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PEEFACE 

In  preparing  this  volume  the  authors  have  endeavored  to  write 

a  drill  book  for  beginners  which  presents  the  elements  of  the 

subject  in  a  manner  conforming  with  modern  ideas.  The  scope 

of  the  book  is  limited  only  by  the  assumption  that  a  knowledge 

of  Algebra  through  quadratics  must  suffice  for  any  investigation. 

This  does  not  mean  a  treatise  on  conic  sections.  In  fact,  the 

authors  have  intentionally  avoided  giving  the  book  this  form. 

Conic  sections  naturally  appear,  but  chiefly  as  illustrative  of 

general  analytic  methods.  A  chapter  is  devoted  to  their  study, 

but  the  numerous  properties  of  these  curves  are  developed  inci- 

dentally as  applications  of  methods  of  general  importance. 

The  subject-matter  is  rather  more  than  is  necessary  for  the 

usual  course  of  sixty  exercises.  It  has  been  made  so  intentionally, 

to  permit  of  choice  on  the  part  of  the  teacher,  and  also  in  order 

to  include  all  topics  strictly  elementary  in  the  sense  defined 

above.  The  table  of  contents  will  show  topics  not  usually  treated. 

For  example,  in  discussing  the  nature  of  the  locus  of  the  general 

equation  of  the  second  degree  (Chapter  XII),  invariants  are 

introduced.  Again,  three  chapters  are  devoted  to  the  simple 

transformations  in  the  plane.  After  mastering  the  entire  book, 

the  student  is  assured  of  an  acquaintance  with  all  that  is  funda- 

mental in  modern  Analytic  Euclidean  Geometry. 

Attention  is  called  to  the  method  of  treatment.  The  subject  is 

developed  after  the  Euclidean  method  of  definition  and  theorem, 
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without,  however,  adhering  to  formal  presentation.  The  advan- 

tage is  obvious,  for  the  student  is  made  sure  of  the  exact  nature 

of  each  acquisition.  Again,  each  method  is  summarized  in  a  rule 

stated  in  consecutive  steps.  This  is  a  gain  in  clearness.  Many- 
illustrative  examples  are  worked  out  in  the  text. 

Emphasis  has  everywhere  been  put  upon  the  analytic  side, 

that  is,  the  student  is  taught  to  start  from  the  equation.  He  is 

shown  how  to  work  with  the  figure  as  a  guide,  but  is  warned  not 

to  use  it  in  any  other  way.  Chapter  III  may  be  referred  to  in 
this  connection. 

The  same  methods  have  been  used  uniformly  for  the  plane  and 

for  space.  In  this  way  the  extension  to  three  dimensions  is  made 

easy  and  profitable. 

Acknowledgments  are  due  to  Dr.  W.  A.  Granville  for  many 

helpful  suggestions,  to  Professor  E.  H,  Lockwood  for  suggestions 

regarding  some  of  the  drawings,  and  to  Mr.  L.  C.  Weeks  for 

assistance  in  proof  reading. 

New  Haven,  Connecticut 

December,  1904 
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AI^ALYTIC  GEOMETRY 

.   '  ♦  CHAPTER   I 

REVIEW  OF  ALGEBRA  AND  TRIGONOMETRY 

1.  Numbers.  The  numbers  arising  in  carrying  out  the  opera- 
tions of  Algebra  are  of  two  kinds,  real  and  iinaginary. 

A  real  number  is  a  number  whose  square  is  a  positive  number. 
Zero  also  is  a  real  number. 

K  pure  imaginary  number  is  a  number  whose  square  is  a  nega- 
tive number.  Every  such  number  reduces  to  the  square  root  of 

a  negative  number,  and  hence  has  the  form  b  V—  1,  where  ̂   is  a 

real  number,  and  (  v  —  1)^  =  —  1. 
An  imaginary  or  complex  number  is  a  number  which  may  be 

written  in  the  form  a  -\-b  V—  1,  where  a  and  b  are  real  numbers, 
and  b  is  not  zero.  Evidently  the  square  of  an  .imaginary  number 

is  in  general  also  an  imaginary  number,  since 

{a  +  b  V^)2  =  a''-b''-{-2ab  V^,     . 
which  is  imaginary  if  a  is  not  equal  to  zero. 

2.  Constants.  A  quantity  whose  value  remains  unchanged  is 
called  a  constant. 

Numerical  or  absolute  constants  retain  the  same  values  in  all 

problems,  as  2,  —  3,  Vt,  tt,  etc. 

Arbitrary  constants,  or  parameters,  are  constants  to  which  any 

one  of  an  unlimited  set  of  numerical  values  may  be  assigned,  and 

these  assigned  values  are  retained  throughout  the  investigation. 

Arbitrary  constants  are  denoted  by  letters,  usually  by  letters  from  the 
tirst  part  of  the  alphabet.     In  order  to  increase  the  number  of  symbols  at  our 

1 



2  ANALYTIC  GEOMETKY 

disposal,  it  is  convenient  to  use  primes  (accents)  or  subscripts  or  both.  For 
example : 

Using  primes, 

a' (read  "a  prime  or  a  first"),  a"  (read  "a  double  prime  or  a  second"), 
a''' (read  "a  third"),  are  all  different  constants. 

Using  subscripts, 

6,  (read  "  b  one  "),  6,  (read  "  b  two  "),  are  different  constants. 
Using  both, 

Ci' (read  "c  one  prime"),  Cg'' (read  "c  three  double  prime"),  are  different 
constants. 

3.  The  quadratic.  Typical  form.  Any  quadratic  equation 

may  by  transposing  and  collecting  the  terms  be  written  in  the 

Typical  Form 

(1) Ax^  +  Bx  +  C  =  0, 

in  which  the  unknown  is  denoted  by  x.  The  coefficients  A,  B,  C 

are  arbitrary  constants,  and  may  have  any  values  whatever, 

except  that  A  cannot  equal  zero,  since  in  that  case  the  equation 

would  be  no  longer  of  the  second  degree.  C  is  called  the  con- 
stant term. 

The  left-hand  member 

(2) Ax'^  -{-Bx-\-C 

is  called  a  quadratic,  and  any  quadratic  may  be  written  in  this 

Typical  Form,  in  which  the  letter  x  represents  the  unknown. 

The  quantity  B^  —  4:AC  is  called  the  discriminant  of  either  (1) 
or  (2),  and  is  denoted  by  A. 

That  is,  the  discriminant  A  of  a  quadratic  or  quadratic  equa- 
tion in  the  Typical  Form  is  equal  to  the  square  of  the  coefficient 

of  the  first  power  of  the  unknown  diminished  by  four  times  the 

product  of  the  coefficient  of  the  second  power  of  the  unknown 

by  the  constant  term. 

The  roots  of  a  quadratic  are  those  numbers  which  make  the 

quadratic  equal  to  zero  when  substituted  for  the  unknown. 

The  roots  of  the  quadratic  (2)  are  also  said  to  be  roots  of  the 

quadratic  equation  (1).  A  root  of  a  quadratic  equation  is  said 
to  satisfy  that  equation. 
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In  Algebra  it  is  shown  that  (2)  or  (1)  has  two  roots,  Xi  and  X2, 

obtained  by  solving  (1),  namely, 

'=-27  +  ̂̂ '^'^^' 

-ii-Yi^^"^^^- 
(3) 

Adding  these  values,  we  have 

(4)  x,  +  x,=-2' 
Multiplying  gives 

(5)  x,x^  =  j' 
Hence 

Theorem  I.  The  sum  of  the  roots  of  a  quadratic  is  equal  to  the 

coefficient  of  the  first  power  of  the  unknown  with  its  sign  changed 

divided  by  the  coefficient  of  the  second  power. 

The  product  of  the  roots  equals  the  constant  term  divided  by  the 

coefficient  of  the  second  power. 

The  quadratic  (2)  may  be  written  in  the  form 

(6)  Ax"^  ̂ Bx-\-C  ='^A(x  -  Xi)  (x  -  x^), 

as  may  be  readily  shown  by  multiplying  out  the  right-hand 
member  and  substituting  from  (4)  and  (5). 

For  example,  since  the  roots  of  3x2  —  4a;  +  i=z0  are  1  and  i,  we  have  iden- 

tically 3a;2  -  4a;  +  1  =  3  (x  -  1)  (x  -  1). 

The  character  of  the  roots  Xi  and  x^  as  numbers  (§  1)  when  the 

coefficients  A,  B,  C  are  real  numbers  evidently  depends  entirely 

upon  the  discriminant.    This  dependence  is  stated  in 

Theorem  II.  If  the  coefficients  of  a  quadratic  are  real  numbers, 

and  if  the  discriminant  be  denoted  by  A,  then 

when  A  is  positive  the  roots  are  real  and  unequal; 

when  A  is  zero  the  roots  are  real  and  equal; 

when  A  is  negative  the  roots  are  imaginary. 

*  The  sign  =  is  read  "  is  identical  with,"  and  means  that  the  two  expressions 
connected  hy  this  sign  differ  only,  in /orm. 
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In  the  three  cases  distinguished  by  Theorem  II  the  quadratic 

may  be  written  in  three  forms  in  which  only  real  numbers  appear. 
These  are 

(7) 

Ax^-\-Bx-^C  =  A  (x—Xi)  (x  —  Xz),  from  (6),  if  A  is  positive; 

Ax^  -\-Bx-{-C  ̂ A(x  —  XiY,  from  (6),  if  A  is  zero ; 

KB  Y     4  AC
  — ^n 

 ■ X  +  ̂ —  I  H   J— ̂  —  yif^  ̂^  negative. 

The  last  identity  is  proved  thus : 

Ax^  -{■  Bx  -]-C  =  a(x2  -\-  ̂x  -{■  ~) 

/  B  B^       C       B^  \ 

£2 

adding  and  subtracting  — —  within  the  parenthesis. 

/.  Ax2-\-  Bx-^C=A [(-^) B  V      4AC-B^ 
"+^;+   iA^ 

Q.E.D. 

4.  special  quadratics.    If  one  or  both  of  the  coefficients  B  and 

C  in  (1),  p.  2,  is  zero,  the  quadratic  is  said  to  be  special. 

Case  I.    C  =  0. 

Equation  (1)  now  becomes,  by  factoring, 

(1)  Ax^  +  Bx  =  x(Ax  +  B)=0. 
B 

Hence  the  roots  are  a^i  =  0,  Xg  =  — Therefore  one  root  of 

a  quadratic  equation  is  zero  if  the  constant  term  of  that  equation 

is  zero.  And  conversely,  if  zero  is  a  root  of  a  quadratic,  the  con- 

stant term  must  disappear.  For  if  £c  =  0  satisfies  (1),  p.  2,  by 
substitution  we  have  C  =  0. 

Case  II.   5  =  0. 

Equation  (1),  p.  2,  now  becomes 

(2)  Ax2  +  C  =  0. 

Erom  Theorem  I,  p.  3,  Xi-\-  x^  —  0,  that  is, 

(3)  Xi=—  x^. 
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Therefore,  if  the  coefficient  of  the  first  power  of  the  unknown 

in  a  quadratic  equation  is  zero,  the  roots  are  equal  numerically 

but  have  opposite  signs.  Conversely,  if  the  roots  of  a  quadratic 

equation  are  numerically  equal  but  opposite  in  sign,  then  the 

coefficient  of  the  first  power  of  the  unknown  must  disappear.  For, 

since  the  sum  of  the  roots  is  zero,  we  must  have,  by  Theorem  I, 
B  =  0. 

Case  III.    B  =  C  =  0. 

Equation  (1),  p.  2,  now  becomes 

(4)  Ax^  =  0. 

Hence  the  roots  are  both  equal  to  zero,  since  this  equation 

requires  that  x^  =  0,  the  coefficient  A  being,  by  hypothesis, 
always  different  from  zero. 

5.  Cases  when  the  roots  of  a  quadratic  are  not  independent. 

If  a  relation  exists  between  the  roots  Xi  and  X2  of  the  Typical 

^"'™    ,  Ax^  +  Bx  +  C  =  0, 

then  this  relation  imposes  a  conditio?!  upon  the  coefficients  A, 

B,  and  C,  which  is  expressed*  by  an  equation  involving  these 
constants. 

For  example,  if  the  roots  are  equal,  that  is,  if  x^  =  x^,  then 

J52  -  4  ̂  C  =  0,  by  Theorem  II,  p.  3. 
Again,  if  one  root  is  zero,  then  x-^x^  =  0 ;  hence  C  =  0,  by 

Theorem  I,  p.  3. 

This  correspondence  may  be  stated  in  parallel  columns  thus ; 

Quadratic  in  Typical  Form 

Relation  between  the  Equation  of  condition  satisfied 

roots  by  the  coefficients 

In  many  problems  the  coefficients  involve  one  or  more  arbitrary 

constants,  and  it  is  often  required  to  find  the  equation  of  condi- 
tion satisfied  by  the  latter  when  a  given  relation  exists  between 

the  roots.     Several  examples  of  this  kind  will  now  be  worked  out 



Ex.  1.    What  must  be  the  value  of  the  parameter  k  if  zero  is  a  root  of 

the  equation 

(1)  2a;2-6x  +  A;2-3A:-4  =  0? 

Solution.    Here  A  =  2,  B  =  -  6,  C  =  k'^  -  Sk  -  i.     By  Case  I,  p.  4,  zero 
is  a  root  when,  and  only  when,  C  =  0. 

Solving, 

A;2_3A;-4  =  0. 

A;  =  4  or  —  1.     Ans. 

Ex.  2.    For  what  values  of  k  are  the  roots  of  the  equation 

kx^-{-2kx-ix  =  2-Sk 
real  and  equal  ? 

Solution.    Writing  the  equation  in  the  Typical  Form,  we  have 

(2)  kx^  +  {2k  -  4)z  -\-  (Sk  -  2)  =  0. 
Hence,  in  this  case, 

A  =  k,  B  =  2k-i,  C  =  Sk-2. 

Calculating  the  discriminant  A,  we  get 

A  =  (2  fc  -  4)2  -  4  A:  (3  A:  -  2) 
=  -  8  A;2  -  8  A;  +  16  =  -  8  (fc2  +  A;  -  2). 

By  Theorem  II,  p.  3,  the  roots  are  real  and  equal  when,  and  only  when, 

^^^'  .-.  A;2  +  A;  -  2  =  0. 
Solving,  A:  =  —  2  or  1.     Ans. 

Verifying  by  substituting  these  answers  in  the  given  equation  (2) : 

when  A;=-2,  the  equation  (2)  becomes  -2x2-8x-8=0,  or  -2(x+2)2=0; 

when  A;  =     1,  the  equation  (2)  becomes        x^— 2x+l=0,  or        (x— 1)2=0. 

Hence,  for  these  values  of  A;,  the  left-hand  member  of  (2)  may  be  trans- 
formed as  in  (7),  p.  4. 

Ex.  3.    What  equation  of  condition  must  be  satisfied  by  the  constants 
a,  6,  A;,  and  m  if  the  roots  of  the  equation 

(3)  (62  +  a2w2)  y2  _^  2  a^kmy  +  a2A:2  -  a262  =  o 
are  equal  ? 

Solution.    The  equation  (3)  is  already  in  the  Typical  Form  ;  hence 

^  =  62  +  a'im^,  B  =  2  a'^km,  C  =  a'^k^  -  a^b^. 

By  Theorem  II,  p.  3,  the  discriminant  A  must  vanish  ;  hence 

A  =  4  a4A:2m2  -  4  (62  +  a2m2)  (a2A;2  -  a262)  =  0. 

Multiplying  out  and  reducing, 

a262  (A;2  -  a2wi2  -  62)  =  0.    Ans. 

I 
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Ex.  4.  For  what  values  of  k  do  the  common  solutions  of  the  simultaneous 

equations 

(4)  3x  +  4  2/  =  A;, 

(5)  X2  +  y2  ̂   25 
become  identical  ? 

Solution.    Solving  (4)  for  y,  we  have 

(6)  y  =  \{k-Sx). 

Substituting  in  (5)  and  arranging  in  the  Typical  Form  gives 

(7)  25x2  -  6  A;x  +  A:2  -  400  =  0. 

Let  the  roots  of  (7)  be  Xi  and  x^.  Then  substituting  in  (6)  will  give  the 

corresponding  values  yi  and  ̂ 2  of  y,  namely, 

(8)  yi  =  l{k-  3xi),  ys  =  H^  -  3x2), 

and  we  shall  have  two  common  solutions  (xi,  yi)  and  (X2,  2/2)  of  (4)  and  (5). 
But,  by  the  condition  of  the  problem,  these  solutions  must  he  identical. 
Hence  we  must  have 

(9)  xi  =  X2  and  yi  =  y^. 

If,  however,  the  first  of  these  is  true  (xi  =  X2),  then  from  (8)  yi  and  y^ 
will  also  be  equal. 

Therefore  the  two  common  solutions  of  (4)  and  (6)  become  identical  when., 

and  only  when,  the  roots  of  the  equation  (7)  are  equal;  that  is,  when  the  dis- 
criminant A  of  (7)  vanishes  (Theorem  II,  p.  3). 

...  A  =  36  A;2  _  100  (A;2  -  400)  =  0. 

Solving,  A;2  =  625, 
A;  =  25  or  -  25.     Ans. 

Verification.    Substituting  each  value  of  k  in  (7), 

when  A; =25,  the  equation  (7)  becomes  x2-6  x4- 9=0,  or  (x— 3)2=0  ;  .-.  x=3  ; 

when  A:= -25, theequation (7) becomes x24-6x+9=0, or (x+3)2=0;  .•.x=-3. 

Then  from  (6),  substituting  corresponding  values  of  k  and  x, 

when  k=      25  and  x  =      3,  we  have  y  =  ̂   ( 25  -  9)  =  4 ; 

when  A:  =  —  25  and  x  =  -  3,  we  have  y  =  |(-  25  +  9)  =  -  4. 

Therefore  the  two  common  solutions  of  (4)  and  (5)  are  identical  for  each 
of  these  values  of  A;,  namely, 

if  A;  =      25,  the  common  solutions  reduce  to  x  =  3,  y  =  4  ; 

if  A;  =  —  25,  the  common  solutions  reduce  to  x  =  —  3,  y  =  —  4. 

Q.E.D. 
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PROBLEMS 

1.  Calculate  the  discriminant  of  each  of  the  following  quadratics,  deter- 
mine the  sum,  the  product,  and  the  character  of  the  roots,  and  write  each 

quadratic  in  one  of  the  forms  (7),  p.  4. 

(a)  2x2-6x  +  4. 
(i)  6x2 -x-1. 

(b)  x2-9x-10. 
(j)  7x2-6x-l. 

(c)  1  -  X  -  x2. (k)  3x2-5.                              J 

(d)  4x2-4x  +  l. 
(1)  2x2 +  x -8. 

(e)  5x2  +  10x  +  5. (m)  2x2  +  x  +  8. 
(f)  3x2-5x-22. 

(n)  6x2 -X- 5. 
(g)  2x2  +  13. (o)  10x2  +  60x  +  90. 
(h)  9x2-6x  +  l. (p)  7x2  +  7x4-1. 
2.  For  what  real  values  of  the  parameter k  will  one  root  of  each  of  the 

following  equations  have  the  value  assigned  ? 
One  root  to  he  zero : 

(a)  6x2 +  5fcx- 3^2  +  3  =  0. 
Ans.  k  =  ±l. 

(b)  2fe  -  3x2  +  6x  -  A;2  +  3  =  o. Ans.  A;  =  —  1  or  3. 

(c)  x2  +  10x  + A:2  +  3  =  0. 
Ans.  None. 

(d)  10x2  -mx  +  Sk'^-Sk  +  2  =  0. Ans.  A;  =  |±-iVio. 
One  root  to  be  —  2  : 

(e)  x2  -  2  fcx  +  3  =  0. Ans.  k  =  -l. 

(f )  fcx2  -  X  +  3  A;2  -  1  =  0. Ans.  k  =  —  ̂   OT  —  1. 

(g)  A:2x2  +  6x  =  fc2-16. 
Ans.  None. 

(h)  A:x2  +  2fcx  =  -3. 
Ans.  None. 

(i)  10x2 -7A;x  +  fc2  + 9:^0. Ans.  k=-7. 

3.  For  what  real  values  of  k  and  m  will  both  roots  of  each  of  the  following 

quadratic  equations  be  zero  ? 

(a)  5x2  +  mx  +  fc-  5  =  x. Ans.  k  =  6,  m  =  1. 

(b)  x2  +  (3A:  -  m)x  +  fc?  -  4  =  0. Ans.  k  =  ±2,  m  =  ±6. 

(c)  2x2  +  (m2  +  l)x  +  fe2  =  0. 
Ans.  None. 

(d)  x2  +  (m2  +  2fe-3m)x  +  4fc-6m  =  0 Ans.  k  =  0,  m  =  0. 

(e)  1^  +  {m^  +  k^-[,)t-\-k-\-m +  1  =  0. Ans.  k  =  l,  m  =  -2. 
fc  =  -2,  m  =  l. 

4.  For  what  real  values  of  the  parameter are  the  roots  of  the  following 

equations  equal  ?    Verify  your  answers. 

(a)  fcx2-3x-l  =  0. Ans.  A;  =  -  |. 

(b)  x2  -  A;x  +  9  =  0. Ans.  k=±6. 

(c)  2  A:x2  +  3  fcx  +  12  =  0. 
Ans.  k  =  ̂ . 

(d)  2x2+A;x-l  =  0. 
Ans.  None. 

(e)  5x2-3x  +  5A:2  =  o. 

Ans.  k=±^jf. 
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(f)  x2  +  A:a;  +  A;2  4-  2  =  0.  Ans.  None. 

(g)  x^-2kx-k-l  =  0.  Ans.  k=-l. 

(h)  a:2  +  26x  +  262  +  3&  _  4  =  0.  Ans.  &  =  -  4  or  1. 

(i)  (m  +  2)  x2  -  2  mx  +  1  =  0.  Ans.  m  =  —  1  or  2. 
(j)  (m2  +  4)  x2  +  3  X  +  2  =  0.  Ans.  None. 
(k)  x2  +  (i  -  3)x  -  1  =  0.  Ans.  None. 

(1)  (c2  _  8)2/2  -  (2  c  -  1)  y  +  i  =  0.  Ans.  None, 
(m)  a2;2  +  2 (a  +  8)z  +  16  =  0.  Ans.    a  =  1  or  9. 

6.  Derive  the  equation  of  condition  in  order  that  the  roots  of  the  following 
equations  may  be  equal. 

(a)  m2x2  +  2  kmx  -2px  =  -k^.  Ans.  p{p  -2  km)  =  0. 

(b)  x2  -j-  2 mpx  -\-2bp  =  0.  Ans.  p  {m^p  -  2 6)  =  0. 
(c)  2  mx2  +  2  6x  +  a2  =  0.  Ans.  b^  =  2  a^m. 

(d)  (1  +  m2)  x2  +  2  hmx  +  {W  -  r2)  =  0.  Ans.  62  =  r2  (1  +  rrfi). 

(e)  (62 - ahn"-) y^-2 b^ky  =  a2627n2 - 62A:2.  Ans.  aWm'^ {k^ - a^m^ + 62)  =  0. 

(f)  {A-{-mW)x'^-\-2bmBx  +  bW-i-C  =  0. .  Ans.    b^AB -\- mWC-\- AC=0. 

6.  For  what  real  values  of  the  parameter  do  the  common  solutions  of  the 

follovsring  pairs  of  simultaneous  equations  become  identical  ? 

(a)  X  -\-2y  =  k,  x2  +  y2  =  5.  ^^s.  ̂   _  ̂   5^ 
(b)  y  =  mx  —  1,  x2  =  4  y.  Ans.  m  =  ±  1. 
(c)  2x-3y  =  6,  x2  + 2x  =  3y.  Ans.  b  =  0. 

(d)  y  =  mx  +  10,  x2  +  y^  =  10.  Ans.  m=±S. 
(e)  Ix  +  y  -  2  =  0,  x^  -Sy  =  0.  Ans.  None. 
(f)  X  +  4  y  =  c,  x2  +  2  y2  =  9.  Ans.  c  =  ±  9. 
(g)  x2  +  7/2  —  X  —  2 y  =  0,  x-\-2y  =  c.  Ans.  c  =  0  or  5. 

(h)  x2  +  4  ?/2  —  8  X  =  0,  mx  —  y  —  2m  =  0.  Ans.  None. 
(i)  x^-\-y^-k  =  0,  3  X  -  4  ?/  =  25.  Ans.  k  =  25. 

(j)  x2  -  2/2  +  2  X  -  ?/  =  3,  4 X  +  2/  =  c.  ^ns.  c  =  -  12  or  3. 

(k)  2x2/  -  3x  -  2/  =  0,  y  +  Sx-{-  k  =  0.  Ans.  A;  =  -  6  or  0. 
(1)  x2  +  42/2  -  8 2/  =  0,  x  =  c.  ^ns.  c  =  ±  2. 

(m)  x2  4-  4  2/2  -  8  2/  =  0,  2/  =  &•  ^ws-  &  =  0,  2. 

(n)  2x2  +  32/2  =  35,  4x  +  92/  =  fc.  ^ws.  fc  =  ±35. 

(0)  x2  +  x?/  +  2  X  +  2/  =  0,  2/  =  -  2  X  +  6.  J.ns.  6  =  -  4  or  0. 

7.  If  the  common  solutions  of  the  follovvring  pairs  of  simultaneous  equations 

are  to  become  identical,  what  is  the  corresponding  equation  of  condition  ? 

(a)  6x  +  ay  =  a6,  y^  =  2px.  Ans.  ap  (2  6^  +  ap)  =  0. 
(b)  2/  =  mx  +  6,  ̂ x2  -\-By  =  0.  Ans.  B {mW  -4bA)  =  0. 

(c)  y  =  m{x  -  a),  By^  +  Dx  =  0.  Ans.  D (4  am^B  -  D)  =  0. 

(d)  bx-{-ay  =  ab,  2xy  +  c2  =  0.  Ans.  ab{ab  +  2c2)  =  0. 
(e)  kx-y  =  c,  Ax^  +  By^  =  C.  Ans.  c^AB  -  kWC  -AC  =  0. 

(f )  X  cos  a  +  2/  sin  a  =  p,  x^  +  y^  =  r^.  Ans.  p^  =  r^. 
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6.  Variables.  A  variable  is  a  quantity  to  which,  in  the  same 

investigation,  an  unlimited  number  of  values  can  be  assigned. 

In  a  particular  problem  the  variable  may,  in  general,  assume  any 

value  within  certain  limits  imposed  by  the  nature  of  the  problem. 

It  is  convenient  to  indicate  these  limits  by  inequalities. 

For  example,  if  the  variable  x  can  assume  any  value  between  —  2  and  5,  that 

is,  if  X  must  be  greater*  than  —  2  and  less  than  5,  the  simultaneous  inequalities 

a;>-2,  a;<5, 

are  written  in  the  more  compact  form 
-2<a;<5. 

Similarly,  if  the  conditions  of  the  problem  limit  the  values  of  the  variable  x  to 

any  negative  number  less  than  or  equal  to  —  2,  and  to  any  positive  number  greater 
than  or  equal  to  5,  the  conditions 

are  abbreviated  to 

x<  —  2  or  x  =  —  2,  and  cc  >  5  or  x 

x<  —  2  and  a;  >  5. 

7.  Variation  in  sign  of  a  quadratic.  In  many  problems  it 
is  important  to  determine  the  algebraic  signs  of  the  results 

obtained  by  substituting  in  a  quadratic  different  values  for 

the  variable  unknown,  that  is,  to  determine  the  algebraic  signs 

of  the  values  of  a  quadratic  for  given  values  of  the  variable. 

The  discussion  of  this  question  depends  upon  the  definitions  of 

greater  and  less  already  given,  the  precise  point  necessary  being 
the  statement : 

If  a  is  a  given  real  constant  and  x  a  real  variable,  then 

r  when  x<a,  x  —  a  is  a  negative  number ; 

[  when  x>a,  x  —  a  is  a  positive  number. 
(1) 

By  the  aid  of  this  statement  and  the  identities  (7),  p.  4,  we 
easily  prove 

*  The  meaning  of  greater  and  less  for  real  numbers  (§  1)  is  defined  as  follows  :  a  is 
greater  than  h  when  a  -  6  is  a  positive  number,  and  a  is  less  than  h  when  a  -  6  is  negative. 
Hence  any  negative  number  is  less  than  any  positive  number ;  and  if  a  and  b  are  both 
negative,  then  a  is  greater  than  b  when  the  numerical  value  of  a  is  less  than  the  numer- 

ical value  of  6. 

Thus  3  < 5,  but  -3  >  -5.  Therefore  changing  signs  throughout  an  inequality  reverses 
the  inequality  sign. 



REVIEW  OF  ALGEBRA  AND  TRIGONOMETRY  11 

Theorem  III.  If  the  discriininant  of  a  quadratic  is  positive,  the 

value  of  the  quadratic*  and  the  coefficient  of  the  second  power 
differ  in  sign  for  all  values  of  the  variable  lying  between  the  roots, 
and  agree  in  sign  for  all  other  values. 

If  the  discriminant  is  zero  or  negative,  the  value  of  the  quadratic 

and  the  coefficient  of  the  second  power  always  agree  in  sign. 

Proof  Denoting  the  variable  by  x,  and  writing  the  quadratic 

in  the  Typical  Form,  (1),  p.  2,  we  have,  by  (7),  p.  4, 

Case       I.   Ax^  -{-  Bx -\- C  ̂   A  (x  —  x-^  (x  —  x^)  if  A  is  positive. 

Case     II.  Ax^  -\- Bx-{- C  =  A(x  —  x^y  if  A  is  zero. 

Case  III.  Ax' -^  Bx -\- C  =  a[  L -{- ^ -{- ^^f^^l  if  A 
is  negative.  .     ̂   ^  -^ 

Consider  these  cases  in  turn. 

Case  I.  Since  the  roots  are  unequal,  let  x^Kx^.  Then,  by 

(1),  we  have  at  once 

(x  —  Xi)  (x  —  X2)  is  negative  when  Xi<x< x^, 

since  a;  —  Xi  is  positive,  and  a;  —  ajg  is  negative ; 

(x  —  Xi)  (x  —  X2)  is  positive  when  a;  <  ccj  or  ic  >  X2, 

since  x  —  Xi  and  x  —  X2  are  both  negative  or  both  positive. 

Therefore  the  quadratic  has  the  sign  of  —A  in  one  case,  and 
of  A  in  the  other. 

Case  II.  Since  (x  —  XiY  is  positive  (p.  1),  the  sign  of  the 
quadratic  agrees  with  that  of  A. 

Case  III.  Since  A  is  negative,  4:AC  —  B'  =  —  Ais  positive  ; 
hence  the  expression  within  the  brackets  is  always  positive,  and 

the  sign  is  the  same  as  that  of  A.  q.e.d. 

For  example,  consider  the  quadratic 

Here  A  =  9  —  8=  +  l,  ̂   =  2,  and  the  roots  are  |  and  1. 

...  2t^-St-}-l=2{t-^){t-l). 

*  It  is  assumed  that  all  the  numbers  involved  are  real.  Also,  since  the  value  of  the 
quadratic  is  zero  for  a  value  of  the  variable  equal  to  a  root,  any  such  value  of  the 
variable  is  excluded, 
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If  now  any  real  number  be  substituted  for  t  in  the  quadratic,  it  will  be 
found  that 

when  i  <  t  <  1,  the  quadratic  2t'^  -  Zt -^  1<0; 

when  <  <  ̂   or  t>  1,  the  quadratic  2t^  -  Zt -\-l>0. 

Again,  consider  the  quadratic  in  r, 

3r2-f  4r  +  9. 

Here  A  =  16  -  108  =  -  92,  and  A  =  S.  Hence,  by  Theorem  III,  if  any 
real  number  whatever  be  substituted  for  r,  the  result  will  always  be  a  posi- 

tive number. 

Applications  of  Theorem  III.  The  following  examples  illustrate  appli- 
cations of  Theorem  III. 

Ex.  1.  Determine  all  real  values  of  the  variable  for  which  the  following 
radicals  are  real. 

(a)  V3-2x-x2;  (b)  V2y2  +  3y +  9. 

Solution.    Consider  the  quadratic  under  the  radical. 

In  (a),  A  =  4  +  12  =  16,  ̂   =  -  1,  and  the  roots  are  1  and  -  3. 
Applying  Theorem  III, 

when  —  3 < X <  1,  the  quadratic  3  —  2x  —  x2>0; 

when  X  <  —  3  or  X  >  1,  the  quadratic  3  —  2  x  —  x^  <  0. 

Since  under  the  condition  of  the  problem  the  given  quadratic  must  be 
either  positive  or  zero,  we  have  —  3<x<l.     Ans. 

In  (b),  A  =  9  -  72  =  -  63,  and  A  =  2.  Hence,  by  Theorem  III,  the  quad- 
ratic is  positive,  and  therefore  the  square  root  is  real  for  every  real  value 

of  y.    Ans. 

Ex.  2.  For  what  values  of  the  parameter  k  are  the  roots  of  the  equation 

(2)  kx^  +  2kx-ix  =  2-Sk 

(a)  real  and  unequal  ?    (b)  imaginary  ? 

Solution.    Writing  the  equation  in  the  Typical  Form, 

fcB2_j.(2fc-4)x  +  3A;-2  =  0, 
we  find 

(3) A  =  B^~4AC  =  -S{k^-\-k-2). 

By  Theorem  II,  p.  3, 

(See  Ex.  2,  p.  6.) 

(a)  the  roots  are  real  and  unequal  if  -  8  (fc^  -}-  jk  -  2)  >  0 

(b)  the  roots  are  imaginary  if  —  8  (A;^  -|-  A;  —  2)  <  0. 



REVIEW  OF  ALGEBRA  AND  TRIGONOMETRY  13 

Applying  Theorem  III  to  the  quadratic 

_8(A;2  +  fc-2), 

we  have,  since  A  =  64  +  512  =  576,  A  =  —  S,  and  the  roots  are  —  2  and  1, 

when  -  2  < fc  <  1,  the  quadratic  -  S{k'^  +  k  -  2)>0; 
when  A;  <  -  2  or  A;  >  1,  the  quadratic  -  S{k^  +  k -2)<0. 

Hence 

(a)  the  roots  of  (2)  are  real  and  unequal  if  —  2  <  fe  <  1 ; 

(b)  the  roots  of  (2)  are  imaginary  ifA:<  —  2orA;>l.     Ans. 

Ex.  3.    Show  that  the  simultaneous  equations 

(4)  y  =  mx  +  S 

(5)  4  a:2  +  2/2  _^  6  X  -  16  =  0 

have  two  real  and  distinct  common  solutions  for  every  real  value  of  m. 

Solution.  Substituting  the  value  of  y  from  (4)  in  (5),  and  arranging  the 
result  in  the  Typical  Form,  we  get 

(6)  (4  +  m2)x2  +  (6  m  +  6)x  -  7  =  0. 

Calculating  the  discriminant  of  (6),  we  find,  neglecting  the  positive  factor  4, 

(7)  16  m2  +  18  m  +  37. 

Applying  Theorem  III,  p.  11,  to  the  quadratic  (7), 

A  =  324  -  64  .  37  is  negative,  A  =  16. 

Therefore  the  quadratic  (7)  has  a  positive  value  for  every  real  value  of  ?n, 

and  hence  the  roots  of  (6)  are,  by  Theorem  II,  p.  3,  always  real  and  unequal. 

That  is,  (6)  always  has  two  real  roots,  Xi  and  X2,  and  from  (4)  we  find  the 
corresponding  real  values  of  y,  namely,  2/1  and  2/2,  so  that  the  equations 

(4)  and  (5)  have  two  real  and  distinct  common  solutions,  (xi,  yi),  (X2,  ya), 
for  every  value  of  m.  q.e.d. 

PROBLEMS 

1 .  Write  inequalities  to  express  that  the  values  of  the  variable  named  are 
limited  as  stated. 

(a)  X  has  any  value  from  0  to  5  inclusive. 

(b)  y  has  any  positive  value. 
(c)  t  has  any  negative  value. 

(d)  X  has  any  value  less  than  —  2  or  greater  than  —  1. 
(e)  r  has  any  value  from  —  3  to  8  inclusive. 
(f)  z  has  any  negative  value,  or  any  positive  value  not  less  than  3. 

(g)  X  has  any  value  not  less  than  —  8  nor  greater  than  2. 
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2.  Determine  the  sign  of  each  of  the  quadratics  of  the  first  problem  on 
p.  8  for  all  values  of  the  variable. 

8.  Determine  all  real  values  of  the  variable  for  which  the  square  root  of 
the  quadratics  of  problem  1,  p.  8,  are  real. 

4.  Determine  all  real  values  of  the  parameter  for  which  the  roots  of  each 

equation  of  problem  4,  p.  8,  are  (a)  real  and  unequal ;  (b)  imaginary. 

6.  In  problem  6,  p.  9,  find  all  real  values  of  the  parameter  in  each  case 
such  that  the  two  common  solutions  are  (a)  real  and  unequal ;  (b)  imaginary. 

6.  Determine  the  algebraic  sign  of  the  value  of  the  cubic 

2  (x  +  1)  (a;  -  2)  (X  -  4) 

for  any  value  of  the  variable. 

Hint.  In  this  case  the  roots  are  -1,  2,  4  in  the  order  of  magnitude.  Hence,  when 

ar  <—  1,  each  factor  is  negative  [(1),  p.  10]  and  the  cubic  is  negative,  etc. 

Arts.  For  x  <  -  1,  cubic  <0;  — l<x<2,  cubic  >  0 ;  2  <  x  <  4,  cubic  <  0 ; 
4  <  X,  cubic  >  0. 

7.  Determine  the  sign  of  the  value  of  each  of  the  following  quantics  for 
any  value  of  the  variable. 

Hint.  From  Algebra  we  know  that  any  quantic  with  real  coeflBcients  may  be 
resolved  into  real  factors  of  the  first  and  second  degrees.  The  sign  of  each  factor  for 
any  value  of  the  variable  may  then  be  determined  by  (1),  p.  10,  and  Theorem  III,  p.  11. 
It  is  well  first  to  arrange  the  real  roots  of  the  quantic  in  the  order  of  magnitude,  and 
then  it  is  necessary  to  consider  only  values  of  the  variable  less  than  any  root,  lying 
between  each  successive  pair,  and  greater  than  any  root,  as  in  problem  6. 

(a)  (X  +  1)  (2 x2-  4 X  +  7).  (f)  {x^  -  9)  (x2  -  16)  (x^  -  25). 
(b)  (x2-2x-3)(x3-4x2).  (g)  (3x2-12)(2-x)(3-2x)(5x+4). 

(c)  (3x  +  8)(x2-4x  +  4)(x8-l).  (h)  (x-l)2(3  +  2x)(4-5x)(6-x)3 
(d)  (2  x2  +  3)  (x2  -  4)  (X*  -  1).  (i)  7  (x2  -  4)  (9  -  x2)  (16  -  x2). 

(e)  (2x  +  3)  (X  -  1)  (X  +  2)  (X  -  3).  (j)  (x2  -  8)  (2x2  -  8)  (3x2  _  27). 
(k)  (2x  +  8)2(9-3x)(7-6x)(12-\lx). 

8.  Infinite  roots.    Consider  the  quadratic  equation 

(1)  Ax''  +  Bx+C==  0, 

whose  roots  are  x^  and  x^  [(3),  p.  3]. 
Then  the  equation 

(2)  Cx^  ̂ -Bx-\-A=0, 
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obtained  from  (1)  by  reversing  the  order  of  the  coefiB.cients,  has 

the  roots  ̂   —  and  — >  that  is,  the  reciprocals  of  the  roots  of  (1). Xi  x^ 

Let  us  now  fix  the  values  t  of  ̂   and  C,  but  allow  A  to  dimin- 
ish indefinitely  in  numerical  value,  that  is,  allow  A  to  approach 

zero.     Then,  in  (2),  since  —  (Theorem  I,  p.  3)  is  the  product  of 

the  roots,  this  product  must  also  approach  zero.  Therefore  one 

root  of  (2)  must  approach  zero ;  and  hence  its  reciprocal,  that  is, 

one  root  of  (1),  must  increase  indefinitely. 

Again,  let  us  in  (1)  and  (2)  fix  the  value  t  of  C  only,  and 

assume  that  both  B  and  A  approach  zero.     Then,  in  (2),  both  the 
B  A 

sum,  —  -  >  and  the  product,  —  ?  of  the  roots  approach  zero,  and 

hence  both  roots  also  approach  zero.  Hence  their  reciprocals, 

the  roots  of  (1),  must  increase  indefinitely. 
This  reasoning  establishes 

Theorem  IV.  If  the  coefficient  of  the  second  power  in  a  quadratic 

equation  is  variable  and  approaches  zero  as  a  limit,  then  one  root 

of  the  equation  becomes  infinite,  t  If  the  coefficient  of  the  first 

power  is  also  variable  and  approaches  zero  as  a  limit,  then  both 

roots  become  infinite. 

Ex.  1.  What  value  must  the  variable  k  approach  as  a  limit  in  order  that 
a  root  of  the  equation 

Sx^  +  2kx-  k^x^  -S-2kx^  =  0 

may  become  infinite  ? 

Solution.    Arranging  the  equation  in  the  Typical  Form,  we  have 

(fc2  +  2  A;  -  3)  aj2  _  2  fcx  +  3  =  0. 

If  fe2  -j.  2  fc  —  3  =  0,  then  one  root  must  become  infinite.     Hence  k  must 
approach  1  or  —  3.     Ans. 

*  This  theorem  is  demonstrated  in  Algebra  and  may  be  easily  verified  thus  : 

The  equation  whose  roots  are  —  and  —  is  (x   ]  (x   1  =  0. 
Xy  X2        \  Xi/  \  Xj 

Multiplying  out  and  reducing,  this  becomes  x^x^  •  a;^  -  (ar^  +  a^a")  •  a:  +  1  =  0. O  R 
By  Theorem  I,  p.  3,  x^x^^--,  a?, +  ar2  =  -— »  and  substitution  of  these  values  and 

multiplication  by  A  gives  (2). 
t  We  give  C  a  value  dififerent  from  zero. 
t  A  variable  whose  numerical  value  becomes  greater  than  any  assigned  number  is  said 

to  *'  become  infinite." 
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Ex.  2.    What  values  must  k  and  m  approacli  in  order  to  make  both  roots 

of  the  equation 

(62  _  ahn:^)  x'^-2  a^kmx  -  a^k^  -  a^b^  =  0 
become  infinite  ? 

Solution.    By  Theorem  IV  we  must  have 

and 

62  -  a2m2  =  0,  or  m  =  i:  -, 

2  a^km  =  0,  or   k  =  0. 

Hence  m  must  approach  +  -  or   ,  and  k  must  approach  zero.     Ans. 

PROBLEMS 

1.  What  real  value  must  the  parameter  approach  as  a  limit  in  each  of  the 

following  equations  in  order  to  make  a  root  become  infinite  ? 

(a)  A;x2  -  3x  +  5  =  0.  (d)  {m^  -  4)x^  -  3x  +  8  =  0. 

(b)  (fc2  -  l)x2  +  6x  -  5  =  0.  (e)  {c^  -  3)y'^  +  2cy  -  6  =  0. 
(c)  2  x2  -  3  X  +  A:2x2  +  5  =  A:x2. (f)  2  622/2  _  3y  -  3  62/2  +  2  =  -  2  y2 

2.  What  real  values  must  the  parameters  k  and  m  approach  in  order  that 
both  roots  of  each  of  the  following  equations  may  become  infinite  ? 

(a)  m2x2  +  (2A;-m  +  l)x  +  6  =  0. 

(b)  (7n2  _  3m  +  2)2/2  +  {Sk-2m)y  +  2  =  0. 
(c)  (m2  +  A:2  -  25)^2  +  (m  -  7  A;  +  25)i  +  8  =  0. 
(d)  w2x2  +  3A:x  +  k^x^  -4mx  +  25x  -  25x2  =  2. 

(e)  (m2  +  3)x2  +  (2  A;  -  5)x  +  8  =  0. 

9.  Equations  in  several  variables.  In  Analytic  Geometry  we 
are  concerned  chiefly  with  equations  in  two  or  more  variables. 

An  equation  is  said  to  he  satisfied  by  any  given  set  of  values 
of  the  variables  if  the  equation  reduces  to  a  numerical  equality 
when  these  values  are  substituted  for  the  variables. 

For  example,  a;  =  2,  ?/  =  —  3  satisfy  the  equation 

2x2  +  31/2=35, 

since  2(2)2  +  3  (- 3)2=  35. 

Similarly,  x=  —  1,  ?/  =  0,  z  =  —  4  satisfy  the  equation 

2x2  _  31/2 +  z2_  18  =  0, 

since  2  (-  1)2  -  3.0  +  ( -  4)2  -  18  =  0. 

^ 
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An  equation  is  said  to  be  algebraic  in  any  number  of  variables, 

for  example  x,  y,  z,  if  it  can  be  transformed  into  an  equation 

each  of  whose  members  is  a  sum  of  terms  of  the  form  ax^y^z^, 
where  a  is  a  constant  and  m,  n,  p  are  positive  integers  or  zero. 

Thus  the  equations  k*  +  x^y^  —  23  +  2a;  —  5  =  0, 

are  algebraic. 

The  equation  jc'  +  y^  —  ̂ 2 
is  algebraic. 

For,  squaring,  we  get    a;  +  2  x^y^  -\- y  —  a. 

Transposing,  2  x^y^  =  a  —  x  —  y. 

Squaring,  4:Xy  =  a^  +  x^  -\-  y^  —  2 ax  —  2 ay  +  2xy. 

Transposing,  x^  -\-  y^  —  2xy  —  2ax  —  2ay  +  a^^^O.  q.e.d. 

The  degree  of  an  algebraic  equation  is  equal  to  the  highest 

degree  of  any  of  its  terms.^  An  algebraic  equation  is  said  to 
be  arranged  with  respect  to  the  variables  when  all  its  terms  are 

transposed  to  the  left-hand  side  and  written  in  the  order  of 
descending  degrees. 

For  example,  to  arrange  the  equation 

2x'^  +  3y'  +  6x'—2  xY  —  2  +  x'^=  x'hf'  —  y'^ 

with  respect  to  the  variables  x',  y',  we  transpose  and  rewrite  the  terms  in  the  order 

x'S _  x'Y  +  2x'2—  2xY  +  y'2  4-  ex'  +  3?/'  —  2  =r  0. 
This  equation  is  of  the  third  degree. 

An  equation  which  is  not  algebraic  is  said  to  be  transcendental. 

Examples  of  transcendental  equations  are 

y  =  sin  X,  y  —  2^,  log  ?/  =  3  x. 

PROBLEMS 

1.  Show  that  each  of  the  following  equations  is  algebraic;  arrange  the 

terms  according  to  the  variables  x,  y,  or  x,  y,  z,  and  determine  the  degree. 

(a)  x2  +  Vy-5  +  2a;  =  0. 

(b)  ic^4-2/  +  3x  =  0. 

(c)  xy  +  3x4  +  6x2y  -  7 CC2/3  +  6x  -  6  +  8 y  =  2xy\ 

(d)  X  +  y  +  z  +  x2g  -  3  xy  -  2  z2  =  5. 

(e)  y  =  2  +  Vx2-2x-6. 

The  degree  of  any  term  is  the  sum  of  the  exponents  of  the  variables  in  that  term. 
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(f )  y  =  X  +  5  +  y/2x^-6x-\-S. 

(h)  y  =  Ax-\-  B-\-  VLx^  -{- Mx -\- N. 

2.  Show  that  the  homogeneous  quadratic  * 
^x2  +  Bxy  +  Cy^ 

may  be  written  in  one  of  the  three  forms  below  analogous  to  (7),  p.  4,  if 
the  discriminant  A  =  B^  —  4:AC  satisfies  the  condition  given  : 

Casb     I.  Ax"^  +  Bxy  +  Cy^=A{x-  hy)  {x  -  hy),  if  A  >  0 ; 
Case    II.  Ax^  +  Bxy  +  Cy^  =  A\x-  hy)^,  if  A  =  0 ; 

Case  III.  ̂ ^2  + 5xy  +  Cy2  =  ̂   r(x  + ^y)V  i^^l^j/^J  ,  if  a<0.- 

10.  Functions  of  an  angle  in  a  right  triangle.   In  any  right 

triangle  one  of  whose  acute  angles  is  A,  the  functions  of  A  are . 
defined  as  follows  : 

sm  A 

cos  A  = 

tan^ 

opposite  side 

hypotenuse 
adjacent  side 

hypotenuse 

_  opposite  side 
adjacent  side 

hypotenuse 
CSC  A  =  '^.^ — rj-, 

opposite  side 

hypotenuse 

adjacent  side' ^  ,      adjacent  side 
cot  A  =  — ^ — :   --. 

opposite  side 

sec  A 

From  the  above  the  theorem  is  easily  derived : 

^        In  a  right  triangle  a  side   is  equal  to  the 

product  of  the  hypotenuse  and  the  sine  of  the 

angle  opposite  to  that  side,  or  of  the  hypote- 

a  nuse  and  the  cosine  of  the  angle  adjacent  to 
that  side. 

11.  Angles  in  general.  In  Trigonometry 

an  angle  XOA  is  considered  as  gen- 
erated by  the  line  OA  rotating  from 

an  initial  position  OX.  The  angle  is 

positive  when  OA  rotates  from  OX 

counter-clockwise,  and  negative  when 
the  direction  of  rotation  of  OA  is 

clockwise.  "^  ana 

*The  coefficients  A,  B,C  and  the  numbers  l^,  l^  are  supposed  real. 
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The  fixed  line  OX  is  called  the  mitial  line,  the  line  OA  the 
terminal  lirie. 

Measurement  of  angles.  There  are  two  important  methods 

of  measuring  angular  magnitude,  that  is,  there  are  two  unit 

angles. 

Degree  measure.  The  unit  angle  is  ̂ ^^  of  a  complete  revolu- 
tion, and  is  called  a  degree. 

Circular  measure.  The  unit  angle  is  an  angle  whose  subtend- 
ing arc  is  equal  to  the  radius  of  that  arc,  and  is  called  a  radian. 

The  fundamental  relation  between  the  unit  angles  is  given  by 
the  equation 

180  degrees  =  it  radians  (tt  =  3.14159  •  •  •). 

Or  also,  by  solving  this, 
TT 

1  degree  =  zr^x  =  .0174  •  •  •  radians, 

180 
1  radian  =   =  57.29  •  •  •  degrees. TT 

These  equations  enable  us  to  change  from  one  measurement  to 

another.  In  the  higher  mathematics  circular  measure  is  always 

used,  and  will  be  adopted  in  this  book. 

The  generating  line  is  conceived  of  as  rotating  around  0  through 

as  many  revolutions  as  we  choose.     Hence  the  important  result : 

Any  real  number  is  the  circular  measure  of  some  angle,  and 

conversely,  any  angle  is  measured  by  a  real  number. 

12.  Formulas  and  theorems  from  Trigonometry. 
Ill 

1.  cotx  =   ;  secx  =   ;  cscx  =  -;   tanx  cosx  sinx 

sinx        ̂         cosx 
2.  tanx  =   ;  cotx  =   cosx  sinx 

3.  sin^x  +  cos^x  =  1 ;  1  +  tan^x  =  sec^x ;  1  +  cot^x  =  csc^x. 

4.  sin  ( —  x)  =  —  sin  x ;  esc (—  x)  =  —  esc x ; 
cos(— x)=  cosx;  sec(— x)  =  secx; 
tan  ( —  x)  =  —  tan x ;  cot (—  x)  =  —  cot x. 
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6.  sin  {it  -x)  =  sin  x  ;  sin  (tt  +  x)  =  -  sin  x  ; 
cos  {7t  -  x)  =  —  cos  X  ;  cos  (tt  +  x)  =  —  cos  x  ; 
tan  {7t  —  x)  =  —  tan  x  ;  tan  {tt  +  x)  =     tan  x ; 

6.  sm(|-«)  = 
COS  X ;  sin 

cosx 

cos  (   X  j  =  sin  X ;  cos  (  — hxj  =  —  sinx; 

tan(   X  )=  cotx;  tan(  — ^-  x  j  =  —  cotx. 

7.  sin  (2  TT  —  x)  =  sin  (-  x)  =  —  sin x,  etc. 

8.  sin  (x  +  y)  =  sin  x  cos  y  +  cos  x  sin  y. 

9.  sin  (x  —  1/)  =  sin  x  cos  y  —  cos  x  sin  y. 

10.  cos  (x  +  ?/)  =  cos X  cos  ?/  —  sin  x  sin  y. 

11.  cos  (x  —  y)  =  cos  X  cos  y  +  sin  X  sin  y. 

tan  X  +  tan  y 
12.  tan(x  +  y)  = 13.  tan(x  —  y)  = 

tan  X  —  tan  y 

1  —  tan  X  tan  y 

14.  sin  2  X  =  2  sin  x  cos  x  ;  cos  2  x  =  cos^  x  —  sin^  x  ;  tan  2  x 

1  4-  tan  X  tan  y 

2  tanx 

1  -  tan2x 

15.  sin / 

1  + 

_  —  ;cos-=db\/ —         " ;  tan 2\2'2  \2'2  ^i  +  cosx 

-^4i 

16.    Theorem.    Law  of  sines.    In  any  triangle  the  sides  are  proportional 
to  the  sines  of  the  opposite  angles ; 

that  is, 
a 

sin  A      sin  B      sin  C 

17.  Theorem.  Law  of  cosines.  In  any  triangle  the  square  of  a  side 

equals  the  sum  of  the  squares  of  the  two  other  sides  diminished  by  twice  the 
product  of  those  sides  by  the  cosine  of  their  included  angle ; 

that  is.  a2  =  62  +  c2  -  2  6c  cos^. 

18.  Theorem.  Area  of  a  triangle.  The  area  of  any  triangle  equals  one 
half  the  product  of  two  sides  by  the  sine  of  their  included  angle ; 

that  is,  area  =  ̂   a6  sin  C  =  ̂   6c  sin  -d  =  ̂   ca  sin  B. 
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13.  Natural  values  of  trigonometric  functions. 
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Angle  in 
Radians 

Angle  in 
Degrees Sin 

Cos Tan Cot 

.0000 

0° 

.0000 1.0000 .0000 

00 

90° 

1.5708 

.0873 

5° 

.0872 .9962 .0875 11.430 

85° 

1.4835 

.1745 

10° 

.1736 .9848 .1763 5.671 

80° 

1.3963 

.2618 

15° 

.2588 .9659 .2679 3.732 

75° 

1.3090 

.3491 

20° 

.3420 .9397 .3640 2.747 

70° 

1.2217 

.4363 

25° 

.4226 .9063 .4663 2.145 

65° 

1.1345 

.5236 

30° 

.5000 .8660 .5774 1.732 

60° 

1.0472 

.6109 

35° 

.5736 .8192 .7002 1.428 

55° 

.9599 

.6981 

40° 

.6428 .7660 .8391 1.192 

50° 

.8727 

.7854 

45° 

.7071 .7071 1.0000 1.000 

45° 

.7854 

Cos 
Sin Cot 

Tan 
Angle  in 

Degrees 
Angle  in Radians 

Angle  in 
Radians 

Angle  in 
Degrees Sin 

Cos Tan Cot Sec Csc 

0 

0° 

0 1 0 00 1 

00 

Tt 

2 

90° 

1 0 
CO 

0 

00 

1 

It 

180° 

0 

-1 

0 

00 

-1 

00 

2 

270° 

-1 

0 00 0 00 

-1 

27r 

360° 

0 1 0 

00 

1 

00 
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Angle  in 
Radians 

Angle  in 
Degrees Sin 

Cos 
Tan Cot 

Seo 
Cso 

0 

0° 

0 1 0 

00 

1 

oo 

1C 

6 

30« 

1 
2 

V3 

2 

V3 

3 

V3 

2V3 

3 
2 

It 

4 

45° 

V2 

2 2 
1 1 

V2 V2 

3 

60° 

V3 

2 
1 
2 

V3 

V3 

3 
2 2\/3 

3 

It 

2 

90° 

1 0 

QO 

0 X 1 

14.  Rules  for  signs. 

Quadrant 
Sin 

Cos 
Tan 

Cot 
Sec 

Csc 

First   .... + + + + + + 

Second    .     .     . + - - - - + 

Third.     .     .     . - - + + - - 

Fourth     .     .     . - 

+  ■ 

- - + - 

15.  Greek  alphabet. 
Letters Names Letters Names Letters Names 

A  a Alpha I    t Iota 

Pp 

Rho 

B/3 Beta K    K 
Kappa 

S    (T  J Sigma r7 
Gamma A  \ Lambda T    T Tau 

A  5 Delta M/i 
Mu 

r  V 

Upsilon E  e 
Epsilon N  V 

Nu 

*  0 

Phi Zf 
Zeta 

S  f 

Xi 

Xx 

Chi 
H17 Eta 0  0 Omicron 

^  ̂  

Psi 

^Q 
Theta 

n  T Pi 
»  (tf 

Omega 



CHAPTER   II 

CARTESIAN   COORDINATES 

16.  Directed  line.  Let  X'X  be  an  indefinite  straight  line,  and 
let  a  point  0,  which  we  shall  call  the  origin  be  chosen  upon 

it.  Let  a  unit  of  length  be  adopted  and  assume  that  lengths 

measured  from  0  to  the  right  are  positivej  and  to  the  left  negative. 

-5-4-3-2-1    0-hl-l-2-h3-h4+5  unit 

Then  any  real  number  (p.  1),  if  taken  as  the  measure  of  the  length 

of  a  line  OP,  will  determine  a  point  P  on  the  line.  Conversely, 

to  each  point  P  on  the  line  will  correspond  a  real  number,  namely, 

the  measure  of  the  length  OP,  with  a  positive  or  negative  sign 

according  as  P  is  to  the  right  or  left  of  the  origin. 

The  direction  established  upon  X'X  by  passing  from  the  origin 
to  the  points  corresponding  to  the  positive  numbers  is  called  the 

positive  direction  on  the  line.    A  directed  line  is  a  straight  line  upon 

which  an  origin,  a  unit  of  length,  and  a  positive  direction  have 
been  assumed. 

An  arrowhead  is  usually  placed  upon  a  directed  line  to  indicate 

the  positive  direction. 

If  A  and  B  are  any  two  points  of  a  directed  line  such  that 

OA  =  a,   OB  =  b, 

then  the  length  of  the  segment  AB  is  always  given  hyb  —  a;  that 

is,  the  length  of  ̂ -B  is  the  difference  of  the  numbers,  correspond- 
ing to  B  and  A.  This  statement  is  evidently  equivalent  to  the 

following  definition : 

23 
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For  all  positions  of  two  jwlnts  A  and  B  on  a  directed  linej 

length  AB  is  given  by 

(1)  AB=OB-  OA, 
where  0  is  the  origin. 

-4 

(II)  (111) 
0    -f-3        -3       0        -I 

0   IT  To 

(TV) -6      -2    0 

B        B      A  0 

Illustrations. 

In  Fig.  I.  AB^OB-OA  =  o-3  =  +  3;  BA=  OA- OB  =  S-6  =  - 3; 
II.  AB  ==  OB -0A=- 4:- 3  =  -7;  BA=  OA- OB  =  3- (-4)  =  -\-7; 

III.  AB=OB-OA  =  -\-5-i-3)=  +  S;  BA  =  OA-OB  =-3- 5  =  -8; 
IV.  AB=OB-OA=-6-i-2)  =  -4',  BA=OA-OB=-2-i-6)=+4. 

The  following  properties  of  lengths  on  a  directed  line  are 
obvious : 

(2)  AB  =  -BA. 
(3)  AB  is  positive  if  the  direction  from  A  to  B  agrees  with 

the  positive  direction  on  the  line,  and  negative  if  in  the  contrary 
direction. 

The  phrase  "  distance  between  two  points  "  should  not  be  used  if  these  points 
lie  upon  a  directed  line.  Instead,  we  speak  of  the  length  AB,  remembering  that 

the  lengths  AB  and  BA  are  not  equal,  but  that  AB  =  —  BA. 

17.  Cartesian*  coordinates.   Let  X'X  and  Y'Y  be  two  directed 
lines  intersecting  at  O,  and 

_p  let  P  be  any  point  in  their 

plane.  Draw  lines  through 

P  parallel  to  X'X  and  Y'Y 
respectively.     Then,  if 

OM  =  a,  0N=  b, 

the  numbers  a,  b  are  called 
the  Cartesian  coordinates  of 

P,  a  the  abscissa  and  b  the 
ordinate.  The  directed  lines 

X'X  and  Y'Y  are  called  the 

*  So  called  after  Rend  Descartes,  1596-1650,  who  first  introduced  the  idea  of  coordinates 
into  the  study  of  Geometry. 
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axes  of  coordinates,  X'X  the  axis  of  abscissas,  TY  the  axis  of 
ordinates,  and  their  intersection  0  the  origin. 

The  coordinates  a,  b  of  P  are  written  (a,  b),  and  the  symbol 

P  (a,  b)  is  to  be  read :  "  The  point  P,  whose  coordinates  are  a 

and  bJ' 
Any  point  P  in  the  plane  determines  two  numbers,  the  coordi- 

nates of  P.  Conversely,  given  two  real  numbers  a'  and  b',  then 

a  point  P'  in  the  plane  may  always  be  constructed  whose  coordi- 

nates are  (a',  b'y  For  lay  off  OM'  =  a',  ON'  =  b',  and  draw  lines 

parallel  to  the  axes  through  M'  and  N'.  These  lines  intersect  at 

P'(a',b').     Hence 

Every  point  determines  a  pair  of  real  numbers,  and  conversely, 

a  pair  of  real  numbers  determines  a  point. 

The  imaginary  numbers  of  Algebra  have  no  place  in  this  repre- 
sentation, and  for  this  reason  elementary  Analytic  Geometry  is 

concerned  only  with  the  real  numbers  of  Algebra. 

18.  Rectangular  coordinates.  A  rectangular  system  of  coordi- 

nates is  determined  when  the  axes  X'X  and  FT  are  perpendicular 
A 

Y 

(6 

7) 

{-4 

6) 

X'
 

0 ( 

10, 

0) 

X 

{-9 

-4) 

[0, 

■*) 

Y 

to  each  other.     This  is  the  usual  case,  and  will  be  assumed  unless 
otherwise  stated. 
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The  work  of  plotting  points  in  a  rectangular  system  is  much 

simplified  by  the  use  of  coordinate  or  plotting  paper,  constructed 

by  ruling  off  the  plane  into  equal  squares,  the  sides  being  parallel 
to  the  axes. 

In  the  figure,  p.  25,  several  points  are  plotted,  the  unit  of  length 
being  assumed  equal  to  one  division  on  each  axis.  The  method  is 

simply  this : 

Count  off  from  0  along  X'X  a  number  of  divisions  equal  to  the 
given  abscissa,  and  then  from  the  point  so  determined  a  number 

of  divisions  equal  to  the  given  ordinate,  observing  the 

Rule  for  signs  : 

Abscissas  are  positive  or  negative  according  as  they  are  laid  off 

to  the  right  or  left  of  the  origin.  Ordinates  are 

positive  or  negative  according  as  they  are  laid 

off  above  or  below  the  axis  of  x. 

Rectangular  axes  divide  the  plane  into  four 

portions  called  quadrants ;  these  are  numbered 

as  in  the  figure,  in  which  the  proper  signs  of 
the  coordinates  are  also  indicated. 

Y 1 

Second First 

(-.-/-) 
ii-,-/-) 

X'           0 X 
Third Fourth 

(-.-) (■/--) 

Y'
 

PROBLEMS 

1.  Plot  accurately  the  points  (3,  2),  (3,  -  2),  (-  4,  3),  (6,  0),  ( 
(0,  4). 

2.  Plot  accurately  the  points  (1,  6),  (3, 

(-  2,  4),  (0,  -  1),  ( V3,  V2),  (-  V5,  0). 

5,0), 

2),  (-2,0),  (4, -3),  (-7,  -4), 

3.  What  are  the  coordinates  of  the  origin  ? 
Ans.  (0,  0). 

4.  In  what  quadrants  do  the  following  points  lie  if  a  and  b  are  positive 

numbers:   (-  a,  6)?   (-  a,  -  6)?   (6,  -a)?   (a,  6)? 

5.  To  what  quadrants  is  a  point  limited  if  its  abscissa  is  positive?  nega- 
tive ?  its  ordinate  is  positive  ?  negative  ? 

6.  Plot  the  triangle  whose  vertices  are  (2,  —  1),  (—  2,  5),  (—  8,  —  4). 

7.  Plot  the  triangle  whose  vertices  are  (-  2,  0),  (5  V3  -  2,  5),  (-  2,  10). 

8.  Plot  the  quadrilateral  whose  veitices  are  (0,   --  2),   (4,  2),  (0,  6), 
(-4,2). 
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9.  If  a  point  moves  parallel  to  the  axis  of  x,  which  of  its  coordinates 
remains  constant  ?  if  parallel  to  the  axis  oiy? 

10.  Can  a  point  move  if  its  abscissa  is  zero  ?  Where  ?  Can  it  move  if  its 
ordinate  is  zero?  Where?  Can  it  move  if  both  abscissa  and  ordinate  are 
zero?   Where  will  it  be? 

11.  Where  may  a  point  be  found  if  its  abscissa  is  2?  if  its  ordinate 
is  -3? 

12.  Where  do  all  those  points  lie  whose  abscissas  and  ordinates  are  equal  ? 

13.  Two  sides  of  a  rectangle  of  lengths  a  and  b  coincide  with  the  axes  of 
X  and  y  respectively.  What  are  the  coordinates  of  the  vertices  of  the  rec- 

tangle if  it  lies  in  the  first  quadrant  ?  in  the  second  quadrant  ?  in  the  third 
quadrant  ?  in  the  fourth  quadrant  ? 

14.  Construct  the  quadrilateral  whose  vertices  are  (—  3,  6),  (—  3,  0),  (3,  0), 
(3,  6).     What  kind  of  a  quadrilateral  is  it  ? 

15.  Join  (3,  5)  and  (-3,  -  5) ;  also  (3,  -  5)  and  (-  3,  5).  What  are  the 
coordinates  of  the  point  of  intersection  of  the  two  lines  ? 

16.  Show  that  (x,  y)  and  (x,  —  y)  are  symmetrical  with  respect  to  JT'JT; 
(x,  y)  and  (—  x,  y)  with  respect  to  Y'Y;  and  (x,  y)  and  (—  x,  —y)  with  respect 
to  the  origin. 

17.  A  line  joining  two  points  is  bisected  at  the  origin.  If  the  coordinates 

of  one  end  are  (a,  —  6),  what  will  be  the  coordinates  of  the  other  end  ? 

18.  Consider  the  bisectors  of  the  angles  between  the  coordinate  axes. 
What  is  the  relation  between  the  abscissa  and  ordinate  of  any  point  of  the 
bisector  in  the  first  and  third  quadrants  ?  second  and  fourth  quadrants  ? 

19.  A  square  whose  side  is  2  a  has  its  center  at  the  origin.  What  will  be 
the  coordinates  of  its  vertices  if  the  sides  are  parallel  to  the  axes  ?  if  the  diago- 

nals coincide  with  the  ax6s  ? 

Ans.   (a,  a),  (a,  —  a),  (—a,  —  a),  (—a,  a); 

(a  V2,  0),  (-  a  V2,  0),  (0,  a  V2),  (0,  -  a  V2). 

20.  An  equilateral  triangle  whose  side  is  a  has  its  base  on  the  axis  of  x 

and  the  opposite  vertex  above  X'X.  What  are  the  vertices  of  the  triangle  if 
the  center  of  the  base  is  at  the  origin  ?  if  the  lower  left-hand  vertex  is  at  the 

.n..(|,o),(-|,0),(0/-2^> 
(0,0),(a,0),(|,^). 
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19.  Angles.  The  angle  between  two  intersecting  directed  lines 

is  defined  to  be  the  angle  made  by  their  positive 

directions.  In  the  figures  the  angle  between 

"the  directed  lines  is  the  angle  marked  6. 
If  the  directed  lines  are  parallel,  then  the 

angle  between  them  is  zero  or  ir  according  as 

the  positive  directions  agree  or  do  not  agree. 

Evidently  the  angle  between  two  directed 

lines  may  have  any  value  from  0  to  tt  inclusive. 

Reversing  the  direction  of  either  directed  line 

changes  6  to  the  supplement  ir  —  6.  If  both  directions  are 
reversed,  the  angle  is  unchanged. 

^  =  0 

When  it  is  desired  to  assign  a  positive  direction  to  a  line 

intersecting  X'X,  we  shall  always. assume  the  upward  direction 
as  positive  (see  figures). 

X  X' 

Y'
 

\B 

n 

rs) 

Theorem  1.    If  a  and  ft  are  the  angles  between  a  line  directed 

upward  and  the  rectangular  axes  OX  and  OY,  then 

(I)  cos  p  =  sin  a. 

Proof.    The  figures  are  typical  of  all  possible  cases. 

In  Fig.  1, 

and  hence 
cos  j8  =  cos  (  ̂  —  a  j  =  sin  a.    (by  6,  p.  20) 
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In  Fig.  2,  ^  =  «  _     , 

and  hence  cos  (3  =  cos  («  —  —)  =  sin  a. 
(by  4  and  6,  p.  19) 

TT 

In  Fig.  3,  a  =  -,  ̂   =  0. 

.*.  cos  ̂ =  1  =  sin  a.  Q.B.D. 

The  positive  direction  of  a  line  parallel  to  X'X  will  be  assumed 

to  agree  with  the  positive  direction  of  X'X,  that  is,  to  the  right. 
TT 

Hence  for  such  a  line  a  =  0,  fS  =  —}  and  the  relation  (I)  still 
holds,  since 

TT 

COS  )8  =  COS  —  =  0  =  sin  0  =  sin  a. 

PROBLEMS 

1.  Show  that  for  lines  directed  downward  cos  /3  =  —  sin  a. 

2.  What  are  the  values  of  a  and  /3  for  a  line  directed  N.E.  ?  N.  W.  ?  S.E.  ? 

S.W.  ?  (The  axes  are  assumed  to  indicate  the  four  cardinal  points  of  the 
compass.) 

3.  Find  the  relation  between  the  «'s  and  j8's  of  two  perpendicular  lines 

directed  upward.  ^^^    a'-a  =  -;    B'+B  =  -- 
2      ̂       ̂        2 

20.  Orthogonal  projection.    The  orthogonal  projection  of  a  point 
upon  a  line  is  the  foot  of  ̂   the  perpendicular 

let  fall  from  the  point  upon  the  line.  j^ 
Thus  in  the  figure 

M  is  the  orthogonal  projection  of  P  on  X'X;         3/ 

N  is  the  orthogonal  projection  of  P  on  FT;  X'    j 
P'  is  the  orthogonal  projection  of  P'on  X'X.  i-- 

If  A  and  B  are  two  points  of  a  directed 

3/X 

iV 

line,  and  M  and  iV  their  projections  upon  a 
second  directed  line  CD,  then  ikfiV  is  called  the  projection  of  AB 
upon  CD. 
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Theorem  II.  First  theorem  of  projection.  If  A  and  B  are  points] 

upon  a  directed  line  making  an  angle  y  with  a  second  directed  line] 

CD,  then  the 

(II)         projection  of  the  length  AB  upon  CD  =  AB  cos  y. 

Proof.    In  the  figures  let 

a  =  the  numerical  length  of  AB, 

I  =  the  numerical  length  oi  AS  ov  BT\ 

then  a  and  I  a.Te  positive  numbers  giving  the  lengths  of  the  respec- 
tive lines,  as  in  Plane  Geometry.     Now  apply  the  definition  of  the 

cosine  to  the  right  triangles  ABS  and  ABT  (p.  18). 

A       BAB 

D  _  B      ̂    ̂      T 
(1)  (2)  (3)  C4) 

In  Fig.  1,  1  =  a  cos  BAS  =  a  cos  y, 
'MN==l,  AB  =  a. 

.'.  MN  =  AB  cos  y. 

In  Fig.  2,  I  =  a  cos  ABT  =  a  cos  (tt  —  y) 

(5)  (6) 

=  —  a  cos  y,                               (by  5,  p.  20) 

MN=^l,  AB=-a. 
,\  AIN  =  AB  cosy. 

In  Fig.  3, I  =  a  cos  ABT  =  a  cos  (tt  —  y) =  —  a  cos  y, 

MN  =  -l,  AB  =  a. 

.'.MN  =  AB  cosy. 
In  Fig.  4, 1  =  acos  ABT  =  a  cos  y, 

MN  =  -l,  AB  =  -a. 

.'.  MN  =  AB  cosy. 
In  Fig.  5, y  =  0,  MN  =1,  AB  =  a. 
Hence MN  =  AB  =  AB  cos  0  (since  cos  0  =  1). 

.'.  MN  =  AB  cosy. 
In  Fig.  6, 

y  =  TT,  MN  =  —  l,  AB  =  a. 
Hence MN  =  —  AB  =  AB  cos  tt  (since  cos  tt  =  —  1). 

.'.  MN  =  AB  cosy.                                                  Q.E.D. 
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msider  any  two  given  points 

Pii^i,  yi),  l\(x^,  2/2). 
Then  in  the  figure 

M1M2  =  projection  of  P^P^  on  Z'X, 
N-^N^  —  projection  of  P^P^  on  TY, 

But  by  (1),  p.  24, 

ikfiMa  =  OM2  —  OMi  z=  Xi  —  Xi, 

N,N^  =  ON^  -  ON,  =  2/2  -  2/1. 
Hence 

Theorem  III.    Given  any  two  points  P,  (x^,  y^y  P^  (x^,  3/2) ;  then 

fx^  —  Xj_  =  projection  of  P1JP2  on  A^'X; 

[1/2  —  1/1  =  projection  of  JP^Pz  on  Y'Y. 

21.  Lengths.    We  may  now  easily  prove  the  important 

Theorem  IV.    The  length  I  of  the  line  Y' 

joining  two  points  P,  (x,,  y,),  P^  (x^,  y^)  ̂ ' 
is  given  by  the  formula  ^j-^ 

Proof    Draw  lines  through  P,  and  ̂        ̂  
P2  parallel  to  the  axes  to  form  the 

right  triangle  PiSP^.  F 

Then  SP,  =  M^M,  =  x. 

]-P2(x2,ya) 

Mi  X 

P2S  =  iv^2^i  =  yi 

P1P2  =  V P,s''-\-SP,^; 
and  hence l  =  -^(x,-x,y-^(y,-y,y. 

(by  III) 

(by  III) 

Q.E.D. 
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The  method  used  in  deriving  (IV)  for  ani/  positions  of  Pi  anc 

7^2  is  the  following  : 
Construct  a  right  triangle  by  drawing  lines  parallel  to  the  axe 

through  Pi  and  Pj-  1'he  sides  of  this  triangle  are  equal  to  th( 

projections  of  the  length  P1P2  upon  the  axes.  But  these  projec-' 
tious  are  always  given  by  (HI),  or  by  (HI)  with  one  or  both 

signs  changed.  The  required  length  is  then  the  square  root  of 

the  sum  of  the  squares  of  these  projections,  so  that  the  change  in 

sign  mentioned  may  be  neglected.  A  number  of  different  figures 
should  be  drawn  to  make  the  method  clear. 

Ex.  1.    Find  the  length  of  the  line  joining  the  points  (1,  3)  and  (—  5,  5). 

Solution.    Call  (1,  3)  Pi,  and  (-  5,  5)P2. 
Then 

Xi  =1,  yi  =  3,  and  X2  =  -  6,  2/2  =  5; 

and  substituting  in  (IV),  we  have 
Vio 

X' 

(-5. 

Y'
 

(1, 

I  =  V(l  +  5)^  +  (3  -  5)'^ 

2V1O. 

It  should  be  noticed  that  we  are  simply 

finding  the  hypotenuse  of  a  right  triangle 
whose  sides  are  6  and  2. 

Remark.  The  fact  that  formulas  (HI)  and  (IV)  are  true  for  all 

positions  of  the  points  Pi  and  P2  is  of  fundamental  importance. 

The  application  of  these  formulas  to  any  given  problem  is  there- 
fore simply  a  matter  of  direct  substitution,  as  the  example  worked 

out  above  illustrates.  In  deriving  such  general  formulas,  since 

it  is  immaterial  in  what  quadrants  the  assumed  points  lie,  it  is 

most  convenient  to  draw  the  figure  so  that  the  points  lie  in  the 

first  quadrant,  or,  in  general,  so  that  all  the  quantities  assumed 

as  known  shall  be  positive. 

PROBLEMS I 
1.  Find  the  projections  on  the  axes  and  the  length  of  the  lines  joining 

the  following  points : 

(a)  (-4,  -  4)  and  (1,  3).      _        Ans.  Projections  5,  7  ;  length  =  V74. 
(b)  (- V2,  V3)  and  (V3,  V2). 

Ans.  Projections  V3  +  V2,  V2  -  V3,-  length  =  VlO. 



CAtlTESIAN  COdRDINATES  3^ 

(c)  (0,  0)  and  (^|,  ̂ ) •  Arts.  Projections  - ,  -  Vs ;  length  =  a. 

(d)  {a  +  b,  c  +  a)  and  {c -\- a,  b  ■}-  c). 

Arts.    Projections  c  -  6,  6  -  a ;  length  =  V(6  -  c)2+(a  -  6)2. 

2.  Find  the  projections  of  the  sides  of  the  following  triangles  upon  the 

(a)  (0,6),  (1,2),  (3,  -5). 

(b)  (1,0),  (-1,  -6),  (-1,  -8). 
(c)  (a,  6),  (6,  c),  (c,  d). 

3.  Find  the  lengths  of  the  sides  of  the  triangles  in  problem  2. 

4.  Work  out  formulas  (III)  and  (IV),  (a)  if  Xi  =  a^g;  (b)  if  yi  =  y^. 

5.  Find  the  lengths  of  the  sides  of  the  triangle  whose  vertices  are  (4,  3), 
(2,  -2),  (-3,  5). 

6.  Show  that  the  points  (1,  4),  (4, 1),  (5,  5)  are  the  vertices  of  an  isosceles 
triangle. 

7.  Show  that  the  points  (2,  2),  (-  2,  -  2),  (2  V3,  -  2  V3)  are  the  vertices 
of  an  equilateral  triangle. 

8.  Show  that  (3,  0),  (6,  4),  (-  1,  3)  are  the  vertices  of  a  right  triangle. 
What  is  its  area  ? 

9.  Prove  that  (-  4,  -  2),  (2,  0),  (8,  6),  (2,  4)  are  the  vertices  of  a  paral- 
lelogram.    Also  find  the  lengths  of  the  diagonals. 

10.  Show  that  (11,  2),  (6,  -  10),  (-6,  -  6),  (-  1,  7)  are  the  vertices  of 
a  square.     Find  its  area. 

11.  Show  that  the  points  (1,  3),  (2,  Vg),  (2,  -  Vo)  are  equidistant  from 
the  origin,  that  is,  show  that  they  lie  on  a  circle  with  its  center  at  the  origin 
and  its  radius  VlO, 

12.  Show-that  the  diagonals  of  any  rectangle  are  equal. 

13.  Find  the  perimeter  of  the  triangle  whose  vertices  are  (a,  6),  (—  a,  6), 

(-a,  -6). 

14.  Find  the  perimeter  of  the  polygon  formed  by  joining  the  following 
points  two  by  two  in  order : 

(6,  4),  (4,  -  3),  (0,  -  1),  (-  5,  -  4),  (-  2,  1). 

15.  One  end  of  a  line  whose  length  is  13  is  the  point  (-  4,  8);  the  ordi- 
nate of  the  other  end  is  3.     What  is  its  abscissa  ?  Ans.  8  or  —  16. 

16.  What  equation  must  the  coordinates  of  the  point  (x,  y)  satisfy  if  its 

distance  from  the  point  (7,  —  2)  is  equal  to  11  ? 
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17.  What  equation  expresses  algebraically  the  fact  that  the  point  (x,  y) 
equidistant  from  the  points  (2,  3)  and  (4,  5)? 

18.  If  the  angle  XOY  (Fig.,  p.  24)  equals  w,  show  that  the  length  of  th< 
line  joinhig  Pi(iCi,  2/i)  and  P2(X2,  yz)  is  given  by 

I  =  V(xi  -  X2)2  +  (2/1  -  2/2)2  +  2  (xi  -  X2)  {Vi  -  yi)  cos  «. 

19.  If  w  =  -,  find  distance  between  the  points  (—  3,  3)  and  (4,  —  2). 

Ans.   V39. 

20.  If  w  =  — ,  find  the  perimeter  of  the  triangle  whose  vertices  are  (1,  3), 

(2,  7),  (-  4,  -  4).  Ans.   V2I  +  V223  +  Vl09. 

21.  If  w  =  - ,  find  the  perimeter  of  triangle  (1,  2),  (-  2,  -  4),  (3,  -  5). 

Ans.  3  Vs  +  2 V3  +  V26  -  5V3  +  V53  -  I4V3. 

22.  Prove  that  (C,  6),  (7,  -  1),  (0,  -2),  (-  2,  2)  lie  on  a  circle  whose 
center  is  at  (3,  2). 

23.  If  w  =  — ,  find  the  distance  between  (V3,  V2),  (-  V2,  V3). Ans.    VlO  +  V2. 

24.  Show  that  the  sum  of  the  projections  of  the  sides  of  a  polygon  upoiij 
either  axis  is  zero  if  each  side  is  given  a  direction  established  by  passing 
continuously  around  the  perimeter. 

22.  Inclination  and  slope.   The  inclination  of  a  line  is  the  angle 

between  the  axis  of  x  and  the  line  when  the  latter  is  given  the 

upwai-d  direction  (p.  28). 
The  slope  of  a  line  is  the  tangent  of 

its  inclination. 

The  inclination  of  a  line  will  be 

denoted  by  a,  a^,  a^,  a',  etc. ;  its  slope 

by  m,  m-i,  mg,  m',  etc.,  so  that  m  =  tan  cr, 
mi  =  tan  ori,  etc. 

The  inclination  may  be  any  angle" 
from  0  to  TT  inclusive  (p.  28).  The 

slope  may  be  any  real  number,  since  the  tangent  of  an  angle  in 

the  first  two  quadrants  may  be  any  number  positive  or  negative. 

The  slope  of  a  line  parallel  to  X^X  is  of  course  zero,  since  the 

inclination  is  0  or  tt.    For  a  line  parallel  to  F'  Y  the  slope  is  infinite. 
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Theorem  V.    The  slope  m  of  the  line  passing  through  two  points 

J\  (^1,  Vi),  Pi  (^2,  2/2)  is  given  by 

(V)  m  =  ?^i:^i^^ 

a?i- 

-ajj 

r> 

N, 

^   

----^ 

^1 

A 1 

X' 

0 

/ 
y i^/i      ilfaX 

r' 

Proof, 

(1) 
Similarly, 

(2) 
But 

Hence,  from  (2), 

JkfiMa  =  £^2  —  ̂ 1 

=  P1P2  cos  or. 

P1P2  COS  or  =  iC2  —  ̂ 1- 

iViiVa  =  2/2-2/1 

=  P1P2  COS  /?. 

PjPa  COS  y8  =  2/2  -  2/1- 

COS  )8  =  sin  a. 

(by  (III),  p.  31) 
(by  (11),  p.  30) 

(by  (III),  p.  31) 

(by  (II),  p.  30) 

(by  (I),  p.  28) 

(3) 

Dividing  (3)  by  (1),     tan  a 

P1P2  sin  a  =  2/2  -  2/1. 

2/2 

m  = y\    2/1  -  2/2 iC2  —  ̂ 1 

Remark.  Formula  (Y)  may  be  verified  by 

constructing  a  right  triangle  whose  hypot- 

enuse is  P1P2,  as  on  p.  31,  whence  tan  a 

(=  tan  Z  SP1P2)  is  found  directly  as  the  ratio 

of  the  opposite  side,  SP2  =  2/2  ~~  2/ij  ̂ o  *^c 

adjacent  side,  PiS  =  X2  —  Xi* 

*  To  construct  a  line  passing  through  a  given  point  Pi  whose  slope  is  a  positive  frac- 
Pj  a  units  above  S,  and 
must  lie  to  the  left  of  Pj 

tion  - ,  we  mark  a  point  S  b  units  to  the  right  of  P^  and  a  point 

draw  P^Pz'  If  the  slope  is  a  negative  fraction,  —  - ,  then  either  S 
or  P2  must  lie  below  S. 
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Theorem  VI.    If  two  lines  are  parallel,  their  slopes  are  equal;  ij 

perpefidicular,  the  slope  of  one  is  the  negative  reciprocal  of  the  slope^ 

of  the  other,  and  conversely. 

Proof    Let  a^  and  a^  be  the  inclinations  and  Wi  and  m^  tl 

slopes  of  the  lines. 

If  the  lines  are  parallel,  a^  =  a^.     .'.  rn^  =  m^. 
If  the  lines  are  perpendicular,  as  in  the  figure, 

,    TT  TT 

«2  =  «i  +  2"'  ̂^  «i  =  «2  -  2  * 

,*.  Wj  =  tan  o-i  =  tan  j  ^g  —  —  J 

(by  4  and  6,  p.  19)' 

(by  1,  p.  19) 

=  —  cot  (STg 

1 
tan  OTo 

m^  = 
Q.E.D. 

The  converse  is  proved  by  retracing  the  steps  with  the  assump- 

tion, in  the  second  part,  that  ̂ 2  is  greater  than  aj. 

PROBLEMS 

1.  Find  the  slope  of  the  line  joining  (1,  3)  and  (2,  7).  Ans.   4. 

2.  Find  the  slope  of  the  Une  joining  (2,  7)  and  (—  4,  —  4).       Ans.  -^^. 

3.  Find  the  slope  of  the  line  joining  ( Vs,  V2)  and  (-  V2,  Vs). 
Ans.  2V6-5. 

4.  Find  the  slope'  of  the  line  joining  (a  -f  6,  c  +  a),  (c  +  a,  6  +  c). 

Ans. 
b  —  a 

c-b' 

5.  Find  the  slopes  of  the  sides  of  the  triangle  whose  vertices  are  (1,  1), 

(-  1,  -  1),  ( V3,  -  V3).  ^^    ̂ ^  1+V3^  I-V3 '  1-V3'  i-fVs 

6.  Prove  by  means  of  slopes  that  (-  4,  -  2),  (2,  0),  (8,  6),  (2,  4)  are  the 
vertices  of  a  parallelogram. 

7.  Prove  by  means  of  slopes  that  (3,  0),  (6,  4),  (—  1,  3)  are  the  vertices 
of  a  right  triangle. 

8.  Prove  by  means  of  slopes  that  (0,  -  2),  (4,  2),  (0,  6),  (-4,  2)  are  the 
vertices  of  a  rectangle,  and  hence,  by  (IV),  of  a  square. 
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9.  Prove  by  means  of  their  slopes  that  the  diagonals  of  the  square  in 
problem  8  are  perpendicular. 

10.  Prove  by  means  of  slopes  that  (10,  0),  (5,  o),  (5,  —  5),  (—  5,  5)  are 
the  vertices  of  a  trapezoid, 

11.  Show  that  the  line  joining  (a,  b)  and  (c,  —  d)  is  parallel  to  the  line 

joining  (—a,  —  b)  and  {—  c,  d). 

12.  Show  that  the  line  joining  the  origin  to  (a,  b)  is  perpendicular  to  the 

line  joining  the  origin  to  (—6,  a). 

13.  What  is  the  inclination  of  a  line  parallel  to  Y'Y?    perpendicular  to 
Y'Y? 

14.  What  is  the  slope  of  a  line  parallel  to  Y^Y?    perpendicular  to  Y'Y? 

15.  What  is  the  inclination  of  the  line  joining  (2,  2)  and  (—2,  —  2)? 

Ans.  -r- 

4 

16.  What  is  the  inclination  of  the  line  joining  (—  2,  0)»and  (—5,  3)? 

Ans.  —;-• 

4 

17.  What  is  the  inclination  of  the  line  joining  (3,  0)  and  (4,  V3)  ? 

An, 

18.  What  is  the  inclination  of  the  line  joining  (3,  0)  and  (2,  Vs)  ? A  ̂  

Ans.  -■ 27r 

Ans.  —. 19.  What  is  the  inclination  of  the  line  joining  (0,  —  4)  and  (—  V3,  -  5) 

Ans.  -• 
20.  What  is  the  inclination  of  the  line  joining  (0,  0)  and  (-  V3,  1)  ? 

.        bit 

Ans.—' 21.  Prove  by  means  of  slopes  that  (2,  3),  (1,  -  3),  (3,  9)  lie  on  the  same 
straight  line. 

22.  Prove  that  the  points  (a,  6  +  c),  (6,  c  +  a),  and  (c,  a  +  6)  He  on  the 
same  straight  line. 

23.  Prove  that  (1,  5)  is  on  the  line  joining  the  points  (0,  2)  and  (2,  8) 
and  is  equidistant  from  them. 

24.  Prove  that  the  line  joining  (3,  -  2)  and  (5,  1)  is  perpendicular  to  the 

line  joining  (10,  0)  and  (13,  -  2). 
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23.  Point  of  division.    Let  ]\  and  Pg  be  two  fixed  points  on 

directed  line.     Any  third  point  on  the  line,  as  P  or  P',  is  said 

P,  P         i\  p' 

"to  divide  the  line  into  two  segments,"  and  is  called  a  point 
of  division.     The  division  is  called  internal  or  external  according 

as  the  point  falls  within  or  without  PjPg-     The  position  of  the 

point  of  division  depends  upon  the  ratio  of  its  distances  from  P^ 

and  Pa-     Since,  however,  the  line  is  directed,  some  convention 

must  be  made  as  to  the  manner  of  reading  these  distances.     We 

therefore  adopt  the  rule  : 

If  P  is  a  point  of  division  on  a  directed  line  passing  through 

Pi  and  Pg,  then  P  is  said  to  divide  P1P2  into  the  segments  PiP 
•  P  p 

and  PP2.     The  ratio  of  division  is  the  value  of  the  ratio*  — — 

We  shall  denote  this  ratio  by  X,  that  is,  * 

If  the  division  is  internal,  PiP  and  PP2  agree  in  direction  and 

therefore  in  sign,  and  \  is  therefore  positive.  In  external  divi- 
sion A.  is  negative.  The  sig7i  of  \  therefore  indicates  whether 

the  point  of  division  P  is  within  or  without  the  segment  PiPg ; 
and  the  numerical  value  determines  whether  P  lies  nearer  Pj 

or,  Pg.     The  distribution  of  \  is  indicated  in  the  figure. 

-i<\<o        Ac=o      \>o      X=oo    -oo<X<-j 

Pi  P, 

That  is,  \  may  have  any  positive  value  between  Pi  and  Pg,  any 

negative  value  between  0  and  —  1  to  the  left  of  Pi,  and  any  nega- 
tive value  between  —  1  and  —  00  to  the  right  of  Pg.  The  value 

—  1  for  X  is  excluded. 

*To  assist  the  memory  in  writing  down  this  ratio,  notice  that  the  point  of  division  P 
is  written  last  in  the  numerator  and  Jirst  in  the  denominator. 
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Introducing  coordinates,  we  next  prove 

Theorem  VII.  Point  of  division.  The  coordinates  (x,  y)  of  the 

point  of  division  P  on  the  line  joining  Pi(xij  yi),  P^i^z}  2/2)?  such 
that  the  ratio  of  the  segments  is 

are  given  hy  the  formulas 

0^1  +  Aa?2 

=  A, 

(VII) oc 
1  +  A 

y  = 

Vx  +  A^z 
l  +  A 

Proof.    Given 

PP, 

Let  a  be  the  inclination  of  the  line  P^P 

upon  the  axis  of  x. 

Then,  by  the  first  theorem  of  projection  [(II),  p.  30] 

M^M  =  P^P  cos  a, 

MM2  =  PP2  COS  a. 

P^P 

Ml    M  M^X 

Project  Pi,  P,  P2 

Dividing, 
MM^      PP^ (by  hypothesis) 

But M^M  =  x  —  x^, 

3IM2  =  X2  —  X. (by  (III),  p.  31) 
Substituting, 

x-x,_^ 

x^  —  X 
Clearing  of  fractions  and  solving  for  x, 

X,  +  \X2 

""-    1  +  A 

Similarly, 

y  =
 

2/1  +  >-?/2 
1+A  Q.E.D. 

Corollary.  Middle  point.  The  coordinates  (x,  y)  of  the  middle 

point  of  the  line  joining  P^  {x^,  yi),  P^  (x^,  2/2)  cure  found  hy  taking 

the  averages  of  the  given  abscissas  and  ordinates ;  that  is, 

a?  =  |(a?i  +  0^2),  i/  =  l (1/1  +  2/2)- 
P  P 

For  if  P  is  the  middle  point  of  PJ'^^  then  A.  =  — ^  =  1. 1    1   a 
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Ex.  1.    Find  the  point  P  dividing  Pi  (-1,  -6),  Pa  (3,  0)  in  the  ratio  X= -J. 

Solution.    Applying  (VII),  a;i  =  -  1,  yi  =  -  6, 
X2  =  3,  ya  =  0. 

y  =  — z — T- 

-6 

i 
Ans. 

=  -8. 

Hence  Pis  (-  2^,  -8). 

Ex.  2.  Find  the  coordinates  of  the  point  of 
intersection  of  the  medians  of  a  triangle  whose 
vertices  are  (xi,  2/1),  (xg,  ̂ 2),  (a^s,  2/3)- 

Solution.  By  Plane  Geometry  we  have  to  find 

the  point  P  on  the  median  AD  such  that  AP  =  ̂ AB,  that  is,  ̂ P :  PD  : :  2  : 1, 
or  \  =  2. 

By  the  Corollary,  D  is  [|(X2  +  X3),  ̂  (2/2  +  ̂ 3)]- 

To  find  P,  apply  (VII),  remembering  that  A  corre- 
sponds to  (xi,  2/1)  and  D  to  (X2,  y^)- 

Xi  +  2  •  I  (X2  +  X3) 

fAC^i^Vi) 

This  gives  x 

y 

1  +  2 

yi  +  2  •  1  (2/2  +  yz) 
1  +  2 

Ca^2.2/2-) 

.-.  X  =  1  (xi  +  X2  +  X3),  y  =  H^i  +  2/2  +  ̂ 3).    ̂ ws. 

Hence  the  abscissa  of  the  intersection  of  the  medians  of  a  triangle  is  the 

average  of  the  abscissas  of  the  vertices,  and  similarly  for  the  ordinate. 
The  symmetry  of  these  answers  is  evidence  that  the  particular  median 

chosen  is  immaterial,  and  the  formulas  therefore  prove  the  fact  of  the  intersec- 
tion of  the  medians. 

PROBLEMS 

1.  Find  the  coordinates  of  the  middle  point  of  the  line  joining  (4,  —  6) 

and  (-  2,  -  4).  Ans.    (1,  -  5). 

2.  Find  the  coordinates  of  the  middle  point  of  the  line  joining  (a+6,  c+d) 

and  (a  —  b,  d  —  c).  Ans.    (a,  d). 

3.  Find  the  middle  points  of  the  sides  of  the  triangle  whose  vertices  are 

(2,  3),  (4,  —  6),  and  (—3,  —  6) ;  also  find  the  lengths  of  the  medians. 

4.  Find  the  coordinates  of  the  point  which  divides  the  line  joining  (—1,4) 

and  (-  5,  -  8)  in  the  ratio  1:3.  •  Ans.    (-  2,  1). 

6.  Find  the  coordinates  of  the  point  which  divides  the  line  joining 

(-3,  -  5)  and  (6,  9)  in  the  ratio  2  :  5.  Ans.    (-  f,  - 1). 
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6.  Find  the  coordinates  of  the  point  which  divides  the  line  joining  (2,  6) 

and  (—  4,  8)  into  segments  whose  ratio  is  —  |.  Ans.    {—  22,  14). 

7.  Find  the  coordinates  of  the  point  which  divides  the  line  joining 

(—3,  —  4)  and  (5,  2)  into  segments  whose  ratio  is  —  f.  Ans.  (—19,  —  16). 

8.  Find  the  coordinates  of  the  points  which  trisect  the  line  joining  the 

points  (-  2,  -  1)  and  (3,  2).  Ans.    (-  |,  0),  (|,  1). 

9.  Prove  that  the  middle  point  of  the  hypotenuse  of  a  right  triangle  is 
equidistant  from  the  three  vertices. 

10.  Show  that  the  diagonals  of  the  parallelogram  whose  vertices  are  (1,  2), 

(—  5,  -  3),  (7,  -  6),  (1,  -  11)  bisect  each  other. 

11.  Prove  that  the  diagonals  of  any  parallelogram  mutually  bisect  each 
other. 

12.  Show  that  the  lines  joining  the  middle  points  of  the  opposite  sides  of 

the  quadrilateral  whose  vertices  are  (6,  8),  (—  4,  0),  (—  2,  —  6),  (4,  —  4)  bisect 
each  other. 

13.  In  the  quadrilateral  of  problem  12  show  by  means  of  slopes  that  the 

lines  joining  the  middle  points  of  the  adjacent  sides  form  a  parallelogram. 

14.  Show  that  in  the  trapezoid  whose  vertices  are  (—  8,  0),  (—4,  —  4), 
(—  4,  4),  and  (4,  —  4)  the  length  of  the  line  joining  the  middle  points  of  the 
non-parallel  sides  is  equal  to  one  half  the  sum  of  the  lengths  of  the  parallel 
sides.     Also  prove  that  it  is  parallel  to  the  parallel  sides. 

16.  In  what  ratio  does  the  point  (—2,  3)  divide  the  line  joining  the  points 

(-  3,  5)  and  (4,  -  9)  ?  Ans.   i. 

16.  In  what  ratio  does  the  point  (16,  3)  divide  the  line  joining  the  points 

(-5,  0)  and  (2,  1)?  Ans.    -  f. 

17.  Given  the  triangle  whose  vertices  are  (—  5,  3),  (1,  —  3),  (7,  5);  show 
that  a  line  joining  the  middle  points  of  any  two  sides  is  parallel  to  the  third 
side  and  equal  to  one  half  of  it. 

18.  If  (2,  1),  (3,  3),  (6,  2)  are  the  middle  points  of  the  sides  of  a  triangle, 
what  are  the  coordinates  of  the  vertices  of  the  triangle  ? 

Ans.    (-1,2),  (5,0),  (7,4). 

19.  Three  vertices  of  a  parallelogram  are  (1,  2),  (—5,  —3),  (7,  —6). 
What  are  the  coordinates  of  the  fourth  vertex  ? 

Ans.    (1,  -  11),  (-  11,  5),  or  (13,  -  1). 

20.  The  middle  point  of  a  line  is  (6,  4),  and  one  end  of  the  line  is  (5,  7). 
What  are  the  coordinates  of  the  other  end  ?  Ans.    (7,  1). 

21.  The  vertices  of  a  triangle  are  (2,  3),  (4,  -  5),  (-  3,  -  6).  Find  the 
coordinates  of  the  point  where  the  medians  intersect  (center  of  gravity). 
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22.  Find  the  area  of  the  isosceles  triangle  whose  vertices  are  (1,  5),  (5,  1), 

(_  9^  _  9)  by  finding  the  lengtlis  of  the  base  and  altitude. 

23.  A  line  AB  is  produced  to  C  so  that  BC  =  \  AB.  If  the  points  A  and  B 
have  the  coordinates  (5,  6)  and  (7,  2)  respectively,  what  are  the  coordinates 
of  C?  Ans.    (8,0). 

24.  Show  that  formula  (VII)  holds  for  oblique  coordinates,  that  is,  Z  XOY 
may  have  any  value. 

26.  How  far  is  the  point  bisecting  the  line  joining  the  points  (6,  5)  and  (3,  7) 

from  the  origin  ?    "What  is  the  slope  of  this  last  line  ?  Atis.   2  VTs,  ̂. 

24.  Areas.  In  this  section  the  problem  of  determining  the  area 

of  any  polygon  the  coordinates  of  vi^hose  vertices  are  given  will 
be  solved.     We  begin  with 

Theorem  VIII.  The  area  of  a  triangle  ivhose  vertices  are  the 

origin,  Pi(xi,  y^),  and  Pzi^^y  2/2)  ̂'^  giveti  by  the  formula 

(VIII)         Area  of  triangle  OP^P^,  =  1(^1^2  —  ̂ zVi)- 

Proof.    In  the  figure  let P2(x,,yJ 
ACx„yJ 

M, 

M,  JL 
(1) 

P  =  Z.  XOP^, 

e  =  z  p,op^. 

By  18,  p.  20, 

(2)  Area  A  OP^P^  =  ̂   OP^  •  OP^  sin  0 

=  ̂ 0P,-0P,sm(/3-a)  [by(l)] 

(3)  =  ̂   OPi '  OP 2  (sin  ̂   cos  a  —  cos  P  sin  a). 

(by  9,  p.  20) 
But  in  the  figure 

.  ^  il/oP, 

sm  a 

OP, 

OP, 
J  cos  a  = 

OM, 

OP, 

OP, 

OP, 

Substituting  in  (3)  and  reducing,  we  obtain 

Area  A  OP^P^  =  ̂   (x^y,  —  x^y,). 

'  Q.E.D. 
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Ex.  1.    Find  the  area  of  the  triangle  whose  vertices  are  the  origin,  (—  2,  4), 
and  (-  5,  -  1). 

Solution.    Denote  (-2,  4)  by  Pi,  (-5,  -1)  by  Pg. 
Then 

xi  =  -  2,  yi  =  4,  xg  =  -  5,  2/2  =  -  1. 

Substituting  in  (VIII), 

Area  =  |  [-  2  •  -  1  -  (-  5)  •  4]  =  11. 
Then  Area  =  11  unit  squares. 

If,  however,  the  formula  (VIII)  is  applied  by  denoting  (-2,  4)  by  P2,  and 
(_  5,  -  1)  by  Pi,  the  result  will  be  -  11. 

The  two  figures  are  as  follows  : 

r-a 

,4) 

FA 

/ \ f \ 
/ V 

(i.,^) / \ 
L 

,^ 
X 

(^ P7 

■ 

(1)  (2) 

The  cases  of  ̂ positive  and  negative  area  are  distinguished  by 

Theorem  IX.    Passing  around  the  perimeter  in  the  order  of  the 

vertices  0,  P^,  P^, 

if  the  area  is  on  the  left,  as  in  Fig.  1,  then  (VIII)  gives  a  posi- 
tive result; 

if  the  area  is  on  the  right,  as  in  Fig.  2,  then  (VIII)  gives  a 

negative  result. 

Proof.  When  the  area  is  on  the  left  as  in  Fig.  1,  then  in  (1), 

p.  42,  we  have  /3  >  a,  and  hence  6  is  positive.  Therefore  sin  6 

is   positive  and   the  product   in   (2),      ̂   p 

p.  42,  which  gives  the  area  of  OP^P^,  ^  -    ̂ ■ 
is  also  positive.    But  when  the  area 

is  on  the  right,  as  in  Fig.  2,  we  have 

^  <  a,  and  hence  6  is  negative.    Then 

sin  0  is  negative,  and  hence  also  the  product  in  (2),  p.  42,  which 

gives  the  area  of  OP1P2.  Q-^-d- 

Formula  (VIII)  is  easily  applied  to  any  polygon  by  regarding 
its  area  as  made  up  of  triangles  with  the  origin  as  a  common 

vertex.    Consider  any  triangle. 

\\
 

A 

.0+ (1) 
o 

P2 

(2) 
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Theorem  X.  The  area  of  a  triangle  whose  vertices  are  Pi  (xi,  yj), 

Pzi^i,  2/2),  ̂ si^s,  Vz)  is  given  by 

(X)  Area  A  P^r^^z = 5  (^i2/2  -  ̂ ^Vx + a?22/3  -  ̂ zVi + ̂ zVi  -  ̂ iVt)' 

This  formula  gives  a  positive  or  negative  result  according  a^  the 
area  lies  to  the  left  or  right  in  passing 

around  the  perimeter  in  the  order  P^P^Pz' 

Proof  Two  cases  must  be  distin- 
guished according  as  the  origin  is 

within  or  without  the  triangle. 

Fig.    1,    origin   within    the   triangle. 

By  inspection, 

(5)  Area  A  P1P2P3  =  A  OP^P^  +  A  OP^P^  +  A  OP3P1, 

since  these  areas  all  have  the  same  sign. 

Fig.  2,  origin  without  the  triangle.     By  inspection, 

(6)  Area  A  P^P^Pz  =  A  OP^P^  +  A  OP2P3  +  A  OP3P1, 

since  OP^P^,  OP^Py  have  the  same  sign,  but  OP.^P^  the  opposite 

sign,  the  algebraic  sum  giving  the  desired  area. 

By  (VIII),  A  OP,P,  =  ̂   (x,y,  -  x,y,), 

A  OP2P3  =  ̂   (0:2^3  -  x^y^),  A  OP3P1  =  ̂   {x^i  -  x^ys). 

Substituting  in  (5)  and  (6),  we  have  (X). 

Also  in  (5)  the  area  is  positive,  in  (6)  negative. 

An  easy  way  to  apply  (X)  is  given  by  the  following 

Rule  for  finding  the  area  of  a  triangle. 

Mrst  step.  Write  down  the  vertices  in  two  columns, 

abscissas  in  one,  ordinates  in  the  other,  repeating  the 

coordinates  of  the  first  vertex. 

Second  step.  Multiply  each  abscissa  by  the  ordinate  of  the  next 

row,  and  add  results.      This  gives  x^y^  -\-  x^y^  +  ̂ iVx- 
Third  step.  Multiply  each  ordinate  by  the  abscissa  of  the  next 

row,  and  add  results.      This  gives  y^x^  +  2/2^3  +  Vz^x- 

Fourth  step.  Subtract  the  result  of  the  third  step  from  that  of 

the  second  step,  and  divide  by  2.  This  gives  the  required  area^ 

namely,  formula  (X). 

Q.E.D. 

Xi 

Vi 

X2 

2/2 

Xz 

yz 

Xi 

Vi 
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It  is  easy  to  show  in  the  same  manner  that  the  rule  applies  to 

any  polygon,  if  the  following  caution  be  observed  in  the  first  step  : 

Write  down  the  coordinates  of  the  vertices  in  an  order  agreeing 

with  that  established  by  passing  continuously  around  the  perimeter, 

and  repeat  the  coordinates  of  the  first  vertex. 

Ex.  2.    Find  the  area  of  the  quadrDateral  whose  vertices  are  (1,  6), 

(-3,  -4),  (2,  -2),  (-1,3). 

Solution.    Plotting,  we  have  the  figure  from  which 
we  choose  the  order  of  the  vertices  as  indi-         .,  ^ 1  D 

cated  by  the  arrows.     Following  the  rule  :     _  i         3 
First  step.    Write  down  the  vertices  in     —  3     —  4 

order.  2     —  2 1         (\ 
Second  step.    Multiply  each   abscissa 

by  the  ordinate  of  the  next  row,  and  add.    This  gives 

lx3  +  (-lx-4)  +  (-3x-2)-f2x6=r25. 

Third  step.    Multiply  each  ordinate  by  the  abscissa 

of  the  next  row  and  add.     This  gives 

6  X  -1  +  3  X  -  3  +  (-  4  X  2)  +  (-  2  X  1)  =  -  25. 

Fourth  step.    Subtract  the  result  of  the  third  step 
from  the  result  of  the  second  step,  and  divide  by  2. 

Area  = 
25  +  25 

=  25  unit  squares.     Ans. 

The  result  has  the  positive  sign,  since  the  area  is  on  the  left. 

PROBLEMS 

1.  Find  the  area  of  the  triangle  whose  vertices  are  (2,  3),  (1,  5),  (—  1,  —  2\. 

Am.  -V-. 

2.  Find  the  area  of  the  triangle  whose  vertices  are  (2,  3),  (4,-5),  (  —  3,  —6). 
Ans.  29. 

3.  Find  the  area  of  the  triangle  whose  vertices  are  (8,  3),  (—  2,  3),  (4,  —  5). 
Ans.  40. 

4.  Find  the  area  of  the  triangle  whose  vertices  are  (a,  0),  (-  a,  0),  (0,  6). 
Ans.  ah. 

6.  Find  the  area  of  the  triangle  whose  vertices  are  (0,  0),  (xi,  ?/i),  (xa,  ̂ 2)- 

Ana.  ̂ ^y^-^y\ 
2 
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6.  Find  the  area  of  the  triangle  whose  vertices  are  (a,  1),  (0,  6),  (c,  1). 

{a-c){b-l) Ans. 
2 

7.  Find  the  area  of  the  triangle  whose  vertices  are  (a,  6),  (6,  a),  (c,  —  c). 

Ans.   i(a2-62). 

8 .  Find  the  area  of  the  triangle  whose  vertices  are  (3, 0) ,  (0, 3  Vs) ,(6,3  Vs). 
Ans.  9V3. 

9.  Prove  that  the  area  of  the  triangle  whose  vertices  are  the  points 

(2,  3),  (5,  4),  (—  4,  1)  is  zero,  and  hence  that  these  points  all  lie  on  the  same 
straight  line. 

10.  Prove  that  the  area  of  the  triangle  whose  vertices  are  the  points 

(a,  b  +  c),  (6,  c  -{■  a),  (c,  a  +  6)  is  zero.,  and  hence  that  these  points  all  lie  on 
the  same  straight  line. 

11.  Prove  that  the  area  of  the  triangle  whose  vertices  are  the  points 

(a,  c  +  a),  (—  c,  0),  (—a,  c  —  a)  is  zero,  and  hence  that  these  points  all  lie 
on  the  same  straight  line. 

12.  Find  the  area  of  the  quadrilateral  whose  vertices  are  (—  2,  3), 

(-3,   -4),  (5,   -1),  (2,  2).  Ans.  31. 

13.  Find  the  area  of  the  pentagon  whose -vertices  are  (1,  2),  (3,  —  1), 

(6,  -2),  (2,  5),  (4,  4).  Ans.  18. 

14.  Find  the  area  of  the  parallelogram  whose  vertices  are  (10,  5),  (—  2,  5), 

(-5,  -3),  (7,  -3).  Ans.  96. 

15.  Find  the  area  of  the  quadrilateral  whose  vertices  are  (0,  0),  (5,  0), 
(9,  11),  (0,  3).  Ans.  41. 

^16.  Find  the  area  of  the  quadrilateral  whose  vertices  are  (7,  0),  (11,  9), 

(O'  5),  (0,  0).  Ans.  59. 

17.  Show  that  the  area  of  the  triangle  whose  vertices  are  (4,  6),  (2,  —  4), 

(—4,  2)  is  four  times  the  area  of  the  triangle  formed  by  joining  the  middle 
points  of  the  sides. 

18.  Show  that  the  lines  drawn  from  the  vertices  (3,  —  8),  (—  4,  6),  (7,  0) 
to  the  medial  point  of  the  triangle  divide  it  into  three  triangles  of  equal  area. 

19.  Given  the  quadrilateral  whose  vertices  are  (0,  0),  (6,  8),  (10,  —  2), 
(4,  —  4) ;  show  that  the  area  of  the  quadrilateral  formed  by  joining  the 
middle  points  of  its  adjacent  sides  is  equal  to  one  half  the  area  of  the  given 
quadrilateral. 

I 
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25.  Second  theorem  of  projection. 

Lemma  I.    If  M-^,  vT/g,  M^  are  any  three  points  on  a  directed  line, 
then  in  all  cases M^ 

Mi 

O  Ml  Mz 

Proof.    Let  0  be  the  origin. 

By  (1),  p.  24,  M^M^  =  OM^  -  OM^, 

Adding,  MiM^  +  Af^M^  =  OM^  -  OM^. 

But  by  (1),  p.  24,         M^M^  =  OM^  -  OM^. 

.'.  MiMs  =  M1M2  +  M^M^. 
Q.E.D. 

This  result  is  easily  extended  to  prove 

Lemma  II.     If  M^,  M^,  M^,  •   •,  ̂„_i,  M^  are  any  n  points  on  a 
directed  line,  then  in  all  cases 

the  lengths  in  the  right-hand  member  being  so  written  that  the 
second  point  of  each  length  is  the  first  point  of  the  next. 

The  line  joining  the  first  and  last  points  of  a  broken  line  is 

called  the  closing  line. 

MiD 

Thus  in  Fig.  1  the  closing  line  is  P^P^ ;  in  Fig.  2  the  closing 
line  is  PiPr,. 
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Theorem  XI.  Second  theorem  of  projection.  If  each  segment  of  a 

broken  line  be  given  the  direction  determined  in  passing  continuoushj 

from  one  extremity  to  the  other,  then  the  algebraic  sum  of  the  pro- 

jections of  the  segments  upon  any  directed  line  equals  the  projection 

of  the  closing  line. 

Proof  The  proof  results  immediately  from  the  Lemmas.  For ' 
in  Fig.  1 

M^M^  —  projection  of  P1P2; 

JI/gMg  =  projection  of  PiP^ ; 

JkfiMg  =  projection  of  closing  line  P\P^. 

But  by  Lemma  I 

and  the  theorem  follows. 

Similarly  in  Fig.  2.  q.e.d. 

Corollary.  If  the  sides  of  a  closed  polygon  be  given  the  direction 

established  by  passing  continuously  around  the  perimeter,  the  sum 

of  the  projections  of  the  sides  upon  any  directed  line  is  zero. 

For  the  closing  line  is  now  zero. 

Ex.  1.    Find  the  projection  of  the  line  joining  the  origin  and  (5,  3)  upon 

a  line  passing  through  ( —  5,  0)  whose 

inclination  is  —  • 4 

Solution.    In  the  figure,  applying  the 
second  theorem  of  projection, 

proj.  of  OP  on  AB 
=  proj.  of  OM  +  proj.  of  MP 

Tt  Tt 

=  03f  cos —  + JfP  cos — 4  4 

(by  first  theorem  of  projection,  p.  30) 

=  5V2  +  |V2  =  4-v^.    An&. 

T] 
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The  essential  point  in  the  solution  of  problems  like  Ex.  1  is  the  replacing 

of  the  given  line,  by  means  of  Theorem  XI,  by  a  broken  line  with  two  seg- 
ments which  are  parallel  to  the  axes. 
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Ex.  2.    Find  the  perpendicular  distance  from  the  line  passing  through 

(4,  0),  whose  inclination  is  — ,  to  the 

point  (10,  2).  ^ 
Solution.  In  the  figure  draw  OC 

perpendicular  to  the  given  line  AB. 

ZXAS  =  ~,  or  120°. 3 

.-.  Z  XOS  =  30°,  Z  SOY  =  60°. 

Required  the  perpendicular  dis- 
tance RP. 

Project  the  broken  line  OMP  upon 
OC.  Then,  by  the  second  theorem  of 

projection, 

proj.  of  OP  =  proj.  of  OM  +  proj.  of  MP 
=  OJf  cos  Z  XOS  +  MP  cos  Z  SOY 

=  10.iV3  +  2-i 

(1)  =1  +  5  V3. 
But  in  the  figure 

yroy  of  OP  =  OS  +  ST 
=  OA  cos  Jro-S  +  BP 

(2)  =  4  .  i  V3  +  -RP. 
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From  (1)  and  (2), 

iJP  +  2  V3  =  1  +  5  V3. 
iJP  =  1  +  3  V3.     Ans. 

PROBLEMS 

1.  Four  points  lie  on  the  axis  of  abscissas  at  distances  of  1,  3,  6,  and  10 

respectively  from  the  origin.     Find  P1P4  by  Lemma  II. 

2.  A  broken  line  joins  continuously  the  points  (—  1,  4),  (3,  6),  (6,  —  2), 

(8,  1),  (1,  —  1).  Show  that  the  second  theorem  of  projection  holds  when  the 
segments  are  projected  on  the  X-axis. 

3.  Show  by  means  of  a  figure  that  the  projection  of  the  broken  line  join- 

ing the  points  (1,  2),  (5,  4),  (-  1,  -  4),  (3,  —  1),  and  (1,  2)  upon  any  line  is 
zero. 

4.  Find  the  projection  of  the  line  joining  the  points  (2,  1)  and  (5,  3)  upon 

a  line  passing  through  the  point  (—1,  1)  whose  inclination  is  —  • 
3V3  +  2 

Ans.   2 
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6.  Wliat  is  the  projection  of  the  line  joining  these  same  points  upon  any] 

line  whose  inclination  is  -  ?     Why  ? 

6.  Find  the  projection  of  the  line  joining  the  points  (-1,  3)  and  (2,  4)] 

upon  any  line  whose  inclination  is  f  tt.  Ana.   —  v2. 

7.  Find  the  projection  of  the  broken  line  joining  the  points  (-  1,  4),J 

(3,  6),  and  (5,  0)  upon  a  line  whose  inclination  is  - 
finding  the  projection  of  the  closing  line. 

Verify  your  result  bj 
Ans.   V2. 

8.  Find  the  projection  of  the  broken  line  joming  (0, 0),  (4,  2),  and  (6,  -  3)1 
,.,..••    2  TT  ^         _(j-3V3 

upon  a  line  whose  inclination  is  -r-  •  Ans.   o  2 

9.  Show  that  the  projection  of  the  sides  of  the  triangle  (2,  1),  (-  1,  5), 

(—3,  1)  upon  a  line  whose  inclination  is  —  is  zero. 

10.  Find  the  perpendicular  distance  from  the  point  (6,  3)  to  a  line  passing 
TC  7 

through  the  point  (—4,  0)  with  an  inclination  of  —•  An».   — p- 

11.  Find  the  perpendicular  distance  from  the  point  (—5,  —  1)  to  a  linej 
passing  through  the  point  (6,  0)  and  having  an  inclination  of  f  re. 

Ana.   6v^. 

It 12.  A  line  of  inclination  —  passes  through  the  point  (5,  0).    Find  the  per- 

pendicular distance  to  the  parallel  line  passing  through  the  point  (0,  2). 
5-f2V3 

An&.   



CHAPTER  III 

THE  CURVE  AND  THE  EQUATION 

26.  Locus  of  a  point  satisfying  a  given  condition.  The  curve* 

(or  group  of  curves)  passing  through  all  points  which  satisfy  a 
given  condition,  and  through  no  other  points,  is  called  the  locus 
of  the  point  satisfying  that  condition. 

For  example,  in  Plane  Geometry,  the  following  results  are 

proved : 

The  perpendicular  bisector  of  the  line  joining  two  fixed  points 

is  the  locus  of  all  points  equidistant  from  these  points. 

The  bisectors  of  the  adjacent  angles  formed  by  two  lines  is 

the  locus  of  all  points  equidistant  from  these  lines. 

To  solve  any  locus  problem  involves  two  things : 

1.  To  draw  the  locus  by  constructing  a  sufiicient  number  of 

points  satisfying  the  given  condition  and  therefore  lying  on  the 
locus. 

2.  To  discuss  the  nature  of  the  locus,  that  is,  to  determine 
properties  of  the  curve,  t 

Analytic  Geometry  is  peculiarly  adapted  to  the  solution  of 

both  parts  of  a  locus  problem. 

27.  Equation  of  the  locus  of  a  point  satisfying  a  given 

condition.  Let  us  take  up  the  locus  problem,  making  use  of  coor- 

dinates. If  any  point  P  satisfying  the  given  condition  and  there- 
fore lying  on  the  locus  be  given  the  coordinates  (ic,  t/),  then  the 

given  condition  will  lead  to  an  equation  involving  the  variables 

X  and  y.  The  following  example  illustrates  this  fact,  which  is 

of  fundamental  importance. 

*  The  word  "  curve"  will  hereafter  signify  any  continuous  line,  straight  or  curved. 
t  As  the  only  loci  considered  in  Elementary  Geometry  are  straight  lines  and  circles, 

the  complete  loci  may  be  constructed  by  ruler  and  compasses,  and  the  second  part  is 
relatively  unimportant. 

51 
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Ex.  1.    Find  the  equation  in  x  and  y  if  the  point  whose  locus  is  required 

shall  be  equidistant  from  A  {—  2,  0)  and  B{—  3,  8). 
Solution.   Let  P  (x,  y)  be  any  point  on  the  locus.  Then  by  the  given  condition 

(1)  PA  =  PB. 
But,  by  formula  IV,  p.  31, J(-$,8) 

(-2 

(2) 

PA  = 
=  V(x  +  2)2  +  {y  - 

-0)2, 

PB  = 
Substituting  in 

=  V(x  +  3)2  +  (y- 
(1), 

-  8)2. 

V(x  +  2 )2  +  (y  -  0)2 

8)2. 

=  V(x  +  3)2  +  {y 

Squaring  and  reducing, 

(3)  2x-16y  +  69  =  0. 
In  the  equation  (3),  x  and  y  are  variables  representing  the  coordinates  of 

any  point  on  the  locus,  that  is,  of  any  point  on  the  perpendicular  bisector  of 
the  line  AB.     This  equation  has  two  important  and  characteristic  properties : 

1.  The  coordinates  of  any  point  on  the  locus  may  be  substituted  for  x 
and  y  in  the  equation  (3),  and  the  result  will  be  true. 

For  let  Pi  (xi,  2/1)  be  any  point  on  the  locus.  Then  PiA  =  PiB,  by  defi- 
nition.    Hence,  by  formula  IV,  p.  31, 

(4)  V(xi  +  2)2  +  yi2  =  V(xi  +  3)2+(yi-8)2, 
or,  squaring  and  reducing, 

(5)  2  xi- 16  2/1 +  69  =  0. 
Therefore  Xi  and  yi  satisfy  (3). 

2.  Conversely,  every  point  whose  coordinates  satisfy  (3)  will  lie  upon  the" locus. 

For  if  Pi  (xi,  yi)  is  a  point  whose  coordinates  satisfy  (3),  then  (5)  is  true, 
and  hence  also  (4)  holds.  q.e.d. 

In  particular,  the  coordinates  of  the  middle  point  C  of  A  and  B,  namely, 

x  =  -2i,  y  =  4  (Corollary,  p.  39),  satisfy  (3),  since  2(-2i) -16  x  4  +  69  =  0. 

This  example  illustrates  the  following  correspondence  between 

Pure  and  Analytic  Geometry  as  regards  the  locus  problem : 

Locus  problem 

Pure  Geometry  Analytic  Geometry 

The  geometrical  condition  (satis-      An  equation  in  the  variables  x 
fied  by  every  point  on  the 
locus). 

and  y  representing  coordinates 

(satisfied  by  the  coordinates 

of  every  point  on  the  locus). 
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This  discussion  leads  to  the  fundamental  definition : 

The  equation  of  the  locus  of  a  point  satisfying  a  given  condition 

is  an  equation  in  the  variables  x  and  y  representing  coordinates 

such  that  (1)  the  coordinates  of  every  point  on  the  locus  will 

satisfy  the  equation;  and  (2)  conversely,  every  point  whose 

coordinates  satisfy  the  equation  will  lie  upon  the  locus. 

This  definition  shows  that  the  equation  of  the  locus  must  be 

tested  171  two  ways  after  derivation,  as  illustrated  in  the  example 

of  this  section  and  in  those  following. 
From  the  above  definition  follows  at  once  the 

Corollary.  A  point  lies  upon  a  curve  when  and  only  when  its 

coordinates  satisfy  the  equation  of  the  curve. 

28.  First  fundamental  problem.  To  find  the  equation  of  a 

curve  which  is  defined  as  the  locus  of  a  point  satisfying  a  given 
condition. 

The  following  rule  will  suffice  for  the  solution  of  this  problem 

in  many  cases : 

Rule.  First  step.  Assume  that  P  (x,  y)  is  any  point  satisfying 

the  given  condition  and  is  therefore  on  the  curve. 

Second  step.     Write  down  the  given  condition. 

Third  step.  Express  the  given  condition  in  coordinates  and 

simplify  the  result.  The  final  equation,  containing  x,  y,  and  the 

given  constants  of  the  problem,  will  be  the  required  equation. 

Ex.  1.    Find  the  equation  of  the  straight  line  passing  throughPi(4,  - 1) 

and  having  an  mchnation  of  — —  • 
4  "" 

Solution.    First  step.    Assume  P  (x,  y)  any  point 
on  the  line. 

Second  step.    The  given  condition,  since  the  incli- 

nation  a  is  —  ,  may  be  written 4 

(1)  Slope  of  PiP  =  tan  a  =  -  1. 

Third  step.    From  (V),  p.  35, 

(2)  Slope  of  PiP  =  tan  a 

— — — — 

\ 
/ 

*<s 

'^y 

) 

\ 
0 

\^ 

a, 

I) 

  , — S 

2/1  -2/2 

+  1 

Xi 

Xi      X  —  4 

[By  substituting  (x,  y)  for  {x^,  ?/,),  and  (4,  - 1)  for  («„  y^.] 
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.• 

.  from  (1), 
x-4 

or 

(3) X  +  y  -  3  =  0.    Av^. 

To  prove  that  (3)  is  the  required  equation  : 

1.  The  coordinates  (xi,  ?/i)  of  any  point  on  the  line  will  satisfy  (3),  for 

the  line  joins  (xi,  y\)  and  (4,  —  1),  and  its  slope  is  —  1 ;  hence,  by  (V),  p.  35, 
substituting  (4,  —  1)  for  (X2,  2/2), 

1  = 
yi  +  1 

X1-4
' 

or  xi  +  ?/i 

0, 

and  therefore  Xi  and  y^  satisfy  the  equation  (3). 

2.  Conversely,  any  point  whose  coordinates  satisfy  (3)  is  a  point  on  the 

straight  line.     For  if  (xi,  yi)  is  any  such  point,  that  is,  if  Xi  +  yi  —  3  =  0,  then 
also 1  =  —   :  is  true,  and  (xi,  2/1)  is  a  point  on  the  line  passing  through 

Xi  —  4 
(4,  —  1)  and  having  an  inclination  equal  to 

Q.E.D. 

Ex.  2.    Find  the  equation  of  a  straight  line  parallel  to  the  axis  of  y  and 
at  a  distance  of  6  units  to  the  right. 

Solution.  First  step.  Assume  that  P(x,  y)  is 

any  point  on  the  line,  and  draw  NP  perpendicular 
to  OY. 

Second  step.  The  given  condition  may  be 
written 

(4)  NP  =  6. 

Third  step.    Since  NP  =  OM  =  x,  (4)  becomes 

(5)  X  =  6.     Ans. 

Y 

X p 

(x 

{y. 

0 M \ 

The  equation  (5)  is  the  required  equation  : 
1.  The  coordinates  of  every  point  satisfying  the  given  condition  may  be 

substituted  in  (5).  For  if  Pi(xi,  y^  is  any  such  point,  then  by  the  given 

condition  Xi  =  6,  that  is,  (xi,  2/1)  satisfies  (5). 
2.  Conversely,  if  the  coordinates  (xi,  y\)  satisfy  (5),  then  X\  =  6,  and 

^\^\i  y\)  is  at  a  distance  of  six  units  to  the  right  of  YY'.  q.e.d. 
The  method  above  illustrated  of  proving  that  the  derived  equation  has  the 

two  characteristic  properties  of  the  equation  of  the  locus  should  be  carefully 
studied  and  applied  to  each  of  the  following  examples. I 
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Ex.  3.    Find  the  equation  of  the  locus  of  a  point  whose  distance  from 

(—1,  2)  is  always  equal  to  4. 

Solution.  First  step.  Assume  that  P(x,2/) 

is  any  point  on  the  locus. 

Second  step.    Denoting  (—1,  2)  by  C, 
the  given  condition  is 

(6)  PC  =  4. 

Third  step.    By  formula  (IV),  p.  31, 

PC  =  V(x  +  1)2  +  {y 

Substituting  in  (6), 

2)2. 4. 

Y  . 

"      .^~ 
X 

_   J 

^^(^}y'> f y\  : 
c .-     J  _ 

(■IS t-      4   - 
.    X 

7    ̂  

^ 
0         f-     \ 

_^  ̂ ^
 

V(x  +  1)2  +  (y  -  2)2 
Squaring  and  reducing, 

(7)  x2  +  2/2 +  2x-4y- 11  =  0. 

This  is  the  required  equation,  namely,  the  equation  of  the  circle  whose 

center  is  (—1,  2)  and  radius  equals  4.  The  method  of  proof  is  the  same 
as  that  of  the  preceding  examples. 

PROBLEMS 

1.  Find  the  equation  of  a  line  parallel  to  OY  and 

(a)  at  a  distance  of  4  units  to  the  right. 

(b)  at  a  distance  of  7  units  to  the  left. 
(c)  at  a  distance  of  2  units  to  the  right  of  (3,  2). 

(d)  at  a  distance  of  5  units  to  the  left  of  (2,  —  2). 

2.  What  is  the  equation  of  a  line  parallel  to  OY  and  a  —  h  units  from  it  ? 
How  does  this  line  lie  relative  toOrifa>6>0?ifO>6>a? 

3.  Find  the  equation  of  a  line  parallel  to  OX  and 

(a)  at  a  distance  of  3  units  above  OX.    . 

(b)  at  a  distance  of  6  units  below  OX. 

(c)  at  a  distance  of  7  units  above  (—  2,  —  3). 

(d)  at  a  distance  of  5  units  below  (4,  —  2). 

4.  What  is  the  equation  of  XX'?  of  YY'? 

5.  Find  the  equation  of  a  line  parallel  to  the  line  x  =  4  and  3  units  to  the 

right  of  it.     Eight  units  to  the  left  of  it. 

6.  Find  the  equation  of  a  line  parallel  to  the  line  y  =  -  2  and  4  units 
below  it.     Five  units  above  it. 

7.  How  does  the  line  y  =  a-61ieifa>6>0?   if6>a>0? 

8.  What  is  the  equation  of  the  axis  of  x  ?  of  the  axis  of  y  ? 
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9.  Wliat  is  the  equation  of  the  locus  of  a  point  which  moves  always  at 

a  distance  of  2  units  from  the  axis  of  x  ?  from  the  axis  of  j/  ?  from  the  line] 
X  =  -  6  ?   from  the  line  ?/  =  4  ? 

10.  What  is  the  equation  of  the  locus  of  a  point  which  moves  so  as  to i 

be  equidistant  from  the  lines  x  =  5  and  x  =  9  ?  equidistant  from  y  =  3  and 

y=-7? 
11.  What  are  the  equations  of  the  sides  of  the  rectangle  whose  vertices 

are  (5,  2),  (5,  6),  (- 2,  2),  (- 2,  5)  ? 

In  problems  12  and  13,  Pi  is  a  given  point  on  the  required  line,  m  is  the 
slope  of  the  line,  and  a  its  inclination. 

12.  What  is  the  equation  of  a  line  if 

(a)  Pi  is  (0,  3)  and  m  =  -  3  ? Ans.  3x  +  ?/  —  3 

An&.  X  —  3y  —  2 

Ans.  V2x-2y  +  6-i-2V2  =  0. 

^ns.  V3x  -  2 2/ +  10  =  0. 

(b)  Pi  is  (-  4,  -  2)  and  m  =  i? 
V2 

(c)  Pi  is  (-  2,  3)  and  m  =  — ? 

(d)  Pi  is  (0,  5)  and  w  =   ? 

(e)  Pi  is  (0,  0)  and  w  =  -  |  ? 
(f )  Pi  is  (a,  6)  and  m  =  0  ? 

(g)  Pi  is  (—  a,  6)  and  m  =  oo  ? 

13.  What  is  the  equation  of  a  line  if 

(a)  Pi  is  (2,  3)  and  a- =  45°? 
(b)  Pi  is  (-  1,  2)  and  or  =  45°? 
(c)  Pi  is  ( -  a,  -  6)  and  or  =  45°  ? 

(d)  Pi  is  (5,  2)  and  or  =  60°  ? 
(e)  Pi  is  (0,  -  7)  and  a  =  60°  ? 

(f)  Pi  is  (-4,  5)  anda  =  0°? 

(g)  Pi  is  (2,  -  3)  and  a  =  90°? 
(h)  Pi  is  (3,  -  3  V3)  and  or  =  120°  ? 

