discussion of the equation. When ^=0°, r—a(e-\-l)=FA';

when ^ = 180°, r = —a(e — l) = FA', or the focal distances

are a{e± 1), numerically

»

When 6>=90°, r = - a (e^-l) = - a/"-^-A = -~
; or the

parameter^ G0\ is 2a (e^— 1), or — , numerically, \

a I

As 6 increases from 0°, cos^ diminishes and r increases,

tracing the branch ^'P, r becoming infinity when ecos^ = l,

Figo 49.
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or ^ = cos~^— When e cosO< 1, r is negative, and the branch
€

G'A is traced, in the direction G'A, r being FA when ^ = 180°.

When passes 180°, cos^ is negative and r remains negative,

tracing the branch AG, and becomes infinity again when

ecos^ = l, or ^ = cos~^- in the fourth angle; after which,
e

ecosO is greater than unity, ?^ is positive and traces the branch

LA\
Eepresenting the parameter GG' = 2a{e^— l) by 2p, the

polar equation (1) may be written

e cos — 1
(2)

69. The ratio. TJie hyperbola can he traced by a point so

moving that the ratio of its distances from a fixed point and a

fixed straight line is constant.

From the polar equation of the hyperbola, r = ^ , we
e cos 6 — 1

have r = erco^6-p, or (Fig. 49) FP=^eFM-p. Take -F/S

p
such that FS = -, or ^ = eFS, and draw DD^ perpendicular to

FS, Then FP=e {FM- FS) = eSM= e PQ, PQ being par-

FP
allel to MS. But e is a constant ; hence —- is a constant.

The fixed line DD' is called the directrix.

CoR. 1. The ratio is equal to the eccentricity, and is always

greater than unity.

Cor. 2. Since ^ is a point of the curve,

4f=e, •^^ = ^="('^-1) (Art. 68).AS e e

For the same reason -—— = e, .
•

. AS — = —'^—'—^ • Hence
A'

S

e e

the distances from the vertices to the directrix are —^———^.

e
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Cor. 3. FS = FA -]-AS =a (e - 1) + ^ ^^ ~ "^^ = ^ (^'-^) ^
e e

the distance from the focus to the directrix.

Cor. 4. OS = OF- FS = ae- ^ (^'-1) ^ ^ ^ the distance
e e

from the centre to the directrix, y

70. Geometrical construction of the hyperbola when the ratio

is given.

Let e = -, in which /c > s, be the given ratio. Take FS = s,

s

draw GG' perpendicular to FS, and make FG = FG' = k.

Draw SG and SG\ and between these lines produced draw any

parallel to GG', as N'L'. With jP as a centre and M']^' as a

radius, describe an arc, cutting the parallel in P' and F"
;

these are points of the hyperbola. To prove that P' is a point

of the hyperbola, through S draw DD' perpendicular to SF,

and P'Q' perpendicular to DD'. Then, from similar triangles,

N'M':M'S::GF:FS;

but N'M' = FP', M'S = P'Q';

hence FP' : P'Q' : : GF: FS,

FP' ^ GF^^^
P'Q' FS '

Since J^iMi > MiS by construction, the arc described with

FPi—M\Ni, as a radius will determine Pi, Pg? on the right of

DD\ which may be proved to be points of the hyperbola as

above ; and in the same manner any number of points may be

constructed.

It is evident from the construction that SG and SG^ can have

but one point each in common with the curve ; for this reason

they are called the focal tangents. Since GF>FS, their in-

cluded angle, is greater than 90°, the distance Pas', taken to

represent s, simply determines the scale of the construction

;

but if e varies, the angle G'SG will vary, and the hyperbola will

differ in shape as well as size.
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Cor. 1. Since ^ is a point of the curve,

AK
AjS

AF
AS'

But

= e, .'.AF=AK. Similarly, A'K'=A'F. Hence, to

find the focal tangents when the axes are given ^ first determine

Fig. 50.

the focus (Art. 66, Cor. 3), then make AK=^AF and

A^IV^A^F. KK^ will be the focal tangent, and its intersec-

tion with the axis, /S, a point of the directrix.
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Cor. 2. Since the curve is symmetrical with respect to its

axes, and CF' = CF^ there is another directrix on the right of

the centre at the same distance from it as DD\

71. The equilateral, and the conjugate hyperbola.

When the axes of an hyperbola are equals it is said, to be equi-

lateral. Making a = 6 in the common form of the central equa-

tion a^y^ — b^oi^ = — a^b^, we have

for the equation of the equilateral hyperbola.

Two hyperbolas are said to be conjugate to each other when the

transverse and conjugate axes of the one are the conjugate

and transverse axes of the other. If, in deducing the equation

of the hyperbola, the transverse axis had been assumed coinci-

dent with Y, the equation of the hyperbola in this position

would have been a^x^ — b^y^ = — a^6^, as this supposition simply

amounts to interchanging x and y. Interchanging now a and

6, this becomes ^,^, _ ^,^^ ^,y, .

^2)

or, the centixd equations of conjugate hyperbolas differ only in the

sign of the absolute term.

Conjugate hyperbolas are distinguished as the.X- and the Y-

hyperbola, each taking its name from the coordinate axis on

which its transverse axis lies, and the equation of either may
be derived from that of the other by changing the signs ofa^

and 6^.

CoR. 1. The eccentricity of the F-hyperbola is ——J-—.

Cor. 2. Since the distance of the foci of an hyperbola from

the centre is the distance between the extremities of the axes

(Art. 66, Cor. 3), the four foci of a pair of conjugate hyperbolas

are equidistant from the centre.

72. Varieties of the hyperbola. Every equation of the form \

Ay''-\-Cx^ + F=0 (1) !



96 ANALYTIC GEOMETRY.

is the central equation of an hyperbola, ifA and C have unlike

signs and neither is zero.

First. Let F be positive. Then Ay^ — Cx^ = —F, which

can be reduced to the form a^y^ — 6^^^ _ _ ^^2^2^ ^^ -^^ ^^^ ^^^^

of the ellipse (Art. 62) , by introducing the factor R = —— •

Aiy

whence 7^2/^ ——a^ = — -77;? in which a = y\--, and h = a|^^^^
G A Aij \ G ^ A

numerically. If ^ = (7, the axes are equal and the hyperbola

is equilateral.

Second. If -Fis negative, (1) becomes Ay"^ — Caf = F, which

is the conjugate hyperbola, since it differs from Ay^ — Cx^ = —F
only in the sign of the absolute term (Art 71)

.

Third. If i^=0, (1) becomes Jl?/^— Oa^= 0, or y = ±yl^x,

which is the equation of two straight lines through the origin

making supplementary angles with X. In this case the axes

are zero.

There are then four varieties of the hyperbola, in which the

axes are unequal, equal, interchanged, and zero; corresponding

to the X-, equilateral, Y-hyperbola, and a pair of intersecting

straight lines through the origin.

Examples. 1. What are the axes of the hyperbola

92/2 _4aj2 = _ 144?

Multiplying by the factor R =— = 4, the equation becomes
AG

36 ^2_ 16 x2 = — 576, which is of the form a^ 3/2_ 52 ^2^ _ ^2 62

;

the axes are therefore 12 and 8. Or, directly, making y — and a: = in

succession, we have numerically x = a=Q, y = b = 4:,.'.2a=12, 2 6 = 8.

2. Find the axes, eccentricity, and parameter of

3i/2-2aj2 = -18.

Ans. 6, 2V6; JVTS; 4.

v/
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3. Find the axes, focal distances, and position of the direc-

trix of ?/' -a;* =-81. _ g
Ans, a = 6 =9 ; 9(V2 ± 1) ;

~;= from centre.

4. AYrite the equation of the h^'perbola whose axes are 18 and

10. Ans. 8l2/'-25a;2 = -2025.

5. Write the equation of the hyperbola whose eccentricity is |-

and transverse axis 10. Ans. 9y^ — 7 oc^ = — 175.

6. The conjugate axis of an hyperbola is 4 and its lesser

focal distance 1. Find its eccentricity and write its equation.

Ans. I; dy'^-lQx'^-Se.

7. Construct the following hyperbolas :

(a) e = f . Observe the size is undetermined.

(b) e = I ; distance from focus to directrix = 8.

(c) a =8, 6 = 6. -C-^0~_v^^;' >^^_,

8. Construct a pair of conjugate hyperbolas whose axes are

12 and 8.

9. Write the equations of the hyperbolas conjugate to those of

Exs. 2 and 3, and determine their eccentricities and directrices.

Ans.

3y-— 2a;- = 18
;
^P ; 2 ^1- from centre.

9
y^ — af—Sl ; V2 ;

—7= from centre.
V2 .

'

'/

10. The eccentricity of an h^-perbola being V3, what is the

angle between the focal tangents ? Ans. 120°.

11. Find the focal distances, conjugate axis, parameter and

directrix of the hyperbola r =—ziz

Vlo cos (9 -3

Ans. ^-^ ; 2V6 ; 4 ; 3^ 5 from centre.

Vly=F3 ^5
12. Write the polar equation of the hyperbola whose axes are

8 and 6. , 9
Ans. r =

5 cos 0—4:
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THE PARABOLA.

73. Defs. The path of a point so moving that its distance

from a fixed point is always equal to its distance from a fixed

straight line is called a parabola. The fixed point is the focus,

the fixed straight line the directrix, and the line joining any

point of the parabola with the focus, the focal radius,.

74. Equation of the parabola.

Let F be the focus, DD' the directrix. Draw /iSF perpendicu-

lar to DD' and let SF= p. By definition, the middle point 0.

of SF is a point of the curve. Let be the origin ancj

the axis of X coincident with OF. Then, P being any poijit

of the curve, and PQ perpendicular to Z>i>', PF— PQ, or

2px. (1)

^ ^r

Squaring and reducing, y^

Discussion of the equation. Solving for y, we have

y=± V2^a;, or y has two numerically equal and increasing

values for positive increasing values of a;, but is imaginary

when X is negative ; hence the

curve lies wholly to the right of Y,

extends to infinity in the first and

fourth angles, and is symmetrical

with respect to X. The form of

the parabola may be observed from

the following mechanical construc-

tion : take a ruler of any length

QJ, and a string, FPI equal in

length to the ruler. Fix one end

of the string at the focus, the other

at the extremity I of the ruler,

and, keeping the string pressed against the ruler at P by a

pencil, slide the ruler along the directrix parallel to SF\ the

pencil will trace the curve, for in all its positions PQ = PF.

Fig. 61.
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OX is called the axis of tlie parabola, the vertex, and the

double ordinate GG' through the focus the parameter.

Cor. 1. Substituting x—OF= ^- in Eq. (1), we have

y=FG =p, or the parameter GG' = 2^) = the coefficient of x in

the equation of the curve. Also OS = OF= ^jp = \GG^ \ or

SF=^FG=FG'=p.

CoR. 2. FP=qP=SO^-OM=\p + x\ or the length of

the focal radius to ayiy p)oint where abscissa is x is x-\-^p.

75. Polar equation of the parabola.

Let the pole be taken at the focus, and the polar axis coinci-

dent with the axis of the parabola. The formulae for transfor-

mation from rectangular axes at to the polar system, are

P
x = XQ-\-r cos = -^ + r cos 6^

y= yQ-\-r sin 0=r sin 0.

Substituting these values in the equation y^ = 2px, we have,

r" sin2(9 =2pf^-\-r cosA
or ?*^(1 — cos^ 0) = jy^ + 2p)r cos 6.

Transposing,

7-2 = 7-2 cos^^ -f- 2pr cos -{-p^ =z{r cos + jp)^

Extracting the root of each member,

P „„ „ Porr =-^. (1)
1 — cos ^ vers

Let the student discuss the equation.

Observe that the equation

r = I (2)
1-ecos^ ^ '

is the general polar equation of the ellipse, circle, hyperbola,

and parabola, when the pole is at the focus ; taking the forms



100 ANALYTIC GEOMETRY.

r= P
1— ecos

for the ellipse (Art. 58), that is, when e<l ; r—R

for the drcle (Art. 52), when e = 0; r
P

e cos 6 — 1
for the

P
hyperbola (Art. 68) , when e > 1 ; and r = -— ^ for the

parabola, when e = 1

.

76. Geometrical construction of the parabola, the focus and

directrix, or the parameter, being given.

Lay off SF=p = ^ the parameter, or the given distance

between the focus and the directrix. Draw GG' perpendicular

to SF, and make FG = FG' = SF. Draw SG and SG\ and

any chord N'L' perpendicular to SF. With jP as a centre

and 3FN' as a radius describe an

arc cutting the chord in P' and P".

These are points of the parabola.

To prove that P' is a point of the

parabola, join P' with P, and draw

P'Q' parallel and DD' perpendicular

to SF, Then

GFN'M' ^
M'S FS

P'F

Fig. 52.

P'Q'

since the triangles GFS and N'M'S
are similar, and

P'F=N'M',P'Q^ = 3PS,

In the same way any number of points mayby construction,

be found.

As in the case of the ellipse and the hyperbola, SN' and SL'

have evidently but one point each in common with the curve,

and are called the focal tangents; and as SF=FG=FG', the

focal tangents of the parabola make an angle of 90° with each

other. -^ = —TTT. is called the ratio, and, evidently, the ratio
FS P'Q'

of all parabolas is unity.
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The distance SF, taken to represent p, determines the scale

to which the parabohi is constructed. Had a distance twice

that of the figure been taken, the construction of the same parab-

ola to the new scale would have been equivalent to the con-

struction of a parabola whose parameter was 2 (2p) to the

original scale. Hence, parabolas, like circles, differ only in size.

Examples. 1. Construct the parabola whose parameter is

10, and write its equation. jy
""" /^/K

2. Construct the parabola the distance of \^iose vertex from

its focus is 2. ^y ^
: y/

3. Write the polar equations of the parabolas of Exs. 1 and 2.

4
4. The polar equation of a parabola is r = -• Write

its rectangular equation.
~~

,^ ^
Ans, y'- = 8x.
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SECTION VIII. — GENERAL EQUATIONS OF THE

CONIC SECTIONS.

77. Defs. A conic is the locus of a point so moving that the

ratio of its distances from a fixed point and a fixed straight line

is constant. This constant is called the ratio, the fixed point

the focus, the fixed line the directrix, and the perpendicular to

the directrix through the focus the axis of the conic.

78. General equation of the conies.

Let P be any point of the conic, (m, 7i) the focus F, DD' the

„. y directrix, its equation being Xi cos a + yi sin a —p = 0, the sub-

scripts being used to distinguish the coordinates of the directrix

from those of the conic. Then FS,

perpendicular to DD\ is the axis.

Join F with P, draw PQ perpendicu-

lar to i>Z>Vand let e = the constant

ratio. Then —— = e, or
PQ
FF' = e^PQ'.

But PF=V{y-ny-}-{x-my
(Art. 7) ; and

PQ = a; cos a -f 2/ sin a —p (Art. 38) ;

hence (y — ny '\-{x — my = e^{x cos a + yBina—pY (1)

is the required equation, in which e determines the species, and

m, n, a, andp, the position of the conic.

Examples. 1. Write the equation of an ellipse whose centre

is (1, 2), transverse axis is 6, eccentricity-—, and transverse

axis parallel to X.
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a=180O, e =^; .-. cosa = -1, sin a = 0, p= --_--l, m = 1 - \/5, n--=2.

Substituting in. Eq. (1),

or 91/2 + 4^2-30 ?/-8a: + 4 = 0.

2. Write the equation of a parabola whose axis Is parallel to

X, vertex is at (— 3, —2), and parameter is 9.

.Ans. 2/2 4- 4?/ -9a; -23 = 0.

3. Write the equation of an ellipse whose eccentricity is

—

-<,

V3
centre is (1,1), transverse axis 2V3, the latter being inclined

at an angle 135° with X.

m=l-^, n = l + -^, 79 = 3, e =— , a= 135°,

V2 V2 V3
and the equation is

4. Write the equation of a circle whose radius is 5, the axes

being tangent to the circle.

m = n = 6; y^+ x'^—lOy -lOx -{ 25 = 0.

5. The centre of an ellipse is (— f , 4), its eccentricity f , and

its transverse axis = -J^, and is parallel to X; write its equation.

A71S. 92/^4- 5a;2 — 722/+12a; + 144 = 0.

79. Every complete equation of the second degree between x

and 2/, and all its forms., is the equation of a conic; and, con-

versely, the equation of every conic is some form of the equation

of the second degree.

Expanding the general equation of the conies, Art. 78, we

have
(1 — e^sin^a)?/^ — 2e^sina cosaxy + (1 — e^cos^a)iC^

>
(1)

-\- (2e^p sma— 2n)y-\- (2e^p cosa— 2m) x-\-m^ -{-71^— e^p^=0.

The complete equation of the second degree between x and y,

Ay' + Bxy + Cx" + Dy + Ex -f-F= 0, (2)
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is of the same form, but the coefficients of corresponding terms

are not necessarily the same, since an}^ equation may be multi-

plied or divided by any factor without affecting the quality.

Making these coefficients, therefore, equal, by dividing each

equation by its absolute term, and designating the resulting

coefficients of (2) by A', B', etc., we have

1 — e^ sin^a

e^p^

— 2 easing cosg

1 —e^ COS^g

2e^p sing — 2?i

m^-j-n^ — e^p^

2e^p cosg —2m
m^+n^—e^p^

= -B',

= 0',

= D',

= £'.

(3)

From these five equations the values of the five constants

A\ B', C, etc., may always be determined when g, ?/i, n, p,
and e are given ; and as the latter are arbitrary, such values

may be assigned to them, that is, the locus may be assumed of

such species and in such position, as to give ^^, B\ C, etc.,

any and every possible set of values. Conversely, the values

of g, m, 71, p, and e, can always be found from the above equa-

tions when those of A', B\ C, etc., are given ; that is, a conic

of some species and position corresponds to any and every set

of values which may be assigned to A\ B\ C, etc. Hence,

every equation of a conic is some one of the forms assumed by

the general equation of the second degree^ and every form of sxich

equation is the equation of some conic.

The axes were assumed rectangular. Had they been oblique, the distance FP would
have been (Art. 7)

V(y-w)2+ (a?— m)2 + 2(y-w) {x-m) cos/3,

and the distance PQ would have been (Art. 38)

xcosa + y coap'—p,

in which /3 is the given inclination of the axes, and ^' the angle made by PQ with Y.
The equation PF^ = e^PQ^ would, therefore, have Involved the same arbitrary constants,
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and no others. Passing now to rectangular axes, since this transformation involves no

new arbitrary constants, and cannot affect the degree of the equation, therefore the above

reasoning is entirely general.

80. To determine the species of a conic from its equation.

Forming B'^-4:A'C' from Eq. (3), Art. 79, we have

_ 4:e* sinV cos^a — 4 (1 — e^ sln^g) (1 — e^ cos^g)

{m^+n^—e^p^y

_ 4ce* sin^g cos^a -^4 + 4e^cQs^a + 4e^ sin^g — 4e^siii^a cos^g
"~

{m^+ri^—e^p^y

_ 4 (e^- 1)

(^m^^n^-e^p'y

Now the locus will be an ellipse, a parabola, or an hyperbola,

according as e is less than, equal to, or greater than, unity,

^ut, since the denominator of the above fraction is a square,

and the sign of the fraction is thus that of its numerator, when

e<l the first member is negative, when e = 1 it is zero, and

when e > 1 it is positive. Hence the conic will be an ellipse,

parabola, or hyperbola, according as B'^ — 4:A'C is negative,

zero, or positive.

To apply this test it is unnecessary to reduce the given equa-

tion to the form

AY+B'xy + C'x'+D'y -\-E'x + 1 = 0;

for if B'^'-4:A'C' be negative, zero, or positive, then will

{KB'y- 4 (KA') (IW) =1P{B''- 4.A'C')

also be negative, zero, or positive. Hence, ivhatever the co- ' '

efficients, Ay^ + Bxy + Cx^ -{- Dy -\- Ex -\- F— is the equation

of an ellipse, parabola, or hyperbola, according as B^—4:AC is

negative, zero, or positive.

Examples. Determine the species of the following conies

:

(1) y^— 5 ic?/ 4- 6 a^ — 14a; -h 5?/ --h 4 = 0, an hyperbola;

(2) 2/--8a;2/ + 25aj24-62/-2a; + 49 = 0, an ellipse;

(3) ^y'^J^Qxy^4:x'^-^y=^0, an ellipse;



106 ANALYTIC GEOMETRY.

(4) y^-\-2xy -\-x'—y -}-l =zO, a x>arabola

;

(5) 2/^— 1 -f 3 a; = {x — yY, a^ hyperbola;

(6) 2/^= 4 (a; — 1) , a parabola;

(7) 4ic?/ — 16 = 0, an hyperbola, -»

•—

(

81. The equation

Ay''--\-Cx'+Dy+Ex-^F=0

represents all species of the conic sections.

The general equation of the conies is

Ay''-\-Bxy + Co^+Dy +Ex 4-i^= 0.

Passing to any rectangular axes with the same origin by the

formulae (Art. 22, Eq. (8)),

x = Xi cos y — 2/i sin y, y = ^i sin y -f- 2/i cos y,

we have, after omitting the subscripts,

A (x^ sin^y •}-2xy sin y cosy -f y^ cos^y)

+B(a^ cos y siny + cc?/ cos^ y — xy sin^ y — y^ sin y cos y)

4- {x^ cos^y — 2 .T?/ cosy sin y -\-y~ sin^y)

+ other terms not involving xy.

The term containing xy is

[ 2A sin y cos y +^ (cos^ y — sin^ y) — 2 (7 sin y cos y] a^,

or [(J.— (7) sin2y +5cos2y]a^,

whioJjKwill be zero if

(A-C) sin2y+5cos2y = 0,

tan2y =^^. (1)

Now tan2y can have any and every value from +00 to —00,

hence a value can always be found for y which will satisfy (1)

whatever the values of A, B, and (7; that is, whatever the

species of the conic. To find this value of y, we have (Art. 79)
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tan 2
A
B
-G

= -

B •

F
A-C-
F

A'

-B'

_ 2e''sin a cos a
2 ^ tan 2 a,

1 — e^ sin^a — (1 — e^ cos^a)

and since tan2a = tan (180°+ 2a), (1) will be satisfied when-

ever 2y=2a or 180°+ 2a; that is, when y = a or 90°+ a, or

whenever the axis of the conic is parallel to either axis of refer^

ence. Hence every equation of the form

Ay"" -{ Cx'^ Dy +Ex + F=Q
is the equation of a conic whose axis is parallel to owe of the axes

of reference^ and, since, B^—4:AC= — 4,AC when B=0, the

conic will be an ellipse, hyperbola, or parabola, according as

A and C have like signs, unlike signs^ or either is zero (Art. 80).

Thus, whatever the signs or values of D, E, and Fj

Ay^+Cx-+Dy+Ex+F=0 . (2)

represents an ellipse whose axes are parallel to the axes of

reference

;

^^2_ Cx'+Dy -\-Ex +i^= (3)

represents an hyperbola whose axes are parallel to the axes of

reference

;

Af-[-Dy-\-Ex + F=0,^
or Ca^+Dy-^Ex-{-F=0,\ ^ ^

represents a parabola whose axis is parallel to X, or Y,

respectively.

CoR. 1. In the circle B = 0, and A=C (Art. 49). Hence

tan 2 y = ^, or there is always a pair of axes parallel to the axes

of reference.
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82. Defs. The centre of a circle is a point equally distant

from ever}' point of the circle. The pohit which has been

designated the centre of the ellipse, and hyperbola, is not

equally distant from every point of these loci, but it possesses

a property in common with the centre of the circle, and in virtue

of this common property we may define a centre for all three of

these loci. A locus is said to have a centre ichen there is a point

through which if any chord of the locus he drawn the chord is

bisected at that 2^0 hit.

Any chord through the centre is called a diameter.

83. Every locus whose equation is of the form

Ay^+Bxy+Cx'+F=Qi (1)
^05 a centre.

For if (1) be satisfied for any values x\ y\ of the variables,

it is also satisfied for the values — x\ — y'. But the equation

of the chord through (x', y') and (— ic', — y') is x'y — y'x =
(Art. 32), which passes through the origin since it has no

absolute term. Moreover, the segments of the chord on either

side of the origin are equal, since the length of each is ^x''^-\-y'^.

Hence the locus has a centre, and the centre is the origin.

CoR. 1 . Every locus whose equation is of the form

Ay^+Cx^-{-F=:0

has a centre, at the origin.

CoR. 2. The circle, ellipse, and hyperbola have centres.

