


''iemmsi

^ ;.''

IN MEMORIAM
FLORIAN CAJORl

.-tj.-//,.-"







\

\





Digitized by the Internet Archive

in 2008 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/elementsofanalytOOmichrich





''i^'— Q^j^

ELEMENTS

OF

Analytical Mechanics

BY

PETER S. MICHIE,

Professor of Natural and Experimental Philosophy in the

U. S. Military Academy^ West Point, and

Brevet Lieutenant-Colonel

U. S. Army,

SECOND EDITION.

NEW YORK:

JOHN WILEY & SONS,
15 AsTOR Place.

1887.



Copyright, 1887,

By John Wiley & Sons.



N

)^v;7

PREFACE.

This volume is a revised edition of the text taught to the

cadets of the U. S. Military Academy during the session of

1886-7. Together with a brief chapter on Hydrodynamics, it is

intended to comprise a four-months course of instruction for

students well versed in elementary mathematics, including the

Calculus.

The author has aimed to present a clear, concise, yet com-

prehensive course, covering all the important principles of Me-

chanics which form the basis of that scientific knowledge now

required by the military profession. A thorough mastery of this

volume will enable the student to comprehend, upon careful

study, any of the more difficult works upon the same subject

which his professional duties may require him to consult.

The table of contents gives in consecutive order a very full

statement of the subjects discussed. The arrangement of the

subject-matter and method of treatment adopted is in accord

with the judgment of several able scientific officers who liave

been associated with the author in the instruction of cadets, and

are the result of over sixteen years' experience in daily contact

with bright students.

The subject-matter comprising the volume has been drawn

from many sources, and modified to suit the requirements of the
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necessarily limited course. Those conversant with the subject

will recognize that many of the articles and illustrative examples

are taken from Price's Infinitesimal Calculus, Vols. III. and IV.

The most prominent other sources are Poisson's Traite de Me-

canique, Routh's Rigid Dynamics, and Levy's La Statique

Graphique.

Lieut. William B. Gordon, Ordnance Department, U. S. Army^

Assistant Professor of Philosophy U. S. Military Academy, is en-

titled to at least equal credit with the author for whatever may

be found worthy of commendation in the book. Many of the

demonstrations in the previous edition have been simplified by

him, and in nearly every instance where a question has arisen

the author has finally deferred to Lieut. Gordon's better judg-

ment.

The author is also under great obligations to Lieut. Sidney

E. Stuart, Ordnance Department, who has carefully gone over

the work, and suggested important changes which, in most cases,

have been adopted.

West Point, N. Y., August, 1887.
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MECHANICS OF SOLIDS.

1. Mechanics treats of the equilibrium and motion of bodies,

or their elements, under the action of forces.

2. The most ordinary observation shows that changes are

constantly taking place in matter. These changes are assumed

to be due to the action of force, and a complete analysis of the

various phenomena would make known the particular force or

forces at work. To make the analysis we must cultivate the

faculty of observation and acquire skill in experimentation. But

as no one can possibly repeat all the experiments, nor observe

all the phenomena which at present form the data upon which

Mechanics is based, we must accept the certified facts and the

conclusions derived therefrom, until we are sufficiently instructed

in the science to form for ourselves a rational judgment as to

their truth. In this we exercise a proper faith in the honesty,

accuracy and ability of those who have devoted their lives to

the study of the natural sciences. It is well to remember that

the accepted laws which are assumed to govern the changes in

the state or condition of matter can never be exactly verified by
experiment, because of the inaccuracy of the experimenter and
the imperfections of the appliances by which the results are

measured. But whenever a stated law appears to conform more
nearly to the observed results as the experimenter becomes more
skilful and the apparatus more perfect, we accept it as the gov-

erning and limiting law for this class of phenomena.
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Matter.

3. Of the ultimate nature of matter we are ignorant; but

from close observation of natural laws it has been assumed:
(i) That every material substance is composed of one or more

simple substances or elements^ so called because they have thus far

resisted simplification by subdivision;

(2) Tiiat each of these simple substances is composed of very

minute, but finite and definite, portions, called atojns

;

(3) That in any substance, simple or compound, two or more
of these atoms are, in general, so united as to form the smallest

portion that can exist by itself and remain the same substance.

This combination of atoms is called a 7nolecule.

4. To illustrate: hydrogen and oxygen are simple substances,

and two atoms of hydrogen unite with one of oxygen to form a

molecule of water, which is a compound substance. No quantity

of water less than the molecule can exist, but if the molecule be

divided it becomes hydrogen and oxygen. In Mechanics the

molecule is therefore considered as the elementary mass.

5. Mass is a term used to express the quantity of matter in a

body, and its numerical value will depend upon the quantity of

matter assumed as the unit mass.

6. Density is that property of a body by which the quantity

of matter in the unit volume is determined. It varies in differ-

ent bodies according to the nearness and mass of their constit-

uent molecules. When a body is compressed its density is in-

creased because its molecules are brought nearer together.

There are therefore more of them, and hence more mass, in the

unit volume than before. The contrary is the case when the

body is expanded. The density of a body is measured by the

ratio of the mass in its unit volume to the mass in the unit vol-

ume of some standard substance, generally pure water.

7. The mass of a body is therefore directly proportional to

the product of its volume and its density. If the unit mass be
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assumed to be the mass of a unit volume of matter at unit den-

sity, then the mass of any homogeneous body will be given by

the equation

M= Vd, (i)

in which Mis the mass in mass units, F the volume in volume
units, and S the density of the body.

8. Ifiertia is defined to be that property of a body by which

it continues in its particular state of rest or rectilinear uniform

motion until the action of some force produces a change in one

or both of these states.

Force.

9. Force is that which produces, or tends to produce, any

change in the state of matter with respect to rest or motion.

The intensity of a force is its capacity to produce pressure.

The point of application is the molecule of the body to which the

force may be considered as directly applied. The action-line is

the right line which the point of application would describe if it

were free to move from rest under the action of the force alone.

A force is said to be completely given when its intensity,

action-line and point of application are known; for if any one of

these be varied the resulting effect of the force will in general be

changed.

10. Molecular Forces.—Every molecule of a body is assumed
to be the locus of a force which is sometimes attractive and
sometimes repellent according to the particular circumstances of

its development. By virtue of this force the molecule unites

itself with its adjacent molecules, or tends to separate itself from

them; and by means of these forces the mass assumes either the

solid, liquid or gaseous state, under particular conditions of

temperature and external pressure. When an extraneous force

is applied to a body these molecular forces manifest themselves

and oppose its action. After the extraneous force is withdrawn
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the molecular forces come again into equilibrio, and the mole-

cules either resume their primitive positions of equilibrium or

assume new ones. For example, when a solid bar is subjected

to a stress of elongation the molecules of consecutive cross-

sections will increase their distances from each other, and during

this state of separation the molecular forces will be attractive;

but when there is a stress of compression the corresponding

molecules are brought nearer to each other, and during this state

their forces are repellent. In either case the aggregate intensity

of the molecular forces is equal to that of the applied stress.

Wiien the stress is withdrawn, the molecular forces are balanced

and the molecules return to their primitive positions, provided

they have not been forced beyond their elastic limits.

11. Elasticity is that property of a body by virtue of which the

molecular forces restore, or tend to restore, the molecules to

their primitive relative positions when they have been moved
from these positions by the action of some force.

The elasticity is said to be perfect when the body always

requires the same force to keep it at rest in the same volume,

shape and temperature, through whatever variations of volume^

shape and temperature it may have passed.

Every body has some degree of elasticity of volume. All

fluids possess great elasticity of volume. If a body possess any

degree of elasticity of shape it is called a solid; if none, a fluid.

While the elasticity of shape is very great for many solids, it is

not perfect for any. The degree of distortion within which

elasticity of shape is sensibly perfect is limited in every solid;

when the distortion passes beyond this limit the body either

breaks or receives a permanent set ; that is, such a molecular

displacement that it does not return to its original figure when
the distorting force is removed.

12. Gravitation.—It is assumed that any body in the universe

attracts any other body with an intensity which varies directly

as the product of their masses and inversely as the square of the

distance which separates them; also that this attraction is mutual,

or that the intensity of the attraction of a body a for a body b is
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exactly equal and directly contrary to that of b for a. Let w and

m' be the number of mass units in the bodies a and ^, Fig. i; r

the distance between their centres, and /t the at-
^

traction of one mass unit for another mass unit at m * "J' " m
a unit's distance apart; then the intensity of the fig. i.

mutual attraction of the two bodies is given by

-;'; (^)

for, each of the mass units of m attracts each of those of m* with

an intensity }jl at the distance unity; and as this intensity varies

inversely as the square of the distance, with an intensity —^ at the

•distance r; therefore the m units of one body will attract the m'

units of the other with an intensity —^-/z, and conversely the m'

units will attract the m units with an equal intensity. The
mutual attraction existing between any two bodies is a single

force whose stress or motive effect on each body can be deter-

mined separately.

Motion.

13. Kinematics is that branch of pure mathematics in which

the properties of motion are considered without reference to its

cause. Motion is the state of a body when it is changing its

place with respect to an origin. A body is said to be at rest

with respect to an origin, or at relative rest, when it remains at

the same distance and in the same direction from the origin.

Considering the diurnal and annual motion of the earth, that of

the solar system through space, and the proper motion of the

fixed stars, we see that a state of absolute rest is unknown for

any body in the universe. Rest is therefore wholly relative.

14. Motion is continuous; for a body cannot pass from one

position to another without occupying all intermediate positions
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in the path described. Motion may be uniform or varied. It is

uniform when the moving body describes equal spaces in equal

successive portions of time, no matter how small these intervals

of time may be. When this condition is not fulfilled the motion

is varied.

15. Velocity is the rate of motion. Its measure^ at any instant,

is the distance that would be described in the next subsequent

unit of time, were the motion to continue unchanged during that

unit. Hence the laws of uniform motion are embodied in the

equation

^=^A (3)

s being the distance described in the time /, v the constant ve-

locity, and / the units of time since the epoch t •= o. The prin-

ciples of the calculus and the definition of velocity give, for the

measure of uniform or varied velocity at any instant,

1 ds . .

Velocity is therefore measured by a distance along the direc-

tion of the motion at the instant considered, and hence it may
be graphically represented by a right line. The projections of

this right line on co-ordinate axes represent the component ve-

locities in these directions. If -^t>e the measure of the velocity at

any instant, then the component velocities along the axes will be

7 dx dy dz
measured by —— , —^, —7-, and when the

dt at dt

/ y^JLI
A axes are rectangular, Fig. 2, their rela-

^^ / j
tions to each other are given by.

i

~"~^ J X ds Jdx" . dy" . dz^is _ i/dx^ \_^-^'^ \_

dt~^ ~dt~^'di^'^ df' (5>

This is known as the principle of the

parallelopipedon of velocitieSy and may be

thus stated: If the three edges of a parallelopipedon which meet at one

Fig. 2.
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vertex represent componetit velocities, the diagonal through this vertex

represents the resultant velocity. It is employed in the resolution

and composition of velocities.

l6. Acceleration is the rate of change of velocity. Whether

constant or variable, it is measured by tlie increment of velocity

in a unit of time, supposing the acceleration to remain constant

for that unit, and the same as at the instant considered. Hence

its measure is

dv d^s ,,.

" = ^ = -dF (^)

When the velocity is increasing, the acceleration is regarded as

positive; and when decreasing, as negative. Acceleration may
be graphically represented by a right line, since it is measured

by a velocity, and the projections of its rectilinear representa-

tive on co-ordinate axes will represent its component accelera-

d_]x dy dy
dr' dr'di

d's

tions in these directions. Hence we have --^, -~, -j-j-, as the

component accelerations of -j-j- when the latter is the accelera-

tion along the right-line path s. If the path be a plane curve,

and p the radius of curvature at any point, we have from the

calculus

(d'xy + (dyr + (d'zy - (d's)' = ^^. . . . (7)

Dividing both members by dt* and reducing, we have

The first member is the resultant acceleration, and its value

in the second member is compounded of two accelerations at

d^'s
right angles to each other; the one, -7^, in the direction of the

path at the instant considered, and the other therefore in the
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direction of tlie radius of curvature towards the centre. When
the path s becomes a right line p becomes infinite, and the sec-

ond component acceleration zero.

17. Angular velocity is the rate of motion about a centre, and

angular acceleration is the rate of change of the angular velocity.

Representing the first by g?, and the second by— , their meas-

ures are given by

dS , . doa d'^d doo , .

'" = M' • (9) -^ =^ = ''70' ('°)

in which 6 is the angle made by the radius vector with the line

of reference through the centre. The tangential linear velocity

of a point at a unit's distance from the axis is therefore a meas-

ure of the angular velocity.

The unit angular velocity is that of a point describing the

unit angle (57°. 29578 -j- , called the radian) uniformly in a unit

of time.

Physical Units.

18. The British System.—The British unit of length is the/?^/.

It was first established as a standard by taking it to be a certain

fraction of the length of the simple seconds pendulum at Lon-

don, but is now defined to be the third part of the distance

between two marks on the gold plugs of the Standard Yard de-

posited in the Exchequer at London.

The unit of time is either the sidereal or mean solar second^ both

of which are determined from the uniform rotation of the earth

on its axis. This unit is international. Unless otherwise stated

the mean solar second is assumed as the unit.

The British unit of mass is a certain platinum cube called the

Pound, deposited in the Exchequer at London, and made the

standard unit of mass in Great Britain by act of Parliament.

By means of its copies the masses of other bodies may be deter-

mined.
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The units of space, time and mass are arbitrary units, and

serve to determine the other units of the system, which are

•called derived units.

The Unit of Force.—Gauss has defined the absolute unit offorce

to be that force which, acting on a given unit of mass for a unit

of time, would generate in it a unit of velocity. By this defini-

tion, the unit force can be derived from any standard units of

mass, time and velocity with equal facility. The British unit

^f force is that force which, acting on the Pound mass for one

second, would generate in it a velocity of one foot per second.

Since the Pound is an invariable mass, this establishes an in-

variable British standard unit of force. This unit is called the

Pounda I.

19. Other Units.—The unit of velocity is a velocity of unit dis-

tance per unit time, and is,''therefore, one foot per second. Simi-

larly, the unit of acceleration is an acceleration of one foot per

second. The unit of area is the square foot; that of volume^ the

cubic foot; and that of density^ the density of the pound of mat-

ter occupying a cubic foot of volume.

It will be shown later that the weight of a given mass on the

•earth's surface varies with the latitude and the height above the

sea-level. Therefore weight cannot be taken as an invariable

standard of force; but as the variations in the weight of any mass
are proportionally small, the weight of the British unit of mass

is generally taken as the unit of force for ordinary purposes.

20. The C. G. S. System.—The French or Centimeter^ Graniy

Second system, is named from its length, mass and time units.

The unit of length in this system is the centimeter^ derived from

the meter, which was formerly supposed to be equal to one ten-

millionth of the quadrant of the Paris meridian line, but is now
definitely fixed by a standard meter in the Archives at Paris.

The unit of mass is the gram, derived from the kilogram, which
was originally defined as the quantity of matter in a liter of

pure water at the temperature of maximum density, but is now
determined by existing standards.

The unit of force in this system, called the Dyne, is that force
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which, acting on the gram mass for one second, would generate

a velocity of one centimeter per second.

Stresses and Motive Forces.

21. Nothing is known of the inherent nature of force; but
the intensities of forces are assumed to be proportional to their

effects under precisely similar circumstances of action, and can

be estimated by comparing these effects. Forces are classed as

stresses or motive forces according as their effects are strains or

changes of state with respect to rest or motion. That branch of

Mechanics whicli treats of stresses and their effects is called

Statics, and that which treats of motive forces is called Kinetics.

22. Measure of the Intensity of a Stress.—When a solid bar is

subjected to a stress within its elastic limit, experiment shows

that the elongations are directly proportional to the intensity of

the elongating stress, and to the original length of the bar; and in-

versely proportional to the area of cross-section, supposed constant

throughout the experiment, and to a coefficient depending on the

material of the bar. These experimental laws are expressed by

in which \ is the elongation due to the stress whose intensity is

/, / the original length of the bar, s the constant area of cross-

section, and E a coefficient depending on the material of the bar.

If this law be supposed to hold good for all longitudinal

stresses until A, = /, we have

7=^ (I2>

for a bar of unit area of cross-section. E is therefore the inten-

sity of that stress which, applied in the direction of the length,

would elongate a bar of unit area of cross-section to double its

original length, or compress it to zero length under the assumed
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law. Making / = i, and j = i, in Eq. (ii), we have

E={, ........ 03)

whence E may also be defined to be the ratio of the stress to the

elongation produced by it in a bar of unit length and cross-

section. It is called Young's Modulus or Coefficient of Longitu-

dinal Elasticity. From Eq. (13) we have

I^EX (14)

Hence, within elastic limits, the intensities of stresses are as-

sumed to be directly proportional to the elongations or com-

pressions which they would produce in a given bar, when applied

longitudinally. This is the principle of the common spring-

balance.

23. Measure of the Intensity of a Motive Force.—Let F be the

type symbol of a force^ and / that of its intensity. Experiment

and observation show conclusively that if the force act upon dif-

ferent free masses ;;/, m', m'\ etc., /being constant, then will

that is, when a constant force acts upon differentfree bodies^ the accel-

eratiotis are inversely as their masses.

Also that if two forces of different intensity act upon the

same free mass, we will have

^'^^"-dT^'-dr"' ('^)

or, the accelerations are directly as the intensities of the forces.

From the first of these principles we get, for forces of equal

intensities,

d's ,d's' „dV' ^ .
,
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-and from the second, for forces of different intensities,

I..I^::m^:m~^, (.8)

or

I:I^::ni^'.m --^ (19)

From Eq. (17) we see that for any constantforce the product of

the mass and acceleration of the free body on which it acts is a cofistani

quantity; and, from Eq. (19), that for different constant forces the

intensities are proportional to such products. Hence ^-jt fulfils all

the requirements of a measure, and we may write

r ^"' / X^=^:^ (^°)

This evidently measures the intensity of any motive force; for,

if the force be variable, the acceleration at any instant is the

•change in the velocity which would take place in a unit of time,

provided the force were to remain constant during that unit.

Hence the intensity of a motive force is ?neasured by the product of the

mass of the free body upon which it acts by the acceleration due to the

force. The product of a mass by its velocity is called its " quan-

tity of motion," " quantity of velocity," and " momentum " by

•different authors. The term momentum is adopted in this text.

Since
d'^s dv dimv) , .

'"iF = '"-dt=-dr^ (">

we see that the measure of the intensity of a motive force is the

rate of change of the momentum taken with respect to the time,

24. Impulsive Forces.—K force which acts on a body for a very

short time, as in the case of a blow, is called an impulsive force or

impulsion^ while one whose action is continuous is called an in-

cessantforce. If an impulsive force were to be measured as in
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the case of incessant forces, dv would be great compared with

dv
dt, and the expression — would generally be a velocity incon-

veniently large. It would also, in general, be impracticable to

measure the duration of the action of such a force. Hence the

measure of the intensity of the impulsion is assumed to be the

momentum generated during the whole time of action of the force, no

matter how long or short this time may be, and not that which

would be generated in a unit of time. Therefore if /^ be the inten--

sity of an impulsion, we have for its measure

I^ —M— = Mv = M(v^—vX .... (22)

in which v^ is the velocity of M at the instant the impulsion

began its action on the body, and v^ the velocity when its action

is completed. It is evident that this is also the measure of the

intensity of an incessant force which would, in a unit of time,

generate the same momentum as that which is actually produced

by the impulsive force. There is therefore no distinction be-

tween incessant and impulsive forces save that relating solely to

the duration of their action.

25. Action of Forces upon Free Bodies.—A free rigid solid is a body
perfectly free to move under the action of any extraneous torce

whatever, its molecules being so connected that no change of

relative position is possible among them. No such body occurs

in nature. All bodies change their form, either temporarily or

permanently, when subjected to the action of extraneous forces
;

and the results deduced in Mechanics, under the supposition that

bodies are free rigid solids, are not in strict accord with those

observed in actual masses.

If an isolated molecule could receive the action of an extrane-

ous force without the counterbalancing influences of other

molecules, it would immediately begin to acquire accelerated

motion, and continue to do so during the action of the force;

after which it would move with uniform motion, until again sub-
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jected to the action of force. This is the simple consequence of

the assumed definition of force. Were the body acted on the

hypothetical free rigid solid, the increments of velocity of the

different molecules would be simultaneous.

Let the body be a free solid, but not rigid, and suppose that

m^ m\ etc., Fig. 3, represent a file of its molecules along any direc-

tion, their positions being fixed by the molec-

^ ular attractions which appertain to the body.

_ Let the force F act on ?n to move it towards
r IG. 3.

m'. As soon as m approaches m' the mo-

lecular forces on m' will be unbalanced, and m' will be moved
towards the next molecule in order, seeking a new position of

equilibrium nearer to m". In like manner each molecule will in

succession take up its change of position and of state, until the

last molecule of the file, m", is reached. Some interval of time

is therefore required before the full effect of the action of the

force, as exhibited in the motion of the body as a whole, is

manifested.

So long as the force continues to act the molecules are in a

state of strain, being nearer each other than they were before;

and the distance between each molecule and the one on its left

is less than that between it and the one on its right. The dif-

ference between the molecular forces corresponding to these dis-

tances is the force which is employed in giving the molecule its

acceleration, and its intensity is measured by ^fi-r^-

Thus we see that the molecular forces serve to distribute the

effect of the extraneous force throughout the body. Because of

this action the point of application of a force may be taken anywhere

on its line of direction within the limits of the body.

26. Representation of Forces.—Since a force is completely given

when its intensity, direction and point of application are known
(Art. 9), we may graphically represent a force by a portion of its

action-line equal in length to the number of units in the intensi-

ty of the force. One end of this portion is taken at the point of

application, and the direction of the action is indicated by an
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1=12 lbs.

Scale 1 Inch^lO feet or 10 lbs.

arrow-head, placed generally at the other end. Thus the right

line in Fig. 4 represents a force, since when p

the line is given the force is given. The
scale according to which the line is con-

structed is indicated in the figure. Fig. 4.

It is sometimes convenient, in order to avoid confusing a

figure, to take the extremity at the arrow-head as the point of

application; but when such departure from the general rule is

made, the change is evident from the construction of the figure.

27. Rectangular Components of a Force.—Let there be three

perpendicular cords, AO, BO and
CO, joined at O, Fig. 5, and let their

directions be taken as a set of co-

ordinate axes. The tensions on the

cords, caused by the force P, will be

given by the projections Ox, Oy, Oz,

of the intensity of jP on the axes.

This follows from the assumption

of the right line as the representa-

tive of a force, and its truth has

been conclusively shown by experi-

ment. The forces /", /"' and /*"' are called rectangular com-

ponents of the force P.

Let <af, §, y be the type-symbols of the angles made by the

action-line of a force with the co-ordinate axes x^y^ z respective-

ly, and let X'y y, Z' represent the component intensities of / in

the directions of these axes. Then we have

Fig. s.

X' = /cos a;

Y' = /cos/?;

Z ' = / cos y.

(23)

28. Resultant of a System of Forces. The resultant of a system

offorces is a single force which will produce the same effect as

all the forces of the system acting together. The forces of the

system are called components of the resultant.
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It is obvious that while a system of forces may have but a
single resultant, the resultant may have any number of systems

of components.

Let H be the intensity of the resultant, and a, b, c the angles

which its action-line makes with the co-ordinate axes respec-

tively. Since the effect of the resultant is the same as that of

the system of forces, its component in any direction must be equal ta

the sum of the components of the forces of the system in that direction^

and we have

7? cos ^ = /cos or + /' cos «' + etc. = '2X* = X;
)

i? cos ^ = / cos /? + /' cos /?' + etc. = -^Y' = F; V (24)

R cos c = /cos ;/ 4- /' cos y* -\- etc. = ^Z ' = Z. )

Squaring and adding, we have

R^ (cos" a + cos'' b + cos' r) = X" + F'' + Z^ . . (25)
or

R = VX' + y' + Z" (26)

From Eqs. (24) we have

cos « = -^; cos ^ = ^; cos r = — . . . . (27)

The equations of a right line making the angles a^ b^ c with

the axes are

cos a cos b cos c'

If the co-ordinates of the point of application of the resultant

be x\y\ z\ the equations of its action-line become

or
x-x' y-y' z-^
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29. The Parallelogram of Forces.—Let the system be composed

of two forces with a common point of application. Take this

point as the origin, Fig. 6, and let the

forces F' and F" lie in the plane XY.
The rectangular components of F' are

ox* and oy\ and those of F'* are ox**

and oy"y neither having any component
perpendicular to their plane. The
rectangular components of the resul-

tant are

ox' -\- ox" = ox;

.

(31)

(32)

and the resultant of F* and F** is the resultant of ox and oy^

which is F- . But we see from the construction that F is the

diagonal of a parallelogram constructed on F* and F**^ and that

it passes through their common point.

We therefore conclude that if two forces have a common point of
application^ and a parallelogram be constructed on their linear repre-

sentatii^s, -their resultant is completely represented by that diagonal of
the parallelogram which passes through their point of application.

Let F be taken to coincide with the

axis of F, as in Fig. 7. The components
of F* and F** in the direction of X are

equal to each other in intensity, and as

they act in opposite directions they coun-

teract each other. The sum of the inten-

sities of the components in the direction

of Y is represented by the length of the

diagonal of the parallelogram constructed

on F* and F**, and we have the resultant

of the system represented by that diagonal,

as before.

30. Since any side of a triangle is the diagonal of a parallelo-

gram constructed on the other two sides, we conclude that if

two sides of a triangle represent the intensities and directions of

Fig. 7.

t^v t \̂L^ rrtO^
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two component forces, the other side will represent the intensity

and direction of their resultant. We assume, therefore, that all

the trigonometric relations existing between the angles and sides

of a triangle are true of the directions and intensities of a resul-

tant and its pair of components.

These relations are

i?» = /'» + /"« + 2/' /" cos (0' + 0");

R sin 0" ^

\^

sin d '

R sin 0'

sin d '

/' :/" ::sin 0" : sin 0';

sin \

sin

0' =-/(

ios i <y = /(

'(5--I')(,S--H)
^/'

'(•s--J")(S--£)
RI"

\s--I'){S- I")
/'/'

(33)

(34)

(36)

in which 0', 0" and (5^ are the angles which i" makes with -/?,

/>" with -ff, and /*' with /*", respectively, and »S = —"^—~—

.

31. Any number of forces having a common point of applica-

tion, or any number of forces lying in the same plane but having

different points of application, may be combined by the paral-

lelogram of forces. Thus, in the first case, find the resultant of

any two, then combine this resultant with one of the other forces,

and so on until all have been combined. The last resultant is

the resultant of the system.

In the second case, prolong the action-lines of two of the
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forces until they meet. Take their intersection as a common
point of application, (Art. 25), and then proceed as above.

Fig. 8.

Fig. 8 is an illustration of such a combination, 5 being the re-

sultant of I, 2, 3 and 4.

32. The Parallelopipedon of Forces.—The principle of the paral-

lelogram of forces is readily extended to that of \}[i^ parallelopipe-

don offorces. Thus, in Fig. 9, P*" is the resultant of P* and P"^

Fig. g.

and P of P^" and /*'". P is therefore the resultant of P', P"
and P"\ This principle is thus stated: If three forces have a

common point of application, and a parallelopipedon be constructed on

their linear representatives, their resultant is completely represented by

that diagonal of the parallelopipedon which passes through their point

of application.
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•33. The Moment of a Force.—If a body be free to rotate about

a fixed point it is evident that any force whose action-line does

not pass through the point will produce

such rotation. Thus if ^, Fig. 10, be a

fixed point, the force P tends to ro-

tate the body about 0. This tendency is

directly proportional to the intensity of
|

Fig. 10. the force and to the perpendicular dis-

1

tance from the action-line of the force to the point, and hence

to their product, Ip. The product Ip is therefore the measure

of the capacity of the force to produce rotation about 0, and is

called the moment of P with respect to o. Ip is also the moment
of P with respect to an axis through and perpendicular to the

plane of and the action-line of the force. This axis is called

the moment axis of the force with respect to 0. The point is

called the centre of the moment, and/ the lever-arm of the force

or of the moment.

To find the moment of P with respect to any other axis

through Oy we make use of the principle that the moment of a

force with respect to any axis is equal to the sum of the moments
of its components. The moment of any component in the plane

of the axis is zero. Hence if we resolve the force into two compo-

nents, one of which is in a plane containing the axis and the other

perpendicular to this plane, the moment of the force is equal to

the moment of the perpendicular component. We therefore

have the following rule for obtaining the moment of a force

with respect to an axis: Resolve the force into two components^ one of

which shall be perpendicular to the axis and the other in a plane con-

taining the axis; multiply the intensity of the perpendicular component

by the perpendicular distance between its action-line and the axis. Any
axis which is oblique to the action-line of the force is called a

component axis.

It is generally most convenient to multiply the distance from

the point of application to the axis, by the intensity of that com-

ponent of the force which is normal to the plane containing the

point of application and the axis.
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34, Representation of Moments.—We may write

// = /' X /'.
(37)

Fig,

That is, the moment measures the intensity of a force which would,

with a lever-arm of unity, have the same effect as the given force

to produce rotation about the axis. Therefore moments and

forces may be measured by the same unit, and a definite portion

of a right line may be taken to represent a moment. To indicate

the centre of the moment and the axis, the moment representa-

tive is laid off from the centre of the moment on the axis. To
show the direction of motion about the axis the line is

terminated by an arrow-head, and is laid off in such a

direction from the centre of the moment that the motion

shall appear right-handed as one looks along the axis

from the arrow-head toward the centre of the moment.
Thus, in Fig. 11, the right line indicates the intensity of

the moment, the axis, the centre of the moment, and the direction of

rotation.

35. The Moments of a Force with respect to Co-ordinate Axes.—
To find expressions for the moments of a force with respect to

any set of rectangular co-

ordinate axes, let P, Fig. 12,

represent the force, and x*,y\

z' the co-ordinates of its point

of application. / cos y has

no moment with respect to

the axis of z, and the moment
of P with respect to this axis

is evidently equal to the sum
of the moments of / cos a and

/ cos p. The lever-arm of

/ cos a is j', and hence its mo-
ment is /cos ay'. The lever-

arm of / cos /? is X* , and its

moment is I cos fix' . These two moments tend to produce
rotation in opposite directions. Calling moments positive when

Fig.
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their representatives are laid off in positive directions along the

axes, we have for the moment of F with respect to z

I {x' cos P — y' cos a). (38)

Similarly, for the moments with respect to the axes of y and

X. we have

/ (2' cos a — X* cos y)\

I (y cos y — z' cos /?):1
{Z<))

For a system of forces we have

R (x cos b — y Qo^ a) = ^2 I (x' cos P — y* cos a) — L
R (z cos a — X cos c) — "2 I {z' cos or — ;c' cos y) = M
R {y cos ^ — -s cos b) = 2 / (y^ cos y — z' cos /J) = iV^;

(40)

in which R represents the intensity of the resultant, x,y and z

the co-ordinates of its point of application, and ^, b and c the

angles which its action-line makes with the axes.

36. Composition and Resolution of Moments.—Let oM, Fig. 13,

^ represent a moment, and let it be required to

find its component with respect to any axis

through the centre of moments, as oM* . We
may assume that the moment oM is due to

1^' a force applied at 0" and perpendicular to

^o'' the plane of the figure. This force will have
^^'

the lever-arm o'o*' with respect to the axis

oM\ and its moment with respect to that axis is therefore, 00'^

being represented by/,

/ (/ cos a) = (Ip) cos a = oM cos or. (41)

But oM cos a is the projection of oM on the axis oM\ Hence
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we see that the component of a moment, with respect to any axis

through the centre of the moment, is represented by the projec-

tion of the moment on that axis. From the assumption of the

rectilinear representative of a moment we see that the princi-

ples of the parallelogram and parallelopipedon of moments
follow, as in the case of forces. Figs. 6, 7 and 9 may therefore

be taken to illustrate the composition of moments, P, F\ P'^ and

P"' representing moments with a common centre at 0.

37. Assuming a common centre of moments for a system of

forces, let Rp represent the resultant moment, R being the in-

tensity of the resultant of the forces, and / its lever-arm; and

let /, /«, n be the angles which the moment axis of the resultant,

called the resultant axis, makes with the co-ordinate axes 2:,^, x
through the centre.

Then the principle of iht parallelopipedon of moments gives

Rp^VV^M'-]-N' (42)

That is, the resultant moment of a system of forces with respect to

any assumed centre of moments is equal to the square root of the sum

of the squares of the sums of the moments of the forces of the system

with respect to any set of rectangular axes through the assumed centre,

Rp is constant, but Z, M and N will, in general, change with
the axes.

For the rectangular components of Rp we have

n = N^,\

m = M;[
I =Z. )

Rp cos n = JV;

Rp cos m = M;\' . (43)

i^cos

That is, the algebraic sum of the moments of the forces of the system

with respect to any axis through the assumed centre is equal to thepro-
jection of the resultant moment on that axis.
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The position of the resultant axis is given by

M
Rf

cos n

cos m (44)

38. Parallel Forces.—Assuming a system of parallel forces, we
have

a = a' = a" = etc.;

b = ft'
= /3" = etc.;

c ^= y' = y" z=z etc.;

and casting out the common factor from Eq. (24), we get

^ = 21, (45)

the intensities of those forces whose direction cosines are posi-

tive being multiplied by + i, and those whose direction co-

sines are negative by — i. The intensity of the resultant of a

system of parallel forces is therefore equal to the sum of those

intensities which act in one direction diminished by the sum of

those which act in the opposite direction. The direction of the

resultant is that of the intensities whose sum is the greater.

The point of application of the resultant is found from the

principle that the moment of the resultant is equal to the sum of

the moments of its components. Resuming Eqs. (40) we have,

for parallel forces,

(Rx — 2Ix') cos b

\rz — 2/z') cos a

{Ry - 2//) cos c = {Rz - 2Iz') cos b.

{Ry - 2/y) cos a;)

(Rx - 2Ix') cos c\\ . . (46)

Since these equations must be satisfied for all possible values
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of a, b and c^ the principle of indeterminate coefficients applies,

and we have

Rx- :2Ix' = o;

jRy - 2/y = o;

Rz - 2Iz' = o.

(47)

Hence

2/x'

2 = R

(48)

These values are independent of the angles a, d, c, and will be

the same no matter what be the direction of the parallel forces.

The point defined by Eqs. (48) is therefore called the centre of the

system. The position of the centre depends on the intensities of

the components and resultant, and upon the points of application

of the components.

If the points of application of the component forces be in the

same plane, as xy, then 2: = o, and the centre of the system is in

that plane. If the points of application be on the same right

line, as the axis of x, then y = z = o, and the centre is on the

right line also.

39. Assume a system of two parallel forces. If we take the

moments of the components with respect to a point on their ^x

resultant, the sum of these moments must be

zero since the moment of the resultant with

respect to this point is zero. If the two forces

act in the same direction, the sum of their

moments can be zero only with respect to some
point between their action-lines, and we have,

Fig. 14, Fig. 14.
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rp' - ry^ = o; (49>

r:I-y.p-:f; (50)

40. When the forces act in opposite directions the sum of

their moments can be zero only with respect to some point out-

Zp"

side the components and nearer the greater^

and we have, Fig. 15,

?4fe,/ /y-/"/' = o;. . . . (52)

We conclude, therefore,

(i) That the intensities of the components are inversely as

the distances of their action-lines from that of the resultant.

(2) That the intensity of either component is to that of the

resultant as the distance of the action-line of the other compo-

nent from that of the resultant is to the distance between the

action-lines of the components.

(3) That the intensities of any two of the three forces are in-

versely as the distances of their action-lines from that of the

other.

(4) The resultant lies nearer the component of greater in-

tensity.

(5) If three parallel forces be in equilibrio, the intensities of

any two are inversely as the distances of their action-lines from

that of the other.

(6) The force of greatest intensity lies between the other two.

41. A Couple.—A couple is a pair of equal parallel forces act-

ing in opposite directions but not immediately opposed. The
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perpendicular distance between the action-lines of the forces is

called the arm of the couple. From Eq. (54) we have

r =_r{r-f)r -r (55>

Let /" approach /' in value,/" — /' remaining constant. Then
as /' — /" diminishes,/" increases, and when the two forces be-

come a couple/" becomes infinite, and R becomes zero. Hence
the resultant of a couple is a force of zero intensity at infinity;

that is, no single force can replace a couple.

42. The moment of a couple with respect to any centre in

the plane of the forces is equal to the product of the arm of the

couple by the intensity of one of the

forces. To show this let the couple be

as indicated in Fig. 16, and assume the

three points ^, o\ 0" as centres. Then
we have

rp> +i"p''=l'(p' +/") = /'/;

I'f _ I"pvi = /'(pv _^H) ^ f,p_ ) j,__^ _^

(56)

A couple is represented by its moment, and hence couples,

may be combined in the same manner as moments.

Gravity.

43. The attraction of the earth for any part of its own mass
is called Gravity; it is a special case of universal gravitation.

The weight of a body is the resultant of all the forces of

gravity acting on its molecules, and it will be known when its

intensity, action-line, and point of application are known. The
weight may act either as a stress or as a motive force. In the

former case each molecule presses on the one below, so that.
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each horizontal stratum of molecules of a body at rest is sub-

jected to the stress arising from the weight of all above it, and
the body is subjected to a compressive strain. When the body
is free to move, the weight of each molecule causes its own
acceleration, and none of the weight acts as a stress.

44. From geodetic and astronomical observations the earth

is found to be an oblate spheroid whose polar semi-axis is ap-

proximately 3949.55 ± miles, and equatorial radius 3962.72 ±
miles. Were there no rotation of the earth about its axis, the

apparent weight of a molecule would be that due to the earth's

attraction, and it would be directed to the earth's centre. But
owing to this rotation the molecule is constantly carried along

the circumference of its circle of latitude, and this can only be

the case when a force normal to the tangent and
directed towards the centre of the circle acts

fnv^
upon it with an intensity — (Arts. 16 and 23).

Let w, Fig. 17, be the molecular mass, ml the

plane of its circle of latitude, mg its weight, and
tnv^

Fig. 17.
^-^ ~ — ^^ force which is just sufficient to

cause it to continue on the circumference of the circle of lati-

tude. We see that nip is that component of the weight of m
employed in deflecting it from its rectilinear path, and the other

component alone causes pressure on what supports m. This

component, 7ng\ is called the apparent weight, and is not directed

towards the centre of the earth except when in is at one of the

poles or on the equator. The maximum value of — due to the

angular velocity of the earth is only about ^-^ that of mg ; we
may therefore, for the present, neglect its consideration and
assume that the direction of the weight is towards the earth's

centre.

45. Again, since the longest dimension of any body whose
weight is to be found is insignificant compared with the earth's

radius, the action-lines of the molecular weights of any body
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may be taken parallel to each other, and the system of molecu-

lar weights, therefore, to be a system of parallel forces.

From Eq. (2) we may write

_ (M— m)m . .G=- -^T-^l^^ (57)

and considering M to be the mass of the earth and m that of the

body whose weight is to be found, we see that, owing to the

great relative mass of the earth as compared with ///, in all prac-

tical applications M — m may be taken as a constant, and the in-

tensity of the weight will therefore vary directly with w, and
inversely as r^ Since the attraction is mutual the mass m at-

tracts the earth with the same intensity that the earth attracts m^

The variation in the weights of unit masses in any body at

the same locality, due to their increased distances from the

centre of the earth, can be neglected. For, assuming the differ-

ence of distance to be one mile, the radius of the earth being

taken as 4000 miles, the weights of the same body will be as

(4001)'' : (4000)" or I : 1.0005 » ^^^^ is, there is an increase or

diminution of its weight by ^^jVtt P^^^ ^"^ ^^ ^ decrease or in-

crease of a mile in distance from the centre of the earth. There-

fore the weights of the different unit masses of all bodies whose
weights are to be found may be taken to be sensibly equal to

each other.

46. The effect of gravity on a free body is to cause it to fall

toward the earth with a constantly increasing velocity. Repre-

senting the weight of the body by a/, and its mass by w, we
have (Eq. 20)

d^s d'^s w . _.

"" = "'!?' "' W=m (58)

From this we see that since the ratio of the weights of all

bodies to their masses is a constant at the same place on the

earth's surface, their accelerations caused by the earth's attrac-

tion is also a constant at the same place.
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This acceleration is called the acceleration due to gravity^ and
is represented in the text by^. Its value has been determined

by much careful experiment, and is given by the equation.

^ = 32.173 — 0.0821 cos 2\ — 0.000003^, . . . (59)

in feet per second, or

g = 980.6056 — 2.5028 cos 2X — 0.000003^, . . (60)

In centimeters per second, in which X is the latitude of the place

^nd ^ the height above the sea-level.

47. The unit of mass depends on the unit of intensity and
is, by definition, that quantity of matter which acquires a unit

of velocity when acted upon by a force of unit intensity for a

unit of time. The weight of the pound mass being the unit

•of intensity in ordinary use, it is necessary to determine the

weight of the corresponding unit of mass. When one pound
intensity acts on one pound mass, which is the case when a body

falls freely in vacuo, the acceleration is g feet per second; when
one pound intensity acts on one unit of mass the acceleration is

one foot per second. Since the intensity is the same in both

cases, its measure, the product of the mass by the acceleration,

is constant ; hence we have

ilh.Xg =^lbs. XI (61)

But the quantity of matter in the second case is the unit of

mass, and the unit of mass therefore weighs g lbs. Hence we
have for the weight of any body

w = mg (62)

48. The Centre of Gravity,—The Centre of Gravity of a body

is that point through which the action-line of the body's weight

always passes.