(i)  Pi  is  (0,  3)  and  a  =  150°  ? 
(j)  Pi  is  (a,  6)  and  a  =  135°  ? 

14.  Are  the  points  (3,  9),  (4,  6),  (5,  6)  on  the  line  3x  +  2y 

15.  Find  the  equation  of  the  circle  with 

An&. 2x-\-Sy  = 

-.0. 

Ans. 

y  =  b. 
Am. X  =  —  a. 

Ans. x-y  +  l 

=  0. 

Ans. x-y  +  S 
=  0. 

Ans. x  —  y  =  b 

—  a. 

Ans. 
Vsx-y- 

f  2- 

5  V3  =  0. 
Ans. 

V3x-y - 

-7  = 
0. 

Ans. 

2/ =  5. 
An^. x  =  2. 
Ans. VSx  +  y: 

=  0. 

Ans. 
V3x  +  3y-9 

=  0. 

Ans. x-i-y  =  a 

+  6. 

25? 

(a)  center  at  (3,  2)  and  radius  =  4. 

(b)  center  at  (12,  -  5)  and  r  =  13. 
(c)  center  at  (0,  0)  and  radius  =  r. 
(d)  center  at  (0,  0)  and  r  =  5. 
(e)  center  at  (3  a,  4  a)  and  r  =  5  a. 

(f)  center  at  (6  +  c,  6  —  c)  and  r  =  c. 
Ans.  x2  +  ?/2  _  2  (6  +  c)  X 

Ans.  x2  +  2/2 

Ans.  x^  +  y^ 

Ans  x2  +  ?/2 
-4??  5.  x2  +  2/2 

6x-4y-3  =  0. 

24x  +  10  2/  =  0. 

r2. 
25. 

Ans.  x2  +  2/2  -  2a(3x  +  4y)  =  0. 

2  (&  -  c)  ?/  ̂-  2  b-  +  c2  =  0. 
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16.  Find  the  equation  of  a  circle  whose  center  is  (5,  —  4)  and  whose 
circumference  passes  through  the  point  (—2,  3). 

17/  Find  the  equation  of  a  circle  having  the  line  joining  (3,  —  6)  and 
(—  2,  2)  as  a  diameter. 

18.  Find  the  equation  of  a  circle  touching  each  axis  at  a  distance  6  units 
from  the  origin. 

19.  Find  -the  equation  of  a  circle  whose  center  is  the  middle  point  of  the 
line  joining  ( —  6,  8)  to  the  origin  and  whose  circumference  passes  through 
the  point  (2,  3). 

20.  A  point  moves  so  that  its  distances  from  the  two  fixed  points  (2,  —  3) 

and  ( —  1 ,  4)  are  equal.     Find  the  equation  of  the  locus  and  plot. 
Ans.    3x-7y  +  2  =  0. 

21.  Find  the  equation  of  the  perpendicular  bisector  of  the  line  joining 

(a)  (2,  1),  (-  3,  -  3).  Ans.  lOx  +  8?/  +  13  =  0 

(b)  (3,  1),  (2,  4).  Ans.  x-Sy  +  b  =  0. 
(c)  (-  1,  -  1),  (3,  7).  Ans.  X  +  2  y  -  7  =  0. 

(d)  (0,  4),  (3,  0).  Ans.  6x  -  8y  +  7  =  0. 
(e)  \xi,  yi),  (X2,  2/2). 

Ans.  2  {xi  -  xa)^  +  2  (?/i  -  2/2)2/  +  x^^  -  Xi^  +  y^^  -  yi^  =  0. 

22.  Show  that  in  problem  21  the  coordinates  of  the  middle  point  of 

the  line  joining  the  given  points  satisfy  the  equation  of  the  perpendicular 
bisector. 

23.  Find  the  equations  of  the  perpendicular  bisectors  of  the  sides  of  the 

triangle  (4,  8),  (10,  0),  (6,  2).     Show  that  they  meet  in  the  point  (11,  7). 

24.  Express  by  an  equation  that  the  point  (A,  k)  is  equidistant  from 

(-  1,  1)  and  (1,  2) ;  also  from  (1,  2)  and  (1,  -  2).  Then  show  that  the  point 

(f,  0)  is  equidistant  from  (-  1,  1),  (1,  2),  (1,  -  2). 

29.  General  equations  of  the  straight  line  and  circle.     The 
methods  illustrated  in  the  preceding  section  enable  us  to  state 
the  following  results : 

1.  A  straight  line  parallel  to  the  axis  of  y  has  an  equation  of 
the  form  x  =  constant. 

2.  A  straight  line  parallel  to  the  axis  of  x  has  an  equation  of 

the  form  y  =  constant. 
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Theorem  I.    The  equation  of  the  straight  line  passing  through  a 

point  B(0,  b)  on  the  axis  ofy  and  having  its  slope  equal  to  m  is 

(I)  y  =  mx  +  b. 

Proof.    First  step.    Assume  that  P  (x,  y)  is  any  point  on  the  lina 
Second  step.    The  given  condition  may  be  written 

Slope  of  PB  =  m. 

Third  step.    Since  by  Theorem  V,  p.  35, 

Slope  of  PB 

y  -h 

then 

[Substituting  (x,  y)  for  (a;i,  yi)  and  (0,  6)  for  (a:2,  2/2)] 

y  —  h   =  711,  OT  y  =  mx  4-  0, 
Q.E.D. 

Theorem  II.    The  equation  of  the  circle  ivhose  center  is  a  given 

point  {a,  /3)  and  whose  radius  equals  r  is 

(II)  x^  +  if  -2aoc-2py  +  a^  +  P^  -r^  =  0. 

Proof    First  step.    Assume  that  P(x,  y)  is  any  point  on  the 
locus. 

Second  step.    If  the  center  {a,  jS)  be  denoted  by  C,  the  givei 
condition  is  ^^ 

PC  =:r. 

Third  step.    By  (IV),  p.  31, 

PC  =  ̂ (x-ay-{-(y-P)'. 

.-.  V(a^  -  ay  +  (y-  ̂ f  =  r. 
Squaring  and  transposing,  we  have  (II).  q.e.d. 

Corollary.  The  equation  of  the  circle  whose  center  is  the  origii 

(0,  0)  and  whose  radius  is  r  is 

The  following  facts  should  be  observed : 

Any  straight  line  is  defined  by  an  equation  of  the  first  degree 
in  the  variables  x  and  y. 

Any  circle  is  defined  by  an  equation  of  the  second  degree  in 

the  variables  x  and  y,  in  which  the  terms  of  the  second  degree 

consist  of  the  sum  of  the  squares  of  x  and  y. 
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30.  Locus  of  an  equation.  The  preceding  sections  have  illus- 

trated the  fact  that  a  locus  problem  in  Analytic  Geometry  leads 

at  once  to  an  equation  in  the  variables  x  and  y.  This  equation 

having  been  found  or  being  given,  the  complete  solution  of  the 

locus  problem  requires  two  things,  as  already  noted  in  the  first 

section  (p.  51)  of  this  chapter,  namely, 

1.  To  draw  the  locus  by  plotting  a  sufficient  number  of  points 

whose  coordinates  satisfy  the  given  equation,  and  through  which 
the  locus  therefore  passes. 

2.  To  discuss  the  nature  of  the  locus,  that  is,  to  determine 

properties  of  the  curve. 

These  two  problems  are  respectively  called : 

1.  Plotting  the  locus  of  an  equation  (second  fundamental 

problem). 

2.  Discussing  an  equation  (third  fundamental  problem). 

For  the  present,  then,  we  concentrate  our  attention  upon  some 

given  equation  in  the  variables  x  and  y  (one  or  both)  and  start 
out  with  the  definition  : 

The  locus  of  an  equation  in  two  variables  representing  coordinates 

is  the  curve  or  group  of  curves  passing  through  all  points  whose 

coordinates  satisfy  that  equation,*  and  through  such  points  only. 
From  this  definition  the  truth  of  the  following  theorem  is  at 

once  apparent : 

Theorem  III.  If  the  form  of  the  given  equation  he  changed  in  any 

vmy  (for  example,  by  transposition,  by  multiplication  by  a  constant, 

etc.),  the  locus  is  entirely  unaffected. 

*  An  equation  in  the  variables  x  and  y  is  not  necessarily  satisfied  by  the  coordinates  of 
any  points.  For  coordinates  are  real  numbers,  and  the  form  of  the  equation  may  be  such 
that  it  is  satisfied  by  no  real  values  of  x  and  y.    For  example,  the  equation 

372  +  7/2  +  1  =  0 

is  of  this  sort,  since,  when  x  and  y  are  real  numbers,  x^  and  y^  are  necessarily  positive 
(or  zero),  and  consequently  x^  +  y^  +  lis  always  a  positive  number  greater  than  or  equal 
to  1,  and  therefore  not  equal  to  zero.  Such  an  equation  therefore  has  no  locus.  The 

expression  "the  locus  of  the  equation  is  imaginai-y"  is  also  used. 
An  equation  may  be  satisfied  by  the  coordinates  of  a  finite  number  of  points  only. 

For  example,  x^  +  y^=0  is  satisfied  by  x=0,  y  =  0,  but  by  no  other  real  values.  In  this 
case  the  group  of  points,  one  or  more,  whose  coordinates  satisfy  the  equation,  is  called 
the  locus  of  the  equation. 
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We  now  take  up  in  order  the  solution  of  the  se<.!ond  and  third, 

fundamental  problems. 

31.  Second  fundamental  problem. 

Rule  to  plot  the  locus  of  a  given  equation. 

First  step.  Solve  the  given  equation  for  one  of  the  variables  in\ 

terms  of  the  other.* 
Second  step.    By  this  formula  compute  the  values  of  the  vai 

able  for  which  the  equation   has  been  solved  by  assuming  real 

values  for  the  other  variable. 

Third  step.    Plot    the  points   corresponding    to   the  values 
determined.lf 

Fourth  step.  If  the  points  are  numerous  enough  to  suggest  thi 

general  shape  of  the  locus,  draw  a  smooth  curve  through  the  points. 

Since  there  is  no  limit  to  the  number  of  points  which  may  be 

computed  in  this  way,  it  is  evident  that  the  locus  may  be  drawn 

as  accurately  as  Tnay  be  desired  by  simply  plotting  a  sufficiently 

large  number  of  points. 

Several  examples  will  now  be  worked  out  and  the  arrangement^ 
of  the  work  should  be  carefully  noted. 

Ex.  1.    Draw  the  locus  of  the  equation 

2x-3y +  6=^0. 
Solution.    First  step.    Solving  for  y, 

Second  step.    Assume  values  for  x  and  coinput 
y,  arranging  results  in  the  form  : 

Thus,  if 

x=l,  y  =  |.l+2  =  2|, 

X  =  2,  2/  =  f  .  2  +  2  =  31, 
etc. 

Third  step.    Plot  the  points  found. 
Fourth   step.      Draw    a   smooth    curve 

through  these  points. 

*  The  form  of  the  given  equation  will  often  he  such  that  solving  for  one  variable 
simpler  than  solving  for  the  other.     Alirai/s  choose  the  simpler  solution^ 

t  Remember  that  real  values  only  may  be  used  as  coordinates. 
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Ex.  2.    Plot  the  locus  of  the  equation 

y  =  x2  -  2  X  —  o. 

Solution.    First  step.    The  equation  as  given  is  solved  for  y. 

Second  step.    Computing  y  by  assuming  values  of  x,  we  find  the  table  of 
values  below : 

X y X y 

0 

-3 

0 

-3 

1 

-4 
-1 

0 
2 

-3 
-2 

5 
3 0 

-3 

12 
4 5 

-4 

21 
5 12 etc. etc. 

6 21 

etc. etc. 

Il      y- 

ttttlt 
T ::(:=: 

--,J   
  +   

-}-  — 

i'     \o- 

X. i f ■ 

-Y\r- 

Third  step.    Plot  the  points. 

Fourth  step.    Draw  a  smooth  curve  through  these  points.    This  gives  the 
curve  of  the  figure. 

Ex.  3.    Plot  the  locus  of  the  equation 

«2  +  2/2  _(.  6  X  -  16  =  0. 

First  step.    Solving  for  y, 

y  =  ±y/lQ  _6x-x2. 

Second  step.    Compute  y  by  assuming  values  of  X. 

X y X y 

0 
±4 

0 

±4 
1 

±3 

-1 

±4.6 2 0 

-2 

±4.9 3 imag. 

-3 

±5 
4 " 

-4 

±4.9 5 
(« 

-5 

±4.6 6 u 

-6 

±4 
7 u 

-7 

±3 

-8 

0 
-9 

imag. 
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For  example,  if  x  =  1,  y  =  ±  Vl6  -  G  -  1  =  ±  3  ; 

if  X  =  3,  2/  =  ±  Vl6  -  18  -  9  =  ±  V-ll, 

an  imaginary  number ; 

if  X  =  -  1,  2/  =  db  Vl6  +  6  -  1  =  ±  4.6, 
etc. 

Third  step.    Plot  the  corresponding  points. 
Fourth  step.    Draw  a  smooth  curve  through  these  points. 

PROBLEMS 

1.  Plot  the  locus  of  each  of  the  following  equations. 

(a)  X  +  2  2/  =  0. 
(p)  x2  +  2/2  =  9. 

(b)  x  +  22/  =  3. 
(q)  x2  +  2/2  =  25. (c)  3  X  -  2/  +  5  =  0. 

(r)  x2  +  y2_|.9a._ 

=  0. 

(d)  2/ =  4x2. 
(e)  x2  +  42/  =  0. 

(f)  2/  =  x2  -  3. 
(g)  x2  +  42/-5  =  0. 

(h)  2/  =  x2  +  X  +  1. 
(i)  x  =  2/2 +  22/ -3. 

(s)  x2  +  2/2  +  4  2/  = 

(t)  x2  +  2/2-6x- 
(u)  X2  +  2/2-62/- 

(v)  4  2/  =  x*  -  8. 
(w)  4  X  =  2/*  +  8. 

=  0. 

-16 

-16 

=  0. 

=  0 

(j)  4x  =  2/3. 
/y\  , .  _      ̂  (k)  4x  =  2/3-1. 

^'^^^-1+X2 

(1)  2/  =  x3  -  1. 

(m)  y  =  x^  —  X. 

"'"H^:- 
(n)  2/  =  x3  -  x2  -  5. 

/g'^  a-  _ 
(0)  x2  +  2/2  =  4. 

^  ̂          1  +  2/2 

2.  Show  that  the  following  equations  have  no  locus  (footnote,  p.  59). 

(a)  x2  +  2/2  +  1  =  0.  (f)  x2  +  2/2  +  2  X  +  2  2/  +  3  =  0. 
(b)  2x2 +  32/2  =-8.  (g)  4x2+2/2  +  8x  +  5  =  0. 
(c)  x2  +  4  =  0.  (h)  2/*  +  2  x2  +  4  =  0. 
(d)  x4  +  2/2  +  8  =  0.  (i)  9x2+4  2/2+ 18  x+8  2/  + 15=0. 
(e)  (X  +  1)2  +  2/2  +  4  =  0.  (j)  x2  +  xy  +  2/2  +  3  =  0. 
Ifin^    Write  each  equation  in  the  form  of  a  sum  of  squares,  or  solve  for  one  variable 

and  apply  Theorem  III,  p.  11,  to  the  quadratic  under  the  radical. 

32.  Principle  of  comparison.     In  Ex.  1,  p.  60,  and.  Ex.  3,  p.  61, 
we  can  determine  the  nature  of  the  locus,  that  is,  discuss  the 

equation,  by  making  use  of  the  formulas  (I)  and  (II),  p.  58.  The 
method  is  important  and  is  known  as  the  principle  of  comparison. 
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The  nature  of  the  locus  of  a  given  equation  may  he  determi7ied 

by  comparison  with  a  general  known  equation,  if  the  latter  becomes 

identical  with  the  given  equation  by  assigning  particular  values  to 

its  coefficients. 

The  method  of  making  the  comparison  is  explained  in  the 

following 

Rule.  First  step.  Change  the  form*  of  the  given  equation  (if 

necessary)  so  that  one  or  more  of  its  terms  shall  he  'identical  with 
one  or  more  terms  of  the  general  equation. 

Second  step.  Equate  coefficients  of  corresponding  terms  in  the 

two  equations,  supplying  any  terms  missing  in  the  given  equation 

with  zero  coefficients. 

Third  step.  Solve  the  equations  found  in  the  second  step  for 

the  values^  of  the  coefficients  of  the  general  equation. 

Ex.  1.  Show  that  2a;  — 3y  +  6  =  0  is  the  equation  of  a  straight  line 
(Fig.,  p.  60). 

Solution.    First  step.    Compare  with  the  general  equation  (I),  p.  58, 

(1)  y  =  mx-{-b. 

Put  the  given  equation  in  the  form  of  (1)  by  solving  for  y, 

(2)  y=^x  +  2. 

Second  step.  The  right-hand  members  are  now  identical.  Equating 
coefficients  of  x, 

(3)  m  =  f . 

Equating  constant  terms, 

(4)  6  =  2. 

Third  step.  Equations  (3)  and  (4)  give  the  values  of  the  coefficients  m 
and  6,  and  these  are  possible  values,  since,  p.  34,  the  slope  of  a  line  may 
have  any  real  value  whatever,  and  of  course  the  ordinate  b  of  the  point 

(0,  b)  in  which  a  line  crosses  the  F-axis  may  also  be  any  real  number.  There- 
fore the  equation  2x-Sy  +  6  =  0  represents  a  straight  line  passing  through 

(0,  2)  and  having  a  slope  equal  to  |.  q.e.d. 

*Thi8  transformation  is  called  "putting  the  given  equation  in  the  form"  of  the 
general  equation. 

t  The  values  thus  found  may  he  impossihle  (for  example,  imaginary)  values.  This 
may  indicate  one  of  two  things,  — that  the  given  equatipn  has  no  locus,  or  that  it  cannot 
he  put  in  the  form  required. 
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Ex.  2.    Show  that  the  locus  of 

(6)  x2  -f  2/2  +  6  X  -  16  =  0 

is  a  circle  (Fig.,  p.  61). 

Solution.    First  step.    Compare  with  the  general  equation  (II),  p.  68, 

(6)  x^  +  y^-2ax-2py  -\-  a^  +  ̂   -  r^  =  0. 

The  right-hand  members  of  (6)  and  (6)  agree,  and  also  the  first  two  terms, 

a;2  +  y2. 
Second  step.    Equating  coefficients  of  x, 

(7)  -2a  =  6. 

Equating  coefficients  of  y, 

(8)  -2^  =  0.  . 

Equating  constant  terms, 

(9)  a2  +  ̂ 2  _  y2  =  _  16. 

Third  step.    From  (7)  and  (8), 

a  =  -  3,  /3  =  0. 

Substituting  these  values  in  (9)  and  solving  for  r,  we  find 

r2  =  25,  or  r  =  5. 

Since  a,  ̂ ,  r  may  be  any  real  numbers  whatever,  the  locus  of  (5)  is  a 

circle  whose  center  is  (—3,  0)  and  whose  radius  equals  5. 

PROBLEMS 

1.  Plot  the  locus  of  each  of  the  following  equations.  Prove  that  the  locus 

is  a  straight  line  in  each  case,  and  find  the  slope  m  and  the  point  of  inter- 
section with  the  axis  of  y,  (0,  &). 

Ans.  m  =  —  2,  6  =  6. 
Ans.  m  =  l,b  =  2|. 

Ans.  m  =  —  i,  6  =  0. 

Ans.  m  =  I,  6  =  —  |. 
Ans.  m  =  I,  6  =  —  j\. 

Ans.   m  =  I,  6  =  —  6. 

(a)  2x  +  y-6  =  0. 

(b)x- 
3  y  +  8  =  0. 

(c)  X  4 2y  =  0. 

id)  6x -62/- 5  =  0. 

(e)  hx -fy-i  =  o. 

«I- |-x  =  o. is)  7x 
-8y  =  0. 

(h)  fx -ly-i  =  o. 
Ans.   m  =  |,  6  =  0. 
Ans.  m  =  I,  6  =  —  1^^. 
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2.  Plot  the  locus  of  each  of  the  equations  following,  and  prove  that  the 
locus  is  a  circle,  finding  the  center  (a,  /3)  and  the  radius  r  in  each  case. 

(a)  x2  +  y2  _  16  =  0.  Ans.  (or,  ̂ )  =  (0,  0);  r  =  4. 
(b)  x2  +  2/2  _  49  ==  0.  Ans.  (or,  ̂ )  =  (0,  0);  r  =  7. 
(c)  x2  +  2/2  -  25  =  0.  ^ns.  (a,  /3)  =  (0,  0);  r  =  5. 

(d)  x2  +  2/2  +  4x  =  0.  ^ns.  (a,  /3)  =  (-  2,  0);  r  =  2. 
(e)  (c2  +  y2  _  8  ?/  =  0.  ^ws.  {a,  ̂ )  =  (0,  4);  r  =  4. 
(f)  x2  +  2/2  +  4x  -  82/  =  0.  ^ns.  (d-,  /3)  =  (^  2^  4);  r  =  V20. 
(g)  x2  +  2/2  -  6 X  +  4 2/  -  12  =  0.  Ans.  (a,  ̂3)  zr  (3,  -  2);  r  =  5. 
(h)  x2  +  2/2  -  4x  +  9y  -  I  =  0.  ^jis.  (a,  ̂ )  =z  (2,  -  f);  r  =  6. 

(i)  3x2  _(_  3^/2  _  6x  -  82/  =  0.  Ans.   (a,  ̂3)  =  (1,|);  r  =  f . 

The  following  problems  illustrate  cases  in  which  the  locus 

problem  is  completely  solved  by  analytic  methods,  since  the  loci 

may  be  easily  drawn  and  their  nature  determined. 

3.  Find  the  equation  of  the  locus  of  a  point  whose  distances  from  the 

axes  XX'  and  YY'  are  in  a  constant  ratio  equal  to  f . 
Ans.    The  straight  line  2x  —  82/  =  0. 

4.  Find  the  equation  of  the  locus  of  a  point  the  sum  of  whose  distances 
from  the  axes  of  coordinates  is  always  equal  to  10. 

Ans.   The  straight  line  x  +  y  —  10  =  0. 

6.  A  point  moves  so  that  the  difference  of  the  squares  of  its  distances 

from  (3,  0)  and  (0,  —  2)  is  always  equal  to  8,  Find  the  equation  of  the 
locus  and  plot. 

Ans.    The  parallel  straight  lines  6x  +  42/  +  3  =  0,  6x  +  42/  —  13=0. 

6.  A  point  moves  so  as  to  be  always  equidistant  from  the  axes  of  coor- 
dinates.    Find  the  equation  of  the  locus  and  plot. 

Ans.    The  perpendicular  straight  lines  x  +  2/  =  0,  x  —  2/  =  0. 

7.  A  point  moves  so  as  to  be  always  equidistant  from  the  straight  lines 

X  —  4  =  0  and  2/  +  5  =  0.     Find  the  equation  of  the  locus  and  plot. 

Ans.    The  perpendicular  straight  lines  x  —  2/  —  9  =  0,  x  +  2/  +  l=0. 

8.  Find  the  equation  of  the  locus  of  a  point  the  sum  of  the  squares  of 

whose  distances  from  (3,  0)  and  (—3,  0)  always  equals  68.     Plot  the  locus. 
Ans.    The  circle  x2  +  2/2  =  25. 

9.  Find  the  equation  of  the  locus  of  a  point  which  moves  so  that  its  dis- 
tances from  (8,  0)  and  (2,  0)  are  always  in  a  constant  ratio  equal  to  2.  Plot 

the  locus.  Ans.   The  circle  x2  +  2/^  =  16. 

10.  A  point  moves  so  that  the  ratio  of  its  distances  from  (2, 1)  and  (—  4,  2) 
is  always  equal  to  \.     Find  the  equation  of  the  locus  and  plot. 

Ans.    The  circle  3 x2  +  3 2/2  -  24x  -  4 2/  =  0. 
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In  the  proofs  of  the  following  theorems  the  choice  of  the  axes 
of  coordinates  is  left  to  the  student,  since  no  mention  is  made 

of  either  coordinates  or  equations  in  the  problem.  In  such  cases 

always  choose  the  axes  in  the  most  convenient  manner  possible. 

11.  A  point  moves  so  that  the  sura  of  its  distances  from  two  perpendicular 
lines  is  constant.     Show  that  the  locus  is  a  straight  line. 

IIi7it.  Choosing  the  axes  of  coordinates  to  coincide  with  tlie  given  lines,  the  equation 

is  a?  +  y  =  constant. 

12.  A  point  moves  so  that  the  difference  of  the  squares  of  its  distances 
from  two  fixed  points  is  constant.     Show  that  the  locus  is  a  straight  line. 

Hint.  Draw  XX^  through  the  fixed  points,  and  Y  Y'  through  their  middle  point.  Then 
the  fixed  points  may  be  written  (a,  0),  (-  a,  0),  and  if  the  "constant  difference  "  be  denoted 
by  k,  we  find  for  the  locus  4  ao?  =  A:  or  4  ax  =  —  Ar. 

13.  A  point  moves  so  that  the  sum  of  the  squares  of  its  distances  from 
two  fixed  points  is  constant.     Prove  that  the  locus  is  a  circle. 

Hint.   Choose  axes  as  in  problem  12. 

14.  A  point  moves  so  that  the  ratio  of  its  distances  from  two  fixed  points' is  constant.     Determine  the  nature  of  the  locus. 

Ans.  A  circle  if  the  constant  ratio  is  not  equal  to  unity  and  a  straight 
line  if  it  is. 

The  following  problems  illustrate  the 

Theorem.  If  an  equation  can  be  put  in  the  form  of  a  product  of 

variable  factors  equal  to  zero,  the  locus  is  found  by  setting  each  fac- 
tor equal  to  zero  and  plotting  the  locus  of  each  equation  separately. 

15.  Draw  the  locus  of        4  x2  -  9  ?/2  =  0. 

Solution.    Factoring, 

(1)  .  (2x-3y)(2x  +  32/)  =  0. 

Then,  by  the  theorem,  the  locus  consists  of  the  straight  Knes 

(2)  2x-3y  =  0, 
(3)  2x  +  Sy  =  0. 

Proof.  1.  The  coordinates  of  any  point  (iCi,  yi)  which  satisfy  (1)  will 
satisfy  either  (2)  or  (3). 

For  if  (xi,  yi)  satisfies  (1), 

(4)  (2xi-3yi)(2xi  +  3yi)  =  0. 
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This  product  can  vanish  only  when  one  of  the  factors  is  zero.     Hence 
either 

2x1-32/1  =  0, 

and  therefore  (xi,  y{)  satisfies  (2) ; 

or  2xi  +  3yi  =  0, 

and  therefore  (xi,  yi)  satisfies  (3). 

2.  A  point  (xi,  yi)  on  either  of  the  lines  defined  by  (2)  and  (3)  will  also 

lie  on  the  locus  of  (1).  ^     - 

For  if  (xi,  yi)  is  on  the  line  2  x  —  3  y  =  0, 

then  (Corollary,  p.  53) 

(5)  2x1-32/1  =  0. 

Hence  the  product  (2  xi  —  3  yi)  (2  Xi  +  3  2/1)  also  vanishes,  since  by  (5)  the 
first  factor  is  zero,  and  therefore  (xi,  ̂ 1)  satisfies  (1). 

Therefore  every  point  on  the  locus  of  (1)  is  also  on  the  locus  of  (2)  and 

(3),  and  conversely.     This  proves  the  theorem  for  this  example.  q.e.d. 

16.  Show  that  the  locus  of  each  of  the  following  equations  is  a  pair  of 

straight  lines,  and  plot  the  lines. 

(a)  x2  -  2/2  =  0.  (j)  3  x2  +  x?/  -  2  2/2  +  6  X  -  4  2/  =  0. 

(b)  9  x2  -  y2  =  0.  (k)  x2  -  2/2  +  X  +  2/  =  0. 
(c)  x2  =  9  2/2.  (1)  x2  -  X2/  +  5  X  -  5  y  =  0. 

(d)  x2  -  4  X  -  5  =  0.  (m)  x2  -  2  X2/  +  2/^  +  6  X  -  6  2/  =  0. 

(e)  2/2-62/  =  7.  (n)  x2  -  4  2/2  +  5  x  +  10  2/  =  0. 

(f)  2/2-5xy +  62/  =  0.  (o)  x2  +  4x2/ +  4  2/2+  5x  +  102/  +  6  =  0. 
(g)  xy  -  2  x2  -  3  X  =  0.  (p)  x2  +  3  xy  +  2  y2  4.  X  +  2/  =  0. 
(h)  X2/  -  2  X  =  0.  (q)  x2  -  4  X2/  -  5  2/2  +  2  X  -  10  2/  =  0. 
(i)  xij  =  0.  (r)  3x2  -  2x2/  -  y2  +  5iB  _  52/  =  0. 

17.  Show  that  the  locus  of  ̂ x2  +  jBx  +  C  =  0  is  a  pair  of  parallel  lines,  a 

single  line,  or  that  there  is  no  locus  according  a,s  A  =  B^  —  i  AC  is  positive, 
zero,  or  negative. 

18.  Show  that  the  locus  of  Ax^  +  Bxy  +  Cy^  =  0  is  a  pair  of  intersecting 

lines,  a  single  line,  or  a  point  according  asA  =  JB2  —  4J.C  ig  positive,  zero, 
or  negative. 

33.  Third  fundamental  problem.    Discussion  of  an  equation. 

The  method  explained  of  solving  the  second  fundamental  prob- 
lem gives  no  knowledge  of  the  required  curve  except  that  it 

passes  through  all  the  points  whose  coordinates  are  determined 
as  satisfying  the  given  equation.  Joining  these  points  gives  a 
curve  more  or  less  like  the  exact  locus.     Serious  errors  may  be 
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made  in  this  way,  however,  since  the  nature  of  the  curue  between 

any  two  successive  points  jilotted  is  not  determined.  This  objection 

is  somewhat  obviated  by  determining  before  plotting  certain  prop- 
erties of  the  locus  by  a  discussion  of  the  given  equation  now  to 

be  explained. 

The  nature  and  properties  of  a  locus  depend  upon  the  form  of 

its  equation,  and  hence  the  steps  of  any  discussion  must  depend 

upon  the  particular  problem.  In  every  case,  however,  the  fol- 
lowing questions  should  be  answered. 

1.  Is  the  curce  a  closed  curve  or  does  it  exterid  out  infinitely  far? 

2.  7s  the  curve  symmetrical  with  respect  to  either  axis  or  the 

origin  ? 

The  method  of  deciding  these  questions  is  illustrated  in  the 

following  examples. 

Ex.  1.    Plot  the  locus  of 

(1)  x2  +  4y2  =  i6. 
Discuss  the  equation. 

Solution.    First  step.    Solving  for  x, 

(2)  x  =  ±2  V4  -  2/2. 
Second  step.   Assume  values  of  y  and  compute  x.    This  gives  the  table. 
Third  step.    Plot  the  points  of  the  table. 
Fourth  step.    Draw  a  smooth  curve  through  these  points. 

X y X 

±4 

y 

±4 

0 0 

±3.4 
1 

±3.4 

-  1 

±2.7 n 
±2.7 

-H 

0 2 0 

-2 

imag. 3 imag. 

-3 

Biscussion.  1.  Equation  (1)  shows  that  neither  x  nor  y  can  be  indefi- 
nitely great,  since  x2  and  4  y^  are  positive  for  all  real  values  and  their  sum 

must  equal  16.  Therefore  neither  x2  nor  4?/2  can  exceed  16.  Hence  the 
curve  is  a  closed  curve. 

A  second  way  of  proving  this  is  the  following : 

From  (2),  the  ordinate  y  cannot  exceed  2  nor  be  less  than  —  2,  since  the 
expression  4  —  ?/2  beneath  the  radical  must  not  be  negative.  (2)  also  shows 
that  X  has  values  only  from  —  4  to  4  inclusive. 
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2.  To  determine  the  symmetry  with  respect  to  the  axes  we  proceed  as 
follows : 

The  equation  (1)  contains  no  odd  powers  of  ic  or  y ;  hence  it  may  be  writ- 
ten in  any  one  of  the  forms 

(a;)2  +  4 (-  y)2  =  16,  replacing  (x,  y)  by  (x,  -  y); (3) 

(4) 

(6) 

(-  x)2  +  4  (2/)2  =  16,  replacing  (x,  ?/)  by  (-  x,  y) ; 

(-  x)2  +  4  (-  y)2  =  16,  replacing  (x,  ?/)  by  (-  x,  -  ?/). 

The  transformation  of  (1)  into  (3)  corresponds  in  the  figure  to  replacing 

each  point  P(x,  y)  on  the  curve  by  the  point  Q(x,  —  y).  But  the  points  P 
and  Q  are  symmetrical  with  respect  to  XX\  and  (1)  and  (3)  have  the  same 

locus  (Theorem  III,  p.  59).  Hence  the  locus  of  (1)  is  unchanged  if  each  point 

is  changed  to  a  second  point  symmetrical  to  the  first  with  respect  to  XX'. 
Therefore  the  locus  is  symmetrical  with  respect  to  the  axis  of  x.  Similarly 

from  (4),  the  locus  is  symmetrical  with  respect  to  the  axis  ofy,  and  from  (5), 
the  locus  is  symmetrical  with  respect  to  the  origin. 

The  locus  is  called  an  ellipse. 

Ex.  2.    Plot  the  locus  of 

(6)  2/2  _  4  aj  +  15  =  0. 

Discuss  the  equation. 

Solution.  First  step.  Solve  the  equation  for  x,  since  a  square  root  would 
have  to  be  extracted  if  we  solved  for  y.     This  gives 

(7)  x  =  1(2/2 +  15). 

X y 
3| 

0 
4 

±1 

4| 

±2 6 

±3 n 
±4 10 

±5 

12| 

±6 etc. etc. 

Ya 

«* 

J^,yl_ 

^ 
^ ̂  

^ 
^ 

^ 1 

/ 1 

^( 

1 
0 { 

H^ 

o\ 

"I" 

X 

\, 

; 
S 1 
^ 

"S,, 

1 

^ 

v^ 

ix 

\-y 

) 

"^ 

** 

Second  step.    Assume  values  for  y  and  compute  x. 
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Since  y*  only  appears  in  the  equation,  positive  and  negative  values  of 
give  the  same  value  of  x.     The  calculation  gives  the  table  on  p.  69. 

For  example,  if  y  =  ±  3, 

then  x  =  ̂ (9  + 15)  =  6,  etc. 

Third  step.    Plot  the  points  of  the  table. 
Fourth  step.    Draw  a  smooth  curve  through  these  points. 

Discussion.    1.  From  (7)  it  is  evident  that  x  increases  as  y  incres 
Hence  the  curve  extends  out  indefinitely  far  from  both  axes. 

2.  Since  (6)  contains  no  odd  powers  of  y,  the  equation  may  be  written 

^^^^^^'^  (_y)a_4(x)  +  16  =  0 
by  replacing  (x,  y)  by  (x,  —  y).     Hence  the  locus  is  symmetrical  with  respect 
to  the  axis  of  x. 

The  curve  is  called  a  parabola. 

Ex.  3.    Plot  the  locus  of  the  equation 

(8)  xy-2y-i  =  0. 

Solution.    First  step.    Solving  for  y, 

4 

(9) x-2 

Second  step.    Compute  y,  assuming  values  for  x. 

When         X  =  2,  y  =  ̂   =  00. 

In  such  cases  we  assume  values  differing 

slightly  from  2,  both  less  and  greater,  as  in 
the  table. 

Third  step.    Plot  the  points. 
Fourth  step.  Draw  the  curve  as  in  thi 

figure  in  this  case,  the  curve  having  tw( 
branches. 

1.  From  (9)  it  appears  that  y  diminish( 

and  approaches  zero  as  x  increases  indefi- 
nitely. The  curve  therefore  extends  indefi- 

nitely far  to  the  right  and  left,  approaching 

constantly  the  axis  of  x.  If  we  solve  (8)  for 
X  and  write  the  result  in  the  form 

4 
x  =  2  +  -, 

y 

it  is  evident  that  x  approaches  2  as  y  increases 

indefinitely.     Hence  the  locus  extends  both 

upward  and  downward  indefinitely  far,  approaching  in  each  case  the  line  x =2. 

X y X y 

0 

-2 

0 

-2 

1 

-4 
-1 

-1 

n 

-8 
-2 

-1 

n 
-16 

-4 

-1 

2 
00 

-5 

-f 

H 16 

n 8 

-10 

1 

'3 

3 4 etc. etc. 
4 2 

5 1 
6 1 

12 0.4 
etc. etc. 
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2.  The  equation  cannot  be  transformed  by  any  one  of  the  three  substitutions 

(x,  y)  into  {x,  -y), 

{X,  y)  into  (-x,  y), 

(X,  y)  into  (-  x,  -y), 

without  altering  it  in  such  a  way  that  the  new  equation  will  not  have  the 

same  locus.  The  locus  is  therefore  not  symmetrical  with  respect  to  either 
axis,  nor  with  respect  to  the  origin. 

^'^ 

CD 

I 
\ 
V 
\ 

v^ 

^ ^ 

t^ 

^ 
oo 

r- 

.^ 

0 

(^ 

.0) 

\ 

■^ 

N 
\ 
> 

\ -oo 

This  curve  is  called  an  hyperbola. 

Ex.  4.   Draw  the  locus  of  the  equation 

(10)  4y  =  x8. 

X y X 

2/ 

0 0 0 0 
1 i 

-1 

~  T 

H 11 

-H 
-II 

2 2 

-2 
-2 

2i 
3|f 

-2i 
-3|| 

3 

61 

-3 

-6| 

3i 10|| 

-3i -lOff 

Solution.    First  step.    Solving  for  y, 

y  =  1  x3. Second  step.  Assume  values  for  x 
and  compute  y.  Values  of  x  must  be 
taken  between  the  integers  in  order  to 

give  points  not  too  far  apart. 
For  example,  if 

x  =  2i, 

=  -¥^ 

etc. 
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y^^ 

n 
% 11 

Third  step.    Plot  the  points  thus  found. 
Fourtli  step.    The  points  determine  the  curve  of  the 

figure. 

Discussion.  1.  From  the  given  equation  (10),  x  and 
y  increase  simultaneously,  and  therefore  tlie  curve 
extends  out  indefinitely  from  both  axes. 

2.  In  (10)  there  are  no  even  powers  nor  constant' 
term,  so  that  by  changing  signs  the  equation  may  be 
written  in  the  form 

4(-y)  =  (-x)8, 

replacing  (x,  y)  by  (-  x,  -  y). 
Hence  the  locus  is  symmetrical  with  respect  to  the 

origin. 
The  locus  is  called  a  cubical  parabola. 

34.  Symmetry.  In  the  above  examples  we  have  assumed  the 
definition : 

If  the  points  of  a  curve  can  be  arranged  in  pairs  which  are 

symmetrical  with  respect  to  an  axis  or  a  point,  then  the  curve 

itself  is  said  to  be  symmetrical  with  respect  to  that  axis  or  point. 

'The  method  used  for  testing  an  equation  for  symmetry  of  the 
locus  was  as  follows  :  if  (x,  y)  can  be  replaced  by  {x,  —  y)  through- 

out the  equation  without  affecting  the  locus,  then  if  (a,  b)  is  on 

the  locus,  (a,  —  b)  is  also  on  the  locus,  and  the  points  of  the  latter 
occur  in  pairs  symmetrical  with  respect  to  XX\  etc.     Hence 

Theorem  IV.  If  the  locus  of  an  equation  is  unaffected  by  replacing 

y  by  —  y  throughout  its  equation^  the  locu^  is  symmetrical  with^ 
respect  to  the  axis  of  x. 

If  the  locus  is  unaffected  by  changing  x  to  —  x  throughout  its 
equation,  the  locus  is  symmetrical  with  respect  to  the  axis  of  y. 

If  the  locus  is  unaffected  by  changing  both  x  and  y  to  —  x  and 

—  y  throughout  its  equation,  the  locus  is  symmetrical  with  respect 
to  the  origin. 

These  theorems  may  be  made  to  assume  a  somewhat  different 

form  if  the  equation  is  algebraic  in  x  and  y  (p.  17).  The  locus 

of  an  algebraic  equation  in  the  variables  x  and  y  is  called  an 
algebraic  curve.     Then  from  Theorem  IV  follows 
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Theorem  V.  Symmetry  of  an  algebraic  curve.  If  no  odd  powers 

of  y  occur  in  an  equation,  the  locus  is  symmetrical  with  respect  to 

XX' ;  if  no  odd  powers  of  x  occur,  the  locus  is  symmetrical  with 

respect  to  YY'.  If  every  term  is  of  even*  degree,  or  every  term  of 
odd  degree,  the  locus  is  symmetrical  with  respect  to  the  origin. 

35.  Further  discussion.  In  this  section  we  treat  of  three  more 

questions  which  enter  into  the  discussion  of  an  equation. 
3.  Is  the  origin  on  the  curve  ? 

This  question  is  settled  by 

Theorem  VI.  The  locus  of  an  algebraic  equation  passes  through 

the  origin  when  there  is  no  constant  term  in  the  equation. 

Proof  The  coordinates  (0,  0)  satisfy  the  equation  when  there 

is  no  constant  terra.  Hence  the  origin  lies  on  the  curve  (Corol- 
lary, p.  53).  Q.E.D. 

4.  What  values  of  x  and  y  are  to  be  excluded  ? 
Since  coordinates  are  real  numbers  we  have  the 

Rule  to  determine  all  values  of  x  and  y  which  must  be  excluded. 

First  step.  Solve  the  equation  for  x  in  terms  of  y,  and  from  this 

result  determine  all  values  of  y  for  which  the  computed  value  of  x 

will  be  imaginary.     These  values  ofy  must  be  excluded. 

Second  step.  Solve  the  equation  for  y  in  terms  of  x,  and  from 

this  result  determine  all  values  of  x  for  which  the  computed  value 

of  y  will  be  imaginary.     These  values  of  x  must  be  excluded. 

The  intercepts  of  a  curve  on  the  axis  of  x  are  the  abscissas  of 

the  points  of  intersection  of  the  curve  and  XX'. 
The  intercepts  of  a  curve  on  the  axis  of  y  are  the  ordiuates  of 

the  points  of  intersection  of  the  curve  and  YY'. 

Rule  to  find  the  intercepts. 

Substitute  y  =  0  and  solve  for  real  values  of  x.  This  gives  the 
intercepts  on  the  axis  of  x. 

Substitute  x  =  0  and  solve  for  real  values  of  y.  This  gives  the 

intercepts  on  the  axis  of  y. 

*  The  constant  term  must  be  regarded  as  of  even  (zero)  degree. 
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The  proof  of  the  rule  follows  at  once  from  the  definitions. 

The  rule  just  given  explains  how  to  answer  the  question: 

5.  What  are  the  intercepts  of  the  locus  ? 

36.  Directions  for  discussing  an  equation.    Given  an  equation, 

the  following  questions  should  be  answered  in  order  before  plot- 
ting the  locus. 

,1.  Is  the  ongin  on  the  locus?  (^Theorem  VI). 

2.  Is    the  locus   symmetrical  ivith  resjjeet   to  the  axes  or  the 

origin?  (Theorems  IV and  V). 

3.  What  are  the  intercepts?  (Rule,  p.  73). 

4.  What  values  of  x  and  y  must  he  excluded?  (Rule, p.  73). 

5.  Is  the  curve  closed  or  does  it  pass  off  indefinitely  far?  (§  33 ̂ 

p.  68). 

Answering  these  questions  constitutes  what  is  called  a  general 
discussion  of  the  given  equation. 

Ex.  1.    Give  a  general  discussion  of  the  equation 

(1)  x2 -42/2  + 162/ =  0. 
Draw  the  locus. 

1.  Since  the  equation  contains  no  constant  term,  the  origin  is  on  the  curve. 
2.  The  equation  contains  no  odd  powers  of  x;  hence  the  locus  is  symmet- 

rical with  respect  to  YY'. 
3.  Putting  2/  =  0,  we  find  x  =  0,  the  intercept  on  the  axis  of  x.     Putting 

X  =  0,  we  find  2/  =  0  and  4,  the  intercepts  on  the  axis  of  y. 
4.  Solving  for  x,    
(2)  x  =  ±2V2/2-4  2/. 
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Hence  all  values  of  y  between  0  and  4  must  be  excluded,  since  for  such  a 

value  ?/2  _  4  2/  is  negative  (Theorem  III,  p.  11). 
Solving  for  y, 

(3)  2/  =  2  ±  i  Vx--2  +  16. 

Hence  no  value  of  x  is  excluded,  since  x2  +  16  is  always  positive. 

5.  From  (3),  y  increases  as  x  increases,  and  the  curve  extends  out 
indefinitely  far  from  both  axes. 

Plotting  the  locus,  using  (2),  the  curve  is  found  to  be  as  in  the  figure. 

The  curve  is- an  hyperbola. 

PROBLEMS 

1.  Give  a  general  discussion  of  each  of  the  following  equations  and  draw 
the  locus. 

(a)  ic2  _  4  y  _  0. 
(b)  2/2  _  4  a:  +  3  =  0. 

(c)  x2  +  4  2/2  _  16  =  0. 
(d)  9x2 +  ?/2_  18  =  0. 
(e)  x2  -  4  y2  _  16  =  0. 

(f )  x2  -  4  ̂2  _!_  16  =  0. 

(g)  X2  -  ̂ 2  +  4  ̂   0. 
(h)  x2  -  ?/  +  X  =  0. 

(i)  X2/  -  4  =  0. 

(j)  9y  +  a;3  =  0. 

(k)  4x- 2/3  =  0. 
(1)  6x-2/*=:0. 

(m)  5  X  —  2/  +  ?/3  =  0. 

(n)  9y2_a;8  =  0. 

(O)  92/2  +  x3=0. 
(p)  2  xy  +  3  X  -  4  =  0. 
(q)  x2  -  xy  +  8  =  0. 
(r)  x2  +  xy  -  4  =  0. 
(s)  x2  +  2  xy  -  3  ?/  =  0. 

(t)  2  x?/  -  2/3  +  4  X  =  0. 
(u)  3x2-y  +  x  =  0. 

(v)  42/2-2x-2/  =  0. 
(w)  x2  -  y2  +  6  X  =  0. 
(x)  x2  +  42/2  +  82/  =  0. 

(y)  9x2  +  2/2  +  18x- 6y  =  0. 
(z)  9x2-2/2  +  18x  +  62/  =  0. 

2.  Determine  the  general  nature  of  the  locus  in  each  of  the  following 

equations  by  assuming  particular  values  for  the  arbitrary  constants,  but  not 

special  values,  that  is,  values  which  give  the  equation  an  added  peculiarity.* 

(a)  2/'^  =  2  mx.  (f)  x2 

(b)  x2 

2  my 

y2
 

(c)  — 
^  ''  a2      62 

(d)  2  xy  =  a2. 

1. 

(e) 

X2
 

^  =  1. 

62
 

(g)  x2  +  2/2  =  f\ 
(h)  x2  +  2/2  =  2  rx. 
(!)  x2  +  2/2  =  2ry. 
(j)  x2  + 2/2  =  2  ax +  2  62/. 

(k)  ay2  =  a;3. 
(1)  a^y  =  x^ 

*  For  example,  in  (a)  and  (b)  m=  0  is  a  special  value.    In  fact,  in  all  these  examples 
zero  is  a  special  value  for  any  constant. 
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8.  Draw  the  locus  of  the  equation 

(a)  when  a  <b  <c. 
(b)  Vhen  a  =  b  <c. 

y2  =  (x-a)(x-6)(x-c), 

(c)  when  a  <b,  b  =  e. 

(d)  when  a  =  b  =  c. 

The  loci  of  the  equations  (a)  to  (f )  in  problem  2  are  all  of  the 

class  known  as  conies,  or  conic  sections,  —  curves  following  straight 
lines  and  circles  in  the  matter  of  their  simplicity. 

A  conic  section  is  the  locus  of  a  point  whose  distances  from  a 

fixed  point  and  a  fixed  line  are  in  a  constant  ratio. 

4.  Show  that  every  conic  is  represented  by  an  equation  of  the  second 
degree  in  x  and  y. 

Hint.  Take  Y  Y'  to  coincide  with  the  fixed  line,  and  draw  XX'  through  the  fixed  point. 
Denote  the  fixed  point  by  {p,  0)  and  the  constant  ratio  by  e. 

Ans.   (1  -  e2)x2  +  y2  _  2px  +  p2  =  q. 

5.  Discuss  and  plot  the  locus  of  the  equation  of  problem  4, 

(a)  when  e  =  1.     The  conic  is  now  called  a  parabola  (see  p.  70). 
(b)  when  e  <  1.     The  conic  is  now  called  an  ellipse  (see  p.  69). 
(c)  when  e  >  1.     The  conic  is  now  called  an  hyperbola  (see  p.  71). 

6.  Plot  each  of  the  following. 

(a)  x2y  -  5  =  0. 
(e)  y  = 

(b)  x2y  -  y  +  2  X  =  0. 
(f)  y  = 

(c)  x?/2_4x  +  6  =  0. 

(g)  y  = 
(d)  x3y  -  y  +  8  =  0. 

(h)  y  = 

x2-3x 

4x2 

x2-4'
 

x-3 

X  +  1 

X2  +  X 

(i)  x  = 

(3)  ̂  = 

(k)  4x: 

(1)  X- 

y^
 

y-i 

y-2 

2/2  _  9 

8y 

37.  Points  of  intersection.  If  two  curves  whose  equations 

are  given  intersect,  the  coordinates  of  each  point  of  intersection 

must  satisfy  both  equations  when  substituted  in  them  for  the 

variables  (Corollary,  p.  53).  In  Algebra  it  is  shown  that  all 

values  satisfying  two  equations  in  two  unknowns  may  be  found 

by  regarding  these  equations  as  simultaneous  in  the  unknowns 

and  solving.     Hence  the 

Rule  to  find  the  points  of  intersection  of  two  curves  lohose  equa- 
tions are  given. 
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\rst  step.  Co7isider  the  equations  as  siTnultaneous  in  the  coordi- 
nates, and  solve  as  in  Algebra. 

Second  step.  Arrange  the  real  solutions  in  corresponding  pairs. 

These  will  be  the  coordinates  of  all  the  points  of  intersection. 

Notice  that  only  real  solutions  correspond  to  common  points 

of  the  two  curves,  since  coordinates  are  always  real  numbers. 

Ex.  1.    Find  the  points  of  intersection  of 

(1)  X- 7?/ +  25  =  0, 

(2)  x2  +  2/2  =  25. 

Solution.    First  step.    Solving 

(1)  for  X, 

(3)  X  =  7  ?/  -  25. 
Substituting  in  (2), 

(7  y- 25)2 +  2/2  ̂ 25. 

Reducing,  y"^  -7y  +  12  =  0. 
.-.  y  =  S  and  4. 

Substituting  in  (3)  [not  in  (2)], 

X  =  —  4  and  +  3. 

Second  step.  Arranging,  the  points  of  intersection  are  (—4,  3)  and 

(3,  4).     Ans. 
In  the  figure  the  straight  line  (1)  is  the  locus  of  equation  (1),  and  the 

circle  the  locus  of  (2). 

Ex.  2.    Find  the  points  of  intersection  of  the  loci  of 

(4) 
(5) 

2X2+  3^/2 
3x2-4  2/ 

35, 

0. 

Solution.    First  step.    Solving  (5)  for  x2, 

(6)  x2  =  |i/. 

Substituting  in  (4)  and  reducing, 

9  2/2  +  8  y  -  105  =  0. 

.-.  y  =  S  and  -  %5. 

Substituting  in  (6)  and  solving, 

x  =  ±2  and  ±  |  V-  105. 

Second  step.  Arranging  the  real  values,  we  find  the  points  of  intersection 

are  (+  2,  3),  (-  2,  3).     Ans. 
In  the  figure  the  ellipse  (4)  is  the  locus  of  (4),  and  the  parabola  (5)  the 

locus  of  (5). 
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PROBLEMS 

Find  the  points  of  intersection  of  the  following  loci. 

7x-ll2/  +  l  =  0 

x+y -2=0 

x  +  y  =  7 
X  -y  =  5 

y  =  Sx-h2 
}■    ■ 

4-2/2  =  4/* 
y^  =  16x  ■) •   y-x=0y 

a;2  +  2/2  ̂  a2       ̂  

3. 

5. X2
 

Am.  (i,  i). 

Ans.  (6,  1). 

Ans.  (0,  2),  (-f,  -f). 

3x 

} 

g    x2  +  1/2 -4x  +  6y- 12  =  0 
•  22/  =  3x  +  3 

x2-2/2  =  16 
•  x^  =  Sy 

■    xy  =  20         J 

x2  +  2/2_6a;_2y_i5  =  0      ̂  

•  9x2  +  92/2  +  6x-62/-27  =  0J 

Ans.  (0,  0),  (16,  16). 

^ns.  (0,  -a),  (^-— ,  —  j. 

-4ns.  (tV,  H),  (-3,  -3). 

Ans.  (±4  V2,  4). 

Ans.  (±5,  ±4),  (±4,  ±5). 

Ans.  (-  2,  1),  (-  f  ̂,  -  ̂ 1). 

10. 

11. 

X2  +  2/2  -  49  >> Q         ,     >"  •   For  what  values  of  b  are  the  curves  tangent  ? 

-36±V490-62    6-i-3  V490-62- Ans.  ( 

y 
10 10 -),  6  =  ±7VlO. 

2/2  =  2px x^  =  2py 

4x2  +  y2^5 

2/2  =  8x 12.    T    L''    ~^|. 
x2  =  4  a2/ 

13.  8a3 
y 

x2  +  4  a2 

x2  +  y2_100 
14. 

15. 

y.
 

9x 

x2  +  2/2  =  5  a2 
x2  =  4  ay 

}•
 

jg       6^2  4.(12^2^^262^ 
■     X2  +  ?/2  =  a2  j 

^ns.   (0,  0),  (2j),  2p). 

^rw.  (1,  2),  (i,  -  2). 

Ans.  (2a,  a),  (-2a,  a). 

Ans.  (8,  6),  (8,  -  6). 

-4ns.  (2a,  a),  (—2a,  a), 

^/is.  (a,  0),  (-  a,  0). 



2y  +  l  =  0. 

Ans. 
36. 

Ans. 

f. 

Ans. 

12  a2. , Ans. 24. 

Ans. ab 

2  ■ 

=  X  +  14. Ans. 56. 
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17.  The  two  loci  —  -  —  =  1  and  — |-  —  =  4  intersect  in  four  points. 4       9  4       9 

Find  the  lengths  of  the  sides  and  of  the  diagonals  of  the  quadrilateral  formed 
by  these  points. 

Ans.   Points,  (±  VlO,  ±  f  V6).    Sides,  2  vTo,  3  V6.    Diagonals,  V94. 

Find  the  area  of  the  triangles  and  polygons  whose  sides  are  the  loci  of  the 
following  equations. 

18.  3x  +  2/  +  4  =  0,  3a;-5y +  34  =  0,  3a;- 

19.  a;  +  2y  =  5,  2ic  +  2/  =  7,  2/  =  x  +  l. 

20.  x  +  y  =  a,z-2y  =  ia,  y-x-\-'Ja  =  0. 

21.  X  =  0,  2/  =  0,  X  =  4,  ?/  =  -  6. 

22.  x-y  =  0,  x-{-y  =  0,  X  —  y  =  a,  x  +  y  =  b. 

23.  y  =  3x-9,  2/  =  3x  +  5,  2y  =  x-6,  2y  =  x  +  14. 

24.  Find  the  distance  between  the  points  of  intersection  of  the  curves 

3x  -  2 2/  +  6  =  0,  x2  +  y2  =  9.  j^^s^   if  Vl3. 

25.  Does  the  locus  of  y^  =  ix  intersect  the  locus  of  2x  +  3y4-2  =  0? 
Ans.   Yes. 

26.  For  what  value  of  a  will  the  three  lines  3x  +  y  —  2  =  0,  ax  +  2y  —  3  =  0, 
2x  —  y  —  S  =  0  meet  in  a  point  ?  Ans.   a  =  5. 

27.  Find  the  length  of  the  common  chord  of  x^  +  y^  =  13  and  y^  =  3x-{-3. 
Ans.    6. 

28.  If  the  equations  of  the  sides  of  a  triangle  are  x  +  Ty  +  ll^O, 

3x  +  y  —  7  =  0,  X  —  3y  +  l  =  0,  find  the  length  of  each  of  the  medians. 
Ans.    2  V5,  f  V2,  I  VTtO. 

Show  that  the  following  loci  intersect  in  two  coincident  points,  that  is,  are 
tangent  to  each  other. 

29.  2/2-10x-6y-31=0,  22/-10x  =  47. 

30.  9x2 -4y2  +  54x_  16^  +  29  =  0,  15x  -  8?/ +  11  =  0. 

38.  Transcendental  curves.  The  equations  thus  far  consid- 
ered  have  been  algebraic  in  x  and  y,  since  powers  alone  of  the 
variables  have  appeared.  We  shall  now  see  how  to  plot  certain 

so-called  transcendental  curves,  in  which  the  variables  appear 
otherwise  than  in  powers.     The  Rule,  p.  60,  will  be  followed. 
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Ex.  1.    Draw  tlie  locus  of 

(1)  y  =  \ogiox 

Solution.    Assuming  values  for  x,  y  may  be  computed  by  a  table  of  loga- 
rithms, or,  remembering  the  definition  of  a  logarithm,  from  (1)  will  follow 

(2)  X  =  10^. 

Hence  values  may  also  be  assumed  for  y,  and  x  computed  by  (2).     This 
is  done  in  the  table. 

In  plotting, 

unit  length  on  XX'  is  2  divisions, 

unit  length  on  YY'  is  4  divisions. 
General  discussion.  1.  The  curve  does  not 

pass  through  the  origin,  since  (0,  0)  does  not 
satisfy  the  equation. 

2.  The  curve  is  not  symmetrical  with  re- 
spect to  either  axis  or  the  origin. 

3.  In  (1),  putting  x  =  0, 

y  =  log  0  =  —  00  =  intercept  on  YY\ 

In  (2),  putting  y  =  0, 

X  =  10*^  =  1  =  intercept  on  XX\ 

X y X y 

1 0 
.1 

-1 

3.1 \ .01 

-2 

10 1 .001 

-3 

100 2 .0001 

-4 

etc. etc. etc. etc. 

4.  From  (2),  since  logarithms  of  negative  numbers  do  not  exist,  all  nega- 
tive values  of  x  anre  excluded. 

From  (2)  no  value  of  y  is  excluded. 

5.  From  (2),  as  y  increases  x  increases,  and  the  locus  extends  out  indefi- 
nitely from  both  axes. 

From  (1),  as 
X  approaches  zero, 

y  approaches  negative  infinity ; 

so  we  see  that  the  curve  extends  down  indefinitely  and  approaches  nearer 
and  nearer  to  YY\ 
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Ex.  2.    Draw  the  locus  of 

(3)  y  =  smx 

if  the  abscissa  x  is  the  circular  measure  of  an  angle  (Chapter  I,  p.  19). 

Solution.    Assuming  values  for  x  and  finding  the  corresponding  number 
of  degrees,  we  may  compute  y  by  the  table  of  Natural  Sines,  p.  21. 

For  example,  if 

X  =  1,  since  1  radian  =  57°.  29, 
y  =  sin  57°.  29  =  .843.  [by  (3)] 

It  will  be  more  convenient  for  plotting  to  choose  for  .x  such  values  that 
the  corresponding  number  of  degrees  is  a  whole  number.  Hence  x  is 
expressed  in  terms  of  tt  in  the  table. 

For  example,  if 

X y X y 

0 0 0 0 

6 
.50 

Tt 

~  6 

-.50 

It 

3 
.86 

Tt 

~3 

-.86 

It 

2 
1.00 

Tt 

2 

-1.00 

2;r 

3 
.86 

27r 

3 

-.86 

.50 
hTt 

6 

-.50 

It 0 

-  Tt 

0 

y  =  &m-  =  sin  60° 3 
27r 
— - , y  =  sm 

.86. 

27r 2  7r  ._..,, 

-^=-sm-3-(4,p.l9) 

=  -  sin  120°=  -  sin  60°  (5,  p.  20) =  -.86. 

In  plotting,  three  divisions  being  taken 
as  the  unit  of  length,  lay  off 

A0=  OB  =  Tt  =  ̂ .U\Q, 

and  divide  AO  and  OB  up  into  six  equal 

parts. The  course  of  the  curve  beyond  B  is 

easily  determined  from  the  relation 

sin  (2  TT  +  x)  =  sin  x. 

Hence     y  =  sin  x  =  sin  (2  tt  +  x), 

that  is,  the  curve  is  unchanged  if  x  +  2Tthe  substituted  for  x.     This  means, 

however,  that  every  point  is  moved  a  distance  2  ;r  to  the  right.    Hence  the  arc 

1         1 

1    1    ̂t 
a. 
b  ,2«            y- 1 •  '  "  V 

^^J    5^v 
.     ̂       IT       "iTP      " ^    lI^    I^v t. 

-IJfLi 
It-'i-l'^^ ^  l"-Ij^^     : 

:_  -— &t 

X' 

2s,rt 
tl  17. TT      V:     jA     .TTSTT     T^  . 

_       ZW^ 

^^" 

Va^^---
 

£    _y_  _i)_.a..^_;^.  >  ̂   _  . 

-7 

^ 

JL^^ 

"^^ 

.d^^ 

p 

'A -J 

W- 

-it 

Y'
 

1     1 

APO  may  be  moved  parallel  to  XX'  until  A  falls  on  5,  that  is,  into  the 
position  BRC^  and  it  will  also  be  a  part  of  the  curve  in  its  new  position. 
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Also,  the  arc  OQB  may  be  displaced  parallel  to  XX'  until  0  falls  upon  C.  In 
this  way  it  is  seen  that  the  entire  locus  consists  of  an  indefinite  number  of 

congruent  arcs,  alternately  above  and  below  XX\ 

General  discussion.    1.  The  curve  passes  through  the  origin,  since  (0,  0) 
satisfies  the  equation. 

2.  Since  sin (—  x)  =  —  sin x,  changing  signs  in  (3), 

or 

—  sin  X, 

sin(—  x). 

Hence  the  locus  is  unchanged  if  (x,  y)  is  replaced  by  (— x,  —  y),  and 
the  curve  is  symmetrical  with  respect  to  the  origin  (Theorem  IV,  p.  72). 

3.  In  (3),  if  X  =  0, 
2/  =  sin  0  =  0  =  intercept  on  the  axis  of  y. 

Solving  (3)  for  x,  • 
(4) 

In  (4),  if 
x  =  sin-iy. 

X  =  sin- 1 0 
=  UTt,  n  being  any  integer. 

Hence  the  curve  cuts  the  axis  of  x  an  indefinite  number  of  times  both  on 

the  right  and  left  of  O,  these  points  being  at  a  distance  of  7t  from  one  another. 

4.  In  (3),  X  may  have  any  value,  since  any  number  is  the  circular  meas- 
ure of  an  angle. 

In  (4),  y  may  have  values  from  -  1  to  +  1  inclusive,  since  the  sine  of  an 
angle  has  values  only  from  —  1  to  +  1  inclusive. 

5.  The  curve  extends 

out  indefinitely  along  XX' 
in  both  directions,  but  is 
contained  entirely  between 

the  lines  y  =  +l,  y  =  —l. 
The  locus  is  called  the 

wave  curve,  from  its  shape, 

or  the  sinusoid,  from  its 
equation  (3). 

Ex.  3.  Draw  the  locus 

oi  y  =  tan  x. 

There  is  no  difficulty  in 
obtaining  the  curve  of  the 
figure  and  in  verifying  the 

properties  indicated  by  a  dis- 
cussion similar  to  the  pre- 

ceding examples. 
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PROBLEMS 

Plot  the  loci  of  the  following  equations, 

1.    y  =  cosx.  5.    2/  =  tan-ix. 

5.    y  =  coix.  6.    y  =  2*. 

3.    y  =  secx. 

[4.    y  =  sm-^x. 

7.  y  =  21ogiox. 
1 

8.  y  =  {l+xf. 

9.    y  =  sm2x. 
X 

10.  2/  =  tan-. 2 

11.  2/  =  2cosx. 

12.  y  =  sinx  +  cosx. 

39.  Graphical  representation  in  general.  Any  equation  con- 
taining two  variables  may  be  represented  graphically  by  a  curve 

called  the  graj^h  of  the  equation  by  considering  the  variables  as 
coordinates  and  plotting  the  locus  in  the  usual  way.  This 
method  of  representing  a  given  law  is  widely  used  in  all  branches 
of  science. 

Ex.  1.    Draw  the  graph  of  the  Simple  Interest  Law,  which  shall  represent 
the  relation  between  amount  and  time  for  a  given  principal  and  rate  per  cent. 

The  law  is  proven  in  Algebra  to  be 

(1)  ^  =  P(l  +  rn), 

where      A  =  amount,  P  =  principal,  r  =  rate,  n  =  number  of  years. 

Solution.    For  convenience,  take  P  =  one  dollar.*    Let 

One  division  on  OX  =  1  year, 

One  division  on  OF  =  1  dollar, 

abscissas  =  values  of  n, 

ordinates  =  values  of  A. 

Then  the  required  graph  is  the  locus  of 

(2)  y  =  rx-\-l. 

(0,1) 

(1,0)      (n,o)  X 

The  locus  of  (2)  is  a  straight  line  passing  through  (0,  1)  and  having  a 
slope  equal  to  r  (Theorem  I,  p.  58). 

This  graph  may  be  used  to  solve  interest  problems.  For  if  the  number  of 
years  n  is  given,  we  merely  have  to  measure  off  the  corresponding  ordinate 

A  of  the  straight  line,  and  this  will  give  the  amount  of  one  dollar  at  the  given 
rate  for  n  years. 

*  Any  other  case  is  obtained  by  multiplying  all  the  ordinates  in  the  llgure  by  P. 
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rf 

Ex.  2.    lu  Physics  it  is  sliown  that  the  volume  (»),  pressure  (p),  and  absolute ' 
teiui)erature  (t)  of  a  given  mass  of  a  perfect  gas  are  connected  by  the  law 

(3)  pv  =  kt, 

k  being  a  constant  dependent  upon  the  particular  gas. 
Draw  the  graph  if  the  temperature  is  assumed  constant. 

Solution.    Assume 

one  division  on  OX  =  unit  of  pressure, 
one  division  on  OY  =  unit  of  volume, 

abscissas  =  pressures, 
ordinates  =  volumes. 

Then  the  required  graph  is  the  locus  of 

(4)  xy  =  constant. 

The  curve  is  one  branch*  of  an  hyperbola  extending  to  the  right  and] 
upward  indefinitely,  approaching  in  each  case  the  corresponding  axis.  Such; 

curves  are  called  isothermals  (equal  temperatures),  and  the  figure  is  called 

the  Pressure-Volume  Diagram. 

PROBLEMS 

X ,   Draw  the  graph  of  the  Simple  Interest  Law  if  the  variables  are 

(a)  n  and  P.  (c)  A  and  P.  (e)  P  and  r. 

(b)  n  and  r.  (d)  A  and  r. 

2.  Draw  the  graph  of  the  law  of  Ex.  2  if  tlie  variables  are 

(a)  p  and  t.  (b)  v  and  t. 

3.  The  amount  {A)  of  any  principal  (P)  at  compound  interest  (r%)  for  n 
years  is  given  by  the  Compound  Interest  Law 

A=P{1  +  r)\ 

Draw  the  graph  of  this  lliw  if  the  variables  are 

(a)  A  and  P.  (c)  A  and  n.  (e)  P  and  n. 

(b)  A  and  r.  (d)  P  and  r.  ̂   (f)  r  and  n. 

Hint.    Take  the  logarithm  of  both  sides  when  convenient  for  computation. 

*  Since  negative  volumes  have  no  physical  meaning,  in  many  cases  only  a  jwrtion  of 
the  entire  locus  can  he  made  use  of  in  the  representation. 



CHAPTER  IV 

THE  STRAIGHT  LINE  AND  THE   GENERAL  EQUATION  OF 
THE   FIRST  DEGREE 

40.  The  idea  of  coordinates  and  the  intimate  relation  connect- 

ing a  curve  and  an  equation,  which  results  from  the  introduction 

of  coordinates  into  the  study  of  Geometry,  have  been  considered 

in  the  preceding  chapters.  Analytic  Geometry  has  to  do  largely 

with  a  more  detailed  study  of  particular  curves  and  equations. 

In  this  chapter  we  shall  consider  in  detail  the  straight  line  and 

the  general  equation  of  the  first  degree  in  the  variables  x  and  y 

representing  coordinates. 

41.  The  degree  of  the  equation  of  a  straight  line.   It  was 

shown  in  Chapter  III  (Theorem  I,  p.  58)  that 

(1)  y  —  moc  +  h 

is  the  equation  of  the  straight  line  whose  slope  is  m  and  whose 

intercept  on  the  F-axis  is  ̂  ;  m  and  b  may  have  any  values, 
positive,  negative,  or  zero  (p.  34).  But  if  a  line  is  parallel  to 

the  F-axis,  its  equation  may  not  be  put  in  the  form  (1);  for, 

in  the  first  place,  the  line  has  no  intercept  on  the  F-axis,  and, 
in  the  second  place,  its  slope  is  infinite  and  hence  cannot  be 

substituted  for  m  in  (1).  The  equation  of  a  line  parallel  to  the 

F-axis  is,  however,  of  the  form 

(2)  X  =  constant. 

The  equation  of  any  line  may  be  put  either  in  the  form  (1)  or 

(2).  As  these  equations  are  both  of  the  first  degree  in  x  and  y 
we  have 

Theorem  I.  The  equation  of  any  straight  line  is  of  the  first  degree 

in  the  coordinates  x  and  y. 85 
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42.  The  general  equation  of  the  first  degree,  Ax-\-By-\-  C=0, 
The  equation 

(1)  Ax+B7j-\-C  =  0, 

where  A,  B,  and  C  are  arbitrary  constants  (p.  1),  is  called  the 

general  equation  of  the  first  degree  in  x  and  y  because  every  equar 

tion  of  the  first  degree  may  be  reduced  to  that  form. 

•  Equation  (1)  represents  all  straight  lines. 

For  the  equation  y  =  mx  +  6  may  be  written  mz  —  y  -\-  b  —  0,  which  is  of  the 
form  (!)  it  A  =  m,  B  =  —  1,  C  =  b;  and  the  equation  z  =  constant  may  be  written 
z  —  constant  =  0,  which  is  of  the  form  (1)  if  J.  =  1,  -B  =  0,  C=  —  constant. 

Theorem  II.    (Converse  of  Theorem  I.)    The  locus  of  the  general 

equation  of  the  first  degree 

Ax -\-  By  -\- C  =  0 
is  a  straight  line. 

Proof    Solving  (1)  for  y,  we  obtain 

(2) y B 

This  equation  has  the  same  locus  as  (1)  (Theorem  III,  p.  59). 

By  Theorem  I,  p.  58,  the  locus  of  (2)  is  the  straight  line  whose 
A  .    .  C 

slope  is  m  =—  —  and  whose  intercept  on  the  F-axis  is  5  =  —  —  • B  B 

If,  however,  B  =  0,  it  is  impossible  to  write  (1)  in  the  form 

(2).     But  if  £  =  0,  (1)  becomes 
Ax-\-C  =  0, 

or 
C 

The  locus  of  this  equation  is  a  straight  line  parallel  to  the 

F-axis  (1,  p.  57).  Hence  in  all  cases  the  locus  of  (1)  is  a  straight 
line.  Q.E.D. 

Corollary  I.    The  slope  of  the  line 

Ax  +  By  -\-  C  =  0 

is  m  =  —  — ;    that  is,  the  coefficient  of  x  with  its  sign  changed B 

divided  by  the  coefficient  of  y. 
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Corollary  II.    The  lines 

Ax -^  By  -{-  C  =  0 

and  A'x  -\-  B'y  -\-  C'  =  0 

are  parallel  when  and  only  when  the  coefficients  of  x  and  y  are 
proportional;  that  is, 

A_ 

A' 

B 

B' 

For  two  lines  are  parallel  when  and  only  when  their  slopes  are  equal  (Theorem 
VI,  p.  36) ;  that  is,  when  and  only  when 

_A__A^ 

B~      B'' 
Changing  the  signs  and  applying  alternation,  we  obtain 

A'~B'' Corollary  III.    The  lines 

Ax -\-  By  -{-  C  =  0 

and  A'x  +  B'y -{- C  =  0 

are  perpendicular  when  and  only  when 

AA'  -\-  BB'  =  0. 

For  two  lines  are  perpendicular  when  and  only  when  the  slope  of  one  is  the 
negative  reciprocal  of  the  slope  of  the  second  (Theorem  VI,  p.  36) ;  that  is, 

A  _B' 

~B-A^' 

or
  

AA'  +  BB'  =  0. 

Corollary  IV.    The  intercepts  of  the  line 

Ax  -\-  By  -{-  C  z=  0 

on  the  X-  and  Y-axes  are  respectively 

and  b  =  — B 

For  the  intercept  on  the  X-axis  is  found  (p.  73)  by  setting  y  =  0  and  solving 
for  X,  and  the  intercept  on  the  F-axis  has  been  found  in  the  above  proof. 

Corollaries  I  and  IV  are  given  chiefly  for  purposes  of  reference.  In  a  numerical 
example  the  intercepts  are  found  most  simply  by  applying  the  general  rule  already 
given  (p.  73) ;  and  the  slope  is  found  by  reducing  the  equation  to  the  form 

y  =  mx  -\-  b, 
when  the  coeflScient  of  x  will  be  the  slope. 
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Theorems  I  and  II  may  be  stated  together  as  follows : 

The  locus  of  an  equation  is  a  straight  line  ivhen  aiid  only  when 

the  equation  is  of  the  first  degree  in  x  and  y. 

Theorem  II  asserts  that  the  locus  of  every  equation  of  the  first 

degree  is  a  straight  line.  Then,  to  plot  the  locus  of  an  equation 

of  the  first  degree  it  is  merely  necessary  to  plot  two  points  on  the 

locus  and  draw  the  straight  line  passing  through  them.  The  two 

simplest  points  to  plot  are  those  at  which  the  line  crosses  the 

axes.  But  if  those  points  are  very  near  the  origin  it  is  better  to 

use  but  one  of  them  and  some  other  point  not  near  the  origin 

whose  coordinates  are  found  by  the  Rule  on  p.  60. 

Theorem  III.    When  two  equations  of  the  first  degree, 

(3)  Ax^-Bij  -\-  C  =  0 
and 

A'x-\-B'y-\-  C'  =  0, 

have  the  same  locals,  then  the  corresponding  coefficients  are  propor- 
tional; that  is, 

A'~B'~C'' 
Proof.  The  lines  whose  equations  are  (3)  and  (4)  are  by 

hypothesis  identical  and  hence  they  have  the  same  slope  and  the 

same  intercept  on  the  F-axis.     Since  they  have  the  same  slope, A_A^ 

B~  B'' and  since  they  have  the  same  intercept  on  the  F-axis, 

C      C 

(Corollary  I,  p.  S6) 

i  F-axis, 

(CoroUary  IV,  p.  87) 

by  alternation  we  obtain 

and  hence 

A       B        .    C       B 

27  =  5-,  and  -  =  -; 

A'~  B'~  C' Q.E.D. 
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Sx.  1.    Find  the  values  of  a  and  b  for  which  the  equations  ' 
2ttx  +  2y  -  6  =  0 

and  4x-3y  +  76  =  0 

will  represent  the  same  straight  line. 

Solution.  These  two  equations  will  represent  the  same  straight  line  if 

(Theorem  HI)  2a  _  J_  _  -5  , 
4    ~  -3~  76  ' 

and  hence  the  required  values  are  obtained  by  solving 

2a  _    2  2    _  -5 

for  a  and  b.     This  gives 

43.  Geometric  interpretation  of  the  solution  of  two  equations 

of  the  first  degree.   If  we  solve  the  equations 

(1)  Ax-\-By  +  C  =  0 
and 

(2)  A'x -{- B'y -{- C  =  0, 

we  obtain  the  coordinates  of  the  points  of  intersection  of  the 

lines  whose  equations  are  (1)  and  (2)  (Kule,  p.  76).  But  if 

these  lines  are  parallel  they  do  not  intersect,  and  if  they  are 

identical  they  intersect  in  all  of  their  points.  The  relation 

between  the  position  of  the  lines  whose  equations  are  (1)  and 

(2)  and  the  number  of  solutions  of  the  simultaneous"  equations 
(1)  and  (2)  may  be  indicated  as  follows  : 

_,    .  .        ̂   , .  Number  of  solutions 
Fosntion  of  lines  „ 

oj  equations 
Intersecting  lines.  One  solution. 
Parallel  lines.  No  solution. 

Coincident  lines.  An  infinite  number. 

It  is  sometimes  as  convenient  to  be  able  to  determine  the 

number  of  solutions  of  two  equations  of  the  first  degree  without 

solving  them  as  it  is  to  be  able  to  determine  the  nature  of  the 

roots  of  a  quadratic  equation  without  solving  it.  The  following 
theorem  enables  us  to  do  this. 
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Theorem  IV.    Two  equations  of  the  first  degree, 

Ax -\-  Bi/ -\-  C  =  0 

and  A'x -^  B'y -\- C  =  0, 

have,  in  general,  one  solution  for  x  and  y;  hut  if 

A       B 

there  is  no  solution  unless 
A'      B' 

B 

A'      B'      C 

when  there  is  an  infinite  number  of  solutions. 

The  proof  follows  at  once  from  Corollary  II,  p.  87,  and  Theorem  III. 

PROBLEMS 

1 .  Find  the  intercepts  of  the  following  lines  and  plot  the  lines. 

(a)  2x  +  Sy  =  6. 

2.  Plot  the  following  lines. 

(a)  2  X  -  3  y  +  5  =  0. 

(b)  y  -  5  -  4  X  =  0. 

Ans.  3,  2. 

Ans.  2,  4. 

Ans.  3,  —  5. 

Ans.  4,  -2. 

(c)-  +  ̂  =  l. 

^  '  2      3 

^  '  3      4 

3.  Find  the  equations,  and  reduce  them  to  the  general  form,  of  the  lines 
for  which 

(a)  m  =  2,  6  =  -  3. 
(b)  m  =  -l,b  =  l 

(c)  m  =  f ,  6  =  -  f . 

(d)  a  =  ̂,  b  =  -2. 4 

(e)  a  =  5^,6  =  3. 4 

ffint.    Substitute  my  =  mx  +  &, 

Ans.  2x-y-S  =  0. 

Ans.  x  +  2y  -S  =  0. 
Ans.  4  X  -  10  y  -  25  =  0. 

Ans.  X  —  y  —  2  =  0. 

Ans.  x  +  ̂ -3  =  0. 

I 
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4.  Find  the  number  of  solutions  of  the  following  pairs  of  equations  and 

plot  the  loci  of  the  equations. 

Ans.  No  solution. 
(a){: 

(c)  ̂  ̂         ̂ ~    \  Ans.  An  infinite  number. ^  '    1^6  X  +  2  2/  =  4. 

^      '  Ans.  No  solution. 15  2/  +  6  =  0. 

6.  Plot  the  lines  2x  —  Sy  +  6  =  0  and  x  —  y  =  0.     Also  plot  the  locus  of 

{2x  -  Sy  +  6)  -i-  k{x  -  y)  =  0  for  k  =  0,  ±1,  ±2. 

6.  Select  pairs  of  parallel  and  perpendicular  lines  from  the  following. 

fLi:y  =  2x-3. 

rii:X  +  32/  =  0. 

(b)  ̂  ig  :  8  X  +  2/  +  1  =:  0.  Ans.  Li  ±  Ls- 
[Ls-.Qx-Sy  +  2  =  0. 

(Li:2x-5y  =  8. 
(c)  S  X2  :  5  y  +  2  X  =  8.  Ans.  L2  -L  Ls. 

[Ls:S5x-Uy  =  S. 

7.  Show   that    the    quadrilateral    whose    sides    are    2x  — 3y  +  4  =  0, 
3x  —  ?/  —  2  =  0,  4x  —  6y  —  9  =  0,  and  6x  —  2?/  +  4  =  0isa  parallelogram. 

8.  Find  the  equation  of  the  line  whose  slope  is  —  2  which  passes  through 

the  point  of  intersection  of  ?/  =  3  x  +  4  and  2/  =  —  x  +  4. 
Ans.  2x  +  y  —  4  =  0. 

9.  What  is  the  locus  of  y  =  mx  +  6  if  6  is  constant  and  m  arbitrary  ?  if 
m  is  constant  and  b  arbitrary  ? 

10.  Write  an  equation  which  will  represent  all  lines  parallel  to  the  line 

(a)  ?/  =  2  X  +  7.  .  (c)  2/  -  3  X  -  4  =  0. 
(b)2/  =  -x  +  9.  (d)  22/-4x  +  3  =  0. 

11.  Write  an  equation  which  will  represent  all  lines  having  the  same 

intercept  on  the  F-axis  as  (a),  (b),  (c),  and  (d)  in  problem  10. 

12.  Find  the  equation  of  the  line  parallel  to2x  —  Sy  =  0  whose  intercept 
on  the  F-axis  is  —  2.  Ans.  2x  —  3y  —  6  =  0. 

13.  What  is  the  locus  of  Ax  +  By  +  C  =  0  it  B  and  C  are  constant  and 

A  arbitrary  ?   if  ̂   and  J5  are  constant  and  C  arbitrary  ? 
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44.  Straight  lines  determined  by  two  conditions.  In  Ele- 

mentary Geometry  we  have  many  illustrations  of  the  determina- 
tion of  a  straight  line  by  two  conditions.  Thus  two  points 

determine  a  line,  and  through  a  given  point  one  line,  and  only 

one,  can  be  drawn  parallel  to  a  given  line.  Sometimes,  however, 

there  will  be  two  or  more  lines  satisfying  the  two  conditions ; 

thus  through  a  given  point  outside  of  a  circle  we  can  draw  two 

lines  tangent  to  the  circle,  and  four  lines  may  be  drawn  tangent 

to  two  circles  if  they  do  not  intersect. 

Analytically  such  facts  present  themselves  as  follows.  The 

equation  of  any  straight  line  is  of  the  form  (Theorem  II,  p.  86) 

(1)  Ax-^Bt/-\-C  =  0, 

and  the  line  is  completely  determined  if  the  values  of  two  of  the 

coefficients  A,  B,  and  C  are  known  in  terms  of  the  third. 

For  example,  it  A  =  2B  and  C  =  —3B,  equation  (1)  becomes 

2Bz  +  By  —  3B  =  0, 
or  2x-{-y  —  3  =  0. 

Any  geometrical  condition  which  the  line  must  satisfy  gives 

rise  to  an  equation  between  one  or  more  of  the  coefficients 

A,  B,  and  C. 

Thus  if  the  line  is  to  pass  through  the  origin,  we  must  have  C=0  (Theorem  VI, 

p.  73) ;  or  if  the  slope  is  to  be  3,  then  —  —  =  3  (Corollary  I,  p.  86) . B 

Two  conditions  which  the  line  must  satisfy  will  then  give  rise 

to  two  equations  in  A,  B,  and  C  from  which  the  values  of  two  of 

the  coefficients  may  be  determined  in  terms  of  the  third,  and  the 
line  is  then  determined. 

If  these  equations  are  of  the  first  degree,  there  will  be  only  one 

line  fulfilling  the  given  conditions,  for  two  equations  of  the  first 

degree  have,  in  general,  only  one  solution  (Theorem  IV,  p.  90). 
If  one  equation  is  a  quadratic  and  the  other  of  the  first  degree, 

then  there  will  be  two  lines  fulfilling  the  conditions,  provided 

that  the  solutions  of  the  equations  are  real.  And,  in  general, 

the  number  of  lines  fulfilling  the  two  given  conditions  will 

depend  on  the  degrees  of  the  equations  in  the  A,  B,  and  C  to 

which  they  give  rise. 
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Rule  to  determine  the  equation  of  a  straight  line  which  satisfies 
two  conditions. 

First  step.   Assume  that  the  equation  of  the  line  is 

Ax-\-By+C  =  0. 

Second  step.  Find  two  equations  between  A,  B,  and  C  each  of 

which  expresses  algebraically  the  fact  that  the  line  satisfies  one 

of  the  given  conditions. 

Third  step.  Solve  these  equations  for  two  of  the  coefficients  A, 

B,  and  C  in  terms  of  the  third. 

Fourth  step.  Substitute  the  results  of  the  third  step  in  the  equa- 

tion in  the  first  step  and  divide  out  the  remaining  coefficient.  The 

result  is  the  required  equation. 

1) 

Ex.  1.    Find  the  equation  of  the  line  tlirough  the  two  points  Pi  (5, 

and  Pa  (2,  -2). 

Solution.    First  step.    Let  the  required  equation  be 

(1)  Ax  +  Bij-^C  =  0. 
Second  step.    Since  Pi  lies  on  the  locus 

of  (1)  (Corollary,  p.  53), 

(2)  6A-B-\-C  =  0i 
and  since  P2  lies  on  the  line, 

(3)  2A-2B-{-C  =  0. 

Third  step.    Solving  (2)  and  (3)  for  A  and  B  in  terms  of  C,  we  obtain 

A=-\C,  B  =  IC. 

Fourth  step.    Substituting  in  (1), 

-  1  Cx  +  f  Cy  +  C  =  0. 

Dividing  by  C  and  simplifying,  the  required  equation  is 

x-3y-8  =  0. 

Ex.  2.    Find  the  equation  of  the  line  passing  through  Pi  (3,  —  2)  whose 
slope  is  —  i. 

Solution.     First  step.    Let  the  re 

quired  equation  be 

(4)  Ax -\- By -\- C  =  0.- 
Second  step.    Since  Pi  lies  on  (4), 

(5)  SA-2B+C  =  0; 
and  since  the  slope  is  —  i, 

_A  __1 

B~     4' 

^ 
^ ̂ % 

) 

"^ 

0 

'x 

■^ 

P( 

3,- 

■* 

TJk 

(6) 
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Third  step.    Solving  (5)  and  (6)  for  A  and  C  in  terms  of  B,  we  obtain 

A  =  \B,  C  =  |jB. 

Fourth  step.    Substituting  in  (4), 

iBx-\-By-\-^B  =  0, 
or  x  +  4?/  +  5  =  0. 

PROBLEMS 

1.  Find  the  equation  of  the  line  satisfying  the  following  conditions  and 
plot  the  lines. 

(a)  Passing  through  (0,  0)  and  (8,  2). 

(b)  Passing  through  (-  1,  1)  and  (-  3,  1). 
(c)  Passing  through  (—3,  1)  and  slope  =  2. 
(d)  Having  the  intercepts  a  =  S  and  6  =  —  2. 
(e)  Slope  =  —  3,  intercept  on  X-axis  =  4. 

(f )  Intercepts  a  =  —  3  and  6  =  —  4. 
(g)  Passing  through  (2,  3)  and  (-2,  -  3). 
(h)  Passing  through  (3,  4)  and  (-  4,  -  3). 
(i)  Passing  through  (2,  3)  and  slope  =  —  2. 

(j)  Having  the  intercepts  2  and  —  5. 

2.  Find  the  equation  of  the  line  passing  through  the  origin  parallel  to  the 

line  2x-Sy  =  4t.  Ans.   2x  -Sy  =  0. 

3.  Find  the  equation  of  the  line  passing  through  the  origin  perpendicular 

to  the  line  5x  +  y  —  2  =  0.  Ans.   x  —  6y  =  0. 

4.  Find  the  equation  of  the  line  passing  through  the  point  (3,  2)  parallel 

to  the  line  4x  —  y  —  3  =  0.  Ans.    4x  —  y  —  10  =  0. 

5.  Find  the  equation  of  the  line  passing  through  the  point  (3,  0)  perpen- 

dicular to  the  line  2x  +  y  —  6  =  0.  Ans.   x  —  22/— 3  =  0. 

6.  Find  the  equation  of  the  line  whose  intercept  on  the  F-axis  is  5  which 

passes  through  the  point  (6,  3).  Ans.    x  +  Sy  —  15  =  0. 

7.  Find  the  equation  of  the  line  whose  intercept  on  the  X-axis  is  3  which 

is  parallel  to  the  line  x  —  4y  +  2  =  0.  Ans.    x  —  4y  —  3  =  0. 

8.  Find  the  equation  of  the  line  passing  through  the  origin  and  through 

the  intersection  of  the  lines  x  —  2y-f3  =  0  and  x  +  2y  —  9  =  0. 
Ans.   X  —  y  =  0. 

9.  Find  the  equation  of  the  straight  line  whose  slope  is  m  which  passes 

through  the  point  Pi  (xi,  yi).  Ans.    y  —  yi  =  m{x  —  Xi). 

Ans. x-iy  =  0. 

Ans. 
y-l  =  0. Ans. 2x- 7/ -1-7  =  0. 

Ans. 2x-3y-6=0. 
Ans. 3x-l-?y-12=0. 
Ans. 4x  +  3y  +  12=0. 
Ans. Zx-2y  =  0. 

Ans. x-y  +  1  =  0. 
Ans. 2x-\-y  -7  =  0. 

Ans. 

?-2^  =  l. 

2      5 
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10.  Find  the  equation  of  the  straight  line  whose  intercepts  are  a  and  h. 

1. 
Ans.    -  +  I 

a      b 

11.  Find  the  equation  of  the  straight  line  passing  through  the  points 

Pi{xi,  yi)  andP2(x2,  2/2). 
Ans.   {yci  -  2/1)  X  -  {X2  -Xi)y  -\-  X2yi  -  x^yi  =  0. 

12.  Show  that  the  result  of  the  last  problem  may  be  put  in  the  form 

x-xi  ^y -y\ 

X2  -x^    2/2  -  2/1  * 
Hint.    Add  and  subtract  x^Vi,  factor,  transpose,  and  express  as  a  proportion. 

45.  The  equation  of  the  straight  line  in  terms  of  its  slope 

and  the  coordinates  of  any  point  on  the  line.  In  this  section 

and  in  those  immediately  following,  the  Rule  in  the  preceding 

section  is  applied  to  the  determination  of  general  forms  of  the 

equations  of  straight  lines  satisfying  pairs  of  conditions  which 

occur  frequently.  These  general  forms  will  then  enable  us  to 

write  the  equations  of  certain  straight  lines  with  the  same  ease 

that  the  equation  y  =  mx  +  h  enables  us  to  write  the~  equation 
of  the  straight  line  whose  slope  and  intercept  on  the  F-axis  are 

given. 

Theorem  V.  Point-slope  form.  The  equation  of  the  straight  line 

which  passes  through  the  point  Pj  (xi,  y^)  and  has  the  slope  m  is 

(V)  y  —  j/i  =  m(i)e  —  Xj). 

Froof.    First  step.    Let  the  equation  of  the  given  line  be 

(1)  Ax-{-By-\-C  =  0. 

Second  step.    Then,  by  hypothesis, 

(2)  Ax^  ̂ By,+C  =  0 
and 

(3)  .  -|  =  ̂ - 

Third  step.  Solving  (2)  and  (3)  for  A  and  C  in  terms  of  B, 
we  obtain 

A  =—  mB  and  C  =  B {inx-^  —  yi). 
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Fourth  step.    Substituting  in  (1),  we  have 

—  luBx  4-  By  -+-  B(jtiXi  —  ?/i)  =  0. 

Dividing  by  B  and  transposing, 

2/  —  2/1  =  W  (X  -  Xi).  Q.E.D. 

If  Pi  lies  on  the  I'^-axis,  x^  =  0  and  ?/i  =  J,  so  that  this  equa- 
tion becomes  y  =  ̂ ^  +  ̂• 

46.  The  equation  of  the  straight  line  in  terms  of  its  intercepts. 

We  pass  now  to  the  consideration  of  a  line  determined  by  two 

points,  and  we  consider  first  the  case  in  which  the  two  points  lie 

on  the  axes.  This  section  does  not,  therefore,  apply  to  lines  par- 
allel to  one  of  the  axes  or  to  lines  passing  through  the  origin,  as  in 

the  latter  case  the  two  points  coincide  and  hence  do  not  deter- 
mine a  line. 

Theorem  VI.    Intercept  form.    If  a  and  h  are  the  intercepts  of  a  line 

on  the  X-  and  Y-axes  respectively,  then  the  equation  of  the  line  is 

(VI) a      b 

Proof     First  step.    Let  the  equation  of  the  given  line  be 

(1)  Ax  +  By-i-C  =  0. 

Second  step.   By  definition  of  the  intercepts  (p.  73),  the  points 

(a,  0)  and  (0,  b)  lie  on  the  line;  hence 

(2)  Aa+C  =  0, 

(3)  '  Bb-{-C  =  0. 
Third  step.    Solving  (2)  and  (3)  for  A  and  B  in  terms  of  C, 

we  obtain  .  . 

A  =  --C  and  B  =  --C. a  0 

Fourth  step.    Substituting  in  (1),  we  have 

--Cx-jCy-\-C  =  0. a  0 

Dividing  by  C  and  transposing, 

  r  T  —  J-  Q.E.D. a      0 
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Ex.  1.    Write  the  equation  of  the  locus  of  2x  —  6y  +  3  =  0iii  terms  of 
its  intercepts  and  plot  the  line. 

Solution.     Transposing  the  constant  term,  we  have 

2x-6y=-3. 

Dividing  by  —  3, 
2x 
-3 

X 

+  2y  =  l, 

1. -f      h 

This  equation  is  of  the  form  (VI).     Hence 

a  =  —  I  and  6  =  i. 

Plotting  the  points  (—  f,  0)  and  (0,  -|)  and  joining  them  by  a  straight  line, 
we  have  the  required  line. 

47.  The  equation  of  the  straight  Hne  passing  through  two 

given  points. 

Theorem  VII.  Two-point  form.  The  equation  of  the  straight  line 

passing  through  Pi  (xi,  y^)  and  P^  (x^,  y^)  is 

(VII)  "     ̂ -^1  ̂ y-vi ^2  —  ̂ i.y%  —  yx 

Proof.    Let  the  equation  of  the  line  be 

(1)  Ax-\-By-\-C  =  0, 

Then,  by  hypothesis, 

(2)  Axi  H-  5yi  +  C  =  0 
and 

(3)  Ax^  +  By,-\-C  =  0. 

To  follow  the  Rule,  p.  93,  we  must  solve  (2)  and  (3)  for  A 

and  B  in  terms  of  C,  substitute  in  (1),  and  divide  by  C;  that  pro- 
cedure amounts  to  eliminating  A,  B,  and  C  from  (1),  (2),  and  (3), 

and  that  elimination  may  be  more  conveniently  performed  as 
follows : 

Subtract  (2)  from  (1)  ;  this  gives 

A(x-Xi)+B(y-y{)=0, or 

(4) A{x  -  Xi)  =  -  B(y  -  yi). 
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Q.E.D 

Similarly,  subtracting  (2)  from  (3),  we  obtain 

(5)  .  A(x^-  X,)  =  -B  (ij,  - !/,). 

Dividing  (4)  by  (5),  we  find 

^2  ~  ̂ 1  2/2  ~~  Vl 

Corollary.   The  condition  that  three x^ointSy  Pi(xi,  y{),  ̂ 2(^2?  2/2)) 

and  P3  (a*3,  2/3)  should  lie  on  a  line  is  that 

x^-x^  ^  ?/3  -  ?/i 
X2  —  Xi      2/2  -  2/1 

For  this  is  the  condition  that  P3  should  lie  on  the  line  (VII)  passing  through 

Pi  and  P2  (Corollary,  p.  53). 

The  method  of  proving  the  corollary  should  be  remembered 

rather  than  the  corollary  itself,  as  then  the  condition  may  be 

immediately  written  down  from  (VII). 

PROBLEMS 

1.  Find,  by  substitution  in  the  proper  formulas,  the  equations  of  the  lines 
satisfying  the  conditions  in  problem  1,  p.  94. 

2.  Find  the  equations  of  the  lines  fulfilling  the  following  conditions  and 

plot  the  lines. 

(a)  Passing  through  the  origin,  slope  =  3. 

(b)  Passing  through  (3,  -  2)  and  (0,  -  1). 

(c)  Having  the  intercepts  4  and  —  3. 
(d)  F-intercept  =  5  and  slope  =  3. 

(e)  Passing  through  (1,  —  2)  and  (3,  —  4). 
(f )  Having  the  intercepts  —  1  and  —  3. 

(g)  Passing  through  (—  |,  |)  and  slope  =  -  f • 
(h)  Passing  through  (0,  0)  and  slope  =  m. 

3.  Find  the  equations  of  the  sides  of  the  triangle  whose  vertices  are 

(-3,2),  (3,  -  2),  and  (0,  - 1). 
Ans.    2x  +  3y  =  0,  iC  +  3?/  +  3  =  0,  andx  +  2/  +  l=0. 

4.  Find  the  equations  of  the  medians  of  the  triangle  in  problem  3  and 
show  that  they  meet  in  a  point. 

Ans.   z  =  0,1x  +  9y  +  S  =  0,  and  5x  +  92/-f3  =  0. 

Hint.     To  show  that  three  lines  meet  in  a  point,  find  the  point  of  intersection  of  two 
of  them  and  prove  that  it  lies  on  the  third. 

Ans.  Sx  —  y  =  0. 
Ans.  x-i-Sy  +  S  =  0. 

Ans.  3x- 4^-12  =  0. 

Ans.  Sx  —  y  -\-  5  =  0. 

Ans.  X  +  y  -^  1  =  0. 
Ans.  3x  +  y  +  3  =  0. 

Ans.  4x  +  6y  -1  =0. 
Ans.  y  =  mx. 
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5.  Show  that  the  medians  of  any  triangle  meet  in  a  point. 

Hint.    Taking  one  vertex  for  origin  and  one  side  for  the  X-axis,  the  vertices  may  then 
be  called  (0,  0),  (a,  0),  and  (b,  c). 

6.  Determine  whether  or  not  the  following  sets  of  points  lie  on  a  straight 
line. 

(a)  (0,  0),  (1,  1),  (7,  7).  Ans.  Yes. 

(b)  (2,  3,),  (-  4,  -  6),  (8,  12).  Ans.  Yes. 
(0)  (3,  4),  (1,  2),  (6,  1).  Ans.  No. 

(d)  (3,-1),  (-6,2),  (-1,1).  Ans.  No. 
(e)  (5,  6),  (f,  !),(-!, -f).  Ans.  Yes. 

(f )  (7,  6),  (2,  1),  (6,  -  2).  Ans.  No. 

7.  Reduce  the  following  equations  to  the  form  (VI)  and  plot  their  loci. 

(a)  2x  +  32/-6  =  0.  (d)  3x  +  4y  +  1  =  0. 
(b)  x-32/  +  6  =  0.  (e)  2x-42/-7=0. 

(c)  3a;-4y +  9  =  0.  (f)  7x  -  62/ -  3  =  0. 

8.  Find  the  equations  of  the  lines  joining  the  middle  points  of  the  sides 
of  the  triangle  in  problem  3  and  show  that  they  are  parallel  to  the  sides. 

Ans.    4x  +  62/  +  3  =  0,  x  +  32/  =  0,  and  x-{-y  =  0. 

9.  Find  the  equation  of  the  line  passing  through  the  origin  and  through 

the  intersection  of  the  lines  x  +  2 y  =  1  and  2x  —  4y  —  3  =  0. 
Ans.   X  +  10  ?/  =  0. 

10.  Show  that  the  diagonals  of  a  square  are  perpendicular. 

Hint.    Take  two  sides  for  the  axes  and  let  the  length  of  a  side  be  a. 

11.  Show  that  the  line  joining  the  middle  points  of  two  sides  of  a  triangle 

is  parallel  to  the  third. 

Hint.    Choose  the  axes  so  that  the  vertices  are  (0,  0),  (a,  0),  and  (6,  c). 

12.  Find  the  equation  of  the  line  passing  through  the  point  (3,  -  4)  which 
has  the  same  slope  as  the  line  2  x  -  y  =  3.  Ans.   2x  -  y  -  10  =  0.    . 

13.  Find  the  equation  of  the  line  passing  through  the  point  (-1,  4)  which 

is  parallel  to  the  line  3x  +  y  +  l=0.  Ans.   3x  +  y-l  =  0. 

14.  Two  sides  of  a  parallelogram  are2x  +  3y-7  =  0  and  x-3?/  +  4  =  0. 
Find  the  other  two  sides  if  one  vertex  is  the  point  (3,  2). 

Ans.   2x  +  3?/- 12  =  0  and  x-3?/  +  3  =  0. 

15.  Find  the  equation  of  the  line  passing  through  the  point  (-  2,  3) 

which  is  perpendicular  to  the  line  x  +  2 ?/  =  1.       Ans.   2x  —  y  +  7  =  0. 
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16.  Show  that  the  three  lines  x-2y  =  0,  x  +  2y-8  =  0,  and  x  +  2 ; 

—  S-\-k(x  —  2y)  =  0  meet  in  a  point  no  matter  what  value  k  has. 

X7.  Derive  (V)  and  (VII)  by  the  Rule  on  p.  63,  using  Theorem  V,  p.  35. 

18.  Derive  (VI)  and  (VII)  by  the  Rule  on  p.  53^  using  the  theorem  that 
the  corresponding  sides  of  similar  triangles  are  proportional. 

19.  Derive  y  =  mx  +  6  and  (V)  by  the  Rule  on.  p.  63,  using  the  definition 
of  the  tangent  of  an  acute  angle  in  a  right  triangle. 

20.  Derive  the  equation  of  the  straight  line  in  terms  of  the  perpendicular 
distance  p  from  the  origin  to  the  line  and  the  angle  w  which 

that  perpendicular  makes  with  the  positive  direction  of 
the  X-axis. 

Hint.    Find  the  intercepts  in  terms  of  p  and  w  by  solving  the 
right  triangles  in  the  figure  and  substitute  in  (VI). 

Ans.   X  cos  u)  +  ysinu)  —  p  =  0. 

21.  What  is  the  locus  of  (V)  if  Xi  and  yi  are  constant  and  m  arbitrary  ? 

22.  What  is  the  locus  of  (VI)  if  a  is  constant  and  b  arbitrary  ?  if  6  is  con- 
stant and  a  arbitrary  ? 

23.  Write  an  equation  which  represents  all  lines  passing  through  (2,  —  1). 

24.  Write  an  equation  representing  all  lines  whose  intercept  on  the  X-axis 
is  3. 

25.  Write  in  two  different  forms  the  equation  of  all  lines  whose  intercept 

on  the  Z-axis  is  —  2. 

26.  Write  an  equation  representing  all  lines  whose  slope  is  —  ̂ . 

27.  If  the  axes  are  oblique  and  make  an  angle  of  w,  then  the  equation  of  a 

straight  line  in  terms  of  its  inclination  a  and  intercept  on  the  F-axis  b  is 
sin  a 

y 
sin  (w  —  a) 

x  +  6. 

28.  If  the  angle  between  the  axes  is  w,  the  equation  of  the  line  passing 

through  Pi(xi,  Vi)  whose  inclination  is  a  is 
sin  a       .  . 

^-y'  =  8in(..-«)'^-^''- 

29.  Show  that  equations  (VI)  and  (VII)  hold  for  oblique  coordinates. 
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48.  The  normal  form  of  the  equation  of  the  straight  line. 
In  the  preceding  sections  the  lines  considered  were  determined 
by  two  points  or  by  a  point  and  a  direction.  Both  of  these 

methods  of  determining  a  line  are  frequently  used  in  Elementary 
Geometry,  but  we.  have  now  to  consider  a  line  as  determined  by 
two  conditions  which  belong  essentially  to  Analytic  Geometry. 

Y' 

' 

V- 
/N 

A 

A^      ̂ N^ 0 
>! 

Let  AB  he  any  line,  and  let  ON  be  drawn  from  the  origin  perpen- 
dicular to  AB  at  C.  Let  the  positive  direction  on  ON  be  from  O 

toward  N,  —  that  is,  from  the  origin  toward  the  line,  —  and  denote 
the  positive  directed  length  OC  hj  p  and  the  positive  angle 

XON,  measured,  as  in  Trigonometry  (p.  18),  from  OX  as  initial 

line  to  ON  as  terminal  line,  by  (o*  Then  it  is  evident  from  the 
ligures  that  the  position  of  any  line  is  determined  by  a  pair  of 

values  ofp  and  <o,  both  p  and  <o  being  positive  and  w  <  2  tt. 

On  the  other  hand,  every  line  determines   a  single  positive 

value  of  p  and  a  single  positive  value  of  w  which  is  less  than 

2  7r,  unless  p  =  0.  When  p  =  0,  however,  AB  passes  through 
the  origin,  and  the  rule  given  above  for  the  positive  direction 

on  ON  becomes  meaningless.  From  the  figures  we  see  that  we 

can  choose  for  w  either  of  the  angles  XON  or  XON'.  When 
p  =  0  we  shall  always  suppose  that  o>  <  tt  and  that  the  positive 
direction  on  ON  is  the  upward  direction. 

*  w  is  not  the  angle  between  the  directed  lines  OX  and  OX,  as  defined  on  p.  28. 
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Theorem  VIII.    The  normal  form*  of  the  equation  of  the  straight 
line  is 

(VIII)  a?  cos  o>  +  2/  sin  (0  —  ̂ >  =  O, 

where  p  is  the  perpendicular  distance  or  normal  from  the  origin  to 

the  line  and  w  is  the  positive  angle  which  that  perpendicular  Tnakes 

with  the  positive  direction  OX  of  the  X-axis  regarded  as  initial 
line. 

Proof    Let  P(x,  y)  be  any  point  on  the  given  line  AB. 
Then  since  AB  is  perpendicular  to 

ON,  the  projection  of  OP  on  ON  is 

equal  to  p  (definition,  p.  29).  By 
the  second  theorem  of  projection 

(p.  48),  the  projection  of  OP  on  ON 
is  equal  to  the  sum  of  the  projections 

^  of  OD  and  DP  on  ON.  Then  the  con- 
dition that  P  lies  on  ̂ 5  is 

(1)  proj.  of  OD  on  ON  +  proj.  of  DP  on  ON  =  p.' 
By  the  first  theorem  of  projection  (p.  30)  we  have 

(2)  proj.  of  OD  on  ON  =  OD  cos  w  =  x  cos  <o, 

(3)  proj.  of  DP  on  ON  =  DP  cos  [  —  —  w  J  =  ?/  sin  a>. 

For  the  angle  between  the  directed  lines  DP  and  ON  equals  that  between 

OYsindON=^-  00. 

Substituting  from  (2)  and  (3)  in  (1),  we  obtain 

X  cos  (li  -{-  y  sin  ui  —  p  =  0.  q.e.d. 

To  reduce  a  given  equation 

(4)  Ax-j-By  +  C  =  0 

to  the  normal  form,  we  must  determine  o>  and  p  so  that  the  locus 

of  (4)  is  identical  with  the  locus  of 

(5)  X  cos  0)  +  ?/  sin  w  —  j9  =  0. 

*  The  designation  of  this  equation  is  made  clear  by  the  definition  of  the  normal  in 
Chapter  IX. 
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Then  we  must  have  corresponding  coefficients  proportional 

(Theorem  III,  p.  88). 

cos  o)  _  sin  (a  _—  p 

**'     A     ~     B     ~~c" 
Denote  the  common  value  of  these  ratios  by  r ;  then 

(6)  cos  (0  =  rA, 

(7)  sin  w  =  rB,  and 

(8)  -p:=rC. 

To  find  r,  square  (6)  and  (7)  and  add ;  this  gives 

sin^  w  +  cos^  (o  =  r\A^  +  B^). 

But  sin^  o)  +  cos^  m  =  1; 

and  hence  r^(A^  +  B^)  =  1,  or 

(9)  r  =   ,  ^ 

Equation  (8)  shows  which  sign  of  the  radical  to  use ;  for  since 

p  is  positive,  r  and  C  must  have  opposite  signs,  unless  C  =  0.  If 

C  =  0,  then,  from  (8),  p  =  0,  and  hence  w  <  tt  (p.  101) ;  then  sin  w 
is  positive,  and  from  (7)  r  and  B  must  have  the  same  signs. 

Substituting  the  value  of  r  from  (9)  in  (6),  (7),  and  (8)  gives 

A  .  n  C 
cos  0)  =    ■  >     Sm  (U  =    ,  ;     7?  =   r===- 

Hence  (5)  becomes 
ARC 

(10)        x-{-    y  +   7==  =  0, 

which  is  the  normal  form  of  (4).     The  result  of  the  discussion 

may  be  stated  in  the  following 

Rule  to  reduce  Ax  -\-  By  -\-  C  =  0  to  the  normal  form. 

First  step.    Find  the  numerical  valuer  of  V^  ̂   +  B'^. 
Second  step.  Give  the  result  of  the  first  step  the  sign  opposite  to 

that  of  C,  or,  if  C  =  0,  the  same  sign  as  that  of  B. 

Third  step.  Divide  the  given  equatioji  hy  the  result  of  the  second 

step.     The  result  is  the  required  equation. 
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The  advantages  of  the  normal  form  of  the  equation  of  the] 
straight  line  over  the  other  forms  are  twofold.  In  the  firstl 

place,  every  line  may  have  its  equation  in  the  normal  formj 
whether  it  is  parallel  to  one  of  the  axes  or  passes  through  the! 

origin  is  immaterial.  In  the  second  place,  as  will  be  seen  in  thej 
following  section,  it  enables  us  to  find  immediately  the  distanc 
from  a  line  to  a  point. 

PROBLEMS 

1.  In  what  quadrant  will  ON  (Fig.,  p.  101)  lie  if  sin  w  and  cos  w  are  both 
positive  ?  both  negative  ?  if  sin  w  is  positive  and  cos  w  negative  ?  if  sin  w 
is  negative,  and  cos  w  positive  ? 

2.  Find  the  equations  and  plot  the  lines  for  which 

(a)  w  =  0,  p  =  5.  ^ns.   x  =  5. 

(b)  0,  =  ̂,  p=:3. 

(c)  (.,  =  -,  1)  =  3. 4 

(d)  <^  =  -^  '  P  =  2. 

(e)  0,=  p  =  4. 4 

An&.  y  +  3  =  0. 

Ans.  v^a;  +  v^y- 6  =  0. 

Am.  x-V32/  +  4  =  0. 

Ans.  v^x- V2?/ -8  =  0. 

3.  Reduce  the  following  equations  to  the  normal  form  and  find  p  and  w. 

(a)  3x  +  4y-2  =  0.  Ans.  p  =  f ,  w  =  cos-i  f  =  sin-U. 

(b)  3x  -  4y  -  2  =  0.  An8.  p  =  |,  w  =  cos-i  |  =  sin-i  (-  f). 

(c)  12 X  -  5  2/  =  0.  ^715.  p  =  0,  w  =  cos-i  (-  If)  =  sin-i^Sj. 
(d)  2x  +  52/  +  7  =  0.  ^  2 

-|.V29  ^-\/29^  ^-V29^ 

(e)  4x  -  3y  +  1  =  0.  Ans.  p  =  I,  w  =  cos-i(-  |)  =  sin-U. 
(f)  4x-5y  +  6  =  0. 

Ans.  p  = 
Vil 

,  w  =  COS-1 
(-"^^^sin-if^-V 

4.  Find  the  perpendicular  distance  from  the  origin  to  each  of  the  follow- 
ing lines. 

(a)  12x  +  5y-26  =  0. 

(b)  x-\-y  +  l=0. 

(c)  3x-2y-l  =  0, 

Ans.    2. 

Ans.    iV2. 
Ans.   j\VTs, 
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5.  Derive  (VIII)  when  (a)  -<a;<7r;   (b)  7t<(a<   ;   (c)   <<a<27t; 

(d)  p  =  0  andO<w<-. 

6.  For  what  vahies  of  p  and  w  will  the  locus  of  (VIII)  be  parallel  to  the 
X-axis  ?   the  F-axis  ?   pass  through  the  origin  ? 

7.  Find  the  equations  of  the  lines  whose  slopes  equal  —  2,  which  are  at  a 
distance  of  5  from  the  origin. 

An8.    2 Vsx  +  Vs?/  -  25  =  0  and  2 VSx  +  V5 y  +  25  =  0. 

8.  Find  the  lines  whose  distance  from  the  origin  is  10,  which  pass  through 
the  point  (5,  10).  Ans.    ?/  =  10  and  4  x  +  3  y  =  50. 

9.  What  is  the  locus  of  (VIII)  if  p  is  constant  and  w  arbitrary  ?  if  w  is 
constant  and  p  arbitrary  ? 

10.  Write  an  equation  representing  all  lines  whose  distance  from  the 
origin  is  5. 

49.  The  distance  from  a  line  to  a  point.  The  positive  direction 

on  the  normal  ON  drawn  through  the  origin  perpendicular  to  ̂ ^ 

(Fig.  1)  Y^from  0  to  AB  (p.  101)  ;  and  when  AB  passes  through  0 

(Fig.  2)  the  positive  direction  on  ON  is  the  upward  direction. 

^\ 

Aw           . 

JT' 

Y'
 

>
>
'
 

(3) 

The  positive  direction  on  ON  is  taken  to  be  the  positive  direction 

on  all  lines  perpendicular  to  AB.  Hence  the  distance  from  the 

line  AB  to  the  point  P^  is  positive  if  Pi  and  the  origin  are  on 

op2)osite  sides  of  AB,  and  negative  if  P^  and  the  origin  are  on  the 

same  side  of  AB.  When  AB  passes  through  the  origin  the  distance 

from  A  B  to  Pi  is  positive  if  that  distance  is  in  the  upjward,  direc- 
tion, and  negative  if  it  is  in  the  downward  direction.  Thus  in  the 

figures  the  distance  from  AB  to  Pi  is  positive  and  from  AB  to  P^, 

is  negative. 
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Theorem  IX.    The  distance  d  from  the  line 

X  cos  <o  +  2/  sin  o)  —  p  =  0 

to  the  point  Pi(xi,  y^  is 

(IX)  d  =  oc^  cos  0)  +  i/i  sin  (I)  —  p. 

Proof.    Let  AB  hQ  the  given  line  and  let  ON  be  perpendicular 

to  AB.     By  the  second  theorem  of  projection  (p.  48)  we  have 

proj.  of  OPi  on  ON  =  proj.  of  OD  on  ON  +  proj.  of  i)7\  on  ON. 

From  the  figure, 

proj.  of  OPj  on  ON 
=  0E  =p  -\-d. 

By  the   first   theorem   oi 
projection  (p.  30), 

proj.  of  OD  on  ON 
=  OD  cos  0}  =  Xi  cos  o), 

proj.  of  DPi  on  ON 
(tt         \ 

=  DP^  cos  (  —  —  <i>  I 

=  2/i  sin  (D. 
Hence 

and  therefore 

J9  +  cZ  =  iCi  cos  (0  +  ?/i  sin  o), 

c?  =  iCi  cos  a>  +  ?/i  sin  (i>  —p. 
Q.E.D. 

From  this  theorem  we  have  at  once  the 

Rule  to  find  the  perpendicular  distance  from  a  given  line  to  a 

given  point. 
First  step.    Reduce  the  equation  of  the  given  line  to  the  normal 

form  {Rule,  p.  103). 

Second  step.    Substitute  the  coordinates  of  the  given  point  fo% 

X  and  y  in  the  left-hand  side  of  the  equation.     The  residt  is  t) 
required  distance. 

The  sign  of  the  result  will  show  on  which  side  of  the  line  the 

point  lies. 
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jjx.  1.  Find  the  distance  from  the  line  4x-—  3y  +  15  =  0  to  the  point 

(2,  1). 

Solution.   First  step.  Reducing  the  given  equation 
to  normal  form,  we  have 

-|x  +  |y-3  =  0. 

Second  step.     Substituting  2  for  x  and  1  for  y, 
we  have 

^  =  -f-2  +  |(l)-3=-4. 

What  does  the  negative  sign  mean  ? 

Ex.  2.  Prove  that  the  sum  of  the  distances  from  the  legs  of  an  isosceles 

triangle  to  any  point  in  the  base  is  constant. 

Solution.  Take  the  middle  point  of  the  base  for  origin  and  the  base  itself 

for  the  X-axis.  Then  the  values  of  p  for  the  two  legs  are  equal  and  the  values 

of  w  are  supplementary.     Hence,  if  the  equation  ^y^ 
of  one  leg  in  normal  form  is 

X  cos  oj  +  y  sin  oj  —  p  =  0, 

then  the  equation  of  the  other  leg  is 

X  cos  (tt  —  w)  +  y  sin  (tt  —  w)  —  jp  =  0, 

or  —  X  cos  w  +  ?/  sin  w  —  p  =  0. 

^o;
 

Let  (a,  0)  be  any  point  in  the  base.  Then  the  distances  from  the  legs  to 

(a,  0)  are  respectively  a  cos  u  —  p  and  —  a  cos  w  —  p,  so  that  the  sum  of  these 
distances  is  -r  2  p,  that  is,  a  constant. 

PROBLEMS 

1 .  Find  the  distance  from  the  line 

(a)  X  cos  45°  +  ?/  sin  45°  -  V2  =  0  to  (5,  -  7). 
(b)  faj-fy-l=0  to  (2,1). 
(c)  Sx  +  4:y  +  15  =  0  to  (-  2,  3). 

(d)  2x-7y  -{-S  =  0  to  (3, 

(e)  x-Sy  =  0  to  (0,  4). 

5). 

Ans. 

Ans. 
Ans. 

Ans. 

Ans. 

2V2. 

S' 

49 

+  V53 12 

+ 

Vio 

2.  Do  the  origin  and  the  point  (3,  —  2)  lie  on  the  same  side  of  the  line 
z-y  +  1  =  0?  Ans.   Yes. 
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3.  Does  the  line  2x  +  3y  +  2  =  0  pass  between  the  origin  and  the  point 

(-  2,  3)  ?  Am.   No. 

4.  Find  the  lengths  of  the  altitudes  of  the  triangle  formed  by  the  lines 

2a;  +  3y  =  0,  x  +  32/  +  3  =  0,  andx  +  2/-l-l  =  0. 

Ans.    — ^,  — ^=,  and  V2. V13     VIO 

6.  Find  the  distance  from   the  line  Ax-\-  By  +  C  =  0  to  the  point 
Pi(xi,  yi). Ans. 

Axi  -\-  Byi+  C 

±  V^2  +  B^ 
6.  Prove  Theorem  IX  when 

(a)p  =  0,  w<-;  (b)-<«<;r;  (c)  it<w<—;  {d)—<w<27t. 

7.  Find  the  locus  of  all  points  which  are  equally  distant  from 

3x-4y  +  l  =  0aud4x  +  3y~l=0. 

Ans.    7x  —  y  =  0  and  x  +  7y  —  2  =  0. 

8.  Find  the  locus  of  all  points  which  are  twice  as  far  from  the  line 

12x+5y  —  1  =  0  as  from  the  T-axis.  Ans.    14 x  —  5 y  +  1  =  0. 

9.  Find  the  locus  of  points  which  are  k  times  as  far  from  4x  —  3y+l=0 

as  from  5  x  -  12  y  =  0.  Ans.   (52  -  25  A;)  x  -  (39  -  60k)y  -\-lS  =  0. 

10,  Find  the  bisectors  of  the  angles  formed  by  the  lines  in  problem  9. 

Ans.    77x-99y +  13  =  0  and  27x4-21  y  + 13  =  0. 

11.  Find  the  distance  between  the  parallel  lines, 

8 ,.    ry  =  2x  +  5,  .  8  .  ,    r2x-3y  +  4  =  0,       .  1 

r2/  =  -3x+l,     ^^,3  r,  =  mx  +  3,     ̂ ^    _6_, 
^'\y  =  -3x  +  4.  _^Vi0       ̂ '\y  =  mx-S.  +  VTT^ 

12.  Derive  the  normal  equation  of  the  line  by  means  of  Theorem  IX. 

13.  Prove  that  the  altitudes  on  the  legs  of  an  isosceles  triangle  are  equal. 

14.  Prove  that  the  three  altitudes  of  an  equilateral  triangle  are  equal. 

15.  Prove  that  the  sum  of  the  distances  from  the  sides  of  an  equilateral' 
triangle  to  any  point  is  constant. 

Hint.    Take  the  center  of  the  triangle  for  origin,  with  the  Z-axis  parallel  to  one  side. 
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16.  Find  the  areas  of  the  triangles  formed  by  the  following  lines. 

(a)  2  ic  -  3  ?/  +  30  =3  0,  X  =  0,  X  +  ?/  =  0.  Ans.  30. 

(b)  x  +  2/  =  2,  3x  +  4?/-12  =  0,  x-y  +  6  =  0.  Ans.  f 

(c)  3x-42/  +  12  =  0,  x-3?/  +  6  =  0,  2x-?/  =  0.  Ans.  3f . 
(d)  x  +  3?/-3  =  0,  5x-?/-16  =  0,  x-2/+l  =  0.  Ans.  8. 

17.  Plot  the  following  lines  and  find  the  area  of  the  quadrilaterals  of 
which  they  are  the  sides. 

(a)  X  =  ?/,  y  =  6,  X  +  ?/  =  0,  3 X  +.2 y  -  6  =  0.  Ans.  16|. 
(b)x  +  22/-5  =  0,  ?/=:0,  x  +  4?/  +  5=:0,  2x-h2/-4  =  0.    Ans.  18. 
(c)  2  X  -  4  ?y  -f-  8  =  0,  X  +  y  =  0,  2  X  -  y  -  4  =  0,  2  X  +  y  -  3  =  0. 

Ans.  4^yo. 

50.  The  angle  which  a  line  makes  with  a  second  line.     The 

angle  between  two  directed  lines  has  been  defined  (p.  28)  as  the 
angle  between  their  positive  directions.  When  a  line  is  given 

by  means  of  its  equation,  no  positive  direction  along  the  line  is 

fixed.  In  order  to  distinguish  between  the  two  pairs  of  equal 

angles  which  two  intersecting  lines  make  with  each  other  we 

define  the  angle  which  a  line  makes  with  a 

second  line  to  be  the  positive  angle  (p.  18)  ^^^^^ 

from  the  second  line  to  the  first  line.  _^^-— ip?'^^^^^ — ^2 
Thus  the  angle  which  L^  makes  with  L^       ̂ ^ 

is  the  angle  0.     We  speak  always  of  the  ^^^i 

*'  angle  which  one  line  makes  with  a  second     ____---^^r^^^ — ^i 

line,"  and  the  use  of  the  phrase  "  the  angle       ̂ ^  ̂ 
between  two  lines  "  should  be  avoided  if  those 
lines  are  not  directed  lines.    We  have  thus  added  a  third  method 

of  designating  angles  to  those  given  on  p.  18  and  p.  28. 

Theorem  X.    The  angle  6  which  the  line 

ii :  A^x  +  5i2/  +  Ci  =  0 
makes  with  the  line 

ig :  A^x  +  B^y  -|-  C'2  =  0 
is  given  by 

(X) 
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Proof.  Let  a^  and  ag  be  the  inclinations  of  Zi  and  L^,  respec 

tively.  Then,  since  the  exterior  angle  of  a  triangle  equals  th^ 
sum  of  the  two  opposite  interior  angles,  we  have 

In  Fig.  1,  a-^  =  0  -\-  a^y  or   B  =  a^  —  a^, 

In  Fig.  2,  ̂2  =  TT  —  ̂   +  «!,  or  0  =  tt  +  (a^  —  a^). 

And  since  (5,  p.  20) 

tan  (tt  +  <^)  =  tan  <^, 

we  have,  in  either  case, 

tan  0  =  tan  (ai  —  a^) 

tan  ai  —  tan  erg 

1  +  tan  ai  tan  or^ (by  13,  p.  20] 

But  tan  oTi  is  the  slope  of  Li  and  tan  a^  is  the  slope  of  Zg ;  henc< 

(Corollary  I,  p.  S6) 

tan^ 

Eeducing,  we  get   tan  $  = 

^1      ■     ̂2 

Bi       B2 

i-m-f) 
1  + 

A^Bi  -  A1B2 

A1A2  +  B^B^ 
Q.E.D. 

Corollary.     If  mj  and  m^  are  the  slopes  of  two  lines,  then  the 

angle  0  which  the  first  line  makes  with  the  second  is  given  hy 

1  +  mim^ tan^  = 



THE  STRAIGHT  LINE 
111 

Ex.  1.    Find  the  angles  of  the  triangle  formed  by  the  lines  whose  equations 
B 

L:2x-Sy-6  =  0y 

M:6x-y  -6  =  0, 

JV:6x  +  42/-25  =  0. 

Solution.  To  see  which  angles  formed  by  the  given 

lines  are  the  angles  of  the  triangle,  we  plot  the  lines, 
obtaining  the  triangle  ABC.  A  is  the  angle  which 
M  makes  with  i,  so  that  M  takes  the  place  of  Li  in 
Theorem  X  and  L  of  L2. 

Hence 

^1  =  6,  Bi  =  -1', 

A2  =  2,  B2=-S. 

A2B1  -  A1B2      -2  +  18 Then 

id  hence 

tan^  = 
A1A2  +  B1B2        12  +  3 

^  =  tan-i(i|). 

16 

15' 

B  is  the  angle  which  L  makes  with  N,  and  by  Corollary  III,  p.  87,  B  = 
C  is  the  angle  which  N  makes  with  JIf ,  so  that  if 

A2B1  -  A1B2 tan  C 

we  must  set 

Hence 

and 

tanC 

A1A2  +  B1B2 

Ai  =  6,  Bi  =  A; 

A2  =  6,  B2=-l. 

24  +  6  _  30  _  16 

~32~~ 

36-4 
C  =  tan-i(|f). 

16 

We  may  verify  these  results.     For  if  B 

1         ̂  
(6,  p.  20,  and  1,  p.  19)  tan  A  =  cot  C  =   :::,  which  is 

,  then  A  =   C:  and  hence 2 

true  for  the  values  found. 
tan  C 

Ex.  2.     Find  the   equation   of  the  line   through 

(3,  5)  which  makes  an  angle  of  —  with  the  line 

X  -  y  +  6  =  0.  ^ 

Solution.    Let  mi  be  the  slope  of  the  required  line. 

Then  its  equation  is  (Theorem  V,  p.  95) 

(1)  y-5  =  mi(x-3). 

Y , Y 
4 \ 

/j 

3 \ 
/ 

~~, 

^\ 

» 

L~"- 

\ 0 
\ \ 
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The  slope  of  the  given  line  is  m^  =  1,  and  since  the  angle  which  (1)  make 

with  the  given  line  is  — ,  we  have  (by  the  Corollary), o 

7t      mi  —  1 

tan  -  = 3      1  +  mi 

or 

whence 

V3  = 

mi 

1  +.mi 

mi 

=  1±|  =  -..V3,. 

Substituting  in  (1),  we  obtain 

y  -  5  =  -  (2  +  V3)  (X  -  3), 

or  (2+ V3)x  +  ?/-(lH-3V3)  =  0. 

In  Plane  Geometry  there  would  be  two  solutions  of  this  problem,  —  tt 
line  just  obtained  and  the  dotted  line  of  the  figure.     Why  must  the  lattei 
be  excluded  here  ? 

PROBLEMS 

1.  Find  the  angle  which  the  line  3x— y-f  2=0  makes  with  2x+y— 2=0; 
also  the  angle  which  the  second  line  makes  with  the  first,  and  show  that 

37r    7t these  angles  are  supplementary. 

2.  Find  the  angle  which  the  line 

(a)  2a;  —  5?/  +  l  =  0  makes  with  the  line  x  —  2y  +  3  =  0. 

(b)  X  +  y  +  1  =  0  makes  with  the  line  x  —  y  +  1  =  0. 
(c)  3x  —  4y  +  2  =  0  makes  with  the  line  x  +  3y  —  7  =  0. 
(d)  6x  —  3y  +  3  =  0  makes  with  the  line  x  =  6, 
(e)  X  —  72/  +  l  =  0  makes  with  the  line  x  +  2y  —  4  =  0. 

In  each  case  plot  the  lines  and  mark  the  angle  found  by  a  small  arc. 

^ns.   (a)  tan-i(-  -,\) ;  (b)  |;  (c)  tan-i(-V) ;  (d)  tan-i(-  V) ;  (e)  tan-^^^^). 

8.  Find  the  angles  of  the  triangle  whose   sides   are   x  +  3?/  — 4  =  0,j 

3x  -  2  2/  +  1  =  0,  and  X  -  y  +  3  =  0.  Ans.  tan-i(-  -V^),  tan-i(4),  tan-i(2). 
Hint.    Plot  the  triangle  to  see  which  angles  formed  by  the  given  lines  are  the  angle 

of  the  triangle. 

4 .  Find  the  exterior  angles  of  the  triangle  formed  by  the  lines  5x  —  y  +  3=0, 

2/  =  2,  x-4?/  +  3  =  0.  Arts.    tan-i(5),  tan-i(-  |),  tan-i(-  J/). 

5.  Find  one  exterior  angle  and  the  two  opposite  interior  angles  of  the 

triangle  formed  by  the  lines  2x  — 3?/  — 6=0,  3x+4y— 12=0,  x— 3y+6=( 
Verify  the  results  by  formula  12,  p.  20. 
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6 .  Find  the  angles  of  the  triangle  formedby3x+2y— 4=0,  x—Sy-^6=0, 
and  4x  — 3y  — 10=0.     Verify  the  results  by  the  formula 

tan  ̂   +  tan  J5  +  tan  C  =  tan  A  tan  5  tan  C,   if  A  -}-  B  +  C  =  180°. 

7.  Find  the  line  passing  through  the  given  point  and  making  the  given 

angle  with  the  given  line. 

(a)  (2,  1),  -,2x-3y  +  2  =  0. 

(b)  (1,  -3),  ?^,x  +  2y  +  4  =  0. 

(c)  (2,  -5),  |,x  +  3y-8  =  0. 

(d)  (xi,  yi),  0,  ?/  =  mx  +  6. 

(e)  (xi,  2/i),  0,  ̂ x  +  52/ +  C  =  0. 

Arts,  bx  —  y 

Ans.  3  X  +  y  =  0 

Ans.  X 

Ans.  y  -yt 

Ans.  y 

9  =  0. 

2  ?/  -  12  =  0. 

m  +  tan  0 

2/1  = 

1  —  m  tan  0 

B  tan  (ji  —  A 
A  tan  0  +  -B 

(x  -  Xi). 

(x  -  Xi). 

8.  Show  from  a  figure  that  it  is  impossible  to  draw  a  line  through  the  inter- 

section of  two  lines  and  "making  equal  angles  with  those  lines"  in  the 
sense  in  which  we  have  defined  "the  angle  which  one  line  makes  with  a 

second  line."  Prove  the  same  thing  by  formula  (X).  How  are  the  bisectors 
of  the  angles  of  two  lines  to  be  defined  ? 

9.  Given  two  lines  Xi:3x-4?/-3  =  0  and  i2:4x-32/  +  12  =  0;  find 
the  equation  of  the  line  passing  through  their  point  of  intersection  such  that 

the  angle  it  makes  with  L^  is  equal  to  the  angle  X2  makes  with  it. 

Ans.    7x-72/  +  9  =  0. 

51.  Systems  of  straight  lines.  An  equation  of  the  first  degree 

in  X  and  y  which  contains  a  single  arbitrary  constant  will  repre- 
sent an  infinite  number  of  lines,  for  the  locus  of  the  equation 

will  be  a  straight  line  for  any  value  of  the  constant,  and  the  locus 

will  be  different  for  different  values  of  the  constant.- 

The  lines  represented  by  an  equation  of  the  first  degree  which 

contains  an  arbitrary  constant  are  said  to  form  a  system.  An 

equation  which  represents  all  of  the  lines  satisfying  a  single  con- 
dition must  contain  an  arbitrary  constant,  for  there  is  an  infinite 

number  of  lines  satisfying  a  single  condition  ;  hence  a  single  geo- 
metrical condition  defines  a  system  of  lines. 