84. The equation

Ay^+Ca^-{-F=0

represents all ellipses and hyperbolas.

Resuming the general equation of the conies,

Ay^-\-Bxy+Cx^+Dy + Ex + F=0, (1)

pass to parallel axes, the formulae for transformation being

x = Xo-\-Xi, 2/ = 2/o + 2/i;
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j(2)

and, after omitting subscripts, we obtain

i-D{yo + y) + E{xo + x) + F=0.

The terms containing x and y are

{2Ay, + Bxo-{-D)y, {2Cx^-^By, + E)x,

which will vanish if 2Ayo-hBxQ+D=0, and 2 Cxo+Byo-\-E=Q ;

that is, solving these equations for Xq and ?/o, if the new origin is

taken at the point

_ 2AE-BD , _ 2CD-BE ;
'''- B-4.AG' ^'~ B^-^AG' /\ \

which is always possible when B'—A^AC is not zero; that is,

when the locus is not a parabola, in which case Xq and y^ would

be infinity. Hence the terms containing x and y may always

be made to vanish if the locus is an ellipse or an hyperbola, and,

when referred to the new axes, the equation will assume the

form Ay^-\- Bxy -\- Cx^-\-F= 0, from which we see that the new

origin is the centre (Art. 83). By a second transformation

(Art. 81), the equation will finally take the form

^2/2+ (73^4- F=0,

the central equation of the ellipse or hyperbola according as A
and C have like or unlike signs.

CoR. 1. Since, when B^— 4,AC= 0, Xq and y^ are infinity, the

parabola has no centre.

CoR. 2. Since the above values of Xq and i/o are independent

of i^, central conies tvhose equations differ only in their absolute

terms are concentric.

CoR. 3. By examining Eq. (2) we see that the first three

terms of the equation are not altered by the transformation.

85. Varieties of the parabola.
^

We have seen that when B'^—4:AC=0 the centre is at in-

finity, and that therefore the terms Dy and Ex cannot be made
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to vanish from the general equation when it represents a parab-

ola ; also (Art. 81) that the term Bxy will vanish if either axis

of reference is assumed parallel to the axis of the parabola, in

which case B'— iAC becomes — 4: AC, and eithe)- A or C must

be zero. Making then ^ = and (7= in the general equa-

*^^"' Ay^+Dy+Ex-{-F=0 (1)

represents all parabolas. To see if this form can be still fur-

ther simplified, transform to new parallel axes by the formulae

x=:Xq-\-Xi, y = yf)-\- 2/i, and we have, omitting subscripts,

Ay'-\-{D -\-2Ay,)y + Ex-^Ay,'-\- Dy, + Ex, + F=0.

As the terms containing x and y cannot both be made to vanish,

let us see if one of them, as ?/, and the absolute term can be

made to vanish. This requires that

D + 2Ayo = 2ind Ay,' -i- Dyo-{- Exo+ F=0,

or that 2/o
= and Xq =

2A 4.AE

The equation then assumes the form Ay'-{-Ex = 0, or.

2 E

which is the equation of the parabola referred to its vertex and

axis (Art. 74), the curve lying to the right or the left of the

origin according as E and A have unlike or like signs. Hence

the disappearance of the absolute- term and that containing y
involves a system of reference wJiose origin is the vertex. This

transformation sis always possible, except in two cases : First,

when E = 0, in which case x, = oo. Equation (1) then becomes

Ay'-]-Dy-^F=0,ov
-D±VD'-4AF

^ 2A
which represents two straight lines parallel to X, real and dif-

ferent, real and coincident, or both imaginary, according as W^

is greater than, equal to, or less than ^AF. These are the

particular cases of the parabola, the vertex receding to infinity.
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Second^ when ^ = 0, in which case, however, the equation

ceases to be one of the second degree.

86. Defs. A diameter of a conic has been defined as a chord

through the centre. As the parabola has no centre it would

appear that it has no diameters. A set of lines may, however,

be drawn to the parabola which possess a property in common

with the diameters of the ellipse and hyperbola ; and in virtue

of this common property we may define a diameter for all three

species of the conies.

A diameter of a conic is the locus of the middle points of par-

allel chords.

87. To find the locus of the middle points of parallel chords.

First. For the ellipse and hyperbola.

Let Ay^+Cx'+ F^^), (1)

in which A=: a^, C= ± 6^ F= qp a^b^, as the conic is an ellipse

or an hyperbola, be the equation of the locus, and

y = a'x-\-b' (2)

that of any chord PQ. Combining (1) and (2) to find the inter-

sections P and Q, we have, after substituting y^ from (2) in (1),

. 2a'b'A b"A + F
^a"A + C a'^A + C

Fig. 54.
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or, representing the coefficient of ic by g and the absolute term

by r,

whence a;=-|±^r+|^

Fig. 55.

which are the abscissas of P and Q. Substituting these values

of X in (2), we find the ordinates of P and Q are

y = a'(^-^±^f^ + b^

Now the coordinates of the middle point M of PQ are given

by the formulae x =—-— , y = ^ ^ » Taking, therefore,

the half-sum of the above values of x and y, we have for the

coordinates of If ,

or, replacing the value of q,

a'b'A ^^ aH'A
. ^,
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For all other chords parallel to PQ, a' remains the same, but

b' differs. Eliminating then b' by substituting its value from

the first in the second of the above equations, we obtain

G b'

a'A a'a^
(3)

which is a relation between the coordinates of the middle points

of all chords parallel to PQ ; it is therefore the equation of a

line through these middle points. Being of the first degree it is

a straight line, and having no absolute term it passes through

the origin, which is the centre. Hence, the locus of the middle

points of parallel chords to the ellipse^ or hyperbola, is a straight

line through the centre.

Cor. It A = G, or the locus is a circle, (3) becomes

y
1

a'

which is perpendicular to y = a'x + 6'.

Second. The parabola.

Let y^ = 2px be the parabola, and y=a'x-\- 6' any chord PQ.
Combining as before,

^+^-'^'-^^^

or, x^-^qx = r, whence, in the same manner the coordinates of

the middle point M are

^=-|' y=-~^ + b',

or, replacing q by its value,

a'b'-v

from which we see thaj;/the abscissa x of

the middle point varres with ^'

the ordinate ?/ is constant(^f a' is constanl

that is, if the chords are parallel. Hence, the locus of the middle

jioints ofparallel chords to the parabola is a straight line parallel

to X,
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The student will observe that if a diameter be defined as a

chord through the centre, the diameters of the parabola are

necessarily parallel as the centre is infinitel}' distant.

The extremities of any diameter are called its vertices.

88. The tangents at the vertices of a diameter are parallel to

the chords bisected by that diameter.

Since the diameter TT' (Figs. 54, 55, 56) bisects all chords

parallel to PQ, as 3/ approaches T (or T'), P and Q approach

each other, and MP, MQ, remaining equal, must vanish together.

Hence, when 31 coincides with T (or T'), PQ will have but

one point in common with the curve, or is a tangent.

89. Def. One diameter is said to be conjugate to another

when it is parallel to the tangents at the vertices of the latter.

90. Conjugate diameters of the ellipse.

Let KK' (Fig. 54) be drawn parallel to the tangent at T,

that is, parallel to PQ. Its equation will be ?/ = a'ic. The

equation of TT' is y= a"x= --j-^x (Art. 87, Eq. 3).
,2 a a

Hence a'a" = is the relation which must exist between the
a^

slopes of a diameter and the chords which it bisects. But this

relation is satisfied for KK' and the chords PQ', etc., parallel

to TT. Hence, if one diameter is conjugate to another, the

latter is conjugate to the former, and the tangents at the vertices

of conjugate diameters form a parallelogram.

a'a''=-^-^ (1)
a^

is called the equation of condition for conjugate diameters to the

ellipse. Since the rectangle of their slopes is negative, the

tangents of the angles which they make with X have opposite

signs ; hence, if one diameter makes an acute angle with the

transverse axis, the other will make an obtuse angle, or conju-

gate diameters to the ellipse lie on opposite sides of the conjugate

axis.
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Cor. If a = b, (1) becomes a'= -, or conjugate diam-
a

eters to the circle are at right angles to each other.

91. Every straight line through the centre of an hyperbola^

except the diagonals of the parallelogram on the axes, meets the

hyperbola or the conjugate hyperbola.

Let y=a'x (1)

be any straight line through the centre,

ay_6V=~a262 (2)

the equation of the X-hyperbola, and (Art. 71)

that of the F-hyperbola. Combining (1) in succession with (2)

and (3) , we have

a'b''
x^= — —-'> (4) aj2 =

a^a'2 - W (5)

Now if a'< -5 a; is real in (4) and imaginary in (5), and the

Fig. 57.
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line intersects the X-hyperbola, as TJ". If a' > -t x is imag*

inary in (4) and real in (5) , and the line intersects the F-hyper-

bola, as KK'. If a' = ± -? both values of x are infinity. In
ct

this case (1) becomes y=± -x, the equations of CS and CS',
a

the diagonals of the rectangle on the axes, neither of which

meet either hyperbola within a finite distance.

92. Defs. The diagonals of the rectangle on the axes of a

pair of conjugate hyperbolas are called the asymptotes. Their

equations being y=±-x^ if a=b their included angle is 90°,
a

and the hyperbola is said to be rectangular ; or, when an hyper-

bola is rectangular it is also equilateral (Art. 71).

93. Conjugate diameters of the hyperbola.

Of two conjugate diameter's, one meets the X-, the other the

Y-hyperbola.

Let 2T' be any diameter bisecting a system of parallel
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chords of which PQ is one. Draw KK^ parallel to PQ, that

is, to the tangents at the vertices of TT' ; it is then conjugate

to TT'. Being parallel to PQ, its equation is y = a^x^ and

that of TT^ is y = a'^x = -^x (p:q. 3, Art. 87). Hence

a^a^' = -5 is the relation which must exist between the slopes of

h
a diameter and the chords which it bisects. If a' < -, a" must

evidently be > -, since their product = — , and conversely ; or,.a a-
"

since - is the slope of the asymptote, if one diameter intersects

the X-hyperbola, its conjugate will intersect the Y-hyperbola, and

conversely.

Again ; since the equation of the F-hyperbola is derived

from that of the X-hyperbola by changing the signs of a^ and

b^ (Art. 71), a'a" = — is also the relation which must exist
a^

between the slopes of any diameter of the y-hyperbola and the

chords which it bisects. But this relation is satisfied for KK'
and the chords P'Q', etc., parallel to TT'

-, hence TT' is

parallel to the tangents at K and K', or is conjugate to KK'
;

hence, if one diameter is conjugate to another^ the latter is conju-

gate to the former^ and, as in the case of the ellipse, the tangents

at the vertices of conjugate diameters form a ijarallelogram.

The equation a'a^' = —
a^

is called the equation of condition for conjugate diameters to the

hyperbola. Since a'a" is positive, the angles which two conju-

gate diameters to an hyperbola make with the transverse axis

are both acuto, or both obtuse, or the diameters lie on the same

side of the conjugate axis.

CONSTRUCTION OF CONICS FROM THEIR EQUATIONS.

94. First Method. By comparison with the general equa-

tion .

Make the coefficients of like terms in the oriven and the
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general equation equal by dividing each equation by the co-

efficient of the same terra. Equating the resulting coefficients

of corresponding teVms, we have five equations from which

a, m, n, e, and p, may be determined. This method is tedious

and of little practical value except as e = 1 , or some of the co-

efficients are zero.

Example. 1. 2/^ + 4?/ + 4a; + 4 = 0. Since B'-AAC=0,
the conic is a parabola, and therefore e= 1. The coefficient of

y^ being unity, divide the general equation (Eq. 1, Art. 79) by

the coefficient of y^, 1 — e^ sin^a, and we have, after making

e=l,

\
r

D
Q ^

>\
2L

S1 /

— 2 sinacosa
:0, (1)

1 - sin^a

1 — COS^a

1 — sin^a
0, (2)

2psina — 271 _
= 4, (3)

1 — sin^a

2;9COSa— 2m _
= 4, (4)

1 - sin^a

1 — sin^a
4. (5)

Fig. 59.

From (1), -2sinacosa=0; .-.a must be 0°, 90% 180°, or

270°. From (2), cosa = ± 1 ; hence a cannot be 90° or 270°,

and is either 0° or 180°. In either case (3) gives n = — 2.

Substituting cosa = ±l in (4), we have ±2p — 2m = 4, or

m = ±^ — 2, according as a is 0° or 180°. From (5), since

71 = — 2, m^ = p^\ or, substituting the above values of m,

p = ±l. But p is alvva3^s positive; taking, therefore, the

upper sign, a = 0°. Finally, from (4), making cosa=l and

p=l, we have m^—\, Tiie values of the constants are

thus : e = 1, a = 0°, m = — 1, ti = — 2, p = 1. To construct

these results, lay off OQ=p = 1 to the right, since a = 0°, and

draw the directrix 2)i)'^perpendicular to X. Construct F<i

(— 1, —2), and through F draw FS perpendicular to DD\
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Having thus the focus and directrix, the parabola may be con-

structed as in Art. 76.

95. Second Method. By transformation of axes.

If B^ — ^^AC is not zero, the conic is an ellipse or hyperbola,

and
_ 2AE-BD _ 2 CD -BE

^'" B'-4AG' ^'" B'-AAC'

are the coordinates of the ceutre (Art. 84). Transferring to

parallel axes with (Xq, y^) as a new origin, we have the equation

of the ellipse, or hyperbola, referred to its centre. If the term

Bxy is not present in the primitive equation, the result of this

transformation is the central equation of the ellipse, or hyperbola.

If, however, this term is present, we must transfer again to new

axes with the same origin, the angle between the new and primitive
13

axes of X being determined by the condition tan2y = — —
A — G

(Art. 81). If B^ — 4:AC= 0, the conic'is a parabola. Trans-

fer first to new axes with the same origin, the new axes of X
being subject to the condition tan 2 y = — ; then to parallel

axes whose origin is (Art. 85 )

_I)^-4:AF _-D
'''-' AAE ' ^""YI'

the resulting equation will be the equation of the parabola

referred to its vertex and axis.

Examples. 1. 5,2^ 2,iKif\f 5 ^^ ^
B'-iAC^^^ (^

hence the conic is an ellipse and has a centre. The coordinates

of the centre are ^ ;
i

^ __2AE-BD_. _2CD-BE _.

and the formula? of transformation are

a; = iCo + a^i = 1 + oji, 2/ = 2/o + 3/i = 1 + 2/i.
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Substituting these in the given equation, omitting subscripts,

wehave
bf +2xy + bx^ -12 = 0,

To obtain the central equation we must have ^-^

tan 2 y = = -oo; .-. y = -45%
. -M

A-C
and the formulae of transformation are

a; = a?! cosy — 2/1 siny = V^- (0^1 + 2/1),

2/ = iCi siny + 2/1 cosy = Vi (2/1 - a^i)

.

Substituting these values in b'lf -{-2xy -\-bx^ — 12 = 0^ and

omitting subscripts, we obtain 32/^ + 2a;^=6. Tlie axes are

therefore 2V3 and 2V2,

y ^ and
1

Fig. 60.

the eccentricity —^•

To construct the ellipse,

construct (1, 1), the new

origin Oi, and draw OiXj,

OyYi, the parallel axes.

Draw O1X2 making the

angle XiOiX2 = -45°, and

O1F2 perpendicular to it.

On O1X2 lay off

and on O1F2, OiJ5= OiO= V2. ^^14' and OB are the axes of

the ellipse; the focus may be found as in Art.. 58, and the

ellipse constructed as in Arts. 54 and 60. The curve may be

traced with approximate accuracy by determining the intercepts

on the axes. Thus, from b'if-{'2xy-{-ba? — l2y—\2x=0,
x = gives 2/ = a,nd ^- ( and i2)

;
y=0 gives x=0 and

^J- (0 and Q). In the same way from 52/'+ 2xy +5aj2— 12 =0,

O^S=0,T= Vi?, Oi?7= 0,V= V^. Through the points

thus found trace the curve.

2. 2/2 — 2a;2/ + a^ + 8a; — 16 = 0. 52_ 4^(7^9, hence the
TJ

conic is a parabola. tan2y = — — = cc, .-. y = 45°, and the
^ — G —
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formulae of transformation are x = Vi (x — y), y = VJ (x-{-y),

and the transformed equation 2y^ — 4 V2 ?/ + 4 \/2 a; — 16 =0.

4^^ vr ^'~ ^ V2.From the latter, Xq =

Transferring to parallel axes

with the origin ( —:::, V2 ],

VV2 J

we find y^ = — 2V2x. To
construct the parabola, draw

the axes Yi OXj, making

XOXi = 45°. On these axes

construct the vertex

(-A, V2), or O.

and draw the parallel axes

X2 Oi T2. We may now con-

struct the parabola whose

parameter is 2 V2 as in Arts. 74 or 76, or determine the inter-

cepts and trace the curve approximatively. OQ = — 4 -|- 4 V2,

OQ'=-4-4V2, 0E = 0B'=4:, OS=2-V2, Or= V2+ Vl0,

0T'= V2- VlO.

3. y^ — x'^ -{- y — X -{- 2 = 0. JB^ — 4J C = 4, hence the conic is

an hyperbola, its axes being parallel to the axes of reference,

since ^ = 0. 0^0 = —^,

Fig. 61.

2/0 = — i- Passing to

parallel axes whose ori-

gin is (-i, -I), we
have 2/^ — 0;^ = — 2, an

equilateral hyperbola

whose axes are 2 V2,
eccentricity is V2, and

cutting the primitive

axis of X at 1 {Q) and

-2(Q').

Y'

O'

O

Fig. 62.
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Fig. 6a

B" — AAC=1Q, hence. the

couic is an hyperbola referred

to its centre (Art. 83).

tan2y=-V3, .•.2y=-60°,

or y = — 30°. Transferring

to new axes such that

-X XOXi = -30%
the equation becomes

the equilateral Y"-hyperbola

whose axes are 8 V2, cutting

the primitive axis of Y at

±8 (Qand Q').

6. a;2 + 4a;?/ + 3?/2-3 = 0.

0.

/

96. Third Method. By conjugate diameters.

The general equation of a conic being

^2/'+ Bxy + (7a^4- Dy-{-Ex + F=0,
solving for y, we have

Car^-h Ex + F2 . Bx-\-D

whence

Bx-\-D
2/
=

2A
±^V{B'-4:AG)x'+2{BD-2AE)x+D'-4:AF.

First. Construct the line Qi2 whose equation is ?/=
Bx±D
2A

Every value of x locating a point M on this line locates two

points P' and P" of the locus, equally distant from QU and on

opposite sides of it, this distance being the radical in the value

of y. Hence QP bisects a system of chords parallel to Y and

is a diameter.
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Second. Values of x which render the radical zero give the

same values for y for both the locus and the diameter ; hence

the values of x found from the equation

{W-^AC)y?^'l{BB-1AE)x^-Jf'-^AF=^

determine the points where the conic cuts Qi2 ; that is, the

Fig. 64.

vertices T, T', of the diameter. This equation being a quadratic,

there will be two such points except when ^- — 4^(7=0, in

which case the conic is a parabola and there will be but one

vertex. If the conic is an ellipse it lies wholly between T and V
;

if an hyperbola, wholly without these points. In either case

the half sum of the above values of x determines the centre (7,

and the corresponding values of y locate K and K\ the vertices

of the conjugate diameter. Having tlms the circumscribing

parallelogram (Arts. 90, 93), a few other points may be con-

structed, especially the intercepts on the axes, and the curve

sketched with sufficient accuracy.

Examples. 1. 42/=-}-4a;2/ 4-5a;- - 8?/ - 28ic -|-24 = 0.

and the conic is an ellipse. Solving for y we find

y = ^ (2 — a:) ± V— ic'-^+Ox-o.
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Construct the diameter

Placing — ic^ + 6aj — 5 = 0,

we find a;= 5 and 1 , whence

2/ =J (2 — aj) = - f and j-, or

(5,— I) and (1,^) are the vertices T and T. The abscissa

Fig. 65.

of (7 is ^ (5 H- 1) = 3, whence, from the equation of the conic

?/=f and — f, locating K and IC The circumscribing paral-

lelogram may now be drawn. Making 2/=0 we find the X-

14 + 2 Vl9
intercepts Intermediate points may be found

if necessary ; thus, for a; =4, 2/ = — 1 ± V3, locating P' and P".

Trace the curve through the points thus found, tangent to the

circumscribing parallelogram at K, K\ T and TK

2. 2/2+ 2iK2/ + ar^ + 21/ - 7a; - 8 = 0.



> ^

125

Solving for y,

GENERAL EQUATIONS OF CO

B^ — AAC= 0, and the conic is a parabola

yz=:-(x+l)± V9a;+9.

Construct the diameter QB,

y = -{x+l).

The radical gives but one value

of x = — 1, for which y = 0, lo-

cating the vertex T. The X-

intercepts are 8, —1, and the

y-intercepts 2, —4. Interme-

diate points may also be found

;

thus for a; = 3, 2/= 2 and —10

(P' and P"). Trace the curve

through these points and tangent at T to a parallel to Y.

3. y^-{-2xy — 2a:^ — 4:y — x-j-10=0.

.'. the conic is an hyperbola.

Fig. 66.

y = _ (a; _ 2) ± V3a;2-3a;-6.

The diameter is y = — (ic — 2) , its

vertices are (2, 0) and (— 1, 3).

The X-intercepts are 2, — f, the

F-intercepts being imaginary. .

(\ 4. y^-\-2xy-{-S^ — 4:X = 0. ^OtA^-^vW- '-

5. y^-2xy + x^-y-\-2x-l = 0.

6. y^-2xy-}-x''-{-x = 0.

Fig. 67.

97. When the equation of the conic does not contain the

term involving xy^ the axes of the conic are parallel to the axes

of reference, and its position may be determined by the prin-

ciples of Art. 17. If the squares of both variables are present,

it is an ellipse or an hyperbola according as their signs are

like or unlike ; if these coefficients are equal in magnitude

and sign, it is a circle ; if numerically equal and of opposite
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signs, an equilateral hyperbola. Solving the equation for either

variable, as ?/, values of x which render the radical part of y
zero give the extremities of the axis parallel to X, and the

algebraic difference of these values is the length of this axis

;

the half sum of these values of x is the abscissa of the centre,

and the corresponding values of y determine the vertices of the

axis parallel to Y, their algebraic difference being its length.

If the term containing x is lacking, the centre is on Y; if the

term containing y is absent, the centre is on X.

If the equation involves the square of but one variable, the

conic is a parabola whose axis is parallel to the other axis of

reference, and coincides with it when the the first power of the

variable whose square enters the equation is lacking. The
vertex is found b}' solving the equation for the variable which

enters as a square and placing tlie radical part equal to zero

;

this equation determines the limit, ?'.e., the vertex.

Examples. 1. 9y^ + 4:x''' - 36y - 8x-{- 4: = 0. A and

have like signs, ,*. the conic is an ellipse. Solving for y,

2/ = 2 ± i V-4a;2 + 8aj + 32. The limits along X are found

from —4:xF-\-8x-{-32 = to be 4 and — 2, and the axis parallel

4 2
to X is therefore 6. The abscissa of the centre is = 1,

2
'

and the corresponding values of y are 4, 0, or the axis parallel

to Yis 4. Hence the locus is an ellipse whose centre is (1, 2)

and axes 6 and 4, its transverse axis being parallel to X.

2. 2/^ 4- 4 2/ — 6a; — 14 = 0. The locus is a parabola, its axis

being parallel to X. Solving for y, y=—2± V6 a; -f- 18 ;

hence its vertex is (—3,-2).

3. 42/2 + a^+162/-4a;-i-16 = 0.

4. 92/2 - 4a^ - 362/ + 24aj- 36 = 0. \/

QENERAL THEOREMS.

98. Through any jive points in a plane, one conic may be

made to pass.
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Let (a?i, 2/1), (a?2, 2/2) » (^3, 2/3)5 (^4, 2/4), (^55 2/5)5 be the five

given points. Dividing the general equation of a conic by tb.e

coefficient of any of its terms, and distinguishing the new

coefficients by accents, we have

^'2/' + B^^y + C"aj2 + D^y -\-Wx-\-l = 0. (1)

Substituting in succession the coordinates of the given points,

since the conic is to pass through them, we have

^'2/1' + ^'^i2/i + C 'X,' + Z>'2/i + J^'a^i + 1 = 0,

AV + ^'^22/2 + G^xi + i>'2/2 + E'x, + 1=0,

^V + ^'^32/3 + C'xi + D'2/3 + E^x, + 1 = 0, [> (2)

.4V + ^'^'42/4 + CV + i>'2/4 +E% +1 = 0,

^'2/5' + B^x.y, + CV + i>'2/5 + E'x, + 1 = 0,

in which A\ B', C, i)', and E', are the only unknown quanti-

ties, and from which their values may be determined by elimi-

nation. Since these equations are of the first degree, each of

these quantities has but one value. Substituting in (1) the

values of A', B\ etc., found from (2), the resulting equation

will be that of the conic passing through the five given points.