Let m and w be the type-symbols for the masses and weights



GRAVITY. 31

of the molecules of a body, g the weight of the unit mass, and

x,yy z the co-ordinates of m. Then, since the action-lines of the

molecular weights may be taken parallel, the system becomes a

system of parallel forces whose centre, which is the centre of

gravity^ is given by Eqs. (48):

*— _ "^wx _ 2mgx
2w ^fng '

— __ 'Swy _ ^nigy
^ "" ^w "" 2mg '

2wz 2mgz
z =

(63)

'2w ^nig
'

Assuming^ :=. g' = g" = etc., Eqs. (63) become

— 2mx — 2my — 2mz ,, .

^ = -M-' y = ^^' ' = -w- • • • (^4)

The point defined by Eqs. (64) is called the centre of mass.

Therefore, g being considered constant, the centre of gravity is

at the centre of mass. The centre of gravity is, accurately, a

little below the centre of mass, but in ordinary bodies the dis-

tance between them is negligible.

From Eqs. (64) we see that the product of the mass of the body

by either co-ordinate of the centre of mass, referred to any origin what-

ever, is equal to the algebraic sum of the products of all the molecular

masses by their corresponding co-ordinates referred to the same origin.

This is called i\\Q principle of the centre of mass.

Substituting for w, m\ m'\ etc., their values in terms of vol-

ume and density, Eq. (i), we have

— 2vSx — 2vSy — 2v6z , .

If the body be homogeneous, then (J = <y' = d" = etc., and Eqs.
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(65) become

— __ '^vx^ — _ "^tvy
^

— _ 2vz
V ' V ' (66)

That is, in homogeneous bodies the centre of gravity coincides

with the centre of volume.

When a body is of such a form that we may obtain expres-

sions for the relations between its surface co-ordinates, and its

density is a- function of these co-ordinates, we may write

— ^mx
X = -^=^

—

CxdM CdxdV

M f ddV

- ^my fy'^ f^y'^
y =

f
f,lM f

M

\dM

6dV

dzdV

M
f ddV

and if d be constant we shall have

CxdV

V

J
V '

zdV
z •=.

(67)

(68)

From these equations the co-ordinates of the centre of

gravity can be found by integrating between the limits which
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determine the volume, when the expressions which enter them
are integrable.

49. Determination of the Position of the Centre of Gravity.—
The magnitudes whose centres of gravity are to be found are

supposed to be homogeneous bodies, lines having a uniform

cross-section and surfaces uniform thickness. If the body be

symmetrical with respect to a plane, this plane may be taken as

xy^ and we iiave z'-=. o; that is, the centre of gravity is in the

plane of symmetry. If the body be symmetrical with respect to

a right line the line may be taken as the axis of x, and we have

^ = o, 2 = o; that is, the centre of gravity is on the line of sym-

metry.

50. Centre of Gravity ofLines.—The centre of gravity of a right

line is, by the principle of symmetry, at its middle point.

The centre of gravity of broken lines can be found by Eqs. ((i-^

when Xy y, z are the type-symbols of the co-ordinates of the

centre of gravity of each straight portion, and its weight w is

taken proportional to its length. In this way the centre of

gravity of the perimeter of any polygon, or of any number of

connected or disconnected right lines, can readily be found.

The differential of any line is

dl=z Vdx* + d/ 4- dz*\ .-. / = y* Vdx* + ^' + dz\ (69)

and therefore Eqs. (68) become, for lines,

.£' Vdx' + dy^ + dz*

./>

I

Vdx^ -{-df-\- dz*

J —

./:
I

z ~
Vdx* + d/ + dz*

. (70)
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If the line be a plane curve we may assume xy as its plane,

and the above reduce to

co^-^

y =
^ (71)

2 = 0.

M
Ex. I. A Circular Arc.—Take the axis oiy, Fig. 18, as the axis

X of symmetry, and the origin of co-ordinates at the
Y centre of the arc. Then we have

y = ^^±j^
-^

-;

dy _ X
^

dx" 7'

i/^qr^« = ^.|/7Tl = ^:^l/rTf = y^^

-.-Xy-

dx^

rdx f

Hence the centre of gravity of a circular arc is on its radius

of symmetry, and at a distance from the centre of the circle

equal to a fourth proportional to the arc, radius and chord.
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Ex. 2, A Cycloid,—Let ^, Fig. 19, be the symmetrical axis; then

lY

y=^o and x =—xdl

Taking the equation of the cycloid, /* = Srx,

we have o

I = 2{2rxy and dl = (2r)ix^^dx,

whence

J\2r)^xkdx
X =

2(2rx)i Fig. xg.

Therefore, for the curve corresponding to one complete rota-

tion of the generating circle, x = 2rand x = — ; that is, the cen-
3

tre of gravity is on the axis of symmetry and at a distance from
the vertex equal to one third the diameter of the generating

circle.

51, Centre of Gravity of Surfaces.—For surfaces we have

. /xds

X =

fyds

- fzds

(7*)

in which the elementary area ds is given by

, dxdy
ds = ^; .

cos p (73)
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and /5, the angle which the tangent plane to the surface makes
with the plane xyy is given by

COS /? = ±

dL
dz

^ dx^ "^
df

"^
dz^

(74)

L^f{x,y,z) =0 (75)

being the equation of the surface.

52. If the surface biplane, we may take it in the plane ^ and

then we have

ds = dx dy, (76)

and Eqs. (72) become

^ I I X dx dy

X =

__ J fy ^y ^^

y -

z — o.

(77)

Integrating with respect to y, between the limits / and /',

these become

- £Uy"-y>'^^
X =

(78)
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Ex. I. A Triangle.—If we consider the area of the triangle,

Fig. 20, to be made up of right lines drawn
parallel to the base ab^ the weights of these

lines act at their middle points, and the centre

of this system of parallel forces is somewhere
on the line cd, drawn from c to the middle ^^

point of ab. Similarly the centre of gravity

of the triangle will be found on the lines ae

and ^/ drawn from the other two vertices to the middle points of

their opposite sides. Hence o is the centre of gravity of the tri-

angle. But we know from geometry that the point of intersec-

tion o is at two thirds the distance from either vertex to the

middle of the opposite side. To show this analytically, let

aXf y = fix.

be the equations of ac and ab^ Fig. 21, the axis oiy being taken

parallel to the side bc\ then, Eqs. (78),

X^^^-p)^'^^

f/{a-P)xdx 3

'^

i f^ (a' - /r)x' dx
, , ^,

J^ (a-fi)xdx 3

but

•i '—^-^x' = mn and - ^^ ^—^-^x' = np ^ -mn,
2 32^3

It is evident that a straight rod, in which the weight of each

cross-section varies directly as its distance from one extremity,

is a precisely similar problem to that of the triangle; and hence
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its centre of gravity is at two thirds its length from this ex-

tremity. Similarly the areas of the bounding surfaces of the

sections of a cone or pyramid vary proportionally with their

distances from the vertex; hence the centre of gravity of the

surface of a cone or pyramid is at two thirds the distance of the

base from the vertex. ^

Ex. 2. A Polygonal Plane Area.—Divide the area into triangles,

and find their centres of gravity separately; then, by means of

the equations

— __ 2wy'
(79)

in which w is the type-symbol of the weight of each triangular

area, and x\ y' the co-ordinates of its centre of gravity, the

centre of gravity of the whole area may be found.

Ex. 3. A Circular Sector.—A circular sector may be con-

sidered as made up of an indefinitely great number of equal tri-

angles having equal altitudes and bases, their vertices being

at the centre of the circle. Their centres of gravity will be found

on the arc of a circle drawn with a radius equal to two thirds

that of the given circle. If the mass of each triangle be supposed

concentrated in its centre of gravity, the locus of these masses

will be a homogeneous line, and its centre of gravity will coin-

cide with that of the sector. Therefore, calling r the radius of

the circular sector, c its chord, and a the length of its arc, we
have, taking the axis x to be the axis of symmetry,

— __2 re

That is, the centre of gravity of a circular sector is on its ra-

dius of symmetry, and at a distance from the centre equal to

two thirds of a fourth proportional to the arc, radius and chord.
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Ex. 4. A Circular Segment,—Let the origin be at the centre

of the circle, Fig. 22, and the axis of x that of symmetry ; then

l{y"-y)xdx
X =

; . . . (80)

y-o\ x" +/ = r\

Then we have

and Eq. (80) becomes

2 r^(r' - x')^x dx i(r« - x'')^

x =

But AB - 2(r' - x'')^ = e; .'. x = —,
12S

Therefore the centre of gravity of a circular segment is on the

radius drawn to the middle of the arc, and at a distance from
the centre equal to the cube of the chord divided by twelve times

the area of the segment.

Ex. 5. An Area bounded by a Parabola^ its

Axis and one of its Ordinates.—Take the para- c

bola as in Fig. 23, and we have

/"• = 2^X', o;

t/o «/o

t/o t/o

Fig. 23.

= iy':
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^r'\y"-y')dx i^r"2pxdx

jf
{y'-y')dx £ ^px'-dx

For the parabolic spandrel OBC we have

y' = ^; .' = o;

These latter values can be readily determined by the appli-

cation of the principle of moments ; thus, the area

OBA = iOCBA, and OBC = iOCBA,

The sum of the moments of the weights of OBA and OBC
with respect to O must be equal to the moment of the weight of

the rectangle with respect to the same point. Hence we have

3 5 3 2

and therefore

- 3^"

for the X co-ordinate of the centre of gravity of the parabolic
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spandrel. Th& y co-ordinate is obtained by considering the fig-

ure to be resting on OC, and taking the moments again with re-

spect to O, We have

2W s/' ,
PV-_ Wy"

3"^ 8 "^ 3-^~ 2 '

whence

4

Ex. 6. An Elliptic Quadrant.—The equation of the ellipse re-

ferred to its centre and axes is a^y^ + b*x^ = a'^'; whence we
have

/' =i(fl' - ;.')*; / = °;

r—(a* — x^yx dx , .

X =—f ^ = J^J- ±(a' -M' = ^;
Trad nab\ sa^ ^ Jo ^Tt

4

•^
Ttab 37r*

4

If d5 = <^ the ellipse becomes a circle, and the co-ordinates of

the centre of gravity of a circular quadrant referred to its centre

are

- - 4rx=y =—

.

37r

A,

53. Surfaces of Revolution.—Let x be the axis of revolution;

and since it is an axis of symmetry,^ and z are both zero. Let

y=-f{x) be the equation of the curve whose revolution gener-
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ates the surface, and we have for the elementary surface

hence

X =
C^ 27tyx{dx' + df)^ j^yxidx" + df)^

r 27ty{dx^ + df)^ ry{dx^ + df)^

Ex. I. A Spherical Zone,—The equation of the circle is

^' -[.y = r"; then we have

ryx(dx^ \' dy^^ f rx dx
, + x'

ry(dx? + d/f r rdx
Jx" Jx"

Whence the centre of gravity of a spherical zone is at the middle

point of the right line joining the centres of its bases.

Ex. 2. A Right Conical Surface.—Let the equation of its gen-

erating line be J'
= ax^ and we have

dx

X = ; = —X\
X dx

Hence the centre of gravity of a right conical surface is on

its axis and two thirds of the distance from the vertex to the

base ; it is independent of the angle of the cone, and hence is a

common point for all right cones having the same vertex, axis

and altitude.

54. Centre of Gravity of Volumes.—For volumes we have, in

general, dv = dxdy dz, and Eqs. (68) become
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/ / j X dx dy dz

X =

/ / I^ ^^ dy dz

/ /
I

z dx dy dz

(8.)

55^ Volumes of Revolution.—A volume of revolution being sym-
metrical with respect to its axis, if we take this axis as the axis

of x we shall have, Eqs. (8i),

/xdV I nfxdx fy'^xdx
_ Jjc" _ Jx"

.X =

7=o;

2=0.

(82>

Ex. I. A Paraboloid of Revolution.—To find the centre of

gravity of a portion of a paraboloid of revolution limited by

planes perpendicular to the axis, we have for the equation of the

generating curve

/ = 2px,

and for the co-ordinate of the centre of gravity

r2pX*X^—.
dx

r2px dx

_ 2(X'' - X"')
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When ^" = o we have

X = 4x

Ex. 2. A Spheroid.—Taking the origin at the extremity of

the axis, the equation of the generating curve is

and for a portion of the spheroid from the origin to x' we have

For half of the spheroid we have x' = ^, and

x = ^a\

which is independent of the shape of the spheroid.

56. Whenever the volumes whose centres of gravity are to be

found are such that we can connect the areas of their successive

sections normal to any line by some law, their centres of gravity

can be found from the general equations by a single integration.

Thus to find the centre of gravity of any cone or pyramid, first

find the centre of gravity of its base and join this point with the

vertex. It is evident that the line so drawn will pierce the suc-

cessive sections in their centres of gravity, and at these points

the weights of the several sections will act, with intensities

which are proportional to their areas. Then Eqs. (67), when X
is the area of any section parallel to the base, become

Jx"
Xx dx

-; (83)
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the line from the vertex perpendicular to the base being taken

as the axis of x.

Ex. A Pyramid or Cone.—Take the origin at the vertex, and

let A be the area of the base and x' the abscissa of its centre of

gravity. Then we have for any section

^-^^,

and

- #r-t/o
* = V^p— = -*'

Therefore the centre of gravity of a pyramid or cone is on

the line joining the vertex with the centre of gravity of the base,

and at a distance from the vertex equal to three fourths of its

length.

57. Theorems of Pappus.—Clearing the second of Eqs. (71)

and (78) of fractions and multiplying both members of each by
2;r, we have

27tyl = j2nydl. (84)

2nys = J^7t(y'' ^ y')dx (85)

The second member of Eq. (84) is the expression for the area

of the surface of revolution generated by the curve / about the

axis X, and that of Eq. (85) is the expression for the volume gen-

erated by the revolution of the plane surface s about the same
axis. Hence we have by these equations a simple means of de-

termining an area or volume of revolution whenever we can
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find the position of the centre of gravity of the generating line

or surface. For by the first members we see that such area or

volume is equal to the product obtained by multiplying the

length of the generating line, or the area of the generating plane

surface, by the circumference described by its centre of gravity.

These theorems are useful in mensuration.

Graphical Statics.

58. Roof and bridge trusses are usually framed structures

composed of beams united by rods and struts, and are subjected

to certain stresses due to the weights of the assembled parts, the

loads they are required to support, and wind pressure. While

the computation of these stresses can be made by the usual ana-

lytical methods, the processes of graphical statics are so simple

and accurate as to make them of frequent application. The fol-

lowing pages contain merely an exposition of its simplest fun-

damental principles, to which are added a few of the more ele-

mentary illustrative examples.* The further development more
properly belongs to applied mechanics in Civil Engineering.

59. Reciprocal Figures,—Any two figures are said to be recipro-

cal when the first can be derived from the second in the same
way that the second is obtained from the first. Reciprocal fig-

ures applicable to graphical statics are subject to the following

conditions :

(i) The sides of one should be respectively perpendicular or

parallel to those of the other.

(2) Lines radiating from a vertex in one figure should be per-

pendicular or parallel to corresponding sides forming a closed

polygon in the other.

(3) Each figure should be composed of the same number of

closed polygons, and each line of the figure should make a part

of two of these polygons, and of two only.

* La Statique Graphique et ses applications aux construction, par Maurice

Levy. Gauthier-Villars; Paris, 1874.
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(4) At least three lines should meet at each vertex, and each

side should pass through at least two vertices.

The two figures D A B C and dab c (Fig. 24), each formed by

the six lines joining four points in ^

a plane, fulfil all the above condi- /\\
tions, and are therefore reciprocal ^O-^^o^CX
figures applicable to graphical stat- B^——^——

^

ics. Either of these figures is com- Fig. 24.

pletely determined when any five of its six lines are given ; for,

any five of the lines form two triangles having a common side,

and the sixth line joins two vertices which are already fixed in

position by the five given lines. Hence if all the lines in two

figures, except one in each, are known to fulfil the conditions of

reciprocal figures, the figures are reciprocal.

60. The Force Polygon.—Let there be a given system of co-

planar forces ; then if, from any point in the plane, a polygon

be constructed whose sides taken in order represent the direc-

tions and intensities of the several forces of the system, this

polygon is called 2i force polygon of the system. By the principle

of the parallelogram of forces we readily see that, if the polygon

be closed, the resultant of the system is zero and the forces are

in equilibrio ; and in general, that the right line required to

close the polygon, when reversed, represents the resultant of the

system in intensity and direction,

61. The Polar Polygon.—Let the polygon abcde, Fig. 25, be the

force polygon of the system of forces i i', 2 2', 3 3', 4 4', Fig.

26. Assume any point O in its plane as a pole, and draw the

lines Oa, Ob, Oc, etc., to its vertices. In the plane of the forces

draw any line i?^" parallel to Oa of the force polygon, that is,

parallel to the line joining the pole and the origin of the side i

of the force polygon, and mark its intersection with the force

I i' by the symbol i. From i draw i 2 parallel to Ob, and mark
its intersection with the force 2 2' by 2. In the same way fix the

points 3, 4 and P; the latter point being the intersection of the

line drawn through 4 parallel to Oe with the first line drawn.

The polygon i 2 3 4 i?i is called a funicular ox polar polygon of the
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system of forces, with reference to the pole O. Since i^ might

have occupied any position parallel to Oa, it is determinate in

direction but arbitrary in position; therefore the polygon con-

structed is but one of an indefinitely great number of polar

Fig. 96.

polygons belonging to the pole O, all of which, however, having

parallel sides, are similar figures. Assuming another pole, (?',

and line R'R" parallel to O'a, the polar polygon i' 2' 3' 4' H'^

may be constructed, belonging to another set of similar poly^

gons; and so on indefinitely. From their construction it is evi-
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dent that the force polygon and the polar polygon are reciprocal

figures.

62. Properties of Polar Polygons.—The following properties of

polar polygons are of use in graphical solutions:

(i) The intersections of the corresponding sides of two polar poly-

gons belonging to the same system of forces are on a right line parallel

to (he line joining the two poles. To show this, produce the corre-

sponding sides of the two polar polygons, i 2 and i' 2', 2 3 and
2' 3', etc., until they intersect; the points i", 2", 3", 4", ^"
will lie on the same right line Ofi^ drawn through the point of

intersection i?" of iR and i'R\ and parallel to 00'\ then five of

the six lines joining the points R'\ i, i' and i", viz., i i', i R*',

I i", 1' R'\ \' i", of the polar polygon are respectively parallel

to the five lines ab, Oa, Ob, 0*a, 0*b, joining the four points (9,

0\ a, b, of the force polygon; therefore the sixth lines, ^"i" and

00', of these reciprocal figures are also parallel. In the same
way the other points, 2", 3", 4", may be shown to be on the

right line through R" parallel .to 00'. Hence the change from

the pole O to O' is equivalent to supposing that each of the sides

of the first polar polygon rotates around each point of intersec-

tion until it coincides with the corresponding side of the second

poliir polygon.

As the pole O' approaches O, the vertices i and i' of the two
polar polygons remaining fixed, the line 0^0^ moves toward in-

finity, always remaining parallel to OO'. When O' coincides

with O, the sides of the polar polygons become parallel and they

become two of the same set, and Ofi^ is at an infinite distance.

Hence the parallelism of polar polygons relative to the same
pole is merely a particular case of polar polygons relative to

different poles.

(2) If a system of forces and one of its polar polygons be given,

every other polar polygon of the system may be constructed without the

aid of the force polygon. Thus, suppose that the one relative to

O be known. Draw the arbitrary line Ofi^^ and prolong the

sides of the known polygon to meet this line at \" , 2", 3", etc.;

then draw through any point thus determined, as R'\ a line ar'

4
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bitrary in direction meeting the force i i' in i'; from i' draw i'

i", and where it meets the force 2 2' will be the vertex 2'; from
2' the line 2' 2" will determine 3' by its intersection with the

force 3 3', and so on. To show that this polygon i' 2' 3' 4' 7?' i'

is a polar polygon, draw through the origins of the. force poly-

gon the right line aO' parallel to t*R" , and through O a parallel

to O^ O^, and let (9' be their point of intersection. The two fig-

ures formed by five of the lines joining the four points i?", i, i',

i", and O, 0\ «, b are parallel and reciprocal, and therefore the

sixth lines i' i" and O' b are parallel and the figures are recipro-

cal. In the same way, taking the figures corresponding to the

four points 2, 2', i", 2", and (9, 0\ b, c, it can be shown that

2' 2" and O* c are parallel and reciprocal, and so on ; hence the

polygon 1'2'3'4'i?' i', being reciprocal to the force polygon, is

a polar polygon with reference to the pole O'.

(3) The intersection of any two sides of the polar polygoti is a point

of the resultant of the forces represented by the lines included between

the corresponding vertices of the force polygon. Prolong the sides

i'^' and 2' 3' till they meet at ^', and the forces i and 2 till they

intersect at c'\ The figures formed by joining O',a, b, <r, and i',

2',y, ^", are reciprocal ; and hence c^ c" is the action-line of the

resultant of i' and 2', since it is parallel to acand passes through

^". Similarly^' d'' is the action-line of the resultant of ac and 3,

or of I, 2 and 3, and RE' is the action-line of the resultant of

the whole system.

Hence to find the resultant of the whole or any part of any

system of co-planar forces by graphical construction, draw any

polar polygon on the action-lines of the forces whose resultant

is to be found; the intersection of the extreme sides will be a

point of the resultant, and a line drawn through this point paral-

lel to the closing line of the force polygon of the forces in ques-

tion will be the action-line of the resultant. The resultant is

then completely determined by laying off on this line, in the

proper direction, a distance equal to the length of the closing

line of the force polygon.

(4) When a system of co-planar forces is in equilibrio^ and the posi-
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tions of the action- lines of three unknown forces are given^ the intensities

of these unknown forces may be determined by means of the polar poly-

gon. Let the known forces i, 2, 3 and 4, and the unknown forces

5, 6 and 7, Fig, 27, be a system in equilibrio. Suppose the

known forces to be in equilibrio with two of the unknown
forces, as 5 and 7, and construct the force polygon a b c d e g a.

Assume any pole, as Oy draw Oa^ Ob^ Ocy Oe and Og^ and construct

Fig.

the polar polygon 7' i' 2' 3' 4' 5'. The remaining lines of the

polar polygon of the whole system must radiate from 5' and 7'

and intersect on the action-line of the force 6. To determine

these lines we must construct a figure which shall be reciprocal

to that formed by joining O, g, and the two extremities of 6 in

the force polygon. Two vertices of the required figure are 5' and
n. The lines nm, mt/ ^ and ^'n are reciprocal to those radiating

from gy and m is therefore another vertex of the required figure.
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Join 7' and ;«, and the intersection of this line with the action-

line of the force 6 gives the remaining vertex. The required

figure is therefore w«5',6'. Now complete the reciprocal of this

figure in the force polygon by drawing Of parallel to 5'6', and
Oh parallel to 7'6'. Then draw /z/, which is parallel to nd' by

the reciprocity of the figures, and we have 5, 6 and 7 in the force

polygon to represent the intensities and directions of the forces

which were to be determined.

63. Problems.—Since the triangle is the only polygonal figure

that cannot change its form without changing the length of one

of its sides, it is made the basis of all frame-work. In the frames

here discussed the parts are supposed to be free to rotate about

the joints at the vertices of the frame, and they are therefore

subjected to longitudinal strains only.

The foregoing principles enable us to find the stresses on

the parts of a frame which is a plane figure, when subjected to

the action of forces which are co-planar with it. Two diagrams

are constructed, one, called the frame diagram^ to represent the

frame and the action-lines of the forces, and the other, the strain

diagram, to represent the force polygon and the stresses on the

various parts.

To facilitate the construction and reading of the strain dia-

gram the following notation is employed: In the frame diagram

each triangular space is marked by a letter, and exterior to the

frame each space bounded by the action-lines of adjacent forces

is also thus marked. Thus, in Fig. 28, A designates the left-

hand space of the frame, H the exterior space between forces

I and 8, and O the exterior space between the forces 7 and 8.

Any line or vertex in the figure is designated by the letters of

the spaces separated by it. Thus, HO designates the force 8,

HI the force i, and HA the line of the frame between the spaces

H and A. The vertex at which force i acts may be designated

by IA or HB. HO designates both a force and a vertex. In

such a case one is called the force HO, and the other the vertex HO^
In the strain diagram, Fig. 29, the vertices are lettered, and

any line of the diagram is designated by the letters at its ex^
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tremities. The letters are so arranged in the two diagrams

that reciprocal lines shall be designated by the same letters.

This arrangement is shown in the figures.

(i) The frame represented in Fig. 28 is subjected to the

action of the forces i, 2, 3, 4, 6 and 7, as indicated by their

action-lines, the extreme vertices HO and LM being points of

support. It is required to find the stresses on the parts of the

frame.

To find the reactions at the points of support, construct the

force polygon HIJKLNO, Fig. 30. HO represents the intensity

of the resultant of the applied forces. To find its point of appli-

cation, assume the pole (9', Fig. 30, and construct the polar

polygon i?'i'2'3V6'7'^', Fig. 28. R* is then the point of ap-

plication of the resultant, and its action-line is therefore R'R.
Through the points of support draw 5 and 8 parallel to R'R,
and divide HO, Fig. 30, into two parts which shall be to each

other as the distances of R* from the action-lines of 5 and 8.

Thus making OP equal to the distance between the forces 5 and

8, and OQ equal to the distance of R' from 8, and drawing QR
parallel to PH, we have OR as the intensity of force 5, and RH
that of force 8.

Now construct the force polygon of the whole system

HIJKLMNOH, Fig. 29, LM being the intensity of 5, and OH
that of 8.

To construct the strain diagram begin with a vertex where
only two forces are unknown, as the point of support HO. On
HO^ Fig. 29, construct the reciprocal of this vertex by drawing
through ZTa line parallel to HA, Fig. 28, and through O a line

parallel to AO. The triangle OHAO gives the intensities of the

three forces acting at the vertex HO. Since OH is the direction

of the force 8, the directions of the other two are HA and AO.
Also, since HA acts along the frame-piece towards the vertex it

produces cofnpression, and since AO 2iCts from the vertex the latter

acts as a tension.

Passing now to the vertex HB, we have HA and -^/ known,
and drawing AB and IB, Fig. 29, parallel to AB and IB, Fig.
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Fig. a8.

Fig. 29.
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2S>, we have the reciprocal of the vertex IIB, which is AHIBA^
giving the stresses on the pieces which meet at that vertex.

The direction of HI is known, and we see by following the

1

Fig. 30.

strain polygon that IB^ BA and AH all act towards the vertex.

The stresses on the corresponding pieces are therefore com-

pressions.

For the vertex AC we have in the strain diagram NO^ OA
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and AB, Draw BC and NC parallel to the corresponding lines

in the frame, and we have NOABCN ior the reciprocal of the

vertex AC. BC is compression and CN tension.

Taking the remaining vertices in succession, we have:

¥or B/y the polygon CBIJDC] JD being compression and
Z>C tension.

For iV^^, the polygon MNCDEM \ DE and EM being ten-

sions.

For DK^ the polygon EDJKFE\ KF being compression and
FE tension.

For EG, the polygon MEFGM \ FG and GM being tensions.

For FL, the polygon GFKLG\ LG being compression.

For LM^ the polygon LMG.
From which all the stresses and their characters are com-

pletely determined.

(2) The Simple Warren Truss, having equal loads at the lower

vertices (Fig. 31).

Construct the force polygon of the applied forces IJKLM,
Fig. 32. Their resultant is /J/", which evidently acts through

the middle point of the truss. The reactions at the points of

support are each equal to half the total load, and are MA and AI.

For the vertex AI we have the polygon AIBA ; IB being

tension and BA compression.

For the vertex IC we have BIJCB\ JC being tension and

BC compression.

For the vertex AC ^t. have ABCDA\ CD being tension and

DA compression.

For the vertex Df we have DCJKED\ and for the vertex

AE we hsLVQ ADEFA. In the last two polygons, since E and Z>,

and ^ and Fare coincident, the parts DE and EF support no

stress.

The stresses on the remaining parts may be found by pro-

ceeding with this construction through the vertices H^F, AG and

ZZT, or by a construction similar to the above, beginning at the

vertex AM.
The upper chord is subjected to a stress of compression and
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the lower chord to one of tension, these stresses being greatest

at the middle of the truss, while the stresses on the diagonals

are greatest at the ends of the truss.

(3) The Simple Warren Truss, loaded unequally at the lower

vertices.

Let the frame be the same as in the preceding example, Fig.

Fig. 31.

Fig. 32. Fig. 33.

31, and let the two right-hand loads be each one half as great as

the others. The force polygon of the applied forces is IJKLM
{Fig. 33). The intensity of their resultant is IM. To find its

action-line and the reactions at the points of support, assume
the pole O and construct the polar polygon 6123456. -ffis the
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action-line of the resultant, and drawing OA parallel to 5 6, we
have MA and AI as the intensities of the reactions.

The determination of the strains on the parts is sufficiently-

indicated by the nomenclature in the diagram.

Fig. 34.

(4) Figs. 34, 35, 36 and 37 represent loaded trusses with their

strain diagrams. As an exercise the student should supply the

nomenclature and determine the character of the strains. It

will be observed that at one vertex of the frame in Fig. 37 there

are three forces to determine, and the problem therefore requires

the application of proposition 4, Art. 62.
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Work and Energy.

64. Work is said to be done by a force when its point of ap-

plication has any motion in the direction of its action-line. The
unit of work is the quantity of work done by a force of unit

intensity while its point of application moves over the distance
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unity in the direction of the action-line of the force. The unit

of work used throughout the text is called the foot-pound^ the

unit of distance being one foot and the unit of intensity one

pound. The unit of work of the C. G. S. system is the work

done by a dyne over a centimeter, and is called the Erg,

The simplest illustration of work is that of lifting a weight

through a vertical height. Thus, it requires the expenditure of

one foot-pound of work to lift one pound through a height of

one foot. Hence, the work done in lifting a weight through

any height is equal to the product of the weigiit and height;

and, in general, the work done by any constant force is found by

multiplying its intensity by the path of its point of application,

estimated in the direction of its action-line. If the force be

variable it may be regarded as constant while its point of appli-

cation describes a path dp, estimated along its action-line, and the

elementary quantity of work is

dW=Idp (86)

The summation of all the elementary quantities of work gives

the total quantity done by this force, and we have

W^^dW=:2Idp (87)

Where the principles of the calculus can be applied, we have

W=fdW=Jldp (88)

Hence, whenever such a relation can be established between the

variable intensity /and the path / so that the second member
can be expressed as a known integrable function of a single va-

riable, the total quantity of work can be determined by integra-

tion.
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65. The symbol expressing work, / Idp, is analogous to the

symbol j ydx in the calculus. The latter is the representative

of the quadrature of a curve whose varying ordinates are j' and

abscissas x, both expressed in the same unit. From this analogy

we may graphically represent work by the area contained be-

tween the axis of p and a curve whose ordinates measure the

varying intensity of the working force at the different points of

the path p. The unit of work is graphically represented by a

square whose side is the unit of the scale from which the inten-

sity and path are taken.

When the expression / Idp is not integrable, the quantity of

work can be determined approximately

by the usual methods for the estima-

tion of the area included between the

curve, the extreme ordinates, and the

path, as in mensura tion. Thus let the

ordinates of the curve j^', Fig. 38, repre-

sent the varying intensity of the force

while its point of application passes

over the path pp\ Poncelet's formula for the approximate

area is

^V- "^

I1 u I3 I4 I7

^^-^

£-

Fig. 38.

Q = d[2{/, + /, + /. + .../.)+ i(/_+/.+,)_ i(/.+/«)],(89)

in which d is the distance between the consecutive ordinates 7^,

/„ /g, etc., when the whole path,^', is divided into any even

number, n, of equal parts.

If the varying values of / be known only at certain points of

the path, the extremities of these may be joined by right lines,

thus forming trapezoids whose aggregate area ox\\y approximately

represents the quantity of work.

66. Energy,—Force and matter are inseparably connected.

Any system of masses is accompanied by forces, and these forces
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perform work during any change in the configuration of the sys-

tem. Energy is the capacity for doing worky and it is measured
in units of work. Taking a single molecule of the system mov-
ing under the action of the resultant of all the forces applied to

it, we have

Idp = m-^ds\ ....... {90)

and for the whole system,

. 2n^p=^-^^<}i-^i!^ (9.)
t/a 2 2

When the molecule is at the position i, the quantity of work
represented by the first member of Eq. (91) is called potential

energy, since it measures the capacity of the force to do work
while the molecule passes from i to 2. It is simply energy of
position; that is, by virtue of the position of the molecule in the

system the forces acting upon it have a certain power to do work
while its position is changing. When the molecule arrives at

the position 2, Xh^ potential energy represented by / Idp has been

converted into energy of motion, called kinetic energy, which is

measured by ^ ^'
, the kinetic energy of the molecule

being ^ ^'
at i and ^ "^

at 2. '

2 2

HQnce, potential energy is defined to be that part of the energy

of a system which it possesses by virtue of the relative positions

of its different masses, and kinetic energy to be the energy which
the system possesses by virtue of the motions of its different
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masses. The term work is applied to the change of energy from
one form or body to another.

For example, let the system be composed of a unit of 7nass

and the earth, and let the limits be determined by two horizontal

planes separated by a distance of lo feet. Taking the body at

the upper limit, we have

/> 32.2 X 10 = 322 ft.-lbs.

If the body start from rest and fall freely in vacuo to the lower

plane, we shall have this potential energy converted into kinetic

energy, or ^

mv V— =- = 322:
2 2

r

while at any intermediate point, part of the energy is potential

and part kinetic. Thus, when the body has fallen to a point

midway between the two limits, its potential energy with respect

to the lower plane is 161 tt.-lbs., and its kinetic energy is also

161 ft.-lbs. Each form of energy is measured in units of work,

but no work is done unless there be a transformation of energy. This

illustrates what is meant h^ energy of position and energy of motion.

To illustrate further, the muscular potential energy in a man's-

arm may be changed into potential energy of elasticity in a bent

bow, and the potential energy of the bow may be changed into-

kinetic energy of a moving arrow, work being done in both cases.

Kinetic energy cannot, however, be transferred from one body
to another without passing through the potential form.

67. The Law of the Conservation of Energy.—Scientific investi-

'gation points to the conclusion that the total quantity of energy

in the universe, as well as the total quantity of matter, is invari-

able; that is, that neither matter nor energy can be created or

destroyed by any known means. Accepting this as a scientific

truth, we must admit that the energy gained or lost in any
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limited system of masses in which the energy varies must have

been obtained from other masses or transferred to them.

A conservative system is one containing a certain definite

amount of energy. It. consists of limited masses subjected to

the action of definite forces. The law of energy for such a sys-

tem is

n-^rK=C, (93)

in which TL represents the potential and K the kinetic energy at

any time, and C the constant quantity of energy in the system.

II and K may both vary with the time, but C is constant ; and if

any change occur in the potential energy we shall have a cor-

responding and equal but opposite change in the kinetic energy;

thus,

Ut. ~-Ut» = Kt>f-Kt', (94)

each member representing the change in the corresponding en-

ergy during the time /" — /'. During this time the forces of the

system act upon the masses and cause them to change their con-

ditions of motion and relative positions, the change in the po-

tential energy being

'fj'P (95):2

The change in the kinetic energy of a single molecule of the

system during this interval is

£,'4?'^'' (96)

and for the whole system,

^S!..'"%^'-
(97)

The change in the potential energy in the time dt is evi-

dently

:2idp (98)

5
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and the change in the kinetic energy during the same time is

-^^^^^•^ (99)

Since these two quantities are always equal, we have

:EIdp = :2m^^,ds; (E)

an equation which expresses the Law of the Conservation of Energy.

This law may be stated as follows:

The total energy of any conservative system is a quantity which can-

not be increased or diminished by any mutual action of the bodies of the

system, and any change of either potential or kinetic energy must always

be accompanied by an equal change in the other*

It is evident from this statement that the universe is the only

rigidly conservative system. But many limited systems are so

remote from all other bodies that the effect of these latter* is

insignificant when considering the relative motions of the former.

Eq. (E) is the fundamental equation of mechanics, and it

involves all relative changes in the configuration and motion of

any conservative system.

68. The Principle of Virtual Velocities.—If no change of state

occur in any of the molecules, the factors —^ will each become

zero, and the equation reduces to

:SIdp = o', (S)

or, the total quantity of work done by the forces upon the system

of masses is zero. Any one of the elementary quantities of

work represented by the type-symbol Idp is exactly equal in

amount, but of a contrary sign, to the aggregate quantity of

work of all the other forces represented by ^/V/. Such a

system of forces is said to be in equilibrio, and the masses in

equilibrium. If the latter be in motion, this motion must be
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uniform. Regarding the intensities of forces as always positive,

the sign of the products Idp depends on the

sign of dp. The sign of dp is taken positive fny-^^-^m'

when it falls on the action-line of the force, «

—

^—' E »

and negative when it falls on the action-line

produced (Fig. 39).

The elementary paths whose projections are dp are called

virtual velocities. Being the actual paths described in the time dt,

they have the same ratio to each other as the velocities of the

points of application at the instant considered.

The products Idp^ J'dp\ etc., are called virtual moments; they

are the elementary quantities of work done by the forces while

their points of application move over the distances whose pro-

jections on the action-lines are dp^ dp\ etc.

Equation (S) is the form taken by the fundamental equation

in Statics, and is the mathematical statement of the principle of

virtual velocities; that is, when any system offorces is in equilibrio

the algebraic sum of their virtual moments is equal to zero. In such

a system the potential energy is constant, none being trans-

formed into kinetic energy.

The converse of this principle is also true; that is, when the

algebraic sum of the virtual moments of any system of forces is

equal to zero the forces are in equilibrio.

69. Equation (E) referred to Rectangular Co-ordinate Axes.—
Let a, b, c be the angles made by the virtual velocity of the

point of application of a force with the axes, and d the angle

between this virtual velocity and the action-line of the force.

Then we have

cos d = cos a cos a -j- cos P cos b -{- cos y cos c\ , (100)

and multiplying by ds^

ds cos d = cos ads cos a -\- cos fids cos b \- coc y^^ cos ^,(101)

or

dp = cos adx -\- cos /3dy + cos ydz (102)
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Multiplying both members of this equation by the intensity

of the force, we have

Idp = / cos adx + / cos ^dy -\- 1 cos ydz. . . (103)

That is, f/ie virtual moment of any force is equal to the sum of the

virtual moments of its rectangular components.

For the whole system we have

'^Idp = ^/ cos adx + -2"/ cos ^dy + ^I cos ydz. (104)

70. Let «', b'^ c' be the angles made by the elementary path

of any molecule with the axes, and we have

I = cos'^ «' + cos'^ b' + cos'' c'y . , , , (105)

and, multiplying by m—=-ds^

d^s

.

d'^s , a - , d^s . » ,, ,
d^s J » . , ..

^n-zpds = ^;^^-f cos" a' + ^-rpf^^ cos' h' + ^-j^ds cos' r . (106)

But

ds cos a' = dx; ds cos b' = dy; ds cos c' = dz\ ) / ^\
^V cos a* - d'x\ d^s cos b' = d''y\ d'^s cos .;' = d'^z. )

^ ^'

Hence

d'^s ,
d^x . . d^y , ,

d^z. , ..

That is, the increment of the kinetic energy of any molecule is equal

to the sum of the increments estitnated in any three rectangular direc-

tions.
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For the whole system we have

'2m—̂ ds = 2m—pdx + 2m-^^dy + 2m—̂ dz. . (109)

Substituting in Eq. (E), we have

21 cos adx 4" -2"/ cos /3dy -\- 21 cos ydz =

~dF + ^p"^ '^^^^^dP ' '
(110)

(^.
/x^

"7\

This transformation has not in any way affected the gener-

ality of Eq. (E) which, in its new form, still embodies all the cir-

cumstances of motion of the molecules of a body, or of a sys-

tem of bodies, under the action of any system of extraneous

forces whatever.

O^' 71. Application of Equation E to the Motion of a Rigid Solid.—
A rigid solid is a body whose molecules are supposed to preserve

unchanged their relative distances from each other. The most

general motion that can be im-

agined .for such a hypothetical 2 z'

solid is one compounded of a

motion of translation and rota-

tion. Its motion of translation ,/ I

may be defined by that of one

of its molecules, and its motion

of rotation by that of the body

about this molecule. In Fig.

40 let O be any fixed origin, O'

the position at any instant of Fig. 40.

the particular molecule which

determines the motion of translation, and ;// the position of any

other molecule at the same instant. Let ic, y, z be the co-

ordinates of ;;/ referred to the fixed origin; x^^y^, z^, the co-ordi-

nates of the movable origin 6>' referred to the fixed, and x\y', z'

the co-ordinates of m referred to the movable origin.