Thus  the  equation  y  =  2x  +  h,  where  h  is  an  arbitrary  constant,  represents  the 

system  of  lines  having  the  slope  2 ;  and  the  equation  y  —  5  =  m  (a;  —  3) ,  where  m 
is  an  arbitrary  constant,  represents  the  system  of  lines  passing  through  (3,  5). 
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Second  rule  to  find  the  equation  of  a  straight  line  satisfying  two 
co7iditions. 

First  step.  Write  the  equation  of  the  system  of  lines  satisfying 
one  condition. 

Second  step.  Determine  the  arbitrary  constant  in  the  equation 

found  in  the  first  step  so  that  the  other  condition  is  satisfied. 

Third  step.  Substitute  the  result  of  the  second  step  in  the  result 

of  the  first  step.    This  gives  the  required  equation. 

This  rule  is,  in  general,  easier  of  application  than  the  rule  on 

p.  93.  It  has  already  been  applied  in  solving  Ex.  2,  p.  Ill,  and 

will  find  constant  application  in  the  following  sections.  The 

number  of  lines  satisfying  the  conditions  imposed  will  be  the 

number  of  real  values  of  the  arbitrai'y  constant  obtained  in 
the  second  step. 

Ex.  1.  Find  the  equations  of  the  straight  lines  having  the  slope  |  and 

intersecting  the  circle  x^  +  2/2  _  4  jq  ̂ jut  one  point. 

Solution.    First  step.    The  equation 

y  =  \x-{-h 
represents  the  system  of  lines  whose  slopes  are  f  (Theorem  I,  p.  58). 

Second  step.  The  coordinates  of  the  inter- 
section of  the  line  and  circle  are  found  by  solv- 

ing their  equations  simultaneously  (Rule,  p.  76). 
Substituting  the  value  of  y  in  the  line  in  the 
equation  of  the  circle,  we  have 

JC2+(|iC  +  6)2  =  4, 

or  25x2  +  24 &a;  +  (16 62  _  64)  =  0. 

The  roots  of   this  equation,  by  hypothesis 
must  be  equal;   hence   the   discriminant   must 
vanish  (Theorem  II,  p.  3) ;   that  is, 

576  62  -  100  (16  &2  _  64)  =  0, 
whence  &  =  ±  i. 

F> y / 
^ 

X 

.    y^ 

"\    . 1  ̂ ; 

~7^     i     0 

32  > 

^^ 

J 
/ ^ 

/ 

Third  step.    Substitute  these  values  of  6  in  the  equation  of  the  first  step. 
We  thus  obtain  the  two  solutions 

and 
y^\x-\. 
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PROBLEMS 

1.  Write  the  equations  of  the  systems  of  lines  defined  by  the  following 
conditions. 

(a)  Passing  through  (—  2,  3). 

(b)  Having  the  slope  —  f . 
(c)  Distance  from  the  origin  is  3. 

(d)  Having  the  intercept  on  the  F-axis  =  —  3. 

(e)  Passing  through  (6,  —  1). 
(f )  Having  the  intercept  on  the  X-axis  =  6. 

(g)  Having  the  slope  i. 
(h)  Having  the  intercept  on  the  F-axis  =  5. 
(i)  Distance  from  the  origin  =  4. 

2.  What  geometric  conditions  define  the  systems  of  lines  represented  by 
the  following  equations  ? 

(a)  2  X  -  3  ?/  +  4  A:  =  0. 

(b)  A:a:  -  3  ?y  -  7  =  0.  • 

(d)  X  +  A:  =  0. 

(e)  X  +  2  A:?/  -  3  =  0. 

(f )  2  A:x  -  3  ?/  +  2  :=  0. 

(g)  X  cos  a  +  2/  sin  a  +  5  =  0. 

Hint.    Reduce  the  given  equation  to  one  of  tlie  well-known  forms  of  tlie  equation  of 
the  first  degree. 

3.  Determine  k  so  that 

(a)  the  line  2x  —  oy  +  k  =  ̂   passes  through  (—2,  1).      Ans.  k  =  1. 

(b)  the  line  2kx  —  5y  +  S  =  0  has  the  slope  3.  Ans.  k  =  J/.. 
(c)  the  line  x  -{-  y  —  k  =  0  passes  through  (3,  4).  Ans.  k  =  7. 

(d)  the  line  Sx  —  4:y  +  k  =  0  has  intercept  on  X-axis  =  2. 
Ans.    k  =  —  6. 

(e)  the  line  x  —  Sky -{-4  =  0  has  intercept  on  F-axis  =  —  3. 
Ans.    k  =  —  ̂ . 

(f )  the  line  4x  —  3y  +  6A;  =  0is  distant  three  units  from  the  origin. Ans.    k  =  ±  f . 

4.  Find  the  equations  of  the  straight  lines  with  the  slope  —  j\  which  cut 
the  circle  x^  +  2/2  =  1  in  but  one  point.  Ans.    5  x  -(-  12  y  =  ±  13. 

5.  Find  the  equations  of  the  lines  passing  through  the  point  (1,  2)  which 

cut  the  circle  x^  +  ̂/^  =  4  in  but  one  point.     Ans.    y  =  2  and  4  x  -[-  3  y  =  10. 

6.  Find  the  equation  of  the  straight  line  passing  through  (—2,  5)  which 

makes  an  angle  of  45°  with  the  F-axis.  Ans.  x  -f  ?/  —  3  =  0. 



116 
ANALYTIC  GEO.MK'niY 

7.  Find  the  equation  of  the  straight  line  which  passes  tlirough  the  point 

(2,  —  1)  and  which  is  at  a  distance  of  two  units  from  the  origin. 
Ana.   X  =  2  and  3  x  —  4  y  =  10. 

8.  Find  the  equation  of  the  straight  line  whose  slope  is  '  such  that  the 
distance  from  the  line  to  the  point  (2,  4)  is  2.  Ans.    3x  —  4 y  =  0. 

52.  The  system  of  lines  parallel  to  a  given  line. 

Theorem  XI.    The  system  of  lines  parallel  to  a  given  line 

Ax-^Bij  +  C  =  0 
is  represented  by 

(XI)  Ax  -\-  By  +  k  =  0, 

where  k  is  an  arbitrary  constant. 

Proof.  All  of  the  lines  of  the  system  represented  by  (XI)  ar^ 

parallel  to  the  given  line  (Corollary  II,  p.  87).  It  remains  to  be 

shown  that  all  lines  parallel  to  the  given  line  are  represented  by 

(XI).  Any  line  parallel  to  the  given  line  is  determined  by  some 

point  Pi  (xi,  2/i)  through  which  it  passes.  If  Pi  lies  on  (XI), 

then  Ax^  +  By^  +  A;  =  0; 

and  hence  k  =  —  Axi  —  By^. 

That  is,  the  value  of  k  may  be  chosen  so  that  the  locus  of  (XI) 

passes  through  any  point  Pi.  Then  (XI)  represents  all  lines 
parallel  to  the  given  line.  q.e.d. 

It  should  be  noticed  that  the  coefficients  of  x  and  y  in  (Xlj 

are  the  same  as  those  of  the  given  equation. 

Ex.  1.    Find  the  equation  of  the  line  through  the  point  Pi  (3,  -  2)  paral- 
lel to  the  line  Z,i:2x  —  3y  —  4  =  0. 

Solution.    Apply  the  Rule,  p.  114. 

First  step.    The  system  of  lines  parallel  to 

the  given  line  is 

2x-Sy  -]-  kz=0. 

Second   step.     The    required    line    passes 

through  Pi;   hence 
2-3-3(-2)  +  fc  =  0, 

and  therefore         k  =  —  l2. 

Third  step.     Substituting  this  value  of 

the  required  equation  is 
2x-3y  -12  =  0 

T\ 

y , 
y 

t 

Lx 

y 

^ 
^ 

K 
X ' 0 

^^ 

/^ 

X X 
y 
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53.  The  system  of  lines  perpendicular  to  a  given  line. 
Theorem  XII.      The  system  of  lines  perpendicular  to  the  given 

Ax-\-  Bij  +  C  =  0 

is  represented  by 

(XII)  Bic-Ay  +  k  =  0, 

where  k  is  an  arbitrary  constant. 

Proof.  All  of  the  lines  of  the  system  represented  by  (XII) 

are  perpendicular  to  the  given  line,  for  (Corollary  III,  p.  87) 

AB  —  BA  =  0.  It  remains  to  be  shown  that  all  lines  perpen- 

dicular to  the  given  line  are  represented  by  (XII).  Any  line 

perpendicular  to  the  given  line  is  determined  by  some  point 

Pi(xi,  yi)  through  which  it  passes.      If  Pi  lies  on  (XII),  then 

whence 
Bxi  —  Ay^  -\-  k  =  0, 

k  =  Ay^  —  Bxi. 

That  is,  the  value  of  k  may  be  chosen  so  that  the  locus  of  (XII) 

passes  through  any  point  Pj.  Then  (XII)  represents  all  lines 

perpendicular  to  the  given  line.  q.e.d. 

Notice  that  the  coefficients  of  x  and  y  in  (XII)  are  respectively 
the  coefficients  of  y  and  x  in  the  given  equation  with  the  sign  of 

one  of  them  changed. 

Ex.  1.  Find  the  equation  of  the  line  through  the  point  Pi  (—  1,  3)  perpen- 
dicular to  the  line  I,i:5x  —  2y  +  3  =  0. 

Solution.    Apply  the  Rule,  p.  114. 
First  step.    The  equation  of  the  system  of  lines  perpendicular  to  the  given 

line  is 

^^    ̂   2x-\-  5y  -\-k  =  0. 

Second    step.      The    required   line    passes 
through  Pi ;    hence 

■^  2(-l)  +  5.3  +  A:  =  0, 
or  fc  =  -13. 

Third  step.    Substitute  this  value  of  k.     The  required  equation  is  then 

2x  +  5?/-13  =  0. 
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PROBLEMS 

1.  Find  the  equation  of  the  straight  line  which  passes  through  the  pointy 

(a)  (0,  0)  and  is  parallel  tox  —  8y  +  i  =  0.  Ans.  x  —  3y  =  0. 
(b)  (3,  -  2)  and  is  parallel  to  a;  +  y  +  2  =  0,  Ans.  x -\- y  -  I  =  0. 
(c)  (-  5,  G)  and  is  parallel  to2x  +  4y-3  =  0.     Ans.  x-\-2y  -7  =  0. 

(d)  (—  1,  2)  and  is  perpendicular  toSx  —  4y  +  l  =  0. 
Ans.   ix-\-Sy  -2=0.\ 

(e)  (—  7,  2)  and  is  perpendicular  to  x  —  3  ?/  +  4  =  0. 
Ans.    3x  +  2/  +  19  =  0. 

2.  Find  the  equations  of  the  lines  drawn  through  the  vertices  of  the 

triangle  whose  vertices  are  (—  3,  2),  (3,  —  2),  and  (0,  —  1),  which  are  parallel 
to  the  opposite  sides. 

Ans.  The  sides  of  the  triangle  are 

2x  +  3y  =  0,  x+3y  +  3  =  0,  x  +  7/  +  l  =  0. 
The  required  equations  are 

2x  +  Sy  -\-Z  =  0,x  +  Sy  -S  =  0,x-\-y  -1  =  0. 

3.  Find  the  equations  of  the  lines  drawn  through  the  vertices  of  the 

triangle  in  problem  2  which  are  perpendicular  to  the  opposite  sides,  and] 
show  that  they  meet  in  a  point. 

Ans.    Sx-2y-2  =  0,3x-y  +  ll  =  0,x-y-5  =  0. 

4.  Find  the  equations  of  the  perpendicular  bisectors  of  the  sides  of  the 

triangle  in  problem  2,  and  show  that  they  meet  in  a  point. 

Ans.  Sx-2y  =  0,3x-y-6  =  0,x-y  +  2  =  0. 

6 .  The  equations  of  two  sides  of  a  parallelogram  are  3x  —  Ay  +  6  =  0  and 
X  -^  6y  —  10  =  0.  Find  the  equations  of  the  other  two  sides  if  one  vertex 

is  the  point  (4,  9).    .  Ans.    Sx-iy  +  24  =  0  and  x  +  5 y  -  49  =  0. 

6.  The  vertices  of  a  triangle  are  (2,  1),  (-  2,  3),  and  (4,  -  1).  Find  the 
equations  of  (a)  the  sides  of  the  triangle,  (b)  the  perpendicular  bisectors  of 
the  sides,  and  (c)  the  lines  drawn  through  the  vertices  perpendicular  to  the 

opposite  sides.  Check  the  results  by  showing  that  the  lines  in  (b)  and  (c) 
meet  in  a  point. 

7.  Show  that  the  perpendicular  bisectors  of  the  sides  of  any  triangle  meet 
in  a  point. 

8.  Show  that  the  lines  drawn  through  the  vertices  of  a  triangle  perpen- 
dicular to  the  opposite  sides  meet  in  a  point. 

9.  Find  the  value  of  C  in  terms  of  A  and  B  it  Ax -\-  By  +  C  =  0  passes 
through  a  given  point  Pi(xi,  yi);  show  that  the  equation  of  the  system  of 

lines  through  Pi  may  be  written  A{x  —  Xi)  -]-  B{y  —  2/1)  =  0. 
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54.  The  system  of  lines  passing  through  the  intersection  of 
two  given  lines. 

Theorem  XIII.  The  system  of  lines  passing  through  the  intersec- 
tion of  two  given  lines 

and  ig  '•  ̂2^  +  B^y  -f  Cg  =  0 

is  represented  by  the  equation 

(XIII)       Aioc  +  Biy  +  Ci  +  A;  {A^x  +  B^y  +  Cz)  =  O, 

where  k  is  an  arbitrary  constant. 

Proof  All  of  the  lines  represented  by  (XIII)  pass  through  the 

intersection  of  Li  and  L^.  For  let  Pi(xi,  y{)  be  the  intersection 

of  Li  and  ig-     Then  (Corollary,  p.  53) 

and  A2X1  +  B^yi  +  C'g  =  0. 

Multiply  the  second  equation  by  k  and  add  to  the  first.  This 

gives 
A^x^  +  B,y,  +  Ci  +  /v  (^2^1  +  ̂22/1  +  C2)  =  0. 

But  this  is  the  condition  that  Pi  lies  on  (XIII). 

That  all  lines  through  the  intersection  of  L^  and  L^  are  repre- 

sented by  (XIII)  follows  as  in  the  proofs  of  Theorems  XI  and 

XII.  Q.E.D. 

Corollary.  If  L^  and  L^  are  parallel,  then  (XIII)  represents  the 

system  of  lines  parallel  to  L^  and  L^. 

For  if  Li  and  X2 are parallel,  then 

A2      Bi 

and  hence Ai  _  Bi 
kA2      kB2 

By  composition, Ai  +  kA2      Bi-^kB2 
Ai  Bx 

Hence  L\  and  (XIII)  are  parallel  (Corollary  II,  p.  87). 

Notice  that  (XIII)  is  formed  by  multiplying  the  equation  of  L^ 

by  k  and  adding  it  to  the  equation  of  Xj. 
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Ex.  1.     Find  the  equation  of  the  line  passing  through  Pi  (2,  1)  and  th€ 

Intersection  of  Xi :  3  a;  -  6  y  -  10  =  0  and  L2  :  x  +  y  +  1  =  0. 

Solution.    Apply  the  Rule,  p.  1 14.    The  system  of  lines  passing  through  th< 
intersection  of  the  given  lines  is  represented 

3x-6y-10  +  A:(x  +  y  +  l)  =  0. 

If  Pi  lies  on  this  line,  then 

6-5-10  +  ̂ (2 +  1  +  1)  =  0; 

whence  fc  =  |. 

Substituting  this  value  of  k  and  simplifying, 

we  have  the  required  equation 

21x-lly-31  =  0. 

Ex.  2.    Find   the   equation   of   the   line   passing   through   the   intersec- 

tion  of    ii  :  2 X  +  y  +  1  =  0    and    L2  :  x  —  2y  +  1  =  0    and    parallel 

i8:4x-3y-7  =  0. 

Solution.    Apply  the  Rule,  p.  114.     The  equation  of  every  line  througl 
the  intersection  of  the  first  two  given  lines  has  the  form 

2X  +  2/  +  1 +fc(x-2y +  1)  =  0, 

or     (2  +  k)x  +  (1  -  2/.-)2/  +  (1  +  fc)  =  0. 

If  this  line  is  parallel  to  the  third  line  (Corollary 
II,  p.  87), 

2  +  A;      1-2A; 
3 

whence k  =  2. 

Substituting  and  simplifying,  we  obtain 

4x-3i/  +  3  =  0. 

The  geometrical  significance  of  the  value  of  k  in  Theorem  XIII 

is  given  most  simply  when  Li  and  L2  are  in  normal  form. 

Theorem  XIV.    The  ratio  of  the  distances  from 

ii :  X  cos  (oi  -\-  y  sin  a>i  —  joi  =  0 

and  L2 :  x  cos  0)2  -\-  y  sin  wg  —  P2  =  0 

to  any  point  of  the  line 

L  :  X  cos  0)1  +  2/  sin  (Oi—  pi  -\-  k(x  cos  (o^  +  y  sin  tug  —  pz)  =  0 

is  constant  and  equal  to  —  k. 
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Proof.    Let  Pi  (x^,  y^  be  any  point  on  L.     Then 

Xi  cos  0)1  +  2/1  sin  Oil—  p^-\-  k  (^1  cos  wg  +  y^  sin  wg  —  p^  =  0, 

and  hence  _  ̂   ̂  ̂i  coso..  +  y.  sino,.  -  p.^ 
Xi  cos  0)2  +  2/1  sm  0)2  —  P2 

The  numerator  of  this  fraction  is  the  distance  from  L^  to  Pi, 

and  the  denominator  is  the  distance  from  L^  to  Pi  (Theorem  IX, 

p.  106).  Hence  —  k  is  the  ratio  of  the  distances  from  Li  and  L^ 
to  any  point  on  L.  q.e.d. 

Corollary.  If  k  =  ±  1,  then  L  is  the  bisector  of  one  of  the  angles 
formed  by  L^  and  L^.  That  is,  the  equations  of  the  bisectors  of  the 

angles  between  two  lines  are  found  by  reducing  their  equations  to 

the  normal  form  and  adding  and  subtracting  them. 

For  when  ̂   =  ±  1  the  numerical  values  of  the  distances  from  Li  and  L2  to  any 
point  of  L  are  equal. 

The  angle  formed  by  Li  and  Xg  in  which  the  origin  lies,  or  its 

vertical  angle,  is  called  an  internal  angle  of  L^  and  L^',  and  either 
of  the  other  angles  formed  by  L^  and  L^  is 

called  an  external  angle  of  those  lines.  From 

the  rule  giving  the  sign  of  the  distance  from  a 

line  to  a  point  (p.  105)  it  follows  that  L  lies  in 

the  internal  angles  of  Li  and  L^,  when  k  is  nega- 

tive, and  in  the  external  angles  when  k  is  posi- 
tive. If  the  origin  lies  on  L^  or  L^,  the  lines 

must  in  each  case  be  plotted  and  the  angles  in  which  k  is  posi- 
tive found  from  the  figure. 

PROBLEMS 

•1.  Find  the  equation  of  the  line  passing  through  the  intersection  of 
2x  —  3?/  +  2  =  0  and  3x  —  4y  —  2  =  0,  without  finding  the  point  of  intersec- 

tion, which 
(a)  passes  through  the  origin, 
(h)  is  parallel  to5x  —  2y  +  3  =  0. 
(c)  is  perpendicular  to3x  —  2?/  +  4  =  0. 

Ans.  (a)  5x-  7y  =  0;  {h)bx-'2,y  -50  =  0;  (c)  2x  +  3y  -  58  =  0. 
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2.  Find  the  equations  of  the  lines  which  pass  tlirough  the  vertices  of  the 

triangle  formed  by  the  lines  2x  —  Sy-\-l  =  0,x  —  y  =  0,  and  3x  +  4y  —  2  =  0 
which  are 

(a)  parallel  to  the  opposite  sides. 
(b)  perpendicular  to  the  opposite  sides. 

Ans.    (a)3x  +  4y-7  =  0,  14a;-21y+    2  =  0,  17a;-17y  +  5  = 
(b)  4x-3y-  1  =0,  21x  +  14y-10  =  0,  17x4-17y-9  =  0. 

3.  Find  the  bisectors  of  the  angles  formed  by  the  lines  4z  —  Sy  —  1  =  0 

and  3x  —  4y  +  2  =  0,  and  show  that  they  are  perpendicular. 
^715.    7x-72/4-l=0  and  x  +  2/  -  3  =  0. 

4.  Find  the  equations  of  the  bisectors  of  the  angles  formed  by  the  lines 

6x- 12^  +  10  =  0  and  12  x  -  5  y  + 15  =  0.    Verify  the  results  by  Theorem  X. 

5.  Find  the  locus  of  a  point  the  ratio  of  whose  distances  from  the  lines 

4x -32/  +  4  =  0and5x+122/-8  =  0isl3to5.       Ans.   9x  +  9y-4  =  0. 

6.  Find  the  bisectors  of  the  interior  angles  of  the  triangle  formed  by  the 

lines  4x- 32/ =  12,  Bx-12y-4:  =  0,  and  12x-  5y-13  =  0.  Show  that 
they  meet  in  a  point. 

Ans.    7  X  -  9  2/  -  16  =  0,  7  X  +  7  y  -  9  =  0,  112  X  -  64  y  -  221  =  0. 

7.  Find  the  bisectors  of  the  interior  angles  of  the  triangle  formed  by  the 

lines  5  X  —  12  2/  =  0,  5  x  +  12  y  +  60  =  0,  and  12  x  —  5  y  —  60  =  0,  and  show 
that  they  meet  in  a  point. 

Ans.    2  2/  +  5  =  0,  17  X  +  7  y  =  0,  17  X  -  17  y  -  60  =  0. 

8.  The  sides  of  a  triangle  are  3x  +  4  2/  — 12  =  0,  3x  —  4y  =  0,  and 
4x  +  32/  +  24  =  0.  Show  that  the  bisector  of  the  interior  angle  at  the 
vertex  formed  by  the  first  two  lines  and  the  bisectors  of  the  exterior  angles 
at  the  other  vertices  meet  in  a  point. 

9.  Find  the  equation  of  the  line  passing  through  the  intersection  of 

X  +  2/  —  2  =  0  and  x  —  y  +  6  =  0  and  through  the  intersection  of2x  —  y-\-S  =  0 
and  X -32/  + 2  =  0.  Ans.    19x  + By  +  26  =  0. 

Hint.    The  systems  of  lines  passing  through  the  points  of  intersection  of  the  two  pairs 
of  lines  are 

x  +  y-2+k(x-y  +  6)  =  0 

and  2x-y  +  3  +  k'(x-3y  +  2)=0. 
These  lines  will  coincide  if  (Theorem  III,  p.  88) 

l+k_     1-k        -2+6k 
2+k'~-l-3k'      3+2k' 

Letting  p  be  the  common  value  of  these  ratios,  we  obtain 
n-^-=2p  +  p^•^ 

l-k  =  -p-3pk', 

and  -2  +  6k=3p  +  2pk^. 

From  these  equations  we  can  eliminate  the  terms  in  pk^  and  p,  and  thus  find  the  yalue 
of  k  which  gives  that  line  of  the  first  system  which  also  belongs  to  the  second  system. 
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10.  Find  the  equation  of  the  line  passing  through  the  intersection  of 

2x  +  5y  —  3  =  0  and  Sx  —  2y  —  \  =  0  and  through  the  intersection  of 
X  -  y  =  0  and  X  +  3y  -  6  =  0.  Ans.    43 x  -  35 y  -  12  =  0. 

A  figure  composed  of  four  lines  intersecting  in  six  points  is 
called  a  complete  quadrilateral.  The  six  vertices  determine  three 

diagonals  of  which  two  are  the  diagonals  of  the  ordinary  quadri- 
lateral formed  by  the  four  lines. 

1 1 .  Find  the  equations  of  the  three  diagonals  of  the  complete  quadrilateral 

formed  by  the  hues  x  +  2 y  =  0,  3iC  —  4?/  +  2  =  0,  x  —  y  +  3  =  0,  and 
3x- 2^  +  4  =  0.         Ans.    2x  -  y  +  1  =0,  x  +  2  =  0,  6x  -  6y -\- S  =  0. 

12.  Show  that  the  bisectors  of  the  angles  of  any  two  lines  are  perpen- 
dicular, 

13.  Find  a  geometrical  interpretation  of  k  in  (XI)  and  (XII). 

14.  Find  the  geometrical  interpretation  of  k  in  (XIII)  when  Li  and  L^ 
are  not  in  normal  form. 

15.  Show  that  the  bisectors  of  the  interior  angles  of  any  triangle  meet  in 

a  point. 

16.  Show  that  the  bisectors  of  two  exterior  angles  of  a  triangle  and  of  the 

third  interior  angle  meet  in  a  point. 

55.  The   parametric   equations   of   the   straight   line.     The 

angles  a  and  y8  between  a  line  directed  upward ''^  and  the  coordi- 
nate axes  (p.  28)  are  called  the  direction  angles  of  the  line. 

Their  cosines,  cos  a  and  cos  ft,  are  called  the  direction  cosines  of 

the  line  and  satisfy  the  relation 

(1)  cos^a-hcos^jff  =  1. 
For  (Theorem  I,  p.  28)  cos  ̂   =  sin  o:  and  sin^  a  +  cos^  a  =  1. 

Given  a  line  with  direction  angles  a  and  ̂   passing  through 

Pi(xi,  ?/i).  Let  P(x,  y)  be  any  point  on  this  line  and  denote  the 
variable  directed  length  P^P  by  p.  The  projections  of  P^P  on 

the  axes  are  respectively  (Theorem  III,  p.  31) 

X  —  x-^  and  y  —  ̂ /i, 

or  (Theorem  II,  p.  30) 

p  cos  a  and  p  cos  )8. 

*  If  the  line  is  horizontal  we  suppose  that  it  is  directed  to  the  right,  so  a=  0  and  ̂   =  -• 
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Hence        x  —  Xi  =  p  cos  a  and  y  —  y^  =  p  cos  /?; 

whence  a;  =  iCi  +  p  cos  a. 

Hence  we  have 

Theorem  XV.  Parametric  form.  The  coordinates  of  any  point 

P  (x,  y)  on  the  line  through  a  giDen  point  Pj  (xj,  yi)  whose  direction 
angles  are  a  and  /3  are  give7i  by 

fa?  =  Xi +  /)coso, 

where  p  denotes  the  variable  directed  length  PiP. 

Equations  (XV)  are  called  the  parametric  equations  of  the 

straight  line  because  they  express  the  variable  coordinates  of  any 

point  (x,  y)  on  the  line  in  terms  of  a  single  variable  parameter  p. 

As  p  varies  from  —  oo  to  -f-  oo  the  point  P  (x,  y)  describes  the  line 

in  the  positive  direction.  These  equations  are  important  in  deal- 
ing with  problems  which  involve  the  distances  from  a  point  P^ 

on  a  line  to  the  intersections  of  that  line  with  a  given  curve. 

Theorem  XVI.  Symmetric  form.  The  equation  of  a  straight  line 

in  terms  of  the  coordinates  of  a  point  P^  (x^,  yi)  on  the  line  and 
its  direction  cosines  is 

(XVI) 
oc  —  oci       y,—  iji 

cos  a  cos  p 

Hint.  Solve  (XV)  for  p  and  equate  the  two  values  obtained. 

Theorem  XVII.    The  direction  cosines  of  the  line 

Ax-\-  By  +  C  —  0 

are cos  a  = 

-  B 

±  V^2   ̂   ̂ 2 

COS  p  = 

when  the  sign  of  the  radical  is  the  same  as  that  of  A . 

Proof    Let  Pi  (a:*!;  y^  be  a  point  on  the  given  line.     Then 

40^1  +  By^-\-C  ==0. 
(Corollary,  p.  53) 
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Subtracting  from  the  given  equation,  we  obtain 

Transpose  the  second  term  and  divide  by  —AB;  this  gives 

-B  A      ' 

Dividing  this  equation  by  (XVI),  we  have     * 
cos  a  _  cos  )8 

-  B~     A    ' 
Let  r  denote  the  common  value  of  these  ratios.     Then 

cos  a  =  —  Br  and  cos  /3  =  Ar. 

Squaring  and  adding, 

cos2  a  +  cos^  /3  =  (^2  _^  B^)r\ 

Then  from  (1),  p.  123, 

and  hence 

(2)  ̂ cos  a  = 

-B ±Vj2+^ 

and  cos  jS  = 
±  V^2  _^^2  _t  V.42  +  ̂ 2 

The  sign  of  the  radical  must  be  the  same  as  that  of  A.        q.e.d. 

[For  since  the  line  is  directed  upward,  /S^  — ,  and  hence  coSjS  is  positive.] z 

Corollary.  If  cos  a  and  cos  /3  are  proportional  to  two  numbers 
a  and  b,  then 

a  o  ^ 
cos  a  =    >  cos  a  =    • 

The  sign  of  the  radical  must  be  the  same  as  that  of  b. 

To  reduce  the  equation  of  a  given  straight  line  to  the  symmet- 
rical or  parametric  form  it  is  necessary  to  know  the  coordinates 

of  some  point  on  the  line  (which  may  be  found  by  the  Rule, 

p.  60)  and  its  direction  cosines  (which  are  given  by  Theorem 

XVII).  Then  we  can  write  the  required  equations  by  Theorem 
XV  or  XVI. 
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Ex.  1.    Plot   the    line  whose   parametric   equations  are  x 2-lp  an! 

p X y 

0 
5 

2 

-1 

1 
5 

Solution.  Comparing  with  (XV)  we  see  that 

Pi  (2,  1)  is  a  point  on  the  line.  A  second  point 
will  enable  us  to  plot  the  line.  We  have  at 
once  the  table 

Hence  the  line  joining 

the  points  Pi  (2,  1)  and 

P2(—  1,  6)  is  the  required line. 

(X,  2/),  or  (2-1/),  l+},p), 
are  the  coordinates  of  that 

variable  point  P  on  the  line  whose  distance 

from  Pi  is  the  variable  p. 

Ex.  2.  Given  the  circle  C :  x^  -]- y^  =  23  and  the  line  whose  parametric 

equations  are  x  =  5  —  | p  and  y  =  —  S  +  ip;  find  the  product  of  the  dis- 
tances from  Pi  (5,  —  3)  to  the  points  of  intersection  of  the  line  with  C,  and 

the  middle  point  of  the  chord  formed  by  the  line. 

Solution.    By  Theorem  XV  the  coordinates  of  any  point  on  the  line 

are    (5- fp,    -3  +  fp),    where   p 
denotes    the   distance    from   Pi    to 

that  point.      If  that  point  lies  on 
C  (Corollary,  p.   53), 

(5  -  4p)2 +(_  3 +  |p)2  =  25, 

or,  simplifying. 

(3) 
p  +  9  =  0. 

The  roots  of  this  quadratic  are 
the  directed  lengths  pi  =  PiPg  and 

p2  =  P1P3,  where  P2  and  P3  are  the 
points  of  intersection  of  the  line  and 

circle.  For  if  Pg  (5  -  f  pi,  -3  +  4  pi) 
is  on  the  circle, 

(5-|pi)'-2  +  (- 3  +  fpi)2  =  25, 
or  p^2_j>j_p^^g  =  o. 

Hence  pi,  and  similarly  p2,  is  a  root  of  (3). 

The  product  of  these  distances  is  therefore  9  (Theorem  I,  p.  3). 

Half  the  sum  of  these  roots  is  PiP,  or  U  (Theorem  I,  p.  3).     For  p  =  ̂ -^ 
we  have  x  =  f |  and  y  =  |f ,  so  the  middle  point  of  the  chord  is  the  point 
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PROBLEMS 

1.  Plot  the  following  lines : 3 -if p. 

sP- 

1 
X  =  -l-—~p. 

(d) 

(i>)  { 
y  =  2  +  ifp. 2 

2.  Prove  that  if  cos  a  and  cos  /3  are  the  direction  cosines  of  a  line  directed 

upward,  then  —  cos  a  and  —  cos  /3  are  the  direction  cosines  of  the  same  line 
directed  downward. 

3.  Find  the  coordinates  of  the  points  on  the  line  4     ~      -^  ̂̂ ,    for  which 

/)  =  3,  —  2,  and  4.     Verify  the  geometric  significance  of  p  for  each  of  these 
points  by  Theorem  IV,  p.  31. 

4.  Find  the  product  of  the  distances  from  Pi  (2,  1)  to  the  intersections  of 

the  line  x  =  2  —  f  />  and  ?/  =  1  +  |  />  with  the  circle  x^  +  y2  =  25,  and  explain 
the  sign  of  the  result.  Ans.    —  20. 

6.  Given  the  ellipse  x^  +  iy"^  =  16  and  the  line  x  =  Xi  —  ̂   p  and 
y  =  yi  -\-  ̂   p ;  find  the  equation  whose  roots  are  the  distances  from 
Pii^u  Vi)  to  the  points  of  intersection  of  the  line  and  ellipse. 

Ans.   |,^  _  ̂^^-^y^^  +  ̂ ,.  +  42,,^  -  16  =  0. 25  5 

6.  Find  the  condition  that  Pi  in  problem  5  should  be  the  middle  point  of 
the  chord  on  which  it  lies. 

Hint.    The  two  values  of  p  must  be  numerically  equal,  with  opposite  signs. 

7.  Given  the  parabola  y^  =  4x  and  the  line  x  =  2  +  p  cos  or,  y  =  —  4 
4-  p  cos  /3 ;  find  the  condition  which  cos  (x  and  cos  p  must  satisfy  if  the 
line  meets  the  parabola  in  but  one  point. 

Ans.   cos2  a:  +  4  cos  a  cos  /3  +  2  cos^/S  =  0. 

8.  If  a  and  b  are  two  numbers  such  that  a"^  +  b'^  =  l,  prove  that  a  and  b 
are  the  direction  cosines  of  some  line. 

9.  Derive  equation  (XVI)  from  Theorem  V  (p.  95)  and  Theorem  I  (p.  28). 

10.  Prove  that  the  common  value  of  the  ratios  in  (XVI)  is  the  length  Pi  P. 

Hint.  Square  (XVI),  apply  the  Theorem  on  the  sum  of  the  antecedents  and  of  the 
consequents,  and  then  take  the  square  root. 

11.  Derive  equations  (XV)  from  (XVI)  by  means  of  problem  10. 



128 ANALYTIC  GEOMETRY 

MISCELLANEOUS   PROBLEMS 

1.  Find  the  point  on  the  line  3x  —  62/4-6  =  0  wliich  is  equidistant  from 

the  points  (3,  -  4)  and  (2,  1). 

2.  Find  the  equation  of  the  line  through  the  intersection  of  the  lines 

7x-\-y— S  =  0  and  3x  +  6y  —  11  =  0  which  is  perpendicular  to  the  line 
joining  their  intersection  to  the  origin. 

3.  Find  the  equation  of  the  line  through  the  point  (2,  5)  such  that  the 
portion  of  the  line  included  between  the  axes  is  bisected  at  that  point. 

4.  Find  the  equation  of  the  line  through  the  point  (2,  —  3)  such  that 
the  portion  of  the  line  included  between  the  lines  3x  +  y  —  2  =  0  and 
x  +  5?/  +  10  =  0  is  bisected  at  that  point. 

6.  Prove  that  the  diagonals  of  a  rhombus  are  perpendicular. 

6.  If  the  F-axis  makes  an  angle  of  w  with  the  JT-axis,  find  the  equation  of 
the  straight  line  in  terms  of  its  intercept  b  on  the  F-axls  and  its  inclination  a. 

7.  If  the  F-axis  makes  an  angle  of  w  with  the  X-axis,  find  the  equation 
of  the  straight  line  whose  inclination  is  a  which  passes  through  Pi(a;i,  yi). 

8.  If  the  F-axis  makes  an  angle  of  w'  with  the  X-axis,  find  the  normal 
form  of  the  equation  of  the  straight  line. 

9.  Find  the  tangent  of  the  angle  which  one  line  makes  with  another  if  the 
axes  are  oblique. 

10.  Show  that  all  of  the  lines  for  which  m  =  b  pass  through  the  same 
point,  and  find  the  coordinates  of  that  point. 

constant  pass  through  the 11.  Show  that  all  of  the  lines  for. which  -  +  - 
a      h 

same  point,  and  find  the  coordinates  of  that  point. 

12.  Prove  that  all  of  the  lines  Ax  ̂   By  -\-  C  =  0  iov  which  A  +  B  -\-  C  =  Q 
pass  through  the  same  point,  and  find  the  coordinates  of  that  point. 

13.  Find  the  points  in  which  the  lines  2x  —  32/  =  0,  x-}-4y  —  2  =  0, 

2a;-3y-l-X(x-F4?/-2)=0,  2x-3y-X(x-42/-2)  =  0cut  the  X-axis. 
Show  that  the  last  two  points  divide  the  line  joining  the  first  two  points  inter- 

nally and  externally  in  the  same  numerical  ratio. 

14.  Prove  that  Ax  +  By  -\-  C  =  Q  represents  a  straight  line  by  showing 
that  if  Pi  and  P2  lie  on  the  locus  of  the  equation,  the  point  which  divides  P1P2 
in  the  ratio  X  lies  on  the  locus  of  the  equation. 

15.  Find  the  bisectors  of  the  exterior  angles  of  the  triangle  formed  by 

2  X  —  3  y  +  120  =  0,  X  +  y  =  0,  and  3x-f-42/-6  =  0.  Show  that  these  lines 
meet  the  opposite  sides  in  three  points  on  the  same  straight  line. 
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16.  Find  the  equation  of  the  line  passing  through  the  intersection  of 

Ax  -\-  By  -}-  C  =  0  and  A'x  -\-  B'y  +  C  =  0  which  (a)  passes  through  the 
origin,  (b)  is  parallel  to  the  X-axis,  (c)  is  parallel  to  the  T-axis. 

17.  Show  that  the  lines  (A  +  \A')x  +  (B  +  \B')y  +  (C  +  XC")  =  0  pass 
through  a  point  if  \  is  a  variable  parameter  and  the  other  letters  are  constant. 

18.  Let  Aix  +  Biy  +  Ci  =  0,  A^x  +  B^y  +  C2  =  0,  and  A^x  +  B32/  +  C3  =  0 
be  three  given  lines  forming  a  triangle.  Show  that  the  equation  of  any  line 

Ax  -\-  By  -\-  C  =  a  may  be  written  in  the  form 

a  {AxX  +  Biy  +  Ci)  +  ̂   {A^x  +  B^y  +  Ca)  +  7  {A^x  +  B^y  +  C3)  =  0, 

where  a,  ,8,  and  7  are  definite  constants. 

Hint.   Use  Theorem  III,  p.  88. 

19.  Find  the  ratio  in  which  the  line  1x  —  by  +  ̂  —  0  divides  the  line  join- 
ing the  points  Pi(l,  3)  and  P2(7,  2). 

Hint.   The  coordinates  of  the  point  dividing  PiPg  "ito  segments  whose  ratio  is  A  are 

(   ,   ) ;  determine  A  so  that  this  point  lies  on  the  given  line. 
Vl  +  A       1  +  A/' 

20.  Find  the  ratio  in  which  the  line  x  +  Sy  —  6=0  divides  the  line 

joining  (-3,  2)  and  (6,  1). 

21.  Determine  m  so  that  the  line  y  =  mx  —  7  divides  the  line  joining 
(3,  2)  and  (1,  4)  in  the  ratio  3:2. 

22.  Find  the  equation  of  the  line  passing  through  the  point  (2,  -  3)  which 

divides  the  line  joining  (6,  3)  and  (2,  —  1)  in  the  ratio  2  :  5. 

23.  Show  that  the  ratio  of  the  distances  from  the  line  Ax  +  By  +  C  =  Oto 

the  points  Pi(xi,  y^)  and  P2{x2,  2/2)  is    .^^  ̂    J^   ,    _,- A.X2  -f-  Jjy2  +  ty 

24.  Show  that  the  line  Ax  +  By  +  C  =  0  divides  the  line  joining  Pi(xi,  2/1) 

and  P2(X2,  y2)  into  segments  whose  ratio  is   ~     
Ax2  +  By2  +  C 

25.  Show  by  the  preceding  example  that  any  line  cuts  the  sides  of  a  tri- 
angle P1P2,  P2P3,  and  P3P1  in  the  points  i,  M,  N  such  that 

PiL      P2M      PsN  _  _  ̂ 

LP2  ̂  MPs  ̂   NPi  ~ 
26.  Plot  the  line  2x-3?/+5  =  0  and  indicate  all  of  the  points  for  which 

2x-3y  +  5>0. 

27.  Find  .the  area  of  the  triangle  formed  by  AiX  +  Biy  +  d  =  0, 

Aox  +  B2y  +  C2  =  0,  and  A-^x -{-  B^y  +  C3  =  0. 



CHAPTER  V 

THE  CIRCLE  AND  THE  EQUATION  jc^  +  y^  +  Dx  +  Ey  -\-  F  =  O 

56.  The  general  equation  of  the  circle.  If  (a,  ft)  is  the  center 
of  a  circle  whose  radius  is  r,  then  the  equation  of  the  circle  is 

(Theorem  II,  p.  58) 

(1)  x^-\-y^-2ax-2fy  +  a^-\-ft^-r^  =  0, 
or 

(2)  (^  -  ay  +  (y-  p)'  =  ».'. 
In  particular,  if  the  center  is  the  origin,  a  =  0,  y8  =  0,  and  (2) 

reduces  to 

(3)  x^  +  y^=  r\ 

Equation  (1)  is  of  the  form 

(4)  x^-\-y^-\-Dx-\-Ey  +  F=0, 
where 

(5)  D  =  -  2  a,  E  ==-  2  (3,  SiJid  F  =  a^  -^  ft^  -  7^. 

Can  we  infer,  conversely,  that  the  locus  of  every  equation 

the  form  (4)  is  a  circle  ?    By  comparing  (4)  with  (1)  we  obtain  (5). 
Whence 

D     ̂   F         ,     „      D2  +  ̂ ^-4F 
(6) a  =  —  — J  13  =  —  —)  and  r^  = 

These  values  of  a  and  ft  are  real,  and  if  Z)^  +  E^  —  4  F  is  posi- 
tive, the  value  of  r  is  real  and  the  locus  of  (4)  is  a  circle. 

To  plot  the  locus  of  (4)  by  points  (Rule,  p.  60),  we  solve  for  y. 
This  gives 

(7) '-N- 
x^-  Dx  + 

E^
 

JLP\ 

The  discriminant  of  the  quadratic  under  the  radical  in  (7)  isi 

®  =  D2-4(-l) 

which  is  the  numerator  of  r^  in  (6). 
130 

4F 
=  D"^  +  E'^-4:Fy 
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If  ©  is  positive,  the  quadratic  under  the  radical  is  positive  for 

values  of  x  between  the  roots  (Theorem  III,  p.  11)  and  the  equa- 
tion has  a  locus,  as  we  have  seen. 

If  0  is  zero,  the  roots  of  the  quadratic  are  real  and  equal  (Theo- 
rem II,  p.  3).  But  for  all  other  values  of  x  the  quadratic  is 

negative  (Theorem  III,  p.  11).     The  locus  therefore  consists  of 

D         E^ the  single  point  (  —  "^^  —  ly 

For  the  quadratic  in  (7)  equals  zero  when  x  =  —  —  (p.  2),  and  hence,  from  (7), 
E 

the  corresponding  value  of  ?/  is  —  -^  •     This  also  follows  from  (6)  if  we  suppose  r 
/      D         ]^\ 

approaches  zero,  for  then  the  circle  consists  only  of  its  center  (  —  ̂  »  ~~o)' 

If  ©  is  negative,  the  quadratic  in  (7)  is  negative  for  all  values 

of  X  (Theorem  III,  p.  11)  except  the  roots,  which  are  imaginary 

(Theorem  II,  p.  3).     Hence  there  is  no  locus. 

The  expression  ®  =  D^  -{-  E^  —  4:F  is  called  the  discriminant 

of  (4).  When  ©  =  0  the  locus  of  (4)  is  often  called  a  point-circle 
or  a  circle  whose  radius  is  zero. 

We  have  thus  proved 

Theorem  I.    The  locus  of  the  equation 

(I)  a?2  +  y2  _^  X>x  +  ̂ 2/  -f  2^  =  O, 

whose  discriminant  is  ®  =  D^  -{-  E^  —  4:  F,  is  determined  as  follows: 

(a)  When  ©  is  positive  the  locus  is  the  circle  whose  center  is 

(—  —  J  —  TT  I  and  whose  radius  is  r  =  ̂   VZ)^  -{-  E^  —  AF  =  ̂   V©. 
/  .  .        .         /     D         e\ 

(b)  When  ©  is  zero  the  locus  is  the  point-circle  I  —  "^>  ~"  "9  )* 

(c)  When  ©  is  negative  there  is  no  locus.  ^  ^ 

Corollary.  When  E  =  0  the  center  of  (I)  is  on  the  X-axis,  and 
when  D  =  0  the  center  is  on  the  Y-axis. 

Whenever  in  what  follows  it  is  said  that  (I)  is  the  equation 

of  a  circle  it  is  assumed  that  ©  is  positive. 
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V4^ 

Ex.  1.    Find  the  locus  of  the  equation  x"^  +  y^  —  ix  +  Sy  -  5  —  0. 
Solution.    The  given  equation  is 

the  form  (I),  where 

D  =  -4,  ̂   =  8,  F  =  -6, 
and  hence 

e  =  16  +  64  4-  20  =  100  >  0. 
The  locus  is  therefore  a  circle  whose 

center  is  the  point  (2,  —  4)  and  whose 
radius  is  i  VlOO  =  5. 

(2, 

The  equation  Ax^ -\-  Bxy  +  Cy'^ 
+  Dx-\-  Ei/  +  F  =  0  is  called  the 
general  equation  of  the  second  degree 

in  X  and  y  because  it  contains  ah 

possible  terms  in  x  and  y  of  the  second  and  lower  degrees. 

Theorem  II.    The  locus  of  the   general   equation  of  the  second 
degree, 

(II)  Ax""  +  Bxy  +  C2f-\-Dx  +  Ey  +  F=0, 

is  a  circle  when  and  only  when  A 

is  positive. 
C,B  =  0,  and 

Proof.  The  equation  of  every  circle  must  have  the  form  (I) ; 

hence  the  coefficients  of  x"^  and  y^  must  be  equal  and  the  xy  term 
must  be  lacking ;  that  is,  the  locus  of  (II)  can  be  a  circle  only 

when  A  =C  and  5  =  0.  If  these  conditions  be  satisfied,  (II) 

may  be  written  in  the  form 

whose  locus  is  a  circle  when  and  only  when  its  discriminant 

1)2  +  £2- 4 ̂ F 
is  positive. 

Q.E.D. 

57.  Circles  determined  by  three  conditions.   The  equation  of 

any  circle  may  be  written  in  either  one  of  the  forms 

(x-ay  +  {y-py  =  r^ 
or  x^-{-y^^  Dx-{-Ey  +  F=  0. 
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Each  of  these  equations  contains  three  arbitrary  constants. 

To  determine  these  constants  three  equations  are  necessary,  and 

as  any  equation  between  the  constants  means  that  the  circle  sat- 
isfies some  geometrical  condition,  it  follows  that  a  circle  may  be 

determined  to  satisfy  three  conditions. 

Rule  to  determine  the  equation  of  a  circle  satisfying  three 
conditions. 

First  step.    Let  the  required  equation  he 

(1)  (x-aY  +  {y-liy=r^ 
or 

(2)  x^  +  y^-\-Dx  +  Ey-\-F=0, 
as  may  he  more  convenient. 

Second  step.  Find  three  equations  hetween  the  constants  a,  ̂, 

and  r  [or  D,  E,  and  F]  which  express  that  the  circle  (1)  [or  (2)] 
satisfies  the  three  given  conditions. 

Third  step.  Solve  the  equations  found  in  the  second  step  for  a,  /8, 

and  r  [or  D,  E,  and  F~\. 
Fourth  step.  Suhstitute  the  results  of  the  third  step  in  (1 )  [or 

(2)].     The  result  is  the  required  equation. 

Ex.  1.  Find  the  equation  of  the  circle  passing  through  the  three  points 
Pi(0,  1),  P2(0,  6),  andP3(3,  0). 

Solution.  First  step.  Let  the  required  equa- 
tion be 

(3)  x"^  +  y^  +  Dx  +  Ey  +  F  =  0. 
Second  step.  Since  Pi,  P2,  and  P3  lie  on  (3), 

their  coordinates  must  satisfy  (3).  Hence  we 
have 

(4)  l-\-  E  +  F  =  0, 

(5)  36  -f  6  ̂   +  P  =  0, 
and 

(6)  9  +  3  D  +  P  =  0. 

Third  step.    Solving  (4) ,  (5) ,  and  (6) ,  we  obtain 

P  =  -7,  P=6,  D  =  -5. 

Fourth  step.    Substituting  in  (3),  the  required  equation  is 
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By  Theorem  I  we  find  that  the  radius  is  ̂   V2  ♦  and  the  center  is  the 
point  (I,  I). 

Ex.  2.    Find   the    equation    of    the    circle    passing   through    the    points 

Pi  (0,  —  3)  and  P^  (4,  0)  which  has  its  center  on  the  line  x  +  2  y  =  0. 

Solution.    First  step.   Let  the  required  equation  be 

(7)  ic2  +  i/2  +  Dx  +  £y  -f  F  =  0. 

Second  step.    Since  Pi  and  P^  lie  on  the  locus  of  (7),  we  have 

(8)  9-3E-\-F  =  0 
and 

(9)  16  +  4  D  +  F  =  0. 

The  center  of  (7)  is  (   ,  —  —  )»  and  since  it 
lies  on  the  given  line, 

or 

(10)  D-\-2E  =  0. 

Third  step.    Solving  (8),  (9),  and  (10),  we  obtain 

D  =  -V-,-E:=l,andi<'  =  -V-. 

Fourth  step.    Substituting  in  (7),  we  obtain  the  required  equation, 

5^2  +  5?/2  -14ic  +  7  2/  -24  =  0. 

The  center  is  the  point  (|,  —  /^),  and  the  radius  is  ̂   V29. 

Q)X 

PROBLEMS 

1 .  Find  the  equation  of  the  circle  whose  center  is 

(a)  (0,  1)  and  whose  radius  is  3.  Ans.   x^  -^  y^  —  2y  —  S  =  0. 

(b)  (—2,  0)  and  whose  radius  is  2.  Ans.    x^  -{-  y'^  +  4tx  =  0. 
(c)  (—  3,  4)  and  whose  radius  is  6.  Ans.   x^  +  y^  -{-  Qx  —  Sy  =  0. 

(e)  (or,  0)  and  whose  radius  is  a.  Ans.   x^  +  y^  —  2  ax  =  0. 

(f )  (0,  /3)  and  whose  radius  is  /3.  Ans.   x^  -\-  y^  —  2  ̂ y  =  0. 

(g)  (0,  —  p)  and  whose  radius  is  /3.  A  ns.    x-  -\-  y^  +  2  ̂ y  =  0. 

*  The  radius  is  easily  obtained,  since  Vs  is  the  length  of  the  diagonal  of  a  square 
whose  side  is  one  unit.  We  may  construct  a  line  whose  length  is  %/»  by  describing  a 
semicircle  on  a  line  whose  length  ia  n  +  1  and  erecting  a  perpendicular  to  the  diameter 
one  unit  from  the  end.    The  length  of  that  perpendicular  will  be  V«. 
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2.  Find  the  locus  of  the  following  equations. 

(a)  x2  +  2/2  _  6x  -  16  =  0.  (f)  a;2  +  y2  _  6x  +  4y  -  5  =  0. 

(b)  3a;2  +  32/2  -  lOx  -  24?/  =  0.  (g)  (3.  ̂   i)2  +  (y  _  2)2  =  0. 
(c)  ic2  +  2/2  =  0.  (h)  7^2  + 72/2- 4x- 2/ =  3. 
(d)  x2  +  2/2-8x-62/  +  25  =  0.  (i)  x^  -j-  y^  +  2  ax  +  2hy  +  a^  -{-b^  =  0. 
(e)  x2  +  y2  -  2x  +  22/  +  5  =  0.  (j)  x2  +  y2  +  i6ic  +  100  =  0. 

3.  Find  the  equation  of  the  circle  which    , 

(a)  has  the  center  (2,  3)  and  passes  through  (3,  —  2). 
Ans.    x2  +  y2  _  4  a;  _  6  2/  -  13  =  0. 

(b)  passes  through  the  points  (0,  0),  (8,  0),  (0,  -  6). 
Ans.   x2  +  2/2  -  8  X  +  6  2/  =  0. 

(c)  passes  through  the  points  (4,  0),  (—  2,  5),  (0,  —  3). 
Ans.    19x2+ 192/2 +  2x- 47  2/ -312  =  0. 

(d)  passes  through  the  points  (3,  5)  and  (—3,  7)  and  has  its  center  on 
the  X-axis.  Ans.    x2  +  2/2  +  4  x  -  46  =  0. 

(e)  passes  through  the  points  (4,  2)  and  (—6,  —  2)  and  has  its  center  on 
the  F-axis.  Ans.   x2  +  2/^  +  5  2/  -  30  =  0. 

(f )  passes  through  the  points  (5,  —  3)  and  (0,  6)  and  has  its  center  on 
the  line  2X-32/ -6  =  0.  Ans.    3x2  +  32/2  -  114x  -  642/ +  276  =  0. 

(g)  has  the  center  (—1,  —  5)  and  is  tangent  to  the  X-axis. 
Ans.  x2  -1-  2/2  +  2  X  -f  10  2/  +  1  =  0. 

(h)  passes  through  (1,  0)  and  (5,  0)  and  is  tangent  to  the  F-axis. 

Ans.    x2 -1-2/2 -6x±2V52/  +  5  =  0. 

(i)  passes  through  (0,  1),  (5,  1),  (2,  -  3). 
Ans.    2x^-\-2y^-10x  +  y  -3  =  0. 

(j)  has  the  line  joining  (3,  2)  and  (-  7,  4)  as  a  diameter. 
Ans.    x2  +  2/^  -I-  4  X  -  6  2/  -  13  =  0. 

(k)  has  the  line  joining  (3,  -  4)  and  (2,  -  5)  as  a  diameter. 
Ans.    x2  +  2/2-5x-f  92/  +  26  =  0. 

(1)  which  circumscribes  the  triangle  formed  by  x  — 6  =  0,  x-\-2y  =  0, 
and  X- 22/ =  8.  Ans.    2x2  +  2^2  _  21x  +  82/ +  60  =  0. 

(m)  passes  through  the  points  (1,  -  2),  (-  2,  4),  (3,  -  6).     Interpret  the 
result  by  the  Corollary,  p.  98. 

(n)  is  inscribed  in  the  triangle  formed  by4x-f-32/  —  12  =  0,  2/-2  =  0, 
x-10  =  0.  Ans.    36  x2  +  36  2/2  -  516  X -1-60  2/ +  1585  =  0. 

4.  Plot  the  locus  of  x2  +  2/2  -  2x  +  4  ?/  +  fc  =  0  for  fe  =  0,  2,  4,  5  -  2,  -  4, 

-  8.     What  values  of  k  must  be  excluded?  Ans.   k>  5'. 
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6.  What  is  tlie  locus  of  x^  -\- y-  -\-  Dz  +  Ey  +  F  =  0  if  D  and  E  are  fixed 
and  F  varies  ? 

6.  For  what  values  of  k  does  the  equation  a;2  ̂ .  y2  _  4  ̂  +  2  A:y  +  10  =  0 
have  a  locus  ?  Ans.   A;  >  +  ̂ ^  and  k<-  Vo. 

7.  For  what  values  of  k  does  the  equation  x"^  -{■  y^  -\-  kx  -\-  F  =  0  have 
locus  when  (a)  F  is  positive ;  (b)  F  is  zero  ;  (c)  F  is  negative  ? 

Ans.    (a)  A;>  2  V^ and  A;  <  -  2y/F ;  (b)  and  (c)  all  values  of  k. 

8.  Find  the  number  of  point-circles  represented  by  the  equation  i 
problem  7.  Ans.    (a)  two ;  (b)  one  ;  (c)  none. 

9.  Find  the  equation  of  the  circle  in  oblique  coordinates  if  w  is  the  angU 
between  the  axes  of  coordinates. 

Ans.    {x  -  a)2  +  (y  -  /3)2  +  2  (x  -  a)  {y  -  /3)  cos  u  =  r'^. 
10.  Write  an  equation  representing  all  circles  with  the  radius  6  whoe 

centers  lie  on  the  X-axis;  on  the  Y-axis. 

11.  Find  the  number  of  values  of  k  for  which  the  locus  of 

(a)  x2  +  ?/2  _^  4  A:x  -  2  2/  4-  5  A;  =  0, 

(b)  x2  +  ?/2  +  4  A;x  -  2  2/  -  A;  =  0, 

(c)  ic2  +  ?/2+4fec-2y  +  4A:  =  0 

is  a  point-circle.  Ans.    (a)  two ;  (b)  none ;  (c)  one. 

12.  Plot  the  circles  x2  +  ?/2  +  4  x  -  9  =  0,  x2  +  ?/2  -  4  x  -  9  =  0,  and 

x2  +  y2  +  4  X  _  9  +  A;  (x2  +  ?/2  -  4x  -  9)  =  0  for  k=±\,  ±3,  ±  i,  -  5, 
—  \.     Must  any  values  of  k  be  excluded  ? 

13.  Plot  the  circles  x2  +  y2  +  4  3;  _  0,  ic2  +  y2  _  4  a;  =  0,  and  x2  +  2/2  +  4  x 
-h  A:  (x2  +  ?/2  —  4  x)  =  0  for  the  values  of  A:  in  problem  12.  Must  any  values 
of  A:  be  excluded  ? 

14.  Plot  the  circles  x2  +  2/2  +  4  x  +  9  =  0,  x2  +  y^  -  4  x  +  9  =  0,  and 

x2  +  y2  +  4x  +  9-hA:(x2  +  2/2-4x  +  9)  =  0  for  A;  =  -  3,  -  |,  -5,  -  |, 
_  r,   _  3     _  1.     What  values  of  k  must  be  excluded? 

58.  Systems  of  circles.    An  equation  of  the  form 

x2  +  2/2  +  Dx  -f-  J^Ji/  +  F  =  0 
will  define  a  system  of  circles  if  one  or  more  of  the  coefB.cients 
contain  an  arbitrary  constant.     Thus  the  equation 

a;2  _|_  2/2  _  r2  =  0 

represents  the  system  of  concentric  circles  whose  centers  are  at 
the  origin.     Very  interesting  systems  of  circles,  and  the  only 
systems  we  shall  consider,  are  represented  by  equations  analogous 

to- (XIII),  p.  119. 
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Theorem  III.    Given  two  circles, 

C^:x^  +  y^-ir  D,x  +  E,i/ -{- F^  =  0 

and  C^:x'^  +  y'^  +  D^x  +  E0  +  F^  =  O) 
then  the  locus  of  the  equation 

(III)  ic^  +  y^  +  n^x  +  Ej^y  +  F^ 

is  a  circle  except  when  k  =  —  l.     In  this  case  the  locus  is  a  straight 
line. 

Proof.  Clearing  the  parenthesis  in  (III)  and  collecting  like 
terms  in  x  and  y,  we  obtain 

(l  +  k)x''-\-(l-\-k)y^  +  {D^  +  kD^)x  +  {E,  +  kE^)y  +  {F^  +  kF^)=^(). 
Dividing  by  1  +  A;  we  have 

^.   I    ,.  I   Di-\-kD,  E,  +  kE,  F,  +  kF, 

The  locus  of  this  equation  is  a  circle  (Theorem  I,  p.  131).  If, 

however,  A;  =  —  1,  we  cannot  divide  by  1  +  A^.  But  in  this  case 
equation  (III)  becomes 

(A  -  A)^  +  (El  -E,)y+  (F,  -  F,)  =  0, 

which  is  of  the  first  degree  in  x  and  y.     Its  locus  is  then  a 

straight  line  called  the  radical  axis  of  Cj  and  Cg.  q.e.d. 

Corollary  I.  The  center  of  the  circle  (III)  lies  upon  the  line 

joining  the  centers  of  C^  and  Cg  and  divides  that  line  into  seg- 
ments whose  ratio  is  equal  to  k. 

For  by  Theorem  I  (p.  131)  the  center  of  (7i  is  Pi(  -  -— .   ^)  and  of  C2  is 

/      D2         E2\  \       2  2  / 
P2 1  —  —  '   —  j'    The  point  dividing  P1P2  into  segments  whose  ratio  equals  k 

r      ̂ ^^li"      ̂ 2\         El./      E2\-i 

is  (Theorem  VII,  p.  39)  the  point   '       >  or, 

simplifying,  (  "  ̂ Tjq-^'   "  2(l"  +  A:)0'  ̂̂ ^^^  '^  *^^  ̂ ®^*®^  °^  ̂"^^* 
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Corollary  II.    The  equation  of  the  radical  axis  of  Cj  and  C^  is 

(D,  -D,)x+  (E,  -E,)y^ (F,  -  F,)  =  0. 

Corollary  III.  The  radical  axis  of  two  circles  is  perpendicular  to 

the  liiie  joining  their  centers. 

Hint.  Find  the  line  joining  the  centers  of  C^  and  Cj  (Theorem  VII,  p.  97)  and  show 
that  it  is  perpendicular  to  the  radical  axis  by  Corollary  III,  p.  87. 

The  system  (III)  may  have  three  distinct  forms,  as  illustrated 
in  the  following  examples.  These  three  forms  correspond  to  the 
relative  positions  of  Cj  and  C2,  which  may  intersect  in  two  points, 
be  tangent  to  each  other,  or  not  meet  at  all. 

Ex.  1.    Plot  the  system  of  circles  represented  by 

x2  +  2/2  +  8  ic  -  9  +  A;  (x2  +  2/2  -  4  X 

=  0. 
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Solution.    The  figure  shows  the  circles 

x2  +  2/2  +  8»-9  =  0  and  a;2  +  2/2-4a;-9  =  0 

plotted  in  heavy  lines  and  the  circles  corresponding  to 

A:  =  2,  5,  1,  1,-4,  -f,  and  -^; 

these  circles  all  pass  through  the  intersection  of  the  first  two. 
The  radical  axis  of  the  two  circles  plotted  in  heavy  lines,  which  corre- 

sponds to  A:  =  —  1,  is  the  F-axis. 
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2.    Plot  the  system  of  circles  represented  by 

«2  +  2/2  +  8  x  +  A;  (x2  +  2/2  _  4  a;)  _  0. 
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Solution.    The  figure  shows  the  circles 

x2  +  2/2  +  8  X  =  0  and  x^  +  y^-4x  =  0 

plotted  in  heavy  lines  and  the  circles  corresponding  to 

A;  =  2,  3,  I,  5,  1,  1,  -  7,  4,  -  4,  -  3,  and  -  f 

These  circles  are  all  tangent  to  the  given  circles  at  their  point  of  tangency. 
The  locus  for  A:  =  2  is  the  origin. 

Ex.  3.    Plot  the  system  of  circles  represented  by 

x2  +  ̂ 2  _  loa;  +  9  +  A:(x2  +  ̂/^  +  8x  +  9)  =  0. 

Solution.    The  figure  shows  the  circles 

x2  +  2/2  -  lOx  +  9  =  0  and  x2  +  y^  +  8x  +  9  =  0 

plotted  in  heavy  lines  and  the  circles  corresponding  to 

k  =  i,  17,  I,  -  10,  -  j\,  and  -  -\K 
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These  circles  all  cut  the  dotted  circle  at  right  angles,  as  will  be  shown - 
later.  For  A;  =  |  the  locus  is  the  point-circle  (3,  0),  and  f or  fc  =  8  it  is  the 
point-circle  (—  3,  0). 

In  all  three  examples  the  radical  axis,  for  which  A:  =  —  1,  is  the  F-axia. 

Theorem  IV.    When  the  circles 

0 

and  C^\x^-\-y^-\-  D^x  -f  iJg^  +  -Fj  =  0 

intersect  in  two  points  P^  (iCi,  y^  and  P^  (xz,  y-^,  then  the  system^ 
of  circles  represented  by 

x^  +  y^  +  D,x  -f  E,y  +  F,  +  k  (x^  +  y'' -\-  D^x  -f-  E^  +  F^)  =  0 
consists  of  all  circles  passing  through  Pi  and  P^- 

Proof.  First,  every  circle  of  the  system  passes  through  Pi  and 
Pg.     For,  since  Pj  lies  on  C^  and  C2,  we  have 

^1'  +  2/1'  +  DxXi  +  E^y,  +  Pi  =  0 

and  Xi^  +  yi"  +  D^x^  +  E^y^  +  P2  =  0. 

Multiply  the  second  equation  by  k  and  add  to  the  first;  this 

gives 

a^i'  +  yi  +  ̂ 1^1  +  F12/1  +  Pi  +  A;  (0^1^  +  2/1^  +  D^x^  +  E^^  -f  F^)  =  0, 

which  is  the  condition  that  Pi  lies  on  any  circle  of  the  system. 

In  the  same  manner  we  can  show  that  every  circle  of  the  system 

passes  through  Pg. 

In  the  second  place,  every  circle  which  passes  through  Pi  and 

P2  is  in  the  system.  For  any  such  circle  is  determined  by  Pi,  Pg 

and  a  point  Pg  (0^3,  y^)  not  on  the  line  PiPg.  Then  if  Pg  lies  on  a 

circle  of  the  system,  we  have 

«3'  +  ys'  +  D^x^  +  F12/3  +  Fi  +  ̂  (ars"  +  2/3'  +  D^x^  -f-  ̂ 2^3  -f-  F2)  =  0, 

x^^  +  2/3'  +  DyXz  +  ̂ 12/3  +  Pi and  hence 

k  = 
^z  4-  yz  +  A^3  +  ̂22/3  +  P2 

That  is,  a  value  of  k  can  be  determined  so  that  the  corresponding 

circle  passes  through  Pg.  Since  P3  is  any  point  not  on  P1P2, 

that  circle  is  any  circle  which  passes  through  Pi  and  P2;  and 

hence  every  circle  which  passes  through  Pi  and  Pg  belongs  to 

the  system.  q.k.d. 
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Corollary.  The  radical  axis  of  two  intersecting  circles  is  their 
common  chord. 

In  like  manner  we  may  prove 

Theorem  V.    When  the  circles 

Ci :  ̂ 2  +  2/2  +  D,x  -\-E^i/  +  F,  =  0 

md  C2 :  a;2  +  2/2  4-  D^x  +  E^ -}- F^  =  0 

are  tangent  at  the  point  Pi(xi,  y-^,  then  the  system  of  circles  repre- 
sented hy 

0^2  +  2/2  +  B^x  +  Eiy  -}-  Fi  +  A:(x2  -t-  2/'  +  I^^x  +  E^y  +  ̂ 2)=  0 
consists  of  all  circles  tangent  to  C^  and  C^  at  Pi. 

These  theorems  show  how  to  construct  the  circles  of  the  system 

in  case  C^  and  Cg  intersect  or  are  tangent,  but  there  is  no  analo- 
gous theorem  if  C^  and  C^  do  not  intersect.  In  what  follows  we 

shall  consider  a  method  which  applies  to  all  three  cases. 

Theorem  VI.    The  equation  of  the  system  (III),  (p.  137),  may  he 
written  in  the  form 

(VI)  oc"^  -{-y'^  -\-k^QC  +  F  =  O, 

where  k'  is  an  arbitrary  constant,  if  the  axes  of  x  and  y  be  respec- 
tively chosen  as  the  line  of  centers  and  the  radical  axis  of  Ci  and  C^. 

Froof  No  matter  how  the  axes  be  chosen,  the  equations  of 

Ci  and  C2  have  the  forms 

C,  :  0^2  _^  2/'  +  I>xX  +  E,y^Fi  =  0 

and  C2 :  a:2  +  2/2  4-  D^x  +  E^  +  F2  =  0. 

If  the  centers  of  C^  and  Cg  lie  on  the  Z-axis,  then  ̂ i  =  0  and 

^2  =  0  (Corollary,  p.  131).  The  equation  of  the  radical  axis 

(Corollary  II,  p.  138)  then  becomes 

{Di-D^)x+{F,-F;)=0. 

If  this  line  is  the  F-axis,  whose  equation  is  a;  =  0,  we  must 

have  Fi  —  F2  =  0,  and  hence  F^  =  F^.  Substituting  F  for  Fi 

and  Fi  and  setting  ̂ i  =  0  and  Ec^  =  Q  in  (III),  we  obtain 

a;2  -I-  2/2  +  Z>ix  +  i^  +  kix^  +  2/'  +  D^x  +  F)  =  0. 
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Collecting  like  powers  of  x  and  y  and  dividing  by  1  +  A,  w( 
obtain 

2     .        2_L_A±A?2 a;  4-  F  =  0. 

The  coefficient  of  x  changes  with  k  and  may  be  denoted  by  a 

single  letter;  if  we  set 

1+A:      
~^' 

we  obtain  equation  (VI). 

Corollary.  The  centers  of  the  circles  of  the  system  (VI)  lie  on 
the  X-axis. 

The  study  of  the  system  of  circles  (HI),  p.  137,  may  then  be 

effected  by  the  study  of  the  system  (VI),  whose  equation  is  in  a 

simpler  form  than  that  of  (III). 

Theorem  VII.    If  r'  is  the  radius  of  that  circle  of  the  system 

x^  +  y^-{-k'x-\-F=0 

whose  center  is  (a',  0),  then 

Proof    For  by  Theorem  I   (p.  131)  we  have  r'^  =   

and  a'^  =  —-'     Hence  r'^  =  a'^  —  F. 4 

Corollary  I.  When  F  is  negative,  r'  is  the  hypotenuse  of  a  right 

triangle  whose  legs  are  a'  and  V—  F* 

Corollary  II.    When  F  is  zero,  then  r'  =  a'. 

Corollary  III.  When  F  is  positive,  a'  is  the  hypotenuse  of  a  right 

triangle  whose  legs  are  r'  a7id  Vf. 

We  may  readily  construct  circles  of  the  system  (VI)  by  the 

use  of  these  corollaries.  With  the  preliminary  remark  that  the 

centers  of  all  of  the  circles  of  the  system  lie  on  the  X-axis  (by 

the  Corollary),  we  shall  consider  the  three  cases  separately. 

*When  i^is  negative,  —F  is  positive,  and  hence  V-^is  a  real  number. 
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It  is  evi- 

C-A.se  I.  F  <  0.  In  this  case  r'^  =  a'^  —  F  is  positive  for  all 

real  values  of  a',  and  hence  every  point  on  the  X-axis  may  be 
used  as  the  center  of  a  circle  belonging  to  the 

system. 

On  OF  lay  off  OA  =  V- i^.  With  any 

point  P'  on  the  Z-axis  as  center  and  with 

P'A  as  a  radius,  describe  a  circle;  this  circle 

will  belong  to  the  system.  For  let  OP'  =  a'; 

then  P'A  =  r'  by  Corollary  I.  The  system 
is  then  composed  of  all  circles  whose  centers 

lie  on  the  Z-axis  which  pass  through  A  (0,  -f-  V— F). 

dent  that  the  circles  will  also  pass  through  B(0,  —  V—  i^). 

Case  II.  i*'  =  0.  In  this  case  r'^  =  a'^,  and  hence  all  points 
on  the  X-axis  may  be  used  as  centers.  Further, 
the  circles  of  the  system  will  all  pass  through 

the  origin  (Theorem  VI,  p.  73).  Hence  the 

circle  whose  center  is  any  point  P'  on  the 

Z-axis  and  whose  radius  is  P'O  will  belong  to 
the  system.  It  is  evident  that  all  of  the  cir- 

cles of  the  system  are  tangent  to  the  F-axis  at  the  origin  and 
also  to  each  other. 

Case  III.  P  >  0.  In  this  case  r'^  =  a}"^  —  F  is  positive  only 
when  or'  is  numerically  greater  than  Vp,  and  hence  points  on  the 

Z-axis  for  which  a'  is  numerically  less 
than  Vp  cannot  be  used  as  centers. 

With  0  as  a  center  and  with  Vp  as  a 

radius,  describe  a  circle,  the  dotted  circle 

in  the  figure.  Let  P'  be  any  point  on  the 
Z-axis  outside  of  this  circle.  Draw  P'A 

tangent  to  the  dotted  circle.  With  P'  as 
center  and  P'A  as  radius,  describe  a  circle;  this  circle  will  belong 

to  the  system.  For  let  P'O  =  a';  then,  since  OA  =  Vp,  and  since 

^  is  a  right  angle,  P'A  =  r'  by  Corollary  III.  Two  intersecting 

circles  whose  tangents  at  a  point  of  intersection  are  perpendicu- 
lar are  said  to  be  orthogonal;  hence  the  system  is  composed  of  all 

circles  whose  centers  are  on  the  Z-axis  which  cut  the  dotted  circle 
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orthogonally.  If  P'  falls  at  C  or  D,  the  radius  will  be  zero; 
that  is,  the  point-circles  C  and  D  belong  to  the  system  and  are 
called  its  limiting  points.     Hence 

Theorem  VIII.    The  circles  of  the  system  represented  by 

x'^J^y'^^h'x-{-F^^ 

have  their  centers  on  the  X-axis,  and 

(a)  pass  through  (0,  +  V—  F)  and  (0,  —  V—  F)  if  F  is 
negative; 

(b)  are  tangent  to  each  other  at  the  origin  if  F  =  0 ; 

(c)  are  orthogonal  to  the  circle  x^  -\-  y^  =  F  if  F  is  positive. 

The  constructions  given  in  the  proof  were  used  in  drawing  tl 

figures  on  pages  138  and  139. 

It  is  evident  from  the  figures,  and  can  be  proved  analytically, 

that  there  are  no  point-circles  if  F  is  negative,  that  there  is  one 

point-circle  if  F  is  zero,  and  that  there  are  two  if  F  is  positive. 

59.  The  length  of  the  tangent. 

Theorem  IX.    Given  a  point  P^  (xj,  y^  and  the  circle 

C  ix'^  +  y^  +  Dx  +  Ey  -\-F=0, 

then  the  product  of  any  secant  through  P^  and  its  external  seg- 
ment is 

(IX)  OC^^  +  t,,2  ̂   jy^^  ̂   ̂ y^  j^p^ 

Proof    Let  the  equations  of  any  line  through  P^  be  (Theorem' 
XV,  p.  124) 

x  =  £Ci  -f  p  COS  or, 

y  =  2/i  +  pcos^. 

Then  if  the  point  (x,  y)  or  (xi 

p^    p  cos  a,  yi-\-  p  cos  /8)   lies   on  C,  we 
have  (Corollary,  p.  53) 

{xi  +  p  cos  a)2  +  (2/1  +  p  cos  fiy 

+  X>(a:i  4-  p  cos  a)  +  ̂ (z/i  +  />  cos  /?)  -f  F  =  0. 

I 
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Simplifying,  arranging  according  to  powers  of  p,  and  using 

(1),  p.  123,  we  have 

p2  +  p  [(2-iCi  +  D)  cos  a  +  (2  2/1  +  £)  cos  ̂ ] 

+  ̂ i'  +  2/i'  +  Dx,  +  Ey,  +  Fi  =  0. 

The  roots  of  this  quadratic  are  the  lengths  of  the  secant  PiPs 

and  its  external  segment  PJ^.  Hence  the  product  of  P1P3  and 

PjPg  is  (Theorem  I,  p.  3) 

^i"  +  2/1'  +  Dx,  +  Ey,  +  F. 

As  this  expression  does  not  contain  cos  a  or  cos  /3  it  is  imma- 
terial in  what  direction  the  secant  be  drawn.  q.e.d. 

Corollary.    The  square  of  the  length  of  the  tangent  from  P^  to  C 

is  given  by  (IX). 

For  when  the  secant  swings  around  on  Pi  until  it  becomes  tangent  to  C,  P\Pz 
and  P1P2  both  become  equal  to  PiP^. 

Theorem  X.  The  ratio  of  the  squares  of  the  lengths  of  the  tan- 
gents drawn  from  any  point  of  the  circle 

C,  :  a:'  +  2/'  +  A^  +  ̂ xV  +  F^ 

to  the  circles 

and 

+  k  {x^  +  y'  +  D^x  +  E^y  +  F2)  =  0 

Ci  -.x"  ̂   y''  ■\-  B^x  ̂   E^y  ̂   Fy  =  ̂ ' 
C2  :  ̂'  +  2/'  +  A^  +  7?22/  +  i^2  =  0 

is  constant  and  is  equal  to  —  k. 

Proof.    Let  Pi{x-^,  2/1)  be  any  point  on  Cj..     Then 

^1'  +  Vi  +  A^i  +  ̂i2/i  +  ̂ 1  +  A^  (^1'  +  yi^  +  D^x,  +  E^^  +  i^2)  =  0. 

Dividing  by  the  parenthesis  and  transposing,  we  obtain 

^1^  +  yi^  +  D,x,  +  E,y,+F,^       .,_ 

By  the  Corollary  the  numerator  of  this  fraction  is  the  square 

of  the  length  of  the  tangent  from  P^  to  C^,  and  the  denominator 

is  the  square  of  the  length  of  the  tangent  from  P^  to  Cg.  Hence 

the  ratio  of  the  squares  of  the  lengths  of  those  tangents  is  con- 
stant and  equal  to  —  k.  q.e.d.. 
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Corollary  I.   The  locus  of  a  point  from  which  the  ratio  of  the 

squares  of  the  lengths  of  the  tangents  to  the  circles  C'l  and  C^  is 
constant  and  equal  to  —  k  is  the  circle  C^.. 

Theorem  X  proves  only  one  part  of  the  Corollary.  It  remains  to  be  proved 
that  all  points  such  that  the  ratio  of  the  squares  of  the  lengths  of  the  tangents  from 

these  points  to  Ci  and  C^  equals  —  k  lie  on  C^. 

Corollary  II.  The  locus  of  points  from  tvhich  tangents  to  two 

circles  are  equal  is  the  radical  axis  of  those  circles. 

PROBLEMS 

1.  By  means  of  Theorem  VIII  plot  the  following  systems  of  circles. 

(a)  x2  +  2/2  +  4x  -  1  +  fc(x2  +  y^  -  2x  -  1)  =  0. 

(b)  x2  +  2/2  +  4x  +  1  +  A;(x2  +  2/2  -  2x  +  1)  =  0. 
(c)  x2  +  2/2  +  4  X  +  A;  (x2  +  2/2  -  2  x)  =  0. 
(d)  x2  +  y2  +  2a;  -  4  +  A:(x2  +  2/2  +  6x  -  4)  =  0. 
(e)  x2  +  2/2  +  2x  +  9  +  A; (x2  4-  2/2  _  4x  +  9)  =  0. 

(f)  x2  +  2/2  -  6x  +  A; (x2  +  2/^  +  8x)  =  0. 

2.  Find  the  lengths  of  the  tangents  from  the  point 

(a)  (5,  2)  to  the  circle  x2  +  2/^  -  4  =  0. 
(b)  (-1,2)  to  the  circle  x2  +  2/^  -  6 x  -  2 y  =  0. 
(c)  (2,  5)  to  the  circle  2x2  +  2  2/2  +  2x  +  42/-l=0. 

(d)  (1,  2)  to  the  circle  x2  +  2/^  =  25. 

What  does  the  imaginary  answer  in  (d)  mean  ?  Ans.  Point  is  within  the  circle. 

3.  Determine  the  nature  of  the  following  systems. 

(a)  x2  +  2/2  +  2x-42/  +  fc(x2  +  2/2-2x  +  42/)  =  0. 
(b)  x2  +  2/2  +  4x  -  y  +  fe (x2  +  2/2  -  4x  +  2/  -  4)  =  0. 

(c)  x2  +  2/2+2x-42/  +  l  + A;(x2  +  2/^-2x  +  42/  +  l)  =  0. 

4.  Find  the  equation  of  the  circle  passing  through  the  intersections  of  the 

circles  x2  +  2/2  —  1  =  0  and  x2  +  2/^  +  2  x  =  0  which  passes  through  the  point 

(3,  2).  Ans.   7 x2  +  7 y2  _  24x  -  19  =  0. 

6.  Find  the  equation  of  the  circle  passing  through  the  intersections  of 

x2  +  2/2  -  6  X  =  0  and  x2  +  2/2  -  4  =  0  which  passes  through  (2,  -  2). 

Ans.   x2  +  2/2-3x-2  =  0. 

6.  Find  the  equation  of  that  circle  of  the  system  x2  +  2/2  — 4x-3 
4-  fc  (x2  +  2/^*  —  4  2/  —  3)  =  0  whose  center  lies  on  the  line  x  —  j/  —  4  =  0. 

Ans.    x2  +  2/2-6x  +  22/-3  =  0. 
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7.  Find  the  equation  of  the  circle  passing  through  the  intersections  of 

x"^  -\-  y^  —  ix  +  2y  —  0  and  x^-\-y^  — 2y  —  4:  =  0  whose  center  lies  on  the 
line  2  X  +  4  y  -  1  =  0.  Ans.   x^  +  y^  —  Sx  +  y —  1  =  0. 

8.  Find  the  equations  of  the  circles  passing  through  the  intersections  of 

x~  +  y'^  —  4:  =  0  and  x2  +  ?/2  +  2x  —  3  =  0  whose  radii  equal  4. 
Ans.    x^-hy^-6x-7=0  and  x^  +  y"^  +  Sx  =  0. 

9.  Find  the  radical  axes  of  the  circlesx2+2/^— 4x=0,  cc^+^/^+Gx  — 8y=0, 

and  x^  -f-  ?/"^  +  6  X  —  8  =  0  taken  by  pairs,  and  show  that  they  meet  in  a  point. 

10.  Find  the  radical  axes  of  the  circles  x^-\-y^-9=0,  ^x^-^Sy'^-dx-fSy 
— 1=0,  and  x2+i/2+8  2/=0  taken  by  pairs,  and  show  that  they  meet  in  a  point. 

1 1 .  Show  that  the  radical  axes  of  any  three  circles  taken  by  pairs  meet 
in  a  point. 

12.  By  means  of  problem  11  show  that  a  circle  may  be  drawn  cutting  any 
three  circles  at  right  angles. 

13.  By  means  of  problem  11  prove  that  if  several  circles  pass  through  two 

fixed  points  their  chords  of  intersection  with  a  fixed  circle  will  pass  through 
a  fixed  point. 

14.  The  square  of  the  tangent  from  any  point  Pi  of  one  circle  to  another 
is  proportional  to  the  distance  from  the  radical  axis  of  the  two  circles  to  Pi. 

15.  If  Ci  and  C2  (Theorem  III)  are  concentric,  then  all  the  circles  of  the 

system  (III)  are  concentric. 

16.  Show  that  when  Ci  and  C2  (Theorem  III)  are  concentric  the  equation 
of  the  system  (III)  cannot  be  written  in  the  form  given  in  Theorem  VI. 

17.  Show  that  the  radical  axis  of  any  pair  of  circles  in  the  system  (III) 
is  the  same  as  the  radical  axis  of  Ci  and  C2. 

18.  How  may  problem  11  be  stated  if  the  three  circles  are  point-circles  ? 

MISCELLANEOUS   PROBLEMS 

1 .  Find  the  equation  of  the  circle  which  circumscribes  the  triangle  formed 

hy  X  +  2y  =  0,  3x  —  2?/  =  6,  and  x  —  y  =  5. 

2.  Find  the  equation  of  the  circle  inscribed  in  the  triangle  in  problem  1. 

3.  Find  the  angle  between  the  radii  of  the  circles  x^  +  y^  =  25  and 
x^  +  y^  —  16x  +  S9  =  0  which  are  drawn  to  a  point  of  intersection. 

Hint.    Find  the  radii,  the  length  of  the  line  of  centers,  and  apply  17,  p.  20, 

4.  Find  the  angle  between  the  radii  of  the  circles  x^  +  y^  +  I>iX  +  Eiy 
+  Pi  =  0  and  x2  +  y2  _f.  j)^x  +  E2y  +  P2  =  0  which  are  drawn  to  a  point  of 
intersection. 
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6.  Find  the  condition  that  the  angle  in  problem  4  should  be  a  right  angle. 

6.  Show  that  an  angle  inscribed  in  a  semicircle  is' a  right  angle. 

7.  Prove  that  the  perpendicular  dropped  from  a  point  on  a  circle  to  a 

diameter  is  a  mean  proportional  between  the  segments  of  the  diameter. 

8.  If  w  is  the  angle  between  the  oblique  axes  OX  and  OF,  then  the 

locus  of  X'^  +  2  cos  wxy  -{- y^  +  Dx -^  Ey  -\-  F  =  0  \a  ai  circle. 

9.  Given  acircleC7:x2+y2+ite_|.js;y+F=0andalineX:^x+%+C=0; 

show  that  the  system  of  curves  x^ -\-  y"^  +  Dx  -^  Ey  -\-  F  -\-  k  (Ax  -\-By-\-C)  =  0 
consists  of  all  circles  whose  centers  lie  on  the  line  through  the  center  of  C 

perpendicular  to  L. 

10.  Find  the  radical  axis  of  any  two  circles  of  the  system  in  problem  9. 

11.  Find  a  geometric  interpretation  of  k  in  the  equation  in  problem  9. 

12.  What  does  the  equation  of  the  system  in  problem  9  become  if 

(a)  the  F-axis  is  the  line  L  and  the  X-axis  passes  through  the  center  of  C  ? 

(b)  th'^  origin  is  the  center  of  C  and  the  F-axis  is  chosen  parallel  to  L? 

13.  Show  how  to  construct  the  circles  of  the  system  x^+y^—r^-]-  k{x  —  a)  =  0 
when  (a)  r < a ;  (h)  r  =  a;  and  (c)  r>a. 

14.  Show  that  the  discriminant  of  (III)  is 

rz^k^  -  {d^  -  rr^  -  r2^)k  +  r^:^ 

(1  +  k)'^ 

where  n  is  the  radius  of  Ci,  r-z  of  Co,  and  d  is  the  length  of  the  line  joining 
the  centers  of  Ci  and  C2. 

16.  From  problem  14  show  that  if  there  are  no  point-circles  in  (III),  then 
Ci  and  C2  intersect ;  if  there  is  one  point-circle  in  (III),  then  Ci  and  Co  are 

tangent;  if  there  are  two  point-circles  in  (III),  Ci  and  C2  do  not  intersect. 



CHAPTER  VI 

POLAR   COORDINATES 

60.  Polar  coordinates.  In  this  chapter  we  shall  consider  a 

second  method  of  determining  points  of  the  plane  by  pairs  of 

real  numbers.  We  suppose  given  a  fixed  point  0,  called  the 

pole,  and  a  fixed  line  OA ,  passing  through  p 
0,  called  the  polar  axis.  Then  any  point 

P  determines  a  length  OP  =  p  and  an 

angle  AOP  =  0.  The  numbers  p  and  B 

are  called  the  polar  coordinates  of  P.  p  is 

called  the  radius  vector  and  6  the  vectorial  \ 
angle.     The  vectorial  angle  6  is  positive  \ 

or  negative  as  in  Trigonometry  (p.  18).  "^ 
The  radius  vector  is  positive  if  P  lies  on  the  terminal  line  of  Bj 

and  negative  if  P  lies  on  that  line  produced  through  the  pole  O. 

Thus  in  the  figure  the  radius  vector  of  P  is  positive,  and  that  of  P'  is  negative. 
It  is  evident  that  every 

pair  of  real  numbers  (p,  B) 

determines  a  single  pointy 

which  may  be  plotted  by 
the 

Rule  for  plotting  a  point 

whose  polar  coordinates 

(p,  B)  are  given. First  step.  Construct  the 

terminal  line  of  the  vecto- 

rial angle  B,  as  in  Trigo- nometry. 

Second  step.  If  the  radius 
vector  is  positive,  lay  off  a 

length  OP  =  p  on  the  terminal  line  of  B;  if  negative,  produce  the 
149 
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terminal  line  through  the  pole  and  lay  off  OP  equal  to  the  numer- 
ical value  of  p.      Then  P  is  the  required  point. 

In  the  figure  on  p.  149  are  plotted  the  iK>ints  whose  polar  coordinates  are 

(«.i>(3.T>(--T><"-).-(^.-f> 
Every  point  P  determines  an  infinite  number  of  pairs  of  numbers  (p,  &). 

The  values  of  d  will  differ  by  some  mul- 
tiple of  Tty  so  that  if  0  is  one  value  of  d  the 

others  will  be  of  the  form  0  +  kit,  where  k  is 

a  positive  or  negative  integer.  The  values 
of  p  will  be  the  same  numerically,  but  will 
be  positive  or  negative,  if  P  lies  on  OB, 
according  as  the  value  of  6  is  chosen  so  that 
OB  or  OC  is  the  terminal  line.  Thus,  if 
OB  =  p  the  coordinates  of  B  may  be  written 
in  any  one  of  the  forms  (p,  0),  (—  p,  tt  +  0), 

(/),  2  7r  +  0),  (-/),  0-;r),  etc. 

Unless  the  contrary  is  stated,  we  shall  always  suppose  that  0  is 

positive,  or  zero,  and  less  than  2  tt;  that  is,  0  <  ̂   <  2  tt. 

PROBLEMS 

1  P.ot«.epoi„.(4,|>(e-),(-2-),(4,|),(-4,^-^), (5,  n). 

2.  Plot  the  points  (g,  ±^),  (-2,  ±-),  (3,  it),  (-4,  it),  (6,  0), 

(-6,  0).  ^  ̂^     ̂   ^^ 
3.  Show  that  the  points  (p,  6)  and  (p,  —  6)  are  symmetrical  with  respect 

to  the  polar  axis. 

4.  Show  that  the  points  (p,  6),  (—  />)  &)  are  symmetrical  with  respect  to 
the  pole. 

5.  Show  that  the  points  (—  p,  it  —  d)  and  (p,  6)  are  symmetrical  with  respect 
to  the  polar  axis. 

61.  Locus  of  an  equation.  If  we  are  given  an  equation  in  the 

variables  p  and  6,  then  the  locus  of  the  equation  (p.  59)  is  a  curve 
such  that : 

1.  Every  point  whose  coordinates  (p,  6)  satisfy  the  equation  lies 
on  the  curve. 

2.  The  coordinates  of  every  point  on  the  curve  satisfy  the 

equation. 
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The  curve  may  be  plotted  by  solving  the  equation  for  p  and 

finding  the  values  of  p  for  particular  values  of  6  until  the  coor- 
dinates of  enough  points  are  obtained  to  determine  the  form  of 

the  curve. 

The  plotting  is  facilitated  by  the  use  of  polar  coordinate  paper,  which  enables 
us  to  plot  values  of  ̂   by  lines  drawn  through  the  pole  and  values  of  p  by  circles 
having  the  pole  as  center.  The  tables  on  p.  21  are  to  be  used  in  constructing 
tables  of  values  of  p  and  6. 

In  discussing  the  locus  of  an  equation  the  following  points 
should  be  noticed. 

1.  The   intercepts  on  the  polar  axis  are  obtained  by   setting 

d  =  0  and  0  =  TT  and  solving  for  p. 

But  other  values  of  d  may  make  p  =  0  and  hence  give  a  point  on  the  polar  axis, 
namely,  the  pole. 

2.  The  curve  is  symmetrical  icith  respect  to  the  pole  if,  when 

—  p  is  substituted  for  p,  only  the  form  of  the  equation  is  changed. 

3.  The  cu7've  is  symmetrical  with  respect  to  the  polar  axis  if, 

when  —  ̂   is  substituted  for  0,  only  the  form  of  the  equation  is 
changed. 

4.  The  directions  from  the  pole  in  which  the  curve  recedes  to 

infinity,  if   any,    are   found   by 
obtaining  those  values  of  6  for 

which  p  becomes  infinite. 
5.  The  method  of  finding  the 

values  of  6  which  must  be  ex- 
cluded, if  any,  depends  on  the 

given  equation. 

Ex.  1.  Discuss  and  plot  the  locus 
of  the  equation  p  =  10  cos  6. 

Solution.  The  discussion  enables  us 

to  simplify  the  plotting  and  is  there- 
fore put  first. 

1.  For  6  =  0  p  =  10,  and  f or  ̂   =  ;r 
p  =  —  10.  Hence  the  curve  crosses  the 
polar  axis  10  units  to  the  right  of  the 

pole. 
2.  The  curve  is  symmetrical  with  respect  to  the  polar  axis,  for 

cos(-  6)  =  cos^  (4,  p.  19). 
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3.  As  cos  e  is  never  infinitCj* 
the  curve  does  not  recede  to 

infinity.  Hence  the  curve  is  a 
closed  curve. 

4.  No  values  of  6  make  p 
imaginary. 

Computing  a  table  of  values 
we  obtain  the  table  on  p.  151. 

As  the  curve  is  symmetrical 
with  respect  to  the  polar  axis, 

the  rest  of  the  curve  may  be 

easily  constructed  without  com- 
puting the  table  farther ;  but 

as  the  curve  we  have  already 
constructed  is  symmetrical 

with  respect  to  the  polar  axis, 

no  new  points  are  obtained.     The  locus  is  a  circle. 

Ex.  2.    Discuss  and  plot  the  locus  of  the  equation  p^ 

Solution.  The  discussion  gives 

us  the  following  properties. 

1.  For  ̂   =  0  or  7t  p  =  ±a. 
Hence  the  curve  crosses  the 

polar  axis  a  units  to  the  right 
and  left  of  the  pole. 

2.  The  curve  is  symmet- 
rical with  respect  to  the  pole. 

3.  It  is  also  symmetrical 
with  respect  to  the  polar 

axis,  for  cos  (—  2  ̂)  =  cos 2  d 

(4,  p.  19). 
4.  p  does  not  become  infinite. 

5.  p  is  imaginary  when 
cos  2  ̂   is  negative.  cos  2  d 
is   negative    when    2  ̂   is    in 

a2cos2^. 
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the  second  or  third  quadrant ;  that  is,  when 

3^^  o/i^  ̂         ̂ Tzr     „^     6;r —  >2^>-  or  — >2^>   
2  2  2  2 

Hence  we  must  exclude  values  of  Q  such  that 

2tTt      ̂       TC        ,'^Tt      ̂       ̂ Tt >e>-  and  —>e>   
TC         ̂ 1  Tt 

>  —  and  —  > 
4  4 4  4  4  4 

The  accompanying  table  of  values  is  all  that 

need  be  computed  when  we  take  account  of  2,  3,  and  5. 
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The  complete  curve  is  obtained  by  plotting  these  points  and  the  points 

symmetrical  to  th6m  with  respect  to  the  polar  axis.  The  curve  is  called  a 
lemniscate.     In  the  figure  a  is  taken  equal  to  9.5, 

Ex.  3.    Discuss  and  plot  the  locus  of  the  equation 
2 

^  ~  1  +  cos  ̂  ' 
Solution.    1.  For  d  =  0  p  =  1,  and  for  d  =  it  p 

the  polar  axis  one  unit  to  the  right  of  the  pole. 
2.  The  curve  is  not  symmetrical  with  respect  to  the  pole, 

be  inferred  from  1  ? 

3.  The  curve  is  symmetrical  with  respect  to  the  polar  axis,  since 

cos  (-  ̂ )  =  cos  ̂   (4,.  p.  19). 
4.  p  becomes  infinite  when  1  +  cos  ̂   =  0  or  cos  d  =—  \  and  hence 

Q  —  It.     The  curve  recedes  to  infinity  in  but  one  direction. 
5.  p  is  never  imaginary. 

On  account  of  3  the  table  of  values  is  computed  only  to  ̂   ̂^  ;r,  and  the 
rest  of  the  curve  is  obtained  from  the  symmetry  with  respect  to  the  polar 

axis.     The  locus  is  a  parabola. 

Qo  ;  so  the  curve  crosses 

How  may  this 
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PROBLEMS 

Discuss  and  plot  the  loci  of  the  following  equations. 

1.^  =  10.     ̂   =  tan-il.  5.  psin^  =  4. 

2.  p  =  5.     e  =    Q.p  =  -   -. 
^  6  1  -  cos  ̂  

3.  p  =  16  cos  d.  -  8 

7.  p  =   4.  p  cos  ̂   =  6.  2  -  cos  e 
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8. 

9. 

10. 
11. 

12. 

13. 
14. 

16. 

8 

=  a  cos  2  d. 

16. 

17. 

18. 

19. 

20. 

21. 
22. 

p  cos  d  =  a  sin2  6. ''"  l-2cos^ 

p  =  a  sin  e. 

p  =  a  (1  -  cos  d), 
p2  sin  2  0  =  16. 
p2  =  16  sin  2  e. 

p2  cos2  2  ̂  =  a2. 
p  =  a  sin  2  ̂.     p 

8 

pcose  =  a  cos  2  d. 

P  =z  a{i  +  bco8e) 

for  6  =  3,  4,  6. 

10 
''  ~  1  +  tan  ̂  

p  =  aaecd  ±b 
for  a  >  6,  a  =  6,  a  <  6. 

1  -  e  cos  ̂  

for  e  =  1,  2, p  =  ad. p  =  asinSd.    p  =  a  cos  3  6 

—  if  the  results  of  substituting  — [-6  and  — 2  2  2 

23.  Prove  that  the  locus  of  an  equation  is  symmetrical  with  respect  to 

d  give  equations  which 

differ  only  in  form. 

24.  Apply  the  test  for  symmetry  in  problem  23  to  the  loci  of  4,  5,  10,  11, 
and  12. 

62.  Transformation  from  rectangular  to  polar  coordinates. 

Let  OX  and  OF  be  the  axes  of  a  rectangular  system  of  coordi- 
nates, and  let  0  be 

the  pole  and  OX  the 

polar  axis  of  a  sys- 
tem of  polar  coor- dinates. Let  (x,  y) 

and  (p,  6)  be  respec- 

X  X     "tiv^ly   the    rectan- 

( 2 )  gular  and  polar  coor- dinates of  any  point 

P.     It  is  necessary 

to  distinguish  two  cases  according  as  p  is  positive  or  negative. 
When  p  is  positive  (Fig.  1)  we  have,  by  definition, 

X  II 

cos  9  =  -i  sin  ̂   =  -> 9  P 

whatever  quadrant  P  is  in. 
Hence 

(1) X  =  pGos  0,  y  =  p  sin  B, 



POLAR  COORDINATES 155 

I 

When  p  is  riegative  (Fig.  2)  we  consider  the  point  P'  symmet- 
rical to  P  with  respect  to  0,  whose  rectangular  and  polar  coordi- 

nates are  respectively  (—  x,  —  y)  and  (—  p,  6).  The  radius  vector 

of  P',  —  p,  is  positive  since  p  is  negative,  and  we  can  therefore  use 

equations  (1).     Hence  for  P' 

—  x=—p  cos  6,  —  y  =  —  p  sin  6\ 
and  hence  for  P 

ic  =      p  cos  Of      y  =  p  sin  dy 
as  before. 

Hence  we  have 

Theorem  I.  If  the  pole  coincides  with  the  origin  and  the  polar 

axis  with  the  positive  X-axis,  then 

p  cos  9, 

p  sin  0, 
where  (x,  ?/)  are  the  rectangular  coordinates  and  (p,  0)  the  polar 
coordinates  of  any  point. 

Equations  I  -are  called  the  equations  of  transformation  from  rec- 
tangular to  polar  coordinates.  They  express  the  rectangular 

coordinates  of  any  point  in  terms  of  the  polar  coordinates  of 

that  point  and  enable  us  to  find  the  equation  of  a  curve  in  polar 

coordinates  when  its  equation  in  rectangular  coordinates  is  known, 
and  vice  versa. 

From  the  figures  we  also  have 

(I) 

(2) 
p^  =  iJC^  +  2/2, 

d y 0  =  tan-i cos^ 

-|-  Va;2  +  y2  ±  Vx2  +  y^ 

These  equations  express  the  polar  coordinates  of  any  point  in  terms 

of  the  rectangular  coordinates.  They  are  not  as  convenient  for  use 

as  (I),  although  the  first  one  is  at  times  very  convenient. 

Ex.  1.    Find  the  equation  of  the  circle  x^  +  ?/2  =  25  in  polar  coordinates. 

Solution.    Substitute  the  values  of  x  and  y  given  by  (I).     This  gives 

p^  cos2  e  +  p2  sin2  e  =  25,  or  (by  3,  p.  19)  p2  =  25 ;  and  hence  p  =  ±  5,  which 
IS  the  required  equation, 
units  from  the  origin. 

It  expresses  the  fact  that  the  point  (p,  6)  is  five 
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Ex.  2.    Find  the  equation  of  the  lemniscate  (Ex.  2,  p.  152)  p*  =  a'co8  2tf 

in  rectangular  coordinates. 

Solution.    By  14,  p.  20,  we  have 

/)2=  a'^{co8'^d  -ain^e). 

Multiplying  by  p2,  p4  _  ̂ a  j^a  cosS  ̂   -  p2  sinS  e). 
From  (2)  and  (I),  {x^  +  y^)^  =  a2(x2  -  y^).   Ans. 

63.  Applications. 

Theorem  II.    The  general  equation  of  the  straight  line  in  polar 
coordinates  is 

(II)  p(A  cose  +  B  sin  e)-\-C  =  0, 
where  A ,  B,  and  C  are  arbitrary  constants. 

Proof.    The  general  equation  of  the  line  in  rectangular  coordi- 

nates is  (Theorem  II,  p.  86) 

Ax  +  By  ̂ C  =  0. 

By  substitution  from  (I)  we  obtain  (II).  q.e.d. 

When  A  =  0  the  line  is  parallel  to  the  polar  axis,  when  7?  =  0  it  is  perpen- 
dicular to  the  polar  axis,  and  when  C  =  0  it  passes  through-  the  pole. 

In  like  manner  we  obtain 

Theorem  III.    The  general  equation  of  the  circle  in  polar  coordi- 
nates is 

(III)  p''-{- p(D  cose -{- EsmO)-\- F=0, 
where  D,  E,  and  F  are  arbitrary  constants. 

Corollary.    If  the  pole  is  on  the  circumference  and  the  polar  axis 

passes  thi'ough  the  center,  the  equation  is 

p  —  2  r  cos  ̂   =  0, 

where  r  is  the  radius  of  the  circle. 

For  if  the  center  lies  on  the  polar  axis,  or  X-axis,  E=0  (Corollary,  p.  131) ; 
and  if  the  circle  passes  through  the  pole,  or  origin,  J^  =  0.    The  abscissa  of  the D 

=  r,  or  D  =  —  2r. 2 
2rcos^ 

0. 

center  equals  the  radius,  and  hence  (Theorem  I,  p.  131)  • 

Substituting  these  values  of  D,  E,  and  F  in  (III)  gives  p 

Theorem  IV.    The  length  I  of  the  line  joining  tivo  points  P^  (pi,  ${) 

and  Pg  (/t>2»  ̂ 2)  ̂   given  by 

(IV)  I'  =  />,»  +  p^-2  p,p,  cos  ($,  -  9,). 
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Proof.    Let  the  rectangular  coordinates  of  Pi  and  P^  be  respec- 

tively (a^i,  2/1)  and  (x^,  y^.     Then  by  Theorem  I,  p.  155, 

Xi  =  pi  cos  $1,   X2  =  p2  COS  $2, 

j/i  =  Pi  sin  diy  2/2  =  P2  sin  O^. 

By  Theorem  IV,  p.  31, 

p  =  (xi  -  x^y^  (2/1  -  ?/2)S 

and  hence       l^  =  (pi  cos  Oi  —  pg  cos  ̂ 2)^  +  (pi  sin  Oi  —  p^  sin  6^\ 
Removing  parentheses  and  using  3,  p.  19,  and  11,  p.  20,  we 

obtain  (IV).  q.e.d. 

PROBLEMS 

1.  Transform  the  following  equations  into  polar  coordinates  and  plot 
their  loci. 

(a)  X  -  3  y  =  0.    .  Ans.    6  =  tan-i  (i). 

(b)  y  +  5  =  0.  Ans.   p  =   sin^ 

(c)  a;2  +  2/2  _  15.  jins,   p  =  ̂   4. 

(d)  x2  +  ?/2  _  ax  =  0.     "  Ans.   p  =  acosd. 
(e)  2xy  =  7.  Ans.   p^  sin  2  ̂  =  7. 

(f)  x2  -  2/2  =  a2. 
(g)  X  cos  w  +  2/  sin  0)  —  p  =  0. 

(h)  (1  -  e2)  x2  +  ?/2  _  2  e2px  - 

Ans.   p2  cos  2  ̂  =  a^. 
Ans.   p  cos  (^  —  w)  —  p 

Ans.    -  — 

0. 

1  —  e  cos  6 

(i)  2x2/ +  42/2- 8x +  9  =  0.    Ans.  /32(sin2^  +  4sin2^)  -  8/)COS^  +  9  =  0. 

2.  Transform  equations  1  to  21,  p.  153,  into  rectangular  coordinates. 

3.  Find  the  polar  coordinates  of  the  points  (3,  4),  (—4,  3),  (5,  —12), 

(4,  5). 

4.  Find  the  rectangular  coordinates  of  the  points  (  5,  —  j,  (  ~  ̂ »  — )' 

(3,^).  V      2/     \  4  / 67) 
5 .  Transform  into  rectangular  coordinates  p  =   1  -  e  cos  ̂  

64.  Equation  of  a  locus.  The  equation  of  a  locus  may  often 

be  found  with  more  ease  in  polar  than  in  rectangular  coordinates, 

especially  if  the  locus  is  described  by  the  end  of  a  line  of  variable 

length  revolving  about  a  fixed  point.  The  steps  in  the  process 

of  finding  the  polar  equation  of  a  locus  correspond  to  those  in  the 

Rule  on  p.  53. 
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Ex.  1.    Find  the  locus  of  the  middle  points  of  the  chords  of  the  circle 

C:p  —  2 r cos 6  =  0  which  pass  through  the  pole  which  is  on  the  circle. 

Solution.  Let  P{p,  6)  be  any  point  on  the  locus.     Then,  by  hypothesis, OP  =  i  OQ, 

where  Q  is  a  point  on  C. 

But       OP  =  p  and  OQ  =  2  r  cos  6. 

Hence  p  =  r  cos  6. 

From  the  Corollary  (p.  156)  it  is  seen  that 
the  locus  is  a  circle  described  on  the  radius 

of  C  through  0  as  a  diameter. 

Ex.  2.    The  radius  of  a  circle  is  prolonged  a  distance  equal  to  the  ordinate 

of  its  extremity.     Find  the  locus  of  the  end  of  this  line. 

Solution.    Let  r  be  the  radius  of  the  circle,  let  its  center  be  the  pole,  and 

let  P  (/J,  e)  be  any  point  on  the  locus.     Then, 

by  hypothesis, 

OP^OB-^  CB. 

But  OP  =  /9, 
OB  =  r, 

and  CB  =  r  sin  6. 

Hence  the  equation  of  the  locus  of  P  is 

p  =  r  -\-  r  sin  d. 

The  locus  of  this  equation  is  called  a  cardioid. 

p(p,e) 

PROBLEMS 

1.  Chords  passing  through  a  fixed  point  on  a  circle  are  extended  their 
own  lengths.     Find  the  locus  of  their  extremities. 

Ans.    A  circle  whose  radius  is  a  diameter  of  the  given  circle. 

2.  Chords  of  the  circle  p  =  10  cos  0  which  pass  through  the  pole  are 
extended  10  units.     Find  the  locus  of  the  extremities  of  these  lines. 

Ans.   p  =  10  (1  +  cos  0). 

3.  Chords  of  the  circle  p  =  2acos^  which  pass  through  the  pole  are 
extended  a  distance  2  6.    Find  the  locus  of  their  extremities. 

Ans.   p  =  2  (6  +  a  cos  d). 
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4.  Find  the  locus  of  the  middle  points  of  the  lines  drawn  from  a  fixed 

point  to  a  given  circle. 

Hint.   Take  the  fixed  point  for  the  pole  and  let  the  polar  axis  pass  through  the  center 
of  the  circle. 

Ans.    A  circle  whose  radius  is  half  that  of  the  given  circle  and  whose 
center  is  midway  between  the  pole  and  the  center  of  the  given  circle. 

5.  A  line  is  drawn  from  a  fixed  point  0  meeting  a  fixed  line  in  Pi.     Find 

the  locus  of  a  point  P  on  this  line  such  that  OP^  •  OP  =  a^.    Ans.    A  circle. 

6.  A  line  is  drawn  through  a  fixed  point  0  meeting  a  fixed  circle  in  Pi 
and  P2.     Find  the  locus  of  a  point  P  on  this  line  such  that 

OPi .  OP2 
OP 

OPi  +  OP2 
Ans.   A  straight  line. 



CHAPTER  VII 

TRANSFORMATION  OF  COORDINATES 

65.  When  we  are  at  liberty  to  choose  the  axes  as  we  pleas™ 
we  generally  choose  them  so  that  our  results  shall  have  the  sim- 

plest possible  form.  When  the  axes  are  given  it  is  important 
that  we  be  able  to  find  the  equation  of  a  given  curve  referred  to 

some  other  axes.  The  operation  of  changing  from  one  pair  of 

axes  to  a  second  pair  is  known  as  a  transformation  of  coordinates. 

We  regard  the  axes  as  moved  from  their  given  position  to  a  new 

position  and  we  seek  formulas  which  express  the  old  coordinates 
in  terms  of  the  new  coordinates. 

66.  Translation  of  the  axes.  If  the  axes  be  moved  from  a  first 

position  OX  and  OF  to  a  second  position  O'X'  and  O'Y'  such  that 

O'X'  and  O'Y'  are  respectively  parallel  to  OX  and  OY,  then  the 
axes  are  said  to  be  translated  from  the  first  to  the  second  position. 

Let  the  new  origin  be   0'(h,  k)   and  let  the    coordinates  of 
any  point  P  before  and  after  the 
translation  be  respectively  (x,  y) 

and  (x',  y').  Projecting  OP  and 
OO'P  on  OX,  we  obtain  (Theorem 
XI,  p.  48) 

a;  =  £c'  +  ̂' 

Similarly,  y  =  y'  -^  k. Hence, 

Theorem  I.    If  the  axes  be  translated  to  a  new  origin  (h,  k),  ai 

If  (x,  y)  and  (x',  y')  are  respectively  the  coordinates  of  any  point  P 
before  and  after  the  translation,  then 

,js  (i)c  =  x^  +  h, 

Y 

Y' 

s 

JV N 

-^f 

d ^ 
li 

Ch, 

kj/ 

y 
( 

X 

0 

/
-
 

1 
1 

A M X 

roc  =  X'  +  fi, 

160 
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Equations  (I)  are  called  the  equations  for  translating  the  axes. 
To  find  the  equation  of  a  curve  referred  to  the  new  axes  when 

its  equation  referred  to  the  old  axes  is  given,  we  substitute  the 

values  of  x  and  y  given  by  (I)  in  the  given  equation.  For  the 

given  equation  expresses  the  fact  that  P  (x,  y)  lies  on  the  given 

curve,  and  since  equations  (I)  are  true  for  all  values  of  (x,  y),  the 

new  equation  gives  a  relation  between  x^  and  y'  which  expresses 

that  P(x\  y')  lies  on  the  curve  and  is  therefore  (p.  53)  the  equa- 
tion of  the  curve  in  the  new  coordinates. 

Ex.  1.    Transform  the  equation 

x2  +  2/2  _  6 x  +  4y-12  =  0 

when  the  axes  are  translated  to  the  new  origin  (3,  —  2). 

Solution.    Here  ̂   =  3  and  fc  =  —  2,  so  equations  (I)  become 

x  =  x'  -^3,  y  =  y'  -2. 

Substituting  in  the  given  equation",  we 
obtain 

(cc'  +  3)2  +  (y'-2)2-6(a;'  +  3) 
+  4(r-2)-12  =  0, 

or,  reducing,    x'2  -f-  y'^  =  25. 
This  result  could  easily  be  foreseen. 

For  the  locus  of  the  given  equation  is 

(Theorem  I,  p.  131)  a  circle  whose  center  is 

(3,  —2)  and  whose  radius  is  5.  When  the 
origin  is  translated  to  the  center  the  equa- 

tion of  the  circle  must  necessarily  have 

the  form  obtained  (Corollary,  p.  58). 

PROBLEMS 

1.  Find  the  new  coordinates  of  the  points  (3,  —  5)  and  (—4,  2)  when  the 
axes  are  translated  to  the  new  origin  (3,  6). 

2.  Transform  the  following  equations  when  the  axes  are  translated  to  the 

new  origin  indicated  and  plot  both  pairs  of  axes  and  the  curve. 

Y 
' 

Y 
• 

/^ 

"" 

^ 

s, 

1 

/ \ 
/ \ / 0 \ 

x'
 0'

 

(3, 

2) 

x^ 

\ J 
\ / 
\ / 

*V 

*■ 

^ y 

(a)  3a; -42/ =  6,  (2,0). 
(b)  a;2  +  y2  _  4aj  _  2 y  =  0,  (2,  1). 

(c)  2/2-6x  +  9  =  0,  (1,0). 
(d)  a;2  +  2/2-l  =  0,  (-3,  -2). 

(e)  2/2  -  2 fcx  +  A:2  =  0,  ('-,  oV  Ans.    y'^  =  2kx'. 
(f)  a:2-42/2+8x+242/-20=0,  (-4,  3).   Ans.   x'^  -  4:y'^ - 

Ans.  3x'-42/'  =  0. 

Ans.  x'^  +  2/'2  =  5. 

Ans.  y"^  =  Qx\ 
Ans.  x'2+2/'2-6x'-42/'4-12=0. 
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3.  Derive  equations  (I)  if  0'  is  in  (a)  the  second  quadrant ;  (b)  the  third 
(luadrant ;  (c)  the  fourth  quadrant. 

67.  Rotation  of  the  axes.  Let  the  axes  OX  aud  OF  be  rotated 

about  0  through  an  angle  0  to  the  positions  OX'  and  OY'.  The 
equations  giving  the  coordinates  of  any  point  referred  to  OX  and 

OY  in  terms  of  its  coordinates  referred  to  OX'  and  OY'  are  called 
the  equations  for  rotating  the  axes. 

Theorem  II.    The  equations  for  rotating  the  axes  through  an  angle 

6  are 
P 

(")  {: 

a^  z=  x^  C08  $  —  yf  sin  d, 

X'  sin  6  -\-  y'  cos  $. 

Froof.    Let  P  be  any  point 

•     whose  old   and    new   coordi- 

^A^   ^   nates  are  respectively  (x,  y) 
^     and  (ic'j  y').     Draw  OP  and 

draw  PM'  perpendicular  to  OX'.     Project  OP  and  OM'P  on  OX. 

The  proj.  of  OP  on  OX  =  x. 

The  proj.  of  OM'  on  OX  =  x'  cos  0. 

(Theorem  III,  p.  31) 

(Theorem  II,  p.  30) 

The  proj.  of  M'P  on  OX  =  y'  cos  (|  +  ̂   )•    (Theorem  II,  p.  30) 

=  -  2/'  sin  6.  (by  6,  p.  20) 

Hence  (Theorem  XI,  p.  48) 

a;  =  a;'  cos  ̂   —  y'  sin  0. 

In  like  manner,  projecting  OP  and  OM'P  on  OF,  we  obtain 

y  =  x' Qo^  I—  —  d\  -\-  y' co^  6 

=  x'  sin  B  +  y'  cos  0.  q.e.d. 

If  the  equation  of  a  curve  in  x  and  y  is  given,  we  substitute 

from  (II)  in  order  to  find  the  equation  of  the  same  curve  referred 

to  OX'  and  OY'. 
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Ex.  1.    Transform  the  equation  x^  —  ?/2  _  iq  -wrhen  the  axes  are  rotated 

through  —  • 4 

Solution.    Since 

.     TT       1     /-         1 sin  -  =  -  V2  =  -— 
4      2  V2 

and      cos  —  =   > 
4      V2 

equations  (II)  become 

V2  V2 

Substituting    in    the     given 
equation,  we  obtain 

V2    ̂        ̂     V2 

or,  simplifying,  xY  +  8  =  0 

mmf 
z/ 

^.s Zv 

:  ̂   s z  t 

^  ̂  

Z   J. 
-    -5    ̂  Z     t     - \ M   -L      ̂  2 

S^    J^       ̂  -    7    z 
s    t 

„    /   z 
S      N -  /  z s^^  - -4^— 

X'  +  ?/'\2 c-^y-i^) 

16, 

PROBLEMS 

1.  Find  the  coordinates  of  the  points  (3,  1),  (—  2,  6),  and  (4,  —  1)  when 
It 

the  axes  are  rotated  through  —  • 

2.  Transform  the  following  equations  when  the  axes  are  rotated  through 
the  indicated  angle.     Plot  both  pairs  of  axes  and  the  curve. 

Ans.  2/  =  0. 

Ans.  x"^  =  4. 

Ans.   x'2  —  4  y\ 

Ans.   3x'2-?/'2z=16. 

Ans.   x'2  +  2/'2  =  r2. 

Ans.    V2y'^  +  4:x'  =  0. 

(a)  X  -  2/  =  0, t 

(b)  x2  +  2x2/  +  y2  =  8,  ̂. 4 

(c)  y2  =  ̂ x,  -|. 

(d)  x2  +  4xy  +  2/2  =  16,  ?. 4 

(e)  x^  +  y^  =  r2,  ̂. 

(f)  x2  +  2xy  +  y2  +  4a;  _  42/  =  0, 

3.  Derive  equations  (II)  if  6  is  obtuse. 

68.  General  transformation  of  coordinates.  If  the  axes  are 

moved  in  any  manner,  they  may  be  brought  from  the  old  position 
to  the  new  position  by  translating  them  to  the  new  origin  and 
then  rotating  them  through  the  proper  angle. 
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Theorem  III.  If  the  axes  he  translated  to  a  new  origin  (h,  k)  and 

then  rotated  through  an  angle  6,  the  equations  of  the  transformor 

tion  of  coordinates  are 

x  =  a;'  cos  $  —  y^  sva.  $  -\-  h, 

sin  ̂   +  2/'  cos  ̂   +  k. 
(HI) 

\y  =  ic' 

Y 

> 

r"l 

-4' 
>^'?».w" 

X"
 

0 ^ 4 ^ 

x'
 

Froof.    To  translate  the  axes  to  O'X"  and  OT"  we  have,  by  (I), 
a;  =  a;"  +  A, 

where  (a",  y")  are  the  coordi- 
nates of  any  point  P  referred 

to  O'Z"  and  OT". 
To  rotate  the  axes  we  set, 

by  (II), 

ic"  =  a;'  cos  6  —  y'  sin  ̂ , 

y"  =  x'  sin  ̂   +  2/'  cos  ̂ . 

Substituting  these  values  of  x"  and  y",  we  obtain  (III),      q.e.d. 

69.  Classification  of  loci.  The  loci  of  algebraic  equations 

(p.  17)  are  classified  according  to  the  degree  of  the  equations. 

This  classification  is  justified  by  the  following  theorem,  which 

shows  that  the  degree  of  the  equation  of  a  locus  is  the  same  no 
matter  how  the  axes  are  chosen. 

Theorem  IV.  The  degree  of  the  equation  of  a  locus  is  unchanged 

hy  a  transformation  of  coordinates. 

Proof.  Since  equations  (III)  are  of  the  first  degree  in  ic'  and 
y\  the  degree  of  an  equation  cannot  be  raised  when  the  values  of 

x  and  y  given  by  (III)  are  substituted.  Neither  can  the  degree 
be  lowered;  for  then  the  degree  must  be  raised  if  we  transform 

back  to  the  old  axes,  and  we  have  seen  that  it  cannot  be  raised 

by  changing  the  axes.=* 
As  the  degree  can  neither  be  raised  nor  lowered  by  a  trans- 

formation of  coordinates,  it  must  remain  unchanged.  q.e.d. 

*  This  also  follows  from  the  fact  that  when  equations  (III)  are  solved  for  x'  and  y'  the 
results  are  of  the  first  degree  in  x  and  y. 
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70.  Simplification  of  equations  by  transformation  of  coordi- 
nates. The  principal  use  made  of  transformation  of  coordinates 

is  to  discuss  the  various  forms  in  which  the  equation  of  a  curve 

may  be  put.  In  particular,  they  enable  us  to  deduce  simple  forms 
to  which  an  equation  may  be  reduced. 

Rule  to  simplify  the  form  of  an  equation. 

First  step.  Substitute  the  values  of  x  and  y  given  by  (I)  \_or  (II)] 

and  collect  like  powers  of  x^  and  y'. 
Second  step.  Set  equal  to  zero  the  coefficients  of  two  terms 

obtained  in  the  first  step  which  contain  h  and  k  (or  one  coeffi- 
cient containing  &). 

Third  step.  Solve  the  equations  obtained  in  the  second  step  for 

h  and  k*  (or  B). 
Fourth  step.  Substitute  these  values  for  h  and  k  {or  6)  in  the 

result  of  the  first  step.     The  result  will  be  the  required  equation. 

In  many  examples  it  is  necessary  to  apply  the  rule  twice  in 

order  to  rotate  the  axes,  and  then  translate  them,  or  vice  versa. 

It  is  usually  simpler  to  do  this  than  to  employ  equations  (III) 
in  the  Eule  and  do  both  together.  Just  what  coefficients  are 

set  equal  to  zero  in  the  second  step  will  depend  on  the  object 
in  view. 

It  is  often  convenient  to  drop  the  primes  in  the  new  equation 

and  remember  that  the  equation  is  referred  to  the  new  axes. 

Ex.  1.    Simplify  the  equation  y^  —  %x-{-Qy  +  VJ  =  (i  by  translating  the 

Solution.    First  step.    Set  x  =  x'  -\-h  and  y  =  y'  +  k. 

This  gives  {y'  +  A:)2  -  8  {x'  +  A)  +  6  (y'  +  A;)  +  17  =  0,  or 

(1) 8  x'  +  2  fc 

+  6 

y'+     A:2 

-8/1 

+  6A; 

+  17 

t  =  o. 

*  It  may  not  be  possible  to  solve  these  equations  (Theorem  IV,  p.  90). 

t  These  vortical  bars  play  the  part  of  parentheses.  Thus  2  ̂-  +  6  is  the  coefficient  of  y' 
and  A-2-8/i  +  6/>+17  is  the  constant  term.  Their  use  enables  us  to  collect  like  powers 

of  x'  and  y'  at  the  same  time  that  we  remove  the  parentheses  in  the  preceding  equation. 
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Second  step.  Setting  the  coefficient  of  1/  and  the  constant  term,  the  only- 
coefficients  containing  h  and  /c,  equal  to  zero,  we 

obtain 

(2)  2  fc  +  6  =  0, 

(3)  A:2  -  8  A  +  6  A;  +  17  =  0.     • 

Third  step.  Solving  (2)  and  (3)  for  h  and  A;, 
we  find 

A;  =-3,  h  =  \. 

Fourth  step.    Substituting  in  (1),  remember- 
ing that  h  and  k  satisfy  (2)  and  (3),  we  have 

y'2_8x'  =  0. 

The  locus  is  the  parabola  plotted  in  the  figure 
which  shows  the  new  and  old  axes. 

Ex.  2.  Simplify  x"^ -^  Ay"^ -2x -\Qy  ̂ -\  =  0 
by  translating  the  axes. 

Solution.  First  step.  Set  x=x'  -\-h^y=y'-\-k. 
This  gives 

Y Y 

V 
y 

y 
/ 

/ 
/ 

0 / X 

( 
0'
 

(h 

-3) 

X'
 

\ \ 

\ 
\ 
\ V N 

N 

(4)  aj'2+42/'2  4.2A|aj'  +  8A;    y' +    hP-    =0. 
-2     I      -16        +4A:2 

-2h 

-16  A: 

+  1 
Second  step.    Set  the  coefficients  of  x'  and  y'  equal  to  zero.     This  gives 

2^-2  =  0,  8  A: -16  =  0. 

Third  step.    Solving,  we  obtain 

h  =  \,  k  =  2. 

Fourth  step.    Substituting  in  (4),  we  obtain 

Plotting  on  the  new  axes,  we  obtain  the 

figure. 

Ex.  3.    Remove  the  xy-ierm  from  x2  +  4  cc?/  +  y^  =  4  by  rotating  the  axes. 

Solution.    First  step.    Set  x  =  x'  cos  6  —  y'  sin  d  and  y  =  x'  sin  ̂   +  y'  cos  ̂ , 
whence 

cos2^ 
+  4  sin  ̂   cos  d 

+  sin2  e 

x'y'-\-  sin2  0 
— 4sin^cose 

+  cos2  d 

y'^  =  4:. 
x'2  -  2  sin  ̂   cos  6 

+  4  (cos2  e  -  sin2  d) 
+  2  sin  ̂   cos  e 

or,  by  3,  p.  19,  and  14,  p.  20, 

(5)  (l  +  2sin2e)x'24-4cos20.xY+(l  -  2  sin2^)?/2  =  4. 
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Second  step.    Setting  the  coefficient  of  xfy'  equal  to  zero,  we  have 

cos2( 0. 

r.'^ 

Third  step.    Hence 

2e  = 
6  = 

Fourth  step.    Substituting  in 
Tt 

(5),  we  obtain,  since  sin  —  =  1 

(p.  21), 

The  locus  of  this  equation  is 

the  hyperbola  plotted  on  the 
new  axes  in  the  figure. 

Wtttf 
'\\\\\y{ 

-  s       I z  . 
-             ̂             ̂ r- z 

S             V z 

S         ̂  
^  z        - *^^^                         l\ ^Z\t 

^^^^              \ 

as 
-                              ̂  

7\ 
ST         "^^^ — 

Z 
V  s 

-     -.z 
4    s 

z 
A-    s 

'  z 

t      ̂  
7 

A 
=i===-^^ 

From  cos  2  <?  =  0  we  get,  in  general,  2  ̂  =  -  +  mt,  where  n  is  any  positive 

or  negative  integer,  or  zero,  and  hence  ̂   =  -  +  n  -  •     Then  the  x?/-term  may 4  2 

be  removed  by  giving  6  any  one  of  these  values.     For  most  purposes  we 
choose  the  smallest  positive  value  of  6  as  in  this  example. 

Ex.  4.    Simplify  x3  +  6x2  +  12x-42/  +  4  =  0  by  translating  the  axes. 

Solution.    First  step.    Set 

x  =  x'  +  h,  y  =  y'  -\rk. 
1      I 

Y^ 

. 

r| 

1 

/ 

yc 

X 

/ 

^'
 

(-2 

.-■?; 

x' 

f 
/ 
/ 
/ 
/ 
L — — _ 

We  obtain 

(6)  x'3  +  3/i|x'2+    3  7^2 

+  6 
+  12 

0. 
-4?/+       h^ 

+    Qm 
■      +12/1 

-    4A: 

+    4 Second  step.    Set  equal  to  zero  the  coefficient 

p     of  x"^  and  the  constant  term.     This  gives 
3  /i  +  6  =  0, 

/i3  4.  6  ̂2  +  12  /i  -  4  A:  +  4  =  0. 

Third  step.    Solving, 

h  =  -2,  k  =  -l. 

Fourth  step.    Substituting  in  (6),  we  obtain 
x'3  _  4  2/'  =  0, 

whose  locus  is  the  cubical  parabola  in  the  figure. 
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PROBLEMS 

1.  Simplify  the  following  equations  by  translating  the  axes.     Plot  both 

pairs  of  axes  and  the  curve. 

(a)  x2  +  6x  +  8  =  0. 
(b)  x^-iy  +  S  =  0. 
(c)  x2  _j.  y2  ̂.  4a.  _  6y  -  3  =  0. 
(d)  y2-6«-10y +  19  =  0. 
(e)  x2  -  y2  +  8x  -  14y  -  33  =  0. 

Ans.  x'2  =  1. 

Ans.  x'2  =  4  y'. 
Ans.  x'2  +  y'2  =  i6. 
Ans.  y'^  =  Qx\ 

Ans.  x'2-y'2=o. 
(f)  x2  +  4y2_i6x  + 242/ +  84  =  0. 

(g)  y3  4-  8  X  -  40  =  0. 
(h)  x8  -  2/2  +  14  2,  _  49  =  0. 

(i)  4x2- 4xi/+ 2/2- 40x+ 2O2/+ 99  =  0.        Ans.    (2 x' -  2/')^  -  1  =  0. 

Ans.   x'2  +  4  2/'2  =  16. 

^ns.    8x'  +  2/'^  =  0. 

Ans.   y"^  =  x'3. 

2.  Remove  the  X2/-term  from  the  following  equations  by  rotating  the  axes 
Plot  both  pairs  of  axes  and  the  curve. 

(a)  x2- 2x2/ +  2/2  =  12. 
(b)  x2  -  2  X2/  +  2/2  +  8  X  +  8  2/  =  0. 

(c)  xy  =  18. 
(d)  25x2  +  14x2/  +  25  2/2  =  288. 

(e)  3  x2  -  10  X2/_+  3  y2  3=  0. 
(f )  6  x2  +  20  Vs  X2/  +  26  2/2  =  324. 

^ns.  2/^2 -6, 
^ns.  ■v^2/'2  +  8x'  =  0. 
^ns.  x'2-2/'2  =  36. 

^ns.  16  x'2  +  9  2/'2  =  144. 

Ans.  x'2  —  4  2/^'^  =  0. 
^ns.  9x'2_2/'2  =  81. 

71.  Application  to  equations  of  the  first  and  second  degrees. 
In  this  section  we  shall  apply  the  Kule  of  the  preceding  section 

to  the  proof  of  some  general  theorems. 

Theorem  V.    By  moving  the  axes  the  general  equation  of  the  first 

degree, 

^rc  +-  %  +-  C  =  0, 

may  he  transformed  into  aj'  =  0. 

Proof    Apply  the  Kule  on  p.  165,  using  equations  (III). 

Set  X  =  x^  cos  6  —  y'  sin  0  +  h, 

y  =  x'  sin  $  -{■  y'  cos  6  +  k. 

This  gives 

(1)  A  cos  e 
■i-Bsine 

x'  —  A  sin  0 y'-hAh 
-{-  BgosO 

+  Bk 

+  c 

=  0. 
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Setting  the  coefficient  of  ?/'  and  the  constant  term  equal  to  zero 
gives 

(2)  -  ̂   sin  ̂   +  5  cos  ̂   =  0, 

(3)  Ah  +  Bk  +  C  =  0. 

Erom  (2), tan  6  =  —y    01  0  =  tan" A ■(!)■ 

From  (3)  we  can  determine  many  pairs  of  values  of  h  and  k. 

One  pair  is 

h=-^,     k  =  0. A 

Substituting  in  (1)  the  last  two  terms  drop  out,  and  dividing 

by  the  coefficient  of  x'  we  have  left  x'  =  0.  q.e.d. 

We  have  moved  the  origin  to  a  point  (h,  k)  on  the  given  line 

L,  since  (3)  is  the  condition  that  (h,  k)  lies  on  the  line,  and  then 
rotated  the  axes  until  the  new  axis  of 

y  coincides   with    L.      The   particular 

point  chosen  for  (h,  k)  was  the  point  0' 
where  L  cuts  the  X-axis. 

This  theorem  is  evident  geometric- 

ally. For  ic'  =  0  is  the  equation  of 
the  new  F-axis,  and  evidently  any  line 

may  be  chosen  as  the  F-axis.  But  the  theorem  may  be  used  to 
prove  that  the  locus  of  every  equation  of  the  first  degree  is  a 

straight  line,  if  we  prove  it  as  above,  for  it  is  evident  that  the 

locus  of  ic'  =  0  is  a  straight  line. 