If one of the points is the origin, one of the equations (2)

would be 1 = 0, which is impossible. In such a case divide the

general equation by any coefficient except the absohite term.

This results from the fact that the equation sought can have no

absolute term.

Examples. 1 . Find the equation of the conic passing through

(4,4), (4,-4), (9,6), (9,-6), (0,0).

Since the conic is to pass through the origin, F=0.
Dividing the general equation by A, we have

3/2 4. ^ixy + C'x'^ + D'y + E'x = 0.

Substituting the coordinates of the remaining points,

16+16J5'+16C" + 4i>' + 4^' = 0. (1)

16 - 16 ^' + 16 C" - 4 Z)' + 4 £' = 0. (2)

36 + 54jB'+81C'+6Z>'+9^' = 0. (3)

- . 36-54J5' + 81C"-6Z>'+9^' = 0. (4)
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From (1) and (2), and (3) and (4), by addition,

32+ 32C'+ 8E'=0. (5)

72 + 162C"+18^' = 0. (6)

Eliminating E' between these we find C = 0, which in (5) gives E' = — 4.

Substituting these values in (1) and (3), we have

16B'-\-4D' = 0,

6iB' + 6D'=0,

whence B' = 0, D'= 0. The required equation is therefore y^ = 4iX.

2. Find the equation of the conic passing through (—1, 2),

(-f>i). (-1,1). (-f,i), (-4,8).

Ans. y^-^x^-^2xy-{-Sx — y-\-4: = 0.

3. Find the equation of the conic passing through (5, 0),

(0,5), (-5,0), (0,-5), (0,0).

In this case F=0, since one of the points is the origin. Divide the

general equation by B, otherwise the term Bxy will disappear for every

substitution, and B will be undetermined. Ans. The Axes.

4. Through how many points may the conic

be made to pass ?

5. Find the equation of the circle circumscribed about the

triangle whose vertices are (3, 1), (2, 3), (1, 2).

Ans. Sy^ + 3x^-ny-13x-\-20 = 0.

6. Find the equation of a circle through the origin and mak-

ing intercepts a and b on the axes.

99. Two conies can intersect in hut four points.

The coordinates of the points of intersection of two conies

will be found by combining their equations (Art. 36). But we

know from Algebra that the elimination of one unknown quan-

tity from two quadratic equations gives rise, in general, to an

equation of the fourth degree. This equation will have four

roots ; there will therefore be four sets of coordinates, all four

of which may be real, two real and two imaginary (since imag-
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inary roots enter in pairs), or all four imaginar}', and in any

case, since equal roots occur in pairs, these four sets may reduce

to two.

When two sets of values reduce to one, that is, are equal, two

of the points of intersection become coincident and the conies

are said to touch each other at that point. Hence two conies can

touch each other at but two points.

The several cases are illustrated in the figure. 1 and 2 inter-

sect in four points, all four sets of values of x and y being real

;

Fig. 68.

1 and 3 intersect each other in two points and touch each other

in one, two sets of values being equal ; 1 and 4 touch each other

iu two points ; 1 and 5 have no points in common, the roots

being all imaginary ; while 1 and 6 intersect in two points,

two sets of values being real and two imaginary.

]f the conies are circles, the simplest way of combining their

equations is by subtraction. Thus, let (Art. 48)

f- 4- x' + Dj/ -\-Ex + F= 0, (1)

f + x^-^D'y-\-E'x + F' = 0, (2)

be the given circles. Subtracting,
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{D -D')y + {E- E') x-{-{F-F') = 0, ^
'(3)

from which we may find the value of either variable in terms of

the other, and substituting it in either (1) or (2) find that of

the other.

Cor. 1. Since (3) is of the first degree, two circles can inter-

sect each other in but two points, and hence can touch each

other but in one.

Cor. 2. Representing the first members of (1) and (2) by

S and S', then S-\-liS' = is a locus passing through all the

points of intersection of (1) and (2) (Art. 37) . When A; = — 1

,

that is, when the equations are subtracted, the resulting equa-

tion, (3), is of the first degree ; hence (3) ^s tJie equation of the

chord common to the two circles.

Examples. Find the intersections of the following loci :

1. 2/' + a;'=25, y^ = ^i-x. Ans. (3, ±4).

2. 2/?=10a;-a^, y' = 2x. Ans. (0,0), (8, ±4).

3. y^+ 4.3^=2o, 42/2-25a^ = -64.

Ans. (2, ±3), (-2, ±3).

4. ^^^a^^Sy^2x-7 = 0y y'' + x^-Sy+2x + l = 0.

Ans. Concentric,

6. y^ + x'^+ y-2x-\-l = 0, y^ -{-x^ -^Sy - 4.x-\-3 = 0.

Ans. (1,0); (h -*)•

. a. y^-Sy + Sx-{-10 = 0, 2/^ + 4a;4-6 = 0.

Ans. (-1, -2); (-J, -1).

7. 32/2 + 2a^ - 62/ + 8aj- 10 = 0, 3?/' + 2a^+ 6aj - 4 = 0.

8. 32/M-2a;2-62/+8a;-10= 0, Sy^+ 2x''- Gy+ 8x + 1=0.

9. Prove that if two circles intersect, the common chord is

perpendicular to the line joining their centres.

Let ?/2 + 3:2 = /j2^ and (// - n)2 + (.r - m)2 = R^^ be the circles. Sub-

tracting these equations, the equation of the common chord is

'2ny-{-2mx-n'^-m^ = R^^R^, or y=---r+C
n
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in which C represents tlie absolute term. The line through the centres is

n

Ill

10. Prove that the perpendicular from the centre of a circle

on a chord bisects the chord.

100. Defs. Conies having the same eccentricity are said to

be simila-r. If the corresponding axes are also parallel, each

to each, they are said to be similar, and similarly placed.

101. All conies in ibJiose equations the terms of the second

degree are the same are both similar and similarly placed.

Let Ay'^+Bxy+Cx' + Dhj + E'x + F'^O, (1)

Ay-^^ Bxy + Cx"+ D^hj + E^^x + i^" = 0, (2)

be the equations of the conies, the coefficients of the first three

terms being the same. We have seen that tan2y = —
-4 — O

(Art. 81), in which y= the angle made by the axis of the conic

with X. Since y depends only upon A^ B, and (7, the conies

are similarly placed.

Again, from Equation 3, Art. 79, we have, by division,

1 — e^ sin^ g _A^_A
1 - e' cos'a~ C'~C'

2 e^ sin a cos a B' B
l-e^cos^a C C'

from which the value of e may be found in terms of ^, J5, and

(7, by eliminating a. But A, B^ and C are the same for each

curve, by hypothesis. Hence the eccentricities are equal.
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Cor. 1. All parabolas are similar, since e = l for every

parabola.

Cor. 2. All circles are similar and similarly placed.

Cor. 3. If two conies are similar and similarly placed, they

can intersect each other in but two points and touch each other

in but one. For, subtracting the equations (1) and (2), we

haze (i)'-i)")2/ + (^'-^")i» + -^'-^" = 0, which is a

straight line passing through all the points of intersection of

(1) and (2). Combining this equation with (1) or (2), there

results two sets of coordinates, which may become equal. The

above equation is the equation of the common chord, or tangent.

Cor. 4. If two conies differ only in their absolute terms,

they are concentric.

102. To find the condition that an equation of the second

degree may represent two straight lines.

We have seen that two intersecting straight lines is a par-

ticular case of the hyperbola (Art. 72), and that two parallel

straight lines is a particular case of the parabola (Art. 85). It

is further evident that if we multiply, member by member, two

equations of the form ay -\-hx-\-c = 0^ there will result an

equation of the second degree, and that this latter will represent

the two straight lines represented by the factors, for it will be

satisfied by the values of the coordinates which make either of

its factors zero. Conversely, if an equation of the second degree

can he resolved into two factors of the first degree^ it will represent

both the straight lines represented by these factors. Sometimes

these factors can be discovered by simple inspection. Thus,

xy = can be resolved into the factors cc = 0, y = 0, and, since

these are the equations of the axes, xy = is the equation of

both axes. Again, x^ — y^ = can be resolved into x-{-y = 0,

x — y = 0, which are the bisectors of the angles between the

axes, and therefore x^^ — y^ =.0 is the equation of both bisectors.

As these factors are not always readily seen on inspection of the

equation, it becomes desirable to determine the general condi-

tion for the existence of two factors of the first degree.
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Let Aif + Bxy + Ca? + Dij-^Ex-{- F=0
be the general equation of a conic. Solving it for y,

2. jfL 2,xx

In order that this equation may be capable of reduction to

the form y = ax ± />, the quantity under the radical must be a

perfect square. But the condition, that the radical should be

a perfect square is

(^2 -iAC) (Z>2 - A:AF) = {BD ~2AEy.

Expanding and reducing,

AACF+BDE - AE" - CLf - FB" = 0,

which is the required condition. If the coefficients of the given

equation satisfy this relation, the equation represents two

straight lines ; to find the lines, solve the equation for y and

extract the root indicated by the radical.

Examples. Determine which of the following equations

represent pairs of straight lines, and find the lines :

1. A.y'^ — bxy +x^-\-2y + x-2^0.
Applyhig the test, we find — 32 - 10 — 4 — 4 + 50 = 0.

To find the lines, solving for y, we obtain

o O O O

Hence the Unes are y = x — 1 and y = \x -{ \.

2. Zf — ^xy + ^x- 1=0.

3. ?/2-27/-aj2 + l = 0. Ans. y-x-l=0, 2/ + a? -1=0.

4. xy — ay — bx-\-ab = 0. Ans. x= a, y= h.

5. 2/- + 4aj?/ + 4a.'2-4 = 0. Ans.y + 2x=±2.

G. xy-{-x^ — y-{-dx — 10 = 0.

Ans. ic — 1 = 0, y + x-\-10 = 0.
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SECTION IX.— TANGENTS AND NORMALS.

103. Defs. Let MM ' be any locns and AB any secant cut-

ting the locus in the points F' and P". If AB be turned about

P' regarded as fixed, till F", moving in the locus, coincides

with P', AB will then have but

one point in common with the

locus and is called the tangent

at that point.

The direction of the tangent

is that in which the generating

point is moving as it passes

through the point of tangency,

or the slope of the locus at any

point is the slope of its tan-

gent at that point. The per-

pendicular to the tangent at

the point of tangency, lying in the plane of the curve, P'N,

is the normaL

104. General equations of the secant and tangent to a conic.

Let 2/-y=!^!(^-^') (1)

be the equation of a straight line passing through any two given

points (x%y'), {x",y"). The coefficient of x when the equa-

tion is solved for y being -.—^,, we have —.—^ = a = the^ x' — x" x' — x"

slope of the line. Also, let

/(^,2/) = (2)

be the equation of any conic. If the two points through which

the given line passes are on the conic, we must have
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f{x\y')=0, and /(x",y') = 0.

w' — w"

Hence, if we form '^,—^, from these two equations and sub-

stitute the vahie thus found in (1), we shall introduce the

condition that (1) is a secant of (2).

7/' — 'y"

Representing this value of -,— j, hy a„ the equation of the

secant will be

y-y' = O's (x-x'). ^

If, now, in the value of a„ we make x" = x' and y" = y\ that

is, suppose the point (x",y") to coincide with (x',y'), the secant

will become a tangent ; hence, representing what • a, becomes

under this supposition by o„ the equation of the tangent will be

y-y'==a,{x-x'),

in which (a?', y') is the point of tangency.

Examples. 1. Equation of the tarigent to the circle

y' + ^=R\
Let (.r^ 3/'), (x", //") be any two points of the circle. Then

y'-2 j^ x'-2 =r R^, and y"^-^ x"-^ = R^.

Subtracting, we have

yi2^ytf2^^i2__xif2^0^ or (y'-y")(>j' + yl') = -i^'--^")(^'+^")>

whence ^,—^ = —^—-•

x' — x" y' + y"

Substituting this value in the iequation of a line through two given points,

x' — x" .

x' 4- r"
it becomes y — y' =z Ji^ (^x — x'),

y' + jj'

the general equation of the secant line to the circle. Making now x" = x*

x'
and y" = y', we have y — y' = (x — z'),

y'

for the equation of the tangent. This equation may be simpHfied by clear-

ing of fractions and replacing 2/'" + x'- by its equal R"^; whence, finally,

yy' -\- xx' = R~,
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the general equation of the tangent to the circle y^-^ x^= R^, (x', if) being

the point of tangency.

Note. The process is the same whatever the equation of the conic

;

that is, whatever its species or the axes of reference; and the student

should thoroughly master the above illustration as exemplifying a method

for producing the equation of a tangent to any conic wlien referred to a

rectilinear system. Thus, if the circle be referred to a diameter and the

tangent at its left-hand vertex, its equation is

y'^=2Rx-x'^.

Hence y'2=2Rxf - x'^ and y"-=2Bxf' - x"^;

and, by subtraction, y'^- y"^ = 2R {x' - x") - (x'^- x"^)
;

, y'-y" 2R -(x'+x")
whence ^—2_ = J^— —

^,
x'— x" y' + y''

J> -v,/

which becomes • when the points coincide. The equation of the
y' R-x'

tangent is therefore y — y' = — (x — ar').

y •

2. Find the equation of the tangent to the ellipse

a^'if -f y^x^ = a^h"^. Ans. a^yy' + b^xx' = o?h^.

If a = 6, this becomes yy' \- xx'= a^, or R"^, the tangent to the circle, as

above. Since the equation of the hyperbola differs from that of the

ellipse only in the sign of b'^, we have also tlie equation of the tangent to

the hyperbola, a^yy'— b^ xx' =—a^ b^.

3. Deduce the equation of the tangent to the hyperbola by

the general process.

4. Find the equation of the tangent to the parabola y^ = 2|)aj.

Ans. yy' =p(^x-^ x')

.

When the central equations of the ellipse and hyperbola in

terms of the semi-axes are used, and the equation of the parabola

referred to its axis and vertex, the corresponding equations

of the tangents are easily remembered from the fact that, by

dropping the accents which distinguish the coordinates of the

point of tangency, they become the equations of the cui'ves

themselves.
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105. Problems. Under the head of tangency the following

simple prcblems occur.

First. To write the equation of a tangent at a given point of

a conic, and to find the slope of the conic at that poiyit.

Find the general equation of the tangent to the conic by the

preceding method, and substitute in this equation for x\ y\ the

coordinates of the given point. The coefficient of x in the result-

ing equation, when it is put under the slope form, will be the

required slope. Thus, the tangent to the circle y^ -\-x^= 100 at

the point (—6, — 8) being required, make x' = —Q, y' = — S

in the equation of the tangent yy' + xx' = R^, R being 10, and

we have — 8?/ — 6aj= 100, or 4?/ + 3ic-f- 50 = 0, which is the

tangent. Solving for y-^y=- —fa; — -^^, or a^= — j, and the

angle which the tangent makes with X= tan^^f.

Second. To find the point on a conic at which the conic has a

given slope.

In this case the coordinates of the point of tangency are

unknown. To find them we have the two equations f{x', y') =0
(since the point is on the conic), and the given condition

(X^ = a', where a' is the givep slope. Combining these equations

we find x\ y\ the required point of tangency. If more than one

set of values for x\ y', are found, there is more than one solu-

tion. If the value of either x' or y' proves to be imaginary,

there is no point fulfilling the condition. Thus, at what point

of the ellipse 9y^ -\- 4:X^ = 36 does the tangent make an angle of

45° with X? By condition, a, = -— = - - - = 1 . Also
a-y' 9 y'

Substituting fl;' = — f ?/' from the first in the second, we obtain

9 2/" + 4H2/'^ = 36, or 2/' = ± —L- Hence a;' = ip -4=- There*
Vl3 Vl3

are therefore two points at which the slope is 1 ; one in the

second angle, the other in the fourth.
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Third. To find the equation of a tangent to a conic which

passes through a given point ivithout the curve.

Let f{x, ?/) = be the equation of the conic, and

<l>{x,y,x',y') =

that of the tangent. In this case also the coordinates of the

point of taugency are unknown. To find tliem we have

f{x', y') = (since the point of tangency is on the conic),

and <^ (A, k, x', y') = 0, in which h, k, are the coordinates of the

given point (since the tangent passes through it) . Combining

these equations, we find x' and y', and there will be as many

solutions as there are found sets of values for a;', y'. If either

x' or y' should prove imaginary, the problem is impossible.

Thus, to find the equation of the tangent to the circle y^-{-x^= 25,

passing through (7, 1). Since the point of tangency is on the

circle, y^^ -\-x'^=25. Since the point (7, 1) is on the tangent

yy' + xx' = B^, we have also y'-\-7x' = 25. Combining, we

find a;' = 3, ?/' = 4, and ic' = 4, ?/' = — 3. There are therefore

two tangents to the circle through (7, 1), namely, 4y+Sx = 25,

and 4aj — 3?/ = 25.

Cor. Since the equation of a conic is of the second degree,

and that of the tangent of the first degree, no more than two

tangents can be drawn having a given slope, or through a given

I)oint without the conic.

Examples. 1. Find the equation of the tangent to the circle

2/2 + a;2 = 25 at (- 3, 4)

.

Aris. 4:y-3x=25.

2. Find the slope of the circle y^-{-a^ = E^ at the points

whose abscissas and ordinates are numericallv equal.

Arts. 45°; 135°.

3. Find the equations of the tangents to the circle y'^-\- xr= 100

passing through the point (10, 5). Ans. 4y-{-Sx = 60y a;=10.

4. Find the slope of the ellipse Sy^-]-x^ = 3 at the points

a;' = ;
y' = 0; a;' = f

• Aus. 0°
;
90°

;
135° and 225°.

1

A
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5. Find the points on the ellipse Sy^ -\- 4x^ = 32 at which the

tangent makes an angle of 135° with X.

AnS. (-^, —=]'•> ( :::' "—=V
VV3 V3y V V3 V3y

6. Find the tangents to the ellipse 20?/^ -f- 93?^ = 324 passing

through (-1, 6). Ajis. ^y-\-Sx = 27; 35?/ - 33a;= 243.

7. Write the equations of tangents to the parabola y^ — 8x

at the points ic' = 8 ; x' = 2.

8. Find the point on 9?/^ — 4a;^ = — 36 where the tangent

makes an angle with Xwhose tangent is |^- A71S. iVb sucJi point.

9. Show that the focal tangent to the parabola makes an

angle of 45° with X. (Find the slope Sit y' =p,)

10. Find the eccentricity of the ellipse 25?/^4-9a;^= 225, by

finding the slope at the extremity of the parameter. Ans. |^-

11. Show in the same manner that the eccentricity of the

hyperbola 16y^ — dx'^ = — 144 is |-

12. To ivrite the equation of the tangent to the ellipse in terms

of the slope. The equation of the tangent

is a^yy^ 4- b'^xx' = (filP-, or w = x H Let '— = ni = slope of the
a^y' y' ,2 a!^y'

tangent, whose equation then becomes yz=mx+ ^- To eliminate y', we have

b^x' = - a^y'm, and a'^y'^ + b'^x''^ = a%^
;

whence a^^ + ^}^Jl!^ = a%'^, or v'^ (^ahn'^ + b'^) = b\

62
from which we obtain — = ^ah)i^ + 6^. Thus the equation of the tangent is

y = mx-\- y/dhn^ + b^.

Changing the sign of b"^, and making a=: 6, we have the corresponding

equations for the hyperbola and circle,

y = mx-\- y/a^m^ — 6^, and y = mx + a Vm^ + 1.

13. To write the equation of the tangent to the parabola in

terms of the slope. p
Ans. y = mx + Tf—

•

^ 2m
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14. The rectangle of the perpendiculars from the foci of an

ellipse upon the tangent is constant and equal to the square of the

semi-conjugate axis.

Putting the equation of the tangent under the normal form, we have

Substituting in succession the coordinates of the foci, ae, 0, and —ae, 0,

for X and y, and taking the product of the results, we have, putting the

radical =D for brevity,

- (b^aex'- a%^) (b^aex' + a^h^) _. a^M - b^a^e'^x'-^

_ 62 [<y^2 ^ a2i,2^!2 _ 6%2g23,/2] _ b'^ la\i/'-2 + a^'^x''^ (I - e^)'\~
D'^

~
Z>2

^b^a^M!l±^^^ = b^
Z)2

This property is true also of the hyperbola.

15. The perpendicidar from the focus of an hyperbola upon

the asymptote is equal to the semi-conjugate axis.

This may be regarded as a particular case of the foregoing, the asymp-

tote being a tangent whose point of contact is at an infinite distance. Or,

directly, the equation of the asymptote y — -x under the normal form is

"•^~ = ; substituting the coordinates of the focus
\/a2 + 62

a: = ae = v a2 +62^ ^ = 0,

this expression reduces to — b.

16. To find the length of a tangent from a given point with-

out a circle.

Let (tj, ^j) be the given point Pp and P' the point of tangency,,

(a: — »i)2+ (y — n)2— i22_o being the equation of the circle and C its

centre. Then, since the radius to the point of contact is perpendicular

to the tangent, P^P'^ =P^C^- CP'^. But P^^C^ = {x^ - my + {y^ - n)'^

(Art. 7), CP'^ = R^. Hence

P,P'-^={_x,-my^{y^-ny-I^.

Now this is what the equation of the circle becomes when the coordinates

of the given point are substituted for x and y ; hence, put the equation

of the given circle under the form f{x, y) — 0, and substitute for x and
//

the coordinates of the given point. The result will be the square of

the required distance. Thus tlie length of the tangent to the circle

y2^a:2-6i/ + 8a:-ll = from (5, 1) is Vl + 25-6 + 40- 11 = 7.
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17. If two circles are tangent internally and the radius of the

larger is the diameter of the S7naller, all chords of the larger

through the j^oint of coritact are bisected by the smaller.

Take the origin at the point of contact and the diameter as the axis of

X. Then the equation of any chord is y = ax, and the equations of the

larger and smaller circles are i/^= 2Rx — x^ and y^ = Bx — x^, respectively.

The chord intersects the former at ( , ^1 and the latter at

/ R Ra \ V«^ + l «^+V
U'^i' «-+iJ

106. Chord of contact. Tangents are drawn to a conic from

a given external point ; to find the equation of the chord of con-

tact.

First. The ellipse and hyperbola. Let (/i, k) be the external

point, and (a;',?/'), {x",y"), the points of tangency. Then,

since both tangents pass through (/i, k)^ these coordinates must

satisfy theh' equations ; or

a'ky' ±b'hx' =±a-b\ (1)

; a^ky" ±b^hx" = ±a^b\ (2)

Then a'ky ±bVix =±a^b^

is the equation of the chord ; for it is satisfied by (ic', y')
,

(.t", 2/")? as shown by (1) and (2), and is of the first degree

with respect to x and y, and therefore represents a straight line

through {x\y'), {x",y").

CoR. The chord of contact to the circle is ky -j- hx = B^.

Second. The p)arabola. The equations of both tangents

must be satisfied for (7i, k) ; hence

ky' =p{h-^x'),

ky"=p (h-\-x").

Then ky —p {h-]-x)

e chord of contact, the reasoning being identical with that
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It will be observed that the equations of the chord of con-

tact are derived from those of the tangent b}* changing the

coordinates of the point of tangency, x\ y\ into those of the

external point ; these equations are therefore easily memorized.

107. General equation of the normal to a conic. The equa-

tion of any line through the point of tangency (.t', ?/') is

y — y' = a {x — x')

.

But the normal is perpendicular to the tangent, hence a must

equal , a< being the coefficient of x in the equation of the
at

tangent when under the slope form ; or the equation of the

normal is

y — y' = {x-x').
a,

Examples. 1. Find the equation of the normal to the circle

2/2 + a;2 = B',

The tangent to the circle is yi/' + xx'= R^, ov ^ — ^x -\ ; hence
rw*r fir vf \7

at=z -, and the normal is y — y'=^{x— x'); or, clearing of fractions,
ij' x'

x'y— y'x = 0. Since this equation has no absolute terra, the normal passes

through the origin, which is the centre ; hence the normal to a circle is the

radius to the point of tangency.