X'

4/



70 MECHANICS OF SOLIDS.

Then, supposing the axes at the movable origin O' to be

always parallel to the fixed axes at 6>, we have

x = x^^rx'\ y=yo+y'; ^ = -^0 + ^';
• (m)

dx = dx^ + dx'; dy = dy^-\- dy*\ dz — dz^ + dz\ . (112)

Measuring the angles about O* as indicated in the figure to

conform to Art. 35, we have, for the increments of x\y\ z\ due

to rotation about the axes X\ K', Z',

dd

X\

dd=o\

^dS = - add sin ^ = - z'dd-,
du

dO = add cos d = fdO.djl

dd

dx'— dtp=. cdi/) cos tp = z^dtp
;

dz'— dtp=— cdip sin <p = — x'dtp.

f dx^
d<p= — bd(p sin = — y^0;

d(f}=. ddtpcos(f>= x'dcp;

dcf)

d^

("3)

(114)

("5)

Hence we have, for the total differentials,

dx' = z'd^-/d(p',

d/ = x'dtp- z'dd;

dz' =yde - x'dip.

(116)
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Substituting these values in Eqs. (112), we have

dx = dx^ + z'd^ —y'd<p\

dy = dy^ J^x'd(p- z'dd)

dz=zdz^ -{-/dS -x'dtp.
(117)

Since these values apply to any point of the body, we may
substitute them in Eq. (no), and we have

21 cos a(dx^ -f- z^dtp — y'd(f>)

+ 21 cos P(dy^ + x'd(t) - z'dd)

+ 21 cos y{dz^ -\-yde - x'dip)

^2m—-,(dx,^z'd^--yd<t>)

J^2f/-^ldy,^x^d<t>^z'de)

+ ^tn^^Xdz, -VydB - x^dtp).

(118)

But dx^^ dy^^ dz^ relate to the movable origin, and dd, dtpy d(j>

are independent of the position of m because the body is rigid ;

each of these differentials is therefore a common factor of the

terms which it enters, and Eq. (118) may be written

{21 cos a - ^ffi^dx, + {21 cos /? - ^^5^)^A

+ [21 cos y - 2m-^^dz,

+ [^/(^' cos /? -/ cos a) - 2m'^^^^^^^yil> \ (i 19)

I V^Tf f f \ ^ z^d^x — x'd'z'l ,,
-\- 2il(^z' cos a — x' cos y) — 2m -— \dip

+ [:^/(/cos y-z^ cos /?) - 2m^?-/'^'y
']de = o.
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72. Application of Eq. (E) to a Rigid Solid
^
perfectly free to

Move.—The only restriction which has thus far been imposed is

that this equation, which has been derived from Eq. (E), shall

apply 'to. a -single rigid solid acted upon by any extraneous

forces. The body may be subjected to any conditions whatever

as to its possible motion under the action of these forces, and
the values of dx^, dy^^ dz^, dd, dij;, dcf) will depend on these con-

ditions. If no conditions be imposed, that is, if the body be

free, then dx^, dy^, dz^, dd, dip, dcf), will be entirely arbitrary and
independent of each other. Hence we have, by the principle of

indeterminate coefficients,

X = 21 cos a =: 29
dy
dt''

Z = 2/ cos y = 2m

x^dy —y^d^x

Y= 21 cos /3 = 2m -f-,; (-

d\^

dt^''

2J(x' cos fi
— y* cos a) =• 2

2I(z' cos a — x' cos y) = 277i

21{y' cos y — z' cos ft) = 2

df
z'd'^x — x'd'^z

_ y'd'^z — z'dy

dt''

(T)

(R)

73. Interpretation of Equations (T) and (R).—These six condi-

tions, applicable to the case of a free rigid solid, having been

derived from the general equation of energy, embody all the

circumstances of motion of its molecular masses, caused by the

action of extraneous forces. Considering Eqs. (T), we see that

their rniddle members are the sums of the component intensities

of the extraneous forces in the directions of the rectangular axes,

and the last members are the sums of the products of the

molecular masses of the body by their accelerations in the cor-

responding directions. But these products are the type-symbols
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of the intensities of extraneous forces acting on the molecular

masses. Hence in a free rigid solid any system of extraneous

forces may be replaced by an equal set whose points of applica-

tion are the molecules of the body, and the circumstances of the >.

motion of translation of the latter will not be changed. We see

also that whether there be one or many extraneous forces acting

on the solid, the connections which unite its molecules together

cause the effect of these forces to be distributed throughout the

whole body. Eqs. (T) therefore refer to motion of translation, and

express the fact that the algebraic sum of the component intensities of

the extraneous forces, estimated in any direction, is measured by the sum

of the products of the mass of each molecule by its acceleration in that

direction.

Referring now to the second members of (R), and consider-

ing the first of these, we see that it is the summation of terms of

the form of

, .d'^y
,
,d*x . .

But
^-^'—f-i

is the measure of the intensity of the force which for

the instant dt acts on m' in the direction of the axisjj'', and x* be-
7 2

ing the co-ordinate of ;;/' referred to O' , the product m'x*
,

is

the moment of that force with respect to the axis z* . Similarly

d'^x . , . . . ,d^x
-j-j- IS the moment of the force ^^t—-^
d'^x d^x

m'y'-j-^ is the moment of the force w'—jy- with respect to the

force acting on ;// at that instant with respect to the axis z\

We see, therefore, that each molecule may be regarded as being

subjected to a force of certain intensity, and the algebraic sum of

the moments of these forces at any ifistant, with respect to any axis, is

exactly equal to that of the extraneous forces at the same instant with

respect to the same axis ; and this is what is expressed by Eqs. (R).

74. If the solid be not free, tlie conditions to be satisfied are

less than six in number. For example, if one point of the body
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be assumed as fixed, this point may be taken as the origin 0\
and we shall have

dx^ = dy^ = dz^ = o.

The first three terms of Eq. (119) then reduce to zero; and
since dd^ dtp, d(f) are still arbitrary and independent, this equa-

tion is satisfied when the three conditions (R) are satisfied.

If two points be fixed, the right line joining them will be a

fixed axis, and may be taken as the axis Y'. We shall then have

dx^ =. dy^=. dz^ = o, and d^ = ^^ = o; and since dtp is not neces-

sarily zero, Eq. (119) is satisfied when the second of Eqs. (R) is

satisfied; that is, the single condition of rotation about the fixed

axis ; and similarly for other conditions of constraint.

75. If the molecules of the solid be in uniform motion or at

rest, the forces and moments are balanced, and the body is in

equilibrium both as to translation and rotation. Eqs. (T) and

(R) then become

X == 2/ cos £x = o;\

V=::S/cos/3 = o;y (T')

Z= 2/ cos y =z o;)

Vx — Xy = 2/{x^ cos /3 — y' cos or) = o;
)

Xz — Zx = '2l{z' cos a — x' cos ;/) = o; ) . , (R')

Zy — Yz = 2/{y' cos y — z^ cos /?) = o; )

which are the six conditions of equilibrium.

76. Analytical Mechanics consists essentially in the application

of Equations (E), (T), (R), (T') and (R') to conservative systems

of masses and forces. The object of the discussion is to ascer-

tain the position of any and all molecules at any time, the nature

and direction of their motions, and the configuration of the

bodies of which they are the elements. The theory of the in-

vestigation is simple, but the practical application is limited by
our mathematical knowledge and skill.
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77. Equations (T) and (R) referred to the Centre of Mass as a

Movable Origin.—Since there are as many terms in the last mem-
bers of Eqs. (T) and (R) as there are molecules in the body,

these equations are not in a convenient form for discussion. By
taking the movable origin at the centre of mass, the resulting

equations are no less general than before, while the solution of

practical problems is much simplified.

78. Equations of Translation.—In the first of Eqs. (T),

d^'xX= J^/ cos a = ^^-77-%

'

(12.)

Substitute for d*x its value obtained by differentiating Eq. (112),

and we have

d^x d'^x d'^x'X = J?/ cos a = ^m-j^ = 2m-^ -f .^;//—5-. . (122)
dt' dt'

But d*x^ is a common factor in the term which it enters, and
from the principle of the centre of mass, Eqs. (64), we have

2md^x' z^ Md*x, (123)

and Eq. (122) reduces to

d^x d^x
X=:SIcos a = m"^ + M~.

at at ("4)

_ Taking the movable origin at the centre of mass, we have
^ = o, and Eqs. (T) become

Ar=^/cosar = i^-'^'"^»
^

dt^

Y=2I cos fi = M-^

Z = ^I cos y = M-

dt^

d\
dr

(T.)
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from which the motion of translation of the centre of mass of a

free rigid solid, under the action of incessant forces, can be found.

If the forces be impulsions^ then Eqs. (T) become . ,

X = 2/^ cos a = ^ni—-'

y= :2I^ cos /3 = 2m^-;

' Z = ^I. cos y = ^m-r-\
at

which, when the movable origin is the centre of mass, become

dxX= 21, COS a = AI-^ = MFy,

Y= 21, COS /? = m"^ = MVy\

Z = 2/, cos r = M^ = MV,
;

dt

(T.')

from which the motion of translation of the centre of mass of a

free rigid solid, under the action of impulsions, can be found.

From Eqs. (T^,) and (Tq/) we draw the following conclu-

sions:

(i) That the motion of the centre of mass of a free rigid solid.,

under the action of extraneoics forces^ is entirely independent of the

relative positions of the molecular masses, since their co-ordinates have

disappearedfrom the equations of motion.

(2) That the motion of the centre of mass depe7ids only upon the

mass of the body and the intensities and directions of the extraneous

forces, and is i7idependent of the points of application of the forces.

(3) That the motion of the centre of mass will be precisely the same

as that of a material point whose mass is equal to that of the body., sub-
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----^R'

jected to the action of forces equal to the given forces in intensity and

having the same direction.

79. To illustrate tliese conclusions, let us consider the motion

of translation of the centre of mass of the free rigid solid ^4, Fig. 41,

first, under the action of the

several incessant forces /^^jP",

P'" and /*'", and, second, under

the action of the impulsions

^/, Pn^ ^iu and P,,.

Let O be the centre of

mass, and let forces equal to

the extraneous forces in inten-

sity and direction be supposed

applied to it. Let R' be the

resultant of those forces which

have O as their common point of application; then from the above

principles it can be asserted that under the action of the given

incessant forces the centre of mass will move along the right line

R*
OR* with a constant acceleration equal to -7>; and if the forces be

impulsions, that the centre of mass will move along the right

R
line OR^ with a constant velocity equal to -~=.

80. Equations of Rotation.—When the forces are incessant and

the movable origin is the centre of mass, Eqs. (R) readily-

red uce to

Fig

L- Yx - Xy=:SI{x' cos /?-/ cos a)='Sf

M=Xz — Zx=i^I{z' cos a— x' cosy)— '2m

iV= Zy-Yz = ^/(/cos y- z' cos fi)=2m

x'dy-yd'x' ^

df

z'd'x'-x'd'z'

dt'

yd\'-z'dy
dt^

; KR«)

To show this, let us reduce the second member of the first of

Eqs. (R); we have
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^ x'd'y-fd'x „ x'd'y.-Y x'dy- Vd'x- y'(fx'
^"^

dt'
= ^'"

Te

__ d'^y^^vix' — d'^x^'^my' -}- ^mx'd^y' — ^my'd^x'

x'dW - y'd'^x'

= ^^ le
'

since, by the principle of the centre of mass, ^mx' = 2my' = o.

Similarly, w/ieu the forces are wipulsions^ Eqs. (R) become V

Z,=: Yx-Xy^ :2l,(x' cos y^-/ cos a) = '^m'^^jf—'
^

M^=Xz—Zx=:2lXz' co^ a— x' cosy) = :2m ; }{^2^)

N,=Zy - Vz==2I^{y cos y - z' cos/3) = 2^/"^' ~ ^'^-^

which, when referred to the centre of mass as a centre of rota-

tion, become

L- Yx-Xy^2I,{x' cos /?-/ cos a) = ^nT ^-^ /
^^

;

M^^^Xz —Zx=2I^(z' cos a —x' cos y) = 2?

N^=Zy — Yz=2/,{y' cos y—z* cos /3) = 2

dt

'dx'-x'dz'
,

d~t

'

_ /dz'-z'd/

MR-')

dt

8l. If one point of the body be fixed, we have, by taking it

as the origin 0\

^»^ = ^V; dy = dy; d'zz=dV;

and Eqs. (R) reduce to the form of Eqs. (RJ) or (Rm')> independ-

ently of the principle of the centre of mass.

Also, if an axis be fixed, that one of Eqs. (R) which applies
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to the axis in question reduces to the corresponding one of Eqs.

(Rjn) or (Rni')' according as the forces are incessant or impulsive.

82. In Eqs. (Rm) and (Rm') the co-ordinates of the centre of

mass do not appear; therefore the motion of rotation of the body

about the centre of mass is independent of the position of this

centre, and will be the same whetlier it be considered at rest or

in the state of its actual motion. This exhibits the complete

independence of the motions of translation and of rotation, and

permits the investigation of either as if the other did not exist.

By means of Eqs. (Tm) the position, velocity and acceleration of

the centre of mass can be theoretically determined at any time,

and by Eqs. (Rm) the corresponding positions, angular velocities

and accelerations of every molecule with respect to the centre of

mass; and thus the configuration of the w^hole body about this

point can be determined for the same instant. The mathematical

difficulties, however, due to integration, limit their application to

but a few simple cases. It is to be noted that when the problem

involves incessant forces, Eqs. (T^) and (Rm), and when impul-

sions alone, Eqs. (T^') and (Rm')> ^^^ ^^ ^^ used.

General Theorem of Energy applied to a Free Rigid

Body whose Centre of Mass is referred to a Fixed
Point in Space.

83. Translation under Incessafit Forces.—Multiply Eqs. (T^) by

dx, dy, dz, respectively, add the results and integrate, and we
have

fiX^. + Ydy + Zdi) = j^,f^J^^:f+^y±J^

= f(^|:±^)+C=^Vc,(.6)

in which x^y, z are the co-ordinates of the centre of mass referred

to the fixed origin, V is the variable velocity with respect to the

sar.ie point, and Af is the mass of the body. The first member,
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J(Xdx \- Ydy -\- Zdz), (127)

is, Art. (i(i, an expression for the quantity of work done by the

extraneous forces, or the total quantity of potential energy ex-

pended by them, and whose particular value in any case will be

determined when the limits of the integration are fixed. The
constant C of the second member is evidently the kinetic energy

which existed in the body at the instant the extraneous forces

began to act; for at that instant, say /j, their work is zero, and

if Fj be the corresponding velocity, then

C^-'JLLi. (i23)
2 ^ '

The first term of the second member, , is the total ki-
2

netic energy at any time, and hence the whole second member,

—- -^ (129)

being the difference between that possessed by the body at any

time and that when the extraneous forces began to act on the

body, is the exact equivalent of the potential energy represented

by the first member. Here we have, as should have been ex-

pected, the general law of the transformation of energy.

84. The first member may be integrated when the compo-

nent forces in the directions of the co-ordinate axes are constant,

and when, if these forces be variable, it becomes a known differ-

ential function of the three co-ordinates .r, 7, z. In the first case,

let R be the constant intensity of the resultant of the forces, and

a, b^ c the angles which its action-line makes with the co-ordi-

nate axes. Then we have between the limits 1 and 2

R(x cos a +/ cosb-\-z cos ^),''= F'(x,y, z)^=M^—^ ^—', (130)
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In the second case, in order that integration may be possible,

the intensities of the forces must be functions of x,y, 2, and we
have

r\x,y,z): = M^-^^:^ (131)

Hence we may write Eq. (126) in either case

F(.^,y,i); = F{x^.\)-F(xj.^:^ = M^^^-^, (132)

as the general law of energy when forces act on a free rigid

solid to give it motion of translation, under the conditions im-

posed above. From this equation we conclude that the velocity

generated in a free rigid solid by constant forces^ or by variable

forces whose intensities are functions of the co-ordinates of the centre

of mass^ varies only with the values of the co-ordinates; and that,

should the centre of mass ever return to the same position in

space, its velocity will be the same as before, whether the path

by which it reaches this point be the same or not.

If the forces be in equilibrio, then, Art. 68,

Xdx^Ydy^Zdz:=.o, (133)

and we have

= a constant; (^34)

that is, the velocity is constant.

85. Rotation under Incessant Forces.—If we multiply Eqs. (Rm)
by dcf), dtp and dd^ respectively, add the results and reduce by
Eqs. (116), we obtain

21 cos adx' + 21 cos fidy' -\- 21 cos ydz'

^ (dx'd\x' + dy'dy + dz'd^z'

), (135)
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which, by integration, becomes

J:2Idp =jRdr = i2m[^^^^±^±^)+C'=i2mv'+C', (136)

when, Eq. (104), we replace the sum of the virtual moments of

the extraneous forces, 2Idp, by the virtual moment of the result-

ant, J^dr, But dr, being the elementary path of the point of ap-

plication of the resultant projected on the action-line of the re-

sultant, is equal to the product of the path described by a point at

a unit's distance from the centre of mass by the lever arm of i?.

Let k be this lever arm, and ds the elementary arc at a unit's

distance, and we have

fj^Ms = i2mv' + C (137)

The first member is the general expression for the work of

rotation done by the resultant of the system, or the potential

energy transformed; ^^mv^ is the kinetic energy of rotation of

the body with respect to the centre of mass; C is the kinetic

energy of rotation in the body before any has been transferred

to it by the extraneous forces, and is equal to — \^mv^\ there-

fore we hflve'

CRkds = ^^mv" - i'Smv* ... . (138)

for the total kinetic energy of rotation put into the body by

the expenditure of the equivalent amount of potential energy

likds.s
86. Adding together Eqs. (132) and (138), we have

£\xdx + ydy + Zdz) -^-fjjRkds

= M^ -^-
-f i:Sm(v,' - v:), (139)
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in which the first member expresses the total expenditure of

potential energy of the extraneous forces in producing motion

of translation and of rotation, and the second member the equiv-

alent quantity of kinetic energy which has resulted therefrom.

If the action-line of the resultant of the extraneous forces pass

through the centre of mass, the second term of the first member
and the second term of the second member become zero.

Thus we see that the poi7it of application is of importance in

determining the effect of a force, since by supposing it to be

changeable the resulting kinetic energy of rotation imparted to

the body will be correspondingly varied.

87. Translation under Impulsive Forces.—Squaring Eqs. (T^')

and adding, we have

X« -f F» + Z' = i?/ = M\ VJ -f F/ + F,') = M' V\ (140)

whence

R,-MV, (141)

Hence, when a free rigid solid has been subjected only to a

system of .impulsions, its centre of mass will move with a con-

stant velocity, -7^.

88. Motion of Translation.—In the discussion of the motion of

translation of bodies two classes of problems arise. In the first,

which are called direct^ we have given the mass of the body and

the forces acting upon it; and it is required to find the path of

the centre of mass and all the circumstances of its motion. In

those of the second class, which are called inverse problems, the

path of the centre of mass is given, and it is required to find

the forces which will cause the body to follow that path.

89. The Direct Proble7n.—To solve the direct problem we sub-

stitute in Eqs. (Tn,) the mass of the body and the component in-

tensities of the forces, and obtain
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d'x X d^y V d'z Z
de

"~ M' df M' de ~ M' • (142)

in which the accelerations are constant or variable according as

the forces are constant or variable. Integrating, we have

(43)

The arbitrary constants in these equations are the values of

the component velocities when / = o; that is, at the epoch or in-

stant from which / is estimated.

Integrating again, we have

(144)

D, D* and D*' being the co-ordinates of the centre of mass at

the epoch.

The values of C, C, C", Z>, D* and D" are called the initial

conditions^ since they are the component velocities and the co-

ordinates of the centre of mass, when the forces began their

action.

The integrals in Eqs. (144) can readily be found when the

^iven forces X^ Y, Z are constants, or, if variable, when they can

be expressed in such terms of / as to make them known integrable
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expressions. Then by eliminating t from Eqs. (144) we obtain

two equations containing x^ y, z, and constants, which are the

equations of the path. The problem is then completely solved,

since we have the position, velocity and acceleration at any time,

and the entire path of the body.

90. The Inverse Problem.—Since the centre of mass may de-

scribe the same path under different conditions of velocity and
acceleration, the inverse problem is indeterminate. It may, how-

ever, be made determinate by assuming the initial conditions

and one component velocity or one component acceleration.

Let the equations of the path be

By differentiating and dividing, by dt, we obtain two equa-

tions involving three component velocities, and by a second dif-

ferentiation and division we get two equations containing three

component accelerations. To obtain an equation connecting

the velocity with the component accelerations, differentiate Eq.

(126) and divide by the differential of one of the variables, as

dx. We thus have

or

1 d{V') _d*x dy dy d'z dz

2 dx ~ dt'''^ dt^'d'x'^ df^'dx ' ' '
^^"^^^

Now if one of the component velocities be assumed, we may
obtain the value of Ffrom the equations obtained by the first

differentiation of the equations of the path, since

---(ir+dr +(§)•
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Then we have three equations in which the three component
accelerations are the only unknown quantities, and the problem

may be completely solved.

If one component acceleration be assumed, we may find V
from Eq. (147) by integration, and this value, together with the

equations involving the component velocities, makes the solu-

tion possible. Thus, in either case the problem is determinate,

and all the circumstances of the motion may be found as in the

direct problem.

It is also evident that the problem may be solved by assum-

ing any new condition connecting the six unknown quantities,

since we already have five equations containing them.

91, Examples of the Direct Problem.

(i) Constant Forces.—Integrating Eqs. (142) twice, we have

dt-'M^^^' Tt-M^^^^ di-^M^+^ ^
('48)

(149)

Let us suppose that the centre of mass at the epoch is at rest

at the origin of co-ordinates; then Eqs. (148) and (149) become

• • • (ISO)

• . . (iSi)

Eliminating from either pair of equations pertaining to the

dx X
dt ~ ~M '

^y - y ,.

dt ~ M '

dz z
dt

~~ M '

X t'

^"-J/2' ^~ M2 '

Zt""
^~ M2'
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same axis, as x for example, the factor -7^, and indicating the ve-

locity in that direction by the subscript, we have

(152)

Laws of Constant Forces,—Eqs. (150), (151) and (152) express

the laws of constant forces, which are:

I St. The velocity of the centre of mass in any direction varies

directly with the time, and at any instant is equal to the product of the

acceleration in that direction multiplied by the time.

2d. The space passed over in any direction varies directly as the

square of the time, and at any instant is equal to the acceleration in that

direction multiplied by half the square of the time.

3d. The space described in any direction is equal to the component

velocity in that direction at the time considered, multiplied by half the

time since the epoch ; hence the space described in the first unit of time is

equal to half the acceleration.

92. (2) Motion due to Gravity.—Let the weight of the body,

wliich is the only force acting, be supposed constant. Take the

axis of z vertical and positive downward, and let a, fi, y be the

angles which the weight Mg makes with the axes x^y^ 2, respec-

tively. Then Eqs. (148) become

d'^x MfT cos a

d\ Mg cos B _

d^z Mg cos y

('53)

Under the general supposition that the centre of mass at the

epoch is in motion and not at the origin of co-ordinates, these

equations, by integration, give
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^=^ 1=-'' %=^'^C',
. . . (.54)

and

x=^Ct-\-D, y=:Ct^D\ z:=^\gt'^C^t^D*\ (155)

Hence, Eqs. (153), the accelerations in the directions of x and

y are zero, and if there be any motion in a horizontal direction

it must be uniform; this is also shown by the first two of Eqs.

(154). The acceleration g in the vertical direction is that due to

gravity; and the velocity in this direction must increase alge-

braically, as shown by the last of Eqs. (154). From Eqs. (155)

we see that the distances passed over in the directions of x and j
vary directly with the time; also that the distance of the centre

of mass from the origin, estimated in the vertical direction, is

composed of three parts, viz., the initial co-ordinate D" , the

space due to the initial velocity C", and that due to the constant

effect of gravity.

Confining the discussion to motion in a vertical direction,

and omitting the accents from the constants, the equations

become

Jf=^; Tt=St^C; z = ^r + Ct+ D. . (156)

If the body start from rest at the origin, C and Z> will both

be zero; and letting v represent the velocity and /i the height

fallen through, we have

v = gt; h = igf (157)

Eliminating /, we have

V* = 2gh (158)
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This relation between v and h is of frequent use in problems of

motion; h is called the height due to the velocity Vy and v the velocity

due to the height h\ either may be found in terms of the other

when g is known.

This relation may also be obtained from the general law of

energy, since we have

wh = mgh = , (159)

or

v" = 2gh. (160)

If the body be projected vertically upward from the origin

with an initial velocity C, then, to find the duration of its ascent

and the height to which it will rise, we have, Eqs. (156),

^ o=gt—Cy or / = -, (161)

and

h = igt'-Ct=-— (162)

Gravity therefore abstracts g units from the initial velocity

every second until the body comes to rest at the altitude //, after

which it will restore g units of velocity each second, and the

body will reach the origin with its initial velocity.

From Eq. (162), as also from Eq. (158), we see that the height

which the body will attain is equal to tlie square of the initial

velocity divided by twice the acceleration due to gravity.

93- (3) ^^^ Trajectory in Vacuo.—The path described by the

centre of mass of a body is called the trajectory; if the body be
given an initial velocity, it is called a projectile; but the term
trajectory is usually limited to the paths of projectiles intended

to be thrown from guns by means of some explosive—generally

gunpowder.
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The discussion of the trajectory in vacuo limits the forces

acting to the weights alone; and since for short distances on its

surface the radii of the earth are sensibly parallel, the weight at

all points of the trajectory may be considered as acting parallel

to its direction at the origin. Let the projectile start from the

origin, and take the axis z vertical and positive upward; the

trajectory will lie in the plane of this axis and the initial direc-

tion of motion, since there is no force acting oblique to this

plane. If we take the axis of x in this plane, the differential

equations of motion become

d^z Z Mg cos y , , ^

d^x X M^ cos a , ^ ^

ir = M= M ^SCosa = o; . . . (164)

since y = i8o° and a = 90°.

These equations give, by two integrations,

X = a; 2 = - igt' -i- C/. ...... (166)

Let V be the initial velocity, and 6 the angle which the tra-

jectory at the origin makes with the axis at x. Then we have

C= Fcos 6; C"= Ksin 6.

Substituting these values of Eqs. (165) and (166), we have

^-=^Vcos6', g=-^/+Fsin^; . . . (167)

x=Fcosef; 0= ~i^/»+ Tsin ^/. . . (168)

Eliminating / from Eqs. (168), we find the equation of the
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1

trajectory to be

«=*""^-*?F^^i^ (169)

or

x"
ZZ^X\.2XiQ 7 j-^, (170)

4^ COS Q \ I /

when for V^ we substitute 2gk.

To find the co-ordinates of the highest point, we have

dz ^ 2X , .~ = o — tan 6 7 ^~2j, .... (171)dx 4/1 cos 6 \ I /

or

X =. 2k tan 6 cos' ^ = -^ sin 2^. . . . . (172)

This value substituted in Eq. {170) gives

, . n /I ^' sin" 20
z •=. h sin 2u tan u ; —-p,

4/1 cos u

= 2/4 sin' e-/i sin' 6 = /i sin' 6. , . . (173)

Transfer the origin to the highest point, without changing

the directions of the axes, and we have (H 1

1

, 7 • 9 n / , r . /i\ /I {x -\- h sin 26^)' , .

2 4- >4 sin' ^ = (a: + y^ sin 26) tan ^ — ^—^ 7-5-^, (174)^ ^ 4^ cos' 6 ' ^ ' ^/

or

4^ cos' ^js:+ 4^' sin' ^ cos' 6^ = 4^ cos' ^ tan ^j;

-j-4^'cos' ^sin 2^ tan ^—^'—2^ sin 2^;t—^'sin* 2O, (175)

But

4^' sin' 6 cos' (9 = 4>4' cos' d sin 2(9 tan 6 ^ h* sin' 2^, (176)
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and

4^ cos' d tan 6 •=. ih sin 2^, {i77)

and Eq. (175) reduces to

x^ — ^ ^h cos'' Qz^ . . . . . . (178)

the equation of a parabola whose axis is the vertical through the

highest point.

The range, which is that portion of the original axis of x
between the two branches of the curve, is seen from Eq. (172) to

be 2/1 sin 26, and its maximum value for any given value of V
is obtained when the angle of projection is 45°; and since this

value is 2h, the maximum range is equal to twice the height due

to the initial velocity. The corresponding value of z is ^//, or |-

of the maximum range.

The time required to describe any portion of the curve is evi-

dently

The time from the origin of motion to the highest point is

also given by the second of Eqs. (167),

~=o^-gt+Vs\ne, (180)

or

t=^^^^. (.80
g

The value for the velocity at any point, obtained from Eqs.

(167), is

Z;« = ^^' + ^< =: F'+/^'-2F^/sin^, . . (182)
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or, eliminating thy means of Eq. (179),

V =^ V^ - 2g tan ex + j,ff^^. ff
. . . (183)

From the symmetry of the curve with respect to the vertical

through the highest point, it is evident that

(i) The two branches are described in equal times.

(2) For points at the same height the angle of fall is the sup-

plement of the angle of rise.

(3) For points at tlie same height the velocities are equal,

since the horizontal velocity is constant and the vertical veloci-

ties are numerically equal for equal values of z.

In Eq. (170) substitute for cos 6 its value in terms of tan 6,

and we have

„ ^' + tan' dx" ...
z = tan 6x '—

-r , .... (184)

or

tan e = (185)

The point (x, z) can therefore be reached by one or by two

angles of projection, according as the quantity under the radical

sign is zero or positive, and cannot be reached when this quan-

tity is negative.

It is evident that if the parabola whose equation is

4>^' - 4/^0 - ^» = o (186)

be revolved about its axis 2, it will generate a surface which will

be the locus of all points which can be reached by but a single

angle of projection, and beyond which the projectile cannot be

thrown by the initial velocity due to h. Any point within this

surface can be reached by two angles of projection. This limit-
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ing surface is a paraboloid of revolution, whose vertex is on the

axis of z at a. height /i from the origin, and the radius of whose
circular section in the plane normal to the axis through the

origin is 2^,

94. (4) T/ie Trajectory in Air.—The air resists the passage of

a projectile through it, and thus abstracts a part of its kinetic

energy. The resistance of the air is chiefly due (i) to the dis-

placement of the air particles by the forward motion of the pro-

jectile; (2) to the excess of air pressure in front; (3) to the cohe-

sion of the air and its friction on the surface of the projectile.

The resultant of these forces, called the resistance of the air, there-

fore varies with the velocity and. form of the projectile, the nature

of its motion, and the condition of the atmosphere. It is a force of

variable intensity, and its law of variation is not accurately

known; hence the theorem of energy Eq. (126) cannot be directly

applied, since X, V, Z are unknown.

When the velocity of any particular projectile is known at

certain points of its trajectory, the loss of energy between any
two of these points, making due allowance for the effect of known
forces, will be iM( V^ — V^), which, being divided by the dis-

tance between the two points, will give the mean resistance. An
approximate law of resistance may, be obtained by taking these

points sufficiently near together, and then varying the initial

velocity so as to include all service velocities. The details of

this method being given in the course of Ordnance and Gunnery,

only a brief statement of the mechanical principles is here given.

Consider the projectile to have motion of translation only,

and the acting forces to be the weight and the resistance of the

air. Let W be the weight in pounds,^ the acceleration due to

gravity, r the acceleration due to the resistance of the air, Fthe
velocity of the centre of mass at any point of the trajectory, and

the angle which the trajectory makes with the axis of x. Since

the resistance of the air acts along the tangent, the trajectory

will lie in a vertical plane, and the axes of co-ordinates may
therefore be assumed as in Art. 93.

The total acceleration at any point will be the resultant of
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two accelerations, one in the direction of the tangent to the tra-

jectory and the other in the direction of the radius of curvature,

Eq. (8), Art. 16. These are

•^ = -r-'gsin<p (187)

and ^

=— ^COS0, . . .. . . . . (188)
H

respectively.

The component acceleration in the direction of the axis of

X will be independent of gravity, and that along the radius of

curvature will be independent of the resistance of the air. The
component velocities along x and z are

dx
^- = V cos (f)

= u; (189)

dz
-j- = F sin <p = u tan (^9°)

The acceleration along x is evidently

j. = -rcos(/>, (191)

whence we have

du
dt= -; (192)r cos <p \ ^ /

dx = -; (193)
r cos ^ ^"-^^

and since

dz = dx tan 0, (194)
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we have

dz = u tan (f)du

r cos
(195)

The component acceleration along the radius of curvature,

ds
when for p its value -r-: is substituted, becomes

dq>

V^ ,,ds I ..ds dcf) ..d(t> . i ^\

and therefore

^<f>=-^^f = ^. (.97)

From Eqs. (192), (193), (195), (197), we have

du

cos 0'

udu

cos

2^ tan (})du

r cos

ngdu_

J Vr

(198)

These integrations depend upon the variables u^ and r, and
as there is no known relation connecting these quantities, the

direct solution, which requires x, z^ 0and / to be known through-

out the entire trajectory, is impossible. The methods of ap-

proximation used in the solution of practical problems of ballis-

tics will be found in the course of Ordnance and Gunnery.
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Motion of Rotation.

95, Moments of Inertia.—When a body rotates about an axis,

the velocity of any molecule is (Art. 17)

v—oor, (199)

r being its distance from the axis. Its kinetic energy of rotation

is therefore

^mv^ = \moo^r^^ (200)

and that of the whole body is

^'2mv^ = ioo*2m.r*j (201)

or one half the product of the square of the angular velocity by
2mr*. The latter is called the moment of inertia of the body with

respect to the axis, and is the sum of the products obtained by multi-

plying the mass of each molecule by the square of its distance from the

axis.

Since for a given angular velocity of the body about different

axes the kinetic energy of rotation is directly proportional to

'2mr^^ the moment of inertia of a body measures the capacity of the

.body to store up kinetic energy during a motion of rotation about the

axis with respect to which the moment of inertia is taken.

The angular velocity being the actual velocity at a unit's dis-

tance from the axis, we may write

or

\M,QD^ =^ \Q!)^'2mr\ (202)

M^ = J2/«r' (203)

Hence, ^wr' measures the mass which would, if concentrated at a

unifs distance from the axis, have the same ?fwment of inertia as the

body with respect to that axis.

7
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96. Radius and Centre of Gyration.—Let M be the mass of the

body, and write
^' = '2mr'^ (204)

Solving with respect to ^, we have

k = V'
^mr"^

M (205)

The distance k is called a radius of gyration^ and its extremity

not on the axis, a centre of gyration. When the axis passes

through the centre of mass the radius and centre of gyration are

coWtd principal, and such a radius is generally denoted by k^.

From Eq. (204) we see that // the whole mass of the body be con-

centrated at the centre of gyration the moment of inertia of the body

with respect to the axis will not be changed. The radius of gyration

may therefore be defined to be the distance from the axis at which

the whole mass of the body may be concentrated without changing its

moment of inertia.

Since the kinetic energy of rotation of a body depends only

on the angular velocity and moment of inertia, we see that for a

given value of qd the kinetic energy of rotation is the same as if

a mass equal to 2mr^ were concentrated at a unit's distance from

the axis, or the whole mass of the body at the distance k from

the axis.

97. The Momental Ellipsoid.—Let it be required to find the

relations existing between the moments of

inertia of a body with respect to all right

^ lines passing through a single point. Let

the assumed point be taken as the origin

(Fig. 42), and let a, /3, y be the type-sym-

3 bols of the angles made by the right lines

- with the co-ordinate axes. Let m be the

mass of one of the molecules of the body,

and we have for its moment of inertia, with

respect to OR,Fig. 42.

mr"^ = m[x^ -\- y^ -\- z^ — (x cos a ^^^^ cos /3 -\- z cos yY], (206)
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Summing the moments of inertia for all the molecules, we
have, for the moment of inertia of the body with respect to OR^

'Smr^ — ^m^x^ +/ + z^ — (^^ cos or + / cos /3 + 2 cos yY\
= 2m{{x'^-\-y'^-\- z'^){cos^a+ cos^ /?-j- cos^ r)—{x cos a -\-y cos /?+2 cos yf^
- 2m{f+ z'') cos' a+ 2m{x''+ z^) cos^ /3+ 2m{x'' +/) cos' r
— 2^myz cos ^ cos y — 22mxz cos « cos >^ — 22mxy cos a cos /?. . (207)

But 2m{y' + 2'), :S;//(^' + z') and ^/^^(jt:' +/) are the mo-
ments of inertia of the body with respect to the axes x, y, Zy

respectively. Representing these moments of inertia by A, B, C,

we have

2mr^ = A cos' a -{• B cos'' /3 -\- C cos' y — 22myz cos /3 cos y
— 22mxz cos a cos ;^ — 22mxy cos of cos jS. (208)

Lay off on OR a distance from 6> equal to
f^

:, and let
mr

x', y, 0' be the co-ordinates of the point thus determined. Then
we have

or

*' = cos a

V2mr''

/= cosyS

z' = cos y

cos a = x' V2mr'
cos/? = y V:Emr^

(209)

cos y =^ z^ 4/^

(210)

Substituting these values of the cosines in Eq. (208), we have

. (211)

I = Ax'' + By'' + a" - 2{^2myz)yz' - 2{2mxz)x'z'

— 2(2mxy)x'y'



c

ICXD MECHANICS OF SOLIDS.

which is the equation of the locus of all points that are at a dis-

tance from the origin equal to the reciprocal of the square root

of the moment of inertia of the body with respect to the line

upon which this distance is laid off. We see from the equation

that this locus is a surface of the second order; and, since the

radius-vector is always finite, it is an ellipsoid.

This ellipsoid is called the momental ellipsoid of inertia^ for the

reason that the square of the reciprocal of any one of its semi-

diameters is the moment of inertia of the body with respect to

the coincident right line. It presents a geometrical image of

the values of the moments of inertia of the body with respect to

all lines radiating from the assumed point.

The greatest moment of inertia is that with respect to the

shortest diameter, and the least is that with respect to the great-

est diameter. As all semi-diameters of the cyclic sections are

equal to the mean semi-axis of the ellipsoid, the moments of

inertia with respect to these lines are equal to each other. The
origin O having been assumed at pleasure, it is evident that

there is a momental ellipsoid of the body for each point in space.

98. Principal Axes.—Since the equation of an ellipsoid when
referred to its centre and axes takes the form of

Ax*"" + Bf^ 4- a'" = I, (2I2>

we see that for at least one set of rectangular co-ordinate axes

through any point in space we must have the conditions

E^l

2mxy = o;

2mxz = o;
J-

(213)

2myz

The axes of figure of the momental ellipsoid are called prin-

cipal axes at the point considered; and since for such axes we
have the conditions expressed by Eqs. (213), the latter are called

l/ie conditions for principal axes.
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The quantities 2mxy, 2mxZy 2myz reduce to zero for princi-

pal axes because the sum of the positive and negative products

arising from the signs of the co-ordinates x, y, z are numerically

equal to each other. The moments of inertia for such axes are

called principal moments of inertia; they evidently include the

greatest and least moments of inertia at the point.

The value of JS'/z/r^ for any axis, Eq. (211), in terms of the

principal moments of inertia at the point considered, becomes

^wr' = A cos' a-\- B cos' ^ -\- C cos' y\ . . (214)

that is, the moment of inertia of any body with respect to any line what-

€7!er is equal to the sum of the products obtained by multiplying the

principal moments of inertia at anypoint of the line^ respectively^ by the

squares of the cosines of the angles which the line makes with the prin-

cipal axes at the point.

99. It is readily seen, Eq. (214), that v^rhen the principal mo-
ments of inertia of a body are known at any point, all its other

moments of inertia with respect to that point may be deter-

mined; and it will now be shown that if the principal moments
of inertia be known at the centre of mass, the moments of inertia

with respect to all lines whatever can be readily computed.

Let any right line be taken as the axis of z\ then the moment of

inertia with respect to this line is

2/«r' = ^/«(^'+/) (215)

Let ^o>^o ^^ the co-ordinates of the centre of mass referred

to the assumed axes, and x\y* the co-ordinates of the molecules

of the body referred to the centre of mass; then we have

x=zx^-\-x*\ y=y,+y';

which, substituted in Eq. (215), give

Smr' = S>n{x' +/) = 2m[{x, + x')' + {y, +/)']
= 2m{x,'+y;) + 2m{x"+/')+2x,2mx'+2y,2m/. (216)
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Placing x^ -\- y^ = ^', and remembering that by the princi-

ple of the centre of mass

^mx' = ^my' = o,

we have

2mr'=:Md'^:2m{x''' -{/') (217)

Therefore, the moment of inertia of the body with respect to any

line in space is equal to its moment of inertia with respect to a parallel

line through the centre of mass, increased by the product of the mass of

the body by the square of the perpendicular distance from the centre of
mass to the given line. The least principal moment of inertia at

the centre of mass is therefore the least of all the moments of in-

ertia of the body.

100. Discussion of the Momental Ellipsoids of a Body.—Let Ay

£, C be the principal moments of inertia at the centre of mass.

(i) Suppose A =^ B ^^ C. Then the central ellipsoid is a

sphere, and therefore all moments of inertia at the centre of

mass are equal, and all axes through it are principal. For every

other point in space the ellipsoid is a prolate spheroid whose

axis passes through the centre of mass; for, the moment of in-

ertia with respect to this line is the same as the central mo-

ments of inertia, while those with respect to all lines perpendicu-

lar to this are greater than the central moments of inertia and

equal to each other; and these lines are principal axes since the

moment of inertia with respect to the line through the centre

of mass is the least of all the moments of inertia at the point in

question.