Theorem  VI.    The  term  in  xy  may  always  he  removed  from  an 
equation  of  the  second  degree, 

Ax^  -f  Bxy  -\-Cy^-^Dx+Ey  +  F=0, 

by  rotating  the  axes  through  an  angle  6  such  that 

(VI) tan  2  ̂  = A-C 
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Froof.    Set 
and 

This  gives 

(4)  A  cos^  e 
-I-  JB  sin  ̂   cos  0 

+  C  sin^  B 

X  =  x'  COS  0  —  f/'  sin  6 

y  =  x'  sin  6  +  y'  cos  $. 

x'^  —  2AsmOeose 

+  2C  sin  dcos^ 
-\-  DgosO 

+  Esine 

Setting  the  coefficient  of  x'l/'  equal  to  zero,  we  have 

(C  -A)2  sin  dcosO  +  B (cos^  0  -  sin^  $)  =  0, 

or  (14,  p.  20),  (C  -  ̂ )sin  2  ̂  +  5  cos  2  ̂  =  0. 
B 

x'y'  +  Asin^O 
—  B  sin  6  cos  0 

+  c  cos^  e x'  —  D^mBW  +  F=  0.\ 

+  ̂   cos  ̂  

Hence tan  2^ 
A-C 

If  6  satisfies  this  relation,  on  substituting  in  (4)  we  obtain  an 

equation  without  the  term  in  xy.  q.e.d. 

Corollary.  In  tratisforming  an  equation  of  the  second  degree  by 

rotating  the  axes  the  constant  term  is  unchanged  unless  the  new 

equation  is  multiplied  or  divided  by  some  constant. 

For  the  constant  term  in  (4)  is  the  same  as  that  of  the  given  equation. 

Theorem  VII.  The  terms  of  the  first  degree  may  be  removed  from 

an  equation  of  the  second  degree, 

Ax^  +  Bxy  +  C//2  +  Dx-{-  Ey-\-  F=0, 
by  translating  the  axes,  provided  that  the  discriyninant  of  the  terms 

of  the  second  degree,  A  =  B'^  —  A  AC,  is  not  zero. 

Proof     Set  x  =  x'  -{-h,  y  =  y'  -\-h. 
This  gives 

(5)     ̂ a;'2  +  Bx'y'  +  C?/'^  -\-2Ah 

+  Bk 

x'  4-  Bh 

y'  +  Ah' 

■j-2Ck ■i-Bhk 
■i-E 

+  Ck^ 

+  Dh 

-h  Ek -hF 

0. 
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Setting  equal  to  zero  the  coefficients  of  x'  and  y\  we  obtain 

(6)  2^A  + 5^  +  ̂   =  0, 

(7)  Bh  +  2Ck-\-E  =  0. 

These  equations  can  be  solved  for  h  and  k  unless  (Theorem 

-IV,  p.  90) 
2A  _  B 

B   ~2C' 
or  B^-4:AC  =  0. 

If  the  values  obtained  be  substituted  in  (5),  the  resulting  equa- 
tion will  not  contain  the  terms  of  the  first  degree.  q.e.d. 

Corollary  I.  If  an  equation  of  the  second  degree  be  transformed 

by  translating  the  axes,  the  coefficients  of  the  terms  of  the  second 

degree  are  unchanged  unless  the  new  equation  be  multiplied  or 

divided  by  so7ne  constant. 

For  these  coefficients  in  (5)  are  the  same  as  in  the  given  equation. 

Corollary  II.  When  A  is  not  zero  the  locus  of  an  equation  of  the 

second  degree  has  a  center  of  symmetry. 

For  if  the  terms  of  the  first  degree  be  removed  tlie  locus  will  be  symmetrical 
with  respect  to  the  new  origin  (Theorem  V,  p.  73) . 

If  ̂ .—  B'^  —  ̂ AC=Q,  equations  (6)  and  (7)  may  still  be  solved  for  h  and  k 2A       B       D 
if  (Theorem  IV,  p.  90)  ——  =  —r.  =  —  >  when  the  new  origin  (h,  k)  may  be  any jD  ZLi  Mi 

0. 
In  this  case  every  point  on  that  line  will 

y  +  3  =  0.    For  this  equation 

point  on  the  line  1A'x.-\-  By  +  D 
be  a  center  of  symmetry. 

For  example,  consider  x^  +  4:zy  +  iy^  -\-  4:X 
equations  (6)  and  (7)  become 

2h  +  ik  +  4:  =  0, 

In  these  equations  the  coefficients  are  all  proportional  and  there  is  an  infinite 
number  of  solutions.  One  solution  is  A  =  —  2,  A:  =  0.  For  these  values  the  given 
equation  reduces  to 

or  (a;  +  2?/  +  l)(x  +  2y-l)  =  0. 

The  locus  consists  of  two  parallel  lines  and  evidently  is  symmetrical  with 
respect  to  any  point  on  the  line  midway  between  those  lines. 
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MISCELLANEOUS  PROBLEMS 

1.  Simplify  and  plot.    , 

(a)  2/2  _  52/  -f  6  =  0.  (e)  x^  +  ̂ xy  +  y^  _  g. 
(b)  x2  +  2a;y +  y^-6x-6y +  6  =  0.  (f)  x^ -9y^ -2x- S6y  +  i  =  0. 
(c)  2/2_i.6x-10y +  2  =  0.  (g)  25y^-  16x2  _|- 50y  _  119  =  0. 

(d)  x2  +  42/2  -  8x  -  16y  =  0.  (h)  x2  +  2xy  +  y2  _  8x  =  0. 

2.  Find  the  point  to  which  the  origin  must  be  moved  to  remove  the  terms 

of  the  first  degree  from  an  equation  of  the  second  degree  (Theorem  VII). 

3.  To  what  point  (^,  k)  must  we  translate  the  axes  to  transform 

(1  -  e2)x2  +  2/2  -  2px  +p2  =  0  into  (1  -  e2)x2  +  y^  -  2e2px-  e2p2  =  o? 

4.  Simplify  the  second  equation  in  problem  3. 

6.  Derive  from  a  figure  the  equations  for  rotating  the  axes  through  H — 

and   ,  and  verify  by  substitution  in  (II),  p.  162. 

6.  Prove  that  every  equation  of  the  first  degree  may  be  transformed  into 

2/'  =  0  by  moving  the  axes.     In  how  many  ways  is  this  possible  ? 

7.  The  equation  for  rotating  the  polar  axis  through  an  angle  0  is 
0  =  ̂ '  +  0. 

8.  The  equations  of  transformation  from  rectangular  to  polar  coordi- 
nates, when  the  pole  is  the  point  (^,  k)  and  the  polar  axis  makes  an  angle  of 

0  with  the  X-axis,  are 
X  =  A  +  /)COS(^  +  0), 

2/  =  A;  +  p  sin  (0  +  0). 

9.  The  equations  of  transformation  from  rectangular  coordinates  to 
oblique  coordinates  are 

X  =  x'  +  2/^  cos  w, 

2/  =  2/'  sin  w, 
if  the  X-axes  coincide  and  the  angle  between  OX'  and  OY'  is  w. 

10.  The  equations  of  transformation  from  one  set  of  oblique  axes  to  any 
other  set  with  the  same  origin  are 

,  sin  (w  —  0)        ,  sin  (w  —  0) 
x  =  x'   ^^   ^  +  y' — ^^   ^, sm  w  sm  w 

,sin0  ,     ,8in0 
sin  w         sin  w 

where  w  is  the  angle  between  OX  and  OF,  0  is  the  angle  from  OX  to  0X\ 

and  0  is  the  angle  from  OX  to  0Y\ 



CHAPTER  VIII 

come  SECTIONS  AND  EQUATIONS  OF  THE  SECOND  DEGREE 

72.  Equation  in  polar  coordinates.  The  locus  of  a  point  P  is 

called  a  conic  section*  if  the  ratio  of  its  distances  from  a  fixed 

point  F  and  a  fixed  line  DD  is  constant.  F  is  called  the  focus, 

DD  the  directrix,  and  the  constant  ratio  the  eccentricity.  The 

line  through  the  focus  perpendicular  to  the  directrix  is  called 

the  principal  axis. 

Theorem  I.  If  the  pole  is  the  focus  and  the  polar  axis  the  princi- 
pal axis  of  a  conic  section,  then  the  polar  equation  of  the  conic  is 

(I) 

P  = 

ep 

1  —  e  cos  ̂  

where  e  is  the  eccentricity  and  p  is  the  distance  from  the  directrix 

to  the  focus. 

PiP'd) 

Proof    Let  P  be  any  point  on  the  conic.     Then,  by  definition, 

FP 

^  =  ̂
- 

From  the  figure,  FP  —  p 

and  EP  =  HM  =  p  +  p  cos  0. 

Substituting  these  values  of  FP  and     ̂  
EP,  we  have 

or,  solving  for  p. 

p  -\-  pGOsO 

ep 

=  e\ 

P  — 

1  —  e  cos  ̂  

*  Because  these  curves  may  be  regarded  as  the  intersections  of  a  cone  of  revolution 
with  a  plane. 
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From  (I)  we  see  that 
1.  A  conic  is  symmetrical  with  respect  to  the  principal  axis. 

For  substituting  —  ̂   f or  6  changes  only  the  form  of  the  equation,  since 
cos  (—  6)  —  cos  d. 

2.  In  plotting,  no  values  of  0  need  be  excluded. 

The  other  properties  to  be  discussed  (p.  151)  show  that  three 

cases  must  be  considered  according  as  e  =  1. 

The  parabola  e  =  1.    Wlien  e  =  1,  (I)  becomes 

P 
p  =   ) 

^      l-eos6 
and  the  locus  is  called  a  parabola. 

1.  For   ̂   =  0  p  =  00,    and    for    0  =  ir    p  =  ■^-     The   parabola 

therefore  crosses   the  principal  axis  but  once  at  the  point  0, 

called  the  vertex,  which  is  ̂   to  the  left  of  the  focus  i^,  or  mid- 
way between  F  and  BB. 

2.  p  becomes  infinite  when  the  denominator,  1  —  cos  ̂ ,  vanishes.' 
If  1  —  cos  ̂   =  0,  then  cos  ̂   =  1 ;  and  hence  ̂   =  0  is  the  only 
value  less  than  2  it  for  which  p  is  infinite. 

TT 
3.  When  B  increases  from  0  to  — > 

Jd 

then       cos  0  decreases  from  1  to  0, 

1  —  cos  0  increases  from  0  to  1, 

p  decreases  from  oo  to^:>, 

and  the  point  P  (p,  6)  describes  the  parabola 
from  infinity  to  B. 

IT 

When  6  increases  from  —  to  tt, 

then  cos  0  decreases  from  0  to  —  1, 

1  —  cos  0  increases  from  1  to  2, 

p  decreases  from  jo  to  ̂ > 

and   the  point  P(p,  B)   describes  the  parabola  from  B  to  the 
vertex  O. 
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On  account  of  the  symmetry  with  respect  to  the  axis,  when 

0  increases  from  tt  to  —^  ?  P  (p,  6)  describes  the  parabola  from  0 

to  B',  and  when  0  increases  from  -— -  to  2  tt,  from  B'  to  infinity. 

When  e  <  1  the  conic  is  called  an  ellipse,  and  when  e  >  1, 

an  hyperbola.  The  points  of  similarity  and  difference  in  these 

curves  are  brought  out  by  considering  them  simultaneously. 

The  ellipse,  e  <  1 . 

1.  For  ̂   =  0  p  = 

ep 

P- 

1-e  1 -e 

As  e  <  1,  the  denominator,  and  hence 

p,  is  positive,  so  that  we  obtain  a  point 
A  on  the  ellipse  to  the  right  of  F. 

e    ■> As  — ■  =  1  when  e<l,  according  as  e 

>  1      ̂"
'  ̂ ^  - »  then  FA  may  be  greater,  equal  to,  or 

less  than  FH. 

The  hyperbola,  e  >  1. 

1.  For  ̂   =  0  p  = 

ep 

P- 

1-e  1-e 

As  e  >  1,  the  denominator,  and  hence 

p,  is  negative,  so  that  we  obtain  a 
point  A  on  the  hyperbola  to  the  left 
of  F. 

As    >1  (numerically)  when  e>l, 1-e 

then  p  >^ ;  so  A  lies  to  the  left  of  H. 

ep 

ep 

p.    pis 
ror^  =  ;rp  =  — ^—  =   p.    pis  For^=:7rp  = 

1  +  e      1  +  e  1  +  e      1  +  e 

positive,  and  hence  we  obtain  a  point  positive,  and  hence  we  obtain  a  sec- 

A'  to  the  left  of  F.  ond  point  A'  to  the  left  of  F. 

As    <1,  then  p<p:    so  ̂ '  lies 1  +  e 
between  H  and  F. 

A  and  A^  are  called  the  vertices  of 
the  ellipse. 

As    <1,   then  p<p;    so   A'   lies 1  +  e 

between  H  and  F. 

A  and  A'  are  called  the  vertices  of 

the  hyperbola. 
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The  ellipse^  e  <  1. 

2.  p  becomes  infinite  if 

1  —  e  cos  ̂   =  0, 

or  cos  ̂   =  -  • e 

As  c<l,  then  ->1;   and  hence e 
there  are  no  values  of  6  for  which 

p  becomes  infinite. 

3.  When 

6  increases  from  0  to  — , 2 

then        cos  6  decreases  from  1  to  0, 

The  hyperbola^  e  >  1. 

2.  p  becomes  infinite  if 
1  —  e  cos  ̂   =  0, 

or  cos  ̂   =  -  • e 

As  Ol,  then  -<1;  and  hence e 
there  are  two  values  of  6  for  which 

p  becomes  infinite. 

3.  When 

(> 
d  increases  from  0  to  cos-i  t  -  i» 

e> 

then  cos  d  decreases  from  1  to  - , e 

1  —  e  cos  ̂   increases  from  1  —  e  to  1 ;       1  —  e  cos  ̂   increases  from  1  —  e  to  0 ; 
ej) 

hence      p  decreases  from  to  ep, 
1  —  e 

and  P  (p,  0)  describes  the  ellipse  from 
^toC. 

When  6  increases  from  -  to  it. 
2 

then  cos  6  decreases  from  0  to  —  1, 

1  —  e  cos  ̂   increases  from  1  to  1  +  6 ; 

hence       p  decreases  from  ep  to  — ^-— , 1  +  e 

and  P  (jO,  e)  describes  the  ellipse  from 

C  to  A'. 
The  rest  of  the  ellipse,  A'C'A, 

may  be  obtained  from  the  symmetry 
with  respect  to  the  principal  axis. 

The  ellipse  is  a  closed  curve. 

ep 

hence     p  decreases  from   to  —  oo, 
1  — e 

and  P  (/o,  6)  describes  the  lower  half 
of  the  left-hand  branch  from  A  to infinity. 

When 

6  increases  from  cos-  ̂   (  -  )  to  — » \e/      2 

then      cos  6  decreases  from  -  to  0, 
e 

1  —  e  cos  6  increases  from  0  to  1 ; 
hence  p  decreases  from  oo  to  ep* 

and  P  (/9,  d)  describes  the  upper  part  of 

the  right-hand  branch  from  infinity] 
toC. 

It 

When  Q  increases  from  —  to  it. 
2 

then  cos  d  decreases  from  0  to  —  1, 

1  —  e  cos  ̂   increases  from  1  to  1  +  e ; ' 
hence       p  decreases  from  ep  to 

ep 

1  +  e
' 

and  P  (p,  e)  descr
ibes 

 
the  hyper

bola 

from  C  to  A'. 
The  rest  of  the  hyperbola,  A'C 

to  infinity  and  infinity  to  -4,  may  be 

obtained  from  the  symmetry  with 

respect  to  the  principal  axis. 
The  hyperbola  has  two  i7ifinUe 

branches. 
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PROBLEMS 

1 .  Plot  and  discuss  the  following  conies.     Find  e  and  p,  and  draw  the 
focus  and  directrix  of  each. 

(a)  p 

(c)  p  = 

{d)  p  = 

cos  6 

2 

•? 

I  —  i  cos  6 

_8   

2cos^*
 

_5   

2cos^ t> 

\^/    H 

3- 

-cos^ 

(i)  P 6 

2- 

-  3  cos  0 

(g)  P 

2 
 ■ 

2- 

-  cos  6 

m  p 

12 

3- 

-  4  cos  ̂  

f 

r 

2.  Transform  the  equations  in  problem  1  into  rectangular  coordinates, 

simplify  by  the  Rule  on  p.  165,  and  discuss  the  resulting  equations.  Find 
the  coordinates  of  the  focus  and  the  equation  of  the  directrix  in  the  new 

variables.  Plot  the  locus  of  each  equation,  its  focus,  and  directrix  on  the 
new  axes. 

Ans.   (a)  2/2  _  4  a;,  (i,  0),  x  =  -l.      p 

(•^^-^-•(-i-)' T"        "J 

aj2      ̂ /2 

(d)  2/2  =  5x,  (1,0),  x=- 3 

16 

^  =  --3' 

_4 

~  s' 

a;2         y2       ̂       /18     ̂ \ 

(h)^.-J^  =  l,  (18,0),  x  =  ̂. ^     ̂    J.296  144  '     V   7  /  7 

3.  Transform  (I)  into  rectangular  coordinates,  simplify,  and  find  the  coor- 

dinates of  the  focus  and  the  equation  of  the  directrix  in  the  new  rectangular 

coordinates  if  (a)  e  =  1,  (b)  e^l. 

Ans.  (a)  2/2  =  2i>x,  (|,  o),  ̂=-| 

X^  ,/2 
(b) 

e2p2 (1  -  e2)2      1 

_lL  =  i    ("        ̂ ^      oV 
e2»2         '  \      1  -e2'     / 
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4.  Derive  the  equation  of  a  conic  section  when  (a)  the  focus  lies  to  the 

left  of  the  directrix  j  (b)  the  polar  axis  is  parallel  to  the  directrix. 
Ans.  (a)  p 

ep 

;  (b)  P  = 

ep 

1  +  c  cos  e  1  —  e  sin  5 

5.  Plot  and  discuss  the  following  conies.     Find  e  and  p,  and  draw  thoj 
directrix  of  each. 

8  .  .  7 

(a)  p  = 

(b)  p  = 

1  +  cos  e 
6 

sin^ 
{c)  p  = 

id)  p  = 

3  +  10  cos  d 
5 

3  -  sin  0 

73.  Transformation  to  rectangular  coordinates. 

Theorem  II.    If  the  or  if/In  is  the  focus  and  the  X-axis  the  princi-  ̂  
pal  axis  of  a  conic  section,  then  its  equation  is 

(II)  (1  -  e^)  ̂2  4. 2/2  _  2  e^px  -  eY  =  0, 

where  e  is  the  eccentricity  and  x  =  —  p  is  the  equation  of  the 
directrix. 

Proof    Clearing  fractions  in  (I),  p.  173,  we  obtain 

p  —  ep  cos  0  z=  ep. 

Set  p  —  ±  Va;2  -f-  y^  ̂ nd  p  cos  ̂   =  ic  (p.  155).     This  gives 

±  Va;2  -}-  2/2  _  ex  =  ep, 

or  ±  Va;2  -|-  y^  =  ex  +  ep. 

Squaring  and  collecting  like  powers  of  x  and  y,  we  have  the 

required  equation.  Since  the  directrix  DD  (Fig.,  p.  173)  lies  p 

units  to  the  left  of  F  its  equation  is  a*  =  —p.  q.e.d. 

74.  Simplification  and  discussion  of  the  equation  in  rectangu- 
lar coordinates.     The  parabola, e  =  1. 

When  6  =  1,  (II)  becomes 

2/2  _  2px  —  p^  =  0. 

Applying  the  Rule  on  p.  165,  we  substitute 

(1)  x  =  x'  +  h,  y  =  y'  +  k, 
obtaining 

(2)  y'2  _  2px'  -1-  2  %'  -f  A:'  -2ph-p''  =  0. 
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Set  the  coefficient  of  3/'  and  the  constant  term  equal  to  zero 
and  solve  for  h  and  k.     This  gives 

(3) 

h=- 

2'
 

k  =  0. 

Substituting  these  values  in  (2)  and  dropping  primes,  the  equa- 

tion of  the  parabola  becomes  y^  =  2iix. 
From  (3)  we  see  that  the  origin  has  been 

removed  from  F  to  0,  the  vertex  of  the    ̂   r 

parabola.     It  is  easily  seen  that  the  new      1 

coordinates  of  the  focus  are  ( ̂  >  0  j ,  and    x' 

the    new   equation    of    the    directrix    is 

03=  —  ̂.    Hence 

Theorem  III.    If  the  origin  is  the  vertex  and  the  X-axis  the  axis 
of  a  parabola,  then  its  equation  is 

(III)  2/2  _  2pQC. 

The  focus  is  the  point  I—,  0  Jj  and  the  equation  of  the  directrix 
P  V    / 

tsx  =  --. 

A  general  discussion  of  (III)  gives  us  the  following  properties  of  the 
parabola  in  addition  to  tliose  already  obtained 

(p.  174). 
1.  It  passes  through  the  origin  but  does  not  cut 

the  axes  elsewhere. 

2.  Values  of  x  having  the  sign  opposite  to  that 
X    of  p  are  to  be  exchided  (Kule,  p.  73).     Hence  the 

curve  lies  to  the  right  of  YY'  when  p  is  positive  and 
to  the  left  when  p  is  negative. 

3.  No  values  of  y  are  to  be  excluded ;  hence  the 
curve  extends  indefinitely  up  and  down. 

Theorem  IV.    If  the  origin  is  the  vertex  and  the  Y-axis  the  axis 
of  a  parabola,  then  its  equation  is 

(IV) a?2  =  2py. 
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The  focus  is  the  point 

point  ̂ 0,|j 
and  the  equation  of  the  directrix 

\ 

Y' 
[     / 

\ 
^ 

'h/ 

X'
 

0 <-!  X 
D y D 

p 

Proof  Transform  (III)  by  rotating  the 

axes  through  — 

give  us  for  0  = 

TT 
Equations  (II),  p.  162, 

X\ 'y-i 

D D 

X'
 

^0
 

\     X 

l/=z—x'. 
Substituting  in  (III)  and  dropping  primes,  we  obtain  x^  =  2py. 

Q.E.D. After  rotating  the  axes  the  whole  figure  is 

turned  through  —  in  the  positive  direction. 2 

The  parabola  lies  above  or  below  the  X-axis 
according  as  p  is  positive  or  negative. 

Equations  (III)  and  (IV)  are  called 

the  typical  forms  of  the  equation  of  the 

parabola. 
Equations  of  the  forms 

Ax^  +  %  =  0  and  Cy^  +  Dx 

where  A,  E,  Cj  and  D  are  different  from  zero,  may,  by  transpo- 
sition and  division,  be  written  in  one 

^   of  the  typical  forms  (III)  or  (IV), 
^    so  that  in  each  case  the  locus  is  a 

0, 

^1 

D 

v- 

0 

X' 

/^ 

.-' 

^ 

"N 

/ 

^(i 

\-i. 

\ 
/ \ 
/ \ ' 

\ 1 \ 
y 

-    parabola. 

Ex.  1.    Plot  the  locus  of  x2  -I-  4  y  =  0  and 
find  the  focus  and  directrix. 

Solution.    The  given  equation  may  be 
written x^  =  -iy. 

Comparing  with  (TV),  the  locus  is  seen  to  be  a  parabola  for  which  p  =  —  2. 
Its  focus  is  thorefore  the  point  (0,  —  1)  and  its  directrix  the  line  y  =  1. 

Ex.  2.    Find  the  equation  of  the  parabola  whose  vertex  is  the  point  O* 
(3,  —  2)  and  whose  directrix  is  parallel  to  the  F-axis,  if  p  =  3. 
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Solution.    Kef  erred  to  O'X'  and  O'Y'  as  axes,  the  equation  of  the  parabola 
is  (Theorem  III) 

(4)  y'^  =  6x\ 
The  equation  for  translating  the  axes  from 

Oto  (y  are  (Theorem  I,  p.  160) 

X  =  x'  +  3,  y  =  y'  -2, whence 

(5)  X'  =  X  -  3,  y'  =  y  +  2. 
Substituting  in  (4),  we  obtain  as  the  re- 

quired equation 

(2/  +  2)2  =  6(x-3), 

or  y2_6x  +  4?/  +  22  =  0. 

Referred  to  O'X'  and  0'Y\  the  coordinates 
of  F  are  (Theorem  III)  (|,  0)  and  the  equa- 

tion of  BD  is  x'  =  —  |.     By  (5)  we  see  that, 

r|f 
yW 

^ 

/ / 
/ 

■w 

0 \ 
F 

0' 

2) 

X 

\ \ 

s. 

X 

D 

referred  to  OX  and  OF,  the  coordinates  of  i^'are  (|, 
of  DD  is  X  =  f . 

2)  and  the  equation 

PROBLEMS 

1.  Plot  the  locus  of  the  following  equations.     Draw  the  focus  and  direc- 
trix in  each  case. 

(a)  2/2  =  4x.  *       (d)  y2_6x  =  0. 
(b)  1/2  +  4a.  =  0.  (e)  x2  +  10 y  =  0. 

(c)  x2  -  8  y  1=  0.  (f)  2/2  +  X  =  0. 

2.  If  the  directrix  is  parallel  to  the  F-axis,  find  the  equation  of  the 
parabola  for  which 

(a)  j9  =  6,  if  the  vertex  is  (3,  4). 

(b)  p  =  -  4,  if  the  vertex  is  (2,  -  3). 

(c)  p  =  6,  if  the  vertex  is  (—5,  7). 

(d)  p  =  4,  if  the  vertex  is  (^,  k). 

3.  The  chord  through  the  focus  perpendicular  to  the  axis  is  called  the  latus 

rectum.      Find  the  length  of  the  latus  rectum  of  2/2  =  2  px.  Ans.    2  p. 

4.  What  is  the  equation  of  the  parabola  whose  axis  is  parallel  to  the  axis 

of  y  and  whose  vertex  is  the  point  (or,  /S)  ?        Ans.    {x  —  a)^  =  2p{y  —  p). 

5.  Transform  to  polar  coordinates  and  discuss  the  resulting  equations 

(a)  2/2  =  2  px,  (b)  x2  =  2p2/- 

6.  Prove  that  the  abscissas  of  two  points  on  the  parabola  (III)  are  propor- 
tional to  the  squares  of  the  ordinates  of  those  points. 

Ans.  (2/-4)2  =  12(x-3). 

Ans.  (2/  +  3)2  =  -8(x-2). 

Ans.  (2/-7)2  =  16(x  +  5). 

Ans.  (2/-fc)2  =  8(x-  h). 
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75.  Simplification  and  discussion  of  the  equation  in  rectan- 
gular coordinates.  Central  conies,  e%l.  When  e ^  1,  equation 

(II),  p.  178,  is 
(1  -  e^)x^  +  2/^-2  e^px  -  eY  =  0. 

To  simplify  (Rule,  p.  165),  set 

(1)  x  =  x'  +  h,  y  =  i/'  -\-  k, 
which  gives 

(2)      (1  -  e2)ic'2  +  2/"  +  2  h  (1  -  e^) -  2  e^p 

Setting  the  coefficients  of  x'  and  y'  equal  to  zero  gives 

2h(l-  e")  -2e''p  =  0,  2k  =  0, 

a;'  +  2%'  +  (l-e'^)A2 

+  k^ 

-  2  e'ph 

-eY 

whence 

(3) 

e^p 

=  0. 

k  =  0. 

Substituting  in  (2)  and  dropping  primes,  we  obtain 

(l_,.)^.+y._^^  =  0, 

or 

(4) 

eV 

+ 

(1  -  ey 

1-e- jL 
1. 

This  is  obtained  by  transposing  the  constant  term,  dividing  by  it,  and  then 
dividing  numerator  and  denominator  of  the  first  fraction  by  1  —  c^. 

The  ellipse^  e  <  1. The  hyperbola^  e  >  1. 

From  (3)  it  is  seen  that  h  is  posi-  From  (3)  it  is  seen  that  h  is  nega- 
tive when  e  <  1.     Hence  the  new  ori-      live  when  e  >  1,     Hence  the  new  ori- 

gin 0  lies  to  the  right  of  the  focus  F.      gin  O  lies  to  the  left  of  the  focus  F. 

Further, 

e2
 

>  1  numerically,  so 

l-e2 h>p  numerically ;  and  hence  the 
new  origin  lies  to  the  left  of  the 
directrix  DD. 
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The  locus  of  (4)  is  symmetrical  with  respect  to  YY'  (Theorem 

V,  p.  73).     Hence  0  is  the  middle  point  of  A  A'.     Construct  in 

D 

Y' 

d'
 

E 

—-f-^^ 

B 

^^'
 

E'
 

t^^ 

( 
1 \ \ 

A"
 

^\ 

>        0 

F' 

y X 

D 

Y 

^ 
^ 

D'
 

either  figure  F'  and  Z)'i)'  symmetrical  respectively  to  F  and  BB 
with  respect  to  YY\  Then  F^  and  i)'Z)'  are  a  new  focus  and 
directrix. 

For  let  P  and  P'  be  two  points  on  the  curve,  symmetrical  with  respect  to  YY'. 
Then  from  the  symmetry  PF  =  P'F'  and  PE  =  P'E'.    But  since,  by  definition, 
PF  P'F' 
-z=—  =  e,  then  =  e.    Hence  the  same  conic  is  traced  by  P',  using  F'  as  focus FE  F  Ml 

and  D'D'  as  directrix,  as  is  traced  by  P,  using  F  as  focus  and  DD  as  directrix. 

Since  the  locus  of  (4)  is  symmetrical  with  respect  to  the  origin 

(Theorem  V,  p.  73),  it  is  called  a  central  conic,  and  the  center  of 

symmetry  is  called  the  center.  Hence  a  central  conic  has  two  foci 
and  two  directrices. 

The  coordinates  of  the  focus  F  in  either  figure  are 

e'^p 

(-A'») 
1-e' For  the  old  coordinates  of  F  were  (0,  0).    Substituting  in  (1),  the  new  coordi- 

nates are  x  =  —  h,  ?/'  =  —  k,  or,  from  (3),  (   —,  0  )• V       1  —  e2      / 

The  coordinates  of  F'  are  therefore 

e^p 

1-e^ The  new  equation  of  the  directrix  DD  is  x  = 

0  . 
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l-e2 

y  =  y\     Substituting  in  x  =  —p 

(Theorem  II)  and  dropping  primes,  we  obtain  a  =  —     ̂ ^- 
p 

Hence  the  equation  of  D'D'  is  sc  =  ̂   _   2' 
We  thus  have  the 

Lemma.    I'he  equation  of  a  central  conic  whose  center  is  the  origin 
and  whose  principal  axis  is  the  X-axis  is 

(4) 

e^p^ 

+ 

e^p^ 

=  1. 

(1  _  ey      l-e" 

Its  foci  are  the  points    (  ±  z   $'  0  1 

and  its  directrices  are  the  lines  a;  =  ± 

The  ellipse,  e  <  1. 
For  convenience  set 

P 

1-e^ The  hyperbola,  e  >  1. 
For  convenience  set 

2  e2p         (6) 

l-e2 
a  = 

I_e2'  i_e2'  l-e2 

a*  and  6*  are  the  denominators  in  (4)  a^  and  -  6*  are  the  denominators  in  (4) 
and  c  is  the  abscissa  of  one  focus.    Since       and  c  is  the  abscissa  of  one  focus.    Since 

e<l,  l-e^  is  positive;   and  hence  a,  b^,       e>l,  l-e^  is  negative;  and  hence  a,  6*,  and 
and  c  are  positive. 

We  have  at  once 

c  are  positive. 

We  have  at  once 

a2  -  62  = :2«2 

e^p 

€^p^ (1  -  e2)2      1  -  e2 

e*j)2 
(1  -  e2)2 

a2  +  62  = 

i2-n2 

e-'p- 

=  C" 

e2pg 
(1  -  e2)2      1  -  e2 

e*p2 2r.2 

e^p 
e2p 

P 
and 

c  ~  (1  -  e2)2      1  -  e2      1  -  e2 
Hence  the  directrices  (Lemma)  are 

(j2 

the  lines  x  =  ±  —  • c 

By  substitution  from  (5)  in  (4)  we 
obtain 

x2  ,  y2 

(1  -  e2)2 

e2p 

=  C2 

r-c2 

62 

=  L 

and 
(j2  ̂         e2p2   

7  ~  (1  -  e2)2  ̂  ~  r Hence  the  directrices  (Lemma)  are 

a2
 

the
  

lin
es 

 
x  =  ±—

' 
c 

By  substitution  from  (6)  in  (4)  we 
obtain 

»a2      62 
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The  ellipse^  e  <  1. 

The  intercepts  are  x  =  ±  a  and 

y  =  ±h.  AA'  =  2  a  is  called  the 

major  axis  and  BB'  =  26  the  minor 
axis.  Since  a2  —  62  =  ̂ 2  ig  positive, 
then  a  >  6,  and  the  major  axis  is 

greater  than  the  minor  axis. 

r> 

D 

1 

/
^
 

B 

D' 

X' 
A F 

V 
0 
^_.c-Jf'  JA 1 

.  D 

V 

Y 

F^f- 

— > 

J)'
 

Hence  we  may  restate  the  Lemma 
as  follows. 

Theorem  V,  The  equation  of  an 
ellipse  whose  center  is  the  origin  and 

whose  foci  are  on  the  X-axis  is 

(V) 
^'  a.  ̂  -  1 

a2  +  62  -  ̂
' 

where  2  a  is  the  major  axis  and  2  6  the 

minor  axis.    If  c^=ia^  —  b^,  then  the 
foci  are  (±  c,  0)  and  the  directrices 

.  ̂2
 

are  x  =  ±—-
 

c 

Equations  (5)  also  enable  us  to 
express  e  and  p,  the  constants  of  (I), 

p.  173,  in  terms  of  a,  6,  and  c,  the 
constants  of  (V).     For 

The  hyperbola,  e  >  1. 

The  intercepts  are  x  =  ±a,  but  the 

hyperbola  does  not  cut  the  Z-axis. 
AA^  =  2a  is  called  the  transverse 

axis  and  BB'  =  2b  the  conjugate axis. 

Hence  we  may  restate  the  Lemma 
as  follows. 

Theorem  VI.  The  equation  of  an 

hyperbola  whose  center  is  the  origin 

and  whose  foci  are  on  the  X-axis  is 

oc^ 

r 

where  2  a  is  the  transverse  axis  and  2b 

the  conjugate  axis.  If  c^z=a^-\-  h^, 
then  the  foci  are  (±  c,  0)  and  the 

directrices  are  x  =  ±—' c 

Equations  (6)  also  enable  us  to 
express  e  and  p,  the  constants  of  (I), 

p.  173,  in  terms  of  a,  6,  and  c,  the 
constants  of  (VI).     For 

=  e 

(7) 
c        e2p     .      ep     _  ̂ 

a~l-e2  ■  i-e2~^ 
.3.   c            e^p     .         ep ^^^- a-     l-e2-      l-e2 

and and 

(9) 
62  _    e2p2          e2p 

^    '    c          l-e2         l-e2 
c  ~l-e2  ■  i_e2~^' 

=p. 
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The  ellipse,  e<l. 

In  the  figure  OB  =  b,  OF"  =  c\ 
and  since  c^  =  cfi  -  b^,  then  BF'  =  a. 
Hence  to  draw  the  foci,  with  B  as  a 
center  and  radius  OA,  describe  arcs 

cutting  XX'  at  F  and  F'.  Then  F 
and  F'  are  the  foci. 

If  a  =  6,  then  (V)  becomes 

x2  +  y2  =  a2^ 

whose  locus  is  a  circle. 

Tra"nsform   (V)    by    rotating   the 
It 

axes  through  an  angle  of   (Theo- 2 

rem  II,  p.  162).     We  obtain 

Theorem  VII.  The  equation  of  an 

elUjose  whose  center  is  the  origin  and 

whose  foci  are  on  the  Y-axis  is 

(VII) 

a''  ,  ̂'  -  1 

The  hyperbola,  e  >  1. 

In  the  figure  OB  =  b,  OA'  =  a ; 

and  since  c^  =  a^  +  b'^,  then  BA'  =  c. 
Hence  to  draw  the  foci,  with  O  as  a 

center  and  radius  BA',  describe  arcs 

cutting  XX'  at  F  and  F\  Then  F 
and  F'  are  the  foci. 

If  a  =  6,  then  (VI)  becomes 
x2  -  y2  =  a2^ 

whose  locus  is  called  an  equilateral 

hyperbola. Transform  (VI)  by  rotating  the 

axes  through  an  angle  of   (Theo- 2 

rem  II,  p.  162).     We  obtain 

Theorem  Vin.  The  equation  of  an 

hyperbola  whose  center  is  the  origin 

and  whose  foci  are  on  the  Y-axis  is 

(VIII)      —  ̂  +  ?^  =  1, 
^        '  &2^a2 

where  2 a  is  the  major  axis  and  2 bis 

the  minor  axis.  If  c^  =  a^  —  b^,  the 
foci  are  (0,  ±  c)  and  the  directrices 

are  the  lines  y  =  ±  —  • c 

J) 

h 

f\ 

X'
 

B     b     0 

£' 

X 

D' 

A 

D' 

where  2  a  is  the  transverse  axis  and  2  b 

is  the  conjugate  axis.    If  c^  =  a^-\-  6^, 
the  foci  are  (0,  ±  c)  and  the  directrices 

a^ 

are
  

the
  
lin

es 
 
y  =  ±—

- 
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I 

The  ellipse^  e  <  1. 

The  essential  difference  between 

(V)  and  (VII)  is  that  in  (V)  the  de- 
nominator of  x2  is  larger  than  that 

of  1/2,  while  in  (VII)  the  denominator 
of  y^  is  the  larger.  (V)  and  (VII) 
are  called  the  typical  forms  of  the 

equation  of  an  ellipse. 

The  hyperbola,  e  >  1. 

The  essential  difference  between 

(VI)  and  (VIII)  is  that  the  coeffi- 
cient of  y^  is  negative  in  (VI),  while 

in  (VIII)  the  coefficient  of  x^  is  nega- 
tive. (VI)  and  (VIII)  are  called  the 

typical  forms  of  the  equation  of  an 

hyperbola. 

An  equation  of  the  form 

Ax^  -i-Ci/  +  F=0, 

where  A,  C,  and  F  are  all  different  from  zero,  may  always  be 
written  in  the  form 

(11) 
x^    r 
or        /8 

By  transposing  the  constant  term  and  then  dividing  by  it,  and  dividing 
numerator  and  denominator  of  the  resulting  fractions  by  A  and  C  respectively. 

The  locus  of  this  equation  ivUl  be 

1.  An  ellipse  if  a  and  /3  are  both  positive,  a^  will  be  equal  to 

the  larger  denominator  and  b^  to  the  smaller. 

2.  An  hyperbola  if  a  and  (3  have  opposite  signs,  a^  will  be 

equal  to  the  positive  denominator  and  b^  to  the  negative  denomi- 
nator. 

3.  If  a  and  fi  are  both  negative,  (11)  will  have  no  locv^. 

Ex.  1.    Find  the  axes,    foci,   directrices,  and 

eccentricity  of  the  ellipse  4  x^  +  y2  _  \q^ 

Solution.    Dividing  by  16,  we  obtain 

^4-^  =  1 
4       16 

The  second  denominator  is  the  larger.     By 

comparison  with  (VII), 

62  =  4,  a2  =  16,  c2  =  16  -  4  =  12. 

Hence  6  =  2,        a  =  4,       c  =  Vl2. 

The  positive  sign  only  is  used  when  we  extract  the 
square  root,  because  a,  b,  and  c  are  essentially  positive. 

Y ' 

, 
JJ D 

A 

Z'
 

> 
\ 
\ 

B 

B'
 

X'
 

0 X 

\ 1 

\ / s 

'. 
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■:a 

n  '
 

-n 

y 
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Hence  the  major  axis  AA'  =  8,  the  minor  axis  BB'  =  4,  the  foci  F  and  F* 
are  the  points  (0,  ±  Vl2),  and  the  equations  of  the  directrices  JJJJ  and  1/1/ 

a2  16  4    ̂  
are  2/  =  ±  —  =  ±  —;=  =  ±  «  ̂12. 

c  yi2  3 
VT2  4         1 

From  (7)  and  (9),  e  =  -—  and  p  =  ——  -  -  Vl2. 

PROBLEMS 

1.  Plot  the  loci,  directrices,  and  foci  of  the  following  equations  and  find 
e  and  p. 

(a)  x2  +  9y2  =  81.  (e)  92/2-4x2  =  36. 
(b)  9  x2  -  16  2/2  =  144.  (f )  x2  -  2/2  =  25. 

(c)  16  x2  +  2/2  =  25.  (g)  4  x2  -f  7  2/2  =  13. 

(d)  4x2  +  92,2  =  36.  (h)  5x2  -  32/2  =  14. 

2.  Find  the  equation  of  the  ellipse  whose  center  is  the  origin  and  whose 

foci  are  on  the  X-axis  if 

(a)  a  =  5,  6  =  3.  A-m.  9  x2  +  25  2/2  =  226. 
(b)  a  =  Q,  e  =  \.  Ans.  32  x2  +  36  2/2  =  1152. 
(c)  6  =  4,  c  =  3.  Ans.  16  x2  +  25  2/2  =  400. 

(d)  c  =  8,  e  =  %.  An&.  5x2  +  9 2/2  =  720, 

3.  Find  the  equation  of  the  hyperbola  whose  center  is  the  origin  and 

whose  foci  are  on  the  X-axis  if 

(a)  a  =  3,  6  =  5.  An^.  25 x2  -  92/2  =  225. 
(b)a  =  4,  c  =  5.  .4ns.  9x2-16  2/2  =  144. 

(c)  e  =  f ,  a  =  5.  ^ws.  5x2  -  4 2/2  =  125. 

(d)  c  =  8,  e  =  4.  ^ns.  15  x2  -  y2  _  go. 

4.  Show  that  the  latus  rectum  (chord  through  the  focus  perpendicular  to 

2  62 

the  princip
al  

axis)  of  the  ellipse 
 
and  hyperb

ola  
is  — a 

6.  What  is  the  eccentricity  of  an  equilateral  hyperbola  ?        An&.    \^. 

6.  Transform  (V)  and  (VI)  to  polar  coordinates  and  discuss  the  resulting 

equations. 

7.  Where  are  the  foci  and  directrices  of  the  circle  ? 

8.  What  are  the  equations  of  the  ellipse  and  hyperbola  whose  centers 

are  the  point  (or,  /3)  and  whose  principal  axes  are  parallel  to  the  X-axis? 

Ans     ̂ ^  ~  ̂^'  +  (y  -  ̂)'  =  1  .  (^  -  ̂ y  _  (y  -  ̂)''  _  1 
a?  62  '       a2  62      ■"   ' 
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76.  Conjugate  hyperbolas  and  asymptotes.  Two  hyperbolas 

are  called  conjugate  hyperbolas  if  the  transverse  and  conjugate 

axes  of  one  are  respectively  the  conjugate  and  transverse  axes  of 

the  other.  They  will  have  the  same  center  and  their  principal 

axes  (p.  173)  will  be  perpendicular. 

If  the  equation  of  an  hyperbola  is  given  in  typical  form,  then 

tlie  equation  of  the  conjugate  hyperbola  is  found  bij  changing  the 

signs  of  the  coefficients  of  x^  and  y'^  in  the  given  equation. 
For  if  one  equation  be  written  in  the  form  (VI)  and  the  other  in  the  form  (VIII), 

then  the  positive  denominator  of  either  is  numerically  the  same  as  the  negative 
denominator  of  the  other.  Hence  the  transverse  axis  of  either  is  the  conjugate 
axis  of  the  other. 

Thus  the  loci  of  the  equations 

(1)  16x2  _  2/2  =  16  and  -lQx^  +  y^=  16 

are  conjugate  hyperbolas.    They  may  be  written 

a.2      y2  a.2      y2 ___  =  !, ,d--  +  -  =  l. 

The  foci  of  the  first  are  on  the  X-axis,  those  of  the  second  on  the  F-axis.  The 

transverse  axis  of  the  first  and  the  conjugate  axis  of  the  second  "are  equal  to  2, while  the  conjugate  axis  of  the  first  and  the  transverse  axis  of  the  second  are 
equal  to  8. 

The  foci  of  two  conjugate  hyperbolas  are  equally  distant  from 

the  origin. 

For  c2  (Theorems  VI  and  VIII)  equals  the  sum  of  the  squares  of  the  semi- 
transverse  and  semi-conjugate  axes,  and  that  sum  is  the  same  for  two  conjugate 
hyperbolas. 

Thus  in  the  first  of  the  hyperbolas  above  c^  =  1  + 16,  while  in  the  second 
c2  =  16  + 1. 

If  in  one  of  the  typical  forms  of  the  equation  of  an  hyperbola 

we  replace  the  constant  term  by  zero,  then  the  locus  of  the  new 

equation  is  a  pair  of  lines  (Theorem,  p.  QQ)  which  are  called  the 

asymptotes  of  the  hyperbola. 

Thus  the  asymptotes  of  the  hyperbola 

(2)  &2^2  _  ̂ 2^2  ̂   ̂ 2^2 

are  the  lines 

(3)  ^2^2  _  ^2^2  ̂   0, 
or 

(4)  hx  -{-  ay  =  0  and  bx  —  ay  =  0. 
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Both  of  these  lines  pass  throii^^h  the  origin,  and  their  slopes  are  respectively 

(5)  -^and^. 

An  important  property  of  the  asymptotes  is  given  by 

Theorem  IX.  TJie  branches  of  the  hyperbola  approach  its  asymp- 
totes as  they  recede  to  infinity. 

Proof.  Let  I\  (o-i,  y^)  be  a  point  on  either  branch  of  (2)  nea? 
the  first  of  the  asymptotes  (4).  The  distance  from  this  line  to 

1\  (Fig.,  p.  191)  is  (Kule,  p.  106) 

(6) 
^  ̂    bx^  +  ay^ 

Since  Pi  lies  on  (2),    b'^x^^  -  ahji"  =  a^'b^ 

Factoring,  bxi  +  ay^ 

Substituting  in  (6),     d 

bx^  —  ay^ 

a%^ 

-^■V¥+a\bxi-ayi) 

As  Pi  recedes  to  infinity,  Xi  and  ?/i  become  infinite  and  d 

approaches  zero. 

For  6*1  and  api  cannot  cancel,  since  ̂ i  and  yi  have  opposite  signs  in  the  second 
and  fourth  quadrants. 

Hence  the  curve  approaches  closer  and  closer  to  its  asymptotes. 

Q.E.D. Two  conjugate  hyperbolas  have  the  same  asymptotes. 

For  if  we  replace  the  constant  term  in  both  equations  by  zero,  the  resulting 
equations  differ  only  in  form  and  hence  have  the  same  loci. 

Thus  the  asymptotes  of  the  conjugate  hyperbolas  (1)  are  respectively  the  loci  of 

16x2-y^=0  and  -16z^  +  y^=0, 
which  are  the  same. 

An  hyperbola  may  be  drawn  with  fair  accuracy  by  the  fol- 
lowing 

Construction.  Lay  off  OA  =  OA'  =  a  on  the  axis  on  which  the 

foci  lie,  and  OB  =  OB'  —  b  on  the  other  axis.  Draw  lines  through 

A,  A',  B,  B'  parallel  to  the  axes,  forming  a  rectangle.*    Draw  the 
*  An  ellipse  may  be  drawn  with  fair  accuracy  by  inscribing  it  in  such  a  rectangle. 
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lagonals  of  the  rectangle  and  the  circumscribed  circle.  Draw 
the  branches  of  the 

hyperbola  tangent  to 
the  sides  of  the  rec- 

tangle at  A  and  A' 
and  approaching  nearer 
and  nearer  to  the  di- 

agonals. The  conju- 
gate hyperbola  may 

be  drawn  tangent  to 

the  sides  of  the  rec- 

tangle at  B  and  B' 
and  approaching  the  diagonals.  The  foci  of  both  are  the  points 
in  which  the  circle  cuts  the  axes. 

The  diagonals  will  be  the  asymptotes,  because  two  of  the  vertices  of  the  rec- 
tangle {±  a,  ±  b)  will  lie  on  each  asymptote  (4) .  Half  the  diagonal  will  equal  c, 

the  distance  from  the  origin  to  the  foci,  because  c^=  a^  -\-  b^. 

77.  The  equilateral  hyperbola  referred  to  its  asymptotes.    The  equation 
of  the  equilateral  hyperbola  (p.  186)  is 

(1)  a;2  -  2/2  =  o2 

Its  asymptotes  are  the  lines 

X  —  y  =  0  and  cc  +  y  =  0. 

These  lines  are  perpendicular  (Corollary  III,  p.  87),  and  hence  they  may 
be  used  as  coordinate  axes. 

Theorem  X.    The  equation  of  an  equilateral  hyperbola  referred  to  its  asymp- 
totes is 

(X)  2xy  =  a^. 
Proof.    The  axes  must  be  rotated  through   

to  coincide  with  the  asymptotes. 
Hence  we  substitute  (Theorem  II,  p.  162) 

x'  +  y' x'  +  y' x  =   ^,  y 

V2 

V2 

in  (1).     This  gives 

(x'  +  2/0^      (-x'  +  2/02 
2 

Or,  reducing  and  dropping  primes, 

2  xy  =  a2. 
Q.B.D 
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78.  Focal  property  of  central  conies.  A  line  joining  a  point  on 
a  conic  to  a  focus  is  called  a  focal  radius.  Two  focal  radii,  one  to 
each  focus,  may  evidently  be  drawn  from  any  point  on  a  central 
conic. 

Theorem  XI.  The  sum  of  the  focal 

radii  from  any  point  on  an  ellipse  is 
equal  to  the  major  axis  2  a. 

Theorem  XII.  The  difference  of  the 

focal  radii  from  any  point  on  an 

hyperbola  is  equal  to  the  transverse 

D 
T 

d' 

E 

H 

^^ — r^^ 

r-' 

f ̂ 
^ 
\ 

E 

X' 

jA       F       0 

i"  jA 
X 

D 

t'
 Z'

 

D'
 

Proof.    Let  P  be  any  point  on  the 
ellipse.     By  definition  (p.  173), 

r  =  e •  PE,  r  =  e-  PE\ 

Hence  r  +  /  =  e  {PE  +  PE') 

=  e .  HH'. c 
From  (7),  p.  185,  e  = a 

and  from  the  equations  of  the  direc- 
trices (Theorem  V), 

c      a^ Hence  r  +  r'  =  --2  —  =  2a. a       c 

Q.E.D. 

Proof.    Let  P  be  any  point  on  the 
hyperbola.     By  definition  (p.  173), 

r  =  e-  PE,  r"  =  e-  PE\ 

Hence  r'  ̂   r  =  e  {PE'  -  PE) 

=  e  ■  HH'. 

From  (8),  p.  185,  e=  -, a 

and  from  the  equations  of  the  direc- 
trices (Theorem  VI), 

c                          ^J 

Hence  r'  -  r  =  -  ■  2—  =  2a.    V a       c 

Q.E.D. 79.  Mechanical  construction  of  conies.  Theorems  XI  and  XII  afford  simple 

methods  of  drawing  ellipses  and  hyperbolas.  Place  two  tacks  in  the  drawing 

board  at  the  foci  F  and  F'  and  wind  a  string  about  them  as  indicated. 
If  the  string  be  held  fast  at  A,  and  a  pencil  be  placed  in  the  loop  FPF^ 

and  be  moved  so  as  to  keep  the  string  taut,  then  PF  +  PF'  is  constant  and 
P  describes  an  ellipse.  If  the  major  axis  is  to  be  2  a,  then  the  length  of  the 

loop  FPF'  must  be  2  a. 
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If  the  pencil  be  tied  to  the  string  at  P,  and  both  strings  be  pulled  in  or 

let  out  at  A  at  the  same  time,  then  PF"  —  PF  will  be  constant  and  P  will 
describe  an  hyperbola.  If  the  transverse  axis  is  to  be  2  a,  the  strings  must 

be  adjusted  at  the  start  so  that  the  difference  between  PF'  and  PF  equals  2  a. 

To  describe  a  parabola,  place  a  right  triangle  with  one  leg  EB  on  the 

directrix  DD.  Fasten  one  end  of  a  string  whose  length  is  AE  at  the  focus 
P,  and  the  other  end  to  the  triangle  at  A.  With  a  pencil  at  P  keep  the 

string  taut.  Then  PF  =  PE ;  and  as  the  triangle  is  moved  along  BD  the 
point  P  will  describe  a  parabola. 

PROBLEMS 

1.  Find  the  equations  of  the  asj^mptotes  and  hyperbolas  conjugate  to  the 
following  hyperbolas,  and  plot. 

(a)  4x2  -  2/2  =  36..  (c)  16x2  _  2/2  +  64  =  0. 

(b)  9x2  -  25  2/2  =  100.  (d)  8x2  _  16^2  +  25  =  0. 

2.  Prove  Theorem  IX  for  the  asymptote  which  passes  through  the  first 
and  third  quadrants. 

3.  If  e  and  e'  are  the  eccentricities  of  two  conjugate  hyperbolas,  then 

1  +  1  =  1. 
e2      e'2 

4.  The  distance  from  an  asymptote  of  an  hyperbola  to  its  foci  is  numer- 
ically equal  to  b. 

5.  The  distance  from  a  line  through  a  focus  of  an  hyperbola,  perpen- 
dicular to  an  asymptote,  to  the  center  is  numerically  equal  to  a. 

6.  The  product  of  the  distances  from  the  asymptotes  to  any  point  on  the 
hyperbola  is  constant. 

7.  The  focal  radius  of  a  point  Pi(xi,  2/1)  on  the  parabola  y'^  =  2px  is 
P 
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8.  The  focal  radii  of  a  point  Pi(xi,  ̂ i)  on  tlie  ellipse  Ifix''-  +  a^ys  =  a?-\fi 
are  r  =  a  —  exi  and  t'  —  a  -\-  ex\. 

9.  The  focal  radii  of  a  point  on  the  hyperbola  ft'^^  _  ̂ 12^2  _  ̂ ^252  ̂ re 
r  =  exi  —  a  and  r"  =  exi  +  a  wlien  Pi  is  on  the  right-hand  branch,  or 
r  =  —  exi  —  a  and  r'  =  —  exi  +  a  when  Pi  is  on  the  left-hand  branch. 

10.  The  distance  from  a  point  on  an  equilateral  hyperbola  to  the  center 
is  a  mean  proportional  between  the  focal  radii  of  the  point. 

11.  The  eccentricity  of  an  hyperbola  equals  the  secant  of  the  inclination 
of  one  asymptote. 

80.  Types  of  loci  of  equations  of  the  second  degree.     All  of 

the  equations  of  the  conic  sections  that  we  have  considered  are 

of  the  second  degree.  If  the  axes  be  moved  in  any  manner,  the 

equation  will  still  be  of  the  second  degree  (Theorem  IV,  p.  1G4), 

although  its  form  may  be  altered  considerably.  We  have  now  to 

consider  the  different  possible  forms  of  loci  of  equations  of  the 

second  degree. 

By  Theorem  YI,  p.  169,  the  term  in  xy  may  be  removed  by 

rotating  the  axes.  Hence  we  only  need  to  consider  an  equation 
of  the  form 

(1) Ax^  -\-Cy^-\-Dx  +  Ey  +  F=0. 

It  is  necessary  to  distinguish  two  cases. 
Case     I.    Neither  A  nor  C  is  zero. 

Case  II.    Either  ̂   or  C  is  zero. 

A  and  C  cannot  both  be  zero,  as  then  (1)  would  not  be  of  the  second  degree. 

Case  I 

When  neither  A  nor  C  is  zero,  then  A  =  B^  —  4:  AC  is  not  zero, 
and  hence  (Theorem  VII,  p.  170)  we  can  remove  the  terms  in 

x  and  y  by  translating  the  axes.  Then  (1)  becomes  (Corollary  I, 

p.  171) 

(2)  Ax'""  +  Cy'^  4-  P'  =  0. 

We  distinguish  two  types  of  loci  according  as  A  and  C  have  the 
same  or  different  signs. 
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Elliptic  type,  A  and  C  have  the 
same  sign. 

1.    F'  7^0*    Then    (2)    may    be 

written 

where    a  =   A 

Hence,  if  the  sign  of  F'  is  different 
from  that  of  A  and  C,  the  locus  is  an 

ellipse;  but  if  the  sign  of  F'  is  the 
same  as  that  of  A  and  C,  there  is  no 
locus. 

2.  F'  =  0,  The  locus  is  a  point. 
It  may  be  regarded  as  an  ellipse 
whose  axes  are  zero  and  it  is  called 

a  degenerate  ellipse. 

Hyperbolic  type,  A  and  C  have  dif- 
ferent signs. 

1.  F'  7^0.*    Then    (2)    may    be 

x2      w2 written    f-  —  =  1, a       |8 

where    a  =   ,  3  =   A^  C 

Hence  the  locus  is  an  hyperbola  whose 

foci  are  on  the  F-axis  if  the  signs  of 

F'  and  A  are  the  same,  or  on  the 

X-axis  if  the  signs  of  F'  and  C  are 
the  same. 

2.  F'  =  0.  The  locus  is  a  pair  of 
intersecting  lines.  It  may  be  regarded 

as  an  hyperbola  whose  axes  are  zero 
and  it  is  called  a  degenerate  hyperbola. 

Case  II 

When  either  ̂   or  C  is  zero  the  locus  is  said  to  belong  to  the 

parabolic  type.  We  can  always  suppose  ̂   =  0  and  C  =?^  0,  so  that 

(1)  becomes 
(3)  Ctf  ̂   Dx  -\-  Ey  +  F  =  0. 

For  if  JL  ?i  0  and  C  =  0,  (1)  becomes  Ax'^  +  Dx -{■  Ey  +  F  =  0.  Rotate  the  axes 

(Theorem II, p.  162)  through  —  by  setting  x=—y',y=  x'.  This  equation  becomes 

Ay  ̂ -\-Ex'~Dy'  +  F=  0,  which  is  of  the  form  (3). 

By  translating  the  axes  (3)  may  be  reduced  to  one  of  the  forms 

(4)  Cy^  -f  Da;  =  0  or 

(5)  Cy''  +  -F'  =0. 
For  substitute  in  (3),  x  =  x'  -\-  h,  y  =  y'  +  k. 
This  gives 

(6) 0. Cy"^  +  Dx^  +  1CkW  +  Ck^ 
+  E     I      -^Dh 

-\-Ek 
-\-F 

If  we  determine  h  and  k  from 

2Ck  +  E=0,     Ck^  +  Dh  +  Ek-hF=0, 

then  (6)  reduces  to  (4).    But  if  Z)  =  0,  we  cannot  solve  the  last  equation  for  h,  so 
that  we  cannot  always  remove  the  constant  term.    In  this  case  (6)  reduces  to  (5). 

*  Read  "  F'  not  equal  to  zero  "  or  "i^'  different  from  zero." 
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Comparing  (4)  with  (III),  p.  179,  the  locus  is  seen  to  be  Siparab- 

—  — when  F'  and  C  have  different  signs,  or  the  single  line  y  =  0 

when  F'  =  0.     If  F'  and  C  have  the  same  sign,  there  is  no  locus. 
When  the  locus  of  an  equation  of  the  second  degree  is  a  pair  of 

parallel  lines  or  a  single  line  it  is  called  a  degenerate  parabola. 
We  have  thus  proved 

Theorem  XIII.    IVie  locus  of  an  equation  of  the  second  degree 

a  conic,  a  point,  or  a  pair  of  straight  lines,  which  may  he  coincident. 

By  moving  the  axes  its  equation  may  be  reduced  to  one  of  the  three 

forms 
Ax^  +  Cy^ -\- F*  =  0,   Cy''-^Dx  =  0,   Cy'' +  F*  =  0, 

where  A,  C,  and  D  are  different  from  zero. 

Corollary.    The  locus  of  an  equation  in  ivhicli  the  term  in  xy  is 

lacking,  ^^2  j^  Qi/ j^  d^  j^  Ey  +  F  =0, 
will  belong  to 

the  parabolic  type  if  A  =  0  or  C  =  0, 

the  elliptic  type  if  A  and  C  have  the  same  sign, 

the  hyperbolic  type  if  A  and  C  have  dfferent  signs. 

PROBLEMS 

1 .  To  what  point  is  the  origin  moved  to  transform  (1)  into  (2)  ? 

V      2  A        2  0/ 

2.  To  what  point  is  the  origin  moved  to  transform  (3)  into  (4)  ?  into  (5)  ? 
/E^-4CF         E  \       /-  ^  \ 

3.  Simplify  Ax^  +  I>x  +  Ey  +  F=0'bj  translating  the  axes  (a)  if  ̂   ?i  0, 
(b)  HE  =  0,  and  find  the  point  to  which  the  origin  is  moved. 

^    /       D      JD2-4vlF\ 
Ans.   (a)  Ax^  + 

2A 
4AE 

{b)^x2  +  F'  =  0,   (-^'O) 

*  In  describing  tlie  final  form  of  the  equation  it  is  unnecessary  to  indicate  by  primes 
what  terms  are  diiferent  from  those  in  (1). 
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4.  To  what  types  do  the  loci  of  the  following  equations  belong  ? 

(a)  4x2  +  y2  _  13a;  +  7 y  -  1  =  0.         (e)  x2  +  7 2/2  _  8x  +  1  =  0. 
(b)  y^  +  3x-4:y-\-9  =  0.  (f)  x^  +  y^-6x  +  Sy  =  0. 
(c)  121x2 -44y2  +  68x -4  =  0.  (g)  3x2  -  4y2  _  6?/ +  9  =  0. 
(d)  x2  +  4 2/  -  3  =  0.  (h)  x2  -  8 X  +  9y  -  11  =  0. 
(i)  The  equations  in  problem  1,  p.  172,  which  do  not  contain  the  xy-term. 

81.  Construction  of  the  locus  of  an  equation  of  the  second 

degree.    To  remove  the  icy-term  from 

(i) Ax^  +  Bxj/  -i-  CY -^  Dx -{-  Eij  -\-  F  =  0 

it  is  necessary  to  rotate  the  axes  through  an  angle  6  such  that 

(Theorem  VI,  p.  169) 

(2)  tan2^  =  j4-^, 
while  in  the  formulas  for  rotating  the  axes  [(II)j  p.  162]  we  need 

sin  0  and  cos  0.     By  1  and  3,  p.  19,  we  have 

(3) cos  2  ̂  =  ± 

Vl+tan2  2^ 

From  (2)  we  can  choose  2  ̂   in  the  first  or  second  quadrant  so 

the  si(/n  in  (3)  must  be  the  same  as  in  (2).  0  will  then  be  acute; 

and  from  15,  p.  20,  we  have 

(4) 
sin^ 

-.4 cos  2^ cos  0 

VI
 

+  cos  2  ̂  

In  simplifying  a  numerical  equation  of  the  form  (1)  the  com- 

putation is  simplified,  if  A  =  B^  —  4:AC  ̂ 0,  by  first  removing 
the  terms  in  x  and  ?/  (Theorem  VII,  p.  170)  and  then  the  xy-term. 

Hence  we  have  the 

Rule  to  construct  the  locus  of  a  numerical  equation  of  the  second 

degree. 

First  step.    Compute  A  =  B'^  —  j^AC. 
Second  step.    Simplify  the  equation  hy 

(a)  translating  and  then  rotating  the  axes  if  A  4^  0; 

(6)  rotating  and  then  translating  the  axes  if  A  =  0. 
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Third  step.  Determine  the  nature  of  the  locus  by  inspection  of 

the  equation  (§  80,  p.  194). 

FoxLrth  step.    Plot  all  of  the  axes  used  and  the  locus. 

In  the  second  step  the  equations  for  rotating  the  axes  are 

found  from  equations  (2),  (3),  (4),  and  (II),  p.  162.  But  if  the 

oci/-ierm  is  lacking,  it  is  not  necessary  to  rotate  the  axes.  The 
equations  for  translating  the  axes  are  found  by  the  Rule  on 

p.  165. 
Ex.  1.    Construct  and  discuss  the  locus  of 

x2  +  4xy +  4y2  +  12x-6y  =  0. 

Solution.    First  step.    Here  A  =  42-4-l-4  =  0. 
Second  step.    Hence  we  rotate  the  axes  through  an  angle  0  such  that, 

by  (2), 

tan2.-^_^  =  -- 
Then  by  (3), cos2^  =  -|, 

and  by  (4), 
2 

sin  ̂   =  -—  and  cos  ̂   =  - 

(1) 

Vs
' 

The  equations  for  rotating  the  axes  [(II),  p.  162]  become 

x'  -2y'       _2x'  -hy' 

Substituting  in  the  given  equation,*  we  obtain 

.„       6 

V^ 
y'  =  o. 

It  is  not  necessary  to  translate  the  axes. 
Third  step.    This  equation  may  be  written 

Hence  the  locus  is  a  parabola  for  which  p 

the  Y'-axis. 

Vo 

and  whose  focus  is  on 

*  When  A  =  0  the  terms  of  the  second  degree  form  a  perfect  square.    The  work  of 
substitution  is  simplified  if  the  given  equation  is  first  written  in  the  form 

(x  +  2y)^+12x-Gy  =  0. 
It  will  be  shown  in  Chapter  XII  that  when  A  =  0  the  locus  is  always  of  the  parabolic 

type. 
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Fourth  step.    The  figure  shows  both  sets  of  axes,*  the  parabola,  its  focus 
and  directrix. 

In  the  new  coordinates  the  focus 

the  point  (  0,   )  and  the  direc- 
\      2V5^ 

Q 

rix  is  the  line  y'  —  -  - — ~  (Theorem 
2V5 

IV,  p.  179).  The  old  coordinates  of 
the  focus  may  be  found  by  substi- 

tuting the  new  coordinates  for  x' 

and  y'  in  (1),  and  the  equation  of 
the  directrix  in  the  old  coordinates 

may  be  found  by  solving  (1)  for  y' 
and  substituting  in  the  equation  given  above. 

Ex.  2.    Construct  the  locus  of 

5  0:2  +  6  xy  +  5  2/2  +  22  X  -  6  ?/  +  21  =  0. 

Solution.    "First  step.    A  =  62-4-5-5^0. 
Second  step.    Hence  we  translate  the  axes  first.    It  is  found  that  the  equa- 

tions for  translating  the  axes  are 

X  =  x'  -  4,  ?/  =  2/'  +  3, 

and  that  the  transformed  equation  is 

5  x'2  +  6  xY  4-  5  2/'2  =  32. 

From  (2)  it  is  seen  that  the  axes  must  be  rotated  through  —  •     Hence  we 

set 
Y \ 

r- 

' r 
Ki \J  _ / 

j \ 
^ 
\ / 1 \ K 

V ^ / \ \ 7 \ \ 
\ \ z \ 

N 
:> 

1 
7 

■"  \ 

0 
< 

\. 

,      x"  -  y" 

x'   z^,  y' X"  +  y' 
V2  V2 

and  the  final  equation  is 

4x''2  +  y''2  =  16. 

Third  step.     The  simplified  equa- 
tion may  be  written 

4         16 
1. 

Hence  the  locus  is  an  ellipse  whose  major  axis  is  8,  whose  minor  axis  is  4, 
and  whose  foci  are  on  the  Y'^-axis. 

Fourth  step.    The  figure  shows  the  three  sets  of  axes  and  the  ellipse. 

*The  inclination  of  OX'  is  0,  and  hence  its  slope,  tanfl,  may  be  obtained  from  (4).    In 

this  example  tan  Q  =  — -  =  — -  -^  — -_ cose      V5      V5 

method  given  in  the  footnote,  p.  35. 

=  2,  and  the  X'-axis  may  be  constructed  by  the 
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PROBLEMS 

1.  Simplify  the  following  equations  and  construct  their  loci,  foci,  an< 
directrices. 

(a)  3x2  -  4xy  +  8x  -  1  =  0.  Ana.   x'"^  _  4 y"2  +  1  =  0. 

(b)  4x2  +  4x2/4-2/'*+ 8x- 162/  =  0.         Am.    5x'2  -  8  VHj/' =  0. 
(c)  41  x2  -  24  X2/  +  34  2/2  +  25  =  0.  Ans.    x'2  -f  2  2/'^  +  1  =  0. 
(d)  17x2  -  12x2/ +  82/2 -68x +  24^-12  =  0. 

Ans.  x"2  +  4  2/"2  _  16  =  0. 

(e)  2/2  +  6x  -  62/  +  21  =  0.  Am.  y'^  +  6x'  =  0. 

(f )  x2  -  6  xy  +  9  y2  4.  4  X  -  12  2/  +  4  =  0.  Ans.  y'"^  =  0. 

(g)  12  X2/  -  5 2/2  +  48 2/  -  36  =  0.  Ans.  4 x'"'^  -  9 2/''2  =  36. 
(h)  4  x2  -  12  X2/  +  9  2/2  +  2  X  -  3  2/  -  12  =  0. 

Ans.   52  2/''2  -  49  =  0. 
(i)  14x2  -4xy  +  112/2  -  88x  +  34y  +  149  =  0. 

Ans.    2 x''2  +  3  ̂''2  =  0. 
(j)  12x2  +  8x2/ +  18?/ +  48X  + 162/ +  43  =  0. 

Ans.   4  x2  +  2  2/2  =  1. 

(k)  9x2  +  24x2/ +  162/2 -36x- 482/ +  61  =  0. 
Ans.   x"2  +  l=:0. 

(1)  7  x2  +  50  xy  +  7  2/2  =  50.  Ans.    16  x'2  -  9  2/^2  =  26. 

(m)  x2  +  3x2/-32/2+ 6x  + 92/  +  9  =  0.    Ans.   3 x"2  _  7 ̂ ''2  _  q. 
(n)  16x2  -  24x2/  +  ̂ V^  -  60x  -  80 2/  +  400  =  0. 

Am.    7/"2_4x''  =  0. 
(o)  95x2  ̂   56x2/  -  102/2  -  56x  +  20?/  +  194  =  0. 

Ans.   6x''2_2/"2  +  12  =  0. 

(p)  5  x2  -  5  X2/  -  7  2/2  -  165  x  +  1320  =  0.  Am.    15  x''2  _  n  y-2  _  330  =  0. 

82.  Systems  of  conies.    The  purpose  of   this   section   is 

illustrate   by   examples    and    problems    the    relations    betweei 

conies   and  degenerate  conies  and  between  conies  of  different' 
types. 

A  system  of  conies  of  the  same  type  shows  how  the  degenerate 

conies  appear  as  limiting  forms,  while  a  system  of  conies  of  dif- 
ferent types  shows  that  the  parabolic  type  is  intermediate  between 

the  elliptic  and  hyperbolic  types. 

Ex.  1.    Discuss  the  system  of  conies  represented  by  x2  +  4  2/2  =  k. 

Solution.  Since  the  coeflBcients  of  x2  and  2/2  have  the  same  sign,  the  locus 
belongs  to  the  elliptic  type  (Corollary,  p.  196).  When  k  is  positive  the  locus 

is  an  ellipse ;  when  k  =  0  the  locus  is  the  origin,  —  a  degenerate  ellipse;  and 
when  k  is  negative  there  is  no  locus. 
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In  the  figure  the  locus  is  plotted  for  k  =  100,  64,  36,  16,  4,  1,  0.  It  is  seen 
that  as  k  approaches  zero  the  ellipses  become  smaller  and  finally  degenerate 
into  a  point.     As  soon  as  k  becomes  negative  there  is  no  locus.     Hence  the 
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point  is  a  limiting  case  between  the  cases  when  the  locus  is  an  ellipse  and 
when  there  is  no  locus. 

Ex.  2.    Discuss  the  system  of  conies  represented  by  4  x^  —  16  y^  =  k. 

Solution.    Since  the  coefficients  of  z^  and  y^  have  opposite  signs,  the  locus 
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belongs  to  the  hyperbolic  type.  The  hyperbolas  will  all  have  the  same 

asymptotes  (p.  189),  namely,  the  lines  x  ±  2  y  =  0.  The  given  equation  may 
be  written 

zL-yi-x 

k_ 

16 

The  locus  is  an  hyperbola  whose  foci  are  on  the  JT-axis  when  k  is  positive  and 
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on  the  F-axis  when  k  is  negative.     For  k  =  0  the  given  equation  shows  that 
the  locus  is  the  pair  of  asymptotes. 

In  the  figure  the  locus  is  plotted  for  k  =  256,  144,  64, 16,  0,  -  64,  -  256. 
It  is  seen  that  as  k  approaches  zero,  whether  it  is  positive  or  negative,  the, 
hyperbolas  become  more  pointed  and  lie  closer  to  the  asymptotes  and  final Ij 
degenerate  into  the  asymptotes.     Hence  a  pair  of  intersecting  lines  is  a  lii 

iting  case  between  the  cases  when  the  hyperbolas  have  their  foci  on  the  X-axi 
and  on  the  F-axis. 

Ex.  3.  '  Discuss  the  system  of  conies  represented  by  y^  =  2  fee  +  16. 
Solution.    As  only  one  term  of  the  second  degree  is  present,  the  locus 

belongs  to  the  parabolic  type  (Corollary,  p.  196).    The  given  equation  may 

simplified  (Rule,  p.  165)  by  translating  the  axes  to  the  new  origin  (  —  ,0 
We  thus  obtain 

2/'2  =  2  kx\ 

8  ^ 
The  locus  is  therefore  a  parabola  whose  vertex  is  (   ,  0)  and  for  which 

iC 

p  =  k.    It  will  be  turned  to  the  right  when  k  is  positive,  and  to  the  left  when 

k  is  negative.     But  if  fc  =  0,  the  locus  is  the  degenerate  parabola  y  =  ±  4. 

In  the  figure  the  locus  is  plotted  for  fc  =  ±  4,  ±  2,  ±  1,  ±  f ,  0.  It  is  seen  <. 
that  as  k  approaches  zero,  whether  it  is  positive  or  negative,  the  vertex  recedes 

from  the  origin  and  the  parabola  lies  closer  to  the  lines  y  =  ±  4  and  finally 
degenerates  into  these  lines.  The  degenerate  parabola  consisting  of  two 

parallel  lines  appears  as  a  limiting  case  between  the  cases  when  the  parab- 
olas are  turned  to  the  right  and  to  the  left. 
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Ex.  4.    Discuss  the  system  represented  by 

x^ 

y 
=  1. 

r_
. 
 

„  
,  ^

  25  -  A:  ■  9  - 
 fc 

Solution.    When  A;  <  9  the  locus  is  an  ellipse  whose  foci  are  (±  c,  0)  where 

c2  =  (25  -k)-{9  -k)  =  \6  (Theorem  V,  p.  185).     When  9  <  fc  <  25  the  locus 

is  an  hyperbola  whose  foci  are  (±  c,  0),  where  c^  =  (25  —  k)  —  {9  —  k)  =  W 
(Theorem  VI,  p.  185).     When  A;>  25  there  is  no  locus.     Since  the  ellipses  and 
hyperbolas  have  the  same  foci,  (±4,  0),  they  are  called  confocal. 

Clearing  of  fractions,  we  obtain 

(9  -  A:)  x2  +  (25  -k)y^  =  {9-  k)  (25  -  k). 

Hence  when  fc  =  9  or  25  the  locus  is  a  degenerate  parabola  2/2  =  0  or  ic^  —  o. 
In  the  figure  the  locus  is  plotted  for  A;  =  -  56,  -  24,  0,  7,  9,  11,  16,  21, 

24,  25.     As  k  increases  and  approaches  9  the  ellipses  flatten  out  and  finally 

degenerate  into  the  X-axis,  and  as  k  decreases  and  approaches  9  the  hyper- 
bolas flatten  out  and  degenerate  into  the  X-axis.  Hence  the  locus  of  the 

parabolic  type,  y^  =  0,  appears  as  a  limiting  case  between  the  ellipses  and 
hyperbolas.  As  A;  increases  and  approaches  25  the  two  branches  of  the 

hyperbolas  lie  closer  to  the  F-axis,  and  in  the  limit  they  coincide  with 
the  F-axis. 

Ex.  5.    Plot  and  discuss  the  locus  of  kx^  +  2y^  —  Sx  =  0. 

Solution.  If  A:  =  0,  the  locus  is  a  parabola.  If  k  is  not  zero,  the  locus  is 

an  ellipse  or  hyperbola  according  as  k  is  positive  or  negative.  The  locus 
passes  through  the  origin  for  all  values  of  k. 
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Simplifying  by  translating  the  axes  (Rule,  p.  165),  it  is  found  that  if  tl 

origin  is  (  - »  0  j  the  equation  becomes 
^-4-^  =  1 

4        2 
fc2       k 

From  this  the  axes  may  be  determined  and  the  locus  sketched. 

In  the  figure  the  locus  is  plotted  for  A;  =  1,  |^,  i,  0,  —  1,  —  ̂ .    If  A;  is  posi- 
tive and  approaches  zero,  the  ellipses  become  longer  and  lie  closer  to  thej 

:==-%==  === hf  IIIILLMtbt 

^^^
-  - 

^^     ̂ ^ 

^x^^^---
' 

^^     ̂ v <^   V A^^              J ^^      \ 
>^^^>  "^^2 ^         > \^    Y""  ̂  

7       7 ^53      "2   /  /        J /^      / 

^%^^:^t^'^ ^^Z ^^       ̂ ^ §^^--^ ,^         ^^ 

^^
 

"^^^^ 

r'                              ST 

parabola.  If  k  is  negative  and  approaches  zero,  the  right-hand  branches  of 

the  hyperbolas  lie  closer  to  the  parabola  and  the  left-hand  branches  recede 
from  the  origin.  This  shows  that  the  parabola  is  a  limiting  form  between  the 
ellipse  and  hyperbola. 

How  does  the  locus  behave  if  k  approaches  +  co  or  —  oo  ? 

PROBLEMS 

1.  Plot  on  separate  sheets  the  foci  and  directrices  of  the  conies  plotted  in 

examples  1,  2,  and  3.  Where  are  the  foci  and  directrices  of  the  degenerate 
conic  in  each  system  ?     Verify  the  results  analytically. 

2.  Plot  the  following  systems  of  conies  and  show  that  the  conies  of  each 

system  belong  to  the  same  type.  Draw  enough  conies  so  that  the  degenerate 
conies  of  the  system  appear  as  limiting  cases. 

k. 

(b)  y^=:2kx. 

(c)^-^  =  fc. 16       9 

(d)  x^  =  2ky 

6. 

8.  Problem  1  for  the  systems  in  problem  2. 
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X2         7/2 
4.  Plot  the  system  — h  —  =  1  f or  positive  values  of  k. k      16 

What  is  the  locus 

if  A;  =  16  ?  Show  how  the  foci  and  directrices  behave  as  k  increases  or 

decreases  and  approaches  16.  Where  are  the  foci  and  directrices  of  a 
circle  ? 

5 .  Plot  the  system  in  problem  4  for  positive  and  negative  values  of  k.  Show 

how  the  conies  change  as  k  approaches  zero  when  it  is  positive  and  negative. 

6.  Plot  the  following  systems  of  conies  and  show  that  all  of  the  conies  of 

each  system  are  confocal.  Discuss  degenerate  cases  and  show  that  two 

conies  of  each  system  pass  through  every  point  in  the  plane. 

(a) 

X2
 

y.
 

=  1. 

16  _  A;      S6-k 

(b)  y^  =  2kx-{-k2. 
7.  Plot  and  discuss  the  systems 

(a)  16(x-fc)2  +  9?/2  =  144. 

(b)  xy  =  k. 

^  '  64  -  A:      16  -  A: 

(d)  x2  =  2  A;?/  +  A;2. 

1. 

(c)  (y-A;)2  =  4x. 
(d)  4(x  -  A;)2  -  9(y  -  A;)2  =  36. 

8.  Plot  the  following  systems  and  discuss  the  locus  as  k  approaches  zero 

and  infinity.     Show  how  the  foci  and  directrices  behave  in  each  case. 

(a) 

(X
 

A:2 

^^t^l. 
36 (b) (X  -  A:)2 

A;2 

y 

=  1. 

9.  Show  that  all  of  the  conies  of  the  following  systems  pass  through  the 

points  of  intersection  of  the  conies  obtained  by  setting  the  parentheses  equal 
to  zero.     Plot  the  systems  and  discuss  the  loci  for  the  values  of  A:  indicated. 

(a)  (?/2_4x)  +  A;(i/2  +  4x)  =  0,  A:  =  +l,  -1. 
(b)  (x2  +  2/2  _  16)  +  fc(x2  -  2/2  -  4)  =  0,  A:  =  +  1,  -  1,  -  4. 

(c)  (x2  +  y^-  16)  +  A;(x2  -  y^  -  16)  =  0,  A; 
1,  -1. (d)  (x2  +  162/2  -  64)  4-  A:(x2  -  4y2  _  36)  =  0,  A:  =  -  1,  4,  -  -i/. 

(e)  x2  +  4  y  +  A;  (x2  -  4  2/  +  16)  =  0,  A:  =  +  1,  -  1. 

MISCELLANEOUS   PROBLEMS 

1 .  Construct  the  loci  of  the  following  equations,  their  foci  and  directrices. 

(a)  9x2  +  24x2/+  162/^  -  50x  +  80y  -  275  =  0. 
(b)  56x2-64x2/  +  1092/2-176x  +  282  2/-896  =  0. 
(c)  5x2  -  12x2/  +  6x  -  36  2/  -  63  =  0. 

2.  Find  the  value  of  p  if  2/2  =  2px  passes  through  the  point  (3,  —  1). 

X2        'W2 3.  Find  the  values  of  a  and  6  if   h  —  =  1  passes  through  the  points 

(3,  -  6)  and  (4,  8).  "^      ̂^ 
4.  Find  the  equation  of  the  locus  of  a  point  P  if  the  sum  of  its  distances 

from  the  points  (c,  0)  and  (—  c,  0)  is  2  a. 
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6.  Find  the  equation  of  the  locus  of  a  point  P  if  the  difference  of  it 

distances  from  the  points  (c,  0)  and  (—  c,  0)  is  2a. 

6.  Find  the  equation  of  the  locus  of  a  point  if  its  distances  from  the  line 

X  =  —  —  and  the  point  (  — »  0  J  are  equal. 

7.  Show  that  a  conic  or  degenerate  conic  may  be  found  whicli  satisfies 

five  conditions,  and  formulate  a  rule  by  which  to  find  its  equation. 

Hint.  Compare  p.  93  and  p.  133. 

8.  Find  the  equation  of  the  conies  which  satisfy  the  following  conditioi 

(a)  Passing  through  (0,  0),  (1,  2),  (1,  -  2),  (4,  4),  (4,  -  4).    . 

(b)  Passing  through  (0,  0),  (0,  1),  (2,  4),  (0,  4),  (-  1,  -  2). 
(c)  Passing  through  (3,  7),  (4,  6),  (5,  3)  if  ̂   =  7^  and  C  =  0. 

(d)  Passing  through  (1,  2),  (3,  4),  (4,  2),  (2,  -  1),  (4,  2). 
(e)  Passing  through  (0,  0),  (0,  1),  (1,  0),  (0,  6),  (5,  6). 

(f)  Passing  through  (0,  0),  (2,  0),  (-  3,  2),  (5,  2)  with  its  axes  parallel  to 
the  coordinate  axes. 

9.  What  is  the  nature  of  a  conic  which  passes  through  five  points,  of 
which  three  or  four  are  on  a  straight  line? 

The  circle  whose  radius  is  a  and  whose  center  is  the  center  of 

a  central  conic  is  called  the  auxiliary  circle. 

10.  The  ordinates  of  points  on  an  ellipse  and  the  auxiliary  circle  which 
have  the  same  abscissas  are  in  the  ratio  of  6  :  a. 

11.  The  area  of  an  ellipse  is  Ttab. 

Hint.  Divide  the  major  axis  into  equal  parts.  With  these  as  bases  inscribe  rectan- 
gles in  the  ellipse  and  auxiliary  circle.  Apply  problem  10  and  increase  the  number  of 

rectangles  indefinitely. 

12.  The  auxiliary  circle  of  an  hyperbola  passes  through  the  intersections 
of  the  directrices  and  asymptotes. 

13.  Show  that  the  locus  ot  xy  +  Dx  +  Ey  +  F  =  0  is  either  an  equilateral 
hyperbola  whose  asymptotes  are  parallel  to  the  coordinate  axes  or  a  pair  of 

perpendicular  lines. 

14.  Discuss  the  form  of  the  locus  oi  x^  -  y^  +  Dx -\-  Ey  +  F  =0. 



CHAPTER  IX 

TANGENTS   AND    NORMALS 

83.  The  slope  of  the  tangent.  Let  Pj  be  a  fixed  point  on  a 

curve  C  and  let  P2  be  a  second  point  on  C  near  Pi.  Let  Pg 

approach  P^  by  moving  along  C.  Then  the  limiting  position 
PiT  of  the  secant  through  Pj  and  Pg  is  called  the  tangent  to  C 
at  Pi. 

It  is  evident  that  the  slope  of  Pi  7"  is  the  limit  of  the  slope 
of  P1P2.     The  coordinates  of  Pg  may  be  written  (xi  +  A,  2/1  +  k), 

T 

^^
 

</ 

r X'     0 1 X 

t'
 

where  h  and  Jc  will  be  positive  or  negative  numbers  according 

to  the  relative  positions  of  Pi  and  Pg.  The  slope  of  the  secant 

through  Pi  and  Pg  is  therefore  (Theorem  V,  p.  35) 

yi  —  yi  —  k_^k 

Xi  —  Xi  —  h      h 
(1) 

As  Pg  approaches  Pi  both  h  and  k  approach  zero,  and  hence  - 
0 

approaches  -  ?  which  is  indeterminate.    The  actual  value  of  the 
k 

limit  of  -  may  be  found  in  any  case  from  the  conditions  that 

Pi   and   Pa   lie   on   C   (Corollary,   p.  53),   as   in   the   example 
following. 

207 
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Solution.    Let  Pi  (xi, 

Ex.  1.    Find  the  slope  of  the  tangent  to  the  curve  C  :  8  y  =  x'  at  any  point 

Pi  {xu  Vi)  o"  G. 

i)  and  Pi  (xi  +  A,  yi  +  A:)  be  two  points  on  C. 
Then  (Corollary,  p.  63) 

(2)  8yi  =  xi8 
and         8  {yi  -\- k)  =  (xi  +  h)\ 

or 

(3)  8  ?/i  +  8  fc  =  Xi3  +  Zxi^h  +  3xi/i2  +  ̂3, 

Subtracting  (2)  from  (3),  we  obtain 

8fc  =  3Xi2/l  +  3Xi^2  +  /l3. 

Factoring,     8  A:  =  ̂i  (3  Xi^  +  3  Xih  +  h?) ; 

fc_3xi2  +  3xi/t  +  /t2 /i~  8 

1 

r| 

¥\ 

ni f 
w 
/ 
k 

P^ 
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A-
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and  hence 

Then,  as  Pg  approaches  Pi,  h  and  A;  approaci 
zero  and  the 

,.      ..     .k         ,.      ..       -3Xi2  +  3Xi/i  +  /i2        3xi2 limit  of  -  =  limit  of   =   h  8  8 

Hence  the  slope  m  of  the  tangent  at  Pi  is  m 

3xi2 

8 

C  is  symmetrical  with  respect  to  0,  and  the  tangents  at  symmetrical  points 
are  parallel  since  only  even  powers  of  Xi  and  yi  occur  in  the  value  of  m.  The 

tangent  at  the  origin  is  remarkable  in  that  it  crosses  the  curve. 

The  method  employed  in  this  example  is  general  and  may  be 

formulated  in  the  following 

Rule  to  determine  the  slope  of  the  tangent  to  a  curve  C  at  a  point 

Pi  on  C. 

First  step.  Let  P^  (a^i,  y-^  and  P^  (xi  +  h,  y^  +  k)  he  two  points 
on  C.  Substitute  their  coordinates  in  the  equation  of  C  and 
subtract. 

Second  step.  Solve  the  result  of  the  first  step  for  -?*  the  slope 
of  the  secant  through  P^  and  P^. 

Third  step.  Find  the  limit  of  the  result  of  the  second  step  when 

h  and  k  approach  zero.     This  limit  is  the  required  slope. 

*  The  solution  will  contain  h  and  k  separately,  so  that  the  equation  is  not  solved  in  the 
ordinary  sense. 
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Ex.  2.    Find  the  slope  of  the  tangent  to  the  semicubical  parabola  Sy^  =  x^ 
atPi(xi,  2/1). 

Solution.    First  step.    Let  Pi (a;i,  yi)  and  P^ixi  +  h,  yi  +  k)  be  two  points 
on  the  curve.     Then  (Corollary,  p.  53) 

(4)  Syi^  =  x^^ 
and  3  ?/i2  +  6  kyi  +  3k:^  =  Xi^  +  3  Xi^h  +  3  x^h'^  +  hK 

Subtracting, 

6  7/ik  +  3  A;2  z=  3  XiVi  +  3  Xih"-  +  M. 
Second  step.    Factoring, 

k{6yi  +  Sk)  =  h{Sxi^  +  S  x^h  +  h^). 

fc  _  3  a:i2  +  3  Xi/i  +  /i2 Hence 

6yi  +  3/c 
Third  step.    As  h  and  k  approach  zero, 

limit  of  -  =  limit  of 
3  Xi2  +  3  xih  +  ̂2 

3xi2 

Qyi  +  ̂ k 

xr^ 

2yi 
x-r 

Hence  the  slope  of  the  tangent  at  Pi  is  m  =  - — 

2  2/1 

At  the  origin  m  =  -  and  is  indeterminate.     To  find  the  value  of  m  at  the 

origin,  we  may  either  apply  the  rule  a  second  time,  setting  o^i  =  0  and  2/1  =  0, 

or  eliminate  2/1  from  the  value  of  m  by  means  of  (4),  thus  obtaining  a  value 
which  is  determinate  at  the  origin. 

PROBLEMS 

1.  Find  the  slopes  of  the  tangents  to  the  following  curves  at  the  points 
indicated. 

(a)  2/2  =  80:,  Pi  (2,  4). 
(b)  ̂2  +  2/2  =  25,  Pi  (3,  -4). 
(c)  4x2  +  2/2  =  16,  Pi(0,  4). 

(d)  x2-9y2::,81,  Pj  (L5,  -4). 

Ans.    1. 

Ans.   0. 

Ans.    — 
2.  Find  the  slopes  of  the  tangents  to  the  following  curves  at  the  point 

Q 

(a)  2/2  =  6  X.  Ans.   —  ■ 

(b)  16  y  =  x\ 

(c)  x2  +  2/2  =  16. 

Ans. 

Ans. 
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(d)  x2  -  y2  =  4. 

(e)  y^  =  x^-\-  x\ 

(f)  4x2  4-  2/2  _  i6x  -  2y  =  0. 

(g)  xy  =  a2. 

(h)  xy  ̂ -y^  =  8. 

(i)  x2-y2_8x  +  4?/  =  0. 

(j)  x2  +  2/2  4.6x-82/  =  0. 

ANALYTIC  GEOMETRY 

-4rw. 

Ans. 

Atis. 

Ans. 

Ans. 

Atis. 

Ans. 

yi 
3xi2-|-2xi 

22/1 

8  -  4xi 

_yi 

Xi 

4-Xi 

2-2/1* 

xi  +  3 

4-2/1 

84.  Equations  of  tangent  and  normal.    We  have  at  once  the 

Rule  to  find  the  equation  of  the  tangent  to  a  curve  C  at  a  point 

Pii^i,  2/i)  on  C. 
First  step.  Find  the  slope  m  of  the  tangent  to  C  at  P^  {Rule, 

p.  208). 

Second  step.  Substitute  Xi,  yi,  and  m  in  the  point-slope  form  of 

the  equation  of  a  straight  line  [(V),  p.  95]. 

Third  step.  Simplify  that  equation  by  means  of  the  condition 

that  Pi  lies  on  C  (Corollary,  p.  53). 

Ex.  1.    Find  the  equation  of  the  tangent  to  (7  :  8  2/  =  x^  at  Pi  (xi,  2/1). 

3  a;  2 

Solution
.    

First  step.    From  Ex.  1,  p.  208,  the  slope  is  m  =  — - — 
Second  step.    Hence  the  equation  of  the  tangent  is 

y-yi  =  -^  {X  -  xi), 

3  Xi2x  -  8  2/  -  3  X18  +  8  2/1  =  0. 
or 

(1) 

Third  step.    Since  Pi  lies  on  C,  82/1  =  Xi^. 
Substituting  in  (1),  we  obtain 

(2)  3  Xi2x  -  8  2/  -  2  Xi3  =  0. 

The  normal  to  a  curve  C  at  a  point  Pi  on  C  is  the  line  through 

Pi  perpendicular  to  the  tangent  to  C  at  Pj.  Its  equation  is  found 

from  that  of  the  tangent  by  the  Eule  on  p.  114,  using  Theorem 

XII,  p.  117*. 
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Ex.  2.    Find  the  equation  of  the  normal  at  Pi  to  the  curve  in  Ex.  1. 

Solution.    The  equation  of  any  line  perpendicular  to  (2)  has  the  form 
(Theorem  XII,  p.  117) 

(3) X  +  3  xi^y  +  fc  =  0. 

If  Pi  lies  on  this  line,  then  (Corollary,  p.  53) 

8'Xi  +  3  xih/i  +  A;  =  0, 

whence  A;  =  —  8  Xi  —  3  Xi^yi. 

Substituting  in  (3),  the  equation  of  the  normal  is 

Sx  +  Sxi^y  -  Sxi  -  Sxih/i  =  0. 

PROBLEMS 

1.  Find  the  equations  of  the  tangents  and  normals  at  Pi(xi,  yi)  to  the 
curves  in  (a)  to  (e),  problem  2,  p.  209. 

Ans.    (a)  yiy  ==  3 (x  +  Xi),  ViX  +  Sy  =  Xiyi  +  3 yi. 

(b)  Xi^x  -iy  =  12yi,  4 x  +  Xi^y  =  4 Xi  +  Xi^yi. 

(c)  xix  +  yiy  =  16,  yix  -  Xiy  =  0. 
(d)  Xix  -  yiy  =  4,  yix  -\- Xiy  =  2  xiyi. 

(e)  (3  Xi2  +  2  xi)  X  -  2  2/1?/  -  Xi^  =  0,2  yiX  +  (3  Xi2  +  2  Xi)  y  =  3  Xi^yi  +  4  Xiyi. 

2.  Find  the  coordinates  of  a  point  on  each  of  the  curves  in  (/)  to  (j), 
problem  2,  p.  209,  and  then  find  the  equations  of  the  tangent  and  normal  at 

that  point. 

3.  Find  the  equations  of  the  tangents  and  normals  to  the  following  curves 
at  the  points  indicated. 

(a)  2/2_8x  +  42/  =  0,  (0,  0).  Ans.  2x  -  y  =  0,  x -\- 2y  =  0. 

(b)  xy  =  4,  (2,  2).  Ans.  x  +  ?/  =  4,  x-y  =  0. 
(c)  x2  — 4?/2  =  25,  Pi(xi,  2/i).  Ans.  XiX-4?/i2/=25,  4yiX+Xi2/=5xi2/i. 

(d)  x2  +  2xy  =  4,  Pi(xi,  2/i). 

Ans.   (xi  +  2/i)  X  +  xiy  =  4,  XiX  -  (xi  ■\-yi)y  =  xi^  -  xiyi  -  y^. 
(e)  y2  =  2px,  Pi(xi,  ?/i).  Ans.    2/iy=p(x  +  Xi),  yiX+p2/  =  Xi2/i+i32/i. 

x2   ,   2/2 

(^)^.  +  ̂  =  l'^i(^i'^i)- xxx  ,  yxy 
Ans.   h  —  =  1, yiX      Xiy      a?-  -  62 xiyi. a-        62  52        a2          a262 

(g)  62x2  -  a2y2  ̂   a262,  Pi  (xi,  2/1). 

Ans.    62xiX  -  a2yiy  =  a252^  aP-y^x  +  Iflxxy  —  (a?-  +  62)  Xij/i. 

(h)  x2  -  2/2  ̂   x3  =  0,  (0,  0).  Ans.   y  =  ±x,  x  =  Ty. 
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85.  Equations  of  tangents  and  normals  to  the  conic  sections. 

Theorem  I.    The  equation  of  the  taufjent  to  the  circle 

C  :  x2  +  7/2  =  7-2 

at  the  point  P^  (ajj,  y^  on  C  is 

(I) _  ^.2 a5i«  +  ViV  =  t 

Proof.    Let  Pi  (xi,  yi)  and  P^  (xi  +  ̂,  yi  +  k)  be  two  points  on  the  circle  C. 
Then  (Corollary,  p.  63) 

(1)  Xi2  +  2/i2  =  y2 
and  (xi  +  /i)2  +  (2/1  +  A;)2  =  r% 

or 
(2)  Xi2  +  2xi;i4-/i2  4-2/i2  +  22/iA:  +  A;2  =  r2. 

Subtracting  (1)  from  (2),  we  have 

2  Xi/i  +  /i2  +  2  vik  +  A;2  =  0. 

Transposing  and  factoring,  this  becomes 

k{2y^  +  k)=-h{2x^  +h), 

k  __2xi-{-  h 

h~ 

whence 

2yi  +  k 
is  the  slope  of  the  secant  through  Pi  and  P2. 

Letting  Pg  approach  Pi,  h  and  k  approach  zero,  so  that  m,  the  slope  of  the 
tangent  at  Pi,  is 

2xi  +  h  Xi 

yi 

m  =  limit  of 

-— (X-Xi), 

2/1 

2yi-\-k 
The  equation  of  the  tangent  at  Pi  is  then  (Theorem  V,  p.  95) 

y  -y\ 

or  Xix  +  yiy  =  x^  +  y^. 

But  by  (1),  xi2  +  yi2  =  r^, 

so  that  the  required  equation  is 

a^ix  +  yxy  -  r^.  q.e.d. 

Theorem  II.     The  equation  of  the  tangent  to  the  locus  of 

Ax^  +  Bxy  -\-Ci/-\-  Dx-{-  Ey-\-  F=0 

at  the  point  Pi  (xi,  y^  on  the  locals  is 

(II) 

A..,a.  +  By^^±^  +  Cyiy  +  D'^±^  +  E'^i±Jil  +  F  =  0, 
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Proof.    Let  Pi  (a^i,  y{)  and  P2  (xi  +  h,yi-\-  k)  be  two  points  on  the  conic. 
Then  (Corollary,  p.  53) 

(3)  Axi^  +  BxiVi  +  Cyi^  +  Dxi  +  Eyx  +  F=0  and 

A{x^  +  /i)2  +  -B(xi  +  /i)  (2/1  +  A;)  +  C  (2/1  +  A;)2  +  D (xi  +  /i)  +  ̂  (?/i  -f  A;)  +  P  =  0. 

Clearing  parentheses,  we  have 

(4)  Axi^  +  2  ̂xi/i  +  Ah?-  +  5xi?/i  +  Bxxk  +  ̂?/i/i  +  -BAA; 

+  Cyi2  +  2  C2/1A:  +  CA;2  +  JDxi  +  DA  +  ̂ yi  +  £A:  +  P  =  0. 

Subtracting  (3)  from  (4),  we  obtain 

(5)  2Axili  +  Ah"^  +  J5xiA;  +  Byih  +  Bhk  +  2  C?/iA;  +  CA;2  -{- Bh -\-  Ek  =  0. 

Transposing  all  the  terms  containing  h  and  factoring,  (5)  becomes 

k {Bxi  +  2Cyi  +  Ck-j-  E)=-  h{2Axi  +  Afi  +  By^  +  Bk  +  D), 
k  2Axi  + Byi  + D  +  Ah  + Bk whence 

Bxi  +  2Cyi-\-  E  +  Ck 

This  is  the  slope  of  the  secant  P1P2  [(1),  p.  207]. 
Letting  Pg  approach  Pi,  h  and  k  will  approach  zero  and  the  slope  of  the 

tangent  is 2^Xi  +  J5yi  +  D 

Bxi  -h2Cyi-\-  E 

The  equation  of  the  tangent  line  is  then  (Theorem  V,  p.  95) 
2^X1  + J5yi  +  D,  , 

To  reduce  this  equation  to  the  required  form  we  first  clear  of  fractions  and 

transpose.     This  gives 

{2Axi  +  Byi  +  D)x  +  {Bxi  +  2Cyi  +  E)y 

-  (2^xi2  +  2  Bxm  +  2  Cyt^  +  Dxi  +  Eyi)  =  0. 

But  from  (3)  the  last  parenthesis  in  this  equation  equals 

-{Dxi  +  Eyi-^2F). 

Substituting,  the  equation  of  the  tangent  line  is 

(2^xi  +  Byi  +  2))x  +  (^xi  +  2Cyi  +  E)y  +  {Dxi  +  Ey^  +  2F)  =  0. 

Removing  the  parentheses,  collecting  the  coeflQcients  of  J.,  B,  C,  D,  E^ 

and  P,  and  dividing  by  (2),  we  obtain  (II).  q.e.d. 

Theorem  II  enables  us  to  write  down  the  equation  of  the  tan- 
gent to  the  locus  of  any  equation  of  the  second  degree.  It  is 

remembered  most  easily  in  the  form  of  the  following  Eule. 
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Rule  to  ivrite  the  equation  of  the  tangent  at  P^  (x-^,  y^)  to  the  locus 

of  an  equation  of  the  second  degree. 

First  step.    Substitute  x^x  and  yiy  for  x^  and  y*,  — — - — —  for\ 
,  X  -f-  ̂1         1  y  +  Vi    ̂   J      .      1       .  .  ' 

rcy,  a7id  — - —  ana  — - —  jor  x  and  y  %n  the  given  equation. 

Secondstep.    Substitute  the  numerical  values  ofx^  and  yi,  if  given,] 

in  the  result  of  the  first  step.     The  result  is  the  required  equation. 

In  like  manner,  or  at  once  from  this  Rule,  we  have 

Theorem  III.    The  equation  of  the  tangent  at  Pi  (xi,  y{)  to  the 

ellipse  b'^x^  +  a^y^  =  a^b"^   is  h'^oc^ic  +  a^ViU  =  «^&*; 

hyperbola     b'^x'^  —  ay  =  a%^   is  Woc^dc  —  a^Viy  =  «^&^  5 
parabola  y^  =  2px  is  y^y  ■=:  p{dc  -\-  oc^. 

By  the  method  on  p.  210,  we  obtain 

Theorem  IV.    TJie  equation  of  the  normal  at  P^  (xi,  y^  to  the 

ellipse  b'^x^  -\-  a^y'^  =  a%^  is  a^y^gc  —  h^x^y  =  (a^  —  h'^)ociyi', 

hyperbola     h^x^  —  ahf-  =  a%'^   is  a^j/ijc  -\-  h^jc^y  =  (a^  +  h'^)^ii/ii 

parabola  y"^  =  2px  is  y^x>  +  py  =  ociy^  +  py^. 

PROBLEMS 

1.  Find  the  equations  of  the  tangents  and  normals  to  the  following  conies 
at  the  points  indicated. 

(a)  8x2  -  10y2  =  17,  (3,  i).  (d)  2  x2  -  ?/  =  14,  (3,  -  2). 
(b)  2/2  =  4  X,  (9,  -  6).  (e)  x2  +  5  2/2  =  14,  (3,  1). 
(c)  x2  +  2/2  =  25,  (-  3,  -  4).  (f)  x2  =  62/,  (-  6,  6). 

(g)  x2-x2/  +  2x-7=0,  (3,2). 
(h)  X2/ -  2/2  +  6x  +  82/ -  6  =  0,  (- 1,  4). 

The  directed  lengths  on  the  tangent  and  normal  from  the  point 

of  contact  to  the  X-axis  are  called  the  length  of  the  tangent  and  the 

length  of  the  normal  respectively.  Their  projections  on  the  Z-axis 
are  known  as  the  subtangent  and  subnormal. 

2.  Find  the  subtangents  and  subnormals  in  (a),  (b),  (d),  and  (e),  prob- 
lem 1.  Ans.    (a)   -  Y,  t\  >  (b)  -  18,  2  ;  (d)  -  |,  6  ;  (e)  f ,  -  f . 

3.  Find  the  lengths  of  the  tangents  and  normals  in  (a),  (b),  (d),  and  (e), 

problem  1.  Ans.   (a)  i  VlsT,  j\  V18I ;  (b)  6  Vio,  2  Vio ; 
(d)  f  VTo,  2  VlO;  (e)  }  Vsi,  ̂   V34. 
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4.  Find  the  subtangents  and  subnormals  of  (a)  the  ellipse,  (b)  the  hyper- 

bola, (c)  the  parabola. 

Ans.    (a)   ,  -— xi;  (b)   ^—^^i',  (c)  -2xi,  p. Xi  a''  Xi        a^ 

5.  Show  how  to  draw  the  tangent  to  a  parabola  by  means  of  the  sub- 
normal or  subtangent. 

6.  Prove  that  a  point  Pi  on  a  parabola  and  the  intersections  of  the 

tangent  and  normal  to  the  parabola  at  Pi  with  the  axis  are  equally  distant 
from  the  focus. 

7.  Show  how  to  draw  a  tangent  to  a  parabola  by  means  of  problem  6. 

8.  The  normal  to  a  circle  passes  through  the  center. 

9.  If  the  normal  to  an  ellipse  passes  through  the  center,  the  ellipse  is  a 
circle. 

10.  The  distance  from  a  tangent  to  a  parabola  to  the  focus  is  half  the 

length  of  the  normal  drawn  at  the  point  of  contact. 

11.  Find  the  equation  of  the  tangent  at  a  vertex  to  (a)  the  parabola; 

(b)  the  ellipse ;   (c)  the  hyperbola. 

12.  Find  the  subnormal  of  a  point  Pi  on  an  equilateral  hyperbola. Ans.   Xi. 

13.  In  an  equilateral  hyperbola  the  length  of  the  normal  at  Pi  is  equal  to 
the  distance  from  the  origin  to  Pi. 

86.  Tangents  to  a  curve  from  a  point  not  on  the  curve. 

Ex.  1.    Find  the  equations  of  the  tangents  to  the  parabola  y'^  =  4:X  which 
pass  through  Pq  (—  3,  —  2). 

Solution.  Let  the  point  of 
contact  of  a  line  drawn  through 

Pa  tangent  to  the  parabola  be 
Pi.  Then  by  Theorem  III  the 
equation  of  that  line  is 

(1)  yiy  =  2x  +  2xi. 

Since  Pg  lies  on  this  line 

(Corollary,  p.  53), 

(2)  -2yi=-e  +  2xi; 
and  since  Pi  lies  on  the  parabola, 

(3)  2/i2  =  4xi. 
The  coordinates  of  Pi,  the 

point  of  contact,  must  satisfy 

(2)  and  (3).  Solving  them,  we 

find  that  Pi  may  be  either  of  the  points  (1,  2)  or  (9,  —  6). 
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If  (1,  2)  be  the  point  of  contact,  the  tangent  line  is,  from  (1), 
2y  =  2x  +  2, 

or  x-y  +  1  =  0. 

If  (9,  —  6)  be  the  point  of  contact,  the  tangent  line  is 
-6y  =  2x  +  lS, 

or  aj  -  3  y  +  9  =  0. 

The  method  employed  may  be  stated  thus : 

Rule  to  determme  the  equations  of  the  tangents  to  a  curve 

passing  through  ̂ 2(^2?  I/2)  ̂ ^^  ̂ ^  C. 

First  step.  Let  P^  {x-^,  y-^  be  the  point  of  tangency  of  one  of  the 
tangents  J  and  find  the  equation  of  the  tangent  to  C  at  P^  (Rule, 

p.  210). 
Second  step.  Write  the  conditions  that  (xg,  2/2)  satisfy  the  result 

of  the  first  step  and  {x^,  y-^  the  equation  of  C,  and  solve  these  equa- 
tions for  x^  and  2/1 . 

Third  step.    Substitute  each  pair  of  values  obtained  in  the  second 

step  in  the  result  of  the  first  step.     The  resulting  equations  are  the 

equations. 

PROBLEMS 

1.  Find  the  equations  of  the  tangents  to  the  following  curves  which  pass 
through  the  point  indicated  and  construct  the  figure. 

(a)  x2  + 2/2  ̂ 25,  (7,-1). Ans.    3x  — 4?/  =  25,  4x  +  32/  =  25. 

(b)  2/2  =  4 X,  (-1,0). Ans.   ?/ =  X  +  1,  ?/ +  X  + 1  =  0. 

(c)  16x2  +  25?/2  =  400,  (3,  -  4). Ans.    2/  +  4  =  0,  3x-22/  =  17. 

(d)  8  2/  =  x3,  (2,0). Ans.    ?/  =  0,  27  X  -  8  ?/  -  54  =  0. 

(e)  x2  +  16  7/2  -  100  =  0,  (1,  2). Ans.    None. 

(f)  2 xy  +  ?/2  =  8,  (-8,  8).        Ans.    2x  +  3?/-8  =  0,  4x  +  3y  +  8  =  0. 

(g)  2/2  +  4x-62/  =  0,  (-1,  -1). Ans.    2x-32/  =  0,  2x-2/  +  2  =  0. 

(h)  x2  +  42/=:0,  (0,  -6). Ans.    None. 

(i)  x2  -  32/2  +  2x  +  19  =  0,  (-  1 

,2). 
Ans.   x  +  32/-5  =  0,  x-32/  +  7  =  0. 

(J)  2/2  =  x^  (f ,  0).                Ans. 2/  =  0,  3x  —  y  —  4^:0,  3x  +  y  —  4  =  0. 

2.  Find  the  equations  of  the  lines  joining  the  points  of  contact  of  the 
tangents  in  (a),  (b),  (c),  (f),  (g),  and  (i),  problem  1. 

Ans.   (a)  7x-?/  =  25;    (b)  x  =  1 ;    (c)  12x-25y  =  100j 
(f)  x  =  l;    (g)  x-22/  =  0;    (i)  y  =  6. 
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2px,  the 

87.  Properties  of  tangents  and  normals  to  conies. 

Theorem  Y.    If  a  point  moves  off  to  infinity  on  the  parabola  y^ 
tangent  at  that  point  approaches  parallelism 
with  the  X-axis. 

Proof.    The  equation  of  the  tangent  at  the 

point  Pi  (xi,  2/1)  is  (Theorem  III,  p.  214) 

yiy  =px-{-  pxi. 

Its  slope  is  (Corollary  I,  p.  86) 

m  =  — • 2/1 
As  Pi  recedes  to  infinity  yi  becomes  infinite, 

and  hence  m  approaches  zero,  that  is,  the  tangent 

approaches  parallelism  with  the  X-axis.    q.  e.  d. 

Theorem  VI.    If  a  point  moves  off  to  infinity  on  the  hyperbola 

the  tangent  at  that  point  approaches  coincidence  with  an  asymptote. 

Proof    The  equation  of  the  tangent  at  the  point  Pi  (xi,  yi)  is  (Theorem 
III,  p.  214) 

(1)  b'^xix  -  ahjiy  =  a%\ 

b-^xx 

Its  slope  is  (Corollary  I,  p. 

a^yi 

As  Pi  recedes  to  infinity  Xi  and  2/1  become  infinite  and  m  has  the  inde- 

terminate form  — . CO 

But  since  Pi  lies  on  the  hyperbola, 

62xi2  -  ahfi^  =  aW- 

Dividing  by  a^^/i^,  transposing,  and  extracting  the  square  root, 

&Xi 

ayi 

vs 

+  1. Multiplying  by 6^1  6      62 
a^yi         a  \  y^ 
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From  this  form  of  m  we  see  that  as  yi  becomes  infinite  m  approaches 

±  -,  the  slopes  of  the  asymptotes  [(5),  p.  190],  as  a  limit.    The  intercepts  of 

•     As  their  limits  are  zero  the  limiting  position  of  the 

a2 

(1)
  
are

  
—  and

 

Xi 

tangent  will  pass  through  the  origin.     Hence  the  tangent  at  Pi  approaches 
coincidence  with  an  asymptote.  q.k.d. 

These  theorems  show  an  essential  distinction  between  the  form  of  the 

parabola  and  that  of  the  right-hand  branch  of  the  hyperbola. 

Theorem  VII.     The  tangent  and  normal  to  an  ellipse  bisect  respectively  the 

external  and  internal  angles  formed  by  the  focal  radii  of  the  point  of  contact.* 

Proof    The  equation  of  the  lines  joining  Pi  (xi,  y\)  on  the  ellipse 

62x2  _f.  g2y2  -  (jfiKi 

to  the  focus  P'(c,  0)  (Theorem  V,  p.  185)  is' 

^0  (Theorem  VII,  p.  97) 

yix  +  (c  -  xi)  y  -  cyi  =  0, 
and  the  equation  of  PiF  is 

^  Vi^  -  (c  +  xi)  y  +  cyi  =  0. 

The    e(iuation    of    the    tangent    AB   is 

(Theorem  III,  p.  214) 

62xix  +  a^yiy  =  a'^b^. 

We  shall  show  that  the  angle  6  which  AB  makes  with  PiP'  equals  the 
angle  0  which  PiP  makes  with  AB. 

By  Theorem  X,  p.  109, 

tan  d  =    «^yi^  -  ̂^cxi  +  62xi2    _  (gZyig  +  b^xi"^  -  l^Xi 

b^xiyi  +  a^cyi  -  a^XiVi      a^ciji  -  {aP-  -  62)  xiVi ' 
But  since  Pi  lies  on  the  ellipse, 

a2?/i2  +  62xi2  =  a262, 

and  (Theorem  V,  p.  185)  a^  -  6.2  =  c\ 

ofib'^-b'^cxx    _  62(a2-cxi)  _  62 Hence   tan  6  = 
a^cvx  -  c^iyi      cyi  {d^  -  cxi)      cyi 

In  like  manner 

tan  0  = 
-  62cxi  -  62xi2  -  a^y{^ 

62xi?/i  -  a^C7/i  -  a-xpji 

(62xi2  +  a^yi^)  +  62cxi 
a2c2/i  +  (a2-62)xi2/i 
a262  +  62cxi    _  62 

a^cyi  +  c2xiyi      cyi 

*  This  theorem  finds  application  in  the  so-called  whispering  galleries, 
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Hence  tan  6  =  tan  0 ;  and  since  6  and  <p  are  both  less  than  Tt,  6  =  <p. 

That  is,  AB  bisects  the  external  angle  of  FPi  and  F^Pi,  and  hence,  also, 
CD  bisects  the  internal  angle.  q.e.d. 

In  like  manner  we  may  prove  the  following  theorems. 

Theorem  VIII.  The  tangent  and  normal  to  an  hyperbola  bisect  respec- 
tively the  internal  and  external  angles  formed  by  the  focal  radii  of  the  point 

of  contact. 

Theorem  IX.  The  tangent  and  normal  to  a  parabola  bisect  respectively  the 
internal  and  external  angles  formed  by  the  focal  radius  of  the  point  of  contact 

and  the  line  through  that  point  parallel  to  the  axis.* 

These  theorems  give  rules  for  constructing  the  tangent  and  normal  to  a 
conic  by  means  of  ruler  and  compasses. 

Construction.  To  construct  the  tangent  and  normal  to  an  ellipse  or  hyper- 
bola at  any  point,  join  that  point  to  the  foci  and  bisect  the  angles  formed  by 

these  lines.  To  construct  the  tangent  and  normal  to  a  parabola  at  any  point, 
draw  lines  through  it  to  the  focus  and  parallel  to  the  axis,  and  bisect  the 
angles  formed  by  these  lines. 

The  angle  which  one  curve  makes  with  a  second  is  the  angle  which  the 

tangent  to  the  first  makes  with  the  tangent  to  the  second  if  the  tangents  are 
drawn  at  a  point  of  intersection. 

Theorem  X.    Confocal  ellipses  and  hyperbolas  intersect  at  right  angles. 

Proof    Let 

(2)  ?!  +  ̂=land^-^  =  l 
^  '  a^      b''  a'2      6'2 

be  an  ellipse  and  hyperbola  with  the  same  foci. .    Then 

(3)  a2  _  52  :^  a'2  +  6'2. 

For  if  the  foci  are  (±  c,  0),  then  in  the  ellipse  c^  =  a^-  b^  and  in  the  hyperbola  c- ^ a'^  +  6'* 
(Theorems  V  and  VI,  p.  185). 

*  This  theorem  finds  application  in  reflectors  for  lights. 
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The  equations  of  the  tangents  to  (2)  at  a  point  of  intersection  Pi  (xi,  yi) 

are  (Rule,  p.  214) 

?l?  +  ?^  =  land^-?^=l. 

It  is  to  be  proved  that  the  lines  (4)  are  perpendicular,  that  is  (Corollary 

III,  p.  87),  that 

(5)  ^-J^  =  0. ^  '  a2a'2      525^2 

Since  Pi  lies  on  both  curves  (2),  we  have 

^V^^land^^-^  =  1. a2  62  (j'2         5'2 

Subtracting  these  equations,  we  obtain 

(6)  (a^-a'-')x,^  _  (62  +  6-2)^,2  ̂  ^  ̂   a2a'2  626'2 

But  from  (3),  a^  -  a"^  =  62  +  6'2, 
and  hence  (6)  reduces  to  (5)  and  the  lines  (4)  are  perpendicular.  q.e.d. 

In  like  manner  we  prove 

Theorem  XI.  Two  parabolas  with  the  same  focus  and  axis  which  are  turned 

in  opposite  directions  intersect  at  right  angles. 

Hence  the  confocal  systems  in  section  82,  p.  200  (Ex.  4  and  problem  6), 
are  such  that  the  two  curves  of  the  system  through  any  point  intersect  at 

right  angles. 

PROBLEMS 

1.  Tangents  to  an  ellipse  and  its  auxiliary  circle  (p.  206)  at  points  with 
the  same  abscissa  intersect  on  the  X-axis. 

2.  The  point  of  contact  of  a  tangent  to  an  hyperbola  is  midway  between 
the  points  in  which  the  tangent  meets  the  asymptotes. 

3.  The  foot  of  the  perpendicular  from  the  focus  of  a  parabola  to  a  tan- 
gent lies  on  the  tangent  at  the  vertex. 

4.  The  foot  of  the  perpendicular  from  a  focus  of  a  central  conic  to  a 

tangent  lies  on  the  auxiliary  circle  (p.  206). 

5.  Tangents  to  a  parabola  from  a  point  on  the  directrix  are  perpendicular 
to  each  other. 

6.  Tangents  to  a  parabola  at  the  extremities  of  a  chord  which  pass 

through  the  focus  are  perpendicular  to  each  other. 

7.  The  ordinate  of  the  point  of  intersection  of  the  directrix  of  a  parabola 

and  the  line  through  the  focus  perpendicular  to  a  tangent  is  the  same  as  that 
of  the  point  of  contact. 
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8.  How  may  problem  7  be  used  to  draw  a  tangent  to  a  parabola  ? 

9.  The  line  drawn  perpendicular  to  a  tangent  to  a  central  conic  from  a 

focus  and  the  line  passing  through  the  center  and  the  point  of  contact  inter- 
sect on  the  corresponding  directrix. 

10.  The  angle  which  one  tangent  to  a  parabola  makes  with  a  second  is 
half  the  angle  which  the  focal  radius  drawn  to  the  point  of  contact  of  the 
first  makes  with  that  drawn  to  the  point  of  contact  of  the  second. 

11.  The  product  of  the  distances  from  a  tangent  to  a  central  conic  to  the 
foci  is  constant. 

12.  Tangents  to  any  conic  at  the  ends  of  the  latus  rectum  (double  chord 

through  the  focus  perpendicular  to  the  principal  axis)  pass  through  the 
intersection  of  the  directrix  and  principal  axis. 

13.  Tangents  to  a  parabola  at  the  extremities  of  the  latus  rectum  are 

perpendicular. 

14.  The  equation  of  the  parabola  referred  to  the  tangents  in  problem  13  is 

x2  -  2x2/  +  2/2  _  2  V2p (X  +  2/)  +  2p2  =  o, 

or  (compare  p.  17)  x^  -^  y^  =  \p  V2. 
15.  The  area  of  the  triangle  formed  by  a  tangent  to  an  hyperbola  and 

the  asymptotes  is  constant. 

16.  The  area  of  the  parallelogram  formed  by  tTie  asymptotes  of  an 

hyperbola  and  lines  drawn  through  a  point  on  the  hyperbola  parallel  to 
the  asymptotes  is  constant. 

88.  Tangent  to  a  curve  at  the  origin.    If  a  curve  passes  through 
the  origin,  the  equation  of  the  tangent  at 
that  point  is  easily  found. 

Ex.  1.    Find  the  equation  of  the  tangent  at  the 
origin  to 
^  C:x3-4x-2y  =  0. 
Solution.    To  find  the  slope  of  the  tangent  at 

Pi(0,  0),  let  P2(0  +  /i,  0  +  k)  be  a  second  point 
on  C.     The  conditions  that  Pi  and  P2  lie  on  C 

give  but  one  equation, 

h^-4h-2k  =  0, 

whence  the  slope  of  the  secant  P1P2  is  [(1),  p.  207] 

m  =  -=-2  +  -h^. 
h  2 

Letting  P2  approach  Pi,  h  and  k  approach  zero, 
and  the  slope  of  the  tangent  is  the  limit  of  m, 
which  is  —  2. 
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Hence  the  equation  of  the  tangent  is  (Theorem  I,  p.  58) 

y  =  -  2  X, 

or  2x-\-y  =  0. 
Notice  that  this  equation  may  be  obtained  at  once  by  setting  the  ten 

the  first  degree  in  tlie  equation  of  C  equal  to  zero. 

If  a  curve  passes  through  the  origin,  the  constant  term  in  its 

equation  must  be  zero  (Theorem  VI,  p.  73),  so  that  its  equation 
must  have  the  form 

Ax-{-By-^  Cx^  +  Dxij  +  Ef  -\-  Fx'^ -{   =  0, 
where  the  dots  indicate  that  there  may  be  other  terms  whose 

degree  in  x  and  y  may  be  three  or  greater. 

Theorem  XII.  The  equation  of  the  tangent  at  the  origin  to  the 

curve  C  whose  equation  arranged  according  to  ascending  powers  of 

X  and  y  is 

Ax  +  By  •+  Cx^  +  Dxy  +  Ey"^  +  Fx^  -\   =  0, 
is  Ax  +  By  =  0. 

That  is,  the  equation  of  the  tangent  to  C  at  the  origin  is  obtained 

by  setting  equal  to  zero  the  terms  of  the  first  degree  in  x  and  y. 

Proof  Pi  (0,  0)  lies  on  C.  Let  P2{h,  k)  be  a  second  point 

on  C.     Then  (Corollary,  p.  53) 

Ah  +  Bk  +  Ch^  +  Dhk  +  Ek"^  +  Fh^,-\-  •  •  •  =  0. 
Transposing  all  terms  containing  h,  and  factoring, 

k{B  +  Ek-\   )  =  -  h{A  +  Ch+Dk^  Fh^  H   ). 

k  _      A^Ch-V  Dk  +  Fh"-  H   
"  h~  B  +  Ek  -\   

Letting  P^,  approach  Pi,  the  limit  of  — j  which  is  the  slope  of 

A  ^ 
the  tangent,  is  seen  to  be  — -• 

Hence  the  equation  of  the  tangent  is  (Theorem  V,  p.  95) 
A 

y  = 

B 
or Ax  -\-  By  =  0.  Q.E.D. 

If  ̂   =  0  and  5  =  0,  the  terms  of  the  lowest  degree,  if  set  equal  to  zero,  will 
be  the  equation  of  the  two  or  more  lines  which  will  then  be  tangent  to  C  at 

the  origin.  For  example,  if  the  equation  of  C  is  y^  —  y'^ -\- x^  —  0,  the  two  lines 
a;2  _  y2  =  0  will  be  tangent  to  C  at  the  origin  (problem  3,  (h),  p.  211). 
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89.  Second  method  of  finding  the  equation  of  a  tangent.   The 

tangent  to  a  curve  C  at  a  point  Pi  may  now  be  found  as  follows. 

Transform  C  by  moving  the  origin  to  Pi  (Theorem  I,  p.  160). 

The  equation  of  the  tangent  at  Pi  in  the  new  coordinates  is  then 

found  immediately  by  Theorem  XII.  Transform  it  by  translating 

the  axes  to  their  first  position.  The  result  is  the  equation  of  the 

tangent  at  Pj  in  the  given  coordinates. 

Ex.  1.    Find  the  equation  of  the  tangent  to  C  :4x2  —  2y2  4.  ̂-s  =  0  at 

Pi  (-2,  2)  which  lies  on  C. 
Solution.    Set  (Theorem  I,  p.  160) 

X  =  x'  —  2,  y  =  y'  -\-  2. 
The  equation  of  C  becomes 

4  {x'  -  2)2  -  2  (?/'  +  2)2  +  (x'  -  2)3  =  0. 
Only  the  terms  of  the   first  degree  are 

needed,  and  these  may  be  picked  out  without 

clearing  the  parentheses.     The  equation  of 

the  tangent  is  therefore 

4  (-  4 x')  -  2  . 4  y'  +  12  x'  =  0, 
or  x'  +  2  ̂z'  =  0. 

To  transform  to  the  old  axes,  set 

x'  =:  X  +  2,  y'  =  y  —  2. 
We  thus  obtain 

x  +  2?/-2  =  0, 
which  is  the  equation  of  the  tangent  to  C  at  Pi. 
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PROBLEMS 

1.  Find  the  equations  of  the  tangents  at  the  origin  to 

(a)  x2  +  2x?/  +  ?/  -  6x  +  8y  =  0.  (d)  y  =:  x^  -  2x2 
(b)  X2/  -  2/2  +  aj  _  3  2/  zr  0. 

X. 

(e)  x3  +  2/2  +  X  -  y  =  0. 
(c)  x2  +  4  x?/  -  3  X  -}-  4  2/  =  0.  (f )  x3  +  x2  -  3  xy  -  4  2/2  =  0. 

2.  Find  the  equations  of  the  tangents  to  the  following  curves  at  the  points 
indicated  by  tlie  method  of  section  89. 

(a)  9x2  -  2/2  +  2 X  -  4  =  0,  (2,  6). 

(b)  x2  +  4x2/  +  62/-7=0,  (-1,3). 
(c)  xy  +  6x  -  42/  -  6  =  0,  (2,  3). 
(d)  2/2_L4x  +  22/  +  8  =  0,  (-4,2). 

(e)  2/2  =  x3  +  8,  (2,4). 
(f)  2/  =  x*  -  3x3  -  5x2  +  4x  +  4,  (0,  4). 

Ans.  19x-62/-2  =  0. 

Ans.  5x  +  2/  +  2  =  0. 

Ans.  9x- 2^-12  =  0. 
Ans.  2x  +  32/  +  2=0. 

Ans.  3x-22/  +  2ri:0. 
Ans.  2/  =  4  X  +  4. 
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3.  Find  the  angle  which  the  locus  of  xy-^-iij  — 2x  =  0  makes  at  the 

origin  with  that  of  x^  -{-  4xy  -{-  x -\-  Sy  =  0.  ^^    ̂  4 

4.  Find  the  angle  which  the  line  2x  —  Sy  —  9  =  0  makes  with  the  locus 

of  xy  +  0x-4y-19  =  0at(3, -1).  ^^    ̂  4 

MISCELLANEOUS    PROBLEMS 

1.  Find  the  equations  of  the  tangents  and  the  normals  to  the  following 
conies  at  the  points  indicated. 

(a)  a;2  +  ixy  -  ix -lOy -\-7  =  0,  (3,  -  2). 
(b)  xy-4x-\-3y-i  =  0,  (-1,4). 

(c)  jcy  +  2/2  +  2x  +  2y  =  0,  (-  3,  3). 

(d)  2/2  +  4a;  +  6y  -  27  =  0,  (5,  -  7). 
(e)  x2  +  3x2/  +  2/2  -  102/  -  1  =  0,  (2,  3). 
(f)  x2  -  8x  +  32/  -  14  =  0,  (1,  7). 

2.  Find  the  equation  of  one  of  the  tangents  to  the  ellipse  x^  -\-  9y^  —  ix 
+  9  y  =  0  which  is  parallel  to  the  line  4x  —  9?/—  36  =  0. 

3.  For  what  point  of  the  parabola  ?/2  =  2px  is  the  length  of  the  tangent 
equal  to  four  times  the  abscissa  of  the  point  of  contact  ? 

4.  What  is  the  length  of  the  tangent  to  a  parabola  at  an  extremity  of 

the  latus  rectum?  Restate  the  equation  of  the  parabola  in  problem  14, 
p.  221,  in  terms  of  this  length. 

6.  For  what  point  on  the  parabola  y^  =  2px  is  the  normal  equal  to 
(a)  twice  the  subtangent?  (b)  the  difference  between  the  subtangent  and 
the  subnormal  ? 

6.  Through  a  point  of  the  ellipse  ft^^a  +  a'^yi  —  ̂ 252  and  that  point  of 
the  auxiliary  circle  with  the  same  abscissa  normals  are  drawn.  What  is 
the  ratio  of  the  subnormals  ? 

7.  For  what  points  of  an  hyperbola  is  the  subtangent  equal  to  the 
subnormal  ? 

8.  The  ordinate  of  a  point  on  an  equilateral  hyperbola  and  the  length  of 
the  tangent  drawn  from  the  foot  of  that  ordinate  to  the  auxiliary  circle  are 

equal, 

9.  A  tangent  to  a  parabola  meets  the  directrix  and  latus  rectum  produced 
at  points  equally  distant  from  the  focus. 

10.  The  semi-conjugate  axis  of  a  central  conic  is  a  mean  proportional 
between  the  distance  from  the  center  to  a  tangent  and  the  length  of  the 
normal  drawn  at  the  point  of  contact. 
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11.  Find  the  points  of  the  ellipse  for  which  the  lengths  of  the  tangent 
and  normal  are  equal. 

12.  Any  point  on  an  equilateral  hyperbola  is  the  middle  point  of  that  part 
of  the  normal  included  between  the  axes  of  the  hyperbola. 

13.  A  circle  is  drawn  through  a  point  on  the  minor  axis  of  an  ellipse  and 
through  the  foci.  Show  that  the  lines  drawn  through  the  given  point  and 
the  points  of  intersection  of  the  circle  and  ellipse  are  normal  to  the  ellipse. 

14.  How  many  normals  may  be  drawn  through  a  given  point  to  (a)  an 
ellipse  ?  (b)  an  hyperbola  ?  (c)  a  parabola  ? 



CHAPTER   X 

RELATIONS   BETWEEN  A  LINE   AND   A  CONIC.    APPLICj 

TIONS  OF  THE   THEORY  OF  QUADRATICS 

90.  Relative  positions  of  a  line  and  conic.    If  a  line  and  coni 

are  given,  it  is  evident  that 

(a)  the  line  is  a  secant  of  the  conic, 

(h)  the. line  is  tangent  to  the  conic,  or 

•         (c)  the  lirie  does  not  meet  the  conic. 

The  coordinates  of  the  points  of  intersection  of  the  line  and 

conic  are  found  by  solving  their  equations  (Rule,  p.  76),  which 

are  of  the  first  and  second  degrees  respectively.     To  solve,  we 

eliminate  y*  and  arrange  the  resulting  equation  in  the  form 

(1)  Ax^  +  Bx  +  C  =  0. 

Denote  the  roots  by  x^  and  a*2  and  the  discriminant  B^—4:A  C  by  A" 
Analytically  the  three  cases  above  present  themselves  as  follows 

(a)  If  A  is  positive,  the  line  is  a  secant. 
For  Xi  and  z^  are  real  and  unequal  (Theorem  II,  p.  3),  and  hence  they  are  the 

abscissas  of  the  points  of  intersection,  which  must  be  distinct. 

(b)  If  A  is  zero,  the  line  is  a  tangent. 

For  in  this  case  Xi  =  x^,  so  that  the  points  of  intersection  coincide. 

(c)  If  A  is  negative,  the  line  does  not  meet  the  conic. 
For  X\  and  x^  are  imaginary,  and  hence  there  are  no  points  of  intersection 

(p.  77). 
If  ̂   =:  0,  one  root  of  (1)  is  infinite  (Theorem  IV,  p.  15)  and  one  point  of  inter- 

section is  said  to  be  "  at  infinity." 
If  ̂   =  0  and  B  =  Q,  then  both  roots  of  (1)  are  infinite  and  the  line  is  said  to  be 

"  tangent  at  infinity." 
If  ̂   =  0,  J5  =  0,  and  C  =  0,  then  (1)  is  satisfied  by  all  values  of  x,  and  hence 

has  an  infinite  number  of  roots.  All  of  the  points  on  the  line  lie  on  the  conic ; 
that  is,  the  conic  is  degenerate  and  consists  of  straight  lines  of  which  the  given 
line  is  one. 