2. Find the normal to the ellipse a^y^ -\-h^x^ = a^h^.

Arts. y-y' = ^,(x-x'),

3. Find the normal to the hyperbola a^y- — h^x^ = — a^h'^.

Ans. y-y' = -j^,(x-x').
b^x^

4. Find the normal to the parabola y^ = 2px.

Ans. y — y' = — ^{x — x').

5. Find the normal to the circle y^=2Rx — X!-

v'
Ans. y-y':=-^^-^{x-x').
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6. Write the equation of a normal in the following cases :

(a) to a circle whose radius is 5 at the point (3, — 4).

(5) to an ellipse whose axes are 6 and 4 at the point x' = 1.

(c) to a parabola whose parameter is 9 at the point x' = 4:. -

(d) to an hyperbola whose axes are 6 and 4 at the point x'=S,

3y + 4x=0; 3?/= ± 9 V2a; if 5 V2 ;

3 2/ = qF4aj±34; 48?/ = q: 9 V55a; ± 104 V55.
Ans.

108. Defs. That portion of the axis of X intercepted

between the ordinate from the point of tangency and the tan-

gent is called the subtangent. In like manner that portion of

the axis of X intercepted between the ordinate and the normal

is called the subnormal. Thus (Fig. 70) , TM and MJ^ are tbe

subtangent and subnormal to the point P'.

109. To find the subtangent and subriormal at any point of

a conic.

Let Xt= OT represent the intercept of the tangent on the axis

of X; that is, the value of x when y is made zero in the equation

of the tangent. Then, x' being the

abscissa OM of P\ the point of tan-

gency,

ri)^= subtangent= OM- OT^x' -x,.

Similarly,

MN= subnormal = ON— 0M= x^— x',

x„ being the X-intercept of the nor-

mal, or the value of x when y is made Fig. 7o.

zero in the equation of the normal.

Examples. 1. To find the subtangent of the eUipse and the

hyperbola.

The equations of tlie tangents are a^i/i/' ± b^xx' = ± a^b'^. When y = 0,

x = xt=: — for both curves. Hence, also, for both curves,

subt = x' — xt.
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Cor. Since x,=:-. x,: a:i a: x\ or OT : OA' : : OA' : 03L
x'

Hence, the semi-transverse axis is a mean proportional between

the intercepts of the tangent and the ordinate of the point of tan-

gency. (Figs. 71 and 72.)

This principle affords a method of coyistructing a tangent at

any point.

First. The ellipse. Let P' be the point. Describe the circle

AP"'A' on the transverse axis, and produce the ordinate

Fig. 71.

through P' to meet the circle at P". At P" draw the tangent

to the circle, P"'T. Then P'T is the required tangent. For,

from the right similar triangles, OP"'M, OP"T,

OT: OP"\= OA') : : OP" : OM;

or xr. a: : a: X'

Since both OT= x,= ^, and MT= subt.=
x' x'

, are inde-

pendent of b, tangents to all ellipses having the same transverse

iixis, at points having the same abscissa x' = OM, will evidently

pass through T.

Second. TJie hyperbola. Let P be the point. Draw the

ordinate P3f^ and on AA\ OM, as diameters, describe circles

intersecting at Q. Draw QT perpendicular to X. Then TP'
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is the required tangent. For, joining Q with and Jf, from

the similar triangles OQM, OQT, we have

OM:OQ(=OA') :: OQiOT,

or Xfi a: : a:x'

Fig. 72.

Cor. Since 0T= — , Twill be zero only when x'=cc ; that
X

is, when the tangent coincides with the asymptote (Art. 91).

2. To find the subtangent of the parabola.

Ans. iCf = — oj' ; subt. = 2x\

It appears from this result

that the subtangent of the pa-

rabola is bisected at the vertex.

Hence to construct a tangent

at a given point P', draw the

ordinate FM and make

0T= OM.

Then TF' is the required tan-

ent.

Fig. 73,
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3. To find the subnormal of the parabola.

v'The equation of the normal being y — y' = — ~ (a:— a:'), we have, when

y = 0, x = Xn — p-{-x'. Hence subn. = x,, — x' = p, or the subnormal of the

parabola is constant and equal to one-half the parameter.

Therefore, to construct a tangent at a given pointy as P', draw

the ordinate P'iltf and make MN^p. Then P^M is the normal,

and P'2', perpendicular to it, is the tangent.

4. The tangent to the parabola bisects the angle between the

focal radius and the produced diameter through the point of

contact.

Let P' be the point of contact, F the focus, and P'J) the diameter.

Then FP' = x' + ^ (Art. 74, Cor. 2). Also TF= TO + 0F= x' + | (Ex. 2).

HenceFT= FP', the triangle TFP' is isosceles, and DP'T=P'irF= FP'T.

Therefore, to draw a tangent at any point, as P', draw the focal ifadius P'P,

the diameter P'D, and bisect their included angle.

Cor. 1. FN= OM- 0F+ MN=x^-'^-^p (Ex. 3);

.-. FN= x' 4-f = FT=FP,

or the circle described from the focus ivith a radius equal to the

focal radius of any point passes through the intersections of the

normal and tangent to that point with the axis. The triangle

FF'N is, thus isosceles, and FNF = FP'N.

CoR. 2. PFN= FPT+ FTP' = 2 FTP'. Hence, to draw

a tangent parallel to a given line., as AB., from F draw FP mak-

ing an angle with the axis equal twice that made by the given

line. P' will be the required point of contact and P'T, parallel

to AB, the required tangent.

Cor. 3. To draw a tangent through a given point idthout

the curve. Let /I'be the given point. Join K with the focus,

and with JiTas a centre and KF as a radius describe a circle

cutting the directrix in D and D'. Draw the diameters throuoh

D and D' ; their intersections with the curve, P' and P", are
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the points of tangenc}*. To prove that KP^ is a tangent, we

have P'D=P'Fhy definition of the parabola; also KF = KD
by construction. Hence KP bisects the angle FP'D, Simi-

larly, P"Kmsiy also be shown to be a tangent at P". y
5. The tangent and normal at any point of the ellipse bisect the

angles formed by the focal radii drawn to the point of contact.

Since the tangent P'K is perpendicular to the normal P'N, we have

only to prove that P'N bisects FP'F', or that FN : FP' :. F'N : F'P.

Now, FP' and F'P' are the focal radii a + ex'^ a^ex' (Art. 57), respectively.

Fig. 74.

FN=FO-\'ON, in which FO=ae, and ON is the X-intercept of the

normal. Making ^/t = in the equation of the normal

^2 A2 1
we have x=ON=- -xf=e'^xf. .

Hence FN = ae -{• e"^ x' = e (a + ex')

.

Also F'N= F'0-ON= e (a^ex').

Therefore ^= l(li±^, FN^eja-ex') ^^ FN^FN^
FP' a-]- ex' F'Pi a -ex' FP' F'pi

To draw a tangent at any point, as P', we have, obviously, only to bisect

the angle FPF' and draw P'K perpendicular to the bisector.

/^
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6. The tayigent and normal at any point of the hyperbola bisect

the angles formed by the focal radii drawn to the point of contact.

Let P'T be the tangent at P'. We have to prove that it bisects the

angle FP'F', or that FT : FP' : : F'T : F'P'. The focal radii FP', F'P>,

are ex'— a and ex' + a (Art. 67), respectively. FT=FO — OT, in which

Fig. 75.

FO = ae and OT is the X-intercept of the tangent. Making t/ = in the

equation of the tangent a^yy'— h^xx^^ — a^b^ we have x= 0T=—
;

2
^'

hence FT= ae = — (ex' — a).
x' X'

Similarly, F'T = —^ (ex' -\- a), and, as before.
FT ^F'T

X' FP'~ F'P''

To draw a tangent at any point, as P', bisect the angle between the focal

radii drawn to the point.

7. The principles of Exs. 5 and 6 afford a method for con-

structing a tangent passing through a given point without the

curves. Thus let K (Figs. 74, 75) be the given point. Join K
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with the nearer focus F\ and with /r as a centre and KF' as a

radius describe an arc. With the farther focus i^ as a centre and

FH equal to the transverse axis as a radius describe a second

arc cutting the first. in H and Q. Join H and Q with t\\Q farther

focus ; the intersections P' and P" of FQ and FII with the curve

are the points of tangency. To prove that KP is a tangent,

WG have KH= KF\ being radii of the same circle ; also

P'H= P'F', since each is equal to 2 a^:FP\ the upper sign

applying to the ellipse and the lower to the hyperbola. Hence

KP bisects the angle F'FH in the elUpse and PP'P' in the

hyperbola.

CoR. If an ellipse and an hyperbola have the same foci, at

the points of intersection they have the same focal radii, and the

tangent to the hyperbola is the normal to the ellipse, and con-

versely. Hence confocal conies intersect each other at right

angles.

8. Tangents at two points P', P", of a parabola^ meet the axis

in T' and T". Prove that T'T" = FP' - FP", F being the

focus.

9. Two eq lal parabolas have a common axis but different

vertices. Prove that any tangent to the interior, limited by the

exterior, parabola, is bisected at the point of contact.
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SECTION X.— OBLIQUE AXES.

CONJUGATE DIAMETERS.

110. Equation of the ellipse referred to conjugate diameters.

Let A'A" = 2a\ B'B" = 2h'j be conjugate diameters, the

axes of reference being taken as in the figure. To transform

the equation
ay + 62^ = a262 (1)

to these axes, we have the formulae (Art. 22, Eq. 7)

ic = a;iCOS7' + 2/iCosyi, y = x^ sin y]-yi sin y^.

Substituting these in (1), and omitting the subscripts of x

and y,

¥(2)
(a^ sin^yi+ b^ cos^yi) y^-\-2 (a^ sin y sin yi+ b^ cosy cos yi)a^

+ (a^ sin^y + 6^ cos^ y)oc^=z a^ b^.

But, since the diameters are conjugate, they must fulfil the

52
condition tany tanyi =

^
(Art. 90)

,
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or a^sinysinyi = — &^ cosy cos yi.

Hence the coefficient of the second term of (2) is zero, and the

equation becomes

(a' sin^yi + h' cos^yO y' + (a' sin^y -f- h' cos^y) x' = a'b\ (3)

Making y = 0, we have

a^sin^y + 6^cos^y

'

and when aj = 0, 2/^=6'2^-^
a^sm^yi-l-o^cos^yi

Substituting from these equations the values of the coefficients

of if- and X- in (3), we have the equation in terms of the semi-

diameters,
a'2 2/2 + 6'2a^ = a'-6^ (4)

which is of the same form as the equation of the ellipse referred

to its axes, the semi-diameters having replaced the semi-axes.

CoR. 1. The equation of the hyperbola referred to conjugate

diameters is ^,2^2 _ yir^a. ^ _ ^^12^,2^ ^5)

since the onl}' change in the above would be that arising from

the minus sign of b^ in the equation of the hyperbola.

CoR. 2. The equations of the tangents to the ellipse and

hyperbola referred to conjugate diameters are

a'^yy'±b'^xx'=±a"b'^, (6)

since the only change in the process of Art. 104 would be that

arising from the substitution of a' and b' for a and b.

111. The squares of ordinates parallel to any diameter of an

ellipse are to each other as the rectangles of the segments into

ichich they divide its conjugate.

Let P'M\ P''M", be the ordinates parallel to any diameter

BB\ and meeting its conjugate AA' in M' and M". Then,

a'-y^-}- b'-x- = a'^b''^ being the equation of the ellipse referred to

these diameters, we have for the points P' and P"
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uiviamg,
^„^ a"-x"' {a'-{-x"){a'-x"y

112. The squares of ordmates parallel to any diameter of an

hyperbola are to each other as the rectangles of the distayices from

the feet of the ordinates to the vertices of the conjugate diameter.

113. The parameter of an ellipse is a third proportional to

the transverse and conjugate axes.

The axes being conjugate diameters, Art. Ill applies, and

2/'2
:

2/"2 : : (a 4- x) (a - x') : (a + x") (a - x") .

Let P' coincide with the extremity of the conjugate axis, and

P" with that of the parameter. Then

y'=b, y"=p, aj'= 0, x"=ae,

and the proportion becomes

But l-e^ = -', .\a^:b^::b^:p^ or 2a: 2b : : 2b :2p.
(V- '

114. Any ordinate to the transverse axis of an ellipse is to the

corresponding oi'dinate of the circumscribed circle as the conjugate

axis of the ellipse is to its transverse axis.

52
From the equation of the ellipse y'^ = — {a^— x^) ^ and that of

a
the circumscribed circle y^z=a^—a?^ where y and 2/1 are the

ordinates corresponding to the same abscissa cu, we have

115. The sum of the squares of conjugate diameters to the

ellipse is constant and equal to the sum of the squares of the axes.
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Let x\ y\ be the coordinates of A^ (Fig. 76), and a;", 2/"?

those of B\ Since jB"^' is parallel to the tangent at A\ its

equation is ?/ = Tl^' Combining this with ari/-\- h^af = a^6^,

to determine the intersections B' and B", we find

x = x"=±^, and 2/ = 2/"=T—

•

b a
But

a'2 = aj'2+ 2/'2 = x"+ -' (a2_ aj'^) = b'-^^^^x'' = 52+ e2^'2

.

and 6'2= a;"=+2,"2^^+^' = ^' ^Ja-'-x'^)

Hence

^2 ^2= a^H — x'^ = a^— e^x'^.

a'2+6'2 = a2+&2.

116. T^e differeiice of the squares of conjugate diameters to

the hyperbola is constant and equal to the difference of the squares

of the axes.

Let «', y\ be the coordinates of A', and a;", y", those of B',

Fig. 77.
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52 ^f

The equation of B"B' is y = -^— x. Combining this with the
d'y'

equation of the F-hyperbola, a^y^— b^x^ = a^b^, to determine the

intersections B' and B", we find

Hence

X=:x"=±-^, yz=y"=±
a

a"= x''+y''= aj'2+~ (x"- a') = ^^!+l'a;'2_ b"-= e^x''- b'

;

and &'2^aj"2+2/"2 =^4
b' a^ b-\_a^ J a^

' /^i2 x-,2 __ ^2/y<F2 /T.2-ic'"— a" = e"a;'"— a*.

Hence a'^-b'^^a'-b'.

117. T^e rectangle of the focal radii drawn to the extremities

of any diameter of an ellipse is equal to the square of the seyni-

conjugate diameter.

Let {x\ y') be one extremity of the diameter. Then, if

r and r' represent the focal radii, ot' = (a — ex') {a -{- ex')

(Art. 57). Let (a;", y") be the extremity of the conjugate

diameter whose length is 2 6'. Then
^2,.f2 7)2 ^'2

b'^=x"'+y"'=^+^ (Art. 115)
6- a^

_a^ b^/ 2_ ^'2\_i_ b-^' _ .,2_ Cl —t> ^12 _ ^2_ p2^f2

This property is also true of the hyperbola.

118. The area of the parallelogram formed by tangents at the

extremities of conjugate diameters to the ellipse and the hyperbola

is constant^ and equal to the area of the rectangle on the axes.

Draw OD perpendicular to one side of the parallelogram

(Figs. 76, 77). Then the area of the parallelogram is

4 OB'. OA' . sin B'OA'= 4 OB'. OA' . sin 0A'T=4: OB'. OD.
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The normal form of the equation of the tangent at A} is

g-yy^ ± b^ xx' g: orlr _ ^

Va'y'^+b^x''' ~

Hence the distance from the origin to the tangent is

^'^' ^^ =4 (Arts. 115,116),
Va^y'^+b'x'^ la'y'^ ,^x^

\ 6^ "^ a'

and 40J5'.Oi> = 46'.^ = 4a&.
b'

119. To find the equal conjugate diameters of the ellipse.

Equating the values of a'^ and 6'^ (Art. 110),

a^ sin^y + b^ cos^y a^ sin^yi -f- b^ cos^yj

whence a^ sin^yi + 6^ cos^yj = a^ sin^y + W cos^y

;

or, transposing,

a^(sin^yi — sin^y) = 5^(cos^y — cos^yi) =?>^(sin^yi — sin^y),

since cos^^l = 1 — sin^^.

Hence (a^- 6^) (sin^yi - sin2y) = 0, (1)

and therefore sin^yi = sin^y. Since, in the ellipse, if y is acute,

yi is obtuse, and the sines are equal,

yi = 180° — y and tanyi = — tany.

52
Substituting this in tany tan yi = ?

a^

the equation of condition for conjugate diameters to the ellipse,

tany=±-? .'. tanyi= — tany = q; -•

a a

Hence, when the diameters are equals the aiigles they make
ivith the transverse axis are supplementary and the diameters fait

on the diagonals of the rectangle on the axes.
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Cor. 1. If a = 6, (1) is satisfied independent!}^ of y and yi;

or, in the circle every diameter equals its conjugate.

Cor. 2. For the hyperbola, (1) becomes

(a' + b') (sin^yi - sin^y) = 0,

which cannot be satisfied for sin^yi = sin^y, since in the hyper-

bola both angles are acute and this condition would make them

coincide. Hence the hyperbola has no equal conjugate diameters.

From a'^ — 6'^ = a^ — 6^, however, we see that if a = b, then

a' = 6' ; or, every diameter in the equilateral hyperbola equals its

conjugate.

SUPPLEMENTAL CHORDS.

120. Defs. Straight lines drawn from any point of an ellipse

or an hyperbola to the extremities of a diameter are called sup-

plemental chords.

Thus, /S"'Q, QS' (Figs. 76, 77) are supplemental chords.

121. If a chord of an ellipse or hyperbola is parallel to a diam-

eter^ the supplemental chord is parallel to the conjugate diameter.

Let A!^A^ (Figs. 76, 77) be a diameter, and S^'Q the parallel

chord. Draw the supplemental chord QS\ and let x\ y\ be the

coordinates of S\ and therefore —x\ —y\ those of jS". The

equation of S"Q will he y-\-y' = a"(x + x') (Art. 31) , and that

of S'Q^y —y' = a'(x — x') . Combining these equations by mul-

tiplication, 2/^— 2/'^ = a'a"{a? — x'~) , in which x and y are the co-

ordinates of Q (Art. 36) . But /S" and Q are on the curve ; hence

aY^± bV = ± a^b^ and aY± b^x" = ± a^'' ; or, by subtraction,

2/2 — 2/'2 = q: _ (x" — ic'2) . Equating these two values of y^— y'\

we have a^a" = q: — • But this is the condition for conjugate
a ,2

diameters, viz. : tan y tan yi= ip — (Arts. 90, 93). Hence if

a' = tan y, a" = tan yj, and conversely.
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Cor. 1 . To draw a tangent at a given point of the curve,, as

A\ draw the diameter A'A" and any parallel chord as S"Q,

Draw the chord QS' supplemental to S"Q. A line parallel to

QS' through A' is the required tangent.

CoR. 2. To draw a tangerit parallel to a given line, as JOT,

draw an}^ chord QS' parallel to it, and the supplemental chord

QS". Then the diameter A"A', parallel to S"Qj determines the

points of tangenc}^ A" and A',

PARABOLA REFERRED TO OBLIQUE AXES.

122. Equation of the parabola referred to any diameter and

the tangent at its vertex.

The formulae for transforming from rectangular to oblique

axes, the new origin being at 0', are (Art. 22, Eq. 3)

a; = iCo + a?iCosy + 2/iCOSyi, 2/ = 2/o + a^i sin y -f t/i sin yj. (1)

But y = 0, since the new axis of X is parallel to the primitive

7)
one, hence cosy = 1, siny = 0. 'Also tanyi = — ? since the new

axis of Fis tangent to the curve at (xq, 2/0) (Art. 104, Ex. 4) ;

hence from
sin yi sin yj

tanyi
cosyi Vl — sin^ 71

we have sin yj = —-^
Vyl+p^

and therefore cos yj = Vl-sin^y, = ,

^"
-

Substituting these values in (1), they become

x = xo + x,+ 2/i?/o .,_., , y.P

Substituting these values in the equation to be transformed,

^2 = 2px, and remembering that, since 0' is on the curve,
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y^ = 2j9a;o, we have, after omitting the subscripts of x and ?/,

(2)
y.^^_M±fl^^

p
which is the required equation.

Cor. 1 . ?/o = MO' = MN tan MNO' =p cot yi, O'N being the

normal and MN= subnormal =p. Hence

^M±^= 2^ (1+ cot^yO = 2l) cosecVi= 4|-,
P Sin yi

and (2) ma}^ be written

y = -^- ^'
siir yi

(3)

Fig. 78.

Cor. 2. From the polar equation of the parabola,

P .

1 — cos ^
'

making ^ = yi, we have

r = FQ = P

making ^= 180° + yi,

1 — cos yi

1 + cos yi
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Hence QQ' = FQ + FQ^ =-^ ;

sin-'yi

or, representing QQ' by 2p', (3) may be written

y^ = 2p'x, (4)

Thus the equation of the parabola referred to any diameter

and the tangent at its vertex is y^ = 2p'x^ 2p' being the focal

chord parallel to the tangent, and becoming 2p when the diam-

eter is the axis.

Cor. 3. The equation of the tangent referred to a diameter

and the tangent at its vertex is yy'= p' {x -\- x') , since the only

change in the process of Art. 104 is that arising from the sub-

stitution otp' tor p.

123. The squares of ordinates to any diameter of a parabola

are to each other as their corresponding abscissas.

Referred to any diameter and the tangent at its vertex the

equation of the parabola is y^=2p'x. Hence for the points

P'andP",
y'2^2p'x', y"'=2p'x";

or, by division, |! = ^,.

ASYMPTOTES.

124. Equation of the hyperbola referred to its asymptotes.

The asymptotes being oblique except when the hyperbola is

rectangular (Art. 92)^ we use the formuliB for passing to

oblique axes with the same origin,

x — Xi cos y + 2/i cos yj, y = Xi sin y + 2/1 sinyi

;

and, since the asymptotes coincide with the diagonals of the

rectangle on the axes,

sin y = -

~
sin yi = -

, cos y = cos yi= ^
J

»-'.»• r I —

—

, \j\jf3 Y — v/vro /I —
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The formulae therefore become

a
X (a^i+^i), y (2/1 -aji).

Substituting these vahies in a^y^— b^x^ = — a-b^, and omitting

the subscripts, we obtain

i»2/ = -—7

—

Fig. 79.

Hence the general form of the equation of the hyperbola

referred to its asymptotes is xy = m, in which m is constant.

CoR. 1. The equation of the F-hyperbola referred to the

same axes is xy = (Art. 71)

Cor. 2. The equation

Bxy -\-Dy + Ex-{-F=0

is the general equation of the hyperbola referred to axes parallel

to its asymptotes. For, transforming xy = m to parallel axes

by the formulae a; = a!o+a7i, 2/ = 2/0+2/1? we have, after dropping

the subscripts, 3^2/ +^o2/ + 2/o^ + ^o2/o = 0, which is the above

form. The equations of the asymptotes are evidently 2/
= — 2/o>

X= — Xo.
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125. The intercepts of the secant between the hyperbola and its

asymptotes are equal.

Let P'j P" (Fig. 79) , be any two points of the hyperbola,

the equation of the secant P^P^\ Making a; = in this equa-

tion,

y _ y= jr>'(2'= ^ —L.
a;'— a;"

But y'x'=y"x"=m, since the points are on the curve.

Hence D'Q
,_y"x'-

x'—x'
=y"=P"M",

Hence the triangles P"M"Q'\ Q'D'P', being equiangular, and

having a side in one equal to a side in the other, are equal,

and P"Q"=P'Q'.

CoR. To construct the hyperbola when the axes are given:

draw the asymptotes, the

diagonals of the rectangle on

the given axes, and through

the extremities of the trans-

verse axis, as A^ draw 11',

22', 33', etc., and make
IP', 2P", 3P"', etc., equal

respectively to ^ 1', ^2', J[3',

etc. Then P', P", P'", etc.,

are points of the curve. By
a similar method we may
construct the curve when the

asymptotes and one point of

the curve are given. p-ig go.

126. The area of the triangle formed by any tangent with the

asymptotes is constant^ and the tangent is bisected at the point of
contact.
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The equation of the secant P^P'^ (Fig. 79) is

x'—x"

From the equation of the curve,

icy= x"y"= m, .'. y'= —^.

The fraction ^-—^, therefore becomes

x"y" ^n

x'-x" ~ x''

or, when P" coincides with P', — ^^. Hence the equation of

the tangent TT' is
^

and its intercepts are y=0T=2y\ x= 0T'=2x'. Hence

P' is the middle point of TT' (Art. 6).