(2) Suppose A y B and B =. C. The central ellipsoid is an

oblate spheroid whose axis is that of the greatest moment of

inertia. There are two points on the axis of the spheroid at

which the ellipsoid is a sphere, and they are found thus: At

these points all moments of inertia must be equal to A. Then,

denoting by x the distance of these points from the centre, we
have
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A=iB-^Mx^^C^Mx^', .... (218)

whence

lA-B
(219)

It is evident that the ellipsoid can be a sphere at no other

point.

(3) Suppose A = B and B > C. The central ellipsoid is a 'Tlt~"
prolate spheroid whose axis is that of C. There is no point at

which the ellipsoid can be a sphere.

(4) When A > B > Cy the central ellipsoid is one of three ^ /^ ^ ^

unequal axes at the centre of mass, and cannot be a sphere at ^.^

any point in space. )^'\^.

10 1. Determination of the Moment of Inertia.—The moment of ^^ 1,^^
inertia may sometimes be found by the summation of the sepa-

'

rate values of wr*.

Whenever the body is one whose density and boundary vary

by some law of continuity, we may write

m-= dAf = 6dV (220)

and

2mr^=rr^dM=rr''6dV', (221)

from which the moment of inertia can be found whenever the

expression can be integrated between the limits that determine

its volume.

Having found the moment of inertia of a body with respect

to any line, that with respect to a parallel line may be found by

Eq. (217); and having found the principal moments of inertia at

any point, that with respect to any other line through the point

can be found from Eq. (214).

In the following examples let S represent the density, go the

area of cross-section of a material line, and / the thickness of a

material surface.
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Ex. I. A Uniform Straight Rod.—Let the axis be perpen-

dicular to the rod at its middle point, and represent the length

of the rod by 2a\ then we have

x^dx = 2a6oo—

.

3

Whence, since M = 2adGo, we have

Mk; = M- and k/ = - (222)
3 '3 ^

The centre of gyration is therefore at a distance from the

centre of mass equal to = .577^:, nearly.
1.732 -I-

*^" '

For an axis perpendicular to the rod at any distance d from

the centre we have

)mr = Ml+'^')= ("3)

which becomes, for the perpendicular axis at either extremity.

M±a\

Ex. 2. A Circular Arc^ subtending an angle 2^ at the centre

and whose radius is a,

I. Axis perpendicular to the plane of the arc through its

centre.

:2mr'' = doo f^a'dO = 26000,'6 = Ma*)
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and, for the whole circumference,
'

^wr' = 2716000" = Ma* (224)

2. Axis in the plane of the arc through its centre and middle

point.

Smr" = doo C^ a' sin' Odd

= dooa\d — sin 6 cos 0)\

and, for the whole circumference,

Smr" = TtSaoa* = J/ -. (225)

From Eqs. (224) and (225) 2mr* can be found for any right

line passing through the centre by the application of Eq. (214).

.Ex. 3. A Rectangular Plate whose sides are 2a and 2b. Take

the centre of the plate as the origin, and the axes parallel to

its sides; then for the axis x^ perpendicular to 2^, we have

dM = 2adtdy^ and therefore

2mrJ = 2a6t f^ y'dy = '^6tab'^M^^\ . . (226)
J-b Z 3

and similarly, for the axis y^

2mry = M" (227)

For the axis z we have

2m(x* +/) = 2m(y' + z") + 2m{a^ + 2"),
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since z = o; hence

2Mr/=.M^^±^ (228)
3 ^ '

If the plate be square^ a = b, and we have

'2mrJ = SmrJ' = M

:^mr^ = M
y

2a' (229)

Ex. 4. A Triangular Area about an Axis through a Vertex.—
V ^ B Let AjBC, Fig. 43, be the triangle, and take

the axes x and y through the vertex in its

plane; let /3 and yS' be the distances of the

vertex B from y and x respectively, and y
and ;/' those of the vertex C from the same

axes, and let AZ> = /; then we have for the

triangle ABD

Fig. 43.

dM = dtPQdx - dtl^—^dx.

Similarly we have, for the triangle ABC,

:Emry' = dtl r(i - -\x''dx = (J//^-. . . (231)

But ^mry of ABC is equal to the difference betw-en that of

ABB and ACD\ therefore we have, for ABC,
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:2Mr; = Stl^^ (,3,)

The mass of ABC is evidently dtl— ^; hence
2

:2mr; = ~l,P' ^ §Y + Y') (^33)

which is a general formula for the moment of inertia of any tri-

angle with reference to an axis in its plane, passing through its

vertex and being wholly without the triangle. Similarly we have

:S«r,' = ^(/J" + /?>' + /'),. . . . (234)

and, for the axis z at A,

2mr.' = ^(/J' + fiy + y' + P" + /?>' + y"). . (23s)

Ex. 5. A Triangular Area about any Axis whatever.—At the

middle point of each side let one third the mass of the triangle

be concentrated; then the centre of gravity of the three material

points coincides with that of the triangle.

The moment of inertia of the material points with reference

to any line Ay drawn through A is

and with reference to a line through A perpendicular to the

plane of the triangle is
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M
3 Uf+f)+(?+?)+('^+'^^)(

= -^W + Py + f +r + P'y' + r"); (^'s?)

and these moments of inertia are the same as those of the tri-

angle with respect to the same lines.

The moments of inertia expressed by Eqs. (235) and (237)

are evidently the greatest moments of inertia at the point, and

they are therefore principal moments of inertia; hence two of

the principal axes lie in the plane of the triangle. But, Eqs.

(233) and (236), the sections by this plane of the ellipsoids for

the point A of the triangle and system of points coincide

throughout at least half their length; therefore the principal

axes in this plane are also equal and coincident, and the ellip-

soids coincide throughout. Hence the ellipsoids at the common
centre of mass are one and the same ellipsoid. The triangle and

system of material points, having then the same central ellipsoid,

have equal moments of inertia with respect to all lines in space.

Therefore, to determine the moment of inertia of a triangular

M
area, find that of three masses each equal to — at the middle of

its sides with respect to the given line, and it will be the required

moment of inertia of the triangle.

Ex. 6. An Elliptical Area.—Let the equation of the ellipse be

ay + ^V = a^V"',

then, for a line through its centre coincident with its major axis,

we have

]mrx ^ = 461 j j y^dxdy
t/o t/o

= 7tabdt-=M--
4 4

'.
. (238)

'^^tfCiT'-^;:
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after substituting -(«' — x"^ iox- y after the first integration.
Oi

Similarly, for the minor axis, we have

2mry = ^6t I j x^dydx
t/o t/o I . .

«» r
• • • ^'^9)

4 4 J

and by combination we have

2».r/ = ^^^l±^) (240>

For an axis in the plane of the ellipse coincident with any ra-

dius vector r we have, Eq. (214), sincey = r' sin' a and x^ = r*

cos' a,

2mrr^ = M ("' ^^"' ^ + ^' '""^^ = M^. . (244
4 4r' ^ ^ '

For a circular area we have

4 2

Ex. 7. ^« Ellipsoid.—Let the equation of the ellipsoid be

then the area of any section perpendicular to the axis of x is

a a a ^ '

and therefore
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dM = d^{a' - x^)dx.

From Eq. (240) we see that the square of the radius of gyra-

tion for an ellipse with respect to the normal through its centre

is equal to the sum of the squares of its semi-axes divided by 4;

therefore we have

•'^ nbc ./' + ^%..:2mr,' = S r "^{a^ - xy-—^-(a' - x*)dx

^^jc(^-^n r,^.Sn ^^^ \'l r (a' ~ xy.

-u Tiauc
3

dx

—dnabc
5

=M b' + c'

In the same way we readily obtain

•"
5 '

^mr^ = M '—

.

(242)

(243)

For a spheroid whose axis is a, and b = c, vjq have

^pirj" = M 2a'

'!2mry = "^mrz = M a^-\-b''

(244)

(245)

For a sphere^

2ar
:SmrJ = 2mry^ = 2mr/ =M—

.

(246)
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Ex. 8. A Rectangular Parallelopipedon,—Assume the origin at

one of the angles of the solid; let the co-ordinate axes coincide

with its edges, and let a, b, c be their lengths along the axes x^

y, Zf respectively; then

A= r f^ rp{f + z^)dxdydz
«/o t/o t/o

__ pabcip' -f c*) __ ^^
^' + c\

3 3

^ ^ pabc{a' -\- c') ^ ^^l+f\
3 3 '

^ ^ pabcia^-^b-^) ^ j^a^jV_b\,

3 3 '

and for principal axes at the centre of mass, (Art. 99),

A^m'L±S\ B=.M^l±fl C=M^1±^:,

(247)

12 12 12
(248)

For the cube^ since a=z b = c.vjq have for the edges

2«'A=B=C=M^
and for principal axes at the centre of mass

\ -i 2 / 6
(249)

Hence the momental ellipsoid at the centre of the cube is

a sphere, and all moments of inertia are equal.

It might appear that the edges are principal axes at the angle

of the cube from the equality of their moments of inertia. But
the line joining the centre and angle is a principal axis at the

angle, since the moment of inertia with respect to it is less than

that with respect to any other line; hence the principal axes at
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the angle are the diagonal of the cube and any pair of perpen-

dicular right lines in the normal plane to the diagonal at the

angle. The moment of inertia with respect to every right line

in this plane passing through the angle of the cube is readily

seen to be

M
(6+t) =^— (^5°)

102. The moments of inertia with respect to central principal

axes are here tabulated for convenient reference.

Mass. Dimensions. X. Y.

1. Rod or Cylinder

2. Circular Rim

3. Rectangular Plate

4. Elliptical Area

5. Circular Area

6. Ellipsoid

7. Spheroid

8. Sphere

9. Rectangular Paral

lelopipedon

10. Cube

length = 2a,

radius = r

radius = a

sides=aand^

axes=«and3

radius = a

axes = a, d, c

d = c

radius = a

edges = a,d,c

edge = a

M -
3

Ma"

4 3

AI
b''

M-

M

M

M'

4

5

5

2^2

h'^M
4 3

-M—
2 3

M—
3

Md"

M-
4 3

.a''
2

M-
4

a'-

4

5

5

M—
5

-M
4 3

-M-
2 3

M-
2

M-
2

2

5

4 3

-M—
2 3

From the moments of inertia above we can readily derive the

corresponding radii of gyration by dividing by the mass of the

body and taking the square root of the quotient.
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If the body be irregular in form and be not homogeneous,

the principles of the calculus cannot be applied to find its mo-
ment of inertia. In such cases the moment of inertia can be

experimentally found by means of the principles of the com-
pound pendulum, a method which will be explained subse-

quently.

Instantaneous Axis.

1O3. Whatever may be the component angular velocities of

a body when rotating about a centre, the resultant angular ve-

locity and the axis of rotation may be found by the application

of the principle of the parallelopipedon of angular velocities. 4?

When the centre of mass is taken as the centre of rotation, these

are called instantaneous angular velocity and instantaneous axis. At
any instant the path of each molecule of the body is in a plane

perpendicular to the instantaneous axis, and all points on this

axis have no motion with respect to the centre of mass.

The component velocities of any molecule with respect to

the centre of mass are obtained by dividing Eqs. (116) by d?"/;

thus we have - ^

dx' ,dtb , d(b , ,

dt
~~

dt -" dt "^ -^ ''

d/ /0 ,dd ,^="-^-^^="^^-^^-
dz' ,dd Jtb

dt ^ dt dt ^ ""
•^'

(251)

when we substitute the symbols oox^ ooy^ oo^ for the component

, . . dd dtp d(l) ^
angular velocities —, -^, -j- about the co-ordinate axes x\yy

z', respectively. If in these equations we make

dx^__^ _ dz^_
dt ^ dt ~ dt

"^ °'
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we shall obtain the equations of the locus of all those points

which are at rest with respect to the centre of mass; and, since

these points lie on the instantaneous axis, we have

z'ooy — y'coz = o, )

X^GOz — Z^GDje= 0,y (252)

y'GJj; — x'ooy — o,)

for the equations of the instantaneous axis. All molecules of

the body not on this right line will have, at the assumed instant,

a motion with respect to the centre of mass, and will therefore

rotate about it. Since this axis passes through the centre of

mass, the position of the axis in space depends only on the val-

ues of the angular velocities gDjc, cOy, gOz; and as these values

generally remain constant only for the instant df, the instanta-

neous axis describes the surface of a cone whose vertex is the

centre of mass.

104. Let a, /3f y he the angles which the instantaneous axis

makes with the co-ordinate axes, and co the instantaneous angu-

lar velocity; then, by the principle of the parallelopipedon of an-

gular velocities, we have

COS a = — , cosp = -^, COS V =— , . (253)
00 ' 00 ' 00

and

co' = G?^' -f (W^ ' 4- ffi>^
»

(254)

Hence it is necessary to find values for the component angu-

lar velocities before the position of the axis and the resultant

angular velocity of the body can be determined. The two cases

to consider are (i) rotation due to the action of incessant forces^ and

(2) rotation due to impulsions. The latter, being the simpler case,

will be discussed first.
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Rotation of a Rigid Solid due to Impulsive Forces.

105. When the centre of mass is the movable origin, the mo-

tion of translation of this point and the motion of rotation of the

body about it have been shown to be wholly independent of

each other. Hence we may regard the centre of mass as a fixed

point in space, and consider only the rotation of the body about

it. The body is supposed to have been subjected to a system

of impulsions whose effect is completed in a very short time, and

the body is then abandoned to itself, free from the action of any

extraneous force whatever. It is required to find its subsequent

motion of rotation in all of its particulars.

When the moments of the several impulsions may be com-

pounded into a single resultant moment, Rk^ having the centre

of mass as the centre of moments, the moment axis of R is call-

ed the resultant or invariable axis, and the plane of R and k is

called the resultant or invariable plane. They cannot change their

direction in space unless other forces be introduced, which is

not supposed.

106. Assuming Eqs. Rm', which are here applicable, / v / / i>

21Xx' cos fi^y COS a) = :2v{^-^^^^^-^ = Z„

2/,(z' COS a^x' cos y) = 2m?^^^^^-^^f^ = M,, )- {RJ)

2lXy cos y^z' cos /?) = :2m^l^^-^I-^^ = N,,

and substituting the values of dx\ dy\ dz' given in Eqs. (251),

we have

:2m
''''^^'~j'^'''

=^:2m(x''^y')cso,---:2mx'z'oD^--:2myz'GOy',

z'dx* x'dz'
'2m — = 2m(x'*-\- z'^)G0y'-'2my^z'GDs—'2mx'y' GDjc'y K^SS)

2m- — — = 2m{y^-\- 2')<»^ —2mx'y'G0y—2mx'z'G0g,
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If the axes be principal, these equations reduce to

/v^' ^'^«'2V;c'

^/
= ^;??(y' + z'^)G9y = ^GJy = M,\

2/w^i^^^^' = :^/«(/» + 2'»)a?, = ^(i?^ = iV^^.

(256)

Hence

Z, i^, ^. , ,

That is, //z^ angular velocity due to an impulsion about a principal axis

is equal to the component moment of the impulsion divided by the moment

of inertia of the body^ both taken with respect to that axis.

This principle is true also for the instantaneous axis; for if z

be the instantaneous axis, we have

Cb?^ z= Ce?^ = o, and 00^ = Ce?.

And substituting these values in the first of Eqs. (255), we have

:2m'^^-^— = :^m(x'' +/')o^. = Cg? = Z,. . (258)

Since Eqs. (Rm') apply to rotation about a fixed point or a

fixed axis, this principle is likewise applicable to both of these

cases.

107. Let "^mr"^ be the moment of inertia with respect to the

instantaneous axis, and the angle between this axis and the

invariable axis. Then we have

00 = Rk cos
-v--

(259)
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hence

, . '2mv'^ = G0^'2mr^ = — = Ekoo cos 0, . . . (260)

d being that semi-diameter of the central ellipsoid which coin-

cides with the instantaneous axis.

Squaring Eqs. (256) and adding, we have

A^QD:c' + B'ooy' + c'ci?^' = l; -f m; + n; = R^k*-, (261)

-ff-^ being the resultant moment of the system of impulsions with

respect to the centre of mass.

From Eq. (260) we conclude, since 2mv^ is constant,

(i) The instantaneous angular velocity varies directly with

the length of the semi-diameter of the ellipsoid which coincides

with the instantaneous axis, or inversely as the square root of

the moment of inertia with respect to this axis.

(2) The angular velocity about the invariable axis, an cos 0,

is constant; therefore, as increases or cos diminishes, go in-

creases; that is, as the instantaneous axis increases its inclina-

tion to the invariable axis, the instantaneous angular velocity

increases.

Eqs. (260) and (261), together with that of the central ellip-

soid, give the circumstances of the rotary motion of a free rigid

solid under the action of impulsive forces whenever we can find

the value of Rk.

108. The equation of the invariable plane is

Call the point in which the instantaneous axis pierces the

central ellipsoid the instantaneous pole,, and let x\y', z* be its co-

ordinates. Then the equation of the tangent plane to the ellip-
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sold at the instantaneous pole is

Axx' + Byy* + Czz' = i. . . . . . (263)

From Eqs. (252) we liave

QD:c OOy CDz GO / , v^ = y=ir=d=^' • • • • (^^4)

which reduces Eq. (263) to

AoOxX + Booyy + CoOzZ = €, . . . . (265)

and this, by Eqs. (256), becomes

N,x + M,y + Z,z=€ (266)

Dividing both members by i?/^, we have

The sum of the squares of the coefficients of the variables be-

ing unity, these coefficients are the cosines of the angles which

the normal to the plane makes with the co-ordinate axes, and

— is the perpendicular distance from the centre of mass to the

plane. We therefore see that the tangent plane at the instanta-

neous pole is parallel to the invariable plane, and that these two
planes are separated by the constant perpendicular distance, /.

Hence the ellipsoid ro//s, without sliding^ on a tangent plane

parallel to the plane of resultant rotation of the system, and at a

fixed distance/ from the centre of the ellipsoid. As different

points of the ellipsoid come successively into the tangent plane>
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the semi-diameters which join them with the centre become in

turn the instantaneous axis. The locus of the tangent points on the

ellipsoid is called the Polhode^ and in the general case is a curve

of double curvature. The locus of the points of contact on the

tangent plane is necessarily a plane curve, and is called the Her-

polhode. If we imagine all points of the polhode joined with the

centre of the ellipsoid by the various semi-diameters, and all

points of the herpolhode with the same point by the various in-

stantaneous axes, we will have two cones; the former called the

rolling cone, described about a principal axis of the ellipsoid, and

the latter called the directing cone, about the invariable axis; at

any instant they are tangent to each other along the instanta-

neous axis.

109. The Rolling Cone.—Dividing both members of Eq. (261)

by e', we have

^•^- + ^'^ + C'^:-=j-... . . (^68)

But, Eqs. {264),

GoJ „ GoJ ,, 00
*

€'
^=/»; ^=Z'\ . . . (269)

and Eq. (268) becomes

^V" + ^y + CV» = i, .... (270)

which is an equation of condition for points of the polhode.

Since the instantaneous pole is on the ellipsoid, we have also

the condition, Eq. (212),

Ax'' + B/' + a" = I, (27i>
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and dividing by/^ we get

>

-Ti-+-^ + -ir-=T, (272)
/ / / /

Subtracting Eq. (270) from Eq. (272) and omitting accents,

we have

which expresses the relations existing between the co-ordinates

of any point of the polhode. But we see that this equation is

satisfied by the co-ordinates of the origin, and also by any set of

values which bear a constant ratio to the corresponding co-

ordinates of any point of the polhode; that is, the equation Is

satisfied by the co-ordinates of all points of the instantaneous

axis in all of its positions. It is therefore the equation of the

rolling cone.

By replacing A, B, C within the parentheses by -5, j,, -5,

respectively, a^ b^ c being the semi-axes of the ellipsoid, the

equation of the rolling cone becomes

Aj - i\''
+ ^(7 - -^y + <7 - 7>' = °- (^7-^)

The position and character of this cone depend on the values

of the constant/.

110. Discussion of the Rolling Cone.

(i) Let/ = a. Eq. (274) becomes
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which is satisfied only by

jt: = — y = o and z -= o,
o

Hence the axis of x is the rolling cone, the directing cone, the

invariable axis, the instantaneous axis, and the longest principal

axis of the body. The body rotates uniformly about this axis.

(2) Let aypy b. The second and third terms of Eq. (274)

then have the same sign; x is then the axis of the cone, and the

sections of the cone normal to x are ellipses.

(3) Let/ = b. Eq. (274) becomes

and we have

which are the equations of two planes equally inclined to the

principal plane ab of the ellipsoid and intersecting in the mean
principal axis. They cut from the ellipsoid two equal ellipses,

which are called the critical ellipses, or separating polhodes, of the

central ellipsoid. The semi-axes of the critical ellipses are

sT.
a c

a^ -\-c'' TT and ^ (278)

(4) Let by-py c. Then the first and second terms of Eq.

(274) have the same sign; z is then the axis of the cone, and the

sections of the cone normal to z are ellipses.

(5) Let/ = c. Then

o
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and the axis of z is the rolling cone, the directing cone, the in«

variable axis, the instantaneous axis, and the shortest principal

axis of the body. The bod}- rotates uniformly about this axis.

III. The Polhode and Herpolhode.—In the ist and 5th cases

the polhode and herpolhode are points.

In the 2d and 4th cases the polhode is in general a curve of

Fig. 44.

double curvature, and the herpolhode is a wavy curve, as indi-

cated in Fig. 44.

In Fig. 44 let « >/ > b, take the tangent plane to be the

horizontal plane, and assume the vertical plane parallel to the

plane of the longest and shortest principal axes. Then the long-

est, shortest and mean axes are projected equal to themselves

in aa'\ CC and bb\ respectively; //'/" is the vertical projection
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of the polhode, and hh'h"h"\ etc., is the herpolhode; the invari-

able axis is projected in 00" and C?', and the instantaneous axis

in Op and O'h', OE' and (9^ are traces of the cyclic planes, and

OE" and OE"* are traces of the planes of the critical ellipses.

The maxima and minima values of d recur when the vertices

of the polhode come into the tangent plane. These vertices are

the intersections of the polhode by the principal planes of the

ellipsoid. The maxima and minima values of the radius vector of

the herpolhode correspond to those of d, and hence this curve

will lie between the circumferences of two circles whose common
centre is (9', and whose radii are O'h and 0'h\ corresponding to

the greatest and least values of S. If the angle included between

two consecutive maximum radii-vectores of the herpolhode be

commensurable with a right angle, the curve will be retraced

after a certain number of complete turns, and the herpolhode

will be a closed curve. If this angle be incommensurable with

a right angle, the instantaneous pole will never retrace its former

path on the tangent plane.

The general value of the radius vector of the herpolhode is

given by the equation

p" = <s'-^ = *'-/; (279)

from which, together with ds = ds\ in which ds is the length of

its elementary arc, while ds* is that of the corresponding element

of the polhode, the curve may be found.

In the 3d case the herpolhode becomes a spiral whose pole is

O' and whose maximum radius vector is

corresponding to an instantaneous axis coincident with the semi-

transverse axis of the critical ellipse.
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A complete analysis shows that if the rotation be about b it

will remain so, but if the body be started to rotate about any
other diameter of the critical ellipse it will require an infinite

time for the instantaneous axis to reach b.

112. Permanent Axes.—To explain what is understood by per-

matient axes of rotation, let the initial impulsion be such as to

cause the body to rotate about any of the central principal axes.

Then, as we have seen, the polhode and herpolhode are coincident

points, and the instantaneous, principal and invariable axes are

initially coincident, and will continue so during the entire mo-
tion. For this reason the three central principal axes are called

permanent axes of rotation; the discussion shows that they are

the only lines which have this property of permanence.

113. Stability of Rotation.—The critical ellipses divide the sur-

face of the ellipsoid into four areas, two surrounding the ex-

tremities of the shortest axis, and the other two the extremities

of the longest axis. Within these areas the corresponding pol-

hodes appertaining to each axis are found.

If the impulsion be such as to develop initially an instanta-

neous axis very near the shortest axis of the ellipsoid, the corre-

sponding polhode will be a small curve surrounding its extrem-

ity, and the successive positions of the instantaneous axis meeting

the surface in this polhode will never depart very far from the

shortest axis. It will periodically return to its initial position in

the body, after passing through its two maximum and minimum
displacements with respect to the shortest axis. This will like-

wise be true for any initial or subsequent additional impulsion

which causes the polhode to lie within the assumed area. If the

initial impulsion develops an instantaneous axis whose polhode

surrounds the longest axis, the successive instantaneous axes

will be related to that axis in a precisely similar manner. But
since the mean principal axis lies in the planes of the critical

ellipses, any instantaneous axis not in one of these planes, how-
ever near it may be to the mean axis, will belong to a polhode

surrounding the longest or shortest axis, and will depart far

from the mean axis. The longest and shortest axes are there-
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fore called stable axes of rotation, and the mean axis an unstable

axis.

When a:= b the central ellipsoid is an oblate spheroid, and

the critical ellipses unite in the equator. The areas reduce to

two, surrounding the axis of the spheroid, which is the only-

stable axis of rotation, and the polhodes are circles whose pole

is the extremity of the axis.

When b ^= c the central ellipsoid becomes a prolate spheroid,

the critical ellipses unite in its equator, and the axis of the

splieroid is the only axis of stability. An elongated rifled pro-

jectile is such a body, and its axis is the only stable axis of rota-

tion. A very great initial angular velocity is usually given to it

about this axis, so that the influences which modify its angular

velocity, either as to amount or change of axis, while the pro-

jectile is describing its trajectory, will be comparatively so mi-

nute as not to cause the instantaneous axis to depart sensibly

from this axis of stability.

Rotation Due to Incessant Forces.

114. Euler's Equations of Rotation.—Differentiating Eqs. (251),

we have

d^y' fdoOz JgOjc
, , , , . , , , .

-J^=X'--^-Z'-J^^QOJ^Z'ODy-y'QO,)-CO^{yQO^-X'ODyY

d^z' JoSjc ,doOy
, , , , ^ , -

. (281)

and, substituting in Eqs. (Rm), the latter become, after omitting

accents,
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— ^mxy(pOx — ^^^ — '^^^yA~~j7' "f~ ^x^z\

^ idCD:c

_^ zd'^X — xd'^Z ^,21 3\^'«'y
. -sr- / a a\

— '2mxz(csO^— QDx) — ^mxyi—r- + ODyCoA

— :Smyz [-^ — GOxGJj] = M;

— 2myz(Qo/ — G?/) — '2.mxz\--Tj- + c^a.ca?'

j

— 2mxy{--^ — GOxGoA = N,

(282)

Equations Rm and (281) are true whatever be the directions

of the axes x^, y\ 2'. Let the co-ordinate axes be the principal

axes of the body; then Eqs. (282) may be written

B-^^{C-A)oOxOD, = M;

A-^-{B-C)GDyGO, = N.

. (283)

These equations are known as Euler's equations of rotation,

and the values of g?^, ooy and oOz may be found from them when

integration is possible. But since the principal axes conform to
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the motion of the body, the complete solution requires that the

position of these axes at any instant shall be determined with

respect to the axes fixed in direction.

These equations, like Eqs. (Rm), also apply to rotation about

a fixed axis or a fixed point.

115. Auxiliary Angles.—Let X^ V, Z, Fig. 45, be the axes fixed

in direction, and X\ Y% Z' the principal axes of the body.

Conceive a sphere to be described Z_

about O with unit radius. Its

intersections with the co-ordinate

planes are xy, xz^ yz, x'y\ x'z\

y'z\ and the intersection of the

planes XV and X' Y' is ON. As-

sume the notation

X'NY=ZOZ' = 6;

XON =^;
X'ON = 0.

{284)

VJV is called the line of the nodes,

6 the obliquity, and tp thQ precession. ^'°" '*^*

Taking Z' positive when Z'OZ < 90°, we have from the spherical

triangles of the figure, considering ^ as a vertex in each,

cos xOx' = cos cos rj) — sin sin tj) cos ^;

cos xOy' = — sin cos ip — cos sin tp cos d\

cos xOz^ = sin tp sin d;

cos yOx' = cos sin ^ -f- sin cos ip cos 6;

cos yOy^ = — sin sin ip
-f- cos cos tp cos 6;

cos yOz' = — cos tp sin 6;

cos zOx' = sin sin 6;

cos zOy' = cos 0sin 6;

cos zOz' = cos ^.

(28s)

116. The component angular velocities about ON, Zand Z'

are frequently used as auxiliary angular velocities for the deter-
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. , dd dip ^dd)
mination of oox, oo, and g?^; they are respectively —-, -j~ and -~.

The first is called the nutation of obliquity^ and the second the

precessional velocity. The latter is direct when ^ increases with

the time, and retrograde when it decreases.

For the angles which the axes Z, Z' and the line ON make
with the axes X\ Y\ Z' we have

cos ZOX* = sin <p sin 6; "|

cos ZOy = cos sin 6;

cos ZOZ^ = cos 6;

cos Z'OX'= o;

cos Z'OV'= o;

cos Z'OZ = i;

cos NOX' = cos 0;

cos iV^(9y= — sin 0;

cos iV^6>Z' = o;

(286)

and hence, by the principle of the parallelopipedon of angular

velocities, we have

C0x= ~77^^^^ '^
dt

^^" ^ ^^"
'

de . ^ ,

dip . . n
Wy = — —- sin + -^ cos sin C^; . (287)

117. T/te Gyroscope,—The problem of the gyroscope illustrates

this subject. It may be stated thus:

Find the circumstances of motion of a solid of revolution'

about a fixed point on its axis, it having been given an initial
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rotation about its axis and then left to the action of its own
weight.

Let (9, Fig. 46, be the fixed point,

Ox^ Oy, Oz the fixed axes, and Ox', Oy\

Oz' the principal axes at O, Oz being

taken vertical and positive upward. Oz'

is the axis of revolution of the body.

Let h be the distance from O to the

centre of gravity, and assume A = B
and B <C.

The components of the weight in the

directions of Ox', Oy' and Oz' are
Fig. 46.

X' = mg cos (180° — zOx') =z — mg cos zOx'-,

y = mg cos (180° — zOy') = — mg cos zOy'\

Z' = mg cos (180° — zOz') =z — mg cos zOz'\

(288)

and the component moments of the weight with respect to the

same axes are, Eqs. (286),

N =Z'y' — Y'z' = mgh cos zOy' = vigh sin ^ cos 0; )

M=X'z'— Z'x' = — mgh cos zOx'=— mgh sin sin 0; > (289)
Z = Y'x'- X'y'=o. )

Substituting these values in Euler's Eqs. (283), we have

dt

dOOy

~dt

— {A — C)GOyGDz = iV= mgh sin 6 cos 0;

-\- {A — C)gDxOOz =M= — mgh sin 6 sin 0; ^(290)

Integrating the last equation, we have

Cl»2 = a constant = n (291)
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Multiplying the first of Eqs. (290) by (y^and the second by
GOy^ we have by addition, Eqs. (287),

A\QOx-Tr + 00y—zj\ = mgh sm uyoo^ cos -- CsJ^sin 0)

= mgh sin c'—

.

(292)

Integrating this equation, we have

iA{GoJ + gd/) = ^«^y^ (cos ^0 — cos 6), , . (293)

in which 6^ is the initial angle zOz\

Adding the initial kinetic energy of rotation iCn^, we have

iAiGoJ" + gd/) + iCfi" = mgh (cos B^ - cos 6) + iC•«^ (294)

Since mgh (cos ^^ — cos 6) is the work of the weight while G
falls over the distance h (cos Q^ — cos ^), we see that Eq. (294)

expresses the theorem of kinetic energy of rotation.

118. From Eqs. (287) we readily get

<»/ + <»/ =5 + sin»^fl;. . . . (295)

which substituted in Eq. (294) gives

A-j-^ + A sin'' Q-j-i, — 2mgh{cos 6^ — cos 6). . (296)
at at

Multiplying the first and second of Eqs. (290) by sin and

cos respectively, we have, by addition,
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^[sin 0—^+cos0-^j+«(C— -(4) [cousin 0—0?;^ cos 0] =0,(297)

and, since Eqs. (287) give

ooy sin — fl?^ cos = — ^, . . . , (298)

Eq. (297) reduces to

^^sin 0-^ + cos 0-^j + nA-j^ - «C-^ = o. (299)

We have also, from Eqs. (297),

cOx sin + (Wy cos = sin ^-^. . , . (300)

Differentiating this last, dividing by dt and reducing by the

relations of Eqs. (287), we have

sin 0^^ +COS0-^ = cos^^ + sin^
{gOx cos — G7y sin 0)

^0

Substituting this value in Eq. (299), we have

./ jedil,\ . uPtp\ ^dd , .
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which, after multiplying by sin d and integrating, gives

A sin'
QJ- + CV/ cos ^ = a constant = ^'; . . (303)

or between limits.

A sin' e^^ = C«(cos B^ - cos 6), (304)

From the last of Eqs. (287) we also have, since aOg = n.

dcf) dtp

(305)

Eqs. (296), (304) and (305), viz.,

A-—^ + A sin' 6-^^ = 2mgh (cos Q^ — cos 6),

A sin' 0-^ = Cn (cos d^ — cos ^),

d(f) dip ^

(306)

are the differential equations of motion of the gyroscope. From
them the values of 6, tp and <p, which give the position of the

body at any instant, may be found in terms of known quantities.

119. Square the second of Eqs. (306) and multiply the first

by A sin' 6 and eliminate -—- from the resulting equations by

subtraction; then solve with respect to —
-, and we have, for the
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nutational velocity,

de_
.
(cos ^,-cos ey^ \2mghA sin' e-C^n^ (cos ^,-cos 6)1^

Any value of 6 less than B^ makes — imaginary, and there-

fore the centre of gravity can never get above its initial position.

And since — is imaginary when 6' = 180°, the centre of gravity

can never reach the vertical through the fixed point.

Making — = o in Eq. (307), we find that the resulting equa-

tion may be satisfied by 6^ = ^„, and also by the two roots of the

equation

2mghA sin' d — C"«'(cos 6^ — cos 6) = o. . . (308)

One of these roots gives a maximum value of 6, which we will

call ^,. The other root gives cos > i, and hence corresponds

to no angle. Thus we see that the body falls from its initial

position until 6 = 6^, then rises until 6 = 6^, and continues to

oscillate between these two values. The integral of dt (Eq. 307)

between the limits 0^ and 6^ evidently gives half the time of a

complete nutational oscillation.

The precessional velocity given by the second of Eqs. (306) is

d(p Cn{cos 6^ — cos 6) , .

-di
=

ASTxTe
: "°9)

and it is zero when 6 = 6^, and a maximum when 6 = 6^. It is

direct or retrograde according as n is positive or negative.

Combining the motions in nutation and precession, we find

that the horizontal projection of the path of the centre of gravity
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lies between two concentric circumferences whose radii are

h sin d^ and h sin ^„ and is tangent to the outer and normal to

the inner circumference.

From Eq. (308) we have

• a r- i/cos^. — cos^ . .

s.n e = C« f—^-p^^— (3,0)

from which we see that B^ — 6^ may, by increasing the value of

«, be made less than any assignable quantity. In the common
gyroscope we can give n such a value that the eye can detect

neither the vertical motion nor the variation in the precessional

velocity.

This discussion gives only the general character of the mo-
tion. The complete solution of the problem requires the inteorra-

tion of Eqs. {306), and this involves methods not given in the

course of mathematics at the Military Academy.

Impact.

120. When two bodies collide there is a transfer of energy

from one to the other, by which changes in the velocities of both

bodies, and in their form and volume, are effected. The impact,

though ordinarily said to be instantaneous, requires a finite time

for its completion. When after collision we examine the sur-

faces of two ivory balls which have been previously oiled, we

notice that their areas of contact during collision must have

been very much greater than when they simply rest against each

other. Hence the distance between their centres of mass during

impact must be less than the sum of the radii of the spheres, and

the intensity of the mutual pressure of the colliding bodies evi-

dently varies by continuity from zero to a maximum and then to

zero again. The instant of nearest approach of their centres

separates the period of compression from that of restitution^ and at

that instant their centres have the same velocity.
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Actual solids possess a certain degree of elasticity of form

and volume, by which they regain approximately their original

form and volume when the impact has ended. If C be the in-

tensity of the impulsion producing compression, R that which

restores the form and volume, and e their ratio, we have

R^eC', (311)

e is called the coefficient of restitution^ and in actual bodies is less

than unity and greater than zero.

121. Direct and Central Impact.—Let a spherical mass w, mov-
ing with a velocity z;, collide with a similar mass m' , whose ve-

locity is u in the same direction, and let w be their common
velocity at the instant of nearest approach of their centres; then,

taking velocities in opposite directions to have opposite signs,

we have

C= tn{v — w) = m'{w — «), .... (312)

whence

and

C=—i

—

}{v—u) (313)

i? = a=-^^(z;-«y (314)

Let Fand C/'be the final velocities of m and m\ and we have

je + c= c(i + .) = ^^^(t, - «)(i + .)

= m{v-V)=m\U-u) (315)

I^nce
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V=V m'

m-\- m
-,(v- «)(i +^);

U:=zu-\- -,(v - u)(T^e\
(316)

7?i -j- nv

The limits of these values, found by making ^ = i and e — o,

are

and

2m'V = v — -,{^ - ^)f

U^=u-{-
2m

m-\-mli^
- «)»

y = y [p ^U)= ;

J-,

" m-\-m
-(z; - «) = m -\- m' ^

(317)

(318)

In actual cases ^ is a constant to be determined by experi-

ment. Whatever its value may be, it is readily seen from Eqs.

(316) that the sum of the momenta of the two bodies after colli-

sion is equal to that before collision; therefore no momentum is

destroyed by the impact.

The sum of the kinetic energies of the masses before and

after impact are respectively

i(wz/'4-wV) (319)

and

mm
i(mi^ + m'u')-i-^^-^iv-uY(i-e'). . . (320)

Whence we see that a loss of kinetic energy always accompanies

the impact of actual masses.
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122. Oblique Impact.—If the paths of the colliding bodies be

oblique to each other, their velocities may be resolved into com-

ponents in the directions of the common tangent and normal at

the point of impact. C and R will depend only on the normal

components, the tangential components having no effect on the

impact. The final velocity of each body will therefore be given

by the resultant of the changed normal component and the un-

changed tangential component.

123. If m' be very great with respect to m and at rest we
have the case of impact against a fixed obstacle. -;

Then if be the angle of incidence, Fig. 47, or that |

—
which the direction of the path of m makes with

the normal to the deviating surface at the point oifn'l

impact, we have for the component impulsions of

compression

mv sin (p and mv cos 0, Fig. 47.

and for those of restitution

mv sin and — mev cos 0;

the resultant of the latter being

mv 4^sin'0H-^' cos'0.

If the angle of reflection is 0' we have

sin tan
tan 0' =

e cos
(3")

which varies between — tan 0for ^ = i, and 00 for ^ = o. Hence
in all actual cases of impact the path of the reflected body will

make an angle with the normal greater than that of incidence

and less than 90°, depending on the value of e for the bodies

considered.
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Axis of Spontaneous Rotation.

124. A spontaneous axis is a right line fixed in space^ about

which a free body rotates during impact while the centre of

mass of the body is in motion. Its position and the necessary

conditions for its development are derived from Eqs. (117).

Dividing these by dt, and replacing the component angular

velocities about the centre of mass by their symbols, we have

dx dx.
,

- -

dz dz .
,

(322)

in which the first members are the component velocities of any

molecule of the body with reference to a set of axes fixed in

space, and the first terms of the second member are the compo-

nent velocities of the centre of mass with respect to the fixed

origin, when the centre of mass is taken as the movable origin.

From Eqs. (Tm') we have

'dt~^''~ M'

dt~ ''~ M'

^-v - ^.
dt ~ '~ M'

' (323)

in which X^, Y^, Z^ are the component intensities of the result-

ant impulsion in the direction of the co-ordinate axes.
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Substituting these values in Eqs. (322), we have

dt M ^ y oD^

dt M + x'ooz — z'0Ojc\

dz Z. . . ,

(324)

For all points at rest with respect to the fixed origin we have

the conditions

dx _ dy _dz _
~dt~~dt~~dt~^' (325)

and Eqs. (324) become

M*--\- z'ooy —y'GO^ = o;

(326)

which will be the equations of a right line fixed in space when

X,(w^ + K,(»y + Z.tt?, = o (327)

Dividing Eq. (327) by R,qo, we have

R. oo~^ R. 00^ R. GO *
(328)

which expresses the condition that the action-line of the result-

ant impulsion is perpendicular to the instantaneous axis; hence
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we conclude that a spontaneous axis will be developed when a body is

so struck as to make the instantaneous axis perpendicular to the result-

ant impulsion; otherwise Eqs. (326) are the equations of a single

point whicli alone is at rest for the instant. We see also by

comparing Eqs. (326) with Eqs. (252) that the spontaneous axis is

always parallel to the instantaneous axis.

125. It is readily seen from Eq. (327) that the required con-

dition can be satisfied only when at least one factor of each term

is zero; that is, either when the line of impact lies in a central prin-

dpalplane or when it is parallel to a centralprincipal axis. The dis-

cussion is the same for all cases.