*If  one  equation  does  not  contain  y,  then  x  is  found  by  solving  that  equation, 
for  our  purposes  it  is  unnecessary  to  complete  the  solution. 
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In  solving  the  equations  of  the  line  and  conic  it  might  be  easier 

to  eliminate  x  than  i/.     Then  (1)  would  be  a  quadratic  in  i/,  but 
the  result  of  the  discussion  would  be  the  same. 

If  one  equation  did  not  contain  y,  it  would  be  necessary  for  our  purposes  to 
eliminate  x  instead  of  y,  and  vice  versa. 

Ex.  1.  Determine  the  relative  positions  of  the 

line  3 cc  —  2  y  +  6  =  0  and  the  parabola  y-  +  4  x  =  0. 

Solution.  It  is  easier  to  eliminate  x  than  y. 

Solving  the  equation  of  the  line  for  x,  we  obtain 

3 

Substituting  in  y^  +  4  x  =  0,  we  get 

3  2/2  +  8  y  -  24  =  0. 

The  discriminant  of  this  quadratic  is 

A  =  82-4.3(-24)  =  352. 

As  A  is  positive,  the  line  is  a  secant. 

Ex.  2.  Determine  the  relative  position  of  the  line"4x  +  y 
+  5  =  0  and  the  ellipse  9  x^  +  ?/2  =  g. 

Solution.    It  is  easier  to  eliminate  y  than  x.     From  the 
first  equation, 

2/=-(4x  +  5). 

\--T    Substituting  in  the  second  and  arranging,  we  get 

"T_     I  25x2 +  40X  + 10  =  0. 
^  The  discriminant  is  A  =  402  -  4  •  25  •  16  =  0.     Hence  the 

line  is  a  tangent. 

Ex.  3.  Determine  the  relative  position  of  the  loci  otx^  —  y'^  +  Sx  —  Sy  =  0 
and  X  —  y  =  0. 

Solution.    Eliminating  y,  we  get 

x2  -  x2  +  3  X  -  3  X  =  0, 

or  0  .  x2  +  0  •  X  +  0  =  0. 

As  this  equation  is  true  for  all  values  of  x, 

then  all  of  the  points  on  the  line  lie  on  the  conic. 

The  equation  of  the  conic  may  evidently  be 

written  (x  —  ?/)  (x  +  y  +  3)  =  0.  The  locus  of 
this  equation  is  (Theorem,  p.  66)  the  degenerate 
conic  consisting  of  the  pair  of  lines 

x-?/  =  0,  x  +  y  +  3  =  0, 
of  which  one  is  the  given  line. 
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Ans. Do  not  meet. 

Ans. Secant. 
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Ans. Secant. 
Ans. Do  not  meet. 
Ans. Do  not  meet. 
Ans. Secant. 
Ans. Tangent. 
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PROBLEMS 

1.  Determine  the  relative  positions  of  the  loci  of  the  following  equations 

and  plot  their  loci. 

(a)  X  +  y  +  1  =  0,  x2  =  4  y. 
(b)  X  -  2  y  +  20  =  0,  x2  +  2/2  =  16. 
(c)  y2  _  4a;  =  0,  2x  +  3  2/  -  8  =  0. 
(d)  x2  +  y2  -  X  -  2  y  =  0,  X  +  2  y  =  6. 

(e)  2xy  -  3x  -  y  =  0,  2/  +  3x  -  6  =  0. 
(f)  x2  +  2/2  _  6x  -  8y  =  0,  X  -  22/  =  6. 

(g)  4x2  +  2/2  -  16x  =  0,  X  +  2/  -  8  =  0. 
(h)  x2  +  2/2  -  8x  -  6  =  0,  X  +  8  =  0. 
(i)  8x2  -  62/2 +  16x- 32  =  0,  2x-Sy  =  0. 

(j)  x2  +  X2/  +  2x  +  2/  =  0,  2x  +  2/  +  4  =  0. 

(k)  x2  +  2x2/  +  2/^  +  4x  -  42/  =  0,  X  +  2/  =  1. 
Ans.    Secant,  with  one  point  of  intersection  at  infinity. 

(1)  4  x2  —  2/2  +  4  X  +  1  =  0,  2  X  —  2/  + 1  =  0.      Ans.   Line  is  part  of  conic. 

(m)  x2  +  4  X2/  +  y2  -f  4  X  -  6  2/  =  0,  2  X  -  3  2/  =  0.  Ans.   Tangent. 
(n)  x2  -  4  2/2  +  8  2/  -  20  =  0,  X  -  2  2/  +  2  =  0.     Ans.   Tangent  at  infinity. 

(o)  x2  -6xy  +  92/2  +  x-32/-2  =  0,  x-3y  =  l. 
Ans.    Line  is  part  of  conic, 

(p)  6 x2  -  5 X2/  -  6 2/2  =  18,  2 X  -  3  2/  =  0.  Ans.    Tangent  at  infinity. 

2.  Find  the  middle  points  of  the  chords  of  the  conies  in  (c),  (f),  and  (i), 

problem  1,  which  are  formed  by  the  given  line. 

Ans.   (c)  i^l,  -3);   (f)  (V,  -  |) ;   (i)  (- f,  -1). 

3.  Interpret  Theorem  II,  p.  3,  geometrically  by  determining  the  relative 

positions  of  the  parabola  y  =  Ax^  +  Bx  +  C  and  the  line  y  =  0.  Construct 
the  figure  if 

(a)  A  =  l,  B=-l,  C=0;  (b)  A  =  l,  B=C=0;  (c)  A  =  l  B=l,  C=0. 

91.  Relative  positions  of  lines  of  a  system  and  a  conic,  and 
of  a  line  and  conies  of  a  system.  Given  a  system  of  lines  (that 
is,  an  equation  of  the  first  degree  containing  a  parameter  k)  and 
a  conic,  we  can  determine  the  values  of  k  for  which  the  lines  of 

the  system  intersect,  are  tangent  to,  or  do  not  meet  the  conic,  as 
follows. 

Eliminate  x  or  y,  as  may  be  more  convenient,  from  the  equa- 
tions of  the  system  of  lines  and  the  conic,  thus  obtaining  an 

equation  either  of  the  form 

(1)  Ay^-{-Bi/-\-C  =  0  or  Ax^ -\- Bx -^  C  =  0. 

J 
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The  discriminant  A  will  be  in  general  a  quadratic  in  k. 

Determine  the  values  of  k  for  which  A  is  positive,  zero,  or 

negative  (Theorem  III,  p.  11)  and  apply  the  results  of  the 

preceding  section. 

The  same  process  serves  to  separate  the  conies  of  a  system 

(that  is,  the  loci  of  an  equation  of  the  second  degree  containing 

a  parameter  k)  into  three  classes  according  as  they  intersect,  are 

tangent  to,  or  do  not  meet  a  given  line.  Only  here  the  values  of  ky 

if  any,  for  which  the  equation  has  no  locus  must  be  excluded. 

Ex.  1.  Find  the  values  of  k  for  which  the  line  y  =  2x  -{-k  intersects,  is 
tangent  to,  or  does  not  meet  the  ellipse  x2  +  4  2/2  —  8ic  +  4y  =  0. 

Solution.    Eliminating  y  by  substitution  in  the  second  equation,  we  obtain 

17x2  +  16A:x  +  4fc2  +  4A;  =  0. 
The  discriminant  of  this  quadratic  is 

A  =  (16  fc)2  -  4  .  17  (4  A;2  +  4  A;)  =  -  16  (A;2  +  17  k). ^4/ 
-..0          J] 

~¥(i  JT^   
— .^     41  *<;-" ^ '■     ̂ 2        -^ 4^5 

r      -t 2^^ 

'-    ̂ ? 

7      ̂ ^   

■"^^ 

z_  , 7 
By  (a),  (6),  and  (c),  p.  226, 

(a)  the  line  is  a  secant  if  -  16  (A:2  +  17  A;)  >  0  ; 
(b)  the  line  is  a  tangent  if  -  16  (A:2  +  17  A:)  =  0 ; 
(c)  the  line  does  not  meet  the  ellipse  if  —  16  (A:2  +  17  A:)  <  0. 

Apply  Theorem  III,  p.  11,  to  the  quadratic  -  16(A:2  +  17  A;). 
Since  A  =  (—  16  •  17)2  ig  positive,  ̂   =  —  16,  and  the  roots  are  0  and  —  17, 

(a)  if  -  17  <  A:  <  0,  the  quadratic  -  16  (A;2  +  17  A;)  >  0  ; 
(b)  if  A;  =  0  or  -  17,  the  quadratic  -  16  (A;2  +  17  A;)  =  0  ; 
(c)  if  A;  <  -  17  or  A:  >  0,  the  quadratic  -  16  (A:2  +  17  A:)  <  0. 

Hence 

(a)  the  line  is  a  secant  if  —  17  <  A:  <  0. 
(b)  the  line  is  a  tangent  if  A;  =  0  or  —  17. 
(c)  the  line  does  not  meet  the  ellipse  if  A;  <  —  17  or  A;  >  0. 

The  lines  of  the  system  are  all  parallel.    The  figure  shows  the  two  tangent 
lines  and  indicates  where  the  lines  lie  for  different  values  of  k. 
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PROBLEMS 

1.  Determine  the  values  of  k  for  which  the  loci  of  tlie  following  equations 

(a)  intersect,  (b)  are  tangent,  (c)  do  not  meet.  Construct  the  figure  in  each 
case. 

(a)  y  =  kx- 

(b)  x  +  ly 

(c)  x2  +  2/2 

1,  x^  =  4  2/. 

±1;    (c)  -l<fc<l. 

(c)  Ar  >  5  or  A:  <  -  6. 

(f)  4x2 

(g)  y'^  =  2kx,  X 

Arts,    (a)  /c>  1  or  A;  <  -  1 ;   (b)  A: 

I  A:,  x2  +  2/2  =  5. 

Ans.    (a)-5<A;<5;    (b)  A:  =  ±  5  ; 
=  A;,  3x  -4y  4-  10  =  0. 

Ans.    (a)A:>4;    (b)  A:  =  4  ;    (c)0<A;<4.j 

(d)  y  =  kx  +  2,  x2  —  8  2/  =  0.  Ans.   (a)  For  all  values  of  k,{ 
(e)  x2  +  2/2  _  2  ̂x  =  0,  y  =  x. 

An^.    (a)  For  all  values  except  A:  =  0  ;   (b)  A;  =  0.| 

2/2  =  16,  y  =  kx. 

Ans.    (a)  -  2  <  A:  <  2  ;    (b)  A:  =  ±  2  ;    (c)  A;  >  2  or  A;  <  -  2. 
-22/  + 2  =  0. 
Ans.    (a)  A;  >  1  or  A;  <  0 ;   (b)  A;  =  0  or  1 ;  (c)  0  <  A;  <  1. j 

(h)  x2  +  4 2/2  -  8 X  =  0,  y  =  kx  +  2  -4k. 
Ans  (a)  All  values  except  A:  =  0 ;  (b)  A;  =  0. 

(i)  X2/  =  A:,  2X  +  2/  +  4  =  0.  Ans.  {&)  k<2;  (b)  A;  =  2  ;  (c)A;>2.] 

(j)  3^2/ +  2/2  -  4x  +  82/ =  0,  X  -  22/ +  A:  =  0. 
Ans.    (a)  A;>48  or  A:<0;    (b)  A;  =  0  or  48  ;    (c)48>A;>0. 

(k)  4  x2  +  2/2  _  6  x  4-  6  2/  =  0,  y  =  kx  +  l-k. 
Ans.    (a)  A;  >  1  or  A:  <  -  if  ;    (b)  A;  =  1  or  -  J f  ;    (c)  -  \^<k<  l.i 

2.  Determine  the  values  of  k  for  which  the  loci  of  the  following  equatic 
are  tangent  and  construct  the  figure. 

(a)  x2  -  4  y  +  16  =  0,  y  =  k. 

(b)  9x2  +  iQy'2  =  144^  y  _j.^j^^ 
(c)  4  xy  +  2/2  +  16  =  0,  X  =  A;. 
(d)  x2  +  4x2/  +  2/2  =  A;,  2/  =  2x  +  1. 
(e)  x2  +  2x2/  +  2/2  +  8x-6y  =  0,  4x-Sy  =  k. 
(f)  x2  +  2x2/  -4x  +  22/  =  0,  2x  -  2/ +  A;  -  3  =  0. 

92.  Tangents  to  a  conic.  If  in  the  preceding  section  the  value 

of  the  discriminant  of  (1)  is  zero,  then  the  line  and  conic  are  tan- 

gent. The  equation  obtained  by  setting  that  discriminant  equal 

to  zero  is  called  the  condition  for  tangency.  Hence  the  condition 

for  tangency  of  a  line  and  conic  is  found  by  eliminating  either 

X  OT  y  from  their  equations  and  setting  the  discriminant  of  the 

resulting  quadratic  equal  to  zero. 

Thus  in  Ex.  1,  p.  229,  the  condition  for  tangency  is  A  =  -  16  (A;2  +  17  A;)  =  0. 

Ans. 
k  =  i. 

Ans. 
k  =  ±5. 

Ans. k  =  ±2. 

Ans. 

k=-^,. 

Ans. k  =  0. 
Ans. A;  =  3  or  13. 
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Ex.  1.  Find  tlie  condition  for  tangency  of  the  line  -  +  -  =  1  and  the  parab- 

ola y^  =  2px.  ^      ̂ 
Solution.  Eliminating  x  by  solving  the  first  equation  for  x  and  substituting 

in  the  second,  we  get 

by'^  +  2  apy  —  2  abp  =  0. 

The  discriminant  of  this  quadratic  is 

A  =  (2  ai))2  -  4  &  ( -  2  abp)  =  4  ap  (op  +  2  62) . 

Hence  the  condition  for  tangency  is 

4  ap  {ap  +  2  &2)  =  0  or  ap  {ap  +  2  62)  -  o. 

Rule  to  find  the  equation  of  a  line  tangent  to  a  given  conic  and 

satisfying  a  second  condition. 

First  step.  Write  the  equation  of  the  system  of  lines  satisfying 
the  second  condition. 

Second  step.  Find  the  condition  for  tangency  of  the  equation 

found  in  the  first  step  and  the  given  conic. 

Third  step.  Solve  the  equation  found  in  the  second  step  for  the 

value  of  the  parameter  of  the  system  of  lines  and  substitute  the  real 

values  found  in  the  equation  of  the  system.  The  equations  obtained 

are  the  required  equations. 

Ex.  2.  Find  the  equations  of  the  lines  with  the  slope  |  which  are  tangent 

to  the  hyperbola  x^  —  Qy"^  +  Vly  —  \^  =  {)  and  find  the  points  of  tangency. 
Solution.    First  step.    The  lines  of  the  system 

(1)  y  =  ̂ x  +  k 

have  the  slope  ̂   (Theorem  I,  p.  58). 

T'> 

k ^ ^ 
^ 

y^
 

^ ̂  

'v 

s, 

X*
 

'^ 

^ 
^ 

(T 

?) 

\ ^ 

.X 

^ f I 

y^
 

r^ 

X \ 
y ' 

^ 
^ 

t
^
 

^ V 
V r 

— ^ 

s^ 

(-6' 

-1 

^ 

\^ 

■v^ 

^« 

^ , 
^ 

Second  step.    Solving  (1)  for  x  and  substituting  in  the  given  equation, 

(2)  2/2  +  (4  ̂  _  6)  y  +  9  -  2  A;2  =  0. 

Hence  the  condition  for  tangency  is 

(4  A;  -  6)2  -  4  (9  -  2  A:2)  =  0. 
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Third  step.    Solving  this  equation,  A;  =  0  or  2. 
Substituting  in  (1),  we  get  the  required  equations,  namely, 

(8)  x-2y  =  0,  x-22/  +  4  =  0. 

To  find  the  points  of  tangency  we  substitute  each  value  of  k  in  (2),  which 
then  assumes  the  second  form  of  (7),  p.  4,  namely, 

if  A;  =  0,  (2)  becomes  (y  -  3)2  =  0  ;  .-.  y  =  3 ; 

if  A;  =  2,  (2)  becomes  (y  +  l)^  =  0 ;  .\y  =  -  1. 

Hence  3  and  —  1  are  the  ordinates  of  the  points  of  contact.    Then,  from  (1  j 

if  A;  =  0  and  y  =  3,  we  have  «  =  6 ; 

if  A;  =  2  and  y  =  —  1,  we  have  x  =  —  Q. 

Hence,  if  A:  =  0,  the  point  of  contact  is  (6,  3) ; 

if  A;  =  2,  the  point  of  contact  is  (—  6,  —  1). 

The  points  of  contact  may  also  be  found  by  solving  each  of  equations* (3) 
with  the  given  equation. 

PROBLEMS 

1.  Determine  the  condition  for  tangency  of  the  loci  of  the  following 

equations. 

(a)  4x2  +  y2-4x-8=0,  y  =  2x+A;. 

(b)  xy  +  X  -  6  =  0,  X  =  A;y  +  5. 
(c)  x2  —  y2  =  a2,  y  =  A:x. 

(d)  x2  +  y2  =  r2,  4y  -  3x  =  4A:. 

(e)  x2  +  y2  =  r2,  y  =  mx-\-h. 

(f)*^  +  l^^  =  l,  ̂  +  ̂  =  1. 

X2
 

y 

Am.  A;2+  2A:-  17  =0. 
Ans.  A:2  +  14  A;  +  25  =  0. 
Ans.  A:  =  ±  1. 

Atis.  16A;2  =  25r2. 

Arts.  (2m6)2-4(H-m2)(&2_r2)=o. 

Ans.   =  1. a2^/S2 

a2      62 Ans.   =1. a2      |32 

Ans.  a^m^  +  b^  -  ̂   =  0. 

Ans.  a^m^  -b^-  ̂ z=0. 

('•)*S  +  |  =  i'  y  =  '"^  +  ̂- 
X2         7/2 

(j)*  x2  +  y2  =  r2,  X  cos  w  +  y  sin  w  —  J9  =  0. 

Ans.  p2-r^  =  0. 

1.  Ans.  ap  =  2a^. 

(1)*  x2  +  y2  =  r2,  Ax-{-By  =  1.  Ans.  A^r^  +  J52r2  =  1. 

•  In  these  problems  it  is  assumed  that  the  constants  involved  are  not  zero. 

(k)*2xy  =  a2,|  +  ̂  
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2.  Find  the  equations  of  the  tangents  to  the  following  conies  which  satisfy 

the  condition  indicated,  and  their  points  of  contact.  Verify  the  latter  approx- 
imately by  constructing  the  figure. 

(a)  2/2  =  4 X,  slope  =  |.  Ans.   x  —  2y  +  i  =  0. 
(b)  x2  +  2/2  ̂   16,  slope  =  -  f.  Ans.   4x  +  3?/±20  =  0. 

(c)  9  x2  +  16  2/2  =  144,  slope  =  -  |.      Ans.   x  +  4  ?/  ±  4  VlO  =  0. 

(d)  x2  —  4 2/2  =  36,  perpendicular  to  6x  —  4y  +  9  =  0. 
Ans.  2x  +  32/±3V7  =  0. 

(e)  x2+22/2-x+2/=0,  slopes: -1.        Ans.  x  +  y  z=l,  2x -\- 2y  -\- 1  =  0. 

(f)  x2=42/,  passing  through  (0,  -1).  Ans.  y  =±x-l. 
(g)  x2  =  8  2/,  passing  through  (0,2).    Ans.  None. 
(h)  4 x2  -  2/2  =  16,  slope  =  2.                Ans.  y  =  2x. 

(i)  xy  -h  2/^  — 4  X  +  8  2/  =  0,  parallel  to  2  x  —  4  y  =  7. 
Ans.   x  =  2y,  x-22/  +  48  =  0. 

(j)  4  x2  +  2/2  —  6  X  +  6  2/  =  0,  passing  through  (1,  1). 
Ans.   x-y=0,  19x+ll2/-30=0. 

(k)  x2  +  2  X2/  +  2/2  +  8  X  -  6  2/  =  0,  slope  =  f . 
Ans.    4x  — 3  2/  =  0. 

(1)  x2  +  2  X2/  -  4  X  +  2  2/  =  0,  slope  =  2. 
Ans.   2/  =  2x,  2x-2/  +  10  =  0. 

(m)  2/2  =  2 px,  slope  =  m. 

(n)  62^2  4-  ̂ 27/2  =  a262,  slope  =  m. 

(o)  2  X2/  =  a2,  slope  =  m. 

Ans.   y  =  ?nx  + 2m 

^ns.   2/  =  *^^  ±  V  a277i2  ̂   52^ 

ulns.   y  =  mx  ±  a  V  —2  m. 

3.  Find  the  highest  and  lowest  points  of  the  conic 

(a)  x2  +  6xy  +  9y^  -  6x  =  0. 
(b)  x2  -  2  X2/  -  4  X  -  4  ?/  -  8  =  0. 

(c)  x2  -  2/2  -  4x  +  8  2/  -  16  =  0. 

Hint.  Find  tlie  points  of  contact  of  the  horizontal  tangents. 

Ans.    Highest  (f,  i). 

Ans.    (0,  -2),  (-4,  -6). 
Ans.    None. 

93.  Tangent  in  terms  of  its  slope.  The  method  of  the  preced- 
ing section  for  finding  a  tangent  with  a  given  slope  may  be 

applied  to  general  equations  and  yield  formulas  for  the  equation 

of  a  tangent  in  terms  of  its  slope. 

Theorem  I.  The  equation  of  a  tangent  to  the  parabola  y^  =  2px 
in  terms  of  its  slope  m  is 

P 
(I) y  =  mx  + 

2iW' 
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Proof.   Eliminating  x  from  y  =  mx  -\-  k  and  y'^  =  2pXj  we  obtai 

mi/  —  2py  -{-  2pk  =  0. 

Hence  the  condition  for  tangency  is 

A  =  (-  2pY  -Am  (2pk)  =  0, 

whence  k  =  - — 2m 

Substituting  in  y  =  mx  +  k,  we  obtain  (I).  q.b.] 

In  like  manner  we  prove 

Theorem  II.    The  equation  of  a  tangent  in  terms  of  its  slope 
to  the 

circle  x^  -\-  y^  =  r^      is  y  —  mx  ±_  r  Vl  +  m^ ; 

ellipse        b'^x'^  -\-  ah/'  =  a^ly^  is  y  =  mx  i  ̂  a'^m?'  -\-  b^  ; 

hyperbola  b^x^  —  a^y^  =  a%^  is  y  =  mx  i  ̂aHn^  —  6*. 

PROBLEMS 

1.  Find  the  equations  of  the  common  tangents  to  the  following  pairs  of 

conies.     Construct  the  figure  in  each  case. 

(a)  y2  =  5x,  9x2  -\-Qy'^  =  16.  Ans.    9x  ±  12?/  +  20  =  0. 
(b)  9  x2  4- 16  2/2  =  144,  7  x2  -  32  2/2  =  224t.  Ans.    ±x-?/±5  =  0. 

(c)  x2  +  2/2  =  49,  x2  +  2/2  -  20  2/  +  99  =  0. 
Ans.    ±4x-32/ +  35  =  0,  ±3x-42/  +  35  =  0. 

Hint.  Find  the  equations  of  a  tangent  to  each  conic  in  terras  of  its  slope  and  then 
determine  the  slope  so  that  the  two  lines  coincide  (Theorem  III,  p.  88). 

2.  Two  tangents,  one  tangent,  or  no  tangent  can  be  drawn  from  a  point 

^'i  (3^1,  Vl)  to  the  locus  of 

(a)  2/2  =  2  j9X  according  as  2/1^  —  2pxi  is  positive,  zero,  or  negative. 

(b)  62a;2  _|.  diyi  —  (J252  according  as  62x^2  _|_  ̂ '^y^i  _  ̂ 252  jg  positive,  zero, 
or  negative. 

(c)  62^2  _  c[2?/2  =  ap.})2  according  as  62x^2  _  gpy^i  _  (fiyi,  ig  negative,  zero, 
or  positive. 

3.  Two  perpendicular  tangents  to 

(a)  a  parabola  intersect  on  the  directrix. 

(b)  an  ellipse  intersect  on  the  circle  x"^  +y^  =  a^  -{-  62. 
(c)  an  hyperbola  intersect  on  the  circle  x2  +  y-  =  a^  —  If^. 
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94.  The  equation  in  p.    In  the  following  sections  we  shall  suppose  that  the 
line  is  given  in  parametric  form  (Theorem  XV,  p.  124), 

(1) +  p  cos  or, 

+  p  cos  /3. 
The  geometric  significance  of  these  equations  should  be  constantly  borne  hi  mind. 

A  line  is  given  which  passes  through  P^  (x^,  y^  and  whose  direction  cosines  (p.  123)  are 

cos  a  and  cos/3  (or  whose  slope  is  m  =   ^  =   >  by  (I),  p.  28).     The  point  (a?,  v)  or 
^  cos  a     cos  a        j   ̂   ■/>  ̂        >  »  \   ̂   ai 

(a?!  +  p  cos  a,  2/i  +  p  cos  |3)  is  that  point  on  the  line  whose  directed  distance  from  P^  is  the 
variable  p. 

Suppose  the  conic  is  the  parabola 

(2)  y2_2px  =  0. 

If  the  point  (xi  +  p  cos  <t,  yi  +  p  cos  /3)  on  (1)  lies  on  (2),  then  (Corollary, 
p.  53) 

(2/1  +  p  cos  /3)2  _  2p  (xi  +  /o  cos  a)  =  0, 
or 

(3) cos2^.p2^  (2  2/1  COS /3  -  2_pcosa)/9  +  {y^  -  2pxi)  =  0. 

This  equation  is  called  the  equation  in  p  for  the  parabola.  Its  roots, 

pi  and  p2,  a^e  the  directed  lengths  P1P2  and  P1P3  from  Pi  to  the  points 
of  intersection  of  the  line  and  parabola. 

For  p  is  the  distance  from  Pj  to  the  point  {x^  +  p  cos  a,ijt  +  p  cos  j3);  and  when  p  satisfies 
equation  (3)  the  point  (x^  +  p  cos  a,y^  +  p  cOs  /3)  lies  on  the  parabola. 

Hence 

Theorem  HI.  The  directed  distances  from  Pi(xi,  2/1)  to  the  points  of  inter- 
section of  the  line 

X  =  Xi  -\-  p  cos  a,  y  =  iji  +  p  cos  j8 

and  the  parabola  7/^  =  2px  are  the  roots  of  the  equation  in  p, 

(III)  cos2  iS  •  p2  -I-  (2  2/1  cos  /3  -  2  _p  cos  or)  p  +  (?/i2  -  2pxi)  =  0. 
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The  equation  in  p  for  any  conic  is  the  equation  whose  roots  are  the 
distances  from  a  point  Pi  to  tlie  points  of  intersection  of  the  conic  and  the 

line  through  Pi  whose  direction  angles  are  a  and  /3.  The  method  used  in 

proving  Theorem  III  is  general  and  justifies  the 

Rule  for  forming  the  equation  in  p  for  any  conic. 

Substitute  Xi  +  p  cos  a  for  x  and  yi  +  p  cos  /3  for  y  in  the  equation  of  the 
conic  and  arrange  the  result  according  to  powers  of  p. 

For  convenience  of  reference  we  state  the  following  theorems  which  are 

proved  by  this  Rule. 

Theorem  IV.    The  equation  in  pfor  the  central  conic  b'hfl  ±  a^y"^  —  a^b^  =  0  is 
(IV) 

(62  cos2  a±a^  cos2  /3)  /jS  +  (2  hHx  cos  or  ±  2  a^yi  cos  /3)  p  +  i^'^x^  ±  dhj^  -  a^t^)  =  0. 

Theorem  V.    The  equation  in  p  for  the  locus  of 

Ax^  +  Bxy  +  Cy2  +  Dx  +  Ey  +  F=  0 
is 

(V)      {A  cos2  a:  +  J5  cos  a  cos  /3  +  C  cos^  /3)  p^ 

+  [(2  Axi  +  By  I  +  D)  cos  a  +  {Bxi  -\-2Cyi-\-  E)  cos  /3]  p 

+  {Axi-i  +  Bxiyi  +  Cyr^  +  Dxi  +  Eyi  +  F)  =  0.* 

The  relative  position  of  the  line  (1)  and  a  conic  depends  upon  the  discrimi- 
nant of  the  equation  in  p.  For  according  as  the  roots  of  the  equation  in  p 

are  real  and  unequal,  real  and  equal,  or  imaginary  (Theorem  II,  p.  3),  the 
line  and  conic  will  intersect,  be  tangent,  or  not  meet  at  all. 

PROBLEMS 

1.  Find  the  equation  in  p  for  each  of  the  following  conies. 

(3.)  xy  =  S.  (e)  2x^  -{-  xy  +  Sx  -  iy  =  0. 
(b)  x2  +  y2  =  9.  (f)  x2  +  2 X2/  +  2/2  -  4x  =  0. 
(c)  8a;2  -  2/2  =z  16.  (g)  xy  +  4x  -  8y  -  3  =  0. 

(d)  x^  -y^  +  4:X-6y  =  0.  (h)  x2  +  4xy  +  2/2  _  3x  =  0. 

2.  "What  can  be  said  of  the  coeflBcients  and  roots  of  the  equation  in  p 
(a)  if  Pi  (xi,  yi)  lies  on  the  conic  ? 
(b)  if  the  line  is  tangent  to  the  conic  at  Pi  ? 

(c)  if  the  line  meets  the  conic  at  infinity  ? 
(d)  if  Pi  is  the  middle  point  of  the  chord  formed  by  the  line  ? 

♦Notice  that  the  coeflacient  of  p-  is  found  by  substituting  cos  a  for  x  and  cos  p  for  y 
in  the  terms  of  the  second  degree  in  the  given  equation.  The  constant  term  is  found  by 

substituting  x^  for  x  and  y,  for  y  throughout  the  given  equation.  Compare  the  coeffi- 
cients of  cos  a  and  cos  /3  within  the  brackets  with  equations  (6)  and  (7),  p.  171. 
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3.  Determine  the  relative  position  of  the  following  lines  and  conies  and 
construct  the  figures. 

(a)  ?/2-4x  +  4  =  0 

X  =  3  +  f  /o, 

Ans.    Secant. 

\y  = 

2  +  |p. 

(b)  4  xy  +  3  2/2  -  4  X  +  4  y 

(c)  4x2  +  9y2  _  40x  -  72  2/  +  100  =  0 

r  3 

4.-16  =  0  ^ 
Ans.  Tangent. 

Vio 
 ' 

V2 

-4ns.    Do  not  meet. 

(d)  3x2  +  x2/-42/2-x  +  2/  =  0  ̂ ^Z^Z^/l 
Ans.    Line  is  part  of  conic. 

(e)  4x2-92/2  =  36  HzlZt^' {.y  —  ̂   -r  5  p- 

Ans.    Secant  with  one  point  of  intersection  at  infinity. 

95.  Tangents.  We  shall  show  how  to  find  the  equation  of  a  tangent  to  a 

conic  by  means  of  the  equation  in  p  by  considering  the  tangent  to  the  parab- 

ola 2/2  —  2jpx  =  0  at  the  point  Pi  (xi,  2/1) •     Let 

(1)  X  =  xi  +  p  cos  a,  y  =  yi  +  p  cos  /3 

be  any  secant  through  Pi  intersecting  the  parabola  at  P2.  One  root  of  the 

equation  in  p  is  pi  =  P1P2  and  the  other  is  p^  =  0.  Hence  (III),  p.  235, 
becomes  (Case  I,  p.  4) 

cos2/3 .  p2  -I-  (2  2/1  cos  /3  —  2p  cos  a)p  =  0. 
[Or  the  constant  term  is  zero  by  the  Corollary,  p.  53.] 

When  P2  approaches  Pi  the  line  becomes  tangent  (p.  207),  and  as  pi 

becomes  zero  we  must  have  (Case  III,  p.  5) 

(2)  2yiCOs/3  —  2_pcosa  =  0. 

This  is  the  condition  that  (1)  is  tangent  to  the 

parabola.  Solving  (1)  for  cos  a  and  cos  j3  and  substi- 
tuting in  (2),  we  obtain 

2  2/12/  -  2i9X  -  22/i2  +  2pxi  =  0. 

But  since  yi^  =  2pxi  this  reduces  to 

2/iy  -  p  (x  +  a:i)  =  0, 
which  is  the  form  given  in  Theorem  III,  p.  214. 
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96.  Asymptotic  directions  and  asymptotes.  If  the  coefficient  of  (fi 
the  e(iuation  in  p  is  zero,  then  one  root  is  infinite  (Theorem  IV,  p.  16);  anc 
hence  the  line  and  conic  have  one  point  of  intersection  at  an  infinite  distanc 
from  Pi.     Tlie  direction  of  such  a  line  is  called  an  asymptotic  direction. 

Theorem  VI.    The  asymptotic  directions  of  the  hyperbola  are  parallel  to  t) 

asymptotes,  of  the  parabola  are  parallel  to  the  axis,  while  the  ellipse  has 

asymptotic  directions. 

Proof.    Set  the  coefficient  of  p2  jn  the  equation  in  p  for  the  hyperboU 
[(IV),  p.  236]  equal  to  zero.     This  gives 

62cos2ar-a2cos2/3  =  0. 

cosjS  b 
.:  m  =    -±-' cos  a         a 

Therefore  the  slopes  of  the  asymptotic  direc- 
tions are  the  same  as  those  of  the  asymptotes 

[(6).  p.  190].  ^^ 
Similarly  for  the  parabola  m  =    ~  =  0,  so cos  a 

that  the  asymptotic  direction  is  parallel  to  the  axis. 

For  the  ellipse,  in  like  manner,  m  =   =  ±-  V—  1   so  the  slopes  of 
^    '  cos  a         a  ^ 

the  asymptotic  directions  are  imaginary  ;  that  is,  there 
are  no  asymptotic  directions.  q.e.d. 

Corollary.  Every  line  having  the  asymptotic  direction 
of  a  conic  intersects  the  conic  in  but  one  point  in  the 

finite  part  of  the  plane. 

If  both  roots  of  the  equation  in  p  become  infinite, 

the  line  is  said  to  be  "tangent  to  the  conic  at  infinity" 
and  is  called  an  asymptote.  Using  this  definition  of 

the  asymptotes,  we  have,  in  justification  of  the  prelimi- 
nary definition  on  p.  189,  the  following  theorem. 

Theorem  VII.     The  equation  of  the  asymptotes  of  the  hyperbola 

62x2  -  a2?/2  ̂   a252  is  h^x^  _  a^yl  =  0. 

Proof.    Both  roots  of  the  equation  in  p  for  the  hyperbola  [(IV),  p.  236]j 
will  be  infinite  if  (Theorem  IV,  p.  15) 

62  cos2  nr  —  a2  cos2  /3  =  0  and  2  62^1  cos  a  -  2  a'^y^  cos  /3  =  0. 

From  the  first  equation,      cos  /3 ±  -  cos  a. a 

Substituting  in  the  second,  we  get  bx\  =F  avx  =  0  as  the  condition  that  Pi 
should  lie  on  an  asymptote.  But  this  is  the  condition  that  Pi  should  lie  on 

one  of  the  lines  6x  T  «2/  =  0  or  62x2  —  a2y2  —  q.  Hence  this  equation  is  the 
equation  of  the  asymptotes.  q.e.d. 
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The  method  of  the  proof  justifies  the 

Rule  for  finding  the  equation  of  the  asymptotes  of  any  hype,hola. 

First  step.    Derive  the  equation  in  p  {Rule,  p.  286). 

Second  step.    Set  the  coefficients  of  p'^  and  p  equal  to  zero. 
Third  step.    Eliminate  cos  a  and  cos  ̂   from  these  equations  and  drop  the 

subscripts  on  Xi  and  yi. 

PROBLEMS 

1.  Find  the  equations  of  the  tangents  to  the  following  conies  drawn  from 
the  points  indicated.  (The  method  of  section  95  can  be  applied  whether  Pi 
lies  on  the  conic  or  not.) 

(a)  xy  =  16,  (4,  4).  Ans.   x -\-  y  =  S. 

(b)  x2  +  2  xy  =  4,  (2,  0).  Ans.   x -\- y  =  2. 

(c)  x^  =  4y,  (0,  -  1).                  Ans.  x^  -  {y  +  1)2  =  0,  or  x  =  ±  {y -{■  1). 
(d)  x2-3y2_f.2x  +  19  =  0,  (-1,  2).  Ans.   (x  +  3y  -  5)(x- 3y  +  7)=  0. 

2.  Determine  the  slopes  of  the  asymptotic  directions  of  the  following 
conies. 

(a)  x2-xy-62/2_8x  =  0.  Ans.  I,  -  h 

(b)  xy  -  2/2  +  4  X  -  6  =  0.  Ans.  0,  1. 
(c)  x2  +  4  xy  +  4  2/2  _  2  X  =  0.  An^.  -  ̂ . 

(d)  4  x2  +  xy  +  2/2  _  3  -  o.  Ans.  None. 
(e)  9x2  -  6xy  +  y2  -  2 y  +  5  =  0.  j^ns.  3. 

(f)  x2  +  5xy  +  4 2/2  ̂   10.  Ans.  -  |,  -  1. 
(g)  xy  -\-  Dx  +  Ey  -\-  F  =  0.  Ans.  0,  oo. 

3.  Determine  whether  the  loci  of  the  equations  in  problem  2  belong  to  the 

elliptic,  hyperbolic,  or  parabolic  type. 

4.  Find  the  equations  of  the  asymptotes  of  the  following  hyperbolas. 

(a)  xy  -  y2  +  2  X  =  0.  Ans.  y  +  2=0,  x-y  +  2  =  0. 
(b)  2  x2  -  xy  -  4  =  0.  Ans.  x  =  0,  2x-y  =  0. 

(c)  x2  -  6  xy  +  8  y2  =  10.  Ans.  x-4y  =  0,  x-2y  =  0. 
(d)  xy  —  4  X  —  3  y  =  0.  Ans.  x  =  3,  y  =  4. 

(e)  2  x2  -  7  xy  +  3  y2  =  14.  Ans.  2x-y  =  0,  x-3y  =  0. 
(f)  x2  -  4  y2  +  2  X  +  8  y  =  0.  Ans.  x-2y  +  3  =  0,  x  +  2y-l  =  0. 

5.  Find  the  equations  of  the  asymptotes  of  the  hyperbolas  (a),  (b),  (f), 
and  (g)  in  problem  2. 

Ans.  (a)  75x  -  25y  +  296  =  0,  50x  +  25y  -  184  =  0; 

(b)y  +  4  =  0,  x-y  +  4  =  0; 
(f)  x  +  4y  =  0,  x  +  y  =  0; 

(g)  x-^E  =  0,  y  +  D  =  0. 

6.  Prove  that  the  parabola  has  no  asymptotes. 
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7.  Show  that  the  asymptotic  directions  of  the  locus  of  At?-  +  Bxy  +  Cy"^ 

4-  Dx  +  £y  +  F  =  0  are  determined  by  the  locus  of  Ax"^  -f  Bxy  +  Cy'^  =  0. 
8.  By  means  of  problem  7  show  that  the  locus  of  the  general  equation 

of  the  second  degree  belongs  to  the  hyperbolic,  parabolic,  or  elliptic  type 

according  as  A  =  B^  -  4  AC  is  positive,  zero,  or  negative, 

9.  Show  how  to  determine  the  direction  of  the  axis  of  any  parabola  by 
means  of  problems  7  and  8. 

97.  Centers.   The  problem  of  this  section  is  to  determine  the  center  of 
symmetry,  if  there  is  a  center,  of  the  locus  of 

(1)  Ax^  +  Bxy  +  Cy^-\-  Dx  +  Ey  +  F=0. 

That  is,  we  seek  a  point  Pi  (xi,  ̂ i)  which  is  the  middle 
point  of  every  chord  of  (1)  drawn  through  it. 

If  Pi  is  the  middle  point  of  the  chord  P2P8  formed  by 
the  line 

x  =  xi  +  pcosa,    y  =  yi  +  p  cos  /3, 

then  the  roots  of  the  equation  in  p  must  be  equal  numer- 

ically with  opposite  signs.  Hence  the  coefficient  of  p  in  (V),  p.  236,  must  bo 
zero  (Case  II,  p.  4). 

(2)  .-.  (2  Axi  +  Byi  +  D)  cos  a  +  {Bxi  +  2  C2/1  +  E)  cos  /3  =  0. 
If  Pi  is  the  middle  point  of  every  chord  passing  through  it,  (2)  is  satisfied 

by  all  values  of  cos  a  and  cos  /3.    For  cos  /3  =  0  and  cos  a  =  0  we  get 

(3)  2  Axi  +  Byi  +  D  =  0,     Bxi  +  2  Cyi  +  E  =  0, 

and  if  equations  (3)  are  satisfied,  (2)  is  always  satisfied. 

We  can  solve  (3)  for  a  single  pair  of  values  of  Xi  and  yi  (Theorem  IV, 
p.  90)  unless 

and  the  locus  of  (1)  will  have  a  single  center.     But  if  A  =  0  there  will  be 
7?  7) 

no  center  unless  at  the  same  time  —  =  — ,  when  every  point  on  the  line 2  (y  E 

2^ic  +  %  +  Z)  =  0  will  be  a  center. 

Hence  we  have 

Theorem  VUI.    The  locus  of 

Ax^  +  Bxy  +  Cy^  +  Dx  +  Ey  +  F=0 

will  have  a  single  center  of  symmetry  if  A.  =  B^  —  4  AC  is  not  zero.     If  A  =  0 

there  will  be  no  center  unless  —  =  — ,  when  all  of  the  points  on  a  line  will 
he  centers. 

Corollary.     The  center  will  he  the  point  of  intersection  of  the  lines 

2  Ax  -\-By  +  n  =  0,    Ba}  +  2Cy  -{-E  =  0. 
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If  the  locus  is  of  the  elliptic  or  hyperbolic  type  (p.  195),  there  -will  be  a  single  center. 
But  if  the  locus  belongs  to  the  parabolic  type,  there  is  no  center  unless  the  locus  degen- 

erates. If  the  locus  is  a  pair  of  parallel  lines,  then  every  point  on  the  line  midway 
between  them  is  a  center. 

To  find  the  center  in  a  numerical  example  we  proceed  as  in  the  above 

proof  as  far  as  equations  (3)  and  then  solve  those  equations. 

Ans.  (0,  0). 

Ans.  None. 

Ans.    (-12,  -4). 

PROBLEMS 

1 .  Find  the  centers  of  the  following  conies 

(a)  x2  +  x?/  -  4  =  0. 
(b)  x2  -  2  x?/  +  2/2  -  4  ic  =  0. 

(c)  xy  -2y^-\-4:X-4ty  =  0. 
(d)  x2  -  Sxy  +  16?/2  +  2x-8y-S  =  0. 

Ans.   Any  point  of  the  line  x  —  4y  +  l=0. 

(e)  x2  +  4xy  +  ?/2  _  8x  =  0.  Ans.   (-  |,  f). 
(f)  4x2  +  12 xy  +  92/2  -  2 X  +  6  =  0.  ^,^s_    j^o^e. 

(g)  4  x2  +  12  X2/  +  9  y2  _  4  X  -  6  y  -  8  =  0. 
Ans.    Any  point  of  the  line  2x  +  Sy  —  1  =  0. 

2.  If  all  the  coefficients  of  the  general  equation  of  the  second  degree 

except  B  are  constant,  and  if  B  varies  so  that  B^  —  4iAC  approaches  zero, 
how  does  the  center  of  the  locus  behave  ? 

98.  Diameters.    The  locus  of  the  middle  points  of  a  system  of  parallel 
chords  of  a  curve  is  called  a  diameter  of  the  curve. 

Consider  the  ellipse 

62x2  +  a2y2  =  ̂ 252 
and  the  system  of  parallel  lines  whose 

direction  angles  are  a  and  p.    The  para- 
metric equations  of  that  line  through 

Pi{xi,  2/1)  are  (Theorem  XV,  p.  124) 

X  =  xi  +  /)  cos  a,  y  =  yi  -\-  p  cos  /3. 

If  Pi  is  the  middle  point  of  the  chord, 

then  the  roots  pi  =  P1P2  and  p2  =  P1P3 
of  the  equation  in  p  [(IV),  p.  236]  must 

be  equal  numerically  with  opposite  signs.     Hence  (Case  II,  p.  4) 

2  b^i  cos  a:  +  2  a^yi  cos  /3  =  0. cos/3 

Dividing  by  2  cos  a  and  setting  m  = 
62xi 

(p.  235),  we  get cos  a 

^1  =  0 as  the  condition  that  (Xi,  yi)  is  the  middle  point  of  a  chord  whose  slope  is  m. 
This  is  the  condition  that  Pi  should  lie  on  the  line 

BD' :  62x  +  a^my  =  0. 
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Hence  we  have 

Theorem  IX.    The  diameter  of  the  ellipse 

62x2  +  a^^  =  a^ 

bisecting  all  chords  with  the  slope  m  is 

(IX)  b^x  +  a^my  =  O. 
This  reasoning  may  be  applied  to  any  conic,  and  justifies  the 

Rule  for  deriving  the  equation  of  a  diameter  of  a  conic  bisecting  all  ci 

with  the  slope  m. 

First  step.    Derive  the  equation  in  p  (Rule,  p.  236). 
Second  step.    Set  the  coefficient  of  p  equal  to  zero. 

Third  step.    Replace  Xi  and  y\  by  x  and  y  respectively.,  and   by  m. 
The  result  is  the  required  equation. 

By  this  means  we  prove 

Theorem  X.    The  diameter  bisecting  all  chords  with  the  slope  m  of  the 

hyperbola  bH^  -  a'^y^  =  a-b"^  is  b'^x  —  aHnij  =  O ; 
parabola  y^  =  2pxis  my  =:  p. 

Corollary.    All  the  diameters  of  the  parabola  are  parallel  to  its  axis,  and 
every  line  parallel  to  the  axis  is  a  diameter. 

Theorem  XI.     The  diameter  of  the  locus  of 

Ax'2  +  Bxy  +  Cy^  +  Bx  +  Ey  +  F  =  0 
bisecting  all  chords  of  slope  m  is 

(XI)  2Ax-{-By  +  D  +  m  {Boc  +  2Cy  +  E)  =  0. 

Corollary.    The  diameter  passes  through  the  center  if  the  locus  has  a  cemier., 
and  every  line  through  the  center  is  a  diameter. 

Hint.  Apply  the  Corollary,  p.  240,  and  Theorem  XIII,  p.  119. 
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1.  Find  the  equation  of  the  diameter  of  each  of  the  following  conies  which 
bisects  the  chords  with  the  given  slope  m. 

(a)  x2  -  4 2/2  =  16,  m  =  2.  Ans.  x-8y  =  0. 
(b)  2/2  =  4  x,  m  =  —  -J-.  Ans.  ?/  +  4  =  0. 
(c)  xy  =  Q,  m  =  3.  Ans.  ?/  +  3x  =  0. 

(d)  x'^  —  xy  —  8  =  0,  in  =  l.  Ans.  x  -  y  =  0. 
(e)  x2  —  4  2/2  +  4x  —  16  =  0,  m  =  —  1.  Ans.  x4-42/  +  2  =  0. 

(f)  iC2/  +  2  2/2-4x-2  2/  +  6  =  0,  ?n  =  |.  Ans.  2x  +  11?/ -  16  =  0. 

2.  Find  the  equation  of  that  diameter  of 

(a)  4x2  +  9  2/2,=  36  passing  through  (3,  2). 

(b)  2/2  =  4x  passing  through  (2,  1). 
(c)  xy  =  S  passing  through  (—2,  3). 

(d)  x2  —  42/  +  6=:0  passing  through  (3,  —  4).      Ans.    x  =  3. 

(e)  X2/  —  2/2  +  2 X  —  4  =  0  passing  through  (5,  2).    Ans.    ix  —  9y  —  2  =  0. 

Ans.    2  X  -  3  2/  =  0. 
Ans.    y  =  1. 
Ans.    Sx  +  2y  =  0. 

3.  Find  the  slope  of  (XI)  if  B'^  -4  AC  =  0.    How  may  the  result  be  inter- 
preted by  means  of  problems  8  and  9,  p.  240  ? 

4.  What  relation  exists  between  m',  the  slope  of  (XI),  and  m  ? 
Ans.    2  Cmm'  +  B  {m  +  m')  +  2^  =  0. 

5.  What  does  the  result  of  problem  4  become  for 

(a)  the  ellipse  b'^x'^  +  a^y'^  =  a-b'^  ? 

(b)  the  hyperbola  62x2  _  a'^y2  =  a%^  ? 

(c)  the  parabola  2/2  =  2j9x? 

An^.    mm'  =  — 

Ans.    mm  =  — ■• 

a2 

Ans.    m'  =  0. 

6.  By  means  of  problem  5  discuss  the  relative  directions  of  a  set  of 

parallel  chords  and  the  diameter  bisecting  them. 

7.  Find  the  equation  of  the  chord  of  the  locus  of 

(a)  x2  +  2/^  =z  25  which  is  bisected  at  the  point  (2,  1). 
Ans.    2x  +  y  —  5  =  0. 

(b)  4x2  —  2/2  =  9  which  is  bisected  at  the  point  (4,  2). 
Ans.    8x-y-30  =  0. 

(c)  X2/  =  4  which  is  bisected  at  the  point  (5,  3). 
Ans.    3x  +  52/-30  =  0. 

(d)  x2  -  X2/  -  8  =  0  which  is  bisected  at  the  point  (4,  0). 
Ans.    2x  -y  -  S=0. 
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99.  Conjugate  diameters  of  central  conies.  In  every  system  of  parallel 
chords  of  a  central  conic  tliere  is  one  which  passes  through  the  center  and 

which  is  therefore  a  diameter  (Corollary  to  Theorem  XI).  This  diameter 
and  the  one  bisecting  the  chords  parallel  to  it  are  called  conjugate  diameters. 

The  ellipse 

Let  m  be  the  slope  of  a  diameter 
of  the  ellipse 

62*2  4.  c[22/2  =  a2&2. 

From  Theorem  IX  the  slope  of 

the  conjugate  diameter  is  (Corollary 

I,  p.  86)                       ^^ 
m'  =   — 

.-.  mm  =    • 

a2 

Hence 

Theorem  Xn.  If  m  and  m'  are  the 
slopes  of  two  conjugate  diameters  of 

the  ellipse  h^x^  +  a'^^  =  a'^h\  then 

(XII) TTirn^  =  — 

62 

a2 

Corollary.    Conjugate  diameters  of 
the  ellipse  lie  in  different  quadrants. 

For  m  and  m'  have  opposite  signs  since 
their  product  is  negative. 

The  hyperbola 

Let  m  be  the  slope  of  a  diameter 
of  the  hyperbola 

62x2  -  a2i/2  =  a262. 

From  Theorem  X  the  slope  of  the 

conjugate  diameter  is  (Corollary  I, 
p.  86) 

m' 62 

a2m 

.  mm' 

_62
 

~a2
' 

Hence 

Theorem  Xm. 
Ifm If  m  and  m'  are  the 

slopes  of  two  conjugate  diameters  of 

the  hyperbola  b^x^  —  a'^y'^  =  a^b'^,  then 

62 

(XIII) mm'  = 

a2 
Corollary.  Conjugate  diameters  of 

the  hyperbola  lie  in  the  same  quad- 
rant, but  on  opposite  sides  of  the 

asymptotes. 
For  m  and  m'  have  the  same  sign  since 

their  product  is   positive,  and  if  one  is 

numerically  less  than  _ ,  the  other  must  be 

a         1^ 

numerically  greater  than  _  which  is  the a 
slope  of  one  asymptote  [(5),  p.  190]. 
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The  ellipse 

The  length  of  a  diameter  of  the 
ellipse,  or  of  its  conjugate  diameter, 
is  that  part  of  the  line  included 
between  the  points  of  intersection 
of  the  line  and  the  ellipse. 

Construction.  To  construct  the 

diameter  conjugate  to  a  given  diam- 
eter AB.,  draw  a  chord  EF  parallel 

to  AB^  and  then  draw  the  diameter 
CD  bisecting  EF. 

The  hyperbola 

The  length  of  that  one  of  two  con- 
jugate diameters  of  the  hyperbola 

which  does  not  meet  the  hyperbola 

is  defined  to  be  that  part  of  the  line 
included  between  the  branches  of 

the  conjugate  hyperbola  (p.  189). 

Construction.  To  construct  the 

diameter  conjugate  to  a  given  diam- 
eter AB,  draw  a  chord  EF  parallel 

to  AB^  and  then  draw  the  diameter 
CD  bisecting  EF. 

Theorem  XIV.  Given  a  point 

Pi  {^1-,  Vi)  on  the  ellipse  h^x^  +  a^y^ 
=  a^b^,  the  equation  of  the  diameter 
conjugate  to  the  diameter  through  Pi 
is 

(XIV)      b^ociJC  +  a^jip  =  O. 

Proof.  The  diameter  through  Pi 

passes  through  the  origin  (Corollary, 

p.  242),  and  hence  its  slope  is  (Theo- 

rem V,  p.  35)  m  =  — .    Then,  from 

Xi 

(XII),  the   slope   of   the   conjugate 

diameter  is  m'  ^ The  equa- 

a^yi 

tion  of  the  line  through  the  origin 

with  the  slope  m'  is  (Theorem  V, 
p.  95) 

62X1 

y  =  -—-x, 

which  may  be  written  in  the  form 

(XIV).  Q.E.D. 

Theorem  XV.  Given  a  point 

Pii^h  yi)  on  the  hyperbola  b^x^  —  a^ij^ 
=  a^b^,  the  equation  of  the  diameter 
conjugate  to  the  diameter  through  Pi 
is 

(XV)     b^acioc  —  aHjitj  =  O. 

Proof.  The  diameter  through  Pi 

passes  through  the  origin  (Corollary, 

p.  242),  and  hence  its  slope  is  (Theo- 

rem V,  p.  35)  m  =  —-    Then,  from 

Xi 

(XIII),  the  slope  of  the  conjugate 

b'^i 

diameter  
is  m'  =  —^ —     

The  equa- 

a^i 

tion  of  the  line  through  the  origin 

with  the  slope  m'  is  (Theorem  V, 
p.  95) 

b^xi 

which  may  be  written  in  the  form 

(XV).  Q.E   D. 

Corollary.    The  points  of  intersec- 
tion of  (XIV)  with  the  ellipse  are 

\       b       a  /         \  b  a  J 

Corollary.  The  points  of  intersec- 

tion of  (XV)  with  the  conjugate  hyper- 
bola are 

\  b       a  f  \     b  a  / 

These  are  found  by  the  Rule,  p.  76. These  are  found  by  the  Kule,  p.  76. 
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PROBLEMS 

1.  What  is  the  relation  between  the  slopes  of  conjugate  diameters  of 

the  equilateral  hyperbola  2xy  =  a^?  Ans.   m  -\-  m'  =  0. 

2.  The  tangents  at  the  ends  of  a  diameter  of  (a)  an  ellipse,  (b)  an  hy] 
bola,  are  parallel  to  the  conjugate  diameter. 

8.  The  tangent  at  the  end  of  a  diameter  of  a  parabola  is  parallel  to 
chords  which  the  diameter  bisects. 

4.  The  sum  of  the  squares  of  two  conjugate  semi-diameters  of  an  ellij 

equals  a^  +  b"^. 
Hint.  Let  P^  (x^,  tji)  be  any  point  on  the  ellipse.  Find  the  squares  of  the  distances 

from  the  center  to  P^  and  to  one  of  the  points  in  the  Corollary  to  Theorem  XIV,  add,  and 
apply  the  Corollary,  p.  53. 

5.  The  difference  of  the  squares  of  two  conjugate  semi-diameters  of  an 

hyperbola  equals  a^  —  b^. 
Sint.   See  the  hint  to  problem  4. 

6.  The  angle  between  two  conjugate  diameters  is  sin-^-;;-^,   where 
a'  and  b'  are  the  lengths  of  the  conjugate  semi-diameters.       ^ 

7.  Conjugate  diameters  of  an  equilateral  hyperbola  are  equal  in  length. 

8.  Conjugate  diameters  of  an  equilateral  hyperbola  are  equally  inclined 
to  the  asymptotes. 

9.  The  lines  joining  the  ends  of  conjugate  diameters  of  an  hyperbola  are 
parallel  to  one  asymptote  and  bisected  by  the  other. 

10.  The  product  of  the  focal  radii  (problems  8  and  9,  p.  194)  drawn  to 

any  point  on  (a)  an  ellipse ^  (b)  an  hyperbola,  equals  the  square  of  the  semi- 
diameter  conjugate  to  the  diameter  drawn  through  that  point. 

1 1 .  The  asymptotes  of  an  hyperbola  are  conjugate  diameters  of  an  ellipse 
which  has  the  same  axes  as  the  hyperbola. 

12.  Show  that  the  conjugate  diameters  of  the  ellipse  in  problem  11  are 

equal. 

MISCELLANEOUS   PROBLEMS 

1.  Find  the  condition  for  tangency  of 

(a)  ?/  =  2px  and  Ax  +  By  +  C  =  0. 

(b)  62x2  +  a^yi  =  a262  and  Ax  +  By -^0  =  0. 
(c)  62aj2  _  c[2y2  =  ̂ 252  and  Ax-^  By  +  C  =  0. 

2.  Find  the  points  on  each  of  the  conies  where  the  tangents  are  equally 
inclined  to  the  axes.     When  is  the  solution  impossible  ? 
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3.  Find  the  points  on  the  ellipse  where  the  tangents  are  parallel  to  the 
line  joining  the  positive  extremities  of  the  axes. 

4.  The  perpendicular  from  the  focus  of  a  parabola  to  a  tangent  intersects 
the  diameter  drawn  through  tlie  point  of  contact  on  the  directrix, 

5.  The  perpendicular  from  a  focus  of  a  central  conic  to  a  diameter  inter- 
sects the  conjugate  diameter  on  the  directrix. 

6.  Tangents  at  the  extremities  of  a  chord  of  a  parabola  intersect  on  the 

diameter  bisecting  that  chord. 

7.  Find  the  equation  of  (a)  the  ellipse,  (b)  the  hyperbola,  referred  to 
conjugate  diameters  as  axes  of  coordinates.     (See  problem  10,  p.  172.) 

8.  Given  the  equation  in  p  for  an  equation  of  the  second  degree;  what 

may  be  said  of  tlie  relative  positions  of  the  line,  the  conic,  and  the  point  Pi 

(a)  if  the  constant  term  is  zero  ? 

(b)  if  the  coefficient  of  p  is  zero  ? 

(c)  if  the  coefficient  of  p^  is  zero  ? 
(d)  if  the  coefficient  of  p  and  the  constant  term  are  zero  ? 

(e)  if  the  coefficients  of  p"^  and  p  are  zero  ? 
(f)  if  the  coefficients  of  p2  and  p  and  the  constant  term  are  zero  ? 
(g)  if  the  discriminant  is  positive,  negative,  or  zero  ? 

9.  Tangents  to  an  hyperbola  at  the  extremities  of  conjugate  diameters 
intersect  on  the  asymptotes. 

10.  The  area  of  the  parallelogram  formed  by  tangents  at  the  extremities 

of  conjugate  diameters  of  (a)  an  ellipse,  (b)  an  hyperbola,  is  4  a6,  that  is,  it 
is  equal  to  the  area  of  the  rectangle  whose  sides  equal  the  axes. 

11.  The  diagonals  of  the  parallelogram  circumscribing  the  ellipse  in 
problem  10  are  conjugate  diameters. 

12.  Chords  drawn  from  a  point  on  (a)  an  ellipse,  (b)  an  hyperbola,  to 
the  extremities  of  a  diameter  are  parallel  to  a  pair  of  conjugate  diameters. 

13.  The  directrix  of  a  parabola  is  tangent  to  the  circle  described  on  any 
focal  chord  as  a  diameter. 

14.  The  tangent  at  the  vertex  of  a  parabola  is  tangent  to  the  circle 
described  on  any  focal  radius  as  a  diameter. 



CHAPTER  Xr 

LOCI.     PARAMETRIC  EQUATIONS 

100.  The  first  fundamental  problem  (p.  53)  of  Analytic  Geoi 

etry  is  to  find  the  equation  of  a  given  locus.  In  this  chapter  vri 

shall  first  give  some  additional  problems  which  may  be  solved  by 

the  Rule  on  p.  53,  using  either  rectangular  or  polar  coordinates 

as  may  be  more  convenient.  We  shall  then  consider  two  classes 

of  loci  problems  which  are  not  readily  solved  by  that  Rule  and 

which  include  nearly  all  of  the  important  loci  occurring  in  Ele- 
mentary Analytic  Geometry. 

PROBLEMS 

It  is  expected  that  the  locus  in  each  problem  will  be  constructed  and  discussed  after* 
its  equation  is  found. 

1.  The  base  of  a  triangle  is  fixed  in  length  and  position.     Find  the  locus 
of  the  opposite  vertex  if 

(a)  the  sum  of  the  other  sides  is  constant.  Ans.   An  ellipse. 
(b)  the  difference  of  the  other  sides  is  constant.  Ans.    An  hyperbola. 
(c)  one  base  angle  is  double  the  other.  Ans.   An  hyperbola. 
(d)  the  sum  of  the  base  angles  is  constant,  Ans.    A  circle. 
(e)  the  difference  of  the  base  angles  is  constant.         Ans.   A  conic. 
(f)  the  product  of  the  tangents  of  the  base  angles  is  constant. 

Ans.   A  conic. 

(g)  the  product  of  the  other  sides  is  equal  to  the  square  of  half  the  bai 
Ans.   A  lemniscate  (Ex.  2,  p.  152), 

(h)  the  median  to  one  of  the  other  sides  is  constant.        Ans.    A  circle. 

2.  Find  the  locus  of  a  point  the  sum  of  the  squares  of  whose  distances 
from  (a)  the  sides  of  a  square,  (b)  the  vertices  of  a  square,  is  constant, 

Ans.   A  circle  in  each  case. 

3.  Find  the  locus  of  a  point  such  that  the  ratio  of  the  square  of  its  dis- 
tance from  a  fixed  point  to  its  distance  from  a  fixed  line  is  constant, 

,4  ns.   A  circle. 
248 
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4.  Find  the  locus  of  a  point  such  that  the  ratio  of  its  distance  from  a 

fixed  point  Pi  (xi,  2/1)  to  its  distance  from  a  given  line  Ax  +  By  -\-  C  =  0  is 
equal  to  a  constant  k. 

Ans.   {A^  +  ̂ 2  _  ̂ 2^2)  a;2  _  2  k^ABxy  +  (^2  +  ̂   _  ̂ 252)  ̂ 2 

-  2 {A'^xi  +  B^i  +  k^AC)x-2 {A^yi  +  myi  +  kWC) y 
+  (Xl2  +  2/i2)  (^2  +  ̂ 2)  _  ̂ 2(72  :=  Q. 

6.  Find  the  locus  of  a  point  such  that  the  ratio  of  the  square  of  its  dis- 
tance from  a  fixed  line  to  its  distance  from  a  fixed  point  equals  a  constant  k. 

Ans.  X*  —  A;2  (x  —  pY  —  k'^y"-  =  0  if  the  F-axis  is  the  fixed  line  and  the 
X-axis  passes  through  the  fixed  point,  p  being  the  distance  from  the  line 
to  the  point. 

6.    Find  the  locus  of  a  point  such  that 

(a)  its  radius  vector  is  proportional  to  its  vectorial  angle. 
Ans.    The  spiral  of  Archimedes,  p  =  aQ. 

(b)  its  radius  vector  is  inversely  proportional  to  its  vectorial  angle. 
Ans.    The  hyperbolic  or  reciprocal  spiral,  pQ  =  a. 

(c)  the  logarithm  of  its  radius  vector  is  proportional  to  its  vectorial  angle. 
Ans.    The  logarithmic  spiral,  logp  =  ad. 

(d)  the  square  of  its  radius  vector  is  inversely  proportional  to  its  vectorial 

angle.  Ans.    The  lituus,  p^d  =  ofi. 

101.  Loci  defined  by  a  construction  and  a  given  curve.    Many 
important  loci  are  defined  as  the  locus  of  a  point  obtained  by  a 
given  construction  from  a  given  curve.  The  method  of  treatment 
of  such  loci  is  illustrated  by 

Ex.  1.  Find  the  locus  of  the  middle  points  of  the  chords  of  the  circle 

x2  +  2/2  =3  25  which  pass  through  P2(3,  4). 

Solution.  Let  Pi(Xi,  yi)  be  any  point 
on  the  circle.  Then  a  point  P  (x,  y)  on 
the  locus  is  obtained  by  bisecting  P1P2. 

By  the  Corollary,  p.  39, 

x^i(xi  +  3),  2/ =1(2/1 +  4). 

(1)     .-.  Xi  =  2x-3,  yi  =  2y-4. 

Since  Pi  lies  on  the  circle  (Corollary,    -^ 
p.  53), 

Xi2  +  2/l2 

or 

25. 

Substituting  from  (1), 

(2  X  -  3)2  +  (2  ?/  -  4)2 

x^  +  y'^-3x-4.y 

25, 

0. 
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As  this  equation  expresses  analytically  that  P(x,  y)  satisfies  the  given 
condition,  it  is  the  equation  of  the  locus. 

The  locus  is  easily  seen  to  be  a  circle  described  on  OP2  as  a  diameter, 

since  its  center  is  the  point  (|,  2)  and  its  radius  is  ̂   (Theorem  I,  p.  131). 

The  method  may  evidently  be  expressed  as  follows : 

'RuXt  for  finding  the  equation  of  a  locus  defined  by  a  construction 
and  a  given  curve. 

First  step.  Find  expressions  for  the  coordinates  of  any  point 

Pi  (xi,  yi)  on  the  given  curve  in  terms  of  a  point  P  (x,  y)  on  the 

required  curve. 

Second  step.  Substitute  the  results  of  the  first  step  for  the  coordi- 

nates in  the  equation  of  the  given  curve  and  simplify.  The  result 

is  the  required  equation. 

This  Kule  may  also  be  applied  if  polar  coordinates  are  used 

instead  of  rectangular  coordinates. 

Ex.  2.  The  witch.  Find  the  equation  of  the  locus  of  a  point  P  constructed 

as  follows :  Let  OA  be  a  diameter  of  the  circle  x^  4-  y^  —  2  ay  =  0  and  let  any 
chord  OPi  of  the  circle  meet  the  tangent  at  ̂   in  a  point  B.  Lines  drawn 

through  Pi  and  B  parallel  respectively  to  OX  and  OY  intersect  at  a  point  P 
on  the  required  locus. 

^  B  Solution.    First  step.    Let  (x,  y) 
be  the  coordinates  of  P  and  (xi,  yi) 

of  Pi.     Then  from  the  figure 

(1)  2/1  =  y- 
From  the  similar  triangles  OCPi 

and  PiPB  we  have 

(2) 
PC  _  CPi 

PiP  ~  PB 
OM-OC=x- 

Xi 

2/1 2a -y. x  —  xi     2a  —  y 

For  OC  =  Xi,  PiP  =  OM-  OC=x-x^,  CP^  =  y^,  PB  =  MB- MP ■- 

Solving  (1)  and  (2)  for  Xi  and  2/1,  we  obtain 

(3)  ^1  =  ̂'   2/1  =  2/. 2a 

Second  step.    Substituting  from  (3)  in  the  equation  of  the  given  circle 

a;2  -I-  2/2  _  2  ay  =  0,  we  get 

x2|/2 or 

(4) 

+  2/2-2ay  =  0, 

x2y  =  4a2(2a-2/). 
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The  locus  of  this  equation  is  known  as  the  witch  of  Agnesi. 

Discussion  (p.  74).    1.  The  witch  does  not  pass  through  the  origin  (Theo- 
rem VI,  p.  73). 

2.  The  witch  is  symmetrical  with  respect  to  the  F-axis  (Theorem  V, 
p.  73). 

3.  Its  intercept  on  the  Y-axis  is  2  a,  but  the  curve  does  not  meet  the 

X-axis  (Rule,  p.  73). 
4.  No  values  of  x  need  be  excluded,  but  all  values  of  y  must  be  excluded 

except  0<y<2a. 

For,  solving  (4)  for  x  and  y  (Eule,  p.  73),  ' 

8a3 

(5) 
a;2  +  4«2 

"'^FP■ 

Hence  y  is  real  for  all  values  of  x.  But  tlie  fraction  under  the  radical  is  negative  if 
?/  >2a  or  if  ?/  <0,  and  hence  these  values  must  be  excluded. 

5.  The  witch  extends  indefinitely  to  the  right  and  left  and  approaches 
nearer  and  nearer  to  the  X-axis. 

For  from  the  first  of  equations  (5),  as  x  increases  without  limit  y  decreases  and 
approaches  zero. 

Ex.  3.  The  conchoid.  Find  the  locus  of  a  point  P  constructed  as  follows  : 

Through  a  fixed  point  A  on  the  Z-axis  a  line  is  drawn  cutting  the  X-axis  at 
Pi.     On  this  line  a  point  P  is  taken  so  that  PiP  =  ±b,  where  6  is  a  constant. 

Solution.    First  step.    Use  polar  coordinates,  taking  A  for  the  pole  and 

A  Y  for  the  polar  axis.     Then  if  ̂   0  =  a  the  equation  of  XX'  is 

(6)  p  =  a  sec  9. 

For  the  equation  of  a  line  perpendicular  to  the  polar  axis  has  the  form  (p.  156) 
C  C 

pA  cos  e  +  C  =  0,or  p=   sec  9,  and  its  intercept  on  the  polar  axis  is   A  A 

If  the  coordinates  of  P  are  (p,  6)  and  of  Pi  are  (pi,  ̂ i),  then  in  any  one  of 
the  figures  we  have  by  definition 

AP  =  AF^±h. 

,'.  ei  =  e,pi  =  p^b. 
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Second  step.    Substituting  in  (0),  we  obtain 

(7)  p  =  a  sec  6  ±'b. 
The  locus  of  this  equation  is  called  the  conchoid  of  Nicomedes.     It  has  three 

distinct  forms  according  as  a  is  greater,  equal  to,  or  less  than  6. 

Discussion  (p.  151).    1.  The  intercepts  on  the  polar  axis  AY  are  a -{■ 
and  a  —  6. 

The  pole  also  will  lie  on  the  conchoid  if  a  sec  0±b  =  0  or  0  =  sec- '  (±  -V 

2.  The  conchoid  is  symmetrical  with  respect  to  the  polar  axis  AY. 

For  sec  (-  0)  =  sec  9  by  4,  p.  19. 

3.  The  conchoid  recedes  to  infinity  in  the  two  opposite  directions  perpen- 
dicular to  the  polar  axis  A  Y. 

For  if  0  =  -  or  —  >  sec  9  =  oo  and  hence  p  =  qo  . 2         2 

4.  If  we  transform  to  rectangular  coordinates,  using  (2),  p.  165,  we  getj 

A  is  now  the  origin  and  A  Y  the  positive  axis  of  X.     To  translate  the  axes 

to  0  and  rotate  them  through   we  set  (Theorem  III,  p.  164)  x  =  y'  -h  a, 

y  —  —  x\     We  thus  obtain 

(8)  x22/2=(y  +  a)2(&2_2,2), 

which  is  the  equation  of  the  conchoid  referred  to  OX  and  OY. 

From  (8)  it  is  easily  seen  that  the  conchoid  approaches  nearer  and  nearer 

to  the  X-axis  as  it  recedes  from  the  origin. 

PROBLEMS 

1.  Find  the  locus  of  a  point  whose  ordinate  is  half  the  ordinate  of  a  point 

on  the  circle  x'^-\-y'^  —  64.  Ans.   The  ellipse  x2  +  4  y2  =  64. 

2.  Find  the  locus  of  a  point  which  cuts  off  a  part  of  an  ordinate  of  the 

circle  ic2  -f  ?/2  —  ̂ 2.  whose  ratio  to  the  whole  ordinate  is  h-.a. 

Ans.   The  ellipse  W-Ti^  +  o^-y'^  =  a262. 

3.  Find  the  locus  of  a  point  which  divides  an  ordinate  of  (a)  a;2^2/2=r2, 

(b)  2/2  —  2px,   (c)  2xy  =  a2  into  segments  whose  ratio  is  X. 
Ans.    (a)  X2x2  _|_  (i  4.  xYyi  =  x^r^  ;   (b)  (1  +  X  )2y2  =  2  \^ ; 

(c)  2{l  +  \)xy  =  \a^. 
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4.  Find  the  locus  of  the  middle  points  of  the  chords  of  (a)  an  ellipse,  (b)  a 
parabola,  (c)  an  hyperbola  which  pass  through  a  fixed  point  P^  (X2,  ̂ 2)  on 
the  curve. 

Ans.    A  conic  of  the  same  type  for  which  the  values  of  a  and  6  or  of  p  are 
half  the  values  of  those  constants  for  the  given  conic. 

5.  Lines  are  drawn  from  the  point  (0,  4)  to  the  hyperbola  x'^  —  4:y^  =  16. 
Find  the  locus  of  the  points  which  divide  these  lines  in  the  ratio  1 :  2. 

Ans.   9  x2  -  30  y^  +  192  y  -  272  =  0. 

6.  Lines  drawn  from  the  focus  of  the  conic  (II),  p.  178,  are  extended  their 

own  lengths.     Find  the  locus  of  their  extremities. 
Ans.   A  conic  with  the  same  focus  and  eccentricity  whose  directrix  is 

X  =  —  2p. 

7.  Lines  are  drawn  from  a  fixed  point  P2  (X2, 2/2)  to  (a)  the  line  Ax  +  By 

-f  O  =  0,  (b)  the  parabola  y^  =  2px,  (c)  the  central  conic  Ax^  +  By^  +  F=0. 
Find  the  locus  of  the  points  dividing  these  lines  in  the  ratio  X. 

Ans.  (a)  a  straight  line  parallel  to  the  given  line ; 
(b)  a  parabola  whose  axis  is  parallel  to  that  of  the  given  parabola ; 
(c)  a  central  conic  whose  axes  are  parallel  to  those  of  the  given  conic. 

8.  Find  the  locus  of  the  middle  points  of  chords  of  an  ellipse  which  join 
the  extremities  of  a  pair  of  conjugate  diameters. 

Ans.    2  62x2  +  2  a^y^  =  aW. 

9.  A  chord  OPi  of  the  circle  x^  +  y^  -\-  ax  =  0  which  passes  through  the 
origin  is  extended  a  distance  PiP  =  a.     Find  the  locus  of  P. 

Ans.   The  carSioid  I  (^'  +  ̂'  +  "">'  =  «'f  +  ̂̂ )' L  or  p  =  a  (1  —  cos  d), /3  =  a  (1  —  cos  d). 

10.  A  chord  OPi  of  the  circle  x^  -{- y^  —  2ax  =  0  meets  the  line  x  =  2  a  at 
a  point  A.     Find  the  locus  of  a  point  P  on  the  line  OPi  such  that  OP = Pi  A 

Ans.    The  cissoid  of  Diodes  /  2/^2  «  - 
 a^)  =  x^, t  or  p  =  2asme  tan  d. 

11.  Find  the  locus  of  the  point  P  in  problem  9  if  PiP  =  b. 

Ans.    The  limagon  of  Pascal,  p  =  6  —  a  cos  6.     The  limagon  has  three  dis- 
tinct forms  according  as  6  =  a. 

102.  Parametric  equations  of  a  curve.  Equations  (XV),  p.  124, 

X  =  Xi  -\-  p  COS  a,  2/  =  ?/i  +  p  cos  jSj 

are  called  the  parametric  equations  of  the  straight  line  because 

they  give  the  values  of  the  coordinates  of  any  point  (x,  ij)  on  the 
line  in  terms  of  a  single  variable  parameter  p.     In  general,  if  two 
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equations  give  the  values  of  the  coordinates  of  any  point  (x,  y) 
on  a  curve  in  terms  of  a  single  variable  parameter,  those  equations 

are  called  parametric  equations  of  the  curve. 

Ex.  1.  Find  parametric  equations  of  the  circle  whose  center  is  the  origin 
and  whose  radius  is  r. 

Solution.    Let  P  (x,  y)  be  any  point  on  the  circle  and  denote  Z  XOP  by  0. 
Then  from  the  figure 

(1)  X  =  r  cos  6,  y  =  r  sin  d. 

These  are  the  required  equations.    They  possess  two 
-»  properties  analogous  to  those  of  the  equation  of  the 

locus  (p.  53). 
1.  Corresponding  to  any  point  P  on  the  locus  there 

is  a  value  of  6  such  that  the  values  of  x  and  y  given 

by  (1)  are  the  coordinates  of  P. 
2.  Corresponding  to  every  value  of  0  for  which  the  values  of  x  and  y  given 

by  (1)  are  real  numbers  there  is  a  point  P  (x,  y)  on  the  locus. 

The  parameter  in  the  parametric  equations  of  a  curve  may  be 

chosen  in  a  great  many  ways,  and  hence  the  parametric  equations 

of  the  same  curve  will  often  appear  in  very  different  forms. 

Thus  in  Ex.  1,  if  we  had  chosen  for  the  parameter  half  the  abscissa  of  P, 

denoting  it  by  t,  then  t  =  -^  and  from  the  figure  y  =  ±  vr2  —  z^,  whence  the 

parametric  equation  would  have  been  x=  2t,  y  =  ±  Vr^  —  4 1^. 

Rule  to  plot  a  curve  whose  parametric  equations  are  given. 

First  step.  Assume  values  of  the  parameter  and  compute  the 

corresponding  values  of  x  and  y  from  the  given  equations. 

Second  step.  Plot  the  points  whose  coordinates  are  found  in  the 

first  step. 

Third  step.  Tf  the  points  are  numerous  enough  to  suggest  the 

general  shape  of  the  locus,  draw  a  smooth  curve  through  the  points. 

Ex.  2.    Plot  the  curve  whose  parametric  equations  are 

(2)  x  =  ai2,     y  =  o:H\ 

Solution.    Take  a  =  i.     Then  equations  (2)  become 

(3)  x  =  it%    y  =  lt\ 
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First  step.    Assume  values  of  t  and  compute  x  and  y  from  (3) .    For  example, 

if  i  =  2,  X  =  i22  =  2,  2/  =  i23  =  2.     This  gives  the  table : 

t X y 

0 0 0 
1 

.5 
.25 

2 2 2 

3 4.5 6.75 

etc. etc. etc. -  1 

.5 
-    .25 -2 

2 

-2 

-3 

4.5 
-6.75 

etc. etc. etc. 

Second  step.    Plot  the  points  found. 

Third  step.    Draw  a  smooth  curve  through  these  points  as  in  the  figure. 

Rule  to  find  the  equation  of  a  curve  in  rectangular  coordinates 

whose  parametric  equations  are  given. 

Eliviinate  the  parameter  from  the  parametric  equations. 

We  shall  justify  the  Rule  for  the  examples  in  this  section. 

In  Ex.  1,  if  we  square  each  of  the  equations  (1)  and  add,  we  obtain  (3,  p.  19) 

a.2  _|_  ̂ 2  =  ̂ 2 

which  is  the  equation  of  the  given  lOcus  (Corollary,  p.  58) . 
In  Ex.  2,  if  we  cube  the  first  of  equations  (2)  and  square  the  second,  we  get 

a;8  =  a^tpy    y^  =  aH^. 

(4)  .-.  y^=ax^. 
This  is  the  equation  of  the  semicubical  parabola  (p.  209) .  To  prove  that  (4)  is 

the  equation  of  the  curve  obtained  in  Ex.  2  we  must  prove  two  things  (p.  53) : 

1.  The  coordinates  of  any  point  Pi  {x\,  y-\)  on  the  curve  satisfy  (4). 
If  Pi  (xi,  yi)  is  on  (2),  then  (1,  Ex.  1)  there  is  a  value  ti  such  that 

(5)  xi  =  a«i2,      yi  =  a2^i3. 

(6)  .'.  xi^  =  aHi^,  yi^=aHi^. 

(7)  .•.yi'^=axiK 
Hence  x\  and  y\  satisfy  (4) . 

2.  Ifxi  and  y\  satisfy  (4),  then  Pi  (xi,  yi)  is  on  the  curve. 

For  if  (7)  is  true,  then  from  the  first  of  equations  (5)  we  obtain  a  value  ti.  Sub- 

stituting xi  =  att^  in  (7),  we  get  yi  =  a^ti^.  Hence  Xi  and  yi  are  given  by  (5),  and 
Pi  lies  on  the  curve  (2,  Ex.  1).    This  method  of  proof  may  be  applied  in  any  case. 
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The  parametric  equations  of  a  curve  are  important  because  it 
is  sometimes  easy  to  express  the  coordinates  of  a  point  on  the 
locus  in  terms  of  a  parameter  when  it  is  otherwise  difficult  to 
obtain  the  equation  of  the  locus. 

Ex.  3.  The  cycloid.  Find  the  parametric  equations  of  the  locus  of  a  point 
P  on  a  circle  which  rolls  along  the  axis  of  x. 

(8) 
(x  =  a{d 

Solution.  Take  for  origin  a  point  0  at  which  the  moving  point  P  touched 

the  axis  of  x.  Let  a  be  the  radius  of  the  circle  and  denote  the  variable  angle 
ABP  by  e.     Then  (p.  18) 

PC  =  a  sin  6,  CB  =  a  cos  d. 
By  definition,  OA  =  arc  AP  =  ad. 

For  an  arc  of  a  circle  equals  its  radius  times  tlie  subtended  angle,  from  the  definition 
of  a  radian  (p.  19). 

Hence  from  the  figure,  if  (x,  y)  are  the  coordinates  of  P, 

X  =  OD  =  OA  -  PC  =  ae  -  a  sin  d,  y  =  DP  =  AB  -  CB  z=  a  -  acos04 
—  sin  d), 

cos  6). 

These  are  the  parametric  equations  of  the  cycloid. 

Discussion.     1.    The   cycloid    passes  through  the   origin,   for  if   ̂   =  0, 
x  =  y  =  0. 

2.  The  cycloid  is  symmetrical  with  respect  to  the  F-axis  (Theorem  IV, 
p.  72,  and  4,  p.  19). 

3.  Its  intercepts  on  the  X-axis  are  2mta,  where  n  is  any  positive  or 
negative  integer,  or  zero. 

For,  from  the  second  of  equations  (8),  if  «/  =  0,  cos  0  =  1.  .•.e  =  2mr;  and  hence  from 
the  first  of  equations  (8)  x=a-  2mr. 

4.  The  cycloid  lies  entirely  between  the  lines  y  =  0  and  y  =  2  a,   for 
-  1<COS0<1. 

5.  The  cycloid  extends  indefinitely  to  the  right  and  left  and  consists  of 

parts  equal  to  OMN.  For  if  we  replace  6  in  (8)  by  2  wtt  +  ̂,  y  is  unchanged 
while  X  is  increased  by  2  wtt  (compare  Ex.  2,  p.  81). 
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Ex.  4.  The  hypocycloid  of  four  cusps.  Find'  the  parametric  equations  of 
the  locus  of  a  point  P  on  a  circle  which  rolls  on  the  inside  of  a  circle  of  four 
times  the  radius. 

Solution.  Take  the  center  of  the  fixed  circle  for  the  origin  and  let  the 

X-axis  pass  through  a  point  A  where  the  tracing  point  P  touched  the  large 
circle.     Denote  ZAOBhj  6.     Then  Z  BCP  =  ie. 

For  by  hypothesis  arc  PB  =  arc  AB ;  and  from  the  definition  of  a  radian  (p.  19) 

arc  PB  =     Z  BCP,  arc  AB  = 4 ZBCP  =  a9,  or  ZBCP  =  'Ve. 

But 

whence 

Then  (p.  18) 

Z  OCE  +  Z  ECP 

"  2~ 
ZECP 

ZPCB 

Z  ECP  +  4  ̂  

3^. 

DC  =CP  cos  ('--3^)^ -sin  3  0, 

DP  =  CP  sin  {--Se\  =  -cos30, 

OE  =  OC  cosd  =  —  COS0, 4 

EC  =  OC  sin  d  =  —  sin  d. 
4 

(by  6,  p.  20) 

(by  6,  p.  20) 
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Hence 

(«) 

x  =  OE  +  DP  =  -—coBe-\-- cosSd, 4  4 

EC  -  DC  =  —6m^ 4 
sin  3  e. 

But  from  8,  10,  and  14,  p.  20,  and  3,  p.  19, 

cos  3  ̂  =  4  cos*  ̂   —  3  cos  ̂ ,  sin  3  ̂  =  3  sin  ̂   -  4  sin*  d. 

Substituting  in  (9),  we  get 

(10)  jc  =  a  cos*  ̂ ,  2/ =  a  sin3  ̂ , 
wliicli  are  the  parametric  equations  of  the  hypocycloid  of  four  cusps. 

Discussion.     1.  The  hypocycloid  of  four  cusps  does  not  pass  through  tBe~ 
origin  because  there  is  no  value  of  d  for  which  sin  6  =  cos  ̂   =  0. 

2.  It  is  symmetrical  with  respect  to  both  axes  and  the  origin. 

For  if  6=  di  gives  a  point  {xi,  y\)  on  the  curve, 

then  6="^  —  d\    gives  a  point  (—  x\,  yi)      on  the  curve, 
0=  TC  -}■  01     gives  a  point  (—  xi,  —  pi)  on  the  curve, 

and  0  =  2  TT  —  ̂ 1  gives  a  point  (xi,  —  yi)       on  the  curve. 

3.  Its  intercepts  on  both  axes  are  db  a. 

For  if  ̂   =  0,  — ,  Tf,  — -,  then  either  a;  =  0  and  y  =  ±  a.  or  y  =  0  and  z  =  ±  a. 2  2 

4.  Values  of  x  and  y  numerically  greater  than  a  give  no  points  on  the 
curve  since  sin0  and  cos^  cannot  be  numerically  greater  than  1. 

5.  The  hypocycloid  is  therefore  a  closed  curve. 

PROBLEMS 

1.  Plot  and  discuss  the  following  parametric  equations.     Verify  the  dis- 
cussion by  finding  the  equation  in  rectangular  coordinates. 

2t-l  -t-\-S  .  .  .  .  2 

(a)  X 

'  y 

(b)  X 

(c)  X 

<  +  2  «  +  2 

4  cos  0,  2/  =  2  sin  0. 

4  sec  0,  y  =  i  tan  0. 

(e)  X  =  4  i,  y  = 

1. 
(f )  X  =  3  +  2  cos  0,  y  =  2  sin  0 

(g)  x  =  «4-4,  y  =  \t^. 
(d)  X  =  <  -  3,  y  =  \t^.  (h)  X  =  acos*^,  y  =  ftsin*^. 

2.  Find  the  equation  in  rectangular  coordinates  of  (a)  the  hypocycloid  of 

four  cusps  (Ex.  4),  (b)  the  cycloid  (Ex.  3). 

Ans.  (a)  x^-\-y^=a^;  (b)  x = a  vers- '  -  -  V2ay— y^  where  vers  ̂ =  1  -  cos  ̂ , 
or  ̂   =  vers-i  (1  —  cos  0). 

3.  Show  that   x  = at-\-h y 

+  / 

the  fractions  having  the  same 

ct  +  d     "      ct  -\-  d denominator,  are  the  parametric  equations  of  a  straight  line.      Interpret 

the  meaning  of  <  if  (a)  c  =  d  =  1,  (b)  c  =  0. 
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4.  If  the  denominators  of  the  fractions  in  problem  3  are  different,  then 
the  equations  given  are  the  parametric  equations  of  an  equilateral  hyperbola 
or  two  perpendicular  lines. 

5.  Find  the  parametric  equations  of  the  ellipse,  using  as  parameter  the 

eccentric  angle  0,  that  is,  the  angle  from  the  major  axis  to  the  radius  of  a  point 
on  the  auxiliary  circle,  p.  206,  which  has  the  same  abscissa  as  a  point  on  the 

ellipse.     Discuss  the  equations.  Ans.    x  =  a  cos  0,  y  =  hsm<f>. 

Hint.  Apply  problem  10,  p.  206. 

6.  Find  the  locus  of  a  point  Q  on  the  radius  BP  (Fig.,  p.  256)  if  BQ  =  h. 

.  (x  =  ad  —  hsmd^    r^,     ,  .       „   , Ans.    <  in       The  locus  is  called  a  prolate  or  curtate  cycloid 

according  as  h  is  greater  or  less  than  a. 

7.  Given  a  string  wrapped  around  a  circle,  find  the  locus  of  the  end  of  the 
string  as  it  is  unwound. 

Hinl.  Take  the  center  of  the  circle  for  origin  and  let  the  X-axis  pass  through  the  point  A 
on  which  the  end  of  the  string  rests .    If  the  string  is  unwound  to  a  point  B,\Qt  Z.AOB  =  e. 

Ans.    The  involute  of  a  circle  •{  •    ̂         .        . sin  0  —  rd  cos  d. 

Jx  =  ri 
\y  =  ri 8.   A  circle  of  radius  r  rolls  on  the  inside  of  a  circle  whose  radius  is  r'. 

Find  the  locus  of  a  point  on  the  moving  circle. 

Ans.    The  hypocycloid 
x  =  {r'  —  r)  cosd  +  r  cos 

y  =  {r"  —  r)  sin  0  —  r  sin 

r 
r'  —  r 

r 
where  6  is  chosen  as  in  Ex.  4. 

9.  A  circle  of  radius  r  rolls  on  the  outside  of  a  circle  whose  radius  is  r'. 
Find  the  locus  of  a  point  on  the  moving  circle. 

Ans.   The  epicycloid  •< 
X  —  (r'-\-  r) cosd  —  r cos 

y  =  (r'  -\-  r)  sin  ̂   —  r  sin 

r 
r'  -\-  r 

r 
where  0  is  chosen  as  in  Ex.  4. 

103.  Loci  defined  by  the  points  of  intersection  of  systems  of 
curves.  If  two  systems  of  curves  involve  the  same  parameter,  the 

curves  of  the  systems  belonging  to  the  same  value  of  the  param- 
eter are  called  corresponding  curves.  Many  loci  are  defined,  or 

may  be  easily  regarded,  as  the  locus  of  the.  points  of  intersection 
of  such  curves.     The  method  of  treatment  is  illustrated  by 
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Ex.  1.  A  fixed  line  AB  \s  drawn  parallel  to  one  side  of  a  rectangle,  and  a 

variable  line  CD  parallel  to  the  other  side.  Find  the  locus  of  the  intersec- 
tion of  ̂   0  and  5D. 

Solution.  Let  the  lengths  of  the 
sides  be  a  and  6,  and  take  two  sides 
for  the  axes.  Then  the  vertices  are 

(0,  0),  (a,  0),  (0,  b),  and  (a,  6). 
Let  0A=  p  and  OD  =  k.  Then 

the  coordinates  of  ̂ ,  7i,  C,  and  D  are 

respectively  (0,  /3),  (a,  /3),  (fc,  6),  and 

(fc,  0).  Hence  the  equations  of  -4C 
and  BD  are  respectively  (Theorem 
VII,  p.  97) 

(1)  {b-^)x-ky-h  pk  =  0. 

(2)  ^x  +  {k-a)y  -  pk  =  0. 
These  equations  represent  two  systems  of  lines  and  involve  the  same 

parameter  k.  To  each  value  of  k  corresponds  a  pair  of  lines  intersecting  in  a 

point  P{x,  y)  on  the  locus.  Solving  (1)  and  (2),  we  obtain  as  the  coordinates 
of  P  (Rule,  p.  76) 

(3) 

afik 

y 

bk  +  a/3 

b^k 
ab 

bk  +  a^  —  ab 

As  these  equations  express  x  and  y  in  terms  of  a  parameter  k,  they  are  the 
parametric  equations  of  the  locus.    The  equation  of  the  locus  may  be  obtained 

by  eliminating  k  (Rule,  p.  255).     To  do  this  multiply  the  first  of  equations  (3) 

by  6,  the  second  by  a,  and  subtract.     This  ̂ ves 

(4)  bx  —  ay  =  0. 

The  locus  is  therefore  a  diagonal  of  the  rectangle,  for  this  line  passes 

through  (0,  0)  and  (a,  b)  (Corollary,  p.  53). 
This  equation  might  also  be  obtained  by  adding  (1)  and  (2),  But  if  the 

elimination  were  difficult  or  impossible,  we  would  content  ourselves  with  the 

parametric  equations  (3), 

The  method  of  solving  Ex.  1  may  be  summed  up  in  the 

Rule  to  find  the  equation  of  the  locus  of  the  points  of  intersection 

of  corresponding  curves  of  two  systems. 

First  step.  Find  the  equation  of  the  two*  systems  of  curves  defin- 
ing the  locus  in  terms  of  the  same  parameter. 

*  In  some  cases  the  definition  involves  but  one  system  of  curves.  In  such  cases  a 
second  system  which  passes  through  the  points  on  the  locus  may  frequently  be  found. 
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Second  step.  Solve  the  equations  of  the  systems  for  x  and  y  in 

terms  of  the  parameter.  This  gives  the  parametric  equations  of 
the  locus. 

Third  step.  Find  the  equation  of  the  locus  from  the  parametric 

equations  {Rule,  p.  255). 

If  only  the  parametric  equations  are  required,  the  third  step  may  be  omitted. 
If  only  the  equation  in  rectangular  coordinates  is  required,  it  may  be  obtained 

by  eliminating  the  parameter  from  the  equations  found  in  the  first  step,  for  the 
result  will  be  the  same  as  that  obtained  by  eliminating  the  parameter  from  the 
equations  found  in  the  second  step. 

Ex.  2.  Find  the  locus  of  the  points  of  intersection  of  two  perpendicular 

tangents  to  the  ellipse  6^x2  -).  a^?/^  —  a^ft^  —  o. 

Solution.  First  step.  The  equation  of  a  tangent  in  terms  of  its  slope  t  is 

(Theorem  II,  p.  234) 

(4) y  =  tx  +  ̂oCH'^  +  62. 

The  slope  of  the  tangent  perpendicu- 

lar to  (4)  is  (Theorem  VI,  p.  36)  -  - ; 

and  hence  its  equation  is  (Theorem  II, 
p.  234)    

Second  step.  As  the  parametric 

equations  are  not  required,  this  step 

may  be  omitted. 

Third  step.    To  eliminate  t  from  (4)  and  (5)  we  write  them  in  the  forms 

Va2^2  +  52 

x  +  ty  =  Va2  +  62^2, 

Squaring  these  equations,  we  obtain 

<2x2  -  2  txy  +  y^  =  aH^  +  62, 

x2  +  2  txy  +  t^y^  =  a'^  +  bH^. 

Adding,         (1  +  f^)  x2  +  (1  +  f^)  y"^  =  {1  +  f^)  a2  +  (1  +  t^)  h\ 

Dividing  by  1  +  ̂2,  we  get  the  required  equation, 

x2  +  2/2  =  a2  +  &2, 

The  locus  is  therefore  a  circle  whose  center  is  the  center  of  the  ellipse  and 

whose  radius  is  Va2  -f  h^.     It  is  called  the  director  circle. 
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PROBLEMS 

1.  Find  the  locus  of  the  intersections  of  perpendicular  tangents  to  (a)  the 
parabola,  (b)  the  hyperbola  (VI),  p.  185. 

Ans.   (a)  The  directrix ;  (b)  x^ -\- y'^  =  a^  -  l^. 
2.  Find  the  locus  of  the  point  of  intersection  of  a  tangent  to  (a)  an  ellipse, 

(b)  a  parabola,  (c)  an  hyperbola  with  the  line  drawn  through  a  focus  perpen- 
dicular to  the  tangent. 

Arts,   (a)  x2  +  2/2  =  a2 ;  (b)  x  =  0 ;  (c)  x'^  ̂   y"^  =  a*. 
S.  Given  two  fixed  points  A  and  5,  one  on  each  of  the  axes,  and  two  vari- 

able points  A'  and  B\  one  on  each  axis,  such  that  OA'  +  OW  =  OA  +  0J5, 
find  the  locus  of  the  intersection  of  AB'  and  A'B.      Ans.  jc  +  y  =  a  +  6. 

Hint.    Let  OA=a,  Oi?=6,  and  0A'=a  +  1c\  then  OB'  =  h-k. 

4.  Find  the  locus  of  the  point  of  intersection  of  a  tangent  to  an  equi- 
lateral hyperbola  and  the  line  drawn  through  the  center  perpendicular  to 

that  tangent. 

Ans.   The  lemniscate  (Ex.  2,  p.  152)  (aj2  +  ̂ 2)2  _  ̂ 2  (x2  -y^). 

5.  Find  the  locus  of  the  point  of  intersection  of  a  tangent  to  the  circle 

«^  +  y^  +  2ax  +  a2  —  &2=:0  and  the  line  drawn  through  the  origin  perpen- 
dicular to  it. 

^715.    The  limagon  (problem  11,  p.  253)  (x2  ■\- y^  +  ax)2  =  62  (^2  -|-  y2). 

6.  Find  the  locus  of  the  point  of  intersection  of  the  diagonals  of  a  trape- 
zoid formed  by  drawing  a  line  parallel  to  one  side  of  a  given  triangle. 

Ans.    A  median  of  the  triangle. 

7.  Find  the  locus  of  the  intersection  of  the  diagonals  of  a  rectangle 
inscribed  in  a  triangle. 

Ans.   The  line  joining  the  middle  points  of  the  base  and  altitude. 

8.  Find  the  locus  of  the  point  of  intersection  of  lines  drawn  through  the 

foci  of  an  ellipse  parallel  to  conjugate  diameters.  Ans.    An  ellipse. 

9.  Find  the  locus  of  the  foot  of  the  perpendicular  drawn  from  the  origin 

to  a  tangent  to  the  parabola  2/2  4.  4  ̂x  +  4  a2  =  0. 

Ans.   The  strophoid  2/^  =  x2 
a  +  X 

a  —  x 

MISCELLANEOUS   PROBLEMS 

1.  Find  the  locus  of  the  center  of  a  circle  which 

(a)  has  a  given  radius  and  passes  through  a  given  point. 

(b)  passes  through  two  given  points. 
(c)  passes  through  a  given  point  and  is  tangent  to  a  given  line. 
(d)  is  tangent  to  a  given  circle  and  a  given  straight  line. 

(e)  is  tangent  to  a  given  circle  and  passes  through  a  given  point. 
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2.  One  side  of  a  triangle  is  fixed  and  a  second  side  has  a  constant  length. 
Find  the  locus  of  the  middle  point  of  the  third  side. 

3.  The  extremities  of  a  straight  line  of  variable  length  rest  on  two  perpen- 
dicular lines.  Find  the  locus  of  its  middle  point  if  the  area  of  the  triangle 

formed  is  constant. 

4.  Find  the  locus  of  the  middle  point  of  that  part  of  a  line  through  a  fixed 

point  Pi  (xi,  yi)  which  is  included  between  two  perpendicular  lines. 

5.  A  line  of  fixed  length  moves  with  its  extremities  on  the  axes.  Show 

that  (a)  the  locus  of  any  point  on  the  line  is  an  ellipse ;  (b)  the  locus  of  the 

foot  of  the  perpendicular  drawn  from  the  origin  to  the  line  is  the  four-leaved 
rose  p  =  asm2  6. 

6.  Let  the  JT-axis  cut  the  circle  x^  -{•  y^  =  a^  at  J..  An  arc  AB  is  laid 

off  on  the  circle  equal  to  the  abscissa  of  a  point  on  the  parabola  y"^  =  2px, 
and  the  radius  OB  is  produced  a  distance  BP  equal  to  the  ordinate  of  that 

point.     Show  that  the  locus  of  P  is  the  parabolic  spiral  (/>  —  a)^  =  2  ap6. 

7.  The  cissoid  (problem  10,  p.  253)  is  the  locus  of  the  point  of  intersection 

of  a  tangent  to  the  parabola  y^  ■}■  Sax  =  0  and  the  perpendicular  to  it  drawn 
through  the  origin. 

8.  Given  a  fixed  point  A  on  the  negative  part  of  the  X-axis  and  a  line 

through  A  meeting  the  F-axis  at  B.  On  either  side  of  5  a  length  BP  =  OB 
is  laid  off  on  AB.  Show  that  the  locus  of  P  is  the  strophoid  (problem  9, 

p.  262). 

9.  One  side  of  a  right  angle  ABC  passes  through  a  fixed  point  Z>,  while  a 
point  C  on  the  other  side  moves  along  a  fixed  line  EF  whose  distance  from  D 

equals  the  side  BC.  Prove  that  (a)  the  middle  point  of  BC  describes  a  cissoid 

(problem  10,  p.  253);  (b)  the  vertex  B  describes  a  strophoid  (problem  9,  p.  262). 



CHAPTER  XII 

THE  GENERAL  EQUATION  OF  THE  SECOND  DEGREE 

104.  If  the  general  equation  of  the  second  degree  (p.  132) 

Ax^  +  Bxy  -\-  Cy^ -h  Bx -{-  Ey  -h  F  =  0 

has  a  locus,  it  must  be  either  a  conic  or  a  degenerate  conic  (Theorem  XIII, 
p.  196).  The  method  of  determining  the  exact  nature  of  the  locus  was  to 

simplify  its  equation  by  a  transformation  of  coordinates,  a  process  which  is 
frequently  laborious.  The  principal  object  of  this  chapter  is  to  derive  rules 
by  which  the  exact  nature  of  the  locus  may  be  easily  ascertained.  In  this 
connection  the  expressions 

A  =  B^-4AC, 
H  =  ̂   +  C, 

and  0  =  iACF  +  BDF  -  AE^  -  CL^  -  FE^ 

will  be  of  fundamental  importance. 

105.  Condition  for  a  degenerate  conic. 

Lemma  I.  If  an  equation  of  the  second  degree  is  transformed  by  a  transfor- 

mation of  coordinates,  then  the  left-hand  member  of  the  transformed  equation 
can  be  factored  when  and  only  when  the  left-hand  member  of  the  original  equor 

tion  can  be  factored."^ 
Proof.  For  the  equations  of  a  transformation  of  coordinates  [(III),  p.  164] 

are  of  the  first  degree  when  solved  for  either  the  new  or  old  coordinates,  and 

hence  when  we  substitute  in  an  equation  whose  left-hand  member  is  factored 

the  result  is  an  equation  whose  left-hand  member  is  factored.  q.e.d. 

Lemma  IL  The  locus  of  an  equation  of  the  second  degree  is  a  degenerate  conic 

when  and  only  when  the  left-hand  member  of  its  equation  may  be  factored. 

Proof.  By  a  transformation  of  coordinates  an  equation  of  the  second 

degree  may  be  reduced  to  one  of  the  forms 

(1)  ^x2  +  C?/2  -K  F  =  0,  C?/2  +  Dx  =  0,  Cy^-\-F=  0, 

where  A,  C,  and  D  are  different  from  zero  (Theorem  XIII,  p.  196). 

*  We  shall  say  that  the  left-hand  memher  of  the  equation  can  be  factored  if  it  can 
written  as  the  product  of  two  factors  of  thejirst  degree  in  x  and  y  (p.  17).    Hence 

x^-y^  =  {x  +  y){x-y) 

can  be  factored,  while  x^-  y  =  (x  +  v'y) (x -  \/y) 
cannot  be  factored  in  this  sense. 

264 
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The  locus  of  the  first  of  equations  (1)  is  degenerate  when  and  only  when 
F=0,  the  locus  of  the  second  is  never  degenerate,  and  the  locus  of  the  third 

is  always  degenerate.*  Hence  the  locus  of  an  equation  of  the  second  degree 
is  degenerate  when  and  only  when  its  equation  may  be  reduced  to  one  of 
the  forms 

(2)  Ax'^  +  Cy^  =  0,  Cy'^-]-  F  =  0. 
These  equations  may  be  written  in  the  forms 

{Vax  +  V^^ y)  (VI X  -V^Cy)  =  0, 

( VC y  +  V^^F)  {-^Cy-  V^^)  =  0. 
Hence  equations  (2)  are  forms  of  equations  (1)  which  can  be  factored, 

and  they  are  evidently  the  only  such  forms. 

Hence  the  locus  of  an  equation  in  its  simplest  form  is  degenerate  when 
and  only  when  it  can  be  factored,  and  then  by  Lemma  I  the  same  is  true  of 

the  locus  of  any  equation  of  the  second  degree.  q.e.d. 
We  now  seek  the  conditions  which  the  coefficients  of 

(3)  Ax^  +  Bxy  +  Cy^  +  Dx  +  Ey  -\-  F=(i 

must  satisfy  in  order  that  the  left-hand  member  can  be  factored. 
Arranging  (3)  according  to  powers  of  x,  we  have 

(4)  ^x2  +  {By  +  B)x  +  Cy'^  +Ey  +  F  =  0. 
Solving  for  x  (which  implies  that  A  is  not  zero),  we  may  write  the  left- 

hand  member  of  (4)  in  the  form  of  (G),  p.  3,  namely 

,^,     J        -{By  +  D)+V{B^-4AC)y^  +  {2BD-iAE)y  +  D^-^AF\ 
(5)  ̂ [x   ^  J 

/        -{By  +  D)--V{B^-iAC)y'i-\-{2BD-4AE)y-{-D^-4AF\ 
V~'  ~~~         ^  /• 

These  factors  will  be  of  the  first  degree  in  y  as  well  as  x  when  and  only 
when  the  quadratic  in  y  under  the  radical  can  be  written  in  the  second  form 

of  (7),  p.  4,  which  can  be  done  when  and  only  when 

(6)  {2BD  -4.AEY  -  4(^2  -4:  AC)  (i)2  -  ̂ AF)  =  0. 

Clearing  parentheses  and  dividing  by  —  16  ̂ ,  we  obtain 

(7)  ^ACF+  BDE  -AE^  -  CD'^  -FB^  =  0. 

The  left-hand  member  of  (7)  is  called  the  discriminant  of  (3)  and  is  denoted 

by  0.  Hence  the  left-hand  member  of  (3)  can  be  factored  (footnote,  p.  264) 
when  and  only  when  its  discriminant  is  zero.    Then  from  Lemma  II  we  have 

*  The  equation  Cy^  +  F=0  has  no  locus  if  C  and  F  have  the  same  sign  (p.  196),  but  we 
shall  speak  of  this  as  a  degenerate  ease  to  distinguish  it  from  the  equation  Ax^+Cy^+F=0, 
which  has  no  locus  if  F:p^O,  and  A,  C,  and  F  have  the  same  sign  (p.  195),  for  the  former 
equation  has  the  same  form  as  that  of  a  degenerate  parabola  (p.  196),  while  the  latter  has 
the  same  form  as  that  of  a  central  conic. 
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Theorem  I.    The  locus  of  an  equation  of  the  second  degree 

Ax^  -\-Bxy  -\-  Cy'^-^  Dx  +  Ey  +  F=0 

is  degenerate  when  and  only  when  its  discriminant 

e  =  4:ACF+  BDE  -  AE*  -  CB^  -  FB^ 
is  zero. 

PROBLEMS 

1.  If  ̂   =  0,  then  0  =  BDE  -  CD^  -  FB\     Show  that  the  locus  of 

Bxy  +  Cy'2  +  Dx  +  Ey  -\-F  =  0 
will  be  degenerate  when  and  only  when  0  =  0. 

Hint.  Arrange  the  given  equation  according  to  powers  of  y. 

2.  If  ̂   =  C  =  0,  then  e  =  DE  -  FB,  after  dividing  by  B  which  we  suj 
pose  is  not  zero.     Show  that  the  locus  of 

Bxy  +  Dx-{-Ey-hF=0 

will  be  degenerate  when  and  only  when  0  =  0. 

Hint.   If  the  given  equation  can  be  factored,  the  factors  must  have  the  form 

(A'x  +  Ii')iC'ij  +  D')  =  0, 

as  otherwise  their  product  would  contain  x^  or  y\ 
IVIultiply  these  factors,  find  the  conditions  that  their  product  should  have  the  same 

locus  as  the  given  equation,  and  eliminate  A\  B',  C,  and  D'. 

3.  Are  the  loci  of  the  following  equations  degenerate  or  non-degenerate  ? 

(a)  x2  —  2  X2/  +  2/2  _  2  y  —  1  =  0.  Ans.  Non-degenerate. 
(b)  a;2  _|_  2  x?/  +  2/2  4-  X  +  y  —  2  =  0.  Ans.  Degenerate. 
(c)  x2  +  2/2  —  4 X  +  2 2/  +  5  =  0.  Ans.  Degenerate. 

(d)  x2  +  xy  +  2/^  +  2  X  +  3  2/  -^  3  =  0.  Ans.  Non-degenerate. 
(e)  xy  +  X  —  2/  +  7  =  0.  Ans.  Non-degenerate. 

(f )  x2  4-  2  xy  —  2/  +  3  =  0.  An^.  Non-degenerate. 
(g)  X2/  +  2  X  —  2/  —  2  =  0.  Ans.  Degenerate. 

4.  Find  the  real  values  of  k  for  which  the  loci  of  the  following  equations 

are  degenerate. 

(a)  fcx2  +  (1  _  fc)  y2  _  (2  -f-  A:)  =  0.  Ans.   0,  1,  -  2. 

(b)  x2  +  (1  +  A:)  2/2  -  4  fcx  -  16  =  0.  Ans.    -  1. 
(c)  xy  -\-  k  (x2  —  2/2)  =  0.  Ans.   All  values. 

6.  Find  all  possible in  which  equation  (3),  p.  265,  has  no  locus. 

Hint.   Solve  for  x  and  apply  Theorem  III,  p.  11,  assuming  that  A  is  positive  and 

noticing  that  the  discriminant  of  the  quadratic  in  y  under  the  radical  is  - 16  A(d. 

Ans.    0>O,  A<0;  0  =  A  =  O,  1)2-4 AF< 0. 
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106.  Degenerate  conies  of  a  system.    Let  the  equations  of  two  conies, 

degenerate  or  non-degenerate,  be 

Ci :  ̂ix2  +  B^xy  +  dy'^  +  D^x  +  E^y  +  ¥^  =  0 

and  C2  :  A^x^  +  B^xy  +  C^y^^  +  D2X  +  E^y  +  F2  =  0. 

0) 

or 

(2) 

Then  the  equation 

^ix2  +  Bixy  +  Ci2/2  +  Z>ix  +  ̂1?/  +  i?'i 

+  A:  (^2X-2  +  -Bsa^y  +  C22/2  +  Aa;  +  E^y  +  Fg)  =  0, 

(^1  +  A;^2)a:2  +  (^i  +  lcB2)xy  +  (Ci  +  A;C2)y2 
+  (Di  +  fc  A)  X  +  (^1  +  kEi)  y  +  (Fi  +  ̂ ^2)  =  0, 

where  k  is  an  arbitrary  constant,  will  represent  a  system  of  conic  sections. 

If  C\  and  C2  intersect,  all  the  conies  of  the  system  will  pass  through  their 
points  of  intersection. 

This  is  proved  as  in  the  case  of  straight  lines  (Theorem  XIII,  p.  119)  and  circles 
(Theorem  IV,  p.  140). 

Ex.  1.    Find    the  values  of  k  for  which  the  conies   belonging  to  the  sys- 
tem   a:2  4.  ̂ 2  _  4  4.  ̂   (a;2  _  y2  _  1)  =  0    are 

degenerate. 

Solution.    The  given  equation  may  be  writ- 
ten in  the  form 

(3)     (1  -f-  ̂)  x2  -1-  (1  -  k)  y2-{^  +  ]c)^  0. 

Its  discriminant  is 

Q  =  -^(\j^k){l-k){^-\-k). 

If  the  locus  of  (3)  is  degenerate,  then  (Theo- 
rem I,  p.  206) 

0  =  -  4  (H-  A;)  (1  -  A;)  (4  -t-  ̂)  =  0. 

.-.  k  =  —  1,  1,  or  —4. 

If  k  =  -l,  (3)  becomes  2^2  _  3  =  0,  or  y  =  ±  Vf. 

\i  k=  1,  (3)  becomes  2 x2  -  5  =:  0,  or  a;  =  ±  Vf. 

If  *  =  -  4,  (3)  becomes  3  a;2  -  5  ?/2  =  0,  or  y  =  ±  Vfa;. 

In  each  case  the  locus  is  a  pair  of  lines. 

The  figure  shows  the  circle  x2  -|-  ̂ 2  _  4  =  0,  the  hyperbola  x^  —  y^  —  1  —  0^ 
and  the  three  pairs  of  lines. 

Theorem  11.  In  every  system  of  conies  wJiose  equation  has  the  form  (1)  there 
is  at  least  one  degenerate  conic  and,  in  general,  there  cannot  be  more  than  three. 

These  are  obtained  by  substituting  for  k,  in  the  equation  of  the  system,  the  roots 
of  its  discriminant  0. 

\ 1 

r> 

/ 
N / ̂  

\ ^ / A s 
^ 

•'■i 

^ 4 

/^ 

E  — 

k  = 

-7 

^ 1 s^ 

.A 

' 
r J 

k= 

-1 

X 

\^^ 
^j^ 

7 ̂  
^ 

<4 

^ 
/ , \ S / ^ 



268 ANALYTIC  GEOMETRY 

Proof.  The  discriminant  0  of  (1),  when  set  equal  to  zero,  gives  an  equa- 
tioii  of  the  third  degree  in  k. 

For  each  term  in  0  consists  of  the  product  of  three  of  the  coefficients  of  (2),  and  such 

products  will  contain  the  third  power  of  k. 

The  roots  of  this  cubic  equation  will  be  the  values  of  k  giving  the  degen- 
erate conies  of  the  system  (Theorem  I,  p.  266).  There  are,  therefore,  not 

more  than  three  values  of  k  for  which  the  locus  is  degenerate. 

In  a  special  case,  however,  all  of  the  coefficients  in  this  cuhic  might  be  zero,  in  which 
case  the  locus  of  (2)  is  degenerate  for  all  values  of  k  (see  problem  4,  (c),  p.  266). 

Two  or  all  three  of  the  roots  might  be  equal,  and  hence  there  might  be 
but  two,  or  even  but  one,  degenerate  conic  in  the  system. 

Two  of  the  roots  might  be  imaginary  and  hence  could  not  be  used.  But 

one  of  them  must  be  real,*  and  hence  there  is  always  at  least  one  real  value 
of  k  for  which  the  locus  of  (1)  is  degenerate,  t  q.e.d. 

Systems  of  conies  defined  by  equations  of  the  form  (1)  are  classified  according  to  the 
nature  of  the  common  solutions  of  C^  and  C^.  In  Algebra  it  is  shown  that  two  equations 
of  the  second  degree  have,  in  general,  four  pairs  of  common  solutions  for  a:  and  y.  Hence 
five  cases  arise : 

1.  Four  distinct  pairs  of  solutions. 
2.  Two  pairs  are  identical  and  the  other  two  pairs  are  distinct. 
3.  Three  pairs  are  identical  and  the  fourth  pair  is  different. 
4.  Two  pairs  are  identical  and  the  other  two  pairs  are  also  identical. 
5.  All  four  pairs  are  identical. 

If  the  four  pairs  of  solutions  are  all  real,  then  these  five  cases  have  the  following 
geometrical  interpretation. 

1.  Ci  and  Cj  have  four  distinct  points  of  intersection.  All  the  conies  of  the  system 
pass  through  these  four  points.  There  are  three  degenerate  conies  in  the  system  [Ex.  1 
and  problem  1,  (a)]. 

2.  Ci  and  C^  are  tangent  at  one  point  and  intersect  in  two  other  points.  All  the  conies 
of  the  system  are  tangent  at  the  first  point  and  pass  through  the  other  two  points.  There 
are  two  degenerate  conies  in  the  system  [problem  1,  (b)]. 

3.  Ci  and  Cj  are  tangent  at  one  point  and  intersect  in  a  second  point.  All  the  conies 
of  the  system  are  tangent  at  the  first  point  and  pass  through  the  second  point.  There  is 
but  one  degenerate  conic  in  the  system  [problem  1,  (c)]. 

4.  Ci  and  C^  are  bi-tangent,  that  is,  tangent  at  two  different  points.  All  of  the  conies 
of  the  system  are  tangent  at  these  two  points.  There  are  two  degenerate  conies  in  the 
system  [problem  1,  (d)]. 

5.  Cx  and  Cj  are  tangent  at  one  point  and  do  not  intersect  elsewhere.  All  of  the 
conies  of  the  system  are  tangent  at  this  point.  There  is  but  one  degenerate  conic  in 
the  system  [problem  1,  (e)]. 

*  In  Algebra  it  is  shown  that  the  imaginary  roots  of  an  equation  with  real  coefficients 
must  enter  in  pairs.  Hence  if  the  degree  is  an  odd  number,  one  root,  at  least,  must  be 
real. 

t  It  is  tacitly  assumed,  as  is  true,  that  not  all  of  the  roots  of  the  discriminant,  when 
substituted  for  k,  give  equations  which  have  no  locus.  But  this  point  is  not  essential  for 
our  further  reasoning. 
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PROBLEMS 

h 

-f- 

2, 

-1. 

1, 

-1. 

h 

-1. 

1, 

-1. 

1 .  Find  the  values  of  k  for  the  degenerate  conies  of  the  following  systems. 
Plot  Ci,  C2,  and  the  degenerate  conies. 

(a)  x2  +  ?/2  _  16  +  fc(x2  +  92/2  -  36)  =  0.  Ans.   A;  =  -  1, 
(b)  4x2  +  y2  _  iQx  +  A;(aj2  4-  y2  _  8x)  =  0.       Ans.    k=-2, 

(c)  x2  +  2xy  +  2 2/2  +  8x  +  8 y  +  fe(x2  +  2 2/2  +  8?/)  =  0. 
Ans.    k  =  —  1, 

(d)  x2  +  2/2  -  36  4-  A;  (x2  +  4  y2  _  36)  =  0.  Ans.    k  =  -l, 

(e)  x2  +  2/2  -  4  X  +  A;  (4  x2  +  2/2  -  4  X)  =  0.         Ans.    k  =  -l, 

2.  Find  the  points  of  intersection  of  Ci  and  C2  in  problem  1. 

Ans.   (a)  (fV6,iVlO),(|V6,-iVlO),(-fy6,iVlO),(-|V6,-iVr(.). 
(b)  (0,  0),  (0,  0),  (I,  f  V2),  (I,  -fV2). 
(c)  (0,  -  4),  (0,  -  4),  (0,  -  4),  (0,  0). 

(d)  (6,0),  (6,0),  (-6,0),  (-6,0). 
(e)  (0,  0),  (0,  0),  (0,  0),  (0,  0). 

3.  Discuss  the  following  systems  of  conies. 

(a)  x2  +  2/2  -  16  +  A;  (x2  -  4  2/2  +  16)  =  0. 
(b)  x2  -  22/  +  4  +  A;(x2  +  82/)  =  0. 

(c)  X2/ 4- 82/ +  8  +  A;(X2/ +  8)  =  0. 
(d)  x2  +  2  2/2  -  8  +  A:  (x2  +  2/2  -  4)  =  0. 

(e)  x2  4-  62/  +  9  +  A; (x2  +  6 2/)  =  0. 

(f)  2/2  -  4  X  +  A;  (2/2  +  4  X)  =  0. 

(g)  x2  -  2/2  +  25  +  A;(x2  +  y'^)  =  0. 
(h)  x2  -  y2  4.  ̂  (xi  4. 2/2)  =  0. 

(i)  ̂2  _  4 x  _  16  +  A;(x2  -  2/2  +  8 X  +  16)  =  0. 

(j)  x"^  -  y^  +  k{x^  -  4y^  -  S)  =  0. 
107.  Invariants  under  a  rotation  of  the  axes. 

Lemma  III.    If  the  axes  are  rotated  about  the  origin,  then  for  any  point  whose 

old  and  new  coordinates  are  respectively  (x,  y)  and  (x',  y')  we  have 

x2  +  2/2  =  x'2  +  2/'2. 
Proof.    To  rotate  the  axes  through  an  angle  6  we  set  (Theorem  II,  p.  162) 

=  x'  cos  6  —  y'  sin  6, 

=  x'  sin  6  -\-  y'  cos  d. 
(1) 

\y Then 
x2  4-  y2  _  (x'  cos  d  -y'  sin  d^  +  (x'  sin  6  -\- y'  cos  6^ 

=  x'2  (cos2  6  +  sin2  d)  +  y'^  (sin2  d  +  cos2  d) 
=  X'2  +  y'2.  (by  3,  p. 

19) 

Q.E.D. 
The  lemma  is  evident  geometrically  since  x^  +  y^  and  x^^  +  y'^  are  the  squares  of  the 

distance  froni  the  point  to  the  origin  [(IV),  p.  31]  in  the  new  and  old  coordinates 
respectively. 
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We  are  considering  in  this  chapter  the  equation 

(2)  ^x2  +  Bxy  +  Cy'2  ■}■  Dx  +  Ey  -\-  F  =  0. 
If  we  substitute  from  (1)  without  simplifying  the  result,  we  obtain  an 

equation  of  the  form 

(3)  A'x'-^  +  B'xY  +  C'y'2  +  I/x'  4-  EY  +  F  =  0, 
which  has  the  same  constant  term  (Corollary,  p.  170). 

Consider  the  system  of  conies 

(4)  Ax^  +  Bxy  +  Cy^  +  Dx  -\-  Ey  -{■  F  -\-  kix"^  +  y"^)  =  0. 
If  the  axes  be  rotated  by  substituting  from  (1),  the  equation  of  the  system 

becomes 

(5)  A'x'^  +  B'xY  +  CY^  +  I^'x'  +  EY  +  F+k  (x'2  +  y'^)  =  0. 
For  the  left-hand  member  of  (2)  becomes  the  left-hand  member  of  (3),  and  x*  +  y* 

becomes  x^^  +  y'^  by  Lemma  III. 

Denote  the  discriminants  of  (2),  (3),  (4),  and  (5)  by  0,  0',  0i,  and  Si 
respectively.  The  locus  of  (4)  is  degenerate  when  and  only  when  (Theorem  I, 
p.  266) 

01  =  4(^  +  A;)  (C  +  k)F  +  BBE  -  {A  +  k) E^  -  {C -\-  k)BP-  -  FB^  =  0, 
or 

(6)  ^Fk^-\-{iAF-\-4:CF-E2-L»)k  +  @  =  0* 

Similarly,  the  locus  of  (5)  is  degenerate  when  and  only  when 

(7)  41^A;2  +  {4:A'F-\-  4  C'F  -  E"^  -iy2)k-^e'  =  0. 

The  roots  of  (6)  and  (7)  must  be  the  same. 

For  (4)  and  (5)  are  the  equations  of  the  same  conic  referred  to  different  axes.  Hence 
the  locus  of  either  equation  is  degenerate  if  the  locus  of  the  other  is  degenerate. 

Since  the  coefficients  of  k^  in  (6)  and  (7)  are  equal,  the  other  coefficients 
must  also  be  equal.     Hence 

(8)  0'  =  0 

and  4A'F  +  iC'F  -  E'^  -  D'^  = 'iAF  +  4CF  -  E^  -  1)2. 

An  expression  involving  the  coefficients  A,  B,  C,  D,  E,  and  F  whose  value 
remains  unchanged  when  the  axes  are  changed  is  called  an  invariant  of  the 

general  equation  of  the  second  degree  under  a  transformation  of  coordinates. 
It  is  assumed  in  this  definition  that  the  equation  in  the  new  coordinates  is  not 

simplified  by  multiplying  or  dividing  by  a  constant.  An  expression  involv- 
ing the  coordinates  which  remains  unchanged  when  the  equation  in  the  new 

coordinates  is  simplified  is  called  an  absolute  invariant.     Hence,  from  (8), 

*  This  quadratic  may  be  regarded  as  a  cubic  equation  with  one  infinite  root,  by  a 
theorem  analogous  to  Theorem  IV,  p.  15.  The  locus  of  (4)  for  k=co  is  x^  + y^  =  0,  which 
is  one  of  the  degenerate  conies  of  the  system. 
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Theorem  III.     The  discriminant  0  of  an  equation  of  the  second  degree  is 
invariant  under  a  rotation  of  the  axes. 

Corollary.    The  expression  ̂   =  AAF  +  4  CF  —  E^  —  Ifi  is  invariant  under 
a  rotation  of  the  axes. 

Lemma  IV.    An  invariant  of 

(9)  Ax"^  +  Bxy  +  Cy2  +  JP  =  0 
under  a  rotation  of  the  axes  which  involves  only  A,  B,  and  C  is  also  an 
invariant  of  (2). 

Proof.    Substituting  in  (9)  from  (1),  we  obtain 

A'x'^  +  B'xY  +  Cy^  -^F=0, 

where  A\  B%  and  C  have  the  same  values  as  in  (3). 

For  when  we  substitute  from  (1)  in  Ax^  +  Bxy  +  Cy^  we  obtain  only  terms  in  x'^,  x'y\ 
and  y'^,  and  substituting  in  Dx  +  Ey  in  (2)  we  obtain  only  terms  in  x'  and  y\ 

Hence  an  expression  involving  only  ̂ ,  B.,  and  C  will  be  an  invariant  of 

(2)  if  it  is  an  invariant  of  (9).  q.e.d. 

Theorem  IV.    The  expressions 

A  =  B^-4.AC\    B.  =  A  +  C, 

are  invariants  of  an  equation  of  the  second  degree  under  a  rotation  of  the  axes. 

Proof.    Consider  the  system 

(10)  ^x2  +  Bxy  +  C2/2  +  F  +  A:  {x2  +  y^)  =  0. 

Rotating  the  axes,  this  equation  becomes 

(11)  A'x'^-{-B'xY  +  CY^-{-F+k{x'^  +  y'2)  =  0. 

Denote  the  discriminants  of  (10)  and  (11)  by  ©i  and  Qi.  Then  the  locus 

of  (10)  is  degenerate  when  and  only  when 

Oi  =  4{A  -i-  k)  {C  +  k) F  -  FB^  =  0 or 

(12)  4k^  +  4{A  +  C)k-{B2-4AC)  =  0. 

Similarly,  the  locus  of  (11)  is  degenerate  when  and  only  when 

(13)  0i'  =  4  fc2  +  4  {A'  +C')k-  (5'2  _  4  a'C)  =  0, 

Since  (10)  and  (11)  have  the  same  locus,  (12)  and  (13)  have  the  same  roots. 

And  since  the  coefficients  of  A;2  in  (12)  and  (13)  are  equal,  the  remaining 
coefficients  are  equal.     Hence 

B'^-4A'C'  =  B^-4AG 

and  A'  +  C  =  A  -\-  C.  q.e.d. 
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Ex.  1.    Transform  x2  +  xy  +  a;  —  2y  +  4  =  0  by  rotating  the  axes  throu;;h 
Compute  A,  H,  and  0  for  the  given  and  required  equations. 

Solution.   In  the  given  equation 

A=  1,  B  =  1,  C  =  0,  D  =  1,  E  =  -  2,  F  =  ̂ . 

.'.  H  =  1  +  0  =  1,  A  =  12  -  4  •  1  •  0  =  1, 

0  =  41O-4  +  ll(-2)-l(-2)2-O-12-4-l2  =  -lO. 

To  rotate  the  axes  set  (Theorem  II,  p.  102) 

7t        .  .    "t      k'  —  w' a;  =  a;'cos--?/'sm-  =  — ^    .     ̂              .  ̂   — ^  .  ^ 4  4  V2  4  4  v^ 

This  gives,  after  removing  parentheses  but  not  clearing  of  fractions, 

y—x'  sin  -7  +  2/  cos  -  =   ^- 

(14) 

Here 

1  3 
a./2  _  -xfy'   -x'  --—?/'  +  4  ==  0. 

V2  V2 

^  =  1,  5  =  -l,  C=0,  D  = 

.-.  A  =  l,  H  =  l,  0  = 

^  = 

10. 

V2 
F=4. 

Hence  the  values  of  A,  H,  and  0  are  unchanged. 
But  if  we  clear  fractions  in  (14)  we  obtain 

V2a;'2  _  yfix'y'  -  a;'  -  3y'  +  4  V2  =  0. 

For  this  equation         A  =  2,  H  =  V2,  0  =  -  20  V^. 

Hence  A,  H,  and  0  are  not  absolute  invariants  under  a  rotation  of  the  axes. 

H2  H^ 
Theorem  V.    The  expressions  —  and  — -  are  absolute  invariants  of  ah  equa- A  0 

tion  of  the  second  degree  under  a  rotation  of  the  axes.* 

Proof.  The  given  expressions  are  invariants  because  A,  H,  and  0  are 
invariants.  To  show  that  they  are  absolute  invariants  we  must  prove  that 

their  values  are  unchanged  when  we  multiply 

(15)  Ax'^  +  Bxy  +  C2/2  ̂   Dx  +  Ey  +  F=0 

by  a  constant.     Multiplying  (15)  by  k,  we  get 

(16)  kAx^  +  kBxy  +  kCy^  +  kDx  +  kEy  +  kF=0. 

Denote  the  invariants  of  (16)  by  A^-,  Hi-,  and  0^-.     Then 

(17)  A^.  =  k^B^  -  4 kAkC  =  k^{B^-4AC)  =  k^A. 

(18)  llk  =  kA+kC  =  k{A  +  C)  =  kU. 

(19)  0;t  =  k^{iACF-\-  BDE  -  AE^  -  CD2  -  FB^)  =  J^B. 

*  The  proof  also  holds  for  a  translation  of  the  axes  after  Theorems  VI  and  VII  are 
proved. 
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Dividing  the  square  of  (18)  by  (17), 

A*        A 

Dividing  the  cube  of  (18)  by  (19), 

H^_H3 
Hence  —  and  —  are  absolute  invariants.  q.e.d. A  0 

PROBLEMS 

1.  Compute  —  and  —  for  the  equations  in  problem  2,  p.  168,  and  also A  0 
for  their  answers. 

2.  The  values  of  A',  B\  and  C  in  (3),  p.  270,  are  respectively  the 

coefficients  of  x'^,  x'y',  and  i/'^  in  (4),  p.  170.  Compute  the  values  of 
J5'2  -4:A'C'  and  A'  +  C  in  terms  of  A,  B,  and  C. 

n 

3.  Show  that   is  an  invariant  of  the  line  Ax  -{•  By  -}-  C  =  0 
±  V^2  +  jg2 

under  a  rotation  of  the  axes. 

4.  Show  that  — ^  ̂   — -  is  an  invariant  of  the  line  Ax  -\-By  +  C  =  0 

and  the  point  Pi  (xi,  yi)  under  a  rotation  of  the  axes. 

5.  Show  that  v(xi  —  ̂ 2)2  +  {yi  —  2/2)^  is  an  invariant  of  the  points 
Pii^h  Vi)  and  P2(X2,  2/2)  under  a  rotation  of  the  axes. 

6.  Show  that  — ?-i   ?^  is  an  invariant  of  the  lines  ̂ ix  +  Biy  +  Ci  =  0 
AiA2  +  BiB2 

and  A2X  +  B^y  +  ̂2  =  0  under  a  rotation  of  the  axes. 

7.  Interpret  geometrically  the  meaning  of  the  invariants  in  problems  3 
to  6. 

108.  Invariants  under  a  translation  of  the  axes. 

Theorem  VI.    The  expressions 

A  =  B^-4AC,     n=A  +  C 

are  invariants  of  an  equation  of  the  second  degree  under  a  translation  of  the  axes. 

Proof  If  an  equation  of  the  second  degree  be  transformed  by  translating  the 

axes,  the  coefficients^,  B,  and  C  are  unchanged  (Corollary  I,  p.  171).  Hence 
any  expression  involving  these  letters,  as  A  or  H,  is  an  invariant.  q.e.d. 

b 
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Lemma  V.  If  the  axes  are  translated  to  the  point  {h,  fc),  then  for  any  point 

P  whose  old  and  new  coordinates  are  respectively  (x,  y)  and  (x',  y')  we  have 

kx  —  hy  =  kx'  —  hy'. 