Again, the area of the triangle OTT' is

^^'^^'
sin TOT'=

^^''^y'
sin 2 TO^

2 2

= 2xy 2 sin TOJ. cos TOA = 4 x'y'—;===,
, ^ ^

= «&.

Va +^ Va +&

since x'y'=——— • Hence the area of the triangle is constant

and equal to the rectangle on the semi-axes.

Cor. To construct a tangent at any point, as P', when the

asymptotes are given, draw the ordinate P'M' and make

M'T' = OM'. P'T' is the tangent.

127. Tangents at the extremities of conjugate diameters meet

on the asymptotes.

The equation of the straight line P'B' (Fig. 79), the co-
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Ctll t)Or

ordinates of P' being x\ y\ and those of B^ being -^, —
(Art. 116), is ^ ^

h

or y-y'= — -{x-x').

But the equation of OT^' is y = x\ hence P'-B' is parallel

to the asymptote OT'. Again, the middle point of P'B^ is

which satisfy y = -x. Hence the straight line joining the ex-

tremities of conjugate diayneters is parallel to one asymptote and

bisected by the other. But the diagonals of a parallelogram

bisect each other, and P'B' is one diagonal of a parallelogram

of which OP' and OB' are adjacent sides ; hence the other

diagonal coincides with the asymptote, or the tangents at P'

and B' meet on the asymptote.
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CHAPTER IV.

LOCI,

3>©=:c

128. Classification of loci.

When the relation between x and y can be expressed by the

six ordinar}' operations of algebra, viz., addition, subtraction,

multiplication, division, involution, and evolution, the powers

and roots in the latter cases being denoted by constant exponents,

the function is called an algebraic function ; and loci whose

equations contain only algebraic functions are called algebraic

loci.

Algebraic loci are classified according to t^e degree of their'

equations as loci of the first, second, etc., orders. We have

seen that there is but one locus of the first order ; that is, whose

equation is of the first degree, namely, the straight line ; and

that all loci of the second order are conies. All loci whose

equations are above the second degree are called higher plane

curves.

A function which involves a logarithm, as ic= log?/, is called

a logarithmic function; one in which the variable enters as an

exponent, as ?/ = a"", an exponential function. If a is the base

of the logarithmic system, the latter function is evidently

another way of expressing the former. Functions involving

the trigonometrical elements, as y — ^mx^ a;=sin~^?/, etc.,

are called circular functions, y — ^inx and x=^\ir'^y are

different forms of the same relation, the former being called the

direct, and the latter the inverse circular function. It may be

shown that logarithmic, exponential and circular functions can-

not be expressed by a finite number of algebraic functions, and
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for this reason they are called transcendental functions. A
transcendental equation is one involving transcendental func-

tions, and the locus of such an equation is called a transcen-

dental curve.

The exercises which follow will afford the student practice

in the production of the equation of a locus from its definition.

In all cases the object is to find a relation between the given

constants, x, and y ; the latter being the coordinates of any

point of the .required locus. Any such relation, when stated in

the form of an equation, will be the equation sought, whatever

the axes ; but the simplicity of both the solution and the result-

ing equation will depend upon the choice of the axes. The

student will observe two cases : first, when the given conditions

furnish directly a relation between x and y ; second, when the

conditions involve other variables
;
^nd in this case these con-

ditions must afford a sufficient number of independent equations

to permit the elimination of all the variables except x and y.

Thus, if n variables are involved exclusive of x and ?/, the

conditions must furnish n + 1 equations.
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SECTION XI.— LOCI OF THE FIRST AND SECOND
ORDER.

129. 1. Given the base of a triangle and the difference of

the sqxiares of its sides^ to find the locus of the vertex.

Let h be the given base and d? the constant diflference. Take

the base for the axis of X, and its left-

hand extremity for the origin, x and y
being the coordinates of the vertex.

Then, by condition, OP^-BP^=d\ or

d^ + b^
whenceMB 26

Fig. 81. Hence the locus is a straight line parallel

(P _L. ^2
to F, at a distance from it equal to ——— If the triangle is

h
2b *

isosceles, d=0, and x = -- In this case the conditions furnish
2.

directly the relation between x and y.

2. To find the locus of the middle point of a rectangle inscribed

in a given triangle.

Let a = altitude of the triangle, b and c the segments of tlie

base, the axes being taken as in the figure. Then the equations

of AB and AC are known ; namely.

b a
1, and - + ^

c a

Now the abscissa of P is the half sum of the abscissas of Q and

R ; and if ^ = ^ be the altitude of the rectangle, and this

value be substituted for y in the above equations, we find

h
6, Xj c.
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Hence x = abscissa of

^-i'l^{b+c).
2 a

But the ordinate of P= 2/

This condition enables us to

eliminate the variable Tc from the

above value of x ; substituting

therefore k = 2y, we have

2ax = {a-2y)(b + c),

a straight line bisecting the base and altitude, since its intercepts

are ^ (& + c) and ^ a.

3. To find the locus of a point so moving that the square of.

its distance from a fixed point is in a constant ratio to its dis-

tance from a fixed line.

Let B be the fixed point, OX the fixed line and axis of X,

the axis of F passing through JB, and 0B= a. Then, m being

the constant ratio. PM = m. But BP'

PM= y. Hence

2/- + a;^ — (2 a H- m) 2/ + tt^ = 0,
'

which is the equation of a circle whose

x^ -^-iy
— aY^ and

t

centre is at ( 0,
2a-}-m

and whose

radius is ^ V4r a?/i + m^ (Art. 50). If

the point is on the line, a = 0, the cen-

m
tre Ko,f) and the radius =

4. The squares of the distances of a point from two fixed

points are as m to n. Find the locus of the point.

Let (a, 0), (0, 5), be the coordinates of the fixed points, the

axes being assumed to pass througli them, and P ^ny point of

the locus. Then, A and B being the fixed points.
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PB x' + jy-hy _m,
PA^~y'' + {x-aY~ n

'

or, clearing of fractions and reducing,

2/^ + ar y -\ x \ = 0,
n — m n — nn n — m

a circle whos6 centre is
f

TIL-^ _!^— )^ and radius is

\^ n — m n — m
1

If 6 = 0, or a = 0, that is, if both the points are on the same

axis, the centre is on that axis. If a = 6 = 0, the centre is at

the origin and i2 = 0, or the locus is a point ; unless also m = n,

when ^ = -•

x:

/ 5. Find the locus of the vertex of a triangle having given the

base and the sum of the squares of the sides.

Ans, A circle whose centre is the middle point of the base,

6. Given the base of a triangle and the ratio of its sides, find

the locus of the vertex.

OP
Let 6 = base of the triangle (Fig. 81), and—- = m, the

ratio. Then OP"" = m^PB\ or
^^

x^ + f = m\f + {b-xy),

V. 2 . ^ . 2m^6 m^b^ ^whence 2/ + a^ +
:; o^- -. = ;

f mJ^b \ mb
a circle whose centre is f ^^ ), and radius is

7. From one extremity A' of a diameter AA' to a circle a

secant is drawn meeting the circle at P'. At P' a tangent to the

circle is drawn, and from A a perpendicular to this tangent. The

perpendicular produced meets the secant at P. Find the locus

ofP.
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Let the diameter be the axis of X and the centre the origin.

Let (ic', y') be the coordinates of P' ; then (Art. 32) \

is the equation of the secant ; the equation of the tangent at

P' is yy' + xx' = i?% hence the perpendicular on the tangent

from -4 is
,

3, = |(x-i?). (2)

Combining (1) and (2), to find P, we have

x=2x^-i-E, y = 2y'. (3)

But {x', y') is on the circle, hence x'^ + y'^ = P^. Substituting

in this equation the values of x' and y' from (3), we have

(^x-Py + y^-4:P^=0, -

a circle whose centre is at {P, 0), that is, at A, and whose

radius is 2P = AA'.

^ 8. A line is drawn parallel to the base of a triangle^ and the

points where it meets the sides are joined transversely to the

extremities of the base; find the locus of their intersection. Take

the sides as axes. ^V^^

Ans. A straight line through the middle point of the base and

the opposite vertex.

9. Given the base and sum of the sides of a triangle^ if the

perpendicular be produced beyond the vertex until its whole length

is equal to one of the sides, to find the locus of the extremity of

the perpendicular. Ayis. A straight line.

1 . Given any parallelogram
,

and PP\ QQ', lines parallel to

adjacent sides. Prove that the

locus of the intersection of PQ
and P'Q' is a diagonal of the ^^~Qf l
parallelogram (Fig. 84).
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11. In Fig. 84, find the locus of the intersection of BL and

PA^ A and B being fixed points, and P and L subject to the con-

dition that OL-\-OB=OP-\- OA.

12. A line cuts two fixed intersecting lines so that the area of

the intercepted triangle is constant. Find the locus of the middle

point of the line (see Art. 126).

Let OX, OF, be the fixed lines and axes, AOB the inter-

cepted triangle, m the constant area, <^ the constant angle BOA,
and Pthe middle point of AB. Then OM=x, MP=y^ and,

since P is the middle point of AB, 0^1 = 2 2/ and 0B = 2x.

Hence

area BOA = m = 2x.2y.sm<f>

or xy= m
2 sin

(f>

an hyperbola whose asymptotes

are the fixed lines (Art. 124).

13. Given two intersecting

fixed lines and a fixed point,

A line is drawn through the fixed point. Find the locus of the

middle point of the segment intercepted by the given lines.

Let OX, OF (Fig. 85), be the fixed lines and axes, Q the

fixed point, its coordinates OR = m, BQ= n, AB the line, and

Pits middle point. Then, from similar triangles,

0A{=2y) :0B(=2x) ::RQ(=n) :RB(=2x-m),

or 2xy — my — nx = ()\ an hyperbola passing through Q, whose
m

asymptotes are a;= —

»

<6

(Art. 124, Cor. 2)

14. From a fixed point A (Fig. 85), a line AB is drawn to

meet a fixed line OX. From the intersection jS, a constant dis-

tance BR = b is laid off, and from R a line RQ is drawn, mak-

ing a constant angle with OX, to meet AB in Q. Find the

locus of Q.
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Since the angle BRQ is constant, take a parallel to QR
through A for the axis of Y, and the fixed line OX for the

axis of X, and let OA = a. Then, OAiRQ:: OB: MB, or

a:y::x-j-b:b', whence xy -i-by — ab = 0, an hj-perbola through

A, one of whose asymptotes is the fixed line and the other

x = -b (Art. 124, Cor. 2).

15. To find the locus of the intersection of a perpendicular

from the focus of a parabola on the normal.

The equation of the normal is

and that of the perpendicular is

Combining these to find the point of intersection, we find it

to be

_pM^^fcyM-2py2 _2px^y'+p^y^
^""

22/'H2p2 ' y~~¥y^^+2^'

, In this problem the conditions introduce the auxiliary vari-

ables a;', y\ the coordinates of the point of contact from which

the normal is drawn. But tliis point is on the parabola; hence

we have the additional condition 1/'^= 2px\ Eliminating 2/' by

means of this equation, we have

Finally, combining and eliminating x\ we have

2 P P^2^=2^-4'

a parabola on the same axis, whose vertex is at [^, ), and

whose parameter = ^ that of the given parabola.

16. The locus of the intersection of the perpendicular from the

focus of a parabola upon the tangent is the tangent at the vertex.
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The equation of the tangent is

and of the perpendicular upon the tangeut through the focus,

Combining these to find the intersection, we obtain, on

eliminating y^ a;(p + 2cc') =0, which, since a;' cannot be nega-

tive, is satisfied only for a;=0; that is, tlie intersection is

always on Y, which is the tangent at the vertex.

How does this property enable us to find the focus when the

curve and axis are given ?

17. Through any fixed point chords are drawn to a parabola.

Find the locus of the intersections of the tangents to the parabola

at the extremities of each chord.

Let a^i, 2/i? be the coordinates of the point through which the

chords are drawn, and suppose the tangents at the extremities

of one of these chords to meet at (^, k) . Then the equation

of the chord is (Art. 106)

ylv=p{x-\-h).

But the chord passes through the fixed point (a^i, y^) , hence

yxlc = p{x^-\- h). Now this is the equation of a straight line, in

which h and k are the variables ; therefore the locus of (A, k)

is a straight line.

If the fixed point is the focus, x^ =^, ?/i
= 0, and the equation

becomes h = — -' Hence the locus of the intersection ofpairs of

tangents drawn at the extremities offocal chords is the directrix.

18. Through any fixed point chords are drawn to the ellipse

(or hyperbola) ; to find the locus of the intersection of the tan-

gents at the extremities of each chord.

Let iCi, i/i, be the coordinates of the point through which the

chords are drawn, the tangents at the extremities of one of
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them meeting at {li, k) . Then the equation of this chord is

(Art. 106)

But this chord passes through the fixed point (oji, 2/1) , hence

a^yik ± b'xji= ± a?W. Now this is the equation of a straight

hne in which li and Tc are the variables ; therefore the locus is a

straight line.

If the fixed point is the focus, Xi= ae, 2/1= 0, and the equa-

tion becomes U =*— " Hence the tangents at the extremities of
e

focal chords to the ellipse and hyperbola intersect on the directrix.

19. The locus of the intersection of the perpendicular from the

focus of an ellipse upon the tangent is the circle described on the

transverse axis.

In this problem the equation of the tangent in terms of the

slope (Art. 105, Ex. 12),

y = mx + y/ahn^-\- 6^,

is most convenient. The perpendicular upon it from the focus

y = (x-ae).
m

From the former, y — mx = \^a^m^-\- b^, and from the latter,

my i-x= ae. Squaring and adding,

(y'+x")(\ +m'')= b'-{-m'a'+a'e'=b'-i-ma'+a'^^^^= a\l-\-m'\
a?

which eliminates m, giving y'^-\- x^= a^.

This property is also true of the hyperbola.

20. Find the locus of the intersection of pairs of tangents to a

parabola tvhich intercept a constant length on the tangent at the

vertex.

The equations of the tangents are

yy^ =p{x-{-x^), (1)

yy''=p{x + x''), (2)
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The equation of the locus will be found by combining these

and eliminating x', y\ x", and y". To effect this elimination we

have the equations of conditipn,

y" = 2px\ (3)

y"' = 2px'\ (4)

v'-v" = a, a constant. (5)

Substituting in (1) and (2) the values of x' and x" from (3)

and (4), we have

yy'=px-i-^, (6)

yH2

yy"=px-^^' (7)

Substituting from (5) y'= 2a-{-y" in (6) and combining the

result with (7), we have y"=y — a; which substituted in (7)

gives y^= 2px -\- a^, an equal parabola with the same axis, and

vertex at

/ 21. Parallel chords^ as QQ', whose centre is C, are drawn to

a circle. AA' is a diameter parallel to the chords. Find the

locus of the intersection ofAG with the radii through the extremi-

ties of the chords.

Ans. A parabola whose axis is the diameter and vertex mid-

way between 0, the centre, and A.

22. Find the locus of the intersection of tangents drawn at the

extremities of conjugate diameters of an ellipse.

Ans. 2ay+26V=4a262.

23. Lines BL, R'L' (Fig. 84), are drawn parallel to one side

of a parallelogram and equidistant from the centre. Find the

locus of the intersection of a line drawn from through the

extremity R of one of the parallels ivith the other, or the other

produced. Ans. An hyperbola.
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X 24. A and B are fixed points. Find the locus of P when
pryi— = a constant^ D being the foot of the perpendicular

\
from P on AB. Ans. An ellipse,

/ 25. To find the locus of the centres of all circles which pass

through a given point and are tangent to a given straight line.

Ans. A parabola,

^ 26. If a variable circle touch a fixed circle and a fixed straight

line, the locus of its centre is a parabola.

27. Given the base of a triangle and the product of the tan-

gents of the base angles; the locus of the vertex is ari ellipse.

28. The base and area of a triangle is constant; the locus of

the vertex is a straight line.
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SECTION XII.— HIGHER PLANE LOCI.

130. The limits of this work permit a reference to a few

only of the higher plane curves possessing interesting geometric

properties.

1. The cardioid. Through any point of a circle a secant

is drawn cutting the circle in Q. Required the locus of a point P
on the secant ivhen QP= R, the radius of the circle.

Let C be the centre of the circle, CO = R the radius, the

pole, and OX, a tangent at 0, the polar axis. Then

op=oq^qp.
But OP=r,

0Q= OD cosQOD = OD s'mXOQ = 2 Rsind, and QP=R,

Hence r=2R sinO -{- R. (1)

Discussion of the equation. For ^ = 0°, r = R= OA,

As d increases, r increases, and when 6 = 90°, r= 3 i? = OB.
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As 6 increases from 90° to 180°, r diminishes, and when 0= 180°,

r= R= OE. When passes 180°, sin ^ becomes negative,

but ?• remains positive until sin^ = —
-J-,

when r = 0; at this

point ^ = 210°. From this value of ^, r is negative and the

portion OFO is traced, r being — E when d = 270°. From
^=270° to ^ = 360° the portion COA is traced, r becoming

positive again when = 330°.

Rectangdlar equation of the cardioid. Transferring to

the axes YOXhj the formulae (Art. 24, Eq. 4),

r = Vi»^+2/^, sin^=—===r»

we have (o^ + y'-2Eyy={^+ y') B\

a curve of the fourth order.

(2)

Trisection of the angle. The cardioid affords a method

of trisecting an angle, as follows. Let NCO be the given angle.

With the vertex (7 as a centre describe any circle, and construct

the cardioid to tljis circle. Only that portion of the curve in the

vicinity of NC produced need be constructed. Produce iV(7 to

meet the cardioid at P, and draw FO and QO. Then the tri-

angles CQP^ CQO, are isosceles by construction. Hence

NCO = COP+CPO= CqO +CFO =QCP+2 CPO = 3 CPO ;

or CPO = \NCO.

2. The conchoid. Through a fixed point F a line FP is
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drawn cutting a fixed line XX' in Q. Required the locus of P
when QF is constant.

Let QP= a, FO = 6, the distance from the point to the line,

and OX, OF, be the axes. Draw FS and FJS parallel and per-

pendicular respectively to X'X, Then FM: MQi.FSiFS;

or y : Va^ — y^::y-^b:x;

whence a^f = (y + by {a' - f), (1)

a curve of the fourth order.

Discussion of the equation. Solving the equation for Xy

we have

x= ± ^ Va^ — y^

y

The curve is evidently symmetrical with respect to Y. When
y is positive and equal to a, a;=0, locating the point A, which

is a limit in the positive direction of Y, since x is imaginary

if y > a. As y diminishes, x increases numerically, becoming

± CO when 2/ =0; hence the curve has infinite branches in. the

first and second angles with X'X for their common asymptote.

Since x is real for negative values of y less than a numerically,

there is a branch in the third and fourth angles. When y = — a,

or — 6, x=0, locating A' and F; and as x has two values

numerically equal with opposite signs for values of y between

— a and — b, the locus between these values is an oval. When
?/ is negative and numerically less than 5, x increases as y
diminishes and becomes ± oo for y = 0, giving infinite branches

with the axis of X for their common asymptote, y = — a

evidently limits the curve in the negative direction of Y.

In the above case a>b. If a = b, F coincides with A' and

the oval disappears. If a<,b, all negative values of y numer-

ically greater than a render x imaginary, except y z= — b, which

renders x=0; thus the oval disappears, but a^=0, y = — b,

satisfy the equation, and hence must be considered a yto'mt of

the curve. Such a point is called an isolated, or conjugate

point.
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Polar equation of the curve. The polar equation ma}^

be obtained by transformation, or directly from the figure, thus

:

Let F be the pole and FS the polar axis ; then

r^FP=FQ+QP = FOco^Qce + a,

or r = h Q0s>Qc6 -\-a, (2)

Trisection of the angle. The conchoid also affords a

method of trisecting the angle, as follows : Let AFP be the

given angle. Draw any line OX perpendicular to one side,

and with ii^ as a fixed point, OX a fixed line, and PQ = 2FQ,
construct the arc of a conchoid. Only that portion of the

curve included within the given angle need be drawn. From

Q draw QiV perpendicular to OX and join its intersection with

the conchoid, iV, with F. Bisect QN at i?, draw BL parallel

to OX, and join L with Q. Then the triangles LNQ, LFQ,
are isosceles ; for, since QR=BN,

KL =LN=LQ = i QP=FQ,

Hence the angle

uiFN=FJSrQ=LQN=iFLQ = iLFQ, or AFN=^AFP.

Mechanical construction. The conchoid may be con-

structed mechanically as follows : Let AA', XX\ be two fixed

rulers, the latter having a groove on its upper surface. Let

FP be a third ruler, having a peg Q fixed on its under side,

which is also grooved to slide on a peg at F. A pencil at P
will trace the curve.

3. The cissoid. Pairs of equal ordinates are drawn to the

diameter of a circle^ and through one extremity of the diameter a

line IS drawn through the intersection of one of the ordinates with

the circle. Find the locus of the intei'section of this line with

the equal ordinate or that ordinate produced.

Let OD be the diameter to which the ordinates are drawn,

and the axis of X, the tangent to the circle at being the

axis of y. Let QM^ Q'M\ be equal ordinates. Through
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draw OQ (or OQ!) ; then P' (or P) is a point of the locus.

From similar triangles,

OM'.MPi'.OM^.M^Q'',

or, R being the radius of the

circle,

x:y : : 2M — X: -y/x {2M — x),

whence y^ (2R — x) = q?, (1)

Discussion op the equation.

Solving the equation for 2/,

r

/
I

1p %'

i
y

'TT

I' CI D ^

^=*>&E'

Fig. 88.

which shows that the curve is sym-

metrical with respect to X, If x

is negative or greater than 2 i?, y is

imaginary ; hence the limits along

X are zero and 2i?. As x in-

creases, y increases, and when

x=2 E,y=± CO ; hence the curve

has two infinite branches which have the tangent at D for a

common asymptote..

Polar equation of the curve. Let be the pole and

OX the polar axis. Substituting in (1) the values

X = r cos ^, y = r sin (Art. 23, Eq. 4)

,

we have r^ sin^0{2M — r cos 0) = r^ cos^ 0.

But sin2(9=l-cos2^;

hence 2B — 2E cos^O — r cos6 = 0.

1
Substituting

sec^
for cos^, and remembering that

sec2^-l = tan20,

we obtain finally r = 2Iis[nO tan 0. (2)
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Duplication of the cube. This curve affords a method

for finding the edge of a cube whose volume shall be n times

that of a given cube, as follows : C being the centre of the

circle, take CS=nCD^ and draw SD intersecting the cissoiJ

at P. Then the ordinate P3f= n . 3ID, and the cube whose

edge is P3f is n times the cube whose edge is OM. For, P
being a point of the cissoid, we have from its equation,

03P OM'
PM'f MD 1 '

-PM
or PM'= n . 0M\

Let c be the edge of the given cube. Find c', so that

d:c::PM'.OM, or c^' : c' i : PM^^ : OMK

Then c'^= nc^ for PM'^ n . OM'. To duplicate the cube,

make ?i = 2 ; that is, take CS = 2 CD.

4. The lemniscate. To find the locus of the intersection of

the perpendicular from the centre of an hyperbola upon the

tangent.

Assuming the form y = mx + -Va^m^—b^

of the equation of the tangent (Art. 105, Ex. 12), that of the

perpendicular is -

y = X.
m

Substituting the value of m from the latter in the former, we
have {f+xy = a'x'-¥y%

a curve of the fourth order.

Polar equation of the curve.

The formulae for transformation

being

x^-\-y-=r\ x=rcosO, y=r8\nO,

we have

7^ = a^co8\$-b^sm'0,

or ')^=a'-{a'-\-b^)sm'0. (2)

(1)

Fig. 89.
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Discussion of the polar equation. If ^=0, r=±.a^
locating A and A^. As increases, r diminishes numerically

:, when ?• = ± 0, and the portions ABO^till sin^ = —

^

A'B'O, are traced, r then becomes imaginary, and remains

so till sin

Va^ -f b'

again, 6 being in the second quadrant,

to ^=180°, sin^^ is diminishing andFrom 6' = sin-^

Va^ + b'

r increasing numerically, the portions OD'A', ODA, being

traced, r being ±a when ^=180°.

If the hyperbola is equilateral, a = b, and (1) becomes

and (2) in like manner becomes

9-^ = a2 (cos^ - siu2 6) = a^ cos 2 0.

In this case r is imaginary for all values of between 45°

and 135°.