126. Let the line of resultant impact, Fig. 48, be parallel to

the principal axis y' and lie in the prin-

cipal plane x'y', and let R^ = J/Fbe the

intensity of the resultant impulsion; then

we have

X, = o; Y^ = MV- Z, = o;

MVh )- (329)
GOr = 0: G?v = O; ODz =

Fig. 48.
h being the lever arm of the impulsion

with respect to the axis z'\ Eq. (327) is satisfied, and the equa-

tions of the spontaneous axis developed by the impact are

, o , C Mk; k; .
,

which are those of a right line parallel to the principal axis z\

intersecting the axis x' at a distance from the centre of mass

k '

equal to j-.

Let / be the perpendicular distance between the line of im-

pact and the spontaneous axis; then we have

/ = '5 + ^; (331)
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whence

{i-K)h = k: (332)

Since /&/, the square of the principal radius of gyration of

the body with respect to the axis 2', is constant, we see that the

two distances, viz., // from the centre of mass to the line of im-

pact, and I — h from the centre of mass to the spontaneous axis,,

are reciprocally proportional; hence, as the line of impact re-

cedes from the centre of mass, the spontaneous axis approaches

that point, and conversely. When the line of impact passes

through the centre of mass the spontaneous axis is at an infinite

distance, as it should be, since in this case the body will have

motion of translation only.

127. When a spontaneous axis is developed the action-line of

the corresponding impulsion is called an axis of percussion^ and

each of its points a centre ofpercussion; the latter term, however,,

being generally applied to the point in which the axis of per-

cussion intersects the line h. The corresponding point of the

spontaneous axis is called a centre of spontaneous rotation. The
axis of percussion and the spontaneous axis are conjugate lines,

each of which implies the other; the positions of both are con-

nected and determined by Eq. (332). For example, the spon-

taneous axis of a straight rod struck at its extremity in a direc-

tion perpendicular to its length is, Eq. (222), given by

(/-/i)yi= (/-«)« = !';
(333).

whence

/ — flj = J^, or / = |. 2«, (334).

or is at a distance two thirds of the length of the rod from the

line of impact. All elements of the rod beyond the spontaneous
axis will have a motion in a direction opposite to that of the

impact, and those between the axis and line of impact a motion
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in the same direction as the impact. This explains the cause of

the physical shock experienced when, in striking a ball with a

bat or in chopping with an axe, the part held by the hand does

not conform to the position of the spontaneous axis correspond-

ing to the line of impact.

128. In Eq. (332) substitute I — h ior h, and we have

[i-{i-h)-\(i-h) = h{i-k) = k;. . . . (335)

Hence, for parallel impacts, the centre of percussion and the

centre of spontaneous rotation are reciprocal and convertible;

that is, if the centre of spontaneous rotation become a new cen-

tre of percussion, the old centre of percussion will become the

new centre of spontaneous rotation.

Constrained Motion.

129. When a rigid surface or curve deflects a body from the

free path which any given system of forces would cause it to

take, the motion is said to be constrained. Let the motion of its

centre of mass determine the translation of the body, and, by the

principles in Art. 82, we may omit the present consideration of

its motion of rotation about that point. Eq. (119) then becomes

(^-^S"'-^ +
(
^-^S)'^^ + (^-^S)'^^

= °- (336)

130. Equations of Constraint.—Let

L^f(x,y,z) = o (337)

be the equation of the surface upon which the centre of mass is

constrained to move. Differentiating this equation, we have

g^^ + ^^_, + ^^, = o (338)
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Since the path of- the centre of mass lies in the given surface,

Eqs. {zz^) ^"d {ZZ^) maybe combined by considering only those

values of dXy dy and dz which are common to the path and sur-

face. To make the terms of these equations quantities of the

same kind, multiply the differential equation of the surface by

an intensity /. Add the resulting equation to Eq. (336), and we
have

('-<i+'S}-+(>---S:+'S)*

Now, if

.dL ^dL . .dL . ^

^^' ^^ ""^ ^^' (340)

be the rectangular components of a force which, together with

the given extraneous forces, will cause the body to remain con-

tinually on the geometrical surface whose equation is that of the

rigid surface (337), the latter may be supposed removed and the

body will be a free body subjected to the action of the com-

ponent extraneous forces X -{- 1-^, etc.; hence, by Eqs. (Tn,), we

will have

dx

dL .^d^x

dz dt

• • • (341)

Eliminating / from these equations, we have
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(.- M
dy

•\dL _
dt^'Jdz dt'ldx

~
>. (342)

which are called the differential Equations of Constraint^ and from

which, with the equation of the surface, the path of the centre

of mass and its position at any time may be determined.

131. The Normal Reaction.—Let N represent the intensity of

the resultant whose component forces are

-dL dL dJL

dx^ dy dz^

and Qjc-> ^y^ ^z the angles which N makes with the co-ordinate

axes; then

„ I dL
cos d:c = -T-T-J- =N dx

dL
dx

cos dy

^ dx"
'^ df'^ dz"

dL
L dL dy

"T ^,.3 ~r j„i

cos dz = T-T-r

N dy /Jn
^ dx" ' df ' dz

dL
dz

N dz JdV_ d£ djy
^ dx^

"^
df

"^
dz" J

• (344)'
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Hence N acts always in. the direction of the normal to the devi-

ating surface.

Substituting in Eqs. (341) for /^r-, etc., their equalsN cos 0^^

etc., we have, after transposing,

Y- M~^-^= -iV^cos ey\ (345)

Squaring and adding, and extracting the square root of the

resulting equation, we have

Representing the first member by P and dividing each of

Eqs. (345) by (346), we have

X- M

y-M^^

= — cos dx\

— cos 6

cos Sz,

(347)

The first members are the cosines of the angles which the

resultant P makes with the co-ordinate axes, and we see there-

10
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fore that P acts in a direction opposite to the normal of the

deviating surface. We also see that P is the resultant of that

part of the extraneous forces which generates no momentum,
and as its action-line makes an angle of 180° with the normal to

the constraining surface, it is the measure of the direct pressure

on the surface; the equal intensity N is the equivalent normal
reaction of the surface. We therefore see that the force N,
which we have apparently introduced, already existed in the re-

action of the rigid surface. Hence we conclude that if a body
be acted oil by any system of extraneous forces and constrained

to move upon a rigid surface, the circumstances of motion of

translation will be precisely the same as if it were a free body
acted upon by a system consisting of the given forces and one

whose intensity and direction are those of the normal reaction

of the surface. Equations (345) may therefore be employed in

problems of constraint, just as Eqs. (Tj^) are employed in prob-

lems of free motion.

132. Transposing the second terms of the first members of

Eqs. (345) to the second members, and multiplying the resulting

equations by dx, dy^ dz, respectively, we have, by addition,

Xdx \-Ydy-\-Zdz-^NY-^- cos Qx-\-~ cos By + ~ cos e^
j-
ds

,^dxd^x -^ dydy-{-dzd^z . „.=^ ^^ •
• • • (348)

which, since

dx Q ^
dy

/J ,
^^

-r cos Bx-\--j- cos By-\--r
ds ^ ds ^ ^ ds
^ cos 6^ -\- -^- cos By -\- —cos 6^ = o . . . (349)

is the cosine of the angle which the normal reaction makes with

the tangent to the surface, reduces by integration to

J{Xdx + Ydy + Zdz) = ^^ + C, . . . (350)
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the equation of energy (126) of a free body under the action of

the same forces. Hence the conclusions derived from the

theorem of energy in free motion of translation are true in con-

strained motion also (Arts. 83 and 84); the constraint being

supposed to be without friction.

133. To find the value of N^ eliminate dt from Eqs. (345) by
the relation

(351)

and we have

as

NCOS By =MV'^- V;

JVcos 0, = MV'^ - Z.
as

(352)

Squaring and adding, we have

yV^'(cos' e.+ cos' e,+ cos' 0.)=M' F'
\ (5) + {ff)'+ iff)' \

^x' -i- F'4-z^ (353)

Let p be the radius of curvature of the surface at any point,

and the angle which the resultant -ff makes with it; then sub-

stituting in Eq. (353) the following values:

cos' 6jc -f cos" 6y + cos' 6j = 1; . . . (354)

^»+ K» + Z' = i?»; (355)

i?sin0 = ^^;f = ^F'g; . (356)
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4-
ds d'x dx d's

ds ~
ds' ds' ds"

4ds
ds

_dy
~

ds'

dy d's^

ds' ds'''

4ds
ds

d'z
~

ds'

dz d's

ds' ds''

the latter being obtained from Eq. (7),—we have

, dx dy

dz

,
I ds dz d's\

"^
V ^^

'^
ds' ds'/

= H* sin' +
M'V

dx dy^ ,d_z_ ^

,^,,,^X "^Ts
,
Y "^ ds Z "^ ds\R

ds' {Rds Rds Rds S

+ R' cos" 0.

(357)

(358)

-VR'

(359)

But since
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,

dx dy dz

X ds ^ Y ds ^ Z ds , i r \

X dx ^ Y dy
,
Z dz . , y^v

we have finally

^« ^ .^^' _ £^Z!^.£2i^+ j?.cos'0+ ^^'sin',^- 2^'sin'0

="—. -^ r+ie^'cos'^; (362)

whence

and

N •=. -^ cos (363)

iV=^cos0 (364)

I Therefore the normal reaction of the surface at any point is

equal to the difference between the normal component of the

resultant of the extraneous forces and .

9
134. When the body is in motion on the concave side of the

surface the value of N is given by Eq. (363), and when on the

convex side by Eq. (364). In the first case we see then that

when the action-line of R lies outside of the tangent to the

curved path of the body the intensity of the normal reaction is

equal to the sum of and R cos 0, and when it lies within

the tangent, to the excess of over R cos 0. When, in the
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latter case, R cos becomes greater than , the body will

leave £he° concave surface and describe a path of greater curva-

ture, since iVcan never become negative.

In the second case Eq. (364) shows that the body can only

remain on the given surface as long as R cos is positive and

numerically greater than ——-\ when this condition is not ful-

Fig. 49.

filled the body will leave the surface and describe a path of ^ess

curvature. Fig. 49 illustrates the two cases.

135. Centrifugal Force.—The force whose intensity is meas-

MV
ured by was formerly supposed to be exerted by the body

itself and to act from the centre of curvature outward. It was there-

fore called centrifugal force. This name is still in general use,

but it is evidently a misnomer arising from erroneous conclu-

sions from well-known phenomena. We have seen, Art. 16, that

when the path is a curve the total acceleration is the resultant

of two rectangular components, one, -3-^, in the direction of the

v^
tangent, and theother, — , along the radius of curvature towards

P
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the centre. The intensities of the corresponding forces are there-

fore J/ -7-5 andM—

.

In the discussion above, we find the latter force to be that

part of the normal reaction of rigid curves or surfaces which is

called into play by the equal direct pressure due to the change

in the direction of motion of the bodv. Hence is the in-

tensity of that force which actually deflects the body from its

rectilinear path. It varies directly as the square of the velocity

of the body, and inversely as the radius of curvature of its path;

it is zero when p is 00 , that is, when the path is a right line, and

infinite when p is zero, that is, no finite force can abruptly change

tlie direction of motion of a body.

Let a body B, Fig. 50, be whirled about a centre by means

of a cord dB held by the hand at d, tlie latter describing the

small circumference. The pull on the cord,

represented by Ba^ has two components, Bb
and Bc\ the former accelerates the motion of

B, while the latter deflects it from the rectilin-

ear path which it would follow due to its

acquired velocity and the component Bb. If

the motion be accelerated until , equal to
P

Ba cos 0, is greater than can be applied through

the medium of the cord, the latter will break

and the body will continue to move in the

direction of its motion at the instant of rup-

ture.

Due to the great angular velocities with

which fly-wheels, grindstones, etc., are often

made to rotate, thev sometimes break in pieces;f '

YiG, 50.

this occurs when the cohesion at the sections

of rupture is less than the pull required to cause the parts of the,

body to describe their circular paths with the required velocity.

"When the areas of section of such bodies and the values of thg.
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cohesion per unit of area are known, the safe values of V can

readily be determined from the expression .

136. Referring to Art. 44, we can now see why the rotation

of the earth on its axis diminishes the weight of bodies, and
makes the apparent less than the actual weight.

Since the mass m^ Fig. 51, is constrained to re-

main on the convex side of its parallel of latitude,

the normal reaction is

JV = mg cos A

Fig SI. = cos :i(^ — Qd'R)m, . . (365)

I

in which oo is the angular velocity of the earth, X the latitude of

m, and p and R the radii of the parallel and of the equator

respectively. At the equator the acceleration due to gravity is

diminished by the value of co^R^ or

4;r'3962.72 X 5280 ^ .
, ,,^

which, as was previously stated, is about ^^ that due to gravity;

hence if the angular velocity of the earth were seventeen times

as great as it now is, bodies at the equator would have no appar-

ent weight.

137. Problems in Constrained Motion.—To solve these problems

we may either make use of the equations of constraint (342),

together with the equation of the surface, or by means of Eqs.

(345) treat them as oases of free motion. By the first method
we find the partial differential coefficients from the equation of

the surface and substitute them, with the component intensities

of the extraneous forces, in the equations of constraint. We
will have then two equations involving three second differential

coefficients, and a third equation can be obtained by differentiat-

ing the equation of the surface; hence we can thus find a single
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equation by their combination, involving only a single second

differential coefficient, its corresponding variable and constants.

If integration be possible, the solution of the problem can then

be accomplished. By the second method the substitution of the

normal reaction and the component intensities of the extraneous

forces in Eqs. (345) gives three equations, each involving the cor-

responding component acceleration; the steps are then those

employed in cases of free motion.

138. On an Inclined Plane.—Let the forces be friction and the

weight of the body. Assume that the friction is constant and

directly opposed to the motion, and let F be its intensity. Let

Mg be the weight of the body, and take the axis of y in the in-

clined plane, the latter making the angle a with the axis of x.

Let the body start from rest at the origin; the motion will then

be in the plane xz, and we have for the equation of the path

L-=. z -\- X tan a = o. (367)

Assume the second of Eqs. (342), and substitute in it the

following values:

dL
'dz

~ i;
^

dL
d'x
~ tan a\

d'x = d'z

tan Of'

X=: — i^cos a\

z = ^Mg-\-F sin a, -

(368)

This gives us ^ Fig. 52.

d^z _ i^ sin a-\- F sin a tan' a — Mg tan' a
dt*

~
M(\-^ tan' a)

^ ( 77 ' n^ tan' a\ .IF . \= M[^^^^oc^Mg^-^ = sina[-^gsma).
(369)
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Multiplying by 2dz and integrating, we get

dt
{F,y = 2 sin «r^— - g sin ajz, . . . (370)

or, solving with respect to <//,

4/ •
-^ \ ^^

y 2 sin ol\— — g sin of
J

and by integration,

2 = i sin a\j^ - g sin aJ/» (372)

If i^ = o, we have

-s = - igf" sin" a (373)

and

Vz = sin « 4/2^ (374)

We also readily get

^-^ ^ ti^ ^ ^^^ "^ ^^' ^^''^^

V= V{V,Y-^ (V^Y = V^z=gfsm a. . . (376)

Hence the velocity at any point is that due to the height, and

varies directly as the product of the time and the sine of the in-

clination.

Comparing this value of Fwith that given in the discussion

of motion due to gravity alone (Art. 92), we see that F is the

same function of z, but a different function of /.
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These results can be more readily obtained by considering-

the motion to be free, the body being acted upon by the result-

ant of all the forces, including the normal reaction. This re-

sultant is Mg sin a — F, and it acts in the direction of the path.

139. Let the circumference OAB (Fig. 52) be in the plane

xz, and tangent to the axis of x at O. Then we have for the

point A, Eq. (372),

— 2; = ^/* sin* a = OA sin a = OB sin" a . , (377)

or

(378)

which is the time of fall from rest down the diameter of the

circle.

Hence the time required for the body to pass over any chord

of a given circle, the plane of the circle being vertical and the

body starting from the upper extremity of the vertical diameter,

is independent of its length; that is, the circumference is the

locus of simultaneous arrival down all right lines in a vertical

plane, these lines having a common point at the origin of motion.

The circle is called the synchronous curve of such lines.

From this property of the circle the right line of quickest

descent from a given point to a given right line in a vertical

plane containing the point, or from the

given right line to the given point, can

be found. In the first case let P, Fig. 53,

be the point and AB the line; draw the

horizontal PA meeting the line at A^

and bisect the angle PAB\ the point of

meeting C of the bisector and the ver-

tical line through P is the centre of the

circle whose cord PO is the required line. In the second case

let B'A' be the right line and P' the point; draw the horizontal

Fig.
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F'A' meeting B'A[ at A'\ bisect the angle P'A'B', and the chord

O'F' of the circle PO'F' is the required line.

140. On the Concave Side of the Ai'c of a Cycloid whose Plane is

Vertical.—Take the origin as in Fig. 54.

The equation of the cycloid is

X z i

X — a versin - ^—|- (2az — z") • (379)a

Fig. 54.

Considering the weight as the only

force, we have X = o, Z = — Mg, and Eqs. (345) become

d*x JV dz _
IF ^ His ~^'

d'z N_dx
If Isdt""^^ ^^ ^- ~~ °'

(380)

smce

cos Qx^ r and cos d^ •=. -—

.

ds ds

Multiplying by 2dx and 2dz^ respectively, and adding the prod-

ucts, we obtain

2dxd^x + 2dzd'^z

df'
+ 2gdz = o.

Integrating, we have

dx' + dz'' ds' ,_.
, ^

(381)

Supposing Fto be zero when z -^^ h, this reduces to
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g = r' = 2g{h -z)- (38a)

or, the velocity is that due to the vertical distance through which

the centre of mass has fallen.

The normal reaction is, Eq. (363),

Nz^-j-~RQO-.ct>^—--\-Mg--. . . (383)

By differentiating the equation of the curve, we get

dx dz ds
(384)

and since the radius of curvature is

p = \Za(2a - ^)]i, (385)

these values give, for W,

^ - FF-7 m + ^S- i u = ^SV-T Tu . (386)

If the body start from rest at the highest point of the curve,

then will V^ — 2g/i = 4^^ when it reaches the lowest point ; then

z = o, and we have

JV=Mg + Mg=2Mg, (387)

or double the weight ; therefore the direct pressure due to the

velocity generated by the weight in falling from the highest to the

lowest point is equal to the weight of the body.
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Let the body start from any point, as P\ then OP = j, and

we have, Eqs. (382) and (384),

\ pp ds _ fay M dz

{2g)^Jk W^'^)^~^§l Jo (hz - zy

=(-;ri-'"-Ti:-(ir= • • • • • (388)

that is, the time of descent from any point on the curve to the

lowest point is independent of its height h and will be the same
no matter from what point the body starts. The velocity with

which it passes the lowest point will depend on the vertical

height of fall, and is equal to ^2gh : due to this velocity the

body will ascend to an equal height on the other branch of the

•cycloid in a time equal to that of the descent, or Tt\ —
\ ; after

which it will return to the point of starting, and so on continu-

ously. These recurring movements are called oscillations, and

since they are performed in equal times, 2;rl— 1 , the cycloid is

•called a tautochronous curve.

The time down any inclined right line / is, Eq (377),

^ = (7^^)*' (389)

therefore down any radius of curvature of the cycloid it is

(390)

dx
whence, substituting the value of p, Eq. (385), and of — , Eq.
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{384), and reducing, we get

=(?)' <-)
g

which is the time of fall down the maximum radius of curvature,

or twice the diameter of the generating circle. Therefore the

times of descent down all radii of curvature of the cycloid are

•equal.

141. On the Concave Side of a Circular Arc in a Vertical Plane,

—Let a be the radius, and take the origin at the highest point

with the axis of 2: vertical and positive downward. The equation

of the circle is

X* = 2az—z*, (392)

from which we have

dx dz ds

a ^ z X (393)

Let the weight be the only force acting, and denote the ve-

locity at the origin by V^. Then we have

MV'-MV:=M{2gz\ (394)

or

v' = 2gz+v: (395)

For the normal reaction we have

^= _.. _ jr^_ = ^J.^. _ Mg^-. . (396)

The limit of N being zero, we have for the corresponding

value of the velocity at the origin

V, = V^. (397)
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That is, the body will not follow the curve continuously in one

direction unless the velocity at the highest point be at least

equal to ^ag. The corresponding value of the velocity at the

lowest point is ^^ag.

Constrained Motion about a Fixed Axis.

The Compound Pendulum.—When a rigid solid oscillates

freely about a horizontal axis under the action of

its weight, it is called a compound pendulum.

Let G, Fig. 55, be the centre of gravity, h its dis-

tance from the axis, and ^ the angle which h

makes with the vertical plane through the axis.

Then we have, Eq. (257),

Fig. 55.

M. Mgh sin
(398)

or, taking ^ so small that it may be substituted for its sine,

d^^ _ gh^
(399)

Multiplying by '2dif) and integrating, supposing the body to

start from rest when ip — a, ^q have

#'^ S^^ (a'~0')- (4oo>

and

dt = i/^
-\- h^ -dtp

-1 ^/a" - f
(401)
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Hence

d^

^ gh J |/a» _ ^» ^ gh J / _^»

gh a ^ '

The time of one oscillation is therefore

^, = ^y ^^ > (403)

which is the integral between the limits ip =. a and ^ = — or.

The oscillations of a compound pendulum may therefore be

considered isochronal when the arcs of vibration are very small.

143. The Equivalent Simple Pendulum.—If in Eq. (403) we
make k^ = o, we shall have the time of oscillation of a material

point about a horizontal axis with which it is connected by a

line without weight. Such a pendulum is called a simple pendu-

lum. Denoting its length by /, we have for its time of oscillation

/' = 'rV^ (404)
ii

For a simple and a compound pendulum which are isochronal

with each other we have

or

/=^^; (405)

and / is called the equivalent simple pendulum of the given com-

pound pendulum.
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A point of the compound pendulum on tlie line h at the dis-

tance / from the axis is called the centre of oscillation, and a line

through this centre and parallel to the axis of suspension is

called the axis of oscillation.

144. From Eq. (405) we have

{l-h)/i = k; (406)

Hence, as regards their distances from the centre of gravity,

the axes of suspension and oscillation are connected by the

same law as the line of impact and spontaneous axis. Therefore
the axes of suspension and oscillation are reciprocal and convertible, and
the times of oscillation about them are the same.

145. Adding 2k^ to both members of Eq. (406), we have,

after reduction,

/=.., + (A^* (407)

The minimum value of / is 2/^^, and this occurs when h — k^

r=i I — h. Therefore, since / is a minimum when / is a mini-

mum, the time of oscillation is a minimum wheri the axis of suspension

passes through the centre of gyration 7vith respect to an axis through the

centre of gravity andparallel to the axis of suspension. It is evidently

a minimum minimum for that centre of gyration which corre-

sponds to the least central principal moment of inertia of the body.

146. The Simple Seconds Pendulum.—The simple seco?ids pendu-

lujn is a simple pendulum whose time of oscillation is one mean
cr

solar second. Its length, L — — 2, obtained by making / = i in

Eq. (404), varies directly with the acceleration due to gravity.

Let / be the equivalent simple pendulum of a given com-
pound pendulum, and we have
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and substituting in the value of Z, we get

^ -
;r'
- /- {409)

Hence to find L it is necessary simply to find the time of

oscillation of a compound pendulum and the length of its equiva-

lent simple pendulum. To do this Kater

used the pendulum represented in Fig 56.

Its centre of gravity is removed from its

middle point by the heavy bob BB'\ S
and O are two knife-edged prismatic axes

of hardened steel, permanently attached

to the rod and having their edges turned

towards each other ; w is a small ring-

shaped mass which can be moved up and

down so as to change slightly the position

of G and the value of ^^, and is arranged

with clamps and a screw to fix it in any de-

sired position. For any assumed position

of ni let GC be the gyratory circumference

which, from the construction of the pen-

dulum, always lies between S and G^ and
beyond O from G, as in the figure.

It is evident that with this arrange-

ment every position of m gives a different

compound pendulum for each axis, and

that there is but one among these whose

equivalent simple pendulum is the length

h-\-h' between the fixed axes, and for which

the times of oscillation about 6" and O would be the same. It

was this particular compound pendulum that Kater desired to

find experimentally by moving the sliding mass m until it was
placed in the required position. This he was enabled to do by
the application of the principles stated in Arts. 144 and 145^

By the first principle, the times of oscillation about S and O

Fig. 56.
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are equal only when these lines accurately coincide with the

axes of suspension and oscillation. On trial the times about

S and O would in general be found to differ slightly, and by the

second principle a displacement of m towards either axis would

cause both times to lengthen or both to shorten, but unequally.

And since the gyratory circumference is nearer O than S, a

greater change for the same displacement takes place with re-

spect to the latter than to the former, from the principle of max-

ima and minima. The pendulum was mounted on the axis S
and permitted to oscillate through small arcs, the number of

oscillations, being counted; then it was suspended from the axis

and oscillated, the corresponding number in the same time

being determined. Repeated trials enabled Kater to find the

position of m for which the distance between S and (9, or

// -j- //' z= /, was accurately the length of the equivalent simple

pendulum, and its time of oscillation was known from observa-

tion. This method does not require the determination of the

exact position of G, but has the disadvantage of exacting accu-

rate adjustment of the mass m, an operation requiring very care-

ful and repeated manipulation.

In order to count the number of oscillations the method of

coincidences was used. Thus the pendulum was mounted in

front of a clock whose pendulum, beating seconds, could be seen

by means of a telescope behind the position of the Kater pendu-

lum, when it passed the lowest point of its arc of oscillation. At

a certain second, indicated by the clock, the two pendulums

would coincide, and after an exact number of oscillations of the

clock pendulum they would again coincide. The number of

oscillations of the clock pendulum in this period, if the duration

of the clock pendulum's oscillation was less than that of the

Kater pendulum, would be two viore, and if greater two less, than

the Kater pendulum. The clock gives its own indication, and

hence the other is at once determined. In Kater's experiment

the entire duration of each trial lasted about thirty-five minutes,

corresponding to five coincidences, or four intervals of 530 sec-

onds each.
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147. Another and less tedious method is to use a reversible

pendulum of such a form that its centre of gravity may be de-

termined with considerable accuracy, and whose axes are not

reciprocal. Then we have, Eq. (403),

k^ -f /^' = Lhf', \

and eliminating k^^

h^ -h
L

= ht-' _ ^Y«;

L~ 2 h^h' '^
2 h-'h''

As the error in this method is due to the approximate values

of h and h\ t and f should be as nearly equal as practicable, and
h and h* should differ as much as practicable, thus making the

term which depends on ^ — h* very small,

148. The Value of G.—Having found L by experiment, the

acceleration due to gravity is found from

^=^'^ (412)

When g has been determined for one locality we may find its

value for any other place by means of any compound pendulum.
For the two places we have

-y^-^ and f = n\/-±^.. . (413)
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Hence

t'U*'v.g^:g (414)

or

^ =^5-6" (415)

If N and JSP be the numbers of oscillations per hour at the

two places, these become

N'^:N^v.g^ '.g', (416)

N^' = -w^^ (417)

The formula Eq. (59), taken from Everett's Units and Physi-

cal Constants, gives, for all latitudes,

g = 32.173 — 0.0821 cos 2/1 — .000003-^, . . (418)

pr

and from L = —^ we have the corresponding value for the simple

seconds pendulum,

Z = 3.2597 — .0083 cos 2A, — .0000003/^. . . (419)'

Substituting the value of the latitude of West Point, 4i°23'3i",

we derive

^ = 32.163/.^. and Z= 3.2587//. . . (420)

for the values of ^ and Z at West Point.

149. Length of the Equivalent Simple Pendulum.—The length of

the equivalent simple pendulum of any compound pendulum is,

Eq. (409),

l=Lt\ (42i>



CONSTRAINED MOTION ABOUT A FIXED AXIS. 1 6/

in terms of its time of oscillation and the length of the simple

seconds pendulum at the place of observation.

150. British Standard of Length.—In 1824 an act of Parlia-

ment defined the Imperial Standard Yard " to be the straight line

or distance between two points in the gold studs in the straight

brass rod" known as the "Standard Yard, 1760," at 62° F., and

designated the ratio of its length to that of a simple pendulum

vibrating mean seconds, in vacuo, at sea-level at the latitude of

London, to be as Tf^ '•Z9-^Z9Z- This standard was destroyed in

the burning of the Houses of Parliament in 1834. Upon the

recommendation of a commission of scientific men appointed to

restore the standards of weights and measures, the act of 1855

defined the Imperial Standard Yard oi Great Britain to be "the

straight line or distance between the centres of the two gold

plugs or pins in the bronze bar deposited in the office of the

Exchequer," at 62° F. Its restoration in case of loss or destruc-

tion is provided for, by reference to its numerous copies. The
present standard is therefore not referred to tlie length of the

simple seconds pendulum.

151. To determine the Momefit of Inertia of a body by the princi-

ples of the Compound Pendulum.—It is often necessary to find the

moment of inertia of a body which is not homogeneous nor of a

regular form, and to which therefore the methods of Art. 101

will not apply. Whenever the body can be mounted so as to

oscillate about a horizontal axis under the action of its own
weight, we may apply the principles of the compound pendulum
and find its moment of inertia no matter what its form or sub-

stance may be.

Thus, multiplying Eq. (405) by M, the mass of the body, and

clearing of fractions we have

Mlh = M{k; + h') = 2mr''] (422)

that is, the product of the mass of the body, the length of its equivalent

simple pendulum, and tiie distance of the axis from the centre of

gravity, is the moment of inertia with respect to the axis about
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which the body is oscillated. The first two quantities are ob-

tained frcm the equations

WM = — and I - Lt\ (423)

in which W is the weight in pounds, ^ the acceleration due to

gravity at the place of observation, derived from Eq. (418), Z the

length of the simple seconds pendulum, and t the time of oscilla-

tion of the body about the axis in question. The value of h can

be found by measurement, provided the exact position of the

centre of gravity is known. When this is not known h may be

found as follows: Attach a dynamometer to the

extremity farthest from the axis of suspension,

as in Fig. 57, and take its reading when the

I^sbody has been lifted by the dynamometer to a

^^ position such that the axis and centre of gravity

Fig. 57. are in a horizontal plane; this position is reached

when the reading of the dynamometer is a maximum. Then if

R be the reading in pounds and a the horizontal distance TS in

feet, we have, by the equality of moments,

Ra = Wh,

whence

k=^.. ...... . (424)

Substituting these values of M, I and hy we have

Mlh = 2n.>' = ^.^.Lt' = p. . . . (425)

To find the moment of inertia with respect to an axis through

the centre of mass, the body must be mounted on a parallel axis,

with reference to which its moment of inertia may be found by
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the above method. Its moment of inertia with respect to the

axis through the centre of mass is then

Mk^ = Mlh - Mh^ (426)

For bodies of small mass it is sometimes more convenient to

attach them to a pendulum w^hose moment of inertia with respect

to its axis is known. The moment of inertia of the combination

may then be determined, and the difference between this result

and the moment of inertia of the known pendulum is the mo-

ment of inertia of the body with respect to the axis of the pen-

dulum, from which the required moment may be found.

152. The Conical Pendulum.—Let a simple pendulum have a

component vibration about two horizontal axes at right angles

to each other. The path of the material point will in general be

a curve of double curvature on the surface of a sphere whose

radius is the length of the pendulum, this length describing a

cone with its vertex at the point of suspension. Such a pendu-

lum is called a conicalpendulum.

The equation of the projection on a horizontal plane of the

curve of double curvature may be determined as follows:

Let ^ and be the arcs of oscillation about the two axes re-

spectively; then sin ^ and sin will be the co-ordinates of the

projected path of the material point of the pendulum. If the

arcs be taken so small that the oscillations may be considered

isochronal, then ^ and may be taken as co-ordinates of the

projected path, instead of sin ^ and sin 0.

Let P and a be the maximum values of 0and ^ respectively.

When = yS we will have ^ = o, and = o when ^ = or. Tak-

which / is measured, we have, Eq. (402),

ing ip = a when / = o, and taking y — seconds as the unit in
o

/=cos~^-; (427)
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and taking = /? when ^ = o, or / = \7t, we have

/=cos-^| + i;r (428)

Eliminating /, we get

cos-i| = cos-i-^ + i;r; (429)

and taking the cosines of both members,

(430)

or

rfi'i-cP'a'--a^^\ (431)

the equation of an ellipse referred to its centre and axes.

153. While the point moves in azimuth about the vertical

through the point of suspension, the change in azimuth from

7t
the time when tp ^= a until = /? is -. But this deduction is

made under the supposition that the vibrations of a simple pen-

dulum are isochronal. However, as the time of vibration in-

creases with the length of the arc, the shorter component vibra-

tion in the conical pendulum will be completed first, counting the

time from any assumed epoch. Therefore the change in azi-

muth from the time when tp = a until tp = — a \s greater than

7t, and that from 7p = a until cp = /3 is greater than — . Hence

the axis of the ellipse has a motion in azimuth in the same di-

rection as that of the pendulum.

A closer approximation shows that the change in azimuth
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1

7t ( ? \ ^
from ^ = a until = /? is -( i + f^/^j

instead of -. The el-

lipse therefore makes one complete revolution in azimuth in

8 . . . J. •—- times Its periodic time.
Za6

Equilibrium.

154. When a body is in a state of equilibrium, Art. 68, the

acceleration factors in the general equation of energy become

separately equal to zero, and there can then be no change of po-

tential into kinetic energy, or the reverse. Therefore during

equilibrium the general equation of energy reduces to

2Idp = o. , : (S)

In general a free body is never in a state of equilibrium, since

it is subjected to the action of forces the resultant of which is not

in general zero. Hence a body in equilibrium must be under

constraint. But since any case of constrained motion may be

discussed as one of free motion by introducing the normal reac-

tion of the constraining curve, the general equation of energy

may thus be made to apply to all cases of equilibrium.

155. There are three cases in which the acceleration may be-

come zero, viz.:

(i) When the resultant is zero, the body being at rest or hav-

ing uniform motion.

(2) When the resultant of the system of forces reverses its

direction as it passes through zero, thus changing the sign of the

resultant acceleration.

(3) When the resultant becomes zero but does not pass

through it; in this case there is no change of sign of the result-

ant acceleration.

First. When the body is at rest the forces are called siresseSy

and they produce changes of form and volume, these effects
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usually being known as strains; their investigation properly be-

longs to Applied Mechanics.

When the accelerations become zero because of the uniform

motion of the body, Eq. (S) simply asserts that the quantity of

work done positively by some of the forces is equal to that done
negatively by the others, the whole quantity of energy added to

the system being zero. If a body be supposed at rest at any

point of that portion of its path over which it has uniform mo-
tion, it will evidently remain there if subjected only to the sys-

tem of forces which caused it to follow that path. In sucli a

•case the body is said to be in neutral or indifferent equilibrium.

156. To investigate the second csiSQ let us resume Eq. (132).

The forces of gravitation, electricity, etc., or what are known
generally -as forces of nature, are taken to be constant or to vary

as some function of the distance; and therefore Eq. (132) is ap-

plicable to a body subjected to their action, the normal reaction

of the curve on which the body moves being considered as one

of the extraneous forces.

Assuming consecutive values of the kinetic energy of the

body, we have, after developing the difference of the correspond-

ing, states of the function by Taylor's theorem,

WV: - WV: = n^, + dx^, y^ 4- dy^, z^ + ^5,)- F{x^, y^, z^}

= Xdx,+ Ydy^ + Zdz^±{Adx^^-\- Bdy^-^ Cdz^)-\- etc. (432)

If \MV^ be a maximum or a minimum, we shall have as a

condition

Xdx, -f Ydy^ + Z^^, = o; (433)

that is, the body will be in equilibrium when it reaches a position

where it has a maximum or minimum kinetic energy.

Let this condition be fulfilled, and we have

\MV^ - \MV^ = ± {Adx^ + Bdy^' + Cdz^) -f etc. (434)
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If \MV^ be a maximum the second member of this equation

will have the negative sign, and whatever be the value of V^, it

must be greater than V

^

; and if the body be slightly displaced

from its position of equilibrium and then move from rest under

the action of the given system of forces, the direction of the re-

sultant must be such as to bring it back again. In this case the

body would oscillate to and fro through its position of equilib-

rium, and could never depart far from it; the equilibrium of a

body is therefore said to be stable when it occupies a position,

corresponding to a maximum value of its kinetic energy.

If \MV^ be a minimum the second member of Eq. (434) will

be positive, and hence V^ must be greater than F, ; and if the

body move from rest and from a point very near that corre-

sponding to the minimum value of F, the resultant of the system

will act in such a direction as to move it away from its position

of equilibrium, to which it would never return. The equilibrium

is therefore said to be unstable when it occupies a position corre-

sponding to a minimum value of its kinetic energy.

157. In the third case, since a function is not necessarily a

maximum or a minimum when its differential coefficient is equal

to zero, it is evident that cases may arise in which a body will be

in equilibrium when its kinetic energy is neither a maximum nor

a minimum. For example, a body is in equilibrium as it passes

a point of inflection at which the resultant is normal to the path.

In this case the equilibrium is stable in one direction and un-

stable in the other.

158. When 2ifree body passes a point in its path correspond-

ing to a maximum or a minimum value of its kinetic energy, this

point would be a position of stable or unstable equilibrium, if we
suppose the body to be moving on a rigid curve coincident with

its path.

Let us take the general case of a body acted upon by its own
weight, and subjected to any condition of constraint whatever.

Since this condition can have no influence on the velocity, the

change of kinetic energy between any two points of the path
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will be that due to the weight acting over the vertical distance

through which the body moves; hence we may write

WV; - mV^ = Mg{z, - ^.), .... (435)

z being taken vertical and positive downward. From this we see

that if the body be in stable equilibrium its centre of mass must
occupy a point in its path which is lower than the consecutive

points on either side; and similarly if it be in unstable equilib-

rium it must be at a point which is higher than the consecutive

points.

Thus, a pendulum is in stable equilibrium when its centre of

gravity occupies the lowest point of its possible path, and in un-

stable equilibrium when it is at the highest point it can reach

under the given conditions of constraint. A homogeneous el-

lipsoid of three unequal axes, resting on a horizontal plane, has

two positions of unstable and one of stable equilibrium; an

oblate spheroid has one of stable and many of unstable equilib-

rium; a prolate spheroid has one of unstable and many of stable

equilibrium, and a sphere is an example of indifferent equilib-

rium. If the centre of gravity of the sphere be not coincident

with the centre of figure, it will be in stable equilibrium when
the centre of gravity is at the lowest point it can reach, and un-

stable when at the highest.

Examples, i. A particle on the concave surface of a sphere

is acted on by its weight and by a repulsion from the lowest

point of the surface, the latter varying inversely as the square of

the distance. Find the position of rest.

Take the origin at the lowest point and the axis of z vertical

and positive upward; let r be the distance of the point of rest

from the origin, a the radius of the surface, and ^ the intensity

of the repulsive force at the distance unity; then we have the

equation of the surface,

^^ +y + -2;' — 2az = o;
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the intensity of the repulsion at the distance r,

and Eqs. (T^,),

2az

x = J^^

2az ' r

N' o;

N^- =0;

2az r a

(436)

from which we have, substituting in the last of Eqs. (436) the

value of N obtained from one of the others and reducing,

^ = ^ andw 2 aw (437)

that is, the particle will remain at rest at any point in the cir-

cumference of-fi horizontal circle whose plane is at the distance

given by Eq. (437) above the lowest point of the surface.

If another repellent force whose intensity at a unit's distance

is /i' be supposed to act on the particle, the value for /-' would

be r'' =
7a

'
hence the ratio of the intensities of these forces at

or their intensities arethe distance unitv is given by — =

directly as the cubes of the distances at which a heavy particle

would remain at rest on the surface of a sphere due to their

action. The quadrant electroscope, consisting of a light pith

ball joined to a point by a thread, measures the relative inten-

sities of strong electrical charges by the principles of this prob-

lem.
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2. To find the position of rest of a heavy particle m on a.

given rigid curve AB^ Fig. 58, when acted on

by its weight w and a constant attraction t

toward the origin. Let O be the origin, Ox and

Oz the co-ordinate axes, the latter being vertical

and positive downwards, and /;/ the supposed

position of rest of the particle; let OA = a,

Then we have
Fig. 58.

Om = r, and mOn = 6.

X= -/sin 6 -\-N
ds

Z=ze/ — /cos d — Ndx

Ts
o:

(438)

from which we get

{w — t cos 6)dz — / sin 6dx = wdz — / = o. (439)

But

xdx 4" zdz = rdr,

and Eq. (439) reduces to

wdz — tdr = o, .

(440)

(441)

which is the condition of equilibrium. In order that there may
be a position of rest on the curve this condition must be satisfied

by the co-ordinates of one of its points.

Let the curve be a hyperbola, and we have

^V - «V = a'd^; (442)

^'' = ^-^+^«=:.V-^'; (443)

rdr = e^zdz; (444)'
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and Eq. (441) becomes

rwdz — te^zdz = o (44S)

Solving Eq. (443) with respect to z and substituting in the result-

ing equation the value of r^ obtained from Eq. (445), we have

The equilibrium in this case evidently requires w '>et.

If it be required to find the equation of the curve on all

points of which m will be at rest, we have, from Eq. (441),

wz — tr = 3. constant, (447)

which may be written

wz — tr — {w — t)a (448)

By substituting for z its value /- cos 6, this equation becomes

(-?)
^ = ' (449)

I cos 6

the polar equation of an ellipse, parabola, or hyperbola, accord-

ing as w is less than, equal to, or greater than /, the pole being

at the focus.