Proof.    To  translate  the  axes  we  set  (Theorem  I,  p.  160) 

x  —  x'-\-h,    y  =  y'  -\-k. 

Then  kx  -  hy  =  k{x'  -\-  h)  -  h {y'  +  k) 
=  kx'  —  hy'.  Q.E.D. 

The  Lemma  is  evident  geometrically  since  either  kx  -  hy  or  kx'  -  hy'  iB  the  area  of  the 
triangle  whose  vertices  are  P  and  the  old  and  new  origins  [(VIII),  p.  42]. 

Theorem  Vn.    The  discriminant  0  of  the  equation 

(1)  Ax^  +  Bxy  +Cy^  +  Dx-\-Ey  +  F=0 

is  an  invariant  under  a  translation  of  the  axes 

(2)  x  =  x'  -^h,    y  =  y'  +  k. 

Proof.    Consider  the  system 

(3)  Ax^  +  Bxy  -h  Cy^ -}■  Bx -h  Ey  +  F  +  k'{kx  -  hy)  =  0. 

Substituting  in  (3)  from  (2),  we  obtain 

(4)  Ax'^  +  BxY  +  Cy'^  +  D'x'  +  EY  +  T  +  k'  {kx'  -  hy')  =  0. 

For  (1)  becomes  an  equation  of  the  form  (Corollary  I,  p.  171) 

(5)  Ax'^  +  Bx'y'  +  Cy'2  +  I/x'  +  E'y'  +  i^'  =  0, 

and  kx  —  hy  becomes  kx'  -  hy'  (Lemma  V). 

Denote  the  discriminants  of  (1)  and  (5)  by  0  and  0' ;  of  (3)  and  (4)  by  0i 
and  0i'.  If  the  locus  of  (3)  is  degenerate  (Theorem  I,  p.  266), 

01  =  4^Ci^  +  ̂ (D  +  k'k)  {E  -  k'h) -A{E-  k'h)^  -C{D-^  k'k)^  -  FB^  =  0, 
or 

(6)  {Bhk  -  Ah^  -  Ck^)  k'^  +  {BEk  -  BDh  +  2AEh  -  2  CDk)  A;'  +  0  =  0. 

Similarly,  the  locus  of  (4)  is  degenerate  if 

(7)  {Bhk  -  Ah^  -  Ck^)  k'^  +  {BE'k  -  BD'h  +  2  AE'h  -  2  CITk) k' +  &' =  0. 

Since  (6)  and  (7)  must  have  the  same  roots,  and  since  the  coefficients  of  k'^ 
are  equal,  then  the  remaining  coefficients  are  equal.     Hence 

0'  =  0.  Q.E.D. 

Since  any  transformation  of  coordinates  may  be  effected  by  a  rotation  and 
a  translation  of  the  axes,  the  results  of  Theorems  III,  IV,  VI,  and  VII  may 
be  embodied  in  a  single  theorem. 
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Theorem  VIII.    If  the  equation 

Ax^  +  Bxy  +  Cy^  +  Dx  +  Ey  +F=0 

he  transformed  by  a  transformation  of  coordinates  into 

A'x'-^  +  B'xY  +  Cy^  +  D'x'  +  EY  -\-F'  =  Oj 

then  A'  =  B'2-^A'C'  =  B2-4AC  =  A, 
TI'  =  A'-\-C'  =  A  +  C=U, 

and  0'  =  4  A'C'F'  +  B'D'E'  -  A'W^  -  C'l/^  -  F'B'^ 
=  ̂ ACF+  BDE  -  AFT-  -  CD^  -  FB^  =  0. 

That  is,  A,  H,  and  0  are  invariants  of  an  equation  of  the  second  degree  under 

any  transformation  of  coordinates. 

PROBLEMS 

1.  Compute  —  and  —  for  the  equations  in  problem  1,  p.  168,  and  the A  0 
answers. 

2.  Prove  that  the  expressions  in  problems  4  to  6,  p.  273,  are  invariant 
under  a  translation  of  the  axes  and  interpret  them  geometrically. 

3.  Prove  by  direct  substitution  that  ̂   (Corollary,  p.  271)  is  invariant  under 
a  translation  of  the  axes  provided  that  A  =  0  =  0. 

109.  Nature  of  the  locus  of  an  equation  of  the  second  degree.  By  a  trans- 
formation of  coordinates  the  equation 

(1)  Ax^  +  Bxy  -{-Cy^+Dx  +  Ey  +  F  =  0 

may  be  reduced*  to  one  of  the  forms  (Theorem  XIII,  p.  196) 

(I)  A'x'^  +  Cy^  +  F'  =  0,  where  A'  ̂ 0  and  C  t^O; 

(II)  Cy^  +  DV  =  0,  where  C  t^  0  and  D'  ?£  0 ; 
(III)  Cy^  +  F'  =  0,  where  C  ̂   0. 

The  theory  of  invariants  enables  us  to  determine  to  which  one  of  these 
three  forms  a  given  equation  may  be  reduced  and  to  find  the  exact  nature  of 

the  locus  without  actually  effecting  the  transformation  of  coordinates. 

To  do  this  compute  the  numerical  values  of  A,  H,  and  0  for  the  given 

equation  (1).     We  have,  further, 

(2)  for     (I),  A'  =  -  iA'C  ̂ 0,  U'  =  A'+  C\  0'  =  4  A'C'F'; 

(3)  for    (II),  A' =  0,  W^C't^O,     0'  =  -C"D'2^O; 

(4)  for  (III),  A'  =  0,  .  H'  =  C  7^  0,     0'  =  0. 
But  in  each  case,  by  Theorem  VIII, 

(5)  A'  =  A,     H'  =  H,     0'  =3  0. 

*  It  is  assumed  that  the  equation  is  not  multiplied  or  divided  by  a  constant  in  this 
reduction. 
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Hence,  i/  A  ?i  0,  (1)  may  he  reduced  to  the  form  (I) ; 

(/■  A  =  0  and  0  ?i  0,  (1)  ma]/  he  reduced  to  the  form  (II) ; 
and  i/  A  =  0  and  0  =  0,  (1)  may  he  reduced  to  the  form  (III), 

We  shall  discuss  these  three  cases  sei)arately. 

Case  I.    A  ̂li  0.    Substituting  from  (2)  in  (5),  we  get 

(6)  -4:A'C'  =  ̂ , 

(7)  A'+C'  =  H, 

(8)  ^A'C'F'  =  0. 

Elliptic  type,  A  <  0. 

From  (6),  if  A<0,  A'  and  C  have 
the  same  signs  and  the  locus  belongs 
to  the  elliptic  type  (p.  195). 

From  (8),  HQ^Q,  then  F'  r^O  and 
the  locus  is  an  ellipse  if  H  and  0  differ 
in  sign,  or  there  is  no  locus  if  H  and  0 

agree  in  sign.  For  A''  and  C"  have  the 
sign  of  H,  from  (7),  and  F'  has  the  sign 
of  0,  from  (8). 

From  (8),  if  0  =  0,  then  F=0  and 
the  locus  is  a,  point. 

The  values  of  A\  C,  and  F^,  if  desired,  may  be  found  by  solving  (6),  (7),  and  (8). 

Case  II.    A  =  0  and  0  ̂zi  0.    The  locus  is  a  parabola  (p.  180). 

Substituting  from  (3)  in  (5),  we  get  C  =  H  and  -  C^B^-  =  0,  from  which  the  values  of 
C"  and  D^  may  be  found  if  desired. 

Case  III.  A  =  0  and  0  =  0.  Substituting  from  (4)  in  (5),  we  obtain  the 
single  equation  C  =  H,  which  does  not  enable  us  to  compare  the  signs  of 

C  and  F'  in  (III).  But  ̂   =  ̂ AF  -{■  4tCF  -  E^  -  B^  is  invariant  under  a 
rotation  of  the  axes,  and  when  A  =  0  =  0,  ̂   is  also  an  invariant  under  a 
translation  of  the  axes. 

For,  substituting  the  values  of  D',  E^,  and  F^  given  by  (5),  p.  170,  and  setting  A'— A, 
B'=B,C'=C  (Corollary  I,  p.  171)  in 

I'  =  4  A'F'  +  4  C'F'  -  E"^  -  i)'2, 

we  get  f '  =  (4  Ci)  -  2  BE)  h  +  {'iAE-2  BD)  k  + 1. 

But  if  A  =  ©  =  0,  then  2  BD  -'iAE  =  0,  from  (6),  p.  265.  Multiplying  this  by  B  and  set- 

ting B^  =  iAC (from  A  =  0),  Ave have  ̂ ACD- 2 ABE  =  0,or  iCD-2BE=0.    Hence  $'  =  $. 

Hyperbolic  type,  A>0. 

From  (6),  if  A>0,  A'  and  C"  have 
opposite  signs  and  the  locus  belongs  to 
the  hyperbolic  type  (p.  195) . 

From  (8),  if  0  ?i  0,  then  ̂   9«f:  0  and 
the  locus  is  an  hyperbola. 

From  (8),  if  0  =  0,  then  2?"=  0  and 
the  locus  is  a.  pair  of  intersecting  lines. 

4  C'F\  and  hence 
4  C'F'  =  ̂  . 

if  I  <  0,  the  locus  is  two  parallel  lines  ; 
if  f  =  0,  the  locus  is  a  single  line ; 

if  ̂   >  0,  there  is  no  locus. 

The  results  of  this  section  are  embodied  in 

For  (III)  we  have  ̂ ' 

Hence  (p.  196) 
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r     Theorem  IX.    The  nature  of  the  locus
  of  the  equation 

Ax^  +  Bxy  +  Cy^  +  Dz  +  Ey  +  F  =  0 
depends  upon  the  values  of  the  invariants 

A  =  B^-4cAC,  Il  =  A  +  C, 

e  =  4.ACF-\-  BDE  -  AE^  -  CD2  -  FB^, 

and  ^  =  4:AF+^CF-E^-  J)\ 
as  indicated  in  the  following  table. 

Conic. 

A<0 
Ellipse,  if  H  and  0  differ  in  sign. 
No  locus,  if  H  and  0  agree  in  sign. 

A  =  0 Parabola. 

A>0 
Hyperbola. 

0  =  0 

Degenerate 
Conic. 

A<0 Point. 

A  =  0 
Two  parallel  lines,  if  ̂   <  0. 

One  line,  if  ̂   =  0. 
No  locus,  if  ̂   >  0. 

A>0 Two  intersecting  lines. 

PROBLEMS 

1.  Find  the  exact  nature  of  the  locus  of 

(a)  x2  +  2xy  -h^y^  -  Qx  -  2y  -\-9  =  0.  Ans.  Ellipse. 
(b)  x^  -  2 xy  +  2 y^  -  iy  -{-  8  =  0.  Ans.  No  locus. 

(c)  x2  +  6  x?/  +  9  ?/2  +  2  X  -  6  y  =  0.  Ans.  Parabola. 

(d)  x2  -  2  x?/  -  2/2  +  8  X  -  6  =  0.  Ans.  Hyperbola. 
(e)  4  x2  +  9  ?/2  +  4  X  +  1  =  0.  Ans.  Point. 

(f)  4  x2  +  4  x?/  +  2/2  +  4  X  +  2  2/  -  48  =  0.  Ans.  Two  parallel  lines. 
(g)  4x2  _  20xy  +  252/2  +  12x  -  30?/  +  9  =  0.  j^^s.  One  line, 
(h)  9  x2  -  12  X2/  +  4  2/2  _  18  X  +  12  2/  +  34  =  0.  Ans.  No  locus. 

(i)  3  x2  -  10  xy  +  7  2/2  +  15  X  —  7  2/  —  42  =  0.  Ans.  Intersecting  lines. 

2.  Find  a^  and  62^  or  p,  for  the  following  conies  : 

(a)  x2  -  2  X2/  4-  y2  -  8  X  =  0.  Ans.   p  - 
(b)  3x2 -10x2/ +  32/3 -8  =  0.  Ans.    a^ 

(c)  5x2  +  2 xy  +  52/2  -  12 X  -  12 2/  =  0.  Ans.    a^  =  3,  62  =  2. 

Hint.  Compute  the  absolute  invariants  —  and  -    for  the  given  equation  and  for  that 
A  © 

one  of  the  typical  forms  (Til),  p.  179,  (V)  and  (VI),  p.  185,  to  which  it  may  be  reduced. 

Equate  and  solve  for  a^  and  b^  or  for^. 

V2. 

=  1,  62 
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3.  Show  that  A'  and  C  in  (I),  p.  275,  are  the  roots  of  the  quadratic 
4x2  —  4Hx  —  A  =  0  and  show  that  they  are  always  real.  When  will  they 
also  be  equal  ? 

110.  Equal  conies.  The  object  of  this  section  is  to  determine  when  two 

conies  whose  equations  are  given  are  equal.  The  solution  of  this  problem 
affords  a  further  application  of  the  theory  of  invariants. 

Theorem  X.    Th^  axes  of  a  non-degenerate  central  conic  whose  equation  is 

Ax^  +  Bxy  +  Cy"^  +  Dx -\-  Ey  -\-  F  =  0 

JJ2  JJ8 
are  determined  by  the  values  of  the  absolute  invariants  —  and  — A  0 

Proof.   The  equation  of  a  central  conic  may  be  reduced  to  the  form  [(11), 
P-  187]  ^       ̂  

a       /3 

The  absolute  invariants  of  this  equation  are 

0'
 

A^
 

-4 

a/3 

^_  _  (g  +  py 

-4  a/3 /I       1\8 
/3/        (a  +  /3)8 

-4 

a/3 

4a2^ 

Hence  (Theorem  VIII,  p.  275) 

(a  +  i8)2^H2     (a  +  ̂ )3^H8 

-  4  a/3        A  '    -  4  a2/32      0  ' 
are  known.     These  equations  can  be  solved  for  a  and  /3, 

(1) 

where  ̂ ^  and 
A  0 

and  the  values  of  the  axes  determined  from  them  by  1  and  2,  p.  187,  and  the 
definition  of  the  axes  (p.  185).  q.e.d. 

Equations  (1)  may  be  solved  as  follows  : 
Dividing  the  second  by  the  first, 

Dividing  the  first  of  equations  (1)  by  (2), 

(3)  a  +  p. 

Dividing  (3)  by  (2), 

ap 

4HQ 

4©2 

"as" 

(4) 

Then,  by  Theorem  I,  p.  3,  a  and  /3  are  the  roots  of  the  quadratic  equation 

4  H@        4  02 
a;*  H — rs-  X   r^  =  0,   or   A^x'  +  4  AlL@x  -  4  02  =  0. A2  A» 

The  roots  of  (4)  are  always  real,  for  the  discriminant  is 

(4  AH0)»  -  4  A3  (-  4  ©2)  =  16  A202  (H^  +  A) 
=  16A202(^2  +  2^C+C2  +  52_4^(7) 
=  16A»©2[(^-C)2  +  fi2], 

which  is  always  positive  when  the  coefficients  A,  £,  C,  D,  E,  and  F  are  real  numbers. 
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Theorem  XI.     The  value  of  p  for  a  parabola  whose  equation  is 

Ax"^  +  Bxy  +  Cy^-{-  Dx  +  Ey  +  F  =  0 

JJ3 

is  determined  by  the  value  of  the  absolute  invariant   
0 

Proof.    For  the  parabola 

we  have  ^^^—  =  — - —  =   

4p2 

y2
 

=  2px 

H'3 

0' 
13 

-4l
)2 

1 

4p2 

_H8
 

0'
 

Hence  (Theorem  VIII)         -  -j— ;;  =  — 

whence  ^"l\~^^'  '^•^•^' 

As  the  value  of  p  is  always  a  real  number,  0  and  H  must  have  opposite  signs.    This 
may  also  be  proved  from  the  values  of  ©  and  H  by  means  of  the  condition  A  =  0. 

Theorem  XII.    Two  non-degenerate  conies 

C  :  Ax'^  +  Bxy  +  Cy^ -^  Dx -\-  Ey  -]-  F  =  0 
and  C  :  A'x^  +  B'xy  +  C"y2  +  d^x  +  E'y  +  F'  =  0 
are  equal  when  and  only  when 

A'  ~  A  '       0'  ~  0 

Proof.    If  the  conies  are  central  conies,  they  are  equal  when  and  only  when 
their  axes  are  equal.     But  the  axes  of  C  and  C  are  determined  in  the  same 

manner  from  —  and  —  and  from  — y  and  -—  respectively  (Theorem  X). 

Hence  the  axes  are  equal  when  and  only  when 

ir2  _  H2  H'3  _  H3 

A'  ~T    ̂"        0^~  ¥* 
If  C  and  C"  are  parabolas,  they  are  equal  when  and  only  when  they  have 

the  same  value  of  p,  that  is  (Theorem  XI),  when  and  only  when 
H'3      H3 
-—  =  —-.  Q.E.D. 0'     0 

111.  Conies  determined  by  five  conditions.    The  equation  of  any  conic 
has  the  form 

(1)  Ax^  +  Bxy  +  Cy^  -\-  Dx -\-  Ey  +  F  =  0, 
and  the  conic  is  completely  determined  if  five  of  the  coeflBcients  are  known 

in  terms  of  the  sixth.  Any  geometrical  condition  which  the  cui-ve  must 
satisfy  gives  rise  to  an  equation  between  one  or  more  of  the  coeflficients. 
Hence  five  conditions  will  determine  the  equation  of  a  conic.  The  locus  may 

be  degenerate,  or  there  may  be  no  locus,  which  would  mean  that  the  five 
conditions  are  inconsistent. 
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Rule  to  determine  the  equation  of  a  conic  which  satisfies  Jive  conditions. 
First  step.    Assume  that  the  equation  of  the  conic  is 

Ax"^  +  Bxy  -\- Cy'^  +  Dz -{- Ey  +  F  =  a. 

Second  step.  Find  five  equations  between  the  coefficientSj  each  of  which 
expresses  that  the  conic  satisfies  one  of  the  given  conditions. 

Third  step.  Solve  these  equations  for  five  of  the  coefficients  in  terms  of  the 
sixth. 

Fourth  step.  Substitute  the  results  of  the  third  step  in  the  equation  in  the 

first  step  and  divide  out  the  remaining  coefficient.  The  result  is  the  required 

equation. 

PROBLEMS 

1.  Show  that  the  following  pairs  of  conies  are  equal  and  determine  the 
nature  of  the  conies. 

(a)  ic2  _  4 2/2  _  2 x  -  16 y  -  14  =  0,  Sx^  -\- 10 xy  +  Zy^  -  2  =  0. 

(b)  9x2+24xy+162/2_80ic+60y=0,  x^-2xy-\-y^-iV2x-4V2y=0. 
(c)  a;2  _|.  2/2  -  2x  -  8y  -  8  =  0,  z^ -\- y^ -\- 6x -lOy -\- 9  =  0. 
(d)  2x2 +  y2_  12a; -j- lOy  + 41  =  0,  17x2-12x^+222/2-26  =  0. 

2.  Find  the  equations  of  the  conies  determined  by  the  following  condi- 
tions and  determine  the  nature  of  the  conic  in  each  case. 

(a)  Passmg  through  (0,  0),  (2,  0),  (0,  2),  (4,  2),  (2,  4). 
Ans.   x2  —  xy  +  2/2  _  2  X  —  2  ?/  =  0. 

(b)  Passing  through  (0,  0),  (10,  0),  (5,  3)  and  symmetrical  to  the  A'-axis. 
Ans.    9  x2  +  25  y2  _  qq  x  =  0. 

(c)  Passing  through  (-  4,  0),  (0,  4),  (0,  -  4),  (5,  6)  if  A  =  0. 
Ans.    y^-4x-16  =  0. 

(d)  Passing  through  (0,  5),  (5,  0)  and  symmetrical  with  respect  to  both 

axes.  Ans.   x^  +  y^  —  2b  =  0. 

(e)  Passing  through  (0,  0),  (2,  1),  (-  2,  4),  (-  4,  -  2),  (2,  -  4). 
Ans.   2  x2  -  3  xy  -  2  ?/2  =  0. 

(f)  Passing  through  (0,  2),  (—  2,  0),  (2,  —  8)  and  symmetrical  with  respect 
to  the  origin.  Ans.   x2  +  4  xy  +  2/2  —  4  =  0. 

3.  Show  that,  in  general,  two  parabolas  may  be  constructed  which  pass 

through  four  given  points. 

4.  Find  the  parabolas  passing  through  the  following  points  and  construct 
the  figures. 

(a)  (0,  2),  (0,  -  2),  (4,  0),  (-1,  0).     Ans.    x^  ±2xy  +  y^  -  Sx  -  4  =  0. 

(b)  (2,0),  (0,-8),  (-2,0),  (0,2). 
Ans.    4x2  ±4x2/ +  2/2 +  62/ -16  =  0. 

(c)  (0,1),  (0,-1),  (2,0),  (-1,0). 
Ans.    x2±4x2/  +  42/2-x-22/-2=0. 



CHAPTER   XIII 

EUCLIDEAN  TRANSFORMATIONS  WITH  AN  APPLICATION 

TO   SIMILAR  CONICS 

112.  An  operation  which  replaces  a  given  figure  by  a  second  figure  in 

accordance  with  a  given  law  is  called  a  transformation.  If  a  transformation 

replaces  the  points  of  one  figure  by  the  points  of  a  second,  it  is  called  a  point 

transformation.  If  a  point  transformation  replaces  P(iC,  y)  by  P' {x%  y'), 
then  the  equations  expressing  x'  and  y'  in  terms  of  x  and  y,  or  conversely, 
are  called  the  equations  of  the  transformation.  In  this  chapter  we  shall  con- 

sider the  transformations  which  replace  a  given  figure  by  one  equal  or  similar 
to  it.  They  are  called  Euclidean  transformations,  because  the  properties  of 

equal  and  similar  figures  are  studied  in  the  Elementary  Geometry  of  Euclid. 

113.  Equal  figures.    Two  figures  whose  corresponding  lines  and  angles 

are  equal  may  be  brought  into  coinci- 
dence and  are  therefore  equal.  Equal 

figures  in  the  same  plane  are  said  to  be 
congruent  if  the  corresponding  parts  are 

arranged  in  the  same  order,  and  sym- 
metrical if  they  are  arranged  in  the 

opposite  order.  Thus  the  triangles  u4J5C 

and  A'B'C  are  congruent,  and  either 

is  symmetrical  to  A"B"C'\  because  the 
directions  established  on  the  perimeters  by  the  corresponding  vertices  are  the 

same  (clockwise)  in  the  first  case  but  are  different  in  the  second  case. 

In  Plane  Geometry  we  do  not  study  symmetrical  figures  as  such. 
It  is  true  that  we  study  figures  which  are  symmetrical  with  respect 
to  a  point  or  with  respect  to  a  line.  But  it  should  be  noticed,  as 
is  seen  from  the  figures,  that  figures  which  are  symmetrical  with 
respect  io  a,  point  are  congruent,  while  figures  which  are  symmetrical 

with  respect  to  a  line  are  sym- 
metrical in  the  sense  defined 

above. 

The  essential  distinction  be- 

tween congruent  and  symmet- 
rical figures  is  this :  two  con- 

gruent figures  may  be  brought 
into  coincidence  by  moving  them 
around  in  the  plane,  but  before 
two  symmetrical  figures  can  be 

brought  into  coincidence  one  of  them  must  he  taken  out  of  the  plane  and  turned  over. 
281 
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114.  Translations.  A  translation  is  the  transformation  which  moves 

points  of  a  figure  through  the  same  distance  in  the  same  direction.  Hence 

if  a  translation  replaces  any  point  P  by  P',  the  projections  of  PP'  on  the 
axes  will  be  constant. 

Theorem  I.    The  equations  of  a  translation  through  the  directed  length  whose 
projections  on  the  axes  are  respectively  h  and  k  are 

(I) j  x'  =  oc  +  h, 

12/'  =y  -\-fc. 

Proof.    By  Theorem  III,  p.  31,  the  projections  of  PP'  on  the  axes  are 
respectively 

x'  -  X,     y'  -  y. 

Then,  by  hypothesis, 

x'—x—  h^    y'—  y  =  k. 

Solving  for  x'  and  y',  we  obtain  (I).       q.e.d. 
If  we  solve  (I)  for  x  and  y  and  substitute  their 

values  in  the  equation  of  a  curve,  the  result  will 

evidently  be  the  equation  of  the  curve  after  it 
has  been  translated. 

If  P  is  the  origin  (0,  0),  then  P'  is  the  point  (h,k).    If  we  solve  (I)  for  x  and  y,  we 
obtain 

x  =  x'-h,      y  =  y'  -  k. 

These  may  be  regarded  as  the  equations  for  translating  the  axes  to  a  new  origin 

{-h,  -k)  (Theorem  I,  p.  160). 

T'< 
,<^j^r^ 

./- — .. 

rf 

-&-^ 

(-h,-k) 

->, 

(1) (2) 

It  is  evident  that  the  relative  position  of  the  new  figure  and  the  old  axes  (Fig.  1)  is 
the  same  as  that  of  the  old  figure  and  the  new  axes  (Fig.  2). 

Hence  it  is  immaterial  whether  we  regard  equations  (I)  as  the  equations  of  a  transla- 
tion of  a  figure  in  one  direction  or  as  the  equations  of  a  translation  of  the  axes  in  the 

opposite  direction. 

115.  Rotations.  The  transformation  which  turns  all  points  through  the 
same  angle  about  a  given  point  0  is  called  a  rotation.  0  is  called  the  center 

of  the  rotation.     If  a  rotation  replaces  P  by'P',  then  OP'  ~  OP. 
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Theorem  H.    The  equations  of  a  rotation  about  the  origin  through  an  angle 
6  are 

(H) Ja?'  =Qccos$  —  y  sin  $, 

\y^  =ocsva.d  -\-y  cos  9. 

Q 
-^"-      ̂ '^  I   1   > 0  0  X 

Proof.    Let  the  polar  coordinates  of  P  be  {p,  (p).     Then,  by  definition, 

those  of  P'  are  (p,  <()  +  6).    Hence  (Theorem 
I,  p.  155) 

x'  =  p  cos  (0  +  0) 
=  p  cos  0  COS  ̂   —  p  sin  0  sin  ̂  

(by  10,  p.  20) 
=  X  COS  ̂   —  y  sin  6, 

since  [(I),  p.  155] 

X  =  p  cos  4>,  y  =  p  sin  0. 

Similarly, 

2/' =  X  sin  ̂   +  ?/ cos  ̂ .  q.e.d. 

If  we  solve  (II)  for  x  and  y,  we  get 

a;  =  a;'  cos  0  +  ?/'  sin  0  =  a;'  cos  (-  6)  -  y'  sin  (-  (t),  (by  4,  p.  19) 

y  =  -x's\ne  +  y^ cos 0  =  «' sin (- 9)  +  t/'' cos (- 6).  (by  4,  p,  19) 

These  may  be  regarded  (Theorem  II,  p.  162)  as  the  equations  for  rotating  the  axes 

through  an  angle  —  &.  Hence  it  is  immaterial  whether  we  regard  equations  (II)  as  the 
equations  of  a  rotation  of  a,  figure  in  one  direction  or  of  the  axes  in  the  opposite  direction. 
This  should  be  illustrated  by  figures  analogous  to  Figs.  1  and  2,  p.  282. 

PROBLEMS 

1 .  Plot  the  following  curves,  translate  them  through  tlie  directed  length 
whose  projections  are  given,  and  find  the  equations  of  the  curves  in  their  new 

positions. 

{'A)  y'^  =  4:X,h  =  -^,k  =  2.  Ans.   2/2-4iC-4?/-8  =  0. 
(b)  xy  =  Q^  h  =  2,  k  =  —  2.  Ans.   xy  -\- 2x  —  2y  —  2  =  0. 

(c)  x2  +  9y2  =  25,  ̂   =  0,  fc  =  |.  Ans.    x^  +  dy^-  SOy  =  0. 

2.    Plot  the  following  curves,  rotate  them  about  the  origin  through  the 
given  angle,  and  find  the  equations  of  the  curves  in  their  new  positions. 

(a)  xy 

(b)  x2  +  2/2  _  8x  +  12  =  0,  ̂  =  TT. 

(c)  x2  +  4y2_i8a;  =  0,  d  =  --- 2 

Ans.   ?/2-x2  =  16. 

Ans.   x2  +  y2  4.  8  X  +  12  =  0. 

Ans.   4  x2  +  2/2  _j_  18  y  =  0. 
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^ 
3.  Translate  the  locus  of  x^  -\-  4y  =  0  through  a  distance  whose  projec- 

tions are  A  =  0,  A:  =  —  4  and  then  rotate  it  about  the  origin  through  an  angle 

of-.  Ans.    2/2-4x4-16  =  0. I 
4.  Rotate  the  curve  in  problem  3  through  the  given  angle  and  then  trans- 

late it.  Ans.   y2  _  4x  +  8 2/  -f  16  =  0. 

6.  Prove  from  equations  (II)  that  the  origin  is  unchanged  by  a  rotation, 

that  is,  that  the  origin  is  a  fixed  point. 

6.  Find  the  equations  of  the  straight  lines  v^hich  are  unchanged  by  the 
translation  (I). 

Hint.  Translate  Ax  +  By  +  C  =  0  and  then  determine  A,  B,  and  C  so  that  this  line! 
coincides  with  the  line  into  which  it  is  translated  by  Theorem  III,  p.  88. 

Ans.    kx  —  hy  =  0. 

7 .  Find  the  equations  of  all  circles  which  are  unchanged  by  the  rotation  (II). 

Ans.   x2  +  y2  +  F  =  0. 

8.  Show  that  no  straight  lines  are  invariant  under  the  rotation  (II). 

Hint.   See  the  hint,  problem  6,  and  apply  Theorem  IV,  p.  90. 

9.  Prove  analytically  that  no  points  are  unchanged  by  a  translation  unless 
all  points  are  unchanged. 

116.  Displacements.  A  transformation  which  replaces  any  figure  by  one" congruent  to  it  (p.  281)  is  called  a  displacement.  Hence  a  figure  is  displaced 

when  it  is  moved  in  the  plane  from  one  position  to  another.  This  may  evi- 
dently be  accomplished  in  many  different  ways.  Two  displacements  which 

move  a  figure  from  one  position  to  the  same  second  position  are  said  to  be 

equivalent. 

Lemma  I.  A  displacement  is  equivalent  to  a  translation  or  to  a  rotation 

followed  by  a  translation. 

Proof.  Let  the  given  displacement  replace  any  figure  F  by  a  figure  F'. 
Then  if  corresponding  lines  in  F  and  F^  are  parallel  and  have  the  same  direc- 

tion, F  may  be  translated  into  F%  and  hence  the  displacement  is  equivalent 
to  a  translation. 

If  this  is  not  the  case,  then  F  may  be  rotated  into  a  position  F''  such  that 

corresponding  lines  in  F'^  and  F'  are  parallel  and  have  the  same  direction" 
and  then  F'^  may  be  translated  into  F'.  Hence  the  given  displacement  is 
equivalent  to  a  rotation  followed  by  a  translation.  q.e.d. 
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Theorem  III.    The  equations  of  any  displacement  have  the  form 

fx'  =a)COsd  —  y  sind  -{-  7i, 

^     '  \y' =  oc  sin  $  +  y  cos  $ -{■  k, 

where  6,  A,  and  k  are  arbitrary  constants. 

Proof.  Let  the  given  displacement  replace  any  figure  F  by  a  congruent 

figure  F\  Then  by  Lemma  I  it  is  equivalent  to  a  translation  whose  equa- 
tions have  the  form  (III)  when  ̂   =  0  (Theorem  I,  p.  282),  or  to  a  rotation 

which  replaces  F  by  a  figure  F''  followed  by  a  translation  which  replaces  F" 
hyF\ 

By  Theorem  II, 

x"  =  X  cos  d  —  y  sin  6,     y"  =  xsmd  -\-  y  cos  6^ 

and  by  Theorem  I,  x'  =  x"  -\- h,     y'  =  y"  +  fc. 

Substituting  the  values  of  x"  and  y''  in  these  equations,  we  obtain  (III). 

Q.E.D. If  a  point  is  unchanged  by  a  transformation,  it  is  called  a  fixed  or  an 

invariant  point.     Thus  the  center  of  a  rotation  is  an  invariant  point. 

Theorem  IV.  If  a  displacement  is  not  equivalent  to  a  translation,  there  is  one 

fixed  point. 

Proof  The  point  (x,  y)  will  be  a  fixed  point  when  and  only  when  x'  =  x 
and  y'  =  y.     Substituting  in  (III)  and  transposing,  we  get 

cos  6)x  +  sind  •  y  =  h, 

sm  ̂   •  X  +  (1  —  cos  d)y  =  k. 

These  equations  can  be  solved,  in  general,  for  one  pair  of  values  of  x  and  y 

(Theorem  IV,  p.  90),  and  hence  there  will  be,  in  general,  but  one  fixed  point. 

„  ̂   .  -  1  —  cos  ̂   sin  d But  if    =   > 
—  sin  ̂         1  —  cos  d 

or,  reducing,  cos  5  =  1, 

there  will  be  no  solution,  that  is,  there  is  no  fixed  point.     If  cos  5  =  1,  then 

sin  5  =  0  (by  3,  p.  19)  and  equations  (III)  become 

x'  =  X  +  /i,    y'  =  y  +  k, 

which  are  the  equations  of  a  translation. 

Hence  there  is  one  fixed  point  unless  the  displacement  is  a  translation. 

Q.E.D. There  cannot  be  an  infinite  number  of  solutions  of  (1)  unless  h  =  k  =  0.    For  if 

(1) 

{'-
 

cosd sind 
-  sin  d       1  -  cos  0     k 

then,  as  above,  cos  0  =  1  and  sin  0  =  0.    Substituting  in  (1),  we  get  A  =  0  and  k  =  0.    In  this 
case  every  point  (x,  y)  is  a  fixed  point,  that  is,  there  is  no  displacement. 
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Theorem  V.  Every  displacement  which  is  not  equivalent  to  a  translation  ia  \ 

equivalent  to  a  rotation. 

Proof.    If  the  displacement  is  not  equivalent  to  a  translation,  then  it  has 

fixed  point  (Theorem  IV).     Let  the  fixed  point  be  chosen  as  origin.     Then  if 

X  =  0  and  y  =  0,  we  get  x'  =  0  and  y'  =  0.     Substituting  in  (III),  we  obtain 
/i  =  0,     k  =  Q 

as  the  conditions  that  the  origin  is  the  fixed  point.  For  these  values  of  h 

and  k  equations  (III)  reduce  to  (II),  p.  283,  and  hence  the  displacement  ig| 
equivalent  to  a  rotation.  q.e.d. 

Corollary  I.  Any  two  congruent  figures  may  he  brought  into  coincidence  by 
a  rotation  or  a  translation. 

Corollary  n.  The  perpendicular  bisectors  of  the  lines  joining  corresponding 

points  of  two  congruent  figures  pass  through  the  same  point  or  are  parallel. 

For  if  the  figures  may  be  brought  into  coincidence  by  a  rotation,  they  pass  tlirough  the 
center  of  the  rotation ;  and  if  the  figures  may  be  brought  into  coincidence  by  a  translation, 
they  are  perpendicular  to  the  direction  of  the  translation. 

PROBLEMS 

1.  Show  analytically  that  the  angle  between  two  lines  is  unchanged  by 

displacement. 

Hint.  Show  that  the  value  of  tan  9  given  by  (X),  p.  109,  is  an  absolute  invariant  of  the 
displacement  (III). 

2.  Show  analytically  that  the  distance  between  two  points  is  unchanged 

by  a  displacement. 

ITmt.   Show  that  the  value  of  I  given  by  (IV),  p.  31,  is  an  absolute  invariant  of  (III). 

3.  Prove  Corollary  II  geometrically  and  derive  Theorem  V  from  it. 

4.  Show  that  a  rotation  about  the  origin  through  an  angle  of  tc  replaces 

any  figure  by  the  figure  symmetrical  to  it  with  respect  to  the  origin. 

5.  Find  the  equations  of  a  rotation  about  the  point  (1,  4)  through  an 

angleof  -•    Ans.  x'=  i  VSx -iy +3  -  i  Vs,  y' =  ix+ i  Vs?/ +  | -2  V3. 6 

6.  Find  the  equations  of  a  rotation  about  the  point  (3,  —  2)  through  an 
q  ̂  

angle  of    Ans.   x' =  y  +  6,  y'  =  -x-^l. 

7.  Find  the  equations  of  a  rotation  about  the  point  (xi,  y\)  through  an 

angle  Q.  Ans.    x'  =  {x  —  Xi)  cos  6  —  (y  —  yi)  sin  6  +  Xi, 
y'  =  (x  -  Xi)  sin  d  +  {y  -  yi)  cos  6  +  yi. 
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117.  The  reflection  in  a  line.  A  transformation  which  replaces  any  figure 

by  one  symmetrical  to  it  (p.  281)  is  called  a  symmetry  transformation.  The 
simplest  symmetry  transformation  is  the  reflection  in  a  hne,  which  replaces 

a  point  by  the  point  symmetrical  to  it  with  respect  to  that  line.  Hence  a 

reflection  in  a  line  replaces  a  figure  by  the  figure  which  is  symmetrical  to  it 
with  respect  to  that  line. 

Theorem  VI.    The  equations  of  a  reflection  in 
the  X-axis  are 

Y'' 

(VI) 

W  =  -y- 
O 
^ 

118.  Symmetry  transformations. 

Lemma  II.  A  symmetry  transformation  is 

equivalent  to  a  reflection  in  any  line  followed 
by  a  displacement. 

Proof.  Let  the  given  transformation  replace 

a  figure  F  by  a  symmetrical  figure  F\    Let  F  be 

transformed  into  a  figure  F''  by  a  reflection  in  any  line.     Then  since  F'  and 
F''  are  both  symmetrical  to  F,  they  are  congruent  to  each  other. 

For  the  parts  of  F^  and  F^^  are  equal,  since  they  are  equal  to  the  parts  of  F,  and  they 
are  arranged  in  the  same  order,  for  they  are  in  each  case  arranged  in  the  opposite  order 
to  those  of  F. 

Hence  F'^  can  be  brought  into  coincidence  with  F^  by  a  displacement, 

that  is,  F  may  be  transformed  into  F'  by  a  reflection  in  any  line  followed 
by  a  displacement.  q.e.d. 

Theorem  VII.    The  equations  of  any  symmetry  transformation  have  the  form 

joe'  =  occosd  +  y  sin  0  -\-  h, 

\y'  =QCsmd  —  y  cosS  -\-  k, 

where  6,  h,  and  k  are  arbitrary  constants. 

Proof  Let  the  given  transformation  replace  any  figure  i^  by  a  symmetrical 

figure  F'.  Then  by  Lemma  II  it  is  equivalent  to  a  reflection  in  the  X-axis 

which  replaces  F  by  a  figure  F'',  followed  by  a  displacement  which  replaces 
F''  by  F\ 

By  (VI),  x"=ic,     y''  =  -y, 
and  by  (III),  p.  285, 

x'  =  x"  cos  Q  —  y"  sin  d  -^  h,     y'  =  x"  sin  d  +  y"  cos  Q  ̂ k. 

Substituting  the  values  of  x"  and  y"  in  these  equations,  we  get  (VII). 

Q.E.D. 

(VII) 
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Theorem  Vm.    The  line  whose  equation  is 

X  cos  (I)  -\-  y  sin  u  —  p  =  0 

is  transformed  hy  (VII)  into  the  line  whose  equation  is 

X  cos  {d  —  u))  -\-y  sin  {d  -  w)  -  [p  -{- h  cos  {6  -  <a) -\- k  sin  {6  -  w)]  =  0. 
This  is  proved  by  solving  (VII)  for  x  and  y,  substituting  in  the  given  equation,  simpli- 

fying by  9  and  11,  p.  20,  and  dropping  primes. 

A  line  is  said  to  be  invariant  under  a  transformation  if  it  is  transformed 

into  itself  by  that  transformation. 

Theorem  IX.    There  is  always  one  line  which  is  invariant  under  the  sym- 
metry transformation  (VII),  and  if 

hcosld  -\-ksm\e  =  0^ 

then  all  of  the  lines  perpendicular  to  that  line  are  invariant. 

Proof.    If  the  lines  in  Theorem  VIII  coincide,  then  (Theorem  III,  p.  88) 

cosw       _      sin  w       _  p 

cos  (d  —  w)      sin  {d  ~  (a)      p  -{-  hco8{0  —  w)  -\-  k  sin  {0  —  w) 

From  the  first  two  ratios 

sin  {6  —  w)  cos  (a  —  cos  {6  —  w)  sin  w  =  0, 

or  (9,  p.  20)  sin  (0  -  2  w)  =  0. 
Hence  d  —  2(a  =  0  or  7t. 

.'.  w  =  ie  or  03  =  \d  -i7t. 

Case  I.    <a  =:\d  —  ̂it.     Substituting  this  value  of  w  in  the  last  two  ratios" 
of  (1)  and  simplifying  by  4,  p.  19,  and  6,  p.  20,  we  get 

—  cos \0  _  p 

cos  \d        p  —  h sin \d  +  k cos \ 6 

Solving  for p,  p=  |  {hsinie  —  k  cos  h0). 

Hence  there  is  always  one  pair  of  values  of  <a  and  p  for  which  (1)  is  true, 

that  is,  there  is  always  one  line  which  is  transformed  into  itself  by  (VII). 

Cask  II.    w  =  i  6.     Susbtituting  this  value  of  w  in  the  last  two  ratios  in 

(1),  we  get  sin|0_  p 
sin  1 0     p  -{-  h  cos  ̂ 0  -\-  ksin^d 

The  first  of  these  ratios  equals  1,  but  the  second  is  never  equal  to  1  unless 

(2)  A  cos  i  ̂  +  A;  sin  i  ̂  =  0, 

in  which  case  p  may  have  any  value.  Hence  there  is,  in  general,  but  one 

invariant  line.  But  if  (2)  is  satisfied,  all  of  the  lines  of  a  system  of  parallel 
lines  are  invariant. 

Since  the  values  of  w  in  Case  I  and  Case  II  differ  by  — ,  the  invariant  system 

of  parallel  lines  is  perpendicular  to  the  single  invariant  line.  q.e.d. 
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Theorem  X.    If  the  invariant  line  of  a  symmetry  transformation  is  the  X-axis^ 
then  the  equations  of  the  transformation  are 

(X) 

Proof.  If  the  JT-axis  is  invariant,  then,  if  y  =  0,  we  must  have  y'  =  0  for 

all  values  of  x.  Substituting  ?/  =  0  and  y'  =  0  in  the  second  of  equations 

(VII),  we  get  x^ind  -\-lc  =  0. 

This  is  true  for  all  values  of  x  when  and  only  when  sin  ̂   =  0  and  fc  =  0. 

If  sin  ̂   =  0,  then  cos  ̂   =  ±  1. 

Substituting  A;  =  0,  sin  0  =  0,  and  cos  ̂   =  1  in  (VII),  we  get  (X). 

Substituting  A:  =  0,  sin  ̂   =  0,  and  cos  ̂   =  —  1  in  (VII),  we  get 

x'  =  -  X  +  /i,     y'  =  y. 

This  transformation  leaves  all  of  the  lines  parallel  to  the  X-axis  invariant, 

for  if  y  =  a,  then  y'  —  a.  Hence  the  JT-axis  is  not  the  single  invariant  line, 
so  that  this  case  is  to  be  excluded ;  that  is,  equations  (VII)  reduce  to  (X)  if  the 
X-axis  is  the  invariant  line  in  Case  I  of  Theorem  IX.  q.e.d. 

Corollary  I.  A  symmetry  transformation  is  equivalent  to  a  reflection  in  a  line 
or  to  a  reflection  in  a  line  followed  by  a  translation  parallel  to  it. 

For  if  h  =  0,  equations  (X)  reduce  to  equations  (VI). 
Ji  hp^O,  equations  (X)  are  equivalent  to  the  two  transformations 

x^'  +  h, 

X, 

and 

which  are  respectively  a  reflection  in  the  X-axis  and  a  translation  parallel  to  it. 

Corollary  II.    The  middle  points  of  the  lines  joining  corresponding  points  of 

two  symmetrical  figures  lie  on  a  straight  line. 

T'> 

---'-"''  ̂  

P  ̂ ^-' 

For  let  (X)  be  the  equations  of  the  symmetry  transformation  which  transforms  one 

figure  into  the  other.     The  middle  point  of  the  line  PP'  is  (Corollary,  p.  39) 

\.\{x  +  x'),    H^  +  2/0]- 

Substituting  the  values  of  x'  and  2/' from  (X),  this  becomes  (x  +  i^,  0),  which  is  a  point 
on  the  X-axis. 



290 ANALYTIC  GEOMKTliY 

PROBLEMS 

1.  Find  the  equations  of  the  curves  symmetrical  to  the  following  cun 

with  respect  to  the  JT-axis  and  construct  the  figure. 

(a)  2/2  _4x 

(b)  x^-\-xy  - 

0. 

2  2/2  =  0. 

(c)  a;2  +  4  2/2-4x  =  0. 

(d)  x8  -  8  2/  =  0. 

2.  Show  analytically  that  the  distance  between  two  points  is  unchanj 
by  (a)  a  reflection  in  a  line,  (b)  any  symmetry  transformation. 

3.  Show  analytically  that  the  numerical  value  of  the  angle  which  one 

line  makes  with  another  is  unchanged  by  (a)  a  reflection  in  a  line,  (b)  any 
symmetry  transformation,  but  that  its  sign  is  changed  in  both  cases. 

4.  Find  the  equations  of  the  invariant  lines  which  are  proved  to  exist  in 
Theorem  IX. 

6.  Find  the  equations  of  a  reflection  in  the  F-axis. 

6.  Prove  that  a  reflection  in  a  line  followed  by  a  reflection  in  a  line  per- 
pendicular to  the  first  is  equivalent  to  a  rotation  through  it. 

7.  A  symmetry  transformation  (VII)  has,  in  general,  no  fixed  points,  but 

if  ̂ (1  +  cos  ̂ )  +  A;sin  0  =  0,  then  all  of  the  points  of  the  line  x(l—  cos  6) 
—  y  sin  e  =  k  are  fixed  points. 

8.  If  ̂ (1+  cos  ̂ )  +  A:  sin  ̂   =  0,  then  (VII)  is  a  reflection  in  a  line. 

9.  Find  the  equations  of  a  reflection  in  the  line  3  x  +  4  y  —  10  =  0. 

Ans.   x'^q-r^x  -  112/  +  -V,  2/'  -  -  ̂ ^  -  -hv  ̂   H- 

Hint.  The  distances  from  the  line  to  P  (x,  y)  and  P\x',  y')  (Rule,  p.  106)  must  be 
equal  numerically  with  opposite  signs,  and  the  slope  of  PP'  (Theorem  V,  p.  35)  must  be 
equal  to  the  negative  reciprocal  of  tha  slope  of  the  given  line  (Theorem  VI,  p.  36).  These 

conditions  give  two  equations  which  may  be  solved  for  x'  and  y'  in  terms  of  x  and  y. 

10.  Find  the  equations  of  a  reflection  in  the  line  5x  —  12?/  —  27  =  0. 

Ans.  X'  =  HI »  +  lit  2/  +  \lh  y'  =  Hf  «  -  HI  V  -  m- 

11.  Find  the  equations  of  a  reflection  in  the  line  Ax -^  By  -^  C  =  0. 

Ans.   x' — 

A^ 

2AB 
2AC 

y  = 

A^  +  B^ 2AB 
A'^  +  m        A^  +  B^ 
B^-A'^  2BC 

A^  +  B^         A^  +  B^ 

.y 

A^  +  B^ 
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119.  Congruent  and  symmetrical  conies.  The  conditions  that  two  conies 
.should  be  equal  are  given  in  Theorem  XII,  p.  279.     We  shall  now  prove 

Theorem  XI.    Two  equal  conies  are  both  congruent  and  symmetrical. 

Proof.  Since  a  conic  is  symmetrical  with  respect  to  its  principal  axis 

(p.  174),  it  is  unchanged  by  a  reflection  in  that  axis. 
Let  C  and  C  be  two  congruent  conies,  , 

and  let  D  be  the  displacement  which 

transforms  C  into  C".  Then  C  may  be 
transformed  into  C  by  a  reflection  in 

its  principal  axis  followed  by  the  dis- 
placement D,  that  is  (Lemma  II,  p.  287), 

by  a  symmetry  transformation.  Hence 
C  and  C  are  also  symmetrical. 

Conversely,  let  C  and  C  be  two  sym- 
metrical conies,  and  let  S  be  the  symmetry  transformation  which  transforms 

C  into  C\  Then  S  is  equivalent  to  a  reflection  in  the  principal  axis  of  C 

followed  by  a  displacement  D.  Since  C  is  unchanged  by  a  reflection  in  its 

principal  axis  it  may  be  transformed  into  C  by  the  displacement  X>,  and 
hence  C  and  C  are  congruent. 

Hence  two  equal  conies  are  both  congruent  and  symmetrical.  q.e.d. 

In  the  figure  C  may  be  transformed  into  C  by  a  rotation  about  O  or  by 
a  symmetry  transformation  consisting  of  (Corollary  I,  p.  289)  a  reflection  in 
the  line  S  which  replaces  G  by  C,  followed  by  a  translation  parallel  to  S. 

120.  Homothetic  transformations.  Given  a  fixed  point  0,  the  transfor- 

mation which  replaces  a  point  P  by  a  point  P'  on  the  line  OP  such  that 
OP'  =  X  •  OP, 

0  ----. 

:?^r^ 

X<0 

where  \  is  constant,  is  called  a  homothetic  transformation,  0  is  called  the 
center  and  X  the  ratio  of  the  transformation.  Corresponding  figures  are 

called  homothetic  figures.  They  may  easily  be  proved  similar,  with  the  ratio  of 

similitude  (that  is,  the  ratio  of  corresponding  lines)  equal  to  X.  Homothetic 
figures  are  also  similarly  placed. 
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(XII) 

JTM 

Theorem  xn.    The  equations  of  a  homothetic  transformation  wfiose  center 

is  (/i,  k)  and  whose  ratio  is  \  are 

cc'  =  Ax  +  h(l-A), 
y'  =  Ay  +  k(l-A). 

Proof.    Let  P  and  P"  be  two  corresponding  points.     Then,  by  definition^ 

,„v  '  'v  0P'=\-  OP. 

Projecting  on  the  X-axis  (Theorem  III, 

'^(a;,^;  p.  31), 

^0(h,k)  x'-h  =  \{x-h). 
  -^        Hence        x'  =  \x  +  A  (1  —  X). 

Similarly,  y'  =■  \y  -\- k  {\ —\) .  q.e.d. 

Corollary.    The  equations  of  a  homothetic  transformation  whose  center  is  the 
origin  and  whose  ratio  is  \  are 

a?' 

=  Ay. 

121.  Similitude  transformations.  A  transformation  which  replaces  any 
figure  by  one  similar  to  it  is  called  a  similitude  transformation.  It  is  said  to 
be  direct  or  inverse  according  as  corresponding  figures  are  directly  or  inversely 
similar,  that  is,  according  as  the  corresponding  parts  of  the  similar  figures 
are  in  the  same  or  opposite  order. 

If  F  and  F'  are  two  similar  figures  whose  ratio  of  similitude  is  X,  then 
a  homothetic  transformation  with  any  center  and  with  the  ratio  X  will  transform 

F  into  a  figure  F"  which  is  equal  to  F'.  F"  may  be  transformed  into  F' 
either  by  a  displacement  or  by  a  symmetry  transformation  according  as  F" 

and  F"  are  congruent  or  symmetrical,  that  is,  according  as  F  and  F'  are 
directly  or  inversely  similar.     Hence 

Theorem  XIII.  A  similitude  transformation  is  equivalent  to  a  homothetic 

transformation  with  any  center  and  with  its  ratio  equal  to  the  ratio  of  simili- 
tude of  corresponding  figures,  followed  by  a  displacement  or  a  symmetry 

transformation  according  as  the  similarity  is  direct  or  inverse. 

I 
PROBLEMS 

Problems  1  to  4  and  5  to  10  are  to  be  solved  in  order  by  using  those  preceding. 

1 .  The  equations  of  a  transformation  of  direct  similitude  have  the  form 

x'  =\{xcosd  —  y  sin 6  -{■  h),  y'  =  \  {x s'md  +  y  cos d  +  k). 

2.  A  transformation  of  direct  similitude  has  one  fixed  point. 
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3.  If  the  fixed  point  is  the  origin,  the  equations  of  a  transformation  of 
direct  similitude  have  the  form 

x'  =\{xcose  —  y  sin  6)^  y'  =\{xsmd  +  y  cos  6). 

4.  A  transformation  of  direct  similitude  is  equivalent  to  a  rotation  fol- 
lowed by  a  homothetic  transformation  with  the  same  center. 

5.  The  equations  of  a  transformation  of  inverse  similitude  have  the  form 

x'  =  \{x  cos  d  -\-  y  sin  d  -\-  h),  y'  =  \  {x  sine  —  y  cos  d  +  k). 

6.  The  line  x  cos  w  +  ?/  sin  w  —  p  =  0  is  transformed  by  a  transformation 
of  inverse  similitude  into  the  line 

X cos {e  —  w)  -{-y  sin  {6  —  u)  —  \[p  +  h cos (6  —  cj)  +  k sin {d  —  w)]  =  0. 

7.  The  perpendicular  lines  » 

{l-X)xcosid  -\-  {1  -\)ysmie  -\{hcosi6  -hksinid)  =0 

and       {l  +  \)xsmie  -  {1  +  \)ycosid  -\{hsm^d  -kcosid)  =0 
are  invariant  under  a  transformation  of  inverse  similitude. 

8.  A  transformation  of  inverse  similitude  has  a  fixed  point. 

9.  If  the  invariant  lines  are  the  axes,  the  equations  of  a  transformation 

of  inverse  similitude  have  the  form  x'  =  \x,  y'  =  —  'Ky. 

10.  A  transformation  of  inverse  similitude  is  equivalent  to  a  reflection  in 
a  line  followed  by  a  homothetic  transformation  whose  center  is  on  that  line, 

11.  The  equations  of  two  congruent,  symmetrical,  or  similar  curves  are  of 
the  same  degree. 

12.  Show  that  the  angle  which  one  line  makes  with  another  is  unchanged 
by  a  homothetic  transformation. 

13.  Show  that  the  distance  between  two  points  is  multiplied  by  X  by  a 
homothetic  transformation. 

14.  Show  by  means  of  problems  12  and  13  that  a  homothetic  transforma- 
tion is  a  similitude  transformation, 

15.  Show  that  the  angle  which  one  line  makes  with  another  is  unchanged 

by  a  transformation  of  direct  similitude,  but  that  its  sign  is  changed  by  a 
transformation  of  inverse  similitude. 

122.  Similar  conies.  We  have  seen  (Theorem  XI,  p.  291)  that  it  is  un- 
necessary to  distinguish  congruent  and  symmetrical  conies,  and  hence  it  is 

unnecessary  to  distinguish  directly  and  inversely  similar  conies. 
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Theorem  XIV.    If  the  non-degenerate  conic 

Ax-^  +  Bxy  +  Cy'2  -\-  J>x  -{■  Ey  -{-  F  =  0 
is  subjected  to  a  homothetic  transformation  whose  center  is  the  origin  and 
whose  ratio  is  X,  then  the  equation  of  the  homothetic  conic  is 

^x2  +  Bxy  +  C?/  +  \Dx  +  \Ey  +  \^F  =  0. 

This  is  proved  by  solving  the  equations  of  the  transformation  (Corollary,  p.  292)  fo 
and  y,  substituting  in  the  given  equation,  and  simplifying. 

Theorem  XV.    If  two  conies  C  and  C  are  homothetic,  the  origin  being  the 
center  and  X  the  ratio,  then 

(XV) 
ir2  _  H2       H^  _  J_  H » 

A'  ~T'      0'  ~  X^  0  ' 

where  —  and  — —  are  the  absolute  invariants  of  C\  and  —  and  —  are  those 
A'  0'  »  A  0 

of  C* 
Proof.    Let  Ihe  equation  of  C  be 

Ax^  +  Bxy  -}-  Cij^  -{- I)x  +  Ey  +  F  =  0, 

and  then  by  Theorem  XIV  that  of  C  may  be  vi'ritten  in  the  form 

Ax^  +  Bxy  +  Cy'^  +  \l)x  +  \Ey  +  X^F  =  0. 
The  absohite  invariants  of  C  are 

ir2  _   {A  +  CY   _  H2 

A'  ~i?2-4^C~T' 
H^   {A  +  C)^    i  ?i! 

0'  ~  4  ̂   C\^F  +  B\B\E  -  A  {\Ef  -  C  (XD)2  -  X^FB^  "  X^  0  ' 
Q.E.D. 

Theorem  XVI.  If  two  non-degenerate  conies  C  and  C  are  similar,  then  their 
absolute  invariants  and  their  ratio  of  similitude  X  satisfy  equations  (XV). 
Conversely,  if  the  absolute  invariants  of  two  conies  C  and  C  satisfy  the  first  of 

equations  (XV)  and  if  the  value  of  X  determined  by  the  second  is  real,  then  C 
and  C  are  similar,  with  the  ratio  X. 

Proof.    By  Theorem  XIII,  p.  292,  C  may  be  transformed  into  C"  by  a 
homothetic  transformation,  whose  center  is  the  origin  and  whose  ratio  is  X, 
which  transforms  C  into  a  conic  C,  followed  by  a  displacement  or  symmetry 
transformation  which  transforms  C  into  C\     Then,  by  Theorem  XV, 

H^_H2      H"3_  1  H3 
A^~T'      ©^"xs"©' 

(1) 

and  by  Theorem  XII,  p.  279, 

H''2  ̂   H'2      H''3  _  H'3 

T^~  A^'     0^~  0^ 
(2) 

Theorem  V.  p.  272.    The  values  of  A,  II,  and  0  are  given  on  p.  264. 
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From  equations  (1)  and  (2)  we  obtain  equations  (XV). 

Conversely,  if  equations  (XV)  are  satisfied,  the  value  of  \  determined  by 

the  second  being  real,  then  C  and  C  are  similar.  For  let  C  be  transformed 

into  a  conic  C"  by  a  homothetic  transformation  whose  center  is  the  origin 

and  whose  ratio  is  X.*  Then  equations  (1)  are  true  by  Theorem  XV.  From 

(1)  and  (XV)  we  get  equations  (2),  and  hence  (Theorem  XII,  p.  279)  C"  and 

C"  are  equal.  Then  C"  may  be  transformed  into  C  by  either  a  displacement 
or  a  symmetry  transformation.  Hence  C  may  be  transformed  into  C  by  a 

homothetic  transformation  followed  by  a  displacement  or  a  symmetry  trans- 

formation, that  is  (Theorem  XIII,  p.  292),  by  a  similitude  transformation. 

Hence  C  and  C  are  similar.  q.e.d. 

Corollary  I.  Two  conies  are  similar  if  the  coefficients  of  the  terms  of  the 

second  degree  are  proportional,  that  is,  if 

and  the  value  of\  determined  hy  the  second  of  equations  (^V)  is  real. 

For  if  r  is  the' common  value  of  these  ratios,  then 

A  =  rA',    B  =  rB',    C=rC', 

and  hence  ^      ̂ ^^,^2  _  ̂   ̂^,^^v     ̂ 3  (-^,a  _  4  a'C)      A'  * 
Hence  the  first  of  equations  (XV)  is  satisfied. 

Corollary  II.    Any  two  parabolas  are  similar. 

For  if  C  and  C  are  parabolas,  then  (Theorem  IX,  p.  277)  A  =  0  and  A''  =  0.  Hence  the 
first  of  equations  (XV)  is  satisfied.  Since  A  =  0,  H  and  ©  have  opposite  signs  (p.  279)  and 

similarly  H'  and  ©^  have  opposite  signs.  Hence  the  value  of  A  obtained  from  the  second 
of  equations  (XV)  is  real. 

Ex.  1.  Show  that  the  conies  a;2+2?/2=36  and  3a;2-j-2a:?/+3y2-Ga;-2?/-5=:0 
are  similar  and  find  the  ratio  of  similitude. 

Solution.  Comi)uting  the  absolute  invariants  of  the  given  equations  and  substi- 
tuting in  (XV),  we  obtain 

_(6)2^_j3)2        (6)3    _  1      (3)8 

-  32  ~  -  8 '     -  256  ~  X2  -  288 ' 
Solving  the  second  equation,  we  get  X=  ±  ̂ .  Hence  the  first  of  equations  (XV) 

is  satisfied,  and  the  second  is  satisfied  if  X  =  ±  i.  The  conies  are  therefore  similar, 

with  the  ratio  of  similitude  equal  to  ±  i-  The  double  sign  means  that  they  are 
either  directly  or  inversely  similar. 

*  The  proof  would  break  down  at  this  point  if  the  value  of  A  determined  by  the  second 
of  equations  (XV)  were  imaginary,  because  the  ratio  of  a  homothetic  transformation  is 
a  real  number. 

That  such  cases  arise  is  illustrated  by  the  hyperbolas  4  x^  —  y"^  =  16  and  -Ax^  +  if-^^. 
whoso  absolute  invariants  satisfy  t'ae  first  of  equations  (XV) ;  but  from  the  second, 

A  =  i  J  V^. 
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PROBLEMS 

1.  Show  that  the  following  pairs  of  conies  are  similar.     Find  the  rat 
of  similitude  in  each  case  and  construct  the  figure. 

(a)  x2  -  4y2  =  1,  3x2  +  4x2/  +  4  =  0.  ^na.   X  =  ±  2. 
(b)  x2  +  42/  =  0,  2/2  -  8x  =  0.  Ans.    X  =  ±  2. 
(c)  9x2  -f  y2  =  9^  x2  +  92/2  -  54  2/  =  0.  Ans.   X  =  ±  3. 

(d)  16x2  +  92/2  =  144^  25x2  +  14x2/  +  262/2  =  72.  Ans.   X  =  ±  ̂ . 

a'
 

(e)  x2-2/2  =  a2,  2x2/  =  a'2. 
-4  ns. 

An^. 
(f)  2/2  =  2px,  (X  -  /i)2  =  2i}'(2/  -  k). 
2.  Show  that  the  ellipses  in  Ex.  1,  p.  200,  are  similar. 

3.  Show  that  the  hyperbolas  in  Ex.  2,  p.  201,  for  which  k  is  positive 
for  which  k  is  negative,  are  similar. 

4.  Show  that  the  locus  of  Ax^  +  Bxy  +  Cy^  =  k  is,  in  general,  a  system" of  similar  conies.  Discuss  all  possible  special  cases  in  which  this  statement 
is  not  exact. 

5.  Any  homothetie  transformation  is  equivalent  to  a  homothetie  tr£ 
formation  whose  center  is  the  origin  followed  by  a  translation. 

6.  By  means  of  problem  4  prove  that  two  conies  are  homothetie  if  the' 
coefficients  of  the  terms  of  the  second  degree  are  proportional. 

7.  Find  the  center  and  ratio  of  the  homothetie  transformation  which 

transforms  y^  =  2px  into  y^  =  2p'x.  j^^^    (0  O)   X  =  —  • 

8.  A  homothetie  transformation  whose  center  is  0(0,  0)  and  whose  ratio 

is  X  followed  by  a  homothetie  transformation  whose  center  is  0'  (a,  0)  and 
whose  ratio  is  X'  is  equivalent  to  a  homothetie  transformation  whose  center 

is  (   ;j  0  j ,  that  is,  a  point  on  00',  and  whose  ratio  is  XX'. 

XX' 

9.  A  circle  may  be  transformed  into  any  other  circle  by  two  homothetie 
transformations  whose  centers,  called  the  centers  of  similitude  of  the  circles, 
lie  on  the  line  of  centers. 

Hint.  Take  the  center  of  one  circle  for  the  origin  and  let  the  JT-axis  pass  through  the 
center  of  the  other  circle.  Substitute  from  (XII),  p.  292,  in  the  equation  of  the  first 
circle  and  determine  h,  k,  and  A  so  that  the  result  coincides  with  the  second  circle. 

10.  Given  three  circles,  the  line  joining  a  center  of  similitude  of  one  pair 
with  a  center  of  similitude  of  a  second  pair  will  pass  through  a  center  of 
similitude  of  the  third  pair. 

Hint.   Apply  problem  8. 

11.  The  six  centers  of  similitude  of  three  circles  taken  by  pairs  lie  three 

by  three  on  four  straight  lines. 
Hint.  Apply  problem  10. 



CHAPTER  XIV 

INVERSION 

123.  Definition.   Let  0  be  a  given  point  and  let  P  be  any  point  of  a 

figure  F.     Construct  P'  on  OP  sucli  tliat 
OP'  0P  =  \. 

By  letting  P  assume  different  positions  on  F, 

P'  will  move  on  a  figure  F'.  The  operation  or 

transformation  which  replaces  P  by  P'  is  called 
an  inversion,  while  F  and  F'  are  called  inverse 
figures.     0  is  called  the  center  of  the  inversion. 

\  /  The  figure  has  been  accurately  constructed  and  indi- 

^^^  ^y  cates  that  the  inverse  of  a  triangle  is  a  figure  bounded 

~"       "  by  three  curves.    Hence  we  may  expect  to  find  that  the 
properties  of  inverse  figures  are,  in  general,  quite  different  from  those  of  equal  or 
similar  figures. 

Two  important  properties  of  an  inversion  are  immediately  evident  from 
the  definition. 

1.  If  P  apiwoaches  the  origin^  Pi  recedes  to  infinity^  and  conversely. 

For  if  OP  approaches  zero,  then  OP'  must  become  infinite  since  OP'  •  OP  =  1,  and 
conversely. 

2.  The  points  of  the  circle  of  unit  radius  whose  center  is  0  are  fixed  points. 

For  if  OP  =  1,  then  from  OP'  .  OP  =  1  we  get  OP'  =  1.    Hence  P'  coincides  Avith  P, 
that  is,  P  is  a  fixed  point.    This  fact  is  useful  in  plotting  inverse  figures,  for  the  points 
in  which  a  figure  cuts  this  circle  will  be  points  of  the  inverse  figure. 

124.  Equations  of  an  inversion.  By  the  equations  of  an  inversion  we  mean 
two  equations  involving  the  coordinates  of  two  corresponding  points  P  and 

P'.     These  equations  must  express  the  two  conditions : 
1.  That  P  and  P'  lie  on  a  line  through  the  center. 
2.  That  OP'  •  OP  =  1. 
The  first  of  these  conditions  is  satisfied  when  the 

triangles  0PM  and  OP'M'  are  similar,  whence 

X  _y  _  OP 

x'~'y'~'OP'' 
(1) 

(2) 

y 

The  second  condition  may  be  written,  by  dividing  by  OP"^^ 

OP^_J}__   1 

OP'  ~  OP'^  ~  x'-^  + 207 

Ptx',2/) 

(by  (IV),  p.  31) 
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From  (1)  and  (2), 
X 

.'.   X 
V  ̂         1 

x' 

X'2  + 
'  V 

X'2  +  y'a 
Hence  we  have 

Theorem  I.    TAe  equations  of  an  inversion  whose  center  is  the  origin  are 

(I) 
'  y  = 

y 

Ex.  1.    Find  the  inverse  of  the  line  2x  +  47/  —  1  =  0. 

Solution.   Substitute  the  values  of  z  and  y  given  by  (I)  in  the  given  equatic 
We  thus  obtain 

YA 

, 

V, 

/ 

^, 

/ 

"X 

'H 
\ ' ^ J V ^ 

/ 1 ^ 
Si 
^ 

^- 

-/\ 

A 

■;, 

"■■ 

/ < 
Si X 

_ ^ 

r'
 

:   

•V 

^- 

2  a;' 

4y' 

-1 

X'2  +  2/'2         x'2  ̂   y'2 

Reducing  and  dropping  primes,  we  get 

X2  +  I/2  _2a;-42/  =  0. 

This  is  the  equation  of  a  circle  whose  center  is  the 
point  (1,  2)  and  whose  radius  is  Vs  (Theorem  I,  p.  VM). 
In  the  figure  a  number  of  inverse  points  are  indicated 
by  the  dotted  lines. 

Ex.  2.    Find  the  inverse  of  the  straight  line  Ax  -\-  By  -\-  C  =  0. 

Solution.    Substitute  in  the  given  equation  the  values  of  x  and  y  given  by  (I). 
This  gives 

By' 
Ax' 

+  C=0. 
X'-2  +  y'2         ̂ '-1  _}_  y'2 

Simplifying  and  dropping  primes, 

Ca;2  +  Cif  -\-  Ax^By  =  {i. 

.  The  locus  of  this  equation  is  a  circle  (Theorem  II,  p.  132)  which  passes  through 
the  origin  (Theorem  VI,  p.  73).    If  C  —  0,  the  locus  is  the  given  line.    Hence 

The  inverse  of  a  straight  line  which  does  not  pass  through  the  origin  is  a  circle, 
and  a  line  which  passes  through  the  origin  is  invariant  under  an  inversion. 

Ex.  5.    Find  the  inverse  of  the  circle  x^  - 
Solution.    Substituting  from  (I) ,  we  get 

a;'2 

r 
Dx 

/2  +  Z>x  +  £ 

Fa/ 

+ +  F. +  F=0. 
(x'2  + 2^2)2      (a.'2  +  y'2)2      x'^  +  y'-^  '   a;'2  +  y'2 

Multiplying  by  x'2  _|_  y'2.  and  dropping  primes, 

(3)  Fx'^  +  Fy"^  -\-  Dx-\-  Ey  -\- 1^0. 
The  locus  is  a  circle  (Theorem  II,  p.  132)  unless  F  =0,m  which  case  (3)  is  an 

equation  of  the  first  degree  and  its  locus  is  a  straight  line  (Theorem  II,  p.  86) .    Hence 

The  inverse  of  a  circle  is,  in  general,  a  circle,  but  the  inverse  of  a  circle  which 
parses  through  the  origin  is  a  straight  line. 
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PROBLEMS 

1.  If  the  origin  is  the  center  of  inversion,  find  the  inverse  of  each  of  the 
following  curves.     Construct  the  figure  in  each  case. 

(a)  2x  =  l. 

(b)  42/ =  1. 
(c)  X  +  y  -  1  =  0. 
(d)  x2  +  2/2  -  4  X  =  0. 

(e)  x2  +  y2  ̂   4. 
(f)  x2  +  ?/2-2x-4y +  1 

0. 

(g)  x2  +  2/2  +  4x  -  62/  -  4  =  0. 

(h)  3x-42/  =  0. 

(i)  x2  -  2/2  =  0. 

(j)  4x-3y  =  l. 
(k)  x2  +  2/^4.2  2/  =  0. 

(1)  2/2  =  4  X. 2.  Find  the  inverse  of  the  points  (0,  2),  (3,  0),  (3,  4),  (2,  1),  (i,  0),  (i,  i), 

(a,  0),  and  (0,  h).     Plot  the  given  and  inverse  points. 

3.  Prove  by  (I)  that  the  points  on  the  unit  circle  are  fixed  points. 

.  4.  Find  the  equation  of  all  circles  which  are  unchanged  by  an  inversion 

whose  center  is  the  origin.  Ans.    x^  -\-  y^  +  Bx  +  Ey  +  1  =  0. 

5.  Show  that  the  inverse  of  the  center  of  a  circle  is  not,  in  general,  the 
center  of  the  inverse  circle. 

6.  Show  that  the  center  of  the  circle  obtained  in  Ex.  2  lies  on  the  perpen- 
dic^^lar  drawn  from  the  origin  to  the  given  line. 

7.  Show  that  the  inverse  of  a  circle  whose  center  is  the  center  of  inver- 
sion is  a  concentric  circle. 

125.  Inversion  of  conic  sections.  In  this  section  we  shall  discuss  several 

curves  which  are  obtained  by  inverting  a  conic  section.  These  curves  have 
been  otherwise  defined  in  Chapter  XI. 

Theorem  II.  The  inverse  of  the  parabola  is  the  cissoid  if  the  vertex  of  the 

parabola  is  the  center  of  inversion. 

Proof.    If  the  vertex  of  the  parabola  is  the  origin,  its  equation  is 

2/2  =  2  px. 

Then,  from  (I),  p.  298, 

y 

2px' 

(x'2  +  2/'2)2      a;'2  +  y'2 
Reducing  and  dropping  primes. 

This  is  the  equation  of  the  cissoid  of  Diodes 

(problem  10,  p.  253).    If  we  replace  —  by  2  a, 

2p 

we  obtain  
the  form  

of  the  equation  
usually given,  

namely. 
(1) x^  =  y^{2a-x). 

Q.E.D. 



800 ANALYTIC  GEOMETRY 

A  general  discussion  (p.  74)  gives  us  the  following  properties  of  the 
cissoid. 

1.  The  cissoid  passes  through  the  origin  (Theorem  VI,  p,  73). 

2.  It  is  symmetrical  with  respect  to  the  X-axis  (Theorem  V,  p.  73). 
3.  Its  intercepts  on  both  axes  are  zero  (Rule,  p.  73). 

4.  The  cissoid  lies  entirely  between  the  T-axis  and  the  line  x  =  2  a. 

For,  solving  (1)  for  y,    

(2) 
'-W^~ 

If  X  is  negative,  the  numerator  is  negative  and  the  denominator  positive ;  and  if  ar  >  2a, 
the  numerator  is  positive  and  the  denominator  negative.  In  either  case  the  fraction  is 
negative  and  y  is  imaginary. 

5.  The  cissoid  recedes  indefinitely  from  the  X-axis  and  approaches  the 
line  x=2a. 

For  as  x  approaches  2  a  the  fraction  in  (2)  becomes  larger  and  approaches  infinity  as  a 
limit. 

This  may  also  be  seen  by  transforming  (1)  to  polar  coordinates,  which  gives 

p  =  2  a  sin  6  tan  0 

as  the  polar  equation  of  the  cissoid ;  and  hence,  if  d  =  -  or  —  ,  p  =  oo. 

Theorem  in.     The  inverse  of  the  equilateral  hyperbola  is  the  lemniscate  if 
the  center  of  inversion  is  the  center  of  the  hyperbola. 

Proof.    The  equation  of  the  equilateral  hyperbola  is  (p.  186) 

x2  -  y2  =  a2. 

The  equation  of  the  inverse 
curve  is  (by  (I),  p.  298) 

-^   yi-  =  a^. 

Reducmg  and  dropping  primes, 

a^ 

The  locus  is  the  lenmiscate  of 

Bernoulli  (problem  1,  (g),  p.  248, 

and  problem  4,  p.  262) .    Replacing 

—  by  a'\  we  get  the  form  of  the  equation  usually  given,  namely, 

a^ 
(3)  (X2  +  ?/2)2  ̂   a'^  (X2  -  7/2).  Q.E.D. (x2  +  ?/2)2^(l/2(x2_2/-2). 

A  discussion  of  the  equation  of  the  lemniscate  in  polar  coordinates  is  given  in  Ex.  2, 
p.  152.  From  (3)  it  is  evident  that  the  lemniscate  is  symmetrical  with  respect  to  both  axes 
and  the  origin  (Theorem  V,  p.  73). 

In  the  tigure  a  <  1  and  a'  >  1.  If  «  =  «'=  1,  the  lemniscate  will  be  tangent  to  the 
hyperbola  at  its  vertices.    If  a  >  1  and  a'  <  1,  the  two  curves  will  not  intersect. 
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Theorem  IV.     The  inverse  of  the  equilateral  hyperbola  is  the  strophoid  if  the 
center  of  inversion  is  a  vertex  of  the  hyperbola. 

The  equation  of  the  equilateral  hyperbola,  when  the  origin  is  the  right- 
hand  vertex,  is 

x2  -  2/2  +  2  ox  =  0. 

This  is  obtained  from  x^-ij'=  a^  by  setting  (Theorem  I,  p.  160)  x  =  x'  +  a,y  =  y',  and 
dropping  primes. 

The  inverse  curve,  from  (I),  p.  298,  is 

2  ax' 

(X'2  +  2/'2)2         (x'2  +  2/'2)2 

Reducing  and  dropping  primes, 

2/2)  =  0. 

X'2  +  y'2 

=  0. 

X(x2  +  2/2)  +    (x2 Ji  a 

The  locus  of  this  equation  is  the 

strophoid  (problem  9,  p.  262).     Repla- 

cing —  by  a'  and  solving  for  ?/2,  we 2a 

get  the  form  of  the  equation  usually 

given,  namely, 

,a'  +  x 
(4) y 

Q.E.D. a 

In  the  figure  a'  =  2  a  =  1.    If  a'  >  1  and 
2a  <  1,  the  left-hand  branch  of  the  hyperbola 
will  intersect  the  loop  of  the  strophoid.    If  a'  <  1  and  2  a  >  1,  the  left-hand  branch  of  the 
hyperbola  will  not  meet  the  strophoid. 

A  general  discussion  of  (4)  gives  us  the  following  properties  of  the 
strophoid. 

1.  It  passes  through  the  origin  (Theorem  VI,  p.  73). 

2.  It  is  symmetrical  with  respect  to  the  JT-axis. 

3.  Its  intercepts  are  ?/  =  0  or  0  and  x  =  —  a\  0,  or  0.     Hence  it  passes 
twice  through  the  origin. 

4.  The  strophoid  lies  entirely  between  the  lines  x  —  a'  and  x  =  —  a'. 
For,  solving  (4)  for  y, 

(5) 
Va  +  X  X  

I—-   —   =  ±  —   Va'2  _  aj2. 
a'  —  X         a'  —  X 

The  quadratic  under  the  radical  is  negative  for  values  of.  x  not  lying  between  the 
roots  (Theorem  III,  p.  11),  and  for  these  values  y  is  imaginary. 

5.  The  Strophoid  recedes  indefinitely  from  the  X-axis  and  approaches  the 

line  X  =  a'. 

For,  from  (5),  y  becomes  infinite  when  x  approaches  a'. 
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Theorem  V.    The  inverse  of  a  conic  is  a  limaron  if  the  center  of  inversion 

a  focus  of  the  conic. 

Proof.    Tlie  equation  of  a  conic  whose  focus  is  tlie  origin  is  (Theorem 
p.  178) 

(1  -  e2)  a;2  +  y2  _  2  e'^px  -  e^p^  =  0. 

Substituting  from  (I),  p.  298,  the  equation  of  the  inverse  curve  is 

(l-e2)x'2 
+ 

y""
 

2  e2px' 

C2p2  =  0. 

(X'2  +  y'2)2        (x'2  4.  y'lyi        a;'2  +  y'2. 

Clearing  of  fractions,  transposing,  and  dropping  primes, 

e2p2  (x2  +  y^Y  +  2  e2px  (x2  +  2/2)  =  (1  -  e2)  x2  +  y2. 

Adding  e^2  to  both  sides  and  dividing  by  e2p2^ 

(x2  +  2/2  +  la;)2  =  J-(x2  +  2/2). 

The  locus  of  this  equation  is  the  limagon  (problem  11,  p.  253).     If  we  set 

—  —  a  and   =  62^  we  get  the  form  of  the  equation  usually  given,  namely, 
P  g2p2 

(6) (X2  +  2/2  +  ax)2  =  62  (X2  +  y2). 
Q.E.D. 

The  lima9on  has  three  distinct  forms  corresponding  to  the  three  forms  of  conies, 
according  as  a  is  less  than,  equal  to,  or  greater  than  h.  If  a=  6,  the  limayon  is  some- 

times called  the  cardioid  (Ex.  2,  p.  158). 

A  general  discussion  of  (6)  gives  us  the  following  properties  of  the  lima5on. 
1.  It  passes  through  the  origin  (Theorem  VI,  p.  73). 

2.  It  is  symmetrical  with  respect  to  the  X-axis  (Theorem  V,  p.  73). 

3.  Its  intercepts  are  x  =  0,  0,  —  a  —  6,  and  —  a  -\-h  and  2/  =  0,  0,  6,  and 
6.     Hence  the  lima^-on  passes  twice  through  the  origin. 
4.  The  lima9on  is  a  closed  curve. 

For,  transforming  to  polar  coordinates,  (6)  becomes  (Theorem  I,  p.  155) 

(p2  +  a?  cos  fff  =  62p2. 
Solving  for  p,  p  =  6  -  a  cos  fl. 

Since  —  1  ̂  cos  0  ̂   1,  p  cannot  become  infinite. 
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PROBLEMS 

1.  Construct  the  following  conies,  find  the  equations  of  the  inverse  curves, 
and  discuss  and  construct  their  loci. 

(a)  2/2  _  a;^  2/2  =  8  X,  x2  =  4  y. 

(b)  x2  -  y2  ,3  4^  x2  -  2/2  =z  1,  x2  -  7/2  =  :i,  2  xy  =  1. 

(c)  x2  -  2/2  +  V2  X  =  0,  x2  -  ̂ 2  _^  a;  _  0,  x2  -  2/2  4-  4  X  =  0. 

(d)  3x2  +  42/2-4x  =  4,  2/2-4x  =  16,  3x2  _  2/2  +  I6x  +  IG  =  0. 

2.  Find  the  inverse  of  the  hyperbola  3  rx2  —  r-ip-  +  2  x  =  0,  and  discuss  its 
properties. 

Ans.    The  trisectrix  of  Maclaurin  x  (x2  +  2/2)  =  -  (2/2  -  3  x2). 

2i 

3.  Prove  that  the  inverse  of 

(a)  the  cissoid  is  a  parabola  ; 
(b)  the  lemniscate  is  an  equilateral  hyperbola ; 

(c)  the  strophoid  is  an  equilateral  hyperbola  ; 
(d)  the  lima^on  is  a  conic,  if  the  origin  is  the  center  of  inversion. 

4.  Prove  analytically  and  geometrically  that  if  a  curve  C  inverts  into  C", 
then  C  inverts  into  C. 

5.  Shovp-  that  the  inverse  of  the  locus  of  an  equation  of  the  second  degree 
is,  in  general,  a  curve  whose  equation  is  of  the  fourth  degree.  In  what 
combination  of  x  and  y  will  the  terms  of  the  fourth  degree  enter  ?  What 

will  be  the  degree  if  the  given  locus  passes  through  the  origin  ? 

126.  Angle  formed  by  two  circles.  If 
radii  be  drawn  to  a  point  of  intersection  of 
two  circles,  the  angle  formed  is  equal  to  one 

of  the  angles  formed  by  the  tangents  at  that 

point,  since  their  sides  are  respectively  per- 
pendicular. That  angle  Q  is  called  the  angle 

formed  by  two  circles. 

Theorem  VI.  The  angle  6  formed  by  two 

intersecting  circles 

and 

is  given  by 

(VI)      COS  e  = 

Ci :  x2  +  2/2  +  Dix  -}-Eiy-\-Fi  =  0 

C2  :  x2  +  2/2  +  D2X  +  E2y  +  F2  =  0 

Vd7TW^^^4JF\  V^7+^2^^-^2 
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Troof.    By  definition  0  equals  the  angle  formed  by  the  radii  drawn  to  a 
point  of  intersection.     Hence  from  the  figure  and  17,  p.  20, 

(1) 
cos^ 

2rir2 

where  r\  and  ra  are  the  radii  of  Ci  and  Ci  respectively  and  d  is  the  length  of 
the  line  of  centers.     By  Tlieorem  I,  p.  131, 

and  the  centers  of  Ci  and  Cz  are  respec- 

Uve,(-f.-f)a„a(-f,-f). 
Hence  (by  (IV),  p.  31) 

Substituting  in  (1)  and  reducing,  we  get  (VI).  q.e.d. 

Corollary.    Ci  and  C^  are  orthogonal  if  D1D2  +  E1E2  -  2  Fi  -  2  F2  =  0. 

127.  Angles  invariant  under  inversion. 

Theorem  VII.    The  angle  between  two  circles  is  equal  to  the  angle  formed  by 
the  inverse  circles. 

Proof.    Let  the  equations  of  two  circles  be 

Ci  :  x2  +  y2  4.  D^x  +  Eiy-hFi  =  0 

and  C2  :  x^  +  2/2  +  Dgx  +  E^y  +  F2  =  0. 

Then  the  equations  of  the  inverse  circles  are  respectively  [(3),  p.  298] 

C/:x2  +  2/'^  +  ̂X  +  |^y  +  ̂-0 

and 
C/:x2  +  2/2  +  ̂a^  +  ̂y+  1   ̂0. F2         F2         i*  2 

By  Theorem  VI  the  angle  formed  by  Ci  and  C2'  is  given  by 

^  _ 
 2 

Fi      F2 
cos 

D\Ij2      E1E2 

F1F2       F^ 

>Jm-m-yMhm-k 
D1D2  +  E1E2  -2F1-2F2 

Vi)i2  _,.  ̂ ^2  _  4  F^  VD22  +  ̂ 22  -  4  F2 =  cos  d, 

where  6  is  the  angle  formed  by  Oi  and  C2. 

Since  6^  and  ̂   are  both  less  than  tt,  we  therefore  have  ̂  
Q.E.D, 
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Corollary.  The  angles  formed  hy  two  intersecting  curves  are  equal  to  the 
angles  formed  by  the  inverse  curves. 

For  draw  two  circles  respectively  tangent  to  the  given  curves  at  a  point  of  inter- 
section. The  inverse  circles  will  be  tangent  to  the  inverse  curves  at  a  point  of  intersec- 

tion. The  angles  formed  by  either  pair  of  curves  and  the  tangent  circles  are  identical, 
and  the  angles  formed  by  the  two  pairs  of  circles  are  equal.  Hence  the  angles  formed 
by  the  given  curves  and  by  the  inverse  curves  are  equal. 

PROBLEMS 

1 .  Find  the  angles  formed  by  the  following  pairs  of  curves  and  the  angles 
formed  by  the  inverse  curves,  and  show  that  they  are  equal. 

(a)  X  -y  =  0,  x-{-2y  =  0. 
(b)  x-\-Sy  -2  =  0,  x-2y  =  0. 

(c)  x^  +  y^  +  ix-Sy  =  0,  x^  +  y^-ix  =  0. 

(d)  x^  +  y^  -^x-\-12  =  0,  x2  +  ?/2  -  8 2/  =  0. 
(e)  x2  -f  2/2  -  6  X  +  4  y  =  0,  Gx-4y  -1=0. 

2.  Show  that  the  circles  found  in  problem  4,  p.  299,  are  orthogonal  to  the 

circle  x^  +  y^  =  1. 

3.  If  P  and  P'  are  two  inverse  points,  show  that  all  of  the  circles  which 

pass  through  P  and  are  orthogonal  to  x2  +  y'^  =  1  will  also  pass  through  P'. 

4.  How  may  problem  3  be  used  to  define  an  inversion  ? 

5.  Into  what  kind  of  a  figure  will  three  line^  forming  a  triangle  invert  if 
the  center  of  inversion  is  not  on  one  of  these  lines  ? 

6.  Into  what  kind  of  a  figure  will  three  circles  which  have  a  point  in 

common  invert  if  that  point  is  the  center  of  inversion? 

7.  Three  circles  pass  through  a  point  and  intersect  each  other  in  three 

other  points.  Show  that  the  sum  of  the  angles  formed  by  the  circles  at 
these  three  points  is  two  right  angles. 

ITmt.  Invert  the  figure,  using  the  point  common  to  the  three  circles  as  the  center  of 
inversion. 

8.  Three  circles  pass  through  the  same  point.  Show  how  to  construct 
four  circles  tangent  to  the  three  given  circles. 

Hint.  Suppose  the  required  circles  constructed.  Invert  the  figure,  using  the  common 

point  as  the  center  of  inversion  and  show  how  to  construct  the  inverse  of  the  i-equired 
circles.    Then  invert  the  figure  so  constructed,  using  the  same  center  of  inversion. 

9.  Show  that  the  sign  of  an  angle  is  changed  by  an  inversion. 
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128.  Inversion  of  systems  of  straight  lines. 

Theorem  VIII.  The  inverse  of  a  system  of  parallel  lines  is  a  system  of  tan- 
gent circles  whose  centers  lie  on  a  line  perpendicular  to  the  lines  of  the  system. 

Proof.  Choose  one  of  the  lines  of  the  system  for  the  F-axis.  Then  the 
equation  of  the  system  is  x  =  a,  where  a  is  an  arbitrary  constant.    The 

x'
 

inverse  system  is  therefore  (by  (I),  p.  298) 

X'2  +  j^ 

=  a,  or,  reducing  and 

dropping  primes,  x^  +  ?/2   x  =  0.     This  is  the  equation  of  a  system  of 

circles  whose  centers  lie  on  the  JT-axis  and  which  are  tangent  to  each  other 
at  the  origin  (Theorem  VIII,  p.  144).  q.e.d. 

Theorem  IX.  The  inverse  of  a  system  of  lines  parsing  through  a  point  is  a 
system  of  circles  passing  through  the  origin  and  through  the  inverse  of  that 

point. 
Proof.  Let  the  system  of  lines  he  y  =  mx  +  b,  where  b  is  constant  and  m 

varies.  By  Theorem  I,  p.  298,  the  inverse  of  the  system  is,  after  reducing 
and  dropping  primes, 

x2  +  2/2  +  ̂a; 
0 

y  =  0. 

Y  r 

This  is  the  equation  of  a  system  of  circles  passing  through  the  origin' 

(Theorem  VI,  p.  73)  and  through  (0,  t)  (Corollary,  p.  53),  which  is  the 

inverse  of  (0,  6)  through  which  the  lines  pass.  q.e.d. 
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129.  Inversion  of  a  system  of  concentric  circles. 

Theorem  X.  The  inverse  of  a  system  of  concentric  circles  is  a  system  tvith 
two  limiting  points,  one  at  the  origin  and  the  other  at  the  inverse  of  the  center 
of  the  concentric  circles. 

Proof.    The  equation 

(1)  x2  +  7/2_2/3?/  +  ̂ 2_y2,,0 

lopresents  a  system   of  concentric   circles  if  /3  is  constant  and  r  varies 
(  riieorem  II,  p.  58). 

The  inverse  of  (1)  is  [(3),  p. 

(2)  X2  +  i/2  _ 

298] 

^2_, y  + 

The  locus  of  (2)  is  a  system  of  circles  with  their  centers  on  the  F-axis 

(Corollary,  p.  131).     The  radius  of  any  one  is  (Theorem  I,  p.  131) 

2  \Vi32-r2/ 

Hence  r'=  0  if  r  =  0,  and  the  locus  of  (2)  is  then  the  point-circle  (0,  -  V 
which  is  the  inverse  of  (0,  /3),  the  center  of  (1).  If  r  =  co,  (2)  becomes 

x'i  -f  ̂ 2  —  0,  whose  locus  is  the  origin.  Hence  the  system  (2)  has  two  limiting- 
points  (p.  144),  at  the  origin  and  at  the  inverse  of  the  center  of  (1).       q.e.d. 

PROBLEMS 

1 .  Why  do  we  not  consider  the  system  of  lines  passing  through  the  origin 

ia  proving  Theorem  IX  ? 

2.  Why  do  we  not  take  the  origin  for  the  center  of  the  system  of  circles 
in  proving  Theorem  X  ? 

3.  Construct  a  number  of  lines  of  the  system  x  =  a  and  the  inverse  circles. 
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4.  Construct  a  number  of   lines  of   the  system  y  =  mx  +  \   and 
inverse  circles. 

5.  Construct  a  number  of  circles  of  the  system  x^  -\-y'^  —  Zx-\- \  —  r^-=(i 
and  the  inverse  circles. 

6.  What  is  the  inverse  of  a  system  of  tangent  circles  if  the  point  of  tan- 
gency  is  the  center  of  inversion  ? 

7.  What  is  the  inverse  of  a  system  of  circles  passing  through  two  points 
one  of  which  is  the  center  of  inversion  ? 

8.  What  is  the  inverse  of  a  system  of  circles  with  two  limiting  points 
one  of  which  is  the  center  of  inversion  ? 

9.  The  point  Pi  (xi,  2/1)  may  be  regarded  as  a  point-circle  whose  equa^ 

tion  is  {x  —  cci)2  +  (y  —  yiY  =  0-  Show  that  the  system  of  circles  repre- 

sented by  {x  —  XiY  -\-  {y  —  Vif  +  A;  (x2  +  2/2  _  1)  —  0  has  two  limiting  points, 
namely,  Pi  and  the  inverse  of  Pi.  What  is  the  nature  of  the  system  if  Pi 

lies  on  the  circle  x^  +  ?/2  =  l  ? 

10.  How  may  problem  9  be  used  to  define  an  inversion  ? 

130.  Orthogonal  systems  of  circles.  Two  systems  of  circles  are  said  to 
orthogonal  if  each  circle  of  one  system  is  orthogonal  (p.  143)  to  every  circle 
of  the  other  system.  The  preceding  sections  enable  us  to  construct  such 

systems  with  ease. 

Consider  two  systems  of  parallel  lines  such  that  the  lines  of  one  system 
are  perpendicular  to  the  lines  of  the  other.  If  we  invert  these  systems  of 

lines,  we  get  two  systems  of  tangent  circles  whose  centers  lie  respectively  on 
two  perpendicular  lines  (Theorem  VIII,  p.  306).  Since  angles  are  preserved 

by  inversion  (Corollary,  p.  305)  these  systems  are  orthogonal.     Hence 
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Theorem  XI.  Two  systems  of  tangent  circles  are  orthogonal  if  they  have  the 

same  point  of  tangency  and  if  their  centers  lie  on  perpendicular  lines. 

It  is  also  evident  that  all  of  the  lines  passing  through  the  same  point  P 
and  all  of  the  circles  having  the  center  P  intersect  orthogonally.  The 

inverse  of  the  system  of  lines  is  the  system  of  circles  passing  through 

the  origin  and  the  inverse  of  P  (Theorem  IX,  p.  306),  and  the  inverse  of 
the  system  of  concentric  circles  is  the  system  of  circles  having  the  origin 

and  the  inverse  of  P  as  limiting  points  (Theorem  X,  p.  307).     Hence 

Theorem  XII.     Two  systems  of  circles  are  orthogonal  if  all  the  circles  of  one 
system  pass  through  two  points  which  are  the  limiting  points  of  the  other. 

MISCELLANEOUS  PROBLEMS 

1.  Show  that  the  degree  of  an  equation  is,  in  general,  doubled  by  an 
inversion.  Will  this  be  true  if  the  terms  of  the  highest  degree  contain 

x2  +  y2  as  a  factor  ? 

2.  Construct  a  linkage  consisting  of  a  deformable  rhombus  APBP'  and 
two  bars  of  equal  length  OA  and  OB  which  are  free  to  rotate  about  the  fixed 

point  0.  Show  that  P  and  P'  describe  inverse  curves  if  O  is  the  center  of 

inversion  and  OA^  —  AP^  is  the  unit  of  length. 
3.  If  P  is  that  point  of  the  rhombus  in  problem  2  which  lies  nearest  to  O, 

then  by  adding  a  bar  O'P^  which  is  free  to  rotate  about  the  fixed  point  0', 
P  will  be  constrained  to  move  in  a  circle.  How  will  P'  move  ?  This  linkage 
is  known  as  Peaucellier's  Inversor. 

4.  Show  how  to  construct  four  circles  passing  through  a  given  point  and 
tangent  to  each  of  two  given  circles  which  do  not  intersect. 

Hint.    Invert  the  figure,  using  the  given  point  as  the  center  of  inversion. 

6.  Find  the  properties  of  the  cissoid,  lemniscate,  strophoid,  cardioid,  and 

lima^on,  which  may  be  obtained  from  problems  3,  4,  5,  6,  9,  10,  12,  and  13, 
p.  220,  by  inversion  with  a  proper  center. 

6.  Show  that  the  angle  which  one  line  makes  with  a  second  equals  the  angle 

between  the  inverse  circles,  without  using  the  Corollary  on  p.  305. 
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POLES  AND  POLARS.     POLAR  RECIPROCATION 

131.  Pole  and  polar  with  respect  to  a  circle.   Let  Pi(xi,  yi)  be  any  point 
and  let  the  equation  of  a  given  circle  C  be 

(1)  x^  +  y^  =  r2. 
The  line  Li,  whose  equation  is 

(2)  XiOC  +  '//ii/  =  i•^ 

is  called  the  polar  of  Pi  (xi,  ?/i)  with  respect  to  C,  and  Pi  is  called  the  pole  of  Li. 

Theorem  I.    The  polar  of  a  point  on  a  circle  is  the  tangent  to  the  circle  at 
that  point. 

The  proof  follows  at  once  from  the  definition  and  from  the  fact  that  (2)  has  the  same 
form  as  the  equation  of  the  tangent  (Theorem  I,  p,  212). 

Theorem  II.    The  polar  of  a  point  Pi  with  respect  to  a  circle  is  perpendicular 

to  the  line  passing  through  Pi  and  the  center  of  the  circle. 

Proof.    The  equation  of  the  line  passing  through  Pi  and  the  origin,  the 
center  of  the  circle  (1),  is  (Theorem  VII,  p.  97) 

yix  -  Xiy  =  0. 

This  line  is  perpendicular  to  (2),  the  polar  of  Pi  (Corollary  III,  p.  87). 

Q.E.D. 
Corollary.    The  angle  formed  by  the  polars  of  two  points  with  respect  to  a 

circle  is  equal  to  the  angle  formed  by  the  lines  joining  those  points  to  the  center 

of  the  circle. 
Theorem  in.    The  polar  of  any  point  of  a 

given  linepasses  through  thepoleofthat  line. 

Proof.    Let  Li  be  the  given  line  and  let 

Pi  (-^1,  Vi)  he  its  pole.     Then  the  equation 
of  Xi  is 

(3)  xix  +  yiy  =  r\ 

Let  Pa  (X2,  y^)  be  any  point  on  Xi;  then 
(Corollary,  p.  53) 

(4)  X1X2  +  2/1^2  =  r\ 

The  equation  of  the  polar  L2  of  the  point 

Pais 

x^x  +  y^y  =  r2. 310 
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This  line  passes  through  Pi,  for  if  the  coordinates  of  Pi  be  substituted 

for  X  and  y,  we  obtain  equation  (4),  which  is  known  to  be  true. 

Corollary.    The  pole  of  any  line  is  the  point  of  intersection  of  the  polars  of 
any  two  of  its  points. 

Theorem  IV.    The  pole  of  any  line  passing  through  a  given  point  lies  on  the 

polar  of  that  point. 

Proof.    Let  Pi  (xi,  yi)  be  the  given  point.     Its  polar  is  the  line 

(5) ii :  Xix  +  yiy  =  r^. 

Let  P2  (X2,  2/2)  be  the  pole  of  a  line  L^  which  passes  through  Pi.  The 
equation  of  L2  is  then 

X2X  +  y^y  =  r^' 

Since  X2  passes  through  Pi  we  have  (Corollary,  p.  53) 

(6)  X2X1  +  2/2^1  =  r^- 

Then  P2  lies  on  Xi,  for  when  the  coordinates  of  P2  are  substituted  in  (5) 

for  X  and  7/,  we  obtain  equation  (6),  which  is  known  to  be  true.  q.e.d. 

Corollary.  The  polar  of  any  point  is  the  line  passing  through  the  poles  of 
any  two  lines  which  pass  through  the  given  point. 

132.  Construction  of  poles  and  polars. 

Construction  I.  To  construct  the  polar  of  a  point  P  outside  of  a  circle, 

draw  the  tangents  to  the  circle  which  pass  through  P.  The  line  joining  the 

points  of  contact  of  these  tangents  is  the  polar  of  P. 

Proof.  Let  Zi  and  L2  be  the  tan- 
gents to  O,  and  let  Pi  and  P2  be  their 

points  of  tangency.  Then  the  polars 
of  Pi  and  P2  are  the  lines  ii  and  Lz 

(Theorem  I).  Since  Li  and  L^  pass 
through  P,  the  polar  of  P  is  the  line  L 

passing  through  Pi  and  P2  (Corollary 

to  Theorem  IV).  q.e.d. 

In  like  manner  the  following  con- 
structions are  proved. 

Construction  II.  To  construct  the  pole 
of  a  line  L  which  cuts  the  circle,  draw 

the  tangents  at  the  points  at  which  L 

intersects  the  circle.  The  point  of  inter- 
section of  these  tangents  is  the  pole  of  L  (Corollary  to  Theorem  III). 
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To  construct  the  polar  of  a  point  P  within  a  circle? 
construct  the  poles  Pi  and  P^  of 

two  lines  ii  and  L2  passing  through 

/>^-''  ,  P  (Construction  II).    The  line  join- 

X         /'  ing  Pi  and  P2  is  the  polar  of  P 
(Corollary  to  Theorem  IV). 

Construction  IV.  To  construct 

the  pole  of  a  line  L  which  does  not 
cut  the  circle,  construct  the  polars 

Li  and  L^  of  two  points  Pi  and  P2 

on  L  (Construction  I).  The  inter- 
section of  Li  and  L2  is  the  pole  of 

L  (Corollary  to  Theorem  III). 

PROBLEMS 

1.  Find  the  equation  of  the  polar  of  each  of  the  following  points  with 
respect  to  the  given  circle  and  construct  the  figure. 

(a)  (3,  -  4),  x2  +  y2  ̂   4.  (d)  (3,  4),       x"^  +  y^  =  36. 
(b)  (-  1,  2),  ic2  +  2/2  =  25.  (e)  (5,  0),      x^  +  y'^  =  49. 
(c)  (7,  -  2),  x2  +  2/2  =  9.  (f)  (_  3,  4),  x2  +  2/2  =  25. 

2.  Find  the  pole  of  each  of  the  following  lines  with  respect  to  the  given 
circle  and  construct  the  figure. 

(a)  3x  +  2/  =  25,  x2  +  2/2  =  25. 
(b)  3x  -  22/  =  18,  x2  +  2/2  =  36. 

(c)  X  -  42/  +  8  =  0,  x2  +  2/2  =  16. 
(d)  2x-2/  =  64,  x2  + 2/^^  =  64. 
(e)  X  -  3  2/  +  16  =  0,  x2  +  2/2  =  16. 

(f)  x-32/  =  18,  x2  +  2/2  =  9. 

(g)  Ax  +  By  +  C  =  0,x^  +  y'^  =  r\ 

Ans.  (3,  1). 

Ans.  (6,  -4). 
Ans.  (-  2,  8). 

Ans.  (2,  -  1). 
^715.  (-1,3). 

Ans.  (I,  -  f). 
Ans.  (-^, 

Br^ 

~C~) 

Hint.  Let  Pi(xi,  y-i)  be  the  pole  of  the  given  line  and  write  down  the  equation  of  the 
polar  of  P^  with  respect  to  the  given  circle.  From  the  conditions  that  this  line  shall 
coincide  with  the  given  line  (Theorem  III,  p.  88)  determine  x^  and  y^. 

8.  Find  the  distance  from  the  origin  to  the  polar  of  Pi  with  respect  to 

x2  +  2/^ Ans. 
Vxi2  +  2/1^ 

4.  By  problem  3  show  that  (a)  if  Pi  approaches  the  origin  its  polar  recedes 

to  infinity;  (b)  if  Pi  recedes  to  infinity  its  polar  approaches  the  origin. 
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5.  By  problem  2,  (g),  show  that  if  a  line  recedes  to  infinity  its  pole 
approaches  the  origin,  and  if  the  line  approaches  the  origin  its  pole  recedes 
to  infinity. 

6.  Find  the  pole  of  the  line  joining  Pi  (xi,  y^)  and  Pa  (cca,  2/2)  and  prove 
that  it  is  the  point  of  intersection  of  the  polars  of  Pi  and  P^. 

\X1y2  -  X2?/l'    Xi?/2  -  X-iVi) 

7.  Find  the  polar  of  the  point  of  intersection  of  A-^x  +  Biy  +  Ci  =  0  and 

A2X-\-  B^y  +  C2  =  0  and  prove  that  it  passes  through  the  poles  of  these  lines. 

Ans.    {B1C2  -  B2C1)  X  +  (Ci^2  -  C2^i)  y  =  {A1B2  -  A^Bi)  r^ 

8.  If  the  line  y  —  yi  =  m{x  —  Xi)  revolves  about  Pi,  the  locus  of  its  pole 
is  the  polar  of  Pi. 

9.  The  radius  of  a  circle  is  a  mean  proportional  between  the  distances 
from  its  center  to  any  point  and  to  the  polar  of  that  point. 

133.  Polar  reciprocation  with  respect  to  a  circle.    The  transformation 
which  replaces  a  given  line  by  its  pole  with  respect  to  a  circle  is  called  a 

polar  reciprocation  with  respect  to  that  circle.  Analytically  the  transforma- 
tion is  defined  by 

Theorem  V.    The  pole  of  the  line 

Ax  +  By  +  C  =  0 

with  respect  to  the  circle 

is  the  point 

X2  +  2/2 

K--C-'  --C-) 

Proof.    Let  Pi  (xi,  yi)  be  the  pole  of  the  given  line.     Then  the  polar  of 
Pi  is  the  line 

xix  +  yiy  -r^  =  0. 

Then,  by  Theorem  III,  p.  88, 

Xi_7/i_  -r2 

A~  B~  C  ' 

Ar^- 

Xi 

'  2/1  = 

J5r2 

Q.E.D. 

The  locus  C  of  the  poles  of  the  tangents 

to  a  curve  C  is  called  the  polar  reciprocal 
of  C, 
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Theorem  VI.    If  C  is  the  polar  reciprocal  of  a  curve  C,  then  C  is  the  polar 
reciprocal  of  C 

Proof.    Let  I  and  m  be  two  tangents  to  C  at  i  and  M.     Let  M'  be  the 

pole  of  m  and  U  of  I.  Then  U  and  M'  are 
two  points  on  C  by  definition. 

Let  p'  be  the  line  passing  through  L' 
and  M\  Then  the  pole  of  p'  is  P,  the 
point  of  intersection  of  I  and  m  (Corollary 
to  Theorem  III,  p.  311). 

Let  U  move  along  C  until  it  comes  into 

coincidence  with  M\  Then  the  limiting 

position  of  p'  is  the  tangent  to  C  at  M\ 
But  as  X' approaches  M\  I  must  approach  m, 
and  the  limiting  position  of  P  is  evidently 
the  point  M.  Hence  M  is  the  pole  of  the 

tangent  to  C  at  Jlf'.     Hence  C  is  the  polar  reciprocal  of  C.  q.e.d. 

The  method  of  finding  the  equation  of  C  from  that  of  C  is  illustrated  by 

Ex.  1.  Find  the  polar  reciprocal  of  the  parabola  y^=^x  with  respect  to  the 
circle  a;2  _|.  ̂ 2  =  4. 

Solution.   Let  Pi  (^i,  y{)  be  any  point  on  the  parabola.    Then 

(1) 

yi'
 

4X1. 

The  equation  of  the  tangent  to  the  parabola 
at  Pi  is  (Theorem  III,  p.  214) 

yiy=2{x-\-xi),  or 

(2)  2x-yiy-\- 2x1=^0. 

By  Theorem  V,  the  pole  of  (2)  is  the  point 
*'{x\  y'),  where 

^1 

Xx 

Hence      Xi  =   ; » X 

0 

Substituting  in  (1), 

r 

4x'. This  is  the  equation  of  the  locus  of  P',  that  is,  of  the  polar  reciprocal  of  the 
given  parabola.  The  polar  reciprocal  is  therefore  a  parabola  of  the  same  size, 
turned  to  the  left  instead  of  to  the  right. 

The  method  consists  in  finding  the  pole  P'  of  the  tangent  to  the  given  curve  at 
Pi,  expressing  xi  and  yi  in  terms  of  x'  and  y\  and  substituting  in  the  given 
eqiiatiou. 
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PROBLEMS 

1.  Find  the  polar  reciprocal  of  each  of  the  following  circles  with  respect 

to  the  circle  x"^  +  y"^  =  4. 

(a)  x2  +  2/2  -  4 aj  =  0.  Ans.   y- ^4^x  =  4:. 
(b)  x2  +  2/2  _  2  X  -  3  =  0.  Ans.    3  x2  +  4  ̂2  +  s  x  -  16  =  0. 

(c)  x2  +  y^  -  6  X  +  5  =  0.  Ans.    5  x2  -  4  2/2  -  24  x  +  16  =  0. 

2.  Find  the  polar  reciprocal  of  each  of  the  following  curves  with  respect 

to  the  given  circle. 

(a)  x2  +  4 2/2  =  16,  x2  +  2/2  =  1.  Ans.    16x2  +  4^/2  =  1. 
(b)  y'^  =  2  X  -  6,  X2  +  y2  :^  9,  ^^S.     6  X2  -  y2  _  18  jc  :^  Q. 

(c)  4x2  +  y2  =  8x,  x2  +  y2  33  4.  Ans.    2/2  +  2x  -  4  =  0. 

3.  Verify  the  answers  to  problems  1  and  2  by  finding  the  polar  recipro- 
cals of  the  curves  given  in  the  answers  and  applying  Theorem  VI. 

4.  Show  that  the  equilateral  hyperbola  2xy  =  9  is  transformed  into  itself 

by  a  polar  reciprocation  with  respect  to  the  circle  x'^  -\-  y^  =  9. 

5.  Show  that  the  locus  of  x2  —  2/2  =  a-  is  transformed  into  itself  by  a  polar 

reciprocation  with  respect  to  the  circle  x2  +  2/^  =  c^^- 

134.  Pole  and  polar  with  respect  to  the  locus  of  any  equation  of  the 

second  degree.  Let  Pi(xi,  j/i)  be  any  point  and  let  any  equation  of  the 
second  degree  be 

(1)  ^x2  +  Bxy  -}- Cy^- -h  Dx  +  Ey  +  F  =  0. 

The  line  ii,  whose  equation  has  the  same  form  as  the  tangent,  namely 

(Theorem  II,  p.  212), 

(2)  ̂ .,.+B^i^±^  +  0^.^+2>^  +  ̂ ?^  +  i^  =  0, 
is  called  the  polar  of  the  point  Pi  with  respect  to  the  locus  of  (1).     Pi  is 
called  the  pole  of  Li. 

In  what  follows  we  speak  always  of  poles  and  polars  with  respect  to 

the  locus  of  (1)  unless  the  contrary  is  stated.  The  following  theorems  are 

generalizations  of  the  theorems  indicated,  and  are  proved  in  the  same  way 

by  using  (1)  and  (2)  of  this  section  instead  of  (1)  and  (2)  of  section  131, 

p.  310. 

Theorem  VII.  (Generalization  of  Theorem  I.)  The  polar  of  a  point  on  the 

locus  of  (1)  is  the  tangent  at  that  point. 

Theorem  VIII.  (Generalization  of  Theorems  III  and  IV.)  The  polar  of  any 
point  on  a  given  line  passes  through  the  pole  of  that  line.  Conversely,  the  pole 

of  any  line  passing  through  a  given  point  lies  on  the  polar  of  that  point. 
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Corollary  I.  The  ■pole  of  any  line  is  the  point  of  intersection  of  the  polars  of 
any  two  of  its  points. 

Corollary  II.  The  polar  of  any  point  is  the  line  passing  through  tJie  poles  of 
any  two  lines  which  pass  through  the  given  point. 

The  constructions  on  pp.  311  and  312  enable  us  to  construct  poles  and 

polars  with  respect  to  (1),  for  the  theorems  by  which  the  constructions  are 
proved  have  been  generalized  for  the  locus  of  (1). 

A  good  idea  of  the  direction  of  the  polar  of  a  point  with  respect  to  a  conic  is 
afforded  by 

Theorem  IX.  The  polar  of  a  point  Pi  with  respect  to  a  conic  is  parallel  to  the 
tangent  to  the  conic  at  the  point  where  the  diameter  through  Pj  cuts  the  conic. 

Proof.  The  proof  is  separated  into  two  cases  according  as  the  conic  is  a  central 
conic  or  a  parabola. 

Case  I.   Central  conic.   If  the  center  is  the  origin,  its  equation  may  be  written 

Ax'^-\-Cy^  +  F=0. 

The  equation  of  the  polar  of  Pi  is 

(3)  Axix  +  Cyxy  +  F=0. 

Let  the  diameter  through  Pi  cut  the  conic  at  P2.  The  equation  of  the  tangent 
at  P2  is 

(4)  Ax2Z  +  Cy^y  +  F  =  0. 

Since  Pi  and  P2  are  on  a  line  through  the  origin  (Corollary,  p.  242), 

X2        2/2
' 

and  hence  the  lines  (3)  and  (4)  are  parallel  (Corollary  II,  p.  87). 

Case  II.    Parabola.    Its  equation  is  y2  —  2px. 
The  equation  of  the  polar  of  Pi  is 

(5)  yiy  =  p{x-\-x{). 
Let  the  diameter  through  Pi  cut  the  parabola  at  P2.  The  equation  of  the 

tangent  at  P2  is 

(6)  2/22/ =P(x  + 3:2). 

Since  (Theorem  X,  p.  242)  ?/i  =  2/2,  the  lines  (5)  and  (6)  are  parallel.         q.e.d. 

PROBLEMS 

1.  Find  the  equations  of  the  polars  of  the  following  points  with  respect  to 

the  given  conies  and  construct  the  figures. 

(a)  (3,  4),      9x2  +  4  2/2  =  36.         (e)  (-  1,  3),  x2  +  xy  -  62/  +  4  =  0. 
(b)  (2,  -  1),  16x2  -y2  =  64.  (f)  (4,  5),       xy  +  4x  -  6?/  -  8  =  0. 

(c)  (3,  6),       x2  +  4y=:0.  (g)  (2, -6),    x2  +  2x2/  +  2/2  +  x-2/  =  0. 

(d)  (2,  -4),  xy-16  =  0.  (h)  (3,2),       5x2 +  6xy  +  5y2_i2  =0. 
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2.  Find  the  poles  of  the  following  lines  with  respect  to  the  given  conies 
and  construct  the  figures. 

(a)  9x  +  42/  =  36,  9x2  +  i/2  =  36.  Ans.  (1,  4). 

(b)  2 X  -  3 y  +  4  =  0,  ?/2  =  4x.  Ans.  (2,  -  3). 
(c)  x-2y  =  16,  xi/  =  8.  Ans.  (-  2,  1). 

(d)  14x  +  2/  =  8,  4x2  -  y2  ̂   16.  Ans.  (7,  -  2). 

(e)  2x  -  2/  +  13  =  0,  x2  +  4?/  =  16.  Ans.  (-  4,  -  5). 
(f)  X  +  4  =  0,  x2  +  4 X2/  +  2/2  +  2x  +  4  =  0.  Ans.  (0,  0). 
(g)  llx  +  22/  +  18  =  0,  17x2  -  12x2/ +  82/2 -68x  + 24  2/ -12  =  0. 

Ans.  (0,  -2). 

3.  Tangents  are  drawn  from  the  point  (8,  4)  to  the  ellipse  x2  +  4  2/2  =  16. 
Find  the  equation  of  the  line  joining  their  points  of  tangency. 

Ans.   x  +  2y-2=0. 

4.  Tangents  are  drawn  to  the  hyperbola  16x2  —  y^  =  64  at  the  points 
of  intersection  of  the  hyperbola  and  the  line  8x  +  32/  +  32  =  0.  Find  the 

coordinates  of  their  point  of  intersection.  Ans.  (—1,  6). 

6.  How  does  the  polar  of  a  point  with  respect  to  a  central  conic  behave 

if  the  point  approaches  the  center  ?  if  the  point  recedes  to  infinity  ? 

6.  The  polar  of  the  focus  of  any  conic  with  respect  to  that  conic  is  the 

corresponding  directrix. 

7.  The  polar  of  any  point  on  the  directrix  of  a  conic  passes  through  the 

corresponding  focus. 

8.  The  polars  of  a  point  with  respect  to  conjugate  hyperbolas  are  parallel. 

9.  The  polar  of  a  focus  of  an  ellipse  with  respect  to  the  major  auxiliary 
circle  is  the  corresponding  directrix. 

10.  What  is  the  locus  of  a  point  which  lies  on  its  polar  with  respect  to  a 

given  conic  ? 

1 1 .  That  part  of  the  diameter  of  a  parabola  included  between  any  point 

on  it  and  its  polar  is  bisected  by  the  point  of  contact. 

135.  Polar  reciprocation  with  respect  to  the  locus  of  any  equation  of  the 

second  degree.   Let 

(1)  ^x2  +  Bxy  +  Cy^  +  Dx-\-Ey-{-  F=0 
be  any  equation  of  the  second  degree.  Let  C  be  any  curve  and  let  C  be  the 

locus  of  the  poles  of  the  tangents  to  C  with  respect  to  the  locus  of  (1).  C"  is 
called  the  polar  reciprocal  of  C  with  respect  to  (1). 

Theorem  X.  (Generalization  of  Theorem  VI.)  If  C  is  the  polar  reciprocal 

of  C  with  respect  to  (1),  then  C  is  the  polar  reciprocal  of  C. 

The  proof  is  identical  with  that  of  Theorem  VI,  p.  314.  For  the  theorems  on  poles 
and  polars  with  respect  to  a  circle^  used  in  proving  that  theorem,  have  been  extended,  to 
the  locus  of  (1). 
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Corollary.    The  -polar  reciprocal  of  C  is  a  curve  C  lo/iosc  tangents  are 
polar s  of  the  points  of  C. 

The  polar  reciprocal  of  a  curve  C  with  respect  to  (1)  may  therefore  be 

regarded  in  either  one  of  two  ways : 
1.  As  the  locus  of  the  poles  of  the  tangents  to  C. 

2.  As  the  curve  whose  tangents  are  tlie  polars  of  the  points  of  C. 

In  either  case  the  fact  to  be  observed  is  that  to  a  point  of  one  figure  corre- 
sponds a  straight  line  of  the  other  figure  and  vice  versa.  The  transformation 

which  replaces  C  by  C  is  called  a  polar  reciprocation  with  respect  to  (1). 
Analytically  the  polar  reciprocation  with  respect  to  (1)  is  completely  defined 

by  the  equation 

(2)      AxiX  +  B 
{yix  +  Xiy) 

+  Cyiy  +  D (x  +  xi)  ̂   ̂(y  +  yi) 
■h  F=0. 

2  2 

(2)  gives  us  at  once  the  polar  of For,  in  the  first  place,  the  locus  of 

-Pi  {xi,  Vi). 
In  the  second  place,  the  pole  of  any  line 

(3)  A'x  -\-B'y  +  C'=0 
is  found  from  (2)  as  follows.     Let  Pi(xi,  yi)  be  the  pole  of  (3).     Then  sin 

(2)  and  (3)  are  the  equations  of  the  polar  of  the  same  point  Pi,  their  loci 
coincide.     Hence  (Theorem  III,  p.  88) 

Ax^  +  -y,.+  - 

A' 

B  ^         E 2^^+^^^  +  i 

B' 

D  E  „ 
-x^  +  -y,  +  F 

These  equations  can,  in  general,  be  solved  for  Xi  and  yi  (Theorem  IV,  p.  90). 
The  method  of  finding  the  equation  of  the  polar  reciprocal  of  a  given 

curve  C  is  illustrated  in  the  following  example. 

Ex.  1.  Find  the  equation  of  the  polar  reciprocal  of  the  ellipse 

C:4a;2  +  9?/2_i  =  o 
with  respect  to  the  ellipse 

(4)  x^  +  ̂ tf2-\-2z  =  0. Solution.    Let  Pi{xi,  yi) 

be  any  point  on  C.    Then 

(5)  4a;i2  +  9?/i2-l  =  0. 
The  equation  of  the  tan- 

gent to  C  at  Pi  is  (Theorem 
III,  p.  214) 

(6)  4xia;  +  9yii/-l  =  0. 
Let  P'  {x\  if)  be  the  pole 

of  (6)  with  respect  to  (4) .  The 

equation  of  the  polar  of  P'  is 

(7)  (x'+l)a;  +  4?/'|/  +  x'=0. 

_| — V-                 -yJ^ 

^^ 

J^^
 

N. 

^y
^ 
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-— ^v= ^ 

y 
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iince  («)  and  (7)  have  the  same  locus  (Theorem  III,  p.  88), 

x'  -\-l      4  y^        x' 

Solving  for  x\  and  yi,  we  obtain g^  +  1 

4  a;' 

4y^ 

Substituting  in  (5) ,  we  have  the  required  equation 

Reducing  and  dropping  primes,  we  obtain 

27x2  -  64y2  _  i8x  -  9  =  0, 

whose  locus  is  an  hyperbola. 
In  the  figure  three  divisions  are  taken  for  unity. 

PROBLEMS 

1.  Find  the  polar  reciprocal  of  the  first  of  the  following  curves  with 
respect  to  the  second.     Construct  the  figure  in  each  case. 

(a)  2/2  _  43.^3,0,  x2  +  4yz:r0. 
Ans.    xy 

(b)  x2  +  1/2  =  1^  a:2  -  2/2  ̂   4. 
Ans.    X- 

2  =  0. 

y'
l 

16. 

(C)    X2  +  4  ?/2  rr  4,    4  X2  +  ?/  ̂   4, 

(d)  x2  -  4 ?/  =  16,  a:2  +  4?/2  =  2x. 

(e)  xy  -  4  =z  0,  x2  -  2/2  =  16. 

(f)  8  2/  -  x3  =  0,  x2  -  2/2  =  4. 

^?is.  64  x2  +  2/2  =  16. 

^ns.  15x2-642/2-32x4-16  =  0. 
Ans.  x?/  +  16  =  0. 
^ns.  2x3  =  272/. 

2.  Verify  the  answers  to  problem  1  by  showing  that  the  polar  reciprocals 
of  the  curves  in  the  answers  are  the  given  curves. 

3.  Show  that  either  of  the  following  curves  is  unchanged  by  a  polar  recip- 
rocation with  respect  to  the  other. 

(a)  62ic2  _}.  c[2y2  ̂   0,252^    52a;2  _  ^2^2  =  giy^. 

(b)  62a;2  _  a^y2  =  ̂ ^252^  523^2  _  ̂ 2^2  ̂   _  ̂ 252, 

(c)  2/2  -  2px  =  0,  2/2  +  2px  =  0. 

4.  If  the  vertices  of  one  triangle  are  the  poles  of  the  sides  of  a  second 
triangle,  then  the  vertices  of  the  second  are  the  poles  of  the  sides  of  the  first. 

Two  triangles  such  that  the  vertices  of  either  are  the  poles  of  the  sides  of 

the  other  are  called  conjugate  triangles.  If  the  vertices  of  a  triangle  are  the 

poles  of  the  opposite  sides,  the  triangle  is  said  to  be  self-conjugate. 

5.  Show  that  (2,  1),  (4,  4),  and  (3,  2)  are  the  vertices  of  a  self-conjugate 
triangle  with  respect  to  the  hyperbola  x^  -  y^  =  4. 

6.  Show  how  to  construct  a  self -con  jugate  triangle  with  respect  to  a  given 
conic  if  one  vertex  is  given.     How  many  may  be  constructed  ? 
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7.  Show  that  if  we  reciprocate  the  figure  which  is  given  or  implied  in  one 

of  the  following  statements,  we  obtain  the  corresponding  statement. 

(a)  Two  points  determine  the  line 
on  which  they  lie. 

(b)  Three  points  on  the  same  line. 
(c)  Three  points  at  the  vertices  of  a 

triangle. 

(d)  n  points  at  the  vertices  of  a  poly- 

gon. (e)  An  infinite   number   of   points, 

lying  on  a  curve. 
(f)  A  line  intersecting  a  curve  in  n 

points. 
(g)  A  curve  passing  twice  through 

the  same  point. 
(h)  A  conic  section. 

•  (i)  A  conic  may  be  constructed  which 
passes  through  five  given  points. 

(j)  Two  conies  intersect  in  general 
in  four  points. 

Two  lines  determine  the  point  in 
which  they  intersect. 

Three  lines  through  the  same  point. 
Three  lines  forming  a  triangle. 

n  lines  forming  the  sides  of  a  poly- 

gon. 

An  infinite  number  of  lines  tangent 
to  a  curve. 

A  point  through  which  pass  n  lines 
tangent  to  a  curve. 

A  curve  tangent  twice  to  the  same 
line. 

A  conic  section. 

A  conic  may  be  constructed  which 
is  tangent  to  five  given  lines. 

Two  conies  have  in  general  four 
common  tangents. 

136.  Polar  reciprocation  of  a  circle  with  respect  to  a  circle.    The  equa- 
tions of  any  two  circles  C  and  Ci  may  be  put  in  the  forms 

C  :  x2  -I-  y2  _  y2 
and  Ciix^  +  y^-i-  Dxi-  F=0 

by  taking  the  center  of  C  as  origin  and  the  line  of  centers  of  C  and  Ci  as 

the  X-axis.     We  shall  now  find  the  polar  reciprocal  of  C  with  respect  to  Ci. 
Let  Pi  {Zi,  Vi)  be  any  point  on  C.     Then  (Corollary,  p.  53) 

(1)  Xi2  +  yi2  =  r\ 
and  the  equation  of  the  tangent  to  C  at  Pi  is  (Theorem  I,  p.  212) 

(2)  xix  +  yiy  -  r2  =  0. 

Let  P"  {x\  y')  be  the  pole  of  (2)  with  respect  to  Ci ;  then  the  polar  of  P'  is 

or 

(3) 

x'x  +  y'y  +  D^~  +  P=  0, 

x  +  y'y  +  -X'  +  F=0. 

2i 

(--!) 

Since  (2)  and  (3)  have  the  same  locus  (Theorem  III,  p.  88), 

jci      _  yi  ̂       -  r-2 

y'
 

Solving  for  x\  and  2/1,  we  obtain 
r2  (2  X'  +  D) 

x'-f  P 

a;i  =  - 
Dx'  +  2P 

2/1  = 2r2y' 

Dx'  +  2P 
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Substituting  these  values  in  (1),  reducing,  and  dropping  primes,  we  have 
the  equation  of  C%  namely, 

C  :  (4r2  -  J>2)x2  +  4rV  +  4i)(r2  -  F)x-\-  {rm^  -4F2)  =  0. 

The  discriminant  of  C"  is  (p.  265) 

0'  =  16  r2  (4  r2  -  2)2)  (r^B^  _  4  jps)  _  64  fW^  {r^  -  F)2  =  _  16  r*  (2)2  _  4  2<^)2. 

As  i  VD2  _  4  if^  is  the  radius  of  Ci  (Theorem  I,  p.  131),  it  follows  that 

0'  is  not  zero  if  the  radii  of  C  and  Ci  are  not  zero.  Hence  (Theorem  I, 
p.  266) 

Theorem  XI.     The  polar  reciprocal  of  the  circle  C  :  x^  -{-  y^  =  r^  with  respect 

to  the  circle  Ci :  x^  -{■  y'^  +  Dx  ■}-  F  =  0  is  the  non-degenerate  conic  C  whose 
equation  is 

(XI)  (4  r2  -  1)2)  x2  +  4  r2y2  +  4  d  (^2  _  i^)  ̂  +  (r2D2  -  4  i^2)  =  q. 

The  nature  of  the  conic  C  depends  upon  the  sign  of 

A'  =  -4-4r2(4r2-D2). 

It  is  evident  that 

D2 

A'  <  0  if  4  r2  -  2)2  >  0,  or  r2  >  — ; 4 

A'  >  0  if  4  r2  -  2)2  <  0,  or  r^  < 

4 
 ' 

2)2 

A'  =  0  if  4  r2  -  2)2  =  0,  or  r2  =  — . 4 

Hence  (Theorem  IX,  p.  277) 

the  conic  C  is  an  ellipse       if  r^  > 

the  conic  C  is  an  hyperbola  if  r^  < 

the  conic  C"  is  a  parabola     if  r^  = 

4 

4 

4  
' 

T)2  /       2)        \ 

But  —  is  the  square  of  the  distance  from  the  origin  to  (   »  0  ) ,  the 4  \      2       / 

center  of  Ci  (Theorem  I,  p.  131),  and  therefore 

the  center  of  Ci  is  inside  of  C  if  r-  > 

the  center  of  Ci  is  outside  of  C  if  r2  < 

and  the  center  of  Ci  is  on  C  if  r2  = 

4 

4 

4  
' 

(3) 
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Hence 

Theorem  XII.  The  polar  reciprocal  of  a  circle  C  with  respect  to  a  circle  Ci 

is  an  ellipse,  hyperbola,  or  parabola  according  as  the  center  of  C\  is  inside  of, 
outside  of,  or  on  the  circle  C. 

PROBLEMS 

1.  Find  the  polar  reciprocal  of  the  circle  x^  +  y2  _  4  ̂ jth  respect  to  each 
of  the  following  circles  and  construct  the  figure. 

(a)  a;2  +  2/2  _  4 x  _  5  =  0.  Ans.   4y^-S6x-9  =  0. 

(b)  x2  +  y2  -  2a;  -  3  =  0.  Ans.   3x2  +  4?/2  -  14x  -5  =  0. 
(c)  x2  +  y2  _  6a;  =  0.  Ans.   5 x2  -  4 2/2  +  24x  - 

2.  Show  that  the  center  of  Ci  (Theorem  XI)  is  a  focus  of  (XI)  and  that  S? 
corresponding  directrix  is  the  polar  of  the  center  of  C  with  respect  to  Ci. 

ffint.  Transform  (XI)  by  moving  the  origin  to  the  center  of  C^,  find  the  focus  and 
directrix  by  comparison  with  (II),  p.  178,  and  transform  to  the  old  coordinates. 

3.  If  Pi  and  P2  are  two  points  whose  polars  with  respect  to  a  circle  Ci  are 

ii  and  L2,  then  —  =  — ,  where  li  and  Zg  are  the  distances  from  the  center  of di      di 

Ci  to  Pi  and  P2,  di  is  the  distance  from  X2  to  Pi,  and  d^  from  ii  to  P2. 

Hint.  The  center  of  C^  may  be  taken  as  the  origin.  Apply  (IV),  p.  31,  and  the  Rule, 

p.  106. 

4.  Prove  Theorem  XII  and  problem  2  by  means  of  problem  3  and  the  defi- 
nition of  a  conic  (p.  173). 

Hint.   Let  Pj  of  problem  3  be  the  center  of  C. 

5.  The  angles  which  two  lines  Xi  and  L2  (Fig.,  p.  311),  which  are  tan- 
gent to  a  circle  C,  make  with  the  polar  L  of  their  point  of  intersection 

are  evidently  equal.  If  we  reciprocate  the  figure  with  respect  to  a  circle 

Ci,  what  will  be  the  corresponding  theorem  in  the  new  figure  ? 

Hint.  The  polar  reciprocal  of  C  is  a  conic  whose  focus  is  the  center  of  C^  (problem  2). 
To  ij  and  L^  correspond  two  points  on  tlie  conic,  and  to  their  points  of  contact  correspond 
the  tangents  to  the  conic  at  these  points.  To  L  corresponds  the  point  of  Intersection  of 
these  tangents.  Draw  lines  from  the  focus  to  the  points  of  contact  of  the  tangents  and 
to  their  point  of  intersection,  and  apply  the  Corollary  to  Theorem  II,  p.  310. 

Ans.  If  two  tangents  be  drawn  to  a  conic,  the  line  joining  the  focus  to 

their  point  of  intersection  bisects  the  angle  between  the  focal  radii  drawn  to 
the  point  of  contact. 

I 
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6.  Obtain  the  following  theorems  in  the  right-hand  column  from  those  in 
the  left-hand  by  means  of  a  polar  reciprocation  with  respect  to  a  circle. 

(a)  Any  tangent  to  a  circle  is  per-  The  lines  from  a  focus  to  any  point 
pendicular  to  the  radius  drawn  to  the  on  a  conic  and  to  the  point  where  the 
point  of  contact.                                            tangent  at  that  point  meets  the  directrix 

are  perpendicular. 

(b)  The  angle  formed  by  two  tan-  The  angle  formed  by  the  focal  radii 
gents  to  a  circle  is  bisected  by  the  line       of  a  conic  drawn  to  its  points  of  inter- 
drawn  from  the  center  to  their  point       section  with  any  line  is  bisected  by  the 
of  intersection.                                                line  joining  the  focus  to  the  intersec- 

tion of  that  line  and  the  directrix. 