5. The witch. The ordinate to the diameter of a circle is

produced till its entire length is to the diameter as the ordinate

is to one of the segments with which it divides the diameter, these

segments being taken on the same side. Find the locus of the

extremity of the produced ordinate.

Let OAB be the circle, R its radius, OD the diameter and

axis of y, the origin, and the tangent at the axis of X.
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Then, if P is a point of the curve,

pqiDOi'.AQ'.qo,

or XI 2 It:: ^2Ry-y^ : y,

whence ' x" y^ = 4. R\2 By - f-)

,

(1)

a locus of the fourth order. Let the student discuss the

equation.

G. To find the locus of the intersection of the perpendicular

from the vertex of a parabola upon the tangent.

y'^=2px being the equation of the parabola, that of the re-

quired locus is

o -x"

p ^x

a cissoid, the diameter of whose circle =P

7. Given two fixed points F and F', tofind the locus ofP such

thatPFxPF'=f—y.

Let FF' be the axis of X, and the origin in the middle point

of FF'. Then (?/'+ xy= 2c\x^- y') is" the required locus, in

which c — ^FF', The locus is the lemniscate (see Ex. 4), the

hyperbola being rectangular, and c = -^•
V2

8. The corner of a rectangular sheet

of paper is folded over so that the sum

of the folded edges is constant. Find
the locus of the corner.

By condition, OB = BP, OA = AP,
the angle at P is a right angle, and
AP-\' PB = a, a constant. But

AP^=AO^=Am-\-EP''={AO-yf-\-x\

r.x'+y'=2AO.y = 2AP.y.
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Also PB'= OB''=PD''+BD''= y^-i- (x - 0B)\

.-. x'+y^=20B.x = 2PB.x.

Substituting the values oi AP and PB from these equations in

^P+P5 = a, wehave

{x^+y'^{x-{-y)z=2axy,

a locus of the third order.
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SECTION XIII.—TRANSCENDENTAL CURVES.

131. 1. The logarithmic curve.

The equation of this curve is x = \ogy. Assuming the form

y = a', in which a is the base of the logarithmic system, we

observe that when x=0, 2/ = l? whatever the base; hence all

/

T

Fig. 92.

logarithmic curves cut the axis of F at a distance unity from

the origin. Again, since negative numbers have no logarithms,

y cannot be negative, hence these curves lie wholly above X.

If X is positive and increasing, y increases, but more rapidly

than X, and the more rapidly as the base is greater ; hence the

curve departs rapidly from X in the first angle, and the more

so as the base is greater. If cc is negative, then ?/ = a"~* = —

,

from which we see that as x increases numerically, y decreases,

and the more rapidly as the base is greater, but becomes zero

only when a; = — oo ; hence the curve approaches X in the

second angle, and that axis is an asymptote.

2. The cycloid. To find the locus of a point in the circumfer-

ence of a circle which rolls without sliding along a fixed straight

line.
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Let OX be the fixed straight line and axis of X, the initial

position of the generating point and origin, r the radius of the

circle, and P any point of the locus. Then 0M= ON—MN,

But 0M= X,

0N= arcPN= versin~^ ON to the radius r = r versin" -»
r

and MN= PQ = VJSrQ-QT= -\/2ry-y\

Hence the required equation is

ni

x = r versin"-^ V2 ry — ?/^. (1)

Discussion of the equation. Since x is imaginary if y is

negative, the curve lies wholly above X. If

2/ = 0, aj = r vers'^0 = 0, ± 27rr, ±47rr, etc.,

or there are an infinite number of arcs equal to ODA on each

side of F, OA being equal to the circumference of the circle.

If y=2r^ a; = r vers" ^ 2 = ± 7rr, ±37rr, etc.,

locating Z), and the corresponding points on the other arcs.

Defs. Z)Z>' is called the axis of the cycloid, OA the base,

and 0, A^ etc., the vertices. To put the generating circle in

position for any point, as P, draw CC" parallel to the base

through the centre of the axis, and with P as a centre and a

radius = CD describe an arc cutting the parallel in C". Then C"

is the required centre. If the angle

PC'W=cf>, ON=iiYcPN=rct>,
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and \^ (2)

which are called the equations of the cycloid, and are more

useful than Eq. (1) in determining its properties.

If any other point than F of the radius of the rolling circle

be the generating point, the resulting curve is called the p^^olatp,

or curtate cycloid, according as the generating point is within

or without the circle. The locus of a point on the circumfer-

ence of a circle rolling without sliding on the circumference of

another is called an epicycloid, or hypocycloid, according as the

circle rolls on the exterior or interior of the fixed circle ; if the

generating point is not on the circumference of the rolling circle,

the curve is called an epitrochoid or hypotrocJioid. The general

term applied to the locus generated by a point of a rolling curve

is roulette.

The circular functions. A series of transcendental curves is

obtained by assuming the ordinate some trigonometrical func-

tion of the abscissa, as 2/ = sina;, y = cot'ic, etc. The length of

the arc corresponding to any value of x given in degi-ees may
be found as follows : The length of the arc of 180° in the circle

whose radius is unity being 3.1416, the length of any other arc,

as that of 10°, will be J/o (3.1416) = .1745 > this distance being

laid off on the axis of X., the corresponding value of y may be

taken from the table of natural sines, tangents, etc. The curve

may be drawn, however, with sufficient accuracy by observing

the general change in the function as the arc increases.

3. y=^mx. When a; = 0°, 2/ = 0^, hence the curve passes

through the origin. As x increases, y increases, reaching its

greatest value y =1 when x = 90°, locating A. From x = 90°

to x= 180°, y decreases from 1 to 0, becoming negative when

x> 180°, and reaching its least value y = — \ when x = 270°,

locating C. From x = 270° to a? = 360°, y is negative and

decreasing numerically, becoming zero again for x = .360°. It

is evident that as x varies from 360° to 720°, a like portion will
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be traced, as also when x is negative ; hence the curve consists

of an infinite number of arcs equal to OABCD, and extends

Fig. 94.

without limit along X to ± oo . The curve is sometimes called

the sinusoid.

4. y=cosx. Let the student trace the curve.

5. 2/= tana;. When x=0°^ y = 0. As x increases, y
increases, becoming oo when x = 90°. When x passes 90°, y is

negative, and remains negative

till ic= 180°, decreasing numer-

ically from 00 to 0. From
X = 180° to X == 270°, y is posi-

tive and increasing, becoming

00 when a; =270°, etc. The

curve consists of an infinite

number of branches • equal to

AOB, on either side of the

origin, having for asymptotes
o

the lines x = ± -i x = ± -tt.

Fig. 95. etc.

6. y=cotx. Let the student'trace the curve.

7. 2/ = versina;. The versine being always positive, the curve

lies wholly above X, its limits along F being and 2. Let the

student trace the curve ; also r

8. ?/ = coversina;.
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9.2/= seca;. The curve is given in the figure. Let ihe stu-

dent discuss the equation, and also trace the curve

:

10. y = cosecx.

Fig. 96.

Spirals. The locus of a point receding from a fixed point

along a straight line, which revolves about the fixed point in the

same plane, is called a plane spiral.

The fixed point is called the pole, and that portion of the

spiral traced during one revolution of the line is called a spire.

The polar equations of many of the spirals may be derived from

the general form r = a6'', by assigning different values to n.

11. Spiral OF Archimedes. The equation of this spiral is

obtained from the general form by making n = 1 ; whence

r = ae^ (1)

r
From this equation- = a ; since the ratio of the radius vector to

the vectorial angle is constant, the spiral may be defined as

traced by a point which recedes uniformly from, while the line

revolves uniformly about^ the pole. Assuming as a unit radius

the value of r when the line has made one revolution, we have

1
l=a.27r a = -—9

27r

and Eq. (1) becomes r = B
(2)
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When ^ = 0, r= 0,.or the spiral begins at the pole. The dis-

tance between any two consecutive spires measured on the same

radius is the same and equal to the unit radius, called the radius

Fig. 97.

of the measuring circle, r increases uniformly with ^, but is oo

only where 6= oo.

To construct this spiral, let be the pole and OA the polar

axis. Through the pole draw any number of straight lines

making equal angles with each other, say 30°, or -• Then when
6

^ = |, r=^=OP. Having laid off 0P=^ on 01, make

OF' = 2 OP, OP" = 3 OP, etc. Then OPP'P", etc., is the

spiral. OQ is the radius of the measuring circle.

12. The reciprocal or hyperbolic spiral. The equation

of this spiral is obtained from the general form by making
'/I = — 1 ; whence

r=
l-

(1)
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In this spiral the radius vector evidently varies inversely as

the angle. Assuming as before that r is unity when ^=27r,

we have a = 27r, or

' »- = ^- (2)

When ^ = 0, r = 00, and as 6 increases, r diminishes, but is

P

Fig. 98.

zero only when ^=oo; hence there are an infinite nuiaber of

spires between the measuring circle and the pole.

To construct the spiral, draw the lines making equal angles

with each other, as before. If the angle is 30°, then when

6, 0F" =^= 4,
3

= !?:, r= 12= OF. Make 0P'=~.
etc., and draw PP'P"....

13. The lituus. This spiral corresponds to n = — i in the

general equation. Hence its equation is

a
r =^. (i;

Fig. 99.



192 ANALYTIC GEOMETRY.

or, if r= 1 when B= 27r, .-. a== V2w-,

(2)

For every value of 6^ r has two values, one positive and one

negative, as shown in the figure. If ^ = 0, r=oo, and r=0
onl}' when ^ = oo ; there are thus an infinite number of spires

between the measuring circle and the pole'. It may be shown

that the polar axis is an asymptote to the spiral.

14. The logarithmic spiral. This spiral is defined by the

equation

logr=a^, (1)

or, if h be the base of the system,

r = 6«^ (2)

Whatever the logarithmic system r = 1 for ^ = 0. Hence, if

OA = 1 , all logarithmic spirals

pass through A ; and OA may

be taken as the radius of the

measuring circle. From (2)

we see that as increases, r

increases rapidly, and the more

so as the base is greater ; and

diminishes rapidly if 6 is nega-

tive, but is zero only when

^ = — 00. Also, if ^ = 00,

r= 00.

Hence there are an infinite

number of spires within and

Fig. 100. without the measuring circle.
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CHAPTER V.

THE POINT, STRAIGHT LINE, AND PLANE,

SECTION XIV. — INTRODUCTORY THEOREMS.

132. Defs. 1. By the angle betiveen tico straight lines not in

the same plane is meant the angle between any two intersecting

parallels. Hence, if through any point of one of the lines, a

parallel is drawn to the other, the angle between the first and

the parallel is the angle between the two lines. Thus, let PQ
and KL be any two straight lines which neither intersect nor

are parallel. Through any point of PQ, as P, draw PH par-

allel to KL. Then HPQ is the angle between PQ and KL.

2. The foot of a perpendicular from a point upon a plane is

called the projection of the point on the pkme. Thus, if P be

any point, AB any plane,

and the perpendicular to

the plane through P meets

the plane at 3f, M is the

projection of P on AB.

3

.

The foot of a perpe n-

dicular from a 2)oint on

a line is the projection of

the point on the line. Thus,

if KL be any straight line

and the perpendicular from

P meets the line at S, S is

"the projection of P on KL.

Fig. 101.
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4. The projection of a straight line of limited length upon a
plane is the line joining the feet of the perpendiculars from the

exlreynities of the line upon the plane. Thus, if PQ be any

limited straight line, AB any plane, PM^ QN, perpendiculars

tt) the plane meeting it at M and JV", MN is the projection of

the line PQ upon the plane AB. Since the perpendiculars PM
and QJV determine a plane through PQ perpendicular to AB,
the projection of a straight line upon a plane may also be

defined as the intersection of a plane through the line, perpen-

dicular to the given plane, with the latter.

5. The projection of a limited straight line upon another straight

line is that portion of the latter intercepted by the projections of

the extremities of the former. Thus, PS and QT being the

perpendiculars from P and Q on KL, ST is the projection of

PQ on KL.

133. The projection of a limited straight line upon another

straight line is equcd to the length of the line midtiplied by the

cosine of the included angle.

The projections of any limited straight line upon parallels are

equal ; for the perpendiculars from its extremities, being per-

pendicular to parallel lines, lie in parallel planes ; these planes,

therefore, intercept equal distances on the parallels, and these

distances are the projections. Thus, in Fig. 101, KL and MN
being parallel, the planes P/S'Jf and QTN are parallel, and the

intercepts /ST and 30/" are equal. Hence, if we find the pro-

jection of PQ on any one of a system of parallels, this projec-

tion will be the same for all. Draw PH parallel to MN. The

angle between PQ and any parallel to PH is (Art. 132, 1) HPQ,
and HP= PQ cos HPQ = MN= ST= etc. Hence the propo-

sition.

Cor. Since the angle between PQ and AB = NRQ = HPQ,
the projection of a limited straight line upon a plane is equal to

the length of the line multiplied by the cosine of the ayigle which

the line makes with the pkwe. Thus MN= PQ cos NRQ.
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134. IfAD he the straight line joining A with Z), and AB,
BC, CD, straight lines forming a broken line from A to D, then

the algebraic sum of the projections of the latter upon any straight

line OX is equal to the projection of the former on the same line.

Draw from A, B, C, and
jy

D, tlie perpendiculars to ^——- ^^ ;

OX, meeting OX in A', \\^ ^^ \

B\ C\ D', respectively.
j y^ \

It is evident that as A ^|^^^___J-^B i

moves to D along the ^<J^==^^j^—
-— / \

broken line ABCD, the a ^^
' L i ^

foot A\ of the perpendic-
1 ^ A 1

Fig. 102.

ular from A, moves along

A'D\ to the right or the left, according as the angle between the

direction of motion of A and OX is acute or obtuse. At A,

B, and (7, draw parallels to OX, and denote the angles made

by AB, BC, CD, and AD with these parallels by a, y8, y, and S.

As the points are chosen in the figure, in passing from B to

O, B' moves to the left along OX, the angle B being obtuse.

Now the projection on OX of AB is (Art. 133)

^'5' = ^jBcosa;

that of BC is B'C = BC cosyS

;

that of CD is CD' = CD cos y ;

and the algebraic sum of these projections is ^

A'B'-B'C'+C'D',

since cos/? is negative. But this sum is A'D', which is also

equal to AD cos 8, or the projection of AD on OX.

Hence ^5 cos a + 50 cos^H- CD cosy=^D cos 8.

The same will evidently be true if we take any number of

lines between A and D. Hence, if two given points are joined

by a broken line, the algebraic sum of the projections of its parts

upon any given straight line is equal to the projection on the same

line of the straight line joining the two given points*
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V
SECTION XV.— THE POINT,

Fig. 103.

135. Position of a point in space. The position of any point

in space may be determined by referring it to three fixed planes

meeting in a point. Thus, if XOY, YOZ, ZOX, be three

planes meeting at 0, and

intersecting each other in

thehnes OX, OF, OZ, the

position of P, relatively to

these planes, will be known
when its distances PQ, PM,
PS, from each, measured

parallel to the other two,

are known. The three

planes are called the Coor-

dinate Planes, their three

lines of intersection the

Coordinate Axes, their common point the Origin, and the dis-

tances PQ, PE, PS, the Coordinates of P.

If the planes, and consequently the axes, are at right angles

to each other, the coordi-

nates are said to be rectan-

gular ; otherwise they are

oblique. Use will be made

only of rectangular coor-

dinates, and they will there-

fore be in all cases the

perpendicular distances of

the point from the coor-

ds- ^°*- dinate planes.

It is customary to assume the axes as in the figure, the plane

XOF being horizontal and the axis OZ vertical. For brevity,
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the coordinate planes will be referred to as the planes XT, TZ,

and ZX, and the coordinate axes as the axes of X, Y, and Z.

The coordinates PQ, FB, PS, are represented by the letters

X, y, z, corresponding to the axes to which they are parallel.

The coordinate planes divide space into eight right triedral

angles which are numbered as follows : the j^rs^ lies above XY,
to the right of YZ, and in front of ZX; the second to the left

of the first ; the third behind the second ; the fourtJi behind the

first; the fifth, sixth, seventh, and eighth, lying under the first,

second, third, and fourth, in order.

If we extend to Z the convention of signs already adopted

for X and Y, the positive direction of Z being upward, it is

evident that while the absolute values of x, y, z, may be the

same for different points, their signs will determine in which

of the eight angles any given point lies, and that a point will

thus be completely determined when its coordinates are given

in magnitude and sign.

136. Equation of a point. The position of a point may be

designated by the equations x — a, y^h, z= c ; or by the nota-

tion (a, h, c), the coordinates being written in the order x, y, z.

To construct the point {x, y, z) , construct the point {x, y) , S
of Fig, 104, in the plane XY, and at /S erect the perpendicular

Examples. 1. In what angle is the point (a, —b, — c) ?

2. Write the coordinates of a point in each of the eight angles.'

3. In what plane is the point (a, b, 0) ?

4. Write the coordinates of a point in each of the three coor-

dinate planes.

5. To what plane is the point (x, y, c) restricted?

Ans. To a plane 2')CiraUel to XY, at a distance cfrom it.

6. What are the coordinates of points in a plane parallel to

YZ at a distance a from it ?
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7. Where is the point (x, —b,z)?

8. On what axis is the point (a, 0,0)?

9. Write the coordinates of a point on each of the three

coordinate axes.

10. What are the coordinates of the origin?

137. Distance between two given points.

Let x', y\ z\ be the coordinates of P' ; x'\ 2/", 2", those of P".

Then

But

Hence

P'P" =VP^'+ irP'2.

rP" = VP'H' + UK' + KP"\

Now

Similarly,

Hence, if

Fig. 105.

P'ff=ph = oh — op =ic" — x\

HK= y" - 2/', KP" = z'' - z\

P'P" = D,

D = ^.{x"-x'y-\-{y'^ -y'y-\- {z" -zj

CoR. 1. If one of the points, as P", is at the origin,

x^' = y'< = z" = 0.

Hence the distance of a point (a;', y\ 2;') from the origin is

D = -\/x''-\-y'''-\-z''.
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Cor. 2. If 2;' = 0, that is, if P' is at p in the plane XY,

J9 = Vic'2 4-2/"

is the distance of p from the origin = distance of P from the

axis of Z. Hence the distances of {x\ y\ z') from the axes of

X, y, Z, are V^M^, -Vx^' + z", ^x"-{-y'%
respectively.

138. Polar coordinates of a point.

The position of a point in space may also be determined by

polar coordinates. For this purpose assume any fixed plane, as

XY (Fig. 104), and any fixed line in that plane, as OX,
being the pole. Then the position of P will be determined when

we know OP, its distance from the pole ; the angle SOP, which

OP makes with the plane XY; and the angle SOX which the

line SO makes with X. OP is called the radius vector of P
and is represented by 7', OS is the projection (Art. 134,4) of

OP on XY, the angle aSOP being represented by <^, and ZOS
by 0. The point Pmay then be designated as the point (?•, 0, eft) ,

and <^ determining its direction, and r its distance, from the

pole 0.

139. Relations between polar and rectangular coordinates.

In Fig. 104, we have,

x= 0L= OS cosO= OP cos cf> ' cos = r cos
cf)
cos 6, (1)

y= LS= OSsinO^ OP cos(f> - smO = r cos
<l>

sin 0, (2)

z = PS =OPsin<^ = rsin</); (3)

the rectangular in terms of the polar coordinates.

From Art. 137, Cor. 1, we have

OP=r= Va^ + 2/' + «'; (4)

from the triangle OLS,

SL y .c\

•&*
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from the triangle SOP^

tanc^
PS
OS

the polar in terms of the rectangular coordinates.

(6)

140. Direction angles and cosines.

The angles made by any straight line with the axes are called

its direction-angles. Since parallel lines make equal angles

Fig. 106.

with the axes, draw OP, parallel to the given line, through the

origin. Then LOP= a, MOP= P, NOP= y, are the direction-

angles of OP, or of any parallel to OP, and are always esti-

mated from the positive directions of the axes. The cosines of

the direction-angles are called the direction-cosines.

141. The sum of the squares of the direction-cosines of any

straight line is unity.

Join P, Fig. 106, with L. Tiien, since the plane PSL is

perpendicular to OX, the triangle PLO is right-angled at L,

and OL = x— OP cosLOP= r cosa

;

similarly, drawing PM and PN,

OM=y=OPcosMOP=rcosP,

OJSr = z=OP cosNOP= r cosy.
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Squaring and adding,

OL^ -f OM^ + ON^ = r" (cos^a + cos^^ + cos^y)

.

But the first member is r- (Art. 137, Cor. 1). Hence

COS^a + COS^^ H- COS^y = 1.

Examples. 1. Two of the direction-angles of a straight line

are 60° and 45°. Show that the third is 60°.

2. Find the distances of (4, —7, 4) from the axes, and

from the origin.

3. Find the distance of (4, —2, -1) from (6, 3, 2).

142. To find the angle betiveen two straight lines whose direc-

tion-cosines are yiven.

Let OP<t OQ^ be parallels to the given lines through the origin,

and let a, /3, y, and a', /3', y', be the angles made by OF and

OQ, respectively, with the axes of X, F, and Z. These angles

i-rX

Fig. 107.

are, then, the direction-angles of the given lines. Let QOP= 0,

and X, y, z, be the coordhiates of Q. Then (Art. 134), the

projection of OQ upon OP is equal to the algebraic sum of the

projections of OL, LS and SQ, upon OP. But the projection

of OL on OP is (Art. 133)

OicOSa= OQcOSa'-COSa.
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Similarly, the projections of LS and SQ on OP are

LS cos;8 = OQ cos/3' • cos;8,

SQ cosy = OQ cosy' • cosy.

The projection of OQ on OP is OQ cosO. Hence

OQ cos ^ = OQ cos a' cos a + OQ cos ^' cos /?+ OQ cos y' cos y,

or cos = cos a' cos a + COS y8 COS 13' + COS y COS y',

or the cosine of the angle included between any two straight

lines is the sum of the rectangles of their corresponding

direction-cosines.
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SECTION XVI.— THE PLANE.

143. General equation of a surface.

We have seen that any point (x, ?/, z) may be constructed

by first locating the point (a;, y) in the plane XY, and then

laying off, on a perpendicular through this point to XY, the

distance z. Hence, if z be made equal to any constant, as a,

X and y remaining variables, the point {x, y, a) will lie in a

plane parallel to XY. If, therefore,

f(x,y,z) = (1)

be any equation between ic, y, and z, and in this equation

z = a, a constant, then f(x, ?/, a) = 0, being an equation

between two variables, will represent a line, all of whose

points are in a plane parallel to XY at a distance a from

it. Similarly \t z = b, f{x, y, 6)=0 will be the equation

of a line in a plane parallel to XY at a distance b from it.

Giving thus, successiveh', to z, all possible values, i.e., letting

z vary continuously between the limits assigned by the equation

f{x, y, z) = 0, we obtain a series of lines, all of which are plane

cu rves parallel toX Y, which,

taken together, form a sur-

face of which f(x, y, z) =
is the equation. Hence

f(x, y, z) = is the eq\ia-

tion of a surface.

To illustrate: let P be

any point in space subject

to the condition that the sum
of the squares of its coor-

dinates is a constant, or

x'+y''+z'=:R\ (2) Fig. 108.
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Since this sum is the square of the distance of P from the

origin (Art. 137), it is evident that P is restricted to the sur-

face of a sphere whose radius is R and whose centre is at

the origin, and of which (2) is the equation. If we assume

2; = 0, then a^+2/^ = i2^ is the equation of a circle in the plane

XF, whose radius is that of the sphere ; that is, it is the great

circle cut from the sphere by XY. If we make 2; = a, we have

a^-|- 'if = B/^— a^, which is also the equation of a circle, namely,

that cut from the sphere by a plane parallel to XY at a dis-

tance from it equal to a. As a increases, the radius of the

circle, V-R"— o?-, diminishes, and when z is made equal to

a = R, we have
aj^-j- 2/^=0, or.a;=0, ?/ = 0,

the plane then touching the sphere at its highest point (0, 0, R),

z cannot be made greater than i?, for then a;--f- 2/^ = R^— a^

would be impossible, since the sum of two squares cannot be

negative, showing that no plane at a greater distance from XY
than R can cut the surface of the sphere.

The lines cut from any surface by a i)lane are called sections

of the surface. If x were made constant in (2), then

y^+z'^R'-a'

would be the section cut by a plane parallel to YZ from the

surface of the sphere ; and if y were made constant, we should

have the section made by a plane parallel to ZX, all of whicli

would in this case be circles. And, in general, if in the equa-

tion of any surface^ f{x^ y, z) = 0, one of the variables he made

constant^ the resulting equation is that of the line cut from the

surface by a plane parallel to the plane of the other two axes and

at a distance from it equal to the value assigned.