12
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^ The Potential. •

159, The general theory of attraction embraces the consider-

ation of those forces by which matter attracts or repels other

matter, and whose intensities are functions of the masses, and of

the distances which separate them. The general term attraction

is used for both repellent and attractive forces; the former being

affected by the positive and the latter by the negative sign, to

distinguish them.

In the following discussion the theory of attraction is limited

to those forces whose intensities are expressed by the law, Eq. (2),

^ mm'

Electrical and magnetic forces are sometimes attractive and

sometimes repellent; and since their intensities vary according

to the law of the inverse square of the distance, Eq. (2) may
also be applied to them by considering m and m' to be quantities

offree electricity or magnetism instead of masses; the unit quantity

being that which will attract an opposite or repel a similar unit

quantity with a unit intensity, at a unit's distance apart. In the

following discussion the term mass will then for convenience be

taken to apply to the quantities m and m\ As in gravitation,

these mutual attractions or repulsions are equal in intensity,

opposite in direction, and exert their own influence whether

other forces act on the masses or not.

160. Component Attractions.—Let m be the attracted mass, m'

one of the attracting masses, r the distance between them, and

X, J, z the co-ordinates of m' referred to m. We have then

^« = ^«+y + ^«; (450)

dr _x dr _y dr _ z . .

d^~P ~^~7' ~d^~~r' ' ' ' '

^^^'^

&)=-..^^ (452)
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The component attraction of m* for m in the direction of the

co-ordinate axis x will then be

mm' XX = —7[-U — = — mm -.

r r dr ax (453)

and similarly, for the other axes,

.,/(^). ,- ..,'(^)K= — mm*ii-^\ Z
dy

mm }i
dz (454)

The sums of the component attractions of all the molecules

m\ m'\ m"'y etc., for tn are therefore

-y = ( 4) -^W ^_,„^\^„'._ + ^"__ + etc.y

<f5-

— w/l-
dx

d:2
m'

y= — mfji-
dy

Z= — w/(-

(455)

which, when we place

(456)
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become

Y=

Z =

— mp.

mjji

mfx

dx''

dj/

iV
dz'

(457)

That is, the sum of the component attractions of the masses m\ m'\

etc., on m, in any direction, is equal to the corresponding partial differ-

ential coefficient of the function V 7?tultiplied by the product mfx.

l6l. The Potential.—The function Miscalled th^ Potential oi

the mass 2m' with reference to thQ position of m, and is defined

to be the sum of the quotients obtained by dividing the mass

or corresponding quantity of each element m' by its distance

from m.

To explain what is meant by the potential, let dn be the

change in the potential energy of a unit mass attracted by m\
under the assumed law of attraction, when the unit mass has

changed its distance by dr\ then we have

dn = m'}x
(458)

whence

->/- ^
m'fx + 0, (459)

or, between the limits r and co

,

,
/'' dr m*II

. (460)
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If the unit mass be subjected to the attraction of all the

masses in\ m'\ etc., then we have

^n ^ ^-2-- = ixV, (461)
r

which becomes, when the absolute intensity }a is taken to be

unity^

27r=:2—= F. (462)

That is, the potential is equal to the change in thepotential energy of

a unit mass when the latter is moved to infinite distance from any dis-

m*
tance r against the decreasing attraction — -2—j, or when the unit mas^

r

is broughtfrom infinite distance to any distance r in opposition to the in-

creasing repulsion^ 2-^ \ the absolute intensity being taken as unity in
r

both cases.

For any definite system of masses and forces governed by
the assumed law the potential at a point has a definite value and

can be expressed in units of work. When the potential is known
the component attraction in any direction can be readily ob-

tained by means of Eqs. (457).

162. Equi'potential Surfaces.—Let R be the intensity of the

resultant attraction of the system of masses for m at the dis-

tance r\ then, after multiplying Eqs. (457) by dx^ dy, dz, respec-

tively, and adding, we have

fdV dV dV \Xdx + Ydy -\- Zdz = — mpiy—dx -\- -j-dy + —j-^A^ (4^3)

or

Rdr = — jnfidV^ (464)



1 82 MECHANICS OF SOLIDS.

whence

P r^ — ^m IJ.

dr

dV
^ = - "^i^iz (465)

Let s be the path of m as it changes its position in any direc-

tion; d the angle which s makes with r\ and /the component of

R in the direction of s. Then we have

I =^ R cos cy = — m)j.—— cos U =. — in}x—-. . . (466)

Hence the component attraction in any direction varies directly with

the first differential coefficient of the potential regarded as a function

of the path in that direction.

An equi-potential surface is one for which the potential is con-

stant for each of its points. If the path j be a line of such a sur-

face, we have

Ids Rdr .

dV — = = o, (467)m^ mjx \-r 1/

and hence

F= - — fids = -— fRdr =C. . . (468)

A surface which fulfils for each of its points this condition

is an equi-potential surface for the system of attractions. As
any value may be attributed to C between its greatest and least

values, there will be an indefinitely great number of equi-poten-

tial surfaces, corresponding to any given system of attractions^

each of which will be a closed surface.

From Eq. (466) it is evident that /becomes zero when ^ is

90°, and is the resultant attraction, or R^ when Q is zero; hence
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the equi-potential surface cuts at right angles the direction of R
at every point of its surface. These action lines of R are called

lines of force, and any collection of them passing through an

elementary portion of the surface is called a tube offorce.

If the surface be supposed perfectly smooth, vi would remain

at rest on every point of it if subjected only to the system of at-

tractions, and the surface would resist pressure only in the di-

rection of the normal. For this reason it is called a level surface

or a surface of equilibrium. No two surfaces belonging to the

same system can intersect or have a common point, for Eq. (468)

cannot be satisfied for the same values of x, y, z, and give C
dissimilar values. Of any two surfaces, the interior one corre-

sponds to the greater resultant attraction and the less value of

the potential when the attraction is negative, and to the greater

repulsion and greater value of the potential when the attraction

IS positive.

163. The determination of the values of the potential and the

attractions for any given system of masses or quantities 2m^
depends on the solution of the equations

V= 2--, R=- nifx— and / = - w/^-^. (469)

When the quantities w' are elements of a quantity whose
density and boundary vary by continuity, we may write

m' = dM' = ddv; (47°)

in which dv represents the elementary volume of M\ In such

cases we have, when rectangular co-ordinates are employed,

^^jSJ^^jSdxdydz
^^^^^
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If it be desirable to use polar co-ordinates, we have for the

z value of the elementary volume,

Fig. 59,

= r'dr sin OdcpdO; ]
^"^^^^

for the edge of the infinitesimal

cube in the direction of r is dr,

the horizontal edge perpendicular

to r is r sin 6dcp, and that per-

pendicular to the plane of these two is rdS; and hence, in polar

co-ordinates,

= / drdr sin 6d(pd6 (473)

164. Examples.—In the following examples the mass m will

be taken to be the unit mass, and the absolute intensity fx to be unity

also. By multiplying the results obtained by ?nfJL we readily get

the attractions for any mass and any intensity.

I. The Potential and Attractions of straight Rod at an External

Point.—Let go be the area of the rod's cross-section, y the dis-

tance of the external point m, Fig. 60, from

the rod, and r its distance from any element

of the rod; and let the axis of the rod be a

taken as the axis x, and the axis y pass °

through the external point. The element ^"^- ^°

volume of the rod is then oodx^ and the distance r = Vy^ -\- x'^;

then we have

V=Sgd T- = =(y&?iog ^.
^

,, i . (474)
4// + X
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which, taken between the limits x** and — x\ corresponding to

the extremities of the rod, becomes

= ,Ja,log-^-^^== (475)

The component attraction in the direction of the rod is

To find that perpendicular to the rod we have, from Eq. (474),

dy dy

Therefore between the limits ^" and — x' we have
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When the point m is on the perpendicular bisecting the rod,

we have

X = o\ Y= .——=== = sine';. . (479)

in which 6 is the angle included between the bisecting perpen-

dicular and the line drawn from m to the extremity of the rod.

2. The Potential and Attractions of a Circular Arc at its Centre.

—Let d be tlie angle subtended by any

portion of the arc estimated from its mid-

dle point, Fig. 61. The element volume is.

then oordd, and we have

V=dGD r dd = 26006', (480)

which is independent of the radius of the

arc. The resultant attraction is evidently in the direction CO^

or along the radius drawn to its middle point. Its value is

dooL
^' rdO 2600

r
(481)

From this we see that the attraction of the arc at the centre is.

the same as the attraction of the straight rod AOA' . Since also

the masses of the elements//' and PP' have the ratio

CP
Cp :CPstca = Cj> : CP^ = C/ : CP\ . . (482).

their attractions on m at Care equal; whence, any portion of the

right line tangent to the arc at O, as PP\ attracts m at C with

the same intensity as the corresponding arc//'.
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3. The Potential and Attraction of a uniform Circular Ring at

a Point on the Perpendicular to its Plane through its Centre.—Let a

be the radius of the ring, and c the dis-

tance of the point (9, Fig. 62. Then

•^'^' 27taSG0 , „ ,V= 2— =
^

. (483)
r ^a' + c'

^ ^

When c = o, this becomes a maxi-

mum, or 27rSco, which, being independent Fig. 62.

of the radius, shows that Fis a constant for all concentric rings

at the centre.

As the sum of the component attractions of the elements of

the ring in the plane of the ring is zero, the resultant attraction

is in the direction of the perpendicular to the plane of the ring..

Its value is evidently

R=-2^co%QOC = -,-2m' =
j^^-j^^ . . (484)

4. The Potential and Attraction of a Circular Plate at a Point

on the Perpendicular to its Plane through its Centre.—Let / be the

thickness of the plate, Fig. 62, and suppose the plate made up of

separate rings whose width is da. Then we have 00 = tda, and
the element volume is 27ttada\ whence

V=2n6tr-^^^ = 2nSt(\fT-:^-c\,. (485)
t/o ya -\- c

which for the centre of the plate becomes

F= 2ndta (486)

The resultant attraction is

2 7ttada y^^r^ A P^ adaR n^ 2ntada /^ aa= 01 5— cos QOC = 27tdtc / —_—
e/o r J^ V^-f c^

= 27ttc6[ ,

^ X=27t6t{l
^

-V . (487)
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But since

^a'' + c

= = cos QOC,

it follows that the attraction of all circular plates of the same
thickness and density, for a given molecule on a perpendicular

to its plane through its centre, is the same for equal angles, sub-

tended by the plate at the molecule. Therefore, if a molecule

be at the vertex of a right cone with a circular base, the attrac-

tions of the normal sections of equal thickness of the cone for

the molecule are equal. If the radius of the plate be infinite the

attraction becomes 27cdi, which is independent of the position of

m with respect to the plate.

5. The Potential and Attractions of a Spherical Shell at any

Point.—Taking the centre of the shell as the origin of a system

of polar co-ordinates, let a be the radius and p the distance of

the point from the centre; then the volume element is, Eq. (472),

aV sin ddddcf),

and
r=z{a'' - 2ap cos 6 + py-, .... (488)

whence

cv o /»*'' n"" sin Odddel)

Integrating first with respect to 0, we have

- , />Tr sin Odd . .

V=27t6ta-^ — ; . . (490)
e/o (a^ — 2ap cos 6 -\- pry

and then with respect to 6,
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There are two cases to consider: (i) when m is within the

surface, or p < «; and (2) when m is without the surface, or p > «.

In the first case we have

r=^—-^[« + p- (^-p)] = 4^(^/«; . . (492)

and in the second.

[« + p-(p-«)] =——— = --; (494)
9 "- P 9

tdta' _ A
dp p^ ~ p^
7;: = -^ = ^-7^ = --^'^ • (495)

M being the mass of the shell. Hence the potential of the

interior space is constant and the resultant attraction zero, while

all external space is made up of concentric spherical equi-poten-

tial surfaces, and the attraction at any point is the same in

intensity and direction as though the whole quantity M were
concentrated at the centre of the shell.

6. The Potential and Attraction of a Thick Homogeneous Spheri-

cal Shell at any Point.—Let the radii of the exterior and interior

surfaces of the shell be a' and a" respectively. The potential

will, in general, consist of two parts, one corresponding to the

shell within the spherical surface containing the point and the

other to the shell without it.

For the first part we have (Ex. 5)

dV='-I^da: (496)

and for the second,

dV = 47rdada; (497)
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Jience

A.7td f*^
/>*'

V= / a^da 4- attS I ada
P Ja" J?

If the point be wholly without the shell, then, M being the

mass of the shell, we have

V = 4^^ r'a^^a = i^^(«- - an = ^; (499)
P Ja" 3P

^
P ^ ^'

^ = ^; (500)

and if wholly within,

V= 27td{a" - a"')', (501)

^ = o (502)

If the attracting quantity be a homogeneous sphere a" = o,

>and at an interior point

V=,„Sa"-'-^^; (S03)

Ii = ±nSp = ^p- (S04)
o a

and at an exterior point

^=f (507)
p ^>
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For p =. a' vje, have, from both sets,

r=4^; . . (508) i?=^; . . . (S09)

hence both Fand R are continuous functions.

From this we see that, considering the earth as homogeneous,

we may take its potential and attraction at any external point

as though the whole mass of the earth were concentrated at its

centre; while the attraction at an interior point is directly pro-

portional to its distance from the centre.

165. The Theorem of Laplace.—Let S be any closed surface,

and M any attracting quantity wholly external to S\ let V be

the potential of J/, and p the normal to the surface reckoned

outward. Then it is to be proved that

ndV
dS - o. (510)

From any molecule w', Fig. 63, of M draw a right line pierc-

ing the surface S. It will pierce the surface in an even number

Fig. 63.

of points. Let/' and/" be a pair of these points, 6' and ^" the

angles made by the normals at /' and /" with the intersecting
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line, and r' and r" the distances of/' and/" from m\ Then we
have

With m' as a vertex, conceive an indefinitely small cone whose
solid angle is cd to be described about w'/'. The areas inter-

cepted by the cone on S at the points/' and/" are

dS' = -^, and ^y = -^-; . . . (512)
cos d' cos 6" ^'^ '

and hence

^J^,dS' = m'm; ^-dS" = - m'm; .... (513)

g:.5'+^/5'-o; (5x4)

and this result is true for every pair of points.

Now suppose the cone whose vertex is w' envelops the whole

surface S; then its solid angle is made up of an indefinitely

great number of elementary cones whose solid angles are c», to

,each of which the above reasoning will apply. Therefore we
have

/^5=»- fe">

166. Poisson's Extension of Laplace's Theorem.—If any portion

of M, as M\ be contained within the closed surface 6", then it is

to be proved that

/'l^dS=-A7tM' (516)
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Let m' be the mass of one of the molecules of M\ and let a

right line be drawn from it, piercing S. It will pierce S in an

odd number of points, which may be arranged in pairs as above,

with one point remaining.

For the pairs Ecj. (515) will be true, and for the odd point

we have

;^' = -"^-
• • (517)

Integrating for the whole space about w', we have

—dS=—Pt'l doD = — ^7tm'\ . . . (518)

and for all the molecules of J/',

/'^-f^dS=-4nM' (S19)

Hence we conclude, Eqs. (515) and (519), that the sum of the

attractions of a mass J/, estimated along the normals at all

points of a closed surface, is zero when the attracting matter M
is wholly external to Sy and is — ^7tM' when the closed surface

S contains any portion, J/', of M.
167. This theorem is also expressed by the equations

d'V
,
d'V . d'V ^ / X

-d^^W^~dF = '' ^^ =-A7t6., . (520)

To show this, let x, y, z be the co-ordinates of the attracting

molecule, of density (J, without or within the surface, which may
be taken as the surface of a rectangular parallelopipedon dxdydz.

Then

/dp

13
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for the face dydz^ is

and for the opposite face is
•

Sd'^v. ,dv),

-and for this pair of faces is

-j^dxdydz',

and similarly for the other faces we have

d'^V
-—^dxdydz

and

d'^V
a
dxdydz.

Hence the integral

Placing the second member equal to o and — ^nM' in succes-

sion, we have, when the attracting matter is external to a closed

surface,

d^V
,
d'V d'V . .
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and when it contains it, wholly or in part,

(522)

These theorems find their most frequent application in elec-

tricity and magnetism.

Motion of a System of Bodies.

168. The conclusions of Arts. 78 and 82 with respect to the

motion of a single body under the action of extraneous forces

are similarly true of a group or system of bodies when the mo-

tion of its centre of mass determines the translation of the

system in space, and the rotation is estimated about that centre.

To show this, let x^,y^,z^be the co-ordinates of the centre of

mass of the system referred to any fixed origin; x,y, z, the co-

ordinates of the centre of mass of each body referred to the

fixed origin, and x\y\ z\ when referred to the centre of mass
of the system; and let M be the type-symbol of the masses of

the bodies. Applying Eqs. (T^,) to each mass and summing the

results, we have

^X = 2M'
df

:EY=:2Mg,

2z = :2M
dt""

(523)

and since

x = x,-\-x\ y=y^ +/, zz=^z,-\-z\ . (524)

d^x = d'x^-\-dW, dy = dy^-{-dy, d'z = d\+d*z', (525)
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these become, by applying the principle of the centre of mass,

2V

2Z =

df '

d'

dt'
'-2M.

(526)

Similarly applying Eqs. (Tm') when impulsions alone act, we
have

at

dz-^^M = 2MF.;

(527)

hence the conclusions of Art. 78 follow from Eqs. (526) and (527)

with respect to the centre of mass of the system.

169. If each of Eqs. (526) be multiplied in succession by the

two co-ordinates which it does not contain, and the difference of

the products be taken, then the summation of these differences

for all the bodies of the system gives

:s(y,,-jr,,) = 2Jf(..5'/-,,5<)

2(Xz, - Zx,)

2(Zy, - Yz,)

d^x^ d"^ z
(528)

from which the motion of the centre of mass about the fixed

origin may be found.
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In the same way we have, from Eqs. (Tm),

(529)

Substituting in these Eqs. (529) the values of the co-ordinates

and accelerations from Eqs. (524) and (525) and reducing by

the principle of the centre of mass, we obtain

2{ Yx' - xy) = 2M (^'^-y^);

(530)

Since these equations are independent of the co-ordinates of

the centre of mass of the system, we conclude that the motion

of rotation of the centres of mass of the constituent bodies about

the centre of mass of the system is the same as if this point were
at rest, and their motion is therefore entirely independent of

the motion of translation of the latter point, a conclusion pre-

cisely similar to that of Art. 82.

170. Conservation of t/ie Motion of the Centre of Mass,—If we
suppose that a material system has been put in motion and
then subjected only to the mutual attractions of its own bodies,

we shall have

2x = o, :2Y^o, :ez = (531)
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then there can be no accelerations of the centre of mass of the

system, and Eqs. (526) become

d^'x, d^y, d'^z,

df ' dt' ' dt'
o;

. . . . {532)

from which we have

sc,- at-Y a\ y^=z bt-Y b\ z^ = a+ c';. . (534)

-
(535)

x^-a' _ y^ - b' _ z^

a b c

That is, if a system of masses be subjected only to its mutual attrac-

tions^ its centre of 7nass will either be at rest or more uniformly in a

right line. This is called the principle of the conservation of the

motion of the centre of mass.

171. If the masses of the solar system be subjected only to

their mutual attractions of gravitation, the conditions of Eqs.

(531) are satisfied for this system, and therefore its centre of

mass must have uniform and rectilinear motion, or be at rest.

Since the mass of the sun is very much greater than the sum
of all the other masses of the constituents of the system, the

error of assuming the centre of mass of the solar system to

be coincident with that of the sun is slight. Calculations found-

ed on the observations of astronomers show that this latter point

is moving through space with a velocity of very nearly five miles

per second, but sufficient data is not yet available to determine

whether its path is a right line or an arc of small curvature; the

latter being the more probable, owing to the extraneous forces

of attraction of other systems.

By the same principle, the motion of the centre of mass of
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the earth is uninfluenced by earthquakes or volcanic explosions

occurring upon it, and that of the centre of mass of a projectile

is not affected by its explosion, since the impulsive forces in each

of these cases are mutually counterbalanced.

172. Conservation of Moments, Invariable Axis, and Invariable

Plane.—If the forces acting on the system be the mutual attrac-

tions of its masses, we have the conditions

:2{Yx* - Xy') = o:

2{Xz' - Zx') = o;

2{Z/ - Vz') = o;

(536)

which reduce, Eqs. (530), to

2M\

2M\

and which, by integration, become

> , (S37)

at

:^M - - c ,

at

(S38)

That is, when the forces acting on the system are the mutual

attractions of its masses, the algebraic sums of the moments of the

momenta of the masses of the systetn with respect to any set of rectangu-

lar co-ordinate axes at the centre of mass of the system are constant;

this is called the principle of the conservation of moments.
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This principle may also be stated as follows: If the bodies of

the system be supposed at rest in any one of its configurations,

a definite system of impulsions would give each body its actual

velocity. Eqs. (538) show that the sum of the component mo-
ments of these impulsions with respect to each co-ordinate axis

is constant. The resultant moment of the system is also con-

stant, and is given by

C = VC + C + C' (539)

As the co-ordinate planes may be assumed at pleasure, it is

evident that the constants C, C", C" will in general change

with each set of co-ordinate axes. The resultant axis of the sys-

tem on which C would be measured is normal to that plane with

reference to which the sum of the products of the projected

areas by the masses is the maximum constant, and is the com-

mon intersection of those planes on which these sums are zero.

This axis, and the normal plane through the centre of mass of

the system, are called the invariable axis and invariable plane of

the system of masses; the equation of the latter,

Cz' + cy + c"v = o, . . . . . (540)

is found by multiplying each of Eqs. (538) by the co-ordinate

which it does not contain and adding the results together.

173. Conservation of Areas.—Eqs. (538) express another prin-

ciple, which is known as the conservation of areas. Let radii-

vectores r be drawn from the centre of mass of each body to that

of the system, supposed at rest ; then changing x'dy'—y'dx' into

its equivalent expression in polar co-ordinates with the pole at

the centre of mass of the system, we have

x' = r cos 6, dx' = dr cos — r sin ddd\
\ ^ ^

y = r sin e, d/ = dr sin e + r cos edd; j
*

^^"^^^

x'dy' - fdx' = r\iB (542)
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But r^dd is twice the projection on the plane 3(^y' of the sectoral

area described by the radius vector of M* in the time dt\ and the

corresponding factors in the other equations are similarly the

projections of double the differential areas on the planes x*z* and

y'z* respectively. Let the type symbols of twice these projec-

tions on the planes x'y\ x'z\ y'z' be denoted respectively by

dAz, dAy^ and dA^ ; Eqs. (538) then become

at

2M^^ = C";
at

ifA

at

(543)

Inregrating between the limits corresponding to the interval /,

we have

'2MA, =6-7;^
:2MAy = C't', I (544)

:2MA^ = C"V.

That is, if a system of masses be subjected only to its mutual attrac-

tions^ the sum of the products of each mass by the projection of its secto-

ral area about the centre of the system on any plane varies directly

with the time. This statement of the principle is called the con-

servation of areas.

If the resultant of a system of extraneous forces act through

the centre of the system, Eqs. (536) will be satisfied and the con-

clusions of Arts. 170, 172 will apply to this case also.

174. Relative Acceleration.—If one of two bodies be supposed

fixed and all the motion be attributed to the other, the accelera-

tion which the latter would have under this supposition is called

its relative acceleration. To find the relative acceleration of one body
of the system with reference to the centre of mass of any other, let
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Mbe the mass to which the motion is referred, and call this body
the central; M\ the mass of the moving body, called l\\^ primary

\

M'\ the type-symbol of the masses of the remaining bodies of

the system, called Xh^ perturbating bodies. Let the symbol (AfM^)

represent the intensity of the reciprocal attraction of the masses

M and J/' along the line joining their centres, and the same
symbol with a subscript letter, as (MM')^, the component inten-

sity in the direction of the corresponding axis; and similarly for

the other masses and directions. Let x, y, z be the co-ordinates

of J/' referred to M. The component relative acceleration of

J/' with respect to Mis the sum of their actual component
accelerations due to their mutual attraction, plus the difference

between the components of their actual accelerations due to the

attractions of the perturbating bodies. The actual accelerations

of M and J/' due to their mutual attraction are ^—r^r-— andM
(MM') , , , , , ,. . ^ ..
-^^—T77 » and those due to one of the perturbatmg bodies are

(MM'') , (M'M") ^, , . , .
^^—TF— and -^^— , \ The component relative accelerations are

therefore

d'xr(MM% (MM^-l r2{MM")^ 2(M'M")^
df~V M '^ M' J + L M M'
dy_r{MM% {MM')y-\ r:E(MM")y _ :2{M'M")y

df'V M '^ M' J+ L M M'
d'z_\-(MM'),

^

{MM')r
\ , y^{MM'% 2{M'M")

dt

+
V{MM'), iMM%-\ r2(MM'% _ :2{M'M"),-]

\_ M ^ M' J+ L M M' J

^(545)

175. The path of the centre of mass of the primary with

respect to the central is called the relative orbit of the primary
;

its relative path influenced by the action of the perturbating

bodies is called the disturbed or actual orbit, and if the action of

these latter bodies be neglected the resulting relative path is
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called the undisturbed orbit. The differential equations in this

case become

df
+

d\
-df=^

(MM') {MM')-lx ^

M + MP]?,
\MM') {MM'y
. J/

'^~ M'
"

) (^^j/'rV{MM'
(546)

in which the upper sign corresponds to attraction and the lowti

to repulsion, and r is the radius vector of M' . When the law ot

the reciprocal attraction or repulsion is known the value of its

intensity may be substituted for its symbol {MM'), and the

resulting equations being integrated twice, there will result the

component relative velocities and co-ordinates of the centre of

mass of the primary referred to the centre of mass of the central

body.

Central Forces.

176. A central force is one whose action-line is directed to or

from a fixed point called the ce7itre of force, and whose intensity

is a function of the distance of the body acted on from that

point. The force is attractive or repulsive according as its

action-line is directed toward or from the centre.

177. Laws of Central Forces.—(i) Let the two masses M and

M' be subjected to the action of their mutual attraction or re-

pulsion. Then the motion of one, relative to the centre of mass

of the other, may be considered as resulting from the action of

a central force whose centre is the centre of mass of that body
which is considered as fixed; Eqs. (546) are then applicable.

Multiply the first by j and the second by x, and take the differ-

ence of the products; then multiply the first by z and the third

by Xy taking the difference of the products; and lastly, multiply
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the second by z and the third by_>', taking the difference of the

products, and we shall obtain

//> d-'x

''ae ^-d¥
— o;

d'x d'z

''dt^-
= o;

d'z

^dt^ ^dt'
= o.

* • • (S47)

Integrating, we have

dy dx ,,

dt -^dt

dx dz ,,,

'dt-''-di = '' '

^dt dt

(548)

Multiplying these equations by z, y and x^ respectively, we have,

by addition,

h'z-\-h''y-\-h'"x = o, (549)

the equation of an invariable plane. Hence the orbit of a body

acted on by a central force is contained in a fixed plane through the

centre offorce.

(2) Take xy to be the plane of the orbit; then Eqs. (548)

reduce to the single equation

dy dx . , V

or, in polar co-ordinates.

,dQ

dt
= >^; (551)
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in which r is the radius vector of M\ 6 is the variable angle

made by r with a fixed line of reference, and h is double the

sectoral area described by the radius vector in its own plane in

the unit time.

Integrating Eq. (551) between the limits corresponding to

values of the radius vector r' and r" and the angles 6' and 6'\

we have

r'^'r^dd^hif ^f') = ht', .... (552)
dr"9"

or, the sectoral area described by the radius vector in the plane of the

orbit varies directly with the time.

Reciprocally, when this law is fulfilled we have, by differen-

tiating Eq. (550) and multiplying by M\

M'^,x-M'^y=Yx-Xy = o;. '.
. (533)

and the orbit is described under the action of a central force.

(3) From Eq. (551) we have

du h / X

or, the angular velocity of the body in its orbital motion about the centre

offorce varies inversely as the square of the radius vector,

(4) Since the velocity of the body in its orbit is

ds ds dd , V

we have, from Eq. (554),

h ds I r\
'' = PTff (SS6)
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Let/ be the length of the perpendicular from the centre "of

force to the tangent to the orbit at the body's place; then

(557)
. n rdd

^ = r sm = r-^,

and hence

h
""

P'
(558)

or, the velocity of the body varies inversely as the perpendicular distance

fro7ti the centre of force to the tangent to the orbit at the place of the

body.

(5) Let A be the relative acceleration at any point of the

orbit, and p the corresponding radius of curvature; then the

component relative acceleration in the direction of p is

^^ = -^'; (559)

from which we have

4-M • (560)

But 2p— is the length of the chord of curvature drawn through

the centre of force to the place of the body. Comparing Eq.

(560) with V"^ = 2ghf we see that the actual velocity of the body at

any point of its orbit is that due to a height equal to one fourth of the

chord of curvature drawn through the centre offorce ; the body starting

from rest and the intensity of the central force remaining constant over

this distance. If the orbit be circular, R its radius, and its centre

coincide with the centre of force, the velocity becomes constant

and is

V'^AR (561)
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The acceleration in the direction of the tangent to the orbit

is

_ = _ ^_ . .... . . . (s6.)

Multiplying by M' and ds and integrating between limits, we
have

W{V.'-V,') = -M'£'Adr, . . . (563)

the equation of energy. Hence the orbital velocity is inde-

pendent of the path described and varies with the distance of

the body from the centre of force. In any closed orbit, therefore,

when the body returns successively to the same position in its

orbit, the velocity will always be the same as before.

These are the general laws of central forces, and are seen to

be independent of the character and law of variation of the cen-

tral force.

178. The Differential Equation of the Orbit.—Assuming the co-

ordinate plane xy as the plane of the orbit and employing polar

co-ordinates, we have, from the law of areas, Eq. (551),

which becomes, when r is replaced by —

,

^^f'"' (S64)

Differentiating

n COS 6 / , Xx-rcose= ; (565)
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and dividing by dt^ we obtain

dt u" 'dt

= — hiu sin 6 + cos 6-\ .... (566)

and hence

= -/^v(«cos^ + cos^^). . . . (567)

Placing this value equal to that of the relative acceleration

d^x—-- in the first of Eqs. (546), we have, after dividing by cos d

X
and remembering that — = cos ^,

{MM')
,

{MM') . -^ u, J ^ ^M , ^ox

the differential polar equation of the orbit of a body under the

action of a central force.

179. To solve the direct and inverse problems in the case of

a central force we proceed as follows:

(i) To find the equation of the orbity substitute for ^ in Eq.

(568) its value in terms of «, and integrate twice; the resulting

equation expressing the relation between u and B is the equation

of the orbit. The two arbitrary constants which appear in the

integration are determined by the initial conditions, viz., the

initial values of the radius vector and velocity, and the initial

direction of motion.

(2) To find the law of the force necessary to cause a body to
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describe a given orbit, differentiate the polar equation of the

orbit twice and substitute the resulting value of —^ in Eq. (568);

then eliminate 6^, and the result will give ^ in terms of r.

180. Particular Cases of the Direct Problem,—(i) To find the

orbit due to an attractive central force whose intensity varies directly

with the distance of the body from the centre. Let the centre of

force be the origin; }x\ the measure of the intensity of the central

attraction for a unit mass at a unit's distance. From the law of

the force and the differential equation of the orbit we have

or

^=/'''-=^'-M"+^) (569)

d^u a'

Multiplying by idu and integrating, we get

5^ + " =-^' + ^- (57')

Let jR be the initial value of the radius vector, and take the
initial direction of motion perpendicular to ^. Then at the

time / = o we have ^ = o and « = -
; hence ^ = ipi +^

,

and

^ + « -^»+-;^-^i. . . . . (572)

Let Fbe the initial value of the velocity, and from Eq. (558)
we have h := RV, Substituting this value of h in Eq. (572),

14
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multiplying through by u^^ and changing the form of the result-

ing equation, we have

Solving with reference to dQ^ and multiplying by 2, we have

ludu
2de-

^ \ 2V'R' I \ 2V'R' I

2 V'R'
,2udu

. (574)

,

'^ ^
V y - m'R' I

Integrating between limits corresponding to / = o and /, re-

membering that the initial radius vector coincides with 7?, we
have

„ . 2V'R''u'' -{V^ ^'R-") . .
,2^ = sm-^ ___Jy_^ ^-sin-^i; (575)

whence we have

sin (90° + 26/) = cos 2^ = --^—^Jl L,
(576)

Clearing of fractions and changing to rectangular co-ordi-

nates, we have, recalling that

cos"" 6 = -^-^-—3 and sin" 6 = -—--
,V

2 V'S' -{V' + lx'IP){x'' +/) = (V'- m'H^Xx' -/); (577)



CENTRAL FORCES, 211

whence we have

;^^ +^ = i, (578)

the equation of an ellipse referred to its centre and axes; hence

the orbit of a body acted on by a central attraction varying directly with

the dista?ice, is an ellipse whose centre is at the centre of force.

To find the velocity at any point of the orbit. Let v be the gen-

eral value of the velocity of the body in its orbit; then from
Eq. (558) we have

h^

^'=J.'
(579)

and from Eq. (556) we get

I _ ds" _ r'de''-^dr' _ du^

Hence

But from Eq. (572) we have

and therefore

V' = V + ix'{R- - r'), (583)

which gives v when r is known.
To find the Periodic Time. The semi-axes of the orbit are,

y
E<^- (578), J^ and -—=: The periodic time, or the time required
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for the body to complete its orbit, is, by the law of areas, therefore

V
"[^-^^ _2nRV__jn_

Hence the periodic time is independent of the dimensions of the

orbit.

Examples of orbits under this law are found in molecular vi-

brations; in the small vibrations of elastic bodies, such as tun-

ing-forks, stretched strings, etc.; and in the oscillations of a

pendulum through small arcs.

181. (2) If the central force be repellent, the discussion above

may be made applicable by changing the sign of /i' in Eqs. (568)

and (578); the equation of the orbit then becomes

^ = .; (585)

hence the orbit is an hyperbola whose centre is at the centre offorce,

182. (3) To find the orbit when the central force is attractive and

varies inversely as the square of the distance. Assume the same no-

tation as in the previous problem, and let the direction of the

initial velocity make any angle with the prime radius vector H.

Then we have

^ = ^' = ,,V = /5v(J + «), . . . (586)

or

dd" '

'^~
h^

%^ = ^ (587)



CENTRAL FORCES, 21

3

Multiplying by 2du and integrating, we have

From the initial conditions and Eq. (558) we have

^=¥-1^' (589)

and therefore #

5gi +«=^ +-^-^ (S90)

This equation may be written

by assuming

^^ = c'-{u-by (591)

¥ = ^ and _-^_ +^ = ... . . (59.)

From Eq. (591) we have, taking the negative sign of the radical,

vrT§T^^ = ''-' (593)

and by integration,

cos-^^y- = e + y, (594)

in which y, the constant of integration, is the initial angle which
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the prime radius vector makes with the fixed line of reference.

From Eq. {594) we get

... . u=^b-]-c cos {O-i-y), (595)

or

'' =
l, + ccoHd + y)

' (596)

and substituting the values of b and c,

which may be written

"^ ^ 'rJjT^ + I
.
cos (B-^y)

Comparing this with the polar equation of a conic section

referred to the focus as a pole,

'•-T+T^o70' (599)

we see that (598) is the equation of a conic section referred to

the focus as a pole, in which

'^y r/ +^> ('°^>

= (9 + X (602)
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5

Therefore the orbit will be an ellipsCy parabola or hyperbola accord-

ing as

V'R — 2)U' < o, =0 or > o;

that is, as

r<|/^, =|/? or >|/^. . .

183. To determine the meaning of y -~
, we have

(603)

R

1? ~ ~~?' (604)

Multiplying by 2dr and integrating between the limits r = 00

and r = jRy we have

or

.=/? (606)

Thus y ^ is shown to be the velocity which the body would

have if it should move from rest at infinity to the distance J^

under the action of the central force; it is called l/ie velocityfrom
infifiity at the distance R.

Hence we conclude that the orbit of a body under the action of a

central attraction varying inversely as the square of the distance will

be an ellipse, parabola or hyperbola according as the i?iitial velocity is

less than, equal to or greater than the velocity from infinity at the ini-

tialpoint.
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184. To find the velocity at any point of the orbit. For the ve-
locity at any point we have, Eq. (581),

^du

and hence from Eq. (590) we have

z/' = F'' + 2^'u - ^' (608)

or

z-'=F' + 2A<'(i-^] (609)

from which the velocity corresponding to any radius vector r can

be found.

We also see from Eq. (609) that the velocity at any point of

the orbit will always conform to that which characterizes the

particular orbit in question; that is, if the orbit be a parabola,

for example, the velocity at any point whose radius vector is r

2U'
will always be equal to — at that point, and, similarly, less than

-^ for the ellipse and greater than -^ for the hyperbola.

185. Tofind the time of description of any portion of the orbit.

(i) The Elliptical Orbit.—We have for the equation of the orbit

I I + <? cos d r, X- =u= — ^r-; ..... (610)
r ayj — e) ^ ^

hence

du e sin 6 /^ \
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and

d^u e cos d tc \

Therefore

!(i - e')

and since

A- ^,

we have

l^'= t^' ,x , (614)

or

//= Vyw'^(i -^») (615)

Therefore the periodic time is

y=
,

= 2;ry -^ (616)

We also have, from Eqs. (551) and (615),

dt z= -dO =——=== (617)

Differentiating Eq. (610), and substituting for sin its value de-

duced from the same equation, we have

-lft=
«^r^R̂ ^_

r f'aV -{r -ay ^ '
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Substituting in Eq. (617), we have

,, ^ JJ_ rdr ^ J^ \{r - a) -^ a\d(r - a)

^' Va'e' -(r- af M VaV - (r - a)'
^

Integrating between the limits corresponding to the nearer ver-

tex r^ = a(i — e) and any value of r, we have

t = \/^, [a sin -1 "^^^ - V^V -ir- a)"]^

= 4/j {a cos-'^ - V«V -{a- rf), . (620)

from which the time of description of any portion of the orbit

can be found.

Making r = a(i + ^), corresponding to the farther vertex, we
have for the semi-periodic time

^=^1/? (6^1)

Making r = a, corresponding to the extremity of the conju-

gate axis, we have

/ ii-^)^-' (^">

and hence for the time from the extremity of the conjugate to

the farther extremity of the transverse axis we have

C-+')*^,= ^ + AV-, (<i.3>
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From these values we see that the Velocity decreases from the

nearer to the farther extremity of the transverse axis, and then

increases to the nearer extremity.

The trajectory of a projectile in vacuo, under the supposi-

tion that its weight acts with constant intensity in parallel

directions, was shown in Art. 93 to be a parabola. The pre-

ceding discussion shows that this trajectory will be an arc of an

ellipse having the earth's centre at the farther focus, when grav-

ity is considered as a central force varying inversely as the

square of the distance from the centre of the earth. The trans-

verse axis of the ellipse is the vertical through the highest point

of the trajectory.

(2) The Parabolic Orbit.—We have for the equation of the

orbit

r = -^—, (6^4)
I -j- cos u

in which 2a is the semi-parameter. We therefore have

^ = ^.^^ +.]=-- = --,; , . .^ (625)

hence

and

/*' = — , or h" = 2a^', (626)2a

P

We have from Eq. (551)

^ =j»=n^ +^j=-7 (^^7)

dt = -de\
n

hence
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~ ^ '^'M, (i + cos ey

= y —j-i tan -» — tan -^ + - tan' -' tan' -'
. (629)

n n

Place tan -" = /, and tan -^ = t^^ then the equation above be-

comes

=t/g«. ->,)(
+'••+'•;+'•)

(630)

Let/ = I 4- ^'^ ^

, and we have
4

Let ^ be the length of the chord joining the extremities of the

radii vectores r, and r^\ then we have

^• = r.'-ir.r,cos(<?.-0.) + r,'

= (r, cos 0, — r, cos 8^)' -\- (r, sin ^, — r, sin S,)'. (632)
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We have also, since r = r~^g = 33^ = «( + tan» ^(f),

r, = a(i+0, r, = a{x+i,y, . . . (633)

I — f
"

2t
COS d^ = YZfr^ ^^" ^» = 11^''' * ' *

^^^"^^

^^^ ^> = fr^" ^'" ^* "^
^T^''* * ' '

^^^^^

Therefore

= 4a\t,-i,Y/; (636)

hence

c=2a(f,-ljy (637)

and

= ^''\y+'-^'Yi (638)

and similarly

r, + r,-c=2a^y-' i^^
^ (639)

Substituting in Eq. (631), we have finally

' =^j *'(v+^T^-'»^(v+^^^'}; (640)

from which / can be found in terms of the radii vectores and the

chord of the parabolic arc.
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rdr
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(3) The Hyperbolic Orbit.—We have for the equation of the

orbit

r = —^^ —
I 4- ^ cos 6^'

or

I e
U = —r^ r + --7-5 T cos ^; . . . . (641)

a(e^ — I) a(f — i)
v -^ /

and therefore

_ />« r'^dd

/^V^(.-i)4/{r + ay -^V

= 4/^ {
4/(.+.r-.v-.iog -+-+^(;+-)'i:£:f!