(c)  The  points  of  intersection  of  Chords  of  a  conic  which  subtend 
tangents  to  a  circle  which  intersect  at  equal  angles  at  the  focus  are  tangent 
a  constant  angle  lie  on  a  concentric  to  a  conic  with  the  same  focus  and 
circle.                                                              directrix. 

137.  Correlations.  Any  transformation  which  makes  the  points  of  one 

figure  correspond  to  the  lines  of  a  second  figure  is  called  a  correlation.  Polar 

reciprocations  with  respect  to  conies  are  the  most  important  correlations. 
A  correlation  is  completely  determined  when  we  are  able  to  find 

1.  The  equation  of  the  line  corresponding  to  a  given  point. 
2.  The  coordinates  of  the  point  corresponding  to  a  given  line. 
We  shall  now  see  that  a  correlation  is  defined  by  an  equation  of  the  form 

(1)  {aiXi  +  bivi  4-  ci)  x  +  (a2Xi  +  622/1  +  C2)  y  +  {asXi  +  632/1  +  C3)  =  0, 
which  is  of  the  first  degree  in  x  and  y  and  in  Xi  and  2/1. 

The  locus  of  (1)  is  the  line  corresponding  to  a  given  point  Pi  (xi,  yi). 
To  find  the  point  corresponding  to  a  given  line 

(2)  Ax-\-By  +  C  =  0, 

we  suppose  that  Pi  {xi,  yi)  is  the  required  point.  The  equation  of  the  line 
corresponding  to  Pi  is  (1).  Hence  (1)  and  (2)  have  the  same  locus  and 
therefore 

aii^i  +  612/1  +  ci  _  a2a;i  +  622/1  +  C2  _  asXi  +  632/1  +  Cs 

A  ~  B  C  ' 
These  equations  may,  in  general,  be  solved  for  Xi  and  yi- 

As  far  as  defining  the  line  corresponding  to  a  given  point  is  concerned,  the  parenthe- 
ses in  (1)  might  be  any  complicated  expressions  in  a,-,  and  y^.  But  if  the  expressions  in 

those  parentheses  were  not  of  the  first  degree,  then  the  equations  (3)  would  have  more 
than  one  pair  of  solutions  for  x^  and  y^,  and  hence  there  would  be  more  than  one  point 
corresponding  to  a  given  line. 

In  general  the  point  Pi  will  not  lie  upon  the  locus  of  (1).  The  condition 

that  Pi  should  lie  on  the  locus  of  (1)  is  (Corollary,  p.  53) 

{aiXi  +  612/1  +  ci)  xi  4-  (a2Xi  +  622/1  +  c^)  2/1  +  (a^Xi  -|-  632/1  -I-  as)  =  0, 

or       aiXi2  +  (6i  +  ag)  Xi2/i  +  622/1^  -|-  (ci  +  as)  Xi  +  (C2  +  63)  2/1  +  as  =  0. 

(3) 
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This  is  also  the  condition  that  Pi  shall  lie  upon  the  locus  of  the  equation 

(4)  aix2  +  (61  +  a^)  xy  +  biy^  +  (ci  +  aj)  x  +  {d  +  63)  y  +  as  =  0. 

The  manner  in  which  the  conic  sections  enter  into  the  theory  of  correlations 
is  thus  given  by 

Theorem  XIII.  The  locus  of  the  jtoints  which  lie  upon  the  lines  corresponding 
to  them  in  the  correlation  d^ned  by  {!)  is  the  conic  or  degenerate  conic  whose 
equation  is  (4). 

It  should  be  noticed  that  the  correlation  defined  by  (1)  is  not,  in  general, 

a  polar  reciprocation  in  the  curve  (4),  for  (1)  is  not  the  equation  of  the  polar 

of  Pi  (xi,  2/1)  with  respect  to  (4). 

Suppose,  however,  that  61  =  ae,  Ci  =  as,  and  C2  =  63.     Then  (4)  becomes 

(5)  aix'^  +  2  a2xy  +  622/^  +  2  asx  +  2  b^y  +  03  =  0, 

and  (1)  becomes 

(ttiXi  +  a22/i  +  as)x  +  (a2Xi  +  62^1  4-  ̂s)  y  +  (asXi  +  632/1  +  C3)  =  0, 
or 

(6)  aixix  +  a2  {yix  +  xiy)  +  622/12/  +  a3  (x  +  Xi)  +  63  (y  +  2/1)  +  cg  =  0. 

The  locus  of  (6)  is  the  polar  of  Pi  (Xi,  ?/i)  with  respect  to  (o).  Hence  we" have 

Theorem  XIV.  If  b\  =  a^,  Cx  =  as,  and  C2  =  63,  then  the  correlation  defined 

by  (1)  is  a  polar  reciprocation  with  respect  to  the  locus  of  (5), 



CHAPTER   XVI 

CARTESIAN  COORDINATES  IN  SPACE 

138.  Cartesian  coordinates.  The  foundation  of  Plane  Analytic 

Geometry  lies  in  the  possibility  of  determining  a  point  in  the 

plane  by  a  pair  of  real  numbers  (x,  y)  (p.  25).  The  study  of 

Solid  Analytic  Geometry  is  based  on  the  determination  of  a  point 

in  space  by  a  set  of  three  real  numbers  x,  y,  and  z.  This  deter- 
mination is  accomplished  as  follows  : 

Let  there  be  given  three  mutually  perpendicular  planes  inter- 

secting in  the  lines  XX\  YY\  and  ZZ'  which  will  also  be  mutually 
perpendicular.  These  three 

planes  are  called  the  coordinate 

pjanes  and  may  be  distin- 

guished as  the  X  F-plane,  the 

FZ-plane,  and  the  ZZ-plane. 
Their  lines  of  intersection 

are  called  the  axes  of  coordi- 

nates, and  the  positive  direc- 
tions on  them  are  indicated 

by  the  arrowheads.'*  The 
point  of  intersection  of  the 

coordinate  planes  is  called 

the  origin. 

Let  P  be  any  point  in  space  and  let  three  planes  be  drawn 

through  P  parallel  to  the  coordinate  planes  and  cutting  the  axes 

2it  A,  B,  and  C.  Then  the  three  numbers  OA  =  x,  OB  =  y,  and 
OC  =  z  are  called  the  rectangular  coordinates  of  P. 

*  XX'  and  ZZ'  are  supposed  to  be  in  the  plane  of  the  paper,  the  positive  direction  on 
XX'  being  to  the  right,  that  on  ZZ'  being  upward.  YY'  is  supposed  to  be  perpendicular 
to  the  plane  of  the  paper,  the  positive  direction  being  in  front  of  the  paper,  that  is,  from 
the  plane  of  the  paper  toward  the  reader. 

325 
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Any  point  P  in  space  determines  three  numbers,  the  coordinates 
of  P.  Conversely,  given  any  three  real  numbers  x,  y,  and  z,  a 

point  P  in  space  may  always  be  constructed  whose  coordinates 

are  «,  y,  and  z.  For  if  we  lay  off  OA  =x,  0B  =  y,  and  OC  =  z, 
and  draw  planes  through  A,  B,  and  C  parallel  to  the  coordinate 

planes,  they  will  intersect  in  such  a  point  P.     Hence 

Every  point  determines  three  real  number s^  and  conversely j  three 

real  numbers  determine  a  point. 

The  coordinates  of  P  are  written  (a?,  y,  z),  and  the  symbol 

P(x,  y,  z)  is  to  be  read,  "The  point  P  whose  coordinates  are ^,y, 

and  «." The  coordinate  planes  divide  all  space  into  eight  parts  called 

octants,  designated  by  0-XYZ,  0-X'YZ,  etc.  The  signs  of  the 
coordinates  of  a  point  in  any  octant  may  be  determined  by  the 

Rule  for  signs. 

X  is  positive  or  negative  according  as  P  lies  to  the  right  or  left 

of  the  YZ-plane. 
y  is  positive  or  negative  according  as  P  lies  in  front  or  in  back 

of  the  ZX-plane. 
z  is  positive  or  negative  according  as 

P  lies  a^ove  or  below  the  XY-plane. 

If  the  coordinate  planes  are  not 

mutually  perpendicular,  we  still  have 
an  analogous  system  of  coordinates 
called  oblique  coordinates.  In  this 

system  the  coordinates  of  a  point 
are  its  distances  from  the  coordi- 

^  nate  planes  measured  parallel  to  the 
axes  instead  of  perpendicular  to  the 

planes.  We  shall  confine  ourselves 

to  the  use  of  rectangular  coordinates. 

Points  in  space  may  be  conveniently  plotted  by  marking  the  same  scale  on  XJC 

and  ZZ'  and  a  somewhat  smaller  scale  on  YY\  Then  to  plot  any  point,  for  example 
(7,  6, 10),  we  lay  off  OA  =  7  on  OX,  draw  AQ  parallel  to  OF  and  equal  to  6  units 
on  0  F,  and  QP  parallel  to  OZ  and  equal  to  10  units  on  OZ. 
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^^^^  PROBLEMS 

^^B         1 .  What  are  the  coordinates  of  the  origin  ? 

^^M         2.  Ftot  the  following  sets  of  points. 

^B  (a)  (8,  0,2),  (-3,  4,  7),  (0,0,  5). 

^H  w 

^f  W 

(b)  (4,  -3,  6),  (-4,  6,0),  (0,8,0). 
(c)  (10,3,  -4),  (-4,  0,0),  (0,8,  4). 
(d)  (3,  -4,  -8),  (-5,  -6,4),  (8,6,0). 

(e)  (-4,  -8,  -  6),  (3,  0,  7),  (6,  -4,2). 

(f)  (-6,4,  -4),  (0,-4,6),  (9,  7,  -2). 

3.  Where  can  a  point  move  if  x  =  0?  if  y  =  0?  if  2  =  0? 

4.  Where  can  a  point  move  if  x  =  0  and  y  =  0?  it  y  =  0  and  z  =  0? 
if  z  =  0  and  x  =  0  ? 

6.  Show  that  the  points  (x,  y,  z)  and  (— x,  y,  z)  are  symmetrical  with 

respect  to  the  FZ-plane ;  (x,  y,  z)  and  (x,  —  ?/,  z)  with  respect  to  the  ZX- 

plane  ;   (x,  y,  z)  and  (x,  y,  —  z)  with  respect  to  the  XF-plane. 

6.  Show  that  the  points  (x,  y,  z)  and  (—  x,  —  y,  z)  are  symmetrical  with 

respect  to  ZZ' ;  (x,  y,  z)  and  (x,  —  y,  —z)  with  respect  to  XX' ;  (x,  y,  z)  and 
{-X,  y,  —z)  with  respect  to  YY' ;  (x,  y,  z)  and  (-  x,  -y,  —  z)  with  respect 
to  the  origin. 

7.  What  is  the  value  of  z  if  P  (x,  y,  z)  is  in  the  JTF-plane  ?  of  x  if  P  is  in 

the  rZ-plane  ?  of  ?/  if  P  is  in  the  ZA^-plane  ? 

8.  What  are  the  values  of  y  and  z  if  P  (x,  y,  z)  is  on  the  X-axis  ?  of  z  and 
X  if  P  is  on  the  Y-axis  ?  of  x  and  y  if  P  is  on  the  Z-axis  ? 

9.  A  rectangular  parallelopiped  lies  in  the  octant  0-XYZ  with  three 
faces  in  the  coordinate  planes.  If  its  dimensions  are  a,  6,  and  c,  what  are 
the  coordinates  of  its  vertices  ? 

139.  Orthogonal  projections.  To  extend  the  first  theorem  of 

projection  (p.  30)  we  define  the  angle  between  two  directed  lines 
in  space  which  do  not  intersect  to  be  the  angle  between  two 

intersecting  directed  lines  (p.  28)  drawn  parallel  to  the  given 

lines  and  having  their  positive  directions  agreeing  with  those  of 

the  given  lines. 

The  definitions  of  the  orthogonal  projection  (p.  29)  of  a  point 

upon  a  line  and  of  a  directed  length  AB  upon  a  directed  line 

hold  when  the  points  and  lines  lie  in  space  instead  of  in  the 

plane.     It  is  evident  that  the  projection  of  a  point  upon  a  line 
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may  also  be  regarded  as  the  point  of  intersection  of  the  line  and 

the  plane  passed  through  the  point  perpendicular  to  the  line. 

As  two  parallel  planes  are  equidistant,  then  tJie  projections  of  a 

directed  length  AB  upon  two  parallel  lines  whose  positive  directions 

agree  are  equal. 

Theorem  I.  First  theorem  of  projection.  If  A  and  B  are  points 

upon  a  directed  line  making  an  angle  of  y  with  a  directed  line  CD^ 
then  the 

(I)  projection  of  the  length  AB  upon  CD  =  AB  cos  y. 

Proof  Draw  CD'  through  A 
parallel  to  CD.  Then  by  defini- 

D'  tion  the  angle  between  AB  and 

^  CD'  equals  y.  Since  CD'  and  A  B 
intersect  we  may  apply  the  first 

theorem  of  projection  in  the  plane 

(p.  30),  and  hence  the 

projection  of  the  length  AB  upon  CD'  =  AB  cos  y. 

Since  the  projection  of  AB  on  CD  equals  the  projection  of  AB 

upon  C'D'  we  get  (I).  q.e.d. 
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Theorem  II.  Second  theorem  of  projection.  If  each  segment  of  a 

broken  line  in  space  be  given  the  direction  determined  in  passing 

continuously  from  one  extremity  to  the  other,  then  the  algebraic 

sum  of  the  projections  of  the  segments  upon  any  directed  line  equals 

the  projection  of  the  closing  line. 

The  proof  given  on  p.  48  holds  whether  the  broken  line  lies  in  the  plane  or  in 

Corollary  I.  The  projections  on  the  axes  of  coordinates  of  the 

line  joining  the  origin  to  any  point  P  are  respectively  the  coordir 
nates  of  P. 

For  the  projection  of  OP  (Fig.,  p.  325)  upon  OX  equals  the  sum  of  the  projec- 
tions of  OA,  AQ,  and  QP,  which  are  respectively  equal  to  x,  0,  and  0  [by  (I)]. 

Similarly  for  the  projections  on  OF  and  OZ. 
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Corollary  II.  Given  any  two po'mts  P^ (x-^,  y^,  z^)  and  P^ (^2?  ̂2?  ̂ 2)? then 

ccg  --  a^i  =  projection  of  jPi-Pg  upon  XX^, 

2^2  —  1/1  =  projection  of  1*1^*2  upon  YY^, 

z^  —  Zj^  —  projection  of  -PijPg  upon  ZZ', 

For  if  we  project  P\OPi  and  P1P2  upon  XX%  we  have  the 

proj.  of  PiO  +  proj.  of  OP2  =  proj.  of  PiP^- 

But  by  Corollary  I, 

proj.  of  PiO  =  —  xi,    proj.  of  OP2  =  x^. 

.'.  X2  —  xi  =  proj.  of  P1P2  upon  XX\ 

In  like  manner  the  other  formulas  are  proved. 

Corollary  III.  If  the  sides  of  a  polygon  be  given  the  direction 

established  by  passing  continuously  around  the  perimeter,  the  sum 

of  the  projections  of  the  sides  upon  any  directed  line  is  zero. 

PROBLEMS 

1.  Find  the  projections  upon  each  of  the  axes  of  the  sides  of  the  triangles 
whose  vertices  are  the  following  points  and  verify  the  results  by  Corollary  III. 

(a)  (-  3,  4,  -  8),  (5,  -  6,  4),  (8,  6,  0). 

(b)  (-4,  -8,  -6),  (3,0,  7),  (6,4,-2). 

(c)  (10,3,-4),  (-4,  0,2),  (0,8,  4). 
(d)  (-6,4,  -4),  (0,-4,  6),  (9,  7,  -2). 

2.  If  the  projections  of  P1P2  on  the  axes  are  respectively  3,  —  2,  and  7, 

and  if  the  coordinates  of  Pi  are  (—4,  3,  2),  find  the  coordinates  of  P2. 
Ans.    (-  1,  1,  9). 

3.  A  broken  line  joins  continuously  the  points  (6,  0,  0),  (0,  4,  3),  (—  4,  0,  0), 
and  (0,  0,  8).  Find  the  sum  of  the  projections  of  the  segments  and  the  pro- 

jection of  the  closing  line  on  (a)  the  X-axis,  (b)  the  F-axis,  (c)  the  Z-axis, 
and  verify  the  results  by  Theorem  II.     Construct  the  figure. 

4.  A  broken  line  joins  continuously  the  points  (6,  8,  —  3),  (0,  0,  —  3), 

(0,  0,  6),  (-8,  0,  2),  and  (-  8,  4,  0).  Find  the  sum  of  the  projections  of 
the  segments  and  the  projection  of  the  closing  line  on  (a)  the  X-axis,  (b)  the 

F-axis,  (c)  the  Z-axis,  and  verify  the  results  by  Theorem  II.  Construct  the 
figure. 

5.  Find  the  projections  on  the  axes  of  the  line  joining  the  origin  to  each 
of  the  points  in  problem  1. 
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6.  Find  the  angles  between  the  axes  and  the  line  drawn  from  the  origin  to 

(a)  the  point  (8,  6,  0).  Ans.    cos-^-,  cos-i-,  —  • 6  o     2 

(b)  the  point  (2,  -1,  -2).       Ans.   cos-i-,  cos-i^^-^V  cos-i(^--Y 

7.  Find  two  expressions  for  the  projections  upon  the  axes  of  the  line" 
drawn  from  the  origin  to  the  point  P(x,  y,  z)  if  the  length  of  the  line  is 
p  and  the  angles  between  the  line  and  the  axes  are  a,  /3,  and  y. 

8.  Find  the  projections  of  the  coordinates  of  P(x,  y,  z)  upon  the  line 
drawn  from  the  origin  to  P  if  the  angles  between  that  line  and  the  axes 
are  a,  /3,  and  7.  Ans.   xcosa,  ycos/3,  ZC0S7. 

140.  Direction  cosines  of   a  line.    The  angles  a,  ft,  and  y 
between  a  directed  line  and  the  axes  of  coordinates  are  called 

the  direction  angles  of  the  line. 

If  the  line  does  not  intersect  the  axes,  then  by  definition  (p.  327)  a,  /3,  and  7 
are  the  angles  between  the  axes  and  a  line  drawn  through  the  origin  parallel  to 
the  given  line  and  agreeing  with  it  in  direction. 

The  cosines  of  the  direction  angles  of  a  line  are  called  the 
direction  cosines  of  the  line. 

Reversing  the  direction  of  a  line  changes  the  signs  of  the  direc- 
tion cosines  of  the  line. 

For  reversing  the  direction  of  a  line  changes  ex,  j3,  and  7  into  (p.  28)  ;r  —  a, 
Tt  —  ̂ ,  and  It  —  y  respectively,  and  (5,  p.  20)  cos  (tt  —  x)  =  —  cos  x. 

Theorem  III.    If  a.,  ̂,  and  y  are  the  direction  angles  of  a  line,  then 

Qos^a  +  cos^)S  +  CDs'*  y  =  1. 

That  is,  the  sum  of  the  squares  of  the 

direction  cosines  of  a  line  is  unity. 

Proof.  Let  ̂   jB  be  a  line  whose 
direction  angles  are  a,  ft,  and  y. 

Through  O  draw  OP  parallel  to 

AB  and  let  OP  =  p.  By  definition 

(p.  327)  Z  XOP=a,  Z  Y0P  =  (3, 
ZZOP=y.  Projecting  OP  on  the 
axes,  we  get  by  Corollary  I,  p.  328, 
and  Theorem  I,  p.  328, 

X  =  p  cos  a,  y  =  p  cos  /3,  z  =  p  cos  y. 

(Ill) 
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Projecting  OP  and  OCQP  on  OP,  we  get  (Theorems  I  and  II) 

(2)  p  =  X  cos  a  -{-  y  cos  ̂   -\-  z  cos  y. 

Substituting  from    (1)   in   (2)   and  dividing  by  p,  we  obtain 

(HI).  Q.E.D. 

^       „              ̂ -  cos  or        COSiS        cosy        . 

Corollary.    If   =  —j^  =   '- ?  then 

a  ^  ^ 
cos  a  =      ,     cosp  = 

±  Va^  +  ̂2  _^  c2  ±  Va2  +  62  _^  c« 
c 

COS  y  =      . 
±  Va^  _!_  62  +  c^ 

TAa^  is,  ty*  ̂Ae  direction  cosines  of  a  line  are  proportional  to  three 
numbers,  they  are  res2)ectively  equal  to  these  numbers  each  divided 

by  the  square  root  of  the  sum  of  their  squares. 

For  if  r  denotes  the  common  value  of  the  given  ratios,  then 

(3)  cos  a  =:  ar,    cos  /3  =  hr,    cos  7  =  cr. 

Squaring,  adding,  and  applying  (III) , 

l=/-2(a2  +  62  4-c2). 
1 

.'.  r 

±  V  a2  +  62  _|_  c2 

Substituting  in  (3),  we  get  the  values  of  cos  a,  cos  /3,  and  cos  7  to  he  derived. 

If  a  line  cuts  the  XF-plane,  it  will  he  directed  upward  or  downioard  according 
as  cos  7  \B  positive  or  negative. 

If  a  line  is  parallel  to  the  JTY-plane,  cos  7  =  0  and  it  will  he  directed  in  front 
or  in  hack  of  the  ZX-plane  according  as  cos  )3  is  positive  or  negative. 

If  a  line  is  parallel  to  the  X-axis,  cos  /3  =  cos  7  =  0,  and  its  positive  direction 
will  agree  or  disagree  with  that  of  the  X-axis  according  as  cos  a  =  1  or  —  1. 

These  considerations  enable  us  to  choose  the  sign  of  the  radical  in  the  Corollary 
so  that  the  positive  direction  on  the  line  shall  be  that  given  in  advance. 

141.  Lengths. 

Theorem  IV.  The  length  I  of  the  line  joining  two  points 

Pi(xi,  yi,  Zi)  and  P2{x^,  y^,  z.^  is  given  by 

(TV)         I  =  V(^,  -  ̂ .,)2  +  (2,,  _  y,y  +  {z^  -  z^y. 
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Proof.    Let  the  direction  angles  of  the  line  P^P^  be  a,  fi,  and  y. 

Projecting  P1P2  on  the  axes,  we  get,  by  Theorem  I,  p.  328, 

and  Corollary  II,  p.  329, 

(1)  I  cos  a  =  X2  —  Xi,    I  cos  /3  =  j/2  —  I/l)    I  COS  y  =  2:2  —  ̂ 1' 

Squaring  and  adding, 

P  (cos2  a  +  cos^  p  +  c'os^  y)  =  (x^  -  x.f  +  {y^  -  y,y  +  {z^  -  z,Y 
=  (^1  -  x,Y  +  (//I  -  y,y  +  {z,  -  z,y\ 

Applying  (III),  p.  330,  and  taking  the  square  root,  we  get  (IV). 

Q.E.D. 
Corollary.    The  direction  cosines  of  the  line  drawn  from  Pi  to 

Pg  (^r&  proportional  to  the  projections  of  PiP^  on  the  axes. 

cos  a    _    cos  jS  cos  y For,  from  (1), 
«2  -  a^i       2/2  -  Vi 

since  each  ratio  equals  ->  and  the  denominators  are  the  projections  of  Pi-Tg  on 
the  axes  (Corollary  II,  p.  329). 

If  we  construct  a  rectangular  parallelopiped 

by  passing  planes  through  P^  and  P^  parallel 
to  the  coordinate  planes,  its  edges  will  be  paral- 

lel to  the  axes  and  equal  numerically  to  the 
projections  of  P1P2  upon  the  axes.  P1P2  will 
be  a  diagonal  of  this  parallelopiped,  and  hence 

'  X  ̂   will  equal  the  sum  of  the  squares  of  its 
three  dimensions.  We  have  thus  a  second 

I  /  method  of  deriving  (IV). 

c 

A        / 
pi-.4--tr_ 

'2 

/!----- 

A 

B       I 

T) V 
/ 

/     ̂ PROBLEMS 

1 .  Find  the  length  and  the  direction  cosines  of  the  line  drawn  from 

(a)  Pi (4,  3,  -  2)  to  P2(-  2,  1,  -  6).  Ari^.   7,  -  f,  -  f,  -  f 

(b)  Pi  (4,  7,  -  2)  to  P2(3,  5,  -  4).  An%.    3,  -  1,  -  |,  -  |. 
(c)  Pi  (3,  -  8,  6)  to  P2  (6,  -  4,  6). 

Ans.    5.  I,  4,  0. 

2.  Find  the  direction  cosines  of  a  line  directed  upward  if  they  are  propor- 

tional to  (a)  3,  6,  and  2  ;  (b)  2,  1,  and  -  4 ;  (c)  1,  -  2,  and  3. 

Ans.   (a)  4,  f,  f ;   (b)  ̂ — ,  ̂— ,  -  -  __;  (c)  -^.^,~ 
-V2I    -V21    +V21  V14    V14    V14 
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3.  Find  the  lengths  and  direction  cosines  of  the  sides  of  tlie  triangles 
whose  vertices  are  the  following  points ;  then  find  the  projections  of  the  sides 

upon  the  axes  by  Theorem  I,  p.  o28,  and  verify  by  Corollary  III,  p.  821). 

(a)  (0,  0,  3),  (4,  0,  0),  (8,  0,  0). 

(b)  (3,2,0),  (-2,5,7),  (1,  -3,  -5). 
(c)  (-4,0,6),  (8,2,-1),  (2,4,6). 
(d)  (3,  -  3,  -  3),  (4,  2,  7),  (-  1,  -  2,  -  6). 

4.  In  what  octant  {0-XYZ^  0-X'YZ,  etc.)  will  the  positive  part  of 
a  line  through  0  lie  if 

(a)  cos  a  >  0,  cos  jS  >  0,  cos  7  >  0  ?  (e)  cos  a  <  0,  cos  ̂   >  0,  cos  7  >  0  ? 
(b)  cosa>0,  cos/3>0,  cos7<0?  (f)  cosa<0,  cosj8<0,  cos7>0? 
(c)  cos  a  >  0,  cos  j3  <  0,  cos  7  <  0  ?  (g)  cos  a  <  0,  cos  /3  <  0,  cos  7  <  0  ? 

(d)  cos  or  >  0,  cos  /S  <  0,  cos  7  >  0  ?  (h)  cos  cr  <  0,  cos  j3  >  0,  cos  7  <  0  ? 

5.  What  is  the  direction  of  a  line  if  cos  n:  =  0  ?  cos  j3  =  0  ?  cos  7  =  0  ? 

cos  a  =  cos  /3  =  0  ?  cos  /3  =  cos  7  =  0  ?  cos  7  =  cos  a  =  0  ? 

6.  Find  the  projection  of  the  line  drawn  from  the  origin  to  Pi  (5,  —  7,  6) 
upon  a  line  whose  direction  cosines  are  |,  —  5,  and  f.  Ans.    9. 

Hint.  The  projection  of  OPi  on  any  line  equals  the  projection  of  a  broken  line  whose 
segments  equal  the  coordinates  of  P^. 

7.  Find  the  projection  of  the  line  drawn  from  the  origin  to  Pi  (xi,  yi,  Z\) 

upon  a  line  whose  direction  angles  are  or,  ̂ ,  and  7. 
Ans.   Xi  cos  a  +  2/1  cos  /3  +  zi  cos  7. 

8.  Show  that  the  points  (-  3,  2,  -  7),  (2,  2,  -  3),  and  (-  3,  6,  -  2)  are 
the  vertices  of  an  isosceles  triangle, 

9.  Show  that  the  points  (4,  3,  -  4),  (-  2,  9,  -  4),  and  (-  2,  3,  2)  are  the 
vertices  of  an  equilateral  triangle. 

10.  Show  that  the  points  (-4,  0,  2),  (-1,  3  V3,  2),  (2,  0,  2),  and 
(  —  1,  V3,  2  +  2  Ve)  are  the  vertices  of  a  regular  tetraedron. 

11.  What  does  formula  (IV)  become  if  Pi  and  P2  lie  in  the  XF-plane  ? 
in  a  plane  parallel  to  the  XF-plane  ? 

12.  Show  that  the  direction  cosines  of  the  lines  joining  each  of  the  points 

(4,  -  8,  6)  and  (-  2,  4,  -  3)  to  the  point  (12,  -  24,  18)  are  the  same.  How 
are  the  three  points  situated  ? 

13.  Show  by  means  of  direction  cosines  that  the  three  points  (3,  —  2,  7), 

(6,  4,  —  2),  and  (5,  2,  1)  lie  on  a  straight  line. 

14.  What  are  the  direction  cosines  of  a  line  parallel  to  the  X-axis  ?  to  the 
F-axis  ?  to  the  Z-axis  ? 
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16.  What  is  the  value  of  one  of  the  direction  cosines  of  a  line  parallel 
to  the  XY-plane  ?  the  yZ-plane  ?  the  ZJT-plane  ?  What  relation  exists 
between  the  other  two  ? 

16.  Show  that  the  point  (—1,  —  2,  —  1)  is  on  the  line  joining  the  points 
(4,  —  7,  3)  and  (—  6,  3,  —  5)  and  is  equally  distant  from  them. 

17.  If  two  of  the  direction  angles  of  a  line  are  —  and  - ,  what  is  the  third  ? 

Ans.   —or   3        3 

18.  Find  the  direction  angles  of  a  line  which  is  equally  inclined  to  the 

three  coordinate  axes.  Ans.    a  =  /3  =  7  =  cos-i  |  Vs. 

19.  Find  the  length  of  a  line  whose  projections  on  the  axes  are  respectively 

(a)  6,  -  3,  and  2.  Ans.   7. 
(b)  12,  4,  and  -  3.  Ans.   13. 
(c)  -2,-1,  and  2.  Ans.    3. 

142.  Angle  between  two  directed  lines. 

Theorem  V.  If  a,  p,  y  and  a',  (3',  y'  are  the  direction  angles  of 
two  directed  linesy  then  the  angle  0  between  them  is  given  by 

(V)  cos  ̂   =  cos  a  cos  a'  +  cos  p  cos  ̂ '  +  cos  y  cos  y'. 

Proof.  Draw  OP  and  OP' 
parallel  to  the  given  lines  and 

let  OP  =  p.  Then  by  definition, 

p.  327, 

Z  POP'  =  0. 

Project  OP  and  OABP  on  OP'. 
^  Then  by  Theorem  I,  p.  328,  and 

'^  ̂  Theorem  II,  p.  328, 

(1)  p  cos  6 =  X  cos  a'-\-  y  cos  y8'+  z  cos  y'. 

Projecting  OP  on  the  axes  (Corollary  I,  p.  328,  and  Theorem  I), 

(2)  X  =  p  cos  a,     y  —  p  cos  y8,     z  =  p  cos  y. 

Substituting  in  (1)  from  (2)  and  dividing  by  /»,  we  obtain  (V). 

Q.E.D. 
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Theorem  VI.  If  a,  (i,  y  and  a',  ft',  y'  are  the  direction  angles  of 
two  lines,  then  the  lines  are 

(a)  parallel  and  in  the  same  direction*  when  and  only  when 

a  =  a',  ft  ̂  ft',  y  =  y'', 
(b)  perpendicular  f  tvhen  and  07ily  ivhen 

cos  a  COS  a'+  COS  ft  COS  ft'  +  COS  y  COS  y'  =  0. 
That  is,  two  lines  are  parallel  and  in  the  same  direction  when 

aTid  only  when  their  direction  angles  are  equal,  and  perpendicular 

when  and  only  when  the  sum  of  the  products  of  their  direction 
cosines  is  zero. 

Proof  The  condition  for  parallelism  follows  from  the  fact 

that  both  lines  will  be  parallel  to  and  agree  in  direction  with  the 

same  line  through  the  origin  when  and  only  when  their  direction 
angles  are  equal. 

The  condition  for  perpendicularity  follows  from  (V),  for  if 

^  =  —  >  then  cos  ̂   =  0,  and  conversely.  q.e.d. 

Corollary.    If  the  direction  cosines  of  the  lines  are  proportional 

to  a,  b,  c  and  a',  b',  c',  then  the  conditions  for  parallelism  and 
perpendicularity  are  respectively 

a  _b  _  c 

~^'~b'^~^' 

143.  Point  of  division. 

Theorem  VII.  The  coordinates  (x,  y,  z)  of  the  point  of  division 

P  on  the  line  joining  P\(xi,  yi,  z-^)  and  P^^x^,  y^,  ̂ 2)  such  that  the 
ratio  of  the  segments  is 

-  =  -  =  -,      aa' -{- bb' -\- cc' =  0. 

are  given  by  the  formulas 

^^vxx;        u?  — —   j   r      ,      y 

PxP 

=  A 

_2/i 

+  A1/2 

1  +  A    '    "^         1  +  A    '  1  +  A 
This  is  proved  as  on  p.  39. 

*  They  will  be  parallel  and  differ  in  direction  when  and  only  when  the  direction 
angles  are  supplementary. 

t  Two  lines  in  space  are  said  to  be  perpendicular  when  the  angle  between  them  is  — t 
but  the  lines  do  not  necessarily  intersect. 
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Corollary.    The  coordinates  {x,  y,  z)  of  the  middle  point  P  of  t) 

liyie  joinltKj  J\(xi,  t/i,  z^)  and  I\{x^,  y.^,  z^)  are 

Qc  =  J(a5i  +  a?a),     y  =  i(yi  +  2/2),     z  =  |(«i  +  z^). 

PROBLEMS 

1.  Find   the   angle   between    two   lines   whose    direction  cosines  are" 
respectively 

(a)  f ,  f,  -  f  and  f,  -  |,  f. 

(b)  I,  -  1,  f  and  -  j\,  j*j,  if. Ans.   -. Ans.   cos-i^|. 
Ans.    cos-i(— ^), 

2.  Show  that  the  lines  whose  direction  cosines  are  f ,  f ,  | ;  —  ̂ ,  f ,  —  f ; 

and  —  f,  2,  -2  are  mutually  perpendicular. 

3.  Show  that  the  lines  joining  the  following  pairs  of  points  are  either 

parallel  or  perpendicular. 

(a)  (3,  2,  7),  (1,  4,  6)    and  (7,  -  5,  9>,  (5,  -  3,  8). 
(b)  (13,  4,  9),  (1,  7,  13)    and  (7,  16,  -  6),  (3,  4,  -  9). 

(c)  (-  6,  4,  -  3),  (1,  2,  7)  and  (8,  -  5,  10),  (15,  -  7,  20). 

4.  Find  the  coordinates  of  the  point  dividmg  the  line  joining  the  follow- 

ing points  in  the  ratio  given. 

(a)  (3,  4,  2),  (7,  -  6,  4),  \  =  l.  Ans.    (V-,  |,  |). 
(b)  (-  1,  4,  -  6),  (2,  3,  -  7),  \  =  -  3.  Ans.    (|,  |,  -  J^i). 
(c)  (8,  4,  2),  (3,  9,  6),  \  =  -  i.  Ans.    (V-,  f,  0). 
(d)  (7,  3,  9),  (2,  1,  2),  X  =  4.  Ans.    (3,  1,  V)- 

5.  Show  that  the  points  (7,  3,  4),   (1,  0,  6),  and  (4,  5,   -  2)  are  the 
vertices  of  a  right  triangle. 

6.  Showthatthepoints(-6,3,  2),  (3,  -  2,  4),  (5,  7,  3),  and  (- 13, 17,-1) 
are  the  vertices  of  a  trapezoid. 

7.  Show  that  the  points  (3,  7,  2),  (4,  3,  1),  (1,  6,  3),  and  (2,  2,  2)  are  the 
vertices  of  a  parallelogram. 

8.  Show  that  the  points  (6,  7,  3),  (3,  11,  1),  (0,  3,  4),  and  (-  3,  7,  2)  are 
the  vertices  of  a  rectangle. 

9.  Show  that  the  points  (6,  -  6,  0),  (3,  -  4,  4),  (2,  -  9,  2),  and  (-  1, 
—  7,  6)  are  the  vertices  of  a  rhombus. 

10.  Show  that  the  points  (7,  2,  4),  (4,  -  4,  2),  (9,  -  1, 10),  and  (6,  -  7,  8) 
are  the  vertices  of  a  square. 
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11.  Show  that  each  of  the  followmg  sets  of  pomts  lies  on  a  straight  line, 

and  find  the  ratio  of  the  segments  in  which  the  third  divides  the  line  joining 
the  first  to  the  second. 

(a)  (4,  13,  3),  (3,  6,  4),  and  (2,  -  1,  5).  Ans.    -  2. 

(b)  (4,  -  5,  -  12),  (-  2,  4,  6),  and  (2,  -  2,  -  6).  Ans.    },. 
(c)  (-  3,  4,  2),  (7,  -  2,  6),  and  (2,  1,  4).  Ans.    1. 

12.  Find  the  lengths  of  the  medians  of  the  triangle  whose  vertices  are 

the  points  (3,  4,  -  2),  (7,  0,  8),  and  (-  5,  4,  6).       Ans.   Vll3,  VSO,  2V29. 

13.  Show  that  the  lines  joining  the  middle  points  of  the  opposite  sides  of 

the  quadrilaterals  whose  vertices  are  the  following  points  bisect  each  other. 

(a)  (8,  4,  2),  (0,  2,  5),  (-  3,  2,  4),  and  (8,  0,  -6). 
(b)  (0,  0,  9),  (2,  6,  8),  (-  8,  0,  4),  and  (0,  -  8,  6). 
(C)    Pl(Xi,  2/1,  21),   P2(iC2,  2/2,  22),  Ps{X3,  Vs,  Z3),  P^iX^,  2/4,  Z^). 

14.  Show  that  the  lines  joining  successively  the  middle  points  of  the  sides 

of  any  quadrilateral  torm  a  pai»allelogram. 

15.  Find  the  projection  of  the  line  drawn  from  Pi  (3,  2,  —  6)  to  P2(—  3, 
5,  —  4)  upon  a  line  directed  upward  whose  direction  cosines  are  proportional 

to  2,  1,  and  -  2.  Ans.   ̂ . 

16.  Find  the  projection  of  the  line  drawn  from  Pi  (6,  3,  2)  to  P2(4,  2,  0) 

upon  the  line  drawn  from  P3(7,  -  6,  0)  to  P4(-  5,  -  2,  3).         Ans.    ̂ |. 

17.  Find  the  coordinates  of  the  point  of  intersection  of  the  medians  of  the 

triangle  whose  vertices  are  (3,  6,  -  2),  (7,  -  4,  3),  and  (-  1,  4,  -  7). 
Ans.    (3,  2,  -  2). 

18.  Find  the  coordinates  of  the  point  of  intersection  of  the  medians  of 

the  triangle  whose  vertices  are  any  three  points  Pi,  P2,  and  P3. 

Ans.    [1  {xi  +  X2  +  X3),  i  (2/1  +  2/2  +  Vs),  i  {zi  +  Z2  +  Za)]. 

19.  The  three  lines  joining  the  middle  points  of  the  opposite  edges  of  a 

tetraedron  pass  through  the  same  point  and  are  bisected  at  that  point. 

20.  The  four  lines  drawn  from  the  vertices  of  any  tetraedron  to  the  point 

of  intersection  of  the  medians  of  the  opposite  face  meet  in  a  point  which 
is  three  fourths  of  the  distance  from  each  vertex  to  the  opposite  face  (the 
center  of  gravity  of  the  tetraedron). 



CHAPTER   XVII 

SURFACES,  CURVES,  AND  EQUATIONS 

144.  Loci  in  space.  In  Solid  Geometry  it  is  necessary  to  con- 
sider two  kinds  of  loci : 

1.  The  locus  of  a  point  in  space  which  satisfies  one  given  con- 
dition is,  in  general,  a  surface. 

Thus  the  locus  of  a  point  at  a  given  distance  from  a  fixed  point  is  a  sphere, 
and  the  locus  of  a  point  equidistant  from  two  fixed  points  is  the  plane  which  is 
perpendicular  to  the  line  joining  the  given  points  at  its  middle  point. 

2.  The  locus  of  a  point  in  space  which  satisfies  two  conditions  * 
is,  in  general,  a  curve.  For  the  locus  of  a  point  which  satisfies 
either  condition  is  a  surface,  and  hence  the  points  which  satisfy 
both  conditions  lie  on  two  surfaces,  that  is,  on  their  curve  of 
intersection. 

Thus  tl^  locus  of  a  point  which  is  at  a  given  distance  r  from  a  fixed  point  Pi 
and  is  equally  distant  from  two  fixed  points  F^  and  P3  is  the  circle  in  which  the 
sphere  whose  center  is  Pi  and  whose  radius  is  r  intersects  the  plane  which  is 
perpendicular  to  P2P3  at  its  middle  point. 

These  two  kinds  of  loci  must  be  carefully  distinguished. 

145.  Equation  of  a  surface.     First  fundamental  problem.   If 
any  point  P  which  lies  on  a  given  surface  be  given  the  coordinates 
(x,  y,  z),  then  the  condition  which  defines  the  surface  as  a  locus 
will  lead  to  an  equation  involving  the  variables  x,  y,  and  z. 

The  equation  of  a  surface  is  an  equation  in  the  variables  x,  y, 
and  z  representing  coordinates  such  that : 

.  1.  The  coordinates  of  every  point  on  the  surface  will  satisfy 
the  equation. 

2.  Every  point  whose  coordinates  satisfy  the  equation  will  lie 
upon  the  surface. 

*  The  number  of  conditions  must  be  counted  carefully.  Thus  if  a  point  is  to  be  equi- 
distant from  three  fixed  points  P^,  P^,  and  P^,  it  satisfies  two  conditions,  namely,  of  being 

equidistant  from  P,  and  P^  and  from  P^  and  P3. 
338 
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If  the  surface  is  defined  as  the  locus  of  a  point  satisfying  one 

condition,  its  equation  may  be  found  in  many  cases  by  a  Rule 

analogous  to  that  on  p.  53. 

Ex.  1.  Find  the  equation  of  the  locus  of  a  point  whose  distance  from 

Pi  (3,  0,  -  2)  is  4. 

Solution.  Let  P  {x,  y,  z)  be  any  point  on  the  locus.  The  given  condition 

may  be  written  p  p  _  4 

By  (IV),  p.  331,     PiP  =  V(x  -  3)2  +  2/2  +  (z  +  2)2. 

.-.  V(x  -  3)2  +  2/2  +  (z  +  2)2  =  4. 

Simplifying,  we  obtain  as  the  required  equation 

x2  +  y2  +  2;2_6x  +  4z-3  =  0. 

That  this  is  indeed  the  equation  of  the  locus  should  be  verified  as  in  Ex.  1, 
p.  52,  and  Ex.  1,  p.  53. 

PROBLEMS 

1 .  Find  the  equation  of  the  locus  of  a  point  which  is 

(a)  3  units  above  the  XY-plane. 
(b)  4  units  to  the  right  of  the  FZ-plane. 

(c)  5  units  below  the  JTF-plane. 

(d)  10  units  back  of  the  ZX-plane. 

(e)  7  units  to  the  left  of  the  FZ-plane. 
(f)  2  units  in  front  of  the  ZX-plane. 

2.  Find  the  equation  of  the  plane  which  is  parallel  to 

(a)  the  XF-plane  and  4  units  above  it. 

(b)  the  XF-plane  and  5  units  below  it. 
(c)  the  ZX-plane  ahd  3  units  in  front  of  it. 

(d)  the  FZ-plane  and  7  units  to  the  left  of  it. 

(e)  the  ZX-plane  and  2  units  back  of  it. 
(f)  the  FZ-plane  and  4  units  to  the  right  of  it. 

3.  Find  the  equation  of  the  sphere  whose  center  is  the  point 

(a)  (3,  0,  4)  and  whose  radius  is  5. 

Ans.   x2  +  2/2  +  z2  _  6x  -  8 2;  =  0. 

(b)  (—3,  2,  1)  and  whose  radius  is  4. 

Atis.   x'^  +  y^  +  z^-\-6x-iy-2z~2  =  0. 
(c)  (6,  4,  0)  and  whose  radius  is  7. 

Ans.   x2  -I-  2/2  -I-  22  -  12  X  -  8  2/  +  3  =  0. 

(d)  (a,  j8,  7)  and  whose  radius  is  r. 

Ans.    x2  +  ?/2  +  z2  _  2  nrx  -  2  /S?/  -  2  7Z  +  a2  +  (3-2  +  72  _  ̂ 2  _  q. 
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4.  What  are  the  equations  of  the  coordinate  i)lanes? 

6.  What  is  the  form  of  the  equation  of  a  plane  which  is  parallel  to  the 

Xr-plane  ?  the  TZ-plane  ?  the  ZAT-plane  ? 

6.  Find  the  equation  of  the  locus  of  a  point  which  is  equally  distant  from 
the  points 

(a)  (3,  2,  -  1)  and  (4,  -  3,  0).  Ans.  2x -lOy  +  2  2 -11  =  0. 
(b)  (4,  -  3,  6)  and  (2,  -  4,  2).  Ans.  4x  +  2y  +  8z-37  =  0. 
(c)  (1,  3,  2)  and  (4,  -  1,  1).  Ans.  3x-4y-2-2  =  0. 

(d)  (4,  -  6,  -  8)  and  (- 2,  7,  9).  Ans.  6x  -  13y  -  172  +  9  =  0. 

7.  Find  the  equations  of  the  six  planes  drawn  through  the  middle  points 

of  the  edges  of  the  tetraedron  whose  vertices  are  the  points  (5,  4,  0), 

(2,  —5,  —4),  (1,  7,  —5),  and  (—4,  3,  4)  which  are  perpendicular  to  the 
edges,  and  show  that  they  all  pass  through  the  point  (—1,  1,  —  2). 

8.  What  are  the  equations  of  the  faces  of  the  rectangular  parallelopiped 

which  has  one  vertex  at  the  origin,  three  edges  lying  along  the  coordinate 
axes,  and  one  vertex  at  the  point  (3,  5,  7)  ? 

9.  Find  the  equation  of  the  sphere  whose  center  is  the  point  (6,  2,  3) 

which  passes  through  the  origin.     Ans.  x^  ■+  y^  +  z^  —  12x  —  4y  —  6z  =  0. 

10.  Find  the  equation  of  the  locus  of  a  point  vv^hich  is  three  times  as  far 

from  the  point  (2,  6,  8)  as  from  (4,  —  2,  4)  and  determine  the  nature  of  the  ̂  
locus  by  comparison  with  the  answer  to  problem  3,  (d).  ^| 

11.  Find  the  equation  of  the  locus  of  a  point  the  sum  of  the  squares  of 

whose  distances  from  (1,  3,  —  2)  and  (6,  —  4,  2)  is  50  and  determine  the 
nature  of  the  locus  by  comparison  with  the  answer  to  problem  3,  (d). 

146.  Planes  parallel  to  the  coordinate  planes.  We  may  easily 

prove 
Theorem  I.    The  equation  of  a  plane  which  is 

parallel  to  the  XY-plane  has  the  form  z  =  constant; 

parallel  to  the  YZ -plane  has  the  form  x  =  constant; 

parallel  to  the  ZX-plane  has  the  form      y  =  constant. 

147.  Equations  of  a  curve.    First  fundamental  problem.   If 
any  point  P  which  lies  on  a  given  curve  be  given  the  coordinates 
{x,  y,  z),  then  the  tv70  conditions  which  define  the  curve  as  a 
locus  will  lead  to  two  equations  involving  the  variables  x,  y, 
and  z. 
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The  equations  of  a  curve  are  two  equations  in  the  variables 
X,  y,  and  z  representing  coordinates  such  that: 

1.  The  coordinates  of  every  point  on  the  curve  will  satisfy- 
both  equations. 

2.  Every  point  whose  coordinates  satisfy  both  equations  will 
lie  on  the  curve. 

If  the  curve  is  defined  as  the  locus  of  a  point  satisfying  two 
conditions,  the  equations  of  the  surfaces  defined  by  each  condi- 

tion separately  may  be  found  in  many  cases  by  a  Rule  analogous 
to  that  on  p.  53.    These  equations  will  be  the  equations  of  the  curve. 

Ex.  1.  Find  the  equations  of  the  locus  of  a  point  whose  distance  from 
the  origin  is  4  and  which  is  equally  distant  from  the  points  Pi  (8,  0,  0)  and 
P2  (0,8,0).  ^^ 

Solution.    First  step.    Let  P(x,  y,  z) 
be  any  point  on  the  locus. 

Second  step.  The  given  conditions  are 

(1)  P0  =  4,     PPi  =  PP2. 

Third  step.    By  (IV),  p.  331, 

PO  =  Vx2  +  2/2  4-  z^, 

PPi  =  V(x  -  8) 

  y^  +  z\ PPi  =  Vx2  +  {y-  8)2  +  z^ 

Substituting  in  (1),  we  get 

Vx2  +  2/2  +  22  =  4,        V(X  -  8)2  +  2/2 Vx2  +  (2/  -  8)2  -}-  z^. 
Squaring  and  reducing,  we  have  the  required  equations,  namely, 

x2  +  2/2  +  2;2  ̂   16,     X  -  y  =  0. 

These  equations  should  be  verified  as  in  Ex.  1,  p.  52. 

Ex.  2.  Find  the  equations  of  the  circle  lying  in  the  XF-plane  whose  center 
is  the  origin  and  whose  radius  is  5. 

Solution.    In  Plane  Geometry  the  equation  of  the  circle  is  (Corollary,  p.  58) 

(2)  x2  +  2/^  =  25. 

Regarded  as  a  problem  in  Solid  Geometry  we  must  have  two  equations 

which  the  coordinates  of  any  point  P(x,  y,  z)  which  lies  on  the  circle  must 

satisfy.     Since  P  lies  in  the  XF-plane, 

(3)  z  =  0. 

Hence  equations  (2)  and  (3)  together  express  that  the  point  P  lies  in  the 

XF-plane  and  on  the  given  circle.     The  equations  of  the  circle  are  therefore 

x2  +  2/2  =  25,     z  =  0. 
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The  reasoning  in  Ex.  2  is  general.     Hence 

If  the  equation  of  a  curve  in  the  XY-plane  is  known,  then  the 

equations  of  that  curve  regarded  as  a  curve  in  space  are  the  given 

equation  and  z  =i  0. 

An  analogous  statement  evidently  applies  to  the  equations  of  a 

curve  lying  in  one  of  the  other  coordinate  planes. 

From  Theorem  I,  p.  340,  we  have  at  once 

Theorem  II.    The  equations  of  a  line  which  is  parallel  to 

the  X-axis  have  the  form,       y  =  constant,     z  =  constant; 

the  Y-axis  have  the  form        z  =  constant,     x  =  constant; 

the  Z-axis  have  the  form       x  =  constant,     y  =  constant. 

PROBLEMS 

1.  Find  the  equations  of  the  locus  of  a  point  which  is 

(a)  3  units  above  the  JTF-plane  and  4  units  to  the  right  of  the  yZ-plane. 

(b)  5  units  to  the  left  of  the  FZ-plane  and  2  units  in  front  of  the  ZX-plane. 

(c)  4  units  back  of  the  ZX-plane  and  7  units  to  the  left  of  the  FZ-plane. 

(d)  9  units  below  the  JTF-plane  and  4  units  to  the  right  of  the  FZ-plane. 

2.  Find  the  equations  of  the  straight  line  which  is 

(a)  5  units  above  the  XF-plane  and  2  units  in  front  of  the  ZX-plane. 
(b)  2  units  to  the  left  of  the  FZ-plane  and  8  units  below  the  XF-plane. 
(c)  3  units  to  the  right  of  the  FZ-plane  and  5  units  from  the  Z-s 
(d)  13  units  from  the  X-axis  and  5  units  back  of  the  ZX-plane. 

(e)  parallel  to  the  F-axis  and  passing  through  (3,  7,  —  5). 
(f)  parallel  to  the  Z-axis  and  passing  through  (—4,  7,  6). 

3.  Find  the  equations  of  the  locus  of  a  point  which  is 

(a)  5  units  above  the  XF-plane  and  3  units  from  (3,  7,  1). 

Ans.    z  =  5,  x2  +  2/2  +  2^  -  6  X  -  14  y  -  2  z  +  50  =  0. 
(b)  2  units  from  (3,  7,  6)  and  4  units  from  (2,  5,  4). 

Ans.   x2  +  ?/2  +  2;2  _  6  X  -  14  2/  -  12  z  +  90  =  0, 
X2  +  2/2  +  22  -  4  X  -  10  2/  -  8  2  +  29  =  0. 

(c)  5  units  from  the  origin  and  equidistant  from  (3,  7,  2)  and  (—3,  -  7,  - 

2). 

Ans. 4. 2/2  +  z2  _  25  =  0,  3  X  +  7  2/  +  2  z  =  0. 

(d)  equidistant  from  (3,  5,  -  4)  and  (-  7,  1,  6),  and  also  from  (4,  -  6,  3) 
and(-2,  8,  5).  Ans.    5x  +  22/ -  5z  +  11  =  0,  3x  -  7?/ -  z  +  8  =  0. 

(e)  equidistant  from  (2,  3,  7),  (3,  -  4,  6),  and  (4,  3,  -  2). 
Ans.   2x-142/-2z  +  l  =  0,  x+72/-8z  +  16  =  0. 
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4 .  What  are  the  equations  of  the  edges  of  a  rectangular  parallelepiped  whose 
dimensions  are  a,  6,  and  c,  if  three  of  its  faces  coincide  with  the  coordinate 

planes  and  one  vertex  lies  in  0-XYZ  ?  in  0-XY'Z  ?  in  0-X'Y'Z  ? 
5.  What  are  the  equations  of  the  axes  of  coordinates  ? 

6.  The  following  equations  are  the  equations  of  curves  lying  in  one  of  the 
coordinate  planes.  What  are  the  equations  of  the  same  curves  regarded  as 
curves  in  space  ? 

(a)?/2  =  4x.  (e)  x2+ 42;  +  6x  =  0. 

(b)  x-^  -]-z'^  =  16.  (f)  2/2  -  z2  _  4y  ̂   0. 
(c)  8x2  -y2  =  64.  (g)  yz^-]-z^-Qy  =  0. 
(d)  4 2;2  +  92/2  =  36.  (h)  ̂2  _  4^2  +  8 z  =  0. 

7.  Find  the  equations  of  the  locus  of  a  point  which  is  equally  distant  from 

the  points  (6,  4,  3)  and  (6,  4,  9),  and  also  from  (—  5,  8,  3)  and  (—  5,  0,  3),  and 
determine  the  nature  of  the  locus.  Ans.    z  =  6,  y  =  i. 

8.  Find  the  equations  of  the  locus  of  a  point  which  is  equally  distant  from 

the  points  (3,  7,  —  4),  (—  5,  7,  —  4),  and  (—  5,  1,  —  4),  and  determine  the 
nature  of  the  locus.  Ans.    x  =  —  1,  y  =  i. 

148.  Locus  of  one  equation.    Second  fundamental  problem. 

The  locus  of  one  equation  in  three  variables  (one  or  two  may  be 

lacking)  representing  coordinates  in  space  is  the  surface  passing 

through  all  points  whose  coordinates  satisfy  that  equation  and 

through  such  points  only. 

The  coordinates  of  points  on  the  surface  may  be  obtained  as  follows: 
Solve  the  equation  for  one  of  the  variables,  say  z,  assume  pairs  of  values  of 

X  and  y,  and  compute  the  corresponding  values  of  z. 
A  rough  model  of  the  surface  might  then  be  constructed  by  taking  a  thin  board 

for  the  XT-plane,  sticking  needles  into  it  at  the  assumed  points  (x,  y)  whose 
lengths  are  the  computed  values  of  z,  and  stretching  a  sheet  of  rubber  over  their 
extremities. 

The  second  fundamental  problem,  namely,  of  constructing  the 

locus,  is  usually  discarded  in  space  on  account  of  the  mechanical 
difficulties  involved. 

149.  Locus  of  two  equations.  Second  fundamental  problem. 

The  locus  of  two  equations  in  three  variables  representing  coor- 
dinates in  space  is  the  curve  passing  through  all  points  whose 

coordinates  satisfy  both  equations  and  through  such  points  only. 

The  coordinates  of  points  on  the  curve  may  be  obtained  as  follows : 
Solve  the  equations  for  two  of  the  variables,  say  x  and  y,  in  terms  of  the  third, 

z,  assume  values  for  z,  and  compute  the  corresponding  values  of  x  and  y. 
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150.  Discussion  of  the  equations  of  a  curve.  Third  funda- 
mental problem.  The  discussion  of  cuives  in  Elementary  Ana- 

lytic Geometry  is  largely  confined  to  curves  which  lie  entirely  in 
a  plane  which  is  usually  parallel  to  one  of  the  coordinate  planes. 
Such  a  curve  is  defined  as  the  intersection  of  a  given  surface 
with  a  plane  parallel  to  one  of  the  coordinate  planes.  The  method 
of  determining  its  nature  is  illustrated  in 

Ex.  1.  Determine  the  nature  of  the  curve  in  which  the  plane  z  =  4  inter- 

sects the  surface  whose  equation  is  ip-  -{-  z'^  =  i  x. 
Solution.    The  equations  of  the  curve  are,  by  definition, 

(1)  y2^2;2  =  4x,     z  =  4. 
Eliminate  z  by  substituting  from  the  second  equation  in  the  first.    This  gives 

(2)  y2-4x  +  16  =  0,    z  =  4. 

Equations  (2)  are  also  the  equations  of  the  curve. 

For  every  set  of  values  of  {x,  y,  z)  which  satisfy  both  of  eqviations  (1)  wiU  evidently 
satisfy  both  of  equatious  (2),  and  conversely. 

If  we  take  as  axes  in  the  plane  2  =  4  the  lines  C/X'  and  (YY'  in  which  the 
plane  cuts  the  ZX-  and  FZ-planes,  then  the  equation  of  the  curve  when 
referred  to  these  axes  is  the  first  of  equations  (2),  namely, 

(3)  2/2  _  4a; +  16  =  0. 

For  the  second  of  equations  (2)  is  satisfied  by  all  points  in  the  plane  of  X',  O',  and  I"', 
and  the  first  of  equations  (2)  is  satisfied  by  the  points  in  that  plane  lying  on  the  curve  (3), 
because  the  values  of  the  first  two  coordinates  of  a  point  are  evidently  the  same  when 

referred  to  the  axes  (yx%  O'  Y%  and  O'Z  as  when  referred  to  the  axes  OX,  O  Y,  and  OZ. 

The  locus  of  (3)  is  a  parabola  (Rule,  p.  197)  whose  vertex,  in  the  plane 

2;  =  4,  is  the  point  (4,  0)  for  which  p  =  2. 
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The  method  employed  in  Ex.  1  enables  us  to  state  the 

Rule  to  determine  the  nature  of  the  curve  in  which  a  plane  par- 

allel to  one  of  the  coordinate  planes  cuts  a  given  surface. 

First  step.  Eliminate  the  variable  occurring  in  the  equation  of 

the  plane  from  the  eqiiations  of  the  plane  and  surface.  The  result 

is  the  equitation  of  the  curve  referred  to  the  lines  in  which  the  given 

plane  cuts  the  other  two  coordinate  planes  as  axes. 

Second  step.  Determine  the  nature  of  the  curve  obtained  in  the 

second  step  by  the  methods  of  Plane  Analytic  Geometry. 

PROBLEMS 

1.  Determine  the  nature  of  the  following  curves  and  construct  their  loci. 

(a)  x2- 42/2  =  82;,  z  =  8.  (e)  a:2  +  42/2  +  9z2  ̂ z  36,  y  =  \. 
(b)  x2  +  9  ?/2  =  9  22^  2  =  2.  (f)  aj2  _  4  y2  +  z2  -  25,  X  =  -  3. 
(c)  x2  -  4  2/2  =  4  z,  2/  =  -  2.  (g)  x2  -  2/2  -  4  z2  +  6  X  =  0,  X  =  2. 

(d)  x2  +  2/2  +  z2  =  25,  X  =  3.  (h)  2/2  +  z2  _  4x  +  8  =  0,  2/  =  4. 

2.  Construct  the  curves  in  which  each  of  the  following  surfaces  intersect 
the  coordinate  planes. 

(a)  x2  +  4 2/2  +  16 22  =  64.  (d)  x2  +  92/2  =  10 z. 
(b)  x2  +  4  2/2  -  16  2;2  =  64.  (e)  x2  -  9  2/2  =  10  z. 
(c)  x2  -  4  2/2  -  16  22  =  64.  (f)  x2  +  4  2/2  -  16  z2  =  0. 

3.  Show  that  the  curves  of  intersection  of  each  of  the  surfaces  in  problem 
2  with  a  system  of  planes  parallel  to  one  of  the  coordinate  planes  are  similar 
conies.    In  what  cases  must  this  statement  be  modified  ? 

4.  Determine  the  nature  of  the  intersection  of  the  surface  x2  +  2/2  +  4  z2  =  64 
with  the  plane  z  =  lc.  How  does  the  curve  change  as  k  increases  from  0 

to  4  ?  from  —  4  to  0  ?  What  idea  of  the  appearance  of  the  surface  is  thus 
obtained  ? 

6 .  Determine  the  nature  of  the  intersection  of  the  surface  4  x  —  2  ?/  =  4 

with  the  plane  y  z=  k;  with  the  plane  z  =  k'.  How  does  the  intersection 
change  as  k  or  k'  changes  ?     What  idea  of  the  form  of  the  surface  is  obtained  ? 

151.  Discussion  of  the  equation  of  a  surface.  Third  funda- 
mental problem. 

Theorem  III.  TJie  locus  of  an  algebraic  equation  passes  through 

the  origin  if  there  is  no  constant  term  in  the  equation. 

The  proof  is  analogous  to  that  of  Theorem  VI,  p.  73. 
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Theorem  IV.  If  the  locus  of  an  equation  is  unaffected  by  chang- 
ing the  sign  of  one  variable  throughout  its  ef/uatio7i,  then  the  locus 

is  symmetrical  with  respect  to  the  coordinate  plane  from  which  that 
variable  is  measured. 

If  the  locus  is  unaffected  by  changing  the  signs  of  two  variables 

throughout  its  equation,  it  is  symmetrical  with  resjyect  to  the  axis 

along  which  the  third  variable  is  measured. 

If  the  locus  is  unaffected  by  changing  the  signs  of  all  three  variables 

throughout  its  equation,  it  is  sym^metrical  with  respect  to  the  origin. 
The  proof  is  analogous  to  that  of  Theorem  IV,  p.  72. 

Rule  to  fund  the  intercepts  of  a  surface  on  the  axes  of  coordinates. 

Set  each  pjair  of  variables  equal  to  zero  and  solve  for  real  values 

of  the  third. 

The  curves  in  which  a  surface  intersects  the  coordinate  planes 

are  called  its  traces  on  the  coordinate  planes.  From  the  first 

step  of  the  Rule,  p.  345,  it  is  seen  that 

The  equations  of  the  traces  of  a  surface  are  obtained  by  succes- 

sively setting  rr  =  0,  y  =  0,  and  z  =  0  i7i  the  equation  of  the  surface. 

By  these  means  we  can  determine  some  properties  of  the  surface. 

The  general  appearance  of  a,  surface  is  determined  by  considering 

the  curves  in  which  it  is  cut  by  a  system  of  planes  parallel  to  each 

of  the  coordinate  planes  (E-ule,  p.  345).     This  also  enables  us  to 

determine  whether  th  e  sur- 

face is  closed  or  recedes  to 
infinity. 

Ex.  1.  Discuss  the  locus  of 

the  equation  y'^  -^  z^  =  4x. 
Solution.  1.  The  surface 

passes  through  the  origin  since 
there  is  no  constant  term  in 

its  equation. 
2.  The  surface  is  sym- 

metrical with  respect  to  the 

XF-plane,  the  ZX-plane,  and 
the  X-axis. 

For  the  locus  of  the  given  equation  is  unaffected  by  changing  the  sign  of  2,  of  y,  or  of 
both  together. 
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3.  It  cuts  the  axes  at  the  origin  only. 

4.  Its  traces  are  respectively  the  point-circle  y^  -{■  z^  =  0  and  the  parabolas 
22  =  4  X  and  y^  =  4:X. 

5.  It  intersects  the  plane  x  =  k  in  the  curve  (Rule,  p.  345) 

y^  +  z^  =  ̂ k. 

This  curve  is  a  circle  vrhose  center  is  the  origin,  that  is,  is  on  the  X-axis, 
and  whose  radius  is  2  VA;  if  k>0,  but  there  is  no  locus  if  A;  <  0.  Hence  the 

surface  lies  entirely  to  the  right  of  the  FZ-plane. 
If  k  increases  from  zero  to  infinity,  the  radius  of  the  circle  increases  from 

zero  to  infinity  while  the  plane  x  =  k  recedes  from  the  FZ-plane. 

The  intersection  of  a  plane  2;  =  /<:  or  y=k',  parallel  to  the  XY-  or  ZX-plane, 
is  seen  (Rule,  p.  345)  to  be  a  parabola  whose  equation  is  (compare  Ex.  1,  p.  344) 

y'2  =  ix-k^    or    z2^4x-r-2. 

These  parabolas  are  found  to  have  the  same  value  of  j),  namely,  p  =  2, 

and  their  vertices  recede  from  the  YZ-  or  ZX-plane  as  k  or  k'  increases 
numerically. 

PROBLEMS 

1 .  Discuss  the  loci  of  the  following  equations. 

(a)  x2  +  z2  =  4a;.  (f)  x^  +  y"^ 
(b)  x2  +  2/2  +  4  22  3^  16. 
(C)    X2  +  y2  _  4  22  :^  16. 
(d)  6x-H4y+  32;  =  12. 
(e)  3x  +  2y +  z  =  12. 

Z2  =  0. 

(g)  x^^y'^-z^  =  9. 
(h)  x2  +  ?/2_2;2-|-2xy  =  0. 

(i)  x  +  y-6z  =  Q. 

(j)  y^  +  z^  =  25. 
2.  Show  that  the  locus  of  ̂ x  +  By  -1-  Cz  +  D  =  0  is  a  plane  by  considering 

its  traces  on  the  coordinate  planes  and  the  sections  made  by  a  system  of 

planes  parallel  to  one  of  the  coordinate  planes. 

3.  Find  the  equation  of  the  locus  of  a  point  which  is  equally  distant  from 

the  point  (2,  0,  0)  and  the  FZ-plane  and  discuss  the  locus. 
Ans.    2/2  +  2;2-4x +  4  =  0. 

4.  Find  the  equation  of  the  locus  of  a  point  whose  distance  from  the 

point  (0,  0,  3)  is  twice  its  distance  from  the  XY-plane  and  discuss  the  locus. 
Ans.    x2  +  2/2  -  3  22  _  6  z  +  9  =  0. 

5.  Find  the  equation  of  the  locus  of  a  point  whose  distance  from  the  point 

(0,  4,  0)  is  three  fifths  its  distance  from  the  ZX-plane  and  discuss  the  locus. 
Ans.    25x2  +  16?/2-f  25  22-200?/ +  400  =  0. 



CHAPTER   XVIII 

THE  PLANE  AND  THE   GENERAL  EQUATION  OF  THE 
FIRST  DEGREE  IN  THREE   VARIABLES 

152.  The  normal  form  of  the  equation  of  the  plane.   Let" 
ABC  be  any  plane,  and  let  ON  be  drawn  from  the  origin  per- 

pendicular to  ABC  at  D.     Let  the  positive  direction  on  ON  be 

from  0  toward  N,  that  is,  from  the  origin  toward  the  plane,  and 

denote  the  directed  length  OD  by  p  and  the  direction  angles  of 

ON  (p.  330)  by  a,  /?,  and  y.  Then  the  position  of  any  plane 

is  determined  by  given  positive  values  of  p,  a,  /?,  and  y. 

Conversely,  a  given  plane  determines  a  single  set  of  positive  values  of  p,  a,  /3, 
and  7  unless  p  =  0.  If  p  =  0,  the  positive  direction  on  ON  becomes  meaningless. 
Ifp  =  0,  we  shall  suppose  that  ON  is  directed  upward,  and  hence  cos  7  >  0  since 

7  <  r-  •     If  the  plane  passes  through  OZ,  then  ON  lies  in  the  XF-plane  and 

cos  7  =  0;  in  this  case  we  shall  suppose  ON  so  directed  that  /3  <  ~  and  hence 

cos  /3  >  0.  Finally,  if  the  plane  coincides  with  the  FZ-plane,  the  positive  direction 
on  ON  shall  be  that  on  OX. 

348 
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Theorem  I.    Normal  form.    The  equation  of  a  plane  is 

(I)  QcCQsa  +  ycos  p  -\-  zcosy  —  p  =  0, 

where  p  is  the  perpendicular  distance  from  the  origin  to  the  plane, 

and  a,  ̂,  and  y  are  the  direction  cosines  of  that  perpendicular. 

Proof  Let  P(x,  y,  z)  be  any  point  on  the  given  plane  ABC. 

Project  OEFP  and  OP  on  the  line  ON.     By  Theorem  II,  p.  328, 

proj.  of  OE  +  proj.  of  EF  -f  proj.  of  FP  =  proj.  of  OP. 

Then  by  Theorem  I,  p.  328,  and  by  the  definition,  p.  29, 

X  cos  a  -{-  y  cos  ̂   -\-  z  cos  y  =  p. 

Transposing,  we  obtain  (I).  q.e.d. 

Corollary.  The  equation  of  any  plane  is  of  the  first  degree  in 

X,  y,  and  z. 

153.  The  general  equation  of  the  first  degree,  Ax  +  By  +  Cz 

+  2>  =  0. 

Theorem  II.  (Converse  of  the  Corollary.)  The  locus  of  the  gen- 
eral equation  of  the  first  degree  in  x,  y,  and  z, 

(II)  Ax^By-{-Cz-\-I>  =  0, 

is  a  plane. 

Proof  We  shall  prove  the  theorem  by  showing  that  (II)  may 

be  reduced  to  the  form  (I)  by  multiplying  by  a  proper  constant. 

To  determine  this  constant,  multiply  (II)  by  k,  which  gives 

(1)  kAx  4-  kBy  +  kCz  +  kD  =  0. 

Equating  coriesponding  coefficients  of  (1)  and  (I),  we  get 

(2)  kA=  0,0^  a,     kB  =  cos  (3,     kC  =  cosy,     kD  =  —p. 

Squaring  the  first  three  of  equations  (2)  and  adding, 

k^(A^  +  B^-{-  C^)  =  GOS^a  +  cos^^  +  cos^y  =  1. 

(by  (III),  p.  330) 

(3)  /.  k  =   ,       ̂ ^  ̂   ±^A^  +  B^+  C 
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From  the  last  of  equations  (2)  we  see  that  the  sign  of  the 

radical  must  be  opposite  to  that  of  D  in  order  that  p  shall  be 

positive. 
If  Z)  =  0,  then  p  =  0;  and  from  the  third  of  equations  (2)  the  sign  of  the  radical 

must  be  the  same  as  that  of  C,  since  when  p  =  0  cos  7  >  0.  li  IJ  =  0  and  C  =  0, 
then  p=0  and  cos  7=0;  and  from  the  second  of  equations  (2)  the  sign  of  the  radical 
must  be  the  same  as  that  of  B,  since  when  p  =  0  and  cos  7  =  0  cos  /3  >  0. 

Substituting  from  (3)  in  (2),  we  get 
A  ^  B 

W 
cos  o:  = 

cos  y  — 

C 

cos  /3 

-D 

We  have  thus  determined  values  of  a,  /3,  y,  and  p  such  that  (I) 

and  (II)  have  the  same  locus.  Hence  the  locus  of  (II)  is  a 

plane.  q.e.d. 

Corollary  I.  The  direction  cosines  of  a  normal  to  the  plane  (II) 

are  respectively  A,  B,  and  C  each  divided  hy  ±  V^^  +  ̂ ^  +  C'^. 
The  sign  of  the  radical  is  opposite  to  that  of  D,  the  same  as  that  of 

C  if  D  =^  0,  the  same  as  that  of  B  if  C  =  D  =  0,  or  the  same  a^ 

that  of  A  ifB  =  C  =  D  =  0. 
Corollary  II.  To  reduce  the  equation  of  a  plane  to  the  normal 

form  divide  its  equation  by  ±  aM^  +  B"^  -{-  C^,  choosing  the  sign  of 
the  radical  as  in  Corollary  I. 

Corollary  III.     Two  planes  whose  equations  are 

Ax  +  By  -\-  Cz-\-D  =  0,     A'x  +  B'y  +  C'z  -\-  D'  =  0 
are  parallel  when  and  only  when  the  coefficients  of  x,  y,  and  z  are 

proportional^  that  is, 

A_ 

A' 

B 

B' 

C^ 

c'
 

For  from  Corollary  I  the  direction  cosines  of  a  nonnal  to  (II)  are  proportional 
to  A,  B,  and  C,  and  two  planes  are  evidently  parallel  when  and  only  when  their 
normals  are  parallel  (Corollary,  p.  335). 

Corollary  IV.    Two  planes  are  perpendicular  when  and  only  when 

AA'  -i-BB'  -{-  CC  =  0. 

This  follows  from  Corollary  I  by  the  Corollary  on  p.  335,  since  two  planes  are 
perpendicular  when  and  only  when  their  normals  are  perpendicular. 
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Corollary  V.    A  plane  whose  equation  has  the  form 

Ax -\-  By  -\-  D  =  0  is  perpendicular  to  the  XY-plane; 

By  -{-  Cz  -\-  D  =  0  is  perpendicular  to  the  YZ -plane ; 

Ax  -\-  Cz  -\-  B  =  0  is  perpendicular  to  the  ZX-plane. 

That  is,  if  one  variable  is  lacking,  the  plane  is  perpendicular  to 

the  coordinate  plane  corresponding  to  the  two  variables  which  occur 

in  the  equation. 

For  these  planes  are  respectively  perpendicular  to  the  planes  2;  =  0,  a;  =  0,  and 
y  r=  0  by  Corollary  IV. 

Corollary  VI.    A  plane  whose  equation  has  the  form 

Ax-{-  B  =  0  is  perpendicular  to  the  axis  of  x; 

By  -\-  B  =z  0  is  perpendicular  to  the  axis  of  y ; 

Cz  -{-  B  =  0  is  perpendicular  to  the  axis  of  z. 

That  is,  if  two  variables  are  lacking,  the  plane  is  perpendicular  to 

the  axis  corresponding  to  the  variable  which  occurs  in  the  equation. 

For  by  Corollary  I  two  of  the  direction  cosines  of  the  normal  to  the  plane  are 
zero  and  hence  the  normal  is  parallel  to  one  of  the  axes  and  the  plane  is  therefore 
perpendicular  to  that  axis. 

PROBLEMS 

1.  Find  the  intercepts  on  the  axes  and  the  traces  on  the  coordinate  planes 

of  each  of  the  following  planes  and  construct  the  figures. 

(a)  2ic  + 3?/ +  421-24  =  0.  (e)  5x-7?/-35  =  0. 
(h)  Ix-Sy +  z-2l=0.  (f)  4x  +  3z +36  =  0. 

(c)  9x-ly  -9z  +  QS  =  0.  (g)  by  -Sz- 40  =  0. 
(d)  6x  +  4?/  -2+  12  =  0.  (h)  Sx  +  62; +  45  =  0. 

2.  Find  the  equations  of  the  planes  and  construct  them  by  drawing  their 
traces,  for  which 

Ans.   V2x  +  y  +  z-12z=0. 

Ans.   x  +  V2y-z-\-16  =  0. 

Ans.   6a:-2y +  32;-28  =  0. 

Ans.   2x  +  y-\-2z  +  6  =  0. 

Tt      ̂          It                 Tt 

(a)a  =  -,^  =  -,7  =  -: .  p  =  6. 

2;r    ̂       3;r 

(b)  «=-^'^  =  -j-'7  = 

Tt 

cos  a        COSjS        COS7 

^"^      6      --2-     3     ' p  =  4. 
.,-   COS  a      cosjS      COS 7 

^^^    -2^-1^-2' p  =  2. 
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3.  Find  the  equation  of  the  plane  such  that  the  foot  of  the  perpendicular' 
from  the  origin  to  the  plane  is  the  point 

(a)  (-3,2,6).  Ans.    3x  -  2y  -  62  +  49  =  0. 

(b)  (4,  3,  -  12).  Ans.    ix  +  3y  -  I2z  -  169  =  0.  ' 
(c)  (2,2,-1).  Ans.   2x-\-2y  -z-d  =  0. 

4.  Reduce  the  following  equations  to  the  normal  form  and  find  a,  /3,  7, 
and  p. 

Am.   cos-i f,  cos-i(—  f),  cos-ij^,  1. (a)  6x-32/  +  2z-7  =  0. 

(b)  x-v^y +  2  +  8  =  0. 

(c)  2x -2^-2 +  12  =  0. 

(d)  2/  -  2  +  10  =  0. 

(e)  3x  +  2y  -6z  =  0. 

2%    Tt    2%     ̂  
Ans.    ——1-1  — — »  4. 3      4      3 

Alls.   cos-i(—  §),  cos-if,  cos-i^,  4 
.  It      3Tt      It      -     rz 

Ans.   -,  — -,  -,  6V2. 2      4      4 

Ans.   cos-  M  -  f )  >  cos-  ̂   ( -  f ) »  cos- 1  f ,  Or 

6 .  Find  the  distance  from  the  origin  to  the  plane  12x  —  4y  +  82  —  39  =  0. 
Ans.   3. 

6.  Find  the  distance  between  the  parallel  planes  6x  +  2y  —  32  —  63  =  0 
and  6x  +  2?/-32  +  49  =  0.  Ans.  16. 

7.  What  may  be  said  of  the  position  of  the  plane  (I)  if 

(a)  cos  a  =  0  ?  (c)  cos  7  =  0  ?  (e)  cos  /3  =  cos  7  =  0  ? 

(b)  cos  /3  =  0  ?  (d)  cos  a  =  cos/3  =  0  ?  (f)  C0S7  =  cos  a  =  0  ? 

8.  What  are  the  equations  of  the  traces  on  the  coordinate  planes  of  the 

plane  ̂ x  +  E?/  +  C2  +  D  =  0  ? 

9.  Show  that  the  following  pairs  of  planes  are  either  parallel  or  perpen- 
dicular. 

2x  +  5?/-62  +  8  =  0,  ^^^    r6x-3?/  +  22-7=0, 

\3x  +  2y- 62 +  28  =  0. 
21  2  -  50  =  0, 

3  2  +  12  =  0. 

^  '  \6x  +  152/-  182-5  =  0. 

J3x-52/-42  +  7  =  0, 
^^  \6x  +  2  2/  +  22-7  =  0. 

(c) 

ri4x  -  7?/- ^^^i   2x-y- 

10.  For  what  values  of  or,  /3,  7,  and  p  will  the  locus  of  (I)  be  parallel 

to  the  JTF-plane  ?  the  FZ-plane  ?  the  ZX-plane  ?  coincide  with  each  of 
these  planes  ? 

11.  For  what  values  of  a,  j8,  7,  and  p  will  the  locus  of  (I)  pass  through 
the  X-axis  ?    the  F-axis  ?    the  Z-axis  ? 

12.  Show  that  the  coordinates  of  the  point  of  intersection  of  three  planes 

may  be  found  by  solving  their  equations  simultaneously  for  x,  y,  and  2. 
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13.  Find  the  coordinates  of  the  point  of  intersection  of  the  planes 

x  +  2y  +  z  =  0,  x-2y  -S  =  0,  and  x  +  y  +  z-S  =  0. 
Ans.    (2,  -  3,  4). 

14.  Show  that  the  plane  x  +  2y  —  2z  —  9  =  0  passes  through  the  point 
of  intersection  of  the  planes  x  +  y  +  z  —  1  =  0,  x— y  —  z  — 1  =  0,  and 

2x  +  3y-8  =  0. 

15.  Show  that  the  four  planes  X  +  2/  +  22  —  2  =  0,  x  +  y  —  2z4-2  =  0, 
X  —  2/  +  8  =  0,  and  3x  —  y  —  2z  +  lS  =  0  pass  through  the  same  point. 

16.  Show  that  the  planes  2x  —  y  -{-  z  +  S  =  0,  x  —  y  +  4z  =  0,  3x  +  y 
-22  +  8  =  0,  4x-2?/  +  2z-5  =  0,  9x  +  32/-62;-7  =  0,  and  7x-7y 
+  28  z  —  6  =  0  bound  a  parallelopiped. 

17.  Show  that  the  planes  6  X  -  3  ?/  + 2  z  =  4,  3x  +  2y-6z=10,  2x  +  6y 

+  3z  =  9,  3x  +  2i/-6z  =  0,  12x  +  36y  +  18z-ll  =  0,  and  12x-6y 
+  4z  —  17  =  0  bound  a  rectangular  parallelopiped. 

18.  Show  that  the  planes  x+2y-z  =  0,  2/  +  7z-2=0,  x-2y-z-4=0, 

2x  +  y  —  8  =  0,  and  3x  +  3y  —  z  —  8  =  0  bound  a  quadrangular  pyramid. 

19.  Derive  the  conditions  for  parallelism  of  two  planes  from  the  fact  that 

two  planes  are  parallel  if  their  traces  are  parallel  lines. 

154.  Planes  determined  by  three  conditions.   If  three  of  the 
coefhcients  of 

(1)  Ax-\-By-^Cz-\-D  =  0 

are  known  in  terms  of  the  fourth,  then  the  plane  is  completely 
determined,  for  if  their  values  be  substituted  in  (1),  the  equation 
may  be  divided  by  the  fourth  coefficient.  Three  conditions  which 
the  plane  satisfies  will  lead  to  three  equations  in  the  coefficients 
which  may  be  solved  for  three  of  the  coefficients  in  terms  of  the 

fourth.  Hence  a  plane  is,  in  general,  determined  by  three  con- 
ditions. Its  equation  may  be  obtained  by  a  Rule  analogous  to 

that  on  p.  93,  using  equation  (1)  in  the  first  step. 

Thus  to  find  the  equation  of  a  plane  passing  through  tiiree  points  we  proceed 
as  in  Ex.  1,  p.  93,  using  equation  (1)  in  the  first  step.  In  the  second  step  three 
equations  involving  A,  B,  C,  and  D  are  obtained,  which  may  be  solved  for  three 
of  these  coefficients  in  terms  of  the  fourth. 
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Ex.  1.    Find  the  equation  of  the  plane  whicli  passes  tlirough  the  poii 

Pi  (2,  -7,  I)  and  is  parallel  to  the  plane  21  x  -  12  y  +  282  -  84  =  0. 
Solution.    Let  the  equation  of  the  required  plane  be 

(2)  Ax  -{■  By  +  Cz  -\-  D  =  0. 
Since  Pi  lies  on  (2), 

(3)  2A-'JB-\-lC  +  D  =  0, 
and  since  (2)  is  parallel  to  the  given  plane  (Corollary  III,  p.  350), 

A  _    B     ̂ C 

21  ~  -12~28' 

(4) 

Solving  (3)  and  (4)  for  A,  B,  and  D  in  terms  of  C,  we  get 

A  =  IC,     B  =  -^C,     D  =  -6C. 

Substituting  in  (2),  we  obtain 

fCx-fC2/  +  Cz-6C  =  0. 
Clearing  of  fractions  and  dividing  by  C, 

21 X  -  12  2/ +  28  z  -  168  =  0. 

PROBLEMS 

1.  Find  the  equation  of  the  plane  which  passes  through  the  poiirtB 

(2,  3,  0),  (-2,  -3,  4),  and  (0,  6,  0).  Ans.    3x  +  2y4-62;-12  =  0. 

2.  Find  the   equation  of  the  plane   which  passes  through  the  points 

(1,  1,  -  1),  (-  2,  -  2,  2),  and  (1,  -  1,  2).  Ans.    x-Sy-2z  =  Q. 

3.  Find  the   equation   of  the   plane  which    passes   through    the    point 

(3,  —  3,  2)  and  is  parallel  to  the  plane  Sx  —  y-\-z  — Q  =  0. 
Ans.    3x  —  y  +  z—  14  =  0, 
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4.  Find  the  equation  of  the  plane  which  passes  through  the  points 

(0,  3,  0)  and  (4,  0,  0)  and  is  perpendicular  to  the  plane  4:X  —  Qy  —  z  =  12. 
Ans.   3x  +  4?/-12  2-12  =  0. 

5.  Find  the  equation  of  the  plane  which  passes  through  the  point 

(0,  0,  4)  and  is  perpendicular  to  each  of  the  planes  2x  —  Sy  =  5  and 
X  -  4  2  =  3.  Ans.    12x  +  8y  +  32;-12  =  0. 

6.  Find  the  equation  of  the  plane  whose  intercepts  on  the  axes  are 

3,  5,  and  4.  Ans.    20x  +  122/ +  15  2  -  60  =  0. 

7.  Find  the  equation  of  the  plane  which  passes  through  the  point 

(2,  —  1,  0)  and  is  parallel  to  the  plane  x  —  2//  —  32  +  4  =  0. 
Ans.    x-2y  -3z  +  U  =  0. 

8.  Find  the  equation  of  the  plane  which  passes  through  the  points 

(2,  —1,  6)  and  (1,  —2,  4)  and  is  perpendicular  to  the  plane  x  — 2  y  —  2  2  +  9=0. 
Ans.   2x  +  4y-32  +  18  =  0. 

9.  Find  the- equation  of  the  plane  whose  intercepts  are  —1,  —1,  and  4. 
Ans.    4x  +  4y-2  +  4  =  0. 

10.  Find  the  equation  of  the  plane  which  passes  through  the  point 

(4,  —2,  0)  and  is  perpendicular  to  the  planes  x-\-y—z=0  and  2x— 4  2/  +  2  =  5. 
Ans.    x  +  y  -\-2z-2  =  0. 

11.  Show  that  the  four  points  (2,  -3,4),  (1,0,2),  (2,  -1,2),  and 
(1,  —  1,  3)  lie  in  a  plane. 

12.  Show  that  the  four  points  (1,  0,  -1),  (3,  4,  -3),  (8,  -2,  6),  and 

(2,  2,  —  2)  lie  in  a  plane. 

13.  Find  the  equation  of  the  plane  which  is  perpendicular  to  the  line 

joining  (3,  4,  —  1)  to  (o,  2,  7)  at  its  middle  point. 
Ans.    x-y  +  42;  — 13  =  0. 

14.  Find  the  equations  of  the  faces  of  the  tetraedron  whose  vertices  are 

the  points  (0,  3,  1),  (2,  -  7,  1),  (0,  5,  -  4),  and  (2,  0,  1). 
Ans.    25x  +  5y  -\-2z  =  17,  5x  -  22  =  8,  2  =  1,  15x  +  lOy  +  42  =  34. 

15.  The  equations  of  three  faces  of  a  parallelepiped  are  x  — 4?/  =  3, 

2x  —  ?/  +  2  =  3,  and  3x  +  ?/  —  22  =  0,  and  one  vertex  is  the  point  (3,  7,  —  2). 
What  are  the  equations  of  the  other  three  faces? 

Ans.    x-42/  +  25  =  0,  2x-y  +  2  +  3  =  0,  3x  +  ?/-22=20. 

16.  Find  the  equation  of  the  plane  whose  intercepts  are  a,  &,  c. 

Ans.   5  +  M  +  5  =  l. a      b      c 
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17.  What  are  the  equations  of  the  traces  of  the  plane  in  problem  16? 

How  might  these  equations  have  been  anticipated  from  Plane  Analytic 
Geometry  ? 

18.  Find  the  equation  of  the  plane  which  passes  through  the  point 

Pi  (xi,  2/1,  Zi)  and  is  parallel  to  the  plane  Aix  +  Biy  +  C\Z  +  Di  =  0. 
Ans.   ̂ 1  (X  -  xi)  +  Bi  {y  -  y{)  +  Ci  (2  -  Zx)  =  0. 

19.  Find  the  equation  of  the  plane  which  passes  through  the  origin  and 

Pi(xi,  2/1,  Zi)  and  is  perpendicular  to  the  plane  AiX  +  Biy  +  Ciz  +  A  =  0. 

Ans.  {BiZi  -  Ciyi)x  +  (CiXi  -  AiZi)y  +  {Aiyi  -  BiXi)z  =  0. 

155.  The  equation  of  a  plane  in  terms  of  its  intercepts. 

Theorem  III.    If  a,  b,  and  c  are  the  intercepts  of  a  plane  on  the 

X-j  Y-,  and  Z-axes  respectively,  then  the  equation  of  the  plane  is 

(III) a      o      c 

Proof.    By  Theorem  II  the  equation  of  any  plane  has  the  form 

(1)  Ax  -{-  By  -}-  Cz  -j-  D  =  0. 

By  the  Eule,  p.  346,  we  get 

whence 

D D D 
ft  —   , 

c  ̂ -  —  —  1 A 

b'
 

C 

D  D 
A  =   J    5  =  --, a  0 

C=~ 

D 

Substituting  in  (1),  dividing  by  —  Z),  and  transposing,  we 
obtain  (III).  q.e.d. 

Equation  (III)  should  be  compared  with  (VI),  p.  96. 

156.  The  distance  from  a  plane  to  a  point.  The  positive  direc- 
tion on  any  line  perpendicular  to  a  plane  is  assumed  to  agree  with 

that  on  the  line  drawn  through  the  origin  perpendicular  to  the 

plane  (p.  348).  Hence  the  distance  from  a  plane  to  the  point  Pi 

is  positive  or  negative  according  as  Pi  and  the  origin  are  on  oppo- 
site sides  of  the  plane  or  not. 

If  the  plane  passes  through  the  origin,  the  sign  of  the  distance  from  the  plane 
to  Pi  must  be  determined  by  the  conventions  for  the  special  cases  on  p.  348. 

I 



THE  PLANE  357 

Theorem  IV.    The  distance  d  from  the  plane 

X  cos  a  -\-  y  cos  /8  +  ̂  cos  y  —  ̂   =  0 

to  the  point  P^  (xx,  y^,  z{)  is  given  by 

(IV)  <i  =  0^1  cos  a  +  y^  cos  p  ■\-  z^cosy  —p- 

Proof.    Projecting  OPj  on  ON,  we  evidently  get  jo  +  d. 

Projecting  OE,  EF,  and  FP^  on  ON,  we  get  respectively  (Theo- 
rem I,  p.  328)  Xi  cos  a,  yi  cos  ft,  and  Zi  cos  y. 

Then  by  Theorem  II,  p.  328, 

p  -I-  d.z=  Xi  cos  a  -\-  yi  cos  P  -\-  «i  cos  y. 

.'.  c^  =  iCi  cos  a  -{-  yi  cos  /8  +  ̂ i  cos  y  —p.  q.e.d. 

From  Theorem  IV  we  have  at  once  the 

Rule  to  find  the  distance  from  a  given  plane  to  a  given  point. 

First  step.  Reduce  the  equation  of  the  plane  to  the  normal  form 

{Corollary  II,  p.  350). 

Second  step.  Substitute  the  coordinates  of  the  given  point  in  the 

left-hand  side  of  the  equation.    The  result  is  the  required  distance. 

157.  The  angle  between  two  planes.  The  plane  angle  of  one 

pair  of  diedral  angles  formed  by  two  intersecting  planes  is  evi- 
dently equal  to  the  angle  between  the  positive  directions  of  the 

normals  to  the  planes.  That  angle  is  called  the  angle  between  the 

planes. 
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Theorem  V.    The  angle  0  between  two  planes 

Aix  -\-  B^y  +  C\z  +  i>i  =  0,     A^x  +  B^y  +  C\z  +  Dg  =  0 

is  given  by 

(V)       C08^  = 
A^A^  +  B^B^  4-  CiCa 

the  signs  of  the  radicals  being  chosen  as  in  Corollary  I,  p.  350. 

Proof.  By  definition  the  angle  between  the  planes  is  the  angle 
between  their  normals. 

By  (4),  p.  350,  the  direction  cosines  of  the  normals  to  the  planes 
are 

cos  ai  = 

cos  ft  = 

cos  yi  = 

Ar 

±VT^ 
'  +  B,' 

Bi 

+  CV 

±  VI7 '  +  b;' 

c. 

-fcv 

cos  ac 

COS  ft  = 
COS  72 

±V7i 

2'^+^V 

B, 

+  CV 

±Va 
2'  -f  B,^ 

C, 

+  CV 

±  V^a^  +  ̂ 2^  +  C^^. ±  V.4i2  + V  +  Ci' 

By  (V),  p.  334,  we  have 

cos  $  =  COS  «!  COS  ag  +  COS  ft  COS  ft  +  COS  yi  COS  yj. 

Substituting  the  values  of  the  direction  cosines  of  the  normals, 

we  obtain  (Y).  q.e.d. 

PROBLEMS 

1 .  Find  the  distance  from  the  plane 

(a)  6x  -  3 y  +  2 z  -  10  =  0  to  the  point (4,  2,  10). 
(b)  X  +  2  y  -  2  z  -  12  =  0  to  the  point  (1,  -  2,  3). 
(c)  4a:  +  3y  +  12 z  +  6  =  0  to  the  point  (9,  -  1,  0). 
(d)  2x  -  5?/  +  3z  -  4  =  0  to  the  point  (-  2,  1,  7). 

Ans.  4. 
Ans.  —  7. 

Ans.  -3. 
Ans.  t\V38. 

2.  Do  the  origin  and  the  point  (3,  5,  —  2)  lie  on  the  same  side  of  the 
plane  7x  -y  -Sz  +  6  =  0?  Ans.   Yes. 

3,  Find  the  distance  from  the  plane  Ax  -\-  By  +  Cz  -\-  D  =  0  to  the  point 
Pi  (xi,  Vu  zi). Ans. Axi  +  Byi  +  Czi  +  D 
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4.  Find  the  locus  of  points  which  are  equally  distant  from  the  planes 

2iC-y-22;-3  =  0and6x-32/  +  2z  +  4  =  0. 
Ans.   S2x-16y  -Sz-9  =  0. 

5.  Find  the  length  of  the  altitude  of  the  tetraedron  whose  vertices  are 

(0,  3,  1),  (2,  -  7,  1)  (0,  5,  -  4),  and  (2,  0,  1)  which  is  drawn  from  the  first 
vertex.  Ans.   |fV29. 

6.  Find  the  volume  of  the  tetraedron  whose  vertices  are  (3,  4,  0), 

(4,  -  1,  0),  (1,  2,  0),  and  (6,  -  1,  4).  Ans.   8. 

7.  Find  the  angles  between  the  following  pairs  of  planes. 

{a)  2x-\-y  -2z  -9  =  0,x-2y  -{-2z  =  0.  Ans.    cos-i(-4). 
(b)  x-\-y-4:Z  =  0,Sy-Sz+7  =  0.  Ans.    cos- 1 f . 

(c)  4 X  +  2 y  +  4z  -  7  =  0,  3x  -  4  y  =  0.  Ans.    cos-  H"  x^)- 

{d)2x-y-\-z  =  7,x-\-y-{-2z  =  U.  Ans.   -. o 

8.  Show  that  the  angle  given  by  (V)  is  that  angle  formed  by  the  planes 
which  does  not  contain  the  origin. 

9.  Find  the  vertex  and  the  diedral  angles  of  that  triedral  angle  formed  by 

the  planes  x-\-y-\-z  =  2,  x  —  y  —  2z=4:,  and  2x  +  y  —  z  =  2  in  which  the 

origin  lies.  ,_    ,,        ,    ,,   __,1./^    2  ;r    ̂ ^^     _  _ 3 Ans.   (4,  -4,  2),  cos-iiV2,  ̂ ,  cos-i(-iV2). 

10.  Find  the  equation  of  the  plane  which  passes  through   the  points 2  7t 

(0,  —1,  0)  and  (0,  0,  —  1)  and  which  makes  an  angle  of  —  with  the  plane 

y-hz  =  7.  r-      ̂  Ans.    ±V6x  +  y  +  2;  +  l  =  0. 

11.  Find  the  locus  of  a  point  which  is  3  times  as  far  from  the  plane 

3x  —  6y  —  2z  =  0  as  from  the  plane  2x  —  y  +  22;  =  9. 
Ans.    17x-13y +  122 -63  =  0. 

158.  Systems  of  planes.  The  equation  of  a  plane  which  satis- 
fies two  conditions  will,  in  general,  contain  an  arbitrary  constant, 

for  it  takes  three  conditions  to  determine  a  plane.  Such  an  equa- 
tion therefore  represents  a  system  of  planes. 

Systems  of  planes  are  used  to  find  the  equation  of  a  plane 
satisfying  three  conditions  in  the  same  manner  that  systems  of 

lines  are  used  to  find  the  equation  of  a  line  satisfying  two  condi- 
tions (Rule,  p.  114). 
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Theorem  VI.    The  system  of  planes  parallel  to  a  given  plane 

Ax  +  By  +  Cz-\-D  =  0 
is  represented  by 

(VI)  Ax+By  +  Cz  +  k  =  0, 

where  k  is  an  arbitrary  constant. 

Hint.  Show  that  all  of  the  planes  (VI)  are  parallel  to  the  given  plane  hy  Corollary  III, 
p.  350,  and  that  every  plane  parallel  to  the  given  plane  is  represented  by  (VI),  by  finding 
a  value  of  k  for  which  (VI)  passes  through  a  given  point  Pj. 

Theorem  VII.  The  system  of  planes  passing  through  the  line  of 

intersection  of  two  given  planes 

AiX  +  Biy  H-  Ciz  -{-  Di  =  0,     A^x  +  B^y  -\-  C^z  -\-  D^  =  0 

is  represented  by 

(VII)  A^ic  +  Biy  +  Ci«  +  l>i  +  A:  {A^ic  +  B^y  +  C^z  +  l>a)  = 

where  k  is  an  arbitrary  constant. 

Hint.  Show  that  (VII)  passes  through  any  point  on  the  intersection  of  the  given  planes, 
and  find  a  value  of  k  for  which  (VII)  passes  through  any  point  not  on  the  intersection. 

Theorem  VIII.  If  the  equations  of  the  planes  in  Theorem  VII  are 

in  normal  form,  then  —  k  is  the  ratio  of  the  distances  from  those 
planes  to  any  point  in  (^VII). 

Hint.  Let  P^  (a:,,  y^,  Zj)  be  any  point  on  the  plane 

X  cos  Ui  +  y  cos  Pi  +  z  cos  vi  -  Pi  +  *^(^  cos  a^  +  y  cos  /Sj  +  2  cos  y^  -  p-^=0. 

Then  x^  cos  a^  +  y^  cos  /3i  +  z^  cos  y-^,-  Pi  +  k  {x-^^  cos  a^  +  y^  cos  j8 j  +  z-^  cos  Y2  -  P'd  =  0. 

Solve  for  k  and  interpret  the  result  by  Theorem  IV,  p.  357, 

Corollary.  The  equations  of  the  planes  bisecting  the  angles  formed 

by  two  given  planes  are  found  by  reducing  their  equations  to  the 

normal  form  and  adding  and  subtracting  them. 

The  plane  (VII)  will  lie  in  the  external  or  internal  angles 

(p.  121)  formed  by  the  given  planes  according  as  k  is  positive  or 

negative. 

The  equation  of  a  system  of  planes  which  satisfy  a  single  con- 
dition must  contain  two  arbitrary  constants.  One  of  the  most 

important  systems  of  this  sort  is  given  in 
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Theorem  IX.    The  system  of  planes  passing  through  a  given  point 

P\  (-^'ij  Z/ij  ̂ i)  is  represented  by 

(IX)  A{pe-a^;)^B{y-  y,)  +  C (z  -  z^)  =  O. 

Froof.    Equation  (IX)  is  the  equation  of  a  plane  which  passes 

through  Pj,  for  the  coordinates  of  Pi  satisfy  (IX). 

If  any  plane  whose  equation  is 

Ax  +  By  -\-  Cz  +  D  =  0 

passes  through  P^  then 

Axi  +  Byi  -{-  Czi  -\-  D  =  0. 

Subtracting,  we  get  (IX).  Hence  (IX)  represents  all  planes 

passing  through  P^.  q.e.d. 

Equation  (IX)  contains  two  arbitrary  constants,  namely,  the  ratio  of  any  two 
coefficients  to  the  third. 

PROBLEMS 

1.  Determine  the  value  of  k  such  that  the  plane  x  +  ky  —  2z  —  9  =  0  shall 

(a)  pass  through  the  point  (5,  —  4,  —  6).  .  Ans.  2. 

(b)  be  parallel  to  the  plane  6x  — 2y  —  l2z=:'J.  Ans.  —  ̂ . 
(c)  be  perpendicular  to  the  plane  2x  —  4y  +  2  =  3.  Ans.  0. 
(d)  be  3  units  from  the  origin.  Ans.  ±  2. 

(e)  make  an  angle  of  —  with  the  plane  2x  —  2y  -{■  z  =  0.     Ans.   —  f  V35. o 

2.  Find  the  equation  of  the  plane  which  passes  through  the  point  (3,  2,  —  1) 
and  is  parallel  to  the  plane  Ix  —y  +  z  =  14. 

Ans.    7x-y-\-z-lS  =  0. 

3.  Find  the  equation  of  the  plane  which  passes  through  the  intersection 

of  the  planes  2x  +  2/  —  4  =  0  and  y  -{■2z  =  0  and  which  (a)  passes  through 

the  point  (2,  —  1,  1);  (b)  is  perpendicular  to  the  plane  Sx  +  2y  —  Sz  =  Q. 

Ans.    (a)  x-\-y  +  z-2  =  0;    (b)2a;  +  3?/  +  4z-4  =  0.  • 

4.  Find  the  equations  of  the  planes  which  bisect  the  angles  formed  by  the 

planes  2x  —  y  +  2z  =  0  and  x  +  2y  —  2z  =  6. 
Ans.    3x  +  ?/-6  =  0,  x-8  2/  +  42;  +  6  =  0. 

5.  Find  the  equations  of  the  planes  passing  through  the  intersection  of  the 

planes  2x  -{•  y  —  z  =  4  and  x  —  ?/  +  2 2  =  0  which  are  perpendicular  to  the 

coordinate  planes.  Ans.    5x  +  y  =  8,  3x  +  2  =  4,  Sy  —  5z  =4. 
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6.  Find  the  equations  of  the  planes  which  bisect  the  angle*  formed  by  the 

planes  6x  —  2y  —  Sz  =  0  and  4x  +  3  y  —  13  z  =  10,  and  verify  by  means  of  (V). 

7.  Find  the  equation  of  the  plane  passing  through  the  intersection  of  the 
planes  AiX  +  Bxy  +  CiZ  +  -Di  =  0  and  A^x  +  B^y  +  C2Z  +  D2  =  0  which 
passes  through  the  origin. 

Arts.    {AxD%  -  A2B1) X  +  (JSiA  -  AzDi)  y  +  (CiA  -  CaJDi) 2  =  0. 

8.  Find  the  equations  of  the  planes  which  bisect  the  angles  formed  by  the 

planes  A^x -{-  Biy  +  Ciz  +  Di  =  0  and  A^x  +  B^y  +  C-^z  +  D2  =  0. 

j^^    Axx  -f  Bjy  -f  C7iz  +  -/>!  ̂   ̂   A^x  +  B^y  +  CgZ  +  Pg 

9.  Find  the  equations  of  the  planes  passing  through  the  intersection  of 

the  planes  ̂ ix  +  Biy  +  dz  +  Di  =  0  and  A2X  -{-  Boy  +  C22  +  D2  =  0  which 
are  perpendicular  to  the  coordinate  planes. 

Ans.  {A1B2  -  A2B1)  y  -  {CiAo  -  C2A1)  z  -f  ̂ iDa  -  A^Di  =  0, 

(^1^2,  -  A2B1)  X  -  {B1C2  -  B2C1)  z  -  {B1D2  -  B2D1)  =  0, 

{C1A2  -  C2Ai)x  -  {Bid  -  B2Ci)y  +  C1D2  -  C2D1  =  0. 

10.  Find  the  equation  of  the  plane  which  passes  through  Pi  (xi,  yi,  Zi) 
and  is  perpendicular  to  the  planes 

Aix  +  Biy  +  Ciz  4-  Dl  =  0  and  ̂ gaJ  +  B^y  +  C2Z  +  -Da  =  0. 

Ans.  {BiC2,-B2Ci){x-Xi)+(CiA2-C2Ai){y-yi)  +  {AiB2-A2Bi){z-Zi)=0. 



CHAPTER  XIX 

THE  STRAIGHT  LINE  IN  SPACE 

159.  General  equations  of  the  straight  line.  A  straight  line 

may  be  regarded  as  the  intersection  of  any  two  planes  which 

pass  through  it.  The  equations  of  the  planes  regarded  as  simul- 
taneous are  the  equations  of  the  line  of  intersection,  and  hence 

(Corollary,  p.  349) 

Theorem  I.  The  equations  of  the  straight  line  are  of  the  first 

degree  in  x,  y,  and  z. 

Conversely,  the  locus  of  two  equations  of  the  first  degree  is 

a  straight  line  unless  the  planes  which  are  the  loci  of  the  separate 

equations  are  parallel.     Hence,  by  Corollary  III,  p.  350,  we  have 

Theorem  II.    The  locus  of  two  equations  of  the  first  degree^ 

CA^x  +  B,2/  +  C,z  -f-  i)i  =  0, 

is  a  straight  line  unless  the  coefficients  ofx,  y,  and  z  are  proportional. 

To  plot  a  straight  line  we  need  to  know  only  the  coordinates  of  two  points  on 
the  line.  The  easiest  points  to  obtain  are  usually  those  lying  in  the  coordinate 
planes,  which  we  get  by  setting  one  of  the  variables  equal  to  zero  and  solving  for 
the  other  two.  If  a  line  cuts  but  one  of  the  coordinate  planes,  we  get  only  one  point 
in  this  way,  and  to  plot  the  line  we  draw  a  line  through  that  point  parallel  to  the 
axis  which  is  perpendicular  to  that  plane. 

The  direction  of  a  line  is  known  when  its  direction  cosines  are 

known.     The  method  of  obtaining  these  is  illustrated  in 

Ex.  1.    Find  the  direction  cosines  of  the  line  whose  equations  are 

3x  +  2y-2;-l  =  0,     2x-?/  +  22;-3  =  0. 

Solution.    Let  the  direction  cosines  of  the  line  be  cos  or,  cos  /S,  and  cos  y. 
The  direction  cosines  of  the  normals  to  the  planes  in  which  the  line  lies 

are  respectively  (Corollary  I,  p.  350) 

3  2        _     1  2     _  1     2 
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Since  the  intersection  of  the  two  planes  is  perpendicular  to  the  normals  to 

both,  we  have  (Theorem  VI,  p.  335) 

3               .2^1 
— — =  cos  a  H — — :  cos  /3   —=.  cos  7 
Vl4  Vl4  Vl4 

2  12 
0,     -  cos  a   cos  /3  -f  -  cos  7  =  0. 3  3  3 

Solving  for  cos  /3  and  cos  7  in  terms  of  cos  a,  we  get 

cos  j8  =  —  I  cos  a,     cos  7  =  —  I  cos  or, 
3  cos  /3  3  cos  7 

and  hence cos  a  = 8  7 

Dividing  by  3,  the  least  common  multiple  of  the  numerators,  we  get 

cos  a  _  cos  /3  _  cos  7 

3     ~^8"~"^* 
Then  by  the  Corollary,  p.  331, 

3.-8  -7 

iVm'
 

cos/3 

±V122 : ,    cos  7  = dbVl22 

The  line  will  be  directed  downward  or  upward  according  as  the  positive 

or  negative  sign  of  the  radical  is  chosen. 

The  method  is  general  and  may  be  formulated  as  the 

Rule  to  find  the  direction  cosines  of  a  line  whose  equations  are  given. 

First  step.  Find  the  direction  cosines  of  the  normals  to  the  planes 

in  which  the  line  lies  (^Corollary  I,  p.  350). 

Second  step.  Find  the  conditions  that  the  given  line  is  perpen- 

dicular to  the  normals  in  the  first  step  (^Theorem  VI,  p.  335)  and 

solve  for  two  of  the  direction  cosines  of  the  line  in  terms  of  the  third. 

Third  step.  Express  the  results  of  the  third  step  as  a  continued 

proportion  and  apphj  the  Corollary,  p.  331. 

Ex.  2.    Find  the  direction  cosines  of  the  line  whose  equations  are 

4x  +  32;-10  =  0,     4x-2y  +  3z-l  =  0. 

Solution.  First  step.  The  direction  cosines  of  the  normals  to  the  given 

planes  are 
4  n    3       ,      4 -,  0,  -  and  —=.. 5  5  V29 

2  3 

V29'   V29 

Second  step.    If  the  direction  cosines  of  the  line  are  cos  a,  cos  /8,  and  cos  7, 
then 
4  3  4  2  3 
-  cos  or  +  -  cos  7  =  0,     ——z  cos  a   — :  cos  jS  H — — =  cos  7  =  0, 
6  5  V29  V29  V29 

and  hence 
cos  7  =  —  I  COS  a,     cos  /3  =  0. 
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COS  (X         COS  'Y 
Third  step.    From  these  equations    =   ,  cos  ̂   =  0,  and   hence 

cos  a,  cos  j9,  and  cos  y  are  proportional  to  3,  0,  and  —  4.    Then  (Corollary, 

P- ^^^^'  cosa=±f,    cos/3  =  0,    cos7  =  Tf 
The  line  will  be  directed  downward  or  upward  according  as  the  upper  or 

lower  signs  are  used. 

Theorem  III.    If  a,  jS,  and  y  are  the  direction  cosines  of  the  line 

(II),  then 
cos  a  _         cos^  cosy 

This  is  proved  by  the  above  Rule  without  carrying  out  the  last  part  of  the  third 
step. 

PROBLEMS 

1 .  Find  the  points  in  which  the  following  lines  pierce  the  coordinate  planes 
and  construct  the  lines. 

(a)  2a;  +  y-2;  =  2,  x-y +  22  =  4.        (c)  x  +  2?/ =  8,  2x  -  4^/ =  7. 

(b)  4x  +  32/-62  =  12,  4x-3y  =  2.      (d)  y  +  z  =  4,  x  -  y  +  2z  =  10. 

2.  Find  the  direction  cosines  of  the  following  lines. 

(a)  2x-?/  +  2z  =  0,  x+2y-22;  =  4. 

Ans.    ±  ̂ 2^V65,  T  /^^  T  rV^^- 

(b)  x4-y  +  z  =  6,  x-y  +  z  =  3.  Am.    ±  |  V2,  0,  T  \^. 

(c)  3x  +  2y-z  =  4,.x-2?/-22=:5.    Aiis.    db  ̂ f?  ̂,  T  i  Vs,  ±  ̂ ^^  Vs. 
(d)  x  +  2/-3z  =  6,  2x-2/  +  3z  =  3.      Ans.    0,  ±  i^VIO,  ±  JgVTO. 

(e)  X  +  2/  =  6,  2x  -  32  =  5.  Ans.    ±  5VV22,  =f  i^^^^  ±  tt^^- 
(f)  ?/  +  3z  =  4,  3y-5z  =  l.  Ans.    ±1,0,0. 

(g)  2x-32/  +  z  =  0,  2x-32/-2z  =  6.  _ 
Ans.    ±  t3^Vi3,  ±  1^3  Vi3,  0. 

(h)  6X-142- 7  =  0,  2x  +  7z  =  19.    Ans.    0,  ±  1,  0. 

3.  Show  that  the  following  pairs  of  lines  are  parallel  and  construct  the 
lines. 

(a)  2i/  +  z  =  0,  32/-4z  =  7  and  5y-2z  =  8,  4y +  112  =  44. 

(b)  x  +  2y-z  =  7,  ?/  +  z-2x  =  6  and3x  +  6y-32  =  8,  2x-y^z=0. 
(c)  3x  +  2=:4,  y +  2z  =  9  and  6x  -  ?/ =  7,  3y  +  62  =  1. 

4.  Show  that  the  following  pairs   of  lines  meet  in   a  point  and    are 
perpendicular. 

(a)  x  +  2y  =  l,  2y  —  2  =  1  and  x  —  2/  =  l,x-22  =  3. 

(b)  4x  +  2/-32  +  24  =  0,  2  =  5  and  x  +  y  +  3  =  0,  x  +  2  =  0. 

(c)  3x  +  y-2  =  l,  2x-2  =  2  and  2x-2/  +  22  =  4,  x-y  +  2z  =  3. 
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6.  Find  the  angles  between  the  following  lines,  assuming  that  they 

directed  upward  or  in  front  of  the  ZX-plaue. 

(a)  X  +  y  —  z  =T),  2/4-2  =  0  and  x  —  y  =  l,  x-Sy  +  z  =  0.      Ans. 

(b)  x  +  2y  +  2z  =  1,  X-  22  =  1  and  4x  +  3y  -  z  -f  1  =0,  2x  +  3y  =  0. 
Ans.   cos-i  ̂ f. 

(c)  x-2y-^z  =  2,2y-z  =  l  and  x-2?/  +  z  =  2,  x-2?/  +  2z  =  4. 

6.  Find  the  equations  of  the  planes  through  the  line Ans.    cos-i|. 

x-fy-2  =  0,  2x-i/  +  3z  =  5 
which  are  perpendicular  to  the  coordinate  planes. 

Ana.   3x4-2z  =  5,  3y-5z  +  5  =  0,  5x  +  2y  =  6. 

7.  Show  analytically  that  the  intersections  of  the  planes  x  —  2y  —  z  =  S 

and  2x  —  4y  —  2z  =  5  with  the  plane  x  +  y  —  Sz  =  0  are  parallel  lines. 

8.  Verify  analytically  that  the  intersections  of  any  two  parallel  planes 
with  a  third  plane  are  parallel  lines. 

160.  The  projecting  planes  of  a  line.  The  three  planes  passing 

through  a  given  line  and  perpendicular  to  the  coordinate  planes 
are  called  the  projecting  planes  of  the  line. 

If  the  line  is  perpendicular  to  one  of 
the  coordinate  planes,  any  plane  con- 

taining the  line  is  perpendicular  to  that 
plane.  In  this  case  we  speak  of  but 
two  projecting  planes,  namely,  those 
drawn  through  the  line  perpendicular 
to  the  other  coordinate  planes. 

If  the  line  is  parallel  to  one  of  the 
coordinate  planes,  two  of  the  projecting 

~^  planes  coincide. 
By  Theorem  VII,  p.  360,  the 

equation  of  any  plane  through 
^1  the  line 

(1)  A^x  +  Biy  +  Ciz  4-  Di  =  0,    A^x  +  B^j/  +  C^z -{- D^  =  0 
has  the  form 

(2)  (^1  +  kA^) a;  -f  (^1  +  kB^) y  +  (Ci  +  A^C^) ;?  +  (A  4-  ̂ A)  = 

If  (2)  is  to  be  perpendicular  to  the  ZF-plane,  z  =  0,  then 

(Corollary  IV,  p.  350)  Ci  +  kC2  =  0,  whence  k  =  --^-     Substi- 
tuting in  (2)  and  reducing,  we  get 

(3)  (C,A^  -  C^A,)x  -  (B,C^  -  B^C,)y  +  C^D^  -  C^D,  =  0. 

I 
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Similarly,  if  (2)  is  perpendicular  to  the  YZ-  or  ZA'-plane,  it 
becomes 

(4)  (/liL-2  -  ̂ 2^1)  y  -  (Ci^2  -  C^A,)  z  +  AJ)^  -  A,D,  =  0, 

(5)  (A,B^  -  A^B^)  X  -  (B.C^  -  B^C^)  z  -  (B^D^  -  B^D^)  =  0. 

Equations  (3),  (4),  and  (5)  are  the  equations  of  the  projecting 

planes  of  the  line  (1),  and  any  two  of 

them  may  be  used  as  the  equations 

Z| 

A, 

B, 
0>- B. 

of  the  line. 

If  ̂ 1^2  -  ̂ 2^1  ̂   0,  that  is,  if  ihe 

line  is  not  parallel  to  the  AF-plane 

(Tl^eorem  III),  equations  (5)  and  (4) 

may  be  written  in  the  forms 

X  =  mz  +  <^)     y  z=z  nz  -\-  h. 

If  A^B^  —  J 2^1  =  0  and  JB1C2  —  B^C^^  0,  tha*  is,  if  the  line  is 

parallel  to  the  ZF-plane  but 

is  not  parallel  to  the  F-axis, 

equations  (5)  and  (3)  may  be 
written  in  the  forms 

z  =  a,     y  =  mx  +  h. 

If  A^B^  —  A^Bi  =  0  and 

E1C2  -B^Ci  =  0,  that  is,  if  the 

line  is  parallel  to  the  F-axis, 

equations  (4)  and  (3)  may  be 
written  in  the  forms 

Hence  we  have 

Theorem  IV.  The  equations  of  a  line  which  pisrces  the  X  Y-plane, 

or  which  is  parallel  to  the  XY-plane  but  not  to  the  Y-axis,  or 

which  is  parallel  to  the  Y-axis,  may  be  put  in  the  following  forms 
respectively : 

(^V\  J^  ~  ̂**^  "*"  ̂'      r  iS  =  «,  j  z  =  a, 
\y=nz-\-h,      \y  =  jncc -\- b,     \qc  =  h. 
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To  find  the  equations  of  the  projecting  planes  of  a  given  line  we  may  proceed 
as  above  by  considering  the  system  of  planes  which  pass  through  the  given  line 

(Theorem  VII,  p.  'MiO)  and  determining  the  parameter  A  so  that  the  plane  shall  be 
perpendii'ular  to  each  of  the  cotirdinate  planes  in  turn.  These  equations  may 
also  be  found  by  eliminating  z,  x,  and  y  in  turn  from  the  equations  of  the  line. 

To  reduce  the  equations  of  a  given  line  to  one  of  the  forms  (IV)  we  solve  them 
for  X  and  y  in  terms  of  z.  If  there  is  no  solution  for  x  and  y  (Theorem  IV,  p.  90), 
we  solve  for  y  and  z.  Finally,  if  there  is  no  solution  for  y  and  z,  we  solve  thera^ 
for  z  and  x. 

PROBLEMS 

1.  Find  the  equations  of  the  projecting  planes  of  the  following  lines, 

(a)  2x-\-y-z  =  0,x-y-\-2z  =  3. 
Ans.    5x  +  y  =  3,  3xH-z  =  3,  3  2/-5z  +  6  =  0. 

(h)  x  +  y  +  z  =  6,x-y  -2z  =  2.    • 
Ans.   3x-f2/  =  14,  2x-z  =  8,  2y+32  =  4. 

(c)  2x-\-y-z  =  l,  x  —  y-\-z  =  2.  Ans.   x  =  l,  y  — z-\-l  =  0. 
(d)  x  +  2/-4z  =  l,  2x  +  2y  +  z  =  0.       Ans.    9x  +  9y  =  I,  92  +  2  =  0. 

(e)  22/  +  32  =  6,  22/ -3z  =  18.  Ans.   y  =  Q,z=-2. 
(f)  2 X  -  y  +  z  =  0,  4  X  +  3 y  +  2  z  =  6.    Ans.    5 y  =  6,  lOx  +  5 z  =  G. 

(g)  X  +  z  =  1,  a;  -  2  =  3.  An^.   x  =  2,z=-l. 

2.  Reduce  the  equations  of  the  following  lines  to  one  of  the  forms  (IV) 
and  construct  the  lines. 

(a)  X  +  y  —  2 z  =  0,  X  -  y  +  z  =  4.  Ans.   x  =  \z  +  2,  y  =  Iz  -2. 

(b)  x  +  2y-z  =  2,  2x  +  4y  +  2z  =  5.  Ans. 

(c)  X  —  2y  +  z  =  4,  x  +  2y  —  z  =  6.  Ans. 
(d)  x  +  3z  =  6,  2x  + 5z  =  8.  Ans. 

(e)x  +  2?/-2z  =  2,  2x  +  2/-4z  =  l.  Ans. 
(f)  x-2/  +  z  =  3,  3x-3?/  +  2z  =  6.  Ans. 

x=\z  +  2,y=lz- 

x  =  b,y  =  \z-\-\. 

z  =  4,  X  =  -  6. 
x  =  2z,  y  =  1. 

z  =  3,  y  =  X. 

3.  Interpret  geometrically  the  meaning  of  the  constants  in  each  of  equa 

tions  (IV)  by  determining  numbers  proportional  to  the  direction  cosines  of 

each  line  and  the  point  in  which  the  first  line  cuts  the  XY-plane,  the  second 

the  FZ-plane,  and  the  third  the  Z X-plane. 

4.  Interpret  the  geometric  significance  of  the  constants  in  equations  (IV) 

by  considering  the  traces  of  the  planes  which  are  the  loci  of  those  equations 
taken  separately. 

5.  Show  that  a  straight  line  in  space  is  determined  by  four  conditions,  and] 
formulate  a  rule  by  which  to  find  its  equations. 

6.  Find  the  equations  of  the  line  passing  through  the  points  (—2,  2,  1) 

and  (-  8,  5,  -  2).  Ans.   x  =  2z-4,  y  =  -z  +  3. 

I 
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7.  Find  the  equations  of  the  projection  of  the  line  x  =  z  +  2,  y  =  2z  —  4 
upon  the  plane  x  +  y  —  z  =  0.  Ans.    x  =  \z-{-^-^y  =  ̂ z  —  Y-. 

8.  Find  the  equations  of  the  projection  of  the  line  z  =  2,  ?/  =  x  —  2  upon 
the  plane  x  —  2y  —  ̂ z  =  A.  Ans.    x  =  —  5z-\-i,  y  =  —  iz. 

9.  Show  that  the  equations  of  a  line  may  be  written  in  one  of  the  forms 

(y  =  mx  +  a,        fx  =  a, 

\z=  nx  -j-b,       \z  =  my  -{- 

X  =  a, 

b,       iy  =  b, 
according  as  it  pierces  the  FZ-plane,  is  parallel  to  the  FZ-plane,  or  is  parallel 
to  the  Z-axis. 

10.  Show  that  the  condition  that  the  line  x  =  mz  +  a,  y  =  nz  +  b  should 

a  —  a'       b  —b' intersect  the  line  x  =  m'z  +  a',  y  =  vfz  +  V  is m  —  m       n  —  n 

161.  Various  forms  of  the  equations  of  a  straight  line. 

Theorem  V.  Parametric  form.  The  coordinates  of  any  point 

P(x,  ?/,  z)  on  the  line  through  a  given  point  Pi(xi,  i/i,  z^  whose 

direction  angles  are  a,  fi,  and  y  are  given  by 

(V)    a?  =  a?i  +  /)  cos  a,    y  =  Pi  +  p  cos  fi,    z  =  z^-^-  p  cos  y, 

where  p  denotes  the  variable  directed  length  P^P. 

Proof.  The  projections  of  PjP  on  the  axes  are  respectively 
(Corollary  II,  p.  329) 

x-x^,      y-yx,      z-  «i, 

or  (Theorem  I,  p.  328) 

p  cos  a,     p  cos  /?,     p  cos  y. 
.  Hence 

ic  —  aji  =  /o  cos  or,     y  —  yi  =  pGOS  ft,     z  —  Zi  =  p  cos  y. 

Solving  for  x,  y,  and  z,  we  obtain  (Y).  q.e.d. 

Theorem  VI.  Symmetric  form.  The  equations  of  the  line  passing 

through  the  point  P^  (x^,  y^,  z{)  whose  direction  angles  are  a,  ft,  and 
y  have  the  form 

Qc—aci     y  —  Vi     z  —  Zi 
(VI) 

cos  a        cos  p        cos  y 

Hint.   Solve  each  of  equations  (V)  for  p  and  equate  the  values  obtained. 
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Corollary.    If 
cos  a  _  cosjS  _  cosy 

then  the  sf/mmetric  equation 
a  b  0 

of  the  line  may  be  written  in  the  farm 

x  —  x^  _y  —  y^  ̂ z  —  z^ 
a  b  c 

Theorem  VII.    Two-point  form.    The  equations  of  the  straight  Ih 

passing  through  1\  (a^i,  y^,  z-^  and  Pi  (x^,  y^^  z^  are oc  ̂ ~  «*/j^ y-Vi 
Z--Zi 

(VII) 
«2-a^l         2/2-2/1         «3-«l 

Proof  The  line  (VI)  passes  through  Pj.  If  it  also  passes 
through  Pg)  then 

Xj  —  xi  ̂   .V2  —  yi  ̂   gg  —  ̂ 1^ 
cos  a          cos  (3         cos  y 

Dividing  (VI)  by  this  equation,  we  obtain  (VII).  q.e.d. 

Equations  (VI)  and  (VII)  each  involve  three  equations,  namely,  those  obtained 

by  neglecting  in  turn  each  of  the  three  ratios.  These  equations  are,  in  different 
form,  tlie  equations  of  the  projecting  planes,  since  one  variable  is  lacking  in  each 

(Corollary  V,  p.  351).  Any  two  of  the  three  equations  are  independent  and  may 
be  used  as  the  equations  of  the  line,  but  all  three  are  usually  retained  for  the  sake 
of  their  symmetry 

I 

PROBLEMS 

1.  Find  the  equations  of  the  lines  which  pass  through  the  following 

of  points,  reduce  them  to  one  of  the  forms  (IV),  p.  367,  and  construct  the 
lines. 

(a)  (3,  2,  -  1),  (2,  -  3,  4).  Arts,   x  ==  -  ̂ z  +  i^,  y  =- z +  1. 
(b)  (1,  6,  3),  (3,  2,  3).*  Ans.    z  =  3,y  =  -2x  +  8. 
(c)  (1,  -  4,  2),  (3,  0,  S).  Ans.   x  =  2z  -  S,  y  =  4z  -  12. 

(d)  (2,  -  2,  -  1),  (3,  1,  -  1).  Ans.   z  =  -l,y  =  Sx-S. 
(e)  (2,  3,  5),  (2,  ̂   7,  5).  Ans.   z  =  5,  x  =  2. 

2.  Show  that  the   two-point  form  of  the  equations  of  a  line  become] 

—  ̂   —  Ziy  it  Zi  =  Z2.     What  do  they  become  if  2/1  =  2/2? X2  -  xi      2/2 

if  Xi  =  X2  ? 
2/1 

x-l *  From  (VII),   =   =   The  value  of  the  last  ratio  is  infinite  unless  3-3=  0. 
3-1      2-6      3-3 

If  3-3  =  0,  then  the  last  ratio  may  have  any  value  and  may  be  equal  to  the  first  two. 

Hence  the  equations  of  the  line  become  — —  =   ,  z  =  3.    Geometrically,  it  is  evident  J 

that  the  two  points  lie  in  the  plane  z 

plane. 

3,  and  hence  the  line  joining  them  also  lies  in  that 
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3.  What  do  the  two-point  equations  of  a  line  become  if  Xi  =  x^  and 

2/1  =  2/2?    if  2/1  =  2/2  and  zi  =  Z2?    if  21  =  Z2  and  xi  —  x^? 

4.  Do  the  following  sets  of  points  lie  on  straight  lines  ? 

(a)  (3,  2,  -  4),  (5,  4,  -  6),  and  (9,  8,  -  10).  Ans.    Yes. 

(b)  (3,  0,  1),  (0,  -  3,  2),  and  (6,  3,  0).  '  Ans.    Yes. 
(c)  (2,  5,  7),  (-  3,  8,  1),  and  (0,  0,  3).  Ans.    No. 

5.  Show  that  the  conditions  that  the  three  points  Pi(xi,  2/1,  Zi),  P2{X2, 2/2,  z^), 

and  Pa  (Xs,  2/3,  Zs)  should  lie  on  a  straight  line  are  ~    =  —   —  =  —   -. 
^  ^  X2-  xi      y2  -  2/1      22  -  zi 

6.  Find  the  equations  of  the  line  passing  through  the  point  (2,  —1,  —  3) 
whose  direction  cosines  are  proportional  to  3,  2,  and  7,  and  reduce  them  to 

the  form  (IV),  p.  367.  Ans.   x='^.z  +  ̂f-.,y  =  ̂ z-\. 
7.  Find  the  equations  of  the  line  passing  through  the  point  (0,  —  3,  2) 

which  is  parallel  to  the  line  joining  the  points  (3,  4,  7)  and  (2,  7,  5). 

X _y  +  3 _z-2 

1~    -3 

X  —  2      y  +  2      z,x  +  l      y  —  b 

Ans. 

8.  Show  that  the  lines 

parallel 
9.  : 

parallel  to  the  line 

-2 

z       ,  X  +  1 
-  and   
4  -3 

2 

2  +  3 
are 

9.  Find  the  equations  of  the  line  through  the  point  (—2,  4,  0)  which  is 

-  =   =   ,  and  reduce  them  to  the  form  (IV),  p.  367. 

^         ̂   ~^         Ans.    x  =  -4z-2,y  =  -Sz  +  ̂. 
x  +  2      y-S      z-1       ,x-3      y      z -\- S   =   =   and   =  -  =  —    are 
6  -3  2  2  6  3 

-  3      y +  1       z- 

10.  Show  that  the  lines 

perpendicular. 

11.  Find    the    angle    between    the    lines 

-  1 

and 

x  +  2 
-  if  both  are  directed  upward. Ans. 

27t 

12  1  ^  3 

12.  Find  the  parametric  equations  of  the  line  passing  through  the  point 

(2,  —  3,  4)  whose  direction  cosines  are  proportional  to  1,  —  2,  and  2. 

Ans.    x  =  2  +  ip,  y  =  -S-ip,  z  =  4:-{-ip. 

13.  Construct  the  lines  whose  parametric  equations  are 

(a)  x  =  2  +  ip,y  =  4:-ip,  z  =  Q-h^p. 
(b)  x  =  -3  -fp,  2/  =  6- fp,  z  =  4  +  fp. 

14.  Find  the  distance,  measured  along  the  line  x  «=  2  —  j3_p,  y  =  4  +  if  p, 
z  =  —  S  -{-  j\  p,  from  the  point  (2,  4,  —  3)  to  the  intersection  of  the  line  with 
the  plane  4x  —  y  —  2z  =  6.  Ans.    If. 

15.  Show  that  the   symmetric  equations  of   the   straight  line   become 

z  =  zi  it  cos  7  =  0.     What  do  they  become  if  cos  a:  =  0  ? xi      2/  -  2/1 
cos  a        cos  ]8 

if  cos/S  =  0? 
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16.  Show  that  the  symmetric  ecjuations  of  the  straight  line  become  z  —  Zi," 
x  —  X\  if  cos 7  =  cos  a  =  0.  What  do  they  become  if  cos  a  =  cos/3  =  0  ? 
if  cos  j8  =  cos  7  =  0  ? 

17.  Reduce  the  equations  of  the  following  lines  to  the  symmetric  form. 
x-2      y  +  3 

(a)  x-2y  +  z  =  8,  2x  -  Sy  =  13.  Ans. 

(b)  4x-52/  +  32!  =  3,  4a:-5y  +  z  +  9  =  0.    Ans. 

3 

X  _  y_ 

6~ 

(c)  2x  +  z-f5  =  0,  x  +  3z-5=0. 

(d)  x  +  2y +  62  =  6,  Sx-2y  -10z  =  7. 

(e)  3x-y-2z  =  0,6x-Sy-4z  +  9: 

(f)  3x-4y  =  7,  x  +  3y  =  ll. 

(g)  2x  +  2/  +  2z  =  7,  x  +  3y  +  6z  =  ll. 

(h)  2x-3y  +  z  =  4,4x-6y-z  =  5. 

(i)  3  z  +  2/  =  1,  4  z  -  3  y  =  10. 

(j)  x  =  mz  +  a,  y  =  nz  +  b. 

Ans.   z  =  3,  X  =  —  4. 
x-3      y-\      z 

2  -7       2 

^^'-   -I-  =  3'^  =  ̂- 
^ns.    X  =  5,  2/  =  2. 

2  -1 .        X     y +  1  - 
Ans.   -  =  -   ,  z  =  1. 

3         2 

Ans.    y  =  —  2,  z  =  1. 
X  —  a  _y  —  b  _z 
m  n  \ 

Ans. 