144. Equation of a plane. If, when either re, y, or z is

made constant in the equation /(a;, ?/, 2;) = 0,, the resulting

equation is of the first degree between the two remaining

variables, every section of the surface by planes parallel to the

coordinate planes is a straight line, and the surface must be a
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plane. But this can be the case only when/(aj, y, z)=0 is of

the first degree with respect to all three of the variables.

Hence, eve^'y equation of the form

Ax-{-By-{-Cz +F=0 (1)

is the equation of a plane.

145. Intercept form of the equation of a plane..

If in the equation of a plane,

Ax + By+Cz-hF=0,
F

(1)

we make y = z — 0, we obtain x = OQ =—-, the intercept of

the plane on X, Making z = x = 0^ we have y — OR=
F B'

the intercept on Y\ and for x==y~0, z = OS = — ^^ the in-

tercept on Z. Representing these intercepts by a, 6, and c,

respectivel}^, we have

a = F
I'

b = F
~5' c = F

henc(

A = F
a
B = F c= -I.

G

Substituting these values in

(1), we have

a c
1, (2)

Fig. 109.

the equation of a plane in terms of its intercepts.

This form is not applicable when the plane passes through

the origin ; for in this case, since the origin is a point of the

plane, (0, 0, 0) must satisfy its equation, and from (1),

F=0, and a = 6 = c = 0.

To put the equation of a plane in the intercept form, trans-

pose the absolute term to the second member, and, by division,

make the second member positive unity. Thus, the intercept
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form of Sx — 6y + 2z — 6 = is y -{--=1, the intercepts

being 2, -1, 3.
2 3

To write the equation of a plane whose intercepts are given,

substitute their values in (2). Thus, the equation of the plane

whose intercepts are 4, —3, —6, is

4 3 6' ^

Examples. 1. Write the equation of a plane whose inter-

cepts are 2, 6, 4 ; also —2, —3, 1.

Ans, 6x-i-2y-{-Sz-12=0; 3x-\-2y - 6z + 6 = 0.

2. Put the following equations under the intercept form

:

Sx-{-5y — z-}-l6 = 0, x — y — z— 1=0.

3. Determine the intercepts of the planes of Ex. 2, without

putting the equations under the intercept form.

146. Normal equation of the plane. Let QRS, Fig. 109,

be any plane ; OD a perpendicular upon it from the origin, its

length being j9, and a, y8, y, its direction angles. Let P be any

point of the plane, a;, y, z^ being its coordinates. Then the pro-

jection on OD of OP is equal to the sum of the projections of

OJSr, NM, and MP, on OD (Art. 134). But, whatever the

position of P in the plane, the projection of OP on OD is p,

since OD is perpendicular to the plane ; and the projections of

ON, NM, MP, are a; cos a, ycos^, zcosy (Art. 133).

Hence a;cosa + 2/cos/3 + 2! cosy =j? (1)

is the normal equation of the plane, in which p is always posi-

tive. Since the sum of the squares of the direction-cosines of

any line is unity, to put the equation of a plane under the nor-

mal form, we must introduce a factor M fulfilling the condition

{BAy + {RBy + (Ecy=i,

in which A, B, (7, are the coefficients of x, y, and z, in the

given equation ; hence

R= ^

V^^ + ^' + O'
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Thus, the normal form of 3x + 2y — z-^l—0i8

Sx 2y ;2 ^ 1

vn Vi4 vi4 vii

the second member being made positive ; in which

3_ 2_ 1

are the direction-cosines, and p =—^ = distance of the plane

from the origin. V 14

Examples. 1. Put the equations Sx-\- 6y — z-\-15 = 0j

X — y — z — 1 =0, under the normal form.

2. Find the distance of the plane x — y-\-z—l = 6 from the

origin. In what angle is the perpendicular from the origin on

the plane? ^^5, J_ . ^^ the fourth ayigle.

V3
3. Show that 4:X-\-7y -{-Az — d = is at a distance unity

from the origin.

4. Write the equation of a plane whose distance from the

origin is 10, the direction-cosines of the perpendicular being

1 1 V23 •

/_
2' 3' "~6~* ^^^* S^ + 2?/4-^/23^-60 = 0.

5. Are the direction-cosines of Ex. 4 chosen at random?

6. Write the equation of a plane parallel to YZ at a distance

from YZ equal to 6.

Since the plane is parallel to YZ, its intercepts on Y and Z are both

infinity. Hence, from Eq. 2, Art. 145, 6=00, 0=00, and x = a = 6.

Or, from Eq. 1, Art. 146, a= 0, iS = 7 = 90°; hence x = p = e.

7. Write the equation of a plane parallel to X.

8. What are the equations of the coordinate planes?

147. To write the equation of a plane through three given

points. Assuming the general equation

Ax-^By-\-Cz + F=zO, (1)
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dividing by any one of the four constants, as F^ and denoting

the resulting coefficients by A\ JB', C, we obtain

A'x + B^y + C'z+ 1 = 0. (2)

Substituting in this equation the coordinates of the three given

points in succession, there results three equations between A\
B\ and C", from which the values of these latter may be deter-

mined. Substituting these values in (2), we have the equation

required.

Examples. Write the equations of the planes through the

following points.

(1,0,-2), (3,2,-1), (5,-1,2). Ans. 9x-4y-10z-2d= 0.

(1,2^,3), (4,5,6), (-7,8^9). Ans. y-z+l=^0.

(OT^^O),' (?,4^4),' (?,^k6V Ans. 10x-y-2z = 0.

(2,0,0), (0,2,0), (0,0,2). Ans. x + y + z-2=0.
(0,1,2), (0,2,4), (1,0,2). Ans. 2x + 2y-z = 0.

148. To find the angle between two given planes.

The angle between the planes is the same as that between the

perpendiculars upon the planes from the origin. Hence, if

a, y8, y, and a', /?', y', are the direction-angles of the perpendicu-

lars, and 6 the angle between the latter, the required angle is

given by the relation (Art. 142)

^ COS^= COSa COSa' 4-COSy8cOS)8' + cosy cosy'. (1)

If the equations of the planes are given in the normal form,

we have only to substitute in (1) the coefficients of the variables,

they being the direction-cosines (Art. 146). If the equations

are in the general form

Ax + By -F Cz+F= 0, A'x -f B'y -f- C'z -f i^' = 0,

their normal forms will be

Ax + By + Cz ^ F
^A'-^B' + C^ ~ ^AF+W+C^'
A'x-\-B'y + C'z F'

-VA"+B" -h C"2 VA"-j-B" -f- C"2



THE PLANE. 211

in which the radicals have the opposite signs of the absolute

terms in order to make the second members positive ; and the

direction-cosines are, respectively,ABC
VA'+B' +C -VA'+ B'+C ^A'+ JB^+C

A' B' C (2)

Substituting these values in ( 1 )

,

VJ.2 + B'-\-C' -VA" -f B'' 4- C"2

Cor. 1. If the given planes are perpendicular to each other,

= 90°, cos^ = ; hence the condition of perpendicularity is

^^' + JS^'+(7(7' = 0, (4)

or the sums of the rectangles of the coefficients of the correspond-

ing coordinates in the equations of the planes must he zero.

Cor. 2. If the planes are parallel, the direction-cosines of

their perpendiculars with respect to each axis must be, equal.

Hence, from (2) ^
<F^^:> 1ABC ...

A' = B=G'' ('^

since each ratio is equal to

Hence the condition of parallelism is that the ratios of the coef-

ficients of the corresponding coordinates in the equations of the

planes must he equal.

Examples. 1. Find the angle between the planes x-\-2y ^
22;-f 1 = and 3a; + 62/- 6^-5 = 0.

'

Ans.O°.

2. Find the angle between the planes 2x-{-2y-{-z-{-l = ()^

4:X — ^y-\-lz—\ = Q. Ans. 6 = cos ~^-^Y,

3. Show that 3fx-\-y-'-'\+l = and 12 (a;-f ?/) -32;-f-10=0

are parallel.
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4. Show that .'^4-2^ — 22;-hl = 0is perpendicular to 2 a; -f- 5 2^

4-6^-11= 0; also a; 4- 22/+ 32; +1= to Sx-\-6y- 5z -3= 0.

5. Write the equation of a plane parallel to 3a; + 4?/ — 2 +
6 = 0.

6.. Write the equation of a plane perpendicular to 3a; + 4?/+

2-1 = 0.

7. Find the distance between the parallel planes x-{-2y —
2z + l = 0,3x+6y-6z-25 = 0. Ans. ^.

8. Prove that Ax-^By-\-Cz+F-{-k(A'x-\-B'y+C'z +F') =
is the equation of a plane through the intersection of the planes

Ax-\'By+Cz + F=0 and A'x-{- B'y + C'z-\- F'=0.

See Art. 37.

9. Write the equation of any plane through the intersection

o( 2x + 5y +z—l=0 and x — y-\-z + 2 = 0,

10. Explain how to determine /c in Ex. 8 so that the plane

shall pass through a given point. See Art. 37.

11. Write the equation of a plane through the intersection of

2.T + 2/ — 2 + 1 = amd 3a; + 42/ + 22; + 6 = 0, passing also

through the point (1, 1, 2)

.

Ans. 28x + 9y — 21z -\- 5 = 0.

12. Write the equation of a plane through the intersection of

the planes of Ex. 11, and also passing through the origin.

Ans. 9x + 2y-8z = 0.

13. Prove that the distance from the point (a;', y\ z') to the

plane a;cosa + 2/cos^ + 2cosy=p, is

a^'cosa +2/'cos^ + 2'cosy — p,

Ax' + Bx'+ Cz'-F o A ^ QQor — See Art. 38.

Va' -\-b'-{-g^

14. Find the distances from the plane 5x-\-2y — 7z -\- 9 =
of the points (1, — 1, 3) and (3, 3, 3).

15. Find the equation of a plane through (1, 10, —2), par-

allel to the plane 2x-\-y — z-\-Q = 0. Ans.2x + y — z — 14:=0.
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16. Find the equation of a plane through (1, —1, 3) per-

pendicular to the plane 2x -{-y — z + 6 = 0.

17. Find the distance from (8,14,8) to 4:X-\-7y -{- iz

—

18 = 0. Ans, 16.

149. Traces of a plane. If in the equation of a plane,

Ax -\-By -]-Cz-{-F=0^ we make z = 0, the resulting equation

Ax-{-By-^F=0 (1)

applies to all points of the plane in XY, and is therefore the

equation of BQ (Fig. 109), the intersection of the plane with

XY. For like reasons

By + Cz-{-F=0,

Ax-^Cz-{-F=0,

are the equations of the intersections RS and SQ. These inter-

sections are called the traces of the plane. Solving (1) for y,

we have
A F

y = X ,^ B B

and the corresponding trace for any other plane would be

^
B'^ B''

A A' A 7?
If the traces are parallel, — = — . or — =— If the corre-

B B' A' B'

sponding traces on the other coordinate planes are also parallel,

in whiclr case tlie planes themselves are parallel, we obtain in

like manner

A = ^ = ^
A' B' C'

the condition already found.
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SECTION XVII.—THE STRAIGHT LINE.
i

150. Equations of the straight line.

Assuming the equation of a plane in the intercept form,

if we impose the condition that the plane shall be perpendicular

to XZ, its F-intercept b will be infinity, and its equation

assumes the form

Ax + Cz-[-F=0, (1)

whatever the value of y. Hence every equation of the first

degree between two variables represents a plane perpendicular

to the corresponding coordinate plane, the third variable being

indeterminate. Therefore

B'y + C'z + F'=0, (2)

X being indeterminate, represents a plane perpendicular to YZ.

Let ABDL be the plane represented by (1), and AHDC that

represented by (2). Values of x, y, z, which satisfy both (1)

and (2) locate a point in both planes, that is, on AD, their

line of intersection. Hence, while taken separately (1) and

(2) are equations of planes perpendicular respectively to XZ
and YZ, if taken together they represent a straight line in space.

Thus, let a; be the independent variable, and any value as ic = OM
be substituted in (1). From (1) we may tlien find z = MS and

locate the point S in XZ. Now so long as (1) is considered

independent of (2), it represents the plane LABD, and the

value of y may be assumed at pleasure. But if (1) and (2)

are simultaneous, y must be derived from (2) after the value

z = MS has been substituted in it. Since this value of y satis-
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fies (2), 2/ = SP must locate a point P in the plane AHDC, and

P must lie on the intersection AD.

Fig. 110.

The line AD is evidently completely determined by (1) and

(2), since the planes can intersect in but one straight line.

Since (1) is true for all values of y, it is true for y= 0, and is

then the equation of the trace AB ofABDL on XZ. Hence (1)

is the equation of the plane ABDL^ or of its trace AB^ accord-

ing as y = ^ or 2/=0. Similarly (2) is the equation of the plane

AIIDC, or of its trace AO, according as cc = ^ or ic = 0. But

AB and AC are the projections of AD on XZ and YZ, since

the planes ABDL and AHDC are perpendicular respectively

to XZ and YZ. Hence the straiglit line AD is determined

when its projections on any two coordinate planes are given.

Eliminating 2: between (1) and (2), we have an equation of

I he form
A"x-hB"y + F" = 0, (3)

which, in like manner, is the equation of a plane perpendicular

to XY, or of its trace on XY, according as we regard z = ^ or

z = 0. This plane is evidently the plane AOD, passing through



216 ANALYTIC GEOMETRY.

the intersection AD of (1) and (2), since (1), (2), and (3) are

simultaneous ; and its trace is OZ), the projection ofAD on XY,
Hence, in general, if we assume any two equations of the

first degree between two variables, as

f(x,z) = 0, f'(y,z)=0,

and eliminate the common variable, obtaining the third equation,

/"(^,2/)=0,

these three equations may be regarded as the projections on

the coordinate planes of a straight line in space, any two of

them being sufficient to determine the line.

151. Equations of a straight line through a given point having

a given direction. Let {x', y', z') be the given point, P', and

a, ^, y, the direction-angles of the given line. Let P be any

other point (ic, ?y, z) of the line, and denote P'P by r. Then
the projections of P'P on the axes are (Art. 133)

x — x'=rcosa, y —y'=rcos/3, z — z'=r cosy;

£ 1-1 x — x' V— ^' z—z' ..V
from which = -—^ =

, (1)
cos a cos f3 cosy

which are the required equations, any two being sufficient to

determine the line.

Eq. (1) is called the symmetrical form.

152. To put the equations of a straight line under the sym-

metrical form.

The symmetrical form beinor

x — x^ _ y — y' _ z — z'

cos a cos/3 cosy'

the condition that the equations of a straight line are in this

form is that the sum of the squares of the denominators is

unity. Let
x — x' __y — y^ __z — z'

L ~ M ~ N



THE STRAIGHT LINE. 217

be the given equations. Dividing the denominators by

•sjL- + M^ -f-^S we have

M N

in wliich the sum of the squares of the denominators = 1.

Thus, let 3 aj — 22; 4- 1 = 0, 4cc — 2/ = 0, be the given line. Then

1 f 4*

a/77
Dividing the denominators by Vl^ + (f )^ -|- 4^ = —-

—

X z—i y

V77 V77 V77

2 S 8
the direction-cosines being —iz^, —=, —=•

V77 V77 V77

Examples. 1. Find the equations of the intersection of

x — y + z — 2 — 0^ and x-^y + 2z—l = ^^ and determine the

position of the line.

Eliminating y and z in succession, we have

2a:+3z-3 = 0, a: -3^ -3 = 0,

or f = izJ::=.y±l,1-2 1 '

3 3

whence the line passes through (0, —1, 1), and its direction-cosines are

3 2_ 1

Vii' Vli' Vli

2. Find the intersection of x-\-y — z-\-\ =0 and 4a;-}-2/--

22 + 2 = 0.

Arts. A line through (0, 0, 1), whose direction-cosines are

1 2 3

Vli' vn' vii
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3. Determine the position of aj= 4:^ + 3, ?/ = 32; — 2.

Ans. Aline through (3, —2, 0), whose direction-cosines are

_4_ _3_ 1

\/Yq'' V2"6' V26

4. Write the equation of a line through (1, 2, —6), having

I , i, |, for direction-cosines.

^?js. a;-22/ + 3 = 0, 2?/ -2; -10 = 0.

5. Write the equation of a line through (1, 4, —3) parallel

to Z. Ans. a; = 1 , 2/ = 4.

153. Equations of a straight line through two given points.

Let {x, y\ z'), {x'\ y", z"), be the given points. The equa-

tions of a straight line through {x', y\ z') are

x — x' ^ y — y' ^ z—z\ .^.

cos a cos/3 cosy

Since the point (x'\ y'\ z'') is also on the line, its coordinates

must satisfy (1) ; hence

x" - x' ^ y" - y' ^ z''—z\ ^2)
cos a cos p cos y

Dividing (1) by (2), member by member,

(3)

which are the required equations, any two of which determine

the line.

Examples. 1. Write the equations of the straight line

passing through (1, 2, 4), ( — 3, 6, — 1).

Ans. ^Zli=.Vi^ = Zzii.
_4 4 -5

2. Find the direction of the line of Ex. 1.

3. Find the points in which tlie line of Ex. 1 pierces the co-

ordinate planes. Ans. The line pierces XY in (— ^, ^).

x-x' _ y-y' z-z'

x" - x' y"-y' z" - z''
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4. Write the equations of lines through the following points,

and find their directions :

(2,1, -1), (-3, -1, 1); (6, 2, 4), (-6, -3,1).

5. A line passes through (1, 1, 2) and the origin ; find its

equations.

6. A line passes through (1, 6, 3,) (1, —6, 2). Find the

equations of its projections on the coordinate planes.

154. To find the angle between two given straight lines.

Let
x — x^ _y — y _ z — z^

V i/' w '

x — x^ _ y — y _ g — g

be the given lines. The angle between the two lines is given

by the relation (Art. 142)

cos 6 = cos a' cos a"+ COS /?' COS y8"+ COS y' COS y ",

in which a', jS', y\ and a", /3", y", are their direction-angles.

But (Art. 152),

cos a' =

COSyS' =

cosy'

COS a'

cos;8"=

COSy'

VX'2 + 3/'2 _j_ jy/2'

A^^

(1)

A^"

V^^'" + ^"' + iV^'" J

(2)
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Hence cos 6 =—=^

—

» (3)

Cor. 1. If the lines are parallel, the corresponding direc-

tion-cosines are equal, each to each; hence from (1) and (2),

L' ^ 3r ^ N'
L" J/" N"

are the conditions ofparallelism.

CoR. 2. If the lines are perpendicular to each other,

(9 = 90°, cosl9 = 0;

hence i>'i."+ Jf'Jf"-f ^'iV^" =
is the condition ofperpendicularity

.

Examples. 1. Find the equations of the sides of the tri-

angle whose vertices are (1, 2, 3), (3, 2, 1), (2, 3, 1), and

the angles of the triangle.

(x-\-z='^^ a; + !/ = 5] x — y = —\^ w tt ^
^''''

\ 2/=2j' . = lj' 2.T + . = 5i' 6' 2' 3*

2. Find the angle between

2/ = 5ic + 3, 2; = 3a; + 5, and y=2x-\-\^ z = x.

3. Show that

4a; -3?/ -10 = 0, ?/ + 4;2 4-26 = 0,

and 7a; -2^ + 26 = 0, 34?/ + 7;^ - 90=0,

are perpendicular to each other.

4. Showthat x = 2z + l, y = Sz + 4:,

and a; = 3 — 22;, y = z — 2,

are perpendicular to each other.

5. Show that

2a; — ?/ + l = 0, 3y — 2z-\-5 = 0,

and 2aj - y — 7 = 0, 3 ?/ — 2;? + 7 = 0, are paralle\
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6. Find the conditions that the straight line

L M N
is parallel or perpendicular to the plane

Ax^Bij+Cz + F=0.

The line is parallel to the plane when it is perpendicular to the perpen-

dicular on the plane. But the direction-cosines of the perpendicular are

proportional to A, B, G (Art. 146), and the direction-cosines of the line

are proportional to L, M, N (Art. 152) . Hence the condition of parallel-

ism is (Art. 154) ^^ _^ ^^^^^ ^^^ ^

The line is perpendicular to the plane when it is parallel to the perpen-

dicular on the plane; hence, the condition of perpendicularity is

A B g'

7. Find the equation of a line through ( — 2, 3, 5) perpen-

dicular to 2a;-|-82/ — 2; — 4 = 0.

Ans. aj-f22J-8 = 0, 2/4-8:^-43 = 0.

8. Show that 2x — y=0, 3y — 2z = is perpendicular to

x-{-2y-{-Sz — 6=0.

9. Show that z = S, x-\-y = S is. parallel to

x + y-}-z-6 = 0,

and to the trace of the latter on XY,
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SECTION XVIII.— SURFACES OF REVOLUTION.

155. Defs. A line is said to be revolved about a straight line

as an axis when every point of the line describes a circle whose

centre is in the axis and ivhose plane is perpendicular to the axis.

The moving line is called the generator, and the surface

which it generates a surface of revolution. It follows from the

definition of revolution that every plane section of a surface of

revolution perpendicular to the axis is a circle, and that every

plane section through the axis is the generator in some one of

its positions. A plane through the axis is called a meridian

plane, and the section cut by such a plane is called a meridian.

156. General equation of a surface of revolution.

Let the axis of Z be the'axis

of revolution, the generator a

plane curve whose initial posi-

tion is in the plane XZ, and P
any point of the generator.

Since the generator is in the

plane XZ, its equation will be

x=f(z), but as it revolves about

Z, the ic-coordinate of any point

Fig. 111. /



SURFACES OF REVOLUTION. 223

as P will differ from that of its initial position. Hence, to dis-

tinguish the a:-coordinate of the surface from that of the gene-

rator in its initial position, represent the latter by r ; then the

equation of the generator will be

r=/(2). (1)

But P remains at the same distance, r, from Z during the

revolution ; hence (Art. 137)

r'^x'-^-yK (2)

Substituting in (2) the value of r from (1),

^ + f=\_f{z)J, (3)

is the general equation of a surface of revolution. In any par-

ticular case substitute in (3) f{z) from the equation of the

generator.

157. The sphere. If a circle be revolved about any one of

its diameters the surface generated will be a sphere. Let the

diameter coincide with Z and the centre with the origin. Then

the equation of the generator will be

r' + z'' = R\

whence ?'^ = \_f{zjf = Jf — z^. Substituting this in the general

equation x^ -\-y^z= \^f{z)Y, we have

x' + y^ + z' = B^

which is the required equation.

158. The prolate spheroid, or ellipsoid. This is the surface

generated by the revolution of an ellipse about the trans-

verse axis. Let the transverse axis coincide with Z and the

centre with the origin. Then the equation of the generator is

whence r^ = ^, (a'- z') = [f(z)Y.
(V-



224 ANALYTIC GEOMETRY.

Substituting this in x^ -\-y'^ = \_fiz)f^ we have

a2(aj2-|-2/2)+6V = a262, or .^^ + ^' +?! = !. (1)
^ ^^ '

IP h^ o? ^ ^

If a^=zh^z= ]^^ the ellipsoid becomes a sphere. By definition,

plane sections parallel to XF are circles. Let the student

prove that plane sections parallel to XZ and YZ are ellipses.

159. The oblate spheroid, or ellipsoid. This is the surface

generated by the revolution of the ellipse about the conjugate

axis. Let the conjugate axis coincide with Z and the centre

with the origin. Then the equation of the generator is

whence r^ = ^^{h'^ -z^) =if{z)Y,

and h\x^ + f)^ah' = a'h\ or ^ + ^' + ^ = 1,

which is the required equation. If a^ = 6^ = 7^2^ the ellipsoid

becomes a sphere.

Let the student determine the plane sections parallel to the

coordinate planes.

160. The paraboloid. This is the surface generated by the

revolution of a parabola about its axis. Let the vertex of the

t)arabola be at the origin, the axis coinciding with Z. Then

the equation of the generator is

and the required equation is

o? + f=-^pz. (1)

Let the student show that plane sections parallel to TZ and

XZ are parabolas.

161. The hyperboloid of two nappes. If an hyperbola be

revolved about its transverse axis, the surface generated is

\
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called the hyperboloid of two nappes. With the centre at the

origin and the transverse axis coincident with Z, the equation

of the generator is

whence a^x^ + jr)-b'z' = - a'b\ (1)

is the required equation.