[ ; (64.)

from which the time corresponding to the description of that

part of the orbit from the vertex to the point corresponding to

any radius vector r can be found.

186. The Anomalies.—When the central attraction varies in-

versely as the square of the distance, the position of the body in

its orbit is generally referred to the right line coinciding with

the least radius vector. This line is called the line of apsides ^ and

its intersections with the orbit are called apses; the one nearer

to the focus being the lower^ and the other the higher^ apsis. The
angle included between the line of apsides and the radius vector

is called the anomaly^ and is measured from the lower apsis as an

origin.

Let us place

cos-i—^j- = «^, (643)

an auxiliary angle; then we have

r = a{\ — e COS, n) (644)



CENTRAL FORCES. 223

Substituting the value of u in Eq. (620), we have, after placing

nt = u — e s\n u (^45)

Equating the values of r from Eqs. (644) and (610), we have

. . . (646)
1 —e'

=z I — e cos u,

whence

and therefore

or

I -{- e cos d

_ (i — e)(i -fcos u)^
I + cos 6

I — cos 6

1 — e cos u

(i + ^) (i — cos u)

I — e cos

— cos 6 I 4" ^ I — cos u
I -\- cos 6 1—^*1 + cos «*'

tan-^
2

./i + e I

y —!— tan -u.

(647)

— e

(648)

(649)

The angle 6 is called the true anomaly, u the eccentric anomaly^

and ;«/ the mean ano??ialy.

From Eqs. (644), (645) and (649) the values of the true

anomaly ^and the radius vector r can be found in terms of the

eccentricity and the mean anomaly. (See Price's Calculus, vol.

iii. pp. 561-567.) These are

d=nt-\-2e sin nt-\- —e* sin 2nt-\ (13 sin snt—^ sin nt)-\-etc.;

•=«( I—^cos nt-\—(i —cos 2nt)—- (cos 3«/— cos «/)-|-etc.
J.

(650)
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Hence, knowing the mean motion, the time since the epoch,

and the eccentricity, the true anomaly or the angular distance of

the body from the line of apsides, and the distance of the body

from the focus at once results. The difference between the true

and mean anomaly d — 7it, called the Equation of the Centre, is

evidently a function of the eccentricity, and its value is obtained

at any time / from the first of Eqs. (650).

187. To illustrate the geometrical meaning of these quanti-

ties let APB'A^ Fig. 64, be the elliptical orbit, .V the centre of

force afthe focus, P the position of the body, SP ~ r, PSA =
6 and AC = a. On AA^ describe a semicircle APA\ From
the properties of the ellipse we have

SP = a- eCM,

and therefore

r •=^a — ae cos QCM
= « — ae cos u, .

(651)

(652)

From Eq. (616) we see that the periodic time is independent

of the eccentricity of the ellipse; it is therefore the same as that

in the circle whose radius is a; but in this case e = o, r = a, 6 =1

u = nt. Hence nt represents the arc of

the circle which would be described

uniformly by a body in the same time

as that in which the elliptic arc is de-

scribed, both bodies starting from A^

and both reaching^' at the same time;

71 is therefore called the mean motion

of the body. Since sin u is positive in

the first two quadrants, we see, Eq.

(645), that u is greater than nt while

the body is describing that part of its

orbit from A to A\ and less than nt from A' to A; therefore the

true place of the body is in advance of its mean place in the first

and second quadrants, and behind in the third and fourth; nt is

Fig. 64.
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therefore called the mean anomaly, and since u depends on the

value of ^, «* is called the eccentric anomaly. Both the velocity

and the angular velocity are greatest at A and least at A\ as is

seen from the equations giving these values in the laws of cen-

tral forces.

The Solar System.

l88. The Solar System consists of the sun and other bodies

whose relative positions and motions are mutually dependent,

and which taken together may be considered as a single system

of bodies in space. It derives its name from the sun, the great

central body about which all the other members of the system,

called /r/Vz/^ry or secondary bodies, revolve.

Th.Q primary bodies are:

(i) The four inner or lesser planets. Mercury, Venus, the Earth

and Mars, named in order of their distance from the sun.

(2) A group of minor planets called Asteroids, of which over

two hundred and sixty have so far been noted and catalogued.

(3) The four outer or greater planets, Jupiter, Saturn, Uranus,

and Neptune.

(4) A number of Comets and Meteors, or bodies having masses

much smaller, and generally orbits of much greater eccentricity,

than those of the planets and asteroids.

The secondary bodies are the Satellites or Moons of the planets,

which describe orbits about the latter and are carried with them
in orbital motion about the sun; of these now known three be-

long to the inner and seventeen to the outer planets.

All the bodies of the solar system are spheroidal in form, and

their diameters are very small compared with the distances

which separate them from each other. In addition to their or-

bital motions they have a motion of rotation about their axes.

The mass of the sun is more. than seven hundred and forty

times as great as the sum of the masses of all the other bodies

of the system. Owing to this fact, and to the relative positions.

15
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of the planets, the centre of mass of the entire system lies within

the sun's volume and not far from its own centre.

189. Kepler s Laws.—John Kepler, of Wurtemburg, was the

first to announce the laws governing the motion of the planets

about the sun. This announcement was the result of more than

twenty years' faithful and laborious study of the observations

collected by his predecessor Tycho Brahe. Kepler's investiga-

tions were principally directed to the explanation of the appar-

ent irregularities of the motion of the planet Mars, whose orbit

was at that time supposed to be an epicycloid. These laws of

Kepler not only completely accounted for the motion of Mars, but

also satisfactorily explained the motions of all the other planets

about the sun, and those of the satellites about their respective

primaries. These laws are:

(i) The orbit of each planet about the sun is an ellipse^ having one

of its foci in the suits centre.

(2) The areas described by the radius vector of each planet in its

orbital motion vary directly as the times of describing them.

(3) The squares of the periodic times of the planets are directly

proportional to the cubes of their fnean distances from the suns centre.

190. If we assume, for tlie present, that these laws are accu-

rately true, we readily deduce the following consequences, viz.:

(i) The orbit of each planet being an ellipse having the sun's

centre in one focus, it follows that the value of the relative ac-

celeration becomes, Eq. (613),

^ _ hW _ h' I

that is, the relative acceleration varies inversely as the square of the

distance of the planetfrom the centre of the sun.

(2) From the second law, or that of equal areas described in

equal times, we have

r^dd = hdt = xdy — ydx (654)
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Whence, after differentiating and dividing by <//', we have

Multiplying by M\ the mass of the planet, we have

M-'^-^,x-M'^-^y=Yx-Xy=o. . . . (656)

Therefore the action-line of the reciprocal attraction of the sun and

the planet always passes through the sun's centre; and since this re-

ciprocal attraction varies inversely as the square of the distance,

the force which keeps the planet in its orbit is a cejitralforce.

(3) From Eq. (6i6) we have for the square of the periodic

time of one of the planets whose mean distance is a* and whose
mass is M'

r^ = '-^; (657)

in which /i' is the intensity of the central attraction for a unit

mass at a unit's distance. Similarly for another planet whose
distance is a" and mass J/" we have

A^tfi

whence we have

^» =^; (658)

From Kepler's third law, we have

T'^ ~ a'
(660)
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which being substituted in the preceding equation gives

That is, the rigid truth of Kepler's third law involves the

equality of the central attraction for all the planets. But

/<' = (Jf+ M')^ and /t" = {M -\- M'')/i; . (66 1>

hence, since the masses of the planets are known to be unequal,

we must conclude that Kepler's third law is not rigidly true.

If the masses of the sun, 1,000,000,000, of Jupiter, 954,305, the

greatest, and of Mercury, 200, the least of the planets, be substi-

tuted in (661), we find

^ = 1.000954, (662)

and this ratio will be more nearly equal to unity for any other

pair of planets. The discrepancy in assuming unity for the ratia

^ for the planets of the solar system is therefore in general

negligible, and the consequence of Kepler's third law may be

taken as true within sensible limits.

191. -Law of Gravitation.—Later and more accurate observa-

tions than those which Kepler employed show that his laws are

not exactly true, but are only very close approximations to the

truth. The single law which governs planetary motions and

definitely fixes their actual departures from the positions as-

signed by Kepler's laws is that of universal gravitation, which

is thus enunciated by Isaac Newton:
That every particle of matter in the universe attracts every other

particle^ with an intensity which varies directly as the product of their

masses^ and ifiversely as the square of the distance which separates them.

Newton deduced this law from his investigations of the rela-

tive acceleration of the moon, in a direction normal to its orbit
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about the earth. He proved tliat the earth's relative attraction

on the moon caused it to fall towards the earth, with an acceler-

ation due to gravity, modified only by the increased distance and

greater mass of the moon, precisely as a body near the earth's

surface falls with its particular acceleration; and therefore con-

cluded that the law of attraction between the earth and moon
was essentially the same as that between the earth and body.

From this deduction the generalization to the enunciated law of

gravitation followed.

The intensity of the reciprocal attraction between the sun

and a planet, whose masses are M and M' respectively, under

the law of gravitation is therefore

G = -—t-m; (663)

/f in this expression being the intensity of the reciprocal attrac-

tion of a unit mass for another unit mass at a unit's distance.

Therefore the partial differential equations of the undisturbed

orbit of a planet about the sun, Eqs. (546), become, under the law

of gravitation,

d'x MM'
-}XX\

dt"" r

d\ MM'

d^'z _ MM'
dt'

- -7^^^'

(664)

Kepler's first and second laws can be deduced directly from

these equations, and hence are simply the consequences derived

from the undisturbed orbit of a primary about the sun under the

supposition that the law of gravitation is the governing law of

their inutual attraction.

The differential equations of the actual or disturbed orbit can

be obtained immediately from Eqs. (545), by substituting the

values which the symbols (MM'), {MM") and (M'M") take
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under the law of gravitation, and the resulting equations will

differ from (664) only in the third and fourth terms. The latter

being computed and applied properly to the undisturbed orbit

will give the actual orbit of the planet. These terms, called the

perturbating functions of the orbit, depend upon the relative attrac-

tions of the other planets for tlie sun and for the planet whose
orbit is to be determined. Owing to the relatively great mass
of the sun, and to the immense distances which separate the

planets from each other, \\i^ perturbations or actual displacements

of a planet from its undisturbed orbit are sensibly infinitesimal

quantities, compared with the actual distance of the planet from
the sun. Hence the component rectangular displacements due
to the perturbating action of each planet may be computed for

each planet separately as if it alone acted; then the algebraic sum
of the separate perturbations in any direction may be taken as

the resultant perturbating effect in that direction due to the

simultaneous action of all the planets, without the least appreci-

able error. Because of this fact, tlie problem is called the prob-

lem of three bodies^ viz., the sun, the planet and the perturbating

body.

The theoretical deductions which flow from the assump-

tion of the law of universal gravitation as the governing law of

planetary motion have been amply confirmed by the accurate

astronomical predictions of the positions and motions of the

planetary bodies, made years in advance, and markedly so, by

the circumstances attending the discovery of the planet Neptune;

so that the law itself is at present accepted as the fundamental

law of physical astronomy.

192. Planetary Orbits.—The undisturbed orbit of each of the

bodies of the solar system has been shown to be a plane curve,

whose plane passes through the sun's centre; but it is ascer«

tained, by observation, that no two of these planes are coincident.

In order to find the relative positions and motions of the bodies

of the solar system at any time, it is necessary to refer them to

the surface of the celestial sphere by some system of spherical

co-ordinates.
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1

The celestial sphere is usually taken to be that sphere which

is enclosed by the surface of the visible heavens; but it may be

taken to be any sphere whose centre is tlie position of the ob-

server, and whose radius is entirely arbitrary. The Ecliptic is the

great circle of intersection of the celestial sphere, by the plane

of the earth's orbit. The Celestial Equator, or Equinoctial, is the

great circle of intersection of the celestial sphere, by the plane of

tiie earth's equator. The poles of the heavens are the poles of

the Equinoctial, or are the points in which the earth's axis pro-

duced pierces the celestial spiiere. T ho. Equinoxes are the points

in which the equinoctial and ecliptic intersect; the Vernal Equi-

nox being that point in which the sun appears at the beginning

of spring, and the Autu?nnal Equinox that in which it appears in

the beginning of autumn. Celestial longitude and latitude are

spherical co-ordinates by which any point is referred to the plane

of the Ecliptic, and to that of a great circle of the celestial sphere

perpendicular to the ecliptic, passing through the vernal equi-

nox. Celestial longitude is the angular distance from the vernal

equinox, measured on the ecliptic eastward ly in direction, to the

circle of latitude which passes through the position in question;

-eiud celestial latitude \s the angular distance to the given point,

from the ecliptic, measured on that circle of latitude which

passes through the given point. The line of intersection of the

plane of a planet's orbit with the plane of the ecliptic is called

\.\\Qline of nodes; the ascending node being the point of the planet's

orbit at which the planet passes from south to north of the

ecliptic, the other being the descending node. The nearest point

of a planet's orbit to the sun is C3.\\&6. perihelion, and the farthest

is called aphelion.

The elements of a planefs orbit are seven in number, viz.:

(i) The inclination of its plane to the plane of the ecliptic.

(2) The longitude of the ascejiding node.

(3) The orbit longitude oi perihelion.

(4) The mean distance of the planet from the sun, or the semi-

transverse axis of the planet's orbit.

(5) The eccentricity of the orbit.
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(6) T\\Q position of the planet at any given time, as at \.\\q epoch.

(7) The ?}ica?i orbital fnotion.

The first two of these elements fix the plane of the orbit with

reference to the plane of the ecliptic; the third fixes the position

of the line of apsides in this plane and from which the anomalies

are reckoned; from the fourth and fifth the form and dimensions

of the ellipse are determined; and the last two, called the ele-

ments ofposition, locate the planet in its orbit at any time.

The elements of any planetary orbit are deduced from three

consecutive observations of its position in right ascension and

declination and the times of observation, by methods which will

be explained in the course in Astronomy.

Since the mean motion depends on the periodic time, and the

latter, by Eq. (616), depends on the mass of the planet, it is nec-

essary to explan how the mass of a planet is ascertained. The
masses of the planets are so small, in comparison with the mass

of the sun, that their values cannot be ascertained from Eq.

(657) after substituting the observed periodic times and mean
distances. But if we consider the planet Jupiter and one of its

satellites, we will have, for the periodic time T' of the latter

about Jupiter,

^' = ^T-.^ (^^3)

in which a' is its mean distance from Jupiter, and m its mass; /(,

the attraction of a unit mass at a unit's distance, being here

taken as unity. Similarly, for the periodic time of Jupiter about

the sun, we have

whence we have



THE SOLAR SYSTEM, 233

if ;;/ be supposed small compared with M\ and M' small com-

pared with M. Substituting the known values of T^ T', a and

^', we have the ratio of the mass of Jupiter to that of the sun.

In the same way the masses of all the planets having satellites

may be compared with that of the sun; and if the mass of one of

these be found, that of the remaining planets will at once result.

To find the mass of the planets Mercury and Venus^ which have

no satellites, recourse must be had to their perturbating effects

on the other planets.

The mass of the earth has been ascertained by direct meas-

urement of its figure, magnitude and density. From the direct

geodesic measurement of the arcs of the meridian in England,

France, Russia, India and Africa, the form and dimensions of

the earth have been determined. The density has been directly

investigated by means of Dr. Maskelyne's observations with the

pendulum near Schehallien Mountain in Scotland; and also by

the experiments of Cavendish and Bailey from the attraction of

leaden balls on small masses. From these, the mass of the earth

having been found, the masses of the sun and the other planets

are readily obtained. The further discussion of planetary mo-

tions is reserved for the course in Astronomy.
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193. Thus far we have regarded bodies as rigid solids, eitlier

wholly or partially free to move under the action of extraneous

forces. But the various devices or machines designed for the

transfer of energy from one system of masses to another are

made up of parts which are neither free nor rigid; and in their

use certain resistances are developed by the active extraneous

forces, which malce the actual results differ from the theoretical

more or less widely. It is the office of Experiment to find the

values of these resistances, to tabulate the results, and to deduce

therefrom the experimental Imvs covering all cases that may arise

in practice. We will consider briefly the resistances of Friction

and Stiffness of Cordage.

Friction.

194. Friction is the resistance which the surface of one body
offers to the sliding or rolling upon it of any other body. It is

due to the roughness of the surfaces of bodies; for as no degree

of polish can make any surface perfectly smooth, there will

always be minute projections on one surface which interlock

with those of the other. These projections must be broken

down, abraded or lifted over each other before motion can take

place. When the roughness of any two surfaces is diminished

by polish or lubricants the friction between them decreases.

The friction which opposes a change of the body from rest

to motion is called static friction, and that which accompanies

motion is called kinetic friction. The latter may be either sliding

or rolling; thiis a heavy body dragged over a surface, an axle
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turning in a journal-box, and a vertical shaft turning on a hori-

zontal plane, give examples of sliding friction; while a wheel

rolling over the surface of the ground is resisted by rolling fric-

tion. Sliding friction, being the more common, will be alone

discussed.

The action-line of friction coincides with the tangent to the

surfaces at the point of contact, and its direction is always op-

posite to that of the motion. The intensity of friction must al-

ways be determined by experiment, or may be assumed trom

previous experiments on similar bodies and surfaces. Such

results iiave been generalized into what are known as the laws

offriction. The accepted laws have been deduced from the ex-

periments made by Coulomb in 1781, and from those made by

Morin under the direction of the French Government in 1830-4.

They are :

(i) The intensity offriction^ for the same material surfaces, varies

directly with the normalpressure.

(2) The intensity offriction is independent of the area of contact of

the surfaces.

(3) The intensity offriction is independent of the velocity of motion

of the rubbing surfaces.

Recent experiments indicate that the last law is only ap-

proximately true for velocities less and greater than those em-
ployed in the experiments of Morin; and since the laws are

wholly experimental, we are warranted in accepting them only

within the limits covered by the experiments from which they

were deduced. In static friction there are also variations de-

pending on the length of time during which the surfaces have

been in contact, and therefore greater discrepancies occur in this

kind than in kinetic friction.

195. Coefficient of Friction.— If iV represent the normal pres-

sure, F the intensity of friction for any two surfaces due to Ny
and /"the intensity of friction for a unit of normal pressuie, we
have, from the first law,

F=fN, or /=^. (668)
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f is called the coefficient offriction, and when known for any two
surfaces the total friction for those surfaces can be found for any
normal pressure. Its value depends upon the nature of the rub-

bing surfaces, upon their smoothness, and upon the degree of

lubrication given lo them.

To find /experimentally in any particular case, let the body
be placed upon a plane surface, Fig. 65, and let the latter be

gradually inclined to the horizon until the body is in a state

bordering on motion ; then if motion

be given the body, it will descend the

^ws$7m plane uniformly. The forces are the

weight of the body acting vertically

downward, and the friction resisting up
the plane. The normal component of

the weight, if a be the angle made by the
^^^- ^5- plane with the horizon, is ^cos a, and

hence the friction \sfW cos a. The component of the weight

parallel to the plane urges the body down the plane, and is

W sin a\ and since the motion is uniform the intensity of the

parallel component must be equal to that of the resistance due

to friction. Hence we have

fIV cos a = JV sin a, (669)

and therefore

/= tan a (670)

That is, t/ie coefficient offriction for any two materials is equal to

ihe natural tangent of the inclination to the horizon which a plane of

one of the substances must make in order that a body of the other sub-

stance may descend uniformly due to its weight when resisted only by

friction.

The inclination of the plane is usually called the attgle offric-

iion^ and sometimes the limiting angle of resistance. To explain

the meaning of this latter term, let a body rest on a plane in-*

clined at the angle of friction; it is then said to be in a state
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bordering on motion downward. The angle at the centre of

gravity of tlie body, made by the direction of the weight and the

normal to the surface, is then equal to or, the angle of friction.

If any force P whose action-line lies ivithin the angle a be supposed

introduced at the centre of gravity, it is evident that the addi-

tional developed friction arising from the normal component of

P is greater than the component of P parallel to the plane;

therefore the body will be no longer in a state bordering on

motion. If the action-line of a force fall outside of the same
angle on the side of the weight, the additional friction developed

by its normal component will be less than the intensity of its

parallel component ; therefore the body will move down the

plane with accelerated motion. If the action-line of any force

coincide with that of the weight, the body will still be in a state

bordering on motion downward, and it put in motion it will

descend the plane uniformly.

196. Problems involving Frictioti.—(i) Motion on a Plane Surface^

Let a body resting on a plane. Fig. dd, be

acted on by its weight, W^ and let any ex-

traneous force whose action-line lies in a

vertical plane, and whose intensity is /, be

applied to it; let / be the inclination of the

plane to the horizon, and d the angle made
by the force with the plane. If the body ^'^- ^^•

be bordering on motion downward the friction will act up the

plane, and we shall have, from the principles of equilibrium,

/( J^cos /— /sin 6^) = fFsin / — /cos ^, . . (671)
whence

/= ^^
sin/-/ cosj;

If the body be bordering on motion up the plane, the action-

line of friction will change direction by 180°, and the value of /
can be obtained from the preceding by changing the sign of/; or

sin/+/cos/
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Therefore the value of / may vary between these limits without

causing motion in the body.

Considering / a function of 6^, we have, after differentiating

the last equation,

dl . . . . J. .V sin —f cos d tr \

-:Ja
= ^(sin ^ +/C0S t)-, a , r . n-.^ • • (674)dd ^

'
-^

^(cos ^+/sm^)^ ^ ' ''

Applying the condition for maxima and minima, by placing

the second member equal to zero, we find

/ = tan 6, or 6 = tan - i/,
(675)

which corresponds to a minimum value of /; therefore a force is

applied to the best advantage in moving a body up a plane when
its action-line makes an angle with the plane equal to the angle

of friction. As this result is independent of /, it is true what-

ever be the inclination of the plane to the horizon, and is there-

fore true if the plane be horizontal.

(2) To find the Friction on a Trunnion.—The cylindrical pro-

jections at the extremities of an axle are called trunnions; the

cylindrical box upon which a trunnion is supported is called a

trunnion-bed or pillow-block. When the axle is supported on its

end, the latter is called 2, pivot.

Let A^ Fig. 67, be the trunnion, B the trunnion-bed, and C
any element of contact during rotation; let R
be the resultant of all the extraneous forces

acting on the trunnion, excluding friction; N
and T the normal and tangential components

of R respectively. If the trunnion rotate, it

will rise in its box until the developed friction

F is equal to 7", after which sliding will occur

at the element of contact. Then the resultant

of R and F will be normal to the surface of the trunnion at the

\ i
>

A \,iM 1;

^s->
^ B

'\1
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element of contact, and will be equal to N. Let a be the angle

between R and N\ then we have

N=RcQsa and T = R sia a =1 F\ . . (676)

whence

_=/=tanaf (677)

Therefore the element of contact during rotation is that at which

the normal to the trunnion makes an angle with the resultant

equal to the angle of friction.

To find the friction we have

(678)
I + tan'' a 1+/"' *

multiplying by/'^' and extracting the square root, we have

Fr=fN=fR cos a =/R '._. = R-j^-, (679)
y I + tan" a Vi +/"

That is, the friction on trunnions is equal to the resultant of the

extraneous forces multiplied bv , in which / is the co-

efficient of friction for the materials which compose the trunnion

and box.

The moment of friction on trunnions, if r be the radius of

the trunnion, is

Rr / , (680)

and the work consumed by friction in n complete turns is

R27trn—-£=^. (681)
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From the second law of friction we see that the intensity of

friction and the work are independent of the length of the trun-

nion.

(3) Friction on a Circular Pivot.—Let the shaft be vertical and

its pivot end a circle of radius a^ Fig. 68, resting on a

horizontal surface; and let the centre of the circle of

contact be the origin of the polar co-ordinates r and 6^,

which fix the position of any elementary area of contact.

Fig 68 Let/ be the intensity of the normal pressure on each

unit of area, which is equal to the whole normal pres-

sure divided by the area of tiie pivot surface.

The expression for any elementary area is

rdrdd',

the normal pressure upon it is

prdrdQ\

the developed friction is

fprdrdB',

and the moment of this friction with respect to the axis of the

shaft is

fpr'^drdd.

Integrating this last expression between proper limits, we have

for the resultant moment of the friction on a pivot

M=
I I

fpr'drdd = %fp7ta\ . . . (682)

If iV represent the whole normal pressure, we have

N=p7ta\ {eZz}

whence

M^fN^a (684)
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Therefore the moment of friction on a pivot is equal to the pro-

duct of the coefficient of friction for the materials of which the

shaft and support are made, the total normal pressure, and two

thirds of the radius of the pivot surface.

From this we see that the moment of friction may be dimin-

ished by decreasing the circular area of the pivot, provided the

diminished area be sufficient to withstand the normal pressure

without penetrating the surface on which it rests. The distance

\a is called the viean lever of friction on pivots, and we see that

if the whole friction be supposed concentrated on an arc of this

radius its moment will be the same as the resultant moment of

all the elementary frictions.

The work consumed by friction in 11 revolutions is

27tnfNla. (685)

(4) Friction on a Ring Pivot.—Let the inner and outer radii of

the ring be a and a' respectively; then (Eqs. (682) and (683))

M=\fpn{a" -a') (686)

N=pn{a"-ay, (687)

whence

^=t/^S^ (^^*)

If b be the breadth of the ring and rbe its mean radius, we have

^' = r + \b,

a = r — \b\

which substituted in Eq. (688) give

^=/A-(r+^g. ..... (689)

r6
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The factor Ki^f) is called the mean lever of friction for

a ring pivot.

The quantity of work consumed by friction on pivots in n

revolutions of the shaft, / being the mean lever of friction, is

27tnfNl. (690)

(5) Friction of a Cord on a Cylinder.—Let R be the radius of

the cylinder, s the length of the cord in contact, and 7\ and T^

the tensions at first and last points of contact, T^ being greater

than T^. If there were no friction T^ would be equal to T^\

hence the excess T^ — T^, when the cord is in a state bordering

on motion, is due to friction. Let T be the tensions at the ex-

tremities of the elementary arc ds^ and let 6 be the angle included

between their action-lines. Their resultant N is then

JV= VT''-\-2TTcose-\-T'' = TV2{i + COS 6) = 2 T cos id. {691)

If 0, Fig. 69, be the angle at the centre of

the cylinder subtended by ds, we have

cos id = sin i(p.

Whence, since <p is very small,

Fig. C I\r=:2Ts'ini<P= T4>= T^. (692)

The friction due to iVis then

/N=fT

and this being the increment of the tension, we have

,dsdT=fTR

{^93)

(694)
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Whence

Integrating, we have

or

-^ =/^- (695)

logT'^^' + logC, (696)

T — Ce^ (697)

When J = o we have T— T^, and when 5 = 5 we have T =. T^\

therefore

T,= T,eR=.T,ef-n-, (698)

n being the number of times the cord is wrapped around the

cylinder. This relation may be written

^^e^-"- (699)

From which it is seen that as the number of turns increases in

arithmetical progression 7", increases in geometrical progression.

We see, also, how it is possible for a man exerting a tension T^

on the free end of a rope wound several times around a pile to

hold in equilibrium the very much greater tension 7", of the

other end caused by the stoppage of a boat at a wharf.
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Stiffness of Cordage.

197. In theoretical mechanics a cord is defined to be a collec-

tion of molecules so united as to form a perfectly flexible mate-

rial line. Considering it also to be without weight and to be

inextensible, the effect of a force is supposed to be transmitted

along its length without loss.

The tension of a cord is the intensity of the force which tends

to separate any two of its adjacent sections.

Cordage is a term applied to all varieties of lines, cord, and

rope, formed by twisting together the textile fibres of hemp, flax,

cotton, etc. Since these fibres are neither perfectly flexible nor

inextensible themselves, cordage must be much less so, and hence

will offer a resistance to being bent from the direction which it

naturally assumes. By stiffness of cordage is meant the resistance

which it offers when it is forced to take a curved form in adapt-

ing itself to the surfaces of wheels and pulleys.

The law of this resistance has been deduced by Coulomb from

numerous experiments made on different kinds of cordage. He
found that the stiffness of cordage is composed of two parts, viz.,

one, a constant depending on the natural torsion of its fibres; the

other, a variable depending on the intensity of the stretching

force applied to the cord. He also found that for the same cord

it varies inversely with the diameter of the wheel around which

the cord is bent. If ^S be the stiffness, K the constant part due

to the natural torsion of the fibres, / that due to a unit of ten-

sion, W the total tension, and D the diameter of the wheel,

Coulomb's experimental law for a particular cord is expressed

by the formula

*5=—^ (700)

The quantities K and /, according to Morin, ought properly

to be expressed in terms of the number n of yarns of whicli the
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rope is composed. Making use of Coulomb's results, Morin found

that if / be assumed to vary with «, and if K be taken to consist

of two terms, one proportional to n and the other to «", the values

of 6" derived from

11»$= -^(0.002148 + O.OOI772W -|- 0.0026256 ^) . (701)

would conform to all of Coulomb's results for ordinary new
white rope, and

6* = -^(0.01054 + o.oo25« + 0.003024 fF) . . . (702)

to those for tarred rope. These formulas of Morin are identically

those of Coulomb, when for white rope we place

K = «(o.oo2i48 -|- o.ooi772«) and / =: «(o.oo3024),

and for tarred rope

J^ = ^(0.01054 -|- 0.0025//) ^"d -^ — «(o.oo3024).

The values of S in pounds, for both kinds of rope, bent over a

wheel or axle one foot in diameter, under a tension of one pound,

are given in Table VI. For other axles and tensions these values

substituted in the above formulas will give the desired results.

The stiffness of partly worn or oily rope is less than that of

new rope; it may be only one half as great. The *' natural stiff-

ness" ^of wet rope is twice that of dry, while the value of / is

the same for both.

The stiffness of Cordage consumes work when the cord is

wound on the wheel so as to adapt itself to the circumference.

This work is equal to the product of the intensity of the resist-

ance by the path described by its point of application, estimated
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in the direction of the resistance. The path is evidently equal ta

the length of that portion of the cord wound on the wheel, which

is the actual distance passed over by the resistance. Then if it

be the number of turns of the wheel, the cord wound is in length

equal to tmtR^ and the quantity of work consumed by the stiff-

ness of the cordage will be, for new white rope,

= {K^ IW)n7t (7o3>

From this we see that the work consumed in n revolutions

is independent of the radius of the wheel; as it should be, since

the increased stiffness for a wheel of smaller radius is compen-

sated by the less path over which the resistance works in making
one complete turn.

Machines.

198. A machine is any instrument or device designed to

receive energy from some source, and to overcome certain resist-

ances in transferring this energy to other bodies. Every

machine consists of three essential parts, viz., the driving point,

the working point, and the train. The first is the point at which

the energy is received, the second that at which the transmitted

energy is applied, and the third is the series of parts connecting

the first and second.

Tlie operating forces in a machine are classified as Powers

and Resistances. A power is a force which increases or tends to

increase the momentum of the parts of a machine; a resistarice

is a force which diminishes or tends to diminish their momentum.
Those resistances which the machine is primarily designed to

overcome are Ccilled useful, and the energy expended in overcom-

ing them is called useful work : all other resistances are called

prejudicial or wasteful, and the energy expended in overcoming
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them is called wasteful or lost work. From these definitions we
see that the action-lines of the powers must either coincide, or

make acute angles, with their corresponding virtual velocities,,

and consequently (Art. 68) their elementary quantities of work
will be positive; and that the action-lines of the resistances must

either be opposite to, or make obtuse angles with, their respec-

tive virtual velocities, and hence their elementary quantities of

work will be negative. Recalling the fundamental principle that

enersry can neither be created nor destroyed, we see that in the

discussion of a machine it is necessary to ascertain what amount
of energy it has received from the source, and how much of this

has been exchanged for useful and lost work, and how much still

continues in tlie machine as potential or kinetic energy. The
energy received by the machine is generally designated as the

work of the powers; that which has been distributed by the ma-
chine to masses forming no part of the machine is the work of the

resistances,

199. Theory of Machines.—Resuming the Equation of Energy,

we may apply it to any machine by letting P and dp represent

the type-symbols of the intensities and projected virtual veloci-

ties of the powers, Q and dq those of the resistances, and m the

mass of any particle of the machine; then we have

:2Pdp - :2Qdq =^ ^m-^Js (704)

Integrating, we have

:2jpdp-:2jQdq^\^mv'^C . . . (705)

for the general equation of energy applied to machines. If z\ be

the type-symbol of the velocities of the masses j?i at the instant
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tlie machine begins to receive energy from the source, we have,

since the work of the powers and resistances is then zero,

C — — \^mv^ (706)

Substituting this value of C in the general equation, we have

^fPdp - ^jQdq = i2mv' - i:^mv;. . . (707)

If the machine start from rest, thenz;„= o, and Eq. (707) becomes

2rFdp-2fQdq = i:2mv' (708)

If the integration be taken between any limits corresponding to

the states i and 2, Eq. (705) will become

^ rPdp - 2 rqdq = \^mv^ - i2mv,\ . (709)

The theory of machines is embodied in the general equation

(707), and may be derived from either of its special forms, Eq.

(708) or (709). Taking (709), which applies to any machine in

operation, we see that if its kinetic energy increase between any

two successive states, the increment is exactly equal to the ex-

cess of the work of the powers over that of the resistances in the

intervening interval of time. If its kinetic energy diminish, then

the loss is equal to the excess of the work of the resistances over

that of the powers, and should this condition continue, the ma-

chine will come to rest when the total kinetic energy is wholly

absorbed in making good the deficiency. If there be no change

in the kinetic energy the total work of the powers is exactly

equal to that of the resistances during the interval in which the

kinetic energy is invariable.
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Hence, it appears that when the work of the powers, in any

interval whatever, exceeds that of the resistances, the excess is

stored up as kinetic energy in the masses which constitute the

machine; and when more work is required by the resistances

than is supplied by tlie powers in a given interval of time, the

deficiency is made good by the withdrawal of kinetic energy

from the parts of the maciiine. The total quantity of work done

by tlie powers from the instant the machine starts from rest un-

til it comes to rest again, or from any particular state of motion

to the same state again, is precisely equal to the work of the re-

sistances in this interval. Therefore, whatever energy is received

by the machine is employed in making resistances perform work,

and the object of any machine is to get as much useful work done

by the expenditure of a definite quantity of energy as is possil)!e.

Whatever kinetic energy remains in the machine at any instant

is simply the work of the powers which has not heretofore been

used in overcoming recurring resistances, and hence is continu-

ally accumulating, to be afterwards utilized as necessity requires.

200. Use of Fly-7vheel.—Due to the construction and applica-

tion of many machines, it often happens that the energy received

from the source, and that consumed by the resistances, vary

with the time; and, in addition, these variations of supply and

demand may neither be equal nor simultaneous. In such cases,

if the machine be of relatively small mass the acceleration of ve-

locity of its parts will be correspondingly great, and the whole

machine will be subject to rapid changes of motion, wliich are

often detrimental. To obviate such a defect, the mass of the ma-
chine may be increased by the addition of 2i fly-wheel. This con-

sists of a mass of matter distributed in the form of a ring and

suitably connected with the rotating shaft on which it is mounted.

We have seen that the kinetic energy of rotation is measured by
^Qo^'^mr'^, in which co is the angular velocity and "^Jtir^ the mo-
ment of inertia of the rotating mass with respect to the axis of

rotation. Hence the changes in g?, due to any change in kinetic

energy, may be made as small as we please by suitably increas-

ing ^Av/-"; this may be done by increasing either the mass or the



250 THEORY OF MACHINES,

radius of gyration with respect to the axis. By the introduction

of a suitable fly-wheel the changes of velocity may thus be di-

minished to any desired degree. The greater the moment of in-

ertia of the fly-wheel, the greater will be the quantity of work
which it will store up for a given increase in its angular velocity,,

and, similarly, the more it will yield for a given decrease. As
the change of level in a reservoir, due to the addition or dis-

charge of a given quantity of water, will be less noticeable as

the surface area is greater, so likewise will be the changes of

velocity in the moving parts of a machine, due to a difference

between the work of the powers and that of the resistances, ac-

cording as the moment of inertia of its fly-wheel is greater.

From this analogy, the fly-wheel may be regarded as a reservoir

of work in a machine.

201. Efficiency.—If W be the whole amount of energy sup-

plied to a machine in a given time, during which its kinetic

energy remains constant, and Wu and Wi be that employed in

overcoming the useful and wasteful resistances respectively, in

the same time, then

W-Wu^ Wi. (710).

The ratio of the total work to that of the useful resistances,.

or-^j^, is called the modulus or efficiency oi the machine. This

ratio is evidently always less than unity, which is its maximum,
limit, and which it can never reach, since Wi can never in actual

machines become zero.

Wi can be diminished in value:

(i) By avoiding all unnecessary friction.

(2) By diminishing the intensity of the necessary iv\Q.x!\ovi\ this.

may be accomplished by selecting material for the contact sur-

faces whose friction-coefficients are small, or reducirig these co-

efficients by the application of lubricants.

(3) By decreasing the moments of friction in rotating parts,.
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either by decreasing the coefficients as above, or by shortening^

the lever-arm of friction, or both.

(4) By such an assemblage of parts, arrangement of supports

and solidity of foundation, as to avoid sudden and unnecessary

vibrations and shocks. These consume work which is dissipated

in the form of heat-energy.

The principal sources of energy, whether from fuel, air in mo-
tion, animal or water power, etc., have received their supply

either directly or indirectly from the sun, which is constantly

parting with a portion of its energy in the form of heat. In es-

timating energy the foot-pound has been assumed as the unit.

This unit does not take into consideration the time in which the

quantity of work is expended, and since the element of time is

important in the use of machines, a different unit from the foot-

pound is required in measuring their efficiency. Such a unit is.

the //^rj-f'/^Tf^'^r, which corresponds to the expenditure of 550 foot-

pounds of work in a second of time. An engine of ten horse-

power is one which is capable of doing 5500 foot-pounds of work
in a second.

Simple Machines.

202. The Sifnple Mac/itneSy or, as they are sometimes called, the

Mechanical Powers, are the Cord, Lever, Pulley, Wheel and Axky
Inclined Plane, Wedge, and Screw. All other machines are formed
of combinations of these, and when the relations existing between
the powers and resistances are known in the simple machines, the

corresponding relations in compound machines may be derived.

There is said to be Si gain ofpower in a machine when the inten-

sity of the power is less than that of the corresponding useful

resistance with which it is compared; and a loss ofpouter when the

intensity of the power is greater than that of the resistance.

These terms are technical, and are used merely to compare the

intensities of the powers and resistances, and not to compare the

work done by these forces. If we take the quantity of work done
by the power and by the useful resistance to be equal, as in the
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limiting case, it is evident that when there is a gain of power the

path described by its point of application, estimated along its

action-line, must be greater than that of the resistance; that is,

its velocity will be greater than that of the point of application

of the resistance, since these unequal distances are described in

the same time; this is technically called a loss of speed. When
there is a loss of power there will be a corresponding gain of

speed.

The object of discussing Simple Machines is to find the rela-

tion existing between the intensity of the power and that of the use-

ful resistance. To do this, we first place the work of the powers

equal to the sum of the work done by all the resistances; the

equation so formed we know to be true, whilst the parts of the

machine have uniform motion, for during this time the energy

received by the machine is wholly absorbed by the work of the

resistances.

This condition will always be presupposed, and Eq. (709) will

then take the form

2£Fdp = 2£Qdg (711)

We are then often able to eliminate the path factor, and get an

equation from which the desired relation between the intensities

may be obtained. Passing then to the theoretically perfect ma-

chine by supposing all the wasteful resistances to be neglected,

we find the theoretical ratio of the intensities of the power and

useful resistance.

In the following discussion dp and dq dive taken to be the pro-

jected elementary paths of the points of application of P and Q
on the action-lines of these forces respectively, in the time dty

during which the forces are supposed to remain constant in in-

tensity; and ds is the path described by a point at a unit's dis-

tance from the axis of rotation in the same time.



THE LEVER. 253

The Lever.

203. The lever is any solid bar, straight or curved, capable of

rotating about a fixed point or line under

the action of a power. The point or axis

of rotation is called the fulcrum. Let AB^
Fig. 70, be the axis of a lever, O the axis of

the trunnions supporting it, P and Q the

power and resistance, / and q their lever-

arms with respect to (9, and r the radius of

the trunnion. The resistances, omitting

that of the air, are the useful resistance

Q^ and the wasteful resistance friction on

trunnions, whose intensity will be designated by F. To find F,

let 6 be the angle included between the action-lines of P and Q\
then if N be the intensity of the resultant pressure on the trun-

nions, we have

Fig. 70.

N1/P'-irQ^-\-2PQcoi d (712)

and

F=N- f
Vi+f (713)

The action-line of N passes through C, the intersection of the

action-lines of P and Q, and through the point of contact of the

trunnion with the fixed support. Hence CN is the action-line

of the resultant pressure. The lever-arm of friction on trun-

nions is r\ therefore the elementary work consumed by friction is

Frds', (7i4>

that absorbed by Q is

Q<lq=Qqds\ (715)
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^nd that done by the power P is

Fdp^^Ppds (716)

Placing the elementary work done by the power equal to the

sum of the works consumed by the resistances, under the sup-

position that the motion of the lever is uniform, we have, after

omitting tlie common factor ds^

Pj> = Qq^Fr, , (717)

Whence

M+f ? <'-«

p
Therefore the ratio -^ of the lever can be found when the quan-

tities P^ q,p, r, /and 6 are known.