Hint.  Find  the  coordinates  of  a  point  on  the  line  by  assuming  a  value  of  one  variable 
and  solving  the  equations  of  the  line  for  the  other  two  variables.  In  the  answers  this 
point  is  the  point  in  which  the  line  pierces  the  X  F-plane,  or  the  point  in  which  it  pierces 
the  F-Z^-plane  if  it  is  parallel  to  the  XT-plane,  or  the  point  in  which  it  pierces  the  ZX- 
plane  if  it  is  parallel  to  the  F-axis. 

Find  the  direction  cosines  of  the  line  by  the  Rule,  p.  3&4  (or  numbers  proportional  to 
them  by  Theorem  III,  p.  365),  and  substitute  in  the  symmetric  equations  of  the  line  (or 
ill  the  form  given  in  the  Corollary  to  Theorem  VI). 

If  one  or  two  of  the  direction  cosines  are  zero,  the  symmetric  equations  take  the  forms 
given  in  problems  15  and  16. 

18.  Find  the  equations  of  the  line  passing  through  the  point  (2, 0,  -2)  which 

x-3_y_z+l         x_y+l_2+2 

2     ~1~     2     ̂ ^3~-l"~     2 
x-2 _y _z+2 

4      ~2~    -5  ■ 

is  perpendicular  to  each  of  the  lines 

An^. 

1 9 .  Find  the  equations  of  the  line  passing  through  the  point  (3,  - 1 ,  2)  which 
x_y_z 

2~3~4* 
3      y  +  \      z-2 

is  perpendicular  to  each  of  the  lines  x  =  2z-l,  2/  =  z  +  3,  and 

X 

Ans. 1 6 
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20.  Find  the  equations  of  the  line  through  Pi  (xi,  ?/i,  Zi)  parallel  to 

(a) 

X2 

2/2 

Z2 

(b)  x  =  mz  -^  a,  y  —  nz  +  b. 

(c)  z  =  a,  7/  =  mx  +  6. 

(d)  Aix  +  Biy  +  Ciz  +  Di  = 

Ans. 

Ans. 

X-Xi  _ 

a 

y. 

-2/1 

6 

Z-Zl 

c 

Ans. 

X  —  Xi 

m 

y_ 

-2/1 

n _2;  -zi 1 

Ans. 

X-Xi 

1 

y_ 

-2/1 

7n Z  =  Zl. 

AiX  +  B2y  +  C2Z  +  A 

I  = 

:0. 

a^i        _        2/  -  2/1 
z 

-zi 

BIC2  -  B2C1     CIA2  -  A2G1    AIB2  -  A2BI 

21.  Find  the  equations  of  the  line  passing  through  Pi(xi,  2/1,  Zi)  which  is 
perpendicular  to  each  of  the  lines 

X-X2     y  -  2/2      z  -  Z2      -.x-xs      y  -yz      z  -  zz 

(H 

&2 

Z2  .X —  and  — 

C2 

Ans. 

X  —  Xi 
y  -  2/1 

C3 

h-zCz  —  &3C2      C2a3  —  C3a2      ̂ 263  —  a362 

162.  Relative  positions  of  a  line  and  plane.  If  the  equations 

of  a  line  have  the  general  form  (II),  p.  363,  then  the  line  will  lie 

in  a  given  plane  if  a  value  of  k  in  (VII),  p.  360,  may  be  found 

such  that  the  locus  of  that  equation  is  the  given  plane. 

If  the  equations  of  the  line  have  the  form  (IV),  we  substitute 

the  values  of  two  of  the  variables  given  by  (IV)  in  the  equation 

of  the  plane  and  see  whether  the  result  is  true  for  all  values  of 

the  third  variable.    If  such  is  the  case,  the  line  lies  in  the  plane. 

An  analogous  procedure  may  be  followed  if  the  equations  of 

the  line  have  the  form  (V),  (VI),  or  (VII). 

Theorem  VIII.   A  line  wliose  direction  angles  are  a,  /S,  and  y  and 

the  plane  Ax  -\-  By  -\-  Cz  -\-  D  =  0  are 

(a)  parallel  when  and  only  when 

A  cos  a  ■\-  B  cos  p  -\-  C  cos  Y  =  O; 

(6)   perpendicular  when  and  only  ivhen 

^    _    B    _     C 

cos  a  ~  cos  ̂   ~  cos  y 
Proof.    The  direction  cosines  of  the  normal  to  the  plane  are 

(Corollary  I,  p.  350) 
ABC 

±V^2_|_^2_|.(.2    ±Va^+WTc^    iVlM^BM-c^ 
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The  line  and  plane  are  parallel  when  and  only  when  the  line 

is  perpendicular  to  the  normal  to  the  plane,*  that  is  (Theorem  VI, 
p.  335),  when  and  only  when 

A  cos  a  -{-  B  C03  fi  -\-  C  cos  y  _ 

Multiplying  by  the  radical,  we  get  the  condition  for  parallelisrnT 

The  line  and  plane  are  perpendicular  when  and  only  when 

the  line  is  parallel  to  the  normal  to  the  plane,  that  is  (Theorem  VI, 

p.  335),  when  and  only  when 
cos  p 

cos  a  = 
±V/12  +  ̂ 2^C2 

COS  y  = 
±  Vl2"+^2"+~C^ 

Dividing  these  equations  by  A,  B,  and  C  respectively  anc 

inverting,  we  at  once  obtain  the  conditions  for  perpendicularity. 

Q.E.D. 
163.  Geometric  interpretation  of  the  solution  of  three  equa- 

tions of  the  first  degree.  The  coordinates  of  a  point  which  lies 

on  each  of  three  planes  will  satisfy  the  equations  of  the  three 

planes,  and  hence  to  each  point  common  to  three  planes  there 

will  correspond  a  solution  of  their  equations.  Hence  we  have 

the  following  correspondence  between  the  relative  positions  of 

three  planes  and  the  number  of  solutions  of  their  equations. 

Position  of  planes  Number  of  solutions  of  equations 

^Forming  a  triedral  angle.  One  solution. 

Forming  a  prismatic  surface,  f        No  solution. 

Passing  through  the  same  line.  % 

Three  parallel  planes.  $ 

Three  coincident  planes. 

A  singly  infinite  number.  § 
No  solution. 

A  doubly  infinite  number.  || 

*  If  the  line  is  perpendicular  to  the  normal  to  the  plane,  it  may,  in  a  special  case,  lie 
in  the  plane. 

t  Two  of  the  planes  may  be  parallel  in  a  special  case. 
t  Two  of  the  planes  may  coincide  in  a  special  case. 
§  The  solution  contains  one  arbitrary  constant. 
II  The  solution  contains  two  arbitrary  constants. 
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If  the  three  planes  form  a  triedral  angle,  the  point  of  intersection  is  found 
without  difficulty  by  solving  their  equations. 

If  the  three  planes  form  a  prismatic  surface,  their  lines  of  intersection  are  par- 
allel. Whether  this  is  the  case  or  not  may  be  determined  by  Theorem  III,  p.  365, 

and  the  Corollary,  p.  331. 
If  the  three  planes  pass  through  the  same  line,  the  intersection  of  two  planes 

lies  in  the  third.  Whether  this  is  the  case  or  not  may  be  determined  by  the 
method  on  p.  373.  To  solve  their  equations  set  one  variable  equal  to  k  and  solve 
tioo  of  the  equations  for  the  remaining  variables.  The  results  will  be  solutions 
for  all  values  of  k. 

Whether  the  three  planes  are  parallel  or  not  may  be  determined  by  Corollary  III, 

p.  350. 
If  the  three  planes  coincide,  all  of  their  coefficients  are  proportional.  To  solve 

their  equations  set  two  of  the  variables  equal  to  ̂ i  and  k-z,  and  solve  one  of  the 
equations  for  the  remaining  variable.  The  results  will  be  solutions  for  all  values 
of  ki  and  k^. 

PROBLEMS 

1.  Show  that  the  line  ?-^  =  V^^  =  -  is  parallel  to  the  plane  4x  4-  2  y 

+  22  =  9.  2  -7        3 
X,      y      z 

2.  Show  that  the  line  -  =  -  =  -  is  perpendicular  to  the  plane  3x  +  2y 

+  7z  =  S.  ^      2      ̂ 

3.  Show  that  the  line  x  =  z  —  4,  y  =  2z—B  lies  in  the  plane  2x  —  Sy 
+  4z-  1  =  0. 

4.  Show  that  the  line  x  =  — 2  +  f/9,  y  =  —  ̂ p,z  =  6  +  ̂ p  lies  in  the  plane 
X  -  2  y  -  6  z  +  38  =  0. 

5.  Find  the  coordinates  of  the  points  of  intersection  of  the  following 

planes  and  determine  the  relative  positions  of  the  planes. 

(a)  2x-^y-2z  =  n,x-y  +  z  =  0,x  +  2y-z  =  7. 
Ans.    (3,  1,  —  2);  planes  form  a  triedral  angle. 

(b)2x  +  4y  +  22  =  3,  3x  +  3y-|-2  =  0,  3x-6?/-52;  =  8. 
Ans.    None ;  planes  form  a  prismatic  surface. 

(c)  X  —  y  —  Sz  =  l,  x-\-y-^z  =  2,  Sx  —  y~5z  =  4. 

Ans.    (I  +  A:,  ̂   —  2  k,  k);  planes  pass  through  a  line. 
(d)  3x-y +  5z  =  0,  21x~7y  +  35z  =  8,  2?/-  lOz  -6x=4. 

Ans.    None ;  planes  are  parallel. 

(e)  2x--Sy-\-4z  =  S,6y-4x-8z-\-ii  =  0,6x-9y  +  12z  =  9. 

Ans.    [fci,  kz,  1(3  —  2  A;i  +  3  ̂'a)] ;  planes  coincide. 

g.   2      v  +  2      z   3 
6.  Show  that  the  line    =  ~ —  =   lies  in  the  plane  2x  -\-2y 

-2  +  3  =  0.  ^  ~^  ̂  
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7.  Find  the  equations  of  the  line  passing  through  the  point  (3,  2,  —  6) 

which  is  perpendicular  to  the  plane  Ax  —  y-\-^z  =  b. 
x-8      y-2      2+6 

Ana.     =   =   4-13 

8.  Find  the  equations  of  the  line  passing  through  the  point  (4,  —  6,  2) 

which  is  perpendicular  to  the  plane  x+2y  —  3z  =  8. 
x-4      y+6      z-2 Ans. 

2  -3 

9.  Find  the  equations  of  the  line  passing  through  the  point  (—2,  3,  2) 

which  is  parallel  to  each  of  the  planes  3x  —  y  +  z  =  0  and  x  —  z  =  Q. 
.        x+2      y-Z      z- 2 

Ans.   —  =   =   • 1  4  1 

10.  Find  the  equation  of  the  plane  passing  through  the  point  (1,  3,  —  2) 

which  is  perpendicular  to  the  line   =   =   
2  6-1 

Ans.    2x  +  5y  — z  =  19. 

11.  Find  the  equation  of  the  plane  passing  through  the  point  (2,  —  2,  0) 
which  is  perpendicular  to  the  line  z  =  S,  y  =  2x  —  4.     Ans.  x  -{-  2  y  -\-2  =  0. 

12.  Find  the  equation  of  the  plane  passing  through  the  line  x  +  2  z  =  4, 
3j   3      7/_|_4      z   7 

y  —  z  =  8  which  is  parallel  to  the  line   =    =   • ^  ^  2  3  4 
Ans.    x  +  10y-8z -84  =  0. 

18.  Find  the  equation  of  the  plane  passing  through  the  point  (3,  6,  —  12) 

which  is  parallel  to  each  of  the  lines    =   =    and 

z+2  3-13  2 

=  —^'2/ =3.  Ans.   2x  +  Sy  -z  =  S6. 

14.  Find  the  equations  of  the  line  passing  through  the  point  (3,  1,  —  2) 
which  is  perpendicular  to  the  plane  2x  —  y  —  6z  =  6. 

Ans.    X  =  - |z  +  -V-,  y  =  i z  +  f 

tKou        *u**i,v        x-2      y  +  1         z  .     x  —  2      y  +  1      «- 15.  Show  that  the  lines    =    =       and       =   =  - 
3  4-2  -1  32 

intersect,  and  find  the  equation  of  the  plane  determined  by  them. 

Ans.    14x-4y  +  13z  =  32. 

16.  Find  the  equation  of  the  plane  determined  by  the  line    =  ~   

z-1  ^  -^ 
1 and  the  point  (0,  3,  -  4).  Ans.   x  +  2y  +  2z  +  2  =  0. 

17.  Find  the   equation  of  the   plane   determined  by  the  parallel   lines 

x  +  1  _y  -2  _z       ,ic-3_  y  +  4  _  z  -  1 

3  2         13  2  1       ̂ ^s.    8x  +  y-26z  +  6  =  0. 
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18.  Find  the  equations  of  the  line  passing  through  Pi(xi,  i/i,  Zi)  which  is 

perpendicular  to  the  plane  Ax  +  By  -\-  Cz  +  D  =  0. 

ABC 

19.  Find  the  equation  of  the  plane  passing  through  the  point  Pi  (xi,  ?/i,  Zi) 

which  is  perpendicular  to  the  line    =   —  =   . a  b  c 

Ans.    a{x-Xi)  +  b{y-yi)-\-c{z-zi)~0. 

20.  Find  the  angle  6  between  the  line  ̂   "  ̂̂   =  ̂  ~  ̂̂   =  ̂  ~  ̂^  and  the 
plane  Ax  -\-  By -\- Cz  +  D  =  0.  ^  ^  ^ 

.          .    ̂                   Aa  +  Bb+Cc Ans.    sin  d  =  —  —   

Hint.  The  angle  between  a  line  and  a  plane  is  the  acute  angle  between  the  line  and 

its  projection  on  the  plane.  This  angle  equals  ~  increased  or  decreased  by  the  angle 
between  the  line  and  the  normal  to  the  plane. 

21.  Find  the  equation  of  the  plane  passing  through  Psixs,  2/3,  Zs)  which 

11  1  .         u    *  4.1,    T        x-xi     y  -  yi     z  -  zi      .x  —  x^     y  -  y^ IS  parallel  to  each  of  the  lines    =   —  =    and    =   — 

2  _  ̂ ^  ai  &i  ci  ai  62 

Ans.   (61C2  -  62C1)  (x  - Xz)  +  (cia2  -  a2Ci)  {y  -  yz)  +  {a^i  -  0261)  {z  -  z^ = 0. 

22.  Find  the  condition  that  the  plane  Aix  +  Biy  +  CiZ  +  Di  =  0  should 

be  parallel  to  the  line  A2X  +  E22/  +  C^z  +  D2  =  0,  Agx  +  B^y  +  Csz  +2)3  =  0. 

Ans.    AiiB^Cs  - 53C2)  +  ̂ i(C2^3- 03^2) +  Ci(J^253 -^3^2)  =  0. 

23.  Find  the  equation  of  the  plane  determined  by  the  point  Pi  (xi,  yi,  Zi) 

and  the  line  ̂ ix  +  Biy  +  Ciz  +Di  =  0,  A2X  ̂ B^y  +  CiZ  +i)2  =  0. 

Ans.   {AiXi  +  B^yi  +  C2Z1  +JD2)  {AiX+Biy+  CxZ  +Di) 

=  (^1X1  +5ii/i  +  Cizi  +i>i)  {A^x  +B2y  +  C2Z  +2)2). 

24.  Find  the  equation  of  the  plane  determined  by  the  intersecting  lines 

a;-xi  ^  y-yx  ^  z  -  zi  ̂ ^^  x  -  Xi  _  y  -  yx  ̂   z  -  zx  ̂ 
ax  bx  Cx  <i2  62  C2 

Ans.    (61C2  -  62C1)  (x  -  Xi)  +  (citta  -  C2ai)  {y  -  yx)  +  (ai62  -  aa&i)  (z  -  Zi)  =  0. 

25.  Find  the  equation  of  the   plane   determined   by  the  parallel  lines 

tc  -xi     y-yx     z  -  Zx      ,  x  -  X2      2/  -  2/2     2-22   =  — — -  =    and   =  — -—  =   
a  b  c  a  b  c 

Ans.    [{yx  -  2/2)  c  -  {zx  -  Z2)  b]x-\-  [{zx  -  Z2)  a  -  {Xx  -  X2)  c]  y 

+  [(xi  -  X2)  b-  (yx-  2/2)  a]  z  +  (2/1Z2  -  2/2Z1)  a 

-f  (Z1X2  -  Z2X1)  b  +  (X12/2  -  Xo?/i)  c  =  0. 
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36.  Find  the  conditions  that  the  line  x  =  mz  -\-  a,  y  =  nz  +  b  should  lie  : 
the  plane  Ax  +  By  +  Cz -\- D  =  0. 

Am.   Aa  +  Bb  +I>  =  0,  Am  +  Bn  -\-  C  =  0. 

27,  Find  the  equation  of  the  plane  passing  through   the  line 

=  ̂^:^  =  ?-::^  which  is  parallel  to  the  line  ̂ ^iL^  =  tJ^  =  illf? . Oi  Ci  at  bi  ca 

Ans.    (61C2  -  62C1)  (x  -  Xi)  +  (citta  -  Cgai)  (y  -  2/0  +  (0162  -  ag&i)  (2  -  Zi)  —  0. 

«! 



CHAPTER   XX 

SPECIAL  SURFACES 

164.  In  this  chapter  we  shall  consider  spheres,  cylinders,  and 

cones  =*  (surfaces  considered  in  Elementary  Geometry)  and  sur- 
faces which  may  be  generated  by  revolving  a  curve  about  one  of 

the  coordinate  axes  or  by  moving  a  straight  line. 

165.  The  sphere. 

Theorem  I.  The  equation  of  the  s]phere  whose  center  is  the  point 

(tr,  y8,  y)  and  whose  radius  is  r  is 

{^-ay  +  {y-py  +  (z-Yy  =  r\  or 

(I)  ic^  ̂   2/2  +  ;s2  _  2  ̂   _  2^y  -  2  ys;  +  a'^  +)ff2  +  y2  -  ir^  =  O. 

Proof.  Let  P{x,  ?/,  z)  be  any  point  on  the  sphere,  and  denote 

the  center  of  the  sphere  by  C.  Then,  by  definition,  PC  =  r. 

Substituting  the  value  of  PC  given  by  (IV),  p.  331,  and  squar- 
ing, we  obtain  (I).  q.e.d. 

Theorem  II.     The  locus  of  an  equation  of  the  form 

(II)  x""  +  y^  -ir  z"  +  Gqc  +  Hy  -{-  Iz  +  K  =  0 
is  determined  as  follows  : 

(a)    When  G^  -{-  H'^  -\-  I"^  —  A^  K  >  0,  the  locus  is  a  sphere  whose 

center  is  {  — —}  — ^>  ~  o  )  ̂̂^  whose  radius  is 

(h)    When  G"^ -\- H^ -\- 1^  —  4:  K  =  0,  the  locus  is  the  point-sphere -f 
G  H         f 

"2'  -"2'  ~2 

(c)    When  G^  +  H^  +  I^  -  4.  K  <  0,  there  is  no  locus. 
*  In  Analytic  Geometry  the  terms  sphere,  cylinder,  and  cone  are  usually  used  to 

denote  the  spherical  surface,  cylindrical  surface,  and  conical  surface  of  Elementary 
Geometry,  and  not  the  solids  bovinded  wholly  or  in  part  by  such  surfaces. 

+  That  is,  a  point  or  sphere  of  radius  zero. 
379 
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Proof.    Comparing  (II)  with  (I),  we  obtain 

whence 

G       ̂   H  I 

Hence,  if  G^  +  //^  +  /^  —  4  A'  >  0,  the  locus  is  a  sphere. 
To  determine  the  general  appearance  of  the  locus  of  (II)  when 

C^  4-  //^  +  ̂ ^  —  4  A^  0,  we  consider  the  section  formed  by  the 
plane  z  =  k,  whose  equation  is  (Kule,  p.  345) 

(1)  x''-\-y^-\-  GX  +  H7J  +  7^2  J^  ik  +  K  =  0. 

The  discriminant  of  (1)  is  (p.  131) 

=  _  4  A:2  _  4  ̂^  _l_  ̂2  _^  j^2  _  4  ̂  

The  discriminant  of  this  quadratic  in  k  is  (p.  2) 

A  =  16  /2  +  16  (?2  _^  16  7/ 2  -  64  A 

=  16(6'2-|-//2  +  /2_4A'). 

In  discussing  the  locus  of  (1)  three  cases  arise  which  depem 

upon  the  sign  of  0  (Theorem  I,  p.  131). 

(a)  If  G2  +  //'+/'-  4  A  >  0,  0  is  positive  for  values  of  k 
lying  between  the  roots  of  0  (Theorem  III,  p.  11),  and  the 

section  (1)  formed  by  the  plane  z  =  /c  is  a  circle.  Equation  (II) 
has  a  locus,  as  we  have  seen. 

(b)  If  (92  +  if  2  _^  /2  _  4  A  =  0,  0  is  negative  for  all  real  values 
of  k  (Theorem  III,  p.  11)  except  the  roots,  which  are  real  and 

equal  (Theorem  II,  p.  3),  and  for  this  single  value  of  k  the  locus 

of  (1)  is  a  point-circle.  As  but  one  plane,  z  =  k,  intersects  the 

locus  of  (II),  and  as  this  intersection  is  a  point-circle,  the  locus 
is  a  point  which  may  be  regarded  as  a  sphere  of  zero  radius. 

(c)  If  G2  4-  iy2  ̂ _  /2  _  4  K  <  0,  0  is  negative  for  all  real  values 
of  k  (Theorem  III,  p.  11).  Hence  (1)  has  no  locus  whatever  the 

value  of  k  may  be,  and  therefore  (II)  has  no  locus.  q.e.d. 
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leorem  III.    The  locus  of  the  general  equation  of  the  second 

degree  in  three  variables 

(III)  Ax'^+Bif  +  Cz''-\-D2jz-\-Ezx-\-Fxy-\-Gx+H2j+Iz-{-K  =  {) 

is  a  sphere  when  and  only  when  A  =  B  =  C,  D  =  E  —  F  =  0,  and 

  —    is  positive. 

This  is  proved  by  comparing  (III)  with  (II). 

PROBLEMS 

1.  Find  the  equation  of  the  sphere  whose  center  is  the  point 

(a)  (cr,  0,  0)  and  whose  radius  is  a.  Ans.   x^  -\-  ij^  +  z"^  —  2  ax  =  0. 
(b)  (0,  /3,  0)  and  whose  radius  is  jS.  Ans.    x^  +  y^ -\-  z^  -  2  ̂ y  =  (). 

(c)  (0,  0,  7)  and  whose  radius  is  y.  Ans.    x^  -{- y^  +  z^  —  2yz  =0. 

2.  Determine  the  nature  of  the  loci  of  the  following  equations  and  find  the 

center  and  radius  if  the  locus  is  a  sphere,  or  the  coordinates  of  the  point- 
sphere  if  the  locus  is  a  point-sphere. 

(a)  x2  -I-  ?/2  +  22  _  6 X  +  4 2  =  0.         (c)  x^  -\-  y"^  +  z^  +  4:X  -  z  +  7  =  0. 
(b)  x^  +  y^-\-z^  +  2x-iy-b  =  0.  (d)  x^ -\- y^ -\- z^ -12x  +  Qy +  ̂z  =  0. 

3.  Where  will  the  center  of  (II)  lie  if 

(a)  G  =  0 ?  (c)  J  =  0 ?  (e)  H  =  I  =  0? 

{h)H  =  0?  {d)  G=H=0?  (1)  I=G  =  0? 

4.  Show  that  a  sphere  is  determined  by  four  conditions  and  formulate  a 
rule  by  which  to  find  its  equation. 

5.  Find  the  equation  of  the  sphere  which 

(a)  has  the  center  (3,  0,  -  2)  and  passes  through  (1,  6,  —  5). 
Ans.    x2  +  2/2  +  z2  _  6  a;  _|_  4  2  _  36  =  0. 

(b)  passes  through  the  points  (0,  0,  0),  (0,  2,  0),  (4,  0,  0),  and  (0,  0,  -  6). 
Ans.   x^  +  y^  +  z^  -  4:X  -  2 y  -\-  Q z  =  0. 

(c)  has  its  center  on  the  F-axis  and  passes  through  the  points  (0,  2,  2)  and 

(4,  0,  0).  Ans.   x2  +  2/2  +  z2  +  4  y  _  16  =  0. 
(d)  passes  through  the. points  (1,  1,  0),  (0,  1,  1),  and  (1,  0,  1)  and  whose 

radius  is  11.  Ans.   x^  +  y"^  +  z^  -Ux  -  Uy  -Uz -[- 26  =  0. 
(e)  has  the  line  joining  (4,  —  6,  5)  and  (2,  0,  2)  as  a  diameter. 

Ans.   x^  +  y^  +  z^ -6x  +  Qy -7z  +  lS  =  0. 
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6.  Given  two  spheres  Si  :  x^  +  y^  +  z-  +  GiX  +  Hi]/  +  IiZ  -\-  Ki  =  0  anc 

-Sa  :  x2  -f  y'^  -^  z^  +  G-^x  +  lliy  +  I^z  +  A's  =  0 ;  show  that  the  locus  of 

Sk  :  x2  +  i/2  +  22  +  Gix  +  Iliy  +  hz  +  A'l 

+  A:  (za  +  y2  +  z'^  +  G^zX  +  thy  +  /zz  +  A'a)  =  0 
is  a  circle  except  when  k  —  —  \.     In  this  case  the  locus  is  a  plane  called  the 
radical  plane  of  Si  and  S^. 

7.  The  center  of  the  sphere  Sk  in  problem  6  lies  on  the  line  of  centers  of  Si 
and  Si  and  divides  it  into  segments  whose  ratio  is  equal  to  k. 

8.  The  equation  of  the  radical  plane  of  Si  and  ̂ 2  (problem  0)  is 

(6?i  -  (?2)x  +  {Hi-H2)y  +  {Ii-h)z  +  {Ki-Ki)  =  0. 
9.  The  radical  plane  of  two  spheres  is  perpendicular  to  their  line  oi 

centers. 

10.  The  radical  planes  of  three  spheres  taken  by  pairs  intersect  in  a  line' 
perpendicular  to  their  plane  of  centers  which  is  called  the  radical  axis  of  the 

spheres. 
11.  The  radical  planes  of  four  spheres  taken  by  pairs  intersect  in  a  point 

called  the  radical  center  of  the  spheres. 

12.  When  two  spheres  Si  and  S^,  (problem  6)  intersect,  the  system  Sk  con- 
sists of  all  spheres  passing  through  their  circle  of  intersection. 

13.  When  the  spheres  Si  and  S^  (problem  6)  are  tangent,  the  system  iS*j 
consists  of  all  spheres  tangent  to  Si  and  S^  at  their  point  of  tangency. 

14.  The  equation  of  the  system  Sk  (problem  6)  may  be  written  in  the  formj 

x2  ̂ .  2/2  +  2;2  +  A;'x  +  A'  =  0, 
where  ¥  is  an  arbitrary  constant,  if  the  JT-axis  is  chosen  as  the  line  of 

centers  and  the  FZ-plane  as  the  radical  plane  of  Si  and  S^. 

15.  The  spheres  of  the  system  in  problem  14  have  their  centers  on  the^ 
X-axis  and 

(a)  pass  through  the  circle  y'-  ̂_  ̂ 2  ̂ .  /{-  —  q,  x  =  0  if  A'<  0. 
(b)  are  tangent  to  each  other  at  the  origin  if  K  —  0. 
(c)  are  orthogonal  to  the  sphere  x2  +  y2  ̂   ̂ 2  =  A^  if  A^  >  0. 

16.  The  product  of  a  secant  of  a  sphere  drawn  from  a  fixed  point  and  its] 
external  segment  is  constant. 

17.  Find  the  square  of  the  length  of  a  tangent  from  a  point  Pi(xi,  yi,  Zi) 

to  the  sphere  x2  +  2/2  +  22  +  Cx  +  iTy  + 12  +  A"  =  0. 
An&.    Xi2  +  y^  +  zi2  -f  Gxi  +  Uyi  +  Izi  +  AT. 

18.  Show  that  the  equations  of  an  inversion  (p.  297)  in  space  are 

x'  v'  z' y 
x'2  +  /2  +  2'2  a;'2  4- y'a  +  2/2  x'2 -f  y;2  +  2' 
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19.  Show  that  the  inverse  of  a  plane  is  a  sphere  unless  the  plane  passes 
through  the  origin,  and  that  in  this  case  the  plane  is  invariant. 

20.  Show  that  the  inverse  of  a  sphere  is  a  sphere  unless  it  passes  through 
the  origin,  when  the  inverse  is  a  plane. 

166.  Cylinders. 

Ex.  1.    Determine  the  nature  of  the  locus  oiy^  —  i  x. 

Solution.    The  intersection  of  the  surface  with  a  plane  parallel  to  the 

rZ-plane,  x  =  k,  are  the  lines  (Rule,  p.  345) 

(1)     x  =  k,    y  =  ±2Vk, 

which  are  parallel  to  the  Z-axis 
(Theorem  II,  p.  342).    lfk>0, 
the  locus  of  equations  (1)  is  a 
pair  of  lines ;  if  fc  =  0,  it  is  a 

single  line  (the  Z-axis) ;   and 
if  A:  <0,  equations  (1)  have  no 
locus. 

Similarly,  the  intersection 

with  a  plane  parallel  to  the 

ZJT-plane,  y  =  k,  is  &  straight 
line  whose  equations  are  (Rule, 
p.  345) 

a;  =  i  A;2,     y  =  k, 

and  which  is  therefore  parallel  to  the  Z-axis. 

The  intersection  with  a  plane  parallel  to  the  XF-plane  is  the  parabola 

z  =  k,    y^  =  4:X. 
For  different  values  of  k  these  parabolas  are  equal  and  placed  one  above 

another. 

It  is  therefore  evident  that  the  surface  is  a  cylinder  whose  elements  are 

parallel  o  the  Z-axis  and  intersect  the  parabola  in  the  XF-plane 
2/2  ̂   4  iC,     z  =  0. 

It  is  evident  from  Ex.  1  that  the  locus  of  any  equation  which 

contains  but  two  of  the  variables  x,  y,  and  z  will  intersect  planes 

parallel  to  two  of  thS  coordinate  planes  in  one  or  more  straight 

lines  parallel  to  one  of  the  axes  and  planes  parallel  to  the  third 

coordinate  plane  in  equal  curves.  Such  a  surface  is  evidently  a 

cylinder.     Hence 

Theorem  IV.  The  locus  of  an  equation  in  which  one  variable  is 

lacking  is  a  cylinder  whose  elements  are  parallel  to  the  axis  along 
which  that  variable  is  measured. 
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167.  The  projecting  cylinders  of  a  curve.  The  cylinders  whose" 
elements  intersect  a  given  curve  and  are  parallel  to  one  of  the 

coordinate  axes  are  called  the  projecting  cylinders  of  the  curve. 

Their  equations  may  be  found  by  eliminating  in  turn  each  of  the 

variables  x,  y,  and  z  from  the  equations  of  the  curve;  for  if  we 

eliminate  «,  for  example,  the  result  is  the  equation  of  a  cylinder 

(Theorem  IV)  which  passes  through  the  curve,  since  values  of  x, 

?/,  and  z  which  satisfy  each  of  two  equations  satisfy  an  equation 

obtained  from  them  by  eliminating  one  variable. 

The  equations  of  two  of  the  projecting  cylinders  may  be  con- 

veniently used  as  the  equations  of  the  curve.* 
The  figure  shows  the  curve  whose  equations  are 

2?/2  +  z2  +  4x=  42,    y2  +  32;2-8a;  =  12«. 

Eliminating  x,  y,  and  z  in  turn,  we  obtain  the  equations  of  the  projecting 

cylinders  2/2  +  22=4^,    z'^-^x=^z,    y'2-\-^x  =  (i. 

The  figure  shows  the  first  and  third  of  these  cylinders. 

If  the  curve  lies  in  a  plane  parallel  to  one  of  the  coordinate 

planes,  then  two  of  these  cylinders  coincide  with  the  plane  of  the 

curve,  or  part  of  it. 

*  In  general,  the  equations  of  a  curve  may  be  replaced  by  any  two  independent  equa- 
tions to  which  they  are  equivalent,  that  is,  by  two  independent  equations  which  are 

satisfied  by  all  values  of  x,  y,  and  z  satisfying  the  equations  of  the  curve,  and  only  by 
such  values. 
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The  projecting  cylinders  of  a  straight  line  are  evidently  planes. 

The  equations  of  a  line  in  terms  of  its  projecting  cylinders  or 

planes  have  already  been  given  (Theorem  IV,  p.  367). 

168.  Cones. 

Ex.  1.    Determine  the  nature  of  the  locus  of  the  equation  16  x^  +  y^  —  z^=0. 
Solution.    Let  Pi  (cci,  ?/i,  Zi)  be  a  point  on  a  curve  C  in  which  the  locus 

intersects  any  plane,  for  example  z  =  k.     Then 

(1)  16  Xi2  +  yi2- 212  =  0,     zi=k. 

The  origin  O  lies  on  the  surface  (Theorem  III,  p.  345).     We  shall  show 
that  the  line  OPi  lies  entirely  on  the  surface. 
The  direction  cosines  of  OPi  are  (Corollaries, 

pp.   332    and    331)   ̂ ,   ̂,    and  -,    where Pi     pi  Pi 
Pi2  =  xi2  +  yi2  4-  zi2  =  0Pi2.    Hence  the  coordi- 

nates of  any  point  on  OPi  are  (Theorem  V, 
p.  369) 

^      ̂ 1 
x  =  —  p, 

Pi 
Pi 

z  =  -p. 

Pi 

Substituting  these  values  of  x,  y,  and  z  in 
the  given  equation,  we  obtain 

(2) ig^iV^yiV 
Pl^        Pl^ 

2rV 

Pi^ 

=  0. 

This  is  true  for  all  values  of  p  since  it  may 
be  obtained  from  the  first  of  equations  (1)  by 

multiplying  by  -^.    Hence  every  point  on 

Pi^
 

OPi
  

lies
  
on 

 
the

  
sur

fac
e, 

 

tha
t  

is, 
 
the

  
enti

re 

line  lies  on  the  surface.     Hence  the  surface 

is  a  cone  whose  vertex  is  the  origin. 

The  essential  thing  in  the  solution 

of  Ex.  1  is  that  (2)  may  be  obtained 

from  the  first  of  equations  (1)  by  multiplying  by  a  power  of  —  • 

This  may  be  done  whenever  the   equation   of   the   surface   is 

homogeneous*  in  the  variables  x,  y,  and  z.     Hence 

Theorem  V.    The  locus  of  an  equation  which  is  homogeneous  in 

the  variables  x,  y,  and  z  is  a  cone  whose  vertex  is  the  origin. 

*  An  equation  is  homogeneous  m  x,y,  and  z  when  all  the  terms  in  the  equation  are  of 
the  same  degree  (footnote,  p.  17). 
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PROBLEMS 

1.  Determine  the  nature  of  the  following  loci ;  discuss  and  construct  them. 

(a)  x2  +  yi  =  36.  (e)  x"^  -  y^ -\-  36  22  =  0. 

(b)  x2  +  ̂ 2  =  22. 

(C)    2/2^4  22-0. 
(d)  x2  -  22  =  16. 

(f)  y2_  16x2 +  422  =  0. 

(g)  x2  4- 16  y2  _  4  X  =  0. 

(h)   X2  +  ?/2  =  0. 

2.  Find  the  equations  of  the  cylinders  whose  directrices  are  the  following 
curves  and  whose  elements  are  parallel  to  one  of  the  axes. 

(a)  y2  _|.  22  _  4y  ==  0,  X  =  0.  (c)  If^x^  -  a'h/'^  =  a'^b^  2  =  0. 
(b)  22  +  2«  =  8,  2/  =  0. (d)  2/2  +  2p2  =  0,  x  =  0. 

3.  Find  the  equations  of  the  projecting  cylinders  of  the  following  ci 
and  construct  the  curve  as  the  intersection  of  two  of  these  cylinders. 

(a)  x2  +  2/2  +2:2  :^  25,  x^  +  iy^  -  z^  =  0. 
(b)  x2  +  4  2/2  -  22  =  16,  4  x2  +  2/2  +  22  =  16. 

(c)  x2  +  2/2  =  4  2,  x2  -  2/2  =  8  2. 
(d)  x2  +  2 2/2  +  4 22  =  32,  x2  +  42/2  =  42. 

{S)  y^  +  zx  =  0,y'^  +  2x  +  y  -  z  =  0. 

4.  Discuss  the  following  loci. 

(a)  x2  +  2/2  =  22tan27. (d)    X2  +  2/2  = 

=  r2 

(b)  2/2  +  22  =  x2tan2a:. 

(e)  2/2  +  22  = 
=  r2. 

(c)  22  +  x2  =  2/^tan2/3. 
(f)  22  +  x2  = 

=  r^. 

169.  Surfaces  of  revolution.  The  surface  generated  by  revolv- 
ing a  curve  about  a  line  lying  in  its  plane  is  called  a  surface  of 

revolution. 

Ex.  1.  Find  the  equation  of  the  surface  of  revolution  generated  by  revolv- 

ing the  ellipse  x^  +  4  2/2  —  12  x  =  0,  2  =  0  about  the  X-axis. 

Solution.  Let  P  (x,  y,  2)  be  any  point  on  the  surface.  Pass  a  plane  through 
P  and  OX  which  cuts  the  surface  along  one  position  of  the  ellipse,  and  in  this 

plane  draw  OY'  perpendicular 
to  OX.  Referred  to  OX  and 

OY'  as  axes,  the  equation  of 
the  ellipse  is  evidently 

(1)  x2  +  42/'2-12x  =  0. 
But  from  the  right  triangle 

PAB  we  get  y"^  =  y^  +  22. 
Substituting  in  (1),  we  get 

(2)  x2  +  42/2  +  422-12x  =  0. 

I 
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This  equation  expresses  the  relation  which  any  point  on  the  surface  must 
satisfy,  and  it  is  easily  shown  that  any  point  whose  coordinates  satisfy  equa- 

tion (2)  lies  on  the  surface.     It  is  therefore  the  equation  of  the  surface. 

The  method  of  the  solution  enables  us  to  state  the 

Rule  to  find  the  equation  of  the  surface  generated  by  revolving 

a  curve  in  one  of  the  coordinate  planes  about  one  of  the  axes  in 

that  plane. 

Substitute  in  the  equation  of  the  curve  the  square  root  of  the  sum 

of  the  squares  of  the  two  variables  not  measured  along  the  axis  of 

revolutio7i  for  that  one  of  these  two  variables  which  occurs  in  the 

equation  of  the  curve. 

If  the  intersections  of  a  surface  with  all  planes  parallel  to  one 

of  the  coordinate  planes  are  circles,  then  the  surface  is  evidently  a 

surface  of  revolution  whose  axis  is  the  coordinate  axis  perpen- 
dicular to  the  planes  of  the  circular  sections.  This  enables  us  to 

determine  whether  or  not  a  given  surface  is  a  surface  of  revolu- 
tion whose  axis  is  one  of  the  coordinate  axes. 

170.  Ruled  surfaces.  A  surface  generated  by  a  moving  straight 

line  is  called  a  ruled  surface.  If  the  equations  of  a  straight  line 

involve  an  arbitrary  constant,  then  the  equations  represent  a  sys- 
tem of  lines  which  form  a  ruled  surface.  If  we  eliminate  tlie 

parameter  from  the  equations  of  the  line,  the  result  will  be  the 

equation  of  the  ruled  surface. 

For  if  (xi,  ifi,  Z\)  satisfy  the  given  equations  for  some  value  of  the  parameter, 
they  will  satisfy  the  equation  obtained  by  eliminating  the  parameter,  that  is,  the 
coordinates  of  every  point  on  every  line  of  that  system  satisfy  that  equation. 

Cylinders  and  cones  are  the  simplest  ruled  surfaces. 

Ex.  1.  Find  the  equation  of  the  surface  generated  by  the  line  whose 

equations  are  -^ 
x  +  y  =  kz,    X  -y  =  -z. k 

Solution.    We  may  eliminate  k  from  these  equations  of  the  line  by  multi- 
plying them.    This  gives 

(1)  ic2  -  ?/2  =  z2. 

This  is  the  equation  of  a  cone  (Theorem  V,  p.  385)  whose  vertex  is  the  origin. 
As  the  sections  made  by  the  planes  x  =  k  are  circles,  it  is  a  cone  of  revolution 
whose  axis  is  the  X-axis. 
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We  may  verify  that  the  given  line  lies  on  the  surface  (1)  for  all  values 
of  A;  as  follows : 

Solving  the  equations  of  the  line  for  x  and  y  in  terms  of  z,  we  get 

x  =  l(*  +  l)z,    !^  =  i(*-i)«. 
Substituting  in  (1),  we  obtain 

an  equation  which  is  true  for  all  values  of  k  and  z,  as  is  seen  by  removing 

the  parentheses.  Hence  every  point  on  any  line  of  the  system  lies  on  (1), 
since  its  coordinates  satisfy  (1). 

Ex.  2.    Determine  the  nature  of  the  surface  z^  —  ̂ zx -\-?>y  =  0. 

Solution.     The  intersection  of  the  surface  with  the  plane  z  =  A;  is  the 

straight  line  (Rule,  p.  345) 

k^  -Skx-{-Sy  =  0,    z  =  k. 

Hence  the  surface  is  the  ruled  surface  generated  by  this  line  as  k  varies. 

To  construct  the  surface  consider  the  intersections  with  the  planes  x  =  0  and 
X  =  S  whose  equations  are  respectively 

X  =  0,     8  y  +  23  =  0  and  X  =  8,     8  y  -  24  z  +  z^  ̂   0. 

Joining  the  points  on  these  curves  which  have  the  same  value  of  z  gives 
the  lines  generating  the  surface. 
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PROBLEMS 

1.  Find  the  equations  of  the  surfaces  of  revolution  generated  by  revolving 
the  following  curves  about  the  axes  indicated,  and  construct  the  figures. 

(a)  y2^4cc-16,  X-axis.  Ans.   y^  +  z^  =  4:X -16. 
(b)  x2  +  4 2/2  =  16,  F-axis.  Ans.    x^  +  4y^-\-z^  =  16. 

(c)  x2  =  4  2,  Z-axis.  Ans.   x^  -\-y^  =  4z. 
(d)  x^-y^  =  16,  r-axis.  Ans.   x^  -  y^  +  z^  =  16. 

(e)  x2  -  2/2  _  16^  X-axis.  Ans.   x^  -  y^  -  z^  =  16. 
(f )  y2  +  z2  _  25,  Z-axis.  Ans.    jc2  +  y2  +  z^  =  25. 

(g)  2/2  =  2pz,  Z-axis.  Ans.  A  paraboloid  of  revolution,  x^  +  y^  =  2pz. 
X'2        ifi  X2        w2        ̂ 2 

(h)   f-  —  =  1,  X-axis.    Ans.  An  ellipsoid  of  revolution,   h  —  H   =  1. a2      62  a2      62      52 

aj2      2/2  .  2:2 

X2         7/2 

(i)  --1  =  1,  r-axis. 
^ns.    An  hyperboloid  of  revolution  of  one  sheet,   —-}-  —  =  1. 

X2         7/2  ^^         ̂^         «^ 
(i)   —  =  1,  X-axis. 

«'      ̂ '  a:2      2/2      22 
^ns.    An  hyperboloid  of  revolution  of  two  sheets,  —  —  —   ;;  =  1- 

a2      62      52 

2.  Show  that  the  following  loci  are  either  surfaces  of  revolution  or  ruled 

surfaces  whose  generators  are  parallel  to  one  of  the  coordinate  planes.  Con- 
struct and  discuss  the  loci. 

(a)  2/2  +  ̂ 2  =  4  a.  (e)  4  x2  -^  4  ̂2  _  ̂ 2  =  ig. 
(b)  a;2  -  4  2/2  +  z2  =  0.  (f )  x^y  -  22  =  0. 

(c)  z2  _  20;  +  y  =  0.  (g)  ic2  _|_  22  =  4. 

(d)  x'hf  +  xz  =  y.  (h)  (x2  -j-  z^)y  =  4a2(2a  -  2/). 
3.  Verify  analytically  that  a  sphere  is  generated  by  revolving  a  circle 

about  a  diameter. 

4.  Show  that  the  systems  of  spheres  in  problem  15,  p.  382,  may  be  gen- 
erated by  revolving  the  systems  of  circles  in  Theorem  VIII,  p.  144,  about 

the  X-axis. 

5 .  Find  the  equation  of  the  surface  of  revolution  generated  by  revolving 

the  circle  x2  -l-  2/^  —  2  ax  -f-  a2  —  r2  =  0  about  the  F-axis.  Discuss  the  sur- 
face when  a: > r,  a  =  r,  and  a<r. 

Ans.  (x2  +  2/2  +  2;2  +  a2  -  r2)2  =  4  a2  {x^  +  z"^).  When  a  >  r  the  surface 
is  called  an  anchor  ring  or  torus. 

6.  Find  the  equations  of  the  ruled  surfaces  whose  generators  are  the 

following  systems  of  lines,  and  discuss  the  surfaces. 

(a)  x-\-y  =  k,k{x  —  y)  =  a^.  Ans.  x^  —  y^  =  a^. 

(h)  ̂ x-2y  =  kz,k{ix  +  2y)  =  z.  Ans.  16x2-4  2/2  =  22. 
(c)  x-22/ =  4^2,  fc(x -2  2/)  =  4.  Ans.  x^-4y^  =  16z. 

(d)  X  -t-  ̂2/  +  4  z  =  4  A;,  A;x  -  2/  -  4  fc2  =  4.  Ans.  x2  +  2/2  -  16  z^  =  16. 
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7.  Find  the  equation  of  the  cone  whose  vertex  is  the  origin  and  whose 

elements  cut  the  circle  x'^  W"^  -  10,  2  =  2.  Ans.    x^  +  i/2  _  4  z2  =  o. 
8.  Find  the  equations  of  the  cones  of  revolution  whose  axes  are  the 

coordinate  axes  and  whose  elements  make  an  angle  of  0  with  the  axis  of 

revolution.    A-m.  y^  +  z^  =  x^  tan2  0 ;  z*  +  x^  =  y2  tan^^ ;  x^  +  y2  =  z2  tan*^. 

9.  Find  the  equations  of  the  cylinders  of  revolution  whose  axes  are  the 
coordinate  axes  and  whose  radii  equal  r. 

Ans.    y'^  +  z^  =  r'^;  z^  +  x'^  =  r'^;  x2  +  ?/2  ̂   ̂ 2, 



CHAPTER   XXI 

TRANSFORMATION  OF  COORDINATES.     DIFFERENT 
SYSTEMS  OF  COORDINATES 

171.  Translation  of  the  axes. 

Theorem  I.  The  eqiiations  for  translating  the  axes  to  a  new 

origin  0' (h,  k,  I)  are 

(I)  ac=oc'-\-7i,      y  =  y'+k,      z  =  z^+l. 

Proof.  Let  the  coordinates 

of  any  point  before  and  after 
the  translation  of  the  axes  be 

(x,  y,  z)  and  (x\  y\  z')  respec- 
tively. Projecting  OP  and 

OO'P  on  each  of  the  axes 

(Theorem  II,  p.  328),  we  get 

equations  (I).  q.e.d. 

172.  Rotation  of  the  axes. 

Theorem  II.  If  ai,  p^,  yij  org,  ft,  y^,  and  a^,  ft,  y^  are  respec- 
tively the  direction  angles  of  three  mutually  perpendicular  lines 

OX',  OY',  and  OZ',  then  the  equations  for  rotating  the  axes  to  the 

position  0-X'Y'Z'  are 

fx  =  ic' cos  tti  +  2/' cos  az  +  2;' cos  ttj, 

(II)  ^y=x'cosft  +  y  cosft  +  2;'cosft, 
[  3!  =  a?'  cos  Yi  +  2/'  cos  Y2  +  «'  cos  ys-* 

*  By  Theorem  III,  p.  330,  and  Theorem  VI,  p.  335,  we  see  that  the  direction  cosines  of 

0X\  O  Y',  and  OZ'  satisfy  the  six  equations 

cos2  a,  +  cos2  ̂ ,  4-  cos2  Yi  =  1,       cos  a^  cos  a^  +  cos  ̂ ^  cos  jSj  +  cos  vi  cos  y^  =  0, 

COS2  Oj  +  C0S2  /Bj  +  COS2  V2  =  1.  cos  Oj  cos  Og  +  cos  ̂ 2  COS  jSg  +  cos  72  cos  Yg  =  0, 

COS2  Og  +  COS2  /3g  +  COS2  Yg  =   1 ,  COS  CTg  cos  (?i  +  cos  /Sg  COS  /S^  +  COS  Y3  COS  Yl  =  0. 

Hence  only  three  of  the  nine  constants  in  (II)  are  iiKlrpondent. 

391 
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Proof.    Let  the  coordinates  of  any  point  P  before  and  after 

the  rotation  of  the  axes  be  respec- 

tively (x,  yy  z)  and  {x\  y\  z').  Pro- 
jecting OP  and  OA'B'P  on  each  of 

the  axes  OX,  OY,  and  OZ,  we  get,  by 

Corollary  I,  p.  328,  and  Theorems  I 

and  II,  p.  328,  equations  (II).     q.e.d. 

Theorem  III.  The  degree  of  an  equa- 

tion is  unchanged  by  a  transforma- 

tion of  coordinates. 
Hint.  Show  that  any  transformation  of  coordinates  may  be  effected  by  applying 

Theorems  I  and  II  successively,  then  that  the  degree  cannot  be  raised  by  changing  to  new 
coordinates,  and  finally  that  it  cannot  be  lowered. 

PROBLEMS 

1 .  Transform  the  equation  x^  +  y^  —  4iX +  2y  —  4iZ  -\-\  =  0  by  trans- 

lating the  origin  to  the  point  (2,  —  1,  —  1).  Ans.   x^  -\- y"^  —  iz  =  0. 

2.  Transform  the  equation  5 x^  +  S y^  +  5 z'^  —  Ayz  ■}■  S zx  -\-  4txy  —  4 x -\-  2  y 
+  4  2  =  0  by  rotating  the  axes  to  a  position  in  which  their  direction  cosines 

are  respectively  f ,  |,  i ;  i,  -  -|,  f ;  |,  -  i,  -  f •        Ans.   3x^ -\- Sy^  =  2z. 
3.  Formulate  a  rule  by  which  to  simplify  a  given  equation  (a)  by  trans- 

lating the  axes,  (b)  by  rotating  the  axes.  How  many  terms  may,  in  general, 
be  removed  from  a  given  equation  by  a  general  transformation  of  coordinates  ? 

4.  Derive  the  equations  for  rotating  the  axes  through  an  angle  6  about 

(a)  the  Z-axis,  (b)  the  X-axis,  (c)  the  F-axis.  rx  =  x'  cosd  —  y'  sin  e, 
Ans.    (a)  ■<.y  =  x'  sin  B  -\-  y'  cos ^, 

Vz  —  z\ 

5.  Simplify  the  following  equations  by  translating  the  axes  or  by  rotating 
them  about  one  of  the  coordinate  axes. 

Ans.   a;2  _!_  2/2  _  ̂ 2 

0. 
(a)  a;2  +  y2  _  2;2  _  6x  -  8?/  +  lOz  =  0. 

(b)  3x2  _  8x2/  -  3y2  -  5z2  +  6  =  0.  Ans.   x"^  -  y^ -{- z'^  =  1. 
(c)  y2  +  4z2_i6x -6y +  16Z-1- 9  =  0.  Ans.   ?/2 -f  4 22  =  16 x. 

(d)  2x2  _  52/2  _  5^2  _  6yz  =  0.  Ans.   x^  -  ̂ y"^  -  z^  =  0. 
(e)  9x2-262/2  +  16z2_242x-80x-602;  =  0.  Ans.   x^-y^  =  4z. 
6.  Show  that  Ax  -^  By  -\-  Cz  +  D  =  0  may  be  reduced  to  the  form  x  =  0 

by  a  transformation  of  coordinates. 

Hint.  Remove  the  constant  term  by  translating  the  axes,  then  remove  the  2-term 
by  rotating  the  axes  about  the  F-axis,  and  finally  remove  the  y-term  by  rotating  about 
the  ̂ -axis. 
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7.  Show  that  the  xy-term  may  always  be  removed  from  the  equation 

Ax^  +  By^  +  Cz'^  +  Fxy  +K  =  0  by  a  rotation  of  the  axes. 

8.  Show  that  the  y2;-term  may  always  be  removed  from  the  equation 

Ax^  +  By^  +  Cz^  +  lyyz  +  K  =  0  by  rotating  the*axes. 

9.  What  are  the  direction  cosines  of  OX,  OY^  and  OZ  (Fig.,  p.  392) 

referred  to  OX',  0Y\  and  OZ'  ?     What  six  equations  do  they  satisfy  ? 

10.  Show  that  the  six  equations  obtained  in  problem  9  are  equivalent  to 

the  six  equations  in  the  footnote,  p.  391. 

11.  If  (x,  2/,  z)  and  {x\  y\  z')  are  respectively  the  coordinates  of  a  point 
before  and  after  a  rotation  of  the  axes,  show  that 

173.  Polar  coordinates.  The  line  OP  drawn  from  the  origin 

to  any  point  P  is  called  the  radius  vector  of  P.  Any  point  P 

determines  four  numbers,  its  radius  vector  p  and  the  direction 

angles  of  OP,  namely,  a,  )8,  and  y,  which  are  called  the  polar 
coordinates  of  P. 

These  numbers  are  not  all  independent 
since  a,  /3,  and  7  satisfy  (III),  p.  330.  If  two 
are  known,  the  third  may  then  be  found,  but 
all  three  are  retained  for  the  sake  of  symmetry. 

Conversely,  any  set  of  values  of 

p,  or,  y8,  and  y  which  satisfy  (III), 
p.  330,  determine  a  point  whose  polar 

coordinates  are  p,  a,  y8,  and  y.  / 

Projecting  OP  on  each  of  the  axes, 

we  get,  by  Corollary  I,  p.  328,  and  Theorem  I,  p.  328, 

Theorem  IV.  The  equations  of  transformation  from  rectangular 

to  polar  coordinates  are 

(lY)  05  =  /)  cos  a,     y  =  pcos  p,     z  =  p  cos  y. 

From  Theorem  (IV),  p.  331,  we  obtain 

(1)  p^  =  oc^  +  y'  +  z\ 

which  expresses  the  radius  vector  in  terms  of  x,  y,  and  z. 
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174.  Spherical  coordinates.  Any  point  P  determines  three: 

numbers,  namely,  its  radius  vector  p,  the  angle  6  between  the; 

radius  vector  and  the  JZ'-axis,  and  the  angle  (^between  the  pro-j 
jection  of  its  radius  vector  on  the 

AT-plane  and  the  A'-axis.  These  num- 
bers are  called  the  spherical  coordinates 

of  P.  0  is  called  the  colatitude  and  <f> 
the  longitude. 

Conversely,  given  values  of  p,  6,  and  <^j 

-^  determine    a    point    P  whose   spherical 
coordinates  are  (p,  0,  <f>). 

Projecting  OP  on  OA,  we  get 
OM  =  p  sin  6, 

and  then  projecting  OP  and  OMP  on  each  of  the  axes,  we  obtain 

Theorem  V.    The  eqtiations  of  transformation  from  rectangular 
to  spherical  coordinates  are 

(V)         35  =  /)  sin  ̂   cos  ̂ ,     y  =  p  sin  ̂   sin  ̂ ,     z  =  p  cos  B. 

The  equations  of  transformation  from  spherical  to  rectangular 

coordinates  may  be  obtained  by  solving  (V)  for  p,  6,  and  <^. 

z>< 

175.  Cylindrical  coordinates.    Any  point  P  (a-,  tj,  z)  determines 
three    numbers,   its   distance   z  from    the 

ZF-plane  and  the  polar  coordinates  {r,  cf>) 

of  its  projection  (x,  y,  0)  on  the  AF-plane.  p 
These  three  numbers  are  called  the  cylin-  Iz 
drical  coordinates  of  P.  Conversely,  three 

values  of  r,  <f>,  and  z  determine  a  point 

whose  cylindrical  coordinates  are  (?',  <f),  z). 

"From  Theorem  I,  p.  155,  we  have  at  once 
Theorem  VI.    The  equations  of  transformation  from  rectangular 

to  cylindrical  coordinates  are 

(VI)  oc  =  r  cos  (j>,     y  —  r  sin  ̂ ,     z  —  z. 

The  equations  of  transformation  from  cylindrical  to  rectangu- 

lar coordinates  may  be  obtained  by  solving  (VI)  for  ?•,  <^,  and  z. 
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PROBLEMS 

1.  What  is  meant  by  the  "  locus  of  an  equation  "  in  the  polar  coordinates 
p,  or,  /3,  and  7  ?  in  the  spherical  coordinates  /a,  d,  and  0  ?  in  the  cylindrical 
coordinates  r,  0,  and  z  ? 

8.  Show  that  the  locus  of  an  equation  in  polar  coordinates  is  symmet- 
rical with  respect  to  the  pole  if  only  the  form  of  the  equation  is  changed 

when  p  is  replaced  by  —  p ;  with  respect  to  one  of  the  coordinate  planes 
if  only  the  form  of  the  equation  is  changed  when  a  is  replaced  by  tt  —  a, 

j3  by  TT  —  ̂ ,  or  7  by  TT  —  7.  Under  what  conditions  will  it  be  symmetrical 
with  respect  to  each  of  the  rectangular  axes  ? 

3.  Find  rules  by  which  to  determine  when  the  locus  of  an  equation  in 

spherical  or  cylindrical  coordinates  is  symmetrical  with  respect  to  the  origin, 
each  of  the  rectangular  axes,  and  each  of  the  coordinate  planes. 

4.  How  may  the  intercepts  of  a  surface  on  the  rectangular  axes  be  found 

if  its  equation  in  polar  coordinates  is  given  ?  if  its  equation  in  spherical 

coordinates  is  given  ?  if  its  equation  in  cylindrical  coordinates  is  given  ? 

5.  Transform  the  following  equations  into  polar  coordinates. 

(a)  x^  +  y'^  +  z^  =  26.  .  Ans.   p  =  5. 

(b)  ic2  +  ?/2  -  22  z=  0.  Ans.   7  =  -• 4 

(c)  2  x2  -  ?/2  _  22  ̂   0.  Ans.    a  =  cos- 1 1  Vs. 

6.  Transform  the  following  equations  into  spherical  coordinates, 

(a)  a;2  +  ?/2  -f  z2  _  iq^  ^^s    p  =  4. 

(h)  2x  +  3y  =  0.  Ans.   0  =  tan-i(,- |). 

(c)  3  x2  +  3  ?/2  =  7  2;2.  jins.    d  =  tan- 1  i  V2T. 

7.  Transform  the  following  equations  into  cylindrical  coordinates. 

(a)  5x  —  y  =  0.  Ans.    0  =  tan-^ 5. 
(b)  x2  +  2/2  _  4,  ^^^_    r  =  2. 

8.  Find  the  equation  in  polar  coordinates  of 

(a)  a  sphere  whose  center  is  the  pole. 
(b)  a  cone  of  revolution  whose  axis  is  one  of  the  coordinate  axes. 

Ans.  (a)  p  =  constant ;  (h)  a  =  constant,  jS  =  constant,  or  7  =  constant. 

9.  Find  the  equation  in  spherical  coordinates  of 

(a)  a  sphere  whose  center  is  the  origin. 

(b)  a  plane  through  the  Z-axis. 
(c)  a  cone  of  revolution  whose  axis  is  the  Z-axis. 

Ans.    (a)  p  =  constant ;  (b)  0  =  constant ;  {c)  6  =  constant. 
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10.  Find  the  equation  in  cylindrical  coordinates  of 

(a)  a  plane  parallel  to  the  XF-plane. 
(b)  a  plane  through  the  Z-axis. 
(c)  a  cylinder  of  revolution  whose  axis  is  the  Z-axis. 

Ans.  (a)  z  =  constant;  (b)  <p  =  constant;  (c)  r  =  constant. 

11.  In  rectangular  coordinates  a  point  is  determined  as  the  intersection" 
of  three  mutually  perpendicular  planes  (p.  326).     Show  that 

(a)  in  polar  coordinates  a  point  is  regarded  as  the  intersection  of  a  sphere 
and  three  cones  of  revolution  which  have  an  element  in  common. 

(b)  in  spherical  coordinates  a  point  is  regarded  as  the  intersection  of  a 

sphere,  a  plane,  and  a  cone  of  revolution  which  are  mutually  orthogonal. 
(c)  in  cylindrical  coordinates  a  point  is  regarded  as  the  intersection  of 

two  planes  and  a  cylinder  of  revolution  which  are  mutually  orthogonal. 

12.  Show  that  the  square  of  the  distance  between  two  points  whose  polar 

coordinates  are  (pi,  ai,  /3i,  7i)  and  {p^,  a2,  /32,  72)  is 

r2  =  pi2  4-^2^  —  2  P-1P2  (cos  ai  cos  ̂ 2  +  cos  /3i  cos  ̂ 2  +  cos  71  cos  72). 

13.  Find  the  general  equation  of  a  plane  in  polar  coordinates. 

Ans.   p  {A  cos  a  +  5  cos  /3  +  C  cos  7)  +  D  =  0. 

14.  Find  the  general  equation  of  a  sphere  in  polar  coordinates. 

Ans.   p"^ -\- p{Gcosa -\- Hcos^ -{■  Icosy)  +  K=0. 



CHAPTER  XXII 

QUADRIC  SURFACES  AND  EQUATIONS  OF  THE   SECOND 
DEGREE  IN  THREE  VARIABLES 

176.  Quadric  surfaces.  The  locus  of  an  equation  of  the  second 

degree,  of  which  the  most  general  form  is 

(1)   Ax'^-[-By^^Cz'^-^Dyz-\rEzx+Fxy  +  Gx+Hy+Iz-^K  =  Q, 
is  called  a  quadric  surface  or  conicoid. 

Theorem  I.  The  intersection  of  a  quadric  with  any  plane  is  a 
conic  or  a  degenerate  conic. 

Proof.  By  a  transformation  of  coordinates  any  plane  may  be 

taken  as  the  ZF-plane,  z  =  0,  and  referred  to  any  axes  the  equa- 
tion of  a  quadric  has  the  form  (1)  (Theorem  III,  p.  392).  Then 

the  equation  of  the  curve  of  intersection  referred  to  axes  in  its 

plane  is  (Rule,  p.  345) 

Ax"^  -f  Fxy  -{-  Bi/  +  Gx  -]-  Hy  -\-  K  =  0, 

and  the  locus  is  therefore  a  conic  or  a  degenerate  conic  (Theo- 

rem XIII,    p.   196).  Q.E.D. 

Corollary.  The  intersection  of  a  cone  of  revolution  with  a  plane 

is  an  ellipse,  hyperbola,  or  parabola  according  as  the  plane  cuts  all 

of  the  elements,  is  parallel  to  tivo  elements  (cutting  some  on  one  side 

of  the  vertex  and  so7ne  on  the  other),  or  is  parallel  to  one  element 

(cutting  all  the  others  on  the  same  side  of  the  vertex). 

Theorem  II.  The  intersections  of  a  quadric  with  a  system  of  par- 
allel planes  are,  in  general,  similar  conies. 

Proof  By  a  transformation  of  coordinates  one  of  the  planes 

of  the  system  may  be  taken  as  the  ZF-plane,  and  hence  the  equa- 
tion of  the  system  is  z  =  k,  while  that  of  the  quadric  has  the 

397 
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form  (1)  (Theorem  III,  p.  392).     Hence  the  equation  of  the  curve 

in  which  the  plane  z  =  k  intersects  the  quadric  is  (Rule,  p.  346) 

(2)  Ax''+Fxy+By''  +  {Ek  +  G)x+{Dk+H)y  +  Ck^-\-Ik+K=0. 

For  different  values  of  k  this  equation  represents  a  system  of 

similar  conies*  (Corollary  I,  p.  295).  q.k.d. 

177.  Simplification  of  the  general  equation  of  the  second  degree 

in  three  variables.  If  equation  (1)  be  transformed  by  rotating 

the  axes  (Theorem  II,  p.  391),  it  can  be  shown  that  the  new  axes 

may  be  chosen  so  that  the  terms  in  yz,  zx,  and  xy  drop  out  and 

hence  (1)  reduces  to  the  form 

A  'x^  +  ̂ y  +  Cz"^  +  G'x  +  iVy  +  Vz  +  /v'  =  0. 

Transforming  this  equation  by  translating  the  axes  (Theorem  I, 

p.  391),  it  can  be  shown  that  the  axes  may  be  chosen  so  that  the 
transformed  equation  has  either  the  form 

(1)  A  V  +  B'Y  +  C"s:2  +  i^"  =  0 
or  the  form 

(2)  AV  +  B^y  +  r'z  =  o. 

If  all  of  the  coefficients  in  (1)  and  (2)  are  different  from  zero, 

(1)  and  (2)  may,  with  a  change  in  notation,  be  respectively  written 
in  the  forms 

(3) ±^±lf:±t. 

a' 

y 

1, 

^  +  ̂ 

a^      V' 

2cz. 

*  If  the  invariants  of  (2)  (Theorem  VIII,  p.  275)  for  two  different  values  of  k  are  respec- 

tively A,  H,  0  and  A',  H',  ©'  then  in  order  that  the  conies  be  similar  the  value  of  \  given 
H'3        1  H3 

by  —  =  —  —  must  be  a  real  number. 
©'       A2  0 

All  the  sections  will  belong  to  the  same  type  because  A  will  have  the  same  sign  for  all 
values  of  k.    If  the  sections  are  ellipses,  H  and  0  have  opposite  signs  (Theorem  IX,  p.  277) 
and  A  will  be  real.    The  same  is  true  if  the  sections  are  parabolas  (p.  279).    If  the  sections 
are  hyperbolas,  then,  in  general,  for  values  of  k  between  certain  limits  the  hyperbolas  will 
be  similar,  and  for  the  remaining  values  of  k,  exclusive  of  the  limits,  the  sections  will  also 
be  similar  (compare  problem  3,  p.  296). 
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The  purpose  of  the  following  sections  is  to  discuss  the  loci  of 

these  equations,*  which  are  called  central  and  non-central  quadrics 
respectively. 

If  one  or  more  of  the  coefficients  in  (1)  or  (2)  are  zero,  the  locus 
is  called  a  degenerate  quadric. 

If  K^^  =  0,  the  locus  of  (1)  is  a  cone  (Theorem  V,  p.  385)  unless  the  signs  of  A^\ 
IV',  and  6""  are  the  same,  in  which  case  the  locus  is  a  x)oint,  namely,  the  origin. 

If  one  of  the  coefficients  A'^,  B'\  and  C"'  is  zero,  the  locus  is  a  cylinder  (Theo- 
rem IV,  p.  383)  whose  elements  are  parallel  to  one  of  the  axes  and  whose  directrix 

is  a  conic  of  the  elliptic  or  hyperbolic  type  (p.  195).  If  K''  =  0,  the  locus  will  be  a 
pair  of  intersecting  planes  or  a  line. 

If  two  of  the  coefficients  A'',  B",  and  C"  are  zero,  the  locus  is  a  pair  of  parallel 
planes  (coincident  if  K"  =  0)  or  there  is  no  locus. 

If  one  of  the  coefficients  in  (2)  is  zero,  the  locus  is  a  cylinder  (Theorem  IV,  p.  383) 
whose  directrix  is  a  parabola  or  a  degenerate  central  conic. 

If  two  of  the  coefficients  are  zero,  the  locus  is  a  pair  of  coincident  planes. 

(^A"  and  B'^  cannot  be  zero  simultaneously,  as  the  equation  would  cease  to  be  of 
the  second  degree.) 

PROBLEMS 

1.  Construct  and  discuss  the  loci  of  the  following  equations. 

(a)  9x2  _  362/2  _,.  422  =  0.  (e)  4^/2  -  25  =  0. 
(b)  16X2  _  4y2  _  ̂ 2  ̂   0.  (f)    3?/  +  7  ̂2  zz  0. 

(c)  4  x2  +  z2  _  16  =:  0.  (g)  8  ?/2  +  25  z  =  0. 

(d)  2/2  _  9  2;2  +  36  =  0.  (h)  z"^  +  IQ  =  0. ■^1  y1  ̂ 2 
2.  Discuss  the  locus  of  the  equation  ±  —  ±  —  ±  ~  =  0   (a)  if  all   the a2       52      c2 

signs  agree ;  (b)  if  two  signs  are  positive.     When  will  the  locus  be  a  cone  of 
revolution  about  the  X-axis  ?   the  Y-axis  ?   the  Z-axis  ? 

3.  Show  geometrically  by  means  of  Theorem  I  that  the  sections  of  a 

cylinder  whose  equation  is  of  the  second  degree  made  by  planes  cutting  all 
of  the  elements  are  conies  of  the  same  type.  Show  also  that  the  orthogonal 

projection  on  a  plane  of  an  ellipse  is  an  ellipse ;  of  an  hyperbola  is  an  hyper- 
bola ;  and  of  a  parabola  is  a  parabola. 

4.  Show  how  to  find  the  equations  of  the  projections  of  a  curve  upon  the 
coordinate  planes  by  means  of  their  projecting  cylinders. 

6.  Prove  the  Corollary  to  Theorem  I  by  determining  the  nature  of  the 

intersection  of  the  cone  x^ -\- y^  =  tan2 7  •  z^  with  the  plane  x  =  ta.n^  ■  z -\- b. 

6.  Prove  the  Corollary  to  Theorem  I  by  transforming  x"^  +  y^  =  tan2  7  .  z^ 
by  rotating  the  axes  about  OY  through  an  angle  d  and  considering  the  sec- 

tions formed  by  the  plane  z'  =  k  if  d^y. 

*  There  is  a  locus  unless  all  of  the  coefficients  of  (3)  are  negative,  when  there  is  no  locus. 
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178.  The  ellipsoid  ̂ -h^ 

+p=i. 

If  all  of  the  coefficients 

(3),  p.  398,  are  positive,  the  locus  is  called  an  ellipsoid.     A  discus- 
sion of  its  equation  gives  us  the  following  properties. 

1.  The  ellipsoid  is  symmetrical  with  respect  to  each  of  the 

coordinate  planes  and  axes  and  the  origin  (Theorem  IV,  p.  346). 
These  planes  of  symmetry  are  called  the  principal  planes  of  the 

ellipsoid. 

2.  Its  intercepts  on  the  axes  are  respectively  (Rule,  p.  346) 

x=±a,     y  =±b,     z  =dtc. 

The  lines  AA'  =  2a,BB'=2  b,  CC  =  2 c  are  called  the  axes  of 
the  ellipsoid. 

3.  Its  traces  on  the  principal  planes  are  the  ellipses  ABA'B\ 

BCB'C,  and  ACA'C,  whose  equations  are  (p.  346) 

^4.^  =  1      ̂_i_f!^i      ̂       "^ „2     '     7»2  ̂?        A2  "^   ̂ 2  ■*■'        „2 

=  1. 

4.  The  equation  of  the  curve  in  which  a  plane  parallel  to  the 

ZF-plane,  z  =  k^  intersects  the- ellipsoid  is  (Rule,  p.  345) 

(1) 
+ r 

k''
 

or 
r 

-A^'-k') 

=  1. 

(C2_7c2) 

The  locus  of  this  equa- 
tion is  an  ellipse,  and  for 

different  values  of  k  the 

ellipses  are  similar.    If  k 
increases  from  0  to  c,  or 

decreases  from  0  to  —  c, 

the  plane  recedes  from  the 

ZF-plane,  and  the  axes  of 
the  ellipse  decrease  from 
2  a   and  2  h  respectively 

to  0  when  the  ellipse  degenerates  (p.  195).     If  A:  >  c  or  A^  <  —  c, 
there  is  no  locus,  and  hence  the  ellipsoid  lies  entirely  between 

the  planes  »  =  ±  c. 

I 
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Ln  like  manner  the  sections  parallel  to  the  YZ-  and  ZZ-planes 

are  similar  ellipses  whose  axes  decrease  as  the  planes  recede,  and 

the  ellipsoid  lies  entirely  between  the  planes  a;  =  ±  a  and  y  ~±b. 
Hence  the  ellipsoid  is  a  closed  surface. 

If  a  =  b,  the  section  (1)  is  a  circle  for  values  of  k  such  that 

—  c  <k  <c,  and  hence  the  ellipsoid  is  an  ellipsoid  of  revolution 

whose  axis  is  the  Z-axis.  If  ̂   =  c  or  c  =  a,  it  is  an  ellipsoid  of 
revolution  whose  axis  is  the  X-  or  F-axis. 

It  a  =  b  =  c,  the  ellipsoid  is  a  sphere,  for  its  equation  may  be 

written  in  the  form  x^  +  y^  -\-  z^  =  a^. 

179.  The  hyperboloid  of  one  sheet  ̂   +  ̂  —  ?- 

2  2 

'       ",  =  1.   If  two  of a-      W      c^ 
the  coefficients  in  (3),  p.  398,  are  positive  and  one  is  negative,  the 
locus  is  called  an  hyperboloid  of  one 

sheet.     Consider  first  the  equation 

(1) 
a^  "^  b-' 

2  ^2 

A  discussion  of  this  equation  gives 

us  the  following  properties. 

1.  The  hyperboloid  is  symmetrical 

with  respect  to  each  of  the  coordinate 

planes  and  axes  and  the  origin  (Theo- 
rem IV,  p.  346). 

2.  Its  intercepts  on  the  X-  and 

r-axes  are  respectively  (Eule,  p.  346) 

ic  =  ±  a,     y  =d[ib, 

but  it  does  not  meet  the  Z-axis. 

3.  Its  traces  on  the  coordinate  planes  (p.  346)  are  the  conies 

+  ̂  =  1 
^  b'      ̂' b^       c'  ~    '     a" 

of  which  the  first  is  the  ellipse  whose  axes  are  AA^  —  2a  and 

BB^  =2b,  and  the  others  are  the  hyperbolas  whose  transverse 

axes  are  BB'  and  A  A'  respectively. 



402  ANALYTIC  (JEOMETRY 

4.  The  equation  of  the  curve  in  which  a  plane  parallel  to  the 

XF-plane,  z  =  k,  intersects  the  hyperboloid  is  (Rule,  p.  345) 

The  locus  of  this  equation  is  an  ellipse.     If  k  increases  fromj 

0  to  00,  or  decreases  from  0  to  —  oo,  the  plane  recedes  from  the 

ZF-plane,  and  the  axes  of  the  ellipse  increase  indefinitely  from 
2  a  and  2  h  respectively.     Hence  the  surface  recedes  indefinitely 

from  the  A'F-plane  and  from  the  Z-axis. 
In  like  manner  the  sections  formed  by  the  planes  x  =  k'  and 

y  =  k"  are  seen  to  be  hyperbolas.  As  k'  and  k"  increase  numer- 

ically the  axes  of  the  hyperbolas  decrease,  and  when  k'  =  ±  a  or 

k"  =±b,  the  hyperbolas  degenerate  into  intersecting  lines.  As 

k'  and  k"  increase  beyond  this  point,  the  directions  of  the  trans- 
verse and  conjugate  axes  are  interchanged,  and  the  lengths  of 

these  axes  increase  indefinitely. 

If  either  system  of  hyperbolas  is  projected  orthogonally  on  the  coordinate 
plane  to  which  the  planes  of  the  hyperbolas  are  parallel,  the  projected  system 
will  have  the  appearance  of  the  system  on  p.  201. 

The  hyperboloid  (1)  is  said  to  ''  lie  along  the  Z-axis." 
The  equations 

£C  ?/  Z  X  1/  Z 

are  the  equations  of  hyperboloids  of  one  sheet  which  lie  along 

the  Y-  and  A-axes  respectively. 

If  a  =  b,  the  hyperboloid  (1)  is  a  surface  of  revolution  whose 

axis  is  the  Z-axis,  because  the  section  (2)  becomes  a  circle.  The 

hyperboloids  (3)  will  be  hyperboloids  of  revolution  if  a  =  c  and 
b  =  c  respectively. 

180.  The  hyperboloid  of  two  sheets  ̂   _  |^  _  ̂  =  i.    If  only 

one  of  the  coefficients  in  (3),  p.  398,  is  positive,  the  locus  is 

called  an  hyperboloid  of  two  sheets.     Consider  first  the  equation 

y      ̂  (1)  -.-1^-72  =  1- 

b^ 

c* 
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1.  The  hyperboloid  is  symmetrical  with  respect  to  each  of  the 

coordinate  planes  and  axes  and  the  origin  (Theorem  IV,  p.  346). 

2.  Its  intercepts  on  the  X-axis  are  ic  =  ±  a,  but  it  does  not 
cut  the  Y-  and  Z-axes. 

3.  Its  traces  on  the  XY-  and  XZ-planes  (p.  346)  are  respec- 
tively the  hyperbolas 

x^      2/^  _         x^      z^ 
a 

a^ 

1, 

which  have  the  same  transverse  axis  AA'  =  2a,  but  it  does  not 
cut  the  FZ-plane. 

4.  The  equation  of  the  curve  in  which  a  plane  parallel  to 

the  rZ-plane,  x  =  k,  intersects  the  hyperboloid  of  one  sheet  is 

(Kule,  p.  345) 

—  4- 
^-1 r 

H- 

=  1. 

(^'
 

a^)       -A^^ 

a-) 

This  equation  has  no  locus  \i  —  a  <.  k  <,  a.  If  A:  =  ±  a,  the 
locus  is  a  degenerate  ellipse,  and  as  k  increases  from  a  to  oo,  or 

decreases  from  —a  to  —  oo,  the 
locus  is  an  ellipse  whose  axes 

increase  indefinitely.  Hence  the 
surface  consists  of  two  branches 

or  sheets  which  recede  indefi- 

nitely from  the  l"Z-plane  and 
from  the  Z-axis. 

In  like  manner  the  sections  formed  by  all  planes  parallel 

to  the  XY-  and  ZZ-planes  are  hyperbolas  whose  axes  increase 
indefinitely  as  their  planes  recede  from  the  coordinate  planes. 

The  hyperboloid  (1)  is  said  to  "  lie  along  the  Z-axis." 
The  equations 

(2) -^  =  1,      - 
r + 

are  the  eq^uations  of  hyperboloids  of  two  sheets  which  lie  along 

the  Y-  and  Z-axes  respectively. 
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If  b  =  c,  c  =  a,  or  a  =  h,  the  hyperboloids  (1)  and  (2)  are] 
respectively  hyperboloids  of  revolution. 

It  should  be  noticed  that  the  locus  of  (3),  p.  398,  is  an  ellipsoid  if  all  the  terms] 
on  the  left  are  positive,  an  hyperboloid  of  one  sheet  if  but  one  term  is  negative, 
and  an  hyperboloid  of  two  sheets  if  two  terms  are  negative.  If  all  the  terms  on 
the  left  are  negative,  there  is  no  locus.  If  the  locus  is  an  hyperboloid,  it  will  lie 
along  the  axis  corresponding  to  the  term  whose  sign  differs  from  that  of  the  other 
two  terms. 

PROBLEMS 

1.  Discuss  and  construct  the  loci  of  the  following  equations. 

(a)  4x2  4.  9y2  4.  I6z2  =  144.  (g)  9x2  -  y^ -\-  9z2  =  36. 
(b)  4x2  +  92/2  -  16z2  =  144.  (f)  z^  _  4x2  -  4y2  =  I6. 
(C)    4X2  -  92/2  -  16  Z2  =  144.  (g)    16x2  +  y2  +  16z2  =  64. 

(d)  x2  +  162/2  +  22  ̂   64.  (h)  x^ -{- y^  -  z^  =  25. 

2.  For  what  values  of  k  or  k'  will  the  sections  of  the  hyperboloid  of  one 
/j2        7/2        ̂ 2 

sheet,  — I-  ̂   =  1,  formed  by  the  planes  x  =  k  or  y  =  k'  be  similar 
"       ̂       ̂                                                   x2     v2     z2 

hyperbolas  ?    the  hyperboloid  of  two  sheets   —  H —  =1? 
a2       62       c2 

3.  Show  analytically  that  the  intersection  of  an  ellipsoid  with  any  plane 
is  a  conic  of  the  elliptic  type. 

4.  Show  analytically  that  the  section  of  an  hyperboloid  of  (a)  one  sheet, 

(b)  two  sheets  formed  by  a  plane  passing  through  the  axis  along  which  the , 
hyperboloid  lies,  is  an  hyperbola. 

^2         y2        ̂ 2 
5.  Show  that  —  +  —  +  —  =  (Ax  +  By  -\-  Cz^  is  the  equation  of  the  cone 

a?-      W-      c2 
whose  vertex  is  the  origin  which  passes  through  the  intersection  of  the 

^2         7/2         ̂ 2 

ellipsoid   f-  —  H —  =  1  and  the  plane  Ax  -\-  By  -\-  Cz  —  \. a2       62        c2 

6.  Show  that  ̂ ^(^  -  ̂,)  +  vW,  -  li)  +  ̂ il,  -  ̂J  =  0  is  the  equa-j 
tion  of  the  cone  whose  vertex  is  the  origin  which  passes  through  the] 

intersection  of  the  ellipsoid  and  the  sphere  x2  +  2/2  +  22  =  r^. 

7.  If,  in  problem  6,  a>6>c  and  r  =  6,  show  that  the  cone  degenerates 
into  a  pair  of  planes  whose  intersections  with  the  ellipsoid  are  circles.  What 
is  the  nature  of  the  cone  if  r  =  a?  if  r  =  c? 

8.  Find  the  equations  of  the  planes  whose  intersections  with  the  ellipsoid  | 

9  x2  +  25  2/2  +  169  z2  =  1  are  circles.  Ans.    4  x  =  ±  12  2  + 
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9.  Find  the  equation  of  the  cone  whose  vertex  is  the  origin  which  passes 

2/^
 Z2 

—  —  1 

2-2  y1 

through  the  intersection  of  (a)  the  hyperboloid  of  one  sheet   \-~ 
x2      w2      2;2 

(b)  the  hyperboloid  of  two  sheets   ^   =  1  with  the  sphere  x^  +  y2 
(j2        ̂ 2        g2 

+  z2  =  ,.2_    por  what  value  of  r  will  the  cone  degenerate  into  a  pair  of  planes 
whose  intersections  with  the  hyperboloid  are  circles  ? 

An8.   (a)  x2(i  -  ̂)  +  y'^i]-  --^-  zH\  +  ̂"j  =  0 ;  r=a  if  a  >  6. ^   '       \a2       r2/  \&2       ̂ 2/  \c2       ,.2/  ' 

(b)  x2('l  -  -i)  -  ?/2('i  +  i")  -  2;2('l  +  i\  =:  0;  no  real  value  of  r. ^         \a2      r'V  \62      r^)         Vc2      r2/ 

10.  Find  the  equations  of  the  two  systems  of  planes  whose  intersections 

with  (a)  an  ellipsoid,  (b)  an  hyperboloid  of  one  sheet,  (c)  an  hyperboloid  of 
two  sheets,  are  circles. 

.2  2 

181.  The  elliptic  paraboloid  '^  +  ̂  =  2  cs;.   If  the  coefficient 

or      Jy- of  y"^  in   (4),  p.  398,  is  positive,  the  locus  is  called  an  elliptic 
paraboloid.     A  discussion  of  its 

equation    gives    us    the    following 

properties. 
1.  The  elliptic  paraboloid  is 

symmetrical  with  respect  to  the 

YZ-  and  ZX-planes  and  the  Z-axis 

(Theorem  IV,  p.  346). 

2.  It  passes  through  the  origin 

(Theorem  III,  p.  345)  but  does  not 

intersect  the  axes  elsewhere  (Rule, 

p.  346). 

3.  Its  traces  on  the  coordinate  planes  (p.  346)  are  respectively 
the  conies  „        „  „ o>   r2 

2cz,     ̂ ,=2cz, 

of  which  the  first  is  a  degenerate  ellipse  (p.  195)  and  the  others 
are  parabolas. 

4.  The  equation  of  the  curve  in  which  a  plane  parallel  to  the 

ZF-plane,  z  =  k,  cuts  the  paraboloid  is  (Rule,  p.  345) 

-.^■^.=2ck,  or + r 
^a'ch      2bHk 

=  1. 
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The  curve  is  an  ellipse  if  c  and  k  have  the  same  sign,  but  there 

is  no  locus  if  c  and  k  have  opposite  signs.  Hence,  if  c  is  positive, 

the  surface  lies  entirely  above  the  A'F-plane.  If  k  increases 
from  0  to  00,  the  plane  recedes  from  the  AF-plane  and  the  axes 
of  the  ellipse  increase  indefinitely.  Hence  the  surface  recedes 

indefinitely  from  the  AF-plane  and  from  the  2r-axis. 

In  like  manner  the  sections  parallel  to  the  YZ-  and  ZA-planes 

are  parabolas  whose  vertices  recede  from  the  AF-plane  as  their 
planes  recede  from  the  coordinate  planes. 

The  loci  of  the  equations 

(1)  f!  +  5  =  2ax,     5  +  5  =  2*, 

are   elliptic    paraboloids    which   lie   along    the  A'-  and    }'-axes 
respectively. 

If  a  =  b,  the  first  surface  considered  is  a  paraboloid  of  revolu- 

tion whose  axis  is  the  Z-axis ;  and  \i  b  =  c  and  a  =  c,  the  parab- 
oloids (1)  are  surfaces  of  revolution  whose  axes  are  respectively 

the  X-  and  F-axes. 

An  elliptic  paraboloid  lies  along  the  axis  corresponding  to  the  term  of  the  first 
degree  in  its  equation,  and  in  the  positive  or  negative  direction  of  the  axis 
according  as  that  term  is  positive  or  negative. 

182.  The  hyperbolic  paraboloid  ̂   -  ̂   =  2c5!.  If  the  coeffi- 

cient of  i/  in  (4),  p.  398,  is  negative,  the  locus  is  called  an  hyperbolic 

paraboloid. 
1.  The  hyperbolic  paraboloid  is  symmetrical  with  respect  to 

the  YZ-  and  ZA-planes  and  the  Z-axis  (Theorem  IV,  p.  346). 
2.  It  passes  through  the  origin  (Theorem  III,  p.  345)  but  does 

not  cut  the  axes  elsewhere  (Rule,  p.  346). 

3.  Its  traces  on  the  coordinate  planes  (p.  346)  are  respectively 
the  conies 

£:_r_o      -~2cz      -^-2 

of  which  the  first  is  a  degenerate  hyperbola  (p.  195)  and  the 

others  are  parabolas. 
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4.  The  equation  of  the  curve  in  which  a  plane  parallel  to  the 

ZF-plane,  z  =  k,  cuts  the  paraboloid  is  (Kule,  p.  345) 

^^  =  ̂^^'"^2^ 

=  1. 

a"      0"  z  a'-cK,      2  h'^ck 

The  locus  is  an  hyperbola.  If  c  is  positive,  the  transverse  axis 

of  the  hyperbola  is  parallel  to  the 

X-  or  F-axis  according  as  k  is  posi- 
tive or  negative.  If  k  increases 

from  0  to  00,  or  decreases  from  0 

to  —  00,  the  plane  recedes  from  the  ̂  " 

A' F- plane  and  the  axes  of  the 
hyperbolas  increase  indefinitely. 
Hence  the  surface  recedes  indefi- 

nitely from  the  ZF-plane  and  the 

Z-axis.    The  surface  has  approximately  the  shape  of  a  saddle. 
In  like  manner  the  sections  parallel  to  the  other  coordinate 

planes  are  parabolas  whose  vertices  recede  from  the  XF-plane  as 
their  planes  recede  from  the  coordinate  planes. 

The  loci  of  the  equations 

72  =  2%' 

are    hyperbolic    paraboloids    lying    along    the    F-   and   Z-axes 
respectively. 

An  hyperbolic  paraboloid  also  lies  along  the  axis  which  corresponds  to  the 
term  of  the  first  degree  in  its  equation. 

PROBLEMS 

1 .  Discuss  and  construct  the  following  loci. 

(a)  2/2  +  ̂ 2  ::=  4  x.  (c)  9^2  _  4  x2  =  288  y. 
(b)  2/2  _  22  =  4x.  (d)  16x2  +  22  =  64  2/. 

2.  Prove  that  the  parabolas  of  the  systems  obtained  by  cutting  (a)  an 

elliptic  paraboloid,  (b)  an  hyperbolic  paraboloid  by  planes  parallel  to  one 
of  the  coordinate  planes,  are  all  equal. 

3.  Show  analytically  that  any  plane  parallel  to  the.  axis  along  which 

(a)  an  elliptic  paraboloid,  (b)  an  hyperbolic  paraboloid  lies,  intersects  the 
surface  in  a  parabola. 
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4.  Show  analytically  that  any  plane  not  parallel  to  the  axis  of  an  elliptic 
paraboloid  intersects  the  surface  in  an  ellipse. 

6.  Show  analytically  that  any  plane  not  parallel  to  the  axis  of  an  hyper- 
bolic paraboloid  intersects  the  surface  in  an  hyperbola. 

6.  Find  the  equation  of  the  cone  whose  vertex  is  the  origin  which  passes 

a;2 

through  the  intersection  of  the  paraboloid   h  — 

x2  +  2/2  +  z2  =  2rz.  "^      ̂  

2cz  and  the  sphere 

Ans.    x^(^^-c\-\-y'^(--c\-cz^  =  0. 

7.  By  means  of  problem  6  find  the  equations  of  two  systems  of  planes 
whose  intersections  with  the  paraboloid  are  circles. 

183.  Rectilinear  generators.    The  equation  of  the  hyperboloid 

of  one  sheet  (p.  401)  may  be  written  in  the  form 

As  this  equation  is  the  result  of  eliminating  k  from  the  equa- 
tions of  the  system  of  lines 

a       c      k\         b -  +  -  =  ̂■1  +  1 a      c         \         0 

;
)
 

the  hyperboloid  is  a  ruled  surface  (p.  387).     Equation  (1)  is  also 
the  result  of  eliminating  k  from  the  equations  of  the  system  of 
lines 

a      c  I  bj^     a       c      k\  bj 
and  tl^p  hyperboloid  may  therefore  be  regarded  in  two  ways  as  a 
ruled  surface. 

In  ],ike  manner  the  hyperbolic  paraboloid  contains  the  two 

systems  of  lines 

1  --  +  l  =  2ck,    ""--1  =  1 a      b  a      b       k 

and 
a      b  a       b        k 

Th^se  lines  are  called  the  rectilinear  generators  of  these  surfaces. 
Henc^ 

Theorem  III.  The  hyperboloid  of  one  sheet  and  the  hyperbolic 

paraboloid  have  two  systems  of  rectilinear  generators,  that  is,  they 

may  be  regarded  in  two  ways  as  niled  surfaces. 
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MISCELLANEOUS    PROBLEMS 

1.  Construct  the  following  surfaces  and  shade  that  part  of  the  first  inter- 
cepted by  the  second. 

(a)  x2  +  4  2/2  +  9  z2  =  36,  x'^  ̂   y'^  ̂   z'^  =  16. 
(b)  x2  +  2/2  +  z2  ̂   64,  x2  +  2/2  -  8x  =  0. 

(c)  4x2  +  2/2  -  4 z  =  0,  x2  4-  4 2/2  -  z2  _  0. 

2.  Construct  the  solids  bounded  by  the  surfaces  (a)  x^  +  y^  =  a^,  z  =  wx, 
z  =  0;  (b)  x2  +  2/2  =  az,  x^  +  y^  =  2ax,  z  =  0. 

3.  Show  that  two  rectilinear  generators  of  (a)  an  hyperbolic  paraboloid, 
(b)  an  hyperboloid  of  one  sheet,  pass  through  each  point  of  the  surface. 

4.  If  a  plane  passes  through  a  rectilinear  generator  of  a  quadric,  show 

that  it  will  also  pass  through  a  second  generator  and  that  these  generators  do 
not  belong  to  the  same  system. 

5.  The  equation  of  the  hyperboloid  of  one  sheet  (p.  401)  may  be  written 
y2         ̂ 2  x2 

in  the  form  —   -  =  1   By  treating  this  equation  as  we  treated  equa- o2      c2  a2 
tion  (1),  p.  408,  we  obtain  the  equations  of  two  systems  of  lines  on  the  sur- 

face. Show  that  these  systems  of  lines  are  identical  with  those  already 
obtained. 

6.  Show  that  a  quadric  may,  in  general,  be  passed  through  any  nine 

points. 

7.  If  a  >  6  >  c,  what  is  the  nature  of  the  locus  of 

x2       _       2/^  z^      _ 
a2  -  X      62  _  X      c2  -  \ 

if\>a2?  ifa2>X>62?  if62>x>c2?  ifX<c2? 

8.  Show  that  the  traces  of  the  system  of  quadrics  in  problem  7  are  confocal 
conies. 

9.  Show  that  every  rectilinear  generator  of  the  hyperbolic  paraboloid 
x2      2/*^  X      2/ 
  =  2  cz  is  parallel  to  one  of  the  planes  -  ±  -  =  0. 

10.  Prove  that  the  projections  of  the  rectilinear  generators  of  (a)  the 

hyperboloid  of  one  sheet,  (b)  the  hyperbolic  paraboloid,  on  the  principal 
planes  are  tangent  to  the  traces  of  the  surface  on  those  planes. 

11.  A  plane  passed  through  the  center  and  a  generator  of  an  hyperboloid 
of  one  sheet  intersects  the  surface  in  a  second  generator  which  is  parallel  to 
the  first. 

12.  Show  how  to  generate  each  of  the  central  quadrics  by  moving  an 
ellipse  whose  axes  are  variable, 

13.  Show  how  to  generate  each  of  the  paraboloids  by  moving  a  parabola. 
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RELATIONS  BETWEEN  A  LINE  AND  QUADRIC.     APPLICA- 
TIONS  OF  THE  THEORY  OF  QUADRATICS 

184.  The  equation  in  p.  Relative  positions  of  a  line  and  quadric.  Con- 
sider any  equation  of  the  second  degree,  whose  locus  is  a  quadric  surface, 

degenerate  or  non-degenerate,  and  a  line  whose  parametric  equations  are 

(Theorem  V-,  p.  369) 

(1)  x  =  Xi-\-  p  cos  a,  y  =  2/1  +  /5  cos/S,  z  =  Zi  +  p  cos  7. 

If  these  values  of  x,  y,  and  z  satisfy  the  equation  of  the  quadric,  then  the 

point  P{x,  y,  z)  on  the  line  (1)  will  also  lie  on  the  quadric.  Substituting 
from  (1)  in  the  equation  of  the  quadric  and  arranging  the  result  according 
to  powers  of  p,  the  result  is  a  quadratic 

(2)  Ap^-\-Bp  +  C  =  0 

whose  roots  are  the  directed  distances  from  Pi  (xi,  ?/i,  Zi)  to  the  points  of 

intersection  of  the  line  (1)  and  the  quadric.  The  quadratic  (2)  is  called 

the  equation  in  p  for  the  given  quadric  (compare  §  94,  p.  235).  Hence  we 
have  the 

Rule  to  derive  the  equation  in  p  for  any  quadric. 

Substitute  the  values  of  x,  y,  and  z  given  by  (1)  in  the  equation  of  the  quadric 
and  arrange  the  result  according  to  powers  of  p. 

Denoting  the  discriminant  of  (2),  B^  —  4AC,  by  A,  it  is  evident  from 
Theorem  II,  p.  3,  that 

(a)  the  line  is  a  secant  of  the  quadric  if  A  is  positive. 
(6)  the  line  is  tangent  to  the  quadric  if  A  is  zero. 

(c)  the  line  does  not  meet  the  quadric  if  A  is  negative. 

If  C  =  0,  one  root  of  (2)  is  zero  (Case  I,  p.  4),  and  hence  P^  lies  on  the  quadric. 
If  B  =  0,  the  roots  of  (2)  are  numerically  equal  with  opposite  signs  (Case  II,  p.  4)  and  P, 

is  the  middle  point  of  the  chord  formed  by  (1). 
U  A=0,  one  root  of  (2)  is  infinite  (Tlieorem  IV,  p.  15)  and  the  line  is  said  to  intersect 

the  quadric  at  infinity. 
If  i5  =  C  =  0,  hoth  roots  are  zero  (Case  III,  p.  5)  and  the  line  is  said  to  be  tangent  to  the 

quadric  at  Pj. 

If  A  =  B  —  0,  both  roots  are  infinite  and  the  line  is  said  to  be  tangent  to  the  quadric  at 
infinity. 

If  A  =  B  =  C  =  0,  any  number  is  a  root  of  (2),  and  hence  all  points  on  the  line  lie  on  the 
quadric  (compare  p.  226). 

410 



LINE  AND  QUADRIC 

PROBLEMS 

1.  Determine  the  relative  positions  of  the  following  lines  and  quadrics. 

(a)  a;  =  -  6  +  fp,  y  =  6  -  |p,  z  =  3  -  ̂ /o,  x2  +  2/2  +  422  =  16. 
Ans.    Secant. 

(b)  X  =  f  p,  y  =  9  +  f  p,  z  =  1  -  f  P,  y2  +  4  22  -  8  X.      Ans.   Do  not  meet. 
(c)  X  =  4  +  |p,  2/  =  -  2  +  |p,  z  =  5  +  i/),  x2  +  2/2  +  22  =  36. 

Ans.    Tangent. 

(d)  X  =  3  +  i  V3/),  2/  =  f  +  i  V3p,  z  =  -  2  -  1  VSp,  x^-z^  =  2y. 
Ans.    Line  lies  on  quadric. 

X  -1      2/      z  +  2 
(e) 6 x2  +  4  2/2  -  22  -  4  X  =  0. J.ns.    Secant. 

(f )  ̂  =.  ̂  =  i+i ,  x2  +  4 2/2  -  9  22  =  36. 9  o         —  5 
Ans.    Secant  with  one  point  of  intersection  at  infinity. 

2.  Find  the  condition  that  the  line  x  ==  2  +  p  cos  a-,  y  =  l-\-pcosp, 
2  =  —  1  +  p  cos  7  should  be  tangent  to  the  paraboloid  x^  —  y-  -\-  3  z  =  0. 

Ans.   4  cos  a  —  2  cos  j8  —  3  cos  7  =  0. 

3.  Find  the  condition  that  Pi  (xi,  2/1,  Zi)  should  be  the  middle  point  of  the 

chord  of  the  hyperboloid  x2  —  2/2  +  4  22  =  16  formed  by  the  line  x  =  Xi  +  |  p, 
y  =  yi-lP,z  =  zi-y.  Ans.    2x1  +  2/1-821  =  0. 

185.  Tangent  planes.   Consider  the  elliptic  paraboloid 

x2      2/^ 

a^  +  ̂  =  '^
^ 

(1) 

and  the  line 

(2)  X  =  Xi  +  p  cos  a,     2/  =  2/1  +  p  cos  /3,     2  =  21  +  p  cos  7. 

Substituting  from  (2)  in  (1),  we  obtain  the  equation  in  p  (p.  410) 

cos2  a      cos2  j8  \  o  /^  ̂1  ̂ ^^  ̂       y^  ̂ os  P 
(3) 

/cos^a  ,  cos^jBX   „  ,   _/XiCos<a:      2/1  cos ]«  \ I   h    )  P  +  2  (   c  cos  7  I  p 
\    a2  &2    /''  ̂     V      a2  62  V'^ xi^      yr^ 

a2       62 
2  C2i  =  0. 

If  Pi(xi,  yi,  2i)  is  to  lie  on  (1),  and  (2)  is  to  be  tangent  to  (1)  at  Pi,  both 
roots  of  (3)  must  be  zero,  and  hence  (Case  III,  p.  5) 

(4) 
Xi  cos  a      yi  cos  /3 

a2~"^       62 -  c  COS  7  =  0,     —  +  -—  -  2  C2i  =  0. 
a2       62 

Solving  (2)  for  the  direction  cosines,  we  get 

iK\                              X  -  Xi            ̂       y  -yi                   z  -  zi 
(5)  cos  a  =   5     cos  /3  =   ^- »     cos  7  =   
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Substituting  from  (5)  in  the  first  of  equations  (4),  we  get 

(0)  =gi  (^  -  gi)  _^  y{y-yi)  ̂   c  (z  -  zq 

as  the  condition  that  P(x,  y,  z)  should  lie  on  a  line  tangent  to  (1)  at  Pi. 

Simplifying  (6)  by  means  of  the  second  of  equations  (4),  we  obtain 

(7) 
f  +  f  =  c(.  +  ., 

This  is  the  equation  of  a  plane  (Theorem  II,  p.  349).  Hence  all  of  the 

lines  tangent  to  (1)  at  Pi  lie  in  a  plane  which  is  called  the  tangent  plane. 
This  method  may  be  summed  up  in  the 

Rule  to  derive  the  equation  of  the  plane  which  is  tangent  to  a  quadric  at  a 

given  point  Pi(xi,  yi,  Zi). 
First  step.  Derive  the  equation  in  p  and  set  the  coefficient  of  p  and  the 

constant  term  equal  to  zero. 
Second  step.  Solve  the  parametric  equations  of  the  line  for  its  direction 

cosines  and  substitute  in  the  first  equation  obtained  in  the  first  step. 

Third  step.  Simplify  the  equation  obtained  in  the  second  step  by  means  of 

the  second  equation  obtained  in  the  first  step.  The  result  is  the  required 
tion. 

By  means  of  this  Rule  we  obtain 

Theorem  I.     The  equation  of  the  plane  which  is  tangent  at  Pi  (xi,  yi,  zi)  to  the 

central  quadric X2         y2         z' ±  —  ±  —  ±- 
a^      b-^      a' 

=  lis  ± 

non-central  quadric 

x2      ̂  

a2  ̂  62 

2cz 

a^i^g       l/il/       Zj^Z 

^2     ±     ̂ 2     ±    ̂ 2 

=  1; 

a' 

±^  =  ciz  +  z,). 
Theorem  n.  The  equation  of  the  plane  which  is  tangent  to  any  quadric  at 

Pi  (xi,  Vi,  zi)  is  found  by  substituting  x^x,  yiy,  and  z^z  for  x^,  y^^  and  z^; 
^ {yix  +  xiy),  i {zxy  +  yiz),  and  \ {x^z  +  Zix)  for xy,  yz,  and  zx;  and  \(x-\-  Xi), 

i  (y  +  Vi)^  ci'^d  i  (^  +  ̂i)  f^'^  ̂ 1  Vi  ̂ ^^  ̂   ̂̂ ^  ̂ ^^  equation  of  the  quadric. 

186.  Polar  planes.  If  Pi  is  a  point  on  a  quadric,  the  equation  of  the 

tangent  plane  at  Pi  may  be  found  by  Theorem  II.  If  Pi  is  not  on  the  quad- 
ric, the  plane  found  by  Theorem  II  is  called  the  polar  plane  of  Pi,  and  Pi  is 

called  the  pole  of  that  plane. 

In  particular,  the  polar  plane  of  a  point  on  a  quadric  is  the  plane  tangent 
to  the  quadric  at  that  point,  and  the  pole  of  a  tangent  plane  is  the  point  of 
tangency. 

187.  Circumscribed  cones.  All  of  the  lines  passing  through  a  point  not 
on  a  given  quadric  which  are  tangent  to  the  surface  form  a  cone  which  is 

said  to  be  circumscribed  about  the  quadric. 
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Ex.  1.    Find  the  equation  of  the  cone  circumscrihed  about  the  ellipsoid  x2  _f-  3  yi 
+  3z2  =  9  whose  vertex  is  the  point  Fx  (4,  —  2,  4). 

Solution.    The  parametric  equations  of  any  line  through  Pj  are  (Theorem  V, 
p.  369) 

(1)  a;  =  4  + /o  cos  a,    y  =  —  2  + /dcos^S,    2  =  4  +  /)  cos  7. 

Substituting  these  values  of  x,  y,  and  z  in  the  equation  of  the  ellipsoid,  we  obtain 
the  equation  in  p 

(2)  (cos2  a  +  3  cos2/3  +  3  COS27)  p2  _|.  (g  cos  or  -  12  cos  j8  +  24  cos 7)  p  +  67  =  0. 

If  (1)  is  tangent  to  the  ellipsoid,  then  [(6),  p.  410] 

(3)  (8  cos  a  -  12  cos iS  +  24  cos  7)2  -  4  •  67  (cos2  cr  +  3  cos2/3  +  3  cos2 7)  =  0. 

Solving  (1)  for  the  direction  cosines,  substituting  in  (3),  and  multiplying  by  p^, 
we  get 

(4)     [8(a;-4)-12(y  +  2)  +  24(2-4)]2-268[(a;-4)2-f3(i/  +  2)2  +  3(z-4)2]  =  0 

as  the  condition  that  F  {x,,  y,  z)  should  lie  on  a  line  passing  through  F^  which  is 
tangent  to  the  ellipsoid.     Hence  (4)  is  the  equation  of  the  required  cone. 

That  the  locus  of  (4)  is  really  a  cone  whose  vertex  is  F^  is  easily  seen  by  moving 
the  origin  to  Pi  and  applying  Theorem  V,  p.  385. 

In  constructing  the  figure,  two  divisions  on  each  axis  were  taken  for  the  unit. 

The  reasoning  employed  in  the  solution  of  Ex.  1  justifies  the 

Rule  to  find  the  equation  of  the  cone  whose  vertex  is  Pi  (xi,  2/1,  Zi)  which 
circumscribes  a  given  quadric. 

First  step.    Derive  the  equation  in  p  and  set  its  discriminant  equal  to  zero. 

Second  step.  In  the  result  of  the  first  step  substitute  the  values  of  the  direc- 
tion cosines  of  a  line  through  Pi  obtained  from  the  parametric  equations  of  the 

line.     The  result  is  the  required  equation. 
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PROBLEMS 

1.  Prove  that  the  plane  of  the  two  rectilinear  generators  which  pass 

through  any  point  on  a  ruled  quadric  is  the  tangent  plane  at  that  point. 

2.  Prove  that  every  plane  which  passes  through  a  rectilinear  generator  of 

a  ruled  quadric  is  tangent  to  the  quadric  at  some  point  of  that  generator. 

3.  Prove  analytically  that  every  plane  tangent  to  a  cone  passes  through 
the  vertex. 

4.  Prove  that  the  polar  plane  of  any  point  in  a  given  plane  passes  through 
the  pole  of  that  plane. 

6.  Prove  that  the  pole  of  any  plane  which  passes  through  a  given  point 
lies  in  the  polar  plane  of  that  point. 

6.  Prove  that  the  curve  of  contact  of  a  cone  circumscribed  about  a 

quadric  lies  in  the  polar  plane  of  the  vertex, 

7.  Show  how  to  construct  (a)  the  polar  plane  of  a  point  outside  of  a 

quadric,  (b)  the  pole  of  a  plane  which  cuts  the  quadric,  (c)  the  polar  plane  of 
a  point  within  a  quadric,  (d)  the  pole  of  a  plane  which  does  not  meet  the 

quadric. 
8.  Show  that  the  polar  plane  of  a  point  Pi  with  respect  to  a  sphere  is 

perpendicular  to  the  line  drawn  from  the  center  to  Pi. 

9.  Show  analytically  that  the  polar  plane  of  a  point  Pi  with  respect  to  a 
central  quadric  recedes  from  the  center  as  Pi  approaches  the  center,  and 
conversely. 

10.  Show  that  the  distances  from  two  points  to  the  center  of  a  sphere  are 

proportional  to  the  distances  of  each  of  these  points  from  the  polar  plane  of 
the  other. 

11.  Show  how  the  ideas  of  "polar  reciprocal  curves"  and  "polar  recip- 
rocation" with  respect  to  a  conic  may  be  generalized  to  "polar  reciprocal 

surfaces"  and  "polar  reciprocation"  with  respect  to  a  quadric. 

12.  What  is  the  polar  reciprocal  of  a  cone  or  cylinder  with  respect  to  a 
sphere  ?  of  a  plane  curve  ? 

13.  Generalize  problem  7,  p,  320,  for  polar  reciprocation  with  respect  to 

a  quadric, 

14.  Prove  that  the  distance  p  from  the  origin  to  the  plane  which  is  tangent 

to  the  ellipsoid 

62 

H —  =  1  at  Pi  is  given  by 

Xi 

yi' 

a*  "^  6*       c4 

15.  Prove  that  the  plane  Ax  -{■  By  +  Cz  +  D  =  0  is  tangent  to  the  ellipsoid x2  ,  y 

+  "-  +  -  =  1  if  ̂ 2^2  +  B^W-  +  C2c2  =  i)2. 
62         c2 



LINK  AND  QUADRIC  415 

16.  The  locus  of  the  point  of  intersection  of  three  mutually  perpendicular 

tangent  planes  to  an  ellipsoid  is  a  sphere  whose  radius  is  Va^  +  6'^  +  c^. 
Hint.  From  problem  15  we  get  the  equations  of  three  tangent  phines.  Square  and 

add  these  equations,  making  use  of  the  conditions  that  the  planes  shall  be  mutually 
perpendicular. 

17.  Show  that  the  plane  Ax  -{■  By  -\-  Cz  -\- 1)  =  0  \s  tangent  to  the  parabo- 

loid -  i  ̂  :zz  2  cz  if  A^a^c  ±  B^b'^c  =  2  CD. 
a2      62 

18.  Show  that  the  locus  of  the  point  of  intersection  of  three  mutually 

perpendicular  tangent  planes  to  a  paraboloid  is  a  plane. 

The  line  perpendicular  to  a  plane  which  is  tangent  to  a  surface 

at  the  point  of  tangency  is  called  the  normal  to  the  surface  at 

that  point. 

19.  Find  the  equation  of  the  normal  to  each  of  the  quadrics  at  a  point  Pi. 

20.  If  the  normal  to  an  ellipsoid  at  Pi  meets  the  principal  planes  in  ̂ ,  J5, 

and  C,  then  Pi^,  PiB,  and  PiC  are  in  a  constant  ratio. 

21.  Find  the  equation  of  the  cone  circumscribing  a  paraboloid  whose 

vertex  is  Pi  (xi,  yi,  Zi). 

22.  Find  the  equation  of  the  cylinder  circumscribing  an  ellipsoid  if  the 

direction  angles  of  the  elements  of  the  cylinder  are  a,  j3,  and  y. 

188.  Asymptotic  directions  and  cones.  If  the  coefficient  of  p"^  in  the 
equation  in  p  for  any  quadric  is  zero,  one  root  is  infinite  (Theorem  IV,  p.  15), 
and  the  line  meets  the  quadric  in  one  point  which  is  at  an  infinite  distance 

from  Pi.  The  direction  of  such  a  line  is  called  an  asymptotic  direction.  It  is 

evident  that  a  line  having  an  asymptotic  direction  of  a  quadric  meets  the 
quadric  in  but  one  point  in  the  finite  part  of  space. 

It  is  easily  proved  that  the  coefficient  of  p^  is  formed  by  substituting 
cos  or,  cos^,  and  cos  7  for  x,  y,  and  z  in  the  terms  of  the  second  degree  in 

the  equation  of  the  quadric  (compare  the  footnote,  p.  236).  Hence  the 

direction  cosines  of  the  asymptotic  directions  of  the  non-degenerate  quadrics 

±^±^±5^.1,     ̂ ^^^  =  20. a2      62  ̂  c2        '     a2    ■  62 

respectively  satisfy  the  equations 

cos2a      cos2i3      COS27       „      cos2a       cos2)3 
(1  ± — —  ±^-^±-— ̂   =  0,     —-—±—-^  =  0. a2  6^  c^  a^  62 
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By  considering  the  number  of  sets  of  real  numbers  satisfying  these 
equations  for  the  various  combinations  of  signs  we  obtain 

Theorem  III.  The  hyperboloids  and  the  hyperbolic  paraboloid  have  an 

infinite  number  of  asymptotic  directions,  the  elliptic  paraboloid  has  one,  and 
the  ellipsoid  has  none. 

The  lines  passing  through  a  given  point  Pi  (xi,  2/1,  Zi)  which  have  the 
asymptotic  directions  of  a  quadric  will,  in  general,  form  a  cone.  The 
equation  of  this  cone  for  the  hyperboloid  of  one  sheet 

x2        «2       ̂ 2 

A 
I 
4 ction  ̂ m 

is  found  as  follows.      The  direction  cosines  of  an  asymptotic  direction 

satisfy  the  equation 

(3)  ^  +  ̂-^-"^^  =  0.  [by(i)] 

If  the  equations  of  a  line  through  Pi  are 

(4)  x  =  Xi  +  p  cos  a,     2/  =  2/1  +  /3  cos  /3,     z  =  Zi  +  p  cos  7, 
then 

/ex  X-  Xi  r,        y  -yi  Z  —  Zi (6)  COS  a  =   ,     cos  /3  =   —  ,     cos  7  =    • p  p  p 

Substituting  in  (3)  and  multiplying  by  p^,  we  get 

^  '  a^  b'^  c2 

as  the  condition  that  P(x,  ?/,  z)  should  lie  on  a  line  through  Pi  which  has  an 

asymptotic  direction  of  (2).    Hence  (6)  is  the  equation  of  the  cone  whose 
vertex  is  Pi  and  whose  elements  have  the  asymptotic  directions  of  (2). 

That  (6)  is  really  the  equation  of  a  cone  is  verified  by  translating  the  origin  to  P^. 

In  general,  we  have  the 

Rule  to  find  the  equation  of  the  cone  of  asymptotic  directions  of  a  quadric 
whose  vertex  is  a  given  point. 

Set  the  coefficient  of  p^  in  the  equation  in  p  equal  to  zero,  and  substitute  the 
values  of  the  direction  cosines  derived  from  the  parametric  equations  of  the 
line. 

If  the  coefficients  of  p"^  and  p  in  the  equation  in  p  are  both  zero,  then  both 
roots  are  infinite*  (Theorem  IV,  p.  15)  and  the  line  is  called  an  asymptotic 
line. 

*  This  assumes  that  the  constant  term  is  not  zero.  If  the  constant  term  is  zero, 
Pi  lies  on  the  quadric,  and  when  the  coefficients  of  pr  and  p  are  both  zero,  any  number 
is  a  root  and  the  line  lies  entirely  on  the  quadric. 

I 
I 
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Let  Pi  be  any  point  not  on  the  hyperboloid  (2)  and  let  ns  seek  the  condi- 
tions that  a,  /3,  and  7  must  satisfy  if  the  line  (4)  is  an  asymptote. 

The  equation  in  p  for  the  hyperboloid  is 

C0S2^        COS27\         ' 

62 

/Xi 

/Xi2 

\a2 

COS  a      yi  cos  /3 

Z\ cos  7 ' 

a2 

62 

c2 

62  C2 0. 

If  (4)  is  an  asymptote,  then,  by  definition, 

cos2a      cos2/S 

a2 

62 

COS27 

C2 

0, 

Xi  COS  a      2/1  COS  (3 

a2      "^      62 

zi  cos  7 

C2 

=  0. 

These  are  therefore  the  conditions  which  a,  /3,  and  7  must  satisfy.  Equa- 
tions (7)  can  be  solved  for  cosct  and  cos/3 

in  terms  of  cos  7  and  there  will  be  two 

solutions  which  may  be  real  and  unequal, 

real  and  equal,  or  imaginary,  and  from  these 
we  can  determine  two  sets  of  numbers  to 

which  cos  a,  cos/3,  and  cos  7  are  propor- 
tional. Hence  there  will  pass  through  Pi 

either  two  asymptotes,  one,  or  none. 

But  if  Xi  =  yi  =  2i  =  0,  that  is,  if  Pi  is 
the  center  of  the  hyperboloid,  the  second  of 

equations  (7)  is  true  for  all  values  of  or,  /3, 

and  7 ;  and  as  the  first  of  equations  (7)  is 
identical  with  (3),  we  see  that  the  elements 
of  the  cone  of  asymptotic  directions  whose 

vertex  is  the  center  (0,  0,  0)  are  all  asymp- 
totic lines.  From  (6)  the  equation  of  this  cone,  which  is  called  the  asymptotic 

cone,  is  seen  to  be 

a2'^  62 

c2 

=  0. 

Hence  we  have 

Theorem  IV.    The  equation  of  the  asymptotic  cone  of  the  hyperboloid  of  one 
sheet 

x2      y2 

a2"^62 c2-^''a2  +  62      .2-^- 

The  figure  shows  the  hyperboloid  (2)  in  outline  and  its  asymptotic  cone 
which  lies  entirely  within  the  surface.  As  the  hyperboloid  recedes  to  infinity 

it  approaches  closer  and  closer  to  its  asymptotic  cone  in  the  same  way  that 

an  hyperbola  approaches  its  asymptotes  (Theorem  IX,  p.  190). 
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In  like  manner  we  may  prove  the  following  theorem 

P ^Q 

Theorem  V.    The  equation  of  the  asymptotic  cone  of  the 

hyperholoid  of  two  sheets   =  1  is  —5   5   -  =  0] 

or      Ir      c^ 

62
 

X'
 

V 

a2 

X2        2/2 

a2~  6^  a- 

The  latter  cone  degenerates  into  a  pair  of  intersecting  planes. 

hyperbolic  paraboloid 2cz 

PROBLEMS 

1.  Show  that  a  plane  perpendicular  to  the  axis  of  an  hyperbolic  parab- 
oloid intersects  the  surface  in  an  hyperbola  whose  asymptotes  form  the 

intersection  of  the  plane  with  the  asymptotic  cone. 

2.  Show  that  a  plane  passing  through  the  axis  of  an  hyperboloid  inter- 
sects the  surface  in  an  hyperbola  whose  asymptotes  form  the  intersection  of 

the  plane  with  the  asymptotic  cone. 

Hint.  Rotate  the  axes  about  the  axis  of  the  hyperboloid. 

3.  Show  that  the  asymptotic  directions  of  any  quadric  are  determined 

by  the  locus  of  the  equation  obtained  by  setting  the  terms  of  the  second 

degree  equal  to  zero. 

4.  Show  that  a  plane  passing  through  the  center  and  a  generator  of  an 

hyperboloid  of  one  sheet  is  tangent  to  the  asymptotic  cone. 

5.  Show  that  any  plane  parallel  to  an  element  of  the  asymptotic  cone  of 
an  hyperboloid  intersects  the  hyperboloid  in  a  parabola. 

6.  Show  that  a  plane  tangent  to  the  asymptotic  cone  of  an  hyperboloid 
cuts  the  hyperboloid  in  two  parallel  lines. 

7.  Show  that  every  asymptotic  line  of  an  hyperboloid  is  parallel  to  an 
element  of  the  asymptotic  cone  and  lies  in  the  plane  tangent  to  the  cone 
along  that  element. 
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8.  By  means  of  problem  7  show  how  to  construct  the  asymptotic  lines 
of  an  hyperboloid  which  pass  through  any  point  Pi  other  than  the  center. 

Show  that  there  will  be  two,  one,  or  no  asymptotic  lines  through  Pi 
according  as  Pi  is  outside  of,  on,  or  inside  of  the  asymptotic  cone. 

9.  Show  that  the  hyperboloids  — -  —  --  =  land  -_-f*L  +  f_  =  i 
^^  a2      62      c2  a2      6a^c2 

have  the  same  asymptotic  cone.    How  are  they  situated  relative  to  this  cone  ? 

10.  Show  that  two  asymptotes  of  an  hyperbolic  paraboloid  pass  through 

every  point  not  on  the  asymptotic  cone,  and  that  each  of  these  lines  is  par- 
allel to  one  of  the  planes  which  form  the  cone. 

189.  Centers.  A  point  Pi(xi,  ?/i,  z{)  is  a  center  of  symmetry  of  a  quadric 
if  it  is  the  middle  point  of  every  chord  passing  through  it.  In  order  that  Pi 
shall  be  the  middle  point  of  a  chord,  the  roots  of  the  equation  in  p  must  be 

equal  numerically  with  opposite  signs,  and  hence  (Case  II,  p.  4)  the  coefficient 
of  p  must  be  zero.  The  coefficient  of  p  in  the  equation  in  p  for  the  general 
equation  of  the  second  degree  is  easily  seen  to  be 

(2  Axi  +  Fyi  +  ̂ 21  +  G)  cos  a 

+  {Fxx  +  2  JByi  +  Dzi  +  H')cos/3  +  {Exi  +  Byi -\- 2Czi-\-  7)cos7. 
This  is  zero  for  all  lines  passing  through  Pi,  that  is,  for  all  values  of 

cos  a,  cos  /3,  and  cos  7,  when  and  only  when  the  three  parentheses  are  zero. 

Setting  these  parentheses  equal  to  zero  and  solving  for  Xi,  2/1,  and  Zi,  we  obtain 
the  coordinates  of  the  center. 

By  means  of  the  discussion  in  §  163,  p.  374,  we  see  that  a  quadric  may 
have  a  single  center,  that  there  may  be  no  center,  or  that  all  of  the  points 

of  a  line  or  of  a  plane  may  be  centers. 

190.  Diametral  planes.  The  locus  of  the  middle  points  of  a  system  of 
parallel  chords  of  a  quadric  is  found  to  be  a  plane  which  is  called  a  diametral 

plane. 
Consider  the  ellipsoid 

(1)  .^  +  ?^  +  ?!  =  i ^  '  a"^      l^      c^ 

and  the  system  of  parallel  lines 

(2)  x  =  xi  +  p  cos  a,     2/  =  yi  +  p  cos  /3,     z  =  Zi  +  p  cos  7. 

These  equations  represent  a  system  of  parallel  lines  if  a;,,  j/i,  and  z^  are  arbitrary 
while  a,  j3,  and  y  are  constant. 

The  equation  in  p  for  (1)  is 

cos2a:      cos2/3      cos27\  /Xicosa:      yiCOs/3      ZiC0S7^ /cos^a      cos^/3      cos^7\  /Xicosa:      Vicosp      Zicos p 
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If  Pi  is  the  middle  point  of  the  chord  of  (1)  formed  by  the  line  (2),  then 
the  roots  of  (3)  must  be  numerically  equal  with  opposite  signs  ;  and  hence 
(Case  II,  p.  4) 

(4) 
xi  cos  a      y\  cos  /3  ,  ̂i  cos  7  _ 

62 

c2 

is  the  condition  that  Pi  shall  be  the  middle  point  of  the  chord. 

But  (4)  is  the  condition  that  Pi  should  lie  in  the  plane 

xcosa     y  cos  /3      z  cos  7  _ 

a2 

62 

and  this  is  therefore  the  equation  of  the  locus  of  the  middle  points  of  all 
chords  whose  direction  angles  are  a,  /3,  and  7. 

By  proceeding  in  this  manner  with  the  other  quadrics  we  obtain 

Theorem  VI.    The  equation  of  the  diametral  plane  bisecting  all  chords  whose 
direction  angles  are  a,  /3,  and  7  of  the 

central  quadric 

x2
 

22 

X2        y2 

^cosa      ycosp     2;  cosy 

a' 

=  0 

non-central  quadric     —  ±  —  =  2  cz    is 
a2      62 

a:;  cos  a      ycosfi 

a' 

b^
 

=  c  cos  y. 

PROBLEMS 

1.  Determine  geometrically  the  number  of  centers  of  each  of  the  types  of 
quadrics  and  degenerate  quadrics. 

2.  Find  the  equation  of  the  diametral  plane  of  the  locus  of  the  general 

equation  of  the  second  degi-ee  bisecting  all  chords  whose  direction  angles  are 
or,  /3,  7.  From  the  form  of  the  equation  prove  that  the  plane  passes  through 
the  center  of  the  quadric  if  there  is  a  center. 

3.  Prove  that  every  plane  through  the  center  of  a  central  quadric  or 

parallel  to  the  axis  of  a  paraboloid  is  a  diametral  plane,  and  find  the  direc- 
tion cosines  of  the  chords  which  it  bisects. 

4.  The  line  of  intersection  of  two  diametral  planes  is  called  a  diameter. 

Show  that  a  central  quadric  has  three  diameters  such  that  the  plane  of  any 

two  bisects  all  chords  parallel  to  the  third.  Such  lines  are  called  conjugate 

diameters,  and  the  plane  of  any  two  is  said  to  be  conjugate  to  the  third. 

5.  Find  the  equation  of  the  plane  which  bisects  all  chords  of  (a)  a  cen- 
tral quadric,  (b)  a  paraboloid,  which  are  parallel  to  the  diameter  passing 

through  a  point  Pi  on  the  quadric. 

6.  The  planes  tangent  to  a  quadric  at  the  extremities  of  a  diameter  are 
parallel  to  the  conjugate  diametral  plane. 
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7.  The  sum  of  the  squares  of  the  projections  of  three  conjugate  semi- 
diameters  of  an  ellipsoid  on  each  of  the  axes  of  the  ellipsoid  is  constant. 

Hint.  Let  P^,  P^,  and  P^  be  the  extremities  of  three  conjugate  diameters.  Find  the 
conditions  that  these  points  are  on  the  ellipsoid  and  that  any  two  are  on  the  plane 
conjugate  to  the  diameter  through  the  third.    Then  show  that 

^x     Vx      ̂ 1       «s     Vt.     ̂ t       „„H  ̂3     Vz     ̂ 3 
a      0      c       a     0      c  a      o     c 

are  the  direction  cosines  of  three  mutually  perpendicular  lines,  and  that  if  these  lines 
be  chosen  as  axes,  then 

^ ,  £?  ,  ̂ ,    yi,yi,y3.,    and  ̂   ,  -^ ,  ̂ 

are  also  the  direction  cosines  of  three  lines.    Then  apply  Theorem  III,  p.  330. 

8,  By  means  of  problem  7  show  that  the  sum  of  the  squares  of  three 

conjugate  semi-diameters  of  an  ellipsoid  is  equal  to  a"^  -{-h^  -\-  c^. 
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262,  300 
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144 
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214 ;  to  a  surface,  415 
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Peaucellier's  Inversor,  309 
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Prolate  cycloid,  269 
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Radical  axis,  137,  382 
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NEW  ANALYTIC   GEOMETRY 

By  Percey  F.  Smith,  Professor  of  Mathematics,  Sheffield  Scien- 
tific School,  Yale  University,  and  Arthur  Sullivan  Gale, 

Professor  of  Mathematics,  University  of  Rochester 

I2mo,  cloth,  342  pages,  illustrated,  #1.50 

^T^HE  "  New  Analytic  Geometry  "  aims  to  meet  the  present- 

-*-  day  demand  for  a  text  which  will  provide  adequate  and 

thorough  preparation  for  the  calculus  and  applied  mathematics. 

The  subject  matter  which  it  presents  differs  in  many  important 

respects  from  that  included  in  the  current  textbooks  on  the 

subject.    Some  distinctive  features  are  the  following: 

The  simplicity  and  directness  of  the  proofs. 
The  numerous  tables  to  assist  in  calculations. 

The  large  number  of  tested  problems  and  the  omission  of  answers 

to  these  when  any  useful  purpose  is  served. 

The  attention  given  to  curve  plotting,  including  applications  to  the 

graphical  solution  of  transcendental  equations,  to  sketching  sine  curves, 

motion  curves,  and  other  transcendental  curves  used  in  engineering. 

A  chapter  on  the  setting  up  and  graphical  study  of  functions  arising 

from  concrete  problems. 

The  concise  treatment  of  the  parabola,  ellipse,  and  hyperbola,  and 

the  general  equation  of  the  second  degree,  and  the  description  of  the 

importance  of  these  curves  in  the  arts. 

The  expression  of  the  simpler  formulas  in  determinant  form. 

The  variety  of  locus  problems  and  the  use  of  parametric  equations 

in  solving  them  and  in  curve  plotting. 

The  attention  paid  to  the  careful  sketching  of  loci  in  space. 

A  chapter  on  the  derivation  of  empirical  equations  to  fit  observed 
data. 
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HIGHER  ALGEBRA 
By  Herbert  E.  Hawkes,  Columbia  University.   $1.40 

A  THOROUGH  development  of  college  algebra  that  will  be  found  especially 
adapted  for  use  in  technical  schools.  The  reasonable  use  of  graphical  methods, 
care  in  finding  the  limit  of  error  in  numerical  computations,  and  the  use  of  tables 
in  extracting  roots  are  all  features  in  accord  with  modem  instruction  in  applied 
mathematics. 

THEORY  OF  FUNCTIONS  OF  REAL  VARIABLES 
By  James  Pierpont,  Yale  University.  Vol.  I,  $4.50;  Vol.  II,  $5.00 

"  A  MOST  admirable  exposition  of  what  in  modern  times  have  come  to  be  re- 
garded as  the  unshakable  foundations  of  analysis.  Hitherto,  in  order  to  gain  a 

knowledge  of  the  best  that  has  been  done  in  the  subject,  it  has  been  necessary 
to  repair  to  foreign  institutions ;  now  it  is  no  longer  necessary  to  have  recourse 

to  foreign  tongues,  thanks  to  Professor  Pierpont's  simple  and  scholarly  presenta- 
tion." —  The  Nation. 

FUNCTIONS  OF  A  COMPLEX  VARIABLE 
By  James  Pierpont,  Yale  University.   ̂ 5.00 

Adapted  to  the  needs  both  of  students  of  applied  mathematics  and  of  those 
specializing  in  pure  mathematics.  The  elliptic  functions  and  linear  homogeneous 
differential  equations  of  order  two  are  treated,  and  the  functions  of  Legendre, 
Laplace,  Bessel,  and  Lame  are  studied  in  some  detail. 

MATHEMATICAL  THEORY  OF  INVESTMENT 
By  Ernest  Brown  Skinner,  University  of  Wisconsin.   #2.25 

The  mathematical  material  that  will  prove  most  useful  to  the  modern  educated 
business  man.  The  book  treats  the  theory  of  interest,  both  simple  and  compound, 
the  theory  of  bond  values,  depreciation,  sinking  funds,  the  amortization  of  debts 
by  various  plans,  inheritance  taxes,  old-age  pensions,  and  life  insurance. 

MATHEMATICAL  THEORY  OF  HEAT  CONDUCTION 
By  L.  R.  Ingersoll,  University  of  Wisconsin,  and  O.  J.  Zobel.   $\.bo 

A  TEXT  in  Fourier's  Series  and  Heat  Conduction,  presenting  along  with  the 
theory  a  large  number  of  practical  applications  of  special  value  to  geologists  and 
engineers.  These  include  problems  in  the  tempering  of  steels,  freezing  of  con- 

crete, electric  and  thermit  welding,  and  similar  questions.  The  book  presents 
an  excellent  first  course  in  mathematical  physics. 
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A  Treatise  on  the 
DIFFERENTIAL  GEOMETRY  OF 

CURVES  AND  SURFACES 

By  Luther  P.  Eisenhart,  Preceptor  in  Mathematics  in  Princeton  University 

8vo,   cloth,  474  pages,  with  diagrams,  1^4.50 

EISENHART'S  "Differential  Geometry"  introduces  the 
student  to  the  methods  of  differential  geometry,  and  to 

the  theory  of  curves  and  surfaces  developed  thereby,  in  such 

a  way  that  he  will  be  prepared  to  read  the  more  extensive 

foreign  treatises  and  journal  articles.  The  reader  is  supposed 

to  possess  a  knowledge  of  the  calculus,  elementary  differential 

equations,  and  the  elements  of  coordinate  geometry  of  three 

dimensions.  Hence  the  first  half  of  the  book  may  be  used  with 

seniors,  and  the  remainder  will  constitute  a  full-year  course  for 

graduate  students. 

The  method  generally  used  is  that  of  Gauss,  common  among 

German  and  Italian  writers,  but  the  kinematical  method,  fre- 

quently adopted  in  France,  has  been  developed  and  applied 

where  more  feasible.  This  has  been  done  not  only  because 

it  furnishes  the  student  with  a  powerful  operator,  but  also  for 

the  reason  that  it  develops  geometrical  thinking. 

There  are  several  hundred  problems,  some  of  which  are 

direct  applications  of  the  accompanying  sections,  but  many 

are  theorems  which  might  properly  be  established  in  a  more 
extensive  treatise. 
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