Let the student determine the plane sections parallel to the

coordinate planes.

162. Hyperboloid of one nappe. This is the surface gener-

ated by the revolution of an hyperbola about its conjugate axis.

Assuming the centre at the origin and conjugate axis coinci-

dent with Z, the equation of the generator is

a^z^ — b-i'^=~ a^b^,

and that of the surface is

b'(x' + 7f)-a'z'=a^b\ (1)

a^
,

y^ z^
or -^ + -.-72 = 1-

a^ a- b^

Let the student determine the sections.

163. Cylinder of revolution. If a straight line revolve about

another to which it is parallel, it will generate the surface of ;i,

circular cylinder. Let Z be the axis and r = R the equation

of the generator parallel to Z in the plane XZ, Then

r=:R=f{z),

and x' + f- = R' (1)

is the required equation, z being indeterminate.

Let the student show that sections parallel to z are two par-

allel straight lines, or one straight line, elements of the cylinder.
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164. Cone of revolution. If a straight line revolves about

anotiier straight line which it intersepts, the surface generated

is that of a cone. Any position of the generator is called an

element of the cone.

Let AB be the generator, and

Z the axis of revolution. The
cone will be a right cone whose

vertex is A, OA = 7i being the

altitude and OB = H the radius

of the base in the plane XY.
The coordinates of A and B are

(0, h), (jR, 0), and the equation

of the generator z = ^ ?• -f ^,
JLi

whence

'^ =[/W?=f (A-2)S (1)

Fig. 112. and the equation of the surface is

(2)(a^+2/')^=(''-^)^

or if ^ = angle which the generator makes with X= angle made
by the elements of the cone with the plane of the base,

{x'-\-y'')tixn-e= {h-z)\ (3)

If the vertex A is at an infinite distance, the cone becomes

the cylinder. In this case 7i = oo, and from (1)

Lf{^)l ^[R'
2zR^ . z'R''

h /r
= n\

and we obtain the equation of the cylinder x^ -{-if = R\ as

before.

Let the student prove that every plane section parallel to Z is

an hyperbola.
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SECTION XIX.— THE CONIC SECTIONS.

165. General equation. Let any plane (Fig. 112) be passed

through the axis of Y, cutting the section LPJ^ from the surface

of the cone and the line LN fr6m the plane ZX] and let

XON= <^, the inclination of the plane to XY, Since the cut-

ting plane is perpendicular to ZX, its equation will be that of

its trace LN^ or

z= tan <^ • X,

To refer the curve of intersection LPN to axes in its own
plane, let OF be the axis of F, and OX' = ON produced the

new axis of X; then the coordinates of Preferred to the primi-

tive axes are 0M= o:^ MQ = z, QP = ?/, and referred to the

new axes are x' = OQ, y' = QP. Hence

y=y\ x=OM=OQ coscf>=x' cos<f>, z=MQ=OQ sin<^=a;'sin<^.

If these values, which are true for the point P common to

both the plane and the cone, be substituted in Eq. (3) Art. 164,

we shall have the equation of the plane section referred to the

axes X'OY. Making those substitutions, and omitting the

accents,

(x^ cos^
<f) + y^) tan^^ = {h — x sin </))2,

whence

2/' tan^ + a:2(gog2 ^ ^^^^^2 q _ q[^2^>^ _^ ^ ;^^ gj^ cf>-h^ = 0,

or, since sin^<^ = cos^<^ tan^<^,

2/2 tan^^ + x^ cos2<^(tan'^ - tan^t^) + 2hx sin</, - h^ =0. (1)

Discussion of the equation. Being of the second degree

between x and y, this equation represents a conic.

If <^ > ^, tan2<^ > tan^6>, B'-AAC (Art. 80) is positive, and
the section is an hyperbola.
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If (}><0, tan2<^<tan"^, B- — 4:A0 is negative, and the sec-

tion is an ellipse.

It <!>= 0, tsm^cf) = taii^O, B^ — 4^(7 is zero, and the section is

a parabola.

Hence the section is an hyperbola, ellipse, or parabola,

according as the cutting plane makes an angle with the plane of

the base greater than, less than, or equal to, that which the

elements do.

If /i = 0, the equation becomes

2/Han2^ 4-a^ cos2<^(tan2^ -tan^c^) = 0,

and the plane passes through the vertex which is at the origin.

In this case if <^ > ^, the equation takes the form y=± ax, and

represents two straight lines through the origin. If </> < ^, it is

satisfied only for x = 0, ?/ = 0, and represents a point. If <^= ^,

it reduces to 2/ = 0, the equation of AL. These are particular

cases of the hyperbola, ellipse, and parabola, respectively.

If <^ = ; a particular case of
<f) <0, the section is a circle by

definition.

If /i = x, the cone becomes a cylinder. Putting h = cc in

Eq. (1), after substituting for tan^^ its value jz^^^^ dividing

through by /i^, we have

2/2 + a^cos2<^ = i?2;

which is the equation of an ellipse, except when </> = 0° and

<^ = 90°, in which cases the section is a circle, or two parallel

straight lines, elements of the cylinder.

Having thus given to <^ all possible values from 0° to 90°, and

h all possible values from to infinity, we have found every

section of the cone except those parallel to the axis of revolu-

tion, which latter have been already considered in Arts. 163 and

164. Thus every plane section is seen to be one of the varieties

of the conies.
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SECTION XX.—THE HELIX.

166. Defs. If a rectangular sheet of paper be rolled up into

a right cylinder with a circular base, any straight line drawn on

the paper, not parallel to its sides, will become a curve called

the helix. Or it may be defined as the curve assumed by the

hypothenuse of a right-angled triangle whose base is tangent

to the base of the cylinder and whose plane is perpendicular to

the radius of the base through the point of contact, when the

triangle is wrapped around the cylinder. The helix forms the

edge of the common screw. It follows from the definition that

the helix makes a constant angle with the elements of the cylin-

der ; namely, the acute angle at the base of the triangle.

Let the axis of the cylinder167. Equations of the helix

coincide with Z, OA = 22 =
radius of its base in the plane

XY, P being any point of

the helix, a = constant angle

at the base of the triangle,

the vertex of this angle being

assumed on the axis of X
at A, and <^ = ^0Q = angle

made by the projection of the

radius vector OP on XFwith
X Then

X = 0M= OQ cos ^ = i? cos cf>, y = MQ = OQsm<f}=^ E sin <^,

z = QP = base of triangle X tan a = QA • tana = i?<^ tana.

Hence, if A; = tana, the equations of the helix are

x = Ecoscji, y = Rsin(fi^ z=kR<li.

UNIVERSITY
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A Treatise on Plane Surveying.

By Daniel Carhart, C.E., Professor of Civil Engineering in the West-
era University of Pennsylvania, Allegheny. Illustrated. 8vo. Half
leather, xvii -f- 498 pages. Mailing price, .*2.00 ; lor introduction, $1.80.

npillS work covers the whole ground of Plane Surveying. It

illustrates and describes the instruments employed, their ad-

justments and uses ; it exemplifies the best methods of solving the

ordinary problems occurring in practice, and furnishes solutions

for many special cases which not infrequently present themselves.

It is the result of twenty years' experience in the field and in tech-

nical schools, and the aim has been to make it extremely practical.

W. A. Moody, Prof, of Mathemat-
ics, Bowdoin College : I consider the

hook exceptionally fine in execution,

suhject-matter, and arrangement.

Wm. Hoover, Prof, of Mathe-
tnatics, Ohio University: It is in-

deed a superior work, and merits

the widest adoption.

A Field Book for Civil Engineers.

Department of Special Publication.—By Daniel Carhart, C.E.,

Dean and Professor of Civil Engineering, Western University of Penn-
sylvania. 4gx7 inches. Flexible morocco, xii 4-282 pages. Retail
price, $2.50; for introduction, $2.00.

nPHIS book shows how to locate a railroad ; it gives the organ-

ization and describes the outfit of the transit, level, and topo-

graphic parties ; it indicates the work of the construction corps
;

tells how slope stakes are set ; culverts, trestles, and tunnels staked

out
;
quantities calculated ; and frogs, switches, and w^yes located.

About one hundred diagrams aid in explaining the formulas, and

numerous examples of a practical character supplement these. It

contains, among many others, tables of all the natural trigono-

metric functions. It is written for students of civil engineering,

and to satisfy the demand of field engineers for a manual con-

venient in size, containing the desired information, systematic-

ally arranged, fully illustrated, and easy of reference.

Engineering News: We are dis- PennsTjlvania R.R. Co., Pittsburg:
posed to regard this hook on the I have gone over Carhart's Field

whole as among the very best field Book with care, and think it a valu-
manuals which exist. a])le contribution to railroad engi-

Thos. Sodd, Chief Engineer, neering.
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The Method of Least Squares.

With Numerical Examples of its Application. By George C. Com-
STOCK, Professor of Astronomy in the University of Wisconsin, and
Director of the Washburn Observatory. 8vo. Cloth, viii+ 68 pages.
Mailing price, $1.05 ; for introduction, $1.00.

College Requirements in Algebra: a rinai Review.

By George Parsons Tibbets, A.M., Instructor in Mathematics,
Williston Seminary. 12mo. Cloth. 46 pages. By mail, 55 cents ; to

teachers and for introduction, 50 cents.

Peirce's Elements of Logarithms.
With an explanation of the author's Three and Four Place Tables. By
Professor James Mills Peirce, of Harvard University. 12mo. Cloth.
80 pages. Mailing price, 55 cents ; for introduction, 50 cents.

Mathematical Tables Chiefly to Four Figures.

With full explanations. By Professor James Mills Peirce, of Har-
vard University. 12mo. Cloth. Mailing price, 45 cents; for intro-

duction, 40 cents.

Elements of the Differential Calculus.

With numerous Examples and Applications. Designed for Use as a
College Text-Book. By W. E. Byerly, Professor of Mathematics,
Harvard University. 8vo. 273 pages. Mailing price, $2.15 ; for intro-

duction, $2.00.

npHE peculiarities of this treatise are the rigorous use of the

Doctrine of Limits, as a foundation of the subject, and as

preliminary to the adoption of the more direct and practically

convenient infinitesimal notation and nomenclature ; the early

introduction of a few simple formulas and methods for integrat-

ing ; a rather elaborate treatment of the use of infinitesimals in

pure geometry ; and the attempt to excite and keep up the interest

of the student by bringing in throughout the whole book, and not

merely at the end, numerous applications to practical problems in

geometry and mechanics.

E. H. Moore, Professor of Mathe- 1 ablest text-book on the calculus yet

maticSi University of Chicago : The I written by an American.
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Elements of the Integral Calculus.

Second P^dition, revised and enlarged. By W. E. Byerly, Professor
of Mathematics in Harvard University. 8vo. xvi + 383 pages. Mail-
ing price, $2.15; for introduction, f;2.(X).

rPinS work contains, in addition to the subjects usually treated

in a text-book on the Integral Calculus, an introduction to

Elliptic Integrals and Elliptic Functions ; the Elements of tlie

Theory of Functions ; a Key to the Solution of Differential Equa-

tions ; and a Table of Integrals.

John E. Clark, Prof, of Mathe-
matics, Sheffield Scientific School of
Yale University : The additions to

the present edition seem to me most

value for the purposes of university

instruction, for which in several im-

portant respects it seems to me hetter

adapted than any other American
judicious and to greatly enhance its \ text-book on the subject.

An Elementary Treatise on Fourier's Series,

and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Appli-

cations to Problems in Mathematical Physics.

By William E. Byerly, Ph.D., Professor of Mathematics, Harvard
University. Svo. Cloth. x + 288 pages. Mailing price, $3.15 ; for
introduction, $3.00.

nnHTS book is intended as an introduction to the treatment of

some of the important Linear Partial Differential Equations

which lie at the foundation of modern theories in physics, and

deals mainly with the methods of building up solutions of a

differential equation from easily obtained particular solutions, in

such a manner as to satisfy given initial conditions.

John Perry, Technical College,

Finshury, London, England: Byer-

ly's book is one of the most useful

books in existence. I have read it

to say that although it seemed to be
written expressly for me, one of my
friends who is a great mathemati-
cian, seems as delighted with it as I

am mj'self.with great delight and I am happy

A Short Table of Integrals. Revised and Enlarged.

By B. O. Peirce, Prof. Math., Harvard Univ. 32 pages. Mailing
price, 15 cents. Bound also with Byerly's Calculus.

Byerly's Syllabi.

Each, 8 or 12 pages, 10 cents. The series includes,— Plane Trigonom-
etry, Plane Analytical Geometry, Plane Analytic Geometry {Advanced
Course), Analytical Geometry of Three Dimensions, Modern Methods
in Analytic Geometry, the Theory of Equations.
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Directional Calculus.

By E. W. Hyde, Professor of Mathematics in the University of Cincin-
nati. 8vo. Cloth, xii + 247 pages, with blank leaves for notes. Price
by mail, $2.15; for introduction, $2.00.

^HIS work follows, in the main, the methods of Grassmann's

Ausdehnungslehre, but deals only with space of two and three

dimensions. I'he first two chapters which give the theory and

fundamental ideas and processes of his method, will enable students

to master the remaining chapters, containing applications to Plane

and Solid Geometry and Mechanics; or to read Grassmann's original

works. A very elementary knowledge of Trigonometry, the Differ-

ential Calculus and Determinants, will be sufficient as a preparation

for reading this book.

Daniel Carhart, Prof, of Mathe-
matics, Western University of Penn-
sylvania : I am pleased to note the

success which has attended Professor

Hyde's efforts to bring into more
popular form a branch of mathemat-
ics which is at once so abbreviated in

form and so comprehensive in results.

Elements of the Differential and Integral Calculus.

With Examples and Applications. By J. M. Taylor, Professor of

Mathematics in Colgate University. 8vo, Cloth. 249 pages. Mailing
price, $1.95; for introduction,^ $1.80.

npHE aim of this treatise is to present simply and concisely the

fundamental problems of the Calculus, their solution, and more

common applications.

Many theorems are proved both by the method of rates and that

of limits, and thus each is made to throw light upon the other.

The chapter on differentiation is followed by one on direct integra-

tion and its more important applications. Throughout the work

there are numerous practical problems in Geometry and Mechanics,

which serve to exhibit the power and use of the science, and to

excite and keep alive the interest of the student. In February, 1891,

Taylor's Calculus was found to be in use in about sixty colleges.

The Nation, New York : In the

first place, it is evidently a most

carefully written book We are

acquainted with no text-book of the

Calculus which compresses so much
matter into so few pages, and at the

same time leaves the impression that

all that is necessary has been said.

In the second place, the number of

carefully selected examples, both of

those worked out in full in illustra-

tion of the text, and of those left for

the student to work out for himself,

is extraordinary.
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Elements of Solid Geometry.

By Arthur Latham Baker, Professor of Mathematics, University of

Rochester. 12mo. Cloth, xii+ 120 pages. Mailing price, 90 cents;

for introduction, 80 cents.

rpHE distinctive features of this work are improved notation,

tending to simplify the text and figures ;
improved diagrams,

particular attention being paid to the perspective of the figures
;

clear presentation, each part of the discussion being presented

under a distinct heading
;
generalized conceptions, which is the

principal feature of the work, the general theorems for the frustum

of a pyramid being first worked out, and then the pyramid, cone,

prism, and cylinder discussed as special cases of the pyramidal

frustum and of the prismatoid. The essential unity of the sub-

ject is constantly impressed upon the reader.

Benjamin G. Brown, Professor of
Mathematics in Tufts College: It is

a most excellent hook. I have never

used a hook for the first time with

greater satisfaction.

Elementary Co-ordinate Geometry.

By W.JB. Smith, Professor of Mathematics, Missouri State University.
8vo. Cloth. 312 pages. Mailing price, ^2.15; for introduction, $2.00.

n^IIIS book is spoken of as the most exhaustive work on the

subject yet issued in America ; and in colleges where an easier

text-book is required for the regular course, this will be found of

great value for post-graduate study.

Wm. G. Peck, late Prof, of Math-
ematics and Astronomy, Columbia
College : Its well compacted pages

contain an immense amount of mat'
ter, most admirably arranged. It is

an excellent book.

Theory of the Newtonian Potential Functions.

By B. O. Peirce, Professor of Mathematics aud Physics, in HarvarJ
Univ. 8vo. Cloth. 154 pages. Mailing price, $1.60; for introd. $; 1.50.

T^IIIS book gives as briefly as is consistent with clearness so

much of that theory as is needed before the study of standard

works on Physics can be taken up with advantage. A brief treat-

ment of Electrokinematics and many problems are included.
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Academic Trigonometry

:

Piane and sphencai.

By T. M. Blakslee, Ph.D. (Yale), Professor of Mathematics in Dea
Moines College, Iowa. 12mo. Cloth. 33 pages. Mailing price, 30
cents; for introduction, 25 cents.

rPHE Plane and Spherical portions are arranged on opposite pages.

The memory is aided by analogies, and it is believed that the

entire subject can be mastered in less time than is usually given to

Plane Trigonometry alone, as the work contains but 29 pages of text.

The Plane portion is compact, and complete in itself.

Examples of Differential Equations.

• By George A. Osborne, Professor of Mathematics in the Massachu-
setts Institute of Technology, Boston. 12mo. Cloth, vii + 50 pages.
Mailing Price, 60 cents; for introduction, 50 cents.

A SERIES of nearly three hundred examples with answers, sys-

tematically arranged and grouped under the different cases,

and accompanied by concise rules for the solution of each case.

Selden J. Coffin, Prof, of Astron- I ance is most timely, and it supplies

omyy Lafayette College : Its appear- | a manifest want.

Determinants.

The Theory of Determinants: an Elementary Treatise. By Paul H.
Hanus, B.S., recently Professor of Mathematics in the University of

Colorado, now Assistant Professor, Harvard University. 8vo. Cloth,

viii + 217 pages. Mailing price, $1.90; for introduction, $1.80.

npmS book is written especially for those who have had no pre-

vious knowledge of the subject, and is therefore adapted to

self-instruction as well as to the needs of the class-room. The

subject is at first presented in a very simple manner. As the

reader advances, less and less attention is given to details.

Throughout the entire work it is the constant aim to arouse

and enliven the reader's interest, by first showing how the various

concepts have arisen naturally, and by giving such applications as

can be presented without exceeding the limits of the treatise.

WilUam G. Peck, late Prof, of
Mathematics, Columbia College,

iV. r. ; A hasty glance convinces me
that it is an improvement on Muir.

T. W. Wright, Prof, of MathemaU
ics, Union Univ., ISchenectady , N.Y.:
It fills admirably a vacancy in our
mathematical literature, and is a

very welcome addition indeed.
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Analytic Geometry.
By A. S. Hardy, Ph.D., recently Professor of Mathematics in Dart-

mouth College, and author of Elements of Quaternions. 8vo. Cloth,

xiv + 239 pages. Mailing price, $1.(30 ; for introduction, $1.50.

T^HTS work is designed for the student, not for the teacher. It

is hoped that it will prove to be a text-book which the teacher

will wish to use in his class-room, rather than a hook of reference

to be placed on his study shelf.

Oren Root, Professor of Mathe-

matics, Hamilton College : It meets

quite fully my notion of a text for

our classes.

John E. Clark, Professor of Mathe-

matics, Sheffield Scientific School of

Yale College : I need not hesitate to

say, after even a cursory examina-
tion, that it seems to me a very at-

tractive book.

Elements of Quaternions.

By A. S. Hardy, Ph.D., recently Professor of Mathematics in Dart-
mouth College. Second edition revised. Crown. 8vo. Cloth, viii

+ 234 pages. Mailing price, $2.15 ; for introduction, $2.00.

nPHE chief aim has been to meet the wants of beginners in the

class-room.

Elements of the Calculus.

By A. S. Hardy, Ph.D., recently Professor of Mathematics in Dart-
mouth College. 8vo. Cloth, xi + 239 pages. Mailing price, $1.60;
for introduction, $1.50.

Part I., Diiferential Calculus, occupies 166 pages. Part II., Integral
Calculus, 73 pages.

nPHIS text-book is based upon the method of rates. From the

author's experience in presenting the Calculus to beginners,

the method of rates gives the student a more intelligent, that is, a

less mechanical, grasp of the problems within its scope than any

other. No comparison has been made between this method and

those of limits and of infinitesimals. This larger view of the

Calculus is for special or advanced students, for whom this work
is not intended.

Ellen Hayes, Professor of Mathe-
matics, Wellpsley College: I have
found it a pleasure»to examine the

book. It must commend itself in

many respects to teachers of Cal-

culus.

J. B. Coit, Professor of Mathe-
matics, Boston University : The
treatment of the first principles of

Calculus by the method of rates is

eminently clear.
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Elements of Plane Analytic Geometry.
By John D. Runkle, Walker Professor of Mathematics in the Massa-
chusetts Institute of Technology, Boston. 8vo. Cloth, ii + 344 pages.
Mailing Price, $2.25 ; for introduction, $2.00.

TN this work, the author has had particularly in mind the needs

of those students who can devote but a limited time to the

subject, and yet must become quite familiar with at least its more
3lementary and fundamental part. For this reason, the earlier

chapters are treated with somewhat more fulness than is usual.

For some propositions, more than a single proof is given, and par-

ticular care has been taken to illustrate and enforce all parts of

the subject by a large number of numerical applications. In the

matter of problems, only the simpler ones have been selected, and

the nmnber has in every case been proportioned to the time that

the students will have to devote to them. In general, propositions

have been proved first with reference to rectangular axes. The
determinant notation has not been used.

Descn'ptiue Geometry.
By Linus Faunce, Assistant Professor of Descriptive Geometry and
Drawing in the Massachusetts Institute of Technology. 8vo. Cloth.
54 pages, with 16 litliographic plates, including 88 diagrams. Mailing
Price, $1.35; for introduction, $1.25.

TN addition to the ordinary problems of Descriptive Geometry,

this work includes a number of practical problems, such as

might be met with by the draughtsman at any time, showing the

application of the principles of Descriptive Geometry, a feature

hitherto omitted in text-books on this subject. All of the prob-

lems have been treated clearly and concisely. The author's sole

aim has been to present a work of practical value, not only as a

text-book for schools and colleges, but also for every draughtsman.

The contents are: Chap. I., Elementary Principles; Notation.

Chap. II., Problems relating to the Point, Line, and Plane. Chap.

III., Principles and Problems relating to the Cylinder, Cone, and

Double Curved Surfaces of Revolution. Chap. IV., Intersection of

Planes and Solids, and the Development of Solids; Cylinders;

Cones; Double Curved Surfaces of Revolution; 'Solids bounded by

Plane Surfaces. Chap. V., Intersection of Solids. Chap. VI. Mis-

cellaneous Problems.
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Wheeler's Plane and Spherical Trigonometry.

By H. N. Wheeler, A.M., formerly of Harvard University. 12mo.
Cloth. 211 pages. Mailing price, $1.10; introduction, $1.00, Pierce's
Mathematical Tables are included.

rpHE special aim of the Plane Trigonometry is to give pupils a

better idea of the trigonometric functions of obtuse angles

than they could obtain from any book heretofore existing.

In the treatment of Spherical Trigonometry special pains has

been taken to present applications to Geometry and Astronomy,

and problems involving these applications.

Adjustments of the Compass, Transit and Level.

By A. V. Lane, C.E., Ph.D., formerly Associate Professor of Mathe-
matics, University of Texas, Austin. 12mo. Cloth, v + 43 pages.
Mailing price, 33 cents ; for introduction, 30 cents.

Principles of Elementary Algebra.

By H. W. Keigwin, Teacher of Mathematics, Norwich Free Academy,
Norwich, Conn. 12mo. Paper, ii + 41 pages. Maihng and introduction
price, 20 cents.

npiIIS little book is intended as an outline of thorough oral

instruction, and is all the "text" which the author has

found it necessary to put into his pupils' hands. It should, of

course, be accompanied by a good set of exercises and problems.

Metrical Geometry. An Elementary Treatise on Mensuration.

By George Bruce Halsted, Ph.D., Professor of Mathematics, Univer-
sity of Texas, Austin. 12mo. Cloth. 24G pages. Mailing price, $1.10;
for introduction, $1.00.

rnHIS work applies new principles and methods to simplify the

measurement of lengths, angles, areas, and volumes. It is

strictly demonstrative, but uses no Trigonometry, and is adapted

to be taken up in connection with or following any elementary

Geometry. A hundred illustrative examples are worked out in the

course of the book, and at the end are five hundred carefully

arranged and indexed exercises, using the metric system.
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