J?
In practice both factors of the last term of Eq. (718), — and

— , are much less than unity, and in ordinary cases their product
/
is negligible. The limit of the ratio of the power to the resist-

ance is the reciprocal of the ratio of their lever-arms; or

f =? •
<''>

Either P or Q may be taken as the power or resistance, but,

to agree with the convention established heretofore, the power is

taken to be that force whose virtual moment is positive. When
p> q there is a gain of power, and when/ < q there is a loss of

power.

If the power or resistance, or both, be applied in a plane ob-

lique to the axis of the trunnion, the forces must be resolved
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into components parallel and perpendicular to the axis. The
perpendicular components will replace P and Q in the above

discussion, and those which are parallel to the axis will either

cause motion in the direction of the axis or produce pressure

on the side supports, giving rise to sliding friction, which can

readily be computed. The work consumed by this friction will

•appear among those of the resistances in the equation of equi-

librium.

Levers are commonly divided into three classes or orders.

In those of the first class the fulcrum is between the power and

resistance; in the second the resistance acts between the fulcrum

and the power; and in the third the power is applied between

the fulcrum and the resistance. As there is no difference in

principle in these orders this classification is unimportant.

204. The principles of the lever are involved in the construc-

tion of the common balance. To find

the conditions of equilibrium, let O, Fig.

71, be the point of suspension, G the

•centre of gravity of the balance un-

loaded, AC—CB—a, OC= c, OG=h.
Let the balance be loaded with unequal

-weights Qy- F, and suppose that it has q"

taken its position of equilibrium as in

the figure. Then the moments of the forces about O must be

•equal; whence we have

Fig. 71.

Q{a cos ^ — ^: sin ^) = F{a cos ^ + ^ sin 6) -{-wh sin ^,

and therefore

tan 6 =
c(Q -\- F)-h 7v/i'

(720)

The conditions required in a balance are (i) horizontality of

the beam when the arms are equal in length and the weights In
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the scale-pans are equal; (2) sensibility, which is estimated by the

value of S for a given difference in the weights; (3) stability^ or

the tendency to return to horizontality when the weights are

removed. The balance is so constructed that the first condition

is satisfied when Q=^ P. The second depends on the greater or

less value of 6 for a small value oi Q — P. Assuming a constant

difference Q — F, we see that tan 6 will increase, and hence

also,

(i) when a is large; that is, when the arms are long;

(2) when c is small, that is, by moving the point of suspension

nearer the beam;

(3) when P -{- Q\'i small, or the sum of the weights small;

(4) when 7v, the weight of the balance, is small;

(5) when h is small; that is, when G is not far below the beam.

The sensibility of the balance may be very great and the

balance have no stability; that is, no tendency to return to its

primitive position after the removal of the weights, and the

former will have to be modified to satisfy the latter condition,

which is of course essential.

The stability increases with OG, and the sensibility decreases

as OG increases. In any particular case the conditions of stabil-

ity and sensibility must be determined by the uses for which

the balance is designed. Thus for rapid weighing of large

masses, where great accuracy is not important, the stability

must be great; while for the weighing of the precious metals,

drugs in small quantities, etc., great sensibility is of primary

importance. There is generally some device attached to the;

balance to check oscillations when the stability is slight.
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The Wheel and Axle.

205. This machine consists of a wheel W^ Fig. 72, firmly

attached to a cylinder C, whose trunnion-ends t and f rest on

trunnion-b^s. The power /^ maybe applied

through the intervention of a rope passing

over a groove in the wheel, or by a crank, or "^TTTTTTTr

by capstan-bars; its action-line is generally

tangent to the circumference of the wheel.

in*

4-10

w

mThe useful resistance Q is applied tangen- n*

tially to the cylinder C by means of a rope £]q L
wound upon the cylinder. The principal re-

sistances are Q^ and the two wasteful resist- ^'^ 72.

ances, the stiffness of cordage caused by Q^ and the friction on trun-

nions. Let R, r and p be the radii of the wheel, the cylinder

and the trunnions, respectively; then the elementary work of the

power is

Pdp^PRds\ (721)

that of Q is

Qdq = Qrds\ (722)

that of stiffness of cordage is

^£±I^rds^\l,K^IQ)ds, . . . . (723).

the proper values of jFT and / being assumed for the kind of rope

used; that of friction on trunnions is

f{Ar^jv^)pds, (724)

in which N" and iV' are the pressures at / and t* due to w, the

17
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weight of the machine, and to the forces P and Q\ and/' is a

symbol for - Placing the work of the power equal to

the sum of the works of the resistances, and omitting the com-

mon factor ds, we have

PR^Qr^\{K-^IQ)^f{N^N')fi. . . (725)

The limiting ratio of the power to the useful resistance, ob-

tained by neglecting friction on trunnions and stiffness of cord-

-age, is

P r . ..

Q=R'- (7^')

the same as in the lever; as it should be, since the principle of

the two machines is essentially the same.

To find the resultant pressures iV^and iV' at / and /', let /be

the length of the axis between the middle points of the trunnions,

at which iVand iV' may be supposed applied; let a, b and c be

the distances, estimated parallel to the axis, from the point of

•application of iV to the action-lines of Q^ w and P, respectively;

the corresponding distances of N' will be I — a, I— b and l— c.

Let the action-lines of w and Q be vertical, and let that of P
make an angle with the vertical. The components of P will

then be P cos 0, vertical, and P sin 0, horizontal. By the prin-

ciples of parallel forces, the components of the vertical forces g,

m and P cos 0, at /, will be

Q—-—, w——- and P—j— cos 0,

and the component of P sin <p at t will be

P—j— sm 0;
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and hence the resultant N will be

N =^-j '^\Q(l-a)^w{l-b)^P(l-c) cos 0]'+/''(/-^)»sin'0.(727)

Similarly the vertical components of N' at f will be

Q—^ w— and P— cos 0;
I I' I

and the horizontal component will be

P-j sin 0.

Whence

iV^' = L ^(Qa ^wb^ Pc cos 0)' + P\'' sin" 0. (728)

If P be vertical, = o, and we have

7\^=i[e(/-a) + ^(/-^) + ^(/-.)]; ]

}• • (729)

N' = -{Qa^wb + Pc); \

whence

N^N* ^w^Q-\-P (730)

By substituting the values of jV and W in Eq. (725) an ap-

p
proximate value of the ratio -^- may be found.
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206, The Differential Wheel and Axle.—Eq. (726) shows that

the gain of power increases as r diminishes; but since, owing to

the stress of Q, r cannot be made very small with-

out the liability of bending or breaking the axle,

there is a practical limit to the gain of power in the

ordinary wheel and axle. In the differeniial wheel,

Fig. 73, the axle consists of two cylinders of differ-

ent radii. The resistance is attached to a movable

pulley, and a continuous cord is wound oppositely

on the two cylinders of the axle, after partially en-

veloping the pulley. Supposing the power to be
Fig. 73- applied tangentially to a wheel, whose radius is -/?,

mounted on the axle, we will have by the equality of moments,
neglecting the wasteful resistances, and calling r and r' the radii

of the cylinders,

FR^\Q{r-r% (731)

or

P r — r*

Q 2R (732)

Hence if r' be made great enough to withstand any possible

stress of Q, the difference r — r' may be made as small as we
please, and thus give any desired gain of power. A combination

similar in principle is used to lift very heavy projectiles to the

muzzle of the gun.

The Pulleys.

207. (i) The Fixed Pulley.—This consists essentially of a

grooved wheel supported on trunnions about which it can turn

freely, friction being disregarded. The power and useful resist-

ance are applied at the ends of the same cord, which partly en-

velops the wheel, and is prevented from slipping by the friction
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between the cord and wheel. If in the wheel and axle the

radius of the cylinder be taken the same as that of the wheel, it

becomes essentially a fixed pulley, and therefore we may make
the equation deduced for the former applicable to the latter by

making the proper changes in the quantities which enter it.

Hence, for the fixed pulley, Fig. 74, since

j^ = r, and « = /^ = ^ = -J/,

Eq. (727) becomes

N = N'= iV{w-\-Q-^F cos 0)^4- F' sin» 0, (733) pxc. 74.

and Eq. (725),

FR=QRJ^i(^K^IQ)+f2Np', . . . (734)

whence

^-^ + ^i^+/'l^^- • • • • (^35)

Neglecting stiffness of cordage and friction on trunnions, the

limiting ratio of the power to the useful resistance becomes,

Eq. (735)»

^=^ (736)

Theoretically, then, the least value of the power is equal to the

useful resistance, and the fixed pulley is used simply to change
the direction of the action-line of the power.

The factor/'-- of the last term, Eq. (735), is generally very
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small, and a sufficiently approximate value for this term may
be obtained by putting Q for F in the value of N, and omitting

«', the weight of the pulley. This being done, we have, Eq. (733),

N=\Q 4/2(1 +^^) = Q cos i0. . . (737)

Let Q be the arc of the wheel enveloped by the cord; then

cos -^-0 = sin -J^,

and

N^Q^m^e . (738)

Substituting this in Eq. (735), we have

^=C(i + 2/'|sinie) + :^±^ . . . (739)

for the nearly exact relation between the power and useful re-

sistance in the fixed pulley.

If P and Q be parallel, 6 = 180°, and Eq. (739) becomes

which, since the coefficient of Q and the second term are con-

stant for the same rope and pulley, may be written

P = cc\fiQ (741)
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208. (2) The Movable Pulley (Fig. 75).— t

When one end of the cord is attached to a

fixed point, and the useful resistance ^ is con-

nected directly with the pulley, the latter is

called a movable pulley. The resistance in this

case is equal to 2N^ and if the weight w of

the pulley be neglected, we have, Eq. (738),

whence

N = \W=: (2 sin J^;

W
2 sin id'

Substituting this value for Q in Eq. (739), we have

K-\-I-
W

2R^ ^\2smie^^ R]^

or, since 6 is usually 180°,

(742)

(743)

for the relation between the power P and the useful resistance

W, in the movable pulley.

If stiffness of cordage and friction be neglected, the limiting

ratio, obtained from Eq. (742), is

W=:P2S\nid=:P~', (744)

in which C is the chord of the arc enveloped by the rope. There-

fore, neglecting wasteful resistances, in the movable pulley the
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power is to the useful resistance as the radius of the pulley is to the

chord of the enveloped arc. When the arc is between 0° and 60°,

and between 300° and 360°, there is a loss of power; and when
between 60° and 300°, there is again of power; the greatest gain

of power is at 180° and the greatest loss at 0° or 360°.

209, (3) The Block and Fall.—A set of two blocks of pulleys,

connected by a continuous cord, arranged to pass

alternately from a pulley of one block to one of

the other as in Fig. 76, is called a block and fall̂ or

a block and tackle. One of the blocks is attached to

a fixed point, and the other to the useful resist-

ance W. To find the relation between F and W^
let /j, Z^, ^31 . . . 4, and F^ be the successive tensions

on the straight portions of the cord, t^ being that

on the first portion of the cord which is attached

to one of the blocks; let R be the radius of each

pulley, and p that of each pulley trunnion, and
take \6 to be 90°. Then the relations between the

successive tensions will be given by Eq. (741), in

which Q will be in succession Z^, /,,, etc., and F
will be successively Z^, /g, /^, etc., and a and ^ are

easily determined constants depending on the rope

Fig. 76. and pulleys. Then we have

/, = ^ + §t^

t^ = a-^ftt,

tn=a^ ptn

F = a-^fitn

-^^ + ^A;^

= ai^-^^t.
1-13

I — 6^ ~ ^

fi

\ — 8"
^a- A- + M;1-/S

(745)

and also
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Whence we have

Substituting this value of t^ in the expression for 4, Eqs. (745),

we have

which substituted in the last of Eqs. (745) gives

^ = '»+
.
=

^^^
V-^ +Ha^ - ;«:r-J- (749)

In the case illustrated in the figure ;? = 4, and hence

If Stiffness of cordage and friction be neglected, then a = o

and >5 = I, and we have

7P = «^ (751)

that is, the limiting ratio of the power to the useful resistance is
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r^

equal to the reciprocal of the number of the parallel portions of

the cord which support the resistance.

210. (4) Other Cotnbinations of Fixed
I and Movable Pulleys.—The value of the

limiting ratio of the power to the use-

ful resistance depends only on the num-

ber of fuovable pulleys, the arrangement of

the cord, and the method of attaching it to

the resistance ; an inspection of the com-

bination is generally sufficient to es-

tablish the required relation. Thus

if ;/, Fig. 77, be the number of pulleys

r^

9 L

m
A in the first combination, this ratio is

readily seen to be

Fig.

and in the second combination,

p I

w 2» — I

p I

w~ 2«— I

{752)

(753)

The Inclined Plane.

211. Replacing / in Eqs. (673) and (672) by P* and P", we
have

sin / -|-y cos i
P' = IV

P'' = W
cos 6'-|-/sin 0'

sin / —/cos /

cos 8 —fs'in &

(754)

(755)

Considering the inclined plane as a machine, the first equation

expresses the relation of the power P to the resistance of a

body's weight W, when the body is either in uniform motion up

the plane or in a state bordering on such motion; and the second
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equation gives the relation, when the body is in uniform motion

down the plane or in a state bordering on such motion. The
difference of these intensities, for the same weight and angles, is

F' -P'' = W-
2/ cos (/+6/)

cos e-f sin
• (756)

hence, if the body be in a state bordering on motion up the

plane, P' maybe diminished in intensity

by this value before the body reaches the

state bordering on motion downward.

Considering W^ Fig. 78, as the only

resistance, the limiting value of the

P
ratio -77^, obtained by making / = o in

either equation, is

P_

W
sm /

cos Q'

Fig. 78.

(757)

When d is zero the power acts parallel to the plane and up-

ward, and we have

P . . h
-^ = sin. = -; (758)

that is, the power is to the resistance as the height of the plane

is to its length, and there is always a gain of power.

When i) = 360° — / the power acts horizontally, pressing the

body against the plane, and we have

w='^'"'=P (7S9)

that is, the power is to the resistance as the height of the plane

is to its base; and there is a gain of power when the plane has a

less inclination than 45°, and a loss of power for greater inclina-

tions.



268 THEORY OF MACHINES.

212. The elementary quantity of work expended by the

power P in moving the body uniformly up the plane is, when
the action-line of F is parallel to the plane, Eq. (yii),

Pds — Wds sin i -\-fWds cos /

= Wdh^fWdl; . . . (760)

in which d/ and dh are the horizontal and vertical projections of

ds. Integrating between any limits, we have

JPds = W(h - h') -{-fW{l- /'); (761)

or, the total quantity of work is equal to the work stored as po-

tential energy of the weight, plus the work consumed by friction

due to the weight over a path equal to the horizontal projection

of the actual path of the body.

^r^.

The Wedge.

213. The wedge usually consists of a solid triangular prism,

as ABC (Fig. 79), which is inserted into an opening between
two bodies or parts of the same body, to

split or separate them. The surface AB,
to which the pressure or blow is given, is

called the back; the surfaces AC and BC,
the faces; and their line of intersection C,

the edge of the wedge.

Let the wedge ABC be inserted within

the jaws of the opening, and be in contact

with them along lines projected in ;;/ and

;;/. Suppose the normal pressures iV^ and

N' and the iovctP to lie in the same plane,

and the latter to be normal to the back of

the wedge. If the wedge move forward, or be in a state border-

ing on motion forward, the friction between the jaws of the

/\^«:Jfn^\ r-
\^W

'1

W
'

Fig. 79.
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opening and the surface of the wedge, due to the normal pres-

sures iV^and N\ will act from m and /// towards^ and B respec-

tively. If the wedge fly back, or be in a state bordering on mo-

tion outward, the friction will oppose this motion or tendency,

and act along the faces toward C, Considering the first case,

and supposing that the wedge is in equilibrium due to the forces

acting, we have, for the components parallel to AB,

iV/sin e - N QO^d-\- N' cos S' - iV'/ sin l9' = o; (762)

and for those parallel to DC, perpendicular to AB^

F ^ Ns'md ^ Nf cos d - N' sin d' - N'f cos <9' = 0.(763)

Eliminating iV^' from these equations, and representing the angle

of the wedge by g? = ^ -f 6^', we have

/^(cos 6' -fsin d')

(i -/=') sin CD + 2/ cos ca' • • •

^'^^^

and similarly eliminating N^ we have

N'=
, ^ir'~<:'"/^ • • • (765)
(i — /') sin G?+ 2/C0SG? ^' *'-'

From these values we have

_ W[(i — /') sin GO -\- 2/cos GO ]

cos 6' -/sin d'

_ N'\{i — /') sin G0-\- 2f cos go]
~~

cos 6 — / sin 6
(766)

In order that P may have a possible value for a state border-

ing on motion forward we must have

cos ^' > / sin 6^' and cos6'>/sin^,
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or

cot 6' > / and cot6/>/. . . , . (767)

Substituting for/ its value tan a, we have

cot 6^ > tan a and cot 6 > tan or,

or

^' < 90° - a and 6 < go° - a. . . . (768)

Hence

CO < 180° — 2a (769)

That is, z'n order that the wedge may be driven 171, the angle of the

wedge must be less than 180° diminished by twice the a?igle of frictiofi.

If the wedge be in a state bordering on motion outward, the

friction terms in Eq. (766) will change their signs, and we have

_ iV[(i — f) sin GO — 2f cos gd\~
cos ^'+7 sin d'

__ iV^'[(i — f^) sin GO — 2/ cos gd\ . .~
cos6>+/sin 6 •

• • ^^^°^

If some pressure be required to prevent the wedge from flying

out, we must have ,

(i —f^) sin 00 > 2/ cos GJ,

or

tan a . .

tanc»>2 r—^—

;

(771)
I — tan a \i > 1

which reduces to

tan 00 > tan 2af,

or

03 > 2a (772)
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Hence we see that in order that the wedge may be held in its

place when the external pressure is removed^ the angle of the wedge

7mcst be less than twice the angle offriction.

When the wedge is used as a power iVand N' are generally

nearly equal, and either may be considered as the resistance to

be overcome. The particular form of the wedge in any case de-

pends on the special use for which it is intended. Thus in split-

ting wood it is usually made isosceles, and the power P is ap-

plied to the back of the wedge as an impulsion. The axe, chisel,

engraver, knife, tool of a plane, and the raised projections of a

file, are examples of wedges, whose forms are modified in accord

with the above principles, for the particular purposes for which

they are designed. Taking the wedge to be isosceles and N—
N\ we have for the ratio of P Xo N

-P _ (i -/') sin GO-\r 2/coscj
^

N cosica-Zsin^G? » • • •
\11^)

and omitting friction,

= 2 sin i(i? (774)N cos \0D

Hence the gain of power increases very rapidly as the angle

of the wedge diminishes.

The Screw.

214. The screw combines the principles of the lever and

inclined plane. It consists usually of a solid circular cylinder,

called the newel, on the surface of which is a thread or fillet,

whose section by a plane through the axis of the cylinder is

usually either a rectangle or a triangle. The thread of the screw

is a volume which may be generated by a rectangle or triangle
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Fig. 8o.

Iiavipig its base on the cylindrical surface and always parallel to

the axis of the newel, moving uniformly

around and along the axis. Every point

of the generating area will therefore

describe a helix, and the upper and under
sides will describe helicoidal surfaces^

The distance between the successive posi-

tions of the same point of the generating

area, measured in the direction of the

axis of the newel, after one complete rev-

olution, is called the pitch of the screw,

or the helical interval. In screws with rect-

angular threads the pitch must be at least

equal to twice the base of the generating

rectangle; in triangular threads it is usu-

ally equal to the base of the generating

triangle.

The screw is engaged in a nut whose interior cylindrical sur-

face is screw-cut in such a manner as to fit the fillet accurately.

The useful resistance to be overcome, if the nut be fixed in posi-

tion, is applied to the foot of the screw so that its action-line

may be in the direction of the axis of the newel ; if the nut

have freedom of motion and the screw is fixed, the useful resist-

ance is applied to the nut.

Take the axis of the newel as the axis of z^ and let abc^ Fig.

80, be the generating area. Let

P, be the constant angle made by ab in all of its positions

with z.

r, the distance of any helix from the axis, constant for the

same helix, but variable for different helices.

y^ the constant angle made by any assumed helix with the

horizontal plane.

0, the angle through which the screw or nut is rotated.

/, the lever arm of the power.

For the elementary work of the power we have

FdJ> = Fld(P, (775)
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and for the work of the useful resistance, Q,

Qdz = Qrd^ tan y = Qr^d<p tan 7', . . . (776)

in which r' is the radius of a mean helix, and ;/' the angle which

this helix makes with the horizontal.

Let/ be the coefficient of friction, and iVthe normal pressure,

and suppose the friction concentrated on the mean helix whose

radius is r\ Then we have for the elementary work of friction

Hence

or

Pld4,= Q,r'd<t,X^x.Y'^~Y'
• ^"^^

215. To find the relation between jP and Q it is necessary to

find JV in terms of Q. From the equilibrium of the forces we
know that the algebraic sum of their intensities in any direction

is equal to zero. Hence, resolving the forces P, Qy N and fN'^

we have, for the sum of their components in the direction of the

axis 2,

Q -\-fJV sin y' — NCOS d^ = o, . . . . (780)

•

in which dz is the angle made by the normal to the helicoidal

surface, at the assumed point of equilibrium on the mean helix,

with the axis of z. The cosine of this angle is

'"'^'^^irr^^yT^j' •
^'"^

iR
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hence Eq. (780) becomes

e = i\^(cos ^^-/sin /), .... (782)

or

^=
cosg,-^/sin/ (7«3)

Substituting this value of iV^in Eq. (779), we have

_ Qr'l^ny' I / \

/ V
"^ sin;/' (cos ^,-/ sin/)j ^^^^

Replacing cos Bz by its value, and reducing, we have

p ^ g^^'tan// /4/i + tan>' + cot-^ \
/ \ sin/-/sinV|/i + tanV+ cotVV

If the thread be rectangular, /? = 90°, and we have

^^g^a^Y^ /^FWT^V
. . (,86)

^ \ sin ;/' —/sin^;/ r I + tan'' ;/'/

hence, all other things being equal, the screw with a rectangular

thread is more advantageous than one with a triangular thread.

If we suppose the friction to be neglected, then/= o, and the

limiting ratio of the power to the resistance is

P _r tan y (7S7)
Q I

Multiplying and dividing the second member by 2K, we have

P_^^anr
(^88)

Q 27tl
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or when friction is neglected the power is to the useful resistance as the

helical interval is to the circumference described by the extremity of the

lever arm of the power; hence there is usually a great gain of

power in the application of this machine.

The Cord.

216. Let a perfectly flexible and inextensible cord assume a

position of equilibrium under the action of any forces whatever.

The resultant of the forces acting at either extremity must be in

the direction of the cord at that extremity; for, if it have a com-
ponent perpendicular to the cord, the latter, being perfectly

flexible, must move in the direction indicated by the perpendic-

FlG. 81.

ular component. Let i 2 3, Fig. 81, be the cord, the resultant

R^ being in the direction 2 i. Since the point of application of

a force may be taken to be any point of its action-line within the

limits of the body on which it acts, the resultant R^ maybe con-

sidered as applied at the point 2. Then the resultant of all the

forces acting at 2, including ^,, must be in the direction 3 2; and

this resultant, i?„ may be considered as applied at the point 3.
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Thus in any case each successive resultant may have its point

of application transferred until all the action-lines have a com-
mon point, and the conditions of equilibrium will be the same
as before. Therefore the conditions of equilibrium for a perfectly

flexible and inextensible cord, under the action of any forces what-

ever, are the same as if all the forces were applied at a single point,

their intensities and directions remaining unchanged.

2I7. Let T^ be the tension of the cord at the origin, assumed
at any point; /, the type-symbol of the intensities of the extrane-

ous forces; T, the tension at any point; and let d^, By, dz\ oc, /?,

y\ 0j;, 0jj/» 0z> be the angles which T^, I and T make with the

co-ordinate axes, respectively. Then from the equilibrium of the

svstem we have

T cos 0^ = 7; cos 6^ + ^7 cos or; \

Tcos (f)y
= 7; cos 6y -{- 2/cos fi;l . . . (789)

Tcos d)^ = T cos e^ 4- ^7 cos y; )

the last terms comprising all the extraneous forces between the

origin and the point where the tension is T.

If forces act at all points of the cord in such a manner as to

make the tension vary by continuity, then the cord will assume
the form of a curve, and Eqs. (789) become

dxT— = 7; cos 6^-^21 cos a;

T^ = 7; cos dy + :5'7cos /?;ds~ -^^ — -y

dz_

ds

dzT— = r„ cos e, 4- :2'7cos y.

(790)

Such a curve is called a funicular curve^ and Eqs. (790) are its

differential equations.

If the extraneous forces be parallel and coplanar, we may
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assume the curve in the plane xz^ with the forces parallel to z^

and we have

hence

cos a = cos a:" = etc. = o;

dx ^
T—z- = T^ cos ^x = a constant; (791)

that is, the componefit of the tension perpendicular to the direction of

the forces and in their plane is constant.

218. Let the cord abed, Fig. 82, be in equilibrium, the length

of each branch representing its own tension, and the tensions being as-

sumed constant throughout. Let R^ and R^ be equal and opposite

Fig. 82.

to the resultants of the forces acting at the points b and c, and
let the symbols (/, /,), (/, R^, etc., represent the angles made by
the corresponding lines in the figure. When three forces acting

at a single point are in equilibrio, their intensities are inversely

as the sines of the opposite angles, and we have

sin(/,^,) sin(/,i?,) sin (tf^ '
. (792)

R.

sin (/',i?J sin (/,/?J sin (/,/,)' '
. (793)
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and since the tensions are equal,

sin (t,R,) = sin (/.^,); ) , .

sin (t,J{,) = sin (/,Ji,). f
^'^'^^

That is, w^en the tensions are equal throughout, the resultant of the

forces at any point bisects the angle made by the adjacent branches of the

cord.

219. Let circumferences be passed through each vertex and

the two adjacent ones, and denote their radii by r^ and r,, and

let s be the length of one branch of the cord. Then

^ cos i(//J = \s\
\

, X

^. cos KVa) = 4^. ^ • • • • •
^^^^^^

We have also, from the figure,

/, cos i(/.0 = i^.:
)

, ..

h cos 4(^3) = \R,. i.
^'^ ^

From the latter equations we have

cos i(//.)
" cos \{t,t,y

(^^^^

which by Eqs. (795) reduce to

r^R^ = r^R, (798)

That is, the intensities of the resultants are inversely as the radii of the

circumferences passing through their points of application and the two

adjacent vertices.

220. From Arts. 218 and 219 we conclude that when the fu-

nicular curve has a constant tension throughout, the resultants of

the forces acting at the different points are normal to the curve, and

their intensities vary inversely as the radiiof curvature at their points of

application.
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The Catenary Curve.

221. The curve assumed by a heavy flexible and inextensible

cord under the action of its own weight is called a catenary curve.

Assume the curve in the plane xz^ and we have for its differential

equations

dx
T-^^ =T^QOse^=c; (799)

T^ = CgdcDds + 7; cos 6^^ ; . . . . (800]

in which (J, go and ds are the density, cross-section and length of

an elementary portion of the curve.

From Eq. (799) we see that the horizontal component 0/ the ten-

sion is constant : and since at the lowest point -^- = i, the horizon-
as

tal component of the tension at any point is equal to the tension at the

lowest point.

Taking the origin at the lowest point, we have T^ cos 6^ = o,

and from Eq. (800) we have

ds ^e/
Soods (801)

That is, the vertical co??tponent of the tension at any point is equal

to the weight of thatportion of the cord between thispoint and the lowest

point.

Having the vertical and horizontal components, the tension

is readily constructed.

222. The Common Catenary (Fig. 83).—When d and oo are con-

stant the curve is called the common catenary^ and we have

dz
r-^=gS<as; (802)
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or, making ^^G? = i, which introduces the condition that the unit

of length of the cord gives a unit of weight, we have

as

But

r=:iV+7

and we have

dz = sds-

Fig. 83. V^T^'

Integrating, making s = o when z = o, we have

^c=Vs' -i- c\

from which we get

From Eq. (799) we have

S" -Z^ -\- 2CZ.

__ cds _ cds

T y/-|-^^'

and integrating, as before.

^ _[- y I -I-
-
J

~C

'~c\o%

which is the equation of the common catenary.

(803)

(804)

(805)

(806)

(807)

(808)

(809)
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1

223. Substituting the value of s^ from Eq. (807) in Eq. (804),

we have

r= iV-f^r7+? = 2r + f (810)

The tension at any point is therefore given by the ordinate of

the curve estimated from a right line parallel to the axis of x
and at a distance below the origin equal to c. This line is called

the directrix of the curve; it is readily constructed either from

the tension at any point or from the constant horizontal com-
ponent of the tension.

When the cord is vertical the directrix passes through the

lowest point and is perpendicular to the cord, and when the cord

is horizontal the directrix is at an infinite distance below the

cord and parallel to it.
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TABLE I.

DENSITY AND SPECIFIC GRAVITY,

I cubic foot of distilled water at 39.2° F. weighs (:i'i.^i^ lbs.

I " " •• " 62° F. •' 62.355 lbs.

SOLIDS.

Substances.

Metals*—
Aluminium
Antimony
Brass, cast

" rolled
" wire

Bronze, gun-metal
Copper, cast

'• wrought
Gold
Iron, cast
" " gun-metal
' * wrought

Lead
Platinum
Silver

Steel
" gun-metal

Tin
Zinc

WOODf

—

The density of a single variety varies,

but will seldom differ either way from the

tabular values by more than ^. Those
given are average values for dry, well-

seasoned woods. Green wood weighs \
to \ more, and ordinary building timber,
tolerably seasoned, about \ more.
Ash

Density.
Water at 62° F.

2.55-

6.66
7.8-
8.4

8.45-

8.6 •

8.8 •

19-3
6.9-
7.25-

7.6-
"•3
19-5

7.8-
7.84-

7.2 •

6.8

- 2.65
- 6.74
- 8.4
-8.5
8.54

- 8.85
- 8.8
- 9.0
-19.6
- 7.4
- 7.4
- 7.9
-11.47
-22.0

10.5
- 7-9
- 7.88
- 7.5
- 7-2

.6 -

Weight of
Cubic Foot
in Pounds.

159- 165

415- 420
486- 524
524- 530

533
527- 552
536- 549
549- 561

1203-1222
430- 461
452- 461

474- 493
705- 715
1216-1372

655
486- 493
489- 491
449- 469
424- 449

37- 44

* Mostly from Trautwine's " Engineer's Pocket- Book."

t Mostly from " Ordnance Manual " and Trautwine's " Engineer's Pocket-Book.
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TABLE \.— Continued.

SOLIDS—Continued.

Substances.

Wood—Continued.

Beech
Chestnut
Cypress
Ebony
Elm
Hickory
Hemlock
Lignum-vitae
Mahogany, Honduras

" Spanish
Maple
Oak, white
" live
" other varieties

Pine, pitch
'

' yellow ....
" white

Poplar
Spruce
Walnut, black

Miscellaneous*—
Asphaltum
Basalt
Brick
Charcoal, soft to hard woods

'

'

for gunpowder
Clay, dry
Coal, anthracite

" broken
" bituminous
" ** broken
" lignite

Earth, common, moderately rammed
" mean of the globe, about

Glass, Aown, average
" flint, average
*' green, average
" plate, average

Density.
Water at 62° F.

•5

.6

.6

.7

.65

•7

i.o
2.8

1-5

.25

1.3

I.I

-i.b
-3.

-2.5
- .6

•38

1.9
-1.8

1.5

1.25
1.5
5.66
2.5
3-

2.7
2.7

Weight of
Cubic Foot
in Pounds.

44
31- 37

34
75

37- 44
50- 56

28
81

34
53

37- 44
44- 50

62
41- 50
44- 50

37
25
28
28

37

62-112
175-187
94-156
16- 37

24
118

81-112
52- 60
75- 94
47- 56
69- 78

94

156
187
168
168

* Mainly from Trautwine's *' Engineer's Pocket-Book.'
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TABLE I .

—

Continued.

%0\AT>%—Continued.

Substances.
Density.

Water at 62° F.
Weight of
Cubic Foot
in Pounds.

Miscellaneous—Continued.

Gneiss
Graniie
Gunpowder, press-cake

ordinary grained
Ice

I ndia-rubber
Ivory
Limestone, marble

common building.

Nitre, crystallized

Quartz
Sand, dry to wet
Sandstone, building
Slate

Sulphur
Wax, various kinds

2.6 -2.8 162-175
2.5 -2.9 156-1S1
1.70 -1.85 106-115
.875- .900 55- 56

.92 57

.95 59
1.8 112

2.65 -2.85 165-178
2.4 -2.9 150-181

1.9 118

2.65 165

1.5 -2. 94-125
2.1 -2.7 131-168

2.7 -2.9 168-181

2. 125

.9 -I. 56- 62

LIQUIDS.

Acid, hydrochloric, muriatic, sat. sol
" nitric, concentrated
" sulphuric, concentrated

Alcohol, absolute
*

' proof spirit

Ether, sulphuric, common
Glycerine
Mercury
Nitro-glycerine

Oil, illuminating
" linseed
" olive
" (" spirits") of turpentine

Water, distilled
" sea

1.21

1-5
1.84

•795
.92

.72
1.27
3.6
1.6
.8

•94
.92

.87

1.027

75

93
114

49
57

44
79

848

99.8
49.9
58.6

57^3
54-2
62.4
64.0
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TABLE \,— Continued.

GASES.

Air, dry, at 60° F. and 30 in. Bar., density

" " " 32° F. - 30 " "

813.

770.89

= .001229

.001279

Times
maximum
density
of water.

Air, dry
Carbonic acid, CO2.

oxide, CO
Coal gas
Hydrogen

,

Marsh gas, CH4. .

.

Nitrogen
defiant gas, CqH4.
Oxygen
Steam (ideal)

" at 212° F...,

Density of
Hydrogen

14.422
22

14

4.76-5.77
I

8

14

14
16

9

Density of
Air

33-

.525

.970

.40

.069

•555

.970

.970

.109

.624

Weight of
Cubic Foot
60° F., 30".
Ozs. avoir.

1.226
1.870
1. 190

.40-. 49
.085
.680

1. 190
1. 190
1.360
.765

.592

Weight of
Cubic Meter
0° C, 76 cm.
Grams.

1293

1973
1255

427-517
89.

717
1255
1255

^435
807
624
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TABLE 11.

THE METRIC SYSTEM.

The metric system of weights and measures is founded on the meter as a

unit of length. The units of the system are as follows:

Length : The Meter = length of standard bar preserved at Paris.

Area: The Are = lOO square meters.

Volume : The Stere = i cubic meter.

Capacity: The Liter = i cubic decimeter.

Mass and Weight: The Gram = the mass or weight of i cubic centimeter of

distilled water at the temperature of maximum density.

It is a decimal system. The prefixes denoting multiples are derived from

the Greek, and are: deka, ten; hecto, hundred; kilo, thousand; and myria, ten

thousand. Those denoting sub-multiples are taken from the Latin, and are:

deci, tenth; centi, hundredth; and 7nilli, thousandth.

The following table includes all the measures of the system in use:

No. of
the

Unit.
Length. Area. Volume. Capacity.

Mass and
Weight.

lOOOO Myriameter. Myriagram.

1000 Kilometer. Kilogram, kg.

100 Hectometer, Hectare, ha. Hectoliter, hi. Hectogram.

10 Dekameter. Dekastere. Dekaliter, dal. Dekagram.

I Meter, m. Are, a. Stere, s. Liter, 1. Gram, g.

.1 Decimeter, dm. Declare. Decistere. Deciliter, dl. Decigram, dg.

.01 Centimeter, cm. Centiare. Centiliter, cl. Centigram, eg.

.001 Millimeter, mm. Milligram, mg.

The are and its derivatives are used only for land measure. In other cases

area is expressed in terms of the square whose side is a measure of length

—

e.g., square meter, m'; square centimeter, cm'-^, etc.

The stere is rarely used except in measuring firewood. In other cases a

cube whose edge is a unit of length is used—e.g., cubic meter, m^; cubic

dekameter, dm^ etc. Cubic dekameter, cubic hectometer, etc., are not used.

A Mikron, //, = .001 mm.
A Tonne, t, or millier, = 1000 kg.

A Metric Quintal, q, = 100 kg.
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TABLE IV.

GRAVITY,

g = Acceleration due to gravity, in feet per second.

L = Length of simple seconds pendulum, in feet.

A = Latitude.

k = Height above sea-level, in feet.

g — 32.173 — 0.0821 cos 2X — 0.000003/^.*

L = 3.2597 — 0.0083 cos 2/1 — 0.0000003>^.*

Values of ^ = 32.173 — 0.0821 cos 2A and L = 3.2597 — 0.0083 cos 2A.

Latitude. £r. L.

0' 32.091 f. s. 3-2514 f.

5 32.092 3-2515
ID 32.096 3-2519
15 32.102 3-252S
20 32.110 3-2533
25 32.120 3-2544
30 32.132 3-2556

35 32.145 3.2569
40 32.159 3.2583

45 32.173 3.2597
50 32.187 3.2611

55 32.201 3.2625
60 32.214 3.2638
65 32.226 3.2650
70 32.236 3.2661

75 32.244 3 . 2669
80 32.250 3.2675
85 32.254 3.2679
90 32.255 3.2680

The value of g is affected to some extent by the character and arrangement

of the local geological strata. The variation from the tabular value may be as

great as 10 units of the last place of figures, but rarely exceeds 5 of these units.

* Encyclopaedia Britannica, art. Gravitation.
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TABLE V.

FRICTION *

Substances.
Angle of
Repose.

Coefficient of
Friction.

-f-

1

Vi +/«

14 -26.5

II-5

II. 5-31.

26.5-31.

11-5

II. 5-14.

26.5

16.5

8.5-11.5

16.5

4.-4.5

3.

1.7

.25-.5

.2

.2 -.6

.5 -.6

.2

.2 -.25

•5

.3

.I5-.2

.3

.07-. 08

.05

.03

.24-. 45

.20
1

.20-. 51

.45--5I

.20

.20-. 24

.45

.29

.15-. 20

.29

.07-. 08
j

.05

.03

i

" " " soaoed

Wood on metals, dry

Metals on oak, dry

'
* * ' * ' soaped

Hempen cord on oak dry

" " " wet

Metals on metals, dry

" " " wet

Smooth surfaces, occasion'y greased

'* ** continually "

best results

These values are for low velocities and pressures at ordinary temperatures.

The coefficient for smooth metal bearings, well oiled, varies somewhat with the

pressure and velocity, being generally less than the above. It also varies con-

siderably with the temperature, which affects the lubricant. In favorable cases

it has been as low as .002 [Thurston].

Mostly from Rankine's " Rules and Tables," and Trautwine's " Engineer's Pocket-Book.'
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TABLE VI.

STIFFNESS OF CORDAGE FOR WHITE AND TARRED
ROPE.

Morin's Formulas.*

6" = —— = ^(0.002148 4- 0.001772W -[" 0.0026256 W) for white rope;

K = «(o.oo2i48 -f- o.ooi772«), and / = «(o.oo26256).

S = —^ = —(0.01054 4- o.oo25« -\- 0.003024 ^) for tarred rope;

K = «(o.oio54 -f- o.oo25»), and / = «(o.oo3024).

Values OF ^AND /IN Lbs., FOR ROPK WOUND ON A XLE I Foot IN Diameter.

j

i

No. of

1

Yarns.

Ordinary White Rope. Tarred Rope.

Circum-
ference
in inches

Natural
Stiffness.

Stiffness due
to Tension of

lib.
/.

Circum-
ference
in inches

Natural
Stiffness,

Stiffness due
to Tension of

lib.
/.

i

= /if in lbs. = A' in lbs.

.4524 v^ .5378 Vn.

6 1. 10 0.07668 0.015754 1.32 15324 O.O18146

i

9 1.36 0.16286 0.023630 1. 61 0.29736 0.027219
12 1.57 0.28094 0.031507 1.86 0.48648 0.036292

15 1.74 0.43092 0.039384 2.08 0.72060 0.045365
18 1.92 0.61279 0.047261 2.28 0.99972 0.054438
21 2.08 0.82656 0.055138 2.46 1.32384 O.063511

24 2.21 1.07222 0.063014 2.64 I .69296 0.072584

27 2.35 1.34978 0.070891 2.80 2. 10708 0.081657

30 2.47 1.65924 0.078680 2 95 2
.
56620 0.090730

33 2.60 2.00059 0.086645 3.09 3.07032 0.099803

36 2.72 2.37204 0.094522 3.23 3.61944 0.108876

39 2.84 2.77888 0.102398 3.36 4.21356 0.117949

42 2.94 3.21602 O.IIO275 3.48 4.85268 0.127022

45 3.05 3 • 68496 O.I18152 3.61 5-53680 0.136095

48 3-17 4.18579 0.126929 3.73 6.26592 O.145168

51 3-26 4.71852 0.133906 3.84 7.04004 o.T542+r

54 3-35 5.28314 O.141782 3-95 7.85916 0.163314

57 3 45 5.87966 0.149659 4.07 8.72328 0.172387

60 3.54 6
.
50808 0.157536 4.17 9.63240 0.181460

* Adapted from Morin's formulas, " Cours de M^canique," vol. ii., Dulos, pp. 193, 194.
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